
All information contained in these materials, including products and product specifications, 

represents information on the product at the time of publication and is subject to change by 

Renesas Electronics Corp. without notice. Please review the latest information published by 

Renesas Electronics Corp. through various means, including the Renesas Technology Corp. 

website (http://www.renesas.com). 

 

 

 

 

 

User’s Manual 

 

 

EEPROM Emulation Library 

EEL - T05 

    

 

V850 Single Voltage Flash devices with Data Flash  
and based on UX6LF Flash technology 

 

 

 

 

 

 

 

Document No. U20280EE1V2UM00 

Date Published: 05.02.2014 

 Renesas Electronics Europe GmbH 



 User’s Manual U20280EE1V2UM00 2 

Notice 

1. All information included in this document is current as of the date this document is issued. 
Such information, however, is subject to change without any prior notice. Before purchasing or 
using any Renesas Electronics products listed herein, please confirm the latest product 
information with a Renesas Electronics sales office. Also, please pay regular and careful 
attention to additional and different information to be disclosed by Renesas Electronics such 
as that disclosed through our website. 

2. Renesas Electronics does not assume any liability for infringement of patents, copyrights, or 
other intellectual property rights of third parties by or arising from the use of Renesas 
Electronics products or technical information described in this document. No license, express, 
implied or otherwise, is granted hereby under any patents, copyrights or other intellectual 
property rights of Renesas Electronics or others. 

3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics 
product, whether in whole or in part. 

4. Descriptions of circuits, software and other related information in this document are provided 
only to illustrate the operation of semiconductor products and application examples.  You are 
fully responsible for the incorporation of these circuits, software, and information in the design 
of your equipment.  Renesas Electronics assumes no responsibility for any losses incurred by 
you or third parties arising from the use of these circuits, software, or information. 

5. When exporting the products or technology described in this document, you should comply 
with the applicable export control laws and regulations and follow the procedures required by 
such laws and regulations.  You should not use Renesas Electronics products or the 
technology described in this document for any purpose relating to military applications or use 
by the military, including but not limited to the development of weapons of mass destruction.  
Renesas Electronics products and technology may not be used for or incorporated into any 
products or systems whose manufacture, use, or sale is prohibited under any applicable 
domestic or foreign laws or regulations. 

6. Renesas Electronics has used reasonable care in preparing the information included in this 
document, but Renesas Electronics does not warrant that such information is error free.  
Renesas Electronics assumes no liability whatsoever for any damages incurred by you 
resulting from errors in or omissions from the information included herein. 

7. Renesas Electronics products are classified according to the following three quality grades:  
“Standard”, “High Quality”, and “Specific”.  The recommended applications for each Renesas 
Electronics product depends on the product’s quality grade, as indicated below.  You must 
check the quality grade of each Renesas Electronics product before using it in a particular 
application.  You may not use any Renesas Electronics product for any application 
categorized as “Specific” without the prior written consent of Renesas Electronics. Further, 
you may not use any Renesas Electronics product for any application for which it is not 
intended without the prior written consent of Renesas Electronics.  Renesas Electronics shall 
not be in any way liable for any damages or losses incurred by you or third parties arising from 
the use of any Renesas Electronics product for an application categorized as “Specific” or for 
which the product is not intended where you have failed to obtain the prior written consent of 
Renesas Electronics.  



 User’s Manual U20280EE1V2UM00 3 

8. The quality grade of each Renesas Electronics product is “Standard” unless otherwise 
expressly specified in a Renesas Electronics data sheets or data books, etc. 

“Standard”: Computers; office equipment; communications equipment; test and 
measurement  
 equipment; audio and visual equipment; home electronic appliances; machine  
 tools; personal electronic equipment; and industrial robots. 

“High Quality”: Transportation equipment (automobiles, trains, ships, etc.); traffic control  
 systems; anti-disaster systems; anti- crime systems; safety equipment; and  
 medical equipment not specifically designed for life support. 

“Specific”: Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control  
 systems;medical equipment or systems for life support (e.g. artificial life 
support  devices or systems), surgical implantations, or healthcare intervention (e.g. 
 excision, etc.), and any other applications or purposes that pose a direct threat 
to  human life. 

9. You should use the Renesas Electronics products described in this document within the range 
specified by Renesas Electronics, especially with respect to the maximum rating, operating 
supply voltage range, movement power voltage range, heat radiation characteristics, 
installation and other product characteristics. Renesas Electronics shall have no liability for 
malfunctions or damages arising out of the use of Renesas Electronics products beyond such 
specified ranges. 

10. Although Renesas Electronics endeavors to improve the quality and reliability of its products, 
semiconductor products have specific characteristics such as the occurrence of failure at a 
certain rate and malfunctions under certain use conditions. Further, Renesas Electronics 
products are not subject to radiation resistance design. Please be sure to implement safety 
measures to guard them against the possibility of physical injury, and injury or damage caused 
by fire in the event of the failure of a Renesas Electronics product, such as safety design for 
hardware and software including but not limited to redundancy, fire control and malfunction 
prevention, appropriate treatment for aging degradation or any other appropriate measures.  
Because the evaluation of microcomputer software alone is very difficult, please evaluate the 
safety of the final products or system manufactured by you. 

11. Please contact a Renesas Electronics sales office for details as to environmental matters such 
as the environmental compatibility of each Renesas Electronics product. Please use Renesas 
Electronics products in compliance with all applicable laws and regulations that regulate the 
inclusion or use of controlled substances, including without limitation, the EU RoHS Directive.  
Renesas Electronics assumes no liability for damages or losses occurring as a result of your 
noncompliance with applicable laws and regulations. 

12. This document may not be reproduced or duplicated, in any form, in whole or in part, without 
prior written consent of Renesas Electronics. 

13. Please contact a Renesas Electronics sales office if you have any questions regarding the 
information contained in this document or Renesas Electronics products, or if you have any 
other inquiries. 

(Note 1) “Renesas Electronics” as used in this document means Renesas Electronics 
Corporation and also includes its majority- owned subsidiaries. 

(Note 2) “Renesas Electronics product(s)” means any product developed or 
manufactured by or for Renesas Electronics. 



 User’s Manual U20280EE1V2UM00 4 

 Regional Information 

Some information contained in this document may vary from country to country. Before using any 
Renesas Electronics product in your application, please contact the Renesas Electronics office in your 
country to obtain a list of authorized representatives and distributors. They will verify:  

 • Device availability 

 • Ordering information 

 • Product release schedule 

 • Availability of related technical literature 

 • Development environment specifications (for example, specifications for 
third-party tools and components, host computers, power plugs, AC 
supply voltages, and so forth) 

 • Network requirements 

In addition, trademarks, registered trademarks, export restrictions, and other legal issues may also 
vary from country to country. 

Visit 

http://www.renesas.com 

to get in contact with your regional representatives and distributors. 

 

 

 



 User’s Manual U20280EE1V2UM00 5 

Table of Contents 

Chapter 1 Introduction ......................................................................................................................... 7 

1.1 Naming Conventions ................................................................................................................. 8 

Chapter 2 EEL Architecture ................................................................................................................. 9 

2.1 UX6LF Data Flash..................................................................................................................... 9 

2.1.1 33-bit Implementation ........................................................................................................ 9 

2.1.2 Dual operation.................................................................................................................... 9 

2.2 Layered Architecture ............................................................................................................... 10 

2.3 Data Flash Pools ..................................................................................................................... 11 

2.4 Safety Considerations ............................................................................................................. 12 

2.5 Feature Overview .................................................................................................................... 12 

2.6 EEL Flash block management y ............................................................................................. 13 

2.6.1 Logical block structure ..................................................................................................... 13 

2.6.2 Block lifecycle .................................................................................................................. 14 

2.6.3 Internal block structure .................................................................................................... 15 

2.7 EEL Data Sets Management .................................................................................................. 20 

2.7.1 Basic Concept .................................................................................................................. 20 

2.7.2 DP and RP ....................................................................................................................... 20 

2.7.3 Storage structure details .................................................................................................. 22 

Chapter 3 EEL Design .......................................................................................................................25 

3.1 Process management ............................................................................................................. 25 

3.1.1 EEL operations priority .................................................................................................... 25 

3.1.2 Process hierarchy ............................................................................................................ 26 

3.1.3 State machine .................................................................................................................. 28 

3.1.4 Asynchronous architecture .............................................................................................. 29 

3.1.5 Process errors and warnings ........................................................................................... 30 

3.2 Data Set search and read ....................................................................................................... 32 

3.2.1 ID-L and IDX tables ......................................................................................................... 32 

3.3 Start-up processing ................................................................................................................. 34 

3.4 Function & command execution times & latencies ................................................................. 36 

3.4.1 Library startup phase ....................................................................................................... 36 

3.4.2 Normal operation phase .................................................................................................. 38 

Chapter 4 Implementation .................................................................................................................40 

4.1 File structure ........................................................................................................................... 40 

4.1.1 Overview .......................................................................................................................... 40 

4.1.2 Delivery package directory structure and files ................................................................. 41 

4.2 EEL Linker sections ................................................................................................................ 43 

4.3 MISRA Compliance ................................................................................................................. 43 

Chapter 5 User Interface (API) ..........................................................................................................44 

5.1 Pre-compile configuration ....................................................................................................... 44 



 User’s Manual U20280EE1V2UM00 6 

5.2 Run-time configuration ............................................................................................................ 45 

5.2.1 FDL run-time configuration elements .............................................................................. 45 

5.2.2 EEL run time configuration elements ............................................................................... 47 

5.3 Data Types .............................................................................................................................. 50 

5.3.1 Error Codes ...................................................................................................................... 50 

5.3.2 User operation request structure ..................................................................................... 51 

5.3.3 Driver status ..................................................................................................................... 53 

5.4 EEL Functions ......................................................................................................................... 56 

5.4.1 Initialization / Shut down .................................................................................................. 56 

5.4.2 Suspend / Resume .......................................................................................................... 62 

5.4.3 Operational functions ....................................................................................................... 65 

5.4.4 Administrative functions ................................................................................................... 72 

Chapter 6 EEL Implementation into the user application ..................................................................77 

6.1 First steps ................................................................................................................................ 77 

6.1.1 Application sample ........................................................................................................... 77 

6.2 Standard EEL life cycle ........................................................................................................... 78 

6.2.1 Device start-up ................................................................................................................. 79 

6.2.2 Device normal operation .................................................................................................. 81 

6.2.3 Device power down ......................................................................................................... 82 

6.3 Special considerations ............................................................................................................ 83 

6.3.1 Endurance calculations .................................................................................................... 83 

6.3.2 Data Flash initialization .................................................................................................... 83 

6.3.3 Library handling by the user application .......................................................................... 85 

6.3.4 Concurrent Data Flash accesses..................................................................................... 86 

6.3.5 Entering power safe mode ............................................................................................... 87 

6.3.6 Library behaviour after operation interruption .................................................................. 88 

6.3.7 Application update issues ................................................................................................ 88 

Chapter 7 Revision History ................................................................................................................92 

 

 

 

 



EEPROM Emulation Library 

 User’s Manual U20280EE1V2UM00 7 

Chapter 1 Introduction 

This user’s manual describes the internal structure, the functionality and 
software interfaces (API) of the Renesas V850 EEPROM Emulation Library 
(EEL) type T05, designed for V850 based Flash devices with Data Flash 
based on the UX6LF Flash technology 

 

The device features differ depending on the used Flash implementation and 
basic technology node. Therefore, pre-compile and run-time configuration 
options allow adaptation of the library to the device features and to the 
application needs. 

The libraries are delivered in source code. However it has to be considered 
carefully to do any changes, as not intended behavior and programming faults 
might be the result. 

 

The development environments of the companies Green Hills (GHS), IAR and 
Renesas are supported. Due to the different compiler and assembler features, 
especially the assembler files differ between the environments. So, the library 
and application programs are distributed using an installer tool that allows 
selecting the appropriate environment. 

For support of other development environments, additional development effort 
may be necessary. Especially, but maybe not only, the calling conventions to 
the assembler code and compiler dependent section defines differ 
significantly. 

 

The libraries are delivered together with device dependent application 
programs, showing the implementation of the libraries and the usage of the 
library functions. 

 

The different options of setup and usage of the libraries are explained in detail 
in this document. 

 

Caution:  

Please read all chapters of the application note carefully.  
Much attention has been put to proper conditions and limitations description. 
Anyhow, it can never be ensured completely that all not allowed concepts of 
library implementation into the user application are explicitly forbidden. So, 
please follow exactly the given sequences and recommendations in this 
document in order to make full use of the libraries functionality and features 
and in order to avoid any possible problems caused by libraries misuse. 

 

The EEPROM emulation libraries together with the application samples, this 
application note and other device dependent information can be downloaded 
from the following URL: 

 

http://www.eu.renesas.com/update 

 



EEPROM Emulation Library 

 User’s Manual U20280EE1V2UM00 8 

1.1 Naming Conventions 

Certain terms, required for the description of the Flash and EEPROM 
emulation are long and too complicated for good readability of the document. 
Therefore, special names and abbreviations will be used in the course of this 
document to improve the readability. 

These abbreviations shall be explained here: 

 

Abbreviations / 
Acronyms 

Description 

Block Smallest erasable unit of a flash macro 

Code Flash 

Embedded Flash where the application code is stored. 
For devices without Data Flash EEPROM emulation 
might be implemented on that flash in the so called data 
area. 

Data Flash 
Embedded Flash where mainly the data of the EEPROM 
emulation are stored. Beside that also code operation 
might be possible. 

Dual Operation 

Dual operation is the capability to fetch code during 
reprogramming of the flash memory. Current limitation is 
that dual operation is only available between different 
flash macros. Within the same flash macro it is not 
possible! 

EEL EEPROM Emulation Library 

EEPROM 
emulation 

In distinction to a real EEPROM the EEPROM emulation 
uses some portion of the flash memory to emulate the 
EEPROM behavior. To gain a similar behavior some 
side parameters have to be taken in account. 

FAL Flash Access Library (Flash access layer) 

FCL Code Flash Library (Code Flash access layer) 

FDL Data Flash Library (Data Flash access layer) 

Flash 

“Flash EPROM” - Electrically erasable and 
programmable nonvolatile memory. The difference to 
ROM is, that this type of memory can be re-programmed 
several times. 

Flash Block 
A flash block is the smallest erasable unit of the flash 
memory. 

Flash Macro 
A flash comprises of the cell array, the sense amplifier 
and the charge pump (CP). For address decoding and 
access some additional logic is needed. 

NVM 
Non volatile memory. All memories that hold the value, 
even when the power is cut off. E.g. Flash memory, 
EEPROM, MRAM... 

RAM 
“Random access memory” - volatile memory with 
random access 

ROM 
“Read only memory” - nonvolatile memory. The content 
of that memory can not be changed. 

Serial programming 
The onboard programming mode is used to program the 
device with an external programmer tool. 

Single Voltage 

For the reprogramming of single voltage flashes the 
voltage needed for erasing and programming are 
generated onboard of the microcontroller. No external 
voltage needed like for dual- voltage flash types. 

 

 



EEPROM Emulation Library 

 User’s Manual U20280EE1V2UM00 9 

Chapter 2 EEL Architecture 

2.1 UX6LF Data Flash  

2.1.1 33-bit Implementation 

The Data Flash of devices in UX6LF Flash technology is based on a standard 
32-bit architecture. This means, that the data can be written and read in 32-bit 
units (read or write in 8-bit or 16-bit units is not possible!).  

Additionally to every 32-bit data word a 33rd bit (Tag) is available for free 
usage.  

While the 32 data bits can be read in a linear address room, the Tag can be 
read in another linear address room on a different address (every 32-bit 
address one tag can be read). The data address room starts from 0x02000000 
while the Tag address room starts from 0x02100000 

Furthermore, the Tag can be written independently from the other data and it 
is protected against bit failures separately. The FDL provides separate 
functions to write the data and the tags. 

The Tags are completely in the hand of the user application. In the EEL 
concept, the Tag is used to write additional management data in order to 
ensure data consistency in case of write interruptions. 

2.1.2 Dual operation 

Common for all Flash implementations is, that during Flash modification 
operations (Erase/Write) a certain amount of Flash memory is not accessible 
for any read operation (e.g. program execution or data read).  

This does not only concern the modified Flash range, but a certain part of the 
complete Flash system. The amount of not accessible Flash depends on the 
device architecture.  

A standard architectural approach is the separation of the Flash into Code 
Flash and Data Flash. By that, it is possible to read from the Code Flash (to 
execute program code or read data) while Data Flash is modified, and vice 
versa. This allows implementation of EEPROM emulation concepts with Data 
storage on Data Flash while all program code is executed from Code Flash. 

If not mentioned otherwise in the device users manuals, UX6LF devices with 
Data Flash are designed according to this standard approach. 

 

Note:  

It is not possible to modify Code Flash and Data Flash in parallel! 

 



EEPROM Emulation Library 

 User’s Manual U20280EE1V2UM00 10 

2.2 Layered Architecture 

This chapter describes the function of all blocks belonging to the EEPROM 
Emulation System.  

Even though this specification describes the functional block EEL, a short 
description of all concerned functional blocks and their relationship can be 
beneficial for the general understanding.  
 

 

Rough symbolic relationship between the functional blocks 

User Application

EEL

FDL

Data Flash Hardware

Code Flash

or User Application

FDL

Data Flash Hardware

Code Flash

 

 

Application  

The functional block “Application” should not use the functions offered by the 
FDL directly. FDL functions are reserved for EEL only. Exception is when the 
user implements a proprietary EEPROM emulation, it has to use functions 
provided by the FDL only. 
 

EEPROM Emulation Library (EEL) 

The functional block “EEPROM Emulation library” is the subject of this 
specification. It offers all functions and commands the “Application” can use in 
order to handle its EEPROM data.   
 

Data Flash Access Library (FDL) 

The “Data Flash Access Library” offers an interface to access any user-defined 
flash area, so called “FDL-pool” (described in next chapter). Beside the 
initialization function the FDL allows the execution of access-commands like 
write as well as a suspendable erase command.  

Note:  
General requirement is to be able to deliver pre-compiled EEL libraries, which 
can be linked to either Data Flash Access Libraries (FDL) or Code Flash 
Access Libraries (FCL). To support this, a unique API towards the EEL must 
be provided by these libraries. Following that, the standard API prefix FDL_...  
which would usually be provided by the FDL library, will be replaced by a 
standard Flash Access Layer prefix FAL_...  
All functions, type definitions, enumerations etc. will be prefixed by FAL_ or 
fal_. 
Independent from the API, the module names will be prefixed with FLD_ in 
order to distinguish the source/object modules for Code and Data Flash. 

Figure 1 



EEPROM Emulation Library 

 User’s Manual U20280EE1V2UM00 11 

2.3 Data Flash Pools 

The FDL pool defines the Flash blocks, which may be accessed by any FDL 
operation (e.g. write, erase). The limits of the FDL pool are taken into 
consideration by any of the FDL flash access commands. The user can define 
the size of the FDL-pool freely at project compilation time, while usually the 
complete Data Flash is selected. 

The FDL pool provides the space for the EEL pool which is allocated by the 
EEL inside the FDL-pool. The EEL pool provides the Flash space for the EEL 
to store the emulation data and management information. 

All FDL pool space not allocated by the EEL pool is freely usable by the user 
application, so is called the “User pool”. 

 

Pools details: 

 FDL-pool is just a place holder for the EEL-pool. It does not allocate any 
flash memory. The FDL-pool descriptor defines the valid address space 
for FDL access to protect all flash outside the FDL-pool against 
destructive access (write/erase) by a simple address check in the library. 
 
To simplify function parameter passing between FDL and the higher layer 
the physical Flash addresses (e.g. 0x02000000….0x0200FFFF) are 
transformed into a linear address room 0x0000….0xFFFF used by the 
FDL.  

 EEL-pool allocates and formats (virgin initialization) all flash blocks 
belonging to the EEL-pool. The header data are generated in proper way 
to be directly usable by the application.  

 User Pool is completely in the hands of the user application. It can be 
used to build up an own user EEPROM emulation or to simply store 
constants.  

 

Data Flash / FDL Pool 

 

User Pool

EEL Pool

User Pool

Data Flash / FDL Pool

User Application

EEL

 

 

 

Figure 2 



EEPROM Emulation Library 

 User’s Manual U20280EE1V2UM00 12 

2.4 Safety Considerations 

EEPROM emulation in the automotive market is not only operated under 
normal conditions, where stable function execution can be guaranteed. In fact, 
several failure scenarios should be considered.  

Most important issue to be considered is the interruption of a function e.g. by 
power fail or Reset. 

