
U
ser’s M

anual

All information contained in these materials, including products and product specifications,
represents information on the product at the time of publication and is subject to change by
Renesas Electronics Corp. without notice. Please review the latest information published by
Renesas Electronics Corp. through various means, including the Renesas Electronics Corp.
website (http://www.renesas.com).

CubeSuite Ver.1.40

Integrated Development Environment
User’s Manual: Coding for CX Compiler

Rev.1.00 Oct 2010

Target Device
V850 Microcontroller

www.renesas.com

Notice
1. All information included in this document is current as of the date this document is issued. Such information, however, is

subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please
confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to
additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.

2. Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights
of third parties by or arising from the use of Renesas Electronics products or technical information described in this document.
No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights
of Renesas Electronics or others.

3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.
4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of

semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software,
and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by
you or third parties arising from the use of these circuits, software, or information.

5. When exporting the products or technology described in this document, you should comply with the applicable export control
laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas
Electronics products or the technology described in this document for any purpose relating to military applications or use by
the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and
technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited
under any applicable domestic or foreign laws or regulations.

6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics
does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages
incurred by you resulting from errors in or omissions from the information included herein.

7. Renesas Electronics products are classified according to the following three quality grades: “Standard”, “High Quality”, and
“Specific”. The recommended applications for each Renesas Electronics product depends on the product’s quality grade, as
indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular
application. You may not use any Renesas Electronics product for any application categorized as “Specific” without the prior
written consent of Renesas Electronics. Further, you may not use any Renesas Electronics product for any application for
which it is not intended without the prior written consent of Renesas Electronics. Renesas Electronics shall not be in any way
liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an
application categorized as “Specific” or for which the product is not intended where you have failed to obtain the prior written
consent of Renesas Electronics. The quality grade of each Renesas Electronics product is “Standard” unless otherwise
expressly specified in a Renesas Electronics data sheets or data books, etc.

“Standard”: Computers; office equipment; communications equipment; test and measurement equipment; audio and visual
equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots.

“High Quality”: Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-
crime systems; safety equipment; and medical equipment not specifically designed for life support.

“Specific”: Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or
systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare
intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.

8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics,
especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation
characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or
damages arising out of the use of Renesas Electronics products beyond such specified ranges.

9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have
specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further,
Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to
guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a
Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire
control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because
the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system
manufactured by you.

10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental
compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable
laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS
Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with
applicable laws and regulations.

11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas
Electronics.

12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this
document or Renesas Electronics products, or if you have any other inquiries.

(Note 1) “Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its majority-
owned subsidiaries.

(Note 2) “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.

How to Use This Manual

This manual describes the role of the CubeSuite integrated development environment for developing applications

and systems for V850 microcontrollers, and provides an outline of its features.

CubeSuite is an integrated development environment (IDE) for V850 microcontrollers, integrating the necessary

tools for the development phase of software (e.g. design, implementation, and debugging) into a single platform.

By providing an integrated environment, it is possible to perform all development using just this product, without

the need to use many different tools separately.

Readers This manual is intended for users who wish to understand the functions of the

CubeSuite and design software and hardware application systems.

Purpose This manual is intended to give users an understanding of the functions of the

Cubesuite to use for reference in developing the hardware or software of systems using

these devices.

Organization This manual can be broadly divided into the following units.

CHAPTER 1 GENERAL

CHAPTER 2 FUNCTIONS

CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

CHAPTER 5 LINK DIRECTIVE SPECIFICATIONS

CHAPTER 6 FUNCTIONAL SPECIFICATIONS

CHAPTER 7 STARTUP

CHAPTER 8 ROMIZATION

CHAPTER 9 REFERENCING COMPILER AND ASSEMBLER

CHAPTER 10 CAUTIONS

APPENDIX A INDEX

How to Read This Manual It is assumed that the readers of this manual have general knowledge of electricity, logic

circuits, and microcontrollers.

Conventions Data significance: Higher digits on the left and lower digits on the right

 Active low representation: XXX
–––

 (overscore over pin or signal name)

 Note: Footnote for item marked with Note in the text

 Caution: Information requiring particular attention

 Remark: Supplementary information

 Numeric representation: Decimal … XXXX

 Hexadecimal … 0xXXXX

Related Documents The related documents indicated in this publication may include preliminary versions.

However, preliminary versions are not marked as such.

Document Name Document No.

Start R20UT0256E

Analysis R20UT0265E

Programming R20UT0266E

Message R20UT0267E

Coding for CX compiler This manual

Build for CX compiler R20UT0261E

78K0 Coding R20UT0004E

78K0 Build R20UT0005E

78K0 Debug R20UT0262E

78K0 Design R20UT0006E

78K0R Coding U19382E

78K0R Build U19385E

78K0R Debug R20UT0263E

78K0R Design R20UT0007E

V850 Coding U19383E

V850 Build U19386E

V850 Debug R20UT0264E

CubeSuite

Integrated Development Environment

User's Manual

V850 Design R20UT0257E

Caution The related documents listed above are subject to change without

notice. Be sure to use the latest edition of each document when

designing.

All trademarks or registered trademarks in this document are the property of their respective
owners.

[MEMO]

[MEMO]

[MEMO]

TABLE OF CONTENTS

CHAPTER 1 GENERAL ... 14

1.1 Outline ... 14
1.2 Special Features ... 14
1.3 Limits ... 14

CHAPTER 2 FUNCTIONS ... 16

2.1 Variables (C Language) ... 16
2.1.1 Allocating to sections accessible with short instructions ... 16
2.1.2 Changing allocated section ... 17
2.1.3 Defining variables for use during standard and interrupt processing ... 19
2.1.4 Defining user port ... 20
2.1.5 Defining const constant pointer ... 21

2.2 Functions ... 22
2.2.1 Changing area to be allocated to ... 22
2.2.2 Calling away function ... 23
2.2.3 Embedding assembler instructions ... 24
2.2.4 Executing in RAM ... 24

2.3 Using Microcomputer Functions ... 25
2.3.1 Accessing peripheral I/O register with C language ... 25
2.3.2 Describing interrupt processing with C language ... 26
2.3.3 Using CPU instructions in C language ... 27
2.3.4 Creating self-programming boot area ... 29
2.3.5 Creating multi-core programs ... 30

2.4 Variables (Assembler) ... 42
2.4.1 Defining variables with no initial values ... 42
2.4.2 Defining const constants with initial values ... 43
2.4.3 Referencing section addresses ... 44

2.5 Startup Routine ... 45
2.5.1 Securing stack area ... 45
2.5.2 Securing stack area and specifying allocation ... 47
2.5.3 Initializing RAM ... 48
2.5.4 Preparing function and variable access ... 49
2.5.5 Preparing to use code size reduction function ... 52
2.5.6 Ending startup routine ... 53

2.6 Link Directives ... 54
2.6.1 Adding function section allocation ... 54
2.6.2 Adding section allocation for variables ... 54
2.6.3 Distributing section allocation ... 55

2.7 Reducing Code Size ... 57
2.7.1 Reducing code size (C language) ... 57
2.7.2 Reducing variable area with variable definition method ... 68

2.8 Accelerating Processing ... 71
2.8.1 Accelerating processing with description method ... 71

2.9 Compiler and Assembler Mutual References ... 73
2.9.1 Mutually referencing variables ... 73
2.9.2 Mutually referencing functions ... 75

CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS ... 76

3.1 Basic Language Specifications ... 76
3.1.1 Unspecified behavior ... 76
3.1.2 Undefined behavior ... 77
3.1.3 Processing system dependent items ... 80
3.1.4 C99 language function ... 90
3.1.5 ANSI option ... 91
3.1.6 Internal representation and value area of data ... 92
3.1.7 General-purpose registers ... 99
3.1.8 Referencing data ... 99
3.1.9 Software register bank ... 100
3.1.10 Device file ... 102

3.2 Extended Language Specifications ... 103
3.2.1 Macro name ... 103
3.2.2 Keyword ... 104
3.2.3 #pragma directive ... 104
3.2.4 Using expanded specifications ... 106
3.2.5 Modification of C source ... 155

3.3 Function Call Interface ... 157
3.3.1 Calling between C functions ... 157
3.3.2 Prologue/Epilogue processing function ... 168
3.3.3 far jump function ... 170

3.4 Section Name List ... 175

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS ... 177

4.1 Description of Source ... 177
4.1.1 Description ... 177
4.1.2 Expressions and operators ... 187
4.1.3 Arithmetic operators ... 189
4.1.4 Logic operators ... 197
4.1.5 Relational operators ... 202
4.1.6 Shift operators ... 211
4.1.7 Byte separation operators ... 214
4.1.8 2-byte separation operators ... 217
4.1.9 Special operators ... 221
4.1.10 Other operator ... 224
4.1.11 Restrictions on operations ... 226
4.1.12 Identifiers ... 227

4.2 Directives ... 228
4.2.1 Outline ... 228
4.2.2 Section definition directives ... 229

4.2.3 Symbol definition directives ... 240
4.2.4 Data definition, area reservation directives ... 244
4.2.5 External definition, external reference directives ... 258
4.2.6 Macro directives ... 265

4.3 Control Instructions ... 276
4.3.1 Outline ... 276
4.3.2 Compile target type specification control instruction ... 277
4.3.3 Symbol control instructions ... 279
4.3.4 Assembler control instructions ... 282
4.3.5 File input control instructions ... 293
4.3.6 Smart correction control instruction ... 296
4.3.7 Conditional assembly control instructions ... 298

4.4 Macro ... 307
4.4.1 Outline ... 307
4.4.2 Usage of macro ... 307
4.4.3 Macro operator ... 308

4.5 Reserved Words ... 309
4.6 Assembler Generated Symbols ... 310
4.7 Instructions ... 310

4.7.1 Memory space ... 310
4.7.2 Register ... 311
4.7.3 Addressing ... 315
4.7.4 Instruction set ... 322
4.7.5 Description of instructions ... 335
4.7.6 Load/Store instructions ... 336
4.7.7 Arithmetic operation instructions ... 349
4.7.8 Saturated operation instructions ... 401
4.7.9 Logical instructions ... 412
4.7.10 Branch instructions ... 447
4.7.11 Bit manipulation instructions ... 464
4.7.12 Stack manipulation instructions ... 473
4.7.13 Special instructions ... 478
4.7.14 Floating-point operation instructions [V850E2V3] ... 498

CHAPTER 5 LINK DIRECTIVE SPECIFICATIONS ... 505

5.1 Specification Items ... 505
5.1.1 Segment directives and mapping directives ... 505
5.1.2 Symbol directive ... 505

5.2 Sections and Segments ... 506
5.2.1 Sections ... 506
5.2.2 Segments ... 506
5.2.3 Relationship between segments and sections ... 508
5.2.4 Types of sections ... 509
5.2.5 Relationship between types and attributes of sections ... 512

5.3 Symbols ... 513
5.3.1 Text pointer (tp) ... 513
5.3.2 Global pointer (gp) ... 514
5.3.3 Element pointer (ep) ... 517

5.4 Coding Method ... 518
5.4.1 Characters used in link directive file ... 519
5.4.2 Link directive file name ... 519
5.4.3 Segment directive ... 519
5.4.4 Mapping directive ... 525
5.4.5 Symbol directive ... 533

5.5 Reserved Words ... 537

CHAPTER 6 FUNCTIONAL SPECIFICATIONS ... 538

6.1 Supplied Libraries ... 538
6.1.1 Standard library ... 539
6.1.2 Mathematical library ... 543
6.1.3 Initialization library ... 545
6.1.4 ROMization library ... 546
6.1.5 Multi-core library ... 546
6.1.6 Runtime library ... 547
6.1.7 Libraries used in V850E2V3-FPU ... 553

6.2 Header Files ... 554
6.3 Re-entrant ... 555
6.4 Library Function ... 556

6.4.1 Functions with variable arguments ... 556
6.4.2 Character string functions ... 560
6.4.3 Memory management functions ... 578
6.4.4 Character conversion functions ... 586
6.4.5 Character classification functions ... 592
6.4.6 Standard I/O functions ... 605
6.4.7 Standard utility functions ... 639
6.4.8 Non-local jump functions ... 679
6.4.9 Mathematical functions ... 682
6.4.10 Initialization peripheral devices function ... 748
6.4.11 Copy functions ... 750
6.4.12 Pseudo "main" functions for multi-core ... 751
6.4.13 Operation runtime functions ... 753
6.4.14 Function pre/post processing runtime functions ... 814

6.5 Library Consumption Stack List ... 815
6.5.1 Standard library ... 815
6.5.2 Mathematical library ... 819
6.5.3 Initialization library ... 821
6.5.4 ROMization library ... 821
6.5.5 Multi-core library ... 821
6.5.6 Runtime library ... 822
6.5.7 Libraries used in V850E2V3-FPU ... 829

CHAPTER 7 STARTUP ... 831

7.1 Outline ... 831
7.2 File Contents ... 831
7.3 Startup Routine ... 831

7.3.1 Setting RESET handler when reset is input ... 832
7.3.2 Setting of register mode of startup routine ... 833
7.3.3 Securing stack area and setting stack pointer ... 833
7.3.4 Securing argument area for main function ... 834
7.3.5 Setting text pointer (tp) ... 834
7.3.6 Setting global pointer (gp) ... 835
7.3.7 Setting element pointer (ep) ... 835
7.3.8 Initializing peripheral I/O registers that must be initialized before execution of main

function ... 836
7.3.9 Initializing user target that must be initialized before execution of main function ... 837
7.3.10 Clearing sbss area to 0 ... 837
7.3.11 Clearing bss area to 0 ... 838
7.3.12 Clearing sebss area to 0 ... 838
7.3.13 Clearing tibss.byte area to 0 ... 839
7.3.14 Clearing tibss.word area to 0 ... 840
7.3.15 Clearing sibss area to 0 ... 840
7.3.16 Setting of CTBP value for function pre/post processing runtime function ... 841
7.3.17 Setting of programmable peripheral I/O register value ... 842
7.3.18 Setting r6 and r7 as argument of main function ... 842
7.3.19 Branching to main function (when not using real-time OS) ... 843
7.3.20 Branching to initialization routine of real-time OS (when using real-time OS) ... 843
7.3.21 V850E2V3 multi-core startup routine ... 844

7.4 Coding Example ... 845

CHAPTER 8 ROMIZATION ... 850

8.1 Outline ... 850
8.2 rompsec Section ... 852

8.2.1 Types of sections to be packed ... 852
8.2.2 Size of rompsec section ... 852
8.2.3 rompsec section and link directive ... 853

8.3 Creating ROMized Load Module File ... 854
8.3.1 Procedure for creating ROMized load module (default) ... 854
8.3.2 Procedure for creating ROMized load module (customize) ... 857

8.4 Copy Functions ... 860

CHAPTER 9 REFERENCING COMPILER AND ASSEMBLER ... 868

9.1 Method of Accessing Arguments and Automatic Variables ... 868
9.2 Method of Storing Return Value ... 868
9.3 Calling of Assembly Language Routine from C Language ... 869
9.4 Calling of C Language Routine from Assembly Language ... 870
9.5 Reference of Argument Defined by Other Language ... 871

CHAPTER 10 CAUTIONS ... 872

10.1 Delimiting Folder/Path ... 872
10.2 Mixing with K&R Format in Function Declaration/Definition ... 872
10.3 Output of Other Than Position-Independent Codes ... 873

10.4 Library File Search by Specifying Option ... 873
10.5 Volatile Qualifier ... 874
10.6 Extra Brackets in Function Declaration ... 876

APPENDIX A INDEX ... 877

CubeSuite Ver.1.40 CHAPTER 1 GENERAL

R20UT0259EJ0100 Rev.1.00 Page 14 of 890
Oct 01, 2010

CHAPTER 1 GENERAL

This chapter provides a general outline of the V850 microcontroller's C compiler package (CX).

1.1 Outline

The V850 microcontroller's C compiler package (CX) is a program that converts programs described in C language or
assembly language into machine language.

1.2 Special Features

The V850 microcontroller's C compiler package (CX) is equipped with the following special features.

(1) Language specifications in accordance with ANSI standard
The C language specifications conform to the ANSI standard. Coexistence with prior C language specifications
(K&R specifications) is also provided.

(2) Advanced optimization
Code size and speed priority optimization for the C compiler are offered.

(3) Improvement to description ability
C language programming description ability has been improved due to enhanced language specifications.

(4) High portability
The single CX supports all microcontrollers. This makes it possible to use a uniform language specification, and
facilitates porting between microcontrollers.
In addition, the industry-standard DWARF2 format is used for debugging information.

(5) Multifunctional
Static analysis and other functionality is provided via linking between CubeSuite.

1.3 Limits

(1) Compiler limits
See "(9) Translation Limit" for the limits of the compiler.

(2) Assembler limits

Table 1-1. Assembler Limits

Description Limit

Symbol length (Token length) 4,294,967,294Note

Label length (Token length) 4,294,967,294Note

Number of symbols 4,294,967,294Note

Number of parameters in LOCAL directive 4,294,967,294Note

Number of automatically generated LOCAL directive symbols 4,294,967,294Note

Nesting levels in INCLUDE directive 4,294,967,294 Note

Total size of TIDATA.BYTE and TIBSS.BYTE relocation attribute sections 128 bytes

CubeSuite Ver.1.40 CHAPTER 1 GENERAL

R20UT0259EJ0100 Rev.1.00 Page 15 of 890
Oct 01, 2010

Note Depends on memory of host machine on which it is running.

Total size of TIDATA.WORD and TIBSS.WORD relocation attribute sections 256 bytes

ALIGN directive Even number from 2 to less than 2e31

Number of arguments in IRP directive 4,294,967,294Note

Description Limit

CubeSuite Ver.1.40 CHAPTER 2 FUNCTIONS

R20UT0259EJ0100 Rev.1.00 Page 16 of 890
Oct 01, 2010

CHAPTER 2 FUNCTIONS

This chapter explains the programming method and how to use the expansion functions for more efficient use of the
CX.

2.1 Variables (C Language)

This section explains variables (C language).

2.1.1 Allocating to sections accessible with short instructions

The V850 contains 2-byte instruction length load/store instructions. By allocating variables to sections accessible with
these instructions it is possible to reduce the code size.

When defining or referencing a variable use the #pragma section and specify "tidata" as the section type.

Example

Remark See "#pragma section directive".

#pragma section section-type

variable-declaration/definition

#pragma section default

#pragma section tidata

int a = 1; /*allocated to tidata.word attribute section*/

int b; /*allocated to tibss.word attribute section*/

#pragma section default

CubeSuite Ver.1.40 CHAPTER 2 FUNCTIONS

R20UT0259EJ0100 Rev.1.00 Page 17 of 890
Oct 01, 2010

2.1.2 Changing allocated section

The default allocation sections are as follows:
- Variables with no initial value: .sbss section
- Variables with initial value: .sdata section
- const constants: .const section

To change the allocated section, specify the section type using #pragma section.

The relationship between section type and the section generated is as follows.

Example

When referencing a variable using the #pragma section instruction from a function in another file (i.e. reference file), it
is necessary to also specify the #pragma section instruction in the reference file and to define the affected variable as
extern format.

#pragma section section-type

variable-declaration/definition

#pragma section default

Section Type Initial Value Default Section
Name

Section Name
Change

Base Register Access Instruction

data Yes .data Possible gp ld/st 2 instruction

No .bss Possible gp ld/st 2 instruction

sdata Yes .sdata Possible gp ld/st 1 instruction

No .sbss Possible gp ld/st 1 instruction

sedata Yes .sedata Impossible ep lld/st 1 instruction

No .sebss Impossible ep ld/st 1 instruction

sidata Yes .sidata Impossible ep ld/st 1 instruction

No .sibss Impossible ep ld/st 1 instruction

tidata_byte Yes .tidata.byte Impossible ep sld/sst 1 instruction

No .tibss.byte Impossible ep sld/sst 1 instruction

tidata_byte Yes .tidata.word Impossible ep sld/sst 1 instruction

No .tibss.word Impossible ep sld/sst 1 instruction

sconst Yes .sconst Impossible r0 ld/st 1 instruction

const Yes .const Possible r0 ld/st 1 instruction

default After this statement, any previous #pragma section will be ignored, and the default allocation will be
used.

#pragma section sdata "mysdata"

int a = 1; /*allocated to mysdata.sdata attribute section*/

int b; /*allocated to mysdata.sbss attribute section*/

#pragma section default

CubeSuite Ver.1.40 CHAPTER 2 FUNCTIONS

R20UT0259EJ0100 Rev.1.00 Page 18 of 890
Oct 01, 2010

Example File that defines a table

Example File that references a table

Remark See "#pragma section directive".

#pragma section sconst

const unsigned char table_data[9] = {1, 2, 3, 4, 5, 6, 7, 8, 9};

#pragma section default

#pragma section sconst

extern const unsigned char table_data[];

#pragma section default

CubeSuite Ver.1.40 CHAPTER 2 FUNCTIONS

R20UT0259EJ0100 Rev.1.00 Page 19 of 890
Oct 01, 2010

2.1.3 Defining variables for use during standard and interrupt processing

Specify as volatile variables that are to be used during both standard and interrupt processing.
When a variable is defined with the volatile qualifier, the variable is not optimized and optimization for assigning the

variable to a register is no longer performed. When a variable specified as volatile is manipulated, a code that always
reads the value of the variable from memory and writes the value to memory after the variable is manipulated is output.
The access width of the variable with volatile specified is not changed. A variable for which volatile is not specified is
assigned to a register as a result of optimization and the code that loads the variable from the memory may be deleted.
When the same value is assigned to variables for which volatile is not specified, the instruction may be deleted as a result
of optimization because it is interpreted as a redundant instruction.

Example Source and output code when volatile has been specified
If volatile is specified for "variable a", "variable b", and "variable c", a code that always reads the values of these
variables from memory and writes them to memory after the variables are manipulated is output. Even if an inter-
rupt occurs in the meantime and the values of the variables are changed by the interrupt, for example, the result in
which the change is reflected can be obtained. (In this case, interrupts may have to be disabled while the variables
are manipulated, depending on the timing of the interrupt.)
When volatile is specified, the code size increases compared with when volatile is not specified because the mem-
ory has to be read and written.

volatile int a;

volatile int b;

volatile int c;

void func(void) {

 if(a <= 0) {

 b++;

 } else {

 c++;

 }

 b++;

 c++;

}

_func:

.BB.LABEL.0:

 callt 0

 ld.w $_a, r12

 cmp r0, r12

 ble .BB.LABEL.2

.BB.LABEL.1:

 ld.w $_c, r12

 add 1, r12

 st.w r12, $_c

 br .BB.LABEL.3

.BB.LABEL.2:

 ld.w $_b, r12

 add 1, r12

 st.w r12, $_b

.BB.LABEL.3:

 ld.w $_b, r12

 add 1, r12

 st.w r12, $_b

 ld.w $_c, r13

 add 1, r13

 st.w r13, $_c

.BB.LABEL.4:

 callt 30

CubeSuite Ver.1.40 CHAPTER 2 FUNCTIONS

R20UT0259EJ0100 Rev.1.00 Page 20 of 890
Oct 01, 2010

2.1.4 Defining user port

With regards to the user port, specify volatile as in the following example to avoid optimization.

Example Port description process

Remarks 1. By declaring a structure and assigning that structure variable to a specific section, and then assigning it
to the corresponding port address in the link directive, bit access is possible in the same "X.X" format
used in the CX internal region I/O register.
However, in the case of 1-bit or 8-bit access both the bit field and byte union are required, so the format
becomes "X.X.X".

2. Assigning variables to sections should be performed using #pragma section or the symbol information
file.

/*1.Port macro (format) definition*/

#define DEFPORTB(addr) (*((volatile unsigned char *)addr)) /*8-bit port*/

#define DEFPORTH(addr) (*((volatile unsigned short *)addr)) /*16-bit port*/

#define DEFPORTW(addr) (*((volatile unsigned int *)addr)) /*32-bit port*/

/*2.Port definition (Example: PORT1 0x00100000 8bit)*/

#define PORT1 DEFPORTB(0x00100000) /*0x00100000 8-bit port*/

/*3. Port use*/

{

 PORT1 = 0xFF; /*Write to PORT1*/

 a = PORT1; /*Read from PORT1*/

}

/*4.C Compiler output code*/

 :

mov 1048576, r10

st.b r20, [r10]

mov 1048576, r11

ld.bu [r11], r12

 :

CubeSuite Ver.1.40 CHAPTER 2 FUNCTIONS

R20UT0259EJ0100 Rev.1.00 Page 21 of 890
Oct 01, 2010

2.1.5 Defining const constant pointer

The pointer is interpreted differently depending on the "const" specified location.
To assign the const section to the sconst section, specify #pragma section sconst.

- const char *p;
This indicates that the object (*p) indicated by the pointer cannot be rewritten.
The pointer itself (p) can be rewritten.
Therefore the state becomes as follows and the pointer itself is allocated to RAM (.sdata/.data).

- char *const p;
This indicates that the pointer itself (p) cannot be rewritten.
The object (*p) indicated by the pointer can be rewritten.
Therefore the state becomes as follows and the pointer itself is allocated to ROM (.sconst/.const).

- const char *const p;
This indicates that neither the pointer itself(p) nor the object (*p) indicated by the pointer can be rewritten.
Therefore the state becomes as follows and the pointer itself is allocated to ROM (.sconst/.const).

*p = 0; /*Error*/

p = 0; /*Correct*/

*p = 0; /*Correct*/

p = 0; /*Error*/

*p = 0; /*Error*/

p = 0; /*Error*/

CubeSuite Ver.1.40 CHAPTER 2 FUNCTIONS

R20UT0259EJ0100 Rev.1.00 Page 22 of 890
Oct 01, 2010

2.2 Functions

This section explains functions.

2.2.1 Changing area to be allocated to

When changing a function's section name, specify the function using the #pragma text directive as shown below.

For a text attribute section that has had its section name changed, specify the initial section name from the time the
input section was created in a link directive.

Example The link directive coding method for when [#pragma text "sec1" func1] has been coded in the C source,
allocating function "func1" to the independently generated text-attribute section "sec1" (segment name:
FUNC1):

When allocating a specific function to an independently specified text-attribute section using the #pragma text directive,
the section name actually generated will be "(specified character string)+.text", and the section name must be entered in
the link directive.

In the above example it would be "sec1.text section".

Remark See "#pragma text directive".

#pragma text ["section name"] [function name[, function name]…]

FUNC1: !LOAD ?RX {

 sec1.text = $PROGBITS ?AX sec1.text;

};

CubeSuite Ver.1.40 CHAPTER 2 FUNCTIONS

R20UT0259EJ0100 Rev.1.00 Page 23 of 890
Oct 01, 2010

2.2.2 Calling away function

The C compiler uses the jarl instruction to call functions.
However, depending on the program allocation the address may not be able to be resolved, resulting in an error when

linking because the jarl instruction is 22-bit displacement.
In such a case, it is possible to make the function call not depend on the displacement amount by using the C com-

piler's -Xfar_jump option.
This is called the far jump function.
When calling a function set as far jump, the jarl32 and jr32 instruction rather than the jarl instruction is output.
One function is described per line in the file where the -Xfar_jump option is specified. The names described should be

C language function names prefixed with "_" (an underscore).

Example

If the following is described in place of "_function-name", all functions will be called using far jump.

If the following is described, all interrupt functions will be called using far jump.

Remark See "far jump function".

_func_led

_func_beep

_func_motor

 :

_func_switch

{all_function}

{all_interrupt}

CubeSuite Ver.1.40 CHAPTER 2 FUNCTIONS

R20UT0259EJ0100 Rev.1.00 Page 24 of 890
Oct 01, 2010

2.2.3 Embedding assembler instructions

With the CX assembler instructions can be described in the following formats within C source programs.
- asm declaration

- #pragma directive

To use registers with an inserted assembler, save or restore the contents of the registers in the program because they
are not saved or restored by the CX.

Example

Assembler instructions written within asm declarations and between #pragma asm and #pragma endasm directives are
never expanded even if the assembler source contains material defined by C language #define.

Furthermore assembler instructions written within asm declarations and between #pragma asm and #pragma endasm
directives are not expanded even if the -P option is added in the C compiler because they are passed as is to the assem-
bler.

Remark See "Describing assembler instruction".

2.2.4 Executing in RAM

A program allocated to external ROM can be copied to internal RAM and executed in internal RAM while linking and
after copying if the relative value of each section and each symbol (TP, EP, GP) is not destroyed.

Use caution, as some programs can be copied while others cannot.
After resetting, it is copied to internal RAM, and if the program is not changed, then the ROMization function can be

used to easily pack the text section. The CX performs ROMization by default.
The text section can be packed with the CX.

__asm(character string constant);

#pragma asm

 Assembler instruction

#pragma endasm

__asm("nop");

__asm(".str \"string\\0\"");

#pragma asm

 mov r0, r10

 st.w r10, $_i

#pragma endasm

CubeSuite Ver.1.40 CHAPTER 2 FUNCTIONS

R20UT0259EJ0100 Rev.1.00 Page 25 of 890
Oct 01, 2010

2.3 Using Microcomputer Functions

This section explains using microcomputer functions.

2.3.1 Accessing peripheral I/O register with C language

When reading from and writing to the device's internal peripheral I/O register in C language, adding a pragma directive
to the C source makes possible reading and writing using the peripheral I/O register name and bit names.

The peripheral I/O register name can be treated as a standard unsigned external variable. The & operator can also be
used to obtain the address of the peripheral I/O register.

After describing the above pragma directive as above, the peripheral I/O register name becomes usable.

Example

For peripheral I/O register bit names, the relevant bit names are limited to ones defined by the CX.
An error will therefore occur if the bit name is undefined.

Remark See "Peripheral I/O register".

#pragma ioreg

 register name = ...

 bit name = ...

 ... = ®ister name

#pragma ioreg

void func(void) {

 int i;

 unsigned long adr;

 P0 = 1; /*Writes 1 to P0*/

 i = RXB0; /*Reads from RXB0*/

 adr = &P1; /*Obtain the address of P1*/

}

CubeSuite Ver.1.40 CHAPTER 2 FUNCTIONS

R20UT0259EJ0100 Rev.1.00 Page 26 of 890
Oct 01, 2010

2.3.2 Describing interrupt processing with C language

With the CX, the interrupt handler is specified using the "#pragma interrupt directive".
An example of the interrupt handler is shown below.

Example Non-maskable interrupt

Example Multiple interrupt

Remark See "Interrupt/Exception processing handler".

#pragma interrupt NMI func1 /*non-maskable interrupt*/

void func1(void) {

 :

}

#pragma interrupt INTP0 func2 multi /*multiple-interrupt*/

void func2(void) {

 :

}

CubeSuite Ver.1.40 CHAPTER 2 FUNCTIONS

R20UT0259EJ0100 Rev.1.00 Page 27 of 890
Oct 01, 2010

2.3.3 Using CPU instructions in C language

Some assembler instructions can be described in C source as Embedded functions. However, they are not described
exactly as assembler instructions, but rather in the function format prepared by the CX.

Instructions that can be described as functions are shown below.

Assembler

Instruction

Function Embedded Function Description

di Interrupt control __DI();

ei __EI();

nop No operation __nop();

halt Stops the processor __halt();

satadd Saturated addition long a, b;

long __satadd(a, b);

satsub Saturated subtraction long a, b;

long __satsub(a, b);

bsh Halfword data byte swap long a;

long __bsh(a);

bsw Word data byte swap long a;

long __bsw(a);

hsw Word data halfword swap long a;

long __hsw(a);

sxb Byte data sign extension char a;

long __sxb(a);

sxh Halfword data sign extension short a;

long __sxh(a);

mul Instruction that applies result of 32-bit x 32-bit
signed multiplication to variable using mul instruction

long a, b;

long long __mul(a, b);

mulu Instruction that applies result of 32-bit x 32-bit
signed multiplication to variable using mulu instruc-
tion

unsigned long a, b;

Unsigned long long __mulu(a, b);

mul32 Instruction that assigns higher 32 bits of
multiplication result to variable using mul32
instruction

long a, b;

long __mul32(a, b);

mul32u Instruction that assigns higher 32 bits of unsigned
multiplication result to variable using mul32u
instruction

unsigned long a, b;

unsigned long __mul32u(a, b);

sasf Flag condition setting with logical left shift long a;

unsigned int b;

long __sasf(a, b);

sch0l Bit (0) search from MSB side [V850E2V3] long a;

long __sch0l(a);

sch0r Bit (0) search from LSB side [V850E2V3] long a;

long __sch0r(a);

CubeSuite Ver.1.40 CHAPTER 2 FUNCTIONS

R20UT0259EJ0100 Rev.1.00 Page 28 of 890
Oct 01, 2010

Note Specified the system register number (0 to 31) in regID.
But, don't specify 0 as regID in ldsr.

Example

sch1l Bit (1) search from MSB side [V850E2V3] long a;

long __sch1l(a);

sch1r Bit (1) search from LSB side [V850E2V3] long a;

long __sch1r(a);

ldsr Loads to system register [V850E2V3] long a;

void __ldsr(regIDNote, a);

stsr Stores contents of system register [V850E2V3] unsigned long __stsr(regIDNote);

ldgr Loads to general-purpose register [V850E2V3] long a;

void __ldgr(regIDNote, a);

stgr Stores contents of general-purpose register
[V850E2V3]

unsigned long __stgr(regIDNote);

caxi Compare and Exchange [V850E2V3] long *a;

long b, c;

void __caxi(a, b, c);

long a, b, c;

void func(void) {

 :

 c = __satsub(a, b); /*The result of the saturated operation of a and b is

 stored in c (c = a - b)*/

 :

 __nop();

 :

}

Assembler

Instruction

Function Embedded Function Description

CubeSuite Ver.1.40 CHAPTER 2 FUNCTIONS

R20UT0259EJ0100 Rev.1.00 Page 29 of 890
Oct 01, 2010

2.3.4 Creating self-programming boot area

Variables and functions can be referenced between the flash area and boot area with the following operations.
- Boot area functions can be called directly from the flash area.
- Calling a function from the boot area to the flash area is performed via a branch table.
- External boot area variables can be referenced from the flash area.
- External flash area variables cannot be referenced from the boot area.
- Common external variables as well as global functions can be defined for use by both boot area programs and

flash area programs. In this case the variable or function on the same area side is referenced.

Figure 2-1. Image of Flash Area/Boot Area

Flash area functions called from the boot area are defined with the ext_func directive.

Example Within a C language program

Additional specifications such as options must be made.

Remark See "Boot-flash re-link function" in the "CubeSuite Build for CX Compiler" for details.

.ext_func function name, ID number

#pragma asm

 .ext_func _func_flash0, 0

 .ext_func _func_flash1, 1

 .ext_func _func_flash2, 2

#pragma endasm

_bootfunc:

jarl _bootfunc, lp

jarl _flashfunc, lp

Boot Area Side ROM

_flashfunc:

jarl _bootfunc, lp

jarl _flashfunc, lp

Flash Area Side ROM

Branch Table

ID:1 jr …

ID:0 jr _flashfunc

CubeSuite Ver.1.40 CHAPTER 2 FUNCTIONS

R20UT0259EJ0100 Rev.1.00 Page 30 of 890
Oct 01, 2010

2.3.5 Creating multi-core programs

This section describes how to create multi-core programs using CX. Below is described the case when the target CPU
is the uPD70F3515 (two cores).

(1) Multi-core programs
Multi-core programs output by CX are programs that run on multiple cores, which are combined into a single load
module file. A multi-core program consists of programs (code/data) for each core, and a common module contain-
ing code and data that is referenced from each of the multiple cores (below, each of the core programs and the
common module are called "sub-programs"). The following figure shows a sample structure of a multi-core pro-
gram.

Figure 2-2. Sample Structure of a Multi-core Program

Notes 1. Core 1 data, core 2 data, and common module data can also be placed in external RAM.
2. The common module data can also be placed on the local RAM of core 1 or core 2, instead of splitting

it up.

A CX multi-core program has the following features.
- Although the program has a common execution start address (0), the program subsequently branches to each

of the core programs.
- Data for each core's program can be allocated to sections of all attributes in the same way as a single-core

program.
- All data in the common module (except for data with const and sconst attributes) is allocated to the data-

attribute section. Data and code in the common module are accessed via r0 relative instructions, rather than
gp/ep/tp relative instructions.

- Data and code defined in a sub-program are accessed from other sub-programs via r0 relative instructions.
- Data and code defined in a sub-program can be accessed from that sub-program, as well as from other sub-

programs. We recommend, however, that you generally use core data and code only from the sub-program in
which they are defined, in consideration for the independence of core programs, and security of data access.

Core 1 local RAM

Core 1 program

Common part

Flash ROM Core 2 local RAM

Core 1

code

Core 2 program
Core 2

code

Core 1

dataNote1

Core 1

constant data

Core 2

dataNote1

Core 2

constant data

Common

module

data 1Note1, 2

Common

module

data 2Note1, 2

Common

module data

Common

module

constant data

CubeSuite Ver.1.40 CHAPTER 2 FUNCTIONS

R20UT0259EJ0100 Rev.1.00 Page 31 of 890
Oct 01, 2010

Care is needed when programming data that can be accessed from multiple cores, in order to prevent data
from being overwritten by one core while another core is referencing it.

- Code and data are assigned to each sub-program at the source-file level (for example, it is not possible to
define data for core 1 and core 2 in a single source file).

(2) Important points for coding
Take care of the following points when coding a multi-core program.

(a) C source program
Take care of the following points when coding a multi-core program in the C language.

- It is not possible to define functions with the same name in different core programs. For this reason, if you
are using "main" as the name of your main functions, change the name (the default startup routine
assumes that the core 1 main function will be named "main", and the core 2 main function will be named
"main_pe2").

- When referencing variables or functions defigned in a core program from another sub-program, include
the statement "#pragma nopic" before the extern declaration of that variable or function (in the common
module, it is assumed that "#pragma nopic" is included by default). Include a "#pragma pic" statement to
return to the default.
Care is needed, however, when surrounding an extern declaration with "#pragma nopic/#pragma pic" in
an include file that is used by all sub-programs. If you simply surround the extern declaration with a
"#pragma nopic/#pragma pic", you could get a compilation error in your common module, or an r0 relative
instruction could be generated for variable references in the same sub-program. In this case, use the pre-
processor macros automatically defined when "-Xmulti" is specified to switch the source coding.

- It is not possible to specify relocation attributes other than data with "#pragma section" directives for vari-
ables defined in the common module.
Other attributes specified in the symbol file or via the "-Xsdata" option will be ignored.

(b) Assembler source program
Take care of the following points when coding a multi-core program in assembly language.

- All data in the common module (except for data with const and sconst attributes) is allocated to the data-
attribute section. Data and code in the common module must be accessed as r0 relative, rather than gp/
ep/tp relative.

CubeSuite Ver.1.40 CHAPTER 2 FUNCTIONS

R20UT0259EJ0100 Rev.1.00 Page 32 of 890
Oct 01, 2010

(3) Procedures for building a multi-core-compatible program
This section provides an example of building when there are two cores. As shown here, when there are two cores,
then CX is launched four times. If there are N cores, then it will be launched N+2 times.

(a) Build the program for core 1
First, compile (assemble) and build the program for core 1. Although you do not need to perform linking at this
time, be sure to specify "-Xmulti=pe1". At this stage, linking will resolve the references of symbols defined in
core 1, but the references of symbols defined in core 2 and the common module will remain unresolved.
If you have a dedicated library for core 1, then perform linking at this time. However, since the "-l" option is
ignored when the "-Xmulti" option is specified, you must specify the library file name directly.

(b) Build the program for core 2
Next, compile (assemble) and build the program for core 2. This procedure is the same as for the core 1 pro-
gram, but specify the option "-Xmulti=pe2".

(c) Build the common module
Next, build the common module. As with the programs for core 1 and core 2, although you do not need to per-
form linking at this time, be sure to specify "-Xmulti=cmn".

(d) Build each sub-program (final linking)
Finally, link each sub-program to create a single load module file. Symbol references that were unresolved in
steps (a) to (c) will be resolved at this point. The startup routine and library will also be linked at this point. At
this time as well, ROMization will be performed, and the hex file will be generated.

Remark See "CubeSuite Build for CX Compiler" for details of this option.

> cx -Cf3515 -Xlink_directive=multi.dir -Xmulti=pe1 file_pe1_1.c file_pe1_2.c -ope1.lmf

> cx -Cf3515 -Xlink_directive=multi.dir -Xmulti=pe2 file_pe2_1.c file_pe2_2.c -ope2.lmf

> cx -Cf3515 -Xlink_directive=multi.dir -Xmulti=cmn file_cmn_1.c file_cmn_2.c -ocmn.lmf

> cx -Cf3515 -Xlink_directive=multi.dir -Xstartup=cstartM.obj -Xmulti_link pe1.lmf pe2.lmf cmn.lmf -otarget.lmf -

lmulti_lib

CubeSuite Ver.1.40 CHAPTER 2 FUNCTIONS

R20UT0259EJ0100 Rev.1.00 Page 33 of 890
Oct 01, 2010

(4) The development workflow of multi-core applications
This section describes the development workflow of multi-core applications.
The development sequence described here is an example with three components: a common module, core 1 mod-
ule, and core 2 module.

Remark A three-component architecture is not a requirement for linking. For example, it is possible to create
multiple load module files for the core 1 module, and it is possible to create an application by creating
the load module file for the common module or a core module only. Even in this case, however, it is not
possible to omit the final process of creating a load module file by specifying the "-Xmulti_link" option.

(a) Overall development workflow

reate common module

Load module (final version)

Link directive file

C source

Assembler source

Object

Load module (cmn)

Compiler

Assembler

Linker

Create core 2

C source

Assembler source

Object

Load module (pe2)

Compiler

Assembler

Linker

Create core 1

C source

Assembler source

Object

Load module (pe1)

Compiler

Assembler

Linker

Linker

CubeSuite Ver.1.40 CHAPTER 2 FUNCTIONS

R20UT0259EJ0100 Rev.1.00 Page 34 of 890
Oct 01, 2010

(b) Development workflow for creating a program for core n

C source

Assembler source

Object

Load module (pen)

Compiler

Assembler

Linker

Link directive file

> cx -Cf3515 -Xlink_directive=multi.dir -Xmulti=pen file_pen_1.c file_pen_2.c -open.lmf

(A specification of "-Xmulti=pen" is interpreted as "-Xno_startup -Xno_romize -Xrelinkable_object" also being specified

simultaneously on the driver side.)

extern void func();

void main()

{

 func();

}

int var1 = 0;

 .extern _func

 .dseg sdata

 .public _var1, 4

 .align 4

_var1:

 .dw 0

 .cseg text

 .func _main, _main.end-_main, 4

 .public _main

 .align 2

_main:

 callt 0

 jarl _func, lp

 callt 30

_main.end:

Example of C source

Example of assembler source

CubeSuite Ver.1.40 CHAPTER 2 FUNCTIONS

R20UT0259EJ0100 Rev.1.00 Page 35 of 890
Oct 01, 2010

(c) Development workflow for creating the common module program

C source

Assembler source

Object

Load module (pen)

Compiler

Assembler

Linker

Link directive file

> cx -Cf3515 -Xlink_directive=multi.dir -Xmulti=cmn file_cmn_1.c file_cmn_2.c -ocmn.lmf

(A specification of "-Xmulti=cmn" is interpreted as "-Xno_startup -Xno_romize -Xrelinkable_object" also being specified

simultaneously on the driver side.)

int var_cmn = 0;

void func()

{

 ... // Processing func

}

 .dseg data

 .public _var_cmn, 4

 .align 4

_var_cmn:

 .dw 0

 .cseg text

 .func _func, _func.end-_func, 0

 .public _func

 .align 2

_func:

 ...　 ; Processing func

 jmp [lp]

_func.end:

Example of C source

Example of assembler source

CubeSuite Ver.1.40 CHAPTER 2 FUNCTIONS

R20UT0259EJ0100 Rev.1.00 Page 36 of 890
Oct 01, 2010

(d) Development workflow for creating the final load module file

(e) Link directive file example

SCONST_CMN: !LOAD ?R {

 .sconst = $PROGBITS ?A .sconst;

 .sconst.cmn = $PROGBITS ?A .sconst.cmn;

};

SCONST_PE1: !LOAD ?R {

 .sconst.pe1 = $PROGBITS ?A .sconst.pe1;

};

SCONST_PE2: !LOAD ?R {

 .sconst.pe2 = $PROGBITS ?A .sconst.pe2;

};

CONST_CMN: !LOAD ?R {

 .const.cmn = $PROGBITS ?A .const.cmn;

 .const = $PROGBITS ?A .const;

};

CONST_PE1: !LOAD ?R {

 .const.pe1 = $PROGBITS ?A .const.pe1;

};

CONST_PE2: !LOAD ?R {

 .const.pe2 = $PROGBITS ?A .const.pe2;

};

TEXT_CMN: !LOAD ?RX {

 .pro_epi_runtime = $PROGBITS ?AX .pro_epi_runtime;

 .text.cmn = $PROGBITS ?AX .text.cmn;

 .text = $PROGBITS ?AX .text;

};

TEXT_PE1: !LOAD ?RX {

Load module (final version)

Load module (pe2)Load module (pe1)

Linker

> cx -Cf3515 -Xlink_directive=multi.dir -Xstartup=cstartM.obj -Xmulti_link pe1.lmf ... pen.lmf cmn.lmf -

otarget.lmf -lmulti_lib

Link directive file

Load module (cmn)

CubeSuite Ver.1.40 CHAPTER 2 FUNCTIONS

R20UT0259EJ0100 Rev.1.00 Page 37 of 890
Oct 01, 2010

 .text.pe1 = $PROGBITS ?AX .text.pe1;

};

TEXT_PE2: !LOAD ?RX {

 .text.pe2 = $PROGBITS ?AX .text.pe2;

};

ROMPCRT: !LOAD ?RX {

 .rompcrt = $PROGBITS ?AX .text {rompcrt.obj};

};

DATA_PE2: !LOAD ?RW {

 .data.pe2 = $PROGBITS ?AW .data.pe2;

 .sdata.pe2 = $PROGBITS ?AWG .sdata.pe2;

 .sbss.pe2 = $NOBITS ?AWG .sbss.pe2;

 .bss.pe2 = $NOBITS ?AW .bss.pe2;

};

SEDATA_PE2: !LOAD ?RW {

 .sedata.pe2 = $PROGBITS ?AW .sedata.pe2;

 .sebss.pe2 = $NOBITS ?AW .sebss.pe2;

};

SIDATA_PE2: !LOAD ?RW {

 .tidata.byte.pe2 = $PROGBITS ?AW .tidata.byte.pe2;

 .tibss.byte.pe2 = $NOBITS ?AW .tibss.byte.pe2;

 .tidata.word.pe2 = $PROGBITS ?AW .tidata.word.pe2;

 .tibss.word.pe2 = $NOBITS ?AW .tibss.word.pe2;

 .tidata.pe2 = $PROGBITS ?AW .tidata.pe2;

 .tibss.pe2 = $NOBITS ?AW .tibss.pe2;

 .sidata.pe2 = $PROGBITS ?AW .sidata.pe2;

 .sibss.pe2 = $NOBITS ?AW .sibss.pe2;

};

DATA_CMN: !LOAD ?RW {

 .data.cmn = $PROGBITS ?AW .data.cmn;

 .bss.cmn = $NOBITS ?AW .bss.cmn;

};

DATA_PE1: !LOAD ?RW {

 .data.pe1 = $PROGBITS ?AW .data.pe1;

 .sdata.pe1 = $PROGBITS ?AWG .sdata.pe1;

 .sbss.pe1 = $NOBITS ?AWG .sbss.pe1;

 .bss.pe1 = $NOBITS ?AW .bss.pe1;

 .data = $PROGBITS ?AW .data;

 .sdata = $PROGBITS ?AWG .sdata;

 .sbss = $NOBITS ?AWG .sbss;

 .bss = $NOBITS ?AW .bss;

};

SEDATA_PE1: !LOAD ?RW {

 .sedata.pe1 = $PROGBITS ?AW .sedata.pe1;

 .sebss.pe1 = $NOBITS ?AW .sebss.pe1;

CubeSuite Ver.1.40 CHAPTER 2 FUNCTIONS

R20UT0259EJ0100 Rev.1.00 Page 38 of 890
Oct 01, 2010

};

SIDATA_PE1: !LOAD ?RW {

 .tidata.byte.pe1 = $PROGBITS ?AW .tidata.byte.pe1;

 .tibss.byte.pe1 = $NOBITS ?AW .tibss.byte.pe1;

 .tidata.word.pe1 = $PROGBITS ?AW .tidata.word.pe1;

 .tibss.word.pe1 = $NOBITS ?AW .tibss.word.pe1;

 .tidata.pe1 = $PROGBITS ?AW .tidata.pe1;

 .tibss.pe1 = $NOBITS ?AW .tibss.pe1;

 .sidata.pe1 = $PROGBITS ?AW .sidata.pe1;

 .sibss.pe1 = $NOBITS ?AW .sibss.pe1;

};

__tp_TEXT_PE1@%TP_SYMBOL {TEXT_PE1};

__tp_TEXT_PE2@%TP_SYMBOL {TEXT_PE2};

__gp_DATA_PE1@%GP_SYMBOL &__tp_TEXT_PE1 {DATA_PE1};

__gp_DATA_PE2@%GP_SYMBOL &__tp_TEXT_PE2 {DATA_PE2};

__ep_DATA_PE1@%EP_SYMBOL;

__ep_DATA_PE2@%EP_SYMBOL;

CubeSuite Ver.1.40 CHAPTER 2 FUNCTIONS

R20UT0259EJ0100 Rev.1.00 Page 39 of 890
Oct 01, 2010

(f) Image of alignment of a multi-core program
Visualizes the alignment of (e) Link directive file example (this example is for the μPD70F3515).

SCONST_CMN: !LOAD ?R {

 .sconst = $PROGBITS ?A .sconst;

 .sconst.cmn = $PROGBITS ?A .sconst.cmn;

};

SCONST_PE1: !LOAD ?R {

 .sconst.pe1 = $PROGBITS ?A .sconst.pe1;

};

SCONST_PE2: !LOAD ?R {

 .sconst.pe2 = $PROGBITS ?A .sconst.pe2;

};

CONST_CMN: !LOAD ?R {

 .const.cmn = $PROGBITS ?A .const.cmn;

 .const = $PROGBITS ?A .const;

};

CONST_PE1: !LOAD ?R {

 .const.pe1 = $PROGBITS ?A .const.pe1;

};

CONST_PE2: !LOAD ?R {

 .const.pe2 = $PROGBITS ?A .const.pe2;

};

TEXT_CMN: !LOAD ?RX {

 .pro_epi_runtime = $PROGBITS ?AX .pro_epi_runtime;

 .text.cmn = $PROGBITS ?AX .text.cmn;

 .text = $PROGBITS ?AX .text;

};

TEXT_PE1: !LOAD ?RX {

 .text.pe1 = $PROGBITS ?AX .text.pe1;

};

TEXT_PE2: !LOAD ?RX {

 text.pe2 = $PROGBITS ?AX .text.pe2;

};

ROMPCRT: !LOAD ?RX {

 .rompcrt = $PROGBITS ?AX .text {rompcrt.obj};

};

Image of alignment of segment/section Link directive information

Low Address

(interrupt vector)

SCONST_CMN .sconst

 .sconst.cmn

SCONST_PE1 .sconst.pe1

SCONST_PE2 .sconst.pe2

CONST_CMN .const.cmn

 .const

CONST_PE1 .const_pe1

CONST_PE2 .const.pe2

TEXT_CMN .pro_epi_runtime

 .text.cmn

 .text

TEXT_PE1 .text.pe1

TEXT_PE2 .text.pe2

ROMPCRT .rompcrt

ROM

CubeSuite Ver.1.40 CHAPTER 2 FUNCTIONS

R20UT0259EJ0100 Rev.1.00 Page 40 of 890
Oct 01, 2010

DATA_PE2: !LOAD ?RW {

 .data.pe2 = $PROGBITS ?AW .data.pe2;

 .sdata.pe2 = $PROGBITS ?AWG .sdata.pe2;

 .sbss.pe2 = $NOBITS ?AWG .sbss.pe2;

 .bss.pe2 = $NOBITS ?AW .bss.pe2;

};

SEDATA_PE2: !LOAD ?RW {

 .sedata.pe2 = $PROGBITS ?AW .sedata.pe2;

 .sebss.pe2 = $NOBITS ?AW .sebss.pe2;

};

SIDATA_PE2: !LOAD ?RW {

 .tidata.byte.pe2 = $PROGBITS ?AW .tidata.byte.pe2;

 :

 .sibss.pe2 = $NOBITS ?AW .sibss.pe2;

};

DATA_CMN: !LOAD ?RW {

 .data.cmn = $PROGBITS ?AW .data.cmn;

 .bss.cmn = $NOBITS ?AW .bss.cmn;

};

DATA_PE1: !LOAD ?RW {

 .data.pe1 = $PROGBITS ?AW .data.pe1;

 :

 .bss = $NOBITS ?AW .bss;

};

SEDATA_PE1: !LOAD ?RW {

 .sedata.pe1 = $PROGBITS ?AW .sedata.pe1;

 .sebss.pe1 = $NOBITS ?AW .sebss.pe1;

};

SIDATA_PE1: !LOAD ?RW {

 .tidata.byte.pe1 = $PROGBITS ?AW .tidata.byte.pe1;

 :

 .sibss.pe1 = $NOBITS ?AW .sibss.pe1;

};

__tp_TEXT_PE1@%TP_SYMBOL {TEXT_PE1};

__tp_TEXT_PE2@%TP_SYMBOL {TEXT_PE2};

__gp_DATA_PE1@%GP_SYMBOL &__tp_TEXT_PE1 {DATA_PE1};

__gp_DATA_PE2@%GP_SYMBOL &__tp_TEXT_PE2 {DATA_PE2};

__ep_DATA_PE1@%EP_SYMBOL;

__ep_DATA_PE2@%EP_SYMBOL;
High Address

DATA_PE2 .data.pe2

 .sdata.pe2

 .sbss.pe2

 .bss.pe2

SEDATA_PE2 .sedata.pe2

 .sebss.pe2

SIDATA_PE2 .tidata.byte.pe2

 .tibss.byte.pe2

 .tidata.word.pe2

 .tibss.word.pe2

 .tidata.pe2

 .tibss.pe2

 .sidata.pe2

 .sibss.pe2

DATA_CMN .data.cmn

 .bss.cmn

DATA_PE1 .data.pe1

 .sdata.pe1

 .sbss.pe1

 .bss.pe1

 .data

 .sdata

 .sbss

 .bss

SEDATA_PE1 .sedata.pe1

 .sebss.pe1

SIDATA_PE1 .tidata.byte.pe1

 .tibss.byte.pe1

 .tidata.word.pe1

 .tibss.word.pe1

 .tidata.pe1

 .tibss.pe1

 .sidata.pe1

 .sibss.pe1

(Peripheral etc.)

RAM

PE2

PE1

CubeSuite Ver.1.40 CHAPTER 2 FUNCTIONS

R20UT0259EJ0100 Rev.1.00 Page 41 of 890
Oct 01, 2010

(5) Cautions
Care is needed with the following points when creating a CX multi-core program.

- Symbols with the same name cannot be defined in more than one of the load module files of the core pro-
grams or the common module. Defining symbols with the same name will cause an error during final linking.

- When creating an independent link directive file, we recommend using the same link directive file for all linking.
- If the default multi-core startup routine is used, then areas starting with the labels "__stack.pe1" and

"__stack.pe2" must be secured (defined) as the stack areas for core 1 and core 2.

CubeSuite Ver.1.40 CHAPTER 2 FUNCTIONS

R20UT0259EJ0100 Rev.1.00 Page 42 of 890
Oct 01, 2010

2.4 Variables (Assembler)

This section explains variables (Assembler).

2.4.1 Defining variables with no initial values

Use the .ds directive in a section with no initial value to allocate area for a variable with no initial value.

In order that it may be referenced from other files as well, it is necessary to define the label with the .public directive.

Example

[label:] .ds (absolute-expression)

[label:] .public label name[, size]

 .dseg sbss

 .public _val0, 4 -- Sets _val0 as able to be referenced from other files

 .public _val1, 2 -- Sets _val1 as able to be referenced from other files

 .public _val2, 1 -- Sets _val2 as able to be referenced from other files

 .align 4

_val0: .ds (4) -- Allocates 4 bytes of area for val0

_val1: .ds (2) -- Allocates 2 bytes of area for val1

_val2: .ds (1) -- Allocates 1 byte of area for val2

CubeSuite Ver.1.40 CHAPTER 2 FUNCTIONS

R20UT0259EJ0100 Rev.1.00 Page 43 of 890
Oct 01, 2010

2.4.2 Defining const constants with initial values

To define a const with an initial value, use the .db directives/.db2/.dhw directives/.db4/.dw directives within the .const or
.sconst section.

- 1-byte values

- 2-byte values

- 4-byte values

Example Allocates 1 halfword and stores 100

[label:] .db value

[label:] .db2 value

[label:] .dhw value

[label:] .db4 value

[label:] .dw value

 .cseg const

 .public _p, 2

 .align 4

_p: .db2 100

CubeSuite Ver.1.40 CHAPTER 2 FUNCTIONS

R20UT0259EJ0100 Rev.1.00 Page 44 of 890
Oct 01, 2010

2.4.3 Referencing section addresses

Symbols such as .data and .sdata (reserved symbols) which point to the beginnings and ends of sections are available.
Therefore, utilize the appropriate symbol name when using the address value of a specified section from the assembler
source.

Start symbol: __ssection-name
End symbol: __esection-name

For example, the start symbol for the .sbss section is __ssbss, and its end symbol is __esbss.
These symbols can be used to retrieve the section start address and end address, but these symbol names cannot be

used to make direct references with C language labels.
To retrieve these symbol values, create global variables to store these values then store the symbol values in the vari-

ables in assembler source such as that of the startup module.
By referencing these variables in the C source this can be realized.
The same applies to symbols such as __gp_DATA.
For example, the method for retrieving the start and end addresses of a .data section is as follows.

[In assembler source]

[In C source]

Try using this method in cases where a C language label is used to initialize only a specified section.

 .extern __sdata, 4

 .extern __edata, 4

 .dseg sdata

 .public _data_top, 4

 .public _data_end, 4

 .align 4

_data_top:

 .ds (4)

_data_end:

 .ds (4)

 .cseg text

 mov #__sdata, r12

 st.w r12, $_data_top

 mov #__edata, r13

 st.w r13, $_data_end

extern int data_top; /*extern defines data_top*/

extern int data_end; /*extern defines data_end*/

void func1(void) {

 int top, end;

 top = data_top;

 end = data_end;

}

CubeSuite Ver.1.40 CHAPTER 2 FUNCTIONS

R20UT0259EJ0100 Rev.1.00 Page 45 of 890
Oct 01, 2010

2.5 Startup Routine

This section explains startup routine.

2.5.1 Securing stack area

When setting a value to the stack pointer (sp), it is necessary to pay attention to the following points.
- The stack frame is generated downwards starting from the sp set value.
- Be sure to set the sp to point at the of 4-byte boundary position.

When the compiler references memory relative to a stack, it generates code based on the assumption the stack
pointer points at the 4-byte boundary position.
Allocate it to a data section (bss attribute section) as far as possible from gp.
If it is near the gp, there is a chance that the program data area will be destroyed.

Example Setting sp

In the above example, the size of the stack frame used by the application is set to 0x3F0 bytes and area is secured.
The label "__stack" points to the lowest position (start) of the stack frame.

Because __stack is not external variable defined (via .public declaration) in the default startup module, __stack cannot
be referenced from other files.

If a .public declaration is executed to __stack it becomes possible to be referenced by other files.
The stack area defines the __stack symbol to the lowest position address and sets the sum address and size of

__stack to the stack pointer.
Therefore there is no symbol for the end address.
By doing the following, it becomes possible to define the next address after the stack area end address.
Use caution, as it is not the last address in the stack area.

With the above definition, it is possible to refer to _stack and _stack_end symbols in the C source.
The mapping image becomes as follows.

STACKSIZE .set 0x3F0

 .dseg bss

 .align 4

__stack:

 .ds (STACKSIZE)

 .cseg text

 mov #__stack + STACKSIZE, sp

STACKSIZE .set 0x3F0

 .dseg bss

 .public __stack -- Add

 .public __stack_end -- Add

 .align 4

__stack:

 .ds (STACKSIZE)

__stack_end:

CubeSuite Ver.1.40 CHAPTER 2 FUNCTIONS

R20UT0259EJ0100 Rev.1.00 Page 46 of 890
Oct 01, 2010

Figure 2-3. Mapping Image of Stack Area

The size of the __stack symbol is specified in the startup module and should therefore be defined in C source in an
array as follows.

Use caution because it is not the last address in the stack area.

Remark When using a label defined in the assembler in C language, one underscore is removed from the start of its
name.

Assembly language definition: __stack
Reference with C language: _stack

The stack usage tracer can be used to measure C source program stack area.

extern unsigned long _stack[];

__stack_end

__stack

Stack area

0x0

CubeSuite Ver.1.40 CHAPTER 2 FUNCTIONS

R20UT0259EJ0100 Rev.1.00 Page 47 of 890
Oct 01, 2010

2.5.2 Securing stack area and specifying allocation

This section explains securing stack area and specifying allocation.

(1) Secure stack area
In the startup routine, secure a stack in a section of a variable with no initial value with a specified section name.

Example Securing area

In the above example the section of the stack frame to be used by the application is set to .stack, the size is speci-
fied as 0x3F0 bytes and the area is secured.
The label "__stack" points to the lowest position (start) of the stack frame.

(2) Specify stack area allocation
In the link directive file specify the allocation of the section created in (1).

Example Allocation specification

In the above example the stack segment is called STACK, and is allocated to the address 0x3FFEE00.

STACKSIZE .set 0x3F0

 .stack .dseg bss

 .align 4

__stack:

 .ds (STACKSIZE)

STACK: !LOAD ?RW V0x3FFEE00 {

 .stack = $NOBITS ?AW .stack;

};

CubeSuite Ver.1.40 CHAPTER 2 FUNCTIONS

R20UT0259EJ0100 Rev.1.00 Page 48 of 890
Oct 01, 2010

2.5.3 Initializing RAM

This section explains initializing RAM.

(1) Variables with no initial value
Processing to clear the .sbss and .bss sections with 0 is embedded in the default startup routine.
When clearing sections other than those above is desired, add such processing to the startup routine. When clear-
ing, use the symbols that indicate the section start and end.

Example Clear the .tibss.byte section

(2) RAM initialization
When a load module has been downloaded to the in-circuit emulator without performing ROMization, data with ini-
tialized values placed in regions such as the data and sdata areas are set to their values at the time of download.
When using the load module without performing ROMization to debug, it is necessary to remove the RAM area ini-
tialization routine.
In the case of a ROMization load module, it is necessary to use the _rcopy copy function to perform operations
such as copying data with initial values.
This processing is possible not in the startup routine but also before accessing a main function variable with an ini-
tial value, so perform it upon full completion of peripheral settings.

 .extern __stibss.byte, 4 -- .tibss.byte area start symbol

 .extern __etibss.byte, 4 -- .tibss.byte area end symbol

 mov #__stibss.byte, r13

 mov #__etibss.byte, r12

 cmp r12, r13

 jnl .L20

.L21:

 st.w r0, [r13]

 add 4, r13

 cmp r12, r13

 jl .L21

.L20:

CubeSuite Ver.1.40 CHAPTER 2 FUNCTIONS

R20UT0259EJ0100 Rev.1.00 Page 49 of 890
Oct 01, 2010

2.5.4 Preparing function and variable access

The text pointer is used when accessing a function, and either the global pointer or the element pointer is used when
accessing a variable.

(1) Preparations for accessing function
The text pointer (tp) is a pointer prepared to implement referencing (PIC: Position Independent Code) independent
of the position at which the text area of an application, i.e., program code is allocated when the program code is
referenced. For example, if it is necessary to reference a specific location in the code during program execution,
the CX outputs the code to be accessed in tp-relative mode.
Since the code is output on the assumption that tp is correctly set, tp must be correctly set in the startup routine.
The text pointer value is determined during linking, and is in a symbol defined by a symbol directive that is
described in the link directive file. For example, suppose that the symbol directive of the text pointer is described
as follows.

The text pointer value is the beginning of the TEXT segment, and is in "__tp_TEXT".
Describe as follows to set tp in the startup routine.

__tp_TEXT@%TP_SYMBOL {TEXT};

.extern __tp_TEXT, 4

mov #__tp_TEXT, tp

CubeSuite Ver.1.40 CHAPTER 2 FUNCTIONS

R20UT0259EJ0100 Rev.1.00 Page 50 of 890
Oct 01, 2010

(2) Variable access preparations (Setting global pointer)
External variables or data defined in an application are allocated to the memory. The global pointer (gp) is a
pointer prepared to implement referencing independent of location position (PID: Position Independent Data) when
the variables or data allocated to the memory are referenced. The CX outputs a code for the section that is to be
accessed in gp-relative mode.
Since the code is output on the assumption that gp is correctly set, gp must be correctly set in the startup routine.
The global pointer value is determined during linking, and is in a symbol defined by a symbol directive that is
described in the link directive file. For example, suppose that the symbol directive of the global pointer is described
as follows.

The gp symbol value can be defined the beginning of "data segment" of the DATA segment as shown above, or off-
set from a text symbol. A gp symbol can be specified not only by specifying the start address of a data segment
(such as the DATA segment), but also by using an offset value from the text symbol as its address.
Using the second method, the gp symbol value is determined by adding value of tp and offset value from tp. In
other words, a code that is independent of location can be generated. To copy a program code and data used by
that code to the RAM area simultaneously and execute them, the value of gp can be acquired immediately if the
start address of the copy destination is known. In this case, the symbol directive is described as follows.

The global pointer value is "__tp_TEXT to which the value of __gp_DATA is added", and the value to be added,
i.e., offset value, is stored in "__gp_DATA". Therefore, describe as follows to set gp in the startup routine.

This sets the correct value of the global pointer to gp.

__gp_DATA@%GP_SYMBOL {DATA};

__tp_TEXT@%TP_SYMBOL;

__gp_DATA@%GP_SYMBOL &__tp_TEXT {DATA};

.extern __tp_TEXT, 4

.extern __gp_DATA, 4

mov #__tp_TEXT, tp

mov #__gp_DATA, gp

add tp, gp

CubeSuite Ver.1.40 CHAPTER 2 FUNCTIONS

R20UT0259EJ0100 Rev.1.00 Page 51 of 890
Oct 01, 2010

(3) Variable access preparations (Setting element pointer)
The element pointer (ep) is a pointer that is provided to realize faster access by allocating data (variables) that are
globally declared within an application to RAM area in V850 core device.
Of the external variables or data defined in an application, those that are allocated to the following sections are
accessed from the element pointer (ep) in relative mode.

- sedata/sebss attribute section
- sidata/sibss attribute section
- tidata/tibss attribute section
- tidata.byte/tibss.byte section
- tidata.word/tibss.word section

If these sections exist, the CX outputs a code to access these areas in ep-relative mode.
Since the code is output on the assumption that ep is correctly set, ep must be correctly set in the startup routine.
The element pointer value is determined during linking, and is in a symbol defined by a symbol directive that is
described in the link directive file. For example, suppose that the symbol directive of the element pointer is
described as follows.

The element pointer value is the beginning of the SIDATA segment by default, and its value is in "__ep_DATA".
Therefore, describe as follows to set ep in the startup routine.

Reference the absolute address of __ep_DATA and set that value to ep.

__ep_DATA@%EP_SYMBOL;

.extern __ep_DATA, 4

mov #__ep_DATA, ep

CubeSuite Ver.1.40 CHAPTER 2 FUNCTIONS

R20UT0259EJ0100 Rev.1.00 Page 52 of 890
Oct 01, 2010

2.5.5 Preparing to use code size reduction function

This setting is necessary to reduce code size when the V850Ex core is used or when the prologue/epilogue runtime
library is used (i.e. When execution speed priority optimization (-Ospeed option) is not specified or when "-
Xpro_epi_runtime=on" is specified).

Since the CALLT instruction is used when the prologue/epilogue runtime library of functions is called by the V850Ex
core, the value of CTBP necessary for the CALLT instruction must be set at the beginning of the function table of the pro-
logue/epilogue runtime library of functions.

The prologue/epilogue runtime library is used in the following case.
- Compiler option "-Xpro_epi_runtime=on" is set.

If a compiler option except "-Ospeed" is specified for optimization, "-Xpro_epi_runtime=on" is automatically specified.
The start symbol for the function prologue/epilogue runtime library function table is as follows.

- ___PROLOG_TABLE
Describe the following code using this symbol.

Remark CTBP is system register 20. Set a value to it using the ldsr instruction.

mov #___PROLOG_TABLE, r12

ldsr r12, 20

CubeSuite Ver.1.40 CHAPTER 2 FUNCTIONS

R20UT0259EJ0100 Rev.1.00 Page 53 of 890
Oct 01, 2010

2.5.6 Ending startup routine

The final process in the startup routine differs depending on whether or not a real-time OS is used.

(1) When not using real-time OS
When the processing necessary for the startup routine has been completed, execute an instruction that branches
to the main function.
Describe the following code to branch to the main function.

When the main function has been executed, execution returns to the 4 bytes subsequent to this branch instruction.
The following instruction can also be used if it is known that execution does not return.

The entire 32-bit space can be accessed using the jmp instruction. When the "jarl_main, lp" instruction is used,
execution returns after the main function is executed. It is recommended to take appropriate action to prevent
deadlock from occurring when execution returns.

(2) When using real-time OS (RX850V4)
In an application using a real-time OS, execution branches to the initialization routine when the processing that
must be performed by the startup routine has been completed.

jarl _main, lp

jr _main

mov #_main, lp

jmp [lp]

 .extern __kernel_sit

 .extern __kernel_start

 mov #__kernel_sit, r6

 jarl __kernel_start, lp

__boot_error:

 jbr __boot_error

CubeSuite Ver.1.40 CHAPTER 2 FUNCTIONS

R20UT0259EJ0100 Rev.1.00 Page 54 of 890
Oct 01, 2010

2.6 Link Directives

This section explains link directives.
Link directive files can be generated automatically in CubeSuite.

Remark For information about how to automatically generate link directive files, see the "CubeSuite Build for CX
Compiler" user's Manual.

2.6.1 Adding function section allocation

To perform function section allocation, divert the .text section setting portion and change the segment name and
section name.

Example Setting allocation for USRTEXT segment and usr.text section

2.6.2 Adding section allocation for variables

To add allocation settings for a variable section, divert the specification part for a section with the same attributes and
change the segment name and section name.

The section attributes specify the section type when the section is set to a variable in #pragma section.

Example Setting allocation for USRCONST segment and usr.const section

TEXT: !LOAD ?RX {

 .pro_epi_runtime = $PROGBITS ?AX .pro_epi_runtime;

 .text = $PROGBITS ?AX .text;
};

USRTEXT: !LOAD ?RX {

 usr.text = $PROGBITS ?AX usr.text;

};

Section Type Section to Be Diverted

data .data/.bss

sdata .sdata/.sbss

sconst .sconst

const .const

USRCONST: !LOAD ?R {

 usr.const = $PROGBITS ?A usr.const;

};

CubeSuite Ver.1.40 CHAPTER 2 FUNCTIONS

R20UT0259EJ0100 Rev.1.00 Page 55 of 890
Oct 01, 2010

2.6.3 Distributing section allocation

The following three methods for distributing section allocation are available.

(1) Distribute by section name
In the C source or assembler source, specify separate names for the sections to be allocated.
By specifying individual input section names within the link directive, the section of each name will be allocated to
its specified part.

Example

(2) Distribute by object module files
By specifying individual object names within the link directive, the section with the relevant attributes within each
object will be allocated to the specified part.

Example

When specifying the name an object module file in a library (.lib file), specify the .lib file name including its path
within parentheses.

Example

TEXT: !LOAD ?RX {

 .text = $PROGBITS ?AX .text;

 <- The .text section is allocated.

};

FUNC1: !LOAD ?RX {

 funcsec1.text = $PROGBITS ?AX funcsec1.text;

 <- The funcsec1.text section is allocated.

};

TEXT1: !LOAD ?RX {

 .text1 = $PROGBITS ?AX .text {filel.obj file2.obj};

 <- The .text sections in file1.obj and file2.obj are allocated.

};

TEXT2: !LOAD ?RX {

 .text2 = $PROGBITS ?AX .text {file3.obj};

 <- The .text section in file3.obj is allocated.

};

.text3 = $PROGBITS ?AX .text {strcmp.obj(libc.lib)};

CubeSuite Ver.1.40 CHAPTER 2 FUNCTIONS

R20UT0259EJ0100 Rev.1.00 Page 56 of 890
Oct 01, 2010

(3) Distribute by section attributes
Specify allocation only by attributes without specifying the input section and input object. Because this setting has
a lower priority level than the part where settings such as section name and object name are made, it can be used
to specify allocation for all parts where section and object names are not already specified.

Example

(4) Allocation specification priority level
There are priority levels depending on the presence or lack of input section and input object specifications. When
allocating sections, the linker allocates starting with the highest priority specification.
The relationship between priority level and specifications is shown below. (A lower the priority level number repre-
sents a higher priority.)

TEXT4: !LOAD ?RX {

 .text4 = $PROGBITS ?AX {file1.obj file2.obj};

 <- The TEXT ATTRIBUTE sections in file1.obj and file2.obj are allocated.

};

TEXT5: !LOAD ?RX {

 .text5 = $PROGBITS ?AX;

 <- The TEXT ATTRIBUTE sections in objects other than file1.obj and

 file2.obj are allocated.

};

Priority Level Specified Names Output

1 Input section name

+ object module file name

The specified input section is extracted from the specified object and
is then output.

2 Input section name only The specified input section is extracted from all objects and is then
output.

3 Object module file name only Sections having the same attribute as the output section to be cre-
ated are extracted from the specified object and are then output.

4 No names specified Sections having the same attribute as the output section to be cre-
ated are extracted from all objects and are then ouput.

CubeSuite Ver.1.40 CHAPTER 2 FUNCTIONS

R20UT0259EJ0100 Rev.1.00 Page 57 of 890
Oct 01, 2010

2.7 Reducing Code Size

This section explains reducing code size.

2.7.1 Reducing code size (C language)

This section explains reducing cord size by C language.

(1) Access to variables
Because 4 bytes are needed each for external variable access loading and storing, even in non-assignment cases
it is possible to reduce code size by assigning the external variable into a temporary variable and using that tempo-
rary variable so as to change memory access to register access.
In the following example s is an external variable

Remarks 1. The amount of reduction is specific to this example, and will vary case by case.
2. As a result of changing the source, output instructions may be reduced and execution speed may

be increased.
3. Pay attention to the following points when changing the source.

- Changing the source causes the state of register usage to change. It is therefore possible that in
unintended places register transfers that had up until that point remained without being optimized
may be erased or, alternatively, that optimization may become ineffective causing redundant regis-
ter transfers to remain.

- By adding temporary variables, a new register for register variables may come to be used, resulting
in code for saving and restoring that register being added to the function entrance and exit.

Before change:

if(x != 0) {

 if((s & 0x00F00F00) != MASK1) {

 return;

 }

 s >>= 12;

 s &= 0xFF;

} else {

 if((s & 0x00FF0000) != MASK2) {

 return;

 }

 s >>= 24;

}

After change:

unsigned int tmp = s;

if(x != 0) {

 if((tmp & 0x00F00F00) != MASK1) {

 return;

 }

 tmp >>= 12;

 tmp &= 0xFF;

} else {

 if((tmp & 0x00FF0000) != MASK2) {

 return;

 }

 tmp >>= 24;

}

s = tmp;

CubeSuite Ver.1.40 CHAPTER 2 FUNCTIONS

R20UT0259EJ0100 Rev.1.00 Page 58 of 890
Oct 01, 2010

(2) Number of loops in loop processing
As in the following example, expanding a function may make its size smaller if the number of times to execute is
few and body of each loop is small.
In this case, the execution speed also increases.

Remarks 1. The amount of reduction is specific to this example, and will vary case by case.
2. As a result of changing the source, output instructions may be reduced and execution speed may

be increased.
3. Pay attention to the following points when changing the source.

- Changing the source causes the state of register usage to change. It is therefore possible that in
unintended places register transfers that had up until that point remained without being optimized
may be erased or, alternatively, that optimization may become ineffective causing redundant register
transfers to remain.

- By adding temporary variables, a new register for register variables may come to be used, resulting
in code for saving and restoring that register being added to the function entrance and exit.

Before change:

for(i = 0; i < 4; i++) {

 array[i] = 0;

}

After change:

long *p;

p = array;

*p = 0;

*(p + 1) = 0;

*(p + 2) = 0;

*(p + 3) = 0;

CubeSuite Ver.1.40 CHAPTER 2 FUNCTIONS

R20UT0259EJ0100 Rev.1.00 Page 59 of 890
Oct 01, 2010

(3) auto variable initialization
When an auto variable is used within a function without being initialized, because that variable is not allocated to a
register and remains in memory, the code size may increase.
In the following example if neither switch case applies then variable a is referenced in the return statement without
being initialized.
Even if in actuality it will certainly apply to one of the cases it may not to be initialized because when the C compiler
allocates to register it is not understood when the program is analyzed.
In a case such as this, it cannot be allocated with the CX register allocation.
By adding initialization it becomes able to be allocated to a register and the code size is reduced.

Remarks 1. The amount of reduction is specific to this example, and will vary case by case.
2. As a result of changing the source, output instructions may be reduced and execution speed may

be increased.
3. Pay attention to the following points when changing the source.

- Changing the source causes the state of register usage to change. It is therefore possible that in
unintended places register transfers that had up until that point remained without being optimized
may be erased or, alternatively, that optimization may become ineffective causing redundant register
transfers to remain.

- By adding temporary variables, a new register for register variables may come to be used, resulting
in code for saving and restoring that register being added to the function entrance and exit.

Before change:

int func(int x) {

 int a;

 switch(x) {

 case 0:

 a = VAL0;

 break;

 case 1:

 a = VAL1;

 }

 return(a);

}

After change:

int func(int x) {

 int a = 0;

 switch(x) {

 case 0:

 a = VAL0;

 break;

 case 1:

 a = VAL1;

 }

 return(a);

}

CubeSuite Ver.1.40 CHAPTER 2 FUNCTIONS

R20UT0259EJ0100 Rev.1.00 Page 60 of 890
Oct 01, 2010

(4) switch statements
With respect to switch statements, if there are four or more case labels and the difference between each variable's
low limit and high limit is up to 3 times the number of cases, the CX generates code in table branch format.
In such an instance, if the number of cases is approximately 16 or less (this number varies depending on factors
such as the switch expression format and the label value distribution), changing them to equivalent if-else state-
ments and putting comparison and branch instructions in line will cause the code size to decrease.
In cases such as when the switch expression is an external variable reference or is a complex expression, it is nec-
essary to once substitute the value to a temporary variable and make the if expression refer to the temporary vari-
able.
In the following example x is an auto variable.

Remarks 1. The amount of reduction is specific to this example, and will vary case by case.
2. As a result of changing the source, output instructions may be reduced and execution speed may

be increased.
3. Pay attention to the following points when changing the source.

- Changing the source causes the state of register usage to change. It is therefore possible that in
unintended places register transfers that had up until that point remained without being optimized
may be erased or, alternatively, that optimization may become ineffective causing redundant register
transfers to remain.

- By adding temporary variables, a new register for register variables may come to be used, resulting
in code for saving and restoring that register being added to the function entrance and exit.

4. With the CX it is possible to specify the switch statement development code with the -Xswitch
option.

- -Xswitch=ifelse
Outputs the code in the same format as the if-else statement along a string of case statements.

- -Xswitch=binary
Outputs the code in the binary search format.

- -Xswitch=table
Outputs the code in a table jump format.

Before change:

switch(x) {

 case VAL0:

 return(RETVAL0);

 case VAL1:

 return(RETVAL1);

 case VAL2:

 return(RETVAL2);

 case VAL3:

 return(RETVAL3);

 case VAL4:

 return(RETVAL4);

 case VAL5:

 return(RETVAL5);

}

After change:

if(x == VAL0)

 return(RETVAL0);

else if(x == VAL1)

 return(RETVAL1);

else if(x == VAL2)

 return(RETVAL2);

else if(x == VAL3)

 return(RETVAL3);

else if(x == VAL4)

 return(RETVAL4);

else if(x == VAL5)

 return(RETVAL5);

CubeSuite Ver.1.40 CHAPTER 2 FUNCTIONS

R20UT0259EJ0100 Rev.1.00 Page 61 of 890
Oct 01, 2010

(5) if statements
When executing the same processing to multiple cases with an if-else combination, if using a separate set of con-
ditions would make the "multiple cases" combine into one case, then combine them.
This will delete redundant parts.
In the example below, if the conditions "the initial value of x is 0 and the values of s as well as t are either 0 or 1"
are set, the code can be changed as follows.

Remarks 1. The amount of reduction is specific to this example, and will vary case by case.
2. As a result of changing the source, output instructions may be reduced and execution speed may

be increased.
3. Pay attention to the following points when changing the source.

- Changing the source causes the state of register usage to change. It is therefore possible that in
unintended places register transfers that had up until that point remained without being optimized
may be erased or, alternatively, that optimization may become ineffective causing redundant register
transfers to remain.

- By adding temporary variables, a new register for register variables may come to be used, resulting
in code for saving and restoring that register being added to the function entrance and exit.

Before change:

if(!s) {

 if(t) {

 x = 1;

 }

} else {

 if(!t) {

 x = 1;

 }

}

if(x) {

 if((++u) >= v) {

 u = 0;

 } else {

 x = 0;

 }

}

After change:

if((s^t)) {

 if((++u) >= v) {

 u = 0;

 x = 1;

 }

}

CubeSuite Ver.1.40 CHAPTER 2 FUNCTIONS

R20UT0259EJ0100 Rev.1.00 Page 62 of 890
Oct 01, 2010

If an assigned value is referenced immediately following its assignment statement, the part referred to is substi-
tuted by the assignment statement and combined into one.
This makes possible deletion of excess register transferring and reduction in code size.
In most cases, however, redundant register transferring is deleted by the C compiler's optimization, so the code
size would not change.

Remarks 1. The amount of reduction is specific to this example, and will vary case by case.
2. As a result of changing the source, output instructions may be reduced and execution speed may

be increased.
3. Pay attention to the following points when changing the source.

- Changing the source causes the state of register usage to change. It is therefore possible that in
unintended places register transfers that had up until that point remained without being optimized
may be erased or, alternatively, that optimization may become ineffective causing redundant register
transfers to remain.

- By adding temporary variables, a new register for register variables may come to be used, resulting
in code for saving and restoring that register being added to the function entrance and exit.

Before change:

--s;

if(s == 0) {

 :

}

After change:

if(--s == 0)) {

 :

}

CubeSuite Ver.1.40 CHAPTER 2 FUNCTIONS

R20UT0259EJ0100 Rev.1.00 Page 63 of 890
Oct 01, 2010

(6) if-else statements
As in the following example, if each branch destination of an if-else statement includes only statements that assign
differing values to the same variable, it is possible to reduce the code size by moving one of the branch
destinations ahead of the if statement, because the else block will be erased and the jump instruction from the if
the block to after the else block is eliminated.

Remarks 1. The amount of reduction is specific to this example, and will vary case by case.
2. As a result of changing the source, output instructions may be reduced and execution speed may

be increased.
3. Pay attention to the following points when changing the source.

- Changing the source causes the state of register usage to change. It is therefore possible that in
unintended places register transfers that had up until that point remained without being optimized
may be erased or, alternatively, that optimization may become ineffective causing redundant register
transfers to remain.

- By adding temporary variables, a new register for register variables may come to be used, resulting
in code for saving and restoring that register being added to the function entrance and exit.

As in the following example, if the branch destinations of if-else statements contain only return statements and
those return values are the results of the branch conditions themselves, change it to return the branch condition
expression and delete the if-else statement.

Remarks 1. The amount of reduction is specific to this example, and will vary case by case.
2. As a result of changing the source, output instructions may be reduced and execution speed may

be increased.
3. Pay attention to the following points when changing the source.

- Changing the source causes the state of register usage to change. It is therefore possible that in
unintended places register transfers that had up until that point remained without being optimized
may be erased or, alternatively, that optimization may become ineffective causing redundant register
transfers to remain.

- By adding temporary variables, a new register for register variables may come to be used, resulting
in code for saving and restoring that register being added to the function entrance and exit.

Before change:

if(x == 10) {

 s = 1;

} else {

 s = 0;

}

After change:

s = 0;

if(x == 10) {

 s = 1;

}

Before change:

if(s1 == s2) {

 return(1);

}

return(0);

After change:

return(s1 == s2);

CubeSuite Ver.1.40 CHAPTER 2 FUNCTIONS

R20UT0259EJ0100 Rev.1.00 Page 64 of 890
Oct 01, 2010

If after each respective branch a function is called using differing arguments for the same function, move the func-
tion call to after the branches converge if possible.
To do this, assign the differing arguments of the original function calls to temporary variables and use these tempo-
rary variables as arguments when calling the function.

Remarks 1. The amount of reduction is specific to this example, and will vary case by case.
2. As a result of changing the source, output instructions may be reduced and execution speed may

be increased.
3. Pay attention to the following points when changing the source.

- Changing the source causes the state of register usage to change. It is therefore possible that in
unintended places register transfers that had up until that point remained without being optimized
may be erased or, alternatively, that optimization may become ineffective causing redundant register
transfers to remain.

- By adding temporary variables, a new register for register variables may come to be used, resulting
in code for saving and restoring that register being added to the function entrance and exit.

Before change:

if(s) {

 :

 func(0, 1, 2);

} else {

 :

 func(0, 1, 3);

}

After change:

int tmp;

if(s) {

 :

 tmp = 2;

} else {

 :

 tmp = 3;

}

func(0, 1, tmp);

CubeSuite Ver.1.40 CHAPTER 2 FUNCTIONS

R20UT0259EJ0100 Rev.1.00 Page 65 of 890
Oct 01, 2010

In the case that after respective branches an identical assignment statement or function call exists, move it to
before the branch if possible.
If that statement's evaluation result is referenced, assign it once to a temporary variable and reference the tempo-
rary variable.
The following example is a case of a function call.

Remarks 1. The amount of reduction is specific to this example, and will vary case by case.
2. As a result of changing the source, output instructions may be reduced and execution speed may

be increased.
3. Pay attention to the following points when changing the source.

- Changing the source causes the state of register usage to change. It is therefore possible that in
unintended places register transfers that had up until that point remained without being optimized
may be erased or, alternatively, that optimization may become ineffective causing redundant register
transfers to remain.

- By adding temporary variables, a new register for register variables may come to be used, resulting
in code for saving and restoring that register being added to the function entrance and exit.

Before change:

if(x >= 0) {

 if(x > func(0, 1, 2)) {

 :

 }

} else {

 if(x < -func(0, 1, 2)) {

 :

 }

}

After change:

long tmp;

tmp = func(0, 1, 2);

if(x >= 0) {

 if(x > tmp) {

 :

 }

} else {

 if(x < -tmp) {

 :

 }

}

CubeSuite Ver.1.40 CHAPTER 2 FUNCTIONS

R20UT0259EJ0100 Rev.1.00 Page 66 of 890
Oct 01, 2010

In the case that after respective branches an identical assignment statement or function call exists, if it cannot be
moved to before the branch but can be moved to after the merge, move it to after the merge.
The following example is an assignment statement case.

Remarks 1. The amount of reduction is specific to this example, and will vary case by case.
2. As a result of changing the source, output instructions may be reduced and execution speed may

be increased.
3. Pay attention to the following points when changing the source.

- Changing the source causes the state of register usage to change. It is therefore possible that in
unintended places register transfers that had up until that point remained without being optimized
may be erased or, alternatively, that optimization may become ineffective causing redundant register
transfers to remain.

- By adding temporary variables, a new register for register variables may come to be used, resulting
in code for saving and restoring that register being added to the function entrance and exit.

Before change:

if(tmp & MASK) {

 :

 j++;

} else {

 :

 j++;

}

After change:

if(tmp & MASK) {

 :

} else {

 :

}

j++;

CubeSuite Ver.1.40 CHAPTER 2 FUNCTIONS

R20UT0259EJ0100 Rev.1.00 Page 67 of 890
Oct 01, 2010

(7) switch/if-else statements
As in the following example, in the case where differing values are assigned to the same external variable at the
respective branch destinations of a switch statement or an if-else statement, it is possible to reduce code size by
assigning the values to a temporary variable at each branch and then reassigning the temporary variable value
back to the original external variable after the branches merge.
This is because, assigning to an external variable requires a memory store instruction (4 bytes) because external
variables are rarely allocated to registers, while in most cases assigning to a temporary variable uses a register
transfer (2 bytes).
In the following example s is an external variable.

Remarks 1. The amount of reduction is specific to this example, and will vary case by case.
2. As a result of changing the source, output instructions may be reduced and execution speed may

be increased.
3. Pay attention to the following points when changing the source.

- Changing the source causes the state of register usage to change. It is therefore possible that in
unintended places register transfers that had up until that point remained without being optimized
may be erased or, alternatively, that optimization may become ineffective causing redundant register
transfers to remain.

- By adding temporary variables, a new register for register variables may come to be used, resulting
in code for saving and restoring that register being added to the function entrance and exit.

(8) Functions with no return values
Define functions with no return values as "void."

Before change:

switch(x) {

 case 0:

 s = 0;

 break;

 case 1:

 s = 0x5555;

 break;

 case 2:

 s = 0xAAAA;

 break;

 case 3:

 s = 0xFFFF;

}

After change:

int tmp;

if(x == 0) {

 tmp = 0;

} else if (x == 1) {

 tmp = 0x5555;

} else if(x == 2) {

 tmp = 0xAAAA;

} else if(x == 3) {

 tmp = 0xFFFF;

} else {

 goto label;

}

s = tmp;

label:

CubeSuite Ver.1.40 CHAPTER 2 FUNCTIONS

R20UT0259EJ0100 Rev.1.00 Page 68 of 890
Oct 01, 2010

2.7.2 Reducing variable area with variable definition method

This section explains reducing variable area with the variable definition method.

(1) Variable format
Because by ANSI-C specifications variables in short integer ((unsigned) short and (unsigned) char) formats are
expanded to int format or unsigned int format during operation, many format change instructions are generated
with respect to programs that use these variables (particularly in cases where these variables are allocated to reg-
isters).
Since making them (unsigned) int format makes this format change unnecessary, the code size is reduced.
Particularly with respect to stack intervals that are relatively easy to allocate to registers, it is recommended to use
(unsigned) int format as much as possible.

Remarks 1. The amount of reduction is specific to this example, and will vary case by case.
2. As a result of changing the source, output instructions may be reduced and execution speed may

be increased.
3. Pay attention to the following points when changing the source.

- Changing the source causes the state of register usage to change. It is therefore possible that in
unintended places register transfers that had up until that point remained without being optimized
may be erased or, alternatively, that optimization may become ineffective causing redundant regis-
ter transfers to remain.

- By adding temporary variables, a new register for register variables may come to be used, resulting
in code for saving and restoring that register being added to the function entrance and exit.
In such a case, the code size will increase by the save/restore code amount (8 bytes).

Before change:

unsigned char i;

for(i = 0; i < 4; i++) {

 array[2 + i] = *(p + i);

}

After change:

int i;

for(i = 0; i < 4; i++) {

 array[2 + i] = *(p + i);

}

CubeSuite Ver.1.40 CHAPTER 2 FUNCTIONS

R20UT0259EJ0100 Rev.1.00 Page 69 of 890
Oct 01, 2010

(2) Allocating and referencing automatic variables
As in the following example, if there is a time interval between when a value is assigned to a stack variable and
when that value is actually referenced, during that interval a register is occupied and the chance for other variables
to be allocated to registers decreases.
In such a case, changing the value assignment to immediately before it is actually referenced increases the chance
for other variables to be allocated to registers increases, decreases memory access, and decreases the code size.

Remarks 1. The amount of reduction is specific to this example, and will vary case by case.
2. As a result of changing the source, output instructions may be reduced and execution speed may

be increased.
3. Pay attention to the following points when changing the source.

- Changing the source causes the state of register usage to change. It is therefore possible that in
unintended places register transfers that had up until that point remained without being optimized
may be erased or, alternatively, that optimization may become ineffective causing redundant regis-
ter transfers to remain.

- By adding temporary variables, a new register for register variables may come to be used, resulting
in code for saving and restoring that register being added to the function entrance and exit.
In such a case, the code size will increase by the save/restore code amount (8 bytes).

Before change:

int i = 0, j = 0, k = 0, m = 0;

/*There is a function call in this
interval*/

/*These variables are not used*/

while((k & 0xFF) != 0xFF) {

 k = s1;

 if(k & MASK) {

 if(m != 1) {

 s2 += 2;

 m = 1;

 array[15+i+j] = 0xFF;

 j++;

 }

 }

}

 :

After change:

int i, j, k, m;

 :

i = 0;

j = 0;

k = 0;

m = 0;

while((k & 0xFF) != 0xFF) {

 k = s1;

 if(k & MASK) {

 if(m != 1) {

 s2 += 2;

 m = 1;

 array[15+i+j] = 0xFF;

 j++;

 }

 }

}

 :

CubeSuite Ver.1.40 CHAPTER 2 FUNCTIONS

R20UT0259EJ0100 Rev.1.00 Page 70 of 890
Oct 01, 2010

(3) Variable types and order of definition
It is best to perform definitions in groups beginning with long data length values.
With the V850 microcontroller, word data in formats such as int format must be aligned to word boundaries, and
halfword data in formats such as short format must be aligned to halfword boundaries.
Due to this, source such as the following causes padding areas to be generated for alignment.

In order to avoid the generation of such padding areas, define definitions of variables and structure members
grouped by format beginning with longer data lengths.

char c = 'c';

short s = 0;

int i = 1;

char d = 'b';

int j = 2;

j

- d

i

s - c

High position

Low position

int i = 1;

int j = 2;

short s = 0;

char c = 'a';

char d = 'b';

High position

j

d

i

sc

Low position

CubeSuite Ver.1.40 CHAPTER 2 FUNCTIONS

R20UT0259EJ0100 Rev.1.00 Page 71 of 890
Oct 01, 2010

2.8 Accelerating Processing

This section explains accelerating processing.

2.8.1 Accelerating processing with description method

This section explains accelerate processing with the description method

(1) Loop processing pointer
A variable that controls a loop as in the example below is called an induction variable.
"Deleting the induction variable" refers to optimization that deletes the induction variable by using a different vari-
able to control the loop.
The CX includes this optimization, but because applicable conditions are limited, not all cases are able to be opti-
mized.
By modifying the program in the following manner, this optimization can be performed "manually".
In the lines below, induction variable i is deleted through the use of temporary variable (pointer) p.

Remarks 1. The amount of reduction is specific to this example, and will vary case by case.
2. As a result of changing the source, output instructions may be reduced and execution speed may

be increased.
3. Pay attention to the following points when changing the source.

- Changing the source causes the state of register usage to change. It is therefore possible that in
unintended places register transfers that had up until that point remained without being optimized
may be erased or, alternatively, that optimization may become ineffective causing redundant regis-
ter transfers to remain.

- By adding temporary variables, a new register for register variables may come to be used, resulting
in code for saving and restoring that register being added to the function entrance and exit.
In such a case, the code size will increase by the save/restore code amount (8 bytes).

(2) Auto variable declaration
Keep the number of auto variables to within ten; of preferably to six or seven.
Auto variables are assigned to registers.
The CX allows a total of 20 registers, 10 work registers and 10 register variable registers, to be used for variables
(in the 32-bit register mode).
It is recommended to use many auto variables if processing in one function takes time.
If the processing does not take much time, use only the 10 work registers whenever possible.
The register variable registers require overhead when they are saved or restored.
The C compiler automatically judges whether or not to use register variables.
Therefore, use six to seven registers for auto variables and leave three or four to be able to be used for work by the
C compiler.

Before change:

int i;

for(i = 0; *(table + i) != NULL; ++i) {

 if((*(table + i) & 0xFF) == x) {

 return(*(table + i) & 0xFF00);

 }

}

After change:

const unsigned short *p;

for(p = table; *p != NULL; ++p) {

 if((*p & 0xFF) == x) {

 return(*p & 0xFF00);

 }

}

CubeSuite Ver.1.40 CHAPTER 2 FUNCTIONS

R20UT0259EJ0100 Rev.1.00 Page 72 of 890
Oct 01, 2010

(3) Function arguments
Four argument registers, r6 to r9, are available.
If the number of arguments is five or more, the stack is used for the fifth and subsequent arguments.
Therefore, keep the number of arguments to within four whenever possible.
If five or more arguments must be used, pass the arguments using the pointer of a structure.

CubeSuite Ver.1.40 CHAPTER 2 FUNCTIONS

R20UT0259EJ0100 Rev.1.00 Page 73 of 890
Oct 01, 2010

2.9 Compiler and Assembler Mutual References

This section explains compiler and assembler mutual references.

2.9.1 Mutually referencing variables

This section explains mutually referencing variables.

(1) Reference variable defined in C language
Define extern when referencing an external variable defined in a C language program from an assembly language
routine.
Prefix "_" (an underscore) to a variable defined in an assembly language routine.

Example C source

Example Assembler source

extern void subf(void);

char c = 0;

int i = 0;

void main(void) {

 subf ();

}

 .public _subf

 .extern _c, 1

 .extern _i, 4

 .cseg text

 .align 4

_subf:

 mov 4, r10

 st.b r10, $_c

 mov 7, r10

 st.w r10, $_i

 jmp [lp]

CubeSuite Ver.1.40 CHAPTER 2 FUNCTIONS

R20UT0259EJ0100 Rev.1.00 Page 74 of 890
Oct 01, 2010

(2) Reference variable defined in assembly language
Define extern when referencing in a C language routine an external variable defined in an assembly language pro-
gram.
Prefix "_" (an underscore) to a variable defined in an assembly language routine.

Example C source

Example Assembler source

extern char c;

extern int i;

void subf (void) {

 c = 'A';

 i = 4;

}

 .public _i, 4

 .public _c, 1

 .dseg sbss

 .align 4

_i:

 .ds (4)

_c:

 .ds (1)

CubeSuite Ver.1.40 CHAPTER 2 FUNCTIONS

R20UT0259EJ0100 Rev.1.00 Page 75 of 890
Oct 01, 2010

2.9.2 Mutually referencing functions

This section explains mutually referencing functions.

(1) Reference function defined in C language
Note the following points when calling a function described in C language from an assembly language routine.

- Stack frame
Code is generated on the assumption that the stack pointer (sp) always indicates the lowest address of the
stack frame. Therefore, set sp so that it indicates the higher address of an unused area of the stack area
when execution branches from an assembler function to a C function.

- Work register
Values of the register variable registers before and after a C function is called are retained, but the values of
the work registers are not. Therefore, do not leave a value that must be retained assigned to a work register.

- Return address to return to assembler function
Code is generated on the assumption that the return address of a function is stored in link pointer lp (r31).
When execution branches to a C function, therefore, the return address of the function must be stored in lp.

(2) Reference function defined in assembly language
Note the following points when calling an assembly language routine from a function described in C language.

- Identifier
Prefix "_" to the name.

- Stack frame
Code is output based on the assumption that the stack pointer (sp) always indicates the lowest address of the
stack frame. Therefore, the address area lower than the address indicated by sp can be freely used in the
assembler function after branching from a C source to an assembler function. Conversely, if the contents of
the higher address area are changed, the area used by a C function may be lost and the subsequent operation
cannot be guaranteed. To avoid this, change sp at the beginning of the assembler function before using the
stack.
At this time, however, make sure that the value of sp is retained before and after calling.

- Register variable register
When using a register variable register in an assembler function, make sure that the register value is retained
before and after the assembler function is called. In other words, save the value of the register variable
register before calling the assembler function, and restore the value after calling.

- Return address to C language function
Code is generated on the assumption that the return address of a function is stored in link pointer lp (r31).
When execution branches to an assembler function, the return address of the function is stored in lp. Execute
the jmp [lp] instruction to return to a C function.

CubeSuite Ver.1.40 CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 76 of 890
Oct 01, 2010

CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

This chapter explains language specifications supported by the CX.

3.1 Basic Language Specifications

The CX supports the language specifications stipulated by the ANSI standards. These specifications include items that
are stipulated as processing definitions. This chapter explains the language specifications of the items dependent on the
processing system of the V850 microcontrollers.

The differences between when options strictly conforming to the ANSI standards are used and when those options are
not used are also explained.

See "3.2 Extended Language Specifications" for extended language specifications explicitly added by the CX.

3.1.1 Unspecified behavior

This section describes behavior that is not specified by the ANSI standard.

(1) Execution environment - initialization of static storage
Static data is output during compilation as a data section.

(2) Meanings of character displays - backspace (\b), horizontal tab (\t), vertical tab (\t)
This is dependent on the design of the display device.

(3) Types - floating point
IConforms to IEEE754Note.

Note IEEE: Institute of Electrical and Electronics Engineers
IEEE754 is a system for handling floating-point calculations, providing a uniform standard for data formats,
numerical ranges, and the like handled.

(4) Expressions - evaluation order
In general, expressions are evaluated from left to right. The behavior when optimization has been applied, how-
ever, is undefined. Options or other settings could change the order of evaluation, so please do not code expres-
sions with side effects.

(5) Function calls - parameter evaluation order
In general, function arguments are evaluated from first to last. The behavior when optimization has been applied,
however, is undefined. Options or other settings could change the order of evaluation, so please do not code
expressions with side effects.

(6) Structure and union specifiers
These are adjusted so that they do no span bit field type alignment boundaries. If packing has been conducting
using options or a #pragma, then bit fields are packed, and not adjusted to alignment boundaries.

(7) Function definitions - storage of formal parameters
These are assigned to the stack and register. For the details, see "3.3.1 Calling between C functions".

(8) # operator
These are evaluated left to right.

CubeSuite Ver.1.40 CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 77 of 890
Oct 01, 2010

3.1.2 Undefined behavior

This section describes behavior that is not defined by the ANSI standard.

(1) Character set
A message is output if a source file contains a character not specified by the character set.

(2) Lexical elements
A message is output if there is a single or double quotation mark (‘/") in the last category (a delimiter or a single
non-whitespace character that does not lexically match another preprocessing lexical type).

(3) Identifiers
Since all identifier characters have meaning, there are no meaningless characters.

(4) Identifier binding
A message is output if both internal and external binding was performed on the same identifier within a translation
unit.

(5) Compatible type and composite type
All declarations referencing the same object or function must be compatible. Otherwise, a message will be output.

(6) Character constants
Specific non-graphical characters can be expressed by means of extended notation, consisting of a backslash (\)
followed by a lower-case letter. The following are available: \a, \b, \f, \n, \r, \t, and \v. There is no other extended
notation; other letters following a backslash (\) become that letter.

(7) String literals - concatenation
When a simple string literal is adjacent to a wide string literal token, simple string concatenation is performed.

(8) String literals - modification
Users modify string literals at their own risk. Although the string will be changed if it is allocated to RAM, it will not
be changed if it is allocated to ROM.

(9) Header names
If the following characters appear in strings between the delimiter characters < and >, or between two double quo-
tation marks ("), then they are treated as part of the file name: characters, comma (,), double quote ("), two slashes
(//), or slash-asterisk (/*). The backslash (\) is treated as a folder separator.

(10)Floating point type and integral type
If a floating-point type is converted into an integral type, and the integer portion cannot be expressed as an integral
type, then the value is truncated until it can.

(11) lvalues and function specifiers
A message is output if an incomplete type becomes an lvalue.

(12)Function calls - number of arguments
If there are too few arguments, then the values of the formal parameters will be undefined. If there are too many
arguments, then the excess arguments will be ignored when the function is executed, and will have no effect.
A message will be output if there is a function declaration before the function call.

CubeSuite Ver.1.40 CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 78 of 890
Oct 01, 2010

(13)Function calls - types of extended parameters
If a function is defined without a function prototype, and the types of the extended arguments do not match the
types of the extended formal parameters, then the values of the formal parameters will be undefined.

(14)Function calls - incompatible types
If a function is defined with a type that is not compatible with the type specified by the expression indicating the
called function, then the return value of the function will be invalid.

(15)Function calls - incompatible types
If a function is defined in a form that includes a function prototype, and the type of an extended argument is not
compatible with that of a formal parameter, or if the function prototype ends with an ellipsis, then it will be inter-
preted as the type of the formal parameter.

(16)Addresses and indirection operators
If an incorrect value is assigned to a pointer, then the behavior of the unary * operator will either obtain an unde-
fined value or result in an illegal access, depending on the hardware design and the contents of the incorrect value.

(17)Cast operator - function pointer casts
If a typecast pointer is used to call a function with other than the original type, then it is possible to call the function.
If the parameters or return value are not compatible, then it will be invalid.

(18)Cast operator - integral type casts
If a pointer is cast into an integral type, and the amount of storage is too small, then the storage of the cast type will
be truncated.

(19)Multiplicative operators
A message will be output if a divide by zero is detected during compilation.
During execution, a divide by zero will raise an exception. If an error-handling routine has been coded, it will be
handled by this routine.

(20)Additive operators - non-array pointers
If addition or subtraction is performed on a pointer that does other than indicate elements in an array object, the
behavior will be as if the pointer indicates an array element.

(21)Additive operators - subtracting a pointer from another array
If subtraction is performed using two pointers that do not indicate elements in the same array object, the behavior
will be as if the pointers indicate array elements.

(22)Bitwise shift operators
If the value of the right operand is negative, or greater than the bit width of the extended left operand, then the
result will be the shifted value of the right operand, masked by the bit width of the left operand.

(23)Function operators - pointers
If the objects referring to by the pointers being compared are not members of the same structure or union object,
then the relationship operation will be performed for pointers referring to the same object.

CubeSuite Ver.1.40 CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 79 of 890
Oct 01, 2010

(24)Simple assignment
If a value stored in an object is accessed via another object that overlaps that object's storage area in some way,
then the overlapping portion must match exactly. Furthermore, the types of the two objects must have modified or
non-modified versions with compatible types. Assignment to non-matching overlapping storage could cause the
value of the assignment source to become corrupted.

(25)Structure and union specifiers
If the member declaration list does not include named members, then a message will be output warning that the list
has no effect. Note, however, that the same message will be output accompanied by an error if the -Xansi option is
specified.

(26)Type modifiers - const
A message will be output if an attempt is made to modify an object defined with a const modifier, using an lvalue
that is the non-const modified version. Casting is also prohibited.

(27)Type modifiers - volatile
A message will be output if an attempt is made to modify an object defined with a volatile modifier, using an lvalue
that is the non-volatile modified version.

(28)return statements
A message will be output if a return statement without an expression is executed, and the caller uses the return
value of the function, and there is a declaration. If there is no declaration, then the return value of the function will
be undefined.

(29)Function definitions
If a function taking a variable number of arguments is defined without a parameter type list that ends with an ellip-
sis, then the values of the formal parameters will be undefined.

(30)Conditional inclusion
If a replacement operation generates a "defined" token, or if the usage of the "defined" unary operator before
macro replacement does not match one of the two formats specified in the constraints, then it will be handled as an
ordinary "defined".

(31)Macro replacement - arguments not containing preprocessing tokens
A message is output if the arguments (before argument replacement) do not contain preprocessing tokens.

(32)Macro replacement - arguments with preprocessing directives
A message is output if an argument list contains a preprocessor token stream that would function as a processing
directive in another circumstance.

(33)# operator
A message is output if the results of replacement are not a correct simple string literal.

(34)## operator
A message is output if the results of replacement are not a correct simple string literal.

CubeSuite Ver.1.40 CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 80 of 890
Oct 01, 2010

3.1.3 Processing system dependent items

This section explains items dependent on processing system in the ANSI standards.

(1) Data types and sizes
The byte order in a word (4 bytes) is "from least significant to most significant byte" Signed integers are expressed
by 2's complements. The sign is added to the most significant bit (0 for positive or 0, and 1 for negative).

- The number of bits of 1 byte is 8.
- The number of bytes, byte order, and encoding in an object module files are stipulated below.

Table 3-1. Data Types and Sizes

(2) Translation stages
The ANSI standards specify eight translation stages (known as "phases") of priorities among syntax rules for trans-
lation. The arrangement of "non-empty white space characters excluding line feed characters" which is defined as
processing system dependent in phase 3 "Decomposition of source file into preprocessing tokens and white space
characters" is maintained as it is without being replaced by single white space character.

(3) Diagnostic messages
When syntax rule violation or restriction violation occurs on a translation unit, the compiler outputs as error mes-
sage containing source file name and (when it can be determined) the number of line containing the error. These
error messages are classified: "Warning", "Abort error", "Fatal error" and "other" messages. For output formats of
messages, see the "CubeSuite Message" user's Manual.

(4) Free standing environment

(a) The name and type of a function that is called on starting program processing are not stipulted in a
free-standing environmentNote. Therefore, it is dependent on the user-own coding and target system.

Note Environment in which a C source program is executed without using the functions of the operating
system.
In the ANSI Standard two environments are stipulated for execution environment: a free-standing
environment and a host environment. The CX does not supply a host environment at present.

(b) The effect of terminating a program in a free-standing environment is not stipulated. Therefore, it is
dependent on the user-own coding and target system.

(5) Program execution
The configuration of the interactive unit is not stipulated.
Therefore, it is dependent on the user-own coding and target system.

Data Types Sizes

char 1 byte

short 2 bytes

int, long, float 4 bytes

double, long double, long long 8 bytes

pointer Same as unsigned int

CubeSuite Ver.1.40 CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 81 of 890
Oct 01, 2010

(6) Character set
The values of elements of the execution environment character set are ASCII codes.

(7) Multi-byte characters
Supported multi-byte characters are ECU, SJIS and UTF-8.
Japanese description in comments and character strings is supported.

(8) Significance of character display
The values of expanded notation are stipulated as follows.

Table 3-2. Expanded Notation and Meaning

(9) Translation Limit
A maximum of 2,000 files can be linked. Specifying more than 2,000 files for linking will cause an E0511138 error.
There are no other limits on translation. The maximum translatable value depends on the memory of the host
machine on which the program is running.

(10)Quantitative limit

(a) The limit values of the general integer types (limits.h file)
The limits.h file specifies the limit values of the values that can be expressed as general integer types (char
type, signed/unsigned integer type, and enumerate type).
Because multi-byte characters are not supported, MB_LEN_MAX does not have a corresponding limit. Con-
sequently, it is only defined with MB_LEN_MAX as 1.
If the -Xchar=unsigned option of the CX is specified, CHAR_MIN is 0, and CHAR_MAX takes the same value
as UCHAR_MAX.
The limit values defined by the limits.h file are as follows.

Table 3-3. Limit Values of General Integer Type (limits.h File)

Expanded Notation Value (ASCII) Meaning

\a 07 Alert (Warning tone)

\b 08 Backspace

\f 0C Form feed (New Page)

\n 0A New line (Line feed)

\r 0D Carriage return (Restore)

\t 09 Horizontal tab

\v 0B Vertical tab

Name Value Meaning

CHAR_BIT +8 The number of bits (= 1 byte) of the minimum

object not in bit field

SCHAR_MIN -128 Minimum value of signed char

SCHAR_MAX +127 Maximum value of signed char

UCHAR_MAX +255 Maximum value of unsigned char

CHAR_MIN -128 Minimum value of char

CubeSuite Ver.1.40 CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 82 of 890
Oct 01, 2010

(b) The limit values of the floating-point type (float.h file)
The limit values related to characteristics of the floating-point type are defined in float.h file.
The limit values defined by the float.h file are as follows.

Table 3-4. Definition of Limit Values of Floating-point Type (float.h File)

CHAR_MAX +127 Maximum value of char

SHRT_MIN -32768 Minimum value of short int

SHRT_MAX +32767 Maximum value of short int

USHRT_MAX +65535 Maximum value of unsigned short int

INT_MIN -2147483648 Minimum value of int

INT_MAX +2147483647 Maximum value of int

UINT_MAX +4294967295 Maximum value of unsigned int

LONG_MIN -2147483648 Minimum value of long int

LONG_MAX +2147483647 Maximum value of long int

ULONG_MAX +4294967295 Maximum value of unsigned long int

LLONG_MIN -9223372036854775807 Minimum value of long long int

LLONG_MAX +9223372036854775807 Maximum value of long long int

ULLONG_MAX 18446744073709551615 Minimum value of unsigned long long int

Name Value Meaning

FLT_ROUNDS +1 Rounding mode for floating-point addition.

1 for the V850 microcontrollers (rounding in
the nearest direction).

FLT_RADIX +2 Radix of exponent (b)

FLT_MANT_DIG +24 Number of numerals (p) with FLT_RADIX of
floating- point mantissa as base

DBL_MANT_DIG +53

LDBL_MANT_DIG +53

FLT_DIG +6 Number of digits of a decimal number (q) that
can round a decimal number of q digits to a
floating-point number of p digits of the radix b
and then restore the decimal number of q

DBL_DIG +15

LDBL_DIG +15

FLT_MIN_EXP -125 Minimum negative integer (emin) that is a nor-
malized floating-point number when
FLT_RADIX is raised to the power of the
value of FLT_RADIX minus 1.

DBL_MIN_EXP -1021

LDBL_MIN_EXP -1021

FLT_MIN_10_EXP -37 Minimum negative integerlog10bemin-1 that falls
in the range of a normalized floating-point
number when 10 is raised to the power of its
value.

DBL_MIN_10_EXP -307

LDBL_MIN_10_EXP -307

FLT_MAX_EXP +128 Maximum integer (emax) that is a finite float-
ing-point number that can be expressed when
FLT_RADIX is raised to the power of its value
minus 1.

DBL_MAX_EXP +1024

LDBL_MAX_EXP +1024

Name Value Meaning

CubeSuite Ver.1.40 CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 83 of 890
Oct 01, 2010

(11) Identifier
All identifiers are considered to have meaning. There are no restrictions on identifier length.
Uppercase and lowercase characters are distinguished.

(12)char type
A char type with no type specifier (signed, unsigned) specified is treated as a signed integer as the default assump-
tion.
However, a simple char type can be treated as an unsigned integer by specifying the -Xchar=unsigned option of
the CX.
The types of those that are not included in the character set of the source program required by the ANSI standards
(escape sequence) is converted for storage, in the same manner as when types other than char type are substi-
tuted for a char type.

(13)Floating-point constants
The floating-point constants conform to IEEE754Note.

Note IEEE: Institute of Electrical and Electronics Engineers
IEEE754 is a system for handling floating-point calculations, providing a uniform standard for data formats,
numerical ranges, and the like handled.

(14)Character constants

(a) Both the character set of the source program and the character set in the execution environment are
basically ASCII codes, and correspond to members having the same value.
However, for the character set of the source program, character codes in Japanese can be used (see
"(8) Significance of character display").

FLT_MAX_10_EXP +38 Maximum value of finite floating-point num-
bers that can be expressed

(1 - b-p)＊ bemax

DBL_MAX_10_EXP +308

LDBL_MAX_10_EXP +308

FLT_MAX 3.40282347E + 38F Maximum value of finite floating-point num-
bers that can be expressed

(1 - b-p)＊ bemax

DBL_MAX 1.7976931348623158E+308

LDBL_MAX 1.7976931348623158E+308

FLT_EPSILON 1.19209290E - 07F Difference between 1.0 that can be
expressed by specified floating-point number
type and the lowest value which is greater
than 1.

b1 - p

DBL_EPSILON 2.2204460492503131E-016

LDBL_EPSILON 2.2204460492503131E-016

FLT_MIN 1.17549435E - 38F Minimum value of normalized positive float-
ing-point number

bemin - 1
DBL_MIN 2.2250738585072014E-308

LDBL_MIN 2.2250738585072014E-308

char c = '\777'; /*Value of c is -1*/

Name Value Meaning

CubeSuite Ver.1.40 CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 84 of 890
Oct 01, 2010

(b) The last character of the value of an integer character constant including two or more characters is
valid.

(c) A character that cannot be expressed by the basic execution environment character set or escape
sequence is expressed as follows.

<1> An octal or hexadecimal escape sequence takes the value indicated by the octal or hexadecimal
notation

<2> The simple escape sequence is expressed as follows.

<3> Values of \a, \b, \f, \n, \r, \t, \v are same as the values explained in "(8) Significance of character dis-
play".

(d) Character constants of multi byte characters are not supported.

(15)Character string
A character string can be described in Japanese.
The default character code is Shift JIS.
A character code in input source file can be selected by using the -Xcharacter_set option of the CX.

[Option specification]

(16)Header file name
The method to reflect the string in the two formats (< > and " ") of a header file name on the header file or an
external source file name is stipulated in "(33) Loading header file".

(17)Comment
A comment can be described in Japanese. The character code is the same as the character string in "(15) Char-
acter string".

(18)Signed constants and unsigned constants
If the value of a general integer type is converted into a signed integer of a smaller size, the higher bits are trun-
cated and a bit string image is copied.
If an unsigned integer is converted into the corresponding signed integer, the internal representation is not
changed.

\777 511

\' '

\" "

\? ?

\\ \

-Xcharacter_set=[none | euc_jp | sjis | utf8]

CubeSuite Ver.1.40 CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 85 of 890
Oct 01, 2010

(19)Floating-points and general integers
If the value of a general integer type is converted into the value of a floating-point type, and if the value to be con-
verted is within a range that can be expressed but not accurately, the result is rounded to the closest expressible
value.
When the result is just a middle value, it can be rounded to the even number (with the least significant bit of the
mantissa being 0).

(20)double type and float type
In the CX, a double type is treated as 64-bit (double-precision) data and a float type is treated as 32-bit (single-
precision) data.

(21)Signed type in operator in bit units
The characteristics of the shift operator conform to the stipulation in "(27) Shift operator in bit units".
The other operators in bit units for signed type are calculated as unsigned values (as in the bit image).

(22)Members of structures and unions
If the value of a member of a union is stored in a different member, it is stored according to an alignment condition.
Therefore, the members of that union are accessed according to the alignment condition (see "(6) Structure type"
and "(7) Union type").
In the case of a union that includes a structure sharing the arrangement of the common first members as a mem-
ber, the internal representation is the same, and the result is the same even if the first member common to any
structure is referred.

(23)sizeof operator
The value resulting from the "sizeof" operator conforms to the stipulation related to the bytes in an object in "(1)
Data types and sizes".
For the number of bytes in a structure and union, it is byte including padding area.

(24)Cast operator
When a pointer is converted into a general integer type, the required size of the variable is the same as the size of
the unsigned long type. The bit string is saved as is as the conversion result.
Any integer can be converted by a pointer. However, the result of converting an integer smaller than an int type is
expanded according to the type.

(25)Division/remainder operator
The result of the division operator ("/") when the operands are negative and do not divide perfectly with integer divi-
sion, is as follows: If either the divisor or the dividend is negative, the result is the smallest integer greater than the
algebraic quotient.
If both the divisor and the dividend are negative, the result is the largest integer less than the algebraic quotient.
If the operand is negative, the result of the "%" operator takes the sign of the first operand in the expression.

(26)Addition and subtraction operators
If two pointers indicating the elements of the same array are subtracted, the type of the result is unsigned long
type.

(27)Shift operator in bit units
If E1 of "E1 >> E2" is of signed type and takes a negative value, an arithmetic shift is executed.

CubeSuite Ver.1.40 CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 86 of 890
Oct 01, 2010

(28)Storage area class specifier
Optimize for the fastest possible access, regardless of whether there is a storage-class area specifier "register"
declaration.

(29)Structure and union specifier

(a) A simple int type bit field without signed or unsigned appended is treated as a signed field, and the
most significant bit is treated as the sign bit. However, the simple int type bit field can be treated as an
unsigned field by specifying the -Xbitfield option (Specifying sign of simple int type bit field) of the CX.

(b) To retain a bit field, a storage area unit to which any address with sufficient size can be assigned can
be allocated. If there is insufficient area, however, the bit field that does not match is packed into to
the next unit according to the alignment condition of the type of the field.

(c) The allocation sequence of the bit field in unit is from lower to higher.

(d) Each member of the non-bit field of one structure or union is aligned at a boundary as follows:

(30)Enumerate type specifier
The type of an enumeration specifier is signed int.
However, when the -Xenum_type=auto option is specified, each enumerated type is treated as the smallest integer
type capable of expressing all the enumerators in that type.

(31)Type qualifier
The configuration of access to data having a type qualified to be "volatile" is dependent upon the address (I/O port,
etc.) to which the data is mapped.

(32)Condition embedding

(a) The value for the constant specified for condition embedding and the value of the character constant
appearing in the other expressions are equal.

(b) The character constant of a single character must not have a negative value.

(33)Loading header file

(a) A preprocessing directive in the form of "#include <character string>"
A preprocessing directive in the form of "#include <character string>" searches for a header file from the folder
specified by the -I option if "character string" does not begin with "\"Note, and then searches standard include
file folder (..\inc folder with a relative path from the bin folder where the cx is placed).
If a header file uniformly identified is searched with a character string specified between delimiters "<" and ">",
the whole contents of the header file are replaced.

Note "/" are regarded as the delimiters of a folder.

char, unsigned char type, and its array Byte boundary

short, unsigned short type, and its array 2-byte boundary

Others (including pointer) 4-byte boundary

CubeSuite Ver.1.40 CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 87 of 890
Oct 01, 2010

The search order is as follows.
- Folder specified by -I
- Standard include file folder

(b) A preprocessing directive in the form of "#include "character string""
A preprocessing directive in the form of "#include "character string"" searches for a header file from the folder
where the source file exists, then searches specified folder (-I option) and then searches standard include file
folder (..\inc folder with a relative path from the bin folder where the cx is placed).
If a header file uniformly identified is searched with a character string specified between delimiters " " " and " "
", the whole contents of the header file are replaced.

Example

The search order is as follows.
- Folder where source file exists
- Folder specified by -I
- Standard include file folder

(c) The format of "#include preprocessing character phrase string"
The format of "#include preprocessing character phrase string" is treated as the preprocessing character
phrase of single header file only if the preprocessing character phrase string is a macro that is replaced to the
form of <character string> or "character string".

(d) A preprocessing directive in the form of "#include <character string>"
Between a string delimited (finally) and a header file name, the length of the alphabetic characters in the
strings is identified,

The folder that searches a file conforms to the above stipulation.

(34)#pragma directive
The CX can specify the following #pragma directives.

(a) Describing assembler instruction

Assembler directives can be described in a C source program.
For the details of description, see "(5) Describing assembler instruction".

#include <header.h>

#include "header.h"

And the file name length valid in the compiler operating environment is valid.

#pragma asm

 assembler instruction

#pragma endasm

CubeSuite Ver.1.40 CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 88 of 890
Oct 01, 2010

(b) Inline expansion specification

A function that is expanded inline can be specified.
For the details of expansion specification, see "(9) Inline expansion".

(c) Data or program memory allocation

<1> section
Allocates variables to an arbitrary section.
For details about the allocation method, see "(2) Allocation of data to section".

<2> text
A function to be allocated in a text section with an arbitrary name can be specified.
For details about the allocation specification, see "(3) Allocating functions to sections".

(d) Peripheral I/O register name validation specification

The peripheral I/O registers of a device are accessed by using peripheral function register names. When
programming using peripheral I/O registers names as it is, #pragma directives are needed to be specified.

(e) Interrupt/exception handler specification

Interrupt/Exception handlers are described in C language.
For the details of description, see "(c) Describing interrupt/exception handler".

(f) Interrupt disable function specification

Interrupts are disabled for the entire function.

(g) Task specification

The task of operating on the realtime OS is described by C language.
For the details of description, see "(a) Description of task".

#pragma inline function-name[, function-name ...]

#pragma section section-type ["section-name"]

#pragma text ["section-name"] [function-name[, function-name]...]

#pragma ioreg

#pragma interrupt interrupt-request-name function-name [allocation-method] [Option
[Option]...]

#pragma block_interrupt function-name

#pragma rtos_task function-name

CubeSuite Ver.1.40 CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 89 of 890
Oct 01, 2010

(h) Structure type packing specification

Specifies the packing of a structure type. The packing value, which is an alignment value of the member, is
specified as the numeric value. A value of 1, 2, 4, or 8 can be specified. When the numeric value is not spec-
ified, it is by default (8)Note.

Note Alignment values "4" and "8" are treated as the same in this Version.

(i) Smart correction specification

Specifies the function of smart correction.
For the details of description, see "(13) Smart correction function".

(35)Predefined macro names
All the following macro names are supported.
Macros not ending with "_ _" are supplied for the sake of former C language specifications (K&R specifications).
To perform processing strictly conforming to the ANSI standards, use macros with "_ _" before and after.

Table 3-5. List of Supported Macros

#pragma pack([1248])

#pragma smart_correct function-name function-name

Macro name Definition

__LINE__ Line number of source line at that point (decimal).

__FILE__ Name of assumed source file (character string constant).

__DATE__ Date of translating source file (character string constant in the form of "Mmm dd
yyyy"). Here, the name of the month is the same as that created by the asctime
function stipulated by ANSI standards (3 alphabetic characters with only the first
character is capital letter) (The first character of dd is blank if its value is less than
10).

__TIME__ Translation time of source file (character string constant having format "hh:mm:ss"
similar to the time created by the asctime function).

__STDC__ Decimal constant 1 (defined when the -Xansi option is specified)Note

__v850

__v850__

Decimal constant 1.

__v850e

__v850e__

Decimal constant 1 (defined by the CX, if V850Ex is specified as a target device).

__v850e2

__v850e2__

Decimal constant 1 (defined by the CX, if V850E2 is specified as a target device).

__v850e2v3

__v850e2v3__

Decimal constant 1 (defined by the CX, if device with an instruction set of V850E2V3
is specified as a target device).

__K0R

__K0R__

Decimal constant 1 (defined by the CX, if 78K0R is specified as a target device).

__CX

__CX__

Decimal constant 1.

CubeSuite Ver.1.40 CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 90 of 890
Oct 01, 2010

Note For the processing to be performed when the -Xansi option is specified, see "3.1.5 ANSI option".

3.1.4 C99 language function

This section describes the C99 language functions supported by the CX.

(1) Macros with variable numbers of arguments
The compiler supports C preprocessor macros with variable numbers of arguments.

The notation above can be used to describe an arbitrary number of arguments.

(2) _Bool type
_Bool type is supported.

(3) Comment by //
Text from two slashes (//) until a newline character is a comment. If there is a backslash character (\) immediately
before the newline, then the next line is treated as a continuation of the current comment.

(4) Inline keyword (inline function)
Inline function is supported.
This can also be specified using a pragma directive, via the following format.

For the details of expansion specification, see "(9) Inline expansion".

__CHAR_SIGNED__ Decimal constant 1 (defined if signed is specified by the -Xchar option and when the
-Xchar option is not specified).

__CHAR_UNSIGNED__ Decimal constant 1 (defined when unsigned is specified by the -Xchar option).

__DOUBLE_IS_64BITS__ Decimal constant 1.

__CPUmacro_

__CPUmacro__

Decimal constant 1 of a macro indicating the target CPU. A character string indi-
cated by "product type specification" in the device file with "_ _" prefixed and "_" or
"_ _"suffixed is defined.

Register mode macro Decimal constant 1 of a macro indicating the target CPU.

Macro defined with register mode is as follows.

32 register mode: __reg32__

26 register mode: __reg26__

22 register mode: __reg22__

Universal register mode: __reg_common__

__MULTI_CORE__ Decimal constant 1 (defined when specified by the -Xmulti option).

__MULTI_CMN__

__MULTI_PEn__

Decimal constant 1 (defined when core specified by the -Xmulti option (n is the
numerical value.)).

#define pr (fmt, ...) printf (fmt, __VA_ARGS__)

pr ("%s%d\n", "aa", 1) -> printf ("%s%d\n", "aa", 1)

pr ("%d\n", 2) -> printf ("%d\n", 2)

#pragma inline function-name[, function-name, ...]

Macro name Definition

CubeSuite Ver.1.40 CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 91 of 890
Oct 01, 2010

(5) long long int type
long long int type is supported. long long int type is 8-byte of integer type.
Appending "LL" to a constant value is also supported. It is also possible to specify this for bit field types.

(6) Comma permission behind the last enumeration child of a enum definition
When defining an enum type, it is permissible for the last enumerator in the enumeration to be followed by a
comma (,).

3.1.5 ANSI option

When the -Xansi option is specified by the CX, process strictly conforming to ANSI standards is executed.
The differences between when the -Xansi option is specified and when not specified are as follows.

Table 3-6. Processing When -Xansi Option Strictly Conforming to Language Specifications is Specified

Notes 1. Normal error beginning with "E". The same applies hereafter.
2. See the ANSI standards.

enum EE {a, b, c,};

Item With -Xansi Specification Without -Xansi Specification

Bit field An errorNote 1 occurs if type other than int is
specified for bit field.

Permits.

line number An error occurs. Treated in same manner as "#line line num-
ber".Note 2

Character # in middle
of line

An error occurs if character # appears in the
middle of the line.

Outputs warning message and permits.

__STDC__ Defines value as macro with value 1. Does not define.

Binary Constants An error occurs if "0b" or "0B" is followed by one
or more "0" or "1".

