
 

To our customers, 
 

Old Company Name in Catalogs and Other Documents 

 
On April 1st, 2010, NEC Electronics Corporation merged with Renesas Technology 

Corporation, and Renesas Electronics Corporation took over all the business of both 
companies. Therefore, although the old company name remains in this document, it is a valid 
Renesas Electronics document. We appreciate your understanding. 
 

Renesas Electronics website: http://www.renesas.com 
 
 
 
 

April 1st, 2010 
Renesas Electronics Corporation 

 
 
 
 
 
Issued by: Renesas Electronics Corporation (http://www.renesas.com) 

Send any inquiries to http://www.renesas.com/inquiry. 

 



Notice 
1. All information included in this document is current as of the date this document is issued. Such information, however, is 

subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please 
confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to 
additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website. 

2. Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights 
of third parties by or arising from the use of Renesas Electronics products or technical information described in this document.  
No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights 
of Renesas Electronics or others. 

3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part. 
4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of 

semiconductor products and application examples.  You are fully responsible for the incorporation of these circuits, software, 
and information in the design of your equipment.  Renesas Electronics assumes no responsibility for any losses incurred by 
you or third parties arising from the use of these circuits, software, or information. 

5. When exporting the products or technology described in this document, you should comply with the applicable export control 
laws and regulations and follow the procedures required by such laws and regulations.  You should not use Renesas 
Electronics products or the technology described in this document for any purpose relating to military applications or use by 
the military, including but not limited to the development of weapons of mass destruction.  Renesas Electronics products and 
technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited 
under any applicable domestic or foreign laws or regulations. 

6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics 
does not warrant that such information is error free.  Renesas Electronics assumes no liability whatsoever for any damages 
incurred by you resulting from errors in or omissions from the information included herein. 

7. Renesas Electronics products are classified according to the following three quality grades:  “Standard”, “High Quality”, and 
“Specific”.  The recommended applications for each Renesas Electronics product depends on the product’s quality grade, as 
indicated below.  You must check the quality grade of each Renesas Electronics product before using it in a particular 
application.  You may not use any Renesas Electronics product for any application categorized as “Specific” without the prior 
written consent of Renesas Electronics.  Further, you may not use any Renesas Electronics product for any application for 
which it is not intended without the prior written consent of Renesas Electronics.  Renesas Electronics shall not be in any way 
liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an 
application categorized as “Specific” or for which the product is not intended where you have failed to obtain the prior written 
consent of Renesas Electronics.  The quality grade of each Renesas Electronics product is “Standard” unless otherwise 
expressly specified in a Renesas Electronics data sheets or data books, etc. 

“Standard”: Computers; office equipment; communications equipment; test and measurement equipment; audio and visual 
equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots. 

“High Quality”: Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-
crime systems; safety equipment; and medical equipment not specifically designed for life support. 

“Specific”:  Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or 
systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare 
intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life. 

8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, 
especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation 
characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or 
damages arising out of the use of Renesas Electronics products beyond such specified ranges. 

9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have 
specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further, 
Renesas Electronics products are not subject to radiation resistance design.  Please be sure to implement safety measures to 
guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a 
Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire 
control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures.  Because 
the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system 
manufactured by you. 

10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental 
compatibility of each Renesas Electronics product.  Please use Renesas Electronics products in compliance with all applicable 
laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS 
Directive.  Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with 
applicable laws and regulations. 

11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas 
Electronics. 

12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this 
document or Renesas Electronics products, or if you have any other inquiries. 

(Note 1) “Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its majority-
owned subsidiaries. 

(Note 2) “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics. 



M3T-MR32R V.3.50
Reference Manual

U
ser’s M

anual

Rev.1.00   2003.06

Real-time OS for M32R Family



 
• Microsoft, MS-DOS, Windows, and Windows NT are registered trademarks of Microsoft Corporation in the U.S. and other countries. 

• IBM and AT are registered trademarks of International Business Machines Corporation. 

• Intel and Pentium are registered trademarks of Intel Corporation. 

• Adobe, Acrobat, and Acrobat Reader are trademarks of Adobe Systems Incorporated. 

• All other brand and product names are trademarks, registered trademarks or service marks of their respective holders. 
 
 

Keep safety first in your circuit designs! 
 Renesas Technology Corporation and Renesas Solutions Corporation put the maximum effort into making semiconductor products 
better and more reliable, but there is always the possibility that trouble may occur with them. Trouble with semiconductors may lead to 
personal injury, fire or property damage. Remember to give due consideration to safety when making your circuit designs, with 
appropriate measures such as (i) placement of substitutive, auxiliary circuits, (ii) use of nonflammable material or (iii) prevention 
against any malfunction or mishap. 

 
 

Notes regarding these materials 
 These materials are intended as a reference to assist our customers in the selection of the Renesas Technology product best suited 
to the customer's application; they do not convey any license under any intellectual property rights, or any other rights, belonging to 
Renesas Technology Corporation, Renesas Solutions Corporation or a third party. 
 Renesas Technology Corporation and Renesas Solutions Corporation assume no responsibility for any damage, or infringement of 
any third-party's rights, originating in the use of any product data, diagrams, charts, programs, algorithms, or circuit application 
examples contained in these materials. 
 All information contained in these materials, including product data, diagrams, charts, programs and algorithms represents information 
on products at the time of publication of these materials, and are subject to change by Renesas Technology Corporation and 
Renesas Solutions Corporation without notice due to product improvements or other reasons. It is therefore recommended that 
customers contact Renesas Technology Corporation, Renesas Solutions Corporation or an authorized Renesas Technology product 
distributor for the latest product information before purchasing a product listed herein. The information described here may contain 
technical inaccuracies or typographical errors. Renesas Technology Corporation and Renesas Solutions Corporation assume no 
responsibility for any damage, liability, or other loss rising from these inaccuracies or errors. Please also pay attention to information 
published by Renesas Technology Corporation and Renesas Solutions Corporation by various means, including the Renesas home 
page (http://www.renesas.com). 
 When using any or all of the information contained in these materials, including product data, diagrams, charts, programs, and 
algorithms, please be sure to evaluate all information as a total system before making a final decision on the applicability of the 
information and products. Renesas Technology Corporation and Renesas Solutions Corporation assume no responsibility for any 
damage, liability or other loss resulting from the information contained herein. 
 Renesas Technology semiconductors are not designed or manufactured for use in a device or system that is used under 
circumstances in which human life is potentially at stake. Please contact Renesas Technology Corporation, Renesas Solutions 
Corporation or an authorized Renesas Technology product distributor when considering the use of a product contained herein for any 
specific purposes, such as apparatus or systems for transportation, vehicular, medical, aerospace, nuclear, or undersea repeater use. 
 The prior written approval of Renesas Technology Corporation and Renesas Solutions Corporation is necessary to reprint or 
reproduce in whole or in part these materials. 
 If these products or technologies are subject to the Japanese export control restrictions, they must be exported under a license from 
the Japanese government and cannot be imported into a country other than the approved destination. Any diversion or reexport 
contrary to the export control laws and regulations of Japan and/or the country of destination is prohibited. 
 Please contact Renesas Technology Corporation or Renesas Solutions Corporation for further details on these materials or the 
products contained therein. 

 
 
For inquiries about the contents of this document or product, fill in the text file the installer generates in the following directory and email 
to your local distributor. 
 

\SUPPORT\Product-name\SUPPORT.TXT 
 

Renesas Tools Homepage  http://www.renesas.com/en/tools 
 



 

Contents 

Chapter 1 Interpreting the System Call Reference 1 
1.1. Interpreting the System Call Reference 2 
1.2. Necessary Stack Size 4 
1.3. Stack Size Calculation Method 7 

1.3.1. User Stack Calculation Method 9 
1.3.2. System Stack Calculation Method 11 

Chapter 2 System Call Reference 1 
2.1. Task Management Functions 2 

2.1.1. cre_tsk (Create Task) 2 
2.1.2. del_tsk(Delete Task) 6 
2.1.3. sta_tsk(Start Task) 8 
2.1.4. ista_tsk(Start Task) 10 
2.1.5. ext_tsk(Exit Task) 12 
2.1.6. exd_tsk(Exit and Delete Task) 14 
2.1.7. ter_tsk(Terminate Task) 16 
2.1.8. dis_dsp(Disable Dispatch) 18 
2.1.9. ena_dsp(Enable Dispatch) 20 
2.1.10. chg_pri(Change Task Priority) 22 
2.1.11. ichg_pri(Change Task Priority) 24 
2.1.12. rot_rdq(Rotate Ready Queue) 26 
2.1.13. irot_rdq(Rotate Ready Queue) 29 
2.1.14. rel_wai(Release Task Wait) 31 
2.1.15. irel_wai(Release Task Wait) 33 
2.1.16. get_tid(Get Self Task ID) 35 
2.1.17. ref_tsk(Refer Task Status) 37 

2.2. Synchronization Functions Attached to Task 40 
2.2.1. sus_tsk(Suspend Task) 40 
2.2.2. isus_tsk(Suspend Task) 42 
2.2.3. rsm_tsk(Resume Task) 44 
2.2.4. irsm_tsk(Resume Task) 46 
2.2.5. slp_tsk(Sleep Task) 48 
2.2.6. tslp_tsk(Sleep Task with Timeout) 50 
2.2.7. wup_tsk(Wakeup Task) 53 
2.2.8. iwup_tsk(Wakeup Task) 55 
2.2.9. can_wup(Cancel Wakeup Task) 57 

2.3. Eventflags 59 
2.3.1. cre_flg(Create EventFlag) 59 
2.3.2. del_flg(Delete EventFlag) 62 
2.3.3. set_flg(Set EventFlag) 64 
2.3.4. iset_flg(Set EventFlag) 66 
2.3.5. clr_flg(Clear EventFlag) 68 
2.3.6. wai_flg(Wait EventFlag) 70 
2.3.7. twai_flg(Wait EventFlag with Timeout) 73 
2.3.8. pol_flg(Poll EventFlag) 76 
2.3.9. ref_flg(Refer EventFlag Status) 78 

2.4. Semaphore 80 



Contents 

 

ii 

2.4.1. cre_sem(Create Semaphore) 80 
2.4.2. del_sem(Delete Semaphore) 83 
2.4.3. sig_sem(Signal Semaphore) 85 
2.4.4. isig_sem(Signal Semaphore) 87 
2.4.5. wai_sem(Wait on Semaphore) 89 
2.4.6. twai_sem(Wait on Semaphore with Timeout) 91 
2.4.7. preq_sem(Poll and Request Semaphore) 94 
2.4.8. ref_sem(Refer Semaphore Status) 96 

2.5. Mailbox 98 
2.5.1. cre_mbx(Create Mailbox) 98 
2.5.2. del_mbx(Delete Mailbox) 101 
2.5.3. snd_msg(Send Message to Mailbox) 103 
2.5.4. isnd_msg(Send Message to Mailbox) 106 
2.5.5. rcv_msg(Receive Message from Mailbox) 108 
2.5.6. trcv_msg(Receive Message with Timeout) 111 
2.5.7. prcv_msg(Poll and Receive Message) 114 
2.5.8. ref_mbx(Refer Mailbox Status) 116 

2.6. Messagebuffer 118 
2.6.1. cre_mbf(Create Messagebuffer) 118 
2.6.2. del_mbf(Delete Massagebuffer) 121 
2.6.3. snd_mbf(Send Message to Messagbuffer) 123 
2.6.4. tsnd_mbf(Send Message to Messagbuffer with Timeout) 126 
2.6.5. psnd_mbf(Poll and Send Messagebuffer) 129 
2.6.6. rcv_mbf(Receive Messagebuffer) 131 
2.6.7. trcv_mbf(Receive Messagebuffer with Timeout) 133 
2.6.8. prcv_mbf(Poll and Receive Messagebuffer) 136 
2.6.9. ref_mbf(Refer Messagebuffer Status) 138 

2.7. Rendezvous 141 
2.7.1. cre_por(Create Port for Rendezvous) 141 
2.7.2. del_por(Delete Port for Rendezvous) 144 
2.7.3. cal_por(Call Port for Rendezvous) 146 
2.7.4. tcal_por(Call Port for Rendezvous with Timeout) 149 
2.7.5. pcal_por(Poll and Call Port for Rendezvous) 152 
2.7.6. acp_por(Accept Port for Rendezvous) 155 
2.7.7. tacp_por(Accept Port for Rendezvous with Timeout) 158 
2.7.8. pacp_por(Poll and Accept Port for Rendezvous) 161 
2.7.9. fwd_por(Forward Rendezvous to Other Port) 164 
2.7.10. rpl_rdv(Reply Rendezvous) 167 
2.7.11. ref_por(Refer Port Status) 169 

2.8. Interrupt Management Function 171 
2.8.1. def_int(Define Interrupt Handler) 171 
2.8.2. ret_int(Return from Interrupt Handler) 173 
2.8.3. loc_cpu(Lock CPU) 174 
2.8.4. unl_cpu(Unlock CPU) 176 

2.9. Memorypool Management Function 178 
2.9.1. cre_mpf(Create Fixed-size Memorypool) 178 
2.9.2. del_mpf(Delete Fixed-size Memorypool) 181 
2.9.3. get_blf(Get Fixed-size Memory Block) 183 
2.9.4. tget_blf(Get Fixed-size Memory Block with Timeout) 186 
2.9.5. pget_blf(Poll and Get Fixed-size Memory Block) 189 
2.9.6. rel_blf(Release Fixed-size Memory Block) 191 
2.9.7. irel_blf(Release Fixed-size Memory Block) 193 
2.9.8. ref_mpf(Refer Fixed-size Memorypool Status) 195 
2.9.9. cre_mpl(Create Variable-size Memorypool) 197 



 

 

2.9.10. del_mpl(Delete Variable-size Memorypool) 200 
2.9.11. get_blk(Get Variable-size Memory Block) 202 
2.9.12. tget_blk(Get Variable-size Memory Block with Timeout) 205 
2.9.13. pget_blk(Poll and Get Variable-size Memory Block) 208 
2.9.14. rel_blk(Release Variable-size Memory Block) 210 
2.9.15. ref_mpl(Refer Variable-size Memorypool Status) 212 

2.10. Time Management Function 214 
2.10.1. set_tim(Set Time) 214 
2.10.2. get_tim(Get Time) 216 
2.10.3. dly_tsk(Delay Task) 218 
2.10.4. def_cyc(Define Cyclic Handler) 220 
2.10.5. act_cyc (Activate Cyclic Handler) 223 
2.10.6. ref_cyc(Refer Cyclic Handler Status) 225 
2.10.7. ref_alm(Refer Alarm Handler Status) 227 

2.11. System Management Function 229 
2.11.1. get_ver(Get Version Information) 229 
2.11.2. ref_sys(Refer System Status) 232 
2.11.3. def_exc(Define Exception Handler) 235 

2.12. Implementation-Dependent System Call 239 
2.12.1. vclr_ems(Clear Exception Mask) 239 
2.12.2. vset_ems(Set Exception Mask) 241 
2.12.3. vras_fex(Raise Forcibly Exception) 243 
2.12.4. vret_exc(Return Exception Handler) 245 
2.12.5. vrst_msg(Reset Message) 247 
2.12.6. vrst_blf (Reset Fixed-Memory Block ) 249 
2.12.7. vrst_blk(Reset Variable-Memory Block) 251 
2.12.8. vrst_mbf (Reset Message Buffer) 253 

2.13. Implementation-Dependent System Call(Mailbox) 255 
2.13.1. vcre_mbx(Create Mailbox) 255 
2.13.2. vdel_mbx(Delete Mailbox) 258 
2.13.3. vsnd_mbx(Send Message to Mailbox) 260 
2.13.4. visnd_mbx(Send Message to Mailbox) 262 
2.13.5. vrcv_mbx(Receive Message from Mailbox) 264 
2.13.6. vtrcv_mbx(Receive Message with Timeout) 266 
2.13.7. vprcv_mbx(Poll and Receive Message) 269 
2.13.8. vref_mbx(Refer Mailbox Status) 271 
2.13.9. vrst_mbx(Reset Message) 273 

Chapter 3 Appendix 275 
3.1. List of System calls 276 
3.2. List of Error code 280 
3.3. Assembly Language Interface 281 
3.4. C Language Interface 285 
3.5. Data Type 289 
3.6. Common Constants and Packet Format of Structure 290 

Index 295 
 





 

Chapter 1 Interpreting the System Call 
Reference 



1.1 Interpreting the System Call Reference 

 

2 

1.1. Interpreting the System Call Reference 
The system call reference is written in the following format: 

[( System call name )] 

System call name  → the function of the system call 

[( Calling by the assembly language )] 
.include “mr32r.inc” 

Calling by the assembly language 

<< Argument >> 

Explanation of system call parameters 
Parameters are written as macro arguments. 
 

Argument 
name 

Size Explanation 

 
The size is indicated by the following symbols: 

[  −∗  ]  1−byte data 
[  ∗∗  ]  2−byte data 
[∗∗∗∗]  4−byte data 

<< Register setting >> 

A value is shown that is set the register after issuing a system call macro. 
Register name Contents after system call issuance 

*1 *2 
*1 Register name. Written in this column are R0,R1,R2,R3.R4.R5.R6 
*2 Indicates the content that is set in each register. Description '--' means that 
the content is saved if the register is set to be used, and that the content is 
indeterminate if the register is not set to be used. 

PSW is such that the values of SM, IE, and C before a system call are saved; BSM, 
BIC and BC are indeterminate. 

The registers used by each (return) parameter are approximately predetermined as 
follows: 

R0 register (32 bits) Function code and Error code 
R1 register (32 bits) ID number of object 
R2 register (32 bits) Packet address, other parameters 
R3 register (32 bits) None of the above (wfmode, blksz, etc.) 
R4 register (32 bits) Time out value 
R5 register (32 bits) The start address of message 
R6 register (32 bits) Rendezvous bits pattern 

 

[( Calling by the C language )] 

Calling an MR32R function from the C language 
<< Argument >> 

Declaration of argument type 

<< Return value >> 

Description of the return value resulted from a call 
Note that the types used in the system call reference are defined in the include 



1.1 Interpreting the System Call Reference 

 

3

file "mr32r.h"The definitions are as Appendix.  

[( Error codes )] 

Error code name   Error code value    The meaning of Error code 

Error code character strings such as E_OK are defined in "mr32r.h" by using 
"#define" and in "mr32r.inc" by using ".EQU" To determine errors, use these 
defined character strings.1 

[( Function description )] 
Detail functional description 
 

[( Usage example )] 
Usage example 

                                                      
1 If an error code value is directly written, the compatibility with the future versions is not assured. 



1.2 Necessary Stack Size 

 

4 

1.2. Necessary Stack Size 
Table 1.1 lists the stack sizes (system stack) used by system calls that can be issued from 
tasks. If the system call issued from task, system uses user stack. If the system call issued 
from handler, system uses system stack. 

() means the stack size when using DCC/M32R. * means it uses user stack. 

Table 1.1  Stack Sizes Used by System Calls Issued from Tasks (in bytes) 

System call processing C language I/F System call 
CC32R TW32R 

DCC/M32R
CC32R TW32R 

DCC/M32R 

cre_tsk 60 76(64) 4 4 
del_tsk 28 44(44) 4 4 
sta_tsk 0 0 4 4 
ext_tsk 0 0 0 0 
exd_tsk 28 44(44) 0 0 
ter_tsk 0 0 4 4 
dis_dsp 0 0 4 4 
ena_dsp 0 0 4 4 
chg_pri 0 0 4 4 
rot_rdq 0 0 4 4 
rel_wai 0 0 4 4 
sus_tsk 0 0 4 4 
rsm_tsk 0 0 4 4 
slp_tsk 0 0 4 4 
tslp_tsk 0 0 4 4 
wup_tsk 0 0 4 4 
cre_flg 0 0 4 4 
del_flg 0 0 4 4 
set_flg 0 0 4 4 
wai_flg 0 0 8 8 
twai_flg 0 0 8 8 
cre_sem 0 0 4 4 
del_sem 0 0 4 4 
sig_sem 0 0 4 4 
wai_sem 0 0 4 4 
twai_sem 0 0 4 4 
cre_mbx 60 76(64) 4 4 
del_mbx 28 44(44) 4 4 
snd_msg 0 0 4 4 
rcv_msg 0 0 4 4 
trcv_msg 0 0 4 4 
cre_mbf 60 76(64) 4 4 
del_mbf 28 44(44) 4 4 
snd_mbf 0 0 4 4 
tsnd_mbf 0 0 4 4 
psnd_mbf 0 0 4 4 
rcv_mbf 0 0 4 4 
trcv_mbf 0 0 4 4 
prcv_mbf 0 0 4 4 

 



1.2 Necessary Stack Size 

 

5

System call processing C language I/F System call 
CC32R TW32R 

DCC/M32R
CC32R TW32R 

DCC/M32R 
cre_por 0 0 4 4 
del_por 0 0 4 4 
cal_por 0 0 4 4 
tcal_por 0 0 4 4 
pcal_por 0 0 4 4 
acp_por 0 0 8 8 
tacp_por 0 0 8 8 
pacp_por 0 0 8 8 
fwd_por 0 0 4 4 
rpl_rdv 0 0 4 4 
def_int 0 0 4 4 
loc_cpu 0 0 4 4 
unl_cpu 0 0 4 4 
cre_mpf 60 76(64) 4 4 
del_mpf 28 44(44) 4 4 
get_blf 0 0 4 4 
tget_blf 0 0 4 4 
rel_blf 0 0 4 4 
cre_mpl 68 84(72) 4 4 
del_mpl 28 44(44) 4 4 
get_blk 68 88(72) 4 4 
tget_blk 68 88(72) 4 4 
pget_blk 68 88(72) 4 4 
rel_blk 20 20(32) 4 4 
dly_tsk 0 0 4 4 
def_cyc 0 0 4 4 
def_exc 60 76(64) 4 4 
vclr_ems 0 0 4 4 
vset_ems 0 0 4 4 
vras_fex 0 0 4 4 
vrst_blf 0 0 4 4 
vrst_blk 40 20(32) 4 4 
vrst_mbf 0 0 4 4 
vrst_msg 0 0 4 4 
vcre_mbx 0 0 4 4 
vdel_mbx 0 0 4 4 
vsnd_mbx 0 0 4 4 
vrcv_mbx 0 0 4 4 
vtrcv_mbx 0 0 4 4 
vrst_mbx *16 *16 4 4 
vret_exc 0 0 4 4 

 
Table 1.2 lists the stack sizes (system stack) used by system calls that can be issued from 
handlers. 



1.2 Necessary Stack Size 

 

6 

Table 1.2 Stack Sizes Used by System Calls Issued from Handlers (in bytes) 

System call processing C language I/F System call 
CC32R TW32R 

DCC/M32R
CC32R TW32R 

DCC/M32R 
ista_tsk 24 24 4 4 
ichg_pri 28 28 4 4 
irot_rdq 32 32 4 4 
irel_wai 32 32 4 4 
isus_tsk 28 28 4 4 
irsm_tsk 24 24 4 4 
iwup_tsk 32 32 4 4 
iset_flg 44 44 4 4 
isig_sem 36 36 4 4 
isnd_msg 36 36 4 4 
ret_int 0 0 0 0 
irel_blf 32 32 4 4 
visnd_mbx 0 0 4 4 

 

Table 1.3 lists the stack sizes (system stack) used by system calls that can be issued from 
both tasks and handlers. 

Table 1.3  Stack Sizes Used by System Calls Issued from Tasks and Handlers (in bytes) 

System call processing C language I/F System call 
CC32R TW32R 

DCC/M32R
CC32R TW32R 

DCC/M32R 
get_tid 16 16 4 4 
ref_tsk 16 16 4 4 
can_wup 20 20 4 4 
clr_flg 16 16 4 4 
pol_flg 20 20 4 4 
ref_flg 16 16 4 4 
preq_sem 16 16 4 4 
ref_sem 20 20 4 4 
prcv_msg 28 28 4 4 
ref_mbx 20 20 4 4 
ref_mbf 20 20 4 4 
ref_por 16 16 4 4 
pget_blf 24 24 4 4 
ref_mpf 28 28 4 4 
ref_mpl 16 16 4 4 
set_tim 16 16 4 4 
get_tim 16 16 4 4 
act_cyc 20 20 4 4 
ref_cyc 20 20 4 4 
ref_alm 28 28 4 4 
get_ver 28 28 4 4 
ref_sys 16 16 4 4 
vrst_msg 16 16 4 4 
vprcv_mbx 24 24 4 4 
vref_mbx 28 28 4 4 



1.3 Stack Size Calculation Method 

 

7

1.3. Stack Size Calculation Method 
The MR32R provides two kinds of stacks: the system stack and the user stack. The stack 
size calculation method differ between the stacks. 

 User stack 

This stack is provided for each task. Therefore, writing an application by using the 
MR32R requires to allocate the stack area for each stack. 

 System stack 

This stack is used inside the MR32R or during the execution of the handler. 

When a task issues an system call, the MR32R switches the user stack to the system 
stack. The system stack uses interrupt stack. 

 

Register save
Stack switching

System call
processing

Task Selection

Stack switching
Register return

XXX_XXX()

MR32R system call processing portion

User Stack

User Stack

System Stack

Task

 

Figure 1.1  System Stack and User Stack 



1.3 Stack Size Calculation Method 

 

8 

The system stack and the user stack for each task are allocated by the stack section in 
memory. 

EIT

System Stack

User stack of
Task ID No.1

User stack of
Task ID No.2

User stack of
Task ID No.n

Stack Section

 

Figure 1.2  Layout of Stacks 



1.3 Stack Size Calculation Method 

 

9

1.3.1. User Stack Calculation Method 
User stacks must be calculated for each task. The following shows an example for 
calculating user stacks in cases when an application is written in the C language and when 
an application is written in the assembly language. 

 When an application is written in the C language 

For an application written in C, you can obtain user stack size in line with the way given 
below. 

1. The stack size that tasks use 
2. The stack size that the interface routines of C use 
3. The stack size consumed by issuing system calls 

In using MR32R, secure 80 bytes if you issue the only system calls that can be issued 
by tasks.  

If you issue system calls that can be issued by both tasks and handlers, secure a stack 
size by reference to the stack sizes shown in Table 1.3. 

With two or more system calls issued, calculate that the maximum of the stack sizes 
consumed by these system calls amounts to the size the MR32R uses. 

The sum of the three sizes - 1, 2, and 3 above - becomes the user stack size. 

 When an application is written in the assembly language 

1. The stack size that the user program uses 
Obtain a size used to save registers in the stack 

2. The stack size consumed by issuing system calls 
In using MR32R, secure 80 bytes if you issue the only system calls that can be issued 
by tasks.  

If you issue system calls that can be issued by both tasks and handlers, secure a stack 
size by reference to the stack sizes shown in Table 1.3 . 

With two or more system calls issued, calculate that the maximum of the stack sizes 
consumed by these system calls amounts to the size the MR32R uses. 

The sum of the two sizes - 1 and 2 above - becomes the user stack size. 

Figure 1.3 shows an example of calculating a user stack. 

 



1.3 Stack Size Calculation Method 

 

10

 

Stack growing direction 

Stack size to be used for 
calling func1. 

func1() 

4bytes 

16bytesd+8bytes (Clanguage I/F) 

get_tid 

sta_tsk 

88bytes 

80bytesd(context size)+4bytes 

(Clanguage I/F) 

 

Figure 1.3  Example of User Stack Size Calculation 



1.3 Stack Size Calculation Method 

 

11

1.3.2. System Stack Calculation Method 
The system stack is most often consumed when an interrupt occurs during system call 
processing followed by the occurrence of multiple interrupts.2 The necessary size (the 
maximum size) of the system stack can be obtained from the following relation: 

Necessary size of the system stack = α + Σβi( + γ) 

 α 

The maximum system stack size among the system calls to be used.3 

When sta_tsk, ext_tsk, slp_tsk, and cre_tsk are used for example, according to 
theTable 1.1 ,each of system stack size is the following. 

System call System Stack Size 
cre_tsk 60 bytes 
sta_tsk 0 bytes 
ext_tsk 0 bytes 
slp_tsk 0 bytes 

 
Therefore,the maximum system stack size among the system calls to be used is the 60 
bytes of cre_tsk. 

 βi 

The stack size to be used by the interrupt handler. The details will be described later. 

 γ 

Stack size used by the system clock interrupt handler. This is detailed later. 

 

                                                      
2  After switchover from user stack to system stack 
3 Refer Section 1.2 for the system stack size used for each individual system call. 



1.3 Stack Size Calculation Method 

 

12

α

β1

β2

βn

α:The maximum system stack size among the system calls to be used.

βι:The system stack size to be used by the interrupt handler.

The necessary system stack size

Interrupt

Interrupt

 
Figure 1.4 System Stack Calculation Method 



1.3 Stack Size Calculation Method 

 

13

[( Stack size βi used by interrupt handlers )] 
The stack size used by an interrupt handler that is invoked during a system call is the sum of 
the following 3 sizes. 

 The context save area 
 The maximum stack extent the subroutines use when called by the 

interrupthandling routine4. 
 the extent user programs use. 

You can calculate the extent of used stack in line with the manner given above regardless of 
whether you write your programs in C or in assembly language. 

 

Context (80 bytes)

12 bytes

40 bytes

ret_int

iset_flg

Interrupt control processing
(Calculation of interrupt vector,
save interrupt level registers, etc.)

Interrupt

132 bytes
  

Table 1.5  Stack size to be used by Interrupt Handler 

                                                      
4 The stack size used to save registers' contents by use of __RESTORE_IPL_from_STACK, or 
__SAVE_IPL_to_STACK. For details of these interrupt control programs, see How to Prepare Interrupt Control 
Programs given in User's Manual.  



1.3 Stack Size Calculation Method 

 

14

[( System stack size γ used by system clock interrupt handler )] 

When you do not use a system timer, there is no need to add a system stack used by the 
system clock interrupt handler. 

The system stack size γ used by the system clock interrupt handler is whichever larger of the 
two cases below: 

92+ either the stack size the cyclic hander uses or the stack size the alarm 
handler uses, whichever is greater 

If neither cyclic handler nor alarm handler is used, then 

γ = 84 bytes 

When using the interrupt handler and system clock interrupt handler in combination, add the 
stack sizes used by both. 

 
 
 
 
 
 
 
 
 



 

Chapter 2 System Call Reference 



 

2.1.1 cre_tsk (Create Task) 2 

2.1. Task Management Functions 
2.1.1. cre_tsk (Create Task) 

[( System call name )] 

cre_tsk → Create Task 

 [( Calling by the assembly language )] 
.include “mr32r.inc” 
cre_tsk      tskid 

<< Argument >> 

tskid [  ∗∗  ] The ID No. of a task to be created 
pk_ctsk [∗∗∗∗] The start address in which the task generation 

information is stored 
(Set the address in the R2 register.) 

<< Register setting >> 
Register name Contents after system call issuance 

R0 Error code 
R1 The ID No. of a task to be created 
R2 The start address in which the task  

generation information is stored 
R3 -- 

Specify the following information in the structure indicased by pk_ctsk. 
Offset Size   
+0 4 exinf Extended information 
+4 4 tskatr Task attribute 
+8 4 task Task startup address 
+12 2 itskpri Priority in task startup 
+16 4 stksz Stack size 

 [( Calling by the C language )] 
#include <mr32r.h> 
ER cre_tsk (tskid, pk_ctsk); 

<< Argument >> 

ID tskid; The ID No. of a task to be created 
T_CTSK *pk_ctsk; The start address in which the task generation 

information is stored 
Specify the following information in the structure indicased by pk_ctsk. 
 typedef struct t_ctsk { 
  VP exinf;  /* Extended information */ 
  ATR tskatr;  /* Task attribute */ 
  FP task;  /* Task startup address */ 
  PRI itskpri; /* Priority in task startup */ 
  INT stksz;  /* Stack size */ 
 } T_CTSK; 

<< Return value >> 

An error code is returned as the return value of a function. 

[( Error codes )] 
E_OK    00000000H(-H’00000000): Normal End 
E_NOMEM   0FFFFFFF6H(-H’0000000a): Not enough of memory 
E_OBJ  0FFFFFFC1H(-H’0000003f): Invalid object state 



 

2.1.1 cre_tsk (Create Task) 

 

3

[( Function description )] 

Creates a task tskid indicates. 

That is, cre_tsk moves a task from the NON-EXISTENT state to the DORMANT state.  

After having set the information as to the task to be generated, issues this system call to 
generate a task.  

Here follows explanation of the information as to a task to be generated pk_ctsk. 

 exinf (extended information) 

Exinf is an area you can freely use to store information as to a task to be generated. 
MR32R has nothing to do with the exinf's contents. 

 tskatr (task attribute) 

Specify the location of the task stack area to be created. Specifically this means 
specifying whether you want the stack to be located in the internal RAM or in external 
RAM.  

♦To locate the stack area in internal RAM 
Specify __MR_INT(0).  

♦ To locate the stack area in external RAM 
Specify __MR_EXT(0x10000). 

♦ To locate the stack area user specified 
Specify __MR_USER(0x20000). 

 task (task start address) 

Task is an area to specify the start address of a task to be generated, so you have to 
invariably specify this. 

In writing a program in C, you have to make a prototype declaration on a task (function) 
to be generated.  

 itskpri (priority in task start) 

itskpri is an area to specify a priority when a task to be generated is started up, so you 
have to invariably specify this.  

 stksz (stack size) 

stksz is an area to specify a stack size a task to be generated uses, so you have to 
invariably specify this.  

The system call cre_tsk is effective only when the specified task is in the NON-EXISTENT 
state. Issuing this system call toward a task in a different state causes MR32R to return the 
error code E_OBJ.  

ID numbers to be generated are brought under your management. The numbers to be 
specified by this system call can range from 1 up to the maximum number of tasks used in 
the user system laid down in the system definition.  

If the extent of memory as specified by stksz under pk_ctsk is not available, MR32R returns 
the error code E_NOMEM to the task that issued this system call. 

You can issue this system call exclusively from a task. This system call, if issued either from 
the interrupt handler, the cyclic handler or the alarm handler, doesn't work properly. 



 

2.1.1 cre_tsk (Create Task) 4 

[( Usage example )] 
<< Usage example of the C language >> 
 
#include <mr32r.h> 
#include “id.h” 
#define ID_task2   2 
#define ID_task3   3 
void task2(void); 
void task3(void); 
void task1(void) 
{ 
 T_CTSK ctsk2; 
 T_CTSK ctsk3 = {0,__MR_INT,task3,2,200}; 
 ctsk2.tskatr = __MR_EXT; /* To locate the stack area in external RAM */ 
 ctsk2.task = task2;  /* Task startup address */ 
 ctsk2.itskpri = 2;  /* Priority in task startup */ 
 ctsk2.stksz = 100;  /* Stack size */ 
 cre_tsk( ID_task2, &ctsk2 ); 
           : 
} 
void task2(void) 
{ 
    : 
 ext_tsk(); 
} 
void task3(void) 
{ 
    : 
 ext_tsk(); 
} 
<< Usage example of the assembly language(CC32R) >> 
 
ID_task2: .equ 2 
ID_task3: .equ 3 
ctsk2: 
 .DATA.W       ; Extended information 
 .DATA.W    __MR_INT  ; Task attribute 
 .DATA.W    task2  ; Task startup address 
 .DATA.H   2  ; Priority in task startup 
 .RES.B     2 
 .WORD     100   ; Stack size 
 
 .include “mr32r.inc” 
 .global   task1,task2 
task1: 
 cre_tsk ID_task2, ctsk2 
     : 
 ext_tsk 
task2: 
    : 
 ext_tsk 



 

2.1.1 cre_tsk (Create Task) 

 

5

 
<< Usage example of the assembly language(TW32R:DCC/M32R) >> 
 
 .equ ID_task2,2 
 .equ ID_task3,3 
ctsk2: 
 .LONG     0  
 .LONG     __MR_INT 
 .LONG     task2  
 .SHORT    2  
 .space    2 
 .LONG     100  
 
 .include “mr32r.inc” 
 .global   task1,task2 
task1: 
 cre_tsk ID_task2, ctsk2 
     : 
 ext_tsk 
task2: 
    : 
 ext_tsk 



 

2.1.2 del_tsk(Delete Task) 6 

2.1.2. del_tsk(Delete Task) 

[( System call name )] 

del_tsk → Delete Task 

 [( Calling by the assembly language )] 
.include “mr32r.inc” 
del_tsk      tskid 

<< Argument >> 

tskid [  ∗∗  ] The ID No. of a task to be deleted 

<< Register setting >> 
Register name Contents after system call issuance 

R0 Error code 
R1 The ID No. of a task to be deleted 
R2 -- 
R3 -- 

[( Calling by the C language )] 
#include <mr32r.h> 
ER del_tsk (tskid); 

<< Argument >> 

ID tskid; The ID No. of a task to be deleted 

<< Return value >> 

An error code is returned as the return value of a function. 

[( Error codes )] 
E_OK   00000000H(-H’00000000): Normal End 
E_OBJ  0FFFFFFC1H(-H’0000003f): Invalid object state 
E_NOEXS  0FFFFFFCCH(-H’00000034): Object does not exist 

[( Function description )] 

del_tsk deletes the task tskid indicates. 

This system call cannot specify the task itself. 

Issuing this system call causes the state of the task under consideration to switch from the 
DORMANT state to the NON-EXISTENT state.  

The system call del_tsk is effective only when the specified task is in the DORMANT state. 
Issuing this system call toward a task in a different state causes MR32R to return the error 
code E_OBJ. 

Error E_NOEXS is returned if this system call is issued for a NON-EXISTENT state task. 

Make sure this system call is issued for only the task that has been created by the cre_tsk 
system call. If this system call is issued for the task that has been defined by the 
configuration file, it does not function normally.  

You can issue this system call exclusively from a task. This system call, if issued either from 
the interrupt handler, the cyclic handler or the alarm handler, doesn't work properly. 



 

2.1.2 del_tsk(Delete Task) 

 

7

[( Usage example )] 
<< Usage example of the C language >> 
 
#include <mr32r.h> 
#include “id.h” 
#define ID_task2   2 
#define ID_task3   3 
void task1() 
{ 
  : 
 del_tsk( ID_task2 ); 
  : 
} 
void task2() 
{ 
     : 
 ext_tsk(); 
} 
 
<< Usage example of the assembly language(CC32R) >> 
 
 .include “mr32r.inc” 
 .global  task1,task2 
ID_task2: .equ 2 
ID_task3: .equ  3 
task1: 
     : 
 del_tsk ID_task2 
     : 

ext_tsk 
task2: 

    : 
ext_tsk 

 
<< Usage example of the assembly language(TW32R:DCC/M32R) >> 
 
 .include “mr32r.inc” 
 .global  task1,task2 
 .equ   ID_task2,2 
 .equ   ID_task3,3 
task1: 
     : 
 del_tsk ID_task2 
     : 

ext_tsk 
task2: 

    : 
ext_tsk 



 

2.1.3 sta_tsk(Start Task) 8 

2.1.3. sta_tsk(Start Task) 

[( System call name )] 

sta_tsk → Starts the Task 

 [( Calling by the assembly language )] 
.include “mr32r.inc” 
sta_tsk      tskid, stacd 

<< Argument >> 

tskid [  ∗∗  ] The ID No. of the task to be started 
stacd [∗∗∗∗] Task start code 

<< Register setting >> 
Register name Contents after system call issuance 

R0 Error code 
R1 The ID No. of the task to be started 
R2 Task start code 
R3 -- 

[( Calling by the C language )] 
#include <mr32r.h> 
ER sta_tsk (tskid, stacd); 

<< Argument >> 

ID tskid; The ID No. of the task to be started 
INT stacd; Task start code 

<< Return value >> 

An error code is returned as the return value of a function. 

[( Error codes )] 
E_OK   00000000H(-H’00000000): Normal End 
E_NOEXS  0FFFFFFCCH(-H’00000034): Object does not exist 
E_OBJ  0FFFFFFC1H(-H’0000003f): Invalid object state 

[( Function description )] 

This system call starts the task indicated by tskid. That is, the specified task is put from the 
DORMANT state to the READY state or the RUN state. 

The startup code stacd is 32 bits.In a C language program, stacd is passed to the startup 
task as an argument. In an assembly language program, stacd is stored in the startup task's 
R2 register. 

This system call is valid only when the specified task is idle (DORMANT). Therefore, if a 
request is issued when the task is not idle (DORMANT)5, an error E_OBJ is returned to the 
system call issued task. 

Error E_NOEXS is returned if this system call is issued for a NON-EXISTENT state task. 

If a task is reactivated after being terminated by ter_tsk or ext_tsk, it starts under the 
following conditions:6 

 The task starts from the start address set in the configuration file or when cre_tsk system 

                                                      
5 except NON-EXISTENT state. 
6 Namely,the task totally starts from the reset state. 



 

2.1.3 sta_tsk(Start Task) 

 

9

call is issued. 

 The wakeup request count is cleared to 0. 

 The priority is the initial priority specified in the configuration file or when cre_tsk system 
call is issued. 

 The initial register values except PC, PSW and following registers are indeterminate. 

 For M32R Family Cross Tool CC32R 
A start code is stored R2 and R4 register. 

 For M32R Family GNU Cross Tool TW32R:DCC/M32R 
A start code is stored R0 and R2 register. 

If the task restarts,its exception handler defined before is not reset. 

This system call can be issued from only tasks. If you want it to be issued from the interrupt 
handler, cyclic handler, or alarm handler, you must use a ista_tsk system call. 

[( Usage example )] 
<< Usage example of the C language >> 
 
#include <mr32r.h> 
#include “id.h” 
void task() 
{ 
 sta_tsk( ID_task2, stacd ); 
     : 
} 
void task2(int msg) 
{ 
 if(msg == 0) 
      : 
} 
 
<< Usage example of the assembly language(CC32R) >> 
 
 .include “mr32r.inc” 
 .global   task,task2 
task: 

sta_tsk ID_task2, msg 
    : 

task2: 
cmpi       R2,#0 
    : 

 
<< Usage example of the assembly language(TW32R:DCC/M32R) >> 
 
 .include “mr32r.inc” 
 .global   task,task2 
task: 

sta_tsk ID_task2, msg 
    : 

task2: 
cmpi       R2,#0 
    : 



 

2.1.4 ista_tsk(Start Task) 10

2.1.4. ista_tsk(Start Task) 

[( System call name )] 

ista_tsk → Starts the Task. (for the handler only) 

 [( Calling by the assembly language )] 
.include “mr32r.inc” 
ista_tsk      tskid, stacd 

<< Argument >> 

tskid [  ∗∗  ] The ID No. of the task to be started 
stacd [∗∗∗∗] Task start code 

<< Register setting >> 
Register name Contents after system call issuance 

R0 Error code 
R1 The ID No. of the task to be started 
R2 Task start code 
R3 -- 

[( Calling by the C language )] 
#include <mr32r.h> 
ER ista_tsk (tskid, stacd); 

<< Argument >> 

ID tskid; The ID No. of the task to be started 
INT stacd; Task start code 

<< Return value >> 

An error code is returned as the return value of a function. 

[( Error codes )] 
E_OK   00000000H(-H’00000000): Normal End 
E_NOEXS  0FFFFFFCCH(-H’00000034): Object does not exist 
E_OBJ  0FFFFFFC1H(-H’0000003f): Invalid object state 

[( Function description )] 

Use this system call when you want to use the same function as that of the sta_tsk system 
call from the interrupt handler, cyclic handler, or alarm handler. 



 

2.1.4 ista_tsk(Start Task) 

 

11

[( Usage example )] 
<< Usage example of the C language >> 
 
#include <mr32r.h> 
#include “id.h” 
void inthand() 
{ 
 ista_tsk( ID_task2, stacd ); 
      : 
} 
void task2(int msg) 
{ 

if(msg == 0) 
      : 
} 
 
<< Usage example of the assembly language(CC32R) >> 
 

.include “mr32r.inc” 
 .global   intr 
intr: 

ista_tsk ID_task2, msg 
     : 
ret_int 

 
<< Usage example of the assembly language(TW32R:DCC/M32R) >> 
 

.include “mr32r.inc” 
 .global   intr 
intr: 

ista_tsk ID_task2, msg 
     : 
ret_int 



 

2.1.5 ext_tsk(Exit Task) 12

2.1.5. ext_tsk(Exit Task) 

[( System call name )] 

ext_tsk → Ends the own task. 

 [( Calling by the assembly language )] 
.include “mr32r.inc” 
ext_tsk 

<< Argument >> 

None 

<< Register setting >> 

Control is not returned to the task which issued this system call 

[( Calling by the C language )] 
#include <mr32r.h> 
void ext_tsk (); 

<< Argument >> 

None 

<< Return value >> 

Control is not returned to the task which issued this system call. 

[( Error codes )] 

Control is not returned to the task which issued this system call 

[( Function description )] 

This system call ends the own task; that is, it puts the own task from the RUN state to the 
DORMANT state. Once a task has been terminated, it does not operate until activated again 
by the sta_tsk or ista_tsk system call. When a task is activated again in this way, it can be 
started only from the start address defined in the configuration file. 

That is, a task terminated by ext_tsk and then activated by sta_tsk operates as if it was reset. 
When this system call is issued, the semaphore obtained by the own task is not freed. 

If this system call issued from exception handler,the task for it is normaly ended. 

This system call can be issued only from tasks. It cannot be issued from the interrupt handler, 
the cyclic handler, and the alarm handler. 



 

2.1.5 ext_tsk(Exit Task) 

 

13

[( Usage example )] 
<< Usage example of the C language >> 
 
#include <mr32r.h> 
void task(void) 
{ 
    : 
 ext_tsk(); 
} 
 
<< Usage example of the assembly language(CC32R) >> 
 
 .include “mr32r.inc” 
 .global task 
task: 
    : 
 ext_tsk 
 
<< Usage example of the assembly language(TW32R:DCC/M32R) >> 
 
 .include “mr32r.inc” 
 .global task 
task: 
    : 
 ext_tsk 



 

2.1.6 exd_tsk(Exit and Delete Task) 14

2.1.6. exd_tsk(Exit and Delete Task) 

[( System call name )] 

exd_tsk → Exit and delete Task. 

 [( Calling by the assembly language )] 
.include “mr32r.inc” 
exd_tsk 

<< Argument >> 

None 

<< Register setting >> 

Control is not returned to the task which issued this system call. 

[( Calling by the C language )] 
#include <mr32r.h> 
void exd_tsk (); 

<< Argument >> 

None 

<< Return value >> 

Control is not returned to the task which issued this system call. 

[( Error codes )] 

Control is not returned to the task which issued this system call. 

[( Function description )] 

This system call ends the own task and deletes it; that is, it puts the own task from the RUN 
state to the NON-EXISTENT state. Once a task has been deleted, it does not operate until 
activated again by the cre_tsk, sta_tsk or ista_tsk system call.  

When this system call is issued, the semaphore, memorypool etc. obtained by the own task 
is not freed, but the the stack area of the own task is freed. 

This system call can only be issued from the task created by cre_tsk system call. 

If exd_tsk is issued from the task defined in the configuration file,it does not work well.. 

This system call can be issued only from tasks. It cannot be issued from the interrupt handler, 
the cyclic handler, and the alarm handler. 



 

2.1.6 exd_tsk(Exit and Delete Task) 

 

15

[( Usage example )] 
<< Usage example of the C language >> 
 
#include <mr32r.h> 
#include “id.h” 
void task1() 
{ 
     : 
 cre_tsk( ID_task2, &ctsk2 ); 
     : 
 sta_tsk( ID_task2, 0 ); 
     : 
} 
void task2() 
{ 

    : 
exd_tsk(); 

} 
 
<< Usage example of the assembly language(CC32R) >> 
 
 .include  “mr32r.inc” 
 .global   task1,task2 
task1: 
     : 
 cre_tsk 2,settask2 
     : 

sta_tsk 2,0 
ext_tsk 

task2: 
    : 
exd_tsk 

 
<< Usage example of the assembly language(TW32R:DCC/M32R) >> 
 
 .include  “mr32r.inc” 
 .global   task1,task2 
task1: 
     : 
 cre_tsk 2,settask2 
     : 

sta_tsk 2,0 
ext_tsk 

task2: 
    : 
exd_tsk 



 

2.1.7 ter_tsk(Terminate Task) 16

2.1.7. ter_tsk(Terminate Task) 

[( System call name )] 

ter_tsk → Terminates a task forcibly. 

 [( Calling by the assembly language )] 
.include “mr32r.inc” 
ter_tsk      tskid 

<< Argument >> 

tskid [  ∗∗  ] The ID No. of the task to be forcibly terminated  

<< Register setting >> 
Register name Contents after system call issuance 

R0 Error code 
R1 The ID No. of the task to be forcibly terminated 
R2 -- 
R3 -- 

[( Calling by the C language )] 
#include <mr32r.h> 
ER ter_tsk (tskid); 

<< Argument >> 

ID tskid; The ID No. of the task to be forcibly terminated 

<< Return value >> 

An error code is returned as the return value of a function. 

[( Error codes )] 
E_OK   00000000H(-H’00000000): Normal End 
E_NOEXS  0FFFFFFCCH(-H’00000034): Object does not exist 
E_OBJ  0FFFFFFC1H(-H’0000003f): Invalid object state 

[( Function description )] 

The task indicated by tskid is forcibly terminated. 

This system call cannot specify the own task. To terminate the own task, use the ext_tsk 
system call. 

If a specified task is in WAIT state being linked to some waiting queue7 the task is removed 
from the queue by execution of this system call. However, the semaphores, etc. that have 
been acquired by the specified task before that are not relinquished. 

If the task indicated by tskid is in NON-EXISTENT state, the system returns an error E_OBJ 
for the system call. 

If the task indicated by tskid is in DORMANT state, the system returns an error E_NOEXS for 
the system call. 

This system call can be issued only from tasks. It cannot be issued from the interrupt handler, 
the cyclic handler, and the alarm handler. 

                                                      
7 Timeout wait queue, eventflag wait queue, semaphore wait queue, or mail box wait queue is possible. 



 

2.1.7 ter_tsk(Terminate Task) 

 

17

 

[( Usage example )] 
<< Usage example of the C language >> 
 
#include <mr32r.h> 
#include “id.h” 
void task() 
{ 

    : 
ter_tsk( ID_main ); 
    : 
ext_tsk(); 

} 
 
<< Usage example of the assembly language(CC32R) >> 
 

.include “mr32r.inc” 

.global   task 
task: 

    : 
ter_tsk ID_task2 
    : 
 
.global   task2 

task2: 
    : 

 
<< Usage example of the assembly language(TW32R:DCC/M32R) >> 
 

.include “mr32r.inc” 

.global   task 
task: 

    : 
ter_tsk ID_task2 
    : 
 
.global   task2 

task2: 
    : 



 

2.1.8 dis_dsp(Disable Dispatch) 18

2.1.8. dis_dsp(Disable Dispatch) 

[( System call name )] 

dis_dsp → Disable dispatch of the task. 

 [( Calling by the assembly language )] 
.include “mr32r.inc” 
dis_dsp 

<< Argument >> 

None 

<< Register setting >> 
Register name Contents after system call issuance 

R0 Error code 
R1 -- 
R2 -- 
R3 -- 

[( Calling by the C language )] 
#include <mr32r.h> 
ER dis_dsp (); 

<< Argument >> 

None 

<< Return value >> 

An error code is returned as the return value of a function. 

[( Error codes )] 
E_OK   00000000H(-H’00000000): Normal End 

[( Function description )] 

Disables task dispatch. 

After executing this system call, task dispatch is disabled until the ena_dsp system call is 
executed. Therefore, even when a task with higher priority than the task that executed 
dis_dsp by a system call issued from an interrupt handler or a task that executed dis_dsp is 
placed in READY state, no time is dispatched to that task. Namely, dispatching to tasks with 
higher priority is delayed until the dispatch disabled condition is terminated. 

However, since external interrupts are not disabled, an interrupt handler is activated even 
while dispatch is disabled. If a task already in a dispatch disabled state issues dis_dsp, no 
error is assumed; the result is only that the dispatch disabled state continues. However, a 
dispatch disabled state is cleared by issuing only one ena_dsp no matter how many times 
dis_dsp may have been issued. 

This system call can only be issued from tasks, and cannot be issued from the interrupt 
handler, cyclic handler, or alarm handler. 



 

2.1.8 dis_dsp(Disable Dispatch) 

 

19

[( Usage example )] 
<< Usage example of the C language >> 
 
#include <mr32r.h> 
#include “id.h” 
void task() 
{ 

    : 
 dis_dsp(); 

    : 
} 
 
<< Usage example of the assembly language(CC32R) >> 
 
.include “mr32r.inc” 

.global task 
task: 
    : 

dis_dsp 
    : 
 
<< Usage example of the assembly language(TW32R:DCC/M32R) >> 
 

.include “mr32r.inc” 

.global task 
task: 
    : 

dis_dsp 
    : 



 

2.1.9 ena_dsp(Enable Dispatch) 20

2.1.9. ena_dsp(Enable Dispatch) 

[( System call name )] 

ena_dsp → Permits dispatch of the task. 

 [( Calling by the assembly language )] 
.include “mr32r.inc” 
ena_dsp 

<< Argument >> 

None 

<< Register setting >> 
Register name Contents after system call issuance 

R0 Error code 
R1 -- 
R2 -- 
R3 -- 

[( Calling by the C language )] 
#include <mr32r.h> 
ER ena_dsp(); 

<< Argument >> 

None 

<< Return value >> 

An error code is returned as the return value of a function. 

[( Error codes )] 
E_OK   00000000H(-H’00000000): Normal End 

[( Function description )] 

Enables task dispatch.  

Namely, it clears a dispatch disabled state set by dis_dsp, thereby activating the scheduler. If 
a task not in a dispatch disabled state issues ena_dsp, no error assumed; the result is only 
that the dispatch enabled state continues. 

This system call can only be issued from tasks, and cannot be issued from the interrupt 
handler, cyclic handler, or alarm handler. 



 

2.1.9 ena_dsp(Enable Dispatch) 

 

21

 [( Usage example )] 
<< Usage example of the C language >> 
 
#include <mr32r.h> 
#include “id.h” 
void task() 
{ 

 : 
ena_dsp(); 
 : 

} 
 
<< Usage example of the assembly language(CC32R) >> 
 

.include “mr32r.inc” 

.global   task 
task: 

 : 
ena_dsp 
  : 

 
<< Usage example of the assembly language(TW32R:DCC/M32R) >> 
 

.include “mr32r.inc” 

.global   task 
task: 

 : 
ena_dsp 
  : 



 

2.1.10 chg_pri(Change Task Priority) 22

2.1.10. chg_pri(Change Task Priority) 

[( System call name )] 

chg_pri → Changes the priority of a task. 

 [( Calling by the assembly language )] 
.include “mr32r.inc” 
chg_pri      tskid, tskpri 

<< Argument >> 

tskid [  ∗∗  ] The ID No. of the task whose priority is changed 
tskpri [  ∗∗  ] The priority to be changed 

<< Register setting >> 
Register name Contents after system call issuance 

R0 Error code 
R1 The ID No. of the task whose priority is changed 
R2 The priority to be changed 
R3 -- 

[( Calling by the C language )] 
#include <mr32r.h> 
ER chg_pri (tskid,tskpri); 

<< Argument >> 

ID tskid; The ID No. of the task whose priority is changed 
PRI tskpri; The priority to be changed 

<< Return value >> 

An error code is returned as the return value of a function. 

[( Error codes )] 
E_OK   00000000H(-H’00000000): Normal End 
E_NOEXS  0FFFFFFCCH(-H’00000034): Object does not exist 
E_OBJ  0FFFFFFC1H(-H’0000003f): Invalid object state 



 

2.1.10 chg_pri(Change Task Priority) 

 

23

[( Function description )] 

Changes the priority of the task indicated by tskid to a value indicated by tskpri. Furthermore, 
the task is rescheduled according to the result of this modification. Task priority is higher 
when its number is lower. Priority 1 is the highest. The minimum value that can be specified 
for a priority is 1. The maximum value is the one specified in the configuration file. The range 
of the specifiable priority is 1 to 255. 

For example, when the following is specified in the configuration file, the range of the 
specifiable priorities is 1 to 13 8 

system{ 
        stack_size    = 0x100; 
        priority      = 13; 
}; 

If you specify tskid = TSK_SELF = 0, it specifies the task itself. This system call cannot be 
used to change the priority of a task in DORMANT state. There fore, if the task indicated by 
tskid is in DORMANT state, the system returns an error E_OBJ for the system call. If it is in 
NON-EXISYENT state, the system returns an error E_NOEXS for the system call. 