Differing from a normal digital system, where the operation is re-started from a 
defined entry point (e.g. Reset vector), the EEPROM emulation modifies Flash 
cells, which is an analogue process with permanent impact on the cells. Such 
an interruption may lead to instable electrical cell conditions of affected cells. 
This might be visible by undefined read values (read value != write value), but 
also to defined read values (blank or read value = write value). In each case 
the read margin of these cells is not given. The value may change by time into 
any direction.  

This is considered in the emulation design. Safety relevant considerations and 
concepts are mentioned in dedicated sup-chapters in this document. 

2.5 Feature Overview 

The new EEL concept improves quite some features known from today’s V850 
MF2/UX4 EEELib. Beside the same kind of user data management, based on 
data sets (DS) identified with certain IDs, many new or extended features are 
implemented: 

The old V850 MF2/UX4 EEELib searches DS’s in the Flash memory on every 
Read access as well as during the Refresh process. Even though being 
executed in background, the read latency is very big.  
In order to overcome this situation, the new EEL concept uses a RAM table to 
store the latest DS instance. So, the read access performance will be 
significantly increased. 

Read and Write will be the only user visible EEL operations. All other 
operations are executed invisible in background and don’t cause a significant 
latency to the Read and Write operations. Therefore: 

 An Erase can be suspended and resumed 

 A Refresh can be interrupted after each word write for data Read 

 A Refresh can be interrupted after each DS copy for data Write 

 
DS write abort is handled very simple by stopping the write process. Writing 
closing management data as for the V850 MF2 EEELib is no longer required 
due to the new data management method. 

The startup performance is significantly improved regarding the V850 
MF2/UX4 implementation as the DS management does no longer need to 
overwrite data in order to ensure the data consistency. 

Ring buffer style Flash block management reaches better Flash endurance 
usage. While the old concept required a constant “copy zone” in order to 
execute Refresh section operations, the new concept requires copy space only 
if the data at the ring buffer tail (eldest part of the ring buffer) is not already 
written new in the ring buffer. 

 



EEPROM Emulation Library 

 User’s Manual U20280EE1V2UM00 13 

2.6 EEL Flash block management y 

To simplify function parameter passing between the FAL and the EEL the 
physical space used by the FCB is transformed into a linear address room 
starting from 0x00000000 (FDL address range). This should save space in the 
reference-area of the EEPROM driver when writing new instance references. 
Also the protection mechanisms can be implemented in a more effective way.  

For block addressing the original physical block numbers are used in the same 
way starting from 0. 

2.6.1 Logical block structure 

The Flash blocks are used as a kind of ring buffer. The below picture 
considers a write pointer staying fix, while the ring buffer rotates clockwise.  

Every Flash block reaching the write pointer gets activated. This block is called 
the active zone head. 

Every block reaching the end of the active zone is getting consumed. The end 
of the active zone is called later on the active zone tail. 

Before getting activated again the block is prepared. 

 

Each block will pass a complete life cycle on every ring buffer loop. 

 

Basic ring buffer structure 

Logical 

ring

Physical 

Flash

active

(full)

active

(full)

prepared

Under 

erasing

prepared

consumed

consumed

active

prepared
1'st 

physical 

block

last 

physical 

block

active

(full)

active

(full)
prepared

prepared

Under 

erasingconsumed

consumed

active

Write pointer
containing actual and old data waiting for new data

Consumed 

region

Erased 

region

prepared

 

 

Figure 3 



EEPROM Emulation Library 

 User’s Manual U20280EE1V2UM00 14 

2.6.2 Block lifecycle 

The life cycle of a block passes different steps which are largely marked inside 
the block header in specific words.  

The active state and the occupied state are not explicitly distinguished by 
block header information. They all have the active marker set. Anyhow, inside 
the library only the latest block containing required data (not full, the write 
pointer points into this block) contains the active status. All other blocks 
containing required data are full and so, are treated internally occupied. 

The consumed blocks, blocks under erasing or other blocks with undefined 
state due to power fail are considered as invalid and are all treated in the 
same way by the library. They enter the preparation phase in the next life cycle 
and are then prepared. 

In case of an erase fail the affected Flash block is considered to be defect and 
is so marked excluded. This block will not enter the lifecycle again. 

 

Block Lifecycle 

 

occupied

Under 

erasing

consumed

active

prepared

Invalid

Section header 

information

Active

Prepared

Excluded Excluded

Block Lifecycle

 

Figure 4 



EEPROM Emulation Library 

 User’s Manual U20280EE1V2UM00 15 

2.6.3 Internal block structure 

Every Flash block of the logical ring buffer contains 3 areas. While the block 
header size is fix, the data zone and the Reference (REF) zone grow towards 
each other. A block is full and the next block must be activated, when only 1~3 
blank words (depending on different conditions) as delimiter remain between 
the two zones. 
 

Block header: 
The header contains the block status information. 
 

Data Zone: 
Contains the pure user data to be stored without any management information.  
 

Reference (REF) zone: 
This is a table with entries containing the references (pointers) to the data. 

 

 

Basic Block structure 

 

Block Header

Data Zone

REF Zone

Blank

Growing

Growing

Block bottom 

address

Block top 

address  

 

While the block management (including the block header) is described in the 
next sub-chapters, the data management within the blocks (including REF 
Zone and Data Zone) is described in the main chapter EEL Data Sets 
Management. 

 

Figure 5 



EEPROM Emulation Library 

 User’s Manual U20280EE1V2UM00 16 

2.6.3.1 Block Header 

The block header contains the block status words. 

 

Block header words 

 

widx byte 3 byte 2 byte 1 byte 0

0 invalid/exclude flag 0

1 invalid/exclude flag 1

2 prepare flag

3 active flag 0

4 active flag 1

5 CS erase counter (8bit CS protected)

6 CS reference write pointer (8 bit CS protected)

7 CS read data pointer (8 bit CS protected)RDP

A -1

EC

RWP

I - 0

I - 1

P

A -0

 

 

I – 0, I – 1: 

These words together build a 64bit word containing the information, if a block 
is invalid or excluded. 

By writing 0x5555555555555555, the block is marked excluded. 

By writing 0x0000000000000000, the block is marked invalid. 

If on startup the words are not blank and not matching one of the above 
patterns, the block is judged invalid. This is the block default state which may 
result from a power fail during block status change operations. 

If on startup the words are blank, the other header words determine the block 
status. 

 

P: 

The prepare marker is set by the preparation process. With the pattern 
0x55555555, the block is marked prepared. 

 

A – 0: 

The activation flag 0 is written 1st in the block activation process with the 
pattern 0x55555555.  
It locks the block for the activation, so that in case of a power fail in this 
process, a later activation after restart will not lock this block again, but will use 
the next one. 

 

A – 1: 

The activation flag 1 is written last in the activation process with the pattern 
0x55555555. 

Figure 6 



EEPROM Emulation Library 

 User’s Manual U20280EE1V2UM00 17 

EC: 

The erase counter is written as the 1st word in the preparation process.  
Rule for counter calculation is: 
    if the block is the 1st physical block 
        EC = ( previous block EC ) + 1 
    otherwise 
        EC = ( previous block EC )  
By that rule, on each ring buffer turn around the erase counter in each block is 
increased by 1. 
The erase counter stability is ensured by the P word, written afterwards in the 
preparation process. If the P word is valid, the EC is electrically stable. 
Additionally, the EC is checksum protected in order to be robust against 
accidental overwriting due to application failures. 

 

 

Erase Counter example 

 

occupied

occupied

prepared

Under 

erasing

prepared

consumed

consumed

active

prepared

EEL pool

Physical Flash

EC

121

121

undefined

120

120

120

120

120

120

 

Note: 

The erase counter does not necessarily match the real Flash block erase 
cycles, but only the erase cycles since the EEPROM emulation has been set 
up last time. The erase counter is affected by Data Flash complete erase or 
manual Flash modification (programmer or debugger).

Figure 7 



EEPROM Emulation Library 

 User’s Manual U20280EE1V2UM00 18 

RWP: 

The reference write pointer is written in the activation process after A – 0 and 
before A – 1. 
It points to the previous block separator between REF zone and Data zone. By 
that, the EEL knows for each occupied block the last REF zone entry. 
The RWP stability is ensured by the A - 1 word, written afterwards in the 
activation process. If the A - 1 word is valid, the RWP is electrically stable. 

Additionally, the RWP is checksum protected in order to be robust against 
accidental overwriting due to application failures. 

 

Reference Write Pointer 

 

Data Zone

REF Zone

Blank

RWP

Data Zone

REF Zone

Blank

RWP

Data Zone

REF Zone

Blank

RWP

ActiveOccupiedOccupied
 

 

RDP: 

The Read Data Pointer is used for treatment of the special situation that only 
one passive block is left (“Pool full situation”). 

 

Figure 8 



EEPROM Emulation Library 

 User’s Manual U20280EE1V2UM00 19 

2.6.3.2 Block header data transitions 

During EEPROM emulation block header information changes according to the 
block status. The following table shows the data change process and the 
resulting block header data. 

As the RDP word (see last sub-chapter) is not block status related, it is not 
mentioned here. 

 

Block header data transitions 

I-0 I-1 P A-0 A-1 EC RWP

 - erased FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF

ongoing FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF ???????? FFFFFFFF

ongoing FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF XXXXXXXX FFFFFFFF

ongoing FFFFFFFF FFFFFFFF ????????? FFFFFFFF FFFFFFFF XXXXXXXX FFFFFFFF

finished FFFFFFFF FFFFFFFF 55555555 FFFFFFFF FFFFFFFF XXXXXXXX FFFFFFFF

ongoing FFFFFFFF FFFFFFFF 55555555 ???????? FFFFFFFF XXXXXXXX FFFFFFFF

ongoing FFFFFFFF FFFFFFFF 55555555 55555555 FFFFFFFF XXXXXXXX FFFFFFFF

ongoing FFFFFFFF FFFFFFFF 55555555 55555555 FFFFFFFF XXXXXXXX ????????

ongoing FFFFFFFF FFFFFFFF 55555555 55555555 FFFFFFFF XXXXXXXX XXXXXXXX

ongoing FFFFFFFF FFFFFFFF 55555555 55555555 ???????? XXXXXXXX XXXXXXXX

finished FFFFFFFF FFFFFFFF 55555555 55555555 55555555 XXXXXXXX XXXXXXXX

ongoing ??????? FFFFFFFF  - - - - - - - -  - - - - - - - -  - - - - - - - -  - - - - - - - -  - - - - - - - - 

ongoing 55555555 FFFFFFFF  - - - - - - - -  - - - - - - - -  - - - - - - - -  - - - - - - - -  - - - - - - - - 

ongoing 55555555 ????????  - - - - - - - -  - - - - - - - -  - - - - - - - -  - - - - - - - -  - - - - - - - - 

finished 55555555 55555555  - - - - - - - -  - - - - - - - -  - - - - - - - -  - - - - - - - -  - - - - - - - - 

ongoing ?????????  - - - - - - - -  - - - - - - - -  - - - - - - - -  - - - - - - - -  - - - - - - - -  - - - - - - - - 

ongoing 0  - - - - - - - -  - - - - - - - -  - - - - - - - -  - - - - - - - -  - - - - - - - -  - - - - - - - - 

ongoing 0 ?????????  - - - - - - - -  - - - - - - - -  - - - - - - - -  - - - - - - - -  - - - - - - - - 

finished 0 0  - - - - - - - -  - - - - - - - -  - - - - - - - -  - - - - - - - -  - - - - - - - - 

FFFFFFFF

555555555

0

XXXXXXXX

?????????

 - - - - - - - - 

Block Header words
Block Operation Status

"Set Prepared"

"Set Active"

"Set Excluded"

"Set Invalid"

Blank Flash word

Data is irrelevant and/or undefined

Pattern 0x55555555

Pattern 0x00000000

Erase counter / reference write pointer data

Data write in progress --> Data is undefined

 

 

The block header information is read on library startup and maintained library 
internal during run-time. 

The block header data is modified during run-time by the block management 
processes (see next chapter) and during startup in case of detected 
inconsistencies. 

Figure 9 



EEPROM Emulation Library 

 User’s Manual U20280EE1V2UM00 20 

2.7 EEL Data Sets Management 

2.7.1 Basic Concept 

Differing from real EEPROM, where user data is referenced by the address 
information, the user data in the Renesas EEPROM emulation is referenced 
by an identifier (ID). An ID is unique for a certain set of data with a dedicated 
length. Differing from EEPROM, the data is stored “somewhere” in the Flash 
memory but not on a fix address.  

 

Overview - Entry in the REF zone pointing to the user data in the Data zone 

Block Header

Data Zone

REF Zone

Blank

REF entry

Data

 

 

The user data is stored in the Data Zone sequentially according to the write 
sequence. Based on the Flash write size of 1 word, the data is stored word 
aligned. 

In order to find the data later on in the Flash, the REF zone contains the DS 
management information, which is basically the ID and the pointer to the data. 
Further information is required in the REF-zone to ensure data consistency in 
case of write interruption and in order to improve the robustness against user 
application fails resulting in Flash words overwrite. 

2.7.2 DP and RP 

The emulation library requires two pointers in the active section in order to 
write new DS instances to the Flash 

 Data Pointer (DP) 
The DP is the pointer to the next write location for the user data. 

 Reference Pointer (RP) 
The RP is the pointer to the next location for a REF zone entry. 

Figure 10 



EEPROM Emulation Library 

 User’s Manual U20280EE1V2UM00 21 

 

DP and RP 

 

Block Header

Data Zone

REF Zone

Blank

RP

DP

Block bottom 

address

Block top 

address  

 

RP and DP grow together. When the pointers match, only one blank word is 
between the zones. The Flash block is considered as full and the next block 
must be activated. 

2.7.2.1 Block overlapping DS’s 

In order not to waste Flash space when a DS does not completely fit into a 
Flash block, the DS is partly written into the block and finished in the next 
block (or blocks in case of DS bigger than one block). 

 

Block Overlapping DS (normal size DS) 

Block Header

Data Zone

REF Zone

Blank

Block Header

Blank

Active Prepared

Block Header

REF Zone

Blank

Blank

Occupied Active

New DS – part 1

New DS – part 2

 DS Write

Data Zone

Block Header

 

 

Note:  

Based on the EEL implementation it is not allowed that the DS size exceeds 
more than one Data Flash block. So, overlapping multiple blocks is not 
possible. 

 

Figure 11 

Figure 12 



EEPROM Emulation Library 

 User’s Manual U20280EE1V2UM00 22 

2.7.3 Storage structure details 

The following 2 sub-chapters describe the Data Sets (DS) storage structure 
details. The structures differ depending on: 

 The DS contains valid user data 

 The DS contains the information that the user data of a certain ID is 
invalid and so, may not be read until valid data is written again.  
A Read command on a ID which last DS instance is invalidated will return 
the error “invalidated” instead of returning data. 

 

2.7.3.1 DS containing normal data 

The DS’s are stored according to the following picture: 
 

DS Data and management information in Flash  

byte 3 byte 2 byte 1 byte 0 1bit Tag

SOR REF entry Data n-3

EOP

SOR REF entry Data n-2

REF EOP

Zone SOR REF entry Data n-1

EOP

SOR REF entry Data n

EOP

Blank

Data n (7 Bytes)

EOR

Data n-1 (14 Bytes)

Data

Zone EOR

Data n-2 (8 Bytes)

EOR

EOR Data n-3 (1 Byte)

DRP

DCS

DRP

DCS

DRP

DCS

DRP

DCS

 

 SOR Start of reference entry (1-bit Tag) 
   It is written 1st in order to block one REF zone list entry. 

 DRP Data Reference Pointer 
   Is written after SOR and contains: 
   - 16-bit lower half word: ID 
   - 16-bit upper half word: widx, a pointer to the data  
Note:  
DRP can address 64k addresses. This is sufficient to cover 256kB Flash 
with word addressing. If bigger Flash than 256kB is implemented, the 
address granularity must be increased to: 2 word for 512kB and 4words 
for 1MB Flash. This will be a configuration parameter for the library. 

 EOP End of DRP (1-bit Tag) 
Is written immediately after the DRP. When written, the read 
margin of the DRP word is ensured by the write sequence. 

 DCS Data Check Sum 
This is a simple 32bit checksum, calculated over the user 
data and DRP. It ensures higher robustness (detection) on 
accidental overwriting of data or DRP. 
Additionally, by the write sequence it is ensured, that the read 
margin of the data is given, when the DCS is available. 

Figure 13 



EEPROM Emulation Library 

 User’s Manual U20280EE1V2UM00 23 

 
NOTE: 
The DRP widx is excluded from the checksum as it is 
updated in case of a Refresh, where the DCS is not re-
calculated (may not be recalculated as in case of an 
application update combined with IDL table update, the DCS 
indicates a possible DS length change to the user 
application). 

 EOR  End of Reference (1-bit Tag) 
Additional safety for the case of data set write interruptions. 
In order not to waste an additional Flash word for this, the last 
data words Tag is used for EOR. 

 

2.7.3.2 Invalidated DS 

The Invalidated DS’s are stored according to the following picture (data n-1 
and data n-2): 
 

DS Data and management information in Flash (invalidated DS) 

byte 3 byte 2 byte 1 byte 0 1bit Tag

SOR REF entry Data n-3

EOP

SOR REF entry Data n-2 (Invalidated DS)

REF EOP/EOR

Zone SOR REF entry Data n-1(Invalidated DS)

EOP/EOR

SOR REF entry Data n

EOP

Blank

Data n (7 Bytes)

Data EOR

Zone EOR Data n-3 (1 Byte)

DRP

DCS

DRP

DCS

DRP

DCS

DRP

DCS

 

 

 SOR Start of reference entry (1-bit Tag) 
It is written 1st in order to block one REF zone list entry. 

 DRP Data Reference Pointer (invalidated DS) 
It is written after SOR and contains: 
- 16-bit lower half word: ID 
- 16-bit upper half word: widx = 0x0000 
 
Note:  
Widx = 0 identifies that the DS is invalidated and no data 
zone contents is addressed by this REF entry 

 EOP/EOR End of Reference (1-bit Tag) 
Is written immediately after the DCS. When written, the read 
margin of the DRP word is ensured by the write sequence. 

Figure 14 



EEPROM Emulation Library 

 User’s Manual U20280EE1V2UM00 24 

 DCS Data Check Sum 
This is a simple 32bit checksum, calculated just over the 
DRP. It ensures higher robustness (detection) on accidental 
overwriting of the DRP. 
Additionally, by the write sequence it is ensured, that the read 
margin of the EOR is given, when the DCS is available. 
 
NOTE: 
The DRP widx is excluded from the checksum as it is 
updated in case of a Refresh, where the DCS is not re-
calculated (may not be recalculated as in case of an 
application update combined with IDL table update, the DCS 
indicates a possible DS length change to the user application. 



EEPROM Emulation Library 

 User’s Manual U20280EE1V2UM00 25 

Chapter 3 EEL Design 

3.1 Process management 

3.1.1 EEL operations priority 

The EEL provides the following user operations which are invoked by 
appropriate commands: Immediate DS Write, Immediate DS Invalidate, DS 
Write, DS Invalidate, DS Read, Format, Cleanup. These commands have 
partially been mentioned before and are described in the API description. 

The Read and Write operations are considered to be prioritized according to 
the following scheme: 

Priority 1)  Read, can interrupt Write, Invalidation, Immediate  
Write and Immediate Invalidation 

Priority 2)  Immediate Write and Immediate Invalidation can interrupt  
    Write and Invalidation 

Priority 3)  Write and Invalidation 

 
The following rules apply to these operations: 

All of the above operations can interrupt ongoing background operations. 

A command invoking an operation when an operation of the same priority is 
ongoing will be rejected. 

When an operation of a higher priority is invoked, a possibly ongoing operation 
of a lower priority will be suspended. 

When invoking an operation of a lower priority, a possibly ongoing operation of 
a higher priority is will be finished first then the lower priority operation is 
executed. 

 

Furthermore, special conditions apply for the other operations: 

Format operation requires that the system executes no user or background 
operations. If this is not the case, the command will be rejected.  
When started, all other operations are blocked. 

Cleanup operation requires that the system executes no user or background 
operations. If this is not the case, the command will be rejected.  
After being started other operations can be executed, the cleanup operation 
will be suspended and later on resumed automatically. 

 



EEPROM Emulation Library 

 User’s Manual U20280EE1V2UM00 26 

3.1.2 Process hierarchy 

All user and background operations are served by a state machine, executing 
dedicated processes. Resulting from the operations hierarchy, the basic 
process hierarchy is defined as follows: 

 Read process  
Has the highest priority in order to have the lowest execution latency of 
the Read operation. 

 Immediate Write process  
This process serves the Immediate Write operation and Immediate 
Invalidation operation which have a high priority. 

