
U
ser’s M

anual

All information contained in these materials, including products and product specifications,
represents information on the product at the time of publication and is subject to change by
Renesas Electronics Corp. without notice. Please review the latest information published by
Renesas Electronics Corp. through various means, including the Renesas Electronics Corp.
website (http://www.renesas.com).

CubeSuite Ver.1.30

Integrated Development Environment
User’s Manual: 78K0 Build

Rev.1.00 Jul 2010

Target Device
78K0 Microcontroller

www.renesas.com

Notice
1. All information included in this document is current as of the date this document is issued. Such information, however, is

subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please
confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to
additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.

2. Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights
of third parties by or arising from the use of Renesas Electronics products or technical information described in this document.
No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights
of Renesas Electronics or others.

3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.
4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of

semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software,
and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by
you or third parties arising from the use of these circuits, software, or information.

5. When exporting the products or technology described in this document, you should comply with the applicable export control
laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas
Electronics products or the technology described in this document for any purpose relating to military applications or use by
the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and
technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited
under any applicable domestic or foreign laws or regulations.

6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics
does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages
incurred by you resulting from errors in or omissions from the information included herein.

7. Renesas Electronics products are classified according to the following three quality grades: “Standard”, “High Quality”, and
“Specific”. The recommended applications for each Renesas Electronics product depends on the product’s quality grade, as
indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular
application. You may not use any Renesas Electronics product for any application categorized as “Specific” without the prior
written consent of Renesas Electronics. Further, you may not use any Renesas Electronics product for any application for
which it is not intended without the prior written consent of Renesas Electronics. Renesas Electronics shall not be in any way
liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an
application categorized as “Specific” or for which the product is not intended where you have failed to obtain the prior written
consent of Renesas Electronics. The quality grade of each Renesas Electronics product is “Standard” unless otherwise
expressly specified in a Renesas Electronics data sheets or data books, etc.

“Standard”: Computers; office equipment; communications equipment; test and measurement equipment; audio and visual
equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots.

“High Quality”: Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-
crime systems; safety equipment; and medical equipment not specifically designed for life support.

“Specific”: Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or
systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare
intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.

8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics,
especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation
characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or
damages arising out of the use of Renesas Electronics products beyond such specified ranges.

9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have
specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further,
Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to
guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a
Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire
control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because
the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system
manufactured by you.

10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental
compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable
laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS
Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with
applicable laws and regulations.

11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas
Electronics.

12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this
document or Renesas Electronics products, or if you have any other inquiries.

(Note 1) “Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its majority-
owned subsidiaries.

(Note 2) “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.

1

2

3

4

VOLTAGE APPLICATION WAVEFORM AT INPUT PIN

Waveform distortion due to input noise or a reflected wave may cause malfunction. If the input of the

CMOS device stays in the area between VIL (MAX) and VIH (MIN) due to noise, etc., the device may

malfunction. Take care to prevent chattering noise from entering the device when the input level is fixed,

and also in the transition period when the input level passes through the area between VIL (MAX) and

VIH (MIN).

HANDLING OF UNUSED INPUT PINS

Unconnected CMOS device inputs can be cause of malfunction. If an input pin is unconnected, it is

possible that an internal input level may be generated due to noise, etc., causing malfunction. CMOS

devices behave differently than Bipolar or NMOS devices. Input levels of CMOS devices must be fixed

high or low by using pull-up or pull-down circuitry. Each unused pin should be connected to VDD or GND

via a resistor if there is a possibility that it will be an output pin. All handling related to unused pins must

be judged separately for each device and according to related specifications governing the device.

PRECAUTION AGAINST ESD

A strong electric field, when exposed to a MOS device, can cause destruction of the gate oxide and

ultimately degrade the device operation. Steps must be taken to stop generation of static electricity as

much as possible, and quickly dissipate it when it has occurred. Environmental control must be

adequate. When it is dry, a humidifier should be used. It is recommended to avoid using insulators that

easily build up static electricity. Semiconductor devices must be stored and transported in an anti-static

container, static shielding bag or conductive material. All test and measurement tools including work

benches and floors should be grounded. The operator should be grounded using a wrist strap.

Semiconductor devices must not be touched with bare hands. Similar precautions need to be taken for

PW boards with mounted semiconductor devices.

STATUS BEFORE INITIALIZATION

Power-on does not necessarily define the initial status of a MOS device. Immediately after the power

source is turned ON, devices with reset functions have not yet been initialized. Hence, power-on does

not guarantee output pin levels, I/O settings or contents of registers. A device is not initialized until the

reset signal is received. A reset operation must be executed immediately after power-on for devices

with reset functions.

POWER ON/OFF SEQUENCE

In the case of a device that uses different power supplies for the internal operation and external

interface, as a rule, switch on the external power supply after switching on the internal power supply.

When switching the power supply off, as a rule, switch off the external power supply and then the

internal power supply. Use of the reverse power on/off sequences may result in the application of an

overvoltage to the internal elements of the device, causing malfunction and degradation of internal

elements due to the passage of an abnormal current.

The correct power on/off sequence must be judged separately for each device and according to related

specifications governing the device.

INPUT OF SIGNAL DURING POWER OFF STATE

Do not input signals or an I/O pull-up power supply while the device is not powered. The current

injection that results from input of such a signal or I/O pull-up power supply may cause malfunction and

the abnormal current that passes in the device at this time may cause degradation of internal elements.

Input of signals during the power off state must be judged separately for each device and according to

related specifications governing the device.

NOTES FOR CMOS DEVICES

5

6

How to Use This Manual

This manual describes the role of the CubeSuite integrated development environment for developing applications

and systems for 78K0 microcontrollers and provides an outline of its features.

CubeSuite is an integrated development environment (IDE) for 78K0 microcontrollers, integrating the necessary

tools for the development phase of software (e.g. design, implementation, and debugging) into a single platform.

By providing an integrated environment, it is possible to perform all development using just this product, without

the need to use many different tools separately.

Readers This manual is intended for users who wish to understand the functions of the

CubeSuite and design software and hardware application systems.

Purpose This manual is intended to give users an understanding of the functions of the

Cubesuite to use for reference in developing the hardware or software of systems using

these devices.

Organization This manual can be broadly divided into the following units.

CHAPTER 1 GENERAL

CHAPTER 2 FUNCTIONS

CHAPTER 3 BUILD OUTPUT LISTS

CHAPTER 4 SAMPLE PROGRAMS

CHAPTER 5 CAUTIONS

APPENDIX A WINDOW REFERENCE

APPENDIX B COMMAND REFERENCE

APPENDIX C INDEX

How to Read This Manual It is assumed that the readers of this manual have general knowledge of electricity, logic

circuits, and microcontrollers.

Conventions Data significance: Higher digits on the left and lower digits on the right

 Active low representation: XXX
–––

 (overscore over pin or signal name)

 Note: Footnote for item marked with Note in the text

 Caution: Information requiring particular attention

 Remark: Supplementary information

 Numeric representation: Decimal … XXXX

 Hexadecimal … 0xXXXX

Related Documents The related documents indicated in this publication may include preliminary versions.

However, preliminary versions are not marked as such.

Document Name Document No.

Start R20UT0003E

Programming U19390E

Message U19391E

78K0 Coding R20UT0004E

78K0 Build This document

CubeSuite Ver.1.30

Integrated Development Environment

User's Manual

78K0 Debug U19387E

Caution The related documents listed above are subject to change without

notice. Be sure to use the latest edition of each document when

designing.

All trademarks or registered trademarks in this document are the property of their respective
owners.

[MEMO]

[MEMO]

TABLE OF CONTENTS

CHAPTER 1 GENERAL ... 12

1.1 Overview ... 12
1.2 Features ... 13

CHAPTER 2 FUNCTIONS ... 14

2.1 Overview ... 14
2.1.1 Create a load module ... 14
2.1.2 Create a user library ... 15

2.2 Change the Build Tool Version ... 16
2.3 Set Build Target Files ... 17

2.3.1 Set a startup routine ... 17
2.3.2 Add a file to a project ... 19
2.3.3 Remove a file from a project ... 23
2.3.4 Remove a file from the build target ... 24
2.3.5 Classify a file into a category ... 24
2.3.6 Change the file display order ... 25
2.3.7 Update file dependencies ... 26

2.4 Set the Type of the Output File ... 29
2.4.1 Change the output file name ... 29
2.4.2 Output an assemble list ... 30
2.4.3 Output map information ... 31
2.4.4 Output symbol information ... 31

2.5 Set Compile Options ... 33
2.5.1 Perform optimization with the code size precedence ... 34
2.5.2 Perform optimization with the execution speed precedence ... 34
2.5.3 Add an include path ... 34
2.5.4 Set a macro definition ... 36
2.5.5 Enable C++ comments ... 37
2.5.6 Use floating point-compatible standard input/output functions ... 37
2.5.7 Change the setting to use the multiplier and divider ... 37

2.6 Set Assemble Options ... 38
2.6.1 Add an include path ... 38
2.6.2 Set a macro definition ... 40

2.7 Set Link Options ... 41
2.7.1 Add a user library ... 42

2.8 Set Object Convert Options ... 43
2.8.1 Set the output of a hex file ... 44

2.9 Set Create Library Options ... 45
2.9.1 Set the output of a library file ... 45

2.10 Set Variables Relocation Options ... 46
2.10.1 Efficiently allocate variables ... 46

2.10.2 Display ROM/RAM usage ... 50
2.11 Set Memory Bank Relocation Options ... 51

2.11.1 Relocate C source files to the optimum area ... 51
2.12 Set Build Options Separately ... 58

2.12.1 Set build options at the project level ... 58
2.12.2 Set build options at the file level ... 58

2.13 Prepare for Using On-chip Debugger ... 61
2.14 Prepare for Implementing Boot-flash Relink Function ... 63

2.14.1 Prepare the build target files ... 63
2.14.2 Set the boot area project ... 63
2.14.3 Set the flash area project ... 66

2.15 Make Settings for Build Operations ... 70
2.15.1 Set the link order of files ... 70
2.15.2 Change the file build order of subprojects ... 71
2.15.3 Display a list of build options ... 71
2.15.4 Change the file build target project ... 71
2.15.5 Add a build mode ... 73
2.15.6 Change the build mode ... 75
2.15.7 Delete a build mode ... 76
2.15.8 Set the current build options as the standard for the project ... 77

2.16 Run a Build ... 78
2.16.1 Run a build of updated files ... 80
2.16.2 Run a build of all files ... 81
2.16.3 Run a build in parallel with other operations ... 81
2.16.4 Run builds in batch with build modes ... 83
2.16.5 Compile/assemble individual files ... 84
2.16.6 Stop running a build ... 85
2.16.7 Save the build results to a file ... 85
2.16.8 Delete intermediate files and generated files ... 85

2.17 Using Stack Usage Tracer ... 87
2.17.1 Starting and exiting ... 87
2.17.2 Check the call relationship ... 88
2.17.3 Check the stack information ... 89
2.17.4 Check unknown functions ... 90
2.17.5 Change the frame size ... 91

CHAPTER 3 BUILD OUTPUT LISTS ... 93

3.1 C Compiler ... 93
3.1.1 Assembler source file ... 93
3.1.2 Error list file ... 96
3.1.3 Preprocess list file ... 99
3.1.4 Cross reference list file ... 100

3.2 Assembler ... 103
3.2.1 Assemble list file headers ... 103
3.2.2 Assemble list ... 104
3.2.3 Symbol list ... 105
3.2.4 Cross reference list ... 106
3.2.5 Error list ... 108

3.3 Linker ... 109
3.3.1 Link list file headers ... 109
3.3.2 Map list ... 110
3.3.3 Public symbol list ... 111
3.3.4 Local symbol list ... 112
3.3.5 Error list ... 113

3.4 Object Converter ... 114
3.4.1 Error list ... 114

3.5 Librarian ... 115
3.5.1 Library information output list ... 115

3.6 List Converter ... 116
3.6.1 Absolute assemble list ... 116
3.6.2 Error list ... 116

3.7 Variables Information File Generator ... 117
3.7.1 Variables information file ... 117

3.8 Memory Bank Relocation Support Tool ... 120
3.8.1 Function information file ... 120
3.8.2 Replacement information file ... 121
3.8.3 Object information file ... 124
3.8.4 Reference information file ... 126

CHAPTER 4 SAMPLE PROGRAMS ... 127

4.1 C Compiler ... 127
4.1.1 C source file ... 127

4.2 Assembler ... 129
4.2.1 k0main.asm ... 129
4.2.2 k0sub.asm ... 130

CHAPTER 5 CAUTIONS ... 131

APPENDIX A WINDOW REFERENCE ... 138

A.1 Description ... 138

APPENDIX B COMMAND REFERENCE ... 321

B.1 C Compiler ... 321
B.1.1 I/O files ... 322
B.1.2 Functions ... 323
B.1.3 Method for manipulating ... 325
B.1.4 Option ... 329

B.2 Assembler ... 381
B.2.1 I/O files ... 381
B.2.2 Functions ... 382
B.2.3 Method for manipulating ... 382
B.2.4 Option ... 385

B.3 Linker ... 425

B.3.1 I/O files ... 425
B.3.2 Functions ... 426
B.3.3 Method for manipulating ... 426
B.3.4 Option ... 430
B.3.5 Boot-flash relink function ... 469

B.4 Object Converter ... 482
B.4.1 I/O files ... 482
B.4.2 Functions ... 483
B.4.3 Method for manipulating ... 496
B.4.4 Option ... 499

B.5 Librarian ... 515
B.5.1 I/O files ... 515
B.5.2 Functions ... 516
B.5.3 Method for manipulating ... 517
B.5.4 Option ... 520
B.5.5 Subcommands ... 528

B.6 List Converter ... 538
B.6.1 I/O files ... 538
B.6.2 Functions ... 539
B.6.3 Method for manipulating ... 542
B.6.4 Option ... 544

B.7 Variables Information File Generator ... 552
B.7.1 I/O files ... 552
B.7.2 Functions ... 553
B.7.3 Variables/functions information ... 553
B.7.4 Method for manipulating ... 557
B.7.5 Option ... 560

APPENDIX C INDEX ... 565

CubeSuite Ver.1.30 CHAPTER 1 GENERAL

R20UT0005EJ0100 Rev.1.00 Page 12 of 573
Jul 01, 2010

CHAPTER 1 GENERAL

This chapter explains the product overview of the build tool.

1.1 Overview

The build tool is comprised of components provided by CubeSuite. It enables various types of information to be config-

ured via a GUI tool, enabling you to generate load module file, hex file, or library file from your source files, according to

your objectives.

The build tool process flow is shown below.

Figure 1-1. Build Tool Process Flow

C source files

Include file

Object module files

Library file

Load module file

Assembler source files

Hex file

C compiler

Assembler

Librarian

Linker

Object converter List converter

Assemble list file

Absolute assemble list file

Link directive file

Memory bank support tool

Function information file

...

...

... Variables information file generator

Variables information file

CubeSuite Ver.1.30 CHAPTER 1 GENERAL

R20UT0005EJ0100 Rev.1.00 Page 13 of 573
Jul 01, 2010

1.2 Features

The features of the build tools are shown below.

- Optimization function

You can generate efficient object module files by performing optimizations such as prioritizing code size or execu-

tion speed when compiling.

- ROMization function

ROMization is processing that locates in ROM the initial values for external variables that have initial values and

copies them to RAM when the system is executed.

The CA78K0 provides a program startup routine with ROMization processing so you can eliminate the effort to

code ROMization processing at startup.

Remark See "CubeSuite 78K0 Coding" about the ROMization function.

- Macro function

When you write the same instructions multiple times in the assembler source file, you can define that instructions

as a single macro name.

Remark See "CubeSuite 78K0 Coding" about the macro function.

CubeSuite Ver.1.30 CHAPTER 2 FUNCTIONS

R20UT0005EJ0100 Rev.1.00 Page 14 of 573
Jul 01, 2010

CHAPTER 2 FUNCTIONS

This chapter describes the build procedure using CubeSuite and about the main build functions.

2.1 Overview

This section describes how to create a load module and user library.

2.1.1 Create a load module

The operation flow from setting a project to creating a load module is shown below.

(1) Create or load a project

Create a new project, or load an existing one.

Remark See "CubeSuite Start" for details about creating a new project or loading an existing one.

(2) Set a build target project

When making settings for or running a build, set the active project (see “2.15 Make Settings for Build Opera-

tions”).

If there is no subproject, the project is always active.

Remark When setting a build mode, change the build mode (see "2.15.6 Change the build mode").

(3) Set build target files

For the project, add or remove build target files and update the dependencies (see "2.3 Set Build Target Files").

Remarks 1. See "2.7.1 Add a user library" for the method of adding a user library to the project.

2. Also, you can set the link order of object module files and library files (see "2.15.1 Set the link

order of files").

(4) Specify the output of a load module file

Set the output of a load module file as the product of the build (see "2.4 Set the Type of the Output File").

(5) Set build options

Set the options for the compiler, assembler, linker, and the like (see "2.5 Set Compile Options", "2.6 Set Assem-

ble Options", "2.7 Set Link Options").

(6) Run a build

Run a build (see "2.16 Run a Build").

The following types of builds are available.

- Build (see "2.16.1 Run a build of updated files")

- Rebuild (see "2.16.2 Run a build of all files")

- Rapid build (see "2.16.3 Run a build in parallel with other operations")

- Batch build (see "2.16.4 Run builds in batch with build modes")

Remark If there are any commands you wish to run before or after the build process, on the Property panel,

from the [Common Options] tab, in the [Others] category, set the [Commands executed before build

processing] and [Commands executed after build processing] properties.

If there are any commands you wish to run before or after the build process at the file level, you can set

CubeSuite Ver.1.30 CHAPTER 2 FUNCTIONS

R20UT0005EJ0100 Rev.1.00 Page 15 of 573
Jul 01, 2010

them from the [Individual Compile Options] tab (for a C source file) and [Individual Assemble Options]

tab (for an assembler source file).

(7) Save the project

Save the setting information of the project to the project file.

Remark See "CubeSuite Start" for details about saving the project.

2.1.2 Create a user library

The operation flow from setting a project to creating a user library is shown below.

(1) Create or load a project

Create a new project, or load an existing one.

When you create a new project, set a library project.

Remark See "CubeSuite Start" for details about creating a new project or loading an existing one.

(2) Set a build target project

When making settings for or running a build, set the active project (see “2.15 Make Settings for Build Opera-

tions”).

If there is no subproject, the project is always active.

Remark When setting a build mode, change the build mode (see "2.15.6 Change the build mode").

(3) Set build target files

For the project, add or remove build target files and update the dependencies (see "2.3 Set Build Target Files").

(4) Set build options

Set the options for the compiler, assembler, librarian, and the like (see "2.5 Set Compile Options", "2.6 Set

Assemble Options", "2.9 Set Create Library Options").

(5) Run a build

Run a build (see "2.16 Run a Build").

The following types of builds are available.

- Build (see "2.16.1 Run a build of updated files")

- Rebuild (see "2.16.2 Run a build of all files")

- Rapid build (see "2.16.3 Run a build in parallel with other operations")

- Batch build (see "2.16.4 Run builds in batch with build modes")

Remark If there are any commands you wish to run before or after the build process, on the Property panel,

from the [Common Options] tab, in the [Others] category, set the [Commands executed before build

processing] and [Commands executed after build processing] properties.

If there are any commands you wish to run before or after the build process at the file level, you can set

them from the [Individual Compile Options] tab (for a C source file) and [Individual Assemble Options]

tab (for an assembler source file).

(6) Save the project

Save the setting information of the project to the project file.

CubeSuite Ver.1.30 CHAPTER 2 FUNCTIONS

R20UT0005EJ0100 Rev.1.00 Page 16 of 573
Jul 01, 2010

Remark See "CubeSuite Start" for details about saving the project.

2.2 Change the Build Tool Version

You can change the version of the build tool (compiler package) used in the project (main project or subproject).

Select the build tool node on the project tree and select the [Common Options] tab on the Property panel. Select

[Always latest version which was installed] or the version on the [Using compiler package version] property in the [Version

Select] category.

Figure 2-1. [Version Select] Category

Remarks 1. When the build tool used in the main project and subprojects is the same, you can collectively change

the build tool version by selecting all of the Build tool nodes and setting the property.

2. If you have selected a compiler package that has not been installed (e.g. if you open a project created

in another execution environment), then that version is also displayed.

3. If the options change depending on the compiler package, then the display of the build tool's properties

will change according to the selected version.

Properties that are hidden when the version is changed are saved in the project file's settings, and the

values will be reproduced when the properties are displayed again.

Options are changed in accordance with the following rules. Information about changes is displayed in

the Output panel.

- If you change from an older version to a newer version, the option settings will be inherited and con-

verted (only if necessary).

- If you change from a newer version to an older version, only identical option settings will be inher-

ited.

Options that only exist in the older version will be set to the default values.

Figure 2-2. Output Image of Information about Changed Options

CubeSuite Ver.1.30 CHAPTER 2 FUNCTIONS

R20UT0005EJ0100 Rev.1.00 Page 17 of 573
Jul 01, 2010

2.3 Set Build Target Files

Before running a build, you must add the build target files (such as C source file, assembler source file) to the project.

This section explains operations on setting files in the project.

2.3.1 Set a startup routine

(1) Using the standard startup routine

Select the build tool node on the project tree and select the [Compile Options] tab on the Property panel.

To use the standard startup routine, select [Yes(Normal)]/[Yes(For boot area)]/[Yes(For flash area)] on the [Use

standard startup routine] property in the [Startup] category.

Figure 2-3. [Use standard startup routine] Property

The object file name of the standard startup routine to be used will be displayed on the [Using standard startup rou-

tine] property.

(2) Using other than the standard startup routine

Select the build tool node on the project tree and select the [Compile Options] tab on the Property panel.

To use other than the standard startup routine, select [No] on the [Use standard startup routine] property in the

[Startup] category ([Yes(Normal)] is selected by default).

Figure 2-4. [Use standard startup routine] Property

Next, add a startup file (a file that the startup routine is described) to the Startup node on the project tree. See

"2.3.2 Add a file to a project" for the method of adding the file to the project tree.

CubeSuite Ver.1.30 CHAPTER 2 FUNCTIONS

R20UT0005EJ0100 Rev.1.00 Page 18 of 573
Jul 01, 2010

Figure 2-5. Project Tree Panel (After Adding Startup File)

Caution A build target file added directly below the Startup node on the project tree is treated as the star-

tup file. It is not treated as a startup file if it is added to the category below the Startup node.

When adding a startup file to the Startup node, if a startup file has already been added then only

the latest startup file to be added is targeted by a build; any such files added prior to this one

will not be targeted.

When setting a startup file that is not targeted by a build as a build target, if other startup files

have also been added then the file will be targeted by the build, and the others will not be tar-

geted.

Remark See "CubeSuite 78K0 Coding" for the method of creating the startup routine.

CubeSuite Ver.1.30 CHAPTER 2 FUNCTIONS

R20UT0005EJ0100 Rev.1.00 Page 19 of 573
Jul 01, 2010

2.3.2 Add a file to a project

Files can be added to a project by the following methods.

- Adding an existing file

- Creating and adding an empty file

(1) Adding an existing file

(a) Add individual files

Drag a folder from Explorer or the like, and drop it onto the empty space below the project tree.

The file is added below the File node.

Figure 2-6. Project Tree Panel (File Drop Location)

Caution To add a startup routine, drop a file onto the Startup node. See "2.3.1 Set a startup routine"

for details about using a startup routine.

(b) Add a folder

Drag a folder from Explorer or the like, and drop it onto the empty space below the project tree. The Add

Folder and File dialog box opens.

Remark You can also add multiple folders to the project at the same time by dragging multiple folders at

same time and dropping them onto the project tree.

Caution When a folder with the name that is more than 200 characters is dropped, the folder is

added to the project tree as a category with the name that 201st character and after are

deleted.

Drop the file here

CubeSuite Ver.1.30 CHAPTER 2 FUNCTIONS

R20UT0005EJ0100 Rev.1.00 Page 20 of 573
Jul 01, 2010

Figure 2-7. Add Folder and File Dialog Box

In the dialog, select the file types to add to the project, specify the number of subfolder levels to add, and then

click the [OK] button.

Remark You can select multiple file types by left clicking while holding down the [Ctrl] or [Shift] key.

If nothing is selected, it is assumed that all types are selected.

The folder is added below the File node.

Note that on the project tree, the folder is the category.

Remark When the category node created by the user exists, you can add a file below the node by dropping the

file onto the node (see "2.3.5 Classify a file into a category" for a category node).

(2) Creating and adding an empty file

On the project tree, select either one of the Project node, Subproject node, or File node, and then select [Add] >>

[Add New File...] from the context menu. The Add File dialog box opens.

CubeSuite Ver.1.30 CHAPTER 2 FUNCTIONS

R20UT0005EJ0100 Rev.1.00 Page 21 of 573
Jul 01, 2010

Figure 2-8. Add File Dialog Box

In the dialog box, specify the file to be created and then click the [OK] button.

The file is added below the File node.

The project tree after adding the file will look like the one below.

Figure 2-9. Project Tree Panel (After Adding File "main.c")

CubeSuite Ver.1.30 CHAPTER 2 FUNCTIONS

R20UT0005EJ0100 Rev.1.00 Page 22 of 573
Jul 01, 2010

Figure 2-10. Project Tree Panel (After Adding Folder "src")

Remark The location of the file added below the File node depends on the current file display order setting. See

“2.3.6 Change the file display order” for the method of changing the file display order.

Cautions 1. If the paths differ, you can add source files with the same name. Note, however, that if the set-

ting of the output file name is left as the default, the output files will have the same name, which

will prevent the build from running correctly (for example, when adding D:\sample1\func.c and

D:\sample2\func.c, the default output file name for these files is both func.rel).

To correctly run a build, set the output file name for each of those files to a different name with

the individual build options for the source files.

The changing the name of the C source file is made with the [Object file name] property in the

[Output File] category from the [Individual Compile Options] tab. The changing the name of the

assembler source file is made with the [Object file name] property in the [Output File] category

from the [Individual Assemble Options] tab. See "2.12.2 Set build options at the file level" for

how to set the individual build options.

2. If a file with an extension of "dr" or "dir" is added to the project, it is treated as a link directive

file. It is also treated as a link directive file if it is added below the Startup node.

When adding a link directive file to the project, if a link directive file has already been added

then only the latest link directive file to be added is targeted by a build; any such files added

prior to this one will not be targeted.

When setting a link directive file that is not targeted by a build as a build target, if other link

directive files have also been added then the file will be targeted by the build, and the others will

not be targeted.

3. Up to 5000 files can be added to the main project or subproject.

When a new file is added, an empty file is created in the location specified in the Add File dialog box.

By double clicking the file name on the project tree, you can open the Editor panel and edit the file.

The files that can be opened with the Editor panel are shown below.

- C source file (.c)

- Assembler source file (.asm)

CubeSuite Ver.1.30 CHAPTER 2 FUNCTIONS

R20UT0005EJ0100 Rev.1.00 Page 23 of 573
Jul 01, 2010

- Header file (.h, .inc)

- Link directive file (.dr, .dir)

- Variables information file (.vfi)

- Function information file (.fin)Note

- Map file (.map)

- Symbol table file (.sym)

- Hex file (.hex, .hxb, .hxf)

- Text file (.txt)

Note Only devices with a memory bank installed

Remarks 1. You can use one of the methods below to open files other than those listed above in the Editor panel.

- Drag a file and drop it onto the Editor panel.

- Select a file and then select [Open with Internal Editor...] from the context menu.

2. When the environment is set to use an external editor on the Option dialog box, the file is opened with

the external editor that has been set. Other files are opened with the applications associated by the

host OS.

2.3.3 Remove a file from a project

To remove a file added to a project, select the file to be removed from the project on the project tree and then select

[Remove from Project] from the context menu.

In addition, the file itself is not deleted from the file system.

Figure 2-11. [Remove from Project] Item

CubeSuite Ver.1.30 CHAPTER 2 FUNCTIONS

R20UT0005EJ0100 Rev.1.00 Page 24 of 573
Jul 01, 2010

2.3.4 Remove a file from the build target

You can remove a specific file from the build target out of all the files added to the project.

Select the file to be removed from the build target on the project tree and select the [Build Settings] tab on the Property

panel. Select [No] on the [Set as build-target] property in the [Build] category.

Figure 2-12. [Set as build-target] Property

Remark The files that can be applied this function are C source files, assembler source files, link directive files, vari-

ables information files, function information file, object files, and library files.

2.3.5 Classify a file into a category

You can create a category under the File node and classify files by the category. This makes it easier to view files

added to the project on the project tree, and makes it easier to manage files according to function.

To create a category node, select either one of the Project node, Subproject node, or File node on the project tree, and

then select [Add] >> [Add New Category] from the context menu.

Figure 2-13. [Add New Category] Item (For File Node)

Figure 2-14. Project Tree Panel (After Adding Category Node)

CubeSuite Ver.1.30 CHAPTER 2 FUNCTIONS

R20UT0005EJ0100 Rev.1.00 Page 25 of 573
Jul 01, 2010

Remarks 1. The default category name is "New category".

To change the category name, you can use [Rename] from the context menu of the category node.

2. You can also add a category node with the same name as an existing category node.

3. Categories can be nested up to 20 levels.

You can classify files into the created category node by dragging and dropping the file.

2.3.6 Change the file display order

You can change the display order of the files and category nodes using the buttons on the project tree.

Figure 2-15. Toolbar (Project Tree Panel)

Select any of the buttons below on the toolbar of the Project Tree panel.

Button Description

Sorts category nodes and files by name.

: Ascending order

: Descending order

: Ascending order

Sorts category nodes and files by timestamp.

: Descending order

: Ascending order

: Descending order

Displays category nodes and files in the specified order by the user (default).

You can change the display order of the category nodes and files arbitrarily by dragging and dropping

them.

CubeSuite Ver.1.30 CHAPTER 2 FUNCTIONS

R20UT0005EJ0100 Rev.1.00 Page 26 of 573
Jul 01, 2010

2.3.7 Update file dependencies

When you perform a change (changing include file paths, adding an include statement of the header file to the C source

file and assembler source file, etc.) that effects the file dependencies in the compile option settings or assemble option

settings, you must update the dependencies of the relevant files.

Updating file dependencies is performed for the entire project (main project and subprojects) or active project.

(1) For the entire project

From the [Build] menu, select [Update Dependencies].

Figure 2-16. [Update Dependencies] Item

(2) For the active project

From the [Build] menu, select [Update Dependencies of active project].

CubeSuite Ver.1.30 CHAPTER 2 FUNCTIONS

R20UT0005EJ0100 Rev.1.00 Page 27 of 573
Jul 01, 2010

Figure 2-17. [Update Dependencies of active project] Item

Remark If there are files being edited with the Editor panel when updating file dependencies, then all these files are

saved.

Cautions 1. During checking of dependence relationships of include files with CubeSuite, condition state-

ments such as #if and comments are ignored. Therefore, include files not required for build are

mistaken as required files (In the example below, header1.h and header5.h are judged as

required for build).

2. During checking of dependence relationships of include files with CubeSuite, include state-

ments described after comments are ignored. Therefore, include files required for build are

#if 0

#include "header1.h" /* Dependence relationship judged to exist */

#else /* ! zero */

#include "header2.h" /* Dependence relationship to exist */

#endif

#define AAA

#ifdef AAA

#include "header3.h" /* Dependence relationship to exist */

#else

#include "header4.h" /* Dependence relationship to exist */

#endif

/*

#include "header5.h" /* Dependence relationship judged to exist */

*/

CubeSuite Ver.1.30 CHAPTER 2 FUNCTIONS

R20UT0005EJ0100 Rev.1.00 Page 28 of 573
Jul 01, 2010

mistaken as no-required files (In the example below, header6.h and header7.h are judged as no-

required for build).

/* Dependence relationship judged not to exist */

/* comment */ #include "header6.h"

/* Dependence relationship judged not to exist */

/*

comment

*/ #include "header7.h"

CubeSuite Ver.1.30 CHAPTER 2 FUNCTIONS

R20UT0005EJ0100 Rev.1.00 Page 29 of 573
Jul 01, 2010

2.4 Set the Type of the Output File

Set the type of the file to be output as the product of the build.

Select the build tool node on the project tree and select the [Common Options] tab on the Property panel. Select the

file type on the [Output file type] property in the [Output File Type and Path] category.

Figure 2-18. [Output file type] Property

(1) When [Execute Module(Load Module File)] is selected (default)

A load module file is created.

The file set in the [Output File] category on the [Link Options] tab is the debug target.

(2) When [Execute Module(Hex File)] is selected

A hex file is also created.

The file set in the [Hex File] category on the [Object Convert Options] tab is the debug target.

Caution For library projects, this property is always [Library] and cannot be changed.

2.4.1 Change the output file name

The names of the load module file, hex file, and library file output by the build tool are set to the following names by

default.

"%ProjectName%" is an embedded macro. It is replaced to the project name.

Load module file name: %ProjectName%.lmf

Hex file name: %ProjectName%.hex

Library file name: %ProjectName%.lib

The method to change these file names is shown below.

(1) When changing the load module file name

Select the build tool node on the project tree and select the [Link Options] tab on the Property panel. Enter the file

name to be changed to on the [Output file name] property in the [Output File] category.

Figure 2-19. [Output file name] Property (For Load Module File)

Remark You can also change the option in the same way with the [Output file name] property in the [Frequently

Used Options(for Link)] category on the [Common Options] tab.

(2) When changing the hex file name

Select the build tool node on the project tree and select the [Object Convert Options] tab on the Property panel.

Enter the file name to be changed to on the [Hex file name] property in the [Hex File] category.

CubeSuite Ver.1.30 CHAPTER 2 FUNCTIONS

R20UT0005EJ0100 Rev.1.00 Page 30 of 573
Jul 01, 2010

Figure 2-20. [Hex file name] Property

Caution When [Yes(-zf)] on the [Split hex file] property is selected, the hex file is split into separate files:

.hxb and .hxf. If a code is output to a segment allocated in extended space, a separate hex file

(.H1 to .H15) is output into each space.

See "B.4.2 Functions" for details.

Remark You can also change the option in the same way with the [Hex file name] property in the [Frequently

Used Options(for Object Convert)] category on the [Common Options] tab.

(3) When changing the library file name

Select the build tool node on the project tree and select the [Create Library Options] tab on the Property panel.

Enter the file name to be changed to on the [Output file name] property in the [Output File] category.

Figure 2-21. [Output file name] Property (For Library File)

2.4.2 Output an assemble list

The results of the assembly are output to the assembler list file.

Select the build tool node on the project tree and select the [Assemble Options] tab on the Property panel. To output

the assemble list, select [Yes(-p)] (default) on the [Output assemble list file] property in the [Assemble List] category.

Figure 2-22. [Output assemble list file] Property

Remarks 1. See "3.2.2 Assemble list" for the assemble list.

2. If you select [No(-np)] on the [Output assemble list file] property when performing assembly only to out-

put an object module file, you can reduce the assembly time.

CubeSuite Ver.1.30 CHAPTER 2 FUNCTIONS

R20UT0005EJ0100 Rev.1.00 Page 31 of 573
Jul 01, 2010

2.4.3 Output map information

Map information (information on the location of segments) is output to the link list file.

Select the build tool node on the project tree and select the [Link Options] tab on the Property panel. The setting to out-

put a link list file is made with the [Link List] category.

Figure 2-23. [Link List] Category (For Map Information)

If you select [Yes] (default) on the [Output link list file] property, the [Output with map list] property is displayed. To out-

put map information to the link list file, select [Yes] (default).

Remark See "3.3.2 Map list" for map information.

2.4.4 Output symbol information

Symbol information (local symbols and public symbols) defined in the input module is output to the link list file. Select

the build tool node on the project tree and select the [Link Options] tab on the Property panel.

The setting to output symbol information is made with the [Link List] category.

(1) When outputting the local symbol list

Figure 2-24. [Link List] Category (For Local Symbol Information)

If you select [Yes] (default) on the [Output link list file] property, the [Output with local symbol list] property is dis-

played. To output local symbol list to the link list file, select [Yes(-kl)] ([No] is selected by default).

Remark See "3.3.4 Local symbol list" for the local symbol list.

CubeSuite Ver.1.30 CHAPTER 2 FUNCTIONS

R20UT0005EJ0100 Rev.1.00 Page 32 of 573
Jul 01, 2010

(2) When outputting the public symbol list

Figure 2-25. [Link List] Category (For Public Symbol Information)

 If you select [Yes] (default) on the [Output link list file] property, the [Output with public symbol list] property is dis-

played. To output public symbol list to the link list file, select [Yes(-kp)] ([No] is selected by default).

Remark See "3.3.3 Public symbol list" for the public symbol list.

CubeSuite Ver.1.30 CHAPTER 2 FUNCTIONS

R20UT0005EJ0100 Rev.1.00 Page 33 of 573
Jul 01, 2010

2.5 Set Compile Options

To set options for the compiler, select the Build tool node on the project tree and select the [Compile Options] tab on the

Property panel.

You can set the various compile options by setting the necessary properties in this tab.

Figure 2-26. Property Panel: [Compile Options] Tab

Remark Often used options have been gathered under the [Frequently Used Options(for Compile)] category on the

[Common Options] tab.

CubeSuite Ver.1.30 CHAPTER 2 FUNCTIONS

R20UT0005EJ0100 Rev.1.00 Page 34 of 573
Jul 01, 2010

2.5.1 Perform optimization with the code size precedence

Select the build tool node on the project tree and select the [Compile Options] tab on the Property panel.

To perform optimization with the code size precedence, select [Yes(Code size)(-qx3)] or [Yes(Code size (Best))(-qx4)]

on the [Perform optimization] property in the [Optimization] category ([No] is selected by default).

If you select [Yes(Code size (Best))(-qx4)], then addition to the settings of [Yes(Code size)(-qx3)], common code is

placed in subroutines, and the library for the stack access is used.

Figure 2-27. [Perform optimization] Property (Code Size Precedence)

Remark You can also set the option in the same way with the [Perform optimization] property in the [Frequently Used

Options(for Compile)] category on the [Common Options] tab.

2.5.2 Perform optimization with the execution speed precedence

Select the build tool node on the project tree and select the [Compile Options] tab on the Property panel.

To perform optimization with the execution speed precedence, select [Yes(Speed precedence)(-qx1)] on the [Perform

optimization] property in the [Optimization] category ([No] is selected by default).

Figure 2-28. [Perform optimization] Property (Execution Speed Precedence)

Remark You can also set the option in the same way with the [Perform optimization] property in the [Frequently Used

Options(for Compile)] category on the [Common Options] tab.

2.5.3 Add an include path

Select the build tool node on the project tree and select the [Compile Options] tab on the Property panel.

The include path setting is made with the [Additional include paths] property in the [Preprocess] category.

Figure 2-29. [Additional include paths] Property

If you click the [...] button, the Path Edit dialog box will open.

CubeSuite Ver.1.30 CHAPTER 2 FUNCTIONS

R20UT0005EJ0100 Rev.1.00 Page 35 of 573
Jul 01, 2010

Figure 2-30. Path Edit Dialog Box

Enter an include path per line in [Path(One path per one line)]. You can specify up to 259 characters per line, up to 64

line.

Remark You can also specify the include path by dragging and dropping from Explorer or the like, or by the

[Browse...] button. Select the [Subfolders are automatically included] check box before clicking the

[Browse...] button to add all paths under the specified one (down to 5 levels) to [Path(One path per one

line)].

If you click the [OK] button, the entered include paths are displayed as subproperties.

Figure 2-31. [Additional include paths] Property (After Adding Include Paths)

To change the include paths, you can use the [...] button or enter the path directly in the text box of the subproperty.

When the include path is added to the project tree, the path is added to the top of the subproperties automatically.

Remark You can also set the option in the same way with the [Additional include paths] property in the [Frequently

Used Options(for Compile)] category on the [Common Options] tab.

CubeSuite Ver.1.30 CHAPTER 2 FUNCTIONS

R20UT0005EJ0100 Rev.1.00 Page 36 of 573
Jul 01, 2010

2.5.4 Set a macro definition

Select the build tool node on the project tree and select the [Compile Options] tab on the Property panel.

The macro definition setting is made with the [Macro definition] property in the [Preprocess] category.

Figure 2-32. [Macro definition] Property

If you click the [...] button, the Text Edit dialog box will open.

Figure 2-33. Text Edit Dialog Box

Enter the macro definition in the format of "macro name=defined value", with one macro name per line. You can spec-

ify up to 256 characters per line, up to 30 line. The "=defined value" part can be omitted, and in this case, "1" is used as

the defined value.

If you click the [OK] button, the entered macro definitions are displayed as subproperties.

Figure 2-34. [Macro definition] Property (After Setting Macros)

To change the macro definitions, you can use the [...] button or enter the path directly in the text box of the subproperty.

Remark You can also set the option in the same way with the [Macro definition] property in the [Frequently Used

Options(for Compile)] category on the [Common Options] tab.

CubeSuite Ver.1.30 CHAPTER 2 FUNCTIONS

R20UT0005EJ0100 Rev.1.00 Page 37 of 573
Jul 01, 2010

2.5.5 Enable C++ comments

Select the build tool node on the project tree and select the [Compile Options] tab on the Property panel.

To enable C++ comments, select [Yes(-zp)] on the [Allow C++ format comments] property in the [Extension] category

(default).

Figure 2-35. [Allow C++ format comments] Property

2.5.6 Use floating point-compatible standard input/output functions

Select the build tool node on the project tree and select the [Compile Options] tab on the Property panel.

In the [Library] category, if you select [Yes] on the [Use standard library] property, the [Use standard I/O library sup-

ported floating-point data] property is displayed. To use the standard input/output functions which support floating-point

data (sprintf, sscanf, printf, vprintf, and vsprintf), select [Yes].

Figure 2-36. [Use standard library] and [Use standard I/O library supported floating-point data] Property

2.5.7 Change the setting to use the multiplier and divider

Select the build tool node on the project tree and select the [Compile Options] tab on the Property panel.

In the [Library] category, if you select [Yes] on the [Use standard library] property, the [Use multiplier and divider] prop-

erty is displayed. When using a standard library which supports the multiplier and divider, select [Yes] (default), when not

using one, select [No].

Figure 2-37. [Use standard library] and [Use multiplier and divider] Property

CubeSuite Ver.1.30 CHAPTER 2 FUNCTIONS

R20UT0005EJ0100 Rev.1.00 Page 38 of 573
Jul 01, 2010

2.6 Set Assemble Options

To set options for the assembler, select the Build tool node on the project tree and select the [Assemble Options] tab on

the Property panel.

You can set the various assemble options by setting the necessary properties in this tab.

Figure 2-38. Property Panel: [Assemble Options] Tab

Remark Often used options have been gathered under the [Frequently Used Options(for Assemble)] category on the

[Common Options] tab.

2.6.1 Add an include path

Select the build tool node on the project tree and select the [Assemble Options] tab on the Property panel.

The include path setting is made with the [Additional include paths] property in the [Preprocess] category.

Figure 2-39. [Additional include paths] Property

If you click the [...] button, the Path Edit dialog box will open.

CubeSuite Ver.1.30 CHAPTER 2 FUNCTIONS

R20UT0005EJ0100 Rev.1.00 Page 39 of 573
Jul 01, 2010

Figure 2-40. Path Edit Dialog Box

Enter an include path per line in [Path(One path per one line)]. You can specify up to 259 characters per line, up to 64

line.

Remark You can also specify the include path via the [Browse...] button. Select the [Subfolders are automatically

included] check box before clicking the [Browse...] button to add all paths under the specified one (down to

5 levels) to [Path(One path per one line)].

If you click the [OK] button, the entered include paths are displayed as subproperties.

Figure 2-41. [Additional include paths] Property (After Adding Include Paths)

To change the include paths, you can use the [...] button or enter the path directly in the text box of the subproperty.

When the include path is added to the project tree, the path is added to the top of the subproperties automatically.

Remark You can also set the option in the same way with the [Additional include paths] property in the [Frequently

Used Options(for Assemble)] category on the [Common Options] tab.

CubeSuite Ver.1.30 CHAPTER 2 FUNCTIONS

R20UT0005EJ0100 Rev.1.00 Page 40 of 573
Jul 01, 2010

2.6.2 Set a macro definition

Select the build tool node on the project tree and select the [Assemble Options] tab on the Property panel.

The macro definition setting is made with the [Macro definition] property in the [Preprocess] category.

Figure 2-42. [Macro definition] Property

If you click the [...] button, the Text Edit dialog box will open.

Figure 2-43. Text Edit Dialog Box

Enter the macro definition in the format of "macro name=defined value", with one macro name per line. You can spec-

ify up to 31 characters per line, up to 30 line. The "=defined value" part can be omitted, and in this case, "1" is used as

the defined value.

If you click the [OK] button, the entered macro definitions are displayed as subproperties.

Figure 2-44. [Macro definition] Property (After Setting Macros)

To change the macro definitions, you can use the [...] button or enter the path directly in the text box of the subproperty.

Remark You can also set the option in the same way with the [Macro definition] property in the [Frequently Used

Options(for Assemble)] category on the [Common Options] tab.

CubeSuite Ver.1.30 CHAPTER 2 FUNCTIONS

R20UT0005EJ0100 Rev.1.00 Page 41 of 573
Jul 01, 2010

2.7 Set Link Options

To set options for the linker, select the Build tool node on the project tree and select the [Link Options] tab on the Prop-

erty panel.

You can set the various link options by setting the necessary properties in this tab.

Caution This tab is not displayed for library projects.

Figure 2-45. Property Panel: [Link Options] Tab

Remark Often used options have been gathered under the [Frequently Used Options(for Link)] category on the

[Common Options] tab.

CubeSuite Ver.1.30 CHAPTER 2 FUNCTIONS

R20UT0005EJ0100 Rev.1.00 Page 42 of 573
Jul 01, 2010

2.7.1 Add a user library

Select the build tool node on the project tree and select the [Link Options] tab on the Property panel.

Adding a user library is made with the [Using libraries] property in the [Library] category.

Figure 2-46. [Using libraries] Property

If you click the [...] button, the Text Edit dialog box will open.

Figure 2-47. Text Edit Dialog Box

Enter the library file name in [Text] with one name per line. You can specify up to 259 characters per line, up to 64 line.

If you click the [OK] button, the entered library files are displayed as subproperties.

Figure 2-48. [Using libraries] Property (After Setting Library Files)

To change the library files, you can use the [...] button or enter the path directly in the text box of the subproperty.

Remark You can also set the option in the same way with the [Using libraries] property in the [Frequently Used

Options(for Link)] category on the [Common Options] tab.

The library files are searched from the library path. To add a library path, set the [Additional library paths] property.

Caution Library files can also be linked by adding them directly to the project. In this case, the library files

are not searched from the library paths because they are linked directly via their absolute paths.

CubeSuite Ver.1.30 CHAPTER 2 FUNCTIONS

R20UT0005EJ0100 Rev.1.00 Page 43 of 573
Jul 01, 2010

2.8 Set Object Convert Options

To set options for the object converter, select the Build tool node on the project tree and select the [Object Convert

Options] tab on the Property panel.

You can set the various object convert options by setting the necessary properties in this tab.

Caution This tab is not displayed for library projects.

Figure 2-49. Property Panel: [Object Convert Options] Tab

Remark Often used options have been gathered under the [Frequently Used Options(for Object Convert)] category

on the [Common Options] tab.

CubeSuite Ver.1.30 CHAPTER 2 FUNCTIONS

R20UT0005EJ0100 Rev.1.00 Page 44 of 573
Jul 01, 2010

2.8.1 Set the output of a hex file

Select the build tool node on the project tree and select the [Object Convert Options] tab on the Property panel.

The setting to output a hex file is made with the [Output hex file] property in the [Hex File] category. To output a hex file,

select [Yes] (default), to not output a hex file, select [No(-no)].

Figure 2-50. [Output hex file] Property

Remark If you select [No(-no)] on the [Output hex file] property when performing object conversion only to output a

symbol table file, you can reduce the object conversion time.

When outputting a hex file, you can set the output folder and output file name.

(1) Set the output folder

Setting the output folder is made with the [Output folder for hex file] property by directly entering to the text box or

by the [...] button. Up to 259 characters can be specified in the text box. "%BuildModeName%" is set by default.

"%BuildModeName%" is an embedded macro. It is replaced to the build mode name.

(2) Set the output file name

Setting the output file is made with the [Hex file name] property by directly entering to the text box. Up to 259 char-

acters can be specified in the text box. "%ProjectName%.hex" is set by default. "%ProjectName%.hex" is an

embedded macro. It is replaced to the project name.

CubeSuite Ver.1.30 CHAPTER 2 FUNCTIONS

R20UT0005EJ0100 Rev.1.00 Page 45 of 573
Jul 01, 2010

2.9 Set Create Library Options

To set options for the librarian, select the Build tool node on the project tree and select the [Create Library Options] tab

on the Property panel.

You can set the various create library options by setting the necessary properties in this tab.

Caution This tab is displayed only for library projects.

Figure 2-51. Property Panel: [Create Library Options] Tab

2.9.1 Set the output of a library file

Select the build tool node on the project tree and select the [Create Library Options] tab on the Property panel.

The setting to output a library file is made with the [Output File] category.

Figure 2-52. [Output File] Category

(1) Set the output folder

Setting the output folder is made with the [Output folder] property by directly entering to the text box or by the [...]

button. Up to 259 characters can be specified in the text box. "%BuildModeName%" is set by default.

"%BuildModeName%" is an embedded macro. It is replaced to the build mode name.

(2) Set the output file name

Setting the output file is made with the [Output file name] property by directly entering to the text box. Up to 259

characters can be specified in the text box. "%ProjectName%.lib" is set by default. "%ProjectName%.lib" is an

embedded macro. It is replaced to the project name.

CubeSuite Ver.1.30 CHAPTER 2 FUNCTIONS

R20UT0005EJ0100 Rev.1.00 Page 46 of 573
Jul 01, 2010

2.10 Set Variables Relocation Options

To set options for the variables information file generator, select the Build tool node on the project tree and select the

[Variables Relocation Options] tab on the Property panel.

You can set the various variables relocation options by setting the necessary properties in this tab.

Figure 2-53. Property Panel: [Variables Relocation Options] Tab

2.10.1 Efficiently allocate variables

Use the variables information file generator to efficiently allocate variables. This tool generates a variables information

file (a file containing allocation information for all variables to be referenced). Variables will be allocated to the saddr area

by performing compilation using that file.

The procedures for performing this operation are described below.

- Generating a variables information file automatically and allocating variables and functions

- Editing and using an auto-generated variables information file

(1) Generating a variables information file automatically and allocating variables and functions

Below is the procedure for generating a variables/functions information file automatically and using that file to allo-

cate variables and functions, via one build.

(a) Set the generation of the variables information file

Select the build tool node on the project tree and select the [Variables Relocation Options] tab on the Property

panel.

Set the [Output variables information file] property to [Yes] to generate an empty variables information file, and

add it to the project (it will also appear in the File node of the project tree). The output destination is the file set

in the [Output folder for variables information file] property and the [Variables information file name] property.

Remark If a variables information file with the same name already exists, the build will be configured to use

it.

CubeSuite Ver.1.30 CHAPTER 2 FUNCTIONS

R20UT0005EJ0100 Rev.1.00 Page 47 of 573
Jul 01, 2010

Figure 2-54. [Output variables information file] Property

Figure 2-55. Project Tree Panel (After Generating Variables Information File)

The settings of the output folder and file of the variables information file are can be changed.

<1> Set the output folder

Setting the output folder is made with the [Output folder for variables information file] property by directly

entering to the text box or by the [...] button. Up to 259 characters can be specified in the text box.

"%BuildModeName%" is set by default. "%BuildModeName%" is an embedded macro. It is replaced to

the build mode name.

If this property is changed, an empty variables information file is generated and added to the project (it

will also appear in the File node of the project tree).

<2> Set the output file name

Setting the output file is made with the [Variables information file name] property by directly entering to

the text box. Up to 259 characters can be specified in the text box. "%ProjectName%.vfi" is set by

default. "%ProjectName%.vfi" is an embedded macro. It is replaced to the project name.

If this property is changed, an empty variables information file is generated and added to the project (it

will also appear in the File node of the project tree).

(b) Run a build of the project

Run a build of the project.

A variables information file is generated. It will be input into the compiler automatically and a rebuild will be

executed again.

Remarks 1. The variables information file in “(a) Set the generation of the variables information file“ is

overwritten by running a build.

CubeSuite Ver.1.30 CHAPTER 2 FUNCTIONS

R20UT0005EJ0100 Rev.1.00 Page 48 of 573
Jul 01, 2010

2. Since objects are generated anew using the variables information file, the second build will be

a rebuild.

If the build completes successfully, a load module file is generated with the variables allocated.

If the message “E7001 : The link error was found.“ is displayed at this time, then an error has occurred during

linking.

If this happens, take the action below to disable the variable information file.

<1> Select [No] in the [Output variables information file] property on the [Variables Relocation

Options] tab.

<2> Select [No] on the [Set as build-target] property of the variables information file (*.vfi) displayed

on the project tree.

Or select the variables information file and select [Remove from Project] from the context menu.

Figure 2-56. Project Tree Panel (After Generating Load Module File)

(2) Editing and using an auto-generated variables information file

Users can edit a variables information file.

Below is the procedure for editing the generated variables information file in “(1) Generating a variables informa-

tion file automatically and allocating variables and functions“ by the user and using that file to allocate variables.

(a) Edit the variables information file

Edit the variables information file generated automatically in “(1) Generating a variables information file auto-

matically and allocating variables and functions“.

Remark See "3.7.1 Variables information file" for details about the format of the auto-generated variables

information file.

CubeSuite Ver.1.30 CHAPTER 2 FUNCTIONS

R20UT0005EJ0100 Rev.1.00 Page 49 of 573
Jul 01, 2010

Describe the variables information file according to the following format.

Remark Describe variables in the order of priority, from highest to lowest.

Comment out the lines for variables and functions that are not to be allocated by adding a semico-

lon (;) at the beginning of the line.

(b) Set the generation of the variables information file

Select the build tool node on the project tree and select the [Variables Relocation Options] tab on the Property

panel.

Select [No] on the [Output variables information file] property.

Figure 2-57. [Output variables information file] Property

(c) Run a build of the project

Run a build of the project.

A load module file is generated with the variables allocated as specified in the variables information file.

Caution If a file with an extension of "vfi" is added to the project, it is treated as a variables information file.

It is also treated as a variables information file if it is added below the Startup node.

When adding a variables information file to the project, if a variables information file has already

been added then only the latest variables information file to be added is targeted by a build; any

such files added prior to this one will not be targeted.

When setting a variables information file that is not targeted by a build as a build target, if other vari-

ables information files have also been added then the file will be targeted by the build, and the oth-

ers will not be targeted.

;***Variable information***

;static variable and const variable

variable-name,number-of-references,size,reference-type,"file-name",const

;global variable and const variable

variable-name,number-of-references,size,reference-type,,const

;static variable

variable-name,number-of-references,size,reference-type,"file-name"

;global variable

variable-name,number-of-references,size,reference-type

;global variable and const variable for the boot area

variable-name,number-of-references,size,reference-type,,const,boot

;global variable for the boot area

variable-name,number-of-references,size,reference-type,,,boot

CubeSuite Ver.1.30 CHAPTER 2 FUNCTIONS

R20UT0005EJ0100 Rev.1.00 Page 50 of 573
Jul 01, 2010

2.10.2 Display ROM/RAM usage

You can use the variables information file generator to display the ROM/RAM usage after the linking to the Output

panel.

Select the build tool node on the project tree and select the [Variables Relocation Options] tab on the Property panel.

To display the ROM/RAM usage, select [Yes] on the [Output ROM/RAM usage] property in the [ROM/RAM Amount

Information] category ([No] is selected by default).

Figure 2-58. [Output ROM/RAM usage] Property

When you run a build, the ROM/RAM usage is output to the Output panel following the build results.

First the total amount uses is output, followed by the usage for each memory area.

Figure 2-59. ROM/RAM Usage Display

CubeSuite Ver.1.30 CHAPTER 2 FUNCTIONS

R20UT0005EJ0100 Rev.1.00 Page 51 of 573
Jul 01, 2010

2.11 Set Memory Bank Relocation Options

To set options for the memory bank relocation support tool, select the Build tool node on the project tree and select the

[Memory Bank Relocation Options] tab on the Property panel.

You can set the various memory bank relocation options by setting the necessary properties in this tab.

Figure 2-60. Property Panel: [Memory Bank Relocation Options] Tab

2.11.1 Relocate C source files to the optimum area

Use the memory bank relocation support tool to relocate C source files to the optimum area. This tool generates a

function information file (a file containing relocation information for each file). C source files will be relocated to the com-

mon area or bank area by performing compilation using that file.

Caution This function is valid only when a device with a memory bank installed is specified as the

microcontroller.

The procedures for performing this operation are described below.

- Generating a function information file automatically and relocating C source files

- Changing the relocation destination of the auto-generated function information file

(1) Generating a function information file automatically and relocating C source files

Below is the procedure for generating a function information file automatically and using that file to relocate C

source files, via one build.

(a) Set the output of the function information file

Select the build tool node on the project tree and select the [Memory Bank Relocation Options] tab on the

Property panel. To use the memory bank relocation support tool, select [Yes] on the [Use memory bank relo-

cation support tool] property in the [Output] category ([No] is selected by default).

CubeSuite Ver.1.30 CHAPTER 2 FUNCTIONS

R20UT0005EJ0100 Rev.1.00 Page 52 of 573
Jul 01, 2010

Figure 2-61. [Use memory bank relocation support tool] Property

Remark If you select [Yes] on the [Use memory bank relocation support tool] property, the following proper-

ties are automatically changed.

- The [Add debug information] property in the [Debug Information] category from the [Compile

Options] tab will be changed to [Yes(Add to both assembly and object file)(-g2)].

- The [Output assemble file] property in the [Assembly File] category from the [Compile Options] tab

will be changed to [Yes(With no C source info)(-a)].

- The [Output assemble list file] property in the [Assemble List] category from the [Assemble Options]

tab will be changed to [Yes(-p)].

- The [Output with cross reference list] property in the [Assemble List] category from the [Assemble

Options] tab will be changed to [Yes(-kx)].

Set the [Output function information file] property to [Yes] to generate an empty function information file, and

add it to the project (it will also appear in the Files node of the project tree). The output destination is the file

set in the [Output folder for function information file] property and the [Function information file name] property.

Remark If a function information file with the same name already exists, the build will be configured to use it.

Figure 2-62. [Output function information file] Property

CubeSuite Ver.1.30 CHAPTER 2 FUNCTIONS

R20UT0005EJ0100 Rev.1.00 Page 53 of 573
Jul 01, 2010

Figure 2-63. Project Tree Panel (After Generating Function Information File)

The settings of the output folder and file of the function information file are can be changed.

<1> Set the output folder

Setting the output folder is made with the [Output folder for function information file] property by directly

entering to the text box or by the [...] button. Up to 259 characters can be specified in the text box.

"%BuildModeName%" is set by default. "%BuildModeName%" is an embedded macro. It is replaced to

the build mode name.

<2> Set the output file name

Setting the output file is made with the [Function information file name] property by directly entering to

the text box. Up to 259 characters can be specified in the text box. "%ProjectName%.fin" is set by

default. "%ProjectName%" is an embedded macro. It is replaced to the project name.

If this property is changed, an empty function information file is generated and added to the project (it will

also appear in the Files node of the project tree).

(b) Set the output of auxiliary information files

Set the output of auxiliary information files, which provide support when the user edits the generated function

information file.

The auxiliary information files are as follows.

- Replacement information file

- Object information file

- Reference information file

Remark See "3.8 Memory Bank Relocation Support Tool" for details about each file.

The setting to output auxiliary files is made with the [Output File] category.

CubeSuite Ver.1.30 CHAPTER 2 FUNCTIONS

R20UT0005EJ0100 Rev.1.00 Page 54 of 573
Jul 01, 2010

Figure 2-64. [Output File] Category

Set the output folder and output file name for each file on the [Output folder for replacement information file],

[Replacement information file name], [Output folder for object information file], [Object information file name],

[Output folder for reference information file], and [Reference information file name] properties.

Remark Select [No] on the [Output function information file] property to output the auxiliary information files

only.

(c) Set the margin of the relocation destination

Set the margin for the common area or bank area to which the function information file will be relocated when

it is generated.

Set the margin in the [Margin] category.

Figure 2-65. [Margin] Category

Set the margin for the common area on the [Margin for common area] property in decimal numbers. The

range that can be specified for the value is -65536 to 65536 (default: 1000).

Set the margin for the bank area on the [Margin for bank XX area] property in decimal numbers. The range

that can be specified for the value is -65536 to 65536 (default: 500). This property is displayed corresponding

to the numbers of banks (XX: 00 to 15).

Remark If a positive value is specified on the above property, each area is relocated and considered to

become small by the specified value as a margin. If a negative value is specified, each area is relo-

cated and considered to become large by the specified value as a margin.

(d) Set the relocation destination for each file

Specify the relocation destination for each C source file.

Select a C source file on the project tree and select the [Build Settings] tab on the project tree. Select the relo-

cation destination on the [Select common/bank area] property in the [Memory Bank] category.

You can select any of items below.

CubeSuite Ver.1.30 CHAPTER 2 FUNCTIONS

R20UT0005EJ0100 Rev.1.00 Page 55 of 573
Jul 01, 2010

Figure 2-66. [Select common/bank area] Property

(e) Run a build of the project

Run a build of the project.

A function information file is generated. It will be input into the compiler automatically and a rebuild will be exe-

cuted again.

Remarks 1. The function information file in (a) is overwritten by running a build. If the output folder or file

name is changed, the specified file will be generated again.

2. Since objects are generated anew using the function information file, the second build will be a

rebuild.

If the build completes successfully, a load module file is generated with the C source files relocated to the

specified area.

Figure 2-67. Project Tree Panel (After Generating Load Module File)

No specification The memory bank relocation support tool automatically determines the optimum area and relo-

cates the program code there.

Common area Relocates the program codes to the common area in build processing.

BankXX Relocates the program codes to bankXX in build processing.

This item is displayed corresponding to the numbers of banks (XX: 00 to 15).

CubeSuite Ver.1.30 CHAPTER 2 FUNCTIONS

R20UT0005EJ0100 Rev.1.00 Page 56 of 573
Jul 01, 2010

(2) Changing the relocation destination of the auto-generated function information file

If a warning (W1402000) occurs while running a build in (1), you must change the relocation destination.

Below is the procedure for relocating the C source files after you have changed the relocation destination.

(a) Change the relocation destination

When changing the relocation destination, perform the actions while making reference to the auxiliary informa-

tion files (replacement information file, object information file, and reference information files).

The example of changing the relocation destination is shown below.

<1> If you could not relocate files containing functions that cannot be relocated to the common area

or bank area

Select files in the function information file defined for relocation to the common area (files with "C" speci-

fied as the relocation destination) that can be relocated to the bank area, and change their relocation

destination to the bank area.

Whether the selected file can be relocated to the bank area can be identified by referring to the replace-

ment information file.

Example Change the relocation destination of file "file100.c" from the common area to bank 3, and that

of file "file200.c" from the common area to bank 4.

<2> When the size of the vacant area is larger than that of the file that could not be relocated

The memory bank relocation support tool keeps some margin (by default, common area: 1000 bytes,

bank area: 500 bytes) during relocation process of files.

Consequently, the size of the vacant area may be larger than that of the file that could not be relocated,

in the replacement information files.

In this case, on the Property panel, from the [Memory Bank Relocation Options] tab, in the [Margin] cate-

gory, set the margins of the common area and bank area to smaller values.

Files that can be relocated only to the

common area

Files to which "*" is appended the end of "file name (code size)"

in the replacement information file

Files that can be relocated to the com-

mon area and bank area

Files to which "*" is not appended the end of "file name (code

size)" in the replacement information file

Before Change After Change

 :

file100.c := C (100)

{

 file100;

}

file200.c := C (200)

{

 file200;

}

 :

 :

file100.c := 3 (100)

{

 file100;

}

file200.c := 4 (200)

{

 file200;

}

 :

CubeSuite Ver.1.30 CHAPTER 2 FUNCTIONS

R20UT0005EJ0100 Rev.1.00 Page 57 of 573
Jul 01, 2010

<3> When the total code size is larger than the ROM size

Reinforce the optimization by the C compiler and review the source program to reduce the total code

size.

Refer to the reference information file and take a relevant action if functions that satisfy the following con-

ditions are found.

- When the function is not referenced from other files

If the relevant function is the global function, change it to the static function.

- When the function is not referenced from other files nor from the file in which the function is

described

Delete the function.

Caution The function for which above action be taken shall not be called in the implicit way

(such as an indirect function call using a function pointer or a call from object module

file/library file that do not have source files) which can not be known from assemble

list file.

(b) Set the output of the function information file

Select the build tool node on the project tree and select the [Memory Bank Relocation Options] tab on the

Property panel. To use the memory bank relocation support tool, select [Yes] on the [Use memory bank relo-

cation support tool] property in the [Output] category.

Select [No] on the [Output function information file] property.

Figure 2-68. [Use memory bank relocation support tool] and [Output function information file] Property

(c) Run a build of the project

Run a build of the project.

A load module file is generated with the C source files relocated in accordance with the changes made to the

relocation destinations.

Caution If a file with an extension of "fin" is added to the project, it is treated as a function information file. It

is also treated as a function information file if it is added below the Startup node.

When adding a function information file to the project, if a functions information file has already

been added then only the latest function information file to be added is targeted by a build; any such

files added prior to this one will not be targeted.

When setting a function information file that is not targeted by a build as a build target, if other func-

tion information files have also been added then the file will be targeted by the build, and the others

will not be targeted.

CubeSuite Ver.1.30 CHAPTER 2 FUNCTIONS

R20UT0005EJ0100 Rev.1.00 Page 58 of 573
Jul 01, 2010

2.12 Set Build Options Separately

Build options are set at the project or file level.

- Project level: See "2.12.1 Set build options at the project level"

- Project level: See "2.12.2 Set build options at the file level"

2.12.1 Set build options at the project level

To set options for build options for a project (main project or subproject), select the Build tool node on the project tree to

display the Property panel.

Select the component tabs, and set build options by setting the necessary properties.

Compiler: [Compile Options] tab

Assembler: [Assemble Options] tab

Linker: [Link Options] tab

Object converter: [Object Convert Options] tab

Librarian: [Create Library Options] tab

Variables information file generator: [Variables Relocation Options] tab

Memory bank relocation support tool: [Memory Bank Relocation Options] tab

2.12.2 Set build options at the file level

You can individually set compile and assemble options for each source file added to the project.

(1) When setting compile options for a C source file

Select a C source file on the project tree and select the [Build Settings] tab on the Property panel. In the [Build]

category, if you select [Yes] on the [Set individual compile option] property, the following message dialog box is dis-

played.

Figure 2-69. [Set individual compile option] Property

Figure 2-70. Message Dialog Box

If you click the [Yes] button in the dialog box, the [Individual Compile Options] tab will be displayed.

CubeSuite Ver.1.30 CHAPTER 2 FUNCTIONS

R20UT0005EJ0100 Rev.1.00 Page 59 of 573
Jul 01, 2010

Figure 2-71. Property Panel: [Individual Compile Options] Tab

You can set compile options for the C source file by setting the necessary properties in this tab. Note that this tab

takes over the settings of the [Compile Options] tab by default.

(2) When setting assemble options for an assembler source file

Select an assembler source file on the project tree and select the [Build Settings] tab on the Property panel. In the

[Build] category, if you select [Yes] on the [Set individual assemble option] property, the following message dialog

box is displayed.

Figure 2-72. [Set individual assemble option] Property

Figure 2-73. Message Dialog Box

CubeSuite Ver.1.30 CHAPTER 2 FUNCTIONS

R20UT0005EJ0100 Rev.1.00 Page 60 of 573
Jul 01, 2010

If you click the [Yes] button in the dialog box, the [Individual Assemble Options] tab will be displayed.

Figure 2-74. Property Panel: [Individual Assemble Options] Tab

You can set assemble options for the assembler source file by setting the necessary properties in this tab. Note

that this tab takes over the settings of the [Assemble Options] tab by default.

Remark You can also set assemble options for assembler source files created from C source files. Select a C

source file on the project tree and select the [Individual Compile Options] tab on the Property panel. If

you select [Yes] on the [Output assemble file] property in the [Assembly File] category, the [Individual

Assemble Options] tab is displayed.

CubeSuite Ver.1.30 CHAPTER 2 FUNCTIONS

R20UT0005EJ0100 Rev.1.00 Page 61 of 573
Jul 01, 2010

2.13 Prepare for Using On-chip Debugger

To use the on-chip debugger, you must set the on-chip debug, user option byte, and security ID.

(1) Setting the on-chip debug

The on-chip debug function of the microcontroller is enabled by setting the on-chip debug.

Select the build tool node on the project tree and select the [Link Options] tab on the Property panel. Set the on-

chip debug in the [Device] category.

If you select [Yes(-go)] on the [Use on-chip debug] property, the [Debug monitor area size[byte]] property are dis-

played.

Figure 2-75. [Use on-chip debug] and [Debug monitor area size[byte]] Property

 On the [Debug monitor area size[byte]] property, specify the size of the debug monitor area in decimal. The range

that can be specified for the value is 256 to 1024 (default: 256).

(2) Set the user option byte

By setting the user option byte, settings for the watchdog timer, low-voltage detection circuit, and system reserved

area are made.

The settings for the user option byte are also made in the [Device] category on the [Link Options] tab.

If you select [Yes(-gb)] on the [Set user option byte] property, the [User option byte value] property is displayed.

Figure 2-76. [Set user option byte] and [User option byte value] Property

On the [User option byte value] property, specify the user option byte value in hexadecimal without 0x. The range

that can be specified for the value is 0 to FFFFFFFFFF.

If the setting is made as above, the following value is set: 0x30 to address 0x80, 0x00 to address 0x81, 0x00 to

address 0x82, 0x00 to address 0x83, 0x02 to address 0x84.

(3) Setting the security ID

The security ID is used to perform authentication when the debugger is activated.

Select the build tool node on the project tree and select the [Common Options] tab on the Property panel.

On the [Security ID] property in the [Device] category, specify the security ID in the 20-digit hexadecimal number.

The range that can be specified for the value is 0 to FFFFFFFFFFFFFFFFFFFF.

CubeSuite Ver.1.30 CHAPTER 2 FUNCTIONS

R20UT0005EJ0100 Rev.1.00 Page 62 of 573
Jul 01, 2010

Figure 2-77. [Security ID] Property

If the setting is made as above, the following value is set: 0x11 to address 0x85, 0x22 to address 0x86, 0x33 to

address 0x87, 0x44 to address 0x88, 0x55 to address 0x89, 0x66 to address 0x8A, 0x77 to address 0x8B, 0x88 to

address 0x8C, 0x99 to address 0x8D, 0xAA to address 0x8E.

Remark See "CubeSuite 78K0 Debug" for connecting with the debug tool.

CubeSuite Ver.1.30 CHAPTER 2 FUNCTIONS

R20UT0005EJ0100 Rev.1.00 Page 63 of 573
Jul 01, 2010

2.14 Prepare for Implementing Boot-flash Relink Function

Depending on the system, in addition to the area which cannot be rewritten/replaced (boot area), there are occasions

when you can use the area which can be rewritten/replaced (flash area), such as the flash or external ROM.

In these kinds of systems, when you wish to change the program in the flash area, a function called the "relink function"

correctly performs function calls between the boot area and flash area without rebuilding the program in the boot area.

By creating load module files for the boot area and flash area, you can implement the relink function. The method to

implement the relink function is shown below.

Remark See "B.3.5 Boot-flash relink function" for details about the relink function and how to implement it.

2.14.1 Prepare the build target files

(1) Prepare the link directive files

Prepare link directive files for the projects for both the boot area and flash area.

Remark You can use the same link directive file with the boot area and flash area, but since the description will

become complicated, it is recommend to use a separate link directive file for each area.

(2) Describe the #pragma ext_func directive

Describe the #pragma ext_func directive in the C source file.

With the #ext_func directive, specify the ID value for the target function (the actual function exists in the flash area

and is called from the boot area).

Remark In order to prevent description mistakes and inconsistencies between source files, it is recommend that

you organize the #ext_func directive description in a single file, and regardless of the boot area or flash

area, include that file in all the C source files.

2.14.2 Set the boot area project

(1) Create the boot area project

Create a project for the boot area and add the build target files to the project.

Figure 2-78. Boot Area Project

CubeSuite Ver.1.30 CHAPTER 2 FUNCTIONS

R20UT0005EJ0100 Rev.1.00 Page 64 of 573
Jul 01, 2010

(2) Set the build options for the boot area project

Select the build tool node on the project tree and set each of the build options on the Property panel.

(a) Set variables relocation options

Set the variables relocation options to generate a variablesinformation file and use it to allocate variables.

Select the [Variables Relocation Options] tab.

In the [Output File] category, set the [Output variables information file] property to [Yes] to generate an empty

variables information file, and add it to the project (it will also appear in the File node of the project tree). The

output destination is the file set in the [Output folder for variables information file] property and the [Variables

information file name] property.

Remark If a variables information file with the same name already exists, the build will be configured to use

it.

Figure 2-79. [Output variables information file] Property in Boot Area

Set the [Output folder for variables information file] property and the [Variables information file name] property

to change the output folder and file name of the variables information file. If the [Variables information file]

property is changed, an empty variables information file is generated and added to the project (it will also

appear in the File node of the project tree).

(b) Set compile options

Select the [Compile Options] tab.

Select [No] on the [Output objects for flash] property in the [Memory Model] category.

Figure 2-80. [Output objects for flash] Property in Boot Area

Next, select [Yes(For boot area)] on the [Use standard startup routine] property in the [Startup] category.

Figure 2-81. [Use standard startup routine] Property in Boot Area

(c) Set link options

Select the [Link Options] tab.

In the [Device] category, if you select [Yes(-zb)] on the [Set flash start address] property, the [Flash start

address] property is displayed.

CubeSuite Ver.1.30 CHAPTER 2 FUNCTIONS

R20UT0005EJ0100 Rev.1.00 Page 65 of 573
Jul 01, 2010

Specifies the start address of the flash memory area here. The range that can be specified for the value is 0 to

FFFF.

Figure 2-82. [Set flash start address] and [Flash start address] Property in Boot Area

(d) Set object convert options

Select the [Object Convert Options] tab.

Select [No] on the [Split hex file] property in the [Hex File] category (default).

Figure 2-83. [Split hex file] Property in Boot Area

(3) Run a build of the boot area project

When you run a build of the boot area project, a load module file is created.

A hex file is also created.

If a variables information file is generated, it will be input into the compiler automatically, and a rebuild will be exe-

cuted again.

Remark The variables information file generated in “(a) Set variables relocation options“ is overwritten by run-

ning a build.

CubeSuite Ver.1.30 CHAPTER 2 FUNCTIONS

R20UT0005EJ0100 Rev.1.00 Page 66 of 573
Jul 01, 2010

Figure 2-84. Created Files for Boot Area

2.14.3 Set the flash area project

(1) Create the flash area project

Create a project for the boot area and add the build target files to the project.

Figure 2-85. Flash Area Project

CubeSuite Ver.1.30 CHAPTER 2 FUNCTIONS

R20UT0005EJ0100 Rev.1.00 Page 67 of 573
Jul 01, 2010

(2) Set the build options for the flash area project

Select the build tool node on the project tree and set each of the build options on the Property panel.

(a) Set variables relocation options

Set the variables relocation options to generate a variables information file and use it to allocate variables.

Select the [Variables Relocation Options] tab.

In the [Output File] category, set the [Output variables information file] property to [Yes] to generate an empty

variables information file, and add it to the project (it will also appear in the File node of the project tree). The

output destination is the file set in the [Output folder for variables information file] property and the [Variables

information file name] property.

Remark If a variables information file with the same name already exists, the build will be configured to use

it.

Figure 2-86. [Output folder for variables information file] Property in Flash Area

Set the [Output folder for variables information file] property and the [Variables information file name] property

to change the output folder and file name of the variables information file. If the [Variables information file]

property is changed, an empty variables information file is generated and added to the project (it will also

appear in the File node of the project tree).

(b) Set compile options

Select the [Compile Options] tab.

Select [Yes(-zf)] on the [Output objects for flash] property in the [Memory Model] category.

Figure 2-87. [Output objects for flash] Property in Flash Area

Next, select [Yes(For flash area)] on the [Use standard startup routine] property in the [Startup] category.

