

To our customers,

Old Company Name in Catalogs and Other Documents

On April 1st, 2010, NEC Electronics Corporation merged with Renesas Technology

Corporation, and Renesas Electronics Corporation took over all the business of both
companies. Therefore, although the old company name remains in this document, it is a valid
Renesas Electronics document. We appreciate your understanding.

Renesas Electronics website: http://www.renesas.com

April 1st, 2010
Renesas Electronics Corporation

Issued by: Renesas Electronics Corporation (http://www.renesas.com)

Send any inquiries to http://www.renesas.com/inquiry.

Notice
1. All information included in this document is current as of the date this document is issued. Such information, however, is

subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please
confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to
additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.

2. Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights
of third parties by or arising from the use of Renesas Electronics products or technical information described in this document.
No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights
of Renesas Electronics or others.

3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.
4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of

semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software,
and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by
you or third parties arising from the use of these circuits, software, or information.

5. When exporting the products or technology described in this document, you should comply with the applicable export control
laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas
Electronics products or the technology described in this document for any purpose relating to military applications or use by
the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and
technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited
under any applicable domestic or foreign laws or regulations.

6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics
does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages
incurred by you resulting from errors in or omissions from the information included herein.

7. Renesas Electronics products are classified according to the following three quality grades: “Standard”, “High Quality”, and
“Specific”. The recommended applications for each Renesas Electronics product depends on the product’s quality grade, as
indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular
application. You may not use any Renesas Electronics product for any application categorized as “Specific” without the prior
written consent of Renesas Electronics. Further, you may not use any Renesas Electronics product for any application for
which it is not intended without the prior written consent of Renesas Electronics. Renesas Electronics shall not be in any way
liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an
application categorized as “Specific” or for which the product is not intended where you have failed to obtain the prior written
consent of Renesas Electronics. The quality grade of each Renesas Electronics product is “Standard” unless otherwise
expressly specified in a Renesas Electronics data sheets or data books, etc.

“Standard”: Computers; office equipment; communications equipment; test and measurement equipment; audio and visual
equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots.

“High Quality”: Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-
crime systems; safety equipment; and medical equipment not specifically designed for life support.

“Specific”: Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or
systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare
intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.

8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics,
especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation
characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or
damages arising out of the use of Renesas Electronics products beyond such specified ranges.

9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have
specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further,
Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to
guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a
Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire
control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because
the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system
manufactured by you.

10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental
compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable
laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS
Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with
applicable laws and regulations.

11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas
Electronics.

12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this
document or Renesas Electronics products, or if you have any other inquiries.

(Note 1) “Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its majority-
owned subsidiaries.

(Note 2) “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.

User’s Manual

Target Devices
 78K0 Series

RA78K0 Ver. 3.80
Assembler Package

Structured Assembly Language

Document No. U17197EJ1V0UM00 (1st edition)
Date Published October 2004 CP(K)

Printed in Japan
© NEC Electronics Corporation 2004

User’s Manual U17197EJ1V0UM 2

[MEMO]

User’s Manual U17197EJ1V0UM 3

Windows is either registered trademarks or trademarks of Microsoft Corporation in the United States
and/or other countries.
HP-UX is trademarks of Hewlett-Packard Inc.
SunOS is trademarks of Sun Microsystems, Inc.

The information in this document is current as of October, 2004. The information is subject to
change without notice. For actual design-in, refer to the latest publications of NEC Electronics data
sheets or data books, etc., for the most up-to-date specifications of NEC Electronics products. Not
all products and/or types are available in every country. Please check with an NEC Electronics sales
representative for availability and additional information.
No part of this document may be copied or reproduced in any form or by any means without the prior
written consent of NEC Electronics. NEC Electronics assumes no responsibility for any errors that may
appear in this document.
NEC Electronics does not assume any liability for infringement of patents, copyrights or other intellectual
property rights of third parties by or arising from the use of NEC Electronics products listed in this document
or any other liability arising from the use of such products. No license, express, implied or otherwise, is
granted under any patents, copyrights or other intellectual property rights of NEC Electronics or others.
Descriptions of circuits, software and other related information in this document are provided for illustrative
purposes in semiconductor product operation and application examples. The incorporation of these
circuits, software and information in the design of a customer's equipment shall be done under the full
responsibility of the customer. NEC Electronics assumes no responsibility for any losses incurred by
customers or third parties arising from the use of these circuits, software and information.
While NEC Electronics endeavors to enhance the quality, reliability and safety of NEC Electronics products,
customers agree and acknowledge that the possibility of defects thereof cannot be eliminated entirely. To
minimize risks of damage to property or injury (including death) to persons arising from defects in NEC
Electronics products, customers must incorporate sufficient safety measures in their design, such as
redundancy, fire-containment and anti-failure features.
NEC Electronics products are classified into the following three quality grades: "Standard", "Special" and
"Specific".
The "Specific" quality grade applies only to NEC Electronics products developed based on a customer-
designated "quality assurance program" for a specific application. The recommended applications of an NEC
Electronics product depend on its quality grade, as indicated below. Customers must check the quality grade of
each NEC Electronics product before using it in a particular application.

The quality grade of NEC Electronics products is "Standard" unless otherwise expressly specified in NEC
Electronics data sheets or data books, etc. If customers wish to use NEC Electronics products in applications
not intended by NEC Electronics, they must contact an NEC Electronics sales representative in advance to
determine NEC Electronics' willingness to support a given application.

(Note)

•

•

•

•

•

•

M8E 02. 11-1

(1)

(2)

"NEC Electronics" as used in this statement means NEC Electronics Corporation and also includes its
majority-owned subsidiaries.
"NEC Electronics products" means any product developed or manufactured by or for NEC Electronics (as
defined above).

Computers, office equipment, communications equipment, test and measurement equipment, audio
and visual equipment, home electronic appliances, machine tools, personal electronic equipment
and industrial robots.
Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster
systems, anti-crime systems, safety equipment and medical equipment (not specifically designed
for life support).
Aircraft, aerospace equipment, submersible repeaters, nuclear reactor control systems, life
support systems and medical equipment for life support, etc.

"Standard":

"Special":

"Specific":

User’s Manual U17197EJ1V0UM 4

Regional Information

• Device availability

• Ordering information

• Product release schedule

• Availability of related technical literature

• Development environment specifications (for example, specifications for third-party tools and
 components, host computers, power plugs, AC supply voltages, and so forth)

• Network requirements

In addition, trademarks, registered trademarks, export restrictions, and other legal issues may also vary
from country to country.

[GLOBAL SUPPORT]
 http://www.necel.com/en/support/support.html

NEC Electronics America, Inc. (U.S.)
Santa Clara, California
Tel: 408-588-6000
 800-366-9782

NEC Electronics Hong Kong Ltd.
Hong Kong
Tel: 2886-9318

NEC Electronics Hong Kong Ltd.
Seoul Branch
Seoul, Korea
Tel: 02-558-3737

NEC Electronics Shanghai Ltd.
Shanghai, P.R. China
Tel: 021-5888-5400

NEC Electronics Taiwan Ltd.
Taipei, Taiwan
Tel: 02-2719-2377

NEC Electronics Singapore Pte. Ltd.
Novena Square, Singapore
Tel: 6253-8311

J04.1

NEC Electronics (Europe) GmbH
Duesseldorf, Germany
Tel: 0211-65030

• Sucursal en España
Madrid, Spain
Tel: 091-504 27 87

Vélizy-Villacoublay, France
Tel: 01-30-67 58 00

• Succursale Française

• Filiale Italiana
Milano, Italy
Tel: 02-66 75 41

• Branch The Netherlands
Eindhoven, The Netherlands
Tel: 040-244 58 45

• Tyskland Filial
Taeby, Sweden
Tel: 08-63 80 820

• United Kingdom Branch
Milton Keynes, UK
Tel: 01908-691-133

Some information contained in this document may vary from country to country. Before using any NEC
Electronics product in your application, pIease contact the NEC Electronics office in your country to
obtain a list of authorized representatives and distributors. They will verify:

User’s Manual U17197EJ1V0UM 5

INTRODUCTION

This manual has been written to help users obtain an accurate understanding of the coding method used for

the structured assembler preprocessor (hereafter referred to as the “structured assembler”) that is included in the

RA78K0 Assembler Package (hereafter called RA78K0).

This manual does not explain methods for using programs other than the structured assembler nor does it

describe structured assembler operation methods.

Therefore, when writing programs, please refer to the RA78K0 Assembler Package User’s Manual

(Language (U17198E) and Operation (U17199E)).

Descriptions related to the RA78K0 in this manual apply to Ver. 3.80 or later.

[Target Readers]

This manual is intended for user engineers who understand the functions and instructions of the microcontroller

(78K0 Series) subject to development.

Readers requiring a description of the functions of microcontrollers in the 78K0 Series should refer to the target

chip’s User’s Manual.

[Organization]

This manual consists of the following six chapters and appendices:

CHAPTER 1 GENERAL

This chapter describes the functions (the role, etc.) of the structured assembler in software

development for microcontrollers.

CHAPTER 2 SOURCE PROGRAM CODING METHODS

This chapter describes methods for source program configuration, coding syntax, and other

principal rules and conventions concerning the coding of source programs.

CHAPTER 3 CONTROL STATEMENTS

Control statements are used to describe the “if~else~endif” indicators of the program

structure.

 This chapter describes control statement functions and coding methods.

CHAPTER 4 EXPRESSIONS

 Assignments and arithmetic operations are entered as expressions.

 This chapter describes expression functions and coding methods.

CHAPTER 5 DIRECTIVES

 This chapter presents use examples in describing how to write and use structured assembler

directives.

CHAPTER 6 CONTROL INSTRUCTIONS

This chapter presents use examples in describing how to write and use structured assembler

control instructions.

APPENDIXES.A SYNTAX LISTS

 This appendix presents a structured assembler syntax list.

APPENDIXES.B LISTS OF GENERATED INSTRUCTIONS

 This appendix presents a list of instructions generated by the structured assembler.

The instruction sets are not detailed in this manual. For these instructions, refer to the user’s manual of the

microcontroller for which software is being developed.

Also, for instructions on architecture, refer to the user's manual (hardware version) of each microcontroller for

which software is being developed.

User’s Manual U17197EJ1V0UM 6

[How to Read This Manual]

Those using an structured assembler for the first time are encouraged to read from CHAPTER 1 GENERAL of

this manual. Those who have a general understanding of structured assembler may skip this chapter.

However, all readers should read section “1.3 Before Starting Program Development”.

[Conventions]

The following symbols and abbreviations are used throughout this manual:

 : Same format is repeated.

[]: Characters enclosed in these brackets can be omitted.

{ }: One of the items in { } is selected.

“ ”: Characters enclosed in “ ”(quotation marks) are a character string.

‘ ’: Characters enclosed in ‘ ’ (single quotation marks) are a character string.

(): Characters between parentheses are a character string.

< >: Characters (mainly title) enclosed in these brackets are a character string.

__: An underline is used to indicate an important point or input character strings.

∆: Indicates one or more blanks characters or tabs.

/: Character delimiter

∼: Continuity

Boldface: Characters in boldface are used to indicate an important point or reference point.

…

User’s Manual U17197EJ1V0UM 7

[Related Documents]

The documents (user’s manuals) related to this manual are listed below.

The related documents indicated in this publication may include preliminary versions.

However, preliminary versions are not marked as such.

Document Name Document No.

Operation U17199E

Language U17198E

RA78K0 Ver. 3.80 Assembler Package

Structured Assembly Language This manual

Operation U17201E CC78K0 Ver. 3.70 C Compiler

Language U17200E

SM plus System Simulator Operation U17246E

 User Open Interface U17247E

SM78K0 Series Ver. 2.52 System Simulator Operation U16768E

PM plus Ver. 5.20 U16934E

ID78K0-NS Ver. 2.52 Integrated Debugger Operation U16488E

ID78K0-QB Ver .2.81 Integrated Debugger Operation U16996E

78K0 Series Instruction U12326E

User’s Manual U17197EJ1V0UM 8

[MEMO]

User’s Manual U17197EJ1V0UM 9

 CONTENTS

CHAPTER 1 GENERAL ... 13
1.1 Overview ... 13
1.2 Overview of Functions ... 14

1.2.1 Main Functions ... 14
1.2.2 Flowchart of Program Development ... 15

1.3 Before Starting Program Development ... 16
1.3.1 Maximum performance ... 16
1.3.2 Word symbols and byte symbols ... 17
1.3.3 Definition of label ... 17

CHAPTER 2 SOURCE PROGRAM CODING METHODS ... 18
2.1 Basic Configuration of Source Programs ... 18
2.2 Source Program Elements ... 20
2.3 Reserved Words ... 23
2.4 Label Generation Rules ... 25
2.5 Size Specification ... 26
2.6 Data Sizes ... 27
2.7 Comments ... 28
2.8 Tool Information ... 29
2.9 Output Results of Input Source Files by ST78K0 ... 30

CHAPTER 3 CONTROL STATEMENTS ... 31
3.1 Control Statement Characters ... 31
3.2 Nesting ... 32
3.3 Register Specification ... 33
3.4 Control Statement Functions ... 35

3.4.1 Conditional branch ... 36
3.4.2 Conditional loop ... 46

3.5 Conditional Expressions ... 59
3.5.1 Comparison expressions ... 60
3.5.2 Test bit expressions ... 82
3.5.3 Logical operations ... 89

CHAPTER 4 EXPRESSIONS ... 96
4.1 Overview of Expressions ... 96
4.2 Assignment Statements ... 99
4.3 Count Statements ... 124
4.4 Exchange Statements ... 128
4.5 Bit Manipulation Statements ... 130

CHAPTER 5 DIRECTIVES ... 136
5.1 Overview of Directives ... 136
5.2 Directive Functions ... 137

#DEFINE ... 138
#IFDEF/#ELSE/#ENDIF ... 140
#INCLUDE ... 142
#DEFCALLT ... 143

CHAPTER 6 CONTROL INSTRUCTIONS ... 144
6.1 Overview of Control Instructions ... 144
6.2 Assembler Control Instructions ... 145
6.3 Control Instruction Functions ... 147

$PROCESSOR ... 148
$KANJICODE ... 149

10 User’s Manual U17197EJ1V0UM

APPENDIX A SYNTAX LISTS ... 150

APPENDIX B LISTS OF GENERATED INSTRUCTIONS ... 155

APPENDIX C INDEX ... 165

User’s Manual U17197EJ1V0UM 11

 LIST OF FIGURES

Figure No. Title , Page

1-1 ST78K0 Function ... 14
1-2 Program Development Flowchart ... 15
3-1 Nesting example ... 32

12 User’s Manual U17197EJ1V0UM

 LIST OF TABLES

Table No. Title , Page

1-1 Maximum Performance of ST78K0 ... 16
2-1 Structured Assembly Language Coding ... 18
2-2 Alphanumeric Characters ... 20
2-3 Special Characters ... 21
2-4 Invalid Characters ... 22
2-5 Reserved Word ... 23
2-6 Data Sizes ... 27
2-7 Output by ST78K0 ... 30
3-1 List of Control statements ... 35
3-2 Generated Instructions for switch Statements ... 43
3-3 Generated Instructions for Comparison Instructions ... 60
3-4 Comparison Expressions ... 61
3-5 Test Bit Expressions ... 82
3-6 Logical Operations ... 89
3-7 Generated Instructions (Control Statement in Lower Case Letters) for Logical AND ... 90
3-8 Generated Instructions (Control Statement in Upper Case Letters) for Logical AND ... 91
3-9 Generated Instructions for Logical OR ... 94
4-1 Assignment Statements ... 96
4-2 Count Statements ... 98
4-3 Exchange Statements ... 98
4-4 Bit Manipulation Statements ... 98
4-5 Generated Instructions for Assignments ... 102
4-6 Generated Instructions for Increment Assignments ... 105
4-7 Generated Instructions for Decrement Assignments ... 108
4-8 Generated Instructions for Logical AND Assignments ... 114
4-9 Generated Instructions for Logical OR Assignments ... 116
4-10 Generated Instructions for Logical XOR Assignments ... 119
4-11 Generated Instructions for Increment ... 125
4-12 Generated Instructions for Decrement ... 127
4-13 Generated Instructions for Exchange ... 129
4-14 Generated Instructions for Set Bit ... 132
4-15 Generated Instructions for Clear Bit ... 135
5-1 List of Directives ... 137
6-1 Control Instructions that Can Be Entered Only in Module Headers ... 145
6-2 Control Instructions that Are Recognized as the Module Body ... 146
6-3 Control Instruction List ... 147
6-4 Interpretation of Kanji Code ... 149
A-1 Control Statements ... 150
A-2 Conditional Expressions ... 151
A-3 Expressions ... 152
A-4 Directives ... 153
A-5 Control Instructions ... 154
B-1 Generated Instructions for Comparison Expressions ... 155
B-2 Generated Instructions for Test Bit Expressions ... 158
B-3 Generated Instructions for Logic Expressions ... 159
B-4 Expressions ... 162

CHAPTER 1 GENERAL

User’s Manual U17197EJ1V0UM 13

CHAPTER 1 GENERAL

This chapter describes the functions (the role , etc.) of the structured assembler preprocessor in software

development for microcontrollers.

1.1 Overview

The RA78K0 structured assembler preprocessor (ST78K0) is a program in the “RA78K0 Assembler Package”

that is used for software development of microcontrollers in the 78K0 Series.

The ST78K0 converts structured assembly statements such as “if~else~endif” and “for~next” into assembly

language source . Control statements are used to enter “if~else~endif” and “for~next” descriptions.

As such , the ST78K0 offers the following three advantages.

(1) Programs are easy to write

- Each program structure can be written as is , which facilitates the development process from design to

coding.

- There is no need to consider label names for branching.

- Transfer instructions that contain large amounts of code can be entered as assignment statements.

(2) Programs are easy to read.

- Program structure is easy to understand.

- Operations and transfers between memory registers can be entered in a single statement.

- Other programmers’ programs are easy to read.

- Program maintenance (revision) is easy.

(3) Facilitates desktop debugging

- Coding can be done on a one-to-one correspondence with the detail design , thus facilitating desktop

debugging.

14 User’s Manual U17197EJ1V0UM

CHAPTER 1 GENERAL

1.2 Overview of Functions

The ST78K0 analyzes various control statements , expressions , and directives within a structured assembler

source program that are coded according to a specific language specification and outputs an assembler source

that serves as an input source file for the assembler.

Structured statements can be output as comments and converted assembler instructions and ordinary assembly

language can all be output as secondary source files.

Error messages are output when errors occur.

Figure 1-1 ST78K0 Function

1.2.1 Main Functions

(1) Program coding is facilitated by an abundance of C-like control statements.

(2) C-like assignment statements and assignment operators can be used in coding.

(3) Control structures and assignment statements can be coded for bit processing.

(4) It includes C-like symbol definition directives , conditional processing functions , and include directives.

(5) Since it is the preprocessor that outputs assembler source programs , code optimization can be performed

following conversion by the ST78K0.

(6) A directive is provided for converting to CALLT instructions , so that routines can be registered to a CALLT

table following development of a program.

(7) Easy-to-read assembly lists can be created by changing the assembler source output position.

Structured assembler source ST78K0
Assembler source

(Secondary source files)

CHAPTER 1 GENERAL

User’s Manual U17197EJ1V0UM 15

1.2.2 Flowchart of Program Development

Figure 1-2 shows a flowchart of program development.

Figure 1-2 Program Development Flowchart

Remark Obtain the device file by downloading it from the Online Delivery Service (ODS), which can be

accessed from the following Website.

http://www.necel.com/micro/ods/eng/tool/DeviceFile/list.html

ST78K0

Assembler/Linker/
Object converter

Parameter files

Structured assembler
source program Include files

Device files

Secondary source files
(assembler source files) Error files

Object file

Console

http://www.necel.com/micro/ods/eng/tool/DeviceFile/list.html

16 User’s Manual U17197EJ1V0UM

CHAPTER 1 GENERAL

1.3 Before Starting Program Development

The maximum performance of the ST78K0 and points to be noted are described below.

1.3.1 Maximum performance

Notes 1. The maximum value is expressed as follows.

S1 = S2 = ... S32 = S33

Up to 33 symbols and 32 equal (=) signs can be inserted.

Notes 2. The maximum value is expressed as follows.

expression 1&&expression 2&& ... &&expression 16&&expression 17

Up to 17 expressions and 16 “&&” (or “||”) signs can be inserted.

Table 1-1 Maximum Performance of ST78K0

Item Maximum value

Line length (not including LF or CR) 2048 characters

Number of symbols registered in #define directive (excluding reserved words) 512 symbols

Character length of symbol registerd in #define directive 31 characters

Nesting levels in control statement 31 levels

Nesting levels in #ifdef directive 8 levels

#defcallt directives 32

Nesting of #include directives Not supported

Number of redefinitions by #define directive 31 times

Number of operands assigned in a series 33 (Note 1)

Logical operator operands 17 (Note 2)

Number of symbols defined by option "-D" 30

Number of include file paths specifiable by -I option 64

CHAPTER 1 GENERAL

User’s Manual U17197EJ1V0UM 17

1.3.2 Word symbols and byte symbols

The ST78K0 uses the last character in each user symbol to determine whether the symbol is a word symbol or a

byte symbol. The default character for word symbols is “-SCP” , and it can be changed via the -SC option.

For details of the -SC option , see the RA78K0 Assembler Package Operation User’s Manual.

1.3.3 Definition of label

When defining labels (symbol indicating address via assembler) , be sure to enter the label definition on a

separate line from the ST78K0 statement.

< Example of incorrect coding >

< Example of correct coding >

SYMBOL : AX = #10H

SYMBOL :
AX = #10H

< Example 1 >

Structured assembler source

SYM = #3
SYMP = #3

Assembler source

MOV SYM , #3
MOVW SYMP , #3

< Example 2 > Start command for ST78K0

C> ST78K0 INPUT.S -SC@

“@” is used as the character indicating a word symbol.

Input file specification

ST78K0 command name

Structured assembler source

SYMP = #3
SYM@ = #3

Assembler source

MOV SYMP , #3
MOVW SYM@ , #3

18 User’s Manual U17197EJ1V0UM

CHAPTER 2 SOURCE PROGRAM CODING METHODS

CHAPTER 2 SOURCE PROGRAM CODING
METHODS

This chapter describes coding methods for source programs etc.