Treats "0b" or "0B" followed by one or more
"0" or "1" as a binary constant.

CubeSuite Ver.1.40 CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 92 of 890
Oct 01, 2010

3.1.6 Internal representation and value area of data

This section explains the internal representation and value area of each type for the data handled by the CX.

(1) Integer type

(a) Internal representation
The leftmost bit in an area is a sign bit with a signed type (type declared without "unsigned"). The value of a
signed type is expressed as 2' s complement.
If the -Xchar=unsigned option is specified, however, a char type specified without "signed" or "unsigned" is
assumed to be unsigned.

Figure 3-1. Internal Representation of Integer Type

(b) Value area

Table 3-7. Value Area of Integer Type

Type Value Area

charNote -128 to +127

short -32768 to +32767

int -2147483648 to +2147483647

long -2147483648 to +2147483647

long long -9223372036854775807 to +9223372036854775807

signed char (no sign bit for unsigned)

short (no sign bit for unsigned)

7 0

15 0

long long (no sign bit for unsigned)

int, long (no sign bit for unsigned)

31

063

0

_Bool (C99)

7 0

CubeSuite Ver.1.40 CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 93 of 890
Oct 01, 2010

Note The value area is 0 to 255, if the -Xchar=unsigned option is specified by the CX.

(2) Floating-point type

(a) Internal representation
Internal Representation of floating-point data type conforms to IEEE754Note. The leftmost bit in an area of a
sign bit. If the value of this sign bit is 0, the data is a positive value; if it is 1, the data is a negative value.

Note IEEE: Institute of Electrical and Electronics Engineers
IEEE754 is a standard to unify specifications such as the data format and numeric range in systems
that handle floating-point operations.

Figure 3-2. Internal Representation of Floating-Point Type

unsigned char 0 to 255

unsigned short 0 to 65535

unsigned int 0 to 4294967295

unsigned long 0 to 4294967295

unsigned long long 0 to 18446744073709551615

Type Value Area

float

M

031 30

S

double

ME

063 62

S

E

23 22

52 51

S: Sign bit of mantissa

E: Exponent (8 bits)

M: Mantissa (23 bits)

S: Sign bit of mantissa

E: Exponent (11 bits)

M: Mantissa (51 bits)

CubeSuite Ver.1.40 CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 94 of 890
Oct 01, 2010

(b) Value area

Table 3-8. Value Area of Floating-Point Type

(3) Pointer type

(a) Internal representation
The internal representation of a pointer type is the same as that of an unsigned int type.

Figure 3-3. Internal Representation of Pointer Type

(4) Enumerate type

(a) Internal representation
The internal representation of an enumerate type is the same as that of a signed int type. The leftmost bit in
an area of a sign bit.

Figure 3-4. Internal Representation of Enumerate Type

When the -Xenum_type=string option is specified, see "(30) Enumerate type specifier".

(5) Array type

(a) Internal representation
The internal representation of an array type arranges the elements of an array in the form that satisfies the
alignment condition (alignment) of the elements

Example

The internal representation of the array shown above is as follows.

Type Value Area

float 1.18 x 10-38 to 3.40 x 1038

double 2.23 x 10-308 to 1.80 x 10308

char a[8] = {1, 2, 3, 4, 5, 6, 7, 8};

031

031 30

CubeSuite Ver.1.40 CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 95 of 890
Oct 01, 2010

Figure 3-5. Internal Representation of Array Type

(6) Structure type

(a) Internal representation
The internal representation of a structure type arranges the elements of a structure in a form that satisfies the
alignment condition of the elements.

Example

The internal representation of the structure shown above is as follows.

Figure 3-6. Internal Representation of Structure Type

For the internal representation when the structure type packing function is used, see "(12) Structure type
packing".

(7) Union type

(a) Internal representation
A union is considered as a structure whose members all start with offset 0 and that has sufficient size to
accommodate any of its members. The internal representation of a union type is like each element of the
union is placed separately at the same address.

Example

struct {

 short s1;

 int s2;

 char s3;

 long s4;

} tag;

union {

 int u1;

 short u2;

 char u3;

 long u4;

} tag;

07 07070707070707

15

s2

0

s1

16

s3

31731

s4

031 0 8 0 31

CubeSuite Ver.1.40 CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 96 of 890
Oct 01, 2010

The internal representation of the union shown in the above example is as follows.

Figure 3-7. Internal Representation of Union Type

(8) Bit field

(a) Internal representation
An area including the declared number of bits is reserved for a bit field. The most significant bit of the area for
a bit field declared to be of signed type is a sign bit.
The bit field declared first is allocated from the least significant bit of 4-byte area. If the alignment condition of
the type specified in the declaration of a bit field is exceeded as a result of allocating an area that immediately
follows the area of the preceding bit field to the bit field, the area is allocated starting from a boundary that sat-
isfies the alignment condition.
Note, however, that in the case of a bit field of type long long, then if the alignment conditions exceed the 64-
bit boundary of the long long type, rather than the 4-byte boundary, then it will be allocated from the next
boundary.

Example

The internal representation for the bit field in the above example is as follows.

Figure 3-8. Internal Representation of Bit Field

The ANSI standards do not allow char and short types to be specified for a bit field, but the CX allows char,
short, long, long long and those unsigned types.
For the internal representation of bit field when the structure type packing function is used, see "(12) Structure
type packing".

struct {

 unsigned int f1:30;

 int f2:14;

 unsigned int f3:6;

} flag;

0

tag.u3 (1 byte)

tag.u1, tag.u4 (4 bytes)

31

tag.u2 (2 bytes)

f1f2

20

f3

1319 014
2931

031 30

CubeSuite Ver.1.40 CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 97 of 890
Oct 01, 2010

(9) Alignment condition

(a) Alignment condition for basic type
Alignment condition for basic type is as follows.
If the -Xinline_strcpy option of the CX is specified, however, all the arrey types are 4-byte boundaries.

Table 3-9. Alignment Condition for Basic Type

(b) Alignment condition for union type
The alignment condition for the union type varies as shown in Table 3-12, depending on the maximum
member size.

Table 3-10. Alignment Condition for Union Type

Here are examples of the respective cases:

Examples 1.

2.

(c) Alignment condition for structure type
The alignment conditions for a structure type are the same as those of the structure's member whose type has
the largest alignment condition.
If the -Xinline_strcpy option of the CX is specified, however, all the structure types are 4-byte boundaries.

Here are examples of the respective cases:

Basic Type Alignment Conditions

(unsigned) char and its array type Byte boundary

(unsigned) short and its array type 2-byte boundary

Other basic types (including pointer) 4-byte boundary

Maximum Member Size Alignment Conditions

2 bytes < size 4-byte boundary

Size <= 2 bytes Maximum member size boundary

union tug1 {

 unsigned short i; /*2 bytes member*/

 unsigned char c; /*1 bytes member*/

}; /*The union is aligned with 2-byte.*/

union tug2 {

 unsigned int i; /*4 bytes member*/

 unsigned char c; /*1 byte member*/

}; /*The union is aligned with 4-byte.*/

CubeSuite Ver.1.40 CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 98 of 890
Oct 01, 2010

Examples 1.

2.

3.

4.

5.

(d) Alignment condition for function argument
The alignment condition for a function argument is a 4-byte boundary.

(e) Alignment condition for executable program
The alignment condition when an executable object module file is created by linking object module files is 2-
byte boundary.

struct ST {

 char c; /*1 byte member*/

}; /*Structure is aligned with 1-byte.*/

struct ST {

 char c; /*1 byte member*/

 short s; /*2 bytes member*/

}; /*Structure is aligned with 2-byte.*/

struct ST {

 char c; /*1 byte member*/

 short s; /*2 bytes member*/

 short s2; /*2 bytes member*/

}; /*Structure is aligned with 2-byte.*/

struct ST {

 char c; /*1 byte member*/

 short s; /*2 bytes member*/

 int i; /*4 bytes member*/

}; /*Structure is aligned with 4-byte.*/

struct ST {

 char c; /*1 byte member*/

 short s; /*2 bytes member*/

 int i; /*4 bytes member*/

 long long ll; /*4 bytes member*/

}; /*Structure is aligned with 4-byte.*/

CubeSuite Ver.1.40 CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 99 of 890
Oct 01, 2010

3.1.7 General-purpose registers

How the CX uses the general-purpose registers are as follows.
The general-purpose registers includes the following functions.

(1) Software register bank
The number of the work registers (r10 through r19) and register variable registers (r20 through r29) used can be
reduced by the -Xreg_mode option of the CX (see "3.1.9 Software register bank").

Table 3-11. Using General-Purpose Registers

Note For the allocation of data to a section, see "(2) Allocation of data to section".

3.1.8 Referencing data

How the CX references data are as follows.

Table 3-12. Referencing Data

Register Usage

r0 Zero register Used for operation as value of 0.

Also used to reference data located at const section (read-
only section placed in ROM area)Note.

r1 Assembler-reserved register Used for instruction expansion by assembler.

r2 (hp) Handler stack pointer Reserved for system.

r3 (sp) Stack pointer Used to indicate beginning of stack frame.

r4 (gp) Global pointer Used to reference external variable.

r5 (tp) Text pointer Used to indicate beginning of text section (.text section)

r6 to r9 Argument registers Used to pass argument.

r10 to r19 Work register Used as work area during operation (r10 is also used to pass
return value of function).

r20 to r29 Register variable registers Used as an area for register variables.

r30 (ep) Element pointer Used to reference external variable specified to be located in
internal RAM or external RAM sectionNote.

r31 (lp) Link pointer Used to pass return address of function.

Type Referencing Method

Numeric constant Immediate

Character string constant Offset from global pointer (gp)

Offset from element pointer (ep)

Offset from r0

Automatic variable, Argument Offset from stack pointer (sp)

External variable, Static variable in function Offset from global pointer (gp)

Offset from element pointer (ep)

Offset from r0

Function address Operated during execution by using offset from text pointer (tp)

CubeSuite Ver.1.40 CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 100 of 890
Oct 01, 2010

3.1.9 Software register bank

Because the CX implements a register bank function by software, three register modes are provided. By specifying
these register modes efficiently, the contents of some registers do not need to be saved or restored when an interrupt
occurs or the task is switched. As a result, the processing speed can be improved. The register modes are specified by
using the register mode specification option (-Xreg_mode) of the CX. This function reduces the number of registers
internally used by the CX on a step-by-step basis. As a result, the following effects can be expected:

- The registers not used can be used for the application program (that is, a source program in assembly language).
- The overhead required for saving and restoring registers can be reduced.

Caution In an application program that has many variables to be allocated to registers by the CX, the
variables so far allocated to a register are accessed from memory when a register mode has been
specified. As a result, the processing speed may drop.

(1) Register mode
Next table and next Figure show the three register modes supplied by the CX.

Table 3-13. Register Modes Supplied by CX

Register modes Work Register Register Variable Registers

32-register mode (Default) r10 to r19 r20 to r29

26-register mode r10 to r16 r23 to r29

22-register mode r10 to r14 r25 to r29

CubeSuite Ver.1.40 CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 101 of 890
Oct 01, 2010

Figure 3-9. Register Modes and Usable Registers

Specification example on command line

> cx -Cf3507 -Xreg_mode=26 file.c <- compiled in 26-register mode

22 -register mode26-register mode

r14

0

r0

r10

r29

32-register mode

r20

r15

Other registers

31 0 31 031

r24
r25

r31

r29

r31

r19

r10

r0

r29

r23

r31

r22

r17
r16

r10

r0

Other registers

Work register

Register Variable Registers

Registers that can be used freely in application

CubeSuite Ver.1.40 CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 102 of 890
Oct 01, 2010

3.1.10 Device file

A device file is a binary file that contains information dependent upon the device type. One device file is available for
each device or group of target devices as a package. The compiler referred a device file to generate object codes corre-
sponding to the target system that is used in the application system. Therefore, place the device file to be used under the
standard folder for the device file. If the device is placed under any other folder, specify the folder using a compiler
option; otherwise an error occurs during compilation because the device file is not found.

(1) Specifying device file
A device file that is referenced by a program in C language can be specified in the following way.

(a) Specifying device name using compiler option (-Cdevice-name)

Example

When building a program with CubeSuite, specifying a device has an effect equivalent to specifying this
option.

In this example, the device name is "f3507" (V850E2/PJ4). The character strings that can be specified as
"device name" dose not distinguish uppercase and lowercase characters.
For the character strings that can be specified as a device name, see the User's Manual of each device.

(2) Notes on specifying device file

(a) If no device name is specified
If a device name is not specified by the -C option, and if neither the -Xcommon=v850e option, nor the -Xcom-
mon=v850e2 option, -Xcommon=v850e2v3Note is specified, the compiler outputs the error message and stops
compiling. Note, however, that specifying the -V/-h/-P option will cause an error.

Note A device file is necessary during linking even if the -Xcommon=v850e, -Xcommon=v850e2 option or -
Xcommon=v850e2v3 option is specified.

(b) Program described in assembler instructions
In this case also, a device must be specified by an assembler option or the PROCESSOR control instruction
when an object module file that can be linked is created.

> cx -Cf3507 file.c

CubeSuite Ver.1.40 CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 103 of 890
Oct 01, 2010

3.2 Extended Language Specifications

This section explains the extended language specifications supported by the CX.
The expanded specifications inclue how to specify section location of data and access the internal peripheral function

registers of the device, how to insert assembler code in a C source program, how to specify inline expansion for each
function, how to define a handler when an interrupt or exception occurs, how to disable interrupts at the C language level,
the valid RTOS functions when a real-time OS is used for the target environment, and how to embed instructions in a C
source program.

3.2.1 Macro name

All the following macro names are supported.
Macros not ending with "__" are supplied for the sake of former C language specifications (K&R specifications). To

perform processing strictly conforming to the ANSI standards, use macros with "__" before and after.

Table 3-14. List of Supported Macros

Macro Name Definition

__LINE__ Line number of source line at that point (decimal).

__FILE__ Name of assumed source file (character string constant).

__DATE__ Date of translating source file (character string constant in the form of "Mmm dd yyyy".)
Here, the name of the month is the same as that created by the asctime function stipulated
by ANSI standards (3 alphabetic characters with only the first character is capital letter)
(The first character of dd is blank if its value is less than 10).

__TIME__ Translation time of source file (character string constant having format "hh:mm:ss" similar to
the time created by the asctime function).

__STDC__ Decimal constant 1 (defined when the -Xansi option is specifiedNote)

__v850

__v850__

Decimal constant 1.

__v850e

__v850e__

Decimal constant 1 (defined by the CX, if V850Ex is specified as a target device).

__v850e2

__v850e2__

Decimal constant 1 (defined by the CX, if V850E2 is specified as a target device).

__v850e2v3

__v850e2v3__

Decimal constant 1 (defined by the CX, if device with an instruction set of V850E2V3 is
specified as a target device).

__K0R

__K0R__

Decimal constant 1 (defined by the CX, if 78K0R is specified as a target device).

__CX

__CX__

Decimal constant 1.

__CHAR_SIGNED__ Decimal constant 1 (defined if signed is specified by the -Xchar option and when the -Xchar
option is not specified).

__CHAR_UNSIGNED__ Decimal constant 1 (defined when unsigned is specified by the -Xchar option).

__DOUBLE_IS_64BITS__ Decimal constant 1.

CPUmacro Decimal constant 1 of a macro indicating the target CPU. A character string indicated by
"product type specification" in the device file with "_ _" prefixed and suffixed is defined.

CubeSuite Ver.1.40 CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 104 of 890
Oct 01, 2010

Note For the processing to be performed when the -Xansi option is specified, see "3.1.5 ANSI option".

3.2.2 Keyword

The CX adds the following characters as a keyword to implement the expanded function. These words are similar to
the ANSI C keywords, and cannot be used as a label or variable name.

Keywords that are added by the CX are listed below.
_bsh, _bsw, __caxi, data, __DI, __EI, _halt, _hsw, __ldgr, __ldsr, __mul, __mulu, _mul32, _mul32ut, _nop, _sasf,
_satadd, _satsub, __sch0l, __sch0r, __sch1l, __sch1r, __set_il, __stgr, __stsr, _sxb, _sxh

3.2.3 #pragma directive

The CX can specify the following #pragma directives.

(1) Description with assembler instruction
Assembler directives can be described in a C source program.
For the details of description, see "(5) Describing assembler instruction".

(2) Inline expansion specification
A function that is expanded inline can be specified.
For the details of expansion specification, see "(9) Inline expansion".

(3) Data or program memory allocation

(a) section
Allocates variables to an arbitrary section.
For details about the allocation method, see "(2) Allocation of data to section".

Register mode macro Decimal constant 1 of a macro indicating the target CPU.

Macro defined with register mode is as follows.

32 register mode: __reg32__

26 register mode: __reg26__

22 register mode: __reg22__

Universal register mode: __reg_common__

_MULTI_CORE__ Decimal constant 1 (defined when the -Xmulti option is specified)

__MULTI_CMN__ Decimal constant 1 (defined when the -Xmulti=cmn option is specified)

__MULTI_PEn__ Decimal constant 1 (defined when the -Xmulti=pen option is specified)

#pragma asm

 assembler instruction

#pragma endasm

#pragma inline function-name[, function-name ...]

Macro Name Definition

CubeSuite Ver.1.40 CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 105 of 890
Oct 01, 2010

(b) text
A function to be allocated in a text section with an arbitrary name can be specified.
For details about the allocation specification, see "(3) Allocating functions to sections".

(4) Peripheral I/O register name validation specification
The peripheral I/O registers of a device are accessed by using peripheral function register names. #pragma
directive should be specified, when the program is executed by using the Peripheral I/O register name as it is.

(5) Interrupt/exception handler specification
Interrupt/Exception handlers are described in C language.
For details, see "(c) Describing interrupt/exception handler".

(6) Interrupt disable function specification
Interrupts are disabled for the entire function.

(7) Task specification
Task that runs on an RTOS is described in the C language.
For details, see "(a) Description of task".

(8) Structure type packing specification
Specifies the packing of a structure type. The packing value, which is an alignment value of the member, is speci-
fied as the numeric value. A value of 1, 2, 4, or 8 can be specified. When the numeric value is not specified, the
setting is the default 8Note assumption.

Note Alignment values "4" and "8" are treated as the same in this version.

(9) Smart correction specification
Specifies the function of smart correction.
For the details of description, see "(13) Smart correction function".

#pragma section section-type ["section-name"]

#pragma text ["section-name"] [Function-name[, Function-name]...]

#pragma ioreg

#pragma interrupt interrupt-request-name function-name [allocation-method] [Option
[Option]...]

#pragma block_interrupt function-name

#pragma rtos_task [Function-name]

#pragma pack([1248])

#pragma smart_correct Function-name Function-name

CubeSuite Ver.1.40 CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 106 of 890
Oct 01, 2010

(10)Position independent access
Specify position independent access. When this is specified, accesses subsequently declared and defined vari-
ables and functions will use relative addresses.
For the details of description, see "(14) Position independent operations".

(11) Fixed address access
Specify fixed address access. When this is specified, accesses to subsequently declared and defined variables
and functions will use absolute addresses.
For the details of description, see "(14) Position independent operations".

3.2.4 Using expanded specifications

This section explains using expanded specifications.
- Constant notation
- Allocation of data to section
- Allocating functions to sections
- Peripheral I/O register
- Describing assembler instruction
- Controlling interrupt level
- Disabling interrupts
- Interrupt/Exception processing handler
- Inline expansion
- Real-time OS support function
- Embedded functions
- Structure type packing
- Smart correction function
- Position independent operations

(1) Constant notation
The CX allows constants to be written in binary or octal notation. Binary constants must consist of an "0b" or "0B",
followed by a string of "1"s and "0"s. Octal constants must consist of an "0o", followed by a string of numbers
between "0" and "7".

Example

If a binary or octal constant is used, specifying the -Xansi option will cause an error message to be output.

#pragma pic

#pragma nopic

0b00010110111101010111111010010111

0o001726354

CubeSuite Ver.1.40 CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 107 of 890
Oct 01, 2010

(2) Allocation of data to section
When external variables and data are defined in a C source, the CX allocates them to memory. The memory loca-
tion to which the variables and data are allocated is, basically, an area that can be referenced by an offset from the
address pointed to by the global pointer (gp). If the variables or data are accessed in the program, therefore, the
CX attempts to output a code that accesses the area using gp, by default.
At this time, the CX attempts to output a code that allocates data to an area that can be referenced from gp by one
instruction, in order to enhance the object efficiency and execution efficiency as much as possible. Since the
range that can be referenced by one instruction from gp must be within +32 K bytes (a total of 64 K bytes) from gp
according to the V850 architecture, the CX has dedicated sections in the +32 K bytes area from gp. These sec-
tions are called the sdata and sbss attribute sections.

Figure 3-10. sdata and sbss Attribute Sections

In many cases, however, variables exceed in this range when using an application that uses many variables. In
this case, the variables must be allocated to other sections. The CX has many sections to which variables and
data can be allocated, in addition to the sdata and sbss attribute sections. Each of these sections has its own fea-
ture and sections to which variables that must be accessed quickly can be allocated are also available, so that the
sections can be selected depending on the usage.
The sections that can be used in the CX including sdata and sbss attribute sections are explained below.

- sdata and sbss attribute sections
These sections can be referenced from gp with one instruction and must be allocated within + 32 K bytes from
gp. Data with initial values is allocated to the sdata attribute section, and data without initial values is allocated
to sbss attribute section.
The CX first attempts to generate a code that is to be allocated to these sections.
If the code exceeds the upper limit of the section of these attributes, the compiler generates a code that allo-
cates data to a data or bss attribute section.
To increase the amount of data to be allocated to the sdata or sbss attribute sections, the upper size limit for
the data to be allocated can be specified with the "-G" option of the CX so that data in excess of this upper limit
is not allocated to the sdata or sbss attribute sections (see "CubeSuite Build for CX Compiler" for details of this
option).
Use the #pragma section directive to specify a variable to be allocated to the sdata or sbss attribute section in
the program (see "(a) #pragma section directive" for details).

sdata attribute /

sbss attribute section

32K bytes (0x8000)

32K bytes (0x8000)

High Address

gp

Low Address

CubeSuite Ver.1.40 CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 108 of 890
Oct 01, 2010

- data and bss attribute sections
These sections can be referenced from gp with two instructions. Since access is performed after address
generation, the code becomes correspondingly longer and the execution speed also drops, but the entire 32-
bit space can be accessed.
In other words, these sections can be allocated anywhere as long as they are in RAM.
Use the #pragma section directive to specify a variable to be allocated to the data or bss attribute section in
the program (see "(a) #pragma section directive" for details).

- sconst-attribute section
This is a section that can be referenced from r0, in other words from address 0, with 1 instruction, and must be
allocated within +32K bytes from address 0. Basically, data that can be fixed to ROM is allocated to this sec-
tion. In the case of V850 devices with internal ROM, in many cases the internal ROM is assigned from
address 0, and data that should be referenced with 1 instruction and that can be fixed to ROM is allocated to
the sconst attribute section. Variables/data declared by adding the const qualifier are subject to allocation to
the sconst attribute section. If the data exceeds the upper limit of this attribute section, it is allocated to the
const attribute section.
To increase the amount of data to be allocated to the sconst attribute section, the upper size limit for the data
to be allocated can be specified with the -Xsconst option of the CX so that data in excess of this upper limit is
not allocated to the sconst attribute section (see "CubeSuite Build for CX Compiler" for details of this option).
Use the #pragma section directive to specify a variable to be allocated to the sconst attribute section in the
program (see "(a) #pragma section directive" for details).

- const-attribute section
This is a section that can be referenced from r0, in other words from address 0, with two instructions. Data
that can be fixed to ROM that exceeds the upper limit of the sconst attribute section, or data that should be
allocated to external ROM in the case of ROMless devices of the V850 microcontrollers, is allocated to the
const attribute section. Variables/data declared by adding the const qualifier are subject to allocation to the
const attribute section.
The variables declared by adding the const qualifier are allocated to the const attribute section, string literal
even if allocation to the .const section is not specified by the #pragma section directive. Since access is
performed after address generation, the code becomes correspondingly longer and the execution speed also
drops, but the entire 32-bit space can be accessed. In other words, these sections can be allocated anywhere
as long as they are in 32-bit space.

#pragma section sdata

int a = 1; /*Allocated to sdata attribute section*/

int b; /*Allocated to sbss attribute section*/

#pragma section default

#pragma section data

int a = 1; /*Allocated to data attribute section*/

int b; /*Allocated to bss attribute section*/

#pragma section default

#pragma section sconst

const int a = 1; /*Allocated to sconst attribute section*/

#pragma section default

CubeSuite Ver.1.40 CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 109 of 890
Oct 01, 2010

Use the #pragma section directive to specify a variable to be allocated to the const attribute section in the
program (see "(a) #pragma section directive" for details).

- sidata and sibss attribute sections
These sections can be referenced from ep (element pointer) with 1 instruction toward higher addresses. In
other words, these sections are allocated in the 32 K bytes space toward higher addresses from ep.

Figure 3-11. sidata and sibss Attribute Sections

Data with initial values is allocated to the sidata attribute section, and data without initial values is allocated to
sibss attribute section. If variables that exceed the upper limit of the sdata and sbss attribute sections that can
be accessed from gp with 1 instruction, but which need to be accessed with 1 instruction still exist, they canbe
allocated in the range that can be accessed with 1 instruction using ep.
Use the #pragma section directive to specify a variable to be allocated to the sidata or sibss attribute section in
the program (see "(a) #pragma section directive" for details).

- sedata and sebss attribute sections
These sections can be referenced from ep (element pointer) with 1 instruction toward lower addresses from
ep. In other words, these sections are allocated in the 32 K bytes space toward lower addresses from ep.

Figure 3-12. sdata and sbss Attribute Sections

#pragma section const

const int a = 1; /*Allocated to const attribute section*/

#pragma section default

#pragma section sidata

int a = 1; /*Allocated to sidata section*/

int b; /*Allocated to sibss section*/

#pragma section default

sidata and

sibss attribute section 32K bytes (0x8000)

High Address

epLow Address

sedata and sebss

attribute section 32K bytes (0x8000)

High Address ep

Low Address

CubeSuite Ver.1.40 CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 110 of 890
Oct 01, 2010

Data with initial values is allocated to the sedata attribute section, and data without initial values is allocated to
sebss attribute section. If variables that exceed the upper limit of the sdata and sbss attribute sections that
can be accessed from gp with 1 instruction, but which need to be accessed with 1 instruction still exist, they
can be allocated in the range that can be accessed with 1 instruction using ep.
Use the #pragma section directive to specify a variable to be allocated to the sedata or sebss attribute section
in the program (see "(a) #pragma section directive" for details).

- tidata (tidata.byte, tidata.word) and tibss (tibss.byte, tibss.word) attribute sections
These sections can be referenced from ep (element pointer) with 1 instruction toward higher addresses.
These sections are accessed with 1 instruction in the same manner as the sidata and sibss attribute sections,
but differ in terms of the assembler instruction to be used.
The sidata and sibss attribute sections use the 4-byte st/ld instruction for store/reference, whereas the tidata
and tibss attribute sections use the 2-byte sst/sld instruction to perform access. In other words, the code effi-
ciency of the tidata and tibss attribute sections is better than that of the sidata and sibss attribute sections.
However, the range in which sst/sld instructions can be applied is small, so it is not possible to allocate a large
number of variables.

Figure 3-13. tidata and tibss Attribute Sections

Data with initial values is allocated to the tidata (tidata.byte, tidata.word) attribute section, and data without ini-
tial values is allocated to the tibss (tibss.byte, tibss.word) attribute section. Specify the tidata.byte/tibss.byte
attribute to allocate byte data, and specify the tidata.word/tibss.word attribute to allocate word data. To select
automatic byte/word judgment by the CX, specify the tidata/tibss attribute.
The tidata and tibss attribute sections are used to allocate data that must be accessed the fastest in the sys-
tem.
However, the data to be allocated to these sections must be carefully selected because the quantity of data
that can be allocated to these sections is limited. Use the #pragma section directive to specify variables to be
allocated to the tidata.byte/tibss.byte or tidata.word/tibss.word attribute section in the program (see "(a)
#pragma section directive" for details).

#pragma section sedata

int a = 1; /*Allocated to sedata section*/

int b; /*Allocated to sebss section*/

#pragma section default

#pragma section tidata_byte

char a = 1; /*Allocated to tidata.byte attribute section*/

unsigned char b; /*Allocated to tibss.byte attribute section*/

#pragma section default

tidata.byte attribute/

tibss.byte attribute/

tidata.word attribute/

tibss.word attribute section

256 bytes (0x100)

High Address

epLow Address

CubeSuite Ver.1.40 CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 111 of 890
Oct 01, 2010

The efficiency can be enhanced in terms of execution speed if variables or data that are especially frequently
used in the system are selected and allocated to the tidata (tidata.byte, tidata.word) or tibss (tibss.byte or
tibss.word) attribute section. The CX has a function that investigates the frequency of reference. The code
that allocates data to the tidata (tidata.byte, tidata.word) or tibss (tibss.byte, tibss.word) attribute section is
output based on this information.

Following figure shows an example of memory allocation of each section

Figure 3-14. tidata and tibss Attribute Sections

#pragma section tidata_word

int a = 1; /*Allocated to tidata.word attribute section*/

short b; /*Allocated to tibss.word attribute section*/

#pragma section default

#pragma section tidata

int a = 1; /*Allocated to tidata.word attribute section*/

char b; /*Allocated to tibss.byte attribute section*/

#pragma section default

Within 32K bytes

.sibss section

Peripheral I/O register

.sidata section

.tibss.word section

.tidata.word section

.tibss.byte section

.tidata.byte section

.sebss section

.sedata section

.bss section

.const section

.sbss section

.sdata section

.data section

.text section

.sconst section

Interrupt/exception table

.sbss and .sdata are allocated within

64K bytes

.Within 32K bytes

.Within 256 bytes

Within 128 bytes

.Within 32K bytes

ep

Generally, ep sets in the

beginning in RAM.

gp

gp shows the address of first .sdata section

32K bytes.

tp

Generally tp sets the first .text section or

other than 0.

r0-relative access area

ep-relative access area

gp-relative access are

tp-relative access area

Others

r0

CubeSuite Ver.1.40 CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 112 of 890
Oct 01, 2010

(a) #pragma section directive
How to allocate data to a section using the #pragma section directive is explained below.

<1> By default, when the section name is used as it is
Describe the #pragma section directive in the following format when using the section name defined by
the CX.

The following can be specified as the section-type.
data, sdata, sedata, sidata, tidata, tidata_word, tidata_byte, sconst, const

The name of the bss attribute section must not be specified as the section type. The CX automatically
allocates declared or defined data with initial values to the data attribute section, and data without initial
values to the bss attribute section.

In the above case, "variable a" is allocated to the data-attribute .sdata section because it has an initial
value, and "variable b" is allocated to the bss-attribute .sbss section because it does not have an initial
value.
Two or more variable declarations or definitions can be described between "#pragma section section-
type" and "#pragma section default". Enumerate variables to be allocated for each section type.
Use "_" (underscore) instead of "." (period) to specify tidata.word or tidata.byte as the section type, as
shown below.

tidata_word, tidata_byte

<2> To assign original section name
The user can assign a specific name to the sections, and can allocate variables and data to those
sections.

In this case, describe the #pragma section directive in the following format.

However, ".section-type" is appended to a section name actually generated by this method as follows.

#pragma section section-type

Variable declaration/definition

#pragma section default

#pragma section sdata

int a = 1; /*allocated to sdata attribute section*/

int b; /*allocated to sbss attribute section*/

#pragma section default

#pragma section section-type "created-section-name"

Variable declaration / Definition

#pragma section default

created-section-name.section-type

CubeSuite Ver.1.40 CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 113 of 890
Oct 01, 2010

This is to prevent a section with another attribute and having the same name from being created
because the section attribute is classified into data or bss attribute depending on whether the data has
an initial value or not. Specify a generated section name when specifying a section in a link directive file.
See "(b) Specifying link directive of specific data section" for an example of specification in a link
directive file. The following table shows specific examples of section names specified by the user and
generated section names.

Table 3-15. Specified Section Names and Generated Section Names

If the name is specified as follows, "variable a" is allocated to the mysdata.sdata section because it has
an initial value, and "variable b" is allocated to the mysdata.sbss section because it does not have an
initial value.

(b) Specifying link directive of specific data section
Specifying link directive of specific data section when a specific section is created using the #pragma section
directive, describe that section in a link directive file as explained below.
If "variable a" and "variable b" are specified as follows in a C source, "variable a" is allocated to the
mysdata.sdata section because it has an initial value, and "variable b" is allocated to the mysdata.sbss section
because it does not have an initial value.

At this time, the variable can be allocated to a specific section if the mapping directive in the link directive file is
described as follows.

Since the variables are allocated in the order in which they are described, change the description order to
change the allocation order. It is also possible to specify the start address of the section directly (generally, a
segment is created first and a mapping directive, which specifies the start address of a section in segment
units, is then described in that segment).

Section Name
Specified by User

Section Type Character String
Appended

Generated Section Name

mydata data attribute .data/.bss mydata.data/mydata.bss

mysdata sdata attribute .sdata/.sbss mysdata.sdata/mysdata.sbss

myconst const attribute .const myconst.const

#pragma section sdata "mysdata"

int a = 1; /*allocated to mysdata.sdata attribute section*/

int b; /*allocated to mysdata.sbss attribute section*/

#pragma section default

#pragma section sdata "mysdata"

int a = 1; /*allocated to mysdata.sdata attribute section*/

int b; /*allocated to mysdata.sbss attribute section*/

#pragma section default

.sdata = $PROGBITS ?AWG .sdata;

.sbss = $NOBITS ?AWG .sbss;

mysdata.sdata = $PROGBITS ?AWG mysdata.sdata;

mysdata.sbss = $NOBITS ?AWG mysdata.sbss;

CubeSuite Ver.1.40 CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 114 of 890
Oct 01, 2010

It must be noted here that mysdata.sdata's "$PROGBITS ?AWG" attribute and input section, and mys-
data.sbss's "$NOBITS ?AWG" attribute and input section (above, "$PROGBITS ?AWG mysdata.sdata" and
"$NOBITS ?AWG mysdata.sbss" at the far right of the mapping directive) must not be omitted.

(c) Notes on section allocation
Notes below must be noted when sections are allocated by the #progma section directive, the const qualifier,
or the section file.

<1> If a section is specified for an automatic variable, the specification is ignored. Section specifica-
tion is a function for external variables, character string and static variable.

<2> A variable declaration that is not set with an initial value is usually treated as a tentative defini-
tion. When a section is specified, however, it is treated as a "definition". Do not allow variable
declarations, which do not have their initial values, set to get mixed in with definitions.

Be sure to make extern declaration in files that reference an external variable. In the example below, a
duplicated definition error occurs if extern is missing in the tentative definition of the variable in file1.c.

<3> When a variable specified by a section is referenced by another file, the section must be speci-
fied with the same section type for the extern declaration of that variable. An error occurs if a
type of section different from that of the section specified when a variable is defined is specified.
For example, if "#pragma section data begin - #pragma section default" is specified on the definition side
and "#pragma section data begin - #pragma section default" is not specified on the tentative definition
side (extern declaration), it is assumed on the tentative definition side that the variable is allocated to the
sdata section. This means that a code that accesses the variable from gp with two instructions is output
on the definition side and that a code that accesses the variable from gp with one instruction is output on
the tentative definition side. In other words, a contradiction occurs. Consequently, the error message is
output during linking.

[Variable declaration not using
#pragma section]

int i; /*tentative definition*/

int i = 10; /*definition*/

[Error does not occur.]

[Variable declaration using #pragma
section]

#pragma section sedata

int i; /*definition*/

int i = 10; /*definition*/

#pragma section default

[Duplicated definition error.]

[file1.c]

#pragma section sedata

extern int i;

#pragma section default

[file2.c]

#pragma section sedata

int i;

#pragma section default

[Duplicated definition error occurs if extern is not declared]

CubeSuite Ver.1.40 CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 115 of 890
Oct 01, 2010

Example Correct specification

Example Incorrect specification 1

"variable i" defined by file1.c is allocated to the sbss or bss attribute section. However, file2.c outputs a
code that accesses the sebss attribute section for "variable i". As a result, the linker outputs the error
message.

Example Incorrect specification 2

"variable i" defined by file1.c is allocated to the sbss or bss attribute section. However, file2.c outputs a
code that accesses the sebss attribute section for "variable i". As a result, the linker outputs the error
message.

<4> Although a variable specified as const is allocated to the const section, if a #pragma section
directive specifies other than const/sconst, then it will be allocated to the specified section.

<5> When defining a variable with the sconst or const attribute using the #pragma section directive,
be sure to make a const specification for the variable. A const specification is also necessary at
the location of the tentative definition made by extern declaration.
If the const declaration is missing when a variable is declared, the variable is not allocated to the sconst
section or const section (the #pragma section directive is ignored) even if "#pragma section sconst" or
"#pragma section const" is specified, but to a gp-relative section such as the sdata section or data
section. In other words, allocation is not performed as intended.

[file1.c]

#pragma section sedata

int i = 1;

#pragma section default

[file2.c]

#pragma section sedata

extern int i;

#pragma section default

[file1.c]

int i = 1;

[file2.c]

#pragma section sedata

extern int i;

#pragma section default

[file1.c]

#pragma section sedata

int i = 1;

#pragma section default

[file2.c]

extern int i;

[file1.c]

#pragma section sconst

const int i = 1;

#pragma section default

[file2.c]

#pragma section sconst

int i;

#pragma section default

CubeSuite Ver.1.40 CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 116 of 890
Oct 01, 2010

A code that allocates "variable i" to the sconst section is output in file1.c. In file2.c, however, the
#pragma section specification is ignored because the const specification is missing from "variable i", and
therefore the variable is treated as a gp-relative variable. In other words, a code that allocates the vari-
able to the sdata or data section is output. Consequently, "variable i" is not allocated to the sconst sec-
tion during linking.
A const specification is also necessary at the location of the tentative definition with extern declaration,
as shown below.

<6> In #pragma section, it is not possible specify variables with unknown sizes, arrays with unknown
numbers of elements, undefined structures, or structures including any of these.

<7> If the -Xsdata and -Xsconst options are specified, and a #pragma section is specified, then the
specification of the #pragma section is effective. If there is no #pragma section, or if "default"
was specified in the relocation attribute, then the option specification is effective.

(d) Example of #pragma section directive
Here are some examples of using the #pragma section directive.

<1> Allocating "variable a" to tidata.word section and "variable b" to tibss.word section

<2> Allocating "variable c" to tidata.byte section and "variable d" to tibss.byte section

In the tidata attribute section, word data or halfword data is allocated to the tidata_word or tibss_word
section, and byte data is allocated to the tidata_byte or tibss_byte section.

<3> Allocating "variable e" specified by const to the sconst section and character string constant
data indicated by pointer p to sconst section.

[file1.c]

#pragma section sconst

const int i = 10;

#pragma section default

[file2.c]

#pragma section sconst

extern const int i;

#pragma section default

#pragma section tidata_word

int a = 1; /*allocated to tidata.word attribute section*/

short b; /*allocated to tibss.word attribute section*/

#pragma section default

#pragma section tidata_byte

char c = 0x10; /*allocated to tidata.byte section*/

char d; /*allocated to tibss.byte section*/

#pragma section default

#pragma section sconst

const int e = 0x10;

const char *p = "Hello, World";

#pragma section default

CubeSuite Ver.1.40 CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 117 of 890
Oct 01, 2010

In the above description, "Hello World" indicated by pointer p is allocated to the sconst section, and
pointer variable "p" itself is allocated to the sdata section or data section. The allocation position of the
pointer variable and the contents indicated by the pointer vary depending on how const is specified.

Examples 1.

If this declaration is made, the pointer variable and character sting constant indicated by the pointer are

Describe as shown below to allocate what the pointer variable indicates to a section with the const
attribute.

The above definition allocates the pointer variable and constant to the following sections.

2.

Describe as shown below to allocate the pointer variable to a section with the const attribute.

The above description allocates both the pointer variable and character string constant "Hello World" to a
section with the const attribute.

The above definition allocates the pointer variable and constant to the following sections.

const char *p = "Hello, World";

Pointer variable "p" Can be rewritten ("p = 0" can be compiled).

Character string constant "Hello World" Cannot be rewritten ("p = 0" cannot be compiled).

#pragma section sconst

const char *p = "Hello, World";

#pragma section default

Pointer variable "p" sdata/data section

Character string constant "Hello World" sconst section

char *const p;

Pointer variable "p" Cannot be rewritten ("p = 0" cannot be compiled).

char *const p = "Hello World";

#pragma section sconsts

char *const p = "Hello World";

#pragma section default

Pointer variable "p" sconst section

CubeSuite Ver.1.40 CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 118 of 890
Oct 01, 2010

3.

Describe as shown below to allocate what the pointer variable indicates to a section with the const
attribute. This description is used when the pointer itself is fixed to ROM.

The above description allocates both the pointer variable and character string constant "Hello World" to a
section with the const attribute.

The above definition allocates the pointer variable and constant to the following sections.

In addition to the #pragma section directive, the compiler option "-Xconst" can be used to allocate a vari-
able specified by const to the sconst section.

<4> Make the extern declaration of the #pragma section directive in a commonly used header file and
include it in the C source.

Character string constant "Hello World" sconst section

const char *const p;

Pointer variable "p" Cannot be rewritten ("p = 0" cannot be compiled).

const char *const p = "Hello World";

#pragma section sconst

const char *const p = "Hello World";

#pragma section default

Pointer variable "p" sconst section

Character string constant "Hello World" sconst section

[header.h]

#pragma section sidata

extern int k;

#pragma section default

[file1.c]

#include "header.h"

#pragma section sidata

int k;

#pragma section default

CubeSuite Ver.1.40 CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 119 of 890
Oct 01, 2010

If the extern declaration of the #pragma section directive is made in a header file as shown above, the
errors decrease and the source is visually simplified.

(3) Allocating functions to sections
The CX allocates the functions of a C source program, i.e., program codes, to the .text section by default. When
the text section allocation address is specified in the link directive file, the program is allocated from that address.
However, it may be necessary to change the allocation address for each function or distribute the allocation
address because of the layout of the memory. To satisfy these necessities, the CX has the #pragma text directive.
Using this directive, any name can be given to a section with the text attribute, and the allocation address can be
changed in the link directive file.

(a) #pragma text directive
Using the #pragma text directive, any name can be given to a section with the text attribute. The #pragma text
directive can be used in the following two ways

<1> Specifying the function name to be allocated to a section to be created using the #pragma text
directive.

Describe functions that are described in the C language. In the case of a function, "void func1() {}", spec-
ify "func1". The created section name can be omitted. In this case, a function specified by "function
name" is allocated to the default .text section.

<2> Describing the #pragma text directive before the main body of a function (function defini-
tion) but not specifying a function name.

The created section name can be omitted. In this case, specification of the name of section to be cre-
ated by "#pragma text" specified immediately before is canceled, and the subsequent functions are allo-
cated to the default .text section.
However, ".section-type" is appended to a section name actually generated by this method as follows.

Specify a generated section name when specifying a section in a link directive file. See "(b) Specifying
link directive of specific data section" for an example of specification in a link directive file.
The following table shows specific examples of section names specified by the user and generated sec-
tion names.

[file2.c]

#include "header.h"

void func1(void) {

 k = 0x10;

}

#pragma text "created section name" function-name[, unction-name]...

#pragma text "created section name"

section-name.text

CubeSuite Ver.1.40 CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 120 of 890
Oct 01, 2010

Table 3-16. Specified Section Names and Generated Section Names

If the name is specified as follows, "func1" is allocated to the mytext1.text section, and "func2" is allo-
cated to the .text section by default, because the #pragma text directive is not used.

If the name is specified as follows, "func1" and "func2" are allocated to the mytext2.text section, "func3"
to the "mytext3.text section", and "func4" to the default .text section because the #pragma text "mytext3"
immediately before is cancelled.

Section Name
Specified by User

Section Type Character String
Appended

Generated Section Name

mytext text attribute .text mytext.text

#pragma text "mytext1" func1

void func1(void) {

 :

}

void func2(void) {

 :

}

#pragma text "mytext2"

void func1(void) {

 :

}

void func2(void) {

 :

}

#pragma text "mytext3"

void func3(void) {

 :

}

#pragma text

void func4(void) {

 :

}

CubeSuite Ver.1.40 CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 121 of 890
Oct 01, 2010

(b) Specifying link directive of specific data section
When a specific section is created using the #pragma section directive, describe that section in a link directive
file as explained below.

If the name is specified as follows, "func1" and "func2" are allocated to the mytext2.text section, "func3" to the
"mytext3.text section", and "func4" to the default .text section because the #pragma text "mytext3" immediately
before is cancelled.

Since the variables are allocated in the order in which they are described, change the description order to
change the allocation order. It is also possible to specify the start address of the section directly (generally, a
segment is created first and a mapping directive, which specifies the start address of a section in segment
units, is then described in that segment).
Because the attribute of mytext2.text and mytext3.text is "$PROGBITS ?AX", do not omit the input section
(".text", "mytext2.text", and "mytext3.text" on the rightmost side of the mapping directive in the above example)
from mapping directives that have the same attribute as these.

Example If an input section is omitted from a mapping directive having the same "$PROGBITS?AX"
attribute, the linker links and locates all the sections having that attribute. Consequently, data is
not allocated to the specific section created by the user.
This means that the program that should be allocated to the mytext2.text or mytext3.text section is
allocated to the .text section.

#pragma text "mytext2"

void func1(void) {

 :

}

void func2(void) {

 :

}

#pragma text "mytext3"

void func3(void) {

 :

}

#pragma text

void func4(void) {

 :

}

text = $PROGBITS ?AX .text;

mytext2 = $PROGBITS ?AX mytext2.text;

mytext3 = $PROGBITS ?AX mytext3.text;

.text = $PROGBITS ?AX;

CubeSuite Ver.1.40 CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 122 of 890
Oct 01, 2010

(c) Notes on #pragma text directive.
Note the following points when using the #pragma text directive

- Describe the #pragma text directive before the function definition in the same file; otherwise a warning
message is output and the directive is ignored. However, the order of prototype declaration of a function
is not affected.

- After a #pragma text that specifies a function name, if a #pragma text is written that does not specify a
function, then the specified function is allocated to the specified section, and the non-specified function
will be allocated in accordance with a subsequent #pragma text.

- If a function specified by the #pragma text directive is an interrupt handler specified as direct allocation, a
warning message is output and the #pragma text directive is ignored. See "(8) Interrupt/Exception pro-
cessing handler" for details of direct allocation specification.

- If a function specified in a #pragma text becomes unnecessary due to a #pragma inline specification, or
inline expansion via optimization options, the function will still be output to the specified section.

- If the name of the section being created was omitted, this specification will be allocated to the default text
attribute section, so it will have not meaning, but if a named section had already been specified, then it will
revert to the default.

- When specifying a section name, keep the length of the name to within 256 characters.

(4) Peripheral I/O register
Peripheral I/O registers are used to control the internal peripheral functions of a device. By using the peripheral I/
O register name defined by the device, the internal I/O can be accessed at C language level. The peripheral I/O
register names can be treated in the C source program as if they were normal unsigned external variables.
For the register names and attributes that can be specified, see the Relevant Device ’s Hardware User’ s Manual of
each device.

(a) Accessing
A peripheral function register name is validated by describing the following #pragma directive.

In a C source file in which "#pragma ioreg" directive is described, the peripheral function register name
described after the #pragma directive can be used.
If this directive is not used or if a peripheral function register name is used without specifying an applicable
device name, an "undefined variable" error occurs.
An error also occurs if the access attribute peculiar to the specified register is violated.
Of the examples as follows, Example 1 is correct, but Examples 2 and 3 cause an error.
P0, P1, P2, RXB0, and OVF0 in the following examples indicate the peripheral I/O registers of the V850 micro-
controllers. In this way, symbols defined by the device file are specified as "register names".

#pragma ioreg

CubeSuite Ver.1.40 CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 123 of 890
Oct 01, 2010

Examples 1.

2.

3.

(5) Describing assembler instruction
With the CX, assembler instruction can be described in the functions of a C source program in the following format.

- asm declaration
- #pragma directives

To use registers with an inserted assembler, save or restore the contents of the registers in the program because
they are not saved or restored by the CX.
Insert assembler instruction code inside a function. If the instructions are described outside a function,an error
occurs. t

(a) asm declaration

<1> If the asm declaration is specified, the compiler suffixes a new-line character (\n) to the specified
character string constantNote and passes it to the assembler.

Note The backslash ("\") is an escape character. (Example:\0->NULL, \r->Carriage return, \"->", \\->\)

#pragma ioreg

void func1(void) {

 int i;

 P0 = 1; /*Writes to P0*/

 i = RXB0; /*Reads from RXB0*/

}

void func2(void) {

 P1 = 0; /*Writes to P1*/

}

void func(void) {

 P1 = 0; /*Undefined error*/

}

#pragma ioreg

void func(void) {

 RXB0 = 1; /*Error that occurs if attribute of RXB0 is read-only*/

}

__asm(character string constant);

CubeSuite Ver.1.40 CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 124 of 890
Oct 01, 2010

Example

- __asm is a declaration and is not treated as a statement. Therefore, because of the syntax of the C
source, an error occurs in a structure that does not allow the use of a declaration only, as shown in Exam-
ple 1 below.
Therefor, enclose the statement in "{ }" as shown in Example 2 to make it a compound statement.

Examples 1.

2.

(b) #pragma directives
In the range enclosed by the above #pragma directives, assembler instructions can be described as is. This is
useful for using two or more assembler instructions.

A description of example 1 to show next is same to a description of example 2.

Examples 1.

__asm("nop");

__asm (".str \"string\\0\"");

if(i == 0)

__asm("mov r11, r10"); /*Error occurs because only declaration is made.*/

if(i == 0) {

 __asm("mov r11, r10"); /*Can be used because this is compound

 statement.*/

}

#pragma asm

 assembler instruction

#pragma endasm

int i;

void f() {

#pragma asm

 mov r0, r10

 st.w r10, $_i

 :

#pragma endasm

}

CubeSuite Ver.1.40 CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 125 of 890
Oct 01, 2010

2.

The description from "#pragma asm" to "#pragma endasm" is passed to the assembler as it is.
In other words, the CX internally creates an assembler instruction and starts the assembler.
Therefore, a directive of the assembler can be used after the #pragma asm declaration. A local variable in a C
source must not be used with the assembler. Because the local variable is allocated to the stack or a register
by the CX, it cannot be used with an inline assembler.
A symbol defined using #define in the C source file cannot be used in the description from "#pragma asm" to
"#pragma endasm". Therefore expand a macro defined by #define in a file by an assembler instruction, as fol-
lows.

- Define the macro by using the .macro instruction in the #pragma asm - #pragma endasm directives.
- Call an assembler instruction from the C source program by means of a function call.

Another method is to write an assembler instruction without making a macro definition.

(6) Controlling interrupt level

(a) __set_il function
The CX can manipulate the interrupts of the V850 microcontrollers as follows in a C source.

- By controlling interrupt level
- By enabling or disabling acknowledgment of maskable interrupts (by masking interrupts)

In other words, the interrupt control register can be manipulated.
For this purpose, the "__ set_il" function is used. Specify this function as follows to manipulate the interrupt
priority level.

Integer values 1 to 16 can be specified as the interrupt priority level. With devices with V850E2V3 instruction
set architecture, sixteen steps, from 0 to 15, can be specified as the interrupt priority level. To set the interrupt
priority level to "5", therefore, specify the interrupt priority level as "6" by this function.

Example

This specification sets the interrupt priority level of interrupt INTP0 to 1.
Specify the __ set_il function as follows to enable or disable acknowledgment of a maskable interrupt.

int i;

void f() {

 __asm("mov r0, r10");

 __asm("st.w r10, $_i");

 :

}

__set_il(interrupt-priority-level, "interrupt-request-name");

__set_il(2, "INTP0");

__set_il(enables/disables maskable interrupt, "interrupt request name");

CubeSuite Ver.1.40 CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 126 of 890
Oct 01, 2010

"-1" or "0" can be specified to enable or disable the maskable interrupt.

Table 3-17. Enabling or Disabling Maskable Interrupt

Example

If the function is specified as shown above, acknowledging maskable interrupt INTP0 is disabled (INTP0 is
masked).
Note that the __ set_il function does not manipulate the EP flag (that indicates that exception processing is in
progress) in the program status word (PSW).

(b) __set_il function and interrupt control register
If the __ set_il function is used, either "priority level" or "interrupt mask flag" is set. This means that the __
set_il function cannot set an interrupt request flag.

(7) Disabling interrupts
The CX can disable the maskable interrupts in a C source.
This can be done in the following two ways.

- Locally disabling interrupt in function
- Disabling interrupts in entire function

(a) Locally disabling interrupt in function
The "di instruction" and "ei instruction" of the assembler instruction can be used to disable an interrupt locally
in a function described in C language. However, the CX has functions that can control the interrupts in a
C.language source.

Table 3-18. Interrupt Control Function

Set Value Operation

-1 Disables acknowledgment of maskable interrupt (masks interrupt).

0 Enables acknowledgement of maskable interrupt (unmasks interrupt).

__set_il(-1, "INTP0");

Interrupt Control Function Operation Processing by CX

__DI Disables the acceptance of all maskable
interrupts.

Generates di instruction.

__EI Enables the acceptance of all maskable inter-
rupts.

Generates ei instruction.

CubeSuite Ver.1.40 CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 127 of 890
Oct 01, 2010

Example How to use the __ DI() and __ EI() functions and the codes to be output are shown below.

(b) Disabling interrupts in entire function
The CX has a "#pragma block_interrupt" directive that disables the interrupts of an entire function.
This directive is described as follows.

Describe functions that are described in the C language. In the case of a function, "void func1() {}", specify
"func1".
The interrupt to the function specified by "function-name" above is disabled. As explained in "(a) Locally dis-
abling interrupt in function", __ DI()" can be described at the beginning of a function and "__ EI()", at the end.
In this case, however, an interrupt to the prologue code and epilogue code output by the CX cannot be dis-
abled or enabled, and therefore, interrupts in the entire function cannot be disabled.
Using the #pragma block_interrupt directive, interrupts are disabled immediately before execution of the pro-
logue code, and enabled immediately after execution of the epilogue code. As a result, interrupts in the entire
function can be disabled.

Example How to use the #pragma block_interrupt directive and the code that is output are shown below.

[C source]

void func1(void) {

 :

 __DI();

 /*describe processing to be performed with interrupt disabled*/

 __EI();

 :

}

[Output codes]

_func1:

 -- prologue code

 :

 di

 -- processing to be performed with interrupt disabled

 ei

 :

 -- epilogue code

 jmp [lp]

#pragma block_interrupt function-name

[C source]

#pragma block_interrupt func1

void func1(void) {

 :

 /*describe processing to be performed with interrupt disabled*/

 :

}

CubeSuite Ver.1.40 CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 128 of 890
Oct 01, 2010

(c) Notes on disabling interrupts in entire function
Note the following points when disabling interrupts in an entire function.

- If an interrupt handler and a #pragma block_interrupt directive are specified for the same interrupt, the
interrupt handler takes precedence, and the setting of disabling interrupts is ignored.

- If the following functions are called in a function in which an interrupt is disabled, the interrupt is enabled
when execution has returned from the call.

- Function specified by #pragma block_interrupt.
- Function that disables interrupt at the beginning and enables interrupt at the end.
- Describe the #pragma block_interrupt directive before the function definition in the same file; otherwise an

error occurs during compilation.
- However, the order of prototype declaration of a function is not affected.
- Neither #pragma inline nor inline expansion can be specified by an optimization option for the function

specified by a #pragma block_interrupt directive. The inline expansion specification is ignored.
- A code that manipulates the ep flag (that indicates exception processing is in progress) in the program

status word (PSW) is not output even if #pragma block_interrupt is specified.

(8) Interrupt/Exception processing handler
The CX can describe an "Interrupt handler" or "Exception handler" that is called if an interrupt or exception occurs.
This section explains how to describe these handlers.

(a) Occurrence of interrupt/exception
If an interrupt or exception occurs in the V850 microcontrollers, the program jumps to a handler address corre-
sponding to the interrupt or exception. An interrupt source and a handler address correspond one by one. A
collection of handler addresses is called an interrupt/exception table.
For example, the interrupt/exception table of the V850E2/MN4 is as shown below (only the part is shown).

Table 3-19. Interrupt/Exception Table (V850E2/MN4)

[Output codes]

_func1:

 di

 -- prologue code

 :

 -- processing to be performed with interrupt disabled

 :

 -- epilogue code

 ei

 jmp [lp]

Address Interrupt Name Interrupt Trigger

0x0000 RESET RESET input

0x0010 FEINT External NMI input

0x0020 FENMI WDT0ATNMI/WDT1ATNMI

: : :

0x0120 INTWDTA0 WDT0 Interval timer interrupt

0x0130 INTWDTA1 WDT1 Interval timer interrupt

CubeSuite Ver.1.40 CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 129 of 890
Oct 01, 2010

The arrangement of the handler addresses and the available interrupts vary depending on the device of the
V850. See the Relevant Device ’s User’ s Manual of each device for details.
Each handler address has a 16-byte area. If an interrupt occurs, an instruction written in that 16-byte area is
executed. This means that, if the processing code does not exceed 16 bytes, it is performed only in the han-
dler address. If not, an instruction that branches to a function (interrupt handler) where the processing is writ-
ten is described.

Figure 3-15. Image of Interrupt Handler Address

If the INTP0 interrupt occurs in the V850E2/MN4, the program jumps to address 0x160 and executes the code
written at that address. In this example, the program jumps to the func_intp0 function because a code that
branches to that function is written. This means that func_intp0 is the interrupt handler of INTP0.

The above description is at an assembler source level. With the CX, users do not have to pay much attention
to this when describing interrupt servicing in C language source. How to describe interrupt servicing is
explained specifically in "(c) Describing interrupt/exception handler".

(b) Processing necessary in case of interrupt/exception
If an interrupt/exception occurs while a function or a task is being executed, interrupt/exception processing
must be immediately executed. When the interrupt/exception processing is completed, execution must return
to the function or task that was interrupted Note.
Therefore, the register information at that time must be saved when an interrupt/exception occurs, and the reg-
ister information must be restored when interrupt/exception processing is complete.

Note When a real-time OS is used, execution may not return to a task that is interrupted if a system call is
issued during interrupt servicing. See the User's Manual of each real-time OS for details.

0x0140 INTOSTM0 OS timer underflow interrupt

0x0150 INTOSTM1 OS timer underflow interrupt

0x0160 INTP0 External Interrupt

0x0170 INTP1 External Interrupt

0x0180 INTP2 External Interrupt

Address Interrupt Name Interrupt Trigger

jr _func_intp0

jr _func_intp1

Address

0x00000160

0x00000170

Interrupt handler address of INTP0

Interrupt handler address of INTP1

CubeSuite Ver.1.40 CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 130 of 890
Oct 01, 2010

The prologue and epilogue codes of an ordinary function save and restore the registers for register variables.
The registers for register variables are shown below. Those that must be saved and restored are saved and
restored.

Table 3-20. Registers for Register Variables

When execution shifts to an interrupt/exception handler, the following registers that must be saved, in addition
to the registers shown in the above table, are also saved as a stack frame for the interrupt/exception handler.

Table 3-21. Stack Frame for Interrupt/Exception Handler

When multiple interrupt/exception occurs, the following registers that must be saved, in addition to the regis-
ters for register variables, are also saved as a stack frame for the multiple interrupt/exception handler.

Table 3-22. Stack Frame for Multiple Interrupt/Exception Handler

The usage of the above registers is as follows.

Table 3-23. Usage of Registers

Register Modes Register Variable Registers

22-register mode r25, r26, r27, r28, r29

26 -register mode r23, r24, r25, r26, r27, r28, r29

32-register mode r20, r21, r22, r23, r24, r25, r26, r27, r28, r29

Register Modes Registers Saved/Restored in Case of Interrupt/Exception

22-register mode r1, r6, r7, r8, r9, r10, r11, r12, r13, r14, r31 (lp), CTPC, CTPSW, BSEL
[V850E2V3], FPSR/FPEPC(with FPU) [V850E2V3]

26-register mode r1, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r31 (lp), CTPC, CTPSW, BSEL
[V850E2V3], FPSR/FPEPC(with FPU) [V850E2V3]

32-register mode r1, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17, r18, r19, r31 (lp), CTPC,
CTPSW, BSEL [V850E2V3], FPSR/FPEPC(with FPU) [V850E2V3]

Register Modes Registers Saved/Restored in Case of Multiple Interrupts/Exceptions

22-register mode r1, r6, r7, r8, r9, r10, r11, r12, r13, r14, r31 (lp), EIPC, EIPSW, CTPC, CTPSW,
BSEL [V850E2V3], EIIC [V850E2V3], EIWR [V850E2V3], FPSR/FPEPC(with
FPU) [V850E2V3]

26-register mode r1, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r31 (lp), EIPC, EIPSW, CTPC,
CTPSW, BSEL [V850E2V3], EIIC [V850E2V3], EIWR [V850E2V3], FPSR/
FPEPC(with FPU) [V850E2V3]

32-register mode r1, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17, r18, r19, r31 (lp), EIPC,
EIPSW, CTPC, CTPSW, BSEL [V850E2V3], EIIC [V850E2V3], EIWR
[V850E2V3], FPSR/FPEPC(with FPU) [V850E2V3]

Register Usage

r1 Assembler-reserved register

r6-r9 Registers for arguments (registers to set arguments of function)

CubeSuite Ver.1.40 CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 131 of 890
Oct 01, 2010

When interrupt/exception processing is completed, the code which restores saved registers is output, the eiret
instruction is output. This instruction notifies the V850 that the interrupt/exception servicing is completed.
If codes for saving/restoring registers or outputting the reti instruction are described as explained in "(c)
Describing interrupt/exception handler", the CX automatically outputs the relevant code. The code for saving/
restoring registers is output as explained in "Table 3-24. Processing for Saving/Restoring Registers During
Interrupt". The user therefore does not have to pay much attention to this and can concentrate on describing
the processing of the main body of the interrupt handler.

Table 3-24. Processing for Saving/Restoring Registers During Interrupt

r10-r19 Work registers (registers used by the CX to generate codes)

r31 Link pointer

CTPC Program counter (PC) when CALLT instruction is executed.

CTPSW Program status word (PSW) when CALLT instruction is executed.

EIPC Program counter (PC) during interrupt/exception processing

EIPSW Program status word (PSW) during EIPSW interrupt/exception processing.

BSEL [V850E2V3] Register bank selection register

EIIC [V850E2V3] Register that stores the EI level exception cause

EIWR [V850E2V3] EI level exception working register

FPSR [V850E2V3] Floating-point operation setting/status storage register

FPEPC [V850E2V3] Floating-point operation exception program counter

Register Name Register Explanation

Assembler-reserved register r1 Always saved/restored at interrupt.

Argument registers r6 to r9 r6 is always saved/restored when the interrupt
source is TRAP0/ TRAP1.

Saved/restored when a function call (including
runtime functions) exists.

Saved/restored if a function call does not exist
but is used with an interrupt function.

Work Registers 22-register mode r10 to r14 Saved/restored when a function call exists.

Saved/restored if a function call does not exist
but is used with an interrupt function.

26-register mode r10 to r16

32-register mode r10 to r19

Register Variable
Registers

22-register mode r25 to r29 Saved/restored as necessary, as with ordinary
functions.

26-register mode r23 to r29

32-register mode r20 to r29

Link pointer r31(lp) Saved/restored when a function call (including
runtime functions) exists

Does not save/restore if a function call does not
exist.

Interrupt-related system registers EIPC,
EIPSW

Always saved/restored with functions using the
multiple interrupt (The interrupt function with
multi option).

Not saved/restored without the multi option.

Register Usage

CubeSuite Ver.1.40 CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 132 of 890
Oct 01, 2010

(c) Describing interrupt/exception handler
The format in which an interrupt/exception handler is described does not differ from ordinary C functions, but
the functions described in C must be recognized as an interrupt/exception handler by the CX. With the CX, an
interrupt/exception handler is specified using the #pragma interrupt directive.

Describe functions that are described in the C language. In the case of a function, "void func1() {}", specify
"func1".

- Inerrupt request name
Interrupt request names registered in the device file can be specified. Refer to the interrupt request
names described in the Relevant Device ’s Architecture User’ s Manual of each device; they are the inter-
rupt request names registered in the device file.
A non-maskable interrupt (NMI) can also be specified in this way, but a reset interrupt (RESET) cannot be
specified. Processing after reset must be described with assembler instructions. Processing after reset is
generally described in the startup routine, so see "CHAPTER 7 STARTUP" for details.
If the interrupt request name is set to "NO_VECT", then it will not be set in the interrupt handler address,
and the function will only be output as an interrupt function.

- Function Name
Specify the names of functions that are used as an Interrupt/Exception handler. Describe the function
name in C source. When specifying the function "void func1(void)", specify the function name as "func1".

callt instruction-related system registers CTPC,
CTPSW

Always saved/restored with interrupt functions
without the nopush option.

Not saved/restored with the nopush option.

Register bank selection register

[V850E2V3]

BSEL Always saved/restored with interrupt functions

being compiled with a device with an instruction

set of V850E2V3 specified.

Register that stores the EI level exception

cause [V850E2V3]

EIIC Always saved/restored with multiple interrupt

functions being compiled with a device with an

instruction set of V850E2V3 specified.

EI level exception working register

[V850E2V3]

EIWR Always saved/restored with multiple interrupt

functions being compiled with a device with an

instruction set of V850E2V3 specified.

Floating-point operation setting/status

storage register [V850E2V3]

FPSR Always saved/restored with interrupt functions

being compiled with a device with an instruction

set of V850E2V3 with FPU device specified.

Floating-point operation exception program

counter [V850E2V3]】

FPEPC Always saved/restored with interrupt functions

being compiled with a device with an instruction

set of V850E2V3 with FPU device specified.

#pragma interrupt Interrupt-request-name Function-name [Allocation-method] [Option
[Option]...]

Register Name Register Explanation

CubeSuite Ver.1.40 CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 133 of 890
Oct 01, 2010

- Allocation method
Specify whether the main body of the function is directly allocated to the handler address, or only the
instruction that branches to the interrupt handler function is allocated. Specify "direct" when the main
body of the function is directly allocated; otherwise describe nothing as "allocation method". By specifying
"direct", all functions are allocated from the handler address of the specified interrupt source. Note, how-
ever, that the areas for the subsequent handler address are also used.
When specifying "direct", be sure to describe the #pragma interrupt directive before the function definition;
otherwise an error occurs during compilation.
If the interrupt request name is set to "NO_VECT", then "direct" cannot be specified (it will cause an error).

- Option
The following options can be specified.

The multi interrupt handler specification specifies a function that enables multiple interrupts. It does not
specify a function that makes multiple interrupts.

Next, the function type that can be specified as an interrupt handler is explained.
- Function type

The type of a handler that handles a maskable interrupt or NMI is as follows.
void func(void) type

The argument and return value of this function are void type.
The type of a software exception processing (trap) handler is as follows.

void func(unsigned int) type
The exception cause code for the EI level exception cause register (EIIC) is set in the parameter. Unless
the function is specified by this type, an error occurs during compilation. Refer to the next paragraph for
the software exception processing function.

- Software exception processing (trap processing) handler
When software exception processing (trap processing) is used, two entry points, TRAP0 (address 0x40)
and TRAP1 (address 0x50), are used according to the specifications of the V850 microcontrollers. When
the software exception "trap 0x00 to trap 0x0F" occurs, execution branches to TRAP0 (address 0x40); if
"trap 0x10 to trap0x1F" occurs, it branches to TRAP1 (address 0x50). At this time, the value "0x40 to
0x4F" is set to the interrupt source register (ECR) as a software exception code in the case of TRAP0. In
the case of TRAP1, the value "0x50 to 0x5F" is set to the EIIC.

Table 3-25. Trap Instructions and Software Exception Codes

multi Use a multi interrupt handler. Output EIPC/EIPSW save/restore code. Code to enable inter-
rupts is also output, so there is no need to enable interrupts via __EI().

This disables interrupts when terminating a function. Perform the synce instruction
immediately prior to disabling.

nopush Do not output CTPC/CTPSW save/restore code. This option can reduce the code size, if you
are using single interrupts and the function call doesn't exist in the interruption function.

push_ei Output EIPC/EIPSW save code.

nopush_fpu Do not output FPSR/FPEPC save code.

Trap Instruction Software Exception Code

trap 0x00 0x40

trap 0x01 0x41

CubeSuite Ver.1.40 CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 134 of 890
Oct 01, 2010

When software exception processing for TRAP0 or TRAP1 is described, that function has one argument and
the type of the variable is "unsigned int". The software exception code set to the EI level exception cause
register (EIIC) is set as the argument. In the case of TRAP0, the value is "0x40 to 0x4F". In the case of
TRAP1, it is "0x50 to 0x5F". Processing must be described in the handler depending on these values.

(d) Notes on describing interrupt/exception handler
- "Specifying multiple-interrupt handler" with the multi option means to "specify a function that can be interrupted

more than once" and does not mean "to specify a function that interrupts more than once".
- The reset interrupt cannot be specified by the #pragma interrupt directive.

If the above description is made, an error occurs during compilation. Processing after reset must be described
with assembler instructions.
Processing after reset is generally described in the startup routine, so see "CHAPTER 7 STARTUP" for
details.

- Specify multi option in the function specified as a handler that processes multiple interruptions. In such case,
code which saves, restores the EIPC and EIPSW is output. Interrupt handler where multi option is not speci-
fied, the code which saves, restores the EIPC and EIPSW is not output.

- The #pragma interrupt directive do not support multiple exceptions and multiple NMIs. To use multiple excep-
tions or multiple NMI, add a code that saves or restores the necessary system registers (such as FEPC and
FEPSW). See the Relevant Device’s User’s Manual of each device for the necessary system registers.

- The user is not required to additionally describe an interrupt handler address in the link directive file. It is out-
put internally by the CX.

- The same interrupt request name must not be specified for two or more functions.

trap 0x02 0x42

 : :

trap 0x0A 0x4A

trap 0x0B 0x4B

 : :

trap 0x10 0x50

trap 0x11 0x51

trap 0x12 0x52

 : :

trap 0x1E 0x5E

trap 0x1F 0x5F

#pragma interrupt TRAP0 trap0_func

void trap0_func(unsigned int codenum) {

 :

 describe processing of each exception code

 :

}

#pragma interrupt RESET reset_func /*error*/

Trap Instruction Software Exception Code

CubeSuite Ver.1.40 CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 135 of 890
Oct 01, 2010

- A function specified as an interrupt/exception handler cannot be expanded inline. The #pragma inline direc-
tive is ignored even if specified.

- An interrupt to a function specified as an interrupt/exception handler is disabled. Therefore, the #pragma
block_interrupt directive is ignored even if specified.

- A function specified as an interrupt/exception handler cannot be called by an ordinary function call. If it is
called from another file, the compiler cannot check it.

- When an assembler instruction is called from an interrupt/exception handler and the registers shown in "Table
3-20. Registers for Register Variables" and "Table 3-21. Stack Frame for Interrupt/Exception Handler" are
used, processing to save/restore the register contents must be described. Processing to save/restore the reg-
ister contents must also be described when sp (r3), gp (r4), tp (r5), and ep (r30) are rewritten.

- The #pragma interrupt directive do not issue a processing end report (EOI command) to the external interrupt
controller. The user should therefore execute this directive, if necessary.

- Disable interrupts at the end of multiple interrupts because a code that restores EIPC and EIPSW must be
described.

- If "direct" is not specified, an instruction to branch to the interrupt/exception handler is allocated to the handler
address. In this case, the CX outputs the jr instruction to enhance the code efficiency. However, the range in
which the jr instruction can branch execution is limited to +21 bits from the jr instruction. If the main body of
the interrupt handler is not within the range in which the jr instruction can branch execution, an error occurs
during linking. In this case, specify the compilation option "-Xfar_jump" to replace the jr instruction with the
jmp instruction.

- The FE level interrupt is not supported.
- If the "multi" option is specified, then code to save EIPC/EIPSW will be output due to the device specifications,

regardless of whether there is a "push_ei". An error will not be output.
- "nopush_fpu" has no meaning on devices without an FPU, and will be assumed to have been specified implic-

itly. Even if it is not specified, code to save FPSR/FPEPC will not be output (devices without an FPU do not
have FPSR/FPEPC).

(e) Description example of interrupt/exception handler
Examples of describing interrupt/exception handlers are shown below.
Note that the interrupt request name differs depending on the device. See the Relevant Device ’s User’ s Man-
ual of each device.

Examples 1. Non-maskable interrupt

2. Trap

#pragma interrupt NMI func1 /*non-maskable interrupt*/

void func1(void) {

 :

}

#pragma interrupt TRAP0 func2 /*Trap*/

void func2(unsigned int num) {

 switch(num) { /*for every exception cod*/

 :

 }

}

CubeSuite Ver.1.40 CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 136 of 890
Oct 01, 2010

3. Multiple interrupts

(9) Inline expansion
The CX allows inline expansion of each function. This section explains how to specify inline expansion.

(a) Inline Expansion
Inline expansion is used to expand the main body of a function at a location where the function is called. This
decreases the overhead of function call and increases the possibility of optimization. As a result, the execution
speed can be increased.
If inline expansion is executed, however, the object size increases.
Specify the function to be expanded inline using the #pragma inline directive.

Describe functions that are described in the C language. In the case of a function, "void func1() {}", specify
"func1". Two or more function names can be specified with each delimited by "," (comma).

(b) Conditions of inline expansion
At least the following conditions must be satisfied for inline expansion of a function specified using the
#pragma inline directive.
Inline expansion may not be executed even if the following conditions are satisfied, because of the internal
processing of the CX.

<1> A function that expands inline and a function that is expanded inline are described in the same
file
A function that expands inline and a function that is expanded inline, i.e., a function call and a function
definition must be in the same file. This means that a function described in another C source cannot be
expanded inline. If it is specified that a function described in another C source is expanded inline, the CX
does not output a warning message and ignores the specification.

<2> The #pragma inline directive is described before function definition.
If the #pragma inline directive is described after function definition, the CX outputs a warning message
and ignores the specification. However, prototype declaration of the function may be described in any
order. Here is an example.

#pragma interrupt INTP0 func1 /*multiple-interrupt*/

void func1(void) {

 :

}

#pragma inline function-name[, function-name, ...]

#pragma inline func1, func2

void func1() {...}

void func2() {...}

void func(void) {

 func1(); /*function subject to inline expansion*/

 func2(); /*function subject to inline expansion*/

}

CubeSuite Ver.1.40 CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 137 of 890
Oct 01, 2010

Example

<3> The number of arguments is the same between "call" and "definition" of the function to be
expanded inline.
If the number of arguments is different between "call" and "definition" of the function to be expanded
inline, the CX ignores the specification.

<4> The types of return value and argument are the same between "call" and "definition" of the func-
tion to be expanded inline.
If the number of arguments is different between "call" and "definition" of the function to be expanded
inline, the CX ignores the specification. If the type of the argument is the integer type (including enum) or
pointer-type, and in the same size, however, inline expansion is executed.

<5> The number of arguments of the function to be expanded inline is not variable.
If inline expansion is specified for a function with a variable arguments, the CX outputs neither an error
nor warning message and ignores the specification.

<6> Recursive function is not specified to be expanded inline.
If a recursive function that calls itself is specified for inline expansion, the CX outputs neither an error nor
warning message and ignores the specification. If two or more function calls are nested and if a code
that calls itself exists, however, inline expansion may be executed.

<7> An interrupt handler is not specified to be expanded inline.
A function specified by the #pragma interrupt is recognized as an interrupt handler. If inline expansion is
specified for this function, the CX outputs a warning message and ignores the specification.

<8> A task of a real-time OS is not specified to be expanded inline.
A function specified by the #pragma rtos_task directive is recognized as a task of a real-time OS. If
inline expansion is specified for this function, the CX outputs a warning message and ignores the specifi-
cation.

<9> Interrupts are not disabled in a function by the #pragma block_interrupt directive.
#If inline expansion is specified for a function in which interrupts are declared by the #pragma
block_interrupt directive to be disabled, the CX outputs a warning message and ignores the specifica-
tion.

[Valid Inline Expansion Specification]

#pragma inline func1, func2

void func1(); /*prototype declaration*/

void func2(); /*prototype declaration*/

void func1() {...} /*function definition*/

void func2() {...} /*function definition*/

[Invalid Inline Expansion Specification]

void func1(); /*prototype declaration*/

void func2(); /*prototype declaration*/

void func1() {...} /*function definition*/

void func1() {...} /*function definition*/

#pragma inline func1, func2

CubeSuite Ver.1.40 CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 138 of 890
Oct 01, 2010

(c) Execution speed priority optimization and inline expansion
If the "execution speed priority optimization (-Ospeed)" option of the CX is specified, the CX uses inline expan-
sion as one of the means of optimization.
If the -Ospeed option is specified, the CX selects an appropriate function and expands it inline as long as the
inline expansion conditions in "(b) Conditions of inline expansion" are satisfied, even if the function is not
specified for inline expansion by the #pragma inline directive.

(d) Examples of differences in inline expansion operation depending on option specification
Here are examples of differences in inline expansion operation depending on whether the #pragma inline
directive or an option is specified.

- When the -Osize (size priority optimization) option is specified (other than -Ospeed)

- When the -Ospeed (execution speed priority optimization) option is specified

Remarks 1. The CX does not treat a function specified for inline expansion by the #pragma inline directive
as a static function. To use such a function as a static function, static must be explicitly speci-
fied.

2. When executing debugging, a breakpoint cannot be specified for a function specified for inline
expansion in the C source.

(10)Real-time OS support function
The CX has functions to improve programming description and to reduce the number of codes, making allowances
for organizing a system using the V850 microcontrollers real-time OS RX850V4.

(a) Description of task
An application using a real-time OS performs processing in task units. The real-time OS schedules a task
using a system call issued in that task or interrupt servicing. Register contents are saved and restored by the
real-time OS when the task is switched (when the context is switched). Therefore, prologue and epilogue pro-
cessing are different from those of an ordinary function.
In other words, the prologue and epilogue processing generated by the CX when a function is called are not
executed by a task.
To use a function described as a task, the code can be reduced by deleting the prologue and epilogue pro-
cessing that are executed when a function is called. However, ordinary functions and tasks are not distin-

#pragma inline func0

void func0() {...} /*expanded if inline expansion conditions are satisfied because,

 #pragma inline is specified*/

void func1() {...} /*Not expanded*/

void func2() {...} /*Not expanded*/

#pragma inline func0

void func0() {...} /*expanded if inline expansion conditions are satisfied

 because -Ospeed is specified*/

void func1() {...} /*expanded if inline expansion conditions are satisfied

 because -Ospeed is specified*/

void func2() {...} /*expanded if inline expansion conditions are satisfied

 because -Ospeed is specified*/

CubeSuite Ver.1.40 CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 139 of 890
Oct 01, 2010

guished according to the description method of C language Therefore, the CX has the following #pragma
directive so that a function can be recognized as a task of a real-time OS.

Consequently, the function specified by "function-name" can be recognized as a task of a real-time OS. A
function name described in C is specified as "function-name". The following description is made, for example,
to use the function "void func1(int inicode){}" as a task.

Example

Specifying the #pragma rtos_task directive has the following effect.

<1> The prologue/epilogue processing output by an ordinary function is not performed. Specif-
ically, the following codes are not output.

- Saving/restoring of register contents for register variables
- Saving/restoring of link pointer (lp)
- Jump to return address

<2> The system call "ext_tsk" can be used as a defined function.
This system call can be used even if a prototype declaration is not made in the application. Functions
other than the one specified as a task can be called in the same manner as long as they are described
after the #pragma rtos_task directive.
When this system call is called, a code using the jr instruction is output to reduce the code size. If the
main body of system call "ext_tsk" is not in the range in which the jr instruction can branch execution, the
linker outputs an error. In this case, take the following actions

- Change the memory allocation by the link directive
- Replace the jr instruction with the jmp instruction in the assembler source
- Specify far jump

Note the following points when the #pragma rtos_task directive is specified.
- A task cannot be called in the same manner as calling a function. A task called from a separate file

is not checked. A task cannot be expanded inline because it cannot be called as a function. That is,
even if the #pragma inline directive is specified for a function specified by the #pragma rtos_task
directive, the #pragma inline specification is ignored.

- An error occurs if "#pragma rtos_task function-name" is described after the function definition in the
same file.

- If the function is not defined after "#pragma rtos_task function-name" is described in the file, the
#pragma directive for that function is ignored. Note, however that "#pragma rtos_task" code is valid,
and it is possible to use the ext_tsk() system call in functions called after that.

- A function specified by the #pragma rtos_task directive cannot be specified as an ordinary interrupt/
exception handler (see "(8) Interrupt/Exception processing handler").

See the User's Manual of each real-time OS for the real-time OS functions.

#pragma rtos_task [function-name]

#pragma rtos_task func1

CubeSuite Ver.1.40 CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 140 of 890
Oct 01, 2010

(11) Embedded functions
In the CX, some of the assembler instructions can be described in C source as "Embedded Functions". However,
it is not described "as assembler instruction", but as a function format set in the CX. When these functions are
used, output code outputs the compatible assembler instructions without calling the ordinary function.
If a parameter is specified whose type cannot be implicitly converted to that of the parameter of the embedded
function, then an warning is output, and it is treated as an ordinary function. A warning is also output if a register
number that does not exist in the hardware is specified for ldsr()/stsr()/ldgr()/stgr(), and it will be treated as an ordi-
nary function.
The instructions that can be described as functions are as follows.

Table 3-26. Embedded Functions

Assembler
Instruction

Function Embedded Function

di Interrupt control __DI();

ei __EI();

nop No operation __nop();

halt Stops the processor __halt();

satadd Saturated addition long a, b;

long __satadd(a, b);

satsub Saturated subtraction long a, b;

long __satsub(a, b);

bsh Halfword data byte swap long a;

long __bsh(a);

bsw Word data byte swap long a;

long __bsw(a);

hsw Word data halfword swap long a;

long __hsw(a);

sxb Byte data sign extension char a;

long __sxb(a);

sxh Halfword data sign extension short a;

long __sxh(a);

mul Instruction that applies result of 32-bit x 32-bit
signed multiplication to variable using mul instruction

long a, b;

long long __mul(a, b);

mulu Instruction that applies result of 32-bit x 32-bit
signed multiplication to variable using mulu instruc-
tion

unsigned long a, b;

Unsigned long long __mulu(a, b);

mul32 Instruction that assigns higher 32 bits of
multiplication result to variable using mul32
instruction

long a, b;

long __mul32(a, b);

mul32u Instruction that assigns higher 32 bits of unsigned
multiplication result to variable using mul32u
instruction

unsigned long a, b;

unsigned long __mul32u(a, b);

sasf Flag condition setting with logical left shift long a;

unsigned int b;

long __sasf(a, b);

CubeSuite Ver.1.40 CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 141 of 890
Oct 01, 2010

Note Specified the system register number (0 to 31) in regID.
But, don't specify 0 as regID in ldsr.

Caution Even if a function is defined with the same name as an embedded function, it cannot be used.
If an att isempt made to call such a function, processing for the embedded function provided by
the compiler takes precedence.

(12)Structure type packing
In the CX, the alignment of structure members can be specified at the C language level. This function is equivalent
to the -Xpack option, however, the structure type packing directive can be used to specify the alignment value in
any location in the C source.

Caution The data area can be reduced by packing a structure type, but the program size increases and
the execution speed is degraded.

(a) Format of structure type packing
The structure type packing function is specified in the following format.

#pragma pack changes to an alignment value of the structure member upon the occurrence of this directive.
The numeric value is called the packing value and the specifiable numeric values are 1, 2, 4, and 8.
Specification of the packing value cannot be omitted. If there is no packing value, the CX outputs the following
message.

sch0l Bit (0) search from MSB side [V850E2V3] long a;

long __sch0l(a);

sch0r Bit (0) search from LSB side [V850E2V3] long a;

long __sch0r(a);

sch1l Bit (1) search from MSB side [V850E2V3] long a;

long __sch1l(a);

sch1r Bit (1) search from LSB side [V850E2V3] long a;

long __sch1r(a);

ldsr Loads to system register [V850E2V3] long a;

void __ldsr(regIDNote, a);

stsr Stores contents of system register [V850E2V3] unsigned long __stsr(regIDNote);

ldgr Loads to general-purpose register [V850E2V3] long a;

void __ldgr(regIDNote, a);

stgr Stores contents of general-purpose register
[V850E2V3]

unsigned long __stgr(regIDNote);

caxi Compare and Exchange [V850E2V3] long *a;

long b, c;

void __caxi(a, b, c);

#pragma pack([1248])

Assembler
Instruction

Function Embedded Function

CubeSuite Ver.1.40 CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 142 of 890
Oct 01, 2010

Since this directive becomes valid upon occurrence, several directives can be described in the C source.

Example

(b) Rules of structure type packing
The structure members are aligned in a form that satisfies the condition whereby members are aligned accord-
ing to whichever is the smaller value: the structure type packing value or the member’s alignment value.
For example, if the structure type packing value is 2 and member type is int type, the structure members are
aligned in 2-byte alignment.

Example

E0521605: Illegal #pragma character string syntax.

#pragma pack(1) /*Structure member aligned using 1-byte alignment*/

struct TAG {

 char c;

 int i;

 short s;

};

struct S {

 char c; /*Satisfies 1-byte alignment condition*/

 int i; /*Satisfies 4-byte alignment condition*/

};

#pragma pack(1)

struct S1 {

 char c; /*Satisfies 1-byte alignment condition*/

 int i; /*Satisfies 1-byte alignment condition*/

};

#pragma pack(2)

struct S2 {

 char c; /*Satisfies 1-byte alignment condition*/

 int i; /*Satisfies 2-byte alignment condition*/

};

struct S sobj; /*Size of 8 bytes*/

struct S1 s1obj; /*Size of 5 bytes*/

struct S2 s2obj; /*Size of 6 bytes*/

CubeSuite Ver.1.40 CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 143 of 890
Oct 01, 2010

(c) Union
A union is treated as subject to packing and is handled in the same manner as structure type packing.

Examples 1.

union U {

 struct S {

 char c;

 int i;

 } sobj;

};

#pragma pack(1)

union U1 {

 struct S1 {

 char c;

 int i;

 } s1obj;

};

#pragma pack(2)

union U2 {

 struct S2 {

 char c;

 int i;

 } s2obj;

};

union U uobj; /*Size of 8 bytes*/

union U1 u1obj; /*Size of 5 bytes*/

union U2 u2obj; /*Size of 6 bytes*/

0

0

0

7

7

7

8

8

1615

31 32

39

47

63

s2obj

s1obj

sobj

8

i

i

c

c

c i

CubeSuite Ver.1.40 CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 144 of 890
Oct 01, 2010

2.

(d) Bit field
Data is allocated to the area of the bit field element as follows.

<1> When the structure type packing value is equal to or larger than the alignment condition value of
the member type
Data is allocated in the same manner as when the structure type packing function is not used. That is, if
the data is allocated consecutively and the resulting area exceeds the boundary that satisfies the align-
ment condition of the element type, data is allocated from the area satisfying the alignment condition.

<2> When the structure type packing value is smaller than the alignment condition value of the ele-
ment type

- If data is allocated consecutively and results in the number of bytes including the area becoming
larger than the element type
The data is allocated in a form that satisfies the alignment condition of the structure type packing
value.

- Other conditions
The data is allocated consecutively.

Example

union U {

 int i:7;

};

#pragma pack(1)

union U1 {

 int i:7;

};

#pragma pack(2)

union U2 {

 int i:7;

};

union U uobj; /*Size of 4 bytes*/

union U1 u1obj; /*Size of 1 byte*/

union U2 u2obj; /*Size of 2 bytes*/

struct S {

 short a:7; /*0 to 6th bit*/

 short b:7; /*7 to 13th bit*/

 short c:7; /*16 to 22nd bit (aligned to 2-byte boundary)*/

 short d:15; /*32 to 46th bit (aligned to 2-byte boundary)*/

} sobj;

CubeSuite Ver.1.40 CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 145 of 890
Oct 01, 2010

(e) Alignment condition of top structure object
The alignment condition of the top structure object is the same as when the structure packing function is not
used.

(f) Size of structure objects
Perform packing so that the size of structure objects becomes a multiple value of whichever is the smaller
value: the structure alignment condition value or the structure packing value. The alignment condition of the
top structure object is the same as when the structure packing function is not used.

Examples 1.

#pragma pack(1)

struct S1 {

 short a:7; /*0 to 6th bit*/

 short b:7; /*7 to 13th bit*/

 short c:7; /*14 to 20th bit*/

 short d:15; /*24 to 38th bit (aligned to byte boundary)*/

} s1obj;

struct S {

 int i;

 char c;

};

#pragma pack(1)

struct S1 {

 int i;

 char c;

};

#pragma pack(2)

struct S2 {

 int i;

 char c;

};

struct S sobj; /*Size of 8 bytes*/

3122

0 386

46

7 2013

0

21
23

cba

d

14

s1obj

sobj

24

a b

39

c

d

13 16 23 32 63476 7

CubeSuite Ver.1.40 CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 146 of 890
Oct 01, 2010

2.

struct S1 s1obj; /*Size of 5 bytes*/

struct S2 s2obj; /*Size of 6 bytes*/

struct S {

 int i;

 char c;

};

struct T {

 char c;

 struct S s;

};

#pragma pack(1)

struct S1 {

 int i;

 char c;

};

struct T1 {

 char c;

 struct S1 s1;

};

#pragma pack(2)

struct S2 {

 int i;

 char c;

};

struct T2 {

 char c;

 struct S2 s2;

};

310

39

40

310

31

32

c

c

39

s1obj

sobj

32

i

i

39

40

i

c

32 63

47

s2obj

0

CubeSuite Ver.1.40 CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 147 of 890
Oct 01, 2010

(g) Size of structure array
The size of the structure object array is a value that is the sum of the number of elements multiplied to the size
of structure object.

Example

struct T tobj; /*Size of 12 bytes*/

struct T1 t1obj; /*Size of 6 bytes*/

struct T2 t2obj; /*Size of 8 bytes*/

struct S {

 int i;

 char c;

};

#pragma pack(1)

struct S1 {

 int i;

 char c;

};

#pragma pack(2)

struct S2 {

 int i;

 char c;

};

struct S sobj[2]; /*Size of 16 bytes*/

struct S1 s1obj[2]; /*Size of 10 bytes*/

struct S2 s2obj[2]; /*Size of 12 bytes*/

7

c

4740

c2

0

s1.i

7

s2.c

16

39

t1obj

tobj

s1.c

47
48

558

s2.i

15

8

63
56

t2obj

0

c1

31 7264 9532 63 71

s.i s.c

0 7 8

CubeSuite Ver.1.40 CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 148 of 890
Oct 01, 2010

(h) Area between objects
For example, sobj.c, sobj.i, and cobj may be allocated consecutively without a gap in the following source pro-
gram (the allocation order of sobj and cobj is not guaranteed).

Example

(i) Notes concerning structure packing function

<1> Specification of the -Xpack option and #pragma pack directive at the same time
If the -Xpack option is specified when structure packing is specified with the #pragma pack directive in
the C source, the specified option value is applied to all the structures until the first #pragma pack direc-
tive appears. After this, the value of the #pragma pack directive is applied.
Even after the #pragma pack directive appears, however, the specified option value is applied to the
area specified by default.

Example When -Xpack=2 is specified

#pragma pack(1)

struct S {

 char c;

 int i;

} sobj;

char cobj;

struct S2 {...}; /*Packing value is specified as 2 in option

 Option -Xpack = 2 is valid: packing value is 2*/

#pragma pack(1) /*Packing is specified as 1 in #pragma directive

struct S1 {...}; pragma pack(1) is valid: packing value is 1*/

#pragma pack() /*Packing value is specified by default in #pragma directive

struct S2_2 {...}; Option -Xpack = 2 is valid: packing value is 2*/

c

c

64

40

31

0

i

40

95

71

39

s1obj

sobj

i

47 79
80

40
39

72
39

88
87

s2obj

0

c

31

ci

9532

c

32 63

i

0

i i

48

79

104
127103

96

32

31

c

0 7 39 4740

sobj, cobj

8

ic cobj

CubeSuite Ver.1.40 CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 149 of 890
Oct 01, 2010

<2> Restrictions
When using the V850 microcontrollers and a CPU that is set to disable misalign access for V850Ex prod-
ucts, the following restrictions apply.

- Access using the structure member address cannot be executed correctly.
As shown in the following example, the structure member address is acquired, and the access to
that address is then performed with the address masked in accordance with the data alignment of
the device. Therefore, some data may disappear or be rounded off.

Example

- In bit field access, an area with no data to be read using the member ’s type is also accessed.
If the width of the bit field is smaller than the member’ s type as shown in the following example,
access occurs outside the object because reading is performed using the member’ s type. Gener-
ally, there is no problem with the function, but if I/O are mapped, an illegal access may occur.

Example

(13)Smart correction function
The smart correction feature enables you to correct a specific function without changing the other functions at all
(code or addresses), by replacing the execution of that function only.
Specifically, the body of the function is replaced with a jump instruction (generated automatically via a "#pragma"
specification) to the corrected function, without changing the size of the function to be corrected.
The corrected function is allocated to a separate section that does not impact the original program.
Doing this keeps all parts of the program except for the corrected function identical to before correction.

struct test {

 char c; /*offset 0*/

 int i; /*offset 1-4*/

} test;

int *ip, i;

void func(void) {

 i = *ip; /*Accessed with address masked*/

}

void func2(void) {

 ip = &(test.i); /*Acquire structure member address*/

}

struct S {

 int x:21;

} sobj; /*3 bytes*/

sobj.x = 1;

CubeSuite Ver.1.40 CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 150 of 890
Oct 01, 2010

Figure 3-16. Image of Smart Correction Memory

The smart correction feature is useful when a bug is found in a specific function after the program has been

written to the flash area.

This has the following benefits compared to recompiling the program after making the correction as normal.

- If a normal recompile is performed, then the contents (allocated addresses and branch addresses) of

functions other than the corrected function will change, making it necessary to evaluate the entire

program.

But if smart correction is used, locations other than the corrected function do not change, making it

possible to minimize the amount of reevaluation.

- Self overwriting is also possible, because it is sufficient to overwrite only the location to change, without

the need for completely overwriting the flash area.

(a) Smart correction format
The smart collection function is designated by the next format.

The function to be corrected remains as-is; a new copy is created with a different name, and that function is
corrected. The CX outputs code to call the corrected function in the location of the uncorrected function.

(b) Smart correction procedure
- Upon first compilation, the compiler checks for the use of options requiring attention, such as function-

optimization options.
- Prepare a pre-correction link directive file.
- Copy the function to correct, and add it to the end of the C source file containing that function.

Correct the added function, and rename it.
- Add a #pragma smart_correct directive in front of the uncorrected function.

Do not make any changes to the C source file other than adding the #pragma directive, and adding the
corrected function to the end of the file.

#pragma smart_correct uncorrected-function-name corrected-function-name

Uncorrected Corrected

funcA funcA

funcB funcB

(uncorrected)

funcCfuncC

funcD funcD

funcBn

(corrected)
Free area

jr 32_funcBn

(jmp [jp])

nop

 :

Automatically gener-

ated via #pragma speci-

fication

Generated as separate

section (allocation loca-

tion can be specified)

Calling of funcB

To a step next to

funcB.

CubeSuite Ver.1.40 CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 151 of 890
Oct 01, 2010

The #pragma smart_correct directive causes a jump instruction from the uncorrected function to the cor-
rected function to be generated automatically.

- Specify the allocation section name of the added function via a #pragma text directive.

If a static variable was added, also specify the allocation section of that variable using a #pragma section
directive. Specify a new name for this section, which does not depend on the original program.

- Specify the allocation address of the corrected function name in the link directive file.
- Specify the same compiler options as the first compilation, and rebuild. A jump instruction from the pre-

correction function to the corrected function is generated, with the same code as a function specifying a
far jump.

- Make sure that the difference between the pre-correction hex file and the post-correction hex file is the
corrected portion.

(c) Sample smart correction code
- Assume a program "prog" (prog.lmf/prog.hex) consists of three C source files: "file1.c", "file2.c", and

"file3.c". Of these, there was a bug in function "funcB", defined in "file1.c". First, copy "funcB" and add it
to the end of "file1.c", and change the function name to "funcBn". Next, correct "funcBn".

- Add a #pragma smart_correct directive (a) before the definition of function "funcB".
- Add a #pragma text directive (b) before the definition of corrected function "funcBn". This specifies that

"funcBn" is to be allocated to a section called "text.rc".

#pragma text "section" corrected-function-name

[Uncorrected file1.c]

void funcA()

{

 :

 funcB();

 :

}

void funcB()

{

 :

}

void funcC()

{

 :

}

[Corrected file1.c]

void funcA()

{

 :

 funcB();

 :

}

#pragma smart_correct funcB funcBn <- (a)

void funcB()

{

 :

}

void funcC()

{

 :

}

#pragma text "text.rc" funcBn <- (b)

void funcBn()

{

 :

}

CubeSuite Ver.1.40 CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 152 of 890
Oct 01, 2010

- Add a specification to allocate to the "text.rc" section to the link directives.

Example Allocate the "text.rc" section to address 0x2000000.

- Set the options absolutely identically to those of the original program compile/assemble/link, and re-com-
pile/assemble/link.

- Compare the original "prog.hex" file to the newly generated "prog.hex" file, and make sure that there are
no differences other than "funcB" and "funcBn".

TEXT.RC: !LOAD ?RX V0x2000000 {

 text.rc = $PROGBITS ?AX text.rc.text;

};

[Corrected file1.asm]

_funcA:

 :

 jarl funcB

 :

$smart_correct _funcB, _funcB.End, _funcBn

_funcB:

 :

_funcB.End:

_funcC:

 :

text.rc.text .cseg text

_funcBn:

 jmp [lp]

_funcBn.end:

CubeSuite Ver.1.40 CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 153 of 890
Oct 01, 2010

(d) Cautions for the smart correction function
- You can only make additions, deletions, and modifications inside the uncorrected function.
- You cannot delete or modify variables defined outside the function. Variables can be added by defining

them in a different section.
- To add a variable, explicitly specify a section and allocation location, taking care not to change already

existing data areas.
- Do not add variables with initial values, because it could change the ROMization copy size.
- When copying individual items, the function in question must also be taken into consideration as a correc-

tion target.
- Make the size of the pre-correction function at least as large as the code size necessary for the call of the

corrected function.
- Only optimizations closed within the function are applied to uncorrected functions.
- If a uncorrected function is a target for inline expansion (optimization), a message will be output asking

whether to make it a target for smart correction.
- The compiler automatically appends the string ".text" to section names specified via "#pragma".

If the target section name is specified in the input section of a link directive, then if there is nothing written
before the automatically added ".text", it will be determined to be an unnecessary section, because the
linker will not be able to identify the target section name.

(14)Position independent operations
Normally, when accessing variables and functions in CX, relative addressing is output, and position-independent
code is output. This feature can be used to change whether addressing for accessing variables and functions uses
position-independent output or fixed-address output.
For example, in multi-core programming the sections in each core are relative from the base register of that core,
but when they are accessed from other cores or the common module, then the absolute address must be speci-
fied, because the base registers are different. This feature can be used to control this.

[Assembler image of corrected file1.obj]

_funcA:

 :

 jarl funcB

 :

_funcB:

 jr32 funcBn

 nop The same size as funcB which is originally

 :

_funcB.End:

_funcC:

 :

text.rc.text .cseg text

_funcBn:

 jmp [lp]

_funcBn.end:

CubeSuite Ver.1.40 CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 154 of 890
Oct 01, 2010

(a) Position independent operation format
Use the following format to specify position-independent operations on variables and functions.

(b) Sample position independent operation code
When a "#pragma pic" directive is specified, then access to subsequently declared/defined variables and func-
tions will use relative addresses. When a "#pragma nopic" directive is specified, then access to subsequently
declared/defined variables and functions will use absolute addresses.

Example

If the same specification is made repeatedly, then it will not cause an error:

But if different directives are specified for the same variable, then it will cause an error:

When performing multi-core programming, declare variables defined in another core module that you want to
access after a "#pragma nopic" directive. If the "-Xmult=cmn" option was specified, then it is not necessary to
specify "#pragma nopic", because it is the default.

Example
Each PE (Processing Element) program (-Xmulti=pen)

#pragma pic

#pragma nopic

#pramga nopic

extern int i; /* "i" is accessed via the absolute address. */

#pragma pic

extetern int j; /* "j" is accessed via relative address. */

#pragma nopic

extern int i;

#pragma nopic /* Not error */

extern int j;

#pragma nopic

extern int i;

#pragma pic /* Error */

int i;

#pragma nopic

/* Common module declaration */

extern int cmn_var;

extern int cmn_func();

#pragma pic

/* PE local module declaration */

int pe_var;

int pe_func();

CubeSuite Ver.1.40 CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 155 of 890
Oct 01, 2010

Common module (-Xmulti=cmn)

(c) Important information for position independent operations
- If the "-Xmulti" option is not specified, or if the "-Xmulti=pen" option is specified, then it will be assumed

that "#pragma pic" is written at the beginning of the file. In this case, it will be the same as ordinary output
code.

- If the "-Xmulti=cmn" option is specified, then it will be assumed that "#pragma nopic" is written implicitly at
the beginning of the file. If the "-Xmulti=cmn" option is specified, then writing "#pragma pic" will cause an
error.

- If the "-Xmulti=cmn" option is specified, then specifying sdata/sidata/sedata/tidata/tidata_byte/tidata_word
in a "#pragma section" will cause an error.

- If "-Xmulti" is not specified, or the "-Xmulti=pen" option is specified, then when "#pragma nopic" is speci-
fied it is possible to use sdata/sidata/sedata/tidata/tidata_byte/tidata_word simultaneously in a "#pragma
section", but it will hurt code efficiency.

- Making different specifications for multiple declarations will cause an error. Care is needed when coding
header files.

- Features relating to symbol files (-Xsfg*, -Xsymbol_file) cannot be specified simultaneously. The behavior
when they are so specified is undefined.

3.2.5 Modification of C source

By using expanded function object with high efficiency can be created. However, as expanded function is adapted in
V850 microcontrollers, C source needs to be modified so as to use in other than V850 microcontrollers.

Here, 2 methods are described for shifting to the CX from other C compiler and shifting to C compiler from the CX.

<From other C compiler to the CX>
- #pragmaNote

C source needs to be modified, when C compiler supports the #pragma. Modification methods are examined
according to the C compiler specifications.

- Expanded Specifications
It should be modified when other C compilers are expanding the specifications such as adding keywords etc.
Modified methods are examined according to the C compiler specifications.

Note #pragma is one of the pre-processing directives supported by ANSI. The character string next to #pragma
is made to be recognized as directives to C compiler. If that directive does not supported by the compiler,
#pragma directive is ignored and the compiler continues the process and ends normally.

#pramga nopic /* Does not matter whether it is included or not */

int cmn_var = 0;

int cmn_func(){

 return 1;

}

CubeSuite Ver.1.40 CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 156 of 890
Oct 01, 2010

<From the CX to other C compiler>
- The CX, either deletes key word or divides # fdef in order shift to other C compiler as key word has been added as

expanded function.

Examples 1. Disable the keywords

2. Change to other type

#ifndef __CA850__

#define interrupt /*Considered interrupt function as normal function*/

#endif

#ifdef __V850__

#define bit char /*Change bit type variable to char type variable*/

#endif

CubeSuite Ver.1.40 CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 157 of 890
Oct 01, 2010

3.3 Function Call Interface

This section describes how to handle arguments when a program is called by the CX.

3.3.1 Calling between C functions

- Normal function call
--> jarl instruction

- Function call using a pointer indicating a function (and returning from function call)
--> jmp instruction

When a C function is called from another C function, a 4-word argument is stored in the argument registers (r6 to r9).
An argument in excess of 4 words is stored in the stack frame of the calling function. As with structs and parameters of
type double/long long, it is stored in r6, from the least significant byte. Control is then transferred (jumps) to the called
function and the value in the argument registers stored when the function was called is stored in the stack frame of the
calling function.

For a function that returns a structure, create memory for the return value in the calling function, and pass the address
of this memory area to the function as the first argument. In this case, the first, second, ... argument specified in the
source will be treated as the second, third, ... arguments.

The CX uses r10 for function return values. If the function is of type double or long long, it uses r10 and r11, storing the
lower 32 bits in r10, and the higher 32 bits in r11. For functions that return structures, the structure is stored in the
address passed via the first argument; there is no explicit return value.

The stack frame is generated when the prologue code of the function, i.e., the code that is executed before the code of
the main body of the function is called (processing (4) to (7) in "Figure 3-19. Generation/Disappearance of Stack Frame
(When Argument Register Area Is Located at Center of Stack))", "Figure 3-21. Generation/Disappearance of Stack
Frame (When Argument Register Area Is Located at Beginning of Stack)" is the prologue code), is executed and the stack
pointer (sp) is shifted by the necessary size. The stack frame disappears when the epilogue code of the function, i.e., the
code that is executed after the code of the main body of the function is executed and until control returns to the calling
function (processing (i) to (iv) in "Figure 3-19. Generation/Disappearance of Stack Frame (When Argument Register
Area Is Located at Center of Stack))", "Figure 3-21. Generation/Disappearance of Stack Frame (When Argument Regis-
ter Area Is Located at Beginning of Stack)" is the epilogue code), is executed and the stack pointer (sp) is returned.

(1) Stack frame/Function call
This section explains the stack frame format and how the stack frame is generated and disappears when a function
is called.

(a) Stack frame format
The CX allocates the argument register area to either the beginning of the stack or center of the stack in the
stack frame, according to the argument condition. The argument conditions are as follows.

<1> When the argument register area is allocated to the beginning of the stack
The argument register area is allocated to the beginning of the stack when the area is accessed succes-
sively, exceeding the area for the 4-word argument, in the following two cases.

- If the number of arguments is variable.
- If the argument is the entity of a structure and its area extends over a 4-word area.

CubeSuite Ver.1.40 CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 158 of 890
Oct 01, 2010

<2> When the argument register area is allocated to the center of the stack
In such case, it is other than the conditions mentioned above.
"Figure 3-17. Stack Frame (When Argument Register Area Is Located at Center of Stack)" shows stack
frame when the argument register area is at the center of the stack and "Figure 3-18. Stack Frame
(When Argument Register Area Is Located at Beginning of Stack)" shows stack frame when the argu-
ment register area is at the beginning of the stack.

Figure 3-17. Stack Frame (When Argument Register Area Is Located at Center of Stack)

Figure 3-18. Stack Frame (When Argument Register Area Is Located at Beginning of Stack)

".S, .F, .X, .R, .A, and .T" in the figure are macros for functions output by the compiler internally.
macros are used for a specific purpose, as shown in the following table.

Argument area for argument more than 4 words

lp

Argument register area

(4-word argument area)

Work register area

Automatic variable area

:

r28

r20

r21

r29

Old sp

New sp

Register area for register variables
.S = .F

.X

.R

.A

.T

Argument area for argument more than 4 words

lp

(4-word argument area)

Work register area

Automatic variable area

:

r28

r20

r21

r29

Old sp

New sp

Register area for register variables

.S

.F

.R = .X

.A

.T

Argument register area

CubeSuite Ver.1.40 CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 159 of 890
Oct 01, 2010

Table 3-27. Macros for Functions

Note .P is not shown in "Figure 3-17. Stack Frame (When Argument Register Area Is Located at Center of
Stack)" and "Figure 3-18. Stack Frame (When Argument Register Area Is Located at Beginning of
Stack)" because it is always 0.

These macros are used to access the stack area. The following table shows specific access methods (access
codes.

Table 3-28. Method of Accessing Stack Area

"offset" in this table is a positive integer and means the offset in each area. "xx" after a macro is a positive inte-
ger and indicates the frame number of the function.

Macro Name Meaning

.S Stack size

.F Stack size - Size of argument register area (if at the beginning of the stack)

.X Size of argument register area (if at the center of the stack) + .R

.R Size of work register area + .A

.A Size of automatic variable area + .T

.T Size of area for arguments of function to be called in excess of 4 words

.P Always 0 (macro for code generation)Note

Stack Area Access Method (Displacement [sp])

Register area for register variables (including lp) -offset + .Fxx[sp]

Work register area -offset + .Rxx[sp]

Automatic variable area -offset + .Axx[sp]

Area for arguments in excess of 4 words offset + .Pxx[sp]

Argument register area offset + .Fxx[sp]

Argument register area (if at the center of the stack) offset + .Rxx[sp]

CubeSuite Ver.1.40 CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 160 of 890
Oct 01, 2010

(b) Generation/disappearance of stack frame when function is called (when argument register area is at
center of stack)

The following explains the generation and disappearance of the stack frame when a function is called if

the argument register area is at the center of the stack. This case applies to most function calls.

The following figure shows an example of the generation/disappearance of the stack frame when the

function "func2" is called from the function "func1" and then execution returns to "func1".

Figure 3-19. Generation/Disappearance of Stack Frame (When Argument Register Area Is Located at Center of Stack)

(2)

(6), (i)

(5), (ii)

(7)

Higher address

Stack frame

for func1

sp of func 1

 (iii)

Stack frame

for func2

sp of func2

(4)

Lower address

Area for automatic

variables

Area for saving con-

tents of registers for

lp saving area

Arguemnt register

area (4 words)

Area for automatic

variables

Area for arguments in

excess of 4 words

Area of saving con-

tents of register for

IP Saving Area

Argument register

area (4 Words)

Work register area

Area for automatic

variables

Area for argument in

excess of 4 words

Area for saving con-

tents of registers for

Area for arguments in

excess of 4 words

Work register area

[Processing on func1 side when func2 is called]

(1) The arguments are stored in the argument registers.
The arguments of func2 to be called are stored in r6 to r9.

(2) The arguments in excess of 4 words are stored in the stack.
The excess arguments that cannot be stored in r6 to r9 are
stored in the stack.

(3) Execution branches to func2() by the jarl instruction.

[Processing on func2() side when called by func1]

(4) sp is shifted.
The stack pointer moves to the stack to be used by
func2.

(5) lp is saved.
The return address of func1 is stored.

(6) Register variable registers are saved.
These registers are saved because the register values
used by func1 must be retained when func2 also uses the
register variable registers.

(7) Arguments in argument register area are stored.
The values of r6 to r9 are stored. The current argument
fvalues are stored in the stack because when another
function is called from func2, the arguments at that time are
stored in registers r6 to r9.

Since the V850Ex can perform processing (4) to (6) with the

prepare instruction, the CX outputs the prepare instruction.

[Processing on func2 side when execution returns from func2 to

func1]

（i）The contents of the registers for register variables are

restored.

The values of the register variable registers of func1() is

restored to registers.

（ii）lp is restored.

The return address of func1() is restored.

（iii）ssp is returned. The stack pointer moves back to the stack

to be used by func1().

（iv）Execution is returned by the jmp [lp] instruction.

（v）Since the V850Ex can perform processing (i) to (iv) with

the dispose instruction, the CX outputs the dispose

instruction.
Ip saving area

CubeSuite Ver.1.40 CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 161 of 890
Oct 01, 2010

The items that are saved to the stack frame and the stack frame to be used are summarized below.

<1> Calling side - func1
- The values of the excess arguments are called if the arguments of func2 to be called exceed 4

words.

<2> Called side - func2
- The arguments which are entered in the argument registed are passed (To enter into the argument

register means to call a function (Function (fun 1)).
- Saving the link pointer (lp) (= return address of func1) of the calling side (func1) Saving the contents

of the register variable registers.
- Saving the contents of the register variable registers

The register variable registers are allocated as follows.
In 22-register mode: "r25, r26, r27, r28, r29"
In 26-register mode: "r23, r24, r25, r26, r27, r28, r29"
In 32-register mode: "r20, r21, r22, r23, r24, r25, r26, r27, r28, r29"
Of these registers, those that are used are saved.

- Area for automatic variables
- Allocating an area used for operation if a very complicated expression is used in a function Although

this area is not is allocated at the lower address of the area for automatic variables if it is necessary.

If the function has a return value, that value is stored in r10.
The location of each area of the stack frame and the image of the stack growth direction of each area are illus-
trated below (it is assumed that func2() to be called has five arguments).

Figure 3-20. Stack Growth Direction of Each Area of Stack Frame

Area for saving contents of registers

for register variables

Growth direction of each area

sp for func1

Area for saving link pointer (lp)

Stores 5th argument

Stores 4th argument

Stores 3rd argument

Stores 2nd argument

Stores 1st argument

Area for complicated operations

Area for automatic variables

Area for arguments of function to be

called from func2 in excess of 4 words
sp for func2

CubeSuite Ver.1.40 CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 162 of 890
Oct 01, 2010

An example of a source calling a C function from a C function and an assembly source when that source is
compiled is shown below.

Example

void func1(void) {

 int a, b, c, d, e;

 func2(a, b, c, d, e);

 :

}

int func2(int a, int b, int c, int d, int e) {

 register int i;

 :

 return(i);

}

CubeSuite Ver.1.40 CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 163 of 890
Oct 01, 2010

Assembler instructions generated when func2 is called in the above example.

_func1:

 jbr .L3

.L4:

 ld.w -8 + .A3[sp], r6

 ld.w -12 + .A3[sp], r7

 ld.w -16 + .A3[sp], r8 -- (1)

 ld.w -20 + .A3[sp], r9

 ld.w -24 + .A3[sp], r10

 st.w r10, [sp] -- (2)

 jarl _func2, lp -- (3)

 :

 -- epilogue for func1

 -- Processing from (ii) to (iv)

.L3:

 -- prolog for func1

 -- processing (4) and (5)

 :

 jbr .L4

_func2:

 jbr .L5

.L6:

 st.w r6, .R2[sp]

 st.w r7, 4 + .R2[sp]

 st.w r8, 8 + .R2[sp] -- (7)

 st.w r9, 12 + .R2[sp]

 st.w r29, -4 + .A2[sp]

 :

 jbr .L2

.L2:

 ld.w -4 + .A2[sp], r10

 dispose .X2, 0x3, [lp]

 -- (i), (ii), (iii), (iv)

.L5:

 prepare 0x3, .X2

 -- (4), (5), (6)

 jbr .L6

CubeSuite Ver.1.40 CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 164 of 890
Oct 01, 2010

(c) Generation/disappearance of stack frame when function is called (when argument register area is at
beginning of stack)
The following explains the generation and disappearance of the stack frame when a function is called if the
argument register area is at the beginning of the stack.
The following figure shows an example of the generation/disappearance of the stack frame when the func-
tion"func2" is called from the function"func1" and then execution returns to "func1".

Figure 3-21. Generation/Disappearance of Stack Frame (When Argument Register Area Is Located at Beginning
of Stack)

(2)

(6), (i)

(5), (ii)

(7)

Higher address

Stack frame

for func1

sp of fun 1

 (iii)

Stack frame

for func2

sp of func2

(4)

Lower address

Area for automatic

variables

lp saving area

Area for saving con-

tents of registers for

Area for automatic

variables

Area for arguments in

excess of 4 words

Argument register

area (4 Words)

IP Saving Area

Work register area

Area for automatic

variables

Area for argument in

excess of 4 words

Area for arguments in

excess of 4 words

Work register area

[Processing on func1 side when func2 is called]

(1) The arguments are stored in the argument registers.
The arguments of func2 to be called are stored in r6 to r9.

(2) The arguments in excess of 4 words are stored in the stack.
The excess arguments that cannot be stored in r6 to r9 are
stored in the stack. This processing is performed if the
number of arguments is five or more.

(3) Execution branches to func2 by the jarl instruction.

[Processing on func2 side when called by func1]

(4) sp is shifted.
The stack pointer moves to the stack to be used by
func2.

(5) lp is saved.
The return address of func1 is stored.

(6) Register variable registers are saved.
These registers are saved because the register values
used by func1 must be retained when func2 also uses the
register variable registers.

(7) Arguments in argument register area are stored.
The values of r6 to r9 are stored. The current argument
fvalues are stored in the stack because when another
function is called from func2, the arguments at that time are
stored in registers r6 to r9.

Since the V850Ex can perform processing (4) to (6) with the

prepare instruction, the CX outputs the prepare instruction.

[Processing on func2 side when execution returns from

func2 to func1]

（i）The contents of the registers for register variables are

restored.

The values of the register variable registers of func1 is

restored to registers.

（ii）lp is restored.

The return address of func1 is restored.

（iii）sp is returned. The stack pointer moves back to the stack

to be used by func1.

（iv）Execution is returned by the jmp [lp] instruction.

Since the V850Ex can perform processing (i) to (iv) with the

dispose instruction, the CX outputs the dispose instruction.
Lp saving area

Area of saving con-

tents of register for

Arguemnt register

area (4 words)

Area for saving con-

tents of registers for

CubeSuite Ver.1.40 CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 165 of 890
Oct 01, 2010

The items that are saved to the stack frame and the stack frame to be used are summarized below.

<1> Calling side - func1
- The values of the excess arguments are called if the arguments of func2() to be called exceed 4

words.

<2> Called side - func2
- The arguments which are entered in the argument registed are passed (To enter into the argument

register means to call a function (Function (fun 1)).
- Saving the link pointer (lp) (= return address of func1) of the calling side (func1) Saving the contents

of the register variable registers.
- Saving the register variable registers.
- Area for automatic variables
- Allocating an area used for operation if a very complicated expression is used in a function

Although this area is not is allocated at the lower address of the area for automatic variables if it is
necessary.

If the function has a return value, that value is stored in r10.
The location of each area of the stack frame and the image of the stack growth direction of each area are illus-
trated below (it is assumed that func2 to be called has five arguments).

Figure 3-22. Stack Growth Direction of Each Area of Stack Frame

An example of a source calling a C function from a C function and an assembly source when that source is
compiled is shown below.

Growth direction of each area

sp for func1
Stores 5th argument

Stores 4th argument

Stores 3rd argument

Stores 2nd argument

Stores 1st argument

Area for complicated operations

Area for automatic variables

Area for arguments of function to be

called from func2 in excess of 4 words
sp for func2

Area for saving contents of registers

for register variables

Area for saving link pointer (lp)

CubeSuite Ver.1.40 CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 166 of 890
Oct 01, 2010

Example

void func1(void) {

 int a, b, c, d, e;

 func2(a, b, c, d, e);

 :

}

int func2(int a, int b, int c, int d, int e) {

 register int i;

 :

 return(i);

}

CubeSuite Ver.1.40 CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 167 of 890
Oct 01, 2010

Assembler instructions generated when func2 is called in the above example.

_func1:

 jbr .L3

.L4:

 ld.w -8 + .A3[sp], r6

 ld.w -12 + .A3[sp], r7

 ld.w -16 + .A3[sp], r8 -- (1)

 ld.w -20 + .A3[sp], r9

 ld.w -24 + .A3[sp], r10

 st.w r10, [sp] -- (2)

 jarl _func2, lp -- (3)

 :

 -- epilogue for func1

 -- Processing from (ii) to (iv)

.L3:

 -- Prolog for func1

 -- Processing (4) and (5)

 :

 jbr .L4

_func2:

 jbr .L5

.L6:

 st.w r6, .F2[sp]

 st.w r7, 4 + .F2[sp]

 st.w r8, 8 + .F2[sp] -- (7)

 st.w r9, 12 + .F2[sp]

 :

 st.w r29, -4 + .A2[sp]

 jbr .L2

.L2:

 ld.w -4 + .A2[sp], r10

 dispose .X2, 0x3

 -- (i), (ii), (iii)

 add .S2 - .F2, sp -- (iii)

 jmp [lp] -- (iv)

.L5:

 add .F2 - .S2, sp -- (4)

 prepare 0x3, .X2

 -- (4), (5), (6)

 jbr .L6

CubeSuite Ver.1.40 CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 168 of 890
Oct 01, 2010

3.3.2 Prologue/Epilogue processing function

The CX can reduce the object size in part of the prologue/epilogue processing of a function by calling a runtime library.
It is called as "Prologue/Epilogue Runtime" process. Because the prologue/epilogue processing of a function is predeter-
mined, it is prepared as runtime library functions and these functions are called when a function is called or execution
returns to a function.

An example of the assembler code of the prologue/epilogue processing of a function is shown below.
Numbers in parentheses in this example correspond to those in "Figure 3-19. Generation/Disappearance of Stack

Frame (When Argument Register Area Is Located at Center of Stack)".

Example

Assembler instruction in prologue/epilogue processing of function "func" in above example

[Code when runtime library function is not used]

[Code when runtime library function is used]

int func(int a, int b, int c, int d, int e) {

 register int i;

 :

 return(i);

}

_func:

.BB.LABEL.0:

 prepare 3, 16 --(4)(5)(6)

 st.w r6, 0[sp]

 st.w r7, 4[sp]

 st.w r8, 8[sp] --(7)

 st.w r9, 12[sp]

 :

 mov r29, r11

.BB.LABEL.1:

 mov r11, r10

 dispose 16, 3, [lp] --(i),(ii),(iii),(iv)

_func.end:

_func:

.BB.LABEL.0:

 callt 9 --(4)(5)(6)

 st.w r6, 0[sp]

 st.w r7, 4[sp]

 st.w r8, 8[sp] --(7)

 st.w r9, 12[sp]

 :

 mov r29, r11

.BB.LABEL.1:

CubeSuite Ver.1.40 CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 169 of 890
Oct 01, 2010

(1) Specifying use of runtime library function for prologue/epilogue of function
Specify the compiler option "-Xpro_epi_runtime=on" to call the runtime library for prologue/epilogue. Specify the -
Xpro_epi_runtime=off option if the runtime library is not called.
When an optimization option other than "-Ospeed (execution speed priority optimization)" is specified, however,
the runtime library is automatically called for the prologue/epilogue of a function. That is, the compiler option "-
pro_epi_runtime=on" is automatically specified.
If an option other than "-Ospeed" is specified and if a runtime library should not be called, specify the
-Xpro_epi_runtime=off option.
The -Xpro_epi_runtime option can be specified in each source file, so a file for which the runtime library is called
and a file for which the runtime library is not called can be used together.
When a runtime library is called for the prologue/epilogue of a function by specifying the -Xpro_epi_runtime=on
option, a dedicated section ".pro_epi_runtime" is necessary.
Consequently, the following definition must be described by a link directive.

Table information of the prologue/epilogue runtime function is allocated to this section.

(2) Calling runtime library for prologue/epilogue
The following instruction is used to call the prologue/epilogue runtime function of a function.
The CALLT instruction is a 2-byte instruction. The code size can be reduced by using this instruction for calling a
function. The CALLT instruction requires a pointer that indicates that the table of the function subject to the CALLT
instruction is set to the CTBP (Callt Base Pointer) register. If processing of the setting is missing from the program,
the error message is output during linking.

If processing of the setting is missing from the program, the following error message is output during linking.
Add the following instruction to the startup routine.

At this time, _ _ _ PROLOG_TABLE is the first symbol of the function table of the runtime function of the prologue/
epilogue of a function, and the function table itself is allocated to the ".pro_epi_runtime" section by setting it to
CTEB. The r12 register is used in the above example, but it is not always necessary to use r12.
If the CALLT instruction provided in the CX is used for any purpose other than calling a runtime library for the pro-
logue/epilogue of a function, the CTBP register contents must be saved/restored If the CALLT instruction is used
by another object, such as middleware or a user-created library, and if a code that saves/restores the CTBP regis-
ter contents is missing or cannot be inserted in that object, a runtime library for the prologue/epilogue of a function
cannot be called In this case, suppress calling the runtime library by specifying the -Xpro_epi_runtime=off option.
See the Relevant Device ’s Architecture User’ s Manual of each device for details of the CALLT instruction and
CTEB register.

 mov r11, r10

 callt 39 --(i),(ii),(iii),(iv)

_func.end:

.pro_epi_runtime = $PROGBITS ?AX .pro_epi_runtime;

mov #___PROLOG_TABLE, r12 --three underscores "_" before "PROLOG"

ldsr r12, 20

CubeSuite Ver.1.40 CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 170 of 890
Oct 01, 2010

(3) Notes on calling runtime library for prologue/epilogue of function
Note the following points when calling a runtime library for the prologue/epilogue of a function.

- Calling a runtime library for the prologue/epilogue of a function degrades the execution speed because a func-
tion is called. Specify the -Xpro_epi_runtime=off option to avoid this. Specifying this option in file units is
effective.

- In the case of a program in which few functions are called, the code size may not be reduced even if a runtime
library is called for the prologue/epilogue. If no real effect can be expected, specify the
-Xpro_epi_runtime=off option.

- Note the following points when calling a runtime library for the prologue/epilogue of a function. Calling a runt-
ime library for the prologue/epilogue of a function degrades the execution speed because a function is called.

3.3.3 far jump function

The CX outputs a code using the jarl instruction when a function is called.

The architecture allows only a sign-extended value of up to 22 bits (22-bit displacement) to be specified as the first
operand of the jarl instruction.

This means that, if the branch destination is not within + 2MB range from the branch point, branching cannot take place
and the linker outputs the error message.

This can be solved easily by allocating as shown below, however, the branch destination may not be able to be located
within this range depending on target system. The "far jump" function solves this.

- The branch destination within + 2MB range from the branch point.

When the far jump function is used, a code that uses the jmp instruction is output when a function is called. As a result,
execution can branch to the entire 32-bit space of the V850. However, one of the general purpose register is used.

Function call using far jump function is called "far jump calling".

(1) Specifying far jump
When calling a function using the far jump function, prepare a file in which functions to be called by the far jump
function are enumerated (file listing functions to be called by the far jump function), and use the compiler option "-
Xfar_jump".

See the next section for the format of the file listing the functions to be called by the far jump function.

(2) File listing functions to be called by far jump function
This section explains the format of the file that enumerates the functions to be called by using the far jump function.
Describe one function to which the far jump function is applied in one line. Describe a C function name with "_"
(underscore) prefixed.

jarl _func1, lp

-Xfar_jump=file listing functions to be called by far jump function

CubeSuite Ver.1.40 CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 171 of 890
Oct 01, 2010

[Sample of file listing functions to be called by far jump]

If the following description is made instead of "_function-name", all the functions are called using the far jump func-
tion.

If {all_function} is specified, all the functions are called by the far jump function, even if "_function-name" is speci-
fied.
The far jump function can also be applied to the following functions, as well as to user functions.

- Standard library functions
- Runtime library functions
- System calls of real-time OS

If the following is coded instead of "_function-name", then all interrupt functions will be called via far jump.

Note the following points when describing the file listing the functions to be called by the far jump function.
- Only ASCII characters can be used.
- Comments must not be inserted.
- Describe only one function in one line.
- A blank and tab may be inserted before and after a function name.
- Up to 1,023 characters can be described in one line. A blank or tab is also counted as one character.
- Describe a C function name with "_" (underscore) prefixed to the function name.
- The far jump function cannot be used together with the re-link function of the flash memory/external ROM.

(3) Examples of using far jump function
Examples of using the far jump function are shown below.

(a) User function (same applies to standard functions)
[C source file]

_func_led

_func_beep

_func_motor

 :

_func_switch

{all_function}

{all_interrupt}

extern void func3(void);

void func(void)

{

 func3();

}

CubeSuite Ver.1.40 CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 172 of 890
Oct 01, 2010

[File listing functions to be called by far jump]

[Normal calling code]

[Far jump calling code]

(b) Runtime function (when calling a macro)
[File listing functions to be called by far jump]

[Normal calling code]

_func3

#@CALL_ARG

jarl _func3, lp

#@CALL_ARG

 movea _func3, tp, r10

 movea .L18, tp, lp

 jmp [r10]

.L18:

___mul

.macro mul arg1, arg2

 add -8, sp

 st.w r6, [sp]

 st.w r7, 4[sp]

 mov arg1, r6

 mov arg2, r7

 jarl ___mul, lp

 ld.w 4[sp], r7

 mov r6, arg2

 ld.w [sp], r6

 add 8, sp

.endm

CubeSuite Ver.1.40 CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 173 of 890
Oct 01, 2010

[Far jump calling code]

(c) Runtime function (when direct calling)
[File listing functions to be called by far jump]

[Normal calling code]

[Far jump calling code]

.macro mul arg1, arg2

 .local macro_ret

 add -8, sp

 st.w r6, [sp]

 st.w r7, 4[sp]

 mov arg1, r6

 mov arg2, r7

 movea macro_ret, tp, r31

 .option nowarning

 movea #___mul, tp, r1

 jmp [r1]

 .option warning

macro_ret:

 ld.w 4[sp], r7

 mov r6, arg2

 ld.w [sp], r6

 add 8, sp

.endm

___mul

mov r12, r6

mov r13, r7

#@CALL_ARG r6, r7

#@CALL_USE r6, r7

jarl ___mul, lp

mov r6, r13

 mov r12, r6

 mov r13, r7

 #@CALL_ARG r6, r7

 #@CALL_USE r6, r7

 movea #___mul, tp, r14

 movea .L13, tp, lp

 jmp [r14]

.L13:

 mov r6, r13

CubeSuite Ver.1.40 CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 174 of 890
Oct 01, 2010

The compiler automatically selects whether a runtime macro is called or a runtime function is directly called by
judging the register efficiency in the process of optimization.