 Write process 
This process serves the Write operation and Invalidation operation which 
have a lower priority than the immediate ones.  

 Write (Refresh) process  
This process serves the Write operations invoked by the Refresh process 
which have the lowest write priority.  

 Prepare process 
Is invoked by the Supervision process and so, needs a higher priority than 
the supervision process but a lower than the user Read/Write processes. 

 Refresh process 
Is invoked by the Supervision process and so, needs a higher priority than 
the supervision process but a lower than the user Read/Write processes 
and the Refresh Write process. 

 Format process 
Has a lower priority but anyhow is started only when no other process is 
active. 

 Supervision process 
This controls the startup processing, when no other process may be 
active. As soon as other processes are activated, this one is pushed to 
the background in order to be transparent for the user application. 

 

The process scheduler judges the priority of the main processes and 
suspends/resumes the processes accordingly. 

The following rules are considered: 

 The startup process prohibits Read operations until DP and RP are 
calculated. 

 The startup process prohibits Write operations until all DS margins are 
ensured. 

 Process states need to be finished before a process can be suspended. 
This includes all Flash operations except Erase. 

 If a process state containing a Flash erase is active:  

o The Flash erase is suspended. 

o The process step is finished. 

o A Flash erase resume process step is set as next step. 

 

The basic suspend / resume mechanism is overruled by the startup procedure, 
where all other processes are locked from the beginning and are released step 
by step according to the Startup status. 



EEPROM Emulation Library 

 User’s Manual U20280EE1V2UM00 27 

Furthermore, the Format process immediately locks all other processes except 
Preparation, which is required for the Format. 

 

Note:  
All Write/Invalidation processes are based on one source code. The 
differentiation in the processes is done by the process local variables. 

 

Process priority scheme 

 

 READ process

PREPARATION process
Set prepared

sub-process

Set exclude

sub-process

suspend resume

suspend resume

Highest Priority

Main processes, 

handled by the 

scheduling mechanism

Sub-Processes, started 

and controlled by the 

main processes

DS WRITE process

(Immediate User)
Set active sub-process

SUPERVISION process

Lowest Priority

Read margin check

sub-process

FORMAT process

suspend resume

suspend resume

    Startup sub-process:

      - Check ring buffer 

      - Check pool full

      - Get block pointers

      - Ensure DS margin 

      - Build RAM table

suspend resume

DS WRITE process

(User)

suspend resume

DS WRITE process

(REFRESH)

REFRESH process
Set invalide

sub-process

suspend resume

 

Figure 15 



EEPROM Emulation Library 

 User’s Manual U20280EE1V2UM00 28 

3.1.3 State machine 

The state machine checks the activity of the main processes (Read, Write …) 
and executes the active process with the highest priority. 

 

 

State machine - process selection 

 

Active 

flag

0

1

0

1

0

0

Process 

selection

0

 READ process

PREPARATION process

REFRESH process

DS WRITE process

(Immediate User)

SUPERVISION process

FORMAT process

DS WRITE process

(REFRESH)

1

DS WRITE process

(User)

 

 

 

Each process / sub-process may contain different states with a limited 
execution time. 

 

Figure 16 



EEPROM Emulation Library 

 User’s Manual U20280EE1V2UM00 29 

 
Process states execution 

 

WRITE process0 à 1

Process activation

WRITE process1

Process execution
S1

S2

S3

S4

S5

WRITE process1 à 0

Process deactivation

S5

S1

 

 

After finishing one state, the next state within this (sub) process is stored and 
the control is given back to the state machine, which then again selects the 
highest priority active process to execute. 

All processes except the lowest priority supervision process have an exit or 
exception state, which result in deactivation of the process, so that other lower 
priority processes can be executed. 

 

3.1.4 Asynchronous architecture  

 

Each state has a strictly limited execution time. Based on that, the library 
function controlling the state machine (EEL_Handler, see API description) will 
immediately return to the user application. Due to dual operation between 
Code Flash and Data Flash the upper application can continue operation while 
frequently invoking the state machine handler function. 

Figure 17 



EEPROM Emulation Library 

 User’s Manual U20280EE1V2UM00 30 

3.1.5 Process errors and warnings 

3.1.5.1 Error reaction and return 

Due to the case, that errors may happen in cause of user activated processes 
(e.g. write, read, format) or background processes (prepare, refresh, 
supervision), the error return to the user and the complete system reaction on 
the errors must be clearly defined. 

The error reaction is classified in the chapter 5.3.1, ”Error Codes”: 

 Warnings, e.g. EEL_ERR_BLOCK_EXCLUDED 
These warnings are signalled to the user application but don’t result in a 
emulation system reaction. 

 Errors resulting in complete system lock, e.g. 
EEL_ERR_POOL_INCONSISTENT 
The error is signalled to the user application and the complete system is 
locked: 
- No user commands accepted. 
- All ongoing user operations are stopped and return with error 
  EEL_ERR_ACCESS_LOCKED. 
- All background processes are stopped. 

 Errors resulting in read only mode, e.g. EEL_ERR_FLASH_ERROR 
during data set write: 
The error is signalled to the user application and the complete system is 
in read only mode: 
- Only further user read command accepted, write and format are locked. 
- All ongoing user operations are stopped and return with error 
  EEL_ERR_ACCESS_LOCKED (a read operation cannot be ongoing as  
  this has the highest priority). 
- All background processes are stopped. 

 

The errors/warnings are returned to the user application on two different ways: 

 Errors on background operations are returned by a special function 
returning the driver status. Independently, in case of errors, ongoing and 
future user commands will be answered with 
EEL_ERR_ACCESS_LOCKED. 

 Errors on user commands (Write, Read, Format) will be returned as 
command answer. 

3.1.5.2 Internal process error handling 

Every process has an own error status. The reaction on errors is different from 
the type of process: 

 Sub-processes (e.g. set-invalid, set active) 
These are not treated as individual processes but as states of  their 
”master” processes.  
 
On errors in the sub-processes just the master processes error status is 
set and a defined state (run state of the supervision process or finish state 
of other processes) of the master process is entered. 

 Background processes (DS Write (Refresh), Refresh, Prepare) 
All these processes are activated by another user or background process. 
Typically Supervision as top level background process activates other 
background processes (e.g. Supervision activates Refresh --> Refresh 
activates DS Write Refresh). 
As special case also the Format user operation activates Prepare. 
 



EEPROM Emulation Library 

 User’s Manual U20280EE1V2UM00 31 

On errors the process error status is set and the affected process is 
finished. The error reaction is taken over by the higher level process when 
execution is continued there. 

 Background process Supervision 
This top level background process activates the background processes. 
After finish of these processes, the supervision checks the error status of 
these processes and depending on the result, the system reaction is 
handled (see 3.1.5.1, “Error reaction and return”). 
This also includes the startup sub-process functions which are also 
handled by the supervision. 

 User command processes (Read, Write, Format) 
These processes may activate other processes (e.g. Format activates 
prepare). After finish of these processes,  the user command processes 
check the error status of the activated processes and depending on the 
result, the system reaction is handled (see 3.1.5.1, “Error reaction and 
return”). 

 



EEPROM Emulation Library 

 User’s Manual U20280EE1V2UM00 32 

3.2 Data Set search and read 

3.2.1 ID-L and IDX tables 

The library uses internal tables to store the DS size information and latest DS 
location.  

While the DS size is stored together with the ID statically in ROM, the pointers 
to the latest DS instances are evaluated on library startup and stored in RAM. 

 

 

Library ID Tables 

 

ID 0 Length

ID 1 Length

ID 2 Length

ID 3 Length

ID 4 Length

ID n-2 Length

ID n-1 Length

ID n Length

Data Flash pointer

Data Flash pointer

Data Flash pointer

Data Flash pointer

Data Flash pointer

Data Flash pointer

Data Flash pointer

Data Flash pointer

occupied

occupied

prepared

Under erasing

prepared

consumed

consumed

active

prepared

Data Flash

RAM

IDX-Table

ROM 

ID-L Table

16bit 16bit 16bit

EEL 

Pool

 

 
The ID-L table (ROM table) contains one entry for each ID available in the 
system, together with its DS length information. This table is configured at 
compile time. 

 

IDX table (RAM table) contains for each ID available in the system the pointer 
to the latest data instance. On EEL startup the IDX table is filled and 
continuously updated on each DS Write access. 

Figure 18 



EEPROM Emulation Library 

 User’s Manual U20280EE1V2UM00 33 

3.2.1.1 Data Read Mechanisms 

 
ROM table search 

Whenever a DS with a dedicated ID shall be read, the requested ID is 
searched in the ROM table. The index of the ROM table entry with the fitting ID 
is then used to get the data pointer (to the Data Flash) from the RAM table.  

This ROM table search is fast, but the RAM table must be initialized on startup 
which requires some time. 

The Rom table is used for Read as well as for the Refresh process. 

 

REF zone search 

In order to be able to read data without initialized RAM table, the library 
provides another read (data search) mechanism. The library can parse the 
REF zone of the blocks and read the entries sequentially until an entry with the 
requested ID is found. It needs to be considered, that the REF zone parsing 
requires some time and 100% CPU load.  

This search mechanism is called REF-zone search. 
The REF zone search is used in the library startup phase, when the ID-L table 
is not yet initializes and also in special library operation modes (see next sub-
chapter). 

 

 



EEPROM Emulation Library 

 User’s Manual U20280EE1V2UM00 34 

3.3 Start-up processing 

The start-up processing is controlled by the EEL state machine. After library 
initialization and start-up invocation (see EEL_Startup function API), several 
start-up process steps are executed until the system is in normal operation. 
Along with the start-up progress the access rights to the data and the library 
features are unlocked and the full performance of the EEL is reached. 

The start-up progress can be checked by the user application with the function 
EEL_GetDriverStatus which returns the access status and the operational 
status. Please check the next figure for the status values depending on the 
progress: 
 

Start-up process progress steps 

Start-up 
progress 

access status operational status comment 

EEL Initialized 
EEL_ACCESS_
LOCKED 

EEL_OPERATION
_PASSIVE 

All library 
operations are 
prevented. 

EEL startup 
started 

EEL_ACCESS_
LOCKED 

EEL_OPERATION
_STARTUP 

All library 
operations are 
prevented. 

EEL startup 
ongoing -  
basic startup 
finished 

EEL_ACCESS_
READ_WRITE 

EEL_OPERATION
_STARTUP 

DS Read is 
possible with limited 
performance (REF 
zone search). 

DS Write is possible 
until the prepared 
blocks are full. 

EEL startup 
ongoing -  
RAM table 
filled 

EEL_ACCESS_
UNLOCKED 

EEL_OPERATION
_STARTUP 

DS Read is 
possible with full 
performance (ROM 
table search). 

DS Write is possible 
and supervision 
processing is active 
to manage the ring 
buffer. 

EEL startup 
end 

EEL_ACCESS_
UNLOCKED 

EEL_OPERATION
_BUSY or _IDLE 
(depending if 
Refresh/Prepare 
operations are to 
be done) 

- DS Read and DS 
Write as before  
- Electrical margin 
of the latest DS 
instances is 
ensured. 

 

In case of a fatal error during any start-up step, the library switches to 
EEL_ACCESS_LOCKED and EEL_OPERATION_PASSIVE and the function 
EEL_GetDriverStatus will additionally return an appropriate error. 

 

Note: 

The last step (Ensure the electrical margin of the latest DS instances) checks if 
the last DS instances have been completely written. Therefore it checks if the 
last step of a DS write was executed (EOR is written). If not, redundant 
information (valid DCS) ensures that the DS data is valid. On detection of such 
cases, the DS is refreshed (copied to active zone head).  

Table 1 



EEPROM Emulation Library 

 User’s Manual U20280EE1V2UM00 35 

is
0

0
is

0
1

is
0

n

is
1

0
is

1
1

is
1

m

is
2

0
is

2
1

is
2

m

is
3

0
is

3
1

G
e

t 
B

lo
c

k
 S

ta
tu

s

C
h

e
c

k
 R

in
g

 b
u

ff
e

r 

c
o

n
s

is
te

n
c

y

In
it

 r
in

g
 b

u
ff

e
r 

v
a

ri
a

b
le

s
 &

 

c
h

e
c

k
 p

o
o

l 
fu

ll
R

E
S

E
T

0
1

2
3

3
0

t[
m

s
]

G
e

t 
p

o
in

te
rs

is
x
0

is
x
1

is
x
y

is
x
2

is
4

m

P
e

rm
a

n
e

n
t 

s
u

p
e

rv
is

io
n

(s
ta

rt
in

g
 w

it
h

 

e
n

s
u

ri
n

g
 D

S
 m

a
rg

in
)

is
3

m

is
4

0
is

4
1

B
u

il
d

 R
A

M
 

ta
b

le

L
im

it
e

d
 W

ri
te

 a
c
c
e

s
s
 &

 L
im

it
e

d
 

R
e

a
d

 a
c
c
e

s
s
 e

n
a

b
le

d

F
u

lly
 o

p
e

ra
ti
o

n
a

l

(a
ft
e

r 
D

S
 m

a
rg

in
s
 e

n
s
u

re
d

)

E
E

L
_
A

C
C

E
S

S
_

L
O

C
K

E
D

A
c

c
e

s
s

 l
e

v
e

l

E
E

L
_

A
C

C
E

S
S

_
R

E
A

D
_
W

R
IT

E
E

E
L
_
A

C
C

E
S

S
_

U
N

L
O

C
K

E
D

is
<

x
y
>

: 
 i
n

te
rn

a
l 
lib

ra
ry

 s
ta

te
 m

a
c
h

in
e

 s
ta

te
s

E
E

L
_

O
P

E
R

A
T

IO
N

_
S

T
A

R
T

U
P

O
p

e
ra

ti
o

n
a

l

le
v

e
l

E
E

L
_
O

P
E

R
A

T
IO

N
_
B

U
S

Y

E
E

L
_
O

P
E

R
A

T
IO

N
_
ID

L
E

 

Start-up processing steps Figure 19 



EEPROM Emulation Library 

 User’s Manual U20280EE1V2UM00 36 

 

3.4 Function & command execution times & latencies 

Basically three important times need to be considered when implementing the 
EEL into a user application: 

 Operation invocation latency 
This is the time from calling EEL_Execute to issue the command and start 
an operation (e.g. Read, Write, ...) up to the point where the process of 
the operation is really started. 
This latency is determined by execution of higher priority operations but 
also by the delay to suspend a lower priority operation.  
Some process steps of lower priority operations cannot be suspended 
because they started Flash Write operations (erase can immediately be 
suspended).  
The 1st steps of the DS Write process until the user data is written cannot 
be suspended for higher priority Flash write operations because then the 
data consistency would be endangered. 
So, these process steps must be finished and by this determine the 
invocation latency of a higher priority operation. 

 EEL_Handler execution time 
The handler execution time should be typically below 100us on a 100MHz 
device in order to realize a system with reliable timing. During normal 
operation this can be reached, but in the startup phase the execution 
times will be longer as complex calculations and searches are executed. 
In the startup phase this time is affected by many conditions and so can 
only be measured for a reference system, whereas the real timing needs 
to be evaluated by the customer in the user application.  
Issues affecting this time are e.g. DS Size, higher priority operations 
ongoing, pool size,...  

 Overall operation execution time 
This is the time to execute a complete operation, like user DS write, user 
DS Read from operation invocation to operation finish.  
This time is affected by many conditions and so can only be measured for 
a reference system, whereas the real timing needs to be evaluated by the 
customer in the user application.  
Issues affecting this time are e.g. Flash Write time (in the evaluations also 
the worst case time need to be considered), DS Size, operation 
invocation latency, higher priority operations ongoing, ... 
So, in the next sub-chapters this time is not mentioned again. 

3.4.1 Library startup phase 

The library needs to execute various process steps according to the 
implementation concept (see startup phase description). The EEL_Handler 
execution time during steps will be partially >>100us, which need to be 
considered in the library implementation concept. 

 
Note:  

From implementation point of view the startup phase will end when the 
operational status changes from EEL_OPERATION_STARTUP to 
EEL_OPERATION_BUSY/IDLE. Then all startup operations are finished.  
From timing point of view, the startup phase will end when the access status 
changes from EEL_ACCESS_READ_WRITE to EEL_ACCESS_UNLOCKED. 
The remaining startup operations are executed in background and transparent 
for the user. Also the early Read (see below) ends on 
EEL_ACCESS_UNLOCKED. 
Please refer to chapter 5.3.3, “Driver status” for the defines. 



EEPROM Emulation Library 

 User’s Manual U20280EE1V2UM00 37 

3.4.1.1 Early Read command 

Operation invocation latency 

The maximum latency of the Read operation invocation by the EEL_Execute 
function is defined by the EEL_Handler execution time (see comments above). 

Furthermore, after invocation of the read, start of the Read process need to 
wait for the end of a possibly started 4-word Data Flash write (up to 4 words 
can be written by the Flash hardware in sequence without software interaction) 
caused by a Write command or by the startup process. 

 
EEL_Handler execution time 

A Read command executed in the library startup phase while the RAM table is 
not (completely) filled is called early read. The data of a DS with a certain ID to 
be read is found as follows: 

 If the ID-X RAM table entry belonging to the ID is already filled, the entry 
addresses the data and the data can be read quickly. 

 If the ID-X RAM table entry belonging to the ID is not yet filled, the DS is 
searched by parsing the REF entries from the youngest one backwards 
until a valid DS with the ID is found.  

According to the possibly necessary REF entry parsing, the early Read may 
last longer time (>>100us) and requires 100% CPU load. 

3.4.1.2 Early Immediate Write / Immediate Invalidation command 

The early Immediate Write sequence does not differ to the normal Immediate 
Write.  

Generally, a Write operation needs to wait for the end of a preceding Write or 
Invalidation operation. Trying to invoke a Write before will be rejected. 

 
Operation invocation latency 

The maximum latency of the Write operation invocation by the EEL_Execute 
function is defined by the EEL_Handler execution time (see comments above). 

Furthermore, after invocation of the write, starting of the Write/Invalidation 
process need to wait for: 

 The end of a higher priority Read command. 

 The end of blocking by a lower priority DS Write process invoked by user 
DS Write/Invalidation command or background Refresh process. In order 
to ensure data and ring buffer consistency, any DS Write process need to 
block higher priority Write commands until the process step to write the 
user data is reached. Blocking time is defined by 6 times a 1-word Data 
Flash Write (3-times to write SOR, RWP, EOP & 3 times to possibly 
activate a new block). 

 
EEL_Handler execution time 

The execution time should be <100us on a 100MHz device. 



EEPROM Emulation Library 

 User’s Manual U20280EE1V2UM00 38 

3.4.1.3 Early Write / Invalidation command 

The early Write sequence does not differ to the normal Write.  

Generally, a Write operation needs to wait for the end of a preceding Write or 
Invalidation operation. Trying to invoke a Write before will be rejected. 

Operation invocation latency 

The maximum latency of the Write operation invocation by the EEL_Execute 
function is defined by the EEL_Handler execution time (see comments above). 

Furthermore, after invocation of the write, starting of the Write process need to 
wait for: 

 The end of a higher priority Read, Immediate Write or Immediate 
Invalidation command. 

 The end of blocking by a lower priority DS Write process invoked by user 
DS Write/Invalidation command or background Refresh process. In order 
to ensure data and ring buffer consistency, any DS Write process need to 
block higher priority Write commands until the process step to write the 
user data is reached. Blocking time is defined by 6 times a 1-word Data 
Flash Write (3-times to write SOR, RWP, EOP & 3 times to possibly 
activate a new block). 

EEL_Handler execution time 

The execution time should be <100us on a 100MHz device. 

 

3.4.2 Normal operation phase 

If not mentioned otherwise, in the normal operation phase the EEL_Handler 
function execution time should always below 100us on a 100MHz device. 

An ongoing Flash erase will not block any user command. The erase will be 
suspended and later on resumed. Anyhow, after a configurable number of 
times suspending, the warning EEL_ERR_ERASESUSPEND_OVERFLOW is 
returned in order to inform the user to give sufficient time to complete the 
erase operation rather than extremely frequently invoking 
Read/Write/Invalidation operations. 

3.4.2.1 Read command 

Operation invocation latency 

The maximum latency of the Read operation invocation by the EEL_Execute 
function is defined by the EEL_Handler execution time (see comments above). 

Furthermore, after invocation of the read, start of the Read process need to 
wait for the end of a possibly started 4-word Data Flash write (up to 4 words 
can be written by the Flash hardware in sequence without software interaction) 
caused by a Write command or by the background process. 

 
EEL_Handler execution time 

Typically the handler execution time will be below 100us, but might be 
increased above, if the DS to be read is big.  