2.1 Basic Configuration of Source Programs

Source programs consist of structured assembly language and (pure) assembly language.

For further description of assembly language , see the RA78K0 Assembler Package Language User’s Manual.

Each line (between two LFs) can contain up to 2048 characters.

The types of coding used in structured assembly language are listed below in Table 2-1.

Table 2-1 Structured Assembly Language Coding

Type Coding

ST78K0
statement

Control
statement

Conditional
branch

if ~ elseif ~ else ~ endif
if_bit ~ elseif_bit ~ else ~ endif
switch ~ case ~ default ~ ends

Conditional
loop

for ~ next
while ~ endw
while_bit ~ endw
repeat ~ until
repeat ~ until_bit

Other break , continue , goto

Expression

Assignment
statement

Assign (=) , assignment plus operation (+= , etc.) , shift
(rotate) assignment (>>= , etc.)

Count
statement Increment (++) , Decrement (--)

Exchange
statement Exchange (<->)

Conditional expression

Comparison
expression == , != , < , > , >= , <=

Test bit
expression Bit symbol , !bit symbol

Logical
operation Logical AND (&&) , Logical OR (||)

CHAPTER 2 SOURCE PROGRAM CODING METHODS

User’s Manual U17197EJ1V0UM 19

(1) Control statements

Control statements include “if ~ elseif ~ else ~ endif”, "if_bit ~ elseif_bit ~ else ~ endif", and “switch ~ case ~

default ~ ends” statements that represent conditional branches , “for ~ next” , “while ~ endw”, "while_bit ~

endw", “repeat ~ until”, and "repeat ~ until_bit" statements that represent conditional loops , and “break” ,

“continue” , and “goto” statements that represent loop exit processing. For details , see “CHAPTER 3

CONTROL STATEMENTS”.

(2) Expressions

Expressions include assignment statements , count statements (increment and decrement) , and exchange

statements. For details , see “CHAPTER 4 EXPRESSIONS”.

(3) Conditional expressions

Conditional expressions are entered as control statement conditions. For details , see “3.5 Conditional

Expressions”.

20 User’s Manual U17197EJ1V0UM

CHAPTER 2 SOURCE PROGRAM CODING METHODS

2.2 Source Program Elements

(1) Character set

Letters , numerals , and special characters can be used in source programs.

In the ST78K0 , only the first character in control statements are case-sensitive. Any lower case letters that

appear after the first character are converted to upper case letters. However , secondary source files are

output using the case specifications in which they were entered.

Table 2-2 Alphanumeric Characters

Name Character

Numerals 0 1 2 3 4 5 6 7 8 9

Letters

Upper case A
N

B
O

C
P

D
Q

E
R

F
S

G
T

H
U

I
V

J
W

K
X

L
Y

M
Z

Lower case a
n

b
o

c
p

d
q

e
r

f
s

g
t

h
u

i
v

j
w

k
x

l
y

m
z

CHAPTER 2 SOURCE PROGRAM CODING METHODS

User’s Manual U17197EJ1V0UM 21

Table 2-3 Special Characters

Character Name Use

? Question mark Character used as letter

@ Unit price symbol Character used as letter

_ Underlining Character used as letter

White space Delimiter symbol for phrases

HT Horizontal tab Character used as white space

, Comma Delimiter symbol for operands

. Period Bit position symbol for bit symbols

“ Double quotation mark Specification character for #INCLUDE directive's disk-
type file names

‘ Single quotation mark Symbol used to mark start and end of character constant

+ Plus symbol Positive sign or increment operation

- Minus symbol Negative sign or decrement operation

* Asterisk Multiplication operation

/ Slash Division operation

& Ampersand Logical AND operator

| Separator symbol Logical OR operator

ˆ Upward arrow symbol Exclusive OR operator

(Left parenthesis Change in operation sequence or expression in control
statement) Right parenthesis

= Equal symbol Assignment operator , comparison operator

: Colon Delimiter symbol for labels

; Semicolon Comment start symbol or delimiter symbol in control
statement expressions

Sharp symbol First character in ST78K0 directive or immediate display
symbol

$ Dollar sign Location or counter value
Display symbol in control instruction

! Exclamation point Direct addressing specification symbol , negation
display symbol

< Not equal (less than)
symbol

Comparison operator
> Not equal (more than

) symbol

\ Back slash Directory specification symbol

[Left bracket
Indirect address specification symbol

] Right bracket

LF Line feed End of line symbol

22 User’s Manual U17197EJ1V0UM

CHAPTER 2 SOURCE PROGRAM CODING METHODS

An error will occur if any of the following Invalid Characters are entered.

When an illegal character is entered , an error occurs and each illegal character is replaced by a period (.)

when a secondary file is output.

However , invalid characters can be used in comments.

(2) Identifiers

Identifiers are names that are attached to numerical data , addresses , etc.

Identifiers are used to make the contents of source programs easier to identify.

Use #define statements to define details of identifiers (see also “5.2 Directive Functions”).

(3) Symbols

The last character in the symbol name determines whether the ST78K0 generates a byte access instruction

or a word access instruction. The default setting is P (pair) , which can be changed via the -SC option.

All character strings other than reserved word symbols can be handled as user symbols. All alphanumeric

characters and all other characters that can be established as English alphabet characters can be used as

user symbols.

(4) Constants

Structured assembly language does not include any constants. However , assembly language constants

can be output as is to secondary files (for details of assembly language constants , refer to the RA78K0

Assembler Package Language User’s Manual.

(5) Expressions

Expressions are constants , special characters , and symbols that are combined using operators (for details

of assembly language expressions , see the RA78K0 Assembler Package Language User’s Manual.

Be sure to enclose in parentheses any symbols that are separated by white spaces within an assembly

language expression.

< Examples >

- Coding method for assembler

- Coding method for ST78K0 structured assembler source program

Table 2-4 Invalid Characters

Type ASCII code

Illegal characters 00H to 08H , 0BH , 0CH , 0EH to 1FH , 7FH

Unrecognized special characters % (25H) , ‘ (60H) , { (7BH) , } (7DH) , ¯ (7EH)

Other characters 80H ~ 0FFH

MOV A , # (SYM AND 0FFH)
MOV A , LABEL + 1

A = # (SYM AND 0FFH)
A = (LABEL + 1)

CHAPTER 2 SOURCE PROGRAM CODING METHODS

User’s Manual U17197EJ1V0UM 23

2.3 Reserved Words

Table 2-5 lists reserved words in structured assembly language.

For information on instructions and sfr symbols , see the target device’s User’s Manual.

Table 2-5 Reserved Word

Type Reserved word

Control statements IF , IF_BIT , ELSEIF , ELSEIF_BIT , ELSE , ENDIF

SWITCH , CASE , DEFAULT , ENDS

FOR , NEXT

WHILE , WHILE_BIT , ENDW

REPEAT , UNTIL , UNTIL_BIT

BREAK , CONTINUE , GOTO

Directives DFINE

IFDEF , ELSE , ENDIF

INCLUDE

DEFCALLT , ENDCALLT

Operators ++ , --

= , += , -= , *= , /= , &= , |= , ˆ= , <<= , >>= , <->

== , != , < , >= , > , <= , FOREVER

Assembler operators MOD , NOT

AND , OR , XOR

EQ , NE , GT , GE , LT , LE

SHL , SHR

HIGH , LOW , BANKNUM

DATAPOS , BITPOS , MASK

24 User’s Manual U17197EJ1V0UM

CHAPTER 2 SOURCE PROGRAM CODING METHODS

Assembler control
instructions

PROCESSOR , PC

DEBUG , NODEBUG , DEBUGA , NODEBUGA , DG , NODG

XREF , XR , NOXREF , NOXR

TITLE , TI

SYMLIST , NOSYMLIST

FORMFEED , NOFORMFEED

WIDTH , LENGTH

TAB

KANJICODE

IC

EJECT , EJ

LIST , LI , NOLIST , NOLI

GEN , NOGEN

COND , NOCOND

SUBTITLE , ST

SET , RESET

_IF , _ELSEIF , IF , ELSEIF , ELSE , ENDIF

Registers CY , Z

A , X , B , C , D , E , H , L

R0 , R1 , R2 , R3 , R4 , R5 , R6 , R7

PSW

AX , BC , DE , HL

RP0 , RP1 , RP2 , RP3

SP

Other DGS , DGL , TOL_INF , SJIS , EUC , NONE

Table 2-5 Reserved Word

Type Reserved word

CHAPTER 2 SOURCE PROGRAM CODING METHODS

User’s Manual U17197EJ1V0UM 25

2.4 Label Generation Rules

When using control statements in assembler language instructions , the ST78K0 generates labels for branch

instructions.

Labels generated by the ST78K0 have the format “?Ldddd”.

The “dddd” represents a decimal value of 1 or more , output with suppression of zeros and left alignment.

Therefore , do not enter any labels using this “?Ldddd” format.

26 User’s Manual U17197EJ1V0UM

CHAPTER 2 SOURCE PROGRAM CODING METHODS

2.5 Size Specification

Size specifications can be made to change the data size of symbols entered in the left or right sides of an

assignment expression or a conditional expression or case symbols in switch statements.

(1) Description format

(∆ size specification character ∆)

(2) Function

- If the size character is either “B” or “b” , the data size is changed to bytes.

- If the size character is “P” , “p” , “W” , or “w” , the data size is changed to words.

(3) Description

- An error will occur if the size specification character is incorrect.

- An error will occur if a size specification is entered in an assignment expression or a conditional

expression which does not support size specifications.

- If a size specification is made to a register , coding can only be done using the same specification. The

data size cannot be changed. If the data size is different , an error will occur.

- When specifying a user symbol , be sure to change the data size to the specified data size.

- If a size specification has been entered for a direct access specification symbol or an indirect access

specification symbol or for immediate data , the size specification will be ignored and the data size will not

be changed.

- Word access cannot be specified in size specifications.

CHAPTER 2 SOURCE PROGRAM CODING METHODS

User’s Manual U17197EJ1V0UM 27

2.6 Data Sizes

The ST78K0 checks the data size of symbols. This is because the symbols differ according to the instruction

being generated. However , the ST78K0 allows the assembler to determine whether or not the symbol definitions

and constants are entered correctly.

The data sizes checked by the ST78K0 are listed below.

Table 2-6 Data Sizes

Symbol in Generated
Instruction Table Description

a CY

b Bit symbols
This ST78K0 recognizes bit sfrs and symbols entered using the format “α , β”
as bit symbols.
Items that can be entered as “α” include byte user symbols , word user
symbols , byte-specified user symbols , sfrs , A , PSW , [HL] , and constants.
Items that can be entered as “β” include byte user symbols , word user symbols
, and constants.

c Byte user symbols

d Byte-specified user symbols , sfrs that overlaps saddr

e A

f Byte registers

g sfr

h PSW

i Word user symbols

j Word-specified user symbols

k AX

l BC , DE , HL

m RP0 , RP1 , RP2 , RP3

n sfrp

o SP

p Direct access specification symbols
These are symbols that are specified using the format “!addr”.
Byte user symbols , word user symbols , constants , and $ can be entered as
“addr”.

q Indirect access specification symbols
These are symbols that are specified using the format “[HL]” , “[HL + byte]” ,
“[HL + B]” , and “[HL + C]”.
Byte user symbols , constants , and $ can be entered as “byte”.

r Special indirect access specification symbols
These are symbols that are specified using the format “[DE]”.

s Immediate data
These are symbols that are specified using the format “#date”.
Byte user symbols , word user symbols , constants , and $ can be entered as
“date”.

28 User’s Manual U17197EJ1V0UM

CHAPTER 2 SOURCE PROGRAM CODING METHODS

2.7 Comments

Any character string that appears after a semicolon (;) until the next line feed (LF) is regarded as a comment

statement , which is not processed but is simply output to a secondary file. Comment statements can be entered at

any position in a line of code.

However , since semicolons are used between parentheses as expression delimiters in the “for ~ next” syntax ,

the two semicolons that are entered between parentheses are not regarded as the start of a comment statement.

All of the characters listed under “2.2 (1) Character set” can be used in comments.

Processing of illegal characters does not occur when the illegal characters are included in a comment or

comment statement.

CHAPTER 2 SOURCE PROGRAM CODING METHODS

User’s Manual U17197EJ1V0UM 29

2.8 Tool Information

The ST78K0 outputs tool information.

If an input source file contains tool information that has been output by the ST78K0 , the “$” character at the start

of the information is replaced with “;”.

The output position is the end of the module header. The only types of statements that can be entered in module

headers are assembler control instructions , comment statements , and line feeds.

(1) Output format

2FH indicates that it is tool information output by the ST78K0 preprocessor.

The second parameter indicates the version number of this preprocessor.

The version number is output either as a hexadecimal value or , if the value is not converted , as the decimal

number image that was shown at startup.

< Example >

Version number 3.10 -> 310H

The third parameter is used to indicate this preprocessor's error messages.

0H : Normal end

1H : Fatal error , exited

2H : Warning , exited

3H : Fatal error and warning , exited

0FFFFH indicates language-related information. This is a fixed value for this preprocessor.

$TOL_INF 2FH , second parameter , third parameter , 0FFFFH

30 User’s Manual U17197EJ1V0UM

CHAPTER 2 SOURCE PROGRAM CODING METHODS

2.9 Output Results of Input Source Files by ST78K0

Input source files are output as follows by the ST78K0.

Table 2-7 Output by ST78K0

Input source program file Secondary source program file

ST78K0 control statements
ST78K0 expression statements Output as comments

ST78K0 directives Not output

#INCLUDE Outputs include contents

Source alias set by #IFDEF Not output

Comments Output as comments

Other lines Output as is

CHAPTER 3 CONTROL STATEMENTS

User’s Manual U17197EJ1V0UM 31

CHAPTER 3 CONTROL STATEMENTS

This chapter presents examples in describing control statement functions.

Control statements are used to structurally code the flow of program control (see also “3.4 Control Statement

Functions”).

3.1 Control Statement Characters

The instruction generated by a control statement differs fundamentally depending on whether upper case or

lower case letters are used in the control statement. For example , the different statement sizes between “if ~

endif” and “IF ~ ENDIF” can preclude direct branching via the conditional branch instruction generated by

processing of the condition expression.

However , ensuring that the statement will always be branched correctly has the disadvantage of reducing the

program’s efficiency as an object.

As a solution to this problem , the user is able to set upper or lower case in order to improve the object efficiency

rate. If there is no need to improve the object efficiency rate , the user can omit changing the character size as long

as coding uses upper case letters.

Since control statements generate conditional branch instructions , be sure to specify whether or not the relative

address is within 128 bytes.

In control statements , “if” and “elseif” are reserved words. The ST78K0 determines whether the first character in

a control statement reserved word is an upper case or lower case letter.

IF , If ... First letter is upper case , so coding is determined as upper case.

if , iF ... First letter is lower case , so coding is determined as lower case.

If entered in upper case ... branches using a combination of conditional branch instruction and BR directive.

If entered in lower case ... branches directly using a conditional directive.

Paired control statements (such as “if , else , endif”) can have mixed upper case and lower case letters. In

other words , it is possible to enter one as “IF ~ else ~ ENDIF”.

32 User’s Manual U17197EJ1V0UM

CHAPTER 3 CONTROL STATEMENTS

3.2 Nesting

Control statements can be nested. Generally , up to 31 nesting levels are allowed. However , control statements

cannot be intersected.

Figure 3-1 Nesting example

< Example of incorrect coding >

 while (A < B)
 if (A == #4)
 break ;
 endw
 endif Error occurs due to intersecting.

< Example of correct coding >

 while (A < B)
 if (A == #4)
 break ;
 endif
 endw "if" statement is correctly nested within "while" statement.

CHAPTER 3 CONTROL STATEMENTS

User’s Manual U17197EJ1V0UM 33

3.3 Register Specification

(1) Description format

([∆] [=] [∆] register name [∆])

(2) Function

- If a register is specified immediately after a comparison expression

After the instruction to transfer the left side to the specified register , a comparison expression is

generated to compare the specified register with the right side.

< Example >

- If a register is specified after a control statement

During the generated of each comparison expression , after the instruction for transferring the left side to

the specified register is generated , a comparison expression is generated to compare the specified

register with the right side.

< Example >

Output source Input source

CMP SYM1 , #5
BZ $?L1
CMP SYM2 , #0
BC $?L1
MOV A , SYM3
CMP A , #80H
BNC $?L1

?L1 :

if (SYM1 != #5 && SYM2 >= #0&&SYM3 < #80H (A))

endif

Output source Input source

MOV A , R4
CMP A , #5
BZ $?L2
MOV A , R2
CMP A , #0
BC $?L2
MOV A , R3
CMP A , #80H
BNC $?L2

?L2 :

if (R4 != #5 && R2 >= #0 && R3 < #80H) (A)

endif

34 User’s Manual U17197EJ1V0UM

CHAPTER 3 CONTROL STATEMENTS

- If both (a) and (b) are specified

The register specification that immediately follows a comparison expression takes priority. After the

instruction for transferring the left side to the specified register is generated , a comparison expression is

generated to compare the specified register with the right side.

As for an expression in which there is no register specification immediately after a comparison expression

, after the instruction for transferring the left side to the specified register is generated according to the

register specification following the control statement , a comparison expression is generated to compare

the specified register with the right side.

< Example >

(3) Description

- Register specifications can be used in if statements , elseif statements , switch statements , for

statements , while statements , and until statements. However , if the conditional expression is a bit

expression , any register specified in the control statement is ignored.

- For a list of register names , see Table 2-5.

sfr specifications can also be entered.

- The processing for an assignment statement within a for statement is the same as for comparison

expressions.

Output source Input source

MOV A , DATA1
CMP A , #5
BZ $?L3
MOV A , DATA2
CMP A , #0
BC $?L3
MOV A , DATA3
CMP A , #80H
BNC $?L3

?L3 :

if (DATA1 != #5 && DATA2 >= #0 (A) && DATA3 < #80H)(A)

endif

CHAPTER 3 CONTROL STATEMENTS

User’s Manual U17197EJ1V0UM 35

3.4 Control Statement Functions

The following pages describe the functions of the various control statements.

The use examples show as comment statements the source files to which generated instructions are input.

Table 3-1 List of Control statements

Type Description Remark

Conditional branch if ~ elseif ~ else ~ endif

if_bit ~ elseif_bit ~ else ~ endif

switch ~ case ~ default ~ ends

Conditional loop for ~ next (Repetition of increment specification)

while ~ endw
(Repetition of conditional expression testing before
processing)

while_bit ~ endw
(Repetition of conditional expression testing before
processing)

repeat ~ until
(Repetition of conditional expression testing after
processing)

repeat ~ until_bit
(Repetition of conditional expression testing after
processing)

break (Extraction of loop block)

continue (Repetition of loop block)

goto (Escape to go to exception processing)

36 User’s Manual U17197EJ1V0UM

CHAPTER 3 CONTROL STATEMENTS

3.4.1 Conditional branch

Conditional branch if

(1) if ~ elseif ~ else ~ endif

[Description format]

[Function]

- if ~ endif

The if block is executed if conditional expression 1 is true.

The if block may occupy several lines.

- if ~ else ~ endif

The if block is executed if conditional expression 1 is true and the else block is executed if it is false.

The if block and else block may occupy several lines.

- if ~ elseif ~ else ~ endif

Several elseif blocks can be written for a single if statement.

If conditional expression 1 is true , the if block is executed. If it is false , conditional expression 2 is tested.

If conditional expression 2 is true , the elseif block is executed. If it is false , the condition of any other elseif

that exists prior to the next endif is tested. If there is no elseif , the else block is executed.

The if block , elseif block , and else block may occupy several lines.

[Description]

- Comparison expressions , logic expressions , and test bit expressions can be entered in conditional

expressions. If a register name is specified , the specified register is used when testing conditions.

For details of comparison expressions and logic expressions , see “3.5 Conditional Expressions”.

- if ~ else ~ endif is used when coding two branches for a condition.

- if ~ elseif ~ else ~ endif is used when coding several branches for a certain range of values. This differs

from a switch statement in that the statement contains a range of values.

- elseif statements and else statements can be omitted and several elseif statements can be entered.

[Generated instructions]

(1) Processing of if (conditional expression)

- Generates an instruction to test the condition of the conditional expression.

- Generates a branch instruction to branch to an elseif block or else block if the condition is not met.

[∆] if [∆] (Conditional expression 1) [∆] [(Register name)]
if block

[∆] elseif [∆] (Conditional expression 2) [∆] [(Register name)]
elseif block

[∆] else
else block

[∆] endif

CHAPTER 3 CONTROL STATEMENTS

User’s Manual U17197EJ1V0UM 37

(2) Processing of elseif (conditional expression)

- Generates a branch instruction to an endif statement.

- Generates a label for the branch instruction generated by an if statement.

- Generates an instruction to test the condition of the conditional expression.

- Generates a branch instruction to branch to an elseif block or else block if the condition is not met.

(3) Processing of else

- Generates a branch instruction to an endif statement.

- Generates a label for the branch instruction generated by an if statement or elseif statement.

(4) Processing of endif

- Generates a label for the branch instruction generated by an if statement , elseif statement , or else

statement.

(5) Additional description

- These blocks can be mixed with elseif_bit.

[Use examples]

(1) When entered in lower case letters

(2) When entered in upper case letters

Output source Input source

CMP A , #0
BNZ $?L1
MOV1 CY , TFLG.0
MOVW AX , #0FFH
BR ?L2

?L1 :
MOVW BC , #0A00H

?L2 :

if (A == #0)

CY = TFLG.0
AX = #0FFH

else
BC = #0A00H

endif

Output source Input source

CMP A , #0
BZ $?L3
BR ?L4

?L3 :
MOV1 CY , TFLG.0
MOVW AX , #0FFH
BR ?L5

?L4 :
MOVW BC , #0A00H

?L5 :

IF (A == #0)

CY = TFLG.0
AX = #0FFH

ELSE
BC = #0A00H

ENDIF

38 User’s Manual U17197EJ1V0UM

CHAPTER 3 CONTROL STATEMENTS

Conditional branch if_bit

(2) if_bit ~ elseif_bit ~ else ~ endif

[Description format]

[Function]

- if_bit ~ endif

If conditional expression 1 is true , the if_bit block is executed.

The if_bit block may occupy several lines.

- if_bit ~ else ~ endif

The if_bit block is executed if conditional expression 1 is true and the else block is executed if it is false.

