To our customers,

Old Company Name in Catalogs and Other Documents

On April 1!, 2010, NEC Electronics Corporation merged with Renesas Technology
Corporation, and Renesas Electronics Corporation took over all the business of both
companies. Therefore, although the old company name remains in this document, it is a valid
Renesas Electronics document. We appreciate your understanding.

Renesas Electronics website: http://www.renesas.com

April 1%, 2010
Renesas Electronics Corporation

Issued by: Renesas Electronics Corporation (http://www.renesas.com)

Send any inquiries to http://www.renesas.com/inquiry.

LENESAS

8.

10.

11.

12.

Notice

All information included in this document is current as of the date this document is issued. Such information, however, is
subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please
confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to
additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.

Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights
of third parties by or arising from the use of Renesas Electronics products or technical information described in this document.
No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights
of Renesas Electronics or others.

You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.

Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of
semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software,
and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by
you or third parties arising from the use of these circuits, software, or information.

When exporting the products or technology described in this document, you should comply with the applicable export control
laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas
Electronics products or the technology described in this document for any purpose relating to military applications or use by
the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and
technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited
under any applicable domestic or foreign laws or regulations.

Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics
does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages
incurred by you resulting from errors in or omissions from the information included herein.

Renesas Electronics products are classified according to the following three quality grades: “Standard”, “High Quality”, and
“Specific”. The recommended applications for each Renesas Electronics product depends on the product’s quality grade, as
indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular
application. You may not use any Renesas Electronics product for any application categorized as “Specific” without the prior
written consent of Renesas Electronics. Further, you may not use any Renesas Electronics product for any application for
which it is not intended without the prior written consent of Renesas Electronics. Renesas Electronics shall not be in any way
liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an
application categorized as “Specific” or for which the product is not intended where you have failed to obtain the prior written
consent of Renesas Electronics. The quality grade of each Renesas Electronics product is “Standard” unless otherwise
expressly specified in a Renesas Electronics data sheets or data books, etc.

“Standard”: Computers; office equipment; communications equipment; test and measurement equipment; audio and visual
equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots.

“High Quality”: Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-
crime systems; safety equipment; and medical equipment not specifically designed for life support.

“Specific”: Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or
systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare
intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.

You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics,

especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation
characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or
damages arising out of the use of Renesas Electronics products beyond such specified ranges.

Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have
specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further,
Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to
guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a
Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire
control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because
the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system
manufactured by you.

Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental
compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable
laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS
Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with
applicable laws and regulations.

This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas
Electronics.

Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this
document or Renesas Electronics products, or if you have any other inquiries.

(Note 1) “Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its majority-

owned subsidiaries.

(Note 2) “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.

User’s Manual

RA78KO0 Ver. 3.80

Assembler Package

Structured Assembly Language

LENESANS

Target Devices
78K0 Series

Document No. U17197EJ1VOUMOO (1st edition)
Date Published October 2004 CP(K)

© NEC Electronics Corporation 2004
Printed in Japan

[MEMO]

2 User’s Manual U17197EJ1VOUM

Windows is either registered trademarks or trademarks of Microsoft Corporation in the United States
and/or other countries.

HP-UX is trademarks of Hewlett-Packard Inc.

SunOS is trademarks of Sun Microsystems, Inc.

e The information in this document is current as of October, 2004. The information is subject to
change without notice. For actual design-in, refer to the latest publications of NEC Electronics data
sheets or data books, etc., for the most up-to-date specifications of NEC Electronics products. Not
all products and/or types are available in every country. Please check with an NEC Electronics sales
representative for availability and additional information.

e No part of this document may be copied or reproduced in any form or by any means without the prior
written consent of NEC Electronics. NEC Electronics assumes no responsibility for any errors that may
appear in this document.

e NEC Electronics does not assume any liability for infringement of patents, copyrights or other intellectual
property rights of third parties by or arising from the use of NEC Electronics products listed in this document
or any other liability arising from the use of such products. No license, express, implied or otherwise, is
granted under any patents, copyrights or other intellectual property rights of NEC Electronics or others.

e Descriptions of circuits, software and other related information in this document are provided for illustrative
purposes in semiconductor product operation and application examples. The incorporation of these
circuits, software and information in the design of a customer's equipment shall be done under the full
responsibility of the customer. NEC Electronics assumes no responsibility for any losses incurred by
customers or third parties arising from the use of these circuits, software and information.

e While NEC Electronics endeavors to enhance the quality, reliability and safety of NEC Electronics products,
customers agree and acknowledge that the possibility of defects thereof cannot be eliminated entirely. To
minimize risks of damage to property or injury (including death) to persons arising from defects in NEC
Electronics products, customers must incorporate sufficient safety measures in their design, such as
redundancy, fire-containment and anti-failure features.

e NEC Electronics products are classified into the following three quality grades: "Standard", "Special" and
"Specific".

The "Specific" quality grade applies only to NEC Electronics products developed based on a customer-
designated "quality assurance program" for a specific application. The recommended applications of an NEC

Electronics product depend on its quality grade, as indicated below. Customers must check the quality grade of

each NEC Electronics product before using it in a particular application.

"Standard": Computers, office equipment, communications equipment, test and measurement equipment, audio
and visual equipment, home electronic appliances, machine tools, personal electronic equipment
and industrial robots.