(d) System calls of real-time OS
[File listing functions to be called by far jump]

[Normal calling code]

[Far jump calling code]

_ext_tsk

#@B_EPILOGUE

#@BEGIN_NO_OPT

add .S4, sp

jr _ext_tsk --C NR

#@END_NO_OPT

#@E_EPILOGUE

#@B_EPILOGUE

#@BEGIN_NO_OPT

add .S4, sp

movea #_ext_tsk, tp, r10

jmp [r10] --C NR

#@END_NO_OPT

#@E_EPILOGUE

CubeSuite Ver.1.40 CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 175 of 890
Oct 01, 2010

3.4 Section Name List

The following table lists the names, section types, and section attributes of these reserved sections.

Table 3-29. Reserved Sections

NameNote 1 Description Section Type Section Attribute

.bss .bss section NOBITS AW

.const .const section PROGBITS A

.data .data section PROGBITS AW

.ext_info

.ext_info_boot

Information section for flash/external ROM re-link function PROGBITS None

.ext_table Branch table section for flash/external ROM re-link function PROGBITS AX

.ext_tgsym Information section for flash/external ROM re-link function PROGBITS None

.gptabname Global pointer tableNote 2 GPTAB None

.pro_epi_runtime Prologue/epilogue run-time call section PROGBITS AX

.regmode Register mode information REGMODE None

.relname Relocation information REL None

.relaname Relocation information RELA None

.sbss .sbss section NOBITS AWG

.sconst .sconst section PROGBITS A

.sdata .sdata section PROGBITS AWG

.sebss .sebss section NOBITS AW

.sedata .sedata section PROGBITS AW

.shstrtab String table where the section name is saved STRTAB None

.sibss .sibss section NOBITS AW

.sidata .sidata section PROGBITS AW

.strtab String table STRTAB None

.symtab Symbol table SYMTAB None

.text .text section PROGBITS AX

.tibss .tibss section NOBITS AW

.tibss.byte .tibss.byte section NOBITS AW

.tibss.word .tibss.word section NOBITS AW

.tidata .tidata section PROGBITS AW

.tidata.byte .tidata.byte section PROGBITS AW

.tidata.word .tidata.word section PROGBITS AW

.debug_info Debug information PROGBITS None

.debug_line Line and column information PROGBITS None

.debug_loc Location list information PROGBITS None

.version Version information PROGBITS None

.float_info Floating-point operation information FLOATINFO None

CubeSuite Ver.1.40 CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 176 of 890
Oct 01, 2010

Notes 1. The name part of .gptabname, .relname, and .relaname indicates the name of the section corresponding to
each respective section.

2. This is information that is used when processing the linker’ s -Xsdata_info option.

Remark ".cmn/.pen (n=1...N)" is added to the ends of (default) section names reserved for multi-core.
"_CMN/_PEn (n=1...N)" is added to the ends of (default) segment names reserved for multi-core.
The section names and segment names reserved for multi-core are shown below.
- Reserved section names

.sconst.cmn, .pro_epi_runtime, .const.cmn, .text.cmn, .data.cmn, .bss.cmn,

.sconst.pe1, .const.pe1, .text.pe1, .data.pe1, .sdata.pe1, .sbss.pe1, .bss.pe1 ,.sedata.pe1, .sebss.pe1,

.tidata.byte.pe1, .tibss.byte.pe1, .tidata.word.pe1, .tibss.word.pe1, .sidata.pe1, .sibss.pe1
 :
.sconst.pen, .const.pen, .text.pen, .data.pen, .sdata.pen, .sbss.pen, .bss.pen,.sedata.pen, .sebss.pen,
.tidata.byte.pen, .tibss.byte.pen, .tidata.word.pen,.tibss.word.pen,.sidata.pen, .sibss.pen

- Reserved segment names
SCONST_CMN, CONST_CMN, TEXT_CMN, DATA_CMN,
SCONST_PE1, CONST_PE1, TEXT_PE1, DATA_PE1, SEDATA_PE1, SIDATA_PE1,
 :
SCONST_PEn, CONST_PEn, TEXT_PEn, DATA_PEn, SEDATA_PEn, SIDATA_PEn

.multi Multi-core information MULTI None

NameNote 1 Description Section Type Section Attribute

CubeSuite Ver.1.40 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 177 of 890
Oct 01, 2010

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

This chapter explains the assembly language specifications supported by the CX assembler.

4.1 Description of Source

This section explains description of source, expressio, and operators.

4.1.1 Description

An assembly language statement consists of a "symbol", a "mnemonic", "operands", and a "comment".

Separate labels by colons or one or more whitespace characters. Whether colons or spaces are used, however,
depends on the instruction coded by the mnemonic.

It is irrelevant whether blanks are inserted in the following location.
- Between the symbol name and colon
- Between the colon and mnemonic
- Before the second and subsequent operands
- Before semicolon that indicates the beginning of a comment

One or more blank is necessary in the following location.
- Between the mnemonic and the operand

Figure 4-1. Organization of Assembly Language Statement

One assembly language statement is described on one line. There is a line feed (return) at the end of the statement.

(1) Character set
The characters that can be used in a source program (assembly language) supported by the asembler are the
following 3 types of characters.

- Language characters
- Character data
- Comment characters

(a) Language characters
These characters are used to code instructions in the source.

[symbol][:∆] [mnemonic] [operand], [operand] ;[comment]

Symbol

Mnemonic

Operand Comment

Symbol: add 0x10, r19 ;For example

CubeSuite Ver.1.40 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 178 of 890
Oct 01, 2010

Table 4-1. Language Characters and Usage of Characters

Character Usage

Lowercase letter (a-z) Constitutes a mnemonic, identifier, and constant

Uppercase letter (A-Z) Constitutes an identifier and constant

_ (underscore) Constitutes an identifier

.(period) Constitutes an identifier and constant

@ Constitutes an identifier and constant

~ Constitutes an identifier and constant

Numerals Constitutes an identifier and constant

, (comma) Delimits an operand

: (colon) Delimits a label

; (semicolon) Beginning of comment

* Multiplication operator

/ Division operator

+ Positive sign and addition operator

- (hyphen) Negative sign and subtraction operator

' (single quotation) Character constant and symbol indicating a complete macro parameter

< Relational operator

> Relational operator

() Specifies an operation sequence

$ Symbol indicating the location counter

Symbol indicating the start of a control instruction equivalent to an
assembler option

Symbol specifying relative addressing

gp offset reference of label

= Relational operator

! Beginning immediate addressing and negation operator

∆ (blank) Field delimiter

~ Concatenation symbol (in macro body)

& Logical product operator

Beginning indicates and comment

[] Indirect indication symbol

"(double quotation) Start and end of character string constant

% ep offset referring of a label and remainder operator

<< Left shift operator

>> Right shift operator

| Logical sum operator

^ Exclusive OR operator

CubeSuite Ver.1.40 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 179 of 890
Oct 01, 2010

(b) Character data
Character data refers to characters used to write character string constant, character constant, and the quote-
enclosed operands of some control instructions.

Caution Character data can use all characters except 0x00 (including multibyte kanji, although the
encoding depends on the OS). If 0x00 is encountered, an error occurs and all characters
from the 0x00 to the closing single quote (') are ignored.

(c) Comment characters
Comment characters are used to write comments.

Caution Comment characters and character data have the same character set.

(2) Symbol
The symbol field is for symbols, which are names given to addresses and data objects. Symbols make programs
easier to understand.

(a) Symbol types
Symbols can be classified as shown below, depending on their purpose and how they are defined.

(b) Conventions of symbol description
Observe the following conventions when writing symbols.

- The characters which can be used in symbols are the alphanumeric characters and special characters (?,

@, _).

The first character in a symbol cannot be a digit (0 to 9).

- The maximum number of characters for a symbol is 4,294,967,294 (=0xFFFFFFFE) (theoretical value).
The actual number that can be used depends on the amount of memory, however.

- Reserved words cannot be used as symbols.

See "4.5 Reserved Words" for a list of reserved words.

- The same symbol cannot be defined more than once.

However, a symbol defined with the .set directive can be redefined with the .set directive.

- The assembler distinguishes between lowercase and uppercase characters.

- When a label is written in a symbol field, the colon (:) must appear immediately after the label name.

Symbol Type Purpose Definition Method

Label Used as labels for addresses and data
objects in source programs.

Write a symbol followed by a colon (:).

External
reference name

Used to reference symbols defined by other
source modules.

Write in the operand field of an .extern
directive.

Section name Used at link time. Write in the symbol field of a .cseg, .dseg or
.org directive.

Macro name Use to name macros in source programs. Write in the symbol field of macro directive.

CubeSuite Ver.1.40 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 180 of 890
Oct 01, 2010

Example Correct symbols

Example Incorrect symbols

Example A statement composed of a symbol only

(c) Points to note about symbols
The assembler generates a name automatically when a section definition directive does not specify a name.
These section names are listed below.
Duplicate section name definitions are errors.

CODE01 .cseg text ; "CODE01" is a segment name.

VAR01 .set 0x10 ; "VAR01" is a symbol.

LAB01: .dw 0 ; "LAB01" is a label.

1ABC .set 3 ; The first character is a digit.s

LAB mov r10, r11 ; "LAB"is a label and must be separated from the mnemonic

 ; field by a colon (:).

FLAG: .set 0x10 ; The colon (:) is not needed for symbols.

ABCD: ; ABCD is defined as a label.

Section Name Directive Relocation Attribute

.text .cseg directive TEXT

.const CONST

.sconst SCONST

.bss .dseg directive BSS

.data DATA

.sbss SBSS

.sdata SDATA

.sebss SEBSS

.sedata SEDATA

.sibss SIBSS

.sidata SIDATA

.tibss TIBSS

.tibss.byte TIBSS.BYTE

.tibss.word TIBSS.WORD

.tidata TIDATA

.tidata.byte TIDATA.BYTE

.tidata.word TIDATA.WORD

SECUR_ID .cseg directive SECUR_ID

CubeSuite Ver.1.40 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 181 of 890
Oct 01, 2010

(d) Symbol attributes
Every symbol and label has both a value and an attribute.
The value is the value of the defined data object, for example a numerical value, or the value of the address
itself.
Section names, module names, and macro names do not have values.
The following table lists symbol attributes.

Example

(3) Mnemonic field
Write instruction mnemonics, directives, and macro references in the mnemonic field.
If the instruction or directive or macro reference requires an operand or operands, the mnemonic field must be
separated from the operand field with one or more blanks or tabs.
However, if the first operand begins with "#", "$","!", or "[", the statement will be assembled properly even if nothing
exists between the mnemonic field and the first operand field.

Example Correct mnemonics

Example Incorrect mnemonics

OPT_BYTE .dseg directive OPT_BYTE

Attribute Type Classification Value

BIT - Symbols defined as bit values

- Symbols defined with the EXTBIT directive

Decimal notation:

-2147483648 to 2147483647

Hexadecimal notation:
0x80000000 to 0x7FFFFFFF (signed)

CSEG Section names defined with the .cseg directive These attribute types have no values.

DSEG Section names defined with the .dseg directive

MACRO Macro names defined with the Macro directive These attribute types have no values.

FNUMBER Symbols defined with the FLOAT directive

(Single precision floating point)

1.40129846e-45 to 3.40282347e+38

DFNUMBER Symbols defined with theDFLOAT directive

(Double-precision floating point)

4.9406564584124654e-324 to
1.7976931348623157e+308

BIT1 .set 0xFFE20.0 ; The symbol BIT1 has the BIT attribute and a value of 0xFFE20.0.

add r11, r12

reti

di

addr11, r12 ; There is no blank between the mnemonic and operand fields.

r eti ; The mnemonic field contains a blank.

HLT ; This is an instruction that cannot be coded in the mnemonic field.

Section Name Directive Relocation Attribute

CubeSuite Ver.1.40 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 182 of 890
Oct 01, 2010

(4) Operand field
In the operand field, write operands (data) for the instructions, directives, or macro references that require them.
Some instructions and directives require no operands, while others require two or more.
When you provide two or more operands, delimit them with a comma (,).
The following types of data can appear in the operand field:

- Constants (numeric constants, character constants, character string constants)
- Register names
- Relocation attributes of section definition directives
- Symbols
- Expressions

See the user's manual of the target device for the format and notational conventions of instruction set operands.
The following sections explain the types of data that can appear in the operand field.

(a) Constants
A constant is a fixed value or data item and is also referred to as immediate data.
There are numeric constants, character constants and character string constants.

- Numeric constants
Integer constants can be written in binary, octal, decimal, or hexadecimal notation.
Integer constants has a width of 32 bits. A negative value is expressed as a 2's complement. If an integer
value that exceeds the range of the values that can be expressed by 32 bits is specified, the assembler
uses the value of the lower 32 bits of that integer value and continues processing (it does not output any
message).

Floating constants consist of the following elements. Specify the exponent and mantissa as decimal
constants. Do not use (3), (4), or (5) if an exponent expression cannot be used.

(1) sign of mantissa part ("+" is optional)
(2) mantissa part
(3) 'e' or 'E' indicating the exponent part
(4) sign of exponent part ("+" is optional)
(5) exponent part

Example

Type Notation Example

Binary Append a "B" or "Y" suffix to the number.

Append an "0b" suffix to the number.

1101B

1101Y

0b1101

Octal Append an "0" suffix to the number. 074

Decimal Simply write the number. 128

Hexadecimal Append an "0x" suffix to the number. 0xA6

123.4

-100.

10e-2

-100.2E+5

CubeSuite Ver.1.40 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 183 of 890
Oct 01, 2010

You can indicate that the number is a floating constant by appending "0f" or "0F" to the front of the
mantissa.

Example

- Character constants
A character constant consists of a single character enclosed by a pair of single quotation marks (' ') and
indicates the value of the enclosed characterNote.
If any of the escape sequences listed below is specified in " ' " and " ' ", the assembler regards the
sequence as being a single character.

Example

Note If a character constant is specified, the assembler assumes that an integer having the value of
that character constant is specified.

Table 4-2. Value and Meaning of Escape Sequence

Note If a value exceeding "\377" is sp value of the escape sequence becomes the lower 1 byte. Cannot
be of value more than 0377. For example value of"\777"is 0377.

0f10

"ab" ; 0x6162

"A" ; 0x41

"A\"" ; 0x4122

" " ; 0x20 (1 blank)

"" ;

Escape Sequence Value Meaning

\0 0x00 null character

\a 0x07 Alert

\b 0x08 Backspace

\f 0x0C Form feed

\n 0x0A Line feed

\r 0x0D Carriage return

\t 0x09 Horizontal tab

\v 0x0B Vertical tab

\\ 0x5C Back slash

\' 0x27 Single quotation marks

\" 0x22 Double quotation mark

\? 0x3F Question mark

\ddd 0 to 0377 Octal number of up to 3 digits (0 < d < 7) Note

\xhh 0 to 0xFF Hexadecimal number of up to 2 digits

(0 < h < 9, a < h < f, or A < h < F)

CubeSuite Ver.1.40 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 184 of 890
Oct 01, 2010

- Character string constants
A character-string constant is expressed by enclosing a string of characters from those shown in "(1)
Character set", in a pair of single quotation marks (").
The string constant is assembled with the character-code values specified via the -Xcharacter_set option.
A "\0" is appended to the end of the result.
To include the single quote character in the string, write it twice in succession.

Example

(b) Register names
The following registers can be named in the operand field:

- General registers
- General register pairs
- Special function registers
- Others (PSW, CY, RBn, [BC], [DE], [HL], [DE+byte], [HL+byte], [HL+B], [HL+C])

General registers and general register pairs can be described with their absolute names, as well as with their
function names.
The register names that can be described in the operand field may differ depending on the type of instruction.
For details of the method of describing each register name, see the user's manual of each device for which
software is being developed.

(c) Relocation attributes of section definition directives
Relocation attributes can appear in the operand field.
See "4.2.2 Section definition directives" for more information about relocation attributes.

(d) Symbols
When a symbol appears in the operand field, the address (or value) assigned to that symbol becomes the
operand value.

Example

"ab" ; 0x616200

"A" ; 0x4100

"A\"" ; 0x412200

" " ; 0x2000 (1 blank)

"" ; 0x00

HERE: jmp32 #THEREE ; THERE indicates the address of label THERE.

 :

THERE: add r11, r12

VALUE .set 0x100

 movea VALUE, r11, r12 ; VALUE indicates the value of name VALUE.

CubeSuite Ver.1.40 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 185 of 890
Oct 01, 2010

(e) Expressions
An expression is a combination of constants, location counter (indicated by $) and symbols, by an operator.
Expressions can be specified as instruction operands wherever a numeric value can be specified.
See "4.1.2 Expressions and operators" for more information about expressions.

Example

In this example, "TEN - 0x05" is an expression.
In this expression, a symbol and a numeric value are connected by the - (minus) operator. The value of the
expression is 0x0B, so this expression could be rewritten as "mov 0x0B, r12".

TEN .set 0x10

 mov TEN - 0x05, r12

CubeSuite Ver.1.40 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 186 of 890
Oct 01, 2010

(5) Comment
Describe comments in the comment field, after a semicolon (;).
The comment field continues from the semicolon to the new line code at the end of the line, or to the EOF code of
the file.
Comments make it easier to understand and maintain programs.
Comments are not processed by the assembler, and are output verbatim to assembly lists.
Characters that can be described in the comment field are those shown in "(1) Character set".

<Comment example>

; sample program

 .extern __tp_TEXT, 4

 .extern __gp_DATA, 4

 .extern _main

RESET .cseg text ; Reset Handler address

 jr __boot ; Jump to __boot

.text .cseg text ; Text section

 .align 4 ; Code alignment

 .public __boot ; Alignment

 __boot:

 mov #__tp_TEXT, tp ; Set tp

 mov #__gp_DATA, gp ; Set gp

 .extern __ssbss, 4

 .extern __esbss, 4

 ; start of bss initialize

 mov #__ssbss, r13

 mov #__esbss, r13

 cmp r12, r13

 jnl sbss_init_end

 sbss_init_loop:

 st.w r0, 0[r13]

 add 4, r13

 cmp r12, r13

 jl sbss_init_loop

 sbss_init_end:

 ; end of bss initialize

 jarl _main, lp ; Call main function

.data .dseg data

 .align 4

 data_area:

 .dw 0x00 ; data1

 .dhw 0x01 ; data2

 .db 0xFF ; data3

 .db 0xFE ; data4

Lines with

comments in

comment

fields

Lines with comment fields only

Lines with comment fields only

Lines with comment fields only

Lines with

comments in

comment

fields

CubeSuite Ver.1.40 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 187 of 890
Oct 01, 2010

4.1.2 Expressions and operators

An expression is a symbol, constant or location counter (indicated by $), an operator combined with one of the above,
or a combination of operators.

Elements of an expression other than the operators are called terms, and are referred to as the 1st term, 2nd term, and
so forth from left to right, in the order that they occur in the expression.

The assembler supports the operators shown in "Table 4-3. Operator Types". Operators have priority levels, which
determine when they are applied in the calculation. The priority order is shown in "Table 4-4. Operator Precedence
Levels".

The order of calculation can be changed by enclosing terms and operators in parentheses "()".

Example

In the above example, "5 * (SYM+1)" is an expression. "5" is the 1st term, "SYM" is the 2nd term, and "1" is the 3rd
term. The operators are "*", "+", and "()".

Table 4-3. Operator Types

The above operators can also be divided into unary operators, special unary operators and binary operators.

Table 4-4. Operator Precedence Levels

mov32 5 * (SYM + 1), r12

Operator Type Operators

Arithmetic operators +, -, *, /, MOD(%), +sign, -sign

Logic operators !, &, |, ^

Relational operators ==, !=, >, >=, <, <=, &&, ||

Shift operators >>, <<

Byte separation operators HIGH, LOW

2-byte separation operators HIGHW, LOWW, HIGHW1

Special operators DATAPOS, BITPOS

Other operator ()

Unary operators +sign, -sign, NOT(!), HIGH, LOW, HIGHW, LOWW, HIGHW1

Special unary operators DATAPOS, BITPOS

Binary operators +, -, *, /, MOD(%), &, |, ^, ==, =, >, >=, <, <=, >>, <<, &&, ||

Priority Level Operators

Higher

Lower

1 +sign, -sign, NOT(!)

2 *, /, MOD(%), >>, <<

3 &, |, ^

4 +, -

5 ==, !=, >, >=, <, <=

6 &&, ||

CubeSuite Ver.1.40 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 188 of 890
Oct 01, 2010

Expressions are operated according to the following rules.
- The order of operation is determined by the priority level of the operators.

When two operators have the same priority level, operation proceeds from left to right, except in the case of unary
operators, where it proceeds from right to left.

- Sub-expressions in parentheses "()" are operated before sub-expressions outside parentheses.
- Expressions are operated using unsigned 32-bit values.

If intermediate values overflow 32 bits, the overflow value is ignored.
- If the value of a constant exceeds 32 bits, an error occurs, and its value is calculated as 0.
- In division, the decimal fraction part is discarded.

If the divisor is 0, an error occurs and the result is 0.
- Negative values are represented as two's complement.
- External reference symbols are evaluated as 0 at the time when the source is assembled (the evaluation value is

determined at link time).

(1) Evaluation examples

Note EXT: External reference symbols

Expression Evaluation

2 + 4 * 5 22

(2 + 3) * 4 20

10/4 2

0 - 1 0xFFFFFFFF

-1 > 1 0x0 (False)

EXTNote + 1 1

CubeSuite Ver.1.40 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 189 of 890
Oct 01, 2010

4.1.3 Arithmetic operators

The following arithmetic operators are available.

Operator Overview

+ Addition of values of first and second terms.

- Subtraction of value of first and second terms.

* Multiplacation of value of first and second terms.

/ Divides the value of the 1st term of an expression by the value of its 2nd term
and returns the integer part of the result.

MOD(%) Obtains the remainder in the result of dividing the value of the 1st term of an
expression by the value of its 2nd term.

+sign Returns the value of the term as it is.

-sign The term value 2 complement is sought.

CubeSuite Ver.1.40 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 190 of 890
Oct 01, 2010

Addition of values of first and second terms.

[Function]

Returns the sum of the values of the 1st and 2nd terms of an expression.

[Application example]

(1) The jmp instruction causes a jump to "address of the START label plus 6", namely, to address "0x100 +
0x6 = 0x106" when START label is 0x100.
Therefore, (1) in the above example can also be described as: START: jmp #0x106.

+

 .org 0x100

START: jmp #START + 6 ; (1)

CubeSuite Ver.1.40 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 191 of 890
Oct 01, 2010

Subtraction of value of first and second terms.

[Function]

Returns the result of subtraction of the 2nd-term value from the 1st-term value.

[Application example]

(1) The jmp instruction causes a jump to "address assigned to BACK minus 6", namely, to address "0x100 -
0x6 = 0xFA" when BACK label is 0x100.
Therefore, (1) in the above example can also be described as: BACK: jmp !0xFA.

-

 .org 0x100

BACK: jmp !BACK - 6 ; (1)

CubeSuite Ver.1.40 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 192 of 890
Oct 01, 2010

Multiplacation of value of first and second terms.

[Function]

Returns the result of multiplication (product) between the values of the 1st and 2nd terms of an expression.

[Application example]

(1) With the .set directive, the value "0x10" is defined in the symbol "TEN".
The expression "TEN * 3" is the same as "0x10 * 3" and returns the value "0x30".
Therefore, (1) in the above expression can also be described as: mov 0x30, r12.

*

TEN .set 0x10

 mov TEN * 3, r12 ; (1)

CubeSuite Ver.1.40 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 193 of 890
Oct 01, 2010

Divides the value of the 1st term of an expression by the value of its 2nd term and returns the integer part of the result.

[Function]

Divides the value of the 1st term of an expression by the value of its 2nd term and returns the integer part of the result.
The decimal fraction part of the result will be truncated. If the divisor (2nd term) of a division operation is 0, an error

occurs

[Application example]

(1) The result of the division "256 / 50" is 5 with remainder 6.
The operator returns the value "5" that is the integer part of the result of the division.
Therefore, (1) in the above expression can also be described as: mov A, #5

/

mov A, #256 / 50 ; (1)

CubeSuite Ver.1.40 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 194 of 890
Oct 01, 2010

Obtains the remainder in the result of dividing the value of the 1st term of an expression by the value of its 2nd term.

[Function]

Obtains the remainder in the result of dividing the value of the 1st term of an expression by the value of its 2nd term.
An error occurs if the divisor (2nd term) is 0.
A blank is required before and after the MOD operator.

[Application example]

(1) The result of the division "256 / 50" is 5 with remainder 6.
The MOD operator returns the remainder 6.
Therefore, (1) in the above expression can also be described as: mov 6, r12.

MOD(%)

mov 256 % 50, r12 ; (1)

CubeSuite Ver.1.40 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 195 of 890
Oct 01, 2010

Returns the value of the term as it is.

[Function]

Returns the value of the term of an expression without change.

[Application example]

(1) The value "5" of the term is returned without change.
The value "5" is defined in symbol "FIVE" with the .set directive.

+sign

FIVE .set +5 ; (1)

CubeSuite Ver.1.40 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 196 of 890
Oct 01, 2010

The term value 2 complement is sought.

[Function]

Returns the value of the term of an expression by the two's complement.

[Application example]

(1) -1 becomes the two's complement of 1.
0000 0000 0000 0000 0000 0000 0000 0001 becomes:
1111 1111 1111 1111 1111 1111 1111 1111
Therefore, with the .set directive, the value "0xFFFFFFFF" is defined in the symbol "NO".

-sign

NO .set -1 ; (1)

CubeSuite Ver.1.40 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 197 of 890
Oct 01, 2010

4.1.4 Logic operators

The following logic operators are available.

Operator Overview

! Obtains the logical negation (NOT) by each bit.

& Obtains the logical AND operation for each bit of the first and second term
values.

| Obtains the logical OR operation for each bit of the first and second term values.

^ Obtains the exclusive OR operation for each bit of the first and second term
values.

CubeSuite Ver.1.40 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 198 of 890
Oct 01, 2010

Obtains the logical negation (NOT) by each bit.

[Function]

Negates the value of the term of an expression on a bit-by-bit basis and returns the result.
A blank is required between the ! operator and the term.

[Application example]

(1) Logical negation is performed on "0x3" as follows:
0xFFFFFFFC is returned.
Therefore, (1) can also be described as: mov32 0xFFFFFFFC, r12.

!

mov32 !0x3, r12 ; (1)

NOT) 0000 0000 0000 0000

1111 1111 1111 1111

0000 0000 0000 0011

1111 1111 1111 1100

CubeSuite Ver.1.40 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 199 of 890
Oct 01, 2010

Obtains the logical AND operation for each bit of the first and second term values.

[Function]

Performs an AND (logical product) operation between the value of the 1st term of an expression and the value of its
2nd term on a bit-by-bit basis and returns the result.

A blank is required before and after the & operator.

[Application example]

(1) AND operation is performed between the two values "0x6FA" and "0xF" as follows:
The result "0xA" is returned. Therefore, (1) in the above expression can also be described as:
mov32 0xA, r12.

&

mov32 0x6FA & 0xF, r12 ; (1)

&) 0000 0000 0000 0000

0000 0000 0000 0000

0000 0000 0000 0000

0000 0000 0000 1111

0000 0000 0000 1010

0000 0110 1111 1010

CubeSuite Ver.1.40 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 200 of 890
Oct 01, 2010

Obtains the logical OR operation for each bit of the first and second term values.

[Function]

Performs an OR (Logical sum) operation between the value of the 1st term of an expression and the value of its 2nd
term on a bit-by-bit basis and returns the result.

A blank is required before and after the | operator.

[Application example]

(1) OR operation is performed between the two values "0xA" and "0b1101" as follows:
The result "0xF" is returned.
Therefore, (1) in the above expression can also be described as: mov32 0xF, r12.

|

mov32 0xA | 0b1101, r12 ; (1)

|) 0000 0000 0000 0000

0000 0000 0000 0000

0000 0000 0000 0000

0000 0000 0000 1101

0000 0000 0000 1111

0000 0000 0000 1010

CubeSuite Ver.1.40 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 201 of 890
Oct 01, 2010

Obtains the exclusive OR operation for each bit of the first and second term values.

[Function]

Performs an Exclusive-OR operation between the value of the 1st term of an expression and the value of its 2nd term
on a bit-by-bit basis and returns the result. A blank is required before and after the ^ operator.

[Application example]

(1) XOR operation is performed between the two values "0x9A" and "0x9D" as follows:
The result "0x7" is returned.
Therefore, (1) in the above expression can also be described as: mov32 0x7, r12.

^

mov32 0x9A ^ 0x9D, r12 ; (1)

^) 0000 0000 0000 0000

0000 0000 0000 0000

0000 0000 0000 0000

0000 0000 1001 1101

0000 0000 0000 0111

0000 0000 1001 1010

CubeSuite Ver.1.40 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 202 of 890
Oct 01, 2010

4.1.5 Relational operators

The following relational operators are available.

Operator Overview

== Compares whether valueｓ of first term and second term are equivalent.

!= Compares whether values of first term and second term are not equivalent.

> Compares whether value of first term is greater than value of the second.

>= Compares whether value of first term is greater than or equivalent to the value of
the second term.

< Compares whether value of first term is smaller than value of the second.

<= Compares whether value of first term is smaller than or equivalent to the value of
the second term.

&& Calculates the logical product of the logical value of the first and second
operands.

|| Calculates the logical sum of the logical value of the first and second operands.

CubeSuite Ver.1.40 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 203 of 890
Oct 01, 2010

Compares whether valueｓ of first term and second term are equivalent.

[Function]

Returns ∼ 0 (True) if the value of the 1st term of an expression is equal to the value of its 2nd term, and 0 (False) if both
values are not equal.

A blank is required before and after the == operator.

==

CubeSuite Ver.1.40 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 204 of 890
Oct 01, 2010

Compares whether values of first term and second term are not equivalent.

[Function]

Returns ∼ 0 (True) if the value of the 1st term of an expression is not equal to the value of its 2nd term, and 0 (False) if
both values are equal.

A blank is required before and after the != operator.

!=

CubeSuite Ver.1.40 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 205 of 890
Oct 01, 2010

Compares whether value of first term is greater than value of the second.

[Function]

Returns ∼ 0(True) if the value of the 1st term of an expression is greater than the value of its 2nd term, and 0 (False) if
the value of the 1st term is equal to or less than the value of the 2nd term.

A blank is required before and after the > operator.

>

CubeSuite Ver.1.40 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 206 of 890
Oct 01, 2010

Compares whether value of first term is greater than or equivalent to the value of the second term.

[Function]

Returns ∼ 0 (True) if the value of the 1st term of an expression is greater than or equal to the value of its 2nd term, and
0 (False) if the value of the 1st term is less than the value of the 2nd term.

A blank is required before and after the >= operator.

>=

CubeSuite Ver.1.40 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 207 of 890
Oct 01, 2010

Compares whether value of first term is smaller than value of the second.

[Function]

Returns ∼ 0 (True) if the value of the 1st term of an expression is less than the value of its 2nd term, and 0 (False) if the
value of the 1st term is equal to or greater than the value of the 2nd term.

A blank is required before and after the < operator

<

CubeSuite Ver.1.40 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 208 of 890
Oct 01, 2010

Compares whether value of first term is smaller than or equivalent to the value of the second term.

[Function]

Returns ∼ 0 (True) if the value of the 1st term of an expression is less than or equal to the value of its 2nd term, and 0
(False) if the value of the 1st term is greater than the value of the 2nd term.

A blank is required before and after the <= operator.

<=

CubeSuite Ver.1.40 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 209 of 890
Oct 01, 2010

Calculates the logical product of the logical value of the first and second operands.

[Function]

Calculates the logical product of the logical value of the first and second operands.

&&

CubeSuite Ver.1.40 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 210 of 890
Oct 01, 2010

Calculates the logical sum of the logical value of the first and second operands.

[Function]

Calculates the logical sum of the logical value of the first and second operands.

||

CubeSuite Ver.1.40 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 211 of 890
Oct 01, 2010

4.1.6Shift operators

The following shift operators are available.

Operator Overview

>> Obtains only the right-shifted value of the first term which appears in the second
term.

<< Obtains only the left-shifted value of the first term which appears in the second
term.

CubeSuite Ver.1.40 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 212 of 890
Oct 01, 2010

Obtains only the right-shifted value of the first term which appears in the second term.

[Function]

Returns a value obtained by shifting the value of the 1st term of an expression to the right the number of bits specified
by the value of the 2nd term.

The sign bit is not shifted.
The sign bit is inserted in the high-order bits, the same number of times as the number of bits that were shifted.
If the number of shifted bits is 0, the value of the first term is returned as is. If the number of shifted bits exceeds 31, 0

is returned.

[Application example]

(1) The value "0x800001AF" is shifted 5 bits to the right, leaving the sign bit.
"0xFC00000D" is forwarded to r20.
Therefore, (1) in the above example can also be described as: mov32 0xFC00000D, r20

>>

mov32 0x800001AF >> 5, r20 ; (1)

1000 0000 0000 0000 0000 0001 1010 1111

1111 1100 0000 0000 0000 0000 0000 1101 0111 1

1’s of a sign bit are inserted. For 5 bits, the right shift

CubeSuite Ver.1.40 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 213 of 890
Oct 01, 2010

Obtains only the left-shifted value of the first term which appears in the second term.

[Function]

Returns a value obtained by shifting the value of the 1st term of an expression to the left the number of bits specified by
the value of the 2nd term.

Zeros equivalent to the specified number of bits shifted move into the low-order bits.
If the number of shifted bits is 0, the value of the first term is returned as is. If the number of shifted bits exceeds 31, 0

is returned.

[Application example]

(1) This operator shifts the value "0x21" to the left by 2 bits.
"0x84" is forwarded to r20.
Therefore, (1) in the above example can also be described as: mov32 0x84, r20

(2) This operator shifts the value "0x3B" to the right by 2 bits, and shifts to the left by 2 bits.
"0x3BC" is forwarded to r20.
Therefore, (2) in the above example can also be described as: mov32 0x3BC, r20

<<

mov32 0x21 << 2, r20 ; (1)

mov32 0x3BF >> 2 << 2, r20 ; (2)

0000 0000 0000 0000 0000 0000 0010 0001

0000 0000 0000 0000 0000 0000 1000 010000

For 2 bits, the left shift 0’s are inserted.

0000 0000 0000 0000 0000 0011 1011 110000

For 2 bits, the left shift 0’s are inserted.

0000 0000 0000 0000 0000 0011 1011 1111

0000 0000 0000 0000 0000 0000 1110 1111 11

0’s are inserted. For 2 bits, the right shift

CubeSuite Ver.1.40 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 214 of 890
Oct 01, 2010

4.1.7 Byte separation operators

The following byte separation operators are available.

Operator Overview

HIGH Returns the high-order 8-bit value of a term.

LOW Returns the low-order 8-bit value of a term.

CubeSuite Ver.1.40 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 215 of 890
Oct 01, 2010

Returns the high-order 8-bit value of a term.

[Function]

Returns the high-order 8-bit value of a term.
A blank is required between the HIGH operator and the term.

[Application example]

(1) By executing a mov32 instruction, this operator returns the high-order 8-bit value "0x12" of the expression
"0x1234".
Therefore, (1) in the above example can also be described as: mov A, #0x12

(2) By executing a mov32 instruction, this operator returns the high-order 8-bit value "0xFF" of the expression
P0.
Therefore, (2) in the above example can also be described as: mov 0xFF, r12.

HIGH

mov32 HIGH 0x1234, r12 ; (1)

mov32 HIGH P0, r12 ; (2)

CubeSuite Ver.1.40 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 216 of 890
Oct 01, 2010

Returns the low-order 8-bit value of a term.

[Function]

Returns the low-order 8-bit value of a term.
A blank is required between the LOW operator and the term.

[Application example]

(1) By executing a mov32 instruction, this operator returns the low-order 8-bit value "0x34" of the expression
"0x1234".
Therefore, (1) in the above example can also be described as: mov32 0x34, r12.

LOW

mov32 LOW 0x1234, r12 ; (1)

CubeSuite Ver.1.40 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 217 of 890
Oct 01, 2010

4.1.8 2-byte separation operators

The following 2-byte separation operators are available.

Operator Overview

HIGHW Returns the high-order 16-bit value of a term.

LOWW Returns the low-order 16-bit value of a term.

HIGHW1 The value calculated by adding the value at the 15th bit to the uppermost 16 bits
of the term.

CubeSuite Ver.1.40 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 218 of 890
Oct 01, 2010

Returns the high-order 16-bit value of a term.

[Function]

Returns the high-order 16-bit value of a term.
A blank is required between the HIGHW operator and the term.

[Application example]

(1) By executing a mov32 instruction, this operator returns the high-order 16-bit value "0x1234" of the
expression "0x12345678".
Therefore, (1) in the above example can also be described as: mov32 0x1234, r12.

HIGHW

mov32 HIGHW(0x12345678), r12 ; (1)

CubeSuite Ver.1.40 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 219 of 890
Oct 01, 2010

Returns the low-order 16-bit value of a term.

[Function]

Returns the low-order 16-bit value of a term.
A blank is required between the LOWW operator and the term.

[Application example]

(1) By executing a mov32 instruction, this operator returns the low-order 16-bit value "0x5678" of the
expression "0x12345678".
Therefore, (1) in the above example can also be described as: mov32 0x5678, r12.

LOWW

mov32 LOWW(0x12345678), r12 ; (1)

CubeSuite Ver.1.40 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 220 of 890
Oct 01, 2010

The value calculated by adding the value at the 15th bit to the uppermost 16 bits of the term.

[Function]

The value calculated by adding the value at the 15th bit to the uppermost 16 bits of the term.
A blank is required between the HIGHW1 operator and the term.

[Application example]

(1) Given the value 0x12345678, a mov32 instruction adds the value at the 15th bit (1) to the top 16 bits
(0x1234), returning the value 0x1235.
Therefore, (1) in the above example can also be described as: mov32 0x1235, r12.

HIGHW1

mov32 HIGHW1(0x12345678), r12 ; (1)

CubeSuite Ver.1.40 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 221 of 890
Oct 01, 2010

4.1.9 Special operators

The following special operators are available.

Operator Overview

DATAPOS Obtains the address part of a bit symbol.

BITPOS Obtains the bit part of a bit symbol.

CubeSuite Ver.1.40 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 222 of 890
Oct 01, 2010

Obtains the address part of a bit symbol.

[Function]

Returns the address portion of a bit symbol.

[Application example]

(1) "DATAPOS DNFA2NFEN2" represents "DATAPOS 0xFF41020C.2", and "0xFF41020C" is returned.
Therefore, in the above example can also be described as: mov32 0xFF41020C, r10.

DATAPOS

mov32 DATAPOS(DNFA2NFEN2), r10 ; (1)

mov32 BITPOS(DNFA2NFEN2), r12

clr1 r12, [r10]

CubeSuite Ver.1.40 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 223 of 890
Oct 01, 2010

Obtains the bit part of a bit symbol.

[Function]

Returns the bit portion (bit position) of a bit symbol.

[Application example]

(1) "BITPOS DNFA2NFEN2" represents "BITPOS 0xFF41020C.2", and "2" is returned.
Therefore, in the above example can also be described as: mov32 2, r12.

BITPOS

mov32 DATAPOS(DNFA2NFEN2), r10

mov32 BITPOS(DNFA2NFEN2), r12 ; (1)

clr1 r12, [r10]

CubeSuite Ver.1.40 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 224 of 890
Oct 01, 2010

4.1.10 Other operator

The following operators is also available.

Operator Overview

() Prioritizes the calculation within ().

CubeSuite Ver.1.40 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 225 of 890
Oct 01, 2010

Prioritizes the calculation within ().

[Function]

Causes an operation in parentheses to be performed prior to operations outside the parentheses.
This operator is used to change the order of precedence of other operators.
If parentheses are nested at multiple levels, the expression in the innermost parentheses will be calculated first.

[Application example]

Calculations are performed in the order of expressions (1), (2) and the value "14" is returned as a result.
If parentheses are not used,

Calculations are performed in the order (1), (2) shown above, and the value "10" is returned as a result.
See "Table 4-4. Operator Precedence Levels", for the order of precedence of operators.

()

mov A, #(4 + 3) * 2

(4 + 3) * 2

(1)

(2)

4 + 3 * 2

(1)

(2)

CubeSuite Ver.1.40 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 226 of 890
Oct 01, 2010

4.1.11 Restrictions on operations

An expression consists of a "constant", "symbol", "label reference", "operator", and "parentheses".It indicates a value
consisting of these elements. The expression distinguishes between Absolute expression and Relative expressions.

(1) Absolute expression
An expression indicating a constant is called an "absolute expression". An absolute expression can be used when
an operand is specified for an instruction or when a value etc. is specified for a directive. An absolute expression
usually consists of a constant or symbol. The following format is treated as an absolute expression.

(a) Constant expression
If a reference to a previously defined symbol is specified, assumes that the constant of the value defined for
the symbol has been specified. Therefore, a defined symbol reference can be used in a constant expression.

Example

(b) Symbol
The expressions related to symbols are the following ("+" is either "+" or "-").

- Symbol
- Symbol + constant expression
- Symbol - symbol
- Symbol - symbol + constant expression

A "symbol" here means an undefined symbol reference at that point. If a reference to a previously defined
symbol is specified, assumes that the "constant" of the value defined for the symbol has been specified.

Example

(c) Label reference
The following expressions are related to label reference ("+" is either "+" or "-").

- Label reference - label reference
- Label reference - label reference + constant expression

Here is an example of an expression related to a label reference.

Example

A "reference to two labels" as shown in this example must be referenced as follows.
- The same section has a definition in the specified file.
- Same reference method (such as $label and $label, and #label and #label)

When not meeting these conditions, a message is output, and assembly is canceled.

sym1 .set 0x10 --Define symbol sym1

 mov sym1, r1 --sym1, already defined, is treated as a constant expression.

add SYM1 + 0x100, r11 --SYM1 is an undefined symbol at this point

SYM1 .set 0x10 --Defines SYM1

mov $label1 - $label2, r11

CubeSuite Ver.1.40 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 227 of 890
Oct 01, 2010

However, if a reference to the absolute address of a label not having a definition in the specified file is specified
as label reference on one side of "- label reference" in an "expression related to label reference", it is assumed
that the same reference method as that of the label on the other side is used, because of the current
organization of the assembler. Note that an absolute expression in this format cannot be specified for a
branch instruction. If such an expression is specified, a message is output, and assembly is canceled.

(2) Relative expressions
An expression indicating an offset from a specific addressNote 1 is called a "relative expression". A relative
expression is used to specify an operand by an instruction or to specify a value by data definition directive. A
relative expression usually consists of a label reference. The following formatNote 2 is treated as an relative
expression.

Notes 1. This address is determined when the linker is executed. Therefore, the value of this offset may also be
determined when the linker is executed.

2. The absolute value system and the relative value system can regard an expression in the format of "-
symbol + label reference", as being an expression in the format of "label reference - symbol," but it
cannot regard an expression in the format of "label reference - (+symbol)" as being an expression in the
format of "label reference - symbol". Therefore, use parentheses "()" only in constant expressions.

(a) Label reference
The following expressions are related to label reference ("+" is either "+" or "-").

- Label reference
- Label reference + constant expression
- Label reference - symbol
- Label reference - symbol + constant expression

Here is an example of an expression related to a label reference.

Example

4.1.12 Identifiers

An identifier is a name used for symbols, labels, macros etc.
Identifiers are described according to the following basic rules.

- Identifiers consist of alphanumeric characters and symbols that are used as characters (?,@,_)
However, the first character cannot be a number (0 to 9).

- Reserved words cannot be used as identifiers.
With regard to reserved words, see "4.5 Reserved Words".

- The assembler distinguishes between uppercase and lowercase.

add #labe11 + 0x10, r10

add #label2 - SIZE, r10

SIZE .set 0x10

CubeSuite Ver.1.40 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 228 of 890
Oct 01, 2010

4.2 Directives

This chapter explains the directives.
Directives are instructions that direct all types of instructions necessary for the assembler.

4.2.1 Outline

Instructions are translated into object codes (machine language) as a result of assembling, but directives are not con-
verted into object codes in principle.

Directives contain the following functions mainly:
- To facilitate description of source programs
- To initialize memory and reserve memory areas
- To provide the information required for assemblers and linkers to perform their intended processing

The following table shows the types of directives.

Table 4-5. List of Directives

The following sections explain the details of each directive.
In the description format of each directive, "[]" indicates that the parameter in square brackets may be omitted from

specification, and "..." indicates the repetition of description in the same format.

Type Directives

Section definition directives .cseg, .dseg, .org, .vseg

Symbol definition directives .set, .file, .func

Data definition, area reservation directives .db, .db2/.dhw, .dshw, .db4/.dw, .db8/.ddw, .float, .double, .ds, .align

External definition, external reference directives .public, .extern, .comm

Macro directives .macro, .local, .rept, .irp, .exitm, .exitma, .endm

CubeSuite Ver.1.40 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 229 of 890
Oct 01, 2010

4.2.2 Section definition directives

A section is a block of routines or data of the same type. A "section definition directive" is a directive that declares the
start or end of a section.

Sections are the unit of allocation in the linker.

Example

Two sections with the same section name must have the same relocation attribute. Consequently, multiple sections
with differing relocation attributes cannot be given the same section name. If two sections with the same section name
have different relocation attributes, an error will occur, and the directive will be ignored.

Sections in a single source program file with the same relocation attribute and section name will be processed as a sin-
gle continuous section in the assembler.

If the sections are broken into separate source program files, then they will be processed by the linker.
Section names cannot be referenced as symbols.

The following section definition directives are available.

Table 4-6. Section Definition Directives

.cseg

:

.dseg

:

Directive Overview

.cseg Indicates to the assembler the starting of a code section (located in ROM area)

.dseg Indicates to the assembler the start of a data section (located in RAM area)

.org Advances the value of the location counter

.vseg Indicates to the assembler the start of a section for debug information

CubeSuite Ver.1.40 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 230 of 890
Oct 01, 2010

Indicate to the assembler the start of a code section (located in ROM area).

[Syntax]

[Function]

- The .cseg directive indicates to the assembler the start of a code section.
- All instructions described following the .cseg directive belong to the code section until it comes across a section

definition directives (.cseg, .dseg or .org), and finally those instructions are located within a ROM address after
being converted into machine language.

[Use]

- The .cseg directive is used to describe instructions, .db, .dw directives, etc. in the code section defined by the
.cseg directive.

- Description of one functional unit such as a subroutine should be defined as a single code section.

[Description]

- A relocation attribute defines a range of location addresses for a code section.

.cseg

Symbol field Mnemonic field Operand field Comment field

[section-name] .cseg [relocation-attribute] [; comment]

<Source module> <Memory>

Code section

ROM

RAM

 :

 .dseg

 :

 .cseg

 :

CubeSuite Ver.1.40 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 231 of 890
Oct 01, 2010

Table 4-7. Relocation Attributes of .cseg

- If no relocation attribute is specified for the code segment, the assembler will assume that "TEXT" has been spec-
ified.

- If the size of a section exceeds the size of its area, an error will occur. If this happens, the location counter will be
advanced, and assembly will continue.

Relocation
Attribute

Description Format Explanation

OPT_BYTE OPT_BYTE It is a user option byte and on-chip debugging specific attribute. Not
specify except user option byte and on-chip debugging.

Tells the assembler to locate the specified section within the address
range 0x7A to 0x7F (V850E1, V850E2 core).

In the device with an instruction set of V850E2V3, it can't be speci-
fied.

SECUR_ID SECUR_ID It is a security ID specific attribute. Not specify except security ID.

Tells the assembler to locate the specified section within the address
range 0x70 to 0x79 (V850E1, V850E2 core).

In the device with an instruction set of V850E2V3, it can't be speci-
fied.

TEXT TEXT Allocates the program.

This is a reserved section with section name ".text", section type

"PROGBITS", and section attribute "AX".

It is assumed that two TEXT sections are specified before an

assembly language source program in an assembly language

source file (for example, if ".dw1" is specified before a section

definition directive, this will be allocated to a ".text" section). Note,

however, that if the ".text" section is not explicitly specified, and the

label definition, instruction, location counter control directive, or

secure-area directive of the TEXT section specified by default is not

specified, then no ".text" section will be generated.

CONST CONST This section is for constant (read-only) data. It allocates a memory
range consisting of r0 and 2 instructions, and referenced using 32-bit
displacement.

This is a reserved section with section name ".const", section type
"PROGBITS", and section attribute "A".

SCONST SCONST This section is for constant (read-only) data. It allocates a memory
range (up to 32 Kbytes, in the positive direction from r0), referenced
with 1 instructions using r0 and 16-bit displacement.

This is a reserved section with section name ".sconst", section type
"PROGBITS", and section attribute "A".

CubeSuite Ver.1.40 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 232 of 890
Oct 01, 2010

- By describing a section name in the symbol field of the .cseg directive, the code section can be named. If no sec-
tion name is specified for a code section, the assembler will automatically give a default section name to the code
section.
The default section names of the code sections are shown below.

Note A specification possible section name is only a default section name in these relocation attributes.

- If two or more code sections have the same relocation attribute, these code sections may have the same section
name.
These same-named code sections are processed as a single code section within the assembler.
An error occurs if the same-named sections differ in their relocation attributes. Therefore, the number of the same-
named sections for each relocation attribute is one.

- Description of a code section can be divided into units. The same relocation attribute and the samenamed code
section described in one module are handled by the assembler as a series of sections.

- The same-named data sections in two or more different modules can be specified only when their relocation
attributes are SECUR_ID, and are combined into a single data section at linkage.

- No section name can be referenced as a symbol.
- Specify user option byte and on-chip debugging by using OPT_BYTE.

When the user option byte is not specified for the chip having the user option byte feature, define a default section
of "OPT_BYTE" to each address and set the initial value by reading from a device file.

- In the case of multi-core, the assembler will automatically assign default section names for each relocation
attribute in code sections without section names specified.
The default section names are shown below.

- CSEG default section names (for "-Xmulti=pen")

- CSEG default section names (for "-Xmulti=cmn")

Relocation Attribute Default Section Name

OPT_BYTENote OPTION_BYTES

SECUR_IDNote SECURITY_ID

TEXT .text

CONST .const

SCONSTNote .sconst

Relocation Attribute Default Section Name

TEXT .text.pen

CONST .const.pen

SCONST .const.pen

Relocation Attribute Default Section Name

TEXT .text.cmn

CONST .const.cmn

SCONST .const.cmn

CubeSuite Ver.1.40 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 233 of 890
Oct 01, 2010

Indicate to the assembler the start of a data section (located in RAM area).

[Syntax]

[Function]

- The .dseg directive indicates to the assembler the start of a data section.
- A memory following the .dseg directive belongs to the data section until it comes across a section definition direc-

tives (.cseg, .dseg or .org), and finally it is reserved within the RAM address.

[Use]

- The .ds directive is mainly described in the data section defined by the .dseg directive.
Data sections are located within the RAM area. Therefore, no instructions can be described in any data section.

- In a data section, a RAM work area used in a program is reserved by the .ds directive and a label is attached to
each work area. Use this label when describing a source program.
Each area reserved as a data section is located by the linker so that it does not overlap with any other work areas
on the RAM (stack area, and work areas defined by other modules).

[Description]

- A relocation attribute defines a range of location addresses for a data section.
The relocation attributes available for data sections are shown below.

.dseg

Symbol field Mnemonic field Operand field Comment field

[section-name] .dseg [relocation-attribute] [; comment]

<Source module> <Memory>

Data section
ROM

RAM

 :

 .dseg

 :

 .cseg

 :

CubeSuite Ver.1.40 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 234 of 890
Oct 01, 2010

Table 4-8. Relocation Attributes of DSEG

Relocation
Attribute

Description Format Explanation

BSS BSS Allocates a memory range consisting of gp and 2 instructions without
an initial value, and referenced using 32-bit displacement.

DATA DATA Allocates a memory range consisting of gp and 2 instructions with an
initial value, and referenced using 32-bit displacement.

SBSS SBSS Allocates a memory range (up to 64 Kbytes, combined with SDATA
section), referenced with 1 instructions using gp and 16-bit displace-
ment, not having an initial value.

SDATA SDATA Allocates a memory range (up to 64 Kbytes, combined with SDATA
section), referenced with 1 instructions using gp and 16-bit displace-
ment, having an initial value.

SEBSS SEBSS Allocates the high-level address portion of the memory range (up to
32 Kbytes in the negative direction from ep) (the size of the SEDATA
section) referenced with 1 instructions using ep and 16-bit displace-
ment, not having an initial value.

SEDATA SEDATA Allocates the high-level address portion of the memory range (up to
32 Kbytes in the negative direction from ep) (the size of the SEDATA
section) referenced with 1 instructions using ep and 16-bit displace-
ment, having an initial value.

SIBSS SIBSS Allocates the high-level address portion of the memory range (up to
32 Kbytes in the positive direction from ep) (the size of the SIBSS
and TI* sections) referenced with 1 instructions using ep and 16-bit
displacement, not having an initial value.

SIDATA SIDATA Allocates the high-level address portion of the memory range (up to
32 Kbytes in the positive direction from ep) (the size of the SIBSS
and TI* sections) referenced with 1 instructions using ep and 16-bit
displacement, having an initial value.

TIBSS TIBSS This assumes allocation in internal RAM without initial values, and
ep relative access using sld/sst instructions.

If TIDATA.BYTE, TIBSS.BYTE, TIDATA.WORD, TIBSS.WORD, and
TIDATA are not used, then TIBSS is allocated to the address indi-
cated by ep.

If TIDATA.BYTE, TIBSS.BYTE, TIDATA.WORD, TIBSS.WORD, or
TIDATA is used, then TIBSS is allocated to the address indicated by
ep, with the size of TIDATA.BYTE/TIBSS.BYTE/TIDATA.WORD/
TIBSS.WORD/TIDATA added.

The scope accessed by sld/sst instructions differs depending on the
size of the data. For this reason, we recommend placing byte data in
a TIBSS.BYTE section, and data larger than byte data in a
TIBSS.WORD section. Use a TIBSS section if you do not need to
consider the access area in fine detail like this.

TIBSS.BYTE TIBSS.BYTE This assumes allocation in internal RAM, and ep relative access
using sld/sst instructions.

When accessing byte data, an sld/sst instruction can access areas
up to 128 bytes. For this reason, we recommend placing byte data
with no initial value in a TIBSS.BYTE section.

CubeSuite Ver.1.40 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 235 of 890
Oct 01, 2010

- If no relocation attribute is specified for the code segment, the assembler will assume that "DATA" has been spec-
ified.

- If the size of a section exceeds the size of its area, an error will occur. If this happens, the location counter will be
advanced, and assembly will continue.

- Machine language instructions cannot be described in a data section. If described, an error is output and the line
is ignored.

- By describing a section name in the symbol field of the .dseg directive, the data section can be named. If no sec-
tion name is specified for a data section, the assembler automatically gives a default section name.
The default section names of the data sections are shown below.

TIBSS.WORD TIBSS.WORD This assumes allocation in internal RAM, and ep relative access
using sld/sst instructions.

When accessing data larger than byte data, an sld/sst instruction can
access areas up to 256 bytes. For this reason, we recommend plac-
ing data with no initial value that is larger than byte data in a
TIBSS.WORD section.

TIDATA TIDATA This assumes allocation in internal RAM with initial values, and ep
relative access using sld/sst instructions.

If TIDATA.BYTE and TIDATA.WORD are not used, then TIDATA is
allocated to the address indicated by ep.

If TIDATA.BYTE or TIDATA.WORD is used, then TIDATA is allo-
cated to the address indicated by ep, with the size of TIDATA.BYTE/
TIDATA.WORD added.

The scope accessed by sld/sst instructions differs depending on the
size of the data. For this reason, we recommend placing byte data in
a TIDATA.BYTE section, and data larger than byte data in a
TIDATA.WORD section. Use a TIDATA section if you do not need to
consider the access area in fine detail like this.

TIDATA.BYTE TIDATA.BYTE This assumes allocation in internal RAM, and ep relative access
using sld/sst instructions.

When accessing byte data, an sld/sst instruction can access areas
up to 128 bytes. For this reason, we recommend placing byte data
with initial value in a TIDATA.BYTE section.

TIDATA.WOR
D

TIDATA.WORD This assumes allocation in internal RAM, and ep relative access
using sld/sst instructions.

When accessing data larger than byte data, an sld/sst instruction can
access areas up to 256 bytes. For this reason, we recommend plac-
ing data with no initial value that is larger than byte data in a
TIDATA.WORD section.

Relocation Atribute Default Section Name

BSS .bss

DATA .data

SBSS .sbss

SDATA .sdata

SEBSSNote .sebss

SEDATANote .sedata

Relocation
Attribute

Description Format Explanation

CubeSuite Ver.1.40 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 236 of 890
Oct 01, 2010

Note A specification possible section name is only a default section name in these relocation attributes.

- If two or more data sections have the same relocation attribute, these data sections may have the same section
name.
These sections are processed as a single data section within the assembler.

- Description of a data section can be divided into units. The same relocation attribute and the same-named code
section described in one module are handled by the assembler as a series of sections.

- An error occurs if the same-named sections differ in their relocation attributes. Therefore, the number of the same-
named sections for each relocation attribute is one.

- No section name can be referenced as a symbol.
- They are as follows for multi-core. [V850E2V3]

- If the "-Xmulti=pen" option is specified
For each core's program, they can be allocated to data sections of all relocation attributes in the same way as
a single-core program.

- If the "-Xmulti=cmn" option is specified
Only a relocation attribute DATA/BSS section can be allocated to the common module's data section. Specify-
ing other than a relocation attribute DATA/BSS section will cause an error.
In the case of multi-core, the assembler will automatically assign default section names for each relocation
attribute in data sections without section names specified.
The default section names are shown below.

- DSEG default section names (for "-Xmulti=pen")

SIBSSNote .sibss

SIDATANote .sidata

TIBSSNote .tibss

TIBSS.BYTENote .tibss.byte

TIBSS.WORDNote .tibss.word

TIDATANote .tidata

TIDATA.BYTENote .tidata.byte

TIDATA.WORDNote .tidata.word

Relocation Attribute Default Section Name

BSS .bss.pen

DATA .data.pen

SBSS .sbss.pen

SDATA .sdata.pen

SEBSS .sebss.pen

SEDATA .sedata.pen

SIBSS .sibss.pen

SIDATA .sidata.pen

TIBSS .tibss.pen

TIBSS.BYTE .tibss.byte.pen

TIBSS.WORD .tibss.word.pen

Relocation Atribute Default Section Name

CubeSuite Ver.1.40 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 237 of 890
Oct 01, 2010

- DSEG default section names (for "-Xmulti=cmn")

TIDATA .tidata.pen

TIDATA.BYTE .tidata.byte.pen

TIDATA.WORD .tidata.word.pen

Relocation Attribute Default Section Name

BSS .bss.cmn

DATA .data.cmn

Relocation Attribute Default Section Name

CubeSuite Ver.1.40 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 238 of 890
Oct 01, 2010

Advances the value of the location counter.

[Syntax]

[Function]

Advances the value of the location counter for the current section, to the value specified by the operand.

[Description]

Advances the value of the location counter for the current section, specified by the previously specified section
definition directive, to the value(Less than 231) specified by the operand. If a hole results from advancing the value of the
location counter, it is filled with 0.

[Example]

Advances the location counter value 16 bytes.

[Caution]

- If a value that is smaller than the current value of the location counter is specified, the assembler outputs the
message then stops assembling.

- If this directive is used in the sdata-attribute section, valid information may not be obtained when a guideline value
for determining the size of the data to be allocated to the sdata/sbss-attribute section is displayed (by using the -
Xsdata_info option).

- This directive merely advances the value of the location counter in a specified file for the section. It does not spec-
ify either an absolute addressNote 1 or an offset in a sectionNote 2.

Notes 1. Offset from address 0 in a linked object module file.
2. Offset from the first address of the section (output section) to which that section is allocated in a linked

object module file.

.org

.org 16

Symbol field Mnemonic field Operand field Comment field

 .org value

CubeSuite Ver.1.40 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 239 of 890
Oct 01, 2010

Indicate to the assembler the start of a section for debug information.

[Syntax]

[Function]

- The ".vseg" directive tells the assembler to start a section for debugging information.
Do not change this section, because it is for debugging information.

.vseg

Symbol field Mnemonic field Operand field Comment field

[section-name] .vseg [comment] [; comment]

CubeSuite Ver.1.40 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 240 of 890
Oct 01, 2010

4.2.3 Symbol definition directives

Symbol definition directives specify symbols for the data that is used when writing to source modules. With these, the
data value specifications are made clear and the details of the source module are easier to understand.

Symbol definition directives indicate the symbols of values used in the source module to the assembler.
The following symbol definition directives are available.

Table 4-9. Symbol Definition Directives

Directive Overview

.set Defines a symbol

.file Generates a symbol table entry

.func Generates a symbol table entry

CubeSuite Ver.1.40 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 241 of 890
Oct 01, 2010

Defines a symbol.

[Syntax]

[Function]

Defines a symbol having a symbol name specified by the symbol field and a value (Integer value) specified by the oper-
and field.

[Description]

Defines a symbol having a symbol name specified by the symbol field and a value (Integer value) specified by the oper-
and field. If the .set directive is specified for a given symbol more than once within a single assembler source file, refer-
ence to that symbol will have the following value, depending on the position of that reference.

- If the reference appears between the beginning of the file and the first .set directive for that symbol
Value specified with the last .set directive for that symbol.

- If the reference does not appear between a certain .set directive and the next .set directive, or if there is no subse-
quent .set directive, between the first .set directive and the end of the assembler source file
Value specified by that .set directive.

[Example]

Defines the value of symbol sym1 as 0x10.

[Caution]

- Any label reference or undefined symbol reference must not be used to specify a value.
Otherwise, the assembler outputs the following message then stops assembling.

- If a label name, a macro name defined by the .macro directive, or a symbol of the same name as a formal param-
eter of a macro is specified, the assembler outputs the following message and stops assembling.

.set

.set sym1, 0x10

E0550203: illegal expression (string)

E0550212: symbol already define as string

Symbol field Mnemonic field Operand field Comment field

 symbol .set value

CubeSuite Ver.1.40 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 242 of 890
Oct 01, 2010

Generates a symbol table entry (FILE type).

[Syntax]

[Function]

- Generates a symbol table entryNote having a file name specified by the operand and type FILE when an object
module file is generated. If this directive does not exist in the input source file, it is assumed that ".file"input file
name" has been specified, and a symbol table entry with the input file name and type FILE is generated.

Note The binding class is LOCAL.

[Use]

- The ".file" directive is compiler debugging information.

[Description]

- The file name is written with the specified image.
- This is the name of the C source program file that the compiler outputs.

.file

Symbol field Mnemonic field Operand field Comment field

 .file "file-name" [; comment]

CubeSuite Ver.1.40 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 243 of 890
Oct 01, 2010

Generates a symbol table entry (FUNC type).

[Syntax]

[Function]

- Generates a symbol table entry of type FUNC when an object module file is generated.

[Use]

- The ".func" directive is compiler debugging information.

[Description]

- The first operand is the C-language function name output by the compiler; the second operand is an expression
indicating that function; and the third operand is a number indicating the stack size of the function.

- This is the function information of the C source program that the compiler outputs.

.func

Symbol field Mnemonic field Operand field Comment field

 .func function-name, function-size, stack-size [; comment]

CubeSuite Ver.1.40 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 244 of 890
Oct 01, 2010

4.2.4 Data definition, area reservation directives

The data definition directive defines the constant data used by the program.
The defined data value is generated as object code.
The area reservation directive secures the area for memory used by the program.
The following data definition and partitioning directives are available.

Table 4-10. Data Definition, Area Reservation Directives

Directive Overview

.db Initialization of byte area

.db2/.dhw Initialization of 2-byte area

.dshw Initializes a 2-byte area with the specified value, right-shifted one bit

.db4/.dw Initialization of 4-byte area

.db8/.ddw Initialization of 8-byte area

.float Initialization of 4-byte area

.double Initialization of 8-byte area

.ds Secures the memory area of the number of bytes specified by operand

.align Aligns the value of the location counter

CubeSuite Ver.1.40 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 245 of 890
Oct 01, 2010

Initialization of byte area.

[Syntax]

[Function]

- The .db directive tells the assembler to initialize a byte area.
The number of bytes to be initialized can be specified as "size".

- The .db directive also tells the assembler to initialize a memory area in byte units with the initial value(s) specified
in the operand field.

[Use]

- Use the .db directive when defining an expression or character string used in the program.

[Description]

- If a value in the operand field is parenthesized, the assembler assumes that a size is specified. Otherwise, an ini-
tial value is assumed.

(1) With size specification:

(a) If a size is specified in the operand field, the assembler initializes an area equivalent to the specified
number of bytes with the value "0".

(b) An absolute expression can be described as a size. If the size description is illegal, the CX outputs an
error message and will not execute initialization.

(2) With initial value specification:

(a) Expression
The value of an expression must be 1-byte data. Therefore, the value of the operand must be in the range of
0x0 to 0xFF. If the value exceeds 1 byte, the assembler will use only lower 1 byte of the value as valid data.

(b) Character string constants
If the first operand is surrounded by corresponding double quotes ("), then it is assumed to be a string con-
stant.
If a character string constants is described as the operand, an 8-bit ASCII code will be reserved for each char-
acter in the string.

.db

Symbol field Mnemonic field Operand field Comment field

 [label:] .db (absolute-expression) [; comment]

 or

 [label:] .db expression[, ...] [; comment]

 or

 [label:] .db "Character string constants" [; comment]

CubeSuite Ver.1.40 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 246 of 890
Oct 01, 2010

- The .db directive cannot be described in a bit section.
- Two or more initial values may be specified within a statement line of the .db directive.
- As an initial value, an expression that includes a relocatable symbol or external reference symbol may be

described.
- If the relocation attribute of the section containing the .db directive is BSS or SBSS, then an error is output,

because initial values cannot be specified.

[Example]

(1) Because the size is specified, the assembler will initialize each byte area with the value "0".

(2) A 6-byte area is initialized with character string 'ABCDEF'

(3) A 3-byte area is initialized with "0xA, 0xB, 0xC".

(4) A 4-byte area is initialized with "0x0".

(5) This description occurs in an error.

 .cseg text

WORK1: .db (1) ; (1)

WORK2: .db (2) ; (1)

 .cseg text

MASSAG: .db "ABCDEF" ; (2)

DATA1: .db 0xA, 0xB, 0xC ; (3)

DATA2: .db (3 + 1) ; (4)

DATA3: .db "AB" + 1 ; (5) <- Error

CubeSuite Ver.1.40 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 247 of 890
Oct 01, 2010

Initialization of 2-byte area.

[Syntax]

[Function]

- The .db2 and .dhw directive tells the assembler to initialize 2-byte area.
The number of 2-byte data to be initialized can be specified as "size".

- The .db2 and .dhw directive also tells the assembler to initialize a memory area in 2-byte units with the initial
value(s) specified in the operand field.

[Use]

- Use the .db2 and .dhw directive when defining a 2-byte numeric constant such as an address or data used in the
program.

[Description]

- If a value in the operand field is parenthesized, the assembler assumes that a size is specified. Otherwise, an ini-
tial value is assumed.

(1) With size specification:

(a) If a size is specified in the operand field, the assembler initializes an area equivalent to the specified
number of 2-byte with the value "0".

(b) An absolute expression can be described as a size. If the size description is illegal, the CX outputs an
error message and will not execute initialization.

(2) With initial value specification:

(a) Expression
The value of an expression must be 2-byte data. Therefore, the value of the operand must be in the range of
0x0 to 0xFFFF. If the value exceeds 2-byte, the assembler will use only lower 2-byte of the value as valid data.
No character string constants can be described as an initial value.

- The .db2 and .dhw directive cannot be described in a bit section.

.db2/.dhw

Symbol field Mnemonic field Operand field Comment field

 [label:] .db2 (absolute-expression) [; comment]

 or

 [label:] .db2 expression[, ...] [; comment]

 or

 [label:] .dhw (absolute-expression) [; comment]

 or

 [label:] .dhw expression[, ...] [; comment]

CubeSuite Ver.1.40 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 248 of 890
Oct 01, 2010

- If the relocation attribute of the section containing the .db2 and .dhw directive is BSS or SBSS, then an error is out-
put, because initial values cannot be specified.

- Two or more initial values may be specified within a statement line of the .db2 and .dhw directive.
- As an initial value, an expression that includes a relocatable symbol or external reference symbol may be

described.

CubeSuite Ver.1.40 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 249 of 890
Oct 01, 2010

Initializes a 2-byte area with the specified value, right-shifted one bit.

[Syntax]

[Function]

- Initializes a 2-byte area with the specified value, right-shifted one bit.

[Description]

- The value is secured as 2-byte data, as the value of the expression right-shifted 1 bit.
- The .dshw directive cannot be described in a bit section.
- If the relocation attribute of the section is BSS or SBSS, then an error is output, because the .dshw directive can-

not be described.
- It is possible to code an absolute expression in the operand expression.
- The value of the expression, right-shifted one bit, must be in the range 0x0 to 0xFFF. In other cases, the data from

the lower two bytes will be secured.
- Any number of expressions may be specified on a single line, by separating them with commas.
- It is not possible to code string constants in the operand.

.dshw

Symbol field Mnemonic field Operand field Comment field

 [label:] .dshw expression[, ...] [; comment]

CubeSuite Ver.1.40 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 250 of 890
Oct 01, 2010

Initialization of 4-byte area.

[Syntax]

[Function]

- The .db4 and .dw directive tells the assembler to initialize 4-byte area.
The number of 4-byte data to be initialized can be specified as "size".

- The .db4 and .dw directive also tells the assembler to initialize a memory area in 4-byte units with the initial
value(s) specified in the operand field.

[Use]

- Use the .db4 and .dw directive when defining a 4-byte numeric constant such as an address or data used in the
program.

[Description]

- If a value in the operand field is parenthesized, the assembler assumes that a size is specified. Otherwise, an ini-
tial value is assumed.

(1) With size specification:

(a) If a size is specified in the operand field, the assembler initializes an area equivalent to the specified
number of 4-byte with the value "0".

(b) An absolute expression can be described as a size. If the size description is illegal, the CX outputs an
error message and will not execute initialization.

(2) With initial value specification:

(a) Expression
The value of an expression must be 4-byte data. Therefore, the value of the operand must be in the range of
0x0 to 0xFFFFFFFF. If the value exceeds 4-byte, the assembler will use only lower 2-byte of the value as valid
data.
No character string constants can be described as an initial value.

- The .db4 and .dw directive cannot be described in a bit section.

.db4/.dw

Symbol field Mnemonic field Operand field Comment field

 [label:] .db4 (absolute-expression) [; comment]

 or

 [label:] .db4 expression[, ...] [; comment]

 or

 [label:] .dw (absolute-expression) [; comment]

 or

 [label:] .dw expression[, ...] [; comment]

CubeSuite Ver.1.40 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 251 of 890
Oct 01, 2010

- Two or more initial values may be specified within a statement line of the .db4 and .dw directive.
- As an initial value, an expression that includes a relocatable symbol or external reference symbol may be

described.
- If the relocation attribute of the section containing the .db4 and .dw directive is BSS or SBSS, then an error is out-

put, because initial values cannot be specified.

CubeSuite Ver.1.40 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 252 of 890
Oct 01, 2010

Initialization of 8-byte area.

[Syntax]

[Function]

- The .db8 and .ddw directive tells the assembler to initialize 8-byte area.
The number of 8-byte data to be initialized can be specified as "size".

- The .db8 and .ddw directive also tells the assembler to initialize a memory area in 8-byte units with the initial
value(s) specified in the operand field.

[Use]

- Use the .db8 and .ddw directive when defining a 8-byte numeric constant such as an address or data used in the
program.

[Description]

- If a value in the operand field is parenthesized, the assembler assumes that a size is specified. Otherwise, an ini-
tial value is assumed.

(1) With size specification:

(a) If a size is specified in the operand field, the assembler initializes an area equivalent to the specified
number of 8-byte with the value "0".

(b) An absolute expression can be described as a size. If the size description is illegal, the CX outputs an
error message and will not execute initialization.

(2) With initial value specification:

(a) Expression
The value of an expression must be 8-byte data. Therefore, the value of the operand must be in the range of
0x0 to 0xFFFFFFFFFFFFFFFF. If the value exceeds 8-byte, the assembler will use only lower 8-byte of the
value as valid data.
No character string constants can be described as an initial value.

- The .db8 and .ddw directive cannot be described in a bit section.

.db8/.ddw

Symbol field Mnemonic field Operand field Comment field

 [label:] .db8 (absolute-expression) [; comment]

 or

 [label:] .db8 absolute-expression[, ...] [; comment]

 or

 [label:] .ddw (absolute-expression) [; comment]

 or

 [label:] .ddw absolute-expression[, ...] [; comment]

CubeSuite Ver.1.40 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 253 of 890
Oct 01, 2010

- If the relocation attribute of the section is BSS or SBSS, then an error is output, because the .db8 and .ddw direc-
tive cannot be described.

- Two or more initial values may be specified within a statement line of the .db8 and .ddw directive.

CubeSuite Ver.1.40 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 254 of 890
Oct 01, 2010

Initialization of 4-byte area.

[Syntax]

[Function]

- The .float directive tells the assembler to initialize 4-byte area.
- The .float directive also tells the assembler to initialize a memory area in 4-byte units with the absolute-expression

specified in the operand field.

[Description]

- The value of the absolute expression is secured as a single-precision floating-point number. Consequently, the
value of the expression must be between 1.40129846e-45 and 3.40282347e+3. In other cases, the data from the
lower four bytes will be secured as a single-precision floating-point number.

- The .float directive cannot be described in a bit section.
- If the relocation attribute of the section is BSS or SBSS, then an error is output, because the .float directive cannot

be described.
- Two or more absolute-expression may be specified within a statement line of the .float directive.

.float

Symbol field Mnemonic field Operand field Comment field

 [label:] .float absolute-expression[, ...] [; comment]

CubeSuite Ver.1.40 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 255 of 890
Oct 01, 2010

Initialization of 8-byte area.

[Syntax]

[Function]

- The .double directive tells the assembler to initialize 8-byte area.
- The .double directive also tells the assembler to initialize a memory area in 8-byte units with the initial value(s)

specified in the operand field.

[Description]

- The value of the absolute expression is secured as a double-precision floating-point number. Consequently, the
value of the expression must be between 4.9406564584124654e-324 and 1.7976931348623157e+308. In other
cases, the data from the lower eight bytes will be secured as a double-precision floating-point number.

- The .double directive cannot be described in a bit section.
- If the relocation attribute of the section is BSS or SBSS, then an error is output, because the .double directive can-

not be described.
- Two or more absolute-expression may be specified within a statement line of the .double directive.

.double

Symbol field Mnemonic field Operand field Comment field

 [label:] .double absolute-expression[, ...] [; comment]

CubeSuite Ver.1.40 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 256 of 890
Oct 01, 2010

Secures the memory area of the number of bytes specified by operand.

[Syntax]

[Function]

- The .ds directive tells the assembler to reserve a memory area for the number of bytes specified in the operand
field.

[Use]

- The .ds directive is mainly used to reserve a memory (RAM) area to be used in the program.
If a label is specified, the value of the first address of the reserved memory area is assigned to the label. In the
source module, this label is used for description to manipulate the memory.

[Description]

- If a value in the first operand is parenthesized, the assembler assumes that a size is specified. Otherwise, an ini-
tial value is assumed.

- The first operand is a size specification. If a second operand is also specified, then it will be treated as the initial
value for that value.

(1) With size specification:

(a) If a size is specified in the operand, then if an initial value is specified, the compiler will fill the speci-
fied number of bytes with the specified value; otherwise, it will fill that number of bytes with zeroes
("0"). Note, however, that no area will be secured if the specified number of bytes is 0.

(b) An absolute expression can be described as a size. If the size description is illegal, the CX outputs an
error message and will not execute initialization.

(2) With initial value specification:

(a) Expression
The value of an expression must be byte data. Therefore, the value of the operand must be in the range of
0x0 to 0xFF. If the value exceeds byte, the assembler will use only lower 1-byte of the value as valid data.

- The .ds directive cannot be described in a bit section.
- As an initial value, an expression that includes a relocatable symbol or external reference symbol may be

described.
- If the relocation attribute of the section containing this directive is BSS or SBSS, then an error is output and this

directive is ignored, because initial values cannot be specified.

.ds

Symbol field Mnemonic field Operand field Comment field

 [label:] .ds (absolute-expression)[, ...] [; comment]

 or

 [label:] .ds absolute-expression [; comment]

CubeSuite Ver.1.40 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 257 of 890
Oct 01, 2010

Aligns the value of the location counter.

[Syntax]

[Function]

- Aligns the value of the location counter.

[Description]

- Aligns the value of the location counter for the current section, specified by the previously specified section defini-
tion directive under the alignment condition specified by the first operand. If a hole results from aligning the value
of the location counter, it is filled with the value of the absolute expression specified by the second operand, or with
the default value of 0.

- The .align directive cannot be described in a bit section.
- Specify an even number of 2 or more, but less than 231, as the alignment condition. Otherwise, the CX outputs the

error message then stops assembling.
- The value of the second operand’s absolute-expression must be in the range of 0x0 to 0xFF. If the value exceeds

range of 0x0 to 0xFF, the assembler will use only lower 1-byte of the value as valid data.
- This directive merely aligns the value of the location counter in a specified file for the section. It does not align an

address after arrangement.

.align

Symbol field Mnemonic field Operand field Comment field

 [label:] .align line-condition[, absolute-expression] [; comment]

CubeSuite Ver.1.40 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 258 of 890
Oct 01, 2010

4.2.5 External definition, external reference directives

External definition, external reference directives clarify associations when referring to symbols defined by other mod-
ules.

This is thought to be in cases when one program is written that divides module 1 and module 2. In cases when you
want to refer to a symbol defined in module 2 in module 1, there is nothing declared in either module and and so the sym-
bol cannot be used. Due to this, there is a need to display "I want to use" or "I don't want to use" in respective modules.

An "I want to refer to a symbol defined in another module" external reference declaration is made in module 1. At the
same time, a "This symbol may be referred to by other symbols" external definition declaration is made in module 2.

This symbol can only begin to be referred to after both external reference and external definition declarations in effect.
External definition, external reference directives are used to to form this relationship and the following instructions are

available.

Table 4-11. External Definition, External Reference Directives

Directive Overview

.public Declares to the linker that the symbol described in the operand field is a symbol
to be referenced from another module

.extern Declares to the linker that a symbol (other than bit symbols) in another module is
to be referenced in this module

.comm Declares an undefined external symbol

CubeSuite Ver.1.40 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 259 of 890
Oct 01, 2010

Declares to the linker that the symbol described in the operand field is a symbol to be referenced from another module.

[Syntax]

[Function]

- The PUBLIC directive declares to the linker that the symbol described in the operand field is a symbol to be refer-
enced from another module.

[Use]

- When defining a symbol to be referenced from another module, the .public directive must be used to declare the
symbol as an external definition.

[Description]

- A label with the same name as the one specified by the first operand is declared as an external labelNote.
Note that if a second operand was specified, this specifies the size of the data indicated by that label.

Note This is an external symbol (symbol with a GLOBAL binding class).

- Although this directive does not function any differently than an ".extern" directive in that it declares an external
label, if this directive is used to declare a label with a definition in the specified file as an external label, use the
".extern" directive to declare labels without definitions in the specified file as external labels.

- The .public directive may be described anywhere in a source program.
- The ".public" directive can only define one symbol per line.
- Symbol(s) to be described in the operand field must be defined within the same module. If it is not defined, an

error will be output, and the symbol's ".public" declaration will be ignored.
The symbol name for which the error occurs will be included in the error message.

- The following symbols cannot be used as the operand of the .public directive:

(1) Symbol defined with the .set directive

(2) Section name

.public

Symbol field Mnemonic field Operand field Comment field

 [label:] .public label-name[, size] [; comment]

CubeSuite Ver.1.40 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 260 of 890
Oct 01, 2010

[Example]

- Module 1

- Module 2

(1) This .public directive declares that symbol "A1" is to be referenced from other modules.

(2) This .public directive declares that symbol "B1" is to be referenced from another module.

 .public A1 ; (1)

 .extern B1

A1 .set 0x10

 .cseg text

 jr B1

 .public B1 ; (2)

 .extern A1

 .cseg text

B1:

 mov A1, r12

CubeSuite Ver.1.40 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 261 of 890
Oct 01, 2010

Declares to the linker that a symbol (other than bit symbols) in another module is to be referenced in this module.

[Syntax]

[Function]

- The .extern directive declares to the linker that a symbol in another module is to be referenced in this module.

[Use]

- When referencing a symbol defined in another module, the .extern directive must be used to declare the symbol as
an external reference.

[Description]

- A label with the same name as the one specified by the first operand is declared as an external labelNote.
Note that if a second operand was specified, this specifies the size of the data indicated by that label.

Note This is an external symbol (symbol with a GLOBAL binding class).

- Although this directive does not function any differently than an ".public" directive in that it declares an external
label, if this directive is used to declare a label without a definition in the specified file as an external label, use the
".public" directive to declare labels with definitions in the specified file as external labels.

- The .extern directive may be described anywhere in a source program.
- The ".extern" directive can only define one symbol per line.
- No error is output even if a symbol declared with the .extern directive is not referenced in the module.
- A symbol that has been declared cannot be described as the operand of the .extern directive. Conversely, a sym-

bol that has been declared as .extern cannot be redefined or declared with any other directive.

.extern

Symbol field Mnemonic field Operand field Comment field

 [label:] .extern label-name[, size] [; comment]

CubeSuite Ver.1.40 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 262 of 890
Oct 01, 2010

Declares an undefined external symbol.

[Syntax]

[Function]

- Declares an undefined external symbol having a symbol name specified by the first operand, a size specified by
the second operand, and an alignment condition specified by the third operand.

[Description]

(1) If the -Xsdata option is specified upon starting the CX

(a) If the specified by the second operand size is 1 or more, but no more than num bytes
Generates a symbol having value of section header table index GPCOMMON upon generating the sym-
bol table entry for the label when the object module file is generated.

(b) If the specified by the second operand size is 0 or more than num bytes
Generates a symbol having value of section header table index COMMON upon generating the symbol
table entry for the label when the object module file is generated.

(2) If the -Xsdata option is not specified upon starting the CX

(a) Generates a symbol having value of section header table index GPCOMMON upon generating the sym-
bol table entry for the label when the object module file is generated.

- If the same label name as that specified by the first operand is defined by means of normal label definition in the
same file as this directive.

- If the label is declared as having symbol table entry index GPCOMMON and is defined by means of normal
label definition in the data-attribute section, or if it is declared as having symbol table entry index COMMON by
this directive and is defined by means of normal label definition in the sdata-attribute section.

The assembler outputs the following message then stops assembling.

.comm

 .comm lab1, 4, 4 --GPCOMMON if assembly is executed without -G

 :

 .data .dseg data

lab1: --Normal label definition in .data section

E0550213: label identifier redefined

Symbol field Mnemonic field Operand field Comment field

 [label:] .comm symbol-name, size, alignment-condition [; comment]

CubeSuite Ver.1.40 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 263 of 890
Oct 01, 2010

- Else
The label defined by means of normal label definition is regarded as being an external label and the specifica-
tion of this directive is ignored. Generates a symbol table entry having binding class GLOBAL upon generat-
ing the symbol table entry for the label when the object module file is generated.

- If a label having the same name as that specified by the first operand is defined by the .lcomm directive in the
same file as this directive.

- If the size or alignment condition specified by the .lcomm directive differs from the size or alignment condition
specified by this directive.

The assembler outputs the following message then stops assembling.

- If the label is declared, by this directive, as having section header table index GPCOMMON and is defined in
the bss-attribute section by the .lcomm directive, or if it is declared by this directive as having section header
table index COMMON and is defined in the sbss-attribute section by the .lcomm directive.

The assembler outputs the following message then stops assembling.

- Else
The assembler regards the label defined by .lcomm as being an external label, ignoring the specification made
by this directive. Generates a symbol table entry having binding class GLOBAL upon generating the symbol
table entry for the label when the object module file is generated.

 .comm lab1, 4, 4 --GPCOMMON if assembly is executed without -G

 :

 .sdata .dseg sdata

lab1: --Normal label definition in .sdata section

.comm lab1, 4, 4

 :

.sbss .dseg sbss

.lcomm lab1, 4, 2 --Alignment condition differs

E0550213: label identifier redefined

.comm lab1, 4, 4 --GPCOMMON if assembly is executed without -G

 :

.bss .dseg bss

.lcomm lab1, 4, 4 --Definition in .bss section

E0550213: label identifier redefined

.comm lab1, 4, 4 --GPCOMMON if assembly is executed without -G

 :

.sbss .dseg sbss

.lcomm lab1, 4, 4 --Definition in .bss section

CubeSuite Ver.1.40 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 264 of 890
Oct 01, 2010

- If a label having the same name as that specified by the first operand is (re-)defined by this directive in the same
file as this directive.

- If the size or boundary condition is differen.

The assembler outputs the following message then stops assembling.

- When the size and boundary conditions are the same.
The assembler assumes the .comm directive to be specified once only.

[Example]

Declares undefined external label of size 4 with alignment condition 4.

.comm lab1, 4, 4

 :

.comm lab1, 2, 4 --Size differs

E0550213: label identifier redefined

.sbss .dseg sbss

.comm _p, 4, 4

CubeSuite Ver.1.40 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 265 of 890
Oct 01, 2010

4.2.6 Macro directives

When describing a source it is inefficient to have to describe for each series of high usage frequency instruction groups.
This is also the source of increased errors.

Via macro directives, using macro functions it becomes unnecessary to describe many times to the same kind of
instruction group series, and coding efficiency can be improved.

Macro basic functions are in substitution of a series of statements.
The following macro directives are available.

Table 4-12. Macro Directives

Directive Overview

.macro Executes a macro definition by assigning the macro name specified in the sym-
bol field to a series of statements described between .macro directive and the
.endm directive.

.local The specified string is declared as a local symbol that will be replaced as a spe-
cific identifier.

.rept Tells the assembler to repeatedly expand a series of statements described
between .rept directive and the .endm directive the number of times equivalent to
the value of the expression specified in the operand field.

.irp Tells the assembler to repeatedly expand a series of statements described
between .irp directive and the .endm directive the number of times equivalent to
the number of actual parameters while replacing the formal parameter with the
actual parameters (from the left, the order) specified in the operand field.

.exitm This directive skips the repetitive assembly of the .irp and .rept directives enclos-
ing this directive at the innermost position.

.exitma This directive skips the repetitive assembly of the irp and .rept directives enclos-
ing this directive at the outermost position.

.endm Instructs the assembler to terminate the execution of a series of statements
defined as the functions of the macro.

CubeSuite Ver.1.40 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 266 of 890
Oct 01, 2010

Executes a macro definition by assigning the macro name specified in the symbol field to a series of statements
described between .macro directive and the .endm directive.

[Syntax]

[Function]

- The .macro directive executes a macro definition by assigning the macro name specified in the symbol field to a
series of statements (called a macro body) described between this directive and the .endm directive.

[Use]

- Define a series of frequently used statements in the source program with a macro name. After its definition only
describe the defined macro name, and the macro body corresponding to the macro name is expanded.

[Description]

- If the .endm directive corresponding to .macro directive does not exist, the CX outputs the message.
- For the macro name to be described in the symbol field, see the conventions of symbol description in "(2) Sym-

bol".
- To reference a macro, describe the defined macro name in the mnemonic field.
- For the formal parameter(s) to be described in the operand field, the same rules as the conventions of symbol

description will apply.
- Formal parameters are valid only within the macro body.
- An error occurs if any reserved word is described as a formal parameter. However, if a user-defined symbol is

described, its recognition as a formal parameter will take precedence.
- The number of formal parameters must be the same as the number of actual parameters. If a shortage of actual

parameters, the CX outputs the error message.
- A name or label defined within the macro body if declared with the .local directive becomes effective with respect

to one-time macro expansion.
- The number of macros that can be defined within a single source module is not specifically limited. In other words,

macros may be defined as long as there is memory space available.
- Formal parameter definition lines, reference lines, and symbol names are not output to a cross-reference list.
- Two or more sections must not be defined in a macro body. If defined, an error will be output.
- An error will be output if there are extra formal parameters that are not referenced in the macro body.
- If an undefined macro is called in a macro body, the CX outputs the message then stops assembling.
- If a currently defined macro is called in a macro body, the CX outputs the message then stops assembling.
- If a parameter defined by a label or directive is specified for a formal parameter, the CX outputs the message and

stops assembling.

.macro

Symbol field Mnemonic field Operand field Comment field

 macro-name .macro [formal-parameter[, ...]] [; comment]

 :

 Macro body

 :

 .endm [; comment]

CubeSuite Ver.1.40 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 267 of 890
Oct 01, 2010

- The only actual parameters that can be specified in the macro call are label names, symbol names, numbers,

registers, and instruction mnemonics.

If a label expression (LABEL-1), addressing-method specification label (#LABEL), or base register specification

([gp]) or the like is specified, then a message will be output depending on the actual parameter specified, and

assembly will halt.

- A line of a sentence can be designated in the macro-body. Such as operand can't designate the part of the sen-
tence. If operand has a macro call, performs a label reference is undefined macro name, or the CX outputs the
message then stops assembling.

- An error will be output if a macro is defined in the macro body of a macro definition, but processing will continue
(the content up to the corresponding ".endm" directive is ignored). Referencing a macro name will cause a defini-
tion error.

[Example]

(1) A macro is defined by specifying macro name "ADMAC" and two formal parameters "PARA1" and
"PARA2".

(2) This directive indicates the end of the macro definition.

(3) Macro "ADMAC" is referenced.

ADMAC .macro PARA1, PARA2 ; (1)

 mov PARA1, r12

 add PARA2, r12

 .endm ; (2)

 ADMAC 0x10, 0x20 ; (3)

CubeSuite Ver.1.40 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 268 of 890
Oct 01, 2010

The specified string is declared as a local symbol that will be replaced as a specific identifier.

[Syntax]

[Function]

- The specified string is declared as a local symbol that will be replaced as a specific identifier.

[Use]

- If a macro that defines a symbol within the macro body is referenced more than once, the assembler will output a
double definition error for the symbol.
By using the .local directive, you can reference (or call) a macro, which defines symbol(s) within the macro body,
more than once.

[Description]

- Specifying 4,294,967,294 or more local symbols as formal parameters to ".local" quasi directives will cause the fol-
lowing error message to be output, and the assembly will halt.

- Local symbol names generated by the assembler are generated in the range of .??00000000 to .??FFFFFFFF.

[Example]

The expansion is as follows.

.local

 F0550514: Paramater table overflow.

m1 .macro x

 .local a, b

 a: .dw a

 b: .dw x

.endm

m1 10

m1 20

.??00000000: .dw .??00000000

.??00000001: .dw 10

.??00000002: .dw .??00000002

.??00000003: .dw 20

Symbol field Mnemonic field Operand field Comment field

 .local symbol-name[, ...] [; comment]

CubeSuite Ver.1.40 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 269 of 890
Oct 01, 2010

Tells the assembler to repeatedly expand a series of statements described between this directive and the .endm direc-
tive the number of times equivalent to the value of the expression specified in the operand field.

[Syntax]

[Function]

- The .rept directive tells the assembler to repeatedly expand a series of statements described between this direc-
tive and the .endm directive (called the REPT-ENDM block) the number of times equivalent to the value of the
expression specified in the operand field.

[Use]

- Use the .rept and .endm directives to describe a series of statements repeatedly in a source program.

[Description]

- An error occurs if the .rept directive is not paired with the .endm directive.
- If the .exitm directive appears in the REPT-ENDM block, subsequent expansion of the REPT-ENDM block by the

assembler is terminated.
- Assembly control instructions may be described in the REPT-ENDM block.
- Macro definitions cannot be described in the REPT-ENDM block.
- The value is evaluated as a 32-bit signed integer.
- If there is no arrangement of statements (block), nothing is executed.
- If the result of evaluating the expression is negative, the CX outputs the message then stops assembling.
- An error will be output if a macro is defined in the macro body of a macro definition, and processing will continue,

without performing expansion.

[Example]

(1) This .rept directive tells the assembler to expand the REPT-ENDM block three consecutive times.

(2) This directive indicates the end of the REPT-ENDM block.

.rept

.cseg text

 ; REPT-ENDM block

.rept 3 ; (1)

 nop

 ; Source text

.endm ; (2)

Symbol field Mnemonic field Operand field Comment field

 [label:] .rept absolute-expression [; comment]

 :

 .endm [; comment]

CubeSuite Ver.1.40 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 270 of 890
Oct 01, 2010

Tells the assembler to repeatedly expand a series of statements described between .irp directive and the .endm direc-
tive the number of times equivalent to the number of actual parameters while replacing the formal parameter with the
actual parameters (from the left, the order) specified in the operand field.

[Syntax]

[Function]

- The .irp directive tells the assembler to repeatedly expand a series of statements described between this directive
and the .endm directive (called the IRP-ENDM block) the number of times equivalent to the number of actual
parameters while replacing the formal parameter with the actual parameters (from the left, the order) specified in
the operand field.

[Use]

- Use the .irp and .endm directives to describe a series of statements, only some of which become variables, repeat-
edly in a source program.

[Description]

- If the .endm directive corresponding to .irp directive does not exist, the CX outputs the message.
- If the .exitm directive appears in the IRP-ENDM block, subsequent expansion of the IRP-ENDM block by the

assembler is terminated.
- Macro definitions cannot be described in the IRP-ENDM block.
- Assembly control instructions may be described in the IRP-ENDM block.
- If the same parameter name is specified for a formal parameter and an actual parameter, the CX outputs the mes-

sage and stops assembling.
- If a parameter defined by a label or other directive is specified for a formal parameter and an actual parameter, the

CX outputs the message and stops assembling.
- An error will be output if a macro is defined in the macro body of a macro definition, and processing will continue,

without performing expansion.

[Example]

.irp

.cseg text

.irp PARA 0xA, 0xB, 0xC ; (1)

 ; IRP-ENDM block

 add PARA, r12

 mov r11, r12

.endm ; (2)

 ; Source text

Symbol field Mnemonic field Operand field Comment field

 [label:] .irp formal-parameter[actual-parameter[, ...]] [; comment]

 :

 .endm [; comment]

CubeSuite Ver.1.40 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 271 of 890
Oct 01, 2010

(1) The formal parameter is "PARA" and the actual parameters are the following three: "0xA", "0xB", and
"0xC".
This .irp directive tells the assembler to expand the IRP-ENDM block three times (i.e., the number of actual
parameters) while replacing the formal parameter "PARA" with the actual parameters "0xA", "0xB", and
"0xC"

(2) This directive indicates the end of the IRP-ENDM block.

CubeSuite Ver.1.40 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 272 of 890
Oct 01, 2010

This directive skips the repetitive assembly of the .irp and .rept directives enclosing this directive at the innermost posi-
tion.

[Syntax]

[Function]

- This directive skips the repetitive assembly of the .irp and .rept directives enclosing this directive at the innermost
position.

[Description]

- If this directive is not enclosed by .irp and .rept directives, the CX outputs the message then stops assembling.

.exitm

Symbol field Mnemonic field Operand field Comment field

 [label:] .exitm [; comment]

CubeSuite Ver.1.40 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 273 of 890
Oct 01, 2010

This directive skips the repetitive assembly of the irp and .rept directives enclosing this directive at the outermost posi-
tion.

[Syntax]

[Function]

- This directive skips the repetitive assembly of the irp and .rept directives enclosing this directive at the outermost
position.

[Description]

- If this directive is not enclosed by .irp and .rept directives, the CX outputs the message then stops assembling.

.exitma

Symbol field Mnemonic field Operand field Comment field

 [label:] .exitma [; comment]

CubeSuite Ver.1.40 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 274 of 890
Oct 01, 2010

Instructs the assembler to terminate the execution of a series of statements defined as the functions of the macro.

[Syntax]

[Function]

- The .endm directive instructs the assembler to terminate the execution of a series of statements defined as the
functions of the macro.

[Use]

- The .endm directive must always be described at the end of a series of statements following the .macro, .rept, and/
or the .irp directives.

[Description]

- A series of statements described between the .macro directive and .endm directive becomes a macro body.
- A series of statements described between the .rept directive and .endm directive becomes a REPT-ENDM block.
- A series of statements described between the .irp directive and .endm directive becomes an IRP-ENDM block.
- If the .macro, .rept, or .irp directive corresponding to this directive does not exist, the CX outputs the message then

stops assembling.

[Example]

(1) MACRO-ENDM

(2) REPT-ENDM

.endm

ADMAC .macro PARA1, PARA2

 mov A, #PARA1

 add A, #PARA2

 .endm

.cseg text

 :

.rept 3

 inc B

 DEC C

.endm

Symbol field Mnemonic field Operand field Comment field

 .endm [; comment]

CubeSuite Ver.1.40 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 275 of 890
Oct 01, 2010

(3) IRP-ENDM

.cseg text

 :

.irp PARA, <1, 2, 3>

 add A, #PARA

 mov [DE], A

.endm

CubeSuite Ver.1.40 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 276 of 890
Oct 01, 2010

4.3 Control Instructions

This chapter describes control instructions.

Control Instructions provide detailed instructions for assembler operation.

4.3.1 Outline

Control instructions provide detailed instructions for assembler operation and so are written in the source.

Control instructions do not become the target of object code generation.

Control instruction categories are displayed below.

Table 4-13. Control Instruction List

As with directives, control instructions are specified in the source.

Also, among the control instructions displayed in "Table 4-13. Control Instruction List", the following can be written as
an cx option even in the command line when the CX is activated.

Table 4-14. Control Instructions and Assembler Option

Control Instruction Type Control Instruction

Compile target type specification control instruc-
tion

PROCESSOR

Symbol control instructions EXT_ENT_SIZE, EXT_FUNC

Assembler control instructions CALLT, REG_MODE, EP_LABEL, NO_EP_LABEL, NO_MACRO,
MACRO, DATA, SDATA, NOWARNING, WARNING

File input control instructions INCLUDE, BINCLUDE

Smart correction control instruction SMART_CORRECT

Conditional assembly control instructions IFDEF, IFNDEF, IF, IFN, ELSEIF, ELSEIFN, ELSE, ENDIF

Control Instruction Option

PROCESSOR -C

CubeSuite Ver.1.40 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 277 of 890
Oct 01, 2010

4.3.2 Compile target type specification control instruction

Compile target type specification control instructions specify the Compile target type in the source module file.
The following compile target type specification control instructions are available.

Table 4-15. Compile Target Type Specification Control Instructions

Control Instruction Overview

PROCESSOR Specifies in a source module file the compile target type

CubeSuite Ver.1.40 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 278 of 890
Oct 01, 2010

Specifies in a source module file the compile target type.

[Syntax]

[Function]

- The PROCESSOR control instruction specifies in a source module file the processor type of the target device sub-
ject to compile.

[Use]

- The processor type of the target device subject to compile must always be specified in the source module file or in
the startup command line of the compiler.

- If you omit the processor type specification for the target device subject to compile in each source module file, you
must specify the processor type at each compile operation. Therefore, by specifying the target device subject to
compile in each source module file, you can save time and trouble when starting up the compiler.

[Description]

- For the specifiable processor name, see the user's manual of the device used or "Device Files Operating Precau-
tions".

- If the specified processor type differs between the source module file and the option, the compiler will output a
warning message and give precedence to the processor type specification in the option.

[Example]

PROCESSOR

[∆]$[∆]PROCESSOR[∆]([∆]processor-type[∆])[∆][;comment]

$ PROCESSOR (f3507)

CubeSuite Ver.1.40 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 279 of 890
Oct 01, 2010

4.3.3 Symbol control instructions

Using the symbol control instruction, can generate a symbol table entry, define symbols, and specify the size of the
data indicated by a label.

The following symbol control instructions are available.

Table 4-16. Symbol Control Instructions

Control Instruction Overview

EXT_ENT_SIZE Specifies a flash table entry sizes

EXT_FUNC Generates a flash table entry

CubeSuite Ver.1.40 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 280 of 890
Oct 01, 2010

Specifies a flash table entry size.

[Syntax]

[Function]

- Sets the value specified by the operand as the flash table entry size.

[Use]

- Sets the value specified by the operand as the flash table entry size when an object module file is generated.
Specify this instruction to use the function for relinking a flash area or external ROM.

[Description]

- To specify a branch from an area that cannot be rewritten or replaced (boot area) to a rewritable or replaceable
area (flash area), a branch table is generated at a specified address in the flash area by specifying this control
instruction and two-stage branch is performed via the table.

- The entry size of this table is 4 bytes by default. A jr instruction is generated and execution can branch in a range
of 22 bits from the branch instruction.

- If it is necessary to branch to an address exceeding the range of 22 bits from the branch instruction in this table,
execution can branch over the entire 32-bit address space when 8 is specified in the case of the V850Ex core.

- This control instruction must be described in a source file which contains a relevant branch instruction (in the boot
area) and a source file which contains a relevant label definition (in the flash area).

- The size specified by this control instruction is the only value for the entire area, including the boot area and flash
area.
If a different size is specified, the CX outputs the message and stops assembling.

- Specify 4 (default) or 8 as the size.

EXT_ENT_SIZE

[∆]$[∆]EXT_ENT_SIZE[∆]size[∆][;comment]

CubeSuite Ver.1.40 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 281 of 890
Oct 01, 2010

Generates a flash table entry.

[Syntax]

[Function]

- Generates a flash table entry having a label name and ID value specified by the operands.

[Use]

- Generates a flash table entry having a label name and ID value specified by the operands when an object module
file is generated. Specify this instruction to use the function for relinking a flash area or external ROM.

[Description]

- To specify a branch from an area that cannot be rewritten or replaced (boot area) to a rewritable or replaceable
area (flash area), a branch table is generated to a specified address in a flash area by specifying this control
instruction and two-stage branch is performed via the table.

- This control instruction must be written in a source file which contains a relevant branch instruction (in the boot
area) and a source file which contains a relevant label definition (in the flash area).

- If the same label name is specified with a different ID value, the CX outputs the message then stops assembling.
- If the same ID value is specified with a different label name, the CX outputs the message then stops assembling.
- It is recommended that all relevant label names be written in a single file and included into source files of the boot

area and flash area using the INCLUDE control instruction. This prevents contradictions described above.
- The ID value must be a positive number. The size of a branch table to be allocated depends on the maximum ID

value. Renesas Electronics recommends that the ID value be specified without spaces.

EXT_FUNC

[∆]$[∆]EXT_FUNC[∆]label-name,ID-value[∆][;comment]

CubeSuite Ver.1.40 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 282 of 890
Oct 01, 2010

4.3.4 Assembler control instructions

The assembler control instruction can be used to control the processing performed by the assembler.
The following assembler control instructions are available.

Table 4-17. Assembler Control Instructions

Control Instruction Overview

CALLT A control instruction which is reserved for the compiler

REG_MODE Outputs a register mode information section

EP_LABEL Performs a label reference by %label as a reference by ep offset

NO_EP_LABEL Cancels the specification made with the EP_LABEL directive

NO_MACRO Does not expand the subsequent instructions

MACRO Cancels the specification made with the NO_MACRO directive

DATA Assumes that external data having symbol name extern_symbol has been allo-
cated to the data or bss attribute section, and expands the instructions which ref-
erence that data

SDATA Assumes that external data having symbol name extern_symbol has been allo-
cated to the sdata or sbss attribute section, and dose not expand the instructions
which reference that data

NOWARNING Does not output warning messages

WARNING Output warning messages

CubeSuite Ver.1.40 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 283 of 890
Oct 01, 2010

A control instruction which is reserved for the compiler.

[Syntax]

[Function]

- A control instruction which is reserved for the compiler.

[Description]

- Do not delete a callt instruction when it exists in the assembler source file output by the compiler. If it is deleted,
the prologue epilogue runtime linking cannot be checked.

CALLT

[∆]$[∆]CALLT[∆][;comment]

CubeSuite Ver.1.40 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 284 of 890
Oct 01, 2010

A register mode information section is output.

[Syntax]

[Function]

- A register mode information section is output into the object module file generated by the assembler.

[Description]

- Specify the register mode as "22" (indicating register mode 22); "26" (indicating register mode 26); "32" (indicating
register mode 32); or "common" (indicating universal register mode).

- A register mode information section stores information about the number of working registers and register-variable
registers used by the compiler. It is set in the object module file via this control instruction.

- If register mode 22 is used, then there are 5 working registers and 5 register-variable registers; if register mode 26
is used, then there are 7 of each; and if register mode 32 is used, then there are 10 of each.

- If register mode 32 is used, a register mode information section is not output into the object module file generated
by the assembler.

REG_MODE

[∆]$[∆]REG_MODE[∆]specify-register-mode[∆][;comment]

CubeSuite Ver.1.40 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 285 of 890
Oct 01, 2010

Performs a label reference by %label as a reference by ep offset.

[Syntax]

[Function]

- Performs a label reference by %label as a reference by ep offset for the subsequent instructions.
- If $EP_LABEL is omitted, then the assembler will assume that $EP_LABEL was specified.

EP_LABEL

[∆]$[∆]EP_LABEL[∆][;comment]

CubeSuite Ver.1.40 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 286 of 890
Oct 01, 2010

Cancels the specification made with the EP_LABEL directive.

[Syntax]

[Function]

- Cancels the specification made with the EP_LABEL directive for the subsequent instructions.
- If $NO_EP_LABEL is omitted, then the assembler will assume that $EP_LABEL was specified.

NO_EP_LABEL

[∆]$[∆]NO_EP_LABEL[∆][;comment]

CubeSuite Ver.1.40 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 287 of 890
Oct 01, 2010

Does not expand the subsequent instructions.

[Syntax]

[Function]

- Does not expand the subsequent instructions, other than the setfcond/jcond/jmp/cmovcond/sasfcond instructions.

NO_MACRO

[∆]$[∆]NO_MACRO[∆][;comment]

CubeSuite Ver.1.40 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 288 of 890
Oct 01, 2010

Cancels the specification made with the NO_MACRO directive.

[Syntax]

[Function]

- Cancels the specification made with the NO_MACRO directive for the subsequent instructions.

MACRO

[∆]$[∆]MACRO[∆][;comment]

CubeSuite Ver.1.40 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 289 of 890
Oct 01, 2010

Assumes that external data having symbol name extern_symbol has been allocated to the data or bss attribute section,
and expands the instructions which reference that data.

[Syntax]

[Function]

- Assumes that external data having symbol name extern_symbol has been allocated to the data or bss attribute
section, regardless of the size specified with the -Xsdata option, and expands the instructions which reference that
data.

- This format is used when a variable for which "data" is specified in #pragma section or section file is externally ref-
erenced by an assembler source file.

DATA

[∆]$[∆]DATA[∆]symbol-name[∆][;comment]

CubeSuite Ver.1.40 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 290 of 890
Oct 01, 2010

Assumes that external data having symbol name extern_symbol has been allocated to the sdata or sbss attribute sec-
tion, and dose not expand the instructions which reference that data.

[Syntax]

[Function]

- Assumes that external data having symbol name extern_symbol has been allocated to the sdata or sbss attribute
section, regardless of the size specified with the -Xsdata option, and does not expand the instructions which refer-
ence that data.

- This format is used when a variable for which "sdata" is specified in #pragma section or section file is externally
referenced by an assembler source file.

SDATA

[∆]$[∆]SDATA[∆]symbol-name[∆][;comment]

CubeSuite Ver.1.40 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 291 of 890
Oct 01, 2010

Does not output warning messages.

[Syntax]

[Function]

- Does not output warning messages for the subsequent instructions.

NOWARNING

[∆]$[∆]NOWARNING[∆][;comment]

CubeSuite Ver.1.40 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 292 of 890
Oct 01, 2010

Output warning messages.

[Syntax]

[Function]

- Output warning messages for the subsequent instructions.

WARNING

[∆]$[∆]WARNING[∆][;comment]

CubeSuite Ver.1.40 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 293 of 890
Oct 01, 2010

4.3.5 File input control instructions

Using the file input control instruction, the CX can input an assembler source file or binary file to a specified position.
The following file input control instructions are available.

Table 4-18. File Input Control Instructions

Control Instruction Overview

INCLUDE Quotes a series of statements from another source module file

BINCLUDE Inputs a binary file

CubeSuite Ver.1.40 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 294 of 890
Oct 01, 2010

Quote a series of statements from another source module file.

[Syntax]

[Function]

- The INCLUDE control instruction tells the assembler to insert and expand the contents of a specified file beginning
on a specified line in the source program for assembly.

[Use]

- A relatively large group of statements that may be shared by two or more source modules should be combined into
a single file as an INCLUDE file.
If the group of statements must be used in each source module, specify the filename of the required INCLUDE file
with the INCLUDE control instruction.
With this control instruction, you can greatly reduce time and labor in describing source modules.

[Description]

- The INCLUDE control instruction can only be described in ordinary source programs.
- The search pass of an INCLUDE file can be specified with the option (-I).
- The assembler searches INCLUDE file read paths in the following sequence:

(1) Folder specified by the option (-I)

(2) Folder in which the source file exists

(3) Folder containing the (original) C source file

(4) Currently folder

- The INCLUDE file can do nesting (the term "nesting" here refers to the specification of one or more other
INCLUDE files in an INCLUDE file).

- The maximum nesting level for include files is 4,294,967,294 (=0xFFFFFFFE) (theoretical value). The actual num-
ber that can be used depends on the amount of memory, however.

- If the specified INCLUDE file cannot be opened, the CX outputs the message and stops assembling.
- If an include file contains a block from start to finish, such as a section definition directive, macro definition direc-

tive, or conditional assembly control instruction, then it must be closed with the corresponding code. If it is not so
closed, then an error will be output, and assembly will continue assuming the include file is closed.

- Section definition directive, macro definition directives, and conditional assembly control instructions that are not
targets for assembly are not checked.

INCLUDE

[∆]$[∆]INCLUDE[∆]([∆]file-name[∆])[∆][;comment]

CubeSuite Ver.1.40 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 295 of 890
Oct 01, 2010

Inputs a binary file.

[Syntax]

[Function]

- Assumes the contents of the binary file specified by the operand to be the result of assembling the source file at
the position of this control instruction.

[Description]

- The search pass of an INCLUDE file can be specified with the option (-I).
- The assembler searches INCLUDE file read paths in the following sequence:

(1) Folder specified by the option (-I)

(2) Folder in which the source file exists

(3) Folder containing the (original) C source file

(4) Currently folder

- This control instruction handles the entire contents of the binary files. When a relocatable file is specified, this con-
trol instruction handles files configured in ELF format. Note that it is not just the contents of the .text selection, etc.
that are handled.

- If a non-existent file is specified, the CX outputs the message then stops assembling.

BINCLUDE

[∆]$[∆]BINCLUDE[∆]([∆]file-name[∆])[∆][;comment]

CubeSuite Ver.1.40 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 296 of 890
Oct 01, 2010

4.3.6 Smart correction control instruction

You can use the smart correction control instruction to instruct that an uncorrected function be changed to a corrected
function in an object module file.

The following smart correction control instructions are available.

Table 4-19. Smart Correction Control Instruction

Control Instruction Overview

SMART_CORRECT Changes an uncorrected function to a corrected function

CubeSuite Ver.1.40 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 297 of 890
Oct 01, 2010

Instruct that the uncorrected function be changed to the corrected function in an object module file.

[Syntax]

[Function]

- Instruct that the uncorrected function be changed to the corrected function in an object module file.

[Description]

- Instruct that the uncorrected function be changed to the corrected function in an object module file.
- The assembler outputs a branch instruction to branch from the start of the uncorrected function to the corrected

function.
- The branch instruction to branch to the corrected function (_func) is as follows.

- If the code size of the uncorrected function is smaller than the size of the code needed to call the corrected func-
tion, then an error message is output, and assembly halts.

SMART_CORRECT

[∆]$[∆]SMART_CORRECT∆σtart-label-uncorrected-function,end-label-uncorrected-function,

start-label-corrected-function∆[;comment]

jr32 _func

CubeSuite Ver.1.40 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 298 of 890
Oct 01, 2010

4.3.7 Conditional assembly control instructions

Using conditional assembly control instruction, the CX can control the range of assembly according to the result of
evaluating a conditional expression.

The following conditional assembly control instructions are available.

Table 4-20. Conditional Assembly Control Instructions

The maximum number of nest level of the conditional assembly control instruction is 4,294,967,294 (=0xFFFFFFFE)
(theoretical value). The actual number that can be used depends on the amount of memory, however.

Control Instruction Overview

IFDEF Control based on symbol (assembly performed when the symbol is defined)

IFNDEF Control based on symbol (assembly performed when the symbol is not defined)

IF Control based on absolute expression (assembly performed when the value is

true)

IFN Control based on absolute expression (assembly performed when the value is

false)

ELSEIF Control based on absolute expression (assembly performed when the value is

true)

ELSEIFN Control based on absolute expression (assembly performed when the value is

false)

ELSE Control based on absolute expression/symbol

ENDIF End of control range

CubeSuite Ver.1.40 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 299 of 890
Oct 01, 2010

Control based on symbol (assembly performed when the symbol is defined).

[Syntax]

[Function]

- If the switch name specified by the operand is defined.

(a) If this control instruction and the corresponding ELSEIF, ELSEIFN, or ELSE control instruction exist,
assembles the block enclosed within this control instruction and the corresponding control instruc-
tion.

(b) If none of the corresponding control instruction detailed above exist, assembles the block enclosed
within this control instruction and the corresponding ENDIF control instruction.

- If the specified switch name is not defined.
Skips to the ELSEIF, ELSEIFN, ENSE, or ENDIF control instruction corresponding to this control instruction.

[Use]

- With these conditional assembly control instructions, source statements subject to assembly can be changed with-
out major modifications to the source program.

- If a statement for debugging that becomes necessary only during the program development is described in a
source program, whether or not the debugging statement should be assembled (translated into machine language)
can be specified by setting switches for conditional assembly.

[Description]

- This control instruction can be placed in an ordinary source program.
- The rules of describing switch names are the same as the conventions of symbol description (for details, see "(2)

Symbol").
- Switch names can overlap with user-defined symbols other than reserved words. Note, however, that overlapping

between switch names is checked.
- Switch names are not output to the assembly list file's symbol-list information or cross-reference information.

IFDEF

[∆]$[∆]IFDEF[∆]switch-name[∆][;comment]

CubeSuite Ver.1.40 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 300 of 890
Oct 01, 2010

Control based on symbol (assembly performed when the symbol is not defined).

[Syntax]

[Function]

- If the switch name specified by the operand is defined.
Skips to the ELSEIF, ELSEIFN, ENSE, or ENDIF control instruction corresponding to this control instruction.

- If the specified switch name is not defined.

(a) If this control instruction and the corresponding ELSEIF, ELSEIFN, or ELSE control instruction exist,
assembles the block enclosed within this control instruction and the corresponding control instruc-
tion.

(b) If none of the corresponding control instruction detailed above exist, assembles the block enclosed
within this control instruction and the corresponding ENDIF control instruction.

[Use]

- With these conditional assembly control instructions, source statements subject to assembly can be changed with-
out major modifications to the source program.

- If a statement for debugging that becomes necessary only during the program development is described in a
source program, whether or not the debugging statement should be assembled (translated into machine language)
can be specified by setting switches for conditional assembly.

[Description]

- This control instruction can be placed in an ordinary source program.
- The rules of describing switch names are the same as the conventions of symbol description (for details, see "(2)

Symbol").
- Switch names can overlap with user-defined symbols other than reserved words. Note, however, that overlapping

between switch names is checked.
- Switch names are not output to the assembly list file's symbol-list information or cross-reference information.

IFNDEF

[∆]$[∆]IFNDEF[∆]switch-name[∆][;comment]

CubeSuite Ver.1.40 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 301 of 890
Oct 01, 2010

Control based on absolute expression (assembly performed when the value is true).

[Syntax]

[Function]

- If the absolute expression specified by the operand is evaluated as being true (≠ 0).

(a) If this control instruction and the corresponding ELSEIF, ELSEIFN, or ELSE control instruction exist,
assembles the block enclosed within this control instruction and the corresponding control instruc-
tion.

(b) If none of the corresponding control instruction detailed above exist, assembles the block enclosed
within this control instruction and the corresponding ENDIF control instruction.

- If the absolute expression is evaluated as being false (= 0).
Skips to the ELSEIF, ELSEIFN, ENSE, or ENDIF control instruction corresponding to this control instruction.

[Use]

- With these conditional assembly control instructions, source statements subject to assembly can be changed with-
out major modifications to the source program.

- If a statement for debugging that becomes necessary only during the program development is described in a
source program, whether or not the debugging statement should be assembled (translated into machine language)
can be specified by setting switches for conditional assembly.

[Description]

- This control instruction can be placed in an ordinary source program.
- Absolute expressions are evaluated as 32-bit signed integers.

IF

[∆]$[∆]IF[∆]absolute-expression[∆][;comment]

CubeSuite Ver.1.40 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 302 of 890
Oct 01, 2010

Control based on absolute expression (assembly performed when the value is false).

[Syntax]

[Function]

- If the absolute expression specified by the operand is evaluated as being true (≠ 0).
Skips to the ELSEIF, ELSEIFN, ENSE, or ENDIF control instruction corresponding to this control instruction.

- If the absolute expression is evaluated as being false (= 0).

(a) If this control instruction and the corresponding ELSEIF, ELSEIFN, or ELSE control instruction exist,
assembles the block enclosed within this control instruction and the corresponding control instruc-
tion.

(b) If none of the corresponding control instruction detailed above exist, assembles the block enclosed
within this control instruction and the corresponding ENDIF control instruction.

[Use]

- With these conditional assembly control instructions, source statements subject to assembly can be changed with-
out major modifications to the source program.

- If a statement for debugging that becomes necessary only during the program development is described in a
source program, whether or not the debugging statement should be assembled (translated into machine language)
can be specified by setting switches for conditional assembly.

[Description]

- This control instruction can be placed in an ordinary source program.
- Absolute expressions are evaluated as 32-bit signed integers.

IFN

[∆]$[∆]IFN[∆]absolute-expression[∆][;comment]

CubeSuite Ver.1.40 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 303 of 890
Oct 01, 2010

Control based on absolute expression (assembly performed when the value is true).

[Syntax]

[Function]

- If the absolute expression specified by the operand is evaluated as being true (≠ 0).

(a) If this control instruction and the corresponding ELSEIF, ELSEIFN, or ELSE control instruction exist,
assembles the block enclosed within this control instruction and the corresponding control instruc-
tion.

(b) If none of the corresponding control instruction detailed above exist, assembles the block enclosed
within this control instruction and the corresponding ENDIF control instruction.

- If the absolute expression is evaluated as being false (= 0).
Skips to the ELSEIF, ELSEIFN, ENSE, or ENDIF control instruction corresponding to this control instruction.

[Use]

- With these conditional assembly control instructions, source statements subject to assembly can be changed with-
out major modifications to the source program.

- If a statement for debugging that becomes necessary only during the program development is described in a
source program, whether or not the debugging statement should be assembled (translated into machine language)
can be specified by setting switches for conditional assembly.

[Description]

- This control instruction can be placed in an ordinary source program.
- Absolute expressions are evaluated as 32-bit signed integers.

ELSEIF

[∆]$[∆]ELSEIF[∆]absolute-expression[∆][;comment]

CubeSuite Ver.1.40 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 304 of 890
Oct 01, 2010

Control based on absolute expression (assembly performed when the value is false).

[Syntax]

[Function]

- If the absolute expression specified by the operand is evaluated as being true (≠ 0).
Skips to the ELSEIF, ELSEIFN, ENSE, or ENDIF control instruction corresponding to this control instruction.

- If the absolute expression is evaluated as being false (= 0).

(a) If this control instruction and the corresponding ELSEIF, ELSEIFN, or ELSE control instruction exist,
assembles the block enclosed within this control instruction and the corresponding control instruc-
tion.

(b) If none of the corresponding control instruction detailed above exist, assembles the block enclosed
within this control instruction and the corresponding ENDIF control instruction.

[Use]

- With these conditional assembly control instructions, source statements subject to assembly can be changed with-
out major modifications to the source program.

- If a statement for debugging that becomes necessary only during the program development is described in a
source program, whether or not the debugging statement should be assembled (translated into machine language)
can be specified by setting switches for conditional assembly.

[Description]

- This control instruction can be placed in an ordinary source program.
- Absolute expressions are evaluated as 32-bit signed integers.

ELSEIFN

[∆]$[∆]ELSEIFN[∆]absolute-expression[∆][;comment]

CubeSuite Ver.1.40 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 305 of 890
Oct 01, 2010

Control based on absolute expression/symbol.

[Syntax]

[Function]

- If the specified switch name is not defined by the IFDEF control instruction, if the absolute expression of the IF, or
ELSEIF control instruction is evaluated as being false (= 0), or if the absolute expression of the IFN, or ELSEIFN
control instruction is evaluated as being true (≠ 0), assembles the arrangement of statements (block) enclosed
within this control instruction and the corresponding ENDIFcontrol instruction.

[Use]

- With these conditional assembly control instructions, source statements subject to assembly can be changed with-
out major modifications to the source program.

- If a statement for debugging that becomes necessary only during the program development is described in a
source program, whether or not the debugging statement should be assembled (translated into machine language)
can be specified by setting switches for conditional assembly.

[Description]

- This control instruction can be placed in an ordinary source program.

ELSE

[∆]$[∆]ELSE[∆]absolute-expression[∆][;comment]

CubeSuite Ver.1.40 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 306 of 890
Oct 01, 2010

End of control range.

[Syntax]

[Function]

Indicates the end of the control range of a conditional assembly control instruction.

[Use]

- With these conditional assembly control instructions, source statements subject to assembly can be changed with-
out major modifications to the source program.

- If a statement for debugging that becomes necessary only during the program development is described in a
source program, whether or not the debugging statement should be assembled (translated into machine language)
can be specified by setting switches for conditional assembly.

[Description]

- This control instruction can be placed in an ordinary source program.

ENDIF

[∆]$[∆]ENDIF[∆]absolute-expression[∆][;comment]

CubeSuite Ver.1.40 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 307 of 890
Oct 01, 2010

4.4 Macro

This section lainshe hthe cro function.
This is very convenient function to describe serial instruction group for number of times in the program.

4.4.1 Outline

This macro function is very convenient function to describe serial instruction group for number of times in the program.
Macro function is the function that is deployed at the location where serial instruction group defined as macro body is

referred by macros as per .macro, .endm directives.
Macro differs from subroutine as it is used to improve description of the source.
Macro and subroutine has features respectively as follows. Use them effectively according to the respective purposes.

- Subroutine
Process required many times in program is described as one subroutine. Subroutine is converted in machine lan-
guage only once by assembler.
Subroutine/call instruction (generally instruction for argument setting is required before and after it) is described
only in subroutine reference. Consequently, memory of program can be used effectively by using subroutine.
It is possible to draw structure of program by executing subroutine for process collected serially in program
(Because program is structured, entire program structure can be easily understood as well setting of the program
also becomes easy.).

- Macro
Basic function of macro is to replace instruction group.
Serial instruction group defined as macro body by .macro, .endm directives are deployed in that location at the
time of referring macro. Assembler deploys macro/body that detects macro reference and converts the instruction
group to machine language while replacing temporary parameter of macro/body to actual parameter at the time of
reference.
Macro can describe a parameter.
For example, when process sequence is the same but data described in operand is different, macro is defined by
assigning temporary parameter in that data. When referring the macro, by describing macro name and actual
parameter, handling of various instruction groups whose dercription is different in some parts only is possible.

Subroutine technique is used to improve efficiency of coding for macro to use to draw structure of program and reduc-
ing memory size.

4.4.2 Usage of macro

A macro is described by registering a pattern with a set sequence and by using this pattern. A macro is defined by the
user. A macro is defined as follows. The macro body is enclosed by ".macro" and ".endm".

If the following description is made after the above definition has been made, the macro is replaced by a code that
"stores r19 in the stack".

PUSHMAC .macro REG --The following two statements constitute the macro body.

 add -4, sp

 st.w REG, 0x0[sp]

.endm

PUSHMAC r19

CubeSuite Ver.1.40 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 308 of 890
Oct 01, 2010

In other words, the macro is expanded into the following codes.

4.4.3 Macro operator

This section describes the combination symbols "~" and "$", which are used to link strings in macros.

(1) ∼ (Concatenation)
- The concatenation "∼ " concatenates one character or one character string to another within a macro body.

At macro expansion time, the character or character string on the left of the concatenation is concatenated to
the character or character string on the right of the sign. The "∼ " itself disappears after concatenating the
strings.

- The symbols before and after the combination symbol "~" in the symbols of a macro definition can be recog-
nized as formal parameters or local symbols, and combination symbols can also be used as delimiter symbols.
At macro expansion time, strings before and after the "∼ " in the symbol are evaluated as the local symbols and
formal parameters, and concatenated into single symbols.

- The character "~" can only be used as a combination symbol in a macro definition.
- The "∼ " in a character string and comment is simply handled as data.
- Two "∼ " signs in succession are handled as a single "∼ " sign.

Examples 1.

2.

add -4, sp

st.w r19, 0x0[sp]

abc .macro x

 abc~x: mov r10, r20

 sub def~x, r20

.endm

abc NECEL

[Development result]

abcNECEL: mov r10, r20

 sub defNECEL, r20

abc .macro x, xy

 a_~xy: mov r10, r20

 a_~x~y: mov r20, r10

.endm

abc necel, NECEL

[Development result]

a_NECEL: mov r10, r20

a_necely: mov r20, r10

CubeSuite Ver.1.40 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 309 of 890
Oct 01, 2010

3.

(2) $ (Dollar symbol)
If a symbol prefixed with a dollar symbol ($) is specified as an actual argument for a macro call, the assembler
assumes the symbol to be specified as an actual argument. If, however, an identifier other than a symbol or an
undefined symbol name is specified immediately after the dollar symbol ($), the as850 outputs the message then
stops assembling.

Example

4.5 Reserved Words

The assembler has reserved words. Reserve word cannot be used in symbol, label, section name, macro name. If a
reserved word is specified, the CX outputs the message and stops assembling. Reserve word doesn't distinguish
between uppercase and lowercase.

The reserved words are as follows.
- Instructions (such as add, sub, and mov)
- Directives
- Control instructions
- Register names, Internal register name

abc .macro x, xy

 ~ab: mov r10, r20

.endm

abc necel, NECEL

[Development result]

ab: mov r10, r20

mac1 .macro x

 mov x, r10

.endm

.macro mac2

 .set value, 10

 mac1 value

 mac1 $value

.endm

mac2

[Development result]

.set value, 10

mov value, r10

mov 10, r10

CubeSuite Ver.1.40 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 310 of 890
Oct 01, 2010

4.6 Assembler Generated Symbols

The following is a list of symbols generated by the assembler for use in internal processing.

This excludes, however, reserved section names. Symbols with the same names as the symbols below cannot be

used.

Table 4-21. Assembler Generated Symbols

4.7 Instructions

This section describes various instruction functions of V850 microcontroller products.
See the device with an instruction set of V850E2V3 product user's manual and architecture edition for details about the

device with an instruction set of V850E2V3.

4.7.1 Memory space

V850 microcontroller has architecture of 32 bit and supports linear address space (data space) of maximum 4G byte in
operand addressing.

On other hand, linear address space (program space) of maximum 16M byte is supported in address of instruction
address.

Memory map of V850 microcontroller is shown below.
However, see user's manual of each product for details as contents of internal ROM, internal RAM etc are different for

each product.

Figure 4-2. Memory Map of V850 Microcontroller

Symbol Name Explanation

.__multi_N

.__multi_N.end

(N：0 to 4294967294))

Multi-core information symbols

.??00000000 to .??FFFFFFFF .local directive generation local symbols

__s_PPPP_SSSS0000

(PPPP : Primary file names)

(SSSS : text section name)

Symbols for assembler debugging information

Example：__s_src_sub_sample0000

Peripheral I/O

4G bytes linear

Internal RAM

Internal ROM/
PROM/
Flash memory

FFFFFFFFH

FFFFEFFFH

00000000H

CubeSuite Ver.1.40 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 311 of 890
Oct 01, 2010

4.7.2 Register

Register can be divided broadly in 2 types of registers such as program register used for general program and system
register used for controlling of executing environment. Register has width of 32 bits.

Figure 4-3. Program Register

r0: Zero register

r1: Assembler reserve register

r2

r3: Stack pointer(SP)

r4: Global pointer(GP)

r5: Text pointer(TP)

r30: Element pointer(EP)

r31: Link pointer(LP)

PC: Program counter

031

r6

r7

r8

r9

r10

r11

r12

r13

r14

r15

r16

r17

r18

r19

r20

r21

r22

r23

r24

r25

r26

r27

r28

r29

CubeSuite Ver.1.40 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 312 of 890
Oct 01, 2010

Figure 4-4. System Register

See the device with an instruction set of V850E2V3 product user's manual and architecture edition for details.