If this system call is executed for a task linked to the ready queue (including a task in RUN 
state) or a task being queued in order of priorities, the task is moved to the tail of the queue 
of the relevant priority. Similarly, if the same priority as the previous one is specified, the task 
is moved to the tail of the queue of that priority.9 

This system can be issued from only tasks. If you want it to be issued from the interrupt 
handler, cyclic handler, or alarm handler, you must use a ichg_pri system call. 

 [( Usage example )] 
<< Usage example of the C language >> 
 
#include <mr32r.h> 
#include “id.h” 
void task() 
{ 

    : 
chg_pri( ID_task2, 2 ); 
    : 

} 
<< Usage example of the assembly language(CC32R) >> 
 

.include “mr32r.inc” 

.global   task 
task: 

    : 
chg_pri    ID_task2,2 
    : 

 
<< Usage example of the assembly language(TW32R:DCC/M32R) >> 
 

.include “mr32r.inc” 

.global   task 
task: 

    : 
chg_pri    ID_task2,2 
    : 

 
 

                                                      
8 Switchover to a task with lower priority calls for greater processing time and greater interrupt disabled time. Therefore, 
the narrower the priority range, the better. So reduce the priority range to a possible minimum. 
9 Therefore, by issuing this system call to set the same priority as the current one for the task itself, you can in effect 
relinquish control of execution of the task.  



 

2.1.11 ichg_pri(Change Task Priority) 24

2.1.11. ichg_pri(Change Task Priority) 

[( System call name )] 

ichg_pri → Changes the priority of a task (for the handler only). 

 [( Calling by the assembly language )] 
.include “mr32r.inc” 
ichg_pri      tskid, tskpri 

<< Argument >> 

tskid [  ∗∗  ] The ID No. of the task whose priority is changed 
tskpri [  ∗∗  ] The priority to be changed 

<< Register setting >> 
Register name Contents after system call issuance 

R0 Error code 
R1 The ID No. of the task whose priority is changed 
R2 The priority to be changed 
R3 -- 

[( Calling by the C language )] 
#include <mr32r.h> 
ER ichg_pri (tskid,tskpri); 

<< Argument >> 

ID tskid; The ID No. of the task whose priority is changed 
PRI tskpri; The priority to be changed 

<< Return value >> 

An error code is returned as the return value of a function. 

[( Error codes )] 
E_OK   00000000H(-H’00000000): Normal End 
E_NOEXS  0FFFFFFCCH(-H’00000034): Object does not exist 
E_OBJ  0FFFFFFC1H(-H’0000003f): Invalid object state 

[( Function description )] 

This system call is issued from the interrupt handler, the cyclic handler, or the alarm handler 
to provide the same functions as the chg_pri system call. 

In this system call, you cannot use tskid = TSK_SELF = 0 to specify the own task.  



 

2.1.11 ichg_pri(Change Task Priority) 

 

25

 [( Usage example )] 
<< Usage example of the C language >> 
 
#include <mr32r.h> 
#include “id.h” 
void inthand() 
{ 

     : 
ichg_pri( ID_main, 2 ); 
     : 

} 
 
<< Usage example of the assembly language(CC32R) >> 
 
.include “mr32r.inc” 
.global   intr 
intr: 

     : 
ichg_pri   ID_task2, 2 
     : 
ret_int 

 
<< Usage example of the assembly language(TW32R:DCC/M32R) >> 
 
.include “mr32r.inc” 
.global   intr 
intr: 

     : 
ichg_pri   ID_task2, 2 
     : 
ret_int 



 

2.1.12 rot_rdq(Rotate Ready Queue) 26

2.1.12. rot_rdq(Rotate Ready Queue) 

[( System call name )] 

rot_rdq → Rotates the ready queue of a task. 

 [( Calling by the assembly language )] 
.include “mr32r.inc” 
rot_rdq      tskpri 

<< Argument >> 

tskpri [  ∗∗  ] The priority of the ready queue to be rotated 

<< Register setting >> 
Register name Contents after system call issuance 

R0 Error code 
R1 -- 
R2 The priority of the ready queue to be rotated 
R3 -- 

[( Calling by the C language )] 
#include <mr32r.h> 
ER rot_rdq (tskpri); 

<< Argument >> 

PRI tskpri;  The priority of the ready queue to be rotated 

<< Return value >> 

E_OK is always returned as the return value of a function. 

[( Error codes )] 
E_OK   00000000H(-H’00000000): Normal End 



 

2.1.12 rot_rdq(Rotate Ready Queue) 

 

27

[( Function description )] 

This system call rotates the ready queue having the priority specified by tskpri. That is, this 
system call reconnects the task linked to the head of the ready queue having the specified 
priority to the end of it in order to switch between the tasks having the same priority. See 
Figure 2.1. 

Priority 1

Priority 2

Priority n

TCB

TCB TCB

TCB TCB TCB

Reconnect to the end
 

Figure 2.1 Ready Queue Operation by rot_rdq System Call 

Issuing this system call at a certain interval allows round robin scheduling. 

Specification tskpri = TPRI_RUN = 0 causes the ready queue with the priority of the own task 
to be rotated. 

If this system call is used to specify the priority of the own task, the task is moved to the tail 
of that ready queue. If there is no task on the queue specified by this system call, the system 
do nothing. 

This system call can be issued only from tasks. The system call which be issued from the 
interrupt handler, the cyclic handler, or the alarm handler is the irot_rdq. 



 

2.1.12 rot_rdq(Rotate Ready Queue) 28

[( Usage example )] 
<< Usage example of the C language >> 
 
#include <mr32r.h> 
void task() 
{ 
     : 

rot_rdq( 2 ); 
     : 
} 
 
<< Usage example of the assembly language(CC32R) >> 
 
.include “mr32r.inc” 

.global   task 
task: 

    : 
rot_rdq    2 
    : 

 
<< Usage example of the assembly language(TW32R:DCC/M32R) >> 
 

.include “mr32r.inc” 

.global   task 
task: 

    : 
rot_rdq    2 
    : 



 

2.1.13 irot_rdq(Rotate Ready Queue) 

 

29

2.1.13. irot_rdq(Rotate Ready Queue) 

[( System call name )] 

irot_rdq → Rotates the ready queue of a task (for the handler 
only). 

 [( Calling by the assembly language )] 
.include “mr32r.inc” 
irot_rdq      tskpri 

<< Argument >> 

tskpri [  ∗∗  ] The priority of the ready queue to be rotated 

<< Register setting >> 
Register name Contents after system call issuance 

R0 Error code 
R1 -- 
R2 The priority of the ready queue to be rotated 
R3 -- 

[( Calling by the C language )] 
#include <mr32r.h> 
ER irot_rdq (tskpri); 

<< Argument >> 

PRI tskpri; The priority of the ready queue to be rotated 

<< Return value >> 

E_OK is always returned as the return value of a function. 

[( Error codes )] 
E_OK   00000000H(-H’00000000): Normal End 

[( Function description )] 

This system call is issued from the interrupt handler, the cyclic handler, or the alarm handler 
to provide the same functions as the rot_rdq system call. If irot_rdq (tskpri = TPRI_RUN) is 
issued, the ready queue of the priority equal to that the task that was executing when the 
interrupt handler was invoked is rotated. 

Issuing this system call allows round robin scheduling. 



 

2.1.13 irot_rdq(Rotate Ready Queue) 30

[( Usage example )] 

In this example, round robin scheduling is implemented by rotating the ready queue having 
priority 2 at a certain intervals by the cyclic handler. 

 
<< Usage example of the C language >> 
 
#include <mr32r.h> 
#include “id.h” 
void cyc() 
{ 
     : 
 irot_rdq( 2 ); 
     : 
} 
 
<< Usage example of the assembly language(CC32R) >> 
 

.include “mr32r.inc” 

.global   cyc 
cyc: 
     : 
 irot_rdq   2 
     : 
 
<< Usage example of the assembly language(TW32R:DCC/M32R) >> 
 
.include “mr32r.inc” 

.global   cyc 
cyc: 
     : 
 irot_rdq   2 
     : 



 

2.1.14 rel_wai(Release Task Wait) 

 

31

2.1.14. rel_wai(Release Task Wait) 

[( System call name )] 

rel_wai → Releases the task WAIT state forcibly. 

 [( Calling by the assembly language )] 
.include “mr32r.inc” 
rel_wai      tskid 

<< Argument >> 

tskid [  ∗∗  ] The ID No. of the task to be forcibly released from the 
WAIT state 

<< Register setting >> 
Register name Contents after system call issuance 

R0 Error code 
R1 The ID No. of the task to be forcibly released 

from the WAIT state 
R2 -- 
R3 -- 

[( Calling by the C language )] 
#include <mr32r.h> 
ER rel_wai (tskid); 

<< Argument >> 

ID tskid; The ID No. of the task to be forcibly released from the 
WAIT state 

<< Return value >> 

An error code is returned as the return value of a function. 

[( Error codes )] 
E_OK   00000000H(-H’00000000): Normal End 
E_NOEXS  0FFFFFFCCH(-H’00000034): Object does not exist 
E_OBJ  0FFFFFFC1H(-H’0000003f): Invalid object state 

[( Function description )] 

This system call unconditionally releases the task specified by tskid from the WAIT 
state(Except SUSPEND state). Error E_RLWAI is returned to the released task. If the task is 
linked to some waiting queue, the task is removed from the queue 10 by execution of this 
system call. 

If the task is not in WAIT state, the system returns an error E_OBJ to the system call issued 
task. If the task is in NON-EXISTENT state, the system returns an error E_NOEXS to the 
system call issued task. 

This system call cannot specify the own task. 

This system call can be issued only from tasks. The system call which be issued from the 
interrupt handler, the cyclic handler, or the alarm handler is the irel_wai. 

                                                      
10 Timeout wait queue, eventflag wait queue, semaphore wait queue, or mail box wait queue is possible. 



 

2.1.14 rel_wai(Release Task Wait) 32

[( Usage example )] 
<< Usage example of the C language >> 
 
#include <mr32r.h> 
#include “id.h” 
void task() 
{ 
               : 

if( rel_wai( ID_main ) != E_OK ) 
error(“Can’t rel_wai main()\n”); 

        : 
} 
 
<< Usage example of the assembly language(CC32R) >> 
 

.include “mr32r.inc” 

.global   task 
task: 
  : 
 rel_wai    ID_main 
  : 
 
<< Usage example of the assembly language(TW32R:DCC/M32R) >> 
 

.include “mr32r.inc” 

.global   task 
task: 
  : 
 rel_wai    ID_main 
  : 



 

2.1.15 irel_wai(Release Task Wait) 

 

33

2.1.15. irel_wai(Release Task Wait) 

[( System call name )] 

irel_wai → Releases the task WAIT state forcibly (for the handler 
only). 

 [( Calling by the assembly language )] 
.include “mr32r.inc” 
irel_wai      tskid 

<< Argument >> 

tskid [  ∗∗  ] The ID No. of the task to be forcibly released from the 
WAIT state 

<< Register setting >> 
Register name Contents after system call issuance 

R0 Error code 
R1 The ID No. of the task to be forcibly released 

from the WAIT state 
R2 -- 
R3 -- 

[( Calling by the C language )] 
#include <mr32r.h> 
ER irel_wai (tskid); 

<< Argument >> 

ID tskid; The ID No. of the task to be forcibly released from the 
WAIT state 

<< Return value >> 

An error code is returned as the return value of a function. 

[( Error codes )] 
E_OK   00000000H(-H’00000000): Normal End 
E_NOEXS  0FFFFFFCCH(-H’00000034): Object does not exist 
E_OBJ  0FFFFFFC1H(-H’0000003f): Invalid object state 

[( Function description )] 

This system call is issued from the interrupt handler, the cyclic handler, or the alarm handler 
to provide the same functions as the rel_wai system call. 



 

2.1.15 irel_wai(Release Task Wait) 34

 [( Usage example )] 
<< Usage example of the C language >> 
 
#include <mr32r.h> 
#include “id.h” 
void inthand() 
{ 
         : 

if( irel_wai( ID_main ) != E_OK ) 
error(“Can’t irel_wai task(2)\n”); 

         : 
} 
 
<< Usage example of the assembly language(CC32R) >> 
 
.include “mr32r.inc” 

.global   intr 
intr: 
     : 

irel_wai ID_main 
     : 

ret_int 
 
<< Usage example of the assembly language(TW32R:DCC/M32R) >> 
 

.include “mr32r.inc” 

.global   intr 
intr: 
     : 

irel_wai ID_main 
     : 

ret_int 



 

2.1.16 get_tid(Get Self Task ID) 

 

35

2.1.16. get_tid(Get Self Task ID) 

[( System call name )] 

get_tid → Gets the ID of the self task 

 [( Calling by the assembly language )] 
.include “mr32r.inc” 
get_tid 

<< Argument >> 

None 

<< Register setting >> 
Register name Contents after system call issuance 

R0 Error code 
R1 The ID of the self task 
R2 -- 
R3 -- 

[( Calling by the C language )] 
#include <mr32r.h> 
ER get_tid (p_tskid); 

<< Argument >> 

ID ∗p_tskid; The variable in which the task ID is stored. 

<< Return value >> 

The returned function value is always E_OK. 
The ID No. of the own task is set in the area indicated by p_tskid. 

 [( Error codes )] 
E_OK   00000000H(-H’00000000): Normal End 

[( Function description )] 

Gets the ID No. of the own task. 

FALSE = 0 is returned if the system call is issued from the interrupt handler, cyclic handler, or 
alarm handler. 



 

2.1.16 get_tid(Get Self Task ID) 36

 [( Usage example )] 
<< Usage example of the C language >> 
 
#include <mr32r.h> 
void task() 
{ 
 ID tskid; 
     : 

get_tid(&tskid); 
     : 
} 
 
<< Usage example of the assembly language(CC32R) >> 
 

.include “mr32r.inc” 

.global   task 
task: 
    : 

get_tid 
    : 
 
<< Usage example of the assembly language(TW32R:DCC/M32R) >> 
 

.include “mr32r.inc” 

.global   task 
task: 
    : 

get_tid 
    : 
 



 

2.1.17 ref_tsk(Refer Task Status) 

 

37

2.1.17. ref_tsk(Refer Task Status) 

[( System call name )] 

ref_tsk → Reference Task Status 

 [( Calling by the assembly language )] 
.include “mr32r.inc” 
ref_tsk    tskid 

<< Argument >> 

taskid [  ∗∗  ] The ID No. of the task to Reference Task 
pk_rtsk [∗∗∗∗] Packet address to Reference Task 

(Set the address in the R2 register.) 

<< Register setting >> 
Register name Contents after system call issuance 

R0 Error code 
R1 The ID No. of the task to Reference Task 
R2 Packet address to Reference Task 
R3 -- 

The area indicated by pk_rtsk returns the following information. 
Offset Size   
+0 4 exinf Extended information 
+4 2 tskpri Current task priority level 
+8 4(U) tskstat Task status 
+12 4(U) tskwait Reason for wait 
+16 2 wid Wait object ID 
+20 4 wupcnt Number of queued wakeup requests 
+24 4 tskatr Task attributes 
+28 4 task Task starting address 
+32 2 tskpri Initial task priority 
+36 4 stksz Stack size 
+40 4(U) epndptn Pending exception class pattern 

U: unsigned data. 

 [( Calling by the C language )] 
#include <mr32r.h> 
ER ref_tsk (pk_rtsk,tskid); 

<< Argument >> 

ID tskid; The ID No. of the task to Reference Task 
T_RTSK ∗pk_rtsk; Packet address to Reference Task 

<< Return value >> 

An error code is returned as the return value of a function. 
The structure indicated by pk_rtsk returns the following data. 
 typedef struct t_rtsk { 
  VP exinf;  /* Extended information */ 
  PR tskpri;  /* Current task priority level */ 
  UH tskstat; /* Task status */ 
  UINT tskwait; /* Reason for wait */ 
  ID wid;  /* Wait object ID */  
  INT wupcnt;  /* Number of queued wakeup requests */ 
  ATR tskatr;  /* Task attributes */ 
  FP task;  /* Task starting address */ 
  PRI itskpri; /* Initial task priority */ 



 

2.1.17 ref_tsk(Refer Task Status) 38

  INT stksz;  /* Stack size */ 
  UW epndptn; /* Pending exception class pattern */ 
} T_RTSK; 

[( Error codes )] 
E_OK   00000000H(-H’00000000): Normal End 
E_NOEXS  0FFFFFFCCH(-H’00000034): Object does not exist 

[( Function description )] 

Refers to the status of the task indicated by tskid then returns the following task information 
as return values. 

 exinf 

Returns extended task information in exinf 

 tskpri 

Returns the task priority level in tskpri 

 tskstat 

Returns a value corresponding to the status of the specified task in tskstat 

TTS_RUN (00000001H) RUN state 
TTS_RDY (00000002H) READY state 
TTS_WAI (00000004H) WAIT state 
TTS_SUS (00000008H) SUSPEND state 
TTS_WAS (0000000CH) WAIT-SUSPEND state 
TTS_DMT (00000010H) DORMANT state 

 tskwait 

If the target task is in the wait state, the cause of the wait is returned in tskwait. The 
following shows the values of the respective causes. 

TTW_SLP (00000001H)  Waiting with slp_tsk or tslp_tsk 
TTW_DLY (00000002H)  Waiting with dly_tsk 
TTW_FLG (00000010H)  Waiting with wai_flg or twai_flg 
TTW_SEM (00000020H)  Waiting with wai_sem or twai_sem 
TTW_MBX (00000040H)  Waiting with rcv_msg or trcv_msg 
TTW_SMBF (00000080H)  Waiting with snd_mbf or tsnd_mbf 
TTW_MBF (00000100H)  Waiting with rcv_mbf or trcv_mbf 
TTW_CAL (00000200H)  Waiting with cal_pol or tcal_pol 
TTW_ACP (00000400H)  Waiting with acp_pol or tacp_pol 
TTW_RDV (00000800H)  Waiting with Rendezvous 
TTW_MPL (00001000H)  Waiting with get_blk or tget_blk 
TTW_MPF (00002000H)  Waiting with get_blf or tget_blf 
TTW_VMBX (00004000H) Waiting with vrcv_mbx or vtrcv_mbx 

 wid 

If the target task is in the wait state, its object ID No. is returned in wid. 

 wupcnt 

 

 tskatr 

Returns the attribute of the task.It means whther the stack area of the task is internal 
RAM(__MR_INT=0) or external RAM(MR_EXT=0x10000). 



 

2.1.17 ref_tsk(Refer Task Status) 

 

39

 task 

Returns the entry address of the task. 

 itskpri 

Returns the priority of the task. 

 stksz 

Returns the stack size of the task. 

 epndptn 

Returns the pending pattern. It means the information of exception mask and the 
information of exception pending.11 

epndptn mean 

EXM_SET 00000001H exception mask is set 

EXP_TER 00000002H forced end request is pending 

EXP_FEX 00000004H forced exception request is pending 

A task may specify itself by specifying tskid = TSK_SELF = 0. Note, however, an interrupt 
handler cannot specify itself by specifying tskid = TSK_SELF. 

If ref_tsk is issued by the interrupt handler targeting the interrupted task the RUN status 
(TTS_RUN) is returned in tskstat. If the task is in NON-EXISTENT state, the system returns 
an error E_NOEXS to the system call issued task. 

This system call can be issued from both tasks and handlers. 

[( Usage example )] 
<< Usage example of the C language >> 
 
#include <mr32r.h> 
#include “id.h” 
void task() 
{ 

T_RTSK rtsk; 
    : 
ref_tsk( &rtsk, ID_main ); 
    : 

} 
 
<< Usage example of the assembly language(CC32R) >> 
 

.include  “mr32r.inc” 

.global task 
task: 
 ld24       R2,#rtsk 
 ref_tsk   ID_task2 
       : 
 
<< Usage example of the assembly language(TW32R:DCC/M32R) >> 
 

.include  “mr32r.inc” 

.global task 
task: 
 ld24       R2,#rtsk 
 ref_tsk   ID_task2 
       : 

                                                      
11If you specify “YES” as exc_handler in configuration file, indeterminate value is returned. 



 

2.2.1 sus_tsk(Suspend Task) 40

2.2. Synchronization Functions Attached to Task 
2.2.1. sus_tsk(Suspend Task) 

[( System call name )] 

sus_tsk → Puts a task in the SUSPEND state. 

 [( Calling by the assembly language )] 
.include “mr32r.inc” 
sus_tsk      tskid 

<< Argument >> 

tskid [  ∗∗  ] The ID No. of the task to be put in the SUSPEND 
state 

<< Register setting >> 
Register name Contents after system call issuance 

R0 Error code 
R1 The ID No. of the task to be put in the 

SUSPEND state 
R2 -- 
R3 -- 

[( Calling by the C language )] 
#include <mr32r.h> 
ER sus_tsk (tskid); 

<< Argument >> 

ID tskid; The ID No. of the task to be put in the SUSPEND 
state 

<< Return value >> 

An error code is returned as the return value of a function. 

[( Error codes )] 
E_OK   00000000H(-H’00000000): Normal End 
E_QOVR  0FFFFFFB7H(-H’00000049): Queuing or nest overflow 
E_NOEXS  0FFFFFFCCH(-H’00000034): Object does not exist 
E_OBJ  0FFFFFFC1H(-H’0000003f): Invalid object state 

[( Function description )] 

This system call discontinues the execution of the task specified by tskid and puts it in the 
SUSPEND state. 

The SUSPEND state is cleared by issuing the rsm_tsk system call. When the task specified 
by tskid is in the DORMANT state, error E_OBJ is returned as the system call return value. If 
the task is in NON-EXISTENT state, the system returns an error E_NOEXS to the system 
call issued task. 

The SUSPEND request nesting by this system call is not performed. Therefore, when the 
task specified by tskid is in the SUSPEND state, error E_QOVR is returned as the system 
call return value. 

This system call cannot specify the own task. 

This system call can be issued only from tasks. The system call which be issued from the 
interrupt handler, the cyclic handler, or the alarm handler is the isus_tsk. 



 

2.2.1 sus_tsk(Suspend Task) 

 

41

[( Usage example )] 
<< Usage example of the C language >> 
 
#include <mr32r.h> 
#include “id.h” 
void task() 
{ 

  : 
if( sus_tsk( ID_main ) != E_OK ) 

printf(“Can’t suspend task main()\n”); 
  : 

} 
 
<< Usage example of the assembly language(CC32R) >> 
 

.include “mr32r.inc” 

.global   task 
task: 
  : 
 sus_tsk    ID_task2 
  : 
 
<< Usage example of the assembly language(TW32R:DCC/M32R) >> 
 

.include “mr32r.inc” 

.global   task 
task: 
  : 
 sus_tsk    ID_task2 
  : 



 

2.2.2 isus_tsk(Suspend Task) 42

2.2.2. isus_tsk(Suspend Task) 

[( System call name )] 

isus_tsk → Puts a task in the SUSPEND state (for the handler 
only) 

 [( Calling by the assembly language )] 
.include “mr32r.inc” 
isus_tsk      tskid 

<< Argument >> 

tskid [  ∗∗  ] The ID No. of the task to be put in the SUSPEND 
state 

<< Register setting >> 
Register name Contents after system call issuance 

R0 Error code 
R1 The ID No. of the task to be put in the 

SUSPEND state 
R2 -- 
R3 -- 

[( Calling by the C language )] 
#include <mr32r.h> 
ER isus_tsk (tskid); 

<< Argument >> 

ID tskid; The ID No. of the task to be put in the SUSPEND 
state 

<< Return value >> 

An error code is returned as the return value of a function. 

[( Error codes )] 
E_OK   00000000H(-H’00000000): Normal End 
E_QOVR  0FFFFFFB7H(-H’00000049): Queuing or nest overflow 
E_NOEXS  0FFFFFFCCH(-H’00000034): Object does not exist 
E_OBJ  0FFFFFFC1H(-H’0000003f): Invalid object state 

[( Function description )] 

This system call is issued from the interrupt handler, the cyclic handler, or the alarm handler 
to provide the same functions as the sus_tsk system call. 

Since this is a system call from a handler, it allows you to specify any task ID. Therefore, this 
system call be used to suspend an interrupted task. 



 

2.2.2 isus_tsk(Suspend Task) 

 

43

 [( Usage example )] 
<< Usage example of the C language >> 
 
#include <mr32r.h> 
#include “id.h” 
void inthand() 
{ 

  : 
if( isus_tsk( ID_main ) != E_OK ) 

printf(“Can’t suspend main()\n”); 
  : 

} 
 
<< Usage example of the assembly language(CC32R) >> 
 

.include “mr32r.inc” 

.global   intr 
intr: 
  : 
 isus_tsk   ID_main 
  : 

ret_int 
 
<< Usage example of the assembly language(TW32R:DCC/M32R) >> 
 

.include “mr32r.inc” 

.global   intr 
intr: 
  : 
 isus_tsk   ID_main 
  : 

ret_int 



 

2.2.3 rsm_tsk(Resume Task) 44

2.2.3. rsm_tsk(Resume Task) 

[( System call name )] 

rsm_tsk → Resumes the task in the SUSPEND state. 

 [( Calling by the assembly language )] 
.include “mr32r.inc” 
rsm_tsk      tskid 

<< Argument >> 

tskid [  ∗∗  ] The ID No. of the task to be taken from the 
SUSPEND state 

<< Register setting >> 
Register name Contents after system call issuance 

R0 Error code 
R1 The ID No. of the task to be taken from the 

SUSPEND state 
R2 -- 
R3 -- 

[( Calling by the C language )] 
#include <mr32r.h> 
ER rsm_tsk (tskid); 

<< Argument >> 

ID tskid; The ID No. of the task to be taken from the 
SUSPEND state 

<< Return value >> 

An error code is returned as the return value of a function. 

[( Error codes )] 
E_OK   00000000H(-H’00000000): Normal End 
E_NOEXS  0FFFFFFCCH(-H’00000034): Object does not exist 
E_OBJ  0FFFFFFC1H(-H’0000003f): Invalid object state 

[( Function description )] 

If the task indicated by tskid has been suspended by sus_tsk system call, this system call 
clears its forced wait state and restarts execution of the task. In this case, the task is linked 
at the tail of the ready queue. 

For the request issued when the task is not in forced waiting (SUSPEND) or the DORMANT 
state, error code E_OBJ is returned to the task which issued the system call. If the task is in 
NON-EXISTENT state, the system returns an error E_NOEXS to the system call issued task. 

Since this system call is intended for tasks in forced waiting (SUSPEND) or double waiting 
(WAIT-SUSPEND) states, it cannot be used to specify the own task. 

This system call can be issued only from tasks. The system call which be issued from the 
interrupt handler, the cyclic handler, or the alarm handler is the irsm_tsk. 



 

2.2.3 rsm_tsk(Resume Task) 

 

45

[( Usage example )] 
<< Usage example of the C language >> 
 
#include <mr32r.h> 
#include “id.h” 
void task() 
{ 

  : 
if( rsm_tsk( ID_main ) != E_OK ) 

printf(“Can’t resume main()\n”); 
  : 

} 
 
<< Usage example of the assembly language(CC32R) >> 
 
 .include “mr32r.inc” 

.global   task 
task: 
  : 
 rsm_tsk    ID_task2 
  : 
 
<< Usage example of the assembly language(TW32R:DCC/M32R) >> 
 
 .include “mr32r.inc” 

.global   task 
task: 
  : 
 rsm_tsk    ID_task2 
  : 



 

2.2.4 irsm_tsk(Resume Task) 46

2.2.4. irsm_tsk(Resume Task) 

[( System call name )] 

irsm_tsk → Resumes the task in the SUSPEND state (for the 
handler only). 

 [( Calling by the assembly language )] 
.include “mr32r.inc” 
irsm_tsk      tskid 

<< Argument >> 

tskid [  ∗∗  ] The ID No. of the task to be taken from the 
SUSPEND state 

<< Register setting >> 
Register name Contents after system call issuance 

R0 Error code 
R1 The ID No. of the task to be taken from the SUSPEND 

state 
R2 -- 
R3 -- 

[( Calling by the C language )] 
#include <mr32r.h> 
ER irsm_tsk (tskid); 

<< Argument >> 

ID tskid; The ID No. of the task to be taken from the 
SUSPEND state 

<< Return value >> 

An error code is returned as the return value of a function. 

[( Error codes )] 
E_OK   00000000H(-H’00000000): Normal End 
E_NOEXS  0FFFFFFCCH(-H’00000034): Object does not exist 
E_OBJ  0FFFFFFC1H(-H’0000003f): Invalid object state 

[( Function description )] 

This system call is issued from the interrupt handler, the cyclic handler, or the alarm handler 
to provide the same functions as the rsm_tsk system call. 



 

2.2.4 irsm_tsk(Resume Task) 

 

47

 [( Usage example )] 
<< Usage example of the C language >> 
 
#include <mr32r.h> 
#include “id.h” 
void inthand() 
{ 
  : 

irsm_tsk( ID_main ); 
  : 
} 
 
<< Usage example of the assembly language(CC32R) >> 
 

.include “mr32r.inc” 

.global   intr 
intr: 

 : 
irsm_tsk   ID_main 

 : 
 
<< Usage example of the assembly language(TW32R:DCC/M32R) >> 
 

.include “mr32r.inc” 

.global   intr 
intr: 

 : 
irsm_tsk   ID_main 

 : 



 

2.2.5 slp_tsk(Sleep Task) 48

2.2.5. slp_tsk(Sleep Task) 

[( System call name )] 

slp_tsk → Puts the task in the WAIT state. 

 [( Calling by the assembly language )] 
.include “mr32r.inc” 
slp_tsk 

<< Argument >> 

None 

<< Register setting >> 
Register name Contents after system call issuance 

R0 Error code 
R1 -- 
R2 -- 
R3 -- 

[( Calling by the C language )] 
#include <mr32r.h> 
ER slp_tsk (); 

<< Argument >> 

None 

<< Return value >> 

An error code is returned as the return value of a function. 

[( Error codes )] 
E_OK   00000000H(-H’00000000): Normal End 
E_RLWAI  0FFFFFFAAH(-H’00000056): Wait state forcibly 

    cleared 

[( Function description )] 

This system call puts the self task from the RUN state to the WAIT state. The WAIT state is 
cleared by the system call of the task wakeup issued for this task12 or the system call which 
forcibly clears the WAIT state. 13 In the former, error code E_OK is returned; in the latter, 
error code E_RLWAI is returned.  

When a task put in the WAIT state by slp_tsk is suspended (sus_tsk) by another task, that 
task is put in the WAIT-SUSPEND state. In this case, the task is still in the SUSPEND state 
even if the WAIT state is cleared by the system call of task wakeup and the execution of the 
task is not resumed until the rsm_tsk system call is issued. 

This system call can only be issued from tasks, and cannot be issued from the interrupt 
handler, cyclic handler, or alarm handler. 

                                                      
12 wup_tsk,iwup_tsk System call 
13 rel_wai,irel_wai System call 



 

2.2.5 slp_tsk(Sleep Task) 

 

49

 

[( Usage example )] 
<< Usage example of the C language >> 
 
#include <mr32r.h> 
#include “id.h” 
void task() 
{ 
   : 

if( slp_tsk() != E_OK ) 
error(“Forced wakeup\n”); 

   : 
} 
 
<< Usage example of the assembly language(CC32R) >> 
 

.INCLUDE “mr32r.inc” 

.GLOBAL   task 
task: 

 : 
slp_tsk 
 : 

 
<< Usage example of the assembly language(TW32R:DCC/M32R) >> 
 

.INCLUDE “mr32r.inc” 

.GLOBAL   task 
task: 

 : 
slp_tsk 
 : 



 

2.2.6 tslp_tsk(Sleep Task with Timeout) 50

2.2.6. tslp_tsk(Sleep Task with Timeout) 

[( System call name )] 

tslp_tsk → Switches the task to the fixed-time wait state 

 [( Calling by the assembly language )] 
.include “mr32r.inc” 
tslp_tsk    tmout 

<< Argument >> 

tmout [∗∗∗∗] Timeout value 

<< Register setting >> 
Register name Contents after system call issuance 

R0 Error code 
R1 -- 
R2 -- 
R3 -- 
R4 Timeout value 

[( Calling by the C language )] 
#include <mr32r.h> 
ER tslp_tsk (tmout); 

<< Argument >> 

TMO tmout; Timeout value 

<< Return value >> 

An error code is returned as the return value of a function. 

[( Error codes )] 
E_OK   00000000H(-H’00000000): Normal End 
E_TMOUT  0FFFFFFABH(-H’00000055): Polling failed or timeout 
E_RLWAI  0FFFFFFAAH(-H’00000056): Wait state forcibly 

    cleared 



 

2.2.6 tslp_tsk(Sleep Task with Timeout) 

 

51

[( Function description )] 

Switches the task from the (RUN) status in which it runs for the specified time only to the 
WAIT state. 

A wait state invoked by this system call is cancelled in the following cases:  

 When a system call14 to start a task is invoked from another task or interrupt. 

Error code E_OK is returned. 

 When a system call15 to forcibly cancel the wait state is invoked from another task or 
interrupt. 

Error code E_RLWAI is returned. 

 When the tmout time elapses without the wait cancellation condition being satisfied 

Error code E_TMOUT is returned. 

The unit of time specified in tmout is the unit of time of the system clock, specified in the 
configuration file. 

tslp_tsk(10); 

For example, if it is 10ms and the following is written in the program the own task is placed 
from the execution (RUN) state into a wait (WAIT) state and held in that state for 100 ms. 

You can specify a timeout (tmout) of -1 to 0x7FFFFFF. Specifying TMO_FEVR = -1 can be 
used to set the timeout period to forever (no timeout). In this case, tslp_tsk will function 
exactly the same as slp_tsk causing the issuing task to wait forever for wup_tsk to be issued. 

This system call can only be issued from tasks, and cannot be issued from the interrupt 
handler, cyclic handler, or alarm handler. 

                                                      
14 wup_tsk, iwup_tsk System call 
15 rel_wai, irel_wai System call 



 

2.2.6 tslp_tsk(Sleep Task with Timeout) 52

 

[( Usage example )] 
<< Usage example of the C language >> 
 
#include <mr32r.h> 
#include “id.h” 
void task() 
{ 
   : 
 if( tslp_tsk( 10 ) != E_TMOUT ) 
  printf(“Forced wakeup\n”); 
   : 
} 
 
<< Usage example of the assembly language(CC32R) >> 
 
 .include “mr32r.inc” 
 .global task 
task: 
  : 
 tslp_tsk   200 
  : 
 
<< Usage example of the assembly language(TW32R:DCC/M32R) >> 
 
 .include “mr32r.inc” 
 .global task 
task: 
  : 
 tslp_tsk   200 
  : 



 

2.2.7 wup_tsk(Wakeup Task) 

 

53

2.2.7. wup_tsk(Wakeup Task) 

[( System call name )] 

wup_tsk → Wakes up the task in the wait state. 

 [( Calling by the assembly language )] 
.include “mr32r.inc” 
wup_tsk      tskid 

<< Argument >> 

tskid [  ∗∗  ] The ID No. of the task to be waked up 

<< Register setting >> 
Register name Contents after system call issuance 

R0 Error code 
R1 The ID No. of the task to be waked up 
R2 -- 
R3 -- 

[( Calling by the C language )] 
#include <mr32r.h> 
ER wup_tsk (tskid); 

<< Argument >> 

ID tskid; The ID No. of the task to be waked up 

<< Return value >> 

An error code is returned as the return value of a function. 

[( Error codes )] 
E_OK   00000000H(-H’00000000): Normal End 
E_QOVR  0FFFFFFB7H(-H’00000049): Queuing or nest overflow 
E_NOEXS  0FFFFFFCCH(-H’00000034): Object does not exist 
E_OBJ  0FFFFFFC1H(-H’0000003f): Invalid object state 



 

2.2.7 wup_tsk(Wakeup Task) 54

[( Function description )] 

If the task specified by tskid is in a wait (WAIT) state entered by execution of slp_tsk,tslp_tsk 
this system call clears the task's wait state to place it in an executable (READY) or execution 
(RUN) state. Also, if the task specified by tskid is in a double-wait (WAIT-SUSPEND) state, 
the system call only clears the wait state and places the task in a forced wait (SUSPEND) 
state. 

For a request issued when the task is in an idle (DORMANT) state, an error E_OBJ is 
returned to the system call issued task. If the task is in NON-EXISTENT state, the system 
returns an error E_NOEXS to the system call issued task. 

Note also that this system call cannot specify the own task. 

If this system call is issued for tasks that are not in a wait (WAIT) state entered by execution 
of slp_tsk, tslp_tsk or a double-wait (WAIT-SUSPEND) state, wakeup requests are 
accumulated. More specifically, the wakeup request count in the TCB16 of the task is 
incremented by 117 

The maximum value of the wakeup request count is 0x7FFFFFFF. If a wakeup request is 
issued beyond 0x7FFFFFFF, the count remains 0x7FFFFFFF and error code E_QOVR is 
returned to the task which issued this system call. 

This system call can be issued only from tasks. The system call cannot be issued from the 
interrupt handler, the cyclic handler, or the alarm handler is the iwup_tsk. 

[( Usage example )] 
<< Usage example of the C language >> 
 
#include <mr32r.h> 
#include “id.h” 
void task() 
{ 
   : 
 if( wup_tsk( ID_main ) != E_OK ) 
  printf(“Can’t wakeup main()\n”); 
   : 
} 
 
<< Usage example of the assembly language(CC32R) >> 
 
 .include “mr32r.inc” 
 .global   task 
task: 
  : 
 wup_tsk    ID_task2 
  : 
 
 
<< Usage example of the assembly language(TW32R:DCC/M32R) >> 
 .include “mr32r.inc” 
 .global   task 
task: 
  : 
 wup_tsk    ID_task2 
  : 

                                                      
16 Task Control Block. 
17 This wakeup request count stores the counts of wakeup requests that have not been serviced because the 
intended task was not in a wait (WAIT) or a double-wait (WAIT-SUSPEND) state when the wup_tsk or iwup_tsk 
system call was issued to wake it up. If the task is being placed in a wait state by a slp_tsk system call when the 
wakeup request count is more than 1, the wakeup request count is decremented by 1. In this case, the task does 
not actually enter the wait (WAIT) state. Tasks can only be placed in a wait (WAIT) state by a slp_tsk system call 
when the wakeup request count is 0. 
 



 

2.2.8 iwup_tsk(Wakeup Task) 

 

55

2.2.8. iwup_tsk(Wakeup Task) 

[( System call name )] 

iwup_tsk → Wakes up the task in the wait state (for the handler 
only). 

 [( Calling by the assembly language )] 
.include “mr32r.inc” 
iwup_tsk      tskid 

<< Argument >> 

tskid [  ∗∗  ] The ID No. of the task to be waked up 

<< Register setting >> 
Register name Contents after system call issuance 

R0 Error code 
R1 The ID No. of the task to be waked up 
R2 -- 
R3 -- 

[( Calling by the C language )] 
#include <mr32r.h> 
ER iwup_tsk (tskid); 

<< Argument >> 

ID tskid; The ID No. of the task to be waked up 

<< Return value >> 

An error code is returned as the return value of a function. 

[( Error codes )] 
E_OK   00000000H(-H’00000000): Normal End 
E_QOVR  0FFFFFFB7H(-H’00000049): Queuing or nest overflow 
E_NOEXS  0FFFFFFCCH(-H’00000034): Object does not exist 
E_OBJ  0FFFFFFC1H(-H’0000003f): Invalid object state 

[( Function description )] 

This system call is issued from the interrupt handler, the cyclic handler, or the alarm handler 
to provide the same functions as the wup_tsk system call. 



 

2.2.8 iwup_tsk(Wakeup Task) 56

 [( Usage example )] 
<< Usage example of the C language >> 
 
#include <mr32r.h> 
#include “id.h” 
void inthand() 
{ 
 if( iwup_tsk( ID_main ) != E_OK ) 
  printf(“Can’t wakeup main()\n”); 
   : 
} 
 
<< Usage example of the assembly language(CC32R) >> 
 

.include “mr32r.inc” 

.global   intr 
intr: 
  : 
 iwup_tsk   ID_main 
  : 

ret_int 
 
<< Usage example of the assembly language(TW32R:DCC/M32R) >> 
 
.include “mr32r.inc” 
.global   intr 

intr: 
  : 
 iwup_tsk   ID_main 
  : 

ret_int 



 

2.2.9 can_wup(Cancel Wakeup Task) 

 

57

2.2.9. can_wup(Cancel Wakeup Task) 

[( System call name )] 

can_wup → Cancels a task wakeup request. 

 [( Calling by the assembly language )] 
.include “mr32r.inc” 
can_wup      tskid 

<< Argument >> 

tskid [  ∗∗  ] The ID No. of the task whose wakeup request is to be 
canceled 

<< Register setting >> 
Register name Contents after system call issuance 

R0 Error code 
R1 The ID No. of the task whose wakeup request is to 

be canceled 
R2 The variable to store the count of canceled wakeup 
R3 -- 

[( Calling by the C language )] 
#include <mr32r.h> 
ER can_wup (p_wupcnt,tskid); 

<< Argument >> 

INT *p_wupcnt; The variable to store the count of canceled wakeup 
ID tskid; The ID No. of the task whose wakeup request is to be 

canceled 

<< Return value >> 

An error code is returned as the return value of a function. 
The count of canceled wakeup requests is set to variable wupcnt. 

[( Error codes )] 
E_OK   00000000H(-H’00000000): Normal End 
E_NOEXS  0FFFFFFCCH(-H’00000034): Object does not exist 
E_OBJ  0FFFFFFC1H(-H’0000003f): Invalid object state 

[( Function description )] 

This system call clears the wakeup request count for the task specified by tskid to zero. In 
other words, because the task to be waked up by the wup_tsk, or iwup_tsk system call 
before issuing the can_wup system call was not in the WAIT or WAIT-SUSPEND state, the 
can_wup system call clears all the accu- mulated wakeup requests. For the return value of 
this system call, the wakeup request count before being cleared to zero, namely the 
canceled wakeup request count, is returned.  

For the request issued when the task whose wakeup request is to be canceled is in the 
DORMANT state, error code E_OBJ is returned to the task which issued this system call. If 
the task is in NON-EXISTENT state, the system returns an error E_NOEXS to the system 
call issued task. 

When issued from only the task, this system call can tskid=TSK_SELF=0 as the own task. 

This system call can be issued from either tasks or handlers. 



 

2.2.9 can_wup(Cancel Wakeup Task) 58

[( Usage example )] 
<< Usage example of the C language >> 
 
#include <mr32r.h> 
void task() 
{ 

INT wupcnt; 
   : 

if( can_wup(&wupcnt,ID_main) != E_OK ) 
printf(“Can’t cancle wakeup main() \n”); 

  : 
} 
 
<< Usage example of the assembly language(CC32R) >> 
 

.include “mr32r.inc” 

.global   task 
task: 
  : 
 can_wup    ID_task2 
  : 
 
<< Usage example of the assembly language(TW32R:DCC/M32R) >> 
 

.include “mr32r.inc” 

.global   task 
task: 
  : 
 can_wup    ID_task2 
  : 



 

2.3.1 cre_flg(Create EventFlag) 

 

59

2.3. Eventflags 
2.3.1. cre_flg(Create EventFlag) 

[( System call name )] 

cre_tsk → Create Eventflag 

 [( Calling by the assembly language )] 
.include “mr32r.inc” 
cre_flg      flgid 

<< Argument >> 

flgid [  ∗∗  ] The ID No. of an eventflag to be created 
pk_cflg  [∗∗∗∗] The start address in which the eventflag generation 

information is stored 
(Set the address in the R2 register.) 

<< Register setting >> 
Register name Contents after system call issuance 

R0 Error code 
R1 The ID No. of an eventflag to be created 
R2 The start address in which the eventflag  

generation information is stored 
R3 -- 

Specify the following information in the structure indicased by pk_cflg. 
Offset Size   
+0 4 exinf Extended information 
+4 4 flgatr Eventflag attribute 
+8 4(U) iflgptn Initial eventflag pattern 

U: unsigned data.  

[( Calling by the C language )] 
#include <mr32r.h> 
ER cre_flg (flgid, pk_cflg); 

<< Argument >> 

ID flgid; The ID No. of an eventflag to be created 
T_CFLG *pk_cflg; The start address in which the eventflag generation 

information is stored 
Specify the following information in the structure indicased by pk_cflg. 
 typedef struct t_cflg { 
  VP exinf; /* Extended information */ 
  ATR flgatr; /* Task attribute */ 
  UINT iflgptn; /* Initial eventflag pattern */ 
 } T_CFLG; 

<< Return value >> 

An error code is returned as the return value of a function. 

 [( Error codes )] 
E_OK   00000000H(-H’00000000): Normal End 
E_OBJ  0FFFFFFC1H(-H’0000003f): Invalid object state 



 

2.3.1 cre_flg(Create EventFlag) 60

[( Function description )] 

Creates an eventflag flgid indicates. 

The created eventflag consists of 32bits bit-pattern and is initialized as the value of iflgptn. 

Here follows explanation of the information as to an eventflag to be generated pk_cflg. 

 exinf (extended information) 

Exinf is an area you can freely use to store information as to an eventflag to be 
generated. MR32R has nothing to do with the exinf's contents. 

 flgatr (eventflag attribute) 

MR32R has nothing to do with this contents. 

 iflgptn 

Set the initial bit-pattern of in this area when eventflag is created.  

Error E_OBJ is returned if this system call is issued for a created eventflag. 

The range of the specifiable ID number is 1 to the maximum value specified in the 
configuration file.  

You can issue this system call exclusively from a task. This system call, if issued either from 
the interrupt handler, the cyclic handler or the alarm handler, doesn't work properly. 



 

2.3.1 cre_flg(Create EventFlag) 

 

61

[( Usage example )] 
<< Usage example of the C language >> 
 
#include <mr32r.h> 
#include “id.h” 
#define ID_flg1 1 
#define ID_flg2 2 
void task1() 
{ 
 T_CFLG cflg1; 
 T_CFLG cflg2=-0,0,0xfff”; 
   : 
 cflg1.iflgptn = 0xff; 
 cre_flg( ID_flg1, &cflg1 ); 
   : 
} 
 
<< Usage example of the assembly language(CC32R) >> 
 
cflg1: .RES.B 12 
cflg2: .RES.B 12 
ID_flg1: .equ 1 
ID_flg2: .equ 2 
 .include “mr32r.inc” 
 .global   task1 
task1: 
  : 
 ld24     R2,#cflg1 
 ld24     R1,#H’FF 
 st       R1,@(8,R2) 

cre_flg ID_flg1 
  : 
 ld24     R2,#cflg2 
 ld24     R1,#H’FFF 
 st       R1,@(8,R2) 
 cre_flg ID_flg2 
  : 
 ext_tsk 
 
<< Usage example of the assembly language(TW32R:DCC/M32R) >> 
 
cflg1: .space 12 
cflg2: .space 12 
 .equ   ID_flg1,1 
 .equ   ID_flg2,2 
 .include “mr32r.inc” 
 .global   task1 
task1: 
  : 
 ld24     R2,#cflg1 
 ld24     R1,#0xFF 
 st       R1,@(8,R2) 

cre_flg ID_flg1 
  : 
 ld24     R2,#cflg2 
 ld24     R1,#0xFFF 
 st       R1,@(8,R2) 
 cre_flg ID_flg2 
  : 
 ext_tsk 



 

2.3.2 del_flg(Delete EventFlag) 62

2.3.2. del_flg(Delete EventFlag) 

[( System call name )] 

del_flg → Delete Eventflag 

 [( Calling by the assembly language )] 
.include “mr32r.inc” 
del_flg      flgid 

<< Argument >> 

flgid [  ∗∗  ] The ID No. of an eventflag to be deleted 

<< Register setting >> 
Register name Contents after system call issuance 

R0 Error code 
R1 The ID No. of an eventflag to be deleted 
R2 -- 
R3 -- 

[( Calling by the C language )] 
#include <mr32r.h> 
ER del_flg ( flgid ); 

<< Argument >> 

ID flgid; The ID No. of an eventflag to be deleted 

<< Return value >> 

An error code is returned as the return value of a function. 

[( Error codes )] 
E_OK   00000000H(-H’00000000): Normal End 
E_NOEXS  0FFFFFFCCH(-H’00000034): Object does not exist 

[( Function description )] 

del_flg deletes the eventflag flgid indicates. 

You can create the eventflag deleted as the same ID again.If the task is linked to the 
eventflag wait queue and del_flg is issued for the eventflag,this system call normally end.In 
this case,del_flg moves the task WAIT state to READY state.And an error E_DLT is returned. 

An error E_NOEXS is returned if this system call is issued for a nonexistent eventflag. 

Make sure this system call is issued for only the eventflag that has been created by the 
cre_flg system call. If this system call is issued for the eventflag that has defined by the 
configuration file, it does not function normally.  

You can issue this system call exclusively from a task. This system call, if issued either from 
the interrupt handler, the cyclic handler or the alarm handler, doesn't work properly. 



 

2.3.2 del_flg(Delete EventFlag) 

 

63

[( Usage example )] 
<< Usage example of the C language >> 
 
#include <mr32r.h> 
#include “id.h” 
#define ID_flg2 2 
void task1() 
{ 
  : 

del_flg( ID_flg2 ); 
  : 

ext_tsk(); 
} 
 
<< Usage example of the assembly language(CC32R) >> 
 
ID_flg2: .equ 2 
 .include “mr32r.inc” 
 .global   task1 
task1: 
  : 
 del_flg   ID_flg2 
  : 

ext_tsk 
 
<< Usage example of the assembly language(TW32R:DCC/M32R) >> 
 
 .equ ID_flg2,2 
 .include “mr32r.inc” 
 .global   task1 
task1: 
  : 
 del_flg   ID_flg2 
  : 

ext_tsk 



 

2.3.3 set_flg(Set EventFlag) 64

2.3.3. set_flg(Set EventFlag) 

[( System call name )] 

set_flg → Sets an eventflag. 

 [( Calling by the assembly language )] 
.include “mr32r.inc” 
set_flg      flgid, setptn 

<< Argument >> 

flgid [  ∗∗  ] The ID No. of the eventflag to be set 
setptn [∗∗∗∗∗] The bit pattern to be set 

<< Register setting >> 
Register name Contents after system call issuance 

R0 Error code 
R1 The ID No. of the eventflag to be set 
R2 The bit pattern to be set 
R3 -- 

[( Calling by the C language )] 
#include <mr32r.h> 
ER set_flg (flgid, setptn); 

<< Argument >> 

ID flgid; The ID No. of the eventflag to be set 
UINT setptn; The bit pattern to be set 

<< Return value >> 

E_OK is always returned as the return value of a function. 

[( Error codes )] 
E_OK   00000000H(-H’00000000): Normal End 
E_NOEXS  0FFFFFFCCH(-H’00000034): Object does not exist 

[( Function description )] 

Among the 32-bit eventflags indicated by flgid, this system call sets the bit that is indicated 
by setptn. Namely, it logical OR's the value of the eventflags indicated by flgid with 
setptn.After the eventflag value is changed,set_flg system call moves the task WAIT state to 
READY or RUN state if it’s wait condition is matched.18 

Multiple tasks can be kept waiting for the same eventflag. In this case, the multiple tasks can 
be simultaneously freed from a wait state by one issuance of a set_flg system call. However, 
if a task in a waiting queue was waiting for the eventflag to be set by a clear specification, all 
tasks up to that task are freed from the wait state. 

If all bits in setptn are set to 0, no operation will be performed on the eventflag concerned; 
but this does not result in an error. 

An error E_NOEXS is returned if this system call is issued for a nonexistent eventflag. 

This system call can be issued only from tasks. The system call which be issued from the 
interrupt handler, the cyclic handler, or the alarm handler is the iset_flg system call. 

 

                                                      
18 Whether the task is moved to READY state or RUN state depends on the state of the ready queue. 



 

2.3.3 set_flg(Set EventFlag) 

 

65

[( Usage example )] 

If the eventflag pattern before issuing this system call was 0xff, the pattern after this system call 
becomes 0xffff. 

 
<< Usage example of the C language >> 
 
#include <mr32r.h> 
#include “id.h” 
void task(void) 
{ 
   : 
 set_flg( ID_flg,(UINT)0xff00 ); 
   : 
 ext_tsk(); 
} 
 
<< Usage example of the assembly language(CC32R) >> 
 
 .include “mr32r.inc” 
 .global   task 
task: 
  : 
 set_flg    ID_flg,0x0ff00 
  : 
 ext_tsk 
 
<< Usage example of the assembly language(TW32R:DCC/M32R) >> 
 
 .include “mr32r.inc” 
 .global   task 
task: 
  : 
 set_flg    ID_flg,0x0ff00 
  : 
 ext_tsk 



 

2.3.4 iset_flg(Set EventFlag) 66

2.3.4. iset_flg(Set EventFlag) 

[( System call name )] 

iset_flg → Sets an eventflag (for the handler only). 

 [( Calling by the assembly language )] 
.include “mr32r.inc” 
iset_flg      flgid, setptn 

<< Argument >> 

flgid [  ∗∗  ] The ID No. of the eventflag to be set 
setptn [∗∗∗∗] The bit pattern to be set 

<< Register setting >> 
Register name Contents after system call issuance 

R0 Error code 
R1 The ID No. of the eventflag to be set 
R2 The bit pattern to be set 
R3 -- 

[( Calling by the C language )] 
#include <mr32r.h> 
ER iset_flg (flgid, setptn); 

<< Argument >> 

ID flgid; The ID No. of the eventflag to be set 
UINT setptn; The bit pattern to be set 

<< Return value >> 

E_OK is always returned as the return value of a function. 

[( Error codes )] 
E_OK   00000000H(-H’00000000): Normal End 
E_NOEXS  0FFFFFFCCH(-H’00000034): Object does not exist 

[( Function description )] 

This system call is issued from the interrupt handler, the cyclic handler, or the alarm handler 
to provide the same functions as the set_flg system call. 

 



 

2.3.4 iset_flg(Set EventFlag) 

 

67

[( Usage example )] 

If the eventflag pattern before issuing this system call was 0xff, the pattern after this system call 
becomes 0xffff. 

 
<< Usage example of the C language >> 
 
#include <mr32r.h> 
#include “id.h” 
void inthand(void) 
{ 
  : 
 iset_flg( ID_flg, (UINT)0xff00   ); 
  : 
} 
 
<< Usage example of the assembly language(CC32R) >> 
 
 .include “mr32r.inc” 
 .global   intr 
intr: 
  : 
 iset_flg   ID_flg,H’ff00 
  : 
 ret_int 
 
<< Usage example of the assembly language(TW32R:DCC/M32R) >> 
 
 .include “mr32r.inc” 
 .global   intr 
intr: 
  : 
 iset_flg   ID_flg,0x0ff00 
  : 
 ret_int 



 

2.3.5 clr_flg(Clear EventFlag) 68

2.3.5. clr_flg(Clear EventFlag) 

[( System call name )] 

clr_flg → Clears an eventflag.  

 [( Calling by the assembly language )] 
.include “mr32r.inc” 
clr_flg      flgid, clrptn 

<< Argument >> 

flgid [  ∗∗  ] The ID No. of the eventflag to be cleared 
clrptn [∗∗∗∗] The bit pattern to be cleared 

<< Register setting >> 
Register name Contents after system call issuance 

R0 Error code 
R1 The ID No. of the eventflag to be cleared 
R2 The bit pattern to be cleared 
R3 -- 

[( Calling by the C language )] 
#include <mr32r.h> 
ER clr_flg (flgid, clrptn); 

<< Argument >> 

ID flgid; The ID No. of the eventflag to be cleared 
UINT clrptn; The bit pattern to be cleared 

<< Return value >> 

E_OK is always returned as the return value of a function. 

[( Error codes )] 
E_OK   00000000H(-H’00000000): Normal End 
E_NOEXS  0FFFFFFCCH(-H’00000034): Object does not exist 

[( Function description )] 

Among the 32-bit eventflags indicated by flgid, this system call clears the bit whose 
corresponding clrptn is zero. Namely, it logical AND's the value of the eventflags indicated by 
flgid with the value of clrptn. If all bits in clrptn are set to 1, no operation will be performed on 
the eventflag concerned; but this does not result in an error. 

An error E_NOEXS is returned if this system call is issued for a nonexistent eventflag. 

This system call can be issued from both tasks and handlers. 



 

2.3.5 clr_flg(Clear EventFlag) 

 

69

[( Usage example )] 

If the eventflag pattern issuing this system call was 0xffff, the pattern after this system call 
becomes 0xff00. 