"Special": Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster
systems, anti-crime systems, safety equipment and medical equipment (not specifically designed
for life support).

"Specific": Aircraft, aerospace equipment, submersible repeaters, nuclear reactor control systems, life
support systems and medical equipment for life support, etc.

The quality grade of NEC Electronics products is "Standard" unless otherwise expressly specified in NEC
Electronics data sheets or data books, etc. If customers wish to use NEC Electronics products in applications
not intended by NEC Electronics, they must contact an NEC Electronics sales representative in advance to
determine NEC Electronics' willingness to support a given application.

(Note)

(1) "NEC Electronics" as used in this statement means NEC Electronics Corporation and also includes its
majority-owned subsidiaries.

(2) "NEC Electronics products" means any product developed or manufactured by or for NEC Electronics (as
defined above).

M8E 02.11-1

User's Manual U17197EJ1VOUM 3

Regional Information

Some information contained in this document may vary from country to country. Before using any NEC
Electronics product in your application, please contact the NEC Electronics office in your country to
obtain a list of authorized representatives and distributors. They will verify:

« Device availability

« Ordering information

» Product release schedule

« Availability of related technical literature

« Development environment specifications (for example, specifications for third-party tools and
components, host computers, power plugs, AC supply voltages, and so forth)

« Network requirements

In addition, trademarks, registered trademarks, export restrictions, and other legal issues may also vary
from country to country.

[GLOBAL SUPPORT]
http://www.necel.com/en/support/support.html

NEC Electronics Hong Kong Ltd.
Hong Kong
Tel: 2886-9318

NEC Electronics America, Inc. (U.S.) NEC Electronics (Europe) GmbH
Santa Clara, California Duesseldorf, Germany
Tel: 408-588-6000 Tel: 0211-65030

800-366-9782
NEC Electronics Hong Kong Ltd.

Seoul Branch
Seoul, Korea
Tel: 02-558-3737

» Sucursal en Espaia
Madrid, Spain
Tel: 091-504 27 87

* Succursale Francaise

Vélizy-Villacoublay, France
Tel: 01-30-6758 00

 Filiale Italiana
Milano, Italy
Tel: 02-66 75 41

e Branch The Netherlands
Eindhoven, The Netherlands
Tel: 040-2445845

» Tyskland Filial
Taeby, Sweden
Tel: 08-63 80 820

« United Kingdom Branch
Milton Keynes, UK
Tel: 01908-691-133

User’s Manual U17197EJ1VOUM

NEC Electronics Shanghai Ltd.
Shanghai, P.R. China
Tel: 021-5888-5400

NEC Electronics Taiwan Ltd.
Taipei, Taiwan
Tel: 02-2719-2377

NEC Electronics Singapore Pte. Ltd.

Novena Square, Singapore
Tel: 6253-8311

Jo4.1

INTRODUCTION

This manual has been written to help users obtain an accurate understanding of the coding method used for
the structured assembler preprocessor (hereafter referred to as the “structured assembler”) that is included in the
RA78K0 Assembler Package (hereafter called RA78KO0).

This manual does not explain methods for using programs other than the structured assembler nor does it
describe structured assembler operation methods.

Therefore, when writing programs, please refer to the RA78K0 Assembler Package User’s Manual
(Language (U17198E) and Operation (U17199E)).

Descriptions related to the RA78KO0 in this manual apply to Ver. 3.80 or later.

[Target Readers]

This manual is intended for user engineers who understand the functions and instructions of the microcontroller
(78KO0 Series) subject to development.

Readers requiring a description of the functions of microcontrollers in the 78K0 Series should refer to the target
chip’s User's Manual.
[Organization]

This manual consists of the following six chapters and appendices:

CHAPTER1 GENERAL
This chapter describes the functions (the role, etc.) of the structured assembler in software
development for microcontrollers.

CHAPTER2 SOURCE PROGRAM CODING METHODS
This chapter describes methods for source program configuration, coding syntax, and other
principal rules and conventions concerning the coding of source programs.

CHAPTER3 CONTROL STATEMENTS
Control statements are used to describe the “if~else~endif’ indicators of the program
structure.
This chapter describes control statement functions and coding methods.

CHAPTER4 EXPRESSIONS
Assignments and arithmetic operations are entered as expressions.
This chapter describes expression functions and coding methods.

CHAPTER5 DIRECTIVES
This chapter presents use examples in describing how to write and use structured assembler
directives.

CHAPTER6 CONTROL INSTRUCTIONS
This chapter presents use examples in describing how to write and use structured assembler
control instructions.

APPENDIXES.A SYNTAX LISTS
This appendix presents a structured assembler syntax list.

APPENDIXES.B LISTS OF GENERATED INSTRUCTIONS
This appendix presents a list of instructions generated by the structured assembler.

The instruction sets are not detailed in this manual. For these instructions, refer to the user's manual of the
microcontroller for which software is being developed.

Also, for instructions on architecture, refer to the user's manual (hardware version) of each microcontroller for
which software is being developed.

User's Manual U17197EJ1VOUM 5

[How to Read This Manual]

Those using an structured assembler for the first time are encouraged to read from CHAPTER 1 GENERAL of
this manual. Those who have a general understanding of structured assembler may skip this chapter.

However, all readers should read section “1.3 Before Starting Program Development”.

