

User’s Manual

Data Flash Access Library

FDL - T05

Data Flash Access Library for V850 Single Voltage
Flash Devices

Document No. U20279EE1V4UM00

Date Published: 10.07.2013

 Renesas Electronics 2013

 User’s Manual U20279EE1V4UM00 2

To our customers,

Old Company Name in Catalogs and Other Documents

On April 1

st
, 2010, NEC Electronics Corporation merged with Renesas Technology

Corporation, and Renesas Electronics Corporation took over all the business of both
companies. Therefore, although the old company name remains in this document, it is a
valid Renesas Electronics document. We appreciate your understanding.

Renesas Electronics website: http://www.renesas.com

April 1
st
, 2010

Renesas Electronics Corporation

Issued by: Renesas Electronics Corporation (http://www.renesas.com)

Send any inquiries to http://www.renesas.com/inquiry.

http://www.renesas.com/
http://www.renesas.com/
http://japan.renesas.com/inquiry

 User’s Manual U20279EE1V4UM00 3

Legal Notes

The information in this document is current as of July 2013. The information is subject to
change without notice. For actual design-in, refer to the latest publications of NEC
Electronics data sheets or data books, etc., for the most up-to-date specifications of NEC
Electronics products. Not all products and/or types are available in every country. Please
check with an NEC Electronics sales representative for availability and additional
information.

No part of this document may be copied or reproduced in any form or by any means without the
prior written consent of NEC Electronics. NEC Electronics assumes no responsibility for any errors
that may appear in this document.

 NEC Electronics does not assume any liability for infringement of patents, copyrights or other
intellectual property rights of third parties by or arising from the use of NEC Electronics
products listed in this document or any other liability arising from the use of such products. No
license, express, implied or otherwise, is granted under any patents, copyrights or other
intellectual property rights of NEC Electronics or others.

 Descriptions of circuits, software and other related information in this document are provided
for illustrative purposes in semiconductor product operation and application examples. The
incorporation of these circuits, software and information in the design of a customer's
equipment shall be done under the full responsibility of the customer. NEC Electronics
assumes no responsibility for any losses incurred by customers or third parties arising from
the use of these circuits, software and information.

 While NEC Electronics endeavors to enhance the quality, reliability and safety of NEC
Electronics products, customers agree and acknowledge that the possibility of defects thereof
cannot be eliminated entirely. To minimize risks of damage to property or injury (including
death) to persons arising from defects in NEC Electronics products, customers must
incorporate sufficient safety measures in their design, such as redundancy, fire-containment
and anti-failure features.

 NEC Electronics products are classified into the following three quality grades: "Standard",
"Special" and "Specific".
The "Specific" quality grade applies only to NEC Electronics products developed based on a
customer-designated "quality assurance program" for a specific application. The
recommended applications of an NEC Electronics product depend on its quality grade, as
indicated below. Customers must check the quality grade of each NEC Electronics product
before using it in a particular application.
"Standard": Computers, office equipment, communications equipment, test and measurement
equipment, audio and visual equipment, home electronic appliances, machine tools, personal
electronic equipment and industrial robots.
"Special": Transportation equipment (automobiles, trains, ships, etc.), traffic control systems,
anti-disaster systems, anti-crime systems, safety equipment and medical equipment (not
specifically designed for life support).
"Specific": Aircraft, aerospace equipment, submersible repeaters, nuclear reactor control
systems, life support systems and medical equipment for life support, etc.

The quality grade of NEC Electronics products is "Standard" unless otherwise expressly specified
in NEC Electronics data sheets or data books, etc. If customers wish to use NEC Electronics
products in applications not intended by NEC Electronics, they must contact an NEC Electronics
sales representative in advance to determine NEC Electronics' willingness to support a given
application.

(Note)

(1) "NEC Electronics" as used in this statement means NEC Electronics Corporation and also
includes its majority-owned subsidiaries.

(2) "NEC Electronics products" means any product developed or manufactured by or for NEC
Electronics (as defined above).

 User’s Manual U20279EE1V4UM00 4

Table of Contents

Chapter 1 Introduction ... 6

1.1 Naming Conventions .. 7

Chapter 2 UX6LF Data Flash .. 8

2.1 33-bit Implementation... 8

2.2 Dual operation .. 8

Chapter 3 FDL Architecture ... 9

3.1 Layered Architecture .. 9

3.2 Data Flash Pools ..10

3.3 Safety Considerations ..11

3.4 Bit error checks ..11

Chapter 4 Implementation ...12

4.1 File structure ..12

4.1.1 Overview ...12

4.1.2 Delivery package directory structure and files ..13

4.2 EEL Linker sections ...15

4.3 MISRA Compliance ..15

Chapter 5 User Interface (API) ..16

5.1 Pre-compile configuration ..16

5.2 Run-time configuration ...17

5.2.1 FDL run-time configuration elements ...17

5.3 Data Types ...19

5.3.1 Error Codes ...19

5.3.2 User operation request structure ..20

5.4 FAL Functions ..22

5.4.1 Initialization / Shut down ...22

5.4.2 Suspend / Resume ...24

5.4.3 Stand-By / Wake-Up ...27

5.4.4 Operational functions ..30

5.4.5 Administrative functions ..37

Chapter 6 FDL Implementation into the user application ..38

6.1 First steps ...38

6.2 Special considerations ...38

6.2.1 Library handling by the user application ...38

6.2.2 Concurrent Data Flash accesses..38

6.2.3 Entering power safe mode ..39

Chapter 7 Revision History ..40

 User’s Manual U20279EE1V4UM00 5

Data Flash Access Library

 User’s Manual U20279EE1V4UM00 6

Chapter 1 Introduction

This user’s manual describes the internal structure, the functionality and
software interfaces (API) of the NEC V850 Data Flash Access Library (FDL)
type T05, designed for V850 Flash devices with Data Flash based on the
UX6LF Flash technology

The device features differ depending on the used Flash implementation and
basic technology node. Therefore, pre-compile and run-time configuration
options allow adaptation of the library to the device features and to the
application needs.

The libraries are delivered in source code. However it has to be considered
carefully to do any changes, as not intended behavior and programming faults
might be the result.

The development environments of the companies Green Hills (GHS), IAR and
NEC are supported. Due to the different compiler and assembler features,
especially the assembler files differ between the environments. So, the library
and application programs are distributed using an installer tool allowing
selecting the appropriate environment.

For support of other development environments, additional development effort
may be necessary. Especially, but maybe not only, the calling conventions to
the assembler code and compiler dependent section defines differ
significantly.

The libraries are delivered together with device dependent application
programs, showing the implementation of the libraries and the usage of the
library functions.

The different options of setup and usage of the libraries are explained in detail
in this document.

Caution:

Please read all chapters of the application note carefully.
Much attention has been put to proper conditions and limitations description.
Anyhow, it can never be ensured completely that all not allowed concepts of
library implementation into the user application are explicitly forbidden. So,
please follow exactly the given sequences and recommendations in this
document in order to make full use of the libraries functionality and features
and in order to avoid any possible problems caused by libraries misuse.

The Data Flash Access Libraries together with the EEPROM emulation
libraries, application samples, this application note and other device
dependent information can be downloaded from the following URL:

http://www.eu.necel.com/updates

Data Flash Access Library

 User’s Manual U20279EE1V4UM00 7

1.1 Naming Conventions

Certain terms, required for the description of the Flash Access and EEPROM
emulation are long and too complicated for good readability of the document.
Therefore, special names and abbreviations will be used in the course of this
document to improve the readability.

These abbreviations shall be explained here:

Abbreviations /
Acronyms

Description

Block Smallest erasable unit of a flash macro

Code Flash

Embedded Flash where the application code is stored.
For devices without Data Flash EEPROM emulation
might be implemented on that flash in the so called data
area.

Data Flash
Embedded Flash where mainly the data of the EEPROM
emulation are stored. Beside that also code operation
might be possible.

Dual Operation

Dual operation is the capability to fetch code during
reprogramming of the flash memory. Current limitation is
that dual operation is only available between different
flash macros. Within the same flash macro it is not
possible!

EEL EEPROM Emulation Library

EEPROM
emulation

In distinction to a real EEPROM the EEPROM emulation
uses some portion of the flash memory to emulate the
EEPROM behavior. To gain a similar behavior some
side parameters have to be taken in account.