Figure 2-88. [Use standard startup routine] Property in Flash Area

Next, add the created variables information file for the boot area in "2.14.2 Set the boot area project" to the

flash area project. Specify the variables information file for the boot area on the [Variables information file for

boot area] property in the [Variable Information File] category.

CubeSuite Ver.1.30 CHAPTER 2 FUNCTIONS

R20UT0005EJ0100 Rev.1.00 Page 68 of 573
Jul 01, 2010

Figure 2-89. [Variables information file for boot area] Property in Flash Area

(c) Set link options

Add the created boot area load module file in "2.14.2 Set the boot area project" to the flash area project.

Select the [Link Options] tab.

Specify the boot area load module file on the [Boot area load module file name] property in the [Device] cate-

gory.

Figure 2-90. [Boot area load module file name] Property in Flash Area

(d) Set object convert options

Select the [Object Convert Options] tab.

Select [Yes(-zf)] on the [Split hex file] property in the [Hex File] category.

Figure 2-91. [Split hex file] Property in Flash Area

(3) Run a build of the flash area project

When you run a build of the flash area project, a load module file which implements the relink function is created.

The boot area hex file (the same content as the file created in "2.14.2 Set the boot area project") and flash area

hex file are also created.

CubeSuite Ver.1.30 CHAPTER 2 FUNCTIONS

R20UT0005EJ0100 Rev.1.00 Page 69 of 573
Jul 01, 2010

Figure 2-92. Created Files for Flash Area

CubeSuite Ver.1.30 CHAPTER 2 FUNCTIONS

R20UT0005EJ0100 Rev.1.00 Page 70 of 573
Jul 01, 2010

2.15 Make Settings for Build Operations

This section explains operations on a build.

- Set the link order of files

- Change the file build order of subprojects

- Display a list of build options

- Change the file build target project

- Add a build mode

- Change the build mode

- Delete a build mode

- Set the current build options as the standard for the project

2.15.1 Set the link order of files

The link order of object module files and library files is decided automatically, but you can also set the order.

On the project tree, select the Build tool node, and then select [Set Link Order...] from the context menu. The Link

Order dialog box opens.

Figure 2-93. Link Order Dialog Box

The names of the following files are listed in [File] in the order that the files are input to the linker.

- Object module files generated from the source files added to the selected main project or subproject

- Object module files added directly to the project tree of the selected main project or subproject

- Library files added directly to the project tree of the selected main project or subproject

Remark The default order is the order the files are added to the project.

Object module files created from newly added source files and newly added object module files are added

after the last object module file in the list. Newly added library files are added to the end of the list.

By changing the display order of the files, you can set the input order of the files to the linker.

To change the display order, use the [Up] and [Down] buttons, or drag and drop the file names. After changing the dis-

play order, click the [OK] button.

CubeSuite Ver.1.30 CHAPTER 2 FUNCTIONS

R20UT0005EJ0100 Rev.1.00 Page 71 of 573
Jul 01, 2010

2.15.2 Change the file build order of subprojects

Builds are run in the order of subproject, main project, but when there are multiple subprojects added, the build order of

subprojects is their display order on the project tree.

To change the display order of the subprojects on the project tree, drag the subproject to be moved and drop it on the

desired location.

2.15.3 Display a list of build options

You can display the list of build options set currently on the Property panel for the project (main project and subproject).

If you select [Build Options List] from the [Build] menu, the current settings of the options for the project are displayed

on the [Build Tool] tab from the Output panel in the build order.

Remark You can change the display format of the build option list.

Select the build tool node on the project tree and select the [Common Options] tab on the Property panel.

Set the [Format of build option list] property in the [Others] category.

Figure 2-94. [Format of build option list] Property

“%FileName% : "%FileName% : %Program% %Options%" is set by default.

"%FileName%", "%Program%", and "%Options%" are embedded macros. They are replaced to the file name

being built, program name under execution, and command line option under build execution.

2.15.4 Change the file build target project

When running a build that targets a specific project (main project or subproject), you must set that project as the "active

project".

To set the active project, select the main project or subproject to be set as the active project on the project tree and

select [Set selected subproject as Active Project] from the context menu.

CubeSuite Ver.1.30 CHAPTER 2 FUNCTIONS

R20UT0005EJ0100 Rev.1.00 Page 72 of 573
Jul 01, 2010

Figure 2-95. [Set selected project as Active Project] Item

When a project is set as the active project, that project is underlined.

Figure 2-96. Active Project

Remarks 1. Immediately after creating a project, the main project is the active project.

2. When you remove a subproject that set as the active project from a project, the main project will be the

active project.

CubeSuite Ver.1.30 CHAPTER 2 FUNCTIONS

R20UT0005EJ0100 Rev.1.00 Page 73 of 573
Jul 01, 2010

2.15.5 Add a build mode

When you wish to change the build options and macro definitions according to the purpose of the build, you can collec-

tively change those settings. Build options and macro definition settings are organized into what is called "build mode",

and by changing the build mode, you eliminate the necessity of changing the build options and macro definition settings

every time.

The build mode prepared by default is only "DefaultBuild". Add a build mode according to the purpose of the build.

The method to add a build mode is shown below.

(1) Create a new build mode

Creating a new build mode is performed with duplicating an existing build mode.

Select [Build Mode Settings...] from the [Build] menu. The Build Mode Settings dialog box opens.

Figure 2-97. Build Mode Settings Dialog Box

Select the build mode to be duplicated from the build mode list and click the [Duplicate...] button. The Character

String Input dialog box opens.

Figure 2-98. Character String Input Dialog Box

In the dialog box, enter the name of the build mode to be created and then click the [OK] button. The build mode

with that name will be duplicated. The created build mode is added to the build modes of the main project and all

the subprojects which belong to the project.

CubeSuite Ver.1.30 CHAPTER 2 FUNCTIONS

R20UT0005EJ0100 Rev.1.00 Page 74 of 573
Jul 01, 2010

Figure 2-99. Build Mode Settings Dialog Box (After Adding Build Mode)

(2) Change the build mode

Change the build mode to the newly created build mode (see "2.15.6 Change the build mode").

(3) Change the setting of the build mode

Select the build tool node on the project tree and change the build options and macro definition settings on the

Property panel.

Remark Creating a build mode is regarded a project change. When closing the project, you will be asked to confirm

whether or not to save the build mode.

CubeSuite Ver.1.30 CHAPTER 2 FUNCTIONS

R20UT0005EJ0100 Rev.1.00 Page 75 of 573
Jul 01, 2010

2.15.6 Change the build mode

When you wish to change the build options and macro definitions according to the purpose of the build, you can collec-

tively change those settings. Build options and macro definition settings are organized into what is called "build mode",

and by changing the build mode, you eliminate the necessity of changing the build options and macro definition settings

every time.

(1) When changing the build mode for the main project or subprojects

Select the Build tool node of the target project on the project tree and select the [Common Options] tab on the

Property panel. Select the build mode to be changed to on the [Build mode] property in the [Build Mode] category.

Figure 2-100. [Build Mode] Property

(2) When changing the build mode for the entire project

Select [Build Mode Settings...] from the [Build] menu. The Build Mode Settings dialog box opens.

Figure 2-101. Build Mode Settings Dialog Box

If you select the build mode to be changed from the build mode list, the selected build mode is displayed in

[Selected build mode]. If you click the [Apply to All] button, the build mode for the main project and all the sub-

projects which belong to the project will be changed to the build mode selected in the dialog box.

Caution For projects that the selected build mode does not exist, the build mode is duplicated from

"DefaultBuild" with the selected build mode name, and the build mode is changed to the dupli-

cated build mode.

Remarks 1. The build mode prepared by default is only "DefaultBuild". See "2.15.5 Add a build mode" for the

method of adding a build mode.

2. You can change the name of the build mode by selecting the build mode from the build mode list and

clicking the [Rename...] button. However, you cannot change the name of "DefaultBuild".

CubeSuite Ver.1.30 CHAPTER 2 FUNCTIONS

R20UT0005EJ0100 Rev.1.00 Page 76 of 573
Jul 01, 2010

2.15.7 Delete a build mode

Deleting a build mode is performed with the Build Mode Settings dialog box.

Select [Build Mode Settings...] from the [Build] menu. The dialog box opens.

Figure 2-102. Build Mode Settings Dialog Box

Select the build mode to be deleted from the build mode list and click the [Delete] button. The Message dialog box

below opens.

Figure 2-103. Message Dialog Box

To continue with the operation, click the [OK] button in the dialog box.

The selected build mode is deleted from the project.

Caution You cannot delete "DefaultBuild".

CubeSuite Ver.1.30 CHAPTER 2 FUNCTIONS

R20UT0005EJ0100 Rev.1.00 Page 77 of 573
Jul 01, 2010

2.15.8 Set the current build options as the standard for the project

On the Property panel, if you add a change to the settings for the standard build options, the value of the property will

be displayed in boldface.

Figure 2-104. Property Panel (After Changing Standard Build Option)

To make the build options for the currently selected project (main project or subproject) the standard build options

(remove the boldface), select the Build tool node on the project tree and select [Set to Default Build Option for Project]

from the context menu.

Figure 2-105. [Set to Default Build Option for Project] Item

The value of the properties after setting them as the standard build option are as shown below.

Figure 2-106. Property Panel (After Setting Standard Build Option)

Caution When the main project is selected, only the main project settings are made. Even if subprojects are

added, their settings are not made.

CubeSuite Ver.1.30 CHAPTER 2 FUNCTIONS

R20UT0005EJ0100 Rev.1.00 Page 78 of 573
Jul 01, 2010

2.16 Run a Build

This section explains operations related to running a build.

(1) Build types

The following types of builds are available.

Table 2-1. Build Types

Remarks 1. Builds are run in the order of subproject, main project.

Subprojects are built in the order that they are displayed on the project tree (see "2.15.2 Change

the file build order of subprojects").

2. If there are files being edited with the Editor panel when running a build, rebuild, or batch build,

then all these files are saved.

(2) Display execution results

The execution results of the build (output messages of the build tool) are displayed in each tab on the Output

panel.

- Build, rebuild, or batch build: [All Messages] tab and [Build Tool] tab

- Rapid build: [Rapid Build] tab

Figure 2-107. Build Execution Results (Build, Rebuild, or Batch Build)

Type Description

Build Out of build target files, runs a build of only updated files.

See "2.16.1 Run a build of updated files".

Rebuild Runs a build of all build target files.

See "2.16.2 Run a build of all files".

Rapid build Runs a build in parallel with other operations.

See "2.16.3 Run a build in parallel with other operations".

Batch build Runs builds in batch with the build modes that the project has.

See "2.16.4 Run builds in batch with build modes".

CubeSuite Ver.1.30 CHAPTER 2 FUNCTIONS

R20UT0005EJ0100 Rev.1.00 Page 79 of 573
Jul 01, 2010

Figure 2-108. Build Execution Results (Rapid Build)

Remarks 1. The text in the [Rapid Build] tab becomes dimmed.

2. When a file name or line number can be obtained from the output messages, if you double click on

the message, you can jump to the relevant line in the file.

3. If you press the [F1] key when the cursor is on a line displaying the warning or error message, you

can display the help related to that line's message.

Files generated by the build tool appear on the Project Tree panel, under the Build tool generated files node.

Figure 2-109. Build Tool Generated Files

Remark Files displayed under the Build tool generated files node are as follows.

- For other than library projects

Load module file (*.lmf)

Link list file (*.map)

Error list file (*.elk)

Hex file (*.hex, *.hxb, *.hxf)

Symbol table file (*.sym)

Error list file (*.eoc)

CubeSuite Ver.1.30 CHAPTER 2 FUNCTIONS

R20UT0005EJ0100 Rev.1.00 Page 80 of 573
Jul 01, 2010

Replacement information file (*.txt)

Object information file (*.txt)

Reference information file (*.txt)

- For library projects

Library file (*.lib)

List file (*.lst)

Replacement information file (*.txt)

Object information file (*.txt)

Reference information file (*.txt)

Caution The Build tool generated files node is created during build.

This node will no longer appear if you reload the project after building.

2.16.1 Run a build of updated files

Out of build target files, run a build of only updated files (hereafter referred to as "build").

Running a build is performed for the entire project (main project and subprojects) or active project (see "2.15.4

Change the file build target project").

(1) When running a build of the entire project

Click on the toolbar.

(2) When running a build of the active project

Select the project, and then select [Build active project] from the context menu.

Figure 2-110. [Build active project] Item

Remark If the included source files are not built after editing the header file and running the build, update the file

dependencies (see "2.3.7 Update file dependencies").

CubeSuite Ver.1.30 CHAPTER 2 FUNCTIONS

R20UT0005EJ0100 Rev.1.00 Page 81 of 573
Jul 01, 2010

2.16.2 Run a build of all files

Run a build of all build target files (hereafter referred to as "rebuild").

Running a rebuild is performed for the entire project (main project and subprojects) or active project (see "2.15.4

Change the file build target project").

(1) When running a rebuild of the entire project

Click on the toolbar.

(2) When running a rebuild of the active project

Select the project, and then select [Rebuild active project] from the context menu.

Figure 2-111. [Rebuild active project] Item

2.16.3 Run a build in parallel with other operations

CubeSuite has a function that a build is started automatically when one of the following events occurs (hereafter

referred to as "rapid build").

- When C source files, assembler source files, header files, link directive file, variables information file, function

information file that has been added to the project are saved

- When a build target file has been added to or removed from the project

- When the link order of object module files and library files has changed

- When the properties of the build tool or build target files are changed

If a rapid build is enabled, it is possible to perform a build in parallel with the above operations.

To enable/disable a rapid build, select [Rapid Build] from the [Build] menu. A rapid build is enabled by default.

CubeSuite Ver.1.30 CHAPTER 2 FUNCTIONS

R20UT0005EJ0100 Rev.1.00 Page 82 of 573
Jul 01, 2010

Figure 2-112. [Rapid Build] Item (When Rapid Build Is Valid)

Figure 2-113. [Rapid Build] Item (When Rapid Build Is Invalid)

Remarks 1. After editing source files, it is recommend to save frequently by pressing the [Ctrl] + [S] key.

2. Enabling/disabling a rapid build is set for the entire project (main project and subprojects).

3. If you disable a rapid build while it is running, it will be stopped at that time.

Caution This function is valid only when editing source files with the Editor panel.

CubeSuite Ver.1.30 CHAPTER 2 FUNCTIONS

R20UT0005EJ0100 Rev.1.00 Page 83 of 573
Jul 01, 2010

2.16.4 Run builds in batch with build modes

You can run builds, rebuilds and cleans in batch with the build modes that the project (main project and subproject) has

(hereafter referred to as "batch build").

Remark See the sections below for a build, rebuild, and clean.

- Build: See "2.16.1 Run a build of updated files".

- Rebuild: See "2.16.2 Run a build of all files".

- Clean: See "2.16.8 Delete intermediate files and generated files".

Select [Batch Build] from the [Build] menu. The Batch Build dialog box opens.

Figure 2-114. Batch Build Dialog Box

In the dialog box, the list of the combinations of the names of the main project and subprojects in the currently opened

project and their build modes and macro definitions is displayed.

Select the check boxes for the combinations of the main project and subprojects and build modes that you wish to run

a batch build, and then click the [Build], [Rebuild], or [Clean] button.

Remark The batch build order follows the project build order, the order of the subprojects, main project.

When multiple build modes are selected for a single main project or subproject, after running builds of the

subproject with all the selected build modes, the build of the next subproject or main project is run.

CubeSuite Ver.1.30 CHAPTER 2 FUNCTIONS

R20UT0005EJ0100 Rev.1.00 Page 84 of 573
Jul 01, 2010

2.16.5 Compile/assemble individual files

You can just compile or assemble for each source file added to the project.

(1) When compiling a C source file

Select a C source file on the project tree and select the [Compile] from the context menu.

Figure 2-115. [Compile] Item

(2) When assembling an assembler source file

Select an assembler source file on the project tree and select the [Assemble] from the context menu.

Figure 2-116. [Assemble] Item

CubeSuite Ver.1.30 CHAPTER 2 FUNCTIONS

R20UT0005EJ0100 Rev.1.00 Page 85 of 573
Jul 01, 2010

2.16.6 Stop running a build

To stop running a build, rebuild, or batch build, click on the toolbar.

2.16.7 Save the build results to a file

You can save the execution results of the build (output messages of the build tool) that displayed on the Output panel.

Select the [Build Tool] tab on the panel, and then select [Save Output - Build Tool As...] from the [File] menu. The Save

As dialog box opens.

Figure 2-117. Save As Dialog Box

In the dialog box, specify the file to be saved and then click the [Save] button.

2.16.8 Delete intermediate files and generated files

You can delete all the intermediate files and generated files output by running a build (hereafter referred to as "clean").

Running a clean is performed for the entire project (main project and subprojects) or active project (see "2.15.4

Change the file build target project").

CubeSuite Ver.1.30 CHAPTER 2 FUNCTIONS

R20UT0005EJ0100 Rev.1.00 Page 86 of 573
Jul 01, 2010

(1) When running a clean of the entire project

From the [Build] menu, select [Clean Project].

Figure 2-118. [Clean Project] Item

(2) When running a clean of the active project

Select the project, and then select [Clean active project] from the context menu.

Figure 2-119. [Clean active project] Item

CubeSuite Ver.1.30 CHAPTER 2 FUNCTIONS

R20UT0005EJ0100 Rev.1.00 Page 87 of 573
Jul 01, 2010

2.17 Using Stack Usage Tracer

The stack usage tracer performs a static analysis, and displays the functions called by a function in a tree format, as

well as stack information for each function (function name, total stack size, frame size, additional margin, and file name) in

list format.

2.17.1 Starting and exiting

To start the stack usage tracer, from the Main window, select the [Tool] menu >> [Startup Stack Usage Tracer].

After the stack usage tracer finishes starting up, it will display the function call relationship and stack information for

each function in the tree display area/list display area of the Stack Usage Tracer window.

Figure 2-120. Starting Up Stack Usage Tracer

To exit the stack usage tracer, from the Stack Usage Tracer window, select [File] menu >> [Exit sk78k0].

CubeSuite Ver.1.30 CHAPTER 2 FUNCTIONS

R20UT0005EJ0100 Rev.1.00 Page 88 of 573
Jul 01, 2010

2.17.2 Check the call relationship

You can check the function-call relationship in the tree display area of the Stack Usage Tracer window.

Figure 2-121. Tree Display Area

Remark The table below shows the meaning of the icon displayed to the left of the string representing the function

name.

The display priority for icons is from High: to Low: .

The function directly called by a given function with the largest total stack size

Information (additional margin, recursion depth, or callee functions) has been modified via the Adjust

Stack Size dialog box or a stack size specification file

Recursive function

The stack usage tracer has not acquired any stack information for this function

Other than the above

CubeSuite Ver.1.30 CHAPTER 2 FUNCTIONS

R20UT0005EJ0100 Rev.1.00 Page 89 of 573
Jul 01, 2010

2.17.3 Check the stack information

You can check the stack information (function name, total stack size, frame size, additional margin, and file name) from

the list display area of the Stack Usage Tracer window.

- Total stack size (including stack size of callee functions)

- Frame size (not including stack size of callee functions)

- Additional margin (value mandatorily added to frame size)

Figure 2-122. List Display Area

Remark If you make changes to the project that will affect the total stack size while the stack usage tracer is running

(e.g. you edit the files in your project so that the total stack size changes), then after rebuilding the project,

click to update the display.

CubeSuite Ver.1.30 CHAPTER 2 FUNCTIONS

R20UT0005EJ0100 Rev.1.00 Page 90 of 573
Jul 01, 2010

2.17.4 Check unknown functions

You can check functions for which the stack usage tracer could not obtain stack information in the Stack Size Unknown

/ Adjusted Function Lists dialog box, under [Unknown Functions].

Figure 2-123. Stack Size Unknown / Adjusted Function Lists Dialog Box

Remark Functions will appear under [Unknown Functions] in the following circumstances.

- The frame size could not be measured.

- A recursive function for which the recursion depth has not been set in the Adjust Stack Size dialog box.

- The function includes indirect function calls which are not set as callee functions in the Adjust Stack Size

dialog box.

CubeSuite Ver.1.30 CHAPTER 2 FUNCTIONS

R20UT0005EJ0100 Rev.1.00 Page 91 of 573
Jul 01, 2010

2.17.5 Change the frame size

You can dynamically change the frame size of functions for which the stack usage tracer was not able to obtain stack

information, or for functions that you intentionally want to modify, using the Adjust Stack Size dialog box or a stack size

specification file.

(1) Using the Adjust Stack Size dialog box

The procedure for using the Adjust Stack Size dialog box is as follows.

- Select the desired item in the tree display area of the Stack Usage Tracer window, then click toolbar >> .

The Adjust Stack Size dialog box opens.

Figure 2-124. Adjust Stack Size Dialog Box

- After setting [Additional Margin], [Recursion Depth], and [Callee Functions], click the [OK] button.

CubeSuite Ver.1.30 CHAPTER 2 FUNCTIONS

R20UT0005EJ0100 Rev.1.00 Page 92 of 573
Jul 01, 2010

(2) Using a stack size specification file

Below is the procedure for using a stack size specification file.

- Create a stack size specification file

Write the functions in the stack size specification file that you would like to set dynamically, using the following

format.

function name [, ADD=additional margin] [, RECTIME=recursion depth] [, CALL=callee function] ...

Figure 2-125. Sample Stack Size Specification File

- From the Stack Usage Tracer window, select [File] menu >> [Load Stack Size Specification File...]. The Open

dialog box opens. Specify the stack size specification file, then click the [Open] button.

Set the frame size of function "_flib" written in assembly

language to 50

[flib], ADD=50

Set the frame size of function "sub2" written in C to 100

sub2, ADD=100

#Set the recursion depth of recursive function "sub3" written

in C to 123

sub3, RECTIME=123

CubeSuite Ver.1.30 CHAPTER 3 BUILD OUTPUT LISTS

R20UT0005EJ0100 Rev.1.00 Page 93 of 573
Jul 01, 2010

CHAPTER 3 BUILD OUTPUT LISTS

This chapter describes format and other aspects of lists output by the build via various commands.

3.1 C Compiler

The C compiler outputs the following files.

- Assembler source file

- Error list file

- Preprocess list file

- Cross reference list file

Remark See “B.1.1 I/O files” for details about input and output files of the C compiler.

3.1.1 Assembler source file

The assembler source file is an ASCII image list of C source compilation results, and is a source file in assembly lan-

guage that corresponds to the target C source program.

It can also include the C source to this file as comments by setting the assembler source file creation specification

option (-sa).

To configure the assembler source file output in CubeSuite, on the Project Tree panel, select the Build tool node, then

on the Property panel, make the settings from the [Compile Options] tab. In the [Assembly File] category, set the [Output

an assemble file] property to [Yes]. The output destination is the folder set from the [Common Options] tab, in the [Output

File Type And Path] category, in the [Intermediate file output folder] property.

; 78K0 C Compiler V(1)x.xx Assembler Source Date:(2)xx xxx xxxx Time:(3)xx:xx:xx

; Command : (4)-cF051144 prime.c –sa

; In-file : (5)prime.c

; Asm-file : (6)prime.asm

; Para-file : (7)

 $PROCESSOR((8)F051144)

(9) $DEBUG

(10)$NODEBUGA

(11)$KANJICODE SJIS

(12)$TOL_INF 03FH , 0330H , 02H , 020H , 00H

(13)$DGS FIL_NAM , .file , 034H , 0FFFEH , 03FH , 067H , 01H , 00H

 :

(14) EXTRN _@RTARG0

 :

 ; line (15)1 : (16)#define TRUE 1

 ; line (15)2 : (16)#define FALSE 0

 ; line (15)3 : (16)#define SIZE 200

 :

(14)_main :

(17)$DGL 1 , 14

CubeSuite Ver.1.30 CHAPTER 3 BUILD OUTPUT LISTS

R20UT0005EJ0100 Rev.1.00 Page 94 of 573
Jul 01, 2010

(14) push hl ; (21)[INF] 1 , 4

(14) push ax ; (21)[INF] 1 , 4

(14) push ax ; (21)[INF] 1 , 4

(14) push ax ; (21)[INF] 1 , 4

 :

(18)??bf_main :

 :

 ; (22)*** Code Information ***

 ;

 ; (23)$FILE C:\Program Files\NEC Electronics CubeSuite\CubeSuite\CA78K0\Vx.xx\
smp78k0\CC78K0\prime.c

 ; (24)$FUNC main (8)

 ; (25) bc = (void)

 ; (26) CODE SIZE = 218 bytes , CLOCK_SIZE = 678 clocks , STACK_SIZE = 14 bytes

 ;

 ; (27)$CALL printf (18)

 ; (28) bc = (pointer:ax , int : [sp + 2])

 ;

 ; (27)$CALL putchar (20)

 ; (28) bc = (int : ax) ;

 ;

 ; (27)$CALL printf (25)

 ; (28) bc = (pointer : ax , int : [sp + 2])

 ;

 ; (24)$FUNC printf (31)

 ; (25) bc = (pointer s :ax , int i : [sp + 2])

 ; (26) CODE SIZE = 30 bytes , CLOCK_SIZE = 116 clocks , STACK_SIZE = 8 bytes

 ;
 ; (24)$FUNC putchar (41)

 ; (25) bc = (char c : x)

 ; (26) CODE SIZE = 14 bytes , CLOCK_SIZE = 58 clocks , STACK_SIZE = 6 bytes

 ; Target chip : (19)uPD78F0511_44

 ; Device file : (20)Vx.xx

Item

Number

Description Format

(1) Version number Displayed in "x.yz" format

(2) Date System date (Displayed in "DD Mmm YYYY" format)

(3) Time System time (Displayed in "HH:MM:SS" format)

(4) Command line Outputs the command line contents following "CC78K0".

Contents after column 80 are output beginning at column 15 on the next line. A

semicolon (;) is output to column 1. One or more white-space characters or

tabs are replaced by a single white-space character.

CubeSuite Ver.1.30 CHAPTER 3 BUILD OUTPUT LISTS

R20UT0005EJ0100 Rev.1.00 Page 95 of 573
Jul 01, 2010

(5) C source file name Outputs the specified file name.

If the file type is omitted, ".c" is attached as the file type (extension). Contents

after column 80 are output beginning at column 15 on the next line. A semico-

lon (;) is output to column 1.

(6) Assembler source file name Outputs the specified file name.

If the file type is omitted, ".asm" is attached as the file type (extension). Con-

tents after column 80 are output beginning at column 15 on the next line. A

semicolon (;) is output to column 1.

(7) Parameter file contents Outputs the parameter file contents.

Contents after column 80 are output beginning at column 15 on the next line. A

semicolon (;) is output to column 1. One or more white-space characters or

tabs are replaced by a single white-space character.

(8) Device type This character string is specified via the -c option.

(9) Debug information Outputs DEBUG control.

Output is either $DEBUG or $NODEBUG.

(10) Debug information control of

assembler

Outputs NODEBUGA control.

Output is $NODEBUGA.

(11) Kanji type information Outputs the kanji code (2-byte code) type.

Output is $KANJICODE SJIS, $KANJICODE EUC, or $KANJICODE NONE.

(12) Tool information Outputs tool information, version number, error information, specified options,

etc. (information starts with $TOL_INF).

(13) Symbol information Outputs symbol information (information starts with $DGS).

This information is output only when the debug information output option has

been specified. Even then, it is not output if the -g1 option has been specified.

(14) Assembler source Outputs an assembler source file containing the compilation results.

(15) Line number Outputs the C source module file's line numbers as right-aligned decimal value

with zeros suppressed.

(16) C source This is the input C source image.

Contents after column 80 are output beginning at column 16 on the next line. A

semicolon (;) is output to column 1.

(17) Line number information Outputs the line number for line number entry (information starts with $DGL).

This information is output only when the debug information output option has

been specified. Even then, it is not output if the -g1 option has been specified.

(18) Labels for symbol information

creation

Outputs function label information (information starts with ??).

This information is output only when the debug information output option has

been specified.

(19) Target device for this compiler Displays the target device as specified via command line option (-c) or the

source file.

(20) Device file version Displays the version number of the input device file.

Item

Number

Description Format

CubeSuite Ver.1.30 CHAPTER 3 BUILD OUTPUT LISTS

R20UT0005EJ0100 Rev.1.00 Page 96 of 573
Jul 01, 2010

3.1.2 Error list file

An error list file contains messages regarding any errors and warnings that occurred during compilation.

The C source can be added to the error list by specifying a compile option. An error list file that contains a C source

can be used as a C source file by revising the C source and deleting comments, such as the list header.

To configure the error list file output in CubeSuite, on the Project Tree panel, select the Build tool node, then on the

Property panel, make the settings from the [Compile Options] tab. In the [List File] category, set the [Output error list file]

property to [Yes]. The output destination is the folder set from the [Common Options] tab, in the [Output File Type And

Path] category, in the [Intermediate file output folder] property.

- Error list file with C source

(21) Size, clock Outputs size and clock for output instructions. (Information starting with ;[INF]).

If the number of clocks cannot be determined for an output instruction, clocks

are output in the following format: "clock 1/clock 2."

Clock 1:

The number of clocks when accessing the internal high-speed RAM area

Clock 2:

The number of clocks when accessing the area other than the internal high-

speed RAM area

This is ignored when accessing peripheral hardware that generates waits,

because the number of wait clocks is unknown.

(22) Function information (start) Indicates start of function information.

(23) Function information (file

name)

Outputs target source file name with full path. (Information starting with ;$FILE).

(24) Function information (defini-

tion function)

Outputs function name and defined line number as decimal code. (Information

starting with ;$FUNC).

(25) Function information (return

value, argument of definition

function)

Outputs the definition function's return value register and argument information

(register or stack position).

(26) Function information (defini-

tion function's size, clock,

stack)

Outputs the size, clock, and maximum consumption stacks calculated statically

for the definition function.

The value for the total number of clocks is the cumulative value for the number

of clocks displayed. For this reason, the number of clocks will differ from the

actual measurement if there is a branch.

(27) Function information (call

function)

Outputs the function name and function call line number as decimal code. (Infor-

mation starting with ;$CALL).

(28) Function information (Call

function's return value, argu-

ment)

Outputs return value register and argument information during function call (reg-

ister or stack position).

Item

Number

Description Format

CubeSuite Ver.1.30 CHAPTER 3 BUILD OUTPUT LISTS

R20UT0005EJ0100 Rev.1.00 Page 97 of 573
Jul 01, 2010

/*

78K0 C Compiler V(1)x.xx Error List Date:(2)xx xxx xxxx Time:(3)xx:xx:xx

Command : (4)-cF051144 prime.c -se

C-file : (5)prime.c

Err-file : (6)prime.cer

Para-file : (7)

*/

(8) #define TRUE 1

(8) #define FALSE 0

(8) #define SIZE 200

(8) char mark [SIZE + 1] ;

(8) void main () {

(8) int i , prime , k , count ;

(8) cont = 0 ;

 *** CC78K0 error (9)E0711: (10)Undeclared 'cont' ; function 'main'

(8) for (i = 0 ; i <= SIZE ; i++)

(8) mark [i] = TRUE ;

(8) for (i = 0 ; i <= SIZE ; i++) {

(8) if (mark [i]) {

(8) prime = i + i + 3 ;

(8) printf ("%6d" , prime) ;

 *** CC78K0 warning (9)W0745: (10)Expected function prototype

 :

/*

(11)Target chip : uPD78F0511_44

(12)Device file : Vx.xx

Compilation complete, (13)1 error(s) and (14)5 warning(s) found.

*/

Item

Number

Description Format

(1) Version number Displayed in "x.yz" format

(2) Date System date

(Displayed in "DD Mmm YYYY" format)

(3) Time System time

(Displayed in "HH:MM:SS" format)

(4) Command line Outputs the command line contents following "CC78K0".

Contents after column 80 are output beginning at column 13 on the next

line. One or more white-space tabs are replaced by a single white-space

character.

CubeSuite Ver.1.30 CHAPTER 3 BUILD OUTPUT LISTS

R20UT0005EJ0100 Rev.1.00 Page 98 of 573
Jul 01, 2010

- Error list file with error message only

(5) C source file name Outputs the specified file name.

If the file type is omitted, ".c" is attached as the file type (extension). Con-

tents after column 80 are output beginning at column 13 on the next line.

(6) Error list file name Outputs the specified file name.

If the file type is omitted, ".cer" is attached.

Contents after column 80 are output beginning at column 13 on the next

line.

(7) Parameter file contents Outputs the parameter file contents.

Contents after column 80 are output beginning at column 13 on the next

line. One or more white-space tabs are replaced by a single white-space

character.

(8) C source This is the input C source image.

Contents after column 80 are not wrapped to the next line.

(9) Error message number Outputs error numbers in the "#nnnn" format.

"F" is output if "#" is an abort error, "E" if it is a fatal error, "C" if is an Internal

error, and "W" if it is a warning.

"nnnn" (the error number) is displayed as a 4-digit decimal number (no zero

suppression).

(10) Error message Outputs error messages.

Contents after column 80 are not wrapped to the next line.

(11) Target device for this compiler Displays the target device as specified via command line option (-c) or the

source file.

(12) Device file version Displays the version number of the input device file.

(13) Number of errors Outputs a right-aligned decimal value with zeroes suppressed.

(14) Number of warnings Outputs a right-aligned decimal value with zeroes suppressed.

(1) prime.c ((2)18) : CC78K0 warning (3)W0745: (4)Expected function prototype

(1) prime.c ((2)20) : CC78K0 warning (3)W0745: (4)Expected function prototype

(1) prime.c ((2)26) : CC78K0 warning (3)W0622: (4)No return value

(1) prime.c ((2)37) : CC78K0 warning (3)W0622: (4)No return value

(1) prime.c ((2)44) : CC78K0 warning (3)W0622: (4)No return value

 Target chip : (5)uPD78F0511_44

 Device file : (6)Vx.xx

Compilation complete, (7)0 error(s) and (8)5 warning(s) found.

Item

Number

Description Format

(1) C source file name Outputs the specified file name.

If the file type is omitted, ".c" is attached as the file type (extension).

(2) Line number Outputs a right-aligned decimal value with zeroes suppressed.

Item

Number

Description Format

CubeSuite Ver.1.30 CHAPTER 3 BUILD OUTPUT LISTS

R20UT0005EJ0100 Rev.1.00 Page 99 of 573
Jul 01, 2010

3.1.3 Preprocess list file

The preprocess list file is an ASCII image file that contains results of C source preprocessing only.

When specifying the -k option, a preprocess list file can be used as a C source file unless "n" has been specified as the

processing type. When the -kd option is specified, the list with #define expansion is output.

To configure the preprocess list file output in CubeSuite, on the Project Tree panel, select the Build tool node, then on

the Property panel, make the settings from the [Compile Options] tab. Select [Yes(-p)] on the [Output preprocess list file]

property in the [List File] category. The output destination is the folder set from the [Common Options] tab, in the [Output

File Type And Path] category, in the [Intermediate file output folder] property.

If PAGEWIDTH is 80, the result is as follows.

(3) Error message number Outputs error numbers in the "#nnnn" format.

"F" is output if "#" is an abort error, "E" if it is a fatal error, "C" if is an Internal

error, and "W" if it is a warning.

"nnnn" (the error number) is displayed as a 4-digit decimal number (no zero

suppression).

(4) Error message Outputs error messages.

(5) Target device for this compiler Displays the target device as specified via command line option -c or the

source file.

(6) Device file version Displays the version number of the input device file.

(7) Number of errors Outputs a right-aligned decimal value with zeroes suppressed.

(8) Number of warnings Outputs a right-aligned decimal value with zeroes suppressed.

/*

78K0 C Compiler V(1)x.xx Preprocess List Date:(2)xx xxx xxxx Page: (3)xxxx

Command : (4)-cF051144 prime.c -p -lw80

In-file : (5)prime.c

PPL-file : (6)prime.ppl

Para-file : (7)

*/

 (8) 1 : (9)#define TRUE 1

 (8) 2 : (9)#define FALSE 0

 (8) 3 : (9)#define SIZE 200

 (8) 4 : (9)

 (8) 5 : (9)char mark [SIZE + 1] ;

 (8) 6 : (9)

/*

 (10)Target chip : uPD78F0511_44

 (11)Device file : Vx.xx

*/

Item

Number

Description Format

CubeSuite Ver.1.30 CHAPTER 3 BUILD OUTPUT LISTS

R20UT0005EJ0100 Rev.1.00 Page 100 of 573
Jul 01, 2010

3.1.4 Cross reference list file

Cross-reference list files contain lists of identifiers such as declarations, definitions, referenced functions, and vari-

ables. They also include other information, such as attributes and line numbers. These are output in the order they are

found.

To configure the cross reference list file output in CubeSuite, on the Project Tree panel, select the Build tool node, then

on the Property panel, make the settings from the [Compile Options] tab. Select [Yes(-x)] on the [Output cross reference

list file] property in the [List File] category. The output destination is the folder set from the [Common Options] tab, in the

[Output File Type And Path] category, in the [Intermediate file output folder] property.

If PAGEWIDTH is 80, the result is as follows.

Item

Number

Description Format

(1) Version number Displayed in "x.yz" format

(2) Date System date

(Displayed in "DD Mmm YYYY" format)

(3) Number of pages Outputs a right-aligned decimal value with zeroes suppressed.

(4) Command line Outputs the command line contents following "CC78K0".

Contents that exceed the line length are output beginning at column 13 on the

next line. One or more white-space tabs are replaced by a single white-space

character.

(5) C source file name Outputs the specified file name.

If the file type is omitted, ".c" is attached as the file type (extension). Contents

that exceed the line length are output beginning at column 13 on the next line.

(6) Preprocess list file name Outputs the specified file name.

If the file type is omitted, ".ppl" is attached. Contents that exceed the line length

are output beginning at column 13 on the next line.

(7) Parameter file contents Outputs the parameter file contents.

Contents that exceed the line length are output beginning at column 13 on the

next line. A semicolon ";" is output to column 1. One or more white-space tabs

are replaced by a single white-space character.

(8) Line number Outputs a right-aligned decimal value with zeroes suppressed.

(9) C source This is the input C source.

Contents that exceed the line length are output beginning at column 9 on the

next line.

(10) Target device for this compiler Displays the target device as specified via command line option (-c) or the

source file.

(11) Device file version Displays the version number of the input device file.

CubeSuite Ver.1.30 CHAPTER 3 BUILD OUTPUT LISTS

R20UT0005EJ0100 Rev.1.00 Page 101 of 573
Jul 01, 2010

78K0 C Compiler V(1)x.xx Cross reference List Date:(2)xx xxx xxxx Page: (3)xxxx

Command : (4)-cF051144 prime.c -x -lw80

In-file : (5)prime.c

Xref-file : (6)prime.xrf

Para-file : (7)

Inc-file : (8)[n]

(9)ATTRIB (10)MODIFY (11)TYPE (12)SYMBOL (13)DEFINE (14)REFERENCE

 EXTERN array mark 5 14 16 22

 EXTERN func main 7

 AUTO1 int i 9 13 13 13 14

 15 15 15 16

 17 17 21

 AUTO1 int prime 9 17 18 21 21

 AUTO1 int k 9 21 21 21 22

 AUTO1 int count 9 11 19 20 25

 :

/*

 (15)Target chip : uPD78F0511_44

 (16)Device file : Vx.xx

*/

Item

Number

Description Format

(1) Version number Displayed in "x.yz" format

(2) Date System date

(Displayed in "DD Mmm YYYY" format)

(3) Number of pages Outputs a right-aligned decimal value with zeroes suppressed.

(4) Command line Outputs the command line contents following "CC78K0".

Contents that exceed the line length are output beginning at column 13 on the

next line. One or more white-space tabs are replaced by a single white-space

character.

(5) C source file name Outputs the specified file name.

If the file type is omitted, ".c" is attached as the file type (extension). Contents

that exceed the line length are output beginning at column 13 on the next line.

(6) Cross reference list file name Outputs the specified file name.

If the file type is omitted, ".xrf" is attached. Contents that exceed the line length

are output beginning at column 13 on the next line.

(7) Parameter file contents Outputs the parameter file contents.

Contents that exceed the line length are output beginning at column 13 on the

next line. One or more white-space tabs are replaced by a single white-space

character.

CubeSuite Ver.1.30 CHAPTER 3 BUILD OUTPUT LISTS

R20UT0005EJ0100 Rev.1.00 Page 102 of 573
Jul 01, 2010

(8) Include file Displays the target device as specified via command line option (-c) or the

source file.

"n" is a number starting with "1" that indicates the include file number. Contents

that exceed the line length are output beginning at column 13 on the next line.

This line is not output when there is no include file.

(9) Symbol attribute Displays the symbol attributes.

An external variable is displayed as EXTERN, an external static variable as

EXSTC, an internal static variable as INSTC, an auto variable as AUTOnn, a

register variable as REGnn (where nn is the scope value, a numerical value that

begins with "1"), an external typedef declaration as EXTYP, an internal typedef

declaration as INTYP, a label as LABEL, a structure or union tag as TAG, a

member as MEMBER, and a function parameter as PARAM.

(10) Symbol qualifier attributes Displays the symbol qualifier attributes (left-aligned).

A const variable is displayed as CONST, a volatile variable as VLT, a callt func-

tion as CALLT, a callf function as CALLF, a noauto function as NOAUTO, a

norec function as NOREC, an sreg-bit variable as SREG, an sfr variable as

RWSFR, a read-only sfr variable as ROSFR, a write-only sfr variable as

WOSFR, an interrupt function as VECT.

(11) Symbol type Displays the symbol type.

Types include char, int, short, long, and field. "u" is added at the start for

unsigned type.

Additional types include void, float, double, ldouble (long double), func, array,

pointer, struct, union, enum, bit, inter, and #define.

(12) Symbol name If the symbol name exceeds 15 characters and fit into a line, that name is output

as it is. If it exceeds 15 characters and one line, the excess is output from col-

umn 23 on the next line and items (13) and (14) are output from column 39 on

the next line.

(13) Symbol definition line number This outputs the line number and file name defined for the symbol, and is dis-

played as: line number (5-digit): include file number (2-digit)

(14) Symbol reference line number This outputs the line number and file name that reference the symbol, and is

displayed as: line number (5-digit): include file number (2-digit)

If the line contents exceed the line length, the remaining contents are output

beginning at column 47 of the next line.

(15) Target device for this compiler Displays the target device as specified via command line option (-c) or the

source file.

(16) Device file version Displays the version number of the input device file.

Item

Number

Description Format

CubeSuite Ver.1.30 CHAPTER 3 BUILD OUTPUT LISTS

R20UT0005EJ0100 Rev.1.00 Page 103 of 573
Jul 01, 2010

3.2 Assembler

The assembler outputs the following list.

To configure the assemble list file output in CubeSuite, on the Project Tree panel, select the Build tool node, then on the

Property panel, make the settings from the [Assemble Options] tab. Select [Yes(-p)] on the [Output assemble list file]

property in the [Assemble List] category. To output the error list file, in the [Output File] category, set the [Output error list

file] property to [Yes(-e)]. The output destination is the folder set from the [Common Options] tab, in the [Output File Type

And Path] category, in the [Intermediate file output folder] property.

Remark See "B.2.1 I/O files" for details about input and output files of the assembler.

3.2.1 Assemble list file headers

The header is always output at the beginning of an assemble list file.

Output List File Name Output List Name

Assemble list file Assemble list file headers

Assemble list

Symbol list

Cross reference list

Error list file Error list

78K0 Assembler (1)Vx.xx (2)SAMPLE_TITLE Date:(3)xx xxx xxxx Page: (4)xxxx

(5)SAMPLE_SUBTITLE

Command: (6) k0main.asm -cF051144

Para-file: (7) -ks -kx

In-fine: (8) k0main.asm

Obj-file: (9) k0main.rel

Prn-file: (10)k0main.prn

Item

Number

Description Format

(1) Assembler version number Displayed in "x.yz" format

(2) Title character string Outputs the character string specified by the -lh option or TITLE control instruc-

tion.

(3) Date of assemble list creation Date of assemble list creation (Displayed in "DD Mmm YYYY" format)

(4) Page number Outputs a right-aligned decimal value with zeroes suppressed.

(5) Subtitle character string Outputs the character string specified by SUBTITLE control instruction.

(6) Command line Outputs the command line contents.

Contents that exceed the line length are output beginning at column 11 on the

next line. One or more white-space tabs are replaced by a single white-space

character.

(7) Parameter file contents Outputs the parameter file contents.

Contents that exceed the line length are output beginning at column 11 on the

next line. One or more white-space tabs are replaced by a single white-space

character.

CubeSuite Ver.1.30 CHAPTER 3 BUILD OUTPUT LISTS

R20UT0005EJ0100 Rev.1.00 Page 104 of 573
Jul 01, 2010

3.2.2 Assemble list

The assemble list outputs the results of the assemble with error messages (if errors occur).

To configure the assemble list output in CubeSuite, on the Project Tree panel, select the Build tool node, then on the

Property panel, make the settings from the [Assemble Options] tab. Select [Yes(-p)] on the [Output assemble list file]

property in the [Assemble List] category.

(8) Input source file name Outputs the specified file name.

If the file type is omitted, ".asm" is attached as the file type (extension). Con-

tents that exceed the line length are output beginning at column 11 on the next

line.

(9) Output object module file

name

Outputs the specified file name.

If the file type is omitted, ".ref" is attached. Contents that exceed the line length

are output beginning at column 11 on the next line.

(10) Print file name Outputs the specified file name.

If the file type is omitted, ".prn" is attached. Contents that exceed the line length

are output beginning at column 11 on the next line.

 Assemble list

(1)ALNO (2)STNO (6)ADRS (8)OBJECT (3)M (4)I (5)SOURCE STATEMENT

 1 1

 2 2 NAME SAMPM

 :

 28 28

 29 29 0006 R220000 CALL !CONVAH

 ; convert ASCII <- HEX

 30 30 ; output BC-register <- ASCII code

 31 31 0009 00000000 MOV DE , #STASC

 ; set DE <- store ASCII code table

(7)*** ERROR E2202, STNO 31 (0) Illegal operand

 000D 00

 32 32 000E 0A27 MOV A , B

 33 33 0010 EB MOV [DE] , A

 :

Segment informations :

(9)ADRS (10)LEN (11)NAME

 FE20 0003H DATA

 0000 0002H CODE

 0000 0017H ?CSEG

 Target chip : (12)uPD78xxx

Item

Number

Description Format

CubeSuite Ver.1.30 CHAPTER 3 BUILD OUTPUT LISTS

R20UT0005EJ0100 Rev.1.00 Page 105 of 573
Jul 01, 2010

3.2.3 Symbol list

A symbol list outputs the symbols (including local symbols) defined in a source.

To configure the symbol list output in CubeSuite, on the Project Tree panel, select the Build tool node, then on the Prop-

erty panel, make the settings from the [Assemble Options] tab. Select [Yes(-ks)] on the [Output with symbol list] property

in the [Assemble List] category.

 Device file : (13)Vx.xx

Assembly complete, (14)1 error(s) and (15)0 warning(s) found. ((16)31)

Item

Number

Description Format

(1) Line number of source image Outputs a right-aligned decimal value with zeroes suppressed.

(2) Line number Outputs a right-aligned decimal value with zeroes suppressed.

The expansion of INCLUDE files and macros are included.

(3) Macro display Displays a macro.

- M: This is a macro definition line.

- #n: This is a macro expansion line. "n" is the nest level.

- Blank: This is not a macro definition or expansion line.

(4) INCLUDE display Displays INCLUDE.

- In: Within an INCLUDE file. "n" is the nest level.

- Blank: An INCLUDE file is not used.

(5) Source statement Displays source statements.

Contents that exceed the line length are output beginning on the next line.

(6) Location counter value The line's start address appears as the label for machine instructions DB, DW,

DS, and DBIT.

It is displayed in hexadecimal format without zero suppression.

It is displayed in hexadecimal format without zero suppression.

(7) Line on which error occurred This is a line on which error occurred. Required items are displayed.

(8) Relocation information Displays relocation information.

- R: Object code or symbol value is changed by the linker.

- Blank: Object code or symbol value is not changed by the linker.

(9) Segment address Displays a start address of a segment.

It is displayed in hexadecimal format without zero suppression.

(10) Segment size Displays the segment size.

It is displayed in hexadecimal format without zero suppression.

(11) Segment name Displays a segment name.

(12) Target device for this assem-

bler

Displays the target device as specified via command line option (-c) or the

source file.

(13) Device file version number Displays the version number of the input device file.

(14) Number of fatal errors Outputs a right-aligned decimal value with zeroes suppressed.

(15) Number of warnings Outputs a right-aligned decimal value with zeroes suppressed.

(16) Final error line Outputs a right-aligned decimal value with zeroes suppressed.

CubeSuite Ver.1.30 CHAPTER 3 BUILD OUTPUT LISTS

R20UT0005EJ0100 Rev.1.00 Page 106 of 573
Jul 01, 2010

3.2.4 Cross reference list

A cross reference list outputs data indicating where (on what line) symbols are defined in a source.

To configure the cross reference list output in CubeSuite, on the Project Tree panel, select the Build tool node, then on

the Property panel, make the settings from the [Assemble Options] tab. Select [Yes(-kx)] on the [Output with cross refer-

ence list] property in the [Assemble List] category.

 Symbol Table List

(1)VALUE (2)ATTR (3)RTYP (4)NAME

 CSEG ?CSEG

 ----H EXT CONVAH

 FE20H ADDR HDTSA

 MOD SAMPM

 FE21H ADDR STASC

(1)VALUE (2)ATTR (3)RTYP (4)NAME

 CSEG CODE

 DSEG DATA

 0H ADDR PUB MAIN

 0H ADDR PUB START

Item

Number

Description Format

(1) Symbol value Displays a value with a symbol.

Outputs a right-aligned hexadecimal number with zeros suppressed.

(2) Symbol attributes Displays the symbol attributes. (left-aligned)

- CSEG: Code segment name

- DSEG: Data segment name

- BSEG: Bit segment name

- MAC: Macro name

- MOD: Module name

- SET: Symbol defined by SET directive

- NUM: NUMBER attribute symbol

- ADDR: ADDRESS attribute symbol

- BIT: BIT attribute symbol (addr.bit)

- SABIT: BIT attribute symbol (saddr.bit)

- SFBIT: BIT attribute symbol (sfr.bit)

- RBIT: BIT attribute symbol (A.bit, X.bit, PSW.bit)

- SFR: Names defined as SFRs by EQU directive

- SFRP: Names defined as SFRPs by EQU directive

- Blank: External reference symbol declared by EXTRN or EXTBIT

- *****: Undefined symbol

(3) Symbol reference format Displays the symbol reference format. (left-aligned)

- EXT: External reference symbol declared by EXTRN (SADDR attribute)

- EXTB: External reference symbol declared by EXTBIT (saddr.bit)

- PUB: External reference symbol declared by PUBLIC

- Blank: Local symbol, segment name, macro name, module name

- *****: Undefined symbol

(4) Defined symbol name Displays the defined symbol name. (left-aligned)

CubeSuite Ver.1.30 CHAPTER 3 BUILD OUTPUT LISTS

R20UT0005EJ0100 Rev.1.00 Page 107 of 573
Jul 01, 2010

 Cross-Reference List

(1)NAME (2)VALUE (3)R (4)ATTR (5)RTYP (6)SEGNAME (7)XREFS

 ?CSEG CSEG ?CSEG 21#

 CODE CSEG CODE 18#

 CONVAH ----H E EXT 12 29

 DATA DSEG DATA 14#

 HDTSA FE20H ADDR DATA 15# 26

 MAIN 0H ADDR PUB CODE 11@ 19#

 SAMPM MOD 2#

 START 0H R ADDR PUB ?CSEG 11@ 19 22#

 STASC FE21H ADDR DATA 16# 31

Item

Number

Description Format

(1) Defined symbol name Displays the defined symbol name. (left-aligned)

If the symbol name exceeds 16 characters, that name is output as it is. Items

(2), (4), (5), (6), (7) and (8) are output from the next line.

(2) Symbol value Displays a value with a symbol.

Outputs a right-aligned hexadecimal number with zeros suppressed.

(3) Relocation attributes Displays the relocation attributes.

- R: Relocatable symbol

- E: External symbol

- Blank: Absolute symbol

- *: Undefined symbol

(4) Symbol attributes Displays the symbol attributes. (left-aligned)

- CSEG: Code segment name

- DSEG: Data segment name

- BSEG: Bit segment name

- MAC: Macro name

- MOD: Module name

- SET: Symbol defined by SET directive

- NUM: NUMBER attribute symbol

- ADDR: ADDRESS attribute symbol

- BIT: BIT attribute symbol (addr.bit)

- SABIT: BIT attribute symbol (saddr.bit)

- SFBIT: BIT attribute symbol (sfr.bit)

- RBIT: BIT attribute symbol (A.bit, X.bit)

- SFR: Names defined as SFRs by EQU directive

- SFRP: Names defined as SFRPs by EQU directive

- Blank: External reference symbol declared by EXTRN or EXTBIT

- *****: Undefined symbol

CubeSuite Ver.1.30 CHAPTER 3 BUILD OUTPUT LISTS

R20UT0005EJ0100 Rev.1.00 Page 108 of 573
Jul 01, 2010

3.2.5 Error list

An error list stores the error messages output when the assembler is started up.

Remark The file name and the line where the error occurred may not be displayed.

(5) Symbol reference format Display the symbol reference format. (left-aligned)

- EXT: External reference symbol declared by EXTRN (SADDR attribute)

- EXTB: External reference symbol declared by EXTBIT (saddr.bit)

- PUB: External reference symbol declared by PUBLIC

- Blank: Local symbol, segment name, macro name, module name

- *****: Undefined symbol

(6) Defined segment name Displays a segment name that a symbol is defined. (left-aligned)

(7) Definition/reference line num-

ber

Displays the definition/reference line number.

- Definition line: xxxxx#

- Reference line: xxxxx Δ (Δ = 1 blank)

- EXTRN declaration, EXTBIT declaration, PUBLIC declaration: xxxxx@

PASS1 Start

(1)ERROR.ASM((2)26) : RA78K0 (3)error (4)E2202: (5)Illegal operand

(1)ERROR.ASM((2)32) : RA78K0 (3)error (4)E2202: (5)Illegal operand

PASS2 Start

(1)ERROR.ASM((2)26) : RA78K0 (3)error (4)E2202: (5)Illegal operand

(1)ERROR.ASM((2)29) : RA78K0 (3)error (4)E2407: (5)Undefined symbol reference 'DTSA'

(1)ERROR.ASM((2)29) : RA78K0 (3)error (4)E2303: (5)Illegal expression

(1)ERROR.ASM((2)32) : RA78K0 (3)error (4)E2202: (5)Illegal operand

(1)ERROR.ASM((2)37) : RA78K0 (3)error (4)E2407: (5)Undefined symbol reference 'F'

(1)ERROR.ASM((2)37) : RA78K0 (3)error (4)E2303: (5)Illegal expression

Item

Number

Description Format

(1) Name of source file in which

error occurred

Outputs the name of source file in which error occurred.

(2) Line on which error occurred Outputs a left-aligned value with zeroes suppressed.

(3) Type of error Outputs the type of error.

(4) Error number Outputs error numbers in the "#mnnn" format.

"2" is output if "ｍ" is an assembler, "3" if it is a linker, "4" if is an object con-
verter, "5" if is a librarian, and "6" if it is a list converter.

”nnn” is the error number.

(5) Error message Outputs error messages.

Item

Number

Description Format

CubeSuite Ver.1.30 CHAPTER 3 BUILD OUTPUT LISTS

R20UT0005EJ0100 Rev.1.00 Page 109 of 573
Jul 01, 2010

3.3 Linker

The linker outputs the following lists.

To configure the link list file output in CubeSuite, on the Project Tree panel, select the Build tool node, then on the Prop-

erty panel, make the settings from the [Link Options] tab. Select [Yes] on the [Output link list file] property in the [Link List]

category. To output the error list file, in the [Error List] category, set the [Output error list file] property to [Yes(-e)]. The

output destination is the folder set from the [Common Options] tab, in the [Output File Type And Path] category, in the

[Intermediate file output folder] property. It is also shown on the project tree, under the Build tool generated files node.

Remark See "B.3.1 I/O files" for details about input and output files of the linker.

3.3.1 Link list file headers

The header is always output at the beginning of a link list file.

Output List File Name Output List Name

Link list file Link list file headers

Map list

Public symbol list

Local symbol list

Error list file Error list

78K0 Linker (1)Vx.xx Date:(2)xx xxx xxxx Page: (3)xxxx

Command: (4)k0main.rel k0sub.rel -ok0.map -dk0.dr

Para-file: (5)

Out-file: (6)k0.lmf

Map-File: (7)k0main.map

Direc-File: (8)

Directive: (9)

*** Link information ***

(10) 3 output segment(s)

(11) 37H byte(s) real data

(12) 23 symbol(s) defined

Item

Number

Description Format

(1) Linker version number Displayed in "x.yz" format

(2) Date of link list file creation Date of link list file creation (Displayed in "DD Mmm YYYY" format)

(3) Page number Outputs a right-aligned decimal value with zeroes suppressed.

(4) Command-line image Displays the options specified at the startup line.

(5) Parameter file contents Outputs the parameter file contents.

(6) Output load module file name Outputs the name of the load module file generated by the linker.

CubeSuite Ver.1.30 CHAPTER 3 BUILD OUTPUT LISTS

R20UT0005EJ0100 Rev.1.00 Page 110 of 573
Jul 01, 2010

3.3.2 Map list

The map list outputs data on the location of segments.

To configure the map list output in CubeSuite, on the Project Tree panel, select the Build tool node, then on the Prop-

erty panel, make the settings from the [Link Options] tab. Select [Yes] on the [Output with map list] property in the [Link

List] category.

(7) Link list file name Output the name of the link list file generated by the linker.

(8) Link directive file name Output the name of the link directive file input by the linker.

(9) Link directive file contents Displays the contents of the link directive file.

(10) Number of segments output to

load module file

Displays the number of segments output to the load module file.

Outputs a right-aligned decimal value with zeroes suppressed.

(11) Size of data output to load

module file

Displays the size of the data output to the load module file.

Outputs a right-aligned decimal value with zeroes suppressed.

(12) Number of symbols output to

load module file

Displays the number of symbols output to the load module file.

Outputs a right-aligned decimal value with zeroes suppressed.

*** Memory map ***

 (1)SPACE=REGULAR

 MEMORY=(2)ROM

 BASE ADDRESS=(3)0000H SIZE=(4)2000H

 (6)OUTPUT (7)INPUT (8)INPUT (9)BASE (10)SIZE

 SEGMENT SEGMENT MODULE ADDRESS

 CODE 0000H 0002H

 (11)CSEG AT

 CODE SAMPM 0000H 0002H

(5) * gap * 0002H 007EH

 ?CSEG 0080H 0035H

 (11)CSEG

 ?CSEG SAMPM 0080H 0015H

 ?CSEG SAMPS 0095H 0020H

(5) * gap * 00B5H 1F4BH

 MEMORY = RAM

 BASE ADDRESS=(3)FE00H SIZE=(4)0200H

 (6)OUTPUT (7)INPUT (8)INPUT (9)BASE (10)SIZE

 SEGMENT SEGMENT MODULE ADDRESS

(5) * gap * FE00H 0020H

 DATA FE20H 0003H

 (11)DSEG AT

 DATA SAMPM FE20H 0003H

Item

Number

Description Format

CubeSuite Ver.1.30 CHAPTER 3 BUILD OUTPUT LISTS

R20UT0005EJ0100 Rev.1.00 Page 111 of 573
Jul 01, 2010

3.3.3 Public symbol list

A public symbol list outputs data on public symbols defined in an input module.

To configure the public symbol list output in CubeSuite, on the Project Tree panel, select the Build tool node, then on

the Property panel, make the settings from the [Link Options] tab. Select [Yes(-kp)] on the [Output with public symbol list]

property in the [Link List] category.

(5) * gap * FE23H 00DDH

(5) * gap (Not Free Area) * FE00H 0100H

 Target chip : (12)uPD78xxx

 Device File : (13)Vx.xx

Item

Number

Description Format

(1) Memory space name Displays the memory space name.

(2) Memory area name Displays the memory area name.

(3) Memory area start address Displays the start address of the memory area.

It is displayed in hexadecimal format, left-padded with zeroes.

(4) Memory area size Displays the size of the memory area.

It is displayed in hexadecimal format, left-padded with zeroes.

(5) Output group Displays "gap" for areas where nothing is located.

(6) Segment names output to

load module file

Displays the names of the segments output to the load module file.

(7) Segment names read from

object module file

Displays the names of the segments read from the object module file.

(8) Input module name Displays the module name of an input file that existed the input segment dis-

played in (7).

If the module name exceeds 8 characters, that name is output as it is. Items (9),

(10), and (11) are output from column 39 on the next line.

(9) Segment start address Displays the start address that output segments are allocated.

(10) Output segment size Displays the size of the output segments.

(11) Segment type and realloca-

tion attributes

Displays the segment type and the reallocation attributes.

(12) Target device for this assem-

bler

Displays the target device as specified via command line option (-c) or the

source file.

(13) Device file version Displays the version number of the input device file.

*** Public symbol list ***

(1)MODULE (2)ATTR (3)VALUE (4)NAME

 SAMPM ADDR 0000H MAIN

 SAMPM ADDR 0080H START

 SAMPS ADDR 0095H CONVAH

CubeSuite Ver.1.30 CHAPTER 3 BUILD OUTPUT LISTS

R20UT0005EJ0100 Rev.1.00 Page 112 of 573
Jul 01, 2010

3.3.4 Local symbol list

A local symbol list outputs data on local symbols defined in an input module.

To configure the local symbol list output in CubeSuite, on the Project Tree panel, select the Build tool node, then on the

Property panel, make the settings from the [Link Options] tab. Select [Yes(-kl)] on the [Output with local symbol list] prop-

erty in the [Link List] category.

Item

Number

Description Format

(1) Name of module in which pub-

lic symbols are defined

Displays the name of the input object module in which public symbols are

defined.

(2) Symbol attributes Displays the symbol attributes.

- CSEG: Code segment name

- DSEG: Data segment name

- BSEG: Bit segment name

- MAC: Macro name

- MOD: Module name

- SET: Symbol defined by SET directive

- NUM: NUMBER attribute symbol

- ADDR: ADDRESS attribute symbol

- BIT: BIT attribute symbol (addr.bit)

- SABIT: BIT attribute symbol (saddr.bit)

- SFBIT: BIT attribute symbol (sfr.bit)

- RBIT: BIT attribute symbol (A.bit, X.bit PSW.bit)

- SFR: Names defined as SFRs by EQU directive

- SFRP: Names defined as SFRPs by EQU directive

- Blank: External reference symbol declared by EXTRN or EXTBIT

- *****: Undefined symbol

(3) Symbol value Displays the public symbol values.

(4) Public symbol name Displays the public symbol names.

*** Local symbol list ***

(1)MODULE (2)ATTR (3)VALUE (4)NAME

 SAMPM MOD SAMPM

 SAMPM DSEG DATA

 SAMPM ADDR FE20H HDTSA

 SAMPM ADDR FE21H STASC

 SAMPM CSEG CODE

 SAMPM CSEG ?CSEG

 SAMPS MOD SAMPS

 SAMPS CSEG ?CSEG

 SAMPS ADDR 00ACH SASC

 SAMPS ADDR 00B2H SASC1

CubeSuite Ver.1.30 CHAPTER 3 BUILD OUTPUT LISTS

R20UT0005EJ0100 Rev.1.00 Page 113 of 573
Jul 01, 2010

3.3.5 Error list

An error list stores the error messages output when the linker is started up.

Item

Number

Description Format

(1) Name of module in which

local symbols are defined

Displays the name of the input object module in which local symbols are

defined.

(2) Symbol attributes Displays the symbol attributes.

- CSEG: Code segment name

- DSEG: Data segment name

- BSEG: Bit segment name

- MAC: Macro name

- MOD: Module name

- SET: Symbol defined by SET directive

- NUM: NUMBER attribute symbol

- ADDR: ADDRESS attribute symbol

- BIT: BIT attribute symbol (addr.bit)

- SABIT: BIT attribute symbol (saddr.bit)

- SFBIT: BIT attribute symbol (sfr.bit)

- RBIT: BIT attribute symbol (A.bit, X.bit PSW.bit)

- SFR: Names defined as SFRs by EQU directive

- SFRP: Names defined as SFRPs by EQU directive

- Blank: External reference symbol declared by EXTRN or EXTBIT

- *****: Undefined symbol

(3) Symbol value Displays the local symbol values.

(4) Local symbol name Displays the local symbol names.

LK78K0 (1)error (2)E3405: (3)Undefined symbol 'CONVAH' in file 'k0main.rel'

Item

Number

Description Format

(1) Type of error Outputs the type of error.

(2) Error number Outputs error numbers in the "#nnnn" format.

"F" is output if "#" is an abort error, "E" if it is a fatal error, "C" if is an Internal

error, and "W" if it is a warning.

"nnnn" (the error number) is displayed as a 4-digit decimal number (no zero

suppression).

(3) Error message Outputs error messages.

CubeSuite Ver.1.30 CHAPTER 3 BUILD OUTPUT LISTS

R20UT0005EJ0100 Rev.1.00 Page 114 of 573
Jul 01, 2010

3.4 Object Converter

The object converter outputs the following list.

To configure the error list file output in CubeSuite, on the Project Tree panel, select the Build tool node, then on the

Property panel, make the settings from the [Object Convert Options] tab. Select [Yes(-e)] on the [Output error list file]

property in the [Error List] category. The output destination is the folder set from the [Common Options] tab, in the [Out-

put File Type And Path] category, in the [Intermediate file output folder] property. It is also shown on the project tree,

under the Build tool generated files node.

Remark See "B.4.1 I/O files" for details about input and output files of the object converter.

3.4.1 Error list

Error messages output when the object converter is started up are stored in an error list.

The output format is same as error list output by the linker.

Output List File Name Output List Name

Error list file Error list

CubeSuite Ver.1.30 CHAPTER 3 BUILD OUTPUT LISTS

R20UT0005EJ0100 Rev.1.00 Page 115 of 573
Jul 01, 2010

3.5 Librarian

The librarian outputs the following list.

To configure the list file output in CubeSuite, on the Project Tree panel, select the Build tool node, then on the Property

panel, make the settings from the [Create Library Options] tab. Select [Yes] on the [Output list file] property in the [Error

List] category. The output destination is the folder set from the [Common Options] tab, in the [Output File Type And Path]

category, in the [Intermediate file output folder] property. It is also shown on the project tree, under the Build tool gener-

ated files node.

Remark See "B.5.1 I/O files" for details about input and output files of the librarian.

3.5.1 Library information output list

The library information output list outputs data on the modules in a library file.

Output List File Name Output List Name

List file Library information output list

78K0 librarian (1)Vx.xx Date:(2)xx xxx xxxx Page(3)xxxx

LIB-FILE NAME : (4)k0.lib ((5)xx xxx xxxx)

 (6)0001 (7)k0main.rel ((8)xx xxx xxxx)

 (9)MAIN (9)START

 NUMBER OF PUBLIC SYMBOLS : (10)2

 (6)0002 (7)k0sub.rel ((8)xx xxx xxxx)

 (9)CONVAH

 NUMBER OF PUBLIC SYMBOLS : (10)1

Item

Number

Description Format

(1) Librarian version number Displayed in "x.yz" format

(2) Date of list creation Date of list creation (Displayed in "DD Mmm YYYY" format)

(3) Number of pages Outputs a right-aligned decimal value with zeroes suppressed.

(4) Library file name Outputs the specified file name.

If the file type is omitted, ".lib" is attached as the file type (extension).

(5) Date of library file creation Date of library file creation (Displayed in "DD Mmm YYYY" format)

(6) Module serial number Numbers are assigned starting with 0001.

(7) Module name Displays the module name.

If the file type is omitted, ".ref" is attached as the file type (extension).

(8) Date of module creation Date of module creation (Displayed in "DD Mmm YYYY" format)

CubeSuite Ver.1.30 CHAPTER 3 BUILD OUTPUT LISTS

R20UT0005EJ0100 Rev.1.00 Page 116 of 573
Jul 01, 2010

3.6 List Converter

The list converter outputs the following lists.

To configure the absolute assemble list file output in CubeSuite, on the Project Tree panel, select the Build tool node,

then on the Property panel, make the settings from the [Assemble Options] tab. Select [Yes] on the [Execute list con-

verter] property in the [Assemble List] category. To output the error list file, in the [Assemble List] category, set the [Output

list converter error list file] property to [Yes(-e)]. The output destination is the folder set from the [Common Options] tab, in

the [Output File Type And Path] category, in the [Intermediate file output folder] property.

Remark See "B.6.1 I/O files" for details about input and output files of the list converter.

3.6.1 Absolute assemble list

The absolute assemble list embeds absolute values in the assemble list and outputs the list.

The output format is same as for the assemble list output by the assembler.

3.6.2 Error list

Error messages output when the list converter is started up are stored in an error list.

The output format is same as for the error list output by the assembler.

(9) Public symbol name Display the public symbol name.

(10) Number of public symbols

defined in module

Displays the number of public symbols defined in the module.

Outputs a right-aligned decimal value with zeroes suppressed.

Output List File Name Output List Name

Absolute assemble list file Absolute assemble list

Error list file Error list

Item

Number

Description Format

CubeSuite Ver.1.30 CHAPTER 3 BUILD OUTPUT LISTS

R20UT0005EJ0100 Rev.1.00 Page 117 of 573
Jul 01, 2010

3.7 Variables Information File Generator

The variables information file generator outputs the following file.

- Variables information file

Remark See "B.7.1 I/O files" for details about input and output files of the variables information file generator.

3.7.1 Variables information file

The variables information file contains information for efficiently allocating variables.

To configure the variables information file output in CubeSuite, on the Project Tree panel, select the Build tool node,

then on the Property panel, make the settings from the [Variables Relocation Options] tab. In the [Output File] category,

set the [Output variables information file] property to [Yes]. Specify the output destination in the [Output folder for vari-

ables information file] property and the [Variables information file name] property. It is also shown on the project tree,

under the Build tool generated files node.

;VF78K0 (1)Vx.xx

; Attention:The semicolon at the head of line means the line is a comment.

; Please refer to the "format information" for the item of each section.

;(2)*** format information ***

;[sreg]

;variable,count,size,type,"file",const ;static-const

;variable,count,size,type,,const ;global-const

;variable,count,size,type,"file" ;static

;variable,count,size,type ;global

;variable,count,size,type,,const,boot ;global-const in boot

;variable,count,size,type,,,boot ;global in boot

;;type : near=1 , far=2 , sreg=0

;

;[callt]

;variable,count,type,"file" ;static

;variable,count,type ;global

;variable,count,type,,boot ;global in boot

;;type : near=1 , far=2 , callt=0

;

;(3)*** gap information ***

;[callt-gap]

;(4)START (5)SIZE

; 00080H 00040H

;[saddr-gap]

;(4)START (5)SIZE

; FFE26H 000BAH

;

;(6)*** variable information ***

[sreg]

(7)f,(8)3,(9)1,(10)1

(7)flash_a,(8)2,(9)2,(10)1

(7)flash_b,(8)2,(9)2,(10)1

CubeSuite Ver.1.30 CHAPTER 3 BUILD OUTPUT LISTS

R20UT0005EJ0100 Rev.1.00 Page 118 of 573
Jul 01, 2010

;(7)var1,(8)1,(9)2,(10)1,(11)"flash.c",(12)const

;(7)var2,(8)1,(9)2,(10)1,,const

(7)var3,(8)1,(9)4,(10)1,(11)"flash.c"

;(7)boot_a,(8)1,(9)2,(10)0,,,(13)boot

;(7)boot_b,(8)1,(9)2,(10)0,,,(13)boot

;

;(14)*** function information ***

[callt]

;(15)f1,(16)1,(17)1,(18)"flash.c"

;(15)f2,(16)1,(17)1

;(15)func,(16)1,(17)1,,(19)boot

Item

Number

Description Format

(1) Version number Displayed in "x.yz" format

(2) Format information (start) Indicates start of format information of the variable and function information.

(3) Vacant area information (start) Indicates start of vacant area information of the saddr area, BASE area, and

callt area.

Comments out by adding a semicolon (;) to the beginning of the line.

(4) Vacant area information (start

address)

Outputs the start address of the vacant area.

(5) Vacant area information (size) Outputs the size of the vacant area.

(6) Variable information (start) Indicates start of variable information.

Variable information is output in the order of priority, from highest to lowest.

Since const, sreg, and static variables, and variables defined in the boot area

that are referenced by the flash area cannot be allocated to the saddr area,

comments out these variables by adding a semicolon (;) to the beginning of the

line.

(7) Variable information (variable

name)

Outputs the variable name.

(8) Variable information (number

of references)

Outputs the number of references of the variable.

(9) Variable information (size) Outputs the size of the variable.

(10) Variable information (refer-

ence type)

Outputs the reference type of the variable.

normal: 1 (changes from the normal area to the saddr area)

sreg: 0 (Already allocated to the saddr area via the sreg specification)

(11) Variable information (file

name)

Outputs the target source file name surrounded by quotation marks (" ").

Although static variables are output, global variables are not.

(12) Variable information (const

variable)

"const" is output for const variables.

(13) Variable information (variable

for the boot area)

If a variable is defined in the boot area and referenced by the flash area, then

"boot" is output.

CubeSuite Ver.1.30 CHAPTER 3 BUILD OUTPUT LISTS

R20UT0005EJ0100 Rev.1.00 Page 119 of 573
Jul 01, 2010

(14) Function information (start) Indicates start of function information.

Function information is output in the order of priority, from highest to lowest.

Since functions in the flash area, callt functions, and static functions cannot be

allocated to the saddr area, comments out these variables by adding a semico-

lon (;) to the beginning of the line.

(15) Function information (function

name)

Outputs the function name.

(16) Function information (number

of references)

Outputs the number of references of the function.

(17) Function information (refer-

ence type)

Outputs the reference type of the function.

normal: 1 (changes from the normal area to the callt area)

sreg: 0 (Already allocated to the callt area)

(18) Function information (file

name)

Outputs the target source file name surrounded by quotation marks (" ").

Although static functions are output, global functions are not.

(19) Function information (function

for the boot area)

If a function is defined in the boot area and referenced by the flash area, then

"boot" is output.

Item

Number

Description Format

CubeSuite Ver.1.30 CHAPTER 3 BUILD OUTPUT LISTS

R20UT0005EJ0100 Rev.1.00 Page 120 of 573
Jul 01, 2010

3.8 Memory Bank Relocation Support Tool

The memory bank relocation support tool outputs the following files.

- Function information file

- Replacement information file

- Object information file

- Reference information file

3.8.1 Function information file

The function information file contains information for allocating C source files to the optimum area (common area or

bank area).

To configure the function information file output in CubeSuite, on the Project Tree panel, select the Build tool node, then

on the Property panel, make the settings from the [Memory Bank Relocation Options] tab. In the [Output File] category,

select [Yes] on the [Use memory bank relocation support tool] property, and then select [Yes] on the [Output function

information file] property. Specify the output destination in the [Output folder for function information file] property and the

[Function information file name] property. It is also shown on the project tree, under the File node.

/(1)#0xxxx

// 78K0 Series C Compiler (1)Vx.xx Function Information File

(2)file1000_3.c := (3)C ((4)1000)

{

 (5)file1000_3;

}

 :

(1)asm2.asm := (3)0 ((4)1)

{

 (5)bank0_1;

}

(1)asm3.asm := (3)C ((4)1)

{

 (5)common2;

}

(1)asm2.asm1 := (3)1 ((4)1)

{

 (5)bank1_1;

}

(1)asm3.asm2 := (3)2 ((4)1)

{

 (5)bank2_1;

}

// (6)*** Code Size Information ***

// COMMON : 25707 bytes

CubeSuite Ver.1.30 CHAPTER 3 BUILD OUTPUT LISTS

R20UT0005EJ0100 Rev.1.00 Page 121 of 573
Jul 01, 2010

3.8.2 Replacement information file

The replacement information file is an auxiliary information file with details about allocation at the area level.

To configure the replacement information file output in CubeSuite, on the Project Tree panel, select the Build tool node,

then on the Property panel, make the settings from the [Memory Bank Relocation Options] tab. select [Yes] on the [Use

memory bank relocation support tool] property in the [Output File] category. Specify the output destination in the [Output

folder for replacement information file] property and the [Replacement information file name] property. It is also shown on

the project tree, under the Build tool generated files node.

// BANK00 : 10001 bytes

// BANK01 : 10001 bytes

// BANK02 : 1 bytes

// BANK03 : 0 bytes

// BANK04 : 0 bytes

// BANK05 : 0 bytes

Item

Number

Description Format

(1) Version number Displayed in "0xxyz" and "x.yz" format

(2) File name Outputs the file name.