PMU function group system registers

Processor protection function group system registers

CPU function group system registers

EIPC: status save register when acknowledging an EI level exception

EIPSW: status save register when acknowledging an EI level exception

SCCFG: SYSCALL operation setting

SCBP: SYSCALL base pointer

ECR: exception cause

PSW: program status word

31

FEPC: status save register when acknowledging an FE level exception

FEPSW: status save register when acknowledging an FE level exception

EIIC: EI level exception cause

FEIC: FE level exception cause

CTPC: status save register when executing CALLT

CTPSW: status save register when executing CALLT

DBIC: DB level exception cause

Debug function registers

CTBP: CALLT base pointer

DBWR: DB level execution working register

DBPC: status save register when acknowledging a DB level exception

DBPSW: status save register when acknowledging a DB level exception

EIWR: EI level exception working register

FEWR: FE level exception working register

BSEL: register bank selection

0

FPU function group system registers

CubeSuite Ver.1.40 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 313 of 890
Oct 01, 2010

(1) Program register
The program registers include general-purpose registers (r0 to r31) and a program counter (PC).

Table 4-22. Program Registers

(a) General purpose registerr0 to r31
Thirty-two general-purpose registers, r0 to r31, are provided. These registers can be used for address vari-
ables or data variables.
However, care must be exercised as follows in using the r0 to r5, r30, and r31 registers.

<1> r0, r30
r0 and r30 are implicitly used by instructions.
r0 is a register that always holds 0, and is used for operations using 0 and offset 0 addressing.
r30 is used as base pointer by SLD instruction or SST instruction when accessing memory.

<2> r1, r3 to r5, r31
r1, r3 to r5, and r31 are implicitly used by the assembler and C compiler.
Before using these registers, therefore, their contents must be saved so that they are not lost. The con-
tents must be restored to the registers after the registers have been used.

<3> r2
r2 is sometimes used by a real-time OS.
When the real-time OS is not using r2, r2 can be used as an address variable register or a data variable
register.

Name Purpose Operation

r0 Zero register Always holds 0.

r1 Assembler reserved registe Working register when generating the address.

r2 Address/data variable register (when the real-time OS to be used is not using r2).

r3 Stack pointer Used for stack frame generation when function is called.

r4 Global pointer Used to access global variable in data area.

r5 Text pointer Used as register for pointing to start address of text area
(area where program code is placed).

r6 to r29 Address/data variable registers.

r30 Element pointer Used as base pointer when generating address at the time of
accessing the memory.

r31 Link pointer Used when compiler calls function.

PC Program counter Saves instruction address in program execution.

CubeSuite Ver.1.40 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 314 of 890
Oct 01, 2010

(b) Program counter: PC
This register holds an instruction address during program execution.
Further, meaning of each bit of PC differs according to the types (V850ES, V850E1, V850E2) of CPU.

<1> V850ES, V850E1
Bits 25-0 are valid and bits 31-26 are reserved for future function expansion (fixed to 0).
If a carry occurs from bit 25 to bit 26, it is ignored. Bit Bit 0 is always fixed to 0 so that execution cannot
branch to an odd address.

Figure 4-5. Program Counter [V850ES, V850E1]

<2> V850E2
Bits 28-0 are valid and bits 31-29 are reserved for future function expansion (fixed to 0).
If a carry occurs from bit 28 to bit 29, it is ignored. Bit 0 is always fixed to 0 so that execution cannot
branch to an odd address.

Figure 4-6. Program Counter [V850E2]

031 26 25 1

PC 0(Executing command address)

031 1

PC 0(Executing command address)

29 28

CubeSuite Ver.1.40 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 315 of 890
Oct 01, 2010

4.7.3 Addressing

The CPU generates two types of addresses: instruction addresses used for instruction fetch and branch operations;
and operand addresses used for data access.

(1) Instruction address
An instruction address is determined by the contents of the program counter (PC), and is automatically incre-
mented (+2) according to the number of bytes of an instruction to be fetched each time an instruction is executed.
When a branch instruction is executed, the branch destination address is loaded into the PC using one of the fol-
lowing two addressing modes.

(a) Relative addressing (PC relative)
The signed 9- or 22-bit data of an instruction code (displacement: disp x) is added to the value of the program
counter (PC). At this time, the displacement is treated as 2's complement data with bits 8 and 21 serving as
sign bits (S).
JR disp22 instruction, JARL disp22, reg2 instruction, JR disap32 instruction, JARL disp32, reg1 instruction,
Bcnd disp9 instruction is the target of this addressing.

Figure 4-7. Relative Addressing (JR disp22/JARL disp22, reg2) [V850ES, V850E1]

31 0

PC0 0 0 0 0 0 0

+

31 0

disp22Sign extension 0

22 221

S

31 0

PC0 0 0 0 0 0

26 25

0

26 25

Operation target memory

CubeSuite Ver.1.40 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 316 of 890
Oct 01, 2010

Figure 4-8. Relative Addressing (JR disp22/JARL disp22, reg2) [V850E2]

Figure 4-9. Relative Addressing (JR disp32/JARL disp32, reg2) [V850E2]

31 0

PC0 0 0 0

+

31 0

disp22 0

22 21

S

31 0

PC0 0 0 0

29 28

29 28

Sign extension

Operation target memory

31 0

PC0 0 0 0

+

31 0

disp32 0S

31 0

PC0 0 0 0

29 28

29 28

Operation target memory

CubeSuite Ver.1.40 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 317 of 890
Oct 01, 2010

Figure 4-10. Relative Addressing (Bcnd disp9) [V850ES, V850E1]

Figure 4-11. Relative Addressing (Bcnd disp9) [V850E2]

31 0

disp9 0

9 8

S

31 0

PC0 0 0 0 0 0

26 25

0

+

31 0

PC0 0 0 0 0 0 0

26 25

Sign extension

Operation target memory

31 0

disp9 0

9 8

S

31 0

PC0 0 0

29 28

0

+

31 0

PC0 0 0 0

29 28

Sign extension

Operation target memory

CubeSuite Ver.1.40 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 318 of 890
Oct 01, 2010

(b) Register addressing (Register indirect)
The contents of a general-purpose register (reg1) specified by an instruction are transferred to the program
counter (PC).
This addressing is used for the JMP [reg1] instruction.

Figure 4-12. Register Addressing (JMP [reg1]) [V850ES, V850E1]

Figure 4-13. Register Addressing (JMP [reg1]) [V850E2]

31 0

31 0

PC0 0 0 0 0 0 0

reg1

26 25

Operation target memory

31 0

31 0

PC0 0 0 0

reg1

29 28

Operation target memory

CubeSuite Ver.1.40 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 319 of 890
Oct 01, 2010

(c) Based addressing
Contents of general purpose register (reg1) specified by command, in which 32 bit data (displacement: disp) is
added, are forwarded in program counter (PC).
This addressing is used for the JMP disp32 [reg1] instruction.

Figure 4-14. Register Addressing (JMP disp32[reg1]) [V850E2]

(2) Operand address
When an instruction is executed, the register or memory area to be accessed is specified in one of the following
four addressing modes.

(a) Register addressing
The general-purpose register or system register specified in the general-purpose register specification field is
accessed as operand.
This addressing mode applies to instructions using the operand format reg1, reg2, reg3, or regID.

(b) Immediate addressing
The 5-bit or 16-bit data for manipulation is contained in the instruction code
This addressing mode applies to instructions using the operand format imm5, imm16, vector, or cccc.

<1> vector
Operand that is 5-bit immediate data for specifying a trap vector (00H to 1FH), and is used in the TRAP
instruction.

<2> cccc
Operand consisting of 4-bit data used in the CMOV, SASF, and SETF instructions to specify a condition
code. Assigned as part of the instruction code as 5-bit immediate data by appending 1-bit 0 above the
highest bit.

31 0

disp32 0S

31 0

reg1

+

Operation target memory

31 0

PC0 0 0 0

29 28

CubeSuite Ver.1.40 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 320 of 890
Oct 01, 2010

(c) Based addressing
The following two types of based addressing are supported.

<1> Type 1
The address of the data memory location to be accessed is determined by adding the value in the speci-
fied general-purpose register (reg1) to the 16-bit displacement value (disp16) contained in the instruction
code.
This addressing mode applies to instructions using the operand format disp16 [reg1].

Figure 4-15. Based Addressing (Type1) [V850ES, V850E1, V850E2]

<2> Type 2
The address of the data memory location to be accessed is determined by adding the value in the ele-
ment pointer (r30) to the 7- or 8-bit displacement value (disp7, disp8).
This addressing mode applies to SLD and SST instructions.

Figure 4-16. Based Addressing (Type2) [V850ES, V850E1, V850E2]

Remark Byte access = disp7
Halfword access and word access: disp8

Sign extension

reg1

31 0

31 0

disp16

16 15

+

Operation target memory

8 7

Zero corresponding extension

r30(element pointer)

31 0

31 0

disp8 or disp7

+

Operation target memory

CubeSuite Ver.1.40 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 321 of 890
Oct 01, 2010

(d) Bit addressing
This addressing is used to access 1 bit (specified with bit#3 of 3-bit data) among 1 byte of the memory space
to be manipulated by using an operand address which is the sum of the contents of a general-purpose regis-
ter. (reg1) and a 16-bit displacement (disp16) sign-extended to a word length.
This addressing mode applies only to bit manipulation instructions.

Figure 4-17. Bit Addressing [V850ES, V850E1, V850E2]

Remark n: Bit position specified with 3-bit data (bit#3) (n = 0 to 7)

n

reg1

31 0

31 0

disp16

16 15

+

Operation target memory

Sign extension

CubeSuite Ver.1.40 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 322 of 890
Oct 01, 2010

4.7.4 Instruction set

This section explains the instruction set supported by the CX.

(1) Description of symbols
Next table lists the meanings of the symbols used further.

Table 4-23. Meaning of Symbols

Symbols Meaning

CMD Instruction

CMDi Instruction(andi, ori, or xori)

reg, reg1, reg2 Register

r0, R0 Zero register

R1 Assembler-reserved register

gp Global pointer (r4)

ep Element pointer (r30)

[reg] Base register

disp Displacement (Displacement from the address)

32 bits unless otherwise stated.

dispn n-bit displacement

imm Immediate

32 bits unless otherwise stated.

immn n-bit immediate

bit#3 3-bit data for bit number specification

cc#3 3-bit data for specifying CC0 to CC7 (bits 24 to 31) of the FPSR floating-point system register

#label Absolute address reference of label

label Offset reference of label in section or PC offset reference

However, for a section allocated to a segment for which a tp symbol is to be generated, offset
reference from the tp symbol is referred instead of offset in section

$label gp offset reference of label

!label Absolute address reference of label (without instruction expansion)

%label Offset reference of ep

HIGHW(value) Higher 16 bits of value

LOWW(value) Lower 16 bits of value

HIGHW1(value) Higher 16 bits of value + bit valueNote of bit number 15 of value

HIGH(value) Upper 8 bits of the lower 16 bits of value

LOW(value) Lower 8 bits of value

addr Address

PC Program counter

PSW Program status word

regID System register number (0 to 31)

vector Trap vector (0 to 31)

CubeSuite Ver.1.40 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 323 of 890
Oct 01, 2010

Note The bit number 0 is LSB (Least Significant Bit).

(2) Operand
This section describes the description format of operand in assembler. In assembler, register, constant, symbol,
label reference, and expression that composes of constant, symbol, label reference, operator and parentheses can
be specified as the operands for instruction, and directives.

(a) Register
The registers that can be specified with the assembler are listed below.Note

r0, zero, r1, r2, hp, r3, sp, r4, gp, r5, tp, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17, r18, r19, r20, r21,
r22, r23, r24, r25, r26, r27, r28, r29, r30, ep, r31, lp

Note For the ldsr and stsr instructions, the PSW, and system registers are specified by using the numbers.
Further, in assembler, PC cannot be specified as an operand.

r0 and zero (Zero register), r2 and hp (Handler stack pointer), r3 and sp (Stack pointer), r4 and gp (Global
pointer), r5 and tp (Text pointer), r30 and ep (Element pointer), r31 and lp (Link pointer) shows the same regis-
ter.

(b) r0
r0 is the register which normally contains 0 value. This register does not substitute the result of an operation
even if used as a destination register. When r0 is specified as a destination register, the assembler outputs the
following messageNote, and then continues assembling.

Note Output of this message can be suppressed by specifying the warning message suppression option (-
Xwarning_level) upon starting the assembler.

(c) r1
The assembler-reserved register (r1) is used as a temporary register when instruction expansion is performed
using the assembler. If r1 is specified as a source or destination register, the assembler outputs the following
messageNote, then continues assembling.

Note Output of this message can be suppressed by specifying the warning message suppression option (-
Xwarning_level) upon starting the assembler.

BITIO Peripheral I/O register (for 1-bit manipulation only)

mov 0x10, r0

 ↓

W0550013: r0 used as destination register

mov 0x10, r1

 ↓

W0550013: r1 used as destination register

Symbols Meaning

CubeSuite Ver.1.40 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 324 of 890
Oct 01, 2010

(d) Constants
As the constituents of the absolute expressions or relative expressions that can be used to specify the oper-
ands of the instructions and pseudo-instruction in the assembler, integer constants and character constants
can be used. For the ld/st and bit manipulation instructions, a "peripheral I/O register name", defined in the
device file, can also be specified as an operand. Thus enabling input/output of a port address. Moreover,
floating-point constants can be used to specify the operand of the .float pseudo-instruction, and string con-
stants can be used to specify the operand of the .set pseudo-instruction.

(e) Symbols
The assembler supports the use of symbols as the constituents of the absolute expressions or relative expres-
sions that can be used to specify the operands of instructions and directives.

(f) Label Reference
In assembler, label reference can be used as a component of available relative value as shown in operand

designation of instruction/directive.

- Memory reference instruction (Load/store instruction, and bit manipulation instruction)

- Operation instruction (arithmetic operation instruction, saturated operation instruction, logical operation

instruction)

- Branch instruction

- Area reservation directive

In assembler, the meaning of a label reference varies with the reference method and the differences used in

the instructions/directives Details are shown below.

Table 4-24. Label Reference

mov r1, r10

 ↓

W0550013: r1 used as source register

Reference
Method

Instructions Used Meaning

#label Memory reference instruc-
tion, operation instruction
and jmp instruction

The absolute address of the position at which the definition of
label (label) exists (Offset from address 0Note 1).

This has a 32-bit address and must be expanded into two
instructions except mov instruction.

Area reservation directive The absolute address of the position at which the definition of
label (label) exists (Offset from address 0Note 1).

Note that the 32-bit address is a value masked in accordance
with the size of the area secured.

CubeSuite Ver.1.40 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 325 of 890
Oct 01, 2010

!label Memory reference instruc-
tion, operation instruction

The absolute address of the position at which the definition of
label (label) exists (Offset from address 0 Note 1).

This has a 16-bit address and cannot expand instructions if
instructions with 16-bit displacement or immediate are speci-
fied.

If any other instructions are specified, expansion into appro-
priate one instruction is possible.

If the address defined by label (label) is not within a range
expressible by 16 bits, an error will be occur at the time of
link.

Area reservation directive The absolute address of the position at which the definition of
label (label) exists (Offset from address 0 Note 1).

Note that the 32-bit address is a value masked in accordance
with the size of the area secured.

label Memory reference instruc-
tion, operation instruction

The offset in the section of the position where definition of the
label (label) exists (offset from the initial address of the sec-
tion where the definition of label (label) existsNote 2).

This has a 32-bit offset and must be expanded into two
instructions.

Note that for a section allocated to a segment for which a tp
symbol is to be generated, the offset is referred from the tp
symbol.

Branch instruction except
jmp instruction

The PC offset at the position where definition of label (label)
exists (offset from the initial address of the instruction using
the reference of label (label)Note 2).

Area reservation directive The offset in the section of the position where definition of the
label (label) exists (offset from the initial address of the sec-
tion where the definition of label (label) existsNote 2).

Note that the 32-bit offset is a value masked in accordance
with the size of the area secured.

%label Memory reference instruc-
tion, operation instruction

The ep offset at the position where definition of the label
(label) exists (offset from the address showing the element
pointer).

This has a 16-bit offset and cannot expand instructions if
instructions with 16-bit displacement or immediate are speci-
fied.

If any other instructions are specified, expansion into appro-
priate one instruction is possible.

If the address defined by label (label) is not within a range
expressible by 16 bits, an error will be occurred at the time of
link.

Area reservation directive The ep offset at the position where definition of the label
(label) exists (offset from the address showing the element
pointer).

Note that the 32-bit offset is a value masked in accordance
with the size of the area secured.

$label Memory reference instruc-
tion, operation instruction

The gp offset at the position where definition of the label
(label) exists (offset from the address showing the global
pointerNote 3).

Reference
Method

Instructions Used Meaning

CubeSuite Ver.1.40 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 326 of 890
Oct 01, 2010

Notes 1. The offset from address 0 in object module file after link.
2. The offset from the first address of the section (output section) in which the definition of label (label)

exists is allocated in the linked object module file.
3. The offset from the address indicated by the value of text pointer symbol + value of the global

pointer symbol for the segment to which the above output section is allocated.

The meanings of label references for memory reference instructions, operation instructions, branch instruc-
tions, and area allocation pseudo-instruction are shown below.

Table 4-25. Memory Reference Instruction

Note See "(h) gp Offset Reference".

Reference Method Meaning

#label[reg] The absolute address of label (label) is treated as a displacement.

This has a 32-bit value and must be expanded into two instructions. By set-
ting #label[r0], reference by an absolute address can be specified.

Part of [reg] can be omitted. If omitted, the assembler assumes that [r0] has
been specified.

label[reg] The offset in the section of label (label) is treated as a displacement.

This has a 32-bit value and must be expanded into two instructions. By
specifying a register indicating the first address of section as reg and thereby
setting label[reg], general register relative reference can be specified.

For a section allocated to a segment for which a tp symbol is to be gener-
ated, however, the offset from tp symbol is treated as a displacement.

$label[reg] The gp offset of label (label) is treated as a displacement.

This has either a 32-bit or 16-bit value, from the section defined by label
(label), and pattern of instruction expansion changes accordingly Note. If an
instruction with a 16-bit value is expanded and the offset calculated from the
address defined by label (label) is not within a range that can be expressed
in 16 bits, an error is output at the time of link. By setting $label [gp], relative
reference of the gp register (called a gp offset reference) can be specified.
Part of [reg] can be omitted. If omitted, the assembler assumes that [gp] has
been specified.

!label[reg] The absolute address of label (label) is treated as a displacement.

This has a 16-bit value and instruction is not expanded. If the address
defined by label (label) cannot be expressed in 16 bits, an error is output at
the time of link. By setting !lable[r0], reference by an absolute address can
be specified.

Part of [reg] can be omitted. If omitted, the assembler assumes that [r0] has
been specified.

However, unlike #label[reg] reference, instruction expansion is not executed.

%label[reg] The offset from the ep symbol in the position where definition of the label
(label) exists is treated as a displacement.

This either has a 16-bit value, or depending on the instruction a value lower
than this, and if it is not a value that can be expressed within this range, an
error is output at the time of link.

Part of [reg] can be omitted. If omitted, the assembler assumes that [ep] has
been specified.

CubeSuite Ver.1.40 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 327 of 890
Oct 01, 2010

Table 4-26. Operation Instructions

Notes 1. See "(h) gp Offset Reference".
2. The instructions for which a 16-bit value can be specified as an immediate are the addi, andi,

movea, mulhi, ori, satsubi, and xori instructions.

Table 4-27. Branch Instructions

Reference Method Significance

#label The absolute address of label (label) is treated as an immediate.

This has a 32-bit value and must be expanded into two instructions.

label The offset in the section of label (label) is treated as an immediate.

This has a 32-bit value and must be expanded into two instructions.

However, for a section allocated to a segment for which a tp symbol is to be
generated, the offset from the tp symbol is treated as an immediate value.

$label The gp offset of label (label) is treated as an immediate.

This either has a 32-bit or 16-bit value, from the section defined by label
(label), and pattern of instruction changes accordingly Note 1. If an instruction
with a 16-bit value is expanded and the offset calculated from the address
defined by label (label) is not within a range that can be expressed in 16 bits,
an error is output at the time of link.

!label The absolute address of label (label) is treated as an immediate.

This has a 16-bit value. If operation instruction of an architecture for which a
16-bit value can be specify Note 2 as an immediate are specified, and instruc-
tion is not expanded. If the add, mov, and mulh instructions are specified,
expansion into appropriate 1-instruction is possible. No other instructions
can be specified. If the value is not within a range that can be expressed in
16 bits, an error is output at the time of link.

%label The offset from the ep symbol in the position where definition of the label
(label) exists is treated as an immediate.

This has a 16-bit value. If operation instruction of an architecture for which a
16-bit value can be specify Note 2 as an immediate are specified, and instruc-
tion is not expanded. This reference method can be specified only for oper-
ation instructions of an architecture for which a 16-bit value can be specified
as an immediate, and add, mov, and mulh instructions. If the add, mov, and
mulh instructions are specified, expansion into appropriate 1-instruction is
possible. No other instructions can be specified. If the value is not within a
range that can be expressed in 16 bits, an error is output at the time of link.

Reference Method Meaning

#label In jmp instruction, the absolute address of label (label) is treated as a jump
destination address.

This has a 32-bit value and must be expanded into two instructions.

label In branch instructions other than the jmp instruction, PC offset of the label
(label) is treated as a displacement.

This has a 22-bit value, and if it is not within a range that can be expressed
in 22 bits, an error is output at the time of link.

CubeSuite Ver.1.40 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 328 of 890
Oct 01, 2010

Table 4-28. Area Reservation Directives

(g) ep Offset Reference
This section describes the ep offset reference. The CX assumes that data explicitly stored in internal RAM is
shown below.

Data in the internal RAM is divided into the following two groups.
- tidata/.tibss/.tidata.byte/.tibss.byte/.tidata.word/.tibss.word section (Data is referred by memory reference

instructions (sld/sst) in a small code size)
- sidata/.sibss section (Data is referred by memory reference instructions (ld/st) in a large code size)

Figure 4-18. Memory Location Image of Internal RAM

<1> Data Allocation
In internal RAM, data is allocated to the sections as follows:

- When developing a program in C
Allocate data by specifying the "tidata", "tidata.byte", "tidata.word", or "sidata" section type in the
"#pragma section" instruction.

Reference Method Meaning

#label

!label

In .db4/.db2/.db directive, the absolute address of the label (label) is treated
as a value.

This has a 32-bit value, but is masked in accordance with the bit width of
each directives

label

%label

In .db4/.db2/.db directive, the offset in the section defined by label (label) is
treated as a value.

This has a 32-bit value, but is masked in accordance with the bit width of
each directives

$label In .db4/.db2/.db directive, the offset from the ep symbol in the position where
definition of the label (label) exists is treated as an immediate.

This has a 32-bit value, but is masked in accordance with the bit width of
each directives

Reference through the offset from address indicated by the element pointer (ep).

Higher address

Internal RAM

Lower address

.sibss section

.sidata section

.tibss section

.tidata section

.tibss.word section

.tidata.word section

ep

.tibss.byte section

.tidata.byte section

CubeSuite Ver.1.40 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 329 of 890
Oct 01, 2010

- When developing a program in assembly language
Data is allocated to the section of .tidata, .tibss, .tidata.byte, .tibss.byte, .tidata.word, .tibss.word,
.sidata, or .sibss section type by the section definition directives ep offset reference can also be exe-
cuted with respect to data in a specific range of external RAM by allocating the data to .sedata or
.sebss sections in the same manner as above.

Figure 4-19. Memory Allocation Image for External RAM (.sedata/.sebss Section)

<2> Data Reference
As per the "Data Allocation" method explained above, the assembler generates a machine instruction
string as follows.

- Generates a machine instruction by referring ep offset for %label reference to data allocated to the
.tidata, .tibss, .tidata.byte, .tibss.byte, .tidata.word, .tibss.word, .sidata, .sibss, .sedata, or .sebss
section.

- Generates a machine instruction string by referring offset in the section for %label reference to data
allocated to other than that above.

Example

The assembler generates a machine instruction string for %label reference because: The assembler
regards the code in (1) as being a reference by ep offset because the defined data is allocated to the
.sidata section. The assembler regards the code in (2) as being a reference by in-section offset. The
assembler performs processing, assuming that the data is allocated to the correct section. If the data is
allocated to other than the correct section, it cannot be detected by the assembler.

Example

 .dseg SIDATA

sidata: .db2 0xFFF0

 .dseg DATA

data: .db2 0xFFF0

 .cseg TEXT

 ld.h %sidata, r20 ; (1)

 ld.h %data, r20 ; (2)

.dseg TEXT

ld.h %label[ep], r20

Higher address

Internal RAM

Lower address

.sedata section

.tidata.byte section
ep

.sebss section

.tibss.byte section

External RAM

CubeSuite Ver.1.40 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 330 of 890
Oct 01, 2010

Instructions are coded to allocate a label to the .sidata section and to perform reference by ep offset.
However, label is allocated to the .data section because of the allocation error. In this case, the assem-
bler loads the data in the base register ep symbol value + offset value in the .data section of label.

(h) gp Offset Reference
This section describes the gp offset reference. The CX assumes that data stored in external RAM (other than
.sedata/.sebss section explained on the previous page) is basically shown below.

If r0-relative memory allocation for internal ROM or RAM is not done with the "#pragma section" command of
C, or an assembly language section definition directive, all data is subject to gp offset reference.

<1> Data Allocation
The memory reference instruction (ld/st) of the machine instruction of the V850 microcontrollers can only
accept 16-bit immediate as a displacement. For this reason, the CX classifies data into the following two
types. Data of the former type is allocated to the sdata- or sbss-attribute section, while that of the latter
type is allocated to the data- or bss-attribute section. Data having an initial value is allocated to the
sdata/data-attribute section, while data without an initial value is allocated to the sbss/bss-attribute sec-
tion. By default, the CX allocates data to the data/sdata/ sbss/bss-attribute sections, starting from the
lowest address. Moreover, it is assumed that the global pointer (gp) is set by a startup module to point to
the address resulting from addition of 32 KB to the first address of the sdata-attribute section.

- Data allocated to a memory range that can be referred by using the global pointer (gp) and a 16-bit
displacement.

- Data allocated to a memory range that can be referred by using the global pointer (gp) and (con-
structed by many instructions) a 32-bit displacement.

Figure 4-20. Memory Location Image for gp Offset Reference Section

Remark The sum of sdata- and sbss-attribute sections is 64 KB. gp is 32 KB below the first byte of
the sdata- attribute section.

Data in the sdata- and sbss-attribute sections can be referred by using a single instruction. To reference
data in the data- and bss-attribute sections, however, two or more instructions are necessary. Therefore,
the more data allocated to the sdata- and sbss-attribute sections, the higher the execution efficiency and
object efficiency of the generated machine instructions. However, the size of the memory range that can
be referred with a 16-bit displacement is limited.
 If all the data cannot be allocated to the sdata- and sbss-attribute sections, it becomes necessary to
determine which data is to be allocated to the sdata- and sbss-attribute sections.

Referred by the offset from the address indicated by global pointer (gp).

Higher address

data without an initial value

Lower address

bss attribute section

sbss attribute section 64KB
gp

sdata attribute section

data attribute section
Data having an initial value

32KB

CubeSuite Ver.1.40 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 331 of 890
Oct 01, 2010

The CX "allocates as much data as possible to the sdata- and sbss-attribute sections". By default, all
data items are allocated to the sdata- and sbss-attribute sections. The data to be allocated can be
selected as follows:

- When the -Xsdata option is specified.
By specifying the -Xsdata=num option upon starting the C compiler or assembler, data of less than
num bytes is allocated to the sdata- and sbss-attribute sections.

- When using a program to specify the section to which data will be allocated.
Explicitly allocate data that will be frequently referred to the sdata- and sbss-attribute sections. For
allocation, use a section definition directive when using the assembly language, or the #pragma sec-
tion command when using C.

<2> Data Reference
Using the data allocation method explained above, the assembler generates a machine instruction string
that performs:

- Reference by using a 16-bit displacement for gp offset reference to data allocated to the sdata- and
sbss- attribute sections.

- Reference by using a 32-bit displacement (consisting of two or more machine instructions) for gp off-
set reference to data allocated to the data- and bss-attribute sections.

Example

The assembler generates a machine instruction string, equivalent to the following instruction string for
the ld.w instruction in (2), that performs gp offset reference of the data defined in (1).Note

Note See "(j) About HIGH/LOW/HIGHW/LOWW/HIGHW1", for details of HIGHW1/LOWW.

The assembler processes files on a one-by-one basis. Consequently, it can identify to which attribute
section data having a definition in a specified file has been allocated, but cannot identify the section to
which data not having a definition in a specified file has been allocated. Therefore, the assembler gener-
ates machine instructions as follows, when the -Xsdata=num option is specified at start-up, assuming
that the allocation policy described above (i.e., data smaller than a specific size is allocated to the sdata-
and sbss-attribute sections) is observed.

- Generates machine instructions that perform reference by using a 16-bit displacement for gp offset
reference to data not having a definition in a specified file and which consists of less than num bytes.

- Generates a machine instruction string that performs reference by using a 32-bit displacement (con-
sisting of two or more machine instructions) for gp offset reference to data having no definition in a
specified file and which consists of more than num bytes.

 .dseg DATA

data: .db4 0xFFF00010 ; (1)

 .cseg TEXT

 ld.w $data[gp], r20 ; (2)

movhi HIGHW1($data), gp, r1

ld.w LOWW($data)[r1], r20

CubeSuite Ver.1.40 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 332 of 890
Oct 01, 2010

To identify these conditions, however, the size of the data not having a definition in a specified file, and
which is referred by a gp offset, must be identified. To develop a program in an assembly language,
therefore, specify the size of the data (actually, a label for which there is no definition in a specified file
and which is referred by a gp offset) for which there is no definition in a specified file, by using the .extern
directives

When the -Xsdata=2 option is specified upon starting the assembler, the assembler generates a machine
instruction string, equivalent to the following instruction string, for the ld.w instruction in (2) that performs
gp offset reference to the data declared in (1).Note

Note See "(j) About HIGH/LOW/HIGHW/LOWW/HIGHW1", for details of HIGHW1/LOWW.

To develop a program in C, the C compiler of the CX automatically generates the .extern directive, thus
output the code which specifies the size of data not having a definition in the specified file (actually, a
label for which there is no definition in a specified file and which is referred by a gp offset).

Remark The handling of gp offset reference (specifically, memory reference instructions that use a rel-
ative expression having the gp offset of a label as their displacement) by the assembler is
summarized below.

- If the data has a definition in a specified file.
- If the data is to be allocated to the sdata- or sbss-attribute sectionNote.

Generates a machine instruction that performs reference by using a16-bit displacement.
- If the data is not allocated to the sdata- or sbss-attribute section.

Generates a machine instruction string that performs reference by using a 32-bit displacement.

Note If the value of the constant expression of a relative expression in the form of "label + constant
expression" exceeds 16 bits, the assembler generates a machine instruction string that performs
reference using a 32-bit displacement.

- If the data does not have a definition in a specified file.
- If the -Xsdata=num option is specified upon starting the assembler.

If a size of other than 0, but less than num bytes is specified for the data (label referred by gp offset)
by the .comm/.extern/.globl/.public directives.
Assumes that the data is to be allocated to the sdata- or sbss-attribute section and generates a
machine instruction that performs reference by using a 16-bit displacement.
Other than above, assumes that the data is not allocated to the sdata- or sbss-attribute section and
generates a machine instruction string that performs reference using a 32-bit displacement

.extern data, 4 ; (1)

.cseg TEXT

ld.w $data[gp], r20 ; (2)

movhi HIGHW1($data), gp, r1

ld.w LOWW($data)[r1], r20

CubeSuite Ver.1.40 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 333 of 890
Oct 01, 2010

- If the -Xsdata option is not specified upon starting the assembler.
Assumes that the data is to be allocated to the sdata- or sbss-attribute section and generates a
machine instruction that performs reference by using a 16-bit displacement.

(i) Label references in multi-core
Below are described the differences between label references for multi-core and for single-core.

<1> If the "-Xmulti=pen" (n: PE number) option is specified
- Data and code can be accessed using the same references as for single-core.

<2> If the "-Xmulti=cmn" option is specified
- Data and code are accessed using absolute addresses (offset from address 0), rather than referenc-

ing offset from the gp/ep/tp symbol.
- References offset from the gp/ep/tp symbol will cause an error.

(j) About HIGH/LOW/HIGHW/LOWW/HIGHW1

<1> To refer memory by using 32-bit displacement
The memory reference instruction (Load/store instructions) of the machine instructions of the V850
microcontrollers can take only a 16-bit immediate from displacement. Consequently, the assembler per-
forms instruction expansion to refer the memory by using a 32-bit displacement, and generates an
instruction string that performs the reference, by using the movhi and memory reference instructions and
thereby constituting a 32-bit displacement from the higher 16 bits and lower 16 bits of the 32-bit displace-
ment.

Example

At this time, the memory reference instruction of machine instructions that uses the lower 16 bits as a
displacement sign-extends the specified 16-bit displacement to a 32-bit value. To adjust the sign-
extended bits, the assembler does not merely configure the displacement of the higher 16 bits by using
the movhi instruction, instead it configures the following displacement.

ld.w 0x18000[r11], r12 movhi HIGHW1(0x18000), r11, r1

ld.w LOWW(0x18000)[r1], r12

Higher 16 bits + the most significant bit (bit of bit number 15) of the lower 16 bits

CubeSuite Ver.1.40 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 334 of 890
Oct 01, 2010

<2> HIGHW/LOWW/HIGHW1/HIGH/LOW
In the next table, the assembler can specify the higher 16 bits of a 32-bit value, the lower 16 bits of a 32-
bit value, the value of the higher 16 bits + bit 15 of a 32-bit value, the higher 8 bits of a 16-bit value, and
the lower 8 bits of a 16-bit value by using HIGHW, LOWW, HIGHW, HIGH, and LOW.Note

Note If this information cannot be internally resolved by the assembler, it is reflected in the relocation
information and subsequently resolved by the link editor.

Table 4-29. Area Reservation Directives

Example

HIGHW/LOWW/
HIGHW1/HIGH/LOW

Meaning

HIGHW (value) Higher 16 bits of value

LOWW (value) Lower 16 bits of value

HIGHW1 (value) Higher 16 bits of value + bit value of bit number 15 of value

HIGH (value) Upper 8 bits of the lower 16 bits of value

LOW (value) Lower 8 bits of value

 .dseg DATA

L1:

 :

 .cseg TEXT

 movhi HIGHW $L1, r0, r10 ; Stores the higher 16 bits of the gp

 ; offset value of L1 in the higher 16 bits

 ; of r10, and the lower 16 bits to 0

 movea LOWW $L1, r0, r10 ; Sign-extends the lower 16 bits of the gp

 ; offset of L1 and stores to r10

 :

 movhi HIGHW1 $L1, r0, r1 ; Stores the gp offset value of L1 in r10

 movea LOWW $L1, r1, r10

CubeSuite Ver.1.40 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 335 of 890
Oct 01, 2010

4.7.5 Description of instructions

This section describes the instructions of the assembly language supported by the assembler.
For details of the machine instructions generated by the assembler, see the "Each Device User Manual".

Indicates the meaning of instruction.

[Syntax]

Indicates the syntax of instruction.

[Function]

Indicates the function of instruction.

[Description]

Indicates the operating method of instruction.

[Flag]

Indicates the operation of flag (PSW) by the execution of instruction.
However, in (set1, clr1, not1) bit operation instruction, indicates the flag value before execution.
"---" of table indicates that the flag value is not changed.

[Caution]

Indicates the caution in instruction.

Instruction

CubeSuite Ver.1.40 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 336 of 890
Oct 01, 2010

4.7.6 Load/Store instructions

This section describes the load/store instructions. Next table lists the instructions described in this section.

Table 4-30. Load/Store Instructions

Instruction Meaning

ld ld.b Byte data load

ld.h Halfword data load

ld.w Word data load

ld.bu Unsigned byte data load

ld.hu Unsigned halfword data load

sld sld.b Byte data load (short format)

sld.h Halfword data load (short format)

sld.w Word data load (short format)

sld.bu Unsigned byte data load (short format)

sld.hu Unsigned halfword data load (short format)

ld23 ld23.b Byte data load

ld23.h Halfword data load

ld23.w Word data load

ld23.bu Unsigned byte data load

ld23.hu Unsigned halfword data load

st st.b Byte data store

st.h Halfword data store

st.w Word data store

sst sst.b Byte data store (short format)

sst.h Halfword data store (short format)

sst.w Word data store (short format)

st23 st.b Byte data store

st.h Halfword data store

st.w Word data store

CubeSuite Ver.1.40 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 337 of 890
Oct 01, 2010

Data is loaded.

[Syntax]

- ld.b disp[reg1], reg2
- ld.h disp[reg1], reg2
- ld.w disp[reg1], reg2
- ld.bu disp[reg1], reg2
- ld.hu disp[reg1], reg2

The following can be specified for displacement (disp):
- Absolute expression having a value of up to 32 bits
- Relative expression
- Either of the above expressions with HIGHW, LOWW, or HIGHW1 applied

[Function]

The ld.b, ld.bu, ld.h, ld.hu, and ld.w instructions load data of 1 byte, 1 halfword, and 1 word, from the address specified
by the first operand, int the register specified by the second operand.

[Description]

- If any of the following is specified for disp, the assembler generates one ld machine instructionNote. In the follow-
ing explanations, ld denotes the ld.b/ld.h/ld.w/ld.bu/ld.hu instructions.

(a) Absolute expression having a value in the range of -32,768 to +32,767

(b) Relative expression having $label for a label having a definition in the sdata/sbss-attribute section

(c) Relative expression having !label or %label

(d) Expression with HIGHW, LOWW, or HIGHW1

(e) Internal register name defined in the device file

ld

ld disp16[reg1], reg2 ld disp16[reg1], reg2

ld $label[reg1], reg2 ld $label[reg1], reg2

ld !label[reg1], reg2 ld !label[reg1], reg2

ld %label[reg1], reg2 ld %label[reg1], reg2

ld disp16[reg1], reg2 ld disp16[reg1], reg2

ld register-name[reg1], reg2 ld register-name[reg1], reg2

CubeSuite Ver.1.40 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 338 of 890
Oct 01, 2010

Note The ld machine instruction takes an immediate value in the range of -32,768 to +32,767 (0xFFFF8000 to
0x7FFF) as the displacement

- If any of the following is specified for disp, the assembler performs instruction expansion to generate multiple
machine instructions.

(a) Absolute expression having a value exceeding the range of -32,768 to +32,767

(b) Relative expression having #label or label, or that having $label for a label having no definition in the
sdata/sbss-attribute section

- If disp is omitted, the assembler assumes 0.
- If a relative expression having #label, or a relative expression having #label and with HIGHW, LOWW, or HIGHW1

applied is specified as disp, [reg1] can be omitted. If omitted, the assembler assumes that [r0] is specified.
- If a relative expression having $label, or a relative expression having $label and with HIGHW, LOWW, or HIGHW1

applied, is specified as disp, [reg1] can be omitted. If omitted, the assembler assumes that [gp] is specified.
- If a peripheral I/O register name defined in the device file is specified as disp, [reg1] can be omitted. If omitted, the

assembler assumes that [r0] is specified.

[Flag]

ld disp[reg1], reg2 movhi HIGHW1(disp), reg1, r1

ld LOWW(disp)[r1], reg2

ld #label[reg1], reg2 movhi HIGHW1(#label), reg1, r1

ld LOWW(#label)[r1], reg2

ld label[reg1], reg2 movhi HIGHW1(label), reg1, r1

ld LOWW(label)[r1], reg2

ld $label[reg1], reg2 movhi HIGHW1($label), reg1, r1

ld LOWW($label)[r1], reg2

CY ---

OV ---

S ---

Z ---

SAT ---

CubeSuite Ver.1.40 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 339 of 890
Oct 01, 2010

[Caution]

- ld.b and ld.h sign-extend the data of 1 byte and 1 halfword, respectively, and load the data into a register as 1
word.

- If a value that is not a multiple of 2 is specified as disp of ld.h, ld.w, or ld.hu, the assembler and link editor aligns
disp with 2 and generates a code. Then, the assembler and link editor outputs either one of the following mes-
sages.

- If r0 is specified as the second operand of ld.bu and ld.hu, the assembler outputs the following message and stops
assembling.

W0550010: Illegal displacement in ld instruction.

W0560413: Relocated value(value) of relocation entry(file:file, section:section, offset:offset, type:relocation type) for
load/store command become odd value.

E0550240: Illegal operand (cannot use r0 as destination in V850E mode).

CubeSuite Ver.1.40 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 340 of 890
Oct 01, 2010

Data is loaded (short format).

[Syntax]

- sld.b disp7[ep], reg2
- sld.h disp8[ep], reg2
- sld.w disp8[ep], reg2
- sld.bu disp4[ep], reg2
- sld.hu disp5[ep], reg2

The following can be specified for displacement (disp4/5/7/8):
- Absolute expression having a value of up to 7 bits for sld.b, 8 bits for sld.h and sld.w, 4 bits for sld.bu, and 5 bits for

sld.hu.
- Relative expression

[Function]

The sld.b, sld.bu, sld.h, sld.hu, and sld.w instructions load the data of 1 byte, 1 halfword, and 1 word, from the address
obtained by adding the displacement specified by the first operand to the contents of register ep, to the register specified
by the second operand.

[Description]

The assembler generates one sld machine instruction. Base register specification "[ep]" can be omitted.

[Flag]

[Caution]

- sld.b and sld.h sign-extend and store data of 1 byte and 1 halfword, respectively, in the register as 1 word.
- If a value that is not a multiple of 2 is specified as disp8 of sld.h or disp5 of sld.hu, and if a value that is not a multi-

ple of 4 is specified as disp8 of sld.w, the assembler aligns disp8 or disp5 with multiples of 2 and 4, respectively,
and generates a code. Then, the assembler and link editor outputs either one of the following messages.

sld

CY ---

OV ---

S ---

Z ---

SAT ---

W0550010: Illegal displacement in ld instruction.

W0560413: Relocated value(value) of relocation entry(file:file, section:section, offset:offset, type:relocation type) for
load/store command become odd value.

CubeSuite Ver.1.40 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 341 of 890
Oct 01, 2010

- If a value exceeding 127 is specified for disp7 of sld.b, a value exceeding 255 is specified for disp8 of sld.h and
sld.w, a value exceeding 16 is specified for disp4 of sld.bu, and a value exceeding 32 is specified for disp5 of
sld.hu, the assembler outputs the following message, and generates code in which disp7, disp8, disp4, and disp5
are masked with 0x7F, 0xFF, 0xF, and 0x1F, respectively.

- If r0 is specified as the second operand of the sld.bu and sld.hu, the assembler outputs the following message and
stops assembling.

W0550010: Illegal displacement in ld instruction.

E0550240: Illegal operand (cannot use r0 as destination in V850E mode).

CubeSuite Ver.1.40 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 342 of 890
Oct 01, 2010

Data is loaded.

[Syntax]

- ld23.b disp23[reg1], reg2
- ld23.h disp23[reg1], reg2
- ld23.w disp23[reg1], reg2
- ld23.bu disp23[reg1], reg2
- ld23.hu disp23[reg1], reg2

The following can be specified for displacement (disp):
- Absolute expression having a value of up to 23 bits
- Relative expression
- Either of the above expressions with HIGHW, LOWW, or HIGHW1 applied

[Function]

The ld23.b, ld23.bu, ld23.h, ld23.hu, and ld23.w instructions load data of 1 byte, 1 halfword, and 1 word, from the
address specified by the first operand, int the register specified by the second operand.

[Description]

- If any of the following is specified for disp, the assembler generates one ld machine instructionNote. In the follow-
ing explanations, ld denotes the ld.b/ld.h/ld.w/ld.bu/ld.hu instructions.

(a) Absolute expression having a value in the range of -4,194,304 to +4,194,303

(b) Relative expression having $label for a label having a definition in the sdata/sbss-attribute section

(c) Relative expression having !label or %label

(d) Expression with HIGHW, LOWW, or HIGHW1

(e) Internal register name defined in the device file

ld23

ld23 disp23[reg1], reg2 ld23 disp23[reg1], reg2

ld23 $label[reg1], reg2 ld23 $label[reg1], reg2

ld23 !label[reg1], reg2 ld23 !label[reg1], reg2

ld23 %label[reg1], reg2 ld23 %label[reg1], reg2

ld23 disp16[reg1], reg2 ld23 disp16[reg1], reg2

ld23 register-name[reg1], reg2 ld23 register-name[reg1], reg2

CubeSuite Ver.1.40 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 343 of 890
Oct 01, 2010

(f) Relative expression having #label or label, or that having $label for a label having no definition in the
sdata/sbss-attribute section

Note The ld machine instruction takes an immediate value in the range of -4,194,304 to +4,194,303
(0xFFC00000 to 0x3FFFFF) as the displacement

- If disp23 is omitted, the assembler assumes 0.
- If a relative expression having #label, or a relative expression having #label and with HIGHW, LOWW, or HIGHW1

applied is specified as disp23, [reg1] can be omitted. If omitted, the assembler assumes that [r0] is specified.
- If a relative expression having $label, or a relative expression having $label and with HIGHW, LOWW, or HIGHW1

applied, is specified as disp23, [reg1] can be omitted. If omitted, the assembler assumes that [gp] is specified.
- If a peripheral I/O register name defined in the device file is specified as disp23, [reg1] can be omitted. If omitted,

the assembler assumes that [r0] is specified.

[Flag]

[Caution]

- ld23.b and ld23.h sign-extend the data of 1 byte and 1 halfword, respectively, and load the data into a register as 1
word.

- If a value that is not a multiple of 2 is specified as disp of ld23.h, ld23.w, or ld23.hu, the assembler and link editor
aligns disp with 2 and generates a code. Then, the assembler and link editor outputs either one of the following
messages.

- If r0 is specified as the second operand of ld.bu and ld.hu, the assembler outputs the following message and stops
assembling.

ld23 #label[reg1], reg2 ld23 #label[reg1], reg2

ld23 label[reg1], reg2 ld23 label[reg1], reg2

ld23 $label[reg1], reg2 ld23 $label[reg1], reg2

CY ---

OV ---

S ---

Z ---

SAT ---

W0550010: Illegal displacement in ld instruction.

W0560413: Relocated value(value) of relocation entry(file:file, section:section, offset:offset, type:relocation type) for
load/store command become odd value.

E0550240: Illegal operand (cannot use r0 as destination in V850E mode).

CubeSuite Ver.1.40 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 344 of 890
Oct 01, 2010

Data is stored.

[Syntax]

- st.b reg2, disp[reg1]
- st.h reg2, disp[reg1]
- st.w reg2, disp[reg1]

The following can be specified as a displacement (disp):
- Absolute expression having a value of up to 32 bits
- Relative expression
- Either of the above expressions with HIGHW, LOWW, or HIGHW1 applied

[Function]

The st.b, st.h, and st.w instructions store the data of the lower 1 byte, lower 1 halfword, and 1 word, respectively, of the
register specified by the first operand to the address specified by the second operand.

[Description]

- If any of the following is specified as disp, the assembler generates one st machine instructionNote. In the following
explanations, st denotes the st.b/st.h/st.w instructions.

(a) Absolute expression having a value in the range of -32,768 to +32,767

(b) Relative expression having $label for a label having a definition in the sdata/sbss-attribute section

(c) Relative expression having !label or %label

(d) Expression with HIGHW, LOWW, or HIGHW1

(e) Internal register name defined in the device file

Note The st machine instruction takes an immediate value in the range of -32,768 to +32,767 (0xFFFF8000 to
0x7FFF) as the displacement.

st

st reg2, disp16[reg1] st reg2, disp16[reg1]

st reg2, $label[reg1] st reg2, $label[reg1]

st reg2, !label[reg1] st reg2, !label[reg1]

st reg2, %label[reg1] st reg2, %label[reg1]

st reg2, disp16[reg1] st reg2, disp16[reg1]

st reg2, register-name[reg1] st reg2, register-name[reg1]

CubeSuite Ver.1.40 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 345 of 890
Oct 01, 2010

- If any of the following is specified as disp, the assembler executes instruction expansion to generate two or more
machine instructions.

(a) Absolute expression having a value exceeding the range of -32,768 to +32,767

(b) Relative expression having #label or label, or that having $label for a label having no definition in the
sdata/sbss-attribute section

- If disp is omitted, the assembler assumes 0.
- If a relative expression with #label, or a relative expression with #label and with HIGHW, LOWW, or HIGHW1

applied is specified as disp, [reg1] can be omitted. If omitted, the assembler assumes that [r0] is specified.
- If a relative expression with $label, or a relative expression with $label and with HIGHW, LOWW, or HIGHW1

applied is specified as disp, [reg1] can be omitted. If omitted, the assembler assumes that [gp] is specified.
- If a peripheral I/O register name defined in the device file is specified as disp, [reg1] can be omitted. If omitted, the

assembler assumes that [r0] is specified.

[Flag]

[Caution]

- If a value that is not a multiple of 2 is specified as the disp of st.h or st.w, the assembler aligns disp with 2 and gen-
erates a code. Then, the assembler outputs either one of the following messages.

st reg2, disp[reg1], reg2 movhi HIGHW1(disp), reg1, r1

st reg2, LOWW(disp)[r1], reg2

st reg2, #label[reg1] movhi HIGHW1(#label), reg1, r1

st reg2, LOWW(#label)[r1]

st reg2, label[reg1] movhi HIGHW1(label), reg1, r1

st reg2, LOWW(label)[r1]

st reg2, $label[reg1] movhi HIGHW1($label), reg1, r1

st reg2, LOWW($label)[r1]

CY ---

OV ---

S ---

Z ---

SAT ---

W0550010: Illegal displacement in ld instruction.

W0560413: Relocated value(value) of relocation entry(file:file, section:section, offset:offset, type:relocation type) for
load/store command become odd value.

CubeSuite Ver.1.40 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 346 of 890
Oct 01, 2010

Data is stored (short format).

[Syntax]

- sst.b reg2, disp7[ep]
- sst.h reg2, disp8[ep]
- sst.w reg2, disp8[ep]

The following can be specified for displacement (disp7/8):
- Absolute expression having a value of up to 7 bits for sst.b or 8 bits for sst.h and sst.w
- Relative expression

[Function]

The sst.b, sst.h, and sst.w instructions store the data of the lower 1 byte, lower 1 halfword, and 1 word, respectively, of
the register specified by the first operand to the address obtained by adding the displacement specified by the second
operand to the contents of register ep.

[Description]

The assembler generates one sst machine instruction. Base register specification "[ep]" can be omitted.

[Flag]

[Caution]

- If a value that is not a multiple of 2 is specified as disp8 of sst.h, and if a value that is not a multiple of 4 is specified
as disp8 of sst.w, the assembler aligns disp8 with multiples of 2 and 4, respectively, and generates a code. Then,
the assembler outputs either one of the following messages.

- If a value exceeding 127 is specified as disp7 of sst.b, and if a value exceeding 255 is specified as disp8 of sst.h
and sst.w, the assembler outputs the following message, and generates codes disp7 and disp8, masked with 0x7F
and 0xFF, respectively.

sst

CY ---

OV ---

S ---

Z ---

SAT ---

W0550010: Illegal displacement in ld instruction.

W0560413: Relocated value(value) of relocation entry(file:file, section:section, offset:offset, type:relocation type) for
load/store command become odd value.

W0550010: Illegal displacement in ld instruction.

CubeSuite Ver.1.40 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 347 of 890
Oct 01, 2010

Data is stored.

[Syntax]

- st23.b reg2, disp23[reg1]
- st23.h reg2, disp23[reg1]
- st23.w reg2, disp23[reg1]

The following can be specified as a displacement (disp):
- Absolute expression having a value of up to 23 bits
- Relative expression
- Either of the above expressions with HIGHW, LOWW, or HIGHW1 applied

[Function]

The st23.b, st23.h, and st23.w instructions store the data of the lower 1 byte, lower 1 halfword, and 1 word, respec-
tively, of the register specified by the first operand to the address specified by the second operand.

[Description]

- If any of the following is specified as disp, the assembler generates one st machine instructionNote. In the following
explanations, st denotes the st23.b/st23.h/st23.w instructions.

(a) Absolute expression having a value in the range of -4,194,304 to +4,194,303

(b) Relative expression having $label for a label having a definition in the sdata/sbss-attribute section

(c) Relative expression having !label or %label

(d) Expression with HIGHW, LOWW, or HIGHW1

(e) Internal register name defined in the device file

st23

st23 reg2, disp23[reg1] st23 reg2, disp23[reg1]

st23 reg2, $label[reg1] s23 reg2, $label[reg1]

st23 reg2, !label[reg1] st23 reg2, !label[reg1]

st23 reg2, %label[reg1] st23 reg2, %label[reg1]

st23 reg2, disp16[reg1] st23 reg2, disp16[reg1]

st23 reg2, register-name[reg1] st23 reg2, register-name[reg1]

CubeSuite Ver.1.40 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 348 of 890
Oct 01, 2010

(f) Relative expression having #label or label, or that having $label for a label having no definition in the
sdata/sbss-attribute section

Note The st machine instruction takes an immediate value in the range of -4,194,304 to +4,194,303
(0xFFC00000 to 0x3FFFFF) as the displacement.

- If disp23 is omitted, the assembler assumes 0.
- If a relative expression with #label, or a relative expression with #label and with HIGHW, LOWW, or HIGHW1

applied is specified as disp23, [reg1] can be omitted. If omitted, the assembler assumes that [r0] is specified.
- If a relative expression with $label, or a relative expression with $label and with HIGHW, LOWW, or HIGHW1

applied is specified as disp23, [reg1] can be omitted. If omitted, the assembler assumes that [gp] is specified.
- If a peripheral I/O register name defined in the device file is specified as disp23, [reg1] can be omitted. If omitted,

the assembler assumes that [r0] is specified.

[Flag]

[Caution]

- If a value that is not a multiple of 2 is specified as the disp of st.h or st.w, the assembler aligns disp with 2 and gen-
erates a code. Then, the assembler outputs either one of the following messages.

st23 reg2, #label[reg1] st23 reg2, #label[reg1]

st23 reg2, label[reg1] st23 reg2, label[reg1]

st23 reg2, $label[reg1] st23 reg2, $label[reg1]

CY ---

OV ---

S ---

Z ---

SAT ---

W0550010: Illegal displacement in ld instruction.

W0560413: Relocated value(value) of relocation entry(file:file, section:section, offset:offset, type:relocation type) for
load/store command become odd value.

CubeSuite Ver.1.40 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 349 of 890
Oct 01, 2010

4.7.7 Arithmetic operation instructions

This section describes the arithmetic operation instructions. Next table lists the instructions described in this section.

Table 4-31. Arithmetic Operation Instructions

See the device with an instruction set of V850E2V3 product user's manual and architecture edition for details about the
device with an instruction set of V850E2V3.

Instruction Meaning

add Adds

addi Adds (immediate)

adf Adds with condition [V850E2]

sub Subtracts

subr Subtracts reverse

sbf Subtracts with condition [V850E2]

mulh Multiplies signed data (halfword)

mulhi Multiplies signed data (halfword immediate)

mul Multiplies signed data (word)

mulu Multiplies unsigned data

mac Multiplies and adds signed word data [V850E2]

macu Multiplies and adds unsigned word data [V850E2]

divh Divides signed data (halfword)

div Divides signed data (word)

divhu Divides unsigned data (halfword)

divu Divides unsigned data (word)

divq Divides signed word data (variable step) [V850E2V3]

divqu Divides unsigned word data (variable step) [V850E2V3]

cmp Compares

mov Moves data

movea Moves execution address

movhi Moves higher half-word

mov32 Moves 32-bit data

cmov Moves data depending on the flag condition

setf Sets flag condition

sasf Sets the flag condition after a logical left shift

CubeSuite Ver.1.40 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 350 of 890
Oct 01, 2010

Adds.

[Syntax]

- add reg1, reg2
- add imm, reg2

The following can be specified for imm:
- Absolute expression having a value of up to 32 bits
- Relative expression

[Function]

- Syntax "add reg1, reg2"
Adds the value of the register specified by the first operand to the value of the register specified by the second
operand, and stores the result into the register specified by the second operand.

- Syntax "add imm, reg2"
Adds the value of the absolute expression or relative expression specified by the first operand to the value of the
register specified by the second operand, and stores the result in the register specified by the second operand.

[Description]

- If this instruction is executed in syntax "add reg1, reg2", the assembler generates one add machine instruction.
- If the following is specified as imm in syntax "add imm, reg2", the assembler generates one add machine instruc-

tionNote.

(a) Absolute expression having a value in the range of -16 to +15

Note The add machine instruction takes a register or immediate value in the range of -16 to +15 (0xFFFFFFF0 to
0xF) as the first operand.

- If the following is specified for imm in syntax "add imm, reg2", the assembler executes instruction expansion to
generate one or more machine instructions.

(a) Absolute expression exceeding the range of -16 to +15, but within the range of -32,768 to +32,767

add

add imm5, reg add imm5, reg

add imm16, reg addi imm16, reg, reg

CubeSuite Ver.1.40 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 351 of 890
Oct 01, 2010

(b) Absolute expression having a value exceeding the range of -32,768 to +32,767
If all the lower 16 bits of the value of imm are 0

Else

(c) Relative expression having !label or %label, or that having $label for a label with a definition in the
sdata/sbss-attribute section

(d) Relative expression having #label or label, or that having $label for a label having no definition in the
sdata/sbss-attribute section

[Flag]

add imm, reg movhi HIGHW(imm), r0, r1

add r1, reg

add imm, reg mov imm, r1

add r1, reg

add !label, reg addi !label, reg, reg

add %label, reg addi %label, reg, reg

add $label, reg addi $label, reg, reg

add #label, reg mov #label, r1

add r1, reg

add label, reg mov label, r1

add r1, reg

add $label, reg mov $label, r1

add r1, reg

CY 1 if a carry occurs from MSB (Most Significant Bit), 0 if not

OV 1 if Integer-Overflow occurs, 0 if not

S 1 if the result is negative, 0 if not

Z 1 if the result is 0, 0 if not

SAT ---

CubeSuite Ver.1.40 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 352 of 890
Oct 01, 2010

Adds immediate.

[Syntax]

- addi imm, reg1, reg2

The following can be specified for imm:
- Absolute expression having a value of up to 32 bits
- Relative expression
- Either of the above expressions with HIGHW, LOWW, or HIGHW1 applied

[Function]

Adds the value of the absolute expression, relative expression, or expression with HIGHW, LOWW, or HIGHW1
applied, specified by the first operand, to the value of the register specified by the second operand, and stores the result
into the register specified by the third operand.

[Description]

- If the following is specified for imm, the assembler generates one addi machine instructionNote.

(a) Absolute expression having a value in the range of -32,768 to +32,767

(b) Relative expression having $label for a label having a definition in the sdata/sbss-attribute section

(c) Relative expression having !label or %label

(d) Expression with HIGHW, LOWW, or HIGHW1

Note The addi machine instruction takes an immediate value in the range of -32,768 to +32,767 (0xFFFF8000 to
0x7FFF)as the first operand.

addi

addi imm16, reg1, reg2 addi imm16, reg1, reg2

addi $label, reg1, reg2 addi $label, reg1, reg2

addi !label, reg1, reg2 addi !label, reg1, reg2

addi %label, reg1, reg2 addi %label, reg1, reg2

addi imm16, reg1, reg2 addi imm16, reg1, reg2

CubeSuite Ver.1.40 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 353 of 890
Oct 01, 2010

- If the following is specified for imm, the assembler executes instruction expansion to generate two or more
machine instructions.

(a) Absolute expression having a value exceeding the range of -32,768 to +32,767
If all the lower 16 bits of the value of imm are 0

If all the lower 16 bits of the value of imm are 0

Else

Other than above and when reg2 is r0

(b) Relative expression having #label or label, or that having $label for a label having no definition in the
sdata/sbss-attribute section
If reg2 is r0

Else

addi imm, reg1, reg2 movhi HIGHW(imm), r0, reg2

add reg1, reg2

addi imm, reg1, r0 movhi HIGHW(imm), r0, r1

add reg1, r1

addi imm, reg1, reg2 mov imm, reg2

add reg1, reg2

addi imm, reg1, r0 mov imm, r1

add reg1, r1

addi #label, reg1, r0 mov #label, r1

add reg1, r1

addi label, reg1, r0 mov label, r1

add reg1, r1

addi $label, reg1, r0 mov $label, r1

add reg1, r1

addi #label, reg1, reg2 mov #label, reg2

add reg1, reg2

addi label, reg1, reg2 mov label, reg2

add reg1, reg2

addi $label, reg1, reg2 mov $label, reg2

add reg1, reg2

CubeSuite Ver.1.40 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 354 of 890
Oct 01, 2010

[Flag]

CY 1 if a carry occurs from MSB (Most Significant Bit), 0 if not

OV 1 if Integer-Overflow occurs, 0 if not

S 1 if the result is negative, 0 if not

Z 1 if the result is 0, 0 if not

SAT ---

CubeSuite Ver.1.40 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 355 of 890
Oct 01, 2010

Adds on condition flag. [V850E2]

[Syntax]

- adf imm4, reg1, reg2, reg3
- adfcnd reg1, reg2, reg3

The following can be specified for imm4:
- Absolute expression having a value up to 4 bits (0xD cannot be specified)

[Function]

- Syntax "adf imm4, reg1, reg2, reg3"
It compares the current flag condition with the flag condition indicated by the value of the lower 4 bits of the abso-
lute expression (see "Table 4-32. adfcnd Instruction List") specified by the first operand.
If the values match, adds the word data of the register specified by the second operand to the word data of the reg-
ister specified by the third operand. And 1 is added to the addition result and that result is stored in the register
specified by the fourth operand.
If the values not match, adds the word data of the register specified by the second operand to the word data of the
register specified by the third operand. And that result is stored in the register specified by the fourth operand.

- Syntax "adfcnd reg1, reg2, reg3"
It compares the current flag condition with the flag condition indicated by the string in the cnd"part.
If the values match, adds the word data of the register specified by the first operand to the word data of the register
specified by the second operand. And 1 is added to the addition result and that result is stored in the register spec-
ified by the third operand.
If the values not match, adds the word data of the register specified by the first operand to the word data of the reg-
ister specified by the second operand. And that result is stored in the register specified by the third operand.

[Description]

- For the adf instruction, the assembler generates one adf machine instruction.
- For the adfcnd instruction, the assembler generates the corresponding adf instruction (see "Table 4-32. adfcnd

Instruction List") and expands it to syntax "adf imm4, reg1, reg2, reg3".

Table 4-32. adfcnd Instruction List

adf

Instruction Flag Condition Meaning of Flag Condition Instruction Expansion

adfgt ((S xor OV) or Z) = 0 Greater than (signed) adf 0xF

adfge (S xor OV) = 0 Greater than or equal (signed) adf 0xE

adflt (S xor OV) = 1 Less than (signed) adf 0x6

adfle ((S xor OV) or Z) = 1 Less than or equal (signed) adf 0x7

adfh (CY or Z) = 0 Higher (Greater than) adf 0xB

adfnl CY = 0 Not lower (Greater than or equal) adf 0x9

adfl CY = 1 Lower (Less than) adf 0x1

adfnh (CY or Z) = 1 Not higher (Less than or equal) adf 0x3

adfe Z = 1 Equal adf 0x2

adfne Z = 0 Not equal adf 0xA

CubeSuite Ver.1.40 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 356 of 890
Oct 01, 2010

[Flag]

[Caution]

- If an absolute expression having a value exceeding 4 bits is specified as imm4 of the adf instruction, the following
message is output, and assembly continues using the lower 4 bits of the specified value.

- If 0xD is specified as imm4 of the adf instruction, the following message is output, and assembly is stopped.

adfv OV = 1 Overflow adf 0x0

adfnv OV = 0 No overflow adf 0x8

adfn S = 1 Negative adf 0x4

adfp S = 0 Positive adf 0xC

adfc CY = 1 Carry adf 0x1

adfnc CY = 0 No carry adf 0x9

adfz Z = 1 Zero adf 0x2

adfnz Z = 0 Not zero adf 0xA

adft always 1 Always 1 adf 0x5

CY 1 if there is carry from MSB (Most Significant Bit), 0 if not

OV 1 if overflow occurred, 0 if not

S 1 if the result is negative, 0 if not

Z 1 if the result is 0, 0 if not

SAT ---

W0550011: illegal operand (range error in immediate).

E0550261: illegal condition code.

Instruction Flag Condition Meaning of Flag Condition Instruction Expansion

CubeSuite Ver.1.40 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 357 of 890
Oct 01, 2010

Subtracts.

[Syntax]

- sub reg1, reg2
- sub imm, reg2

The following can be specified for imm:
- Absolute expression having a value of up to 32 bits
- Relative expression

[Function]

- Syntax "sub reg1, reg2"
Subtracts the value of the register specified by the first operand from the value of the register specified by the sec-
ond operand, and stores the result in the register specified by the second operand.

- Syntax "sub imm, reg2"
Subtracts the value of the absolute expression or relative expression specified by the first operand from the value
of the register specified by the second operand, and stores the result into the register specified by the second oper-
and.

[Description]

- If the instruction is executed in syntax "sub reg1, reg2", the assembler generates one sub machine instruction.
- If the instruction is executed in syntax "sub imm, reg2", the assembler executes instruction expansion and gener-

ates one or more machine instructionsNote.

(a) 0

(b) Absolute expression having a value of other than 0 within the range of -16 to +15

(c) Absolute expression exceeding the range of -16 to +15, but within the range of -32,768 to +32,767

sub

sub 0, reg sub r0, reg

sub imm5, reg mov imm5, r1

sub r1, reg

sub imm16, reg movea imm16, r0, r1

sub r1, reg

CubeSuite Ver.1.40 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 358 of 890
Oct 01, 2010

(d) Absolute expression having a value exceeding the range of -32,768 to +32,767
If all the lower 16 bits of the value of imm are 0

Else

(e) Relative expression having $label for a label having a definition in the sdata/sbss-attribute section

(f) Relative expression having #label or label, or that having $label for a label having no definition in the
sdata/sbss-attribute section

Note The sub machine instruction does not take an immediate value as an operand.

[Flag]

sub imm, reg movhi HIGHW(imm), r0, r1

sub r1, reg

sub imm, reg mov imm, r1

sub r1, reg

sub $label, reg movea $label, r0, r1

sub r1, reg

sub #label, reg mov #label, r1

sub r1, reg

sub label, reg mov label, r1

sub r1, reg

sub $label, reg mov $label, r1

sub r1, reg

CY 1 if a borrow occurs from MSB (Most Significant Bit),0 if not

OV 1 if Integer-Overflow occurs, 0 if not

S 1 if the result is negative, 0 if not

Z 1 if the result is 0, 0 if not

SAT ---

CubeSuite Ver.1.40 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 359 of 890
Oct 01, 2010

Subtracts reverse.

[Syntax]

- subr reg1, reg2
- subr imm, reg2

The following can be specified for imm:
- Absolute expression having a value of up to 32 bits
- Relative expression

[Function]

- Syntax "subr reg1, reg2"
Subtracts the value of the register specified by the first operand from the value of the register specified by the sec-
ond operand, and stores the result in the register specified by the second operand.

- Syntax "subr imm, reg2"
Subtracts the value of the absolute expression or relative expression specified by the first operand from the value
of the register specified by the second operand, and stores the result into the register specified by the second oper-
and.

[Description]

- If the instruction is executed in syntax "subr reg1, reg2", the assembler generates one subr machine instruction.
- If the instruction is executed in syntax "subr imm, reg2", the assembler executes instruction expansion and gener-

ates one or more machine instructionsNote.

(a) 0

(b) Absolute expression having a value of other than 0 within the range of -16 to +15

(c) Absolute expression exceeding the range of -16 to +15, but within the range of -32,768 to +32,767

subr

subr 0, reg subr r0, reg

subr imm5, reg mov imm5, r1

subr r1, reg

subr imm16, reg movea imm16, r0, r1

subr r1, reg

CubeSuite Ver.1.40 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 360 of 890
Oct 01, 2010

(d) Absolute expression having a value exceeding the range of -32,768 to +32,767
If all the lower 16 bits of the value of imm are 0

Else

(e) Relative expression having $label for a label having a definition in the sdata/sbss-attribute section

(f) Relative expression having #label or label, or that having $label for a label having no definition in the
sdata/sbss-attribute section

Note The subr machine instruction does not take an immediate value as an operand.

[Flag]

subr imm, reg movhi HIGHW(imm), r0, r1

subr r1, reg

subr imm, reg mov imm, r1

subr r1, reg

subr $label, reg movea $label, r0, r1

subr r1, reg

subr #label, reg mov #label, r1

subr r1, reg

subr label, reg mov label, r1

subr r1, reg

subr $label, reg mov $label, r1

subr r1, reg

CY 1 if a borrow occurs from MSB (Most Significant Bit), 0 if not

OV 1 if Integer-Overflow occurs, 0 if not

S 1 if the result is negative, 0 if not

Z 1 if the result is 0, 0 if not

SAT 1 if a borrow occurs from MSB (Most Significant Bit),0 if not

CubeSuite Ver.1.40 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 361 of 890
Oct 01, 2010

Subtracts on condition flag. [V850E2]

[Syntax]

- sbf imm4, reg1, reg2, reg3
- sbfcnd reg1, reg2, reg3

The following can be specified for imm4:
- Absolute expression having a value up to 4 bits (0xD cannot be specified)

[Function]

- Syntax "sbf imm4, reg1, reg2, reg3"
It compares the current flag condition with the flag condition indicated by the value of the lower 4 bits of the abso-
lute expression (see "Table 4-33. sbfcnd Instruction List") specified by the first operand.
If the values match, subtracts the word data of the register specified by the second operand from the word data of
the register specified by the third operand. And 1 is subtracted from the subtraction result and that result is stored
in the register specified by the fourth operand.
If the values not match, subtracts the word data of the register specified by the second operand from the word data
of the register specified by the third operand. And that result is stored in the register specified by the fourth oper-
and.

- Syntax "sbfcnd reg1, reg2, reg3"
It compares the current flag condition with the flag condition indicated by the string in the "cnd" part.
If the values match, subtracts the word data of the register specified by the first operand from the word data of the
register specified by the second operand. And 1 is subtracted from the subtraction result and that result is stored
in the register specified by the third operand.
If the values not match, subtracts the word data of the register specified by the first operand from the word data of
the register specified by the second operand. And that result is stored in the register specified by the third oper-
and.

[Description]

- For the sbf instruction, the assembler generates one sbf machine instruction.
- For the adcond instruction, the assembler generates the corresponding sbf instruction (see "Table 4-33. sbfcnd

Instruction List") and expands it to syntax "sbf imm4, reg1, reg2, reg3".

Table 4-33. sbfcnd Instruction List

sbf

Instruction Flag Condition Meaning of Flag Condition Instruction Expansion

sbfgt ((S xor OV) or Z) = 0 Greater than (signed) sbf 0xF

sbfge (S xor OV) = 0 Greater than or equal (signed) sbf 0xE

sbflt (S xor OV) = 1 Less than (signed) sbf 0x6

sbfle ((S xor OV) or Z) = 1 Less than or equal (signed) sbf 0x7

sbfh (CY or Z) = 0 Higher (Greater than) sbf 0xB

sbfnl CY = 0 Not lower (Greater than or equal) sbf 0x9

sbfl CY = 1 Lower (Less than) sbf 0x1

sbfnh (CY or Z) = 1 Not higher (Less than or equal) sbf 0x3

CubeSuite Ver.1.40 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 362 of 890
Oct 01, 2010

[Flag]

[Caution]

- If an absolute expression having a value exceeding 4 bits is specified as imm4 of the sbf instruction, the following
message is output, and assembly continues using the lower 4 bits of the specified value.

- If 0xD is specified as imm4 of the sbf instruction, the following message is output, and assembly is stopped.

sbfe Z = 1 Equal sbf 0x2

sbfne Z = 0 Not equal sbf 0xA

sbfv OV = 1 Overflow sbf 0x0

sbfnv OV = 0 No overflow sbf 0x8

sbfn S = 1 Negative sbf 0x4

sbfp S = 0 Positive sbf 0xC

sbfc CY = 1 Carry sbf 0x1

sbfnc CY = 0 No carry sbf 0x9

sbfz Z = 1 Zero sbf 0x2

sbfnz Z = 0 Not zero sbf 0xA

sbft always 1 Always 1 sbf 0x5

CY 1 if a borrow occurs from MSB (Most Significant Bit), 0 if not

OV 1 if overflow occurred, 0 if not

S 1 if the result is negative, 0 if not

Z 1 if the result is 0, 0 if not

SAT ---

W0550011: illegal operand (range error in immediate).

E0550261: illegal condition code.

Instruction Flag Condition Meaning of Flag Condition Instruction Expansion

CubeSuite Ver.1.40 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 363 of 890
Oct 01, 2010

Multiplies half-word.

[Syntax]

- mulh reg1, reg2
- mulh imm, reg2

The following can be specified for imm:
- Absolute expression having a value of up to 16 bitsNote

- Relative expression

Note The assembler does not check whether the value of the expression exceeds 16 bits. The generated mulh
instruction performs the operation by using the lower 16 bits.

[Function]

- Syntax "mulh reg1, reg2"
Multiplies the value of the lower halfword data of the register specified by the first operand by the value of the lower
halfword data of the register specified by the second operand as a signed value, and stores the result in the regis-
ter specified by the second operand.

- Syntax "mulh imm, reg2"
Multiplies the value of the lower halfword data of the absolute expression or relative expression specified by the
first operand by the value of the lower halfword data of the register specified by the second operand as a signed
value, and stores the result in the register specified by the second operand.

[Description]

- If the instruction is executed in syntax "mulh reg1, reg2", the assembler generates one mulh machine instruction.
- If the following is specified as imm in syntax "mulh imm, reg2", the assembler generates one mulh machine instruc-

tionNote.

(a) Absolute expression having a value in the range of -16 to +15

Note The mulh machine instruction takes a register or immediate value in the range of -16 to +15 (0xFFFFFFF0
to 0xF) as the first operand.

- If the following is specified for imm in syntax "mulh imm, reg2", the assembler executes instruction expansion to
generate one or more machine instructions.

(a) Absolute expression exceeding the range of -16 to +15, but within the range of -32,768 to +32,767

mulh

mulh imm5, reg mulh imm5, reg

mulh imm16, reg mulhi imm16, reg, reg

CubeSuite Ver.1.40 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 364 of 890
Oct 01, 2010

(b) Absolute expression having a value exceeding the range of -32,768 to +32,767
If all the lower 16 bits of the value of imm are 0

Else

(c) Relative expression having !label or %label, or that having $label for a label with a definition in the
sdata/sbss-attribute section

(d) Relative expression having #label or label, or that having $label for a label having no definition in the
sdata/sbss-attribute section

[Flag]

[Caution]

- If r0 is specified by the second operand, the assembler outputs the following message and stops assembling.

mulh imm, reg movhi HIGHW(imm), r0, r1

mulh r1, reg

mulh imm, reg mov imm, r1

mulh r1, reg

mulh !label, reg mulhi !label, reg, reg

mulh %label, reg mulhi %label, reg, reg

mulh $label, reg mulhi $label, reg, reg

mulh #label, reg mov #label, r1

mulh r1, reg

mulh label, reg mov label, r1

mulh r1, reg

mulh $label, reg mov $label, r1

mulh r1, reg

CY ---

OV ---

S ---

Z ---

SAT ---

E0550240: Illegal operand (cannot use r0 as destination in V850E mode).

CubeSuite Ver.1.40 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 365 of 890
Oct 01, 2010

Multiplies half-word Immediate.

[Syntax]

- mulhi imm, reg1, reg2

The following can be specified for imm:
- Absolute expression having a value of up to 16 bitsNote

- Relative expression
- Either of the above expressions with HIGHW, LOWW, or HIGHW1 applied

Note The assembler does not check whether the value of the expression exceeds 16 bits. The generated mulhi
machine instruction performs the operation by using the lower 16 bits.

[Function]

Multiplies the value of the absolute expression, relative expression, or expression with HIGHW, LOWW, or HIGHW1
applied specified by the first operand by the value of the register specified by the second operand, and stores the result in
the register specified by the third operand.

[Description]

- If the following is specified for imm, the assembler generates one mulhi machine instructionNoe.

(a) Absolute expression having a value in the range of -32,768 to +32,767

(b) Relative expression having $label for a label having a definition in the sdata/sbss-attribute section

(c) Relative expression having !label or %label

(d) Expression with HIGHW, LOWW, or HIGHW1

Note The mulhi machine instruction takes an immediate value in the range of -32,768 to +32,767 (0xFFFF8000 to
0x7FFF) as the first operand.

mulhi

mulhi imm16, reg1, reg2 mulhi imm16, reg1, reg2

mulhi $label, reg1, reg2 mulhi $label, reg1, reg2

mulhi !label, reg1, reg2 mulhi !label, reg1, reg2

mulhi %label, reg1, reg2 mulhi %label, reg1, reg2

mulhi imm16, reg1, reg2 mulhi imm16, reg1, reg2

CubeSuite Ver.1.40 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 366 of 890
Oct 01, 2010

- If the following is specified for imm, the assembler executes instruction expansion to generate two or more
machine instructions.

(a) Absolute expression having a value exceeding the range of -32,768 to +32,767
If all the lower 16 bits of the value of imm are 0

Else

(b) Relative expression having #label or label, or that having $label for a label having no definition in the
sdata/sbss-attribute section

[Flag]

[Caution]

- If r0 is specified by the second operand, the assembler outputs the following message and stops assembling.

mulhi imm, reg1, reg2 movhi HIGHW(imm), r0, reg2

mulh reg1, reg2

mulhi imm, reg1, reg2 mov imm, reg2

mulh reg1, reg2

mulhi #label, reg1, reg2 mov #label, reg2

mulhi reg1, reg2

mulhi label, reg1, reg2 mov label, reg2

mulh reg1, reg2

mulhi $label, reg1, reg2 mov $label, reg2

mulh reg1, reg2

CY ---

OV ---

S ---

Z ---

SAT ---

E0550240: Illegal operand (cannot use r0 as destination in V850E mode).

CubeSuite Ver.1.40 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 367 of 890
Oct 01, 2010

Multiplies word.

[Syntax]

- mul reg1, reg2, reg3
- mul imm, reg2, reg3

The following can be specified for imm:
- Absolute expression having a value of up to 32 bits
- Relative expression

[Function]

- Syntax "mul reg1, reg2, reg3"
Multiplies the register value specified by the first operand by the register value specified by the second operand as
a signed value and stores the lower 32 bits of the result in the register specified by the second operand, and the
higher 32 bits in the register specified by the third operand. If the same register is specified by the second and third
operands, the higher 32 bits of the multiplication result are stored in that register.

- Syntax "mul imm, reg2, reg3"
Multiplies the value of the absolute or relative expression specified by the first operand by the register value speci-
fied by the second operand as a signed value and stores the lower 32 bits of the result in the register specified by
the second operand, and the higher 32 bits in the register specified by the third operand. If the same register is
specified by the second and third operands, the higher 32 bits of the multiplication result are stored in that register.

[Description]

- If the instruction is executed in syntax "mul reg1, reg2, reg3", the assembler generates one mul machine instruc-
tion.

- If the instruction is executed in syntax "mul imm, reg2, reg3", the assembler executes instruction expansion to gen-
erate one or more machine instructions.

(a) 0

(b) Absolute expression having a value of other than 0 whithin the range of -256 to +255

(c) Absolute expression exceeding the range of -256 to +255, but within the range of -32,768 to +32,767

mul

mul 0, reg2, reg3 mul r0, reg2, reg3

mul imm9, reg2, reg3 mul imm9, reg2, reg3

mul imm16, reg2, reg3 movea imm16, r0, r1

mul r1, reg2, reg3

CubeSuite Ver.1.40 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 368 of 890
Oct 01, 2010

(d) Absolute expression having a value exceeding the range of -32,768 to +32,767
If all the lower 16 bits of the value of imm are 0

Else

(e) Relative expression having $label for a label having a definition in the sdata/sbss-attribute section

(f) Relative expression having #label or label, or that having $label for a label having no definition in the
sdata/sbss-attribute section

[Flag]

[Caution]

- If these three conditions for the instructions in syntax "mul reg1, reg2, reg3" are met: reg1 and reg3 are the same
register, reg2 is a different register from reg1 and reg3, and reg1 and reg3 are neither r0 nor r1, the assembler per-
forms instruction expansion and generates multiple machine-language instructions.

mul imm, reg2, reg3 movhi HIGHW(imm), r0, r1

mul r1, reg2, reg3

mul imm, reg2, reg3 mov imm, r1

mul r1, reg2, reg3

mul $label, reg2, reg3 movea $label, r0, r1

mul r1, reg2, reg3

mul #label, reg2, reg3 mov #label, r1

mul r1, reg2, reg3

mul label, reg2, reg3 mov label, r1

mul r1, reg2, reg3

mul $label, reg2, reg3 mov $label, r1

mul r1, reg2, reg3

CY ---

OV ---

S ---

Z ---

SAT ---

mov reg1, r1

mul r1, reg2, reg3

CubeSuite Ver.1.40 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 369 of 890
Oct 01, 2010

- If these three conditions for the instructions in syntax "mul reg1, reg2, reg3" are met: reg1 and reg3 are the same
register, reg2 is a different register from reg1 and reg3, and reg1 and reg3 are r1, the assembler outputs the follow-
ing messages and stops assembling.

- If an instruction with the format "mul imm, reg2, reg3" meets the conditions that "reg3 is r1" and "reg2 is a different
register than reg3", and it is possible that multiple machine-language instructions will be generated via instruction
expansion, then the assembler outputs the following message, and assembly stops.

- If the warning message suppressing option -Xno_warning= W0550013 is specified, the assembler outputs the fol-
lowing message and stops assembling.

W0550013: register r1 used as source register

W0550013: register r1 used as destination register

E0550259: Cannot use r1 as destination in mul/mulu.

W0550013: register r1 used as destination register

E0550259: Cannot use r1 as destination in mul/mulu.

E0550259: Cannot use r1 as destination in mul/mulu.

CubeSuite Ver.1.40 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 370 of 890
Oct 01, 2010

Multiplies unsigned word.

[Syntax]

- mulu reg1, reg2, reg3
- mulu imm, reg2, reg3

The following can be specified for imm:
- Absolute expression having a value of up to 32 bits
- Relative expression

[Function]

- Syntax "mulu reg1, reg2, reg3"
Multiplies the register value specified by the first operand by the register value specified by the second operand as
an unsigned value and stores the lower 32 bits of the result in the register specified by the second operand, and
the higher 32 bits in the register specified by the third operand. If the same register is specified by the second and
third operands, the higher 32 bits of the multiplication result are stored in that register.

- Syntax "mulu imm, reg2, reg3"
Multiplies the value of the absolute or relative expression specified by the first operand by the register value speci-
fied by the second operand as an unsigned value and stores the lower 32 bits of the result in the register specified
by the second operand, and the higher 32 bits in the register specified by the third operand. If the same register is
specified by the second and third operands, the higher 32 bits of the multiplication result are stored in that register.

[Description]

- If the instruction is executed in syntax "mulu reg1, reg2, reg3", the assembler generates one mulu machine instruc-
tion.

- If the instruction is executed in syntax "mulu imm, reg2, reg3", the assembler executes instruction expansion to
generate one or more machine instructions.

(a) 0

(b) Absolute expression having a value in the range of -256 to +255

(c) Absolute expression exceeding the range of -256 to +255, but within the range of -32,768 to +32,767

mulu

mulu 0, reg2, reg3 mulu r0, reg2, reg3

mulu imm9, reg2, reg3 mulu imm9, reg2, reg3

mulu imm16, reg2, reg3 movea imm16, r0, r1

mulu r1, reg2, reg3

CubeSuite Ver.1.40 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 371 of 890
Oct 01, 2010

(d) Absolute expression having a value exceeding the range of -32,768 to +32,767
If all the lower 16 bits of the value of imm are 0

Else

(e) Relative expression having $label for a label having a definition in the sdata/sbss-attribute section

(f) Relative expression having #label or label, or that having $label for a label having no definition in the
sdata/sbss-attribute section

[Flag]

[Caution]

- If these three conditions for the instructions in syntax "mulu reg1, reg2, reg3" are met: reg1 and reg3 are the same
register, reg2 is a different register from reg1 and reg3, and reg1 and reg3 are neither r0 nor r1, the assembler per-
forms instruction expansion and generates multiple machine-language instructions.

mulu imm, reg2, reg3 movhi HIGHW(imm), r0, r1

mulu r1, reg2, reg3

mulu imm, reg2, reg3 mov imm, r1

mulu r1, reg2, reg3

mulu $label, reg2, reg3 movea $label, r0, r1

mulu r1, reg2, reg3

mulu #label, reg2, reg3 mov #label, r1

mulu r1, reg2, reg3

mulu label, reg2, reg3 mov label, r1

mulu r1, reg2, reg3

mulu $label, reg2, reg3 mov $label, r1

mulu r1, reg2, reg3

CY ---

OV ---

S ---

Z ---

SAT ---

mov reg1, r1

mulu r1, reg2, reg3

CubeSuite Ver.1.40 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 372 of 890
Oct 01, 2010

- If these three conditions for the instructions in syntax "mulu reg1, reg2, reg3" are met: reg1 and reg3 are the same
register, reg2 is a different register from reg1 and reg3, and reg1 and reg3 are r1, the assembler outputs the follow-
ing messages and stops assembling.

- If an instruction with the format "mulu imm, reg2, reg3" meets the conditions that "reg3 is r1" and "reg2 is a differ-
ent register than reg3", and it is possible that multiple machine-language instructions will be generated via instruc-
tion expansion, then the assembler outputs the following message, and assembly stops.

- If the warning message suppressing option -Xno_warning=W0550013 is specified, the assembler outputs the fol-
lowing message and stops assembling.

W0550013: register r1 used as source register

W0550013: register r1 used as destination register

E0550259: Cannot use r1 as destination in mul/mulu.

W0550013: register r1 used as destination register

E0550259: Cannot use r1 as destination in mul/mulu.

E0550259: Cannot use r1 as destination in mul/mulu.

CubeSuite Ver.1.40 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 373 of 890
Oct 01, 2010

Multiplies and adds signed word data. [V850E2]

[Syntax]

- mac reg1, reg2, reg3, reg4

[Function]

Adds the multiplication result of the general-purpose register reg2 word data and the general-purpose register reg1
word data with the 64-bit data made up of general-purpose register reg3 as the lower 32 bits and general-purpose register
reg3+1 (for example, if reg3 were r6, "reg3+1" would be r7) as the upper 32 bits, and stores the upper 32 bits of that result
(64-bit data) in general-purpose register reg4+1 and the lower 32 bits in general-purpose register reg4.

The contents of general-purpose registers reg1 and reg2 are treated as 32-bit signed integers.
General-purpose registers reg1, reg2, reg3, and reg3+1 are unaffected.

[Description]

The assembler generates one mac machine instruction.

[Flag]

[Caution]

- The general-purpose registers that can be specified to reg3 or reg4 are limited to even numbered registers (r0, r2,
r4, ..., r30). When specifying an odd numbered register, the following message is output, and assembly continues,
specifying the register as an even numbered register (r0, r2, r4, ..., r30).

mac

CY ---

OV ---

S ---

Z ---

SAT ---

W0550026: illegal register number, aligned odd register(rXX) to be even register(rYY).

CubeSuite Ver.1.40 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 374 of 890
Oct 01, 2010

Multiply and adds unsigned word data. [V850E2]

[Syntax]

- macu reg1, reg2, reg3, reg4

[Function]

Adds the multiplication result of the general-purpose register reg2 word data and the general-purpose register reg1
word data with the 64-bit data made up of general-purpose register reg3 as the lower 32 bits and general-purpose register
reg3+1 (for example, if reg3 were r6, "reg3+1" would be r7) as the upper 32 bits, and stores the upper 32 bits of that result
(64-bit data) in general-purpose register reg4+1 and the lower 32 bits in general-purpose register reg4.

The contents of general-purpose registers reg1 and reg2 are treated as 32-bit unsigned integers.
General-purpose registers reg1, reg2, reg3, and reg3+1 are unaffected.

[Description]

The assembler generates one macu machine instruction.

[Flag]

[Caution]

- The general-purpose registers that can be specified to reg3 or reg4 are limited to even numbered registers (r0, r2,
r4, ..., r30). When specifying an odd numbered register, the following message is output, and assembly continues,
specifying the register as an even numbered register (r0, r2, r4, ..., r30).

macu

CY ---

OV ---

S ---

Z ---

SAT ---

W0550026: illegal register number, aligned odd register(rXX) to be even register(rYY).

CubeSuite Ver.1.40 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 375 of 890
Oct 01, 2010

Divides half-word.

[Syntax]

- divh reg1, reg2
- divh imm, reg2
- divh reg1, reg2, reg3
- divh imm, reg2, reg3

The following can be specified for imm:
- Absolute expression having a value of up to 16 bitsNote

- Relative expression

Note The assembler does not check whether the value of the expression exceeds 16 bits. The generated machine
instruction performs execution using the lower 16 bits.

[Function]

- Syntax "divh reg1, reg2"
Divides the register value specified by the second operand by the value of the lower halfword data of the register
specified by the first operand as a signed value, and stores the quotient in the register specified by the second
operand.

- Syntax "divh imm, reg2"
Divides the register value specified by the second operand by the value of the lower halfword data of the absolute
or relative expression specified by the first operand as a signed value and stores the quotient in the register speci-
fied by the second operand.

- Syntax "divh reg1, reg2, reg3"
Divides the register value specified by the second operand by the value of the lower halfword data of the register
specified by the first operand as a signed value and stores the quotient in the register specified by the second
operand, and the remainder in the register specified by the third operand. If the same register is specified by the
second and third operands, the remainder is stored in that register.

- Syntax "divh imm, reg2, reg3"
Divides the register value specified by the second operand by the value of the lower halfword data of the absolute
or relative expression specified by the first operand as a signed value and stores the quotient in the register speci-
fied by the second operand, and the remainder in the register specified by the third operand. If the same register is
specified by the second and third operands, the remainder is stored in that register.

[Description]

- If the instruction is executed in syntaxes "divh reg1, reg2" and "divh reg1, reg2, reg3", the assembler generates
one divh machine instruction.

- If the instruction is executed in syntax "divh imm, reg2, reg3", the assembler executes instruction expansion to
generate one or more machine instructionsNote.

(a) 0

divh

divh 0, reg divh r0, reg

CubeSuite Ver.1.40 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 376 of 890
Oct 01, 2010

(b) Absolute expression having a value of other than 0 within the range of -16 to +15

(c) Absolute expression exceeding the range of -16 to +15, but within the range of -32,768 to +32,767

(d) Absolute expression having a value exceeding the range of -32,768 to +32,767
If all the lower 16 bits of the value of imm are 0

Else

(e) Relative expression having $label for a label having a definition in the sdata/sbss-attribute section

(f) Relative expression having #label or label, or that having $label for a label having no definition in the
sdata/sbss-attribute section

Note The divh machine instruction does not take an immediate value as an operand.

- If the instruction is executed in syntax "divh imm, reg2, reg3", the assembler executes instruction expansion to
generate one or more machine instructions.

(a) 0

divh imm5, reg mov imm5, r1

divh r1, reg

divh imm16, reg movea imm16, r0, r1

divh r1, reg

divh imm, reg movhi HIGHW(imm), r0, r1

divh r1, reg

divh imm, reg mov imm, r1

divh r1, reg

divh $label, reg movea $label, r0, r1

divh r1, reg

divh #label, reg mov #label, r1

divh r1, reg

divh label, reg mov label, r1

divh r1, reg

divh $label, reg mov $label, r1

divh r1, reg

divh 0, reg2, reg3 divh r0, reg2, reg3

CubeSuite Ver.1.40 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 377 of 890
Oct 01, 2010

(b) Absolute expression having a value of other than 0 within the range of -16 to +15

(c) Absolute expression exceeding the range of -16 to +15, but within the range of -32,768 to +32,767

(d) Absolute expression having a value exceeding the range of -32,768 to +32,767
If all the lower 16 bits of the value of imm are 0

Else

(e) Relative expression having $label for a label having a definition in the sdata/sbss-attribute section

(f) Relative expression having #label or label, or that having $label for a label having no definition in the
sdata/sbss-attribute section

[Flag]

divh imm5, reg2, reg3 mov imm5, r1

divh r1, reg2, reg3

divh imm16, reg2, reg3 movea imm16, r0, r1

divh r1, reg2, reg3

divh imm, reg2, reg3 movhi HIGHW(imm), r0, r1

divh r1, reg2, reg3

divh imm, reg2, reg3 mov imm, r1

divh r1, reg2, reg3

divh $label, reg2, reg3 movea $label, r0, r1

divh r1, reg2, reg3

divh #label, reg2, reg3 mov #label, r1

divh r1, reg2, reg3

divh label, reg2, reg3 mov label, r1

divh r1, reg2, reg3

divh $label, reg2, reg3 mov $label, r1

divh r1, reg2, reg3

CY ---

OV 1 if Integer-Overflow occurs, 0 if not

S 1 if the result is negative, 0 if not

Z 1 if the result is 0, 0 if not

SAT ---

CubeSuite Ver.1.40 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 378 of 890
Oct 01, 2010

[Caution]

- If r0 is specified by the first operand in syntax "divh reg1, reg2", the CX outputs the following message and stops
assembling.

- If r0 is specified by the second operand (reg2) in syntaxes "divh imm, reg2", the assembler outputs the message
and stops assembling.

- If 0 is specified by the second operand (imm) in syntaxes "divh imm, reg2", the assembler outputs the message
and stops assembling.

E0550239: Illegal operand (cannot use r0 as source in V850E mode).

E0550240: Illegal operand (cannot use r0 as destination in V850E mode).

E0550239: Illegal operand (cannot use r0 as source in V850E mode).

E0550240: Illegal operand (cannot use r0 as destination in V850E mode).

E0550239: Illegal operand (cannot use r0 as source in V850E mode).

CubeSuite Ver.1.40 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 379 of 890
Oct 01, 2010

Divides word.

[Syntax]

- div reg1, reg2, reg3
- div imm, reg2, reg3

The following can be specified for imm:
- Absolute expression having a value of up to 32 bits
- Relative expression

[Function]

- Syntax "div reg1, reg2, reg3"
Divides the register value specified by the second operand by the register value specified by the first operand as a
signed value and stores the quotient in the register specified by the second operand, and the remainder in the reg-
ister specified by the third operand. If the same register is specified by the second and third operands, the remain-
der is stored in that register.

- Syntax "div imm, reg2, reg3"
Divides the register value specified by the second operand by the value of the absolute or relative expression
specified by the first operand as a signed value and stores the quotient in the register specified by the second
operand, and the remainder in the register specified by the third operand. If the same register is specified by the
second and third operands, the remainder is stored in that register.

[Description]

- If the instruction is executed in syntax "div reg1, reg2, reg3", the assembler generates one div machine instruction.
- If the instruction is executed in syntax "div imm, reg2, reg3", the assembler executes instruction expansion to gen-

erate two or more machine instructionsNote.

(a) 0

(b) Absolute expression having a value of other than 0 within the range of -16 to +15

(c) Absolute expression exceeding the range of -16 to +15, but within the range of -32,768 to +32,767

div

div 0, reg2, reg3 div r0, reg2, reg3

div imm5, reg2, reg3 mov imm5, r1

div r1, reg2, reg3

div imm16, reg2, reg3 movea imm16, r0, r1

div r1, reg2, reg3

CubeSuite Ver.1.40 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 380 of 890
Oct 01, 2010

(d) Absolute expression having a value exceeding the range of -32,768 to +32,767
If all the lower 16 bits of the value of imm are 0

Else

(e) Relative expression having $label for a label having a definition in the sdata/sbss-attribute section

(f) Relative expression having #label or label, or that having $label for a label having no definition in the
sdata/sbss-attribute section

Note The div machine instruction does not take an immediate value as an operand.

[Flag]

div imm, reg2, reg3 movhi HIGHW(imm), r0, r1

div r1, reg2, reg3

div imm, reg2, reg3 mov imm, r1

div r1, reg2, reg3

div $label, reg2, reg3 movea $label, r0, r1

div r1, reg2, reg3

div #label, reg2, reg3 mov #label, r1

div r1, reg2, reg3

div label, reg2, reg3 mov label, r1

div r1, reg2, reg3

div $label, reg2, reg3 mov $label, r1

div r1, reg2, reg3

CY ---

OV 1 if Integer-Overflow occurs, 0 if not

S 1 if the result is negative, 0 if not

Z 1 if the result is 0, 0 if not

SAT ---

CubeSuite Ver.1.40 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 381 of 890
Oct 01, 2010

Divides unsigned half-word.

[Syntax]

- divhu reg1, reg2, reg3
- divhu imm, reg2, reg3

The following can be specified for imm:
- Absolute expression having a value of up to 16 bitsNote

- Relative expression

Note The assembler does not check whether the value of the expression exceeds 16 bits. The generated machine
instruction uses only the lower 16 bits for execution.

[Function]

- Syntax "divhu reg1, reg2, reg3"
Divides the register value specified by the second operand by the value of the lower halfword data of the register
value specified by the first operand as an unsigned value and stores the quotient in the register specified by the
second operand, and the remainder in the register specified by the third operand. If the same register is specified
by the second and third operands, the remainder is stored in that register.

- Syntax "divhu imm, reg2, reg3"
Divides the register value specified by the second operand by the value of the lower halfword data of the absolute
or relative expression specified by the first operand as an unsigned value and stores the quotient in the register
specified by the second operand, and the remainder in the register specified by the third operand. If the same reg-
ister is specified by the second and third operands, the remainder is stored in that register.

[Description]

- If the instruction is executed in syntax "divhu reg1, reg2, reg3", the assembler generates one divhu machine
instruction.

- If the instruction is executed in syntax "divhu imm, reg2, reg3", the assembler executes instruction expansion to
generate one or more machine instructionsNote.

(a) 0

(b) Absolute expression having a value of other than 0 within the range of -16 to +15

(c) Absolute expression exceeding the range of -16 to +15, but within the range of -32,768 to +32,767

divhu

divhu 0, reg2, reg3 divhu r0, reg2, reg3

divhu imm5, reg2, reg3 mov imm5, r1

divhu r1, reg2, reg3

divhu imm16, reg2, reg3 movea imm16, r0, r1

divhu r1, reg2, reg3

CubeSuite Ver.1.40 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 382 of 890
Oct 01, 2010

(d) Absolute expression having a value exceeding the range of -32,768 to +32,767
If all the lower 16 bits of the value of imm are 0

Else

(e) Relative expression having $label for a label having a definition in the sdata/sbss-attribute section

(f) Relative expression having #label or label, or that having $label for a label having no definition in the
sdata/sbss-attribute section

Note The divhu machine instruction does not take an immediate value as an operand.

[Flag]

divhu imm, reg2, reg3 movhi HIGHW(imm), r0, r1

divhu r1, reg2, reg3

divhu imm, reg2, reg3 mov imm, r1

divhu r1, reg2, reg3

divhu $label, reg2, reg3 movea $label, r0, r1

divhu r1, reg2, reg3

divhu #label, reg2, reg3 mov #label, r1

divhu r1, reg2, reg3

divhu label, reg2, reg3 mov label, r1

divhu r1, reg2, reg3

divhu $label, reg2, reg3 mov $label, r1

divhu r1, reg2, reg3

CY ---

OV 1 if Integer-Overflow occurs, 0 if not

S 1 if the word data MSB of the result is 1, 0 if not

Z 1 if the result is 0, 0 if not

SAT ---

CubeSuite Ver.1.40 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 383 of 890
Oct 01, 2010

Divides unsigned word.

[Syntax]

- divu reg1, reg2, reg3
- divu imm, reg2, reg3

The following can be specified for imm:
- Absolute expression having a value of up to 32 bits
- Relative expression

[Function]

- Syntax "divu reg1, reg2, reg3"
Divides the register value specified by the second operand by the register value specified by the first operand as
an unsigned value and stores the quotient in the register specified by the second operand, and the remainder in
the register specified by the third operand. If the same register is specified by the second and third operands, the
remainder is stored in that register.

- Syntax "divu imm, reg2, reg3"
Divides the register value specified by the second operand by the value of the absolute or relative expression
specified by the first operand as an unsigned value and stores the quotient in the register specified by the second
operand, and the remainder in the register specified by the third operand. If the same register is specified by the
second and third operands, the remainder is stored in that register.

[Description]

- If the instruction is executed in syntax "divu reg1, reg2, reg3", the assembler generates one divu machine instruc-
tion.

- If the instruction is executed in syntax "divu imm, reg2, reg3", the assembler executes instruction expansion to
generate one or more machine instructionsNote.

(a) 0

(b) Absolute expression having a value of other than 0 whithin the range of -16 to +15

(c) Absolute expression exceeding the range of -16 to +15, but within the range of -32,768 to +32,767

divu

divu 0, reg2, reg3 divu r0, reg2, reg3

divu imm5, reg2, reg3 mov imm5, r1

divu r1, reg2, reg3

divu imm16, reg2, reg3 movea imm16, r0, r1

divu r1, reg2, reg3

CubeSuite Ver.1.40 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 384 of 890
Oct 01, 2010

(d) Absolute expression having a value exceeding the range of -32,768 to +32,767
If all the lower 16 bits of the value of imm are 0

Else

(e) Relative expression having $label for a label having a definition in the sdata/sbss-attribute section

(f) Relative expression having #label or label, or that having $label for a label having no definition in the
sdata/sbss-attribute section

Note The divu machine instruction does not take an immediate value as an operand.

[Flag]

divu imm, reg2, reg3 movhi HIGHW(imm), r0, r1

divu r1, reg2, reg3

divu imm, reg2, reg3 mov imm, r1

divu r1, reg2, reg3

divu $label, reg2, reg3 movea $label, r0, r1

divu r1, reg2, reg3

divu #label, reg2, reg3 mov #label, r1

divu r1, reg2, reg3

divu label, reg2, reg3 mov label, r1

divu r1, reg2, reg3

divu $label, reg2, reg3 mov $label, r1

divu r1, reg2, reg3

CY ---

OV 1 if Integer-Overflow occurs, 0 if not

S 1 if the word data MSB of the result is 1, 0 if not

Z 1 if the result is 0, 0 if not

SAT ---

CubeSuite Ver.1.40 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 385 of 890
Oct 01, 2010

Compares.

[Syntax]

- cmp reg1, reg2
- cmp imm, reg2

The following can be specified for imm:
- Absolute expression having a value of up to 32 bits
- Relative expression

[Function]

- Syntax "cmp reg1, reg2"
Compares the value of the register specified by the first operand with the value of the register specified by the sec-
ond operand, and indicates the result using a flag. Comparison is performed by subtracting the value of the regis-
ter specified by the first operand from the value of the register specified by the second operand.

- Syntax "cmp imm, reg2"
Compares the value of the absolute expression or relative expression specified by the first operand with the value
of the register specified by the second operand, and indicates the result using a flag. Comparison is performed by
subtracting the value of the register specified by the first operand from the value of the register specified by the
second operand.

[Description]

- If the instruction is executed in syntax "cmp reg1, reg2", the assembler generates one cmp machine instruction.
- If the following is specified as imm in syntax "cmp imm, reg2", the assembler generates one cmp machine instruc-

tionNote.

(a) Absolute expression having a value in the range of -16 to +15

Note The cmp machine instruction takes a register or immediate value in the range of -16 to +15 (0xFFFFFFF0 to
0xF) as the first operand.

- If the following is specified as imm in syntax "cmp imm, reg2", the assembler executes instruction expansion to
generate one or more machine instructions.

(a) Absolute expression exceeding the range of -16 to +15, but within the range of -32,768 to +32,767

cmp

cmp imm5, reg cmp imm5, reg

cmp imm16, reg movea imm16, r0, r1

cmp r1, reg

CubeSuite Ver.1.40 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 386 of 890
Oct 01, 2010

(b) Absolute expression having a value exceeding the range of -32,768 to +32,767
If all the lower 16 bits of the value of imm are 0

Else

(c) Relative expression having $label for a label having a definition in the sdata/sbss-attribute section

(d) Relative expression having #label or label, or that having $label for a label having no definition in the
sdata/sbss-attribute section

[Flag]

cmp imm, reg movhi HIGHW(imm), r0, r1

cmp r1, reg

cmp imm, reg mov imm, r1

cmp r1, reg

cmp $label, reg movea $label, r0, r1

cmp r1, reg

cmp #label, reg mov #label, r1

cmp r1, reg

cmp label, reg mov label, r1

cmp r1, reg

cmp $label, reg mov $label, r1

cmp r1, reg

CY 1 if a borrow occurs from MSB (Most Significant Bit),0 if not

OV 1 if Integer-Overflow occurs, 0 if not

S 1 if the result is negative, 0 if not

Z 1 if the result is 0, 0 if not

SAT ---

CubeSuite Ver.1.40 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 387 of 890
Oct 01, 2010

Moves.

[Syntax]

- mov reg1, reg2
- mov imm, reg2

The following can be specified for imm:
- Absolute expression having a value of up to 32 bits
- Relative expression

[Function]

- Syntax "mov reg1, reg2"
Stores the value of the register specified by the first operand in the register specified by the second operand.

- Syntax "mov imm, reg2"
Stores the value of the absolute expression or relative expression specified by the first operand in the register
specified by the second operand.

[Description]

- If the instruction is executed in syntax "mov reg1, reg2", the assembler generates one mov machine instruction.
- If the following is specified as imm in syntax "mov imm, reg2", the assembler generates one mov machine instruc-

tionNote.

(a) Absolute expression having a value in the range of -16 to +15

Note The mov machine instruction takes a register or immediate value in the range of -16 to +15 (0xFFFFFFF0 to
0xF) as the first operand.

- If the following is specified as imm in syntax "mov imm, reg2", the assembler executes instruction expansion to
generate one or more machine instructions.

(a) Absolute expression exceeding the range of -16 to +15, but within the range of -32,768 to +32,767

mov

mov imm5, reg mov imm5, reg

mov imm16, reg movea imm16, r0, reg

CubeSuite Ver.1.40 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 388 of 890
Oct 01, 2010

(b) Absolute expression having a value exceeding the range of -32,768 to +32,767
If all the lower 16 bits of the value of imm are 0

ElseNote

Note A 16-bit mov instruction is replaced by a 48-bit mov instruction.

(c) Relative expression having !label or %label, or that having $label for a label with a definition in the
sdata/sbss-attribute section

(d) Relative expression having #label or label, or that having $label for a label having no definition in the
sdata/sbss-attribute sectionNote

Note A 16-bit mov instruction is replaced by a 48-bit mov instruction.

[Flag]

[Caution]

- If an absolute expression having a value in the range between -16 and 15 is specified by the first operand and r0 is
specified by the second operand of syntax "mov imm, reg2", or r0 is specified by the second operand of syntax
"mov reg1, reg2", the assembler outputs the following message and stops assembling.

mov imm, reg movhi HIGHW(imm), r0, reg

mov imm, reg mov imm, reg

mov !label, reg movea !label, r0, reg

mov %label, reg movea %label, r0, reg

mov $label, reg movea $label, r0, reg

mov #label, reg mov #label, reg

mov label, reg mov label, reg

mov $label, reg mov $label, reg

CY ---

OV ---

S ---

Z ---

SAT ---

E0550240: Illegal operand (cannot use r0 as destination in V850E mode).

CubeSuite Ver.1.40 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 389 of 890
Oct 01, 2010

Moves execution address.

[Syntax]

- movea imm, reg1, reg2

The following can be specified for imm:
- Absolute expression having a value of up to 32 bits
- Relative expression
- Either of the above expressions with HIGHW, LOWW, or HIGHW1 applied

[Function]

Adds the value of the absolute expression, relative expression, or expression with HIGHW, LOWW, or HIGHW1
applied, specified by the first operand, to the value of the register specified by the second operand, and stores the result
in the register specified by the third operand.

[Description]

- If the following is specified for imm, the assembler generates one movea machine instructionNote.
- If r0 is specified by reg1, the assembler recognizes specified syntax "mov imm, reg2".

(a) Absolute expression having a value in the range of -32,768 to +32,767

(b) Relative expression having $label for a label having a definition in the sdata/sbss-attribute section

(c) Relative expression having !label or %label

(d) Expression with HIGHW, LOWW, or HIGHW1

Note The movea machine instruction takes an immediate value in a range of -32,768 to +32,767 (0xFFFF8000 to
0x7FFF) as the first operand.

movea

movea imm16, reg1, reg2 movea imm16, reg1, reg2

movea $label, reg1, reg2 movea $label, reg1, reg2

movea !label, reg1, reg2 movea !label, reg1, reg2

movea %label, reg1, reg2 movea %label, reg1, reg2

movea imm16, reg1, reg2 movea imm16, reg1, reg2

CubeSuite Ver.1.40 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 390 of 890
Oct 01, 2010

- If the following is specified for imm, the assembler executes instruction expansion to generate one or more
machine instructions.

(a) Absolute expression having a value exceeding the range of -32,768 to +32,767
If all the lower 16 bits of the value of imm are 0

Else

(b) Relative expression having #label or label, or that having $label for a label having no definition in the
sdata/sbss-attribute section

[Flag]

[Caution]

- If r0 is specified by the third operand, the assembler outputs the message and stops assembling.

movea imm, reg1, reg2 movhi HIGHW(imm), reg1, reg2

movea imm, reg1, reg2 movhi HIGHW1(imm), reg1, r1

movea LOWW(imm), r1, reg2

movea #label, reg1, reg2 movhi HIGHW1(#label), reg1, r1

movea LOWW(#label), r1, reg2

movea label, reg1, reg2 movhi HIGHW1(label), reg1, r1

movea LOWW(label), r1, reg2

movea $label, reg1, reg2 movhi HIGHW1($label), reg1, r1

movea LOWW($label), r1, reg2

CY ---

OV ---

S ---

Z ---

SAT ---

CubeSuite Ver.1.40 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 391 of 890
Oct 01, 2010

Moves higher half-word.

[Syntax]

- movhi imm16, reg1, reg2

The following can be specified for imm16:
- Absolute expression having a value of up to 16 bits
- Relative expression
- Either of the above expressions with HIGHW, LOWW, or HIGHW1 applied

[Function]

Adds word data for which the higher 16 bits are specified by the first operand and the lower 16 bits are 0, to the value of
the register specified by the second operand, and stores the result in the register specified by the third operand.

[Description]

The assembler generates one movhi machine instruction.

[Flag]

[Caution]

- If an absolute expression having a value exceeding the range of 0 to 65,535 is specified as imm16, the assembler
outputs the following message and stops assembling.

- If r0 is specified by the third operand, the assembler outputs the following message and stops assembling.

movhi

CY ---

OV ---

S ---

Z ---

SAT ---

E0550231: illegal operand (range error in immediate)

E0550240: Illegal operand (cannot use r0 as destination in V850E mode).

CubeSuite Ver.1.40 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 392 of 890
Oct 01, 2010

Moves 32-bit data.

[Syntax]

- mov32 imm, reg2

The following can be specified for imm:
- Absolute expression having a value of up to 32 bits
- Relative expression

[Function]

Stores the value of the absolute or relative expression specified as the first operand in the register specified as the sec-
ond operand.

[Description]

The assembler generates one 48-bit machine language mov instruction.

[Flag]

mov32

CY ---

OV ---

S ---

Z ---

SAT ---

CubeSuite Ver.1.40 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 393 of 890
Oct 01, 2010

Moves data depending on the flag condition.

[Syntax]

- cmov imm4, reg1, reg2, reg3
- cmov imm4, imm, reg2, reg3
- cmovcnd reg1, reg2, reg3
- cmovcnd imm, reg2, reg3

The following can be specified for imm4:
- Absolute expression having a value up to 4 bitsNote

Note The cmov machine instruction takes an immediate value in the range of 0 to 15 (0x0 to 0xF) as the first operand.

The following can be specified for imm:
- Absolute expression having a value of up to 32 bits
- Relative expression

[Function]

- Syntax "cmov imm4, reg1, reg2, reg3"
Compares the flag condition indicated by the value of the lower 4 bits of the value of the constant expression spec-
ified by the first operand with the current flag condition. If a match is found, the register value specified by the sec-
ond operand is stored in the register specified by the fourth operand; otherwise, the register value specified by the
third operand is stored in the register specified by the fourth operand.

- Syntax "cmov imm4, imm, reg2, reg3"
Compares the flag condition indicated by the value of the lower 4 bits of the constant expression specified by the
first operand with the current flag condition. If a match is found, the value of the absolute expression specified by
the second operand is stored in the register specified by the fourth operand; otherwise, the register value specified
by the third operand is stored in the register specified by the fourth operand.

- Syntax "cmovcnd reg1, ret2, reg3"
Compares the flag condition indicated by string cnd with the current flag condition. If a match is found, the register
value specified by the first operand is stored in the register specified by the third operand; otherwise, the register
value specified by the second operand is stored in the register specified by the third operand.

- Syntax "cmovcnd imm, reg2, reg3"
Compares the flag condition indicated by string cnd with the current flag condition. If a match is found, the value of
the absolute expression specified by the first operand is stored in the register specified by the third operand; other-
wise, the register value specified by the second operand is stored in the register specified by the third operand.

Table 4-34. cmovcnd Instruction List

cmov

Instruction Flag Condition Meaning of Flag Condition Instruction Expansion

cmovgt ((S xor OV) or Z) = 0 Greater than (signed) cmov 0xF

cmovge (S xor OV) = 0 Greater than or equal (signed) cmov 0xE

cmovlt (S xor OV) = 1 Less than (signed) cmov 0x6

cmovle ((S xor OV) or Z) = 1 Less than or equal (signed) cmov 0x7

cmovh (CY or Z) = 0 Higher (Greater than) cmov 0xB

CubeSuite Ver.1.40 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 394 of 890
Oct 01, 2010

[Description]

- If the instruction is executed in syntax "cmov imm4, reg1, reg2, reg3", the assembler generates one cmov machine
instructionNote.

Note The cmov machine instruction takes an immediate value in the range of -16 to +15 (0xFFFFFFF0 to 0xF) as
the second operand.

- If the following is specified as imm in syntax "cmov imm4, imm, reg2, reg3", the assembler generates one cmov
machine instruction.

(a) Absolute expression having a value in the range of -16 to +15
If all the lower 16 bits of the value of imm are 0

- If the following is specified as imm in syntax "cmov imm4, imm, reg2, reg3", the assembler executes instruction
expansion to generate two or more machine instructions.

(a) Absolute expression exceeding the range of -16 to +15, but within the range of -32,768 to +32,767

cmovnl CY = 0 Not lower (Greater than or equal) cmov 0x9

cmovl CY = 1 Lower (Less than) cmov 0x1

cmovnh (CY or Z) = 1 Not higher (Less than or equal) cmov 0x3

cmove Z = 1 Equal cmov 0x2

cmovne Z = 0 Not equal cmov 0xA

cmovv OV = 1 Overflow cmov 0x0

cmovnv OV = 0 No overflow cmov 0x8

cmovn S = 1 Negative cmov 0x4

cmovp S = 0 Positive cmov 0xC

cmovc CY = 1 Carry cmov 0x1

cmovnc CY = 0 No carry cmov 0x9

cmovz Z = 1 Zero cmov 0x2

cmovnz Z = 0 Not zero cmov 0xA

cmovt always 1 Always 1 cmov 0x5

cmovsa SAT = 1 Saturated cmov 0xD

cmov imm4, imm5, reg2, reg3 cmov imm4, imm5, reg2, reg3

cmov imm4, imm16, reg2, reg3 movea imm16, r0, r1

cmov imm4, r1, reg2, reg3

Instruction Flag Condition Meaning of Flag Condition Instruction Expansion

CubeSuite Ver.1.40 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 395 of 890
Oct 01, 2010

(b) Absolute expression having a value exceeding the range of -32,768 to +32,767
If all the lower 16 bits of the value of imm are 0

Else

(c) Relative expression having #label or label, or that having $label for a label having no definition in the
sdata/sbss-attribute section

(d) Relative expression having !label or %label, or that having $label for a label with a definition in the
sdata/sbss-attribute section

- If the instruction is executed in syntax "cmovcnd reg1, ret2, reg3", the assembler generates the corresponding
cmov instruction (see "Table 4-34. cmovcnd Instruction List") and expands it to syntax "cmov imm4, reg1, reg2,
reg3".

- If the following is specified as imm in syntax "cmovcnd imm, reg2, reg3", the assembler generates the correspond-
ing cmov instruction (see "Table 4-34. cmovcnd Instruction List") and expands it to syntax "cmov imm4, imm,
reg2, reg3".

(a) Absolute expression having a value in the range of -16 to +15

- If the following is specified as imm in syntax "cmovcnd imm, reg2, reg3", the assembler executes instruction
expansion to generate two or more machine instructions.

(a) Absolute expression exceeding the range of -16 to +15, but within the range of -32,768 to +32,767

cmov imm4, imm, reg2, reg3 movhi HIGHW(imm), r0, r1

cmov imm4, r1, reg2, reg3

cmov imm4, imm, reg2, reg3 mov imm, r1

cmov imm4, r1, reg2, reg3

cmov imm4, #label, reg2, reg3 mov #label, r1

cmov imm4, r1, reg2, reg3

cmov imm4, label, reg2, reg3 mov label, r1

cmov imm4, r1, reg2, reg3

cmov imm4, $label, reg2, reg3 mov $label, r1

cmov imm4, r1, reg2, reg3

cmov imm4, !label, reg2, reg3 movea !label, r0, r1

cmov imm4, r1, reg2, reg3

cmov imm4, %label, reg2, reg3 movea %label, r0, r1

cmov imm4, r1, reg2, reg3

cmov imm4, $label, reg2, reg3 movea $label, r0, r1

cmov imm4, r1, reg2, reg3

cmovcnd imm16, reg2, reg3 movea imm16, r0, r1

cmovcnd r1, reg2, reg3

CubeSuite Ver.1.40 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 396 of 890
Oct 01, 2010

(b) Absolute expression having a value exceeding the range of -32,768 to +32,767
If all the lower 16 bits of the value of imm are 0

Else

(c) Relative expression having #label or label, or that having $label for a label having no definition in the
sdata/sbss-attribute section

(d) Relative expression having !label or %label, or that having $label for a label with a definition in the
sdata/sbss-attribute section

[Flag]

[Caution]

- If a constant expression having a value exceeding 4 bits is specified as imm4 of the cmov instruction, the assem-
bler outputs the following message.
If the value exceeds 4 bits, the assembler masks the value with 0xF and continues assembling.

cmovcnd imm, reg2, reg3 movhi HIGHW(imm), r0, r1

cmovcnd r1, reg2, reg3

cmovcnd imm, reg2, reg3 mov imm, r1

cmovcnd r1, reg2, reg3

cmovcnd #label, reg2, reg3 mov #label, r1

cmovcnd r1, reg2, reg3

cmovcnd label, reg2, reg3 mov label, r1

cmovcnd r1, reg2, reg3

cmovcnd $label, reg2, reg3 mov $label, r1

cmovcnd r1, reg2, reg3

cmovcnd !label, reg2, reg3 movea !label, r0, r1

cmovcnd r1, reg2, reg3

cmovcnd %label, reg2, reg3 movea %label, r0, r1

cmovcnd r1, reg2, reg3

cmovcnd $label, reg2, reg3 movea $label, r0, r1

cmovcnd r1, reg2, reg3

CY ---

OV ---

S ---

Z ---

SAT ---

W0550011: illegal operand (range error in immediate)

CubeSuite Ver.1.40 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 397 of 890
Oct 01, 2010

Sets flag condition.

[Syntax]

- setf imm4, reg
- setfcnd reg

The following can be specified for imm4:
- Absolute expression having a value up to 4 bits

[Function]

- Syntax "setf imm4, reg"
Compares the status of the flag specified by the value of the lower 4 bits of the absolute expression specified by
the first operand with the current flag condition. If they are found to match, 1 is stored in the register specified by
the second operand; otherwise, 0 is stored in the register specified by the second operand.

- Syntax "setfcnd reg"
Compares the status of the flag indicated by string cnd with the current flag condition. If they are found to match, 1
is stored in the register specified by the second operand; otherwise, 0 is stored in the register specified by the sec-
ond operand.

[Description]

- If the instruction is executed in syntax"setf imm4, reg",the assembler generates one satf machine instruction.
- If the instruction is executed in syntax "setfcnd reg", the assembler generates the corresponding setf instruction

(see "Table 4-35. setfcnd Instruction List") and expands it to syntax "setf imm4, reg".

Table 4-35. setfcnd Instruction List

setf

Instruction Flag Condition Meaning of Flag Condition Instruction Expansion

setfgt ((S xor OV) or Z) = 0 Greater than (signed) setf 0xF

setfge (S xor OV) = 0 Greater than or equal (signed) setf 0xE

setflt (S xor OV) = 1 Less than (signed) setf 0x6

setfle ((S xor OV) or Z) = 1 Less than or equal (signed) setf 0x7

setfh (CY or Z) = 0 Higher (Greater than) setf 0xB

setfnl CY = 0 Not lower (Greater than or equal) setf 0x9

setfl CY = 1 Lower (Less than) setf 0x1

setfnh (CY or Z) = 1 Not higher (Less than or equal) setf 0x3

setfe Z = 1 Equal setf 0x2

setfne Z = 0 Not equal setf 0xA

setfv OV = 1 Overflow setf 0x0

setfnv OV = 0 No overflow setf 0x8

setfn S = 1 Negative setf 0x4

setfp S = 0 Positive setf 0xC

setfc CY = 1 Carry setf 0x1

CubeSuite Ver.1.40 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 398 of 890
Oct 01, 2010

[Flag]

[Caution]

- If an absolute expression having a value exceeding 4 bits is specified as imm4 of the setf instruction, the assem-
bler outputs the following message and continues assembling using four low-order bits of a specified value.

setfnc CY = 0 No carry setf 0x9

setfz Z = 1 Zero setf 0x2

setfnz Z = 0 Not zero setf 0xA

setft always 1 Always 1 setf 0x5

setfsa SAT = 1 Saturated setf 0xD

CY ---

OV ---

S ---

Z ---

SAT ---

W0550011: illegal operand (range error in immediate).

Instruction Flag Condition Meaning of Flag Condition Instruction Expansion

CubeSuite Ver.1.40 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 399 of 890
Oct 01, 2010

Sets the flag condition after a logical left shift.

[Syntax]

- sasf imm4, reg
- sasfcnd reg

The following can be specified for imm4:
- Absolute expression having a value up to 4 bits

[Function]

- Syntax "sasf imm4, reg"
Compares the flag condition indicated by the value of the lower 4 bits of the absolute expression specified by the
first operand (see "Table 4-36. sasfcnd Instruction List") with the current flag condition. If a match is found, the
contents of the register specified by the second operand are shifted logically 1 bit to the left and ORed with 1, and
the result stored in the register specified by the second operand; otherwise, the contents of the register specified
by the second operand are logically shifted 1 bit to the left and the result stored in the register specified by the sec-
ond operand.

- Syntax "sasfcnd reg"
Compares the flag condition indicated by string cnd with the current flag condition. If a match is found, the con-
tents of the register specified by the second operand are shifted logically 1 bit to the left and ORed with 1, and the
result stored in the register specified by the second operand; otherwise, the contents of the register specified by
the second operand are shifted logically 1 bit to the left and the result stored in the register specified by the second
operand.

[Description]

- If the instruction is executed in syntax "sasf imm4, reg", the assembler generates one sasf machine instruction.
- If the instruction is executed in syntax "sasfcnd reg", the assembler generates the corresponding sasf instruction

(see "Table 4-36. sasfcnd Instruction List") and expands it to syntax "sasf imm4, reg".

Table 4-36. sasfcnd Instruction List

sasf

Instruction Flag Condition Meaning of Flag Condition Instruction Expansion

sasfgt ((S xor OV) or Z) = 0 Greater than (signed) sasf 0xF

sasfge (S xor OV) = 0 Greater than or equal (signed) sasf 0xE

sasflt (S xor OV) = 1 Less than (signed) sasf 0x6

sasfle ((S xor OV) or Z) = 1 Less than or equal (signed) sasf 0x7

sasfh (CY or Z) = 0 Higher (Greater than) sasf 0xB

sasfnl CY = 0 Not lower (Greater than or equal) sasf 0x9

sasfl CY = 1 Lower (Less than) sasf 0x1

sasfnh (CY or Z) = 1 Not higher (Less than or equal) sasf 0x3

sasfe Z = 1 Equal sasf 0x2

sasfne Z = 0 Not equal sasf 0xA

sasfv OV = 1 Overflow sasf 0x0

CubeSuite Ver.1.40 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 400 of 890
Oct 01, 2010

[Flag]

[Caution]

- If an absolute expression having a value exceeding 4 bits is specified as imm4 of the sasf instruction, the assem-
bler outputs the following message and continues assembling using four low-order bits of a specified value.

sasfnv OV = 0 No overflow sasf 0x8

sasfn S = 1 Negative sasf 0x4

sasfp S = 0 Positive sasf 0xC

sasfc CY = 1 Carry sasf 0x1

sasfnc CY = 0 No carry sasf 0x9

sasfz Z = 1 Zero sasf 0x2

sasfnz Z = 0 Not zero sasf 0xA

sasft always 1 Always 1 sasf 0x5

sasfsa SAT = 1 Saturated sasf 0xD

CY ---

OV ---

S ---

Z ---

SAT ---

W0550011: illegal operand (range error in immediate).

Instruction Flag Condition Meaning of Flag Condition Instruction Expansion

CubeSuite Ver.1.40 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 401 of 890
Oct 01, 2010

4.7.8 Saturated operation instructions

This section describes the saturated operation instructions. Next table lists the instructions described in this section.

Table 4-37. Saturated Operation Instructions

Instruction Meaning

satadd Adds saturated

satsub Subtracts saturated

satsubi Subtracts saturated (immediate)

satsubr Subtracts reverse saturated

CubeSuite Ver.1.40 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 402 of 890
Oct 01, 2010

Adda saturated.

[Syntax]

- satadd reg1, reg2
- satadd imm, reg2
- satadd reg1, reg2, reg3 [V850E2]

The following can be specified for imm:
- Absolute expression having a value of up to 32 bits
- Relative expression

[Function]

- Syntax "satadd reg1, reg2"
Adds the value of the register specified by the first operand to the value of the register specified by the second
operand, and stores the result in the register specified by the second operand. If the result exceeds the maximum
positive value of 0x7FFFFFFF, however, 0x7FFFFFFF is stored in the register specified by the second operand.
Likewise, if the result exceeds the maximum negative value of 0x80000000, 0x80000000 is stored in the register
specified by the second operand. In both cases, the SAT flag is set to 1.

- Syntax "satadd imm, reg2"
Adds the value of the absolute expression or relative expression specified by the first operand to the value of the
register specified by the second operand, and stores the result in the register specified by the second operand. If
the result exceeds the maximum positive value of 0x7FFFFFFF, however, 0x7FFFFFFF is stored in the register
specified by the second operand. Likewise, if the result exceeds the maximum negative value of 0x80000000,
0x80000000 is stored in the register specified by the second operand. In both cases, the SAT flag is set to 1.

- Syntax "satadd reg1, reg2, reg3"
Adds the value of the register specified by the first operand to the value of the register specified by the second
operand, and stores the result in the register specified by the third operand. If the result exceeds the maximum
positive value of 0x7FFFFFFF, however, 0x7FFFFFFF is stored in the register specified by the second operand.
Likewise, if the result exceeds the maximum negative value of 0x80000000, 0x80000000 is stored in the register
specified by the third operand. In both cases, the SAT flag is set to 1.

[Description]

- If the instruction is executed in syntax "satadd reg1, reg2" or "satadd reg1, reg2, reg3", the assembler generates
one satadd machine instruction.

- If the following is specified for imm in syntax "satadd imm, reg2", the assembler generates one satadd machine
instructionNote.

(a) Absolute expression having a value in the range of -16 to +15

Note The satadd machine instruction takes a register or immediate value in the range of -16 to +15 (0xFFFFFFF0
to 0xF) as the first operand.

satadd

satadd imm5, reg satadd imm5, reg

CubeSuite Ver.1.40 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 403 of 890
Oct 01, 2010

- If the following is specified for imm in syntax "satadd imm, reg2", the assembler executes instruction expansion to
generate one or more machine instructions.

(a) Absolute expression exceeding the range of -16 to +15, but within the range of -32,768 to +32,767

(b) Absolute expression having a value exceeding the range of -32,768 to +32,767
If all the lower 16 bits of the value of imm are 0

Else

(c) Relative expression having $label for a label having a definition in the sdata/sbss-attribute section

(d) Relative expression having #label or label, or that having $label for a label having no definition in the
sdata/sbss-attribute section

[Flag]

satadd imm16, reg movea imm16, r0, r1

satadd r1, reg

satadd imm, reg movhi HIGHW(imm), r0, r1

satadd r1, reg

satadd imm, reg mov imm, r1

satadd r1, reg

satadd $label, reg movea $label, r0, r1

satadd r1, reg

satadd #label, reg mov #label, r1

satadd r1, reg

satadd label, reg mov label, r1

satadd r1, reg

satadd $label, reg mov $label, r1

satadd r1, reg

CY 1 if a carry occurs from MSB (Most Significant Bit), 0 if not

OV 1 if Integer-Overflow occurs, 0 if not

S 1 if the result is negative, 0 if not

Z 1 if the result is 0, 0 if not

SAT 1 if OV = 1, - if not

CubeSuite Ver.1.40 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 404 of 890
Oct 01, 2010

[Caution]

- If the instruction is executed in syntax "satadd reg1, reg2" or "satadd imm, reg2", if r0 is specified as the second
operand, the assembler outputs the following message and stops assembling.