The if_bit block and else block may occupy several lines.

- if_bit ~ elseif_bit ~ else ~ endif

If conditional expression 1 is true , the if_bit block is executed. If it is false , conditional expression 2 is

tested. If conditional expression 2 is true , the elseif_bit block is executed. If it is false , the condition of any

elseif_bit that exists before the next endif is tested.

If there is no elseif_bit , the else block is executed.

The if_bit block , elseif_bit block , and else block may occupy several lines.

- Additional description

These blocks can be mixed with elseif.

[Description]

- Test bit expressions are entered as conditional expressions 1 and 2.

For details of test bit expressions , see “3.5 Conditional Expressions”.

- if_bit ~ else ~ endif is used when coding two branches for a condition.

if_bit ~ elseif_bit ~ else ~ endif is used when checking several bit symbols for multiple branches.

- elseif_bit statements and else statements can be omitted and several elseif_bit statements can be entered.

[Generated instructions]

(1) Processing of if_bit (bit condition)

- Generates a true/false instruction for a bit condition.

(2) Processing of elseif_bit (bit condition)

- Generates a branch instruction to an endif statement.

- Generates a label for the branch instruction generated by an if_bit statement.

[∆] if_bit [∆] (test bit expression 1)
if_bit block

[∆] elseif_bit [∆] (test bit expression 2)
elseif_bit block

[∆] else [∆]
else block

[∆] endif [∆]

CHAPTER 3 CONTROL STATEMENTS

User’s Manual U17197EJ1V0UM 39

- Generates a true/false instruction for a bit condition.

(3) Processing of else

- Generates a branch instruction to an endif statement.

- Generates a label for the branch instruction generated by an if_bit statement or elseif_bit statement.

(4) Processing of endif

- Generates a label for the branch instruction generated by an if_bit statement , elseif_bit statement , or

else statement.

[Use examples]

(1) When entered in lower case letters

Output source Input source

BT TRFG.0 , $?L1
SET1 PRTYFLG.3
BR ?L2

?L1 :
BF PGF.0 , $?L3
MOVW BC , #0FFH
BR ?L2

?L3 :
MOV A , # (FG SHR 6)
MOV H , A
MOV1 CY , PFG.0
CLR1 BUSYFG.2

?L2 :

if_bit (!TRFG.0)
PRTYFLG.3 = 1

elseif_bit (PGF.0)

BC = #0FFH

else
H = # (FG SHR 6) (A)

CY = PFG.0
BUSYFG.2 = 0

endif

40 User’s Manual U17197EJ1V0UM

CHAPTER 3 CONTROL STATEMENTS

(2) When entered in upper case letters

Output source Input source

BF TRFG.0 , $?L4
BR ?L5

?L4 :
SET1 PRTYFLG.3
BR ?L6

?L5 :
BT PGF.0 , $?L7
BR ?L8

?L7 :
MOVW BC , #0FFH
BR ?L6

?L8 :
MOV A , # (FG SHR 6)
MOV H , A
MOV1 CY , PFG.0
CLR1 BUSYFG.2

?L6 :

IF_BIT (!TRFG.0)

PRTYFLG.3 = 1

ELSEIF_BIT (PGF.0)

BC = #0FFH

 ELSE
 H = # (FG SHR 6) (A)

CY = PFG.0
BUSYFG.2 = 0

ENDIF

CHAPTER 3 CONTROL STATEMENTS

User’s Manual U17197EJ1V0UM 41

Conditional branch switch

(3) switch ~ case ~ default ~ ends

[Description format]

[Function]

- If the value of the case symbol matches the case constant , the specified statement is executed.

- If the value of the case symbol does not match any case constant and a default statement has been entered

, the default statement is executed.

- Normally , a break statement must be entered to skip a switch block.

[Description]

- The possible specifications for “case symbol” depend on the assembly language of the target device.

- If a break statement is not entered , a comparison instruction is executed for the next case statement.

- Constants can be expressed as binary , octal , decimal , hexadecimal , or character string constants.

However , since the ST78K0 recognizes constants as character strings , be careful to use only constants

that the assembler can recognize as such.

- The case symbol is transferred to the specified register only when a register specification has been made.

[Generated instructions]

(1) Processing of switch statement

(a) If a register has not been specified , the case symbol is tested and , when necessary , a transfer

instruction to A or AX is generated.

(b) If a register has been specified , the case symbol is transferred to the specified register.

However , an error occurs if a comparison instruction cannot be generated.

For details , see Table 3-2.

(2) Processing of case statement

(a) Labels are generated from branch processing from other case statements.

(b) CMP or CMPW is generated , and if the specified constant does not match , a branch instruction for

another case statement , default statement , or ends statement is generated.

?LTRUE : Branch destination label when specified constant matches

?LFALSE : Branch destination label when specified constant does not match

[∆] switch [∆] ([∆] case symbol [∆]) [∆] [(specified register)]
[∆] case [∆] Constant :

Statement_1
[[∆] case [∆] Constant :

Statement_2]
[∆] [default :]

Statement_N
[∆] ends

42 User’s Manual U17197EJ1V0UM

CHAPTER 3 CONTROL STATEMENTS

- If the case statement is expressed in lower case letters and a register specification has not been

made in the switch statement

- If the case statement is expressed in lower case letters and a register specification has been made

in the switch statement

- If the case statement is expressed in upper case letters and a register specification has not been

made in the switch statement

- If the case statement is expressed in upper case letters and a register specification has been made

in the switch statement

(3) Processing of default statement

Generates a label for the branch instruction from the case statement

(4) Processing of ends statement

Generates a label for the branch instruction from the case statement or break statement

CMP (W) case symbol , #case constant
BNZ $?LFALSE

CAMP (W) specified register , #case constant
BNZ $?LFALSE

CMAP (W) case symbol , #case constant
BZ $?LTRUE
BR ?LFALSE

?LTRUE :

CAMP (W) specified register , #case constant
BZ $?LTRUE
BR ?LFALSE

?LTRUE :

CHAPTER 3 CONTROL STATEMENTS

User’s Manual U17197EJ1V0UM 43

*1 : Generates MOV instruction

*2 : Generates MOVW instruction

*3 : Does not generate transfer instruction

Empty columns indicate errors.

Table 3-2 Generated Instructions for switch Statements

Case symbol
Without
register

specification

With register specification

a b e f g h k l m n o

a CY

b Bit symbol

c Byte user symbol *3 *1 *2

d Byte data *3 *1

e A *3

f Byte register *1 *1

g sfr *1 *1

h PSW *1 *1

i Word user symbol *2 *1 *2

j Word data *2 *2

k AX *3

l BC , DE , HL *2 *2

m RP0 , RP1 , RP2 , RP3

n sfrp *2 *2

o SP *2 *2

p Direct access symbol *1 *1 *2

q Indirect access symbol *1 *1

r [DE] *1 *1

s Immediate symbol *1 *1 *2

44 User’s Manual U17197EJ1V0UM

CHAPTER 3 CONTROL STATEMENTS

[Use examples]

(1) When entered in lower case letters

Output source Input source

MOV A , R0
CMP A , #1
BNZ $?L1
BF P1.0 , $?L2
BTM.3

?L2 :
BR ?L3

?L1 :
CMP A , #2
BNZ $?L4
BR ?L3

?L4 :
CMP A , #3
BNZ $?L5
BR ?L3

?L5 :
?L3 :

SWITCH (R0)
case 1 :

if_bit (P1.0)
BTM.3

endif
break

case 2 :

break
case 3 :

break
default :
ENDS

CHAPTER 3 CONTROL STATEMENTS

User’s Manual U17197EJ1V0UM 45

(2) When entered in upper case letters

Output source Input source

MOV A , R0
CMP A , #1
BZ $?L6
BR ?L7

?L6 :
BF P1.0 , $?L8
BTM.3

?L8 :
BR ?L9

?L7 :
CMP A , #2
BZ $?L10
BR ?L11

?L10 :
BR ?L9

?L11 :
CMP A , #3
BZ $?L12
BR ?L13

?L12 :
BR ?L9

?L13 :
?L9 :

SWITCH (R0)
CASE 1 :

if_bit (P1.0)
BTM.3

endif
break

CASE 2 :

break
CASE 3 :

break
DEFAULT :
ENDS

46 User’s Manual U17197EJ1V0UM

CHAPTER 3 CONTROL STATEMENTS

3.4.2 Conditional loop

Conditional loop for

(4) for ~ next

[Description format]

[Function]

- The initial value is set by expression 1 and the statement and expression 3 are executed as long as the

conditional expression in expression 2 is met. Usually , expression 3 is an Increment (++) or Decrement (

--) operation.

The meaning is similar to the example shown below.

[Description]

(1) Be sure to note that the similar example shown above does not apply to generated instructions.

(2) The following are entered in expression 1 , expression 2 , and expression 3.

- Expression 1 ... Initial value setting (assignment expression)

- Expression 2 ... Conditional expression

- Expression 3 ... Increment or decrement expression

(3) Assignment operators and exchange statements can be entered in expression 1 or expression 3 , but

when doing so , the conversion output should be checked and modified if necessary.

(4) It is possible to omit expression 1 , expression 2 , or expression 3. However , if expression 2 is omitted ,

an endless loop will occur.

(5) “forever” can be entered in a conditional expression.

(6) Since expression 2 and expression 3 control for ~ next , the contents of these expressions should not be

changed by an executable statement. Changing these contents can result in faulty operation.

[Generated instructions]

(1) Processing of for statement (expression 1 ; expression 2 ; expression 3)

(a) Generates instruction for expression 1. If a register name has been specified , the specified register

is used for assignments and comparisons.

[∆] for [∆] ([expression 1] ; [expression 2] ; [expression 3]) [∆] [(register specification)]
Instruction group

[∆] next

Expression 1
while (expression 2)

Instruction group
Expression 3

endw

CHAPTER 3 CONTROL STATEMENTS

User’s Manual U17197EJ1V0UM 47

(b) Generates a branch instruction to the statement that tests expression 2’s conditions.

(c) Generates a label for the branch instruction generated by a next statement.

(d) Generates a label for the branch instruction generated at (b).

(e) Generates a condition testing instruction for expression 2.

(2) Processing of next statement

(a) Generates a branch instruction to the label generated via for statement processing (c).

(b) Generates a label for the branch instruction for skipping a for block.

(c) Generates an instruction for expression 3's assignment expression.

(3) Additional description

(a) The following method is recommended for more effective use of for ~ next statements.

- Use saddr instead of a register name as the control variable in expression 1 and expression 3.

- When specifying a register , specify either A or AX.

- When executing a loop for at least 256 repetitions , nest a for statement and use two saddr

variables as the control variables.

Remark The above method is recommended because of the limited range of symbols that can be

entered as operands in order to output CMP or CMPW as generated instructions for the

conditional expression in expression 2.

[Use examples]

(1) When entered in lower case letters

Output source Input source

MOV i , #0H
?L1 :

CMP i , #0FFH
BNC $?L2
CALL !XXX
NC i
BR ?L1

?L2 :

for (i = #0H ; i < #0FFH ; i++)

CALL !XXX

next

48 User’s Manual U17197EJ1V0UM

CHAPTER 3 CONTROL STATEMENTS

(2) When entered in upper case letters

Output source Input source

MOV i , #0H
?L3 :

CMP i , #0FFH
BC $?L4
BR ?L5

?L4 :
CALL !XXX
INC i
BR ?L3

?L5 :

FOR (i = #0H ; i < #0FFH ; i++)

CALL !XXX

NEXT

CHAPTER 3 CONTROL STATEMENTS

User’s Manual U17197EJ1V0UM 49

Conditional loop while

(5) while ~ endw

[Description format]

[Function]

- The instruction group is repeatedly executed as long as the conditional expression remains true.

[Description]

- It is possible to enter comparison expressions , logic expressions , test bit expressions , and “forever” as

conditional expressions.

If “forever” is entered , the result is an endless loop.

- As the register name , specify the register used in the comparison expression or logic expression entered as

“(conditional expression)”.

- Since the conditional expression is tested before the instruction group is executed , if the first conditional

expression is found to be false , the instruction group is not executed even once.

[Generated instructions]

(1) Processing of while (conditional expression) statement

- Generates a label for the branch instruction generated by endw.

- Generates a condition testing instruction. If a register name has been specified , the specified register

is used when generating the condition testing instruction.

- Generates a branch instruction for removing the while (conditional expression) statement from the

while block when the condition tests as false.

(2) endw

- Generates a branch instruction for an execution loop.

- Generates a label for the branch instruction that is used to remove endw from the while block.

[Use examples]

(1) When entered in lower case letters

[∆] while [∆] (conditional expression) [∆] [(register specification)]
Instruction group

[∆] endw

Output source Input source

?L1 :
CMPW AX , #0FFFH
BNC $?L2
MOV B , #0FH
INCW HL
BR ?L1

?L2 :

while (AX < #0FFFH)

B = #0FH
HL++

endw

50 User’s Manual U17197EJ1V0UM

CHAPTER 3 CONTROL STATEMENTS

(2) When entered in upper case letters

Output source Input source

?L3 :
CMPW AX , #0FFFH
BC $?L4

?L4 :
MOV B , #0FH
NCW HL
BR ?L3

?L5 :

WHILE (AX < #0FFFH)

B = #0FH
HL++

ENDW

CHAPTER 3 CONTROL STATEMENTS

User’s Manual U17197EJ1V0UM 51

Conditional loop while_bit

(6) while_bit ~ endw

[Description format]

[Function]

- The instruction group can be executed as long as the bit condition is true.

[Description]

- Since the bit condition is tested before the instruction group is executed , if the first bit condition is found to

be false , the instruction group is not executed even once.

[Generated instructions]

(1) Processing of while_bit (bit condition) statement

- Generates a label for the branch instruction generated by endw.

- Generates an instruction for testing the bit condition as true or false.

- Generates a branch instruction for removing the while_bit statement from the while_bit ~ endw block

when the bit condition tests as false.

(2) Processing of endw

- Generates a branch instruction for an execution loop.

- Generates a label for the branch instruction that is used to remove endw from the while_bit block.

[Use examples]

(1) When entered in lower case letters

[∆] while_bit [∆] (bit condition)
Instruction group

[∆] endw

Output source Input source

?L1 :
BT TRFG.0 , $?L2
MOV A , PORT1
CMP A , #04H
BNZ $?L3
MOV X , #0FFH
BR ?L4

?L3 :
CLR1 PFG.0

?L4 :
BR ?L1

?L2 :

while_bit (!TRFG.0)

A = PORT1
if (A == #04H)

X = #0FFH

else
PFG.0 = 0

endif

endw

52 User’s Manual U17197EJ1V0UM

CHAPTER 3 CONTROL STATEMENTS

(2) When entered in upper case letters

Output source Input source

?L5 :
BF TRFG.0 , $?L6
BR ?L7

?L6 :
MOV A , PORT1
CMP A , #04H
BNZ $?L8
MOV X , #0FFH
BR ?L9

?L8 :
CLR1 PFG.0

?L9 :
BR ?L5

?L7 :

WHILE_BIT (!TRFG.0)

A = PORT1
if (A == #04H)

X = #0FFH

else
PFG.0 = 0

endif

ENDW

CHAPTER 3 CONTROL STATEMENTS

User’s Manual U17197EJ1V0UM 53

Conditional loop until

(7) repeat ~ until

[Description format]

[Function]

- The instruction group is repeatedly executed as long as the conditional expression remains true.

[Description]

- It is possible to enter comparison expressions , logic expressions , test bit expressions , and “forever” as

conditional expressions.

If “forever” is entered , the result is an endless loop.

- As the register name , specify the register used in the comparison expression or logic expression entered as

“(conditional expression)”.

- The conditional expression is tested after the instruction group is executed. Therefore , if the first

conditional expression is found to be true , the instruction group is executed once.

[Generated instructions]

(1) Processing of repeat statement

- Generates a label for the branch instruction generated by until.

(2) Processing of until (conditional expression) statement

- Generates a condition testing instruction for the conditional expression.

- Generates a branch instruction for the label that was generated by repeat in order to execution the

instruction group during repeat ~ until and while the conditional expression tests as false. If the

conditional expression tests as true , the until statement is removed from the repeat block.

[Use examples]

(1) When entered in lower case letters

[∆] repeat
Instruction group

[∆] until [∆] (conditional expression) [∆] [(register specification)]

Output source Input source

?L1 :
MOVW AX , BC
CMP ABC , #0CH
BNZ $?L2
CALL !XXX

?L2 :
INC CNT
CMP CNT , #0FFH
BNZ $?L1

repeat
AX = BC
if (ABC == #0CH)

CALL !XXX
endif
CNT++

until (CNT == #0FFH)

54 User’s Manual U17197EJ1V0UM

CHAPTER 3 CONTROL STATEMENTS

(2) When entered in upper case letters

Output source Input source

?L3 :
MOVW AX , BC
CMP ABC , #0CH
BNZ $?L4
CALL !XXX

?L4 :
INC CNT
CMP CNT , #0FFH
BZ $?L5
BR ?L3

?L5 :

REPEAT
AX = BC
if (ABC == #0CH)

CALL !XXX
endif
CNT++

UNTIL (CNT == #0FFH)

CHAPTER 3 CONTROL STATEMENTS

User’s Manual U17197EJ1V0UM 55

Conditional loop until_bit

(8) repeat ~ until_bit

[Description format]

 [Function]

- The instruction group is repeatedly executed as long as the bit condition is false.

[Description]

- The bit condition is tested after the instruction group is executed. Therefore , if the first bit condition is found

to be true , the instruction group is executed once.

[Generated instructions]

(1) Processing of repeat

- Generates a label for the branch instruction generated by until_bit.

(2) Processing of until_bit (bit condition)

- Generates a branch instruction for the label that is generated by repeat in order to execute the

instruction group between repeat and until_bit when the conditional expression tests as false. If the

conditional expression tests as true , until_bit is removed from the repeat block.

[Use examples]

(1) When entered in lower case letters

(2) When entered in upper case letters

[∆] repeat
Instruction group

[∆] until_bit [∆] (test bit expression)

Output source Input source

?L1 :
MOV B , #8H
CALL !XXX
BF TRFG.0 , $?L1

repeat
B = #8H
CALL !XXX

until_bit (TRFG.0)

Output source Input source

?L2 :
MOV B , #8H
CALL !XXX
BT TRFG.0 , $?L3
BR ?L2

?L3 :

REPEAT
B = #8H
CALL !XXX

UNTIL_BIT (TRFG.0)

56 User’s Manual U17197EJ1V0UM

CHAPTER 3 CONTROL STATEMENTS

Conditional loop break

(9) break

[Description format]

[Function]

- Terminates execution of the innermost nested block among while , repeat , for , and switch blocks.

[Description]

- An error occurs if a statement other than a while , while_bit , repeat ~ until , repeat ~ until_bit , for , or switch

statement has been entered.

[Generated instructions]

- Generates an unconditional branch instruction to remove while , repeat , for , or switch blocks.

[Use example]

[∆] break

BR ?Lxxxx

Output source Input source

?L1 :
MOV X , #0
MOV PORT4 , A
CMP A , #0FH
BNZ $?L2
BR ?L3

?L2 :
INCW HL
BR ?L1

?L3 :

while (forever)
X = #0
PORT4 = A
if (A == #0FH)

break
endif
HL++

endw

CHAPTER 3 CONTROL STATEMENTS

User’s Manual U17197EJ1V0UM 57

Conditional loop continue

(10) continue

[Description format]

[Function]

- Skips processing following continue within the innermost nested block among a while , while_bit , repeat ~

until , repeat ~ until_bit , or for statement and sets an unconditional branch before the condition is tested.

[Description]

- This is used to skip subsequent processing from the middle of a block and execute the next loop.

- An error occurs if a statement other than a while , while_bit , repeat ~ until , repeat ~ until_bit , or for

statement has been entered.

[Generated instructions]

- Generates an unconditional branch instruction for a label to repeat a while , while_bit , repeat ~ until , repeat

~ until_bit , or for block

[Use example]

[∆] continue

BR ?Lxxxx

Output source Input source

?L1 :
CMP SYM , #0FH
BNZ $?L2
MOV B , #0
MOV PORT4 , A
CMP A , #0FH
BNZ $?L3
BR ?L1
BR ?L4

?L3 :
INCW HL

?L4 :
BR ?L1

?L2 :

while (SYM == #0FH)

B = #0
PORT4 = A
if (A == #0FH)

continue

else
HL++

endif

endw

58 User’s Manual U17197EJ1V0UM

CHAPTER 3 CONTROL STATEMENTS

Conditional loop goto

(11) goto

[Description format]

[Function]

- Unconditionally branches to a label.

[Description]

- goto statements are entered when immediate error processing is required such as in an error processing

program , or when collective processing of errors at multiple locations is needed.

- The symbols shown in the assembly language label column are specified as label names.

[Generated instructions]

(1) Generates the following instruction.

(2) The goto statement's labels are not automatically generated by the ST78K0. Note also that the ST78K0

does not automatically check whether or not a branch destination label exists.

[Use examples]

[∆] goto ∆ label

BR Label

Output source Input source

?L1 :
MOV B , #0
MOV PORT4 , A
CMP A , #0FH
BNZ $?L2
BR ERROR

?L2 :
INCW HL
BR ?L1

while (forever)
B = #0
PORT4 = A
if (A == #0FH)

goto ERROR
endif
HL++

endw

CHAPTER 3 CONTROL STATEMENTS

User’s Manual U17197EJ1V0UM 59

3.5 Conditional Expressions

Conditional expressions are used to set conditions via control statements.

The following are examples of conditional expressions.

- Comparison expressions ... Compares first and second values and tests them as true or false.

- Test bit expressions ... Determines flag on/off status based on bit symbols.

- Logical operations ... Performs a logical operation for a conditional expression when conditions are

combined.

If (γ) is specified at the end of a comparison , a comparison can be made between α and β values that cannot

be compared directly.

γ specifies the register that is used for this comparison.

60 User’s Manual U17197EJ1V0UM

CHAPTER 3 CONTROL STATEMENTS

3.5.1 Comparison expressions

In the description of each comparison expression , “?LTRUE” is used as the branch destination label for when

the comparison tests as true and “?LFALSE” is used as the branch destination label when it tests as false.

See “3.3 Register Specification” for a description of the register specification Description format.

