Old Company Name in Catalogs and Other Documents

On April 1st, 2010, NEC Electronics Corporation merged with Renesas Technology Corporation, and Renesas Electronics Corporation took over all the business of both companies. Therefore, although the old company name remains in this document, it is a valid Renesas Electronics document. We appreciate your understanding.

Renesas Electronics website: http://www.renesas.com

April 1st, 2010 Renesas Electronics Corporation

Issued by: Renesas Electronics Corporation (http://www.renesas.com)

Send any inquiries to http://www.renesas.com/inquiry.

Notice

- 1. All information included in this document is current as of the date this document is issued. Such information, however, is subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.
- Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of third parties by or arising from the use of Renesas Electronics products or technical information described in this document. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.
- 3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.
- 4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the use of these circuits, software, or information.
- 5. When exporting the products or technology described in this document, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas Electronics products or the technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations.
- 6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein.
- 7. Renesas Electronics products are classified according to the following three quality grades: "Standard", "High Quality", and "Specific". The recommended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular application. You may not use any Renesas Electronics product for any application categorized as "Specific" without the prior written consent of Renesas Electronics. Further, you may not use any Renesas Electronics. Renesas Electronics shall not be in any way liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an application categorized as "Specific" or for which the product is not intended where you have failed to obtain the prior written consent of Renesas Electronics. The quality grade of each Renesas Electronics product is "Standard" unless otherwise expressly specified in a Renesas Electronics data sheets or data books, etc.
 - "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots.
 - "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anticrime systems; safety equipment; and medical equipment not specifically designed for life support.
 - "Specific": Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.
- 8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the use of Renesas Electronics products beyond such specified ranges.
- 9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system manufactured by you.
- 10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.
- 11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas Electronics.
- 12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries.
- (Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majorityowned subsidiaries.
- (Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

H8/3937R, H8/3937 Series TFP-100G User System Interface Cable (HS3937ECN61H) for E6000 Emulator User's Manual

Renesas Electronics www.renesas.com

Cautions

- 1. Renesas neither warrants nor grants licenses of any rights of Renesas's or any third party's patent, copyright, trademark, or other intellectual property rights for information contained in this document. Renesas bears no responsibility for problems that may arise with third party's rights, including intellectual property rights, in connection with use of the information contained in this document.
- 2. Products and product specifications may be subject to change without notice. Confirm that you have received the latest product standards or specifications before final design, purchase or use.
- 3. Renesas makes every attempt to ensure that its products are of high quality and reliability. However, contact Renesas's sales office before using the product in an application that demands especially high quality and reliability or where its failure or malfunction may directly threaten human life or cause risk of bodily injury, such as aerospace, aeronautics, nuclear power, combustion control, transportation, traffic, safety equipment or medical equipment for life support.
- 4. Design your application so that the product is used within the ranges guaranteed by Renesas particularly for maximum rating, operating supply voltage range, heat radiation characteristics, installation conditions and other characteristics. Renesas bears no responsibility for failure or damage when used beyond the guaranteed ranges. Even within the guaranteed ranges, consider normally foreseeable failure rates or failure modes in semiconductor devices and employ systemic measures such as fail-safes, so that the equipment incorporating Renesas product does not cause bodily injury, fire or other consequential damage due to operation of the Renesas product.
- 5. This product is not designed to be radiation resistant.
- 6. No one is permitted to reproduce or duplicate, in any form, the whole or part of this document without written approval from Renesas.
- 7. Contact Renesas's sales office for any questions regarding this document or Renesas semiconductor products.

Preface

Thank you for purchasing this user system interface cable (HS3937ECN61H) for the Renesas's original microcomputer H8/3937R, H8/3937 series.

The HS3937ECN61H is a user system interface cable that connects an H8/300L series E6000 emulator (HS388REPI60H; hereinafter referred to as the emulator) through the expansion board to the IC socket for a TFP-100G package for the H8/3937R, H8/3937 series MCU on the user system.