 
<< Usage example of the C language >> 
 
#include <mr32r.h> 
#include “id.h” 
void task(void) 
{ 
  : 
 clr_flg( ID_flg, (UINT)0xff00 ); 
  : 
} 
 
<< Usage example of the assembly language(CC32R) >> 
 
 .include “mr32r.inc” 
 .global   task 
task: 
  : 

clr_flg ID_flg,H’ff00 
  : 
 
<< Usage example of the assembly language(TW32R:DCC/M32R) >> 
 
 .include “mr32r.inc” 
 .global   task 
task: 
  : 

clr_flg ID_flg,0xff00 
  : 



 

2.3.6 wai_flg(Wait EventFlag) 70

2.3.6. wai_flg(Wait EventFlag) 

[( System call name )] 

wai_flg → Waits for an eventflag.  

 [( Calling by the assembly language )] 
.include “mr32r.inc” 
wai_flg      flgid, waiptn, wfmode 

<< Argument >> 

flgid [  ∗∗  ] The ID No. of the eventflag to waited for 
waiptn [∗∗∗∗] The bit pattern to be waited for 
wfmode [∗∗∗∗] Wait mode 

<< Register setting >> 
Register name Contents after system call issuance 

R0 Error code 
R1 The ID No. of the eventflag to waited for 
R2 The bit pattern when wait state is cleared 
R3 Wait mode 

[( Calling by the C language )] 
#include <mr32r.h> 
ER wai_flg (p_flgptn, flgid, waiptn, wfmode); 

<< Argument >> 

UINT
 

*p_flgptn; Start address of area to which bit pattern is returned 
when wait state is cleared 

ID flgid; The ID No. of the eventflag to waited for 
UINT waiptn; The bit pattern to be waited for 
UINT wfmode; Wait mode 

<< Return value >> 

An error code is returned as the return value of a function. 
The bit pattern when the wait cleared to the area specified by p_flgptn. 

 [( Error codes )] 
E_OK   00000000H(-H’00000000): Normal End 
E_RLWAI  0FFFFFFAAH(-H’00000056): Wait state forcibly 

    cleared 
E_DLT   0FFFFFFAFH(-H’00000051): The object being waited for 

    was deleted 
E_NOEXS  0FFFFFFCCH(-H’00000034): Object does not exist 



 

2.3.6 wai_flg(Wait EventFlag) 

 

71

[( Function description )] 

In eventflags indicated by flgid, this system call waits until the bit specified by waiptn is set 
according to wait clear conditions indicated by wfmode. 

Specify the wait bit pattern in waiptn. Note that you cannot specify 0 (zero) in waiptn. If you 
specify 0, this system call does not perform any processing and no value is returned. 
However, in the µITRON specifications, an error E_PAR is returned, and compatibility with 
other realtime OS would therefore be compromised. 

Following specifications are made with wfmode: 

wfmode := (TWF_ANDW || TWF_ORW) | [TWF_CLR] 

TWF_ANDW AND wait 
TWF_ORW OR wait  
TWF_CLR Clear specification 

Namely, these specifications have the following effects: 

wfmode(wait mode) Effects 
TWF_ANDW Waits until all bits specified by waiptn are set. (AND wait)
TWF_ANDW+TWF_CLR Clears the eventflag value to 0 when AND wait clear 

conditions are met for the bit specified by waiptn and the 
task is freed from a wait state. 

TWF_ORW Waits until any bit specified by waiptn is set. (OR wait) 
TWF_ORW+TWF_CLR Clears the eventflag value to 0 when OR wait clear 

conditions are met for the bit specified by waiptn and the 
task is freed from a wait state. 

flgptn is a return parameter that indicates the eventflag value before a wait state is cleared 
by this system call (in the case of a clear specification, the value of the eventflag before it is 
cleared). The value returned by flgptn is a value that satisfies wait clear conditions. Multiple 
tasks can be kept waiting for the same eventflag. 

In this case, the multiple tasks can be simultaneously freed from a wait state by one 
issuance of a set_flg system call. However, if it was a task whose wait clear conditions are 
met in a waiting queue that requested a clear specification, all tasks up to that task are freed 
from the wait state. 

The eventflag forms the queue of the tasks which perform the following operations: 

 The order of queuing is FIFO (First In, First Out). 

 If the queue has the task having clear specification, the flag is cleared when that task is 
cleared of the wait. 

 Whether the tasks that follow the task having clear specification are cleared of wait or not 
depends on the eventflag already cleared. So, these tasks are not cleared of wait. 

If the wait state is forcibly cleared by the rel_wai system call issued by another task, error 
code E_RLWAI is returned. 

If the task is linked to the eventflag wait queue and del_flg is issued for the eventflag, del_flg 
system call moves the task WAIT state to READY state.And error E_DLT is returned. 

An error E_NOEXS is returned if this system call is issued for a nonexistent eventflag. 

This system call can be issued only from tasks. The system call which be issued from the 
interrupt handler, the cyclic handler, or the alarm handler is the iwup_tsk. 



 

2.3.6 wai_flg(Wait EventFlag) 72

[( Usage example )] 

In this example, the system call waits until the bit specified by an eventflag whose flag name is 
flg2 is set. The task for which the specified bit is set is freed from a wait state. 
Since the wait mode specified here is a clear specification, the eventflag flg2 is cleared to 0 
simultaneously when the task is freed from a wait state. 
 
<< Usage example of the C language >> 
 
#include <mr32r.h> 
#include “id.h” 
void task() 
{ 
 UINT flgptn; 

  : 
if(wai_flg(&flgptn,ID_flg2,(UINT)0x0ff0,TWF_ANDW+TWF_CLR)!=E_OK) 

  error(“Wait Released\n”); 
  : 

} 
 
<< Usage example of the assembly language(CC32R) >> 
 

.include “mr32r.inc” 

.global   task 
task: 
  : 
 wai_flg    ID_flg2,H’ff0,(TWF_ANDW+TWF_CLR) 
  : 
 
<< Usage example of the assembly language(TW32R:DCC/M32R) >> 
 

.include “mr32r.inc” 

.global   task 
task: 
  : 
 wai_flg    ID_flg2,0x0ff0,(TWF_ANDW+TWF_CLR) 
  : 



 

2.3.7 twai_flg(Wait EventFlag with Timeout) 

 

73

2.3.7. twai_flg(Wait EventFlag with Timeout) 

[( System call name )] 

twai_flg → Waits for an eventflag. (With Timeout) 

 [( Calling by the assembly language )] 
.include “mr32r.inc” 
twai_flg      flgid, waiptn, wfmode, tmout 

<< Argument >> 

flgid [  ∗∗  ] The ID No. of the eventflag to be waited for 
waiptn [∗∗∗∗] The bit pattern to be waited for 
wfmode [∗∗∗∗] Wait mode 
tmout [∗∗∗∗] Timeout value 

<< Register setting >> 
Register name Contents after system call issuance 

R0 Error code 
R1 The ID No. of the eventflag to be waited for 
R2 The bit pattern when wait state is cleared 
R3 Wait mode 
R4 Timeout value 

[( Calling by the C language )] 
#include <mr32r.h> 
ER twai_flg (p_flgptn, flgid, waiptn, wfmode, tmout); 

<< Argument >> 

UINT *p_flptn; Start address of area to which bit pattern is returned 
when wait state is cleared 

ID flgid; The ID No. of the eventflag to be waited for 
UINT waiptn; The bit pattern to be waited for 
UINT wfmode; Wait mode 
TMO tmout; Timeout value 

<< Return value >> 

An error code is returned as the return value of a function. 
The bit pattern when the wait cleared to the area specified by p_flgptn. 

 [( Error codes )] 
E_OK   00000000H(-H’00000000): Normal End 
E_RLWAI  0FFFFFFAAH(-H’00000056): Wait state forcibly 

    cleared 
E_TMOUT  0FFFFFFABH(-H’00000055): Polling failed or timeout 
E_DLT   0FFFFFFAFH(-H’00000051): The object being waited for 

    was deleted 
E_NOEXS  0FFFFFFCCH(-H’00000034): Object does not exist 



 

2.3.7 twai_flg(Wait EventFlag with Timeout) 74

[( Function description )] 

In eventflags indicated by flgid, this system call waits until the bit specified by waiptn is set 
according to wait clear condition indicated by wfmode. 

The task that invoked this system call is queued in two wait queues: the eventflag wait queue 
and timeout wait queue. 

When this system call is invoked, the wait state is cancelled in the cases shown below. 
When the wait state is cancelled, the task that invoked this system call exits from the two 
wait queues (eventflag wait queue and timeout wait queue) and is connected to the ready 
queue. 

 When the wait cancellation condition occurs before the tmout time has elapsed. 

Error code E_OK is returned. 

 When the tmout time elapses without the wait cancellation condition being satisfied 

Error code E_TMOUT is returned. 

 When the wait state is forcibly cancelled by rel_wai or irel_wai system calls being invoked 
from another task or handler. 

Error code E_RLWAI is returned. 

 When the eventflag for which a task has been kept waiting is deleted by the del_flg 
system call issued by another task 

Error code E_DLT is returned. 

You can specify a timeout (tmout) of -1 to 0x7FFFFFFF. Specifying TMO_FEVR = -1 to 
twai_flg for tmout indicates that an infinite timeout value be used, resulting in exactly the 
same processing as wai_flg. If you specify tmout as TMO_POL(=0), it works like pol_flg. 

See wai_flg system call for details of wfmode. 

This system call can be issued only from tasks. It cannot be issued from the interrupt handler, 
the cyclic handler, or the alarm handler. 



 

2.3.7 twai_flg(Wait EventFlag with Timeout) 

 

75

[( Usage example )] 
In this example, that task waits for the bit specified in the flg2 eventflag to 
be set or wait time tmout to elapse. The wait state is cancelled when the specified 
bit is set or the wait time has elapsed. 
 
<< Usage example of the C language >> 
 
#include <mr32r.h> 
#include “id.h” 
void task() 
{ 
 UINT flgptn; 

  : 
if( twai_flg(&flgptn, ID_flg2,(UINT)0x0ff0, TWF_ANDW, 5) != E_OK ) 

  error(“Wait Released\n”); 
  : 

} 
 
<< Usage example of the assembly language(CC32R) >> 
 

.include “mr32r.inc” 

.global task 
task: 
  : 
 twai_flg    ID_flg2,H’ff0,(TWF_ANDW+TWF_CLR),5 
  : 
 
<< Usage example of the assembly language(TW32R:DCC/M32R) >> 
 

.include “mr32r.inc” 

.global task 
task: 
  : 
 twai_flg    ID_flg2,0x0ff0,(TWF_ANDW+TWF_CLR),5 
  : 



 

2.3.8 pol_flg(Poll EventFlag) 76

2.3.8. pol_flg(Poll EventFlag) 

[( System call name )] 

pol_flg → Gets an eventflag . (no wait state). 

 [( Calling by the assembly language )] 
.include “mr32r.inc” 
pol_flg      flgid, waiptn, wfmode 

<< Argument >> 

flgid [  ∗∗  ] The ID No. of the eventflag to check 
waiptn [∗∗∗∗] Wait bit pattern 
wfmode [∗∗∗∗] Wait mode 

<< Register setting >> 
Register name Contents after system call issuance 

R0 Error code 
R1 The ID No. of the eventflag to check 
R2 The bit pattern when wait state is cleared 
R3 Wait mode 

[( Calling by the C language )] 
#include <mr32r.h> 
ER pol_flg (p_flgptn, flgid, waiptn, wfmode); 

<< Argument >> 

UINT
 

*p_flgptn; Start address of area to which bit pattern is returned 
when wait state is cleared 

ID flgid; The ID No. of the eventflag to check 
UINT waiptn; Wait bit pattern 
UINT wfmode; Wait mode 

<< Return value >> 

Error code is returned as a return value for a numeral. 
The bit pattern when a wait state is cleared is set in an area indicated by p_flgptn. 

 [( Error codes )] 
E_OK   00000000H(-H’00000000): Normal End 
E_TMOUT  0FFFFFFABH(-H’00000055): Polling failed or timeout 
E_NOEXS  0FFFFFFCCH(-H’00000034): Object does not exist 

[( Function description )] 

In eventflags indicated by flgid, this system call checks to see if the wait clear bit pattern 
indicated by waiptn is set according to wfmode. 

If the eventflag concerned already satisfies the wait clear conditions indicated by wfmode, 
the system call performs the same processing as in wai_flg (by clearing the eventflag if a 
clear specification is requested) and terminates the session normally. 

If the eventflag concerned does not satisfy the wait clear conditions indicated by wfmode, the 
system call returns an error E_TMOUT. In this case, the task is not placed in a wait state. 
Nor is the eventflag cleared even if a clear specification is requested. 

An error E_NOEXS is returned if this system call is issued for a nonexistent eventflag. 

This system call can be issued from both tasks and handlers. 



 

2.3.8 pol_flg(Poll EventFlag) 

 

77

[( Usage example )] 
In this example, the system call examines whether the bit specified by 
an eventflag whose flag name is flg2 is set. Since a clear specification 
is requested, the eventflag is cleared to 0 if conditions are met. 

 
<< Usage example of the C language >> 
 
#include <mr32r.h> 
#include “id.h” 
void task() 
{ 

UINT flgptn; 
  : 
if(pol_flg(&flgptn,ID_flg2,(UINT)0x0ff0,TWF_ORW+TWF_CLR)!=E_OK) 
 printf(“Not set EventFlag\n”); 
  : 

} 
 
<< Usage example of the assembly language(CC32R) >> 
 

.include “mr32r.inc” 

.global   task 
task: 
 pol_flg    ID_flg2,H’ff0 (TWF_ORW+TWF_CLR) 
  :  
 
<< Usage example of the assembly language(TW32R:DCC/M32R) >> 
 

.include “mr32r.inc” 

.global   task 
task: 
 pol_flg    ID_flg2,0xff0 (TWF_ORW+TWF_CLR) 
  : 
 



 

2.3.9 ref_flg(Refer EventFlag Status) 78

2.3.9. ref_flg(Refer EventFlag Status) 

[( System call name )] 

ref_flg → Reference Eventflag Status. 

 [( Calling by the assembly language )] 
.include “mr32r.inc” 
ref_flg  flgid ,pk_rflg 

<< Argument >> 

flgid [  ∗∗  ] The ID No. of the eventflag to Reference Eventflag 
pk_rflg [∗∗∗∗] Packet address to Reference Eventflag 

<< Register setting >> 
Register name Contents after system call issuance 

R0 Error code 
R1 The ID No. of the eventflag to Reference Eventflag 
R2 Packet address to Reference Eventflag 
R3 -- 

The area indicated by pk_rflg returns the following information. 
Offset Size   
+0 4 exinf Extended information 
+4 2 wtsk Waiting task information 
+8 4(U) flgptn Bit pattern of Eventflag 

U: unsigned data. 

 [( Calling by the C language )] 
#include <mr32r.h> 
ER ref_flg (pk_rflg, flgid); 

<< Argument >> 

T_RFLG *pk_rflg; Packet address to Reference Eventflag 
ID flgid; The ID No. of the eventflag to Reference Eventflag 

<< Return value >> 

An error code is returned as the return value of a function. 
The structure indicated by pk_rflg returns the following data. 
 typedef struct t_rflg { 
  VP exinf; /* Extended information */ 
  BOOL_ID wtsk; /* Waiting task information */ 
  UINT flgptn; /* Bit pattern of Eventflag */ 
 } 

 [( Error codes )] 
E_OK   00000000H(-H’00000000): Normal End 
E_NOEXS  0FFFFFFCCH(-H’00000034): Object does not exist 



 

2.3.9 ref_flg(Refer EventFlag Status) 

 

79

[( Function description )] 

Refers to the state of the eventflag specified by flgid, and returns returns the following 
information as return values. 

 exinf 

Returns extended task information in exinf 

 wtskid 

wtsk returns the ID No. of the first task (the first task to enter the wait state) in the wait 
queue. wtsk returns FALSE(0) if there are no tasks waiting in the queue. 

 flgptn 

flgptn returns the current value of the eventflag. 

An error E_NOEXS is returned if this system call is issued for a nonexistent eventflag. 

This system call can be issued from both tasks and handlers. 

[( Usage example )] 
<< Usage example of the C language >> 
 
#include <mr32r.h> 
#include “id.h” 
void task() 
{ 

T_RFLG rflg; 
ref_flg(&rflg, ID_flg ); 
  : 

} 
 
<< Usage example of the assembly language(TW32R:DCC/M32R) >> 
 

.include “mr32r.inc” 

.global task 
task: 
 ld24      R2,#pk_rflg 
 ref_flg   ID_flg 
  : 
 
<< Usage example of the assembly language(TW32R:DCC/M32R) >> 
 

.include “mr32r.inc” 

.global task 
task: 
 ld24      R2,#pk_rflg 
 ref_flg   ID_flg 
  : 



 

2.4.1 cre_sem(Create Semaphore) 80

2.4. Semaphore 
2.4.1. cre_sem(Create Semaphore) 

[( System call name )] 

cre_sem → Create Semaphore 

 [( Calling by the assembly language )] 
.include “mr32r.inc” 
cre_sem      semid 

<< Argument >> 

semid [  ∗∗  ] The ID No. of a semaphore to be created 
pk_csem [∗∗∗∗] The start address in which the semaphore generation 

information is stored 
(Set the address in the R2 register.) 

<< Register setting >> 
Register name Contents after system call issuance 

R0 Error code 
R1 The ID No. of a semaphore to be created 
R2 The start address in which the semaphore 

generation information is stored 
R3 -- 

Specify the following information in the structure indicased by pk_csem. 
Offset Size   
+0 4 exinf Extended information 
+4 4 sematr Semaphore attribute 
+8 4 isemcnt Initial semaphore count 
+12 4 maxsem Maximun semaphore count 

 [( Calling by the C language )] 
#include <mr32r.h> 
ER cre_sem (semid, pk_csem); 

<< Argument >> 

ID semid; The ID No. of a semaphore to be created 
T_CSEM *pk_csem; The start address in which the semaphore 

generation information is stored 
Specify the following information in the structure indicased by pk_csem. 
typedef struct t_csem { 
  VP exinf; /* Extended information */ 
  ATR sematr; /* Semaphore attribute */ 
  INT isemcnt; /* Initial semaphore count */ 
  INT maxsem; /* Maximun semaphore count */ 
 } T_CSEM; 

<< Return value >> 

An error code is returned as the return value of a function. 

[( Error codes )] 
E_OK   00000000H(-H’00000000): Normal End 
E_OBJ  0FFFFFFC1H(-H’0000003f): Invalid object state 

 



 

2.4.1 cre_sem(Create Semaphore) 

 

81

[( Function description )] 

Creates a semaphore semid indicates. 

Here follows explanation of the information as to a semaphore to be generated pk_csem. 

 exinf (extended information) 

Exinf is an area you can freely use to store information as to a semaphore to be 
generated. MR32R has nothing to do with the exinf's contents. 

 sematr (semaphore attribute) 

MR32R has nothing to do with this contents. 

 isemcnt 

Set the initial semaphore counter value in this area when a semaphore created. The 
range of the specifiable value is 0 to 7FFFFFFFH.  

 maxsem 

Set the maximam semaphore counter value in this area. The range of the specifiable 
value is 0 to 7FFFFFFFH. 

An error E_OBJ is returned if cre_sem system call is issued for the semaphore which is 
existent. The range of the specifiable ID number is 1 to the maximum value specified in the 
configuration file. 

You can issue this system call exclusively from a task. This system call, if issued either from 
the interrupt handler, the cyclic handler or the alarm handler, doesn't work properly. 



 

2.4.1 cre_sem(Create Semaphore) 82

[( Usage example )] 
<< Usage example of the C language >> 
 
#include <mr32r.h> 
#include “id.h” 
#define ID_sem1 1 
void task1() 
{ 
 T_CSEM csem; 
 csem.isemcnt = 0xff;      /* Initial semaphore count */ 
 csem.maxsem = 0x7fffff;  /* Maximun semaphore count */ 

cre_sem( ID_sem1, &setsem ); 
   : 
} 
 
<< Usage example of the assembly language(CC32R) >> 
 
csem: .RES.B 16 
ID_sem1: .equ 1 
 .include “mr32r.inc” 
 .global   task1 
task1: 
  : 
 ld24     R2,#setsem 
 ld24     R1,#H’FF 
 st       R1,@(8,R2)      /* Initial semaphore count */ 
 seth     R1,#H’7F 
 or3      R1,R1,#H’FFFF   /* Maximun semaphore count */ 
 st       R1,@(12,R2) 
 cre_sem  ID_sem1 
  : 
 ext_tsk 
 
<< Usage example of the assembly language(TW32R:DCC/M32R) >> 
 
csem: .space 16 

.equ ID_sem1,1 
 .include “mr32r.inc” 
 .global   task1 
task1: 
  : 
 ld24     R2,#setsem 
 ld24     R1,#0xFF 
 st       R1,@(8,R2)      ; /* Initial semaphore count */ 
 seth     R1,#0x7F 
 or3      R1,R1,#0xFFFF   ; /* Maximun semaphore count */ 
 st       R1,@(12,R2) 
 cre_sem  ID_sem1 
  : 
 ext_tsk 



 

2.4.2 del_sem(Delete Semaphore) 

 

83

2.4.2. del_sem(Delete Semaphore) 

[( System call name )] 

del_sem → Delete Semaphore 

 [( Calling by the assembly language )] 
.include “mr32r.inc” 
del_sem      semid 

<< Argument >> 

semid [  ∗∗  ] The ID No. of a semaphore to be deleted 

<< Register setting >> 
Register name Contents after system call issuance 

R0 Error code 
R1 The ID No. of a semaphore to be deleted 
R2 -- 
R3 -- 

[( Calling by the C language )] 
#include <mr32r.h> 
ER del_sem ( semid ); 

<< Argument >> 

ID semid; The ID No. of a semaphore to be deleted 

<< Return value >> 

An error code is returned as the return value of a function. 

[( Error codes )] 
E_OK   00000000H(-H’00000000): Normal End 
E_NOEXS  0FFFFFFCCH(-H’00000034): Object does not exist 

[( Function description )] 

del_sem deletes the semaphore semid indicates. 

You can create the semaphore deleted as the same ID again.If the task is linked to the 
semaphore wait queue and del_sem is issued for the semaphore,this system call normally 
end.In this case,del_sem moves the task WAIT state to READY state.And an error E_DLT is 
returned. 

An error E_NOEXS is returned if this system call is issued for a nonexistent semaphore. 

Make sure this system call is issued for only the semaphore that has been created by the 
cre_sem system call. If this system call is issued for the semaphore that has been defined by 
the configuration file, it does not function normally. 

You can issue this system call exclusively from a task. This system call, if issued either from 
the interrupt handler, the cyclic handler or the alarm handler, doesn't work properly. 



 

2.4.2 del_sem(Delete Semaphore) 84

[( Usage example )] 
<< Usage example of the C language >> 
 
#include <mr32r.h> 
#include “id.h” 
#define ID_sem2 2 
void task1() 
{ 
  : 

del_sem( ID_sem2 ); 
  : 
} 
 
<< Usage example of the assembly language(CC32R) >> 
 
 .equ ID_sem2,2 
 .include “mr32r.inc” 

.global   task1 
task1: 
  : 
 del_sem ID_sem2 
  : 
 ext_tsk 
 
<< Usage example of the assembly language(TW32R:DCC/M32R) >> 
 
 .equ ID_sem2,2 
 .include “mr32r.inc” 

.global   task1 
task1: 
  : 
 del_sem ID_sem2 
  : 
 ext_tsk 



 

2.4.3 sig_sem(Signal Semaphore) 

 

85

2.4.3. sig_sem(Signal Semaphore) 

[( System call name )] 

sig_sem → Returns resource to the semaphore 

 [( Calling by the assembly language )] 
.include “mr32r.inc” 
sig_sem      semid 

<< Argument >> 

semid [  ∗∗  ] The ID No. of the semaphore 

<< Register setting >> 
Register name Contents after system call issuance 

R0 Error code 
R1 The ID No. of the semaphore 
R2 -- 
R3 -- 

[( Calling by the C language )] 
#include <mr32r.h> 
ER sig_sem (semid); 

<< Argument >> 

ID semid; The ID No. of the semaphore 

<< Return value >> 

An error code is returned as the return value of a function. 

[( Error codes )] 
E_OK   00000000H(-H’00000000): Normal End 
E_QOVR  0FFFFFFB7H(-H’00000049): Queuing or nest overflow 
E_NOEXS  0FFFFFFCCH(-H’00000034): Object does not exist 

[( Function description )] 

This system call returns 1 resource to the semaphore specified by semid. 

When tasks are linked to the queue of that semaphore, the task at the head of the queue is 
put in the ready state. If no task is linked, the count of that semaphore is incremented by 1.19 

If it returns resource (sig_sem or isig_sem system call) is executed beyond the semaphore 
count value specified by cre_sem system call or the maximum value setting(maxsem) in the 
configuration file , error code E_QOVR is returned to the task which issued the system call 
with the semaphore count value left unchanged. 

An error E_NOEXS is returned if this system call is issued for a nonexistent semaphore. 

This system call can be issued only from tasks. The system call which be issued from the 
interrupt handler, the cyclic handler, or the alarm handler is the isig_sem. 

                                                      
19 If this system call causes the count value to exceeds the semaphore initial value defined in the configuration file, no 
error will occur. 
 



 

2.4.3 sig_sem(Signal Semaphore) 86

 [( Usage example )] 
<< Usage example of the C language >> 
 
#include <mr32r.h> 
#include “id.h” 
void task() 
{ 
   : 

if( sig_sem( ID_sem ) != E_OK ) 
  error(“Overflow\n”); 

  : 
} 
 
<< Usage example of the assembly language(CC32R) >> 
 

.include “mr32r.inc” 

.global   task 
task: 
 sig_sem    ID_sem 
  : 
 
<< Usage example of the assembly language(TW32R:DCC/M32R) >> 
 

.include “mr32r.inc” 

.global   task 
task: 
 sig_sem    ID_sem 
  : 



 

2.4.4 isig_sem(Signal Semaphore) 

 

87

2.4.4. isig_sem(Signal Semaphore) 

[( System call name )] 

isig_sem → Returns resource to the semaphore (For the handler 
only) 

 [( Calling by the assembly language )] 
.include “mr32r.inc” 
isig_sem      semid 

<< Argument >> 

semid [  ∗∗  ] The ID No. of the semaphore 

<< Register setting >> 
Register name Contents after system call issuance 

R0 Error code 
R1 The ID No. of the semaphore 
R2 -- 
R3 -- 

[( Calling by the C language )] 
#include <mr32r.h> 
ER isig_sem (semid); 

<< Argument >> 

ID semid; The ID No. of the semaphore 

<< Return value >> 

An error code is returned as the return value of a function. 

 [( Error codes )] 
E_OK   00000000H(-H’00000000): Normal End 
E_QOVR  0FFFFFFB7H(-H’00000049): Queuing or nest overflow 
E_NOEXS  0FFFFFFCCH(-H’00000034): Object does not exist 

[( Function description )] 

This system call is issued from the interrupt handler, the cyclic handler, or the alarm handler 
to provide the same functions as the sig_sem system call. 

 [( Usage example )] 
<< Usage example of the C language >> 
 
#include <mr32r.h> 
#include “id.h” 
void inthand() 
{ 
   : 

if( isig_sem( ID_sem ) != E_OK ) 
  error(“Overflow\n”); 
   : 
} 



 

2.4.4 isig_sem(Signal Semaphore) 88

 
<< Usage example of the assembly language(CC32R) >> 
 

.include mr32r.inc 
 .global   intr 
intr: 
 isig_sem   ID_sem 
  : 
 ret_int 
 
<< Usage example of the assembly language(TW32R:DCC/M32R) >> 
 

.include mr32r.inc 
 .global   intr 
intr: 
 isig_sem   ID_sem 
  : 
 ret_int 



 

2.4.5 wai_sem(Wait on Semaphore) 

 

89

2.4.5. wai_sem(Wait on Semaphore) 

[( System call name )] 

wai_sem → Obtains one resource from the semaphore.  

 [( Calling by the assembly language )] 
.include “mr32r.inc” 
wai_sem      semid 

<< Argument >> 

semid [  ∗∗  ] The ID No. of the semaphore from which the 
resource is obtained 

<< Register setting >> 
Register name Contents after system call issuance 

R0 Error code 
R1 The ID No. of the semaphore from which the 

resource is obtained 
R2 -- 
R3 -- 

[( Calling by the C language )] 
#include <mr32r.h> 
ER wai_sem (semid); 

<< Argument >> 

ID semid; The ID No. of the semaphore from which the 
resource is obtained 

<< Return value >> 

An error code is returned as the return value of a function. 

 [( Error codes )] 
E_OK   00000000H(-H’00000000): Normal End 
E_RLWAI  0FFFFFFAAH(-H’00000056): Wait state forcibly 

    cleared 
E_DLT  0FFFFFFAFH(-H’00000051): The object being waited for 

    was deleted 
E_NOEXS  0FFFFFFCCH(-H’00000034): Object does not exist 



 

2.4.5 wai_sem(Wait on Semaphore) 90

[( Function description )] 

This system call obtains 1 resource from the semaphore specified by semid. 

If the count value of that semaphore is one or more, the count is decremented by 1 and the 
task which issued the system call continues executing. Conversely, if the semaphore count 
value is 0, the count value is not modified and the system call issued task is linked to the 
semaphore queue in order of FIFO.20 

If the wait state has been cleared by the rel_wai system call issued by another task, error 
code E_RLWAI is returned.  

If the task waits for semaphore and del_sem is issued for it, del_sem system call moves the 
task WAIT state to READY state.And error E_DLT is returned. 

 Error E_NOEXS is returned if this system call is issued for a nonexistent semaphore. 

You can issue this system call exclusively from a task. This system call, if issued either from 
the interrupt handler, the cyclic handler or the alarm handler, doesn't work properly. 

 [( Usage example )] 
<< Usage example of the C language >> 
 
#include <mr32r.h> 
#include “id.h” 
void task() 
{ 
   : 
 if( wai_sem( ID_sem ) != E_OK ) 
  printf(“Forced wakeup\n”); 
   : 
} 
 
<< Usage example of the assembly language(CC32R) >> 
 .include “mr32r.inc” 
 .global   task 
task: 
 wai_sem    ID_sem 
  : 
 
<< Usage example of the assembly language(TW32R:DCC/M32R) >> 
 .include “mr32r.inc” 
 .global   task 
task: 
 wai_sem    ID_sem 
  : 

                                                      
20 First-in, first-out. Namely, tasks are freed from a wait state by sig_sem or isig_sem system calls in the order they 
were placed in a wait state by the wai_sem system call. 
 



 

2.4.6 twai_sem(Wait on Semaphore with Timeout) 

 

91

2.4.6. twai_sem(Wait on Semaphore with Timeout) 

[( System call name )] 

twai_sem → Obtains one resource from the semaphore.  (With 
Timeout) 

 [( Calling by the assembly language )] 
.include “mr32r.inc” 
twai_sem      semid, tmout 

<< Argument >> 

semid [  ∗∗  ] The ID No. of the semaphore from which the 
resource 

tmout [∗∗∗∗] Timeout value 

<< Register setting >> 
Register name Contents after system call issuance 

R0 Error code 
R1 The ID No. of the semaphore from which the 

resource 
R2 -- 
R3 -- 
R4 Timeout value 

[( Calling by the C language )] 
#include <mr32r.h> 
ER twai_sem (semid,tmout); 

<< Argument >> 

ID semid; The ID No. of the semaphore from which the 
resource 

TMO tmout; Timeout value 

<< Return value >> 

An error code is returned as the return value of a function. 

[( Error codes )] 
E_OK   00000000H(-H’00000000): Normal End 
E_TMOUT  0FFFFFFABH(-H’00000055): Polling failed or timeout 
E_RLWAI  0FFFFFFAAH(-H’00000056): Wait state forcibly 

    cleared 
E_DLT  0FFFFFFAFH(-H’00000051): The object being waited for 

    was deleted 
E_NOEXS  0FFFFFFCCH(-H’00000034): Object does not exist 



 

2.4.6 twai_sem(Wait on Semaphore with Timeout) 92

[( Function description )] 

This system call obtains 1 resource from the semaphore specified by semid. 

If the count value of that semaphore is one or more, the count is decremented by 1 and the 
task which issued the system call continues executing. 

Conversely, if the semaphore count value is 0, the count value is not modified and the 
system call issued task is linked to the semaphore queue and timeout wait queue. 

When this system call is invoked, the wait state is cancelled in the cases shown below. 
When the wait state is cancelled, the task that invoked this system call exits from the two 
wait queues (semaphore wait queue and timeout wait queue) and is connected to the ready 
queue.  

 When the wait cancellation condition occurs before the tmout time has elapsed. 

Error code E_OK is returned. 

 When tmout time has elapsed without any message being received 

Error code E_TMOUT is returned. 

 When the wait state is forcibly cancelled by rel_wai or irel_wai system calls being invoked 
from another task or handler 

Error code E_RLWAI is returned. 

 When the semaphore for which a task has been kept waiting is deleted by the del_sem 
system call issued by another task 

Error code E_DLT is returned. 

Error E_NOEXS is returned if this system call is issued for a nonexistent semaphore. 

You can specify a timeout (tmout) of -1 to 0x7FFFFFFF. Specifying TMO_FEVR = -1 to 
twai_sem for tmout indicates that an infinite timeout value be used, resulting in exactly the 
same processing as wai_sem. If you specify tmout as TMO_POL(=0), it works like 
preq_sem. 

You can issue this system call exclusively from a task. This system call, if issued either from 
the interrupt handler, the cyclic handler or the alarm handler, doesn't work properly. 



 

2.4.6 twai_sem(Wait on Semaphore with Timeout) 

 

93

 [( Usage example )] 
<< Usage example of the C language >> 
 
#include <mr32r.h> 
#include “id.h” 
void task() 
{ 
   : 

if( twai_sem( ID_sem, 10 ) != E_OK ) 
printf(“Forced wakeup\n”); 

  : 
} 
 
<< Usage example of the assembly language(CC32R) >> 
 

.include “mr32r.inc” 

.GLOBAL  task 
task: 
  : 
 twai_sem    ID_sem,10 
  : 
 
<< Usage example of the assembly language(TW32R:DCC/M32R) >> 
 

.include “mr32r.inc” 

.GLOBAL  task 
task: 
  : 
 twai_sem    ID_sem,10 
  : 



 

2.4.7 preq_sem(Poll and Request Semaphore) 94

2.4.7. preq_sem(Poll and Request Semaphore) 

[( System call name )] 

preq_sem → Obtains one resource from the semaphore.  (no wait) 

 [( Calling by the assembly language )] 
.include “mr32r.inc” 
preq_sem      semid 

<< Argument >> 

semid [  ∗∗  ] The ID No. of the semaphore from which the 
resource is obtained 

<< Register setting >> 
Register name Contents after system call issuance 

R0 Error code 
R1 The ID No. of the semaphore from which the 

resource is obtained 
R2 -- 
R3 -- 

[( Calling by the C language )] 
#include <mr32r.h> 
ER preq_sem (semid); 

<< Argument >> 

ID semid; The ID No. of the semaphore from which the 
resource is obtained 

<< Return value >> 

An error code is returned as the return value of a function. 

[( Error codes )] 
E_OK   00000000H(-H’00000000): Normal End 
E_TMOUT  0FFFFFFABH(-H’00000055): Polling failed or timeout 
E_NOEXS  0FFFFFFCCH(-H’00000034): Object does not exist 

[( Function description )] 

Obtains 1 resource (without a wait state) from the semaphore indicated by semid. 

If the count value of the semaphore concerned is 1 or more, the count value is decremented 
by 1 and the system call issued task continues executing. 

Conversely, if the semaphore count value is 0, the count value is not modified and an error 
E_TMOUT is returned to the system call issued task. 

Error E_NOEXS is returned if this system call is issued for a nonexistent semaphore. 

This system call can be issued from both tasks and handlers. 



 

2.4.7 preq_sem(Poll and Request Semaphore) 

 

95

 [( Usage example )] 
<< Usage example of the C language >> 
 
#include <mr32r.h> 
#include “id.h” 
void task() 
{ 

  : 
 if( preq_sem( ID_sem ) != E_OK ) 

printf(“No more resource\n”); 
  : 

} 
 
<< Usage example of the assembly language(CC32R) >> 
 

.include mr32r.inc 

.global   task 
task: 
  : 
 preq_sem   ID_sem 
  : 
 
<< Usage example of the assembly language(TW32R:DCC/M32R) >> 

.include mr32r.inc 

.global   task 
task: 
  : 
 preq_sem   ID_sem 
  : 
 



 

2.4.8 ref_sem(Refer Semaphore Status) 96

2.4.8. ref_sem(Refer Semaphore Status) 

[( System call name )] 

ref_sem → Reference Semaphore Status 

 [( Calling by the assembly language )] 
.include “mr32r.inc” 
ref_sem    semid 

<< Argument >> 

semid [  ∗∗  ] The ID No. of the semaphore to Reference 
Semaphore 

pk_rsem [∗∗∗∗] Packet address to Reference Semaphore 

<< Register setting >> 
Register name Contents after system call issuance 

R0 Error code 
R1 The ID No. of the semaphore to Reference Semaphore 
R2 Packet address to Reference Semaphore 
R3 -- 

The area indicated by pk_rsem returns the following information. 
Offset  Size   
+0 4 exinf Extended information 
+4 2 wtsk Waiting task information 
+8 4 semcnt Current semaphore count 

 [( Calling by the C language )] 
#include <mr32r.h> 
ER ref_sem(pk_rsem,semid); 

<< Argument >> 

T_RSEM *pk_rsem; Packet address to Reference Semaphore 
ID semid; The ID No. of the semaphore to Reference 

Semaphore 

<< Return value >> 

An error code is returned as the return value of a function. 
The structure indicated by pk_rsem returns the following data. 
 typedef struct t_rsem { 
  VP exinf; /* Extended information */ 
  BOOL_ID wtsk; /* Waiting task information */ 
  INT semcnt; /* Current semaphore count */ 
 } 

 [( Error codes )] 
E_OK   00000000H(-H’00000000): Normal End 
E_NOEXS  0FFFFFFCCH(-H’00000034): Object does not exist 



 

2.4.8 ref_sem(Refer Semaphore Status) 

 

97

[( Function description )] 

Refers to the state of the semaphore specified by semid, and returns the following 
information as return values. 

 exinf 

Returns extended task information in exinf. 

 wtsk 

wtsk returns the ID No. of the first task (the first task to enter the wait state) in the wait 
queue. wtsk returns FALSE(0) if there are no tasks waiting in the queue. 

 semcnt 

semcnt returns the current semaphore count. 

An error E_NOEXS is returned if this system call is issued for a nonexistent semaphore. 

This system call can be issued from both tasks and handlers. 

 [( Usage example )] 
<< Usage example of the C language >> 
 
#include <mr32r.h> 
#include “id.h” 
void task() 
{ 
 T_RSEM   rsem; 
  : 

ref_sem( &rsem, ID_sem ); 
  : 
} 
 
<< Usage example of the assembly language(CC32R) >> 
 
rsem:    .RES.B   12 

.include “mr32r.inc” 

.global task 
task: 
  : 
 ld24       R2,#rsem 
 ref_sem    ID_sem1 
  : 
 
<< Usage example of the assembly language(TW32R:DCC/M32R) >> 
 
rsem:    .space   12 

.include “mr32r.inc” 

.global task 
task: 
  : 
 ld24       R2,#rsem 
 ref_sem    ID_sem1 
  : 
 



 

2.5.1 cre_mbx(Create Mailbox) 98

2.5. Mailbox 
2.5.1. cre_mbx(Create Mailbox) 

[( System call name )] 

cre_mbx → Create Mailbox 

 [( Calling by the assembly language )] 
.include “mr32r.inc” 
cre_mbx      mbxid 

<< Argument >> 

mbxid [  ∗∗  ] The ID No. of a mailbox to be created 
pk_cmbx [∗∗∗∗] The start address in which the mailbox generation 

information is stored 
(Set the address in the R2 register.) 

<< Register setting >> 
Register name Contents after system call issuance 

R0 Error code 
R1 The ID No. of a mailbox to be created 
R2 The start address in which the mailbox generation 

information is stored 
R3 -- 

Specify the following information in the structure indicased by pk_cmbx. 
Offset Size   
+0 4 exinf Extended information 
+4 4 mbxatr Mailbox attribute 
+8 4 bufcnt Ringbuffer size 

 [( Calling by the C language )] 
#include <mr32r.h> 
ER cre_mbx (mbxid, pk_cmbx); 

<< Argument >> 

ID mbxid; The ID No. of a mailbox to be created 
T_CMBX *pk_cmbx; The start address in which the mailbox generation 

information is stored 
Specify the following information in the structure indicased by pk_cmbx. 
 typedef struct t_cmbx { 
  VP exinf; /* Extended information */ 
  ATR mbxatr; /* Mailbox attribute */ 
  INT bufcnt; /* Ringbuffer size */ 
 } T_CMBX; 

<< Return value >> 

An error code is returned as the return value of a function. 

[( Error codes )] 
E_OK   00000000H(-H’00000000): Normal End 
E_OBJ  0FFFFFFC1H(-H’0000003f): Invalid object state 
E_NOMEM  0FFFFFFF6H(-H’0000000a): Not enough of memory 



 

2.5.1 cre_mbx(Create Mailbox) 

 

99

[( Function description )] 

Creates a mailbox mbxid indicates. 

Here follows explanation of the information as to a mailbox to be generated pk_cmbx. 

 exinf (extended information) 

Exinf is an area you can freely use to store information as to a mailbox to be generated. 
MR32R has nothing to do with the exinf's contents. 

 mbxatr (mailbox attribute) 

Specify the location of the mailbox area to be created. Specifically this means 
specifying whether you want the mailbox to be located in the internal RAM or in external 
RAM.  

♦ To locate the mailbox area in internal RAM 
Specify __MR_INT(0).  

♦ To locate the mailbox area in external RAM 
Specify __MR_EXT(0x10000). 

♦ To locate the mailbox area user specified 
Specify __MR_USER(0x20000). 

 bufcnt 

Specify the buffer size stored with messages of the mailbox.The unit is not bytes 
number,but message number.  

An error E_OBJ is returned if cre_mbx system call is issued for the mailbox which is existent. 

The range of the specifiable ID number is 1 to the maximum value specified in the 
configuration file. 

You can issue this system call exclusively from a task. This system call, if issued either from 
the interrupt handler, the cyclic handler or the alarm handler, doesn't work properly. 



 

2.5.1 cre_mbx(Create Mailbox) 100 

[( Usage example )] 
<< Usage example of the C language >> 
 
#include <mr32r.h> 
#include “id.h” 
#define ID_mbx1 1 
void task1() 
{ 
 T_CMBX setmbx; 

  : 
 setmbx.mbxatr = __MR_EXT; 

setmbx.bufcnt = 10;   /* Ringbuffer size */ 
cre_mbx( ID_mbx1, &setmbx ); 
  : 
ext_tsk(); 

} 
 
<< Usage example of the assembly language(CC32R) >> 
 

.equ ID_mbx1,1 
setmbx: .RES.B 12 
.include “mr32r.inc” 

 .global   task1 
task1: 
  : 
 ld24    R2,#setmbx 
 ld24    R1,#__MR_EXT 
 st      R1,@(4,R2) 
 ld24    R1,#10 
 st      R1,@(8,R2) 

cre_mbx ID_mbx1 
  : 

ext_tsk 
 
<< Usage example of the assembly language(TW32R:DCC/M32R) >> 
 

.equ ID_mbx1,1 
setmbx: .space 12 
.include “mr32r.inc” 

 .global   task1 
task1: 
  : 
 ld24    R2,#setmbx 
 ld24    R1,#__MR_EXT 
 st      R1,@(4,R2) 
 ld24    R1,#10 
 st      R1,@(8,R2) 

cre_mbx ID_mbx1 
  : 

ext_tsk 



 

2.5.2 del_mbx(Delete Mailbox) 

 

101

2.5.2. del_mbx(Delete Mailbox) 

[( System call name )] 

del_mbx → Delete Mailbox 

 [( Calling by the assembly language )] 
.include “mr32r.inc” 
del_mbx      mbxid 

<< Argument >> 

mbxid [  ∗∗  ] The ID No. of a mailbox to be deleted 

<< Register setting >> 
Register name Contents after system call issuance 

R0 Error code 
R1 The ID No. of a mailbox to be deleted 
R2 -- 
R3 -- 

[( Calling by the C language )] 
#include <mr32r.h> 
ER del_mbx ( mbxid ); 

<< Argument >> 

ID mbxid; The ID No. of a mailbox to be deleted 

<< Return value >> 

An error code is returned as the return value of a function. 

[( Error codes )] 
E_OK   00000000H(-H’00000000): Normal End 
E_NOEXS  0FFFFFFCCH(-H’00000034): Object does not exist 

[( Function description )] 

del_mbx deletes the mailbox mbxid indicates. 

You can create the mailbox deleted as the same ID again.If the task is linked to the message 
wait queue and del_mbx is issued for the mailbox,this system call normally end.In this 
case,del_mbx moves the task WAIT state to READY state.And error E_DLT is returned.If 
some messages are in the mailbox,these are deleted. 

An error E_NOEXS is returned if this system call is issued for a nonexistent mailbox. 

Make sure this system call is issued for only the mailbox that has been created by the 
cre_mbx system call. If this system call is issued for the mailbox that has been defined by 
the configuration file, it does not function normally. 

You can issue this system call exclusively from a task. This system call, if issued either from 
the interrupt handler, the cyclic handler or the alarm handler, doesn't work properly. 



 

2.5.2 del_mbx(Delete Mailbox) 102 

[( Usage example )] 
<< Usage example of the C language >> 
 
#include <mr32r.h> 
#include “id.h” 
#define ID_mbx2 2 
void task1(void) 
{ 

 : 
del_mbx( ID_mbx2 ); 
 : 
ext_tsk(); 

} 
 
<< Usage example of the assembly language(CC32R) >> 
 
ID_mbx2: .equ 2 
 .include “mr32r.inc” 
 .global   task1 
task1: 
  : 
 del_mbx ID_mbx2 
  : 
 ext_tsk 
 
<< Usage example of the assembly language(TW32R:DCC/M32R) >> 
 
 .equ ID_mbx2,2 
 .include “mr32r.inc” 
 .global   task1 
task1: 
  : 
 del_mbx ID_mbx2 
  : 
 ext_tsk 



 

2.5.3 snd_msg(Send Message to Mailbox) 

 

103

2.5.3. snd_msg(Send Message to Mailbox) 

[( System call name )] 

snd_msg → Sends a message.  

 [( Calling by the assembly language )] 
.include “mr32r.inc” 
snd_msg      mbxid  

<< Argument >> 

mbxid [  ∗∗  ] The ID No. of the mailbox to which a message is sent
pk_msg [∗∗∗∗] The start address of message packet 

(Set the address in the R2 register.) 

<< Register setting >> 
Register name Contents after system call issuance 

R0 Error code 
R1 The ID No. of the mailbox to which a message is sent 
R2 The start address of message packet 
R3 -- 

[( Calling by the C language )] 
#include <mr32r.h> 
ER snd_msg (mbxid, pk_msg); 

<< Argument >> 

ID mbxid; The ID No. of the mailbox to which a message is sent
T_MSG *pk_msg; The start address of message packet 

<< Return value >> 

An error code is returned as the return value of a function. 

[( Error codes )] 
E_OK   00000000H(-H’00000000): Normal End 
E_QOVR  0FFFFFFB7H(-H’00000049): Queuing or nest overflow 
E_NOEXS  0FFFFFFCCH(-H’00000034): Object does not exist 



 

2.5.3 snd_msg(Send Message to Mailbox) 104 

[( Function description )] 

This system call sends a message to the mailbox specified by mbxid. 

If there are no tasks waiting for a message, the message is stored in the message queue in 
order of FIFO.21 Therefore, messages are taken out of the queue in the order they were sent 
to the mail box by issuing this system call. If there is any task waiting for a message, the 
message is passed to that task and the task has its wait state removed.  

The size of the message queue is defined in the configuration file or when cre_mbx system 
call is issued. 

If this system call is issued for a mail box whose message queue is full, an error E_QOVR is 
returned to the system call issued task. 

An error E_NOEXS is returned if this system call is issued for a nonexistent mailbox. 

A message is 32bits wide data.22In standard µITRON specifications, this data is interpreted 
as indicating the start address of a message packet (a structure including the message), i.e., 
address transfer. In MR32R, however, messages can be handled in two ways to perform 
data communication as described below. 

1. Using a message as the start address (32 bits) of a message packet 
Since no specific types of message packets (T_MSG) are stipulated in MR32R, any 
desired message type can be defined by the user. It can be an array, for example. 23 

Example: 

typedef char * T_MSG; 

Define the start address pk_msg of the message packet as follows: 

T_MSG  * pk_msg; 
2. Using a message simply as 32-bits data 

In this case, cast the second argument of the snd_msg and isnd_msg system calls 
(message data pk_msg to be sent) with (PT_MSG) and the first argument of rcv_msg 
and prcv_msg (address ppk_msg of the area in which to store the message data) with 
(PT_MSG *), respectively. 
To send variable i of int type, for example, write your statement as follows:  

int i, j; 

snd_msg( ID_mbx, (PT_MSG)i ); 

rcv_msg( (PT_MSG *)&j, ID_mbx ); 

This allows you to send 32-bit data directly.  

This system call can be issued only from tasks. The system call which be issued from the 
interrupt handler, the cyclic handler, or the alarm handler is the isnd_msg. 

                                                      
21 First In First Out 
22 You choose which to use - 16-bit data width or 32-bit data width - in the configuration file. 
23 It is standard to send the start address of message packet in [Calling by the C language] of this manual. 



 

2.5.3 snd_msg(Send Message to Mailbox) 

 

105

[( Usage example )] 
<< Usage example of the C language >> 
 
In this example, the message is used to send the start address of a message packet. 
 
#include <mr32r.h> 
#include “id.h” 
typedef char T_MSG; 
T_MSG msg[10]; 
void task(void) 
{ 
   : 

if( snd_msg( ID_msg, msg) != E_OK ){ 
  error(“overflow\n”); 
 } 
  : 
} 
 
<< Usage example of the assembly language(CC32R) >> 
 

.include “mr32r.inc” 
 .global   task 
msg: .SDATA “message” 
  .DATA.B 0 
task: 

snd_msg ID_msg, msg 
  : 
 
<< Usage example of the assembly language(TW32R:DCC/M32R) >> 
 

.include “mr32r.inc” 
 .global   task 
msg: .byte “message” 
  .byte 0 
task: 

snd_msg ID_msg, msg 
  : 



 

2.5.4 isnd_msg(Send Message to Mailbox) 106 

2.5.4. isnd_msg(Send Message to Mailbox) 

[( System call name )] 

isnd_msg → Sends a message. (for the handler only). 

 [( Calling by the assembly language )] 
.include   “mr32r.inc” 
isnd_msg   mbxid 

<< Argument >> 

mbxid [  ∗∗  ] The ID No. of the mailbox to which a message is sent
pk_msg [∗∗∗∗] The start address of message packet  

(Set the address in the R2 register.) 

<< Register setting >> 
Register name Contents after system call issuance 

R0 Error code 
R1 The ID No. of the mailbox to which a message is sent 
R2 The start address of message packet 
R3 -- 

[( Calling by the C language )] 
#include <mr32r.h> 
ER isnd_msg (mbxid, pk_msg); 

<< Argument >> 

ID mbxid; The ID No. of the mailbox to which a message is sent
T_MSG *pk_msg; The start address of message packet 

<< Return value >> 

An error code is returned as the return value of a function. 

[( Error codes )] 
E_OK   00000000H(-H’00000000): Normal End 
E_QOVR  0FFFFFFB7H(-H’00000049): Queuing or nest overflow 
E_NOEXS  0FFFFFFCCH(-H’00000034): Object does not exist 

[( Function description )] 

This system call is used when using the function of the snd_msg system call from an 
task-independent section (e.g., interrupt handler, cyclic handler, or alarm handler). 



 

2.5.4 isnd_msg(Send Message to Mailbox) 

 

107

 [( Usage example )] 
<< Usage example of the C language >> 
 
#include <mr32r.h> 
#include “id.h” 
typedef char T_MSG; 
T_MSG msg[10]; 
void inthand() 
{ 

  : 
 if( isnd_msg( ID_msg, msg) != E_OK ){ 

error(“overflow\n”); 
  : 

} 
 
<< Usage example of the assembly language(CC32R) >> 
 

.include “mr32r.inc” 

.global   intr 
intr: 
  : 

isnd_msg ID_msg, H’1234 
  : 

ret_int 
 
<< Usage example of the assembly language(TW32R:DCC/M32R) >> 
 

.include “mr32r.inc” 

.global   intr 
intr: 
  : 

isnd_msg ID_msg, 0x1234 
  : 

ret_int 



 

2.5.5 rcv_msg(Receive Message from Mailbox) 108 

2.5.5. rcv_msg(Receive Message from Mailbox) 

[( System call name )] 

rcv_msg → Waits for receiving a message.  

 [( Calling by the assembly language )] 
.include “mr32r.inc” 
rcv_msg      mbxid 

<< Argument >> 

mbxid [  ∗∗  ] The ID No. of the mailbox from which a message is 
received 

<< Register setting >> 
Register name Contents after system call issuance 

R0 Error code 
R1 The ID No. of the mailbox to which a message is 

received 
R2 The start address of message packet 
R3 -- 

[( Calling by the C language )] 
#include <mr32r.h> 
ER rcv_msg (ppk_msg, mbxid); 

<< Argument >> 

ID mbxid; The ID No. of the mailbox from which a message is 
received 

T_MSG **ppk_msg; The pointer variable to indicate the start address of 
message packet 

<< Return value >> 

An error code is returned as the return value of a function. 
The start address of the received message packet is set to variable ppk_msg. 

[( Error codes )] 
E_OK   00000000H(-H’00000000): Normal End 
E_RLWAI  0FFFFFFAAH(-H’00000056): Wait state forcibly 

    cleared 
E_DLT  0FFFFFFAFH(-H’00000051): The object being waited for 

    was deleted 
E_NOEXS  0FFFFFFCCH(-H’00000034): Object does not exist 



 

2.5.5 rcv_msg(Receive Message from Mailbox) 

 

109

[( Function description )] 

This system call receives a message from the mailbox specified by mbxid. 

If messages have arrived at the mail box concerned, this system call gets 1 message from 
the top of the message queue and returns it as a return parameter pk_msg. 

Conversely, if no message has reached the mailbox, the task that has issued this system call 
is placed in a wait state and linked in a waiting queue in order of FIFO. 

If the task is freed from a wait state by a rel_wai system call issued by some other task, an 
error E_RLWAI is returned.  

Also, if the mailbox for a task waiting for conditions to be met is deleted by the del_mbx 
system call issued by another task, the waiting task is released from the transmit mailbox 
wait state and error E_DLT is returned to that task and changes to executable (READY) 
state. 

An error E_NOEXS is returned if this system call is issued for a nonexistent mailbox. 

This system call can only be issued from tasks. 

Following precautions should observed when receiving a message: 

1. When using a message as the start address of a message packet 
The message width comprises 32 bits, so you have to declare the pointer variable 
(ppk_msg) toward the area in which the foremost address of the message packet is 
stored as given below. 

T_MSG **ppk_msg; 

2. When using a message simply as data 
You have to declare the pointer variable (ppk_msg) toward the area in which 32-bit data 
is stored as given below. 

T_MSG * ppk_msg; 

Also, cast the first argument of rcv_msg and prcv_msg (address ppk_msg of the area in 
which to store the message data) with (PT_MSG *). id 

To send variable l of int type, for example: 

int i, j; 

snd_msg( ID_mbx, (PT_MSG)i ); 

rcv_msg( (PT_MSG *)&j, ID_mbx ); 

You can issue this system call exclusively from a task. This system call, if issued either from 
the interrupt handler, the cyclic handler or the alarm handler, doesn't work properly. 



 

2.5.5 rcv_msg(Receive Message from Mailbox) 110 

 [( Usage example )] 
<< Usage example of the C language >> 
 
In this example, the message is used to send the start address of a message packet. 
 