Outputs information in file units.

Although it also outputs information about assembler source files, these are not

included as relocation because they contain instructions (e.g. CSEG quasi

instructions) specifying the allocation destinations.

(3) Relocation destination Outputs the relocation destination of the file.

C: Relocated to the common area

Numeric value: Relocated to the bank XX area (XX: 00 to 15)

(4) Code size Outputs the code size.

(5) Global function name Outputs the name of the global function defined in the file.

(6) Code size information (start) Output the total code size per allocation destination.

(1)----------------------------- Current Information ------------------------------

 ***** Replacement Information Table *****

MEMORY=(2)ROM BASE ADDRESS=(3)0x00000 SIZE=(4)32768

MEMORY=(2)BANK00 BASE ADDRESS=(3)0x08000 SIZE=(4)16384

MEMORY=(2)BANK01 BASE ADDRESS=(3)0x18000 SIZE=(4)16384

MEMORY=(2)BANK02 BASE ADDRESS=(3)0x28000 SIZE=(4)16384

MEMORY=(2)BANK03 BASE ADDRESS=(3)0x38000 SIZE=(4)16384

MEMORY=(2)BANK04 BASE ADDRESS=(3)0x48000 SIZE=(4)16384

MEMORY=(2)BANK05 BASE ADDRESS=(3)0x58000 SIZE=(4)16384

(5)[COMMON]

(6)callt.c(1)* (6)asm3.asm(1) (6)asm1.asm(1)

(6)file1.c(1) (6)file2.c(2) (6)file10_4.c(10)

(6)file10_3.c(10) (6)file10_2.c(10) (6)file10.c(10)

(6)file1000_3.c(1000) (6)file100.c(100) (6)file1000_2.c(1000)

CubeSuite Ver.1.30 CHAPTER 3 BUILD OUTPUT LISTS

R20UT0005EJ0100 Rev.1.00 Page 122 of 573
Jul 01, 2010

(6)file200.c(200) (6)file201.c(201) (6)file1000.c(1000)

(6)file2000.c(2000) (6)file10000_4.c(10000) (6)file10000_3.c(10000)

(6)file10000_2.c(10000) (6)file10000.c(10000) (6)main.c(145)

Total Code Size = (7)45692 Byte(s)

Available Space = (8)-14970 Byte(s)

(9)[BANK00]

(10)asm2.asm(1)

Total Code Size = (11) 1 Byte(s)

Available Space = (12)16383 Byte(s)

(9)[BANK01]

(10)asm3.asm(1)

Total Code Size = (11) 1 Byte(s)

Available Space = (12)16383 Byte(s)

(9)[BANK02]

(10)asm3.asm(1)

Total Code Size = (11) 1 Byte(s)

Available Space = (12)16383 Byte(s)

 :

(13)----------------------------- Replace Information ------------------------------

 ***** Replacement Information Table *****

MEMORY=(2)ROM BASE ADDRESS=(3)0x00000 SIZE=(4)32768

MEMORY=(2)BANK00 BASE ADDRESS=(3)0x08000 SIZE=(4)16384

MEMORY=(2)BANK01 BASE ADDRESS=(3)0x18000 SIZE=(4)16384

MEMORY=(2)BANK02 BASE ADDRESS=(3)0x28000 SIZE=(4)16384

MEMORY=(2)BANK03 BASE ADDRESS=(3)0x38000 SIZE=(4)16384

MEMORY=(2)BANK04 BASE ADDRESS=(3)0x48000 SIZE=(4)16384

MEMORY=(2)BANK05 BASE ADDRESS=(3)0x58000 SIZE=(4)16384

(5)[COMMON]

(6)callt.c(1)* (6)asm3.asm(1) (6)asm1.asm(1)

(6)file1.c(1) (6)file2.c(2) (6)file10_4.c(10)

(6)file10_3.c(10) (6)file10_2.c(10) (6)file10.c(10)

(6)file1000_3.c(1000) (6)file100.c(100) (6)file1000_2.c(1000)

(6)file200.c(200) (6)file201.c(201) (6)file1000.c(1000)

Total Code Size = (7)25707 Byte(s)

Available Space = (8) 5015 Byte(s)

(9)[BANK00]

(10)asm2.asm(1) (10)file10000_2.c(10000)

Total Code Size = (11)10001 Byte(s)

Available Space = (12) 6383 Byte(s)

CubeSuite Ver.1.30 CHAPTER 3 BUILD OUTPUT LISTS

R20UT0005EJ0100 Rev.1.00 Page 123 of 573
Jul 01, 2010

(9)[BANK01]

(10)asm3.asm(1) (10)file10000.c(10000)

Total Code Size = (11)10001 Byte(s)

Available Space = (12) 6383 Byte(s)

(9)[BANK02]

(10)asm3.asm(1)

Total Code Size = (11) 1 Byte(s)

Available Space = (12)16383 Byte(s)

 :

#

Source file list that was not able to arranged.

#

'*' indicates that the source file includes function(s) which must be in the common area.

#

Example 1) When the space in both the common area and the bank area is not enough, the
output example is as follows.

file1.c(10) file2.c(20) file3.c(30)

Example 2) When the space in the common area is not enough, the output example is as
follows.

file4.c(10)* file5.c(20)* file6.c(30)*

#

Total Code Size = (14) 0 Byte(s)

Item

Number

Description Format

(1) Information before relocation

(start)

Outputs the information before relocation.

Outputs information at the area level.

(2) Area name Outputs the area name.

(3) Start address Outputs the start address of the area.

(4) Area size Outputs the size of the area.

(5) Common area information

(start)

Outputs the relocation information of the common area.

(6) File name (code size) Outputs the file name and code size allocated to the common area.

A file to which "*" is appended the end of the file name is one which can be relo-

cated to the common area only.

A file to which "+" is appended the end of the file name is one for which the relo-

cation destination is specified in the Property panel.

(7) Total code size Outputs the total code size of the files to be relocated to the common area.

(8) Vacant area size Outputs the size of the vacant area in the common area.

The code size output to the replacement information file does not include librar-

ies and the like. For this reason, the vacant area may be less than the size of

the common area minus the code size. If the size of the vacant area is nega-

tive, it indicates that the amount of the area is lacking.

(9) Bank area information (start) Outputs the relocation information of the bank XX area (XX: 00 to 15).

CubeSuite Ver.1.30 CHAPTER 3 BUILD OUTPUT LISTS

R20UT0005EJ0100 Rev.1.00 Page 124 of 573
Jul 01, 2010

3.8.3 Object information file

The object information file is an auxiliary information file with details about object files, and library files.

To configure the object information file output in CubeSuite, on the Project Tree panel, select the Build tool node, then

on the Property panel, make the settings from the [Memory Bank Relocation Options] tab. Select [Yes] on the [Use mem-

ory bank relocation support tool] property in the [Output File] category. Specify the output destination in the [Output folder

for object information file] property and the [Object information file name] property. It is also shown on the project tree,

under the Build tool generated files node.

(10) File name (code size) Outputs the file name and code size allocated to the bunk area.

A file to which "+" is appended the end of the file name is one for which the relo-

cation destination is specified in the Property panel.

(11) Total code size Outputs the total code size of the files to be relocated to the bank area.

(12) Vacant area size Outputs the size of the vacant area in the bank area.

The code size output to the replacement information file does not include librar-

ies and the like. For this reason, the vacant area may be less than the size of

the bunk area minus the code size. If the size of the vacant area is negative, it

indicates that the amount of the area is lacking.

(13) Information after relocation

(start)

Outputs the information after relocation.

Outputs information at the area level.

(14) Total code size Outputs the total code size of the files that could not be relocated.

 (1)***** Object File Information Table *****

(2)FILE (3)SEGMENT (4)SEGMENT (5)FUNCTION (6)GLOBAL

 NAME NAME SIZE SIZE SYMBOL

 (Bytes) (Bytes)

s0l.rel

file1000_3.rel

 @@CODE 1000

 1000 _file1000_3

 :

asm2.rel

 BANK00 1

 _bank0_1

asm3.rel

 ?CSEG 1

 _common2

 BANK01 1

 _bank1_1

 BANK02 1

 _bank2_1

Total Code Size = (7)45695 Byte(s)

 (8)***** Library File Information Table *****

(9)FILE (10)SEGMENT (11)SEGMENT (12)FUNCTION (13)GLOBAL

Item

Number

Description Format

CubeSuite Ver.1.30 CHAPTER 3 BUILD OUTPUT LISTS

R20UT0005EJ0100 Rev.1.00 Page 125 of 573
Jul 01, 2010

 NAME NAME SIZE SIZE SYMBOL

 (Bytes) (Bytes)

XIMUL.REL

 @@LCODE 20

 @@iumul

 @@ismul

RTARG0.REL

 @@RTARG0 8

 _@RTARG0

 _@RTARG1

 _@RTARG2

 _@RTARG3

 _@RTARG4

 _@RTARG5

 _@RTARG6

 _@RTARG7

 @@CPR1

 @@FPRS

 @@FPRXP

 @@FPRXD

 @@FPRXS

 @@FPRFP

 @@FPRF1

 @@FPRF2

 :

Total Code Size = (14)45820 Byte(s)

Item

Number

Description Format

(1) Object information (start) Outputs information related to the object module file.

(2) File name Outputs the file name.

(3) Segment name Outputs the name of the segment to which the file is to be relocated.

(4) Segment size Outputs the size of the segment to which the file is to be relocated.

(5) Code size Outputs the code size of the global function defined in the file.

No assembler source file is output for assembler source files.

(6) Global function name Outputs the name of the global function defined in the file (external symbol

name).

(7) Total size of segments at relo-

cation destination

Outputs the total size of the segments to which the files is to be relocated.

(8) Library information (start) Outputs information related to the library file.

(9) File name Outputs the file name.

(10) Segment name Outputs the name of the segment to which the file is to be relocated.

(11) Segment size Outputs the size of the segment to which the file is to be relocated.

(12) Code size Outputs the code size of the global function defined in the file.

CubeSuite Ver.1.30 CHAPTER 3 BUILD OUTPUT LISTS

R20UT0005EJ0100 Rev.1.00 Page 126 of 573
Jul 01, 2010

3.8.4 Reference information file

The reference information file is an auxiliary information file with details about C source files and assembler source

files. Unlike other auxiliary information files, changing the allocation destination will not change the information in this file.

To configure the reference information file output in CubeSuite, on the Project Tree panel, select the Build tool node,

then on the Property panel, make the settings from the [Memory Bank Relocation Options] tab. select [Yes] on the [Use

memory bank relocation support tool] property in the [Output File] category. Specify the output destination in the [Output

folder for reference information file] property and the [Reference information file name] property. It is also shown on the

project tree, under the Build tool generated files node.

(13) Global function name Outputs the name of the global function defined in the file (external symbol

name).

(14) Total size of segments at relo-

cation destination

Outputs the total size of the segments to which the files is to be relocated.

 ***** Global Symbol Reference Table *****

(1)FILE (2)GLOBAL (3)REFERED (4)REFERED

 NAME FUNCTION COUNT COUNT

 FROM FROM

 OUTSIDE INSIDE

file1000_3.c

 _file1000_3 11 0

 :

asm2.asm

 _bank0_1 1 0

asm3.asm

 _common2 1 0

 _bank1_1 1 0

 _bank2_1 1 0

Item

Number

Description Format

(1) File name Outputs the file name.

(2) Global function name Outputs the name of the global function defined in the file (external symbol

name).

(3) Reference from different file Outputs the number of references to global functions (number of locations call-

ing them) defined in separate files.

(4) Reference from same file Outputs the number of references to global functions (number of locations call-

ing them) defined in the same file.

Item

Number

Description Format

CubeSuite Ver.1.30 CHAPTER 4 SAMPLE PROGRAMS

R20UT0005EJ0100 Rev.1.00 Page 127 of 573
Jul 01, 2010

CHAPTER 4 SAMPLE PROGRAMS

This chapter introduces the lists of sample programs attached to CA78K0 (build tool) in CubeSuite.

4.1 C Compiler

This section introduces the lists of sample programs attached to the C compiler.

4.1.1 C source file

#define TRUE 1

#define FALSE 0

#define SIZE 200

char mark [SIZE + 1] ;

main ()

{

 int i , prime , k , count ;

 count = 0 ;

 for (i = 0 ; i <= SIZE ; i++)

 mark [i] = TRUE ;

 for (i = 0 ; i <= SIZE ; i++) {

 if (mark [i]) {

 prime = i + i + 3 ;

 printf ("%6d" , prime) ;

 count++ ;

 if ((count%8) == 0) putchar ('\n') ;

 for (k = i + prime ; k <= SIZE ; k += prime)

 mark [k] = FALSE ;

 }

 }

 printf ("\n%d primes found." , count) ;

}

printf (char *s , int i)

{

 int j ;

 char *ss ;

 j = i ;

 ss = s ;

}

putchar (char c)

CubeSuite Ver.1.30 CHAPTER 4 SAMPLE PROGRAMS

R20UT0005EJ0100 Rev.1.00 Page 128 of 573
Jul 01, 2010

Remark The following warning is output when this file is compiled.

{

 char d ;

 d = c ;

}

prime.c (18) : CC78K0 warning W0745 : Expected function prototype

prime.c (20) : CC78K0 warning W0745 : Expected function prototype

prime.c (26) : CC78K0 warning W0622 : No return value

prime.c (37) : CC78K0 warning W0622 : No return value

prime.c (44) : CC78K0 warning W0622 : No return value

CubeSuite Ver.1.30 CHAPTER 4 SAMPLE PROGRAMS

R20UT0005EJ0100 Rev.1.00 Page 129 of 573
Jul 01, 2010

4.2 Assembler

This section introduces the lists of sample programs attached to the assembler.

4.2.1 k0main.asm

 NAME SAMPM

; ***

; HEX -> ASCII Conversion Program

; main-routine

; ***

PUBLIC MAIN , START

EXTRN CONVAH

EXTRN _@STBEG

DATA DSEG saddr

HDTSA : DS 1

STASC : DS 2

CODE CSEG AT 0H

MAIN : DW START

 CSEG

START :

 ; chip initialize

 MOVW SP , #_@STBEG

 MOV HDTSA , #1AH

 MOVW HL , #HDTSA ; set hex 2-code data in HL registor

 CALL !CONVAH ; convert ASCII <- HEX

 ; output BC-register <- ASCII code

 MOVW DE , #STASC ; set DE <- store ASCII code table

 MOV A , B

 MOV [DE] , A

 INCW DE

 MOV A , C

 MOV [DE] , A

 BR $$

 END

CubeSuite Ver.1.30 CHAPTER 4 SAMPLE PROGRAMS

R20UT0005EJ0100 Rev.1.00 Page 130 of 573
Jul 01, 2010

4.2.2 k0sub.asm

 NAME SAMPS

; ***

; HEX -> ASCII Conversion Program

; sub-routine

; input condition : (HL) <- hex 2 code

; output condition : BC-register <- ASCII 2 code

; ***

PUBLIC CONVAH

 CSEG

CONVAH :

 XOR A , A

 ROL4 [HL] ; hex lower code load

 CALL !SASC

 MOV B , A ; store result

 XOR A , A

 ROL4 [HL] ; hex lower code load

 CALL !SASC

 MOV C , A ; store result

 RET

; ***

; subroutine convert ASCII code

;

; input Acc (lower 4bits) <- hex code

; output Acc <- ASCII code

; ***

SASC :

 CMP A , #0AH ; check hex code > 9

 BC $SASC1

 ADD A , #07H ; bias (+7H)

SASC1 :

 ADD A , #30H ; bias (+30H)

 RET

 END

CubeSuite Ver.1.30 CHAPTER 5 CAUTIONS

R20UT0005EJ0100 Rev.1.00 Page 131 of 573
Jul 01, 2010

CHAPTER 5 CAUTIONS

This chapter provides notes for using CubeSuite and CA78K0 commands.

(1) Kanji code (2-byte code) classification

To use a source containing EUC code, set the environmental variable LANG78K to euc, or specify the -ze option.

When using CubeSuite, on the Property panel, configure the [Kanji character code of source] property in [Exten-

sion] category from the [Compile Options] tab (for C source file) or the [Kanji character code of source files] prop-

erty in the [Others] category from the [Assemble Options] tab (for assembler source).

(2) Specification of compile options

When using CA78K0, note the following points:

- When several specifications have been made for an option that does not allow multiple specifications, the last

specification takes precedence.

- The type specification following the -c option must not be omitted. If it is omitted, an abort error will occur.

If the -c option is not specified, be sure to enter “#pragma pc (type)” in the C source module file instead. Dur-

ing compilation, if the specified option is different from the option in the C source, the specified option takes

precedence. A warning message is output at that time.

- If the help option has been specified, all other options are ignored.

(3) Source file names

The part except the source file name extension (primary name) is used as the module name by default. Therefore,

some restrictions apply to the source file names that can be used.

- Regarding the length of the file name, configure the file name with a primary name and extension within the

range allowed by the host OS, and separate the primary name and the extension with a dot (.).

- The characters that can be used for the primary name and the extension consist of the characters allowed by

the host OS, except parentheses (()), semicolons (;), and commas (,). Note that a hyphen (-) cannot be used

as the first character of a file name or file name. Do not specify file names that include a space or 2-byte char-

acters.

- Sharp symbol (#) cannot be used for file names and path names in parameter files.

(4) Using assembler source as output

When a C source file contains descriptions that use assembly language such as #asm blocks or __asm state-

ments, the load module file creation procedure sequence is compile, assemble, and then link.

Note the following if you want to use the C compiler to first output an assembly source file and then assemble it,

rather than directly output an object file, as with files written in assembly language and the like.

- If the C source contains #asm blocks and __asm statements, specify the -a or -sa option to enable assembly

descriptions, and assemble the output assembler source.

When using CubeSuite, from the Property panel, on the [Compile Options] tab, in the [Asseembly File] cate-

gory, for the [Output an assemble file] property, specify to output assembler source files, or for sources for

which only assembler source files are output, on the [Individual Compile Options] tab, in the [Asseembly File]

category, set the [Output an assemble file] property to output assembler source files.

- When using CubeSuite, the assembler is started regardless of compile options -o/-no when the output of

assembler source files is specified.

(5) Generation of stack decision symbols specification option (-s)

To secure a stack area, specify the link option (-s) during linking.

CubeSuite Ver.1.30 CHAPTER 5 CAUTIONS

R20UT0005EJ0100 Rev.1.00 Page 132 of 573
Jul 01, 2010

When using CubeSuite, The setting is performed in [Stack] category from the [Link Options] tab on the Property

panel. When using CubeSuite, the -s option is automatically attached when the source file specification includes

the C source.

(6) Using the object converter

Use the object converter by specifying the -r (address sort of object) and -u (filling value specification) options.

When using CubeSuite, on the Property panel, from the [Object Convert Options] tab, configure the [Hex File Fill-

ing] property in the [Hex File] category.

These options are specified by default.

An abort error occurs if a ROM code is ordered (work known as "across processing" or "tape out") when the

addresses of the objects are not sorted. Therefore, be sure to specify -r (do not cancel the specification).

(7) Object filling value specification option (-u)

If starting address is specified by the object convert option (-u), filling is started from the start address or the

address where the code is located, whichever is lower. Filling is not performed for the SFR area (FF00H to

FFFFH).

Description format is described below:

Remark [] may be omitted.

(8) Include file dependence relationship

During checking of dependence relationships of include files with CubeSuite, condition statements such as #if and

comments are ignored. Therefore, include files not required for build are mistaken as required files (In the example

below, header1.h and header5.h are judged as required for build).

During checking of dependence relationships of include files with CubeSuite, include statements described after

comments are ignored. Therefore, include files required for build are mistaken as no-required files (In the example

below, header6.h and header7.h are judged as no-required for build).

-ufilling-value[,[start-address],size]

#if 0

#include "header1.h" /* Dependence relationship judged to exist */

#else /* ! zero */

#include "header2.h" /* Dependence relationship to exist */

#endif

#define AAA

#ifdef AAA

#include "header3.h" /* Dependence relationship to exist */

#else

#include "header4.h" /* Dependence relationship to exist */

#endif

/*

#include "header5.h" /* Dependence relationship judged to exist */

*/

CubeSuite Ver.1.30 CHAPTER 5 CAUTIONS

R20UT0005EJ0100 Rev.1.00 Page 133 of 573
Jul 01, 2010

(9) Using a network

If you place the folder in which to create temporary files on a file system that is shared over a network, file conten-

tion could occur when using certain types of network software, causing abnormal operation. Avoid this type of con-

tention by properly configuring the options and environment variables.

When using CubeSuite, avoid using temporary files in a network environment.

(10)Using the variables information file generator

(a) If a #pragma section directive is specified with an AT start address

In a section defined by a #pragma section directive specified with an AT start address, allocating variables to

the saddr area may cause incorrect behavior.

- C source

- Variables information file

In the C source above, the values of variables x1 and x2 are both expected to be 0x10. But if variable ni1 is

allocated to the saddr area (from 0xfe20) in the variables information file, then the program will not behave as

intended: variable x1 will have the value of ni1, which is 0x10, and variable x2 will have the value of address

0xcf00.

/* comment */ #include "header6.h" /* Dependence relationship judged not to exist */

/*

comment

/ #include "header7.h" / Dependence relationship judged not to exist */

#pragma section @@DATA @CDATA AT 0CF00H

#define dni1 (*(int *)0xcf00)

int ni1; /* sreg in .vfi */

__sreg int x1, x2;

void func()

{

 x1 = ni1;

 x2 = dni1;

}

void main()

{

 ni1 = 0x10;

 func();

}

;*** variable information ***

[sreg]

;x2,1,2,0

;x1,1,2,0

CubeSuite Ver.1.30 CHAPTER 5 CAUTIONS

R20UT0005EJ0100 Rev.1.00 Page 134 of 573
Jul 01, 2010

The variables information file generator does not specify sreg for variables in sections defined by #pragma

section directives with AT start addresses specified.

If you edit the variables information file, do not specify allocation to the saddr area for the above variables.

(b) Output of local symbols generated by the compiler

The local symbols generated by the compiler are also output to the variables information file, but you should

leave these commented out.

- Variables information file

(c) Changing the extension of a library file or load module file

If you use the variables information file generator, do not change the extension of library files (.lib) or load mod-

ule files (.lmf).

If you change these, variables that are not eligible for processing may be output.

(11) Hex output method of bank-supported products

In the bank-supported products, addresses are seen in two types of view: "bank number + CPU address", and the

"flash memory real address (Hex Format [Bank])".

The assembler references an address based on the "bank number + CPU address", so the user is conscious of

this "bank number + CPU address".

[sreg]

;L0003,2,1,2,"t08.c",const

;

;*** function information ***

[callt]

BANK5 (16K bytes)

BANK4 (16K bytes)

BANK3 (16K bytes)

BANK2 (16K bytes)

BANK1 (16K bytes)

BANK0 (16K bytes)

Common (32K bytes)

bank number + CPU address flash memory real address (Hex Format [Bank])

5BFFFH

58000H

4BFFFH

48000H

3BFFFH

38000H

2BFFFH

28000H

1BFFFH

18000H

0BFFFH

08000H
07FFFH

00000H

1FFFFH

1C000H
1BFFFH

18000H
17FFFH

14000H
13FFFH

10000H
0FFFFH

0C000H
0BFFFH

08000H
07FFFH

00000H

Common (32K bytes)

BANK0 (16K bytes)

BANK1 (16K bytes)

BANK2 (16K bytes)

BANK3 (16K bytes)

BANK4 (16K bytes)

BANK5 (16K bytes)

CubeSuite Ver.1.30 CHAPTER 5 CAUTIONS

R20UT0005EJ0100 Rev.1.00 Page 135 of 573
Jul 01, 2010

When performing self-programming or on-board programming to the flash memory, however, programming must

be performed based on the flash memory real address. Therefore, the object converter outputs the hex file with

the flash memory real address, thereby address translation (from "bank number + CPU address" to the flash mem-

ory real address) during self-programming or by the writer is no longer required.

The hex output based on the flash memory real address is supported in the object converter. With the bank-sup-

ported products, codes are output in the "Intel extended hex format" and "flash memory real address" by default,

but other output formats can also be selected by specifying the -k option. With a 64 KB or larger flash memory, the

code does not operate if it is output in the Intel standard format. In this case, be sure to specify the Intel extended

format or the Motorola S-type 24-bit standard address or 32-bit address for output.

In the following program, lab_bk1 is allocated to address 18000H.

The example of output in Intel extended hex format (flash memory real address) is as follows.

 Assemble list

ALNO STNO ADRS OBJECT M I SOURCE STATEMENT

 1 1

 2 2 ----- main_c CSEG AT 100H

 3 3

 4 4 00100 13F301 MOV BANK , #BANKNUM lab_bk1

 5 5 00103 R9A0080 CALL !lab_bk1

 6 6

 7 7

 8 8 ----- CSEG BANK1 ; 18000->0C000H

 9 9 18000 lab_bk1 :

 10 10 18000 00 NOP

 11 11 18001 00 NOP

 12 12 18002 00 NOP

 13 13 18003 AF RET

 14 14

 15 15

 16 16 END

:1000F000FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF10

:020000020000FC

:0601000013F3019A0080D8

:020000020000FC

:10010600FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF9

:10011600FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFE9

:10012600FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFD9

 :

:10BFF000FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF51

:020000020000FC

:04C00000000000AF8D

:020000020000FC

:10C00400FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF3C

:10C01400FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF2C

CubeSuite Ver.1.30 CHAPTER 5 CAUTIONS

R20UT0005EJ0100 Rev.1.00 Page 136 of 573
Jul 01, 2010

Since the 00100 address is not a bank, so the code 13F301, 9A0080 are written as is to address 00100.

Since the 18000H address is a bank, it is converted to a flash memory real address, and the code visible to

address 18000H is overwritten by address 0C000H. The code after the first 10 bytes remains as 00, 00, 00, AF,

causing the address value to be shifted. (At the same time, the checksum values of the last byte of each line are

also changed.) The user is not required to make special allowances for this change.

The example of output in Intel extended hex format (bank number + CPU address) is as follows.

In the case of the bank number + CPU address, the code 00, 00, 00, AF visible to address 18000H are written as is

to address 18000H.

(12)Size of void type pointers

When the -mf option is specified, function pointers are 4 bytes, and void type pointers are 2 bytes. For this reason,

handling function pointers as void type pointers could result in data loss.

(13)Generating function information files

When the -mf option is specified, do the following if warning W0060 is output.

(a) Rebuild the project again.

If warning W0060 is not output and linking is successful, the build has completed successfully.

(b) If warning W0060 is still output after the rebuild, check the following.

- Make sure that global functions with the same name are not defined in multiple source files. Correct the C

source files so that definitions do not overlap.

- If there are an descriptions relating to nonexistent files left in the function information file, edit this file to

remove the descriptions of nonexistent files.

(14)Device file search order of the C compiler

(a) Paths specified via -y option

(b) cc78k0.exe startup path + "..\..\..\dev”

:1000F000FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF10

:020000020000FC

:0601000013F3019A0080D8

:020000020000FC

:10010600FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF9

:10011600FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFE9

:10012600FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFD9

 :

:10BFF000FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF51

:020000021000EC

:04800000000000AFCD

:020000021000EC

:10800400FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF7C

:10801400FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF6C

CubeSuite Ver.1.30 CHAPTER 5 CAUTIONS

R20UT0005EJ0100 Rev.1.00 Page 137 of 573
Jul 01, 2010

(c) Path where cc78k0.exe was started

(d) The current folder

(e) Paths specified by the PATH environment variable

cc78k0.exe does not reference registry information relating to devices files. For this reason, device files not

located in [executable format startup path + "..\..\..\dev"] cannot be found.

[Executable format startup path + "..\..\..\dev"] is the path where the device file was installed during the installation

of the C compiler.

CubeSuite Ver.1.30 APPENDIX A WINDOW REFERENCE

R20UT0005EJ0100 Rev.1.00 Page 138 of 573
Jul 01, 2010

APPENDIX A WINDOW REFERENCE

This appendix explains windows/panels/dialog boxes used in build process.

A.1 Description

The following lists the windows/panels/dialog boxes used in build process.

Table A-1. List of Windows/Panels/Dialog Boxes

Window/Panel/Dialog Box Name Function Description

Main window This is the first window to be open when CubeSuite is launched.

Project Tree panel This panel is used to display the project components in tree view.

Property panel This panel is used to display the detailed information on the build tool,

file, or category that is selected on the Project Tree panel and change

the settings of the information.

Editor panel This panel is used to display/edit text files/source files.

Output panel This panel is used to display the message that is output from the build

tool or the result of the batch search with the Search And Replace dialog

box.

Add File dialog box This dialog box is used to create a new file and add it to the project.

Add Folder and File dialog box This dialog box is used to add existing files and folder hierarchies to the

project.

Character String Input dialog box This dialog box is used to input and edit characters in one line.

Text Edit dialog box This dialog box is used to input and edit texts in multiple lines.

Path Edit dialog box This dialog box is used to edit or add the path.

System Include Path Order dialog box This dialog box is used to refer the system include paths specified for

the compiler and set their specified sequence.

File Save Settings dialog box This dialog box is used to set the encoding and newline code of the file

that is editing on the Editor panel.

Link Order dialog box This dialog box is used to display object module files and library files to

input to the linker and configure these link order.

Build Mode Settings dialog box This dialog box is used to add and delete build modes and configure the

current build mode in batch.

Batch Build dialog box This dialog box is used to do build, rebuild and clean process in batch

with the build mode that each project has.

Go to the Location dialog box This dialog box is used to move the caret to the designated location.

Progress Status dialog box This dialog box is used to show how the process has been progressed.

Option dialog box This dialog box is used to configure the CubeSuite environment.

Add Existing File dialog box This dialog box is used to select existing files to add to projects.

Browse For Folder dialog box This dialog box is used to select a folder and retrieve it for the caller.

Specify Variables Information File for Boot Area

dialog box

This dialog box is used to select the variables information file for boot

area to set in the caller of the dialog box.

Specify Boot Area Load Module File dialog box This dialog box is used to select the boot area load module file to set in

the caller of the dialog box.

CubeSuite Ver.1.30 APPENDIX A WINDOW REFERENCE

R20UT0005EJ0100 Rev.1.00 Page 139 of 573
Jul 01, 2010

Save As dialog box This dialog box is used to save the editing file or contents of each panel

to a file with a name.

Open with Program dialog box This dialog box is used to select the application to open the file.

Stack Usage Tracer window This is the first window to be open when the stack usage tracer is

launched.

Stack Size Unknown / Adjusted Function Lists

dialog box

This dialog box is used to display a list of functions for which the stack

usage tracer could not obtain stack information; functions for which

information was changed intentionally, and functions for which the stack

usage tracer forcibly set an additional margin.

Adjust Stack Size dialog box This dialog box is used to change the information for the selected func-

tion.

Open dialog box This dialog box is used to open an existing stack size specification file.

Window/Panel/Dialog Box Name Function Description

CubeSuite Ver.1.30 APPENDIX A WINDOW REFERENCE

R20UT0005EJ0100 Rev.1.00 Page 140 of 573
Jul 01, 2010

This is the first window to be open when CubeSuite is launched.

This window is used to control the user program execution and open panels for the build process.

Figure A-1. Main Window

The following items are explained here.

- [How to open]

- [Description of each area]

[How to open]

- Select Windows® [start] >> [All programs] >> [NEC Electronics CubeSuite] >> [CubeSuite]

Main window

(1)

(2)

(3)

CubeSuite Ver.1.30 APPENDIX A WINDOW REFERENCE

R20UT0005EJ0100 Rev.1.00 Page 141 of 573
Jul 01, 2010

[Description of each area]

(1) Menu bar

Displays the menu relates to build.

(a) [Project]

The [Project] menu shows menu items to operate the project and others.

Add New Subproject... Closes the current project and opens the Create Project dialog box to create a

new project.

If the currently open project or file has been modified but it has not been saved

yet, a confirmation message is displayed to ask you whether you want to save

it.

Open Project... Closes the current project and opens the Open Project dialog box to open the

existing project.

If the currently open project or file has been modified but it has not been saved

yet, a confirmation message is displayed to ask you whether you want to save

it.

Favorite Projects Displays a cascading menu to use to open or save your favorite project.

1 path [Opens your favorite project registered with [Favorite Projects] >> [1 Register to

Favorite Project].

If no project has been registered,"Favorite Project" is displayed.

2 path [Opens your favorite project registered with [Favorite Projects] >> [2 Register to

Favorite Project].

If no project has been registered,"Favorite Project" is displayed.

3 path [Opens your favorite project registered with [Favorite Projects] >> [3 Register to

Favorite Project].

If no project has been registered,"Favorite Project" is displayed.

4 path [Opens your favorite project registered with [Favorite Projects] >> [4 Register to

Favorite Project].

If no project has been registered,"Favorite Project" is displayed.

1 Register to Favorite Project The current project path is added to [1 path] in [Favorite Projects].

2 Register to Favorite Project The current project path is added to [2 path] in [Favorite Projects].

3 Register to Favorite Project The current project path is added to [3 path] in [Favorite Projects].

4 Register to Favorite Project The current project path is added to [4 path] in [Favorite Projects].

Add Shows the cascading menu to add subprojects to the project.

CubeSuite Ver.1.30 APPENDIX A WINDOW REFERENCE

R20UT0005EJ0100 Rev.1.00 Page 142 of 573
Jul 01, 2010

(b) [Build]

The [Build] menu shows menu items for the build process and others.

Add Subproject... Opens the Add Existing Subproject dialog box to add an existing subproject to

the project.

Add New Subproject... Opens the Create Project dialog box to add a new subproject to the project.

Add File... Opens the Add Existing File dialog box to add the selected file to the project.

Add New File... Opens the Add File dialog box to create a file with the selected file type and

add to the file to the project.

The added file can be opened with the application corresponds to the file

extension.

Add New Category Adds a new category node to the root of the File node. This allows the cate-

gory name to be changed.

The default category name is "New category". The new category name can be

changed to the same name as the existing category node.

Note that this menu is disabled when the build tool is in operation.

Sets selected project or sub-

project as Active Project.

Set the selected project or subproject as an active project.

Close Project Closes the current project.

If the currently open project or file has been modified but it has not been saved

yet, a confirmation message is displayed to ask you whether you want to save

it.

Save Project Saves the configuration information of the current project to the project file.

Save Project As... Opens the Save Project As dialog box to save the configuration information of

the current project to the project file with another name.

Remove from Project Removes the selected project or subproject from the project.

The subproject files or the file themselves are not deleted from the file system.

Save Project and CubeSuite as

Package...

Saves a set of the CubeSuite and the project by copying them in a folder.

Build Project Builds the project. The subproject is also built when it is added in the project.

Note that this menu is disabled when the build tool is in operation.

Rebuild Project Rebuilds the project. The subproject is also rebuilt when it is added in the

project.

Note that this menu is disabled when the build tool is in operation.

Clean Project Cleans the project. The subproject is also cleaned when it is added in the

project.

Note that this menu is disabled when the build tool is in operation.

Rapid Build Toggles the rapid build function between enabled (default) and disabled.

Update Dependencies Updates the dependency of the file in the project to build. The dependency of

the file in the subproject to build is also updated when the subproject is added

to the project.

Build active project Builds the active project.

If the active project is the main project, its subproject is not built.

Note that this menu is disabled when the build tool is in operation.

CubeSuite Ver.1.30 APPENDIX A WINDOW REFERENCE

R20UT0005EJ0100 Rev.1.00 Page 143 of 573
Jul 01, 2010

(2) Toolbar

Buttons used in build process are displayed.

(a) Build toolbar

Build toolbar shows buttons used in build process.

(3) Panel display area

The following panels are displayed in this area.

- Project Tree panel

- Property panel

- Editor panel

- Output panel

See the each panel section for details of the contents of the display.

Rebuild active project Rebuilds the active project.

If the active project is the main project, its subproject is not rebuilt.

Note that this menu is disabled when the build tool is in operation.

Clean active project Cleans the active project.

If the active project is the main project, its subproject is not cleaned.

Note that this menu is disabled when the build tool is in operation.

Update Dependencies of active

project

Updates the dependency of the file in the active project to build.

Stop Build Cancels the build, rebuild, batch build and clean operation.

Build Mode Settings... Opens the Build Mode Settings dialog box to modify and add to the build mode.

Batch Build... Opens the Batch Build dialog box to batch build.

Build Option List Lists the currently set build option in the Output panel.

Builds projects. The subproject is also built when it is added in the project.

Note that this button is disabled when the build tool is in operation.

Rebuilds projects. The subproject is also rebuilt when it is added in the project.

Note that this button is disabled when the build tool is in operation.

Cancels the build, rebuild, batch build and clean in operation.

CubeSuite Ver.1.30 APPENDIX A WINDOW REFERENCE

R20UT0005EJ0100 Rev.1.00 Page 144 of 573
Jul 01, 2010

This panel is used to display the project components such as the build tool, source files, etc. in tree view.

Figure A-2. Project Tree Panel

The following items are explained here.

- [How to open]

- [Description of each area]

- [[Edit] menu (only available for the Project Tree panel)]

- [Context menu]

[How to open]

- From the [View] menu, select [Project Tree].

Project Tree panel

(1)

CubeSuite Ver.1.30 APPENDIX A WINDOW REFERENCE

R20UT0005EJ0100 Rev.1.00 Page 145 of 573
Jul 01, 2010

[Description of each area]

(1) Project tree area

Project components are displayed in tree view with the following given node.

Node Description

Project name (Project)

(hereafter referred to as “Project node”)

Project name.

Build tool name (Build tool)

(hereafter referred to as “Build tool node”)

The build tool (compiler, assembler, etc.) used in the project.

File

(hereafter referred to as “File node”)

The following files that are added to the project are displayed under the

root of this node.

- C source file (*.c)

- Assembler source file (*.asm)

- Header file (*.h, *.inc)

- Object file (*.rel)

- Library file (*.lib)

- Link directive file (*.dr, *.dir)

- Variable information file (*.vfi)

- Function information file (*.fin)Note

- Other file (doc, xml, etc.)

Build tool generated files

(hereafter referred to as “Build tool generated

files node”)

The following files generated by the build tool appear directly below the

node created during the build.

- For other than library projects

Load module file (*.lmf)

Link list file (*.map)

Error list file (*.elk)

Hex file (*.hex, *.hxb, *.hxf)

Symbol table file (*.sym)

Error list file (*.eoc)

Replacement information file (*.txt)

Object information file (*.txt)

Reference information file (*.txt)

- For library projects

Library file (*.lib)

List file (*.lst)

Replacement information file (*.txt)

Object information file (*.txt)

Reference information file (*.txt)

Files displayed under this node cannot be renamed, deleted, or moved.

This node is always placed lower than the File node.

This node will no longer appear if you reload the project after building.

Startup

(hereafter referred to as “Startup node”)

This is a node for adding other than standard startup files to the project.

This node is always placed lower than the File node.

CubeSuite Ver.1.30 APPENDIX A WINDOW REFERENCE

R20UT0005EJ0100 Rev.1.00 Page 146 of 573
Jul 01, 2010

Note Only devices with a memory bank installed

When each component (the node or file) is selected, the detailed information (property) is displayed in the Property

panel. You can change the settings.

Remark When more than one components are selected, only the tab that is common to all the components is

displayed.

When multiple files are selected and the values of their common properties are different, then the corre-

sponding value fields are displayed blank.

This area has the following functions.

(a) Add files

You can add files by one of the following procedure.

The files are added under the File node.

<1> Add existing files

- Select either one of the Project node, Subproject node, File node or a file. Then select [Add] >>

[Add File...] from the [File] menu. The Add Existing File dialog box appears. Select files to add.

- Select either one of the Project node, Subproject node, File node or a file. Then select [Add] >>

[Add File...] from the context menu. The Add Existing File dialog box appears. Select files to add.

- Copy the file using windows explorer and the like and then point the mouse to this area. Select

[Paste] from the [Edit] menu.

- Drag files using windows explorer and the like and then drop them at the location in this area where

you want to add the files to.

Remark If the files are dragged from the windows explorer and the like and then dropped in the blank

space under the lower project tree, it is regarded as dropped in the Main project.

<2> When new files are added

- Select either one of the Project node, Subproject node, File node or a file. Then select [Add] >>

[Add New File...] from the [File] menu. The Add File dialog box appears. Designate the file to cre-

ate.

- Select either one of the Project node, Subproject node, File node or a file. Then select [Add] >>

[Add New File...] from the context menu. The Add File dialog box appears. Designate the file to cre-

ate.

Remark A blank file is created at the location designated in the Add File dialog box.

(b) Remove the file from a project

You can remove files from the project by one of the following procedure.

The removed files are not deleted from the file system in this operation.

Category name

(hereafter referred to as “category node”)

Categories that the user created to categorize files (see "2.3.5 Clas-

sify a file into a category").

This node is always placed lower than the File node.

Subproject name (Subproject)

(hereafter referred to as “Subproject node”)

Subprojects added to the project.

Node Description

CubeSuite Ver.1.30 APPENDIX A WINDOW REFERENCE

R20UT0005EJ0100 Rev.1.00 Page 147 of 573
Jul 01, 2010

- Select the file you want to remove from the project. Then select [Remove from Project] from the [Project]

menu.

- Select the file you want to remove from the project. Then select [Remove from Project] from the context

menu.

(c) Move files

You can move files by the following procedure.

The file are moved under the File node.

- Drag the file you want to move and then drop it in the destination.

Remarks 1. Individual option is retained when the file is dropped in the main project or subproject.

2. The file is copied, not moved when the file is dropped between the different project, or in the

main project or subproject in same project. Note that this operation does not retain the individ-

ual option set in each file.

(d) Add categories

You can add the category node by one of the following procedure.

The category node are added under the File node.

- Select [Add New Category] from the [Project] menu.

- Select [Add New Category] from the context menu of either one of the Project node, Subproject node, or

File node.

Remarks 1. The default category name is "New category".

2. The new category name can be changed to the same name as the existing category node.

(e) Move categories

You can move the category node by the following procedure.

The category node are moved under the File node.

- Drag the category node you want to move and then drop it in the destination.

Remarks 1. Individual option set in the file in the category node is retained when the category node is

dropped in the main project or subproject.

2. The category node is copied, not moved when the it is dropped between the different project,

or in the main project or subproject in same project. Note that the individual option set in each

file contained in the category node is not retained.

(f) Add folders

You can add folders from Explorer or the like by the following procedure.

The folders are added under the File node.

The folders are added as categories.

- Drag the folder from Explorer or the like, and drop it over its destination. The Add Folder and File dialog

box opens. Specify the file types and subdirectory levels in the folder to add.

Caution You cannot drag and drop folders and files into this area simultaneously.

(g) Modify the display order of the subprojects placed in order of build

The subproject is displayed in order of build from the top. Therefore, the order of build can be changed by

changing the display order of the subprojects.

The project must be built from the subproject then the main project.

CubeSuite Ver.1.30 APPENDIX A WINDOW REFERENCE

R20UT0005EJ0100 Rev.1.00 Page 148 of 573
Jul 01, 2010

(h) Configure the standard build option

When the standard build option is changed, the property is displayed in boldface in the Property panel.

You can change the standard build option to the current setting (cancel boldface) by the following procedure.

- Select the Build tool node and then select [Set to Default Build Option for Project] in the context menu.

Remark The configuration of the standard build option takes effect to the whole project (main project and

subproject).

(i) Sort files and categories

You can sort files and category nodes in order of the file name, time stamp, or the user definition by the follow-

ing procedure.

- Select one of the buttons in the toolbar.

The following table explains the buttons.

 is selected default by default.

(j) Display the file while editing

When the file added to the project is edited in the Editor panel and the file is not saved once, the file name is

followed by "*". When the file is saved, "*" is deleted.

(k) Display the source file in boldface that the individual build option is set

The source file icon whose option is different from the project general option (individual compile option, individ-

ual assemble option) is changed to a different one from the normal icon.

(l) Highlight the file with read-only attribute

The read-only file added to the project is displayed in italic.

Button Description

Sorts files and category nodes in order of their names.

: Ascending order

: Descending order

: Ascending order

Sorts files and category nodes in order of their time stamp.

: Descending order

: Ascending order

: Descending order

Sorts files and category nodes in order of the user definition (default).

You can change the display order by dragging and dropping the file and category node.

The file that is saved

The file that is not saved after editing

The file with project general option

The file with individual build option

The file without read-only attribute

The file with read-only attribute

CubeSuite Ver.1.30 APPENDIX A WINDOW REFERENCE

R20UT0005EJ0100 Rev.1.00 Page 149 of 573
Jul 01, 2010

(m) Highlight the file that does not exist

The file that is added to the project but does not exist is grayed out and its icon is dimmed.

(n) Highlight the build-target file

<1> The file which the error occurred during building (rapid building), rebuilding, compiling or assem-

bling is highlighted as the example below.

Remarks 1. The file with both the error and the warning is highlighted in red.

2. The highlight is canceled when the build option (general option or individual option) or

the build mode is changed.

<2> The names of the following files are displayed in boldface.

- The source files that have not been compiled after edited

- The source files after cleaning has been executed

- The source files after build tool options have been changed

- The source files after any build mode has been changed

Remark The file names are all displayed in boldface right after the project is opened. The boldface

display is canceled after building is executed.

(o) Highlight non build-target file

The file that is set as non build-target is highlighted as shown in the example below.

(p) Highlight the project that has been changed

The file component that is added to the project and the property of the project component are changed, the

project name is followed by "*" and is displayed in boldface.

The boldface is canceled when the project is saved.

(q) Highlight the active project

The active projects is underlined.

The file that exists

The file that does not exist

The file without errors or warnings

The file with error

The file with warning

Build-target file

Non build-target file

The project that has not been changed

The project that has been changed

Non-active project

Active project

CubeSuite Ver.1.30 APPENDIX A WINDOW REFERENCE

R20UT0005EJ0100 Rev.1.00 Page 150 of 573
Jul 01, 2010

(r) Run the editor

Open the file with the specific extension in the Editor panel. When an external editor is specified to use in the

Option dialog box, open the file with the external editor. Other files are opened with the application associated

with the OS.

Caution The files with the extensions that are not associated with the OS are not displayed.

You can open the editor by one of the following procedure.

- Double click the file.

- Select the file and then select [Open] from the context menu.

- Select the file and then press the [Enter] key.

The files that can be opened in the Editor panel are as follows.

- C source file (.c)

- Assembler source file (.asm)

- Header file (.h, .inc)

- Link directive file (.dr, .dir)

- Variable information file (.vfi)

- Function information file (.fin)Note

- Map file (.map)

- Symbol table file (.sym)

- Hex file (.hex, .hxb, .hxf)

- Text file (.txt)

Note Only devices with a memory bank installed

Remark You can use one of the methods below to open files other than those listed above in the Editor

panel.

- Drag the file and drop it into the Editor panel.

- Select the file and then select [Open with Internal Editor...] from the context menu.

[[Edit] menu (only available for the Project Tree panel)]

Copy Copies the selected file or category node to the clipboard.

While editing the file name or the category name, the characters of the selection are

copied to the clipboard.

Note that this menu is only enabled when the file or category node is selected.

Paste Inserts the contents of the clipboard directly below the selected node on the project

tree.

While editing the file name or the category name, insert the contents of the clipboard.

Note that this menu is disabled when the contents of the clipboard exist in the same

project, when multiple files and category nodes are selected, and when the build tool

is in operation.

Rename You can rename the selected project, subproject, file, and category node. Press the

[Enter] key to confirm the rename. Press the [ESC] key to cancel.

When the file is selected, the actual file name is also changed.

When the selected file is added to other project, those file names are also changed.

Note that this menu is only enabled when the project, subproject, file, and category

node is selected. Note that rename is disabled when the build tool is in operation.

CubeSuite Ver.1.30 APPENDIX A WINDOW REFERENCE

R20UT0005EJ0100 Rev.1.00 Page 151 of 573
Jul 01, 2010

[Context menu]

(1) When the Project node is selected

(2) When the Subproject node is selected

Build active project Builds the active project.

If the active project is the main project, its subproject is not built.

Note that this menu is disabled when the build tool is in operation.

Rebuild active project Rebuilds the active project.

If the active project is the main project, its subproject is not rebuilt.

Note that this menu is disabled when the build tool is in operation.

Clean active project Cleans the active project.

If the active project is the main project, its subproject is not cleaned.

Note that this menu is disabled when the build tool is in operation.

Open Folder with Explorer Opens the folder that contains the project file of the selected project with Explorer.

Add Shows the cascading menu to add subprojects and files to the project.

Add Subproject... Opens the Add Existing Subproject dialog box to add the selected subproject to the

project.

Add New Subproject... Opens the Create Project dialog box to add the created subproject to the project.

Add File... Opens the Add Existing File dialog box to add the selected file to the project.

Add New File... Opens the Add File dialog box to create a file with the selected file type and add to

the project.

The added file can be opened with the application corresponds to the file extension.

Add New Category Adds a new category node to the root of the File node. This allows the category

name to be changed.

Up to 200 characters can be specified.

The default category name is "New category". The new category name can be

changed to the same name as the existing category node.

This menu is disabled while the build tool is running, and if categories are nested 20

levels.

Set selected project as Active

Project

Sets the selected project to an active project.

Save Project and CubeSuite as

Package...

Saves a set of the CubeSuite and the project by copying them in a folder.

Paste This menu is always disabled.

Rename You can rename the selected project.

Property Displays the selected project's property on the Property panel.

Build active project Builds the active project.

Note that this menu is disabled when the build tool is in operation.

Rebuild active project Rebuilds the active project.

Note that this menu is disabled when the build tool is in operation.

Clean active project Cleans the active project.

Note that this menu is disabled when the build tool is in operation.

CubeSuite Ver.1.30 APPENDIX A WINDOW REFERENCE

R20UT0005EJ0100 Rev.1.00 Page 152 of 573
Jul 01, 2010

(3) When the Build tool node is selected

Open Folder with Explorer Opens the folder that contains the subproject file of the selected subproject with

Explorer.

Add Shows the cascading menu to add subprojects, files, and category nodes to the

project.

Add Subproject... Opens the Add Existing Subproject dialog box to add the selected subproject to the

project.

The subproject cannot be added to another subproject.

Add New Subproject... Opens the Create Project dialog box to add the created subproject to the project.

The subproject cannot be added to another subproject.

Add File... Opens the Add Existing File dialog box to add the selected file to the project.

Add New File... Opens the Add File dialog box to create a file with the selected file type and add to

the project.

The added file can be opened with the application corresponds to the file extension.

Add New Category Adds a new category node to the root of the File node. This allows the category

name to be changed.

Up to 200 characters can be specified.

The default category name is "New category". The new category name can be

changed to the same name as the existing category node.

This menu is disabled while the build tool is running, and if categories are nested 20

levels.

Set selected subproject as

Active Project

Sets the selected subproject to an active project.

Remove from Project Removes the selected subproject from the project.

The subproject file itself is not deleted from the file system with this operation.

When the selected subproject is the active project, it cannot be removed from the

project.

Note that this menu is disabled when the build tool is in operation.

Paste This menu is always disabled.

Rename You can rename the selected subproject.

Property Displays the selected subproject's property on the Property panel.

Build Project Builds the selected project (main project or subproject). The subproject is also built

when it is added in the project.

Note that this menu is disabled when the build tool is in operation.

Rebuild Project Rebuilds the selected project (main project or subproject). The subproject is also

rebuilt when it is added in the project.

Note that this menu is disabled when the build tool is in operation.

Clean Project Cleans the selected project (main project or subproject). The subproject is also

cleaned when it is added in the project.

Note that this menu is disabled when the build tool is in operation.

Set to Default Build Option for

Project

Sets the current build option to the standard option for the selected project. When

the subproject is added, it is not set.

When the build option that is different from the standard option is set, its property is

displayed in boldface.

CubeSuite Ver.1.30 APPENDIX A WINDOW REFERENCE

R20UT0005EJ0100 Rev.1.00 Page 153 of 573
Jul 01, 2010

(4) When the File node is selected

(5) When a file is selected

Set Link Order... Opens the Link Order dialog box to display object module files and library files and

to setup their link order.

Note that this menu is disabled when the build tool is in operation.

Property Displays the selected build tool's property on the Property panel.

Add Shows the cascading menu to add files and category nodes to the project.

Add File... Opens the Add Existing File dialog box to add the selected file to the project. The

file is added directly below this node.

The added file can be opened with the application corresponds to the file exten-

sion.The file is added directly below this node.

Add New File... Opens the Add File dialog box to create a file with the selected file type and add to

the project. The file is added directly below this node.

The added file can be opened with the application corresponds to the file extension.

Add New Category Adds a new category node to the root of this node. You can rename the category.

Up to 200 characters can be specified.

The default category name is "New category". The new category name can be

changed to the same name as the existing category node.

This menu is disabled while the build tool is running, and if categories are nested 20

levels.

Remove from Project This menu is always disabled.

Copy This menu is always disabled.

Paste Inserts the contents of the clipboard directly below this node.

However, this menu is disabled when the contents of the clipboard exist in the same

project.

Rename This menu is always disabled.

Property Displays the selected category node's property on the Property panel.

Compile Compiles the selected C source file.

Note that this menu is only displayed when a C source file (except for non build-tar-

get file) is selected.

Note that this menu is disabled when the build tool is in operation.

Assemble Assembles the selected assembler source file.

Note that this menu is only displayed when an assembler source file (except for non

build-target file) is selected.

Note that this menu is disabled when the build tool is in operation.

Open Opens the selected file with the application corresponds to the file extension (see

"(r) Run the editor").

Note that this menu is disabled when multiple files are selected.

Open with Internal Editor... Opens the selected file with the Editor panel.

Note that this menu is disabled when multiple files are selected.

Open with Selected Applica-

tion...

Opens the Open with Program dialog box to open the selected file with the desig-

nated application.

Note that this menu is disabled when multiple files are selected.

CubeSuite Ver.1.30 APPENDIX A WINDOW REFERENCE

R20UT0005EJ0100 Rev.1.00 Page 154 of 573
Jul 01, 2010

(6) When the Build tool generated files node is selected

(7) When the Startup node is selected

Open Folder with Explorer Opens the folder that contains the selected file with Explorer.

Add Shows the cascading menu to add files and category nodes to the project.

Add File... Opens the Add Existing File dialog box to add the selected file to the project. The

file is added to the same level as the selected file.

Add New File... Opens the Add File dialog box to create a file with the selected file type and add to

the project. The file is added to the same level as the selected file.

The added file can be opened with the application corresponds to the file extension.

Add New Category Adds a new category node at the same level as the selected file. You can rename

the category.

Up to 200 characters can be specified.

The default category name is "New category". The new category name can be

changed to the same name as the existing category node.

This menu is disabled while the build tool is running, and if categories are nested 20

levels.

Remove from Project Removes the selected file from the project.

The removed file is not deleted from the file system in this operation.

Note that this menu is disabled when the build tool is in operation.

Copy Copies the selected file to the clipboard.

When the file name is in editing, the characters of the selection are copied to the

clipboard.

Paste This menu is always disabled.

Rename You can rename the selected file.

The actual file is also renamed.

When the selected file is added to another projects, it is also renamed.

Property Displays the selected file's property on the Property panel.

Property Displays this node 's property on the Property panel.

Add Shows the cascading menu to add files and category nodes to the project.

Add File... Opens the Add Existing File dialog box to add the selected file to the project. The

file is added directly below this node.

The added file can be opened with the application corresponds to the file extension.

Add New File... Opens the Add File dialog box to create a file with the selected file type and add to

the project. The file is added directly below this node.

The added file can be opened with the application corresponds to the file extension.

Add New Category Adds a new category node to the root of this node. You can rename the category.

Up to 200 characters can be specified.

The default category name is "New category". The new category name can be

changed to the same name as the existing category node.

This menu is disabled while the build tool is running, and if categories are nested 20

levels.

Remove from Project This menu is always disabled.

CubeSuite Ver.1.30 APPENDIX A WINDOW REFERENCE

R20UT0005EJ0100 Rev.1.00 Page 155 of 573
Jul 01, 2010

(8) When a category node is selected

Copy This menu is always disabled.

Paste Inserts the contents of the clipboard directly below this node.

However, this menu is disabled when the contents of the clipboard exist in the same

project.

Rename This menu is always disabled.

Property Displays this node 's property on the Property panel.

Add Shows the cascading menu to add files and category nodes to the project.

Add File... Opens the Add Existing File dialog box to add the selected file to the project. The

file is added directly below this node.

The added file can be opened with the application corresponds to the file extension.

Add New File... Opens the Add File dialog box to create a file with the selected file type and add to

the project. The file is added directly below this node.

The added file can be opened with the application corresponds to the file extension.

Add New Category Adds a new category node to the root of this node. You can rename the category.

Up to 200 characters can be specified.

The default category name is "New category". The new category name can be

changed to the same name as the existing category node.

This menu is disabled while the build tool is running, and if categories are nested 20

levels.

Remove from Project Removes the selected category node from the project.

Note that this menu is disabled when the build tool is in operation.

Copy Copies the selected category node to the clipboard.

When the category name is in editing, the characters of the selection are copied to

the clipboard.

Paste Inserts the contents of the clipboard directly below this node.

However, this menu is disabled when the contents of the clipboard exist in the same

project.

When the category name is in editing, the contents of the clipboard are inserted.

Rename You can rename the selected category node.

Property Displays the selected category node's property on the Property panel.

CubeSuite Ver.1.30 APPENDIX A WINDOW REFERENCE

R20UT0005EJ0100 Rev.1.00 Page 156 of 573
Jul 01, 2010

This panel is used to display the detailed information on the Build tool node, file, or category node that is selected on

the Project Tree panel by every category and change the settings of the information.

Figure A-3. Property Panel

The following items are explained here.

- [How to open]

- [Description of each area]

- [[Edit] menu (only available for the Project Tree panel)]

- [Context menu]

 Property panel

(2)

(3)

(4)

(1)

CubeSuite Ver.1.30 APPENDIX A WINDOW REFERENCE

R20UT0005EJ0100 Rev.1.00 Page 157 of 573
Jul 01, 2010

[How to open]

- On the Project Tree panel, select the Build tool node, file, or category node, and then select [Property] from the

[View] menu or [Property] from the context menu.

Remark When either one of the Build tool node, file, or category node on the Project Tree panel while the Property

panel is opened, the detailed information of the selected node is displayed.

[Description of each area]

(1) Selected node area

Display the name of the selected node on the Project Tree panel.

When multiple nodes are selected, this area is blank.

(2) Detailed information display/change area

In this area, the detailed information on the Build tool node, file, or category node that is selected on the Project

Tree panel is displayed by every category in the list. And the settings of the information can be changed directly.

Mark indicates that all the items in the category are expanded. Mark indicates that all the items are col-

lapsed. You can expand/collapse the items by clicking these marks or double clicking the category name.

Mark indicates that only the hex number is allowed to input in the text box.

See the section on each tab for the details of the display/setting in the category and its contents.

(3) Property description area

Display the brief description of the categories and their contents selected in the detailed information display/

change area.

(4) Tab selection area

Categories for the display of the detailed information are changed by selecting a tab.

In this panel, the following tabs are contained (see the section on each tab for the details of the display/setting on

the tab).

(a) When the Build tool node is selected on the Project Tree panel

- [Common Options] tab

- [Compile Options] tab

- [Assemble Options] tab

- [Link Options] tab

- [Object Convert Options] tab

- [Create Library Options] tab

- [Variables Relocation Options] tab

- [Memory Bank Relocation Options] tab

(b) When a file is selected on the Project Tree panel

- [Build Settings] tab (for C source file, assembler source file, link directive file, variables information file,

function information file, object file, and library file)

- [Individual Compile Options] tab (for C source file)

- [Individual Assemble Options] tab (for assembler source fileNote)

- [File Information] tab

Note This tab is also displayed when [Yes] is selected in the [Output assemble file] property in the [Assembly

File] category from the [Individual Compile Options] tab.

CubeSuite Ver.1.30 APPENDIX A WINDOW REFERENCE

R20UT0005EJ0100 Rev.1.00 Page 158 of 573
Jul 01, 2010

(c) When the category node, File node, Build tool generated files node, or Startup node is selected on the

Project Tree panel

- [Category Information] tab

Remark When multiple components are selected on the Project Tree panel, only the tab that is common to all

the components is displayed. If the value of the property is modified, that is taken effect to the selected

components all of which are common to all.

[[Edit] menu (only available for the Project Tree panel)]

[Context menu]

Undo Cancels the previous edit operation of the value of the property.

Cut While editing the value of the property, cuts the selected characters and copies them to

the clip board.

Copy Copies the selected characters of the property to the clip board.

Paste While editing the value of the property, inserts the contents of the clip board.

Delete While editing the value of the property, deletes the selected character string.

Select All While editing the value of the property, Selects all the characters of the selected prop-

erty.

Undo Cancels the previous edit operation of the value of the property.

Cut While editing the value of the property, cuts the selected characters and copies them to

the clip board.

Copy Copies the selected characters of the property to the clip board.

Paste While editing the value of the property, inserts the contents of the clip board.

Delete While editing the value of the property, deletes the selected character string.

Select All While editing the value of the property, selects all the characters of the selected prop-

erty.

Reset to Default Restores the configuration of the selected item to the default configuration of the

project.

For the [Individual Compile Options] tab and [Individual Assemble Options] tab,

restores to the configuration of the general option.

Reset All to Default Restores all the configuration of the current tab to the default configuration of the

project.

For the [Individual Compile Options] tab and [Individual Assemble Options] tab,

restores to the configuration of the general option.

CubeSuite Ver.1.30 APPENDIX A WINDOW REFERENCE

R20UT0005EJ0100 Rev.1.00 Page 159 of 573
Jul 01, 2010

[Common Options] tab

This tab shows the detailed information on the build tool categorized by the following and the configuration can be

changed.

(1) [Build Mode]

(2) [Output File Type and Path]

(3) [Frequently Used Options(for Compile)]

(4) [Frequently Used Options(for Assemble)]

(5) [Frequently Used Options(for Link)]

(6) [Frequently Used Options(for Object Convert)]

(7) [Device]

(8) [Build Method]

(9) [Version Select]

(10) [Notes]

(11) [Others]

Remark If the property in the [Frequently Used Options] category is changed, the value of the property having the

same name contained in the corresponding tab will be changed accordingly.

Category from [Common Options] Tab Corresponding Tab

[Frequently Used Options(for Compile)] category [Compile Options] tab

[Frequently Used Options(for Assemble)] category [Assemble Options] tab

[Frequently Used Options(for Link)] category [Link Options] tab

[Frequently Used Options(for Object Convert)] category [Object Convert Options] tab

CubeSuite Ver.1.30 APPENDIX A WINDOW REFERENCE

R20UT0005EJ0100 Rev.1.00 Page 160 of 573
Jul 01, 2010

Figure A-4. Property Panel: [Common options] Tab

CubeSuite Ver.1.30 APPENDIX A WINDOW REFERENCE

R20UT0005EJ0100 Rev.1.00 Page 161 of 573
Jul 01, 2010

[Description of each category]

(1) [Build Mode]

The detailed information on the build mode is displayed and the configuration can be changed.

(2) [Output File Type and Path]

The detailed information on output file types and paths are displayed and the configuration can be changed.

Build mode Select the build mode to be used during build.

Note that this property is not applied to [Reset All to Default] from the context menu.

Default DefaultBuild

How to change Select from the drop-down list.

Restriction DefaultBuild Builds with the default build mode that is set

when a new project is created.

Build mode that is added

to the project (other than

DefaultBuild)

Builds with the build mode that is added to

the project (other than DefaultBuild).

Output file type Select the type of the file to be generated during build.

The file type set here is subject to debugging.

For other than library projects, only [Execute Module(Load Module File)] and [Execute Mod-

ule(Hex File)] are displayed. However, only [Execute Module(Load Module File)] is dis-

played when [Yes] is selected in the [Output hex file] property in the [Hex File] category from

the [Object Convert Options] tab.

For library projects, only [Library] is displayed.

Default Execute Module(Load Module File)

How to change Select from the drop-down list.

Restriction Execute Module(Load

Module File)

The file to be generated during build is

regarded as the executable format (load mod-

ule file).

Execute Module(Hex

File)

The file to be generated during build is

regarded as the executable format (hex file).

Library The file to be generated during build is

regarded as the library format (library file).

Intermediate file output

folder

Specify the path to the folder to which intermediate files (object module files (*.rel), cross-

reference list files (*.xrf), etc.) are to be output.

If a relative path is specified, the reference point of the path is the main project or subproject

folder.

If an absolute path is specified, the reference point of the path is the main project or sub-

project folder (unless the drives are different).

The following macro names are available as embedded macros.

%BuildModeName%: Replaces with the build mode name.

If this is blank, it is treated as if the project folder is specified.

Default %BuildModeName%

How to change Directly enter to the text box or edit by the Browse For Folder dialog box

which appears when clicking the [...] button.

Restriction Up to 247 characters

CubeSuite Ver.1.30 APPENDIX A WINDOW REFERENCE

R20UT0005EJ0100 Rev.1.00 Page 162 of 573
Jul 01, 2010

(3) [Frequently Used Options(for Compile)]

The detailed information on frequently used options for compilation are displayed and the configuration can be

changed.

Perform optimization Select the type of the optimization for compiling.

This corresponds to the -qx option of the compiler.

Default Yes(Standard)(-qx2)

How to change Select from the drop-down list.

Restriction Yes(Speed prece-

dence)(-qx1)

Performs optimization with the execution speed

precedence.

Yes(Standard)(-qx2) Performs optimization with both the execution

speed and module size precedence.

Yes(Code size prece-

dence)(-qx3)

Performs optimization with the module size pre-

cedence.

Yes(Code size

(Best))(-qx4)

Performs optimization with top precedence to

module size.

In addition -qx3, common code is placed in sub-

routines, and the library for the stack access is

used.

Yes(Detail setting) The [Optimization(Details)] category is shown in

the [Compile Options] tab. The option that is

selected in the category has the precedence for

the optimization.

When [No(-nq)] is selected in all the properties

in the [Optimization(Details)] category, the opti-

mization will not be done.

No(-nq) The optimization will not be done.

Additional include paths Specify the additional include paths during compiling.

The following macro names are available as embedded macros.

%BuildModeName%: Replaces with the build mode name.

%ProjectName%: Replaces with the project name.

%CubeSuitePath%: Replaces with the absolute path of the CubeSuite install folder.

When this option is omitted, only the standard folder of the compiler is searched. The refer-

ence point of the path is the project folder.

This corresponds to the -i option of the compiler.

The specified include path is displayed as the subproperty.

When the include path is added to the project tree, the path is added to the top of the

subproperties.

Uppercase characters and lowercase characters are not distinguished for the include paths.

Default Additional include paths[number of defined items]

How to change Edit by the Path Edit dialog box which appears when clicking the [...] but-

ton.

For the subproperty, you can use the text box directly enter the text.

Restriction Up to 259 characters

Up to 64 items can be specified. However, this also includes the number

of paths used by linked tools.

CubeSuite Ver.1.30 APPENDIX A WINDOW REFERENCE

R20UT0005EJ0100 Rev.1.00 Page 163 of 573
Jul 01, 2010

(4) [Frequently Used Options(for Assemble)]

The detailed information on frequently used options for assembling are displayed and the configuration can be

changed.

System include paths The include paths which the system set during compiling are displayed.

The following macro names are available as embedded macros.

%BuildModeName%: Replaces with the build mode name.

%ProjectName%: Replaces with the project name.

%CubeSuitePath%: Replaces with the absolute path of the CubeSuite install folder.

The system include path is searched with lower priority than the additional include path.

The reference point of the path is the project folder.

This corresponds to the -i option of the compiler.

The include path is displayed as the subproperty.

Default System include paths[number of defined items]

How to change Edit by the System Include Path Order dialog box which appears when

clicking the [...] button.

Restriction Changes not allowed (Only the specified order of the include paths can be

changed.)

Macro definition Specify the macro name to be defined.

Specify in the format of "macro name=defined value", with one macro name per line. The

"=def" part can be omitted, and in this case, "1" is used as the defined value.

This corresponds to the -d option of the compiler.

The specified macro is displayed as the subproperty.

Default Macro definition[number of defined items]

How to change Edit by the Text Edit dialog box which appears when clicking the [...] but-

ton.

For the subproperty, you can use the text box directly enter the text.

Restriction Up to 256 characters

Up to 30 items can be specified.

CubeSuite Ver.1.30 APPENDIX A WINDOW REFERENCE

R20UT0005EJ0100 Rev.1.00 Page 164 of 573
Jul 01, 2010

Additional include paths Specify the additional include paths during assembling.

The following macro names are available as embedded macros.

%BuildModeName%: Replaces with the build mode name.

%ProjectName%: Replaces with the project name.

%CubeSuitePath%: Replaces with the absolute path of the CubeSuite install folder.

When this option is omitted, only the standard folder of the assembler is searched. The ref-

erence point of the path is the project folder.

This corresponds to the -i option of the assembler.

The specified include path is displayed as the subproperty.

When the include path is added to the project tree, the path is added to the top of the

subproperties.

Uppercase characters and lowercase characters are not distinguished for the include paths.

Default Additional include paths[number of defined items]

How to change Edit by the Path Edit dialog box which appears when clicking the [...] but-

ton.

For the subproperty, you can use the text box directly enter the text.

Restriction Up to 259 characters

Up to 64 items can be specified. However, this also includes the number

of paths used by linked tools.

System include paths The include paths which the system set during assembling are displayed.

The following macro names are available as embedded macros.

%BuildModeName%: Replaces with the build mode name.

%ProjectName%: Replaces with the project name.

%CubeSuitePath%: Replaces with the absolute path of the CubeSuite install folder.

The system include path is searched with lower priority than the additional include path.

The reference point of the path is the project folder.

This corresponds to the -i option of the assembler.

The include path is displayed as the subproperty.

Default System include paths[number of defined items]

How to change Edit by the System Include Path Order dialog box which appears when

clicking the [...] button.

Restriction Changes not allowed (Only the specified order of the include paths can be

changed.)

Macro definition Specify the macro name to be defined.

Specify in the format of "macro name=defined value", with one macro name per line. The

"=def" part can be omitted, and in this case, "1" is used as the defined value.

This corresponds to the -d option of the assembler.

The specified macro is displayed as the subproperty.

Default Macro definition[number of defined items]

How to change Edit by the Text Edit dialog box which appears when clicking the [...] but-

ton.

For the subproperty, you can use the text box directly enter the text.

Restriction Up to 256 characters

Up to 30 items can be specified.

CubeSuite Ver.1.30 APPENDIX A WINDOW REFERENCE

R20UT0005EJ0100 Rev.1.00 Page 165 of 573
Jul 01, 2010

(5) [Frequently Used Options(for Link)]

The detailed information on frequently used options for linking are displayed and the configuration can be changed.

This category is not displayed for library projects.

Using libraries Specify the library file name (*.lib) to be used other than the standard libraries.

Add one file in one line.

The library files are searched from the library path.

This corresponds to the -b option of the linker.

The specified library file name is displayed as the subproperty.

Default Using libraries[number of defined items]

How to change Edit by the Text Edit dialog box which appears when clicking the [...] but-

ton.

For the subproperty, you can use the text box directly enter the text.

Restriction Up to 259 characters

Up to 64 items can be specified.

Additional library paths Specify the search folder to be used other than the standard libraries.

The following macro names are available as embedded macros.

%BuildModeName%: Replaces with the build mode name.

%ProjectName%: Replaces with the project name.

%CubeSuitePath%: Replaces with the absolute path of the CubeSuite install folder.

The library files are searched from the library path.If a relative path is specified, the refer-

ence point of the path is the project folder.

This corresponds to the -i option of the linker.

The specified library path name is displayed as the subproperty.

Default Additional library paths[number of defined items]

How to change Edit by the Path Edit dialog box which appears when clicking the [...] but-

ton.

For the subproperty, you can use the text box directly enter the text.

Restriction Up to 259 characters

Up to 64 items can be specified.

Output folder Specify the folder for saving the module that is generated.

If a relative path is specified, the reference point of the path is the main project or subproject

folder.

If an absolute path is specified, the reference point of the path is the main project or sub-

project folder (unless the drives are different).

The following macro name is available as an embedded macro.

%BuildModeName%: Replaces with the build mode name.

If this is blank, it is treated as if the project folder is specified.

Default %BuildModeName%

How to change Directly enter to the text box or edit by the Browse For Folder dialog box

which appears when clicking the [...] button.

Restriction Up to 247 characters

CubeSuite Ver.1.30 APPENDIX A WINDOW REFERENCE

R20UT0005EJ0100 Rev.1.00 Page 166 of 573
Jul 01, 2010

(6) [Frequently Used Options(for Object Convert)]

The detailed information on frequently used options for object conversion are displayed and the configuration can

be changed.

This category is not displayed for library projects.

Output file name Specify the load module file name to be output.

Use the extension ".lmf". If the extension is omitted, ".lmf" is automatically added.

This corresponds to the -o option of the linker.

The following macro name is available as an embedded macro.

%ProjectName%: Replaces with the project name.

If this is blank, it is assumed that "%ProjectName%.lmf" has been specified.

Default %ProjectName%.lmf

How to change Directly enter to the text box.

Restriction Up to 259 characters

Output hex file Select whether to output the hex file.

This corresponds to the -o option of the object converter.

Default Yes

How to change Select from the drop-down list.

Restriction Yes Outputs the hex file.

No(-no) Does not output the hex file.

Output folder for hex file Specify the folder for saving the hex file.

This corresponds to the -o option of the object converter.

If a relative path is specified, the reference point of the path is the main project or subproject

folder.

If an absolute path is specified, the reference point of the path is the main project or sub-

project folder (unless the drives are different).

The following macro name is available as an embedded macro.

%BuildModeName%: Replaces with the build mode name.

If this is blank, it is treated as if the project folder is specified.

This property is displayed only when [Yes] in the [Output hex file] property is selected.

Default %BuildModeName%

How to change Directly enter to the text box or edit by the Browse For Folder dialog box

which appears when clicking the [...] button.

Restriction Up to 247 characters

Hex file name Specify the hex file name.

This corresponds to the -o option of the object converter.

The extension can be freely specified.

The following macro name is available as an embedded macro.

%ProjectName%: Replaces with the project name.

This property is displayed only when [Yes] in the [Output hex file] property is selected.

Default %ProjectName%.hex

How to change Directly enter to the text box.

Restriction Up to 259 characters

CubeSuite Ver.1.30 APPENDIX A WINDOW REFERENCE

R20UT0005EJ0100 Rev.1.00 Page 167 of 573
Jul 01, 2010

(7) [Device]

The detailed information on the device is displayed and the configuration can be changed.

(8) [Build Method]

The detailed information on the build method is displayed and the configuration can be changed.

(9) [Version Select]

The detailed information on the build tool version is displayed and the configuration can be changed.

Hex file format Select the format of the hex file to be generated.

This corresponds to the -k option of the object converter.

This property is not displayed when [No(-no)] in the [Output hex file] property is selected.

Default Intel expanded hex format(-kie)

How to change Select from the drop-down list.

Restriction Intel standard hex for-

mat(-ki)

Specify the Intel standard hex format as the

format of the hex file to be generated.

Intel expanded hex for-

mat(-kie)

Specify the Intel expanded hex format as the

format of the hex file to be generated.

Motorola S type for-

mat(standard address)(-

km)

Specify the Motorola S type format (standard

address) as the format of the hex file to be

generated.

Motorola S type for-

mat(32-bit address)(-

kme)

Specify the Motorola S type format (32-bit

address) as the format of the hex file to be

generated.

Expanded Tektronix hex

format(-kt)

Specify the expanded Tektronix hex format as

the format of the hex file to be generated.

Security ID Specify the security ID of an on-chip flash memory device.

This corresponds to the -gi option of the linker.

This property is invalid when the [Boot area load module file name] property in the [Device]

category from the [Link Options] tab is specified.

This property is not displayed when the device does not have a security ID function.

Default 0xffffffffffffffffffff

How to change Directly enter to the text box.

Restriction 0x00000000000000000000 to 0xffffffffffffffffffff

(20-digit (10-byte) hexadecimal number)

Handling the source file

includes non-existing file

Selects whether to recompile/assemble the source file if there are no files that include it.

Default Re-compile/assemble the source file

How to change Select from the drop-down list.

Restriction Re-compile/assemble the

source file

Recompiles/assembles the source file if

there are no files that include it.

Ignore re-compiling/assem-

bling the source file

Does not recompile/assemble the source

file even if there are no files that include it.