RENESAS

i

Contents

Secti	on 1	Configuration	.1	
Secti	on 2	Connection Procedures	3	
2.1	2.1 Connecting User System Interface Cable to Expansion Board			
2.2	Conne	Connecting User System Interface Cable to User System		
	2.2.1	Installing IC Socket	6	
	2.2.2	Soldering IC Socket	6	
	2.2.3	Inserting Cable Head	7	
	2.2.4	Fastening Cable Head	7	
	2.2.5	Fastening Cable Body	9	
2.3 Recommended Dimensions for User System Mount Pad			10	
2.4	•		11	
2.5	Resul	ting Dimensions after Connecting User System Interface Cable	12	
Secti	on 3	Installing the MCU to the User System	.13	
Secti	on 4	Verifying Operation	.15	
Secti	on 5	Notice	.17	

Section 1 Configuration

CAUTION

Use an NQPACK100SE socket (manufactured by Tokyo Eletech Corporation) for the TFP-100G package IC socket on the user system.

Figure 1 shows the configuration of the HS3937ECN61H user system interface cable for the TFP-100G package.

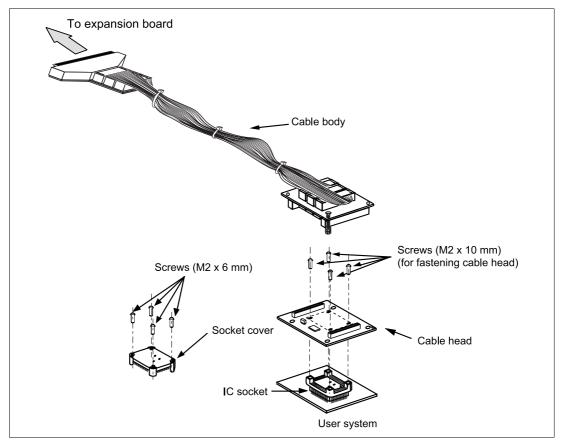


Figure 1 HS3937ECN61H User System Interface Cable

RENESAS

1

Table 1 lists the HS3937ECN61H components. Please make sure you have all of these components when unpacking.

No.	Component	Quantity	Remarks
1	Cable body	1	Flat cable
2	Cable head	1	
3	IC socket	1	For the TFP-100G package
4	Socket cover	1	For installing an TFP-100G packaged MCU
5	Screws (M2.0 x 10 mm)	4	For fastening cable head
6	Screws (M2.0 x 6 mm)	4	For installing an TFP-100G packaged MCU
7	Guide pins (\u00e9 1 mm)	3	For determining the IC socket location
8	Screwdriver	1	For tightening screws
9	Documentation	1	User's manual for HS3937ECN61H (this manual)

Table 1 HS3937ECN61H Components

Section 2 Connection Procedures

2.1 Connecting User System Interface Cable to Expansion Board

Observe the precautions listed below. Failure to do so will result in a FIRE HAZARD and will damage the user system and the emulator product or will result in PERSONAL INJURY. The USER PROGRAM will be LOST.

- 1. Always switch OFF the user system and the emulator product before the USER SYSTEM INTERFACE CABLE is connected to or removed from any part. Before connecting, make sure that pin 1 on both sides are correctly aligned.
- 2. The user system interface cable dedicated to the emulator must be used.

To connect the cable body to the emulator station, follow the instructions below.

1. Make sure the user system and emulator station are turned off.

CAUTION

When connecting or removing the user system interface cable, apply force only in the direction suitable for connection or removal, while making sure not to bend or twist the cable or connectors. Otherwise, the connectors will be damaged. The user system interface cable must be connected to an H8/300L Series E6000 emulator through the H8/3937R, 3937 Series expansion board. Do not connect the user system interface cable directly to the E6000 emulator.

- [1] After making sure the direction of the expansion board connector labeled E6000 EMULATOR is correct, firmly insert the expansion board connector into the emulator station connector ([1] in figure 2).
 - [2] Connect the expansion board labeled USER INTERFACE CABLE and the user system interface cable body.