#include <mr32r.h> 
#include “id.h” 
typedef T_MSG char; 
void task() 
{ 
 T_MSG *msg; 

  : 
if( rcv_msg( &msg, ID_mbx ) != E_OK ) 

error(“forced wakeup\n”); 
  : 

} 
 
<< Usage example of the assembly language(CC32R) >> 
 

.include “mr32r.inc” 

.global   task 
task: 
  : 

rcv_msg ID_mbx 
  : 
 
<< Usage example of the assembly language(TW32R:DCC/M32R) >> 
 

.include “mr32r.inc” 

.global   task 
task: 
  : 

rcv_msg ID_mbx 
  : 



 

2.5.6 trcv_msg(Receive Message with Timeout) 

 

111

2.5.6. trcv_msg(Receive Message with Timeout) 

[( System call name )] 

trcv_msg → Waits for receiving a message.  (With Timeout) 

 [( Calling by the assembly language )] 
.include “mr32r.inc” 
trcv_msg      mbxid,tmout 

<< Argument >> 

mbxid [  ∗∗  ] The ID No. of the mailbox from which a message is 
received 

tmout [∗∗∗∗] Timeout value 

<< Register setting >> 
Register name Contents after system call issuance 

R0 Error code 
R1 The ID No. of the mailbox from which a message is 

received 
R2 The start address of message packet 
R3 -- 
R4 Timeout value 

[( Calling by the C language )] 
#include <mr32r.h> 
ER trcv_msg (ppk_msg, mbxid, tmout); 

<< Argument >> 

ID mbxid; The ID No. of the mailbox from which a message is 
received 

T_MSG **ppk_msg; The pointer variable to indicate the start address of 
message packet 

TMO tmout Timeout value 

<< Return value >> 

The start address of the received message packet is set to variable ppk_msg. 
An error code is returned as the return value of a function. 

[( Error codes )] 
E_OK   00000000H(-H’00000000): Normal End 
E_TMOUT  0FFFFFFABH(-H’00000055): Polling failed or timeout 
E_RLWAI  0FFFFFFAAH(-H’00000056): Wait state forcibly 

    cleared 
E_DLT  0FFFFFFAFH(-H’00000051): The object being waited for 

    was deleted 
E_NOEXS  0FFFFFFCCH(-H’00000034): Object does not exist 



 

2.5.6 trcv_msg(Receive Message with Timeout) 112 

[( Function description )] 

This system call receives a message from the mailbox specified by mbxid. If messages have 
arrived at the mail box concerned, this system call gets 1 mess age from the top of the 
message queue and returns it as a return parameter ppk_msg. 

Conversely, if no message has reached the mail box, the task that has issued this system 
call is placed in a wait state and linked in a waiting queue and timeout wait queue. 

When this system call is invoked, the wait state is cancelled in the cases shown below. 
When the wait state is cancelled, the task that invoked this system call exits from the two 
wait queues (message queue and timeout wait queue) and is connected to the ready queue. 

 When the wait cancellation condition occurs by a message being received before the 
tmout time has elapsed. 

Error code E_OK is returned. 

 When tmout time has elapsed without any message being received 

Error code E_TMOUT is returned. 

 When the wait state is forcibly cancelled by rel_wai or irel_wai system calls being invoked 
from another task or handler. 

Error code E_RLWAI is returned. 

 When the mailbox for which a task has been kept waiting is deleted by the del_mbx 
system call issued by another task 

Error code E_DLT is returned. 

You can specify a timeout (tmout) of -1 to 0x7FFFFFFF. Specifying TMO_FEVR = -1 to 
trcv_msg for tmout indicates that an infinite timeout value be used, resulting in exactly the 
same processing as rcv_msg. If you specify tmout as TMO_POL(=0), it works like prcv_msg. 

See rcv_msg system call page for precautions should observed when receiving a message. 

This system call can be issued only from tasks. It cannot be issued from the in terrupt 
handler, the cyclic handler, or the alarm handler. 



 

2.5.6 trcv_msg(Receive Message with Timeout) 

 

113

[( Usage example )] 
<< Usage example of the C language >> 
 
#include <mr32r.h> 
#include “id.h” 
typedef char T_MSG; 
void task() 
{ 
 T_MSG   *msg; 

  : 
if( trcv_msg( &msg, ID_mbx, 10 ) != E_OK ){ 

error(“Can’t Get Message\n”); 
   : 
} 
 
<< Usage example of the assembly language(CC32R) >> 
 .include “mr32r.inc” 
 .global task 
task: 
  : 
 trcv_msg ID_mbx,10 
  : 
 
<< Usage example of the assembly language(TW32R:DCC/M32R) >> 
 .include “mr32r.inc” 
 .global task 
task: 
  : 
 trcv_msg ID_mbx,10 
  : 



 

2.5.7 prcv_msg(Poll and Receive Message) 114 

2.5.7. prcv_msg(Poll and Receive Message) 

[( System call name )] 

prcv_msg → Receiving a message.  (no wait) 

 [( Calling by the assembly language )] 
.include “mr32r.inc” 
prcv_msg      mbxid 

<< Argument >> 

mbxid [  ∗∗  ] The ID No. of the mailbox from which a message is 
received 

<< Register setting >> 
Register name Contents after system call issuance 

R0 Error code 
R1 The ID No. of the mailbox from which a message is 

received 
R2 The start address of message packet 
R3 -- 

[( Calling by the C language )] 
#include <mr32r.h> 
ER prcv_msg (ppk_msg, mbxid); 

<< Argument >> 

ID mbxid; The ID No. of the mailbox from which a message is 
received 

T_MSG **ppk_msg; The start address of message packet 

<< Return value >> 

The start address of the received message packet is set to variable ppk_msg. 
An error code is returned as the return value of a function. 

[( Error codes )] 
E_OK   00000000H(-H’00000000): Normal End 
E_TMOUT  0FFFFFFABH(-H’00000055): Polling failed or timeout 
E_NOEXS  0FFFFFFCCH(-H’00000034): Object does not exist 

[( Function description )] 

If any message is found in the mail box indicated by mbxid, this system call receives it 
(without a wait state). If the mail box contains messages, the system call gets 1 message 
from the top of the message queue and returns it as a return parameter ppk_msg. 

Conversely, if no message has been sent to the mailbox, an error E_TMOUT is returned to 
the system call issued task. 

An error E_NOEXS is returned if this system call is issued for a nonexistent mailbox. 

Refer to rcv_msg for precautions to be observed when receiving a message. 

This system call can be issued from both a task and a task-independent section (e.g., 
interrupt handler, cyclic handler, or alarm handler).  



 

2.5.7 prcv_msg(Poll and Receive Message) 

 

115

 [( Usage example )] 
<< Usage example of the C language >> 
 
#include <mr32r.h> 
#include “id.h” 
typedef char T_MSG; 
void task() 
{ 

T_MSG * msg; 
  : 
if( prcv_msg( &msg, ID_mbx ) != E_OK ){ 

error(“Can’t Get Message\n”); 
  : 

} 
 
<< Usage example of the assembly language(CC32R) >> 

.include “mr32r.inc” 

.global   task 
task: 

prcv_msg ID_mbx1 
  : 
 
<< Usage example of the assembly language(TW32R:DCC/M32R) >> 

.include “mr32r.inc” 

.global   task 
task: 

prcv_msg ID_mbx1 
  : 
 



 

2.5.8 ref_mbx(Refer Mailbox Status) 116 

2.5.8. ref_mbx(Refer Mailbox Status) 

[( System call name )] 

ref_mbx → Reference Mailbox Status 

 [( Calling by the assembly language )] 
.include “mr32r.inc” 
ref_mbx mbxid 

<< Argument >> 

mbxid [  ∗∗  ] The ID No. of the mailbox to Reference Mailbox 
pk_rmbx [∗∗∗∗] Packet address to Reference Mailbox 

(Set the address in the R2 register.) 

<< Register setting >> 
Register name Contents after system call issuance 

R0 Error code 
R1 The ID No. of the mailbox to Reference Mailbox 
R2 Packet address to Reference Mailbox 
R3 -- 

The structure indicated by pk_rmbx returns the following data. 
Offset Size   
+0 4 exinf Extended information 
+4 2 wtsk Waiting task information 
+8 4(U) pk_msg Starting address of next received 

message packet 
12 4 msgcnt The number of messages 

U: unsigned data.  

 [( Calling by the C language )] 
#include <mr32r.h> 
ER ref_mbx (pk_rmbx, mbxid); 

<< Argument >> 

T_RMBX *rmbx; Packet address to Reference Mailbox 
ID mbxid; The ID No. of the mailbox to Reference Maibox 

<< Return value >> 

An error code is returned as the return value of a function. 
The structure indicated by pk_rmbx returns the following data. 
 typedef struct t_rmbx { 
  VP exinf; /* Extended informatio */ 
  BOOL_ID wtsk; /* Waiting task information */ 
  T_MSG *pk_msg; /* Starting address of next received message 
     packet*/ 
  INT msgcnt; /* The number of messages */ 
 } T_RMBX; 

 [( Error codes )] 
E_OK   00000000H(-H’00000000):Normal End 
E_NOEXS  0FFFFFFCCH(-H’00000034): Object does not exist 



 

2.5.8 ref_mbx(Refer Mailbox Status) 

 

117

[( Function description )] 

Refers to the state of the mailbox specified by mbxid, and returns the following information 
as return values. 

 exinf 

Returns extended task information in exinf. 

 wtsk 

wtsk returns the ID No. of the first task waiting for the specified mailbox message (the 
first task to start waiting). wtsk returns FALSE (0) if there are no tasks waiting for 
messages. 

 pk_msg 

pk_msg returns the message received (the first message in the queue) when rcv_msg 
or trcv_msg is executed next. pk_msg returns NADR=FFFFFFFFH=(-1). if there is no 
message.  

 msgcnt 

Returns the number of messages currently in the target mailbox. 

An error E_NOEXS is returned if this system call is issued for a nonexistent mailbox. 

This system call can be issued from both tasks and handlers. 

 [( Usage example )] 
<< Usage example of the C language >> 
 
#include <mr32r.h> 
#include “id.h” 
void task() 
{ 
 T_RMBX rmbx; 
  : 
 ref_mbx(ID_mbx, &rmbx); 
  : 
} 
 
<< Usage example of the assembly language(CC32R) >> 
 
rmbx:     .RES.B 12 
 .include “mr32r.inc” 

.global task 
task: 
  : 
 ld24       R2,#rmbx 
 ref_mbx    ID_mbx 
  : 
 
<< Usage example of the assembly language(TW32R:DCC/M32R) >> 
 
rmbx:     .space 12 
 .include “mr32r.inc” 

.global task 
task: 
  : 
 ld24       R2,#rmbx 
 ref_mbx    ID_mbx 
  : 



 

2.6.1 cre_mbf(Create Messagebuffer) 118 

2.6. Messagebuffer 
2.6.1. cre_mbf(Create Messagebuffer) 

[( System call name )] 

cre_mbf → Create Messagebuffer 

 [( Calling by the assembly language )] 
.include “mr32r.inc” 
cre_mbf      mbfid 

<< Argument >> 

mbfid [  ∗∗  ] The ID No. of a messagebuffer to be created 
pk_cmbf [∗∗∗∗] The start address in which the messagebuffer 

generation information is stored 
(Set the address in the R2 register.) 

<< Register setting >> 
Register name Contents after system call issuance 

R0 Error code 
R1 The ID No. of a messagebuffer to be created 
R2 The start address in which the messagebuffer 

generation information is stored 
R3 -- 

Specify the following information in the structure indicased by pk_ctsk. 
Offset Size   
+0 4 exinf Extended information 
+4 4 mbfatr Messagebuffer attribute 
+8 4 bufsz Messagebuffer size 
+12 4 maxmsz Maximum size of messages 

 [( Calling by the C language )] 
#include <mr32r.h> 
ER cre_mbf (mbfid, pk_cmbf); 

<< Argument >> 

ID mbfid; The ID No. of a messagebuffer to be created 
T_CTSK *pk_ctsk; The start address in which the messagebuffer 

generation information is stored 
Specify the following information in the structure indicased by pk_cmbf. 
 typedef struct t_cmbf { 
  VP exinf; /* Extended information */ 
  ATR mbfatr; /* Messagebuffer attribute */ 
  INT bufsz; /* Messagebuffer size */ 
  INT maxmsz; /* Maximum size of message */ 
 } T_CMBF; 

<< Return value >> 

An error code is returned as the return value of a function. 

[( Error codes )] 
E_OK   00000000H(-H’00000000): Normal End 
E_NOMEM  0FFFFFFF6H(-H’0000000a): Not enough of memory 
E_OBJ  0FFFFFFC1H(-H’0000003f): Invalid object state 



 

2.6.1 cre_mbf(Create Messagebuffer) 

 

119

[( Function description )] 

Creates a messagebuffer mbfid indicates. 

The message buffer consists of the ring buffer whose size is specified as bufsz. Here follows 
explanation of the information as to a messagebuffer to be generated pk_cmbf. 

 exinf (extended information) 

Exinf is an area you can freely use to store information as to a messagebuffer to be 
generated. MR32R has nothing to do with the exinf's contents. 

 mbfatr (messagebuffer attribute) 

Specify the location of the messagebuffer area to be created. Specifically this means 
specifying whether you want the messagebuffer to be located in the internal RAM or in 
external RAM.  

♦To locate the messagebuffer area in internal RAM 

Specify __MR_INT(0). 

♦ To locate the messagebuffer area in external RAM 
Specify __MR_EXT(0x10000). 

♦ To locate the messagebuffer area user specified 
Specify __MR_USER(0x30000). 

 bufsz (Specify multiple of four) 

Specify the size of message bufferto be created.It must be multiple of four. 

You can specify the bufsz=0.In this case,the message buffer communication is 
completely synchronized. 

 maxmsz 

Specify the maximum length of message in the message buffer to be created.MR32R 
does not refer maxmsz,so you need not set this item.If you want to have a compatibility 
between MR32R and other Realtime OS,set this item. 

An error E_OBJ is returned if cre_mbf system call is issued for the message buffer which is 
existent. 

The range of the specifiable ID number is 1 to the maximum value specified in the 
configuration file. 

You can issue this system call exclusively from a task. This system call, if issued either from 
the interrupt handler, the cyclic handler or the alarm handler, doesn't work properly. 



 

2.6.1 cre_mbf(Create Messagebuffer) 120 

 

[( Usage example )] 
<< Usage example of the C language >> 
 
#include <mr32r.h> 
#include “id.h” 
#define ID_mpl1 1 
void task1(void) 
{ 
 T_CMBX setmbf; 
 setmbf.mbfatr = __MR_INT; 
 setmbf.bufsz = 200; 
 setmbf.maxmsz = 30; 
 cre_mbf( ID_mpl1, &setmbf ); 
   : 
} 
 
<< Usage example of the assembly language(CC32R) >> 
 
setmbf: .RES.B 16 
ID_mbf1: .equ 1 
 .include “mr32r.inc” 
 .global   task1 
task1: 
  : 
 ld24    R2,#setmbf 
 ld24    R1,#__MR_INT 
 st      R1,@(4,R2) 
 ld24    R1,#200 
 st      R1,@(8,R2) 
 ld24    R1,#30 
 st      R1,@(12,R2) 
 cre_mbf ID_mbf1 
  : 
 ext_tsk 
 
<< Usage example of the assembly language(TW32R:DCC/M32R) >> 
 
setmbf: .space 16 

.equ ID_mbf1,1 
 .include “mr32r.inc” 
 .global   task1 
task1: 
  : 
 ld24    R2,#setmbf 
 ld24    R1,#__MR_INT 
 st      R1,@(4,R2) 
 ld24    R1,#200 
 st      R1,@(8,R2) 
 ld24    R1,#30 
 st      R1,@(12,R2) 
 cre_mbf ID_mbf1 
  : 
 ext_tsk 



 

2.6.2 del_mbf(Delete Massagebuffer) 

 

121

2.6.2. del_mbf(Delete Massagebuffer) 

[( System call name )] 

del_tsk → Delete Messagebuffer 

 [( Calling by the assembly language )] 
.include “mr32r.inc” 
del_mbf      mbfid 

<< Argument >> 

mbfid [  ∗∗  ] The ID No. of a messagebuffer to be deleted 

<< Register setting >> 
Register name Contents after system call issuance 

R0 Error code 
R1 The ID No. of a messagebuffer to be deleted 
R2 -- 
R3 -- 

[( Calling by the C language )] 
# include <mr32r.h> 
ER del_mbf ( mbfid ); 

<< Argument >> 

ID tskid; The ID No. of a task to be deleted 

<< Return value >> 

An error code is returned as the return value of a function. 

[( Error codes )] 
E_OK   00000000H(-H’00000000): Normal End 
E_NOEXS  0FFFFFFCCH(-H’00000034): Object does not exist 

[( Function description )] 

del_mbf deletes the messagebuffer mbfid indicates. 

Once this messagebuffer is deleted, you can create a new messagebuffer with the same ID 
number. Even when there is any task waiting for a messagebuffer to be deleted, this system 
call is terminated normally. In this case, the said task is freed from the messagebuffer wait 
state and returns error E_DLT.The messages in the message buffer are deleted by del_mbf 
system call because the message buffer area is released. 

An error E_NOEXS is returned if this system call is issued for a nonexistent messagebuffer. 

Make sure this system call is issued for only the messagebuffer that has been created by the 
cre_mbf system call. If this system call is issued for the messagebuffer that has been defined 
by the configuration file, it does not function normally. 

You can issue this system call exclusively from a task. This system call, if issued either from 
the interrupt handler, the cyclic handler or the alarm handler, doesn't work properly. 



 

2.6.2 del_mbf(Delete Massagebuffer) 122 

 [( Usage example )] 
<< Usage example of the C language >> 
 
#include <mr32r.h> 
#include “id.h” 
#define ID_mbf2 2 
void task1() 
{ 
  : 

del_mbf( ID_mbf2 ); 
  : 

ext_tsk(); 
} 
 
<< Usage example of the assembly language(CC32R) >> 
 
ID_mbf2: .equ 2 

.include “mr32r.inc” 

.global   task1 
task1: 
  : 

del_mbf ID_mbf2 
  : 

ext_tsk 
 
<< Usage example of the assembly language(TW32R:DCC/M32R) >> 
 

.equ ID_mbf2,2 

.include “mr32r.inc” 

.global   task1 
task1: 
  : 

del_mbf ID_mbf2 
  : 

ext_tsk 



 

2.6.3 snd_mbf(Send Message to Messagbuffer) 

 

123

2.6.3. snd_mbf(Send Message to Messagbuffer) 

[( System call name )] 

snd_msf → Sends a message.  

 [( Calling by the assembly language )] 
.include “mr32r.inc” 
snd_mbf      mbfid, msgsz 

<< Argument >> 

mbfid [  ∗∗  ] The ID No. of the messagebuffer to which a message 
is sent 

msg [∗∗∗∗] The start address of a message packet 
(Set the address in the R2 register.) 

msgsz [∗∗∗∗] The size of message 

<< Register setting >> 
Register name Contents after system call issuance 

R0 Error code 
R1 The ID No. of the messagebuffer to which a message is 

sent 
R2 The start address of a message packet 
R3 The size of a message 

[( Calling by the C language )] 
#include <mr32r.h> 
ER snd_mbf (mbfid, msg, msgsz); 

<< Argument >> 

ID mbxid; The ID No. of the messagebuffer to which a message 
is sent 

VP msg; The start address of a message packet 
INT msgsz; The size of a message 

<< Return value >> 

An error code is returned as the return value of a function. 

[( Error codes )] 
E_OK   00000000H(-H’00000000): Normal End 
E_RLWAI  0FFFFFFAAH(-H’00000056): Wait state forcibly 

    cleared 
E_DLT  0FFFFFFAFH(-H’00000051): The object being waited for 

    was deleted 
E_NOEXS  0FFFFFFCCH(-H’00000034): Object does not exist 



 

2.6.3 snd_mbf(Send Message to Messagbuffer) 124 

[( Function description )] 

snd_mbf system call sends the message in the address of msg to the message buffer 
specified with mbfid.Specify message size in msgsz.snd_mbf copys the msgsz bytes letters 
after msg to the queue of the message buffer specified as mbfid. The message buffer 
consists of the ring buffer.  

If msgsz is larger than the value specified by cre_mbf,no error is returned.24 

If the buffer's available space is so small that the msg message cannot fit into the message 
queue, the task that issued this system call is placed in send wait state. Accordingly, the task 
is queued up in two queues: the send wait queue. The sequence of wait queues is FIFO. 

If the task is forcibly released from the wait state by the rel_wai or irel_wai system call, error 
E_RLWAI is returned. 

Also, if the messagebuffer for a task waiting for conditions to be met is deleted by the 
del_mbf system call issued by another task, the waiting task is released from the transmit 
send messagebuffer wait state and error E_DLT is returned to that task.  

If the message buffer for a task waiting for conditions to be met is reset by the vrst_mbf 
system call issed by another task,the waiting task is released from send messagebuffer wait 
state and error EV_RST is returned to that task. 

An error E_NOEXS is returned if this system call is issued for a nonexistent messagebuffer. 

You can issue this system call exclusively from a task. This system call, if issued either from 
the interrupt handler, the cyclic handler or the alarm handler, doesn't work properly. 

 [( Usage example )] 
 
<< Usage example of the C language >> 
 
#include <mr32r.h> 
#include “id.h” 
void task() 
{ 

char *msg=”abcdef”; 
  : 
tsnd_mbf( ID_mbf, msg, 6); 
  : 

} 

                                                      
24 Please check yourself whether msgsz is smaller than maxmsz specified by cre_mbf or not. 



 

2.6.3 snd_mbf(Send Message to Messagbuffer) 

 

125

 
<< Usage example of the assembly language(CC32R) >> 
 
mbf: .SDATA “abcdef” 
  .DATA.B 0 

.include “mr32r.inc” 
 .GLOBAL   task 
task: 
  : 
 ld24 R2,#mbf 

snd_mbf ID_mbf,6 
  : 
 
<< Usage example of the assembly language(TW32R:DCC/M32R) >> 
 
mbf: .byte “abcdef” 
 .byte 0 

.include “mr32r.inc” 
 .GLOBAL   task 
task: 
  : 
 ld24 R2,#mbf 

snd_mbf ID_mbf,6 
  : 



 

2.6.4 tsnd_mbf(Send Message to Messagbuffer with Timeout) 126 

2.6.4. tsnd_mbf(Send Message to Messagbuffer with Timeout) 

[( System call name )] 

tsnd_msg → Sends a message (With Timeout).  

 [( Calling by the assembly language )] 
.include “mr32r.inc” 
tsnd_mbf      mbfid, msgsz,tmout 

<< Argument >> 

mbfid [  ∗∗  ] The ID No. of the messagebuffer to which a message 
is sent 

msg [∗∗∗∗] The start address of a message packet 
(Set the address in the R2 register.) 

msgsz [∗∗∗∗] The size of a message 
tmout [∗∗∗∗] Timeout value 

<< Register setting >> 
Register name Contents after system call issuance 

R0 Error code 
R1 The ID No. of the messagebuffer to which a message is 

sent 
R2 The start address of a message packet 
R3 The size of a message 

[( Calling by the C language )] 
#include <mr32r.h> 
ER tsnd_mbf (mbfid, msg, msgsz, tmout); 

<< Argument >> 

ID mbxid; The ID No. of the messagebuffer to which a message 
is sent 

VP msg; The start address of a message packet 
INT msgsz; The size of a message 
TMO tmout; Timeout value 

<< Return value >> 

An error code is returned as the return value of a function. 

[( Error codes )] 
E_OK   00000000H(-H’00000000): Normal End 
E_RLWAI  0FFFFFFAAH(-H’00000056): Wait state forcibly 

    cleared 
E_DLT  0FFFFFFAFH(-H’00000051): The object being waited for 

    was deleted 
E_TMOUT  0FFFFFFABH(-H’00000055): Polling failed or timeout 
E_NOEXS  0FFFFFFCCH(-H’00000034): Object does not exist 



 

2.6.4 tsnd_mbf(Send Message to Messagbuffer with Timeout) 

 

127

[( Function description )] 

snd_mbf system call sends the message in the address of msg to the message buffer 
specified with mbfid.Specify message size in msgsz.snd_mbf copys the msgsz bytes letters 
after msg to the queue of the message buffer specified as mbfid. The message buffer 
consists of the ring buffer.  

If msgsz is larger than the value specified by cre_mbf,no error is returned25. 

If the buffer's available space is so small that the msg message cannot fit into the message 
queue, the task that issued this system call is placed in send wait state. Accordingly, the task 
is queued up in two queues: the send wait queue and the timeout wait queue. The sequence 
of wait queues is FIFO. 

The wait state committed by issuing this system call is released in the cases described 
below. Note that when released from the wait state, the task that issued this system call is 
removed from both of the send wait and timeout wait queues and is connected to the ready 
queue. 

 When the release-from-wait condition is met before the tmout time expires 

Error code E_OK is returned. 

 When the tmout time expires before the release-from-wait condition is met 

Error code E_TMOUT is returned. 

 When the rel_wai or irel_wai system call is issued before the send messagebuffer wait 
condition is met 

Error code E_RLWAI is returned. 

 When the messagebuffer for which a task has been kept waiting is deleted by the 
del_mbf system call issued by another task 

Error code E_DLT is returned. 

 When the messagebuffer for which a task has been kept waiting is reset by the vrst_mbf 
system call issued by another task 

Error code EV_RST is returned. 

Any value from -1 to 7FFFFFFFH can be specified for tmout. If you specify TMO_POL = 0 for 
tmout, the effect is the same as 0 is specified for the timeout value, in which case tmout 
functions the same way as psnd_mbf. Also, if you specify tmout = TMO_FEVR(-1), the effect 
is the same as endless wait is specified, in which case tmout functions the same way as 
snd_mbf. 

An error E_NOEXS is returned if this system call is issued for a nonexistent messagebuffer. 

You can issue this system call exclusively from a task. This system call, if issued either from 
the interrupt handler, the cyclic handler or the alarm handler, doesn't work properly. 

                                                      
25 Please check yourself whether msgsz is smaller than maxmsz specified by cre_mbf or not. 



 

2.6.4 tsnd_mbf(Send Message to Messagbuffer with Timeout) 128 

 [( Usage example )] 
 
<< Usage example of the C language >> 
 
#include <mr32r.h> 
#include “id.h” 
void task() 
{ 

char *msg=”abcdef”; 
  : 

tsnd_mbf( ID_mbf, msg, 6, 100); 
  : 
} 
 
<< Usage example of the assembly language(CC32R) >> 
 
mbf: .SDATA “abcdef” 
  .DATA.B 0 

.include “mr32r.inc” 
 .global   task 
task: 
  : 
 ld24 R2,#mbf 

tsnd_mbf ID_mbf,6,100 
  : 
 
<< Usage example of the assembly language(TW32R:DCC/M32R) >> 
 
mbf: .byte “abcdef” 
 .byte 0 

.include “mr32r.inc” 
 .global   task 
task: 
  : 
 ld24 R2,#mbf 

tsnd_mbf ID_mbf,6,100 
  : 



 

2.6.5 psnd_mbf(Poll and Send Messagebuffer) 

 

129

2.6.5. psnd_mbf(Poll and Send Messagebuffer) 

[( System call name )] 

psnd_msg → Sends a message (no wait).  

 [( Calling by the assembly language )] 
.include “mr32r.inc” 
psnd_mbf      mbfid, msgsz 

<< Argument >> 

mbfid [  ∗∗  ] The ID No. of the messagebuffer to which a message 
is sent 

msg [∗∗∗∗] The start address of a message packet 
(Set the address in the R2 register.) 

msgsz [∗∗∗∗] The size of a message 

<< Register setting >> 
Register name Contents after system call issuance 

R0 Error code 
R1 The ID No. of the messagebuffer to which a message is 

sent 
R2 The start address of message packet 
R3 The size of message 

[( Calling by the C language )] 
#include <mr32r.h> 
ER psnd_mbf (mbfid, msg, msgsz); 

<< Argument >> 

ID mbxid; The ID No. of the messagebuffer to which a message 
is sent 

VP msg; The start address of a message packet 
INT msgsz; The size of a message 

<< Return value >> 

An error code is returned as the return value of a function. 

[( Error codes )] 
E_OK   00000000H(-H’00000000): Normal End 
E_TMOUT  0FFFFFFABH(-H’00000055): Polling failed or timeout 
E_NOEXS  0FFFFFFCCH(-H’00000034): Object does not exist 

[( Function description )] 

psnd_mbf system call sends the message in the address of msg to the message buffer 
specified with mbfid.Specify message size in msgsz.psnd_mbf copys the msgsz bytes letters 
after msg to the queue of the message buffer specified as mbfid. The message buffer 
consists of the ring buffer.  

If msgsz is larger than the value specified by cre_mbf,no error is returned26. 

If there is no space in message buffer area,error E_TMOUT is returned. 

The task is not moved to WAIT state by psnd_mbf.  

An error E_NOEXS is returned if this system call is issued for a nonexistent messagebuffer. 

                                                      
26 Please check yourself whether msgsz is smaller than maxmsz specified by cre_mbf or not. 



 

2.6.5 psnd_mbf(Poll and Send Messagebuffer) 130 

You can issue this system call exclusively from a task. This system call, if issued either from 
the interrupt handler, the cyclic handler or the alarm handler, doesn't work properly. 

 [( Usage example )] 
<< Usage example of the C language >> 
 
#include <mr32r.h> 
#include “id.h” 
void inthand() 
{ 
 char *msg=”abcdef”; 
   : 
 if( psnd_mbf( ID_mbf, msg, 6) != E_OK ){ 

error(“overflow\n”); 
  : 

} 
 
<< Usage example of the assembly language(CC32R) >> 
 
mbf: .SDATA “abcdef” 
  .DATA.B 0 

.include “mr32r.inc” 
 .global   intr 
intr: 
  : 
 ld24 R2,#mbf 

psnd_mbf ID_mbf, 6 
  : 

ret_int 
 
<< Usage example of the assembly language(TW32R:DCC/M32R) >> 
 
mbf: .byte “abcdef” 
 .byte 0 

.include “mr32r.inc” 
 .global   intr 
intr: 
  : 
 ld24 R2,#mbf 

psnd_mbf ID_mbf, 6 
  : 

ret_int 



 

2.6.6 rcv_mbf(Receive Messagebuffer) 

 

131

2.6.6. rcv_mbf(Receive Messagebuffer) 

[( System call name )] 

rcv_mbf → Waits for receiving a message from Messagebuffer.  

 [( Calling by the assembly language )] 
.include “mr32r.inc” 
rcv_mbf      mbfid, msg 

<< Argument >> 

mbfid [  ∗∗  ] The ID No. of the messagebuffer from which a 
message pakect is received 

msg [∗∗∗∗] The start address in which a receive message packet 
is stored. 
(Set the address in the R2 register.) 

<< Register setting >> 
Register name Contents after system call issuance 

R0 Error code 
R1 The ID No. of the messagebuffer from which a message 

packet is received 
R2 The start address in which a receive message packet is 

stored. 
R3 The size of a receive message packet 

[( Calling by the C language )] 
#include <mr32r.h> 
ER rcv_mbf (msg, p_msgsz, mbfid); 

<< Argument >> 

ID mbfid; The ID No. of the messagebuffer from which a 
message packet is received 

INT *p_msgsz; The start address in which a receive message 
packet is stored. 

VP msg; The size of a receive message packet 

<< Return value >> 

An error code is returned as the return value of a function. 
The size of a receive message packet is stored in p_msgsz. 

 [( Error codes )] 
E_OK   00000000H(-H’00000000): Normal End 
E_RLWAI  0FFFFFFAAH(-H’00000056): Wait state forcibly 

    cleared 
E_DLT  0FFFFFFAFH(-H’00000051): The object being waited for 

    was deleted 
E_NOEXS  0FFFFFFCCH(-H’00000034): Object does not exist 

[( Function description )] 

rcv_mbf recieves the message in the message buffer specified as mbfid,and store to the 
area specified as msg.If there is a send WAIT state task,rcv_mbf compare the size of 
message to be sent with the size of received message.  

1. Recieve message size is larger than send message size. 



 

2.6.6 rcv_mbf(Receive Messagebuffer) 132 

The message is sent to messagebuffer and the task is moved WAIT state to READY 
state. 

2. Receive message size is smaller than send message size. 
rcv_mbf does not send the message to message buffer,leave the task WAIT state, and 
end. 

After the process of 1,rcv_mbf does as the sam if there is the send WAIT state task.If the 
message is not sent to the message buffer speified as mbfid,the task is moved to WAIT state 
FIFO ordered.  

If the task is forcibly released from the wait state by the rel_wai or irel_wai system call, error 
E_RLWAI is returned. 

If the messagebuffer for a task waiting for conditions to be met is deleted by the del_mbf 
system call issued by another task, the waiting task is released from the receive wait state 
and error E_DLT is returned to that task. 

If the messagebuffer for a task waiting for conditions to be met is reset by the vrst_mbf 
system call issued by another task, the waiting task is released from the receive wait state 
and error EV_RST is returned to that task. 

An error E_NOEXS is returned if this system call is issued for a nonexistent messagebuffer. 

You can issue this system call exclusively from a task. This system call, if issued either from 
the interrupt handler, the cyclic handler or the alarm handler, doesn't work properly. 

 [( Usage example )] 
<< Usage example of the C language >> 
 
#include <mr32r.h> 
#include “id.h” 
void task() 
{ 
 char   msg[128]; 
 INT    msgsz; 

if( rcv_mbf( (VP)msg, &msgsz, ID_mbf) != E_OK ) 
   : 
} 
 
<< Usage example of the assembly language(CC32R) >> 
 
msg: .RES.B 32 
 .include “mr32r.inc” 
 .global   task 
task: 
  : 
 ld24 R2,#msg 
 rcv_mbf ID_mbf 
  : 
 
<< Usage example of the assembly language(TW32R:DCC/M32R) >> 
 
msg: .space 32 
 .include “mr32r.inc” 
 .global   task 
task: 
  : 
 ld24 R2,#msg 
 rcv_mbf ID_mbf 
  : 



 

2.6.7 trcv_mbf(Receive Messagebuffer with Timeout) 

 

133

2.6.7. trcv_mbf(Receive Messagebuffer with Timeout) 

[( System call name )] 

trcv_mbf → Waits for receiving a message from Messagebuffer. 
(With Timeout) 

 [( Calling by the assembly language )] 
.include “mr32r.inc” 
trcv_mbf      mbfid, tmout 

<< Argument >> 

mbfid [  ∗∗  ] The ID No. of the messagebuffer from which a 
message pakect is received 

msg [∗∗∗∗] The start address in which a receive message packet 
is stored. 
(Set the address in the R2 register.) 

tmout [∗∗∗∗] Timeout value 

<< Register setting >> 
Register name Contents after system call issuance 

R0 Error code 
R1 The ID No. of the messagebuffer from which a message 

packet is received 
R2 The start address in which a receive message packet is 

stored. 
R3 The size of a receive message packet 
R4 Timeout value 

[( Calling by the C language )] 
#include <mr32r.h> 
ER trcv_mbf (msg, p_msgsz, mbfid, tmout); 

<< Argument >> 

ID mbfid; The ID No. of the messagebuffer from which a 
message packet is received 

INT *p_msgsz; The start address in which a receive message 
packet is stored. 

VP msg; The size of a receive message packet 
TMO\ tmout; Timeout value 

<< Return value >> 

An error code is returned as the return value of a function. 
The size of a receive message packet is stored in p_msgsz. 

 [( Error codes )] 
E_OK   00000000H(-H’00000000): Normal End 
E_RLWAI  0FFFFFFAAH(-H’00000056): Wait state forcibly 

    cleared 
E_DLT  0FFFFFFAFH(-H’00000051): The object being waited for 

    was deleted 
E_TMOUT  0FFFFFFABH(-H’00000055): Polling failed or timeout 
E_NOEXS  0FFFFFFCCH(-H’00000034): Object does not exist 



 

2.6.7 trcv_mbf(Receive Messagebuffer with Timeout) 134 

[( Function description )] 

trcv_mbf recieves the message in the message buffer specified as mbfid,and store to the 
area specified as msg.If there is a send WAIT state task,trcv_mbf compare the size of 
message to be sent with the size of received message.  

1. Recieve message size is larger than send message size. 
The message is sent to messagebuffer and the task is moved WAIT state to READY 
state. 

2. Receive message size is smaller than send message size. 
rcv_mbf does not send the message to message buffer,leave the task WAIT state, and 
end. 

After the process of 1,trcv_mbf does as the sam if there is the send WAIT state task.If the 
message is not sent to the message buffer speified as mbfid,the task is moved to WAIT state 
and linked to the timeout queue and the receive wait queue.  

The wait state committed by issuing this system call is released in the cases described 
below. Note that when released from the wait state, the task that issued this system call is 
removed from both of the recieve wait and timeout wait queues and is connected to the 
ready queue. 

 When the wait cancellation condition occurs by a message being received before the 
tmout time has elapsed. 

Error code E_OK is returned. 

 When tmout time has elapsed without any message being received 

Error code E_TMOUT is returned. 

 When the rel_wai or irel_wai system call is issued before the recieve messagebuffer wait 
condition is met 

Error code E_RLWAI is returned. 

 When the message buffer for which a task has been kept waiting is deleted by the 
del_mbf system call issued by another task 

Error code E_DLT is returned. 

 When the message buffer for which a task has been kept waiting is reset by the vrst_mbf 
system call issued by another task 

Error code EV_RST is returned. 

Any value from -1 to 7FFFFFFFH can be specified for tmout. If you specify TMO_POL = 0 for 
tmout, the effect is the same as 0 is specified for the timeout value, in which case tmout 
functions the same way as prcv_mbf. Also, if you specify tmout = TMO_FEVR(-1), the effect 
is the same as endless wait is specified, in which case tmout functions the same way as 
rcv_mbf. 

An error E_NOEXS is returned if this system call is issued for a nonexistent messagebuffer. 

You can issue this system call exclusively from a task. This system call, if issued either from 
the interrupt handler, the cyclic handler or the alarm handler, doesn't work properly. 



 

2.6.7 trcv_mbf(Receive Messagebuffer with Timeout) 

 

135

 [( Usage example )] 
<< Usage example of the C language >> 
 
#include <mr32r.h> 
#include “id.h” 
void task() 
{ 
 char   msg[128]; 
 INT    msgsz; 

if( trcv_mbf( (VP)msg, &msgsz, ID_mbf, 200 ) != E_OK ) 
  error(“forced wakeup\n”); 
   : 
} 
 
} 
 
<< Usage example of the assembly language(CC32R) >> 
 
 msg: .RES.B 30 
 .include “mr32r.inc” 
 .global   task 
task: 
  : 
 ld24 R2,#msg 

trcv_mbf ID_mbf, 200 
  : 
 
<< Usage example of the assembly language(TW32R:DCC/M32R) >> 
 
 msg: .space 30 
 .include “mr32r.inc” 
 .global   task 
task: 
  : 
 ld24 R2,#msg 

trcv_mbf ID_mbf, 200 
  : 



 

2.6.8 prcv_mbf(Poll and Receive Messagebuffer) 136 

2.6.8. prcv_mbf(Poll and Receive Messagebuffer) 

[( System call name )] 

prcv_mbf → Waits for receiving a message from Messagebuffer. 
(no wait) 

 [( Calling by the assembly language )] 
.include “mr32r.inc” 
prcv_mbf      mbfid 

<< Argument >> 

mbfid [  ∗∗  ] The ID No. of the messagebuffer from which a 
message pakect is received 

msg [∗∗∗∗] The start address in which a receive message packet 
is stored. 
(Set the address in the R2 register.) 

<< Register setting >> 
Register name Contents after system call issuance 

R0 Error code 
R1 The ID No. of the messagebuffer from which a message 

packet is received 
R2 The start address in which a receive message packet is 

stored. 
R3 The size of a receive message packet 
R4 TImeout value 

[( Calling by the C language )] 
#include <mr32r.h> 
ER prcv_mbf (msg, p_msgsz, mbfid); 

<< Argument >> 

ID mbfid; The ID No. of the messagebuffer from which a 
message packet is received 

INT *p_msgsz; The start address in which a receive message 
packet is stored. 

VP msg; The size of a receive message packet 

<< Return value >> 

An error code is returned as the return value of a function. 
The size of a receive message packet is stored in p_msgsz. 

 [( Error codes )] 
E_OK   00000000H(-H’00000000): Normal End 
E_TMOUT  0FFFFFFABH(-H’00000055): Polling failed or timeout 
E_NOEXS  0FFFFFFCCH(-H’00000034): Object does not exist 

[( Function description )] 

prcv_mbf recieves the message in the message buffer specified as mbfid,and store to the 
area specified as msg.If there is a send WAIT state task,prcv_mbf compare the size of 
message to be sent with the size of received message.  

1. Recieve message size is larger than send message size. 



 

2.6.8 prcv_mbf(Poll and Receive Messagebuffer) 

 

137

The message is sent to messagebuffer and the task is moved WAIT state to READY 
state. 

2. Receive message size is smaller than send message size. 
rcv_mbf does not send the message to message buffer,leave the task WAIT state, and 
end. 

After the process of 1,prcv_mbf does as the sam if there is the send WAIT state task.If the 
message is not sent to the message buffer speified as mbfid,error E_TMOUT is returned..  

The task is not moved to WAIT state by prcv_mbf.  

An error E_NOEXS is returned if this system call is issued for a nonexistent messagebuffer. 

You can issue this system call exclusively from a task. This system call, if issued either from 
the interrupt handler, the cyclic handler or the alarm handler, doesn't work properly. 

 [( Usage example )] 
<< Usage example of the C language >> 
 
#include <mr32r.h> 
#include “id.h” 
void task(void) 
{ 
 char   msg[128]; 
 INT    msgsz; 

if( prcv_mbf( (VP)msg, &msgsz, ID_mbf, 200 ) != E_OK ) 
   : 
} 
 
<< Usage example of the assembly language(CC32R) >> 
 
msg: .space 32 
 .include “mr32r.inc” 

.global   task 
task: 
 ld24 R2,#msg 
 prcv_mbf ID_mbf  
  : 
 
<< Usage example of the assembly language(TW32R:DCC/M32R) >> 
 
msg: .space 32 
 .include “mr32r.inc” 

.global   task 
task: 
 ld24 R2,#msg 
 prcv_mbf ID_mbf  
  : 
 



 

2.6.9 ref_mbf(Refer Messagebuffer Status) 138 

2.6.9. ref_mbf(Refer Messagebuffer Status) 

[( System call name )] 

ref_mbf → Reference Messagebuffer Status 

 [( Calling by the assembly language )] 
.include “mr32r.inc” 
ref_mbf mbfid 

<< Argument >> 

mbfid [  ∗∗  ] The ID No. of the messagebuffer to Reference 
Messagebuffer 

pk_rmbf [∗∗∗∗] Packet address to Reference Messagebuffer 
(Set the address in the R2 register.) 

<< Register setting >> 
Register name Contents after system call issuance 

R0 Error code 
R1 The ID No. of the messagebuffer to Reference 

Messagebuffer 
R2 Packet address to Reference Messagebuffer 
R3 -- 

The structure indicated by pk_rmbx returns the following data. 
Offset Size   
+0 4 exinf Extended information 
+4 2 wtsk Waiting Task Information 
+6 2 stsk Sending Task Information 
+8 4 pk_msg Message Size (in bytes) 
12 4 frbufsz Free Buffer Size (in bytes) 

 [( Calling by the C language )] 
#include <mr32r.h> 
ER ref_mbf (pk_rmbf, mbfid); 

<< Argument >> 

T_RMBF * pk_rmbf; Packet address to Reference Messagebuffer 
ID mbfid; The ID No. of the messagebuffer to Reference 

Messagebuffer 

<< Return value >> 

An error code is returned as the return value of a function. 
The structure indicated by pk_rmbf returns the following data. 
 typedef struct t_rmbx { 
  VP exinf; /* Extended informatio */ 
  BOOL_ID wtsk; /* Waiting Task Information */ 
  BOOL_ID stsk; /* Sending Task Information */ 
  INT msgsz; /* Message Size (in bytes) */ 
  INT frbufsz; /* Free Buffer Size (in bytes) */ 
 } T_RMBF; 

 [( Error codes )] 
E_OK   00000000H(-H’00000000): Normal End 
E_NOEXS  0FFFFFFCCH(-H’00000034): Object does not exist 



 

2.6.9 ref_mbf(Refer Messagebuffer Status) 

 

139

[( Function description )] 

Refers to the state of the messagebuffer specified by mbfid, and returns returns the following 
information as return values. 

 exinf 

Returns extended task information in exinf. 

 wtsk 

wtsk returns the ID No. of the first task waiting for the specified messagebuffer to 
receive message (the first task to start waiting). wtsk returns FALSE (0) if there are no 
tasks waiting to receive a messages. 

 stsk 

stsk returns the ID No. of the first task waiting for the specified messagebuffer to send 
message (the first task to start waiting). wtsk returns FALSE (0) if there are no tasks 
waiting to send a messages. 

 msgsz 

The top message size in the message buffer specified as mbfid is stored.If there is no 
message in the message buffer, FALSE(0) is returned.  

 frbufsz 

The free buffer size specified is returned. 

An error E_NOEXS is returned if this system call is issued for a nonexistent messagebuffer. 

This system call can be issued from both tasks and handlers. 



 

2.6.9 ref_mbf(Refer Messagebuffer Status) 140 

 [( Usage example )] 
<< Usage example of the C language >> 
 
#include <mr32r.h> 
#include “id.h” 
void task() 
{ 
 T_RMBF rmbf; 
  : 

ref_mbf(ID_mbf, &rmbf); 
  : 
} 
 
<< Usage example of the assembly language(CC32R) >> 
 
rmbf:     .RES.B 16 
 .include mr32r.inc 
 .global task 
task: 
  : 
 ld24       R2,#rmbf 
 ref_mbf    ID_mbf 
  : 
 
<< Usage example of the assembly language(TW32R:DCC/M32R) >> 
 
rmbf:     .space 16 
 .include mr32r.inc 
 .global task 
task: 
  : 
 ld24       R2,#rmbf 
 ref_mbf    ID_mbf 
  : 



 

2.7.1 cre_por(Create Port for Rendezvous) 

 

141

2.7. Rendezvous 
2.7.1. cre_por(Create Port for Rendezvous) 

[( System call name )] 

cre_por → Create Port for Rendezvous 

 [( Calling by the assembly language )] 
.include “mr32r.inc” 
cre_por      porid  

<< Argument >> 

porid [  ∗∗  ] The ID No. of a port for redenzvous to be created 
pk_cpor [∗∗∗∗] The start address in which the port for redenzvous 

generation information is stored 
(Set the address in the R2 register.) 

<< Register setting >> 
Register name Contents after system call issuance 

R0 Error code 
R1 The ID No. of a port for redenzvous to be created 
R2 The start address in which the port for redenzvous 

generation information is stored 
R3 -- 

Specify the following information in the structure indicased by pk_cpor. 
Offset Size   
+0 4 exinf Extended information 
+4 4 poratr Port for rendezvous attribute 
+8 4 maxcmsz Maximum call message size 
+12 2 maxrmsz Maximum reply message size 

 [( Calling by the C language )] 
#include <mr32r.h> 
ER cre_por (porid, pk_cpor); 

<< Argument >> 

ID porid; The ID No. of a port for redenzvous to be created 
T_CPOR *pk_cpor; The start address in which the port for redenzvous 

generation information is stored 
Specify the following information in the structure indicased by pk_ctsk. 
 typedef struct t_cpor { 
  VP exinf; /* Extended information */ 
  ATR poratr; /* Port for redenzvous attribute */ 
  INT maxcmsz; /* Maximum call message size */ 
  INT maxrmsz; /* Maximum reply message size */ 
 } T_CPOR; 

<< Return value >> 

An error code is returned as the return value of a function. 

[( Error codes )] 
E_OK   00000000H(-H’00000000): Normal End 
E_OBJ  0FFFFFFC1H(-H’0000003f): Invalid object state 



 

2.7.1 cre_por(Create Port for Rendezvous) 142 

[( Function description )] 

Creates a port for rendezvous porid indicates. 

Here follows explanation of the information as to a port for rendezvous to be generated 
pk_cpor. 

 exinf (extended information) 

Exinf is an area you can freely use to store information as to a port for rendezvous to be 
generated. MR32R has nothing to do with the exinf's contents. 

 poratr (port attribute) 

MR32R has nothing to do with this contents. 

 maxcmsz 

Specify the maximum length of message in calling. 

MR32R does not refer maxcmsz,so you need not set this item.If you want to have a 
compatibility between MR32R and other Realtime OS,set this item. 

 maxrmsz 

Specify the maximum length of message in replying.  

MR32R does not refer maxrmsz,so you need not set this item.If you want to have a 
compatibility between MR32R and other Realtime OS,set this item. 

An error E_OBJ is returned if cre_por system call is issued for the port which is existent.  

The range of the specifiable ID number is 1 to the maximum value specified in the 
configuration file. 

You can issue this system call exclusively from a task. This system call, if issued either from 
the interrupt handler, the cyclic handler or the alarm handler, doesn't work properly. 



 

2.7.1 cre_por(Create Port for Rendezvous) 

 

143

 [( Usage example )] 
<< Usage example of the C language >> 
 
#include <mr32r.h> 
#include “id.h” 
void task1() 
{ 
 T_CPOR setpor; 
  : 
 setmbf.maxcmsz = 300; 
 setmbf.maxrmsz = 200; 
 cre_por( 1, &setpor ); 
  : 
} 
 
<< Usage example of the assembly language(CC32R) >> 

 
.equ ID_por1,1 

setpor: .space 16 
 .include “mr32r.inc” 

.global   task1 
task1: 
  : 
 ld24    R2,#setpor 
 ld24    R1,#300 
 st      R1,@(8,R2) 
 ld24    R1,#200 
 st      R1,@(12,R2) 
 cre_por ID_por1  
  : 
 ext_tsk 
 
<< Usage example of the assembly language(TW32R:DCC/M32R) >> 

 
.equ ID_por1,1 

setpor: .space 16 
 .include “mr32r.inc” 

.global   task1 
task1: 
  : 
 ld24    R2,#setpor 
 ld24    R1,#300 
 st      R1,@(8,R2) 
 ld24    R1,#200 
 st      R1,@(12,R2) 
 cre_por ID_por1 
  : 
 ext_tsk 



 

2.7.2 del_por(Delete Port for Rendezvous) 144 

2.7.2. del_por(Delete Port for Rendezvous) 

[( System call name )] 

del_por → Delete Port for Rendezous 

 [( Calling by the assembly language )] 
.include “mr32r.inc” 
del_por      porid 

<< Argument >> 

porid [  ∗∗  ] The ID No. of a port for rendezvous to be deleted 

<< Register setting >> 
Register name Contents after system call issuance 

R0 Error code 
R1 The ID No. of a port for rendezvous to be deleted 
R2 -- 
R3 -- 

[( Calling by the C language )] 
#include <mr32r.h> 
ER del_por ( porid ); 

<< Argument >> 

ID porid; The ID No. of a port for rendezvous to be deleted 

<< Return value >> 

An error code is returned as the return value of a function. 

[( Error codes )] 
E_OK   00000000H(-H’00000000): Normal End 
E_NOEXS  0FFFFFFCCH(-H’00000034): Object does not exist 

[( Function description )] 

del_por deletes the port for rendezvous porid indicates. 

You can create the port deleted as the same ID again.If the task is linked to the port wait 
queue and del_por is issued for the port,this system call normally end.In this case,del_por 
moves the task WAIT state to READY state.And error E_DLT is returned. 

An error E_NOEXS is returned if this system call is issued for a nonexistent port for 
rendezvous. 

Make sure this system call is issued for only the port for rendezvous that has been created 
by the cre_por system call. If this system call is issued for the port for rendezvous that has 
been defined by the configuration file, it does not function normally. 

You can issue this system call exclusively from a task. This system call, if issued either from 
the interrupt handler, the cyclic handler or the alarm handler, doesn't work properly. 

 



 

2.7.2 del_por(Delete Port for Rendezvous) 

 

145

[( Usage example )] 
<< Usage example of the C language >> 
 
#include <mr32r.h> 
#include “id.h” 
#define ID_por2 2 
void task1() 
{ 
  : 

del_por( ID_por2 ); 
  : 

ext_tsk(); 
} 
 
<< Usage example of the assembly language(TW32R:DCC/M32R) >> 
 
 .include “mr32r.inc” 

.global   task1 
task1: 
  : 
 del_por ID_por2 
  : 
 ext_tsk 
 
<< Usage example of the assembly language(TW32R:DCC/M32R) >> 
 
 .include “mr32r.inc” 

.global   task1 
task1: 
  : 
 del_por ID_por2 
  : 
 ext_tsk 



 

2.7.3 cal_por(Call Port for Rendezvous) 146 

2.7.3. cal_por(Call Port for Rendezvous) 

[( System call name )] 

cal_por → Call Port for Rendezous 

 [( Calling by the assembly language )] 
.include “mr32r.inc” 
cal_por      porid, calptn, cmsgsz 

<< Argument >> 

porid [  ∗∗  ] The ID No. of a port for rendezvous 
msg [∗∗∗∗] The start address of a call message packet 

(Set the address in the R5 register.) 
calptn [∗∗∗∗] Call bit pattern representing Rendezvous condition 
cmsgsz [∗∗∗∗] The size of a call message packet 

<< Register setting >> 
Register name Contents after system call issuance 

R0 Error code 
R1 The ID No. of a port for rendezvous 
R2 The size of a message to reply 
R3 The size of a message to call 
R4 -- 
R5 The start address of a call message packet 
R6 Call bit pattern representing Rendezvous condition 

[( Calling by the C language )] 
#include <mr32r.h> 
ER cal_por (msg, p_rmsgsz, porid, calptn, cmsgsz); 

<< Argument >> 

VP msg; The start address of a call message packet 
INT *p_rmsgsz; The start address in which the size of a message 

to reply is stored 
ID porid; The ID No. of a port for redenzvous 
UINT calptn; Call bit pattern representing Rendezvous condition
INT cmsgsz; The size of a call message packet 

<< Return value >> 

An error code is returned as the return value of a function. 

[( Error codes )] 
E_OK   00000000H(-H’00000000): Normal End 
E_RLWAI  0FFFFFFAAH(-H’00000056): Wait state forcibly 

    cleared 
E_NOEXS  0FFFFFFCCH(-H’00000034): Object does not exist 
E_DLT  0FFFFFFAFH(-H’00000051): The object being waited for 

    was deleted 



 

2.7.3 cal_por(Call Port for Rendezvous) 

 

147

[( Function description )] 

This system call executes the port rendezvous call. 

In the port specified with porid,there is a task in the rendezvous receive wait state.When 
conditions for establishing a rendezvous between the task in the receive wait state and the 
task issuing this system call are satisfied, then the rendezvous is established.Whether a 
rendezvous is established or not is determined by the logical AND of the call task calptn and 
the receive task acpptn. The rendezvous is established when the logical AND is anything 
other than 0. 

When the rendezvous is established, the task in the rendezvous receive wait state changes 
from the WAIT state to the READY state, while the task issued with this system call changes 
to the rendezvous end wait state. The wait state of this former task is canceled when the 
rendezvous receive task executes rpl_rdv. At the same time, the cal_pol system call ends. 

When the rendezvous is established, the call task can send a message to the receive task. 
The receive task copies the message stored in the msg address into the message storage 
area specified with acp_por (only the bytes specified in cmsgsz are copied). Also, a reply 
message can be sent from the receive task to the call task when the rendezvous ends. The 
content of the reply message specified by the receive task with rpl_rdv is copied into the 
message storage area indicated by the msg which the call task specifies with cal_por. 

The rendezvous call and rendezvous receive tasks copy each other's message. For this 
reason, previous messages are lost.When a receive wait task does not exist in the port 
specified with porid or when the rendezvous establish conditions are not established even 
though the port has a receive wait task, the task issued with this system call sets the port to 
the call wait state and connects it to the call wait queue. 

In the following cases, the task is freed from a wait state. 

 A rel_wai system call issued by some other task 
Error E_RLWAI is returned. 

 A del_por system call issued by some other task for this port 
Error E_DLT is returned. 
 

0 cannot be specified for the calptn index of this system call.However, an error is not 
generated when 0 is specified. 

If the port does not exist, an error E_NOEXS is returned. 

This system call can be issued only from tasks.The system call which be issued from the 
interrupt handler,the cyclic handler, or the alarm handler. 