3.4.2.2 Immediate Write / Immediate Invalidation command 

The normal operation Immediate Write and Immediate Invalidation sequence 
does not differ to the early Immediate Write/Invalidation. So please refer to this 
description. 



EEPROM Emulation Library 

 User’s Manual U20280EE1V2UM00 39 

3.4.2.3 Write / Invalidation command 

The normal operation Write/Invalidation sequence does not differ to the early 
Write/Invalidation. So please refer to this description. 

3.4.2.4 Format command 

The Format command is considered as an exclusive command and can only 
be executed if the background state machine is EEL_OPERATION_IDLE or 
EEL_OPERATION_PASSIVE. So, invocation by EEL_Execute is rejected until 
this state is reached. 

 
Operation invocation latency 

The operation is invoked without latency as no other operations are ongoing. 
 

EEL_Handler execution time 

The handler execution time will be below 100us. 

3.4.2.5 Cleanup command 

The Cleanup command is considered as an exclusive command and can only 
be executed if the background state machine is EEL_OPERATION_IDLE. So, 
invocation by EEL_Execute is rejected until this state is reached. 

 
Operation invocation latency 

The operation is invoked without latency as no other operations are ongoing. 

 
EEL_Handler execution time 

The Cleanup command only sets a variable to more often call the Refresh 
process and Prepare process in background. The handler execution time will 
be below 100us. 

 



EEPROM Emulation Library 

 User’s Manual U20280EE1V2UM00 40 

Chapter 4 Implementation 

4.1 File structure 

The library is delivered as a complete compilable sample project which 
contains the EEL and FDL libraries and in addition to an application sample to 
show the library implementation and usage in the target application. 

The application sample initializes the EEL and does some dummy data set 
Write and Read operations. 

 

Differing from former EEPROM emulation libraries, this one is realized not as a 
graphical IDE related specific sample project, but as a standard sample project 
which is controlled by makefiles. 

Following that, the sample project can be built in a command line interface and 
the resulting elf-file can be run in the debugger. 

 

The FDL and EEL files are strictly separated, so that the FDL can be used 
without the EEL. However, using EEL without FDL is not possible. 

The delivery package contains dedicated directories for both libraries 
containing the source and the header files. 

 

Note:  

The application sample does not contain sample code for the FDL interface 
usage, but only for the EEL interface. Anyhow, as the EEL contains FDL 
functions calls, the usage of the FDL functions can be derived from that. 

4.1.1 Overview 

The following picture contains the library and application related files. 

 

Library and application file structure 

 

Libray

FDL.a

EEL.a

EEL_...c

EEL_...c
FDL_...c

EEL_...c

Precompiled 

Library

Source Code 

Library

User

FDL_Descriptor.c

EEL_Descriptor.c

EEL_...c

EEL_...c

App....c

Describtors

Passed to the 

library 

Source Code 

Application

FDL.h

FDL_Types.h

EEL.h

EEL_Types.h

FDL_Cfg.h

EEL_Cfg.h

Library Files – Fix, may not be touched by the user

Library pre-compile configuration (Only on souce code delivery) – File name fix, File content user configurable

Application (User) Code – Completely in the hand of the user

Library 

Configuration

API declaration

FDL_Descriptor.h

EEL_Descriptor.h

 

 

 

The library code consists of different source files, starting with FDL/EEL_... 
The files may not be touched by the user, independently, if the library is 
distributed as source code or pre-compiled.  

The file FDL/EEL.h is the library interface functions header file.  

Figure 20 



EEPROM Emulation Library 

 User’s Manual U20280EE1V2UM00 41 

The file FDL/EEL_Types.h is the library interface parameters and types header 
file. 

In case of source code delivery, the library must be configured for compilation. 
The file FDL/EEL_Cfg.h contains defines for that. As it is included by the 
library source files, the file contents may be modified by the user, but the file 
name may not. 

FDL/EEL_Descriptor.c and FDL/EEL_Descriptor.h do not belong to the 
libraries themselves, but to the user application. These files reflect an 
example, how the library descriptor ROM variables can be built up which need 
to be passed with the functions FDL/EEL_Init to the FDL/EEL for run-time 
configuration (see FDL user manual and 5.4.1.1, “EEL_Init”).  

 The structure of the descriptor is passed to the user application by 
FDL/EEL_Types.h. 

 The value definition should be done in the file FDL/EEL_Descriptor.h. 

 The constant variable definition and value assignment should be done in 
the file FDL/EEL_Descriptor.c. 

 

If overtaking the files FDL/EEL_Descriptor.c/h into the user application, only 
the file FDL/EEL_Descriptor.h need to be adapted by the user, while 
FDL/EEL_Descriptor.c may remain unchanged. 

 

4.1.2 Delivery package directory structure and files 

 

[root] 

Release.txt  Installer package release notes 

 

[root]\[make] 

GNUPublicLicense.txt Make utility license file 

libiconv2.dll         DLL-File required by make.exe 

libintl3.dll          DLL-File required by make.exe 

make.exe             Make utility 

 

[root]\[<device name>]\[compiler] 

Build.bat   Batch file to build the application sample 

Clean.bat  Batch file to clean the application sample 

Makefile   Makefile that controls the build and clean process 

         

[root]\[<device name>]\[<compiler>]\[sample] 

EELApp.h  Application sample header with function prototypes 
and collecting all includes 

EELApp_Main.c  Main source code 

EELApp_Control.c Source code of the control program for EEEPROM 
     emulation 

target.h   Target device and application related definitions. 

... device header files ... ( GHS:  df<device number>.h,  
                 io_macros.h, ...  

           IAR:  io_70f3xxx.h 

  REC:  - ) 

... startup file ...  ( GHS:  Startup_df<dev. num.>.850 

         IAR:  DF3xxx_HWInit.s85 



EEPROM Emulation Library 

 User’s Manual U20280EE1V2UM00 42 

            REC:  cstart.asm) 

... linker directive file ...  ( GHS:  Df<device number>.ld 

         IAR:  lnk70f3xxx.xcl 

          REC:  df3xxx.dir ) 

             

[root]\[<device name>]\[<compiler>]\[sample]\[EEL] 

EEL_Cfg.h  Header file with definitions for library setup at 
compile time 

EEL.h   Header file containing function prototypes 

EEL_Types.h  Header file containing calling structures and error  
definitions 

EEL_Descriptor.h Descriptor file header with the run-time EEL  
configuration. To be edited by the user. 

EEL_Descriptor.c Descriptor file with the run-time EEL configuration.  
     Should not be edited by the user. 

 

[root]\[<device name>]\[<compiler>]\[sample]\[EEL]\[lib]  

EEL_Global.h  Library internal defines, function prototypes and  
variables 

EEL_UserIF.c   Source code for the EEL internal state machine,  
service routines and initialization 

EEL_BasicFct.c  Source code of functions called by the state machine 

 

[root]\[<device name>]\[<compiler>]\[sample]\[FDL] 

FDL_Cfg.h  Header file with definitions for library setup at 
compile time 

FDL.h   Header file containing function prototypes 

FDL_Types.h  Header file containing calling structures and error  
definitions 

FDL_Descriptor.h Descriptor file header with the run-time FDL  
configuration. To be edited by the user. 

FDL_Descriptor.c Descriptorfile with the run-time EEL configuration.  
     Should not be edited by the user. 

 

[root]\[<device name>]\[<compiler>]\[sample]\[FDL]\[lib] 

FDL_Env.h  Library internal defines for the Flash programming  
     hardware 

FDL_Global.h  Library internal defines, function prototypes and  
    variables 

FDL_UserIF.c   Source code for the library user interface and service  
functions 

FDL_HWAccess.c Source code for the libraries HW interface 

 



EEPROM Emulation Library 

 User’s Manual U20280EE1V2UM00 43 

4.2 EEL Linker sections 

The following sections are EEPROM emulation library related: 

 FAL_Text 
FDL code section, containing the hardware interface and user interface. 

 FAL_Const 
FDL data section, containing library internal constant data 

 FAL_Data 
FDL Data section containing all FDL internal variables 

 EEL_Text 
EEL code section containing the state machine, user interface and FAL 
interface 

 EEL_Const 
EEL data section, containing library internal constant data 

 EEL_Data 
EEL Data section containing all EEL internal variables 

 

4.3 MISRA Compliance 

The EEL and FDL have been tested regarding MISRA compliance. 

The used tool is the QAC Source Code Analyzer which tests against the 
MISRA 2004 standard rules. 

All MISRA related rules have been enabled. Findings are commented in the 
code while the QAC checker machine is set to silent mode in the concerning 
code lines. 
 



EEPROM Emulation Library 

 User’s Manual U20280EE1V2UM00 44 

Chapter 5 User Interface (API) 

5.1 Pre-compile configuration 

The pre-compile configuration of the EEL may be located in the EEL_cfg.h. 
The user has to configure all parameters and attributes by adapting the related 
constant definition in that header-file.  

 

The configuration contains the following elements: 

EEL_CFG_MAX_DATA_FLASH_SIZE: 
Defines the maximum supported Data Flash size. 

Currently Data Flash up to 256kB is supported. This define is reserved for 
future use and must be set to EEL_CFG_MAX_DATA_FLASH_SIZE_256K. 

 

EEL_CFG_TAG_READ_OFFSET: 
Defines the read address offset of the Data Flash Tags regarding the Data 
Flash base address. 

This define is reserved for future use and must be set to 0x100000 for the 
current devices. 

 

Implementation in EEL_Cfg.h: 

#define EEL_CFG_MAX_DATA_FLASH_SIZE EEL_CFG_MAX_DATA_FLASH_SIZE_256K 

 

#define EEL_CFG_TAG_READ_OFFSET 0x100000 

 



EEPROM Emulation Library 

 User’s Manual U20280EE1V2UM00 45 

5.2 Run-time configuration 

The overall EEL run-time configuration is defined by an EEL specific part (EEL 
run-time configuration) and by the FDL run-time configuration. Background of 
the splitting is that the FDL requires either common, by EEL and FDL used 
information (e.g. block size) or EEL related information (e.g. about the EEL 
pool size). So, this information is part of the FDL run-time configuration. 

Both configurations of FDL and EEL are stored in descriptor structures which 
are declared in FDL_Types.h / EEL_Types.h and defined in FDL_Descriptor.c 
/ EEL_Descriptor.c with header files FDL_Descriptor.h / EEL_Descriptor.h. 
The descriptor files (.c and .h) are considered as part of the user application. 

The defined descriptor structures are passed to the libraries as reference by 
the functions FDL_Init and EEL_Init.  

5.2.1 FDL run-time configuration elements 

The descriptor contains the following elements; please also refer to chapter 
2.3”Data Flash Pools”: 

 
blkSize: 
Defines the Data Flash block size in Bytes. This is just a configuration option 
reserved for future use. In all current Devices the Data Flash size is fixed to 
2kB=0x800Bytes. 

Value range:  Currently fixed to 0x800 
 

falPoolSize: 
Defines the number of blocks used for the FAL pool, which means the User 
Pool + EEL Pool. Usually, the FAL pool size equals the total number of Flash 
blocks. 

Value range:  Min:  EEL pool size 
   Max:  Physical number of Data Flash blocks 
 

eelPoolStart: 
Defines the first Data Flash block number used as EEL pool.  

Value range:  Min:  FAL Pool start block 
  Max:  eelPoolStart + eelPoolSize  <= falPoolSize 
 

eelPoolSize: 
Defines the number of blocks used for the EEL pool. 

Value range:  Min:  4 Blocks (required for proper EEL operation) 
  Max:  FAL pool size, condition:  
    eelPoolStart + eelPoolSize  <= falPoolSize 

 

 

Implementation: 

 

The descriptor structure is defined in the module FDL_Types.h 

typedef struct { 

                    fal_u16 blkSize_u16; 

                    fal_u16 falPoolSize_u16; 

                    fal_u16 eelPoolStart_u16; 

                    fal_u16 eelPoolSize_u16; 

               } fal_descriptor_t; 



EEPROM Emulation Library 

 User’s Manual U20280EE1V2UM00 46 

The descriptor variable definition and filling is part of the user application. The 
files FDL_Descriptor.h/.c give an example which shall be used by the user 
application. Only FDL_Descriptor.h need to be modified for proper 
configuration while FDL_Descriptor.c can be kept unchanged. 
 

Example variable definition and filling in FDL_Descriptor.c: 

const fal_descriptor_t  eelApp_fdlConfig =  

                        { 

                            FAL_CONFIG_BLOCK_SIZE, 

                            FAL_CONFIG_DATAFLASH_SIZE,         

                            EEL_CONFIG_BLOCK_START,         

                            EEL_CONFIG_BLOCK_CNT 

                        }; 

 

Example configuration in FDL_Descriptor.h: 
 

Example 1) 

Data Flash size is 32kB, separated into blocks of 2kB.  
The EEL shall use the complete Data Flash for the EEL pool: 

    #define FAL_CONFIG_DATAFLASH_SIZE               16 

    #define FAL_CONFIG_BLOCK_SIZE                   0x800 

    #define EEL_CONFIG_BLOCK_START                  0 

    #define EEL_CONFIG_BLOCK_CNT                    16 

 

Example 2) 

Data Flash size is 32kB, separated into blocks of 2kB. 
The EEL shall use blocks 2 to 11 for the EEL pool, while blocks 0 to 1 and 12 
to 15 can be used as user pool: 

    #define FAL_CONFIG_DATAFLASH_SIZE               16 

    #define FAL_CONFIG_BLOCK_SIZE                   0x800 

    #define EEL_CONFIG_BLOCK_START                  2 

    #define EEL_CONFIG_BLOCK_CNT                    10 

 

Example 3) 

Data Flash size is 32kB, separated into blocks of 2kB; the EEL shall not be 
used at all. The complete Data Flash shall be used as user pool: 

    #define FAL_CONFIG_DATAFLASH_SIZE               16 

    #define FAL_CONFIG_BLOCK_SIZE                   0x800 

    #define EEL_CONFIG_BLOCK_START                  0 

    #define EEL_CONFIG_BLOCK_CNT                    0 

 



EEPROM Emulation Library 

 User’s Manual U20280EE1V2UM00 47 

5.2.2 EEL run time configuration elements  

The descriptor contains the following elements: 
 

addDF 
Defines the Data Flash start address in the physical address room. The 
definition is required for EEL internal calculations. 
This is just a configuration option reserved for future use. In all current Devices 
the Data Flash address is fixed. 

Value range:  Fixed to 0x2000000 

 
blkRefreshThreshold 
Defines the number of blocks that shall be prepared in the ring buffer by 
default. In case of threshold underflow, the EEL supervision will initiate 
Refresh / Prepare operations by time until the threshold is exceeded again. 
Increasing the threshold allows fast sequences of data write without having to 
give the EEL time to do the Refresh/Prepare operations. Reducing the 
threshold improves the Flash usage as written data sets stay longer in the ring 
buffer and need less Refresh copy operations. When the threshold is set too 
low and the ring buffer gets full due to continuous data set write, the library will 
return error Pool Full and block further write operations until the supervision 
had enough time to prepare at least one additional Flash block. 

Value range:  Min:  2 Blocks (required for proper EEL operation) 
    Max:  EEL pool size – 2 

 
Example:   
On a threshold of 6 the EEL will always try to have 6 prepared blocks as 
passive pool in the ring buffer. This means that the user application could write 
10kB data in sequence without giving the EEL time to do background 
operations to prepare new space again (one block must remain prepared for 
pool full situation handling). 
 

~1/3 of the total available Flash blocks might be a reasonable starting point to 
evaluate the balance between the possibility to write fast data sequences (big 
threshold) and reducing the data copy effort on refresh (low threshold). The 
service function EEL_GetSpace provides a tool to trace the available free 
space in the ring buffer during run-time which allows threshold optimization 
during run-time. 
 

*IDLTab 
Pointer to ROM ID-L table, see chapter 3.2.1, “ID-L and IDX tables”. 

The ID-L table need to be defined as a 2-dimensional array of 16bit values as 
follows: 

{ { ID1, size 1 }, { ID2, size 2 }, { ID3, size 3 }, ..... } 

Value range:  ID Min:   1 
   ID Max:  0xFFFE 
    Size min: 1Byte (is adjusted library internal to word  
      boundary) 
    Size max: Block size – Block header size - 12Bytes 
      = 2048 – 32 - 12  
      = 2004Bytes 
      (this is caused by the EEL implementation.  
      Bigger data size would require significant  
      overhead in the power fail and supervision 
      concepts). 



EEPROM Emulation Library 

 User’s Manual U20280EE1V2UM00 48 

*IDXTab  
Pointer to ROM ID-X table, see chapter 3.2.1, “ID-L and IDX tables”. 
 
The ID-X table is a 1-dimensional array of 16bit values. The ID-X table RAM is 
provided by the user application and filled and handled by the EEL. 
 

IDLTabIdxCnt 
Defines the size of the ID-L/X table in “number of entries”. 
 

eraseSuspendThreshold_u16 
When the EEL background operation executes the Prepare process, the Data 
Flash block is erased. Any user Read or Write operation will suspend the 
Flash Erase and after the operation resume the Erase again. Based on the 
UX6LF Flash implementation, this Erase Suspend/Resume flow is restricted. 
The Erase operation might not finish, if it is interrupted continuously. The user 
application must be realized in a way that the erase operation once gets the 
time to complete, which means that the user application must provide a time 
frame as long as the worst case Flash block erase time in which the erase 
operation is not suspended. As long as the erase is not finished, the EEL 
cannot continue to provide new free passive pool space for further write 
operations. In order to signal too often Erase suspends to the user application, 
the eraseSuspendThreshold_u16 can be configured. A user operation 
resulting in exceeding the threshold will return a warning “erase suspend 
overflow”. This is no hard error resulting in EEL reaction but just a signal to the 
user application to provide enough time to the EEL to finish the background 
operation. 

Value range:  Min:  0 (On every erase suspend the warning is returned) 
  Max:  0xFFFF 

 
Implementation: 

The descriptor structure is defined in the module EEL_Types.h 

typedef struct { 

                    eel_u32         addDF_u32; 

                    eel_u16         blkRefreshThreshold_u16; 

                    const eel_u16   (*idlTab_pau16)[2]; 

                    eel_u16         *idxTab_pau16; 

                    eel_u32         idlTabIdxCnt_u32;  

    eel_u16         eraseSuspendThreshold_u16; 

               }    eel_descriptor_t; 

 

The descriptor variable definition and filling is part of the user application. The 
files EEL_Descriptor.h/.c give an example which shall be used by the user 
application. Only EEL_Descriptor.h need to be modified for proper 
configuration while EEL_Descriptor.c can be kept unchanged. 
 