E0550240: Illegal operand (cannot use r0 as destination in V850E mode).

CubeSuite Ver.1.40 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 405 of 890
Oct 01, 2010

Subtracts saturated.

[Syntax]

- satsub reg1, reg2
- satsub imm, reg2
- satsub reg1, reg2, reg3 [V850E2]

The following can be specified for imm:
- Absolute expression having a value of up to 32 bits
- Relative expression

[Function]

- Syntax "satsub reg1, reg2"
Subtracts the value of the register specified by the first operand from the value of the register specified by the sec-
ond operand, and stores the result in the register specified by the third operand. If the result exceeds the maxi-
mum positive value of 0x7FFFFFFF, however, 0x7FFFFFFF is stored in the register specified by the second
operand. Likewise, if the result exceeds the maximum negative value of 0x80000000, 0x80000000 is stored in the
register specified by the second operand. In both cases, the SAT flag is set to 1

- Syntax "satsub imm, reg2"
Subtracts the value of the absolute expression or relative expression specified by the first operand from the value
of the register specified by the second operand, and stores the result in the register specified by the second oper-
and. If the result exceeds the maximum positive value of 0x7FFFFFFF, however, 0x7FFFFFFF is stored in the
register specified by the second operand. Likewise, if the result exceeds the maximum negative value of
0x80000000, 0x80000000 is stored in the register specified by the second operand. In both cases, the SAT flag is
set to 1.

- Syntax "satsub reg1, reg2, reg3"
Subtracts the value of the register specified by the first operand from the value of the register specified by the sec-
ond operand, and stores the result in the register specified by the second operand. If the result exceeds the maxi-
mum positive value of 0x7FFFFFFF, however, 0x7FFFFFFF is stored in the register specified by the second
operand. Likewise, if the result exceeds the maximum negative value of 0x80000000, 0x80000000 is stored in the
register specified by the third operand. In both cases, the SAT flag is set to 1.

[Description]

- If the instruction is executed in syntax "satsub reg1, reg2" or "satsub reg1, reg2, reg3", the assembler generates
one satsub machine instruction.

- If the instruction is executed in syntax "satsub imm, reg2", the assembler executes instruction expansion to gener-
ate one or more machine instructionsNote.

(a) 0

(b) Absolute expression having a value in the range of -32,768 to +32,767

satsub

satsub 0, reg satsub r0, reg

satsub imm16, reg satsubi imm16, reg, reg

CubeSuite Ver.1.40 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 406 of 890
Oct 01, 2010

(c) Absolute expression having a value exceeding the range of -32,768 to +32,767
If all the lower 16 bits of the value of imm are 0

Else

(d) Relative expression having $label for a label having a definition in the sdata/sbss-attribute section

(e) Relative expression having #label or label, or that having $label for a label having no definition in the
sdata/sbss-attribute section

Note The satsub machine instruction does not take an immediate value as an operand.

[Flag]

[Caution]

- If the instruction is executed in syntax "satsub reg1, reg2" or "satsub imm, reg2", if r0 is specified as the second
operand, the assembler outputs the following message and stops assembling.

satsub imm, reg movhi HIGHW(imm), r0, r1

satsub r1, reg

satsub imm, reg mov imm, r1

satsub r1, reg

satsub $label, reg satsubi $label, reg, reg

satsub #label, reg mov #label, r1

satsub r1, reg

satsub label, reg mov label, r1

satsub r1, reg

satsub $label, reg mov $label, r1

satsub r1, reg

CY 1 if a borrow occurs from MSB (Most Significant Bit), 0 if not

OV 1 if Integer-Overflow occurs, 0 if not

S 1 if the result is negative, 0 if not

Z 1 if the result is 0, 0 if not

SAT 1 if OV = 1, - if not

E0550240: Illegal operand (cannot use r0 as destination in V850E mode).

CubeSuite Ver.1.40 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 407 of 890
Oct 01, 2010

Subtracts saturated (immediate).

[Syntax]

- satsubi imm, reg1, reg2

The following can be specified for imm:
- Absolute expression having a value of up to 32 bits
- Relative expression
- Either of the above expressions with HIGHW, LOWW, or HIGHW1 applied

[Function]

Subtracts the value of the absolute expression, relative expression, or expression with HIGHW, LOWW, or HIGHW1
applied specified by the first operand from the value of the register specified by the second operand, and stores the result
in the register specified by the third operand. If the result exceeds the maximum positive value of 0x7FFFFFFF, however,
0x7FFFFFFF is stored in the register specified by the third operand. Likewise, if the result exceeds the maximum nega-
tive value of 0x80000000, 0x80000000 is stored in the register specified by the third operand. In both cases, the SAT flag
is set to 1.

[Description]

- If the following is specified for imm, the assembler generates one satsubi machine instructionNote.

(a) Absolute expression having a value in the range of -32,768 to +32,767

(b) Relative expression having $label for a label having a definition in the sdata/sbss-attribute section

(c) Relative expression having !label or %label

(d) Expression with HIGHW, LOWW, or HIGHW1

Note The satsubi machine instruction takes an immediate value, in the range of -32,768 to +32,767 (0xFFFF8000
to 0x7FFF), as the first operand.

satsubi

satsubi imm16, reg1, reg2 satsubi imm16, reg1, reg2

satsubi $label, reg1, reg2 satsubi $label, reg1, reg2

satsubi !label, reg1, reg2 satsubi !label, reg1, reg2

satsubi %label, reg1, reg2 satsubi %label, reg1, reg2

satsubi imm16, reg1, reg2 satsubi imm16, reg1, reg2

CubeSuite Ver.1.40 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 408 of 890
Oct 01, 2010

- If the following is specified for imm, the assembler executes instruction expansion to generate one or more
machine instructions.

(a) Absolute expression having a value exceeding the range of -32,768 to +32,767
If all the lower 16 bits of the value of imm are 0

If all the lower 16 bits of the value of imm are 0

Else

Other than above and when reg2 is r0

(b) Relative expression having #label or label, or that having $label for a label having no definition in the
sdata/sbss-attribute section
If reg2 is r0

Else

satsubi imm, reg1, reg2 movhi HIGHW(imm), r0, reg2

satsubr reg1, reg2

satsubi imm, reg1, r0 movhi HIGHW(imm), r0, r1

satsubr reg1, r1

satsubi imm, reg1, reg2 mov imm, reg2

satsubr reg1, reg2

satsubi imm, reg1, r0 mov imm, r1

satsubr reg1, r1

satsubi #label, reg1, r0 movhi #label, r1

satsubr reg1, r1

satsubi label, reg1, r0 mov label, r1

satsubr reg1, r1

satsubi $label, reg1, r0 mov $label, r1

satsubr reg1, r1

satsubi #label, reg1, reg2 movhi #label, reg2

satsubr reg1, reg2

satsubi label, reg1, reg2 mov label, reg2

satsubr reg1, reg2

satsubi $label, reg1, reg2 mov $label, reg2

satsubr reg1, reg2

CubeSuite Ver.1.40 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 409 of 890
Oct 01, 2010

[Flag]

[Caution]

- If r0 is specified by the second operand, the assembler outputs the following message and stops assembling.

CY 1 if a borrow occurs from MSB (Most Significant Bit), 0 if not

OV 1 if Integer-Overflow occurs, 0 if not

S 1 if the result is negative, 0 if not

Z 1 if the result is 0, 0 if not

SAT 1 if OV = 1, - if not

E0550240: Illegal operand (cannot use r0 as destination in V850E mode).

CubeSuite Ver.1.40 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 410 of 890
Oct 01, 2010

Subtracts reverse saturated.

[Syntax]

- satsubr reg1, reg2
- satsubr imm, reg2

The following can be specified for imm:
- Absolute expression having a value of up to 32 bits
- Relative expression

[Function]

- Syntax "satsubr reg1, reg2"
Subtracts the value of the register specified by the second operand from the value of the register specified by the
first operand, and stores the result in the register specified by the second operand. If the result exceeds the maxi-
mum positive value of 0x7FFFFFFF, however, 0x7FFFFFFF is stored in the register specified by the second oper-
and. Likewise, if the result exceeds the maximum negative value of 0x80000000, 0x80000000 is stored in the
register specified by the second operand. In both cases, the SAT flag is set to 1.

- Syntax "satsubr imm, reg2"
Subtracts the value of the register specified by the second operand from the value of the absolute expression or
relative expression specified by the first operand, and stores the result in the register specified by the second oper-
and. If the result exceeds the maximum positive value of 0x7FFFFFFF, however, 0x7FFFFFFF is stored in the
register specified by the second operand. Likewise, if the result exceeds the maximum negative value of
0x80000000, 0x80000000 is stored in the register specified by the second operand. In both cases, the SAT flag is
set to 1.

[Description]

- If the instruction is executed in syntax "satsubr reg1, reg2", the assembler generates one satsubr machine instruc-
tion.

- If the instruction is executed in syntax "satsubr imm, reg2", the assembler executes instruction expansion to gener-
ate one or more machine instructionsNote.

(a) 0

(b) Absolute expression having a value of other than 0 within the range of -16 to +15

(c) Absolute expression exceeding the range of -16 to +15, but within the range of -32,768 to +32,767

satsubr

satsubr 0, reg satsubr r0, reg

satsubr imm5, reg mov imm5, r1

satsubr r1, reg

satsubr imm16, reg movea imm16, r0, r1

satsubr r1, reg

CubeSuite Ver.1.40 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 411 of 890
Oct 01, 2010

(d) Absolute expression having a value exceeding the range of -32,768 to +32,767
If all the lower 16 bits of the value of imm are 0

Else

(e) Relative expression having $label for a label having a definition in the sdata/sbss-attribute section

(f) Relative expression having #label or label, or that having $label for a label having no definition in the
sdata/sbss-attribute section

Note The satsubr machine instruction does not take an immediate value as an operand.

[Flag]

[Caution]

- If r0 is specified by the second operand, the assembler outputs the following message and stops assembling.

satsubr imm, reg movhi HIGHW(imm), r0, r1

satsubr r1, reg

satsubr imm, reg mov imm, r1

satsubr r1, reg

satsubr $label, reg movea $label, r0, r1

satsubr r1, reg

satsubr #label, reg mov #label, r1

satsubr r1, reg

satsubr label, reg mov label, r1

satsubr r1, reg

satsubr $label, reg mov $label, r1

satsubr r1, reg

CY 1 if a borrow occurs from MSB (Most Significant Bit), 0 if not

OV 1 if Integer-Overflow occurs, 0 if not

S 1 if the result is negative, 0 if not

Z 1 if the result is 0, 0 if not

SAT 1 if OV = 1, - if not

E0550240: Illegal operand (cannot use r0 as destination in V850E mode).

CubeSuite Ver.1.40 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 412 of 890
Oct 01, 2010

4.7.9 Logical instructions

This section describes the logical instructions. Next table lists the instructions described in this section.

Table 4-38. Logical Instructions

Instruction Meanings

or Logical sum

ori Logical sum (immediate)

xor Exclusive OR

xori Exclusive OR (immediate)

and Logical product

andi Logical product (immediate)

not Logical negation (takes 1’s complement)

shr Logical right shift

sar Arithmetic right shift

shl Logical left shift

sxb Sign extension of byte data

sxh Sign extension of 2-byte data

zxb Zero extension of byte data

zxh Zero extension of 2-byte data

bsh Byte swap of half-word data

bsw Byte swap of word data

hsh Half-word swap of half-word data [V850E2]

hsw Half-word swap of word data

tst Test

sch0l Bit (0) search from MSB side [V850E2]

sch0r Bit (0) search from LSB side [V850E2]

sch1l Bit (1) search from MSB side [V850E2]

sch1r Bit (1) search from LSB side [V850E2]

CubeSuite Ver.1.40 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 413 of 890
Oct 01, 2010

Logical sum.

[Syntax]

- or reg1, reg2
- or imm, reg2

The following can be specified for imm:
- Absolute expression having a value of up to 32 bits
- Relative expression

[Function]

- Syntax "or reg1, reg2"
ORs the value of the register specified by the first operand with the value of the register specified by the second
operand, and stores the result in the register specified by the second operand.

- Syntax "or imm, reg2"
ORs the value of the absolute expression or relative expression specified by the first operand with the value of the
register specified by the second operand, and stores the result in the register specified by the second operand.

[Description]

- When this instruction is executed in syntax "or reg1, reg2", the assembler generates one or machine instruction.
- When this instruction is executed in syntax "or imm, reg2", the assembler executes instruction expansion to gener-

ate one or more machine instructionsNote.

(a) 0

(b) Absolute expression having a value in the range of 1 to 65,535

(c) Absolute expression having a value in the range of -16 to -1

(d) Absolute expression having a value in the range of -32,768 to -17

or

or 0, reg or r0, reg

or imm16, reg ori imm16, reg, reg

or imm5, reg mov imm5, r1

or r1, reg

or imm16, reg movea imm16, r0, r1

or r1, reg

CubeSuite Ver.1.40 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 414 of 890
Oct 01, 2010

(e) Absolute expression exceeding the above ranges
If all the lower 16 bits of the value of imm are 0

Else

(f) Relative expression having $label for a label having a definition in the sdata/sbss-attribute section

(g) Relative expression having #label or label, or that having $label for a label having no definition in the
sdata/sbss-attribute section

Note The or machine instruction does not take an immediate value as an operand.

[Flag]

or imm, reg movhi HIGHW(imm), r0, r1

or r1, reg

or imm, reg mov imm, r1

or r1, reg

or $label, reg movea $label, r0, r1

or r1, reg

or #label, reg mov #label, r1

or r1, reg

or label, reg mov label, r1

or r1, reg

or $label, reg mov $label, r1

or r1, reg

CY ---

OV 0

S 1 if the word data MSB of the result is 1, 0 if not

Z 1 if the result is 0, 0 if not

SAT ---

CubeSuite Ver.1.40 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 415 of 890
Oct 01, 2010

Logical sum (immediate).

[Syntax]

- ori imm, reg1, reg2

The following can be specified for imm:
- Absolute expression having a value of up to 32 bits
- Relative expression
- Either of the above expressions with HIGHW, LOWW, or HIGHW1 applied

[Function]

ORs the value of the absolute expression, relative expression, or expression with HIGHW, LOWW, or HIGHW1 applied
specified by the first operand with the value of the register specified by the second operand, and stores the result in the
register specified by the third operand.

[Description]

- If the following is specified for imm, the assembler generates one ori machine instructionNote.

(a) Absolute expression having a value in the range of 0 to 65,535

(b) Relative expression having !label or %label

(c) Expression with HIGHW, LOWW, or HIGHW1

Note The ori machine instruction takes an immediate value of 0 to 65,535 (0 to 0xFFFF) as the first operand.

ori

ori imm16, reg1, reg2 ori imm16, reg1, reg2

ori !label, reg1, reg2 ori !label, reg1, reg2

ori %label, reg1, reg2 ori %label, reg1, reg2

ori imm16, reg1, reg2 ori imm16, reg1, reg2

CubeSuite Ver.1.40 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 416 of 890
Oct 01, 2010

- If the following is specified for imm, the assembler executes instruction expansion to generate one or more
machine instructions.

(a) Absolute expression having a value in the range of -16 to -1
If reg2 is r0

Else

(b) Absolute expression having a value in the range of -32,768 to -17
If reg2 is r0

Else

(c) Absolute expression exceeding the above ranges
If all the lower 16 bits of the value of imm are 0

If all the lower 16 bits of the value of imm are 0

Else

Other than above and when reg2 is r0

ori imm5, reg1, r0 mov imm5, r1

or reg1, r1

ori imm5, reg1, reg2 mov imm5, reg2

or reg1, reg2

ori imm16, reg1, r0 movea imm16, r0, r1

or reg1, r1

ori imm16, reg1, reg2 movea imm16, r0, reg2

or reg1, reg2

ori imm, reg1, reg2 movhi HIGHW(imm), r0, reg2

or reg1, reg2

ori imm, reg1, r0 movhi HIGHW(imm), r0, r1

or reg1, r1

ori imm, reg1, reg2 mov imm, reg2

or reg1, reg2

ori imm, reg1, r0 mov imm, r1

or reg1, r1

CubeSuite Ver.1.40 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 417 of 890
Oct 01, 2010

(d) Relative expression having $label for a label having a definition in the sdata/sbss-attribute section
If reg2 is r0

Else

(e) Relative expression having #label or label, or that having $label for a label having no definition in the
sdata/sbss-attribute section
If reg2 is r0

Else

[Flag]

ori $label, reg1, r0 movea $label, r0, r1

or reg1, r1

ori $label, reg1, reg2 movea $label, r0, reg2

or reg1, reg2

ori #label, reg1, r0 mov #label, r1

or reg1, r1

ori label, reg1, r0 mov label, r1

or reg1, r1

ori $label, reg1, r0 mov $label, r1

or reg1, r1

ori #label, reg1, reg2 mov #label, reg2

or reg1, reg2

ori label, reg1, reg2 mov label, reg2

or reg1, reg2

ori $label, reg1, reg2 mov $label, reg2

or reg1, reg2

CY ---

OV 0

S 1 if the word data MSB of the result is 1, 0 if not

Z 1 if the result is 0, 0 if not

SAT ---

CubeSuite Ver.1.40 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 418 of 890
Oct 01, 2010

Exclusive OR.

[Syntax]

- xor reg1, reg2
- xor imm, reg2

The following can be specified for imm:
- Absolute expression having a value of up to 32 bits
- Relative expression

[Function]

- Syntax "xor reg1, reg2"
Exclusive-ORs the value of the register specified by the first operand with the value of the register specified by the
second operand, and stores the result in the register specified by the second operand.

- Syntax "xor imm, reg2"
Exclusive-ORs the value of the absolute expression or relative expression specified by the first operand with the
value of the register specified by the second operand, and stores the result in the register specified by the second
operan.

[Description]

- When this instruction is executed in syntax "xor reg1, reg2", the assembler generates one xor machine instruction.
- When this instruction is executed in syntax "xor imm, reg2", the assembler executes instruction expansion to gen-

erate two or more machine instructionsNote.

(a) 0

(b) Absolute expression having a value in the range of 1 to 65,535

(c) Absolute expression having a value in the range of -16 to -1

(d) Absolute expression having a value in the range of -32,768 to -17

xor

xor 0, reg xor r0, reg

xor imm16, reg xori imm16, reg, reg

xor imm5, reg mov imm5, r1

xor r1, reg

xor imm16, reg movea imm16, r0, r1

xor r1, reg

CubeSuite Ver.1.40 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 419 of 890
Oct 01, 2010

(e) Absolute expression exceeding the above ranges
If all the lower 16 bits of the value of imm are 0

Else

(f) Relative expression having $label for a label having a definition in the sdata/sbss-attribute section

(g) Relative expression having #label or label, or that having $label for a label having no definition in the
sdata/sbss-attribute section

Note The xor machine instruction does not take an immediate value as an operand.

[Flag]

xor imm, reg movhi HIGHW(imm), r0, r1

xor r1, reg

xor imm, reg mov imm, r1

xor r1, reg

xor $label, reg movea $label, r0, r1

xor r1, reg

xor #label, reg mov #label, r1

xor r1, reg

xor label, reg mov label, r1

xor r1, reg

xor $label, reg mov $label, r1

xor r1, reg

CY ---

OV 0

S 1 if the word data MSB of the result is 1, 0 if not

Z 1 if the result is 0, 0 if not

SAT ---

CubeSuite Ver.1.40 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 420 of 890
Oct 01, 2010

Exclusive OR (Immediate).

[Syntax]

- xori imm, reg1, reg2

The following can be specified for imm:
- Absolute expression having a value of up to 32 bits
- Relative expression
- Either of the above expressions with HIGHW, LOWW, or HIGHW1 applied

[Function]

Exclusive-ORs the value of the absolute expression, relative expression, or expression with HIGHW, LOWW, or
HIGHW1 applied specified by the first operand with the value of the register specified by the second operand, and stores
the result in the register specified by the third operand.

[Description]

- If the following is specified for imm, the assembler generates one xori machine instructionNote.

(a) Absolute expression having a value in the range of 0 to 65,535

(b) Relative expression having !label or %label

(c) Expression with HIGHW, LOWW, or HIGHW1

Note The xori machine instruction takes an immediate value of 0 to 65,535 (0 to 0xFFFF) as the first operand.

xori

xori imm16, reg1, reg2 xori imm16, reg1, reg2

xori !label, reg1, reg2 xori !label, reg1, reg2

xori %label, reg1, reg2 xori %label, reg1, reg2

xori imm16, reg1, reg2 xori imm16, reg1, reg2

CubeSuite Ver.1.40 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 421 of 890
Oct 01, 2010

- If the following is specified for imm, the assembler executes instruction expansion to generate one or more
machine instructions.

(a) Absolute expression having a value in the range of -16 to -1
If reg2 is r0

Else

(b) Absolute expression having a value in the range of -32,768 to -17
If reg2 is r0

Else

(c) Absolute expression exceeding the above ranges
If all the lower 16 bits of the value of imm are 0

If all the lower 16 bits of the value of imm are 0

Else

Other than above and when reg2 is r0

xori imm5, reg1, r0 mov imm5, r1

xor reg1, r1

xori imm5, reg1, reg2 mov imm5, reg2

xor reg1, reg2

xori imm16, reg1, r0 movea imm16, r0, r1

xor reg1, r1

xori imm16, reg1, reg2 movea imm16, r0, reg2

xor reg1, reg2

xori imm, reg1, reg2 movhi HIGHW(imm), r0, reg2

xor reg1, reg2

xori imm, reg1, r0 movhi HIGHW(imm), r0, r1

xor reg1, r1

xori imm, reg1, reg2 mov imm, reg2

xor reg1, reg2

xori imm, reg1, r0 mov imm, r1

xor reg1, r1

CubeSuite Ver.1.40 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 422 of 890
Oct 01, 2010

(d) Relative expression having $label for a label having a definition in the sdata/sbss-attribute section
If reg2 is r0

Else

(e) Relative expression having #label or label, or that having $label for a label having no definition in the
sdata/sbss-attribute section
If reg2 is r0

Else

[Flag]

xori $label, reg1, r0 movea $label, r0, r1

xor reg1, r1

xori $label, reg1, reg2 movea $label, r0, reg2

xor reg1, reg2

xori #label, reg1, r0 mov #label, r1

xor reg1, r1

xori label, reg1, r0 mov label, r1

xor reg1, r1

xori $label, reg1, r0 mov $label, r1

xor reg1, r1

xori #label, reg1, reg2 mov #label, reg2

xor reg1, reg2

xori label, reg1, reg2 mov label, reg2

xor reg1, reg2

xori $label, reg1, reg2 mov $label, reg2

xor reg1, reg2

CY ---

OV 0

S 1 if the word data MSB of the result is 1, 0 if not

Z 1 if the result is 0, 0 if not

SAT ---

CubeSuite Ver.1.40 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 423 of 890
Oct 01, 2010

Logical product.

[Syntax]

- and reg1, reg2
- and imm, reg2

The following can be specified for imm:
- Absolute expression having a value of up to 32 bits
- Relative expression

[Function]

- Syntax "and reg1, reg2"
ANDs the value of the register specified by the first operand with the value of the register specified by the second
operand, and stores the result in the register specified by the second operand.

- Syntax "and imm, reg2"
ANDs the value of the absolute expression or relative expression specified by the first operand with the value of the
register specified by the second operand, and stores the result in the register specified by the second operand.

[Description]

- When this instruction is executed in syntax "and reg1, reg2", the assembler generates one and machine instruc-
tion.

- When this instruction is executed in syntax "and imm, reg2", the assembler executes instruction expansion to gen-
erate one or more machine instructionNote.

(a) 0

(b) Absolute expression having a value in the range of 1 to 65,535

(c) Absolute expression having a value in the range of -16 to -1

(d) Absolute expression having a value in the range of -32,768 to -17

and

and 0, reg and r0, reg

and imm16, reg andi imm16, reg, reg

and imm5, reg mov imm5, r1

and r1, reg

and imm16, reg movea imm16, r0, r1

and r1, reg

CubeSuite Ver.1.40 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 424 of 890
Oct 01, 2010

(e) Absolute expression exceeding the above ranges
If all the lower 16 bits of the value of imm are 0

Else

(f) Relative expression having $label for a label having a definition in the sdata/sbss-attribute section

(g) Relative expression having #label or label, or that having $label for a label having no definition in the
sdata/sbss-attribute section

Note The and machine instruction does not take an immediate value as an operand.

[Flag]

and imm, reg movhi HIGHW(imm), r0, r1

and r1, reg

and imm, reg mov imm, r1

and r1, reg

and $label, reg movea $label, r0, r1

and r1, reg

and #label, reg mov #label, r1

and r1, reg

and label, reg mov label, r1

and r1, reg

and $label, reg mov $label, r1

and r1, reg

CY ---

OV 0

S 1 if the word data MSB of the result is 1, 0 if not

Z 1 if the result is 0, 0 if not

SAT ---

CubeSuite Ver.1.40 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 425 of 890
Oct 01, 2010

Logical product (immediate).

[Syntax]

- andi imm, reg1, reg2

The following can be specified for imm:
- Absolute expression having a value of up to 32 bits
- Relative expression
- Either of the above expressions with HIGHW, LOWW, or HIGHW1 applied

[Function]

ANDs the value of the absolute expression, relative expression, or expression with HIGHW, LOWW, or HIGHW1
applied specified by the first operand with the value of the register specified by the second operand, and stores the result
into the register specified by the third operand.

[Description]

- If the following is specified as imm, the assembler generates one andi machine instructionNote.

(a) Absolute expression having a value in the range of 0 to 65,535

(b) Relative expression having !label or %label

(c) Expression with HIGHW, LOWW, or HIGHW1

Note The andi machine instruction takes an immediate value of 0 to 65,535 (0 to 0xFFFF) as the first operand.

andi

andi imm16, reg1, reg2 andi imm16, reg1, reg2

andi !label, reg1, reg2 andi !label, reg1, reg2

andi %label, reg1, reg2 andi %label, reg1, reg2

andi imm16, reg1, reg2 andi imm16, reg1, reg2

CubeSuite Ver.1.40 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 426 of 890
Oct 01, 2010

- If the following is specified for imm, the assembler executes instruction expansion to generate one or more
machine instructions.

(a) Absolute expression having a value in the range of -16 to -1
If reg2 is r0

Else

(b) Absolute expression having a value in the range of -32,768 to -17
If reg2 is r0

Else

(c) Absolute expression exceeding the above ranges
If all the lower 16 bits of the value of imm are 0

If all the lower 16 bits of the value of imm are 0

Else

Other than above and when reg2 is r0

andi imm5, reg1, r0 mov imm5, r1

and reg1, r1

andi imm5, reg1, reg2 mov imm5, reg2

and reg1, reg2

andi imm16, reg1, r0 movea imm16, r0, r1

and reg1, r1

andi imm16, reg1, reg2 movea imm16, r0, reg2

and reg1, reg2

andi imm, reg1, reg2 movhi HIGHW(imm), r0, reg2

and reg1, reg2

andi imm, reg1, r0 movhi HIGHW(imm), r0, r1

and reg1, r1

andi imm, reg1, reg2 mov imm, reg2

and reg1, reg2

andi imm, reg1, reg2 mov imm, r1

and reg1, r1

CubeSuite Ver.1.40 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 427 of 890
Oct 01, 2010

(d) Relative expression having $label for a label having a definition in the sdata/sbss-attribute section
If reg2 is r0

Else

(e) Relative expression having #label or label, or that having $label for a label having no definition in the
sdata/sbss-attribute section
If reg2 is r0

Else

[Flag]

andi $label, reg1, r0 movea $label, r0, r1

and reg1, r1

andi $label, reg1, reg2 movea $label, r0, reg2

and reg1, reg2

andi #label, reg1, r0 mov #label, r1

and reg1, r1

andi label, reg1, r0 mov label, r1

and reg1, r1

andi $label, reg1, r0 mov $label, r1

and reg1, r1

andi #label, reg1, reg2 mov #label, reg2

and reg1, reg2

andi label, reg1, reg2 mov label, reg2

and reg1, reg2

andi $label, reg1, reg2 mov $label, reg2

and reg1, reg2

CY ---

OV 0

S 1 if the word data MSB of the result is 1, 0 if not

Z 1 if the result is 0, 0 if not

SAT ---

CubeSuite Ver.1.40 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 428 of 890
Oct 01, 2010

Logical negation (takes 1's complement).

[Syntax]

- not reg1, reg2
- not imm, reg2

The following can be specified for imm:
- Absolute expression having a value of up to 32 bits
- Relative expression

[Function]

- Syntax "not reg1, reg2"
NOTs (1's complement) the value of the register specified by the first operand, and stores the result in the register
specified by the second operand.

- Syntax "not imm, reg2"
NOTs (1's complement) the value of the absolute expression or relative expression specified by the first operand,
and stores the result in the register specified by the second operand.

[Description]

- When this instruction is executed in syntax "not reg1, reg2", the assembler generates one not machine instruction.
- When this instruction is executed in syntax "not imm, reg2", the assembler executes instruction expansion to gen-

erate one or more machine instructionsNote.

(a) 0

(b) Absolute expression having a value of other than 0 within the range of -16 to +15

(c) Absolute expression exceeding the range of -16 to +15, but within the range of -32,768 to +32,767

not

not 0, reg not r0, reg

not imm5, reg mov imm5, r1

not r1, reg

not imm16, reg movea imm16, r0, r1

not r1, reg

CubeSuite Ver.1.40 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 429 of 890
Oct 01, 2010

(d) Absolute expression having a value exceeding the range of -32,768 to +32,767
If all the lower 16 bits of the value of imm are 0

Else

(e) Relative expression having $label for a label having a definition in the sdata/sbss-attribute section

(f) Relative expression having #label or label, or that having $label for a label having no definition in the
sdata/sbss-attribute section

Note The not machine instruction does not take an immediate value as an operand.

[Flag]

not imm, reg movhi HIGHW(imm), r0, r1

not r1, reg

not imm, reg mov imm, r1

not r1, reg

not $label, reg movea $label, r0, r1

not r1, reg

not #label, reg mov #label, r1

not r1, reg

not label, reg mov label, r1

not r1, reg

not $label, reg mov $label, r1

not r1, reg

CY ---

OV 0

S 1 if the word data MSB of the result is 1, 0 if not

Z 1 if the result is 0, 0 if not

SAT ---

CubeSuite Ver.1.40 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 430 of 890
Oct 01, 2010

Logical right shift.

[Syntax]

- shr reg1, reg2
- shr imm5, reg2
- shr reg1, reg2, reg3 [V850E2]

The following can be specified for imm5:
- Absolute expression having a value of up to 5 bits

[Function]

- Syntax "shr reg1, reg2"
Logically shifts to the right the value of the register specified by the second operand by the number of bits indicated
by the lower 5 bits of the register value specified by the first operand, then stores the result in the register specified
by the second operand.

- Syntax "shr imm5, reg2"
Logically shifts to the right the value of the register specified by the second operand by the number of bits specified
by the value of the absolute expression specified by the first operand, then stores the result in the register specified
by the second operand.

- Syntax "shr reg1, reg2, reg3"
Logically shifts to the right the value of the register specified by the second operand by the number of bits indicated
by the lower 5 bits of the register value specified by the first operand, then stores the result in the register specified
by the third operand.

[Description]

The assembler generates one shr machine instruction.

[Flag]

[Caution]

- If an absolute expression having a value exceeding the range of 0 to 31 is specified as imm5 in syntax "shr imm5,
reg2", the assembler outputs the following message, and continues assembling by using the lower 5 bitsNote of the
specified value.

Note The shr machine instruction takes an immediate value of 0 to 31 (0x0 to 0x1F) as the first operand.

shr

CY 1 if the value of the bit shifted out last is 1, 0 if not

(0 if the specified number of bits is 0)

OV 0

S 1 if the result is negative, 0 if not

Z 1 if the result is 0, 0 if not

SAT ---

W0550011: illegal operand (range error in immediate).

CubeSuite Ver.1.40 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 431 of 890
Oct 01, 2010

Arithmetic right shift.

[Syntax]

- sar reg1, reg2
- sar imm5, reg2
- sar reg1, reg2, reg3 [V850E2]

The following can be specified for imm5:
- Absolute expression having a value of up to 5 bits

[Function]

- Syntax "sar reg1, reg2"
Arithmetically shifts to the right the value of the register specified by the second operand by the number of bits indi-
cated by the lower 5 bits of the register value specified by the first operand, then stores the result in the register
specified by the second operand.

- Syntax "sar imm5, reg2"
Arithmetically shifts to the right the value of the register specified by the second operand by the number of bits
specified by the value of the absolute expression specified by the first operand, then stores the result in the register
specified by the second operand.

- Syntax "sar reg1, reg2, reg3"
Arithmetically shifts to the right the value of the register specified by the second operand by the number of bits indi-
cated by the lower 5 bits of the register value specified by the first operand, then stores the result in the register
specified by the third operand.

[Description]

The assembler generates one sar machine instruction.

[Flag]

[Caution]

- If an absolute expression having a value exceeding the range of 0 to 31 is specified for imm5 in syntax "sar imm5,
reg2", the assembler outputs the following message, and continues assembling using the lower 5 bitsNote of the
specified value.

Note The sar machine instruction takes an immediate value of 0 to 31 (0x0 to 0x1F) as the first operand.

sar

CY 1 if the value of the bit shifted out last is 1, 0 if not

(0 if the specified number of bits is 0)

OV 0

S 1 if the result is negative, 0 if not

Z 1 if the result is 0, 0 if not

SAT ---

W0550011: illegal operand (range error in immediate).

CubeSuite Ver.1.40 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 432 of 890
Oct 01, 2010

Logical left shift.

[Syntax]

- shl reg1, reg2
- shl imm5, reg2
- shl reg1, reg2, reg3 [V850E2]

The following can be specified for imm5:
- Absolute expression having a value of up to 5 bits

[Function]

- Syntax "shl reg1, reg2"
Logically shifts to the left the value of the register specified by the second operand by the number of bits indicated
by the lower 5 bits of the register value specified by the first operand, then stores the result in the register specified
by the second operand.

- Syntax "shl imm5, reg2"
Logically shifts to the left the value of the register specified by the second operand by the number of bits specified
by the value of the absolute expression specified by the first operand, then stores the result in the register specified
by the second operand.

- Syntax "shl reg1, reg2, reg3"
Logically shifts to the left the value of the register specified by the second operand by the number of bits indicated
by the lower 5 bits of the register value specified by the first operand, then stores the result in the register specified
by the third operand.

[Description]

The assembler generates one shl machine instruction.

[Flag]

[Caution]

- If an absolute expression having a value exceeding the range of 0 to 31 is specified for imm5 in syntax "shl imm5,
reg2", the assembler outputs the following message, and continues assembling by using the lower 5 bitsNote of the
specified value.

Note The shl machine instruction takes an immediate value of 0 to 31 (0x0 to 0x1F) as the first operand.

shl

CY 1 if the value of the bit shifted out last is 1, 0 if not

(0 if the specified number of bits is 0)

OV 0

S 1 if the result is negative, 0 if not

Z 1 if the result is 0, 0 if not

SAT ---

W0550011: illegal operand (range error in immediate).

CubeSuite Ver.1.40 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 433 of 890
Oct 01, 2010

Sign extension of byte data.

[Syntax]

- sxb reg

[Function]

Sign-extends the data of the lowermost byte of the register specified by the first operand to word length.

[Description]

The assembler generates one sxb machine instruction.

[Flag]

sxb

CY ---

OV ---

S ---

Z ---

SAT ---

CubeSuite Ver.1.40 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 434 of 890
Oct 01, 2010

Sign extension of 2-byte data.

[Syntax]

- sxh reg

[Function]

Sign-extends the data of the lower 2 bytes of the register specified by the first operand to word length.

[Description]

The assembler generates one sxh machine instruction.

[Flag]

sxh

CY ---

OV ---

S ---

Z ---

SAT ---

CubeSuite Ver.1.40 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 435 of 890
Oct 01, 2010

Zero extension of byte data.

[Syntax]

- zxb reg

[Function]

Zero-extends the data of the lowermost byte of the register specified by the first operand to word length.

[Description]

The assembler generates one zxb machine instruction.

[Flag]

zxb

CY ---

OV ---

S ---

Z ---

SAT ---

CubeSuite Ver.1.40 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 436 of 890
Oct 01, 2010

Zero extension of 2-byte data

[Syntax]

- zxh reg

[Function]

Zero-extends the data of the lower 2 bytes of the register specified by the first operand to word length.

[Description]

The assembler generates one zxh machine instruction.

[Flag]

zxh

CY ---

OV ---

S ---

Z ---

SAT ---

CubeSuite Ver.1.40 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 437 of 890
Oct 01, 2010

Byte swap of half-word data.

[Syntax]

- bsh reg1, reg2

[Function]

Byte-swaps the register value specified by the first operand in halfword units and stores the result in the register speci-
fied by the second operand.

[Description]

The assembler generates one bsh machine instruction.

[Flag]

bsh

CY 1 if either or both of the bytes in the lower halfword of the register is 0, 0 if not

OV 0

S 1 if the word data MSB of the result is 1, 0 if not

Z 1 if the lower half-word data of the result is 0, 0 if not

SAT ---

bit 23-16 bit 7-0 bit 15-8bit 31-24

reg2

Byte-swap of reg1 in halfword units

CubeSuite Ver.1.40 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 438 of 890
Oct 01, 2010

Byte swap of word data.

[Syntax]

- bsw reg1, reg2

[Function]

Byte-swaps the register value specified by the first operand and stores the result in the register specified by the second
operand.

[Description]

The assembler generates one bsw machine instruction.

[Flag]

bsw

CY 1 if one or more bytes of the word in the register is 0, 0 if not

OV 0

S 1 if the word data MSB of the result is 1, 0 if not

Z 1 if the word data of the result is 1, 0 if not

SAT ---

bit 23-16 bit 31-24bit 15-8

reg2

Byte-swap of reg1 for entire word

bit 7-0

CubeSuite Ver.1.40 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 439 of 890
Oct 01, 2010

Half-word swap of half-word data. [V850E2]

[Syntax]

- hsh reg2, reg3

[Function]

Stores the register value specified by the first operand in the register specified by the second operand, and stores the
flag assessment result in the PSW register.

[Description]

The assembler generates one hsh machine instruction.

[Flag]

hsh

CY 1 if the lower half-word data of the result is 0, 0 if not

OV 0

S 1 if the word data MSB of the result is 1, 0 if not

Z 1 if the lower half-word data of the result is 0, 0 if not

SAT ---

CubeSuite Ver.1.40 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 440 of 890
Oct 01, 2010

Half-word swap of word data.

[Syntax]

- hsw reg1, reg2

[Function]

Halfword-swaps the register value specified by the first operand and stores the result in the register specified by the
second operand.

[Description]

The assembler generates one hsw machine instruction.

[Flag]

hsw

CY 1 if one or more halfwords in the word of the register is 0, 0 if not

OV 0

S 1 if the word data MSB of the result is 1, 0 if not

Z 1 if the word data of the result is 1, 0 if not

SAT ---

bit 15-0 bit 31-16

reg2

Halfword swap of reg1

CubeSuite Ver.1.40 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 441 of 890
Oct 01, 2010

Test.

[Syntax]

- tst reg1, reg2
- tst imm, reg2

The following can be specified for imm:
- Absolute expression having a value of up to 32 bits
- Relative expression

[Function]

- Syntax "tst reg1, reg2"
ANDs the value of the register specified by the second operand with the value of the register specified by the first
operand, and sets only the flags without storing the result.

- Syntax "tst imm, reg2"
ANDs the value of the register specified by the second operand with the value of the absolute expression or rela-
tive expression specified by the first operand, and sets only the flags without storing the result.

[Description]

- When this instruction is executed in syntax "tst reg1, reg2", the assembler generates one tst machine instruction.
- When this instruction is executed in syntax "tst imm, reg2", the assembler executes instruction expansion to gener-

ate two or more machine instructionsNote.

(a) 0

(b) Absolute expression having a value of other than 0 within the range of -16 to +15

(c) Absolute expression exceeding the range of -16 to +15, but within the range of -32,768 to +32,767

tst

tst 0, reg tst r0, reg

tst imm5, reg mov imm5, r1

tst r1, reg

tst imm16, reg movea imm16, r0, r1

tst r1, reg

CubeSuite Ver.1.40 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 442 of 890
Oct 01, 2010

(d) Absolute expression having a value exceeding the range of -32,768 to +32,767
If all the lower 16 bits of the value of imm are 0

Else

(e) Relative expression having $label for a label having a definition in the sdata/sbss-attribute section

(f) Relative expression having #label or label, or that having $label for a label having no definition in the
sdata/sbss-attribute section

Note The tst machine instruction does not take an immediate value as an operand.

[Flag]

tst imm, reg movhi HIGHW(imm), r0, r1

tst r1, reg

tst imm, reg mov imm, r1

tst r1, reg

tst $label, reg movea $label, r0, r1

tst r1, reg

tst #label, reg mov #label, r1

tst r1, reg

tst label, reg mov label, r1

tst r1, reg

tst $label, reg mov $label, r1

tst r1, reg

CY ---

OV 0

S 1 if the word data MSB of the result is 1, 0 if not

Z 1 if the result is 0, 0 if not

SAT ---

CubeSuite Ver.1.40 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 443 of 890
Oct 01, 2010

Bit (0) search from MSB side (search zero from left). [V850E2]

[Syntax]

- sch0l reg1, reg2

[Function]

Searches the word data of the register specified by the first operand, from the left (MSB side), and stores the position of
the first bit (0) found in the register specified by the second operand in hexadecimal. (For example, if bit 31 of the register
specified by the first operand is 0, 01H is stored in the register specified by the second operand.)

If no bit (0) is found, 0 is written into the register specified by the second operand, and the Z flag is simultaneously set
(1). If a bit (0) is found at the end, the CY flag is set (1).

[Description]

The assembler generates one sch0l machine instruction.

[Flag]

sch0l

CY 1 if a bit (0) is found at the end, 0 if not

OV 0

S 0

Z 1 if a bit (0) is not found, 0 if not

SAT ---

CubeSuite Ver.1.40 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 444 of 890
Oct 01, 2010

Bit (0) search from LSB side (search zero from right). [V850E2]

[Syntax]

- sch0r reg1, reg2

[Function]

Searches the word data of the register specified by the first operand, from the right (LSB side), and stores the position
of the first bit (0) found in the register specified by the second operand in hexadecimal. (For example, if bit 0 of the regis-
ter specified by the first operand is 0, 01H is stored in the register specified by the second operand.)

If no bit (0) is found, 0 is written into the register specified by the second operand, and the Z flag is simultaneously set
(1). If a bit (0) is found at the end, the CY flag is set (1).

[Description]

The assembler generates one sch0r machine instruction.

[Flag]

sch0r

CY 1 if a bit (0) is found at the end, 0 if not

OV 0

S 0

Z 1 if a bit (0) is not found, 0 if not

SAT ---

CubeSuite Ver.1.40 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 445 of 890
Oct 01, 2010

Bit (1) search from MSB side (search one from left). [V850E2]

[Syntax]

- sch1l reg1, reg2

[Function]

Searches the word data of the register specified by the first operand, from the left (MSB side), and stores the position of
the first bit (1) found in the register specified by the second operand in hexadecimal. (For example, if bit 31 of the register
specified by the first operand is 1, 01H is stored in the register specified by the second operand.)

If no bit (1) is found, 0 is written into the register specified by the second operand, and the Z flag is simultaneously set
(1). If a bit (0) is found at the end, the CY flag is set (1).

[Description]

The assembler generates one sch1l machine instruction.

[Flag]

sch1l

CY 1 if a bit (1) is found at the end, 0 if not

OV 0

S 0

Z 1 if a bit (1) is not found, 0 if not

SAT ---

CubeSuite Ver.1.40 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 446 of 890
Oct 01, 2010

Bit (1) search from LSB side (search zero from right). [V850E2]

[Syntax]

- sch1r reg2, reg3

[Function]

Searches the word data of the register specified by the first operand, from the right (LSB side), and stores the position
of the first bit (1) found in the register specified by the second operand in hexadecimal. (For example, if bit 0 of the regis-
ter specified by the first operand is 1, 01H is stored in the register specified by the second operand.)

If no bit (1) is found, 0 is written into the register specified by the second operand, and the Z flag is simultaneously set
(1). If a bit (1) is found at the end, the CY flag is set (1).

[Description]

The assembler generates one sch1r machine instruction.

[Flag]

sch1r

CY 1 if a bit (1) is found at the end, 0 if not

OV 0

S 0

Z 1 if a bit (1) is not found, 0 if not

SAT ---

CubeSuite Ver.1.40 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 447 of 890
Oct 01, 2010

4.7.10 Branch instructions

This section describes the branch instructions. Next table lists the instructions described in this section.

Table 4-39. Branch Instructions

Instruction Meanings

jmp Unconditional branch

jmp32 Unconditional branch [V850E2]

jr Unconditional branch (PC relative)

jr22 Unconditional branch (PC relative) [V850E2]

jr32 Unconditional branch (PC relative) [V850E2]

jcnd Conditional branch

jarl Jump and register link

jarl22 Jump and register link [V850E2]

jarl32 Jump and register link [V850E2]

CubeSuite Ver.1.40 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 448 of 890
Oct 01, 2010

Unconditional branch.

[Syntax]

- jmp [reg]
- jmp addr
- jmp disp32[reg] [V850E2]

The following can be specified for addr:
- Relative expression having the absolute address reference of a label

The following can be specified for disp32:
- Absolute expression having a value of up to 32 bits

[Function]

- Syntax "jmp [reg]"
Transfers control to the address indicated by the value of the register specified by the operand.

- Syntax "jmp disp32[reg]"
Transfers control to the address attained by adding the displacement specified by the operand and the register
content.

- Syntax "jmp addr"
Transfers control to the address indicated by the value of the relative expression specified by the operand.

[Description]

- When this instruction is executed in syntax "jmp [reg]", the assembler generates one jmp machine instruction.
- When this instruction is executed in syntax "jmp addr", the assembler executes instruction expansion and gener-

ates two or more machine instruction.

- If the instruction is executed in syntax "jmp addr", when the V850E2 operate, the assembler generates one jmp
machine instruction (6-byte long instruction).

- When this instruction is executed in syntax "jmp disp32[reg]", the assembler generates one jmp (6-byte long
instruction) machine instructions.

[Flag]

jmp

jmp #label mov #label, r1

jmp [r1]

CY ---

OV ---

S ---

Z ---

SAT ---

CubeSuite Ver.1.40 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 449 of 890
Oct 01, 2010

[Caution]

- If an expression other than a relative expression having the absolute address reference of a label is specified as
addr in syntax "jmp addr", the assembler outputs the following message and stops assembling.

E0550224: Illegal operand (label reference for jmp must be string).

CubeSuite Ver.1.40 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 450 of 890
Oct 01, 2010

Unconditional branch. [V850E2]

[Syntax]

- jmp32 disp32[reg]
- jmp32 addr

The following can be specified for addr:
- Relative expression having the absolute address reference of a label

The following can be specified for disp32:
- Absolute expression having a value of up to 32 bits

[Function]

- Syntax "jmp32 disp32[reg]"
Transfers control to the address attained by adding the displacement specified by the operand and the register
content.

- Syntax "jmp32 addr"
Transfers control to the address indicated by the value of the relative expression specified by the operand.

[Description]

The assembler generates one jmp machine instruction (6-byte long instruction).

[Flag]

[Caution]

- If an expression other than a relative expression having the absolute address reference of a label is specified as
addr in syntax "jmp32 addr", the assembler outputs the following message and stops assembling.

jmp32

CY ---

OV ---

S ---

Z ---

SAT ---

E0550224: Illegal operand (label reference for jmp must be string).

CubeSuite Ver.1.40 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 451 of 890
Oct 01, 2010

Unconditional branch (PC relative).

[Syntax]

- jr disp22
- jr disp32 [V850E2]

The following can be specified for disp22:
- Absolute expression having a value of up to 22 bits
- Relative expression having a PC offset reference of label

The following can be specified for disp32:
- Absolute expression having a value of up to 32 bits
- Relative expression having a PC offset reference of label

[Function]

- Syntax "jr disp22"
Transfers control to the address attained by adding the current program counter (PC) value and the relative or
absolute expression value specified by the first operand.

- Syntax "jr disp32"
Transfers control to the address attained by adding the current program counter (PC) value and the relative or
absolute expression value specified by the first operand.

[Description]

- If the instruction is executed in syntax "jr disp22", the assembler generates one jr machine instructionNote if any of
the following expressions are specified for disp22.

(a) Absolute expression having a value in the range of -2,097,152 to +2,097,151

(b) Relative expression that has a PC offset reference of label having a definition in the same section of
the same file as this instruction, and having a value in the range of -2,097,152 to +2,097,151

(c) Relative expression having a PC offset reference of a label with no definition in the same file or section
as this instruction

Note The jr machine instruction takes an immediate value in the range of -2,097,152 to +2,097,151 (0xFE00000
to 0x1FFFFF) as the displacement.

- If the instruction is executed in syntax "jr disp32", the assembler generates one jr machine instruction (6-byte long
instruction).

jr

CubeSuite Ver.1.40 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 452 of 890
Oct 01, 2010

[Flag]

[Caution]

- If an absolute expression having a value exceeding the range of -2,097,152 to +2,097,151, or a relative expression
having a PC offset reference of a label with a definition in the same section and the same file as this instruction,
and having a value exceeding the range of -2,097,152 to +2,097,151, is specified as disp22, the assembler out-
puts the following message and stops assembling.

- If an absolute expression having an odd-numbered value or a relative expression having a PC offset reference of a
label with a definition in the same section and the same file as this instruction, and having an odd-numbered value,
is specified as disp22/disp32, the assembler outputs the following message and stops assembling.

- When the assembler option -Xfar_jump is not specified, and an absolute expression outside of the range -
2,097,152 to +2,097,151 or a relative expression outside of the range -2,097,152 to +2,097,151, having a label PC
offset reference with a definition in the same file and same section as this instruction, is specified as disp32, the
following message is output and assembly is stopped.

CY ---

OV ---

S ---

Z ---

SAT ---

E0550230: illegal operand (range error in displacement)

E0550226: illegal operand (must be even displacement)

E0550230: illegal operand (range error in displacement)

CubeSuite Ver.1.40 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 453 of 890
Oct 01, 2010

Unconditional branch (PC relative). [V850E2]

[Syntax]

- jr22 disp22

The following can be specified for disp22:
- Absolute expression having a value of up to 22 bits
- Relative expression having a PC offset reference of label

[Function]

Transfers control to the address attained by adding the current program counter (PC) value and the relative or absolute
expression value specified by the operand.

[Description]

- If the following is specified for disp22, the assembler generates one jr machine instructionNote.

(a) Absolute value in the range of -2,097,152 to +2,097,151

(b) Relative expression that has a PC offset reference of label having a definition in the same section and
the same file as this instruction, and which has a value in the range of -2,097,152 to +2,097,151

(c) Relative expression having a PC offset reference of a label having no definition in the same file or sec-
tion as this instruction

Note The jr machine instruction takes an immediate value in the range of -2,097,152 to +2,097,151 (0xFE00000
to 0x1FFFFF) as the displacement.

[Flag]

[Caution]

- If an absolute expression that exceeds the range of -2,097,152 to +2,097,151, or a relative expression having a PC
offset reference of label with a definition in the same section and the same file as this instruction and having a
value that falls outside the range of -2,097,152 to +2,097,151 is specified as disp22, the assembler outputs the fol-
lowing message and stops assembling.

jr22

CY ---

OV ---

S ---

Z ---

SAT ---

E0550230: illegal operand (range error in displacement)

CubeSuite Ver.1.40 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 454 of 890
Oct 01, 2010

- If an absolute expression having an odd-numbered value, or a relative expression having a PC offset reference of
a label with a definition in the same section and the same file as this instruction and having an odd-numbered
value, is specified as disp22, the assembler outputs the following message and stops assembling.

E0550226: illegal operand (must be even displacement)

CubeSuite Ver.1.40 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 455 of 890
Oct 01, 2010

Unconditional branch (PC relative). [V850E2]

[Syntax]

- jr32 disp32

The following can be specified for disp32:
- Absolute expression having a value of up to 32 bits
- Relative expression having a PC offset reference of label

[Function]

Transfers control to the address attained by adding the current program counter (PC) value and the relative or absolute
expression value specified by the first operand.

[Description]

The assembler generates one jr machine instruction (6-byte long instruction).

[Flag]

[Caution]

- If an absolute expression having an odd-numbered value, or a relative expression having a PC offset reference of
a label with a definition in the same section and the same file as this instruction and having an odd-numbered
value, is specified as disp32, the assembler outputs the following message and stops assembling.

jr32

CY ---

OV ---

S ---

Z ---

SAT ---

E0550226: illegal operand (must be even displacement)

CubeSuite Ver.1.40 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 456 of 890
Oct 01, 2010

Conditional branch.

[Syntax]

- jcnd disp22

The following can be specified for disp22:
- Absolute expression having a value of up to 22 bits
- Relative expression having a PC offset reference of label

[Function]

Compares the flag condition indicated by string cnd (see "Table 4-40. jcnd Instruction List") with the current flag condi-
tion. If they are found to be the same, transfers control to the address obtained by adding the value of the absolute
expression or relative expression specified by the operand to the current value of the program counter (PC)Note.

Note For a jcnd instruction other than jbr, the mnemonic "bcnd" can be used, and the "br" machine-language instruc-
tion can be used for the jbr instruction (there is no functional difference).

Table 4-40. jcnd Instruction List

jcnd

Instruction Flag Condition Meaning of Flag Condition

jgt ((S xor OV) or Z) = 0 Greater than (signed)

jge (S xor OV) = 0 Greater than or equal (signed)

jlt (S xor OV) = 1 Less than (signed)

jle ((S xor OV) or Z) = 1 Less than or equal (signed)

jh (CY or Z) = 0 Higher (Greater than)

jnl CY = 0 Not lower (Greater than or equal)

jl CY = 1 Lower (Less than)

jnh (CY or Z) = 1 Not higher (Less than or equal)

je Z = 1 Equal

jne Z = 0 Not equal

jv OV = 1 Overflow

jnv OV = 0 No overflow

jn S = 1 Negative

jp S = 0 Positive

jc CY = 1 Carry

jnc CY = 0 No carry

jz Z = 1 Zero

jnz Z = 0 Not zero

jbr --- Always (Unconditional)

jsa SAT = 1 Saturated

CubeSuite Ver.1.40 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 457 of 890
Oct 01, 2010

[Description]

- If the following is specified for disp22, the assembler generates one bcond machine instructionNote.

(a) Absolute expression having a value in the range of -256 to +255

(b) Relative expression having a PC offset reference for a label with a definition in the same section and
the same file as this instruction and having a value in the range of -256 to +255

Note The bcnd machine instruction takes an immediate value in the range of -256 to +255 (0xFFFFFF00 to 0xFF)
as the displacement.

- If the following is specified as disp22, the assembler executes instruction expansion and generates two or more
machine instructions.

(a) Absolute expression having a value exceeding the range of -256 to +255 but within the range of -
2,097,150 to +2,097,153Note 1

(b) Relative expression having a PC offset reference of label with a definition in the same section of the
same file as this instruction and having a value exceeding the range of -256 to +255 but within the
range of -2,097,150 to +2,097,153

(c) Relative expression having a PC offset reference of label without a definition in the same file or section
as this instruction

Notes 1. The range of -2,097,150 to +2,097,153 applies to instructions other than jbr and jsa. The range for
the jbr instruction is from -2,097,152 to +2,097,151, and that for the jsa instruction is from -
2,097,148 to +2,097,155.

2. bncnd denotes an instruction that effects control branches under opposite conditions, for example,
bnz for bz or ble for bgt.

jcnd disp9 bcnd disp9

jbr disp22 jr disp22

jsa disp22 bsa Label1

 br Label2

Label1:

 jr disp22 - 4

Label2:

jcnd disp22 bncnd LabelNote 2

 jr disp22 - 2

Label:

CubeSuite Ver.1.40 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 458 of 890
Oct 01, 2010

[Flag]

[Caution]

- If an absolute expression having a value exceeding the range of -2,097,150 to +2,097,153, or a relative expression
having a PC offset reference of a label with a definition in the same section and the same file as this instruction,
and having a value exceeding the range of -2,097,150 to +2,097,153, is specified as disp22, the assembler out-
puts the following message and stops assembling.

- If an absolute expression having an odd-numbered value, or a relative expression having a PC offset reference of
a label with a definition in the same section and the same file as this instruction, and having an odd-numbered
value, is specified as disp22, the assembler outputs the following message and stops assembling.

CY ---

OV ---

S ---

Z ---

SAT ---

E0550230: illegal operand (range error in displacement)

E0550226: illegal operand (must be even displacement)

CubeSuite Ver.1.40 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 459 of 890
Oct 01, 2010

Jump and register link.

[Syntax]

- jarl disp22, reg2
- jarl disp32, reg1 [V850E2]

The following can be specified for disp22:
- Absolute expression having a value of up to 22 bits
- Relative expression having a PC offset reference of label

The following can be specified for disp32:
- Absolute expression having a value of up to 32 bits
- Relative expression having a PC offset reference of label

[Function]

- Syntax "jarl disp22, reg2"
Transfers control to the address attained by adding the current program counter (PC) value and the relative or
absolute expression value specified by the first operand. The return address is stored in the register specified by
the second operand.

- Syntax "jarl disp32, reg1"
Transfers control to the address attained by adding the current program counter (PC) value and the relative or
absolute expression value specified by the first operand. The return address is stored in the register specified by
the second operand.

[Description]

- If the instruction is executed in syntax "jarl disp22, reg2", the assembler generates one jarl machine instructionNote
if any of the following expressions are specified for disp22.

(a) Absolute value in the range of -2,097,152 to +2,097,151

(b) Relative expression that has a PC offset reference of label having a definition in the same section and
the same file as this instruction, and which has a value in the range of -2,097,152 to +2,097,151

(c) Relative expression having a PC offset reference of a label having no definition in the same file or sec-
tion as this instruction

Note The jarl machine instruction takes an immediate value in the range of -2,097,152 to +2,097,151 (0xFE00000
to 0x1FFFFF) as the operand.

- If the instruction is executed in syntax "jarl disp32, reg1", the assembler generates one jarl machine instruction (6-
byte long instruction).

jarl

CubeSuite Ver.1.40 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 460 of 890
Oct 01, 2010

[Flag]

[Caution]

- If an absolute expression that exceeds the range of -2,097,152 to +2,097,151, or a relative expression having a PC
offset reference of label with a definition in the same section and the same file as this instruction and having a
value that falls outside the range of -2,097,152 to +2,097,151 is specified as disp22, the assembler outputs the fol-
lowing message and stops assembling.

- If an absolute expression having an odd-numbered value, or a relative expression having a PC offset reference of
a label with a definition in the same section and the same file as this instruction and having an odd-numbered
value, is specified as disp22/disp32, the assembler outputs the following message and stops assembling.

- When the assembler option -Xfar_jump is not specified, and an absolute expression outside of the range -
2,097,152 to +2,097,151 or a relative expression outside of the range -2,097,152 to +2,097,151, having a label PC
offset reference with a definition in the same file and same section as this instruction, is specified as disp32, the
following message is output and assembly is stopped.

- If r0 is specified as reg1/reg2, the assembler outputs the following message and stops assembling.

CY ---

OV ---

S ---

Z ---

SAT ---

E0550230: illegal operand (range error in displacement)

E0550226: illegal operand (must be even displacement)

E0550230: illegal operand (range error in displacement)

E0550240: Illegal operand (cannot use r0 as destination in V850E mode).

CubeSuite Ver.1.40 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 461 of 890
Oct 01, 2010

Jump and register link. [V850E2]

[Syntax]

- jarl22 disp22, reg1

The following can be specified for disp22:
- Absolute expression having a value of up to 22 bits
- Relative expression having a PC offset reference of label

[Function]

Transfers control to the address attained by adding the current program counter (PC) value and the relative or absolute
expression value specified by the first operand. The return address is stored in the register specified by the second oper-
and.

[Description]

- If the following is specified for disp22, the assembler generates one jarl machine instructionNote.

(a) Absolute value in the range of -2,097,152 to +2,097,15

(b) Relative expression that has a PC offset reference of label having a definition in the same section and
the same file as this instruction, and which has a value in the range of -2,097,152 to +2,097,151

(c) Relative expression having a PC offset reference of a label having no definition in the same file or sec-
tion as this instruction

Note The jarl machine instruction takes an immediate value in the range of -2,097,152 to +2,097,151 (0xFE00000
to 0x1FFFFF) as the operand.

[Flag]

[Caution]

- If an absolute expression that exceeds the range of -2,097,152 to +2,097,151, or a relative expression having a PC
offset reference of label with a definition in the same section and the same file as this instruction and having a
value that falls outside the range of -2,097,152 to +2,097,151 is specified as disp22, the assembler outputs the fol-
lowing message and stops assembling.

jarl22

CY ---

OV ---

S ---

Z ---

SAT ---

E0550230: illegal operand (range error in displacement)

CubeSuite Ver.1.40 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 462 of 890
Oct 01, 2010

- If an absolute expression having an odd-numbered value, or a relative expression having a PC offset reference of
a label with a definition in the same section and the same file as this instruction and having an odd-numbered
value, is specified as disp22, the assembler outputs the following message and stops assembling.

- If r0 is specified as reg2, the assembler outputs the following message and stops assembling.

E0550226: illegal operand (must be even displacement)

E0550240: Illegal operand (cannot use r0 as destination in V850E mode).

CubeSuite Ver.1.40 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 463 of 890
Oct 01, 2010

Jump and register link. [V850E2]

[Syntax]

- jarl32 disp32, reg1

The following can be specified for disp32:
- Absolute expression having a value of up to 32 bits
- Relative expression having a PC offset reference of label

[Function]

Transfers control to the address attained by adding the current program counter (PC) value and the relative or absolute
expression value specified by the first operand. The return address is stored in the register specified by the second oper-
and.

[Description]

The assembler generates one jarl machine instruction (6-byte long instruction).

[Flag]

[Caution]

- If an absolute expression having an odd-numbered value, or a relative expression having a PC offset reference of
a label with a definition in the same section and the same file as this instruction, and having an odd-numbered
value, is specified as disp32, the assembler outputs the following message and stops assembling.

- If r0 is specified as reg1, the assembler outputs the following message and stops assembling.

jarl32

CY ---

OV ---

S ---

Z ---

SAT ---

E0550226: illegal operand (must be even displacement)

E0550240: Illegal operand (cannot use r0 as destination in V850E mode).

CubeSuite Ver.1.40 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 464 of 890
Oct 01, 2010

4.7.11 Bit manipulation instructions

This section describes the bit manipulation instructions. Next table lists the instructions described in this section.

Table 4-41. Bit Manipulation Instructions

Instruction Meanings

set1 Sets bit

clr1 Clears bit

not1 Inverts bit

tst1 Tests bit

CubeSuite Ver.1.40 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 465 of 890
Oct 01, 2010

Set s bit.

[Syntax]

- set1 bit#3, disp[reg1]
- set1 reg2, [reg1]
- set1 BITIO

The following can be specified for disp:
- Absolute expression having a value of up to 32 bits
- Relative expression
- Either of the above expressions with HIGHW, LOWW, or HIGHW1 applied

Caution The disp cannot be specified in syntax "set1 reg2, [reg1]".

[Function]

- Syntax "set1 bit#3, disp[reg1]"
Sets the bit specified by the first operand of the data indicated by the address specified by the second operand.
The bits other than the one specified are not affected.

- Syntax "set1 reg2, [reg1]"
Sets the bit specified by the lower 3 bits of the register value specified by the first operand of the data indicated by
the address specified by the register value of the second operand. The bits other than the one specified are not
affected.

- Syntax "set1 BITIO"
Sets the bit specified by the peripheral I/O register bit name (only reserved words defined in the device file) in the
data indicated by the address specified by the first operand

[Description]

- If the following is specified for disp, the assembler generates one set1 machine instructionNote.

(a) Absolute expression having a value in the range of -32,768 to +32,767

(b) Relative expression having $label for a label having a definition in the sdata/sbss-attribute section

(c) Relative expression having !label or %label

(d) Expression with HIGHW, LOWW, or HIGHW1

set1

set1 #bit3, disp16[reg1] set1 #bit3, disp16[reg1]

set1 #bit3, $label[reg1] set1 #bit3, $label[reg1]

set1 #bit3, !label[reg1] set1 #bit3, !label[reg1]

set1 #bit3, %label[reg1] set1 #bit3, %label[reg1]

set1 #bit3, disp16[reg1] set1 #bit3, disp16[reg1]

CubeSuite Ver.1.40 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 466 of 890
Oct 01, 2010

(e) Internal register name defined in the device file

Note The set1 machine instruction takes an immediate value in the range of -32,768 to +32,767 (0xFFFF8000 to
0x7FFF) as the displacement.

- If any of the following is specified as disp, the assembler executes instruction expansion to generate two or more
machine instructions.

(a) Absolute expression having a value exceeding the range of -32,768 to +32,767

(b) Relative expression having #label or label, or that having $label for a label having no definition in the
sdata/sbss-attribute section

- If disp is omitted, the assembler assumes 0.
- If a relative expression with #label, or a relative expression with #label and with HIGHW, LOWW, or HIGHW1

applied is specified as disp, [reg1] can be omitted. If omitted, the assembler assumes that [r0] is specified.
- If a relative expression with $label, or a relative expression with $label and with HIGHW, LOWW, or HIGHW1

applied is specified as disp, [reg1] can be omitted. If omitted, the assembler assumes that [gp] is specified.
- If a peripheral I/O register name defined in the device file is specified as disp, [reg1] can be omitted. If omitted, the

assembler assumes that [r0] is specified.

[Flag]

Note The flag values shown here are those existing prior to the execution of this instruction, not those after the
execution.

set1 reg2, register-name[reg1] set1 reg2, register-name[reg1]

set1 #bit3, disp[reg1] movhi HIGHW1(disp), reg1, r1

set1 #bit3, LOWW(disp)[r1]

set1 #bit3, #label[reg1] movhi HIGHW1(#label), reg1, r1

set1 #bit3, LOWW(#label)[r1]

set1 #bit3, label[reg1] movhi HIGHW1(label), reg1, r1

set1 #bit3, LOWW(label)[r1]

set1 #bit3, $label[reg1] movhi HIGHW1($label), reg1, r1

set1 #bit3, LOWW($label)[r1]

CY ---

OV ---

S ---

Z 1 if the specified bit is 0, 0 if notNote

SAT ---

CubeSuite Ver.1.40 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 467 of 890
Oct 01, 2010

Clears bit.

[Syntax]

- clr1 bit#3, disp[reg1]
- clr1 reg2, [reg1]
- clr1 BITIO

The following can be specified for disp:
- Absolute expression having a value of up to 32 bits
- Relative expression
- Either of the above expressions with HIGHW, LOWW, or HIGHW1 applied

Caution The disp cannot be specified in syntax "clr1 reg2, [reg1]".

[Function]

- Syntax "clr1 bit#3, disp[reg1]"
Clears the bit specified by the first operand of the data indicated by the address specified by the second operand.
The bits other than the one specified are not affected.

- Syntax "clr1 reg2, [reg1]"
Clears the bit specified by the lower 3 bits of the register value specified by the first operand of the data indicated
by the address specified by the register value of the second operand. The bits other than the one specified are not
affected.

- Syntax "clr1 BITIO"
Clears the bit specified by the peripheral I/O register bit name (only reserved words defined in the device file) in the
data indicated by the address specified by the first operand.

[Description]

- If the following is specified as disp, the assembler generates one clr1 machine instructionNote.

(a) Absolute expression having a value in the range of -32,768 to +32,767

(b) Relative expression having $label for a label having a definition in the sdata/sbss-attribute section

(c) Relative expression having !label or %label

(d) Expression with HIGHW, LOWW, or HIGHW1

clr1

clr1 #bit3, disp16[reg1] clr1 #bit3, disp16[reg1]

clr1 #bit3, $label[reg1] clr1 #bit3, $label[reg1]

clr1 #bit3, !label[reg1] clr1 #bit3, !label[reg1]

clr1 #bit3, %label[reg1] clr1 #bit3, %label[reg1]

clr1 #bit3, disp16[reg1] clr1 #bit3, disp16[reg1]

CubeSuite Ver.1.40 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 468 of 890
Oct 01, 2010

(e) Internal register name defined in the device file

Note The clr1 machine instruction takes an immediate value in the range of -32,768 to +32,767 (0xFFFF8000 to
0x7FFF) as the displacement.

- If any of the following is specified as disp, the assembler executes instruction expansion to generate two or more
machine instructions.

(a) Absolute expression having a value exceeding the range of -32,768 to +32,767

(b) Relative expression having #label or label, or that having $label for a label having no definition in the
sdata/sbss-attribute section

- If disp is omitted, the assembler assumes 0.
- If a relative expression with #label or a relative expression with #label and with HIGHW, LOWW, or HIGHW1

applied is specified as disp, [reg1] that follows the expression can be omitted. If omitted, the assembler assumes
[r0] to be specified.

- If a relative expression with $label, or a relative expression with $label and with HIGHW, LOWW, or HIGHW1
applied is specified as disp, [reg1] can be omitted. If omitted, the assembler assumes that [gp] is specified.

- If a peripheral I/O register name defined in the device file is specified as disp, [reg1] can be omitted. If omitted, the
assembler assumes that [r0] is specified.

[Flag]

Note The flag values shown here are those existing prior to the execution of this instruction, not those after the
execution.

clr1 reg2, register-name[reg1] clr1 reg2, register-name[reg1]

clr1 #bit3, disp[reg1] movhi HIGHW1(disp), reg1, r1

clr1 #bit3, LOWW(disp)[r1]

clr1 #bit3, #label[reg1] movhi HIGHW1(#label), reg1, r1

clr1 #bit3, LOWW(#label)[r1]

clr1 #bit3, label[reg1] movhi HIGHW1(label), reg1, r1

clr1 #bit3, LOWW(label)[r1]

clr1 #bit3, $label[reg1] movhi HIGHW1($label), reg1, r1

clr1 #bit3, LOWW($label)[r1]

CY ---

OV ---

S ---

Z 1 if the specified bit is 0, 0 if notNote

SAT ---

CubeSuite Ver.1.40 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 469 of 890
Oct 01, 2010

Inverts bit.

[Syntax]

- not1 bit#3, disp[reg1]
- not1 reg2, [reg1]
- not1 BITIO

The following can be specified for disp:
- Absolute expression having a value of up to 32 bits
- Relative expression
- Either of the above expressions with HIGHW, LOWW, or HIGHW1 applied

Caution The disp cannot be specified in syntax "not1 reg2, [reg1]".

[Function]

- Syntax "not1 bit#3, disp[reg1]"
Inverts the bit specified by the first operand (0 to 1 or 1 to 0) of the data indicated by the address specified by the
second operand. The bits other than the one specified are not affected.

- Syntax "not1 reg2, [reg1]"
Inverts the bit specified by the lower 3 bits of the register value specified by the first operand (0 to 1 or 1 to 0) of the
data indicated by the address specified by the register value of the second operand. The bits other than the one
specified are not affected.

- Syntax "not1 BITIO"
Inverts (from 0 to 1 or 1 to 0) the bit specified by the peripheral I/O register bit name (only reserved words defined
in the device file) in the data indicated by the address specified by the first operand.

[Description]

- If the following is specified for disp, the assembler generates one not1 machine instructionNote.

(a) Absolute expression having a value in the range of -32,768 to +32,767

(b) Relative expression having $label for a label having a definition in the sdata/sbss-attribute section

(c) Relative expression having !label or %label

(d) Expression with HIGHW, LOWW, or HIGHW1

not1

not1 #bit3, disp16[reg1] not1 #bit3, disp16[reg1]

not1 #bit3, $label[reg1] not1 #bit3, $label[reg1]

not1 #bit3, !label[reg1] not1 #bit3, !label[reg1]

not1 #bit3, %label[reg1] not1 #bit3, %label[reg1]

not1 #bit3, disp16[reg1] not1 #bit3, disp16[reg1]

CubeSuite Ver.1.40 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 470 of 890
Oct 01, 2010

(e) Internal register name defined in the device file

Note The not1 machine instruction takes an immediate value in the range of -32,768 to +32,767 (0xFFFF8000 to
0x7FFF) as the displacement.

- If any of the following is specified as disp, the assembler executes instruction expansion to generate two or more
machine instructions.

(a) Absolute expression having a value exceeding the range of -32,768 to +32,767

(b) Relative expression having #label or label, or that having $label for a label having no definition in the
sdata/sbss-attribute section

- If disp is omitted, the assembler assumes 0.
- If a relative expression with #label, or a relative expression with #label and with HIGHW, LOWW, or HIGHW1

applied is specified as disp, [reg1] can be omitted. If omitted, the assembler assumes that [r0] is specified.
- If a relative expression with $label, or a relative expression with $label and with HIGHW, LOWW, or HIGHW1

applied is specified as disp, [reg1] can be omitted. If omitted, the assembler assumes that [gp] is specified.
- If a peripheral I/O register name defined in the device file is specified as disp, [reg1] can be omitted. If omitted, the

assembler assumes that [r0] is specified.

[Flag]

Note The flag values shown here are those existing prior to the execution of this instruction, not those after the
execution.

not1 reg2, register-name[reg1] not1 reg2, register-name[reg1]

not1 #bit3, disp[reg1] movhi HIGHW1(disp), reg1, r1

not1 #bit3, LOWW(disp)[r1]

not1 #bit3, #label[reg1] movhi HIGHW1(#label), reg1, r1

not1 #bit3, LOWW(#label)[r1]

not1 #bit3, label[reg1] movhi HIGHW1(label), reg1, r1

not1 #bit3, LOWW(label)[r1]

not1 #bit3, $label[reg1] movhi HIGHW1($label), reg1, r1

not1 #bit3, LOWW($label)[r1]

CY ---

OV ---

S ---

Z 1 if the specified bit is 0, 0 if notNote

SAT ---

CubeSuite Ver.1.40 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 471 of 890
Oct 01, 2010

Tests bit.

[Syntax]

- tst1 bit#3, disp[reg1]
- tst1 reg2, [reg1]
- tst1 BITIO

The following can be specified for disp:
- Absolute expression having a value of up to 32 bits
- Relative expression
- Either of the above expressions with HIGHW, LOWW, or HIGHW1 applied

Caution The disp cannot be specified in syntax "tst1 bit#3, disp[reg1]".

[Function]

- Syntax "tst1 bit#3, disp[reg1]"
Sets only a flag according to the value of the bit specified by the first operand of the data indicated by the address
specified by the second operand. The value of the second operand and the specified bit are not changed.

- Syntax "tst1 reg2, [reg1]"
Sets only a flag according to the value of the bit of the lower 3 bits of the register value specified by the first oper-
and of the data indicated by the address specified by the second operand. The value of the second operand and
the specified bit are not changed.

- Syntax "tst1 BITIO"
Sets only the flag in accordance with the value of the bit specified by the peripheral I/O register bit name (only
reserved words defined in the device file) in the data indicated by the address specified by the first operand. The
value of the peripheral I/O register bit is not affected.

[Description]

- If the following is specified for disp, the assembler generates one tst1 machine instructionNote.

(a) Absolute expression having a value in the range of -32,768 to +32,767

(b) Relative expression having $label for a label having a definition in the sdata/sbss-attribute section

(c) Relative expression having !label or %label

tst1

tst1 #bit3, disp16[reg1] tst1 #bit3, disp16[reg1]

tst1 #bit3, $label[reg1] tst1 #bit3, $label[reg1]

tst1 #bit3, !label[reg1] tst1 #bit3, !label[reg1]

tst1 #bit3, %label[reg1] tst1 #bit3, %label[reg1]

CubeSuite Ver.1.40 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 472 of 890
Oct 01, 2010

(d) Expression with HIGHW, LOWW, or HIGHW1

(e) Internal register name defined in the device file

Note The tst1 machine instruction takes an immediate value in the range of -32,768 to +32,767 (0xFFFF8000 to
0x7FFF) as the displacement.

- If any of the following is specified as disp, the assembler executes instruction expansion to generate two or more
machine instructions.

(a) Absolute expression having a value exceeding the range of -32,768 to +32,767

(b) Relative expression having #label or label, or that having $label for a label having no definition in the
sdata/sbss-attribute section

- If disp is omitted, the assembler assumes 0.
- If a relative expression with #label, or a relative expression with #label and with HIGHW, LOWW, or HIGHW1

applied is specified as disp, [reg1] can be omitted. If omitted, the assembler assumes that [r0] is specified.
- If a relative expression with $label, or a relative expression with $label and with HIGHW, LOWW, or HIGHW1

applied is specified as disp, [reg1] can be omitted. If omitted, the assembler assumes that [gp] is specified.
- If a peripheral I/O register name defined in the device file is specified as disp, [reg1] can be omitted. If omitted, the

assembler assumes that [r0] is specified.

[Flag]

tst1 #bit3, disp16[reg1] tst1 #bit3, disp16[reg1]

tst1 reg2, register-name[reg1] tst1 reg2, register-name[reg1]

tst1 #bit3, disp[reg1] movhi HIGHW1(disp), reg1, r1

tst1 #bit3, LOWW(disp)[r1]

tst1 #bit3, #label[reg1] movhi HIGHW1(#label), reg1, r1

tst1 #bit3, LOWW(#label)[r1]

tst1 #bit3, label[reg1] movhi HIGHW1(label), reg1, r1

tst1 #bit3, LOWW(label)[r1]

tst1 #bit3, $label[reg1] movhi HIGHW1($label), reg1, r1

tst1 #bit3, LOWW($label)[r1]

CY ---

OV ---

S ---

Z 1 if the specified bit is 0, 0 if not

SAT ---

CubeSuite Ver.1.40 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 473 of 890
Oct 01, 2010

4.7.12 Stack manipulation instructions

This section describes the stack manipulation instructions. Next table lists the instructions described in this section.

Table 4-42. Stack Manipulation Instructions

Instruction Meanings

push Pushes to stack area (single register)

pushm Pushes to stack area (multiple registers)

pop Pops from stack area (single register)

popm Pops from stack area (multiple registers)

CubeSuite Ver.1.40 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 474 of 890
Oct 01, 2010

Pushes to stack area (single register).

[Syntax]

push reg

[Function]

Pushes the value of the register specified by the operand to the stack area.

[Description]

- When the push instruction is executed, the assembler executes instruction expansion to generate two or more
machine instructions.

[Flag]

Caution Instruction expansion is performed, and set via an add instruction.

push

push reg add -4, sp

st.w reg, [sp]

CY 1 if a carry occurs from MSB (Most Significant Bit), 0 if not

OV 1 if Integer-Overflow occurs, 0 if not

S 1 if the result is negative, 0 if not

Z 1 if the result is 0, 0 if not

SAT ---

CubeSuite Ver.1.40 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 475 of 890
Oct 01, 2010

Pushes to stack area (multiple registers).

[Syntax]

pushm reg1, reg2, ..., regN

[Function]

Pushes the values of the registers specified by the operand to the stack area. Up to 32 registers can be specified by
the operand.

[Description]

- When the pushm instruction is executed, the assembler executes instruction expansion to generate two or more
machine instructions.

- When there are four or fewer registers.

- When there are five or more registers.

[Flag]

Caution Instruction expansion is performed, and set via an add/addi instruction.

pushm

pushm reg1, reg2, …, regN add -4 * N, sp

st.w regN, 4 * (N - 1)[sp]

 :

st.w reg2, 4 * 1[sp]

st.w reg1, 4 * 0[sp]

pushm reg1, reg2, …, regN addi -4 * N, sp, sp

st.w regN, 4 * (N - 1)[sp]

 :

st.w reg2, 4 * 1[sp]

st.w reg1, 4 * 0[sp]

CY 1 if a carry occurs from MSB (Most Significant Bit), 0 if not

OV 1 if Integer-Overflow occurs, 0 if not

S 1 if the result is negative, 0 if not

Z 1 if the result is 0, 0 if not

SAT ---

CubeSuite Ver.1.40 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 476 of 890
Oct 01, 2010

Pops from stack area (single register).

[Syntax]

pop reg

[Function]

Pops the value of the register specified by the operand from the stack area.

[Description]

- When the pop instruction is executed, the assembler executes instruction expansion to generate two or more
machine instructions.

[Flag]

Caution Instruction expansion is performed, and set via an add instruction.

pop

pop reg ld.w [sp], reg

add 4, sp

CY 1 if a carry occurs from MSB (Most Significant Bit), 0 if not

OV 1 if Integer-Overflow occurs, 0 if not

S 1 if the result is negative, 0 if not

Z 1 if the result is 0, 0 if not

SAT ---

CubeSuite Ver.1.40 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 477 of 890
Oct 01, 2010

Pops from stack area (multiple registers).

[Syntax]

popm reg1, reg2, ..., regN

[Function]

Pops the values of the registers specified by the operand from the stack area in the sequence in which the registers are
specified. Up to 32 registers can be specified by the operand.

[Description]

- When the popm instruction is executed, the assembler executes instruction expansion to generate two or more
machine instructions.

- When there are three or fewer registers.

- When there are four or more registers.

[Flag]

Caution Instruction expansion is performed, and set via an add/addi instruction.

popm

popm reg1, …, regN ld.w 4 * 0[sp], reg1

 :

ld.w 4 * (N - 1)[sp], regN

add 4 * N, sp

popm reg1, reg2, …, regN ld.w 4 * 0[sp], reg1

ld.w 4 * 1[sp], reg2

 :

ld.w 4 * (N - 1)[sp], regN

addi 4 * N, sp, sp

CY 1 if a carry occurs from MSB (Most Significant Bit), 0 if not

OV 1 if Integer-Overflow occurs, 0 if not

S 1 if the result is negative, 0 if not

Z 1 if the result is 0, 0 if not

SAT ---

CubeSuite Ver.1.40 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 478 of 890
Oct 01, 2010

4.7.13 Special instructions

This section describes the special instructions. Next table lists the instructions described in this section.

Table 4-43. Special Instructions

See the device with an instruction set of V850E2V3 product user's manual and architecture edition for details about the
device with an instruction set of V850E2V3.

Instruction Meanings

ldsr Loads to system register

stsr Stores contents of system register

di Disables maskable interrupt

ei Enables maskable interrupt

reti Returns from trap or interrupt routine

eiret Returns from EI level exception [V850E2V3]

feret Returns fromFE level exception [V850E2V3]

halt Stops the processor

trap Software trap

rmtrap Runtime monitor trap [V850E2V3]

fetrap FE level software exception instruction [V850E2V3]

nop No operation

switch Table reference branch

callt Table reference call

ctret Returns from callt

caxi Compare and exchange [V850E2V3]

rie Reserved Instruction exception [V850E2V3]

syncm Synchronize memory [V850E2V3]

syncp Synchronize pipline [V850E2V3]

dbtrap Debug trap

dbret Returns from debug trap

prepare Generates stack frame (preprocessing of function)

dispose Deletes stack frame (post processing of function)

synce Synchronize exception [V850E2V3]

syscall System call exception [V850E2V3]

CubeSuite Ver.1.40 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 479 of 890
Oct 01, 2010

Loads to system register.

[Syntax]

- ldsr reg, regID

The following can be specified as regID:
- Absolute expression having a value of up to 5 bits

[Function]

Stores the value of the register specified by the first operand in the system registerNote indicated by the system register
number specified by the second operand.

Note For details of the system registers, see the Relevant Device’s Hardware User’s Manual provided with the each
device.

[Flag]

Caution If the program status word (PSW) is specified as the system register, the value of the corresponding
bit of reg is set as each flag.

[Caution]

- If an absolute expression having a value exceeding the range of 0 to 31 is specified as regID, the assembler out-
puts the following message, then continues assembling using the lower 5 bitsNote of the specified value.

Note The ldsr machine instruction takes an immediate value in the range of 0 to 31 (0x0 to 0x1F) as the second
operand.

- If a reserved register number, the number of a register which cannot be accessed (such as ECR) or the number of
a register which can be accessed only in the debug mode is specified as regID, the assembler outputs the follow-
ing message and continues assembling as is.

ldsr

CY ---

OV ---

S ---

Z ---

SAT ---

W0550011: illegal operand (range error in immediate)

W0550018: illegal regID for ldsr

CubeSuite Ver.1.40 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 480 of 890
Oct 01, 2010

Stores contents of system register.

[Syntax]

- stsr regID, reg

The following can be specified as regID:
- Absolute expression having a value of up to 5 bits

[Function]

Stores the value of the system registerNote indicated by the system register number specified by the first operand, to
the register specified by the second operand.

Note For details of the system registers, see the Relevant Device’s Hardware User’s Manual provided with the each
device.

[Flag]

[Caution]

- If an absolute expression having a value exceeding the range of 0 to 31 is specified as regID, the assembler out-
puts the following message, then continues assembling using the lower 5 bitsNote of the specified value.

Note The stsr machine instruction takes an immediate value in the range of 0 to 31 (0x0 to 0x1F) as the first oper-
and.

- If a reserved register number or the number of a register which can be accessed only in the debug mode is speci-
fied as regID, the assembler outputs the following message and continues assembling as is.

stsr

CY ---

OV ---

S ---

Z ---

SAT ---

W0550011: illegal operand (range error in immediate)

W0550018: illegal regID for ldsr

CubeSuite Ver.1.40 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 481 of 890
Oct 01, 2010

Disables maskable interrupt.

[Syntax]

- di

[Function]

Sets the ID bit of the PSW to 1 and disables acknowledgement of maskable interrupts since this instruction has already
been executed.

[Flag]

di

CY ---

OV ---

S ---

Z ---

SAT ---

ID 1

CubeSuite Ver.1.40 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 482 of 890
Oct 01, 2010

Enables maskable interrupt.

[Syntax]

- ei

[Function]

Sets the ID bit of the PSW to 0, and enables acknowledgment of maskable interrupt from the next instruction.

[Flag]

ei

CY ---

OV ---

S ---

Z ---

SAT ---

ID 0

CubeSuite Ver.1.40 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 483 of 890
Oct 01, 2010

Returns from trap or interrupt routine.

[Syntax]

- reti

[Function]

Returns from a trap or interrupt routineNote.

Note For details of the function, see the Relevant Device’s Architecture User’s Manual of each devic

[Flag]

reti

CY Extracted value

OV Extracted value

S Extracted value

Z Extracted value

SAT Extracted value

CubeSuite Ver.1.40 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 484 of 890
Oct 01, 2010

Stops the processor.

[Syntax]

- halt

[Function]

Stops the processor and sets it in the HALT status. The HALT status can be released by a maskable interrupt, NMI, or
reset.

[Flag]

halt

CY ---

OV ---

S ---

Z ---

SAT ---

CubeSuite Ver.1.40 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 485 of 890
Oct 01, 2010

Software trap.

[Syntax]

- trap vector

The following can be specified for vector:
- Absolute expression having a value of up to 5 bits

[Function]

Causes a software trapNote.

Note For details of the function, see the Relevant Device’s Architecture User’s Manual of each device.

[Flag]

[Caution]

- If an absolute expression having a value falling outside the range of 0 to 31 is specified as vector, the assembler
outputs the following message, continuing assembling using the lower 5 bitsNote of the specified value.

Note The trap machine instruction takes an immediate value in the range of 0 to 31 (0x0 to 0x1F) as an operand.

trap

CY ---

OV ---

S ---

Z ---

SAT ---

W0550011: illegal operand (range error in immediate)

CubeSuite Ver.1.40 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 486 of 890
Oct 01, 2010

No operation.

[Syntax]

- nop

[Function]

Nothing is executed. This instruction can be used to allocate an area during an instruction sequence or to insert a
delay cycle during instruction execution.

[Flag]

nop

CY ---

OV ---

S ---

Z ---

SAT ---

CubeSuite Ver.1.40 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 487 of 890
Oct 01, 2010

Table reference branch.

[Syntax]

switch reg

[Function]

Performs processing in the following sequence.

(1) Adds the value resulting from logically shifting the value specified by the operand 1 bit to the left to the
first address of the table (address following the switch instruction) to generate a table entry address.

(2) Loads signed halfword data from the generated table entry address.

(3) Logically shifts the loaded value 1 bit to the left and sign-extends it to word length. Then adds the first
address of the table to it to generate an address

(4) Branches to the generated address.

[Flag]

[Caution]

- If r0 is specified by reg, the assembler outputs the following message and stops assembling.

switch

CY ---

OV ---

S ---

Z ---

SAT ---

E0550239: Illegal operand (cannot use r0 as source in V850E mode).

CubeSuite Ver.1.40 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 488 of 890
Oct 01, 2010

Table reference call.

[Syntax]

- callt imm6

The following can be specified as imm6:
- Absolute expression having a value of up to 6 bits

[Function]

Performs processing in the following sequenceNote

(1) Saves the values of the return PC and PSW to CTPC and CTPSW.

(2) Generates a table entry address by shifting the value specified by the operand 1 bit to the left as an offset
value from CTBP(CALLT Base Pointer) and by adding it to the CTBP value.

(3) Loads unsigned halfword data from the generated table entry address.

(4) Adds the loaded value to the CTBP value to generate an address.

(5) Branches to the generated address.

Note For details of the system registers, see the Relevant Device’s Architecture User’s Manual of each device.

[Flag]

callt

CY ---

OV ---

S ---

Z ---

SAT ---

CubeSuite Ver.1.40 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 489 of 890
Oct 01, 2010

Returns from callt.

[Syntax]

- ctret

[Function]

Returns from the processing by callt. Performs the processing in the following sequenceNote:

(1) Extracts the return PC and PSW from CTPC and CTPSW.

(2) Sets the extracted values in the PC and PSW and transfers control.

Note For details of the system registers, see the Relevant Device’s Architecture User’s Manual of each device.

[Flag]

ctret

CY Extracted value

OV Extracted value

S Extracted value

Z Extracted value

SAT Extracted value

CubeSuite Ver.1.40 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 490 of 890
Oct 01, 2010

Debug trap.

[Syntax]

- dbtrap

[Function]

Causes debug trapNote.

Note For details of the function, see the Relevant Device’s Architecture User’s Manual of each device.

[Flag]

dbtrap

CY ---

OV ---

S ---

Z ---

SAT ---

CubeSuite Ver.1.40 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 491 of 890
Oct 01, 2010

Returns from debug trap.

[Syntax]

- dbret

[Function]

Returns from debug trapNote.

Note For details of the function, see the Relevant Device’s Architecture User’s Manual of each device.

[Flag]

dbret

CY Extracted value

OV Extracted value

S Extracted value

Z Extracted value

SAT Extracted value

CubeSuite Ver.1.40 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 492 of 890
Oct 01, 2010

Generates stack frame (preprocessing of function).

[Syntax]

- prepare list, imm1
- prepare list, imm1, imm2
- prepare list, imm1, sp

The following can be specified as imm1/imm2:
- Absolute expression having a value of up to 32 bits

list specifies the 12 registers that can be pushed by the prepare instruction.The following can be specified as list.
- Register

Specify the registers (r20 to r31) to be pushed, delimiting each with a comma.
- 1Constant expression having a value of up to 12 bits

The 12 bits and 12 registers correspond as follows:

The following two specifications are equivalent.

[Function]

The prepare instruction performs the preprocessing of a function.

- Syntax "prepare list, imm1"

(a) Pushes one of the registers specified by the first operand and subtracts 4 from the stack pointer (sp).

(b) Repeatedly performs (a) until all the registers specified by the first operand have been pushed.

(c) Subtracts the value of the absolute expression specified by the second operand from spNote and sets
sp in the register saving area.

- Syntax "prepare list, imm1, imm2"

(a) Pushes one of the registers specified by the first operand and subtracts 4 from sp.

(b) Repeatedly performs (a) until all the registers specified by the first operand have been pushed.

(c) Subtracts the value of the absolute expression specified by the second operand from spNote and sets
sp to the register saving area.

(d) Sets the value of the absolute expression specified by the third operand in ep.

prepare

prepare r26, r29, r31, 0x10 prepare 0x103, 0x10

bit 11 bit 0

r31r27 r20 r21 r22 r29r28r23r26r25r24r30

CubeSuite Ver.1.40 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 493 of 890
Oct 01, 2010

- Syntax "prepare list, imm1, sp"

(a) Pushes one of the registers specified by the first operand and subtracts 4 from sp.

(b) Repeatedly performs (a) until all the registers specified by the first operand have been pushed.

(c) Subtracts the value of the absolute expression specified by the second operand from spNote and sets
sp in the register saving area.

(d) Sets the value of sp specified by the third operand in ep.

Note Since the value actually subtracted from sp by the machine instruction is imm1 shifted 2 bits to the left,
the assembler shifts the specified imm1 2 bits to the right in advance and reflects it in the code.

[Description]

- If the following is specified for imm1, the assembler generates one prepare machine instruction.

(a) Absolute expression having a value in the range of 0 to 127

- If anything other than a constant expressionNote is specified as list, the assembler outputs the following message
and stops assembling.

Note Undefined symbol and label reference.

- When the following is specified as imm1, the assembler executes instruction expansion to generate two or more
machine instructions.

(a) Absolute expression exceeding the range of 0 to 127, but within the range of 0 to 32,767

prepare list, imm1 prepare list, imm1

prepare list, imm1, imm2 prepare list, imm1, imm2

prepare list, imm1, sp prepare list, imm1, sp

E0550249: illegal syntax

prepare list, imm1 prepare list, 0

movea -imm1, sp, sp

prepare list, imm1, imm2 prepare list, 0, imm2

movea -imm1, sp, sp

prepare list, imm1, sp prepare list, 0, sp

movea -imm1, sp, sp

CubeSuite Ver.1.40 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 494 of 890
Oct 01, 2010

(b) Absolute expression having a value exceeding the range of 0 to 32,767

[Flag]

Caution If a sub instruction is generated as a result of instruction expansion, the flag value may be affected.

[Caution]

- An address consisting of the two lower bits specified by sp is masked to 0 even though misalign access is enabled.
In sp, set a value which is aligned with a four-byte boundary.

prepare list, imm1 prepare list, 0

mov imm1, r1

sub r1, sp

prepare list, imm1, imm2 prepare list, 0, imm2

mov imm1, r1

sub r1, sp

prepare list, imm1, sp prepare list, 0, sp

mov imm1, r1

sub r1, sp

CY ---

OV ---

S ---

Z ---

SAT ---

CubeSuite Ver.1.40 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 495 of 890
Oct 01, 2010

Deletes stack frame (post processing of function).

[Syntax]

- dispose imm, list
- dispose imm, list, [reg]

The following can be specified for imm:
- Absolute expression having a value of up to 32 bits

The following can be specified as list. list specifies the 12 registers that can be popped by the dispose instruction.
- Register

Specify the registers (r20 to r31) to be popped, delimiting each with a comma.
- Constant expression having a value of up to 12 bits

The 12 bits and 12 registers correspond as follows:

The following two specifications are equivalent.

[Function]

The dispose instruction performs the postprocessing of a function.

- Syntax "dispose imm, list"

(a) Adds the value of the absolute expression specified by the first operand to the stack pointer (sp)Note
and sets sp in the register saving area.

(b) Pops one of the registers specified by the second operand and adds 4 to sp.

(c) Repeatedly executes (b) until all the registers specified by the second operand have been popped.

- Syntax "dispose imm, list, [reg]"

(a) Adds the value of the absolute expression specified by the first operand to the stack pointer (sp)Note
and sets sp in the register saving area.

(b) Pops one of the registers specified by the second operand and adds 4 to sp.

(c) Repeatedly executes (b) until all the registers specified by the second operand have been popped.

(d) Sets the register value specified by the third operand in the program counter (PC).

dispose

dispose 0x10, r26, r29, r31 dispose 0x10, 0x103

bit 11 bit 0

r31r27 r20 r21 r22 r29r28r23r26r25r24r30

CubeSuite Ver.1.40 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 496 of 890
Oct 01, 2010

Note Since the value actually added to sp by the machine instruction is imm shifted 2 bits to the left, the assem-
bler shifts the specified imm 2 bits to the right in advance and reflects it in the code.

[Description]

- If the following is specified for imm, the assembler generates one dispose machine instruction.

(a) Absolute expression having a value in the range of 0 to 127

- If anything other than a constant expression is specified as list, the assembler outputs the following message and
stops assembling.

- If the following is specified for imm, the assembler executes instruction expansion to generate two or more
machine instructions.

(a) Absolute expression exceeding the range of 0 to 127, but within the range of 0 to 32,767

(b) Absolute expression having a value exceeding the range of 0 to 32,767

[Flag]

Caution If the add instruction is generated as a result of instruction expansion, the flag value may be
affected.

dispose imm, list dispose imm, list

dispose imm, list, [reg] dispose imm, list, [reg]

E0550249: illegal syntax

dispose imm, list movea imm, sp, sp

dispose 0, list

dispose imm, list, [reg] movea imm, sp, sp

dispose 0, list, [reg]

dispose imm, list mov imm, r1

add r1, sp

dispose 0, list

dispose imm, list, [reg] mov imm, r1

add r1, sp

dispose 0, list, [reg]

CY ---

OV ---

S ---

Z ---

SAT ---

CubeSuite Ver.1.40 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 497 of 890
Oct 01, 2010

[Caution]

- An address consisting of the two lower bits specified by sp is masked to 0 even though misalign access is enabled.
In sp, set a value which is aligned with a four-byte boundary.

- If r0 is specified by the [reg] in syntax "dispose imm, list, [reg]", tthe assembler outputs the following message and
stops assembling.

E0550240: Illegal operand (cannot use r0 as destination in V850E mode).

CubeSuite Ver.1.40 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 498 of 890
Oct 01, 2010

4.7.14 Floating-point operation instructions [V850E2V3]

Next table lists the floating-point operation instructions.
See the device with an instruction set of V850E2V3 product user's manual and architecture edition for details.

Table 4-44. Floating-point Operation Instructions (Basic Operation Instructions)

Table 4-45. Floating-point Operation Instructions (Expansion Basis Operation Instructions)

Instruction Meanings

absf.d Floating-point absolute value (double)

absf.s Floating-point absolute value (single)

addf.d Floating-point add (double)

addf.s Floating-point add (single)

divf.d Floating-point divide (double)

divf.s Floating-point divide (single)

maxf.d Floating-point maximum (double)

maxf.s Floating-point maximum (single)

minf.d Floating-point minimum (double)

minf.s Floating-point minimum (single)

mulf.d Floating-point multiply (double)

mulf.s Floating-point multiply (single)

negf.d Floating-point negate (double)

negf.s Floating-point negate (single)

recipf.d Reciprocal of a floating-point value (double)

recipf.s Reciprocal of a floating-point value (single)

rsqrtf.d Reciprocal of the square root of a floating-point value (double)

rsqrtf.s Reciprocal of the square root of a floating-point value (single)

sqrtf.d Floating-point square root (double)

sqrtf.s Floating-point square root (single)

subf.d Floating-point subtract (double)

subf.s Floating-point subtract (single)

Instruction Meanings

maddf.s Floating-point multiply-add (single)

msubf.s Floating-point multiply-add (single)

nmaddf.s Floating-point multiply-add (single)

nmsubf.s Floating-point multiply-add (single)

CubeSuite Ver.1.40 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 499 of 890
Oct 01, 2010

Table 4-46. Floating-point Operation Instructions (Exchange Instructions)

Instruction Meanings

ceilf.dl Floating-point ceiling to Integer Format (double)

ceilf.dw Floating-point ceiling to integer format (double)

ceilf.dul Floating-point ceiling to unsighned integer format (double)

ceilf.duw Floating-point ceiling to unsighned integer format (double)

ceilf.sl Floating-point ceiling to integer format (single)

ceilf.sw Floating-point ceiling to integer format (single)

ceilf.sul Floating-point ceiling to unsighned integer format (single)

ceilf.suw Floating-point ceiling to unsighned integer format (single)

cvtf.dl Floating-point ceiling to integer format (double)

cvtf.ds Floating-point convert to floating-point format (double)

cvtf.dul Floating-point ceiling to unsighned integer format (double)

cvtf.duw Floating-point ceiling to unsighned integer format (double)

cvtf.dw Floating-point ceiling to integer format (double)

cvtf.ld Floating-point convert to floating-point format (double)

cvtf.ls Floating-point convert to floating-point format (single)

cvtf.sd Floating-point convert to floating-point format (double)

cvtf.sl Floating-point ceiling to integer format (single)

cvtf.sul Floating-point ceiling to unsighned integer format (single)

cvtf.suw Floating-point ceiling to unsighned integer format (single)

cvtf.sw Floating-point ceiling to integer format (single)

cvtf.uld Floating-point convert to floating-point format (double)

cvtf.uls Floating-point convert to floating-point format (single)

cvtf.uwd Floating-point convert to floating-point format (double)

cvtf.uws Floating-point convert to floating-point format (single)

cvtf.wd Floating-point convert to floating-point format (double)

cvtf.ws Floating-point convert to floating-point format (single)

floorf.d Floating-point ceiling to integer format (double)

floorf.dw Floating-point ceiling to integer format (double)

floorf.dul Floating-point ceiling to unsighned integer format (double)

floorf.duw Floating-point ceiling to unsighned integer format (double)

floorf.sl Floating-point ceiling to integer format (single)

floorf.sw Floating-point ceiling to integer format (single)

floorf.sul Floating-point ceiling to unsighned integer format (single)

floorf.suw Floating-point ceiling to unsighned integer format (single)

trncf.dl Floating-point ceiling to integer format (double)

trncf.dul Floating-point ceiling to unsighned integer format (double)

CubeSuite Ver.1.40 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 500 of 890
Oct 01, 2010

Table 4-47. Floating-point Operation Instructions (Compare Instructions)

Table 4-48. Floating-point Operation Instructions (Conditional Move Instructions)

Table 4-49. Floating-point Operation Instructions (Conditional Bit Move Instructions)

trncf.duw Floating-point ceiling to unsighned integer format (double)

trncf.dw Floating-point ceiling to integer format (double)

trncf.sl Floating-point ceiling to integer format (single)

trncf.sul Floating-point ceiling to unsighned integer format (single)

trncf.suw Floating-point ceiling to unsighned integer format (single)

trncf.sw Floating-point ceiling to integer format (single)

Instruction Meanings

cmpf.s Floating-point compare (single)

cmpf.d Floating-point compare (double)

Instruction Meanings

cmovf.s Floating-point conditional move (single)

cmovf.d Floating-point conditional move (double)

Instruction Meanings

trfsr Transfer floating flags

Instruction Meanings

CubeSuite Ver.1.40 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 501 of 890
Oct 01, 2010

Floating-point compare (single)

[Syntax]

- cmpf.s imm4, reg1, reg2, cc#3
- cmpfcnd.s reg1, reg2

The following can be specified for imm4:
- Absolute expression having a value up to 4 bits

[Function]

- Syntax "cmpf.s imm4, reg1, reg2, cc#3"
The content in single-precision floating-point format in the register pair specified by reg2 is compared with the con-
tent in single-precision floating-point format in the register pair specified by reg1, via the imm4 comparison condi-
tion. The result (1 if true; 0 if false) is set in the condition bit (CC(7:0) bits; bits 31-24) in the FPSR register
specified via cc#3. If cc#3 is omitted, it is set in the CC0 bit (bit 24).

- Syntax "cmpfcnd.s reg1, reg2"
Via cmpfcnd.s, a corresponding "cmpf.s" instruction is generated (see "Table 4-50. cmpfcnd.s Instruction List" for
details), and expanded in the format "cmpf.s imm4, reg1, reg2, cc#3". The content in single-precision floating-point
format in the register pair specified by reg2 is compared with the content in single-precision floating-point format in
the register pair specified by reg1, via the comparison condition. The result (1 if true; 0 if false) is set in the condi-
tion bit (CC(7:0) bits; bits 31-24) in the FPSR register specified via cc#3. If cc#3 is omitted, it is set in the CC0 bit
(bit 24).

[Description]

- If the instruction is executed in syntax "cmpf.s imm4, reg1, reg2, cc#3", the assembler generates one cmpf.s
machine instruction.

- If the instruction is executed in syntax "cmpfcnd.s reg1, reg2", the assembler generates the corresponding cmpf.s
instruction (see "Table 4-50. cmpfcnd.s Instruction List") and expands it to syntax "cmpf.s imm4, reg1, reg2,
cc#3".

Table 4-50. cmpfcnd.s Instruction List

cmpf.s

Instruction Condition Meaning of Condition Instruction Expansion

cmpff.s FALSE Always false cmpf.s 0x0

cmpfun.s Unordered At least one of reg1 and reg2 is a non-number cmpf.s 0x1

cmpfeq.s reg2 = reg1 Neither is a non-number, and they are equal cmpf.s 0x2

cmpfueq.s reg2 ?= reg1 At least one is a non-number, or they are equal cmpf.s 0x3

cmpfolt.s reg2 < reg1 Neither is a non-number, and less than cmpf.s 0x4

cmpfult.s reg2 ?< reg1 At least one is a non-number, or less than cmpf.s 0x5

cmpfole.s reg2 <= reg1 Neither is a non-number, and less than or equal cmpf.s 0x6

cmpfule.s reg2 ?<= reg1 At least one is a non-number, or less than or equal cmpf.s 0x7

cmpfsf.s FALSE Always false cmpf.s 0x8

cmpfngle.s Unordered At least one of reg1 and reg2 is a non-number cmpf.s 0x9

CubeSuite Ver.1.40 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 502 of 890
Oct 01, 2010

Remark ?: Unordered

[Caution]

- If an absolute expression having a value exceeding 4 bits is specified as imm4 of the cmpf.s instruction, the follow-
ing message is output, and assembly continues using the lower 4 bits of the specified value.

cmpfseq.s reg2 = reg1 Neither is a non-number, and they are equal cmpf.s 0xA

cmpfngl.s reg2 ?= reg1 At least one is a non-number, or they are equal cmpf.s 0xB

cmpflt.s reg2 < reg1 Neither is a non-number, and less than cmpf.s 0xC

cmpfnge.s reg2 ?< reg1 At least one is a non-number, or less than cmpf.s 0xD

cmpfle.s reg2 <= reg1 Neither is a non-number, and less than or equal cmpf.s 0xE

cmpfngt.s reg2 ?<= reg1 At least one is a non-number, or less than or equal cmpf.s 0xF

W0550011: illegal operand (range error in immediate).

Instruction Condition Meaning of Condition Instruction Expansion

CubeSuite Ver.1.40 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 503 of 890
Oct 01, 2010

Floating-point compare (double)

[Syntax]

- cmpf.d imm4, reg1, reg2, cc#3
- cmpfcnd.d reg1, reg2

The following can be specified for imm4:
- Absolute expression having a value up to 4 bits

[Function]

- Syntax "cmpf.d imm4, reg1, reg2, cc#3"
The content in double-precision floating-point format in the register pair specified by reg2 is compared with the con-
tent in double-precision floating-point format in the register pair specified by reg1, via the imm4 comparison condi-
tion. The result (1 if true; 0 if false) is set in the condition bit (CC(7:0) bits; bits 31-24) in the FPSR register
specified via cc#3. If cc#3 is omitted, it is set in the CC0 bit (bit 24).

- Syntax "cmpfcnd.d reg1, reg2"
Via cmpfcnd.d, a corresponding "cmpf.d" instruction is generated (see "Table 4-51. cmpfcnd.d Instruction List" for
details), and expanded in the format "cmpf.d imm4, reg1, reg2, cc#3". The content in single-precision floating-point
format in the register pair specified by reg2 is compared with the content in single-precision floating-point format in
the register pair specified by reg1, via the comparison condition. The result (1 if true; 0 if false) is set in the condi-
tion bit (CC(7:0) bits; bits 31-24) in the FPSR register specified via cc#3. If cc#3 is omitted, it is set in the CC0 bit
(bit 24).

[Description]

- If the instruction is executed in syntax "cmpf.d imm4, reg1, reg2, cc#3", the assembler generates one cmpf.d
machine instruction.

- If the instruction is executed in syntax "cmpfcnd.d reg1, reg2", the assembler generates the corresponding cmpf.d
instruction (see "Table 4-51. cmpfcnd.d Instruction List") and expands it to syntax "cmpf.d imm4, reg1, reg2,
cc#3".

Table 4-51. cmpfcnd.d Instruction List

cmpf.d

Instruction Condition Meaning of Condition Instruction Expansion

cmpff.d FALSE Always false cmpf.d 0x0

cmpfun.d Unordered At least one of reg1 and reg2 is a non-number cmpf.d 0x1

cmpfeq.d reg2 = reg1 Neither is a non-number, and they are equal cmpf.d 0x2

cmpfueq.d reg2 ?= reg1 At least one is a non-number, or they are equal cmpf.d 0x3

cmpfolt.d reg2 < reg1 Neither is a non-number, and less than cmpf.d 0x4

cmpfult.d reg2 ?< reg1 At least one is a non-number, or less than cmpf.d 0x5

cmpfole.d reg2 <= reg1 Neither is a non-number, and less than or equal cmpf.d 0x6

cmpfule.d reg2 ?<= reg1 At least one is a non-number, or less than or equal cmpf.d 0x7

cmpfsf.d FALSE Always false cmpf.d 0x8

cmpfngle.d Unordered At least one of reg1 and reg2 is a non-number cmpf.d 0x9

CubeSuite Ver.1.40 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 504 of 890
Oct 01, 2010

Remark ?: Unordered

[Caution]

- If an absolute expression having a value exceeding 4 bits is specified as imm4 of the cmpf.d instruction, the follow-
ing message is output, and assembly continues using the lower 4 bits of the specified value.

cmpfseq.d reg2 = reg1 Neither is a non-number, and they are equal cmpf.d 0xA

cmpfngl.d reg2 ?= reg1 At least one is a non-number, or they are equal cmpf.d 0xB

cmpflt.d reg2 < reg1 Neither is a non-number, and less than cmpf.d 0xC

cmpfnge.d reg2 ?< reg1 At least one is a non-number, or less than cmpf.d 0xD

cmpfle.d reg2 <= reg1 Neither is a non-number, and less than or equal cmpf.d 0xE

cmpfngt.d reg2 ?<= reg1 At least one is a non-number, or less than or equal cmpf.d 0xF

W0550011: illegal operand (range error in immediate).

Instruction Condition Meaning of Condition Instruction Expansion

CubeSuite Ver.1.40 CHAPTER 5 LINK DIRECTIVE SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 505 of 890
Oct 01, 2010

CHAPTER 5 LINK DIRECTIVE SPECIFICATIONS

This chapter explains the necessary items for link directives and how to write a link directive file.
In an embedded application such as allocating program code from certain address or allocating by division, it is

necessary to pay attention in the memory allocation.
To implement the memory allocation as expected, program code or data allocation information should be specified in

linker. This information is called as "Link directive" and file describing link directive is called as "Link directive file".
Linker will decide the memory allocation according to this link directive file and will create load module.

5.1 Specification Items

Items specified in the link directive generally fall into the following two categories.
- Segment directives and mapping directives
- Symbol directive

5.1.1 Segment directives and mapping directives

Link directives that gather information on sections where programs and data are allocated into information on segments
for certain types and attributes, and that determine the corresponding allocation address.

A link directive that contains description of section information is called a "mapping directive" and a link directive that
contains description of segment information is called a "segment directive".

The following shows examples of a segment directive and mapping directives that are contained in a link directive file.
For further description of the link directive format, see "5.4 Coding Method".

Figure 5-1. Segment Directives and Mapping Directives

5.1.2 Symbol directive

Link directives that create "symbols" which generate tp (text pointers), gp (global pointers), and ep (element pointers):
this symbol-related information is called a "symbol directive".

The following shows an example of a symbol directive that is contained in a link directive file.
For further description of the link directive format, see "5.4 Coding Method".

Figure 5-2. Symbol Directive

SEDATA: !LOAD ?RW V0xFF6000 {

 .sedata = $PROGBITS ?AW .sedata;

 .sebss = $NOBITS ?AW .sebss;

};

Segment name Segment attribute Allocation address

Output section Section type

Segment type (fixed)

Section attribute

Segment directive

Input section

Mapping directive

__tp_TEXT@%TP_SYMBOL;

__gp_DATA@%GP_SYMBOL &__tp_TEXT {DATA};

__ep_DATA@%EP_SYMBOL;

Symbol name Base symbol name of "gp"Symbol type (fixed for tp/gp/ep)

Segment name to be referenced by "gp"

CubeSuite Ver.1.40 CHAPTER 5 LINK DIRECTIVE SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 506 of 890
Oct 01, 2010

5.2 Sections and Segments

This section describes the sections and segments.

5.2.1 Sections

A section is the basic unit making up programs (area to which programs or data are allocated). For example, program
code is allocated to a text-attribute section and variables that have initial values are allocated to a data-attribute section.
In other words, different types of information are allocated to different sections.

Section names can be specified within application. In C language, they can be specified using a #pragma section
directive or #pragma text directive and in assembly language they can be specified using section definition directives.

Even if the #pragma directive is not used to specify a section, however, allocation by the compiler to a particular section
may already be set as the default setting in the program code or data (variables).

5.2.2 Segments

A segment is the basic unit in which programs and data are loaded to memory. Sections that have the same attribute
or the same type are gathered into one section group which is called segment. In other words, the general idea is that a
segment is a collection of similar sections.

A segment name, attribute, and address to which a program is loaded can be freely specified by a link directive.

Caution Some characters cannot be specified in segment names and attributes. For details, see "5.4.3
Segment directive".

The following shows code extracted from a link directive file that allocates the read-enabled (R) and executable (X)
segment "TEXT1" to address 0x100000.

Since a segment is the basic unit for loading to memory, the segment is also the unit for allocating program code and
data. In other words, to allocate a certain section to a specified memory area, the section information is coded in a
mapping directive and then a segment that includes the mapping directive is created. Next, the segment's allocation
address is determined.

Caution Although the allocation address for a mapping directive can be directly specified in a section,
addresses are usually specified with segment units.

TEXT1:!LOAD ?RX V0x100000 {

 :

(Mapping directive)

 :

};

CubeSuite Ver.1.40 CHAPTER 5 LINK DIRECTIVE SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 507 of 890
Oct 01, 2010

Example Allocate variable "i" to the sdata area and function "func1" to 0x120000.

- test1.c

- Link directive (partial)

#pragma section sdata

i = 10;

#pragma section default

#pragma text "f1" func1

void func1() {

 :

 return;

}

TEXT2: !LOAD ?RX V0x120000 {

 text1= $PROGBITS ?AX f1.text;

};

DATA : !LOAD ?R V0x200000 {

 .data = $PROGBITS ?AW;

 .sdata = $PROGBITS ?AWG;

 .sbss = $NOBITS ?AWG;

 .bss = $NOBITS ?AW;

};

 :

CubeSuite Ver.1.40 CHAPTER 5 LINK DIRECTIVE SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 508 of 890
Oct 01, 2010

5.2.3 Relationship between segments and sections

The following shows a mapping image of the relation between segments and sections.

Figure 5-3. Relation Between Segments and Sections

Sections that are included in objects (file1.obj, file2.obj, file3.obj) are called "input sections". These sections are
gathered in the same attribute. Sections that are grouped and output are called "output sections". Output section groups
are also gathered in corresponding segments (DATA segment and TEXT segment) and are mapped to appropriate areas
(if there is no explicit address specification).

The text pointer (tp) symbol "__tp_TEXT" and the global pointer (gp) symbol "__gp_DATA" are set according to certain
rules.

[file1.obj]

[file2.obj]

[file3.obj]

<- __gp_DATA

.bss

Input sections Output sections Segments

.sbss

.sdata

.text

.data

DATA allocated in RAM

TEXT allocated in ROM

<- __tp_TEXT

(PROGBITS AX)

(PROGBITS AWG)

(PROGBITS AW)

(NOBITS AW)

(NOBITS AWG)

(NOBITS AW)

(NOBITS AWG)

(PROGBITS AX)

(PROGBITS AX)

(PROGBITS AWG)

(PROGBITS AW)

CubeSuite Ver.1.40 CHAPTER 5 LINK DIRECTIVE SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 509 of 890
Oct 01, 2010

5.2.4 Types of sections

The following describes the types of sections that can be handled by the CX.
"Table 5-1. CX Allocation Section Types" lists the section types that can specify the allocations, and their features.
Data for which allocation to a section is not specified by this format or section file is allocated by the CX to the .sdata

section, .data section, .sbss section, or .bss section according to sizes specified by the CX's options settingsNote1.
Data for which the type qualifier const has been specified and character string constants are allocated by the CX to the

.const section or .sconst section according to sizes specified by the CX's options settingsNote2.
Allocation to sections can also be specified via section filesNote3.

Notes 1. The default setting is for all data to be allocated to the .sdata or .sbss sections.
2. See "the CX's -Xsconst option" in the "CubeSuite Build for CX Compiler" for details.
3. See "Symbol Information File" in the "CubeSuite Build for CX Compiler" for details.

Table 5-1. CX Allocation Section Types

Type Feature Specified
Character String

.tidata.byte section

.tidata.word section

.tibss.byte section

.tibss.word section

(tiny internal data/

tiny internal bss)

This sections can be referenced from ep (element pointer) with 1 instruction
toward higher addresses.

These sections are accessed with 1 instruction in the same manner as sidata/
sibss attribute sections, but differ in terms of the assemble instruction to be used.
sidata/sibss attribute sections use the 4-byte "st/ld" instruction for store/reference,
whereas tidata/tibss attribute sections use the 2-byte "sst/sld" instruction to
perform access. In other words, their code efficiency is better than that of sidata/
sibss attribute sections. However, the range in which sst/sld instruction can be
applied is small. So it is not possible to allocate a large number of variables.

Data with initial values are allocated to the tidata (tidata.byte, tidata.word)
attribute section, and data without initial values are allocated to the tibss
(tibss.byte, tibss.word) attribute section.

Specify the tidata.byte/tibss.byte attribute to allocate byte data, and specify the
tidata.word/tibss.word attribute to allocate word data. To select automatic byte/
word judgment by the CX, specify the tidata/tibss attribute.

tidata

tidata_byte

tidata_word

.data section

.bss section

(data/bss)

These sections can be reference from gp (global pointer) with 2 instructions.

Since access (with ld/st instruction) is performed after address generation, the
code becomes correspondingly longer and the execution speed also drops, but
the entire 32-bit space can be accessed. In other words, these sections can be
allocated anywhere as long as it is in RAM.

Data with initial values are allocated to the data attribute section, and data without
initial values are allocated to the bss attribute section.

data

.sdata section

.sbss section

(sdata/sbss)

These sections can be referenced from gp (global pointer) with 1 instruction (ld/st
instruction), and must be allocated within +/- 32K-byte from gp (64K-byte total).

Data with initial values are allocated to the sdata attribute section, and data
without initial values are allocated to the sbss attribute section.

The CX first attempts to generate the code to be allocated to these sections. If
the code exceeds the upper limit of these attribute sections, however, code to be
allocated in data/bss attribute section is generated.

To increase the amount of data to be allocated to sdata/sbss attribute section, the
upper size limit for the data to be allocated can be specified with the
 -Xsdata option of the CX so that data in excess of this upper limit is not allocated
to the sdata/sbss attribute section.

sdata

CubeSuite Ver.1.40 CHAPTER 5 LINK DIRECTIVE SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 510 of 890
Oct 01, 2010

Cautions 1. "2 instructions" refer to the two instructions that are generated by assembler's instruction
expansion function.

2. "gp relative" and "r0" relative indicate that the compiler will indicate gp-relative or r0-relative
code.

.sedata section

.sebss section

(small extended data/
small extended bss)

This sections can be referenced from ep (element pointer) with 1 instruction (ld/st
instruction), and they are accessed from ep toward lower addresses. In other
words, theses sections are allocated within 32K-byte toward lower addresses
from ep.

Data with initial values are allocated to the sedata attribute section, and data
without initial values are allocated to the sebss attribute section.

If variables that exceed the upper limit of sdata/sbss attribute section that can be
accessed from gp with 1 instruction, but which one wants to access with 1
instruction still exist, they can be allocated in the range that can be accessed with
1 instruction using ep. sidata/sibss attribute section is section for access toward
higher addresses from ep, but sedata/sebss attribute section is section for access
toward lower addresses from ep.

sedata

.sidata section

.sibss section

(small internal data/
small internal bss)

This sections can be referenced from ep (element pointer) with 1 instruction (ld/st
instruction), and they are accessed from ep toward higher addresses. In other
words, theses sections are allocated within 32K-byte toward higher addresses
from ep.

Data with initial values are allocated to the sidata attribute section, and data
without initial values are allocated to the sibss attribute section.

If variables that exceed the upper limit of sdata/sbss attribute section that can be
accessed from gp with 1 instruction, but which one wants to access with 1
instruction still exist, they can be allocated in the range that can be accessed with
1 instruction using ep. sidata/sibss attribute section is section for access toward
higher addresses from ep, but sedata/sebss attribute section is section for access
toward lower addresses from ep.

sidata

.sconst section

(small const data)

This section can be referenced from r0 (i.e. address 0) with 1 instruction (ld/st
instruction), and must be allocated within +/- 32K-byte from address 0. Basically,
data that can be fixed into ROM is allocated to this section.

In the case of V850 microcontrollers with internal ROM, in many cases the
internal ROM is assigned from address 0, and data that one wishes to reference
with 1 instruction and that can be fixed to ROM is allocated as the sconst attribute
section. In the case of devices without internal ROM, when the ROM-less mode
is specified, such data is allocated to the external memory.

Variables/data declared by adding the const modifier are subject to allocation to
sconst/const attribute section. If the data exceeds the upper limit of these
attribute sections, it is allocated to the const attribute section.

To increase the amount of data to be allocated to sconst attribute section, the
upper size limit for the data to be allocated can be specified with the -Xsconst
option of the CX so that data in excess of this upper limit is not allocated to the
sconst attribute section (See the "CubeSuite Build for CX Compiler" for the option
details).

sconst

.const section

(const data)

This section can be reference from r0 (i.e. address 0) with 2 instructions. Since
access (with ld/st instruction) is performed after address generation, the code
becomes correspondingly longer and the execution speed also drops, but the
entire 32-bit space can be accessed. Data that can be fixed into ROM that
exceeds the upper limit of the sconst attribute section, or data that one wishes to
allocate in external ROM in the case of ROM-less devices of the V850
microcontrollers, is allocated to the const attribute section.

const

Type Feature Specified
Character String

CubeSuite Ver.1.40 CHAPTER 5 LINK DIRECTIVE SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 511 of 890
Oct 01, 2010

3. Section types that are allocated to "external memory" can be used in cases where external
memory has been mounted in the target system.

The following shows an image of memory allocation to various sections.

Figure 5-4. Example of Memory Allocation to Various Sections by CX (With Internal ROM)

Within 32K bytes

.sibss section

Peripheral I/O register

.sidata section

.tibss.word section

.tidata.word section

.tibss.byte section

.tidata.byte section

.sebss section

.sedata section

.bss section

.const section

.sbss section

.sdata section

.data section

.text section

.sconst section

Interrupt/exception table

.sbss and .sdata are allocated within

64K bytes

.Within 32K bytes

.Within 256 bytes

Within 128 bytes

.Within 32K bytes

ep

Generally, ep sets in the

beginning in RAM.

gp

gp shows the address of first .sdata sectio

32K bytes.

tp

Generally tp sets the first .text section or

other than 0.

r0-relative access area

ep-relative access area

gp-relative access are

tp-relative access area

Others

r0

CubeSuite Ver.1.40 CHAPTER 5 LINK DIRECTIVE SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 512 of 890
Oct 01, 2010

5.2.5 Relationship between types and attributes of sections

The following describes the relation between types and attributes of sections.
These types and attributes are needed when coding section information in mapping directives.
The section types are categorized as shown below.

Table 5-2. Section Types

The section attributes are categorized as shown below.

Table 5-3. Section Attributes

Sections are categorized into the following six groups according to their types and attributes.

Table 5-4. Classification of Sections

Section Type Meaning

PROGBITS Section that has actual values in an object module file

--> Text or data (variable) with initial value

NOBITS Section that does not have actual values in an object module file

--> Data (variable) without initial value

Section Attribute Meaning

A Section that occupies a memory area (corresponds to entire section): memory-resident section

W Write-enable section (section allocated in RAM)

X Executable section (mainly text section)

G Section that is allocated within a memory area that can be referenced using a global pointer
(gp) with 16-bit displacement (.sdata and .sbss section)

Section Attribute Section Type/Section Attribute Corresponding Reserved
Section

bss attribute Section type NOBITS .bss

.sebss

.sibss

.tibss.byte

.tibss.word

Section attribute AW

const attribute Section type PROGBITS .const

.sconstSection attribute A

data attribute Section type PROGBITS .data

.sedata

.sidata

.tidata.byte

.tidata.word

Section attribute AW

sbss attribute Section type NOBITS .sbss

Section attribute AWG

sdata attribute Section type PROGBITS .sdata

Section attribute AWG

CubeSuite Ver.1.40 CHAPTER 5 LINK DIRECTIVE SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 513 of 890
Oct 01, 2010

Caution In cases where a specific section name is created within the application, the user must check the
attribute for that section as shown in "Table 5-4. Classification of Sections", and specify the
section type and section attribute in the mapping directive.
Section names that start with "V/H/A" which is followed by numeric characters cannot be created
due to link directive format restrictions.

5.3 Symbols

The CX uses the following pointers for operation of applications.
- Text pointer (tp)
- Global pointer (gp)
- Element pointer (ep)

Each pointer value relates to the position of a segment and a means to determine these pointer values is required in
the link directive.

A link directive contains symbol definitions that are used to determine pointer values. A defined symbol's value is
determined by the linker and that value is copied to the pointer in the application to determine the pointer value. A link
directive is sometimes called a "symbol directive" because it defines symbols used for pointers.

This section describes the role of each pointer and how pointer values are determined.

5.3.1 Text pointer (tp)

When referencing a text area in an application, the text pointer (tp) is provided to enable access independent of the
allocation position (PIC: Position Independent Code). In other words, the text is referenced with tp-relative. Since the
compiler outputs the code on the assumption that the tp has correctly set to the start of the text, the pointer value must be
correctly.

In addition to creating a single tp for an application, several tps can be created for various segments.
When several tps have been created, however, the switching of tps must be explicitly performed by the application.

Figure 5-5. Example of tp Setting

In the above example, the link directive is used to set so that the tp symbol value specifies the start of TEXT1 segment.
Since the tp symbol name is "__tp_TEXT", the start address of TEXT1 segment which is determined when linking is set to
the symbol "__tp_TEXT".

To set this value to the tp, a startup routine (or other means) includes code (format: mov #__tp_TEXT, tp) that assigns
the value of "__tp_TEXT" to the variable "tp". This correctly sets the text pointer value to the tp.

text attribute Section type PROGBITS .pro_epi_runtime

.textSection attribute AX

Section Attribute Section Type/Section Attribute Corresponding Reserved
Section

Upper address

TEXT1

(segment)

Lower address

[Set tp symbol value to tp]

(in symbol directive)

__tp_TEXT@%TP_SYMBOL{TEXT1};

(in startup routine)

mov #__tp_TEXT, tp

tp

CubeSuite Ver.1.40 CHAPTER 5 LINK DIRECTIVE SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 514 of 890
Oct 01, 2010

5.3.2 Global pointer (gp)

Data that is globally declared in an application is allocated to memory. When referencing (loading or storing) this data
that has been allocated to memory, the global pointer (gp) is provided to enable access independent of the allocation
position (PID: Position Independent Data).

Globally declared data is referenced with gp-relative. In V850 core devices, such data can be referenced using either
"gp and one instruction" or "gp and two instructions". Compared to the "gp and two instructions" method, the "gp and one
instruction" method speeds up applications and reduces the code size.

The sections that can be referenced using the gp and one instruction (ld/st instruction) method are the sections that
have either the sdata attribute or the sbss attribute, while those that can be referenced using the gp and two instructions
(movhi+ld/st instruction) method are the sections that have either the data attribute or the bss attribute. This means there
are a total four attributes of sections that can be referenced with the gp-relative. The sections that have either the sdata
attribute or sbss attribute are allocated within 32K-byte higher and lower the gp position, so that data (variables) allocated
this range can be accessed using only one instruction, which is high-speed access with more reduced code size.

In addition to creating a single gp for an application, several gps can be created for various segments. When several
gps have been created, however, the switching of gps must be explicitly performed by the application program.

Figure 5-6. Example of gp Setting (When Specifying Segment)

In the above example, the link directive is used to set so that the gp symbol value references the DATA1 segment.
Since the gp symbol name is "__gp_DATA ", the address that is 32K-byte away from the start of the DATA1 segment
which is determined when linking is set to the symbol "__gp_DATA" (see "Figure 5-6. Example of gp Setting (When
Specifying Segment)").

To set this value to the gp, a startup routine (or other means) includes code (format: mov #__gp_DATA, gp) that assigns
the value of "__gp_DATA" to the variable "gp". This correctly sets the global pointer value to the gp.