 

2.7.3 cal_por(Call Port for Rendezvous) 148 

 

[( Usage example )] 
<< Usage example of the C language >> 
 
#include <mr32r.h> 
#include “id.h” 
void task(void) 
{ 

char msg[128]; 
 INT   rmsgsz; 
  : 

cal_por((VP)msg, &rmsgsz, ID_por1, 0x3, 10); 
  : 
} 
 
<< Usage example of the assembly language(CC32R) >> 

 
.include “mr32r.inc” 

 .global   task 
msg:   .RES.B   128 
task: 
 ld24 R5,#msg 
 cal_por ID_por1,0x3,10 
  : 
 
<< Usage example of the assembly language(TW32R:DCC/M32R) >> 

 
.include “mr32r.inc” 

 .global   task 
msg:   .space   128 
task: 
 ld24 R5,#msg 
 cal_por ID_por1,0x3,10 
  : 



 

2.7.4 tcal_por(Call Port for Rendezvous with Timeout) 

 

149

2.7.4. tcal_por(Call Port for Rendezvous with Timeout) 

[( System call name )] 

tcal_por → Call Port for Rendezous (With Timeout) 

 [( Calling by the assembly language )] 
.include “mr32r.inc” 
tcal_por      porid, msg, calptn, cmsgsz, tmout 

<< Argument >> 

porid [  ∗∗  ] The ID No. of a port for rendezvous 
msg [∗∗∗∗] The start address of a call message packet 

(Set the address in the R5 register.) 
calptn [∗∗∗∗] Call bit pattern representing Rendezvous condition 
cmsgsz [∗∗∗∗] The size of a call message packet 
tmout [∗∗∗∗] Timeout value 

<< Register setting >> 
Register name Contents after system call issuance 

R0 Error code 
R1 The ID No. of a port for rendezvous 
R2 The size of a message to reply 
R3 The size of a call message packet 
R4 Timeout value 
R5 The start address of a call message packet 
R6 Call bit pattern representing Rendezvous condition 

[( Calling by the C language )] 
#include <mr32r.h> 
ER tcal_por (msg, p_rmsgsz, porid, calptn, cmsgsz, tmout); 

<< Argument >> 

VP msg; The start address of a call message packet 
INT *p_rmsgsz; The start address in which the size of a message 

to reply is stored 
ID porid; The ID No. of a port for redenzvous 
UINT calptn; Call bit pattern representing Rendezvous condition
INT cmsgsz; The size of a call message packet 
TMO timeout Timeout value 

<< Return value >> 

An error code is returned as the return value of a function. 

[( Error codes )] 
E_OK   00000000H(-H’00000000): Normal End 
E_RLWAI  0FFFFFFAAH(-H’00000056): Wait state forcibly 

    cleared 
E_TMOUT  0FFFFFFABH(-H’00000055): Polling failed or timeout 
E_NOEXS  0FFFFFFCCH(-H’00000034): Object does not exist 
E_DLT  0FFFFFFAFH(-H’00000051): The object being waited for 

    was deleted 



 

2.7.4 tcal_por(Call Port for Rendezvous with Timeout) 150 

[( Function description )] 

This system call executes the port rendezvous call.  

In the port specified with porid,there is a task in the rendezvous receive wait state.When 
conditions for establishing a rendezvous between the task in the receive wait state and the 
task issuing this system call are satisfied, then the rendezvous is established.Whether a 
rendezvous is established or not is determined by the logical AND of the call task calptn and 
the receive task acpptn. The rendezvous is established when the logical AND is anything 
other than 0. 

When the rendezvous is established, the task in the rendezvous receive wait state changes 
from the WAIT state to the READY state, while the task issued with this system call changes 
to the rendezvous end wait state. The wait state of this former task is canceled when the 
rendezvous receive task executes rpl_rdv. At the same time, the tcal_pol system call ends. 

When the rendezvous is established, the call task can send a message to the receive task. 
The receive task copies the message stored in the msg address into the message storage 
area specified with acp_por (only the bytes specified in cmsgsz are copied). Also, a reply 
message can be sent from the receive task to the call task when the rendezvous ends. The 
content of the reply message specified by the receive task with rpl_rdv is copied into the 
message storage area indicated by the msg which the call task specifies with tcal_por. 

The rendezvous call and rendezvous receive tasks copy each other's message. For this 
reason, previous messages are lost. 

If there is no task waiting for acceptance at the port specified by porid, or although there is a 
task waiting for acceptance the rendezvous establishment condition is not met (i.e., AND 
result = 0), the task that issued this system call is kept waiting on the calling side of this port, 
so it is queued up in two queues: the call wait queue and the timeout wait queue. The 
sequence of wait queues is FIFO. 

In the following cases, the WAIT state by tcal_por system call issue is canceled.The task 
canceled WAIT state exits from the two wait queues (rendezvous call wait queue and timeout 
wait queue) and is connected to the ready queue.  

 When the wait cancellation condition occurs before the tmout time has elapsed 

Error E_OK is returned. 

 When tmout time has elapsed without any message being received 

Error E_TMOUT is returned. 

 When the wait state is forcibly cancelled by rel_wai or irel_wai system calls being invoked 
from another task or handler 

Error E_RLWAI is returned. 

 When the port for which a task has been kept waiting is deleted by the del_por system 
call issued by another task 

Error E_DLT is returned. 

Any value from -1 to 7FFFFFFFH can be specified for tmout. If you specify TMO_POL = 0 for 
tmout, the effect is the same as 0 is specified for the timeout value, in which case tmout 
functions the same way as pcal_por. Also, if you specify tmout = TMO_FEVR(-1), the effect 
is the same as endless wait is specified, in which case tmout functions the same way as 
cal_por. 

An error E_NOEXS is returned if this system call is issued for a nonexistent port for 
rendezvous. 



 

2.7.4 tcal_por(Call Port for Rendezvous with Timeout) 

 

151

0 cannot be specified for the calptn index of this system call.However, an error is not 
generated when 0 is specified. 

You can issue this system call exclusively from a task. This system call, if issued either from 
the interrupt handler, the cyclic handler or the alarm handler, doesn't work properly. 

 [( Usage example )] 
<< Usage example of the C language >> 
 
#include <mr32r.h> 
#include “id.h” 
#define ID_por1 1 
void task(void) 
{ 

char msg[128]; 
INT   rmsgsz; 
tcal_por((VP)msg, &rmsgsz, ID_por1, 0x3, 10, 300); 

  : 
} 
 
<< Usage example of the assembly language(CC32R) >> 
 
msg:   .RES.B   128 

.equ     ID_por1,1 

.include “mr32r.inc” 
 .global   task 
task: 
  : 
 ld24 R5,#msg 

tcal_por ID_por1,0x3,10,300 
  : 
 
<< Usage example of the assembly language(TW32R:DCC/M32R) >> 
 
msg:   .space   128 

.equ     ID_por1,1 

.include “mr32r.inc” 
 .global   task 
task: 
  : 
 ld24 R5,#msg 

tcal_por ID_por1,0x3,10,300 
  : 



 

2.7.5 pcal_por(Poll and Call Port for Rendezvous) 152 

2.7.5. pcal_por(Poll and Call Port for Rendezvous) 

[( System call name )] 

pcal_por → Call Port for Rendezous (no wait) 

 [( Calling by the assembly language )] 
.include “mr32r.inc” 
pcal_por      porid, calptn, cmsgsz, tmout 

<< Argument >> 

porid [  ∗∗  ] The ID No. of a port for rendezvous 
msg [∗∗∗∗] The start address of a call message packet 

(Set the address in the R5 register.) 
calptn [∗∗∗∗] Call bit pattern representing Rendezvous condition 
cmsgsz [∗∗∗∗] The size of a call message packet 

<< Register setting >> 
Register name Contents after system call issuance 

R0 Error code 
R1 The ID No. of a port for rendezvous 
R2 The size of a message to reply 
R3 The size of a call message packet 
R4 -- 
R5 The start address of a call message packet 
R6 Call bit pattern representing Rendezvous condition 

[( Calling by the C language )] 
#include <mr32r.h> 
ER pcal_por (msg, p_rmsgsz, porid, calptn, cmsgsz); 

<< Argument >> 

VP msg; The start address of a call message packet 
INT *p_rmsgsz; The start address in which the size of a message 

to reply is stored 
ID porid; The ID No. of a port for redenzvous 
UINT calptn; Call bit pattern representing Rendezvous condition
INT cmsgsz; The size of a call message packet 

<< Return value >> 

An error code is returned as the return value of a function. 

[( Error codes )] 
E_OK   00000000H(-H’00000000): Normal End 
E_TMOUT  0FFFFFFABH(-H’00000055): Polling failed or timeout 
E_NOEXS  0FFFFFFCCH(-H’00000034): Object does not exist 



 

2.7.5 pcal_por(Poll and Call Port for Rendezvous) 

 

153

[( Function description )] 

This system call executes the port rendezvous call.  

In the port specified with porid,there is a task in the rendezvous receive wait state.When 
conditions for establishing a rendezvous between the task in the receive wait state and the 
task issuing this system call are satisfied, then the rendezvous is established.Whether a 
rendezvous is established or not is determined by the logical AND of the call task calptn and 
the receive task acpptn. The rendezvous is established when the logical AND is anything 
other than 0. 

When the rendezvous is established, the task in the rendezvous receive wait state changes 
from the WAIT state to the READY state, while the task issued with this system call changes 
to the rendezvous end wait state. The wait state of this former task is canceled when the 
rendezvous receive task executes rpl_rdv. At the same time, the pcal_por system call ends. 

When the rendezvous is established, the call task can send a message to the receive task. 
The receive task copies the message stored in the msg address into the message storage 
area specified with acp_por (only the bytes specified in cmsgsz are copied). Also, a reply 
message can be sent from the receive task to the call task when the rendezvous ends. The 
content of the reply message specified by the receive task with rpl_rdv is copied into the 
message storage area indicated by the msg which the call task specifies with pcal_por. 

The rendezvous call and rendezvous receive tasks copy each other's message. For this 
reason, previous messages are lost. 

When there is no receive wait task linked to the port specified by porid or rendezvous 
condition does not match, error E_TMOUT is returned to the task that issued this system call 
and the system call. 

The task which issued pcal_por system call is not moved to WAIT state unlike cal_por and 
tcal_po. 

Error E_NOEXS is returned if this system call is issued for a nonexistent port for rendezvous. 

0 cannot be specified for the calptn index of this system call.However, an error is not 
generated when 0 is specified. 

You can issue this system call exclusively from a task. This system call, if issued either from 
the interrupt handler, the cyclic handler or the alarm handler, doesn't work properly. 

 [( Usage example )] 
<< Usage example of the C language >> 
 
#include <mr32r.h> 
#include “id.h” 
#define ID_por1 1 
void task() 
{ 

char msg[128]; 
 INT   rmsgsz; 
  : 

pcal_por((VP)msg, &rmsgsz, ID_por1, 0x3, 10); 
  : 
} 



 

2.7.5 pcal_por(Poll and Call Port for Rendezvous) 154 

 
<< Usage example of the assembly language(CC32R) >> 
 
msg:   .RES.B   128 

.equ     ID_por1,1 

.include “mr32r.inc” 
 .global   task 
task: 
  : 
 ld24 R5,#msg 

pcal_por ID_por1,0x3,10 
  : 
 
<< Usage example of the assembly language(TW32R:DCC/M32R) >> 
 
msg:   .space   128 

.equ     ID_por1,1 

.include “mr32r.inc” 
 .global   task 
task: 
  : 
 ld24 R5,#msg 

pcal_por ID_por1,0x3,10 
  : 



 

2.7.6 acp_por(Accept Port for Rendezvous) 

 

155

2.7.6. acp_por(Accept Port for Rendezvous) 

[( System call name )] 

acp_por → Accept Port for Rendezous 

 [( Calling by the assembly language )] 
.include “mr32r.inc” 
acp_por      porid, acpptn 

<< Argument >> 

porid [  ∗∗  ] The ID No. of a port for rendezvous 
acpptn [∗∗∗∗] Accept bit pattern representing Rendezvous condition 
msg [∗∗∗∗] The start address in which a call message packet is 

stored. 
(Set the address in the R5 register.) 

<< Register setting >> 
Register name Contents after system call issuance 

R0 Error code 
R1 The ID No. of a port for rendezvous 
R2 The size of a call message packet 
R3 Rendezvous number 
R4 -- 
R5 The start address in which a call message packet is 

stored. 
R6 Accept bit pattern representing Rendezvous condition 

[( Calling by the C language )] 
#include <mr32r.h> 
ER acp_por (p_rdvno, msg, p_cmsgsz, porid, acpptn ); 

<< Argument >> 

RNO *p_rdvno; Rendezvous number 
VP msg; The start address in which a call message packet 

is stored. 
INT *p_cmsgsz; The start address in which the size of a call 

message packet is stored 
ID porid; The ID No. of a port for redenzvous 
UINT acpptn; Accept bit pattern representing Rendezvous 

condition 

<< Return value >> 

An error code is returned as the return value of a function. 

[( Error codes )] 
E_OK   00000000H(-H’00000000): Normal End 
E_RLWAI  0FFFFFFAAH(-H’00000056): Wait state forcibly 

    cleared 
E_NOEXS  0FFFFFFCCH(-H’00000034): Object does not exist 
E_DLT  0FFFFFFAFH(-H’00000051): The object being waited for 

    was deleted 



 

2.7.6 acp_por(Accept Port for Rendezvous) 156 

[( Function description )] 

This system call executes the port rendezvous reception. 

In the port specified with porid, there is a task in the rendezvous call wait state. When 
conditions for establishing a rendezvous between the task in that call wait string and the task 
issuing this system call are satisfied, then the rendezvous is established. 

Whether a rendezvous is established or not is determined by the logical AND of the call task 
calptn and the receive task acpptn. The rendezvous is established when the logical AND is 
anything other than 0. When the rendezvous is established, the task in the rendezvous call 
wait string is detached from the wait string and is changed from the rendezvous call wait 
state to the rendezvous end wait state. 

When a call wait task does not exist in the port specified with porid or when the rendezvous 
establish conditions are not established even though the port has a call wait task, the task 
issued with this system call is set the port to the recieve wait state and connects it to the 
recieve wait queue. 

In the following cases, the task is freed from a wait state. 

 A rel_wai system call issued by some other task 
Error E_RLWAI is returned. 

 A del_por system call issued by some other task for this port 
Error E_DLT is returned. 

This system call can be issued again before the rendezvous reply (before the rpl_rdv that 
indicates that the rendezvous has been established is issued).As such, multiple rendezvous 
can be executed at the same time. It does not matter in this case whether the port is the 
same port or a different port from before. 

When the rendezvous is established, the call task can send a message to the receive task. 
The receive task copies the message stored in the msg address into the message storage 
area specified with acp_por (only the bytes specified in cmsgsz are copied). acp_por is 
returned as the cmsgsz message size. 

Also, a reply message can be sent from the receive task to the call task when the 
rendezvous ends. The content of the reply message specified by the receive task with 
rpl_rdv is copied into the message storage area indicated by the msg which the call task 
specifies with cal_por. 

rdvno is information for discriminating between rendezvous established at the same time. It 
is used for the rpl_rdv parameter or fwd_rdv parameter (for forwarding the rendezvous) at 
rendezvous end. 

0 cannot be specified for the calptn index of this system call.However, an error is not 
generated when 0 is specified. If the port does not exist, an error E_NOEXS is returned. 

You can issue this system call exclusively from a task. This system call, if issued either from 
the interrupt handler, the cyclic handler or the alarm handler, doesn't work properly. 



 

2.7.6 acp_por(Accept Port for Rendezvous) 

 

157

 [( Usage example )] 
<< Usage example of the C language >> 
 
#include <mr32r.h> 
#include “id.h” 
void task() 
{ 
char msg[128]; 
RNO rdvno; 
INT cmsgsz; 
  : 
acp_por(&rdvno, msg, &cmsgsz, ID_por1, 0x3); 
  : 
} 
 
<< Usage example of the assembly language(CC32R) >> 
 
msg:   .RES.B   128 

.include “mr32r.inc” 
 .global   task 
task: 
  : 
 ld24 R5,#msg 
 acp_por ID_por1, 0x3 
  : 
 
<< Usage example of the assembly language(TW32R:DCC/M32R) >> 
 
msg:   .space   128 

.include “mr32r.inc” 
 .global   task 
task: 
  : 
 ld24 R5,#msg 
 acp_por ID_por1, 0x3 
  : 



 

2.7.7 tacp_por(Accept Port for Rendezvous with Timeout) 158 

2.7.7. tacp_por(Accept Port for Rendezvous with Timeout) 

[( System call name )] 

tacp_por → Accept Port for Rendezous (With Timeout) 

 [( Calling by the assembly language )] 
.include “mr32r.inc” 
tacp_por      porid, acpptn, tmout 

<< Argument >> 

porid [  ∗∗  ] The ID No. of a port for rendezvous 
acpptn [∗∗∗∗] Accept bit pattern representing Rendezvous condition 
msg [∗∗∗∗] The start address in which a call message packet is 

stored. 
(Set the address in the R5 register.) 

tmout [∗∗∗∗] Timeout value 

<< Register setting >> 
Register name Contents after system call issuance 

R0 Error code 
R1 The ID No. of a port for rendezvous 
R2 The size of a call message packet 
R3 Rendezvous number 
R4 Timeout value 
R5 The start address in which a call message packet is 

stored. 
R6 Accept bit pattern representing Rendezvous condition 

[( Calling by the C language )] 
#include <mr32r.h> 
ER tacp_por (p_rdvno, msg, p_cmsgsz, porid, acpptn, tmout); 

<< Argument >> 

RNO *p_rdvno; Rendezvous number 
VP msg; The start address in which a call message packet 

is stored. 
INT *p_cmsgsz; The start address in which the size of a call 

message packet is stored 
ID porid; The ID No. of a port for redenzvous 
UINT acpptn; Accept bit pattern representing Rendezvous 

condition 
TMO timeout; Timeout value 

<< Return value >> 

An error code is returned as the return value of a function. 

[( Error codes )] 
E_OK   00000000H(-H’00000000): Normal End 
E_RLWAI  0FFFFFFAAH(-H’00000056): Wait state forcibly 

    cleared 
E_TMOUT  0FFFFFFABH(-H’00000055): Polling failed or timeout 
E_NOEXS  0FFFFFFCCH(-H’00000034): Object does not exist 
E_DLT  0FFFFFFAFH(-H’00000051): The object being waited for 

    was deleted 



 

2.7.7 tacp_por(Accept Port for Rendezvous with Timeout) 

 

159

[( Function description )] 

This system call executes the port rendezvous reception. 

In the port specified with porid, there is a task in the rendezvous call wait state. When 
conditions for establishing a rendezvous between the task in that call wait queue and the 
task issuing this system call are satisfied, then the rendezvous is established. 

Whether a rendezvous is established or not is determined by the logical AND of the call task 
calptn and the receive task acpptn. The rendezvous is established when the logical AND is 
anything other than 0. When the rendezvous is established, the task in the rendezvous call 
wait queue is detached from the wait string and is changed from the rendezvous call wait 
state to the rendezvous end wait state. 

When a call wait task does not exist in the port specified with porid or when the rendezvous 
establish conditions are not established even though the port has a call wait task, the task 
issued with this system call is set the port to the recieve wait state and connects it to the 
recieve wait queue and to the time out queue. 

In the following cases, the task is freed from a wait state. The task canceled WAIT state exits 
from the two wait queues (rendezvous call wait queue and timeout wait queue) and is 
connected to the ready queue. 

 When the wait cancellation condition occurs before the tmout time has elapsed 

Error E_OK is returned. 

 When tmout time has elapsed without any message being received 

Error E_TMOUT is returned. 

 When the wait state is forcibly cancelled by rel_wai or irel_wai system calls being invoked 
from another task or handler 

Error E_RLWAI is returned. 

 When the port for which a task has been kept waiting is deleted by the del_por system 
call issued by another task 

Error E_DLT is returned. 

This system call can be issued again before the rendezvous reply (before the rpl_rdv that 
indicates that the rendezvous has been established is issued).As such, multiple rendezvous 
can be executed at the same time. It does not matter in this case whether the port is the 
same port or a different port from before. 

When the rendezvous is established, the call task can send a message to the receive task. 
The receive task copies the message stored in the msg address into the message storage 
area specified with tacp_por (only the bytes specified in cmsgsz are copied). tacp_por is 
returned as the cmsgsz message size. 

Also, a reply message can be sent from the receive task to the call task when the 
rendezvous ends. The content of the reply message specified by the receive task with 
rpl_rdv is copied into the message storage area indicated by the msg which the call task 
specifies with cal_por. 

rdvno is information for discriminating between rendezvous established at the same time. It 
is used for the rpl_rdv parameter or fwd_por parameter (for forwarding the rendezvous) at 
rendezvous end. 

Any value from -1 to 7FFFFFFFH can be specified for tmout. If you specify TMO_POL = 0 for 
tmout, the effect is the same as 0 is specified for the timeout value, in which case tmout 
functions the same way as pacp_por. Also, if you specify tmout = TMO_FEVR(-1), the effect 
is the same as endless wait is specified, in which case tmout functions the same way as 



 

2.7.7 tacp_por(Accept Port for Rendezvous with Timeout) 160 

acp_por. 

0 cannot be specified for the calptn index of this system call.However, an error is not 
generated when 0 is specified. If the port does not exist, an error E_NOEXS is returned. 

You can issue this system call exclusively from a task. This system call, if issued either from 
the interrupt handler, the cyclic handler or the alarm handler, doesn't work properly. 

 [( Usage example )] 
<< Usage example of the C language >> 
 
#include <mr32r.h> 
#include “id.h” 
void task(void) 
{ 
 char msg[128]; 
 RNO rdvno; 
 INT cmsgsz; 
   : 

tacp_por(&rdvno, msg, &cmsgsz, ID_por1, 0x3, 300); 
  : 

} 
 
<< Usage example of the assembly language(CC32R) >> 
 
msg:   .RES.B   128 

.include “mr32r.inc” 
 .global   task 
task: 
  : 
 ld24 R5,#msg 

tacp_por ID_por1, 0x3, 300 
  : 
 
<< Usage example of the assembly language(TW32R:DCC/M32R) >> 
 
msg:   .space   128 

.include “mr32r.inc” 
 .global   task 
task: 
  : 
 ld24 R5,#msg 

tacp_por ID_por1, 0x3, 300 
  : 



 

2.7.8 pacp_por(Poll and Accept Port for Rendezvous) 

 

161

2.7.8. pacp_por(Poll and Accept Port for Rendezvous) 

[( System call name )] 

pacp_por → Accept Port for Rendezous (no wait) 

 [( Calling by the assembly language )] 
.include “mr32r.inc” 
pacp_por      porid, acpptn 

<< Argument >> 

porid [  ∗∗  ] The ID No. of a port for rendezvous 
acpptn [∗∗∗∗] Accept bit pattern representing Rendezvous condition 
msg [∗∗∗∗] The start address in which a call message packet is 

stored. 
(Set the address in the R5 register.) 

<< Register setting >> 
Register name Contents after system call issuance 

R0 Error code 
R1 The ID No. of a port for rendezvous 
R2 The size of a call message packet 
R3 Rendezvous number 
R4 -- 
R5 The start address in which a call message packet is 

stored. 
R6 Accept bit pattern representing Rendezvous condition 

[( Calling by the C language )] 
#include <mr32r.h> 
ER pacp_por (p_rdvno, msg, p_cmsgsz, porid, acpptn); 

<< Argument >> 

RNO *p_rdvno; Rendezvous number 
VP msg; The start address in which a call message packet 

is stored. 
INT *p_cmsgsz; The start address in which the size of a call 

message packet is stored 
ID porid; The ID No. of a port for redenzvous 
UINT acpptn; Accept bit pattern representing Rendezvous 

condition 

<< Return value >> 

An error code is returned as the return value of a function. 

[( Error codes )] 
E_OK   00000000H(-H’00000000): Normal End 
E_TMOUT  0FFFFFFABH(-H’00000055): Polling failed or timeout 
E_NOEXS  0FFFFFFCCH(-H’00000034): Object does not exist 



 

2.7.8 pacp_por(Poll and Accept Port for Rendezvous) 162 

[( Function description )] 

This system call executes the port rendezvous reception. 

In the port specified with porid, there is a task in the rendezvous call wait state. When 
conditions for establishing a rendezvous between the task in that call wait string and the task 
issuing this system call are satisfied, then the rendezvous is established. 

Whether a rendezvous is established or not is determined by the logical AND of the call task 
calptn and the receive task acpptn. The rendezvous is established when the logical AND is 
anything other than 0. When the rendezvous is established, the task in the rendezvous call 
wait string is detached from the wait string and is changed from the rendezvous call wait 
state to the rendezvous end wait state. 

When a call wait task does not exist in the port specified with porid or when the rendezvous 
establish conditions are not established even though the port has a call wait task,error 
E_TMOUT is returned. The task which issues pcal_por system call is not moved to WAIT 
state unlike acp_por and tacp_por. 

This system call can be issued again before the rendezvous reply (before the rpl_rdv that 
indicates that the rendezvous has been established is issued).As such, multiple rendezvous 
can be executed at the same time. It does not matter in this case whether the port is the 
same port or a different port from before. 

When the rendezvous is established, the call task can send a message to the receive task. 
The receive task copies the message stored in the msg address into the message storage 
area specified with pacp_por (only the bytes specified in cmsgsz are copied). pacp_por is 
returned as the cmsgsz message size. 

Also, a reply message can be sent from the receive task to the call task when the 
rendezvous ends. The content of the reply message specified by the receive task with 
rpl_rdv is copied into the message storage area indicated by the msg which the call task 
specifies with cal_por. 

rdvno is information for discriminating between rendezvous established at the same time. It 
is used for the rpl_rdv parameter or fwd_rdv parameter (for forwarding the rendezvous) at 
rendezvous end. 

0 cannot be specified for the calptn index of this system call.However, an error is not 
generated when 0 is specified. If the port does not exist, an error E_NOEXS is returned. 

You can issue this system call exclusively from a task. This system call, if issued either from 
the interrupt handler, the cyclic handler or the alarm handler, doesn't work properly. 

 [( Usage example )] 
<< Usage example of the C language >> 
 
#include <mr32r.h> 
#include “id.h” 
void task() 
{ 

char msg[128]; 
RNO rdvno; 
INT cmsgsz; 

  : 
pacp_por(&rdvno, msg, &cmsgsz, ID_por1, 0x3); 

  : 
} 



 

2.7.8 pacp_por(Poll and Accept Port for Rendezvous) 

 

163

 
<< Usage example of the assembly language(CC32R) >> 
 
msg:   .RES.B   128 

.include “mr32r.inc” 
 .global   task 
task: 
  : 
 ld24 R5,#msg 

pacp_por ID_por1, 0x3 
  : 
 
<< Usage example of the assembly language(TW32R:DCC/M32R) >> 
 
msg:   .space   128 

.include “mr32r.inc” 
 .global   task 
task: 
  : 
 ld24 R5,#msg 

pacp_por ID_por1, 0x3 
  : 



 

2.7.9 fwd_por(Forward Rendezvous to Other Port) 164 

2.7.9. fwd_por(Forward Rendezvous to Other Port) 

[( System call name )] 

fwd_por → Forward Rendezous to Other Port. 

 [( Calling by the assembly language )] 
.include “mr32r.inc” 
fwd_por      porid, calptn, cmsgsz 

<< Argument >> 

porid [  ∗∗  ] The ID No. of a port for rendezvous to be forward to 
calptn [∗∗∗∗] Call bit pattern representing Rendezvous condition 
rdvno [∗∗∗∗] Rendezvous Number 

(Set the rdvno in the R2 register.) 
msg [∗∗∗∗] The start address in which a call message packet is 

stored 
(Set the address in the R5 register.) 

cmsgsz [∗∗∗∗] The size of a call message packet 

<< Register setting >> 
Register name Contents after system call issuance 

R0 Error code 
R1 The ID No. of a port for rendezvous to be forward to 
R2 Rendezvous Number 
R3 The size of a call message packet 
R4 -- 
R5 The start address in which a call message packet is 

stored 
R6 Call bit pattern representing Rendezvous condition 

[( Calling by the C language )] 
#include <mr32r.h> 
ER fwd_por (porid, calptn, rdvno, msg, cmsgsz); 

<< Argument >> 

ID porid; The ID No. of a port for rendezvous to be forward 
to 

UINT calptn; Call bit pattern representing Rendezvous condition
RNO rdvno; Rendezvous Number 
VP msg; The start address of a call message packet 
INT cmsgsz; The size of a call message packet 

<< Return value >> 

An error code is returned as the return value of a function. 

[( Error codes )] 
E_OK   00000000H(-H’00000000): Normal End 
E_RLWAI  0FFFFFFAAH(-H’00000056): Wait state forcibly 

    cleared 
E_NOEXS  0FFFFFFCCH(-H’00000034): Object does not exist 
E_OBJ  0FFFFFFC1H(-H’0000003f): Invalid object state 



 

2.7.9 fwd_por(Forward Rendezvous to Other Port) 

 

165

[( Function description )] 

This system call forwards the rendezvous assigned with the rdvno rendezvous No. to the 
port specified with porid.fwd_por system call can be issued from the rendezvous state task 
only. 

The rendezvous established state of the call task specified with rdvno is canceled and the 
call task of the porid port is returned to the rendezvous wait state. In other words, the call 
task changes from the rendezvous end wait state to the rendezvous call state. 

With a receive wait task, the rendezvous is established as long as the logical AND of calptn 
specified with this system call and acpptn of the receive task is not 0. When the rendezvous 
is established, the message stored in the msg address specified in this system call is copied 
into the receive task (only cmsgsz portion is copied) and the task assumes the rendezvous 
end state. 

If there is not a receive wait task or if the rendezvous is not established with the destination 
port, the call task assumes the call wait state. 

The task that issues this system call is continuously executed without changing to the wait 
state, regardless of the call task rendezvous state of the forwarding port. 

An error is not generated even when the index of this system call is as follows. 

 When cmsgsz exceeds the maxcmsz maximum send size of the port after the 
message is forwarded 

 When cmsgsz exceeds the maxrmsz maximum receive size of the port before the 
message is forwarded 

 When 0 is specified for cmsgsz 

 When 0 is specified for calptn 

An error E_OBJ is returned when maxrmsz of the port after the message is forwarded is 
larger than the port's maxrmsz before the message is forwarded. 

If the task is freed from a wait state by a rel_wai system call issued by some other task, an 
error E_RLWAI is returned. 

If the port does not exist, an error E_NOEXS is returned. 

This system call can be issued only from a task. It does not function properly when issued 
from the interrupt handler,cyclic handler or alarm handler. 

[( Usage example )] 
<< Usage example of the C language >> 
 
#include <mr32r.h> 
#include “id.h” 
void task() 
{ 

char *msg=”abcdef”; 
RNO rdvno; 
INT cmsgsz; 
  : 
fwd_por(ID_porid, 0x3, rdvno, (VP)msg, 6); 

   : 
} 
 
<< Usage example of the assembly language(CC32R) >> 
 
msg: .SDATA “abcdef” 
rdvno: .RES.B 4 

.include “mr32r.inc” 

.global   task 



 

2.7.9 fwd_por(Forward Rendezvous to Other Port) 166 

task: 
  : 
 ld24 R4,#rdvno 
 ld  R2,@R4 
 ld24 R5,#msg 
 fwd_por ID_porid, 0x3, 6 
  : 
 
<< Usage example of the assembly language(TW32R:DCC/M32R) >> 
 
msg: .byte “abcdef” 
rdvno: .space 4 

.include “mr32r.inc” 

.global   task 
task: 
  : 
 ld24 R4,#rdvno 
 ld  R2,@R4 
 ld24 R5,#msg 
 fwd_por ID_porid, 0x3, 6 
  : 



 

2.7.10 rpl_rdv(Reply Rendezvous) 

 

167

2.7.10. rpl_rdv(Reply Rendezvous) 

[( System call name )] 

rpl_rdv → Reply Rendezous 

 [( Calling by the assembly language )] 
.include “mr32r.inc” 
rpl_rdv      rdvno, msg, rmsgsz 

<< Argument >> 

porid [∗∗∗∗] Rendevzous Number 
(Set the address in the R1 register.) 

msg [∗∗∗∗] The start address in which a reply message packet is 
stored 
(Set the address in the R5 register.) 

rmsgsz [∗∗∗∗] The size of a reply message packet 

<< Register setting >> 
Register name Contents after system call issuance 

R0 Error code 
R1 Rendevzous Number 
R2 The start address in which a reply message packet is 

stored 
R3 The size of a reply message packet 

[( Calling by the C language )] 
#include <mr32r.h> 
ER rpl_rdv (rdvno, msg, rmsgsz); 

<< Argument >> 

RNO rdvno; Rendevzous Number 
VP msg; The start address of a reply message packet 
INT rmsgsz; The size of a reply message packet 

<< Return value >> 

An error code is returned as the return value of a function. 

[( Error codes )] 
E_OK   00000000H(-H’00000000):  Normal End 
E_OBJ  0FFFFFFC1H(-H’0000003f): Invalid object state 



 

2.7.10 rpl_rdv(Reply Rendezvous) 168 

[( Function description )] 

This system call returns a reply to the call task and ends the rendezvous. rpl_rdv system call 
can be issued from the rendezvous state task only. 

The call task wait state is canceled and the message (only rmsgsz portion is copied) stored 
in the msg address is copied into the msg address specified by cal_por of the call task. The 
call task changes from the end wait state to the ready state. 

An error is not returned even when the index of this system call is as follows. Checks must 
be made from the user's side. 

 When a value other than 0 is specified for rmsgsz 

 When rmsgsz exceeds the relay maximum message size maxrmsz 

If an established rendezvous fails for some reason before ending (before rpl_rdv is 
executed), it is not possible to know directly the rendezvous receive task. In such case, the 
rendezvous receive task results as an error E_OBJ when this system call is executed. 

You can issue this system call exclusively from a task. This system call, if issued either from 
the interrupt handler, the cyclic handler or the alarm handler, doesn't work properly. 

 [( Usage example )] 
<< Usage example of the C language >> 
 
#include <mr32r.h> 
#include “id.h” 
void task() 
{ 

char *msg=”abcdef”; 
RNO rdvno; 
INT rmsgsz; 

  : 
rpl_rdv(rdvno, (VP)msg, 6); 

  : 
} 
 
<< Usage example of the assembly language(CC32R) >> 
 
msg: .SDATA “abcdef” 
rdvno: .RES.B 4 

.include “mr32r.inc” 

.global   task 
task: 
  : 
 ld24 R5,#rdvno 
 ld  R1,@R5 
 ld24 R5,#msg 

rpl_rdv 6 
  : 
 
<< Usage example of the assembly language(TW32R:DCC/M32R) >> 
 
msg: .byte “abcdef” 
rdvno: .space 4 

.include “mr32r.inc” 

.global   task 
task: 
  : 
 ld24 R5,#rdvno 
 ld  R1,@R5 
 ld24 R5,#msg 

rpl_rdv 6 
  : 



 

2.7.11 ref_por(Refer Port Status) 

 

169

2.7.11. ref_por(Refer Port Status) 

[( System call name )] 

ref_por → Reference Port Status 

 [( Calling by the assembly language )] 
.include “mr32r.inc” 
ref_por porid 

<< Argument >> 

porid [  ∗∗  ] The ID No. of the messagebuffer to Reference Port 
pk_rpor [∗∗∗∗] Packet address to Reference Port 

(Set the address in the R2 register.) 

<< Register setting >> 
Register name Contents after system call issuance 

R0 Error code 
R1 The ID No. of the port to Reference Port for Rendevzous 
R2 Packet address to Reference Port 
R3 -- 

The structure indicated by pk_rmbx returns the following data. 
Offset Size   
+0 4 exinf Extended information 
+4 2 wtsk Waiting Task Information 
+6 2 atsk Accepting Task Information 

 [( Calling by the C language )] 
#include <mr32r.h> 
ER ref_por (pk_rpor, porid); 

<< Argument >> 

T_RPOR * pk_rpor; Packet address to Reference Port 
ID porid; The ID No. of the port to Reference Port for 

Rendevzous 

<< Return value >> 

An error code is returned as the return value of a function. 
The structure indicated by pk_rpor returns the following data. 
 typedef struct t_rpor { 
  VP exinf; /* Extended informatio */ 
  BOOL_ID wtsk; /* Waiting Task Information */ 
  BOOL_ID atsk; /* Accepting Task Information */ 
} T_RPOR; 

 [( Error codes )] 
E_OK   00000000H(-H’00000000): Normal End 
E_NOEXS  0FFFFFFCCH(-H’00000034): Object does not exist 

[( Function description )] 

Refers to the state of the port specified by porid, and returns returns the following information 
as return values. 

 exinf 

Returns extended task information in exinf. 



 

2.7.11 ref_por(Refer Port Status) 170 

 wtsk 

wtsk returns the ID No. of the first task connected to the rendezvous call wait queue. 
wtsk returns FALSE (0) if there are no tasks connected to the rendezvous call wait 
queue. 

 atsk 

atsk returns the ID No. of the first task connected to the rendezvous recieve wait queue. 
atsk returns FALSE (0) if there are no tasks connected to the rendezvous recieve wait 
queue. 

An error E_NOEXS is returned if this system call is issued for a nonexistent port for 
rendezvous. 

This system call can be issued from both tasks and handlers. 

[( Usage example )] 
<< Usage example of the C language >> 
 
#include <mr32r.h> 
#include “id.h” 
void task(void) 
{ 
 T_RPOR rpor; 
  : 

ref_por(&rpor , ID_por); 
  : 
} 
 
<< Usage example of the assembly language(CC32R) >> 
 
rpor:     .RES.B 8 
 .include mr32r.inc 
 .global task 
task: 
  : 
 ld24       R2,#rpor 
 ref_por    ID_por 
  : 
 
<< Usage example of the assembly language(TW32R:DCC/M32R) >> 
 
rpor:     .space 8 
 .include mr32r.inc 
 .global task 
task: 
  : 
 ld24       R2,#rpor 
 ref_por    ID_por 
  : 



 

2.8.1 def_int(Define Interrupt Handler) 

 

171

2.8. Interrupt Management Function 
2.8.1. def_int(Define Interrupt Handler) 

[( System call name )] 

def_int → Define Interrupt Handler. 

 [( Calling by the assembly language )] 
.include “mr32r.inc” 
def_int      dintno 

<< Argument >> 

dintno [∗∗∗∗] The vectore No. of an interrupt handler 
pk_dint [∗∗∗∗] The start address in which the interrupt hundler 

defined information is stored 
(Set the address in the R2 register.) 

<< Register setting >> 
Register name Contents after system call issuance 

R0 Error code 
R1 The vectore No. of an interrupt handler 
R2 The start address in which the interrupt hundler defined 

information is stored 
R3 -- 

Specify the following information in the structure indicased by pk_cmpf. 
Offset Size   
+0 4 intatr Interrupt handler attribute 
+4 4 inthdr Interrupt handler startup address 

 [( Calling by the C language )] 
#include <mr32r.h> 
ER def_int (dintno, pk_dint); 

<< Argument >> 

ID dintno; The vectore No. of an interrupt handler 
T_DINT *pk_dint; The start address in which the interrupt hundler 

defined information is stored 
Specify the following information in the structure indicased by pk_dint. 
 typedef struct t_dint { 
 ATR intatr; /* Interrupt handler attribute */ 
  FP inthdr; /* Interrupt handler startup address */ 
 } T_DINT; 

<< Return value >> 

An error code is returned as the return value of a function. 

 [( Error codes )] 
E_OK   00000000H(-H’00000000): Normal End 



 

2.8.1 def_int(Define Interrupt Handler) 172 

[( Function description )] 

This system call defines the interrupt handler with the interrupt No. specified with dintno and 
enables the interrupt handler.In other words, it sets the interrupt entry area in the interrupt 
vector area specified with dintno. 

 intatr (interrupt handler attribute) 
The MR32R has nothing to do with this setting. 

 inthdr 
The entry address of the interrupt handler to be defined is set in this area. pk_dint.inthdr 
= NADR (--1) cancels the previously defined interrupt handler. 

An interrupt handler can be specified for an interrupt No. that has already been defined; 
before redefining an interrupt handler, it is not necessary to cancel the definition. An error is 
not generated when a new handler is defined for a defined interrupt handler No.  

This system call cannot be issued if the interrupt vector table is allocated in RAM. 

This system call can be issued only from a task. It does not function properly when issued 
from an interrupt handler, cyclic handler or alarm handler. 

[( Usage example )] 
<< Usage example of the C language >> 
 
#include <mr32r.h> 
#include “id.h” 
void intr(void); 
void task1() 
{ 
 T_DINT setint; 
   : 

setint.inthdr = _intr; /* Interrupt handler startup address */ 
def_int( 15, &setint ); 

   : 
} 
 
<< Usage example of the assembly language(CC32R) >> 
 
setint: .RES.B 12 
 .include “mr32r.inc” 
 .global   task1 
task1: 
  : 
 ld24     R2,#setint 
 ld24     R1,#_intr 
 st       R1,@(4,R2) 
 def_int  15 
  : 
 ext_tsk 
 
<< Usage example of the assembly language(TW32R:DCC/M32R) >> 
 
setint: .RES.B 12 
 .include “mr32r.inc” 
 .global   task1 
task1: 
  : 
 ld24     R2,#setint 
 ld24     R1,#_intr 
 st       R1,@(4,R2) 
 def_int  15 
  : 
 ext_tsk 



 

2.8.2 ret_int(Return from Interrupt Handler) 

 

173

2.8.2. ret_int(Return from Interrupt Handler) 

[( System call name )] 

ret_int → Returns from the interrupt handler. 

 [( Calling by the assembly language )] 
.include “mr32r.inc” 
ret_int 

<< Argument >> 

None 

<< Register setting >> 

Not to return to the task which issued this system call. 

 [( Calling by the C language )] 

Cannot describe this system call in C language.  

 [( Error codes )] 

Not to return to the interrupt handler which issues a system call. 

 [( Function description )] 

The system call ret_int leads to the definition of a macro named "jmp r14" so as to ensure 
compatibility with an OS that uses µITRON or with future updates. If you include the interrupt 
handler in a program written in assembly language, put ret_int at the end of the interrupt 
handler. 



 

2.8.3 loc_cpu(Lock CPU) 174 

2.8.3. loc_cpu(Lock CPU) 

[( System call name )] 

loc_cpu → Disables interrupts and task dispatch. 

 [( Calling by the assembly language )] 
.include “mr32r.inc” 
loc_cpu 

<< Argument >> 

None 

<< Register setting >> 
Register name Contents after system call issuance 

R0 Error code 
R1 -- 
R2 -- 
R3 -- 

[( Calling by the C language )] 
#include <mr32r.h> 
ER loc_cpu (); 

<< Argument >> 

None 

<< Return value >> 

An error code is returned as the return value of a function. 

[( Error codes )] 
E_OK   00000000H(-H’00000000): Normal End 

[( Function description )] 

loc_cpu disables external interrupts and task dispatches. 

After this system call is executed, interrupts and dispatches are disabled until unl_cpu is 
executed. And there can be no chances that the task that executed loc_cpu is preempted 
(the CPU's execution right is intercepted by something higher in priority) by the interrupt 
handler or by another task. That is, interrupt requests after the execution of loc_cpu or 
dispatches generated by a system call issued by a task that executed loc_cpu are made to 
wait until unl_cpu releases the interrupts and dispatches from the disabled condition. 

If a task already in the state that has disabled interrupts and dispatches issues loc_cpu, the 
same state is kept and no error occurs. Issuing unl_cpu once after having issued loc_cpu 
twice or more releases the condition in which interrupts and dispatches are disabled. 

You cannot issue this system call from a section independent of tasks (the interrupt handler, 
the cyclic handler, the alarm handler). 



 

2.8.3 loc_cpu(Lock CPU) 

 

175

 [( Usage example )] 
<< Usage example of the C language >> 
 
#include <mr32r.h> 
#include “id.h” 
void task() 
{ 
    : 
 loc_cpu(); 
    : 
} 
 
<< Usage example of the assembly language(CC32R) >> 
 
.include “mr32r.inc” 
.global   task 
task: 
    : 
 loc_cpu 
    : 
 
<< Usage example of the assembly language(TW32R:DCC/M32R) >> 
 
.include “mr32r.inc” 
.global   task 
task: 
    : 
 loc_cpu 
    : 



 

2.8.4 unl_cpu(Unlock CPU) 176 

2.8.4. unl_cpu(Unlock CPU) 

[( System call name )] 

unl_cpu → Enables interrupts and task dispatch. 

 [( Calling by the assembly language )] 
.include “mr32r.inc” 
unl_cpu 

<< Argument >> 

None 

<< Register setting >> 
Register name Contents after system call issuance 

R0 Error code 
R1 -- 
R2 -- 
R3 -- 

[( Calling by the C language )] 
#include <mr32r.h> 
ER unl_cpu (); 

<< Argument >> 

None 

<< Return value >> 

E_OK is always returned as the return value of a function. 

[( Error codes )] 
E_OK   00000000H(-H’00000000): Normal End 

[( Function description )] 

This system call enables external interrupts and task dispatch. 

Therefore, the interrupts and task dispatch that have been disabled by loc_cpu are freed 
from the disabled condition. If unl_cpu is issued while no interrupt and task dispatch are 
disabled, the system does not assume an error and only continues the same condition. 

This system call cannot be issued from a task-independent section (e.g., interrupt handler, 
cyclic handler, or alarm handler). 

 [( Usage example )] 
<< Usage example of the C language >> 
 
#include <mr32r.h> 
#include “id.h” 
void task() 
{ 
    : 

unl_cpu(); 
    : 
} 



 

2.8.4 unl_cpu(Unlock CPU) 

 

177

 
<< Usage example of the assembly language(CC32R) >> 
 
 .include “mr32r.inc” 
 .global   task 
task: 
    : 

unl_cpu 
    : 
 
<< Usage example of the assembly language(TW32R:DCC/M32R) >> 
 
 .include “mr32r.inc” 
 .global   task 
task: 
    : 

unl_cpu 
    : 



 

2.9.1 cre_mpf(Create Fixed-size Memorypool) 178 

2.9. Memorypool Management Function 
2.9.1. cre_mpf(Create Fixed-size Memorypool) 

[( System call name )] 

cre_mpf → Create Fixed-size Memorypool 

 [( Calling by the assembly language )] 
.include “mr32r.inc” 
cre_mpf      mpfid 

<< Argument >> 

mpfid [  ∗∗  ] The ID No. of a fixed-size memorypool to be created 
pk_cmpf [∗∗∗∗] The start address in which the fixed-size memorypool 

generation information is stored 
(Set the address in the R2 register.) 

<< Register setting >> 
Register name Contents after system call issuance 

R0 Error code 
R1 The ID No. of a fixed-size memorypool to be created 
R2 The start address in which the fixed-size memorypool 

generation information is stored 
R3 -- 

Specify the following information in the structure indicased by pk_cmpf. 
Offset Size   
+0 4 exinf Extended information 
+4 4 mpfatr Fixed-size memorypool attribute 
+8 4 mpfcnt Memory block count 
+12 4 blfsz Fixed-size memorypool size 

 [( Calling by the C language )] 
#include <mr32r.h> 
ER cre_mpf (mpfid, pk_cmpf); 

<< Argument >> 

ID mpfid; The ID No. of a fixed-size memorypool to be 
created 

T_CMPF *pk_cmpf; The start address in which the fixed-size 
memorypool generation information is stored 

Specify the following information in the structure indicased by pk_cmpf. 
 typedef struct t_cmpf { 
  VP exinf; /* Extended information */ 
  ATR mpfatr; /* Fixed-size memorypool attribute */ 
  INT mpfcnt; /* Memory block count */ 
  INT maxblksz; /* Fixed-size memorypool size */ 
 } T_CMPF; 

<< Return value >> 

An error code is returned as the return value of a function. 

[( Error codes )] 
E_OK   00000000H(-H’00000000): Normal End 
E_NOMEM  0FFFFFFF6H(-H’0000000a): Not enough of memory 
E_OBJ  0FFFFFFC1H(-H’0000003f): Invalid object state 



 

2.9.1 cre_mpf(Create Fixed-size Memorypool) 

 

179

[( Function description )] 

This system call creates a fixed-length memory pool that bears the ID number specified by 
mpfid. It allocates a memory area to be used as the memory pool and initializes the created 
memory pool's management block data. 

Here follows explanation of the information as to a fixed-size memorypool to be generated 
pk_cmpf. 

 exinf (extended information) 

Exinf is an area you can freely use to store information as to a fixed-size memorypool to 
be generated. MR32R has nothing to do with the exinf's contents. 

 mpfatr (fixed-size memorypool attribute) 

Specify the location of the fixed-size memorypool area to be created. Specifically this 
means specifying whether you want fixed-size memorypool to be located in the internal 
RAM or in external RAM. 

♦ To locate the fixed-size memorypool area in internal RAM 
Specify __MR_INT(0). 

♦ To locate the fixed-size memorypool area in external RAM 
Specify __MR_EXT(0x10000). 

♦ To locate the fixed-size memorypool area user specified 
Specify __MR_USER(0x30000). 

 mpfcnt 

Specify the number of blocks in the memory pool to be created. Any value from 1 to 32 
can be specified here. 

 blfsz 

Specify the block size of one block in the memory pool to be created. 

The ID numbers that can be specified in this system call range from 1 to the maximum 
number of fixed-length memory pools in the user system that you set when defining the 
maximum number of items. 

An error E_NOMEM is returned if the memory pool does not have a sufficient memory space 
to accommodate mpfcnt x blfsz. 

An error E_OBJ is returned if cre_mpf system call is issued for the fixed-size memorypool 
which is existent. 

You can issue this system call exclusively from a task. This system call, if issued either from 
the interrupt handler, the cyclic handler or the alarm handler, doesn't work properly. 



 

2.9.1 cre_mpf(Create Fixed-size Memorypool) 180 

[( Usage example )] 
<< Usage example of the C language >> 
 
#include <mr32r.h> 
#include “id.h” 
#define ID_mpf1 1 
void task(void) 
{ 
 T_CMPF   setmpf; 
  : 
 setmpf.mpfatr = __MR_INT; 
 setmpf.mpfcnt = 20; 
 setmpf.blfsz = 400; 
 cre_mpf(ID_mpf1,&setmpf); 
  : 
} 
 
<< Usage example of the assembly language(CC32R) >> 
 
setmpf: .RES.B   16 
ID_mpf1: .equ 1 
 .include “mr32r.inc” 

.global task 
task: 
 ld24       R2,#setmpf 
 ld24       R1,#__MR_INT 
 st         R1,@(4,R2) 
 ld24       R1,#20 
 st         R1,@(8,R2) 
 ld24       R1,#400 
 st         R1,@(12,R2) 
 cre_mpf   ID_mpf1 
  : 
 ext_tsk 
 
<< Usage example of the assembly language(TW32R:DCC/M32R) >> 
 
setmpf: .space   16 
 .equ ID_mpf1,1 
 .include “mr32r.inc” 

.global task 
task: 
 ld24       R2,#setmpf 
 ld24       R1,#__MR_INT 
 st         R1,@(4,R2) 
 ld24       R1,#20 
 st         R1,@(8,R2) 
 ld24       R1,#400 
 st         R1,@(12,R2) 
 cre_mpf   ID_mpf1 
  : 
 ext_tsk 



 

2.9.2 del_mpf(Delete Fixed-size Memorypool) 

 

181

2.9.2. del_mpf(Delete Fixed-size Memorypool) 

[( System call name )] 

del_mpf → Delete Fixed-size Memorypool 

 [( Calling by the assembly language )] 
.include “mr32r.inc” 
del_mpf      mpfid 

<< Argument >> 

mpfid [  ∗∗  ] The ID No. of a fixed-size memorypool to be deleted 

<< Register setting >> 
Register name Contents after system call issuance 

R0 Error code 
R1 The ID No. of a fixed-size memorypool to be deleted 
R2 -- 
R3 -- 

[( Calling by the C language )] 
#include <mr32r.h> 
ER del_mpf (mpfid); 

<< Argument >> 

ID mpfid; The ID No. of a fixed-size memorypool to be 
deleted 

<< Return value >> 

An error code is returned as the return value of a function. 

[( Error codes )] 
E_OK   00000000H(-H’00000000): Normal End 
E_NOEXS  0FFFFFFCCH(-H’00000034): Object does not exist 

[( Function description )] 

This system call deletes the fixed-length memory pool that bears the ID number specified by 
mpfid. Once this memorypool is deleted, you can create a new memorypool with the same 
ID number. Even when there is any task waiting for a memory block in the memorypool to be 
deleted, this system call is terminated normally. In this case, the said task is freed from the 
memory block wait state and returns error E_DLT before entering an RUN or READY state. 

An error E_NOEXS is returned if this system call is issued for a nonexistent fixed-size 
memorypool. 

Make sure this system call is issued for only the fixed-size memorypool that has been 
created by the cre_mpf system call. If this system call is issued for the fixed-size 
memorypool that has been defined by the configuration file, it does not function normally. 

You can issue this system call exclusively from a task. This system call, if issued either from 
the interrupt handler, the cyclic handler or the alarm handler, doesn't work properly. 



 

2.9.2 del_mpf(Delete Fixed-size Memorypool) 182 

[( Usage example )] 
<< Usage example of the C language >> 
 
#include <mr32r.h> 
#include “id.h” 
void task(void) 
{ 
  : 
 del_mpf(ID_mpf1); 
  : 
} 
 
<< Usage example of the assembly language(CC32R) >> 
 
 .include “mr32r.inc” 

.global task 
task: 
  : 

del_mpf ID_mpf1 
  : 

ext_tsk 
 
<< Usage example of the assembly language(TW32R:DCC/M32R) >> 
 
 .include “mr32r.inc” 

.global task 
task: 
  : 

del_mpf ID_mpf1 
  : 

ext_tsk 



 

2.9.3 get_blf(Get Fixed-size Memory Block) 

 

183

2.9.3. get_blf(Get Fixed-size Memory Block) 

[( System call name )] 

get_blf → Gets a fixed-size memory block 

 [( Calling by the assembly language )] 
.include “mr32r.inc” 
get_blf      mpfid 

<< Argument >> 

mpfid [  ∗∗  ] The ID No. of the memory pool to be obtained 

<< Register setting >> 
Register name Contents after system call issuance 

R0 Error code 
R1 The ID No. of the memorypool to be obtained 
R2 The start address of memory block to be obtained 
R3 -- 

[( Calling by the C language )] 
#include <mr32r.h> 
ER get_blf (p_blf,mpfid); 

<< Argument >> 

ID mplid; The ID No. of the memorypool to be obtained 
VP *p_blf; The start address of memory block to be obtained 

<< Return value >> 

The start address of the obtained memory block is set to variable p_blf.  
An error code is returned as the return value of a function. 

[( Error codes )] 
E_OK   00000000H(-H’00000000): Normal End 
E_RLWAI  0FFFFFFAAH(-H’00000056): Wait state forcibly 

    cleared 
E_DLT  0FFFFFFAFH(-H’00000051): The object being waited for 

    was deleted 
E_NOEXS  0FFFFFFCCH(-H’00000034): Object does not exist 



 

2.9.3 get_blf(Get Fixed-size Memory Block) 184 

[( Function description )] 

This system call acquires a memory block from the memorypool indicated by mpfid and 
stores the start address of the acquired memory block in the variable p_blf. The content of 
the acquired memory block is indeterminate. 

If no memory block exists in the specified memorypool, the task that issued this system call 
goes to a memory block wait state,it is connected to the memory block wait queue in FIFO 
order. 

When the rel_wai or irel_wai system call is issued before the send fixed-size memorypool 
wait condition is met, error code E_RLWAI is returned. 

When the fixed-size memorypool for which a task has been kept waiting is deleted by the 
del_mpf system call issued by another task, error code E_DLT is returned and it is moved to 
READY state. 

When the fixed-size memorypool for which a task has been kept waiting is reset by the 
vrst_mpf system call issued by another task, error code EV_RST is returned and it is moved 
to READY state. 

Memory blocks are fixed in length. Use the configuration file or cre_mpf system call to set 
the size of each memory block and the number of memory blocks. 

An error E_NOEXS is returned if this system call is issued for a nonexistent fixed-size 
memorypool. 

You can issue this system call exclusively from a task. This system call, if issued either from 
the interrupt handler, the cyclic handler or the alarm handler, doesn't work properly. 