CubeSuite Ver.1.30 APPENDIX A WINDOW REFERENCE

R20UT0005EJ0100 Rev.1.00 Page 168 of 573
Jul 01, 2010

(10)[Notes]

The detailed information on notes is displayed and the configuration can be changed.

(11) [Others]

Other detailed information on the build tool are displayed and the configuration can be changed.

Using compiler package

install folder

Display the folder in which the compiler package to be used is installed.

Default Install folder name

How to change Changes not allowed

Using compiler package

version

Select the version of the compiler package to be used.

This setting is common to all the build modes.

If you have selected a compiler package that has not been installed (e.g. if you open a

project created in another execution environment), then that version is also displayed.

If the options change depending on the compiler package, then the display of the build tool's

properties will change according to the selected version.

Default Always latest version which was installed

How to change Select from the drop-down list.

Restriction Always latest version

which was installed

Uses the latest version in the installed compiler

packages.

Versions of the

installed compiler

packages

Uses the selected version in the compiler pack-

age.

Latest compiler package

version which was

installed

Display the version of the compiler package to be used when [Always latest version which

was installed] is selected in the [Using compiler package version] property.

This setting is common to all the build modes.

This property is displayed only when [Always latest version which was installed] in the

[Using compiler package version] property is selected.

Default The latest version of the installed compiler packages

How to change Changes not allowed

Memo Add memos to the build tool.

Add one item in one line.

This setting is common to all the build modes.

The added memos are displayed as the subproperty.

Default Memo[number-of-items]

How to change Edit by the Text Edit dialog box which appears when clicking the [...] but-

ton.

For the subproperty, you can use the text box directly enter the text.

Restriction Up to 256 characters

Up to 256 items can be specified.

CubeSuite Ver.1.30 APPENDIX A WINDOW REFERENCE

R20UT0005EJ0100 Rev.1.00 Page 169 of 573
Jul 01, 2010

Output message format Specify the format of the message being built.

This applies to the messages output by the build tool to be used, and commands added by

plugins.

It does not apply to the output messages of commands specified in the [Commands exe-

cuted before build processing] or [Commands executed after build processing] property.

The following macro names are available as embedded macros.

%Program%: Replaces with the program name under execution.

%Options%: Replaces with the command line option under build execution.

%FileName%: Replaces with the file name being built.

If this is blank, it is assumed that "%Program% %Options%" has been specified.

Default %FileName%

How to change Directly enter to the text box (up to 256 characters) or select from the

drop-down list.

Restriction %FileName% Displays the file name in the output mes-

sage.

%FileName%: %Options% Displays the file name and command line

options in the output message.

%Program% %Options% Displays the program name and command

line options in the output message.

Format of build option list Specify the display format of the build option list (see "2.15.3 Display a list of build

options").

This applies to the options of the build tool to be used, and commands added by plugins.

It does not apply to the options of commands specified in the [Commands executed before

build processing] or [Commands executed after build processing] property.

The following macro names are available as embedded macros.

%Program%: Replaces with the program name under execution.

%Options%: Replaces with the command line option under build execution.

%FileName%: Replaces with the file name being built.

Default %FileName% : %Program% %Options%

How to change Directly enter to the text box or edit by the Character String Input dialog

box which appears when clicking the [...] button.

Restriction Up to 256 characters

Temporary folder Specify the folder to which the temporary files generated by each command included in the

build tool during execution are saved.

This corresponds to the -t option of each command.

If a relative path is specified, the reference point of the path is the main project or subproject

folder.

If an absolute path is specified, the reference point of the path is the main project or sub-

project folder (unless the drives are different).

If this is blank, it is treated as if the project folder is specified.

Default Blank

How to change Directly enter to the text box or edit by the Browse For Folder dialog box

which appears when clicking the [...] button.

Restriction Up to 200 characters

CubeSuite Ver.1.30 APPENDIX A WINDOW REFERENCE

R20UT0005EJ0100 Rev.1.00 Page 170 of 573
Jul 01, 2010

Commands executed

before build processing

Specify the command to be executed before build processing.

The following macro names are available as embedded macros.

%ProjectFolder%: Replaces with the absolute path of the project folder.

%OutputFolder%: Replaces with the absolute path of the output folder.

%OutputFile%: Replaces with the absolute path of the output file.

The specified command is displayed as the subproperty.

Default Commands executed before build processing[number of defined items]

How to change Edit by the Text Edit dialog box which appears when clicking the [...] but-

ton.

For the subproperty, you can use the text box directly enter the text.

Restriction Up to 1023 characters

Up to 64 items can be specified.

Commands executed

after build processing

Specify the command to be executed after build processing.

The following macro names are available as embedded macros.

%ProjectFolder%: Replaces with the absolute path of the project folder.

%OutputFolder%: Replaces with the absolute path of the output folder.

%OutputFile%: Replaces with the absolute path of the output file.

The specified command is displayed as the subproperty.

Default Commands executed after build processing[number of defined items]

How to change Edit by the Text Edit dialog box which appears when clicking the [...] but-

ton.

For the subproperty, you can use the text box directly enter the text.

Restriction Up to 1023 characters

Up to 64 items can be specified.

CubeSuite Ver.1.30 APPENDIX A WINDOW REFERENCE

R20UT0005EJ0100 Rev.1.00 Page 171 of 573
Jul 01, 2010

[Compile Options] tab

This tab shows the detailed information on the compiler categorized by the following and the configuration can be

changed.

(1) [Debug Information]

(2) [Optimization]

(3) [Optimization(Details)]

(4) [Preprocess]

(5) [Startup]

(6) [Library]

(7) [Message]

(8) [Extension]

(9) [Memory Model]

(10) [Output File]

(11) [Assembly File]

(12) [Variables Information File]

(13) [Function Information File]

(14) [Data Control]

(15) [List File]

(16) [Others]

CubeSuite Ver.1.30 APPENDIX A WINDOW REFERENCE

R20UT0005EJ0100 Rev.1.00 Page 172 of 573
Jul 01, 2010

Figure A-5. Property Panel: [Compile Options] Tab

CubeSuite Ver.1.30 APPENDIX A WINDOW REFERENCE

R20UT0005EJ0100 Rev.1.00 Page 173 of 573
Jul 01, 2010

[Description of each category]

(1) [Debug Information]

The detailed information on debug information is displayed and the configuration can be changed.

(2) [Optimization]

The detailed information on the optimization is displayed and the configuration can be changed.

Add debug information Select whether to enable source level debugging by adding debug information to the mod-

ule being generated.

This corresponds to the -g option of the compiler.

If [Yes] is selected on the [Use memory bank relocation support tool] property in the [Output

File] category from the [Memory Bank Relocation Options] tab, this property will be changed

to [Yes(Add to both assembly and object file)(-g2)].

Default Yes(Add to both assembly and object file)(-g2)

How to change Select from the drop-down list.

Restriction Yes(Add to object file

only)(-g1)

Adds debug information to the object module file

being generated.

Yes(Add to both

assembly and object

file)(-g2)

Adds debug information to the object module file

and assembler source module file being gener-

ated.

No(-ng) Does not add debug information to the object

module file being generated.

Perform optimization Select the type of the optimization for compiling.

This corresponds to the -qx option of the compiler.

Default Yes(Standard)(-qx2)

How to change Select from the drop-down list.

Restriction Yes(Speed prece-

dence)(-qx1)

Performs optimization with the execution speed

precedence.

Yes(Standard)(-

qx2)

Performs optimization with both the execution

speed and module size precedence.

Yes(Code size)(-

qx3)

Performs optimization with the module size prece-

dence.

Yes(Code size

(Best))(-qx4)

Performs optimization with top precedence to

module size.

In addition -qx3, common code is placed in sub-

routines, and the library for the stack access is

used.

Yes(Detail setting) The [Optimization(Details)] category is shown in

the [Compile Options] tab. The option that is

selected in the category has the precedence for

the optimization.

When [No(-nq)] is selected in all the properties in

the [Optimization(Details)] category, the optimiza-

tion will not be done.

No(-nq) The optimization will not be done.

CubeSuite Ver.1.30 APPENDIX A WINDOW REFERENCE

R20UT0005EJ0100 Rev.1.00 Page 174 of 573
Jul 01, 2010

(3) [Optimization(Details)]

The detailed information on the optimization are displayed and the configuration can be changed.

This category is displayed only when [Yes(Detail setting)] in the [Perform optimization] property in the [Optimiza-

tion] category is selected.

Swap order of formula

operations

Select whether to output an efficient code in order to achieve efficient register utilization by

swapping the execution order of formula.

This corresponds to the -qw option of the compiler.

Default Yes(Swap order of formula operations)(-qw1)

How to change Select from the drop-down list.

Restriction Yes(Swap order of for-

mula operations)(-qw1)

Swaps the order of formula operations.

Yes(for speed assumed

SADDR array is in 256

bytes)(-qw2)

In addition to the swapping the order of for-

mula operations, changes the execution

order in an expression and performs address

calculation without a carry, while assuming

that the size of the array does not exceed 256

bytes when a char, short, unsigned short, int,

or unsigned int array that is allocated to the

saddr area is referenced with an unsigned

char variable.

No Does not specify swapping the order of for-

mula operations.

Assign automatic vari-

ables to register or saddr

area

Select whether to automatically assign automatic variables to a register and the saddr area.

This corresponds to the -qv option of the compiler.

Default Yes(-qv)

How to change Select from the drop-down list.

Restriction Yes(-qv) Assigns automatic variables to a register and the saddr

area automatically.

No Does not specify assigning automatic variables to a reg-

ister and the saddr area automatically.

Assign register variables

to register and saddr

area

Select whether to assign register variables to registers and assign them also to the saddr

area.

This corresponds to the -qr option of the compiler.

Default No

How to change Select from the drop-down list.

Restriction Yes(Automatic variables

and norec argument(-

qr1)

Assigns auto variables and norec arguments

to registers and assigns them also to the

saddr area.

Yes(Automatic and regis-

ter variables and norec

argument)(-qr2)

Assigns auto variables, register variables,

and norec arguments to registers and assigns

them also to the saddr area.

No Does not specify assigning register variables

to the saddr area.

CubeSuite Ver.1.30 APPENDIX A WINDOW REFERENCE

R20UT0005EJ0100 Rev.1.00 Page 175 of 573
Jul 01, 2010

Not use sign extended

calculation for char

Select whether to perform char-related calculations without pan-integral extension.

This corresponds to the -qc option of the compiler.

Default Yes(-qc)

How to change Select from the drop-down list.

Restriction Yes(-qc) Performs char-related calculations without pan-integral

extension.Note

No Performs char-related calculations with pan-integral

extension.

Interpret char to

unsigned char

Select whether to interpret the char without qualifier as a unsigned char.

This corresponds to the -qu option of the compiler.

Default No

How to change Select from the drop-down list.

Restriction Yes(-qu) Interprets the char without qualifier as a unsigned char.

No Does not specify interpreting the char without qualifier

as a unsigned char.

Optimize branch instruc-

tion

Select whether to optimize branch instructions.

This corresponds to the -qj option of the compiler.

Default Yes(-qj)

How to change Select from the drop-down list.

Restriction Yes(-qj) Optimizes branch instructions.

No Does not specify optimizing branch instructions.

CubeSuite Ver.1.30 APPENDIX A WINDOW REFERENCE

R20UT0005EJ0100 Rev.1.00 Page 176 of 573
Jul 01, 2010

Replace fixed code to

library(Size precedence

optimization)

Select whether to replace the fixed code with the library.

This corresponds to the -ql option of the compiler.

Default Yes(Do not replace)(-ql1)

How to change Select from the drop-down list.

Restriction Yes(Do not replace)(-ql1) Does not replace the fixed code with the

library.

Performs optimization with the module size

precedence.

Yes(Replace only pro-

cess before/after func-

tion)(-ql2)

Replaces only the processing routines before

and after the function with a library.

Yes(Replace load/store

and indirect referencing

instruction and equiva-

lent of -ql2)(-ql3)

Replaces the processing routines before and

after the function, long-type load store and

DE/HL indirect reference code with a library.

Yes(Replace whole

instructions)(-ql4)

Replaces the processing routines before and

after the function, long-type load store and

DE/HL indirect reference code in one instruc-

tion unit with a library.

Yes(subroutinize same

codes, use stack access

libraries)(-ql5)

Replaces the processing routines before and

after the function, long-type load store and

DE/HL indirect reference code in one instruc-

tion unit with a library.

In addition, common code is placed in sub-

routines, and the library for the stack access

is used.

Under the [Memory Model] category, setting

the [Use static model] property to [Yes] has

the same effect as selecting [Yes(Replace

whole instructions)(-ql4)].

No Does not specify replacing the fixed code with

the library.

Performs optimization with the execution

speed precedence.

Output object using

[HL+B] instruction

Select whether to generate the code using [HL+B] addressing, when the index used for the

reference of the char/unsigned char type arrays and char/unsigned char type pointers is an

unsigned char type variable.

This corresponds to the -qe option of the compiler.

This property is not displayed when [No] on the [Use static model] property in the [Memory

Model] category is selected.

Default No

How to change Select from the drop-down list.

Restriction Yes(-qe) Generates the code using [HL+B] addressing.

No Does not specify generating the code using [HL+B]

addressing.

CubeSuite Ver.1.30 APPENDIX A WINDOW REFERENCE

R20UT0005EJ0100 Rev.1.00 Page 177 of 573
Jul 01, 2010

Note The results of the calculation when the -qc option is set are as follows.

(4) [Preprocess]

The detailed information on the preprocess are displayed and the configuration can be changed.

Output object using

[HL].bit instruction

Select whether to output an object using [HL].bit.

This corresponds to the -qh option of the compiler.

Default No

How to change Select from the drop-down list.

Restriction Yes(-qh) Outputs an object using [HL].bit.

No Does not specify the output of an object using [HL].bit.

Optimize for debugging Select whether to perform the optimization for debugging.

This corresponds to the -qg option of the compiler.

Default No

How to change Select from the drop-down list.

Restriction Yes(-qg) Performs the optimization for debugging.

No Does not specify performing the optimization for debug-

ging.

Calculation Target Calculation Result

unsigned char type variable and unsigned char type variable unsigned char type

unsigned char type variable and signed char type variable unsigned char type

signed char type variable and signed char type variable signed char type

Constants from -128 to 255 and unsigned char type variable unsigned char type

Constants from -128 to 127 and signed char type variable signed char type

Constants from 0 to 255 with suffix U and signed char type variable unsigned char type

CubeSuite Ver.1.30 APPENDIX A WINDOW REFERENCE

R20UT0005EJ0100 Rev.1.00 Page 178 of 573
Jul 01, 2010

Additional include paths Specify the additional include paths during compiling.

The following macro names are available as embedded macros.

%BuildModeName%: Replaces with the build mode name.

%ProjectName%: Replaces with the project name.

%CubeSuitePath%: Replaces with the absolute path of the CubeSuite install folder.

When this option is omitted, only the standard folder of the compiler is searched. The refer-

ence point of the path is the project folder.

This corresponds to the -i option of the compiler.

The specified include path is displayed as the subproperty.

When the include path is added to the project tree, the path is added to the top of the

subproperties.

Uppercase characters and lowercase characters are not distinguished for the include paths.

Default Additional include paths[number of defined items]

How to change Edit by the Path Edit dialog box which appears when clicking the [...] but-

ton.

For the subproperty, you can use the text box directly enter the text.

Restriction Up to 259 characters

Up to 64 items can be specified. However, this also includes the number

of paths used by linked tools.

If the number of items specified in the [System include paths] property,

and in the [Additional include paths] property in the [Preprocess] category

on the [Individual Compile Options] tab, together total more than 64, then

an error will occur under build execution.

System include paths The include paths which the system set during compiling are displayed.

The following macro names are available as embedded macros.

%BuildModeName%: Replaces with the build mode name.

%ProjectName%: Replaces with the project name.

%CubeSuitePath%: Replaces with the absolute path of the CubeSuite install folder.

The system include path is searched with lower priority than the additional include path.

The reference point of the path is the project folder.

This corresponds to the -i option of the compiler.

The include path is displayed as the subproperty.

Default System include paths[number of defined items]

How to change Edit by the System Include Path Order dialog box which appears when

clicking the [...] button.

Restriction Changes not allowed (Only the specified order of the include paths can be

changed.)

CubeSuite Ver.1.30 APPENDIX A WINDOW REFERENCE

R20UT0005EJ0100 Rev.1.00 Page 179 of 573
Jul 01, 2010

(5) [Startup]

The detailed information on the startup are displayed and the configuration can be changed.

Macro definition Specify the macro name to be defined.

Specify in the format of "macro name=defined value", with one macro name per line. The

"=defined value" part can be omitted, and in this case, "1" is used as the defined value.

This corresponds to the -d option of the compiler.

The specified macro is displayed as the subproperty.

Default Macro definition[number of defined items]

How to change Edit by the Text Edit dialog box which appears when clicking the [...] but-

ton.

For the subproperty, you can use the text box directly enter the text.

Restriction Up to 256 characters

Up to 30 items can be specified.

Macro undefinition Specify the macro name to be undefined.

Specify in the format of "macro name", with one macro name per line.

This corresponds to the -u option of the compiler.

The specified macro is displayed as the subproperty.

Default Macro undefinition[number of defined items]

How to change Edit by the Text Edit dialog box which appears when clicking the [...] but-

ton.

For the subproperty, you can use the text box directly enter the text.

Restriction Up to 256 characters

Up to 30 items can be specified.

CubeSuite Ver.1.30 APPENDIX A WINDOW REFERENCE

R20UT0005EJ0100 Rev.1.00 Page 180 of 573
Jul 01, 2010

Use standard startup

routine

Select whether to link, during linking, the object module file provided with the compiler in

which the standard startup routine is written.

However, when any C source file is added to the project, the object module file provided

with the compiler is not linked.

The value of this property stored as the standard build option (see "2.15.8 Set the current

build options as the standard for the project") is set to the default value when the [Output

objects for flash] property in the [Memory Model] category is changed.

Default - When selecting [Yes(-zf)] on the [Output objects for flash] property in

the [Memory Model] category

[Yes(For flash area)]

- When selecting [No] on the [Output objects for flash]

[Yes(Normal)]

How to change Select from the drop-down list.

Restriction Yes(Normal) Links the object module file provided with

the compiler.

This item is not displayed when [Yes(-zf)] in

the [Output objects for flash] property is

selected.

Yes(For boot area) Links the object module file for the boot

area provided with the compiler.

This item is not displayed when [Yes(-zf)] in

the [Output objects for flash] property is

selected.

Yes(For flash area) Links the object module file for the flash

area provided with the compiler.

This item is not displayed when [No] in the

[Output objects for flash] property is

selected.

No Does not link the object module file pro-

vided with the compiler.

Use fixed area used by

standard library

Select whether to use the fixed area (RAM) used by standard libraries brk, sbrk, malloc,

calloc, realloc, free, exit, rand, srand, div, ldiv, strtok, atof, strtod, mathematical functions,

and floating-point runtime library.

If these functions will not be used, the RAM can be conserved by selecting [No].

This property is not displayed when [No] in the [Use standard startup routine] property is

selected.

Default Yes

How to change Select from the drop-down list.

Restriction Yes Uses the fixed area used by the standard library.

No Does not use the fixed area used by the standard

library.

Using standard startup

routine

Displays the file name of the standard startup routine objects used during linking, in the cur-

rent settings.Note

This property is not displayed when [No] in the [Use standard startup routine] property is

selected.

Default Using startup routine file name

How to change Changes not allowed

CubeSuite Ver.1.30 APPENDIX A WINDOW REFERENCE

R20UT0005EJ0100 Rev.1.00 Page 181 of 573
Jul 01, 2010

Note Naming rules of startup routine files are as follows.

<model>

<lib>

<flash>

(6) [Library]

The detailed information on the library are displayed and the configuration can be changed.

s0<model><lib><flash>.rel

None When the memory model is the normal model

sm When the memory model is the static model

None When the fixed area used by the standard library is not used

l When the fixed area used by the standard library is used

None When the standard object is generated

b When the object for the boot area is generated

e When the object for the flash area is generated

Use standard library Select whether to link the standard library during linking.

However, when any C source file is added to the project, the library is not linked.

Default Yes

How to change Select from the drop-down list.

Restriction Yes Links the standard library during linking.

No Does not link the standard library during linking.

Not use multiply and

divide instructions

Select whether to use the standard library which does not use multiply and divide instruc-

tions.

This property is not displayed when [No] in the [Use standard library] property is selected.

Default No

How to change Select from the drop-down list.

Restriction Yes Uses the standard library which does not use multiply

and divide instructions.

No Does not use the standard library which does not use

multiply and divide instructions.

CubeSuite Ver.1.30 APPENDIX A WINDOW REFERENCE

R20UT0005EJ0100 Rev.1.00 Page 182 of 573
Jul 01, 2010

Note Naming rules of library files are as follows.

<mul/div>

<model>

<float>

Use standard I/O library

supported floating-point

data

Select whether to use sprintf, sscanf, printf, vprintf, and vsprintf which support the input and

output of floating-point data.

This property is not displayed when [No] in the [Use standard library] property is selected.

If [Yes] is selected in the [Use static model] property in the [Memory Model] category, [Yes]

is selected in the [Add pascal function attribute to functions] property, then this property will

behave as if [No] were selected.

Default No

How to change Select from the drop-down list.

Restriction Yes Uses the standard library which support the input and

output of floating-point data.

No Does not use the standard library which support the

input and output of floating-point data.

Use multiplier and

divider

Select whether to use the standard library which supports a multiplier and divider.

Whether there is a multiplier and divider depends on the microcontroller that is used.

This property is not displayed when the microcontroller does not have a multiplier and

divider and [No] in the [Use standard library] property is selected.

Default Yes

How to change Select from the drop-down list.

Restriction Yes Uses the standard library which supports a multiplier

and divider.

No Does not use the standard library which supports a mul-

tiplier and divider.

Using standard libraries Display the file name and numbers of the standard libraries used during linking, in the cur-

rent settings.

The linking library file name is displayed as the subproperty.Note

This property is not displayed when [No] in the [Use standard library] property is selected.

Default Using standard libraries[number of using standard libraries]

How to change Changes not allowed

cl0<mul/div><model><float><pascal><flash>.lib

0 When the multiplier and divider are not used

x When the multiplier and divider are used

None When the memory model is the normal model

sm When the memory model is the static model

None When the standard I/O library supported floating-point data is not used

CubeSuite Ver.1.30 APPENDIX A WINDOW REFERENCE

R20UT0005EJ0100 Rev.1.00 Page 183 of 573
Jul 01, 2010

<pascal>

<flash>

(7) [Message]

The detailed information on messages are displayed and the configuration can be changed.

(8) [Extension]

The detailed information on extensions are displayed and the configuration can be changed.

f When the standard I/O library supported floating-point data is used

None When the pascal function interface is not used

r When the pascal function interface is used

None When the object for the standard or for the boot area is generated

e When the object for the flash area is generated

Verbose mode Select whether to display the execution status of the compiler to the Output panel during

build.

This corresponds to the -v option of the compiler.

Default No

How to change Select from the drop-down list.

Restriction Yes(-v) Displays the execution status of the compiler during

build.

No Does not display the execution status of the compiler

during build.

Warning level Select the warning display level under compiling.

This corresponds to the -w option of the compiler.

Default Normal output

How to change Select from the drop-down list.

Restriction No output(-w0) Does not output warning messages.

Normal output Outputs normal warning messages.

Particular output(-w2) Outputs detailed warning messages.

Allow C++ format com-

ments

Select whether to allow the use of C++ format comments ("//").

This corresponds to the -zp option of the compiler.

Default Yes(-zp)

How to change Select from the drop-down list.

Restriction Yes(-zp) Allows the use of C++ format comments.

No Does not allow the use of C++ format comments.

CubeSuite Ver.1.30 APPENDIX A WINDOW REFERENCE

R20UT0005EJ0100 Rev.1.00 Page 184 of 573
Jul 01, 2010

Allow nested comments Select whether to allow the nest use of comments ("/**/").

This corresponds to the -zc option of the compiler.

Default No

How to change Select from the drop-down list.

Restriction Yes(-zc) Allows the nest use of comments.

No Does not allow the nest use of comments.

Kanji character code of

source

Select the Kanji character code of the source.

This corresponds to the -zs, -ze, and -zn option of the compiler.

Default Shift_JIS(-zs)

How to change Select from the drop-down list.

Restriction Shift_JIS(-zs) Interprets the kanji code of the source as Shift_JIS.

EUC-JP(-ze) Interprets the kanji code of the source as EUC-JP.

Unspecified(-zn) Interprets the source as not containing kanji codes.

Follow ANSI Standard Select whether to disable non-ANSI standard functions and enable some of the functions of

the ANSI standard.

This corresponds to the -za option of the compiler.

Default No

How to change Select from the drop-down list.

Restriction Yes(-za) Disables non-ANSI standard functions and enables

some of the functions of the ANSI standard.

No Enables non-ANSI standard functions.

Interpret int/short as char Select whether to compile by interpreting int and short descriptions as char.

This corresponds to the -zi option of the compiler.

Default No

How to change Select from the drop-down list.

Restriction Yes(-zi) Interprets int and short descriptions as char.

No Does not interpret int and short descriptions as char.

Interpret long as int Select whether to compile by interpreting long descriptions as int.

This corresponds to the -zl option of the compiler.

Default No

How to change Select from the drop-down list.

Restriction Yes(-zl) Interprets long as int.

No Does not interpret long as int.

CubeSuite Ver.1.30 APPENDIX A WINDOW REFERENCE

R20UT0005EJ0100 Rev.1.00 Page 185 of 573
Jul 01, 2010

(9) [Memory Model]

The detailed information on the memory model are displayed and the configuration can be changed.

Disable an int extension

for function

Select whether to disable the int extension for the char/unsigned char type arguments and

the return values of functions.

This corresponds to the -zb option of the compiler.

Default No

How to change Select from the drop-down list.

Restriction Yes(-zb) Disables the int extension for the char/unsigned char

type arguments and the return values of functions.

No Enables the int extension for the char/unsigned char

type arguments and the return values of functions.

CubeSuite Ver.1.30 APPENDIX A WINDOW REFERENCE

R20UT0005EJ0100 Rev.1.00 Page 186 of 573
Jul 01, 2010

Use static model Specify the number of bytes in the common area when the static model is used.

This corresponds to the -sm option of the compiler.

Default No

How to change Select from the drop-down list.

Restriction Yes(0 byte common area)(-sm0) Specifies 0 byte as the number of

bytes in the common area.

Yes(1 byte common area)(-sm1) Specifies 1 byte as the number of

bytes in the common area.

Yes(2 bytes common area)(-sm2) Specifies 2 bytes as the number of

bytes in the common area.

Yes(3 bytes common area)(-sm3) Specifies 3 bytes as the number of

bytes in the common area.

Yes(4 bytes common area)(-sm4) Specifies 4 bytes as the number of

bytes in the common area.

Yes(5 bytes common area)(-sm5) Specifies 5 bytes as the number of

bytes in the common area.

Yes(6 bytes common area)(-sm6) Specifies 6 bytes as the number of

bytes in the common area.

Yes(7 bytes common area)(-sm7) Specifies 7 bytes as the number of

bytes in the common area.

Yes(8 bytes common area)(-sm8) Specifies 8 bytes as the number of

bytes in the common area.

Yes(9 bytes common area)(-sm9) Specifies 9 bytes as the number of

bytes in the common area.

Yes(10 bytes common area)(-

sm10)

Specifies 10 bytes as the number

of bytes in the common area.

Yes(11 bytes common area)(-

sm11)

Specifies 11 bytes as the number of

bytes in the common area.

Yes(12 bytes common area)(-

sm12)

Specifies 12 bytes as the number

of bytes in the common area.

Yes(13 bytes common area)(-

sm13)

Specifies 13 bytes as the number

of bytes in the common area.

Yes(14 bytes common area)(-

sm14)

Specifies 14 bytes as the number

of bytes in the common area.

Yes(15 bytes common area)(-

sm15)

Specifies 15 bytes as the number

of bytes in the common area.

Yes(16 bytes common area)(-

sm16)

Specifies 16 bytes as the number

of bytes in the common area.

No Does not use the static model.

CubeSuite Ver.1.30 APPENDIX A WINDOW REFERENCE

R20UT0005EJ0100 Rev.1.00 Page 187 of 573
Jul 01, 2010

(10)[Output File]

The detailed information on output files is displayed and the configuration can be changed.

Use static model exten-

sion

Specify the extension method when the static model is used extended.

This corresponds to the -zm option of the compiler.

This property is not displayed when [No] in the [Use static model] property is selected.

Default No

How to change Select from the drop-down list.

Restriction Yes(Only use common area for

args and auto vars)(-zm1)

Uses only the common area for

arguments and auto variables.

Yes(Only use saddr area for args

and auto vars)(-zm2)

Uses only the saddr area for argu-

ments and auto variables.

No Does not use the static model

extension.

Output objects for flash Select whether to output the object for flash.

This corresponds to the -zf option of the compiler.

Default No

How to change Select from the drop-down list.

Restriction Yes(-zf) Outputs objects for flash.

No Does not output objects for flash.

Add pascal function

attribute to functions

Specify whether to automatically add a pascal function attribute (__pascal).

This corresponds to the -zr option of the compiler.

This property is not displayed when [No] in the [Use static model] property is selected.

Default No

How to change Select from the drop-down list.

Restriction Yes(-zr) Adds a pascal function attribute.

No Does not add a pascal function attribute.

Use prologue/epilogue

library

Select whether to use a library for the prologue/epilogue routines of a function.

This corresponds to the -zd option of the compiler.

This property is not displayed when [Yes(-zf)] in the [Output objects for flash] property is

selected.

Default No

How to change Select from the drop-down list.

Restriction Yes(-zd) Uses a library for the prologue/epilogue routines of a

function.

No Does not use a library for the prologue/epilogue rou-

tines of a function.

CubeSuite Ver.1.30 APPENDIX A WINDOW REFERENCE

R20UT0005EJ0100 Rev.1.00 Page 188 of 573
Jul 01, 2010

(11) [Assembly File]

The detailed information on assembly files is displayed and the configuration can be changed.

(12)[Variables Information File]

The detailed information on the variables information file are displayed and the configuration can be changed.

This category is not displayed for library projects.

Output common object

file for various devices

Select whether to output the objects common to the various devices.

This corresponds to the -common option of the compiler.

Default No

How to change Select from the drop-down list.

Restriction Yes(-common) Outputs the objects common to the various devices.

No Does not specifies outputting the objects common to

the various devices.

Output assemble file Select whether to output the assembly file.

This corresponds to the -a, -sa, and -li options of the compiler.

If [Yes] is selected on the [Use memory bank relocation support tool] property in the [Output

File] category from the [Memory Bank Relocation Options] tab, this property will be changed

to [Yes(With no C source info)(-a)].

Default No

How to change Select from the drop-down list.

Restriction Yes(With no C source info)(-a) Outputs the assembly file (without C

source information).

Yes(With C source info(unex-

panded include file con-

tents))(-sa)

Outputs the assembly file (with C source

information (include file contents are not

expanded)).

Yes(With C source

info(expanded include file

contents))(-sa,-li)

Outputs the assembly file (with C source

information (include file contents are

expanded)).

No Does not output the assembly file.

Using variables informa-

tion file

This is the variables information file to be used for allocating to the saddr area for variables.

The valid variables information file registered to the project is searched and the file name is

displayed.

This corresponds to the -ma option of the compiler.

Default The name of the variables information file that is added to the project

How to change Changes not allowed

CubeSuite Ver.1.30 APPENDIX A WINDOW REFERENCE

R20UT0005EJ0100 Rev.1.00 Page 189 of 573
Jul 01, 2010

(13)[Function Information File]

The detailed information on the function information file is displayed and the configuration can be changed.

This category is displayed only when a device with a memory bank installed is specified as the microcontroller and

a C source file is selected on the Project Tree panel.

(14)[Data Control]

The detailed information on data control are displayed and the configuration can be changed.

Variables information file

for boot area

Specify the variables information file which is used in the project of the boot area.

This corresponds to the -ma option of the compiler.

If a relative path is specified, the reference point of the path is the main project or subproject

folder.

If an absolute path is specified, the reference point of the path is the main project or sub-

project folder (unless the drives are different).

This property is not displayed when [No] in the [Output objects for flash] property in the

[Memory Model] category is selected.

Default Blank

How to change Directly enter to the text box or edit by the Specify Variables Information

File for Boot Area dialog boxwhich appears when clicking the [...] button.

Restriction Up to 259 characters

Using function informa-

tion file

This is the functions information file to be used for relocating functions to the bank memory.

The valid function information file registered to the project is searched and the file name is

displayed.

This corresponds to the -mf option of the compiler.

Default The name of the function information file that is added to the project

How to change Changes not allowed

Assign bit field in struc-

ture from MSB

Select whether to assign the member of the bit field structure from MSB.

This corresponds to the -rb option of the compiler.

Default No

How to change Select from the drop-down list.

Restriction Yes(-rb) Assigns the member of the bit field structure from MSB.

No Assigns the member of the bit field structure from LSB.

Pack structure members Select whether to prohibit from inserting the align data to allocate the members (consisting

of 2 or more bytes) in a structure to even address.

This corresponds to the -rc option of the compiler.

Default No

How to change Select from the drop-down list.

Restriction Yes(-rc) Prohibits from inserting the align data to allocate the

members (consisting of 2 or more bytes) in a structure

to even address.

No Inserts the align data to allocate the members (consist-

ing of 2 or more bytes) in a structure to even address.

CubeSuite Ver.1.30 APPENDIX A WINDOW REFERENCE

R20UT0005EJ0100 Rev.1.00 Page 190 of 573
Jul 01, 2010

Allocate automatic vari-

ables to saddr area

Select the type of the automatic variable to be allocated in the saddr area.

This corresponds to the -rk option of the compiler.

This property is not displayed when [No] on the [Use static model] property in the [Memory

Model] category is selected.

Default No

How to change Select from the drop-down list.

Restriction Yes(Size of char)(-rk1) Allocates char and unsigned char types auto-

matic variables to the saddr area.

Yes(Size of char, short,

int)(-rk2)

Allocates char, unsigned char, short,

unsigned short, int, unsigned int, enum, data

pointer, function pointer (when the bank func-

tion (-mf) is not used) types automatic vari-

ables to the saddr area.

Yes(Size of char, short,

int, long)(-rk4)

Allocates char, unsigned char, short,

unsigned short, int, unsigned int, enum, long,

unsigned long, all pointer types automatic

variables to the saddr area.

Yes(Structure, union,

array)(-rkm)

Allocates structure, union, and array types

automatic variables to the saddr area.

Yes(Size of char and

structure, union, array)(-

rk1m)

Allocates char, unsigned char, structure,

union, and array types automatic variables to

the saddr area.

Yes(Size of char, short,

int and structure, union,

array)(-rk2m)

Allocates char, unsigned char, short,

unsigned short, int, unsigned int, enum, data

pointer, function pointer (when the bank func-

tion (-mf) is not used), structure, union, and

array types automatic variables to the saddr

area.

Yes(Size of char, short,

int, long and structure,

union, array)(-rk)

Allocates char, unsigned char, short,

unsigned short, int, unsigned int, enum, long,

unsigned long, all pointer, structure, union,

and array types automatic variables to the

saddr area.

No Does not allocate automatic variables to the

saddr area.

CubeSuite Ver.1.30 APPENDIX A WINDOW REFERENCE

R20UT0005EJ0100 Rev.1.00 Page 191 of 573
Jul 01, 2010

Allocate static variables

to saddr area

Select the type of the static variable to be allocated in the saddr area.

This corresponds to the -rs option of the compiler.

Default No

How to change Select from the drop-down list.

Restriction Yes(Size of char)(-rs1) Allocates char and unsigned char types auto-

matic variables to the saddr area.

Yes(Size of char, short,

int)(-rs2)

Allocates char, unsigned char, short,

unsigned short, int, unsigned int, enum. data

pointer, function pointer (when the bank func-

tion (-mf) is not used) types automatic vari-

ables to the saddr area.

Yes(Size of char, short,

int, long)(-rs4)

Allocates char, unsigned char, short,

unsigned short, int, unsigned int, enum, long,

unsigned long, all pointers types automatic

variables to the saddr area.

Yes(Structure, union,

array)(-rsm)

Allocates structure, union, and array types

automatic variables to the saddr area.

Yes(Size of char and

structure, union, array)(-

rs1m)

Allocates char, unsigned char, structure,

union, and array types automatic variables to

the saddr area.

Yes(Size of char, short,

int and structure, union,

array)(-rs2m)

Allocates char, unsigned char, short,

unsigned short, int, unsigned int, enum. data

pointer, function pointer (when the bank func-

tion (-mf) is not used), structure, union, and

array types automatic variables to the saddr

area.

Yes(Size of char, short,

int, long and structure,

union, array)(-rs)

Allocates char, unsigned char, short,

unsigned short, int, unsigned int, enum, long,

unsigned long, all pointers, structure, union,

and array types automatic variables to the

saddr area.

No Does not allocate static variables to the saddr

area.

CubeSuite Ver.1.30 APPENDIX A WINDOW REFERENCE

R20UT0005EJ0100 Rev.1.00 Page 192 of 573
Jul 01, 2010

(15)[List File]

The detailed information on list files are displayed and the configuration can be changed.

Allocate external vari-

ables to saddr area

Select the type of the external variable to be allocated in the saddr area.

This corresponds to the -rd option of the compiler.

This property is not displayed when a file name is set in the [Using variables information file]

property in the [Variables Information File] category.

Default No

How to change Select from the drop-down list.

Restriction Yes(Size of char)(-rd1) Allocates char and unsigned char types exter-

nal variables to the saddr area.

Yes(Size of char, short,

int)(-rd2)

Allocates char, unsigned char, short,

unsigned short, int, unsigned int, enum. data

pointer, function pointer (when the bank func-

tion (-mf) is not used) types external variables

to the saddr area.

Yes(Size of char, short,

int, long)(-rd4)

Allocates char, unsigned char, short,

unsigned short, int, unsigned int, enum, long,

unsigned long, all pointers types external

variables to the saddr area.

Yes(Structure, union,

array)(-rdm)

Allocates structure, union, and array types

external variables to the saddr area.

Yes(Size of char and

structure, union, array)(-

rd1m)

Allocates char, unsigned char, structure,

union, and array types external variables to

the saddr area.

Yes(Size of char, short,

int and structure, union,

array)(-rd2m)

Allocates char, unsigned char, short,

unsigned short, int, unsigned int, enum. data

pointer, function pointer (when the bank func-

tion (-mf) is not used), structure, union, and

array types external variables to the saddr

area.

Yes(Size of char, short,

int, long and structure,

union, array)(-rd)

Allocates char, unsigned char, short,

unsigned short, int, unsigned int, enum, long,

unsigned long, all pointers, structure, union,

and array types external variables to the

saddr area.

No Does not allocate external variables to the

saddr area.

Output preprocess list

file

Select whether to output the preprocess file.

This corresponds to the -p option of the compiler.

Default No

How to change Select from the drop-down list.

Restriction Yes(-p) Outputs the preprocess list file.

No Does not output the preprocess list file.

CubeSuite Ver.1.30 APPENDIX A WINDOW REFERENCE

R20UT0005EJ0100 Rev.1.00 Page 193 of 573
Jul 01, 2010

Not output comments Select whether to disable to output comments into the preprocess list file.

This corresponds to the -kc option of the compiler.

This property is not displayed when [No] in the [Output preprocess list file] property is

selected.

Default No

How to change Select from the drop-down list.

Restriction Yes(-kc) Does not output comments into the preprocess list file.

No Outputs comments into the preprocess list file.

Expand #define prepro-

cessor directive

Select whether to expand the #define directive into the preprocess list file.

This corresponds to the -kd option of the compiler.

This property is not displayed when [No] in the [Output preprocess list file] property is

selected.

Default No

How to change Select from the drop-down list.

Restriction Yes(-kd) Expands the #define directive into the preprocess list

file.

No Does not expand the #define directive into the prepro-

cess list file.

Expand #if,#ifdef,#ifndef

preprocessor directive

Select whether to perform output by expanding #if, #ifdef, and #ifndef directives into the pre-

process list file.

This corresponds to the -kf option of the compiler.

This property is not displayed when [No] in the [Output preprocess list file] property is

selected.

Default Yes(-kf)

How to change Select from the drop-down list.

Restriction Yes(-kf) Performs output by expanding #if, #ifdef, and #ifndef

directives into the preprocess list file.

No Does not perform output by expanding #if, #ifdef, and

#ifndef directives into the preprocess list file.

Expand #include prepro-

cessor directive

Select whether to perform output by expanding #include directives into the preprocess list

file.

This corresponds to the -ki option of the compiler.

This property is not displayed when [No] in the [Output preprocess list file] property is

selected.

Default No

How to change Select from the drop-down list.

Restriction Yes(-ki) Performs output by expanding #include directives into

the preprocess list file.

No Does not expand the #include directive into the prepro-

cess list file.

CubeSuite Ver.1.30 APPENDIX A WINDOW REFERENCE

R20UT0005EJ0100 Rev.1.00 Page 194 of 573
Jul 01, 2010

Expand #line preproces-

sor directive

Select whether to perform output by expanding #line directives into the preprocess list file.

This corresponds to the -kl option of the compiler.

This property is not displayed when [No] in the [Output preprocess list file] property is

selected.

Default Yes(-kl)

How to change Select from the drop-down list.

Restriction Yes(-kl) Performs output by expanding #line directives into the

preprocess list file.

No Does not expand the #line directive into the preprocess

list file.

Output line numbers Select whether to output line numbers into the preprocess list file.

This corresponds to the -kn option of the compiler.

This property is not displayed when [No] in the [Output preprocess list file] property is

selected.

Default Yes(-kn)

How to change Select from the drop-down list.

Restriction Yes(-kn) Outputs line numbers into the preprocess list file.

No Does not output line numbers into the preprocess list

file.

Output error list file Select whether to output the error list file.

This corresponds to the -e and -se options of the compiler.

Default No

How to change Select from the drop-down list.

Restriction Yes(Without C source)(-e) Outputs the error list file (without C

source).

Yes(With C source)(-se) Outputs the error list file (with C source).

No Does not output the error list file.

Output cross reference

list file

Select whether to output the cross reference list file.

This corresponds to the -x option of the compiler.

Default No

How to change Select from the drop-down list.

Restriction Yes(-x) Outputs the cross reference list file.

No Does not output the cross reference list file.

Output with form feed

control code

Select whether to output a form feed code into list files (preprocess list file, error list file, and

cross reference list file).

This corresponds to the -lf option of the compiler.

This property is displayed only when [Yes] in the [Output error list file] property is selected or

when [Yes(-p)] in the [Output preprocess list file] property is selected or when [Yes(-x)] in the

[Output cross reference list file] property is selected.

Default No

How to change Select from the drop-down list.

Restriction Yes(-lf) Outputs a form feed code into the list file.

No Does not output a form feed code into the list file.

CubeSuite Ver.1.30 APPENDIX A WINDOW REFERENCE

R20UT0005EJ0100 Rev.1.00 Page 195 of 573
Jul 01, 2010

(16)[Others]

Other detailed information on compilation are displayed and the configuration can be changed.

Number of characters in

1 line

Specify the number of characters in each line of list files (preprocess list file, error list file,

and cross reference list file).

This corresponds to the -lw option of the compiler.

This property is displayed only when [Yes] in the [Output error list file] property is selected or

when [Yes(-p)] in the [Output preprocess list file] property is selected or when [Yes(-x)] in the

[Output cross reference list file] property is selected.

Default 132

How to change Directly enter to the text box.

Restriction 72 to 132 (decimal number)

Number of lines on 1

page

Specify the number of lines on 1 page of list files (preprocess list file, error list file, and cross

reference list file).

If 0 is specified, no page breaks will be made.

This corresponds to the -ll option of the compiler.

This property is displayed only when [Yes] in the [Output error list file] property is selected or

when [Yes(-p)] in the [Output preprocess list file] property is selected or when [Yes(-x)] in the

[Output cross reference list file] property is selected.

Default 66

How to change Directly enter to the text box.

Restriction 0, and 20 to 65535 (decimal number)

Tab width Specify the tab width of list files (preprocess list file, error list file, and cross reference list

file).

This corresponds to the -lt option of the compiler.

This property is displayed only when [Yes] in the [Output error list file] property is selected or

when [Yes(-p)] in the [Output preprocess list file] property is selected or when [Yes(-x)] in the

[Output cross reference list file] property is selected.

Default 8

How to change Directly enter to the text box.

Restriction 0 to 8 (decimal number)

Commands executed

before compile process-

ing

Specify the command to be executed before compile processing.

The following macro names are available as embedded macros.

%ProjectFolder%: Replaces with the absolute path of the project folder.

%OutputFolder%: Replaces with the absolute path of the output folder.

%OutputFile%: Replaces with the absolute path of the output file.

%InputFile%: Replaces with the absolute path of the file to be compiled.

%CompiledFile%: Replaces with the absolute path of the output file under compiling.

The specified command is displayed as the subproperty.

Default Commands executed before compile processing[number of defined items]

How to change Edit by the Text Edit dialog box which appears when clicking the [...] but-

ton.

For the subproperty, you can use the text box directly enter the text.

Restriction Up to 1023 characters

Up to 64 items can be specified.

CubeSuite Ver.1.30 APPENDIX A WINDOW REFERENCE

R20UT0005EJ0100 Rev.1.00 Page 196 of 573
Jul 01, 2010

Commands executed

after compile processing

Specify the command to be executed after compile processing.

The following macro names are available as embedded macros.

%ProjectFolder%: Replaces with the absolute path of the project folder.

%OutputFolder%: Replaces with the absolute path of the output folder.

%OutputFile%: Replaces with the absolute path of the output file.

%InputFile%: Replaces with the absolute path of the file to be compiled.

%CompiledFile%: Replaces with the absolute path of the output file under compiling.

The specified command is displayed as the subproperty.

Default Commands executed after compile processing[number of defined items]

How to change Edit by the Text Edit dialog box which appears when clicking the [...] but-

ton.

For the subproperty, you can use the text box directly enter the text.

Restriction Up to 1023 characters

Up to 64 items can be specified.

Other additional options Input the compile options to be added additionally.

The options set here are added at the end of the compile options group.

Default Blank

How to change Directly enter to the text box or edit by the Character String Input dialog

box which appears when clicking the [...] button.

Restriction Up to 259 characters

CubeSuite Ver.1.30 APPENDIX A WINDOW REFERENCE

R20UT0005EJ0100 Rev.1.00 Page 197 of 573
Jul 01, 2010

[Assemble Options] tab

This tab shows the detailed information on the assembler categorized by the following and the configuration can be

changed.

(1) [Debug Information]

(2) [Preprocess]

(3) [Output File]

(4) [Assemble List]

(5) [Others]

Figure A-6. Property Panel: [Assemble Options] Tab

CubeSuite Ver.1.30 APPENDIX A WINDOW REFERENCE

R20UT0005EJ0100 Rev.1.00 Page 198 of 573
Jul 01, 2010

[Description of each category]

(1) [Debug Information]

The detailed information on debug information is displayed and the configuration can be changed.

(2) [Preprocess]

The detailed information on the preprocess are displayed and the configuration can be changed.

Add debug information Select whether to enable source level debugging by adding debug information to the mod-

ule being generated.

This corresponds to the -g and -ga options of the assembler.

Default Yes(Local symbols info and assembler debugging info)

How to change Select from the drop-down list.

Restriction Yes(Assembler

debugging info)(-

ng,-ga)

Adds debug information (assembler debugging

symbol information) to the object module file being

generated.

Yes(Local symbols

info and assembler

debugging info)

Adds debug information (local symbol and assem-

bler debugging symbol information) to the object

module file being generated.

No(-ng,-nga) Does not add debug information to the object mod-

ule file being generated.

Additional include paths Specify the additional include paths during assembling.

The following macro names are available as embedded macros.

%BuildModeName%: Replaces with the build mode name.

%ProjectName%: Replaces with the project name.

%CubeSuitePath%: Replaces with the absolute path of the CubeSuite install folder.

When this option is omitted, only the standard folder of the assembler is searched. The ref-

erence point of the path is the project folder.

This corresponds to the -i option of the assembler.

The specified include path is displayed as the subproperty.

When the include path is added to the project tree, the path is added to the top of the

subproperties.

Uppercase characters and lowercase characters are not distinguished for the include paths.

Default Additional include paths[number of defined items]

How to change Edit by the Path Edit dialog box which appears when clicking the [...] but-

ton.

For the subproperty, you can use the text box directly enter the text.

Restriction Up to 259 characters

Up to 64 items can be specified. However, this also includes the number

of paths used by linked tools.

If the number of items specified in the [System include paths] property,

and in the [Additional include paths] property in the [Preprocess] category

on the [Individual Assemble Options] tab, together total more than 64,

then an error will occur under build execution.

CubeSuite Ver.1.30 APPENDIX A WINDOW REFERENCE

R20UT0005EJ0100 Rev.1.00 Page 199 of 573
Jul 01, 2010

(3) [Output File]

The detailed information on output files are displayed and the configuration can be changed.

(4) [Assemble List]

The detailed information on the assemble list are displayed and the configuration can be changed.

System include paths The include paths which the system set during assembling are displayed.

The following macro names are available as embedded macros.

%BuildModeName%: Replaces with the build mode name.

%ProjectName%: Replaces with the project name.

%CubeSuitePath%: Replaces with the absolute path of the CubeSuite install folder.

The system include path is searched with lower priority than the additional include path.

The reference point of the path is the project folder.

This corresponds to the -i option of the assembler.

The include path is displayed as the subproperty.

Default System include paths[number of defined items]

How to change Edit by the System Include Path Order dialog box which appears when

clicking the [...] button.

Restriction Changes not allowed (Only the specified order of the include paths can be

changed.)

Macro definition Specify the macro name to be defined.

Specify in the format of "macro name=defined value", with one macro name per line. The

"=defined value" part can be omitted, and in this case, "1" is used as the defined value.

This corresponds to the -d option of the assembler.

The specified macro is displayed as the subproperty.

Default Macro definition[number of defined items]

How to change Edit by the Text Edit dialog box which appears when clicking the [...] but-

ton.

For the subproperty, you can use the text box directly enter the text.

Restriction Up to 256 characters

Up to 30 items can be specified.

Output common object

file for various devices

Select whether to output the objects common to the various devices.

This corresponds to the -common option of the assembler.

Default No

How to change Select from the drop-down list.

Restriction Yes(-common) Outputs the objects common to the various devices.

No Outputs objects for 78K0.

Output error list file Select whether to output the error list file.

This corresponds to the -e option of the assembler.

Default No

How to change Select from the drop-down list.

Restriction Yes(-e) Outputs an error list file.

No Does not output the error list file.

CubeSuite Ver.1.30 APPENDIX A WINDOW REFERENCE

R20UT0005EJ0100 Rev.1.00 Page 200 of 573
Jul 01, 2010

Output assemble list file Select whether to output the assemble list file.

This corresponds to the -p option of the assembler.

If [Yes] is selected on the [Use memory bank relocation support tool] property in the [Output

File] category from the [Memory Bank Relocation Options] tab, this property will be changed

to [Yes(-p)].

Default Yes(-p)

How to change Select from the drop-down list.

Restriction Yes(-p) Outputs an assemble list file.

No(-np) Does not output an assemble list file.

Execute list converter Select whether the list converter is executed following the generation of an execution mod-

ule.

The list converter is not executed during library generation.

This property is not displayed when [No(-np)] in the [Output assemble list file] property is

selected.

Default Yes

How to change Select from the drop-down list.

Restriction Yes Executes the list converter after the generation of an

execution module.

No Does not execute the list converter after the generation

of an execution module.

Output list converter

error list file

Select whether to output an error list file during list converter execution.

This corresponds to the -e option of the list converter.

This property is not displayed when [No(-np)] in the [Output assemble list file] property is

selected and when [No] in the [Execute list converter] property is selected.

Default No

How to change Select from the drop-down list.

Restriction Yes(-e) Outputs an error list file during list converter execution.

No Does not output an error list file during list converter

execution.

Output with assemble list

info

Select whether to output the assemble list information into the assemble list file.

This corresponds to the -ka option of the assembler.

This property is not displayed when [No(-np)] in the [Output assemble list file] property is

selected.

Default Yes

How to change Select from the drop-down list.

Restriction Yes Outputs the assemble list information into the assemble

list file.

No(-nka) Does not output the assemble list information into the

assemble list file.

CubeSuite Ver.1.30 APPENDIX A WINDOW REFERENCE

R20UT0005EJ0100 Rev.1.00 Page 201 of 573
Jul 01, 2010

Output with symbol list Select whether to output the symbol list information into the assemble list file.

This corresponds to the -ks option of the assembler.

This property is not displayed when [No(-np)] in the [Output assemble list file] property is

selected.

Default No

How to change Select from the drop-down list.

Restriction Yes(-ks) Outputs the symbol list information into the assemble

list file.

No Does not output the symbol list information into the

assemble list file.

Output with cross refer-

ence list

Select whether to output the cross reference list information into the assemble list file.

This corresponds to the -kx option of the assembler.

If [Yes] is selected on the [Use memory bank relocation support tool] property in the [Output

File] category from the [Memory Bank Relocation Options] tab, this property will be changed

to [Yes(-kx)].

This property is not displayed when [No(-np)] in the [Output assemble list file] property is

selected.

Default No

How to change Select from the drop-down list.

Restriction Yes(-kx) Outputs the cross reference list information into the

assemble list file.

No Does not output the cross reference list information into

the assemble list file.

Output with form feed

control code

Select whether to output a form feed code into list files.

This corresponds to the -lf option of the assembler.

This property is not displayed when [No(-np)] in the [Output assemble list file] property is

selected.

Default No

How to change Select from the drop-down list.

Restriction Yes(-lf) Outputs a form feed code into the list file.

No Does not output a form feed code into the list file.

Number of characters in

1 line

Specify the number of characters in each line of the list file.

This corresponds to the -lw option of the assembler.

This property is not displayed when [No(-np)] in the [Output assemble list file] property is

selected.

Default 132

How to change Directly enter to the text box.

Restriction 72 to 2046 (decimal number)

CubeSuite Ver.1.30 APPENDIX A WINDOW REFERENCE

R20UT0005EJ0100 Rev.1.00 Page 202 of 573
Jul 01, 2010

(5) [Others]

Other detailed information on assembly are displayed and the configuration can be changed.

Number of lines on 1

page

Specifies the number of lines on 1 page of the list file.

If 0 is specified, no page breaks will be made.

This corresponds to the -ll option of the assembler.

This property is not displayed when [No(-np)] in the [Output assemble list file] property is

selected.

Default 66

How to change Directly enter to the text box.

Restriction 0, and 20 to 32767 (decimal number)

Tab width Specify the tab width of the list file.

This corresponds to the -lt option of the assembler.

This property is not displayed when [No(-np)] in the [Output assemble list file] property is

selected.

Default 8

How to change Directly enter to the text box.

Restriction 0 to 8 (decimal number)

Header title Specify the header of the assemble list file.

A string containing double-byte characters and single-byte spaces can be specified.

This corresponds to the -lh option of the assembler.

This property is not displayed when [No(-np)] in the [Output assemble list file] property is

selected.

Default Blank

How to change Directly enter to the text box.

Restriction Up to 60 single-byte characters (30 double-byte characters)

Kanji character code of

source

Select the Kanji character code of the source.

This corresponds to the -zs, -ze, and -zn options of the assembler.

Default Shift_JIS(-zs)

How to change Select from the drop-down list.

Restriction Shift_JIS(-zs) Interprets the kanji code of the source as Shift_JIS.

EUC-JP(-ze) Interprets the kanji code of the source as EUC-JP.

Unspecified(-

zn)

Interprets the source as not containing kanji codes.

CubeSuite Ver.1.30 APPENDIX A WINDOW REFERENCE

R20UT0005EJ0100 Rev.1.00 Page 203 of 573
Jul 01, 2010

Use Self-programming Select whether to use self-programming.

This corresponds to the -self option of the assembler.

Default No

How to change Select from the drop-down list.

Restriction Yes(-self) Even if the internal ROM does not exist at the 8100H

address, no error is output for the “ALL !8100H” descrip-

tion.

No If the internal ROM does not exist at the 8100H

address, an error is output for the “ALL !8100H” descrip-

tion.

Commands executed

before assemble pro-

cessing

Specify the command to be executed before assemble processing.

The following macro names are available as embedded macros.

%ProjectFolder%: Replaces with the absolute path of the project folder.

%OutputFolder%: Replaces with the absolute path of the output folder.

%OutputFile%: Replaces with the absolute path of the output file.

%InputFile%: Replaces with the absolute path of the file to be assembled.

%AssembledFile%: Replaces with the absolute path of the output file under assembling.

The specified command is displayed as the subproperty.

Default Commands executed before assemble processing[number of defined

items]

How to change Edit by the Text Edit dialog box which appears when clicking the [...] but-

ton.

For the subproperty, you can use the text box directly enter the text.

Restriction Up to 1023 characters

Up to 64 items can be specified.

Commands executed

after assemble process-

ing

Specify the command to be executed after assemble processing.

The following macro names are available as embedded macros.

%ProjectFolder%: Replaces with the absolute path of the project folder.

%OutputFolder%: Replaces with the absolute path of the output folder.

%OutputFile%: Replaces with the absolute path of the output file.

%InputFile%: Replaces with the absolute path of the file to be assembled.

%AssembledFile%: Replaces with the absolute path of the output file under assembling.

The specified command is displayed as the subproperty.

Default Commands executed after assemble processing[number of defined items]

How to change Edit by the Text Edit dialog box which appears when clicking the [...] but-

ton.

For the subproperty, you can use the text box directly enter the text.

Restriction Up to 1023 characters

Up to 64 items can be specified.

Other additional options Input the assemble options to be added additionally.

The options set here are added at the end of the assemble options group.

Default Blank

How to change Directly enter to the text box or edit by the Character String Input dialog

box which appears when clicking the [...] button.

Restriction Up to 259 characters

CubeSuite Ver.1.30 APPENDIX A WINDOW REFERENCE

R20UT0005EJ0100 Rev.1.00 Page 204 of 573
Jul 01, 2010

[Link Options] tab

This tab shows the detailed information on the linker categorized by the following and the configuration can be

changed.

(1) [Debug Information]

(2) [Input File]

(3) [Output File]

(4) [Library]

(5) [Device]

(6) [Message]

(7) [Stack]

(8) [Link List]

(9) [Error List]

(10) [Others]

Caution This tab is not displayed for library projects.

Figure A-7. Property Panel: [Link Options] Tab

CubeSuite Ver.1.30 APPENDIX A WINDOW REFERENCE

R20UT0005EJ0100 Rev.1.00 Page 205 of 573
Jul 01, 2010

[Description of each category]

(1) [Debug Information]

The detailed information on debug information is displayed and the configuration can be changed.

(2) [Input File]

The detailed information on input files is displayed and the configuration can be changed.

(3) [Output File]

The detailed information on output files are displayed and the configuration can be changed.

Add debug information Select whether to enable source level debugging by adding debug information to the mod-

ule being generated.

This corresponds to the -g option of the linker.

Default Yes

How to change Select from the drop-down list.

Restriction Yes Adds debug information to the object module file being

generated.

No(-ng) Does not add debug information to the object module

file being generated.

Using link directive file Display the link directive file to be used for linking.

This corresponds to the -d option of the linker.

Default The link directive file name that is added to the project

How to change Changes not allowed

Output folder Specify the folder for saving the module that is generated.

If a relative path is specified, the reference point of the path is the main project or subproject

folder.

If an absolute path is specified, the reference point of the path is the main project or sub-

project folder (unless the drives are different).

The following macro name is available as an embedded macro.

%BuildModeName%: Replaces with the build mode name.

If this is blank, it is treated as if the project folder is specified.

Default %BuildModeName%

How to change Directly enter to the text box or edit by the Browse For Folder dialog box

which appears when clicking the [...] button.

Restriction Up to 247 characters

CubeSuite Ver.1.30 APPENDIX A WINDOW REFERENCE

R20UT0005EJ0100 Rev.1.00 Page 206 of 573
Jul 01, 2010

(4) [Library]

The detailed information on the library are displayed and the configuration can be changed.

Output file name Specify the load module file name to be output.

Use the extension ".lmf". If the extension is omitted, ".lmf" is automatically added.

This corresponds to the -o option of the linker.

The following macro name is available as an embedded macro.

%ProjectName%: Replaces with the project name.

If this is blank, it is assumed that "%ProjectName%.lmf" has been specified.

Default %ProjectName%.lmf

How to change Directly enter to the text box.

Restriction Up to 259 characters

Force linking against

error

Select whether to forcibly generate the load module file when an error occurs during linking.

This corresponds to the -j option of the linker.

Default No

How to change Select from the drop-down list.

Restriction Yes(-j) Forcibly generates the load module file when an error

occurs during linking.

No Does not generate the load module file when an error

occurs during linking.

Using libraries Specify the library file name (*.lib) to be used other than the standard libraries.

Add one file in one line.

The library files are searched from the library path.

This corresponds to the -b option of the linker.

The specified library file name is displayed as the subproperty.

Default Using libraries[number of defined items]

How to change Edit by the Text Edit dialog box which appears when clicking the [...] but-

ton.

For the subproperty, you can use the text box directly enter the text.

Restriction Up to 259 characters

Up to 64 items can be specified.

If the number of items specified in the [System libraries] property, and in

the [Using standard libraries] property in the [Library] category on the

[Compile Options] tab, together total more than 64, then an error will occur

under build execution.

System libraries The name of the library file which the system uses is displayed.

The system library file is searched with lower priority than the library file to be used.

The library file name is displayed as the subproperty.

Default System libraries[number of defined items]

How to change Changes not allowed

CubeSuite Ver.1.30 APPENDIX A WINDOW REFERENCE

R20UT0005EJ0100 Rev.1.00 Page 207 of 573
Jul 01, 2010

(5) [Device]

The detailed information on the device are displayed and the configuration can be changed.

Additional library paths Specify the search folder to be used other than the standard libraries.

The following macro names are available as embedded macros.

%BuildModeName%: Replaces with the build mode name.

%ProjectName%: Replaces with the project name.

%CubeSuitePath%: Replaces with the absolute path of the CubeSuite install folder.

The library files are searched from the library path.If a relative path is specified, the refer-

ence point of the path is the project folder.

This corresponds to the -i option of the linker.

The specified library path name is displayed as the subproperty.

Default Additional library paths[number of defined items]

How to change Edit by the Path Edit dialog box which appears when clicking the [...] but-

ton.

For the subproperty, you can use the text box directly enter the text.

Restriction Up to 259 characters

Up to 64 items can be specified.

If the number of items specified in the [System library paths] property, and

in the [Using standard libraries] property in the [Library] category on the

[Compile Options] tab, together total more than 64, then an error will occur

under build execution.

System library paths The folder to search the system library file is displayed.

The following macro names are available as embedded macros.

%BuildModeName%: Replaces with the build mode name.

%ProjectName%: Replaces with the project name.

%CubeSuitePath%: Replaces with the absolute path of the CubeSuite install folder.

If a relative path is displayed, the reference point of the path is the project folder.

This corresponds to the -i option of the linker.

The library path name is displayed as the subproperty.

Default System library paths[number of defined items]

How to change Changes not allowed

Use on-chip debug Select whether to set the on-chip debug.

Change the size of the debug monitor area.

This corresponds to the -go option of the linker.

This property is not displayed when the device does not have an on-chip debug function.

Default No

How to change Select from the drop-down list.

Restriction Yes(-qo) Sets the on-chip debug.

No Does not set the on-chip debug.

CubeSuite Ver.1.30 APPENDIX A WINDOW REFERENCE

R20UT0005EJ0100 Rev.1.00 Page 208 of 573
Jul 01, 2010

Debug monitor area

size[byte]

Specify the size of the debug monitor area in decimal.

This corresponds to the -go option of the linker.

If this is blank, an error will occur.

This property is not displayed when the [Use on-chip debug] property is not displayed or

when [No] is selected in the property.

Default 256

How to change Directly enter to the text box.

Restriction 256 to 1024 (decimal number)

Set user option byte Select whether to set the user option byte.

This corresponds to the -gb option of the linker.

Default No

How to change Select from the drop-down list.

Restriction Yes(-gb) Sets the user option byte.

No Does not set the user option byte.

User option byte value Specify the user option byte value in hexadecimal without 0x.

This corresponds to the -gb option of the linker.

Values saved in versions of CubeSuite below 1.20 may be outside the allowed setting

range. If the values set outside the allowed range are restored, this property is blank.

This property is not displayed when [No] in the [Set user option byte] property is selected.

Default Blank

How to change Directly enter to the text box.

Restriction 0 to FFFFFFFFFF (hexadecimal number)

Set flash start address Select whether to set the flash start address for the built-in flash ROM product.

This corresponds to the -zb option of the linker.

Do not set this property for a device that does not have a flash ROM area self-programming

function.

This property is changed to [No] when [Yes(-zf)] in the [Output objects for flash] property in

the [Memory Model] category from the [Compile Options] tab is selected.

Default No

How to change Select from the drop-down list.

Restriction Yes(-zb) Sets the flash start address for the built-in flash ROM

product.

No Does not set the flash start address for the built-in flash

ROM product.

Flash start address Specify the start address for the built-in flash ROM product in hexadecimal without 0x.

This corresponds to the -zb option of the linker.

Do not set this property for a device that does not have a flash ROM area self-programming

function.

This property is not displayed when [No] in the [Set flash start address] property is selected.

Default Blank

How to change Directly enter to the text box.

Restriction 0 to FFFF (hexadecimal number)

CubeSuite Ver.1.30 APPENDIX A WINDOW REFERENCE

R20UT0005EJ0100 Rev.1.00 Page 209 of 573
Jul 01, 2010

(6) [Message]

The detailed information on messages is displayed and the configuration can be changed.

(7) [Stack]

The detailed information on the stack are displayed and the configuration can be changed.

Boot area load module

file name

Specify the boot area load module file name when the load module file for the flash area is

generated.

This corresponds to the -zf option of the linker.

If this field is blank, a link error occurs. Be sure to specify the boot area load module file

name.

If a relative path is specified, the reference point of the path is the main project or subproject

folder.

If an absolute path is specified, the reference point of the path is the main project or sub-

project folder (unless the drives are different).

When this property is specified, the setting of the [Security ID] property in the [Device] cate-

gory form [Common Options] tab is invalid.

Default Blank

How to change Directly enter to the text box or edit by the Specify Boot Area Load Module

File dialog box which appears when clicking the [...] button.

Restriction Up to 259 characters

Warning level Select the warning display level under linking.

This corresponds to the -w option of the linker.

Default Normal output

How to change Select from the drop-down list.

Restriction No output(-w0) Does not output warning messages.

Normal output Outputs normal warning messages.

Particular out-

put(-w2)

Outputs detailed warning messages.

Generate stack solution

symbol

Select whether to generate a stack solution symbol.

This corresponds to the -s option of the linker.

If a C source file is added to the project and [Yes] is selected in the [Use standard startup

routine] property in the [Startup] category from the [Compile Options] tab, this property is

always set to [Yes(-s)] and cannot be changed.

Default No

How to change Select from the drop-down list.

Restriction Yes(-s) Generates a stack solution symbol.

No Does not generate a stack solution symbol.

CubeSuite Ver.1.30 APPENDIX A WINDOW REFERENCE

R20UT0005EJ0100 Rev.1.00 Page 210 of 573
Jul 01, 2010

(8) [Link List]

The detailed information on the link list are displayed and the configuration can be changed.

Area name Specifies the name of the memory area that generates the stack solution symbol.

If the area name is omitted, it is assumed that "RAM" has been specified.

This corresponds to the -s option of the linker.

This property is not displayed when [No] in the [Generate stack solution symbol] property is

selected.

Default Blank

How to change Directly enter to the text box or edit by the Character String Input dialog

box which appears when clicking the [...] button.

Restriction Up to 256 characters

Output link list file Select whether to output the link list file.

This corresponds to the -p option of the linker.

Default Yes

How to change Select from the drop-down list.

Restriction Yes Outputs a link list file.

No(-np) Does not output the link list file.

Output with link directive

info

Select whether to output link directive information to the link list file.

This corresponds to the -kd option of the linker.

This property is not displayed when [No] in the [Output link list file] property is selected.

Default Yes

How to change Select from the drop-down list.

Restriction Yes Outputs link directive information to the link list file.

No(-nkd) Does not output link directive information to the link list

file.

Output with local symbol

list

Select whether to output local symbol list information to the link list file.

This corresponds to the -kl option of the linker.

This property is not displayed when [No] in the [Output link list file] property is selected.

Default No

How to change Select from the drop-down list.

Restriction Yes(-kl) Outputs local symbol list information to the link list file.

No Does not output local symbol list information to the link

list file.

Output with public sym-

bol list

Select whether to output public symbol list information to the link list file.

This corresponds to the -kp option of the linker.

This property is not displayed when [No] in the [Output link list file] property is selected.

Default No

How to change Select from the drop-down list.

Restriction Yes(-kp) Outputs public symbol list information to the link list file.

No Does not output public symbol list information to the link

list file.

CubeSuite Ver.1.30 APPENDIX A WINDOW REFERENCE

R20UT0005EJ0100 Rev.1.00 Page 211 of 573
Jul 01, 2010

(9) [Error List]

The detailed information on the error list is displayed and the configuration can be changed.

(10)[Others]

Other detailed information on linking are displayed and the configuration can be changed.

Output with map list Select whether to output map list information to the link list file.

This corresponds to the -km option of the linker.

This property is not displayed when [No] in the [Output link list file] property is selected.

Default Yes

How to change Select from the drop-down list.

Restriction Yes Outputs map list information to the link list file.

No(-nkm) Does not output map list information to the link list file.

Output with form feed

control code

Select whether to output a form feed code into list files.

This corresponds to the -lf option of the linker.

This property is not displayed when [No] in the [Output link list file] property is selected.

Default No

How to change Select from the drop-down list.

Restriction Yes(-lf) Outputs a form feed code into the list file.

No Does not output a form feed code into the list file.

Number of lines on 1

page

Specifies the number of lines on 1 page of the list file.

If 0 is specified, no page breaks will be made.

This corresponds to the -ll option of the linker.

This property is not displayed when [No] in the [Output link list file] property is selected.

Default 66

How to change Directly enter to the text box.

Restriction 0, and 20 to 32767 (decimal number)

Output error list file Select whether to output the error list file.

This corresponds to the -e option of the linker.

Default No

How to change Select from the drop-down list.

Restriction Yes(-e) Outputs an error list file.

No Does not output the error list file.

CubeSuite Ver.1.30 APPENDIX A WINDOW REFERENCE

R20UT0005EJ0100 Rev.1.00 Page 212 of 573
Jul 01, 2010

Commands executed

before link processing

Specify the command to be executed before link processing.

The following macro names are available as embedded macros.

%ProjectFolder%: Replaces with the absolute path of the project folder.

%OutputFolder%: Replaces with the absolute path of the output folder.

%OutputFile%: Replaces with the absolute path of the output file.

%LinkedFile%: Replaces with the absolute path of the output file under link processing.

The specified command is displayed as the subproperty.

Default Commands executed before link processing[number of defined items]

How to change Edit by the Text Edit dialog box which appears when clicking the [...] but-

ton.

For the subproperty, you can use the text box directly enter the text.

Restriction Up to 1023 characters

Up to 64 items can be specified.

Commands executed

after link processing

Specify the command to be executed after link processing.

The following macro names are available as embedded macros.

%ProjectFolder%: Replaces with the absolute path of the project folder.

%OutputFolder%: Replaces with the absolute path of the output folder.

%OutputFile%: Replaces with the absolute path of the output file.

%LinkedFile%: Replaces with the absolute path of the output file under link processing.

The specified command is displayed as the subproperty.

Default Commands executed after link processing[number of defined items]

How to change Edit by the Text Edit dialog box which appears when clicking the [...] but-

ton.

For the subproperty, you can use the text box directly enter the text.

Restriction Up to 1023 characters

Up to 64 items can be specified.

Other additional options Input the link options to be added additionally.

The options set here are added at the end of the link options group.

Default Blank

How to change Directly enter to the text box or edit by the Character String Input dialog

box which appears when clicking the [...] button.

Restriction Up to 259 characters

CubeSuite Ver.1.30 APPENDIX A WINDOW REFERENCE

R20UT0005EJ0100 Rev.1.00 Page 213 of 573
Jul 01, 2010

[Object Convert Options] tab

This tab shows the detailed information on the object converter categorized by the following and the configuration can

be changed.

(1) [Hex File]

(2) [Hex File Filling]

(3) [Symbol Table]

(4) [Error List]

(5) [Others]

Caution This tab is not displayed for library projects.

Figure A-8. Property Panel: [Object Convert Options] Tab

CubeSuite Ver.1.30 APPENDIX A WINDOW REFERENCE

R20UT0005EJ0100 Rev.1.00 Page 214 of 573
Jul 01, 2010

[Description of each category]

(1) [Hex File]

The detailed information on hex files are displayed and the configuration can be changed.

Output hex file Select whether to output the hex file.

This corresponds to the -o option of the object converter.

Default Yes

How to change Select from the drop-down list.

Restriction Yes Outputs the hex file.

No(-no) Does not output the hex file.

Output folder for hex file Specify the folder for saving the hex file.

This corresponds to the -o option of the object converter.

If a relative path is specified, the reference point of the path is the main project or subproject

folder.

If an absolute path is specified, the reference point of the path is the main project or sub-

project folder (unless the drives are different).

The following macro name is available as an embedded macro.

%BuildModeName%: Replaces with the build mode name.

If this is blank, it is treated as if the project folder is specified.

This property is not displayed when [No(-no)] in the [Output hex file] property is selected.

Default %BuildModeName%

How to change Directly enter to the text box or edit by the Browse For Folder dialog box

which appears when clicking the [...] button.

Restriction Up to 247 characters

Hex file name Specify the hex file name.

This corresponds to the -o option of the object converter.

The extension can be freely specified.

The following macro name is available as an embedded macro.

%ProjectName%: Replaces with the project name.

This property is not displayed when [No(-no)] in the [Output hex file] property is selected.

Default %ProjectName%.hex

How to change Directly enter to the text box.

Restriction Up to 259 characters

CubeSuite Ver.1.30 APPENDIX A WINDOW REFERENCE

R20UT0005EJ0100 Rev.1.00 Page 215 of 573
Jul 01, 2010

(2) [Hex File Filling]

The detailed information on hex file filling are displayed and the configuration can be changed.

Hex file format Select the format of the hex file to be generated.

This corresponds to the -k option of the object converter.

This property is not displayed when [No(-no)] in the [Output hex file] property is selected.

Default Intel expanded hex format(-kie)

How to change Select from the drop-down list.

Restriction Intel standard hex for-

mat(-ki)

Specify the Intel standard hex format as the

format of the hex file to be generated.

Intel expanded hex for-

mat(-kie)

Specify the Intel expanded hex format as the

format of the hex file to be generated.

Motorola S type for-

mat(standard address)(-

km)

Specify the Motorola S type format (standard

address) as the format of the hex file to be

generated.

Motorola S type for-

mat(32-bit address)(-

kme)

Specify the Motorola S type format (32-bit

address) as the format of the hex file to be

generated.

Expanded Tektronix hex

format(-kt)

Specify the expanded Tektronix hex format as

the format of the hex file to be generated.

Split hex file Select whether to split up the file into separate hex format files, one for the boot area and

one for other areas, when specifying boot area ROM program linking for a product with built-

in flash memory.

This corresponds to the -zf option of the object converter.

Do not set this property for a device that does not have a flash ROM area self-programming

function.

This property is not displayed when [No(-no)] in the [Output hex file] property is selected.

Default No

How to change Select from the drop-down list.

Restriction Yes(-zf) Splits the file into separate hex files: one for the boot

area and one for other areas.

No Does not split the file into separate hex files: one for the

boot area and one for other areas.

Fill free memory space The unnecessary code may be written to address to which the hex-format object is not out-

put. Specify whether to write a code in advance to prevent the program runaway by access-

ing the address.

This corresponds to the -u option of the object converter.

This property is not displayed when [No(-no)] in the [Output hex file] property in the [Hex

File] category is selected.

Default Yes(-u)

How to change Select from the drop-down list.

Restriction Yes(-u) Writes a code in advance to address to which the hex-

format object is not output.

No(-nu) Does not write a code in advance to address to which

the hex-format object is not output.

CubeSuite Ver.1.30 APPENDIX A WINDOW REFERENCE

R20UT0005EJ0100 Rev.1.00 Page 216 of 573
Jul 01, 2010

(3) [Symbol Table]

The detailed information on the symbol table is displayed and the configuration can be changed.