FAL Flash Access Library (Flash access layer)

FCL Code Flash Library (Code Flash access layer)

FDL Data Flash Library (Data Flash access layer)

Flash

“Flash EPROM” - Electrically erasable and
programmable nonvolatile memory. The difference to
ROM is, that this type of memory can be re-programmed
several times.

Flash Block
A flash block is the smallest erasable unit of the flash
memory.

Flash Macro
A flash comprises of the cell array, the sense amplifier
and the charge pump (CP). For address decoding and
access some additional logic is needed.

NVM
Non volatile memory. All memories that hold the value,
even when the power is cut off. E.g. Flash memory,
EEPROM, MRAM...

RAM
“Random access memory” - volatile memory with
random access

ROM
“Read only memory” - nonvolatile memory. The content
of that memory can not be changed.

Serial programming
The onboard programming mode is used to program the
device with an external programmer tool.

Single Voltage

For the reprogramming of single voltage flashes the
voltage needed for erasing and programming are
generated onboard of the microcontroller. No external
voltage needed like for dual- voltage flash types.

Data Flash Access Library

 User’s Manual U20279EE1V4UM00 8

Chapter 2 UX6LF Data Flash

2.1 33-bit Implementation

The Data Flash of devices in UX6LF Flash technology is based on a standard
32-bit architecture. This means, that the data can be written and read in 32-bit
units (read or write in 8-bit or 16-bit units is not possible!).

Additionally to every 32-bit data word a 33rd bit (Tag) is available for free
usage.

While the 32 data bits can be read in a linear address room, the Tag can be
read in another linear address room on a different address (every 32-bit
address one tag can be read). The data address room starts from 0x02000000
while the Tag address room starts from 0x02100000

Furthermore, the Tag can be written independently from the other data and it
is protected against bit failures separately. The FDL provides separate
functions to write the data and the tags.

The Tags are completely in the hand of the user application. In the EEL
concept, the Tag is used to write additional management data in order to
ensure data consistency in case of write interruptions.

2.2 Dual operation

Common for all Flash implementations is, that during Flash modification
operations (Erase/Write) a certain amount of Flash memory is not accessible
for any read operation (e.g. program execution or data read).

This does not only concern the modified Flash range, but a certain part of the
complete Flash system. The amount of not accessible Flash depends on the
device architecture.

A standard architectural approach is the separation of the Flash into Code
Flash and Data Flash. By that, it is possible to read from the Code Flash (to
execute program code or read data) while Data Flash is modified, and vice
versa. This allows implementation of EEPROM emulation concepts with Data
storage on Data Flash while all program code is executed from Code Flash.

If not mentioned otherwise in the device users manuals, UX6LF devices with
Data Flash are designed according to this standard approach.

Note:

It is not possible to modify Code Flash and Data Flash in parallel!

Data Flash Access Library

 User’s Manual U20279EE1V4UM00 9

Chapter 3 FDL Architecture

3.1 Layered Architecture

This chapter describes the function of all blocks belonging to the EEPROM
Emulation and the Data Flash Access System.

Even though this manual describes the functional block FDL, a short
description of all concerned functional blocks and their relationship can be
beneficial for the general understanding.

Usage examples of the library layers

User Application

EEL

FDL

Data Flash Hardware

Code Flash

or User Application

FDL

Data Flash Hardware

Code Flash

Application

The functional block “Application” should not use the functions offered by the
FDL directly, in fact it is recommended to access the EEL API only.

Nevertheless, if the user intends to implement a proprietary EEPROM
emulation, he may use the FDL functions for direct Data Flash accesses. Even
combinations of both are possible, always considering the synchronization of
these access paths.

EEPROM Emulation Library (EEL)

The functional block “EEPROM Emulation library” offers all functions and
commands the “Application” can use in order to handle its own EEPROM data.

Data Flash Library (FDL)

The “Data Flash Library” offers an access interface to any user-defined Data
Flash area, so called “FDL-pool” (described in next chapter). Beside the
initialization function the FDL allows the execution of access-commands like
write as well as a suspend-able erase command.

Note:
General requirement is to be able to deliver pre-compiled EEL libraries, which
can be linked to either Data Flash libraries (FDL) or Code Flash libraries
(FCL). To support this, a unique API towards the EEL must be provided by
these libraries. Following that, the standard API prefix FDL_... which would
usually be provided by the FDL library, is replaced by a standard Flash Access
Layer prefix FAL_...

Figure 1

Data Flash Access Library

 User’s Manual U20279EE1V4UM00 10

All functions, type definitions, enumerations etc. will be prefixed by FAL_ or
fal_.
Independent from the API, the module names will be prefixed with FLD_ in
order to distinguish the source/object modules for Code and Data Flash.

3.2 Data Flash Pools

The FDL pool defines the Flash blocks, which may be accessed by any FDL
operation (e.g. write, erase). The limits of the FDL pool are taken into
consideration by any of the FDL flash access commands. The user can define
the size of the FDL-pool freely at project run-time (function FAL_Init), while
usually the complete Data Flash is selected.

The FDL pool provides the space for the EEL pool which is allocated by the
EEL inside the FDL-pool. The EEL pool provides the Flash space for the EEL
to store the emulation data and management information.

All FDL pool space not allocated by the EEL pool is freely usable by the user
application, so is called the “User pool”.

Pools details:

 FDL-pool is just a place holder for the EEL-pool. It does not allocate any
flash memory. The FDL-pool descriptor defines the valid address space
for FDL access to protect all flash outside the FDL-pool against
destructive access (write/erase) by a simple address check in the library.

To simplify function parameter passing between FDL and the higher layer
the physical Flash addresses (e.g. 0x02000000….0x0200FFFF) are
transformed into a linear address room 0x0000….0xFFFF used by the
FDL.

 EEL-pool allocates and formats (virgin initialization) all flash blocks
belonging to the EEL-pool. The header data are generated in proper way
to be directly usable by the application.

 User Pool is completely in the hands of the user application. It can be
used to build up an own user EEPROM emulation or to simply store
constants.

Data Flash / FDL Pool

User Pool

EEL Pool

User Pool

Data Flash / FDL Pool

User Application

EEL

Figure 2

Data Flash Access Library

 User’s Manual U20279EE1V4UM00 11

3.3 Safety Considerations

EEPROM emulation in the automotive market is not only operated under
normal conditions, where stable function execution can be guaranteed. In fact,
several failure scenarios should be considered.

Most important issue to be considered is the interruption of a function e.g. by
power fail or Reset.

Differing from a normal digital system, where the operation is re-started from a
defined entry point (e.g. Reset vector), the EEPROM emulation modifies Flash
cells, which is an analogue process with permanent impact on the cells. Such
an interruption may lead to instable electrical cell conditions of affected cells.
This might be visible by undefined read values (read value != write value), but
also to defined read values (blank or read value = write value). In each case
the read margin of these cells is not given. The value may change by time into
any direction.

This needs to be considered in any proprietary EEPROM emulation or simple
data storage concept.

3.4 Bit error checks

Independent from the Flash manufacturer or Flash technology, Bit errors in the
Flash (independent if occurring in data or Tags) might be caused by different
conditions. Different measures are implemented or provided in order to handle
such problems.

While device dependant causes like hardware defects or weak Flash cells are
completely covered by the NEC qualification and production quality and by
Flash ECC (Error correction code), one major issue need to considered
additionally.

Interruption of Flash erase or write operations e.g. by power fails or Resets
result in not completely charged or discharged Flash cells which results in
Flash data without sufficient data retention. This need to be prevented by the
operation conditions of the device or need to be detected by the software in
order to ensure stable data storage conditions.

While prevention is often not possible, detection can be done by different
mechanisms like checksums or special write sequences where one written
word ensures that previous data write was completed successfully.

After having considered the mechanisms above, one method to additionally
increase the system robustness is the check for bit errors in written data. This
method assumes that multiple bit errors (by not completely
charged/discharged Flash cells) don’t occur at once but by time. By special
correction bits, the NEC Data Flash hardware can correct single/double bit
errors in a 32bit data word (+correction bits) or a single bit error in a Tag
(+correction bits) during run-time. Furthermore, it can signal this error to the
application. By that, the user application can set-up a mechanism to refresh
the data with the single bit error right on time before a multi bit error can occur
that destroys the data.