[( Usage example )] 
<< Usage example of the C language >> 
 
#include <mr32.h> 
#include “id.h” 
VP       p_blf; 
void task() 
{ 

if( get_blf(&p_blf,ID_mpf) != E_OK ){ 
error(“Not enough memory\n”); 

 } 
} 
 
<< Usage example of the assembly language(CC32R) >> 
 
p_blf: .RES.B 4 
 .include “mr32.inc” 
 .global task 
task: 
  : 
 get_blf    ID_mpf 
 ld24       R5,#p_blf 
 st          R2,@R5 
  : 
 ext_tsk 



 

2.9.3 get_blf(Get Fixed-size Memory Block) 

 

185

 
<< Usage example of the assembly language(TW32R:DCC/M32R) >> 
 
p_blf: .space 4 
 .include “mr32.inc” 
 .global task 
task: 
  : 
 get_blf    ID_mpf 
 ld24       R5,#p_blf 
 st          R2,@R5 
  : 
 ext_tsk 



 

2.9.4 tget_blf(Get Fixed-size Memory Block with Timeout) 186 

2.9.4. tget_blf(Get Fixed-size Memory Block with Timeout) 

[( System call name )] 

tget_blf → Gets a fixed-size memory block(With Timeout) 

 [( Calling by the assembly language )] 
.include “mr32r.inc” 
tget_blf      mpfid,tmout 

<< Argument >> 

mpfid [  ∗∗  ] The ID No. of the memory pool to be obtained 
tmout [∗∗∗∗] Timeout value 

<< Register setting >> 
Register name Contents after system call issuance 

R0 Error code 
R1 The ID No. of the memorypool to be obtained 
R2 The start address of memory block to be obtained 
R3 -- 
R4 Timeout value 

[( Calling by the C language )] 
#include <mr32r.h> 
ER tget_blf (p_blf,mpfid,tmout); 

<< Argument >> 

ID mplid; The ID No. of the memorypool to be obtained 
VP *p_blf; The start address of memory block to be obtained 
TMO tmout; Timeout value 

<< Return value >> 

The start address of the obtained memory block is set to variable p_blf.  
An error code is returned as the return value of a function. 

[( Error codes )] 
E_OK   00000000H(-H’00000000): Normal End 
E_RLWAI  0FFFFFFAAH(-H’00000056): Wait state forcibly 

    cleared 
E_DLT  0FFFFFFAFH(-H’00000051): The object being waited for 

    was deleted 
E_NOEXS  0FFFFFFCCH(-H’00000034): Object does not exist 



 

2.9.4 tget_blf(Get Fixed-size Memory Block with Timeout) 

 

187

[( Function description )] 

This system call acquires a memory block from the memorypool indicated by mpfid and 
stores the start address of the acquired memory block in the variable p_blf. The content of 
the acquired memory block is indeterminate. 

If no memory block exists in the specified memorypool, the task that issued this system call 
goes to a memory block wait state, so it is queued up in two queues: the memory block wait 
queue and the timeout wait queue. 

The wait state committed by issuing this system call is released in the cases described 
below. Note that when released from the wait state, the task that issued this system call is 
removed from both of the transmit wait and timeout wait queues and is connected to the 
ready queue. 

 When the release-from-wait condition is met before the tmout time expires 

Error code E_OK is returned. 

 When the tmout time expires before the release-from-wait condition is met 

Error code E_TMOUT is returned. 

 When the rel_wai or irel_wai system call is issued before the send fixed-size memorypool 
wait condition is met 

Error code E_RLWAI is returned. 

 When the fixed-size memorypool for which a task has been kept waiting is deleted by the 
del_mpf system call issued by another task 

Error code E_DLT is returned. 

 When the fixed-size memorypool for which a task has been kept waiting is reset by the 
vrst_mpf system call issued by another task 

Error code EV_RST is returned. 

Any value from -1 to 7FFFFFFFH can be specified for tmout. If you specify TMO_POL = 0 for 
tmout, the effect is the same as 0 is specified for the timeout value, in which case tmout 
functions the same way as pget_blf. Also, if you specify tmout = TMO_FEVR(-1), the effect is 
the same as endless wait is specified, in which case tmout functions the same way as 
get_blf. 

Memory blocks are fixed in length. Use the configuration file or cre_mpf system call to set 
the size of each memory block and the number of memory blocks. 

An error E_NOEXS is returned if this system call is issued for a nonexistent fixed-size 
memorypool. 

You can issue this system call exclusively from a task. This system call, if issued either from 
the interrupt handler, the cyclic handler or the alarm handler, doesn't work properly. 



 

2.9.4 tget_blf(Get Fixed-size Memory Block with Timeout) 188 

 [( Usage example )] 
<< Usage example of the C language >> 
 
#include <mr32.h> 
#include “id.h” 
VP       p_blf; 
void task() 
{ 
 if( tget_blf(&p_blf,ID_mpf,50) != E_OK ){ 
  error(“Not enough memory\n”); 
 } 
} 
 
<< Usage example of the assembly language(CC32R) >> 
 
p_blf: .RES.B 4 
 .include mr32.inc 
 .global task 
task: 
  : 
 tget_blf   ID_mpf,50 
 ld24       R5,#p_blf 
 st         R2,@R5 
  : 
 ext_tsk 
 
<< Usage example of the assembly language(TW32R:DCC/M32R) >> 
 
p_blf: .space 4 
 .include mr32.inc 
 .global task 
task: 
  : 
 tget_blf   ID_mpf,50 
 ld24       R5,#p_blf 
 st         R2,@R5 
  : 
 ext_tsk 



 

2.9.5 pget_blf(Poll and Get Fixed-size Memory Block) 

 

189

2.9.5. pget_blf(Poll and Get Fixed-size Memory Block) 

[( System call name )] 

pget_blf → Gets a fixed-size memory block(no wait) 

 [( Calling by the assembly language )] 
.include “mr32r.inc” 
pget_blf      mpfid 

<< Argument >> 

mpfid [  ∗∗  ] The ID No. of the memory pool to be obtained 

<< Register setting >> 
Register name Contents after system call issuance 

R0 Error code 
R1 The ID No. of the memorypool to be obtained 
R2 The start address of memory block to be obtained 
R3 -- 

[( Calling by the C language )] 
#include <mr32r.h> 
ER pget_blf (p_blf,mplid); 

<< Argument >> 

ID mplid; The ID No. of the memorypool to be obtained 
VP *p_blf; The start address of memory block to be obtained 

<< Return value >> 

The start address of the obtained memory block is set to variable p_blf.  
An error code is returned as the return value of a function. 

[( Error codes )] 
E_OK   00000000H(-H’00000000): Normal End 
E_TMOUT  0FFFFFFABH(-H’00000055): Polling failed or timeout 
E_NOEXS  0FFFFFFCCH(-H’00000034): Object does not exist 

[( Function description )] 

This system call gets a memory block from the memory pool specified by mplid and returns 
the start address of that memory block to p_blf. 

If the memory block cannot be obtained because there is no memory block in the specified 
memory pool, error code E_TMOUT is returned to the task which issued the system call. 

The task is not moved to WAIT state by pget_blf.  

An error E_NOEXS is returned if this system call is issued for a nonexistent fixed-size 
memorypool. 

Each memory block is fixed in size. The size of each memory block is defined in the 
configuration file or when cre_mpf system call is issued. 

This system call can be issued from either tasks or handlers. 



 

2.9.5 pget_blf(Poll and Get Fixed-size Memory Block) 190 

 [( Usage example )] 
<< Usage example of the C language >> 
 
#include <mr32.h> 
#include “id.h” 
VP       p_blf; 
void task() 
{ 
 if( pget_blf(&p_blf,ID_mpf) != E_OK ){ 
  error(“Not enough memory\n”); 
 } 
} 
 
<< Usage example of the assembly language(CC32R) >> 
 
p_blf: .RES.B 4 

.include mr32.inc 

.global task 
task: 
  : 
 pget_blf   ID_mpf 
 ld24       R5,#p_blf 
 st         R2,@R5 
  : 
 ext_tsk 
 
<< Usage example of the assembly language(TW32R:DCC/M32R) >> 
 
p_blf: .space 4 

.include mr32.inc 

.global task 
task: 
  : 
 pget_blf   ID_mpf 
 ld24       R5,#p_blf 
 st         R2,@R5 
  : 
 ext_tsk 



 

2.9.6 rel_blf(Release Fixed-size Memory Block) 

 

191

2.9.6. rel_blf(Release Fixed-size Memory Block) 

[( System call name )] 

rel_blf → Release a fixed-size memory block 

 [( Calling by the assembly language )] 
.include “mr32r.inc” 
rel_blf      mpfid 

<< Argument >> 

mpfid [  ∗∗  ] The ID No. of the memorypool to be released 
You are to set the address of the memory block to be released.Set the address in 
the R2 reg For the details,see Usage example of the assembly language on the 
next page. 

<< Register setting >> 
Register name Contents after system call issuance 

R0 Error code 
R1 The ID No. of the memory pool to be released 
R2 The start address of memory block to be release 
R3 -- 

[( Calling by the C language )] 
#include <mr32r.h> 
ER rel_blf (mpfid, p_blf); 

<< Argument >> 

ID mpfid; The ID No. of the memory pool to be released 
VP p_blf; The start address of memory block to be released 

<< Return value >> 

An error code is returned as the return value of a function. 

[( Error codes )] 
E_OK   00000000H(-H’00000000): Normal End 
E_NOEXS  0FFFFFFCCH(-H’00000034): Object does not exist 

[( Function description )] 

This system call returns the memory block whose start address is specified by p_blf to the 
memory pool. 

For the start address of the memory block to be freed (returned), always use the value 
obtained by get_blf, tget_blf or pget_blf. 

Also, if the wait queue of the target memory pool has tasks queued up in it, this system call 
removes a task from the wait queue that has been placed at the beginning of the wait queue, 
reconnects it to the ready queue, and assigns it a memory block. In this case, the task status 
changes from the memory block wait state to an execution (RUN) or executable (READY) 
state. 

This system call does not especially check whether p_blf is pointing at the start address of 
the correct memory block. 

This system call can be issued from either tasks or handlers. 



 

2.9.6 rel_blf(Release Fixed-size Memory Block) 192 

 [( Usage example )] 
<< Usage example of the C language >> 
 
#include <mr32r.h> 
#include “id.h” 
#define ID_mpf1 1 
void task() 
{ 

VP   p_blf; 
 if( pget_blf(&p_blf, ID_mpf1) != E_OK ) 

error(“Not enough memory \n”); 
  : 
rel_blf(ID_mpf1,p_blf); 

} 
 
<< Usage example of the assembly language(CC32R) >> 
 
p_blf:   .RES.B 4 
ID_mpf1: .equ 1 
 .include “mr32r.inc” 
 .global _task 
_task: 
  : 
 pget_blf   ID_mpf1 
 ld24       R5,#p_blf 
 st         R2,@R5 
  : 
 ld24       R5,#p_blf 
 ld         R2,@R5       ; The start address of memory block to be released 
  : 
 rel_blf    ID_mpf1 
  : 

ext_tsk 
 
<< Usage example of the assembly language(TW32R:DCC/M32R) >> 
 
p_blf:   .space 4 
 .equ ID_mpf1,1 
 .include “mr32r.inc” 
 .global _task 
_task: 
  : 
 pget_blf   ID_mpf1 
 ld24       R5,#p_blf 
 st         R2,@R5 
  : 
 ld24       R5,#p_blf 
 ld         R2,@R5       ; The start address of memory block to be released 
  : 
 rel_blf    ID_mpf1 
  : 

ext_tsk 



 

2.9.7 irel_blf(Release Fixed-size Memory Block) 

 

193

2.9.7. irel_blf(Release Fixed-size Memory Block) 

[( System call name )] 

irel_blf → Release a fixed-size memory block.(for the handler 
only). 

 [( Calling by the assembly language )] 
.include “mr32r.inc” 
irel_blf      mpfid 

<< Argument >> 

mpfid [  ∗∗  ] The ID No. of the memorypool to be released 
You are to set the address of the memory block to be released.Set the address in 
the R2 reg For the details,see Usage example of the assembly language on the 
next page. 

<< Register setting >> 
Register name Contents after system call issuance 

R0 Error code 
R1 The ID No. of the memory pool to be released 
R2 The start address of memory block to be release 
R3 -- 

[( Calling by the C language )] 
#include <mr32r.h> 
ER irel_blf (mpfid, p_blf); 

<< Argument >> 

ID mpfid; The ID No. of the memory pool to be released 
VP p_blf; The start address of memory block to be released 

<< Return value >> 

An error code is returned as the return value of a function. 

[( Error codes )] 
E_OK   00000000H(-H’00000000): Normal End 
E_NOEXS  0FFFFFFCCH(-H’00000034): Object does not exist 

[( Function description )] 

This system call is used when using the function of the snd_msg system call from an 
task-independent section (e.g., interrupt handler, cyclic handler, or alarm handler). 

 [( Usage example )] 
<< Usage example of the C language >> 
 
#include <mr32r.h> 
#include “id.h” 
#define ID_mpf1 1 
void task() 
{ 

VP   p_blf; 
 if( pget_blf(&p_blf, ID_mpf1) != E_OK ) 

error(“Not enough memory \n”); 
  : 
irel_blf(ID_mpf1,p_blf); 

} 



 

2.9.7 irel_blf(Release Fixed-size Memory Block) 194 

 
<< Usage example of the assembly language(CC32R) >> 
 
p_blf:   .RES.B 4 
ID_mpf1: .equ 1 
 .include “mr32r.inc” 
 .global _task 
_task: 
  : 
 pget_blf   ID_mpf1 
 ld24       R5,#p_blf 
 st         R2,@R5 
  : 
 ld24       R5,#p_blf 
 ld         R2,@R5       ; The start address of memory block to be released 
  : 
 irel_blf    ID_mpf1 
  : 

ext_tsk 
 
<< Usage example of the assembly language(TW32R:DCC/M32R) >> 
 
p_blf:   .space 4 
 .equ ID_mpf1,1 
 .include “mr32r.inc” 
 .global _task 
_task: 
  : 
 pget_blf   ID_mpf1 
 ld24       R5,#p_blf 
 st         R2,@R5 
  : 
 ld24       R5,#p_blf 
 ld         R2,@R5       ; The start address of memory block to be released 
  : 
 irel_blf    ID_mpf1 
  : 

ext_tsk 



 

2.9.8 ref_mpf(Refer Fixed-size Memorypool Status) 

 

195

2.9.8. ref_mpf(Refer Fixed-size Memorypool Status) 

[( System call name )] 

ref_mpf → Reference Fixed-size Memorypool Status 

 [( Calling by the assembly language )] 
.include “mr32r.inc” 
ref_mpf    mpfid 

<< Argument >> 

mpfid [  ∗∗  ] The ID No. of the memorypool to Reference 
fixed-size memorypool 

pk_rmpf [∗∗∗∗] Packet address to Reference fixed-size memorypool 
(Set the address in the R2 register.) 

<< Register setting >> 
Register name Contents after system call issuance 

R0 Error code 
R1 The ID No. of the memorypool to Reference fixed-size 

memorypool 
R2 Packet address to Reference fixed-size memorypool 
R3 -- 

The structure indicated by pk_rmpf returns the following data 
Offset Size   
+0 4 exinf Extended information 
+4 4 wtsk Waiting task information 
+8 4 frbcnt The number of free blocks 
+12 4 blksz The size of blocks 

 [( Calling by the C language )] 
#include <mr32r.h> 
ER ref_mpf (pk_rmpf, mpfid); 

<< Argument >> 

T_RMPF *pk_rmpf; Packet address to Reference fixed-size 
memorypool 

ID mpfid; The ID No. of the memorypool to Reference 
fixed-size memorypool 

<< Return value >> 

An error code is returned as the return value of a function. 
The structure indicated by pk_rmpf returns the following data. 
 typedef  struct t_rmpf { 
  VP exinf; /* Extended information */ 
  BOOL_ID wtsk; /* Waiting task information */ 
  INT frbcnt; /* The number of free blocks */ 
  INT blksz; /* The size of blocks */ 
 } T_RMPF; 

 [( Error codes )] 
E_OK   00000000H(-H’00000000): Normal End 
E_NOEXS  0FFFFFFCCH(-H’00000034): Object does not exist 



 

2.9.8 ref_mpf(Refer Fixed-size Memorypool Status) 196 

[( Function description )] 

Refers to the state of the fixed-size memorypool specified by mpfid, and returns returns the 
following information as return values. 

 exinf 

Returns extended task information in exinf. 

 wtsk 

wtsk returns the ID No. of the first task waiting for the specified memorypool. wtsk 
returns FALSE (0) if there are no tasks waiting to obtain memoy block. 

 frbcnt 

Returns the number of free blocks in the specified fixed-size memorypool. 

 blksz 

Returns the size of blocks in the specified fixed-size memorypool. 

An error E_NOEXS is returned if this system call is issued for a nonexistent fixed-size 
memorypool. 

This system call can be issued from both tasks and handlers. 

[( Usage example )] 
<< Usage example of the C language >> 
 
#include <mr32r.h> 
#include “id.h” 
void task() 
{ 
 T_RMPF rmpf; 
  : 
 ref_mpf(ID_mpf, &rmpf ); 
  : 

ext_tsk(); 
} 
 
<< Usage example of the assembly language(CC32R) >> 
 
rmpf:    .RES.B    16 

.include “mr32r.inc” 

.global task 
task: 
  : 
 ld24       R2,#rmpf 
 ref_mpf    ID_mpf 
  : 
 
<< Usage example of the assembly language(TW32R:DCC/M32R) >> 
 
rmpf:    .space    16 

.include “mr32r.inc” 

.global task 
task: 
  : 
 ld24       R2,#rmpf 
 ref_mpf    ID_mpf 
  : 



 

2.9.9 cre_mpl(Create Variable-size Memorypool) 

 

197

2.9.9. cre_mpl(Create Variable-size Memorypool) 

[( System call name )] 

cre_mpl → Create Variable-size Memorypool 

 [( Calling by the assembly language )] 
.include “mr32r.inc” 
cre_mpl      mplid 

<< Argument >> 

mplid [  ∗∗  ] The ID No. of a variable-size memorypool to be 
created 

pk_cmpl [∗∗∗∗] The start address in which the variable-size 
memorypool generation information is stored 
(Set the address in the R2 register.) 

<< Register setting >> 
Register name Contents after system call issuance 

R0 Error code 
R1 The ID No. of a variable-size memorypool to be created 
R2 The start address in which the variable-size memorypool 

generation information is stored 
R3 -- 

Specify the following information in the structure indicased by pk_cmpl. 
Offset Size   
+0 4 exinf Extended information 
+4 4 mplatr Variable-size memorypool attribute 
+8 4 mplsz Variable-size memorypool size 
+12 4 maxblksz Maximum memory block size to be 

allocated 

 [( Calling by the C language )] 
#include <mr32r.h> 
ER cre_mpl (mplid, pk_cmpl); 

<< Argument >> 

ID mplid; The ID No. of a variable-size memorypool to be 
created 

T_CMPL *pk_cmpl; The start address in which the variable-size 
memorypool generation information is stored 

Specify the following information in the structure indicased by pk_cmpl. 
 typedef struct t_cmpl { 
  VP exinf; /* Extended information */ 
  ATR mplatr; /* Variable-size memorypool attribute */ 
  INT mplsz; /* Variable-size memorypool size */ 
  INT maxblksz; /* Maximum memory block size to be allocated */ 
 } T_CMPL; 

<< Return value >> 

An error code is returned as the return value of a function. 

[( Error codes )] 
E_OK   00000000H(-H’00000000): Normal End 
E_NOMEM  0FFFFFFF6H(-H’0000000a): Not enough of memory 
E_OBJ  0FFFFFFC1H(-H’0000003f): Invalid object state 



 

2.9.9 cre_mpl(Create Variable-size Memorypool) 198 

[( Function description )] 

This system call generates the variable size memorypool of the ID No. specified with mplid. 

It secures the memory area used for the memorypool and initializes management block data 
of the generated memorypool. 

The information pk_cmpl of the generated memorypool is as follows.Creates a variable-size 
memorypool mplid indicates. 

Here follows explanation of the information as to a variable-size memorypool to be 
generated pk_cmpl. 

 exinf (extended information) 

Exinf is an area you can freely use to store information as to a variable-size 
memorypool to be generated. MR32R has nothing to do with the exinf's contents. 

 mplatr (variable-size memorypool attribute) 

Specify the location of the variable-size memorypool area to be created. Specifically this 
means specifying whether you want variable-size memorypool to be located in the 
internal RAM or in the external RAM. 

♦ To locate the variable-size memorypool area in internal RAM 
Specify __MR_INT(0). 

♦ To locate the variable-size memorypool area in external RAM 
Specify __MR_EXT(0x10000). 

♦ To locate the variable-size memorypool area user specified 
Specify __MR_USER(0x30000). 

 mplsz 

Secures the memory area specified with this setting and utilizes it as the memory pool. 
The E_NOMEM error is returned if the specified memory does not exist. 

 maxblksz 

The variable size memory pool of the MR32R is divided into 4 memory blocks of fixed 
sizes. The memory block whose size best matches the size specified by the user is 
selected from these 4 and assigned as the memory. The sizes are specified by the user 
with maxblksz. Here, an error is not generated even if the specified size is smaller than 
mplsz. Checks must be made from the user's side. 

The range of ID Nos. which can be specified with this system call is from 1 to the maximum 
number of variable size memory pools set in the user system by the maximum item number 
definition.  

If this system call is issued for an already existing variable-size memorypool, an error E_OBJ 
is returned.  

You can issue this system call exclusively from a task. This system call, if issued either from 
the interrupt handler, the cyclic handler or the alarm handler, doesn't work properly. 



 

2.9.9 cre_mpl(Create Variable-size Memorypool) 

 

199

[( Usage example )] 
<< Usage example of the C language >> 
 
#include <mr32r.h> 
#include “id.h” 
void task(void) 
{ 
 T_CMPL   setmpl; 
  : 

setmpl.mplatr = __MR_INT; 
setmpl.mplsz = 5000; 
setmpl.maxblksz = 400; 
cre_mpl(ID_mpl1,&setmpl); 

  : 
} 
 
<< Usage example of the assembly language(TW32R:DCC/M32R) >> 
 
setmpl: .RES.B   16 
 .include “mr32r.inc” 
 .global task 
task: 
 ld24       R2,#setmpl 
 ld24       R1,#__MR_INT 
 st         R1,@(4,R2) 
 ld24       R1,#5000 
 st         R1,@(8,R2) 
 ld24       R1,#400 
 st         R1,@(12,R2) 
 cre_mpl    ID_mpl1 
  : 
 ext_tsk 
 
<< Usage example of the assembly language(TW32R:DCC/M32R) >> 
 
setmpl: .space   16 
 .include “mr32r.inc” 
 .global task 
task: 
 ld24       R0,#setmpl 
 ld24       R1,#__MR_INT 
 st         R1,@(4,R2) 
 ld24       R1,#5000 
 st         R1,@(8,R2) 
 ld24       R1,#400 
 st         R1,@(12,R2) 
 cre_mpl    ID_mpl1 
  : 
 ext_tsk 



 

2.9.10 del_mpl(Delete Variable-size Memorypool) 200 

2.9.10. del_mpl(Delete Variable-size Memorypool) 

[( System call name )] 

del_mpl → Delete Variable-size Memorypool 

 [( Calling by the assembly language )] 
.include “mr32r.inc” 
del_mpl      mplid 

<< Argument >> 

mplid [  ∗∗  ] The ID No. of a variable-size memorypool to be 
deleted 

<< Register setting >> 
Register name Contents after system call issuance 

R0 Error code 
R1 The ID No. of a variable-size memorypool to be deleted 
R2 -- 
R3 -- 

[( Calling by the C language )] 
#include <mr32r.h> 
ER del_mpl (mplid); 

<< Argument >> 

ID mplid; The ID No. of a variable-size memorypool to be 
deleted 

<< Return value >> 

An error code is returned as the return value of a function. 

[( Error codes )] 
E_OK   00000000H(-H’00000000): Normal End 
E_NOEXS  0FFFFFFCCH(-H’00000034): Object does not exist 

[( Function description )] 

This system call deletes the memorypool indicated with mplid.The deleted memorypool can 
be generated as a new memorypool with the same ID No. If a task is in the WAIT state, the 
memorypool wait state is canceled ,and the state changes to READY state.And an error 
E_DLT is returned for that task. 

This system call ends successfully even if there is a task which procures the memory blocks 
of the memory pool specified with this system call. In such case, no notification as to the task 
acquiring memory blocks is made. 

Also, if this system call is issued for a non--existent memorypool, an error E_NOEXS is 
returned. 

Make sure this system call is issued for only the variable-size memorypool that has been 
created by the cre_mpl system call. If this system call is issued for the variable-size 
memorypool that has been defined by the configuration file, it does not function normally. 

This system call can be issued only from a task. It does not function properly when issued 
from the interrupt handler, cyclic handler or alarm handler.  

 



 

2.9.10 del_mpl(Delete Variable-size Memorypool) 

 

201

[( Usage example )] 
<< Usage example of the C language >> 
 
#include <mr32r.h> 
#include “id.h” 
void task(void) 
{ 
  : 

del_mpl(ID_mpl1); 
  : 
} 
 
<< Usage example of the assembly language(CC32R) >> 

 
.include “mr32r.inc” 
.global task 

task: 
  : 

del_mpl ID_mpl1 
  : 

ext_tsk 
 
<< Usage example of the assembly language(TW32R:DCC/M32R) >> 

 
.include “mr32r.inc” 
.global task 

task: 
  : 

del_mpl ID_mpl1 
  : 

ext_tsk 



 

2.9.11 get_blk(Get Variable-size Memory Block) 202 

2.9.11. get_blk(Get Variable-size Memory Block) 

[( System call name )] 

get_blk → Gets a variable-size memory block 

 [( Calling by the assembly language )] 
.include “mr32r.inc” 
get_blk      mplid, blksz 

<< Argument >> 

mplid [  ∗∗  ] The ID No. of the variable-size memorypool to be 
obtained 

blksz [∗∗∗∗] Memory block size to be obtained 

<< Register setting >> 
Register name Contents after system call issuance 

R0 Error code 
R1 The ID No. of the variable-size memorypool to be 

obtained 
R2 The start address of memory block to be obtained 
R3 -- 

[( Calling by the C language )] 
#include <mr32r.h> 
ER get_blk (p_blk,mplid,blksz); 

<< Argument >> 

ID mplid; The ID No. of the variable-size memorypool to be 
obtained 

VP *p_blk; The start address of memory block to be obtained 
INT blksz; Memory block size to be obtained 

<< Return value >> 

The start address of the obtained memory block is set to variable p_blk. 
An error code is returned as the return value of a function. 

[( Error codes )] 
E_OK   00000000H(-H’00000000): Normal End 
E_RLWAI  0FFFFFFAAH(-H’00000056): Wait state forcibly 

    cleared 
E_DLT  0FFFFFFAFH(-H’00000051): The object being waited for 

    was deleted 
E_NOEXS  0FFFFFFCCH(-H’00000034): Object does not exist 



 

2.9.11 get_blk(Get Variable-size Memory Block) 

 

203

[( Function description )] 

This system call gets a variable-size memory block from the memory pool specified by mplid 
and returns the start address of that memory block to p_blk.The content of the obtained 
memory block is not fixed. 

If the memory block cannot be obtained, the task that has issued this system call is placed in 
a wait state and linked in a variable-size memory block wait queue in order of FIFO. 

If the task is freed from a wait state by a rel_wai system call issued by some other task, an 
error E_RLWAI is returned. 

Also, if the variable-size memorypool whose vliable-size memory block wait queue has a 
task is deleted by the del_mpl system call of another task, the variable-size memory block 
wait state of the task in the wait state is canceled and an error E_DLT is returned for that 
task. 

When the variable-size memorypool for which a task has been kept waiting is reset by the 
vrst_mpl system call issued by another task, error code EV_RST is returned and it is moved 
to READY state. 

If the memorypool does not exist, an error E_NOEXS is returned. 

You can issue this system call exclusively from a task. This system call, if issued either from 
the interrupt handler, the cyclic handler or the alarm handler, doesn't work properly. 



 

2.9.11 get_blk(Get Variable-size Memory Block) 204 

 [( Usage example )] 
<< Usage example of the C language >> 
 
#include <mr32r.h> 
#include “id.h” 
#define ID_mpl1 1 
VP       p_blk; 
void task(void) 
{ 

/* Get 70 bytes memory block */ 
if( get_blk(&p_blk,ID_mpl1,70) != E_OK ){ 

error(“Not enough memory\n”); 
 } 
} 
 
<< Usage example of the assembly language(CC32R) >> 
 
p_blk: .RES.B 4 

.include “mr32r.inc” 

.global task 
task: 
  : 
 get_blk ID_mpl1,50        ; Get 50 bytes memory block 
 ld24 R5,#p_blk 
 st R2,@R5            ; send the start address of memory block to be obtaine 
  : 
 ext_tsk 
 
<< Usage example of the assembly language(TW32R:DCC/M32R) >> 
 
p_blk: .space 4 

.include “mr32r.inc” 

.global task 
task: 
  : 
 get_blk ID_mpl1,50        ; Get 50 bytes memory block 
 ld24 R5,#p_blk 
 st R2,@R5            ; send the start address of memory block to be obtained 
  : 
 ext_tsk 



 

2.9.12 tget_blk(Get Variable-size Memory Block with Timeout) 

 

205

2.9.12. tget_blk(Get Variable-size Memory Block with Timeout) 

[( System call name )] 

tget_blk → Gets a variable-size memory block(With Timeout) 

 [( Calling by the assembly language )] 
.include “mr32r.inc” 
tget_blk      mplid,blksz,tmout 

<< Argument >> 

mplid [  ∗∗  ] The ID No. of the variable-size memorypool to be 
obtained 

blksz [∗∗∗∗] Memory block size to be obtained 
tmout [∗∗∗∗] Timeout value 

<< Register setting >> 
Register name Contents after system call issuance 

R0 Error code 
R1 The ID No. of the variable-size memorypool to be 

obtained 
R2 The start address of memory block to be obtained 
R3 -- 
R4 Timeout value 

[( Calling by the C language )] 
#include <mr32r.h> 
ER tget_blk (p_blk,mplid,blksz,tmout); 

<< Argument >> 

ID mplid; The ID No. of the variable-size memorypool to be 
obtained 

VP *p_blk; The start address of memory block to be obtained 
INT blksz; Memory block size to be obtained 
TMO tmout; Timeout value 

<< Return value >> 

The start address of the obtained memory block is set to variable p_blk. 
An error code is returned as the return value of a function. 

[( Error codes )] 
E_OK   00000000H(-H’00000000): Normal End 
E_RLWAI  0FFFFFFAAH(-H’00000056): Wait state forcibly 

    cleared 
E_DLT  0FFFFFFAFH(-H’00000051): The object being waited for 

    was deleted 
E_NOEXS  0FFFFFFCCH(-H’00000034): Object does not exist 



 

2.9.12 tget_blk(Get Variable-size Memory Block with Timeout) 206 

[( Function description )] 

This system call gets a variable-size memory block from the memory pool specified by mplid 
and returns the start address of that memory block to p_blk.  

If no memory block exists in the specified memorypool, the task that issued this system call 
goes to a memory block wait state, so it is queued up in two queues: the memory block wait 
queue and the timeout wait queue.  

The wait state committed by issuing this system call is released in the cases described 
below. Note that when released from the wait state, the task that issued this system call is 
removed from both of the transmit wait and timeout wait queues and is connected to the 
ready queue. 

 When the release-from-wait condition is met before the tmout time expires 

Error code E_OK is returned. 

 When the tmout time expires before the release-from-wait condition is met 

Error code E_TMOUT is returned. 

 When the rel_wai or irel_wai system call is issued before the send variable-size 
memorypool wait condition is met 

Error code E_RLWAI is returned. 

 When the variable-size memorypool for which a task has been kept waiting is deleted by 
the del_mpl system call issued by another task 

Error code E_DLT is returned. 

 When the variable-size memorypool for which a task has been kept waiting is reset by the 
vrst_mpf system call issued by another task 

Error code EV_RST is returned. 

Any value from -1 to 7FFFFFFFH can be specified for tmout. If you specify TMO_POL = 0 for 
tmout, the effect is the same as 0 is specified for the timeout value, in which case tmout 
functions the same way as pget_blk. Also, if you specify tmout = TMO_FEVR(-1), the effect 
is the same as endless wait is specified, in which case tmout functions the same way as 
get_blk. 

An error E_NOEXS is returned if this system call is issued for a nonexistent variable-size 
memorypool. 

You can issue this system call exclusively from a task. This system call, if issued either from 
the interrupt handler, the cyclic handler or the alarm handler, doesn't work properly. 



 

2.9.12 tget_blk(Get Variable-size Memory Block with Timeout) 

 

207

 [( Usage example )] 
<< Usage example of the C language >> 
 
#include <mr32.h> 
#include “id.h” 
VP       p_blk; 
void task() 
{ 

if( tget_blk(&p_blk,ID_mpl1,50,100) != E_OK ){ 
  error(“Not enough memory\n”); 
 } 
  : 
} 
 
<< Usage example of the assembly language(CC32R) >> 
 
p_blf: .space 4 
 .include “mr32.inc” 
 .global task 
task: 
  : 
 tget_blk   ID_mpl,50,100 
 ld24       R5,#p_blf 
 st         R2,@R5 
  : 

ext_tsk 
 
<< Usage example of the assembly language(TW32R:DCC/M32R) >> 
 
p_blf: .space 4 
 .include “mr32.inc” 
 .global task 
task: 
  : 
 tget_blk   ID_mpl,50,100 
 ld24       R5,#p_blf 
 st         R2,@R5 
  : 

ext_tsk 



 

2.9.13 pget_blk(Poll and Get Variable-size Memory Block) 208 

2.9.13. pget_blk(Poll and Get Variable-size Memory Block) 

[( System call name )] 

pget_blk → Gets a variable-size memory block(no wait) 

 [( Calling by the assembly language )] 
.include “mr32r.inc” 
pget_blk      mplid, blksz 

<< Argument >> 

mplid [  ∗∗  ] The ID No. of the variable-size memorypool to be 
obtained 

blksz [∗∗∗∗] Memory block size to be obtained 

<< Register setting >> 
Register name Contents after system call issuance 

R0 Error code 
R1 The ID No. of the variable-size memorypool to be 

obtained 
R2 The start address of memory block to be obtained 
R3 -- 

[( Calling by the C language )] 
#include <mr32r.h> 
ER pget_blk (p_blk,mplid,blksz); 

<< Argument >> 

ID mplid; The ID No. of the variable-size memorypool to be 
obtained 

VP *p_blk; The start address of memory block to be obtained 
INT blksz; Memory block size to be obtained 

<< Return value >> 

The start address of the obtained memory block is set to variable p_blk. 
An error code is returned as the return value of a function. 

[( Error codes )] 
E_OK   00000000H(-H’00000000): Normal End 
E_TMOUT  0FFFFFFABH(-H’00000055): Polling failed or timeout 
E_NOEXS  0FFFFFFCCH(-H’00000034): Object does not exist 



 

2.9.13 pget_blk(Poll and Get Variable-size Memory Block) 

 

209

[( Function description )] 

This system call gets a variable-size memory block from the memory pool specified by mplid 
and returns the start address of that memory block to p_blk. The content of the acquired 
memory block is indeterminate. 

If the memory block cannot be obtained because there is no memory block in the specified 
memory pool, an error E_TMOUT is returned to the task which issued the system call. 

The task is not moved to WAIT state by pget_blk. 

The size of each memory block is defined in the configuration file or or when cre_mpf system 
call is issued.  

An error E_NOEXS is returned if this system call is issued for a nonexistent variable-size 
memorypool. 

You can issue this system call exclusively from a task. This system call, if issued either from 
the interrupt handler, the cyclic handler or the alarm handler, doesn't work properly. 

 

 [( Usage example )] 
<< Usage example of the C language >> 
 
#include <mr32r.h> 
#include “id.h” 
#define ID_mpl1 1 
VP       p_blk; 
void task() 
{ 

/* Get 70 bytes memory block */ 
if( pget_blk(&p_blk,ID_mpl1,70) != E_OK )- 

error(“Not enough memory\n”); 
} 
 
<< Usage example of the assembly language(CC32R) >> 
 
p_blk: .RES.B 4 

.equ ID_mpl1,1 

.include “mr32r.inc” 

.global task 
task: 
  :   
 pget_blk  ID_mpl1,50       ; Get 50 bytes memory block 
 ld24 R5,#p_blk 
 st    R2,@R5           ; send the start address of memory block to be obtaine 
  : 

ext_tsk 
 
<< Usage example of the assembly language(TW32R:DCC/M32R) >> 
 
p_blk: .space  4 

.equ ID_mpl1,1 

.include “mr32r.inc” 

.global task 
task: 
  :   
 pget_blk  ID_mpl1,50       ; Get 50 bytes memory block 
 ld24 R5,#p_blk 
 st    R2,@R5           ; send the start address of memory block to be obtained 
  : 

ext_tsk 



 

2.9.14 rel_blk(Release Variable-size Memory Block) 210 

2.9.14. rel_blk(Release Variable-size Memory Block) 

[( System call name )] 

rel_blk → Release a variable-size memory block 

 [( Calling by the assembly language )] 
.include “mr32r.inc” 
rel_blk     mplid 

<< Argument >> 

mplid [  ∗∗  ] The ID No. of the variable-size memorypool to be 
released 

p_blk [****] the address of the memory block to be released. 
Set the address in the R2 register. 

 

<< Register setting >> 
Register name Contents after system call issuance 

R0 Error code 
R1 The ID No. of the variable-size memorypool to be 

released 
R2 The start address of memory block to be released 
R3 -- 

[( Calling by the C language )] 
#include <mr32r.h> 
ER rel_blk (mplid,p_blk); 

<< Argument >> 

ID mplid; The ID No. of the variable-size memorypool to be 
released 

VP p_blk; The start address of memory block to be release 

<< Return value >> 

An error code is returned as the return value of a function. 

[( Error codes )] 
E_OK   00000000H(-H’00000000): Normal End 
E_NOEXS  0FFFFFFCCH(-H’00000034): Object does not exist 

[( Function description )] 

This system call returns the memory block whose start address is specified by p_blk to the 
memory pool.  

For the start address of the memory block to be freed (returned), always use the value 
obtained by get_blk, tget_blk or pget_blk. 

This system call does not especially check whether p_blk is pointing at the start address of 
the correct memory block. 

If a task is waiting to release memory blocks, the request size is checked from the head task 
in the memory wait queue. If conditions are satisfied, the memory wait state is changed to 
the ready state. 

In assigning memory, if conditions are satisfied, request size is checked with all 
subsequently connected tasks. However, the moment a task does not satisfy the request 
size, memory block assignment ends. 



 

2.9.14 rel_blk(Release Variable-size Memory Block) 

 

211

An error E_NOEXS is returned if this system call is issued for a nonexistent variable-size 
memorypool. 

You can issue this system call exclusively from a task. This system call, if issued either from 
the interrupt handler, the cyclic handler or the alarm handler, doesn't work properly. 

 [( Usage example )] 
<< Usage example of the C language >> 
 
#include <mr32r.h> 
#include “id.h” 
#define ID_mpl1 1 
void task() 
{ 

VP   p_blk; 
/* Get 60 bytes memory block */ 
if( pget_blk(&p_blk,ID_mpl1,60) != E_OK ) 

error(“Not enough memory \n”); 
  : 
rel_blk(ID_mpl1,p_blk);     /* Release memory block */ 

} 
 
<< Usage example of the assembly language(CC32R) >> 
 
p_blk:   .RES.B 4 
ID_mpl1: .equ 1 

.include “mr32r.inc” 

.global _task 
_task: 
  : 
 pget_blk ID_mpl1,60     ; Get 60 bytes memory block 
 ld24     R5,#p_blk 
 st       R2,@R5 
  : 

; You must set the start address of the memory block to be released 
 ld24     R5,#p_blk 
 ld       R2,@R5         ; start address of the memory block 
 rel_blk                 ; Release memory block 
 
<< Usage example of the assembly language(TW32R:DCC/M32R) >> 
 
p_blk:   .space 4 

.equ ID_mpl1,1 

.include “mr32r.inc” 

.global _task 
_task: 
  : 
 pget_blk ID_mpl1,60     ; Get 60 bytes memory block 
 ld24     R5,#p_blk 
 st       R2,@R5 
  : 

; You must set the start address of the memory block to be released 
 ld24     R5,#p_blk 
 ld       R2,@R5         ; start address of the memory block 
 rel_blk                 ; Release memory block 



 

2.9.15 ref_mpl(Refer Variable-size Memorypool Status) 212 

2.9.15. ref_mpl(Refer Variable-size Memorypool Status) 

[( System call name )] 

ref_mpl → Reference Variable-size Memorypool Status 

 [( Calling by the assembly language )] 
.include “mr32r.inc” 
ref_mpl    mplid,pk_rmpl 

<< Argument >> 

mplid [  ∗∗  ] The ID No. of the variable-size memorypool to be 
referenced 

pk_rmpl [∗∗∗∗] Packet address to Reference variable-size 
memorypool 
(Set the address in the R2 register.) 

<< Register setting >> 
Register name Contents after system call issuance 

R0 Error code 
R1 The ID No. of the memory block to Reference variable-size 

memorypool 
R2 Packet address to Reference variable-size memorypool 
R3 -- 

The structure indicated by pk_rmpl returns the following data 
Offset Size   
+0 4 exinf Extended information 
+4 4 wtsk Waiting task information 
+6 4 frsz The total size of the free area 
+10 4 maxsz The size of the maximum free area 

 [( Calling by the C language )] 
#include <mr32r.h> 
ER ref_mpl (pk_rmpl, mplid); 

<< Argument >> 

T_RM
PL 

*pk_rmpl; Packet address to Reference variable-size 
memorypool 

ID mplid; The ID No. of the memory block to Reference 
variable-size memorypool 

<< Return value >> 

An error code is returned as the return value of a function. 
The structure indicated by pk_rmpl returns the following data. 
 typedef struct t_rmpl { 
  VP exinf; /* Extended information */ 
  BOOL_ID wtsk; /* Waiting task information */ 
  INT frsz; /* The total size of the free area */ 
  INT maxsz; /* The size of the maximum free area */ 
 } T_RMPL; 

 [( Error codes )] 
E_OK   00000000H(-H’00000000): Normal End 
E_NOEXS  0FFFFFFCCH(-H’00000034): Object does not exist 



 

2.9.15 ref_mpl(Refer Variable-size Memorypool Status) 

 

213

[( Function description )] 

Refers to the state of the variable-size memory pool specified by mplid, and returns the 
following information as return values. 

 exinf 

Returns extended task information in exinf 

 wtsk 

Returns the ID No. of the first task waiting for the specified variable-size memory pool. 
In the MR32R, however, wtsk always returns FALSE (0), because tasks cannot enter 
the wait state for the memory pool. 

 frsz 

Returns the total size of the free area. 

 maxsz 

Returns the size of the maximum free area that can immediately be obtained. 

An error E_NOEXS is returned if this system call is issued for a nonexistent variable-size 
memorypool. 

This system call can be issued from both tasks and handlers (the interrupt handler, the cyclic 
handler, or the alarm handler). 

 

[( Usage example )] 
<< Usage example of the C language >> 
 
#include <mr32r.h> 
#include “id.h” 
void task() 
{ 
 T_RMPL rmpl; 

ref_mpl(&rmpl,ID_mpl1); 
} 
 
<< Usage example of the assembly language(CC32R) >> 
 
rmpl:   .space    10 

.equ ID”mpl1,1 
 .include mr32r.inc 
 .global task 
task: 
  : 
 ld24       R2,#rmpl 
 ref_mpl    ID_mpl1 
 
<< Usage example of the assembly language(TW32R:DCC/M32R) >> 
 
rmpl:   .space    10 

.equ ID”mpl1,1 
 .include mr32r.inc 
 .global task 
task: 
  : 
 ld24       R2,#rmpl 
 ref_mpl    ID_mpl1 



 

2.10.1 set_tim(Set Time) 214 

2.10. Time Management Function 
2.10.1. set_tim(Set Time) 

[( System call name )] 

set_tim → Sets the system clock. 

 [( Calling by the assembly language )] 
.include “mr32r.inc” 
set_tim       

<< Argument >> 

pk_tim [∗∗∗∗] The start address of packet specifying the system 
clock to be set 
(Set the address in the R2 register.) 

<< Register setting >> 
Register name Contents after system call issuance 

R0 Error code 
R1 -- 
R2 The start address of packet specifying the system clock to be 

set 
R3 -- 

[( Calling by the C language )] 
#include <mr32r.h> 
ER set_tim (pk_tim); 

<< Argument >> 

SYSTIME *pk_tim; The start address of packet specifying the system 
clock to be set 

<< Return value >> 

E_OK is always returned as the return value of a function. 

[( Error codes )] 
E_OK   00000000H(-H’00000000): Normal End 

[( Function description )] 

This system call sets the value of the system clock to a value indicated by pk_tim. 27 

The 48-bit system clock is handled separately in ltime(32-bits) and utime(16-bits). 

The timer interrupt interval used in MR32R kernel is treated as a unit of system clock. 

This system call can be issued from both tasks and handlers. 

                                                      
27 The system time is 0 when the system is reset, and the number of system clock interrupts generated is indicated by 
48-bit data. 



 

2.10.1 set_tim(Set Time) 

 

215

 [( Usage example )] 
<< Usage example of the C language >> 
 
#include <mr32r.h> 
#include “id.h” 
void task() 
{ 
 SYSTITIME time;        /* Time data storing variable */ 
 time.utime = 0;        /* Sets upper time data */ 
 time.ltime = 0;        /* Sets lower time data */ 
 set_tim( &time );      /* modify the system time */ 
} 
<< Usage example of the assembly language(CC32R) >> 
 
time: .RES.B     6 
 .INCLUDE “mr32r.inc” 
 .GLOBAL    task 
task: 
 set_tim    time 
  : 
 
<< Usage example of the assembly language(TW32R:DCC/M32R) >> 
 
time: .space     6 
 .INCLUDE “mr32r.inc” 
 .GLOBAL    task 
task: 
 set_tim    time 
  : 



 

2.10.2 get_tim(Get Time) 216 

2.10.2. get_tim(Get Time) 

[( System call name )] 

get_tim → Reads the system clock value. 

 [( Calling by the assembly language )] 
.include “mr32r.inc” 
get_tim 

<< Argument >> 

pk_tim [∗∗∗∗] The start address of packet in which the read system 
clock is stored 

<< Register setting >> 
Register name Contents after system call issuance 

R0 Error code 
R1 -- 
R2 The start address of packet in which the read system clock is 

stored 
R3 -- 

[( Calling by the C language )] 
#include <mr32r.h> 
ER get_tim (pk_tim); 

<< Argument >> 

SYSTIME *pk_tim; The start address of packet in which the read system 
clock is stored 
(Set the address in the R2 register.) 

<< Return value >> 

E_OK is always returned as the return value of a function. 
The current time data is returned to the structure which pk_tim is specifying. 

 [( Error codes )] 
E_OK   00000000H(-H’00000000): Normal End 

[( Function description )] 

This system call reads out the current value of the system clock and returns it to return 
parameter pk_tim. 28 

The 48-bit system clock time is handled separately in ltime(32-bits) and utime(16-bits). 

This system call can be issued from both tasks and handlers. 

                                                      
28 The system time is 0 at reset. The number of times the system clock interrupt occurred is represented in 48-bit data. 



 

2.10.2 get_tim(Get Time) 

 

217

 [( Usage example )] 
<< Usage example of the C language >> 
 
#include <mr32r.h> 
#include “id.h” 
void task() 
{ 
 SYSTIME time;  /* Time data storing variable */ 
 get_tim( &time ); /* Reads system time */ 

printf(“system_clock.utime = %X\n”,time.utime); 
printf(“system_clock.ltime = %X\n”,time.ltime); 

} 
<< Usage example of the assembly language(CC32R) >> 
 
time: .RES.B     6 

.include “mr32r.inc” 

.global   task 
task: 
 ld24 R2,#time 
 get_tim     
  : 
 
<< Usage example of the assembly language(TW32R:DCC/M32R) >> 
 
time: .space     6 

.include “mr32r.inc” 

.global   task 
task: 
 ld24 R2,#time 
 get_tim     
  : 



 

2.10.3 dly_tsk(Delay Task) 218 

2.10.3. dly_tsk(Delay Task) 

[( System call name )] 

dly_tsk → Delays task execution. 

 [( Calling by the assembly language )] 
.include “mr32r.inc” 
dly_tsk      dlytim 

<< Argument >> 

dlytim [∗∗∗∗] Delay time 

<< Register setting >> 
Register name Contents after system call issuance 

R0 Error code 
R1 -- 
R2 Delay time 
R3 -- 

[( Calling by the C language )] 
#include <mr32r.h> 
ER dly_tsk (dlytim); 

<< Argument >> 

DLYTIME dlytim; Delay time 

<< Return value >> 

An error code is returned as the return value of a function. 

[( Error codes )] 
E_OK   00000000H(-H’00000000): Normal End 
E_RLWAI  0FFFFFFAAH(-H’00000056): Wait state forcibly 

    cleared 



 

2.10.3 dly_tsk(Delay Task) 

 

219

[( Function description )] 

This system call temporarily stops execution of the own task for a duration specified by 
dlytim, with the task placed from the execution (RUN) state into a wait (WAIT) state. 

A wait state invoked by this system call is cancelled in the following cases: 

When the wait state is cancelled, the task that invoked this system call exits from the timeout 
wait queues and is connected to the ready queue.  

 When the time specified in dlytim has elapsed. 

Error code E_OK is returned. 

 When the wait state is forcibly cancelled by rel_wai or irel_wai system calls before the 
dlytim time has elapsed. 

Error code E_RLWAI is returned. 

However, the wait state is not cleared by executing wup_tsk during a delay. 

The unit of time specified in dlytim is the unit of time of the system clock, specified in the 
configuration file.29 

 

The maximum value of dlytim is 0x7FFFFFFF. 

dly_tsk(5); 
For example, if it is 10ms and the following is written in the program the own task is placed 
from the execution (RUN) state into a wait (WAIT) state and held in that state for 50 ms. 

This system call can be issued only from tasks. It cannot be issued from the in terrupt 
handler, the cyclic handler, or the alarm handler. 

 

[( Usage example )] 
<< Usage example of the C language >> 
 
#include <mr32r.h> 
#include “id.h” 
void task() 
{ 

if( dly_tsk( 10 ) != E_OK ) 
printf(“Forced wakeup\n”); 

   : 
} 
 
<< Usage example of the assembly language(CC32R) >> 
 
 .include “mr32r.inc” 

.global   task 
task: 
 dly_tsk 200 
  : 
 
<< Usage example of the assembly language(TW32R:DCC/M32R) >> 
 
 .include “mr32r.inc” 

.global   task 
task: 
 dly_tsk 200 
  : 

                                                      
29 Refer Users Manual how to specify the unit of time of the system clock in the configuration file. 



 

2.10.4 def_cyc(Define Cyclic Handler) 220 

2.10.4. def_cyc(Define Cyclic Handler) 

[( System call name )] 

def_cyc → Define Cyclic Handler 

 [( Calling by the assembly language )] 
.include “mr32r.inc” 
def_cyc      cycno,pk_dcyc 

<< Argument >> 

cycno  [∗∗∗∗] ID No. of cyclic handler 
pk_dcyc [∗∗∗∗] The start address in which the cyclic handler 

definition information is stored 
(Set the address in the R2 register.) 

<< Register setting >> 
Register name Contents after system call issuance 

R0 Error code 
R1 ID No. of cyclic handler 
R2 The start address in which the cyclic handler definition 

information is stored 
R3 -- 

Specify the following information in the structure indicased by pk_dexc. 
Offset Size   
+0 4 exinf Extended information 
+4 4 cycatr Cyclic handler attribute 
+8 4 cychdr Cyclic handler startup address 
+12 4 cycact The cyclic handler activation status 
+16 4 cyctim Interval count 

 [( Calling by the C language )] 
#include <mr32r.h> 
ER def_cyc(cycno, pk_dcyc); 

<< Argument >> 

HNO cycno ID No. of cyclic handler 
T_DCYC *pk_dcyc The start address in which the cyclic handler 

definition information is stored 
Specify the following information in the structure indicased by pk_dcyc. 
 typedef struct t_dcyc { 
 VP exinf;  /* Extended information */ 
  ATR cycatr;  /* Cyclic handler attribute */ 
  FP cychdr;  /* Cyclic handler startup address */ 
  UINT cycact;  /* The cyclic handler activation status */ 
 CYCTIME cyctim;  /* Interval count */ 
 } T_DCYC; 

<< Return value >> 

An error code is returned as the return value of a function. 



 

2.10.4 def_cyc(Define Cyclic Handler) 

 

221

 [( Error codes )] 
E_OK   00000000H(-H’00000000): Normal End 

 [( Function description )] 

 exinf 

Exinf is an area you can freely use to store information as to a cyclic handler to be 
generated. MR32R has nothing to do with the exinf's contents.  

 cycatr 

cycatr is an area you can freely use to store information as to a cyclic handler to be 
generated. MR32R has nothing to do with the cycatr's contents.  

 cychdr 

Specifies the start address of the defined cyclic handler. 

 cycact 

The following two specifications can be made by cycact: 

Table 2.1 Specifications of Cyclic Handler Activation Status 

C language Meaning 
TCY_OFF Disables the cyclic handler 
TCY_ON Enables the cyclic handler 

 cyctim 

Specifies the interval count for cyclic handler. 

It is also possible to re-define a cyclic handler to the cyclic handler already defined. In a 
re-definition, it is not necessary to cancel a definition beforehand. It does not become an 
error even if it re-defines a new a cyclic handler to the cyclic handler already defined. 

You can issue this system call exclusively from a task. This system call, if issued either from 
the interrupt handler, the cyclic handler or the alarm handler, doesn't work properly. 



 

2.10.4 def_cyc(Define Cyclic Handler) 222 

[( Usage example )] 
<< Usage example of the C language >> 
 
#include <mr32r.h> 
#include “id.h” 
void task() 
{ 
 T_DCYC dcyc1; 
  : 
 dcyc1.cychdr = cyc1; 
 dcyc1.cycact = TCY_ON; 
 dcyc1.cyctim = 200; 
 def_cyc ( ID_cyc, &dcyc ); 
  : 
} 
void cyc1(void) 
{ 
 : 
} 
 
<< Usage example of the assembly language(CC32R) >> 
 

.include “mr32r.inc” 

.global    task 
dcyc1: .RES.B 20 
task: 
 ld24     R2,#dcyc1 
 ld24     R1,#cyc1 
 st       R1,@(8,R2) 
 ldi      R1,#TCY_ON 
 st      R1,@(12,R2) 
 ldi      R1,#200 
 st       R1,@(16,R2) 
 def_cyc  ID_CYC 
  : 
 ext_tsk 
cyc1: 
  : 
 
<< Usage example of the assembly language(TW32R:DCC/M32R) >> 

.include “mr32r.inc” 

.global    task 
dcyc1:  
 .space  20 
task: 
 ld24     R2,#dcyc1 
 ld24     R1,#cyc1 
 st       R1,@(8,R2) 
 ldi      R1,#TCY_ON 
 st      R1,@(12,R2) 
 ldi      R1,#200 
 st       R1,@(16,R2) 
 def_cyc  ID_CYC 
  : 
 ext_tsk 
cyc1: 
  : 
 
 



 

2.10.5 act_cyc (Activate Cyclic Handler) 

 

223

2.10.5. act_cyc (Activate Cyclic Handler) 

[( System call name )] 

act_cyc → Controls the activation of the cyclic handler. 

 [( Calling by the assembly language )] 
.include “mr32r.inc” 
act_cyc      cycno, cycact 

<< Argument >> 

cycno [  ∗∗  ] The cyclic handler specification number 
cycact [∗∗∗∗] The cyclic handler activation status 

<< Register setting >> 
Register name Contents after system call issuance 

R0 Error code 
R1 The cyclic handler specification number 
R2 The cyclic handler activation status 
R3 -- 

[( Calling by the C language )] 
#include <mr32r.h> 
ER act_cyc (cycno, cycact); 

<< Argument >> 

HNO cycno; The cyclic handler specification number 
UINT
  

cycact; The cyclic handler activation status 

<< Return value >> 

E_OK is always returned as the return value of a function. 

[( Error codes )] 
E_OK   00000000H(-H’00000000): Normal End 

[( Function description )] 

This system call changes the activation status of the cyclic handler specified by cyhno. 

That is, it enables or disables the cyclic handler. 

The following three specifications can be made by cyhact: 

Table 2.2 Specifications of Cyclic Handler Activation Status 

C language Assembly language Meaning 
TCY_OFF TCY_OFF Disables the cyclic handler 
TCY_ON TCY_ON Enables the cyclic handler 
TCY_ON|TCY_INI TCY_INI_ON Enables the cyclic handler and|clears the 

cyclic counter at the same|time.  
The cyclic handler is executed as a part of the system clock interrupt handler.30 

This system call can be issued from both tasks and handlers. 