The ST78K0 does not test whether or not the symbols entered on the left and right sides of a comparison

expression are entered correctly as assembly language operands. However , a data size test is performed , as

described in “2.6 Data Sizes” to determine whether or not an instruction can be generated. In addition , when

specifying a register , the possibility of generating an instruction using the specified register is tested.

An error message is output when a test results in an error.

For details , see the relevant generated instruction.

The following pages describe the functions of the various comparison expressions.

The use examples show as comment statements the source files to which generated instructions are input.

*1 : Generates CMP instruction

*2 : Generates CMPW instruction

Empty columns indicate errors.

Table 3-3 Generated Instructions for Comparison Instructions

Symbol
β

a b c d e f g h i j k l m n o p q r s

α a CY

b Bit symbol

c Byte user symbol *1

d Byte data *1

e A *1 *1 *1 *1 *1 *1 *1 *1

f Byte register *1

g sfr

h PSW

i Word user symbol

j Word data

k AX *2

l BC , DE , HL

m RP0 , RP1 , RP2 , RP3

n sfrp

o SP

p Direct access symbol

q Indirect access symbol

r [DE]

s Immediate symbol

CHAPTER 3 CONTROL STATEMENTS

User’s Manual U17197EJ1V0UM 61

Table 3-4 Comparison Expressions

Comparison Expression Description Format Function

Equal (==) α == β True when α = β , false when α ≠ β

NotEqual (!=) α != β True when α ≠ β , false when α = β

LessThan (<) α < β True when α < β , false when α >= β

GreaterThan (>) α > β True when α > β , false when α <= β

GreaterEqual (>=) α >=β True when α >= β , false when α < β

LessEqual (<=) α <= β True when α <= β , false when α > β

FOREVER (forever) forever Endlessly loops the loop statement

62 User’s Manual U17197EJ1V0UM

CHAPTER 3 CONTROL STATEMENTS

Comparison expressions Equal (==)

(1) Equal (==)

[Description format]

[Function]

- When there is no register specification

True when the contents of α and β are equal , false when they are not equal.

- When there is a register specification

The contents of α are transferred to the specified register. True is the result when the contents of the

specified register are equal to the contents of β and false is the result when they are not equal.

[Description]

- When there is no register specification

For α and β , be sure to specify contents that can be entered in CMP or CMPW.

- When there is a register specification

For α , be sure to specify contents that can be entered in MOV or MOVW.

For β , be sure to specify contents that can be entered in CMP or CMPW.

[Generated instructions]

(1) If the control statement is entered in lower case letters and there is no register specification

(2) If the control statement is entered in lower case letters and there is a register specification

(3) If the control statement is entered in upper case letters and there is no register specification

[∆] [size specification] α [∆] == [∆] [size specification] [∆] β [∆] [(register specification)]

CMP (W) α , β
BNZ $?LFALSE

MOV (W) Specified register , α
CMP (W) Specified register , β
BNZ $?LFALSE

CMP (W) α , β
BZ $?LTRUE
BR ?LFALSE

?LTRUE :

CHAPTER 3 CONTROL STATEMENTS

User’s Manual U17197EJ1V0UM 63

(4) If the control statement is entered in upper case letters and there is a register specification

For details of combinations of α and β , see Table 3-3. α indicates the specified register. For further

description of generated instructions for MOV , see “4.2 (1) Assign (=)”.

[Use examples]

(1) If the control statement is entered in lower case letters and there is no register specification

(2) If the control statement is entered in lower case letters and there is a register specification

(3) If the control statement is entered in upper case letters and there is no register specification

MOV (W) Specified register , α
CMP (W) Specified register , β
BZ $?LTRUE
BR ?LFALSE

?LTRUE :

Output source Input source

CMPW AX , #0F0FH
BNZ $?L1
CALL !XXX
BR ?L2

?L1 :
CALL !YYY

?L2 :

if (AX == #0F0FH)

CALL !XX

else
CALL !YYY

endif

Output source Input source

MOV A , !XYZ
CMP A , #5
BNZ $?L3
CALL !PPP

?L3 :

if (!XYZ == #5 (A))

CALL !PPP
endif

Output source Input source

CMPW AX , #0F0FH
BZ $?L4
BR ?L5

?L4 :
CALL !XXX
BR ?L6

?L5 :
CALL !YYY

?L6 :

IF (AX == #0F0FH)

CALL !XXX

ELSE
CALL !YYY

ENDIF

64 User’s Manual U17197EJ1V0UM

CHAPTER 3 CONTROL STATEMENTS

(4) If the control statement is entered in upper case letters and there is a register specification

Output source Input source

MOV A , !XYZ
CMP A , #5
BZ $?L7
BR ?L8

?L7 :
CALL !PPP

?L8 :

IF (!XYZ == #5 (A))

CALL !PPP
ENDIF

CHAPTER 3 CONTROL STATEMENTS

User’s Manual U17197EJ1V0UM 65

Comparison expressions NotEqual (!=)

(2) NotEqual (!=)

[Description format]

[Function]

- When there is no register specification

True when the contents of α and β are not equal , false when they are equal.

- When there is a register specification

The contents of α are transferred to the specified register. True is the result when the contents of the

specified register are not equal to the contents of β and false is the result when they are equal.

[Description]

- When there is no register specification

For α and β , be sure to specify contents that can be entered in CMP or CMPW.

- When there is a register specification

For α , specify contents that can be entered in MOV or MOVW.

For β , specify contents that can be entered in CMP or CMPW.

[Generated instructions]

(1) If the control statement is entered in lower case letters and there is no register specification

(2) If the control statement is entered in lower case letters and there is a register specification

(3) If the control statement is entered in upper case letters and there is no register specification

[∆] [size specification] [∆] α [∆] != [∆] [size specification] [∆] β [∆] [(register specification)]

CMP (W) α , β
BZ $?LFALSE

MOV (W) Specified register , α
CMP (W) Specified register , β
BZ $?LFALSE

CMP (W) α , β
BNZ $?LTRUE
BR ?LFALSE

?LTRUE :

66 User’s Manual U17197EJ1V0UM

CHAPTER 3 CONTROL STATEMENTS

(4) If the control statement is entered in upper case letters and there is a register specification

For details of combinations of α and β , see Table 3-3. α indicates the specified register. For further

description of generated instructions for MOV , see “4.2 (1) Assign (=)”.

[Use examples]

(1) If the control statement is entered in lower case letters and there is no register specification

(2) If the control statement is entered in lower case letters and there is a register specification

(3) If the control statement is entered in upper case letters and there is no register specification

MOV (W) Specified register , α
CMP (W) Specified register , β
BNZ $?LTRUE
BR ?LFALSE

?LTRUE :

Output source Input source

CMPW AX , #0FFFH
BZ $?L1
CALL !XXX
BR ?L2

?L1 :
CALL !YYY

?L2 :

if (AX != #0FFFH)

CALL !XXX

else
CALL !YYY

endif

Output source Input source

MOV A , !XYZ
CMP A , #5
BZ $?L
CALL !PPP

?L3 :

if (!XYZ != #5 (A))

CALL !PPP
endif

Output source Input source

CMPW AX , #0FFFH
BNZ $?L4
BR ?L5

?L4 :
CALL !XXX
BR ?L6

?L5 :
CALL !YYY

?L6 :

IF (AX != #0FFFH)

CALL !XXX

ELSE
CALL !YYY

ENDIF

CHAPTER 3 CONTROL STATEMENTS

User’s Manual U17197EJ1V0UM 67

(4) If the control statement is entered in upper case letters and there is a register specification

Output source Input source

MOV A , !XYZ
CMP A , #5
BNZ $?L7
BR ?L8

?L7 :
CALL !PPP

?L8 :

IF (!XYZ != #5 (A))

CALL !PPP
ENDIF

68 User’s Manual U17197EJ1V0UM

CHAPTER 3 CONTROL STATEMENTS

Comparison expressions LessThan (<)

(3) LessThan (<)

[Description format]

[Function]

- When there is no register specification

True when the contents of α are less than the contents of β , false when otherwise (i.e. , equal to or greater

than).

- When there is a register specification

The contents of α are transferred to the specified register. True is the result when the contents of the

specified register are less than the contents of β and false is the result when they are otherwise.

[Description]

- When there is no register specification

For α and β , be sure to specify contents that can be entered in CMP or CMPW.

- When there is a register specification

For α , be sure to specify contents that can be entered in MOV or MOVW.

For β , be sure to specify contents that can be entered in CMP or CMPW.

[Generated instructions]

(1) If the control statement is entered in lower case letters and there is no register specification

(2) If the control statement is entered in lower case letters and there is a register specification

(3) If the control statement is entered in upper case letters and there is no register specification

[∆] [size specification] [∆] α [∆] < [∆] [size specification] [∆] β [∆] [(register specification)]

CMP (W) α , β
BNC $?LFALSE

MOV (W) Specified register , α
CMP (W) Specified register , β
BNC $?LFALSE

CMP (W) α , β
BC $?LTRUE
BR ?LFALSE

?LTRUE :

CHAPTER 3 CONTROL STATEMENTS

User’s Manual U17197EJ1V0UM 69

(4) If the control statement is entered in upper case letters and there is a register specification

For details of combinations of α and β , see Table 3-3. α indicates the specified register. For further

description of generated instructions for MOV , see “4.2 (1) Assign (=)”.

[Use examples]

(1) If the control statement is entered in lower case letters and there is no register specification

(2) If the control statement is entered in lower case letters and there is a register specification

(3) If the control statement is entered in upper case letters and there is no register specification

MOV (W) Specified register , α
CMP (W) Specified register , β
BC $?LTRUE
BR ?LFALSE

?LTRUE :

Output source Input source

CMP A , [HL]
BNC $?L1
CALL !XXX
BR ?L2

?L1 :
CALL !YYY

?L2 :

if (A < [HL])

CALL !XXX

else
CALL !YYY

endif

Output source Input source

MOVW AX , ABCP
CMPW AX , #0FE00H
BNC $?L3
CALL !PPP

?L3 :

if (ABCP < #0FE00H (AX))

CALL !PPP
endif

Output source Input source

CMP A , [HL]
BC $?L4
BR ?L5

?L4 :
CALL !XXX
BR ?L6

?L5 :
CALL !YYY

?L6 :

IF (A < [HL])

CALL !XXX

ELSE
CALL !YYY

ENDIF

70 User’s Manual U17197EJ1V0UM

CHAPTER 3 CONTROL STATEMENTS

(4) If the control statement is entered in upper case letters and there is a register specification

Output source Input source

MOVW AX , ABCP
CMPW AX , #0FE00H
BC $?L7
BR ?L8

?L7 :
CALL !PPP

?L8 :

IF (ABCP < #0FE00H (AX))

CALL !PPP
ENDIF

CHAPTER 3 CONTROL STATEMENTS

User’s Manual U17197EJ1V0UM 71

Comparison expressions GreaterThan (>)

(4) GreaterThan (>)

[Description format]

[Function]

- When there is no register specification

True when the contents of α are greater than the contents of β , false when otherwise (i.e. equal to or less

than).

- When there is a register specification

The contents of α are transferred to the specified register. True is the result when the contents of the

specified register are greater than the contents of β and false is the result when they are otherwise.

[Description]

- When there is no register specification

For α and β , be sure to specify contents that can be entered in CMP or CMPW.

- When there is a register specification

For α , be sure to specify contents that can be entered in MOV or MOVW.

For β , be sure to specify contents that can be entered in CMP or CMPW.

[Generated instructions]

(1) If the control statement is entered in lower case letters and there is no register specification

(2) If the control statement is entered in lower case letters and there is a register specification

(3) If the control statement is entered in upper case letters and there is no register specification

[∆] [size specification] [∆] α [∆] > [∆] [size specification] [∆] β [∆] [(register specification)]

CMP (W) α , β
BZ $?LFALSE
BC $?LFALSE

MOV (W) Specified register , α
CMP (W) Specified register , β
BZ $?LFALSE
BC $?LFALSE

CMP (W) α , β
BZ $$ + 4
BNC $?LTRUE
BR ?LFALSE

?LTRUE :

72 User’s Manual U17197EJ1V0UM

CHAPTER 3 CONTROL STATEMENTS

(4) If the control statement is entered in upper case letters and there is a register specification

For details of combinations of α and β , see Table 3-3. α indicates the specified register. For further

description of generated instructions for MOV , see “4.2 (1) Assign (=)”.

[Use examples]

(1) If the control statement is entered in lower case letters and there is no register specification

(2) If the control statement is entered in lower case letters and there is a register specification

MOV (W) Specified register , α
CMP (W) Specified register , β
BZ $$ + 4
BNC $?LTRUE
BR ?LFALSE

?LTRUE :

Output source Input source

CMP A , [HL]
BZ $?L1
BC $?L1
CALL !XXX
BR ?L2

?L1 :
CALL !YYY

?L2 :

if (A > [HL])

CALL !XXX

else
CALL !YYY

endif

Output source Input source

MOVW AX , ABCP
CMPW AX , #0FE40H
BZ $?L3
BC $?L3
CALL !PPP

?L3 :

if (ABCP > #0FE40H (AX))

CALL !PPP
endif

CHAPTER 3 CONTROL STATEMENTS

User’s Manual U17197EJ1V0UM 73

(3) If the control statement is entered in upper case letters and there is no register specification

(4) If the control statement is entered in upper case letters and there is a register specification

Output source Input source

CMP A , [HL]
BZ $$ + 4
BNC $?L4
BR ?L5

?L4 :
CALL !XXX
BR ?L6

?L5 :
CALL !YYY

?L6 :

IF (A > [HL])

CALL !XXX

ELSE
CALL !YYY

ENDIF

Output source Input source

MOVW AX , ABCP
CMPW AX , #0FE40H
BZ $$ + 4
BNC $?L7
R ?L8

?L7 :
CALL !PPP

?L8 :

IF (ABCP > #0FE40H (AX))

CALL !PPP
ENDIF

74 User’s Manual U17197EJ1V0UM

CHAPTER 3 CONTROL STATEMENTS

Comparison expressions GreaterEqual (>=)

(5) GreaterEqual (>=)

[Description format]

[Function]

- When there is no register specification

True when the contents of α are greater than or equal to the contents of β , false when they are less than the

contents of β.

- When there is a register specification

The contents of α are transferred to the specified register. True is the result when the contents of the

specified register are greater than or equal to the contents of β and false is the result when they are less

than the contents of β.

[Description]

- When there is no register specification

For α and β , be sure to specify contents that can be entered in CMP or CMPW.

- When there is a register specification

For α , be sure to specify contents that can be entered in MOV or MOVW.

For β , be sure to specify contents that can be entered in CMP or CMPW.

[Generated instructions]

(1) If the control statement is entered in lower case letters and there is no register specification

(2) If the control statement is entered in lower case letters and there is a register specification

(3) If the control statement is entered in upper case letters and there is no register specification

[∆] [size specification] [∆] α [∆] >= [∆] [size specification] [∆] β [∆] [(register specification)]

CMP (W) α , β
BC $?LFALSE

MOV (W) Specified register , α
CMP (W) Specified register , β
BC $?LFALSE

CMP (W) α , β
BNC $?LTRUE
BR ?LFALSE

?LTRUE :

CHAPTER 3 CONTROL STATEMENTS

User’s Manual U17197EJ1V0UM 75

(4) If the control statement is entered in upper case letters and there is a register specification

For details of combinations of α and β , see Table 3-3. α indicates the specified register. For further

description of generated instructions for MOV , see “4.2 (1) Assign (=)”.

[Use examples]

(1) If the control statement is entered in lower case letters and there is no register specification

(2) If the control statement is entered in lower case letters and there is a register specification

(3) If the control statement is entered in upper case letters and there is no register specification

MOV (W) Specified register , α
CMP (W) Specified register , β
BNC $?LTRUE
BR ?LFALSE

?LTRUE :

Output source Input source

CMP A , [HL]
BC $?L1
CALL !XXX
BR ?L2

?L1 :
CALL !YYY

?L2 :

if (A >= [HL])

CALL !XXX

else
CALL !YYY

endif

Output source Input source

MOVW AX , DE
CMPW AX , #0FE30H
BC $?L3
CALL !PPP

?L3 :

if (DE >= #0FE30H (AX))

CALL !PPP
endif

Output source Input source

CMP A , [HL]
BNC $?L4
BR ?L5

?L4 :
CALL !XXX
BR ?L6

?L5 :
CALL !YYY

?L6 :

IF (A >= [HL])

CALL !XXX

ELSE
CALL !YYY

ENDIF

76 User’s Manual U17197EJ1V0UM

CHAPTER 3 CONTROL STATEMENTS

(4) If the control statement is entered in upper case letters and there is a register specification

Output source Input source

MOVW AX , DE
CMPW AX , #0FE30H
BNC $?L7
BR ?L8

?L7 :
CALL !PPP

?L8 :

 IF (DE >= #0FE30H (AX))

CALL !PPP
ENDIF

CHAPTER 3 CONTROL STATEMENTS

User’s Manual U17197EJ1V0UM 77

Comparison expressions LessEqual (<=)

(6) LessEqual (<=)

[Description format]

[Function]

- When there is no register specification

True when the contents of α are less than or equal to the contents of β , false when they are greater than the

contents of β.

- When there is a register specification

The contents of α are transferred to the specified register. True is the result when the contents of the

specified register are less than or equal to the contents of β and false is the result when they are greater

than the contents of β.

[Description]

- When there is no register specification

For α and β , be sure to specify contents that can be entered in CMP or CMPW.

- When there is a register specification

For α , be sure to specify contents that can be entered in MOV or MOVW.

For β , be sure to specify contents that can be entered in CMP or CMPW.

[Generated instructions]

(1) If the control statement is entered in lower case letters and there is no register specification

(2) If the control statement is entered in lower case letters and there is a register specification

(3) If the control statement is entered in upper case letters and there is no register specification

[∆] [size specification] [∆] α [∆] <= [∆] [size specification] [∆] β [∆] [(register specification)]

CMP (W) α , β
BZ $$ + 4
BNC $?LFALSE

MOV (W) Specified register , α
CMP (W) Specified register , β
BZ $$ + 4
BNC $?LFALSE

CMP (W) α , β
BZ $?LTRUE
BC $?LTRUE
BR ?LFALSE

?LTRUE :

78 User’s Manual U17197EJ1V0UM

CHAPTER 3 CONTROL STATEMENTS

(4) If the control statement is entered in upper case letters and there is a register specification

For details of combinations of α and β , see Table 3-3. α indicates the specified register. For further

description of generated instructions for MOV , see “4.2 (1) Assign (=)”.

[Use examples]

(1) If the control statement is entered in lower case letters and there is no register specification

(2) If the control statement is entered in lower case letters and there is a register specification

MOV (W) Specified register , α
CMP (W) Specified register , β
BZ $?LTRUE
BC $?LTRUE
BR ?LFALSE

?LTRUE :

Output source Input source

CMP A , [HL]
BZ $$ + 4
BNC $?L1
CALL !XXX
BR ?L2

?L1 :
CALL !YYY

?L2 :

if (A <= [HL])

CALL !XXX

else
CALL !YYY

endif

Output source Input source

MOVW AX , HL
CMPW AX , #0FE20H
BZ $$ + 4
BNC $?L3
CALL !PPP

?L3 :

if (HL <= #0FE20H (AX))

CALL !PPP
endif

CHAPTER 3 CONTROL STATEMENTS

User’s Manual U17197EJ1V0UM 79

(3) If the control statement is entered in upper case letters and there is no register specification

(4) If the control statement is entered in upper case letters and there is a register specification

Output source Input source

CMP A , [HL]
BZ $?L4
BC $?L4
BR ?L5

?L4 :
CALL !XXX
BR ?L6

?L5 :
CALL !YYY

?L6 :

IF (A <= [HL])

CALL !XXX

ELSE
CALL !YYY

ENDIF

Output source Input source

MOVW AX , HL
CMPW AX , #0FE20H
BZ $?L7
BC $?L7
BR ?L8

?L7 :
CALL !PPP

?L8 :

IF (HL <= #0FE20H (AX))

CALL !PPP
ENDIF

80 User’s Manual U17197EJ1V0UM

CHAPTER 3 CONTROL STATEMENTS

Comparison expressions FOREVER (forever)

(7) FOREVER (forever)

[Description format]

[Function]

- Sets loop statement as an endless loop , without generating a compare instruction.

[Description]

- Can be entered in a loop statement (for statement , while statement , until statement) type of conditional

expression.

[Use examples]

(1) for statement

(2) while statement

[∆] forever [∆]

Output source Input source

MOV i , #0
?L1 :

MOV A , i
CALL !XXX
CMPW AX , #0FFH
BNZ $?L2
BR ?L3

?L2 :
INC i
BR ?L1

?L3 :

for (i = #0 ; forever ; i++)

A = i
CALL !XXX
if (AX == #0FFH)

break
endif

next

Output source Input source

?L4 :
MOV A , i
CALL !XXX
CMPW AX , #0ffH
BNZ $?L5
BR ?L6

?L5 :
BR ?L4

?L6 :

while (forever)
A = i
CALL !XXX
if (AX == #0ffH)

break
endif

endw

CHAPTER 3 CONTROL STATEMENTS

User’s Manual U17197EJ1V0UM 81

(3) repeat statement

Output source Input source

?L7 :
MOV A , i
CALL !XXX
CMPW AX , #0FFH
BNZ $?L8
BR ?L9

?L8 :
INC i
BR ?L7

?L9 :

repeat
A = i
CALL !XXX
if (AX == #0FFH)

break
endif
i++

until (forever)

82 User’s Manual U17197EJ1V0UM

CHAPTER 3 CONTROL STATEMENTS

3.5.2 Test bit expressions

In the description of each type of test bit expression , it is noted that “?LTRUE” is used as the branch destination

label when the test result is true and “?LFALSE” is used as this label when the test result is false.

The ST78K0 does not test whether or not test bit expression code is entered correctly as assembly language

operands. However , a data size test is performed , as described in “2.6 Data Sizes”.

In addition , “Z” is also processed as a bit symbol.

The ST78K0 does not use the assembler’s directive (EQU) to check whether or not a bit symbol has been

defined. However , user symbols can also be processed as bit symbols.

An error message is output when the test result is an error.

For details , see the particular generating instruction.

The following pages describe the functions of the various test bit expressions.

The use examples show as comment statements the source files to which generated instructions are input.