Figure 2 Connecting User System Interface Cable to Expansion Board

2.2 Connecting User System Interface Cable to User System

Always switch OFF the user system and the emulator product before the USER SYSTEM INTERFACE CABLE is connected to or removed from any part. Before connecting, make sure that pin 1 on both sides are correctly aligned. Failure to do so will result in a FIRE HAZARD and will damage the user system, the emulator product, and the expansion board or will result in PERSONAL INJURY. The USER PROGRAM will be LOST.

To connect the cable head to the user system, follow the instructions below.

2.2.1 Installing IC Socket

After checking the location of pin 1 on the IC socket, determine where to install the IC socket by using the guide pins provided as shown in figure 3. Apply epoxy resin adhesive to the end of the four projections at the bottom of the IC socket, and fasten it to the user system before soldering.

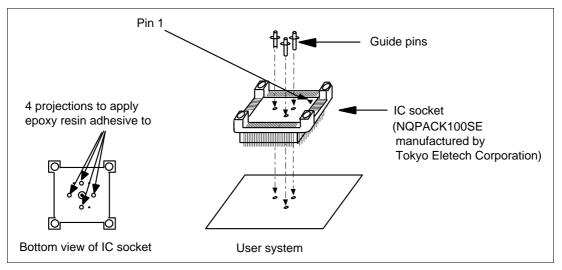


Figure 3 Location Setting of IC Socket

2.2.2 Soldering IC Socket

After fastening, solder the IC socket for an TFP-100G package to the user system. Be sure to completely solder the leads so that the solder slops gently over the leads and forms solder fillets. (Use slightly more solder than the MCU.)

2.2.3 Inserting Cable Head

CAUTION

Check the location of pin 1 before inserting.

Align pin 1 on the IC socket for an TFP-100G package on the user system with pin 1 on the user system interface cable head, and insert the user system interface cable head into the IC socket on the user system, as shown in figure 4.

2.2.4 Fastening Cable Head

CAUTION

- 1. Use a screwdriver whose head matches the screw head.
- 2. The tightening torque must be 0.054 N•m or less. If the applied torque cannot be accurately measured, stop tightening when the force required to turn the screw becomes significantly greater than that needed when first tightening. If a screw is tightened too much, the screw head may break or an IC socket contact error may be caused by a crack in the IC socket solder.
- 3. If the emulator does not operate correctly, cracks might have occurred in the solder. Check conduction with a tester and re-solder the IC socket if necessary.

Fasten the user system interface cable head to the IC socket for an TFP-100G package on the user system with the four screws (M2.0 x 10 mm) provided. Each screw should be tightened a little at a time, alternating between screws on opposing corners. Take special care, such as manually securing the IC socket soldered area, to prevent the soldered IC socket from being damaged by overtightening the screws or twisting the components.

Figure 4 Connecting User System Interface Cable to User System

2.2.5 Fastening Cable Body

Connect the cable body to the cable head.

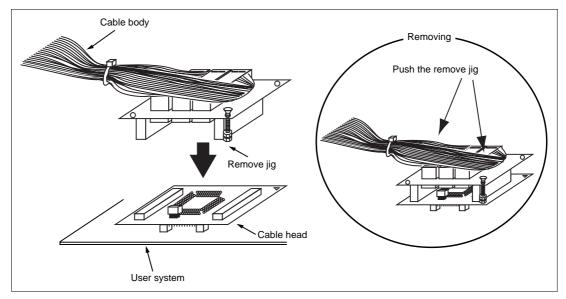


Figure 5 Fastening Cable Body

2.3 Recommended Dimensions for User System Mount Pad

Figure 6 shows the recommended dimensions for the mount pad (footprint) for the user system with an IC socket for an TFP-100G package (NQPACK100SE: manufactured by Tokyo Eletech Corporation). Note that the dimensions in figure 6 are somewhat different from those of the actual chip's mount pad.