                                                      
30 Namely, the cyclic handler is called from the system clock handler by a subroutine call. 



 

2.10.5 act_cyc (Activate Cyclic Handler) 224 

 [( Usage example )] 
<< Usage example of the C language >> 
 
#include <mr32r.h> 
#include “id.h” 
void task() 
{ 
  : 
 act_cyc ( ID_cyc, TCY_ON ); 
  : 
} 
 
<< Usage example of the assembly language(CC32R) >> 

 
.include “mr32r.inc” 
.global    task 

task: 
 act_cyc    ID_cyc, TCY_INI_ON 
  : 
 
<< Usage example of the assembly language(TW32R:DCC/M32R) >> 

 
.include “mr32r.inc” 
.global    task 

task: 
 act_cyc    ID_cyc, TCY_INI_ON 
  : 



 

2.10.6 ref_cyc(Refer Cyclic Handler Status) 

 

225

2.10.6. ref_cyc(Refer Cyclic Handler Status) 

[( System call name )] 

ref_cyc → Reference Cyclic handler Status 

 [( Calling by the assembly language )] 
.include “mr32r.inc” 
ref_cyc    cycno 

<< Argument >> 

cycno [  ∗∗  ] The cyclic handler specification number 
pk_rcyc [∗∗∗∗] Packet address to Reference cyclic handler 

(Set the address in the R2 register.) 

<< Register setting >> 
Register name Contents after system call issuance 

R0 Error code 
R1 The cyclic handler specification number 
R2 Packet address to Reference cyclic handler 
R3 -- 

The structure indicated by pk_rcyc returns the following data. 
Offset Size   
+0 4 exinf Extended information 
+4 4 lftim The time remaining until the next cycle 

start handler starts 
+8 4 cycact The active state of the cycle start handler 

 [( Calling by the C language )] 
#include <mr32r.h> 
ER ref_cyc (pk_rcyc, cycno); 

<< Argument >> 

HNO cycno; The cyclic handler specification number 
T_RCYC *pk_rcyc

; 
Packet address to Reference cyclic handler 

<< Return value >> 

An error code is returned as the return value of a function. 
The structure indicated by pk_rcyc returns the following data. 
 typedef struct t_rcyc { 
  VP exinf; /* Extended information */ 
  CYCTIME lfttim; /* The time remaining until the next cycle start 
        handler starts */ 
  UINT cycact; /* The active state of the cycle start handler */ 
 }T_RCYC; 

 [( Error codes )] 
E_OK   00000000H(-H’00000000): Normal End 

[( Function description )] 

Refers to the state of the cyclic handler specified by almno, and returns the following 
information as return values. 

 exinf 

Returns extended task information in exinf. 



 

2.10.6 ref_cyc(Refer Cyclic Handler Status) 226 

 cycact 

cycact returns the active state of the cyclic handler. That is, cycact returns TCY_ON 
(=1) when the cyclic handler is ON, and TCY_OFF (=0) when it is OFF. 

 lfttime 

lftim returns the time remaining until the next cyclic handler starts. The time remaining 
until the next cyclic handler starts is expressed as the number of system clock counts. 

 

This system call can be issued from both tasks and handlers. 

 [( Usage example )] 
<< Usage example of the C language >> 
 
#include <mr32r.h> 
#include “id.h” 
void task() 
{ 

T_RCYC rcyc; 
ref_cyc( &rcyc, ID_cyc ); 

} 
 
<< Usage example of the assembly language(CC32R) >> 

 
.include “mr32r.inc” 
.global task 

task: 
  : 
 ld24      R2,#pk_rcyc 
 ref_cyc   ID_cyc 
  : 
 
<< Usage example of the assembly language(TW32R:DCC/M32R) >> 

 
.include “mr32r.inc” 
.global task 

task: 
  : 
 ld24      R2,#pk_rcyc 
 ref_cyc   ID_cyc 
  : 



 

2.10.7 ref_alm(Refer Alarm Handler Status) 

 

227

2.10.7. ref_alm(Refer Alarm Handler Status) 

[( System call name )] 

ref_alm → Reference Alarm handler Status 

 [( Calling by the assembly language )] 
.include “mr32r.inc” 
ref_alm    almno 

<< Argument >> 

almno [  ∗∗  ] The alarm handler specification number 
pk_ralm [∗∗∗∗] Packet address to Reference alarm handler 

(Set the address in the R2 register.) 

<< Register setting >> 
Register name Contents after system call issuance 

R0 Error code 
R1 The alarm handler specification number 
R2 Packet address to Reference alarm handler 
R3 -- 

The structure indicated by pk_ralm returns the following data. 
Offset Size   
+0 4 exinf Extended information 
+4 4 lftim The time remaining until the next alarm 

start handler starts 

 [( Calling by the C language )] 
#include <mr32r.h> 
ER ref_alm (pk_ralm, almno); 

<< Argument >> 

HNO almno; The alarm handler specification number 
T_RALM *pk_ralm; Packet address to Reference alarm handler 

<< Return value >> 

An error code is returned as the return value of a function. 
The structure indicated by pk_ralm returns the following data. 
 typedef struct t_ralm { 
  VP exinf; /* Extended information */ 
  ALMTIME lfttim; /* The time remaining until the next alarm start  
        handler starts */ 
 }T_RALM; 

 [( Error codes )] 
E_OK   00000000H(-H’00000000): Normal End 



 

2.10.7 ref_alm(Refer Alarm Handler Status) 228 

[( Function description )] 

Refers to the state of the alarm handler specified by almno, and returns returns the following 
information as return values. 

 exinf 

Returns extended task information in exinf. 

 lfttim 

lfttim returns the time remaining until the specified alarm handler is started.  The time 
remaining until the alarm handler starts is expressed as 48-bit data showing the number 
of times the system clock interrupt remains to be invoked.  

The 48-bit system time is divided into ltime and utime. 

This system call can be issued from both tasks and handlers. 

 [( Usage example )] 
<< Usage example of the C language >> 
 
#include <mr32r.h> 
#include “id.h” 
void func() 
{ 

T_RALM   ralm; 
ref_alm( &ralm, ID_alarm ); 
  : 

} 
 
<< Usage example of the assembly language(CC32R) >> 

 
.include “mr32r.inc” 
.global task 

task: 
 ld24       R2,#pk_ralm 
 ref_alm    ID_alm 
  : 
 
<< Usage example of the assembly language(TW32R:DCC/M32R) >> 

 
.include “mr32r.inc” 
.global task 

task: 
 ld24       R2,#pk_ralm 
 ref_alm    ID_alm 
  : 



 

2.11.1 get_ver(Get Version Information) 

 

229

2.11. System Management Function 
2.11.1. get_ver(Get Version Information) 

[( System call name )] 

get_ver → Gets the version number of the MR32R.  

 [( Calling by the assembly language )] 
.include “mr32r.inc” 
get_ver       

<< Argument >> 

pk_ver [∗∗∗∗] The start address of the structure in which version 
information is stored 
(Set the address in the R2 register.) 

<< Register setting >> 
Register name Contents after system call issuance 

R0 Error code 
R1 -- 
R2 The start address of the structure in which version information 

is stored 
R3 -- 

[( Calling by the C language )] 
#include <mr32r.h> 
ER get_ver (pk_ver); 

<< Argument >> 

T_VER *pk_ver; The start address of the structure in which version 
information is stored 

<< Return value >> 

E_OK is always returned as the return value of a function. 
The version information is set to structure pk_ver. 

[( Error codes )] 
E_OK   00000000H(-H’00000000): Normal End 



 

2.11.1 get_ver(Get Version Information) 230 

[( Function description )] 

This system call gets the version number and other information on the MR32R. 

The version number is obtained in the format standardized by the TRON specifications. 

Therefore, the version number can be obtained in the format common to different types of 
microcomputers or the operating systems of different TRON specifications. 

The version information can be obtained is as follows: 

UH maker /* Maker */ 
UH id /* Format number */ 
UH spver /* Specification version */ 
UH prver /* Product version */ 
UH prno[4] /* Product control information */ 
UH cpu /* CPU information */ 
UH var /* Variation descriptor*/ 

The version No. formats are as follows: 

1. Maker 
H'0C indicating Mitsubishi Electric Corporation is returned. 

2. Format number 
Internal identification ID H’221of the MR32R is returned. 

3. Specification version 
H'5302 indicating the µITRONspecifications Ver.3.02 is returned. 

4. Product version 
H'320 indicating the version of the MR32R is returned. 

5. Product control information 

 prno[0] 

The product release number is obtained 

prno[0]  ‘01’ 

 prno[1] 

A two digit of the product release year and month are obtained 

prno[1]  0x0007 

 prno[2] 

Reserved for Mitsubishi use. 

prno[2]  0x???? 

 prno[3] 

Reserved for Mitsubishi use. 

prno[3]  0x???? 

6. CPU information 
H’C31 indicating the M32R Micro computeris returned. 

7. Variation descriptor 
H'8000 indicating the variation of the MR32R is returned. 



 

2.11.1 get_ver(Get Version Information) 

 

231

[( Usage example )] 
<< Usage example of the C language >> 
 
#include <mr32r.h> 
#include “id.h” 
void task() 
{ 

T_VER    pk_ver; 
get_ver( &pk_ver ); 

} 
 
<< Usage example of the assembly language(CC32R) >> 
 
ver:   .RES.B      10 
 .include “mr32r.inc” 
 .global   task 
task: 
 ld24 R2,#ver 
 get_ver 
  : 
 
<< Usage example of the assembly language(TW32R:DCC/M32R) >> 
 
ver:   .space      10 
 .include “mr32r.inc” 
 .global   task 
task: 
 ld24 R2,#ver 
 get_ver    ver 
  : 



 

2.11.2 ref_sys(Refer System Status) 232 

2.11.2. ref_sys(Refer System Status) 

[( System call name )] 

ref_sys → Reference Status of CPU and OS.  

 [( Calling by the assembly language )] 
.include “mr32r.inc” 
ref_sys 

<< Argument >> 

pk_rsys [∗∗∗∗] The start address of the structure in which system 
status information is stored 
(Set the address in the R2 register.) 

<< Register setting >> 
Register name Contents after system call issuance 

R0 Error code 
R1 -- 
R2 The start address of the structure in which system 

status information is stored 
R3 -- 

The structure indicated by pk_sys returns the following data. 
Offset Size   
+0 4 exinf Extended information 
+4 2 runtskid The ID No. of RUN state task 
+6 2 runtskpri The priority of RUN state task 
+8 4 psw PSW 

 [( Calling by the C language )] 
#include <mr32r.h> 
ER ref_sys (pk_rsys); 

<< Argument >> 

T_RSYS *pk_rsys; Packet address to Reference system status 

<< Return value >> 

An error code is returned as the return value of a function. 
The structure indicated by pk_sys returns the following data. 
typdef strcut t_rsys { 

INT sysstat; /* System status */ 
ID runtskid; /* The ID No. of RUN state task */ 
PRI runtskpri; /* The priority of RUN state task */ 
UINT psw;  /* PSW */ 

} T_RSYS; 

[( Error codes )] 
E_OK   00000000H(-H’00000000): Normal End 



 

2.11.2 ref_sys(Refer System Status) 

 

233

[( Function description )] 

This system call check execution state of the CPU and OS, and returns results to the 
pk_rsys area. 

 sysstat 

Indicates system status. The following values are returned. 

sysstat:=(TSS_TSK||TSS_DDSP||TSS_LOC||TSS_INDP) 

sysstat Value Status Dispatch Interrupt 

TSS_TSK 0 task enable enable 

TSS_DDSP 1 task disable enable 

TSS_LOC 2 task disable disable 

TSS_INDP 4 task independent disable disable 

 runtskid 

Returns the ID No. of the task currently being run. 

 runtskpri 

Returns the priority level of the task currently being run. 

 psw 

Returns the value of the processor status word of the running task or task--independent 
portions. 

This system call can be issued from both tasks and handlers. 

 [( Usage example )] 
<< Usage example of the C language >> 
 
#include <mr32r.h> 
#include “id.h” 
void task() 
{ 
 T_RSYS rsys; 
 ref_sys( &rsys ); 
} 
 
<< Usage example of the assembly language(CC32R) >> 
 
pk_rsys: .RES.B 12 
 .include mr32r.inc 

.global task 
task: 
  : 

ld24      R2,#pk_rsys 
ref_sys 

  : 



 

2.11.2 ref_sys(Refer System Status) 234 

 
<< Usage example of the assembly language(TW32R:DCC/M32R) >> 
 
pk_rsys: .space 12 
 .include mr32r.inc 

.global task 
task: 
  : 

ld24      R2,#pk_rsys 
ref_sys 

  : 



 

2.11.3 def_exc(Define Exception Handler) 

 

235

2.11.3. def_exc(Define Exception Handler) 

[( System call name )] 

def_exc → Define Exception Handler 

 [( Calling by the assembly language )] 
.include “mr32r.inc” 
def_exc      exckind 

<< Argument >> 

exckind  [∗∗∗∗] Kind of exception handler 
pk_dexc [∗∗∗∗] The start address in which the exception handler 

generation information is stored 
(Set the address in the R2 register.) 

<< Register setting >> 
Register name Contents after system call issuance 

R0 Error code 
R1 Kind of exception handler 
R2 The start address in which the exception handler 

generation information is stored 
R3 -- 

Specify the following information in the structure indicased by pk_dexc. 
Offset Size   
+0 4 excatr Exception handler attribute 
+4 4 exchdr Exception handler startup address 
+8 2 tskid The ID No. of task 
+12 4 excstksz Stack size 

 [( Calling by the C language )] 
#include <mr32r.h> 
ER def_exc(exckind, pk_dexc); 

<< Argument >> 

INT execkind; Kind of exception handler 
T_DEXC *pk_dexec; The start address in which the exception handler 

generation information is stored 
Specify the following information in the structure indicased by pk_dexc. 
 typedef struct t_dexc { 
 ATR excatr;  /* Exception handler attribute */ 
  FP exchdr;  /* Exception handler startup address */ 
  ID taskid;  /* The ID No. of task */ 
  W excstksz; /* Stack size */ 
 } T_DEXC; 

<< Return value >> 

An error code is returned as the return value of a function. 

 [( Error codes )] 
E_OK   00000000H(-H’00000000): Normal End 
E_NOMEM  0FFFFFFF6H(-H’0000000a): Not enough of memory 
E_NOEXS  0FFFFFFCCH(-H’00000034): Object does not exist 
E_OBJ  0FFFFFFC1H(-H’0000003f): Invalid object state 



 

2.11.3 def_exc(Define Exception Handler) 236 

[( Function description )] 

This system call defines the exception handler corresponding to exckind exception. 

exckind defines the kind of exception handler. With the MR32R, only the forced exception 
(EXK_FEX = 2) can be specified. However, an error is not returned when other exception 
handlers (CPU exception or forced end) are specified. 

tskid = TSK_SELF (=0) specifies the self task. An error E_OBJ is returned if this system call 
is issued for a task in the dormant state. 

The information pk_dexc of the generated exception handler is as follows. 

 excatr 

Specify the location of the excption handler stack area to be created. Specifically this 
means specifying whether you want the stack to be located in the internal RAM or in 
external RAM.  

♦ To locate the stack area in internal RAM 
Specify __MR_INT(0). 

♦ To locate the stack area in external RAM 
Specify __MR_EXT(0x10000). 

♦ To locate the stack area in user specified 
Specify __MR_USER(0x30000). 

 exchdr 

Specifies the start address of the defined exception handler. 

pk_decx.exchdr = NADR ( = --1) cancels the defined exception handler. When canceled, 
the exception handler changes to the predefined default. Also, an exception handler 
can be redefined before it is canceled. 

 tskid 

Defines an exception handler for the task specified here. tskid=TSK_SELF=0 means 
specifying own task.tskid=TSK_SELF can’t be specified when this system call is issued 
from the forced exception handler.  

 excstksz 

Specifies the stack size of the defined exception handler. Memory for the exception 
handler stack is secured by the OS when the exception handler starts up. When 
exchdr=NADR is specified,the memory for it’s stack is released.If the memoy size for 
stack is not enough,an error E_NOMEM is returned. 

 

The stack of forced exception handler is obtained from the stack area for task creating.So, 
int_memstk or ext_memstk must be specified in configuration file when this system call is 
issued. 

You can issue this system call exclusively from a task. This system call, if issued either from 
the interrupt handler, the cyclic handler or the alarm handler, doesn't work properly. 



 

2.11.3 def_exc(Define Exception Handler) 

 

237

[( Usage example )] 
<< Usage example of the C language >> 
 
#include <mr32r.h> 
#include “id.h” 
void excr(void); 
void task1() 
{ 

ER ercd; 
T_DEXC pk_dexc; 
void fexhdr(T_EXC *pk_exc, T_REGS *pk_regs, T_EIT *pk_eit); 
 

 pk_dexc.exchdr     = (FP)fexhdr; 
 pk_dexc.tskid      = TSK_SELF; 
 pk_dexc.excstksz   = 100; 
 ercd = def_exc( EXK_FEX, &pk_dexc ); 
  : 
} 
void fexhdr(T_EXC *pk_exc, T_REGS *pk_regs, T_EIT *pk_eit) 
{ 
  : 

/* Exception handler processing */ 
  : 
} 
 
<< Usage example of the assembly language(CC32R) >> 
 
pk_exc: .RES.B 14 

.include “mr32r.inc” 

.global   task1 
task1: 
  : 
 ld24     R2,#pk_exc 
 ld24     R1,#_fexhdr 
 st       R1,@(4,R2) 
 ld24     R1,#ID_tskid 
 sth      R1,@(8,R2) 
 ld24     R1,#100 
 st       R1,@(12,R2) 

def_exc EXK_FEX 
  : 
ext_tsk 

_fexhdr: 
  : 

; Exception handler processing 
  : 

ext_tsk 



 

2.11.3 def_exc(Define Exception Handler) 238 

 
<< Usage example of the assembly language(TW32R:DCC/M32R) >> 
 
pk_exc: .space 14 

.include “mr32r.inc” 

.global   task1 
task1: 
  : 
 ld24     R2,#pk_exc 
 ld24     R1,#_fexhdr 
 st       R1,@(4,R2) 
 ld24     R1,#ID_tskid 
 sth      R1,@(8,R2) 
 ld24     R1,#100 
 st       R1,@(12,R2) 

def_exc EXK_FEX 
  : 
ext_tsk 

_fexhdr: 
  : 

; Exception handler processing 
  : 

ext_tsk 



 

2.12.1 vclr_ems(Clear Exception Mask) 

 

239

2.12. Implementation-Dependent System Call 
2.12.1. vclr_ems(Clear Exception Mask) 

[( System call name )] 

vclr_ems → Clear Exception Mask. 

 [( Calling by the assembly language )] 
.include “mr32r.inc” 
vclr_ems      tskid 

<< Argument >> 

tskid [  ∗∗  ] The ID No. of a task to be cleared exception mask. 

<< Register setting >> 
Register name Contents after system call issuance 

R0 Error code 
R1 The ID No. of a task to be cleared exception 

mask. 
R2 -- 
R3 -- 

[( Calling by the C language )] 
#include <mr32r.h> 
ER vclr_ems ( tskid ); 

<< Argument >> 

ID tskid; The ID No. of a task to be cleared exception mask. 

<< Return value >> 

An error code is returned as the return value of a function. 

[( Error codes )] 
E_OK    00000000H(-H’00000000): Normal End 
E_NOEXS  0FFFFFFCCH(-H’00000034): Object does not exist 
E_OBJ  0FFFFFFC1H(-H’0000003f): Invalid object state 

[( Function description )] 

This system call clears the exception mask of the task specified with tskid.  

When this system call is issued, the exception mask of tasks for which a forced exception is 
pending is cleared and the respective exception handler is started up. 

While an exception mask is set, an exception handler can be started up only 1 time even if 
the forced exception start request is sent multiple times. 

The self task can be specified. tskid = TSK_SELF (=0) specifies the self task. 

If the task is in DORMANT state,an error E_OBJ is returned for the system call. Also, if the 
task described with tskid is the NON--EXISTENT state,an error E_NOEXS is returned. 

This system can be issued from only tasks.This system call, if issued either from the interrupt 
handler, the cyclic, or the alarm handler, doesn't work properly. 

 



 

2.12.1 vclr_ems(Clear Exception Mask) 240 

[( Usage example )] 
<< Usage example of the C language >> 
 
#include <mr32r.h> 
#include “id.h” 
void task1(void) 
{ 
  : 

vclr_ems( ID_task2 ); 
  : 
} 
 
<< Usage example of the assembly language(CC32R) >> 
 
 .include “mr32r.inc” 

.global   task1 
task1: 
  : 
 vclr_ems ID_task2 
  : 

ext_tsk 
 
<< Usage example of the assembly language(TW32R:DCC/M32R) >> 
 
 .include “mr32r.inc” 

.global   task1 
task1: 
  : 
 vclr_ems ID_task2 
  : 

ext_tsk 



 

2.12.2 vset_ems(Set Exception Mask) 

 

241

2.12.2. vset_ems(Set Exception Mask) 

[( System call name )] 

vset_ems → Set Exception Mask. 

 [( Calling by the assembly language )] 
.include “mr32r.inc” 
vset_ems      tskid 

<< Argument >> 

tskid [  ∗∗  ] The ID No. of a task to be set exception mask. 

<< Register setting >> 
Register name Contents after system call issuance 

R0 Error code 
R1 The ID No. of a task to be set exception 

mask. 
R2 -- 
R3 -- 

[( Calling by the C language )] 
#include <mr32r.h> 
ER vset_ems ( tskid ); 

<< Argument >> 

ID tskid; The ID No. of a task to be set exception mask. 

<< Return value >> 

An error code is returned as the return value of a function. 

[( Error codes )] 
E_OK   00000000H(-H’00000000): Normal End 
E_NOEXS  0FFFFFFCCH(-H’00000034): Object does not exist 
E_OBJ  0FFFFFFC1H(-H’00 
00003f): Invalid object state 

[( Function description )] 

This system call sets the exception mask of the task specified with tskid. 

This system call puts in the pending state the forced exception of a task with an exception 
mask and delays the start of the exception handler until the exception mask is cleared. 

While an exception mask is set, an exception handler can be started up only 1 time even if 
the forced exception start request is sent multiple times. 

If you specify tskid = TSK_SELF (=0), it specifies the task itself.If the task is in the 
DORMANT state, an error E_OBJ is returned.If the task does not exist, an error E_NOEXS is 
returned 

This system can be issued from only tasks. 

This system call, if issued either from the interrupt handler, the cyclic, or the alarm handler, 
doesn't work properly. 



 

2.12.2 vset_ems(Set Exception Mask) 242 

[( Usage example )] 
<< Usage example of the C language >> 
 
#include <mr32r.h> 
#include “id.h” 
void task1(void) 
{ 
  : 

vset_ems( ID_task2 ); 
  : 
} 
 
<< Usage example of the assembly language(CC32R) >> 

 
.include “mr32r.inc” 
.global   task1 

task1: 
  : 

vset_ems ID_task2 
  : 

ext_tsk 
 
<< Usage example of the assembly language(TW32R:DCC/M32R) >> 

 
.include “mr32r.inc” 
.global   task1 

task1: 
  : 

vset_ems ID_task2 
  : 

ext_tsk 



 

2.12.3 vras_fex(Raise Forcibly Exception) 

 

243

2.12.3. vras_fex(Raise Forcibly Exception) 

[( System call name )] 

vras_fex → Raise forcibly exception. 

[( Calling by the assembly language )] 
.include “mr32r.inc” 
vras_fex      tskid,exccd 

<< Argument >> 

tskid [  ∗∗  ] The ID No. of a task 
exccd [∗∗∗∗] Forcibly exception code 

<< Register setting >> 
Register name Contents after system call issuance 

R0 Error code 
R1 The ID No. of a task 
R2 Forcibly exception code 
R3 -- 

[( Calling by the C language )] 
#include <mr32r.h> 
ER vras_fex (tskid,exccd); 

<< Argument >> 

ID tskid; The ID No. of a task 
UW exccd; Forcibly exception code 

<< Return value >> 

An error code is returned as the return value of a function. 

[( Error codes )] 
E_OK   00000000H(-H’00000000): Normal End 
E_NOEXS  0FFFFFFCCH(-H’00000034): Object does not exist 
E_OBJ  0FFFFFFC1H(-H’0000003f): Invalid object state 

[( Function description )] 

This system call starts the forcible exception of the task specified with tskid.If the task 
specified with tskid does not exist,the E_NOEXS error is returned.The self task cannot be 
specified.The E_OBJ error is returned if it is.Also, TSK_SELF cannot be specified. 

Queuing is not possible even if this system call is issued multiple times. 

An exception handler can be started up only 1 time even if the forced exception start request 
is sent more than 2 times up until the interrupt handler starts up. 

The exception code 'exccd' is transferred to the exception handler as the pk_exc exception 
parameter. If multiple forcible exception start requests are sent, the exccd logical OR is 
taken. 

The forcible exception does not cancel the task wait or suspend state.The forced exception 
hander startup is delayed until the task changes to the RUN state,even if this system call is 
issued. 

This system can be issued from only tasks.This system call, if issued either from the interrupt 
handler, the cyclic, or the alarm handler, doesn't work properly 



 

2.12.3 vras_fex(Raise Forcibly Exception) 244 

[( Usage example )] 
<< Usage example of the C language >> 
 
#include <mr32r.h> 
#include “id.h” 
void task1() 
{ 
  : 

vras_fex(ID_task2,0x3) 
  : 
} 
 
<< Usage example of the assembly language(CC32R) >> 
 
setpor: .space 16 

.include “mr32r.inc” 

.global   task1 
task1: 
  : 

vras_fex ID_task2,0x3 
  : 

ext_tsk 
 
<< Usage example of the assembly language(TW32R:DCC/M32R) >> 
 
setpor: .space 16 

.include “mr32r.inc” 

.global   task1 
task1: 
  : 

vras_fex ID_task2,0x3 
  : 

ext_tsk 



 

2.12.4 vret_exc(Return Exception Handler) 

 

245

2.12.4. vret_exc(Return Exception Handler) 

[( System call name )] 

vret_exc → Return Exception Handler 

 [( Calling by the assembly language )] 
.include “mr32r.inc” 
vret_exc 

<< Argument >> 

None 

<< Register setting >> 

Control is not returned to the exception handler which issued this system call. 

[( Calling by the C language )] 
#include <mr32r.h> 
ER vret_exc(); 

<< Argument >> 

None 

<< Return value >> 

Control is not returned to the exception handler which issued this system call. 

[( Error codes )] 
None 

[( Function description )] 

This system call returns control from a forced exception handler to the task in which the 
exception occurred. At this time, control returns to the task context in which state the 
exception had occurred. 

To restart the exception handler, issue the vras_fex system call. It restarts the exception 
handler. 

This system call can be issued only from exception handler. 

 

[( Usage example )] 
<< Usage example of the C language >> 
 
#include <mr32r.h> 
#include “id.h” 
void task1() 
{ 
  : 
  : 
} 
void exc_hdr(void) 
{ 
  : 
  : 
 vret_exc(); 
} 



 

2.12.4 vret_exc(Return Exception Handler) 246 

 
<< Usage example of the assembly language(CC32R) >> 

 
.include “mr32r.inc” 
.global   exc_hdr 

exc_hdr: 
  : 
  : 

ret_exc 
 
<< Usage example of the assembly language(TW32R:DCC/M32R) >> 

 
.include “mr32r.inc” 
.global   exc_hdr 

exc_hdr: 
  : 
  : 

ret_exc 
 



 

2.12.5 vrst_msg(Reset Message) 

 

247

2.12.5. vrst_msg(Reset Message) 

[( System call name )] 

vrst_msg   →   Clear all messages in the specified mailbox. 

[( Calling by the assembly language )] 
.include “mr32r.inc” 
vrst_msg      mbxid 

<< Argument >> 

mbxid     [ ** ]    The ID No. to be cleared 

<< Register setting >> 

 
Register name Contents after system call issuance 

R0 Error code 
R1 The ID No. of a mailbox 
R2 -- 
R3 -- 

[( Calling by the C language )] 
#include <mr32r.h> 
ER vrst_msg ( mbxid ); 

<< Argument >> 

ID       mbxid;          The ID No. of a mailbox 

<< Register setting >> 

An error code is returned as the return value of a function. 

[( Error codes )] 
E_OK            00000000H(-H’00000000) :  Normal End 
E_NOEXS         0FFFFFFCCH(-H’00000034):  Object does not exist 

[( Function description )] 

Clear all messages in the specified mailbox.If there is no message in the mailbox, this 
system call does nothing. 

An error E_NOEXS is returned if this system call is issued for a nonexistent mailbox.  

This system call can be issued from both tasks and handlers (the interrupt handler, the cyclic 
handler, or the alarm handler). 



 

2.12.5 vrst_msg(Reset Message) 248 

[( Usage example )] 
<< Usage example of the C language >> 
 
#include <mr32r.h> 
#include “id.h” 
void task1(void) 
{ 
  : 

vrst_msg( ID_mbx1 ); 
  : 
} 
 
<< Usage example of the assembly language(CC32R) >> 

 
.include “mr32r.inc” 
.global   task1 

task1: 
  : 

vrst_msg ID_mbx1 
  : 

ext_tsk 
 
<< Usage example of the assembly language(TW32R:DCC/M32R) >> 

 
.include “mr32r.inc” 
.global   task1 

task1: 
  : 

vrst_msg ID_mbx1 
  : 

ext_tsk 



 

2.12.6 vrst_blf (Reset Fixed-Memory Block ) 

 

249

2.12.6. vrst_blf (Reset Fixed-Memory Block ) 

[( System call name )] 

vrst_blf   →   All memory blocks specified as blfid are released. 

[( Calling by the assembly language )] 
.include “mr32r.inc” 
vrst_blf      blfid 

<< Argument >> 

blfid     [ ** ]    The ID No. of the memory pool to be released 

<< Register setting >> 
Register name Contents after system call issuance 

R0 Error code 
R1 The ID No. of the memory pool to be released 
R2 -- 
R3 -- 

[( Calling by the C language )] 
#include <mr32r.h> 
ER vrst_blf (blfid); 

<< Argument >> 

ID       blfid;          The ID No. of the memory pool to be released 

<< Register setting >> 

An error code is returned as the return value of a function. 

[( Error codes )] 
E_OK            00000000H(-H’00000000) :  Normal End 
E_NOEXS         0FFFFFFCCH(-H’00000034):  Object does not exist 

[( Function description )] 

All memory blocks specified as blfid are released. 

An error E_NOEXS is returned if this system call is issued for a nonexistent fixed-size 
memorypool. 

Even when there is any task waiting for a memory block in the memorypool to be reset, this 
system call is terminated normally. In this case, the said task is freed from the memory block 
wait state and returns error EV_RST before entering an execution (RUN) or executable 
READY) state. 

Notice ,the memorypool released by vrst_blf is not allocated for the wait tasks. 

You can issue this system call exclusively from a task. This system call, if issued either from 
the interrupt handler, the cyclic handler or the alarm handler, doesn't work properly. 



 

2.12.6 vrst_blf (Reset Fixed-Memory Block ) 250 

[( Usage example )] 
<< Usage example of the C language >> 
 
#include <mr32r.h> 
#include “id.h” 
void task1() 
{ 
  : 

vrst_blf(ID_mpf1) 
  : 
} 
 
<< Usage example of the assembly language(CC32R) >> 
 
setpor: .RES.B 16 

.include “mr32r.inc” 

.global   task1 
task1: 
  : 

vrst_blf ID_mpf1 
  : 

ext_tsk 
 
<< Usage example of the assembly language(TW32R:DCC/M32R) >> 
 
setpor: .space 16 

.include “mr32r.inc” 

.global   task1 
task1: 
  : 

vrst_blf ID_mpf1 
  : 

ext_tsk 



 

2.12.7 vrst_blk(Reset Variable-Memory Block) 

 

251

2.12.7. vrst_blk(Reset Variable-Memory Block) 

[( System call name )] 

vrst_blk   →   All memory blocks specified as blkid are released. 

[( Calling by the assembly language )] 
.include “mr32r.inc” 
vrst_blk      blkid 

<< Argument >> 

blkid     [ ** ]    The ID No. of the memory pool to be released 

<< Register setting >> 
Register name Contents after system call issuance 

R0 Error code 
R1 The ID No. of the memory pool to be 

released 
R2 -- 
R3 -- 

[( Calling by the C language )] 
#include <mr32r.h> 
ER vrst_blk ( blkid ); 

<< Argument >> 

ID       blkid;          The ID No. of the memory pool to be released 

<< Register setting >> 

An error code is returned as the return value of a function. 

[( Error codes )] 
E_OK            00000000H(-H’00000000) :  Normal End 
E_NOEXS         0FFFFFFCCH(-H’00000034):  Object does not exist 

[( Function description )] 

All variable-size memory blocks specified as blfid are released.  

An error E_NOEXS is returned if this system call is issued for a nonexistent variable-size 
memorypool. 

Even when there is any task waiting for a memory block in the memorypool to be reset, this 
system call is terminated normally. In this case, the said task is freed from the memory block 
wait state and returns error EV_RST before entering an execution (RUN) or executable 
READY) state. 

Notice ,the memorypool released by vrst_blk is not allocated for the wait tasks. 

You can issue this system call exclusively from a task. This system call, if issued either from 
the interrupt handler, the cyclic handler or the alarm handler, doesn't work properly. 

 

 



 

2.12.7 vrst_blk(Reset Variable-Memory Block) 252 

[( Usage example )] 
<< Usage example of the C language >> 
 
#include <mr32r.h> 
#include “id.h” 
void task1() 
{ 
  : 

vrst_blk(ID_mpl1) 
  : 
} 
 
<< Usage example of the assembly language(CC32R) >> 
 
setpor: .RES.B 16 

.include “mr32r.inc” 

.global   task1 
task1: 
  : 

vrst_blk ID_mpl1 
  : 

ext_tsk 
 
<< Usage example of the assembly language(TW32R:DCC/M32R) >> 
 
setpor: .space 16 

.include “mr32r.inc” 

.global   task1 
task1: 
  : 

vrst_blk ID_mpl1 
  : 

ext_tsk 



 

2.12.8 vrst_mbf (Reset Message Buffer) 

 

253

2.12.8. vrst_mbf (Reset Message Buffer) 

[( System call name )] 

vrst_mbf   →   All message buffer specified as mbfid are cleared. 

[( Calling by the assembly language )] 
.include “mr32r.inc” 
vrst_mbf      mbfid 

<< Argument >> 

mbfid     [ ** ]    The ID No. of the message buffer to be cleared 

<< Register setting >> 
Register name Contents after system call issuance 

R0 Error code 
R1 The ID No. of the message buffer to be cleared 
R2 -- 
R3 -- 

[( Calling by the C language )] 
#include <mr32r.h> 
ER vrst_mbf (mbfid); 

<< Argument >> 

ID       mbfid;          The ID No. of the message buffer to be cleared 

<< Register setting >> 

An error code is returned as the return value of a function. 

[( Error codes )] 
E_OK            00000000H(-H’00000000) :  Normal End 
E_NOEXS         0FFFFFFCCH(-H’00000034):  Object does not exist 

[( Function description )] 

The message buffer specified as blfid are cleared.  

An error E_NOEXS is returned if this system call is issued for a nonexistent message buffer. 

Even when there is any task waiting for a message in the message buffer to be reset, this 
system call is terminated normally. In this case, the said task is freed from the send message 
wait state or the receive message wait and returns error EV_RST before entering an 
execution (RUN) or executable READY) state. 

Notice ,the send message wait task is moved to READY state without sending message by 
vrst_mbf. 

You can issue this system call exclusively from a task. This system call, if issued either from 
the interrupt handler, the cyclic handler or the alarm handler, doesn't work properly. 



 

2.12.8 vrst_mbf (Reset Message Buffer) 254 

[( Usage example )] 
<< Usage example of the C language >> 
 
#include <mr32r.h> 
#include “id.h” 
void task1() 
{ 
  : 

vrst_mbf(ID_mbf1) 
  : 
} 
 
<< Usage example of the assembly language(CC32R) >> 
 
setpor: .space 16 

.include “mr32r.inc” 

.global   task1 
task1: 
  : 

vrst_mbf ID_mbf1 
  : 

ext_tsk 
 
<< Usage example of the assembly language(TW32R:DCC/M32R) >> 
 
setpor: .space 16 

.include “mr32r.inc” 

.global   task1 
task1: 
  : 

vrst_mbf ID_mbf1 
  : 

ext_tsk 
 



 

2.13.1 vcre_mbx(Create Mailbox) 

 

255

2.13. Implementation-Dependent System Call(Mailbox) 
2.13.1. vcre_mbx(Create Mailbox) 

[( System call name )] 

vcre_mbx → Create Mailbox with priority value 

 [( Calling by the assembly language )] 
.include “mr32r.inc” 
vcre_mbx      vmbxid 

<< Argument >> 

vmbxid [  ∗∗  ] The ID No. of a mailbox to be created 
pk_cvmbx [∗∗∗∗] The start address in which the mailbox generation 

information is stored 
(Set the address in the R2 register.) 

<< Register setting >> 
Register name Contents after system call issuance 

R0 Error code 
R1 The ID No. of a mailbox to be created 
R2 The start address in which the mailbox generation 

information is stored 
R3 -- 

Specify the following information in the structure indicased by pk_cmbx. 
Offset Size   
+0 4 mbxatr Mailbox attribute 
+4 4 maxpri Max priority value of the message 
+8 4 mprihd The start address of the message queue 

header area  

 [( Calling by the C language )] 
#include <mr32r.h> 
ER vcre_mbx (vmbxid, pk_cvmbx); 

<< Argument >> 

ID vmbxid; The ID No. of a mailbox to be created 
T_CVMBX *pk_cvmbx; The start address in which the mailbox generation 

information is stored 
Specify the following information in the structure indicased by pk_cmbx. 
 typedef struct t_cmbx { 
 ATR mbxatr; /* Mailbox attribute */ 
  PRI maxpri; /* Max priority value of the message */ 
  VP mprihd; /* The start address of the message queue header area 
*/ 
 } T_CVMBX; 

<< Return value >> 

An error code is returned as the return value of a function. 

[( Error codes )] 
E_OK  00000000H(-H’00000000): Normal End 
E_OBJ  0FFFFFFC1H(-H’0000003f): Invalid object state 



 

2.13.1 vcre_mbx(Create Mailbox) 256 

[( Function description )] 

Creates a mailbox with priority value mbxid indicates. 

Here follows explanation of the information as to a mailbox to be generated pk_cvmbx. 

 mbxatr (mailbox attribute) 

Specify the mailbox attribute as below.  

♦ How to wait a message 
 TA_TFIFO(=0x00) connect the task as FIFO order 

 TA_TPRI(=0x01) connect the task as priority order 

♦ How to send a message 
 TA_MFIFO(=0x00) connect the message as FIFO order 

 TA_MPRI(=0x01) connect the message as priority order 

 maxpri 

Specify the max priority value of the message.  

 mprihd  

Specify NULL(=0) in this item.  

An error E_OBJ is returned if vcre_mbx system call is issued for the mailbox which is 
existent. 

The range of the specifiable ID number is 1 to the maximum value specified in the 
configuration file. 

You can issue this system call exclusively from a task. This system call, if issued either from 
the interrupt handler, the cyclic handler or the alarm handler, doesn't work properly. 



 

2.13.1 vcre_mbx(Create Mailbox) 

 

257

[( Usage example )] 
<< Usage example of the C language >> 
 
#include <mr32r.h> 
#include “id.h” 
#define ID_vmbx1 1 
void task1() 
{ 
 T_CVMBX setmbx; 

  : 
 setmbx.mbxatr = 0x02; 

setmbx.maxpri = 10;  
setmbx.mprihd = NULL; 
vcre_mbx( ID_mbx1, &setmbx ); 
  : 
ext_tsk(); 

} 
 
<< Usage example of the assembly language(CC32R) >> 
 

.equ ID_mbx1,1 
setmbx: .RES.B 12 
.include “mr32r.inc” 

 .global   task1 
task1: 
  : 
 ld24    R2,#setmbx 
 ld24    R1,#H’02 
 st      R1,@(4,R2) 
 ld24    R1,#10 
 st      R1,@(8,R2) 
 ldi     R1,#0 
 st      R1,@(12,R2) 

vcre_mbx ID_mbx1 
  : 

ext_tsk 
 
<< Usage example of the assembly language(TW32R:DCC/M32R) >> 
 

.equ ID_mbx1,1 
setmbx: .space 12 
.include “mr32r.inc” 

 .global   task1 
task1: 
  : 
 ld24    R2,#setmbx 
 ld24    R1,#0x02 
 st      R1,@(4,R2) 
 ld24    R1,#10 
 st      R1,@(8,R2) 
 ldi     R1,#0 
 st      R1,@(12,R2) 

vcre_mbx ID_mbx1 
  : 

ext_tsk 



 

2.13.2 vdel_mbx(Delete Mailbox) 258 

2.13.2. vdel_mbx(Delete Mailbox) 

[( System call name )] 

vdel_mbx → Delete Mailbox 

 [( Calling by the assembly language )] 
.include “mr32r.inc” 
vdel_mbx      vmbxid 

<< Argument >> 

vmbxid [  ∗∗  ] The ID No. of a mailbox to be deleted 

<< Register setting >> 
Register name Contents after system call issuance 

R0 Error code 
R1 The ID No. of a mailbox to be deleted 
R2 -- 
R3 -- 

[( Calling by the C language )] 
#include <mr32r.h> 
ER vdel_mbx ( vmbxid ); 

<< Argument >> 

ID vmbxid; The ID No. of a mailbox to be deleted 

<< Return value >> 

An error code is returned as the return value of a function. 

[( Error codes )] 
E_OK   00000000H(-H’00000000): Normal End 
E_NOEXS  0FFFFFFCCH(-H’00000034): Object does not exist 

[( Function description )] 

vdel_mbx deletes the mailbox vmbxid indicates. 

You can create the mailbox deleted as the same ID again.If the task is linked to the message 
wait queue and vdel_mbx is issued for the mailbox,this system call normally end.In this 
case,vdel_mbx moves the task WAIT state to READY state.And error E_DLT is returned.If 
some messages are in the mailbox,these are deleted. 

An error E_NOEXS is returned if this system call is issued for a nonexistent mailbox. 

Make sure this system call is issued for only the mailbox that has been created by the 
vcre_mbx system call. If this system call is issued for the mailbox that has been defined by 
the configuration file, it does not function normally. 

You can issue this system call exclusively from a task. This system call, if issued either from 
the interrupt handler, the cyclic handler or the alarm handler, doesn't work properly. 



 

2.13.2 vdel_mbx(Delete Mailbox) 

 

259

[( Usage example )] 
<< Usage example of the C language >> 
 
#include <mr32r.h> 
#include “id.h” 
#define ID_vmbx2 2 
void task1(void) 
{ 

 : 
vdel_mbx( ID_vmbx2 ); 
 : 
ext_tsk(); 

} 
 
<< Usage example of the assembly language(CC32R) >> 
 
ID_vmbx2: .equ 2 
 .include “mr32r.inc” 
 .global   task1 
task1: 
  : 
 vdel_mbx ID_vmbx2 
  : 
 ext_tsk 
 
<< Usage example of the assembly language(TW32R:DCC/M32R) >> 
 
 .equ ID_vmbx2,2 
 .include “mr32r.inc” 
 .global   task1 
task1: 
  : 
 vdel_mbx ID_vmbx2 
  : 
 ext_tsk 



 

2.13.3 vsnd_mbx(Send Message to Mailbox) 260 

2.13.3. vsnd_mbx(Send Message to Mailbox) 

[( System call name )] 

vsnd_mbx → Sends a message.  

 [( Calling by the assembly language )] 
.include “mr32r.inc” 
vsnd_mbx      vmbxid, pk_msg 

<< Argument >> 

mbxid [  ∗∗  ] The ID No. of the mailbox to which a message is sent
pk_msg [∗∗∗∗] The start address of message packet 

(Set the address in the R2 register.) 

<< Register setting >> 
Register name Contents after system call issuance 

R0 Error code 
R1 The ID No. of the mailbox to which a message is sent 
R2 The start address of message packet 
R3 -- 

[( Calling by the C language )] 
#include <mr32r.h> 
ER vsnd_mbx (vmbxid, pk_msg); 

<< Argument >> 

ID vmbxid; The ID No. of the mailbox to which a message is sent
T_MSG *pk_msg; The start address of message packet 

<< Return value >> 

An error code is returned as the return value of a function. 

[( Error codes )] 
E_OK   00000000H(-H’00000000): Normal End 
E_NOEXS  0FFFFFFCCH(-H’00000034): Object does not exist 

[( Function description )] 

This system call sends a message to the mailbox specified by mbxid. 

If there are no tasks waiting for a message, the message is stored in the message queue. If 
there is any task waiting for a message, the message is passed to that task and the task has 
its wait state removed. In this case, the task removed its wait state recieves error code E_OK 
and pk_msg as the start address of the message packet. 

If there is no task waiting fo amessage, the start address of the message packet is 
connected to message queue.If the attribute of the mailbox is specified TA_MPRI(0x02), the 
massage is connected to the message queue in priority order. If the same value of the 
priority, the newer message is connected to the end of the message queue. The Operating 
system supposes that the head of the message packet has a T_MSG_PRI type message 
header, and get the priority of the message from its msgpri field. 

If the attribute of the mailbox is specified TA_MFIFO(0x00), the massage is connected to the 
message queue in FIFO order. Therefore, the newest message is connected to the end of 
the massage queue. 

This system call can be issued only from tasks. The system call which be issued from the 
interrupt handler, the cyclic handler, or the alarm handler is the visnd_mbx. 



 

2.13.3 vsnd_mbx(Send Message to Mailbox) 

 

261

[( Usage example )] 
<< Usage example of the C language >> 
 
#include <mr32r.h> 
#include “id.h” 
typedef pri_message 
{ 
 T_MSG_PRI  msgheader; 
 char body[12]; 
} PRI_MSG; 
 
void task(void) 
{ 
 PRI_MSG msg; 
   : 
 msg.msgpri = 5; 

if( vsnd_mbx( ID_msg,(T_MSG)&msg) != E_OK ){ 
  error(“error\n”); 
 } 
  : 
} 
 
<< Usage example of the assembly language(CC32R) >> 
 

.include “mr32r.inc” 
 .global   task 
msg:  
 .res.w 3 
 .SDATA “message” 
 .DATA.B 0 
task: 

ldi R1,#5 
ld24 R2,#msg 
st  R1,@(4,R2) 
vsnd_mbx ID_msg 

  : 
 
<< Usage example of the assembly language(TW32R:DCC/M32R) >> 
 

.include “mr32r.inc” 
 .global   task 
msg:  
  .space 4*3 
  .byte “message” 
  .byte 0 
task: 

vsnd_mbx ID_msg 
  : 
 



 

2.13.4 visnd_mbx(Send Message to Mailbox) 262 

2.13.4. visnd_mbx(Send Message to Mailbox) 

[( System call name )] 

visnd_mbx → Sends a message. (for the handler only). 

 [( Calling by the assembly language )] 
.include   “mr32r.inc” 
visnd_mbx   mbxid, pk_msg 

<< Argument >> 

vmbxid [  ∗∗  ] The ID No. of the mailbox to which a message is sent
pk_msg [∗∗∗∗] The start address of message packet  

<< Register setting >> 
Register name Contents after system call issuance 

R0 Error code 
R1 The ID No. of the mailbox to which a message is sent 
R2 The start address of message packet 
R3 -- 

[( Calling by the C language )] 
#include <mr32r.h> 
ER visnd_mbx (vmbxid, pk_msg); 

<< Argument >> 

ID vmbxid; The ID No. of the mailbox to which a message is sent
T_MSG *pk_msg; The start address of message packet 

<< Return value >> 

An error code is returned as the return value of a function. 

[( Error codes )] 
E_OK   00000000H(-H’00000000): Normal End 
E_NOEXS  0FFFFFFCCH(-H’00000034): Object does not exist 

[( Function description )] 

This system call is used when using the function of the vsnd_msg system call from an 
task-independent section (e.g., interrupt handler, cyclic handler, or alarm handler). 



 

2.13.4 visnd_mbx(Send Message to Mailbox) 

 

263

 [( Usage example )] 
<< Usage example of the C language >> 
 
#include <mr32r.h> 
#include “id.h” 
typedef struct pri_message 
{ 
        T_MSG_PRI       msgheader; 
        char    body[12]; 
} PRI_MSG; 
 
void inthand() 
{ 
 PRI_MSG msg; 

  : 
 if( visnd_mbx( ID_msg,(T_MSG)&msg) != E_OK ) 

error(“overflow\n”); 
  : 

} 
 
<< Usage example of the assembly language(CC32R) >> 
 

.include “mr32r.inc” 

.global   intr 
msg: 
 .res.w 3 
 .SDATA “message” 
  .DATA.B 0 
intr: 
  : 
 ld24 R1,#msg 
 ld  R2,@R1 

visnd_mbx ID_msg  
  : 

ret_int 
 
<< Usage example of the assembly language(TW32R:DCC/M32R) >> 

.include “mr32r.inc” 

.global   intr 
msg:  
  .space 4*3 
  .byte “message” 
  .byte 0 
intr: 
  : 
 ld24 R1,#msg 
 ld  R2,@R1 

visnd_mbx ID_msg, msg 
  : 

ret_int 



 

2.13.5 vrcv_mbx(Receive Message from Mailbox) 264 

2.13.5. vrcv_mbx(Receive Message from Mailbox) 

[( System call name )] 

vrcv_mbx → Waits for receiving a message.  

 [( Calling by the assembly language )] 
.include “mr32r.inc” 
vrcv_mbx      vmbxid 

<< Argument >> 

vmbxid [  ∗∗  ] The ID No. of the mailbox from which a message is 
received 

<< Register setting >> 
Register name Contents after system call issuance 

R0 Error code 
R1 The ID No. of the mailbox to which a message is 

received 
R2 The start address of message packet 
R3 -- 

[( Calling by the C language )] 
#include <mr32r.h> 
ER vrcv_mbx (ppk_msg, vmbxid); 

<< Argument >> 

ID vmbxid; The ID No. of the mailbox from which a message is 
received 

T_MSG **ppk_msg; The pointer variable to indicate the start address of 
message packet 

<< Return value >> 

An error code is returned as the return value of a function. 
The start address of the received message packet is set to variable ppk_msg. 

[( Error codes )] 
E_OK   00000000H(-H’00000000): Normal End 
E_RLWAI  0FFFFFFAAH(-H’00000056): Wait state forcibly 

    cleared 
E_DLT  0FFFFFFAFH(-H’00000051): The object being waited for 

    was deleted 
E_NOEXS  0FFFFFFCCH(-H’00000034): Object does not exist 



 

2.13.5 vrcv_mbx(Receive Message from Mailbox) 

 

265

[( Function description )] 

This system call receives a message from the mailbox specified by vmbxid. 

If messages have arrived at the mail box concerned, this system call gets 1 message from 
the top of the message queue and returns it as a return parameter pk_msg. 

Conversely, if no message has reached the mailbox, the task that has issued this system call 
is placed in a wait state and linked in a waiting queue. If the attribute of the mailbox specifies 
as TA_TPRI(=0x01), the task is connected to the message wait queue in priority order. If in 
the same priority, the task is connected to the end of the message wait queue. 

If the task is freed from a wait state by a rel_wai system call issued by some other task, an 
error E_RLWAI is returned. 

Also, if the mailbox for a task waiting for conditions to be met is deleted by the vdel_mbx 
system call issued by another task, the waiting task is released from the transmit mailbox 
wait state and error E_DLT is returned to that task and changes to executable (READY) 
state. 

An error E_NOEXS is returned if this system call is issued for a nonexistent mailbox. 

You can issue this system call exclusively from a task. This system call, if issued either from 
the interrupt handler, the cyclic handler or the alarm handler, doesn't work properly. 

 [( Usage example )] 
<< Usage example of the C language >> 
 
#include <mr32r.h> 
#include “id.h” 
 
typedef struct fifo_message 
{ 
        T_MSG   head; 
        char    body[12]; 
} FIFO_MSG; 
void task() 
{ 
 FIFO_MSG *msg; 

  : 
if( vrcv_mbx( ID_vmbx ,(T_MSG *)&msg ) != E_OK ) 

error(“forced wakeup\n”); 
  : 

} 
 
<< Usage example of the assembly language(CC32R) >> 
 

.include “mr32r.inc” 

.global   task 
task: 
  : 

vrcv_mbx ID_vmbx 
  : 
 
<< Usage example of the assembly language(TW32R:DCC/M32R) >> 
 

.include “mr32r.inc” 

.global   task 
task: 
  : 

vrcv_mbx ID_vmbx 
  : 



 

2.13.6 vtrcv_mbx(Receive Message with Timeout) 266 

2.13.6. vtrcv_mbx(Receive Message with Timeout) 

[( System call name )] 

vtrcv_mbx → Waits for receiving a message.  (With Timeout) 

 [( Calling by the assembly language )] 
.include “mr32r.inc” 
vtrcv_mbx      vmbxid,tmout 

<< Argument >> 

vmbxid [  ∗∗  ] The ID No. of the mailbox from which a message is 
received 

tmout [∗∗∗∗] Timeout value 

<< Register setting >> 
Register name Contents after system call issuance 

R0 Error code 
R1 The ID No. of the mailbox from which a message is 

received 
R2 The start address of message packet 
R3 -- 
R4 Timeout value 

[( Calling by the C language )] 
#include <mr32r.h> 
ER vtrcv_mbx (ppk_msg, vmbxid, tmout); 

<< Argument >> 

ID vmbxid; The ID No. of the mailbox from which a message is 
received 

T_MSG **ppk_msg; The pointer variable to indicate the start address of 
message packet 

TMO tmout Timeout value 

<< Return value >> 

The start address of the received message packet is set to variable ppk_msg. 
An error code is returned as the return value of a function. 

[( Error codes )] 
E_OK   00000000H(-H’00000000): Normal End 
E_TMOUT  0FFFFFFABH(-H’00000055): Polling failed or timeout 
E_RLWAI  0FFFFFFAAH(-H’00000056): Wait state forcibly 

    cleared 
E_DLT  0FFFFFFAFH(-H’00000051): The object being waited for 

    was deleted 
E_NOEXS  0FFFFFFCCH(-H’00000034): Object does not exist 



 

2.13.6 vtrcv_mbx(Receive Message with Timeout) 

 

267

[( Function description )] 

This system call receives a message from the mailbox specified by vmbxid. If messages 
have arrived at the mail box concerned, this system call gets 1 mess age from the top of the 
message queue and returns it as a return parameter ppk_msg. 

Conversely, if no message has reached the mail box, the task that has issued this system 
call is placed in a wait state and linked in a waiting queue and timeout wait queue. If the 
attribute of the mailbox specifies as TA_TFIFO(=0x00), the task is connected to the 
message wait queue in FIFO order. If the attribute of the mailbox specifies as 
TA_TPRI(=0x01), the task is connected to the message wait queue in priority order. If in the 
same priority, the task is connected to the end of the message wait queue. 

When this system call is invoked, the wait state is cancelled in the cases shown below. 
When the wait state is cancelled, the task that invoked this system call exits from the two 
wait queues (message queue and timeout wait queue) and is connected to the ready queue. 

 When the wait cancellation condition occurs by a message being received before the 
tmout time has elapsed. 

Error code E_OK is returned. 

 When tmout time has elapsed without any message being received 

Error code E_TMOUT is returned. 

 When the wait state is forcibly cancelled by rel_wai or irel_wai system calls being invoked 
from another task or handler. 

Error code E_RLWAI is returned. 

 When the mailbox for which a task has been kept waiting is deleted by the del_mbx 
system call issued by another task 

Error code E_DLT is returned. 

You can specify a timeout (tmout) of -1 to 0x7FFFFFFF. Specifying TMO_FEVR = -1 to 
vtrcv_mbx for tmout indicates that an infinite timeout value be used, resulting in exactly the 
same processing as vrcv_mbx. If you specify tmout as TMO_POL(=0), it works like 
vprcv_mbx. 

See vrcv_mbx system call page for precautions should observed when receiving a message. 

This system call can be issued only from tasks. It cannot be issued from the in terrupt 
handler, the cyclic handler, or the alarm handler. 