(4) [Error List]

The detailed information on the error list is displayed and the configuration can be changed.

Filling value Specify the values, in hexadecimal number without 0x (example: FF), to be written to the

address for which no hex-format object is output.

If the value is omitted, it is assumed that "FF" has been specified.

This corresponds to the -u option of the object converter.

This property is not displayed when [No(-nu)] in the [Fill free memory space] property is

selected.

Default FF

How to change Directly enter to the text box.

Restriction 0 to FF (hexadecimal number)

Filling start address Specify the start address for filling in hexadecimal without 0x (example: 100A0).

If this is blank, it is assumed that 0 has been specified.

If this property is specified, configure the [Filling size[byte]] property. If the [Filling size[byte]]

property is blank, the specification of this property is invalid.

This corresponds to the -u option of the object converter.

This property is not displayed when [No(-nu)] in the [Fill free memory space] property is

selected.

Default Blank

How to change Directly enter to the text box.

Restriction 0 to the largest address of the program space (hexadecimal)

Filling size[byte] Specify the size from the start address for filling in hexadecimal without 0x (example: F00).

If the result of changing the [Filling start address] property is outside the range that can be

specified for this property, then this property will be blank.

This corresponds to the -u option of the object converter.

This property is not displayed when [No(-nu)] in the [Fill free memory space] property is

selected.

Default Blank

How to change Directly enter to the text box.

Restriction 1 to 0xFFFFF - filling start address + 0x1 (hexadecimal)

Output symbol table file Select whether to output the symbol table file.

This corresponds to the -s option of the object converter.

Default Yes(-s)

How to change Select from the drop-down list.

Restriction Yes(-s) Outputs the symbol table file.

No(-ns) Does not output the symbol table file.

CubeSuite Ver.1.30 APPENDIX A WINDOW REFERENCE

R20UT0005EJ0100 Rev.1.00 Page 217 of 573
Jul 01, 2010

(5) [Others]

Other detailed information on object conversion are displayed and the configuration can be changed.

Output error list file Select whether to output the error list file.

This corresponds to the -e option of the linker.

Default No

How to change Select from the drop-down list.

Restriction Yes(-e) Outputs an error list file.

No Does not output the error list file.

Commands executed

before object convert

processing

Specify the command to be executed before object convert processing.

The following macro names are available as embedded macros.

%ProjectFolder%: Replaces with the absolute path of the project folder.

%OutputFolder%: Replaces with the absolute path of the output folder.

%OutputFile%: Replaces with the absolute path of the output file.

%InputFile%: Replaces with absolute path of the input file under object convert processing.

%ObjectConvertedFile%: Replaces with absolute path of the output file under object convert

processing.

The specified command is displayed as the subproperty.

Default Commands executed before object convert processing[number of defined

items]

How to change Edit by the Text Edit dialog box which appears when clicking the [...] but-

ton.

For the subproperty, you can use the text box directly enter the text.

Restriction Up to 1023 characters

Up to 64 items can be specified.

Commands executed

after object convert pro-

cessing

Specify the command to be executed after object convert processing.

The following macro names are available as embedded macros.

%ProjectFolder%: Replaces with the absolute path of the project folder.

%OutputFolder%: Replaces with the absolute path of the output folder.

%OutputFile%: Replaces with the absolute path of the output file.

%InputFile%: Replaces with absolute path of the input file under object convert processing.

%ObjectConvertedFile%: Replaces with absolute path of the output file under object convert

processing.

The specified command is displayed as the subproperty.

Default Commands executed after object convert processing[number of defined

items]

How to change Edit by the Text Edit dialog box which appears when clicking the [...] but-

ton.

For the subproperty, you can use the text box directly enter the text.

Restriction Up to 1023 characters

Up to 64 items can be specified.

CubeSuite Ver.1.30 APPENDIX A WINDOW REFERENCE

R20UT0005EJ0100 Rev.1.00 Page 218 of 573
Jul 01, 2010

Other additional options Input the object convert options to be added additionally.

The options set here are added at the end of the object convert options group.

Default Blank

How to change Directly enter to the text box or edit by the Character String Input dialog

box which appears when clicking the [...] button.

Restriction Up to 259 characters

CubeSuite Ver.1.30 APPENDIX A WINDOW REFERENCE

R20UT0005EJ0100 Rev.1.00 Page 219 of 573
Jul 01, 2010

[Create Library Options] tab

This tab shows the detailed information on the librarian categorized by the following and the configuration can be

changed.

(1) [Output File]

(2) [List File]

(3) [Others]

Caution This tab is displayed only for library projects.

Figure A-9. Property Panel: [Create Library Options] Tab

[Description of each category]

(1) [Output File]

The detailed information on output files are displayed and the configuration can be changed.

Output folder Specify the folder for saving the library that is generated.

If a relative path is specified, the reference point of the path is the main project or subproject

folder.

If an absolute path is specified, the reference point of the path is the main project or sub-

project folder (unless the drives are different).

The following macro name is available as an embedded macro.

%BuildModeName%: Replaces with the build mode name.

If this is blank, it is treated as if the project folder is specified.

Default %BuildModeName%

How to change Directly enter to the text box or edit by the Browse For Folder dialog box

which appears when clicking the [...] button.

Restriction Up to 259 characters

CubeSuite Ver.1.30 APPENDIX A WINDOW REFERENCE

R20UT0005EJ0100 Rev.1.00 Page 220 of 573
Jul 01, 2010

(2) [List File]

The detailed information on list files are displayed and the configuration can be changed.

Output file name Specify the library file name to be output.

Use the extension ".lib". If the extension is omitted, ".lib" is automatically added.

The following macro name is available as an embedded macro.

%ProjectName%: Replaces with the project name.

Default %ProjectName%.lib

How to change Directly enter to the text box.

Restriction Up to 259 characters

Output list file Select whether to output the list file with the librarian.

This corresponds to the -o option of the list subcommand.

Default No

How to change Select from the drop-down list.

Restriction Yes Outputs the list file (information on modules in the

library file).

No Does not output the list file (information on modules in

the library file).

Output with public sym-

bol information

Select whether to output public symbol information to the list file with the librarian.

This corresponds to the -public option of the list subcommand.

This property is not displayed when [No] in the [Output list file] property is selected.

Default No

How to change Select from the drop-down list.

Restriction Yes Outputs public symbol information to the list file.

No Does not output public symbol information to the list file.

Output with form feed

control code

Select whether to output a form feed code into list files.

This corresponds to the -lf option of the librarian.

This property is not displayed when [No] in the [Output list file] property is selected.

Default No

How to change Select from the drop-down list.

Restriction Yes(-lf) Outputs a form feed code into the list file.

No Does not output a form feed code into the list file.

Number of characters in

1 line

Specify the number of characters in each line of the list file.

This corresponds to the -lw option of the librarian.

This property is not displayed when [No] in the [Output list file] property is selected.

Default 132

How to change Directly enter to the text box.

Restriction 72 to 260 (decimal number)

CubeSuite Ver.1.30 APPENDIX A WINDOW REFERENCE

R20UT0005EJ0100 Rev.1.00 Page 221 of 573
Jul 01, 2010

(3) [Others]

Other detailed information on libraries are displayed and the configuration can be changed.

Number of lines on 1

page

Specifies the number of lines on 1 page of the list file.

If 0 is specified, no page breaks will be made.

This corresponds to the -ll option of the librarian.

This property is not displayed when [No] in the [Output list file] property is selected.

Default 66

How to change Directly enter to the text box.

Restriction 0, and 20 to 32767 (decimal number)

Commands executed

before making library

processing

Specify the command to be executed before library generation processing.

The following macro names are available as embedded macros.

%ProjectFolder%: Replaces with the absolute path of the project folder.

%OutputFolder%: Replaces with the absolute path of the output folder.

%OutputFile%: Replaces with the absolute path of the output file.

%LibraryFile%: Replaces with the absolute path of the output file under the library genera-

tion processing.

The specified command is displayed as the subproperty.

Default Commands executed before making library processing[number of defined

items]

How to change Edit by the Text Edit dialog box which appears when clicking the [...] but-

ton.

For the subproperty, you can use the text box directly enter the text.

Restriction Up to 1023 characters

Up to 64 items can be specified.

Commands executed

after making library pro-

cessing

Specify the command to be executed after library generation processing.

The following macro name is available as an embedded macro.

%ProjectFolder%: Replaces with the absolute path of the project folder.

%OutputFolder%: Replaces with the absolute path of the output folder.

%OutputFile%: Replaces with the absolute path of the output file.

%LibraryFile%: Replaces with the absolute path of the output file under the library genera-

tion processing.

The specified command is displayed as the subproperty.

Default Commands executed after making library processing[number of defined

items]

How to change Edit by the Text Edit dialog box which appears when clicking the [...] but-

ton.

For the subproperty, you can use the text box directly enter the text.

Restriction Up to 1023 characters

Up to 64 items can be specified.

CubeSuite Ver.1.30 APPENDIX A WINDOW REFERENCE

R20UT0005EJ0100 Rev.1.00 Page 222 of 573
Jul 01, 2010

Other additional options Input the librarian options to be added additionally.

The options set here are added at the end of the librarian options group.

Default Blank

How to change Directly enter to the text box or edit by the Character String Input dialog

box which appears when clicking the [...] button.

Restriction Up to 259 characters

CubeSuite Ver.1.30 APPENDIX A WINDOW REFERENCE

R20UT0005EJ0100 Rev.1.00 Page 223 of 573
Jul 01, 2010

[Variables Relocation Options] tab

This tab shows the detailed information on the variables information file generator categorized by the following and the

configuration can be changed.

(1) [Output File]

(2) [Margin]

(3) [ROM/RAM Amount Information]

Figure A-10. Property Panel: [Variables Relocation Options] Tab

[Description of each category]

(1) [Output File]

The detailed information on output files are displayed and the configuration can be changed.

Output variables infor-

mation file

Select whether to output the variables information file.

Default No

How to change Select from the drop-down list.

Restriction Yes Outputs the variables information file.

No Does not output the variables information file.

CubeSuite Ver.1.30 APPENDIX A WINDOW REFERENCE

R20UT0005EJ0100 Rev.1.00 Page 224 of 573
Jul 01, 2010

(2) [Margin]

The detailed information on the margin is displayed and the configuration can be changed.

This category is not displayed when [No] in the [Output variables information file] property in the [Output File] cate-

gory is selected.

(3) [ROM/RAM Amount Information]

The detailed information on the ROM/RAM usage is displayed and the configuration can be changed.

Output folder for vari-

ables information file

Specify the folder for saving the variables information file.

This corresponds to the -vo option of the variables information file generator.

If a relative path is specified, the reference point of the path is the main project or subproject

folder.

If an absolute path is specified, the reference point of the path is the main project or sub-

project folder (unless the drives are different).

The following macro name is available as an embedded macro.

%BuildModeName%: Replaces with the build mode name.

If this is blank, it is treated as if the project folder is specified.

This property is not displayed when [No] in the [Output variables information file] property is

selected.

Default %BuildModeName%

How to change Directly enter to the text box or edit by the Browse For Folder dialog box

which appears when clicking the [...] button.

Restriction Up to 247 characters

Variables information file

name

Specify the variables information file name.

This corresponds to the -vo option of the variables information file generator.

Use the extension ".vfi". If the extension is omitted, ".vfi" is automatically added.

The following macro name is available as an embedded macro.

%ProjectName%: Replaces with the project name.

This property is not displayed when [No] in the [Output variables information file] property is

selected.

Default %ProjectName%.vfi

How to change Directly enter to the text box.

Restriction Up to 259 characters

Margin for saddr area Specify the Margin for saddr area.

After allocating variables to the saddr area via the variables information file generator, an

alignment error may occur during compilation or linking due to the relationship between pro-

cessing order and alignment. In this situation, setting the margin in the saddr area can

avoid this error.

This corresponds to the -vs option of the variables information file generator.

Default 0

How to change Directly enter to the text box.

Restriction 0 to 192 (decimal number)

CubeSuite Ver.1.30 APPENDIX A WINDOW REFERENCE

R20UT0005EJ0100 Rev.1.00 Page 225 of 573
Jul 01, 2010

Output ROM/RAM usage Select whether to display the ROM/RAM usage to the Output panel.

This corresponds to the -vx option of the variables information file generator.

Default No

How to change Select from the drop-down list.

Restriction Yes Outputs the ROM/RAM usage.

No Does not output the ROM/RAM usage.

CubeSuite Ver.1.30 APPENDIX A WINDOW REFERENCE

R20UT0005EJ0100 Rev.1.00 Page 226 of 573
Jul 01, 2010

[Memory Bank Relocation Options] tab

This tab shows the detailed information on the memory bank relocation support tool categorized by the following and

the configuration can be changed.

(1) [Output File]

(2) [Margin]

(3) [Message]

Caution This tab is displayed only when a device with a memory bank installed is specified as the

microcontroller.

Figure A-11. Property Panel: [Memory Bank Relocation Options] Tab

[Description of each category]

(1) [Output File]

The detailed information on output files are displayed and the configuration can be changed.

Use memory bank relo-

cation support tool

Select whether to start the memory bank relocation support tool after link processing.

Default No

How to change Select from the drop-down list.

Restriction Yes Starts the memory bank relocation support tool after link

processing.

The function information file will be removed from the

rapid build target.

No Does not start the memory bank relocation support tool

after link processing.

CubeSuite Ver.1.30 APPENDIX A WINDOW REFERENCE

R20UT0005EJ0100 Rev.1.00 Page 227 of 573
Jul 01, 2010

Output function informa-

tion file

Select whether to output the function information file.

This property is not displayed when [No] in the [Use memory bank relocation support tool]

property is selected.

Default No

How to change Select from the drop-down list.

Restriction Yes Outputs the function information file.

No Does not output the function information file.

Output folder for func-

tion information file

Specify the folder for saving the function information file.

If a relative path is specified, the reference point of the path is the main project or subproject

folder.

If an absolute path is specified, the reference point of the path is the main project or sub-

project folder (unless the drives are different).

The following macro name is available as an embedded macro.

%BuildModeName%: Replaces with the build mode name.

If this is blank, it is treated as if the project folder is specified.

This property is not displayed when [No] in the [Output function information file] property is

selected.

Default %BuildModeName%

How to change Directly enter to the text box or edit by the Browse For Folder dialog box

which appears when clicking the [...] button.

Restriction Up to 259 characters

Function information file

name

Specify the function information file name.

Use the extension ".fin". If the extension is omitted, ".fin" is automatically added.

The following macro name is available as an embedded macro.

%ProjectName%: Replaces with the project name.

If this is blank, the function information file is not output.

This property is not displayed when [No] in the [Output function information file] property is

selected.

Default %ProjectName%.fin

How to change Directly enter to the text box.

Restriction Up to 259 characters

Output folder for replace-

ment information file

Specify the folder for saving the replacement information file.

If a relative path is specified, the reference point of the path is the main project or subproject

folder.

If an absolute path is specified, the reference point of the path is the main project or sub-

project folder (unless the drives are different).

The following macro name is available as an embedded macro.

%BuildModeName%: Replaces with the build mode name.

If this is blank, it is treated as if the project folder is specified.

This property is not displayed when [No] in the [Use memory bank relocation support tool]

property is selected.

Default %BuildModeName%

How to change Directly enter to the text box or edit by the Browse For Folder dialog box

which appears when clicking the [...] button.

Restriction Up to 259 characters

CubeSuite Ver.1.30 APPENDIX A WINDOW REFERENCE

R20UT0005EJ0100 Rev.1.00 Page 228 of 573
Jul 01, 2010

Replacement information

file name

Specify the replacement information file name.

Use the extension ".txt". If the extension is omitted, ".txt" is automatically added.

The following macro name is available as an embedded macro.

%ProjectName%: Replaces with the project name.

If this is blank, the replacement information file is not output.

This property is not displayed when [No] in the [Use memory bank relocation support tool]

property is selected.

Default %ProjectName%_replace.txt

How to change Directly enter to the text box.

Restriction Up to 259 characters

Output folder for object

information file

Specify the folder for saving the object information file.

If a relative path is specified, the reference point of the path is the main project or subproject

folder.

If an absolute path is specified, the reference point of the path is the main project or sub-

project folder (unless the drives are different).

The following macro name is available as an embedded macro.

%BuildModeName%: Replaces with the build mode name.

If this is blank, it is treated as if the project folder is specified.

This property is not displayed when [No] in the [Use memory bank relocation support tool]

property is selected.

Default %BuildModeName%

How to change Directly enter to the text box or edit by the Browse For Folder dialog box

which appears when clicking the [...] button.

Restriction Up to 259 characters

Object information file

name

Specify the object information file name.

Use the extension ".txt". If the extension is omitted, ".txt" is automatically added.

The following macro name is available as an embedded macro.

%ProjectName%: Replaces with the project name.

If this is blank, the object information file is not output.

This property is not displayed when [No] in the [Use memory bank relocation support tool]

property is selected.

Default %ProjectName%_objinfo.txt

How to change Directly enter to the text box.

Restriction Up to 259 characters

CubeSuite Ver.1.30 APPENDIX A WINDOW REFERENCE

R20UT0005EJ0100 Rev.1.00 Page 229 of 573
Jul 01, 2010

(2) [Margin]

The detailed information on the margin is displayed and the configuration can be changed.

This category is not displayed when [No] on the [Use memory bank relocation support tool] property in the [Output

File] category is selected.

Output folder for refer-

ence information file

Specify the folder for saving the reference information file.

If a relative path is specified, the reference point of the path is the main project or subproject

folder.

If an absolute path is specified, the reference point of the path is the main project or sub-

project folder (unless the drives are different).

The following macro name is available as an embedded macro.

%BuildModeName%: Replaces with the build mode name.

If this is blank, it is treated as if the project folder is specified.

This property is not displayed when [No] in the [Use memory bank relocation support tool]

property is selected.

Default %BuildModeName%

How to change Directly enter to the text box or edit by the Browse For Folder dialog box

which appears when clicking the [...] button.

Restriction Up to 259 characters

Reference information

file name

Specify the reference information file name.

Use the extension ".txt". If the extension is omitted, ".txt" is automatically added.

The following macro name is available as an embedded macro.

%ProjectName%: Replaces with the project name.

If this is blank, the reference information file is not output.

This property is not displayed when [No] in the [Use memory bank relocation support tool]

property is selected.

Default %ProjectName%_refinfo.txt

How to change Directly enter to the text box.

Restriction Up to 259 characters

Margin for common area Specify a margin value of the common area for relocation (when creating a function informa-

tion file).

If a positive value is specified, the common area is relocated and considered to become

small by the specified value as a margin. If a negative value is specified, the common area

is relocated and considered to become large by the specified value as a margin.

Default 1000

How to change Directly enter to the text box.

Restriction -65536 to 65536 (decimal number)

Margin for bank XX area Specify a margin value of the bank XX area for relocation (when creating a function informa-

tion file).

If a positive value is specified, the bank XX area is relocated and considered to become

small by the specified value as a margin. If a negative value is specified, the bank XX area

is relocated and considered to become large by the specified value as a margin.

This property is displayed corresponding to the numbers of banks (XX: 00 to 15).

Default 500

How to change Directly enter to the text box.

Restriction -65536 to 65536 (decimal number)

CubeSuite Ver.1.30 APPENDIX A WINDOW REFERENCE

R20UT0005EJ0100 Rev.1.00 Page 230 of 573
Jul 01, 2010

(3) [Message]

The detailed information on messages is displayed and the configuration can be changed.

This category is not displayed when [No] on the [Use memory bank relocation support tool] property in the [Output

File] category is selected.

Verbose mode Select whether to display the execution status of the memory bank relocation support tool to

the Output panel during build.

Default No

How to change Select from the drop-down list.

Restriction Yes Displays the execution status of the memory bank relo-

cation support tool during build.

No Does not display the execution status of the memory

bank relocation support tool during build.

CubeSuite Ver.1.30 APPENDIX A WINDOW REFERENCE

R20UT0005EJ0100 Rev.1.00 Page 231 of 573
Jul 01, 2010

[Build Settings] tab

This tab shows the detailed information on each C source file, assembler source file, link directive file, variables infor-

mation file, function information file, object file, and library file categorized by the following and the configuration can be

changed.

(1) [Build]

(2) [Memory Bank]

Figure A-12. Property Panel: [Build Settings] Tab (When Selecting C Source File)

Figure A-13. Property Panel: [Build Settings] Tab (When Selecting Assembler Source File)

Figure A-14. Property Panel: [Build Settings] Tab (When Selecting Link Directive File)

CubeSuite Ver.1.30 APPENDIX A WINDOW REFERENCE

R20UT0005EJ0100 Rev.1.00 Page 232 of 573
Jul 01, 2010

Figure A-15. Property Panel: [Build Settings] Tab (When Selecting Variables Information File)

Figure A-16. Property Panel: [Build Settings] Tab (When Selecting Function Information File)

Figure A-17. Property Panel: [Build Settings] Tab (When Selecting Object File)

Figure A-18. Property Panel: [Build Settings] Tab (When Selecting Library File)

CubeSuite Ver.1.30 APPENDIX A WINDOW REFERENCE

R20UT0005EJ0100 Rev.1.00 Page 233 of 573
Jul 01, 2010

[Description of each category]

(1) [Build]

The detailed information on the build are displayed and the configuration can be changed.

(2) [Memory Bank]

The detailed information on the memory bank is displayed and the configuration can be changed.

This category is displayed only when a device with a memory bank installed is specified as the microcontroller and

[Yes] is selected in the [Use memory bank relocation support tool] property in the [Output File] category on the

[Memory Bank Relocation Options] tab and a C source file is selected on the Project Tree panel.

Set as build-target Select whether to build the selected file.

Default Yes

How to change Select from the drop-down list.

Restriction Yes Builds the selected file.

No Does not build the selected file.

Set individual compile

option

Select whether to set a compile option that differs from the project settings to the selected C

source file.

This property is displayed only when a C source file is selected on the Project Tree panel

and [Yes] is selected in the [Set as build-target] property in the [Build] category.

Default No

How to change Select from the drop-down list.

Restriction Yes Sets a compile option that differs from the project set-

tings to the selected C source file.

No Does not set a compile option that differs from the

project settings to the selected C source file.

Set individual assemble

option

Select whether to set an assemble option that differs from the project settings to the

selected assembler source file.

This property is displayed only when an assembler source file is selected on the Project

Tree panel and [Yes] is selected in the [Set as build-target] property in the [Build] category.

Default No

How to change Select from the drop-down list.

Restriction Yes Sets a compile option that differs from the project set-

tings to the selected assembler source file.

No Does not set a compile option that differs from the

project settings to the selected assembler source file.

File type Display the type of the selected file.

Default C source (when C source file is selected)

Assembly source (when assembler source file is selected)

Link directive (when link directive file is selected)

Variable information (when variables information file is selected)

Function information (when function information file is selected)

Object (when object file is selected)

Library (when library file is selected)

How to change Changes not allowed

CubeSuite Ver.1.30 APPENDIX A WINDOW REFERENCE

R20UT0005EJ0100 Rev.1.00 Page 234 of 573
Jul 01, 2010

Select common/bank

area

Select the area to relocate the program codes in build processing.

Default No specification

How to change Select from the drop-down list.

Restriction No specification The memory bank relocation support tool automati-

cally determines the optimum area and relocates the

program code there.

Common area Relocates the program codes to the common area in

build processing.

BankXX Relocates the program codes to bankXX in build pro-

cessing.

This item is displayed corresponding to the numbers

of banks (XX: 00 to 15).

CubeSuite Ver.1.30 APPENDIX A WINDOW REFERENCE

R20UT0005EJ0100 Rev.1.00 Page 235 of 573
Jul 01, 2010

[Individual Compile Options] tab

This tab shows the detailed information on a C source file categorized by the following and the configuration can be

changed.

Note that this tab takes over the settings of the [Compile Options] tab. If the settings are changed from the [Compile

Options] tab, the properties are displayed in boldface.

Remark This tab is displayed only when [Yes] in the [Set individual compile option] property in the [Build] category

from the [Build Settings] tab is selected.

(1) [Debug Information]

(2) [Optimization]

(3) [Optimization(Details)]

(4) [Preprocess]

(5) [Message]

(6) [Extension]

(7) [Memory Model]

(8) [Assembly File]

(9) [Output File]

(10) [Data Control]

(11) [List File]

(12) [Others]

Figure A-19. Property Panel: [Individual Compile Options] Tab

CubeSuite Ver.1.30 APPENDIX A WINDOW REFERENCE

R20UT0005EJ0100 Rev.1.00 Page 236 of 573
Jul 01, 2010

[Description of each category]

(1) [Debug Information]

The detailed information on debug information is displayed and the configuration can be changed.

(2) [Optimization]

The detailed information on the optimization is displayed and the configuration can be changed.

(3) [Optimization(Details)]

The detailed information on the optimization are displayed and the configuration can be changed.

Add debug information Select whether to enable source level debugging by adding debug information to the mod-

ule being generated.

This corresponds to the -g option of the compiler.

Default Configuration of the general option

How to change Select from the drop-down list.

Restriction Yes(Add to object file

only)(-g1)

Adds debug information to the object module file

being generated.

Yes(Add to both

assembly and object

file)(-g2)

Adds debug information to the object module file

and assembler source module file being gener-

ated.

No Does not add debug information to the object

module file being generated.

Perform optimization Select the type of the optimization for compiling.

This corresponds to the -qx option of the compiler.

Default Configuration of the general option

How to change Select from the drop-down list.

Restriction Yes(Speed prece-

dence)(-qx1)

Performs optimization with the execution speed

precedence.

Yes(Standard)(-

qx2)

Performs optimization with both the execution

speed and module size precedence.

Yes(Code size pre-

cedence)(-qx3)

Performs optimization with the module size prece-

dence.

Yes(Code size

(Best))(-qx4)

Performs optimization with top precedence to

module size.

In addition -qx3, common code is placed in sub-

routines, and the library for the stack access is

used.

Yes(Detail setting) The [Optimization(Details)] category is shown.

The option that is selected in the category has the

precedence for the optimization.

When [No(-nq)] is selected in all the properties in

the [Optimization(Details)] category, the optimiza-

tion will not be done.

No(-nq) Does not specify optimization.

CubeSuite Ver.1.30 APPENDIX A WINDOW REFERENCE

R20UT0005EJ0100 Rev.1.00 Page 237 of 573
Jul 01, 2010

This category is displayed only when [Yes(Detail setting)] in the [Perform optimization] property in the [Optimiza-

tion] category is selected.

Swap order of formula

operations

Select whether to output an efficient code in order to achieve efficient register utilization by

swapping the execution order of formula.

This corresponds to the -qw option of the compiler.

Default Configuration of the general option

How to change Select from the drop-down list.

Restriction Yes(Swap order of for-

mula operations)(-qw1)

Swaps the order of formula operations.

Yes(for speed assumed

SADDR array is in 256

bytes)(-qw2)

In addition to the swapping the order of for-

mula operations, changes the execution

order in an expression and performs address

calculation without a carry, while assuming

that the size of the array does not exceed 256

bytes when a char, short, unsigned short, int,

or unsigned int array that is allocated to the

saddr area is referenced with an unsigned

char variable.

No Does not specify swapping the order of for-

mula operations.

Assign automatic vari-

ables to register or saddr

area

Select whether to automatically assign automatic variables to a register and the saddr area.

This corresponds to the -qv option of the compiler.

Default Configuration of the general option

How to change Select from the drop-down list.

Restriction Yes(-qv) Assigns automatic variables to a register and the saddr

area automatically.

No Does not specify assigning automatic variables to a reg-

ister and the saddr area automatically.

Assign register variables

to register and saddr

area

Select whether to assign register variables to registers and assign them also to the saddr

area.

This corresponds to the -qr option of the compiler.

Default Configuration of the general option

How to change Select from the drop-down list.

Restriction Yes(Automatic variables

and norec argument(-

qr1)

Assigns auto variables and norec arguments

to registers and assigns them also to the

saddr area.

Yes(Automatic and regis-

ter variables and norec

argument)(-qr2)

Assigns auto variables, register variables,

and norec arguments to registers and assigns

them also to the saddr area.

No Does not specify assigning register variables

to the saddr area.

CubeSuite Ver.1.30 APPENDIX A WINDOW REFERENCE

R20UT0005EJ0100 Rev.1.00 Page 238 of 573
Jul 01, 2010

Not use sign extended

calculation for char

Select whether to perform char-related calculations without pan-integral extension.

This corresponds to the -qc option of the compiler.

Default Configuration of the general option

How to change Select from the drop-down list.

Restriction Yes(-qc) Performs char-related calculations without pan-integral

extension.Note

No Performs char-related calculations with pan-integral

extension.

Interpret char to

unsigned char

Select whether to interpret the char without qualifier as a unsigned char.

This corresponds to the -qu option of the compiler.

Default Configuration of the general option

How to change Select from the drop-down list.

Restriction Yes(-qu) Interprets the char without qualifier as a unsigned char.

No Does not specify interpreting the char without qualifier

as a unsigned char.

Optimize branch instruc-

tion

Select whether to optimize branch instructions.

This corresponds to the -qj option of the compiler.

Default Configuration of the general option

How to change Select from the drop-down list.

Restriction Yes(-qj) Optimizes branch instructions.

No Does not specify optimizing branch instructions.

CubeSuite Ver.1.30 APPENDIX A WINDOW REFERENCE

R20UT0005EJ0100 Rev.1.00 Page 239 of 573
Jul 01, 2010

Replace fixed code to

library(Size precedence

optimization)

Select whether to replace the fixed code with the library.

This corresponds to the -ql option of the compiler.

Default Configuration of the general option

How to change Select from the drop-down list.

Restriction Yes(Do not replace)(-ql1) Does not replace the fixed code with the

library.

Performs optimization with the module size

precedence.

Yes(Replace only pro-

cess before/after func-

tion)(-ql2)

Replaces only the processing routines before

and after the function with a library.

Yes(Replace load/store

and indirect referencing

instruction and equiva-

lent of -ql2)(-ql3)

Replaces the processing routines before and

after the function, long-type load store and

DE/HL indirect reference code with a library.

Yes(Replace whole

instructions)(-ql4)

Replaces the processing routines before and

after the function, long-type load store and

DE/HL indirect reference code in one instruc-

tion unit with a library.

Yes(subroutinize same

codes, use stack access

libraries)(-ql5)

Replaces the processing routines before and

after the function, long-type load store and

DE/HL indirect reference code in one instruc-

tion unit with a library.

In addition, common code is placed in sub-

routines, and the library for the stack access

is used.

No Does not specify replacing the fixed code with

the library.

Performs optimization with the execution

speed precedence.

Output object using

[HL+B] instruction

Select whether to generate the code using [HL+B] addressing, when the index used for the

reference of the char/unsigned char type arrays and char/unsigned char type pointers is an

unsigned char type variable.

This corresponds to the -qe option of the compiler.

This property is not displayed when [No] on the [Use static model] property in the [Memory

Model] category from the [Compile Options] tab is selected.

Default Configuration of the general option

How to change Select from the drop-down list.

Restriction Yes(-qe) Generates the code using [HL+B] addressing.

No Does not specify generating the code using [HL+B]

addressing.

Output object using

[HL].bit instruction

Select whether to output an object using [HL].bit.

This corresponds to the -qh option of the compiler.

Default Configuration of the general option

How to change Select from the drop-down list.

Restriction Yes(-qh) Outputs an object using [HL].bit.

No Does not specify the output of an object using [HL].bit.

CubeSuite Ver.1.30 APPENDIX A WINDOW REFERENCE

R20UT0005EJ0100 Rev.1.00 Page 240 of 573
Jul 01, 2010

Note The results of the calculation when the -qc option is set are as follows.

(4) [Preprocess]

The detailed information on the preprocess are displayed and the configuration can be changed.

Optimize for debugging Select whether to perform the optimization for debugging.

This corresponds to the -qg option of the compiler.

Default Configuration of the general option

How to change Select from the drop-down list.

Restriction Yes(-qg) Performs the optimization for debugging.

No Does not specify performing the optimization for debug-

ging.

Calculation Target Calculation Result

unsigned char type variable and unsigned char type variable unsigned char type

unsigned char type variable and signed char type variable unsigned char type

signed char type variable and signed char type variable signed char type

Constants from -128 to 255 and unsigned char type variable unsigned char type

Constants from -128 to 127 and signed char type variable signed char type

Constants from 0 to 255 with suffix U and signed char type variable unsigned char type

Additional include paths Specify the additional include paths during compiling.

The following macro names are available as embedded macros.

%BuildModeName%: Replaces with the build mode name.

%ProjectName%: Replaces with the project name.

%CubeSuitePath%: Replaces with the absolute path of the CubeSuite install folder.

When this option is omitted, only the standard folder of the compiler is searched. The refer-

ence point of the path is the project folder.

This corresponds to the -i option of the compiler.

The specified include path is displayed as the subproperty.

Default Additional include paths[number of defined items]

How to change Edit by the Path Edit dialog box which appears when clicking the [...] but-

ton.

For the subproperty, you can use the text box directly enter the text.

Restriction Up to 259 characters

Up to 64 items can be specified.However, this also includes the number of

paths used by linked tools.

CubeSuite Ver.1.30 APPENDIX A WINDOW REFERENCE

R20UT0005EJ0100 Rev.1.00 Page 241 of 573
Jul 01, 2010

(5) [Message]

The detailed information on messages are displayed and the configuration can be changed.

Use whole include paths

specified for build tool

Select whether to compile using the include path specified in the [Additional include paths]

property in the [Preprocess] category from the [Compile Options] tab of the build tool to be

used.

This corresponds to the -i option of the compiler.

The paths are added to the -i option according to the following sequence.

- Paths specified in the [Additional include paths] property

- Paths specified in the [Additional include paths] in the [Preprocessing] category from the

[Compile Options] tab

- Paths specified in the [System include paths] in the [Preprocessing] category from the

[Compile Options] tab

Default Yes

How to change Select from the drop-down list.

Restriction Yes Compiles using the include path specified in the prop-

erty of the build tool to be used.

No Does not use the include path specified in the property

of the build tool to be used.

Macro definition Specify the macro name to be defined.

Specify in the format of "macro name=defined value", with one macro name per line. The

"=def" part can be omitted, and in this case, "1" is used as the defined value.

This corresponds to the -d option of the compiler.

The specified macro is displayed as the subproperty.

Default Configuration of the general option

How to change Edit by the Text Edit dialog box which appears when clicking the [...] but-

ton.

For the subproperty, you can use the text box directly enter the text.

Restriction Up to 256 characters

Up to 30 items can be specified.

Macro undefinition Specify the macro name to be undefined.

Specify in the format of "macro name", with one macro name per line.

This corresponds to the -u option of the compiler.

The specified macro is displayed as the subproperty.

Default Macro undefinition[number of defined items]

How to change Edit by the Text Edit dialog box which appears when clicking the [...] but-

ton.

For the subproperty, you can use the text box directly enter the text.

Restriction Up to 256 characters

Up to 30 items can be specified.

CubeSuite Ver.1.30 APPENDIX A WINDOW REFERENCE

R20UT0005EJ0100 Rev.1.00 Page 242 of 573
Jul 01, 2010

(6) [Extension]

The detailed information on extensions are displayed and the configuration can be changed.

Verbose mode Select whether to display the execution status of the compiler to the Output panel during

build.

This corresponds to the -v option of the compiler.

Default Configuration of the general option

How to change Select from the drop-down list.

Restriction Yes(-v) Displays the execution status of the compiler during

build.

No Does not display the execution status of the compiler

during build.

Warning level Select the warning display level under compiling.

This corresponds to the -w option of the compiler.

Default Configuration of the general option

How to change Select from the drop-down list.

Restriction No output(-w0) Does not output warning messages.

Normal output Outputs normal warning messages.

Particular output(-w2) Outputs detailed warning messages.

Allow C++ format com-

ments

Select whether to allow the use of C++ format comments ("//").

This corresponds to the -zp option of the compiler.

Default Configuration of the general option

How to change Select from the drop-down list.

Restriction Yes(-zp) Allows the use of C++ format comments.

No Does not allow the use of C++ format comments.

Allow nested comments Select whether to allow the nest use of comments ("/*_*/").

This corresponds to the -zc option of the compiler.

Default Configuration of the general option

How to change Select from the drop-down list.

Restriction Yes(-zc) Allows the nest use of comments.

No Does not allow the nest use of comments.

Kanji character code of

source

Select the Kanji character code of the source.

This corresponds to the -zs, -ze, and -zn option of the compiler.

Default Configuration of the general option

How to change Select from the drop-down list.

Restriction Shift_JIS(-zs) Interprets the kanji code of the source as Shift_JIS.

EUC-JP(-ze) Interprets the kanji code of the source as EUC-JP.

Unspecified(-zn) Interprets the source as not containing kanji codes.

CubeSuite Ver.1.30 APPENDIX A WINDOW REFERENCE

R20UT0005EJ0100 Rev.1.00 Page 243 of 573
Jul 01, 2010

(7) [Memory Model]

The detailed information on the memory model are displayed and the configuration can be changed.

Follow ANSI Standard Select whether to disable non-ANSI standard functions and enable some of the functions of

the ANSI standard.

This corresponds to the -za option of the compiler.

Default Configuration of the general option

How to change Select from the drop-down list.

Restriction Yes(-za) Disables non-ANSI standard functions and enables

some of the functions of the ANSI standard.

No Enables non-ANSI standard functions.

Disable an int extension

for function

Select whether to disable the int extension for the char/unsigned char type arguments and

the return values of functions.

This corresponds to the -zb option of the compiler.

Default Configuration of the general option

How to change Select from the drop-down list.

Restriction Yes(-zb) Disables the int extension for the char/unsigned char

type arguments and the return values of functions.

No Enables the int extension for the char/unsigned char

type arguments and the return values of functions.

CubeSuite Ver.1.30 APPENDIX A WINDOW REFERENCE

R20UT0005EJ0100 Rev.1.00 Page 244 of 573
Jul 01, 2010

Use static model Specify the number of bytes in the common area when the static model is used.

This corresponds to the -sm option of the compiler.

[No] cannot be selected in this property.

When the static model is not used, select [No] in the [Use static model] property in the

[Memory Model] category from the [Compile Options] tab.

When [No] is selected, this property is not displayed.

Default Configuration of the general option

How to change Select from the drop-down list.

Restriction Yes(0 byte common area)(-sm0) Specifies 0 bytes as the number of

bytes in the common area.

Yes(1 byte common area)(-sm1) Specifies 1 bytes as the number of

bytes in the common area.

Yes(2 bytes common area)(-sm2) Specifies 2 bytes as the number of

bytes in the common area.

Yes(3 bytes common area)(-sm3) Specifies 3 bytes as the number of

bytes in the common area.

Yes(4 bytes common area)(-sm4) Specifies 4 bytes as the number of

bytes in the common area.

Yes(5 bytes common area)(-sm5) Specifies 5 bytes as the number of

bytes in the common area.

Yes(6 bytes common area)(-sm6) Specifies 6 bytes as the number of

bytes in the common area.

Yes(7 bytes common area)(-sm7) Specifies 7 bytes as the number of

bytes in the common area.

Yes(8 bytes common area)(-sm8) Specifies 8 bytes as the number of

bytes in the common area.

Yes(9 bytes common area)(-sm9) Specifies 9 bytes as the number of

bytes in the common area.

Yes(10 bytes common area)(-

sm10)

Specifies 10 bytes as the number

of bytes in the common area.

Yes(11 bytes common area)(-

sm11)

Specifies 11 bytes as the number of

bytes in the common area.

Yes(12 bytes common area)(-

sm12)

Specifies 12 bytes as the number

of bytes in the common area.

Yes(13 bytes common area)(-

sm13)

Specifies 13 bytes as the number

of bytes in the common area.

Yes(14 bytes common area)(-

sm14)

Specifies 14 bytes as the number

of bytes in the common area.

Yes(15 bytes common area)(-

sm15)

Specifies 15 bytes as the number

of bytes in the common area.

Yes(16 bytes common area)(-

sm16)

Specifies 16 bytes as the number

of bytes in the common area.

CubeSuite Ver.1.30 APPENDIX A WINDOW REFERENCE

R20UT0005EJ0100 Rev.1.00 Page 245 of 573
Jul 01, 2010

(8) [Assembly File]

The detailed information on assembly files is displayed and the configuration can be changed.

(9) [Output File]

The detailed information on output files are displayed and the configuration can be changed.

Use static model exten-

sion

Specify the extension method when the static model is used extended.

This corresponds to the -zm option of the compiler.

This property is not displayed when [No] in the [Use static model] property in the [Memory

Model] category from [Compile Options] tab is selected.

Default Configuration of the general option

How to change Select from the drop-down list.

Restriction Yes(Only use common area for

args and auto vars)(-zm1)

Uses only the common area for

arguments and auto variables.

Yes(Only use saddr area for args

and auto vars)(-zm2)

Uses only the saddr area for argu-

ments and auto variables.

No Does not use the static model

extension.

Use prologue/epilogue

library

Select whether to use a library for the prologue/epilogue routines of a function.

This corresponds to the -zd option of the compiler.

This property is not displayed when [Yes(-zf)] in the [Output objects for flash] property in the

[Memory Model] category from the [Compile Options] tab is selected.

Default Configuration of the general option

How to change Select from the drop-down list.

Restriction Yes(-zd) Uses a library for the prologue/epilogue routines of a

function.

No Does not use a library for the prologue/epilogue rou-

tines of a function.

Output assemble file Select whether to output the assembly file.

This corresponds to the -a, -sa, and -li options of the compiler.

Default Configuration of the general option

How to change Select from the drop-down list.

Restriction Yes(With no C source info)(-a) Outputs the assembly file (without C

source information).

Yes(With C source info(unex-

panded include file con-

tents))(-sa)

Outputs the assembly file (with C source

information (include file contents are not

expanded)).

Yes(With C source

info(expanded include file

contents))(-sa,-li)

Outputs the assembly file (with C source

information (include file contents are

expanded)).

No Does not output the assembly file.

CubeSuite Ver.1.30 APPENDIX A WINDOW REFERENCE

R20UT0005EJ0100 Rev.1.00 Page 246 of 573
Jul 01, 2010

(10)[Data Control]

The detailed information on data control are displayed and the configuration can be changed.

Object file name Specify the name of the object file generated after compilation.

If this field is blank, the file is saved under the file name with extension .c replaced by .rel.

This corresponds to the -o option of the compiler.

Default Blank

How to change Directly enter to the text box.

Restriction Up to 259 characters

Output common object

file for various devices

Select whether to output the objects common to the various devices.

This corresponds to the -common option of the compiler.

Default Configuration of the general option

How to change Select from the drop-down list.

Restriction Yes(-common) Outputs the objects common to the various devices.

No Does not specifies outputting the objects common to the

various devices.

Assign bit field in struc-

ture from MSB

Select whether to assign the member of the bit field structure from MSB.

This corresponds to the -rb option of the compiler.

Default Configuration of the general option

How to change Select from the drop-down list.

Restriction Yes(-rb) Assigns the member of the bit field structure from MSB.

No Assigns the member of the bit field structure from LSB.

Pack structure members Select whether to prohibit from inserting the align data to allocate the members (consisting

of 2 or more bytes) in a structure to even address.

This corresponds to the -rc option of the compiler.

Default Configuration of the general option

How to change Select from the drop-down list.

Restriction Yes(-rc) Prohibits from inserting the align data to allocate the

members (consisting of 2 or more bytes) in a structure

to even address.

No Inserts the align data to allocate the members (consist-

ing of 2 or more bytes) in a structure to even address.

CubeSuite Ver.1.30 APPENDIX A WINDOW REFERENCE

R20UT0005EJ0100 Rev.1.00 Page 247 of 573
Jul 01, 2010

Allocate automatic vari-

ables to saddr area

Select the type of the automatic variable to be allocated in the saddr area.

This corresponds to the -rk option of the compiler.

This property is not displayed when [No] on the [Use static model] property in the [Memory

Model] category from the [Compile Options] tab is selected.

Default Configuration of the general option

How to change Select from the drop-down list.

Restriction Yes(Size of char)(-rk1) Allocates char and unsigned char types auto-

matic variables to the saddr area.

Yes(Size of char, short,

int)(-rk2)

Allocates char, unsigned char, short,

unsigned short, int, unsigned int, enum, data

pointer, function pointer (when the bank func-

tion (-mf) is not used) types automatic vari-

ables to the saddr area.

Yes(Size of char, short,

int, long)(-rk4)

Allocates char, unsigned char, short,

unsigned short, int, unsigned int, enum, long,

unsigned long, all pointer types automatic

variables to the saddr area.

Yes(Structure, union,

array)(-rkm)

Allocates structure, union, and array types

automatic variables to the saddr area.

Yes(Size of char and

structure, union, array)(-

rk1m)

Allocates char, unsigned char, structure,

union, and array types automatic variables to

the saddr area.

Yes(Size of char, short,

int and structure, union,

array)(-rk2m)

Allocates char, unsigned char, short,

unsigned short, int, unsigned int, enum, data

pointer, function pointer (when the bank func-

tion (-mf) is not used), structure, union, and

array types automatic variables to the saddr

area.

Yes(Size of char, short,

int, long and structure,

union, array)(-rk)

Allocates char, unsigned char, short,

unsigned short, int, unsigned int, enum, long,

unsigned long, all pointer, structure, union,

and array types automatic variables to the

saddr area.

No Does not allocate automatic variables to the

saddr area.

CubeSuite Ver.1.30 APPENDIX A WINDOW REFERENCE

R20UT0005EJ0100 Rev.1.00 Page 248 of 573
Jul 01, 2010

(11) [List File]

The detailed information on list files are displayed and the configuration can be changed.

Allocate static variables

to saddr area

Select the type of the static variable to be allocated in the saddr area.

This corresponds to the -rs option of the compiler.

Default Configuration of the general option

How to change Select from the drop-down list.

Restriction Yes(Size of char)(-rs1) Allocates char and unsigned char types auto-

matic variables to the saddr area.

Yes(Size of char, short,

int)(-rs2)

Allocates char, unsigned char, short,

unsigned short, int, unsigned int, enum, data

pointer, function pointer (when the bank func-

tion (-mf) is not used) types automatic vari-

ables to the saddr area.

Yes(Size of char, short,

int, long)(-rs4)

Allocates char, unsigned char, short,

unsigned short, int, unsigned int, enum, long,

unsigned long, all pointers types automatic

variables to the saddr area.

Yes(Structure, union,

array)(-rsm)

Allocates structure, union, and array types

automatic variables to the saddr area.

Yes(Size of char and

structure, union, array)(-

rs1m)

Allocates char, unsigned char, structure,

union, and array types automatic variables to

the saddr area.

Yes(Size of char, short,

int and structure, union,

array)(-rs2m)

Allocates char, unsigned char, short,

unsigned short, int, unsigned int, enum, data

pointer, function pointer (when the bank func-

tion (-mf) is not used), structure, union, and

array types automatic variables to the saddr

area.

Yes(Size of char, short,

int, long and structure,

union, array)(-rs)

Allocates char, unsigned char, short,

unsigned short, int, unsigned int, enum, long,

unsigned long, all pointers, structure, union,

and array types automatic variables to the

saddr area.

No Does not allocate static variables to the saddr

area.

Output preprocess list

file

Select whether to output the preprocess file.

This corresponds to the -p option of the compiler.

Default Configuration of the general option

How to change Select from the drop-down list.

Restriction Yes(-p) Outputs the preprocess list file.

No Does not output the preprocess list file.

CubeSuite Ver.1.30 APPENDIX A WINDOW REFERENCE

R20UT0005EJ0100 Rev.1.00 Page 249 of 573
Jul 01, 2010

Not output comments Select whether to disable to output comments into the preprocess list file.

This corresponds to the -kc option of the compiler.

This property is not displayed when [No] in the [Output preprocess list file] property is

selected.

Default Configuration of the general option

How to change Select from the drop-down list.

Restriction Yes(-kc) Does not output comments into the preprocess list file.

No Outputs comments into the preprocess list file.

Expand #define prepro-

cessor directive

Select whether to expand the #define directive into the preprocess list file.

This corresponds to the -kd option of the compiler.

This property is not displayed when [No] in the [Output preprocess list file] property is

selected.

Default Configuration of the general option

How to change Select from the drop-down list.

Restriction Yes(-kd) Expands the #define directive into the preprocess list

file.

No Does not expand the #define directive into the prepro-

cess list file.

Expand #if,#ifdef,#ifndef

preprocessor directive

Select whether to perform output by expanding #if, #ifdef, and #ifndef directives into the pre-

process list file.

This corresponds to the -kf option of the compiler.

This property is not displayed when [No] in the [Output preprocess list file] property is

selected.

Default Configuration of the general option

How to change Select from the drop-down list.

Restriction Yes(-kf) Performs output by expanding #if, #ifdef, and #ifndef

directives into the preprocess list file.

No Does not perform output by expanding #if, #ifdef, and

#ifndef directives into the preprocess list file.

Expand #include prepro-

cessor directive

Select whether to perform output by expanding #include directives into the preprocess list

file.

This corresponds to the -ki option of the compiler.

This property is not displayed when [No] in the [Output preprocess list file] property is

selected.

Default Configuration of the general option

How to change Select from the drop-down list.

Restriction Yes(-ki) Performs output by expanding #include directives into

the preprocess list file.

No Does not expand the #include directive into the prepro-

cess list file.

CubeSuite Ver.1.30 APPENDIX A WINDOW REFERENCE

R20UT0005EJ0100 Rev.1.00 Page 250 of 573
Jul 01, 2010

Expand #line preproces-

sor directive

Select whether to perform output by expanding #line directives into the preprocess list file.

This corresponds to the -kl option of the compiler.

This property is not displayed when [No] in the [Output preprocess list file] property is

selected.

Default Configuration of the general option

How to change Select from the drop-down list.

Restriction Yes(-kl) Performs output by expanding #line directives into the

preprocess list file.

No Does not expand the #line directive into the preprocess

list file.

Output line numbers Select whether to output line numbers into the preprocess list file.

This corresponds to the -kn option of the compiler.

This property is not displayed when [No] in the [Output preprocess list file] property is

selected.

Default Configuration of the general option

How to change Select from the drop-down list.

Restriction Yes(-kn) Outputs line numbers into the preprocess list file.

No Does not output line numbers into the preprocess list

file.

Output error list file Select whether to output the error list file.

This corresponds to the -e and -se options of the compiler.

Default Configuration of the general option

How to change Select from the drop-down list.

Restriction Yes(Without C source)(-e) Outputs the error list file (without C

source).

Yes(With C source)(-se) Outputs the error list file (with C source).

No Does not output the error list file.

Output cross reference

list file

Select whether to output the cross reference list file.

This corresponds to the -x option of the compiler.

Default Configuration of the general option

How to change Select from the drop-down list.

Restriction Yes(-x) Outputs the cross reference list file.

No Does not output the cross reference list file.

Output with form feed

control code

Select whether to output a form feed code into list files (preprocess list file, error list file, and

cross reference list file).

This corresponds to the -lf option of the compiler.

This property is displayed only when [Yes] in the [Output error list file] property is selected or

when [Yes(-p)] in the [Output preprocess list file] property is selected or when [Yes(-x)] in the

[Output cross reference list file] property is selected.

Default Configuration of the general option

How to change Select from the drop-down list.

Restriction Yes(-lf) Outputs a form feed code into the list file.

No Does not output a form feed code into the list file.

CubeSuite Ver.1.30 APPENDIX A WINDOW REFERENCE

R20UT0005EJ0100 Rev.1.00 Page 251 of 573
Jul 01, 2010

(12)[Others]

Other detailed information on compilation are displayed and the configuration can be changed.

Number of characters in

1 line

Specify the number of characters in each line of list files (preprocess list file, error list file,

and cross reference list file).

This corresponds to the -lw option of the compiler.

This property is displayed only when [Yes] in the [Output error list file] property is selected or

when [Yes(-p)] in the [Output preprocess list file] property is selected or when [Yes(-x)] in the

[Output cross reference list file] property is selected.

Default Configuration of the general option

How to change Directly enter to the text box.

Restriction 72 to 132 (decimal number)

Number of lines on 1

page

Specify the number of lines on 1 page of list files (preprocess list file, error list file, and cross

reference list file).

If 0 is specified, no page breaks will be made.

This corresponds to the -ll option of the compiler.

This property is displayed only when [Yes] in the [Output error list file] property is selected or

when [Yes(-p)] in the [Output preprocess list file] property is selected or when [Yes(-x)] in the

[Output cross reference list file] property is selected.

Default Configuration of the general option

How to change Directly enter to the text box.

Restriction 0, and 20 to 65535 (decimal number)

Tab width Specify the tab width of list files (preprocess list file, error list file, and cross reference list

file).

This corresponds to the -lt option of the compiler.

This property is displayed only when [Yes] in the [Output error list file] property is selected or

when [Yes(-p)] in the [Output preprocess list file] property is selected or when [Yes(-x)] in the

[Output cross reference list file] property is selected.

Default Configuration of the general option

How to change Directly enter to the text box.

Restriction 0 to 8 (decimal number)

Commands executed

before compile process-

ing

Specify the command to be executed before compile processing.

The following macro names are available as embedded macros.

%ProjectFolder%: Replaces with the absolute path of the project folder.

%OutputFolder%: Replaces with the absolute path of the output folder.

%OutputFile%: Replaces with the absolute path of the output file.

%InputFile%: Replaces with the absolute path of the file to be compiled.

%CompiledFile%: Replaces with the absolute path of the output file under compiling.

The specified command is displayed as the subproperty.

Default Commands executed before compile processing[number of defined items]

How to change Edit by the Text Edit dialog box which appears when clicking the [...] but-

ton.

For the subproperty, you can use the text box directly enter the text.

Restriction Up to 1023 characters

Up to 64 items can be specified.

CubeSuite Ver.1.30 APPENDIX A WINDOW REFERENCE

R20UT0005EJ0100 Rev.1.00 Page 252 of 573
Jul 01, 2010

Commands executed

after compile processing

Specify the command to be executed after compile processing.

The following macro names are available as embedded macros.

%ProjectFolder%: Replaces with the absolute path of the project folder.

%OutputFolder%: Replaces with the absolute path of the output folder.

%OutputFile%: Replaces with the absolute path of the output file.

%InputFile%: Replaces with the absolute path of the file to be compiled.

%CompiledFile%: Replaces with the absolute path of the output file under compiling.

The specified command is displayed as the subproperty.

Default Commands executed after compile processing[number of defined items]

How to change Edit by the Text Edit dialog box which appears when clicking the [...] but-

ton.

For the subproperty, you can use the text box directly enter the text.

Restriction Up to 1023 characters

Up to 64 items can be specified.

Other additional options Input the compile options to be added additionally.

The options set here are added at the end of the compile options group.

Default Configuration of the general option

How to change Directly enter to the text box or edit by the Character String Input dialog

box which appears when clicking the [...] button.

Restriction Up to 259 characters

CubeSuite Ver.1.30 APPENDIX A WINDOW REFERENCE

R20UT0005EJ0100 Rev.1.00 Page 253 of 573
Jul 01, 2010

[Individual Assemble Options] tab

This tab shows the detailed information on an assemble source file categorized by the following and the configuration

can be changed.

Note that this tab takes over the settings of the [Assemble Options] tab. If the settings are changed from the [Assemble

Options] tab, the properties are displayed in boldface.

Remarks 1. This tab is displayed when [Yes] in the [Set individual assemble option] property in the [Build] category

from the [Build Settings] tab is selected.

2. This tab is also displayed when a C source file is selected and [Yes] is selected in the [Output assemble

file] property in the [Assembly File] category from the [Individual Compile Options] tab.

(1) [Debug Information]

(2) [Preprocess]

(3) [Output File]

(4) [Assemble List]

(5) [Others]

Figure A-20. Property Panel: [Individual Assemble Options] Tab

CubeSuite Ver.1.30 APPENDIX A WINDOW REFERENCE

R20UT0005EJ0100 Rev.1.00 Page 254 of 573
Jul 01, 2010

[Description of each category]

(1) [Debug Information]

The detailed information on debug information is displayed and the configuration can be changed.

(2) [Preprocess]

The detailed information on the preprocess are displayed and the configuration can be changed.

Add debug information Select whether to enable source level debugging by adding debug information to the mod-

ule being generated.

This corresponds to the -g and -ga options of the assembler.

Default Configuration of the general option

How to change Select from the drop-down list.

Restriction Yes(Assembler

debugging info)(-

ng,-ga)

Adds debug information (assembler debugging

symbol information) to the object module file being

generated.

Yes(Local symbols

info and assembler

debugging info)

Adds debug information (local symbol and assem-

bler debugging symbol information) to the object

module file being generated.

No(-ng,-nga) Does not add debug information to the object mod-

ule file being generated.

Additional include paths Specify the additional include paths during assembling.

The following macro names are available as embedded macros.

%BuildModeName%: Replaces with the build mode name.

%ProjectName%: Replaces with the project name.

%CubeSuitePath%: Replaces with the absolute path of the CubeSuite install folder.

When this option is omitted, only the standard folder of the assembler is searched. The ref-

erence point of the path is the project folder.

This corresponds to the -i option of the assembler.

The specified include path is displayed as the subproperty.

Default Additional include paths[number of defined items]

How to change Edit by the Path Edit dialog box which appears when clicking the [...] but-

ton.

For the subproperty, you can use the text box directly enter the text.

Restriction Up to 259 characters

Up to 64 items can be specified.However, this also includes the number of

paths used by linked tools.

Use whole include paths

specified for build tool

Select whether to assemble using the include path specified in the [Additional include paths]

property in the [Preprocess] category from the [Assemble Options] tab of the build tool to be

used.

This corresponds to the -i option of the assembler.

Default Yes

How to change Select from the drop-down list.

CubeSuite Ver.1.30 APPENDIX A WINDOW REFERENCE

R20UT0005EJ0100 Rev.1.00 Page 255 of 573
Jul 01, 2010

(3) [Output File]

The detailed information on output files are displayed and the configuration can be changed.

(4) [Assemble List]

The detailed information on the assemble list are displayed and the configuration can be changed.

Macro definition Specify the macro name to be defined.

Specify in the format of "macro name=defined value", with one macro name per line. The

"=def" part can be omitted, and in this case, "1" is used as the defined value.

This corresponds to the -d option of the assembler.

The specified macro is displayed as the subproperty.

Default Configuration of the general option

How to change Edit by the Text Edit dialog box which appears when clicking the [...] but-

ton.

For the subproperty, you can use the text box directly enter the text.

Restriction Up to 256 characters

Up to 30 items can be specified.

Object file name Specify the name of the object file generated after assembling.

If this field is blank, the file is saved under the file name with extension .asm replaced by

.rel.

This corresponds to the -o option of the assembler.

Default Blank

How to change Directly enter to the text box.

Restriction Up to 259 characters

Output common object

file for various devices

Select whether to output the objects common to the various devices.

This corresponds to the -common option of the assembler.

Default Configuration of the general option

How to change Select from the drop-down list.

Restriction Yes(-common) Outputs the objects common to the various devices.

No Outputs objects for 78K0.

Output error list file Select whether to output the error list file.

This corresponds to the -e option of the assembler.

Default Configuration of the general option

How to change Select from the drop-down list.

Restriction Yes(-e) Outputs an error list file.

No Does not output the error list file.

Output assemble list file Select whether to output the assemble list file.

This corresponds to the -p option of the assembler.

Default Configuration of the general option

How to change Select from the drop-down list.

Restriction Yes(-p) Outputs an assemble list file.

No(-np) Does not output an assemble list file.

CubeSuite Ver.1.30 APPENDIX A WINDOW REFERENCE

R20UT0005EJ0100 Rev.1.00 Page 256 of 573
Jul 01, 2010

Execute list converter Select whether the list converter is executed following the generation of an execution mod-

ule.

The list converter is not executed during library generation.

This property is not displayed when [No(-np)] in the [Output assemble list file] property is

selected.

Default Configuration of the general option

How to change Select from the drop-down list.

Restriction Yes Executes the list converter after the generation of an

execution module.

No Does not execute the list converter after the generation

of an execution module.

Output list converter

error list file

Select whether to output an error list file during list converter execution.

This corresponds to the -e option of the list converter.

This property is not displayed when [No(-np)] in the [Output assemble list file] property is

selected and when [No] in the [Execute list converter] property is selected.

Default Configuration of the general option

How to change Select from the drop-down list.

Restriction Yes(-e) Outputs an error list file during list converter execution.

No Does not output an error list file during list converter

execution.

Output with assemble list

info

Select whether to output the assemble list information into the assemble list file.

This corresponds to the -ka option of the assembler.

This property is not displayed when [No(-np)] in the [Output assemble list file] property is

selected.

Default Configuration of the general option

How to change Select from the drop-down list.

Restriction Yes Outputs the assemble list information into the assemble

list file.

No(-nka) Does not output the assemble list information into the

assemble list file.

Output with symbol list Select whether to output the symbol list information into the assemble list file.

This corresponds to the -ks option of the assembler.

This property is not displayed when [No(-np)] in the [Output assemble list file] property is

selected.

Default Configuration of the general option

How to change Select from the drop-down list.

Restriction Yes(-ks) Outputs the symbol list information into the assemble

list file.

No Does not output the symbol list information into the

assemble list file.

CubeSuite Ver.1.30 APPENDIX A WINDOW REFERENCE

R20UT0005EJ0100 Rev.1.00 Page 257 of 573
Jul 01, 2010

Output with cross refer-

ence list

Select whether to output the cross reference list information into the assemble list file.

This corresponds to the -kx option of the assembler.

This property is not displayed when [No(-np)] in the [Output assemble list file] property is

selected.

Default Configuration of the general option

How to change Select from the drop-down list.

Restriction Yes(-kx) Outputs the cross reference list information into the

assemble list file.

No Does not output the cross reference list information into

the assemble list file.

Output with form feed

control code

Select whether to output a form feed code into list files.

This corresponds to the -lf option of the assembler.

This property is not displayed when [No(-np)] in the [Output assemble list file] property is

selected.

Default Configuration of the general option

How to change Select from the drop-down list.

Restriction Yes(-lf) Outputs a form feed code into the list file.

No Does not output a form feed code into the list file.

Number of characters in

1 line

Specify the number of characters in each line of the list file.

This corresponds to the -lw option of the assembler.

This property is not displayed when [No(-np)] in the [Output assemble list file] property is

selected.

Default Configuration of the general option

How to change Directly enter to the text box.

Restriction 72 to 2046 (decimal number)

Number of lines on 1

page

Specifies the number of lines on 1 page of the list file.

If 0 is specified, no page breaks will be made.

This corresponds to the -ll option of the assembler.

This property is not displayed when [No(-np)] in the [Output assemble list file] property is

selected.

Default Configuration of the general option

How to change Directly enter to the text box.

Restriction 0, and 20 to 32767 (decimal number)

Tab width Specify the tab width of the list file.

This corresponds to the -lt option of the assembler.

This property is not displayed when [No(-np)] in the [Output assemble list file] property is

selected.

Default Configuration of the general option

How to change Directly enter to the text box.

Restriction 0 to 8 (decimal number)

CubeSuite Ver.1.30 APPENDIX A WINDOW REFERENCE

R20UT0005EJ0100 Rev.1.00 Page 258 of 573
Jul 01, 2010

(5) [Others]

Other detailed information on assembly are displayed and the configuration can be changed.

Header title Specify the header of the assemble list file.

A string containing double-byte characters and single-byte spaces can be specified.

This corresponds to the -lh option of the assembler.

This property is not displayed when [No(-np)] in the [Output assemble list file] property is

selected.

Default Configuration of the general option

How to change Directly enter to the text box.

Restriction Up to 60 single-byte characters (30 double-byte characters)

Kanji character code of

source

Select the Kanji character code of the source.

This corresponds to the -zs, -ze, and -zn options of the assembler.

Default Configuration of the general option

How to change Select from the drop-down list.

Restriction Shift_JIS(-zs) Interprets the kanji code of the source as Shift_JIS.

EUC-JP(-ze) Interprets the kanji code of the source as EUC-JP.

Unspecified(-zn) Interprets the source as not containing kanji codes.

Use Self-programming Select whether to use self-programming.

This corresponds to the -self option of the assembler.

Default Configuration of the general option

How to change Select from the drop-down list.

Restriction Yes(-self) Even if the internal ROM does not exist at the 8100H

address, no error is output for the "CALL !8100H"

description.

No If the internal ROM does not exist at the 8100H

address, an error is output for the "CALL !8100H"

description.

Commands executed

before assemble pro-

cessing

Specify the command to be executed before assemble processing.

The following macro names are available as embedded macros.

%ProjectFolder%: Replaces with the absolute path of the project folder.

%OutputFolder%: Replaces with the absolute path of the output folder.

%OutputFile%: Replaces with the absolute path of the output file.

%InputFile%: Replaces with the absolute path of the file to be assembled.

%AssembledFile%: Replaces with the absolute path of the output file under assembling.

The specified command is displayed as the subproperty.

Default Commands executed before assemble processing[number of defined

items]

How to change Edit by the Text Edit dialog box which appears when clicking the [...] but-

ton.

For the subproperty, you can use the text box directly enter the text.

Restriction Up to 1023 characters

Up to 64 items can be specified.

CubeSuite Ver.1.30 APPENDIX A WINDOW REFERENCE

R20UT0005EJ0100 Rev.1.00 Page 259 of 573
Jul 01, 2010

Commands executed

after assemble process-

ing

Specify the command to be executed after assemble processing.

The following macro names are available as embedded macros.

%ProjectFolder%: Replaces with the absolute path of the project folder.

%OutputFolder%: Replaces with the absolute path of the output folder.

%OutputFile%: Replaces with the absolute path of the output file.

%InputFile%: Replaces with the absolute path of the file to be assembled.

%AssembledFile%: Replaces with the absolute path of the output file under assembling.

The specified command is displayed as the subproperty.

Default Commands executed after assemble processing[number of defined items]

How to change Edit by the Text Edit dialog box which appears when clicking the [...] but-

ton.

For the subproperty, you can use the text box directly enter the text.

Restriction Up to 1023 characters

Up to 64 items can be specified.

Other additional options Input the assemble options to be added additionally.

The options set here are added at the end of the assemble options group.

Default Configuration of the general option

How to change Directly enter to the text box or edit by the Character String Input dialog

box which appears when clicking the [...] button.

Restriction Up to 259 characters

CubeSuite Ver.1.30 APPENDIX A WINDOW REFERENCE

R20UT0005EJ0100 Rev.1.00 Page 260 of 573
Jul 01, 2010

[File Information] tab

This tab shows the detailed information on each file categorized by the following and the configuration can be changed.

(1) [File Information]

(2) [Notes]

Figure A-21. Property Panel: [File Information] Tab

[Description of each category]

(1) [File Information]

The detailed information on the file are displayed and the configuration can be changed.

File name Display the file name.

Change the file name on the Project Tree panel.

Default File name

How to change Changes not allowed

Ｒelative path Display the relative path of the file from the project folder.

Default The relative path of the file from the project folder

How to change Changes not allowed

Absolute path Display the absolute path of the file.

Default The absolute path of the file

How to change Changes not allowed

Save with absolute path Select whether to save the file location with the absolute path.

Default No

How to change Select from the drop-down list.

Restriction Yes Saves the file location with the absolute path.

No Saves the file location with the relative path.

CubeSuite Ver.1.30 APPENDIX A WINDOW REFERENCE

R20UT0005EJ0100 Rev.1.00 Page 261 of 573
Jul 01, 2010

(2) [Notes]

The detailed information on notes is displayed and the configuration can be changed.

Last update Display the time and date on which this file was changed last.

Default File updated time and date

How to change Changes not allowed

Writable Select whether to enable writing to the file.

Default Yes (when the file is write enabled)

No (when the file is not write enabled)

How to change Select from the drop-down list.

Restriction Yes Enables the file to write.

No Does not enable the file to write.

Memo Add memos to the file.

Add one item in one line.

The added memos are displayed as the subproperty.

Default Memo[number-of-items]

How to change Edit by the Text Edit dialog box which appears when clicking the [...] but-

ton.

For the subproperty, you can use the text box directly enter the text.

Restriction Up to 256 characters

Up to 256 memos can be specified.

CubeSuite Ver.1.30 APPENDIX A WINDOW REFERENCE

R20UT0005EJ0100 Rev.1.00 Page 262 of 573
Jul 01, 2010

[Category Information] tab

This tab shows the detailed information on the category that the user added, File node, Build tool generated files node,

and Startup node categorized by the following and the configuration can be changed.

(1) [Category Information]

(2) [Notes]

Figure A-22. Property Panel: [Category Information] Tab

[Description of each category]

(1) [Category Information]

The detailed information on the category is displayed and the configuration can be changed.

(2) [Notes]

The detailed information on notes is displayed and the configuration can be changed.

This category of the File node, Build tool generated files node, and Startup node is not displayed.

Category name Specify the category name to categorize files.

This property of the File node, Build tool generated files node, and Startup node is displayed

in gray and you cannot change the attribute.

Default Category name of files

How to change Directly enter to the text box.

Restriction 1 to 200 characters

Memo Add memos to the category of files.

Add one item in one line.

The added memos are displayed as the subproperty.

Default Memo[number-of-items]

How to change Edit by the Text Edit dialog box which appears when clicking the [...] but-

ton.

For the subproperty, you can use the text box directly enter the text.

Restriction Up to 256 characters

Up to 256 memos can be specified.

CubeSuite Ver.1.30 APPENDIX A WINDOW REFERENCE

R20UT0005EJ0100 Rev.1.00 Page 263 of 573
Jul 01, 2010

This panel is used to display/edit text files/source files.

The file is opened by automatically distinguishing the encoding (Shift_JIS/EUC-JP/UTF-8) and line feed code of the file

and the encoding is retained when it is saved.

If the encoding and newline code is specified in the File Save Settings dialog box, however, then the file is saved in

accordance with those settings.

This panel can be multiply opened (max:100 panels).

Remark A message is shown when the downloaded lode module file is older than the source file to open.

Figure A-23. Editor Panel

The following items are explained here.

- [How to open]

- [Description of each area]

- [[File] menu (only available for the Editor panel)]

- [[Edit] menu] (only available for the Editor panel)]

- [Context menu]

[How to open]

- On the Project Tree panel, double click the file.

- On the Project Tree panel, select a source file, and then select [Open] from the context menu.

- On the Project Tree panel, select a file, and then select [Open with Internal Editor...] from the context menu.

- On the Project Tree panel, select [Add] >> [Add New File...] from the context menu, and then create a text file/

source file.

Editor panel

(1)

(2) (3)

CubeSuite Ver.1.30 APPENDIX A WINDOW REFERENCE

R20UT0005EJ0100 Rev.1.00 Page 264 of 573
Jul 01, 2010

[Description of each area]

(1) Title bar

Show the opened text file/source file name.

Marks that are shown at the end of each file are explained as follows.

(2) Line number area

Show the opened text file/source file's line number.

(3) Characters area

Display/edit the characters of the text files/source files.

This area has the following functions.

(a) Character editing

Characters can be entered from the keyboard.

Various shortcut keys can be used to enhance the edit function.

(b) File Monitor

The following function for monitoring is provided to manage source files.

- If the contents of the currently displayed file are changed not with CubeSuite, show a message to indicate

whether to save the file. You can either select yes or no.

Remark The following items can be customized by setting the Option dialog box.

- Display fonts

- Tab Interval

- Display/hide/colors of control Characters (control codes including a blank symbol)

- Colors of reserved words/comments

[[File] menu (only available for the Editor panel)]

The following items are exclusive for the [File] menu in the Editor panel (other items are common to all the panels).

Mark Description

* The contents of the editing file is changed.

(Uneditable) The opened text file is write disabled.

ID number The same text file is multiply opened.

Close file name Closes the currently editing the Editor panel.

When the contents of the panel have not been saved, a confirmation message is shown.

Save file name Overwrites the contents of the currently editing the Editor panel.

Note that when the file has never been saved or the file is write disabled, the same oper-

ation is applied as the selection in [Save file name As...].

file name Save Settings... This dialog box is used to open the File Save Settings dialog box to set the encoding and

newline code of the file that is editing on this panel.

CubeSuite Ver.1.30 APPENDIX A WINDOW REFERENCE

R20UT0005EJ0100 Rev.1.00 Page 265 of 573
Jul 01, 2010

[[Edit] menu] (only available for the Editor panel)]

The following items are exclusive for the [Edit] menu in the Editor panel (other items are all invalid).

[Context menu]

[Characters area/Line number area]

Save file name As... Opens the Save As dialog box to newly save the contents of the currently editing the Edi-

tor panel.

Page Setup... Opens the Page Setup dialog box of Windows.

Print... Opens the Print dialog box of Windows for printing the contents of the currently editing

the Editor panel.

Undo Cancels the previous operation on the Editor panel and restores the characters and the

caret position (max 100 times).

Redo Cancels the previous [Undo] operation on the Editor panel and restores the characters

and the caret position.

Cut Cut the selected characters and copies them to the clip board.

Copy Copies the selected characters to the clip board.

Paste Insert (insert mode) or overwrite (overwrite mode) the characters that are copied on the

clip board into the caret position.

When the contents of the clipboard are not recognized as characters, the operation is

invalid.

Delete Deletes one character at the caret position.

When there is a selection area, all the characters in the area are deleted.

Select All Selects all the characters from the beginning to the end in the currently editing text file.

Find... Opens the Search and Replace dialog box with the [Quick Search] tab target.

When there is a selection area, search is only taken place in the selection area.

Replace... Opens the Search and Replace dialog box with the [Quick Replace] tab target.

When there is a selection area, replace is only taken place in the selection area.

Move To... Opens the Go to the Location dialog box to move the caret to the designated line.

Jump To Function Jumps to the function regarding the selected characters and the words at the caret posi-

tion as a function

Note that this is valid only when the load module file with the symbol information is

downloaded.

The jump to the static function cannot be performed.

If a single line contains multiple statements, then it may not be possible to jump to the

correct location.

Note that this menu is enabled when the project is the active project and other than

library project.

Back To Last Cusor Position Goes back to the position before the cusor is jumped.

Forward To Next Cusor Position Jumps to the position before operating [Back To Last Cusor Position].

Tag Jump If there is information of the file name, line, and column on the caret line, jumps to that

location.

Cut Cuts the selected characters and paste to the clipboard.

CubeSuite Ver.1.30 APPENDIX A WINDOW REFERENCE

R20UT0005EJ0100 Rev.1.00 Page 266 of 573
Jul 01, 2010

Copy Copies the selected characters to the clipboard.

Paste Inserts the contents of the clipboard into the caret position.

Open in New Panel Opens a new Editor panel with the same contents as the current Editor panel (the title

bar of the newly opened Editor panel shows the file name and ID number).

The Editor panel can be opened up to 100 panels.

CubeSuite Ver.1.30 APPENDIX A WINDOW REFERENCE

R20UT0005EJ0100 Rev.1.00 Page 267 of 573
Jul 01, 2010

This panel is used to display the message that is output from the build tool.

Messages are shown individually on the tab categorized by the output tool.

Figure A-24. Output Panel

The following items are explained here.

- [How to open]

- [Description of each area]

- [[File] menu (only available for the Output panel)]

- [[Edit] menu (only available for the Output panel)]

- [Context menu]

[How to open]

- From the [View] menu, select [Output].

[Description of each area]

(1) Message area

Display messages and the search results output from each tool.

In build result/search result (batch search) display, a new message is displayed deleting the previous message

every time build/search is done (but not the [All Messages] tab).

Remark Up to 500000 lines of messages can be displayed. If 500001 lines or more of messages are output,

then the excess lines are deleted, oldest first.

The message colors differ as follows depends on the type of the output message (the character color/background

color is set in [General - Font and Color] category in the Option dialog box).

Output panel

Message Type Example (Default) Description

Normal message Character color Black Information on something.

Background color White

Warning Character color Blue Warning for the operation.

Background color Normal color

Error message Character color Red Fatal error or operation disabled because

of an error in operation.
Background color Light gray

(1)

(2)

CubeSuite Ver.1.30 APPENDIX A WINDOW REFERENCE

R20UT0005EJ0100 Rev.1.00 Page 268 of 573
Jul 01, 2010

This area has the following functions.

(a) Tag jump

When the output message is double-clicked, or the [Enter] key is pressed with the caret over the message, the

Editor panel appears and the destination line number of the file is displayed.

You can jump to the line of the source file that generated the error from the error message output when build-

ing.

(b) Display help

help with regard to the message in the line is shown by selecting [Help for Message] in the context menu or

pressing the [F1] key while the caret is in the line where the warning message or the error message is dis-

played.

(c) Save log

The contents displayed on the currently selected tab can be saved in a text file (*.txt) by selecting [Save Output

- tab name As...] from the [File] menu and opens the Save As dialog box (messages on the tab that is not

selected will not be saved).