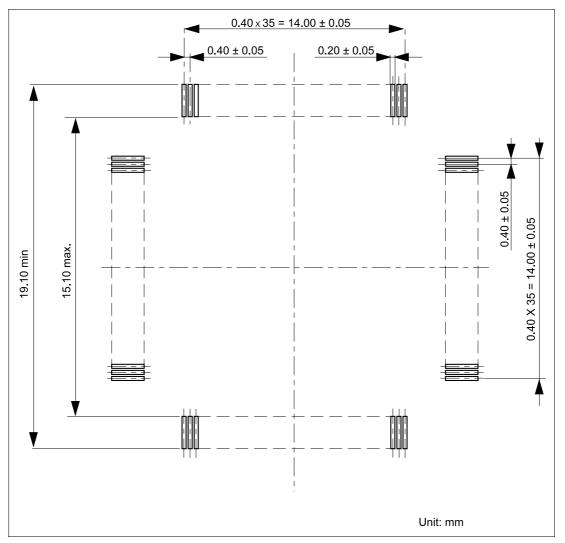


Figure 6 Recommended Dimensions for Mount Pad

RENESAS

10

2.4 Dimensions for User System Interface Cable Head

The dimensions for the user system interface cable head are shown in figure 7.

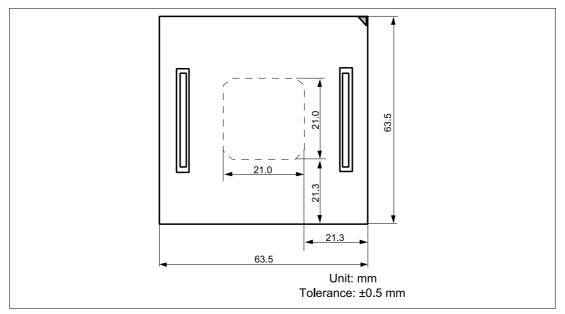


Figure 7 Dimensions for User System Interface Cable Head

2.5 Resulting Dimensions after Connecting User System Interface Cable

The resulting dimensions, after connecting the user system interface cable head to the user system, are shown in figure 8.

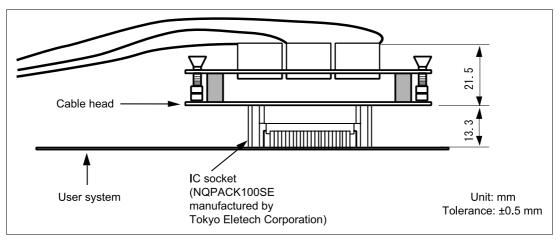


Figure 8 Resulting Dimensions after Connecting User System Interface Cable

Section 3 Installing the MCU to the User System

CAUTION

- 1. Check the location of pin 1 before inserting.
- 2. Use a screwdriver whose head matches the screw head.
- 3. The tightening torque must be 0.054 N•m or less. If the applied torque cannot be accurately measured, stop tightening when the force required to turn the screw becomes significantly greater than that needed when first tightening. If a screw is tightened too much, the screw head may break or an IC socket contact error may be caused by a crack in the IC socket solder.
- 4. If the MCU does not operate correctly, cracks might have occurred in the solder. Check conduction with a tester and re-solder the IC socket if necessary.

Check the location of pin 1 before inserting the MCU into the IC socket on the user system, as shown in figure 9. After inserting the MCU, fasten the socket cover with the provided four screws (M2.0 x 6 mm). Take special care, such as manually securing the IC socket soldered area, to prevent the IC socket from being damaged by overtightening the screws or twisting the components.

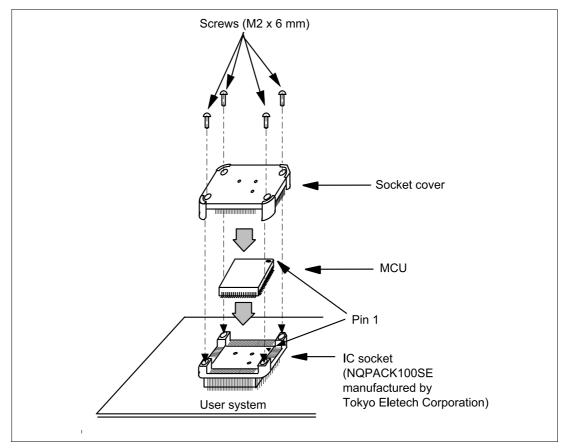


Figure 9 Installing MCU to User System

RENESAS

14

Section 4 Verifying Operation

- 1. When using the H8/300L series E6000 emulator (HS388REPI60H), turn on the emulator according to the procedures described in the H8/300L Series E6000 Emulator User's Manual (HS388REPI60HE).
- 2. Verify the user system interface cable connections by accessing ports and checking the bus states of the pins. If an error is detected, recheck the soldered IC socket and the location of pin 1.
- 3. System Clock (OSC2, 1)