In addition to address, a gp symbol can also be specified by using an offset address value from tp symbol.
Offset specification for gp symbol values is described next.

(1) Offset specification for gp symbol values
As was described in the above, a typical method for specifying gp symbol values is the method that specifies the
target segment for gp referencing.
Other methods include directly specifying the gp symbol's address, and determining the base symbol and
assigning a gp symbol value that is offset from the base symbol. The latter method is described below (for the
former method, see "(2) Rules for determining gp symbol values").
A tp symbol is specified as the base symbol for a gp symbol.
When creating a gp symbol, if a tp symbol is specified as a base symbol, the value determined by the link directive
as the gp's symbol value is the offset value from the tp symbol value.

Upper address

DATA1

(segment)

Lower address

gp

32K byte

[Set gp symbol value to gp]

(in symbol directive)

__gp_DATA@%GP_SYMBOL{DATA1};

(in startup routine)

mov #__gp_DATA, gp

CubeSuite Ver.1.40 CHAPTER 5 LINK DIRECTIVE SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 515 of 890
Oct 01, 2010

In this way, the gp symbol value can be easily calculated based on the tp symbol value as "tp symbol value + offset
value from tp symbol", which is useful for creating position-independent applications. For example, this method is
helpful for copying an executable module to RAM (and then executing it) from an application that has multiple
executable modules. In such cases, when determining the tp and gp values, once the tp value is known, the gp
symbol value is simply added to that address (as the offset value from tp) to determine the gp value.

Figure 5-7. Example of gp Setting (When Specifying Offset from tp)

(2) Rules for determining gp symbol values
The following factors are involved in determining gp symbol value.

- Whether or not an address has been specified in the symbol directive.
- Whether or not sdata/sbss/data/bss-attribute sections exist.
- Whether or not a base symbol has been specified.

The linker checks for these factors in the link directive file and determines the gp symbol value.
The following figure illustrates the rules for determining gp symbol values.

DATA2

TEXT2

DATA2

TEXT2
DATA1

TEXT1

Modules RAM used for execution

(in symbol directive)

__tp_TEXT2@%TP_SYMBOL{TEXT2};

__gp_DATA2@%GP_SYMBOL &__tp_TEXT2{DATA2};

Offset value from __tp_TEXT2 is set to __gp_DATA2.

(in routine to be executed after downloading)

mov #__tp_TEXT2, tp

mov #__gp_DATA2, gp

add tp, gp

Set tp and assign the offset value from tp to gp.

Add that offset value to tp to get the gp value, so that the

correct gp value is set to the corresponding module.

Download

CubeSuite Ver.1.40 CHAPTER 5 LINK DIRECTIVE SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 516 of 890
Oct 01, 2010

Figure 5-8. Rules for Determining Global Pointer Values

gp symbol value =

offset from "base symbol" to "address

that is +32K-byte from the start

address of the lowest sdata/sbss-

attribute section in the segment

targeted for gp referencing"

gp symbol value =

address that is +32K-byte from the

start address of the lowest sdata/sbss-

attribute section in the segment

targeted for gp referencing

gp symbol value =

offset from "base symbol" to "address

that is +32K-byte from the start

address of the lowest data/bss-

attribute section in the segment

targeted for gp referencing"

gp symbol value =

address that is +32K-byte from the

start address of the lowest data/bss-

attribute section in the segment

targeted for gp referencing

Has gp symbol's address

been specified in symbol

directive?

Does a sdata/sbss-

attribute section exist?

Does a data/bss-attribute

section exist?

Has the gp's base

symbol been specified?

Has the gp's base

symbol been specified?

gp symbol value = specified address

gp symbol value = 0x0

No

No

No

Yes

No

No

Yes

Yes

Yes

Yes

CubeSuite Ver.1.40 CHAPTER 5 LINK DIRECTIVE SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 517 of 890
Oct 01, 2010

5.3.3 Element pointer (ep)

The element pointer is a pointer that is provided to realize faster access (loading and storing) by allocating data
(variables) that are globally declared within an application to RAM area in V850 core device.

Data (variables) that is globally declared and allocated to internal RAM area is referenced with ep-relative.
Although this reference uses the "ep and one instruction" combination, the attributes of sections are determined based

on whether the one instruction is an sld/sst instruction or an ld/st instruction.
- The sections that can be referenced by "ep + sld/sst instruction" are:

tidata.byte attribute, tibss.byte attribute, tidata.word attribute, or tibss.word attribute
- The sections that can be referenced by "ep + ld/st instruction" are:

sidata attribute, sibss attribute, sedata attribute, or sebss attribute

However, the sections with sedata/sebss attribute are not within internal RAM but within external RAM that is
accessible via ep-relative referencing.

Generally, internal RAM capacity is too limited to store large amounts of data (variables), but storing certain data
(variables) for which high-speed access is desired within the above area where "ep and one instruction" access is
possible can be expected to improve the speed of the applications and reduce the code size. The sld/sst instruction is
especially useful for reducing code size since its instruction length is two bytes compared to the ld/st instruction's four
bytes.

If a creation of ep symbol has been specified in the link directive file's symbol directive, the linker automatically sets the
ep symbol at the start of the internal RAM area according to the device file information that is provided for each device
being used.

Note that only one ep symbol can be created within an application:it is not possible to create several per application.

Figure 5-9. Example of ep Setting

In the above example, the link directive is used to declare the creation of an ep symbol. Since the ep symbol name is
"__ep_DATA", the linker sets the start address of internal RAM to "__ep_DATA".

To set this value to the ep, a startup routine (or other means) includes code (format: mov #__ep_DATA, ep) that assigns
the value of "__ep_DATA" to the variable "ep". This correctly sets the element pointer value to the ep.

Remark The application's RAM usage can be set completely within internal RAM (not at all in external RAM), by
creating only the ep symbol and not creating any gp symbols. However, if the runtime library will be used,
gp symbols must be created since runtime functions reference data (variables) with gp-relative.

(1) Rules for determining ep symbol values
The following factors are involved in determining ep symbol value.

- Whether or not an address has been specified in the symbol directive.
- Whether or not SIDATA segment exist.
- Whether or not an internal RAM area has been difined in the device file.

Upper address

Internal RAM

Lower address

ep

[Set ep symbol value to ep]

(in symbol directive)

__ep_DATA@%EP_SYMBOL;

(in startup routine)

mov #__ep_DATA, ep

CubeSuite Ver.1.40 CHAPTER 5 LINK DIRECTIVE SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 518 of 890
Oct 01, 2010

The linker checks for these factors and determines the ep symbol value.
The following figure illustrates the rules for determining ep symbol values.

Figure 5-10. Rules for Determining Element Pointer Values

5.4 Coding Method

This section describes the format of the link directive file for each following item:
- Segment directive
- Mapping directive
- Symbol directive

The following is an outline of the link directive's format. An editor can be used to enter these directives in text format.

Remark It is recommended to describe segment directive starting from the lowest address.

Segment directive1 {

 Mapping directive;

};

Segment directive2 {

 Mapping directive;

};

Segment directive3 {

 Mapping directive;

};

Segment directive4 {

 Mapping directive;

};

tp symbol directive;

gp symbol directive;

ep symbol directive;

Has ep symbol's address

been specified in symbol

directive?

Does SIDATA segment

exist?

ep symbol value = 0x0

Has address been specified

to the SIDATA segment?

Does definition of internal

RAM area exist in the

device file?

ep symbol value =

start address of the internal RAM

ep symbol value =

start address of the SIDATA

segment

ep symbol value =

specified address
Yes

No

No

No

Yes

YesNo

Yes

CubeSuite Ver.1.40 CHAPTER 5 LINK DIRECTIVE SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 519 of 890
Oct 01, 2010

5.4.1 Characters used in link directive file

The following characters can be used in the link directive file.
- Numerals (0 to 9)
- Uppercase characters (A to Z)
- Lowercase characters (a to z)
- Underscore (_)
- Dot (.)
- Forward slash (/)
- Back slash (\)
- Colon (:) (can be used only for file name)
- Shift-JIS code (can be used only for file name; available only in the Japanese system)
- One-byte Japanese character (can be used only for file name; available only in the Japanese system)
- "#" (for comments)

"#" in the link directive file indicates the start of a comment. Text that starts with "#" and ends at end of the line is
handled as a comment.

5.4.2 Link directive file name

Any file name can be assigned to a link directive file as long as the characters used are all valid characters for the link
directive file. Note, however, that an extension is necessary. "dir" is recommended. When using the CubeSuite, please
be sure to make it "dir" or "dr". Also note with caution that if an especially long file name is used, it may exceed the
number of characters that can be handled during linkage (depending on the OS), which would preclude successful
linkage.

If linkage is performed via command line entry, specify a link directive file with the -Xlink_directive option.

5.4.3 Segment directive

This section describes the format of the segment directive for each following item:
- Specification item
- Segment directive specification example

(1) Specification item
The items that are specified in the segment directive are listed below.

Table 5-5. Item Specified in Segment Directive

Item Cording Format Meanings Omissible

Segment Name Segmen-Name Name of segment to be created No

Segment type !LOAD Type (fixed) loaded to memory No

(part)Note

Segment attribute ?[R][W][X] Specifies whether the segment to be created will
have "read-enabled(R)" attribute, "write-
enabled(W)" attribute, and/or "executable(X)"
attribute (several can be specified)

No

(part)Note

Address Vaddress Start address of segment to be created Yes

Maximum memory
size

Lmaximum-memory-size Upper limit of memory area occupied by
segment to be created

Yes

Hole size Hhole-size Size of hole to be created after segment (blank
space between segment and next segment)

Yes

CubeSuite Ver.1.40 CHAPTER 5 LINK DIRECTIVE SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 520 of 890
Oct 01, 2010

Note Some segment types and segment attributes cannot be omitted.
If only the reserved section is specified as the output section of mapping directives in that segment, then the
type and attribute can be omitted.
If the output sections include an independently created section, then we recommend not omitting the type or
attribute. If the type and attribute are omitted, then it will be interpreted as "!LOAD ?RW" having been
specified.

A specific example of the segment directive's format is shown below.

A blank space is used to separate these items from each other. A semicolon (;) must be added at the end of each
segment directive.
The omissible specification items are "Vaddress", "Lmaximum memory size", "Hhole size", "Ffill value", and
"Aalignment condition". Default values are used for these items when they are omitted. These default values are
listed below.

Table 5-6. Default Values for Omitted Segment Directive Specification Items

Caution Describe segment directive starting from the lowest address.

(a) Segment name
Specify the name of the segment to be created.
When creating a segment, specification of the segment name cannot be omitted.
There is no restriction on the length of the character string that is to be specified as segment name. However,
the name of segments which assign reserved sections listed in following table are fixed. Names other than
those listed cannot be used for these segments.

Fill value Ffill-value Value used to fill hole area Yes

Alignment condition Aalignment-condition Alignment condition for memory allocation Yes

Segment-Name: !segment-type ?segment-attribute Vaddress Lmaximum-memory-size Hhole-
size Ffill-value Aalignment-condition {

 :

 (Mapping directive)

 :

};

Item Default Value

Address Address 0x0 for first segment, and the value continued from the end of the previous
segment for other segments

Maximum memory
size

0x100000 (bytes), it is a memory size to be allocated to segment, when device for
which memory size allocated to segment exceeds 1M, is specified.

Hole size 0x0 (bytes)

Fill value 0x0000

Alignment Condition 0x8 (bytes)

Item Cording Format Meanings Omissible

CubeSuite Ver.1.40 CHAPTER 5 LINK DIRECTIVE SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 521 of 890
Oct 01, 2010

Table 5-7. Reserved Section Names with Fixed Segment Names

Remark The name of the segment for .sconst can be changed, but an error check is not performed to some
of the data.

(b) Segment type
Specify the type of the segment to be created.
When creating a segment, some of the segment type specifications cannot be omitted.
If only the reserved section is specified as the output section of mapping directives in that segment, then the
segment type can be omitted.
If the output sections include an independently created section, then we recommend not omitting the section
type. If the section type are omitted, then it will be interpreted as "!LOAD" having been specified.
At present, only "LOAD" type (segment type that is loaded to memory) can be specified. The linker outputs an
error message if another value is specified. The "LOAD" can be specified using either uppercase or lowercase
letters.
Start the segment type specification with a "!", which must not be followed by blank space.

(c) Segment attributes
Specify the name of the segment to be created.
When creating a segment, some of the segment attribute specifications cannot be omitted.
If only the reserved section is specified as the output section of mapping directives in that segment, then the
segment attribute can be omitted.
If the output sections include an independently created section, then we recommend not omitting the segment
attribute. If the segment attribute are omitted, then it will be interpreted as "?RW" having been specified.
The specifiable segment attributes and their meanings are listed below.
A segment attribute depends on an attribute of mapping directive belonging to the segment. Therefore, the
segment attribute specification must take into account the section attribute to be specified in the mapping
directive.

Table 5-8. Segment Attributes and Their Meanings

Section Name Segment Name

.sidata .sibss

.tidata .tibss

.tidata.byte .tibss.byte

.tidata.word

.tibss.word

SIDATA

.sedata

.sebss

SEDATA

.sconst SCONST

Segment Attribute Meanings

R Read-enabled segment

W Write-enabled segment

X Executable segment

CubeSuite Ver.1.40 CHAPTER 5 LINK DIRECTIVE SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 522 of 890
Oct 01, 2010

Several segment attributes can be specified at the same time, with R, W, and X specified in any order with no
blank spaces between them. Start each section attribute specification with a "?", which must not be followed
by a blank space.

Remark If multiple segment attribute specifications are performed in one segment directive, the linker
outputs an error message and stops linking.

Example

(d) Address
Specify the start address of the section to be created.
When creating a segment, specification of the address can be omitted. When it is omitted, the address 0x0 is
assigned as the start address if the segment is the first segment, otherwise the assigned value for the start
address is the value continued from the end of the previous segment (based on the alignment).
Address specifications must be made with consideration given to the way memory is allocated in the target
CPU.
For example, if the target CPU is a V850E core device, since different memory capacities are installed in the
various V850 core devices, their internal ROM/RAM uses different start and end addresses. Consequently,
the allocation address specification for each segment must take into account which CPU is being used. For
description of a particular CPU's memory, see the CPU's User's Manual (Hardware Version) and/or the
corresponding device file's User's Manual.
Specify even-numbered values as the address values. If an odd- numbered value is specified, the linker
outputs a message and continues with linking on the assumption that the "specified address plus one" has
been specified.
Start the address specification with a "V" (uppercase or lowercase), which must not be followed by a blank
space. Address values can be specified using either decimal or hexadecimal numerals, but when using
hexadecimal numerals be sure to add "0x" before the value. Expressions cannot be used in the address
specification.

Remark By default, the "DATA_CMN" is aligned at the start of the PE1 area of the RAM area.
Use an address specification ("V") if you wish to specify a different location.

(e) Maximum memory size
Specify the maximum value for memory size of the segment to be created.
This specification is used not to exceed the segment's intended size. Therefore, if the segment's actual size is
less than the specified "maximum memory size", the next segment will follow immediately afterward.
When creating a segment, specification of the maximum memory size can be omitted. The value 0x100000
(bytes) is used as the default value when it is omitted.
When created segment exceeds the value specified by maximum memory size, linker outputs an error
message and stops linking.
Start the maximum memory size specification with a "L" (uppercase or lowercase), which must not be followed
by a blank space. Expressions cannot be used in the maximum memory size specification.

(f) Hole size
Specify the hole size of the segment to be created.
The segment's hole is the space between one segment and the next segment. When a hole size has been
specified, the specified hole is created at the end of the target segment.

SEG: !LOAD ?RX ?RW {};

CubeSuite Ver.1.40 CHAPTER 5 LINK DIRECTIVE SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 523 of 890
Oct 01, 2010

When creating a segment, specification of the hole size can be omitted. The value 0x0 (bytes) is used as the
default value (which specifies that no hole is created) when it is omitted.
Start the hole size specification with an "H" (uppercase or lowercase), which must not be followed by a blank
space.
Expressions cannot be used in the hole size specification.

(g) Fill value
Specify a fill value as the value to be used for filling hole areas that are created either when segments are
allocated or when explicitly specified via the "H" specification.
When specifying the fill value, specify the -Xtwo_pass_link option to perform linking in the 2-pass mode. If the
linkage is performed with the fill value specification in the 1-pass mode (default), the linker outputs a message
and continues ignoring this specification and linking.
When creating a segment, specification of the fill value can be omitted. The value 0x0000 is used as the
default value (which fills hole areas with zeros) when it is omitted. However, if the -Xalign_fill option (linker fill
value option) has been specified, the linker outputs a message and continues linking while ignoring the fill
value specified by the link directive.
Start the fill value specification with an "F" (uppercase or lowercase), which must not be followed by a blank
space. Specify a 2-byte four-digit hexadecimal value as the fill value. If the value dose not occupy all four
digits, the remaining (higher) digits are assumed to be zeros. If the hole size is less than two bytes, the
required digits are taken out of the lower value of the specified fill value. Expressions cannot be used in the fill
value specification.

(h) Alignment condition
Specify the segment alignment condition (alignment value) to be used for memory allocation of the segment to
be created.
When creating a segment, specification of the alignment condition can be omitted. The value 0x8 (bytes) is
used as the default value (which sets 8-byte alignment) when it is omitted.
Start the alignment condition specification with an "A" (uppercase or lowercase), which must not be followed by
a blank space. Specify even-numbered values as the alignment condition values. If an odd- numbered value
is specified, the linker outputs a message and continues with linking on the assumption that the "specified
address plus one" has been specified. Expressions cannot be used in the alignment condition specification.
If an address is specified, then the specified address is given precedence, and alignment-condition
specifications will be ignored.

(2) Segment directive specification example
A segment specification example is shown below.

Table 5-9. Segment Example

Item Value

Segment Name PROG1

Segment type Read-enabled, executable

Allocation address address 0x1000

Maximum memory size 0x200000 (bytes)

Hole size 0x20 (bytes)

Fill value 0xFFFF

Alignment Condition 0x16 (bytes)

CubeSuite Ver.1.40 CHAPTER 5 LINK DIRECTIVE SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 524 of 890
Oct 01, 2010

The segment directive code appears as shown below for above segment.

Remark Basically, there is no problem if segment directives are described in the order of the allocation
addresses.
The only exception applies to segments that have .sedata/.sebss section (by default, "SEDATA
segment"), only when the allocation address is omitted.
In the CX, the SEDATA segment is defined as a segment used to reference the area below the internal
RAM with 1 ep-relative instruction, and therefore, if the allocation address is omitted, the linker
considers that the address obtained by subtracting 0x8000 from the internal RAM start address defined
in the device file, has been specified.

The following is an example of this case.

The SEDATA address is omitted and this start address is judged as 0xFF2000 (= 0xFFB00 - 0x8000) according to
device file information. Since SIDATA is defined as being allocated to address 0xFFB000, the CX moves the
SEDATA to the front of SIDATA and links them.
Moreover, since the address of the DATA segment defined after that is omitted, DATA is allocated immediately after
the SEDATA.

PROG1: !LOAD ?RX V0x1000 L0x200000 H0x20 F0xFFFF A0x16 {

 :

 (Mapping directive)

 :

};

SIDATA: !LOAD ?RW V0xFFB000 {

 .tidata.byte = $PROGBITS ?AW .tidata.byte;

 .tibss.byte = $NOBITS ?AW .tibss.byte;

 .tidata.word = $PROGBITS ?AW .tidata.word;

 .tibss.word = $NOBITS ?AW .tibss.word;

 .sidata = $PROGBITS ?AW .sidata;

 .sibss = $NOBITS ?AW .sibss;

};

SEDATA: !LOAD ?RW {

 .sedata = $PROGBITS ?AW .sedata;

 .sebss = $NOBITS ?AW .sebss;

};

DATA: !LOAD ?RW {

 .data = $PROGBITS ?AW .data;

 .sdata = $PROGBITS ?AWG .sdata;

 .sbss = $NOBITS ?AWG .sbss;

 .bss = $NOBITS ?AW .bss;

};

CubeSuite Ver.1.40 CHAPTER 5 LINK DIRECTIVE SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 525 of 890
Oct 01, 2010

5.4.4 Mapping directive

This section describes the format of the mapping directive for each following item:
- Specification item
- Mapping directive specification example

(1) Specification item
The items that are specified in the mapping directive are listed below.

Table 5-10. Item Specified in Segment Directive

Note Some section types and section attributes cannot be omitted.
If only the reserved section is specified as the output section of mapping directives, then the type and
attribute can be omitted.
If the output sections include an independently created section, then we recommend not omitting the type or
attribute. If the type and attribute are omitted, then it will be interpreted as "$NOBITS ?AW" having been
specified.

A specific example of the mapping directive's format is shown below.

Item Cording Format Meanings Omissible

Output section name Output-section-name Name of section output to load module No

Section type $PROGBITS

$NOBITS

Type of section to be created No
(part)Note

Section attribute ?[A][W][X][G] Specifies whether the section to be created will
have "memory-resident(A)" attribute, "write-
enabled(W)" attribute, "executable(X)" attribute,
and/or "accessible via gp with 16-bit
displacement(G)" attribute (several can be
specified).

No
(part)Note

Input section name Input-section-name Name of input section allocated to output
section

Yes

Address Vaddress Start address of section to be created Yes

Hole size Hhole size Size of hole to be created after section (blank
space between section and next section)

Yes

Alignment Condition Aalignment condition Alignment condition for memory allocation Yes

Object module file
name

{object-file-name object-
file-name ...}

Name of object module file that includes the
sections to be extracted and used as the input
sections (several can be specified; insert
spaces between the specifications).

Yes

Output-section-name =

 $Section-type

 ?Section-attribute

 Vaddress

 Hhole-size

 Aalignment-condition

 Input-section-name

 {object-file-name object-file-name};

CubeSuite Ver.1.40 CHAPTER 5 LINK DIRECTIVE SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 526 of 890
Oct 01, 2010

A blank space is used to separate these items from each other. A semicolon (;) must be added at the end of each
segment directive

The omissible specification items are "Vaddress", "Hhole size", "Aalignment condition", "input section name" and
"object module file name". Default values or pre-set conventions are used for these items when they are omitted. These
default values and pre-set conventions are listed below.

Table 5-11. Default Values/Conventions for Values That Can Be Omitted in Mapping Directive Specification Items

These specification items are explained below.

(a) Output section name
Name of section output to load module When creating a section, specification of the output section type cannot
be omitted.
There is no restriction on the length of the character string that is to be specified as output segment name.
However, note the fixed correspondence of output section names and input section names listed in the
following table and names other than those listed cannot be used for these sections.

Table 5-12. Reserved Section Names with Fixed Segment Names

Item Default Values/Conventions

Address Sets according to address that was specified via the segment directive.

If there are several sections and this is not the first one, the value is continued from the end of the
previous section.

If the section is the first section, the value is continued from the start of the segment.

Hole size 0x0 (bytes)

Alignment Condition .tidata.byte /.tibss.byte section:0x1(bytes)

Other sections: 0x4 (bytes)

Input section Sections having the same attribute as the output section to be created are extracted from all
objects.

If an object module file name has been specified, they are extracted from the specified object.

Object module file name Sections having the same attribute as the output section to be created are extracted from all
objects.

If an input section has been specified, they are extracted from all the objects that have the same
attribute as the output section to be created.

Input Section Name Output Section Name

.tidata section .tidata

.tibss section .tibss

.tidata.byte section .tidata.byte

.tibss.byte section .tibss.byte

.tidata.word section .tidata.word

.tibss.word section .tibss.word

.sidata section .sidata

.sibss section .sibss

.sedata section .sedata

CubeSuite Ver.1.40 CHAPTER 5 LINK DIRECTIVE SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 527 of 890
Oct 01, 2010

Remark Although two or more mapping directives can be described in the same segment directive, two or
more of the same output section names cannot be specified in different segment directive. If two or
more of the same output section names are specified, the linker outputs an error message and
stops linking.

(b) Section type
Specify the type of the output section.
When creating a section, some section types cannot be omitted.
If only the reserved section is specified as the output section, then the type can be omitted.
If the output sections include an independently created section, then we recommend not omitting the type. If
the type are omitted, then it will be interpreted as "$NOBITS" having been specified.

The specifiable section types and their meanings are listed below.

Table 5-13. Section Types and Their Meanings

Start the section type specification with a "$", which must not be followed by a blank space.
If only "$" is specified, the linker outputs an error message and stops linking.

(c) Section attributes
Specify the name of the section to be created.
When creating a section, some section attributes cannot be omitted.
If only the reserved section is specified as the output section, then the section attribute can be omitted.
If the output sections include an independently created section, then we recommend not omitting the section
attribute. If the section attribute are omitted, then it will be interpreted as "?AW" having been specified.
The specifiable section attributes and their meanings are listed below.

Table 5-14. Section Attributes and Their Meanings

.sebss section .sebss

.sconst section .sconst

.pro_epi_runtime section .pro_epi_runtime

Section Type Meanings

PROGBITS Section that has actual values in an object module file

--> Text or data (variable) with initial value

NOBITS Section that does not have actual values in an object module file

--> Data (variable) without initial value

Section Attribute Meanings

A Section that occupies a memory area (corresponds to entire section)

W Write-enable section (section allocated in RAM)

X Executable section (mainly text section)

G Section (.sdata,/.sbss section) that is allocated within a memory area that can be
referred using a global pointer (gp) with 16-bit displacement

Input Section Name Output Section Name

CubeSuite Ver.1.40 CHAPTER 5 LINK DIRECTIVE SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 528 of 890
Oct 01, 2010

Several section attributes can be specified at the same time, with A, W, X, and G specified in any order with no
blank spaces between them. Start each section attribute specification with a "?", which must not be followed
by a blank space.
If a mapping directive is specified in a segment directive, then make sure that the specified section attribute
matches the segment attribute specified in that segment directive. In other words, ignore section attribute G,
and match section attributes A, W, and X with values corresponding to segment attributes R, W, and X.

Remark If a section attribute is specified more than once for the same mapping directive, then the linker will
output an error, and linking will halt.

Example

If a section with a writable attribute is allocated to internal ROM or internal instruction RAM, then a message is
output, and linking continues.

(d) Input section name
Specify the input section information that is the basis for the output section to be created.
When creating a section, specifications of the input section name and object module file name can be omitted.
If it is omitted, the information output to the output section varies according to the following combinations of
specifications.

Table 5-15. Output Based on Combination of Input Section and Object Module File Specifications

More specific examples are listed below.

Table 5-16. Specific Examples of Combined Input Section and Object Module File Specifications

sec = $PROGBITS ?AX ?AW;

Code Pattern Output

(1) Input section name + object module
file name

The specified input section is extracted from the specified
object and is then output.

(2) Input section name only The specified input section is extracted from all objects and
are then output.

(3) Object module file name only Sections having the same attribute as the output section to
be created are extracted from the specified object and are
then output.

(4) No specification Sections having the same attribute as the output section to
be created are extracted from all objects and are then output.

Code Example Output

SEG1: !LOAD ?RX {

 sec1 = $PROGBITS ?AX usrsec1
{file1.obj};

}

"usrsec1" section is extracted form file1.obj and is
output as "sec1" section.

SEG1: !LOAD ?RX {

 sec1 = $PROGBITS ?AX usrsec1;

}

"usrsec1" section is extracted form all objects and is
output as "sec1" section.

CubeSuite Ver.1.40 CHAPTER 5 LINK DIRECTIVE SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 529 of 890
Oct 01, 2010

If there is multiple information when allocating sections, sections are allocated using the numbers indicated in
the [Code Pattern] column in "Table 5-15. Output Based on Combination of Input Section and Object Module
File Specifications" as the priority order (in the case of two or more sections with the samepriority number, the
one with the lowest address has higher priority).
Specify the section name that has been set by the application as the input section name. If the application has
not set a section name, a default section name is already defined and should be used here.
As was explained in "(a) Output section name", there is a fixed correspondence between output section
names and input section names. Other section names cannot be specified for section names that are included
in this group.

(e) Address
Specify the start address of the section to be created.
When creating a section, specification of the address can be omitted. If it is omitted, the address is assigned
based on the address specified via the segment directive. If there are several sections and this is not the first
one, the value is continued from the end of the previous section.
Normally, section addresses are specified as a group for each segment, but separate address specifications
can be made to assign certain addresses to certain sections.
Specify even-numbered values as the address values. If an odd- numbered value is specified, the linker
outputs a message and continues with linking on the assumption that the "specified address plus one" has
been specified.
Start the address specification with a "V" (uppercase or lowercase), which must not be followed by a blank
space. Address values can be specified using either decimal or hexadecimal numerals, but when using
hexadecimal numerals be sure to add "0x" before the value. Expressions cannot be used in the address
specification.

(f) Hole size
Specify the hole size of the section to be created.
The section's hole is the space between one section and the next section. When a hole size has been
specified, the specified hole is created at the end of the target section.
When creating a section, specification of the hole size can be omitted. The value 0x0 (bytes) is used as the
default value (which specifies that no hole is created) when it is omitted.
Start the hole size specification with an "H" (uppercase or lowercase), which must not be followed by a blank
space. Expressions cannot be used in the hole size specification.

SEG1: !LOAD ?RX {

 sec1 = $PROGBITS ?AX {file1.obj
file2.obj};

}

Sections having $PROGBITS type and A and X
attributes are extracted from file1.obj and file2.obj
and are output as "sec1" section.

SEG1: !LOAD ?RX {

 sec1 = $PROGBITS ?AX;

}

Sections having $PROGBITS type and A and X
attributes are extracted from all objects and are
output as "sec1" section.

Code Example Output

CubeSuite Ver.1.40 CHAPTER 5 LINK DIRECTIVE SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 530 of 890
Oct 01, 2010

(g) Alignment condition
Specify the section alignment condition (alignment value) to be used for memory allocation of the section to be
created.
When creating a section, specification of the alignment condition can be omitted. If it is omitted, the default
value is used, but that value differs among different types of section as shown below.

Table 5-17. Section Types and Default Values for Alignment Condition

Start the alignment condition specification with an "A" (uppercase or lowercase), which must not be followed by
a blank space.
Either even-numbered or odd-numbered values can be specified for .tidata.byte and .tibss.byte sections and
only even-numbered values can be specified for all other sections. If an odd-numbered value is specified for
any section other than a .tidata.byte or .tibss.byte section, the linker outputs a message and continues with
linking on the assumption that the "specified value plus one" has been specified. Expressions cannot be used
in the alignment condition specification.

Caution The alignment condition of sections allocated to internal instruction RAM is 4 (or a multiple
thereof). If a value other than 4 (or a multiple thereof) is specified, then a message will be
output, and linking will continue with the specified alignment condition.
4-byte access is needed when writing. In the case of internal instruction RAM that does not
allow misaligned access, the alignment condition of the section to copy must be set to 4
when moving the ROMized section to internal instruction RAM.

(h) Object module file name
Enter the object module file name's specification at the end of the mapping directive and enclose each file
name with "{ }". Insert a blank space between file names when specifying several file names (if the file name
includes blank spaces, enclose the file name with quotation marks ("")).
When several object module files have been specified, they are allocated in the order they are specified, in
ascending order from lower to higher addresses. However, if a different allocation order is specified for link
directive by the "objects for linking" specification that occurs when the linker is started, the file name sequence
specified be that specification's parameters takes priority.

When an object module file name is specified in a mapping directive, specify all object module file names that
include sections having the specified attribute.

Section Name Alignment Condition

.tidata.byte/.tibss.byte section 0x1 (bytes)

TEXT attribute section except internal instruction RAM 0x2 (bytes)

Other sections 0x4 (bytes)

Link directive

sec = $PROGBITS ?AX {filel.obj file2.obj file3.obj}

Linker activation

cx file3.obj filel.obj file2.obj

 --> file3.obj, file1.obj, and file2.obj are allocated in that order,

 starting from lower address

CubeSuite Ver.1.40 CHAPTER 5 LINK DIRECTIVE SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 531 of 890
Oct 01, 2010

For example, the four objects (file1.obj, file2.obj, file3.obj, and file4.obj) including text-attribute sections exist.
In this case, if the link directive is entered as:

and no specific allocation site for the text attribute in the file4.obj has been specified, the linker searches and
allocates text-attribute sections from file4.obj as suitable text-attribute sections. Therefore, the mapping
results may not be as expected (if the text-attribute section is not allocated to any section, the linker outputs a
message).
Specify a file of the same name located in a different directory as follows by specifying a file name with the
path displayed on the link map.

In the above case, the file1.obj files that exist in the specified directories are allocated to textsec1 and textsec2
respectively, and the other file is allocated to textsec3. Since the path specification method during such
allocation is only the format displayed to the link map, attention is required when making descriptions.
It is also possible to specify input object names for objects in library files. For example, the following is entered
to specify output of object "lib1.obj" in the archive file "libusr.lib" to the "usrlib" section.

Moreover, describe as follows to allocate all the objects in the specified library.

In this case, the object in "libusr.lib" is allocated to "usrlib" section.

The specification of the object module file name can be omitted.

Example

If the file name is omitted, the CX linker assumes that all object module files not otherwise specified have been
specified.
The example below shows object module files "file1.obj", "file2.obj", "file3.obj", and "file4.obj" are specified and
launched.

TEXT1: !LOAD ?RX {

 .text1 = $PROGBITS ?AX {filel.obj file2.obj};

};

TEXT2: !LOAD ?RX {

 .text2 = $PROGBITS ?AX {file3.obj};

};

textsec1 = $PROGBITS ?AX {c:\work\dir1\file1.obj};

textsec2 = $PROGBITS ?AX {c:\work\dir2\file1.obj};

textsec3 = $PROGBITS ?AX {file1.obj};

usrlib = $PROGBITS ?AX {lib1.obj(a:\usrlib\libusr.lib)};

usrlib = $PROGBITS ?AX {libusr.lib};

sec = $PROGBITS ?AX .text;

sec1 = $PROGBITS ?AX .text;

sec2 = $PROGBITS ?AX .text {file1.obj};

CubeSuite Ver.1.40 CHAPTER 5 LINK DIRECTIVE SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 532 of 890
Oct 01, 2010

same as the following example:

(i) If specification duplicates
If the same section type, section attribute, input section name (can be omitted), or input file name (can be
typed) is specified for multiple segments and there is a section corresponding to it, an object is assigned to a
segment allocated at a lower address.

In the above case, the same section type, section attribute, input section name, and input file name are
specified for TEXT1 and TEXT2, the object is assigned to TEXT1, which is allocated at the lower address.

(2) Mapping directive specification example
This example shows specifications for the following types of output sections. Two type of sections are created.

Table 5-18. Mapping Directive Specification Example

In the above case, the corresponding mapping directive specification is shown below.

sec1 = $PROGBITS ?AX .text {file2.obj file3.obj file4.obj};

sec2 = $PROGBITS ?AX .text {file1.obj};

TEXT1: !LOAD ?RX V0x1000 {

 .text1 = $PROGBITS ?AX .text {filel.obj file2.obj};

};

TEXT2: !LOAD ?RX V0x2000 {

 .text2 = $PROGBITS ?AX .text {filel.obj file2.obj};

};

Item Value-1 Value-2

Output section name .text textsec1

Section type Text Text

Section attribute Read-enabled, executable Read-enabled, executable

Hole size 0x10 (bytes) 0x20 (bytes)

Fill value 0xFFFF 0xFFFF

Alignment condition 0x10 (bytes) 0x10 (bytes)

Input section name .text usrsec1

Object module file name main.obj -

.text = $PROGBITS ?AX H0x10 F0xFFFF A0x10 .text {main.obj};

textsec1 = $PROGBITS ?AX H0x20 F0xFFFF A0x10 usrsec1;

CubeSuite Ver.1.40 CHAPTER 5 LINK DIRECTIVE SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 533 of 890
Oct 01, 2010

5.4.5 Symbol directive

This section describes the format of the symbol directive for each following item:
- Specification item
- Symbol directive specification example

(1) Specification item
The items that are specified in the symbol directive are listed below.

- tp symbol

Table 5-19. Specifiable Items When Creating tp Symbol

A specific example of the symbol directive's format is shown below.

A blank space is used to separate these items from each other. A semicolon (;) must be added at the end of
each segment directive.
The omissible specification items are "Vaddress", "Aalignment condition", and "segment name". Default
values are used for these items when they are omitted. These default values are listed below.

Table 5-20. Default Values for tp Symbols

Item Cording Format Meanings Omissible

Symbol name Symbol-name Name of tp symbol to be created No

Symbol type %TP_SYMBOL Type of symbol to be created (fixed) No

Address Vaddress Address of tp symbol to be created Yes

Alignment Condition Aalignment-condition Alignment condition of symbol value Yes

Segment Name {segment-name
segment-name ...}

Name of segment to be referred by tp
symbol to be created (several can be
specified; insert blank spaces between
the specifications.)

Yes

symbol-name@%TP_SYMBOL Vaddress Aalignment-condition {segment-name segment-name};

Item Default Values

Address If a segment name has been specified, this address is the start address of the
text- attribute section that has been allocated to the lowest address in that
segment.

If a segment name has not been specified, this address is the start address of the
text- attribute section that has been allocated to the lowest address in the text-
attribute segment existing in the load module.

Alignment Condition 0x4 (bytes)

Segment Name All text-attribute segments exist in objects are targeted.

CubeSuite Ver.1.40 CHAPTER 5 LINK DIRECTIVE SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 534 of 890
Oct 01, 2010

- gp symbol

Table 5-21. Specifiable Items When Creating gp Symbol

A specific example of the symbol directive's format is shown below.

A blank space is used to separate these items from each other. A semicolon (;) must be added at the end of
each segment directive.
The omissible specification items are "Vaddress", "Aalignment condition", and "segment name". Default
values are used for these items when they are omitted. These default values are listed below.

Table 5-22. Default Values for gp Symbols

- ep symbol

Table 5-23. Specifiable Items When Creating ep Symbol

Item Cording Format Meanings Omissible

Symbol name Symbol-name Name of gp symbol to be created No

Symbol type %GP_SYMBOL Type of symbol to be created (fixed) No

Base symbol name &base-symbol-name tp symbol name which becomes the
base symbol when specifying a gp
symbol as offset value

Yes

Address Vaddress Address of gp symbol to be created Yes

Alignment Condition Aalignment-condition Alignment condition of symbol value Yes

Segment Name {segment-name
segment-name ...}

Name of segment to be referred by gp
symbol to be created (several can be
specified; insert blank spaces between
the specifications.)

Yes

symbol-name @%GP_SYMBOL &base-symbol-name Vaddress Aalignment-condition {segment-
name segment-name};

Item Default Values

Base symbol name Address to be determined as the gp symbol value, not for offset from tp symbol

Address Linker can determine gp symbol value from items below.

- Existing sections with sdata /sbss /data /bss attributes

- Existing base symbol specifications

Alignment Condition 0x4 (bytes)

Segment Name All sections with sdata/data/sbss/bss attributes existing in objects are targeted.

Item Cording Format Meanings Omissible

Symbol name Symbol-name Name of ep symbol to be created No

Symbol type %EP_SYMBOL Type of symbol to be created (fixed) No

Address Vaddress Address of ep symbol to be created Yes

Alignment Condition Aalignment-condition Alignment condition of symbol value Yes

CubeSuite Ver.1.40 CHAPTER 5 LINK DIRECTIVE SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 535 of 890
Oct 01, 2010

A specific example of the symbol directive's format is shown below.

A blank space is used to separate these items from each other. A semicolon (;) must be added at the end of
each specification.
The omissible specification items are "Vaddress" and "Aalignment condition". Default values are used for
these items when they are omitted. These default values are listed below.

Table 5-24. Default Values for ep Symbols

These specification items are explained below.

(a) Symbol name [Specifiable symbols: tp, gp, ep]
Specify the name of the symbol to be created. When creating a symbol, specification of the symbol name
cannot be omitted.
There is no restriction on the length of the character string that is to be specified as symbol name.

(b) Symbol type [Specifiable symbols: tp, gp, ep]
Specify whether the generated symbol will be a tp symbol, gp symbol, or ep symbol. When creating a symbol,
specification of the symbol type cannot be omitted.
Specify "TP_SYMBOL", "GP_SYMBOL", or "EP_SYMBOL" corresponding to the desired type of symbol (tp
symbol, gp symbol, or ep symbol). The linker outputs an error message if another value is specified.
Start the symbol type specification with a "%", which must not be followed by a blank space.

(c) Base symbol name [Specifiable symbol: gp]
Specify the tp symbol that will be used to determine the gp symbol value when creating gp symbols. When a
base symbol name has been specified, the gp symbol value becomes the offset value from the tp symbol
value.
When creating a gp symbol, specification of the base symbol name can be omitted.
Start the base symbol specification with a "&", which must not be followed by blank space. After the "&", enter
the tp symbol name to be used as the base symbol.

(d) Address [Specifiable symbols: tp, gp, ep]
Specify the tp symbol value or gp symbol value (these values are addresses).
When creating a symbol, specification of the address can be omitted. If it is omitted, the address is determined
as described below.

symbol-name @%EP_SYMBOL Vaddress Aalignment-condition;

Item Default Values

Address Linker can determine ep symbol value from items below.

- Existing SIDATA segment

- Definitions of existing internal RAM area in device file

Alignment Condition 0x4 (bytes)

CubeSuite Ver.1.40 CHAPTER 5 LINK DIRECTIVE SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 536 of 890
Oct 01, 2010

Table 5-25. Address Specification for tp Symbol, gp Symboland and ep Symbol

Start the address specification with a "V" (uppercase or lowercase), which must not be followed by a blank
space.

(e) Alignment condition [Specifiable symbols: tp, gp, ep]
Specify the alignment condition (alignment value) for setting values to the tp symbol, gp symbol, or ep symbol
to be created.
When creating a symbol, specification of the alignment condition can be omitted. Default values are used for
these items when they are omitted. This default value is 0x4 (bytes).
Start the alignment condition specification with an "A" (uppercase or lowercase), which must not be followed
by a blank space. Specify even-numbered values as the alignment condition values. If an odd- numbered
value is specified, the linker outputs a message and continues with linking on the assumption that the
"specified address plus one" has been specified. Expressions cannot be used in the alignment condition
specification.

(f) Segment name [Specifiable symbols: tp, gp]
Specify the name of the segment to be referred for the tp symbol value or gp symbol value to be created.
In other words, specify the segment that will be referenced by the tp symbol or gp symbol to be created.
Several segments can be specified as target segments for referencing.
When creating a symbol, specification of the segment name can be omitted. One of the following values is
assumed as the default value when it is omitted.

Table 5-26. Segment Names Targeted for Reference by tp Symbol and gp Symbol

Specify a segment name that is assumed to be a target for gp-relative referencing as the target segment name
for gp symbol referencing.
For example, do not specify a segment that includes .sedata section or .sebss section, which is assumed to be
for ep-relative referencing.

Symbol Value Rule for Determination

tp symbol - If a segment name has been specified, this address is the start address of the
text- attribute section that has been allocated to the lowest address in that
segment.

- If a segment name has not been specified, this address is the start address of
the text- attribute section that has been allocated to the lowest address in the
text-attribute segment existing in the load module.

gp symbol Linker can determine gp symbol value from items below.

- Existing sections with sdata /sbss /data /bss attributes

- Existing base symbol specifications

ep symbol Linker can determine ep symbol value from items below.

- Existing SIDATA segment

- Definitions of existing internal RAM area in device file

Symbol Value Rule for Determination

tp symbol All text-attribute segments exist in objects are targeted.

gp symbol All sections with sdata/data/sbss/bss attributes existing in objects are targeted.

CubeSuite Ver.1.40 CHAPTER 5 LINK DIRECTIVE SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 537 of 890
Oct 01, 2010

Note, however, that when this is omitted, if multiple segments are allocated to an sdata/sbss attribute section,
then the segment allocated to the lowest address is given precedence, and the gp symbol value could have an
unintended value. If a non-gp relative section is created, be sure to specify an appropriate segment for the
segment name corresponding to gp symbols.
Enter the segment name specification at the end of the symbol directive and enclose the segment name with
"{}". If specifying several segment names, use blank spaces to separate them.

(2) Symbol directive specification example
This example shows specifications for the following types of symbols.

Table 5-27. Symbol Directive Specification Example

In the above case, the corresponding symbol directive specification is shown below.

Note with caution that symbols will not be created unless a symbol directive specification has been made.

5.5 Reserved Words

The link directive file has reserved words. Reserved words cannot be used in the other specified usage.
The reserved words are as follows.

- Segment name (SIDATA, SEDATA, SCONST)
- Segment type (LOAD)
- Output section name (.tidata, .tibss etc)
- Section type (PROGBITS, NOBITS)
- Symbol type (TP_SYMBOL, GP_SYMBOL, EP_SYMBOL)

Symbol Specification Item Specified Value

tp symbol Symbol name __tp_TEXT

Name of segment targeted for reference TEXT1

gp symbol Symbol name __gp_DATA

Offset specification symbol __tp_TEXT

Name of segment targeted for reference DATA1, DATA2

ep symbol Symbol name __ep_DATA

Address 0xFFFFD000

__tp_TEXT@%TP_SYMBOL {TEXT1};

__gp_DATA@%GP_SYMBOL &__tp_TEXT {DATA1 DATA2};

__ep_DATA@%EP_SYMBOL V0xFFFFD000;

CubeSuite Ver.1.40 CHAPTER 6 FUNCTIONAL SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 538 of 890
Oct 01, 2010

CHAPTER 6 FUNCTIONAL SPECIFICATIONS

This chapter describes the library functions provided in the CX.

6.1 Supplied Libraries

The CX provides the following libraries.

Table 6-1. Supplied Libraries

When the standard library or mathematical library is used in an application, include the related header files to use the
library function.

Refer these libraries using the linker option (-l).
However, it is not necessary to refer the libraries if only "function with a variable arguments", "character conversion

functions" and "character classification functions" are used.
When CubeSuite is used, these libraries are referred by default.
The operation runtime function is a routine that is automatically called by the CX when a floating-point operation or inte-

ger operation is performed. Function pre/post processing runtime function is a routine that is automatically called by the
process of the CX prologue/epilogue functions.

Unlike the other library functions, the "operation runtime function" and "function pre/post processing runtime function" is
not described in the C source or assembler source.

The ROMization library is referred by the linker. This library stores the functions (_rcopy, _rcopy1, _rcopy2, _rcopy4),
which are used to copy packed data.

Description of each library is as follows.

Supplied Libraries Library Name Outline

Standard library libc.lib

libc22.lib

libc26.lib

libc32.lib

libccn.lib

Function with variable arguments

Character string functions

Memory management functions

Character conversion functions

Character classification functions

Standard I/O functions

Standard utility functions

Non-local jump functions

Mathematical library Mathematical functions

Initialization library Initialization peripheral devices function

ROMization library Copy functions

Multi-core library Pseudo "main" functions for multi-core

Runtime library Operation runtime functions

Function pre/post processing runtime functions

Libraries used in V850E2V3-FPU libf32.lib

libf64.lib

Functions used in V850E2V3-FPU

Data position independent library libp.lib

Data position dependent library. libnp.lib

CubeSuite Ver.1.40 CHAPTER 6 FUNCTIONAL SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 539 of 890
Oct 01, 2010

The meaning of each element in the table is as follows.

6.1.1 Standard library

The functions contained in the standard library are listed below.

(1) Function with variable arguments

Table 6-2. Function with Variable Arguments

Function/macro name Name of function/macro.

Outline Functional outline of function/macro.

#include Header file that must be included in the C source when this function/macro is used. Include this
file using the #include directive.

 "errno.h" must also be included if errno is used when an exception occurs.

ANSI Indicates whether or not the function is differentiated by the ANSI standard.

If it is stipulated, "YES" is shown in this column; if not, "--" is shown.

const Differentiates whether or not this function/macro uses the memory area "const area".

If the .const section is used, "YES" is shown in this column; if not, "--" is shown.

sdata Differentiates whether or not this function/macro uses the memory area "sdata area".

In other words, whether or not data for which the function has an initial value is allocated to RAM
is differentiated. Because the section name must be ".sdata", generate the ".sdata section" even
when this area is not used by the user application.

If the .sdata section is used, "YES" is shown in this column; if not, "--" is shown. If "YES" is
shown, data with an initial value is necessary, so the initial value must be copied to RAM before
program execution. In other words, ROMization processing must be performed using the "Copy
Functions".

sbss Differentiates whether or not this function/macro uses the memory area "sbss area".

In other words, whether or not the function uses RAM as a temporary area is differentiated. As
the section name must be ".sbss", generate the ".sbss section" even when this area is not used
by the user application.

If the .sbss section is used, "YES" is shown in this column; if not, "--" is shown. When data with-
out an initial value is allocated by .sbss section, it is not necessary to perform ROMization pro-
cessing at the time of "Use of .sdata".

Re-ent Indicates whether or not the function is re-entrant.

If it is re-entrant, "YES" is shown; if not, "--" is shown.

"Re-entrant" means that the function can "re-enter". A re-entrant function can be correctly exe-
cuted even if an attempt is made in another process to execute that function while the function is
being executed. For example, in an application using a real-time OS, this function is correctly
executed even if dispatching to another task is triggered by an interrupt while a certain task is
executing this function, and even if the function is executed in that task. A function that must use
RAM as a temporary area may not necessarily be re-entrant.

Function/Macro Name #include ANSI const sdata sbss Re-ent

va_start stdarg.h YES -- -- -- YES

va_end stdarg.h YES -- -- -- YES

va_arg stdarg.h YES -- -- -- YES

CubeSuite Ver.1.40 CHAPTER 6 FUNCTIONAL SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 540 of 890
Oct 01, 2010

(2) Character string functions

Table 6-3. Character String Functions

(3) Memory management functions

Table 6-4. Memory Management Functions

(4) Character conversion functions

Table 6-5. Character Conversion Functions

Function/Macro Name #include ANSI const sdata sbss Re-ent

index string.h -- -- -- -- YES

strpbrk string.h YES -- -- -- YES

rindex string.h -- -- -- -- YES

strrchr string.h YES -- -- -- YES

strchr string.h YES -- -- -- YES

strstr string.h YES -- -- -- YES

strspn string.h YES -- -- -- YES

strcspn string.h YES -- -- -- YES

strcmp string.h YES -- -- -- YES

strncmp string.h YES -- -- -- YES

strcpy string.h YES -- -- -- YES

strncpy string.h YES -- -- -- YES

strcat string.h YES -- -- -- YES

strncat string.h YES -- -- -- YES

strtok string.h YES -- -- YES --

strlen string.h YES -- -- -- YES

strerror string.h YES YES YES -- --

Function/Macro Name #include ANSI const sdata sbss Re-ent

memchr string.h YES -- -- -- YES

memcmp string.h YES -- -- -- YES

bcmp string.h -- -- -- -- YES

memcpy string.h YES -- -- -- YES

bcopy string.h -- -- -- -- YES

memmove string.h YES -- -- -- YES

memset string.h YES -- -- -- YES

Function/Macro Name #include ANSI const sdata sbss Re-ent

toupper ctype.h YES YES -- -- YES

_toupper ctype.h -- -- -- -- YES

CubeSuite Ver.1.40 CHAPTER 6 FUNCTIONAL SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 541 of 890
Oct 01, 2010

(5) Character classification functions

Table 6-6. Character Classification Functions

(6) Standard I/O functions

Table 6-7. Standard I/O Functions

tolower ctype.h YES YES -- -- YES

_tolower ctype.h -- -- -- -- YES

toascii ctype.h -- -- -- -- YES

Function/Macro Name #include ANSI const sdata sbss Re-ent

isalnum ctype.h YES YES -- -- YES

isalpha ctype.h YES YES -- -- YES

isascii ctype.h YES YES -- -- YES

isupper ctype.h YES YES -- -- YES

islower ctype.h YES YES -- -- YES

isdigit ctype.h YES YES -- -- YES

isxdigit ctype.h YES YES -- -- YES

iscntrl ctype.h YES YES -- -- YES

ispunct ctype.h YES YES -- -- YES

isspace ctype.h YES YES -- -- YES

isprint ctype.h YES YES -- -- YES

isgraph ctype.h YES YES -- -- YES

Function/Macro Name #include ANSI const sdata sbss Re-ent

fread stdio.h YES -- -- -- YES

getc stdio.h YES -- -- -- YES

fgetc stdio.h YES -- -- -- YES

fgets stdio.h YES -- -- -- YES

fwrite stdio.h YES -- -- -- YES

putc stdio.h YES -- -- -- YES

fputc stdio.h YES -- -- -- YES

fputs stdio.h YES -- -- -- YES

getchar stdio.h YES -- YES -- --

gets stdio.h YES -- YES -- --

putchar stdio.h YES -- YES -- --

puts stdio.h YES -- YES -- --

sprintf stdio.h YES YES -- YES --Note

Function/Macro Name #include ANSI const sdata sbss Re-ent

CubeSuite Ver.1.40 CHAPTER 6 FUNCTIONAL SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 542 of 890
Oct 01, 2010

Note A function is not re-entrant if errno is updated and matherrf (matherr)/matherrdis called when an exception
occurs.

Remark errno.h must be included if errno is used when an exception occurs.

(7) Standard utility functions

Table 6-8. Standard Utility Functions

fprintf stdio.h YES YES -- YES --Note

vsprintf stdio.h YES YES -- YES --

printf stdio.h YES YES -- YES --

vfprintf stdio.h YES YES -- YES --Note

vprintf stdio.h YES YES -- YES --

sscanf stdio.h YES YES -- -- YES

fscanf stdio.h YES YES -- -- YES

scanf stdio.h YES YES YES -- --

ungetc stdio.h YES -- -- -- YES

rewind stdio.h YES -- -- -- YES

perror stdio.h YES YES YES YES --

Function/Macro Name #include ANSI const sdata sbss Re-ent

abs stdlib.h YES -- -- -- YES

labs stdlib.h YES -- -- -- YES

llabs stdlib.h -- -- -- -- YES

bsearch stdlib.h YES -- -- -- YES

qsort stdlib.h YES -- -- -- YES

div stdlib.h YES -- -- -- YES

ldiv stdlib.h YES -- -- -- YES

lldiv stdlib.h -- -- -- -- YES

itoa stdlib.h -- -- -- -- YES

ltoa stdlib.h -- -- -- -- YES

ultoa stdlib.h -- -- -- -- YES

lltoa stdlib.h -- -- -- -- YES

ulltoa stdlib.h -- -- -- -- YES

ecvt stdlib.h -- YES -- YES --

ecvtf stdlib.h -- YES -- YES --

fcvt stdlib.h -- YES -- YES --

fcvtf stdlib.h -- YES -- YES --

gcvt stdlib.h -- YES -- YES --Note1

Function/Macro Name #include ANSI const sdata sbss Re-ent

CubeSuite Ver.1.40 CHAPTER 6 FUNCTIONAL SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 543 of 890
Oct 01, 2010

Notes 1. A function is not re-entrant if errno is updated and matherrf (matherr)/matherrdis called when an excep-
tion occurs.

2. A function is not re-entrant if errno is updated when an exception occur.

Remark errno.h must be included if errno is used when an exception occurs.

(8) Non-local jump functions

Table 6-9. Non-Local Jump Functions

6.1.2 Mathematical library

The functions contained in the mathematical library are listed below.

(1) Mathematical functions

Table 6-10. Mathematical Functions

gcvtf stdlib.h -- YES -- YES --Note1

atoi stdlib.h YES YES -- YES --Note2

atol stdlib.h YES YES -- YES --Note2

atoll stdlib.h -- YES -- YES --Note2

strtol stdlib.h YES YES -- YES --Note2

strtoul stdlib.h YES YES -- YES --Note2

strtoll stdlib.h -- YES -- YES --Note2

strtoull stdlib.h -- YES -- YES --Note2

atoff stdlib.h YES YES -- YES --Note2

atof stdlib.h YES YES -- -- --

strtodf stdlib.h YES YES -- YES --Note2

strtod stdlib.h YES YES -- YES --Note2

calloc stdlib.h YES -- YES YES --

malloc stdlib.h YES -- YES YES --

realloc stdlib.h YES -- YES YES --

free stdlib.h YES -- YES YES --

rand stdlib.h YES -- YES -- --

srand stdlib.h YES -- YES -- --

Function/Macro Name #include ANSI const sdata sbss Re-ent

longjmp setjmp.h YES -- -- -- --

setjmp setjmp.h YES -- -- -- YES

Function/Macro Name #include ANSI const sdata sbss Re-ent

j0f math.h -- YES -- YES --Note

Function/Macro Name #include ANSI const sdata sbss Re-ent

CubeSuite Ver.1.40 CHAPTER 6 FUNCTIONAL SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 544 of 890
Oct 01, 2010

j1f math.h -- YES -- YES --Note

jnf math.h -- YES -- YES --Note

y0f math.h -- YES -- YES --Note

y1f math.h -- YES -- YES --Note

ynf math.h -- YES -- YES --Note

erff math.h -- YES -- YES --Note

erfcf math.h -- YES -- YES --Note

expf math.h YES YES -- YES --Note

exp math.h YES YES -- YES --Note

logf math.h YES YES -- YES --Note

log math.h YES YES -- YES --Note

log2f math.h -- YES -- YES --Note

log10f math.h YES YES -- YES --Note

log10 math.h YES YES -- YES --Note

powf math.h YES YES -- YES --Note

pow math.h YES YES -- YES --Note

sqrtf math.h YES YES -- YES --Note

sqrt math.h YES YES -- YES --Note

cbrtf math.h -- YES -- YES --Note

cbrt math.h -- YES -- YES --Note

ceilf math.h YES -- -- -- YES

ceil math.h YES -- -- -- YES

fabsf math.h YES -- -- -- YES

fabs math.h YES -- -- -- YES

floorf math.h YES -- -- -- YES

floor math.h YES -- -- -- YES

fmodf math.h YES YES -- YES --Note

fmod math.h YES YES -- YES --Note

frexpf math.h YES YES -- YES --Note

frexp math.h YES YES -- YES --Note

ldexpf math.h YES YES -- YES --Note

ldexp math.h YES YES -- YES --Note

modff math.h YES -- -- -- YES

modf math.h YES -- -- -- YES

gammaf math.h -- YES -- YES --Note

hypotf math.h -- YES -- YES --Note

matherrf (matherr) math.h -- -- -- -- YES

Function/Macro Name #include ANSI const sdata sbss Re-ent

CubeSuite Ver.1.40 CHAPTER 6 FUNCTIONAL SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 545 of 890
Oct 01, 2010

Note A function is not re-entrant if errno is updated and matherrf (matherr)/matherrd is called when an exception
occurs.

Remark "errno.h" must also be included if errno is used when an exception occurs, "limits.h" if "limit values of
general integer type" are used as a macro name, and "float.h" if limit values of floating-point type are
used.

6.1.3 Initialization library

The functions contained in the initialization library are listed below.

(1) Initialization peripheral devices function
The initialization peripheral devices function performs initialization of peripheral devices immediately after the CPU
reset.
This is called from inside the startup routine.
The function included in the library is a dummy routine that performs no actions; code a function in accordance with
your system.

matherrd math.h -- -- -- -- YES

cosf math.h YES YES -- YES --Note

cos math.h YES YES -- YES --Note

sinf math.h YES YES -- YES --Note

sin math.h YES YES -- YES --Note

tanf math.h YES YES -- YES --Note

tan math.h YES YES -- YES --Note

acosf math.h YES YES -- YES --Note

acos math.h YES YES -- YES --Note

asinf math.h YES YES -- YES --Note

asin math.h YES YES -- YES --Note

atanf math.h YES YES -- YES --Note

atan math.h YES YES -- YES --Note

atan2f math.h YES YES -- YES --Note

atan2 math.h YES YES -- YES --Note

coshf math.h YES YES -- YES --Note

cosh math.h YES YES -- YES --Note

sinhf math.h YES YES -- YES --Note

sinh math.h YES YES -- YES --Note

tanhf math.h YES YES -- YES --Note

tanh math.h YES YES -- YES --Note

acoshf math.h -- YES -- YES --Note

asinhf math.h -- YES -- YES --Note

atanhf math.h -- YES -- YES --Note

Function/Macro Name #include ANSI const sdata sbss Re-ent

CubeSuite Ver.1.40 CHAPTER 6 FUNCTIONAL SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 546 of 890
Oct 01, 2010

Table 6-11. Initialization Peripheral Devices Function

6.1.4 ROMization library

The functions contained in the ROMization library are listed below.

(1) Copy functions

Table 6-12. Copy Functions

6.1.5 Multi-core library

The functions contained in the multi-core libraryare listed below.

(1) Pseudo "main" functions for multi-core

Table 6-13. Pseudo "main" Functions for Multi-core

Function/Macro Name ANSI const sdata sbss Re-ent

hdwinit -- -- -- -- YES

Function/Macro Name ANSI const sdata sbss Re-ent

_rcopy -- -- -- -- YES

_rcopy1 -- -- -- -- YES

_rcopy2 -- -- -- -- YES

_rcopy4 -- -- -- -- YES

Function/Macro Name ANSI const sdata sbss Re-ent

main_pe2 -- -- -- -- YES

main_pe3 -- -- -- -- YES

main_pe4 -- -- -- -- YES

main_pe5 -- -- -- -- YES

main_pe6 -- -- -- -- YES

main_pe7 -- -- -- -- YES

main_pe8 -- -- -- -- YES

main_pe9 -- -- -- -- YES

main_pe10 -- -- -- -- YES

main_pe11 -- -- -- -- YES

main_pe12 -- -- -- -- YES

main_pe13 -- -- -- -- YES

main_pe14 -- -- -- -- YES

main_pe15 -- -- -- -- YES

main_pe16 -- -- -- -- YES

main_pe17 -- -- -- -- YES

main_pe18 -- -- -- -- YES

CubeSuite Ver.1.40 CHAPTER 6 FUNCTIONAL SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 547 of 890
Oct 01, 2010

6.1.6 Runtime library

The functions contained in the runtime library are listed below.

(1) Operation runtime functions

Table 6-14. Operation Runtime Functions

main_pe19 -- -- -- -- YES

main_pe20 -- -- -- -- YES

main_pe21 -- -- -- -- YES

main_pe22 -- -- -- -- YES

main_pe23 -- -- -- -- YES

main_pe24 -- -- -- -- YES

main_pe25 -- -- -- -- YES

main_pe26 -- -- -- -- YES

main_pe27 -- -- -- -- YES

main_pe28 -- -- -- -- YES

main_pe29 -- -- -- -- YES

main_pe30 -- -- -- -- YES

main_pe31 -- -- -- -- YES

Function/Macro Name ANSI const sdata sbss Re-ent

___addf.s -- YES -- -- --Note

___subf.s -- YES -- -- --Note

___mulf.s -- YES -- -- --Note

___divf.s -- YES -- -- --Note

___cmpf.s -- YES -- -- --Note

___fcmp.s -- YES -- -- --Note

___negf.s -- YES -- -- --Note

___notf.s -- YES -- -- --Note

___addf.d -- YES -- -- --Note

___subf.d -- YES -- -- --Note

___mulf.d -- YES -- -- --Note

___divf.d -- YES -- -- --Note

___fcmp.d -- YES -- -- --Note

___negf.d -- YES -- -- --Note

___notf.d -- YES -- -- --Note

___add.l -- -- -- -- YES

___sub.l -- -- -- -- YES

Function/Macro Name ANSI const sdata sbss Re-ent

CubeSuite Ver.1.40 CHAPTER 6 FUNCTIONAL SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 548 of 890
Oct 01, 2010

___mul.l -- -- -- -- YES

___div.l -- -- -- -- YES

___div.ul -- -- -- -- YES

___mod.l -- -- -- -- YES

___mod.ul -- -- -- -- YES

___shl.l -- -- -- -- YES

___shr.l -- -- -- -- YES

___sar.l -- -- -- -- YES

___inc.l -- -- -- -- YES

___dec.l -- -- -- -- YES

___not.l -- -- -- -- YES

___neg.l -- -- -- -- YES

___cmp.l -- -- -- -- YES

___cmp.ul -- -- -- -- YES

___bext.l -- -- -- -- YES

___bext.ul -- -- -- -- YES

___bins.l -- -- -- -- YES

___cvt.ws -- -- -- -- YES

___cvt.wd -- -- -- -- YES

___cvt.uws -- -- -- -- YES

___cvt.uwd -- -- -- -- YES

___cvt.ls -- -- -- -- YES

___cvt.ld -- -- -- -- YES

___cvt.uls -- -- -- -- YES

___cvt.uld -- -- -- -- YES

___trnc.sw -- -- -- -- YES

___trnc.dw -- -- -- -- YES

___trnc.suw -- -- -- -- YES

___trnc.duw -- -- -- -- YES

___trnc.sl -- -- -- -- YES

___trnc.dl -- -- -- -- YES

___trnc.sul -- -- -- -- YES

___trnc.dul -- -- -- -- YES

___cvt.sd -- -- -- -- YES

___cvt.ds -- -- -- -- YES

__mul -- -- -- -- YES

__mulu -- -- -- -- YES

Function/Macro Name ANSI const sdata sbss Re-ent

CubeSuite Ver.1.40 CHAPTER 6 FUNCTIONAL SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 549 of 890
Oct 01, 2010

Note A function is not re-entrant if matherrf (matherr)/matherrd is called.

(2) Function pre/post processing runtime functions

Table 6-15. Function pre/post Processing Runtime Functions

__div -- -- -- -- YES

__divu -- -- -- -- YES

__mod -- -- -- -- YES

__modu -- -- -- -- YES

Function/Macro Name ANSI const sdata sbss Re-ent

___Epush250 -- -- -- -- YES

___Epush251 -- -- -- -- YES

___Epush252 -- -- -- -- YES

___Epush253 -- -- -- -- YES

___Epush254 -- -- -- -- YES

___Epush260 -- -- -- -- YES

___Epush261 -- -- -- -- YES

___Epush262 -- -- -- -- YES

___Epush263 -- -- -- -- YES

___Epush264 -- -- -- -- YES

___Epush270 -- -- -- -- YES

___Epush271 -- -- -- -- YES

___Epush272 -- -- -- -- YES

___Epush273 -- -- -- -- YES

___Epush274 -- -- -- -- YES

___Epush280 -- -- -- -- YES

___Epush281 -- -- -- -- YES

___Epush282 -- -- -- -- YES

___Epush283 -- -- -- -- YES

___Epush284 -- -- -- -- YES

___Epush290 -- -- -- -- YES

___Epush291 -- -- -- -- YES

___Epush292 -- -- -- -- YES

___Epush293 -- -- -- -- YES

___Epush294 -- -- -- -- YES

___Epushlp0 -- -- -- -- YES

___Epushlp1 -- -- -- -- YES

___Epushlp2 -- -- -- -- YES

Function/Macro Name ANSI const sdata sbss Re-ent

CubeSuite Ver.1.40 CHAPTER 6 FUNCTIONAL SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 550 of 890
Oct 01, 2010

___Epushlp3 -- -- -- -- YES

___Epushlp4 -- -- -- -- YES

___push2000 -- -- -- -- YES

___push2001 -- -- -- -- YES

___push2002 -- -- -- -- YES

___push2003 -- -- -- -- YES

___push2004 -- -- -- -- YES

___push2040 -- -- -- -- YES

___push2100 -- -- -- -- YES

___push2101 -- -- -- -- YES

___push2102 -- -- -- -- YES

___push2103 -- -- -- -- YES

___push2104 -- -- -- -- YES

___push2140 -- -- -- -- YES

___push2200 -- -- -- -- YES

___push2201 -- -- -- -- YES

___push2202 -- -- -- -- YES

___push2203 -- -- -- -- YES

___push2204 -- -- -- -- YES

___push2240 -- -- -- -- YES

___push2300 -- -- -- -- YES

___push2301 -- -- -- -- YES

___push2302 -- -- -- -- YES

___push2303 -- -- -- -- YES

___push2304 -- -- -- -- YES

___push2340 -- -- -- -- YES

___push2400 -- -- -- -- YES

___push2401 -- -- -- -- YES

___push2402 -- -- -- -- YES

___push2403 -- -- -- -- YES

___push2404 -- -- -- -- YES

___push2440 -- -- -- -- YES

___push2500 -- -- -- -- YES

___push2501 -- -- -- -- YES

___push2502 -- -- -- -- YES

___push2503 -- -- -- -- YES

___push2504 -- -- -- -- YES

Function/Macro Name ANSI const sdata sbss Re-ent

CubeSuite Ver.1.40 CHAPTER 6 FUNCTIONAL SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 551 of 890
Oct 01, 2010

___push2540 -- -- -- -- YES

___push2600 -- -- -- -- YES

___push2601 -- -- -- -- YES

___push2602 -- -- -- -- YES

___push2603 -- -- -- -- YES

___push2604 -- -- -- -- YES

___push2640 -- -- -- -- YES

___push2700 -- -- -- -- YES

___push2701 -- -- -- -- YES

___push2702 -- -- -- -- YES

___push2703 -- -- -- -- YES

___push2704 -- -- -- -- YES

___push2740 -- -- -- -- YES

___push2800 -- -- -- -- YES

___push2801 -- -- -- -- YES

___push2802 -- -- -- -- YES

___push2803 -- -- -- -- YES

___push2804 -- -- -- -- YES

___push2840 -- -- -- -- YES

___push2900 -- -- -- -- YES

___push2901 -- -- -- -- YES

___push2902 -- -- -- -- YES

___push2903 -- -- -- -- YES

___push2904 -- -- -- -- YES

___push2940 -- -- -- -- YES

___pushlp00 -- -- -- -- YES

___pushlp01 -- -- -- -- YES

___pushlp02 -- -- -- -- YES

___pushlp03 -- -- -- -- YES

___pushlp04 -- -- -- -- YES

___pushlp40 -- -- -- -- YES

___pop2000 -- -- -- -- YES

___pop2001 -- -- -- -- YES

___pop2002 -- -- -- -- YES

___pop2003 -- -- -- -- YES

___pop2004 -- -- -- -- YES

___pop2040 -- -- -- -- YES

Function/Macro Name ANSI const sdata sbss Re-ent

CubeSuite Ver.1.40 CHAPTER 6 FUNCTIONAL SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 552 of 890
Oct 01, 2010

___pop2100 -- -- -- -- YES

___pop2101 -- -- -- -- YES

___pop2102 -- -- -- -- YES

___pop2103 -- -- -- -- YES

___pop2104 -- -- -- -- YES

___pop2140 -- -- -- -- YES

___pop2200 -- -- -- -- YES

___pop2201 -- -- -- -- YES

___pop2202 -- -- -- -- YES

___pop2203 -- -- -- -- YES

___pop2204 -- -- -- -- YES

___pop2240 -- -- -- -- YES

___pop2300 -- -- -- -- YES

___pop2301 -- -- -- -- YES

___pop2302 -- -- -- -- YES

___pop2303 -- -- -- -- YES

___pop2304 -- -- -- -- YES

___pop2340 -- -- -- -- YES

___pop2400 -- -- -- -- YES

___pop2401 -- -- -- -- YES

___pop2402 -- -- -- -- YES

___pop2404 -- -- -- -- YES

___pop2440 -- -- -- -- YES

___pop2500 -- -- -- -- YES

___pop2501 -- -- -- -- YES

___pop2502 -- -- -- -- YES

___pop2503 -- -- -- -- YES

___pop2504 -- -- -- -- YES

___pop2540 -- -- -- -- YES

___pop2600 -- -- -- -- YES

___pop2601 -- -- -- -- YES

___pop2602 -- -- -- -- YES

___pop2603 -- -- -- -- YES

___pop2604 -- -- -- -- YES

___pop2640 -- -- -- -- YES

___pop2700 -- -- -- -- YES

___pop2701 -- -- -- -- YES

Function/Macro Name ANSI const sdata sbss Re-ent

CubeSuite Ver.1.40 CHAPTER 6 FUNCTIONAL SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 553 of 890
Oct 01, 2010

6.1.7 Libraries used in V850E2V3-FPU

The functions contained in the libraries used in V850E2V3-FPUare listed below.

(1) Functions used in V850E2V3-FPU

Table 6-16. Functions Used in V850E2V3-FPU

___pop2702 -- -- -- -- YES

___pop2703 -- -- -- -- YES

___pop2704 -- -- -- -- YES

___pop2740 -- -- -- -- YES

___pop2800 -- -- -- -- YES

___pop2801 -- -- -- -- YES

___pop2802 -- -- -- -- YES

___pop2803 -- -- -- -- YES

___pop2804 -- -- -- -- YES

___pop2840 -- -- -- -- YES

___pop2900 -- -- -- -- YES

___pop2901 -- -- -- -- YES

___pop2902 -- -- -- -- YES

___pop2903 -- -- -- -- YES

___pop2904 -- -- -- -- YES

___pop2940 -- -- -- -- YES

___poplp00 -- -- -- -- YES

___poplp01 -- -- -- -- YES

___poplp02 -- -- -- -- YES

___poplp03 -- -- -- -- YES

___poplp04 -- -- -- -- YES

___poplp40 -- -- -- -- YES

Function/Macro Name ANSI const sdata sbss Re-ent

expf YES YES -- YES --Note

exp YES YES -- YES --Note

logf YES YES -- YES --Note

log YES YES -- YES --Note

log10f YES YES -- YES --Note

log10 YES YES -- YES --Note

powf YES YES -- YES --Note

pow YES YES -- YES --Note

Function/Macro Name ANSI const sdata sbss Re-ent

CubeSuite Ver.1.40 CHAPTER 6 FUNCTIONAL SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 554 of 890
Oct 01, 2010

Note A function is not re-entrant if errno is updated and matherrf (matherr)/matherrdis called when an exception
occurs.

6.2 Header Files

sqrtf YES YES -- YES --Note

sqrt YES YES -- YES --Note

ceilf YES -- -- -- YES

ceil YES -- -- -- YES

floorf YES -- -- -- YES

floor YES -- -- -- YES

fmodf YES YES -- YES --Note

fmod YES YES -- YES --Note

frexpf YES YES -- YES --Note

frexp YES YES -- YES --Note

ldexpf YES YES -- YES --Note

ldexp YES YES -- YES --Note

modff YES -- -- -- YES

modf YES -- -- -- YES

cosf YES YES -- YES --Note

cos YES YES -- YES --Note

sinf YES YES -- YES --Note

sin YES YES -- YES --Note

tanf YES YES -- YES --Note

tan YES YES -- YES --Note

acosf YES YES -- YES --Note

acos YES YES -- YES --Note

asinf YES YES -- YES --Note

asin YES YES -- YES --Note

atanf YES YES -- YES --Note

atan YES YES -- YES --Note

atan2f YES YES -- YES --Note

atan2 YES YES -- YES --Note

coshf YES YES -- YES --Note

cosh YES YES -- YES --Note

sinhf YES YES -- YES --Note

sinh YES YES -- YES --Note

tanhf YES YES -- YES --Note

tanh YES YES -- YES --Note

Function/Macro Name ANSI const sdata sbss Re-ent

CubeSuite Ver.1.40 CHAPTER 6 FUNCTIONAL SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 555 of 890
Oct 01, 2010

The list of header files required for using the libraries of the CX are listed below.
The macro definitions and function declarations are described in each file.

Table 6-17. Header Files

6.3 Re-entrant

"Re-entrant" means that the function can "re-enter". A re-entrant function can be correctly executed even if an attempt
is made in another process to execute that function while the function is being executed. For example, in an application
using a real-time OS, this function is correctly executed even if dispatching to another task is triggered by an interrupt
while a certain task is executing this function, and even if the function is executed in that task. A function that must use
RAM as a temporary area may not necessarily be re-entrant.

For re-entrant of each function, see tables from "Table 6-2. Function with Variable Arguments" to "Table 6-15. Func-
tion pre/post Processing Runtime Functions".

File Name Outline

ctype.h Header file for character conversion and classification

errno.h Header file for reporting error condition

float.h Header file for floating-point representation and floating-point operation

limits.h Header file for quantitative limiting of integers

math.h Header file for mathematical calculation

setjmp.h Header file for non-local jump

stdarg.h Header file for supporting functions having variable arguments

stddef.h Header file for common definitions

stdio.h Header file for standard I/O

stdlib.h Header file for standard utilities

string.h Header file for memory manipulation and character string manipulation

CubeSuite Ver.1.40 CHAPTER 6 FUNCTIONAL SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 556 of 890
Oct 01, 2010

6.4 Library Function

This section explains Library Function.

6.4.1 Functions with variable arguments

Functions with a variable arguments are as follows

Table 6-18. Functions with Variable Arguments

Function/Macro Name Outline

va_start Initialization of variable for scanning argument list

va_end End of scanning argument list

va_arg Moving variable for scanning argument list

CubeSuite Ver.1.40 CHAPTER 6 FUNCTIONAL SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 557 of 890
Oct 01, 2010

Initialization of variable for scanning argument list

[Classification]

Standard library

[Syntax]

#include <stdarg.h>
void va_start(va_list ap, last-named-argument);

[Description]

This function initializes variable ap so that it indicates the beginning (argument next to last-named-argument) of the list
of the variable arguments.

To define function func having a variable arguments in a portable form, the following format is used.

Remark arg-declarations is an argument list with the last-named-argument declared at the end. ", ..." that follows
indicates a list of the variable arguments. va_listis the type of the variable (ap in the above example) used
to scan the argument list.

[Example]

va_start

#include <stdarg.h>

void func(arg-declarations, ...) {

 va_list ap;

 type argN;

 va_start(ap, last-named-argument);

 argN = va_arg(ap, type);

 va_end(ap);

}

#include <stdarg.h>

void abc(int first, int second, ...) {

 va_list ap;

 int i;

 char c, *fmt;

 va_start(ap, second);

 i = va_arg(ap, int);

 c = va_arg(ap, int); /*char type is converted into int type.*/

 fmt = va_arg(ap, char *);

 va_end(ap);

}

CubeSuite Ver.1.40 CHAPTER 6 FUNCTIONAL SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 558 of 890
Oct 01, 2010

End of scanning argument list

[Classification]

Standard library

[Syntax]

#include <stdarg.h>
void va_end(va_list ap);

[Description]

This function indicates the end of scanning the list. By enclosing va_arg between va_start and va_end, scanning the
list can be repeated.

va_end

CubeSuite Ver.1.40 CHAPTER 6 FUNCTIONAL SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 559 of 890
Oct 01, 2010

Moving variable for scanning argument list

[Classification]

Standard library

[Syntax]

#include <stdarg.h>
type va_arg(va_list ap, type);

[Description]

This function returns the argument indicated by variable ap, and advances variable ap to indicate the next argument.
For the type of va_arg, specify the type converted when the argument is passed to the function. With the C compiler
specify the int type for an argument of char and short types, and specify the unsigned int type for an argument of
unsigned char and unsigned short types. Although a different type can be specified for each argument, stipulate "which
type of argument is passed" according to the conventions between the called function and calling function.

Also stipulate "how many functions are actually passed" according to the conventions between the called function and
calling function.

va_arg

CubeSuite Ver.1.40 CHAPTER 6 FUNCTIONAL SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 560 of 890
Oct 01, 2010

6.4.2 Character string functions

Character string functions are as follows.

Table 6-19. Character String Functions

Function/Macro Name Outline

index Character string search (start position)

strpbrk Character string search (start position)

rindex Character string search (end position)

strrchr Character string search (end position)

strchr Character string search (start position of specified character)

strstr Character string search (start position of specified character string)

strspn Character string search (maximum length including specified character)

strcspn Character string search (maximum length not including specified character)

strcmp Character string comparison

strncmp Character string comparison (with number of characters specified)

strcpy Character string copy

strncpy Character string copy (with number of characters specified)

strcat Character string concatenation

strncat Character string concatenation (with number of characters specified)

strtok Token division

strlen Length of character string

strerror Character string conversion of error number

CubeSuite Ver.1.40 CHAPTER 6 FUNCTIONAL SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 561 of 890
Oct 01, 2010

Character string search (start position)

[Classification]

Standard library

[Syntax]

#include <string.h>
char *index(const char *s, int c);

[Return value]

Returns a pointer indicating the character that has been found. If c does not appear in this character string, the null
pointer is returned.

[Description]

This function obtains the position at which a character the same as c converted into char type appears in the character
string indicated by s. The null character (\0) indicating termination is regarded as part of this character string.

index

CubeSuite Ver.1.40 CHAPTER 6 FUNCTIONAL SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 562 of 890
Oct 01, 2010

Character string search (start position)

[Classification]

Standard library

[Syntax]

#include <string.h>
char *strpbrk(const char *s1, const char *s2);

[Return value]

Returns the pointer indicating this character. If any of the characters from s2 does not appear in s1, the null pointer is
returned.

[Description]

This function obtains the position in the character string indicated by s1 at which any of the characters in the character
string indicated by s2 (except the null character (\0)) appears first.

strpbrk

CubeSuite Ver.1.40 CHAPTER 6 FUNCTIONAL SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 563 of 890
Oct 01, 2010

Character string search (end position)

[Classification]

Standard library

[Syntax]

#include <string.h>
char *rindex(const char *s, int c);

[Return value]

Returns a pointer indicating c that has been found. If c does not appear in this character string, the null pointer is
returned.

[Description]

This function obtains the position at which c converted into char type appears last in the character string indicated by s.
The null character (\0) indicating termination is regarded as part of this character string.

rindex

CubeSuite Ver.1.40 CHAPTER 6 FUNCTIONAL SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 564 of 890
Oct 01, 2010

Character string search (end position)

[Classification]

Standard library

[Syntax]

#include <string.h>
char *strrchr(const char *s, int c);

[Return value]

Returns a pointer indicating c that has been found. If c does not appear in this character string, the null pointer is
returned.

[Description]

This function obtains the position at which c converted into char type appears last in the character string indicated by s.
The null character (\0) indicating termination is regarded as part of this character string.

strrchr

CubeSuite Ver.1.40 CHAPTER 6 FUNCTIONAL SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 565 of 890
Oct 01, 2010

Character string search (start position of specified character)

[Classification]

Standard library

[Syntax]

#include <string.h>
char *strchr(const char *s, int c);

[Return value]

Returns a pointer indicating the character that has been found. If c does not appear in this character string, the null
pointer is returned.

[Description]

This function obtains the position at which a character the same as c converted into char type appears in the character
string indicated by s. The null character (\0) indicating termination is regarded as part of this character string.

strchr

CubeSuite Ver.1.40 CHAPTER 6 FUNCTIONAL SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 566 of 890
Oct 01, 2010

Character string search (start position of specified character)

[Classification]

Standard library

[Syntax]

#include <string.h>
char *strstr(const char *s1, const char *s2);

[Return value]

Returns the pointer indicating the character string that has been found. If character string s2 is not found, the null
pointer is returned. If s2 indicates a character string with a length of 0, s1 is returned.

[Description]

This function obtains the position of the portion (except the null character (\0)) that first coincides with the character
string indicated by s2, in the character string indicated by s1.

strstr

CubeSuite Ver.1.40 CHAPTER 6 FUNCTIONAL SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 567 of 890
Oct 01, 2010

Character string search (maximum length including specified character)

[Classification]

Standard library

[Syntax]

#include <string.h>
size_t strspn(const char *s1, const char *s2);

[Return value]

Returns the length of the portion that has been found.

[Description]

This function obtains the maximum and first length of the portion consisting of only the characters (except the null
character (\0)) in the character string indicated by s2, in the character string indicated by s1.

strspn

CubeSuite Ver.1.40 CHAPTER 6 FUNCTIONAL SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 568 of 890
Oct 01, 2010

Character string search (maximum length not including specified character)

[Classification]

Standard library

[Syntax]

#include <string.h>
size_t strcspn(const char *s1, const char *s2);

[Return value]

Returns the length of the portion that has been found.

[Description]

This function obtains the length of the maximum and first portion consisting of characters missing from the character
string indicated by s2 (except the null character (\0) at the end) in the character string indicated by s1.

strcspn

CubeSuite Ver.1.40 CHAPTER 6 FUNCTIONAL SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 569 of 890
Oct 01, 2010

Character string comparison

[Classification]

Standard library

[Syntax]

#include <string.h>
int strcmp(const char *s1, const char *s2);

[Return value]

Returns an integer greater than, equal to, or less than 0, depending on whether the character string indicated by s1 is
greater than, equal to, or less than the character string indicated by s2.

[Description]

This function compares the character string indicated by s1 with the character string indicated by s2.

strcmp

CubeSuite Ver.1.40 CHAPTER 6 FUNCTIONAL SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 570 of 890
Oct 01, 2010

Character string comparison (with number of characters specified)

[Classification]

Standard library

[Syntax]

#include <string.h>
int strncmp(const char *s1, const char *s2, size_t length);

[Return value]

Returns an integer greater than, equal to, or less than 0, depending on whether the character string indicated by s1 is
greater than, equal to, or less than the character string indicated by s2.

[Description]

This function compares up to length characters of the array indicated by s1 with characters of the array indicated by s2.

strncmp

CubeSuite Ver.1.40 CHAPTER 6 FUNCTIONAL SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 571 of 890
Oct 01, 2010

Character string copy

[Classification]

Standard library

[Syntax]

#include <string.h>
char *strcpy(char *dst, const char *src);

[Return value]

Returns the value of dst.

[Description]

This function copies the character string indicated by src to the array indicated by dst.

[Example]

strcpy

#include <string.h>

void func(char *str, const char *src) {

 strcpy(str, src); /*Copies character string indicated by src to array indicated by

 str.*/

 :

}

CubeSuite Ver.1.40 CHAPTER 6 FUNCTIONAL SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 572 of 890
Oct 01, 2010

Character string copy (with number of characters specified)

[Classification]

Standard library

[Syntax]

#include <string.h>
char *strncpy(char *dst, const char *src, size_t length);

[Return value]

Returns the value of dst.

[Description]

This function copies up to length characters (including the null character (\0)) from the array indicated by src to the
array indicated by dst. If the array indicate by src is shorter than length characters, null characters (\0) are appended to
the duplication in the array indicated by dst, until all length characters are written.

strncpy

CubeSuite Ver.1.40 CHAPTER 6 FUNCTIONAL SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 573 of 890
Oct 01, 2010

Character string concatenation

[Classification]

Standard library

[Syntax]

#include <string.h>
char *strcat(char *dst, const char *src);

[Return value]

Returns the value of dst.

[Description]

This function concatenates the duplication of the character string indicated by src to the end of the character string
indicated by dst, including the null character (\0). The first character of src overwrites the null character (\0) at the end of
dst.

strcat

CubeSuite Ver.1.40 CHAPTER 6 FUNCTIONAL SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 574 of 890
Oct 01, 2010

Character string concatenation (with number of characters specified)

[Classification]

Standard library

[Syntax]

#include <string.h>
char *strncat(char *dst, const char *src, size_t length);

[Return value]

Returns the value of dst.

[Description]

This function concatenates up to length characters (including the null character (\0) of src) to the end of the character
string indicated by dst, starting from the beginning of the character string indicated by src. The null character (\0) at the
end of dst is written over the first character of src. The null character indicating termination (\0) is always added to this
result.

[Caution]

Because the null character (\0) is always appended when strncat is used, if copying is limited by the number of length
arguments, the number of characters appended to dst is length + 1.

strncat

CubeSuite Ver.1.40 CHAPTER 6 FUNCTIONAL SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 575 of 890
Oct 01, 2010

Token division

[Classification]

Standard library

[Syntax]

#include <string.h>
char *strtok(char *s, const char *delimiters);

[Return value]

Returns a pointer to a token. If a token does not exist, the null pointer is returned.

[Description]

This function divides the character string indicated by s into strings of tokens by delimiting the character string with a
character in the character string indicated by delimiters. If this function is called first, s is used as the first argument.
Then, calling with the null pointer as the first argument continues. The delimiting character string indicated by delimiters
can differ on each call. On the first call, the character string indicated by s is searched for the first character not included
in the delimiting character string indicated by delimiters. If such a character is not found, a token does not exist in the
character string indicated by s, and strtok returns the null pointer. If a character is found, that character is the beginning
of the first token. After that, strtok searches from the position of that character for a character included in the delimiting
character string at that time.

If such a character is not found, the token is expanded to the end of the character string indicated by s, and the subse-
quent search returns the null pointer. If a character is found, the subsequent character is overwritten by the null character
(\0) indicating the termination of the token. strtok saves the pointer indicating the subsequent character. If the null pointer
is used as the value of the first argument, a code that is not re-entrant is returned. This can be avoided by preserving the
address of the last delimiting character in the application program, and passing s as an argument that is not vacant, by
using this address.

strtok

CubeSuite Ver.1.40 CHAPTER 6 FUNCTIONAL SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 576 of 890
Oct 01, 2010

Length of character string

[Classification]

Standard library

[Syntax]

#include <string.h>
size_t strlen(const char *s);

[Return value]

Returns the number of characters existing before the null character (\0) indicating termination.

[Description]

This function obtains the length of the character string indicated by s.

strlen

CubeSuite Ver.1.40 CHAPTER 6 FUNCTIONAL SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 577 of 890
Oct 01, 2010

Character string conversion of error number

[Classification]

Standard library

[Syntax]

#include <string.h>
char *strerror(int errnum);

[Return value]

Returns a pointer to the converted character string.

[Description]

This function converts error number errnum into a character string according to the correspondence relationship of the
processing system definition. The value of errnum is usually the duplication of global variable errno. Do not change the
specified array of the application program.

strerror

CubeSuite Ver.1.40 CHAPTER 6 FUNCTIONAL SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 578 of 890
Oct 01, 2010

6.4.3 Memory management functions

Memory management functions are as follows.

Table 6-20. Memory Management Functions

Function/Macro Name Outline

memchr Memory search

memcmp Memory comparison

bcmp Memory comparison (char argument version of memcmp)

memcpy Memory copy

bcopy Memory copy (char argument version of memcpy)

memmove Memory move

memset Memory set

CubeSuite Ver.1.40 CHAPTER 6 FUNCTIONAL SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 579 of 890
Oct 01, 2010

Memory search

[Classification]

Standard library

[Syntax]

#include <string.h>
void *memchr(const void *s, int c, size_t length);

[Return value]

If c is found, a pointer indicating this character is returned. If c is not found, the null pointer is returned.

[Description]

This function obtains the position at which character c (converted into char type) appears first in the first length number
of characters in an area indicated by s.

memchr

CubeSuite Ver.1.40 CHAPTER 6 FUNCTIONAL SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 580 of 890
Oct 01, 2010

Memory comparison

[Classification]

Standard library

[Syntax]

#include <string.h>
int memcmp(const void *s1, const void *s2, size_t n);

[Return value]

An integer greater than, equal to, or less than 0 is returned, depending on whether the object indicated by s1 is greater
than, equal to, or less than the object indicated by s2.

[Description]

This function compares the first n characters of an object indicated by s1 with the object indicated by s2.

[Example]

memcmp

#include <string.h>

int func(const void *s1, const void *s2) {

 int i;

 i = memcmp(s1, s2, 5); /*Compares the first five characters of the character

 string indicated by s1 with the first five characters of

 the character string indicated by s2*/

 return(i);

}

CubeSuite Ver.1.40 CHAPTER 6 FUNCTIONAL SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 581 of 890
Oct 01, 2010

Memory comparison (char argument version of memcmp)

[Classification]

Standard library

[Syntax]

#include <string.h>
int bcmp(const char *s1, const char *s2, size_t n);

[Return value]

An integer greater than, equal to, or less than 0 is returned, depending on whether the object indicated by s1 is greater
than, equal to, or less than the object indicated by s2.

[Description]

This function compares the first n characters of an object indicated by s1 with the object indicated by s2.

bcmp

CubeSuite Ver.1.40 CHAPTER 6 FUNCTIONAL SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 582 of 890
Oct 01, 2010

Memory copy

[Classification]

Standard library

[Syntax]

#include <string.h>
void *memcpy(void *out, const void *in, size_t n);

[Return value]

Returns the value of out. The operation is undefined if the copy source and copy destination areas overlap.

[Description]

This function copies n bytes from an object indicated by in to an object indicated by out.

memcpy

CubeSuite Ver.1.40 CHAPTER 6 FUNCTIONAL SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 583 of 890
Oct 01, 2010

Memory copy (char argument version of memcpy)

[Classification]

Standard library

[Syntax]

#include <string.h>
char* bcopy(const char *in, char *out, size_t n);

[Return value]

Returns the value of out. The operation is undefined if the copy source and copy destination areas overlap.

[Description]

This function copies n bytes from an object indicated by in to an object indicated by out.

bcopy

CubeSuite Ver.1.40 CHAPTER 6 FUNCTIONAL SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 584 of 890
Oct 01, 2010

Memory move

[Classification]

Standard library

[Syntax]

#include <string.h>
void *memmove(void *dst, void *src, size_t length);

[Return value]

Returns the value of dst at the copy destination.

[Description]

This function moves the length number of characters from a memory area indicated by src to a memory area indicated
by dst. Even if the copy source and copy destination areas overlap, the characters are correctly copied to the memory
area indicated by dst.

memmove

CubeSuite Ver.1.40 CHAPTER 6 FUNCTIONAL SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 585 of 890
Oct 01, 2010

Memory set

[Classification]

Standard library

[Syntax]

#include <string.h>
void *memset(const void *s, int c, size_t length);

[Return value]

Returns the value of s.

[Description]

This function copies the value of c (converted into unsigned char type) to the first length character of an object indi-
cated by s.

memset

CubeSuite Ver.1.40 CHAPTER 6 FUNCTIONAL SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 586 of 890
Oct 01, 2010

6.4.4 Character conversion functions

Character conversion functions are as follows.

Table 6-21. Character Conversion Functions

Function/Macro Name Outline

toupper Conversion from lower-case to upper-case (not converted if argument is not in lower-case)

_toupper Conversion from lower-case to upper-case (correctly converted only if argument is in lower-case)

tolower Conversion from upper-case to lower-case (not converted if argument is not in upper-case)

_tolower Conversion from upper-case to lower-case (correctly converted only if argument is in upper-case)

toascii Conversion from integer to ASCII character

CubeSuite Ver.1.40 CHAPTER 6 FUNCTIONAL SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 587 of 890
Oct 01, 2010

Conversion from lower-case to upper-case (not converted if argument is not in lower-case)

[Classification]

Standard library

[Syntax]

#include <ctype.h>
int toupper(int c);

[Return value]

If islower is true with respect to c, returns a character that makes isupper true in response; otherwise, returns c.

[Description]

This function is a macro that converts lowercase characters into the corresponding uppercase characters and leaves
the other characters unchanged.

This macro is defined only when c is an integer in the range of EOF to 255. A compiled subroutine can be used instead
of the macro definition, which is invalidated by using "#undef toupper".

[Example]

toupper

#include <ctype.h>

int chc = 'a';

int ret = func(chc);

int func(int c) {

 int i;

 i = toupper(c); /*Converts lowercase character ’a’ of c into uppercase

 character ’A’.*/

 return(i);

}

CubeSuite Ver.1.40 CHAPTER 6 FUNCTIONAL SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 588 of 890
Oct 01, 2010

Conversion from lower-case to upper-case (correctly converted only if argument is in lower-case)

[Classification]

Standard library

[Syntax]

#include <ctype.h>
int _toupper(int c);

[Return value]

If islower is true with respect to c, returns a character that makes isupper true in response; otherwise, returns c.
Also with _toupper, operation can be inconsistent when specifying illegal values for c.

[Description]

This function is a macro that performs the same operation as toupper if the argument is of lowercase characters.
Because the argument is not checked, the correct conversion is performed only if the argument is of lowercase charac-

ters. If otherwise, the operation will be undefined. A compiled subroutine can be used instead of the macro definition,
which is invalidated by using "#undef _toupper".

_toupper

CubeSuite Ver.1.40 CHAPTER 6 FUNCTIONAL SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 589 of 890
Oct 01, 2010

Conversion from upper-case to lower-case (not converted if argument is not in upper-case)

[Classification]

Standard library

[Syntax]

#include <ctype.h>
int tolower(int c);

[Return value]

If isupper is true with respect to c, returns a character that makes islower true in response; otherwise, returns c.

[Description]

This function is a macro that converts uppercase characters into the corresponding lowercase characters and leaves
the other characters unchanged.

This macro is defined only when c is an integer in the range of EOF to 255. A compiled subroutine can be used instead
of the macro definition, which is invalidated by using "#undef tolower".

tolower

CubeSuite Ver.1.40 CHAPTER 6 FUNCTIONAL SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 590 of 890
Oct 01, 2010

Conversion from upper-case to lower-case (correctly converted only if argument is in upper-case)

[Classification]

Standard library

[Syntax]

#include <ctype.h>
int _tolower(int c);

[Return value]

If isupper is true with respect to c, returns a character that makes islower true in response; otherwise, returns c.
Also with _tolower, operation can be inconsistent when specifying illegal values for c.

[Description]

This function is a macro that performs the same operation as tolower if the argument is of uppercase characters.
Because the argument is not checked, the correct conversion is performed only if the argument is of uppercase charac-

ters. If otherwise, the operation will be undefined. A compiled subroutine can be used instead of the macro definition,
which is invalidated by using "#undef _tolower".

_tolower

CubeSuite Ver.1.40 CHAPTER 6 FUNCTIONAL SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 591 of 890
Oct 01, 2010

Conversion from integer to ASCII character

[Classification]

Standard library

[Syntax]

#include <ctype.h>
int toascii(int c);

[Return value]

Returns an integer in the range of 0 to 127.

[Description]

This function is a macro that forcibly converts an integer into an ASCII character (0 to 127) by clearing bit 8 and higher
of the argument to 0.

A compiled subroutine can be used instead of the macro definition, which is invalidated by using "#undef toascii".

toascii

CubeSuite Ver.1.40 CHAPTER 6 FUNCTIONAL SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 592 of 890
Oct 01, 2010

6.4.5 Character classification functions

Character classification functions are as follows.

Table 6-22. Character Classification Functions

Function/Macro Name Outline

isalnum Identification of ASCII letter or numeral

isalpha Identification of ASCII letter

isascii Identification of ASCII code

isupper Identification of upper-case character

islower Identification of lower-case character

isdigit Identification of decimal number

isxdigit Identification of hexadecimal number

iscntrl Identification of control character

ispunct Identification of delimiter character

isspace Identification of space/tab/carriage return/line feed/vertical tab/page feed

isprint Identification of display character

isgraph Identification of display character other than space

CubeSuite Ver.1.40 CHAPTER 6 FUNCTIONAL SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 593 of 890
Oct 01, 2010

Identification of ASCII letter or numeral

[Classification]

Standard library

[Syntax]

#include <ctype.h>
int isalnum(int c);

[Return value]

These macros return a value other than 0 if the value of argument c matches the respective description (i.e., if the
result is true). If the result is false, 0 is returned.

[Description]

This function is a macro that checks whether a given character is an ASCII alphabetic character or numeral. This
macro is defined only when c is made true by isascii or when c is EOF. A compiled subroutine can be used instead of the
macro definition, which is invalidated by using "#undef isalnum".

isalnum

CubeSuite Ver.1.40 CHAPTER 6 FUNCTIONAL SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 594 of 890
Oct 01, 2010

Identification of ASCII letter

[Classification]

Standard library

[Syntax]

#include <ctype.h>
int isalpha(int c);

[Return value]

These macros return a value other than 0 if the value of argument c matches the respective description (i.e., if the
result is true). If the result is false, 0 is returned.

[Description]

This function is a macro that checks whether a given character is an ASCII alphabetic character. This macro is defined
only when c is made true by isascii or when c is EOF. A compiled subroutine can be used instead of the macro definition,
which is invalidated by using "#undef isalpha".

isalpha

CubeSuite Ver.1.40 CHAPTER 6 FUNCTIONAL SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 595 of 890
Oct 01, 2010

Identification of ASCII code

[Classification]

Standard library

[Syntax]

#include <ctype.h>
int isascii(int c);

[Return value]

These macros return a value other than 0 if the value of argument c matches the respective description (i.e., if the
result is true). If the result is false, 0 is returned.

[Description]

This function is a macro that checks whether a given character is an ASCII code (0x00 to 0x7F). This macro is defined
for all integer values. A compiled subroutine can be used instead of the macro definition, which is invalidated by using
"#undef isascii".

isascii

CubeSuite Ver.1.40 CHAPTER 6 FUNCTIONAL SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 596 of 890
Oct 01, 2010

Identification of upper-case character

[Classification]

Standard library

[Syntax]

#include <ctype.h>
int isupper(int c);

[Return value]

These macros return a value other than 0 if the value of argument c matches the respective description (i.e., if the
result is true). If the result is false, 0 is returned.

[Description]

This function is a macro that checks whether a given character is an uppercase character (A to Z). This macro is
defined only when c is made true by isascii or when c is EOF. A compiled subroutine can be used instead of the macro
definition, which is invalidated by using "#undef isupper".

isupper

CubeSuite Ver.1.40 CHAPTER 6 FUNCTIONAL SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 597 of 890
Oct 01, 2010

Identification of lower-case character

[Classification]

Standard library

[Syntax]

#include <ctype.h>
int islower(int c);

[Return value]

These macros return a value other than 0 if the value of argument c matches the respective description (i.e., if the
result is true). If the result is false, 0 is returned.

[Description]

This function is a macro that checks whether a given character is a lowercase character (a to z). This macro is defined
only when c is made true by isascii or when c is EOF. A compiled subroutine can be used instead of the macro definition,
which is invalidated by using "#undef islower".

islower

CubeSuite Ver.1.40 CHAPTER 6 FUNCTIONAL SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 598 of 890
Oct 01, 2010

Identification of decimal number

[Classification]

Standard library

[Syntax]

#include <ctype.h>
int isdigit(int c);

[Return value]

These macros return a value other than 0 if the value of argument c matches the respective description (i.e., if the
result is true). If the result is false, 0 is returned.

[Description]

This function is a macro that checks whether a given character is a decimal number. This macro is defined only when
c is made true by isascii or when c is EOF. A compiled subroutine can be used instead of the macro definition, which is
invalidated by using "#undef isdigit".

isdigit

CubeSuite Ver.1.40 CHAPTER 6 FUNCTIONAL SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 599 of 890
Oct 01, 2010

Identification of hexadecimal number

[Classification]

Standard library

[Syntax]

#include <ctype.h>
int isxdigit(int c);

[Return value]

These macros return a value other than 0 if the value of argument c matches the respective description (i.e., if the
result is true). If the result is false, 0 is returned.

[Description]

This function is a macro that checks whether a given character is a hexadecimal number (0 to 9, a to f, or A to F). This
macro is defined only when c is made true by isascii or when c is EOF. A compiled subroutine can be used instead of the
macro definition, which is invalidated by using "#undef isxdigit".

isxdigit

CubeSuite Ver.1.40 CHAPTER 6 FUNCTIONAL SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 600 of 890
Oct 01, 2010

Identification of control character

[Classification]

Standard library

[Syntax]

#include <ctype.h>
int iscntrl(int c);

[Return value]

These macros return a value other than 0 if the value of argument c matches the respective description (i.e., if the
result is true). If the result is false, 0 is returned.

[Description]

This function is a macro that checks whether a given character is a control character (0x00 to 0x1F or 0x7F). This
macro is defined only when c is made true by isascii or when c is EOF. A compiled subroutine can be used instead of the
macro definition, which is invalidated by using "#undef iscntrl".

iscntrl

CubeSuite Ver.1.40 CHAPTER 6 FUNCTIONAL SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 601 of 890
Oct 01, 2010

Identification of delimiter character

[Classification]

Standard library

[Syntax]

#include <ctype.h>
int ispunct(int c);

[Return value]

These macros return a value other than 0 if the value of argument c matches the respective description (i.e., if the
result is true). If the result is false, 0 is returned.

[Description]

This function is a macro that checks whether a given character is a printable delimiter (isgraph(c) && !isalnum(c)). This
macro is defined only when c is made true by isascii or when c is EOF. A compiled subroutine can be used instead of the
macro definition, which is invalidated by using "#undef ispunct".

ispunct

CubeSuite Ver.1.40 CHAPTER 6 FUNCTIONAL SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 602 of 890
Oct 01, 2010

Identification of space/tab/carriage return/line feed/vertical tab/page feed

[Classification]

Standard library

[Syntax]

#include <ctype.h>
int isspace(int c);

[Return value]

These macros return a value other than 0 if the value of argument c matches the respective description (i.e., if the
result is true). If the result is false, 0 is returned.

[Description]

This function is a macro that checks whether a given character is a space, tap, line feed, carriage return, vertical tab, or
form feed (0x09 to 0x0D, or 0x20). This macro is defined only when c is made true by isascii or when c is EOF. A
compiled subroutine can be used instead of the macro definition, which is invalidated by using "#undef isspace".

isspace

CubeSuite Ver.1.40 CHAPTER 6 FUNCTIONAL SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 603 of 890
Oct 01, 2010

Identification of display character

[Classification]

Standard library

[Syntax]

#include <ctype.h>
int isprint(int c);

[Return value]

These macros return a value other than 0 if the value of argument c matches the respective description (i.e., if the
result is true). If the result is false, 0 is returned.

[Description]

This function is a macro that checks whether a given character is a display character (0x20 to 0x7E). This macro is
defined only when c is made true by isascii or when c is EOF. A compiled subroutine can be used instead of the macro
definition, which is invalidated by using "#undef isprint".

[Example]

isprint

#include <ctype.h>

void func(void) {

 int i, j = 0;

 char s[50];

 for (i =50; i <= 99; i++) {

 if (isprint(i)) { /*Store the printable characters in the code

 range 50 to 99, in the array s.*/

 s[j] = i;

 j++;

 }

 }

 :

}

CubeSuite Ver.1.40 CHAPTER 6 FUNCTIONAL SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 604 of 890
Oct 01, 2010

Identification of display character other than space

[Classification]

Standard library

[Syntax]

#include <ctype.h>
int isgraph(int c);

[Return value]

These macros return a value other than 0 if the value of argument c matches the respective description (i.e., if the
result is true). If the result is false, 0 is returned.

[Description]

This function is a macro that checks whether a given character is a display characterNote (0x20 to 0x7E) other than
space (0x20). This macro is defined only when c is made true by isascii or when c is EOF. A compiled subroutine can be
used instead of the macro definition, which is invalidated by using "#undef isgraph".

Note printing character

isgraph

CubeSuite Ver.1.40 CHAPTER 6 FUNCTIONAL SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 605 of 890
Oct 01, 2010

6.4.6 Standard I/O functions

Standard I/O functions are as follows.

Table 6-23. Standard I/O Functions

Function/Macro Name Outline

fread Read from stream

getc Read character from stream (same as fgetc)

fgetc Read character from stream (same as getc)

fgets Read one line from stream

fwrite Write to stream

putc Write character to stream

fputc Write character to stream

fputs Output character string to stream

getchar Read one character from standard input

gets Read character string from standard input

putchar Write character to standard output stream

puts Output character string to standard output stream

sprintf Output with format

fprintf Output text in specified format to stream

vsprintf Write text in specified format to character string

printf Output text in specified format to standard output stream

vfprintf Write text in specified format to stream

vprintf Write text in specified format to standard output stream

sscanf Input with format

fscanf Read and interpret data from stream

scanf Read and interpret text from standard input stream

ungetc Push character back to input stream

rewind Reset file position indicator

perror Error processing

CubeSuite Ver.1.40 CHAPTER 6 FUNCTIONAL SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 606 of 890
Oct 01, 2010

Read from stream

Remark These functions are not supported by the debugging functions which CubeSuite provides.

[Classification]

Standard library

[Syntax]

#include <stdio.h>
size_t fread(void *ptr, size_t size, size_t nmemb, FILE *stream);

[Return value]

The number of elements that were input (nmemb) is returned.
Error return does not occur.

[Description]

This function inputs nmemb elements of size from the input stream pointed to by stream and stores them in ptr. Only
the standard input/output stdin can be specified for stream.

[Example]

fread

#include <stdio.h>

void func(void) {

 struct {

 int c;

 double d;

 } buf[10];

 fread(buf, sizeof(buf[0]), sizeof(buf) / sizeof(buf [0]), stdin);

}

CubeSuite Ver.1.40 CHAPTER 6 FUNCTIONAL SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 607 of 890
Oct 01, 2010

Read character from stream (same as fgetc)

Remark These functions are not supported by the debugging functions which CubeSuite provides.

[Classification]

Standard library

[Syntax]

#include <stdio.h>
int getc(FILE *stream);

[Return value]

The input character is returned.
Error return does not occur.

[Description]

This function inputs one character from the input stream pointed to by stream. Only the standard input/output stdin can
be specified for stream.

getc

CubeSuite Ver.1.40 CHAPTER 6 FUNCTIONAL SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 608 of 890
Oct 01, 2010

Read character from stream (same as getc)

Remark These functions are not supported by the debugging functions which CubeSuite provides.

[Classification]

Standard library

[Syntax]

#include <stdio.h>
int fgetc(FILE *stream);

[Return value]

The input character is returned.
Error return does not occur.

[Description]

This function inputs one character from the input stream pointed to by stream. Only the standard input/output stdin can
be specified for stream.

[Example]

fgetc

#include <stdio.h>

int func(void) {

 int c;

 c = fgetc(stdin);

 return(c);

}

CubeSuite Ver.1.40 CHAPTER 6 FUNCTIONAL SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 609 of 890
Oct 01, 2010

Read one line from stream

Remark These functions are not supported by the debugging functions which CubeSuite provides.

[Classification]

Standard library

[Syntax]

#include <stdio.h>
char *fgets(char *s, int n, FILE *stream);

[Return value]

s is returned.
Error return does not occur.

[Description]

This function inputs at most n-1 characters from the input stream pointed to by stream and stores them in s. Character
input is also ended by the detection of a new-line character. In this case, the new-line character is also stored in s. The
end-of-string null character is stored at the end in s. Only the standard input/output stdin can be specified for stream.

fgets

CubeSuite Ver.1.40 CHAPTER 6 FUNCTIONAL SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 610 of 890
Oct 01, 2010

Write to stream

Remark These functions are not supported by the debugging functions which CubeSuite provides.

[Classification]

Standard library

[Syntax]

#include <stdio.h>
size_t fwrite(const void *ptr, size_t size, size_t nmemb, FILE *stream);

[Return value]

The number of elements that were output (nmemb) is returned.
Error return does not occur.

[Description]

This function outputs nmemb elements of size from the array pointed to by ptr to the output stream pointed to by
stream. Only the standard input/output stdout or stderr can be specified for stream.

fwrite

CubeSuite Ver.1.40 CHAPTER 6 FUNCTIONAL SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 611 of 890
Oct 01, 2010

Write character to stream

Remark These functions are not supported by the debugging functions which CubeSuite provides.

[Classification]

Standard library

[Syntax]

#include <stdio.h>
int putc(int c, FILE *stream);

[Return value]

The character c is returned.
Error return does not occur.

[Description]

This function outputs the character c to the output stream pointed to by stream. Only the standard input/output stdout
or stderr can be specified for stream.

putc

CubeSuite Ver.1.40 CHAPTER 6 FUNCTIONAL SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 612 of 890
Oct 01, 2010

Write character to stream

Remark These functions are not supported by the debugging functions which CubeSuite provides.

[Classification]

Standard library

[Syntax]

#include <stdio.h>
int fputc(int c, FILE *stream);

[Return value]

The character c is returned.
Error return does not occur.

[Description]

This functionoutputs the character c to the output stream pointed to by stream. Only the standard input/output stdout or
stderr can be specified for stream.

[Example]

fputc

#include <stdio.h>

void func(void) {

 fputc('a', stdout);

}

CubeSuite Ver.1.40 CHAPTER 6 FUNCTIONAL SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 613 of 890
Oct 01, 2010

Output character string to stream

Remark These functions are not supported by the debugging functions which CubeSuite provides.

[Classification]

Standard library

[Syntax]

#include <stdio.h>
int fputs(const char *s, FILE *stream);

[Return value]

0 is returned.
Error return does not occur.

[Description]

This function outputs the string s to the output stream pointed to by stream. The end-of-string null character is not
output. Only the standard input/output stdout or stderr can be specified for stream.

fputs

CubeSuite Ver.1.40 CHAPTER 6 FUNCTIONAL SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 614 of 890
Oct 01, 2010

Read one character from standard input

Remark These functions are not supported by the debugging functions which CubeSuite provides.

[Classification]

Standard library

[Syntax]

#include <stdio.h>
int getchar(void);

[Return value]

The input character is returned.
Error return does not occur.

[Description]

This function inputs one character from the standard input/output stdin.

getchar

CubeSuite Ver.1.40 CHAPTER 6 FUNCTIONAL SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 615 of 890
Oct 01, 2010

Read character string from standard input

Remark These functions are not supported by the debugging functions which CubeSuite provides.

[Classification]

Standard library

[Syntax]

#include <stdio.h>
char *gets(char *s);

[Return value]

s is returned.
Error return does not occur.

[Description]

This function inputs characters from the standard input/output stdin until a new-line character is detected and stores
them in s. The new-line character that was input is discarded, and an end-of-string null character is stored at the end in s.

gets

CubeSuite Ver.1.40 CHAPTER 6 FUNCTIONAL SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 616 of 890
Oct 01, 2010

Write character to standard output stream

Remark These functions are not supported by the debugging functions which CubeSuite provides.

[Classification]

Standard library

[Syntax]

#include <stdio.h>
int putchar(int c);

[Return value]

The character c is returned.
Error return does not occur.

[Description]

This function outputs the character c to the standard input/output stdout.

putchar

CubeSuite Ver.1.40 CHAPTER 6 FUNCTIONAL SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 617 of 890
Oct 01, 2010

Output character string to standard output stream

Remark These functions are not supported by the debugging functions which CubeSuite provides.

[Classification]

Standard library

[Syntax]

#include <stdio.h>
int puts(const char *s);

[Return value]

0 is returned.
Error return does not occur.

[Description]

This function outputs the string s to the standard input/output stdout. The end-of-string null character is not output, but
a new-line character is output in its place.

puts

CubeSuite Ver.1.40 CHAPTER 6 FUNCTIONAL SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 618 of 890
Oct 01, 2010

Output with format

[Classification]

Standard library

[Syntax]

#include <stdio.h>
int sprintf(char *s, const char *format[, arg, ...]);

[Return value]

The number of characters that were output (excluding the null character (\0)) is returned.
Error return does not occur.

[Description]

This function applies the format specified by the string pointed to by format to the respective arg arguments, and writes
out the formatted data that was output as a result to the array pointed to by s.

If there are not sufficient arguments for the format, the operation is undefined. If the end of the formatted string is
reached, control returns. If there are more arguments that those required by the format, the excess arguments are
ignored. If the area of s overlaps one of the arguments, the operation is undefined.

The argument format specifies "the output to which the subsequent argument is to be converted". The null character
(\0) is appended at the end of written characters (the null character (\0) is not counted in a return value).

The format consists of the following two types of directives:

Each conversion specification begins with character "%" (to insert "%" in the output, specify "%%" in the format string).
The following appear after the "%":

%[flag][field-width][precision][size][type-specification-character]

The meaning of each conversion specification is explained below.

(1) flag
Zero or more flags, which qualify the meaning of the conversion specification, are placed in any order.
The flag characters and their meanings are as follows:

sprintf

Ordinary characters Characters that are copied directly without conversion (other than "%").

Conversion specifications Specifications that fetch zero or more arguments and assign a specification.

- The result of the conversion will be left-justified in the field, with the right side filled with blanks (if this flag
is not specified, the result of the conversion is right-justified).

+ The result of a signed conversion will start with a + or - sign (if this flag is not specified, the result of the
conversion starts with a sign only when a negative value has been converted).

Space If the first character of a signed conversion is not a sign and a signed conversion is not generated a char-
acter, a space (" ") will be appended to the beginning of result of the conversion. If both the space flag
and + flag appear, the space flag is ignored.

CubeSuite Ver.1.40 CHAPTER 6 FUNCTIONAL SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 619 of 890
Oct 01, 2010

Note Normally, a decimal point appears only when a digit follows it.

(2) field width
This is an optional minimum field width. If the converted value is smaller than this field width, the left side is filled
with spaces (if the left justification flag explained above is assigned, the right side will be filled with spaces). This
field width takes the form of "*" or a decimal integer. If "*" is specified, an int type argument is used as the field
width. A negative field width is not supported. If an attempt is made to specify a negative field width, it is inter-
preted as a minus (-) flag appended to the beginning of a positive field width.

(3) precision
For d, i, o, u, x, or X conversion, the value assigned for the precision is the minimum number of digits to appear.
For e, f, or E conversion, it is the number of digits to appear after the decimal point. For g or G conversion, it is the
maximum number of significant digits. The precision takes the form of "*" or "." followed by a decimal integer. If "*"
is specified, an int type argument is used as the precision. If a negative precision is specified, it is treated as if the
precision were omitted. If only "." is specified, the precision is assumed to be 0. If the precision appears together
with a conversion specification other than the above, the operation is undefined.

(4) size
This is an arbitrary optional size character h, l, ll, or L, which changes the default method for interpreting the data
type of the corresponding argument.
When h is specified, a following d, i, o, u, x, or X type specification is forcibly applied to a short or unsigned short
argument.
When l is specified, a following d, i, o, u, x, or X type specification is forcibly applied to a long or unsigned long
argument. l is also causes a following n type specification to be forcibly applied to a pointer to long argument. If
another type specification character is used together with h or l, the operation is undefined.
When ll is specified, a following d, i, o, u, x, or X type specification is forcibly applied to a long long and unsigned
long long argument. Furthermore, for ll, a following n type specification is forcibly applied to a long long pointer. If
another type specification character is used together with ll, the operation is undefined.
When L is specified, a following e, E, f, g, or G type specification is forcibly applied to a long double argument. If
another type specification character is used together with L, the operation is undefined.

(5) type specification character
These are characters that specify the type of conversion that is to be applied.
The characters that specify conversion types and their meanings are as follows.

The result is to be converted to an alternate format. For o conversion, the precision is increased so that
the first digit of the conversion result is 0. For x or X conversion, 0x or 0X is appended to the beginning
of a non-zero conversion result. For e, f, g, E, or G conversion, a decimal point "." is added to the con-
version result even if no digits follow the decimal pointNote. For g or G conversion, trailing zeros will not
be removed from the conversion result. The operation is undefined for conversions other than the
above.

0 For d, e, f, g, i, o, u, x, E, G, or X conversion, zeros are added following the specification of the sign or
base to fill the field width.

If both the 0 flag and - flag are specified, the 0 flag is ignored. For d, i, o, u, x, or X conversion, when the
precision is specified, the zero (0) flag is ignored.

Note that 0 is interpreted as a flag and not as the beginning of the field width.

The operation is undefined for conversion other than the above.

% Output the character "%". No argument is converted. The conversion specification is "%%".

c Convert an int type argument to unsigned char type and output the characters of the conversion result.

CubeSuite Ver.1.40 CHAPTER 6 FUNCTIONAL SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 620 of 890
Oct 01, 2010

[Example]

d Convert an int type argument to a signed decimal number.

e, E Convert a double type argument to [-]d.dddde+dd format, which has one digit before the decimal point
(not 0 if the argument is not 0) and the number of digits after the decimal point is equal to the precision.
The E conversion specification generates a number in which the exponent part starts with "E" instead of
"e".

f Convert a double type argument to decimal notation of the form [-]dddd.dddd.

g, G Convert a double type argument to e (E for a G conversion specification) or f format, with the number of
digits in the mantissa specified for the precision. Trailing zeros of the conversion result are excluded
from the fractional part. The decimal point appears only when it is followed by a digit.

i Perform the same conversion as d.

n Store the number of characters that were output in the same object. A pointer to int type is used as the
argument.

p Output a pointer in an implementation-defined format. The CX handles a pointer as unsigned long (this
is the same as the lu specification).

o, u, x, X Convert an unsigned int type argument to octal notation (o), unsigned decimal notation (u), or unsigned
hexadecimal notation (x or X) with dddd format. For x conversion, the letters abcdef are used. For X
conversion, the letters ABCDEF are used.

s The argument must be a pointer pointing to a character type array. Characters from this array are out-
put up until the null character (\0) indicating termination (the null character (\0) itself is not included). If
the precision is specified, no more than the specified number of characters will be output. If the preci-
sion is not specified or if the precision is greater than the size of this array, make sure that this array
includes the null character (\0).

#include <stdio.h>

void func(int val) {

 char s[20];

 sprintf(s, "%-10.51x\n", val); /*Specifies left-justification, field width 10,

 precision 5, size long, and hexadecimal notation

 for the value of val, and outputs the result

 with an appended new-line character to the array

 pointed to by s.*/

}

CubeSuite Ver.1.40 CHAPTER 6 FUNCTIONAL SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 621 of 890
Oct 01, 2010

Output text in specified format to stream

Remark These functions are not supported by the debugging functions which CubeSuite provides.

[Classification]

Standard library

[Syntax]

#include <stdio.h>
int fprintf(FILE *stream, const char *format[, arg, ...]);

[Return value]

The number of characters that were output is returned.

[Description]

This function applies the format specified by the string pointed to by format to the respective arg arguments, and
outputs the formatted data that was output as a result to stream. Only the standard input/output stdout or stderr can be
specified for stream. The method of specifying format is the same as described for the sprintf function. However, fprintf
differs from sprintf in that no null character (\0) is output at the end.

[Caution]

Stdin (standard input) and stdout (standard error) are specified for the argument stream. 1 memory addresses such as
an I/O address is allocated for the I/O destination of stream. To use these streams in combination with a debugger, the
initial values of the stream structure defined in stdio.h must be set. Be sure to set the initial values prior to calling the
function.

[Definition of stream structure in stdio.h]

fprintf

typedef struct {

 int mode; /*with error descriptions*/

 unsigend handle;

 int unget_c;

} FILE;

typedef int fpos_t;

#pragma section sdata

extern FILE __struct_stdin;

extern FILE __struct_stdout;

extern FILE __struct_stderr;

#pragma section default

#define stdin(&__struct_stdin)

#define stdout(&__struct_stdout)

#define stderr(&__struct_stderr)

CubeSuite Ver.1.40 CHAPTER 6 FUNCTIONAL SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 622 of 890
Oct 01, 2010

The first structure member, mode, indicates the I/O status and is internally defined as ACCSD_OUT/ADDSD_IN. The
third member, unget_c, indicates the pushed-back character (stdin only) setting and is internally defined as -1.

When the definition is -1, it indicates that there is no pushed-back character. The second member, handle, indicates
the I/O address. Set the value according to the debugger to be used.

Example I/O address setting

[Example]

__struct_stdout.handle = 0xFFFFF000;

__struct_stderr.handle = 0x00FFF000;

__struct_stdin.handle = 0xFFFFF002;

#pragma section sdata

extern FILE __struct_stdout;

extern FILE __struct_stderr;

#pragma section default

#define stdin(&__struct_stdin)

#define stdout(&__struct_stdout)

#define stderr(&__struct_stderr)

#include <stdio.h>

void func(int val) {

 fprintf(stdout, "%-10.5x\n", val);

}

/*Example using vfprintf in a general error reporting routine*/

void error(char *function_name, char *format, ...) {

 va_list arg;

 va_start(arg, format);

 fprintf(stderr, "ERROR in %s:", function_name); /*Output function name for which

 error occurred*/

 vfprintf(stderr, format, arg); /*Output remaining messages*/

 va_end(arg);

}

CubeSuite Ver.1.40 CHAPTER 6 FUNCTIONAL SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 623 of 890
Oct 01, 2010

Write text in specified format to character string

[Classification]

Standard library

[Syntax]

#include <stdio.h>
int vsprintf(char *s, const char *format, va_list arg);

[Return value]

The number of characters that were output (excluding the null character (\0)) is returned.
Error return does not occur.

[Description]

This function applies the format specified by the string pointed to by format to the argument string pointed to by arg,
and outputs the formatted data that was output as a result to the array pointed to be s. The vsprintf function is equivalent
to sprintf with the list of a variable number of real arguments replaced by arg. arg must be initialized by the va_start
macro before the vsprintf function is called.

vsprintf

CubeSuite Ver.1.40 CHAPTER 6 FUNCTIONAL SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 624 of 890
Oct 01, 2010

Output text in specified format to standard output stream

Remark These functions are not supported by the debugging functions which CubeSuite provides.

[Classification]

Standard library

[Syntax]

#include <stdio.h>
int printf(const char *format[, arg, ...]);

[Return value]

The number of characters that were output is returned.

[Description]

This function applies the format specified by the string pointed to by format to the respective arg arguments, and
outputs the formatted data that was output as a result to the standard input/output stdout. The method of specifying
format is the same as described for the sprintf function. However, printf differs from sprintf in that no null character (\0) is
output at the end.

[Caution]

Stdin (standard input) and stdout (standard error) are specified for the argument stream. 1 memory addresses such as
an I/O address is allocated for the I/O destination of stream. To use these streams in combination with a debugger, the
initial values of the stream structure defined in stdio.h must be set. Be sure to set the initial values prior to calling the
function.

[Definition of stream structure in stdio.h]

printf

typedef struct {

 int mode; /*with error descriptions*/

 unsigend handle;

 int unget_c;

} FILE;

typedef int fpos_t;

#pragma section sdata

extern FILE __struct_stdin;

extern FILE __struct_stdout;

extern FILE __struct_stderr;

#pragma section default

#define stdin(&__struct_stdin)

#define stdout(&__struct_stdout)

#define stderr(&__struct_stderr)

CubeSuite Ver.1.40 CHAPTER 6 FUNCTIONAL SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 625 of 890
Oct 01, 2010

The first structure member, mode, indicates the I/O status and is internally defined as ACCSD_OUT/ADDSD_IN. The
third member, unget_c, indicates the pushed-back character (stdin only) setting and is internally defined as -1.

When the definition is -1, it indicates that there is no pushed-back character. The second member, handle, indicates
the I/O address. Set the value according to the debugger to be used.

Example I/O address setting

__struct_stdout.handle = 0xFFFFF000;

__struct_stderr.handle = 0x00FFF000;

__struct_stdin.handle = 0xFFFFF002;

#pragma section sdata

extern FILE __struct_stdout;

extern FILE __struct_stderr;

#pragma section default

#define stdin(&__struct_stdin)

#define stdout(&__struct_stdout)

#define stderr(&__struct_stderr)

CubeSuite Ver.1.40 CHAPTER 6 FUNCTIONAL SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 626 of 890
Oct 01, 2010

Write text in specified format to stream

Remark These functions are not supported by the debugging functions which CubeSuite provides.

[Classification]

Standard library

[Syntax]

#include <stdio.h>
int vfprintf(FILE *stream, const char *format, va_list arg);

[Return value]

The number of characters that were output is returned.

[Description]

This function applies the format specified by the string pointed to by format to argument string pointed to by arg, and
outputs the formatted data that was output as a result to stream. Only the standard input/output stdout or stderr can be
specified for stream. The method of specifying format is the same as described for the sprintf function. The vfprintf
function is equivalent to fprintf with the list of a variable number of real arguments replaced by arg. arg must be initialized
by the va_start macro before the vfprintf function is called.

[Caution]

Stdin (standard input) and stdout (standard error) are specified for the argument stream. 1 memory addresses such as
an I/O address is allocated for the I/O destination of stream. To use these streams in combination with a debugger, the
initial values of the stream structure defined in stdio.h must be set. Be sure to set the initial values prior to calling the
function.

[Definition of stream structure in stdio.h]

vfprintf

typedef struct {

 int mode; /*with error descriptions*/

 unsigend handle;

 int unget_c;

} FILE;

typedef int fpos_t;

#pragma section sdata

extern FILE __struct_stdin;

extern FILE __struct_stdout;

extern FILE __struct_stderr;

#pragma section default

#define stdin(&__struct_stdin)

#define stdout(&__struct_stdout)

#define stderr(&__struct_stderr)

CubeSuite Ver.1.40 CHAPTER 6 FUNCTIONAL SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 627 of 890
Oct 01, 2010

The first structure member, mode, indicates the I/O status and is internally defined as ACCSD_OUT/ADDSD_IN. The
third member, unget_c, indicates the pushed-back character (stdin only) setting and is internally defined as -1.

When the definition is -1, it indicates that there is no pushed-back character. The second member, handle, indicates
the I/O address. Set the value according to the debugger to be used.

Example I/O address setting

[Example]

__struct_stdout.handle = 0xFFFFF000;

__struct_stderr.handle = 0x00FFF000;

__struct_stdin.handle = 0xFFFFF002;

#pragma section sdata

extern FILE __struct_stdout;

extern FILE __struct_stderr;

#pragma section default

#define stdin(&__struct_stdin)

#define stdout(&__struct_stdout)

#define stderr(&__struct_stderr)

#include <stdio.h>

void func(int val) {

 fprintf(stdout, "%-10.5x\n", val);

}

/*Example using vfprintf in a general error reporting routine*/

void error(char *function_name, char *format, ...) {

 va_list arg;

 va_start(arg, format);

 fprintf(stderr, "ERROR in %s:", function_name); /*Output function name for which

 error occurred*/

 vfprintf(stderr, format, arg); /*Output remaining messages*/

 va_end(arg);

}

CubeSuite Ver.1.40 CHAPTER 6 FUNCTIONAL SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 628 of 890
Oct 01, 2010

Write text in specified format to standard output stream

Remark These functions are not supported by the debugging functions which CubeSuite provides.

[Classification]

Standard library

[Syntax]

#include <stdio.h>
int vprintf(const char *format, va_list arg);

[Return value]

The number of characters that were output is returned.