Table 3-5 Test Bit Expressions

Test Bit Expression Description Format Function

Bit symbol Bit symbol True when specified bit is 1

!bit symbol !bit symbol True when specified bit is 0

CHAPTER 3 CONTROL STATEMENTS

User’s Manual U17197EJ1V0UM 83

Test bit expressions Positive logic (bit)

(1) Bit symbol

[Description format]

[Function]

- True when the bit symbol contents are 1 , false when they are 0.

- The following control statements are able to include bit symbols entered as conditional expressions.

[Generated instructions]

(1) When the control statement is entered in lower case letters and CY has been entered

(2) When the control statement is entered in lower case letters and Z has been entered

(3) When the control statement is entered in lower case letters and a bit symbol has been entered

(4) When the control statement is entered in upper case letters and CY has been entered

(5) When the control statement is entered in upper case letters and Z has been entered

[∆] bit symbol [∆]

if if_bit
elseif elseif_bit
while while_bit
until until_bit
for

BNC $?LFALSE

BNZ $?LFALSE

BF Bit symbol , $?LFALSE

BC $?LTRUE
BR ?LFALSE

?LTRUE :

BZ $?LTRUE
BR ?LFALSE

?LTRUE :

84 User’s Manual U17197EJ1V0UM

CHAPTER 3 CONTROL STATEMENTS

(6) When the control statement is entered in upper case letters and a bit symbol has been entered.

[Use examples]

(1) When the control statement is entered in lower case letters

BT Bit symbol , $?LTRUE
BR ?LFALSE

?LTRUE :

Output source Input source

BNC $?L1
CALL !XXX
BR ?L2

?L1 :
CALL !YYY

?L2 :

BNZ $?L3
CALL !XXX
BR ?L4

?L3 :
CALL !YYY

?L4 :

BF TRFG.0 , $?L5
CALL !XXX
BR ?L6

?L5 :
CALL !YYY

?L6 :

 if_bit (CY)
CALL !XXX

else
CALL !YYY

endif

if_bit (Z)
CALL !XXX

else
CALL !YYY

endif

if_bit (TRFG.0)
CALL !XXX

else
CALL !YYY

endif

CHAPTER 3 CONTROL STATEMENTS

User’s Manual U17197EJ1V0UM 85

(2) When the control statement is entered in upper case letters

Output source Input source

BC $?L7
BR ?L8

?L7 :
CALL !XXX
BR ?L9

?L8 :
CALL !YYY

?L9 :

BZ $?L10
BR ?L11

?L10 :
CALL !XXX
BR ?L12

?L11 :
CALL !YYY

?L12 :

BT TRFG.0 , $?L13
BR ?L14

?L13 :
CALL !XXX
BR ?L15

?L14 :
CALL !YYY

?L15 :

IF_BIT (CY)

CALL !XXX
ELSE

CALL !YYY
ENDIF

IF_BIT (Z)

CALL !XXX

ELSE
CALL !YYY

ENDIF

IF_BIT (TRFG.0)

CALL !XXX

ELSE
CALL !YYY

ENDIF

86 User’s Manual U17197EJ1V0UM

CHAPTER 3 CONTROL STATEMENTS

Test bit expressions Negative logic (bit)

(2) !bit symbol

[Description format]

[Function]

- True when the bit symbol contents are 0 , false when they are 1.

- The following control statements are able to include bit symbols entered as conditional expressions.

[Generated instructions]

(1) When the control statement is entered in lower case letters and CY has been entered

(2) When the control statement is entered in lower case letters and Z has been entered

(3) When the control statement is entered in lower case letters and a bit symbol has been entered

(4) When the control statement is entered in upper case letters and CY has been entered

(5) When the control statement is entered in upper case letters and Z has been entered

[∆] !bit symbol [∆]

if if_bit
elseif elseif_bit
while while_bit
until until_bit
for

BC $?LFALSE

BZ $?LFALSE

BT Bit symbol , $?LFALSE

BNC $?LTRUE
BR ?LFALSE

?LTRUE :

BNZ $?LTRUE
BR ?LFALSE

?LTRUE :

CHAPTER 3 CONTROL STATEMENTS

User’s Manual U17197EJ1V0UM 87

(6) When the control statement is entered in upper case letters and a bit symbol has been entered.

[Use examples]

(1) When the control statement is entered in lower case letters

BF Bit symbol , $?LTRUE
BR ?LFALSE

?LTRUE :

Output source Input source

BC $?L1
CALL !XXX
BR ?L2

?L1 :
CALL !YYY

?L2 :

BZ $?L3
CALL !XXX
BR ?L4

?L3 :
CALL !YYY

?L4 :

BT TRFG.0 , $?L5
CALL !XXX
BR ?L6

?L5 :
CALL !YYY

?L6 :

if_bit (!CY)
CALL !XXX

else
CALL !YYY

endif

if_bit (!Z)
CALL !XXX

else
CALL !YYY

endif

if_bit (!TRFG.0)
CALL !XXX

else
CALL !YYY

endif

88 User’s Manual U17197EJ1V0UM

CHAPTER 3 CONTROL STATEMENTS

(2) When the control statement is entered in upper case letters

Output source Input source

BNC $?L7
BR ?L8

?L7 :
CALL !XXX
BR ?L9

?L8 :
CALL !YYY

?L9 :

BNZ $?L10
BR ?L11

?L10 :
CALL !XXX
BR ?L12

?L11 :
CALL !YYY

?L12 :

BF TRFG.0 , $?L13
BR ?L14

?L13 :
CALL !XXX
BR ?L15

?L14 :
CALL !YYY

?L15 :

IF_BIT (!CY)

CALL !XXX
ELSE

CALL !YYY
ENDIF

IF_BIT (!Z)

CALL !XXX

ELSE
CALL !YYY

ENDIF

IF_BIT (!TRFG.0)

CALL !XXX

ELSE
CALL !YYY

ENDIF

CHAPTER 3 CONTROL STATEMENTS

User’s Manual U17197EJ1V0UM 89

3.5.3 Logical operations

In the description of each type of conditional expression , it is noted that “?LTRUE” is used as the branch

destination label when the test result is true and “?LFALSE” is used as this label when the test result is false.

A logical AND (&&) or logical OR (||) result can be obtained when there are two comparison expressions or a

true/false test bit expression.

Up to 16 logical operators can be entered in a conditional expression.

This means that it is possible to enter expressions for processing that is executed when two conditional

expressions are both met or when either of them are met.

The ST78K0 generates branch instructions beginning from the highest-priority logical operator.

(1) Code example

The following pages describe the functions of the various logical operations.

The use examples show as comment statements the source files to which generated instructions are input.

B < #0FFH && C >= #0 || D == #10

Table 3-6 Logical Operations

Logical Operation Describe Format Function

Logical AND (&&) Conditional
expression 1 &&
conditional
expression 2

True if both conditional expression 1 and
conditional expression 2 are true

Logical OR (||) Conditional
expression 1 ||
conditional
expression 2

True if either conditional expression 1 or
conditional expression 2 is true

90 User’s Manual U17197EJ1V0UM

CHAPTER 3 CONTROL STATEMENTS

Logical operations Logical AND (&&)

(1) Logical AND (&&)

[Description format]

[Function]

- The logical AND result of conditional expression 1 and conditional expression 2 is obtained. The result is

true when conditional expression 1 and conditional expression 2 are both true and the result is false

otherwise. The entered operation is performed when two conditions are met.

The output instruction differs depending on whether the control statement is entered in lower case letters or

upper case letters.

Instructions for testing are generated first for contents enclosed in parentheses “()”.

[Generated instructions]

(1) When the control statement is entered in lower case letters

Table 3-7 Generated Instructions (Control Statement in Lower Case Letters) for Logical AND

Conditional expression 1 [∆] && [∆] Conditional expression 2

Conditional expression Generated instruction

α == β && CMP (W) α , β
BNZ $?LFALSE

α != β && CMP (W) α , β
BZ $?LFALSE

α < β && CMP (W) α , β
BNC $?LFALSE

α > β && CMP (W) α , β
BZ $?LFALSE
BC $?LFALSE

α >= β && CMP (W) α , β
BC $?LFALSE

α <= β && CMP (W) α , β
BZ $$ + 4
BNZ $?LFALSE

Bit symbol && BF Bit symbol , $?LFALSE

CY && BNC $?LFALSE

Z && BNZ $?LFALSE

!bit symbol && BT Bit symbol , $?LFALSE

!CY && BC $?LFALSE

!Z && BZ $?LFALSE

CHAPTER 3 CONTROL STATEMENTS

User’s Manual U17197EJ1V0UM 91

(2) When the control statement is entered in upper case letters

Table 3-8 Generated Instructions (Control Statement in Upper Case Letters) for Logical AND

Conditional expression Generated instruction

α == β && CMP (W) α , β
BZ $?LTRUE
BR ?LFALSE

?LTRUE :

α != β && CMP (W) α , β
BNZ $?LTRUE
BR ?LFALSE

?LTRUE :

α < β && CMP (W) α , β
BC $?LTRUE
BR ?LFALSE

?LTRUE :

α > β && CMP (W) α , β
BZ $$ + 4
BNC $?LTRUE
BR ?LFALSE

?LTRUE :

α >= β && CMP (W) α , β
BNC $?LTRUE
BR ?LFALSE

?LTRUE :

α <= β && CMP (W) α , β
BZ $?LTRUE
BC $?LTRUE
BR ?LFALSE

?LTRUE :

Bit symbol && BT Bit symbol , $?LTRUE
BR ?LFALSE

?LTRUE :

CY && BC $?LTRUE
BR ?LFALSE

?LTRUE :

Z && BZ $?LTRUE
BR ?LFALSE

?LTRUE :

!bit symbol && BF Bit symbol , $?LTRUE
BR ?LFALSE

?LTRUE :

!CY && BNC $?LTRUE
BR ?LFALSE

?LTRUE :

92 User’s Manual U17197EJ1V0UM

CHAPTER 3 CONTROL STATEMENTS

!Z && BNZ $?LTRUE
BR ?LFALSE

?LTRUE :

Conditional expression Generated instruction

CHAPTER 3 CONTROL STATEMENTS

User’s Manual U17197EJ1V0UM 93

[Use examples]

(1) When the control statement is entered in lower case letters

(2) When the control statement is entered in upper case letters

Output source Input source

MOV A , C
CMP A , #0
BNZ $?L1
MOV A , B
CMP A , #0
BC $?L1
MOV A , B
CMP A , #80H
BNC $?L1
CALL !XXX
BR ?L2

?L1 :
CALL !YYY

?L2 :

if (C == #0 && B >= #0 && B < #80H) (A)

CALL !XXX

else
CALL !YYY

endif

Output source Input source

MOV A , C
CMP A , #0
BZ $?L3
BR ?L6

?L3 :
MOV A , B
CMP A , #0
BNC $?L4
BR ?L6

?L4 :
MOV A , B
CMP A , #80H
BC $?L5
BR ?L6

?L5 :
CALL !XXX
BR ?L7

?L6 :
CALL !YYY

?L7 :

IF (C == #0 && B >= #0 && B < #80H) (A)

CALL !XXX

ELSE
CALL !YYY

ENDIF

94 User’s Manual U17197EJ1V0UM

CHAPTER 3 CONTROL STATEMENTS

Logical operations Logical OR (||)

(2) Logical OR (||)

[Description format]

[Function]

- The logical OR result of conditional expression 1 and conditional expression 2 is obtained. The result is true

when either conditional expression 1 or conditional expression 2 is true and the result is false when both are

false. The entered operation is performed when either condition is met.

Instructions for testing are generated first for contents enclosed in parentheses “()”.

[Generated instructions]

Conditional expression 1 [∆] || [∆] Conditional expression 2

Table 3-9 Generated Instructions for Logical OR

Conditional expression Generated instruction

α == β || CMP (W) α , β
BZ $?LFALSE

α != β || CMP (W) α , β
BNZ $?LFALSE

α < β || CMP (W) α , β
BC $?LFALSE

α > β || CMP (W) α , β
BZ $$ + 4
BNC $?LFALSE

α >= β || CMP (W) α , β
BNC $?LFALSE

α <= β || CMP (W) α , β
BZ $?LFALSE
BC $?LFALSE

Bit symbol || BT Bit symbol , $?LFALSE

CY || BC $?LFALSE

Z || BZ $?LFALSE

!bit symbol || BF Bit symbol , $?LFALSE

!CY || BNC $?LFALSE

!Z || BNZ $?LFALSE

CHAPTER 3 CONTROL STATEMENTS

User’s Manual U17197EJ1V0UM 95

[Use examples]

Output source Input source

MOV A , B
CMP A , #0
BZ $?L1
MOV A , C
CMP A , #0
BNC $?L1
MOV A , D
CMP A , #80H
BNC $?L2

?L1 :
CALL !XXX
BR ?L3

?L2 :
CALL !YYY

?L3 :

if (B == #0 || C >= #0 || D < #80H) (A)

CALL !XXX

else
CALL !YYY

endif

96 User’s Manual U17197EJ1V0UM

CHAPTER 4 EXPRESSIONS

CHAPTER 4 EXPRESSIONS

This chapter describes the functions of the expressions.

4.1 Overview of Expressions

Expressions are used to perform assignments or arithmetic operations.

The following are examples of expressions

Assignment statement ... Assigns the second operand as the first operand

Count statement ... Adds or subtracts “1” to the operand value

Exchange statement ... Exchanges the values of the first and second operands

Bit manipulation statement ... Sets (to 1) or resets (to 0) the value of a operand

The functions of these expressions are described below.

The use examples show as comment statements the source files to which generated instructions are input.

Table 4-1 Assignment Statements

Assignment statement Description format Function

Assign (=)

Assign α = β α <- β

Sequential assign α 1 = ... = α n = β α 1 = <- β , ... , α n <- β

Assign (with register specification) α = β (γ) (γ) <- β , α <- (γ)

Sequential assign (with register
specification)

α 1 = ... = α n = β (γ) γ <- β , α 1 <- γ , ... , α n <- γ

IncrementAssign (+=)

Increment assignment α += β α <- α + β

Increment assignment (with
register specification) α += β (register) γ <- α , γ <- γ + β , α <- γ

Increment assignment with carry α += β , CY α <- α + β , CY

Increment assignment with carry (
with register specification) α += β , CY (register) γ <- α , γ <- γ + β , CY , α <- γ

CHAPTER 4 EXPRESSIONS

User’s Manual U17197EJ1V0UM 97

DecrementAssign (-=)

Decrement assignment α -= β α <- α - β

Decrement assignment (with
register specification) α -= β , (register) γ <- α , γ <- γ - β , α <- γ

Decrement assignment with carry α -= β , CY α <- α - β , CY

Decrement assignment with carry (
with register specification) α -= β , CY (register) γ <- α , γ <- γ - β , CY , α <- γ

MultiplicationAssign (*=)

Multiplication assignment α *= β α <- α * β

Multiplication assignment (with
register specification) α *= β (register) γ <- α , γ <- γ * β , α <- γ

DivisionAssign (/=)

Division assignment α /= β α <- α / β

Division assignment (with register
specification) α /= β (register) γ <- α , γ <- γ / β , α <- γ

LogicalANDAssign (&=)

Logical AND assignment α &= β α <- α ∩ β

Logical AND assignment (with
register specification) α &= β (register) γ <- α , γ <- γ ∩ β , α <- γ

LogicalORAssign (|=)

Logical OR assignment α |= β α <- α U β

Logical OR assignment (with
register specification) α |= β (register) γ <- α , γ <- γ U β , α <- γ

LogicalXORAssign (^=)

Logical XOR assignment α ^= β α <- α ^ β

Logical XOR assignment (with
register specification) α ^= β (register) γ <- α , γ <- γ ^ β , α <- γ

RightShiftAssign (>>=)

Right shift (rotate) assignment α >>= β (α shifted to right of β bit)

Right shift assignment (with
register specification) α >>= β (register) γ <- α , (γ shifted to right of β bit) , α <- γ

LeftShiftAssign (<<=)

Left shift assignment α <<= β (α shifted to left of β bit)

Left shift assignment (with register
specification) α <<= β (register) γ <- α , (γ shifted to left of β bit) , α <- γ

Table 4-1 Assignment Statements

Assignment statement Description format Function

98 User’s Manual U17197EJ1V0UM

CHAPTER 4 EXPRESSIONS

Table 4-2 Count Statements

Count statement Description format Function

Increment (++) α ++ α <- α + 1

Decrement (--) α -- α <- α - 1

Table 4-3 Exchange Statements

Exchange statement Description format Function

Exchange (<->)

Exchange α <-> β α <- α <-> β

Exchange (with register
specification) α <-> β (γ) γ <- α , γ <- γ <-> β , α <- γ

Table 4-4 Bit Manipulation Statements

Bit manipulation statement Description format Function

Set bit (=)

Set bit α = 1 α <- 1

Sequential set bit α 1 = ... = α n = 1 α n = <- 1 , ... , α 1 <- 1

Set bit (with register specification) α = 1 (CY) CY <- 1 , α <- 1

Sequential set bit (with register
specification)

α 1 = ... α n = 1 (CY) CY <- 1 , α n <- 1 , ... , α 1 <- 1

Clear bit (=)

Clear bit α = 0 α <- 0

Sequential clear bit α 1 = ... = α n = 0 α n <- 0 , ... , α 1 <- 0

Clear bit (with register
specification) α = 0 (CY) CY <- 0 , α <- 0

Sequential clear bit (with register
specification)

α 1 = ... α n = 0 (CY) CY <- 0 , α n <- 0 , ... , α 1 <- 0

CHAPTER 4 EXPRESSIONS

User’s Manual U17197EJ1V0UM 99

4.2 Assignment Statements

Assignment statements Assign (=)

(1) Assign (=)

[Description format]

[Function]

- When there is no register specification

β values on the right side are sequentially assigned to the left side.

- When there is a register specification

β values on the right side are assigned to the specified register or to CY and their contents are sequentially

assigned to the left side.

[Description]

- α and β are values that can be entered via the MOV or MOVW instruction.

Up to 32 of the assignment operator “=” can be entered in one line. An error occurs when more than 32 are

entered. If even one error occurs during sequential assignments , no instructions will be generated.

[Generated instructions]

(1) When there is no register specification

MOV1 or MOVW may be generated instead , depending on the operand.

(2) When there is no register specification and a sequential assignment is entered

MOV1 or MOVW may be generated instead , depending on the operand.

[∆] [size specification] [∆] α 1 [∆] [= [∆] [size specification] [∆] α 2 [∆] ...] = [∆] [size specification
] [∆] β [∆] [(register specification)]

MOV α 1 , β

MOV α n , β
MOV α n - 1 , β

:
MOV α 2 , β
MOV α 1 , β

100 User’s Manual U17197EJ1V0UM

CHAPTER 4 EXPRESSIONS

(3) When there is a register specification

MOV1 or MOVW may be generated instead , depending on the operand.

(4) When there is a register specification and a sequential assignment is entered

MOV1 or MOVW may be generated instead , depending on the operand.

For details of combinations of αn and β , see Table 4-5. Depending on the entered statement , αn and β ,

indicates the specified register.

[Use examples]

(1) When there is no register specification

MOV Specified register , β
MOV α 1 , Specified register

MOV Specified register , β
MOV α n , specified register
MOV α n - 1 , specified register

:
MOV α 2 , specified register
MOV α 1 , specified register

Outpu source Input source

MOV1 CY , P1.1
MOV A , #4H
MOVW AX , SYMP
MOVW SP , #4FFFFH
MOV DAT3 , A
MOV DAT2 , A
MOV DAT1 , A
MOVW DATA3P , AX
MOVW DATA2P , AX
MOVW DATA1P , AX

CY = P1.1
A = #4H
AX = SYMP
SP = #4FFFFH
DAT1 = DAT2 = DAT3 = A

DATA1P = DATA2P = DATA3P = AX

CHAPTER 4 EXPRESSIONS

User’s Manual U17197EJ1V0UM 101

(2) When there is a register specification

Outpu source Input source

MOV1 CY , P1.1
MOV1 A.0 , CY
MOV A , #4H
MOV [DE] , A
MOVW AX , SYMP
MOVW BC , AX
MOV A , X
MOV DAT3 , A
MOV DAT2 , A
MOV DAT1 , A
MOVW AX , BC
MOVW DATA3P , AX
MOVW DATA2P , AX
MOVW DATA1P , AX

A.0 = P1.1 (CY)

[DE] = #4H (A)

BC = SYMP (AX)

DAT1 = DAT2 = DAT3 = X (A)

DATA1P = DATA2P = DATA3P = BC (AX)

102 User’s Manual U17197EJ1V0UM

CHAPTER 4 EXPRESSIONS

*1 : Generates MOV instruction

*2 : Generates MOVW instruction

*3 : Generates MOV1 instruction

*4 : Generates SET1 instruction when “1” has been entered as b. Generates CLR1 instruction when “0”

has been entered. Generates MOV when any value other than “0” or “1” has been entered.

*5 : Generates SET1 when “1” has been entered as b. Generates CLR1 when “0” has been entered.

*6 : Generates MOV1 when any value other than "0" or "1" has been entered as an

Empty spaces indicate errors.

Table 4-5 Generated Instructions for Assignments

Symbol
β

a b c d e f g h i j k l m n o p q r s

αn a CY *3 *4 *3
b Bit symbol *3 *5
c Byte user symbol *6 *5 *1 *2 *1
d Byte data *1 *1
e A *1 *1 *1 *1 *1 *1 *1 *1 *1 *1
f Byte register *1 *1
g sfr *1 *1
h PSW *1 *1
i Word user symbol *3 *5 *1 *2 *2
j Word data *2 *2
k AX *2 *2 *2 *2 *2
l BC , DE , HL *2 *2

m RP0 , RP1 , RP2 , RP3 *2
n sfrp *2 *2
o SP *2 *2
p Direct access symbol *1 *2
q Indirect access symbol *1
r [DE] *1
s Immediate symbol

CHAPTER 4 EXPRESSIONS

User’s Manual U17197EJ1V0UM 103

Assignment statements IncrementAssign (+=)

(2) IncrementAssign (+=)

[Description format]

[Function]

- When there is no register specification

The two operands α and β are added and the result is assigned to α.

- When there is a register specification

α is assigned to the specified register.

The contents of the specified register are added to β and their result is assigned to the specified register.

The contents of the specified register are assigned to α.

- Increment with carry ; no register specification

An increment with carry operation is performed using the two operands α and β , and the result is assigned

to α.

- Increment with carry ; with register specification

The contents of α are assigned to the specified register.