For that purpose, the FDL provides a function to check a certain Flash address
for bit errors on the data word + Tag.

It is recommended to cyclically execute the bit error check over the complete
data range.

Data Flash Access Library

 User’s Manual U20279EE1V4UM00 12

Chapter 4 Implementation

4.1 File structure

The library is delivered as a complete compilable sample project which
contains the EEL and FDL libraries and in addition to an application sample to
show the library implementation and usage in the target application.

The application sample initializes the EEL and does some dummy data set
Write and Read operations.

Differing from former EEPROM emulation libraries, this one is realized not as a
graphical IDE related specific sample project, but as a standard sample project
which is controlled by makefiles.

Following that, the sample project can be built in a command line interface and
the resulting elf-file can be run in the debugger.

The FDL and EEL files are strictly separated, so that the FDL can be used
without the EEL. However, using EEL without FDL is not possible.

The delivery package contains dedicated directories for both libraries
containing the source and the header files.

Note:

The application sample does not contain sample code for the FDL interface
usage, but only for the EEL interface. Anyhow, as the EEL contains FDL
functions calls, the usage of the FDL functions can be derived from that.

4.1.1 Overview

The following picture contains the library and application related files.

Library and application file structure

Libray

FDL.a

EEL.a

EEL_...c

EEL_...c
FDL_...c

EEL_...c

Precompiled

Library

Source Code

Library

User

FDL_Descriptor.c

EEL_Descriptor.c

EEL_...c

EEL_...c

App....c

Describtors

Passed to the

library

Source Code

Application

FDL.h

FDL_Types.h

EEL.h

EEL_Types.h

FDL_Cfg.h

EEL_Cfg.h

Library Files – Fix, may not be touched by the user

Library pre-compile configuration (Only on souce code delivery) – File name fix, File content user configurable

Application (User) Code – Completely in the hand of the user

Library

Configuration

API declaration

FDL_Descriptor.h

EEL_Descriptor.h

The library code consists of different source files, starting with FDL/EEL_...
The files may not be touched by the user, independently, if the library is
distributed as source code or pre-compiled.

The file FDL/EEL.h is the library interface functions header file.

Figure 3

Data Flash Access Library

 User’s Manual U20279EE1V4UM00 13

The file FDL/EEL_Types.h is the library interface parameters and types header
file.

In case of source code delivery, the library must be configured for compilation.
The file FDL/EEL_Cfg.h contains defines for that. As it is included by the
library source files, the file contents may be modified by the user, but the file
name may not.

FDL/EEL_Descriptor.c and FDL/EEL_Descriptor.h do not belong to the
libraries themselves, but to the user application. These files reflect an
example, how the library descriptor ROM variables can be built up which need
to be passed with the functions FDL/EEL_Init to the FDL/EEL for run-time
configuration (see chapter 5.2, “Run-time configuration” and 5.4.1.1,
“FAL_Init”).

 The structure of the descriptor is passed to the user application by
FDL/EEL_Types.h.

 The value definition should be done in the file FDL/EEL_Descriptor.h.

 The constant variable definition and value assignment should be done in
the file FDL/EEL_Descriptor.c.

If overtaking the files FDL/EEL_Descriptor.c/h into the user application, only
the file FDL/EEL_Descriptor.h need to be adapted by the user, while
FDL/EEL_Descriptor.c may remain unchanged.

4.1.2 Delivery package directory structure and files

[root]

Release.txt Installer package release notes

[root]\[make]

GNUPublicLicense.txt Make utility license file

libiconv2.dll DLL-File required by make.exe

libintl3.dll DLL-File required by make.exe

make.exe Make utility

[root]\[<device name>]\[compiler]

Build.bat Batch file to build the application sample

Clean.bat Batch file to clean the application sample

Makefile Makefile that controls the build and clean process

[root]\[<device name>]\[<compiler>]\[sample]

EELApp.h Application sample header with function prototypes
and collecting all includes

EELApp_Main.c Main source code

EELApp_Control.c Source code of the control program for EEEPROM
 emulation

target.h Target device and application related definitions

... device header files ... (GHS: df<device number>.h,
 io_macros.h, ...

 IAR: io_70f3xxx.h

 NEC: -)

... startup file ... (GHS: Startup_df<dev. num.>.850

Data Flash Access Library

 User’s Manual U20279EE1V4UM00 14

 IAR: DF3xxx_HWInit.s85

 NEC: tbd)

... linker directive file ... (GHS: Df<device number>.ld

 IAR: lnk70f3xxx.xcl

 NEC: tbd)

[root]\[<device name>]\[<compiler>]\[sample]\[EEL]

EEL_Cfg.h Header file with definitions for library setup at
compile time

EEL.h Header file containing function prototypes

EEL_Types.h Header file containing calling structures and error
definitions

EEL_Descriptor.h Descriptor file header with the run-time EEL
configuration. To be edited by the user.

EEL_Descriptor.c Descriptor file with the run-time EEL configuration.
 Should not be edited by the user.

[root]\[<device name>]\[<compiler>]\[sample]\[EEL]\[lib]

EEL_Global.h Library internal defines, function prototypes and
variables

EEL_UserIF.c Source code for the EEL internal state machine,
service routines and initialization

EEL_BasicFct.c Source code of functions called by the state machine

[root]\[<device name>]\[<compiler>]\[sample]\[FDL]

FDL_Cfg.h Header file with definitions for library setup at
compile time

FDL.h Header file containing function prototypes

FDL_Types.h Header file containing calling structures and error
definitions

FDL_Descriptor.h Descriptor file header with the run-time FDL
configuration. To be edited by the user.

FDL_Descriptor.c Descriptorfile with the run-time EEL configuration.
 Should not be edited by the user.

[root]\[<device name>]\[<compiler>]\[sample]\[FDL]\[lib]

FDL_Env.h Library internal defines for the Flash programming
 hardware

FDL_Global.h Library internal defines, function prototypes and
 variables

FDL_UserIF.c Source code for the library user interface and service
functions

FDL_HWAccess.c Source code for the libraries HW interface

Data Flash Access Library

 User’s Manual U20279EE1V4UM00 15

4.2 EEL Linker sections

The following sections are EEPROM emulation library related:

 FAL_Text
FDL code section, containing the hardware interface and user interface.

 FAL_Data
FDL Data section containing all FDL internal variables.

 EEL_Text
EEL code section containing the state machine, user interface and FAL
interface.

 FAL_Data
FDL Data section containing all EEL internal variables.

4.3 MISRA Compliance

The EEL and FDL have been tested regarding MISRA compliance.

The used tool is the QAC Source Code Analyzer which tests against the
MISRA 2004 standard rules.

All MISRA related rules have been enabled. Findings are commented in the
code while the QAC checker machine is set to silent mode in the concerning
code lines.

Data Flash Access Library

 User’s Manual U20279EE1V4UM00 16

Chapter 5 User Interface (API)

5.1 Pre-compile configuration

The pre-compile configuration of the FDL may be located in the FDL_cfg.h.

Based on the library design, there are no library concept related configurations
to be done. Anyhow, depending on device differences, there may be FDL
internal device dependant adaptations necessary. These adaptations are
controlled by device dependant defines in this file.

Take care to follow the configurations done in the sample application in order
to ensure correct FDL operation.

The configuration elements sample:

#define FDL_DEVICESPECIFIC_CFG_3501
By setting this define, umbrella chip specific adaptations of the FDL are
activated.

Implementation in FDL_Cfg.h (define not set):

// #define FDL_DEVICESPECIFIC_CFG_3501

Data Flash Access Library

 User’s Manual U20279EE1V4UM00 17

5.2 Run-time configuration

The overall EEL run-time configuration is defined by an EEL specific part (EEL
run-time configuration) and by the FDL run-time configuration. Background of
the splitting is that the FDL requires either common, by EEL and FDL used
information (e.g. block size) or EEL related information (e.g. about the EEL
pool size). So, this information is part of the FDL run-time configuration.

Both configurations of FDL and EEL are stored in descriptor structures which
are declared in FDL_Types.h / EEL_Types.h and defined in FDL_Descriptor.c
/ EEL_Descriptor.c with header files FDL_Descriptor.h / EEL_Descriptor.h.
The descriptor files (.c and .h) are considered as part of the user application.