(2) Tab selection area

Select tabs that messages are output from.

Tabs that are displayed are as follows.

Caution Tab is not automatically switched when a new message is output on the non-selected tab.

If this is the case, is added to the tab informing a new message is output.

[[File] menu (only available for the Output panel)]

The following items are exclusive for the [File] menu in the Output panel (other items are common to all the panels).

[[Edit] menu (only available for the Output panel)]

The following items are exclusive to the [Edit] menu in the Output panel (other items are all invalid).

Tab Name Description

All Messages Shows all the messages by order of output. (Except while executing a rapid

build)

Rapid Build Shows the message output from the build tool by running a rapid build.

Build Tool Shows the message output from the build tool by running build/rebuild/clean.

Save Output - tab name Saves the contents on the currently selecting tab in the previously saved text file (*.txt)

(see "(c) Save log").

When this item is selected for the first time after launching the program, the operation is

equivalent to when selecting [Save Output - tab name As...].

Save Output - tab name As... Opens the Save As dialog box to save the contents on the currently selecting tab in the

designated text file (*.txt) (see "(c) Save log").

Copy Copies the selected characters to the clipboard.

Select All Selects all the messages displayed on this panel.

CubeSuite Ver.1.30 APPENDIX A WINDOW REFERENCE

R20UT0005EJ0100 Rev.1.00 Page 269 of 573
Jul 01, 2010

[Context menu]

Find... Opens the Search and Replace dialog box with the [Quick Search] tab target.

Replace... Opens the Search and Replace dialog box with the [Whole Replace] tab target.

copy Copies the selected characters to the clipboard.

Select All Selects all the messages displayed on this panel.

Clear Deletes all the messages displayed on this panel.

Tag Jump Jumps to the caret line in the editor indicated by the message (file, line, and column).

Help for Message Shows the help with regard to the message at the current caret.

Note that the help is only for warning/error messages.

CubeSuite Ver.1.30 APPENDIX A WINDOW REFERENCE

R20UT0005EJ0100 Rev.1.00 Page 270 of 573
Jul 01, 2010

This dialog box is used to create a new file and add it to the project.

Figure A-25. Add File Dialog Box

The following items are explained here.

- [How to open]

- [Description of each area]

- [Function buttons]

[How to open]

- From the [File] menu, select [Add] >> [Add New File...].

- On the Project Tree panel, select either one of the Project node, Subproject node, File node, or category node, and

then select [Add] >> [Add New File...] from the context menu.

[Description of each area]

(1) [File type] area

Select file types to create.

The description is shown at the lower box when a file type is selected.

File types to be shown are as follows.

- C source file (*.c)

- Header file (*.h; *.inc)

- Assemble file (*.asm)

- Link directive file (*.dr; *.dir)

- Variable information file (*.vfi)

- Function information file (*.fin)Note

Add File dialog box

(1)

(2)

(3)

[Function buttons]

CubeSuite Ver.1.30 APPENDIX A WINDOW REFERENCE

R20UT0005EJ0100 Rev.1.00 Page 271 of 573
Jul 01, 2010

- Text file (*.txt)

Note Only devices with a memory bank installed

(2) [File name] area

Directly enter the name of the file to create.

The default file extension is "txt".

Remark If extensions are not designated, the one selected in the [File type] area are is added. Also that if

extensions different from the one selected in the [File type] area are designated, the one selected in the

[File type] area is added as an extension (for example, if you designate "aaa.txt" as a file name and

select "C source file (*.c)" as file type, the file is named as "aaa.txt.c").

(3) [File location] area

Designate the location to create a file by directly entering its path or selecting from [Refer...] button.

The default file location is the project folder path.

(a) Button

Remarks 1. When the text box is left blank, the project folder is regarded to be designated.

2. When the relative path is used, the path is regarded to be from the project folder.

Remark The number of characters that can be entered in the [File name] area and the [File location] area is up to

259 both for the path name and file name together. When the input violates any restriction, the following

messages are shown in the tooltip in the [File name] area.

[Function buttons]

Refer... Opens the Browse For Folder dialog box.

When a folder is selected, a path is added in the text box.

Message Description

The file name including the path is too long. Make it

within 259 characters.

The file name with the path is more than 259 characters.

The specified path contains a folder that does not exist. The path includes the folder that does not exist.

The file name or path name is invalid. The following

characters cannot be used: •, /, :, *, ?, “, <, >, |

The file name with the invalid path is designated. The char-

acters, \, /, :, *, ", <, >, |, cannot be used for the file name

and folder name.

Button Function

OK Creates the file with the entered file name, adds it to the project, and opens with the Edi-

tor panel. Then closes this dialog box.

Cancel Does not create a file and closes this dialog box.

Help Displays the help of this dialog box.

CubeSuite Ver.1.30 APPENDIX A WINDOW REFERENCE

R20UT0005EJ0100 Rev.1.00 Page 272 of 573
Jul 01, 2010

This dialog box is used to add existing files and folder hierarchies to the project.

The folder is added as a category.

Figure A-26. Add Folder and File Dialog Box

The following items are explained here.

- [How to open]

- [Description of each area]

- [Function buttons]

[How to open]

- Drag the folder from Explorer or the like, and drop it on the Project Tree panel.

[Description of each area]

(1) [File type] area

Select the file types to add to the project.

You can select multiple types by left clicking while holding down the [Ctrl] or [Shift] key.

If nothing is selected, it is assumed that all types are selected.

The file types displayed are shown below.

- C source file (*.c)

- Header file (*.h; *.inc)

- Assemble file (*.asm)

- Link directive file (*.dr; *.dir)

- Variable information file (*.vfi)

Add Folder and File dialog box

(2)

(1)

[Function buttons]

CubeSuite Ver.1.30 APPENDIX A WINDOW REFERENCE

R20UT0005EJ0100 Rev.1.00 Page 273 of 573
Jul 01, 2010

- Function information file (*.fin)Note

- Library file (*.lib)

- Object file (*.rel)

- Text file (*.txt)

Note Only devices with a memory bank installed

(2) [Subfolder level to search] area

Directly enter the number of subfolder levels to add to the project.

The default number is "1".

Remark Decimal numbers of up to 10 are allowed. When the input violates any restriction, the following mes-

sages are shown in the tooltip.

[Function buttons]

Message Description

Fewer than 0 or more than 10 values cannot be

specified.

More than 10 subfolder levels have been specified.

Specify in decimal. A number in other than base-10 format or a string has

been specified.

Button Function

OK The folder that was dragged and dropped and the files in that folder are added to the

project.And then close the dialog box.

Cancel Do not add a folder and files, and then closes this dialog box.

Help Displays the help of this dialog box.

CubeSuite Ver.1.30 APPENDIX A WINDOW REFERENCE

R20UT0005EJ0100 Rev.1.00 Page 274 of 573
Jul 01, 2010

This dialog box is used to input and edit characters in one line.

Figure A-27. Character String Input Dialog Box

The following items are explained here.

- [How to open]

- [Description of each area]

- [Function buttons]

[How to open]

- On the Property panel, select the following properties, and then click the [...] button.

- From the [Common Options] tab, [Format of build option list] in the [Others] category.

- From the [Compile Options] tab, [Other additional options] in the [Others] category.

- From the [Assemble Options] tab, [Other additional options] in the [Others] category.

- From the [Link Options] tab, [Area name] in the [Stack] category, and [Other additional options] in the [Others]

category.

- From the [Object Convert Options] tab, [Other additional options] in the [Others] category.

- From the [Create Library Options] tab, [Other additional options] in the [Others] category.

- From the [Individual Compile Options] tab, [Other additional options] in the [Others] category.

- From the [Individual Assemble Options] tab, [Other additional options] in the [Others] category.

- In the [General - External Tools] category of the Option dialog box, check [Require options at start-up] in the New

registration area. Then the dialog box automatically opens when an external tool is launched from [Tool] menu.

[Description of each area]

(1) [String] area

Input characters in one line.

By default, this dialog box opens with its edit box reflecting the current value of the property selected to call the dia-

log box.

Line break is not allowed.

Remark Up to 32767 characters can be entered. When the input violates any restriction, the following mes-

sages are shown in the toolchip.

Character String Input dialog box

Message Description

More than maximum number of restriction in the prop-

erty that called this dialog box characters cannot be

specified.

The characters exceeds the maximum number of

restriction in the property that called this dialog

box.

(1)

[Function buttons]

CubeSuite Ver.1.30 APPENDIX A WINDOW REFERENCE

R20UT0005EJ0100 Rev.1.00 Page 275 of 573
Jul 01, 2010

[Function buttons]

Button Function

OK Reflects the entered characters to the property that called this dialog box then closes the

dialog box.

Cancel Does not reflect the entered characters to the property that called this dialog box then

closes the dialog box.

Help Displays the help of this dialog box.

CubeSuite Ver.1.30 APPENDIX A WINDOW REFERENCE

R20UT0005EJ0100 Rev.1.00 Page 276 of 573
Jul 01, 2010

This dialog box is used to input and edit texts in multiple lines.

Figure A-28. Text Edit Dialog Box

The following items are explained here.

- [How to open]

- [Description of each area]

- [Function buttons]

[How to open]

- On the Property panel, select the following properties, and then click the [...] button.

- From the [Common Options] tab, [Macro definition] in the [Frequently Used Options(for Compile)] category,

[Macro definition] in the [Frequently Used Options(for Assemble)] category, [Using libraries] in the [Frequently

Used Options(for Link)] category, [Memo] in the [Notes] category, and [Commands executed before build pro-

cessing], [Commands executed after build processing] in the [Others] category.

- From the [Compile Options] tab, [Macro definition], [Macro undefinition] in the [Preprocess] category, and

[Commands executed before compile processing], [Commands executed after compile processing] in the

[Others] category.

- From the [Assemble Options] tab, [Macro definition] in the [Preprocess] category, and [Commands executed

before assemble processing], [Commands executed after assemble processing] in the [Others] category.

- From the [Link Options] tab, [Using libraries] in the [Library] category, and [Commands executed before link

processing], [Commands executed after link processing] in the [Others] category.

- From the [Object Convert Options] tab, [Commands executed before object convert processing], [Commands

executed after object convert processing] in the [Others] category.

- From the [Create Library Options] tab, [Commands executed before making library], [Commands executed

after making library] in the [Others] category.

- From the [Individual Compile Options] tab, [Macro definition], [Macro undefinition] in the [Preprocess] cate-

gory, and [Commands executed before compile processing], [Commands executed after compile processing]

in the [Others] category.

- From the [Individual Assemble Options] tab, [Macro definition] in the [Preprocess] category, and [Commands

executed before assemble], [Commands executed after assemble] in the [Others] category.

- From the [File Information] tab, [Memo] in the [Notes] category

- From the [Category Information] tab, [Memo] in the [Notes] category

Text Edit dialog box

(1)

[Function buttons]

CubeSuite Ver.1.30 APPENDIX A WINDOW REFERENCE

R20UT0005EJ0100 Rev.1.00 Page 277 of 573
Jul 01, 2010

[Description of each area]

(1) [Text] area

Input and edit texts in multiple lines.

By default, this dialog box opens with its edit box reflecting the current value of the property selected to call the dia-

log box.

Remark Up to 65535 lines and 65535 characters are allowed. When the input violates any restriction, the fol-

lowing messages are shown in the tooltip.

[Function buttons]

Message Description

More than maximum number of restriction in the prop-

erty that called this dialog box characters cannot be

specified. The current number of characters is dis-

played between brackets at the beginning of the line in

excess of the limit.

The characters exceeds the maximum number of

restriction in the property that called this dialog

box.

Button Function

OK Reflects the entered text to the text box that opened this dialog box and closed the dia-

log box.

Cancel Does not reflect the entered text to the text box that opened this dialog box and closed

the dialog box.

Help Displays the help of this dialog box.

CubeSuite Ver.1.30 APPENDIX A WINDOW REFERENCE

R20UT0005EJ0100 Rev.1.00 Page 278 of 573
Jul 01, 2010

This dialog box is used to edit or add the path.

Figure A-29. Path Edit Dialog Box

The following items are explained here.

- [How to open]

- [Description of each area]

- [Function buttons]

[How to open]

- On the Property panel, select the following properties, and then click the [...] button.

- From the [Common Options] tab, [Additional include paths] in the [Frequently Used Options(for Compile)] cat-

egory, [Additional include paths] in the [Frequently Used Options(for Assemble)] category, and [Additional

library paths] in the [Frequently Used Options(for Link)] category.

- From the [Compile Options] tab, [Additional include paths] in the [Preprocess] category.

- From the [Assemble Options] tab, [Additional include paths] in the [Preprocess] category.

- From the [Link Options] tab, [Additional include paths] in the [Library] category.

- From the [Individual Compile Options] tab, [Additional include paths] in the [Preprocess] category.

- From the [Individual Assemble Options] tab, [Additional include paths] in the [Preprocess] category.

[Description of each area]

(1) Path edit area

Edit or add the path.

(a) [Path(One path per one line)]

Edit or adds the path by directly entering the path.

Path can be designated in multiple lines. Designate a path at a line.

By default, the contents of the text box that opened this dialog box are reflected in this area.

Path can be added by one of the following method.

Path Edit dialog box

(1)

[Function buttons]

CubeSuite Ver.1.30 APPENDIX A WINDOW REFERENCE

R20UT0005EJ0100 Rev.1.00 Page 279 of 573
Jul 01, 2010

- Click the [Browse...] button, and then select folders in the Browse For Folder dialog box.

- Drag and drop the folder using such as Explorer.

Caution If an extremely long absolute path is specified as a relative path, an error could occur when

clicking the [OK] button. In this case, designate the absolute path.

Remark Up to 10000 lines are allowed. Up to the maximum characters that are limited by the Windows OS are

allowed. When the input violates any restriction, the following messages are shown in the tooltip.

(b) Button

(c) [Subfolders are automatically included]

After checking this check box, designate the path from [Browse...] button and a path is added to [Path(One

path per one line)] including subfolders (up to 5 layers).

[Function buttons]

Message Description

Specify a path. The field is empty.

The path is too long. Specify a path with a number of

characters equal to or fewer than maximum number of

restriction in the property that called this dialog box.

The file name including the path is exceeding the

character limit defined in the original path.

The specified path contains a folder that does not exist. The path includes the folder that does not exist.

The file name or path name is invalid. The following

characters cannot be used: •, /, :, *, ?, “, <, >, |

The file name with the invalid path is designated.

The characters, \, /, :, *, ", <, >, |, cannot be used

for the file name and folder name.

More than maximum number of paths or files specified

by the caller lines cannot be specified.

The number of paths or files which have been

input exceeds the maximum number of paths or

files specified by the caller.

Browse... Opens the Browse For Folder dialog box.

When a folder is selected, the path is added to [Path(One path per one line)].

Button Function

OK Reflects the entered path to the property that called this dialog box then closes the dia-

log box.

Cancel Does not reflect the entered path to the property that called this dialog box then closes

the dialog box.

Help Displays the help of this dialog box.

CubeSuite Ver.1.30 APPENDIX A WINDOW REFERENCE

R20UT0005EJ0100 Rev.1.00 Page 280 of 573
Jul 01, 2010

This dialog box is used to refer the system include paths specified for the compiler and set their specified sequence.

Figure A-30. System Include Path Order Dialog Box

The following items are explained here.

- [How to open]

- [Description of each area]

- [Function buttons]

[How to open]

- On the Property panel, select the following properties, and then click the [...] button.

- From the [Common Options] tab, [System include paths] in the [Frequently Used Options(for Compile)] cate-

gory, and [System include paths] in the [Frequently Used Options(for Assemble)] category

- From the [Compile Options] tab, [System include paths] in the [Preprocess] category

- From the [Assemble Options] tab, [System include paths] in the [Preprocess] category

[Description of each area]

(1) Path list display area

This area displays the list of the system include paths specified for the compiler.

(a) [Path]

This area displays the list of the system include paths in the specified sequence for the compiler.

The default order is the order that the files are registered to the project.

By changing the display order of the paths, you can set the specified order of the paths to the compiler.

To change the display order, use the [Up] and [Down] buttons, or drag and drop the path names.

Remarks 1. Move the mouse cursor over a file name to display a tooltip with the absolute path of that file.

2. Newly added system include paths are added next to the last path of the list.

3. When the path names are dragged and dropped, the multiple path names which are next to

each other can be selected together.

(b) Button

System Include Path Order dialog box

Up Moves the selected path to up.

(1)

[Function buttons]

CubeSuite Ver.1.30 APPENDIX A WINDOW REFERENCE

R20UT0005EJ0100 Rev.1.00 Page 281 of 573
Jul 01, 2010

Remark Note that above buttons are disabled when any path is not selected.

[Function buttons]

Down Moves the selected path to down.

Button Function

OK Sets the specified order of the paths to the compiler as the display order in the Path list

display area and closes this dialog box.

Cancel Cancels the specified order of the paths and closes the dialog box.

Help Displays the help of this dialog box.

CubeSuite Ver.1.30 APPENDIX A WINDOW REFERENCE

R20UT0005EJ0100 Rev.1.00 Page 282 of 573
Jul 01, 2010

This dialog box is used to set the encoding and newline code of the file that is being edited on the Editor panel.

Remark The target file name is displayed on the title bar.

Figure A-31. File Save Settings Dialog Box

The following items are explained here.

- [How to open]

- [Description of each area]

- [Function buttons]

[How to open]

- Focus the Editor panel, and then select [file name Save Settings...] from the [File] menu.

[Description of each area]

(1) [Encode]

Select the encoding to be set from the drop-down list.

The items of the drop-down list are displayed according to the following sequence.

Note that the same encoding and encoding which are not supported by the current OS will not be displayed.

- Encoding of the current file (default)

- Default encoding of the current OS

- Encoding of code page 932 (SJIS)

- Encoding of code page 50222 (JIS)

- Encoding of code page 51932 (EUC)

- Encoding of code page 65001 (UTF8)

(2) [Newline code]

Select the newline code to be set from the drop-down list.

You can select any of items below.

- Keep current newline code

- Windows (CR LF)

- Macintosh (CR)

- Unix (LF)

File Save Settings dialog box

(1)

[Function buttons]

(2)

(3)

CubeSuite Ver.1.30 APPENDIX A WINDOW REFERENCE

R20UT0005EJ0100 Rev.1.00 Page 283 of 573
Jul 01, 2010

"Keep current newline code" is selected by default.

After the newline code is changed, the set newline code is selected by default.

(3) [Reload the file]

Use this check box to select whether to reload the file with the selected encoding and newline code when the [OK]

button is clicked.

The check box is not selected by default.

[Function buttons]

Button Function

OK Sets the selected encoding and newline code to the target file and closes this dialog box.

If [Reload the file] is selected, sets the selected encoding and newline code to the target

file and reloads the file.And then closes this dialog box.

Cancel Cancels the settings of the encoding and newline code and closes the dialog box.

Help Displays the help of this dialog box.

CubeSuite Ver.1.30 APPENDIX A WINDOW REFERENCE

R20UT0005EJ0100 Rev.1.00 Page 284 of 573
Jul 01, 2010

This dialog box is used to display object module files and library files to input to the linker and configure these link

order.

Figure A-32. Link Order Dialog Box

The following items are explained here.

- [How to open]

- [Description of each area]

- [Function buttons]

[How to open]

- On the Project Tree panel, select the Build tool node, and then select [Set Link Order...] from the context menu.

[Description of each area]

(1) File list display area

Show the file list to input to linker.

(a) [File]

Display the following file name lists in input order to linker.

- Object module files that are generated from the source file registered in the selected main project or sub-

project.

- Object module files that are directly added to the project tree in the selected main project or subproject.

- Library files that are directly added to the project tree in the selected main project or subproject.

By default, input order to linkers is the order registered in the project.

You can change the input order by changing the display order of files.

Use [Up] or [Down] buttons, or drag and drop the file name to change the display order.

Link Order dialog box

(1)

[Function buttons]

CubeSuite Ver.1.30 APPENDIX A WINDOW REFERENCE

R20UT0005EJ0100 Rev.1.00 Page 285 of 573
Jul 01, 2010

Remarks 1. When the mouse cursor is hovered over a file name, the path of the file appears in a popup. If

the file is on the same drive as the project file, then it appears as the relative path; if it is on the

different drive, then it appears as the absolute path.

2. The object module file that is generated from the newly added source file and newly added

object module file are added to the end of the module file list. The newly added library file is

added to the end of the list.

3. When the file is dragged and dropped, the multiple files that are next to each other can be

selected together.

(b) Button

Remark Note that above buttons are disabled when any file is not selected.

[Function buttons]

Up Moves the selected file to up.

Down Moves the selected file to down.

Button Function

OK Sets the file input order to linker as the display order of the File list display area and

closes this dialog box.

Cancel Cancels the link order settings and closes this dialog box.

Help Displays the help of this dialog box.

CubeSuite Ver.1.30 APPENDIX A WINDOW REFERENCE

R20UT0005EJ0100 Rev.1.00 Page 286 of 573
Jul 01, 2010

This dialog box is used to add and delete build modes and configure the current build mode in batch.

Figure A-33. Build Mode Settings Dialog Box

The following items are explained here.

- [How to open]

- [Description of each area]

- [Function buttons]

[How to open]

- From the [Build] menu, select [Build Mode Settings...].

[Description of each area]

(1) [Selected build mode] area

Show the build mode selected in the [Build mode list] area.

(a) Button

(2) [Build mode list] area

Show all the build modes that exist in the currently opening project (main project and subproject) in a list.

Current build mode in the selected project is selected by default.

The current build modes of all projects are same, the build mode is selected by default. If they are not same,

"DefaultBuild" will be selected.

Note that the "DefaultBuild" is the default build mode and is always shown at the top.

Build Mode Settings dialog box

Apply to All Sets the build mode of the main project and all subprojects of the currently opened

project to the currently displayed build mode.

(1)

(2)

[Function buttons]

CubeSuite Ver.1.30 APPENDIX A WINDOW REFERENCE

R20UT0005EJ0100 Rev.1.00 Page 287 of 573
Jul 01, 2010

(a) Button

Caution When duplicating or renaming the build mode, the existing build mode name cannot be

used.

Remarks 1. Up to 127 characters can be used as a build mode name. When the input violates any restriction,

the following messages are shown in the tooltip.

2. Up to 20 build modes can be added. When the input violates any restriction, the following mes-

sages are shown in the tooltip.

[Function buttons]

Duplicate... Duplicates the selected build mode.

The Character String Input dialog box opens and the build mode is duplicated with the

name entered and added to the main project and all the subprojects in the currently

opening project.

When the build mode with "*" mark does not exist in the main project or subproject and

duplicate the build mode, DefaultBuild is duplicated.

Up to 20 build modes can be added.

Delete Deletes the selected build mode.

Note that DefaultBuild cannot be deleted.

Rename... Renames the selected build mode.

Rename the build mode with entered name in the opening the Character String Input

dialog box.

Message Description

A build mode with the same name already exists. The entered build mode name already exists.

More than 127 characters cannot be specified. Build mode name is too long (more than 128

characters).

The build mode name is invalid. The following charac-

ters cannot be used: •, /, :, *, ?, “, <, >, |

Invalid build mode name is entered. The charac-

ters, (\, /, :, *, ?, ", <, >, |) cannot be used as the

name is used for the folder name.

Message Description

The maximum number of build modes that can be set

per project/subproject is 20.

The number of build modes exceed 20.

Button Function

Close Closes this dialog box.

Help Displays the help of this dialog box.

CubeSuite Ver.1.30 APPENDIX A WINDOW REFERENCE

R20UT0005EJ0100 Rev.1.00 Page 288 of 573
Jul 01, 2010

This dialog box is used to do build, rebuild and clean process in batch with the build mode that each project (main

project and subproject) has.

Remark Order of the batch build follows the build order of the project which the subproject comes before the main

project.

When more than one build mode is selected for a main project or a subproject, all the selected build modes

are built and then the next subproject or main project is built.

Figure A-34. Batch Build Dialog Box

The following items are explained here.

- [How to open]

- [Description of each area]

- [Function buttons]

[How to open]

- From the [Build] menu, select [Batch Build...].

[Description of each area]

(1) [Build mode list] area

Show the combination list of the names of the main project and the subproject which the currently opening project

has and build modes and defined macros which they have.

(a) [Project]

Show the main project and the subproject which the currently opening project has.

Select the combination of the main project and subproject to build and the build modes.

When this dialog box is opened for the first time after the project is created, all the check boxes are

unchecked. From the second time, the previous setting is retained.

Batch Build dialog box

(1)

[Function buttons]

CubeSuite Ver.1.30 APPENDIX A WINDOW REFERENCE

R20UT0005EJ0100 Rev.1.00 Page 289 of 573
Jul 01, 2010

(b) [Build mode]

Show build modes which the main project and subproject have.

(c) [Defined macros]

Show defined macros separated with "|", configured for the combination of the main project and the subproject

and their build modes in the [Compile Options] tab and the [Assemble Options] tab in the Property panel.

Note that the defined macro in Compile Option comes before the one in Assemble Option and they are sepa-

rated with ", ".

[Function buttons]

Button Function

Build Closes this dialog box and executes a batch build of the selected projects in the respec-

tive build modes. The execution result of the build are displayed on the Output panel.

After the batch build is complete, the build mode configuration restores to the one before

this dialog box was opened.

Note that this buttons is disabled when any project is not selected.

Rebuild Closes this dialog box and executes a batch rebuild of the selected projects in the

respective build modes. The execution result of the rebuild are displayed on the Output

panel.

After the batch rebuild is complete, the build mode configuration restores to the one

before this dialog box was opened.

Note that this buttons is disabled when any project is not selected.

Clean Closes this dialog box and deletes the files built in the respective build modes set for the

selected projects. The execution result of the clean are displayed on the Output panel.

After the clean is complete, the build mode configuration restores to the one before this

dialog was opened.

Note that this buttons is disabled when any project is not selected.

Close Closes this dialog box.

Help Displays the help of this dialog box.

CubeSuite Ver.1.30 APPENDIX A WINDOW REFERENCE

R20UT0005EJ0100 Rev.1.00 Page 290 of 573
Jul 01, 2010

This dialog box is used to move the caret to the designated location.

Figure A-35. Go to the Location Dialog Box

The following items are explained here.

- [How to open]

- [Description of each area]

- [Function buttons]

[How to open]

- From the [Edit] menu, select [Move To...].

[Description of each area]

(1) [Line number] area

Specify the line number (decimal number) or symbol name of the location to which the caret is moved.

You can directly enter the characters into the text box or select from the input history in the drop down list (maxi-

mum numbers of the history: 10).

[Function buttons]

Go to the Location dialog box

Button Function

OK Displays the designated location at the top of the target panel display and moves the

caret there.

Note that this button is enabled when the project that the opened file is registered is the

active project and other than library project.

Cancel Cancels the criteria and closes this dialog box.

Help Displays the help of this dialog box.

(1)

[Function buttons]

CubeSuite Ver.1.30 APPENDIX A WINDOW REFERENCE

R20UT0005EJ0100 Rev.1.00 Page 291 of 573
Jul 01, 2010

This dialog box is used to show how the process has been progressed when the time consuming process is taken

place.

This dialog box automatically closes when the process in progress is done.

Figure A-36. Progress Status Dialog Box

The following items are explained here.

- [How to open]

- [Description of each area]

- [Function buttons]

[How to open]

- This dialog box automatically opens when a message is output while the time consuming process is in progress.

[Description of each area]

(1) Message display area

Display the message output while process is in progress (edit not allowed).

(2) Progress bar

The progress bar shows the current progress of the process in progress with the bar length.

When the process is 100% done (the bar gets to the right end), this dialog box automatically closed.

[Function buttons]

Progress Status dialog box

Button Function

Cancel Cancels the process in progress and closes this dialog box.

Note that if the process termination is impossible, this button is disabled.

[Function buttons]

(1)

(2)

CubeSuite Ver.1.30 APPENDIX A WINDOW REFERENCE

R20UT0005EJ0100 Rev.1.00 Page 292 of 573
Jul 01, 2010

This dialog box is used to configure the CubeSuite environment.

All settings made via this dialog box are saved as preferences for the current user.

Figure A-37. Option Dialog Box

The following items are explained here.

- [How to open]

- [Description of each area]

- [Function buttons]

[How to open]

- From the [Tool] menu, select [Option...].

[Description of each area]

(1) Category selection area

Select the items to configure from the following categories.

Option dialog box

Category Description

[General - Startup and Exit] category Configure startup and shutdown.

[General - Display] category Configure messages from the application.

[General - Text Editor] category Configure the text editor.

[General - Font and Color] category Configure the fonts and colors shown on each panel.

[General - External Tools] category Configure the startup of external tools.

[General - Build/Debug] category Configure building and debugging.

[General - Update] category Configure update.

[Other - User Information] category Configure user information.

(1)

(2)

[Function buttons]

CubeSuite Ver.1.30 APPENDIX A WINDOW REFERENCE

R20UT0005EJ0100 Rev.1.00 Page 293 of 573
Jul 01, 2010

Remark See "CubeSuite Start" for details about categories other than [General - Build/Debug].

(2) Settings

This area is used to configure the various options for the selected category.

For details about configuration for a particular category, see the section for the category in question.

[Function buttons]

Button Function

Initialize All Settings Restore all settings on this dialog box to their default values.

Note, however, that newly added items in the [General - External Tools] category will

not be removed.

OK Apply all setting and closes this dialog box.

Cancel Ignore the setting and closes this dialog box.

Apply Applied all setting (does not close this dialog box).

Help Display the help of this dialog box.

CubeSuite Ver.1.30 APPENDIX A WINDOW REFERENCE

R20UT0005EJ0100 Rev.1.00 Page 294 of 573
Jul 01, 2010

[General - Build/Debug] category

Use this category to configure general setting relating to building and debugging.

Figure A-38. Option Dialog Box ([General - Build/Debug] Category)

The following items are explained here.

- [How to open]

- [Description of each area]

- [Function buttons]

[How to open]

- From the [Tool] menu, select [Option...].

[Description of each area]

(1) [Enable Rapid Build]

Note This feature automatically begins a build when the source file being edited is saved.

Enabling this feature makes it possible to perform builds while editing source files.

If this feature is used, we recommend saving frequently after editing source files.

(2) [Observe registered files changing]

This item is only enabled if the [Enable Rapid Build] check box is selected.

Enable the rapid build Note feature (default).

Do not use the rapid build feature.

(1)

(4)

[Function buttons]

(3)

(2)

CubeSuite Ver.1.30 APPENDIX A WINDOW REFERENCE

R20UT0005EJ0100 Rev.1.00 Page 295 of 573
Jul 01, 2010

Remark This item is only enabled if the [Enable Rapid Build] check box is selected.

Caution Files that are in the project folder and have been registered to the project can be monitored.

The rapid build will not finish if this item is selected, and the files to be built have been regis-

tered for automatic editing or overwriting (e.g. by commands executed before or after the build).

If the rapid build does not finish, unselect this item, and stop the rapid build.

(3) [Enable Break Sound]

(4) Buttons

[Function buttons]

Start a rapid build when a source file registered in the project is edited or saved by an external text editor

or the like.

Do not start a rapid build when a source file registered in the project is edited or saved by an external text

editor or the like (default).

Beep when the execution of a user program is halted due to a break event (hardware or software break).

Do not beep when the execution of a user program is halted due to a break event (hardware or software

break) (default).

Initialize Settings Return all currently displayed setting to their default values.

Button Function

Initialize All Settings Restore all settings on this dialog box to their default values.

Note, however, that newly added items in the [General - External Tools] category will

not be removed.

OK Apply all setting and closes this dialog box.

Cancel Ignore the setting and closes this dialog box.

Apply Apply all setting (does not close this dialog box).

Help Display the help of this dialog box.

CubeSuite Ver.1.30 APPENDIX A WINDOW REFERENCE

R20UT0005EJ0100 Rev.1.00 Page 296 of 573
Jul 01, 2010

This dialog box is used to select existing files to add to projects.

Figure A-39. Add Existing File Dialog Box

The following items are explained here.

- [How to open]

- [Description of each area]

- [Function buttons]

[How to open]

- From the [File] menu, select [Add] >> [Add File...].

- On the Project Tree panel, select either one of the Project node, Subproject node, File node, or file, and then select

[Add] >> [Add File...] from the context menu.

[Description of each area]

(1) [Look in] area

Select the folder that the file to add to projects exists.

The project folder is selected by default.

(2) File list area

File list that matches to the selections in [Look in] and [Files of type] is shown.

(3) [File name] area

Designate the file name of the file to add to projects.

(4) [Files of type] area

Designate the file type of the file to add to projects.

Add Existing File dialog box

(1)

[Function buttons]

(2)

(3)

(4)

CubeSuite Ver.1.30 APPENDIX A WINDOW REFERENCE

R20UT0005EJ0100 Rev.1.00 Page 297 of 573
Jul 01, 2010

Note Only devices with a memory bank installed

[Function buttons]

C source file(*.c) C language source file

Header file(*.h; *.inc) Header file

Assemble file(*.asm) Assembly language source file

Link directive file(*.dr; *.dir) Link directive file

Variable information file (*.vfi) Variable information file

Function information file(*.fin)Note Function information file

Library file(*.lib) Library file

Object file(*.rel) Object file

Text file(*.txt) Text format

All Files(*.*) All the format (default)

Button Function

Open Adds the designated file to a project.

Cancel Closes this dialog box.

CubeSuite Ver.1.30 APPENDIX A WINDOW REFERENCE

R20UT0005EJ0100 Rev.1.00 Page 298 of 573
Jul 01, 2010

This dialog box is used to select a folder and retrieve it for the caller.

Figure A-40. Browse For Folder dialog box

The following items are explained here.

- [How to open]

- [Description of each area]

- [Function buttons]

[How to open]

- In the Add File dialog box, click the [...] button in the [File location] area.

- In Path Edit dialog box, click [...] button in the path edit area.

- On the Property panel, select the following properties, and then click the [...] button.

- From the [Common Options] tab, [Intermediate file output folder] in the [Output File Type and Path] category,

[Output folder] in the [Frequently Used Options(for Link)] category, [Output folder for hex file] in the [Frequently

Used Options(for Object Convert)] category, and [Temporary folder] in the [Others] category.

- From the [Link Options] tab, [Output folder] in the [Others] category.

- From the [Object Convert Options] tab, [Output folder for hex file] in the [Hex File] category.

- From the [Create Library Options] tab, [Output folder] in the [Output File] category.

- From the [Memory Bank Relocation Options] tab, [Output folder for function information file], [Output folder for

replacement information file], [Output folder for object information file], and [Output folder for reference infor-

mation file] in the [Output File] category.

Browse For Folder dialog box

(2)

(1)

[Function buttons]

CubeSuite Ver.1.30 APPENDIX A WINDOW REFERENCE

R20UT0005EJ0100 Rev.1.00 Page 299 of 573
Jul 01, 2010

[Description of each area]

(1) Message area

Show messages related to folders selected in this dialog box.

(2) Folder location area

Select a folder to set in the caller of the dialog box.

By default, the folder set in the caller is selected.

Remark When the area is blank or the path which does not exist is entered, "C:\Documents and Settings\user

name\My Documents" is selected instead.

[Function buttons]

Button Function

Make New Folder Creates a new folder in the root of the selected folder.

The default folder name is "New Folder".

OK The designated folder path is set to the area that this dialog box is called from.

Cancel Closes this dialog box.

CubeSuite Ver.1.30 APPENDIX A WINDOW REFERENCE

R20UT0005EJ0100 Rev.1.00 Page 300 of 573
Jul 01, 2010

This dialog box is used to select the variables information file for boot area to set in the caller of the dialog box.

Figure A-41. Specify Variables Information File for Boot Area Dialog Box

The following items are explained here.

- [How to open]

- [Description of each area]

- [Function buttons]

[How to open]

- On the Property panel, select the following property, and then click the [...] button.

- From the [Compile Options] tab, [Variables information file for boot area] in the [Variables Information File] cate-

gory.

[Description of each area]

(1) [Look in] area

Select the folder where the file to be set in the caller of this dialog box exists.

The project folder is selected by default.

(2) File list area

File list that matches to the selections in the [Look in] area and [File of type] area is shown.

(3) [File name] area

Specify the file name to set in the caller of the dialog box.

(4) [Files of type] area

Specify the file type to set in the caller of the dialog box.

Specify Variables Information File for Boot Area dialog box

(1)

[Function buttons]

(2)

(3)

(4)

CubeSuite Ver.1.30 APPENDIX A WINDOW REFERENCE

R20UT0005EJ0100 Rev.1.00 Page 301 of 573
Jul 01, 2010

[Function buttons]

Variables information file for boot area (*.vfi) Variables information file for boot area

Button Function

Open Sets the specified file in the caller of the dialog box.

Cancel Closes the dialog box.

CubeSuite Ver.1.30 APPENDIX A WINDOW REFERENCE

R20UT0005EJ0100 Rev.1.00 Page 302 of 573
Jul 01, 2010

This dialog box is used to select the boot area load module file to set in the caller of the dialog box.

Figure A-42. Specify Boot Area Load Module File Dialog Box

The following items are explained here.

- [How to open]

- [Description of each area]

- [Function buttons]

[How to open]

- On the Property panel, select the following properties, and then click the [...] button.

- From the [Link Options] tab, [Boot area load module file name] in the [Device] category.

[Description of each area]

(1) [Look in] area

Select the folder where the file to be set in the caller of this dialog box exists.

The project folder is selected by default.

(2) File list area

File list that matches to the selections in the [Look in] area and [File of type] area is shown.

(3) [File name] area

Specify the file name to set in the caller of the dialog box.

(4) [Files of type] area

Specify the file type to set in the caller of the dialog box.

Specify Boot Area Load Module File dialog box

(1)

[Function buttons]

(2)

(3)

(4)

CubeSuite Ver.1.30 APPENDIX A WINDOW REFERENCE

R20UT0005EJ0100 Rev.1.00 Page 303 of 573
Jul 01, 2010

[Function buttons]

Boot area load module file(*.lmf) Boot area load module file (default)

All files(*.*) All the formats

Button Function

Open Sets the specified file in the caller of the dialog box.

Cancel Closes the dialog box.

CubeSuite Ver.1.30 APPENDIX A WINDOW REFERENCE

R20UT0005EJ0100 Rev.1.00 Page 304 of 573
Jul 01, 2010

This dialog box is used to save the editing file or contents of each panel to a file with a name.

Figure A-43. Save As Dialog Box

The following items are explained here.

- [How to open]

- [Description of each area]

- [Function buttons]

[How to open]

- Focus the Editor panel, and then select [Save file name As...] from the [File] menu.

- Focus the Output panel, and then select [Save tab name As...] from the [File] menu.

[Description of each area]

(1) [Save in] area

Select the folder to save the panel contents in the file.

The following folders are selected by default.

(a) In the Editor panel

The folder that currently editing file is saved.

(b) In the Output panel

The project folder is selected when the file is save for the first time. The previously selected file is selected

after the second time.

(2) File list area

File list that matches the selections in the [Save in] area and [Save as type] area is shown.

Save As dialog box

(1)

[Function buttons]

(2)

(3)

(4)

CubeSuite Ver.1.30 APPENDIX A WINDOW REFERENCE

R20UT0005EJ0100 Rev.1.00 Page 305 of 573
Jul 01, 2010

(3) [File name] area

Specify the file name to save.

(4) [Save as type] area

(a) In the Editor panel

The following file types are displayed depend on the file type of the currently editing file.

Note Only devices with a memory bank installed

(b) In the Output panel

The following file types are displayed.

[Function buttons]

Text file(*.txt) Text format

C source file(*.c) C language source file

Header file(*.h; *.inc) Header file

Assemble file(*.asm) Assembly language source file

Link directive file(*.dr; *.dir) Link directive file

Variable information file (*.vfi) Variable information file

Function information file(*.fin)Note Function information file

Map file(*.map) Map file

Symbol table file (.sym) Symbol table file

Hex file (.hex; .hxb; .hxf) Hex file

Text file(*.txt) Text format

Button Function

Save Saves the file as the designated file name.

Cancel Closes this dialog box.

CubeSuite Ver.1.30 APPENDIX A WINDOW REFERENCE

R20UT0005EJ0100 Rev.1.00 Page 306 of 573
Jul 01, 2010

This dialog box is used to select the application to open the file selected in Project Tree.

Figure A-44. Open with Program Dialog Box

The following items are explained here.

- [How to open]

- [Description of each area]

- [Function buttons]

[How to open]

- On the Project Tree panel, select a file, and then select [Open with Selected Application...] from the context menu.

[Description of each area]

(1) [Look in] area

Select the folder where the application to open the file is stored.

Program folder (for Windows XP, "C:\Program Files") is selected by default.

(2) File list area

File list that matches to the selections in the [Look in] area and [File of type] area is shown.

(3) [File name] area

Specify the executable file name of the application to open the file.

(4) [Files of type] area

Specify the executable file type of the application to open the file.

Open with Program dialog box

(1)

[Function buttons]

(2)

(3)

(4)

CubeSuite Ver.1.30 APPENDIX A WINDOW REFERENCE

R20UT0005EJ0100 Rev.1.00 Page 307 of 573
Jul 01, 2010

[Function buttons]

Program(*.exe) Executable format (default)

All Files (*.*) All the formats

Button Function

Open Opens the file with the specified application.

Cancel Closes this dialog box.

CubeSuite Ver.1.30 APPENDIX A WINDOW REFERENCE

R20UT0005EJ0100 Rev.1.00 Page 308 of 573
Jul 01, 2010

This is the first window to open when the stack usage tracer is launched.

Use this window to check or modify the amount of stack used on a per-function basis.

Figure A-45. Stack Usage Tracer Window

The following items are explained here.

- [How to open]

- [Description of each area]

- [Caution]

[How to open]

- From the [Tool] menu, select [Startup Stack Usage Tracer].

Stack Usage Tracer window

(3)

(1)

(2)

(4)

(5)

CubeSuite Ver.1.30 APPENDIX A WINDOW REFERENCE

R20UT0005EJ0100 Rev.1.00 Page 309 of 573
Jul 01, 2010

[Description of each area]

(1) Menu bar

This area consists of the following menu items.

(a) [File] menu

Remark The output result file can only be saved in text format (*.txt) or CSV format (*.csv).

(b) [View] menu

Save Call Chain with Maximum

Stack from Selected Function...

Opens the Save As dialog box for saving the call chain with the greatest total

stack size (including the stack size of callee functions) of the function

selected in the tree display area / list display area to an output result file.

Functions in the same manner as the button.

Save All Call Chains from Selected

Function...

Opens the Save As dialog box for saving all call chains of the function

selected in the tree display area / list display area to an output result file.

Save Call Chain with Maximum

Stack from Every Root...

Opens the Save As dialog box for saving the call chain of the function dis-

played in the tree display area with the largest total stack size to an output

result file.

Save All Call Chains from Every

Root...

Opens the Save As dialog box for saving all call chains of all functions dis-

played in the tree display area to an output result file.

Load Stack Size Specification

File...

Opens the Open dialog box for loading a stack size specification file.

Save Stack Size Specification

File...

Opens the Save As dialog box for saving the results of the operations made

in the Adjust Stack Size dialog box (e.g. changes to function information) to

a stack size specification file.

Exit sk78k0 Closes this window.

Recalculate Stack Size Recalculates the total stack size.

Functions in the same manner as the button.

Stop Forcibly stop the action of the stack usage tracer (e.g. recalculating the total

stack size).

Functions in the same manner as the button.

Sort List by Changes the function display order in the list display area.

Function Name Sort by function name.

Icon Type Sort by icon display priority (High: to Low:

).

Stack Size Sort by total stack size.

Frame Size Sort by frame size.

Additional Margin Sort by additional margin.

File Name Sort by file name.

CubeSuite Ver.1.30 APPENDIX A WINDOW REFERENCE

R20UT0005EJ0100 Rev.1.00 Page 310 of 573
Jul 01, 2010

(c) [Option] menu

(d) [Help] menu

(2) Toolbar

This area consists of the following buttons.

Stack Size Unknown / Adjusted

Function Lists...

Opens the Stack Size Unknown / Adjusted Function Lists dialog box to

display a list of functions with unknown frame size, functions for which

information (additional margin, recursion depth, or callee functions) has

been modified, and functions for which the stack usage tracer has forcibly

set an additional margin.

Adjust Stack Size... Opens the Adjust Stack Size dialog box to change the information (additional

margin, recursion depth, and callee functions) for the function selected in the

tree display area / list display area.

This dialog box is used to change the information (additional margin,

recursion depth, and callee functions) for the selected function.

Functions in the same manner as the button.

Reset Function Resets the information (additional margin, recursion depth, and callee func-

tions) for the selected function to the default values.

This button will be grayed out if all the information for the selected function

has the default values.

Reset All Functions Resets the information (additional margin, recursion depth, and callee func-

tions) for all functions to the default values.

This button will be grayed out if all the information for all functions has the

default values.

sk78k0 Help Displays the help of this window.

Functions in the same manner as the button.

About sk78k0... Opens the Version Information dialog box of the stack usage tracer.

Opens the Save As dialog box for saving the call chain with the greatest total

stack size (including the stack size of callee functions) of the function selected in

the tree display area / list display area to an output result file.

Functions in the same manner as when [Save Call Chain with Maximum Stack

from Selected Function...] is selected from the [File] menu.

Recalculates the total stack size. Function in the same manner as when [Recal-

culate Stack Size] is selected from the [View] menu.

Forcibly stop the action of the stack usage tracer (e.g. recalculating the total

stack size).

Functions in the same manner as when [Stop] is selected from the [View] menu.

Opens the Adjust Stack Size dialog box to change the information (additional

margin, recursion depth, and callee functions) for the function selected in the tree

display area / list display area.

Functions in the same manner as when [Adjust Stack Size...] is selected from the

[Option] menu.

Displays the help of this window.

Functions in the same manner as when [sk78k0 Help] is selected from the [Help]

menu.

CubeSuite Ver.1.30 APPENDIX A WINDOW REFERENCE

R20UT0005EJ0100 Rev.1.00 Page 311 of 573
Jul 01, 2010

(3) Tree display area

The calling relationship of the functions is shown in tree format.

The table below shows the meaning of the icon displayed to the left of the string representing the function name.

Remark The display priority for icons is from High: to Low: .

(a) Context menu

Select a function in this area, and then right click with the mouse. The context menu described below appears.

(4) List display area

Display the stack information for a single function (function name, total stack size, frame size, additional margin,

and file name) in list format.

The table below shows the meaning of the icon displayed to the left of the string representing the function name.

(a) Context menu

Select a function in this area, and then right click with the mouse. The context menu described below appears.

The function directly called by a given function with the largest total stack size

Information (additional margin, recursion depth, or callee functions) has been

modified via the Adjust Stack Size dialog box or a stack size specification file

Recursive function

The stack usage tracer has not acquired any stack information for this function

Other than the above

Adjust Stack Size... Opens the Adjust Stack Size dialog box to change the information (additional

margin, recursion depth, and callee functions) for the selected function.

Function Displays the function name.

Note that this area will only display functions from level 1 (the selected function)

and level 2 (functions called directly by the selected function).

Total Stack Size Displays the total stack size (including the stack size of callee functions; in bytes).

Frame Size Displays the frame size (not including the stack size of callee functions; in bytes).

Additional Margin Displays the value to mandatorily added to frame size (in bytes).

File Displays the file name.

The function directly called by a given function with the largest total stack size

Information (additional margin, recursion depth, or callee functions) has been

modified via the Adjust Stack Size dialog box or a stack size specification file

Recursive function

The stack usage tracer has not acquired any stack information for this function

Other than the above

Adjust Stack Size... Opens the Adjust Stack Size dialog box to change the information (additional

margin, recursion depth, and callee functions) for the selected function.

CubeSuite Ver.1.30 APPENDIX A WINDOW REFERENCE

R20UT0005EJ0100 Rev.1.00 Page 312 of 573
Jul 01, 2010

(5) Message display area

Display operation logs of the stack usage tracer.

[Caution]

- Assembly files

The stack usage tracer calculates total stack size by collecting information from the assembly files output by the C

compiler as intermediate files, with debugging information added. As a consequence, in order to obtain stack

information at the function level using the stack usage tracer, it is necessary to configure the compiler options to

output "Assembly files with debugging information".

- Timing of static analysis

The stack usage tracer performs static analysis upon startup, and displays the calling relationship between func-

tions and function-level stack information in its main window. Consequently, changes to the calling relationship

between functions or function-level stack information (e.g. adding files, changing compiler options, or modifying

the source code) will not be reflected in this window.

- Functions analyzed

The stack usage tracer only analyzes functions contained in assembly files with debugging information output by

the C compiler as intermediate files, and in library files provided by the build tool. Consequently, functions in

assembly files written by the user and library files created by the user are not analyzed. For this reason, the infor-

mation for these files must be set using the Adjust Stack Size dialog box.

- Icon display colors

Display priorities (High: to Low:) are assigned to icons displayed in the tree display area/list display area

in the window. Consequently, you must be aware that even if the icon (function called directly by same func-

tion with greatest total stack size) is displayed, information with relatively low priority, such as the icon (frame

size unknown) will be hidden by the GUI.

- Determining the maximum stack size

When the stack usage tracer searches for the path with the largest stack size, it assumes that functions that are

not analyzed have a stack size of zero. Consequently, when determining the maximum stack size, you must make

sure that there are no functions under [Unknown Functions] in the Stack Size Unknown / Adjusted Function Lists

dialog box.

- Tree display for recursive functions

The window's tree display area only displays up to the second call of a recursive function. Consequently, the third

and subsequent calls are hidden.

Sort List by Changes the function display order in the list display area.

Function Name Sort by function name.

Icon Type Sort by icon display priority (High: to Low:

).

Stack Size Sort by total stack size.

Frame Size Sort by frame size.

Additional Margin Sort by additional margin.

File Name Sort by file name.

CubeSuite Ver.1.30 APPENDIX A WINDOW REFERENCE

R20UT0005EJ0100 Rev.1.00 Page 313 of 573
Jul 01, 2010

- Library functions bsearch, exit, and qsort

The stack usage tracer treats bsearch, exit, and qsort as unknown functions, even if they are in a library file pro-

vided by the build tool. Consequently, if you are using these functions, you must set the relevant information (e.g.

recursion depth and callee functions) in the Adjust Stack Size dialog box.

- Callee functions

The stack usage tracer only allows the following types of "callee functions" to be added in the Adjust Stack Size

dialog box: functions contained in C source files, and functions that are explicitly called (not called using a pointer).

Consequently, the [All Functions] section of the Adjust Stack Size dialog box only displays functions meeting the

above conditions.

- Functions called by multiple functions

The stack usage tracer treats the stack information of functions called by multiple functions as unique. Conse-

quently, it is not possible to change the stack information for such functions depending on which function is calling

them.

Example If you select function sub called by func1 in the tree display area and open the Adjust Stack Size dialog

box, the changes are reflected in sub called by func2 as well.

- ASM statements in C source

If C source contains ASM statements, the stack usage tracer may output the following message: "W9432 : Illegal

format in file (path name : line number)". If this occurs, fix the problem by disabling the code in question using #if

declarations or the like, or commenting it out.

int sub (int i);

void func1 (void);

void func2 (void);

void main (void) {

 func1 ();

 func2 ();

}

int sub (int i) {

 i++;

 return (i);

}

void func1 (void) {

 int ret, i = 0;

 ret = sub (i);

}

void func2 (void) {

 int ret, i = 100;

 ret = sub (i);

}

CubeSuite Ver.1.30 APPENDIX A WINDOW REFERENCE

R20UT0005EJ0100 Rev.1.00 Page 314 of 573
Jul 01, 2010

- Calls to indirectly recursive functions

If a recursion path consists of multiple functions, the stack size may be calculated incorrectly.

Example Assuming that the frame size of recursive functions "func_rec1/func_rec2" is 8 bytes, if the recursion

depth of "func_rec1/func_rec2" is set to 3 in the Adjust Stack Size dialog box, then although the stack

size of func1 will be calculated correctly as "(8 + 24) * 3", the stack size of func2 will be calculated as "8

* 3", ignoring calls to func_rec1.

void func_rec1 (int i);

void func_rec2 (int i);

void func1 (void);

void func2 (void);

void main (void) {

 func1 ();

 func2 ();

}

void func_rec1 (int i) {

 func_rec2 (i);

}

void func_rec2 (int i) {

 if (i) {

 func_rec1 (i - 1);

 }

}

void func1 (void) {

 func_rec1 (2);

}

void func2 (void) {

 func_rec2 (2);

}

CubeSuite Ver.1.30 APPENDIX A WINDOW REFERENCE

R20UT0005EJ0100 Rev.1.00 Page 315 of 573
Jul 01, 2010

This dialog box is used to display a list of functions for which the stack usage tracer could not obtain stack information;

functions for which information (additional margin, recursion depth, and callee functions) was changed intentionally, and

functions for which the stack usage tracer forcibly set an additional margin.

Figure A-46. Stack Size Unknown / Adjusted Function Lists Dialog Box

The following items are explained here.

- [How to open]

- [Description of each area]

- [Function buttons]

[How to open]

- On the Stack Usage Tracer window, select the [Stack Size Unknown / Adjusted Function Lists...] from the [Option]

menu.

[Description of each area]

(1) [Unknown Functions]

Display a list of "unknown functions" -- functions for which the stack usage tracer could not obtain stack informa-

tion. This area generally displays unknown functions in the following format.

function name (total stack size : frame size)

Remarks 1. If the unknown function is written in assembly language, then the underscore (_) pre-appended to

the symbol name is deleted, and the name is surrounded by square brackets ([]); this is displayed

as the function name.

2. If the unknown function is a recursive function, then an asterisk (*) is appended to the end of the

function name.

Stack Size Unknown / Adjusted Function Lists dialog box

[Function buttons](1)

(3)

(2)

CubeSuite Ver.1.30 APPENDIX A WINDOW REFERENCE

R20UT0005EJ0100 Rev.1.00 Page 316 of 573
Jul 01, 2010

3. If the unknown function includes functions called indirectly using function pointers, then an amper-

sand (&) is appended to the end of the function name.

4. If the unknown function is a static function, then "file name#" is appended to the end of the function

name.

(2) [Adjusted Functions]

Display a list of functions for which information (additional margin, recursion depth, or callee functions) has been

modified intentionally via the Adjust Stack Size dialog box or a stack size specification file. This area generally dis-

plays modified ("adjusted") functions in the following format.

function name (total stack size : frame size : additional margin)

Remarks 1. If the adjusted function is written in assembly language, then the underscore (_) pre-appended to

the symbol name is deleted, and the name is surrounded by square brackets ([]); this is displayed

as the function name.

2. If the adjusted function is a recursive function, then an asterisk (*) is appended to the end of the

function name.

3. If the adjusted function includes functions called indirectly using function pointers, then an amper-

sand (&) is appended to the end of the function name.

4. If the adjusted function is a static function, then "file name#" is appended to the end of the function

name.

5. If the only action performed in the Adjust Stack Size dialog box was adding "callee functions", then

the display format of this area will be as follows.

 function name (total stack size : frame size)

(3) [System Library Functions]

Display a list of automatically configured system library functions for which the frame size is unknown, and the

stack usage tracer has forcibly set an additional margin. This area generally displays modified system library func-

tions in the following format.

function name (total stack size : ? : additional margin)

Remarks 1. The underscore (_) pre-appended to the symbol name is deleted, and the name is surrounded by

square brackets ([]); this is displayed as the function name.

2. An appropriate frame size is added to corresponding system library functions in the stack usage

tracer's database as additional margin.

[Function buttons]

Button Function

Close Closes this dialog box.

Adjust Size... Opens the Adjust Stack Size dialog box to change the information (additional margin,

recursion depth, and callee functions) for the function selected in the [Unknown Func-

tions]/[Adjusted Functions]/[System Library Functions].

Help Displays the help of this dialog box.

CubeSuite Ver.1.30 APPENDIX A WINDOW REFERENCE

R20UT0005EJ0100 Rev.1.00 Page 317 of 573
Jul 01, 2010

This dialog box is used to change the information (additional margin, recursion depth, and callee functions) for the

selected function.

Figure A-47. Adjust Stack Size Dialog Box

The following items are explained here.

- [How to open]

- [Description of each area]

- [Function buttons]

[How to open]

- On the tree display area/list display area of the Stack Usage Tracer window, select a function, and then select

[Adjust Stack Size...] from the [Option] menu.

- On the tree display area/list display area of the Stack Usage Tracer window, select a function, and then click the

 button from toolbar.

- On the tree display area/list display area of the Stack Usage Tracer window, select a function, and then select

[Adjust Stack Size...] from the context menu.

- On the [Unknown Functions]/[Adjusted Functions]/[System Library Functions] of the Stack Size Unknown /

Adjusted Function Lists dialog box, select a function, and then click the [Adjust Size...] button.

Adjust Stack Size dialog box

(1)

[Function buttons]
(2)

(3)

(4)

(5)

CubeSuite Ver.1.30 APPENDIX A WINDOW REFERENCE

R20UT0005EJ0100 Rev.1.00 Page 318 of 573
Jul 01, 2010

[Description of each area]

(1) [Function Name]

Display the function name of the selected function.

Remarks 1. If the selected function is written in assembly language or it is a system library function, then the

underscore (_) pre-appended to the symbol name is deleted, and the name is surrounded by

square brackets ([]); this is displayed as the function name.

2. If the selected function is a recursive function, then an asterisk (*) is appended to the end of the

function name.

3. If the selected function includes functions called indirectly using function pointers, then an amper-

sand (&) is appended to the end of the function name.

4. If the selected function is a static function, then "file name#" is appended to the end of the function

name.

(2) [Frame Size]

Display the frame size (not including the stack size of callee functions; in bytes) of the selected function.

Remark If the frame size is not known, then a question mark (?) is displayed; if it is over the maximum limit, then

"SIZEOVER" is displayed.

(3) [Additional Margin]

Specify the value to forcibly add to the selected function (in bytes), either as a decimal number, or as a hexadeci-

mal number starting with "0x" or "0X".

(4) [Recursion Depth]

Specify the recursion depth, either as a decimal number, or as a hexadecimal number starting with "0x" or "0X".

Remark If the selected function is not a recursive function, then this item will be grayed out.

(5) [Callee Function List (for Indirect Call)] area

(a) [Callee Functions]

Display a list of "callee" functions called by the selected function (functions called indirectly using a function

pointer or the like).

This area generally displays callee functions in the following format.

function name (total stack size : frame size : additional margin)

Remarks 1. If the callee function is written in assembly language or it is a system library function, then the

underscore (_) pre-appended to the symbol name is deleted, and the name is surrounded by

square brackets ([]); this is displayed as the function name.

2. If the callee function is a recursive function, then an asterisk (*) is appended to the end of the

function name.

3. If the callee function includes functions called indirectly using function pointers, then an amper-

sand (&) is appended to the end of the function name.

4. If the callee function is a static function, then "file name#" is appended to the end of the func-

tion name.

5. Functions added intentionally from [All Functions] by clicking the [Add] button are shown with a

plus sign (+) appended to the end of the function name.

CubeSuite Ver.1.30 APPENDIX A WINDOW REFERENCE

R20UT0005EJ0100 Rev.1.00 Page 319 of 573
Jul 01, 2010

(b) [All Functions]

Display a list of functions that can be added as functions called by the selected function ("callee functions").

This area generally displays functions that can be added in the following format.

function name (total stack size : frame size : additional margin)

Remarks 1. If the function that can be added is written in assembly language or it is a system library func-

tion, then the underscore (_) pre-appended to the symbol name is deleted, and the name is

surrounded by square brackets ([]); this is displayed as the function name.

2. If the function that can be added is a recursive function, then an asterisk (*) is appended to the

end of the function name.

3. If the function that can be added includes functions called indirectly using function pointers,

then an ampersand (&) is appended to the end of the function name.

4. If the function that can be added is a static function, then "file name#" is appended to the end

of the function name.

(c) Button area

Remark Functions can only be deleted from [Callee Functions] if the function name ends with a plus sign (+)

(functions added from [All Functions] intentionally by clicking [Add]).

[Function buttons]

Add Adds the function selected in [All Functions] to [Callee Functions].

If no function is selected in [All Functions], then this button will be grayed out.

Delete Deletes the function selected in [Callee Functions] from [Callee Functions].

If no function is selected in [Callee Functions], then this button will be grayed

out.

Button Function

OK Reflects the settings in the Stack Usage Tracer window / save them to the project file

(*.prj), then close the dialog.

Cancel Ignores the setting and closes this dialog box.

Reset Resets the information (additional margin, recursion depth, and callee functions) for

the selected function to the default values.

This button will be grayed out if all the information for the selected function has the

default values.

Help Displays the help of this dialog box.

CubeSuite Ver.1.30 APPENDIX A WINDOW REFERENCE

R20UT0005EJ0100 Rev.1.00 Page 320 of 573
Jul 01, 2010

This dialog box is used to open an existing stack size specification file.

Figure A-48. Open Dialog Box

The following items are explained here.

- [How to open]

- [Description of each area]

- [Function buttons]

[How to open]

- On the Stack Usage Tracer window, select [Load Stack Size Specification File...] from the [File] menu.

[Description of each area]

(1) [Look in] area

Select the folder containing the stack size specification file you wish to open.

(2) List of files

This area displays a list of files matching the conditions selected in [Look in] area and [Files of type] area.

(3) [File name] area

Specify the file name of the stack size specification file to open.

(4) [Files of type] area

Select the type of file to open.

[Function buttons]

Open dialog box

Stack Size Specification File (*.txt) Text format

Button Function

Open Opens the specified file.

Cancel Ignores the setting and closes this dialog box.

(3)

(1)

(2)

(4)
[Function buttons]

CubeSuite Ver.1.30 APPENDIX B COMMAND REFERENCE

R20UT0005EJ0100 Rev.1.00 Page 321 of 573
Jul 01, 2010

APPENDIX B COMMAND REFERENCE

This appendix describes the detailed specifications of each command included in the build tool.

B.1 C Compiler

The C compiler inputs the C source files written in the C language, converts them into machine language, and output as

an object module file. After compiling, the assembler source files are output so that the user can check and revise the

contents at the assembly language level.

Based on the compile options, the list files such as the preprocess list, cross reference list, and error list are output.

If there is a compiler error, the error message is output to the console and the error list file. If errors occur, various files

other than an error list file cannot be output.

Figure B-1. I/O Files of C Compiler

Remark If there are compiling errors, a variety of files other than the error list and cross reference files cannot be

output.

A temporary file is renamed to an appropriate name when the compiling ends without error. If compiling

ends in error, the temporary files are deleted.

Assembler source file Object module file Error list file

C source fileParameter file Include file

Preprocess list file

Cross reference list file

Temporary file

Function information file

C compiler

Variables information file

CubeSuite Ver.1.30 APPENDIX B COMMAND REFERENCE

R20UT0005EJ0100 Rev.1.00 Page 322 of 573
Jul 01, 2010

B.1.1 I/O files

The I/O files of the C Compiler are shown below.

See "3.1 C Compiler" for details about output files.

Table B-1. I/O Files of C Compiler

Notes 1. The file type of the variables information file cannnot be omitted.

The default file type of the variables information file output by the variables information file generator is “.vfi”.

2. The following 4 file types are available for error list files.

Type File Name Explanation Default File Type

Input files C source file - Source file written in the C language (user-

created file)

.c

Include file - File referenced from C source files

- File written in C language (user-created file)

.h

Parameter file - File created by the user when the user wants

to specify multiple commands that cannot be

specified in the command line when the C

compiler is run

.pcc

Variables information file - File which specifies the allocation destinations

of variables

NoneNote 1

Output files Object module file - Binary image file containing machine lan-

guage information, relocatable information

related to the location address of the machine

language, and symbol information

.rel

Assembler source file - ASCII image file of the object code output by

the compiler

.asm

Preprocess list file - List file output by the preprocess instructions

such as #include

- ASCII image file

.ppl

Cross reference list file - List file containing the function name and vari-

able name information used in the C source

file

.xrf

Error list file - List file containing the source file and compiler

error messagesNote 2
.cer

.her

.er

.ecc

I/O files Temporary file - Intermediate file for compiling

- The file is renamed to an appropriate name

when compiling ends without error and is

deleted when compiling ends in error.

$nn

(file name fixed)

Function information fileNote

3
- File specifying where the functions are allo-

cated to

fin

File Type Description

.cer Error list files with C source corresponding to *.c' files

(output by specifying the -se option)

CubeSuite Ver.1.30 APPENDIX B COMMAND REFERENCE

R20UT0005EJ0100 Rev.1.00 Page 323 of 573
Jul 01, 2010

3. Only devices with a memory bank installed

B.1.2 Functions

(1) Optimization method

Optimization is performed to create efficient object module files in the CA78K0.

The supported optimization methods are shown below.

Table B-2. Optimization Methods

.her Error list files with C source corresponding to *.h' files

(output by specifying the -se option)

.er Error list files with C source corresponding to files other than the above

(output by specifying the -se option)

.ecc Error list files without C source corresponding to all of the source files

(output by specifying the -e option)

Phase Contents Example

Syntax Ana-

lyzer

(a) Execute constant computa-

tions during compilation

a = 3 * 5 ; -> a = 15 ;

(b) True or false decision

based on partial evaluation

of a logical expression

0 && (a || b) -> 0

1 || (a && b) -> 1

(c) Offset calculations of point-

ers, arrays, etc.

Calculate the offsets during compilation.

Code Genera-

tor

(d) Register management Effectively use unused registers.

(e) Use the special instruc-

tions of the target CPU

a = a + 1 ; -> Use the inc instruction.

Use the move instruction to substitute array elements.

(f) Use short instructions If there is an instruction with the same operation, use

the instruction with fewer bytes.

“mov a, #0” or “xor a, a” (differs depending on the

device)

(g) Change long jump instruc-

tions to short jump instruc-

tions

The intermediate code that was output is reprocessed.

File Type Description

CubeSuite Ver.1.30 APPENDIX B COMMAND REFERENCE

R20UT0005EJ0100 Rev.1.00 Page 324 of 573
Jul 01, 2010

Remark (a) to (g), (n), and (o) are performed regardless of the optimization option specifications.

The optimizations in (h) to (m), (q), and (r) are performed when optimization options are specified.

Future support is planned for the optimizations in (h) to (m).

(p) is performed when there are register declarations in the C source. However, the saddr area is only

allocated when the -qr option is specified.

See “Optimization specification” about the optimization options.

Optimizer (h) Delete common partial

expressions.

a = b + c ; -> a = b + c ;

d = b + c + e ; d = a + e ;

(i) Move outside an instruc-

tion loop

for (i = 0 ; i < 10 ; i++)

{

 :

 a = b + c ;

 :

}

 ↓
a = b + c ;

for (i = 0 ; i < 10 ; i++)

{

 :

}

(j) Delete unused instructions a = a ; -> Delete

After “a = b;”, “a” is not referenced ->
Delete
(“a” is an automatic variable)

(k) Delete copies a = b ; -> c = b + d ;

c = a + d ;
“a” is not referenced any more (a is an automatic vari-

able).

(l) Change the calculation

order in an expression

The results of operations are left in the register, and

valid operations are executed first.

(m) Memory device allocation

(temporary variables)

Variables used locally are allocated to registers.

(n) Peephole optimization Replacement of special patterns

Example: a * 1 -> a , a + 0 -> a

(o) Decrease the strength of

the calculation

Example: a * 2 -> a + a , a << 1

(p) Memory device allocation

(register variables)

Data is allocated to rapidly accessible memory.

Example: Registers, saddr (only when the -qr option is

specified)

(q) Jump optimization (the -qj

option)

Consecutive jump instructions are combined into one

instruction.

(r) Register allocation (the -qv/

-qr/-rd/-rk/-rs options)

Variables are automatically allocated to registers.

Phase Contents Example

CubeSuite Ver.1.30 APPENDIX B COMMAND REFERENCE

R20UT0005EJ0100 Rev.1.00 Page 325 of 573
Jul 01, 2010

(2) ROMization function

ROMization is processing that locates in ROM the initial values for external variables that have initial values and

copies them to RAM when the system is executed.

The CA78K0 provides startup routines with the ROMization processes of programs. Using the startup routines

eliminates the problem of describing ROMization processes for startup.

See "CubeSuite 78K0 Coding" about the startup routines.

(a) How to store a program on ROM

During linking, the startup routine, object module files, and libraries are linked. The startup routine initializes

the object program.

<1> s0*.rel

These are startup routines (when stored on ROM)

The copy routine for the initialization data is included, and the beginning of the initial data is indicated.

The label "_@cstart" (symbol) is added to the start address.

<2> cl0*.lib

These are libraries attached to CA78K0.

These files include the following libraries.

- Runtime library

"@@" is appended to the start of the symbol for runtime library names. "_@" is appended to the

start of the symbol name for special library cstart, cprep, cdisp.

- Standard library

"_" is appended to the start of the symbol for standard library names.

<3> *.lib

These are libraries created by a user.

"_" is added to the symbol head.

Caution The CA78K0 provides various kinds of startup routines and libraries. See "CubeSuite 78K0

Coding" about startup routines and libraries.

B.1.3 Method for manipulating

(1) C compiler startup

The following two methods can be used to start up the C compiler.

(a) Startup from the command line

X:[path-name]>cc78k0[Δoption]Csource-file-name [Δoption]

X Current drive name

Path name Current folder name

cc78k0 Command name of the C compiler

CubeSuite Ver.1.30 APPENDIX B COMMAND REFERENCE

R20UT0005EJ0100 Rev.1.00 Page 326 of 573
Jul 01, 2010

Example To output the assembler source file (prime.asm) and perform optimization based on the prece-

dence of code size, describe as:

(b) Startup from a parameter file

Use the parameter file when the data required to start up the C compiler will not fit on the command line, or

when the same compile option is specified repeatedly each time compilation is performed.

To start up the assembler from a parameter file, specify the parameter file option (-f) on the command line.

Start up the C compiler from a parameter file as follows:

Remark Create the parameter file using an editor.

The rules for writing the contents of a parameter file are as follows:

- If the C source file name is omitted from the command line, only 1 C source file name can be specified in

the parameter file.

- The C source file name can also be written after the option.

- Write in the parameter file all compile options and output file names specified in the command line.

Example Create a parameter file k0main.pcc using an editor, and then start up the C compiler.

Option Enter detailed instructions for the operation of the C compiler.

When specifying two or more compile options, separate the options with a blank space.

Specify the suboption or file name after a compile option without inserting a blank, such

as a space. Uppercase characters and lowercase characters are not distinguished for

the compile options. See “B.1.4 Option” for details about compile options.

Enclose a path that includes a space in a pair of double quotation marks (" ").

C source file name File name of source to be compiled

Enclose the file name of a path that includes a space in a pair of double quotation

marks (" ").

cc78k0 -cF051144 prime.c -aprime.asm -qx3

X>cc78k0[ΔCsource-file-name]Δ-fparameter-file-name

-f Parameter file specification option

parameter-file-name A file which includes the data required to start up the C compiler

[[[Δ]option[Δoption] ... [Δ]Δ]] ...

; parameter file

-cF051144 k0main.c -e -a

C>cc78k0 -fk0main.pcc

CubeSuite Ver.1.30 APPENDIX B COMMAND REFERENCE

R20UT0005EJ0100 Rev.1.00 Page 327 of 573
Jul 01, 2010

(2) Execution start and end messages

(a) Execution start message

When the C compiler is started up, an execution startup message appears on the display.

(b) Execution end message

If it detects no compile errors resulting from the C compiler, the C compiler outputs the following message to

the display and returns control to the host operating system.

If it detects a compile errors resulting from the C compiler, the C compiler outputs the error number to the dis-

play and returns control to the host operating system.

If the C compiler detects a fatal error during compilation which makes it unable to continue compiling process-

ing, the C compiler outputs a message to the display, cancels compilation and returns control to the host oper-

ating system.

Example A non-existent compile option is specified.

78K0 C Compiler Vx.xx [xx xxx xxxx]

 Copyright(C) NEC Electronics Corporation xxxx

Target chip : uPD780xx

Device file : Vx.xx

Compilation complete, 0 error(s) and 0 warning(s) found.

prime.c(18) : CC78K0 warning W0745 : Expected function prototype

prime.c(20) : CC78K0 warning W0745 : Expected function prototype

prime.c(26) : CC78K0 warning W0622 : No return value

prime.c(37) : CC78K0 warning W0622 : No return value

prime.c(44) : CC78K0 warning W0622 : No return value

Target chip : uPD780xx

Device file : Vx.xx

Compilation complete, 0 error(s) and 5 warning(s) found.

C>cc78k0 k0main.c –m

78K0 C Compiler Vx.xx [xx xxx xxxx]

 Copyright(C) NEC Electronics Corporation xxxx

CC78K0 error F0018 : Option is not recognized '–m'

Please enter 'CC78K0--' , if you want help messages.

Program aborted.

CubeSuite Ver.1.30 APPENDIX B COMMAND REFERENCE

R20UT0005EJ0100 Rev.1.00 Page 328 of 573
Jul 01, 2010

In the above example, a non-existent compile option is specified. An error occurs and the C com-

piler aborts the compilation.

(3) Set options in CubeSuite

This section describes how to set compile options from CubeSuite.

On CubeSuite's Project Tree panel, select the Build Tool node. Next, select [Property] from the [View] menu. The

Property panel opens. Next, select the [Compile Options] tab.

You can set the various compile options by setting the necessary properties in this tab.

Figure B-2. Property Panel: [Compile Option] Tab

CubeSuite Ver.1.30 APPENDIX B COMMAND REFERENCE

R20UT0005EJ0100 Rev.1.00 Page 329 of 573
Jul 01, 2010

B.1.4 Option

(1) Types

The compile options are detailed instructions for the operation of the C compiler.

The types and explanations for compile options are shown below.

Table B-3. Compile Options

Classification Option Description

Device type specification -c Specifies the type of the target device.

Object module file creation spec-

ification

-o Specifies the output of an object module file.

-no

Memory assignment specifica-

tion

-r Specifies how to assign a program to the memory.

-nr

-rd Specifies to assign an external variable/external static vari-

able automatically to the saddr area.
-nr

-rk Specifies to assign a function argument and auto variable

(except for the static auto variable) automatically to the saddr

area.
-nr

-rs Specifies to assign an static auto variable automatically to

the saddr area.
-nr

Optimization specification -q Specifies optimization types.

-nq

Debug information output speci-

fication

-g Specifies the output of the C source level debugging informa-

tion.
-ng

Preprocess list file creation

specification

-p Specifies the output of the preprocess list file.

-k Specifies the processing for the preprocess list.

Preprocess specification -d Performs macro definitions.

-u Invalidates macro definitions.

-i Reads an include file from a specified folder.

Assembler source file creation

specification

-a Specifies the output of the assembler source file.

-sa

Error list file creation specifica-

tion

-e Specifies the output of the error list file.

-se

Cross reference list file creation

specification

-x Specifies the output of the cross reference list file.

CubeSuite Ver.1.30 APPENDIX B COMMAND REFERENCE

R20UT0005EJ0100 Rev.1.00 Page 330 of 573
Jul 01, 2010

(2) Precedence

For the compile options shown in the following table, the precedence is explained in a case where two or more

options along the vertical axis and options along the horizontal axis are specified at the same time.

Table B-4. Precedence of Compile Options

List format specification -lw Specifies the number of characters per line in each list file.

-ll Specifies the number of lines per page in each list file.

-lt Specifies the number of expansion characters of a tab in

each list file.

-lf Inserts a form feed code at the end of each list file.

-li Adds the C source in the include file to the assembler source

file with C source comments.

Warning output specification -w Specifies whether or not a warning message is output to the

console.

Execution state display specifi-

cation

-v Specifies whether the execution status of compilation is out-

put to the console.
-nv

Parameter file specification -f Inputs the input file name and options from a specified file.

Temporary file creation folder

specification

-t Creates a temporary file in the specified drive and folder.

Function expansion specification -z Enables the processing for extended functions.

-nz

Device file search path specifica-

tion

-y Specifies paths that search device files.

Static model specification -sm Specifies that the object is a static model or normal model.

Common object specification -common Specifies the output of an object common to the 78K0.

Variables information file specifi-

cation

-ma Specifies a variables information file.

Function information file specifi-

cation

-mf Specifies that the functions are allocated to a code block

larger than 64 KB using the file.

Help specification -- Outputs a help message on the display.

-?

-h

-no -p -np -d -u -a -e -x -sa

-r NG

-q NG

-g NG

-k Δ NG

-d OK

-u OK

-sa NG

Classification Option Description

CubeSuite Ver.1.30 APPENDIX B COMMAND REFERENCE

R20UT0005EJ0100 Rev.1.00 Page 331 of 573
Jul 01, 2010

- Location marked with NG

If an option in the horizontal axis is specified, the option in the vertical axis is invalid.