An increment with carry operation is performed using the contents of the specified register and β , and the

result is assigned to the specified register.

The contents of the specified register are assigned to α.

 [Description]

- When there is no register specification

The contents of α and β can be entered in ADD and ADDW.

- When there is a register specification

The contents of α can be entered in MOV and MOVW.

The contents of β can be entered in ADD and ADDW.

- Increment with carry ; no register specification

The contents of α and β can be entered in ADDC.

- Increment with carry ; with register specification

The contents of α can be entered in MOV.

The contents of β can be entered in ADDC.

[Generated instructions]

(1) When there is no register specification

ADDW may be generated instead , depending on the operand.

[∆] [size specification] [∆] α [∆] += [∆] [size specification] [∆] β [∆] [, [∆] CY] [∆] [(register
specification)]

ADD α , β

104 User’s Manual U17197EJ1V0UM

CHAPTER 4 EXPRESSIONS

(2) When there is a register specification

ADDW may be generated instead , depending on the operand.

(3) Increment with carry ; no register specification

(4) Increment with carry ; with register specification

For details of combinations of α and β , see Table 4-6. Depending on the entered statement , α indicates

the specified register.

[Use examples]

(1) When there is no register specification

(2) When there is a register specification

(3) Increment with carry ; no register specification

MOV Specified register , α
ADD Specified register , β
MOV α , specified register

ADDC α , β

MOV Specified register , α
ADDC Specified register , β
MOV α , specified register

Output source Input source

ADD A , #0C0H
ADDW AX , #0C00H

A += #0C0H
AX += #0C00H

Output source Input source

MOV A , !ABC
ADD A , #0FCH
MOV !ABC , A
MOVW AX , HL
ADDW AX , #0FFFH
MOVW HL , AX

ABC += #0FCH (A)

HL += #0FFFH (AX)

Output source Input source

ADDC A , #50H A += #50H , CY

CHAPTER 4 EXPRESSIONS

User’s Manual U17197EJ1V0UM 105

(4) Increment with carry ; with register specification

*1 : Generates ADD instruction. For increment with carry , ADDC instruction is generated.

*2 : Generates ADDW instruction.

Empty spaces indicate errors.

Output source Input source

MOV A , PSW
ADDC A , #50H
MOV PSW , A

PSW += #50H , CY (A)

Table 4-6 Generated Instructions for Increment Assignments

Symbol
β

a b c d e f g h i j k l m n o p q r s

α a CY
b Bit symbol
c Byte user symbol *1
d Byte data *1
e A *1 *1 *1 *1 *1 *1 *1 *1
f Byte register *1
g sfr
h PSW
i Word user symbol
j Word data
k AX *2
l BC , DE , HL

m RP0 , RP1 , RP2 , RP3
n sfrp
o SP
p Direct access symbol
q Indirect access symbol
r [DE]
s Immediate symbol

106 User’s Manual U17197EJ1V0UM

CHAPTER 4 EXPRESSIONS

Assignment statements DecrementAssign (-=)

(3) DecrementAssign (-=)

[Description format]

[Function]

- When there is no register specification

β is subtracted from α and the result is assigned to α.

- When there is a register specification

α is assigned to the specified register.

β is subtracted from the contents of the specified register and the result is assigned to the specified register.

The contents of the specified register are assigned to α.

- Decrement with carry ; no register specification

A decrement with carry operation is performed using the two operands α and β , and the result is assigned

to α.

- Decrement with carry ; with register specification

The contents of α are assigned to the specified register.

An decrement with carry operation is performed using the contents of the specified register and β , and the

result is assigned to the specified register.

The contents of the specified register are assigned to α.

 [Description]

- When there is no register specification

The contents of α and β can be entered in SUB and SUBW.

- When there is a register specification

The contents of α can be entered in MOV and MOVW.

The contents of β can be entered in SUB and SUBW.

- Decrement with carry ; no register specification

The contents of α and β can be entered in SUBC.

- Decrement with carry ; with register specification

The contents of α can be entered in MOV.

The contents of β can be entered in SUBC.

[Generated instructions]

(1) When there is no register specification

SUBW may be generated instead , depending on the operand.

[∆] [size specification] [∆] α [∆] -= [∆] [size specification] [∆] β [∆] [, [∆] CY] [∆] [(register
specification)]

SUB α , β

CHAPTER 4 EXPRESSIONS

User’s Manual U17197EJ1V0UM 107

(2) When there is a register specification

SUBW may be generated instead , depending on the operand.

(3) Decrement with carry ; no register specification

(4) Decrement with carry ; with register specification

For details of combinations of α and β , see Table 4-7. Depending on the entered statement , α indicates

the specified register.

[Use examples]

(1) When there is no register specification

(2) When there is a register specification

(3) Decrement with carry ; no register specification

MOV Specified register , α
SUB Specified register , β
MOV α , specified register

SUBC α , β

MOV Specified register , α
SUBC Specified register , β
MOV α , specified register

Output source Input source

SUB A , #0C0H
SUBW AX , #0C00H

A -= #0C0H
AX -= #0C00H

Output source Input source

MOV A , !ABC
SUB A , #0FCH
MOV !ABC , A
MOVW AX , HL
SUBW AX , #0FFFH
MOVW HL , AX

!ABC -= #0FCH (A)

HL -= #0FFFH (AX)

Output source Input source

SUBC A , #50H A -= #50H , CY

108 User’s Manual U17197EJ1V0UM

CHAPTER 4 EXPRESSIONS

(4) Decrement with carry ; with register specification

*1 : Generates SUB instruction. For decrement with carry , SUBC instruction is generated.

*2 : Generates SUBW instruction.

Empty spaces indicate errors.

Output source Input source

MOV A , PSW
SUBC A , #50H
MOV PSW , A

PSW -= #50H , CY (A)

Table 4-7 Generated Instructions for Decrement Assignments

Symbol
β

a b c d e f g h i j k l m n o p q r s

α a CY
b Bit symbol
c Byte user symbol *1
d Byte data *1
e A *1 *1 *1 *1 *1 *1 *1 *1
f Byte register *1
g sfr
h PSW
i Word user symbol
j Word data
k AX *2
l BC , DE , HL

m RP0 , RP1 , RP2 , RP3
n sfrp
o SP
p Direct access symbol
q Indirect access symbol
r [DE]
s Immediate symbol

CHAPTER 4 EXPRESSIONS

User’s Manual U17197EJ1V0UM 109

Assignment statements MultiplicationAssign (*=)

(4) MultiplicationAssign (*=)

[Description format]

[Function]

- When there is no register specification

The contents of α are multiplied by β and the result is assigned to α.

- When there is a register specification

The contents of α are assigned to the specified register.

The contents of the specified register are multiplied by β and the result is assigned to the specified register.

The contents of the specified register are assigned to α.

[Description]

- Where there is no register specification

The contents of α can be entered in A , AX , or RP0.

The contents of β can be entered in X only.

- Where there is a register specification

A , AX , or RP0 can be entered as the specified register.

The contents of α can be entered in a MOV or MOVW instruction.

The contents of β can be entered in X only.

[Generated instructions]

(1) When there is no register specification

(2) When there is a register specification

[Use examples]

(1) When there is no register specification

[∆] [size specification] [∆] α [∆] *= [∆] β [∆] [(register specification)]

MULU X

MOVW Specified register , α
MULU X
MOVW α , specified register

Output source Input source

MULU X
MULU X
MULU X

A *= X
AX *= X
RP0 *= X

110 User’s Manual U17197EJ1V0UM

CHAPTER 4 EXPRESSIONS

(2) When there is a register specification

Output source Input source

MOV A , DATA
MULU X
MOV DATA , A
MOVW AX , DATAP
MULU X
MOVW DATAP , AX
MOVW RP0 , #30
MULU X

DATA *= X (A)

DATAP *= X (AX)

#30 *= X (RP0)

CHAPTER 4 EXPRESSIONS

User’s Manual U17197EJ1V0UM 111

Assignment statements DivisionAssign (/=)

(5) DivisionAssign (/=)

[Description format]

[Function]

- When there is no register specification

The contents of α are divided by β and the result is assigned to α.

- When there is a register specification

The contents of α are assigned to the specified register.

The contents of the specified register are divided by β and the result is assigned to the specified register.

The contents of the specified register are assigned to α.

[Description]

- Where there is no register specification

The contents of α can be entered in AX , or RP0.

The contents of β can be entered in C only.

- Where there is a register specification

AX , or RP0 can be entered as the specified register.

The contents of α can be entered in a MOVW instruction.

The contents of β can be entered in C only.

[Generated instructions]

(1) When there is no register specification

(2) When there is a register specification

[Use examples]

(1) When there is no register specification

[∆] [size specification] [∆] α [∆] /= [∆] β [∆] [register specification]

DIVUW C

MOVW Specified register , α
DIVUW C
MOVW α , specified register

Output source Input source

DIVUW C
DIVUW C

AX /= C
RP0 /= C

112 User’s Manual U17197EJ1V0UM

CHAPTER 4 EXPRESSIONS

(2) When there is a register specification

(3) When there is a register specification

Output source Input source

MOVW AX , DATAP
DIVUW C
MOVW DATAP , AX
MOVW RP0 , #30
DIVUW C

DATAP /= C (AX)

#30 /= C (RP0)

Output source Input source

MOV A , CCV
ROL A , 1
ROL A , 1
ROL A , 1
ROL A , 1
AND A , #LOW (0FFH SHL 4)
MOV CCV , A

CCV <<= 4 (A)

CHAPTER 4 EXPRESSIONS

User’s Manual U17197EJ1V0UM 113

Assignment statements LogicalANDAssign (&=)

(6) LogicalANDAssign (&=)

[Description format]

[Function]

- When there is no register specification

The logical AND (α & β) is obtained from the bits in α and β , and the result is assigned to α.

- When there is a register specification

α is assigned to the specified register.

The logical AND (specified register & β) is obtained from the bits in the specified register and β , and the

result is assigned to the specified register.

The contents of the specified register are assigned to α.

[Description]

- Where there is no register specification

The contents of α and β can be entered in AND and AND1.

- Where there is a register specification

The contents of α can be entered in MOV and MOV1.

The contents of β can be entered in AND and AND1.

[Generated instructions]

(1) When there is no register specification

< When α is CY >

< When α is not CY >

(2) When there is a register specification

< When the specified register is CY >

< When the specified register is not CY >

For details of combinations of α and β , see Table 4-8.

[∆] [size specification] [∆] α [∆] &= [∆] [size specification] [∆] β [∆] [register specification]

AND1 CY , β

AND α , β

MOV1 CY , α
AND1 CY , β
MOV1 α , CY

MOV Specified register , α
AND Specified register , β
MOV α , specified register

114 User’s Manual U17197EJ1V0UM

CHAPTER 4 EXPRESSIONS

[Use examples]

(1) When there is no register specification

(2) When there is a register specification

*1 : Generates AND instruction.

*2 : Generates AND1 instruction.

Empty spaces indicate errors.

Output source Input source

AND1 CY , P1S.1
AND A , #0FFH

CY &= P1S.1
A &= #0FFH

Output source Input source

MOV1 CY , A.1
AND1 CY , PORT3.0
MOV1 A.1, CY
MOV A , [DE]
AND A , #07H
MOV [DE] , A

A.1 &= PORT3.0 (CY)

[DE] &= #07H (A)

Table 4-8 Generated Instructions for Logical AND Assignments

Symbol
β

a b c d e f g h i j k l m n o p q r s

α a CY *2 *2 *2
b Bit symbol
c Byte user symbol *1
d Byte data *1
e A *1 *1 *1 *1 *1 *1 *1 *1
f Byte register *1
g sfr
h PSW
i Word user symbol
j Word data
k AX
l BC , DE , HL

m RP0 , RP1 , RP2 , RP3
n sfrp
o SP
p Direct access symbol
q Indirect access symbol
r [DE]
s Immediate symbol

CHAPTER 4 EXPRESSIONS

User’s Manual U17197EJ1V0UM 115

Assignment statements LogicalORAssign (|=)

(7) LogicalORAssign (|=)

[Description format]

[Function]

- When there is no register specification

The logical OR (α | β) is obtained from the bits in α and β , and the result is assigned to α.

- When there is a register specification

α is assigned to the specified register.

The logical OR (specified register | β) is obtained from the bits in the specified register and β , and the

result is assigned to the specified register.

The contents of the specified register are assigned to α.

[Description]

- When there is no register specification

The contents of α and β can be entered in OR and OR1.

- When there is a register specification

The contents of α can be entered in MOV and MOV1.

The contents of β can be entered in OR and OR1.

[Generated instructions]

(1) When there is no register specification

< When α is CY >

< When α is not CY >

(2) When there is a register specification

< When the specified register is CY >

< When the specified register is not CY >

For details of combinations of α and β , see Table 4-9.

[∆] [size specification] [∆] α [∆] |= [∆] [size specification] [∆] β [∆] [register specification]

OR1 CY , β

OR α , β

MOV1 CY , α
OR1 CY , β
MOV1 α , CY

MOV Specified register , α
OR Specified register , β
MOV α , specified register

116 User’s Manual U17197EJ1V0UM

CHAPTER 4 EXPRESSIONS

 [Use examples]

(1) When there is no register specification

(2) When there is a register specification

*1 : Generates OR instruction.

*2 : Generates OR1 instruction.

Empty spaces indicate errors.

Output source Input source

OR1 CY , P1S.1
OR A , #0FFH

CY |= P1S.1
A |= #0FFH

Output source Input source

MOV1 CY , A.1
OR1 CY , PORT3.0
MOV1 A.1 , CY
MOV A , [DE]
OR A , #07H
MOV [DE] , A

A.1 |= PORT3.0 (CY)

[DE] |= #07H (A)

Table 4-9 Generated Instructions for Logical OR Assignments

Symbol
β

a b c d e f g h i j k l m n o p q r s

α a CY *2 *2 *2
b Bit symbol
c Byte user symbol *1
d Byte data *1
e A *1 *1 *1 *1 *1 *1 *1 *1
f Byte register *1
g sfr
h PSW
i Word user symbol
j Word data
k AX
l BC , DE , HL

m RP0 , RP1 , RP2 , RP3
n sfrp
o SP
p Direct access symbol
q Indirect access symbol
r [DE]
s Immediate symbol

CHAPTER 4 EXPRESSIONS

User’s Manual U17197EJ1V0UM 117

Assignment statements LogicalXORAssign (^=)

(8) LogicalXORAssign (^=)

[Description format]

[Function]

- When there is no register specification

The logical XOR (α ^ β) is obtained from the bits in α and β , and the result is assigned to α.

- When there is a register specification

α is assigned to the specified register.

The logical XOR (specified register ^ β) is obtained from the bits in the specified register and β , and the

result is assigned to the specified register.

The contents of the specified register are assigned to α.

[Description]

- When there is no register specification

The contents of α and β can be entered in XOR and XOR1.

- When there is a register specification

The contents of α can be entered in MOV and MOV1.

The contents of β can be entered in XOR and XOR1.

[Generated instructions]

(1) When there is no register specification

< When α is CY >

< When α is not CY >

(2) When there is a register specification

< When the specified register is CY >

[∆] [size specification] [∆] α [∆] ^= [∆] [size specification] [∆] β [∆] [register specification]

XOR1 CY , β

XOR α , β

MOV1 CY , α
XOR1 CY , β
MOV1 α , CY

118 User’s Manual U17197EJ1V0UM

CHAPTER 4 EXPRESSIONS

< When the specified register is not CY >

For details of combinations of α and β , see Table 4-10.

 [Use examples]

(1) When there is no register specification

(2) When there is a register specification

MOV Specified register , α
XOR Specified register , β
MOV α , specified register

Output source Input source

XOR1 CY , P1S.1
XOR A , #0FFH

CY ^= P1S.1
A ^= #0FFH

Output source Input source

MOV1 CY , A.1
XOR1 CY , PORT3.0
MOV1 A.1 , CY
MOV A , [DE]
XOR A , #07H
MOV [DE] , A

A.1 ^= PORT3.0 (CY)

[DE] ^= #07H (A)

CHAPTER 4 EXPRESSIONS

User’s Manual U17197EJ1V0UM 119

*1 : Generates XOR instruction.

*2 : Generates XOR1 instruction.

Empty spaces indicate errors.

Table 4-10 Generated Instructions for Logical XOR Assignments

Symbol
β

a b c d e f g h i j k l m n o p q r s

α a CY *2 *2 *2
b Bit symbol
c Byte user symbol *1
d Byte data *1
e A *1 *1 *1 *1 *1 *1 *1 *1
f Byte register *1
g sfr
h PSW
i Word user symbol
j Word data
k AX
l BC , DE , HL

m RP0 , RP1 , RP2 , RP3
n sfrp
o SP
p Direct access symbol
q Indirect access symbol
r [DE]
s Immediate symbol

120 User’s Manual U17197EJ1V0UM

CHAPTER 4 EXPRESSIONS

Assignment statements RightShiftAssign (>>=)

(9) RightShiftAssign (>>=)

[Description format]

[Function]

- When there is no register specification

α is shifted to the right of the β bit , and the result is assigned to α.

- When there is a register specification

α is assigned to the specified register.

The contents of the specified register are shifted to the right of the β bit , and the result is assigned to the

specified register.

The contents of the specified register are assigned to α.

[Description]

- When there is no register specification

The contents of α can be entered in A only.

The contents of β can be entered as numerals from 1 to 7.

- When there is a register specification

The contents of α can be entered in MOV.

The contents of β can be entered as numerals from 1 to 7.

The specified register can be entered in A only.

[Generated instructions]

(1) When there is no register specification

An AND instruction is generated after a ROR instruction is output β times.

(2) When there is a register specification

[∆] [size specification] [∆] α [∆] >>= [∆] β [∆] [(register specification)]

ROR A , 1
:

AND A , #0FFH SHR β

MOV A , α
ROR A , 1

:
AND A , #0FFH SHR β
MOV α , A

CHAPTER 4 EXPRESSIONS

User’s Manual U17197EJ1V0UM 121

[Use examples]

(1) When there is no register specification

(2) When there is a register specification

Output source Input source

ROR A , 1
ROR A , 1
ROR A , 1
ROR A , 1
AND A , #0FFH SHR 4

A >>= 4

Output source Input source

MOV A , CCV
ROR A , 1
ROR A , 1
ROR A , 1
ROR A , 1
AND A , #0FFH SHR 4
MOV CCV , A

CCV >>= 4 (A)

122 User’s Manual U17197EJ1V0UM

CHAPTER 4 EXPRESSIONS

Assignment statements LeftShiftAssign (<<=)

(10) LeftShiftAssign (<<=)

[Description format]

[Function]

- When there is no register specification

α is shifted to the left of the β bit , and the result is assigned to α.

- When there is a register specification

α is assigned to the specified register.

The contents of the specified register are shifted to the left of the β bit , and the result is assigned to the

specified register.

The contents of the specified register are assigned to α.

[Description]

- When there is no register specification

The contents of α can be entered in A only.

The contents of β can be entered as numerals from 1 to 7.

- When there is a register specification

The contents of α can be entered in MOV.

The contents of β can be entered as numerals from 1 to 7.

The specified register can be entered in A only.

[Generated instructions]

(1) When there is no register specification

An AND instruction is generated after a ROL instruction is output β times.

(2) When there is a register specification

[∆] [size specification] [∆] α [∆] <<= [∆] β [∆] [(register specification)]

ROL A , 1
:

AND A , #LOW (0FFH SHL β)

MOV A , α
ROL A , 1

:
AND A , #LOW (0FFH SHL β)
MOV α , A

CHAPTER 4 EXPRESSIONS

User’s Manual U17197EJ1V0UM 123

[Use examples]

(1) When there is no register specification

(2) When there is a register specification

Output source Input source

ROL A , 1
ROL A , 1
ROL A , 1
ROL A , 1
AND A , #LOW (0FFH SHL 4)

A <<= 4

Output source Input source

MOV A , CCV
ROL A , 1
ROL A , 1
ROL A , 1
ROL A , 1
AND A , #LOW (0FFH SHL 4)
MOV CCV , A

CCV <<= 4 (A)

124 User’s Manual U17197EJ1V0UM

CHAPTER 4 EXPRESSIONS

4.3 Count Statements

Count statements Increment (++)

(11) Increment (++)

[Description format]

[Function]

- 1 is added to the contents of α.

[Description]

- The contents of α can be entered in INC or INCW.

[Generated instructions]

INCW may be generated depending on the operands.

For details of α , see Table 4-11.

[Use examples]

[∆] [size specification] [∆] α [∆] ++

INC α

Output source Input source

INC H
INC CNT
INCW HL

H++
CNT++
HL++

CHAPTER 4 EXPRESSIONS

User’s Manual U17197EJ1V0UM 125

*1 : Generates INC instruction.

*2 : Generates INCW instruction.

Empty spaces indicate errors.

Table 4-11 Generated Instructions for Increment

Symbol Generated instructions

α a CY

b Bit symbol

c Byte user symbol *1

d Byte data *1

e A *1

f Byte register *1

g sfr

h PSW

i Word user symbol

j Word data

k AX *2

l BC , DE , HL *2

m RP0 , RP1 , RP2 , RP3 *2

n sfrp

o SP

p Direct access symbol

q Indirect access symbol

r [DE]

s Immediate symbol

126 User’s Manual U17197EJ1V0UM

CHAPTER 4 EXPRESSIONS

Count statements Decrement (--)

(12) Decrement (--)

[Description format]

[Function]

- 1 is subtracted from the contents of α.

[Description]

- The contents of α can be entered in DEC or DECW.

[Generated instructions]

DECW may be generated depending on the operands.

For details of a , see Table 4-12.

[Use examples]

[∆] [size specification] [∆] α [∆] --

DEC α

Output source Input source

DEC H
DEC CNT
DECW HL

H--
CNT--
HL--

CHAPTER 4 EXPRESSIONS

User’s Manual U17197EJ1V0UM 127

*1 : Generates DEC instruction.

*2 : Generates DECW instruction.

Empty spaces indicate errors.

Table 4-12 Generated Instructions for Decrement

Symbol Generated instructions

α a CY

b Bit symbol

c Byte user symbol *1

d Byte data *1

e A *1

f Byte register *1

g sfr

h PSW

i Word user symbol

j Word data

k AX *2

l BC , DE , HL *2

m RP0 , RP1 , RP2 , RP3 *2

n sfrp

o SP

p Direct access symbol

q Indirect access symbol

r [DE]

s Immediate symbol

128 User’s Manual U17197EJ1V0UM

CHAPTER 4 EXPRESSIONS

4.4 Exchange Statements

Exchange statements Exchange (<->)

(13) Exchange (<->)

[Description format]

[Function]

- When there is no register specification

The contents of α and β are exchanged.