The defined descriptor structures are passed to the libraries as reference by
the functions FDL_Init and EEL_Init.

5.2.1 FDL run-time configuration elements

The descriptor contains the following elements; please also refer to chapter
3.2”Data Flash Pools”:

blkSize:
Defines the Data Flash block size in Bytes. This is just a configuration option
reserved for future use. In all current Devices the Data Flash size is fixed to
2kB=0x800Bytes.

Value range: Currently fixed to 0x800

falPoolSize:
Defines the number of blocks used for the FAL pool, which means the User
Pool + EEL Pool. Usually, the FAL pool size equals the total number of Flash
blocks.

Value range: Min: EEL pool size
 Max: Physical number of Data Flash blocks

eelPoolStart:
Defines the first Data Flash block number used as EEL pool.

Value range: Min: FAL Pool start block
 Max: eelPoolStart + eelPoolSize <= falPoolSize

eelPoolSize:
Defines the number of blocks used for the EEL pool.

Value range: Min: 4 Blocks (required for proper EEL operation)
 Max: FAL pool size, condition:
 eelPoolStart + eelPoolSize <= falPoolSize

Implementation:

The descriptor structure is defined in the module FDL_Types.h

typedef struct {

 fal_u16 blkSize_u16;

 fal_u16 falPoolSize_u16;

 fal_u16 eelPoolStart_u16;

 fal_u16 eelPoolSize_u16;

 } fal_descriptor_t;

Data Flash Access Library

 User’s Manual U20279EE1V4UM00 18

The descriptor variable definition and filling is part of the user application. The
files FDL_Descriptor.h/.c give an example which shall be used by the user
application. Only FDL_Descriptor.h need to be modified for proper
configuration while FDL_Descriptor.c can be kept unchanged.

Example variable definition and filling in FDL_Descriptor.c:

const fal_descriptor_t eelApp_fdlConfig =

 {

 FAL_CONFIG_BLOCK_SIZE,

 FAL_CONFIG_DATAFLASH_SIZE,

 EEL_CONFIG_BLOCK_START,

 EEL_CONFIG_BLOCK_CNT

 };

Example configuration in FDL_Descriptor.h:

Example 1)

Data Flash size is 32kB, separated into blocks of 2kB.
The EEL shall use the complete Data Flash for the EEL pool:

 #define FAL_CONFIG_DATAFLASH_SIZE 16

 #define FAL_CONFIG_BLOCK_SIZE 0x800

 #define EEL_CONFIG_BLOCK_START 0

 #define EEL_CONFIG_BLOCK_CNT 16

Example 2)

Data Flash size is 32kB, separated into blocks of 2kB.
The EEL shall use blocks 2 to 11 for the EEL pool, while blocks 0 to 1 and 12
to 15 can be used as user pool:

 #define FAL_CONFIG_DATAFLASH_SIZE 16

 #define FAL_CONFIG_BLOCK_SIZE 0x800

 #define EEL_CONFIG_BLOCK_START 2

 #define EEL_CONFIG_BLOCK_CNT 10

Example 3)

Data Flash size is 32kB, separated into blocks of 2kB; the EEL shall not be
used at all. The complete Data Flash shall be used as user pool:

 #define FAL_CONFIG_DATAFLASH_SIZE 16

 #define FAL_CONFIG_BLOCK_SIZE 0x800

 #define EEL_CONFIG_BLOCK_START 0

 #define EEL_CONFIG_BLOCK_CNT 0

Data Flash Access Library

 User’s Manual U20279EE1V4UM00 19

5.3 Data Types

5.3.1 Error Codes

FDL status & error codes Figure 4

E
x

p
la

n
a

ti
o

n
R

o
o

t
C

a
u

s
e

 J
u

d
g

m
e

n
t

F
A

L
 O

p
e

ra
ti

o
n

 I
m

p
a

c
t

R
e

c
o

m
m

e
n

d
e

d
 A

p
p

li
c
a

ti
o

n
 R

e
a
c

ti
o

n

F
A

L
_
O

K
T

h
e
 o

p
e

ra
ti
o

n
 f

in
is

h
e
d

 s
u

c
c
e

s
s
fu

lly
N

o
rm

a
l
lib

ra
ry

 b
e
h

a
v
io

r
N

o
n

e
N

o
n

e

F
A

L
_
B

U
S

Y
T

h
e
 o

p
e

ra
ti
o

n
 h

a
s
 b

e
e

n
 s

ta
rt

e
d

 s
u

c
c
e

s
s
fu

lly
N

o
rm

a
l
lib

ra
ry

 b
e
h

a
v
io

r
N

o
n

e
C

o
n

tin
u
e

 o
p

e
ra

ti
o

n

F
A

L
_
E

R
A

S
E

_
S

U
S

P
E

N
D

E
D

A
n

 o
n

g
o

in
g
 F

la
s
h

 e
ra

s
e

 o
p

e
ra

ti
o

n
 i
s
 s

u
s
p

e
n

d
e

d

b
y

u
s
e

r
a

p
p
lic

a
ti
o

n
 r

e
q
u

e
s
t

N
o

rm
a

l
lib

ra
ry

 b
e
h

a
v
io

r
N

o
n

e
C

o
n

tin
u
e

 o
p

e
ra

ti
o

n
,

re
s
u

m
e

 e
ra

s
e

 o
p

e
ra

ti
o

n
 s

o
o
n

F
A

L
_
E

R
R

_
P

A
R

A
M

E
T

E
R

W
ro

n
g

 p
a

ra
m

e
te

rs
 h

a
v
e

 b
e

e
n

 p
a

s
s
e

d
 t

o
 t

h
e

 F
A

L
,

e
.g

.:
 W

ro
n
g

 p
a

ra
m

e
te

r
in

 t
h

e
 r

e
q
u

e
s
t

s
tr

u
c
tu

re
A

p
p
lic

a
ti
o

n
 b

u
g

C
u

rr
e

n
t

c
o

m
m

a
n
d

 i
s
 r

e
je

c
te

d
R

e
fr

a
in

 f
ro

m
 f

u
rt

h
e

r
F

la
s
h

 o
p

e
ra

ti
o

n
s
 a

n
d

 i
n

v
e

s
ti
g

a
te

 in
 t
h

e

ro
o
t
c
a

u
s
e

F
A

L
_
E

R
R

_
P

R
O

T
E

C
T

IO
N

A
n

 e
ra

s
e

 o
r

w
ri
te

 o
p
e

ra
ti
o

n
 t

o
 p

ro
te

c
te

d
 F

la
s
h

b
lo

c
k
s
 s

h
o
u

ld
 b

e
 e

x
e

c
u

te
d

 o
r

th
e

 a
c
c
e

s
s
 r

ig
h
ts

v
a

ri
a
b

le
 w

a
s
 n

o
t

s
e

t
a

p
p

ro
p

ri
a

te
ly

A
p

p
lic

a
ti
o

n
 b

u
g

C
u

rr
e

n
t

c
o

m
m

a
n
d

 i
s
 r

e
je

c
te

d
R

e
fr

a
in

 f
ro

m
 f

u
rt

h
e

r
F

la
s
h

 o
p

e
ra

ti
o

n
s
 a

n
d

 i
n

v
e

s
ti
g

a
te

 in
 t
h

e

ro
o
t
c
a

u
s
e

F
A

L
_
E

R
R

_
R

E
J
E

C
T

E
D

A
 n

e
w

 o
p
e

ra
ti
o

n
 s

h
o
u

ld
 b

e
 i
n

it
ia

te
d

 a
lt
h

o
u

g
h

 t
h

e

s
ta

te
 m

a
c
h

in
e
 i
s
 s

ti
ll

b
u
s
y

w
it
h

 a
 p

re
c
e

d
in

g

o
p
e

ra
ti
o

n

A
p

p
lic

a
ti
o

n
 b

u
g

 o
r

in
te

n
d
e

d
 b

e
h

a
v
io

r
C

u
rr

e
n
t

c
o

m
m

a
n
d

 r
e

je
c
te

d
R

e
p

e
a

t
th

e
 c

o
m

m
a

n
d

 w
h

e
n

 t
h

e
 p

re
c
e

d
in

g
 o

p
e

ra
ti
o

n
 h

a
s

fi
n

is
h

e
d

.
If

 n
o
t

in
te

n
d
e

d
 b

e
h

a
v
io

r,
 i
n

v
e

s
ti
g

a
te

 in
 t
h

e
 r

o
o
t
c
a

u
s
e

F
A

L
_
E

R
R

_
W

R
IT

E
A

 f
la

s
h

 w
o

rd
 w

ri
te

 o
r

T
a

g
 w

ri
te

 f
a

ile
d

P
o

s
s
ib

le
 r

o
o

t
c
a

u
s
e

s
:

-
F

la
s
h

 w
o

rd
 w

a
s
 n

o
t

b
la

n
k
 (

a
p
p

lic
a

ti
o

n
 b

u
g

)

-
F

la
s
h

 w
o

rd
 o

r
th

e
 c

o
m

p
le

te
 F

la
s
h

 d
e

fe
c
t

(H

a
rd

w
a

re
 d

e
fe

c
t)

T
h

e
 o

p
e

ra
ti
o

n
 c

o
u
ld

 n
o

t
b

e
 f

in
is

h
e
d

s
u

c
c
e

s
s
fu

lly
.