Example The -rd and -g options are invalid.

- Location marked with Δ
If an option in the horizontal axis is not specified, the option in the vertical axis is invalid.

Example The -p option is specified, so the -k option is valid.

- Location marked with OK

The last option on the horizontal or vertical axis to be specified takes precedence.

Example The -d option is specified last, so the -u option is invalid and the -d option takes precedence.

- Blank area

If an option in the horizontal axis is specified, the option in the vertical axis is valid.

As with the -o/-no options, if two options for which "n" can be added to the beginning of the option name are speci-

fied at the same time, the option specified last is valid.

Example The -no option is specified after the -o option, so the -o option is invalid and the -no option is valid.

Options not described in "Table B-4. Precedence of Compile Options" are not particularly affected by other

options. However, if the help specification option (--/-?-h) is specified, all of other option specifications become

invalid.

-lw Δ Δ Δ Δ

-ll Δ Δ Δ Δ

-lt Δ Δ Δ Δ

-lf Δ Δ Δ Δ

-li Δ

C>cc78k0 -cF051144 -e sample.c -no -rd -g

C>cc78k0 -cF051144 -e sample.c -p -k

C>cc78k0 -cF051144 -e sample.c -utest -dtest=1

C>cc78k0 -cF051144 -e sample.c -o -no

-no -p -np -d -u -a -e -x -sa

CubeSuite Ver.1.30 APPENDIX B COMMAND REFERENCE

R20UT0005EJ0100 Rev.1.00 Page 332 of 573
Jul 01, 2010

The device type specification option is as follows.

- -c

-c

[Description format]

- Interpretation when omitted

Cannot be omitted.

[Function]

- The -c option specifies the target device for performing compilation.

[Application]

- Be sure to specify the -c option. The CA78K0 performs compilation for the target device and generates an object

code for that device.

[Description]

- See "CubeSuite Operating Precautions" for the target devices that can be specified by the -c option and the corre-

sponding device type.

- When CA78K0 is used, device files are required.

[Cautions]

- The -c option cannot be omitted. However, if the following description is in the C source file, the specification from

the command line can be omitted.

- If different devices are specified in the C source file and command line, the device in the command line takes pre-

cedence.

[Example of use]

- To specify the uPD78F0511 as the target device in the command line, describe as:

Device type specification

-cdevice-type

#pragma pc (device-type)

C>cc78k0 -cF051144 prime.c

CubeSuite Ver.1.30 APPENDIX B COMMAND REFERENCE

R20UT0005EJ0100 Rev.1.00 Page 333 of 573
Jul 01, 2010

- To specify the uPD78F0511 as the target device in the C source file, describe as:

Therefore, the target device specification can be omitted from the command line.

- Specify different devices in the C source file (prime.c) and the command line, and then start up the C compiler.

To specify the uPD78F0511 as the target device in the C source file (prime.c), describe as:

Next, specify the uPD78F0511 as the target device in the command line, and then start up the C compiler.

The target device specification in the command line takes precedence and compilation is executed as follows.

#pragma pc (F051144)

#define TRUE 1

#define FALSE 0

#define SIZE 200

char mark [SIZE + 1] ;

void main (void) {

 int i , prime , k , count ;

 :

}

C>cc78k0 prime.c

#pragma pc (F051144)

#define TRUE 1

#define FALSE 0

#define SIZE 200

char mark [SIZE + 1] ;

void main (void) {

 int i , prime , k , count ;

 :

}

C>cc78k0 -c014 prime.c

CubeSuite Ver.1.30 APPENDIX B COMMAND REFERENCE

R20UT0005EJ0100 Rev.1.00 Page 334 of 573
Jul 01, 2010

78K0 C Compiler Vx.xx [xx xxx xxxx]

 Copyright(C) NEC Electronics Corporation xxxx, xxxx

sample\prime.c (1) : CC78K0 warning W0832 : Duplicated chip specifier

sample\prime.c (18) : CC78K0 warning W0745 : Expected function prototype

sample\prime.c (20) : CC78K0 warning W0745 : Expected function prototype

sample\prime.c (26) : CC78K0 warning W0622 : No return value

sample\prime.c (37) : CC78K0 warning W0622 : No return value

sample\prime.c (44) : CC78K0 warning W0622 : No return value

Target chip : uPD78014

Device file : Vx.xx

Compilation complete, 0 error(s) and 6 warning(s) found.

CubeSuite Ver.1.30 APPENDIX B COMMAND REFERENCE

R20UT0005EJ0100 Rev.1.00 Page 335 of 573
Jul 01, 2010

The object module file creation specification options are as follows.

- -o/-no

-o/-no

[Description format]

- Interpretation when omitted

-oinput-file-name.rel

[Function]

- The -o option specifies the output of an object module file. It also specifies the location to which it is output and the

file name.

- The -no option specifies not to output an object module file.

[Application]

- Use the -o option to specify the location to which an object module file is output or to change its file name.

- Specify the -no option when performing compilation only to output an assembler source file. This will shorten com-

pilation time.

[Description]

- If the output file name is omitted when the -o option is specified, the output file name will be "input-file-name.rel".

- If the extension for the output file name is omitted when the -o option is specified, the output file name will be "out-

put-file-name.rel".

- Even if the -o option is specified, when a compilation error occurs, the object module file cannot be output.

- If the drive name is omitted when the -o option is specified, the object module file will be output to the current drive.

- If both the -o and -no options are specified at the same time, the option specified last takes precedence.

[Cautions]

- To change the output destination when using CubeSuite, on the Property panel, from the [Link Options] tab, in the

[Output File] category, specify the output destination.

- When setting an individual compile option, it is also possible to change the name of the output file.From the

[Individual Compile Options] tab, in the [Output File] category, specify the file name.

[Example of use]

- The -no option that is specified first is ignored, the -o option that is specified last is valid, so the object module file

(prime.rel) will be output.

Object module file creation specification

-o[output-file-name]

-no

C>cc78k0 -cF051144 prime.c -no -o

CubeSuite Ver.1.30 APPENDIX B COMMAND REFERENCE

R20UT0005EJ0100 Rev.1.00 Page 336 of 573
Jul 01, 2010

The memory assignment options are as follows.

- -r/-nr

- -rd/-nr

- -rk/-nr

- -rs/-nr

-r/-nr

[Description format]

- Interpretation when omitted

-nr

[Function]

- The -r option specifies how to assign a program to the memory.

- The -nr option disables the -r option.

[Application]

- Use the -r option to specify how to assign a program to the memory.

[Description]

- The process types that can be specified by the -r option are shown below.

Process type specification cannot be omitted. A fatal error (F0012) occurs if the specification is omitted.

Remark Two or more process types can be specified.

Memory assignment specification

-rprocess-type (two or more types can be specified)

-nr

Process Type Function

b Assigns a bit field from the most significant bit (MSB).

d[n][m]

(n = 1, 2, 4)

Assigns an external variable/external static variable (except for the const-type variable) automati-

cally to the saddr area, regardless of whether there is a sreg declaration or not.

See "-rd/-nr" for details.

k[n][m]

(n = 1, 2, 4)

In a static model, assigns a function argument and auto variable (except for the static auto variable)

automatically to the saddr area, regardless of whether there is a sreg declaration or not.

See "-rk/-nr" for details.

s[n][m]

(n = 1, 2, 4)

Assigns a static auto variable automatically to the saddr area, regardless of whether sreg has been

declared.

See "-rs/-nr" for details.

c Does not insert any align data to allocate a 2-byte or more structure member. In other words, per-

forms packing structure.

CubeSuite Ver.1.30 APPENDIX B COMMAND REFERENCE

R20UT0005EJ0100 Rev.1.00 Page 337 of 573
Jul 01, 2010

- If the -nr option is specified, the process types are interpreted as follows.

[Example of use]

- To assign the external variable or external static variable, and static auto variable automatically to the saddr area,

regardless of whether sreg has been declared, describe as:

Process Type Function

b Assigns a bit field from the least significant bit (LSB).

d Does not automatically assign any variable to the saddr area.

k Does not automatically assign any variable to the saddr area.

s Does not automatically assign any variable to the saddr area.

c Does not perform packing structure.

C>cc78k0 -cF051144 -rds

CubeSuite Ver.1.30 APPENDIX B COMMAND REFERENCE

R20UT0005EJ0100 Rev.1.00 Page 338 of 573
Jul 01, 2010

-rd/-nr

[Description format]

- Interpretation when omitted

-nr

[Function]

- The -rd option specifies to assign an external variable/external static variable automatically to the saddr area.

- The -nr option disables the -rd option.

[Application]

- Use the -rd option to assign an external variable/external static variable (except for the const-type variable) auto-

matically to the saddr area, regardless of whether there is an sreg declaration or not.

[Description]

- Variables to be assigned change depending on the value of n and the specification of "m".

- The sreg-declared variable is assigned to the saddr area regardless of the -rd option specification.

- The variable that is referenced by an extern declaration is processed as are to be assigned to the saddr area.

- The variable assigned to the saddr area by specifying this option is handled in a similar way to a sreg variable.

[Example of use]

- To assign the char or unsigned char type external variable or external static variable automatically to the saddr

area, regardless of whether sreg has been declared, describe as:

-rd[n][m] (n = 1, 2, 4)

-nr

Specification of n, "m" Variable Types to Be Assigned to saddr Area

n - When n = 1: char, unsigned char

- When n = 2: char, unsigned char, short, unsigned short, int, unsigned int, enum, data pointer,

function pointer (when the bank function (-mf) is not used)

- When n = 4: char, unsigned char, short, unsigned short, int, unsigned int, enum, long,

unsigned long, all pointers

m Structure, union, array

Omitted All variables

C>cc78k0 -cF051144 -rd1

CubeSuite Ver.1.30 APPENDIX B COMMAND REFERENCE

R20UT0005EJ0100 Rev.1.00 Page 339 of 573
Jul 01, 2010

-rk/-nr

[Description format]

- Interpretation when omitted

-nr

[Function]

- The -rk option specifies to assign a function argument and auto variable (except for the static auto variable) auto-

matically to the saddr area.

- The -nr option disables the -rk option.

[Application]

- In a static model, use the -rk option to assign a function argument and auto variable (except for the static auto vari-

able) automatically to the saddr area, regardless of whether there is an sreg declaration or not.

[Description]

- Variables to be assigned change depending on the value of n and the specification of "m".

- The register-declared variable cannot be assigned.

- The sreg-declared variable is assigned to the saddr area regardless of the -rk option specification.

- The function argument and auto variable assigned to the saddr area by specifying this option is handled in a simi-

lar way to the sreg-declared function argument and auto variable.

[Cautions]

- If the -sm option is specified, the -rk option is valid. If the -sm option is not specified, the compiler outputs the

warning message and the -rk option is ignored.

[Example of use]

- To assign a char or unsigned char type function argument and auto variable (except for the static auto variable)

automatically to the saddr area, regardless of whether there is an sreg declaration or not, describe as:

-rk[n][m] (n = 1, 2, 4)

-nr

Specification of n, "m" Variable Types to Be Assigned to saddr Area

n - When n = 1: char, unsigned char

- When n = 2: char, unsigned char, short, unsigned short, int, unsigned int, enum, data pointer,

function pointer (when the bank function (-mf) is not used)

- When n = 4: char, unsigned char, short, unsigned short, int, unsigned int, enum, long,

unsigned long, all pointers

m Structure, union, array

Omitted All variables

CubeSuite Ver.1.30 APPENDIX B COMMAND REFERENCE

R20UT0005EJ0100 Rev.1.00 Page 340 of 573
Jul 01, 2010

C>cc78k0 -cF051144 -rk1

CubeSuite Ver.1.30 APPENDIX B COMMAND REFERENCE

R20UT0005EJ0100 Rev.1.00 Page 341 of 573
Jul 01, 2010

-rs/-nr

[Description format]

- Interpretation when omitted

-nr

[Function]

- The -rs option specifies to assign an static auto variable automatically to the saddr area.

- The -nr option disables the -rs option.

[Application]

- Use the -rs option to assign a static auto variable automatically to the saddr area, regardless of whether sreg has

been declared.

[Description]

- Variables to be assigned change depending on the value of n and the specification of "m".

- The sreg-declared variable is assigned to the saddr area regardless of the -rs option specification.

- The variable assigned to the saddr area by specifying this option is handled in a similar way to a sreg-declared

auto variable.

[Example of use]

- To assign the char or unsigned char type static auto variable automatically to the saddr area, regardless of whether

sreg has been declared, describe as:

-rs[n][m] (n = 1, 2, 4)

-nr

Specification of n, "m" Variable Types to Be Assigned to saddr Area

n - When n = 1: char, unsigned char

- When n = 2: char, unsigned char, short, unsigned short, int, unsigned int, enum, data pointer,

function pointer (when the bank function (-mf) is not used)

- When n = 4: char, unsigned char, short, unsigned short, int, unsigned int, enum, long,

unsigned long, all pointers

m Structure, union, array

Omitted All variables

C>cc78k0 -cF051144 -rs1

CubeSuite Ver.1.30 APPENDIX B COMMAND REFERENCE

R20UT0005EJ0100 Rev.1.00 Page 342 of 573
Jul 01, 2010

The optimization specification options are as follows.

- -q/-nq

-q/-nq

[Description format]

- Interpretation when omitted

-qcjlvw

[Function]

- The -q option specifies to call the optimization phase to generate efficient objects.

- The -nq option disables the -q option.

[Application]

- Use the -q option to improve the execution speed of the objects and reduce the code size.

If you want to perform multiple optimizations simultaneously when the -q option is specified, specify the optimiza-

tion types consecutively. See [Description] for details.

[Description]

- The optimization types that can be specified by the -q option are shown below.

Optimization specification

-q[optimization-type] (two or more types can be specified)

-nq

Optimization Type Process Description

No specification It is assumed that the -qcjlvw has been specified.

u Regards the char with no qualifier as a unsigned char to improve code efficiency.

c Performs calculations including char without sign extension.

Calculation Target Calculation Result

unsigned char type variable and unsigned char type variable unsigned char type

unsigned char type variable and signed char type variable unsigned char type

signed char type variable and signed char type variable signed char type

Constants from -128 to 255 and unsigned char type variable unsigned char type

Constants from -128 to 127 and signed char type variable signed char type

Constants from 0 to 255 with suffix U and signed char type vari-

able

unsigned char type

CubeSuite Ver.1.30 APPENDIX B COMMAND REFERENCE

R20UT0005EJ0100 Rev.1.00 Page 343 of 573
Jul 01, 2010

Note When the -qc option is specified in the CC78K0, the types of constants and character constants are handled

as follows.

r[n]

(n = 1, 2)

Adds a register variable to a register and assigns it to the saddr area.

The scope assigning a register variable differs depending on the value of n as follows. If n is

omitted, it is interpreted as n = 2.

- When n = 1: Assigns norec argument and auto variable to the saddr area.

- When n = 2: Assigns norec argument, auto variable, and register variable to the saddr area.

j Optimizes branch instructions.

x[n]

(n = 1 - 4)

Assigns the optimization options automatically according to the precedence of speed/code size.

The assigned option differs depending on the value of n as follows. When n is omitted, it is inter-

preted as n = 2.

- When n = 1: Speed precedence. It is assumed that the -qcjvw option has been specified.

- When n = 2: Default. It is assumed that the -qcjlvw option has been specified.

- When n = 3: Code size precedence. It is assumed that the -qcjl4vw option has been specified.

- When n = 4: Code size precedence. It is assumed that the -qcjl5vw option has been specified.

e Outputs the object using [HL+B].

This type is valid only when the -sm option is specified.

h Outputs the object using [HL].bit.

w[n]

(n = 1, 2)

Designs for the effective use of the registers by changing the execution order in an expression

and outputs an efficient code (i.e., changing the execution order of the right subexpression and

left subexpression in an expression with two terms).

Consequently, the results of execution may differ depending on whether this option is added (this

is, however, within the scope of the ANSI-C specification, because it does not define evaluation

order with the exception of some operators). According to the ANSI-C standard, this is not a

problem in a properly written source.

The scope differs depending on the value of n as follows. If n is omitted, it is interpreted as n = 1.

- When n = 1: Changes the execution order in an expression.

- When n = 2: In addition to 1, changes the execution order in an expression and performs

address calculation without a carry while assuming that the size of the array does not exceed

256 bytes when a char, short, unsigned short, int, or unsigned int array that is allocated to the

saddr area is referenced with an unsigned char variable.

v Adds an automatic variable to a register or the saddr area.

l[n]

(n = 1 - 5)

Performs optimization based on the precedence of code size and replaces the standard code

pattern with a library. If this type is not specified, the code is optimized based on the precedence

of speed.

The scope replacing with a library differs depending on the value of n as follows. If n is omitted, it

is interpreted as n = 1.

- When n = 1: Nothing is replaced with the library.

- When n = 2: Replaces only function pre and post-processing with the library.

- When n = 3: In addition to 2, replaces a long-type load store and DE/HL indirect reference code

with the library.

- When n = 4: In addition to 3, replaces the constant code pattern in one instruction unit with the

library.

- When n = 5: In addition to 4, places common code in subroutines, and uses the library for the

stack access.

Optimization Type Process Description

CubeSuite Ver.1.30 APPENDIX B COMMAND REFERENCE

R20UT0005EJ0100 Rev.1.00 Page 344 of 573
Jul 01, 2010

However, when the -qu option is specified, character constants in the range from '\200' to '\377' are handled as

unsigned char type constants and have the values from +128 to +255.

The constant added - (minus) is handled as follows.

If the result of constant or variable calculation is overflow, cast either the constant or variable to a type capable

of representing the calculation result. By casting, changing the data type can be avoided. When the -qc1

option is specified, constant calculation is sign-extended.

- Multiple optimization types can be specified.

- If the -q option or optimization types are omitted, the optimization is identical to when the -qcjlvw option is speci-

fied.

- To delete a portion of the default options, specify the options other than the options you want to delete (example: -

qr is specified -> Deletes -qcjlvw).

- If both the object module file and assembler source module file are not output, the -q options other than -qu are

invalid.

- If both the -q and -nq options are specified at the same time, the option specified last is valid.

- If two or more -q options are specified at the same time, the option specified last is valid.

- If both the -qr and -sm options are specified, the compiler outputs the warning message and the -qr option is

ignored.

- The real-time OS does not support the -qr option.

[Example of use]

- To regard the char with no qualifier as a unsigned char to improve code efficiency, describe as:

- The -qc option that is specified first is ignored, the -qr option that is specified last is valid, and arguments of norec,

auto variables, and register variables are allocated to the saddr area.

- To validate both the -qc and -qr options, describe as:

0 to 127, 0x00 to 0x7F, 00 to 0177 char type

128 to 255, 0x80 to 0xFF, 0200 to 0377 unsigned char type

0U to 255U unsigned char type

'\0' to '\377' char type

-0 to 128 char type

-129 to int type

C>cc78k0 -cF051144 prime.c -qu

C>cc78k0 -cF051144 prime.c -qc -qr

C>cc78k0 -cF051144 prime.c -qcr

CubeSuite Ver.1.30 APPENDIX B COMMAND REFERENCE

R20UT0005EJ0100 Rev.1.00 Page 345 of 573
Jul 01, 2010

The debug information output specification options are as follows.

- -g/-ng

-g/-ng

[Description format]

- Interpretation when omitted

-g2

[Function]

- The -g option specifies that debug information is to be added into an object module file.

- The -ng option disables the -g option.

[Application]

- If the -g option is not specified, the line numbers and symbol information needed in the object module file to be

input to the debugger are not output. Therefore, in source level debugging, all of the modules to be linked are

compiled by specifying the -g option.

[Description]

- The operation differs depending on the value of n as follows.

- If both the -g and -ng options are specified at the same time, the option specified last is valid.

- If both the object module file and assembler source module file are not output, the -g option is invalid.

[Example of use]

- To add assembler source debug information to an object module file (prime.rel), describe as:

Debug information output specification

-g[n] (n = 1, 2)

-ng

Value of n Function

No specification It is assumed that the n has been specified.

1 Adds debug information (information starting with $DGS or $DGL) to the object module file only. No

debug information is added to the assembler source file.

This option makes it easier to reference an assembler file.

Source debugging of object files is available since debug information is added to them.

2 Adds debug information to the object module file and the assembler source module file.

C>cc78k0 -cF051144 prime.c -g

CubeSuite Ver.1.30 APPENDIX B COMMAND REFERENCE

R20UT0005EJ0100 Rev.1.00 Page 346 of 573
Jul 01, 2010

The preprocess list file creation specification options are as follows.

- -p

- -k

-p

[Description format]

- Interpretation when omitted

None (no file is output)

[Function]

- The -p option specifies the output of a preprocess list file. It also specifies the location to which it is output and the

file name. If the -p option is omitted, no preprocess list file is output.

[Application]

- Use the -p option to output the source file after preprocess processing is executed according to the -k option pro-

cess type, or to change the output destination or the output file name of the preprocess list file.

[Description]

- If the output file name is omitted when the -p option is specified, the output file name will be "input-file-name.ppl".

- If the extension for the output file name is omitted when the -p option is specified, the output file name will be "out-

put-file-name.ppl".

- If the drive name is omitted when the -p option is specified, the preprocess list file will be output to the current

drive.

[Cautions]

- When using CubeSuite, it is not possible to change the name of the output file.

[Example of use]

- To output the preprocess list file (sample.ppl), describe as:

Preprocess list file creation specification

-p[output-file-name]

C>cc78k0 -cF051144 prime.c -psample.ppl

CubeSuite Ver.1.30 APPENDIX B COMMAND REFERENCE

R20UT0005EJ0100 Rev.1.00 Page 347 of 573
Jul 01, 2010

-k

[Description format]

- Interpretation when omitted

-fln

[Function]

- The -k option specifies the processing for the preprocess list.

[Application]

- Use the -k option to delete comments and reference definition expansions when the preprocess list file is output.

[Description]

- The process types that can be specified by the -k option are shown below.

Remark Two or more process types can be specified.

- If the -p option is not specified, the -k option is invalid.

- If two or more -k options are specified at the same time, the option specified last is valid.

[Example of use]

- To delete comments and perform line number and paging processing when the preprocess list file (prime.ppl) is

output.

Output example is shown below.

-k[process-type] (two or more types can be specified)

Process Type Function

No specification It is assumed that the -fln has been specified.

c Deletes comments.

d Expands #define.

f Performs conditional compilations of #if, #ifdef, and #ifndef.

i Expands #include.

l Performs #line processing.

n Performs line number and paging processing.

C>cc78k0 -cF051144 prime.c -p -kcn

CubeSuite Ver.1.30 APPENDIX B COMMAND REFERENCE

R20UT0005EJ0100 Rev.1.00 Page 348 of 573
Jul 01, 2010

/*

78K0 C Compiler Vx.xx Preprocess List Date:xx xxx xxxx Page: 1

Command : -cF051144 prime.c -p -kcn

In-file : prime.c

PPL-file : prime.ppl

Para-file :

*/

 1 : #define TRUE 1

 2 : #define FALSE 0

 3 : #define SIZE 200

 4 :

 5 : char mark [SIZE + 1] ;

 6 :

 7 : main ()

 8 : {

 :

/*

 Target chip : uPD78F0511_44

 Device file : Vx.xx

*/

CubeSuite Ver.1.30 APPENDIX B COMMAND REFERENCE

R20UT0005EJ0100 Rev.1.00 Page 349 of 573
Jul 01, 2010

The preprocess specification options are as follows.

- -d

- -u

- -i

-d

[Description format]

- Interpretation when omitted

Only the macro definitions in the C source file are valid.

[Function]

- The -d option specifies the same macro definition as the #define statement in the C source file.

[Application]

- Use the -d option to replace all the specified constants with the macro names.

[Description]

- Up to 30 macro definitions can be specified at once by separating them with ",".

- A space cannot be entered before or after "=" and ",".

- If the definition name is omitted, the compiler presumes that "macro-name=1" was defined.

- If the same macro name is specified in both the -d and -u options, the option specified last is valid.

[Example of use]

- The following codes are defined in the C source file (prime.c).

#define TEST 1

#define TIME 10

Preprocess specification

-dmacro-name[=definition-name][,macro-name[=definition-name]] ... (two or more types can be
specified)

C>cc78k0 -cF051144 prime.c -dTEST,TIME=10

CubeSuite Ver.1.30 APPENDIX B COMMAND REFERENCE

R20UT0005EJ0100 Rev.1.00 Page 350 of 573
Jul 01, 2010

-u

[Description format]

- Interpretation when omitted

A macro definition specified with -d is valid.

[Function]

- The -u option disables macro definitions similar to the #undef statement in the C source file.

[Application]

- Use the -u option to invalidate the macro name defined by the -d option.

[Description]

- Up to 30 macro definitions can be disabled at once by separating them with ",".

A space cannot be entered before or after ",".

- A macro definition that can be disabled by the -u option is one that has been defined by the -d option.

A macro name defined by #define in a C source file or a system macro name of the CA78K0 cannot be disabled by

the -u option.

- If the same macro name is specified in both the -d and -u options, the option specified last is valid.

[Example of use]

- The -d option that is specified first is ignored and the -u option that is specified last is valid, the macro definition for

TEST thus becomes invalid.

-umacro-name[,macro-name] ... (two or more macro names can be specified)

C>cc78k0 -cF051144 prime.c -dTEST,TIME=10 -uTEST

CubeSuite Ver.1.30 APPENDIX B COMMAND REFERENCE

R20UT0005EJ0100 Rev.1.00 Page 351 of 573
Jul 01, 2010

-i

[Description format]

- Interpretation when omitted

It is assumed that the following folders have been specified.

(1) Folder with source fileNote 1

(2) Folder specified by environmental variable INC78K0

(3) C:\Program Files\NEC Electronics CubeSuite\CubeSuite\CA78K0\Vx.xx\inc78k0Note 2

Notes 1. If the include file name is specified with " " (double quotation marks) in the #include statement, folders with

source files are searched first. If the include file name is specified with < >, search is not performed.

2. This is an example of when the C compiler is installed to C:\Program Files\NEC Electronics

CubeSuite\CubeSuite\CA78K0\Vx.xx.

[Function]

- The -i option specifies that an include file specified by #include statement in a C source file is to be input from a

specified folder.

[Application]

- Use the -i option to search an include file from a certain folder.

[Description]

- Up to 8 folders can be specified at once by separating them with ",".

A space cannot be entered before or after ",".

- If two or more folders are specified following the -i option, or if two or more -i options are specified, the files speci-

fied by #include is searched in the specified order.

- The search sequence is as follows.

(1) Folder with source fileNote 1

(2) The folder specified by the -i option

(3) Folder specified by environmental variable INC78K0

(4) C:\Program Files\NEC Electronics CubeSuite\CubeSuite\CA78K0\Vx.xx\inc78k0Note 2

Notes 1. If the include file name is specified with " " (double quotation marks) in the #include statement, folders with

source files are searched first. If the include file name is specified with < >, search is not performed.

2. This is an example of when the C compiler is installed to C:\Program Files\NEC Electronics

CubeSuite\CubeSuite\CA78K0\Vx.xx.

-ifolder[,folder] ... (two or more folders can be specified)

CubeSuite Ver.1.30 APPENDIX B COMMAND REFERENCE

R20UT0005EJ0100 Rev.1.00 Page 352 of 573
Jul 01, 2010

[Example of use]

- To input the include file that is specified in an #include statement in the C source file (prime.c) from folder D: and

D:\sample, describe as:

C>cc78k0 -cF051144 prime.c -iD:,D:\sample

CubeSuite Ver.1.30 APPENDIX B COMMAND REFERENCE

R20UT0005EJ0100 Rev.1.00 Page 353 of 573
Jul 01, 2010

The assembler source file creation specification options are as follows.

- -a

- -sa

-a

[Description format]

- Interpretation when omitted

No assembler source file is output.

[Function]

- The -a option specifies the output of the assembler source file. It also specifies the location to which it is output

and the file name.

[Application]

- Use the -a option to specify the location to which an assembler source file is output or to change its file name.

[Description]

- If the output file name is omitted when the -a option is specified, the output file name will be "input-file-name.asm".

- If the extension for the output file name is omitted when the -a option is specified, the output file name will be "out-

put-file-name.asm".

- If the drive name is omitted when the -a option is specified, the assemble source file will be output to the current

drive.

- If both the -a and -sa options are specified at the same time, the -sa option is ignored.

[Cautions]

- When using CubeSuite, it is not possible to change the name of the output file.

[Example of use]

- To output the assembler source file (sample.asm) describe as:

Assembler source file creation specification

-a[output-file-name]

C>cc78k0 -cF051144 prime.c -asample.asm

CubeSuite Ver.1.30 APPENDIX B COMMAND REFERENCE

R20UT0005EJ0100 Rev.1.00 Page 354 of 573
Jul 01, 2010

-sa

[Description format]

- Interpretation when omitted

No assembler source file is output.

[Function]

- The -sa option adds the C source as a comment to the assembler source file.

It also specifies the location to which it is output and the file name.

[Application]

- Use the -sa option to output an assembler source file and a C source file together.

[Description]

- If the output file name is omitted when the -sa option is specified, the output file name will be "input-file-

name.asm".

- If the extension for the output file name is omitted when the -sa option is specified, the output file name will be "out-

put-file-name.asm".

- If the drive name is omitted when the -sa option is specified, the assemble source file will be output to the current

drive.

- If both the -sa and -a options are specified at the same time, the -sa option is ignored.

- The C source in an include file is not added to the comments in the output assembler source file. However, if the -

li option is specified, the C source in the include file is also added to the comments.

[Cautions]

- When using CubeSuite, it is not possible to change the name of the output file.

[Example of use]

- To add the C source file (prime.c) as a comment to the assembler source file (prime.asm), describe as:

Output example is shown below.

-sa[output-file-name]

C>cc78k0 -cF051144 prime.c -sa

CubeSuite Ver.1.30 APPENDIX B COMMAND REFERENCE

R20UT0005EJ0100 Rev.1.00 Page 355 of 573
Jul 01, 2010

; 78K0 C Compiler Vx.xx Assembler Source Date:xx xxx xxxx Time:xx:xx:xx

; Command : -cF051144 prime.c -sa

; In-file : prime.c

; Asm-file : prime.asm

; Para-file :

$PROCESSOR (F051144)

$DEBUG

$NODEBUGA

$KANJICODE SJIS

$TOL_INF 03FH , 0400H , 02H , 020H , 00H

$DGS FIL_NAM , .file , 022H , 0FFFEH , 03FH , 067H , 01H , 00H

$DGS AUX_FIL , prime.c

$DGS MOD_NAM , prime , 00H , 0FFFEH , 00H , 077H , 00H , 00H

 :

 EXTRN _printf

 EXTRN _@RTARG0

 EXTRN @@isrem

 EXTRN _putchar

 PUBLIC _mark

 PUBLIC _main

 :

@@CODE CSEG

_main :

$DGL 1 , 14

 push hl ; [INF] 1 , 4

 push ax ; [INF] 1 , 4

 push ax ; [INF] 1 , 4

 push ax ; [INF] 1 , 4

 push ax ; [INF] 1 , 4

 movw ax , sp ; [INF] 2 , 8

 movw hl , ax ; [INF] 1 , 4

??bf_main :

; line 9 : int i , prime , k , count ;

; line 10 :

; line 11 : count = 0 ;

$DGL 0 , 4

 mov a , #00H ; 0 ; [INF] 2 , 4

 mov [hl] , a ; count ; [INF] 1 , 4/5

 mov [hl + 1] , a ; count ; [INF] 2 , 8/9

; line 12 :

; line 13 : for (i = 0 ; i <= SIZE ; i++)

$DGL 0 , 6

CubeSuite Ver.1.30 APPENDIX B COMMAND REFERENCE

R20UT0005EJ0100 Rev.1.00 Page 356 of 573
Jul 01, 2010

 mov [hl + 6] , a ; i ; [INF] 2 , 8/9

 mov [hl + 7] , a ; i ; [INF] 2 , 8/9

?L0003 :

 mov a , [hl + 6] ; i ; [INF] 2 , 8/9

 xch a , x ; [INF] 1 , 2

 mov a , [hl + 7] ; i ; [INF] 2 , 8/9

 cmpw ax , #014H ; 20 ; [INF] 3 , 6

 or1 CY , a.7 ; [INF] 2 , 4

 bc $$ + 4 ; [INF] 2 , 6

 bnz $?L0004 ; [INF] 2 , 6

 :

 END

; *** Code Information ***

;

; $FILE C:\um\prime.c

;

; $FUNC main (8)

; bc = (void)

; CODE SIZE = 218 bytes , CLOCK_SIZE = 723 clocks , STACK_SIZE = 14 bytes

;

; $CALL printf (18)

; bc = (pointer : ax , int : [sp + 2])

;

; $CALL putchar (20)

; bc = (int : ax)

;

; $CALL printf (25)

; bc = (pointer : ax , int : [sp + 2])

;

; $FUNC printf (31)

; bc = (pointer s : ax , int i : [sp + 2])

; CODE SIZE = 30 bytes , CLOCK_SIZE = 124 clocks , STACK_SIZE = 8 bytes

;

; $FUNC printf (41)

; bc = (char c : x)

; CODE SIZE = 14 bytes , CLOCK_SIZE = 60 clocks , STACK_SIZE = 6 bytes

; Target chip : uPD78F0511_44

; Device file : Vx.xx

CubeSuite Ver.1.30 APPENDIX B COMMAND REFERENCE

R20UT0005EJ0100 Rev.1.00 Page 357 of 573
Jul 01, 2010

The error list file creation specification options are as follows.

- -e

- -se

-e

[Description format]

- Interpretation when omitted

No error list file is output.

[Function]

- The -e option specifies the output of an error list file. It also specifies the location to which it is output and the file

name.

[Application]

- Use the -e option to specify the location to which an error list file is output or to change its file name.

[Description]

- If the output file name is omitted when the -e option is specified, the output file name will be "input-file-name.ecc".

- If the extension for the output file name is omitted when the -e option is specified, the output file name will be "out-

put-file-name.ecc".

- If the drive name is omitted when the -e option is specified, the error list file will be output to the current drive.

- If the -w0 option is specified, warning messages cannot be output.

[Cautions]

- When using CubeSuite, it is not possible to change the name of the output file.

[Example of use]

- To output the error list file (prime.ecc), describe as:

Output example is shown below.

Error list file creation specification

-e[output-file-name]

C>cc78k0 -cF051144 prime.c -e

CubeSuite Ver.1.30 APPENDIX B COMMAND REFERENCE

R20UT0005EJ0100 Rev.1.00 Page 358 of 573
Jul 01, 2010

prime.c(18) : CC78K0 warning W0745: Expected function prototype

prime.c(20) : CC78K0 warning W0745: Expected function prototype

prime.c(26) : CC78K0 warning W0622: No return value

prime.c(37) : CC78K0 warning W0622: No return value

prime.c(44) : CC78K0 warning W0622: No return value

 Target chip : uPD78F0511_44

 Device file : Vx.xx

Compilation complete, 0 error(s) and 5 warning(s) found.

CubeSuite Ver.1.30 APPENDIX B COMMAND REFERENCE

R20UT0005EJ0100 Rev.1.00 Page 359 of 573
Jul 01, 2010

-se

[Description format]

- Interpretation when omitted

No error list file is output.

[Function]

- The -se option adds the C source file to the error list file. It also specifies the location to which it is output and the

file name.

[Application]

- Use the -se option to output a error list file and a C source file together.

[Description]

- If the output file name is omitted when the -se option is specified, the output file name will be "input-file-name.cer".

- If the extension for the output file name is omitted when the -se option is specified, the output file name will be "out-

put-file-name.cer".

- If the drive name is omitted when the -se option is specified, the error list file will be output to the current drive.

- The folder and file name cannot be specified for include files.

If the file type of the include file is "H", the error list file with the file type of "her" is output to the current drive. It the

file type of the include file is "C", the error list file with the file type of "cer" is output. In all other cases, the error list

file with the file type of "er" is output.

- If an error does not occur, the C source is not added. In this case, the error list file is not created for the include

file.

- If the -w0 option is specified, warning messages cannot be output.

[Cautions]

- When using CubeSuite, it is not possible to change the name of the output file.

[Example of use]

- To add the C source file (prime.c) to the error list file (prime.cer), describe as:

Output example is shown below.

-se[output-file-name]

C>cc78k0 -cF051144 prime.c -se

CubeSuite Ver.1.30 APPENDIX B COMMAND REFERENCE

R20UT0005EJ0100 Rev.1.00 Page 360 of 573
Jul 01, 2010

/*

78K0 C Compiler Vx.xx Error List Date:xx xxx xxxx Time:xx:xx:xx

Command : -cF051144 prime.c -se

In-file : prime.c

Err-file : prime.cer

Para-file :

*/

#define TRUE 1

#define FALSE 0

#define SIZE 200

char mark [SIZE + 1] ;

void main (void) {

 :

 prime = i + i + 3 ;

 printf ("%6d" , prime) ;

*** CC78K0 warning W0745: Expected function prototype

 count++ ;

 if ((count%8) == 0) putchar (' \ n') ;

*** CC78K0 warning W0745: Expected function prototype

 for (k = i + prime ; k <= SIZE ; k += prime)

 :

}

CubeSuite Ver.1.30 APPENDIX B COMMAND REFERENCE

R20UT0005EJ0100 Rev.1.00 Page 361 of 573
Jul 01, 2010

The cross reference list file creation specification options are as follows.

- -x

-x

[Description format]

- Interpretation when omitted

No cross reference list file is output.

[Function]

- The -x option specifies the output of a cross reference list file. It also specifies the location to which it is output and

the file name. The cross reference list file is valuable for checking the referencing frequency, definition, and refer-

enced point of a symbol.

[Application]

- Use the -x option to output the cross reference list file and specify the location to which a cross reference list file is

output or to change its file name.

[Description]

- If the output file name is omitted when the -x option is specified, the output file name will be "input-file-name.xrf".

- If the extension for the output file name is omitted when the -x option is specified, the output file name will be "out-

put-file-name.xrf".

- Even if an internal error other than C0101 or a compilation error with the number F0024 or a number starting from

E occurs, a cross reference list file is created. However, the contents of the file are not guaranteed.

[Cautions]

- When using CubeSuite, it is not possible to change the name of the output file.

[Example of use]

- To output the cross reference list file (prime.xrf), describe as:

Output example is shown below.

Cross reference list file creation specification

-x[output-file-name]

C>cc78k0 -cF051144 prime.c -x

CubeSuite Ver.1.30 APPENDIX B COMMAND REFERENCE

R20UT0005EJ0100 Rev.1.00 Page 362 of 573
Jul 01, 2010

78K0 C Compiler Vx.xx Cross reference List Date:xx xxx xxxx Page: 1

Command : -cF051144 prime -x

In-file : prime.c

Xref-file : prime.xrf

Para-file :

ATTRIB MODIFY TYPE SYMBOL DEFIN REFERENCE

EXTERN array mark 5 14 16 22

EXTERN func main 7

REG1 int i 9 13 13 13 14 15

 15 15 16 17 17 21

AUTO1 int prime 9 17 18 21 21

AUTO1 int k 9 21 21 21 22

AUTO1 int count 9 11 19 20 25

EXTERN func printf 28 18 25

EXTERN func putchar 39 20

REG1 pointer s 29 36

PARAM

REG1 int i 30 35

PARAM

AUTO1 int j 32 35

AUTO1 pointer ss 33 36

REG1 char c 40 43

PARAM

AUTO1 char d 42 43

 #define TRUE 1 14

 #define FALSE 2 22

 #define SIZE 35 13 15 21

 Target chip : uPD78F0511_44

 Device file : Vx.xx

CubeSuite Ver.1.30 APPENDIX B COMMAND REFERENCE

R20UT0005EJ0100 Rev.1.00 Page 363 of 573
Jul 01, 2010

The list format specification options are as follows.

- -lw

- -ll

- -lt

- -lf

- -li

-lw

[Description format]

- Interpretation when omitted

-lw132 (80 characters in the case of console output)

[Function]

- The -lw option specifies the number of characters per line in each type of list file.

[Application]

- Use the -lw option to change the number of characters per line in each type of list file.

[Description]

- The range of number of characters that can be specified with the -lw option is 72 to 132 and does not include ter-

minators (CR, LF).

- - If the number of characters is omitted, the number of characters per line is 132 characters (80 characters in the

case of console output).

- If the list file is not specified, the -lw option is invalid.

[Example of use]

- To specify 72 as the number of characters per line in the cross reference list file (prime.xrf), describe as:

List format specification

-lw[number-of-characters]

C>cc78k0 -cF051144 prime.c -x -lw72

CubeSuite Ver.1.30 APPENDIX B COMMAND REFERENCE

R20UT0005EJ0100 Rev.1.00 Page 364 of 573
Jul 01, 2010

-ll

[Description format]

- Interpretation when omitted

-ll66 (65535 characters in the case of console output)

[Function]

- The -ll option specifies the number of lines per page in each type of list file.

[Application]

- Use the -ll option to change the number of lines per page in each type of list file.

[Description]

- The range number of lines that can be specified with the -ll option is 20 to 65535.

- If -ll0 is specified, no page breaks will be made.

- If the number of lines is omitted, the number of lines per page is 66 lines (65535 lines in the case of console out-

put).

- If the list file is not specified, the -ll option is invalid.

[Example of use]

- To specify 20 as the number of lines per page in the cross reference list file (prime.xrf), describe as:

-ll[number-of-lines]

C>cc78k0 -cF051144 prime.c -x -ll20

CubeSuite Ver.1.30 APPENDIX B COMMAND REFERENCE

R20UT0005EJ0100 Rev.1.00 Page 365 of 573
Jul 01, 2010

-lt

[Description format]

- Interpretation when omitted

-lt8

[Function]

- The -lt option specifies the basic number of characters for outputting a horizontal tabulation (HT) code in the

source file, replacing it with several blanks (spaces) in each list (tabulation processing).

[Application]

- Use the -lt option to reduce the number of characters per line by reducing the number of blanks per HT code, for

example when a small number of characters per line has been specified for lists via the -lw option.

[Description]

- The range number of characters that can be specified with the -lt option is 0 to 8.

- If -lt0 is specified, tabulation processing will not be performed, and a tabulation code will be output.

- If the number of characters is omitted, the number of expansion characters of a tab is 8.

- If the list file is not specified, the -lt option is invalid.

[Example of use]

- If the -lt option is omitted, the compiler assumes that the -lt8 option is specified and the number of blanks entered

by the HT code is set to 8.

- To specify 1 blank entered by the HT code, describe as:

-lt[number-of-characters]

C>cc78k0 -cF051144 prime.c -p

C>cc78k0 -cF051144 prime.c -p -lt1

CubeSuite Ver.1.30 APPENDIX B COMMAND REFERENCE

R20UT0005EJ0100 Rev.1.00 Page 366 of 573
Jul 01, 2010

-lf

[Description format]

- Interpretation when omitted

No form feed code is inserted.

[Function]

- The -lf option inserts a form feed code at the end of each list file.

[Description]

- If the list file is not specified, the -lf option is invalid.

[Example of use]

- To insert a form feed code at the end of an assembler source file (prime.asm), describe as:

-lf

C>cc78k0 -cF051144 prime.c -a -lf

CubeSuite Ver.1.30 APPENDIX B COMMAND REFERENCE

R20UT0005EJ0100 Rev.1.00 Page 367 of 573
Jul 01, 2010

-li

[Description format]

- Interpretation when omitted

No C sources in the include file will be added.

[Function]

- The -li option adds the C source in the include file to the assembler source file with C source comments.

[Description]

- If the -sa option is specified, the -li option is invalid.

[Example of use]

- To add the C source file in the include file to the assembler source file (prime.asm) with C source comments,

describe as:

-li

C>cc78k0 -cF051144 prime.c -sa -li

CubeSuite Ver.1.30 APPENDIX B COMMAND REFERENCE

R20UT0005EJ0100 Rev.1.00 Page 368 of 573
Jul 01, 2010

The warning output specification option is as follows.

- -w

-w

[Description format]

- Interpretation when omitted

-w1

[Function]

- The -w option specifies whether or not a warning message is output to the console.

[Application]

- Use -w option to specify whether or not a warning message is output to the console.

Detailed messages can also be output.

[Description]

- The levels of the warning message are as follows.

- If the -e or -se option is specified, the warning messages are also output to the error list file.

- If the level 0 is specified, the warning messages are not output to the console and the error list file (when -e or -se

is specified).

[Example of use]

- If the -w option is omitted, the compiler assumes that the -w1 option is specified and outputs normal warning mes-

sages.

Warning output specification

-w[level]

Level Description

0 No warning messages are output.

1 Normal warning messages are output.

2 Detailed warning messages are output.

C>cc78k0 -cF051144 prime.c

CubeSuite Ver.1.30 APPENDIX B COMMAND REFERENCE

R20UT0005EJ0100 Rev.1.00 Page 369 of 573
Jul 01, 2010

The execution state display specification options are as follows.

- -v/-nv

-v/-nv

[Description format]

- Interpretation when omitted

-nv

[Function]

- The -v option outputs the execution state of the current compilation to the console.

- The -nv option disables the -v option.

[Application]

- Use the -v option to check the execution status of compilation.

[Description]

- The phase name and function names in the process are output.

- If both the -v and -nv options are specified at the same time, the option specified last takes precedence.

[Example of use]

- To output the execution state of the current compilation to the console, describe as:

Execution state display specification

-v

-nv

C>cc78k0 -cF051144 prime.c -v

CubeSuite Ver.1.30 APPENDIX B COMMAND REFERENCE

R20UT0005EJ0100 Rev.1.00 Page 370 of 573
Jul 01, 2010

The parameter file specification option is as follows.

- -f

-f

[Description format]

- Interpretation when omitted

Options and input file names can only be input from the command line.

[Function]

- The -f option inputs options and input file names from a specified file.

[Application]

- Use the -f option when the information required to start up the CA78K0 will not fit on the command line because

two or more options are input while compiling.

- When specifying options repeatedly every time you perform compilation, describe the options in the parameter file

and specify the -f option.

[Description]

- Nesting of parameter files is not permitted.

- The number of characters that can be described within a parameter file is unlimited.

- Separate options or input file names with a blank space and a tab.

- Options and input file names within a parameter file will be expanded at the position specified for the parameter file

on the command line.

- The expanded options specified last takes precedence.

- The characters following ";" or "#" are all assumed to be comments, before the end of the line.

[Example of use]

- Contents of the parameter file (prime.pcc)

Perform compilation using a parameter file (prime.pcc).

Parameter file specification

-ffile-name

; parameter file

prime.c -cF051144 -aprime.asm -e -x

C>cc78k0 -fprime.pcc

CubeSuite Ver.1.30 APPENDIX B COMMAND REFERENCE

R20UT0005EJ0100 Rev.1.00 Page 371 of 573
Jul 01, 2010

The temporary file creation folder specification option is as follows.

- -t

-t

[Description format]

- Interpretation when omitted

The temporary files are created in the drive folder specified by the environment variable TMP. If the environment

variable TMP is not specified, the temporary files are created in the current drive and current folder.

[Function]

- The -t option specifies the drive and folder in which a temporary file is created.

[Application]

- Use the -t option to specify the location for creation of a temporary file.

[Description]

- Even if a previously created temporary file exists, if the file is not protected, it will be overwritten the next time.

- As long as the required memory size is available, the temporary file will be expanded in memory.

If the required memory size is no longer available, the temporary file is created in the specified folder and the

memory contents are written to the file. Accesses to subsequent temporary files are to files not in memory.

- Temporary files are deleted when compilation is finished. They are also deleted when compilation is aborted by

pressing the [CTRL] + [C] key.

[Example of use]

- To output a temporary file to folder C:\tmp, describe as:

Temporary file creation folder specification

-tfolder

C>cc78k0 -cF051144 prime.c -ttmp

CubeSuite Ver.1.30 APPENDIX B COMMAND REFERENCE

R20UT0005EJ0100 Rev.1.00 Page 372 of 573
Jul 01, 2010

The function expansion specification options are as follows.

- -z/-nz

-z/-nz

[Description format]

- Interpretation when omitted

-nz

[Function]

- The -z option enables extended functions.

- The -nz option disables the -z option.

- type is cannot be omitted. A fatal error (F0012) occurs if the specification is omitted.

[Application]

- The functions for processing by the following type specifications are available for the 78K0 extended functions.

[Description]

- The type specifications of the -z option is as follows.

Function expansion specification

-ztype (two or more types can be specified)

-nz

Type Specification Description

p The characters after "//" before the line feed code are interpreted as a comment.

c Nesting of comments is permitted.

sNote Interprets the kanji code in comments as SJIS.

eNote Interprets the kanji code in comments as EUC.

nNote Interprets comments as not containing kanji codes.

b char-/unsigned char-type argument and return value are not int-extended.

CubeSuite Ver.1.30 APPENDIX B COMMAND REFERENCE

R20UT0005EJ0100 Rev.1.00 Page 373 of 573
Jul 01, 2010

Note s, e, and n cannot be specified at the same time.

[Example of use]

- The characters after "//" before the line feed code in the C source file (prime.c) are interpreted as a comment.

Also, nesting of comments is permitted.

a Functions not in the ANSI standard are invalid. The portion of functions in the ANSI standard are

valid.

Specifically, the following tasks are performed.

- The following are no longer reserved words.

callt/callf/noauto/norec/sreg/bit/boolean/#asm/#endasm

- The trigraph sequence (3-character representation) is valid.

- The compiler-defined macro __STDC__ is regarded as 1.

- The following warning is output for a int type bit field.

(CC78K0 warning W0787 : Bit field type is not int)

- If -w2 is specified for the -qc, -zp, -zc，-zi，-zl options, the following warnings are output.
(CC78K0 warning W0029 : ' -QC ' option is not portable)

(CC78K0 warning W0031 : ' -ZP ' option is not portable)

(CC78K0 warning W0032 : ' -ZC ' option is not portable)

(CC78K0 warning W0036 : ' -ZI ' option is not portable)

(CC78K0 warning W0037 : ' -ZL ' option is not portable)

- If -w2 is specified for each #pragma statement, the following warning is output.

(CC78K0 warning W0849 : #pragma statement is not portable)

- If -w2 is specified for an __asm statement, the following warning is output and the assemble

output is performed.

(CC78K0 warning W0850 : Asm statement is not portable)

- If -w2 is specified for an #asm to #endasm block, the following error is output.

(CC78K0 error E0801 : Undefined control, etc.)

m[n]

(n = 1, 2)

Enables use of extend specifications for a static model.

Up to 6 arguments can be described in int size, and up to 9 arguments can be described in char

size.

Enables description of structure/union return value for 1-, 2-byte structure/union arguments and

function return values.

The _@KREGxx utilization method is changed by the value of n. If n is omitted, it is interpreted

as n = 1.

- When n = 1: Uses _@KREGxx as the shared area only for leaf function.

- When n = 2: Performs saving/restoring _@KREGxx and allocates argument and automatic

variable to _@KREGxx.

d Replaces the processing routines before and after the function with a library.

Outputs a warning message for -ql4 and processes as -ql3.

r Automatically adds a pascal function modifier.

f Outputs objects for flash.

i Regards int and short descriptions as char. The compiler-defined macro

_FROM_INT_TO_CHAR is regarded as 1.

l Regards long descriptions as int. The compiler-defined macro _FROM_INT_TO_INT is regarded

as 1.

C>cc78k0 -cF051144 prime.c -zpc

Type Specification Description

CubeSuite Ver.1.30 APPENDIX B COMMAND REFERENCE

R20UT0005EJ0100 Rev.1.00 Page 374 of 573
Jul 01, 2010

The device file search path specification option is as follows.

- -y

-y

[Description format]

- Interpretation when omitted

Normal search path only

Remark The normal search paths are as follows.

(1) < ..\..\..\dev > (Path by which the cc78k0.exe was started up)

(2) Path by which the cc78k0.exe was started up

(3) Current folder

(4) The environmental variable PATH

[Function]

- The -y option first searches the path specified as the search path for reading device files. If it does not exist, the

normal paths are searched.

[Application]

- If the device file is not installed in the normal search path, but in a special folder, the path is specified by this option.

[Cautions]

- When using CubeSuite, folders are determined by the microcontroller selected when the project was cre-

ated.Therefore, it is not necessary to specify this option when setting options with this compiler.

[Example of use]

- To search "C:\tmp\dev" read the device file, describe as:

Device file search path specification

-yfolder

C>cc78k0 -cF051144 -yC:\tmp\dev

CubeSuite Ver.1.30 APPENDIX B COMMAND REFERENCE

R20UT0005EJ0100 Rev.1.00 Page 375 of 573
Jul 01, 2010

The Static model specification option is as follows.

- -sm

-sm

[Description format]

- Interpretation when omitted

Normal model (n = 0)

[Function]

- Specifies the -sm option while compilation. The object when the -sm option is specified is called a static model,

and the object when the -sm option is not specified is called a normal model.

- Normally, the instruction accessing a static area is shorter and can be executed faster than the instruction access-

ing a stack frame. Therefore, an object code can be shortened and execution speed can be improved.

- Interrupts can be serviced faster. This is because the saving/returning of arguments and variables that use the

saddr area (i.e., register variables in the interrupt function, arguments/automatic variables in the norec function,

arguments of the run-time library) is not performed in the static model, whereas it is performed in the normal

model.

- Memory capacitance is saved since data is shared with two or more leaf functions.

[Application]

- Use the -sm option to improve the object execution speed and make interrupt servicing faster, and change a nor-

mal model to a static model.

[Description]

- All function arguments are given via a register, and a function assigns function arguments and automatic variables

to a static area.

- The leaf function assigns function arguments and automatic variables from higher addresses to the FEDFH and

lower area of the saddr in the description order. This saddr area is called "common area", since this area is shared

by the leaf functions of all modules.

- The value of n indicates the size of the common area.

- When n = 0 or n is omitted, there is no common area.

- The compiler-defined macro _STATIC_MODEL is regarded as 1.

- sreg/__sreg keyword can be added to function arguments and automatic variables. The function arguments and

automatic variables that have an sreg/__sreg keyword added are assigned to the saddr area, and can be manipu-

lated in 1-bit units.

- By specifying the -rk option, the function argument and automatic variable (except for a static variable in a function)

are assigned to the saddr area and can be manipulated in 1-bit units.

Static model specification

-sm[n] (n = 1 to 16)

CubeSuite Ver.1.30 APPENDIX B COMMAND REFERENCE

R20UT0005EJ0100 Rev.1.00 Page 376 of 573
Jul 01, 2010

[Cautions]

- Since arguments and automatic variables are secured statically, the contents of arguments and automatic vari-

ables of a recursive function may be damaged. An error occurs when a recursive function calls itself. However,

when a recursive function is called to where another function has been called, no error occurs since the CC78K0

cannot detect it.

- If a function that is processed during interrupt servicing is called by means of interrupt servicing (interrupt function

or function called by interrupt function), its argument/automatic variable may be damaged.

- Even if a function that is processed during interrupt servicing uses a common area, saving/returning to/from a com-

mon area is not performed.

- -sm and -ql5 cannot be specified at the same time.

Otherwise a warning for -ql5 will be output and it will be processed as -ql4.

[Example of use]

C>cc78k0 -cF051144 test.c -sm16

CubeSuite Ver.1.30 APPENDIX B COMMAND REFERENCE

R20UT0005EJ0100 Rev.1.00 Page 377 of 573
Jul 01, 2010

The common object specification option is as follows.

- -common

-common

[Description format]

- Interpretation when omitted

The object for the specified device is output.

[Function]

- The -common option specifies the output of an object common to the 78K0.

[Application]

- Use the -common option to generates an object that can be used commonly in the 78K0, regardless of the device

type specification option (-c).

[Description]

- Specify this option to generate an object that can be used commonly in the 78K0.

[Example of use]

- To generate an object that can be used commonly in the 78K0, describe as:

Common object specification

-common

C>cc78k0 prime.c -cF051144 -common

CubeSuite Ver.1.30 APPENDIX B COMMAND REFERENCE

R20UT0005EJ0100 Rev.1.00 Page 378 of 573
Jul 01, 2010

The variables information file specification option is as follows.

- -ma

-ma

[Description format]

- Interpretation when omitted

A variables information file is not used.

[Function]

- The -ma option specifies the variables information file to be used.

[Application]

- Use the -ma option to efficiently allocate variables using a variables/functions information file.

[Description]

- Up to 2 file names can be specified.

- A variables information file can be used to specify attributes for variables separate from the C source code.

See "B.7 Variables Information File Generator" for details about a variables information file.

[Example of use]

- To allocate variables by using the variables information file (info.vfi), describe as:

Variables information file specification

-mafile-name[-mafile-name]

-mafile-name[,file-name]

C>cc78k0 prime.c -cF051144 -mainfo.vfi

CubeSuite Ver.1.30 APPENDIX B COMMAND REFERENCE

R20UT0005EJ0100 Rev.1.00 Page 379 of 573
Jul 01, 2010

The function information file specification option is as follows.

- -mf

-mf

[Description format]

- Interpretation when omitted

All source are allocated to a common area.

- Output file

*.fin

Remark *: Alphanumeric characters

[Function]

- The -mf option specifies to reference and create function information files.

[Application]

- Use the -mf option to allocate functions to a bank or common area.

[Cautions]

- Specify the same function information file for all the C source files to be linked.

[Example of use]

- To compile using the function information file (funcinf.fin), describe as:

Function information file specification

-mffile-name

C>cc78k0 -cf053664 -mffuncinf.fin

CubeSuite Ver.1.30 APPENDIX B COMMAND REFERENCE

R20UT0005EJ0100 Rev.1.00 Page 380 of 573
Jul 01, 2010

The help options are as follows.

- --/-?/-h

- - /-?/-h

[Description format]

- Interpretation when omitted

No display

[Function]

- The --, -?, and -h options display brief explanations of the options and the help messages such as the default

options on the console.

Caution This option cannot be specified from CubeSuite.

[Application]

- The option and its description are displayed. See these when executing the compiler.

[Description]

- When the --, -?, or -h option is specified, all other options are invalid.

- To view the continuation of a displayed help message, press the [Enter] key. To quit the display, press any key

other than the [Enter] key and then press the [Enter] key.

[Example of use]

- Outputs a help message on the console.

Help specification

--/-?/-h

C>cc78k0 -h

CubeSuite Ver.1.30 APPENDIX B COMMAND REFERENCE

R20UT0005EJ0100 Rev.1.00 Page 381 of 573
Jul 01, 2010

B.2 Assembler

The assembler inputs source files written in the assembly language for 78K0 microcontrollers, converts them into

machine language coding, and outputs them as an object module file.

The assembler also outputs list files such as assemble list files and error list files.

If assembly errors occur, an error message is output to the assemble list file and error list file to clarify the cause of the

error.

Figure B-3. I/O Files of Assembler

B.2.1 I/O files

The I/O files of the assembler are shown below.

See "3.2 Assembler" for details about output lists.

Table B-5. I/O Files of Assembler

Type File Name Explanation Default File Type

Input files Assembler source file - Source file written in assembly language for

78K0 microcontrollers (user-created file)

.asm

Include file - File referenced from assembler source files

- File written in assembly language for 78K0

microcontrollers (user-created file)

None

Parameter file - File containing the parameters for the exe-

cuted programs (user-created file)

.pra

Include file Assembler source file Parameter file

Object module fileAssemble list file Error list file

Temporary file

Assembler

CubeSuite Ver.1.30 APPENDIX B COMMAND REFERENCE

R20UT0005EJ0100 Rev.1.00 Page 382 of 573
Jul 01, 2010

B.2.2 Functions

(1) Conversion of assembly language into machine language

The assembler reads source files and converts them from assembly language files into machine language files.

B.2.3 Method for manipulating

(1) Assembler startup

The following two methods can be used to start up the assembler.

(a) Startup from the command line

Example To output an error list file k0main.era, describe as:

(b) Startup from a parameter file

Use the parameter file when the data required to start up the assembler will not fit on the command line, or

when the same assemble option is specified repeatedly each time assembly is performed.

Output files Object module file - Binary file containing relocation information

and symbol information regarding machine

language information and machine language

location addresses

.rel

Assemble list file - File containing assembly information such as

assemble lists and cross reference lists

.prn

Error list file - File containing error information generated

during assembling

.era

I/O files Temporary file - File created automatically by the assembler

for assembly purposes

Temporary files are deleted when assembling

ends.

RAxxxxx.$$n

(n = 1 to 4)

X:[path-name]>ra78k0[Δoption] ... source-file-name [Δoption] ... [Δ]

X Current drive name

path-name Current folder name

ra78k0 Command name of the assembler

option Enter detailed instructions for the operation of the assembler.

When specifying two or more assemble options, separate the options with a blank

space.Uppercase characters and lowercase characters are not distinguished for the

assemble options. See “B.2.4 Option” for details about assemble options.

Enclose a path that includes a space in a pair of double quotation marks (" ").

source-file-name File name of source to be assembled

Enclose the file name of a path that includes a space in a pair of double quotation

marks (" ").

C>ra78k0 -cF051144 k0main.asm -e -np

Type File Name Explanation Default File Type

CubeSuite Ver.1.30 APPENDIX B COMMAND REFERENCE

R20UT0005EJ0100 Rev.1.00 Page 383 of 573
Jul 01, 2010

To start up the assembler from a parameter file, specify the parameter file option (-f) on the command line.

Start up the assembler from a parameter file as follows:

Remark Create the parameter file using an editor.

The rules for writing the contents of a parameter file are as follows:

- If the source file name is omitted from the command line, only 1 source file name can be specified in the

parameter file.

- The source file name can also be written after the option.

- Write in the parameter file all assemble options and output file names specified in the command line.

Example Create a parameter file k0main.pra using an editor, and then start up the assembler.

(2) Execution start and end messages

(a) Execution start message

When the assembler is started up, an execution startup message appears on the display.

(b) Execution end message

If it detects no assembly errors resulting from the assembly, the assembler outputs the following message to

the display and returns control to the host operating system.

X>ra78k0[ΔSource-file]Δ-fparameter-file-name

-f Parameter file specification option

parameter-file-name A file which includes the data required to start up the assembler

[[[Δ]Option[ΔOption] ... [Δ]Δ]] ...

; parameter file

k0main.asm -osample.rel

-psample.prn

C>ra78k0 -fk0main.pra

78K0 Assembler Vx.xx [xx xxx xxxx]

 Copyright(C) NEC Electronics Corporation xxxx

PASS1 Start

PASS2 Start

 Target chip : uPD78xxx

 Device file : Vx.xx

Assembly complete, 0 error(s) and 0 warning(s) found.

CubeSuite Ver.1.30 APPENDIX B COMMAND REFERENCE

R20UT0005EJ0100 Rev.1.00 Page 384 of 573
Jul 01, 2010

If it detects an assembly errors resulting from the assembly, the assembler outputs the error number to the dis-

play and returns control to the host operating system.

If the assembler detects a fatal error during assembly which makes it unable to continue assembly processing,

the assembler outputs a message to the display, cancels assembly and returns control to the host operating

system.

Examples 1. A non-existent source file is specified.

In the above example, a non-existent source file is specified. An error occurs and the assembler

aborts assembly.

2. A non-existent assemble option is specified.

In the above example, a non-existent assemble option is specified. An error occurs and the assem-

bler aborts assembly.

PASS1 Start

k0main.asm (12) : RA78K0 error E2201 : Syntax error

PASS2 Start

k0main.asm (12) : RA78K0 error E2201 : Syntax error

k0main.asm (29) : RA78K0 error E2407 : Undefined symbol reference 'CONVAH'

k0main.asm (29) : RA78K0 error E2303 : Illegal expression

 Target chip : uPD78xxx

 Device file : Vx.xx

Assembly complete, 3 error(s) and 0 warning(s) found.

C>ra78k0 sample.asm

78K0 Assembler Vx.xx [xx xxx xxxx]

 Copyright(C) NEC Electronics Corporation xxxx

RA78K0 error F2006 : File not found 'sample.asm'

Program aborted.

C>ra78k0 k0main.asm -z

78K0 Assembler Vx.xx [xx xxx xxxx]

 Copyright(C) NEC Electronics Corporation xxxx

RA78K0 error F2012 : Missing parameter '-z'

Please enter 'RA78K0--' , if you want help messages.

Program aborted.

CubeSuite Ver.1.30 APPENDIX B COMMAND REFERENCE

R20UT0005EJ0100 Rev.1.00 Page 385 of 573
Jul 01, 2010

(3) Set options in CubeSuite

This section describes how to set assemble options from CubeSuite.

On CubeSuite's Project Tree panel, select the Build Tool node. Next, select [Property] from the [View] menu. The

Property panel opens. Next, select the [Assemble Options] tab.

You can set the various assemble options by setting the necessary properties in this tab.

Figure B-4. Property Panel: [Assemble Option] Tab

B.2.4 Option

(1) Types

The assemble options are detailed instructions for the operation of the assembler.

The types and explanations for assemble options are shown below.

Table B-6. Assemble Options

Classification Option Description

Device type specification -c Specifies the type of the target device.

Object module file output specifi-

cation

-o Specifies the output of an object module file.

-no

Forced object module file output

specification

-j Forces the output of an object module file.

-nj

Debug information output speci-

fication

-g Specifies that debug information (local symbol information) is

to be added to an object module file.
-ng

-ga Specifies that assembler source debug information is to be

added to an object module file.
-nga

Include file read path specifica-

tion

-i Reads an include file from a specified path.

CubeSuite Ver.1.30 APPENDIX B COMMAND REFERENCE

R20UT0005EJ0100 Rev.1.00 Page 386 of 573
Jul 01, 2010

Assemble list file output specifi-

cation

-p Specifies the output of an assemble list file.

-np

Assemble list file information

specification

-ka Outputs an assemble list into an assemble list file.

-nka

-ks Outputs a symbol list into an assemble list file.

-nks

-kx Outputs a cross reference list into an assemble list file.

-nkx

Assemble list file format specifi-

cation

-lw Changes the number of characters printed per line in an

assemble list file.

-ll Changes the number of lines printed per page in an assem-

ble list file.

-lh Outputs the specified character strings in the header of an

assemble list file.

-lt Specifies the number of expansion characters of a tab.

-lf Inserts a form feed code at the end of an assemble list file.

-nlf

Error list file output specification -e Outputs an error list file.

-ne

Parameter file specification -f Inputs the input file name and options from a specified file.

Temporary file creation path

specification

-t Creates a temporary file in the specified path.

Kanji code (2-byte code) specifi-

cation

-zs Interprets Kanji described in the comment as Shift-JIS code.

-ze Interprets Kanji described in the comment as EUC code.

-zn Characters described in the comment are not interpreted as

kanji.

Device file search path specifica-

tion

-y Reads a device file from a specified path.

Symbol definition specification -d Defines symbols.

Common object specification -common Specifies the output of an object module file common to the

78K0.

Self-programming specification -self Specifies when using self-programming.

Help specification -- Outputs a help message on the display.

Classification Option Description

CubeSuite Ver.1.30 APPENDIX B COMMAND REFERENCE

R20UT0005EJ0100 Rev.1.00 Page 387 of 573
Jul 01, 2010

(2) Precedence

For the assemble options shown in the following table, the precedence is explained in a case where two or more

options along the vertical axis and options along the horizontal axis are specified at the same time.

Table B-7. Precedence of Assemble Options

- Location marked with NG

If an option in the horizontal axis is specified, the option in the vertical axis is invalid.

Example The -lw and -lf options are invalid.

- Location marked with Δ
If all three of the options in the horizontal axis are specified at the same time, the option in the vertical axis is

invalid.

Example If the -nka, -nks, and -nkx options are specified at the same time, the -p option is invalid.

- Blank area

If an option in the horizontal axis is specified, the option in the vertical axis is valid.

As with the -o/-no options, if two options for which "n" can be added to the beginning of the option name are speci-

fied at the same time, the option specified last is valid.

Example The -no option is specified after the -o option, so the -o option is invalid and the -no option is valid.

Options not described in "Table B-7. Precedence of Assemble Options" are not particularly affected by other

options. However, if the help specification option (--) is specified, all of other option specifications become invalid.

-no -np -nka -nks -kx -nkx --

-j NG NG

-g NG NG

-p Δ Δ Δ NG

-ka NG NG

-ks NG NG NG

-kx NG NG

-lw NG NG

-ll NG NG

-lh NG NG

-lt NG NG

-lf NG NG

C>ra78k0 -cF051144 k0main.asm -np -lw80 -lf

C>ra78k0 -cF051144 k0main.asm -p -nka -nks -nkx

C>ra78k0 -cF051144 k0main.asm -o -no

CubeSuite Ver.1.30 APPENDIX B COMMAND REFERENCE

R20UT0005EJ0100 Rev.1.00 Page 388 of 573
Jul 01, 2010

The device type specification option is as follows.

- -c

-c

[Description format]

- Interpretation when omitted

Cannot be omitted.

[Function]

- The -c option specifies the target device for performing assembly.

[Application]

- Be sure to specify the -c option. The assembler performs assembly for the target device and generates an object

code for that device.

[Description]

- See "CubeSuite Operating Precautions" for the target devices that can be specified by the -c option.

[Cautions]

- The -c option cannot be omitted. However, if a control instruction ($PROCESSOR) with the same function as the -

c option is described at the beginning of the source, command line specification can be omitted.

[Example of use]

- To specify the uPD78F0511_44 as the target device, describe as:

Device type specification

-cdevice-type

Δ$ΔPROCESSORΔ(Δdevice-typeΔ)

Δ$ΔPCΔ(Δdevice-typeΔ) ; Abbreviated form

C>ra78k0 -cF051144 k0main.asm

CubeSuite Ver.1.30 APPENDIX B COMMAND REFERENCE

R20UT0005EJ0100 Rev.1.00 Page 389 of 573
Jul 01, 2010

The object module file output specification options are as follows.

- -o/-no

-o/-no

[Description format]

- Interpretation when omitted

-oinput-file-name.rel

[Function]

- The -o option specifies the output of an object module file. It also specifies the location to which it is output and the

file name.

- The -no option disables the -o, -j, -g, and -ga option.

[Application]

- Use the -o option to specify the location to which an object module file is output or to change its file name.

Specify the -no option when performing assembly only to output an assemble list file. This will shorten assembly

time.

[Description]

- Even if the -o option is specified, when a fatal error occurs, the object module file cannot be output.

- If the drive name is omitted when the -o option is specified, the object module file will be output to the current drive.

- If the output file name is omitted when the -o option is specified, the output file name will be "input-file-name.rel".

- If both the -o and -no options are specified at the same time, the option specified last is valid.

[Example of use]

- To output a hex file (sample.rel), describe as:

Object module file output specification

-o[output-file-name]

-no

C>ra78k0 -cF051144 k0main.asm -osample.rel

CubeSuite Ver.1.30 APPENDIX B COMMAND REFERENCE

R20UT0005EJ0100 Rev.1.00 Page 390 of 573
Jul 01, 2010

The forced object module file output specification options are as follows.

- -j/-nj

-j/-nj

[Description format]

- Interpretation when omitted

-nj

[Function]

- The -j option specifies that the object module file can be output even if a fatal error occurs.

- The -nj option disables the -j option.

[Application]

- Normally, when a fatal error occurs, the object module file cannot be output. When you wish to execute the pro-

gram with a notice that a fatal error has occurred, specify the -j option to output the object module file.

[Description]

- When the -j option is specified, the object module file will be output even if a fatal error occurs.

- If both the -j and -nj options are specified at the same time, the option specified last is valid.

- If the -no option is specified, the -j option is invalid.

[Example of use]

- To output an object module file (k0main.rel) even if a fatal error occurs, describe as:

Forced object module file output specification

-j

-nj

C>ra78k0 -cF051144 k0main.asm -j

CubeSuite Ver.1.30 APPENDIX B COMMAND REFERENCE

R20UT0005EJ0100 Rev.1.00 Page 391 of 573
Jul 01, 2010

The debug information output specification options are as follows.

- -g/-ng

- -ga/-nga

-g/-ng

[Description format]

- Interpretation when omitted

-g

[Function]

- The -g option specifies that debug information (local symbol information) is to be added to an object module file.

- The -ng option disables the -g option.

[Application]

- Use the -g option when performing symbolic debugging of data that includes local symbol.

- Use the -ng option in the following three cases.

(1) Symbolic debugging of global symbols only

(2) Debugging without symbols

(3) When only the object is required (evaluation using PROM, etc.)

[Description]

- If both the -g and -ng options are specified at the same time, the option specified last is valid.

- If the -g/-ng and -ga/-nga options are specified at the same time, the -ga/-nga option is valid regardless of the posi-

tion in which it is specified.

- If the -no option is specified, the -g option is invalid.

[Cautions]

- A control instruction (DEBUG/NODEBUG or DG/NODG) with the same function as the -g and -ng options can be

described at the beginning of the source.

The description format is shown below.

Debug information output specification

-g

-ng

CubeSuite Ver.1.30 APPENDIX B COMMAND REFERENCE

R20UT0005EJ0100 Rev.1.00 Page 392 of 573
Jul 01, 2010

[Example of use]

- To add debug information (local symbol information) to an object module file (k0main.rel), describe as:

Δ$ΔDEBUG

Δ$ΔDG ; Abbreviated form

Δ$ΔNODEBUG

Δ$ΔNODG ; Abbreviated form

C>ra78k0 -cF051144 k0main.asm -g

CubeSuite Ver.1.30 APPENDIX B COMMAND REFERENCE

R20UT0005EJ0100 Rev.1.00 Page 393 of 573
Jul 01, 2010

-ga/-nga

[Description format]

- Interpretation when omitted

-ga

[Function]

- The -ga option specifies that assembler source debug information is to be added to an object module file.

- The -nga option disables the -g and -ga option.

[Application]

- Use the -ga option when performing debugging at the source level of the assembler. To perform debugging at the

source level, you will need the separately available integrated debugger.

- Use the -nga option in the following three cases.

(1) Debugging without an assembler source

(2) When only the object is required (evaluation using PROM, etc.)

(3) Debugging at the source level of the C compiler

[Description]

- If both the -ga and -nga options are specified at the same time, the option specified last is valid.

- If the -g/-ng and -ga/-nga options are specified at the same time, the -ga/-nga option is valid regardless of the posi-

tion in which it is specified.

- If the -no option is specified, the -ga option is invalid.

[Cautions]

- A control instruction (DEBUGA/NODEBUGA) with the same function as the -ga and -nga options can be described

at the beginning of the source.

The description format is shown below.

[Example of use]

- To add assembler source debug information to an object module file (k0main.rel), describe as:

-ga

-nga

Δ$ΔDEBUGA

Δ$ΔNODEBUGA

C>ra78k0 -cF051144 k0main.asm -ga

CubeSuite Ver.1.30 APPENDIX B COMMAND REFERENCE

R20UT0005EJ0100 Rev.1.00 Page 394 of 573
Jul 01, 2010

The include file read path specification option is as follows.

- -i

-i

[Description format]

- Interpretation when omitted

The include file is searched in the following sequence.

(1) Path where the source file exists

(2) Path specified by environmental variable (INC78K0)

[Function]

- The -i option specifies that an include file specified by "$include" in a source is to be input from a specified path.

[Application]

- Use the -i option to search an include file from a certain path.

[Description]

- Two or more path names can be specified at once by separating them with ",".

- A space cannot be entered before or after ",".

- The include file specified by "$include" is searched in the following sequence.

(1) If two or more path names are specified following the -i option, the include file is searched in the specified

order.

(2) If two or more -i options are specified, the include file is searched with the option specified later taking pri-

ority.

(3) After the path specified by the -i option is searched, the include file is searched in the same order as inter-

pretation when the option is omitted.

- An abort error occurs if anything other than a path name is specified after -i, or if the path name is omitted.

- An abort error occurs if 65 or more -i options are specified.

[Example of use]

- To search and read an include file from folders C:\sample1 and C:\sample2 in that order, describe as:

Include file read path specification

-ipath-name[,path-name] ... (two or more path names can be specified)

C>ra78k0 -cF051144 k0main.asm -iC:\sample1,C:\sample2

CubeSuite Ver.1.30 APPENDIX B COMMAND REFERENCE

R20UT0005EJ0100 Rev.1.00 Page 395 of 573
Jul 01, 2010

- To read an include file from folder C:\Program Files\NEC Electronics Tools\include files, describe as:

C>ra78k0 -cF051144 k0main.asm -i”C:\Program Files\NEC Electronics Tools\include files”

CubeSuite Ver.1.30 APPENDIX B COMMAND REFERENCE

R20UT0005EJ0100 Rev.1.00 Page 396 of 573
Jul 01, 2010

The assemble list file output specification options are as follows.