- When there is a register specification

The contents of α are assigned to the specified register.

The contents of the specified register are exchanged with the contents of β.

The contents of the specified register are assigned to α.

[Description]

- Where there is no register specification

The contents of α and β can be entered in XCH or XCHW.

- When there is a register specification

The contents of α can be entered in MOV and MOVW.

The contents of β can be entered in XCH and XCHW.

[Generated instructions]

(1) When there is no register specification

XCHW may be generated depending on the operands.

(2) When there is a register specification

XCHW may be generated depending on the operands.

For details of combinations of α and β , see Table 4-13.

α indicates the specified register.

[∆] [size specification] [∆] α [∆] <-> [∆] [size specification] [∆] β [∆] [(register specification)]

XCH α , β

MOV Specified register , α
XCH Specified register , β
MOV α , specified register

CHAPTER 4 EXPRESSIONS

User’s Manual U17197EJ1V0UM 129

[Use examples]

(1) When there is no register specification

(2) When there is a register specification

*1 : Generates XCH instructions.

*2 : Generates XCHW instructions.

Empty spaces indicate errors.

Output source Input source

XCH A , B
XCHW AX , BC

A <-> B
AX <-> BC

Output source Input source

MOV A , DATA
XCH A , B
MOV DATA , A
MOVW AX , DE
XCHW AX , BC
MOVW DE , AX

DATA <-> B (A)

DE <-> BC (AX)

Table 4-13 Generated Instructions for Exchange

Symbol
β

a b c d e f g h i j k l m n o p q r s

α a CY
b Bit symbol
c Byte user symbol
d Byte data
e A *1 *1 *1 *1 *1 *1 *1 *1
f Byte register
g sfr
h PSW
i Word user symbol
j Word data
k AX *2
l BC , DE , HL

m RP0 , RP1 , RP2 , RP3
n sfrp
o SP
p Direct access symbol
q Indirect access symbol
r [DE]
s Immediate symbol

130 User’s Manual U17197EJ1V0UM

CHAPTER 4 EXPRESSIONS

4.5 Bit Manipulation Statements

Bit manipulation statements Set bit (=)

(14) Set bit (=)

[Description format]

[Function]

- When there is no CY specification

α n is set (to a value of “1”).

- When there is a CY specification

CY and α n are set (to a value of “1”).

[Description]

- The contents of α n can be entered in a SET1 instruction.

Up to 32 of the assignment operator “=” can be entered in one line. An error occurs when more than 32 are

entered. If even one error occurs during sequential assignments , no instructions will be generated.

[Generated instructions]

(1) When there is no CY specification

(2) When there is no CY specification in sequential assignments

(3) When there is a CY specification

[∆] α1 [∆] [= [∆] α2 [∆] ...] = [∆] 1 [∆] [(CY specification)]
Enter a “1” at the end of the right side.

SET1 α 1

SET1 α n
SET1 α n - 1

:
SET1 α 2
SET1 α 1

SET1 CY
SET1 α 1

CHAPTER 4 EXPRESSIONS

User’s Manual U17197EJ1V0UM 131

(4) When there is a CY specification in sequential assignments

For details , see Table 4-14.

[Use examples]

(1) When there is no CY specification

(2) When there is a CY specification

SET1 CY
SET1 α n
SET1 α n - 1

:
SET1 α 2
SET1 α 1

Output source Input source

SET1 A.3
SET1 CY
SET1 BIT3
SET1 BIT2
SET1 BIT1

A.3 = 1
CY = 1
BIT1 = BIT2 = BIT3 = 1

Output source Input source

SET1 CY
SET1 A.5
SET1 CY
SET1 BIT3
SET1 BIT2
SET1 BIT1

A.5 = 1 (CY)

BIT1 = BIT2 = BIT3 = 1 (CY)

132 User’s Manual U17197EJ1V0UM

CHAPTER 4 EXPRESSIONS

*1 : Generates SET1 instruction.

Empty spaces indicate errors.

Table 4-14 Generated Instructions for Set Bit

Symbol Generated instructions

α a CY *1

b Bit symbol *1

c Byte user symbol *1

d Byte data

e A

f Byte register

g sfr

h PSW

i Word user symbol *1

j Word data

k AX

l BC , DE , HL

m RP0 , RP1 , RP2 , RP3

n sfrp

o SP

p Direct access symbol

q Indirect access symbol

r [DE]

s Immediate symbol

CHAPTER 4 EXPRESSIONS

User’s Manual U17197EJ1V0UM 133

Bit manipulation statements Clear bit (=)

(15) Clear bit (=)

[Description format]

[Function]

- When there is no CY specification

α n is cleared (to a value of “0”).

- When there is a CY specification

CY and α n are cleared (to a value of “0”).

[Description]

- The contents of α n can be entered in a CLR1 instruction.

Up to 32 of the assignment operator “=” can be entered in one line. An error occurs when more than 32 are

entered. If even one error occurs during sequential assignments , no instructions will be generated.

[Generated instructions]

(1) When there is no CY specification

(2) When there is no CY specification in sequential assignments

(3) When there is a CY specification

[∆] α 1 [= [∆] α 2 [∆] ...] = [∆] 0 [∆] [(CY specification)]
Enter a “0” at the end of the right side.

CLR1 α 1

CLR1 α n
CLR1 α n - 1

:
CLR1 α 2
CLR1 α 1

CLR1 CY
CLR1 α1

134 User’s Manual U17197EJ1V0UM

CHAPTER 4 EXPRESSIONS

(4) When there is a CY specification in sequential assignments

For details , see Table 4-15.

 [Use examples]

(1) When there is no CY specification

(2) When there is a CY specification

CLR1 CY
CLR1 α n
CLR1 α n - 1

:
CLR1 α 2
CLR1 α 1

Output source Input source

CLR1 A.3
CLR1 CY
CLR1 BIT3
CLR1 BIT2
CLR1 BIT1

A.3 = 0
CY = 0
BIT1 = BIT2 = BIT3 = 0

Output source Input source

CLR1 CY
CLR1 A.5
CLR1 CY
CLR1 BIT3
CLR1 BIT2
CLR1 BIT1

A.5 = 0 (CY)

BIT1 = BIT2 = BIT3 = 0 (CY)

CHAPTER 4 EXPRESSIONS

User’s Manual U17197EJ1V0UM 135

*1 : Generates CLR1 instruction.

Empty spaces indicate errors.

Table 4-15 Generated Instructions for Clear Bit

Symbol Generated instructions

α a CY *1

b Bit symbol *1

c Byte user symbol *1

d Byte data

e A

f Byte register

g sfr

h PSW

i Word user symbol *1

j Word data

k AX

l BC , DE , HL

m RP0 , RP1 , RP2 , RP3

n sfrp

o SP

p Direct access symbol

q Indirect access symbol

r [DE]

s Immediate symbol

136 User’s Manual U17197EJ1V0UM

CHAPTER 5 DIRECTIVES

CHAPTER 5 DIRECTIVES

This chapter describes directives. In this case , “directives” means various directives that the ST78K0 requires

to execute a series of processes.

5.1 Overview of Directives

Directives are entered into source programs as various directives that the ST78K0 requires to execute a series

of processes.

The use of directives can make source program coding easier.

Directives are not output in output files.

CHAPTER 5 DIRECTIVES

User’s Manual U17197EJ1V0UM 137

5.2 Directive Functions

The following pages describe the functions of the various directive functions.

The use examples show as comment statements the source files to which generated instructions are input.

Table 5-1 List of Directives

Type of directive Directive name

Symbol definition directive (#define) #define

Conditional processing directive (#ifdef/#else/#endif)

#ifdef
:

#else
:

#endif

Include directive (#include) #include

CALLT replacement directive (#defcallt)
#defcallt

:
#endcallt

138 User’s Manual U17197EJ1V0UM

CHAPTER 5 DIRECTIVES

#DEFINE

(1) Symbol definition directive (#define)

[Description format]

[Function]

- This directive replaces the specified character string with a symbol that has been entered in the source

program.

[Description]

- The “#” character must always be entered at the start of the symbol , except when starting with a white

space or a horizontal tab.

- Symbols start with a letter and are composed of alphanumeric characters. The first 31 characters are valid.

If a symbol with more than 31 characters is specified, the 32nd and subsequent characters are ignored.

- Character strings are defined as strings of characters from among the characters in the set listed in “2.2 (1)

Character set”. They cannot include white spaces or quotation marks. Any character strings that contain

white spaces or quotation marks will be ignored as processing continues.

- This directive is useful when coding easy-to-read symbols , such as numerical values.

- Reserved words cannot be entered as symbols.

- Reserved words can be entered as character strings.

- If the same symbol is defined twice , a warning message is output.

- Character strings that have been converted to secondary source files are output. The #define statement is

not output.

- If a converted character string has already been defined by another #define statement , it can be

reconverted up to 31 times. An error message is output during the 32nd conversion , and the definition is

ignored during subsequent conversions.

- This directive can be entered anywhere in the source code.

- A warning message is output when two or more symbols specifying option "-D" are entered , and the #define

statement is valid.

[∆] # [∆] define ∆ symbol ∆ character string

CHAPTER 5 DIRECTIVES

User’s Manual U17197EJ1V0UM 139

[Use examples]

Output source Input source

MOV X , #0
CALL !xxx
MOV A , X
CMP A , #TRUE
BNZ $?L1
MOV B , #0C5H

?L1 :

#define TRUE 1
X = #0
CALL !xxx
if (X == #TRUE) (A)

B = #0C5H
endif

140 User’s Manual U17197EJ1V0UM

CHAPTER 5 DIRECTIVES

#IFDEF/#ELSE/#ENDIF

(2) Conditional processing directive (#ifdef/#else/#endif)

[Description format]

[Function]

- This directive performs conditional processing.

(1) When the symbol has not been defined

If #else has been entered , text 1 is skipped and text 2 becomes a processing object.

(2) When the symbol has been defined

If #else has been entered , text 1 becomes a processing object and text 2 is skipped.

[Description]

- The “#” character must always be entered at the start of the symbol , except when starting with a white

space or a horizontal tab.

- Symbols start with a letter and are composed of alphanumeric characters. The first 31 characters are valid.

- Symbols are defined by a previously entered #define statement or by specifying the “-D” option at startup.

- This directive can be nested in up to eight levels.

- #else can be omitted.

[Use examples]

- When the following has been entered on the command line (and the symbol has been defined)

C > st78k0 -c054 sample.st -dSYM

[∆] # [∆] ifdef ∆ symbol
text 1

[∆] # [∆] else
text 2

[∆] # [∆] endif

Output source Input source

MOV A , #00H
#ifdef SYM

A = #00H
#else

A = #0FFH
#endif

CHAPTER 5 DIRECTIVES

User’s Manual U17197EJ1V0UM 141

- When the following has been entered on the command line (and the symbol has not been defined)

C > st780 -c054 sample.st

Output source Input source

MOV A , #0FFH

#ifdef SYM
A = #00H

#else
A = #0FFH

#endif

142 User’s Manual U17197EJ1V0UM

CHAPTER 5 DIRECTIVES

#INCLUDE

(3) Include directive (#include)

[Description format]

[Function]

- This line is replaced by the specified file name and becomes a processing object as the ST78K0 source

program.

[Description]

- The “#” character must always be entered at the start of the symbol , except when starting with a white

space or a horizontal tab.

- This directive can be entered in any line in the source program.

- An include directive cannot be entered in an include file. In other words , nesting of include directives is not

allowed.

- Input source file names specified at startup , output file names , and error file names cannot be specified as

the file name in this directive.

- Drive and directory names can be entered before file names. If no drive or directory is entered , processing

assumes that the include file belongs to the current drive and current directory.

- The "-I" option can be used to specify a drive and directory for the include file when the ST78K0 is activated.

[Use examples]

[∆] # [∆] include ∆ “file name”

Output source Input source

MOV A , #08H
MOV B , #0AH

#include "sample.inc"
A = SYM1 ; #define SYM1 #08H
B = SYM2 ; #define SYM2 #0AH

CHAPTER 5 DIRECTIVES

User’s Manual U17197EJ1V0UM 143

#DEFCALLT

(4) CALLT replacement directive (#defcallt)

[Description format]

[Function]

- The CALL instruction for a registered label is replaced by a CALLT instruction and is output to a secondary

file.

[Description]

- This directive defines labels that can be registered to the CALLT table , as opposed to the CALL instructions

that are entered into the source program. All of the CALL instructions for these defined labels are replaced

by CALLT labels.

- This directive can be defined up to 32 times. An error message is output during the 33rd definition , and the

definition is ignored as processing continues.

- If the same pattern is defined twice , an error message is output and the second definition is ignored as

processing continues.

[Use examples]

[∆] # [∆] defcallt ∆ CALLT table label
[∆] CALL ∆ ! label
[∆] # [∆] endcallt

Output source Input source

MOV R0 , #0
CALLT [@ABC]
CALL !LABEL

CALL_T CSEG AT 40H
@ABC : DW ABC

#DEFCALLT @ABC
CALL !ABC

#ENDCALLT
R0 = #0
CALL !ABC
CALL !LABEL

CALL_T CSEG AT 40H
@ABC : DW ABC

144 User’s Manual U17197EJ1V0UM

CHAPTER 6 CONTROL INSTRUCTIONS

CHAPTER 6 CONTROL INSTRUCTIONS

This chapter describes structured assembler control instructions. Control instructions provide detailed

instructions for the structured assembler's operations.

6.1 Overview of Control Instructions

Control instructions , which are entered into the source program , set various directives that the ST78K0 requires

to execute a series of processes.

Entering control instructions saves the time that would otherwise be required for specifying options when

activating a program.

CHAPTER 6 CONTROL INSTRUCTIONS

User’s Manual U17197EJ1V0UM 145

6.2 Assembler Control Instructions

First , it must be determined whether or not each assembler control instruction can be entered in a module

header.

If there is an assembler control instruction that cannot be entered in a module header , subsequent processing

proceeds as the module body. If an assembler control instruction that can only be entered in a module header is

instead entered in a module body , an error message is output and processing is aborted.

This preprocessor does not confirm the accuracy of parameter specifications except for processor type

specification control instructions ($PROCESSOR , $PC) , and kanji code specification control instructions (

$KANJICODE) . For description of the description format for other control instructions , see the RA78K0

Assembler Package Language User’s Manual.

Table 6-1 lists control instructions that can be entered only in module headers.

Table 6-2 lists control instructions that are recognized as the module body.

Table 6-1 Control Instructions that Can Be Entered Only in Module Headers

Control instruction

[∆] $ [∆] PROCESSOR [∆] ([∆] model name [∆])

[∆] $ [∆] PC ([∆] model name [∆])

[∆] $ [∆] DEBUG

[∆] $ [∆] DG

[∆] $ [∆] NODEBAG

[∆] $ [∆] NODG

[∆] $ [∆] DEBUGA

[∆] $ [∆] NODEBAGA

[∆] $ [∆] XREF

[∆] $ [∆] XR

[∆] $ [∆] NOXREF

[∆] $ [∆] NOXR

[∆] $ [∆] TITLE [∆] ([∆] ‘title string’ [∆])

[∆] $ [∆] TT [∆] ([∆] ‘title string’ [∆])

[∆] $ [∆] SYMLIST

[∆] $ [∆] NOSYMLIST

[∆] $ [∆] FORMFEED

[∆] $ [∆] NOFORMFEED

[∆] $ [∆] WIDTH [∆] ([∆] constant [∆])

[∆] $ [∆] LENGTH [∆] ([∆] constant [∆])

[∆] $ [∆] TAB [∆] ([∆] constant [∆])

[∆] $ [∆] KANJICODE ∆ kanji code

146 User’s Manual U17197EJ1V0UM

CHAPTER 6 CONTROL INSTRUCTIONS

Table 6-2 Control Instructions that Are Recognized as the Module Body

Control instruction

[∆] $ [∆] INCULUDE [∆] ([∆] file name [∆])

[∆] $ [∆] IC ([∆] file name [∆])

[∆] $ [∆] EJECT

[∆] $ [∆] EJ

[∆] $ [∆] LIST

[∆] $ [∆] LI

[∆] $ [∆] NOLIST

[∆] $ [∆] NOLI

[∆] $ [∆] GEN

[∆] $ [∆] NOGEN

[∆] $ [∆] COND

[∆] $ [∆] NOCOND

[∆] $ [∆] SUBTITLE [∆] ([∆] ‘character string’ [∆])

[∆] $ [∆] ST [∆] ([∆] ‘character string’ [∆])

[∆] $ [∆] SET [∆] ([∆] switch name [[∆] : [∆] switch name ... [∆])

[∆] $ [∆] RESET [∆] ([∆] switch name [[∆] : [∆] switch name ... [∆])

[∆] $ [∆] IF [∆] ([∆] switch name [[∆] : [∆] switch name ... [∆])

[∆] $ [∆] _IF ∆ conditional expression

[∆] $ [∆] ELSEIF [∆] ([∆] switch name [[∆] : [∆] switch name ... [∆])

[∆] $ [∆] _ELSEIF ∆ conditional expression

[∆] $ [∆] ELSE

[∆] $ [∆] ENDIF

CHAPTER 6 CONTROL INSTRUCTIONS

User’s Manual U17197EJ1V0UM 147

6.3 Control Instruction Functions

The various functions of control instructions are listed in Table 6-3 below.

The functions of these three types of control instructions are described below.

Table 6-3 Control Instruction List

Type of control instruction Control instruction

Processor type specification instruction $PROCESSOR

Kanji code specification control instructions $KANJICODE

148 User’s Manual U17197EJ1V0UM

CHAPTER 6 CONTROL INSTRUCTIONS

$PROCESSOR

(1) Processor type specification instruction ($PROCESSOR)

[Description format]

[Function]

- This control instruction specifies the model in the source module that is the object for assembly.

[Description]

- Although this control instruction specifies the model that is the object for assembly by the assembler , it can

also be used to specify the model that is the object for the structured assembler.

- If the specified model differs from that specified via the “-C” option , the model specified via the “-C” option

takes priority. When such a conflict arises , a warning message is output. The “$” in the input source file's

control instruction is replaced by a “;” in the secondary source file that is output , and the model specified via

an option is output as the processor model specification control instruction. No message is output if the

same model name is specified by the “-C” option. If there is no specification via the “-C” option , the

specification must be entered at the start of the source module (not including spaces or comments).

- An error occurs when this control instruction is entered more than once.

- An error occurs if neither this control instruction nor the “-C” option is used to specified a model name.

- An error occurs if this control instruction is entered anywhere other than in the module header.

[Code example]

[∆] $ [∆] PROCESSOR [∆] ([∆] model name [∆])
[∆] $ [∆] PC [∆] ([∆] model name [∆]) ; Abbreviated form

$PROCESSOR (054)
$PC (054)

CHAPTER 6 CONTROL INSTRUCTIONS

User’s Manual U17197EJ1V0UM 149

$KANJICODE

(2) Kanji code specification control instruction ($KANJICODE)

[Description format]

- Default assumption

Windows / HP-UX : $KANJICODE SJIS

Sun OS : $KANJICODE EUC

[Function]

- The kanji codes used in comments are interpreted as follows.

[Description]

- This control instruction can be entered in the module header section of an input source file.

- An error occurs if this control instruction is entered anywhere other than in the module header.

- If this control instruction is entered more than once , the most recent one takes priority.

- This preprocessor outputs the specified control instruction to a secondary source file.

SJIS : $KANJICODE SJIS

EUC : $KANJICODE EUC

NONE : $KANJICODE NONE

If the same control instruction is entered in a secondary source file , the control instruction is not output.

However , error checking is performed.

- Kanji code specifications are ranked in terms of priority as follows.