[Conventions]
The following symbols and abbreviations are used throughout this manual:

Same format is repeated.
[1: Characters enclosed in these brackets can be omitted.

{} One of the items in { } is selected.

o Characters enclosed in “ ”(quotation marks) are a character string.

i Characters enclosed in *’ (single quotation marks) are a character string.
(): Characters between parentheses are a character string.

<>: Characters (mainly title) enclosed in these brackets are a character string.

An underline is used to indicate an important point or input character strings.
Indicates one or more blanks characters or tabs.

> B

Character delimiter
~ Continuity
Boldface: Characters in boldface are used to indicate an important point or reference point.

6 User’s Manual U17197EJ1VOUM

[Related Documents]
The documents (user's manuals) related to this manual are listed below.
The related documents indicated in this publication may include preliminary versions.
However, preliminary versions are not marked as such.

Document Name Document No.
RA78KO0 Ver. 3.80 Assembler Package Operation U17199E
Language U17198E
Structured Assembly Language This manual
CC78KO0 Ver. 3.70 C Compiler Operation U17201E
Language U17200E
SM plus System Simulator Operation U17246E
User Open Interface U17247E
SM78KO0 Series Ver. 2.52 System Simulator Operation U16768E
PM plus Ver. 5.20 U16934E
ID78K0-NS Ver. 2.52 Integrated Debugger Operation U16488E
ID78K0-QB Ver .2.81 Integrated Debugger Operation U16996E
78KO0 Series Instruction U12326E

User's Manual U17197EJ1VOUM 7

[MEMO]

8 User’s Manual U17197EJ1VOUM

CONTENTS

CHAPTER 1 GENERAL ... 13

1.1 Overview ... 13

1.2 Overview of Functions ... 14
1.2.1 Main Functions ... 14
1.2.2 Flowchart of Program Development ... 15

1.3 Before Starting Program Development ... 16
1.3.1 Maximum performance ... 16
1.3.2 Word symbols and byte symbols ... 17
1.3.3 Definition of label ... 17

CHAPTER 2 SOURCE PROGRAM CODING METHODS ... 18
2.1 Basic Configuration of Source Programs ... 18
2.2 Source Program Elements ... 20
2.3 Reserved Words ... 23
2.4 Label Generation Rules ... 25
2.5 Size Specification ... 26
2.6 Data Sizes ... 27
2.7 Comments ... 28
2.8 Tool Information ... 29
2.9 Output Results of Input Source Files by ST78KO0 ... 30

CHAPTER 3 CONTROL STATEMENTS ... 31
3.1 Control Statement Characters ... 31
3.2 Nesting ... 32
3.3 Register Specification ... 33
3.4 Control Statement Functions ... 35
3.4.1 Conditional branch ... 36
3.4.2 Conditional loop ... 46

3.5 Conditional Expressions ... 59
3.5.1 Comparison expressions ... 60
3.5.2 Test bit expressions ... 82
3.5.3 Logical operations ... 89

CHAPTER 4 EXPRESSIONS ... 96
4.1 Overview of Expressions ... 96
4.2 Assignment Statements ... 99
4.3 Count Statements ... 124
4.4 Exchange Statements ... 128
4.5 Bit Manipulation Statements ... 130

CHAPTER 5 DIRECTIVES ... 136
5.1 Overview of Directives ... 136
5.2 Directive Functions ... 137
#DEFINE ... 138
#IFDEF/#ELSE/#ENDIF ... 140
#INCLUDE ... 142
#DEFCALLT ... 143

CHAPTER 6 CONTROL INSTRUCTIONS ... 144
6.1 Overview of Control Instructions ... 144
6.2 Assembler Control Instructions ... 145
6.3 Control Instruction Functions ... 147
$PROCESSOR ... 148
$KANJICODE ... 149

User's Manual U17197EJ1VOUM

APPENDIX A SYNTAXLISTS ... 150

APPENDIX B LISTS OF GENERATED INSTRUCTIONS ... 155

APPENDIX C INDEX ... 165

10 User's Manual U17197EJ1VOUM

LIST OF FIGURES

Figure No. Title , Page

1-1
1-2
3-1

ST78K0 Function ... 14
Program Development Flowchart ... 15
Nesting example ... 32

User's Manual U17197EJ1VOUM

11

LIST OF TABLES

Table No. Title , Page

1-1
2-1
2-2
2-3
2-4
2-5
2-6
2-7
3-1
3-2
3-3
3-4
35
3-6
3-7
3-8
3-9
41
4-2
4-3
4-4
4-5
4-6
4-7
4-8
4-9
4-10
4-11
4-12
4-13
4-14
4-15
5-1
6-1
6-2
6-3
6-4
A-1
A-2
A-3
A-4
A5
B-1
B-2
B-3
B-4

12

Maximum Performance of ST78KO ... 16
Structured Assembly Language Coding ... 18
Alphanumeric Characters ... 20

Special Characters ... 21

Invalid Characters ... 22

Reserved Word ... 23

Data Sizes ... 27

Output by ST78K0 ... 30

List of Control statements ... 35

Generated Instructions for switch Statements ... 43
Generated Instructions for Comparison Instructions ... 60
Comparison Expressions ... 61

Test Bit Expressions ... 82

Logical Operations ... 89

Generated Instructions (Control Statement in Lower Case Letters) for Logical AND ...
Generated Instructions (Control Statement in Upper Case Letters) for Logical AND ...