 -
 I
f

th
e

 F
la

s
h

 w
o

rd
 w

a
s
 b

la
n
k
,

th
e

 F
la

s
h

 w
o

rd
 r

e
s
p

e
c
ti
v
e

ly

 t
h
e
 D

a
ta

 F
la

s
h
 s

h
o
u
ld

 b
e
 c

o
n
s
id

e
re

d
 a

s
 d

e
fe

c
t

 -
 I
f

th
e

 F
la

s
h

 w
o

rd
 w

a
s
 n

o
t
b
la

n
k
,
e
ra

s
e

 t
h

e
 F

la
s
h

 b
lo

c
k
 a

n
d

 r

e
-w

ri
te

 t
h

e
 w

o
rd

.
A

n
 a

p
p
lic

a
ti
o

n
 b

u
g

 s
h

o
u

ld
 b

e

 c

o
n
s
id

e
re

d
.
In

v
e

s
ti
g

a
te

 in
 t
h

e
 r

o
o
t
c
a

u
s
e

F
A

L
_
E

R
R

_
E

R
A

S
E

A
 F

la
s
h

 E
ra

s
e

 f
a

ile
d

F
la

s
h

 b
lo

c
k
 o

r
c
o

m
p

le
te

 D
a

ta
 F

la
s
h

 d
e

fe
c
t

(H
a

rd
w

a
re

 d
e
fe

c
t)

T
h

e
 o

p
e

ra
ti
o

n
 c

o
u
ld

 n
o

t
b

e
 f

in
is

h
e
d

s
u

c
c
e

s
s
fu

lly
.

T
h

e
 F

la
s
h

 b
lo

c
k
 r

e
s
p

e
c
ti
v
e

ly
 t

h
e

 c
o

m
p

le
te

 D
a

ta
 F

la
s
h

 s
h

o
u
ld

b
e
 c

o
n
s
id

e
re

d
 a

s
 d

e
fe

c
t

F
A

L
_
E

R
R

_
C

O
M

M
A

N
D

T
h

e
 c

o
m

m
a

n
d

 t
o

 b
e

 e
x
e

c
u

te
d

 i
s
 u

n
k
n

o
w

n
A

p
p
lic

a
ti
o

n
 b

u
g

C
u

rr
e

n
t

c
o

m
m

a
n
d

 r
e

je
c
te

d
R

e
fr

a
in

 f
ro

m
 f

u
rt

h
e

r
F

la
s
h

 o
p

e
ra

ti
o

n
s
 a

n
d

 i
n

v
e

s
ti
g

a
te

 in
 t
h

e

ro
o
t
c
a

u
s
e

F
A

L
_
E

R
R

_
B

IT
C

H
E

C
K

T
h

e
 b

it
 c

h
e
c
k
 o

p
e

ra
ti
o

n
 f

o
u
n

d
 a

 b
it
 e

rr
o

r
in

 t
h

e

d
a
ta

 w
o

rd
 o

r
th

e
 T

a
g

A
t

le
a
s
t

o
n

 b
it
 i
n

 t
h

e
 i
n

v
e

s
ti
g

a
te

d
 d

a
ta

 is
 w

ro
n
g

.

P
o

s
s
ib

le
 c

a
u
s
e

:

 -
 N

o
t
c
o

m
p

le
te

ly
 e

ra
s
e

d
 o

r
w

ri
tt

e
n

 F
la

s
h

,
e

.g
.

 c

a
u
s
e

d
 b

y
a

 p
o
w

e
r

fa
il

d
u
ri
n

g
 a

 F
la

s
h

 o

p
e
ra

ti
o

n

 -
 l
o

n
g

 t
im

e
 f

ra
m

e
 b

e
tw

e
e
n

 F
la

s
h

 E
ra

s
e

 a
n

d
 b

it

 e

rr
o

r
c
h

e
c
k

N
o

n
e

D
e

p
e
n

d
in

g
 o

n
 t

h
e

 u
s
a

g
e

 s
c
e

n
a

ri
o
:

1
)

If
 i
t

is
 e

n
s
u

re
d

 t
h
a

t
th

e
 e

ra
s
e

 a
n

d
 w

ri
te

 o
p
e

ra
ti
o

n
s
 o

n
 t

h
e

c
h

e
c
k
e

d
 d

a
ta

 w
e

re
 c

o
m

p
le

te
d

 s
u

c
c
e

s
s
fu

lly
 a

n
d

 t
h

e
 d

a
ta

re

te
n

ti
o

n
 t
im

e
 i
s
 n

o
t
e
x
c
e

e
d

e
d

,
th

is
 i
s
 a

 n
o
rm

a
l
b

e
h

a
v
io

r.

U

p
 t

o
 t

w
o

 b
it
s
 m

a
y

fa
il

a
s
 t

h
e

 d
a

ta
 i
s
 E

C
C

 c
o

rr
e

c
te

d

2
)

If
 a

b
o

v
e

 c
o

n
d

it
io

n
 1

)
is

 n
o
t
fu

lf
ill

e
d
,
b
u

t
b

y
c
yc

lic
a

l
c
h

e
c
k
s

it
 i
s
 e

n
s
u

re
d

 t
h
a

t
o

n
ly

 u
p
 t
o
 2

 b
it
s
 a

re
 f

a
ile

d
 (

w
e

 c
a

n

a

s
s
u

m
e

 t
h

a
t

b
it
s
 f

a
il

b
y

ti
m

e
,
n

o
t
a
ll

a
t
o

n
c
e

),
 r

e
fr

e
s
h

 t
h

e

d
a
ta

 in
to

 a
 n

e
w

 f
re

s
h
 e

ra
s
e
d
 b

lo
c
k
.

3
)

If
 n

e
it
h

e
r

1
)

n
o

r
2

)
a

re
 f

u
lf
ill

e
d
,

w
e

 c
a

n
n

o
t

tr
u

s
t
th

e

c
o

rr
e

c
tn

e
s
s
 o

f
th

e
 d

a
ta

.
R

e
a
c
ti
o

n
 i
s
 t
h
e

n
 u

p
 t

o
 t

h
e

a
p
p
lic

a
ti
o
n

F
A

L
_
E

R
R

_
IN

T
E

R
N

A
L

A
 l
ib

ra
ry

 i
n

te
rn

a
l
e

rr
o

r
o

c
c
u

rr
e

d
,

w
h

ic
h

 c
o

u
ld

 n
o

t

h
a
p
p
e
n
 i
n
 c

a
s
e
 o

f
n
o
rm

a
l
a
p
p
lic

a
ti
o
n
 e

x
e
c
u
ti
o
n

 -
 A

p
p
lic

a
ti
o

n
 b

u
g

 (
e

.g
.
P

ro
g
ra

m
 r

u
n
-a

w
a

y,

 d

e
s
tr

o
ye

d
 p

ro
g

ra
m

 c
o

u
n

te
r

..
.)

 -
 P

ro
g
ra

m
m

in
g
 h

a
rd

w
a

re
 p

ro
b

le
m

T
h

e
 o

p
e

ra
ti
o

n
 c

o
u
ld

 n
o

t
b

e
 f

in
is

h
e
d

s
u

c
c
e

s
s
fu

lly
.