1. Specification of -ZS/-ZE/-ZN option

2. Specification of the kanji code specification control instruction ($KANJICODE)

3. Specification of the environmental variable LANG78K

4. Default specification of each OS

[Code example]

[∆] $ [∆] KANJICODE ∆ kanji code

Table 6-4 Interpretation of Kanji Code

Kanji code Interpretation

SJIS Interpreted as SHIFT-JIS code

EUC Interpreted as EUC code

NONE Not interpreted as kanji code

$KANJICODE SJIS

150 User’s Manual U17197EJ1V0UM

APPENDIX A SYNTAX LISTS

APPENDIX A SYNTAX LISTS

Table A-1 Control Statements

Control statement Coding format

if statement
if ~ elseif ~ else ~ endif

if (conditional expression 1) [(register name)]
if block

elseif (conditional expression 2) [(register name)]
elseif block

else
else block

endif

switch statement
switch ~ case ~ default ~
ends

switch (symbol) [(register name)]
case constant 1 :

case1 block
case constant 2

case2 block
:

case constant N
caseN block

default :
default block

ends

for statement
for ~ next

for (expression ; conditional expression ; expression) [(register name)]
Instruction group

next

while statement
while ~ endw

while (conditional expression) [(register name)]
Instruction group

endw

until statement
repeat ~ until

repeat
Instruction group

until (conditional expression) [(register name)]

break statement
break

break

continue statement
continue

continue

goto statement
goto

goto label

APPENDIX A SYNTAX LISTS

User’s Manual U17197EJ1V0UM 151

if_bit statement
if_bit ~ elseif_bit ~ else ~
endif

if_bit (conditional expression 1) [(register name)]
if_bit block

elseif_bit (conditional expression 2) [(register name)]
elseif_bit block

else
else block

endif

while_bit statement
while_bit ~ endw

while_bit (conditional expression) [(register name)]
Instruction group

endw

until_bit statement
repeat ~ until_bit

repeat
Instruction group

until_bit (conditional expression) [(register name)]

Table A-2 Conditional Expressions

Conditional expression Coding format Function

Equal (==) α == β True when α = β , false when α ≠ β

NotEqual (!=) α != β True when α ≠ β , false when α = β

LessThan (<) α < β True when α < β , false when α >= β

GreaterThan (>) α > β True when α > β , false when α <= β

GreaterEqual (>=) α >= β True when α >= β , false when α < β

LessEqual (<=) α <= β True when α <= β , false when α > β

FOREVER (forever) forever Sets endless loop for loop statement

Positive logic (bit)
Bit symbol

Bit symbol True when value of specified bit symbol is 1

Negative logic (bit)
!bit symbol

!bit symbol True when value of specified bit symbol is 0

Logical AND (&&)
Conditional expression 1
&& conditional expression 2

True when both conditional expression 1
and conditional expression 2 are true

Logical OR (||)
Conditional expression 1 ||
conditional expression 2

True when either conditional expression 1 or
conditional expression 2 is true

Table A-1 Control Statements

Control statement Coding format

152 User’s Manual U17197EJ1V0UM

APPENDIX A SYNTAX LISTS

Table A-3 Expressions

Expression Coding format Function

Assign (=)

Assign α = β α <- β

Assign (with register
specification) α = β (γ) (γ) <- β , α <- (γ)

Sequential assign α 1 = ... = α n = β α 1 <- β , ... , α n <- β

Sequential assign (with
register specification)

α 1 = ... = α n = β (γ) γ <- β , α 1 <- γ , ... , α n <-
γ

IncrementAssi
gn (+=)

Increment assignment α += β α <- α + β

Increment assignment (with
register specification) α += β (Register) γ <- α , γ <- γ + β , α <- γ

Increment assignment (with
register specification) α += β , CY α <- α + β , CY

Increment assignment (with
register specification) α += β , CY (Register) γ <- α , γ <- γ + β , CY , α

<- γ

DecrementAss
ign (-=)

Decrement assignment α -= β α <- α - β

Decrement assignment
(with register specification) α -= β (Register) γ <- α , γ <- γ - β , α <- γ

Decrement assignment
(with register specification) α -= β , CY α <- α - β , CY

Decrement assignment (
with register specification) α -= β , CY (Register) γ <- α , γ <- γ - β , CY , α

<- γ

MultiplicationA
ssign (*=)

Multiplication assignment α *= β α <- α * β

Multiplication assignment (
with register specification) α *= β (Register) γ <- α , γ <- γ * β , α <- γ

DivisionAssign
(/=)

Division assignment α /= β α <- α / β

Division assignment (with
register specification) α /= β (Register) γ <- α , γ <- γ / β , α <- γ

LogicalANDAs
sign (&=)

Logical AND assignment α &= β α <- α ∩ β

Logical AND assignment (
with register specification) α &= β (Register) γ <- α , γ <- γ ∩ β , α <- γ

LogicalORAssi
gn (|=)

Logical OR assignment α |= β α <- α U β

Logical OR assignment (
with register specification) α |= β (Register) γ <- α , γ <- γ U β , α <- γ

LogicalXORAs
sign (^=)

Logical XOR assignment α ^= β α <- α ^ β

Logical XOR assignment (
with register specification) α ^= β (Register) γ <- α , γ <- γ ^ β , α <- γ

RightShiftAssi
gn (>>=)

Right shift (rotate)
assignment α >>= β (α shifted to right of β bit)

Right shift assignment (with
register specification) α >>= β (Register) γ <- α , (γ shifted to right

of β bit) , α <- γ

APPENDIX A SYNTAX LISTS

User’s Manual U17197EJ1V0UM 153

LeftShiftAssign
(<<=)

Left shift assignment α <<= β (α shifted to left of β bit)

Left shift assignment (with
register specification) α <<= β (Register) γ <- α , (γ shifted to left of

β bit) , α <- γ

Increment (++
)

Increment α ++ α <- α + 1

Decrement (--
)

Decrement α -- α <- α - 1

Exchange (<-
>)

Exchange α <->= β α <- α <->= β

Exchange (with register
specification) α <->= β (γ) γ <- α , γ <- γ <-> β , α <-

γ

Set bit (=)

Set bit α = 1 α <- 1

Set bit (with register
specification) α = 1 (CY) CY <- 1 , α <- 1

Sequential set bit α 1 = ... = α n = 1 α n <- 1 , ... , α 1 <- 1

Sequential set bit (with
register specification)

α 1 = ... = α n = 1 (CY) CY <- 1 , α n <- 1 , ... , α 1
<- 1

Clear bit (=)

Clear bit α = 0 α <- 0

Clear bit (with register
specification) α = 0 (CY) CY <- 0 , α <- 0

Sequential clear bit α 1 = ... = α n = 0 α n <- 0 , ... , α 1 <- 0

Sequential clear bit (with
register specification)

α 1 = ... = α n = 0 (CY) CY <- 0 , α n <- 0 , ... , α 1
<- 0

Table A-4 Directives

Directive Coding format

#define
Symbol definition directive (#define)

#define symbol character string

#ifdef
Conditional processing directive (#ifdef/#else/#endif)

#ifdef symbol
text 1

#else
text 2

#endif

#include
Include directive (#include)

#include “file name”

#defcallt
CALLT replacement directive (#defcallt)

#defcallt CALLT table label
CALL label

#endcallt

Table A-3 Expressions

Expression Coding format Function

154 User’s Manual U17197EJ1V0UM

APPENDIX A SYNTAX LISTS

Table A-5 Control Instructions

Control Instruction Coding format

Processor type specification instruction ($PROCESSOR) $PROCESSOR (model name)

Kanji code specification control instruction ($KANJICODE) $KANJICODE Kanji code

APPENDIX B LISTS OF GENERATED INSTRUCTIONS

User’s Manual U17197EJ1V0UM 155

APPENDIX B LISTS OF GENERATED
INSTRUCTIONS

Table B-1 Generated Instructions for Comparison Expressions

Comparison expression Generated instruction Control statement condition

Equal (==
)

α == β

CMP (W) α , β
BNZ $?LFALSE

lower case letters

CMP (W) α , β
BZ $?LTRUE
BR ?LFALSE

?LTRUE :

upper case letters

α == β (γ)

MOV (W) γ , α
CMP (W) γ , β
BNZ $?LFALSE

lower case letters

MOV (W) γ , α
CMP (W) γ , β
BZ $?LTRUE
BR LFALSE

?LTRUE :

upper case letters

NotEqual (
!=)

α != β

CMP (W) α , β
BZ $?LFALSE

lower case letters

CMP (W) α , β
BNZ $?LTRUE
BR ?LFALSE

?LTRUE :

upper case letters

α != β (γ)

MOV (W) γ , α
CMP (W) γ , β
BZ $?LFALSE

lower case letters

MOV(W) γ , α
CMP(W) γ , β
BNZ $?LTRUE
BR ?LFALSE

?LTRUE :

upper case letters

156 User’s Manual U17197EJ1V0UM

APPENDIX B LISTS OF GENERATED INSTRUCTIONS

LessThan
(<)

α < β

CMP (W) α , β
BNC $?LFALSE

lower case letters

CMP (W) α , β
BC $?LTRUE
BR ?LFALSE

?LTRUE :

upper case letters

α < β (γ)

MOV (W) γ , α
CMP (W) γ , β
BNC $?LFALSE

lower case letters

MOV (W) γ , α
CMP (W) γ , β
BC $?LTRUE
BR ?LFALSE

?LTRUE :

upper case letters

GreaterTh
an (>)

α > β

CMP (W) α , β
BZ $?LFALSE
BC $?LFALSE

lower case letters

CMP (W) α , β
BZ $$ + 4
BNC $?LTRUE
BR ?LFALSE

?LTRUE :

upper case letters

α > β (γ)

MOV (W) specified register , α
CMP (W) specified register , β
BZ $?LFALSE
BC $?LFALSE

lower case letters

MOV (W) specified register , α
CMP (W) specified register , β
BZ $$ + 4
BNC $?LTRUE
BR ?LFALSE

?LTRUE :

upper case letters

Table B-1 Generated Instructions for Comparison Expressions

Comparison expression Generated instruction Control statement condition

APPENDIX B LISTS OF GENERATED INSTRUCTIONS

User’s Manual U17197EJ1V0UM 157

γ : specified register

GreaterEq
ual (>=)

α >= β

CMP (W) α , β
BC $?LFALSE

lower case letters

CMP (W) α , β
BNC $?LTRUE
BR ?LFALSE

?LTRUE :

upper case letters

α >= β (γ)

MOV (W) γ , α
CMP (W) γ , β
BC $?LFALSE

lower case letters

MOV (W) γ , α
CMP (W) γ , β
BNC $?LTRUE
BR ?LFALSE

?LTRUE :

upper case letters

LessEqual
(<=)

α <= β

CMP (W) α , β
BZ $$ + 4
BNC $?LFALSE

lower case letters

CMP (W) α , β
BZ $?LTRUE
BC $?LTRUE
BR ?LFALSE

?LTRUE :

upper case letters

α <= β (γ)

MOV (W) specified register , α
CMP (W) specified register , β
BZ $$ + 4
BNC $?LFALSE

lower case letters

MOV (W) specified register , α
CMP (W) specified register , β
BZ $?LTRUE
BC $?LTRUE
BR ?LFALSE

?LTRUE :

upper case letters

Table B-1 Generated Instructions for Comparison Expressions

Comparison expression Generated instruction Control statement condition

158 User’s Manual U17197EJ1V0UM

APPENDIX B LISTS OF GENERATED INSTRUCTIONS

Table B-2 Generated Instructions for Test Bit Expressions

Test bit expression Generated instruction Control statement condition

Bit symbol
if_bit (bit symbol)
elseif_bit (bit symbol)
while_bit (bit symbol)
until_bit (bit symbol)

BNC $?LFALSE lower case letters (CY)

BNZ $?LFALSE lower case letters (Z)

BF bit symbol , $?LFALSE lower case letters

BC $?LTRUE
BR ?LFALSE

?LTRUE :
upper case letters (CY)

BZ $?LTRUE
BR ?LFALSE

?LTRUE :
upper case letters (Z)

BT bit symbol , $?LTRUE
BR ?LFALSE

?LTRUE :
upper case letters

!bit symbol
if_bit (!bit symbol)
elseif_bit (!bit symbol)
while_bit (!bit symbol)
until_bit (!bit symbol)

BC $?LFALSE lower case letters (CY)

BZ $?LFALSE lower case letters (Z)

BT bit symbol , $?LFALSE lower case letters

BNC $?LTRUE
BR ?LFALSE

?LTRUE :
upper case letters (CY)

BNZ $?LTRUE
BR ?LFALSE

?LTRUE :
upper case letters (Z)

BF bit symbol , $?LTRUE
BR ?LFALSE

?LTRUE :
upper case letters

APPENDIX B LISTS OF GENERATED INSTRUCTIONS

User’s Manual U17197EJ1V0UM 159

Table B-3 Generated Instructions for Logic Expressions

Logic expression Generated instruction Control statement condition

Logical
AND (&&
)

α == β &&

CMP (W) α , β
BNZ $?LFALSE

lower case letters

CMP (W) α , β
BZ $?LTRUE
BR ?LFALSE

?LTRUE :

upper case letters

α != β &&

CMP (W) α , β
BZ $?LFALSE

lower case letters

CMP (W) α , β
BNZ $?LTRUE
BR ?LFALSE

?LTRUE :

upper case letters

α < β &&

CMP (W) α , β
BNC $?LFALSE

lower case letters

CMP (W) α , β
BC $?LTRUE
BR ?LFALSE

?LTRUE :

upper case letters

α > β &&

CMP (W) α , β
BZ $?LFALSE
BC $?LFALSE

lower case letters

CMP (W) α , β
BZ $$ + 4
BNC $?LTRUE
BR ?LFALSE

?LTRUE :

upper case letters

α >= β &&

CMP (W) α , β
BC $?LFALSE

lower case letters

CMP (W) α , β
BNC $?LTRUE
BR ?LFALSE

?LTRUE :

upper case letters

α <= β &&

CMP (W) α , β
BZ $$ + 4
BNC $?LFALSE

lower case letters

CMP (W) α , β
BZ $?LTRUE
BC $?LTRUE
BR ?LFALSE

?LTRUE :

upper case letters

160 User’s Manual U17197EJ1V0UM

APPENDIX B LISTS OF GENERATED INSTRUCTIONS

Logical
AND (&&
)

CY &&

BNC $?LFALSE lower case letters

BC $?LTRUE
BR ?LFALSE

?LTRUE :
upper case letters

Z &&

BNZ $?LFALSE lower case letters

BZ $?LTRUE
BR ?LFALSE

?LTRUE :
upper case letters

bit symbol
&&

BF bit symbol , $?LFALSE lower case letters

BT bit symbol , $?LTRUE
BR ?LFALSE

?LTRUE :
upper case letters

!CY &&

BC $?LFALSE lower case letters

BNC $?LTRUE
BR ?LFALSE

?LTRUE :
upper case letters

!Z &&

BZ $?LFALSE lower case letters

BNZ $?LTRUE
BR ?LFALSE

?LTRUE :
upper case letters

!bit symbol
&&

BT bit symbol , $?LFALSE lower case letters

BF bit symbol , $?LTRUE
BR ?LFALSE

?LTRUE :
upper case letters

Table B-3 Generated Instructions for Logic Expressions

Logic expression Generated instruction Control statement condition

APPENDIX B LISTS OF GENERATED INSTRUCTIONS

User’s Manual U17197EJ1V0UM 161

Logical
OR (||)

α == β ||
CMP (W) α , β
BZ $?LFALSE

none

α != β ||
CMP (W) α , β
BNZ $?LFALSE

α < β ||
CMP (W) α , β
BC $?LFALSE

α > β ||
CMP (W) α , β
BZ $?LFALSE
BNC $?LFALSE

α >= β ||
CMP (W) α , β
BNC $?LFALSE

α <= β ||
CMP (W) α , β
BZ $?LFALSE
BC $?LFALSE

CY || BC $?LFALSE

Z || BZ $?LFALSE

bit symbol
||

BT bit symbol , $?LFALSE

!CY || BNC $?LFALSE

!Z || BNZ $?LFALSE

!bit symbol
||

BF bit symbol , $?LFALSE

Table B-3 Generated Instructions for Logic Expressions

Logic expression Generated instruction Control statement condition

162 User’s Manual U17197EJ1V0UM

APPENDIX B LISTS OF GENERATED INSTRUCTIONS

Table B-4 Expressions

Expression Generated instruction

Assign (
=)

α = β

MOV1 α 1 , β

MOV α 1 , β

MOVW α 1 , β

α = β (γ)

MOV1 γ , β
MOV1 α 1 , γ

MOV γ , β
MOV α 1 , γ

MOVW γ , β
MOVW α 1 , γ

Incremen
tAssign (
+=)

α += β
ADD α , β

ADDW α , β

α += β (γ)

MOV γ , α
ADD γ , β
MOV α , γ

MOVW γ , α
ADDW γ , β
MOVW α , γ

α += β , CY ADDC α , β

α += β , CY
(γ)

MOV γ , α
ADDC γ , β
MOV α , γ

Decreme
ntAssign
(-=)

α -= β
SUB α , β

SUBW α , β

α -= β (γ)

MOV γ , α
SUB γ , β
MOV α , γ

MOVW γ , α
SUBW γ , β
MOVW α , γ

α -= β , CY SUBC α , β

α -= β , CY (
γ)

MOV γ , α
SUBC γ , β
MOV α , γ

Multiplica
tionAssig
n (*=)

α *= β MULUX X

α *= β (γ)
MOVW γ , α
MULU X
MOVW α , γ

APPENDIX B LISTS OF GENERATED INSTRUCTIONS

User’s Manual U17197EJ1V0UM 163

DivisionA
ssign (/=
)

α /= β DIVUM C

α /= β (γ)
MOVW γ , α
DIVUM C
MOVW α , γ

LogicalA
NDAssig
n (&=)

α &= β
AND1 CY , β

AND α , β

α &= β (γ)

MOV1 γ , α
AND1 γ , β
MOV1 α , γ

MOV γ , α
AND γ , β
MOV α , γ

LogicalO
RAssign
(|=)

α |= β
OR1 CY , β

OR α , β

α |= β (γ)

MOV1 γ , α
OR1 γ , β
MOV1 α , γ

MOV γ , α
OR γ , β
MOV α , γ

LogicalX
ORAssig
n (^=)

α ^= β
XOR1 α , β

XOR α , β

α ^= β (γ)

MOV1 γ , α
XOR1 γ , β
MOV1 α , γ

MOV γ , α
XOR γ , β
MOV α , γ

RightShif
tAssign (
>>=)

α >>= β
ROR A , 1

:
AND A , #0FFH SHR β

α >>= β (γ)

MOV A , α
ROR A , 1

:
AND A , #0FFH SHR β
MOV α , A

Table B-4 Expressions

Expression Generated instruction

164 User’s Manual U17197EJ1V0UM

APPENDIX B LISTS OF GENERATED INSTRUCTIONS

LeftShift
Assign (
<<=)

α <<= β
ROL A , 1

:
AND A , #LOW (0FFH SHL β)

α <<= β (γ)

MOV A , α
ROL A , 1

:
AND A , #LOW (0FFH SHL β)
MOV α , A

Incremen
t (++)

α ++
INC α

INCW α

Decreme
nt (--)

α --
DEC α

DECW α

Exchang
e (<->)

α <-> β
XCH α , β

XCHW α , β

α <-> β (γ)

MOV γ , α
XCH γ , β
MOV α , γ

MOVW γ , α
XCHW γ , β
MOVW α , γ

Set bit (
=)

α = 1 SET1 α 1

α = 1 (CY)
SET1 CY
SET1 α 1

Clear bit
(=)

α = 0 CLR1 α 1

α = 0 (CY)
CLR1 CY
CLR1 α 1

Table B-4 Expressions

Expression Generated instruction

APPENDIX C INDEX

User’s Manual U17198EJ1V0UM 165

APPENDIX C INDEX

Symbols
#DEFCALLT ... 143
#DEFINE ... 138
#ELSE ... 140
#ENDIF ... 140
#IFDEF ... 30, 140
#INCLUDE ... 30, 142
$KANJICODE ... 145, 149
$PC ... 145
$PROCESSOR ... 145, 148

A
Assembler control instruction ... 24, 29
Assembler operator ... 23
Assembly language ... 18
Assign ... 99
Assignment ... 96, 103, 106, 109, 111, 113, 115, 117,
120, 122
Assignment statement ... 96, 99

B
Bit manipulation statement ... 96, 98, 130
break ... 56
Byte access ... 22
Byte symbol ... 17

C
CALLT replacement directive ... 143
Character set ... 20
Clear bit ... 133
Comment ... 30
Comment statement ... 29
Comparison expression ... 60
Conditional branch ... 36
Conditional expression ... 18
Conditional loop ... 46
Conditional processing directive ... 140
Constant ... 22
continue ... 57
Control statement ... 18, 23, 30
Count statement ... 96, 98, 124

D
Decrement ... 126
DecrementAssign ... 106
Directive ... 23, 30, 136
DivisionAssign ... 111

E
Equal ... 62
Error message ... 29
Exchange ... 128

Exchange statement ... 96, 98, 128
Expression ... 22
Expression statement ... 18, 30

F
for ... 46
FOREVER (forever) ... 80

G
goto ... 58
GreaterEqual ... 74
GreaterThan ... 71

I
Identifier ... 22
if ... 36
if_bit ... 38
Illegal character ... 22, 28
Include directive ... 142
Increment ... 124
IncrementAssign ... 103
Invalid character ... 22

K
Kanji code specification control instruction ... 149

L
Label ... 17, 25
LeftShiftAssign ... 122
LessEqual ... 77
LessThan ... 68
Letter ... 20
Line feed ... 29
Logical AND ... 90
Logical operation ... 89
Logical OR ... 94
LogicalANDAssign ... 113
LogicalORAssign ... 115
LogicalXORAssign ... 117
Lower case ... 20
Lower case letter ... 31

M
Module body ... 145
Module header ... 29, 145
MultiplicationAssign ... 109

N
Negative logic (bit) ... 86
NotEqual ... 65

166 User’s Manual U17198EJ1V0UM

APPENDIX C INDEX

Numeral ... 20

O
Operator ... 23

P
Positive logic (bit) ... 83
Processor type specification instruction ... 148

R
Register ... 24
RightShiftAssign ... 120

S
Set bit ... 130
Source program ... 136, 144
Special character ... 20
ST78K0 ... 13
Structured assembler preprocessor ... 13
Structured assembly language ... 18
switch ... 41
Symbol ... 22
Symbol definition directive ... 138

T
Test bit expression ... 82

U
until ... 53
until_bit ... 55
Upper case ... 20
Upper case letter ... 31
User symbol ... 22

W
while ... 49
while_bit ... 51
Word access ... 22
Word symbol ... 17

	COVER
	INTRODUCTION
	CONTENTS
	LIST OF FIGURES
	LIST OF TABLES
	CHAPTER 1 GENERAL
	1.1 Overview
	1.2 Overview of Functions
	1.2.1 Main Functions
	1.2.2 Flowchart of Program Development

	1.3 Before Starting Program Development
	1.3.1 Maximum performance
	1.3.2 Word symbols and byte symbols
	1.3.3 Definition of label

	CHAPTER 2 SOURCE PROGRAM CODING METHODS
	2.1 Basic Configuration of Source Programs
	2.2 Source Program Elements
	2.3 Reserved Words
	2.4 Label Generation Rules
	2.5 Size Specification
	2.6 Data Sizes
	2.7 Comments
	2.8 Tool Information
	2.9 Output Results of Input Source Files by ST78K0

	CHAPTER 3 CONTROL STATEMENTS
	3.1 Control Statement Characters
	3.2 Nesting
	3.3 Register Specification
	3.4 Control Statement Functions
	3.4.1 Conditional branch
	3.4.2 Conditional loop

	3.5 Conditional Expressions
	3.5.1 Comparison expressions
	3.5.2 Test bit expressions
	3.5.3 Logical operations

	CHAPTER 4 EXPRESSIONS
	4.1 Overview of Expressions
	4.2 Assignment Statements
	4.3 Count Statements
	4.4 Exchange Statements
	4.5 Bit Manipulation Statements

	CHAPTER 5 DIRECTIVES
	5.1 Overview of Directives
	5.2 Directive Functions
	#DEFINE
	#IFDEF/#ELSE/#ENDIF
	#INCLUDE
	#DEFCALLT

	CHAPTER 6 CONTROL INSTRUCTIONS
	6.1 Overview of Control Instructions
	6.2 Assembler Control Instructions
	6.3 Control Instruction Functions
	$PROCESSOR
	$KANJICODE

	APPENDIX A SYNTAX LISTS
	APPENDIX B LISTS OF GENERATED INSTRUCTIONS
	APPENDIX C INDEX