Generated Instructions for Logical OR ... 94

Assignment Statements ... 96

Count Statements ... 98

Exchange Statements ... 98

Bit Manipulation Statements ... 98

Generated Instructions for Assignments ... 102

Generated Instructions for Increment Assignments ... 105
Generated Instructions for Decrement Assignments ... 108
Generated Instructions for Logical AND Assignments ... 114
Generated Instructions for Logical OR Assignments ... 116
Generated Instructions for Logical XOR Assignments ... 119
Generated Instructions for Increment ... 125

Generated Instructions for Decrement ... 127

Generated Instructions for Exchange ... 129

Generated Instructions for Set Bit ... 132

Generated Instructions for Clear Bit ... 135

List of Directives ... 137

Control Instructions that Can Be Entered Only in Module Headers ... 145
Control Instructions that Are Recognized as the Module Body ... 146
Control Instruction List ... 147

Interpretation of Kanji Code ... 149

Control Statements ... 150

Conditional Expressions ... 151

Expressions ... 152

Directives ... 153

Control Instructions ... 154

Generated Instructions for Comparison Expressions ... 155
Generated Instructions for Test Bit Expressions ... 158
Generated Instructions for Logic Expressions ... 159
Expressions ... 162

User's Manual U17197EJ1VOUM

90
91

CHAPTER 1 GENERAL

This chapter describes the functions (the role , etc.) of the structured assembler preprocessor in software

development for microcontrollers.

1.1 Overview

The RA78KO structured assembler preprocessor (ST78K0) is a program in the “RA78K0 Assembler Package”
that is used for software development of microcontrollers in the 78K0 Series.

The ST78KO0 converts structured assembly statements such as “if~else~endif” and “for~next” into assembly
language source . Control statements are used to enter “if~else~endif” and “for~next” descriptions.

As such , the ST78KO0 offers the following three advantages.

(1) Programs are easy to write
- Each program structure can be written as is , which facilitates the development process from design to
coding.
- There is no need to consider label names for branching.
- Transfer instructions that contain large amounts of code can be entered as assignment statements.
(2) Programs are easy to read.

- Program structure is easy to understand.

Operations and transfers between memory registers can be entered in a single statement.
- Other programmers’ programs are easy to read.
- Program maintenance (revision) is easy.
(3) Facilitates desktop debugging
- Coding can be done on a one-to-one correspondence with the detail design , thus facilitating desktop

debugging.

User's Manual U17197EJ1VOUM 13

CHAPTER 1 GENERAL

1.2 Overview of Functions

The ST78KO0 analyzes various control statements , expressions , and directives within a structured assembler
source program that are coded according to a specific language specification and outputs an assembler source
that serves as an input source file for the assembler.

Structured statements can be output as comments and converted assembler instructions and ordinary assembly
language can all be output as secondary source files.

Error messages are output when errors occur.

Figure 1-1 ST78KO0 Function

Assembler source
Structured assembler source ST78K0 (Secondary source files)

1.2.1 Main Functions

(1) Program coding is facilitated by an abundance of C-like control statements.

(2) C-like assignment statements and assignment operators can be used in coding.

(3) Control structures and assignment statements can be coded for bit processing.

(4) Itincludes C-like symbol definition directives , conditional processing functions , and include directives.

(5) Since it is the preprocessor that outputs assembler source programs , code optimization can be performed
following conversion by the ST78KO0.

(6) A directive is provided for converting to CALLT instructions , so that routines can be registered to a CALLT
table following development of a program.

(7) Easy-to-read assembly lists can be created by changing the assembler source output position.

14 User's Manual U17197EJ1VOUM

CHAPTER 1 GENERAL

1.2.2 Flowchart of Program Development

Figure 1-2 shows a flowchart of program development.

Figure 1-2 Program Development Flowchart

Console
Structured assembler
source program Include files
Parameter files \ I Device files
— ST78K0

Secondary source files

(‘assembler source files) Error files

Assembler/Linker/
Object converter

Obiject file

Remark Obtain the device file by downloading it from the Online Delivery Service (ODS), which can be

accessed from the following Website.

http://www.necel.com/micro/ods/eng/tool/DeviceFile/list.html

User's Manual U17197EJ1VOUM 15

http://www.necel.com/micro/ods/eng/tool/DeviceFile/list.html

CHAPTER 1 GENERAL

1.3

The maximum performance of the ST78K0 and points to be noted are described below.

Before Starting Program Development

1.3.1 Maximum performance

Table 1-1 Maximum Performance of ST78K0

Iltem

Maximum value

Line length (not including LF or CR)

2048 characters

Number of symbols registered in #define directive (excluding reserved words)

512 symbols

Character length of symbol registerd in #define directive

31 characters

Nesting levels in control statement 31 levels
Nesting levels in #ifdef directive 8 levels
#defcallt directives 32
Nesting of #include directives Not supported
Number of redefinitions by #define directive 31 times
Number of operands assigned in a series 33 (Note 1)
Logical operator operands 17 (Note 2)
Number of symbols defined by option "-D*" 30
Number of include file paths specifiable by -1 option 64

Notes 1. The maximum value is expressed as follows.
S1=S52=..S532=S33
Up to 33 symbols and 32 equal (=) signs can be inserted.
Notes 2. The maximum value is expressed as follows.