EEPROM Emulation Library 

 User’s Manual U20280EE1V2UM00 49 

Example variable definition and filling in EEL_Descriptor.c: 

const eel_u16           idlTab_au16[][2] = EEL_CONFIG_IDL_TABLE; 

eel_u16                 idxTab_au16[sizeof( idlTab_au16 )>>1]; 

 

const eel_descriptor_t  eelApp_eelConfig =  

                    { 

                        EEL_CONFIG_DF_BASE_ADDRESS, 

                        EEL_CONFIG_BLOCK_CNT_REFRESH_THRESHOLD, 

                        idlTab_au16, 

                        &(idxTab_au16[0]), 

                        ( sizeof( idlTab_au16 ) >> 2 ), 

                        EEL_CONFIG_ERASE_SUSPEND_THRESHOLD 

                    }; 

 

Example configuration in EEL_Descriptor.h: 

Data Flash size is 32kB, separated into blocks of 2kB.  
The EEL shall use the complete Data Flash for the EEL pool, 
blkRefreshThreshold is set to ~1/3 of 16 Flash blocks = 5, the erase shall be 
suspend able up to 10 times until the erase suspend warning is issued: 

#define EEL_CONFIG_DF_BASE_ADDRESS              0x2000000    

#define EEL_CONFIG_BLOCK_CNT_REFRESH_THRESHOLD  0x05         

#define EEL_CONFIG_ERASE_SUSPEND_THRESHOLD      10         

 

/*------------------------------------------------------------*\ 

    EEL_CONFIG_IDL_TABLE 

    Descriptor table containing data set identifier and data set 

    length as:  

    { { <16-bit ID>, <16-bit length in bytes> }, {...},  

      {...}, .... } 

/*------------------------------------------------------------*\ 

#define EEL_CONFIG_IDL_TABLE {                       \ 

                               { 0x1111, 0x0005 },   \ 

                               { 0x2222, 0x0006 },   \ 

                               { 0x3333, 0x0007 },   \ 

                               { 0x4444, 0x0008 },   \ 

                               { 0x5555, 0x0009 },   \ 

                               { 0x6666, 0x000a },   \ 

                               { 0x7777, 0x000b },   \ 

                               { 0x8888, 0x000c },   \ 

                               { 0x9999, 0x000d },   \ 

                               { 0xaaaa, 0x0015 },   \ 

                               { 0xbbbb, 0x0018 },   \ 

                               { 0xcccc, 0x0033 }    \ 

                             }   



EEPROM Emulation Library 

 User’s Manual U20280EE1V2UM00 50 

E
rr

o
r

E
x

p
la

n
a

ti
o

n
R

o
o

t 
c

a
u

s
e

 j
u

d
g

e
m

e
n

t
E

E
L

 O
p

e
ra

ti
o

n
 I

m
p

a
c

t
R

e
c

o
m

m
e

n
d

e
d

 a
p

p
li

c
a

ti
o

n
 r

e
a

c
ti

o
n

E
E

L
_

O
K

T
h

e
 o

p
e
ra

ti
o
n

 f
in

is
h

e
d

 s
u

c
c
e
s
s
fu

lly
N

o
n

e
C

o
n

ti
n

u
e
 o

p
e
ra

ti
o
n

 

E
E

L
_

B
U

S
Y

T
h

e
 o

p
e
ra

ti
o
n

 h
a
s
 b

e
e
n

 s
ta

rt
e
d

 s
u

c
c
e
s
s
fu

lly
N

o
n

e
C

o
n

ti
n

u
e
 o

p
e
ra

ti
o
n

 

E
E

L
_

E
R

R
_

C
O

N
F

IG
U

R
A

T
IO

N
T

h
e
 E

E
L

_
In

it
 f
u

n
c
ti
o
n

 w
a
s
 c

a
lle

d
 w

it
h

 w
ro

n
g

 c
o
n

fig
u

ra
ti
o
n

 d
a
ta

 
A

p
p

lic
a
ti
o
n

 b
u

g
T

h
e
 l
ib

ra
ry

 i
s
 n

o
t 

in
it
ia

liz
e
d

S
to

p
 E

E
P

R
O

M
 e

m
u

la
ti
o
n

 a
n

d
 i
n

ve
s
ti
g

a
te

 i
n

  
th

e
 r

o
o
t 

c
a
u

s
e

E
E

E
_

E
R

R
_

P
A

R
A

M
E

T
E

R
W

ro
n

g
 p

a
ra

m
e
te

rs
 h

a
ve

 b
e
e
n

 p
a
s
s
e
d

 t
o
 t

h
e
 E

E
L

, 
e
.g

.:
 W

ro
n

g
 

p
a
ra

m
e
te

r 
in

 t
h

e
 r

e
q

u
e
s
t 

s
tr

u
c
tu

re
A

p
p

lic
a
ti
o
n

 b
u

g
C

u
rr

e
n

t 
c
o
m

m
a
n

d
 r

e
je

c
te

d
S

to
p

 E
E

P
R

O
M

 e
m

u
la

ti
o
n

 a
n

d
 i
n

ve
s
ti
g

a
te

 i
n

  
th

e
 r

o
o
t 

c
a
u

s
e

E
E

E
_

E
R

R
_

R
E

J
E

C
T

E
D

A
 n

e
w

 o
p

e
ra

ti
o
n

 s
h

o
u

ld
 b

e
 i
n

it
ia

te
d

 a
lt
h

o
u

g
h

 t
h

e
 

s
ta

te
 m

a
c
h

in
e
 i
s
 s

ti
ll 

b
u

s
y 

w
it
h

 a
 c

o
n

c
u

rr
e
n

t 
o
p

e
ra

ti
o
n

 (
e
.g

. 

E
E

L
_

C
M

D
_

R
E

A
D

 -
->

 E
E

L
_

C
M

D
_

R
E

A
D

, 
b

u
t 

n
o
t 

E
E

L
_

C
M

D
_

W
R

IT
E

 -
-

>
 E

E
L

_
C

M
D

_
R

E
A

D
)

A
p

p
lic

a
ti
o
n

 b
u

g
 o

r 
in

te
n

d
e
d

 

b
e
h

a
vi

o
u

r
C

u
rr

e
n

t 
c
o
m

m
a
n

d
 r

e
je

c
te

d
R

e
p

e
a
t 

th
e
 c

o
m

m
a
n

d
 w

h
e
n

 c
o
n

c
u

rr
e
n

t 
o
p

e
ra

ti
o
n

 h
a
s
 f
in

is
h

e
d

E
E

E
_

E
R

R
_

E
R

A
S

E
S

U
S

P
E

N
D

_
O

V
E

R
F

L
O

W

R
e
a
d

/W
ri
te

 o
p

e
ra

ti
o
n

s
 a

re
 e

xe
c
u

te
d

 a
n

d
 l
e
a
d

 t
o
 a

 b
a
c
k
g

ro
u

n
d

 e
ra

s
e
 

o
p

e
ra

ti
o
n

 s
u

s
p

e
n

d
. 

T
h

e
 E

ra
s
e
 s

u
s
p

e
n

d
 t

o
o
k
 p

la
c
e
 s

o
 o

ft
e
n

, 
th

a
t 

th
e
 

e
ra

s
e
 c

o
u

ld
 n

o
t 

b
e
 c

o
m

p
le

te
t 

fo
r 

a
 l
o
n

g
 t

im
e
. 

T
h

is
 e

rr
o
r 

re
tu

rn
 s

h
a
ll 

b
e
 t

re
a
te

d
 a

s
 w

a
rn

in
g

.

T
h

e
 c

o
u

n
te

r 
u

n
ti
l 
th

e
 w

a
rn

in
g

 i
s
 c

o
n

fig
u

ra
b

le
 b

y 
th

e
 u

s
e
r

E
E

L
 S

ys
te

m
 o

ve
rl
o
a
d

N
o
n

e
 /

 W
a
rn

in
g

 o
n

ly
R

e
d

u
c
e
 E

E
L

 l
o
a
d

 w
it
h

 R
e
a
d

/W
ri
te

 o
p

e
ra

ti
o
n

s
, 

s
o
 t

h
a
t 

th
e
 F

la
s
h

 

e
ra

s
e
 h

a
s
 t

im
e
 t

o
 f
in

is
h

E
E

L
_

E
R

R
_

A
C

C
E

S
S

_
L

O
C

K
E

D

A
 f
u

n
c
ti
o
n

 o
r 

c
o
m

m
a
n

d
 w

h
ic

h
 i
s
 l
o
c
k
e
d

 w
a
s
 c

a
lle

d
. 

R
e
a
s
o
n

 f
o
r 

lo
c
k
in

g
 

m
a
y 

b
e
:

1
) 

T
h

e
 l
ib

ra
ry

 i
s
 n

o
t 

in
 t

h
e
 c

o
rr

e
c
t 

s
ta

tu
s
 f
o
r 

a
n

 o
p

e
ra

ti
o
n

 

2
) 

D
u

e
 t

o
 a

n
 e

rr
o
r 

th
e
 l
ib

ra
ry

 s
w

it
c
h

e
d

 t
o
 p

a
s
s
iv

 a
n

d
 l
o
c
k
s
 a

ll

  
  

n
e
w

 o
p

e
ra

ti
o
n

s
 a

n
d

 o
n

g
o
in

g
 l
o
w

e
r 

p
ri
o
ri
ty

 o
p

e
ra

ti
o
n

s

1
) 

A
p

p
lic

a
ti
o
n

 b
u

g

2
) 

A
p

p
lic

a
ti
o
n

 b
u

g
 o

r 

H
a
rd

w
a
re

 p
ro

b
le

m

C
u

rr
e
n

t 
c
o
m

m
a
n

d
 /

 f
u

n
c
ti
o
n

 e
xe

c
u

ti
o
n

 

re
je

c
te

d
S

to
p

 E
E

P
R

O
M

 e
m

u
la

ti
o
n

 a
n

d
 i
n

ve
s
ti
g

a
te

 i
n

  
th

e
 r

o
o
t 

c
a
u

s
e

E
E

L
_

E
R

R
_

N
O

_
IN

S
T

A
N

C
E

E
it
h

e
r 

n
o
 D

S
 c

o
rr

e
s
p

o
n

d
in

g
 t

o
 t

h
e
 I

D
 c

o
u

ld
 b

e
 f
o
u

n
d

 o
r 

th
e
 d

a
ta

 h
a
s
 

b
e
e
n

 i
n

va
lid

a
te

d
 e

xp
lic

it
e
ly

 (
S

e
e
 I

n
va

lid
a
ti
o
n

 A
P

I)

A
p

p
lic

a
ti
o
n

 b
u

g
 o

r 
in

te
n

d
e
d

 

b
e
h

a
vi

o
u

r
N

o
n

e
 /

 W
a
rn

in
g

 o
n

ly

C
o
n

ti
n

u
e
 o

p
e
ra

ti
o
n

  
- 

o
r 

-

if 
th

e
 r

e
s
u

lt
 i
s
 n

o
t 

e
xp

e
c
te

d
, 

s
to

p
 E

E
P

R
O

M
 e

m
u

la
ti
o
n

 a
n

d
 

in
ve

s
ti
g

a
te

 i
n

  
th

e
 r

o
o
t 

c
a
u

s
e

E
E

L
_

E
R

R
_

W
R

O
N

G
_

C
H

E
C

K
S

U
M

T
h

e
 c

h
e
c
k
s
u

m
 o

f 
th

e
 D

a
ta

 S
e
t 

d
o
e
s
 n

o
t 

m
a
tc

h
. 

B
e
s
id

e
 a

c
c
id

e
n

ta
l 
d

a
ta

 

o
ve

rw
ri
te

, 
a
ls

o
 a

 c
h

a
n

g
e
 o

f 
th

e
 I

D
L

 R
O

M
 t

a
b

le
 (

d
a
ta

 l
e
n

g
th

 i
n

fo
rm

a
ti
o
n

) 

d
u

ri
n

g
 a

llp
lic

a
ti
o
n

 u
p

d
a
te

 b
y 

a
 b

o
o
t 

lo
a
d

e
r 

m
ig

h
t 

b
e
 t

h
e
 r

o
o
t 

c
a
u

s
e

A
p

p
lic

a
ti
o
n

 b
u

g
, 

h
a
rd

w
a
re

 

p
ro

b
le

m
 o

r 
in

te
n

d
e
d

 

b
e
h

a
vi

o
u

r

R
e
a
d

 r
e
tu

rn
s
 d

a
ta

, 
b

u
t 

it
 m

ig
h

t 
b

e
 w

ro
n

g

C
o
n

ti
n

u
e
 o

p
e
ra

ti
o
n

 -
 o

r 
-

if 
th

e
 r

e
s
u

lt
 i
s
 n

o
t 

e
xp

e
c
te

d
, 

s
to

p
 E

E
P

R
O

M
 e

m
u

la
ti
o
n

 a
n

d
 

in
ve

s
ti
g

a
te

 i
n

  
th

e
 r

o
o
t 

c
a
u

s
e

E
E

L
_

E
R

R
_

P
O

O
L

_
F

U
L

L
D

u
e
 t

o
 h

ig
h

 D
S

 W
ri
te

 l
o
a
d

, 
n

o
 m

o
re

 b
lo

c
k
s
 c

o
u

ld
 b

e
 p

re
p

a
re

d
 t

o
 g

a
in

 

s
p

a
c
e
 f
o
r 

n
e
w

 d
a
ta

E
E

L
 S

ys
te

m
 o

ve
rl
o
a
d

C
u

rr
e
n

t 
c
o
m

m
a
n

d
 r

e
je

c
te

d
S

to
p

 f
u

rt
h

e
r 

W
ri
te

 o
p

e
ra

ti
o
n

s
 b

u
t 

c
a
ll 

E
E

L
_

H
a
n

d
le

r 
fr

e
q

u
e
n

tl
y,

 

u
n

ti
l 
th

e
 E

E
L

 h
a
d

 t
im

e
 t

o
 p

re
p

a
re

 e
n

o
u

g
h

 p
a
s
s
iv

e
 p

o
o
l 
s
p

a
c
e

E
E

L
_

E
R

R
_

F
L

A
S

H
_

E
R

R
O

R
A

 F
la

s
h

 o
p

e
ra

ti
o
n

 o
f 
th

e
 F

D
L

 (
c
a
lle

d
 b

y 
E

E
L

) 
fa

ile
d

 d
u

e
 t

o
 a

 F
la

s
h

 

p
ro

b
le

m
.

H
a
rd

w
a
re

 p
ro

b
le

m
 o

r 

A
p

p
lic

a
ti
o
n

 b
u

g

T
h

e
 F

la
s
h

 s
h

o
u

ld
 b

e
 c

o
n

s
id

e
re

d
 a

s
 d

e
fe

c
t,

 t
h

e
 

lib
ra

ry
 a

c
c
e
s
s
e
s
 a

re
 l
o
c
k
e
d

:

 -
 W

ri
te

 l
o
c
k
e
d

 

  
 (

E
rr

o
r 

o
c
c
u

rr
e
d

 d
u

ri
n

g
 n

o
rm

a
l 
o
p

e
ra

ti
o
n

)

 -
 R

e
a
d

 &
 W

ri
te

 l
o
c
k
e
d

  
 (

E
rr

o
r 

o
c
c
u

rr
e
d

 d
u

ri
n

g
 s

ta
rt

u
p

)

S
to

p
 E

E
P

R
O

M
 e

m
u

la
ti
o
n

 a
n

d
 i
n

ve
s
ti
g

a
te

 i
n

  
th

e
 r

o
o
t 

c
a
u

s
e

E
E

L
_

E
R

R
_

IN
T

E
R

N
A

L
A

 l
ib

ra
ry

 i
n

te
rn

a
l 
e
rr

o
r 

o
c
c
u

rr
e
d

, 
w

h
ic

h
 c

o
u

ld
 n

o
t 

h
a
p

p
e
n

 i
n

 c
a
s
e
 o

f 

n
o
rm

a
l 
p

ro
g

ra
m

 e
xe

c
u

ti
o
n

 (
E

.g
. 

P
ro

g
ra

m
 r

u
n

-a
w

a
y,

 b
u

g
, 

..
.)

A
p

p
lic

a
ti
o
n

 B
u

g
T

h
e
 f
u

rt
h

e
r 

lib
ra

ry
 r

e
a
c
ti
o
n

 i
s
 u

n
d

e
fin

e
d

:

 -
 A

ll 
a
c
c
e
s
s
 i
s
 l
o
c
k
e
d

S
to

p
 E

E
P

R
O

M
 e

m
u

la
ti
o
n

 a
n

d
 i
n

ve
s
ti
g

a
te

 i
n

  
th

e
 r

o
o
t 

c
a
u

s
e

E
E

L
_

E
R

R
_

P
O

O
L

_
E

X
H

A
U

S
T

E
D

D
u

e
 t

o
 m

u
lt
ip

le
 F

la
s
h

 b
lo

c
k
 e

xc
lu

s
io

n
 n

o
 m

o
re

 b
lo

c
k
s
 a

re
 a

va
ila

b
le

 f
o
r 

P
re

p
a
re

 o
p

e
ra

ti
o
n

s
. 

T
h

e
 e

rr
o
r 

is
 v

e
ry

 u
n

lik
e
ly

 d
u

e
 t

o
 t

h
e
 F

la
s
h

 f
a
ilu

re
 r

a
te

!

H
a
rd

w
a
re

 p
ro

b
le

m
 o

r 

A
p

p
lic

a
ti
o
n

 b
u

g

T
h

e
 F

la
s
h

 s
h

o
u

ld
 b

e
 c

o
n

s
id

e
re

d
 a

s
 d

e
fe

c
t:

 -
 W

ri
te

 l
o
c
k
e
d

S
to

p
 E

E
P

R
O

M
 e

m
u

la
ti
o
n

 a
n

d
 i
n

ve
s
ti
g

a
te

 i
n

  
th

e
 r

o
o
t 

c
a
u

s
e

E
E

E
_

E
R

R
_

B
L

O
C

K
_

E
X

C
L

U
D

E
D

A
 P

re
p

a
re

 o
p

e
ra

ti
o
n

 e
xc

lu
d

e
d

 a
 b

lo
c
k
 a

s
 t

h
is

 c
o
u

ld
 n

o
t 

b
e
 e

ra
s
e
d

H
a
rd

w
a
re

 P
ro

b
le

m
N

o
n

e
 /

 W
a
rn

in
g

 o
n

ly
C

o
n

ti
n

u
e
 o

p
e
ra

ti
o
n

E
E

L
_

E
R

R
_

F
IX

_
D

O
N

E

S
ta

rt
u

p
 h

a
s
 d

o
n

e
 a

 c
o
n

s
is

te
n

c
y 

fix
-o

p
e
ra

ti
o
n

. 
T

h
is

 i
s
 a

 n
o
rm

a
l 
re

tu
rn

 

va
lu

e
 o

n
 S

ta
rt

u
p

 a
ft
e
r 

p
o
w

e
r 

fa
il.

T
h

e
 s

e
c
ti
o
n

s
 a

re
 a

s
s
u

m
e
d

 t
o
 b

e
 c

o
n

s
is

te
n

t 
a
n

d
 e

m
u

la
ti
o
n

 c
a
n

 n
o
rm

a
lly

 

c
o
n

ti
n

u
e

N
o
n

e
 /

 W
a
rn

in
g

 o
n

ly
C

o
n

ti
n

u
e
 o

p
e
ra

ti
o
n

E
E

L
_

E
R

R
_

P
O

O
L

_
IN

C
O

N
S

IS
T

E
N

T

T
h

e
 b

lo
c
k
 c

o
n

s
is

te
n

c
y 

c
h

e
c
k
 o

f 
th

e
 s

ta
rt

u
p

 r
o
u

ti
n

e
 f
o
u

n
d

 a
n

 

in
c
o
n

s
is

te
n

c
yi

n
 t

h
e
 s

ta
rt

u
p

 r
o
u

ti
n

e

T
h

is
 e

rr
o
r 

is
 a

ls
o
 r

e
tu

rn
e
d

 i
n

 c
a
s
e
 o

f 
b

lo
c
k
 u

n
fo

rm
a
tt

e
d

 F
la

s
h

A
p

p
lic

a
ti
o
n

 b
u

g
, 

h
a
rd

w
a
re

 

p
ro

b
le

m
 o

r 
in

te
n

d
e
d

 

b
e
h

a
vi

o
u

r

T
h

e
 F

la
s
h

 m
u

s
t 

b
e
 f
o
rm

a
tt

e
d

:

 -
 R

e
a
d

 &
 W

ri
te

 l
o
c
k
e
d

C
o
n

ti
n

u
e
 o

p
e
ra

ti
o
n

 w
it
h

 E
E

L
_

C
M

D
_

F
O

R
M

A
T

  
  

o
r 

if 
th

e
 r

e
s
u

lt
 i
s
 n

o
t 

e
xp

e
c
te

d
, 

s
to

p
 E

E
P

R
O

M
 e

m
u

la
ti
o
n

 a
n

d
 

in
ve

s
ti
g

a
te

 i
n

  
th

e
 r

o
o
t 

c
a
u

s
e

E
E

E
_

E
R

R
_

C
O

M
M

A
N

D
T

h
e
 c

o
m

m
a
n

d
 t

o
 b

e
 e

xe
c
u

te
d

 i
s
 u

n
k
n

o
w

n
A

p
p

lic
a
ti
o
n

 B
u

g
C

u
rr

e
n

t 
c
o
m

m
a
n

d
 r

e
je

c
te

d
S

to
p

 E
E

P
R

O
M

 e
m

u
la

ti
o
n

 a
n

d
 i
n

ve
s
ti
g

a
te

 i
n

  
th

e
 r

o
o
t 

c
a
u

s
e

5.3 Data Types 

5.3.1 Error Codes 

 

EEL status & error codes Figure 21 



EEPROM Emulation Library 

 User’s Manual U20280EE1V2UM00 51 

 

5.3.2 User operation request structure 

All different user operations are initiated by a central initiation function 
(EEL_Execute). All information required for the execution is passes to the EEL 
by a central request structure. Also the error is returned by the same structure: 
 

Request structure handling 

Application

*address_pu08

identifier_u16

length_u16

offset_u16

command_enu

Write access

Read access

status_enu

EEL

 

 

The following request elements are defined: 

 command_enu: User operation to execute: 
    EEL_CMD_READ  Read a DS  
    EEL_CMD_WRITE  Write a DS  
    EEL_CMD_INVALIDATE    Write a DS data  
       invalid 
    EEL_CMD_WRITE_IMM Write a DS with high 
       priority 
    EEL_EMD_INVALIDATE_IMM  Write a DS data  
      invalid  with high 
      priority 
    EEL_CMD_FORMAT  Format the Data  
      Flash for EEPROM 
    EEL_CMD_CLEANUP  Clean up ring buffer  
      to provide as much  
      as possible prepared  
      ring buffer space 

 *address_pu08     Buffer pointer for the Read and Write operation. 

 identifier_u16: 16bit ID, identifying the DS to read or write. 

 length_u16: Only required for Read operation:  
Number of bytes to read from the DS. 

 offset_u16: Only required for Read operation:  
Read offset from the DS bottom. Together with length  
the parameter is used to read only a fraction of the DS. 

 status_enu: Status/Error codes returned by the library (see next 
page). 