 

2.13.6 vtrcv_mbx(Receive Message with Timeout) 268 

[( Usage example )] 
<< Usage example of the C language >> 
 
#include <mr32r.h> 
#include “id.h” 
typedef struct fifo_message 
{ 
        T_MSG   head; 
        char    body[12]; 
} FIFO_MSG; 
void task() 
{ 
 FIFO_MSG   *msg; 

  : 
if( vtrcv_mbx( ID_mbx,(T_MSG *)&msg , 10 ) != E_OK ){ 

error(“Can’t Get Message\n”); 
   : 
} 
 
<< Usage example of the assembly language(CC32R) >> 
 .include “mr32r.inc” 
 .global task 
task: 
  : 
 vtrcv_mbx ID_mbx,10 
  : 
 
<< Usage example of the assembly language(TW32R:DCC/M32R) >> 
 .include “mr32r.inc” 
 .global task 
task: 
  : 
 vtrcv_mbx ID_mbx,10 
  : 



 

2.13.7 vprcv_mbx(Poll and Receive Message) 

 

269

2.13.7. vprcv_mbx(Poll and Receive Message) 

[( System call name )] 

vprcv_mbx → Receiving a message.  (no wait) 

 [( Calling by the assembly language )] 
.include “mr32r.inc” 
vprcv_mbx      vmbxid 

<< Argument >> 

vmbxid [  ∗∗  ] The ID No. of the mailbox from which a message is 
received 

<< Register setting >> 
Register name Contents after system call issuance 

R0 Error code 
R1 The ID No. of the mailbox from which a message is 

received 
R2 The start address of message packet 
R3 -- 

[( Calling by the C language )] 
#include <mr32r.h> 
ER vprcv_mbx (ppk_msg, vmbxid); 

<< Argument >> 

ID vmbxid; The ID No. of the mailbox from which a message is 
received 

T_MSG **ppk_msg; The start address of message packet 

<< Return value >> 

The start address of the received message packet is set to variable ppk_msg. 
An error code is returned as the return value of a function. 

[( Error codes )] 
E_OK   00000000H(-H’00000000): Normal End 
E_TMOUT  0FFFFFFABH(-H’00000055): Polling failed or timeout 
E_NOEXS  0FFFFFFCCH(-H’00000034): Object does not exist 

[( Function description )] 

If any message is found in the mail box indicated by mbxid, this system call receives it 
(without a wait state). If the mail box contains messages, the system call gets 1 message 
from the top of the message queue and returns it as a return parameter ppk_msg. 

Conversely, if no message has been sent to the mailbox, an error E_TMOUT is returned to 
the system call issued task and the task is not moved to WAIT state. 

An error E_NOEXS is returned if this system call is issued for a nonexistent mailbox. 

Refer to vrcv_mbx for precautions to be observed when receiving a message. 

This system call can be issued from both a task and a task-independent section (e.g., 
interrupt handler, cyclic handler, or alarm handler).  



 

2.13.7 vprcv_mbx(Poll and Receive Message) 270 

 [( Usage example )] 
<< Usage example of the C language >> 
 
#include <mr32r.h> 
#include “id.h” 
typedef struct fifo_message 
{ 
        T_MSG   head; 
        char    body[12]; 
} FIFO_MSG; 
void task() 
{ 

FIFO_MSG * msg; 
  : 
if( vprcv_mbx( ID_mbx ,(T_MSG *)&msg ) != E_OK ){ 

error(“Can’t Get Message\n”); 
  : 

} 
 
<< Usage example of the assembly language(CC32R) >> 

.include “mr32r.inc” 

.global   task 
task: 

vprcv_mbx ID_mbx1 
  : 
 
<< Usage example of the assembly language(TW32R:DCC/M32R) >> 

.include “mr32r.inc” 

.global   task 
task: 

vprcv_mbx ID_mbx1 
  : 
 



 

2.13.8 vref_mbx(Refer Mailbox Status) 

 

271

2.13.8. vref_mbx(Refer Mailbox Status) 

[( System call name )] 

vref_mbx → Reference Mailbox Status 

 [( Calling by the assembly language )] 
.include “mr32r.inc” 
vref_mbx vmbxid 

<< Argument >> 

vmbxid [  ∗∗  ] The ID No. of the mailbox to Reference Mailbox 
pk_rmbx [∗∗∗∗] Packet address to Reference Mailbox 

(Set the address in the R2 register.) 

<< Register setting >> 
Register name Contents after system call issuance 

R0 Error code 
R1 The ID No. of the mailbox to Reference Mailbox 
R2 Packet address to Reference Mailbox 
R3 -- 

The structure indicated by pk_rmbx returns the following data. 
Offset Size   
+0 2 wtsk Waiting task information 
+4 4(U) pk_msg Starting address of next received 

message packet 
U: unsigned data.  

 [( Calling by the C language )] 
#include <mr32r.h> 
ER vref_mbx (pk_rmbx, vmbxid); 

<< Argument >> 

T_RMBX *rmbx; Packet address to Reference Mailbox 
ID vmbxid; The ID No. of the mailbox to Reference Maibox 

<< Return value >> 

An error code is returned as the return value of a function. 
The structure indicated by pk_rmbx returns the following data. 
typedef struct t_rmbx { 
BOOL_ID wtsk;  /* Waiting task information */ 
T_MSG *pk_msg;  /* Starting address of next received message 

 packet */ 
} T_RVMBX; 

 [( Error codes )] 
E_OK   00000000H(-H’00000000):Normal End 
E_NOEXS  0FFFFFFCCH(-H’00000034): Object does not exist 



 

2.13.8 vref_mbx(Refer Mailbox Status) 272 

[( Function description )] 

Refers to the state of the mailbox specified by mbxid, and returns the following information 
as return values. 

 wtsk 

wtsk returns the ID No. of the first task waiting for the specified mailbox message (the 
first task to start waiting). wtsk returns TSK_NON(=0) if there are no tasks waiting for 
messages. 

 pk_msg 

pk_msg returns the message received (the first message in the queue) when vrcv_mbx 
or vtrcv_mbx is executed next. pk_msg returns NULL(=0). if there is no message.  

An error E_NOEXS is returned if this system call is issued for a nonexistent mailbox. 

This system call can be issued from both tasks and handlers. 

 [( Usage example )] 
<< Usage example of the C language >> 
 
#include <mr32r.h> 
#include “id.h” 
void task() 
{ 
 T_RMBX rmbx; 
  : 
 ref_mbx(&vmbx, ID_mbx); 
  : 
} 
 
<< Usage example of the assembly language(CC32R) >> 
 
rmbx:     .RES.B 12 
 .include “mr32r.inc” 

.global task 
task: 
  : 
 ld24       R2,#rmbx 
 ref_mbx    ID_mbx 
  : 
 
<< Usage example of the assembly language(TW32R:DCC/M32R) >> 
 
rmbx:     .space 12 
 .include “mr32r.inc” 

.global task 
task: 
  : 
 ld24       R2,#rmbx 
 ref_mbx    ID_mbx 
  : 

 



 

2.13.9 vrst_mbx(Reset Message) 

 

273

2.13.9. vrst_mbx(Reset Message) 

[( System call name )] 

vrst_mbx   →   Clear all messages in the specified mailbox. 

[( Calling by the assembly language )] 
.include “mr32r.inc” 
vrst_mbx      vmbxid 

<< Argument >> 

vmbxid     [ ** ]    The ID No. to be cleared 

<< Register setting >> 

 
Register name Contents after system call issuance 

R0 Error code 
R1 The ID No. of a mailbox 
R2 -- 
R3 -- 

[( Calling by the C language )] 
#include <mr32r.h> 
ER vrst_mbx ( vmbxid ); 

<< Argument >> 

ID       vmbxid;          The ID No. of a mailbox 

<< Register setting >> 

An error code is returned as the return value of a function. 

[( Error codes )] 
E_OK            00000000H(-H’00000000) :  Normal End 
E_NOEXS         0FFFFFFCCH(-H’00000034):  Object does not exist 

[( Function description )] 

Clear all messages in the specified mailbox.If there is no message in the mailbox, this 
system call does nothing. 

An error E_NOEXS is returned if this system call is issued for a nonexistent mailbox.  

This system call can be issued only from tasks. It cannot be issued from the in terrupt 
handler, the cyclic handler, or the alarm handler. 



 

2.13.9 vrst_mbx(Reset Message) 274 

 [( Usage example )] 
<< Usage example of the C language >> 
 
#include <mr32r.h> 
#include “id.h” 
void task1(void) 
{ 
  : 

vrst_mbx( ID_vmbx1 ); 
  : 
} 
 
<< Usage example of the assembly language(CC32R) >> 

 
.include “mr32r.inc” 
.global   task1 

task1: 
  : 

vrst_mbx ID_vmxbx1 
  : 

ext_tsk 
 
<< Usage example of the assembly language(TW32R:DCC/M32R) >> 

 
.include “mr32r.inc” 
.global   task1 

task1: 
  : 

vrst_mbx ID_vmbx1 
  : 

ext_tsk 
 



 

 

Chapter 3 Appendix 



Index 

 

276 

 

3.1. List of System calls 
Task Manegement Functions 

System call Function Scheduler 
cre_tsk [E] Create Task call 
del_tsk [E] Delete Task call 
sta_tsk [S] Starts a task. call 
ista_tsk [S] Starts a task.(handler only) -- 
ext_tsk [S] Normally ends the self task. call 
exd_tsk [E] Exit and delete Task. call 
ter_tsk [S] Forcibly ends other task. call 
chg_pri [S] Changes the task priority. call 
ichg_pri [S] Changes the task priority.(handler only) -- 
dis_dsp [S] Disables task dispatch. -- 
ena_dsp [S] Enables task dispatch. call 
rot_rdq [S] Rotates the task ready queue. call 
irot_rdq [S] Rotates the task ready queue.(handler only) -- 
rel_wai [S] Forcibly clears the task wait state. call 
irel_wai [S] Forcibly clears the task wait state.(handler only) -- 
get_tid [S] Gets the ID of self task. -- 
ref_tsk [E] Reference Task Status. -- 

 

Synchronization Functions Attached to Task 

System call Function Scheduler 
sus_tsk [S] Puts a task into the suspend state. call 
isus_tsk [S] Puts a task into the suspend state.(handler only) -- 
rsm_tsk [S] Resumes the suspended task. call 
irsm_tsk [S] Resumes the suspended task.(handler only) -- 
slp_tsk [R] Puts a task into the wait state. call 
tslp_tsk [E] Puts a task into the wait state.(With Timeout) call 
wup_tsk [R] Wakes up the waiting task. call 
iwup_tsk [R] Wakes up the waiting task.(handler only) -- 
can_wup [S] Cancels the request for waking up a task -- 

 



3.1 List of System calls 

 

277

Synchronization and Communication Functions 

System call Function Scheduler 
cre_flg [E] Create Eventflag call 
del_flg [E] Delete Eventflag call 
set_flg [S] Sets an event flag. call 
iset_flg [S] Sets an event flag.(handler only) -- 
clr_flg [S] Clears an event flag. -- 
wai_flg [S] Waits for an event flag. call 
twai_flg [E] Waits for an event flag. (With Timeout) call 
pol_flg [S] Gets an event flag. (no wait) -- 
ref_flg [E] Reference Eventflag Status. -- 
cre_sem [E] Create Semaphore call 
del_sem [E] Delete Semaphore call 
sig_sem [R] Signal operation for a semaphore call 
isig_sem [R] Signal operation for a semaphore. 

(handler|only) 
-- 

wai_sem [R] Wait operation for a semaphore. call 
twai_sem [E] Wait operation for a semaphore. (With|Timeout) call 
preq_sem [R] Gets the semaphore resource. (no wait) -- 
ref_sem [E] Reference Semaphore Status. -- 
cre_mbx [E] Create Mailbox call 
del_mbx [E] Delete Mailbox call 
snd_msg [S] Sends a message. call 
isnd_msg [S] Sends a message (handler only). -- 
rcv_msg [S] Waits for message reception. call 
trcv_msg [E] Waits for message reception. (With Timeout) call 
prcv_msg [S] Receives a message.(no wait) -- 
ref_mbx [E] Reference Mailbox Status. -- 

 

Rendezvous 

System call Function Scheduler 
cre_mbf [E] Create Messagebuffer call 
del_mbf [E] Delete Messagebuffer call 
snd_mbf [E] Sends a message call 
tsnd_mbf [E] Sends a message (With Timeout) call 
psnd_mbf [E] Sends a message (no wait) -- 
rcv_mbf [E] Waits for receiving a message from Messagebuffer call 
trcv_mbf [E] Waits for receiving a message from Messagebuffer 

(With Timeout) 
call 

prcv_mbf [E] Waits for receiving a message from Messagebuffer (no 
wait) 

call 

ref_mbf [E] Reference Messagebuffer Status -- 
cre_por [E] Create Port for Rendezvous call 
del_por [E] Delete Port for Rendezous call 
cal_por [E] Call Port for Rendezous call 
tcal_por [E] Call Port for Rendezous (With Timeout) call 
pcal_por [E] Call Port for Rendezous (no wait) call 
acp_por [E] Accept Port for Rendezous call 
tacp_por [E] Accept Port for Rendezous (With Timeout) call 
pacp_por [E] Accept Port for Rendezous (no wait) call 
fwd_por [E] Forward Rendezous to Other Port call 
rpl_rdv [E] Reply Rendezous call 
ref_por [E] Reference Port Status call 
 



Index 

 

278 

 

Interrupt Management Functions 

System call Function Scheduler 
def_int [C] Define Interrupt Handler call 
ret_int [R] Returns from the interrupt handler. call 
loc_cpu [R] Disables OS-dependent interrupt and task dispatch. -- 
unl_cpu [R] Enables OS -dependent interrupt and task dispatch. call 

 

Memorypool Management Functions 

System call Function Scheduler 
cre_mpf [E] Create Fixed-size Memorypool call 
del_mpf [E] Delete Fixed-size Memorypool call 
get_blf [E] Gets a fixed-size memory block call 
tget_blf [E] Gets a fixed-size memory block (With Timeout) call 
pget_blf [E] Gets fixed-size memory block (no wait) -- 
rel_blf [E] Release fixed-size memory block. call 
ref_mpf [E] Reference fixed-size Memorypool status. -- 
cre_mpl [E] Create Variable-size Memorypool call 
del_mpl [E] Delete Variable-size Memorypool call 
get_blk [E] Gets a variable-size memory block call 
tget_blk [E] Gets a variable-size memory block (With Timeout) call 
pget_blk [E] Gets variable-size memory|block. (no wait) call 
rel_blk [E] Release variable-size memory|block. call 
ref_mpl [E] Reference variable-size Memorypool status. -- 
 

Time Management Functions 

System call Function Scheduler 
set_tim [S] Sets the system clock. -- 
get_tim [S] Reads the system clock value. -- 
dly_tsk [S] Delays the task. call 
def_cyc [E] Define cyclic handler. call 
act_cyc [E] Controls activation of the cyclic handler. -- 
ref_cyc [E] Reference Cyclic handler Status. -- 
ref_alm [E] Reference Alarm Handler Status. -- 
 

System Management Function 

System call Function Scheduler 
get_ver [R] Gets the OS version number. -- 
ref_sys [E] Reference Status of CPU and OS. -- 
def_exc [C] Define Exception Handler call 
 

Implementation-Dependent System Call 

System call Function Scheduler 
vrst_msg [--] Cears messages in mailbox -- 
vrst_blf [--] Releases all specified fixed-size memory blocks call 
vrst_blk [--] Releases all specified valiable-size memory blocks call 
vrst_mbf [--] Clears message in message buffer call 
vclr_ems [--] Clear Exception Mask call 
vset_ems [--] Set Exception Mask call 
vras_fex [--] Raise forcibly exception call 
 



3.1 List of System calls 

 

279

Implementation-Dependent System Call (Mailbox) 
 
System call Function Scheduler 
vcre_mbx [--] Create mailbox with priority call 
vdel_mbx [--] Delete mailbox with prioity call 
vsnd_mbx [--] Sends a message with priority to the mailbox call 
visnd_mbx [--] Sends a message with priority to the mailbox 

(Handler only) 
-- 

vrcv_mbx [--] Recieves a message with priority to the mailbox 
(without timeout) 

call 

vtrcv_mbx [--] Recieves a message with priority to the mailbox 
(with ) 

call 

vprcv_mbx [--] Recieves a message with priortimeoutity to the 
mailbox (without waiting) 

-- 

vrst_mbx [--] Resets the mailbox with priority -- 
vref_mbx [--] Refers the status of the mailbox with priority -- 



Index 

 

280 

 

3.2. List of Error code 

Error code Value Description 
E_OK 00000000H(-H’00000000) Normal End 
E_OBJ 0FFFFFFC1H(-H’0000003F) Invalid object state 
E_QOVR 0FFFFFFB7H(-H’00000049) Queuing or nest overflow 
E_TMOUT 0FFFFFFABH(-H’00000055) Polling failed or timeout 
E_RLWAI 0FFFFFFAAH(-H’00000056) Wait state forcibly cleared 
E_NOEXS 0FFFFFFCCH(-H’00000034) Object does not exist 
E_DLT 0FFFFFFAFH(-H’00000051) The object being waited for was deleted 
E_NOMEM 0FFFFFFF6H(-H’0000000A) Not enough of memory 
 



3.3 Assembly Language Interface 

 

281

3.3. Assembly Language Interface 
When issuing a system call in the assembly language, you need to use macros prepared for 
invoking system calls.  

Processing in a system call invocation macro involves setting each parameter to registers 
and starting execution of a system call routine by a software interrupt. 

If you issue system calls directly without using a system call invocation macro, your program 
may not be guaranteed of compatibility with future versions of MR32R. The table below lists 
the assembly language interface parameters. The values set forth in µITRON specifications 
are not used for the function code. 
 

Task Manegement Functions 

Parameter Return 
Parameter 

R0 R1 R2 R0 R1 

Systemcall INT No. 

(Function 
code) 

    

cre_tsk #7 H’00 tskid pk_ctsk ercd  
del_tsk #7 H’04 tskid  ercd  
sta_tsk #7 H’08 tskid stacd ercd  
ista_tsk #8 H’60 tskid stacd ercd  
ext_tsk #8 H’bc     
exd_tsk #8 H’c0     
ter_tsk #7 H’0c tskid  ercd  
dis_dsp #8 H’b4   ercd  
ena_dsp #7 H’1c   ercd  
chg_pri #7 H’10 tskid tskpri ercd  
ichg_pri #8 H’64 tskid tskpri ercd  
rot_rdq #7 H’14  tskpri ercd  
irot_rdq #8 H’68  tskpri ercd  
rel_wai #7 H’18 tskid  ercd  
irel_wai #8 H’24 tskid  ercd  
get_tid #8 H’70   ercd tskid 
ref_tsk #8 H’d4 tskid pk_rtsk ercd  

 

Synchronization Functions Attached to Task 

Parameter Return 
Parameter 

R0 R1 R2 R0 R2 

Systemcall INT No. 

(Function 
code) 

    

sus_tsk #7 H’20 tskid  ercd  
isus_tsk #8 H’74 tskid  ercd  
rsm_tsk #7 H’24 tskid  ercd  
irsm_tsk #8 H’78 tskid  ercd  
slp_tsk #7 H’28   ercd  
tslp_tsk #7 H’28  tmout ercd  
wup_tsk #7 H’2c tskid  ercd  
iwup_tsk #8 H’7c tskid  ercd  
can_wup #8 H’80 tskid  ercd wupcnt

 



Index 

 

282 

 

Synchronization and Communication Functions 

Parameter Return Parameter Systemcall 
R0 R1 R2 R3 R4 R0 R2 R3 

 

INT No. 

(Function 
code) 

       

cre_flg #7 H’f4 flgid pk_cflg   ercd   
del_flg #7 H’f8 flgid    ercd   
set_flg #7 H’30 flgid setptn   ercd   
iset_flg #8 H’84 flgid setptn   ercd   
clr_flg #8 H’88 flgid clrptn   ercd   
wai_flg #7 H’34 flgid waiptn wfmode  ercd flgptn  
twai_flg #7 H’34 flgid waiptn wfmode tmout ercd flgptn  
pol_flg #8 H’8c flgid waiptn wfmode  ercd flgptn  
ref_flg #8 H’d8 flgid pk_rflg   ercd   
cre_sem #7 H’10c semid pk_csem   ercd   
del_sem #7 H’110 semid    ercd   
sig_sem #7 H’38 semid    ercd   
isig_sem #8 H’90 semid    ercd   
wai_sem #7 H’3c semid    ercd   
twai_sem #7 H’3c semid   tmout ercd   
preq_sem #8 H’94 semid    ercd   
ref_sem #8 H’dc semid pk_rsem   ercd   
cre_mbx #7 H’fc mbxid pk_cmbx   ercd   
del_mbx #7 H’100 mbxid    ercd   
snd_msg #7 H’40 mbxid pk_msg   ercd   
isnd_msg #8 H’98 mbxid pk_msg   ercd   
rcv_msg #7 H’44 mbxid    ercd pk_msg  
trcv_msg #7 H’44 mbxid   tmout ercd pk_msg  
prcv_msg #8 H’9c mbxid    ercd pk_msg  
ref_mbx #8 H’20 mbxid pk_rmbx   ercd   
 

Rendezvous 

Parameter Return Parameter 
R0 R1 R2 R3 R4 R5 R6 R0 R2 R3 

System
call 

INT 
No. 

(Functio
n code) 

         

cre_mbf #7 H’118 mbfid pk_cmbf     ercd   
del_mbf #7 H’11c mbfid      ercd   
snd_mbf #7 H’c8 mbfid msg msgsz    ercd   
tsnd_mbf #7 H’c8 mbfid msg msgsz tmout   ercd   
psnd_mbf #7 H’c8 mbfid msg msgsz    ercd   
rcv_mbf #7 H’124 mbfid msg     ercd   
trcv_mbf #7 H’124 mbfid msg  tmout   ercd  msgsz
prcv_mbf #7 H’124 mbfid msg     ercd  msgsz
ref_mbf #8 H’114 mbfid pk_rmbf     ercd  msgsz
cre_por #7 H’144 porid pk_cpor     ercd   
del_por #7 H’148 porid      ercd   
cal_por #7 H’14c porid  cmsgsz  msg calptn ercd rmsgsz  
tcal_por #7 H’14c porid  cmsgsz  msg calptn ercd rmsgsz  
pcal_por #7 H’14c porid  cmsgsz  msg calptn ercd rmsgsz  
acp_por #7 H’150 porid   tmout msg acpptn ercd cmsgsz rdvno 
tacp_por #7 H’150 porid    msg acpptn ercd cmsgsz rdvno 
pacp_por #7 H’150 porid    msg acpptn ercd cmsgsz rdvno 
fwd_por #7 H’158 porid rdvno cmsgsz  msg calptn ercd   
rpl_rdv #7 H’154 rdvno msg rmsgsz    ercd   
ref_por #8 H’d0 porid pk_rpor     ercd   
 



3.3 Assembly Language Interface 

 

283

Interrupt Management Functions 

Parameter Return 
Parameter 

R0 R1 R2 R0 R2 

Systemcall INT No. 

(Function 
code) 

    

def_int #7 H’128 dintno pk_dint ercd  
ret_int       
loc_cpu #8 H’b8   ercd blf 
unl_cpu #7 H’58   ercd blf 
 

Memorypool Management Functions 

Parameter Return 
Parameter 

R0 R1 R2 R3 R4 R0 R2 

Systemcall INT No. 

(Function 
code) 

      

cre_mpf #7 H’160 mpfid pk_cmpf   ercd  
del_mpf #7 H’164 mpfid    ercd  
get_blf #7 H’c4 mpfid    ercd blf 
tget_blf #7 H’c4 mpfid   tmout ercd blf 
pget_blf #8 H’48 mpfid    ercd blf 
rel_blf #7 H’4c mpfid blf   ercd  
ref_mpf #8 H’e8 mpfid pk_rmpf   ercd  
cre_mpl #7 H’104 mplid pk_cmpl   ercd  
del_mpl #7 H’108 mplid    ercd  
get_blk #7 H’50 mplid  blksz  ercd blk 
tget_blk #7 H’50 mplid  blksz tmout ercd blk 
pget_blk #7 H’50 mplid  blksz  ercd blk 
rel_blk #7 H’54 mplid blk   ercd  
ref_mpl #8 H’e4 mplid pk_rmpl   ercd  
 

TIme Management Functions 

Parameter Return 
Parameter

R0 R1 R2 R0 

Systemcall INT No. 

(Function 
code) 

   

set_tim #8 H’a0  pk_tim ercd 
get_tim #8 H’a4  pk_tim ercd 
dly_tsk #7 H’5c  dlytim ercd 
def_cyc #7 H’1a0  pk_dcyc ercd 
act_cyc #8 H’a8 cycno cycact ercd 
ref_cyc #8 H’ec cycno pk_rcyc ercd 
ref_alm #8 H’f0 almno pk_ralm ercd 
 

System Management Function 

Parameter Return 
Parameter

R0 R1 R2 R0 

Systemcall INT No. 

(Function 
code) 

   

get_ver #8 H’ac  pk_ver ercd 
ref_sys #8 H’15c  pk_rsys ercd 
def_exc #7 H’12c exckind pk_dexc ercd 
 



Index 

 

284 

 

Implementation-Dependent System Call 

Parameter Return 
Parameter

R0 R1 R2 R0 

Systemcall INT No. 

(Function 
code) 

   

vclr_ems #7 H’130 tskid  ercd 
vset_ems #7 H’134 tskid  ercd 
vret_exc #7 H’168    
vras_fex #7 H’138 tskid exccd ercd 
vrst_blf #7 H’170 mpfid  ercd 
vrst_blk #7 H’16c mplid  ercd 
vrst_msg #8 H’178 mbxid  ercd 
vrst_mbf #7 H’174 mbfid   
 
Implementation-Dependent System Call (Mailbox) 
Systemcall INT No. Parameter Return 

Parameter 
  R0 R1 R2 R3 R4 R0 R2 
  (Function 

code) 
      

vcre_mbx #7 H’180 vmbxid pk_cvmb
x 

  ercd  

vdel_mbx #7 H’184 vmbxid    ercd  
vsnd_mbx #7 H’188 vmbxid pk_vmbx   ercd  
visnd_mbx #8 H’18c vmbxid pk_vmbx   ercd  
vrcv_mbx #7 H’190 vmbxid    ercd  
vtrcv_mbx #8 H’190 vmbxid   tmout ercd pk_msg 
vprcv_mbx #8 H’194 vmbxid    ercd pk_msg 
vref_mbx #7 H’198 vmbxid pk_vrmb

x 
  ercd pk_msg 

vrst_mbx #8 H’19c vmbxid    ercd  
 



3.4 C Language Interface 

 

285

3.4. C Language Interface 

Task Manegement Functions 

ER ercd = cre_tsk (ID tskid,T_CTSK *pk_ctsk); 
ER ercd = del_tsk (ID tskid); 
ER ercd = sta_tsk (ID tskid, INT stacd); 
ER ercd = ista_tsk (ID tskid, INT stacd); 
 void ext_tsk (); 
 void exd_tsk (); 
ER ercd = ter_tsk (ID tskid); 
ER ercd = dis_dsp (); 
ER ercd = ena_dsp (); 
ER ercd = chg_pri (ID tskid, PRI tskpri); 
ER ercd = ichg_pri (ID tskid, PRI tskpri); 
ER ercd = rot_rdq (PRI tskpri); 
ER ercd = irot_rdq (PRI tskpri); 
ER ercd = rel_wai (ID tskid); 
ER ercd = irel_wai (ID tskid); 
ER ercd = get_tid (ID *p_tskid); 
ER ercd = ref_tsk (T_RTSK *pk_rtsk, ID tskid); 
 

Synchronization Functions Attached to Task 

ER ercd = sus_tsk (ID tskid); 
ER ercd = isus_tsk (ID tskid); 
ER ercd = rsm_tsk (ID tskid); 
ER ercd = irsm_tsk (ID tskid); 
ER ercd = slp_tsk (); 
ER ercd = tslp_tsk (TMO tmout); 
ER ercd = wup_tsk (ID tskid); 
ER ercd = iwup_tsk (ID tskid); 
ER ercd = can_wup (INT *p_wupcnt, ID tskid) 
 



Index 

 

286 

 

Synchronization and Communication Functions 

ER ercd = cre_flg (ID flgid,T_CFLG *pk_cflg); 
ER ercd = del_flg (ID flgid); 
ER ercd = set_flg (ID flgid, UINT setptn); 
ER ercd = iset_flg (ID flgid, UINT setptn); 
ER ercd = clr_flg (ID flgid, UINT clrptn); 
ER ercd = wai_flg (UINT *p_flgptn, ID flgid, UINT waiptn, UINT wfmode); 
ER ercd = twai_flg (UINT *p_flgptn, ID flgid, UINT waiptn, UINT wfmode, TMO tmout); 
ER ercd = pol_flg (UINT *p_flgptn, ID flgid, UINT waiptn, UINT wfmode); 
ER ercd = ref_flg (T_RFLG *pk_rflg, ID flgid); 
ER ercd = cre_sem (ID semid, T_CSEM *pk_csem); 
ER ercd = del_sem (ID semid); 
ER ercd = sig_sem (ID semid); 
ER ercd = isig_sem (ID semid); 
ER ercd = wai_sem (ID semid); 
ER ercd = twai_sem (ID semid, TMO tmout); 
ER ercd = preq_sem (ID semid); 
ER ercd = ref_sem (T_RSEM *pk_rsem, ID semid); 
ER ercd = cre_mbx (ID mbxid, T_CMBX *pk_cmbx); 
ER ercd = del_mbx (ID mbxid); 
ER ercd = snd_msg (ID mbxid, T_MSG *pk_msg); 
ER ercd = isnd_msg (ID mbxid, T_MSG *pk_msg); 
ER ercd = rcv_msg (T_MSG **ppk_msg, ID mbxid); 
ER ercd = trcv_msg (T_MSG **ppk_msg, ID mbxid, TMO tmout); 
ER ercd = prcv_msg (T_MSG **ppk_msg, ID mbxid); 
ER ercd = ref_mbx (T_RMBX *pk_rmbx, ID mbxid); 
ER ercd = cre_mbf (ID mbfid, T_CMBF *pk_rmbf); 
ER ercd = del_mbf (ID mbfid); 
ER ercd = snd_mbf (ID mbfid, VP msg, INT msgsz); 
ER ercd = tsnd_mbf (ID mbfid, VP msg, INT msgsz, TMO tmout); 
ER ercd = psnd_mbf (ID mbfid, VP msg, INT msgsz); 
ER ercd = rcv_mbf (VP msg, INT *p_msgsz, ID mbfid); 
ER ercd = trcv_mbf (VP msg, INT *p_msgsz, ID mbfid, TMO tmout); 
ER ercd = prcv_mbf (VP msg, INT *p_msgsz, ID mbfid); 
ER ercd = ref_mbf (T_RMBF *pk_rmbf, ID mbfid); 
 

Rendezvous 

ER ercd = cre_por (ID porid,T_CPOR *pk_cpor); 
ER ercd = del_por (ID porid); 
ER ercd = cal_por (VP msg, INT *p_rmsgsz, ID porid, UINT calptn, INT cmsgsz); 
ER ercd = tcal_por (VP msg, INT *p_rmsgsz, ID porid, UINT calptn, INT cmsgsz, TMO tmout); 
ER ercd = pcal_por (VP msg, INT *p_rmsgsz, ID porid, UINT calptn, INT cmsgsz); 
ER ercd = acp_por (RNO *p_rdvno, VP msg, INT *p_cmsgsz, ID porid, UINT acpptn); 
ER ercd = tacp_por (RNO *p_rdvno, VP msg, INT *p_cmsgsz, ID porid, UINT acpptn, TMO tmout); 
ER ercd = pacp_por (RNO *p_rdvno, VP msg, INT *p_cmsgsz, ID porid, UINT acpptn); 
ER ercd = fwd_por (ID porid, UINT calptn, RNO rdvno, VP msg, INT cmsgsz); 
ER ercd = rpl_rdv (RNO rdvno, VP msg, INT rmsgsz); 
ER ercd = ref_por (T_RPOR *pk_rpor, ID porid); 
 

Interrupt Management Functions 

ER ercd = def_int (UINT dintno, T_DINT *pk_dint); 
 void ret_int (); 
ER ercd = loc_cpu (); 
ER ercd = unl_cpu (); 
 



3.4 C Language Interface 

 

287

Memorypool Management Functions 

ER ercd = cre_mpf (ID mpfid, T_CMPF *pk_cmpf); 
ER ercd = del_mpf (ID mpfid); 
ER ercd = get_blf (VP *p_blf, ID mpfid); 
ER ercd = tget_blf (VP *p_blf, ID mpfid, TMO tmout); 
ER ercd = pget_blf (VP *p_blf, ID mpfid); 
ER ercd = rel_blf (ID mpfid, VP blf); 
ER ercd = ref_mpf (T_RMPF *pk_rmpf, ID mpfid); 
ER ercd = cre_mpl (ID mplid, T_CMPL *pk_cmpl); 
ER ercd = del_mpl (ID mplid); 
ER ercd = get_blk (VP *p_blk, ID mplid, INT blksz); 
ER ercd = tget_blk (VP *p_blk, ID mplid, INT blksz,TMO tmout); 
ER ercd = pget_blk (VP *p_blk, ID mplid, INT blksz); 
ER ercd = rel_blk (ID mplid, VP blk); 
ER ercd = ref_mpl (T_RMPL *pk_rmpl, ID mplid); 
 

Time Management Functions 

ER ercd = set_tim (SYSTIME *pk_tim); 
ER ercd = get_tim (SYSTIME *pk_tim); 
ER ercd = dly_tsk (DLYTIMe dlytim); 
ER ercd = act_cyc (HNO cycno, UINT cycact); 
ER ercd =  ref_cyc (T_RCYC *pk_rcyc, HNO cycno); 
ER ercd = ref_alm (T_RALM *pk_ralm, HNO almno); 
 

System Management Function 

ER ercd = get_ver (T_VER *pk_ver); 
ER ercd = ref_sys (T_RSYS *pk_rsys); 
ER ercd = def_exc (UINT exckind, T_DEXC *pk_dexc); 
 

Implementation-Dependent System Call 

ER ercd = vclr_ems (ID tskid); 
ER ercd = vset_ems (ID tskid); 
ER ercd = vras_fex (ID tskid, UW exccd); 
ER ercd = vrst_blf (ID mpfid); 

ER ercd = vrst_blk (ID mplid); 
ER ercd = vrst_msg (ID mbxid); 
ER ercd = vrst_mbf (ID mbfid); 
 



Index 

 

288 

 

Implementation-Dependent System Call (Mailbox) 
ER ercd = vcre_mbx (ID vmbxid, T_CVMBX *pk_rmbf); 
ER ercd = vdel_mbx (ID vmbxid); 
ER ercd = vsnd_mbx (ID vmbxid, T_MSG *pk_msg); 
ER ercd = visnd_mb

x 
(ID vmbxid, T_MSG *pk_msg); 

ER ercd = vrcv_mbx (**ppk_msg, ID vmbxid); 
ER ercd = vtrcv_mbx (**ppk_msg, ID vmbxid, TMO tmout); 
ER ercd = vprcv_mb

x 
(**ppk_msg, ID vmbxid); 

ER ercd = vref_mbx (T_RVMBF *pk_rvmbf,ID vmbxid); 
ER ercd = vrst_mbx (ID vmbxid); 
 



3.5 Data Type 

 

289

3.5. Data Type 

typedef char B; /* Signed 8-bit integer */ 
typedef short H; /* Signed 16-bit integer */ 
typedef long W; /* Signed 32-bit integer */ 
typedef unsigned char UB; /* Unsigned 8-bit integer */ 
typedef unsigned short UH; /* Unsigned 16-bit integer */ 
typedef unsigned long UW; /* Unsigned 32-bit integer */ 
typedef char VB /* Unpredicatable data, signed (8-bit size) */ 
typedef short VH; /* Unpredicatable data, signed (16-bit size) */ 
typedef long VW; /* Unpredicatable data, signed (32-bit size) */ 
typedef void *VP; /* Pointer to Unpredicatable data */ 
typedef void (*FP)(); /* Start address of program general */ 
typedef W INT /* Signed 32-bit integer */ 
typedef UW UINT; /* Unsigned 32-bit integer */ 
typedef W RNO /* Rendezvous number */ 
typedef H ID; /* ID number of object */ 
typedef H PRI; /* Task priority */ 
typedef H TMO; /* Timeout */ 
typedef H HNO; /* ID number of handler */ 
typedef INT ER; /* Error code */ 
typedef INT ATR; /* Object attribute(unsigned) */ 
typedef INT DLYTIME; /* Delay time */ 
typedef INT CYCTIME; /* Interval of cyclic handler starts*/ 
typedef H BOOL_ID; /* Boolean value or ID number */ 
typedef UINT PSW; /* PSW value */ 
typedef void *PT_MSG; /* message data for mail box */ 
 



Index 

 

290 

 

3.6. Common Constants and Packet Format of Structure 
---- Common ---- 
 NADR  -1  /* Invalid address and pointer value */ 
 TRUE  1  /* True */ 
 FALSE  0  /* False */ 
 
---- Related to Task management ---- 
 typedef struct t_ctsk { 
  VP  exinf;  /* Extended information */ 
  ATR  tskatr;  /* Task attribute */ 
  FP  task;  /* Task startup address */ 
  PRI  itskpri; /* Priority in task startup */ 
  INT  stksz;  /* Stack size */ 
 } T_CTSK; 
 
 TSK_SELF 0 /* Own task specification */ 
 TPRI_RUN 0 /* Specifies the highest priority then under execution */ 
 
 typedef struct t_rtsk { 
  VP  exinf;  /* Extended information */ 
  PRI  tskpri;  /* Current task priority level */ 
  UINT tskstat; /* Task status */ 
  UINT tskwait; /* Reason for wait */ 
  ID  wid;  /* Wait object ID */ 
  INT  wupcnt;  /* Number of queued wakeup requests */ 
  ATR  tskatr;  /* Task attributes */ 
  FP  task;  /* Task starting address */ 
  PRI  itskpri; /* Initial task priority */ 
  INT  stksz;  /* Stack size */ 
  UW  epndptn; /* Pending exception class pattern */ 
 }; 
 
---- Related to Semaphore ---- 
 typedef struct t_csem { 
  VP  exinf;  /* Extended information */ 
  ATR  sematr;  /* Semaphore attribute */ 
  INT  isemcnt; /* Initial semaphore count */ 
  INT  maxsem;  /* Maximun semaphore count */ 
 } T_CSEM; 
 
 typedef struct t_rsem { 
  VP  exinf;  /* Extended information */ 
  BOOL_ID wtsk;  /* Waiting task information */ 
  INT  semcnt;  /* Current semaphore count */ 
 } T_RSEM; 
 



3.6 Common Constants and Packet Format of Structure 

 

291

---- Related to Eventflag ---- 
 typedef struct t_cflg { 
  VP  exinf;  /* Extended information */ 
  ATR  flgatr;  /* Task attribute */ 
  UINT iflgptn; /* Initial eventflag pattern */ 
 } T_CFLG; 
 
 wfmod: 
  TWF_ANDW H’0000  /* AND wait */ 
  TWF_ORW H’0002  /* OR wait */ 
  TWF_CLR H’0001  /* Clear specification */ 
 
 typedef struct t_rflg { 
  VP  exinf;  /* Extended information */ 
  BOOL_ID wtsk;  /* Waiting task information */ 
  UINT flgptn;  /* Bit pattern of EventFlag */ 
 } T_RFLG; 
 
---- Related to Mailbox ---- 
 typedef struct t_cmbx { 
  VP  exinf;  /* Extended information */ 
  ATR  mbxatr;  /* Mailbox attribute */ 
  INT  bufcnt;  /* Ringbuffer size */ 
 } T_CMBX; 
 
 typedef struct t_rmbx { 
  VP  exinf; /* Extended information */ 
  BOOL_ID wtsk; /* Waiting task information */ 
  T_MSG pk_msg; /* Starting address of next received message packet */ 
  INT  msgcnt; /* The number of messages */ 
 } T_RMBX; 
 
---- Related to Messagebuffer ---- 
 typedef struct t_cmbf { 
  VP  exinf;  /* Extended information */ 
  ATR  mbfatr;  /* Messagebuffer attribute */ 
  INT  bufsz;  /* Messagebuffer size */ 
  INT  maxmsz;  /* Maximum size of message */ 
 } T_CMBF; 
 
 typedef struct t_rmbf { 
  VP       exinf;  /* Extended information */ 
  BOOL_ID wtsk;  /* Waiting Task Information */ 
  BOOL_ID stsk;  /* Sending Task Information */ 
  INT  msgsz  /* Message Size (in bytes) */ 
  INT  frbufsz; /* Free Buffer Size (in bytes) */ 
 } T_RMBF; 
 
---- Related to Rendezvous ---- 
 typedef struct t_cpor { 
  VP  exinf;  /* Extended information */ 
  ATR  poratr;  /* Port for redenzvous attribute */ 
  INT  maxcmsz; /* Maximum call message size */ 
  INT  maxrmsz; /* Maximum reply message size */ 
 } T_CPOR; 
 
 typedef struct t_rpor { 
  VP  exinf;  /* Extended information */ 
  BOOL_ID wtsk;  /* Waiting Task Information */ 
  BOOL_ID atsk;  /* Accepting Task Information */ 
 } T_RPOR; 
 



Index 

 

292 

 

---- Related to Interrupt ---- 
 typedef struct t_dint { 
  ATR  intatr;  /* Interrupt handler attribute */ 
  FP  inthdr;  /* Interrupt handler startup address */ 
 } T_DINT; 
 
---- Related to Fixed-size Memorypool ---- 
typedef struct t_cmpf { 
 VP  exinf;  /* Extended information */ 
 ATR  mpfatr;  /* Fixed-size memorypool attribute */ 
 INT  mpfcnt;  /* Memory block count */ 
 INT  blfsz;  /* Fixed-size memorypool size */ 
} T_CMPF; 
 
typedef struct t_rmpf { 
 VP  exinf;  /* Extended information */ 
 BOOL_ID wtsk;  /* Waiting task information */ 
 INT  frbcnt;  /* The number of free blocks */ 
 INT  blksz;  /* The size of blocks */ 
} T_RMPF; 
 
---- Related to Variable-size Memorypool ---- 
 typedef struct t_cmpl { 
  VP  exinf;  /* Extended information */ 
  ATR  mplatr;  /* Variable-size memorypool attribute */ 
  INT  mplsz;  /* Variable-size memorypool size */ 
  INT  maxblksz; /* Maximum memory block size to be allocated */ 
 } T_CMPL; 
 
 typedef struct t_rmpl { 
  VP  exinf; /* Extended information */ 
  BOOL_ID wtsk; /* indicates whether or not there is a task waiting */ 
  INT  frsz; /* total size of free memory */ 
  INT  maxsz; /* size of largest contiguous memory */ 
 } T_RMPL; 
 
---- Related to Time management ---- 
typedef struct t_systime{ 
 H  utime;  /* 16 high-order bits */ 
 UW  ltime;  /* 32 high-order bits */ 
} SYSTIME, ALMTIME; 
 cycact: 
  TCY_OFF  H’0000 /* Cyclic handler is not active */ 
  TCY_ON  H’0001 /* Cyclic handler is activated */ 
  TCY_INI  H’0002 /* Cyclic counter is initialized */ 
 



3.6 Common Constants and Packet Format of Structure 

 

293

---- Related to System manegement ---- 
 typedef struct t_ver { 
  UH  maker;  /* Maker */ 
  UH  id;  /* Type number */ 
  UH  spver;  /* Specification version */ 
  UH  prver;  /* Product version */ 
  UH  prno[4]; /* Product management information */ 
  UH  cpu;  /* CPU information */ 
  UH  var;  /* Variation discriptor */ 
 } T_VER; 
 
 typedef struct t_rsys { 
  INT  sysstat; /* System status */ 
  ID  runtskid; /* The ID No. of RUN state task */ 
  PRI  runtskpri; /* The priority of RUN state task */ 
  UINT psw;  /* PSW */ 
 } T_RSYS; 
 
 typedef struct t_dexc { 
  ATR  excatr;  /* Exception handler attribute */ 
  FP  exchdr;  /* Exception handler startup address */ 
  ID  tskid;  /* The ID No. of task */ 
  W  excstksz; /* Stack size */ 
  T_DEXC; 
 
 typedef struct t_regs { 
  VW  r0; 
  VW  r1; 
  VW  r2; 
  VW  r3; 
  VW  r4; 
  VW  r5; 
  VW  r6; 
  VW  r7; 
  VW  r8; 
  VW  r9; 
  VW  r10; 
  VW  r11; 
  VW  r12; 
  VW  r13; 
  VW  r14; 
  VW  sp; 
  VW  accl; 
  VW  acch; 
 }; 
 
 typedef struct t_reit { 
  PSW  psw; 
  FP  pc; 
 }; 
 
 typedef struct t_exc { 
  W  exckind; 
  UW  exccd; 
  ID  tskid; 
  UW  exeenv; 
 }; 
 
/* Related to Implementation-Dependent System Call (Mailbox) */ 
typedef struct t_cvmbx { 
 ATR      mbxatr;  /* Mailbox attribute */ 
 PRI      maxpri;  /* Max priority value of the message */ 
 VP       mprihd;  /* The start address of the message queue header area 



Index 

 

294 

 

*/ 
} T_CVMBX; 
typedef struct t_vmbx { 
 BOOL_ID wtsk; /* Waiting task information */ 
 T_MSG pk_msg; /* Starting address of next received message packet 
*/ 
} T_RVMBX; 
 
 



 

 

Index 
acp_por, 155 
act_cyc, 223 
alarm handler, 14 

reference, 227 
AND wait, 71 
bit pattern to be waited for, 70 
cal_por, 146 
can_wup, 57 
chg_pri, 22 
Clear specification, 71 
clr_flg, 68 
CPU information, 230 
cre_flg, 59 
cre_mbf, 118 
cre_mbx, 98 
cre_mpf, 178 
cre_mpl, 197 
cre_por, 141 
cre_sem, 80 
cre_tsk, 2 
cyclic handler 

activation status, 223 
cyclic handler, 14 
cyclic handler 

reference, 225 
cyclic handler 

active state, 225 
def_exc, 220, 235 
def_int, 171 
del_flg, 62 
del_mbf, 121 
del_mbx, 101 
del_mpf, 181 
del_mpl, 200 
del_por, 144 
del_sem, 83 
del_tsk, 6 
Delay time, 218 
dis_dsp, 18 
dispatch, 18, 20 

dly_tsk, 218 
ena_dsp, 20 
eventflag 

clear, 68 
get, 76 
set, 64, 66 
wait, 70, 73 

eventflag status 
reference, 78 

exd_tsk, 14 
ext_tsk, 12 
external RAM, 3, 99, 119, 179, 198, 236 
fixed-size memory block 

get, 183, 186, 189 
release, 191 

fixed-size memorypool 
reference, 195 

Format number, 230 
fwd_por, 164 
get_blf, 183 
get_blk, 202 
get_tid, 35 
get_tim, 216 
get_ver, 229 
ichg_pri, 24 
internal RAM, 3, 99, 119, 179, 198, 236 
interrupt handler, 14 
irel_blf, 193 
irel_wai, 33 
irot_rdq, 29 
irsm_tsk, 46 
iset_flg, 66 
isig_sem, 87 
isnd_msg, 106 
ista_tsk, 10 
isus_tsk, 42 
iwup_tsk, 55 
loc_cpu, 174 
mailbox 

reference, 116, 271 



Index 

 

296 

 

message 
receiving, 108, 111, 114, 131, 133, 136, 264, 

266, 269 
send, 103, 106, 123, 126, 129, 260, 262 

message queue, 104, 109, 112, 114, 260, 265, 
267, 269 

messagebuffer 
reference, 138 

OR wait, 71 
pacp_por, 161 
pcal_por, 152 
pget_blf, 189 
pget_blk, 208 
prcv_mbf, 136 
prcv_msg, 114 
preq_sem, 94 
priority, 22 
Product control information, 230 
Product version, 230 
psnd_mbf, 129 
rcv_mbf, 131 
rcv_msg, 108 
ready queue, 26 
ref_alm, 227 
ref_cyc, 225 
ref_flg, 78 
ref_mbf, 138 
ref_mbx, 116 
ref_por, 169 
ref_sem, 96 
ref_sys, 232 
ref_tsk, 37 
rel_blf, 191 
rel_blk, 210 
rel_wai, 31 
ret_int, 173 
rot_rdq, 26 
round robin scheduling, 29 
rpl_rdv, 167 
rsm_tsk, 44 
scheduler, 20 
semaphore 

Obtains one resource, 89, 91, 94 
reference, 96 

semaphore 
Returns resource, 85, 87 

set_flg, 64 
set_tim, 214 
sig_sem, 85 
slp_tsk, 48 
snd_mbf, 123 
snd_msg, 103 
Specification version, 230 
sta_tsk, 8 
Stack Size, 4 
sus_tsk, 40 
SUSPEND, 40 

system clock, 214, 216 
system stack, 4, 7 
System Stack, 11 
tacp_por, 158 
tcal_por, 149 
ter_tsk, 16 
tget_blf, 186 
tget_blk, 205 
Timeout value, 50 
TMO_FEVR, 51, 74, 92, 112, 267 
TMO_POL, 74 
TMO_POL(, 92, 112, 267 
TPRI_RUN, 27 
trcv_mbf, 133 
trcv_msg, 111 
TSK_SELF, 23 
tskid, 23 
tslp_tsk, 50 
tsnd_mbf, 126 
twai_flg, 73 
twai_sem, 91 
TWF_ANDW, 71 
TWF_CLR, 71 
TWF_ORW, 71 
user stack, 4, 7 
User Stack, 9 
variable-size memory block 

get, 202, 205, 208 
release, 210 

variable-size memorypool 
reference, 212 

Variation descriptor, 230 
vclr_ems, 239 
vcre_mbx, 255 
vdel_mbx, 258 
version number, 229 
visnd_mbx, 262 
vprcv_mbx, 269 
vras_fex, 243 
vrcv_mbx, 264 
vref_mbx, 271 
vrst_blf, 249 
vrst_blk, 251 
vrst_mbf, 253 
vrst_mbx, 273 
vrst_msg, 247 
vsnd_mbx, 260 
vtrcv_mbx, 266 
wai_flg, 70 
wai_sem, 89 
WAIT, 48, 57 
Wait mode, 70, 76 
Wait object ID, 37 
WAIT-SUSPEND, 44, 48, 57 
wakeup request count, 54 
wup_tsk, 53 



 

 

M3T-MR32R V.3.50 Reference Manual 
 
Rev. 1.00 
June 1, 2003 
REJ10J0085-0100Z 
 
COPYRIGHT ©2003 RENESAS TECHNOLOGY CORPORATION 
AND RENESAS SOLUTIONS CORPORATION ALL RIGHTS RESERVED 



1753, Shimonumabe, Nakahara-ku, Kawasaki-shi,  Kanagawa 211-8668 Japan

M3T-MR32R V.3.50

REJ10J0085-0100Z

Reference Manual


	Interpreting the System Call Reference
	Interpreting the System Call Reference
	Necessary Stack Size
	Stack Size Calculation Method
	User Stack Calculation Method
	System Stack Calculation Method


	System Call Reference
	Task Management Functions
	cre_tsk (Create Task)
	del_tsk(Delete Task)
	sta_tsk(Start Task)
	ista_tsk(Start Task)
	ext_tsk(Exit Task)
	exd_tsk(Exit and Delete Task)
	ter_tsk(Terminate Task)
	dis_dsp(Disable Dispatch)
	ena_dsp(Enable Dispatch)
	chg_pri(Change Task Priority)
	ichg_pri(Change Task Priority)
	rot_rdq(Rotate Ready Queue)
	irot_rdq(Rotate Ready Queue)
	rel_wai(Release Task Wait)
	irel_wai(Release Task Wait)
	get_tid(Get Self Task ID)
	ref_tsk(Refer Task Status)

	Synchronization Functions Attached to Task
	sus_tsk(Suspend Task)
	isus_tsk(Suspend Task)
	rsm_tsk(Resume Task)
	irsm_tsk(Resume Task)
	slp_tsk(Sleep Task)
	tslp_tsk(Sleep Task with Timeout)
	wup_tsk(Wakeup Task)
	iwup_tsk(Wakeup Task)
	can_wup(Cancel Wakeup Task)

	Eventflags
	cre_flg(Create EventFlag)
	del_flg(Delete EventFlag)
	set_flg(Set EventFlag)
	iset_flg(Set EventFlag)
	clr_flg(Clear EventFlag)
	wai_flg(Wait EventFlag)
	twai_flg(Wait EventFlag with Timeout)
	pol_flg(Poll EventFlag)
	ref_flg(Refer EventFlag Status)

	Semaphore
	cre_sem(Create Semaphore)
	del_sem(Delete Semaphore)
	sig_sem(Signal Semaphore)
	isig_sem(Signal Semaphore)
	wai_sem(Wait on Semaphore)
	twai_sem(Wait on Semaphore with Timeout)
	preq_sem(Poll and Request Semaphore)
	ref_sem(Refer Semaphore Status)

	Mailbox
	cre_mbx(Create Mailbox)
	del_mbx(Delete Mailbox)
	snd_msg(Send Message to Mailbox)
	isnd_msg(Send Message to Mailbox)
	rcv_msg(Receive Message from Mailbox)
	trcv_msg(Receive Message with Timeout)
	prcv_msg(Poll and Receive Message)
	ref_mbx(Refer Mailbox Status)

	Messagebuffer
	cre_mbf(Create Messagebuffer)
	del_mbf(Delete Massagebuffer)
	snd_mbf(Send Message to Messagbuffer)
	tsnd_mbf(Send Message to Messagbuffer with Timeout)
	psnd_mbf(Poll and Send Messagebuffer)
	rcv_mbf(Receive Messagebuffer)
	trcv_mbf(Receive Messagebuffer with Timeout)
	prcv_mbf(Poll and Receive Messagebuffer)
	ref_mbf(Refer Messagebuffer Status)

	Rendezvous
	cre_por(Create Port for Rendezvous)
	del_por(Delete Port for Rendezvous)
	cal_por(Call Port for Rendezvous)
	tcal_por(Call Port for Rendezvous with Timeout)
	pcal_por(Poll and Call Port for Rendezvous)
	acp_por(Accept Port for Rendezvous)
	tacp_por(Accept Port for Rendezvous with Timeout)
	pacp_por(Poll and Accept Port for Rendezvous)
	fwd_por(Forward Rendezvous to Other Port)
	rpl_rdv(Reply Rendezvous)
	ref_por(Refer Port Status)

	Interrupt Management Function
	def_int(Define Interrupt Handler)
	ret_int(Return from Interrupt Handler)
	loc_cpu(Lock CPU)
	unl_cpu(Unlock CPU)

	Memorypool Management Function
	cre_mpf(Create Fixed-size Memorypool)
	del_mpf(Delete Fixed-size Memorypool)
	get_blf(Get Fixed-size Memory Block)
	tget_blf(Get Fixed-size Memory Block with Timeout)
	pget_blf(Poll and Get Fixed-size Memory Block)
	rel_blf(Release Fixed-size Memory Block)
	irel_blf(Release Fixed-size Memory Block)
	ref_mpf(Refer Fixed-size Memorypool Status)
	cre_mpl(Create Variable-size Memorypool)
	del_mpl(Delete Variable-size Memorypool)
	get_blk(Get Variable-size Memory Block)
	tget_blk(Get Variable-size Memory Block with Timeout)
	pget_blk(Poll and Get Variable-size Memory Block)
	rel_blk(Release Variable-size Memory Block)
	ref_mpl(Refer Variable-size Memorypool Status)

	Time Management Function
	set_tim(Set Time)
	get_tim(Get Time)
	dly_tsk(Delay Task)
	def_cyc(Define Cyclic Handler)
	act_cyc (Activate Cyclic Handler)
	ref_cyc(Refer Cyclic Handler Status)
	ref_alm(Refer Alarm Handler Status)

	System Management Function
	get_ver(Get Version Information)
	ref_sys(Refer System Status)
	def_exc(Define Exception Handler)

	Implementation-Dependent System Call
	vclr_ems(Clear Exception Mask)
	vset_ems(Set Exception Mask)
	vras_fex(Raise Forcibly Exception)
	vret_exc(Return Exception Handler)
	vrst_msg(Reset Message)
	vrst_blf (Reset Fixed-Memory Block )
	vrst_blk(Reset Variable-Memory Block)
	vrst_mbf (Reset Message Buffer)

	Implementation-Dependent System Call(Mailbox)
	vcre_mbx(Create Mailbox)
	vdel_mbx(Delete Mailbox)
	vsnd_mbx(Send Message to Mailbox)
	visnd_mbx(Send Message to Mailbox)
	vrcv_mbx(Receive Message from Mailbox)
	vtrcv_mbx(Receive Message with Timeout)
	vprcv_mbx(Poll and Receive Message)
	vref_mbx(Refer Mailbox Status)
	vrst_mbx(Reset Message)


	Appendix
	List of System calls
	List of Error code
	Assembly Language Interface
	C Language Interface
	Data Type
	Common Constants and Packet Format of Structure

	Index