16

expression 1&&expression 2&& ... &&expression 16&&expression 17

Up to 17 expressions and 16 “&&” (or “||”) signs can be inserted.

User's Manual U17197EJ1VOUM

CHAPTER 1 GENERAL

1.3.2 Word symbols and byte symbols

The ST78KO0 uses the last character in each user symbol to determine whether the symbol is a word symbol or a

byte symbol. The default character for word symbols is “~-SCP” , and it can be changed via the -SC option.

For details of the -SC option , see the RA78K0 Assembler Package Operation User’s Manual.

< Example 1>

Structured assembler source Assembler source
SYM =#3 MOV SYM, #3
SYMP = #3 ’ MOVW SYMP , #3

< Example 2 > Start command for ST78K0
C> ST78K0 INPUT.S -SC@
“@" is used as the character indicating a word symbol.
Input file specification

ST78K0 command name

Structured assembler source Assembler source
SYMP = #3 MOV SYMP , #3
SYM@ = #3 ’ MOVW SYM@ , #3

1.3.3 Definition of label

When defining labels (symbol indicating address via assembler) , be sure to enter the label definition on a

separate line from the ST78K0 statement.

< Example of incorrect coding >

SYMBOL : AX = #10H

< Example of correct coding >

SYMBOL :
AX = #10H

User's Manual U17197EJ1VOUM

17

CHAPTER 2 SOURCE PROGRAM CODING
METHODS

This chapter describes coding methods for source programs etc.

2.1 Basic Configuration of Source Programs

Source programs consist of structured assembly language and (pure) assembly language.
For further description of assembly language , see the RA78K0 Assembler Package Language User’s Manual.

Each line (between two LFs) can contain up to 2048 characters.

The types of coding used in structured assembly language are listed below in Table 2-1.

Table 2-1 Structured Assembly Language Coding

Type Coding
if ~ elseif ~ else ~ if
Conditional ff biiell $S§t~er:dl ~ endif
branch |_.| elseif_bit ~ else ~ endi
switch ~ case ~ default ~ ends
for ~ next
Control while ~ endw
statement Conditional . .
| while_bit ~ endw
oop .
repeat ~ until
ST78KO0 repeat ~ until_bit
statement .
Other break , continue , goto
Assignment Assign (=) , assignment plus operation (+=, etc.), shift
statement (rotate) assignment (>>=, etc.)
. Count
Expression -
p statement Increment (++) , Decrement (--)
Exchange
statement Exchange (<->)
Comparison —= = < > S <=
expression o
. . Test bit . .
I
Conditional expression expression Bit symbol , !bit symbol
Logical . .
operation Logical AND (&&) , Logical OR (||)

18 User's Manual U17197EJ1VOUM

CHAPTER 2 SOURCE PROGRAM CODING METHODS

@

@

©)

Control statements

Control statements include “if ~ elseif ~ else ~ endif”, "if_bit ~ elseif_bit ~ else ~ endif", and “switch ~ case ~
default ~ ends” statements that represent conditional branches , “for ~ next” , “while ~ endw”, "while_bit ~
endw", “repeat ~ until”, and "repeat ~ until_bit" statements that represent conditional loops , and “break” ,
“continue” , and “goto” statements that represent loop exit processing. For details , see “CHAPTER 3
CONTROL STATEMENTS".

Expressions

Expressions include assignment statements , count statements (increment and decrement) , and exchange
statements. For details , see “CHAPTER 4 EXPRESSIONS”.

Conditional expressions

Conditional expressions are entered as control statement conditions. For details , see “3.5 Conditional

Expressions”.

User's Manual U17197EJ1VOUM 19

CHAPTER 2 SOURCE PROGRAM CODING METHODS

2.2 Source Program Elements

(1) Character set

Letters , numerals , and special characters can be used in source programs.

Table 2-2 Alphanumeric Characters

Name Character
Numerals 0 1 2 3 4 5 6 7 8 9
Ubper case A B C D E F G H I J K L M
pp N o P Q R S T U V W X Y Z
Letters
a b ¢ d e f g h i j k I m
Lower case
n 0 p q r t u Vv w X y z

In the ST78KO0 , only the first character in control statements are case-sensitive. Any lower case letters that
appear after the first character are converted to upper case letters. However , secondary source files are

output using the case specifications in which they were entered.

20 User's Manual U17197EJ1VOUM

CHAPTER 2 SOURCE PROGRAM CODING METHODS

Table 2-3 Special Characters

Character Name Use
? Question mark Character used as letter
@ Unit price symbol Character used as letter
_ Underlining Character used as letter
White space Delimiter symbol for phrases
HT Horizontal tab Character used as white space
, Comma Delimiter symbol for operands
Period Bit position symbol for bit symbols
“ . Specification character for #iINCLUDE directive's disk-
Double quotation mark)
type file names
‘ Single quotation mark | Symbol used to mark start and end of character constant
+ Plus symbol Positive sign or increment operation
- Minus symbol Negative sign or decrement operation
* Asterisk Multiplication operation
/ Slash Division operation
& Ampersand Logical AND operator
| Separator symbol Logical OR operator
" Upward arrow symbol | Exclusive OR operator
(Left parenthesis Change in operation sequence or expression in control
) Right parenthesis statement
= Equal symbol Assignment operator , comparison operator
Colon Delimiter symbol for labels
: . Comment start symbol or delimiter symbol in control
Semicolon .
statement expressions
First character in ST78KO0 directive or immediate display
Sharp symbol
symbol
$. Location or counter value
Dollar sign - . . .
Display symbol in control instruction
| - - e -
! Exclamation point D_|rect addressing specification symbol , negation
display symbol
< Not equal (less than)
symbol
Comparison operator
> Not equal (more than
) symbol
\ Back slash Directory specification symbol
[Left bracket
Indirect address specification symbol
] Right bracket
LF Line feed End of line symbol