R
e

fr
a

in
 f

ro
m

 f
u

rt
h

e
r

F
la

s
h

 o
p

e
ra

ti
o

n
s
 a

n
d

 i
n

v
e

s
ti
g

a
te

 in
 t
h

e

ro
o
t
c
a

u
s
e

Data Flash Access Library

 User’s Manual U20279EE1V4UM00 20

5.3.2 User operation request structure

All different user operations are initiated by a central initiation function
(FAL_Execute). All information required for the execution is passed to the FAL
by a central request structure. Also the error is returned by the same structure:

Request structure handling

Application

cnt_u32

idx_u32

dataAdd_u32

command_enu

myRequest

Write access

Read access

status_enu

FDL

access_type_enu

The following request elements are defined:

 command_enu: User command to execute:
 EEL_CMD_ERASE Erase a Flash block
 EEL_CMD_WRITE Write data words to
 Flash
 EEL_CMD_WRITE_TAG Write Tags in Flash
 EEL_CMD_BITCHECK Checks data and
 Tag bits on a certain
 address

 dataAdd_u32: Only required for Write command:
 Address of the write buffer of the application

 idx_u32: Write / Write Tag:
 destination word index
Erase:
 block index of the 1st block to erase

 cnt_u32: Write / Write Tag:
 Number of words to write
Erase:
 Number of blocks to erase

 status_enu: Status/Error codes returned by the library (see
previous page)

 access_type_enu: Access right definition:
FDL_ACCESS_USER Access the user pool
FDL_ACCESS_EEL Access the EEL pool

Note: In order to initiate a Flash operation, the access right to the Flash must
be set. The user application may only access the complete configured Data
Flash range except the one configured for the EEL. The EEL may only access
its range. The ranges are defined in the FAL descriptor, passed to the FAL_Init
function. The access right is reset after each Flash operation. If not set again
on calling EEL_Execute, this function will return a protection error.

Figure 5

Data Flash Access Library

 User’s Manual U20279EE1V4UM00 21

Type definition in FAL_Types.h

typedef enum {

 FAL_CMD_ERASE,

 FAL_CMD_WRITE,

 FAL_CMD_WRITE_TAG,

 FAL_CMD_BITCHECK

 } fal_command_t;

typedef enum {

 FAL_OK,

 FAL_BUSY,

 FAL_ERASE_SUSPENDED,

 FAL_ERR_PARAMETER,

 FAL_ERR_PROTECTION,

 FAL_ERR_REJECTED,

 FAL_ERR_WRITE,

 FAL_ERR_ERASE,

 FAL_ERR_COMMAND,

 FAL_ERR_BITCHECK,

 FAL_ERR_INTERNAL

 } fal_status_t;

typedef struct {

 fal_command_t command_enu;

 fal_u32 dataAdd_u32;

 fal_u32 idx_u32;

 fal_u16 cnt_u16;

 fal_access_type_t accessType_enu;

 fal_status_t status_enu;

 } fal_request_t;

Data Flash Access Library

 User’s Manual U20279EE1V4UM00 22

5.4 FAL Functions

Functions represent the functional interface to the FAL which other SW can
use.

5.4.1 Initialization / Shut down

5.4.1.1 FAL_Init

Description

The FAL_Init() function is executed before any execution of FDL Flash
operations.

The main purpose of the FAL_Init() is:

- Initializing the Flash access protection of the EEPROM emulation

- Initialization of internal FDL variables

Interface

fal_status_t FAL_Init(const fal_descriptor_t *fal_config_pstr)

Arguments

Type Argument Description

fal_descriptor_t fal_config_pstr
Pointer to the FDL run-time configuration
descriptor structure in ROM

Return types/values

Type Argument Description

eel_status_t -

Result of the function. Possible
values are:

EEL_OK
EEL_ERR_PARAMETER

The function checks the configuration in the descriptor variable for
consistency. If a problem is found in the configuration, the error
EEL_ERR_PARAMETER is returned:

 Descriptor pointer must be != zero

 Block size must be != zero

 FAL pool size must be != zero

 EEL pool must fit into the FAL pool

On check fail, all further FAL operations are locked.

Pre-conditions

None

Data Flash Access Library

 User’s Manual U20279EE1V4UM00 23

Post-conditions

None

Example

fal_rtConfiguration is configured globally in FAL_Descriptor.c

fal_status_t res_enu;

res_enu = FAL_Init(&falConfig_str);

if(FAL_OK != res_enu)

{

 /* FAL error handler */

 while(1)

 ;

}

Data Flash Access Library

 User’s Manual U20279EE1V4UM00 24

5.4.2 Suspend / Resume

The library provides the functionality to suspend and resume the library
operation in order to provide the possibility to synchronize the EEL Flash
operations with possible user application Flash operations, e.g. write/erase by
using the FDL library directly or read by direct Data Flash read access.

5.4.2.1 FAL_EraseSuspendRequest

Description

This function requests the Erase suspend in order to be able to do other Flash
operations

Interface

fal_status_t FAL_EraseSuspendRequest(void);

Arguments

None

Return types/values

Type Argument Description

fal_status_t -

Result of the function. Possible
values are:
EEL_OK
EEL_ERR_REJECTED

Pre-conditions

 An erase operation must have been started.

 The started erase operation may not have been finished (request
structure status value is FAL_BUSY).

 The library may not already be suspended.

On violation of any of the above conditions, the function will return
EEL_ERR_REJECTED.

Post-conditions

 Call FAL_Handler until the library is suspended
(status FAL_ERASE_SUSPENDED)

If the function returned successfully, no further error check of the suspend
procedure is necessary, as a potential error is saved and restored on
FAL_EraseResume.

Data Flash Access Library

 User’s Manual U20279EE1V4UM00 25

Example

fal_status_t srRes_enu;

fal_request_t myReq_str_str;

fal_u32 i;

/* Start Erase operation */

myReq_str_str.command_enu = FAL_CMD_ERASE;

myReq_str_str.idx_u32 = 0;

myReq_str_str.cnt_u16 = 4;

myReq_str_str.accessType_enu = FAL_ACCESS_USER;

FAL_Execute(&myReq_str_str);

/* Now call the handler some times */

i = 0;

while((myReq_str_str.status_enu == EEL_BUSY)

 &&(i<10))

{

 FAL_Handler();

 i++;

}

/* Suspend request and wait until suspended */

srRes_enu = FAL_EraseSuspendRequest();

if(FAL_OK != srRes_enu)

{

 /* error handler */

 while(1)

 ;

}

while(FAL_ERASE_SUSPENDED != myReq_str_str.status_enu)

{

 FAL_Handler();

}

/* Now the FAL is suspended and we can handle other operations

or read the

 Data Flash */

/* ... */

/* Erase resume */

srRes_enu = FAL_EraseResume();

if(FAL_OK != srRes_enu)

{

 /* Error handler */

 while(1)

 ;

}

/* Finish the erase */

while(myReq_str_str.status_enu == EEL_BUSY)

{

 FAL_Handler();

}

if(FAL_OK != myReq_str_str.status_enu)

{

 /* Error handler */

 while(1)

 ;

}

Data Flash Access Library

 User’s Manual U20279EE1V4UM00 26

5.4.2.2 FAL_EraseResume

Description

This function resumes the FAL operations after suspend

Interface

fal_status_t FAL_EraseResume(void);

Arguments

None

Return types/values

Type Argument Description

fal_status_t -

Result of the function. Possible
values are:
FAL_OK
FAL_ERR_REJECTED

Pre-conditions

 The library must be suspended. Call FAL_SuspendRequest before and
wait until the suspend process finished.

On violation the function ends with FAL_ERR_REJECTED.

Post-conditions

None

Example

See FAL_Suspend

Data Flash Access Library

 User’s Manual U20279EE1V4UM00 27

5.4.3 Stand-By / Wake-Up

The device system architecture prevents entering a device power safe mode,
when a Flash operation is ongoing. By that, especially Flash Erase can delay a
power safe mode significantly (several 10th ms). In order to allow fast entering
of such mode, the functions FAL_StandBy and FAL_WakeUp have been
introduced, which suspend a possibly ongoing Flash Erase operation
(FAL_StandBy) and resume it after waking up from power safe mode
(FAL_WakeUp). Any other Flash operation (e.g. Write) is not suspended as
the execution time is considerably short.