Figure 22 



EEPROM Emulation Library 

 User’s Manual U20280EE1V2UM00 52 

 

Type definition in EEL_Types.h 

typedef enum   { 

                   EEL_CMD_READ, 

                   EEL_CMD_WRITE, 

                   EEL_CMD_INVALIDATE, 

                   EEL_CMD_WRITE_IMM, 

                   EEL_CMD_INVALIDATE_IMM, 

                   EEL_CMD_CLEANUP, 

                   EEL_CMD_FORMAT 

                } eel_command_t; 

 

typedef enum    { 

                    /* Normal operation */ 

                    EEL_OK, 

                    EEL_BUSY, 

                     

                    /* Warnings */ 

                    EEL_ERR_BLOCK_EXCLUDED, 

                    EEL_ERR_FIX_DONE, 

                    EEL_ERR_WRONG_CHECKSUM, 

 

                    /* Errors */ 

                    EEL_ERR_CONFIGURATION 

                    EEL_ERR_PARAMETER, 

                    EEL_ERR_ACCESS_LOCKED 

                    EEL_ERR_FLASH_ERROR, 

                    EEL_ERR_POOL_EXHAUSTED, 

                    EEL_ERR_POOL_FULL, 

                    EEL_ERR_POOL_INCONSISTENT, 

                    EEL_ERR_REJECTED, 

                    EEL_ERR_NO_INSTANCE, 

                    EEL_ERR_COMMAND, 

                    EEL_ERR_ERASESUSPEND_OVERFLOW, 

                    EEL_ERR_INTERNAL                     

                } eel_request_status_t; 

 

typedef struct  { 

                    eel_u32                 *address_pu08; 

                    eel_u16                 identifier_u16; 

                    eel_u16                 length_u16; 

                    eel_u16                 offset_u16; 

                    eel_command_t           command_enu; 

                    eel_request_status_t    status_enu;     

                } eel_request_t; 

 

 

 



EEPROM Emulation Library 

 User’s Manual U20280EE1V2UM00 53 

5.3.3 Driver status 

Important driver status elements are stored in a state machine structure. The 
following status information is relevant for the user: 

 Operational status 
 
Defining the status of the state machine according to the following: 
 

o EEL_OPERATION_PASSIVE 
The state machine can handle neither internal nor user initiated 
processes.  
 
This state is set: 
- before EEL startup  
- after EEL shutdown is finished 
- after fatal EEL operations errrors 

o EEL_ OPERATION _IDLE 
No process active except supervision doing margin checks. No 
Refresh or Prepare necessary and no user process Read, Write, 
Format active. 
 

o EEL_ OPERATION _BUSY 
This status is set, if either a background process, e.g. Refresh or 
Prepare is active or a user process Read or Write is being processed. 
As Flash operations may be processed, the device should not be 
switched off in this status in order to avoid repair operations to be 
executed on EEL startup. 
 

o EEL_OPERATION_STARTUP 
This status is set as long as the startup background process is 
executed. This indicates that the EEL is not completely up and 
running. As long as this operational status is returned, EEL 
functionality is possibly limited. Please see emulation access status 
below and chapter 6.2.1, “Device start-up”. 

o EEL_OPERATION_SUSPENDED 
When the suspend request is issued to the EEL by the EEL_Suspend 
function, the state machine enters the suspend mode. As this cannot 
be done immediately, the application need to wait until the suspend 
status is set. 

 Emulation access status 
 
During Startup the full functionality of the EEPROM emulation is not 
given. It is increased step by step depending on the proceeding of the 
Startup flow.  
 
It is important, that not only Startup affects the access level, but also EEL 
failures resulting in loss of functionality. Depending on the failure, either 
Write is prohibited or no access is possible. See also error codes of the 
request structure in chapter 5.3.1, “Error Codes”. 
 

o EEL_ACCESS_LOCKED 
During Startup: 
The state machine is in an early startup phase and so, does not 
accept any user operation. 
During normal operation: 



EEPROM Emulation Library 

 User’s Manual U20280EE1V2UM00 54 

Due to a failure no more data access is possible. 
 

o EEL_ACCESS_ READ_WRITE 
During Startup only: 
The state machine proceeded further in the startup phase and so, 
accepts DS read and write operations.  
- The read operations require REF table search as the RAM table is  
  not yet available. So, the Read requires longer execution time at  
  100% CPU load. 
- The DS write capability is limited to the available passive blocks  
  (prepared and invalid) as due to the missing RAM table no Refresh  
  operation is possible. 

o EEL_ACCESS_ READ_ONLY 
During normal operation only: 
A user DS Write operation resulted in a Flash Write error, either 
caused by a hardware or a software problem. In order to preserve the 
remaining Flash contents the library forbids any further Flash 
modification operations. Read operations are still possible, however a 
certain risk is given, that the read data may be wrong if the write 
operation caused damage to the read data. This should be detected 
by the DCS check. 

o EEL_ACCESS_UNLOCK 
The state machine is up and running. All user and background 
operations should be possible, if no error occurred. The RAM table is 
built up, so Read operations are executed fast from now on.  
 

 State machine errors 
 
Error values of the state machine are returned. As only process errors are 
considered (no errors on EEL_Execute resulting in not starting a 
process), the error range is limited to: 

o EEL_ERR_FIX_DONE 

o EEL_ERR_FLASH_ERROR 

o EEL_ERR_POOL_INCONSISTENT 

o EEL_ERR_POOL_EXHAUSTED 

o EEL_ERR_BLOCK_EXCLUDED 

o EEL_ERR_INTERNAL 

o EEL_ERR_ACCESS_LOCKED 

          

         Please refer to the error description for details 



EEPROM Emulation Library 

 User’s Manual U20280EE1V2UM00 55 

Type definition:  

 

typedef enum    { 

  /* read- & write access disabled*/ 

       EEL_ACCESS_LOCKED,       

    

  /* read only access, set in case of write  

     error */ 

  EEL_ACCESS_READ_ONLY,    

     

  /* read- & write-access enabled limited  

     performance */ 

       EEL_ACCESS_READ_WRITE,   

     

  /* full read- and write-access enabled */ 

       EEL_ACCESS_UNLOCKED      

 

} eel_access_status_t; 

 

typedef enum  { 

     /* all operations locked */ 

  EEL_OPERATION_PASSIVE,   

 

  /* after Startup, maintainance passive,  

     full operation possible */ 

       EEL_OPERATION_IDLE,      

     

  /* any user request under processing */ 

       EEL_OPERATION_BUSY,      

 

  /* While startup processes are running */ 

       EEL_OPERATION_STARTUP,   

     

  /* User suspend */ 

       EEL_OPERATION_SUSPENDED  

 

} eel_operation_status_t; 

 

typedef struct { 

     eel_operation_status_t operationStatus_enu;   

     eel_access_status_t  accessStatus_enu;  

     eel_request_status_t error_enu;    

} eel_driver_status_t; 



EEPROM Emulation Library 

 User’s Manual U20280EE1V2UM00 56 

5.4 EEL Functions 

Functions represent the functional interface to the EEL which other SW can 
use.  

5.4.1 Initialization / Shut down  

5.4.1.1 EEL_Init  
 

Description 

The EEL_Init() function is executed before any execution of other EEL 
functions. It initializes the basic EEL variables, but the state machine is not 
started.  

This function also defines the operation mode of the library. While in the 
normal application the full operation must be enabled, in case of a boot loader 
not all information required for full operation might be available. Especially the 
ROM ID–table might be not present or not completely present if the application 
is being updated. 

 

Interface 
 

eel_status_t EEL_Init( const eel_descriptor_t* descriptor_pstr,  

                       eel_operation_mode_t    opMode_enu ); 

 
Arguments 
 

Type Argument Description 

eel_opMode opMode_enu 

 EEL_OPERATION_MODE_NORMAL 
Full operation of the library 
 

 EEL_OPERATION_MODE_LIMITED 
Operation with limited ID-L-table in 
ROM    (containing not all IDs à no 
Refresh possible) 

eel_descriptor_t descriptor_pstr 
Pointer to the EEL run-time configuration 
descriptor structure in ROM 

 
 



EEPROM Emulation Library 

 User’s Manual U20280EE1V2UM00 57 

Return types/values 
 

Type Argument Description 

eel_status_t - 

Result of the function. Possible 
values are: 

EEL_OK 
EEL_ERR_ACCESS_LOCKED 
EEL_ERR_CONFIGURATION 

 

The function checks the configuration in the descriptor variable for 
consistency. If a problem is found in the configuration, the error 
EEL_ERR_CONFIGURATION is returned: 

 Threshold must be >=2 blocks and at least 2 blocks must remain between 
threshold and EEL pool size. 

 Max DS size must be < EEL_PFct_Calc_BlkSpace - REF entry size. 

 

On check fail, the startup processing is locked and user operations will never 
be unlocked. 

 

     
Pre-conditions 

 
The library may not already be active (function EEL_Startup already called). In 
case of re-initialization, the function EEL_ShutDown must be called before 
EEL_Init. On violation the function ends with EEL_ERR_ACCESS_LOCKED. 

 

 
Post-conditions 

 
None 

 
 

Example 

 
eel_rtConfiguration is configured globally in EEL_Descriptor.c 
 

ret = EEL_Init( eel_rtConfiguration, EEL_OPMODE_FULL );  

 

if( EEL_OK != ret ) 

{ 

 /* Error treatment */ 

} 



EEPROM Emulation Library 

 User’s Manual U20280EE1V2UM00 58 

5.4.1.2 EEL_Startup 

 
Description 

This function starts the EEL state machine and initiates execution of the 
startup process.  

By this function and continuous EEL_Handler calls, the library passes the 
startup status and enters the operational status. 

 

Interface 
 

eel_status_t EEL_Startup( void ); 

 

 

Arguments 

 
-  
 

 

Return types/values 
 

Type Argument Description 

eel_status_t - 

Result of the function. Possible 
values are: 
EEL_OK 
EEL_ERR_ACCESS_LOCKED 

 

 
Pre-conditions 
 

 The library must be initialized. Call EEL_Init before. 

 The library may not already be active (function EEL_Startup already 
called). On violation the function ends with 
EEL_ERR_ACCESS_LOCKED. 

 

In case of re-initialization, the function EEL_ShutDown must be called before 
EEL_Init and EEL_Startup. 

 
 

Post-conditions 
 

 Continuously call the EEL_Handler() function to forward the state 
machine to come to normal operation. 

 



EEPROM Emulation Library 

 User’s Manual U20280EE1V2UM00 59 

Example 

 

Option: Wait after EEL_Startup until the library is completely up and running 

eel_driver_status_t dStat; 

 

ret = EEL_Init(); 

 

if( EEL_OK == ret ) 

{ 

  EEL_Startup(); 

} 

else 

{ 

 /*error treatment */ 

} 

 

do 

{ 

    EEL_Handler(); 

    EEL_GetDriverStatus( &dStat ); 

} 

/* Wait until the system is up and running (or error) */ 

while(EEL_OPERATION_STARTUP ==  

      dStat.operationStatus_enu ); 

 

/* Error check */ 

if( EEL_OK != dStat.errorStatus_enu ) 

{ 

 /* Error handler */ 

  . . . 

} 

 

Option: Wait after EEL_Startup until the library at least partially unlocked 

eel_driver_status_t dStat; 

 

ret = EEL_Init(); 

 

if( EEL_OK == ret ) 

{ 

  EEL_Startup(); 

} 

else 

{ 

 /*error treatment */ 

} 

 

do 

{ 

    EEL_Handler(); 

    EEL_GetDriverStatus( &dStat ); 

} 

/* Wait until early read/write is possible (or error) */ 

while(   ( EEL_OPERATION_STARTUP == dStat.operationStatus_enu ) 

       &&( EEL_ACCESS_LOCKED == dStat.accessStatus_enu ) ); 

 

/* Error check */ 

if( EEL_OK != dStat.errorStatus_enu ) 

{ 

 /* Error handler */ 

  . . . 

} 

 



EEPROM Emulation Library 

 User’s Manual U20280EE1V2UM00 60 

5.4.1.3 EEL_ShutDown 

 

Description 
 

This function initiates deactivation of the EEL state machine.  

After this function the EEL_Handler need to be continuously executed in order 
to finish eventually executed processes and to set the state machine status 
passive.  
Effect on the processes: 

 Startup 
The process is stopped after a sub-process execution. 

 Refresh 
A ongoing DS Write is finished, then the Refresh is stopped. 

 Prepare 
The Prepare is finished in order not to waste a Flash erase cycle. 

 User DS Write  
A ongoing DS Write is finished. 

 User DS Read 
A ongoing DS Read is finished. 
 

 

Interface 
 

eel_status_t EEL_ShutDown( void ); 

 

 

Arguments 

 
-  
 

 

Return types/values 
 

Type Argument Description 

eel_status_t - 

Result of the function. Possible 
values are: 
EEL_OK 
EEL_ERR_ACCESS_LOCKED 

 

 
 



EEPROM Emulation Library 

 User’s Manual U20280EE1V2UM00 61 

 
Pre-conditions 
 

 The library must be active. Call EEL_Startup before.  

On violation the function ends with EEL_ERR_ACCESS_LOCKED. 
 
 

Post-conditions 
 

 Continuously call the EEL_Handler() function to forward the state 
machine to the shut-down status. 

 Continuously call EEL_GetDriverStatus to detect when the state machine 
is shut-down 

 

 

Example 
 

eel_driver_status_t dStat; 

 

/* ... */ 

 

Ret = EEL_ShutDown(); 

if( EEL_OK != ret ) 

{ 

  /* Error treatment */ 

} 

 

/* Wait until operation end */ 

do 

{ 

    EEL_Handler(); 

    EEL_GetDriverStatus( &dStat ); 

} 

while(EEL_OPERATION_PASSIVE != dStat.operationStatus_enu ); 

 

/* Error check */ 

if( EEL_OK != dStat.errorStatus_enu ) 

{ 

 /* Error handler */ 

  . . . 

} 

 



EEPROM Emulation Library 

 User’s Manual U20280EE1V2UM00 62 

5.4.2 Suspend / Resume 

The library provides the functionality to suspend and resume the library 
operation in order to provide the possibility to synchronize the EEL Flash 
operations with possible user application Flash operations, e.g. write/erase by 
using the FDL library directly or read by direct Data Flash read access. 

5.4.2.1 EEL_Suspend 

 
Description 

 
This function suspends the EEL operations and puts the EEL in a passive 
state. 
 
 

Interface 
 

eel_status_t  EEL_Suspend( void ); 

 
 
Arguments 

 
None 
 
 

Return types/values 
 

Type Argument Description 

eel_status_t - 

Result of the function. Possible 
values are: 
EEL_OK 
EEL_ERR_ACCESS_LOCKED 

 

 
Pre-conditions 
 

 The library must be initialized. Call EEL_Init before.  

On violation the function ends with EEL_ERR_ACCESS_LOCKED. 

 
 

Post-conditions 
 

 Call EEL_Handler until the library is suspended (status 
EEL_OPERATION_SUSPENDED). 

If the function returned successfully, no further error check of the suspend 
procedure is necessary, as a potential error is saved. This is restored on 
EEL_Resume. 

 



EEPROM Emulation Library 

 User’s Manual U20280EE1V2UM00 63 

Example 

eel_driver_status_t dStat; 

 

/* ... */ 

 

ret = EEL_Suspend(); 

if( EEL_OK != ret ) 

{ 

 /* Error treatment */ 

} 

 

/* Wait until operation end */ 

do 

{ 

    EEL_Handler(); 

    EEL_GetDriverStatus( &dStat ); 

} 

while(EEL_OPERATION_SUSPENDED != dStat.operationStatus_enu ); 

 

/* Do other Flash operations or bring the device in power safe  

   mode */ 

   ... 

 

 

ret = EEL_Resume(); 

if( EEL_OK != ret ) 

{ 

 /* Error treatment */ 

} 

 

 

/ Continue with EEL operations */ 

 

 



EEPROM Emulation Library 

 User’s Manual U20280EE1V2UM00 64 

5.4.2.2 EEL_Resume 

Description 

 
This function resumes the EEL operations after suspend. 
 
 

Interface 
 

ret =  EEL_Resume( void ); 

 
 
Arguments 

 
None 
 
 

Return types/values 
 

Type Argument Description 

eel_status_t - 

Result of the function. Possible 
values are: 
EEL_OK 
EEL_ERR_ACCESS_LOCKED 

 

 
Pre-conditions 
 

 The library must be suspended. Call EEL_Suspend before and wait until 
the suspend process finished.  

On violation the function ends with EEL_ERR_ACCESS_LOCKED. 

 
 

Post-conditions 

 
None 

 
 

Example 

 
See EEL_Suspend 



EEPROM Emulation Library 

 User’s Manual U20280EE1V2UM00 65 

5.4.3 Operational functions 

5.4.3.1 EEL_Execute 

 
Description 

 
This function initiates an EEL user operation. The operation type and operation 
parameters are passed to the EEL by a request structure, the status and the 
result of the operation are returned to the user application also by the same 
structure. The required parameters as well as the possible return values 
depend on the operation to be started. 

This function only starts a process according to the operation to be executed. 
The processes must be controlled and stepped forward by the state machine 
handler function EEL_Handler (explained later on). 

Possible user operations are: 
 

 Read 
 
Read a DS or a fraction of the DS from the Data Flash to a user defined 
buffer address. The DS is identified by the ID, the offset from the DS start 
and the number of bytes to read can be specified. 
 
Required parameters from the request structure:  

o identifier_u16 à ID to read 

o *address_pu08  à Destination buffer pointer 

o length_u16  à Number of bytes to read 

o offset_u16 à Offset from DS begin to start reading 

o command_enu à EEL_CMD_READ for the Read operation 

 
Parameter checks, resulting in return value EEL_ERR_PARAMETER: 

o Offset + length > DS size 

o Unknown ID 



EEPROM Emulation Library 

 User’s Manual U20280EE1V2UM00 66 

 Write  
 
Writing data from a user defined address into a new DS instance 
identified by an ID. This is done with normal priority. 
 
Required parameters from the request structure:  

o identifier_u16 à ID to write 

o *address_pu08  à source buffer pointer 

o command_enu à EEL_CMD_WRITE for the Write operation 

 
Parameter checks, resulting in return value EEL_ERR_PARAMETER: 

o Unknown ID 

 

 Invalidate  
 
Writing a DS instance, identified by an ID invalid. This is done with normal 
priority. 
 
Required parameters from the request structure:  

o identifier_u16 à ID to invalidate 

o command_enu à EEL_CMD_INVALIDATE for the Invalidation 
operation 

 
Parameter checks, resulting in return value EEL_ERR_PARAMETER: 

o Unknown ID 

 

 Write Immediate 
 
Writing data from a user defined address into a new DS instance 
identified by an ID. This is done with high priority, resulting in suspending 
an eventually ongoing DS write/invalidate with normal priority. Later on 
the normal priority operation is resumed. 
 
Required parameters from the request structure:  

o identifier_u16 à ID to write 

o *address_pu08  à source buffer pointer 

o command_enu à EEL_CMD_WRITE_IMM for the Write operation 

 
Parameter checks, resulting in return value EEL_ERR_PARAMETER: 

o Unknown ID 

 

 Invalidate Immediate 
 
Writing a DS instance invalid, identified by an ID. This is done with high 
priority, resulting in suspending an eventually ongoing DS write/invalidate 
with normal priority. Later on the normal priority operation is resumed. 
 
Required parameters from the request structure:  

o identifier_u16 à ID to invalidate 



EEPROM Emulation Library 

 User’s Manual U20280EE1V2UM00 67 

o command_enu à EEL_CMD_INVALIDATE_IMM for the Invalidation  
       operation 

 
Parameter checks, resulting in return value EEL_ERR_PARAMETER: 

o Unknown ID 

 

 Format 
 
Format the Data Flash block structure, so that DS can be written. Format 
erases all Flash blocks and so deletes all eventually existing DS 
instances: 
 
Required parameters from the request structure:  

o command_enu à Set to EEL_CMD_FORMAT for the Format 
operation 

Note:   
After successful Format, the EEL must be restarted with  
EEL_Init --> EEL_Startup --> ... 