User's Manual U17197EJ1VOUM

CHAPTER 2 SOURCE PROGRAM CODING METHODS

@

©)

4

®)

22

An error will occur if any of the following Invalid Characters are entered.

Table 2-4 Invalid Characters

Type ASCII code
lllegal characters 00H to 08H , OBH , OCH , OEH to 1FH , 7FH
Unrecognized special characters % (25H), (60H),{(7BH),}(7DH), (7EH)
Other characters 80H ~ OFFH

When an illegal character is entered , an error occurs and each illegal character is replaced by a period (.)
when a secondary file is output.

However , invalid characters can be used in comments.

Identifiers

Identifiers are names that are attached to numerical data , addresses , etc.

Identifiers are used to make the contents of source programs easier to identify.

Use #define statements to define details of identifiers (see also “5.2 Directive Functions”).

Symbols

The last character in the symbol name determines whether the ST78K0 generates a byte access instruction
or a word access instruction. The default setting is P (pair) , which can be changed via the -SC option.
All character strings other than reserved word symbols can be handled as user symbols. All alphanumeric
characters and all other characters that can be established as English alphabet characters can be used as
user symbols.

Constants

Structured assembly language does not include any constants. However , assembly language constants
can be output as is to secondary files (for details of assembly language constants , refer to the RA78K0
Assembler Package Language User’s Manual.

Expressions

Expressions are constants , special characters , and symbols that are combined using operators (for details
of assembly language expressions , see the RA78K0 Assembler Package Language User’'s Manual.

Be sure to enclose in parentheses any symbols that are separated by white spaces within an assembly

language expression.

< Examples >

- Coding method for assembler

MOV A, #(SYMAND OFFH)
MOV A, LABEL+1

- Coding method for ST78K0 structured assembler source program

A=#(SYMAND OFFH)
A=(LABEL+1)

User's Manual U17197EJ1VOUM

CHAPTER 2 SOURCE PROGRAM CODING METHODS

2.3 Reserved Words

Table 2-5 lists reserved words in structured assembly language.

For information on instructions and sfr symbols , see the target device’s User’s Manual.

Table 2-5 Reserved Word

Type Reserved word

Control statements IF, IF_BIT , ELSEIF , ELSEIF_BIT , ELSE , ENDIF

SWITCH , CASE , DEFAULT , ENDS

FOR , NEXT

WHILE , WHILE_BIT , ENDW

REPEAT , UNTIL , UNTIL_BIT

BREAK , CONTINUE , GOTO

Directives DFINE

IFDEF , ELSE , ENDIF

INCLUDE

DEFCALLT , ENDCALLT

Operators ++, -
=, 4=, = %= =, &=, |=, 7=, <<=,>>= <>
==,!=,<,>=,>, <=, FOREVER

Assembler operators MOD , NOT

AND, OR, XOR

EQ,NE,GT,GE,LT,LE

SHL, SHR

HIGH , LOW , BANKNUM

DATAPOS , BITPOS , MASK

User's Manual U17197EJ1VOUM

CHAPTER 2 SOURCE PROGRAM CODING METHODS

Table 2-5 Reserved Word

Type

Reserved word

Assembler control
instructions

PROCESSOR , PC

DEBUG , NODEBUG , DEBUGA , NODEBUGA , DG, NODG

XREF , XR , NOXREF , NOXR

TITLE , Tl

SYMLIST , NOSYMLIST

FORMFEED , NOFORMFEED

WIDTH , LENGTH

TAB

KANJICODE

IC

EJECT , EJ

LIST, LI, NOLIST , NOLI

GEN, NOGEN

COND , NOCOND

SUBTITLE , ST

SET , RESET

_IF, _ELSEIF, IF, ELSEIF, ELSE , ENDIF

Registers

Cy.,z

A,X,B,C,D,E,H,L

RO,R1,R2,R3,R4,R5,R6,R7

PSW

AX,BC,DE, HL

RPO, RP1, RP2, RP3

SP

Other

DGS, DGL, TOL_INF, SJIS , EUC , NONE

24

User's Manual U17197EJ1VOUM

CHAPTER 2 SOURCE PROGRAM CODING METHODS

2.4 Label Generation Rules

When using control statements in assembler language instructions , the ST78K0 generates labels for branch
instructions.

Labels generated by the ST78K0 have the format “?Ldddd".

The “dddd” represents a decimal value of 1 or more , output with suppression of zeros and left alignment.

Therefore , do not enter any labels using this “?Ldddd” format.

User's Manual U17197EJ1VOUM 25

CHAPTER 2 SOURCE PROGRAM CODING METHODS

2.

5

Size Specification

Size specifications can be made to change the data size of symbols entered in the left or right sides of an

assignment expression or a conditional expression or case symbols in switch statements.