When the system clock is selected in the HDI Configuration Window and jumper P4 is set in the user system interface cable, the system clocks in table 2 can be selected (see figures 10 and 11).

Configuration Window	User System Interface Cable (P4)	System Clock (Ø)
2 MHz	For the setting of P4, either pins 1-2 or 2-3 can be connected.	2 MHz
Target/2	1-2 connected	5 MHz
	2-3 connected	Target clock/2

Table 2Setting System Clocks

4. Subclock (DX2, 1)

When the switch is set on the expansion I/O board (Subclock selection) and jumper P5 is set on the user system interface cable, subclocks in table 3 can be selected. Select target subclock in the Configuration window (see figures 10 and 11).

Table 3Setting Subclocks

Expansion I/O Board (Subclock selection)	User System Interface Cable (P5)	Subclock (fw)
160 kHz	1-2 connected	160 kHz
76.8 kHz	_	76.8 kHz
The setting of the subclock selection switch can be either 160 kHz or 76.8 kHz.	2-3 connected	Target subclock

Figure 10 shows the Expansion I/O board Sub clock Selection, and figure 11 shows the location of jumpers P4 and P5.

Figure 12 shows the system clock oscillator on the user system interface cable and the subclock input specifications.

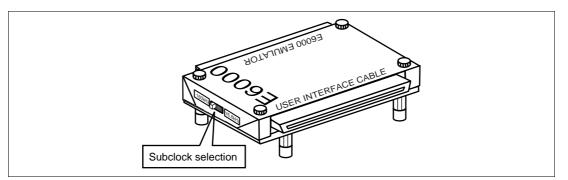


Figure 10 Expansion I/O board Subclock Selection

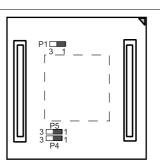


Figure 11 P4 and P5 Jumpers

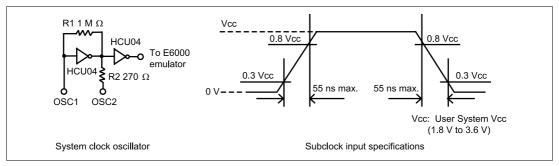


Figure 12 System Clock Oscillator and Subclock Input Specifications

Section 5 Notice

- 1. Make sure that pin 1 on the user system IC socket is correctly aligned with pin 1 on the cable head before inserting the cable head into the user system IC socket.
- 2. The dimensions of the recommended mount pad for the user system IC socket are different from those of the MCU.
- 3. To avoid breaking wires in the cable body, do not place heavy or sharp metal objects on the user system interface cable.
- 4. While the emulator station is connected to the user system with the user system interface cable, force must not be applied to the cable head. Position the emulator station, user system interface cable, and user system as shown in figure 13.

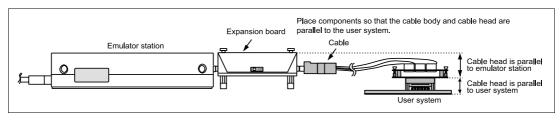


Figure 13 User System Interface Cable Location Example

5. The P1 jumper is used for testing. Do not remove the inserted jumper pin.

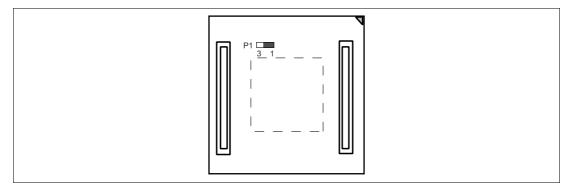


Figure 14 P1 Jumper

RENESAS

17