[Description]

This function applies the format specified by the string pointed to by format to the argument string pointed to by arg,
and outputs the formatted data that was output as a result to the standard input/output stdout. The method of specifying
format is the same as described for the sprintf function. The vprintf function is equivalent to printf with the list of a variable
number of real arguments replaced by arg. arg must be initialized by the va_start macro before the vprintf function is
called.

[Caution]

Stdin (standard input) and stdout (standard error) are specified for the argument stream. 1 memory addresses such as
an I/O address is allocated for the I/O destination of stream. To use these streams in combination with a debugger, the
initial values of the stream structure defined in stdio.h must be set. Be sure to set the initial values prior to calling the
function.

[Definition of stream structure in stdio.h]

vprintf

typedef struct {

 int mode; /*with error descriptions*/

 unsigend handle;

 int unget_c;

} FILE;

typedef int fpos_t;

#pragma section sdata

extern FILE __struct_stdin;

extern FILE __struct_stdout;

extern FILE __struct_stderr;

#pragma section default

#define stdin(&__struct_stdin)

#define stdout(&__struct_stdout)

#define stderr(&__struct_stderr)

CubeSuite Ver.1.40 CHAPTER 6 FUNCTIONAL SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 629 of 890
Oct 01, 2010

The first structure member, mode, indicates the I/O status and is internally defined as ACCSD_OUT/ADDSD_IN. The
third member, unget_c, indicates the pushed-back character (stdin only) setting and is internally defined as -1.

When the definition is -1, it indicates that there is no pushed-back character. The second member, handle, indicates
the I/O address. Set the value according to the debugger to be used.

Example I/O address setting

__struct_stdout.handle = 0xFFFFFF000;

__struct_stderr.handle = 0x00FFF000;

__struct_stdin.handle = 0xFFFFFF002;

#pragma section sdata

extern FILE __struct_stdout;

extern FILE __struct_stderr;

#pragma section default

#define stdin(&__struct_stdin)

#define stdout(&__struct_stdout)

#define stderr(&__struct_stderr)

CubeSuite Ver.1.40 CHAPTER 6 FUNCTIONAL SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 630 of 890
Oct 01, 2010

nput with format

[Classification]

Standard library

[Syntax]

#include <stdio.h>
int sscanf(const char *s, const char *format[, arg, ...]);

[Return value]

The number of input fields for which scanning, conversion, and storage were executed normally is returned. The return
value does not include scanned fields that were not stored. If an attempt is made to read to the end of the file, the return
value is EOF. If no field was stored, the return value is 0.

[Description]

This function reads the input to be converted according to the format specified by the character string pointed to by for-
mat from the array pointed to by s and treats the arg arguments that follow format as pointers that point to objects for stor-
ing the converted input.

An input string that can be recognized and "the conversion that is to be performed for assignment" are specified for for-
mat. If sufficient arguments do not exist for format, the operation is undefined. If format is used up even when arguments
remain, the remaining arguments are ignored.

The format consists of the following three types of directives:

Each conversion specification starts with "%". The following appear after the "%":

%[assignment-suppression-character][field-width][size][type-specification-character]

Each conversion specification is explained below.

(1) Assignment suppression character
The assignment suppression character "*" suppresses the interpretation and assignment of the input field.

sscanf

One or more Space characters Space (), tab (\t), or new-line (\n).

If a space character is found in the string when sscanf is executed, all consecutive
space characters are read until the next non-space character appears (the space char-
acters are not stored).

Ordinary characters All ASCII characters other than "%".

If an ordinary character is found in the string when sscanf is executed, that character is
read but not stored. sscanf reads a string from the input field, converts it into a value of
a specific type, and stores it at the position specified by the argument, according to the
conversion specification. If an explicit match does not occur according to the conversion
specification, no subsequent space character is read.

Conversion specification Fetches 0 or more arguments and directs the conversion.

CubeSuite Ver.1.40 CHAPTER 6 FUNCTIONAL SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 631 of 890
Oct 01, 2010

(2) field width
This is a non-zero decimal integer that defines the maximum field width.
It specifies the maximum number of characters that are read before the input field is converted. If the input field is
smaller than this field width, sscanf reads all the characters in the field and then proceeds to the next field and its
conversion specification.
If a space character or a character that cannot be converted is found before the number of characters equivalent to
the field width is read, the characters up to the white space or the character that cannot be converted are read and
stored. Then, sscanf proceeds to the next conversion specification.

(3) size
This is an arbitrary optional size character h, l, ll, or L, which changes the default method for interpreting the data
type of the corresponding argument.
When h is specified, a following d, i, n, o, u, or x type specification is forcibly converted to short int type and stored
as short type. Nothing is done for c, e, f, n, p, s, D, I, O, U, or X.
When l is specified, a following d, i, n, o, u, or x type specification is forcibly converted to long int type and stored as
long type. An e, f, or g type specification is forcibly converted to double type and stored as double type. Nothing is
done for c, n, p, s, D, I, O, U, and X.
When ll is specified, a following d, i, o, u, x, or X type specification is forcibly converted to long long type and stored
as long long type. Nothing is done for other type specifications.
When L is specified, a following e, f, or g type specification is forcibly converted to long double type and stored as
long double type. Nothing is done for other type specifications.
In cases other than the above, the operation is undefined.

(4) type specification character
These are characters that specify the type of conversion that is to be applied.

The characters that specify conversion types and their meanings are as follows.

% Match the character "%". No conversion or assignment is performed. The conversion specification is
"%%".

c Scan one character. The corresponding argument should be "char *arg".

d Read a decimal integer into the corresponding argument. The corresponding argument should be "int
*arg".

e, f, g Read a floating-point number into the corresponding argument. The corresponding argument should be
"float *arg".

i Read a decimal, octal, or hexadecimal integer into the corresponding argument. The corresponding
argument should be "int *arg".

n Store the number of characters that were read in the corresponding argument. The corresponding argu-
ment should be "int *arg".

o Read an octal integer into the corresponding argument. The corresponding argument must be "int *arg".

p Store the pointer that was scanned. This is an implementation definition.

The ca processes %p and %U in exactly the same manner. The corresponding argument should be
"void **arg".

s Read a string into a given array. The corresponding argument should be "char arg[]".

u Read an unsigned decimal integer into the corresponding argument. The corresponding argument
should be "unsigned int *arg".

x, X Read a hexadecimal integer into the corresponding argument. The corresponding argument should be
"int *arg".

CubeSuite Ver.1.40 CHAPTER 6 FUNCTIONAL SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 632 of 890
Oct 01, 2010

Make sure that a floating-point number (type specification characters e, f, g, E, F, and G) corresponds to thefollow-
ing general format.

[+ | -] ddddd [.] ddd [E | e [+ | -] ddd]

However, the portions enclosed by [] in the above format are arbitrarily selected, and ddd indicates a decimal digit.

D Read a decimal integer into the corresponding argument. The corresponding argument should be "long
*arg".

E, F, G Read a floating-point number into the corresponding argument. The corresponding argument should be
"double *arg".

I Read a decimal, octal, or hexadecimal integer into the corresponding argument. The corresponding
argument should be "long *arg".

O Read an octal integer into the corresponding argument. The corresponding argument should be "long
*arg".

U Read an unsigned decimal integer into the corresponding argument. The corresponding argument
should be "unsigned long *arg".

[] Read a non-empty string into the memory area starting with argument arg. This area must be large
enough to accommodate the string and the null character (\0) that is automatically appended to indicate
the end of the string. The corresponding argument should be "char *arg".

The character pattern enclosed by [] can be used in place of the type specification character s. The
character pattern is a character set that defines the search set of the characters constituting the input
field of sscanf. If the first character within [] is "^", the search set is complemented, and all ASCII char-
acters other than the characters within [] are included. In addition, a range specification feature that can
be used as a shortcut is also available. For example, %[0-9] matches all decimal numbers. In this set,
"-" cannot be specified as the first or last character. The character preceding "-" must be less in lexical
sequence than the succeeding character.

- %[abcd]
Matches character strings that include only a, b, c, and d.

- %[^abcd]
Matches character strings that include any characters other than a, b, c, and d.

- %[A-DW-Z]
Matches character strings that include A, B, C, D, W, X, Y, and Z.

- %[z-a]
Matches z, -, and a (this is not considered a range specification).

CubeSuite Ver.1.40 CHAPTER 6 FUNCTIONAL SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 633 of 890
Oct 01, 2010

[Caution]

- sscanf may stop scanning a specific field before the normal end-of-field character is reached or may stop com-
pletely.

- sscanf stops scanning and storing a field and moves to the next field under the following conditions.
- The substitution suppression character (*) appears after "%" in the format specification, and the input field at

that point has been scanned but not stored.
- A field width (positive decimal integer) specification character was read.
- The character to be read next cannot be converted according to the conversion specification (for example, if Z

is read when the specification is a decimal number).
- The next character in the input field does not appear in the search set (or appears in the complement search

set).
If sscanf stops scanning the input field at that point because of any of the above reasons, it is assumed that the
next character has not yet been read, and this character is used as the first character of the next field or the first
character for the read operation to be executed after the input.

- sscanf ends under the following conditions:
- The next character in the input field does not match the corresponding ordinary character in the string to be

converted.
- The next character in the input field is EOF.
- The string to be converted ends.

- If a list of characters that is not part of the conversion specification is included in the string to be converted, make
sure that the same list of characters does not appear in the input. sscanf scans matching characters but does not
store them. If there was a mismatch, the first character that does not match remains in the input as if it were not
read.

[Example]

#include <stdio.h>

void func(void) {

 int i, n;

 float x;

 const char *s;

 char name[10];

 s = "23 11.1e-1 NAME";

 n = sscanf(s,"%d%f%s", &i, &x, name); /*Stores 23 in i, 1.110000 in x, and "NAME"

 in name. The return value n is 3.*/

}

CubeSuite Ver.1.40 CHAPTER 6 FUNCTIONAL SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 634 of 890
Oct 01, 2010

Read and interpret data from stream

Remark These functions are not supported by the debugging functions which CubeSuite provides.

[Classification]

Standard library

[Syntax]

#include <stdio.h>
int fscanf(FILE *stream, const char *format[, arg, ...]);

[Return value]

The number of input fields for which scanning, conversion, and storage were executed normally is returned. The return
value does not include scanned fields that were not stored. If an attempt is made to read to the end of the file, the return
value is EOF. If no field was stored, the return value is 0.

[Description]

Reads the input to be converted according to the format specified by the character string pointed to by format from
stream and treats the arg arguments that follow format as objects for storing the converted input. Only the standard input/
output stdin can be specified for stream. The method of specifying format is the same as described for the sscanf
function.

fscanf

CubeSuite Ver.1.40 CHAPTER 6 FUNCTIONAL SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 635 of 890
Oct 01, 2010

Read and interpret text from standard output stream

Remark These functions are not supported by the debugging functions which CubeSuite provides.

[Classification]

Standard library

[Syntax]

#include <stdio.h>
int scanf(const char *format[, arg, ...]);

[Return value]

The number of input fields for which scanning, conversion, and storage were executed normally is returned. The return
value does not include scanned fields that were not stored. If an attempt is made to read to the end of the file, the return
value is EOF. If no field was stored, the return value is 0.

[Description]

Reads the input to be converted according to the format specified by the character string pointed to by format from the
standard input/output stdin and treats the arg arguments that follow format as objects for storing the converted input. The
method of specifying format is the same as described for the sscanf function.

[Example]

scanf

#include <stdio.h>

void func(void) {

 int i, n;

 double x;

 char name[10];

 n = scanf("%d%lf%s", &i, &x, name); /*Perform formatted input of input from stdin

 using the format "23 11.1e-1 NAME"*/

}

CubeSuite Ver.1.40 CHAPTER 6 FUNCTIONAL SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 636 of 890
Oct 01, 2010

Push character back to input stream

Remark These functions are not supported by the debugging functions which CubeSuite provides.

[Classification]

Standard library

[Syntax]

#include <stdio.h>
int ungetc(int c, FILE *stream);

[Return value]

The character c is returned.
Error return does not occur.

[Description]

This function pushes the character c back into the input stream pointed to by stream. However, if c is EOF, no
pushback is performed. The character c that was pushed back will be input as the first character during the next
character input. Only one character can be pushed back by ungetc. If ungetc is executed continuously, only the last
ungetc will have an effect. Only the standard input/output stdin can be specified for stream.

ungetc

CubeSuite Ver.1.40 CHAPTER 6 FUNCTIONAL SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 637 of 890
Oct 01, 2010

Reset file position indicator

Remark These functions are not supported by the debugging functions which CubeSuite provides.

[Classification]

Standard library

[Syntax]

#include <stdio.h>
void rewind(FILE *stream);

[Description]

This function clears the error indicator of the input stream pointed to by stream, and positions the file position indicator
at the beginning of the file.

However, only the standard input/output stdin can be specified for stream. Therefore, rewind only has the effect of dis-
carding the character that was pushed back by ungetc.

rewind

CubeSuite Ver.1.40 CHAPTER 6 FUNCTIONAL SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 638 of 890
Oct 01, 2010

Error processing

[Classification]

Standard library

[Syntax]

#include <stdio.h>
void perror(const char *s);

[Description]

This function outputs to stderr the error message that corresponds to global variable errno.
The message that is output is as follows.

s_fix is as follows.

[Example]

perror

When s is not NULL fprintf(stderr, "%s:%s\n", s, s_fix);

When s is NULL fprintf(stderr, "%s\n", s_fix);

When errno is EDOM "EDOM error"

When errno is ERANGE "ERANGE error"

When errno is 0 "no error"

Otherwise "error xxx" (xxxは abs (errno) % 1000)

#include <stdio.h>

void func(double x) {

 double d;

 errno = 0;

 d = exp(x);

 if(errno)

 perror("func1"); /*If a calculation exception is generated by exp perror

 is called*/

}

CubeSuite Ver.1.40 CHAPTER 6 FUNCTIONAL SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 639 of 890
Oct 01, 2010

6.4.7 Standard utility functions

Standard Utility functions are as follows.

Table 6-24. Standard Utility Functions

Function/Macro Name Outline

abs Output absolute value (int type)

labs Output absolute value (long type)

llabs Output absolute value (long long type)

bsearch Binary search

qsort Sort

div Division (int type)

ldiv Division (long type)

lldiv Division (long long type)

itoa Conversion of integer (int type) to character string

ltoa Conversion of integer (long type) to character string

ultoa Conversion of integer (unsigned long type) to character string

lltoa Conversion of integer (long long type) to character string

ulltoa Conversion of integer (unsigned long long type) to character string

ecvt Conversion of floating-point value to numeric character string (with total number of characters
specified)

ecvtf Conversion of floating-point value to numeric character string (with total number of characters
specified)

fcvt Conversion of floating-point value to numeric character string (with total number of characters
specified)

fcvtf Conversion of floating-point value to numeric character string (with number of digits below deci-
mal point specified)

gcvt Conversion of floating-point value to numeric character string (in specified format)

gcvtf Conversion of floating-point value to numeric character string (in specified format)

atoi Conversion of character string to integer (int type)

atol Conversion of character string to integer (long type)

atoll Conversion of character string to integer (long long type)

strtol Conversion of character string to integer (long type) and storing pointer in last character string

strtoul Conversion of character string to integer (unsigned long type) and storing pointer in last character
string

strtoll Conversion of character string to integer (long long type) and storing pointer in last character
string

strtoull Conversion of character string to integer (unsigned long long type) and storing pointer in last
character string

atoff Conversion of character string to floating-point number (float type)

atof Conversion of character string to floating-point number (double type)

strtodf Conversion of character string to floating-point number (float type) (storing pointer in last charac-
ter string)

CubeSuite Ver.1.40 CHAPTER 6 FUNCTIONAL SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 640 of 890
Oct 01, 2010

strtod Conversion of character string to floating-point number (double type) (storing pointer in last char-
acter string

calloc Memory allocation (initialized to zero)

malloc Memory allocation(not initialized to zero)

realloc Memory re-allocation

free Memory release

rand Pseudorandom number sequence generation

srand Setting of type of pseudorandom number sequence

Function/Macro Name Outline

CubeSuite Ver.1.40 CHAPTER 6 FUNCTIONAL SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 641 of 890
Oct 01, 2010

Output absolute value (int type)

[Classification]

Standard library

[Syntax]

#include <stdlib.h>
int abs(int j);

[Return value]

Returns the absolute value of j (size of j), | j |.

[Description]

This function obtains the absolute value of j (size of j), | j |. If j is a negative number, the result is the reversal of j. If j is
not negative, the result is j.

[Example]

abs

#include <stdlib.h>

void func(int l) {

 int val;

 val = -15;

 l = abs(val); /*Returns absolute value of val, 15, to 1.*/

}

CubeSuite Ver.1.40 CHAPTER 6 FUNCTIONAL SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 642 of 890
Oct 01, 2010

Output absolute value (long type)

[Classification]

Standard library

[Syntax]

#include <stdlib.h>
long labs(long j);

[Return value]

Returns the absolute value of j (size of j), | j |.

[Description]

This function obtains the absolute value of j (size of j), | j |. If j is a negative number, the result is the reversal of j. If j is
not negative, the result is j. This function is the same as abs, but uses long type instead of int type, and the return value
is also of long type.

labs

CubeSuite Ver.1.40 CHAPTER 6 FUNCTIONAL SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 643 of 890
Oct 01, 2010

Output absolute value (long long type)

[Classification]

Standard library

[Syntax]

#include <stdlib.h>
long long llabs(long long j);

[Return value]

Returns the absolute value of j (size of j), | j |.

[Description]

This function obtains the absolute value of j (size of j), | j |. If j is a negative number, the result is the reversal of j. If j is
not negative, the result is j. This function is the same as abs, but uses long long type instead of int type, and the return
value is also of long long type.

llabs

CubeSuite Ver.1.40 CHAPTER 6 FUNCTIONAL SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 644 of 890
Oct 01, 2010

Binary search

[Classification]

Standard library

[Syntax]

#include <stdlib.h>
void* bsearch(const void *key, const void *base, size_t nmemb, size_t size, int (*compar)(const void *,

const void*));

[Return value]

A pointer to the element in the array that coincides with key is returned. If there are two or more elements that coincide
with key, the one that has been found first is indicated. If there are not elements that coincide with key, a null pointer is
returned.

[Description]

This function searches an element that coincides with key from an array starting with base by means of binary search.
nmemb is the number of elements of the array. size is the size of each element. The array must be arranged in the
ascending order in respect to the compare function indicated by compar (last argument). Define the compare function
indicated by compar to have two arguments. If the first argument is less than the second, a negative integer must be
returned as the result. If the two arguments coincide, zero must be returned. If the first is greater than the second, a
positive integer must be returned.

[Example]

bsearch

#include <stdlib.h>

#include <string.h>

int compar(char **x, char **y);

void func(void) {

 static char *base[] = {"a", "b", "c", "d", "e", "f"};

 char *key = "c"; /*Search key is "c".*/

 char **ret;

 /*Pointer to "c" is stored in ret.*/

 ret = (char **) bsearch((char *) &key, (char *) base, 6, sizeof(char *), compar);

}

int compar(char **x, char **y) {

 return(strcmp(*x, *y)); /*Returns positive, zero, or negative integer as

 result of comparing arguments.*/

}

CubeSuite Ver.1.40 CHAPTER 6 FUNCTIONAL SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 645 of 890
Oct 01, 2010

Sort

[Classification]

Standard library

[Syntax]

#include <stdlib.h>
void qsort(void *base, size_t nmemb, size_t size, int (*compar)(const void*, const void *));

[Description]

This function sorts the array pointed to by base into ascending order in relation to the comparison function pointed to by
compar. nmemb is the number of array elements, and size is the size of each element. The comparison function pointed
to by compar is the same as the one described for bsearch.

qsort

CubeSuite Ver.1.40 CHAPTER 6 FUNCTIONAL SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 646 of 890
Oct 01, 2010

Division (int type)

[Classification]

Standard library

[Syntax]

#include <stdlib.h>
div_t div(int n, int d);

[Return value]

The structure storing the result of the division is returned.

[Description]

This function is used to divide a value of int type
This function calculates the quotient and remainder resulting from dividing numerator n by denominator d, and stores

these two integers as the members of the following structure div_t.

quot the quotient, and rem is the remainder. If d is not zero, and if "r = div(n, d);", n is a value equal to
"r.rem + d * r.quot".

If d is zero, the resultant quot member has a sign the same as n and has the maximum size that can be expressed.
The rem member is 0.

[Example]

div

typedef struct {

 int quot;

 int rem;

} div_t;

#include <stdlib.h>

void func(void) {

 div_t r;

 r = div(110, 3); /*36 is stored in r.quot, and 2 is stored in r.rem.*/

}

CubeSuite Ver.1.40 CHAPTER 6 FUNCTIONAL SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 647 of 890
Oct 01, 2010

Division (long type)

[Classification]

Standard library

[Syntax]

#include <stdlib.h>
ldiv_t ldiv(long n, long d);

[Return value]

The structure storing the result of the division is returned.

[Description]

This function is used to divide a value of long type.
This function calculates the quotient and remainder resulting from dividing numerator n by denominator d, and stores

these two integers as the members of the following structure div_t.

quot the quotient, and rem is the remainder. If d is not zero, and if "r = div(n, d);", n is a value equal to
"r.rem + d * r.quot".

If d is zero, the resultant quot member has a sign the same as n and has the maximum size that can be expressed.
The rem member is 0.

ldiv

typedef struct {

 long quot;

 long rem;

} ldiv_t;

CubeSuite Ver.1.40 CHAPTER 6 FUNCTIONAL SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 648 of 890
Oct 01, 2010

Division (long long type)

[Classification]

Standard library

[Syntax]

#include <stdlib.h>
lldiv_t lldiv(long long n, long long d);

[Return value]

The structure storing the result of the division is returned.

[Description]

This function is used to divide a value of long long type.
This function calculates the quotient and remainder resulting from dividing numerator n by denominator d, and stores

these two integers as the members of the following structure div_t.

quot the quotient, and rem is the remainder. If d is not zero, and if "r = div(n, d);", n is a value equal to
"r.rem + d * r.quot".

If d is zero, the resultant quot member has a sign the same as n and has the maximum size that can be expressed.
The rem member is 0.

lldiv

typedef struct {

 long long quot;

 long long rem;

} lldiv_t;

CubeSuite Ver.1.40 CHAPTER 6 FUNCTIONAL SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 649 of 890
Oct 01, 2010

Conversion of integer (int type) to character string

[Classification]

Standard library

[Syntax]

#include <stdlib.h>
char *itoa(int value, char *string, int radix);

[Return value]

string is returned.

[Description]

This function converts an int type numeric value to a character string for a radix-based number and stores it in the array
indicated by string. The terminating null character (\0) always is added at the end of the character string. Numeric values
from 2 to 36 can be specified for radix. If radix is 10, value is handled as a signed numeric value, and when value < 0, the
"-" character is appended at the beginning of the character string. Otherwise, value is handled as an unsigned numeric
value. If radix > 10, the lowercase letters a to z are assigned for 10 to 35.

[Example]

itoa

#include <stdlib.h>

void func(void) {

 char buf[128];

 itoa(12345, buf, 16); /*Converts 12345 to a hexadecimal character string*/

}

CubeSuite Ver.1.40 CHAPTER 6 FUNCTIONAL SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 650 of 890
Oct 01, 2010

Conversion of integer (long type) to character string

[Classification]

Standard library

[Syntax]

#include <stdlib.h>
char *ltoa(long int value, char *string, int radix);

[Return value]

string is returned.

[Description]

This function converts a long int type numeric value to a character string for a radix-based number and stores it in the
array indicated by string. Except for the type of value, this is the same as itoa.

ltoa

CubeSuite Ver.1.40 CHAPTER 6 FUNCTIONAL SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 651 of 890
Oct 01, 2010

Conversion of integer (unsigned long type) to character string

[Classification]

Standard library

[Syntax]

#include <stdlib.h>
char *ultoa(unsigned long int value, char *string, int radix);

[Return value]

string is returned.

[Description]

This function converts an unsigned long int type numeric value to a character string for a radix-based number and
stores it in the array indicated by string. Except for the type of value, this is the same as itoa.

ultoa

CubeSuite Ver.1.40 CHAPTER 6 FUNCTIONAL SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 652 of 890
Oct 01, 2010

Conversion of integer (long long type) to character string

[Classification]

Standard library

[Syntax]

#include <stdlib.h>
char *lltoa(long long int value, char *string, int radix);

[Return value]

string is returned.

[Description]

This function converts a long long int type numeric value to a character string for a radix-based number and stores it in
the array indicated by string. Except for the type of value, this is the same as itoa.

lltoa

CubeSuite Ver.1.40 CHAPTER 6 FUNCTIONAL SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 653 of 890
Oct 01, 2010

Conversion of integer (unsigned long long type) to character string

[Classification]

Standard library

[Syntax]

#include <stdlib.h>
char *ulltoa(unsigned long long int value, char *string, int radix);

[Return value]

string is returned.

[Description]

This function converts a unsigned long long int type numeric value to a character string for a radix-based number and
stores it in the array indicated by string. Except for the type of value, this is the same as itoa.

ulltoa

CubeSuite Ver.1.40 CHAPTER 6 FUNCTIONAL SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 654 of 890
Oct 01, 2010

Conversion of floating-point value to numeric character string (with total number of characters specified)

[Classification]

Standard library

[Syntax]

#include <stdlib.h>
char *ecvt(double val, int chars, int *decpt, int *sgn);

[Return value]

Returns a pointer indicating a new character string including the character string representation of val.

[Description]

This function generates a character string indicating a numeric value val of double type in number (terminated with the
null character (\0)). The second argument chars specifies the total number of characters to be written (because only
numbers are written, this argument specifies the valid number of numerals in the converted character string). The digits
of the integer of val are always included.

ecvt

CubeSuite Ver.1.40 CHAPTER 6 FUNCTIONAL SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 655 of 890
Oct 01, 2010

Conversion of floating-point value to numeric character string (with total number of characters specified)

[Classification]

Standard library

[Syntax]

#include <stdlib.h>
char *ecvtf(float val, int chars, int *decpt, int *sgn);

[Return value]

Returns a pointer indicating a new character string including the character string representation of val.

[Description]

This function generates a character string indicating a numeric value val of float type in number (terminated with the
null character (\0)). The second argument chars specifies the total number of characters to be written (because only
numbers are written, this argument specifies the valid number of numerals in the converted character string). The digits
of the integer of val are always included.

[Example]

ecvtf

#include <stdlib.h>

void func(void) {

 float val;

 int dec, sgn;

 val = 111.11;

 ecvtf(val, 12, &dec, &sgn); /*Converts value 111.11 of val to character string of 12

 characters. dec records number of digits, 3, at left

 of decimal point, and sgn records sign(0 because

 numeric value is positive).*/

}

CubeSuite Ver.1.40 CHAPTER 6 FUNCTIONAL SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 656 of 890
Oct 01, 2010

Conversion of floating-point value to numeric character string (with total number of characters specified)

[Classification]

Standard library

[Syntax]

#include <stdlib.h>
char *fcvt(double val, int decimals, int *decpt, int *sgn);

[Return value]

Returns a pointer indicating a new character string including the character string representation of val.

[Description]

This function is the same as ecvt, except the interpretation of the second argument. The second argument decimals
specify the number of characters to be written after the decimal point. ecvt and fcvtf only write a number to an output
character string. Therefore, record the position of the decimal point to *decpt and the sign of the numeric value to *sgn.
After the number has been formatted, the number of digits at the left of the decimal point is stored in *decpt. If the
numeric value is positive, 0 is stored in *sgn; if it is negative, 1 is stored.

fcvt

CubeSuite Ver.1.40 CHAPTER 6 FUNCTIONAL SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 657 of 890
Oct 01, 2010

Conversion of floating-point value to numeric character string (with number of digits below decimal point specified)

[Classification]

Standard library

[Syntax]

#include <stdlib.h>
char *fcvtf(float val, int decimals, int *decpt, int *sgn);

[Return value]

Returns a pointer indicating a new character string including the character string representation of val.

[Description]

This function is the same as ecvtf, except the interpretation of the second argument. The second argument decimals
specify the number of characters to be written after the decimal point. ecvtf and fcvtf only write a number to an output
character string. Therefore, record the position of the decimal point to *decpt and the sign of the numeric value to *sgn.
After the number has been formatted, the number of digits at the left of the decimal point is stored in *decpt. If the
numeric value is positive, 0 is stored in *sgn; if it is negative, 1 is stored.

fcvtf

CubeSuite Ver.1.40 CHAPTER 6 FUNCTIONAL SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 658 of 890
Oct 01, 2010

Conversion of floating-point value to numeric character string (in specified format)

[Classification]

Standard library

[Syntax]

#include <stdlib.h>
char *gcvtf(double val, int prec, char *buf);

[Return value]

Returns a pointer (same as argument buf) to the formatted character string representation of val.

[Description]

This function converts a numeric value into a character string, and stores it to buffer buf. gcvtf uses the same rule as
the format "%.prec" (sign is appended to the negative number only) of sprintf, and selects an exponent format or normal
decimal point format according to the valid number of digits (specified by prec).

gcvt

CubeSuite Ver.1.40 CHAPTER 6 FUNCTIONAL SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 659 of 890
Oct 01, 2010

Conversion of floating-point value to numeric character string (in specified format)

[Classification]

Standard library

[Syntax]

#include <stdlib.h>
char *gcvtf(float val, int prec, char *buf);

[Return value]

Returns a pointer (same as argument buf) to the formatted character string representation of val.

[Description]

This function converts a numeric value into a character string, and stores it to buffer buf. gcvtf uses the same rule as
the format "%.prec" (sign is appended to the negative number only) of sprintf, and selects an exponent format or normal
decimal point format according to the valid number of digits (specified by prec).

gcvtf

CubeSuite Ver.1.40 CHAPTER 6 FUNCTIONAL SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 660 of 890
Oct 01, 2010

Conversion of character string to integer (int type)

[Classification]

Standard library

[Syntax]

#include <stdlib.h>
int atoi(const char *str);

[Return value]

Returns the converted value if the partial character string could be converted. If it could not, 0 is returned.

[Description]

This function converts the first part of the character string indicated by str into an int type representation. atoi is the
same as "(int) strtol (str, NULL, 10)".

atoi

CubeSuite Ver.1.40 CHAPTER 6 FUNCTIONAL SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 661 of 890
Oct 01, 2010

Conversion of character string to integer (long type)

[Classification]

Standard library

[Syntax]

#include <stdlib.h>
long atol(const char *str);

[Return value]

Returns the converted value if the partial character string could be converted. If it could not, 0 is returned.

[Description]

This function converts the first part of the character string indicated by str into a long int type representation. atol is the
same as "strtol (str, NULL, 10)".

atol

CubeSuite Ver.1.40 CHAPTER 6 FUNCTIONAL SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 662 of 890
Oct 01, 2010

Conversion of character string to integer (long long type)

[Classification]

Standard library

[Syntax]

#include <stdlib.h>
long long atoll(const char *str);

[Return value]

Returns the converted value if the partial character string could be converted. If it could not, 0 is returned.

[Description]

This function converts the first part of the character string indicated by str into a long long int type representation. atol
is the same as "strtol (str, NULL, 10)".

atoll

CubeSuite Ver.1.40 CHAPTER 6 FUNCTIONAL SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 663 of 890
Oct 01, 2010

Conversion of character string to integer (long type) and storing pointer in last character string

[Classification]

Standard library

[Syntax]

#include <stdlib.h>
long strtol(const char *str, char **ptr, int base);

[Return value]

Returns the converted value if the partial character string could be converted. If it could not, 0 is returned.
If an overflow occurs (because the converted value is too great), LONG_MAX or LONG_MIN is returned, and macro

ERANGE is set to global variable errno.

[Description]

This function converts the first part of the character string indicated by str into a long type representation. strol first
divides the input characters into the following three parts: the "first blank", "a string represented by the base number
determined by the value of base and is subject to conversion into an integer", and "the last one or more character string
that is not recognized (including the null character (\0))". Then strtol converts the string into an integer, and returns the
result.

(1) Specify 0 or 2 to 36 as argument base.

(a) If base is 0
The expected format of the character string subject to conversion is of integer format having an optional + or -
sign and "0x", indicating a hexadecimal number, prefixed.

(b) If the value of base is 2 to 36
The expected format of the character string is of character string or numeric string type having an optional + or
- sign prefixed and expressing an integer whose base is specified by base. Characters "a" (or "A") through "z"
(or "Z") are assumed to have a value of 10 to 35. Only characters whose value is less than that of base can be
used.

(c) If the value of base is 16
"0x" is prefixed (suffixed to the sign if a sign exists) to the string of characters and numerals (this can be omit-
ted).

(2) The string subject to conversion is defined as the longest partial string at the beginning of the input char-
acter string that starts with the first character other than blank and has an expected format.

(a) If the input character string is vacant, if it consists of blank only, or if the first character that is not
blank is not a sign or a character or numeral that is permitted, the subject string is vacant.

strtol

CubeSuite Ver.1.40 CHAPTER 6 FUNCTIONAL SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 664 of 890
Oct 01, 2010

(b) If the string subject to conversion has an expected format and if the value of base is 0, the base num-
ber is judged from the input character string. The character string led by 0x is regarded as a hexadec-
imal value, and the character string to which 0 is prefixed but x is not is regarded as an octal number.
All the other character strings are regarded as decimal numbers.

(c) If the value of base is 2 to 36, it is used as the base number for conversion as mentioned above.

(d) If the string subject to conversion starts with a - sign, the sign of the value resulting from conversion is
reversed.

(3) The pointer that indicates the first character string

(a) This is stored in the object indicated by ptr, if ptr is not a null pointer.

(b) If the string subject conversion is vacant, or if it does not have an expected format, conversion is not
executed. The value of str is stored in the object indicated by ptr if ptr is not a null pointer.

Remark This function is not re-entrant

[Example]

#include <stdlib.h>

void func(long ret) {

 char *p;

 ret = strtol("10", &p, 0); /*10 is returned to ret.*/

 ret = strtol("0x10", &p, 0); /*16 is returned to ret.*/

 ret = strtol("10x", &p, 2); /*2 is returned to ret, and pointer to "x" is

 returned to area of p.*/

 ret = strtol("2ax3", &p, 16); /*42 is returned to ret, and pointer to "x" is

 returned to area of p.*/

 :

}

CubeSuite Ver.1.40 CHAPTER 6 FUNCTIONAL SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 665 of 890
Oct 01, 2010

Conversion of character string to integer (unsigned long type) and storing pointer in last character string

[Classification]

Standard library

[Syntax]

#include <stdlib.h>
unsigned long strtoul(const char *str, char **ptr, int base);

[Return value]

Returns the converted value if the partial character string could be converted. If it could not, 0 is returned.
If an overflow occurs, ULONG_MAX is returned, and macro ERANGE is set to global variable errno.

[Description]

This function is the same as strtol except that the type of the return value is of unsigned long type.

strtoul

CubeSuite Ver.1.40 CHAPTER 6 FUNCTIONAL SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 666 of 890
Oct 01, 2010

Conversion of character string to integer (long long type) and storing pointer in last character string

[Classification]

Standard library

[Syntax]

#include <stdlib.h>
long long strtoll(const char *str, char **ptr, int base);

[Return value]

Returns the converted value if the partial character string could be converted. If it could not, 0 is returned.
If an overflow occurs (the converted value is too larger), LLONG_MAX or LLONG_MIN is returned, and macro

ERANGE is set to global variable errno.

[Description]

This function is the same as strtol except that the type of the return value is of long long type.

strtoll

CubeSuite Ver.1.40 CHAPTER 6 FUNCTIONAL SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 667 of 890
Oct 01, 2010

Conversion of character string to integer (unsigned long long type) and storing pointer in last character string

[Classification]

Standard library

[Syntax]

#include <stdlib.h>
unsigned long long strtoull(const char *str, char **ptr, int base);

[Return value]

Returns the converted value if the partial character string could be converted. If it could not, 0 is returned.
If an overflow occurs, ULLONG_MAX is returned, and macro ERANGE is set to global variable errno.

[Description]

This function is the same as strtol except that the type of the return value is of unsigned long long type.

strtoull

CubeSuite Ver.1.40 CHAPTER 6 FUNCTIONAL SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 668 of 890
Oct 01, 2010

Conversion of character string to floating-point number (float type)

[Classification]

Standard library

[Syntax]

#include <stdlib.h>
float atoff(const char *str);

[Return value]

If the partial character string has been converted, the resultant value is returned. If the character string could not be
converted, 0 is returned.

If an overflow occurs (the value is not in the range in which it can be expressed), HUGE_VAL or -HUGE_VAL is
returned, and ERANGE is set to global variable errno. If an underflow occurs, 0 is returned, and macro ERANGE is set to
global variable errno.

[Description]

This function converts the first portion of the character string indicated by str into a float type representation. atoff is the
same as "strtodf (str, NULL)".

atoff

CubeSuite Ver.1.40 CHAPTER 6 FUNCTIONAL SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 669 of 890
Oct 01, 2010

Conversion of character string to floating-point number (double type)

[Classification]

Standard library

[Syntax]

#include <stdlib.h>
double atof(const char *str);

[Return value]

If the partial character string has been converted, the resultant value is returned. If the character string could not be
converted, 0 is returned.

If an overflow occurs (the value is not in the range in which it can be expressed), HUGE_VAL or -HUGE_VAL is
returned, and ERANGE is set to global variable errno. If an underflow occurs, 0 is returned, and macro ERANGE is set to
global variable errno.

[Description]

This function converts the first portion of the character string indicated by str into a float type representation. atoff is the
same as "strtod (str, NULL)".

atof

CubeSuite Ver.1.40 CHAPTER 6 FUNCTIONAL SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 670 of 890
Oct 01, 2010

Conversion of character string to floating-point number (float type) (storing pointer in last character string)

[Classification]

Standard library

[Syntax]

#include <stdlib.h>
float strtodf(const char *str, char **ptr);

[Return value]

If the partial character string has been converted, the resultant value is returned. If the character string could not be
converted, 0 is returned. If an overflow occurs (the value is not in the range in which it can be expressed), HUGE_VAL or
-HUGE_VAL is returned, and ERANGE is set to global variable errno. If an underflow occurs, 0 is returned, and macro
ERANGE is set to global variable errno.

[Description]

This function converts the first part of the character string indicated by str into a float type representation. The part of
the character string to be converted is in the following format and is at the beginning of str with the maximum length,
starting with a normal character that is not a space.

[+ | -] digits [.] [digits] [(e | E) [+ | -] digits]

If str is vacant or consists of space characters only, if the first normal character is other than "+", "-", ".", or a numeral,
the partial character string does not include a character. If the partial character string is vacant, conversion is not exe-
cuted, and the value of str is stored in the area indicated by ptr. If the partial character string is not vacant, it is converted,
and a pointer to the last character string (including the null character (\0) indicating at least the end of str) is stored in the
area indicated by ptr.

Remark This function is not re-entrant.

[Example]

strtodf

#include <stdlib.h>

#include <stdio.h>

void func(float ret) {

 char *p, *str, s[30];

 str = "+5.32a4e";

 ret = strtodf(str, &p); /*5.320000 is returned to ret, and pointer to "a"

 is stored in area of p.*/

 sprintf(s, "%lf\t%c", ret, *p); /*"5.320000 a" is stored in array indicated by s.*/

}

CubeSuite Ver.1.40 CHAPTER 6 FUNCTIONAL SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 671 of 890
Oct 01, 2010

Conversion of character string to floating-point number (double type) (storing pointer in last character string)

[Classification]

Standard library

[Syntax]

#include <stdlib.h>
double strtod(const char *str, char **ptr);

[Return value]

If the partial character string has been converted, the resultant value is returned. If the character string could not be
converted, 0 is returned.

If an overflow occurs (the value is not in the range in which it can be expressed), HUGE_VAL or -HUGE_VAL is
returned, and ERANGE is set to global variable errno. If an underflow occurs, 0 is returned, and macro ERANGE is set to
global variable errno.

[Description]

This function converts the first part of the character string indicated by str into a float type representation. The part of
the character string to be converted is in the following format and is at the beginning of str with the maximum length,
starting with a normal character that is not a space.

[+ | -] digits [.] [digits] [(e | E) [+ | -] digits]

If str is vacant or consists of space characters only, if the first normal character is other than "+", "-", ".", or a numeral,
the partial character string does not include a character. If the partial character string is vacant, conversion is not exe-
cuted, and the value of str is stored in the area indicated by ptr. If the partial character string is not vacant, it is converted,
and a pointer to the last character string (including the null character (\0) indicating at least the end of str) is stored in the
area indicated by ptr.

Remark This function is not re-entrant.

strtod

CubeSuite Ver.1.40 CHAPTER 6 FUNCTIONAL SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 672 of 890
Oct 01, 2010

Memory allocation (initialized to zero)

[Classification]

Standard library

[Syntax]

#include <stdlib.h>
void *calloc(size_t nmemb, size_t size);

[Return value]

When area allocation succeeds, a pointer to that area is returned. When the area could not be allocated, a null pointer
is returned.

[Description]

This function allocates an area for an array of nmemb elements. The allocated area is initialized to zeros.

[Caution]

The memory area management functions automatically allocate memory area as necessary from the heap memory
area.

Also, the size of the default is 0x1000 bytes, so when it's changed, the heap memory area must be allocated. The area
allocation should be performed first by an application.

[Heap memory setup example]

Remarks 1. The symbol "___sysheap" (three underscores "_") of the variable "_sysheap" (two underscores "_")
points to the starting address of heap memory. This value should be a word integer value.

2. The required heap memory size (bytes) should be set for the variable "__sizeof_sysheap" (two leading
underscores). If assembly language is used for coding, this value should be set for the symbol
"___sizeof_sysheap" (three leading underscores).

calloc

#define SIZEOF_HEAP 0x1000

int __sysheap[SIZEOF_HEAP >> 2];

size_t __sizeof_sysheap = SIZEOF_HEAP;

CubeSuite Ver.1.40 CHAPTER 6 FUNCTIONAL SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 673 of 890
Oct 01, 2010

[Example]

#include <stdlib.h>

typedef struct {

 double d[3];

 int i[2];

} s_data;

int func(void) {

 sdata *buf;

 if((buf = calloc(40, sizeof(s_data))) == NULL) /*Allocate an area for 40 s_data*/

 return(1);

 :

 free(buf); /*Release the area*/

 return(0);

}

CubeSuite Ver.1.40 CHAPTER 6 FUNCTIONAL SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 674 of 890
Oct 01, 2010

Memory allocation(not initialized to zero)

[Classification]

Standard library

[Syntax]

#include <stdlib.h>
void *malloc(size_t size);

[Return value]

When area allocation succeeds, a pointer to that area is returned. When the area could not be allocated, a null pointer
is returned.

[Description]

This function allocates an area having a size indicated by size. The area is not initialized.

[Caution]

The memory area management functions automatically allocate memory area as necessary from the heap memory
area.

Also, the size of the default is 0x1000 bytes, so when it's changed, the heap memory area must be allocated. The area
allocation should be performed first by an application.

[Heap memory setup example]

Remarks 1. The symbol "___sysheap" (three underscores "_") of the variable "_sysheap" (two underscores "_")
points to the starting address of heap memory. This value should be a word integer value.

2. The required heap memory size (bytes) should be set for the variable "__sizeof_sysheap" (two leading
underscores). If assembly language is used for coding, this value should be set for the symbol
"___sizeof_sysheap" (three leading underscores).

malloc

#define SIZEOF_HEAP 0x1000

int __sysheap[SIZEOF_HEAP >> 2];

size_t __sizeof_sysheap = SIZEOF_HEAP;

CubeSuite Ver.1.40 CHAPTER 6 FUNCTIONAL SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 675 of 890
Oct 01, 2010

Memory re-allocation

[Classification]

Standard library

[Syntax]

#include <stdlib.h>
void *realloc(void *ptr, size_t size);

[Return value]

When area allocation succeeds, a pointer to that area is returned. When the area could not be allocated, a null pointer
is returned.

[Description]

This function changes the size of the area pointed to by ptr to the size indicated by size. The contents of the area are
unchanged up to the smaller of the previous size and the specified size. If the area is expanded, the contents of the area
greater than the previous size are not initialized. When ptr is a null pointer, the operation is the same as that of malloc
(size). Otherwise, the area that was acquired by calloc, malloc, or realloc must be specified for ptr.

[Caution]

The memory area management functions automatically allocate memory area as necessary from the heap memory
area.

Also, the size of the default is 0x1000 bytes, so when it's changed, the heap memory area must be allocated. The area
allocation should be performed first by an application.

[Heap memory setup example]

Remarks 1. The symbol "___sysheap" (three underscores "_") of the variable "_sysheap" (two underscores "_")
points to the starting address of heap memory. This value should be a word integer value.

2. The required heap memory size (bytes) should be set for the variable "__sizeof_sysheap" (two leading
underscores). If assembly language is used for coding, this value should be set for the symbol
"___sizeof_sysheap" (three leading underscores).

realloc

#define SIZEOF_HEAP 0x1000

int __sysheap[SIZEOF_HEAP >> 2];

size_t __sizeof_sysheap = SIZEOF_HEAP;

CubeSuite Ver.1.40 CHAPTER 6 FUNCTIONAL SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 676 of 890
Oct 01, 2010

Memory release

[Classification]

Standard library

[Syntax]

#include <stdlib.h>
void free(void *ptr);

[Description]

This function releases the area pointed to by ptr so that this area is subsequently available for allocation. The area that
was acquired by calloc, malloc, or realloc must be specified for ptr.

[Example]

free

#include <stdlib.h>

typedef struct {

 double d[3];

 int i[2];

} s_data;

int func(void) {

 sdata *buf;

 if((buf = calloc(40, sizeof(s_data))) == NULL) /*Allocate an area for 40 s_data*/

 return(1);

 :

 free(buf); /*Release the area*/

 return(0);

}

CubeSuite Ver.1.40 CHAPTER 6 FUNCTIONAL SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 677 of 890
Oct 01, 2010

Pseudorandom number sequence generation

[Classification]

Standard library

[Syntax]

#include <stdlib.h>
int rand(void);

[Return value]

Random numbers are returned.

[Description]

This function returns a random number that is greater than or equal to zero and less than or equal to RAND_MAX.

[Example]

rand

#include <stdlib.h>

void func(void) {

 if(rand() & 0xF) < 4)

 func1(); /*Execute func1 with a probability of 25%*/

}

CubeSuite Ver.1.40 CHAPTER 6 FUNCTIONAL SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 678 of 890
Oct 01, 2010

Setting of type of pseudorandom number sequence

[Classification]

Standard library

[Syntax]

#include <stdlib.h>
void srand(unsigned int seed);

[Description]

This function assigns seed as the new pseudo random number sequence seed to be used by the rand call that follows.
If srand is called using the same seed value, the same numbers in the same order will appear for the random numbers
that are obtained by rand. If rand is executed without executing srand, the results will be the same as when srand(1) was
first executed.

srand

CubeSuite Ver.1.40 CHAPTER 6 FUNCTIONAL SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 679 of 890
Oct 01, 2010

6.4.8 Non-local jump functions

Non-local jump functions are as follows.

Table 6-25. Non-Local Jump Functions

Function/Macro Name Outline

longjmp Non-local jump

setjmp Set destination of non-local jump

CubeSuite Ver.1.40 CHAPTER 6 FUNCTIONAL SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 680 of 890
Oct 01, 2010

Non-local jump

[Classification]

Standard library

[Syntax]

#include <setjmp.h>
void longjmp(jmp_buf env, int val);

[Return value]

The second argument val is returned. However, 1 is returned if val is 0.

[Description]

This function performs a non-local jump to the place immediately after setjmp using env saved by setjmp. val as a
return value for setjmp.

[Caution]

When -Xreg_mode=common has been specified, setjmp and longjmp perform the same operation as
-Xreg_mode=32 specified. Therefore even if the value of r20 to r24 is changed after a setjmp calling, return to the value
before the setjmp calling after the longjmp calling.

[Example]

longjmp

#include <setjmp.h>

#define ERR_XXX1 1

jmp_buf jmp_env;

void func(void) {

 for(;;) {

 switch(setjmp(jmp_env)) {

 case ERR_XXX1: /*Termination of error XXX1*/

 break;

 case 0: /*No non-local jumps*/

 default:

 break;

 }

 }

}

void func1(void) {

 longjmp(jmp_env, ERR_XXX1); /*Non-local jumps are performed upon generation of

 error XXX1*/

}

CubeSuite Ver.1.40 CHAPTER 6 FUNCTIONAL SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 681 of 890
Oct 01, 2010

Set destination of non-local jump

[Classification]

Standard library

[Syntax]

#include <setjmp.h>
int setjmp(jmp_buf env);

[Return value]

0 is returned.

[Description]

This function sets env as the destination for a non-local jump. In addition, the environment in which setjmp was run is
saved to env.

[Caution]

When -Xreg_mode=common has been specified, setjmp and longjmp perform the same operation as
-Xreg_mode=32 specified. Therefore even if the value of r20 to r24 is changed after a setjmp calling, return to the value
before the setjmp calling after the longjmp calling.

setjmp

CubeSuite Ver.1.40 CHAPTER 6 FUNCTIONAL SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 682 of 890
Oct 01, 2010

6.4.9 Mathematical functions

Mathematical functions are as follows.

Table 6-26. Mathematical Functions

Function/Macro Name Outline

j0f Bessel function of first kind (0 order)

j1f Bessel function of first kind (1 order)

jnf Bessel function of first kind (n order)

y0f Bessel function of second kind (0 order)

y1f Bessel function of second kind (1 order)

ynf Bessel function of second kind (n order)

erff Error function (approximate value)

erfcf Error function (complementary probability)

expf Exponent function

exp Exponent function

logf Logarithmic function (natural logarithm)

log Logarithmic function (natural logarithm)

log2f Logarithmic function (base = 2)

log10f Logarithmic function (base = 10)

log10 Logarithmic function (base = 10)

powf Power function

pow Power function

sqrtf Square root function

sqrt Square root function

cbrtf Cubic root function

cbrt Cubic root function

ceilf ceiling function

ceil ceiling function

fabsf Absolute value function

fabs Absolute value function

floorf floor function

floor floor function

fmodf Remainder function

fmod Remainder function

frexpf Divide floating-point number into mantissa and power

frexp Divide floating-point number into mantissa and power

ldexpf Convert floating-point number to power

ldexp Convert floating-point number to power

modff Divide floating-point number into integer and decimal

CubeSuite Ver.1.40 CHAPTER 6 FUNCTIONAL SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 683 of 890
Oct 01, 2010

modf Divide floating-point number into integer and decimal

gammaf Logarithmic gamma function

hypotf Euclidean distance function

matherrf (matherr) Error processing function

matherrd Error processing function

cosf Cosine

cos Cosine

sinf Sine

sin Sine

tanf Tangent

tan Tangent

acosf Arc cosine

acos Arc cosine

asinf Arc sine

asin Arc sine

atanf Arc tangent

atan Arc tangent

atan2f Arc tangent (y / x)

atan2 Arc tangent (y / x)

coshf Hyperbolic cosine

cosh Hyperbolic cosine

sinhf Hyperbolic sine

sinh Hyperbolic sine

tanhf Hyperbolic tangent

tanh Hyperbolic tangent

acoshf Arc hyperbolic cosine

asinhf Arc hyperbolic sine

atanhf Arc hyperbolic tangent

Function/Macro Name Outline

CubeSuite Ver.1.40 CHAPTER 6 FUNCTIONAL SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 684 of 890
Oct 01, 2010

Bessel function of first kind (0 order)

[Classification]

Mathematical library

[Syntax]

#include <math.h>
float j0f(float x);

[Return value]

Returns the Bessel function of the first kind of the 0 degree.

[Description]

This function calculates the Bessel functions of the first kind of the 0 degrees.

j0f

CubeSuite Ver.1.40 CHAPTER 6 FUNCTIONAL SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 685 of 890
Oct 01, 2010

Bessel function of first kind (1 order)

[Classification]

Mathematical library

[Syntax]

#include <math.h>
float j1f(float x);

[Return value]

Returns the Bessel function of the first kind of the first degree.

[Description]

This function calculates the Bessel functions of the first kind of the first degrees.

Remark If the solution is a denormal number, j1f sets macro ERANGE to global variable errno.
The error processing of this function can be changed by using the matherrf (matherr) function.

[Example]

j1f

#include <math.h>

float func(void) {

 float ret, x;

 ret = j1f(x); /*Calculates Bessel function of first kind and first decree in

 response to value of x, and returns function to ret.*/

 :

 return(ret);

}

CubeSuite Ver.1.40 CHAPTER 6 FUNCTIONAL SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 686 of 890
Oct 01, 2010

Bessel function of first kind (n order)

[Classification]

Mathematical library

[Syntax]

#include <math.h>
float jnf(int n, float x);

[Return value]

Returns the Bessel function of the first kind of the n degree.

[Description]

This function calculates the Bessel function of the first kind of the n degree.

Remark If the absolute value of n is bigger than 3000, jnf returns a Not a Nuber(NaN) and sets macro ERANGE to
global variable errno.
If the solution is a denormal number, jnf sets macro EDOM to global variable errno.
The error processing of this function can be changed by using the matherrf (matherr) function.

jnf

CubeSuite Ver.1.40 CHAPTER 6 FUNCTIONAL SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 687 of 890
Oct 01, 2010

Bessel function of second kind (0 order)

[Classification]

Mathematical library

[Syntax]

#include <math.h>
float y0f(float x);

[Return value]

Returns the Bessel function of the second kind of the 0 degree.

[Description]

This function calculates the Bessel functions of the second kind of the 0 degrees.

Remark If inputting zero, y0f returns -∞ and sets macro ERANGE to global variable errno.
If inputting the negative number, y0f returns a Not a Nuber(NaN) and sets macro EDOM to global variable
errno.
The error processing of this function can be changed by using the matherrf (matherr) function.

y0f

CubeSuite Ver.1.40 CHAPTER 6 FUNCTIONAL SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 688 of 890
Oct 01, 2010

Bessel function of second kind (1 order)

[Classification]

Mathematical library

[Syntax]

#include <math.h>
float y1f(float x);

[Return value]

Returns the Bessel function of the second kind of the first degree.

[Description]

This function calculates the Bessel functions of the second kind of the first degrees.

Remark If inputting zero, y1f returns +∞ and sets macro ERANGE to global variable errno.
If inputting the negative number, y1f returns a Not a Nuber(NaN) and sets macro EDOM to global variable
errno.
The error processing of this function can be changed by using the matherrf (matherr) function.

y1f

CubeSuite Ver.1.40 CHAPTER 6 FUNCTIONAL SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 689 of 890
Oct 01, 2010

Bessel function of second kind (n order)

[Classification]

Mathematical library

[Syntax]

#include <math.h>
float ynf(int n, float x);

[Return value]

Returns the Bessel function of the second kind of the n degree.

[Description]

This function calculates the Bessel function of the second kind of the n degree.

Remark If x is zero, ynf returns -∞ and sets macro ERANGE to global variable errno.
If x is the negative number, ynf returns a Not a Nuber(NaN) and sets macro EDOM to global variable errno.
If the absolute value of n is bigger than 3000, ynf returns a Not a Nuber(NaN) and sets macro EDOM to glo-
bal variable errno.
If overflow occurred, ynf sets macro ERANGE to global variable errno.
The error processing of this function can be changed by using the matherrf (matherr) function.

ynf

CubeSuite Ver.1.40 CHAPTER 6 FUNCTIONAL SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 690 of 890
Oct 01, 2010

Error function (approximate value)

[Classification]

Mathematical library

[Syntax]

#include <math.h>
float erff(float x);

[Return value]

Returns the approximate value (numeric value between 0 and 1) of the "error function".

[Description]

This function calculates the approximate value (numeric value between 0 and 1) of the "error function" that estimates
the probability for which the observed value is in a range of standard deviation x.

Remark If the solution is a denormal number, erff sets macro ERANGE to global variable errno.
The error processing of this function can be changed by using the matherrf (matherr) function.

[Example]

erff

#include <math.h>

float func(void) {

 float ret, x;

 ret = erff(x); /*Calculates approximate value of error function in response to

 value of x and returns it to ret.*/

 :

 return(ret);

}

CubeSuite Ver.1.40 CHAPTER 6 FUNCTIONAL SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 691 of 890
Oct 01, 2010

Error function (complementary probability)

[Classification]

Mathematical library

[Syntax]

#include <math.h>
float erfcf(float x);

[Return value]

Returns the complementary probability.

[Description]

This function calculates complementary probability through "1.0-erff(x)". This function is provided to prevent the
accuracy from dropping if erff(x) is called by x with a large value and the result is subtracted from 1.0.

Remark If the solution is a denormal number, erfcf sets macro ERANGE to global variable errno.
The error processing of this function can be changed by using the matherrf (matherr) function.

erfcf

CubeSuite Ver.1.40 CHAPTER 6 FUNCTIONAL SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 692 of 890
Oct 01, 2010

Exponent function

[Classification]

Mathematical library

[Syntax]

#include <math.h>
float expf(float x);

[Return value]

Returns the xth power of e.
expf returns an denormal number if an underflow occurs (if x is a negative number that cannot express the result), and

sets macro ERANGE to global variable errno. If an overflow occurs (if x is too great a number), HUGE_VAL (maximum
double type numerics that can be expressed) is returned, and macro ERANGE is set to global variable errno.

[Description]

This function calculates the xth power of e (e is the base of a natural logarithm and is about 2.71828).

Remark The error processing of this function can be changed by using the matherrf (matherr) function.

expf

CubeSuite Ver.1.40 CHAPTER 6 FUNCTIONAL SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 693 of 890
Oct 01, 2010

Exponent function

[Classification]

Mathematical library

[Syntax]

#include <math.h>
double exp(double x);

[Return value]

Returns the xth power of e.
expf returns an denormal number if an underflow occurs (if x is a negative number that cannot express the result), and

sets macro ERANGE to global variable errno. If an overflow occurs (if x is too great a number), HUGE_VAL (maximum
double type numerics that can be expressed) is returned, and macro ERANGE is set to global variable errno.

[Description]

This function calculates the xth power of e (e is the base of a natural logarithm and is about 2.71828).

Remark The error processing of this function can be changed by using the matherrd function.

exp

CubeSuite Ver.1.40 CHAPTER 6 FUNCTIONAL SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 694 of 890
Oct 01, 2010

Logarithmic function (natural logarithm)

[Classification]

Mathematical library

[Syntax]

#include <math.h>
float logf(float x);

[Return value]

Returns the natural logarithm of x.
logf returns a Not a Nuber(NaN) and sets macro EDOM to global variable errno if x is negative. If x is zero, it returns -

∞ and sets macro ERANGE to global variable errno.

[Description]

This function calculates the natural logarithm of x, i.e., logarithm with base e.

Remark The error processing of this function can be changed by using the matherrf (matherr) function.

logf

CubeSuite Ver.1.40 CHAPTER 6 FUNCTIONAL SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 695 of 890
Oct 01, 2010

Logarithmic function (natural logarithm)

[Classification]

Mathematical library

[Syntax]

#include <math.h>
double log(double x);

[Return value]

Returns the natural logarithm of x.
logf returns a Not a Nuber(NaN) and sets macro EDOM to global variable errno if x is negative. If x is zero, it returns -

∞ and sets macro ERANGE to global variable errno.

[Description]

This function calculates the natural logarithm of x, i.e., logarithm with base e.

Remark The error processing of this function can be changed by using the matherrd function.

log

CubeSuite Ver.1.40 CHAPTER 6 FUNCTIONAL SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 696 of 890
Oct 01, 2010

Logarithmic function (base = 2)

[Classification]

Mathematical library

[Syntax]

#include <math.h>
float log2f(float x);

[Return value]

Returns the logarithm of x with base 2.
log2f returns a Not a Nuber(NaN) and sets macro EDOM to global variable errno if x is negative. If x is zero, it returns

-∞ and sets macro ERANGE to global variable errno.

[Description]

This function calculates the logarithm of x with base 2. This is realized by "log (x) / log (2)".

Remark The error processing of this function can be changed by using the matherrf (matherr) function.

log2f

CubeSuite Ver.1.40 CHAPTER 6 FUNCTIONAL SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 697 of 890
Oct 01, 2010

Logarithmic function (base = 10)

[Classification]

Mathematical library

[Syntax]

#include <math.h>
float log10f(float x);

[Return value]

Returns the logarithm of x with base 10.
log10f returns a Not a Nuber(NaN) and sets macro EDOM to global variable errno if x is negative. If x is zero, it returns

-∞ and sets macro ERANGE to global variable errno.

[Description]

This function calculates the logarithm of x with base 10. This is realized by "log (x) / log (10)".

Remark The error processing of this function can be changed by using the matherrf (matherr) function.

log10f

CubeSuite Ver.1.40 CHAPTER 6 FUNCTIONAL SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 698 of 890
Oct 01, 2010

Logarithmic function (base = 10)

[Classification]

Mathematical library

[Syntax]

#include <math.h>
double log10(double x);

[Return value]

Returns the logarithm of x with base 10.
log10f returns a Not a Nuber(NaN) and sets macro EDOM to global variable errno if x is negative. If x is zero, it returns

-∞ and sets macro ERANGE to global variable errno.

[Description]

This function calculates the logarithm of x with base 10. This is realized by "log (x) / log (10)".

Remark The error processing of this function can be changed by using the matherrd function.

log10

CubeSuite Ver.1.40 CHAPTER 6 FUNCTIONAL SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 699 of 890
Oct 01, 2010

Power function

[Classification]

Mathematical library

[Syntax]

#include <math.h>
float powf(float x, float y);

[Return value]

Returns the yth power of x.
powf returns a negative solution only if x < 0 and y is an odd integer. If x < 0 and y is a non-integer or if x = y = 0, powf

returns a Not a Nuber(NaN) and sets the macro EDOM for the global variable errno. If x = 0 and y < 0 or if an overflow
occurs, powf returns +HUGE_VAL and sets the macro ERANGE for errno. If the solution vanished approaching zero,
powf returns 0 and sets the macro ERANGE for errno. If the solution is a denormal number, powf sets the macro
ERANGE for errno.

[Description]

This function calculates the yth power of x.

Remark The error processing of this function can be changed by using the matherrf (matherr) function.

[Example]

powf

#include <math.h>

float func(void) {

 float ret, x, y;

 ret = powf(x, y); /*Returns yth power of x to ret.*/

 :

 return(ret);

}

CubeSuite Ver.1.40 CHAPTER 6 FUNCTIONAL SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 700 of 890
Oct 01, 2010

Power function

[Classification]

Mathematical library

[Syntax]

#include <math.h>
double pow(double x, double y);

[Return value]

Returns the yth power of x.
powf returns a negative solution only if x < 0 and y is an odd integer. If x < 0 and y is a non-integer or if x = y = 0, powf

returns a Not a Nuber(NaN) and sets the macro EDOM for the global variable errno. If x = 0 and y < 0 or if an overflow
occurs, powf returns +HUGE_VAL and sets the macro ERANGE for errno. If the solution vanished approaching zero,
powf returns 0 and sets the macro ERANGE for errno. If the solution is a denormal number, powf sets the macro
ERANGE for errno.

[Description]

This function calculates the yth power of x.

Remark The error processing of this function can be changed by using the matherrd function.

pow

CubeSuite Ver.1.40 CHAPTER 6 FUNCTIONAL SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 701 of 890
Oct 01, 2010

Square root function

[Classification]

Mathematical library

[Syntax]

#include <math.h>
float sqrtf(float x);

[Return value]

Returns the positive square root of x.
sqrtf returns a Not a Nuber(NaN) and sets macro EDOM to global variable errno if x is a negative real number.

[Description]

This function calculates the square root of x.

Remark The error processing of this function can be changed by using the matherrf (matherr) function.

[Caution]

If the device has an V850E2V3 FPU, then enabling optimization generates a sqrtf.s instruction instead of calling a
library function. This will not change the setting of the global variable "errno", or the error processing of the matherrf
(matherr) function.

Specify the "-Xcall_lib" option to call the library function.

sqrtf

CubeSuite Ver.1.40 CHAPTER 6 FUNCTIONAL SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 702 of 890
Oct 01, 2010

Square root function

[Classification]

Mathematical library

[Syntax]

#include <math.h>
double sqrt(double x);

[Return value]

Returns the positive square root of x.
sqrtf returns a Not a Nuber(NaN) and sets macro EDOM to global variable errno if x is a negative real number.

[Description]

This function calculates the square root of x.

Remark The error processing of this function can be changed by using the matherrd function.

sqrt

CubeSuite Ver.1.40 CHAPTER 6 FUNCTIONAL SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 703 of 890
Oct 01, 2010

Cubic root function

[Classification]

Mathematical library

[Syntax]

#include <math.h>
float cbrtf(float x);

[Return value]

Returns the cubic root of x.

[Description]

This function calculates the cubic root of x.

cbrtf

CubeSuite Ver.1.40 CHAPTER 6 FUNCTIONAL SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 704 of 890
Oct 01, 2010

Cubic root function

[Classification]

Mathematical library

[Syntax]

#include <math.h>
double cbrt(double x);

[Return value]

Returns the cubic root of x.

[Description]

This function calculates the cubic root of x.

cbrt

CubeSuite Ver.1.40 CHAPTER 6 FUNCTIONAL SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 705 of 890
Oct 01, 2010

ceiling function

[Classification]

Mathematical library

[Syntax]

#include <math.h>
float ceilf(float x);

[Return value]

Returns the minimum integer greater than x and x.

[Description]

This function calculates the minimum integer value greater than x and x.

ceilf

CubeSuite Ver.1.40 CHAPTER 6 FUNCTIONAL SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 706 of 890
Oct 01, 2010

ceiling function

[Classification]

Mathematical library

[Syntax]

#include <math.h>
double ceil(double x);

[Return value]

Returns the minimum integer greater than x and x.

[Description]

This function calculates the minimum integer value greater than x and x.

ceil

CubeSuite Ver.1.40 CHAPTER 6 FUNCTIONAL SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 707 of 890
Oct 01, 2010

Absolute value function

[Classification]

Mathematical library

[Syntax]

#include <math.h>
float fabsf(float x);

[Return value]

Returns the absolute value (size) of x.

[Description]

This function calculates the absolute value (size) of x by directly manipulating the bit representation of x.

fabsf

CubeSuite Ver.1.40 CHAPTER 6 FUNCTIONAL SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 708 of 890
Oct 01, 2010

Absolute value function

[Classification]

Mathematical library

[Syntax]

#include <math.h>
double fabs(double x);

[Return value]

Returns the absolute value (size) of x.

[Description]

This function calculates the absolute value (size) of x by directly manipulating the bit representation of x.

fabs

CubeSuite Ver.1.40 CHAPTER 6 FUNCTIONAL SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 709 of 890
Oct 01, 2010

floor function

[Classification]

Mathematical library

[Syntax]

#include <math.h>
float floorf(float x);

[Return value]

Returns the maximum integer value less than x and x.

[Description]

This function calculates the maximum integer value less than x and x.

floorf

CubeSuite Ver.1.40 CHAPTER 6 FUNCTIONAL SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 710 of 890
Oct 01, 2010

floor function

[Classification]

Mathematical library

[Syntax]

#include <math.h>
float floorf(float x);

[Syntax]

#include <math.h>
double floor(double x);

[Return value]

Returns the maximum integer value less than x and x.

[Description]

This function calculates the maximum integer value less than x and x.

floor

CubeSuite Ver.1.40 CHAPTER 6 FUNCTIONAL SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 711 of 890
Oct 01, 2010

Remainder function

[Classification]

Mathematical library

[Syntax]

#include <math.h>
float fmodf(float x, float y);

[Return value]

Returns a floating-point value that is the remainder resulting from dividing x by y.
fmodf (x, 0) returns x.

[Description]

This function calculates a floating-point value that is the remainder resulting from dividing x by y. In other words, it
calculates the value "x - i * y" for the maximum integer i that has a sign the same as x and is less than y, if y is not zero.

Remark If x is +∞ or y is zero, fmodf returns a Not a Nuber(NaN) and sets macro ERANGE to global variable errno.
The error processing of this function can be changed by using the matherrf (matherr) function.

[Example]

fmodf

#include <math.h>

void func(void) {

 float ret, x, y;

 ret = fmodf(x, y); /*Returns remainder resulting from dividing x by y to ret.*/

 :

}

CubeSuite Ver.1.40 CHAPTER 6 FUNCTIONAL SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 712 of 890
Oct 01, 2010

Remainder function

[Classification]

Mathematical library

[Syntax]

#include <math.h>
double fmod(double x, double y);

[Return value]

Returns a floating-point value that is the remainder resulting from dividing x by y.
fmod (x, 0) returns x.

[Description]

This function calculates a floating-point value that is the remainder resulting from dividing x by y. In other words, it
calculates the value "x - i * y" for the maximum integer i that has a sign the same as x and is less than y, if y is not zero.

Remark If x is +∞ or y is zero, fmod returns a Not a Nuber(NaN) and sets macro ERANGE to global variable errno.
The error processing of this function can be changed by using the matherrd function.

fmod

CubeSuite Ver.1.40 CHAPTER 6 FUNCTIONAL SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 713 of 890
Oct 01, 2010

Divide floating-point number into mantissa and power

[Classification]

Mathematical library

[Syntax]

#include <math.h>
float frexpf(float val, int *exp);

[Return value]

Returns mantissa m.
frexpf sets 0 to *exp and returns 0 if val is 0.

[Description]

This function expresses val of float type as mantissa m and the pth power of 2. The resulting mantissa m is 0.5 <= | x |
< 1.0, unless val is zero. p is stored in *exp. m and p are calculated so that val = m * 2 p.

Remark If val is +∞, frexpf returns zero and sets macro EDOM to global variable errno.
The error processing of this function can be changed by using the matherrf (matherr) function.

[Example]

frexpf

#include <math.h>

void func(void) {

 float ret, x;

 int exp;

 x = 5.28;

 ret = frexpf(x, &exp); /*Resultant mantissa 0.66 is returned to ret, and 3 is

 stored in exp*/

 :

}

CubeSuite Ver.1.40 CHAPTER 6 FUNCTIONAL SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 714 of 890
Oct 01, 2010

Divide floating-point number into mantissa and power

[Classification]

Mathematical library

[Syntax]

#include <math.h>
double frexp(double val, int *exp);

[Return value]

Returns mantissa m.
frexpf sets 0 to *exp and returns 0 if val is 0.

[Description]

This function expresses val of double type as mantissa m and the pth power of 2. The resulting mantissa m is 0.5 <= |
x | < 1.0, unless val is zero. p is stored in *exp. m and p are calculated so that val = m * 2 p.

Remark If val is +∞, frexpf returns zero and sets macro EDOM to global variable errno.
The error processing of this function can be changed by using the matherrf (matherr) function.

frexp

CubeSuite Ver.1.40 CHAPTER 6 FUNCTIONAL SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 715 of 890
Oct 01, 2010

Convert floating-point number to power

[Classification]

Mathematical library

[Syntax]

#include <math.h>
float ldexpf(float val, int exp);

[Return value]

Returns the value calculated byval x 2 exp.
If an underflow or overflow occurs as a result of executing ldexpf, macro ERANGE is set to global variable errno. If an

underflow occurs, ldexpf returns an denormal number. If an overflow occurs, it returns HUGE_VAL.

[Description]

This function calculates val x 2 exp.

Remark The error processing of this function can be changed by using the matherrf (matherr) function.

ldexpf

CubeSuite Ver.1.40 CHAPTER 6 FUNCTIONAL SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 716 of 890
Oct 01, 2010

Convert floating-point number to power

[Classification]

Mathematical library

[Syntax]

#include <math.h>
double ldexp(double val, int exp);

[Return value]

Returns the value calculated byval x 2 exp.
If an underflow or overflow occurs as a result of executing ldexpf, macro ERANGE is set to global variable errno. If an

underflow occurs, ldexpf returns an denormal number. If an overflow occurs, it returns HUGE_VAL.

[Description]

This function calculates val x 2 exp.

Remark The error processing of this function can be changed by using the matherrd function.

ldexp

CubeSuite Ver.1.40 CHAPTER 6 FUNCTIONAL SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 717 of 890
Oct 01, 2010

Divide floating-point number into integer and decimal

[Classification]

Mathematical library

[Syntax]

#include <math.h>
float modff(float val, float *ipart);

[Return value]

Returns a decimal part. The sign of the result is the same as the sign of val.

[Description]

This function divides val of float type into integer and decimal parts, and stores the integer part in *ipart. Rounding is
not performed. It is guaranteed that the sum of the integer part and decimal part accurately coincides with val. For exam-
ple, where realpart = modff (val, &intpart), "realpart + intpartt" coincides with val.

modff

CubeSuite Ver.1.40 CHAPTER 6 FUNCTIONAL SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 718 of 890
Oct 01, 2010

Divide floating-point number into integer and decimal

[Classification]

Mathematical library

[Syntax]

#include <math.h>
double modf(double val, double *ipart);

[Return value]

Returns a decimal part. The sign of the result is the same as the sign of val.

[Description]

This function divides val of double type into integer and decimal parts, and stores the integer part in *ipart. Rounding is
not performed. It is guaranteed that the sum of the integer part and decimal part accurately coincides with val. For exam-
ple, where realpart = modff (val, &intpart), "realpart + intpartt" coincides with val.

modf

CubeSuite Ver.1.40 CHAPTER 6 FUNCTIONAL SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 719 of 890
Oct 01, 2010

Logarithmic gamma function

[Classification]

Mathematical library

[Syntax]

#include <math.h>
float gammaf(float x);

[Return value]

The natural logarithm of the gamma function of x is returned.
If x is 0 or an overflow occurs, HUGE_VAL is returned, and macro ERANGE is set to global variable errno.

[Description]

This function calculates In (Γ (x)), i.e., the natural logarithm of the gamma function of x. The gamma function (expf
(gammaf (x)) is a generalized factorial, and has a relational expression of Γ (N) = N x Γ (N - 1). Therefore, the result of
the gamma function itself increases very rapidly. Consequently, gammaf is defined as "In (Γ (x))", instead of simply "Γ
(x)", to expand the valid range of the result that can be expressed.

Remark If inputting the negative number, gammaf returns a Not a Nuber(NaN) and sets macro EDOM to global vari-
able errno.
The error processing of this function can be changed by using the matherrf (matherr) function.

[Example]

gammaf

#include <math.h>

float func(float x) {

 float ret;

 ret = gammaf(x); /*Returns natural logarithm of gamma function of x to ret.*/

 :

 return(ret);

}

CubeSuite Ver.1.40 CHAPTER 6 FUNCTIONAL SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 720 of 890
Oct 01, 2010

Euclidean distance function

[Classification]

Mathematical library

[Syntax]

#include <math.h>
float hypotf(float x, float y);

[Return value]

Returns a Euclidean distance "sqrt (x 2 + y 2)" between the origin (0, 0) and a point indicated by Cartesian coordinates
(x, y).

If an overflow occurs, HUGE_VAL is returned, and macro ERANGE is set to global variable errno.

[Description]

This function calculates a Euclidean distance "sqrt (x 2 + y 2)" between the origin (0, 0) and a point indicated by Carte-
sian coordinates (x, y).

Remark The error processing of this function can be changed by using the matherrf (matherr) function.

[Example]

hypotf

#include <math.h>

void func(float x) {

 float ret, y;

 ret = hypotf(x, y); /*Returns Euclidean distance between origin (0, 0) and

 coordinates (x, y) to ret.*/

}

CubeSuite Ver.1.40 CHAPTER 6 FUNCTIONAL SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 721 of 890
Oct 01, 2010

Error processing function

Remark "matherr" can be used as "matherrf".

[Classification]

Mathematical library

[Syntax]

#include <math.h>
int matherrf(struct exceptionf *e);

[Return value]

By changing the value of e ->retval, the result of the function called from the customized matherrf can be changed.
This also applies to the function on the calling side. The matherrf returns a value other than 0 if the error has been
resolved, and 0 if the error could not be resolved. If matherrf returns 0, set an appropriate value to global variable errono
on the calling side.

[Description]

This is a function that is called if an error occurs in a mathematical library function.
By preparing a function named matherrf via a user subroutine, therefore, error processing can be customized. Custom-

ized matherrf must return 0 if resolution of an error has failed, and a value other than 0 if the error has been resolved. If
matherrf returns a value other than 0, the value of global variable errno is not changed.

Error processing can be customized by using the information passed by pointer *e to structure exceptionf. Structure
exceptionf is defined as follows in "math.h".

The meaning of each member is as follows:

matherrf (matherr)

#define __exceptionf exceptionf

struct __exceptionf {

 int type;

 const char *name;

 float arg1, arg2, retval;

};

type Type of mathematical function error that has occurred.

The type of the macro encoding error is also defined in "math.h".

name Pointer indicating a character string that holds the name of the mathematical library function in
which an error has occurred, and ends with a space character.

arg1, arg2 Arguments responsible for the error.

retval Error return value that is returned by the calling function.

CubeSuite Ver.1.40 CHAPTER 6 FUNCTIONAL SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 722 of 890
Oct 01, 2010

The types of mathematical library function errors that may occur are as follows.

Remark Calling matherr when an operation exception occurs and updating global variable errno with a standard
function are not re-entrant.

[Caution]

When -Xreg_mode=common has been specified, runtime functions perform the same operation as
-Xreg_mode=32 specified. Therefore even if the value of r15 to r19 is changed in matherrf when an exception occurs, it
isn't changed by the program to which the runtime function was called.

[Example]

DOMAIN The argument is not in the range of the definition area of the function

Example:

logf (-1);

OVERFLOW Overflow

Example:

expf (1000);

INEXACT Annihilation of solution toward 0

Example:

exp (-1000);

UNDERFLOW Underflow, solutions to denormal number.

Solution < 1.1755e-38 and non 0 and precision is lower than the normal value.

Z_DIVISION Zero division.

#include <math.h>

#include <stdio.h>

void func(void) {

 float ret;

 ret = logf(-0.1); /*3 is returned to ret.*/

}

int matherrf(struct exceptionf *e) {

 char s[30];

 switch(e->type) {

 case DOMAIN:

 sprintf(s, "%s DOMAIN error %e\n", e->name, e->arg1);

 e->retval = 3; /*Changes error return value to 3.*/

 break;

 default:

 sprintf(s, "%s other error %e\n", e->name, e->arg1);

 }

 return(1);

}

CubeSuite Ver.1.40 CHAPTER 6 FUNCTIONAL SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 723 of 890
Oct 01, 2010

Error processing function

[Classification]

Mathematical library

[Syntax]

#include <math.h>
int matherrd(struct exceptiond *e);

[Return value]

By changing the value of e ->retval, the result of the function called from the customized matherrd can be changed.
This also applies to the function on the calling side. The matherrd returns a value other than 0 if the error has been
resolved, and 0 if the error could not be resolved. If matherrd returns 0, set an appropriate value to global variable errono
on the calling side.

[Description]

This is a function that is called if an error occurs in a mathematical library function.
By preparing a function named matherrd via a user subroutine, therefore, error processing can be customized. Cus-

tomized matherrd must return 0 if resolution of an error has failed, and a value other than 0 if the error has been resolved.
If matherrd returns a value other than 0, the value of global variable errno is not changed.

Error processing can be customized by using the information passed by pointer *e to structure exceptiond. Structure
exceptiond is defined as follows in "math.h".

The meaning of each member is as follows:

matherrd

#define __exceptiond exceptiond

#endif

struct __exceptiond {

 int type;

 const char *name;

 double arg1, arg2, retval;

};

type Type of mathematical function error that has occurred.

The type of the macro encoding error is also defined in "math.h".

name Pointer indicating a character string that holds the name of the mathematical library function in
which an error has occurred, and ends with a space character.

arg1, arg2 Arguments responsible for the error.

retval Error return value that is returned by the calling function.

CubeSuite Ver.1.40 CHAPTER 6 FUNCTIONAL SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 724 of 890
Oct 01, 2010

The types of mathematical library function errors that may occur are as follows.

Remark Calling matherr when an operation exception occurs and updating global variable errno with a standard
function are not re-entrant.

[Caution]

When -Xreg_mode=common has been specified, runtime functions perform the same operation as
-Xreg_mode=32 specified. Therefore even if the value of r15 to r19 is changed in matherrd when an exception occurs, it
isn't changed by the program to which the runtime function was called.

[Example]

DOMAIN The argument is not in the range of the definition area of the function

Example:

logf (-1);

OVERFLOW Overflow

Example:

expf (1000);

INEXACT Annihilation of solution toward 0

Example:

exp (-1000);

UNDERFLOW Underflow, solutions to denormal number.

Solution < 1.1755e-38 and non 0 and precision is lower than the normal value.

Z_DIVISION Zero division.

#include <math.h>

#include <stdio.h>

void func(void) {

 float ret;

 ret = logf(-0.1); /*3 is returned to ret.*/

}

int matherrd(struct exceptiond *e) {

 char s[30];

 switch(e->type) {

 case DOMAIN:

 sprintf(s, "%s DOMAIN error %e\n", e->name, e->arg1);

 e->retval = 3; /*Changes error return value to 3.*/

 break;

 default:

 sprintf(s, "%s other error %e\n", e->name, e->arg1);

 }

 return(1);

}

CubeSuite Ver.1.40 CHAPTER 6 FUNCTIONAL SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 725 of 890
Oct 01, 2010

Cosine

[Classification]

Mathematical library

[Syntax]

#include <math.h>
float cosf(float x);

[Return value]

Returns the cosine of x.

[Description]

This function calculates the cosine of x. Specify the angle in radian.

Remark If inputting +∞, cosf returns a Not a Nuber(NaN) and sets macro EDOM to global variable errno.
The error processing of this function can be changed by using the matherrf (matherr) function.

cosf

CubeSuite Ver.1.40 CHAPTER 6 FUNCTIONAL SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 726 of 890
Oct 01, 2010

Cosine

[Classification]

Mathematical library

[Syntax]

#include <math.h>
double cos(double x);

[Return value]

Returns the cosine of x.

[Description]

This function calculates the cosine of x. Specify the angle in radian.

Remark If inputting +∞, cos returns a Not a Nuber(NaN) and sets macro EDOM to global variable errno.
The error processing of this function can be changed by using the matherrd function.

cos

CubeSuite Ver.1.40 CHAPTER 6 FUNCTIONAL SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 727 of 890
Oct 01, 2010

Sine

[Classification]

Mathematical library

[Syntax]

#include <math.h>
float sinf(float x);

[Return value]

Returns the sine of x.

[Description]

This function calculates the sine of x. Specify the angle in radian.

Remark If inputting +∞, sinf returns a Not a Nuber(NaN) and sets macro EDOM to global variable errno.
If the solution is a denormal number, sinf sets macro ERANGE to global variable errno.
The error processing of this function can be changed by using the matherrf (matherr) function.

sinf

CubeSuite Ver.1.40 CHAPTER 6 FUNCTIONAL SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 728 of 890
Oct 01, 2010

Sine

[Classification]

Mathematical library

[Syntax]

#include <math.h>
double sin(double x);

[Return value]

Returns the sine of x.

[Description]

This function calculates the sine of x. Specify the angle in radian.

Remark If inputting +∞, sin returns a Not a Nuber(NaN) and sets macro EDOM to global variable errno.
If the solution is a denormal number, sin sets macro ERANGE to global variable errno.
The error processing of this function can be changed by using the matherrd function.

sin

CubeSuite Ver.1.40 CHAPTER 6 FUNCTIONAL SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 729 of 890
Oct 01, 2010

Tangent

[Classification]

Mathematical library

[Syntax]

#include <math.h>
float tanf(float x);

[Return value]

Returns the tangent of x.

[Description]

This function calculates the cosine of x. Specify the angle in radian.

Remark If inputting +∞, tanf returns a Not a Nuber(NaN) and sets macro EDOM to global variable errno.
If the solution is a denormal number, tanf sets macro ERANGE to global variable errno.
The error processing of this function can be changed by using the matherrf (matherr) function.

tanf

CubeSuite Ver.1.40 CHAPTER 6 FUNCTIONAL SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 730 of 890
Oct 01, 2010

Tangent

[Classification]

Mathematical library

[Syntax]

#include <math.h>
double tan(double x);

[Return value]

Returns the tangent of x.

[Description]

This function calculates the cosine of x. Specify the angle in radian.

Remark If inputting +∞, tan returns a Not a Nuber(NaN) and sets macro EDOM to global variable errno.
If the solution is a denormal number, tan sets macro ERANGE to global variable errno.
The error processing of this function can be changed by using the matherrd function.

tan

CubeSuite Ver.1.40 CHAPTER 6 FUNCTIONAL SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 731 of 890
Oct 01, 2010

Arc cosine

[Classification]

Mathematical library

[Syntax]

#include <math.h>
float acosf(float x);

[Return value]

Returns the arc cosine of x. The returned value is in radian and in a range of 0 to π.
If x is not between -1 and 1, a Not a Nuber(NaN) is returned, and macro EDOM is set to global variable errno.

[Description]

This function calculates the arc cosine of x. Specify x as, -1<= x <= 1.

Remark The error processing of this function can be changed by using the matherrf (matherr) function.

acosf

CubeSuite Ver.1.40 CHAPTER 6 FUNCTIONAL SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 732 of 890
Oct 01, 2010

Arc cosine

[Classification]

Mathematical library

[Syntax]

#include <math.h>
double acos(double x);

[Return value]

Returns the arc cosine of x. The returned value is in radian and in a range of 0 to π.
If x is not between -1 and 1, a Not a Nuber(NaN) is returned, and macro EDOM is set to global variable errno.

[Description]

This function calculates the arc cosine of x. Specify x as, -1<= x <= 1.

Remark The error processing of this function can be changed by using the matherrd function.

acos

CubeSuite Ver.1.40 CHAPTER 6 FUNCTIONAL SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 733 of 890
Oct 01, 2010

Arc sine

[Classification]

Mathematical library

[Syntax]

#include <math.h>
float asinf(float x);

[Return value]

Returns the arc sine (arcsine) of x. The returned value is in radian and in a range of -π / 2 to π / 2.
If x is not between -1 and 1, a Not a Nuber(NaN) is returned, and macro EDOM is set to global variable errno.

[Description]

This function calculates the arc sine (arcsine) of x. Specify x as, -1 <= x <= 1.

Remark The error processing of this function can be changed by using the matherrf (matherr) function.

asinf

CubeSuite Ver.1.40 CHAPTER 6 FUNCTIONAL SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 734 of 890
Oct 01, 2010

Arc sine

[Classification]

Mathematical library

[Syntax]

#include <math.h>
double asin(double x);

[Return value]

Returns the arc sine (arcsine) of x. The returned value is in radian and in a range of -π / 2 to π / 2.
If x is not between -1 and 1, a Not a Nuber(NaN) is returned, and macro EDOM is set to global variable errno.

[Description]

This function calculates the arc sine (arcsine) of x. Specify x as, -1 <= x <= 1.

Remark The error processing of this function can be changed by using the matherrd function.

asin

CubeSuite Ver.1.40 CHAPTER 6 FUNCTIONAL SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 735 of 890
Oct 01, 2010

Arc tangent

[Classification]

Mathematical library

[Syntax]

#include <math.h>
float atanf(float x);

[Return value]

Returns the arc tangent (arctangent) of x. The returned value is in radian and in a range of -π / 2 to π / 2.

[Description]

This function calculates the arc tangent (arctangent) of x. Specify x as, -1 <= x <= 1.

Remark If the solution is a denormal number, atanf sets macro ERANGE to global variable errno.
The error processing of this function can be changed by using the matherrf (matherr) function.

[Example]

atanf

#include <math.h>

float func(float x) {

 float ret;

 ret = atanf(x); /*Returns value of arctangent of x to ret.*/

 :

 return(ret);

}

CubeSuite Ver.1.40 CHAPTER 6 FUNCTIONAL SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 736 of 890
Oct 01, 2010

Arc tangent

[Classification]

Mathematical library

[Syntax]

#include <math.h>
double atan(double x);

[Return value]

Returns the arc tangent (arctangent) of x. The returned value is in radian and in a range of -π / 2 to π / 2.

[Description]

This function calculates the arc tangent (arctangent) of x. Specify x as, -1 <= x <= 1.

Remark If the solution is a denormal number, atan sets macro ERANGE to global variable errno.
The error processing of this function can be changed by using the matherrd function.

atan

CubeSuite Ver.1.40 CHAPTER 6 FUNCTIONAL SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 737 of 890
Oct 01, 2010

Arc tangent (y / x)

[Classification]

Mathematical library

[Syntax]

#include <math.h>
float atan2f(float y, float x);

[Return value]

Returns the arc tangent (arctangent) of y / x. The returned value is in radian and in a range of -π to π.
atan2f returns a Not a Nuber(NaN) and sets macro EDOM to global variable errno if both x and y are 0.0. If the solution

vanished approaching zero, atan2f returns +0 and sets macro ERANGE to global variable errno. If the solution is a
denormal number, atan2f sets macro ERANGE to global variable errno.

[Description]

This function calculates the arc tangent of y / x. atan2f calculates the correct result even if the angle is in the vicinity of
π / 2 or - π / 2 (if x is close to 0).

Remark The error processing of this function can be changed by using the matherrf (matherr) function.

atan2f

CubeSuite Ver.1.40 CHAPTER 6 FUNCTIONAL SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 738 of 890
Oct 01, 2010

Arc tangent (y / x)

[Classification]

Mathematical library

[Syntax]

#include <math.h>
double atan2(double y, double x);

[Return value]

Returns the arc tangent (arctangent) of y / x. The returned value is in radian and in a range of -π to π.
atan2f returns a Not a Nuber(NaN) and sets macro EDOM to global variable errno if both x and y are 0.0. If the solution

vanished approaching zero, atan2f returns +0 and sets macro ERANGE to global variable errno. If the solution is a
denormal number, atan2f sets macro ERANGE to global variable errno.

[Description]

This function calculates the arc tangent of y / x. atan2f calculates the correct result even if the angle is in the vicinity of
π / 2 or - π / 2 (if x is close to 0).

Remark The error processing of this function can be changed by using the matherrd function.

atan2

CubeSuite Ver.1.40 CHAPTER 6 FUNCTIONAL SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 739 of 890
Oct 01, 2010

Hyperbolic cosine

[Classification]

Mathematical library

[Syntax]

#include <math.h>
float coshf(float x);

[Return value]

Returns the hyperbolic cosine of x.
coshf returns HUGE_VAL and sets macro ERANGE to global variable errno if an overflow occurs.

[Description]

This function calculates the hyperbolic cosine of x. Specify the angle in radian. The definition expression is as follows.

(e x + e -x) / 2

Remark The error processing of this function can be changed by using the matherrf (matherr) function.

coshf

CubeSuite Ver.1.40 CHAPTER 6 FUNCTIONAL SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 740 of 890
Oct 01, 2010

Hyperbolic cosine

[Classification]

Mathematical library

[Syntax]

#include <math.h>
double cosh(double x);

[Return value]

Returns the hyperbolic cosine of x.
coshf returns HUGE_VAL and sets macro ERANGE to global variable errno if an overflow occurs.

[Description]

This function calculates the hyperbolic cosine of x. Specify the angle in radian. The definition expression is as follows.

(e x + e -x) / 2

Remark The error processing of this function can be changed by using the matherrd function.

cosh

CubeSuite Ver.1.40 CHAPTER 6 FUNCTIONAL SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 741 of 890
Oct 01, 2010

Hyperbolic sine

[Classification]

Mathematical library

[Syntax]

#include <math.h>
float sinhf(float x);

[Return value]

Returns the hyperbolic sine of x.
sinhf returns HUGE_VAL and sets macro ERANGE to global variable errno if an overflow occurs.

[Description]

This function calculates the hyperbolic sine of x. Specify the angle in radian. The definition expression is as follows.

(e x - e -x) / 2

Remark The error processing of this function can be changed by using the matherrf (matherr) function.

sinhf

CubeSuite Ver.1.40 CHAPTER 6 FUNCTIONAL SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 742 of 890
Oct 01, 2010

Hyperbolic sine

[Classification]

Mathematical library

[Syntax]

#include <math.h>
double sinh(double x);

[Return value]

Returns the hyperbolic sine of x.
sinhf returns HUGE_VAL and sets macro ERANGE to global variable errno if an overflow occurs.

[Description]

This function calculates the hyperbolic sine of x. Specify the angle in radian. The definition expression is as follows.

(e x - e -x) / 2

Remark The error processing of this function can be changed by using the matherrd function.

sinh

CubeSuite Ver.1.40 CHAPTER 6 FUNCTIONAL SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 743 of 890
Oct 01, 2010

Hyperbolic tangent

[Classification]

Mathematical library

[Syntax]

#include <math.h>
float tanhf(float x);

[Return value]

Returns the hyperbolic tangent of x.

[Description]

This function calculates the hyperbolic tangent of x. Specify the angle in radian. The definition expression is as
follows.

sinh (x) / cosh (x)

Remark If the solution is a denormal number, tanhf sets macro ERANGE to global variable errno.
The error processing of this function can be changed by using the matherrf (matherr) function.

tanhf

CubeSuite Ver.1.40 CHAPTER 6 FUNCTIONAL SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 744 of 890
Oct 01, 2010

Hyperbolic tangent

[Classification]

Mathematical library

[Syntax]

#include <math.h>
double tanh(double x);

[Return value]

Returns the hyperbolic tangent of x.

[Description]

This function calculates the hyperbolic tangent of x. Specify the angle in radian. The definition expression is as
follows.

sinh (x) / cosh (x)

Remark If the solution is a denormal number, tanh sets macro ERANGE to global variable errno.
The error processing of this function can be changed by using the matherrd function.

tanh

CubeSuite Ver.1.40 CHAPTER 6 FUNCTIONAL SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 745 of 890
Oct 01, 2010

Arc hyperbolic cosine

[Classification]

Mathematical library

[Syntax]

#include <math.h>
float acoshf(float x);

[Return value]

Returns the arc hyperbolic cosine of x (x is a numeric number of 1 or greater).
acoshf returns a Not a Nuber(NaN) if x is less than 1. Macro EDOM is set to global variable errno.

[Description]

This function calculates the arc hyperbolic cosine of x (where x is a numeric value of 1 or greater). The definition
expression is as follows.

ln (x + sqrt (x 2 - 1))

Remark The error processing of this function can be changed by using the matherrf (matherr) function.

[Example]

acoshf

#include <math.h>

float func(float x) {

 float ret;

 ret = acoshf(x); /*Returns value of arc hyperbolic cosine of x to ret.*/

 :

 return(ret);

}

CubeSuite Ver.1.40 CHAPTER 6 FUNCTIONAL SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 746 of 890
Oct 01, 2010

Arc hyperbolic sine

[Classification]

Mathematical library

[Syntax]

#include <math.h>
float asinhf(float x);

[Return value]

Returns the arc hyperbolic sine of x.

[Description]

This function calculates the arc hyperbolic sine of x. The definition expression is as follows.

sign (x) * ln (| x | + sqrt (1 + x 2))

Remark If the solution is a denormal number, asinhf sets macro ERANGE to global variable errno.
The error processing of this function can be changed by using the matherrf (matherr) function.

asinhf

CubeSuite Ver.1.40 CHAPTER 6 FUNCTIONAL SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 747 of 890
Oct 01, 2010

Arc hyperbolic tangent

[Classification]

Mathematical library

[Syntax]

#include <math.h>
float atanhf(float x);

[Return value]

Returns the arc hyperbolic tangent of x.
atanhf returns a Not a Nuber(NaN) and sets macro EDOM to global variable errno if the absolute value of x is greater

than 1.

[Description]

This function calculates the arc hyperbolic tangent of x.

Remark The error processing of this function can be changed by using the matherrf (matherr) function.

atanhf

CubeSuite Ver.1.40 CHAPTER 6 FUNCTIONAL SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 748 of 890
Oct 01, 2010

6.4.10 Initialization peripheral devices function

Initialization peripheral devices function are as follows.

Table 6-27. Initialization Peripheral Devices Function

Function/Macro Name Outline

hdwinit Initialization of peripheral devices immediately after the CPU reset

CubeSuite Ver.1.40 CHAPTER 6 FUNCTIONAL SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 749 of 890
Oct 01, 2010

Initialization of peripheral devices immediately after the CPU reset.

[Classification]

Initialization library

[Syntax]

void hdwinit(void);

[Description]

The initialization peripheral devices function performs initialization of peripheral devices immediately after the CPU
reset.

This is called from inside the startup routine.
The function included in the library is a dummy routine that performs no actions; code a function in accordance with

your system.

hdwinit

CubeSuite Ver.1.40 CHAPTER 6 FUNCTIONAL SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 750 of 890
Oct 01, 2010

6.4.11 Copy functions

These functions are the routines that copies data and program codes with initial values to RAM.
- A ROMization function itself does not use the sdata area and sbss area. Writes the data to sdata area.
- A ROMization function is usually called only once before the main program is executed. So it does not considers

re-entrant.
- When a load module is downloaded to the in-circuit emulator (ICE), the data with initial values and placed in the

data area or sdata area is set as soon as the load module has been downloaded.
Therefore, debugging can be performed without calling the copy function. If a ROMization load module is created
and executed on the actual machine, however, the initial values are not set and the operation is not performed as
expected unless data with an initial value is copied using the copy function. The reason for the trouble is that an
initial value is not set by this copy function. If a routine that clears RAM to zero is executed during initialization, call
the copy function before that routine. Otherwise the initial values will also be cleared to zero.

Copy functions are as follows.

Table 6-28. Copy Functions

Remarks 1. _rcopy and _rcopy1 perform the same operation.
When a program code is copied to the internal instruction RAM of a V850 device that has an internal
instruction RAM (such as the V850E/ME2), it must be copied in 4-byte units because of the hardware
specifications. In this case, the program code is copied using the "_rcopy4" function. Any function
could be used if no hardware restrictions. When a program code is copied in 2-byte or 4-byte units, the
area that must be copied may be exceeded. If the size of a packed data area is not a multiple of 4,
therefore, an area other than the packed data area is also copied at the same time. Take this into con-
sideration.

2. See "8.4 Copy Functions" for details of this processing.

Function/Macro Name Outline

_rcopy Copies packed data to RAM, 1-byte at a time (Same as _rcopy1)

_rcopy1 Copies packed data to RAM, 1-byte at a time (Same as _rcopy)

_rcopy2 Copies packed data to RAM, 2-bytes at a time

_rcopy4 Copies packed data to RAM, 4-bytes at a time

CubeSuite Ver.1.40 CHAPTER 6 FUNCTIONAL SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 751 of 890
Oct 01, 2010

6.4.12 Pseudo "main" functions for multi-core

Pseudo "main" functions for multi-core are as follows.

Table 6-29. Pseudo "main" Functions for Multi-core

Function/Macro Name Outline

main_pen Does not return control to the caller.

CubeSuite Ver.1.40 CHAPTER 6 FUNCTIONAL SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 752 of 890
Oct 01, 2010

It is an infinite loop, and does not return control to the caller.

[Classification]

Multi-core library

[Syntax]

int main_pen (void);

Remark This is a convenience declaration. It allows the user to control the parameters/return value of the startup
routine.

[Description]

This is a do-nothing function.
When using a multi-core device, if the user does not provide a main() function for other than PE1, then this will be

linked from the multi-core startup routine.
It is an infinite loop internally, and does not return control to the caller.
main_pe2 to main_pe31 are provided.

[Example]

main_pen

 ld.hu PEID, r10

 cmp 1, r10

 be .L1

 # Non-PE1 processing

 jarl main_pe2, lp ; /* Does not return, because it is an infinite loop */

.L1:

 # PE1 processing continues

CubeSuite Ver.1.40 CHAPTER 6 FUNCTIONAL SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 753 of 890
Oct 01, 2010

6.4.13 Operation runtime functions

This section explains the operation runtime functions.
The operation runtime function is a routine the CX uses automatically to do calculation on 64-bit data and floating-point

operations. This library is included in the libc.lib file along with the standard library. The header file does not need to be
included. Similar to "function pre/post processing runtime function", "operation runtime function" is not described in the C
source or assembler source.

When using the operation runtime function for an application program, libc.lib must be referred by linker when an exe-
cutable object module file is created.

Figure 6-1. Image of Using Operation Runtime Function

Operation runtime functions are as follows.

Table 6-30. Operation Runtime Functions

Classification Function Name Outline

float type opera-
tion function

___addf.s Addition of single-precision floating-point

___subf.s Subtraction of single-precision floating-point

___mulf.s Multiplication of single-precision floating-point

___divf.s Division of single-precision floating-point

___cmpf.s Comparison of single-precision floating-point

___fcmp.s Comparison of single-precision floating-point

___negf.s Negate of single-precision floating-point

___notf.s Logical negation of single-precision floating-point

double type oper-
ation function

___addf.d Addition of double-precision floating-point

___subf.d Subtraction of double-precision floating-point

___mulf.d Multiplication of double-precision floating-point

___divf.d Division of double-precision floating-point

___fcmp.d Comparison of double-precision floating-point

___negf.d Negate of double-precision floating-point

___notf.d Logical negation of double-precision floating-point

.asm

Operation runtime function

floating-point operation

 jarl xxx
Assembler

.obj
Linker

a.lmf

libc.lib

CubeSuite Ver.1.40 CHAPTER 6 FUNCTIONAL SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 754 of 890
Oct 01, 2010

long long type
operation func-
tion

___add.l Addition of 64-bit integer

___sub.l Subtraction of 64-bit integer

___mul.l Multiplication of 64-bit integer

___div.l Division of signed 64-bit integer

___div.ul Division of unsigned 64-bit integer

___mod.l Remainder of signed 64-bit integer

___mod.ul Remainder of unsigned 64-bit integer

___shl.l Logical left shift of 64-bit integer

___shr.l Logical right shift of 64-bit integer

___sar.l Arithmetic right shift 64-bit integer

___inc.l Increment of 64-bit integer

___dec.l Decrement of 64-bit integer

___not.l Logical negation of 64-bit integer

___neg.l Negate of 64-bit integer

___cmp.l Comparison of signed 64-bit integer

___cmp.ul Comparison of unsigned 64-bit integer

___bext.l Bit field extraction of signed 64-bit integer

___bext.ul Bit field extraction of unsigned 64-bit integer

___bins.l Bit field insertion of 64-bit integer

Classification Function Name Outline

CubeSuite Ver.1.40 CHAPTER 6 FUNCTIONAL SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 755 of 890
Oct 01, 2010

Remarks 1. The operation runtime function is originally used by code generation part and is not assumed to be
used alone. Therefore, preprocessing to call the operation runtime function is necessary when it is
used for an assembly- language source program.

2. The operation runtime function cannot be used with a C source program.

Type conversion
function

___cvt.ws Conversion from 32-bit integer to single-precision floating-point number

___cvt.wd Conversion from 32-bit integer to double-precision floating-point number

___cvt.uws Conversion from unsigned 32-bit integer to single-precision floating-point number

___cvt.uwd Conversion from unsigned 32-bit integer to double-precision floating-point number

___cvt.ls Conversion from 64-bit integer to single-precision floating-point number

___cvt.ld Conversion from 64-bit integer to double-precision floating-point number

___cvt.uls Conversion from unsigned 64-bit integer to single-precision floating-point number

___cvt.uld Conversion from unsigned 64-bit integer to double-precision floating-point number

___trnc.sw Conversion from single-precision floating-point number to 32-bit integer

___trnc.dw Conversion from double-precision floating-point number to 32-bit integer

___trnc.suw Conversion from single-precision floating-point number to unsigned 32-bit integer

___trnc.duw Conversion from double-precision floating-point number to unsigned 32-bit integer

___trnc.sl Conversion from single-precision floating-point number to 64-bit integer

___trnc.dl Conversion from double-precision floating-point number to 64-bit integer

___trnc.sul Conversion from single-precision floating-point number to unsigned 64-bit integer

___trnc.dul Conversion from double-precision floating-point number to unsigned 64-bit integer

___cvt.sd Conversion from single-precision floating-point number to double-precision floating-
point number

___cvt.ds Conversion from double-precision floating-point number to single-precision floating-
point number

int type opera-
tion function

__mul Multiplication of signed integer

__mulu Multiplication of unsigned integer

__div Division of signed integer

__divu Division of unsigned integer

__mod Remainder of signed integer

__modu Remainder of unsigned integer

Classification Function Name Outline

CubeSuite Ver.1.40 CHAPTER 6 FUNCTIONAL SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 756 of 890
Oct 01, 2010

Addition of float type

[Classification]

Runtime library

[Argument(s)]

[Return value]

[Description]

Addition of single-precision floating-point.

___addf.s

r7 Left term of addition

r6 Right term of addition

r6 Result of addition

CubeSuite Ver.1.40 CHAPTER 6 FUNCTIONAL SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 757 of 890
Oct 01, 2010

Subtraction of float type

[Classification]

Runtime library

[Argument(s)]

[Return value]

[Description]

Subtraction of single-precision floating-point.

___subf.s

r7 Left term of subtraction

r6 Right term of subtraction

r6 Result of subtraction

CubeSuite Ver.1.40 CHAPTER 6 FUNCTIONAL SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 758 of 890
Oct 01, 2010

Multiplication of float type

[Classification]

Runtime library

[Argument(s)]

[Return value]

[Description]

Multiplication of single-precision floating-point.

___mulf.s

r7 Left term of multiplication

r6 Right term of multiplication

r6 Result of multiplication

CubeSuite Ver.1.40 CHAPTER 6 FUNCTIONAL SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 759 of 890
Oct 01, 2010

Division of float type

[Classification]

Runtime library

[Argument(s)]

[Return value]

[Description]

Division of single-precision floating-point

___divf.s

r7 Left term of division

r6 Right term of division

r6 Result of division

CubeSuite Ver.1.40 CHAPTER 6 FUNCTIONAL SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 760 of 890
Oct 01, 2010

Comparison of float type

[Classification]

Runtime library

[Argument(s)]

[Return value]

[Description]

Comparison of single-precision floating-point.
A result of the following combination is returned.

___cmpf.s

r8 Value of PSW just before the comparison

r7 Left term of comparison

r6 Right term of comparison

PSW Result of comparison

r6 Same value as PSW after comparison

Z flag CY flag S flag

Left term or right term is NaN Undefined Undefined Undefined

Left term = right term = +∞ Undefined Undefined Undefined

Left term = right term = -∞ Undefined Undefined Undefined

Left term > right term 0 0 0

Left term = right term 1 0 0

Left term < right term 0 1 1

CubeSuite Ver.1.40 CHAPTER 6 FUNCTIONAL SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 761 of 890
Oct 01, 2010

Comparison of float type

[Classification]

Runtime library

[Argument(s)]

[Return value]

[Description]

Comparison of single-precision floating-point.
A result of the following combination is returned.

___fcmp.s

r7 Left term of comparison

r6 Right term of comparison

r6 Value of int type which shows a result of comparison

Return Value

Left term or right term is NaN 1

Left term > right term 1

Left term = right term 0

Left term < right term -1

CubeSuite Ver.1.40 CHAPTER 6 FUNCTIONAL SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 762 of 890
Oct 01, 2010

Negate of float type

[Classification]

Runtime library

[Argument(s)]

[Return value]

[Description]

Negate of single-precision floating-point.

___negf.s

r6 Value whose sign is to be reversed

r6 Value whose sign has been reversed

CubeSuite Ver.1.40 CHAPTER 6 FUNCTIONAL SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 763 of 890
Oct 01, 2010

Logical negation of float type

[Classification]

Runtime library

[Argument(s)]

[Return value]

[Description]

Logical negation of single-precision floating-point.
A return value is int type.

___notf.s

r6 Value which dose logical negation

r6 Integer which did logical negation

CubeSuite Ver.1.40 CHAPTER 6 FUNCTIONAL SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 764 of 890
Oct 01, 2010

Addition of double type

[Classification]

Runtime library

[Argument(s)]

[Return value]

[Description]

Addition of double-precision floating-point.

___addf.d

r9:r8 Left term of addition

r7:r6 Right term of addition

r7:r6 Result of addition

CubeSuite Ver.1.40 CHAPTER 6 FUNCTIONAL SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 765 of 890
Oct 01, 2010

Subtraction of double type

[Classification]

Runtime library

[Argument(s)]

[Return value]

[Description]

Subtraction of double-precision floating-point.

___subf.d

r9:r8 Left term of subtraction

r7:r6 Right term of subtraction

r7:r6 Result of subtraction

CubeSuite Ver.1.40 CHAPTER 6 FUNCTIONAL SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 766 of 890
Oct 01, 2010

Multiplication of double type

[Classification]

Runtime library

[Argument(s)]

[Return value]

[Description]

Multiplication of double-precision floating-point.

___mulf.d

r9:r8 Left term of multiplication

r7:r6 Right term of multiplication

r7:r6 Result of multiplication

CubeSuite Ver.1.40 CHAPTER 6 FUNCTIONAL SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 767 of 890
Oct 01, 2010

Division of double type

[Classification]

Runtime library

[Argument(s)]

[Return value]

[Description]

Division of double-precision floating-point.

___divf.d

r9:r8 Left term of division

r7:r6 Right term of division

r7:r6 Result of division

CubeSuite Ver.1.40 CHAPTER 6 FUNCTIONAL SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 768 of 890
Oct 01, 2010

Comparison of double type

[Classification]

Runtime library

[Argument(s)]

[Return value]

[Description]

Comparison of double-precision floating-point.
A result of the following combination is returned.

___fcmp.d

r9:r8 Left term of comparison

r7:r6 Right term of comparison

r6 Value of int type which shows a result of comparison

Return Value

Left term or right term is NaN 1

Left term > right term 1

Left term = right term 0

Left term < right term -1

CubeSuite Ver.1.40 CHAPTER 6 FUNCTIONAL SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 769 of 890
Oct 01, 2010

Negate of double type

[Classification]

Runtime library

[Argument(s)]

[Return value]

[Description]

Negate of double-precision floating-point.

___negf.d

r7:r6 Value whose sign is to be reversed

r7:r6 Value whose sign has been reversed

CubeSuite Ver.1.40 CHAPTER 6 FUNCTIONAL SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 770 of 890
Oct 01, 2010

Logical negation of double type

[Classification]

Runtime library

[Argument(s)]

[Return value]

[Description]

Logical negation of double-precision floating-point.
A return value is int type.

___notf.d

r7:r6 Value which does logical negation

r6 Integer which did logical negation

CubeSuite Ver.1.40 CHAPTER 6 FUNCTIONAL SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 771 of 890
Oct 01, 2010

Addition of long long type

[Classification]

Runtime library

[Argument(s)]

[Return value]

[Description]

Addition of 64-bit integer.

___add.l

r9:r8 Left term of addition

r7:r6 Right term of addition

r7:r6 Result of addition

CubeSuite Ver.1.40 CHAPTER 6 FUNCTIONAL SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 772 of 890
Oct 01, 2010

Subtraction of long long type

[Classification]

Runtime library

[Argument(s)]

[Return value]

[Description]

Subtraction of 64-bit integer.

___sub.l

r9:r8 Left term of subtraction

r7:r6 Right term of subtraction

r7:r6 Result of subtraction

CubeSuite Ver.1.40 CHAPTER 6 FUNCTIONAL SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 773 of 890
Oct 01, 2010

Multiplication of long long type

[Classification]

Runtime library

[Argument(s)]

[Return value]

[Description]

Multiplication of 64-bit integer.

___mul.l

r9:r8 Left term of multiplication

r7:r6 Right term of multiplication

r7:r6 Result of multiplication

CubeSuite Ver.1.40 CHAPTER 6 FUNCTIONAL SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 774 of 890
Oct 01, 2010

Division of signed long long type

[Classification]

Runtime library

[Argument(s)]

[Return value]

[Description]

Division of signed 64-bit integer.
If the divisor of the expression is 0, a result of 0 will be returned.

___div.l

r9:r8 Left term of division

r7:r6 Right term of division

r7:r6 Result of division

CubeSuite Ver.1.40 CHAPTER 6 FUNCTIONAL SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 775 of 890
Oct 01, 2010

Division of unsigned long long type

[Classification]

Runtime library

[Argument(s)]

[Return value]

[Description]

Division of unsigned 64-bit integer.
If the divisor of the expression is 0, a result of 0 will be returned.

___div.ul

r9:r8 Left term of division

r7:r6 Right term of division

r7:r6 Result of division

CubeSuite Ver.1.40 CHAPTER 6 FUNCTIONAL SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 776 of 890
Oct 01, 2010

Remainder of long long type

[Classification]

Runtime library

[Argument(s)]

[Return value]

[Description]

Remainder of signed 64-bit integer.
If the divisor of the expression is 0, a result of 0 will be returned.

___mod.l

r9:r8 Left term of remainder

r7:r6 Right term of remainder

r7:r6 Result of remainder

CubeSuite Ver.1.40 CHAPTER 6 FUNCTIONAL SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 777 of 890
Oct 01, 2010

Remainder of unsigned long long type

[Classification]

Runtime library

[Argument(s)]

[Return value]

[Description]

Remainder of unsigned 64-bit integer.
If the divisor of the expression is 0, a result of 0 will be returned.

___mod.ul

r9:r8 Left term of remainder

r7:r6 Right term of remainder

r7:r6 Result of remainder

CubeSuite Ver.1.40 CHAPTER 6 FUNCTIONAL SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 778 of 890
Oct 01, 2010

Logical left shift of long long type

[Classification]

Runtime library

[Argument(s)]

[Return value]

[Description]

Logical left shift of 64-bit integer.
The operation is performed after masking the right term by 0x3F, regardless of its sign.

___shl.l

r7:r6 Left term of logical left shift

r8 Right term of logical left shift

r7:r6 Result of logical left shift

CubeSuite Ver.1.40 CHAPTER 6 FUNCTIONAL SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 779 of 890
Oct 01, 2010

Logical right shift of long long type

[Classification]

Runtime library

[Argument(s)]

[Return value]

[Description]

Logical right shift of 64-bit integer.
The operation is performed after masking the right term by 0x3F, regardless of its sign.

___shr.l

r7:r6 Left term of logical right shift

r8 Right term of logical right shift

r7:r6 Result of logical right shift

CubeSuite Ver.1.40 CHAPTER 6 FUNCTIONAL SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 780 of 890
Oct 01, 2010

Arithmetic right shift long long type

[Classification]

Runtime library

[Argument(s)]

[Return value]

[Description]

Arithmetic right shift 64-bit integer.
The operation is performed after masking the right term by 0x3F, regardless of its sign.

___sar.l

r7:r6 Left term of arithmetic right shift

r8 Right term of arithmetic right shift

r7:r6 Result of arithmetic right shift

CubeSuite Ver.1.40 CHAPTER 6 FUNCTIONAL SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 781 of 890
Oct 01, 2010

Increment of long long type

[Classification]

Runtime library

[Argument(s)]

[Return value]

[Description]

Increment of 64-bit integer.

___inc.l

r7:r6 Value to increment

r7:r6 Result of increment

CubeSuite Ver.1.40 CHAPTER 6 FUNCTIONAL SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 782 of 890
Oct 01, 2010

Decrement of long long type

[Classification]

Runtime library

[Argument(s)]

[Return value]

[Description]

Decrement of 64-bit integer.

___dec.l

r7:r6 Value to decrement

r7:r6 Result of decrement

CubeSuite Ver.1.40 CHAPTER 6 FUNCTIONAL SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 783 of 890
Oct 01, 2010

Logical negation of long long type

[Classification]

Runtime library

[Argument(s)]

[Return value]

[Description]

Logical negation of 64-bit integer.

___not.l

r7:r6 Value which does logical negation

r7:r6 Result of logical negation

CubeSuite Ver.1.40 CHAPTER 6 FUNCTIONAL SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 784 of 890
Oct 01, 2010

Negate of long long type

[Classification]

Runtime library

[Argument(s)]

[Return value]

[Description]

Negate of 64-bit integer.

___neg.l

r7:r6 Value whose sign is to be reversed

r7:r6 Result of the sign reversed

CubeSuite Ver.1.40 CHAPTER 6 FUNCTIONAL SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 785 of 890
Oct 01, 2010

Comparison of long long type

[Classification]

Runtime library

[Argument(s)]

[Return value]

[Description]

Comparison of signed 64-bit integer.
A result of the following combination is returned.

___cmp.l

r9:r8 Left term of comparison

r7:r6 Right term of comparison

r6 Value of int type which shows a result of comparison

Return Value

Left term > right term 1

Left term = right term 0

Left term < right term -1

CubeSuite Ver.1.40 CHAPTER 6 FUNCTIONAL SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 786 of 890
Oct 01, 2010

Comparison of unsigned long long type

[Classification]

Runtime library

[Argument(s)]

[Return value]

[Description]

Comparison of unsigned 64-bit integer.
A result of the following combination is returned.

___cmp.ul

r9:r8 Left term of comparison

r7:r6 Right term of comparison

r6 Value of int type which shows a result of comparison

Return Value

Left term > right term 1

Left term = right term 0

Left term < right term -1

CubeSuite Ver.1.40 CHAPTER 6 FUNCTIONAL SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 787 of 890
Oct 01, 2010

Bit field extraction of long long type

[Classification]

Runtime library

[Argument(s)]

[Return value]

[Description]

Bit extraction of signed 64-bit integer.
The value of the lower 16 bits of r8 masked by 0x3F is the position of the bottom bit to extract.
The value of the upper 16 bits of r8 masked by 0xFFFF is the bit width to extract. Note, however, that if this width

combined with the extraction bit location would exceed 64 bits, then the extraction bit width is shrunk so that it will fit
within 64 bits.

The extracted bit field value is returned as type long long with sign extension. The top bit of the bit field acts as the sign
bit.

If the extraction bit width is 0, then 0 is returned.

___bext.l

r7:r6 Value to extract the bit field from

r8 Upper 16 bits: The width of the bit field to extract

Lower 16 bits: The location of the bit field to extract

r7:r6 The extracted bit field value

CubeSuite Ver.1.40 CHAPTER 6 FUNCTIONAL SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 788 of 890
Oct 01, 2010

Bit field extraction of unsigned long long type

[Classification]

Runtime library

[Argument(s)]

[Return value]

[Description]

Bit field extraction of unsigned 64-bit integer.
The value of the lower 16 bits of r8 masked by 0x3F is the position of the bottom bit to extract.
The value of the upper 16 bits of r8 masked by 0xFFFF is the bit width to extract. Note, however, that if this width

combined with the extraction bit location would exceed 64 bits, then the extraction bit width is shrunk so that it will fit
within 64 bits.

The extracted bit field value is zero-extended and returned.
If the extraction bit width is 0, then 0 is returned.

___bext.ul

r7:r6 Value to extract the bit field from

r8 Upper 16 bits: The width of the bit field to extract

Lower 16 bits: The location of the bit field to extract

r7:r6 The extracted bit field value

CubeSuite Ver.1.40 CHAPTER 6 FUNCTIONAL SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 789 of 890
Oct 01, 2010

Bit field insertion of long long type

[Classification]

Runtime library

[Argument(s)]

[Return value]

[Description]

Bit field insertion of 64-bit integer.
The lower 16 bits of the value stored in 0[sp] is masked by 0x3F, and this value is used as the bit field insertion location.
The upper 16 bits of the value stored in 0[sp] is masked by 0xFFFF, and this value is used as the bit field insertion

width. Note, however, that if this width combined with the insertion location would exceed 64 bits, then the insertion width
is shrunk so that it will fit within 64 bits.

If the insertion bit width is 0, then the value of r7:r6 is returned as-is.

___bins.l

r7:r6 Bit field insertion destination

r9:r8 Bit field insertion data

0[sp] Upper 16 bits: Bit field insertion width

Lower 16 bits: Bit field insertion location

r7:r6 long long value after insertion

CubeSuite Ver.1.40 CHAPTER 6 FUNCTIONAL SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 790 of 890
Oct 01, 2010

Conversion from long type to float type

[Classification]

Runtime library

[Argument(s)]

[Return value]

[Description]

Conversion from 32-bit integer to single-precision floating-point number.

___cvt.ws

r6 Value before conversion

r6 Value after conversion

CubeSuite Ver.1.40 CHAPTER 6 FUNCTIONAL SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 791 of 890
Oct 01, 2010

Conversion from long type to double type

[Classification]

Runtime library

[Argument(s)]

[Return value]

[Description]

Conversion from 32-bit integer to double-precision floating-point number.

___cvt.wd

r6 Value before conversion

r7:r6 Value after conversion

CubeSuite Ver.1.40 CHAPTER 6 FUNCTIONAL SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 792 of 890
Oct 01, 2010

Conversion from unsigned long type to float type

[Classification]

Runtime library

[Argument(s)]

[Return value]

[Description]

Conversion from unsigned 32-bit integer to single-precision floating-point number.

___cvt.uws

r6 Value before conversion

r6 Value after conversion

CubeSuite Ver.1.40 CHAPTER 6 FUNCTIONAL SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 793 of 890
Oct 01, 2010

Conversion from unsigned long type to double type

[Classification]

Runtime library

[Argument(s)]

[Return value]

[Description]

Conversion from unsigned 32-bit integer to double-precision floating-point number.

___cvt.uwd

r6 Value before conversion

r7:r6 Value after conversion

CubeSuite Ver.1.40 CHAPTER 6 FUNCTIONAL SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 794 of 890
Oct 01, 2010

Conversion from 64-bit integer to float type

[Classification]

Runtime library

[Argument(s)]

[Return value]

[Description]

Conversion from 64-bit integer to single-precision floating-point number.

___cvt.ls

r7:r6 Value before conversion

r6 Value after conversion

CubeSuite Ver.1.40 CHAPTER 6 FUNCTIONAL SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 795 of 890
Oct 01, 2010

Conversion from long long type to double type

[Classification]

Runtime library

[Argument(s)]

[Return value]

[Description]

Conversion from 64-bit integer to double-precision floating-point number.

___cvt.ld

r7:r6 Value before conversion

r7:r6 Value after conversion

CubeSuite Ver.1.40 CHAPTER 6 FUNCTIONAL SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 796 of 890
Oct 01, 2010

Conversion from unsigned long long type to float type

[Classification]

Runtime library

[Argument(s)]

[Return value]

[Description]

Conversion from unsigned 64-bit integer to single-precision floating-point number.

___cvt.uls

r7:r6 Value before conversion

r6 Value after conversion

CubeSuite Ver.1.40 CHAPTER 6 FUNCTIONAL SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 797 of 890
Oct 01, 2010

Conversion from unsigned long long type to double type

[Classification]

Runtime library

[Argument(s)]

[Return value]

[Description]

Conversion from unsigned 64-bit integer to double-precision floating-point number.

___cvt.uld

r7:r6 Value before conversion

r7:r6 Value after conversion

CubeSuite Ver.1.40 CHAPTER 6 FUNCTIONAL SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 798 of 890
Oct 01, 2010

Conversion from float type to long type

[Classification]

Runtime library

[Argument(s)]

[Return value]

[Description]

Conversion from single-precision floating-point number to 32-bit integer.
A result of the following combination is returned.

___trnc.sw

r6 Value before conversion

r6 Value after conversion

Value before Conversion Return Value

NaN or +∞ 0

Smaller than -0x80000000 0

Bigger than +0xFFFFFFFF 0

Others Integer after conversion

CubeSuite Ver.1.40 CHAPTER 6 FUNCTIONAL SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 799 of 890
Oct 01, 2010

Conversion from double type to long type

[Classification]

Runtime library

[Argument(s)]

[Return value]

[Description]

Conversion from double-precision floating-point number to 32-bit integer.
Decimals are rounded toward 0.
A result of the following combination is returned.

___trnc.dw

r7:r6 Value before conversion

r6 Value after conversion

Value before Conversion Return Value

NaN or +∞ 0

Smaller than -0x80000000 0

Bigger than +0xFFFFFFFF 0

Others Integer after conversion

CubeSuite Ver.1.40 CHAPTER 6 FUNCTIONAL SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 800 of 890
Oct 01, 2010

Conversion from float type to unsigned long type

[Classification]

Runtime library

[Argument(s)]

[Return value]

[Description]

Conversion from single-precision floating-point number to unsigned 32-bit integer.
Decimals are rounded toward 0.
A result of the following combination is returned.

___trnc.suw

r6 Value before conversion

r6 Value after conversion

Value before Conversion Return Value

NaN or +∞ 0

Smaller than -0x80000000 0

Bigger than +0xFFFFFFFF 0

Others Integer after conversion

CubeSuite Ver.1.40 CHAPTER 6 FUNCTIONAL SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 801 of 890
Oct 01, 2010

Conversion from double type to unsigned long type

[Classification]

Runtime library

[Argument(s)]

[Return value]

[Description]

Conversion from double-precision floating-point number to unsigned 32-bit integer.
Decimals are rounded toward 0.
A result of the following combination is returned.

___trnc.duw

r7:r6 Value before conversion

r6 Value after conversion

Value before Conversion Return Value

NaN or +∞ 0

Smaller than -0x80000000 0

Bigger than +0xFFFFFFFF 0

Others Integer after conversion

CubeSuite Ver.1.40 CHAPTER 6 FUNCTIONAL SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 802 of 890
Oct 01, 2010

Conversion from float type to long long type

[Classification]

Runtime library

[Argument(s)]

[Return value]

[Description]

Conversion from single-precision floating-point number to 64-bit integer.
Decimals are rounded toward 0.
A result of the following combination is returned.

___trnc.sl

r6 Value before conversion

r7:r6 Value after conversion

Value before Conversion Return Value

NaN or +∞ 0

Smaller than -0x8000000000000000 0

Bigger than +0xFFFFFFFFFFFFFFFF 0

Others Integer after conversion

CubeSuite Ver.1.40 CHAPTER 6 FUNCTIONAL SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 803 of 890
Oct 01, 2010

Conversion from double type to long long type

[Classification]

Runtime library

[Argument(s)]

[Return value]

[Description]

Conversion from double-precision floating-point number to 64-bit integer.
Decimals are rounded toward 0.
A result of the following combination is returned.

___trnc.dl

r7:r6 Value before conversion

r7:r6 Value after conversion

Value before Conversion Return Value

NaN or +∞ 0

Smaller than -0x8000000000000000 0

Bigger than +0xFFFFFFFFFFFFFFFF 0

Others Integer after conversion

CubeSuite Ver.1.40 CHAPTER 6 FUNCTIONAL SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 804 of 890
Oct 01, 2010

Conversion from float type to unsigned long long type

[Classification]

Runtime library

[Argument(s)]

[Return value]

[Description]

Conversion from single-precision floating-point number to unsigned 64-bit integer.
Decimals are rounded toward 0.
A result of the following combination is returned.

___trnc.sul

r6 Value before conversion

r7:r6 Value after conversion

Value before Conversion Return Value

NaN or +∞ 0

Smaller than -0x8000000000000000 0

Bigger than +0xFFFFFFFFFFFFFFFF 0

Others Integer after conversion

CubeSuite Ver.1.40 CHAPTER 6 FUNCTIONAL SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 805 of 890
Oct 01, 2010

Conversion from double type to unsigned long long type

[Classification]

Runtime library

[Argument(s)]

[Return value]

[Description]

Conversion from double-precision floating-point number to unsigned 64-bit integer.
Decimals are rounded toward 0.
A result of the following combination is returned.

___trnc.dul

r7:r6 Value before conversion

r7:r6 Value after conversion

Value before Conversion Return Value

NaN or +∞ 0

Smaller than -0x8000000000000000 0

Bigger than +0xFFFFFFFFFFFFFFFF 0

Others Integer after conversion

CubeSuite Ver.1.40 CHAPTER 6 FUNCTIONAL SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 806 of 890
Oct 01, 2010

Conversion from float type to double type

[Classification]

Runtime library

[Argument(s)]

[Return value]

[Description]

Conversion from single-precision floating-point number to double-precision floating-point number.
A result of the following combination is returned.

___cvt.sd

r6 Value before conversion

r7:r6 Value after conversion

Value before Conversion Return Value

NaN NaN

+∞ +∞

Others Value after conversion

CubeSuite Ver.1.40 CHAPTER 6 FUNCTIONAL SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 807 of 890
Oct 01, 2010

Conversion from double type to float type

[Classification]

Runtime library

[Argument(s)]

[Return value]

[Description]

Conversion from double-precision floating-point number to single-precision floating-point number.
A result of the following combination is returned.

___cvt.ds

r7:r6 Value before conversion

r6 Value after conversion

Value before Conversion Return Value

NaN NaN

+∞ +∞

Others Value after conversion

CubeSuite Ver.1.40 CHAPTER 6 FUNCTIONAL SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 808 of 890
Oct 01, 2010

Multiplication of int type

[Classification]

Runtime library

[Argument(s)]

[Return value]

[Description]

Multiplication of signed integer.

__mul

r7 Left term of multiplication

r6 Right term of multiplication

r6 Result of multiplication

CubeSuite Ver.1.40 CHAPTER 6 FUNCTIONAL SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 809 of 890
Oct 01, 2010

Multiplication of unsigned int type

[Classification]

Runtime library

[Argument(s)]

[Return value]

[Description]

Multiplication of unsigned integer.

__mulu

r7 Left term of multiplication

r6 Right term of multiplication

r6 Result of multiplication

CubeSuite Ver.1.40 CHAPTER 6 FUNCTIONAL SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 810 of 890
Oct 01, 2010

Division of int type

[Classification]

Runtime library

[Argument(s)]

[Return value]

[Description]

Division of signed integer.
If there is a division by zero, then 0 is returned.