26

(1) Description format

@

©)

(A size specification character A)

Function

If the size character is either “B” or “b” , the data size is changed to bytes.

“

If the size character is “P”, “p”, “W", or “w” , the data size is changed to words.

Description

An error will occur if the size specification character is incorrect.

An error will occur if a size specification is entered in an assignment expression or a conditional
expression which does not support size specifications.

If a size specification is made to a register , coding can only be done using the same specification. The
data size cannot be changed. If the data size is different, an error will occur.

When specifying a user symbol , be sure to change the data size to the specified data size.

If a size specification has been entered for a direct access specification symbol or an indirect access
specification symbol or for immediate data , the size specification will be ignored and the data size will not
be changed.

Word access cannot be specified in size specifications.

User's Manual U17197EJ1VOUM

CHAPTER 2 SOURCE PROGRAM CODING METHODS

2.6 Data Sizes

The ST78KO0 checks the data size of symbols. This is because the symbols differ according to the instruction

being generated. However , the ST78KO0 allows the assembler to determine whether or not the symbol definitions

and constants are entered correctly.

The data sizes checked by the ST78K0 are listed below.

Table 2-6 Data Sizes

Symbol in Generated Description
Instruction Table P

a CcY

b Bit symbols
This ST78K0 recognizes bit sfrs and symbols entered using the format “a , "
as bit symbols.
Items that can be entered as “a” include byte user symbols , word user
symbols , byte-specified user symbols , sfrs, A, PSW , [HL], and constants.
Items that can be entered as “B” include byte user symbols , word user symbols
, and constants.

c Byte user symbols

d Byte-specified user symbols , sfrs that overlaps saddr

e A

f Byte registers

g sfr

h PSW

i Word user symbols

j Word-specified user symbols

k AX

| BC, DE, HL

m RPO, RP1, RP2, RP3

n sfrp

o] SP

p Direct access specification symbols
These are symbols that are specified using the format “laddr”.
Byte user symbols , word user symbols , constants , and $ can be entered as
“addr”.

q Indirect access specification symbols
These are symbols that are specified using the format “[HL]”, “[HL + byte],
‘[HL+B]",and “[HL+C]".
Byte user symbols , constants , and $ can be entered as “byte”.

r Special indirect access specification symbols
These are symbols that are specified using the format “[DE]".

S Immediate data
These are symbols that are specified using the format “#date”.
Byte user symbols , word user symbols , constants , and $ can be entered as
“date”.

User's Manual U17197EJ1VOUM

27

CHAPTER 2 SOURCE PROGRAM CODING METHODS

2.7 Comments

Any character string that appears after a semicolon (;) until the next line feed (LF) is regarded as a comment
statement , which is not processed but is simply output to a secondary file. Comment statements can be entered at
any position in a line of code.

However , since semicolons are used between parentheses as expression delimiters in the “for ~ next” syntax ,
the two semicolons that are entered between parentheses are not regarded as the start of a comment statement.

All of the characters listed under “2.2 (1) Character set” can be used in comments.

Processing of illegal characters does not occur when the illegal characters are included in a comment or

comment statement.

28 User's Manual U17197EJ1VOUM

CHAPTER 2 SOURCE PROGRAM CODING METHODS

2.8 Tool Information

The ST78KO0 outputs tool information.

If an input source file contains tool information that has been output by the ST78K0 , the “$” character at the start
of the information is replaced with ;"

The output position is the end of the module header. The only types of statements that can be entered in module

headers are assembler control instructions , comment statements , and line feeds.

(1) Output format

$TOL_INF 2FH , second parameter , third parameter , OFFFFH

2FH indicates that it is tool information output by the ST78KO0 preprocessor.
The second parameter indicates the version number of this preprocessor.
The version number is output either as a hexadecimal value or , if the value is not converted , as the decimal

number image that was shown at startup.

< Example >

Version number 3.10 -> 310H

The third parameter is used to indicate this preprocessor's error messages.

OH: Normal end

1H: Fatal error , exited

2H: Warning , exited

3H: Fatal error and warning , exited

OFFFFH indicates language-related information. This is a fixed value for this preprocessor.

User's Manual U17197EJ1VOUM 29

CHAPTER 2 SOURCE PROGRAM CODING METHODS

2

.9 Output Results of Input Source Files by ST78K0

Input source files are output as follows by the ST78KO0.

Table 2-7 Output by ST78K0

Input source program file

Secondary source program file

ST78K0 control statements
ST78K0 expression statements

Output as comments

ST78KO0 directives

Not output

#INCLUDE

Outputs include contents

Source alias set by #IFDEF

Not output

Comments

Output as comments

Other lines

Output as is

30

User's Manual U17197EJ1VOUM

CHAPTER 3 CONTROL STATEMENTS

This chapter presents examples in describing control statement functions.
Control statements are used to structurally code the flow of program control (see also “3.4 Control Statement

Functions”).

3.1 Control Statement Characters

The instruction generated by a control statement differs fundamentally depending on whether upper case or
lower case letters are used in the control statement. For example , the different statement sizes between “if ~
endif” and “IF ~ ENDIF” can preclude direct branching via the conditional branch instruction generated by
processing of the condition expression.

However , ensuring that the statement will always be branched correctly has the disadvantage of reducing the
program’s efficiency as an object.