 

 Clean-up 
 
This operation initiates, that the active blocks are defragmented/cleaned-
up in order to achieve as much as possible prepared blocks for new data. 
This command is recommended, before the EEL is started without a 
complete reference list (ID-L table). As in this case the Refresh cannot be 
executed, as much free space as possible for DS Write should be 
available. Please refer to chapter 6.3.7.2, “ID-L ROM table temporarily not 
available” 
 
Cleanup concept: 
This command sets an indication flag for cleaning to the supervision. The 
cleaning itself is handled by the supervision process by executing Refresh 
& Prepare operations over all active/occupied blocks. Cleaning is finished 
when the driver status changes from busy to idle again. The cleanup 
request structure immediately returns with EEL_OK.  
 
Required parameters from the request structure:  

o command_enu à Set to EEL_CMD_CLEANUP for the Clean-up  
       operation 

 

 

Note: 
Format is executed as exclusive operation, Cleanup is started as exclusive 
operation (finished in background). Exclusive operations require that no other 
operation (except supervision) is ongoing. All other functions can be 
prioritized. 
This priorization allows executing up to three operations in parallel: 

 Read 

 Normal priority write/invalidate 

 High priority write/invalidate 

In order to do so, the application needs to provide separate request structures 
for these operations.  

 



EEPROM Emulation Library 

 User’s Manual U20280EE1V2UM00 68 

Interface 
 

void EEL_Execute( eel_request_t request_str ); 

 
 

Arguments 
 

Type Argument Description 

eel_request_t request_str See chapter 5.3.1, “Error Codes” 

 

 

Return types/values 
 

Type Argument Description 

eel_request_t 
request_str. 
          status_enu 

The value is returned in the request 
structure error variable.  

EEL_BUSY    
EEL_ERR_ REJECTED 
EEL_ERR_ACCESS_LOCKED 
EEL_ERR_PARAMETER 
EEL_ERR_COMMAND  
EEL_ERR_POOL_FULL 

 

Note:  
The user application can either react directly on the errors returned by the 
EEL_Execute function or call the handler function EEL_Handler and react on 
errors then. The errors set on EEL_Execute are not reset and the handler 
execution does not do additional operations in case of an error already set. 

 

 

Pre-conditions 
 

 Call EEL_Init to initialize the library 

 Call EEL_Startup and call EEL_Handler cyclically to bring the library into 
operational status 

 

 

Post-conditions 
 

Call EEL_Handler to complete the initiated operation 

 

 

Example 
 

See EEL_Handler function 



EEPROM Emulation Library 

 User’s Manual U20280EE1V2UM00 69 

5.4.3.2 EEL_Handler 

 
Description 

 
This function handles the complete state machine. It shall be called frequently, 
but the calling style depends on the user application. Possible solutions are: 

 Asynchronous to EEL operation invocation by EEL_Execute in an 
operating system idle task 
 
In a normal system the CPU load is balanced in a way, that a sufficient 
idle time is available.  
By calling from the idle task loop, the handler can be called frequently and 
the EEPROM Emulation performance is quite high. However, as the idle 
time is not always deterministic, also the emulation performance might not 
be deterministic enough. 
 
Advantages: 
+ Usually high emulation performance 
+ No blocking of other user application operations 
Disadvantages: 
- Not always deterministic 

 Asynchronous to EEL operation invocation by EEL_Execute in a 
timed task 
 
By calling in a timed task a deterministic performance can be reached. 
However, as the Flash operations execution (Flash Write) usually require 
less than 200us, for best possible performance the handler should be 
called in very short time slices. As these are usually not available, the 
performance of the emulation decreases. 
 
Advantages: 
+ Deterministic 
Disadvantages: 
- Lower emulation performance 

 Synchronous with EEL operation invocation by EEL_Execute 
 
The handler is called in the same function context as EEL_Execute. The 
handler call is repeated in this function in a loop until the EEL operation 
has finished.  
 
Advantages: 
+ Highest performance 
Disadvantages: 
- function execution time is high and not deterministic 

 

Interface 

void EEL_Handler( void ); 

 

Arguments 

-  

 



EEPROM Emulation Library 

 User’s Manual U20280EE1V2UM00 70 

Return types/values 

 

Type Argument Description 

eel_request_t 
request_str. 
   
status_enu 

The value is returned in the request structure 
error variable, passed to the EEL_Execute 
function. The possible return values depend on 
the operation that was started as well as on the 
errors of background operations. 

This table describes not the errors set by 
operation invocation with the EEL_Execute 
function, but the errors, additionally set during 
operation execution. 

All operations 

 EEL_OK 

 EEL_BUSY 

 EEL_ERR_REJECTED 

 EEL_ERR_COMMAND 

 EEL_ERR_ERASESUSPEND 
_OVERFLOW 

 EEL_ERR_INTERNAL 

Additionally on Write and Invalidate: 

 EEL_ERR_FLASH_ERROR 

 EEL_ERR_POOL_FULL 

 EEL_ERR_ACCESS_LOCKED 

Additionally on immediate Write and immediate 
Invalidate: 

 EEL_ERR_FLASH_ERROR 

 EEL_ERR_POOL_FULL 

 EEL_ERR_ACCESS_LOCKED 

Additionally on Read: 

 EEL_ERR_WRONG_CHECKSUM 

 EEL_ERR_NO_INSTANCE 
 

Note:  
Even when the error 
EEL_ERR_WRONG_CHECKSUM is returned, 
the data is copied to the destination buffer in 
order to have the possibility to check the 
content. 

Additionally on Format: 

 EEL_ERR_BLOCK_EXCLUDED 

 EEL_ERR_FLASH_ERROR 

 EEL_ERR_POOL_EXHAUSTED 

 



EEPROM Emulation Library 

 User’s Manual U20280EE1V2UM00 71 

Pre-conditions 
 

 Call EEL_Init to initialize the library 

 Call EEL_Startup and call EEL_Handler cyclically to bring the library into 
operational status 

 Call EEL_Execute to initiate an EEL operation 

 
 

Post-conditions 

 
None 

 
 

Example 

eel_request_t req_str; 

eel_u08   buffer[0x100]; 

 

/* Start the read operation */ 

req_str.address_pu08   = (&buffer[0]);  /* Set receive buffer */ 

req_str.identifier_u16 = 10u; 

req_str.length_u16     = 0x10u; 

req_str.offset_u16     = 0x13u; 

req_str.command_enu    = EEL_CMD_READ; 

 

EEL_Execute( &req_str ); 

 

/* Wait until operation end */ 

while( EEL_BUSY == req_str.status_enu ) 

{ 

 EEL_Handler(); 

} 

 

/* Error check */ 

If( EEL_OK != req_str. status ) 

{ 

 /* Error handler */ 

  . . . 

} 



EEPROM Emulation Library 

 User’s Manual U20280EE1V2UM00 72 

5.4.4 Administrative functions 

5.4.4.1 EEL_GetEraseCounter 

 
Description 

 
This function reads the current erase counter at the active Flash block of the 
ring buffer. Except potentially excluded blocks, the erase counter of all other 
blocks only differs from the active block in the range of +-1. 

 

Note:  
The erase counter is counting the ring buffer loops. As long as the ring buffer 
is normally handled by the library, the erase counter is counted up. Of cause, 
the erase counter is as reliable as all EEPROM emulation data. It is handled 
by the library and any mistreatment outside the library (e.g. manual erase of 
the Flash) will destroy the erase counter. 
 
 

Interface 
 

eel_status_t EEL_GetEraseCounter( eel_u32 *counter_pu32 ); 

 
 

Arguments 

 
- 

 
 
Return types/values 
 

Type Argument Description 

eel_status_t  

Result of the function. Possible 
values are: 

EEL_OK 
EEL_ERR_ACCESS_LOCKED 

u32 counter_pu32 
Pointer to the erase counter storage 
location 

 
 

Pre-conditions 

 The library must be unlocked: 
 
- Call EEL_Init to initialize the library 
- Call EEL_Startup and call EEL_Handler cyclically to unlock the access  
  status ( access status != EEL_ACCESS_LOCKED ) 
- Do not call EEL_ShutDown or EEL_Suspend before 
 



EEPROM Emulation Library 

 User’s Manual U20280EE1V2UM00 73 

 

Post-conditions 

 
None 

 
 

Example 

eel_u32  eraseCounter; 

eel_status_t  ret; 

 

ret = EEL_GetEraseCounter( &EraseCounter ); 

 

if( EEL_OK != ret ) 

{ 

 /* Error treatment */ 

} 



EEPROM Emulation Library 

 User’s Manual U20280EE1V2UM00 74 

5.4.4.2 EEL_GetDriverStatus 

Description 
 

This function returns the state machine status into the driver status structure. 

 
 

Interface 
 

eel_status_t EEL_GetDriverStatus( eel_driver_status_t  

                                  *driverStatus_str ); 

 
 

Arguments 
 

Type Argument Description 

eel_status_t  

Result of the function. Possible 
values are: 

EEL_OK 
EEL_ERR_ACCESS_LOCKED 

eel_driver_status_t driverStatus_str 
Pointer to the driver status structure 
to update. 
See chapter 5.3.3, “Driver status” 

 
 

Return types/values 

 
- 

 
 

Pre-conditions 

 
Call EEL_Init to initialize the library 
 
 

Post-conditions 
 

None 

 
 

Example 
 

eel_driver_status_t dStat; 

eel_status_t   ret; 

 

ret = EEL_GetDriverStatus( &dStat ); 

 

if( EEL_OK != ret ) 

{ 

 /* Error treatment */ 

} 



EEPROM Emulation Library 

 User’s Manual U20280EE1V2UM00 75 

5.4.4.3 EEL_GetSpace 

Description 
 

This function returns the current free space in the EEL ring buffer (prepared 
space for new data).  

As the library always need to reserve one block for refreshing data sets (copy 
from the ring buffer tail to the front), the function reduces the prepared space 
by one block. 
 
Calculation base: 
Free space =  ( (no. of prepared blocks – 1) *  
      (block size – block header – 1 word) ) + 
    remaining space in the active block 

 
 
Interface 
 

eel_status_t EEL_GetSpace( eel_u32 *space_pu32 ); 

 
 
Arguments 
 
- 

 
 
Return types/values 

 

Type Argument Description 

eel_status_t  

Result of the function. Possible 
values are: 

EEL_OK 
EEL_ERR_ACCESS_LOCKED 

u32 space_pu32 
Pointer to the space calculation result 
storage location 

 
 
Pre-conditions 

 The library must be unlocked: 
- Call EEL_Init to initialize the library 
- Call EEL_Startup and call EEL_Handler cyclically to unlock the access  
  status ( access status != EEL_ACCESS_LOCKED ) 
- Do not call EEL_ShutDown or EEL_Suspend before 
 
 

Post-conditions 
 

None 
 
 



EEPROM Emulation Library 

 User’s Manual U20280EE1V2UM00 76 

Example 

eel_u32  space; 

eel_status_t  ret; 

 

ret = EEL_GetSpace( &space ); 

 

if( EEL_OK != ret ) 

{ 

 /* Error treatment */ 

} 

 

5.4.4.4 EEL_GetVersionString 

Description 
 

This function returns the pointer to the library version string. The version string 
is the zero terminated string identifying the library. 

 

Interface 
 

(const eel_u08*) EEL_GetVersionString( void ); 

 

Arguments 

- 

 

Return types/values 
 

The library version is returned as string value in the following style: 

        “EV850T05xxxxyZabc” 

with  

    x = supported compiler 
    y = compiler option 
    Z = “E” for engineering versions,  
          “V” for final versions 
    abc = Library version numbers according to version Va.b.c 

 
 

Pre-conditions 

 
None 

 
 

Post-conditions 

 
None 

 
 
Example 
 

eel_u08 *vstr_pu08; 

 

vstr_pu08 = EEL_GetVersionString(); 



EEPROM Emulation Library 

 User’s Manual U20280EE1V2UM00 77 

Chapter 6 EEL Implementation into the user application 

6.1 First steps 

There are several ways to approach the EEPROM emulation concept and the 
implementation into the user application.  

It is for sure worth knowing the basics of the Renesas EEPROM emulation 
concept and the library architecture, design and implementation. By that, you 
most probably get a feeling of the EEPROM emulation complexity at all and 
might consider that the implementation into the user’s application is not done 
in a few days but requires careful consideration of the libraries features and 
requirements and the users application requirements. 

A few things worth mentioning here are: 

 Start-up time until 1st data read and write 

 CPU load by the EEL, during library start-up and during normal 
operation 

 Where to call the EEL_Handler function 

 Where to call the EEL_Execute function 

 How to map application variables to the EEL IDs 

 ... 

 

All these questions require some hands on experience with the EEL.  

The best way after initial reading the user manual will be testing the EEL 
application sample.  

6.1.1 Application sample 

After a first compile run, it will be worth playing around with the library in the 
debugger. By that you will get a feeling for the source code files, the request 
structure mechanism and the library startup behavior. 

 

Note: 

Before the first compile run, the compiler path must be configured in the 
application sample file “makefile”: 

Set the variable COMPILER_INSTALL_DIR to the correct compiler 
directory 

 

Later on the sample might be extended by further IDs and different data read 
and write sequences in order to come nearer to the later application 
requirements (data set amount and size) and to get a feeling of the CPU load 
and execution time during start-up and normal operation. 

 

After this exercise, it might be easier to understand and follow the 
recommendations and considerations of this document. 



EEPROM Emulation Library 

 User’s Manual U20280EE1V2UM00 78 

6.2 Standard EEL life cycle 

The following flow chart represents the recommended EEL life cycle during 
device operation including the API functions to be used. 

 

EEL life cycle 

Device Start

EEL_Init

EEL_Handler

EEL_Execute

- Read

- Write

(- Format)

EEL_...

(Service functions)

EEL_ShutDown

Device Power Down

Device power 

down request?

Y

N

Start-up

phase

Normal

Application 

operation

Background 

operation

Power 

down 

phase

Frequent call of 

EEL_Handler

EEL_Startup

System Passive?

 

 

In the startup phase, the EEL is initialized by EEL_Init and the background 
operation is started by EEL_StartUp 

During normal operation, the foreground operations (user operations) are 
initiated synchronous to the application, while the background handler task 
ought to be executed in a task, asynchronous to the application (idle task, 
interrupt task, timed task) 

In the power down phase the EEL is shut down. EEL_Handler need to be 
executed until the library status is passive. This is required in order to finalize 
ongoing EEL processes. 

Figure 23 



EEPROM Emulation Library 

 User’s Manual U20280EE1V2UM00 79 

6.2.1 Device start-up 

The device boots and the application start up. Usually very soon some data 
sets need to be read. Then the EEPROM emulation has some time to come up 
completely before the rest of the data need to be read (e.g. build up a RAM 
mirror) and written.  

The example code below reads and writes data as soon as possible and then 
waits until the EEL is fully operational and unlocked 

 

u08                 buffer_au08[0x100]; 

eel_request_t       req_str; 

eel_driver_status_t dStat; 

eel_status_t        res;  

 

/* ----------------------------------------------------------  

   Initialize the EEL 

   - eel_RTConfiguration_str should have been set in  

     EEL_Descriptor.c 

   ---------------------------------------------------------- *\ 

res = EEL_Init( eel_RTConfiguration_str, 

                EEL_OPERATION_MODE_NORMAL ); 

if( EEL_OK != res ) 

{ 

 /* Error handler */ 

  . . . 

} 

 

res = EEL_Startup(); 

if( EEL_OK != res ) 

{ 

 /* Error handler */ 

  . . . 

} 

 

/* ----------------------------------------------------------    

   Wait until we can read/write 1st data sets  

   ---------------------------------------------------------- *\ 

do 

{ 

    EEL_Handler(); 

    EEL_GetDriverStatus( &dStat ); 

} 

/* Wait until early read/write is possible (or error) */ 

while(   ( EEL_OPERATION_STARTUP == dStat.operationStatus_enu ) 

       &&( EEL_ACCESS_LOCKED     == dStat. accessStatus_enu) ); 

 

/* Error check */ 

if( EEL_OK != dStat.errorStatus_enu) 

{ 

 /* Error handler */ 

  . . . 

} 

 



EEPROM Emulation Library 

 User’s Manual U20280EE1V2UM00 80 

/* ----------------------------------------------------------    

   Early read/write operation 

   ---------------------------------------------------------- *\ 

req_str.address_pu08   = (&buffer[0]); 

req_str.identifier_u16 = 10u;    

req_str.length_u16     = 0x10u; 

req_str.offset_u16     = 0x13u; 

req_str.command_enu    = EEL_CMD_READ; 

 

EEL_Execute( &req_str ); 

 

/* Wait until operation end */ 

while( EEL_BUSY == req_str.status_enu ) 

{ 

     EEL_Handler(); 

} 

 

/* Error check */ 

if( EEL_OK != req_str.status_enu ) 

{ 

 /* Error handler */ 

  . . . 

} 

 

req_str.address_pu08   = (&buffer[0]); 

req_str.identifier_u16 = 10u;    

req_str.command_enu    = EEL_CMD_WRITE; 

 

EEL_Execute( &req_str ); 

 

/* Wait until operation end */ 

while( EEL_BUSY == req_str.status_enu ) 

{ 

     EEL_Handler(); 

} 

 

/* Error check */ 

if( EEL_OK != req_str.status_enu ) 

{ 

 /* Error handler */ 

  . . . 

} 

 

/* ----------------------------------------------------------    

   Wait for fully operational and access unlock 

   ---------------------------------------------------------- *\ 

do 

{ 

    EEL_Handler(); 

    EEL_GetDriverStatus( &dStat ); 

} 

/* Wait until the system is completely up and running  

   (or error) */ 

while(EEL_OPERATION_STARTUP == dStat.operationStatus_enu ); 

 

/* Error check */ 

if( EEL_OK != dStat.errorStatus_enu) 

{ 

 /* Error handler */ 

  . . . 

} 

 

/* ----------------------------------------------------------    

   Now the EEL is fully operational 

   ---------------------------------------------------------- *\ 



EEPROM Emulation Library 

 User’s Manual U20280EE1V2UM00 81 

6.2.2 Device normal operation 

When the device has passed the startup phase and is in normal operation, the 
complete functionality is available.  

The example code below reads and writes data sets. 

 

/* ----------------------------------------------------------    

        Normal operations  

   ---------------------------------------------------------- *\ 

req_str.address_pu08   = (&buffer[0]); 

req_str.identifier_u16 = 10u;    

req_str.length_u16     = 0x10u; 

req_str.offset_u16     = 0x13u; 

req_str.command_enu    = EEL_CMD_READ; 

 

EEL_Execute( &req_str ); 

 

/* Wait until operation end */ 

while( EEL_BUSY == req_str.status_enu ) 

{ 

     EEL_Handler(); 

} 

 

/* Error check */ 

if( EEL_OK != req_str.status_enu ) 

{ 

 /* Error handler */ 

  . . . 

} 

 

req_str.address_pu08   = (&buffer[0]); 

req_str.identifier_u16 = 10u;    

req_str.command_enu    = EEL_CMD_WRITE; 

 

EEL_Execute( &req_str ); 

 

/* Wait until operation end */ 

while( EEL_BUSY == req_str.status_enu ) 

{ 

     EEL_Handler(); 

} 

 

/* Error check */ 

if( EEL_OK != req_str.status_enu ) 

{ 

 /* Error handler */ 

  . . . 

} 

 

Most important operation control signals are the status of a requested user 
operation and the driver status. The following diagram shows the relationship 
between a request and execution of background operations. 



EEPROM Emulation Library 

 User’s Manual U20280EE1V2UM00 82 

 

Operations state diagram 

Request state

Driver state

EEL_BUSY

EEL_OK

EEL_OPERATION_IDLE

EEL_OPERATION_BUSY

User operations request User operations finished, starting 

background operations.

New user operation can be 

requested

Background operations finished, 

nothing to do except bit error 

checking

 

 

The handler call frequency significantly determines the EEL performance. As 
long as the driver or request state is busy, the handler should be called with 
higher frequency. When the driver state is idle, the call frequency can be 
reduced as then only cyclical bit error checks are done by the EEL. Then, on 
each handler call one Flash word (incl. tag) is checked. 

 

6.2.3 Device power down 

On power down, the user application should give the library time to finish 
background operations which are under progress. This can be reached by 
using the service functions in the following way: 
 

/* ----------------------------------------------------------    

   Request Library shutdown 

   ---------------------------------------------------------- *\ 

EEL_Shutdown(); 

 

/* ----------------------------------------------------------    

   Wait until all background processes are finished and the  

   supervision gets passive 

   ---------------------------------------------------------- *\ 

do 

{ 

    EEL_Handler(); 

    EEL_GetDriverStatus( &dStat ); 

} 

while(EEL_OPERATION_PASSIVE != dStat.operationStatus_enu ); 

 

/* Error check */ 

if( EEL_OK != dStat.errorStatus_enu) 

{ 

 /* Error handler */ 

  . . . 