__div

r7 Left term of division

r6 Right term of division

r6 Result of division

CubeSuite Ver.1.40 CHAPTER 6 FUNCTIONAL SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 811 of 890
Oct 01, 2010

Division of unsigned int type

[Classification]

Runtime library

[Argument(s)]

[Return value]

[Description]

Division of unsigned integer.
If there is a division by zero, then 0 is returned.

__divu

r7 Left term of division

r6 Right term of division

r6 Result of division

CubeSuite Ver.1.40 CHAPTER 6 FUNCTIONAL SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 812 of 890
Oct 01, 2010

Remainder of int type

[Classification]

Runtime library

[Argument(s)]

[Return value]

[Description]

Remainder of signed integer.
If there is a division by zero, then 0 is returned.

__mod

r7 Left term of remainder

r6 Right term of remainder

r6 Result of remainder

CubeSuite Ver.1.40 CHAPTER 6 FUNCTIONAL SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 813 of 890
Oct 01, 2010

Remainder of unsigned int type

[Classification]

Runtime library

[Argument(s)]

[Return value]

[Description]

Remainder of unsigned integer.
If there is a division by zero, then 0 is returned.

__modu

r7 Left term of remainder

r6 Right term of remainder

r6 Result of remainder

CubeSuite Ver.1.40 CHAPTER 6 FUNCTIONAL SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 814 of 890
Oct 01, 2010

6.4.14 Function pre/post processing runtime functions

Function pre/post processing runtime function is a routine that is automatically called by the process of the CX pro-
logue/epilogue functions. Similar to "operation runtime function", function pre/post processing runtime function is not
described in the C source or assembler source.

The V850Ex core uses the CALLT instruction to call the function pre/post processing runtime function. The code effi-
ciency can be enhanced by calling these functions from the table of the CALLT instruction.

Calling the function pre/post processing runtime function is valid when:
- An optimization option other than "-Ospeed" (execution speed priority optimization) is specified.
- The compiler option "-Xpro_epi_runtime=on" is specified.

Table 6-31. Function pre/post Processing Runtime Functions

Function/Macro Name Outline

___Epush250, ___Epush251, ___Epush252, ___Epush253, ___Epush254,
___Epush260, ___Epush261, ___Epush262, ___Epush263, ___Epush264,
___Epush270, ___Epush271, ___Epush272, ___Epush273, ___Epush274,
___Epush280, ___Epush281, ___Epush282, ___Epush283, ___Epush284,
___Epush290, ___Epush291, ___Epush292, ___Epush293, ___Epush294,
___Epushlp0, ___Epushlp1, ___Epushlp2, ___Epushlp3, ___Epushlp4

Prologue processing of functions

___push2000, ___push2001, ___push2002, ___push2003, ___push2004,
___push2040, ___push2100, ___push2101, ___push2102, ___push2103,
___push2104, ___push2140, ___push2200, ___push2201, ___push2202,
___push2203, ___push2204, ___push2240, ___push2300, ___push2301,
___push2302, ___push2303, ___push2304, ___push2340, ___push2400,
___push2401, ___push2402, ___push2403, ___push2404, ___push2440,
___push2500, ___push2501, ___push2502, ___push2503, ___push2504,
___push2540, ___push2600, ___push2601, ___push2602, ___push2603,
___push2604, ___push2640, ___push2700, ___push2701, ___push2702,
___push2703, ___push2704, ___push2740, ___push2800, ___push2801,
___push2802, ___push2803, ___push2804, ___push2840, ___push2900,
___push2901, ___push2902, ___push2903, ___push2904, ___push2940,
___pushlp00, ___pushlp01, ___pushlp02, ___pushlp03, ___pushlp04,
___pushlp40

Prologue processing of functions

___Epop250, ___Epop251, ___Epop252, ___Epop253, ___Epop254,
___Epop260, ___Epop261, ___Epop262, ___Epop263, ___Epop264,
___Epop270, ___Epop271, ___Epop272, ___Epop273, ___Epop274,
___Epop280, ___Epop281, ___Epop282, ___Epop283, ___Epop284,
___Epop290, ___Epop291, ___Epop292, ___Epop293, ___Epop294,
___Epoplp0, ___Epoplp1, ___Epoplp2, ___Epoplp3, ___Epoplp4

Epilogue processing of function

___pop2000, ___pop2001, ___pop2002, ___pop2003, ___pop2004,
___pop2040, ___pop2100, ___pop2101, ___pop2102, ___pop2103,
___pop2104, ___pop2140, ___pop2200, ___pop2201, ___pop2202,
___pop2203, ___pop2204, ___pop2240, ___pop2300, ___pop2301,
___pop2302, ___pop2303, ___pop2304, ___pop2340, ___pop2400,
___pop2401, ___pop2402, ___pop2403, ___pop2404, ___pop2440,
___pop2500, ___pop2501, ___pop2502, ___pop2503, ___pop2504,
___pop2540, ___pop2600, ___pop2601, ___pop2602, ___pop2603,
___pop2604, ___pop2640, ___pop2700, ___pop2701, ___pop2702,
___pop2703, ___pop2704, ___pop2740, ___pop2800, ___pop2801,
___pop2802, ___pop2803, ___pop2804, ___pop2840, ___pop2900,
___pop2901, ___pop2902, ___pop2903, ___pop2904, ___pop2940,
___poplp00, ___poplp01, ___poplp02, ___poplp03, ___poplp04,
___poplp40

Epilogue processing of function

CubeSuite Ver.1.40 CHAPTER 6 FUNCTIONAL SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 815 of 890
Oct 01, 2010

6.5 Library Consumption Stack List

This section explains stack consumption amount of all function included in library.

6.5.1 Standard library

Stack consumption amount (Unit: Byte) of all function included in standard library are shown below.

(1) Functions with variable arguments

Table 6-32. Functions with Variable Arguments

(2) Character string functions

Table 6-33. Character String Functions

(3) Memory management functions

Table 6-34. Memory Management Functions

Function/Macro Name Stack Consumption Amount

va_start 0

va_end 0

va_arg 0

Function/Macro Name Stack Consumption Amount

memchr 0

memcmp 0

bcmp 0

memcpy 0

bcopy 0

memmove 0

memset 0

Function/Macro Name Stack Consumption Amount

index 0

strpbrk 0

rindex 0

strrchr 0

strchr 0

strstr 0

strspn 0

strcspn 0

strcmp 0

strncmp 0

strcpy 0

CubeSuite Ver.1.40 CHAPTER 6 FUNCTIONAL SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 816 of 890
Oct 01, 2010

(4) Character conversion functions

Table 6-35. Character Conversion Functions

(5) Character classification functions

Table 6-36. Character Classification Functions

strncpy 0

strcat 0

strncat 0

strtok 0

strlen 0

strerror 0

Function/Macro Name Stack Consumption Amount

toupper 0

_toupper 0

tolower 0

_tolower 0

toascii 0

Function/Macro Name Stack Consumption Amount

isalnum 0

isalpha 0

isascii 0

isupper 0

islower 0

isdigit 0

isxdigit 0

iscntrl 0

ispunct 0

isspace 0

isprint 0

isgraph 0

Function/Macro Name Stack Consumption Amount

CubeSuite Ver.1.40 CHAPTER 6 FUNCTIONAL SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 817 of 890
Oct 01, 2010

(6) Standard I/O functions

Table 6-37. Standard I/O Functions

(7) Standard utility functions

Table 6-38. Standard Utility Functions

Function/Macro Name Stack Consumption Amount

fread 40

getc 0

fgetc 0

fgets 0

fwrite 28

putc 0

fputc 0

fputs 0

getchar 0

gets 0

putchar 0

puts 0

sprintf 284

fprintf 276

vsprintf 268

printf 276

vfprintf 256

vprintf 264

sscanf 244

fscanf 236

scanf 236

ungetc 0

rewind 0

perror 288

Function/Macro Name Stack Consumption Amount

abs 0

labs 0

llabs 0

bsearch 40

qsort 76

div 0

CubeSuite Ver.1.40 CHAPTER 6 FUNCTIONAL SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 818 of 890
Oct 01, 2010

(8) Non-local jump functions

Table 6-39. Non-Local Jump Functions

ldiv 0

lldiv 36

itoa 36

ltoa 36

ultoa 44

lltoa 88

ulltoa 76

ecvt 168

ecvtf 124

fcvt 168

fcvtf 124

gcvt 232

gcvtf 232

atoi 64

atol 64

atoll 72

strtol 72

strtoul 64

strtoll 72

strtoull 72

atoff 140

atof 140

strtodf 140

strtod 140

calloc 20

malloc 12

realloc 24

free 16

rand 0

srand 0

Function/Macro Name Stack Consumption Amount

longjmp 0

setjmp 0

Function/Macro Name Stack Consumption Amount

CubeSuite Ver.1.40 CHAPTER 6 FUNCTIONAL SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 819 of 890
Oct 01, 2010

6.5.2 Mathematical library

Stack consumption amount (Unit: Byte) of all function included in mathematical library are shown below.

(1) Mathematical functions

Table 6-40. Mathematical Functions

Function/Macro Name Stack Consumption Amount

j0f 68

j1f 68

jnf 88

y0f 80

y1f 80

ynf 100

erff 64

erfcf 64

expf 40

exp 56

logf 44

log 68

log2f 44

log10f 44

log10 68

powf 52

pow 88

sqrtf 72

sqrt 52

cbrtf 44

cbrt 64

ceilf 0

ceil 0

fabsf 0

fabs 0

floorf 0

floor 4

fmodf 32

fmod 56

frexpf 32

frexp 44

ldexpf 32

CubeSuite Ver.1.40 CHAPTER 6 FUNCTIONAL SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 820 of 890
Oct 01, 2010

ldexp 44

modff 0

modf 0

gammaf 52

hypotf 44

matherrf (matherr) 0

matherrd 0

cosf 40

cos 64

sinf 40

sin 68

tanf 52

tan 80

acosf 52

acos 68

asinf 52

asin 68

atanf 48

atan 68

atan2f 52

atan2 80

coshf 40

cosh 60

sinhf 40

sinh 60

tanhf 48

tanh 60

acoshf 44

asinhf 44

atanhf 44

Function/Macro Name Stack Consumption Amount

CubeSuite Ver.1.40 CHAPTER 6 FUNCTIONAL SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 821 of 890
Oct 01, 2010

6.5.3 Initialization library

Stack consumption amount (Unit: Byte) of all function included in initialization library are shown below.

(1) Initialization peripheral devices function

Table 6-41. Initialization Library

6.5.4 ROMization library

Stack consumption amount (Unit: Byte) of all function included in ROMization library are shown below.

(1) Copy functions

Table 6-42. Copy Functions

6.5.5 Multi-core library

Stack consumption amount (Unit: Byte) of all function included in multi-core library are shown below.

(1) Pseudo "main" functions for multi-core

Table 6-43. Pseudo "main" Functions for Multi-core

Function/Macro Name Stack Consumption Amount

hdwinit 0

Function/Macro Name Stack Consumption Amount

_rcopy 24

_rcopy1 24

_rcopy2 20

_rcopy4 20

Function/Macro Name Stack Consumption Amount

main_pe2 0

main_pe3 0

main_pe4 0

main_pe5 0

main_pe6 0

main_pe7 0

main_pe8 0

main_pe9 0

main_pe10 0

main_pe11 0

main_pe12 0

main_pe13 0

main_pe14 0

CubeSuite Ver.1.40 CHAPTER 6 FUNCTIONAL SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 822 of 890
Oct 01, 2010

6.5.6 Runtime library

Stack consumption amount (Unit: Byte) of all function included in runtime library are shown below.

(1) Operation runtime functions

Table 6-44. Operation Runtime Functions

main_pe15 0

main_pe16 0

main_pe17 0

main_pe18 0

main_pe19 0

main_pe20 0

main_pe21 0

main_pe22 0

main_pe23 0

main_pe24 0

main_pe25 0

main_pe26 0

main_pe27 0

main_pe28 0

main_pe29 0

main_pe30 0

main_pe31 0

Function/Macro Name Stack Consumption Amount

___addf.s 84

___subf.s 84

___mulf.s 84

___divf.s 84

___cmpf.s 84

___fcmp.s 84

___negf.s 92

___notf.s 92

___addf.d 96

___subf.d 96

___mulf.d 96

___divf.d 140

___fcmp.d 72

___negf.d 108

Function/Macro Name Stack Consumption Amount

CubeSuite Ver.1.40 CHAPTER 6 FUNCTIONAL SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 823 of 890
Oct 01, 2010

___notf.d 84

___add.l 0

___sub.l 0

___mul.l 0

___div.l 32

___div.ul 16

___mod.l 40

___mod.ul 20

___shl.l 4

___shr.l 4

___sar.l 4

___inc.l 0

___dec.l 0

___not.l 0

___neg.l 0

___cmp.l 4

___cmp.ul 0

___bext.l 8

___bext.ul 8

___bins.l 12

___cvt.ws 16

___cvt.wd 8

___cvt.uws 16

___cvt.uwd 8

___cvt.ls 20

___cvt.ld 24

___cvt.uls 8

___cvt.uld 12

___trnc.sw 4

___trnc.dw 4

___trnc.suw 4

___trnc.duw 4

___trnc.sl 12

___trnc.dl 12

___trnc.sul 12

___trnc.dul 12

___cvt.sd 4

Function/Macro Name Stack Consumption Amount

CubeSuite Ver.1.40 CHAPTER 6 FUNCTIONAL SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 824 of 890
Oct 01, 2010

(2) Function pre/post processing runtime functions

Table 6-45. Function Pre/Post Processing Runtime Functions

___cvt.ds 12

__mul 12

__mulu 12

__div 20

__divu 16

__mod 20

__modu 16

Function/Macro Name Stack Consumption Amount

___Epush250 0

___Epush251 0

___Epush252 0

___Epush253 0

___Epush254 0

___Epush260 0

___Epush261 0

___Epush262 0

___Epush263 0

___Epush264 0

___Epush270 0

___Epush271 0

___Epush272 0

___Epush273 0

___Epush274 0

___Epush280 0

___Epush281 0

___Epush282 0

___Epush283 0

___Epush284 0

___Epush290 0

___Epush291 0

___Epush292 0

___Epush293 0

___Epush294 0

Function/Macro Name Stack Consumption Amount

CubeSuite Ver.1.40 CHAPTER 6 FUNCTIONAL SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 825 of 890
Oct 01, 2010

___Epushlp0 0

___Epushlp1 0

___Epushlp2 0

___Epushlp3 0

___Epushlp4 0

___Epop250 0

___Epop251 0

___Epop252 0

___Epop253 0

___Epop254 0

___Epop260 0

___Epop261 0

___Epop262 0

___Epop263 0

___Epop264 0

___Epop270 0

___Epop271 0

___Epop272 0

___Epop273 0

___Epop274 0

___Epop280 0

___Epop281 0

___Epop282 0

___Epop283 0

___Epop284 0

___Epop290 0

___Epop291 0

___Epop292 0

___Epop293 0

___Epop294 0

___Epoplp0 0

___Epoplp1 0

___Epoplp2 0

___Epoplp3 0

___Epoplp4 0

___push2000 0

___push2001 0

Function/Macro Name Stack Consumption Amount

CubeSuite Ver.1.40 CHAPTER 6 FUNCTIONAL SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 826 of 890
Oct 01, 2010

___push2002 0

___push2003 0

___push2004 0

___push2040 0

___push2100 0

___push2101 0

___push2102 0

___push2103 0

___push2104 0

___push2140 0

___push2200 0

___push2201 0

___push2202 0

___push2203 0

___push2204 0

___push2240 0

___push2300 0

___push2301 0

___push2302 0

___push2303 0

___push2304 0

___push2340 0

___push2400 0

___push2401 0

___push2402 0

___push2403 0

___push2404 0

___push2440 0

___push2500 0

___push2501 0

___push2502 0

___push2503 0

___push2504 0

___push2540 0

___push2600 0

___push2601 0

___push2602 0

Function/Macro Name Stack Consumption Amount

CubeSuite Ver.1.40 CHAPTER 6 FUNCTIONAL SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 827 of 890
Oct 01, 2010

___push2603 0

___push2604 0

___push2640 0

___push2700 0

___push2701 0

___push2702 0

___push2703 0

___push2704 0

___push2740 0

___push2800 0

___push2801 0

___push2802 0

___push2803 0

___push2804 0

___push2840 0

___push2900 0

___push2901 0

___push2902 0

___push2903 0

___push2904 0

___push2940 0

___pushlp00 0

___pushlp01 0

___pushlp02 0

___pushlp03 0

___pushlp04 0

___pushlp40 0

___pop2000 0

___pop2001 0

___pop2002 0

___pop2003 0

___pop2004 0

___pop2040 0

___pop2100 0

___pop2101 0

___pop2102 0

___pop2103 0

Function/Macro Name Stack Consumption Amount

CubeSuite Ver.1.40 CHAPTER 6 FUNCTIONAL SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 828 of 890
Oct 01, 2010

___pop2104 0

___pop2140 0

___pop2200 0

___pop2201 0

___pop2202 0

___pop2203 0

___pop2204 0

___pop2240 0

___pop2300 0

___pop2301 0

___pop2302 0

___pop2303 0

___pop2304 0

___pop2340 0

___pop2400 0

___pop2401 0

___pop2402 0

___pop2403 0

___pop2404 0

___pop2440 0

___pop2500 0

___pop2501 0

___pop2502 0

___pop2503 0

___pop2504 0

___pop2540 0

___pop2600 0

___pop2601 0

___pop2602 0

___pop2603 0

___pop2604 0

___pop2640 0

___pop2700 0

___pop2701 0

___pop2702 0

___pop2703 0

___pop2704 0

Function/Macro Name Stack Consumption Amount

CubeSuite Ver.1.40 CHAPTER 6 FUNCTIONAL SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 829 of 890
Oct 01, 2010

6.5.7 Libraries used in V850E2V3-FPU

Stack consumption amount (Unit: Byte) of all function included in libraries used in V850E2V3-FPU are shown below.

(1) Functions used in V850E2V3-FPU

Table 6-46. Functions Used in V850E2V3-FPU

___pop2740 0

___pop2800 0

___pop2801 0

___pop2802 0

___pop2803 0

___pop2804 0

___pop2840 0

___pop2900 0

___pop2901 0

___pop2902 0

___pop2903 0

___pop2904 0

___pop2940 0

___poplp00 0

___poplp01 0

___poplp02 0

___poplp03 0

___poplp04 0

___poplp40 0

Function/Macro Name Stack Consumption Amount

expf 212

exp 272

logf 140

log 204

log10f 120

log10 204

powf 180

pow 356

sqrtf 24

sqrt 36

ceilf 20

Function/Macro Name Stack Consumption Amount

CubeSuite Ver.1.40 CHAPTER 6 FUNCTIONAL SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00 Page 830 of 890
Oct 01, 2010

ceil 36

floorf 20

floor 36

fmodf 100

fmod 176

frexpf 56

frexp 84

ldexpf 136

ldexp 136

modff 36

modf 68

cosf 220

cos 352

sinf 220

sin 352

tanf 84

tan 176

acosf 80

acos 472

asinf 72

asin 384

atanf 108

atan 288

atan2f 160

atan2 360

coshf 268

cosh 352

sinhf 268

sinh 352

tanhf 272

tanh 380

Function/Macro Name Stack Consumption Amount

CubeSuite Ver.1.40 CHAPTER 7 STARTUP

R20UT0259EJ0100 Rev.1.00 Page 831 of 890
Oct 01, 2010

CHAPTER 7 STARTUP

This chapter explains the startup routine.

7.1 Outline

In order to execute the program by C language, ROMization process for embedding in system and the program that
starts the user program (main function) is needed. This program is called as startup routine.

In order to excute the programm creatd by user, startup routine corresponding to that programm must be created.
CubeSuite provides, object module file of startup routine that includes the necessary process which needs to be executed
before execution of the program as well it provides startup routine which user can change as per his system require-
ments.

Remark Multi-core programming requires a startup routine for multi-core programs.

7.2 File Contents

Startup routine that CubeSuite supplies is as follows:

Table 7-1. Startup Routine Samples

To create a new startup routine, copy the above sample and add it to the project. And then edit it.

If the startup routine is not added to the project, the CX automatically links a default startup routine (object). The files to
be linked result from compiling (assembling) sample startup routines "cstart.asm" and "cstartN.asm".

These objects are assembled with the assembler options "-Xcommon=v850e" and can be used commonly in the V850
microcontrollers.

7.3 Startup Routine

Startup routine is the routine that is to be executed after V850 is reset and before the execution of main function. Basi-
cally, it carries out the initialization after system is reset. Specifically, it (startup routine) carries out following things:

- Setting RESET handler when reset is input
- Setting of register mode of startup routine
- Securing stack area and setting stack pointer
- Securing argument area for main function
- Setting text pointer (tp)
- Setting global pointer (gp)
- Setting element pointer (ep)
- Initializing peripheral I/O registers that must be initialized before execution of main function

Storage Location File Name Contents

Version Folder\lib\850e cstart.asm Startup routine sample for V850Ex core

cstartN.asm For not ROMization

Startup routine sample for V850Ex core

cstartM.asm Startup routine sample for multi-core

cstartMN.asm For not ROMization

Startup routine sample for multi-core

CubeSuite Ver.1.40 CHAPTER 7 STARTUP

R20UT0259EJ0100 Rev.1.00 Page 832 of 890
Oct 01, 2010

- Initializing user target that must be initialized before execution of main function
- Clearing sbss area to 0
- Clearing bss area to 0
- Clearing sebss area to 0
- Clearing tibss.byte area to 0
- Clearing tibss.word area to 0
- Clearing sibss area to 0
- Setting of CTBP value for function pre/post processing runtime function
- Setting of programmable peripheral I/O register value
- Setting r6 and r7 as argument of main function
- Branching to main function (when not using real-time OS)
- Branching to initialization routine of real-time OS (when using real-time OS)
- V850E2V3 multi-core startup routine

Of course, there are processes which are not required by system, those can be omitted.
Also, except these processes if there are some more process that user may want to execute, these can be described.
The description example indicated on after 7.3.1 assumes and is explaining various cases.
Therefore there is a possibility different from a CubeSuite offers startup routine description.
These processes, basically are needed to be described by assembler instructions.

7.3.1 Setting RESET handler when reset is input

Describing the process to be performed when a reset (reset interrupt) is input. Execution branches to the handler
address 0x0 when a reset is input in the V850. Therefore, allocate an instruction that branches to the beginning of the
startup routine to address 0x0. Resetinterrupt cannot be described by # pragma interrupt specification on C language,
therefore it describes by the assembler instruction. Description is as follows.

Use the .cseg directive to allocate an instruction to the handler address. If the above description is made, the "jr __
start" instruction is allocated to the handler address of RESET.

If the jr instruction cannot reach the destination, i.e., if "__ start" is not within + 2 Mbytes from address 0x0, use the jmp
instruction as follows.

In this case, one register is used. The lp (r31) register is used in the above example. Any general-purpose register
whose contents can be lost at this point can be used. The lp (r31) register in which the return address from a function is
stored is not used when a reset is input. Therefore, it is safe to use the lp (r31) register.

The description of the .cseg directive does not always have to be in the startup routine.
In the example symbol for startup routine is "__start", however, it can be any other name.

RESET .cseg TEXT

 jr __start

__start:

RESET .cseg TEXT

 mov #__start, lp

 jmp [lp]

__start:

CubeSuite Ver.1.40 CHAPTER 7 STARTUP

R20UT0259EJ0100 Rev.1.00 Page 833 of 890
Oct 01, 2010

7.3.2 Setting of register mode of startup routine

Describe the setting of the register mode in the startup routine described with assembler instructions.
However, this setting is necessary only when the 22-register mode or 26-register mode is used for the overall system.

It is not necessary to describe this setting when the 32-register mode is specified.

[At 22-register mode]

[At 26-register mode]

[At universal register mode]

If this setting is not described, the linker outputs the following warning message.

7.3.3 Securing stack area and setting stack pointer

Secure the stack area used by the system and set the stack pointer (SP = r3) at the end of this area. When a real-time
OS is used, however, the stack specified here is used until execution branches to the initialization routine of the real-time
OS.

In other words, it is hardly used or not used at all. If a large stack area is secured, therefore, the RAM area is wasted.
Check if the stack is used before execution branches to the initialization routine of the real-time OS. Interrupts must be
especially noted. It seems, however, that the startup routine is mostly executed with interrupts disabled.

The stack area is secured as follows.

This is an example of securing a 0x200-byte stack in the .bss area. The contents of the stack are allocated to a bss
attribute area because they do not have an initial value. Of course, they can be allocated to the sbss area, but the size of
the stack that can be allocated to the sbss area is limited because the sbss area is accessed with a single gp-relative
instruction. It is recommended to allocate the stack contents to the bss area if the stack size is great, as it may be better
to allocate other variables to the sbss area.

Change the value written to the .set instruction to change the stack size to be secured. The CX generates codes on the
assumption that the sp is at a 4-byte boundary when it references the memory relatively with the stack pointer (sp).
Therefore, be sure to allocate the stack pointer at a 4-byte boundary. If necessary, use the directive ".align 4", and Make
the number specified by the ".set" instruction a multiple of 4.

The stack has a serious effect on the operation of the system. If the stack area runs short, the stack size exceeds the
secured area and the stack contents are lost, which may cause a system hang-up. Estimate the stack size to be used by
functions using stack usage tracer included with the CX, and secure a sufficient stack size.

$ REG_MODE 22

$ REG_MODE 26

$ REG_MODE common

W0565308: input files have different register modes.

 use "-Xregmode_info" option for more information.

STACKSIZE .set 0x200

 .dseg BSS

mov #__stack + STACKSIZE, sp

CubeSuite Ver.1.40 CHAPTER 7 STARTUP

R20UT0259EJ0100 Rev.1.00 Page 834 of 890
Oct 01, 2010

7.3.4 Securing argument area for main function

In ANSI C specifications, main function format is defined as "int main(void) { ... }" having no parameters or, as the main
function with two parameters "int main(int argc, char *argv[]) { ... }".

argc of the function having two parameters is a value that is not negative and indicates the total number of parameters.
argv indicates an array of pointers to argument character strings. argv[argc] is NULL (vacant pointer). If argc is 1 or
more, argv[0] to argv[argc - 1] are pointers to character strings.

Secure the areas for argc and argv in the startup routine. Securing method is as shown below.

This area has initialization definition, therefore it is allocated to "data attribute area".
The above area is not necessary if the main function is defined in the format: int main(void) { ... }.
The used RAM area can be reduced by deleting the above area.
Actually, processing that sets arguments (r6 and r7) of the main function is performed immediately before the main

function. If r6 and r7 are not used in the startup routine, the processing can be executed immediately after the above pro-
gram. See "7.3.18 Setting r6 and r7 as argument of main function" for the processing to be set.

7.3.5 Setting text pointer (tp)

The text pointer (tp) is a pointer prepared to implement referencing (PIC: Position Independent Code) independent of
the position at which the text area of an application, i.e., program code is allocated when the program code is referenced.
For example, if it is necessary to reference a specific location in the code during program execution, the CX outputs the
code to be accessed in tp-relative mode.

Since the code is output on the assumption that tp is correctly set, tp must be correctly set in the startup routine.
The text pointer value is determined during linking, and is in a symbol defined by a symbol directive that is described in

the link directive file. For example, suppose that the symbol directive of the text pointer is described as follows.

The text pointer value is the beginning of the TEXT segment, and is in "__ tp_TEXT".
Describe as follows to set tp in the startup routine.

 .dseg DATA

 .align 4

__argc:

 .db4 0

__argv:

 .db4 #.L16

.L16:

 .db 0

 .db 0

 .db 0

 .db 0

__tp_TEXT@%TP_SYMBOL {TEXT};

.extern __tp_TEXT, 4

mov #__tp_TEXT, tp

CubeSuite Ver.1.40 CHAPTER 7 STARTUP

R20UT0259EJ0100 Rev.1.00 Page 835 of 890
Oct 01, 2010

7.3.6 Setting global pointer (gp)

External variables or data defined in an application are allocated to the memory. The global pointer (gp) is a pointer
prepared to implement referencing independent of location position (PID: Position Independent Data) when the variables
or data allocated to the memory are referenced. The CX outputs a code for the section that is to be accessed in gp-rela-
tive mode.

Since the code is output on the assumption that gp is correctly set, gp must be correctly set in the startup routine.
The global pointer value is determined during linking, and is in a symbol defined by a symbol directive that is described

in the link directive file. For example, suppose that the symbol directive of the global pointer is described as follows.

The gp symbol value can be defined at the beginning of "data segment" of the DATA segment as shown above, or off-
set from a text symbol.

Using the second method, the gp symbol value is determined by adding value of tp and offset value from tp. In other
words, a code that is independent of location can be generated. To copy a program code and data used by that code to
the RAM area simultaneously and execute them, the value of gp can be acquired immediately if the start address of the
copy destination is known. In this case, the symbol directive is described as follows.

The global pointer value is "__ tp_TEXT to which the value of __ gp_DATA is added", and the value to be added, i.e.,
offset value, is stored in "__ gp_DATA". Therefore, describe as follows to set gp in the startup routine.

This sets the correct value of the global pointer to gp.

7.3.7 Setting element pointer (ep)

Of the external variables or data defined in an application, those that are allocated to the following sections are
accessed from the element pointer (ep) in relative mode.

- sedata/sebss section
- sidata/sibss section
- tidata.byte/tibss.byte section
- tidata.word/tibss.word section

If these sections exist, the CX outputs a code to access these areas in ep-relative mode.
Since the code is output on the assumption that ep is correctly set, ep must be correctly set in the startup routine.
The element pointer value is determined during linking, and is in a symbol defined by a symbol directive that is

described in the link directive file. For example, suppose that the symbol directive of the element pointer is described as
follows.

__gp_DATA@%GP_SYMBOL {DATA};

__tp_TEXT@%TP_SYMBOL {TEXT};

__gp_DATA@%GP_SYMBOL &__tp_TEXT {DATA};

.extern __tp_TEXT, 4

.extern __gp_DATA, 4

mov #__tp_TEXT, tp

mov #__gp_DATA, gp

add tp, gp

__ep_DATA@%EP_SYMBOL;

CubeSuite Ver.1.40 CHAPTER 7 STARTUP

R20UT0259EJ0100 Rev.1.00 Page 836 of 890
Oct 01, 2010

The element pointer value is the beginning of the SIDATA segment by default, and its value is in "__ ep_DATA".
Therefore, describe as follows to set ep in the startup routine.

Reference the absolute address of __ ep_DATA and set that value to ep.

7.3.8 Initializing peripheral I/O registers that must be initialized before execution of main function

When the external RAM is initialized by the startup routine, the external memory must first be set to the peripheral I/O;
otherwise the memory area cannot be accessed and initialized. In addition, initialize the peripheral I/O registers that must
be set for executing the startup routine.

Register setting can be described with assembler instructions, or execution may once branch from the startup routine
to a C function and register setting can be described in this function. If it is described in C, reading and substitution in the
peripheral I/O can be described in a visually simple way. For example, when creating the C function "void reset(void)"
and calling it from the startup routine, describe the following instruction in the startup routine.

Differences between assembler instruction description and C description are shown below using the following exam-
ples. An instruction that substitutes "1" in P0 (port 0) is described in an assembler source (use r 10) and as a C source is
as follows.

[Assembler source]

[C source]

The external memory setting differs depending on the device. See the Relevant Device's Hardware User's Manual of
each device.

With a clock generation function, the "internal system clock" that is supplied to each unit built in the V850 needs to be
generated. In this case, the clock needs to be multiplied by a PLL (Phase locked loop) synthesizer before use. In other
words, the clock must be correctly set to the frequency used; otherwise the clock operates slower or faster than the
assumed operation speed.

Regarding the default value of the PLL, usually, the multiplication value is small and the operation frequency is low.
These also apply to the startup routine. If the clearing of the memory area that is explained in "7.3.10 Clearing sbss area
to 0" and later sections is executed while the operating frequency is low, it takes a lot of time to complete the execution.
Therefore, it is recommended that the PLL be set during the early stages of the startup routine.

Aside from the above settings, set the following settings: the "system wait control register (VSWC)", the" command reg-
ister (PRCMD)", and, if necessary, the "watch dog timer (WDT)". For the correct settings, see the Relevant Device's
Hardware User's Manual.

.extern __ep_DATA, 4

mov #__ep_DATA, ep

jarl _reset, lp

mov 1, r10

st.b r10, P0

#pragma ioreg

P0 = 1;

CubeSuite Ver.1.40 CHAPTER 7 STARTUP

R20UT0259EJ0100 Rev.1.00 Page 837 of 890
Oct 01, 2010

7.3.9 Initializing user target that must be initialized before execution of main function

Describe the necessary initialization processing for the user target, if any, in the startup routine.
The processing can be described with assembler language source or execution may once branch from the startup rou-

tine to a C function and the processing can be described in this function.

7.3.10 Clearing sbss area to 0

Initialize the sbss area, one of the bss attribute areas that do not have an initial value.
Since the memory contents are undefined after the V850 is reset, it is recommended to clear the sebss area to zero.
This processing is not necessary if the sbss section has not been created or if it is not necessary to clear the sbss area

to zero.
Use symbols "__ssbss" and "__esbss" reserved for the CX to clear the sbss area. The meaning of each symbol is as

follows.

Table 7-2. Symbols of sbss Area

The values (addresses) of these symbols are determined during linking. The program that clears the sbss area using
these symbols is as follows.

This program clears the sbss area to zero in 4-byte units.

Symbol Name Meaning

__ssbss Symbol indicating start of sbss area

__esbss Symbol indicating end of sbss area

 .extern __ssbss, 4

 .extern __esbss, 4

 mov #__ssbss, r13

 mov #__esbss, r12

 cmp r12, r13

 jnl .L11

.L12:

 st.w r0, [r13]

 add 4, r13

 cmp r12, r13

 jl .L12

.L11:

CubeSuite Ver.1.40 CHAPTER 7 STARTUP

R20UT0259EJ0100 Rev.1.00 Page 838 of 890
Oct 01, 2010

7.3.11 Clearing bss area to 0

Initialize the bss area, one of the bss attribute areas that do not have an initial value.
Since the memory contents are undefined after the V850 is reset, it is recommended to clear the bss area to zero.
This processing is not necessary if the bss section has not been created or if it is not necessary to clear the bss area to

zero.
Use symbols "__sbss" and "__ebss" reserved for the CX to clear the bss area. The meaning of each symbol is as fol-

lows.

Table 7-3. Symbols of bss Area

The values (addresses) of these symbols are determined during linking. The program that clears the bss area using
these symbols is as follows.(This program clears the bss area to zero in 4-byte units.)

7.3.12 Clearing sebss area to 0

Initialize the sebss area, one of the bss attribute areas that do not have an initial value.
Since the memory contents are undefined after the V850 is reset, it is recommended to clear the sebss area to zero.
This processing is not necessary if the sebss section has not been created or if it is not necessary to clear the sebss

area to zero.
Use symbols "__ssebss" and "__esebss" reserved for the CX to clear the sebss area. The meaning of each symbol is

as follows

Table 7-4. Symbols of sebss Area

The values (addresses) of these symbols are determined during linking. The program that clears the sebss area using
these symbols is as follows.(This program clears the sebss area to zero in 4-byte units.)

Symbol Name Meaning

__sbss Symbol indicating start of bss area

__ebss Symbol indicating end of bss area

 .extern __sbss, 4

 .extern __ebss, 4

 mov #__sbss, r13

 mov #__ebss, r12

 cmp r12, r13

 jnl .L14

.L15:

 st.w r0, [r13]

 add 4, r13

 cmp r12, r13

 jl .L15

.L14:

Symbol Name Meaning

__ssebss Symbol indicating start of sebss area

__esebss Symbol indicating end of sebss area

CubeSuite Ver.1.40 CHAPTER 7 STARTUP

R20UT0259EJ0100 Rev.1.00 Page 839 of 890
Oct 01, 2010

7.3.13 Clearing tibss.byte area to 0

Initialize the tibss.byte area, one of the bss attribute areas that do not have an initial value.
Since the memory contents are undefined after the V850 is reset, it is recommended to clear the tibss.byte area to

zero.
This processing is not necessary if the tibss.byte section has not been created or if it is not necessary to clear the

tibss.byte area to zero.
Use symbols "__stibss.byte" and "__etibss.byte" reserved for the CX to clear the tibss.byte area. The meaning of each

symbol is as follows.

Table 7-5. Symbols of tibss.byte Area

The values (addresses) of these symbols are determined during linking. The program that clears the tibss.byte area
using these symbols is as follows.(This program clears the tibss.byte area to zero in 1-byte units.)

 .extern __ssebss, 4

 .extern __esebss, 4

 mov #__ssebss, r13

 mov #__esebss, r12

 cmp r12, r13

 jnl .L17

.L18:

 st.w r0, [r13]

 add 4, r13

 cmp r12, r13

 jl .L18

.L17:

Symbol Name Meaning

__stibss.byte Symbol indicating start of tibss.byte area

__etibss.byte Symbol indicating end of tibss.byte area

 .extern __stibss.byte, 4

 .extern __etibss.byte, 4

 mov #__stibss.byte, r13

 mov #__etibss.byte, r12

 cmp r12, r13

 jnl .L20

.L21:

 st.b r0, [r13]

 add 1, r13

 cmp r12, r13

 jl .L21

.L20:

CubeSuite Ver.1.40 CHAPTER 7 STARTUP

R20UT0259EJ0100 Rev.1.00 Page 840 of 890
Oct 01, 2010

7.3.14 Clearing tibss.word area to 0

Initialize the tibss.word area, one of the bss attribute areas that do not have an initial value.
Since the memory contents are undefined after the V850 is reset, it is recommended to clear the tibss.word area to

zero.
This processing is not necessary if the tibss.word section has not been created or if it is not necessary to clear the

tibss.word area to zero.
Use symbols "__stibss.word" and "__etibss.word" reserved for the CX to clear the tibss.word area. The meaning of

each symbol is as follows

Table 7-6. Symbols of tibss.word Area

The values (addresses) of these symbols are determined during linking. The program that clears the tibss.word area
using these symbols is as follows.

7.3.15 Clearing sibss area to 0

Initialize the sibss area, one of the bss attribute areas that do not have an initial value.
Since the memory contents are undefined after the V850 is reset, it is recommended to clear the sibss area to zero.
This processing is not necessary if the sibss section has not been created or if it is not necessary to clear the sibss area

to zero.
Use symbols "__ssibss" and "__esibss" reserved for the CX to clear the sibss area. The meaning of each symbol is as

follows.

Table 7-7. Symbols of sibss Area

The values (addresses) of these symbols are determined during linking. The program that clears the sibss area using
these symbols is as follows.(This program clears the sibss area to zero in 4-byte units.)

Symbol Name Meaning

__stibss.word Symbol indicating start of tibss.word area

__etibss.word Symbol indicating end of tibss.word area

 .extern __stibss.word, 4

 .extern __etibss.word, 4

 mov #__stibss.word, r13

 mov #__etibss.word, r12

 cmp r12, r13

 jnl .L23

.L24:

 st.w r0, [r13]

 add 4, r13

 cmp r12, r13

 jl .L24

.L23:

Symbol Name Meaning

__ssibss Symbol indicating start of sibss area

__esibss Symbol indicating end of sibss area

CubeSuite Ver.1.40 CHAPTER 7 STARTUP

R20UT0259EJ0100 Rev.1.00 Page 841 of 890
Oct 01, 2010

7.3.16 Setting of CTBP value for function pre/post processing runtime function

This setting is necessary when the function pre/post processing runtime function is used.
Since the CALLT instruction is used when the function pre/post processing runtime function is called, the value of

CTBP necessary for the CALLT instruction must be set at the beginning of the function table of the function pre/post
processing runtime function.

The function pre/post processing runtime function is used in the following case.
- If compiler option "-Xpro_epi_runtime=on" and "-Ospeed" is set.

If a compiler option other than "-Ospeed" is specified for optimization, "-Xpro_epi_runtime=on" is automatically speci-
fied.

Start symbol of function table of function pre/post processing runtime function is as follows.
- ___PROLOG_TABLE

Describe the following code using this symbol.

CTBP is system register 20. Set a value to it using the ldsr instruction.

 .extern __ssibss, 4

 .extern __esibss, 4

 mov #__ssibss, r13

 mov #__esibss, r12

 cmp r12, r13

 jnl .L26

.L25:

 st.w r0, [r13]

 add 4, r13

 cmp r12, r13

 jl .L25

.L26:

mov #___PROLOG_TABLE, r12

ldsr r12, 20

CubeSuite Ver.1.40 CHAPTER 7 STARTUP

R20UT0259EJ0100 Rev.1.00 Page 842 of 890
Oct 01, 2010

7.3.17 Setting of programmable peripheral I/O register value

BPC must be set when using a V850 microcontrollers product in which programmable peripheral I/O registers are pro-
vided and using a programmable peripheral I/O register.

For example, the peripheral area select control register of the V850E/IA1 is configured as follows.

Figure 7-1. BPC Register

Table 7-8. BPC Register

To set a value to BPC, processing to write a value to the BPC register must be described in the startup routine.
In the case of the V850E/IA1, PA15 is set to 1, and a programmable peripheral I/O area address is set to PA13 to PA0.

Set the BPC register, for example, to set the address of the programmable peripheral I/O area to 0x1234 as follows.

Because PA15 must be set to 1, set BPC to the logical sum (OR) of 0x1234 and 0x8000.
See the Relevant Device's Architecture User's Manual of each device for details of the programmable peripheral I/O

registers.

7.3.18 Setting r6 and r7 as argument of main function

If the main function is defined to have two parameters as follows "int main (int argc, char *argv[]) { /* ... */ }", processing
that sets a value to the arguments (r6 and r7) must be performed before execution branches to the main function. See
"7.3.4 Securing argument area for main function" for how to secure an area.

This processing is not necessary for an application using a real-time OS because the main function is not created.
Processing to set a value to r6 and r7 is as follows.

The argument area of the main function is allocated to the .data section, so describe an access code in gp- relative
mode.

Bit Position Bit Name Meaning

15 PA15 Enables or disables use of programmable peripheral I/O area.

0: Use of programmable peripheral I/O area disabled.

1: Use of programmable peripheral I/O area enabled.

13-0 PA13-PA0 Sets address of programmable peripheral I/O area.

mov 0x9234, r13

st.h r13, BPC

ld.w $__argc, r6

movea $__argv, gp, r7

015

PA15 PA5 PA4 PA3 PA2 PA1 PA0PA11 PA10 PA9 PA8 PA7 PA60 PA13 PA12

CubeSuite Ver.1.40 CHAPTER 7 STARTUP

R20UT0259EJ0100 Rev.1.00 Page 843 of 890
Oct 01, 2010

7.3.19 Branching to main function (when not using real-time OS)

When the processing necessary for the startup routine has been completed, execute an instruction that branches to the
main function.

However, this processing is not necessary for an application using a real-time OS because the main function is not cre-
ated. Instead, an instruction that branches to the initialization routine of the realtime OS is necessary. See "7.3.20
Branching to initialization routine of real-time OS (when using real-time OS)" for the details.

Describe the following code to branch to the main function.

When the main function has been executed, execution returns to the 4 bytes subsequent to this branch instruction.
The following instruction can also be used if it is known that execution does not return.

The entire 32-bit space can be accessed using the jmp instruction.

When the "jarl_main, lp" instruction is used, execution returns after the main function is executed. It is recommended
to take appropriate action to prevent deadlock from occurring when execution returns.

7.3.20 Branching to initialization routine of real-time OS (when using real-time OS)

In an application using a real-time OS, execution branches to the initialization routine when the processing that must be
performed by the startup routine has been completed. In an application not using a real-time OS, execution branches to
the main function. See "7.3.19 Branching to main function (when not using real-time OS)".

[If RX850V4 is used]

See the User's Manual of each real-time OS for details.

jarl _main, lp

jr _main

mov #_main, lp

jmp [lp]

 .extern __kernel_sit

 .extern __kernel_start

 mov #__kernel_sit, r6

 mov #__kernel_start, r11

 jarl __jump_kernel_start, lp

__boot_error:

 jbr __boot_error

__jump_kernel_start:

 jmp [r11]

CubeSuite Ver.1.40 CHAPTER 7 STARTUP

R20UT0259EJ0100 Rev.1.00 Page 844 of 890
Oct 01, 2010

7.3.21 V850E2V3 multi-core startup routine

Initialize the common module area by the following procedure.

__start:

 ld.hu PEID, r10

 add -1, r10

 shl 2, r10

 mov32 0xFFFF6900, r11 /* Get address of MEV0 register */

 mov 1, r12

 caxi [r11], r0, r12 /* Select PE to initialize common module */

 bnz .Lsleep /* Put other PEs to sleep */

 jarl _hdwinit, lp

 mov -1, r7

 mov32 #__S_romp, r6 /* Initialize common module */

 jarl __rcopy, lp

 mov32 #___PROLOG_TABLE, r12

 ldsr r12, 20

 st.w r0, MEV0 /* Restore other PEs */

.Lwakeup:

 ld.w #__table.__ssbss[r10], r6

 ld.w #__table.__esbss[r10], r7 /* Initialize each PE */

 jarl __zeroclrw, lp

 mov32 #__exit, lp

 ld.w #__table._main[r10], r10 /* Branch to main() of each PE module */

 jmp [r10]

__exit:

 br __exit

.Lsleep:

 ld.w MEV0, r12

 cmp r0, r12 /* Wait for MEV register to reach 0 */

 bz .Lwakeup

 br .Lsleep

CubeSuite Ver.1.40 CHAPTER 7 STARTUP

R20UT0259EJ0100 Rev.1.00 Page 845 of 890
Oct 01, 2010

7.4 Coding Example

This section shows an example of the startup routine.

Table 7-9. Examples of Startup Routine

#--

external label declaration 1 of symbol reserved for the CX (For tp, gp, ep)

#--

 .extern __tp_TEXT, 4

 .extern __gp_DATA, 4

 .extern __ep_DATA, 4

#--

external label declaration 2 of symbol reserved for the CX (For bss attribute section

initialization)

Section deleted if there is a section not used.

If the section to be used is not determined, write all sections and suppress the

assemble error of the startup routine that occurs due to addition/deletion of sections.

#--

 .extern __ssbss, 4

 .extern __esbss, 4

 .extern __sbss, 4

 .extern __ebss, 4

 .extern __ssebss, 4

 .extern __esebss, 4

 .extern __stibss.byte, 4

 .extern __etibss.byte, 4

 .extern __stibss.word, 4

 .extern __etibss.word, 4

 .extern __ssibss, 4

 .extern __esibss, 4

#--

external label declaration of symbol reserved for the CX

Declare start address of function table as external label when

using function pre/post processing runtime function

#--

 .extern ___PROLOG_TABLE

#--

external label declaration of main function

#--

 .extern _main

#--

argument area of the main function (Unnecessary if void main(void) type is used)

#--

 .dseg DATA

 .align 4

__argc:

CubeSuite Ver.1.40 CHAPTER 7 STARTUP

R20UT0259EJ0100 Rev.1.00 Page 846 of 890
Oct 01, 2010

 .db4 0

__argv:

 .db4 #.L16

.L16:

 .db 0

 .db 0

 .db 0

 .db 0

#--

The following is dummy data for section generation.

This dummy data is used to clear the bss attribute section that appears later to zero.

#

The start symbol and end symbol are generated if data exists in the corresponding section

during linking. However, if the section that is to be used is not yet decided, an

assemble error of startup routine occurs each time when section is added or deleted by

rewriting the link directive file. To avoid this, generate the start and end symbols of a

section by allocating dummy data to the section.

The bss attribute section is not described because data is allocated by a stack generation

code and dummy data does not have to be created in that section.

#

If the section to be used is determined, delete this dummy data and the zero clear routine

except the necessary part of the routine, this can eliminate waste and enhance the code

efficiency.

#--

.sbss .dseg sbss

 .ds(0)

.sebss .dseg sebss

 .ds(0)

.tibss.byte .dseg tibss.byte

 .ds(0)

.tibss.word .dseg tibss.word

 .ds(0)

.sibss .dseg sibss

 .ds(0)

#--

securing stack

securing 0x200 bytes in bss area

#--

STACKSIZE .set 0x200

 .dseg BSS

#--

reset handler

describing instructions allocated in reset handler

#--

RESET .cseg TEXT

CubeSuite Ver.1.40 CHAPTER 7 STARTUP

R20UT0259EJ0100 Rev.1.00 Page 847 of 890
Oct 01, 2010

 jr __start

#--

startup routine entity

#--

 .cseg text

 .align 4

 .public __start

 .public __exit

 .public __startend

__start:

#--

It is assumed that __gp_DATA is set by a symbol directive that uses a relative value

from tp. Therefore, gp adds the value of __gp_DATA to tp.

#--

 mov #__tp_TEXT, tp

 mov #__gp_DATA, gp

 add tp, gp

 mov #__stack + STACKSIZE, sp

 mov #__ep_DATA, ep

#--

Clearing sbss section to zero

Delete this description to reduce the code if the sbss attribute section is not used.

#--

 mov #__ssbss, r13

 mov #__esbss, r12

 cmp r12, r13

 jnl .L11

.L12:

 st.w r0, [r13]

 add 4, r13

 cmp r12, r13

 jl .L12

.L11:

#--

Clearing bss section to zero

Delete this description to reduce the code if the bss section is not used.

#--

 mov #__sbss, r13

 mov #__ebss, r12

 cmp r12, r13

 jnl .L14

.L15:

 st.w r0, [r13]

 add 4, r13

 cmp r12, r13

CubeSuite Ver.1.40 CHAPTER 7 STARTUP

R20UT0259EJ0100 Rev.1.00 Page 848 of 890
Oct 01, 2010

 jl .L15

.L14:

#--

Clearing sebss section to zero

Delete this description to reduce the code if the sebss section is not used.

#--

 mov #__ssebss, r13

 mov #__esebss, r12

 cmp r12, r13

 jnl .L17

.L18:

 st.w r0, [r13]

 add 4, r13

 cmp r12, r13

 jl .L18

.L17:

#--

Clearing tibss.byte section to zero

Delete this description to reduce the code if the tibss.byte section is not used.

#--

 mov #__stibss.byte, r13

 mov #__etibss.byte, r12

 cmp r12, r13

 jnl .L20

.L21:

 st.b r0, [r13]

 add 1, r13

 cmp r12, r13

 jl .L21

.L20:

#--

Clearing tibss.word section to zero

Delete this description to reduce the code if the tibss.word section is not used

#--

 mov #__stibss.word, r13

 mov #__etibss.word, r12

 cmp r12, r13

 jnl .L23

.L24:

 st.w r0, [r13]

 add 4, r13

 cmp r12, r13

 jl .L24

.L23:

#--

CubeSuite Ver.1.40 CHAPTER 7 STARTUP

R20UT0259EJ0100 Rev.1.00 Page 849 of 890
Oct 01, 2010

Clearing sibss section to zero

Delete this description to reduce the code if the sibss section is not used

#--

 mov #__ssibss, r13

 mov #__esibss, r12

 cmp r12, r13

 jnl .L26

.L25:

 st.w r0, [r13]

 add 4, r13

 cmp r12, r13

 jl .L25

.L26:

#--

setting of function pre/post processing runtime function

The start address of the library function table is set to CTBP (system register #20).

All except for V850Ex delete this description.

#--

 mov #___PROLOG_TABLE, r12

 ldsr r12, 20

#--

programmable peripheral I/O register setting

Delete this description if a V850 not having programmable peripheral I/O registers.

Shown below is an example where the BPC register value (set address) is 0x1234.

The logical sum of 0x1234 (address) and 0x8000 (use of programmable peripheral I/O) is

set to BPC.

#--

PIOADDR .set 0x12340000

USEBPC .set 0x8000

 mov USEBPC | (PIOADDR >> 14), r13

 st.w r13, BPC

#--

setting argument of main function to r6 and r7

#--

 ld.w $__argc, r6

 movea $__argv, gp, r7

#--

branching to main function

#--

 jarl _main, lp

#--

processing when main function returns

#--

__exit:

 br __exit

__startend:

CubeSuite Ver.1.40 CHAPTER 8 ROMIZATION

R20UT0259EJ0100 Rev.1.00 Page 850 of 890
Oct 01, 2010

CHAPTER 8 ROMIZATION

This chapter describes an outline of the ROMization procedure, operation method, etc.

8.1 Outline

When a variable is declared globally within a program, the variable is allocated to the data-attribute section in RAM if
the variable has a initial value, or to the bss-attribute section if it does not have a initial value. When the variable has a
initial value, that initial value is also stored in RAM. In addition, program code may be stored in the internal RAM area to
speed up applications.

In the case of an embedded system, if a debug tool such as an in-circuit emulator is used, executable modules can be
downloaded and executed just as they are in the allocation image. However, if the program is actually written to the tar-
get system's ROM area before being executed, the initial value information that has been allocated to the data-attribute
section and the program code that has been allocated to a RAM area must be deployed in RAM prior to execution. In
other words, data that is residing in RAM must be deployed in ROM, and this means that data must be copied from ROM
to RAM before the corresponding application is executed.

The ROMization is to pack information of defaults on a variable of a data-attribute section and the program arranged on
the RAM in a single section. This section is allocated in ROM and the initial value information or program code it contains
can be easily deployed in RAM by calling the copy function that is provided by the CX.

The following figure shows an outline of the operation flow in creating objects for ROMization.

Figure 8-1. Creation of Object for ROMization

When ROMization objects are created as shown in the "Table 8-1. Copy Functions", execution of the _rcopy copies
the data to be allocated to RAM from the packed ROM section.

An image of this operation is shown below.

Source program

ROMization area reservation code

(default: rompcrt.obj)

ROMization library libc.lib

(Copy function)

Executable object ROMization object
Link

Startup file including a copy

routine

 cstart.obj

CubeSuite Ver.1.40 CHAPTER 8 ROMIZATION

R20UT0259EJ0100 Rev.1.00 Page 851 of 890
Oct 01, 2010

Figure 8-2. Image of Processing Before and After Copy Function Call

The default values for the section name and the section's start address (label name) required for the ROMization object
are as follows.

- Name of packed section -> rompsec section
- Start address (l name) of rompsec section -> __S_romp

The function used to copy from the rompsec section to the RAM area is as follows.
- Copy function -> _rcopy, _rcopy1, _rcopy2, _rcopy4

This function is stored in the library "libc.lib" which is in the Version Folde \ lib850e folder.
__S_romp is a label that is defined by "rompcrt.obj" in the Version Folde\ lib850e folder (the corresponding source file

is rompcrt.asm). The rompcrt.obj object module file is used as it automatically creates a rompsec section immediately
after (at the 4-byte alignment position) the .text-attribute section. __S_romp becomes the label indicating the start
address of that rompsec section.

In addition to this method for automatically creating a rompsec section, it is also possible to independently create and
allocate a program corresponding to the rompcrt.asm source file.

During ROMization, once the object for ROMization has been created, it is converted into a hexadecimal file and writ-
ten to ROM.

If the application does not include any data that requires packing, there is no need to create a ROMization object.
Instead, the object created by the linker can be converted directly into a hexadecimal file.

If the object module files resolved for relocation include symbol information and debug information, the CX creates a
ROMization object module file without deleting them. Therefore, the debugger can debug the source even with a
ROMization object module file.

RAM area for data with initial value

RAM area for data without initial value

RAM allocation program area

Text area

Constant data area

Data with packed initial value

RAM area for data with initial value

RAM area for data without initial value

RAM allocation program area

Text area

Constant data area

Data with packed initial valueCopy text to RAM

Copy data to RAM

Image of object for ROMization Image after data is copied by _rcopy function

CubeSuite Ver.1.40 CHAPTER 8 ROMIZATION

R20UT0259EJ0100 Rev.1.00 Page 852 of 890
Oct 01, 2010

8.2 rompsec Section

This section explains a rompsec section.

8.2.1 Types of sections to be packed

The default setting for the object that can be packed in a rompsec section is "data allocated to sections having a write-
enabled attributeNote". In addition, "any section that has either the text attribute or const attribute" can be specified for
packing by specifying the -Xrompsec_text option.

Note bss attribute sections and sbss attribute sections that are writeable but which clearly do not have initial values
are not packed.

Specific examples of packing targets are listed below.
- Reserved sections (.data, .sdata, .sedata, .sidata, .tidata, .tidata.byte, .tidata.word)
- Sections created with arbitrary names specifying a sdata and data attribute by the .section definition directive in

the assembly language program.
- Sections allocated to the internal instruction RAM (can't be packed, when V850E2 core device is specified).

Note, however, that if any user-specified sections with either the text attribute or const attribute are not packed and if
the above-listed sections are not in an executable module, there is no need to create a ROMization object.

See the link map file to determine whether or not the reserved sections (.data, .sdata, .sedata, .sidata, .tidata,
.tidata.byte, .tidata.word) exist.

It can be confirmed that a rompsec section is created in place of a .data section, .sdata section, sections allocated to an
internal RAM (including interrupt handler sections), and the like, by referencing the map file which is generated by the
ROMization processing.

Therefore, when sections allocated to the internal instruction RAM (including interrupt handler sections) are packed,
the program requires four-byte alignment of the start address of each section.

Additionally, the internal offset in the rompsec section is also 4-byte aligned, so a padding area is created, and this is
added to the size of the rompsec section.

8.2.2 Size of rompsec section

This section describes the memory area size to be reserved for the rompsec section.
When creating the ROMization module, note the size of the rompsec section as well as the internal ROM capacity of

the target CPU and the address range and size of the target system's ROM area.
Describe the link directive file carefully to prevent the rompsec section from overlapping other sections.

Remark See "8.3 Creating ROMized Load Module File" for details about the code example of the link directive file.

Formulas used to calculate the size of the rompsec section are shown below.
size-of-rompsec-section (byte, in decimal numbers)
= 8 + 12 * number-of-ROMization-sections + total-size-of-ROMization-sections + padding-sizeNote

Note The padding size is 0 to 3 bytes per section, depending on the alignment condition of the section subject to
ROMization.

For example, if .data and .sdata sections exist, the size of each is 1002 bytes and 1000 bytes, and the alignment condi-
tion of each section is 4 bytes, the size of the rompsec section is as follows.

8 + 12 * 2 + 1002 + 1000 + 2 = 2036 (bytes)

CubeSuite Ver.1.40 CHAPTER 8 ROMIZATION

R20UT0259EJ0100 Rev.1.00 Page 853 of 890
Oct 01, 2010

8.2.3 rompsec section and link directive

The CX links the ROMization area reservation code file (rompcrt.obj) last to add the rompsec section immediately after
the .text section when performing ROMization.

Therefore, the rompsec section does not have to be allocated by the following link directive.

The link directive taking ROMization processing into consideration is shown below.

If the rompsec section exceeds the internal ROM area, the message is output and the processing is stopped.

Remark By specifying the -Xromize_check_off=rom_less option, the internal ROM area may be ignored.
By specifying the -Xromize_check_off option, it is possible to continue processing, while outputting a mes-
sage.

The above check is not performed if the rompsec section is allocated to the end of the external ROM area. Check the
memory map file to see if the sections fit in ROM.

Remark The memory map file can be output by specifying the -Xmap option.

SCONST : !LOAD ?R { # Allocates SCONST, CONST, and TEXT to internal ROM

 .sconst = $PROGBITS ?A .sconst;

};

CONST : !LOAD ?R {

 .const = $PROGBITS ?A .const;

};

TEXT : !LOAD ?RX {

 .pro_epi_runtime = $PROGBITS ?AX .pro_epi_runtime;

 .text = $PROGBITS ?AX .text;

 rompsec = $PROGBITS ?AX rompsec # Allocates .text to end of internal ROM

};

DATA : !LOAD ?RW V0x100000 { # Allocates DATA to external RAM

 .data = $PROGBITS ?AW;

 .sdata = $PROGBITS ?AWG;

 .sbss = $NOBIT ?AWG;

 .bss = $NOBIT ?AW;

};

SIDATA : !LOAD ?RW V0xFFE000 { # Allocates SIDATA to internal RAM

 .sidata = $PROGBITS ?AW .sidata;

 .sibss = $NOBITS ?AWG .sibss;

};

__tp_TEXT@%TP_SYMBOL;

__gp_DATA@%GP_SYMBOL &__tp_TEXT{DATA};

__ep_DATA@%EP_SYMBOL;

CubeSuite Ver.1.40 CHAPTER 8 ROMIZATION

R20UT0259EJ0100 Rev.1.00 Page 854 of 890
Oct 01, 2010

If it is necessary to allocate the rompsec section in the middle of ROM, check the area where the rompsec section is to
be allocated as follows, from the size and allocation address of the rompsec section, and specify an appropriate address
for the segment immediately after the rompsec section.

Figure 8-3. Link Directive Taking ROMization Processing into Consideration (Size Considered)

8.3 Creating ROMized Load Module File

This section explains how to create the ROMized load module.

8.3.1 Procedure for creating ROMized load module (default)

This section describes the method that uses the ROMization area reservation code file (rompcrt.obj) that is provided by
default.

#Allocates SCONST, CONST, and TEXT to internal ROM

SCONST: !LOAD ?R {

 .sconst = $PROGBITS ?A .sconst;

};

#Allocates .text in middle of internal ROM

#rompsec between TEXT and CONST

TEXT: !LOAD ?RX {

 .pro_epi_runtime = $PROGBITS ?AX .pro_epi_runtime;

 .text = $PROGBITS ?AX .text;

 rompsec = $PROGBITS ?AX rompsec;

};

#Allocates CONST to end of internal ROM by specifying address taking size into consideration

CONST: !LOAD ?R Vx3f800 {

 .const = $PROGBITS ?A .const;

};

#Allocates DATA to external RAM

DATA: !LOAD ?RX V0x100000 {

 .data = $PROGBITS ?AW;

 .sdata = $PROGBITS ?AWG;

 .sbss = $NOBIT ?AWG;

 .bss = $NOBIT ?AW;

};

#Allocates SIDATA to internal RAM

SIDATA: !LOAD ?RX V0xFFE000 {

 .sidata = $PROGBITS ?AW .sidata;

 .sibss = $NOBIT ?AWG .sibss;

};

__tp_TEXT@%TP_SYMBOL;

__gp_DATA@%GP_SYMBOL &__tp_TEXT{DATA};

__ep_DATA@%EP_SYMBOL;

CubeSuite Ver.1.40 CHAPTER 8 ROMIZATION

R20UT0259EJ0100 Rev.1.00 Page 855 of 890
Oct 01, 2010

(1) Calling the copy function
In the startup routine, add code to start the copy function _rcopy() with the necessary arguments, and create the
object module file.
In the CX, this code is included in the standard startup routine, so it has no particular meaning if you perform
ROMization by default.
Even if you suppress ROMization via the -Xno_romize option, this has no meaning because it switches to the star-
tup file entered by the driver.
Note, however, that if _rcopy2/_rcopy4 was used instead of _rcopy, then if you wish to specify a section to copy,
you must overwrite the startup routine, and create cstart.asm from cstart.obj.

Figure 8-4. Example of Using Copy Function _rcopy (cstrat.asm)

Remarks 1. See "8.4 Copy Functions" for details about copy functions.
2. When overwriting the startup routine, change the startup routine to be used specifying the

-Xno_startup or -Xstartup options.

(2) Specify the allocation of the rompsec section
The cx links the ROMization area reservation code file (rompcrt.obj) last to add the rompsec section immediately
after the .text section when performing ROMization.
Therefore, the rompsec section does not have to be allocated by the link directive.

Remark See "8.2.3 rompsec section and link directive" for details.

(3) Area secured for rompsec section
Secure memory area for the "romspec" section, and create an object module file indicating its start address.
This also has no meaning, because the standard ROMized load module is linked by default.
In the example above, the label "__S_romp" generates code indicating the first (4-byte aligned) address exceeding
the end of the text section (section name defined in the code above) in the object module file, as an absolute
address.

(4) Linking
The driver controls linking so that files are specified in the following order.

- cstart.obj (Object module file of startup routine)
- Object module file specified by user
- libc.lib (Standard library including hdwinit function and _rcopy function)
- rompcrt.obj (ROMization area reservation code file)

A memory area for the rompsec section is secured immediately after the ".text" section by linkingNote the
rompcrt.obj last.

.extern _hdwinit

.extern __S_romp

.extern __rcopy

 :

jarl _hdwinit, lp

 :

mov32 #__S_romp, r6

mov -1, r7

jarl __rcopy, lp

CubeSuite Ver.1.40 CHAPTER 8 ROMIZATION

R20UT0259EJ0100 Rev.1.00 Page 856 of 890
Oct 01, 2010

Remark If the -Xrescan option is specified, the library file will be linked after rompcrt.obj, and an error will
occur during ROMization. In such a case, explicitly secure a rompsec section area.
See "8.2.3 rompsec section and link directive" for details.

(5) ROMization
 ROMization generates an object file with a "romspec" section, instead of a section with a data or sdata attribute
(indicating that it is to be allocated to ROM with an initial value), or a section allocated to internal instruction RAM
(all sections specified for allocation to internal instruction RAM via a link directive, such as an interrupt handler sec-
tion).

(6) Hex processing
Hex processing creates hex data.
The hex process is called automatically from the driver. You can specify the output file name by specifying the
-Xhex option.

(7) Downloading to ROM
 Load the created hex data to the ROM of the target system.

Figure 8-5. ROMization Image (Default)

.tidata section

Peripheral I/O

.sidata section

.sedata section

.sdata section

.data section

.text section

.const section

.sconst section

Interrupt

__S_romp

Peripheral I/O

0x0

Copy information

rompsec section

ROMization .tidata section

.sidata section

.sedata section

.sdata section

.data section

.text section

.const section

.sconst section

Interrupt

__S_romp

Hex processing

Executable object after ROMizationExecutable object

ROM Writer

Target system

ROM

0x0

internal RAM

external RAM

internal ROM

CubeSuite Ver.1.40 CHAPTER 8 ROMIZATION

R20UT0259EJ0100 Rev.1.00 Page 857 of 890
Oct 01, 2010

8.3.2 Procedure for creating ROMized load module (customize)

This section describes the method for independently creating the ROMization area reservation code file and determin-
ing the desired start address and allocation position of the .rompack section.

(1) Describe ROMization area reservation code file
Describe the code corresponding to default ROMization area reservation code "rompcrt.asm".
In this section, it is assumed that the source file name of the ROMization area reservation code file is "rom-
pack.asm" and the name of the symbol indicating the start of the ROMization area is "__rompack".
In addition, it is assumed that the section containing this symbol is ".rompack section".
In this case, the code in "rompack.asm" appears as follows.

Example rompack.asm

After describing rompack.asm, it's assembled and object file rompack.obj of ROMization area reservation code file
is generated.

(2) Call a copy function
Call a copy function within the startup routine.

Example Call copy function "_rcopy"

Remarks 1. See "8.4 Copy Functions" for details about copy functions.
2. When using other than the standard startup routine, change the startup routine to be used specify-

ing the -Xno_startup or -Xstartup options.

(3) Specify the allocation of the rompack section
Define the created .rompack section in the link directive.
The allocation location of the .rompack section can be determined arbitrarily by specifying an address simulta-
neously.
To specify ROMPACK as the segment containing the .rompack section and to allocate that segment to at address
0x3000, enter the following link directive.

.rompack .cseg text

 .align 4

 .public __rompack, 4

__rompack:

.extern _hdwinit

.extern __rompack

.extern __rcopy

 :

jarl _hdwinit, lp

 :

mov32 #__rompack, r6

mov -1, r7

jarl __rcopy, lp

CubeSuite Ver.1.40 CHAPTER 8 ROMIZATION

R20UT0259EJ0100 Rev.1.00 Page 858 of 890
Oct 01, 2010

Estimate the .rompack section's size using the formula described in "8.2.2 Size of rompsec section" to avoid the
ROMPACK segment's allocation address from overlapping with adjacent segments and reflect the size to the link
directive file.

(4) Specify the ROMization area reservation code file
Specify ROMization area reservation code file "rompack.obj" by the -Xrompcrt option.

(5) Specify the start label of the rompsec section
Specify "__rompack" as the parameter of the -Xrompsec_start option.
This will generate code indicating the same addresses for the __rompack label and the .rompack section.

(6) Linking
The driver controls linking so that files are specified in the following order.

- cstart.obj (Object module file of startup routine)
- Object module file specified by user
- libc.lib (Standard library including hdwinit function and _rcopy function)
- rompack.obj (ROMization area reservation code file)

A memory area for the .rompack section is secured immediately after the ".text" section by linkingNote the rom-
pack.obj last.

Remark If the -Xrescan option is specified, the library file will be linked after rompack.obj, and an error will
occur during ROMization. In such a case, explicitly secure a .rompack section area.
See "8.2.3 rompsec section and link directive" for details.

(7) ROMization
 ROMization generates an object file with a ".rompack" section, instead of a section with a data or sdata attribute
(indicating that it is to be allocated to ROM with an initial value), or a section allocated to internal instruction RAM
(all sections specified for allocation to internal instruction RAM via a link directive, such as an interrupt handler sec-
tion).

(8) Hex processing
Hex processing creates hex data.
The hex process is called automatically from the driver. You can specify the output file name by specifying the
-Xhex option.

TEXT: !LOAD ?RX V0x1000 {

 .text = $PROGBITS ?AX .text;

};

ROMPACK: !LOAD ?RX V0x3000 {

 .rompack = $PROGBITS ?AX .rompack;

};

 :

CubeSuite Ver.1.40 CHAPTER 8 ROMIZATION

R20UT0259EJ0100 Rev.1.00 Page 859 of 890
Oct 01, 2010

(9) Downloading to ROM
 Load the created hex data to the ROM of the target system.

Figure 8-6. ROMization Image (Customize)

.tidata section

Peripheral I/O

.sidata section

.sedata section

.sdata section

.data section

.text section

.const section

.sconst section

Interrupt

__rompac

Peripheral I/O

0x0

Copy information

.rompack section

ROMization .tidata section

.sidata section

.sedata section

.sdata section

.data section

.text section

.const section

.sconst section

Interrupt

__rompac

Hex processing

Executable object after ROMizationExecutable object

ROM Writer

Target system

ROM

0x0

internal RAM

external RAM

internal ROM

CubeSuite Ver.1.40 CHAPTER 8 ROMIZATION

R20UT0259EJ0100 Rev.1.00 Page 860 of 890
Oct 01, 2010

8.4 Copy Functions

This section describes the copy functions necessary for the program to be stored in ROM.

Table 8-1. Copy Functions

Use 1-byte, 2-byte, or 4-byte transfer, depending on the specification of the RAM at the transfer destination.

Function Name Function

_rcopy Copies Packing data in the unit of 1 byte to RAM (Same as _rcopy1)

_rcopy1 Copies Packing data in the unit of 1 byte to RAM (Same as _rcopy)

_rcopy2 Copies Packing data in the unit of 2 bytes to RAM

_rcopy4 Copies Packing data in the unit of 4 bytes to RAM

CubeSuite Ver.1.40 CHAPTER 8 ROMIZATION

R20UT0259EJ0100 Rev.1.00 Page 861 of 890
Oct 01, 2010

Copies default data or RAM textNote (1 byte).

Note Data section with initial value which is to be allocated to RAM, and text section for internal RAM.

[Classification]

ROMization library

[Syntax]

int _rcopy(const unsigned long * label, long number);
extern const unsigned long _S_rompNote;

Note _S_romp is the start address of the packing data.

[Return value]

[Description]

_rcopy(&label, number) copies the initial value data of section number number to be copied, or text to be allocated to
RAM, to the RAM area 1 byte at a time, based on the information in the rompsec section allocated starting at the address
following the address indicated by label. If -1 is specified as number, all sections in the rompsec section are copied. Sec-
tion number number is a positive number that starts from 1.

By default, sections are allocated in the order in which they appear in the input file.

[Caution]

- _rcopy copies data in accordance with the information generated by the ROMization. When this function is exe-
cuted, processing which adds an offset value to address of the copy destination can't be done.

- No data is copied if data may be overwritten as a result of copying.
- Specify a global label having an absolute value or an absolute address as the first argument of _rcopy, label. If any

other value or address is specified, the result is not guaranteed.
- The copy is not performed unless the 4 bytes following the address indicating the label contain a magic number

indicating that the object was generated via ROMization.
- The section number to be specified as the number is a positive number.

See the memory map file for the relation between the section name and section number.
- The copy is not performed if "number" is a section number, or any value other than "-1".
- If there is more than one RAM, and multiple copy routines are used separately, specifying "-1" in number will send

all of the functions to each copy routine multiple times. The copy will thus not be performed correctly, due to sec-
tion-alignment and other issues. In this case, specify a section number for "number", rather than "-1".

- If "-1" is specified in number, the copy is performed in section-number order. If there are any sections that are not
copied due to the problem above, a value of -1 will be returned, and sections after the problem section will not be
copied.

- The _rcopy and _rcopy1 functions are identical in feature.

_rcopy

0 Normal completion (if copied correctly)

-1 Abnormal termination (if not copied correctly)

CubeSuite Ver.1.40 CHAPTER 8 ROMIZATION

R20UT0259EJ0100 Rev.1.00 Page 862 of 890
Oct 01, 2010

[Example]

main(){

 _rcopy(&_S_romp, -1);

}

CubeSuite Ver.1.40 CHAPTER 8 ROMIZATION

R20UT0259EJ0100 Rev.1.00 Page 863 of 890
Oct 01, 2010

Copies default data or RAM textNote (1 byte).

Note Data section with initial value which is to be allocated to RAM, and text section for internal RAM.

[Classification]

ROMization library

[Syntax]

int _rcopy1(const unsigned long * label, long number);
extern const unsigned long _S_rompNote;

Note _S_romp is the start address of the packing data.

[Return value]

[Description]

_rcopy1(&label, number) copies the initial value data of section number number to be copied, or text to be allocated to
RAM, to the RAM area 1 byte at a time, based on the information in the rompsec section allocated starting at the address
following the address indicated by label. If -1 is specified as number, all sections in the rompsec section are copied. Sec-
tion number number is a positive number that starts from 1.

By default, sections are allocated in the order in which they appear in the input file.

[Caution]

- _rcopy1 copies data in accordance with the information generated by the ROMization. When this function is exe-
cuted, processing which adds an offset value to address of the copy destination can't be done.

- No data is copied if data may be overwritten as a result of copying.
- Specify a global label having an absolute value or an absolute address as the first argument of _rcopy, label. If any

other value or address is specified, the result is not guaranteed.
- The copy is not performed unless the 4 bytes following the address indicating the label contain a magic number

indicating that the object was generated via ROMization.
- The section number to be specified as the number is a positive number.

See the memory map file for the relation between the section name and section number.
- The copy is not performed if "number" is a section number, or any value other than "-1".
- If there is more than one RAM, and multiple copy routines are used separately, specifying "-1" in number will send

all of the functions to each copy routine multiple times. The copy will thus not be performed correctly, due to sec-
tion-alignment and other issues. In this case, specify a section number for "number", rather than "-1".

- If "-1" is specified in number, the copy is performed in section-number order. If there are any sections that are not
copied due to the problem above, a value of -1 will be returned, and sections after the problem section will not be
copied.

- The _rcopy1 and _rcopy functions are identical in feature.

_rcopy1

0 Normal completion (if copied correctly)

-1 Abnormal termination (if not copied correctly)

CubeSuite Ver.1.40 CHAPTER 8 ROMIZATION

R20UT0259EJ0100 Rev.1.00 Page 864 of 890
Oct 01, 2010

Copies default data or RAM textNote (2 bytes).

Note Data section with initial value which is to be allocated to RAM, and text section for internal RAM.

[Classification]

ROMization library

[Syntax]

int _rcopy2(const unsigned long * label, long number);
extern const unsigned long _S_rompNote;

Note _S_romp is the start address of the packing data.

[Return value]

[Description]

_rcopy2(&label, number) copies the initial value data of section number number to be copied, or text to be allocated to
RAM, to the RAM area 2 bytes at a time, based on the information in the rompsec section allocated starting at the
address following the address indicated by label. If -1 is specified as number, all sections in the rompsec section are cop-
ied. Section number number is a positive number that starts from 1.

By default, sections are allocated in the order in which they appear in the input file.

[Caution]

- The copy will not be performed unless the start address of the copy source (offset in the "romspec" section) and
the start address of the copy destination are 2-byte aligned.

- If the size of the section to copy is not a multiple of 2, then the padding area immediately after the end of the sec-
tion is copied in addition to the final odd byte. 2-byte align the section that follows, or copy in ascending address
order, so that following sections are not overwritten.

- _rcopy2 copies data in accordance with the information generated by the ROMization. When this function is exe-
cuted, processing which adds an offset value to address of the copy destination can't be done.

- No data is copied if data may be overwritten as a result of copying.
- Specify a global label having an absolute value or an absolute address as the first argument of _rcopy2, label. If

any other value or address is specified, the result is not guaranteed.
- The copy is not performed unless the 4 bytes following the address indicating the label contain a magic number

indicating that the object was generated via ROMization.
- The section number to be specified as the number is a positive number.

See the memory map file for the relation between the section name and section number.
- The copy is not performed if "number" is a section number, or any value other than "-1".
- If there is more than one RAM, and multiple copy routines are used separately, specifying "-1" in number will send

all of the functions to each copy routine multiple times. The copy will thus not be performed correctly, due to sec-
tion-alignment and other issues. In this case, specify a section number for "number", rather than "-1".

_rcopy2

0 Normal completion (if copied correctly)

-1 Abnormal termination (if not copied correctly)

CubeSuite Ver.1.40 CHAPTER 8 ROMIZATION

R20UT0259EJ0100 Rev.1.00 Page 865 of 890
Oct 01, 2010

- If "-1" is specified in number, the copy is performed in section-number order. If there are any sections that are not
copied due to the problem above, a value of -1 will be returned, and sections after the problem section will not be
copied.

CubeSuite Ver.1.40 CHAPTER 8 ROMIZATION

R20UT0259EJ0100 Rev.1.00 Page 866 of 890
Oct 01, 2010

Copies default data or RAM textNote (4 bytes).

Note Data section with initial value which is to be allocated to RAM, and text section for internal RAM.

[Classification]

ROMization library

[Syntax]

int _rcopy4(const unsigned long * label, long number);
extern const unsigned long _S_rompNote;

Note _S_romp is the start address of the packing data.

[Return value]

[Description]

_rcopy4(&label, number) copies the initial value data of section number number to be copied, or text to be allocated to
RAM, to the RAM area 4 bytes at a time, based on the information in the rompsec section allocated starting at the
address following the address indicated by label. If -1 is specified as number, all sections in the rompsec section are cop-
ied. Section number number is a positive number that starts from 1.

By default, sections are allocated in the order in which they appear in the input file.

[Caution]

- The copy will not be performed unless the start address of the copy source (offset in the "romspec" section) and
the start address of the copy destination are 4-byte aligned.

- If the size of the section to copy is not a multiple of 4, then the padding area immediately after the end of the sec-
tion is copied in addition to the final odd byte. 4-byte align the section that follows, or copy in ascending address
order, so that following sections are not overwritten.

- s_rcopy4 copies data in accordance with the information generated by the ROMization. When this function is exe-
cuted, processing which adds an offset value to address of the copy destination can't be done.

- No data is copied if data may be overwritten as a result of copying.
- Specify a global label having an absolute value or an absolute address as the first argument of _rcopy4, label. If

any other value or address is specified, the result is not guaranteed.
- The copy is not performed unless the 4 bytes following the address indicating the label contain a magic number

indicating that the object was generated via ROMization.
- The section number to be specified as the number is a positive number.

See the memory map file for the relation between the section name and section number.
- The copy is not performed if "number" is a section number, or any value other than "-1".
- If there is more than one RAM, and multiple copy routines are used separately, specifying "-1" in number will send

all of the functions to each copy routine multiple times. The copy will thus not be performed correctly, due to sec-
tion-alignment and other issues. In this case, specify a section number for "number", rather than "-1".

_rcopy4

0 Normal completion (if copied correctly)

-1 Abnormal termination (if not copied correctly)

CubeSuite Ver.1.40 CHAPTER 8 ROMIZATION

R20UT0259EJ0100 Rev.1.00 Page 867 of 890
Oct 01, 2010

- If "-1" is specified in number, the copy is performed in section-number order. If there are any sections that are not
copied due to the problem above, a value of -1 will be returned, and sections after the problem section will not be
copied.

CubeSuite Ver.1.40 CHAPTER 9 REFERENCING COMPILER AND ASSEMBLER

R20UT0259EJ0100 Rev.1.00 Page 868 of 890
Oct 01, 2010

CHAPTER 9 REFERENCING COMPILER AND ASSEMBLER

This chapter explains how to handle arguments when a program is called by the CX.

9.1 Method of Accessing Arguments and Automatic Variables

(1) Argument passed to assembler function
The CX stores 4-word arguments in argument registers r6 to r9 and arguments in excess of 4 words in the stack
frame of the calling function. Reference each stored value when using an argument value in an assembler func-
tion.
If the assembler function returns a structure, the CX stores 3-word arguments in argument registers r7 to r9 and
arguments in excess of 3 words in the stack frame of the calling function. Note the argument storage location
because the address where a return value is stored is stored in r6 register.
An argument value in a C function is the value itself that is specified as an argument. The operation of the C func-
tion is not affected even if this value is changed in an assembler function.

(2) Argument passed to C function
The CX stores 4-word arguments in argument registers r6 to r9 and arguments in excess of 4 words in the stack
frame of the calling function. Store the arguments in excess of 4 words upward from the address indicated by SP.
If the C function returns a structure, the CX stores 3-word arguments in argument registers r7 to r9 and arguments
in excess of 3 words in the stack frame of the calling function. And the address where a return value is stored is
stored in r6 register.

9.2 Method of Storing Return Value

(1) Return value returned from assembler function
The CX generates codes on the assumption that the return value of a function is stored in the r10 register. Store
the value returned from an assembler function in r10.
If the function returns a structure, the return value, i.e., the structure, is stored in the stack frame of the calling func-
tion.

(2) Return value returned from C function
The CX generates codes on the assumption that the return value of a function is stored in the r10 register. Refer-
ence the r10 register when using the value returned from a C function.
If the function returns a structure, a value is stored in an area for the return value of the calling function, and a code
that passes the address of that area as an argument is output. An area for the return value must be allocated in
advance on the calling side.

CubeSuite Ver.1.40 CHAPTER 9 REFERENCING COMPILER AND ASSEMBLER

R20UT0259EJ0100 Rev.1.00 Page 869 of 890
Oct 01, 2010

9.3 Calling of Assembly Language Routine from C Language

This section explains the points to be noted when calling an assembler function from a C function.

(1) Identifier
If external names, such as functions and external variables, are described in the C source by the CX, they are pre-
fixed with "_" (underscore) when they are output to the assembler.

Table 9-1. Identifier

Prefix "_" to the identifier when defining functions and external variables with the assembler and remove "_" when
referencing them from a C function.

(2) Stack frame
The CX generates codes on the assumption that the stack pointer (SP) always indicates the lowest address of the
stack frame. Therefore, the address area lower than the address indicated by SP can be freely used in the assem-
bler function after branching from a C source to an assembler function. Conversely, if the contents of the higher
address area are changed, the area used by a C function may be lost and the subsequent operation cannot be
guaranteed. To avoid this, change SP at the beginning of the assembler function before using the stack.
At this time, however, make sure that the value of SP is retained before and after calling.
When using a register variable register in an assembler function, make sure that the register value is retained
before and after the assembler function is called. In other words, save the value of the register variable register
before calling the assembler function, and restore the value after calling.
The register for register variable that can be used differ depending on the register mode.

Table 9-2. Registers for Register Variables

(3) Return address passed to C function
The CX generates codes on the assumption that the return address of a function is stored in link pointer lp (r31).
When execution branches to an assembler function, the return address of the function is stored in lp. Execute the
jmp [lp] instruction to return to a C function.

C Assembler

func1 () _func1

Register Modes Register for Register Variable

22-register mode r25, r26, r27, r28, r29

26-register mode r23, r24, r25, r26, r27, r28, r29

32-register mode r20, r21, r22, r23, r24, r25, r26, r27, r28, r29

CubeSuite Ver.1.40 CHAPTER 9 REFERENCING COMPILER AND ASSEMBLER

R20UT0259EJ0100 Rev.1.00 Page 870 of 890
Oct 01, 2010

9.4 Calling of C Language Routine from Assembly Language

This section explains the points to be noted when calling a C function from an assembler function.

(1) Stack frame
The CX generates codes on the assumption that the stack pointer (SP) always indicates the lowest address of the
stack frame. Therefore, set SP so that it indicates the higher address of an unused area of the stack area before
branching from an assembler function to a C function. This is because the stack frame is allocated towards the
lower addresses.

(2) Work register
The CX retains the values of the register for register variable before and after a C function is called but does not
retain the values of the work registers. Therefore, do not leave a value that must be retained assigned to a work
register.
The register for register variable and work registers that can be used differ depending on the register mode.

Table 9-3. Registers for Register Variables

Table 9-4. Work Register

(3) Return address returned to assembler function
The CX generates codes on the assumption that the return address of a function is stored in link pointer lp (r31).
When execution branches to a C function, the return address of the function must be stored in lp.
Execution is generally branched to a C function using the jarl instruction.

Register Modes Register for Register Variable

22-register mode r25, r26, r27, r28, r29

26-register mode r23, r24, r25, r26, r27, r28, r29

32-register mode r20, r21, r22, r23, r24, r25, r26, r27, r28, r29

Register Modes Work Register

22-register mode r10, r11, r12, r13, r14

26-register mode r10, r11, r12, r13, r14, r15, r16

32-register mode r10, r11, r12, r13, r14, r15, r16, r17, r18, r19

CubeSuite Ver.1.40 CHAPTER 9 REFERENCING COMPILER AND ASSEMBLER

R20UT0259EJ0100 Rev.1.00 Page 871 of 890
Oct 01, 2010

9.5 Reference of Argument Defined by Other Language

The method of referring to the variable defined by the assembly language on the C language is shown below.

Example Programming of C Language]

The CX assembler performs as follows.

extern char c;

extern int i;

void subf() {

 c = 'A';

 i = 4;

}

 .public _i

 .public _c

 .dseg SDATA

_i:
 .db4 0x0

_c:

 .db 0x0

CubeSuite Ver.1.40 CHAPTER 10 CAUTIONS

R20UT0259EJ0100 Rev.1.00 Page 872 of 890
Oct 01, 2010

CHAPTER 10 CAUTIONS

This chapter explains the points to be noted when using the CX.

10.1 Delimiting Folder/Path

Both "\" and "/" are regarded as the delimiters of a folder.

10.2 Mixing with K&R Format in Function Declaration/Definition

If the K&R format and ANSI standard format exist together in the declaration and definition of a function, an error may
occur on compilation by the CX as a result of argument expansion processing in the K&R format.

For example, a function is declared according to the ANSI standard in the example below, but the function is defined in
the K&R format. Consequently, the types of the arguments do not match, and the CX outputs a "function redeclaration"
error.

Example Error

In the above example, compilation is performed normally if the K&R format is uniformly used by specifying "void func();"
for the function declaration, or if the ANSI standard format is used by specifying "void func(int a, int b, float c)" for the func-
tion definition.

Note, however, that use of the ANSI standard format is recommended in the CX.

void func(int a, int b, float c);

/*Declared in ANSI standard format.*/

/*Third argument is declared as float type.*/

 :

void func(a, b, c)

int a, b;

float c;

{

 /*Defined in K&R format.*/

 /*Third argument is the expanded default of K&R and so becomes double type.*/

 :

}

CubeSuite Ver.1.40 CHAPTER 10 CAUTIONS

R20UT0259EJ0100 Rev.1.00 Page 873 of 890
Oct 01, 2010

10.3 Output of Other Than Position-Independent Codes

Basically, the CX outputs codes not dependent on positions (position-independent codes). However, it outputs the fol-
lowing codes in response to the "initialization statement with an initial value other than a numeric value for a pointer type
variable other than an automatic variable".

Example

10.4 Library File Search by Specifying Option

The CX does not display a message even if a specified library file has not been found as a result of a library file search-
Note initiated by an option (-L or -I). However, if the library file name has been directly specified on the command line or
in the command file, a message is displayed.

Note If the -L option is not specified, the standard folder (Version Folder\lib850e) is searched.

Example

[Description of C Language]

char *ptr = "test\n";

[Output codes

LL20 .ds (6)

LL20:

 .db "test\n\0"

 .align 4

 .public _ptr, 4

_ptr:

 .db4 #LL20 --Absolute address reference of label

> cx -Cf3507 a.c usr.lib

F0560001: can not open input file"usr.lib".

CubeSuite Ver.1.40 CHAPTER 10 CAUTIONS

R20UT0259EJ0100 Rev.1.00 Page 874 of 890
Oct 01, 2010

10.5 Volatile Qualifier

When a variable is declared with the volatile qualifier, the variable is not optimized and optimization for assigning the
variable to a register is no longer performed. When a variable with volatile specified is manipulated, a code that always
reads the value of the variable from memory and writes the value to memory after the variable is manipulated is output.
The access width of the variable with volatile specified is not changed.

A variable for which volatile is not specified is assigned to a register as a result of optimization and the code that loads
the variable from the memory may be deleted. When the same value is assigned to variables for which volatile is not
specified, the instruction may be deleted as a result of optimization because it is interpreted as a redundant instruction.
The volatile qualifier must be specified especially for variables that access a peripheral I/O register, variables whose
value is changed by interrupt servicing, or variables whose value is changed by an external source. When a peripheral I/
O register is accessed using the #pragma ioreg directive, however, the CX internally outputs a code for which volatile is
specified. Therefore, volatile declaration is not necessary.

The following problem may occur if volatile is not specified where it should.
- The correct calculation result cannot be obtained.
- Execution cannot exit from a loop if the variable is used in a for loop.

If it is clear that the value of a variable with volatile specified is not changed from outside in a specific section, the code
can be optimized by assigning the unchanged value to a variable for which volatile not specified and referencing it, which
may increase the execution speed.

Example Source and output code if volatile is not specified
If volatile is not specified for "variable a", "variable b", and "variable c", these variables are assigned to registers and

optimized. For example, even if an interrupt occurs in the meantime and the variable value is changed by the interrupt,
the changed value is not reflected.

int a;

int b;

int c;

void func(void) {

 if(a <= 0) {

 b++;

 } else {

 c++;

 }

 b++;

 c++;

}

_func:

 #@B_PROLOGUE

 #@E_PROLOGUE

 ld.w $_a, r12

 cmp r0, r12

 jgt .L2

 ld.w $_b, r11

 ld.w $_c, r10

 add 1, r11

 jbr .L3

.L2:

 ld.w $_c, r10

 ld.w $_b, r11

 add 1, r10

.L3:

 addi 1, r11, r13

 st.w r13, $_b

 addi 1, r10, r14

 st.w r14, $_c

 #@B_EPILOGUE

 jmp [lp]

 #@E_EPILOGUE

CubeSuite Ver.1.40 CHAPTER 10 CAUTIONS

R20UT0259EJ0100 Rev.1.00 Page 875 of 890
Oct 01, 2010

Example Source and output code if volatile is specified
If volatile is specified for "variable a", "variable b", and "variable c", a code that always reads the values of these vari-

ables from memory and writes them to memory after the variables are manipulated is output. For example, even if, an
interrupt occurs in the meantime and the values of the variables are changed by the interrupt, the result in which the
change is reflected can be obtained. (In this case, interrupts may have to be disabled while the variables are manipu-
lated, depending on the timing of the interrupt.)

When volatile is specified, the code size increases compared with when volatile is not specified because the memory
has to be read and written.

volatile int a;

volatile int b;

volatile int c;

void func(void) {

 if(a <= 0) {

 b++;

 } else {

 c++;

 }

 b++;

 c++;

}

func:

 #@B_PROLOGUE

 #@E_PROLOGUE

 ld.w $_a, r10

 cmp r0, r10

 jgt .L2

 ld.w $_b, r11

 add 1, r11

 st.w r11, $_b

 jbr .L3

.L2:

 ld.w $_c, r12

 add 1, r12

 st.w r12, $_c

.L3:

 ld.w $_b, r13

 add 1, r13

 st.w r13, $_b

 ld.w $_c, r14

 add 1, r14

 st.w r14, $_c

 #@B_EPILOGUE

 jmp [lp]

 #@E_EPILOGUE

CubeSuite Ver.1.40 CHAPTER 10 CAUTIONS

R20UT0259EJ0100 Rev.1.00 Page 876 of 890
Oct 01, 2010

10.6 Extra Brackets in Function Declaration

If extra brackets "()" are described in the function declaration, ANSI-C prescribes their handling as shown below, but
the CX outputs an error.

Example

[Prescription in ANSI-C]
In a parameter declaration, a single type definition name in parentheses is taken to be an abstract declarator that spec-

ifies a function with a single parameter, not as redundant parentheses around the identifier for a declarator.
The above example is therefore interpreted according to ANSI-C.

If the code includes extra brackets, delete the unnecessary brackets as shown below.

Example

typedef int Int;

void f1((Int));

void f(int (*)(int));

typedef int Int;

void f1(Int);

CubeSuite Ver.1.40 APPENDIX A INDEX

R20UT0259EJ0100 Rev.1.00 Page 877 of 890
Oct 01, 2010

APPENDIX A INDEX

Symbols

< operator ... 207

<= operator ... 208

<< operator ... 213

! operator ... 198

!= operator ... 204

#pragma directive ... 104

% operator ... 194

& operator ... 199

&& operator ... 209

== operator ... 203

> operator ... 205

>= operator ... 206

>> operator ... 212

^ operator ... 201

| operator ... 200

|| operator ... 210

Numerics

2-byte separation operator ... 217

A

abs ... 641

absolute expression ... 226

acos ... 732

acosf ... 731

acoshf ... 745

add ... 350

___addf.d ... 764

___addf.s ... 756

addi ... 352

___add.l ... 771

address/data variable register ... 313

addressing ... 315

instruction address ... 315

operand address ... 319

adf ... 355

align directive ... 257

alignment condition ... 97

and ... 423

andi ... 425

ANSI option ... 91

argument ... 99

argument registers ... 99

arithmetic operation instructions ... 349

arithmetic operator ... 189

array type ... 94

asin ... 734

asinf ... 733

asinhf ... 746

assembler control instruction ... 282

assembler generated symbols ... 310

assembler-reserved register ... 99, 313

assembly language specifications ... 177

assembler generated symbols ... 310

description ... 177

instructions ... 310

macro ... 307

reserved words ... 309

atan ... 736

atan2 ... 738

atan2f ... 737

atanf ... 735

atanhf ... 747

atof ... 669

atoff ... 668

atoi ... 660

atol ... 661

atoll ... 662

automatic variable ... 99

B

based addressing ... 319, 320

basic language specifications ... 76

ANSI option ... 91

processing system dependent items ... 80

CubeSuite Ver.1.40 APPENDIX A INDEX

R20UT0259EJ0100 Rev.1.00 Page 878 of 890
Oct 01, 2010

undefined behavior ... 77

unspecified behavior ... 76

bcmp ... 581

bcopy ... 583

___bext.l ... 787

___bext.ul ... 788

binary ... 182

BINCLUDE control instruction ... 295

___bins.l ... 789

BIT ... 181

bit addressing ... 321

bit field ... 96

bit manipulation instructions ... 464

BITPOS operator ... 223

branch instructions ... 447

bsearch ... 644

bsh ... 437

.bss ... 180

bss attribute ... 512

bsw ... 438

byte separation operator ... 214

C

calloc ... 672

callt ... 488

CALLT control instruction ... 283

cbrt ... 704

cbrtf ... 703

ceil ... 706

ceilf ... 705

character classification functions ... 592

character constants ... 183

character conversion functions ... 586

character string constant ... 99, 184

character string functions ... 560

clr1 ... 467

cmov ... 393

cmp ... 385

cmpf.d ... 503

cmpf.s ... 501

___cmpf.s ... 760

___cmp.l ... 785

___cmp.ul ... 786

comm directive ... 262

comment ... 186

compile target type specification control instruction ...

277

compiler language specifications ... 76

basic language specifications ... 76

device file ... 102

extended language specifications ... 103

general-purpose registers ... 99

internal representation and value area of data ... 92

referencing data ... 99

software register bank ... 100

concatenation ... 308

conditional assembly control instruction ... 298

.const ... 180

const attribute ... 512

constant ... 182

control instructions ... 276

asembler control instruction ... 282

compile target type specification control instruction

... 277

conditional assembly control instruction ... 298

file input control instruction ... 293

smart correction control instruction ... 296

symbol control instruction ... 279

copy functions ... 750, 860

cos ... 726

cosf ... 725

cosh ... 740

coshf ... 739

cseg directive ... 230

ctret ... 489

ctype.h ... 555

___cvt.ds ... 807

___cvt.ld ... 795

___cvt.ls ... 794

___cvt.sd ... 806

___cvt.uld ... 797

___cvt.uls ... 796

CubeSuite Ver.1.40 APPENDIX A INDEX

R20UT0259EJ0100 Rev.1.00 Page 879 of 890
Oct 01, 2010

___cvt.uwd ... 793

___cvt.uws ... 792

___cvt.wd ... 791

___cvt.ws ... 790

CX ... 14

D

.data ... 180

data attribute ... 512

DATA control instruction ... 289

data definition, area reservation directives ... 244

DATAPOS operator ... 222

db directive ... 245

db2 directive ... 247

db4 directive ... 250

db8 directive ... 252

dbret ... 491

dbtrap ... 490

ddw directive ... 252

decimal ... 182

___dec.l ... 782

device file ... 102

dhw directive ... 247

di ... 481

directives ... 228

data definition, area reservation directives ... 244

external definition, external reference directives ...

258

macro directives ... 265

section definition directive ... 229

symbol definition directives ... 240

dispose ... 495

__div ... 810

div ... 379, 646

___divf.d ... 767

___divf.s ... 759

divh ... 375

divhu ... 381

___div.l ... 774

__divu ... 811

divu ... 383

___div.ul ... 775

dollar symbol ... 309

double directive ... 255

ds directive ... 256

dseg directive ... 233

dshw directive ... 249

dw directive ... 250

E

ecvt ... 654

ecvtf ... 655

ei ... 482

element pointer ... 99, 313, 517

ELSEIF control instruction ... 303

ELSEIFN control instruction ... 304

ENDIF control instruction ... 306

endm directive ... 274

enumerate type ... 94

ep ... 517

EP_LABEL control instruction ... 285

erfcf ... 691

erff ... 690

errno.h ... 555

exitm directive ... 272

exitma directive ... 273

exp ... 693

expf ... 692

expression ... 187

absolute expression ... 226

relative expressions ... 227

extended language specifications ... 103

#pragma directive ... 104

keyword ... 104

macro name ... 103

smart correction feature ... 149

EXT_ENT_SIZE control instruction ... 280

extern directive ... 261

external definition, external reference directives ... 258

external variable ... 99

EXT_FUNC control instruction ... 281

CubeSuite Ver.1.40 APPENDIX A INDEX

R20UT0259EJ0100 Rev.1.00 Page 880 of 890
Oct 01, 2010

F

fabs ... 708

fabsf ... 707

___fcmp.d ... 768

___fcmp.s ... 761

fcvt ... 656

fcvtf ... 657

fgetc ... 608

fgets ... 609

file directive ... 242

file input control instruction ... 293

float directive ... 254

float.h ... 555

floating-point operation instructions ... 498

floating-point type ... 93

floor ... 710

floorf ... 709

fmod ... 712

fmodf ... 711

fprintf ... 621

fputc ... 612

fputs ... 613

fread ... 606

free ... 676

frexp ... 714

frexpf ... 713

fscanf ... 634

func directive ... 243

function address ... 99

function call interface ... 157

functional specification

library function ... 556

supplied libraries ... 538

functions with variable arguments ... 556

fwrite ... 610

G

gammaf ... 719

gcvt ... 658

gcvtf ... 659

general register ... 184

general register pairs ... 184

general-purpose registers ... 99

argument registers ... 99

assembler-reserved register ... 99

element pointer ... 99

global pointer ... 99

handler stack pointer ... 99

link pointer ... 99

register variable registers ... 99

software register bank ... 99

stack pointer ... 99

text pointer ... 99

work register ... 99

zero register ... 99

getc ... 607

getchar ... 614

gets ... 615

global pointer ... 99, 313, 514

gp ... 514

H

halt ... 484

handler stack pointer ... 99

hdwinit ... 749

header files ... 554

hexadecimal ... 182

HIGH operator ... 215

HIGHW operator ... 218

HIGHW1 operator ... 220

hsh ... 439

hsw ... 440

hypotf ... 720

I

IF control instruction ... 301

IFDEF control instruction ... 299

IFN control instruction ... 302

IFNDEF control instruction ... 300

immediate addressing ... 319

incl___] ... 781

INCLUDE control instruction ... 294

CubeSuite Ver.1.40 APPENDIX A INDEX

R20UT0259EJ0100 Rev.1.00 Page 881 of 890
Oct 01, 2010

index ... 561

initialization library ... 545

Initialization peripheral devices function ... 748

instruction address ... 315

based addressing ... 319

register addressing ... 318

relative addressing ... 315

instruction set ... 322

arithmetic operation instructions ... 349

bit manipulation instructions ... 464

branch instructions ... 447

floating-point operation instructions ... 498

load/store instructions ... 336

logical instructions ... 412

saturated operation instructions ... 401

special instructions ... 478

stack manipulation instructions ... 473

instructions ... 310

addressing ... 315

instruction set ... 322

memory space ... 310

register ... 311

integer type ... 92

internal representation and value area of data ... 92

alignment condition ... 97

array type ... 94

bit field ... 96

enumerate type ... 94

floating-point type ... 93

integer type ... 92

pointer type ... 94

structure type ... 95

union type ... 95

irp directive ... 270

IRP-ENDM block ... 270

isalnum ... 593

isalpha ... 594

isascii ... 595

iscntrl ... 600

isdigit ... 598

isgraph ... 604

islower ... 597

isprint ... 603

ispunct ... 601

isspace ... 602

isupper ... 596

isxdigit ... 599

itoa ... 649

J

j0f ... 684

j1f ... 685

jarl ... 459

jarl22 ... 461

jarl32 ... 463

jcnd ... 456

jmp ... 448

jmp32 ... 450

jnf ... 686

jr22 ... 453

jr32 ... 455

K

keyword ... 104

L

label ... 179

labs ... 642

ld ... 337

ld23 ... 342

ldexp ... 716

ldexpf ... 715

ldiv ... 647

ldsr ... 479

library function ... 556

character classification functions ... 592

character conversion functions ... 586

character string functions ... 560

copy functions ... 750

functions with variable arguments ... 556

Initialization peripheral devices function ... 748

mathematical functions ... 682

memory management functions ... 578

CubeSuite Ver.1.40 APPENDIX A INDEX

R20UT0259EJ0100 Rev.1.00 Page 882 of 890
Oct 01, 2010

non-local jump functions ... 679

standard I/O functions ... 605

standard utility functions ... 639

pseudo "main" functions for multi-core ... 751

limits.h ... 555

link directive specifications ... 505

reserved words ... 537

link pointer ... 99, 313

llabs ... 643

lldiv ... 648

lltoa ... 652

load/store instructions ... 336

local directive ... 268

log ... 695

log10 ... 698

log10f ... 697

log2f ... 696

logf ... 694

logic operator ... 197

logical instructions ... 412

longjmp ... 680

LOW operator ... 216

LOWW operator ... 219

ltoa ... 650

M

mac ... 373

macro ... 307

macro operator ... 308

MACRO control instruction ... 288

macro directive ... 266

macro directives ... 265

macro name ... 103, 179

macro operator ... 308

macu ... 374

main_pen ... 752

malloc ... 674

mapping directive ... 505, 525

mathematical functions ... 682

mathematical library ... 543

matherrd ... 723

matherrf ... 721

math.h ... 555

memchr ... 579

memcmp ... 580

memcpy ... 582

memmove ... 584

memory management functions ... 578

memory space ... 310

memset ... 585

mnemonic field ... 181

__mod ... 812

MOD operator ... 194

modf ... 718

modff ... 717

___mod.l ... 776

__modu ... 813

___mod.ul ... 777

mov ... 387

mov32 ... 392

movea ... 389

movhi ... 391

___mul ... 808

mul ... 367

___mulf.d ... 766

___mulf.s ... 758

mulh ... 363

mulhi ... 365

___mul.l ... 773

multi-core-compatible ... 30

__mulu ... 809

mulu ... 370

N

___negf.d ... 769

___negf.s ... 762

___neg.l ... 784

___notf.s ... 763

NO_EP_LABEL control instruction ... 286

NO_MACRO control instruction ... 287

non-local jump functions ... 679

nop ... 486

CubeSuite Ver.1.40 APPENDIX A INDEX

R20UT0259EJ0100 Rev.1.00 Page 883 of 890
Oct 01, 2010

not ... 428

not1 ... 469

___notf.d ... 770

___not.l ... 783

NOWARNING control instruction ... 291

numeric constant ... 99, 182

O

octal ... 182

operand address ... 319

based addressing ... 320

bit addressing ... 321

immediate addressing ... 319

register addressing ... 319

operand field ... 182

operator ... 187

OPT_BYTE ... 181

OPT_BYTE relocation attribute ... 231

or ... 413

org directive ... 238

ori ... 415

other operator ... 224

P

perror ... 638

pointer type ... 94

pop ... 476

popm ... 477

pow ... 700

powf ... 699

prepare ... 492

printf ... 624

processing system dependent items ... 80

PROCESSOR control instruction ... 278

program counter ... 313

program register ... 313

address/data variable register ... 313

assembler-reserved register ... 313

element pointer ... 313

global pointer ... 313

link pointer ... 313

program counter ... 313

stack pointer ... 313

text pointer ... 313

zero register ... 313

pseudo "main" functions for multi-core ... 751

public directive ... 259

push ... 474

pushm ... 475

putc ... 611

putchar ... 616

puts ... 617

Q

qsort ... 645

R

rand ... 677

_rcopy ... 861

_rcopy1 ... 863

_rcopy2 ... 864

_rcopy4 ... 866

realloc ... 675

re-entrant ... 555

referencing data ... 99

argument ... 99

automatic variable ... 99

character string constant ... 99

external variable ... 99

function address ... 99

numeric constant ... 99

static variable in function ... 99

register ... 311

program register ... 313

register addressing ... 318, 319

register variable registers ... 99

REG_MODE control instruction ... 284

relative addressing ... 315

relative expressions ... 227

relocation attribute ... 231, 234

rept directive ... 269

REPT-ENDM block ... 269

CubeSuite Ver.1.40 APPENDIX A INDEX

R20UT0259EJ0100 Rev.1.00 Page 884 of 890
Oct 01, 2010

reserved words ... 309, 537

reti ... 483

rewind ... 637

rindex ... 563

ROMization ... 850

copy functions ... 860

link directive ... 853

ROMization library ... 546

rompsec section ... 852

runtime library ... 547

S

sar ... 431

___sar.l ... 780

sasf ... 399

satadd ... 402

satsub ... 405

satsubi ... 407

satsubr ... 410

saturated operation instructions ... 401

sbf ... 361

.sbss ... 180

sbss attribute ... 512

scanf ... 635

sch0l ... 443

sch0r ... 444

sch1l ... 445

sch1r ... 446

.sconst ... 180

.sdata ... 180

sdata attribute ... 512

SDATA control instruction ... 290

.sebss ... 180

section ... 506

section definition directive ... 229

SECUR_ID ... 180

SECUR_ID relocation attribute ... 231

.sedata ... 180

segment ... 506

segment directive ... 505, 519

set directive ... 241

set1 ... 465

setf ... 397

setjmp ... 681

setjmp.h ... 555

shift operator ... 211

___shl ... 778

shl ... 432

___shl.l ... 778

shr ... 430

___shr.l ... 779

.sibss ... 180

.sidata ... 180

sin ... 728

sinf ... 727

sinh ... 742

sinhf ... 741

sld ... 340

smart correction control instruction ... 296

smart correction feature ... 149

SMART_CORRECT control instruction ... 297

software register bank ... 99, 100

special function register ... 184

special instructions ... 478

special operator ... 221

sprintf ... 618

sqrt ... 702

sqrtf ... 701

srand ... 678

sscanf ... 630

sst ... 346

st ... 344

st23 ... 347

stack manipulation instructions ... 473

stack pointer ... 99, 313

standard I/O functions ... 605

standard library ... 539

standard utility functions ... 639

startup ... 831

startup routine ... 831

static variable in function ... 99

stdarg.h ... 555

CubeSuite Ver.1.40 APPENDIX A INDEX

R20UT0259EJ0100 Rev.1.00 Page 885 of 890
Oct 01, 2010

stddef.h ... 555

stdio.h ... 555

stdlib.h ... 555

strcat ... 573

strchr ... 565

strcmp ... 569

strcpy ... 571

strcspn ... 568

strerror ... 577

string.h ... 555

strlen ... 576

strncat ... 574

strncmp ... 570

strncpy ... 572

strpbrk ... 562

strrchr ... 564

strspn ... 567

strstr ... 566

strtod ... 671

strtodf ... 670

strtok ... 575

strtol ... 663

strtoll ... 666

strtoul ... 665

strtoull ... 667

structure type ... 95

stsr ... 480

sub ... 357

___subf.d ... 765

___subf.s ... 757

___sub.l ... 772

subr ... 359

supplied libraries ... 538

header files ... 554

initialization library ... 545

mathematical library ... 543

re-entrant ... 555

ROMization library ... 546

runtime library ... 547

standard library ... 539

switch ... 487

sxb ... 433

sxh ... 434

symbol attribute ... 181

symbol control instruction ... 279

symbol definition directives ... 240

symbol directive ... 505, 513, 533

T

tan ... 730

tanf ... 729

tanh ... 744

tanhf ... 743

.text ... 180

text attribute ... 513

text pointer ... 99, 313, 513

.tibss ... 180

.tibss.byte ... 180

.tibss.word ... 180

.tidata ... 180

.tidata.byte ... 180

.tidata.word ... 180

toascii ... 591

_tolower ... 590

tolower ... 589

_toupper ... 588

toupper ... 587

tp ... 513

trap ... 485

___trnc.dl ... 803

___trnc.dul ... 805

___trnc.duw ... 801

___trnc.dw ... 799

___trnc.sl ... 802

___trnc.sul ... 804

___trnc.suw ... 800

___trnc.sw ... 798

tst ... 441

tst1 ... 471

U

ulltoa ... 653

CubeSuite Ver.1.40 APPENDIX A INDEX

R20UT0259EJ0100 Rev.1.00 Page 886 of 890
Oct 01, 2010

ultoa ... 651

undefined behavior ... 77

ungetc ... 636

union type ... 95

unspecified behavior ... 76

V

va_arg ... 559

va_end ... 558

va_start ... 557

vfprintf ... 626

vprintf ... 628

vseg directive ... 239

vsprintf ... 623

W

WARNING control instruction ... 292

work register ... 99

X

xor ... 418

xori ... 420

Y

y0f ... 687

y1f ... 688

ynf ... 689

Z

zero register ... 99, 313

zxb ... 435

zxh ... 436

Revision Record

Rev. Date
Description

Page Summary

1.00 Oct 01, 2010 - First Edition issued

CubeSuite Ver.1.40 User’s Manual: Coding for CX Compiler

Publication Date: Rev.1.00 Oct 1, 2010

Published by: Renesas Electronics Corporation

http://www.renesas.com
Refer to "http://www.renesas.com/" for the latest and detailed information.

Renesas Electronics America Inc.
2880 Scott Boulevard Santa Clara, CA 95050-2554, U.S.A.
Tel: +1-408-588-6000, Fax: +1-408-588-6130
Renesas Electronics Canada Limited
1101 Nicholson Road, Newmarket, Ontario L3Y 9C3, Canada
Tel: +1-905-898-5441, Fax: +1-905-898-3220
Renesas Electronics Europe Limited
Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K
Tel: +44-1628-585-100, Fax: +44-1628-585-900
Renesas Electronics Europe GmbH
Arcadiastrasse 10, 40472 Düsseldorf, Germany
Tel: +49-211-65030, Fax: +49-211-6503-1327
Renesas Electronics (China) Co., Ltd.
7th Floor, Quantum Plaza, No.27 ZhiChunLu Haidian District, Beijing 100083, P.R.China
Tel: +86-10-8235-1155, Fax: +86-10-8235-7679
Renesas Electronics (Shanghai) Co., Ltd.
Unit 204, 205, AZIA Center, No.1233 Lujiazui Ring Rd., Pudong District, Shanghai 200120, China
Tel: +86-21-5877-1818, Fax: +86-21-6887-7858 / -7898
Renesas Electronics Hong Kong Limited
Unit 1601-1613, 16/F., Tower 2, Grand Century Place, 193 Prince Edward Road West, Mongkok, Kowloon, Hong Kong
Tel: +852-2886-9318, Fax: +852 2886-9022/9044
Renesas Electronics Taiwan Co., Ltd.
7F, No. 363 Fu Shing North Road Taipei, Taiwan
Tel: +886-2-8175-9600, Fax: +886 2-8175-9670
Renesas Electronics Singapore Pte. Ltd.
1 harbourFront Avenue, #06-10, keppel Bay Tower, Singapore 098632
Tel: +65-6213-0200, Fax: +65-6278-8001
Renesas Electronics Malaysia Sdn.Bhd.
Unit 906, Block B, Menara Amcorp, Amcorp Trade Centre, No. 18, Jln Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia
Tel: +60-3-7955-9390, Fax: +60-3-7955-9510
Renesas Electronics Korea Co., Ltd.
11F., Samik Lavied' or Bldg., 720-2 Yeoksam-Dong, Kangnam-Ku, Seoul 135-080, Korea
Tel: +82-2-558-3737, Fax: +82-2-558-5141

SALES OFFICES

© 2010 Renesas Electronics Corporation. All rights reserved.

Colophon 1.0

CubeSuite Ver.1.40

R20UT0259EJ0100

	COVER
	How to Use This Manual
	CHAPTER 1 GENERAL
	1.1 Outline
	1.2 Special Features
	1.3 Limits

	CHAPTER 2 FUNCTIONS
	2.1 Variables (C Language)
	2.1.1 Allocating to sections accessible with short instructions
	2.1.2 Changing allocated section
	2.1.3 Defining variables for use during standard and interrupt processing
	2.1.4 Defining user port
	2.1.5 Defining const constant pointer

	2.2 Functions
	2.2.1 Changing area to be allocated to
	2.2.2 Calling away function
	2.2.3 Embedding assembler instructions
	2.2.4 Executing in RAM

	2.3 Using Microcomputer Functions
	2.3.1 Accessing peripheral I/O register with C language
	2.3.2 Describing interrupt processing with C language
	2.3.3 Using CPU instructions in C language
	2.3.4 Creating self-programming boot area
	2.3.5 Creating multi-core programs

	2.4 Variables (Assembler)
	2.4.1 Defining variables with no initial values
	2.4.2 Defining const constants with initial values
	2.4.3 Referencing section addresses

	2.5 Startup Routine
	2.5.1 Securing stack area
	2.5.2 Securing stack area and specifying allocation
	(1) Secure stack area
	(2) Specify stack area allocation

	2.5.3 Initializing RAM
	(1) Variables with no initial value
	(2) RAM initialization

	2.5.4 Preparing function and variable access
	(1) Preparations for accessing function
	(2) Variable access preparations (Setting global pointer)
	(3) Variable access preparations (Setting element pointer)

	2.5.5 Preparing to use code size reduction function
	2.5.6 Ending startup routine
	(1) When not using real-time OS
	(2) When using real-time OS (RX850V4)

	2.6 Link Directives
	2.6.1 Adding function section allocation
	2.6.2 Adding section allocation for variables
	2.6.3 Distributing section allocation
	(1) Distribute by section name
	(2) Distribute by object module files
	(3) Distribute by section attributes
	(4) Allocation specification priority level

	2.7 Reducing Code Size
	2.7.1 Reducing code size (C language)
	(1) Access to variables
	(2) Number of loops in loop processing
	(3) auto variable initialization
	(4) switch statements
	(5) if statements
	(6) if-else statements
	(7) switch/if-else statements
	(8) Functions with no return values

	2.7.2 Reducing variable area with variable definition method
	(1) Variable format
	(2) Allocating and referencing automatic variables
	(3) Variable types and order of definition

	2.8 Accelerating Processing
	2.8.1 Accelerating processing with description method
	(1) Loop processing pointer
	(2) Auto variable declaration
	(3) Function arguments

	2.9 Compiler and Assembler Mutual References
	2.9.1 Mutually referencing variables
	(1) Reference variable defined in C language
	(2) Reference variable defined in assembly language

	2.9.2 Mutually referencing functions
	(1) Reference function defined in C language
	(2) Reference function defined in assembly language

	CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS
	3.1 Basic Language Specifications
	3.1.1 Unspecified behavior
	3.1.2 Undefined behavior
	3.1.3 Processing system dependent items
	3.1.4 C99 language function
	3.1.5 ANSI option
	3.1.6 Internal representation and value area of data
	3.1.7 General-purpose registers
	3.1.8 Referencing data
	3.1.9 Software register bank
	3.1.10 Device file

	3.2 Extended Language Specifications
	3.2.1 Macro name
	3.2.2 Keyword
	3.2.3 #pragma directive
	3.2.4 Using expanded specifications
	(1) Constant notation
	(2) Allocation of data to section
	(3) Allocating functions to sections
	(4) Peripheral I/O register
	(5) Describing assembler instruction
	(6) Controlling interrupt level
	(7) Disabling interrupts
	(8) Interrupt/Exception processing handler
	(9) Inline expansion
	(10) Real-time OS support function
	(11) Embedded functions
	(12) Structure type packing
	(13) Smart correction function
	(14) Position independent operations

	3.2.5 Modification of C source

	3.3 Function Call Interface
	3.3.1 Calling between C functions
	3.3.2 Prologue/Epilogue processing function
	3.3.3 far jump function

	3.4 Section Name List

	CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS
	4.1 Description of Source
	4.1.1 Description
	4.1.2 Expressions and operators
	4.1.3 Arithmetic operators
	+
	-
	*
	/
	MOD(%)
	+sign
	-sign

	4.1.4 Logic operators
	!
	&
	|
	^

	4.1.5 Relational operators
	==
	!=
	>
	>=
	<
	<=
	&&
	||

	4.1.6 Shift operators
	>>
	<<

	4.1.7 Byte separation operators
	HIGH
	LOW

	4.1.8 2-byte separation operators
	HIGHW
	LOWW
	HIGHW1

	4.1.9 Special operators
	DATAPOS
	BITPOS

	4.1.10 Other operator
	()

	4.1.11 Restrictions on operations
	4.1.12 Identifiers

	4.2 Directives
	4.2.1 Outline
	4.2.2 Section definition directives
	.cseg
	.dseg
	.org
	.vseg

	4.2.3 Symbol definition directives
	.set
	.file
	.func

	4.2.4 Data definition, area reservation directives
	.db
	.db2/.dhw
	.dshw
	.db4/.dw
	.db8/.ddw
	.float
	.double
	.ds
	.align

	4.2.5 External definition, external reference directives
	.public
	.extern
	.comm

	4.2.6 Macro directives
	.macro
	.local
	.rept
	.irp
	.exitm
	.exitma
	.endm

	4.3 Control Instructions
	4.3.1 Outline
	4.3.2 Compile target type specification control instruction
	PROCESSOR

	4.3.3 Symbol control instructions
	EXT_ENT_SIZE
	EXT_FUNC

	4.3.4 Assembler control instructions
	CALLT
	REG_MODE
	EP_LABEL
	NO_EP_LABEL
	NO_MACRO
	MACRO
	DATA
	SDATA
	NOWARNING
	WARNING

	4.3.5 File input control instructions
	INCLUDE
	BINCLUDE

	4.3.6 Smart correction control instruction
	SMART_CORRECT

	4.3.7 Conditional assembly control instructions
	IFDEF
	IFNDEF
	IF
	IFN
	ELSEIF
	ELSEIFN
	ELSE
	ENDIF

	4.4 Macro
	4.4.1 Outline
	4.4.2 Usage of macro
	4.4.3 Macro operator

	4.5 Reserved Words
	4.6 Assembler Generated Symbols
	4.7 Instructions
	4.7.1 Memory space
	4.7.2 Register
	4.7.3 Addressing
	4.7.4 Instruction set
	4.7.5 Description of instructions
	Instruction

	4.7.6 Load/Store instructions
	ld
	sld
	ld23
	st
	sst
	st23

	4.7.7 Arithmetic operation instructions
	add
	addi
	adf
	sub
	subr
	sbf
	mulh
	mulhi
	mul
	mulu
	mac
	macu
	divh
	div
	divhu
	divu
	cmp
	mov
	movea
	movhi
	mov32
	cmov
	setf
	sasf

	4.7.8 Saturated operation instructions
	satadd
	satsub
	satsubi
	satsubr

	4.7.9 Logical instructions
	or
	ori
	xor
	xori
	and
	andi
	not
	shr
	sar
	shl
	sxb
	sxh
	zxb
	zxh
	bsh
	bsw
	hsh
	hsw
	tst
	sch0l
	sch0r
	sch1l
	sch1r

	4.7.10 Branch instructions
	jmp
	jmp32
	jr
	jr22
	jr32
	jcnd
	jarl
	jarl22
	jarl32

	4.7.11 Bit manipulation instructions
	set1
	clr1
	not1
	tst1

	4.7.12 Stack manipulation instructions
	push
	pushm
	pop
	popm

	4.7.13 Special instructions
	ldsr
	stsr
	di
	ei
	reti
	halt
	trap
	nop
	switch
	callt
	ctret
	dbtrap
	dbret
	prepare
	dispose

	4.7.14 Floating-point operation instructions [V850E2V3]
	cmpf.s
	cmpf.d

	CHAPTER 5 LINK DIRECTIVE SPECIFICATIONS
	5.1 Specification Items
	5.1.1 Segment directives and mapping directives
	5.1.2 Symbol directive

	5.2 Sections and Segments
	5.2.1 Sections
	5.2.2 Segments
	5.2.3 Relationship between segments and sections
	5.2.4 Types of sections
	5.2.5 Relationship between types and attributes of sections

	5.3 Symbols
	5.3.1 Text pointer (tp)
	5.3.2 Global pointer (gp)
	5.3.3 Element pointer (ep)

	5.4 Coding Method
	5.4.1 Characters used in link directive file
	5.4.2 Link directive file name
	5.4.3 Segment directive
	5.4.4 Mapping directive
	5.4.5 Symbol directive

	5.5 Reserved Words

	CHAPTER 6 FUNCTIONAL SPECIFICATIONS
	6.1 Supplied Libraries
	6.1.1 Standard library
	6.1.2 Mathematical library
	6.1.3 Initialization library
	6.1.4 ROMization library
	6.1.5 Multi-core library
	6.1.6 Runtime library
	6.1.7 Libraries used in V850E2V3-FPU

	6.2 Header Files
	6.3 Re-entrant
	6.4 Library Function
	6.4.1 Functions with variable arguments
	va_start
	va_end
	va_arg

	6.4.2 Character string functions
	index
	strpbrk
	rindex
	strrchr
	strchr
	strstr
	strspn
	strcspn
	strcmp
	strncmp
	strcpy
	strncpy
	strcat
	strncat
	strtok
	strlen
	strerror

	6.4.3 Memory management functions
	memchr
	memcmp
	bcmp
	memcpy
	bcopy
	memmove
	memset

	6.4.4 Character conversion functions
	toupper
	_toupper
	tolower
	_tolower
	toascii

	6.4.5 Character classification functions
	isalnum
	isalpha
	isascii
	isupper
	islower
	isdigit
	isxdigit
	iscntrl
	ispunct
	isspace
	isprint
	isgraph

	6.4.6 Standard I/O functions
	fread
	getc
	fgetc
	fgets
	fwrite
	putc
	fputc
	fputs
	getchar
	gets
	putchar
	puts
	sprintf
	fprintf
	vsprintf
	printf
	vfprintf
	vprintf
	sscanf
	fscanf
	scanf
	ungetc
	rewind
	perror

	6.4.7 Standard utility functions
	abs
	labs
	llabs
	bsearch
	qsort
	div
	ldiv
	lldiv
	itoa
	ltoa
	ultoa
	lltoa
	ulltoa
	ecvt
	ecvtf
	fcvt
	fcvtf
	gcvt
	gcvtf
	atoi
	atol
	atoll
	strtol
	strtoul
	strtoll
	strtoull
	atoff
	atof
	strtodf
	strtod
	calloc
	malloc
	realloc
	free
	rand
	srand

	6.4.8 Non-local jump functions
	longjmp
	setjmp

	6.4.9 Mathematical functions
	j0f
	j1f
	jnf
	y0f
	y1f
	ynf
	erff
	erfcf
	expf
	exp
	logf
	log
	log2f
	log10f
	log10
	powf
	pow
	sqrtf
	sqrt
	cbrtf
	cbrt
	ceilf
	ceil
	fabsf
	fabs
	floorf
	floor
	fmodf
	fmod
	frexpf
	frexp
	ldexpf
	ldexp
	modff
	modf
	gammaf
	hypotf
	matherrf (matherr)
	matherrd
	cosf
	cos
	sinf
	sin
	tanf
	tan
	acosf
	acos
	asinf
	asin
	atanf
	atan
	atan2f
	atan2
	coshf
	cosh
	sinhf
	sinh
	tanhf
	tanh
	acoshf
	asinhf
	atanhf

	6.4.10 Initialization peripheral devices function
	hdwinit

	6.4.11 Copy functions
	6.4.12 Pseudo "main" functions for multi-core
	main_pen

	6.4.13 Operation runtime functions
	___addf.s
	___subf.s
	___mulf.s
	___divf.s
	___cmpf.s
	___fcmp.s
	___negf.s
	___notf.s
	___addf.d
	___subf.d
	___mulf.d
	___divf.d
	___fcmp.d
	___negf.d
	___notf.d
	___add.l
	___sub.l
	___mul.l
	___div.l
	___div.ul
	___mod.l
	___mod.ul
	___shl.l
	___shr.l
	___sar.l
	___inc.l
	___dec.l
	___not.l
	___neg.l
	___cmp.l
	___cmp.ul
	___bext.l
	___bext.ul
	___bins.l
	___cvt.ws
	___cvt.wd
	___cvt.uws
	___cvt.uwd
	___cvt.ls
	___cvt.ld
	___cvt.uls
	___cvt.uld
	___trnc.sw
	___trnc.dw
	___trnc.suw
	___trnc.duw
	___trnc.sl
	___trnc.dl
	___trnc.sul
	___trnc.dul
	___cvt.sd
	___cvt.ds
	__mul
	__mulu
	__div
	__divu
	__mod
	__modu

	6.4.14 Function pre/post processing runtime functions

	6.5 Library Consumption Stack List
	6.5.1 Standard library
	6.5.2 Mathematical library
	6.5.3 Initialization library
	6.5.4 ROMization library
	6.5.5 Multi-core library
	6.5.6 Runtime library
	6.5.7 Libraries used in V850E2V3-FPU

	CHAPTER 7 STARTUP
	7.1 Outline
	7.2 File Contents
	7.3 Startup Routine
	7.3.1 Setting RESET handler when reset is input
	7.3.2 Setting of register mode of startup routine
	7.3.3 Securing stack area and setting stack pointer
	7.3.4 Securing argument area for main function
	7.3.5 Setting text pointer (tp)
	7.3.6 Setting global pointer (gp)
	7.3.7 Setting element pointer (ep)
	7.3.8 Initializing peripheral I/O registers that must be initialized before execution of main fun...
	7.3.9 Initializing user target that must be initialized before execution of main function
	7.3.10 Clearing sbss area to 0
	7.3.11 Clearing bss area to 0
	7.3.12 Clearing sebss area to 0
	7.3.13 Clearing tibss.byte area to 0
	7.3.14 Clearing tibss.word area to 0
	7.3.15 Clearing sibss area to 0
	7.3.16 Setting of CTBP value for function pre/post processing runtime function
	7.3.17 Setting of programmable peripheral I/O register value
	7.3.18 Setting r6 and r7 as argument of main function
	7.3.19 Branching to main function (when not using real-time OS)
	7.3.20 Branching to initialization routine of real-time OS (when using real-time OS)
	7.3.21 V850E2V3 multi-core startup routine

	7.4 Coding Example

	CHAPTER 8 ROMIZATION
	8.1 Outline
	8.2 rompsec Section
	8.2.1 Types of sections to be packed
	8.2.2 Size of rompsec section
	8.2.3 rompsec section and link directive

	8.3 Creating ROMized Load Module File
	8.3.1 Procedure for creating ROMized load module (default)
	8.3.2 Procedure for creating ROMized load module (customize)

	8.4 Copy Functions
	_rcopy
	_rcopy1
	_rcopy2
	_rcopy4

	CHAPTER 9 REFERENCING COMPILER AND ASSEMBLER
	9.1 Method of Accessing Arguments and Automatic Variables
	9.2 Method of Storing Return Value
	9.3 Calling of Assembly Language Routine from C Language
	9.4 Calling of C Language Routine from Assembly Language
	9.5 Reference of Argument Defined by Other Language

	CHAPTER 10 CAUTIONS
	10.1 Delimiting Folder/Path
	10.2 Mixing with K&R Format in Function Declaration/Definition
	10.3 Output of Other Than Position-Independent Codes
	10.4 Library File Search by Specifying Option
	10.5 Volatile Qualifier
	10.6 Extra Brackets in Function Declaration

	APPENDIX A INDEX