As a solution to this problem , the user is able to set upper or lower case in order to improve the object efficiency
rate. If there is no need to improve the object efficiency rate , the user can omit changing the character size as long
as coding uses upper case letters.

Since control statements generate conditional branch instructions , be sure to specify whether or not the relative
address is within 128 bytes.

In control statements , “if’ and “elseif” are reserved words. The ST78KO0 determines whether the first character in

a control statement reserved word is an upper case or lower case letter.

IF, If ... First letter is upper case , so coding is determined as upper case.

if | iF ... First letter is lower case , so coding is determined as lower case.

If entered in upper case ... branches using a combination of conditional branch instruction and BR directive.
If entered in lower case ... branches directly using a conditional directive.

Paired control statements (such as “if , else , endif’) can have mixed upper case and lower case letters. In

other words , it is possible to enter one as “IF ~ else ~ ENDIF”.

User's Manual U17197EJ1VOUM 31

CHAPTER 3 CONTROL STATEMENTS

3.2 Nesting

Control statements can be nested. Generally , up to 31 nesting levels are allowed. However , control statements

cannot be intersected.

Figure 3-1 Nesting example

< Example of incorrect coding >

while (A<B)
if (A==#4) —
break ;

endw
endif —— Error occurs due to intersecting.

< Example of correct coding >

while (A<B)

if (A==#4)
break ;
endif

endw "if" statement is correctly nested within "while" statement.

32 User's Manual U17197EJ1VOUM

CHAPTER 3 CONTROL STATEMENTS

3.3

@

@

Register Specification

Description format

([A][=][A]registername[A])

Function

- If aregister is specified immediately after a comparison expression

After the instruction to transfer the left side to the specified register , a comparison expression is

generated to compare the specified register with the right side.

< Example >

Output source

Input source

CMP
BZ
CMP
BC
MOV
CMP
BNC
?L1:

SYM1, #5
$7L1
SYM2 , #0
$7L1

A, SYM3
A, #80H
$7L1

if (SYM1 = #5 && SYM2 >= #0&&SYM3 < #80H (A))

endif

- If aregister is specified after a control statement

During the generated of each comparison expression , after the instruction for transferring the left side to

the specified register is generated , a comparison expression is generated to compare the specified

register with the right side.

< Example >

Output source

Input source

MOV
CMP
BZ

MOV
CMP
BC

MOV
CMP
BNC

?L2:

A, R4
A, #5
$7L2

A, R2
A, #0
$7L2
A,R3
A, #80H
$7L2

if (R4 1= #5 && R2 >= #0 && R3 <#80H) (A)

endif

User's Manual U17197EJ1VOUM

33

CHAPTER 3 CONTROL STATEMENTS

- Ifboth (a) and (b) are specified
The register specification that immediately follows a comparison expression takes priority. After the
instruction for transferring the left side to the specified register is generated , a comparison expression is
generated to compare the specified register with the right side.
As for an expression in which there is no register specification immediately after a comparison expression
, after the instruction for transferring the left side to the specified register is generated according to the
register specification following the control statement , a comparison expression is generated to compare

the specified register with the right side.

< Example >

Output source Input source

MOV A, DATAl if (DATAL != #5 && DATA2 >= #0 (A) && DATA3 <#80H)(A)
CMP A ,#5

Bz $7L3

MOV A, DATA2

CMP A ,#0

BC $7L3

MOV A, DATA3

CMP A, #80H

BNC $7L3
?L3: endif

(3) Description
- Register specifications can be used in if statements , elseif statements , switch statements , for
statements , while statements , and until statements. However , if the conditional expression is a bit
expression , any register specified in the control statement is ignored.
- For alist of register names , see Table 2-5.
sfr specifications can also be entered.
- The processing for an assignment statement within a for statement is the same as for comparison

expressions.

34 User's Manual U17197EJ1VOUM

CHAPTER 3 CONTROL STATEMENTS

3.4 Control Statement Functions

The following pages describe the functions of the various control statements.

The use examples show as comment statements the source files to which generated instructions are input.

Table 3-1 List of Control statements

Type

Description

Remark

Conditional branch

if ~ elseif ~ else ~ endif

if_bit ~ elseif_bit ~ else ~ endif

switch ~ case ~ default ~ ends

Conditional loop

for ~ next

(Repetition of increment specification)

while ~ endw

(Repetition of conditional expression testing before
processing)

while_bit ~ endw

(Repetition of conditional expression testing before
processing)

repeat ~ until

(Repetition of conditional expression testing after
processing)

repeat ~ until_bit

(Repetition of conditional expression testing after
processing)

break (Extraction of loop block)
continue (Repetition of loop block)
goto (Escape to go to exception processing)

User's Manual U17197EJ1VOUM

35

CHAPTER 3 CONTROL STATEMENTS

3.4.1 Conditional branch

Conditional branch if

(1) if ~elseif ~ else ~ endif

36

[

Description format]

[ATif[A](Conditional expression 1) [A][(Register name)]
if block

[A]elseif [A] (Conditional expression 2) [A] [(Register name) |
elseif block

[A]else
else block

[A] endif

[

[

[

Function]

if ~ endif

The if block is executed if conditional expression 1 is true.

The if block may occupy several lines.

if ~ else ~ endif

The if block is executed if conditional expression 1 is true and the else block i