FAL_StandBy immediately suspends a possible ongoing Flash Erase
asynchronously to other FAL operations. So, it is mandatory to call
FAL_WakeUp before entering normal FAL operation again. The prescribed
sequence in case of using FAL_StandBy/WakeUp is:

→ any FAL operation
→ FAL_StandBy
→ device power safe
→ device wake-up
→ FAL_WakeUp
→ continue FAL operations

Note: Please consider not to enter a power safe mode which resets the
Flash hardware (e.g. Deep Stop mode), because a resume of the
previous operation is not possible afterwards. The library is not
able to detect this failure.

Note: When FAL_EraseSuspendRequest has already suspended a
Flash Erase, another Erase suspend by FAL_StandBy is not
possible. So, the following sequence is not allowed:
Erase → suspend → Erase(another block) → Stand-by
This applies independantly, if the 1st erase was issued by EEL or
user application

5.4.3.1 FAL_StandBy

Description

This function suspends a possibly ongoing Flash Erase. Any other Flash
operation is untouched

Interface

fal_status_t FAL_StandBy(void);

Arguments

None

Return types/values

Type Argument Description

fal_status_t -

Result of the function. Possible
values are:
EEL_OK
EEL_ERR_REJECTED

Data Flash Access Library

 User’s Manual U20279EE1V4UM00 28

Pre-conditions

 The library must be initialized

 The sequence
Flash Erase --> FAL suspend --> Flash Erase --> FAL Stand-by
is not allowed

 The FAL is not in stand-by mode

On violation of any of the above conditions, the function will return
EEL_ERR_REJECTED.

Post-conditions

 Execute FAL_WakeUp as next FAL function

Example

fal_status_t fdlRet_enu;

fal_request_t myReq_str_str;

/* Start Erase operation */

myReq_str_str.command_enu = FAL_CMD_ERASE;

myReq_str_str.idx_u32 = 0;

myReq_str_str.cnt_u16 = 4;

myReq_str_str.accessType_enu = FAL_ACCESS_USER;

FAL_Execute(&myReq_str_str);

...

fdlRet = FAL_StandBy();

if(FAL_OK != fdlRet)

{

 /* error handler */

}

...

/* enter power safe mode */

...

fdlRet = FAL_WakeUp();

if(FAL_OK != fdlRet)

{

 /* error handler */

}

/* Finish the erase */

while(myReq_str_str.status_enu == EEL_BUSY)

{

 FAL_Handler();

}

if(FAL_OK != myReq_str_str.status_enu)

{

 /* Error handler */

 while(1)

 ;

}

Data Flash Access Library

 User’s Manual U20279EE1V4UM00 29

5.4.3.2 FAL_WakeUp

Description

This function wakes-up the library from stand-by.

Interface

fal_status_t FAL_WakeUp(void);

Arguments

None

Return types/values

Type Argument Description

fal_status_t -

Result of the function. Possible
values are:
EEL_OK
EEL_ERR_REJECTED

Pre-conditions

 The library must be initialized

 The library must be in stand-by mode

On violation of any of the above conditions, the function will return
EEL_ERR_REJECTED.

Post-conditions

-

Example

See FAL_StandBy

Data Flash Access Library

 User’s Manual U20279EE1V4UM00 30

5.4.4 Operational functions

5.4.4.1 FAL_Execute

Description

The execute function initiates all Flash modification operations. The operation
type and operation parameters are passed to the FAL by a request structure,
the status and the result of the operation are returned to the user application
also by the same structure. The required parameters as well as the possible
return values depend on the operation to be started.

Except for the “bit error check” command, this function only starts a hardware
operation according to the command to be executed. The command
processing must be controlled and stepped forward by the handler function
FAL_Handler (explained later on). The “bit error check” operation is executed
by the FAL_Execute function alone. Further calls of FAL_Handler are not
necessary.

Possible user commands are:

 Erase

Erases a defined number of Flash blocks. The start block and the number
of blocks can be defined.

Required parameters from the request structure:

o command_enu FAL_CMD_ERASE for the Erase operation

o idx_u32 Start block index (block number)

o cnt_u32 Number of blocks to erase

o access_type_enu Access right, either FDL_ACCESS_USER
 or FDL_ACCESS_EEL

The parameters are checked in EEL_Execute, resulting in
EEL_ERR_PARAMETER error on violation. Independently in order to be
robust against library external influences, the parameters are checked
again by the access check functionality, then resulting in error
EEL_ERR_PROTECTION.

The check condition is:

o The range (start block) to (Start block + Number of blocks - 1) must
be in the EEL/User pool.

 Write

Writing data from a user defined source buffer to a destination address in
the Data Flash. The Tag bit aligned to the data is not affected.

Required parameters from the request structure:

o command_enu FAL_CMD_WRITE for the Write operation

o idx_u32 Start byte index in the Data Flash
 (= relative address)
 The address is calculated relative to the
 Data Flash base address, e.g.:
 - 1st word of the Data Flash is addressed by
 0x00000000
 - 3rd word of the Data Flash is addressed by
 0x00000008

Data Flash Access Library

 User’s Manual U20279EE1V4UM00 31

o cnt_u32 Number of words to write (Word Count).
 Based on the Flash hardware
 implementation 1, 2, 3 or 4 words can be
 written

o dataAdd_u32 Source data buffer address

o access_type_enu Access right, either FDL_ACCESS_USER
 or FDL_ACCESS_EEL

The parameters are checked in EEL_Execute, resulting in
EEL_ERR_PARAMETER error on violation. Independently in order to be
robust against library external influences, the parameters are checked
again by the access check functionality, then resulting in error
EEL_ERR_PROTECTION.

The check condition is:

o The range (start word) to (Start word + Number of words - 1) is in the
EEL/User pool.

 Write Tag

Setting tag bits in the Data Flash to zero. The data words aligned to the
tags are not affected.

Required parameters from the request structure:

o command_enu FAL_CMD_WRITE_TAG for the Write Tag
 operation

o idx_u32 Start byte index in the Data Flash (= relative
 address)
 The address is calculated relative to the
 Data Flash base address, e.g.:
 - 1st tag of the Data Flash is addressed by
 0x00000000
 - 3rd tag of the Data Flash is addressed by
 0x00000008

o cnt_u32 Number of tags to set (Tag count).
 Based on the Flash hardware
 implementation 1, 2, 3 or 4 tags can be set

o access_type_enu Access right, either FDL_ACCESS_USER
 or FDL_ACCESS_EEL

The parameters are checked in EEL_Execute, resulting in
EEL_ERR_PARAMETER error on violation. Independently in order to be
robust against library external influences, the parameters are checked
again by the access check functionality, then resulting in error
EEL_ERR_PROTECTION.

The check condition is:

o The range (start word) to (Start word + Number of words - 1) is in the
EEL/User pool.

 Bit error check

Check one Data Flash address for bit errors in the 32-bit data and the
Tag.

Required parameters from the request structure:

o command_enu FAL_CMD_BITCHECK for the Bit error
 check operation

Data Flash Access Library

 User’s Manual U20279EE1V4UM00 32

o idx_u32 Start byte index in the Data Flash (= relative
 address)
 The address is calculated relative to the
 Data Flash base address, e.g.:
 - 1st tag of the Data Flash is addressed by
 0x00000000
 - 3rd tag of the Data Flash is addressed by
 0x00000008

o access_type_enu Access right, either FDL_ACCESS_USER
 or FDL_ACCESS_EEL

The parameters are checked in EEL_Execute, resulting in
EEL_ERR_PARAMETER error on violation. Independently in order to be
robust against library external influences, the parameters are checked
again by the access check functionality, then resulting in error
EEL_ERR_PROTECTION.

The check condition is:

o The relative address is in the EEL/User pool.

Interface

void FAL_Execute(fal_request_t *request_pstr);

Arguments

Type Argument Description

fal_request_t request_pstr
See chapter 5.3.2, “User operation
request structure”

Return types/values

Type Argument Description

fal_request_t
request_str.
 status_enu

The value is returned in the request
structure error variable.