} 

 

Figure 24 



EEPROM Emulation Library 

 User’s Manual U20280EE1V2UM00 83 

6.3 Special considerations 

6.3.1 Endurance calculations 

Every write operation of a new data set instance occupies space in the Data 
Flash. When a certain amount of Data Flash is filled, new space is created by 
Refresh and Prepare processes where the Refresh process copies data which 
is still valid from the ring buffers active zone tail block to the active zone head 
block. When finished the Prepare operation can erase the tail block. 

This is repeated many times over device lifetime. However, the endurance of 
the Data Flash blocks regarding number of erase cycles is limited. So, it is 
necessary to calculate the number of erase cycles required over device life 
time and to judge if this does not exceed the specified Data Flash endurance. 

 

Renesas provides an endurance calculation sheet which can be filled with the 
different data sets sizes and the required write cycles. That sheet can estimate 
the expected number of Flash erase cycles and judge if this exceeds the 
specification.  

Note: 

The endurance calculation sheet is a very helpful tool, but still the result 
is just an estimation and cannot be absolute accurate because the result 
depends on different conditions like e.g. the sequence of the written Data 
sets. So, the result must be confirmed in the real user application. 

 

The calculation sheet can either be loaded from the Renesas download page 
mentioned in the “Introduction” chapter or be requested at the Renesas Flash 
support under: 

application_support.flash-eu@lm.renesas.com 

6.3.2 Data Flash initialization 

Before being able to normally use the Data Flash for EEPROM emulation, the 
Flash must be formatted and (depending on the application) be filled with initial 
data set instances.  

 

This can be done using different approaches. Often used ones are: 

 The application itself executes the Format operation and then writes initial 
instances of the data sets.  
As the format operation deletes all data, it shall be carefully considered 
how to prevent accidental formatting by the application! 

 A serial programming tool (e.g. PG-FP5) or debugger is used to program 
the Data Flash in the same flow, that also programmes the Code Flash. 

 In a self-programming flow a boot loader normally updates the application 
code in the Code Flash. During this flow, also the Data Flash can be filled 
using the FDL directly. 

 

For the later solution with the programming tool or debugger a hex file is 
required which contains the Data Flash contents (complete EEL pool content).  

This content can be gained by: 

 Dumping the Flash content of an already formatted Data Flash to a hex 
file using a serial programming tool or the debugger. 

 Using a tool chain called Data Flash Converter and Data Flash Editor to 
convert a raw data description in an xml file into a hex file. This tool chain 
will be provided by Renesas on request when available. 



EEPROM Emulation Library 

 User’s Manual U20280EE1V2UM00 84 

 

Data Flash initialization tool chain 

 

Data Flash Converter

(DFC)

xml data set 

description

Hex File

PG-FP5Debugger

Device with Data Flash 

containing formatted 

EEL pool

Customer application with 

EEL, using format and 

data set write

PG-FP5Debugger

Device with Data Flash 

reference contents

Data Flash Editor

(DFE)

Read out the reference 

Data Flash contents 

and store to a hex file

Create and edit an xml 

description file

Containing reference Data.

ID & lenth is taken from the 

xml file or configured new

 

 

 

Figure 25 



EEPROM Emulation Library 

 User’s Manual U20280EE1V2UM00 85 

6.3.3 Library handling by the user application 

6.3.3.1 Function re-entrancy 

All functions are not reentrant. So, reentrant calls of any EEL or FDL functions 
must be avoided. 

6.3.3.2 Task switches, context changes and synchronization between EEL functions 

All EEL functions depend on EEL global available information and are able to 
modify this. In order to avoid synchronization problems, it is necessary that at 
any time only one EEL function is executed. So, it is not allowed to start an 
EEL function, then switch to another task context and execute another EEL 
function while the last one has not finished. 

Example of not allowed sequence: 

- Task1: Start an EEL operation with EEL_Execute 

- Interrupt the function execution and switch to task 2, executing EEL_Handler 
function 

- Return to task 1 and finish EEL_Execute function 

 

As the EEL may not define critical sections which disable interrupts in order to 
avoid context changes and task switches, this synchronization need to be 
done by the user application. 

6.3.3.3 EEL operation performance 

The performance of the EEL operations strongly depends on the frequency of 
the handler calls. This especially affects operations which require many Flash 
write operations until the operation is finished, such as DS Write and 
background operations such as Startup processing or Refresh. 

As the typically Flash write operation needs between 200 and 500us, a slower 
handler call frequency significantly reduces the operation performance. 

 

The following user application implementations are judged regarding 
advantages and disadvantages (also mixtures are possible if the 
synchronization of the function calls is ensured): 

 Call in a timed task 
In order to archive a reasonable emulation operation performance, the 
time slice should not be selected too big. A 500us interval would not 
significantly reduce the EEL performance and so seems to be a 
reasonable compromise between library performance and CPU load. 

 Call in the idle task 
If it is ensured that the idle task is called often enough, that method might 
result in the good performance as the handler can be called continuously. 
However, as this method is not deterministic in case of higher CPU load 
by the application, it might be combined with calls in a timed task. 



EEPROM Emulation Library 

 User’s Manual U20280EE1V2UM00 86 

6.3.3.4 EEL Start-up time optimization 

The duration from EEL initialization up to EEL full operation is usually a critical 
value for the application.  

This time is largely defined by the process step to fill the RAM ID-L table for 
fast DS search and read (See also chapter 3.2.13.2.1, “ID-L and IDX tables”). 
Here the complete Data Flash is parsed DS to DS and on each found DS, the 
library checks if the appropriate RAM table entry is already filled. Therefore, 
the ROM table is searched for the correct ID from the last entry (table end) to 
the first entry.  
If all IDs of often written Data Sets are placed to the ID-L table end and all 
rarely written DS IDs are placed to the ID-L Table begin, the EEL Start-up 
performance is significantly increased. 

6.3.4 Concurrent Data Flash accesses 

Depending on the user application scenario, the Data Flash might be used for 
different purposes, e.g. one part is reserved for direct access by the user 
application and one part is reserved for EEPROM emulation by the Renesas 
EEL. The FDL is prepared to split the Data Flash into an EEL Pool and a User 
Pool.  

On splitted Data Flash, the EEL is the only master on the EEL pool, accesses 
to this pool shall be done via the EEL API only. 

Access to the user pool is done by using the FDL API functions for all 
accesses except read (e.g. FDL_Erase, FDL_Write, ...), while Data Flash read 
is directly done by the CPU.  

The configuration of FDL pool and EEL pool (and resulting user pool) is done 
in the FDL descriptor. 

6.3.4.1 User Data Flash access during active EEPROM emulation 

While the EEL is active, any direct Data Flash access like Data Flash Read by 
the CPU or execution of FLD functions are not allowed at all! 

The EEL can at each time erase or write Data Flash. During these operations 
Data Flash is not accessible for Read operations, even not on other address 
ranges. Furthermore, execution of FDL operations like Flash Erase or Write 
would be blocked. 

Following that, EEL operations and user accesses to Data Flash must be 
synchronized. This has to be done by the application, considering the EEL as 
the default master. If the user application wants to get access rights, the EEL 
need to be suspended beforehand. The API contains the functions 
EEL_Suspend and EEL_Resume for this. The following flow chart shows the 
correct handling. 



EEPROM Emulation Library 

 User’s Manual U20280EE1V2UM00 87 

 

EEL Suspend / Resume 

 

Start

Call EEL_Suspend

Call EEL_Handler until the 

EEL driver status is passive

Function error return

Function error return

function and operation errors, 

handled by user application

Check the driver status with 

EEL_GetDriverStatus

Do direct Data flash accesses:

- via FDL functions:

  FDL_Erase, FDL_Write, ...

- direct Data Flash read by the 

  CPU

FDL operations processing 

errors

Call EEL_Resume

Continue with EEL operations

Function error return

Ongoing EEL operations

 

 

 

6.3.4.2 Direct access to the Data Flash by the user application by DMA 

Basically, DMA transfers from Data Flash are permitted, but need to be 
synchronized with the EEL. Same considerations apply as mentioned in the 
last sub-chapter for accesses by the user application. 

 

6.3.5 Entering power safe mode 

Entering power safe modes is delayed by the device hardware until eventually 
ongoing Data Flash operations are finished. 

In order to gain a proper synchronisation between EEL and Power safe mode 
entering, the library operations must be suspended before entering the mode 
(Please check EEL_Suspend API description). 

 

Figure 26 



EEPROM Emulation Library 

 User’s Manual U20280EE1V2UM00 88 

6.3.6 Library behaviour after operation interruption 

Library operation might be suddenly interrupted e.g. by a power fail. 
Depending on the interrupted operation (E.g. Flash erase, write ....) the 
behaviour of the library on the next start-up might differ: 

 Library was idle or at the end of a operation: 
Normal library start-up 

 Flash block erase or Flash block header operation was interrupted: 
Eventually it is necessary to fix a block status (e.g. block activation or 
block erase was interrupted). In this case additionally Flash write 
operations might take some more time and so, slightly enlarge the time 
until the driver leaves the state EEL_OPERATION_STARTUP. 
Furthermore, the driver will return the warning EEL_ERR_FIX_DONE as 
an indication that a fix was done. The library operation continues 
normally, the application does not need to react on the warning. 

 DS Write was interrupted 
If the DS write proceeded up to writing the DCS, the DS is valid. If the 
EOR has not been written, the DS will automatically be refreshed.  
In this case additionally Flash write operations might take some more time 
and so, enlarge the time until the driver leaves the state 
EEL_OPERATION_STARTUP. 

 DS Write was interrupted 
If the DS write did not proceed up to writing the DCS, the DS is invalid. 
The start-up process does no special action, but this DS instance is not 
considered on DS read. 

 

6.3.7 Application update issues 

6.3.7.1 Change DS length 

When a user application shall be updated but the EEPROM emulation data 
shall be used also further on, different constraints need to be considered with 
respect to the ROM ID-L table. 

On application update it might be required to change the DS length of some 
IDs. Differing from the MF2/UX4 EEELib, this is automatically done, when the 
ID-L table in ROM is updated. After that update all DS’s are read/written with 
the new length and also the Refresh process copies the data with the new 
length: 

 Old length < new length 
Data is extended by any data stored after the DS (data words of the next 
DS à undefined) 

 Old length > new length 
Data is cut to new length 

 
Note: 

After DS length change, a Read operation will always return a checksum error 
(EEL_ERR_WRONG_CHECKSUM) as the checksum does not match to the 
DS data (see above) anymore. To fix this, the DS must be written once more 
by the application. 

 

Anyhow, differing from the EEELib, the DS length is no longer stored within the 
DS, but in the ID-L table. When the table is updated, the information of the 
former DS size get lost. So, the library provides no measure to get the length 
of the last stored DS instance. This information must be provided otherwise. 



EEPROM Emulation Library 

 User’s Manual U20280EE1V2UM00 89 

 
Possible options to store the DS lengths are: 

 Store the length of the DS in the DS itself 
If the length is stored in the 1st Bytes, a read operation on the  1st Bytes 
only can be done. 

 Reserve a special DS only containing all available DS IDs and the length 
information 
A comparison with the ROM ID-L table will identify the IDs with changed 
length. 

 Protect the DSs with a checksum 
Calculating the checksum from data with a different length result in a 
checksum differing from the stored one (not 100% safe!). 

6.3.7.2 ID-L ROM table temporarily not available 

The boot loader as well as the application needs to access EEPROM 
emulation data with Read as well as Write. While the application requires 
frequent data write, the boot loader will only store a very limited amount of 
data, e.g. to store the application update process state. 

The ROM ID-L table containing all IDs available in the emulation belongs to 
the application. On application update it needs to be removed together with the 
application. After removal of the ID-L table, normal operation of the EEPROM 
emulation cannot continue. In order to continue at least with limited 
functionality, the library provides operation modes to survive at least with 
limited functionality.  

The mode configuration is done by the initialization function EEL_Init. In order 
to change the mode, EEL_Init need to be called again. 

 EEL_OPERATION_MODE_NORMAL    
Full (normal) operation of the library, requires the complete ID-L table in 
ROM 

 EEL_OPERATION_MODE_LIMITED   
Operation with limited ID-L-table in ROM, containing only the IDs, 
required by the boot loader. The DS Read and Write work on the ID-L 
table. The Refresh process is not possible as this would require a list of 
all available IDs. Following this, Data Sets can only be written until the 
passive Flash space of the Data Flash (prepared and invalid blocks) is 
consumed. Then the library must switch to read only. 
 
As the size of data to be written by the boot loader is very limited, it is 
considered, that the passive space should be sufficient, even in case of 
frequent interruptions of the application update process.  
Additionally the library provides a function to defragment the active space 
(activated blocks) in the Flash by Refreshing all activated blocks. By that 
all DS instances which are not the latest ones are removed and as much 
as possible passive space is provided. 
 
The limited mode is realized by simply stopping the EEL start-up process 
before it could complete. The resulting access state is 
EEL_ACCESS_READ_WRITE (see chapter 5.3.3, “Driver status”)  

 
The following sub-chapters describe the different application update strategies 
which we consider to be reasonable. The different strategies use the different 
operation modes. 

 



EEPROM Emulation Library 

 User’s Manual U20280EE1V2UM00 90 

Application update flow proposal - 
Stop EEPROM emulation until ROM ID-L table is available 

 

The following flow chart explains the application update idea. Timely no 
EEPROM emulation is possible. 

EEL_OPERATION_MODE_NORMAL is set by the EEL initialization function 
EEL_Init (see chapter 6.2.1, “Device start-up”). 

 

 

Application update concept with timely stopping EEPROM emulation 

BL start

Start EEL with operation mode
EEL_OPERATION_MODE_NORMAL

Execute BL including 

EEPROM emulation

Request to update the 

application

Stop EEL by no longer calling 

the EEL_Handler and 

EEL_Execute

Update Application including 

ID-L table in ROM

Start EEL with operation mode
EEL_OPERATION_MODE_NORMAL

Execute BL including 

EEPROM emulation

No EEPROM 

Emulation

possible

Full EEPROM 

Emulation

Full EEPROM 

Emulation

 

 

Figure 27 



EEPROM Emulation Library 

 User’s Manual U20280EE1V2UM00 91 

Application update flow proposal -  
Boot loader with independent ID-L table and limited Write 

 

The following flow chart explains the application update idea. Timely only 
limited EEPROM emulation is possible. 

In order to overcome the situation of no Refresh during the limited emulation 
period, the active blocks may be are defragmented/cleaned (see 
chapter5.4.3.1, “EEL_Execute”). 

EEL_OPERATION_MODE_LIMITED is set by the EEL initialization function 
EEL_Init (see chapter 6.2.1, “Device start-up”). 

 

 

Application update concept with timely limited EEPROM emulation 

BL start

Start EEL with operation mode

EEL_OPERATION_MODE_NORMAL

Execute BL including EEPROM 

emulation

Request to update the 

application

Full EEPROM 

Emulation

Re-start EEL with operation mode 

EEL_OPERATION_MODE_LIMITED

Update Application including ID-L 

table in ROM

Start EEL with operation mode

EEL_OPERATION_MODE_NORMAL

Execute BL including EEPROM 

emulation

Limited EEPROM 

Emulation without 

Refresh process

Full EEPROM 

Emulation

Execute EEL operation

EEL_CMD_CLEANUP

Wait until the state machine finished 

cleanup operation

Cleanup of the 

active blocks to gain as 

much as possible free 

space for DS Write

 

 

Figure 28 



EEPROM Emulation Library 

 User’s Manual U20280EE1V2UM00 92 

Chapter 7 Revision History 

 

Rev. Date Description 

Page Summary 

1.0 Mar 16, 2010  First Edition issued 

1.1 May 27, 2010 41 Added new EEL and FDL sections (EEL_Const, FDL_Const) 

July 02, 2010 84 Modified and renamed chapter 6.3.4 

85 Moved chapter 6.3.3.5 to 6.3.5 

86 Added chapter 6.3.6 

86 Added description of Checksum error to chapter 6.3.7.1 

68 Added error EEL_ERR_ACCESS_LOCKED to immediate write/invalidate 

operation 

1.2 Feb. 5, 2014 all Minor re-formatting 

rename address_u32 -> address_pu08      

Update due to company renaming NEC -> Renesas 

    

 

 


	User’s Manual
	EEPROM Emulation Library
	   
	Table of Contents
	Chapter 1 Introduction
	1.1  Naming Conventions

	Chapter 2  EEL Architec ture
	2.1 UX6LF Data Flash
	2.1.1 33-bit Implementation
	2.1.2 Dual operation

	2.2  Layered Architecture
	2.3 Data Flash Pools
	2.4  Safety Considerations
	2.5 Feature Overview
	2.6  EEL Flash block management y
	2.6.1 Logical block structure
	2.6.2  Block lifecycle
	2.6.3  Internal block structure
	2.6.3.1  Block Header
	2.6.3.2  Block header data transitions


	2.7  EEL Data Sets Management
	2.7.1 Basic Concept
	2.7.2 DP and RP
	2.7.2.1 Block overlapping DS’s

	2.7.3  Storage structure details
	2.7.3.1 DS containing normal data
	2.7.3.2 Invalidated DS



	Chapter 3  EEL Design
	3.1 Process management
	3.1.1 EEL operations priority
	3.1.2  Process hierarchy
	3.1.3  State machine
	3.1.4 Asynchronous architecture
	3.1.5  Process errors and warnings
	3.1.5.1 Error reaction and return
	3.1.5.2 Internal process error handling


	3.2  Data Set search and read
	3.2.1 ID-L and IDX tables
	3.2.1.1  Data Read Mechanisms


	3.3  Start-up processing
	3.4 Function & command execution times & latencies
	3.4.1 Library startup phase
	3.4.1.1 Early Read command
	3.4.1.2 Early Immediate Write / Immediate Invalidation command
	3.4.1.3  Early Write / Invalidation command

	3.4.2 Normal operation phase
	3.4.2.1 Read command
	3.4.2.2 Immediate Write / Immediate Invalidation command
	3.4.2.3  Write / Invalidation command
	3.4.2.4 Format command
	3.4.2.5 Cleanup command



	Chapter 4  Implementation
	4.1 File structure
	4.1.1 Overview
	4.1.2 Delivery package directory structure and files

	4.2  EEL Linker sections
	4.3 MISRA Compliance

	Chapter 5  User Interface (API)
	5.1 Pre-compile configuration
	5.2  Run-time configuration
	5.2.1 FDL run-time configuration elements
	5.2.2  EEL run time configuration elements

	5.3  Data Types
	5.3.1 Error Codes
	5.3.2 User operation request structure
	5.3.3  Driver status

	5.4  EEL Functions
	5.4.1 Initialization / Shut down
	5.4.1.1 EEL_Init
	5.4.1.2  EEL_Startup
	5.4.1.3  EEL_ShutDown

	5.4.2  Suspend / Resume
	5.4.2.1 EEL_Suspend
	5.4.2.2  EEL_Resume

	5.4.3  Operational functions
	5.4.3.1 EEL_Execute
	5.4.3.2  EEL_Handler

	5.4.4  Administrative functions
	5.4.4.1 EEL_GetEraseCounter
	5.4.4.2  EEL_GetDriverStatus
	5.4.4.3  EEL_GetSpace
	5.4.4.4 EEL_GetVersionString



	Chapter 6  EEL Implementation into the user application
	6.1 First steps
	6.1.1 Application sample

	6.2  Standard EEL life cycle
	6.2.1  Device start-up
	6.2.2 Device normal operation
	6.2.3 Device power down

	6.3  Special considerations
	6.3.1 Endurance calculations
	6.3.2 Data Flash initialization
	6.3.3  Library handling by the user application
	6.3.3.1 Function re-entrancy
	6.3.3.2 Task switches, context changes and synchronization between EEL functions
	6.3.3.3 EEL operation performance
	6.3.3.4  EEL Start-up time optimization

	6.3.4 Concurrent Data Flash accesses
	6.3.4.1 User Data Flash access during active EEPROM emulation
	6.3.4.2 Direct access to the Data Flash by the user application by DMA

	6.3.5 Entering power safe mode
	6.3.6  Library behaviour after operation interruption
	6.3.7 Application update issues
	6.3.7.1 Change DS length
	6.3.7.2 ID-L ROM table temporarily not available



	Chapter 7 Revision History