All commands:
FAL_ERR_REJECTED
FAL_ERR_PARAMETER
FAL_ERR_COMMAND
FAL_ERR_INTERNAL

All commands except bit error check:
FAL_BUSY

Only bit error check command:
FAL_ERR_BITCHECK
FAL_OK

Data Flash Access Library

 User’s Manual U20279EE1V4UM00 33

Note:
The user application can either react directly on the errors returned by the
FAL_Execute function or call the handler function FAL_Handler and react on
errors then. The errors set on FAL_Execute are not reset and the handler
execution does not do additional operations in case of an error already set.

Pre-conditions

 Call FAL_Init to initialize the library

Post-conditions

 Call FAL_Handler to complete the initiated operation (“Except bit error
check”)

Example

Example erase blocks 0 to 3:

fal_request_t myReq_str;

myReq_str.command_enu = FAL_CMD_ERASE;

myReq_str.idx_u32 = 0;

myReq_str.cnt_u16 = 4;

myReq_str.accessType_enu = FAL_ACCESS_USER;

FAL_Execute(&myReq_str);

while(myReq_str.status_enu == FAL_BUSY)

{

 FAL_Handler();

}

if(myReq_str.status_enu != FAL_OK)

{

 /* Error handler */

 while(1)

 ;

}

Data Flash Access Library

 User’s Manual U20279EE1V4UM00 34

Example write Data to addresses 0x100 to 0x107

fal_request_t myReq_str;

fal_u32 data[] = { 0x12345678, 0x23456789 };

myReq_str.command_enu = FAL_CMD_WRITE;

myReq_str.idx_u32 = 0x100;

myReq_str.cnt_u16 = 2;

myReq_str.dataAdd_u32 = (fal_u32)&data[0];

myReq_str.accessType_enu = FAL_ACCESS_USER;

FAL_Execute(&myReq_str);

while(myReq_str.status_enu == FAL_BUSY)

{

 FAL_Handler();

}

if(myReq_str.status_enu != FAL_OK)

{

 /* Error handler */

 while(1)

 ;

}

Example write Tags on addresses 0x100 to 0x107

fal_request_t myReq_str;

myReq_str.command_enu = FAL_CMD_WRITE_TAG;

myReq_str.idx_u32 = 0x100;

myReq_str.cnt_u16 = 2;

myReq_str.accessType_enu = FAL_ACCESS_USER;

FAL_Execute(&myReq_str);

while(myReq_str.status_enu == FAL_BUSY)

{

 FAL_Handler();

}

if(myReq_str.status_enu != FAL_OK)

{

 /* Error handler */

 while(1)

 ;

}

Example check for a bit error on address 0x100

fal_request_t myReq_str;

myReq_str.command_enu = FAL_CMD_BITCHECK;

myReq_str.idx_u32 = 0x100;

myReq_str.accessType_enu = FAL_ACCESS_USER;

FAL_Execute(&myReq_str);

if(myReq_str.status_enu != FAL_OK)

{

 /* Bit error handling */

 while(1)

 ;

}

Data Flash Access Library

 User’s Manual U20279EE1V4UM00 35

5.4.4.2 FAL_Handler

Description

This function handles the command processing for the FAL Flash operations.
After operation initiation by FAL_Execute, this function needs to be called
frequently.

The function checks the operation status, handles library internal state
machines and updates the request structure status_enu variable when the
operation has finished. By that, the operation end can be polled.

Note:
FAL_Handler must be called until the Flash operation has finished in order to
disable the Flash programming hardware. Only after deinitialization further
operations can be started or Data Flash can be read.

Interface

void FAL_Handler(void);

Arguments

-

Return types/values

Type Argument Description

fal_request_t
request_str.
 status_enu

The value is returned in the request
structure error variable, passed to the
FAL_Execute function. The possible return
values depend on the operation that was
started as well as on the errors of
background operations.

This table describes not the errors set by
operation invocation with the FAL_Execute
function, but the errors, additionally set
during operation execution.

All operations:

 FAL_OK

 FAL_BUSY

 FAL_ERR_INTERNAL

 FAL_ERR_PROTECTION

Additionally on Erase:

 FAL_ERR_ERASE

Additionally on Write & Write Tag:

 FAL_ERR_WRITE

request_str.
 accessType_enu

Is reset to FAL_ACCESS_NONE after Flash
operation end in order to avoid accidental
repetition of the same command by the user
application. On every new command
invocation this variable must be set again.

Data Flash Access Library

 User’s Manual U20279EE1V4UM00 36

Pre-conditions

 Call FAL_Init to initialize the library

 Call FAL_Execute to initiate a FAL operation

Post-conditions

None

Example

See FAL_Execute

Data Flash Access Library

 User’s Manual U20279EE1V4UM00 37

5.4.5 Administrative functions

5.4.5.1 FAL_GetVersionString

Description

This function returns the pointer to the library version string. The version string
is the zero terminated string identifying the library.

Interface

(const fal_u08*) FAL_GetVersionString(void);

Arguments

-

Return types/values

The library version is returned as string value in the following style:

 “DV850T05xxxxyZabc”

with

 x = supported compiler
 y = compiler option
 Z = “E” for engineering versions,
 “V” for final versions
 abc = Library version numbers according to version Va.b.c

Pre-conditions

None

Post-conditions

None

Example

fal_u08 *vstr_pu08;

vstr_pu08 = FAL_GetVersionString();

Data Flash Access Library

 User’s Manual U20279EE1V4UM00 38

Chapter 6 FDL Implementation into the user application

6.1 First steps

It is very important to have theoretic background about the Data Flash and the
FDL in order to successfully implement the library into the user application.
Therefore it is important to read this user manual in advance.

6.2 Special considerations

6.2.1 Library handling by the user application

6.2.1.1 Function re-entrancy

All functions are not reentrant. So, reentrant calls of any EEL or FDL functions
must be avoided.

6.2.1.2 Task switches, context changes and synchronization between FDL functions

All FDL functions depend on global FDL available information and are able to
modify this. In order to avoid synchronization problems, it is necessary that at
any time only one FDL function is executed. So, it is not allowed to start an
FDL function, then switch to another task context and execute another FDL
function while the last one has not finished.

Example of not allowed sequence:

- Task1: Start an FDL operation with FDL_Execute

- Interrupt the function execution and switch to task 2, executing FDL_Handler
function

- Return to task 1 and finish FDL_Execute function

As the FDL may not define critical sections which disable interrupts in order to
avoid context changes and task switches, this synchronization need to be
done by the user application.

6.2.2 Concurrent Data Flash accesses

Depending on the user application scenario, the Data Flash might be used for
different purposes, e.g. one part is reserved for direct access by the user
application and one part is reserved for EEPROM emulation by the Renesas
EEL. The FDL is prepared to split the Data Flash into an EEL Pool and a User
Pool.

On splitted Data Flash, the EEL is the only master on the EEL pool, accesses
to this pool shall be done via the EEL API only.

Access to the user pool is done by using the FDL API functions for all
accesses except read (e.g. FDL_Erase, FDL_Write, ...), while Data Flash read
is directly done by the CPU.

The configuration of FDL pool and EEL pool (and resulting user pool) is done
in the FDL descriptor.

6.2.2.1 User Data Flash access during active EEPROM emulation

Please refer to the EEL user manual regarding more detailed description of
synchronization between EEPROM emulation and user accesses.

Data Flash Access Library

 User’s Manual U20279EE1V4UM00 39

6.2.2.2 Direct access to the Data Flash by the user application by DMA

Basically, DMA transfers from Data Flash are permitted, but need to be
synchronized with the EEL. Same considerations apply as mentioned in the
last sub-chapter for accesses by the user application.

6.2.3 Entering power safe mode

Entering power safe modes is delayed by the device hardware until eventually
ongoing Data Flash operations are finished.

Data Flash Access Library

 User’s Manual U20279EE1V4UM00 40

Chapter 7 Revision History

Rev. Date Description

Page Summary

1.00 Mar 16, 2010 First Edition issued

1.1 July 02, 2010 13 Added new EEL and FDL sections (EEL_Const, FDL_Const)

 33 Replaced 6.2.1.4 (“User Data Flash access during active EEPROM

emulation using the EEL”) by 6.2.2

 34 Moved 6.2.1.3 to 6.2.3

1.2 July 08, 2010 24 changed heading “FAL_Resume” --> “FAL_EraseResume”

1.3 Oct. 11, 2010 27-

29

Added to describe FAL_Stand-by/Wake-up

1.4 Jul. 10, 2013 20,

31

Fixed variablen name