- -p/-np

-p/-np

[Description format]

- Interpretation when omitted

-pinput-file-name.prn

[Function]

- The -p option specifies the output of an assemble list file.

It also specifies the location to which it is output and the file name.

- The -np option disables the -p, -ka, -ks, -kx, -lw, -ll, -lh, -lt, and -lf option.

[Application]

- Use the -p option to specify the location to which an assemble list file is output or to change its file name.

- Specify the -np option when performing assembly only to output an object module file. This will shorten assembly

time.

[Description]

- If the output file name is omitted when the -p option is specified, the output file name will be "input-file-name.prn".

- If the drive name is omitted when the -p option is specified, the assemble list file will be output to the current drive.

- If both the -p and -np options are specified at the same time, the option specified last is valid.

[Example of use]

- To output an assemble list file (sample.prn), describe as:

Assemble list file output specification

-p[output-file-name]

-np

C>ra78k0 -cF051144 k0main.asm -psample.prn

CubeSuite Ver.1.30 APPENDIX B COMMAND REFERENCE

R20UT0005EJ0100 Rev.1.00 Page 397 of 573
Jul 01, 2010

The assemble list file information specification options are as follows.

- -ka/-nka

- -ks/-nks

- -kx/-nkx

-ka/-nka

[Description format]

- Interpretation when omitted

-ka

[Function]

- The -ka option outputs an assemble list into an assemble list file.

- The -nka option disables the -ka option.

[Application]

- Use the -ka option to output an assemble list.

[Description]

- If both the -ka and -nka options are specified at the same time, the option specified last is valid.

- If the -nka, -nks, and -nkx options are all specified, the assemble list file cannot be output.

- If the -np option is specified, the -ka option is invalid.

[Example of use]

- To output an assemble list file into an assemble list file (k0main.prn), describe as:

The contents of k0main.prn is as follows.

Assemble list file information specification

-ka

-nka

C>ra78k0 -cF051144 k0main.asm -ka

CubeSuite Ver.1.30 APPENDIX B COMMAND REFERENCE

R20UT0005EJ0100 Rev.1.00 Page 398 of 573
Jul 01, 2010

 Assemble list

ALNO STNO ADRS OBJECT M I SOURCE STATEMENT

 1 1

 2 2 NAME SAMPM

 3 3 ;***

 4 4 ;

 5 5 ; HEX -> ASCII Conversion Program

 6 6 ;

 7 7 ; main-routine

 8 8 ;

 9 9 ;***

 10 10

 11 11 PUBLIC MAIN , START

 12 12 EXTRN CONVAH

 13 13

 14 14 ---- DATA DSEG AT 0FE20H

 15 15 FE20 HDTSA: DS 1

 16 16 FE21 STASC: DS 2

 17 17

 18 18 ---- CODE CSEG AT 0H

 19 19 0000 R0000 MAIN: DW START

 20 20

 21 21 ---- CSEG

 22 22 0000 START:

 23 23

 24 24

 25 25

 26 26 0000 11201A MOV HDTSA , #1AH

 27 27 0003 1620FE MOVW HL , #HDTSA ; set hex 2-code data in HL

registor

 :

CubeSuite Ver.1.30 APPENDIX B COMMAND REFERENCE

R20UT0005EJ0100 Rev.1.00 Page 399 of 573
Jul 01, 2010

-ks/-nks

[Description format]

- Interpretation when omitted

-nks

[Function]

- The -ks option outputs a symbol list followed by an assemble list into an assemble list file.

- The -nks option disables the -ks option.

[Application]

- Use the -ks option to output a symbol list.

[Description]

- If the -nka, -nks, and -nkx options are all specified, the assemble list file cannot be output.

- If the -ks and -kx options are specified at the same time, -ks is ignored.

- If both the -ks and -nks options are specified at the same time, the option specified last is valid.

- If the -np option is specified, the -ks option is invalid.

[Example of use]

- To output a symbol list followed by an assemble list file into an assemble list file (k0main.prn), describe as:

The contents of k0main.prn is as follows.

-ks

-nks

C>ra78k0 -cF051144 k0main.asm -ks

 Symbol Table List

VALUE ATTR RTYP NAME

 CSEG ?CSEG

----H EXT CONVAH

FE20H ADDR HDTSA

 MOD SAMPM

FE21H ADDR STASC

VALUE ATTR RTYP NAME

 CSEG CODE

 DSEG DATA

 0H ADDR PUB MAIN

 0H ADDR PUB START

CubeSuite Ver.1.30 APPENDIX B COMMAND REFERENCE

R20UT0005EJ0100 Rev.1.00 Page 400 of 573
Jul 01, 2010

-kx/-nkx

[Description format]

- Interpretation when omitted

-nkx

[Function]

- The -kx option outputs a cross reference list followed by an assemble list into an assemble list file.

- The -nka option disables the -kx option.

[Application]

- Use the -kx option to output a cross reference list when you wish to know where and to what degree each symbol

defined in a source file is referenced in the source, or when you wish to know such information as which line of the

assemble list a certain symbol is referenced on.

[Description]

- If the -nka, -nks, and -nkx options are all specified, the assemble list file cannot be output.

- If the -ks and -kx options are specified at the same time, -ks is ignored.

- If both the -kx and -nkx options are specified at the same time, the option specified last is valid.

- If the -np option is specified, the -kx option is invalid.

[Cautions]

- A control instruction (XREF/NOXREF or XR/NOXR) with the same function as the -kx and -nkx options can be

described at the beginning of the source.

The description format is shown below.

[Example of use]

- To output a cross reference list followed by an assemble list file into an assemble list file (k0main.prn), describe as:

The contents of k0main.prn is as follows.

-kx

-nkx

Δ$ΔXREF

Δ$ΔXR ; abbreviated form

Δ$ΔNOXREF

Δ$ΔNOXR ; abbreviated form

C>ra78k0 -cF051144 k0main.asm -kx

CubeSuite Ver.1.30 APPENDIX B COMMAND REFERENCE

R20UT0005EJ0100 Rev.1.00 Page 401 of 573
Jul 01, 2010

 Cross-Reference List

NAME VALUE R ATTR RTYP SEGNAME XREFS

?CSEG CSEG ?CSEG 21#

CODE CSEG CODE 18#

CONVAH ----H E EXT 12@ 29

DATA DSEG DATA 14#

HDTSA FE20H ADDR DATA 15# 26 27

MAIN 0H ADDR PUB CODE 11@ 19#

SAMPM MOD 2#

START 0H R ADDR PUB ?CSEG 11@ 19 22#

STASC FE21H ADDR DATA 16# 31

CubeSuite Ver.1.30 APPENDIX B COMMAND REFERENCE

R20UT0005EJ0100 Rev.1.00 Page 402 of 573
Jul 01, 2010

The assemble list file format specification options are as follows.

- -lw

- -ll

- -lh

- -lt

- -lf/-nlf

-lw

[Description format]

- Interpretation when omitted

-lw132 (80 characters in the case of display output)

[Function]

- The -lw option specifies the number of characters per line in a list file.

[Application]

- Use the -lw option to change the number of characters per line in any type of list file.

[Description]

- The range of number of characters that can be specified with the -lw option is 72 to 2046 (80 characters in the

case of display output).

An abort error occurs if a numerical value outside this range, or something other than a numerical value is speci-

fied.

- If the number of characters is omitted, it is assumed that 132 has been specified.

However, when an assemble list file is output to display, it is assumed that 80 has been specified.

- The specified number of characters does not include the terminator (CR, LF).

- If the -np option is specified, the -lw option is invalid.

[Cautions]

- A control instruction (WIDTH) with the same function as the -lw option can be described at the beginning of the

source.

The description format is shown below.

Assemble list file format specification

-lw[number-of-characters]

Δ$ΔWIDTH

CubeSuite Ver.1.30 APPENDIX B COMMAND REFERENCE

R20UT0005EJ0100 Rev.1.00 Page 403 of 573
Jul 01, 2010

[Example of use]

- To specify 80 as the number of characters per line in an assemble list file (k0main.prn), describe as:

The contents of the assemble list file (k0main.prn) is as follows.

C>ra78k0 -cF051144 k0main.asm -lw80

 Assemble list

ALNO STNO ADRS OBJECT M I SOURCE STATEMENT

 1 1

 2 2 NAME SAMPM

 3 3 ;***

 4 4 ;

 5 5 ; HEX -> ASCII Conversion Program

 6 6 ;

 7 7 ; main-routine

 8 8 ;

 9 9 ;***

 10 10

 11 11 PUBLIC MAIN , START

 12 12 EXTRN CONVAH

 13 13

 14 14 ---- DATA DSEG AT 0FE20H

 15 15 FE20 HDTSA: DS 1

 16 16 FE21 STASC: DS 2

 17 17

 18 18 ---- CODE CSEG AT 0H

 19 19 0000 R0000 MAIN: DW START

 20 20

 21 21 ---- CSEG

 22 22 0000 START:

 23 23

 24 24

 25 25

 26 26 0000 11201A MOV HDTSA , #1AH

 27 27 0003 1620FE MOVW HL , #HDTSA ; set hex 2-code data in HL

 :

CubeSuite Ver.1.30 APPENDIX B COMMAND REFERENCE

R20UT0005EJ0100 Rev.1.00 Page 404 of 573
Jul 01, 2010

-ll

[Description format]

- Interpretation when omitted

-ll66 (No page breaks in the case of display output)

[Function]

- The -ll option specifies the number of lines per page in an assemble list file.

[Application]

- Use the -ll option to change the number of lines per page in an assemble list file.

[Description]

- The range number of lines that can be specified with the -ll option is 20 to 32767.

- An abort error occurs if a numerical value outside this range, or something other than a numerical value is speci-

fied.

- If the number of lines is omitted, it is assumed that 66 has been specified.

- If the number of lines specified is 0, no page breaks will be made.

- If the -np option is specified, the -ll option is invalid.

[Cautions]

- A control instruction (LENGTH) with the same function as the -ll option can be described at the beginning of the

source.

The description format is shown below.

[Example of use]

- To specify 20 as the number of lines per page in an assemble list file (k0main.prn), describe as:

The contents of k0main.prn is as follows.

-ll[number-of-lines]

Δ$ΔLENGTH

C>ra78k0 -cF051144 k0main.asm -ll20

CubeSuite Ver.1.30 APPENDIX B COMMAND REFERENCE

R20UT0005EJ0100 Rev.1.00 Page 405 of 573
Jul 01, 2010

78K0 Assembler Vx.xx Date:xx xxx xxxx Page: 1

Command: -cF051144 k0main.asm -ll20

Para-file:

In-file: k0main.asm

Obj-file: k0main.rel

Prn-file: k0main.prn

 Assemble list

78K0 Assembler Vx.xx Date:xx xxx xxxx Page: 2

ALNO STNO ADRS OBJECT M I SOURCE STATEMENT

 1 1

 2 2 NAME SAMPM

 3 3 ;***

 4 4 ;

 5 5 ; HEX -> ASCII Conversion Program

 6 6 ;

 7 7 ; main-routine

78K0 Assembler Vx.xx Date:xx xxx xxxx Page: 3

ALNO STNO ADRS OBJECT M I SOURCE STATEMENT

 8 8 ;

 9 9 ;***

 10 10

 11 11 PUBLIC MAIN , START

 :

CubeSuite Ver.1.30 APPENDIX B COMMAND REFERENCE

R20UT0005EJ0100 Rev.1.00 Page 406 of 573
Jul 01, 2010

-lh

[Description format]

- Interpretation when omitted

None

[Function]

- The -lh option specifies the character string printed in the title column of the header of an assemble list file.

[Application]

- Use the -lh option to display a title that briefly explains the contents of an assemble list file.

- By printing the title on each page, the contents of the assemble list file can be understood at a glance.

[Description]

- Up to 60 characters can be specified in the title. The character string cannot include blank spaces.

- If more than 61 characters are specified, the first 60 characters will be valid and no error message will be output.

A kanji and hiragana (2-byte character) is calculated as two characters.

If the maximum number of characters per line is 119 or less, the length of the effective character string changes as

follows.

Effective length = (Max. number of characters per line) - 60

- An abort error occurs if he character string is not specified.

- If the -np option is specified, the -lh option is invalid.

- If the -lh option is omitted, the title column of the assemble list file will be blank.

- The character set that can be described in the title column is as follows.

-lhcharacter-string

Character In Command Line In Parameter File

* ? > < | Can be described if enclosed in " ". Can be described.

Interpreted in the same way as in the com-

mand line even if enclosed in " ".

; Can be described if enclosed in " ". Cannot be described.

(Assumed to be a comment.)

Can be described. Cannot be described.

(Assumed to be a comment.)

" (double quotation mark) Cannot be described as a valid char-

acter.

Cannot be described as a valid character.

00H Cannot be described. Can be described.

However, it is interpreted as the end of the

character string.

CubeSuite Ver.1.30 APPENDIX B COMMAND REFERENCE

R20UT0005EJ0100 Rev.1.00 Page 407 of 573
Jul 01, 2010

Remark If an asterisk (*) on the startup line is not a target for wild card expansion, it can be written even if it is not

enclosed in " ".

[Cautions]

- A control instruction (TITLE or TT) with the same function as the -lh option can be described at the beginning of the

source.

The description format is shown below.

[Example of use]

- To print the title "RA78K0_MAINROUTINE" in the header of an assemble list file (k0main.prn), describe as:

The contents of k0main.prn is as follows.

03H, 06H, 08H, 0DH, 0EH, 10H,

15H, 17H, 18H, 1BH, 7FH

Cannot be described. Can be described.

However, these will appear in the assem-

ble list file as '!'.

(A single 0DH will not be output to the list.)

01H, 02H, 04H, 05H, 07H, 0BH,

0CH, 0FH, 11H, 12H, 13H, 14H,

16H, 19H, 1CH, 1DH, 1EH, 1FH

Can be described.

However, these will appear in the

assemble list file as '!'.

Can be described.

However, these will appear in the assem-

ble list file as '!'.

1AH Can be described.

However, these will appear in the

assemble list file as '!'.

Cannot be described.

(end of file)

Alphabetic characters Uppercase and lowercase characters

are input as is.

Uppercase and lowercase characters are

input as is.

Other Can be described. Can be described.

Δ$ΔTITLEΔ(Δ'character-string'Δ)

Δ$ΔTTΔ(Δ'character-string'Δ) ; abbreviated form

C>ra78k0 -cF051144 k0main.asm -lhRA78K0_MAINROUTINE

78K0 Assembler Vx.xx RA78K0_MAINROUTINE Date:xx xxx xx Page:1

 |

 Title

Command: -cF051144 k0main.asm -lhRA78K0_MAINROUTINE

Para-file:

In-file: k0main.asm

Obj-file: k0main.rel

Prn-file: k0main.prn

 Assemble list

ALNO STNO ADRS OBJECT M I SOURCE STATEMENT

Character In Command Line In Parameter File

CubeSuite Ver.1.30 APPENDIX B COMMAND REFERENCE

R20UT0005EJ0100 Rev.1.00 Page 408 of 573
Jul 01, 2010

 1 1

 2 2 NAME SAMPM

 3 3 ;***

 4 4 ;

 5 5 ; HEX -> ASCII Conversion Program

 6 6 ;

 7 7 ; main-routine

 :

CubeSuite Ver.1.30 APPENDIX B COMMAND REFERENCE

R20UT0005EJ0100 Rev.1.00 Page 409 of 573
Jul 01, 2010

-lt

[Description format]

- Interpretation when omitted

-lt8

[Function]

- The -lt option specifies the basic number of characters for outputting a horizontal tabulation (HT) code in the

source file, replacing it with several blanks (spaces) in each list (tabulation processing).

[Application]

- Use the -lt option to reduce the number of characters per line by reducing the number of blanks per HT code, for

example when a small number of characters per line has been specified for lists via the -lw option.

[Description]

- The range number of characters that can be specified with the -lt option is 0 to 8.

- An abort error occurs if a numerical value outside this range, or something other than a numerical value is speci-

fied.

- If the number of characters is omitted, it is assumed that 8 has been specified.

- If -lt0 is specified, tabulation processing will not be performed, and a tabulation code will be output.

- If the -np option is specified, the -lt option is invalid.

[Cautions]

- A control instruction (TAB) with the same function as the -lt option can be described at the beginning of the source.

The description format is shown below.

[Example of use]

- To reference an assemble list file (sample.prn) when the -lt option is omitted, describe as:

The contents of sample.prn is as follows.

-lt[number-of-characters]

Δ$ΔTABΔnumber-of-tabs

C>ra78k0 -cF051144 sample.asm

CubeSuite Ver.1.30 APPENDIX B COMMAND REFERENCE

R20UT0005EJ0100 Rev.1.00 Page 410 of 573
Jul 01, 2010

- To specify 1 blank entered by the HT code, describe as:

The contents of sample.prn is as follows.

Remark The number of blanks entered by the HT code is 1.

 Assemble list

ALNO STNO ADRS OBJECT M I SOURCE STATEMENT

 1 1 NAME SAMPM

 2 2

 3 3 ---- CODE CSEG

 4 4 0000 63 MOV A , B

 5 5 0001 619A SET1 A.1

 6 6 END

C>ra78k0 -cF051144 sample.asm -lt1

 Assemble list

ALNO STNO ADRS OBJECT M I SOURCE STATEMENT

 1 1 NAME SAMPM

 2 2

 3 3 ---- CODE CSEG

 4 4 0000 63 MOV A , B

 5 5 0001 619A SET1 A.1

 6 6 END

CubeSuite Ver.1.30 APPENDIX B COMMAND REFERENCE

R20UT0005EJ0100 Rev.1.00 Page 411 of 573
Jul 01, 2010

-lf/-nlf

[Description format]

- Interpretation when omitted

-nlf

[Function]

- The -lf option inserts a form feed (FF) code at the end of an assemble list file.

- The -nlf option disables the -lf option.

[Application]

- Use the -lf option to insert a form feed code if you wish to add a page break after the contents of an assemble list

file are printed.

[Description]

- If the -np option is specified, the -lf option is invalid.

- If both the -lf and -nlf options are specified at the same time, the option specified last takes precedence.

[Cautions]

- A control instruction (FORMFEED/NOFORMFEED) with the same function as the -lf and -nlf options can be

described at the beginning of the source.

The description format is shown below.

[Example of use]

- To insert a form feed code at the end of an assemble list file (k0main.prn), describe as:

-lf

-nlf

Δ$ΔFORMFEED

Δ$ΔNOFORMFEED

C>ra78k0 -cF051144 k0main.asm -p -lf

CubeSuite Ver.1.30 APPENDIX B COMMAND REFERENCE

R20UT0005EJ0100 Rev.1.00 Page 412 of 573
Jul 01, 2010

The error list file output specification options are as follows.

- -e/-ne

-e/-ne

[Description format]

- Interpretation when omitted

-ne

[Function]

- The -e option specifies the output of an error list file. It also specifies the location to which it is output and the file

name.

- The -ne option disables the -e option.

[Application]

- Use the -e option to save an error message into a file.

- Use the -e option to specify the location to which an error list file is output or to change its file name.

[Description]

- If the output file name is omitted when the -e option is specified, the output file name will be "input-file-name.era".

- If the drive name is omitted when the -e option is specified, the error list file will be output to the current drive.

- If both the -e and -ne options are specified at the same time, the option specified last is valid.

[Example of use]

- To output an error list file k0main.era, describe as:

Error list file output specification

-e[output-file-name]

-ne

C>ra78k0 -cF051144 k0main.asm -ek0main.era

CubeSuite Ver.1.30 APPENDIX B COMMAND REFERENCE

R20UT0005EJ0100 Rev.1.00 Page 413 of 573
Jul 01, 2010

The contents of k0main.era is as follows.

78K0 Assembler Vx.xx [xx xxx xxxx]

 Copyright(C) NEC Electronics Corporation xxxx

PASS1 Start

k0main.asm(31) : RA78K0 error E2202: lllegal operand

PASS2 Start

k0main.asm(26) : RA78K0 error E2312: Operand out of range (byte)

k0main.asm(31) : RA78K0 error E2202: lllegal operand

 Target chip : uPD78F0511_44

 Device file : Vx.xx

Assembly complete, 3 error(s) and 0 warning(s) found.

PASS1 Start

k0main.asm(31) : RA78K0 error E2202: lllegal operand

PASS2 Start

k0main.asm(26) : RA78K0 error E2312: Operand out of range (byte)

k0main.asm(31) : RA78K0 error E2202: lllegal operand

CubeSuite Ver.1.30 APPENDIX B COMMAND REFERENCE

R20UT0005EJ0100 Rev.1.00 Page 414 of 573
Jul 01, 2010

The parameter file specification option is as follows.

- -f

-f

[Description format]

- Interpretation when omitted

Options and input file names can only be input from the command line.

[Function]

- The -f option inputs options and input file names from a specified file.

[Application]

- Use the -f option when the information required to start up the assembler will not fit on the command line.

- When specifying options repeatedly every time you perform assembly, describe the options in the parameter file

and specify the -f option.

[Description]

- An abort error occurs if the file name is omitted.

- Nesting of parameter files is not permitted. An abort error occurs if the -f option is specified within a parameter file.

- The number of characters that can be described within a parameter file is unlimited.

- Separate options or input file names with a blank space, a tab or the line feed code (LF).

- Options and input file names within a parameter file will be expanded at the position specified for the parameter file

on the command line.

- The expanded options specified last takes precedence.

- The characters following ";" or "#" are all assumed to be comments, up to the line feed code (LF) or EOF.

- An abort error occurs if the -f option is specified two or more times.

[Example of use]

- Perform assembly using a parameter file.

Set the contents of the parameter file (k0main.pra) as follows.

Enter the following from the command line.

Parameter file specification

-ffile-name

; parameter file

k0main.asm -osample.rel -g -cF051144
-psample.prn

C>ra78k0 -fk0main.pra

CubeSuite Ver.1.30 APPENDIX B COMMAND REFERENCE

R20UT0005EJ0100 Rev.1.00 Page 415 of 573
Jul 01, 2010

The temporary file creation path specification option is as follows.

- -t

-t

[Description format]

- Interpretation when omitted

Path specified by environmental variable TMP

Current path, if no path is specified.

[Function]

- The -t option specifies a path in which a temporary file is created.

[Application]

- Use the -t option to specify the location for creation of a temporary file.

[Description]

- Only a path can be specified as a path name.

- The path name is cannot be omitted.

- Even if a previously created temporary file exists, if the file is not protected it will be overwritten.

- As long as the required memory size is available, the temporary file will be expanded in memory.

If not enough memory is available, the contents of the temporary file will be written to a disk.

Such temporary files may be accessed later through the saved disk file.

- Temporary files are deleted when assembly is finished. They are also deleted when assembly is aborted by press-

ing the keys ([CTRL] + [C] key).

- The path in which the temporary file is created is determined according to the following sequence.

(1) The path specified by the -t option

(2) Path specified by environmental variable TMP (when the -t option is omitted)

(3) Current path (when TMP is not set)

Caution When (1) or (2) is specified, if the temporary file cannot be created in the specified path, an abort

error occurs.

[Example of use]

- To output a temporary file to folder C:\tmp, describe as:

Temporary file creation path specification

-tpath-name

C>ra78k0 -cF051144 k0main.asm -tC: \ tmp

CubeSuite Ver.1.30 APPENDIX B COMMAND REFERENCE

R20UT0005EJ0100 Rev.1.00 Page 416 of 573
Jul 01, 2010

- To output a temporary file to folder C:\Program Files\NEC Electronics Tools\temporary files, describe as:

C>ra78k0 -cF051144 k0main.asm -t”C:\Program Files\NEC Electronics Tools\temporary files”

CubeSuite Ver.1.30 APPENDIX B COMMAND REFERENCE

R20UT0005EJ0100 Rev.1.00 Page 417 of 573
Jul 01, 2010

The kanji code (2-byte code) specification options are as follows.

- -zs/-ze/-zn

-zs/-ze/-zn

[Description format]

- Interpretation when omitted

-zs

[Function]

- Kanji (2-byte character) described in the comment is interpreted as the specified kanji code (2-byte code).

- Kanji code is interpreted as follows depending on the option

-zs: Shift-JIS code

-ze: EUC code

-zn: Not interpreted as kanji

[Application]

- Use these options to specify the interpretation of the kanji code in the comment line.

[Description]

- If the -zs, -ze, and -zn options are specified at the same time, the option specified last is valid.

- A control instruction (KANJICODE) with the same function as the -zs, -ze, and -zn option can be described at the

beginning of the source.

The description format is shown below.

- Kanji code can also be specified by using the environmental variable LANF78K.

[Example of use]

- To interpret the kanji code as EUC code, describe as:

Kanji code (2-byte code) specification

-zs

-ze

-zn

Δ$ΔKANJICODEΔSJIS

Δ$ΔKANJICODEΔEUC

Δ$ΔKANJICODEΔNONE

C>ra78k0 k0main.asm -cF051144 -ze

CubeSuite Ver.1.30 APPENDIX B COMMAND REFERENCE

R20UT0005EJ0100 Rev.1.00 Page 418 of 573
Jul 01, 2010

The device file search path specification option is as follows.

- -y

-y

[Description format]

- Interpretation when omitted

The path from which the device file is read is determined according to the following sequence.

(1) Path registered in the device file installer

(2) Path by which the ra78k0.exe was started up

(3) Current folder

(4) The environmental variable PATH

[Function]

- The -y option reads a device file from the specified path.

[Application]

- Use the -y option to specify a path where a device file exists.

[Description]

- An abort error occurs if something other than a path name is specified after the -y option.

- An abort error occurs if the path name is omitted after the -y option.

- The path from which the device file is read is determined according to the following sequence.

(1) The path specified by the -y option

(2) Path registered in the device file installer

(3) Path by which the RA78K0 was started up

(4) Current folder

(5) The environmental variable PATH

Device file search path specification

-ypath-name

CubeSuite Ver.1.30 APPENDIX B COMMAND REFERENCE

R20UT0005EJ0100 Rev.1.00 Page 419 of 573
Jul 01, 2010

[Example of use]

- To specify the path for the device file as folder C:\78k0\dev, describe as:

- To specify the path for the device file as folder C:\Program Files\NEC Electronics Tools\device files, describe as:

C>ra78k0 k0main.asm -cF051144 -yC:\78k0\dev

C>ra78k0 k0main.asm -cF051144 -y”C:\Program Files\NEC Electronics Tools\device files”

CubeSuite Ver.1.30 APPENDIX B COMMAND REFERENCE

R20UT0005EJ0100 Rev.1.00 Page 420 of 573
Jul 01, 2010

The symbol definition specification option is as follows.

- -d

-d

[Description format]

- Interpretation when omitted

None

[Function]

- The -d option defines symbols.

[Application]

- Use the -d option to define symbols.

[Description]

- The value given to a symbol is binary, octal, decimal, or hexadecimal. If the value is omitted, it is assumed that 1

has been specified.

- Up to 30 symbols can be specified by using a comma as a delimiter.

- Up to 31 characters can be described for a symbol name.

- If duplicate names are specified, the symbol specified last is valid.

- Uppercase characters and lowercase characters are distinguished for symbol names.

Symbols defined with -d are used instead of EQU/$SET/$RESET. An abort error occurs if a symbol name speci-

fied for -d was also defined in the source.

[Example of use]

- To specify 2 as the symbol definition, describe as:

Symbol definition specification

-dsymbol-name[=value][,symbol-name[=value] ...]

C>ra78k0 k0main.asm -cF051144 -dSYM=2

CubeSuite Ver.1.30 APPENDIX B COMMAND REFERENCE

R20UT0005EJ0100 Rev.1.00 Page 421 of 573
Jul 01, 2010

The common object specification option is as follows.

- -common

-common

[Description format]

- Interpretation when omitted

The object file for the specified device is output.

[Function]

- The -common option specifies the output of an object module file common to the 78K0.

[Application]

- Use the -common option to generates an object code that can be used commonly in the 78K0, regardless of the

device type specification option (-c).

The output object module file can be linked with an object file for which a different device in the 78K0 is specified.

[Description]

- Specify this option to generate an object code that can be used commonly in the 78K0.

[Cautions]

- Even when the -common option is specified, the device type specification option (-c) or control instruction of the

same function must not be omitted.

An abort error occurs if the common object specification option (-common) is specified for all the input object mod-

ule files to be linked.

[Example of use]

- To generate an object code that can be used commonly in the 78K0, describe as:

Common object specification

-common

C>ra78k0 k0sub.c -cF051144 -common

CubeSuite Ver.1.30 APPENDIX B COMMAND REFERENCE

R20UT0005EJ0100 Rev.1.00 Page 422 of 573
Jul 01, 2010

The self-programming specification option is as follows.

- -self

-self

[Description format]

- Interpretation when omitted

None

[Function]

- The -self option does not output an error when "CALL !8100H" is described even if address 8100H is outside the

access range (i.e., there is no internal ROM).

[Application]

- Use the -self option to use self-programming.

[Description]

- Specify the -self option if an error occurs when "CALL! 8100H" is described during self-programming.

[Example of use]

- If an error occurs when "CALL! 8100H" is described during self-programming, describe as:

Self-programming specification

-self

C>ra78k0 k0sub.asm -cF051144 -self

CubeSuite Ver.1.30 APPENDIX B COMMAND REFERENCE

R20UT0005EJ0100 Rev.1.00 Page 423 of 573
Jul 01, 2010

The help option is as follows.

- --

- -

[Description format]

- Interpretation when omitted

No display

[Function]

- The -- option outputs a help message on the display.

[Application]

- The help message is a list of explanations of the assemble options. See these when executing the assembler.

[Description]

- When the -- option is specified, all other options are invalid.

- To read the next part of the help message, press the return key.

To quit the help display, press any key other than the return key and then press the return key.

Caution This option cannot be specified from CubeSuite.

[Example of use]

- To output a help message on the display, describe as:

Help specification

--

C>ra78k0 --

CubeSuite Ver.1.30 APPENDIX B COMMAND REFERENCE

R20UT0005EJ0100 Rev.1.00 Page 424 of 573
Jul 01, 2010

78K0 Assembler Vx.xx [xx xxx xxxx]

 Copyright(C) NEC Electronics Corporation xxxx

usage : ra78k0 [option[...]] input-file [option[...]]

The option is as follows ([] means omissible).

-cx :Select target chip. (x = 012 , 014 etc.) * Must be specified.

-o[file]/-no :Create the object module file [with the specified name] / Not.

-e[file]/-ne :Create the error list file [with the specified name] / Not.

-p[file]/-np :Create the print file [with the specified name] / Not.

-ka/-nka :Output the assemble list to print file / Not.

-ks/-nks :Output the symbol table list to print file / Not.

-kx/-nkx :Output the cross reference list to print file / Not.

-lw[width] :Specify print file columns per line.

-ll[length] :Specify print file lines per page.

-lf/-nlf :Add Form Feed at end of print file / Not.

-lt[n] :Expand TAB character for print file(n=1 to 8) / Not expand(n=0).

-lhstring :Print list header with the specified string.

-g/-ng :Output debug information to object file / Not.

-j/-nj :Create object file if fatal error occurred / Not.

-idirectory[,directory ...] :Set include search path.

-tdirectory :Set temporary directory.

-ydirectory :Set device file search path.

-ffile :Input option or source module file name from specified file.

-ga/-nga :Output assembler source debug information to object file / Not.

-dname[=data][,name[=data][...]] :Define name [with data].

-common :Create the common object module file for 78k0.

-self :Use Self-programming.

-zs/-ze/-zn :Change source regulation.

 -zs:SJIS code usable in comment.

 -ze:EUC code usable in comment.

 -zn:no multibyte code in comment.

-compati/-nocompati :Use macro for DIVUW,ROR4,ROL4,ADJBA,ADJBS,CALLF,DBNZ / Not.

-- :Show this message.

DEFAULT ASSIGNMENT :

 -o -ne -p -ka -nks -nkx -lw132 -ll66 -nlf -lt8 -g -nj -ga

CubeSuite Ver.1.30 APPENDIX B COMMAND REFERENCE

R20UT0005EJ0100 Rev.1.00 Page 425 of 573
Jul 01, 2010

B.3 Linker

The linker inputs a number of object module files output by the 78K0 assembler, determines a location address and

outputs them as a single load module file.

The linker also outputs list files such as a link list file and an error list file.

If a link error occurs, an error message is output to an error list file to clarify the cause of the error. When an error

occurs, the load module file will not be output.

Figure B-5. I/O Files of Linker

B.3.1 I/O files

The I/O files of the linker are shown below.

See "3.3 Linker" for details about output lists.

Table B-8. I/O Files of Linker

Type File Name Explanation Default File Type

Input files Object module file - Binary file containing relocation information

and symbol information regarding machine

language information and machine language

location addresses

- File output by the assembler

.rel

Library file - File in which two or more object module files

are included

- File output by the librarian

.lib

Link directive file - File which contain link directives for the linker

(user-created file)

.dr

Parameter file - File containing the parameters for the exe-

cuted programs (user-created file)

.plk

Object module file Library file Link directive file

Link list fileLoad module file Error list file

Temporary file

Parameter file

Linker

CubeSuite Ver.1.30 APPENDIX B COMMAND REFERENCE

R20UT0005EJ0100 Rev.1.00 Page 426 of 573
Jul 01, 2010

B.3.2 Functions

(1) Joining of input segments

The linker determines and controls the location address of each segment.

The linker identifies identical segments and joins them into a single segment, even if they are in separate object

module files.

(2) Determination of input modules

When a library file is specified for input, the module to which an input object module file refers is retrieved from the

library and handled as an input module.

(3) Determination of location addresses for input segments

The linker determines location addresses for each segment of an input module. If location attributes for a segment

are specified in the source file, the segment is located according to those attributes. The linker can also specify

location attributes in the link directive file of the linker.

(4) Correction of object codes

When location addresses are buried in object codes, the linker corrects the object code according to the location

address determined in (3) above.

B.3.3 Method for manipulating

(1) Linker startup

The following two methods can be used to start up the linker.

(a) Startup from the command line

Output files Load module file - Binary image file which contain all information

created as a result of linking

This file is input to the object converter.

.lmf

Link list file - List file which display the result of linking .map

Error list file - File containing error information generated

during linking

.elk

I/O files Temporary file - File created automatically by the linker for

linking purposes

Temporary files are deleted when linking

ends.

LKxxxxx.$$n

(n = 1 to 3)

X:[path-name]>lk78K0[Δoption] ... object-module-file-name[Δoption] ... [Δ]

X Current drive name

path-name Current folder name

lk78k0 Command name of the linker

Type File Name Explanation Default File Type

CubeSuite Ver.1.30 APPENDIX B COMMAND REFERENCE

R20UT0005EJ0100 Rev.1.00 Page 427 of 573
Jul 01, 2010

Example To add debug information to a load module file (k0.lmf), describe as:

(b) Startup from a parameter file

Use the parameter file when the data required to start up the linker will not fit on the command line, or when the

same link option is specified repeatedly each time linking is performed.

To start up the assembler from a parameter file, specify the parameter file option (-f) on the command line.

Start up the linker from a parameter file as follows:

Remark Create the parameter file using an editor.

The rules for writing the contents of a parameter file are as follows:

- If the source file name is omitted from the command line, only 1 source file name can be specified in the

parameter file.

- The source file name can also be written after the option.

- Write in the parameter file all link options and output file names specified in the command line.

Example Create a parameter file k0.plk using an editor, and then start up the linker.

option Enter detailed instructions for the operation of the linker.

When specifying two or more link options, separate the options with a blank

space.Uppercase characters and lowercase characters are not distinguished for the

link options. See “B.3.4 Option” for details about link options.

Enclose a path that includes a space in a pair of double quotation marks (" ").

object-module-file-name File name of object module to be linked

Up to 1024 items can be input as an input module.

Enclose the file name of a path that includes a space in a pair of double quotation

marks (" ").

C>lk78k0 k0main.rel k0sub.rel -ok0.lmf -g

X>lk78k0[Δobject-module-file]Δ-fparameter-file-name

-f Parameter file specification option

parameter-file-name A file which includes the data required to start up the linker

[[[Δ]Option[ΔOption] ... [Δ]Δ]] ...

; parameter file

k0main.rel k0sub.rel -ok0.lmf -pk0.map -e

-tC:\tmp

C>lk78k0 -fk0.plk

CubeSuite Ver.1.30 APPENDIX B COMMAND REFERENCE

R20UT0005EJ0100 Rev.1.00 Page 428 of 573
Jul 01, 2010

(2) Execution start and end messages

(a) Execution start message

When the linker is started up, an execution startup message appears on the display.

(b) Execution end message

If it detects no link errors resulting from the link, the linker outputs the following message to the display and

returns control to the host operating system.

If it detects a link errors resulting from the link, the linker outputs the error number to the display and returns

control to the host operating system.

If the linker detects a fatal error during linking which makes it unable to continue link processing, the linker out-

puts a message to the display, cancels linking and returns control to the host operating system.

- A non-existent object module file is specified.

In the above example, a non-existent object module file is specified. An error occurs and the linker aborts the

link.

- A non-existent link option is specified.

78K0 Linker Vx.xx [xx xxx xxxx]

 Copyright(C) NEC Electronics Corporation xxxx

Target chip : uPD78xxx

Device file : Vx.xx

Link complete, 0 error(s) and 0 warning(s) found.

Target chip : uPD78xxx

Device file : Vx.xx

Link complete, 1 error(s) and 0 warning(s) found.

C>lk78k0 samp1.rel samp2.rel

78K0 Linker Vx.xx [xx xxx xxxx]

 Copyright(C) NEC Electronics Corporation xxxx

RA78K0 error F3006 : File not found 'samp1.rel'

RA78K0 error F3006 : File not found 'samp2.rel'

Program Aborted.

C>lk78k0 k0main.rel k0sub.rel -z

CubeSuite Ver.1.30 APPENDIX B COMMAND REFERENCE

R20UT0005EJ0100 Rev.1.00 Page 429 of 573
Jul 01, 2010

In the above example, a non-existent link option is specified. An error occurs and the linker aborts the link.

(3) Set options in CubeSuite

This section describes how to set link options from CubeSuite.

On CubeSuite's Project Tree panel, select the Build Tool node. Next, select [Property] from the [View] menu. The

Property panel opens. Next, select the [Link Options] tab.

You can set the various link options by setting the necessary properties in this tab.

Figure B-6. Property Panel: [Link Option] Tab

78K0 Linker Vx.xx [xx xxx xxxx]

 Copyright(C) NEC Electronics Corporation xxxx

RA78K0 error F3018 : Option is not recognized '-z'

Please enter 'LK78K0 --' , if you want help messages.

Program Aborted.

CubeSuite Ver.1.30 APPENDIX B COMMAND REFERENCE

R20UT0005EJ0100 Rev.1.00 Page 430 of 573
Jul 01, 2010

B.3.4 Option

(1) Types

The link options are detailed instructions for the operation of the linker.

The types and explanations for link options are shown below.

Table B-9. Link Options

Classification Option Description

Load module file output specifi-

cation

-o Specifies the output of a load module file.

-no

Forced load module file output

specification

-j Forces the output of a load module file.

-nj

Debug information output speci-

fication

-g Specifies that debug information is to be added to a load

module file.
-ng

Stack decision symbols genera-

tion specification

-s Automatically generates public symbols for stack decision.

-ns

Link directive file specification -d Inputs the specified file as a link directive file.

Link list file output specification -p Specifies the output of a link list file.

-np

Link list file information specifica-

tion

-km Outputs a map list into a link list file.

-nkm

-kd Outputs a link directive file into a link list file.

-nkd

-kp Outputs a public symbol list into a link list file.

-nkp

-kl Outputs a local symbol list into a link list file.

-nkl

Link list file format specification -ll Changes the number of lines printed per page in a link list

file.

-lf Inserts a form feed code at the end of a link list file.

-nlf

Error list file output specification -e Outputs an error list file.

-ne

Library file specification -b Inputs the specified file as a library file.

Library file read path specifica-

tion

-i Reads a library file from a specified path.

Parameter file specification -f Inputs the input file name and options from a specified file.

Temporary file creation path

specification

-t Creates a temporary file in the specified path.

Device file search path specifica-

tion

-y Reads a device file from a specified path.

CubeSuite Ver.1.30 APPENDIX B COMMAND REFERENCE

R20UT0005EJ0100 Rev.1.00 Page 431 of 573
Jul 01, 2010

(2) Precedence

For the link options shown in the following table, the precedence is explained in a case where two or more options

along the vertical axis and options along the horizontal axis are specified at the same time.

Table B-10. Precedence of Link Options

- Location marked with NG

If an option in the horizontal axis is specified, the option in the vertical axis is invalid.

Example The -km option is invalid.

- Location marked with Δ
If all three of the options in the horizontal axis are specified at the same time, the option in the vertical axis is

invalid.

Example If the -nkm, -nkp, and -nkl options are specified at the same time, the -p option is invalid.

- Blank area

If an option in the horizontal axis is specified, the option in the vertical axis is valid.

Warning message output specifi-

cation

-w Specifies whether or not a warning message is output to the

console.

Boot area ROM program linking

specification for a product with

built-in flash memory

-zb Specifies the start address of the flash memory area.

On-chip debug specification -go Specifies whether on-chip debug is used or not.

Security ID specification -gi Specifies a security ID.

User option byte specification -gb Specifies the value set for the user option byte.

Help specification -- Outputs a help message on the display.

-no -ng -np -nkm -nkp -nkl --

-j NG NG

-g NG NG

-p Δ Δ Δ NG

-km NG NG

-kd NG NG NG

-kp NG NG NG

-kl NG NG NG

-ll NG NG

-lf NG NG

C>lk78k0 k0main.rel k0sub.rel -np -km

C>lk78k0 k0main.rel k0sub.rel -p -nkm -nkp -nkl

Classification Option Description

CubeSuite Ver.1.30 APPENDIX B COMMAND REFERENCE

R20UT0005EJ0100 Rev.1.00 Page 432 of 573
Jul 01, 2010

As with the -o/-no options, if two options for which "n" can be added to the beginning of the option name are speci-

fied at the same time, the option specified last is valid.

Example The -no option is specified after the -o option, so the -o option is invalid and the -no option is valid.

Options not described in "Table B-10. Precedence of Link Options" are not particularly affected by other options.

However, if the help specification option (--) is specified, all of other option specifications become invalid.

C>lk78k0 k0main.rel k0sub.rel -o -no

CubeSuite Ver.1.30 APPENDIX B COMMAND REFERENCE

R20UT0005EJ0100 Rev.1.00 Page 433 of 573
Jul 01, 2010

The load module file output specification options are as follows.

- -o/-no

-o/-no

[Description format]

- Interpretation when omitted

-oinput-file-name.lmf

[Function]

- The -o option specifies the output of a load module file.

It also specifies the location to which it is output and the file name.

- The -no option disables the -o, -j, and -g option.

[Application]

- Use the -o option to specify the location to which a load module file is output or to change its file name.

- Specify the -no option when performing linking only to output an link list file. This will shorten link time.

[Description]

- Even if the -o option is specified, when a fatal error occurs, the load module file cannot be output.

- If "output-file-name" is omitted when the -o option is specified, the load module file "input-file-name.lmf" will be out-

put to the current folder.

- If only the path name is specified in "output-file-name", "input-file-name.lmf" will be output to the specified path.

- If both the -o and -no options are specified at the same time, the option specified last is valid.

[Example of use]

- To output a load module file (k0.lmf), describe as:

Load module file output specification

-o[output-file-name]

-no

C>lk78k0 k0main.rel k0sub.rel -ok0.lmf

CubeSuite Ver.1.30 APPENDIX B COMMAND REFERENCE

R20UT0005EJ0100 Rev.1.00 Page 434 of 573
Jul 01, 2010

The forced load module file output specification options are as follows.

- -j/-nj

-j/-nj

[Description format]

- Interpretation when omitted

-nj

[Function]

- The -j option specifies that the load module file can be output even if a fatal error occurs.

- The -nj option disables the -j option.

[Application]

- Normally, when a fatal error occurs, the load module file cannot be output.

When you wish to execute the command with a notice that a fatal error has occurred, specify the -j option to output

the load module file.

[Description]

- When the -j option is specified, the load module file will be output even if a fatal error occurs.

- If both the -j and -nj options are specified at the same time, the option specified last is valid.

- If the -no option is specified, the -j option is invalid.

[Example of use]

- To output a load module file (k0sub.lmf) even if a fatal error occurs, describe as:

 Forced load module file output specification

-j

-nj

C>lk78k0 k0main.rel k0sub.rel -j

CubeSuite Ver.1.30 APPENDIX B COMMAND REFERENCE

R20UT0005EJ0100 Rev.1.00 Page 435 of 573
Jul 01, 2010

The debug information output specification options are as follows.

- -g/-ng

-g/-ng

[Description format]

- Interpretation when omitted

-g

[Function]

- The -g option specifies that debug information (local symbol information) is to be added to a load module file.

- The -ng option disables the -g, -kp, and -kl option.

[Application]

- Be sure to use the -g option when performing symbolic debugging with the source debugger.

[Description]

- If the -ng option is specified, the public symbol list and local symbol list cannot be output.

- If both the -g and -ng options are specified at the same time, the option specified last is valid.

- If the -no option is specified, the -g option is invalid.

[Example of use]

- To add debug information to a load module file (k0sub.lmf), describe as:

Debug information output specification

-g

-ng

C>lk78k0 k0main.rel k0sub.rel -g

CubeSuite Ver.1.30 APPENDIX B COMMAND REFERENCE

R20UT0005EJ0100 Rev.1.00 Page 436 of 573
Jul 01, 2010

The stack decision symbols generation options are as follows.

- -s/-ns

-s/-ns

[Description format]

- Interpretation when omitted

-ns

[Function]

- The -s option generates the stack decision public symbols "_@STBEG" and "_@STEND".

- The -ns option disables the -s option.

[Application]

- Use the -s option to reserve a stack area.

[Description]

- Specify a memory area name defined by the user or a memory area name defined by default as area-name.

- Uppercase characters and lowercase characters are distinguished for area-name.

- The linker searches the memory area specified by the -s option for the largest vacant area in which no segment is

allocated. The linker then generates public symbol "_@STEND", which holds the start address of the largest

vacant area as its value, and public symbol "_@STBEG", which holds the end address +1 as its value.

These symbols are handled as publicly declared NUMBER attribute symbols, and are registered at the end of the

linker's symbol table. When these symbols are output to a link list file, the module name column is left blank.

- If the largest vacant area is 10 bytes or smaller, a warning message is output.

- If no vacant area exists, a warning message is output and both "_@STEND" and "_@STBEG" hold the end

address + 1 as their values.

- If area-name is omitted, it is assumed that "RAM" has been specified.

- If both the -s and -ns options are specified at the same time, the option specified last is valid.

[Example of use]

- To reserve a stack area in memory area RAM, describe as:

However, the linker will assume that a segment of size 310H in RAM area and a segment of size D8H allocated in

the saddr area are input.

Stack decision symbols generation specification

-s[area-name]

-ns

C>lk78k0 k0main.rel k0sub.rel -s

CubeSuite Ver.1.30 APPENDIX B COMMAND REFERENCE

R20UT0005EJ0100 Rev.1.00 Page 437 of 573
Jul 01, 2010

FEFFH

FB00H

FEF8H

FEF7H

FE20H

FE1FH

FE10H

FE0FH

This position (FE10H - FE1FH) is the larg-

est vacant area,

The following stack symbols are generated.

_@STEND = FE10H

_@STBEG = FE20H

10H free

8H free

Segment size

310H

Segment size

D8H

Memory area RAM

CubeSuite Ver.1.30 APPENDIX B COMMAND REFERENCE

R20UT0005EJ0100 Rev.1.00 Page 438 of 573
Jul 01, 2010

The link directive file specification option is as follows.

- -d

-d

[Description format]

- Interpretation when omitted

None

[Function]

- The -d option specifies that the specified file is to be input as a link directive file.

[Application]

- When you wish to define a new memory area, redefine the default memory area, or allocate a segment to a spe-

cific address or memory area, you will need to create a link directive file. Use the -d option to input this link direc-

tive file to the linker.

[Description]

- An abort error occurs if the file name is omitted.

- Nesting of link directive files is not permitted.

- The number of characters that can be described within a link directive file is unlimited.

- An abort error occurs if the -d option is specified two or more times, or if two or more file names are specified.

- See "CubeSuite 78K0 Coding" for details about link directive files.

[Example of use]

- Redefine the default memory area ROM/RAM.

The contents of the link directive file (k0.dr) is as follows.

To link the link directive file (k0.dr), describe as:

Link directive file specification

-dfile-name

MEMORY ROM : (0000h , 1000h)

MEMORY RAM : (0FE20h , 1E0h)

C>lk78k0 k0main.rel k0sub.rel -dk0.dr

CubeSuite Ver.1.30 APPENDIX B COMMAND REFERENCE

R20UT0005EJ0100 Rev.1.00 Page 439 of 573
Jul 01, 2010

The link list file output specification options are as follows.

- -p/-np

-p/-np

[Description format]

- Interpretation when omitted

-pinput-file-name.map

[Function]

- The -p option specifies the output of a link list file. It also specifies the location to which it is output and the file

name.

- The -np option disables the -p, -km, -kd, -kp, -kl, -ll, and -lf option.

[Application]

- Use the -p option to specify the location to which a link list file is output or to change its file name.

- Specify the -np option when performing linking only to output a load module file. This will shorten link time.

[Description]

- If "output-file-name" is omitted when the -p option is specified, the link list file "input-file-name.map" will be output

to the current folder.

- If only the path name is specified in "output-file-name", "input-file-name.map" will be output.

- If both the -p and -np options are specified at the same time, the option specified last is valid.

[Example of use]

- To create a link list file (k0.map), describe as:

Link list file output specification

-p[output-file-name]

-np

C>lk78k0 k0main.rel k0sub.rel -pk0.map

CubeSuite Ver.1.30 APPENDIX B COMMAND REFERENCE

R20UT0005EJ0100 Rev.1.00 Page 440 of 573
Jul 01, 2010

The link list file information specification options are as follows.

- -km/-nkm

- -kd/-nkd

- -kp/-nkp

- -kl/-nkl

-km/-nkm

[Description format]

- Interpretation when omitted

-km

[Function]

- The -km option outputs a map list into a link list file.

- The -nkm option disables the -kd and -km option.

[Application]

- Use the -km option to output a map list into a link list file.

[Description]

- If the -nkm, -nkp, and -nkl options are all specified, the link list file cannot be output.

- If the -nkm option is specified, the link directive file cannot be output into a link list file.

- If both the -km and -nkm options are specified at the same time, the option specified last is valid.

- If the -np option is specified, the -km option is invalid.

[Example of use]

- To output a map list into a link list file (k0.map), describe as:

The contents of k0.map is as follows.

Link list file information specification

-km

-nkm

C>lk78k0 k0main.rel k0sub.rel -pk0.map -km

CubeSuite Ver.1.30 APPENDIX B COMMAND REFERENCE

R20UT0005EJ0100 Rev.1.00 Page 441 of 573
Jul 01, 2010

78K0 Linker Vx.xx Date:xx xxx xxxx Page: 1

Command: k0main.rel k0sub.rel -pk0.map -km

Para-file:

Out-file: k0main.lmf

Map-file: k0.map

Direc-file:

Directive:

*** Link information ***

 3 output segment(s)

 2FH byte(s) real data

 23 symbol(s) defined

*** Memory map ***

 SPACE=REGULAR

 MEMORY=ROM

 BASE ADDRESS=0000H SIZE=8000H

 OUTPUT INPUT INPUT BASE SIZE

 SEGMENT SEGMENT MODULE ADDRESS

 CODE 0000H 002H CSEG AT

 CODE SAMPM 0000H 0002H

* gap * 0002H 007EH

 ?CSEG 0080H 0020H CSEG

 ?CSEG SAMPM 0080H 0013H

 ?CSEG SAMPS 0093H 001AH

* gap * 00ADH 7F53H

 MEMORY=LRAM

 BASE ADDRESS=FAC0H SIZE=0020H

 OUTPUT INPUT INPUT BASE SIZE

 SEGMENT SEGMENT MODULE ADDRESS

* gap *

 MEMORY=RAM

 BASE ADDRESS=FB00H SIZE=0500H

 OUTPUT INPUT INPUT BASE SIZE

 SEGMENT SEGMENT MODULE ADDRESS

* gap * FB00H 03H

 DATA FE20H 0003H DSEG AT

 DATA SAMPM FE20H 0003H

* gap * FE23H 00DDH

* gap (Not Free Area) * FF00H 0100H

CubeSuite Ver.1.30 APPENDIX B COMMAND REFERENCE

R20UT0005EJ0100 Rev.1.00 Page 442 of 573
Jul 01, 2010

-kd/-nkd

[Description format]

- Interpretation when omitted

-kd

[Function]

- The -kd option outputs a link directive into a link list file.

- The -nkd option disables the -kd option.

[Application]

- Use the -kd option to output a link directive file into a link list file.

[Description]

- If the -nkm, -nkp, and -nkl options are all specified, the link list file cannot be output.

- If the -nkm option is specified, the link directive file cannot be output into a link list file.

- If both the -kd and -nkd options are specified at the same time, the option specified last is valid.

- If the -np option is specified, the -kd option is invalid.

[Example of use]

- To output a link directive file into a link list file (k0.map), describe as:

The contents of k0.map is as follows.

-kd

-nkd

C>lk78k0 k0main.rel k0sub.rel -dk0.dr -pk0.map -kd

78K0 Linker Vx.xx Date:xx xxx xxxx Page: 1

Command: k0main.rel k0sub.rel -dk0.dr -pk0.map -kd

Para-file:

Out-file: k0main.lmf

Map-file: k0.map

Direc-file: k0.dr <- Link directive file name

Directive: MEMORY ROM : (0h , 4000h) <- Contents of link directive file

 MEMORY RAM : (0fe20h , 1000h)

*** Link information ***

 3 output segment(s)

 48H byte(s) real data

CubeSuite Ver.1.30 APPENDIX B COMMAND REFERENCE

R20UT0005EJ0100 Rev.1.00 Page 443 of 573
Jul 01, 2010

 23 symbol(s) defined

*** Memory map ***

 SPACE=REGULAR

 MEMORY=ROM

 BASE ADDRESS=0000H SIZE=1000H

 OUTPUT INPUT INPUT BASE SIZE

 SEGMENT SEGMENT MODULE ADDRESS

 CODE 0000H 0002H CSEG AT

 :

CubeSuite Ver.1.30 APPENDIX B COMMAND REFERENCE

R20UT0005EJ0100 Rev.1.00 Page 444 of 573
Jul 01, 2010

-kp/-nkp

[Description format]

- Interpretation when omitted

-nkp

[Function]

- The -kp option outputs a public symbol list into a link list file.

- The -nkp option disables the -kp option.

[Application]

- Use the -kp option to output a public symbol list into a link list file.

[Description]

- If the -nkm, -nkp, and -nkl options are all specified, the link list file cannot be output.

- If the -ng option is specified, the public symbol list cannot be output.

- If both the -kp and -nkp options are specified at the same time, the option specified last is valid.

- If the -np option is specified, the -kp option is invalid.

[Example of use]

- To output a public symbol list into a link list file (k0.map), describe as:

The contents of k0.map is as follows.

-kp

-nkp

C>lk78k0 k0main.rel k0sub.rel -g -pk0.map -kp

78K0 Linker Vx.xx Date:xx xxx xxxx Page: 1

Command: k0main.rel k0sub.rel -g -pk0.map -kp

Para-file:

Out-file: k0main.lmf

Map-file: k0.map

Direc-file:

Directive:

*** Link information ***

 3 output segment(s)

 2FH byte(s) real data

CubeSuite Ver.1.30 APPENDIX B COMMAND REFERENCE

R20UT0005EJ0100 Rev.1.00 Page 445 of 573
Jul 01, 2010

 23 symbol(s) defined

*** Memory map ***

 SPACE=REGULAR

 MEMORY=ROM

 BASE ADDRESS=0000H SIZE=8000H

 :

78K0 Linker Vx.xx Date:xx xxx xxxx Page: 2

*** Public symbol list ***

MODULE ATTR VALUE NAME

SAMPM ADDR 0000H MAIN

SAMPM ADDR 0080H START

SAMPS ADDR 0093H CONVAH

 Target chip : uPD78xxx

 Device file : Vx.xx

CubeSuite Ver.1.30 APPENDIX B COMMAND REFERENCE

R20UT0005EJ0100 Rev.1.00 Page 446 of 573
Jul 01, 2010

-kl/-nkl

[Description format]

- Interpretation when omitted

-nkl

[Function]

- The -kl option outputs a local symbol list into a link list file.

- The -nkl option disables the -kl option.

[Application]

- Use the -kl option to output a local symbol list into a link list file.

[Description]

- If the -nkm, -nkp, and -nkl options are all specified, the link list file cannot be output.

- If the -ng option is specified, the local symbol list cannot be output.

- If both the -kl and -nkl options are specified at the same time, the option specified last is valid.

- If the -np option is specified, the -kl option is invalid.

[Example of use]

- To output a local symbol list into a link list file (k0.map), describe as:

The contents of k0.map is as follows.

-kl

-nkl

C>lk78k0 k0main.rel k0sub.rel -s -g -pk0.map -kl

78K0 Linker Vx.xx Date:xx xxx xxxx Page: 1

Command: k0main.rel k0sub.rel -s -pk0.map -kl

Para-file:

Out-file: k0main.lmf

Map-file: k0.map

Direc-file:

Directive:

*** Link information ***

 3 output segment(s)

 2FH byte(s) real data

CubeSuite Ver.1.30 APPENDIX B COMMAND REFERENCE

R20UT0005EJ0100 Rev.1.00 Page 447 of 573
Jul 01, 2010

 23 symbol(s) defined

*** Memory map ***

 SPACE=REGULAR

 :

78K0 Linker Vx.xx Date:xx xxx xxxx Page: 2

*** Local symbol list ***

MODULE ATTR VALUE NAME

SAMPM MOD SAMPM

SAMPM DSEG DATA

SAMPM ADDR FE20H HDTSA

SAMPM ADDR FE21H STASC

SAMPM CSEG CODE

SAMPM CSEG ?CSEG

SAMPS MOD SAMPS

SAMPS CSEG ?CSEG

SAMPS ADDR 00A4H SASC

SAMPS ADDR 00AAH SASC1

 Target chip : uPD78xxx

 Device file : Vx.xx

CubeSuite Ver.1.30 APPENDIX B COMMAND REFERENCE

R20UT0005EJ0100 Rev.1.00 Page 448 of 573
Jul 01, 2010

The link list file format specification options are as follows.

- -ll

- -lf/-nlf

-ll

[Description format]

- Interpretation when omitted

-ll66 (No page breaks in the case of display output)

[Function]

- The -ll option specifies the number of lines per page in a link list file.

[Application]

- Use the -ll option to change the number of lines per page in a link list file.

[Description]

- The range number of lines that can be specified with the -ll option is 20 to 32767.

- An abort error occurs if a numerical value outside this range, or something other than a numerical value is speci-

fied.

- If the number of lines is omitted, it is assumed that 66 has been specified.

- If the number of lines specified is 0, no page breaks will be made.

- If the -np option is specified, the -ll option is invalid.

[Example of use]

- To specify 20 as the number of lines per page in a link list file (k0.map), describe as:

The contents of k0.map is as follows.

Link list file format specification

-ll[number-of-lines]

C>lk78k0 k0main.rel k0sub.rel -pk0.map -ll20

78K0 Linker Vx.xx Date:xx xxx xxxx Page: 1

Command: k0main.rel k0sub.rel -pk0.map -ll20

Para-file:

Out-file: k0main.lmf

Map-file: k0.map

Direc-file:

CubeSuite Ver.1.30 APPENDIX B COMMAND REFERENCE

R20UT0005EJ0100 Rev.1.00 Page 449 of 573
Jul 01, 2010

Directive:

*** Link information ***

 3 output segment(s)

 2FH byte(s) real data

78K0 Linker Vx.xx Date:xx xxx xxxx Page: 2

 23 symbol(s) defined

*** Memory map ***

 SPACE=REGULAR

 MEMORY = ROM

 BASE ADDRESS=0000H SIZE=2000H

 OUTPUT INPUT INPUT BASE SIZE

 SEGMENT SEGMENT MODULE ADDRESS

78K0 Linker Vx.xx Date:xx xxx xxxx Page: 3

 CODE 0000H 00000002H CSEG AT

 CODE SAMPM 0000H 00000002H

* gap * 0002H 0000007EH

 ?CSEG 0080H 00000046H CSEG

 ?CSEG SAMPM 0080H 0000002AH

 ?CSEG SAMPS 0093H 0000001CH

* gap * 00ADH 0000FF3AH

 MEMORY=LRAM

 BASE ADDRESS=FAC0H SIZE=0020H

 OUTPUT INPUT INPUT BASE SIZE

 :

CubeSuite Ver.1.30 APPENDIX B COMMAND REFERENCE

R20UT0005EJ0100 Rev.1.00 Page 450 of 573
Jul 01, 2010

-lf/-nlf

[Description format]

- Interpretation when omitted

-nlf

[Function]

- The -lf option inserts a form feed (FF) code at the end of a link list file.

- The -nlf option disables the -lf option.

[Application]

- Use the -lf option to insert a form feed code if you wish to add a page break after the contents of a link list file are

printed.

[Description]

- If the -np option is specified, the -lf option is invalid.

- If both the -lf and -nlf options are specified at the same time, the option specified last is valid.

[Example of use]

- To insert a form feed code at the end of a link list file (k0.map), describe as:

-lf

-nlf

C>lk78k0 k0main.rel k0sub.rel -pk0.map -lf

CubeSuite Ver.1.30 APPENDIX B COMMAND REFERENCE

R20UT0005EJ0100 Rev.1.00 Page 451 of 573
Jul 01, 2010

The error list file output specification options are as follows.

- -e/-ne

-e/-ne

[Description format]

- Interpretation when omitted

-ne

[Function]

- The -e option specifies the output of an error list file. It also specifies the location to which it is output and the file

name.

- The -ne option disables the -e option.

[Application]

- Use the -e option to specify the location to which an error list file is output or to change its file name.

[Description]

- If the output file name is omitted when the -e option is specified, the output file name will be "input-file-name.elk".

- If the drive name is omitted when the -e option is specified, the error list file will be output to the current drive.

- If both the -e and -ne options are specified at the same time, the option specified last is valid.

[Example of use]

- To create an error list file k0.elk, describe as:

An error has occurred in the contents of the link directive file (k0.dr).

The contents of the error list file (k0.elk) is as follows.

Error list file output specification

-e[file-name]

-ne

C>lk78k0 k0main.rel k0sub.rel -dk0.dr -ek0.elk

k0.dr(3) : RA78K0 error E3102: Directive syntax error

CubeSuite Ver.1.30 APPENDIX B COMMAND REFERENCE

R20UT0005EJ0100 Rev.1.00 Page 452 of 573
Jul 01, 2010

The library file specification option is as follows.

- -b

-b

[Description format]

- Interpretation when omitted

None

[Function]

- The -b option specifies that the specified file is to be input as a library file.

[Application]

- The linker retrieves the module referenced by the input module from a library file and joins only that module to the

input module.

- The purpose of a library file is to register two or more modules in a single file.

- By creating library files that can be used in common with many programs, file management and operation become

easier and more efficient. Use the -b option to input the library file to the linker.

[Description]

- The file name is cannot be omitted.

- If a file name which includes a path name is specified, a library file will be input from that path. An error occurs if

no library file exists in the specified path.

- If a file name which does not include a path name is specified, a library file will be input from the path specified by

the -i option or from the default search path.

- If two or more -b options are specified, library files will be input in a specified sequence. Up to 10 -b options can be

specified.

- See “B.5 Librarian” for details about the method of creating library files.

[Example of use]

- To input a library file (k0.lib), describe as:

k0sub.rel is registered in the library file.

Library file specification

-bfile-name

C>lk78k0 k0main.rel -bk0.lib

CubeSuite Ver.1.30 APPENDIX B COMMAND REFERENCE

R20UT0005EJ0100 Rev.1.00 Page 453 of 573
Jul 01, 2010

The library file read path specification option is as follows.

- -i

-i

[Description format]

- Interpretation when omitted

Path specified by environmental variable (LIB78K0)

Current path, if environmental variable (LIB78K0) is not specified.

[Function]

- The -i option specifies that a library file is to be input from the specified path.

[Application]

- Use the -i option to search a library file from a certain path.

[Description]

- The -i option is only valid when a library file name is specified by the -b option without including a path name.

- Two or more -i options can be specified. Two or more path names can be specified at once by separating them

with ",". A space cannot be entered before or after ",".

- Up to 64 path names can be specified per link. If two or more path names are specified, library files will be

searched in a specified sequence.

- An error will not occur even if no library file exists in the specified path.

- An abort error occurs if the path name is omitted.

- If a library file is specified by the -b option without including a path name, the linker will search paths in the follow-

ing sequence.

(1) The path specified by the -i option

(2) Path specified by environmental variable (LIB78K0)

(3) Current path

Caution An error occurs if a library file with the specified name does not exist in any of these paths.

[Example of use]

- To search and read a library file from folders C:\lib1 and C:\lib2 in that order, describe as:

Library file read path specification

-ipath-name[,path-name] ... (two or more path names can be specified)

C>lk78k0 k0main.rel k0sub.rel -bk0.lib -iC:\lib1,C:\lib2

CubeSuite Ver.1.30 APPENDIX B COMMAND REFERENCE

R20UT0005EJ0100 Rev.1.00 Page 454 of 573
Jul 01, 2010

- To read a library file from folder C:\Program Files\NEC Electronics Tools\library files, describe as:

C>lk78k0 k0main.rel k0sub.rel -bk0.lib -i”C:\Program Files\NEC Electronics Tools\library
files”

CubeSuite Ver.1.30 APPENDIX B COMMAND REFERENCE

R20UT0005EJ0100 Rev.1.00 Page 455 of 573
Jul 01, 2010

The parameter file specification option is as follows.

- -f

-f

[Description format]

- Interpretation when omitted

Options and input file names can only be input from the command line.

[Function]

- The -f option inputs options and input file names from a specified file.

[Application]

- Use the -f option when the information required to start up the linker will not fit on the command line.

- When specifying options repeatedly every time you perform linking, describe the options in the parameter file and

specify the -f option.

[Description]

- An abort error occurs if the file name is omitted.

- Nesting of parameter files is not permitted. An abort error occurs if the -f option is specified within a parameter file.

- The number of characters that can be described within a parameter file is unlimited.

- Separate options or input file names with a blank space, a tab or the line feed code (LF).

- Options and input file names within a parameter file will be expanded at the position specified for the parameter file

on the command line.

- The expanded options specified last is valid.

- The characters following ";" or "#" are all assumed to be comments, up to the line feed code (LF) or EOF.

- An abort error occurs if two or more -f option is specified.

[Example of use]

- Perform linking using a parameter file (k0.plk).

The contents of the parameter file (k0.plk) is as follows.

Enter the following from the command line.

Parameter file specification

-ffile-name

; parameter file

k0main.rel k0sub.rel -ok0.lmf -pk0.map -e

-tC:\tmp -g

C>lk78k0 -fk0.plk

CubeSuite Ver.1.30 APPENDIX B COMMAND REFERENCE

R20UT0005EJ0100 Rev.1.00 Page 456 of 573
Jul 01, 2010

The temporary file creation path specification option is as follows.

- -t

-t

[Description format]

- Interpretation when omitted

Path specified by environmental variable TMP

Current path, if no path is specified.

[Function]

- The -t option specifies a path in which a temporary file is created.

[Application]

- Use the -t option to specify the location for creation of a temporary file.

[Description]

- Only a path can be specified as a path name.

- The path name is cannot be omitted.

- Even if a previously created temporary file exists, if the file is not protected it will be overwritten.

- As long as the required memory size is available, the temporary file will be expanded in memory.

If not enough memory is available, the contents of the temporary file will be written to a disk.

Such temporary files may be accessed later through the saved disk file.

- Temporary files are deleted when linking is finished. They are also deleted when linking is aborted by pressing the

keys ([CTRL] + [C] key).

- The path in which the temporary file is created is determined according to the following sequence.

(1) The path specified by the -t option

(2) Path specified by environmental variable TMP (when the -t option is omitted)

(3) Current path (when TMP is not set)

Caution When (1) or (2) is specified, if the temporary file cannot be created in the specified path, an abort

error occurs.

[Example of use]

- To output a temporary file to folder C:\tmp, describe as:

Temporary file creation path specification

-tpath-name

C>lk78k0 k0main.rel k0sub.rel -tC:\tmp

CubeSuite Ver.1.30 APPENDIX B COMMAND REFERENCE

R20UT0005EJ0100 Rev.1.00 Page 457 of 573
Jul 01, 2010

- To output a temporary file to folder C:\Program Files\NEC Electronics Tools\temporary files, describe as:

C>lk78k0 k0main.rel k0sub.rel -t”C:\Program Files\NEC Electronics Tools\temporary files”

CubeSuite Ver.1.30 APPENDIX B COMMAND REFERENCE

R20UT0005EJ0100 Rev.1.00 Page 458 of 573
Jul 01, 2010

The device file search path specification option is as follows.

- -y

-y

[Description format]

- Interpretation when omitted

The path from which the device file is read is determined according to the following sequence.

(1) Path registered in the device file installer

(2) Path by which the lk78k0.exe was started up

(3) Current folder

(4) The environmental variable PATH

[Function]

- The -y option reads a device file from the specified path.

[Application]

- Use the -y option to specify a path where a device file exists.

[Description]

- An abort error occurs if something other than a path name is specified after the -y option.

- An abort error occurs if the path name is omitted after the -y option.

- The path from which the device file is read is determined according to the following sequence.

(1) The path specified by the -y option

(2) Path registered in the device file installer

(3) Path by which the LK78K0 was started up

(4) Current folder

(5) The environmental variable PATH

Device file search path specification

-ypath-name

CubeSuite Ver.1.30 APPENDIX B COMMAND REFERENCE

R20UT0005EJ0100 Rev.1.00 Page 459 of 573
Jul 01, 2010

[Example of use]

- To specify the path for the device file as folder C:\78k0\dev, describe as:

- To specify the path for the device file as folder C:\Program Files\NEC Electronics Tools\device files, describe as:

C>lk78k0 k0main.rel k0sub.rel -yC:\78k0\dev

C>lk78k0 k0main.rel k0sub.rel -y”C:\Program Files\NEC Electronics Tools\device files”

CubeSuite Ver.1.30 APPENDIX B COMMAND REFERENCE

R20UT0005EJ0100 Rev.1.00 Page 460 of 573
Jul 01, 2010

The warning message output specification option is as follows.

- -w

-w

[Description format]

- Interpretation when omitted

-w1

[Function]

- The -w option specifies whether or not a warning message is output to the console.

[Application]

- Use the -w option to specify the level at which a warning message will be output.

[Description]

- An abort error occurs if something other than a level is specified after the -w option.

- Only levels 0, 1 and 2 can be specified.

- The output levels are as follows.

0: No warning message is output.

1: A normal warning message is output.

2: A detailed warning message is output.

[Example of use]

- To output a detailed warning message, describe as:

Warning message output specification

-w[level]

C>lk78k0 k0main.rel k0sub.rel -w2

CubeSuite Ver.1.30 APPENDIX B COMMAND REFERENCE

R20UT0005EJ0100 Rev.1.00 Page 461 of 573
Jul 01, 2010

The boot area ROM program linking specification option for a product with built-in flash memory is as follows.

- -zb

-zb

[Description format]

- Interpretation when omitted

No link specification

[Function]

- The -zb option specifies the start address of the flash memory area.

[Description]

- Specify boot area ROM program linking for a product with built-in flash memory, and specify the start address of

the flash memory area.

- The range that can be specified for the value is 0H to 0FFFFH.

- An error occurs if the address is omitted.

Caution Do not specify this option for a device that does not have a flash memory area self-programming

function.

[Example of use]

- To specify 2000h as the start address of flash memory area, describe as:

Boot area ROM program linking specification for a product with built-in flash memory

-zbaddress

C>lk78k0 k0main.rel -zb2000h

CubeSuite Ver.1.30 APPENDIX B COMMAND REFERENCE

R20UT0005EJ0100 Rev.1.00 Page 462 of 573
Jul 01, 2010

The on-chip debug specification option is as follows.

- -go

-go

[Description format]

- Interpretation when omitted

On-chip debug is not used.

[Function]

- The -go option specifies whether on-chip debug is used or not.

[Application]

- Use the -go option to change the size of the debug monitor area.

[Description]

- If the size is omitted, it is assumed that 256 has been specified.

See "QB-MINI2 On-Chip Debug Emulator with Programming Function" (U18371EJ) for details about the size of the

debug monitor area.

- When the -go option is specified, the area of addresses 02H to 03H and the area from 8FH to the specified size +

1 are the debug monitor area, and segments cannot be allocated there.

- An error occurs if this option is specified for a device that does not have an on-chip debug function.

[Example of use]

- Reserve addresses 8FH to 18FH (256 bytes + 1 byte) as the debug monitor area.

On-chip debug specification

-go[size]

C>lk78k0 k0main.rel -go256

CubeSuite Ver.1.30 APPENDIX B COMMAND REFERENCE

R20UT0005EJ0100 Rev.1.00 Page 463 of 573
Jul 01, 2010

The Security ID specification option is as follows.

- -gi

-gi

[Description format]

- Interpretation when omitted

A security ID is not set.

[Function]

- The -gi option specifies a security ID.

[Application]

- Use the -gi option to set a security ID.

[Description]

- Specify a hexadecimal value that ends with "H". An abort error occurs if any other value is omitted.

- Specify a security ID within 10 bytes. If the specified value is less than 10 bytes, the higher bits are filled with 0.

- The security ID is set at addresses 85H to 8EH. If a security ID is set, no segment can be allocated at addresses

85H to 8EH.

- An abort error occurs if this option is specified for a device that does not have a security ID function.

- A security ID can also be specified by defining the segment with relocation attributes shown below, in the assem-

bler source file. However, be sure to specify SECUR_ID as the relocation attribute of the segment.

If specification of the assembler source file and specification of this option are made in duplicate, this option takes

precedence.

Security ID specification

-gisecurity-ID

[Any segment name] CSEG SECUR_ID

 DB 11H ; Address 0x85

 DB 22H ; Address 0x86

 DB 33H ; Address 0x87

 DB 44H ; Address 0x88

 DB 55H ; Address 0x89

 DB 66H ; Address 0x8A

 DB 77H ; Address 0x8B

 DB 88H ; Address 0x8C

 DB 99H ; Address 0x8D

 DB 0AAH ; Address 0x8E

CubeSuite Ver.1.30 APPENDIX B COMMAND REFERENCE

R20UT0005EJ0100 Rev.1.00 Page 464 of 573
Jul 01, 2010

[Cautions]

- If this option is not specified for a device that has a security ID function, any code may be allocated.

[Example of use]

- To specify the same "112233445566778899aah" as the specification in the above assembler source file, describe

as:

C>lk78k0 k0main.rel -gi112233445566778899aah

CubeSuite Ver.1.30 APPENDIX B COMMAND REFERENCE

R20UT0005EJ0100 Rev.1.00 Page 465 of 573
Jul 01, 2010

The user option byte specification option is as follows.

- -gb

-gb

[Description format]

- Interpretation when omitted

When the device has the user option byte function, the initial value in the device file is set. When the device does

not have the user option byte function, nothing is performed.

[Function]

- The -gb option specifies the value set for the user option byte.

[Application]

- Use the -gb option to specify the user option byte value.

[Description]

- The range that can be specified for the user option byte is 0 to 0FFFFFFFFFFH.

- An abort error occurs if a value that cannot be specified for the user option byte is specified.

- Specify a hexadecimal value that ends with "H". An abort error occurs if any other value is omitted.

- The user option byte is specified at addresses 80H to 84H.

- Specify a security ID within 5 bytes. If the specified value is less than 5 bytes, the higher bits are filled with 0.

- The user option byte value to be allocated at addresses 80H to 84H can also be specified by defining the segment

with relocation attributes shown below, in the assembler source file.

However, be sure to define the segment with 5 bytes for address 80H to 84H.

An error will occur if this option is specified for a device that does not have the user option byte function.

If specification of the assembler source file and specification of this option are made in duplicate, this option takes

priority.

- Be sure to see the user's manual of the device and set the user option byte.

User option byte specification

-gbuser-option-byte-value

[Any segment name] CSEG OPT_BYTE

 DB 11H ; Address 0x80

 DB 22H ; Address 0x81

 DB 33H ; Address 0x82

 DB 44H ; Address 0x83

 DB 55H ; Address 0x84

CubeSuite Ver.1.30 APPENDIX B COMMAND REFERENCE

R20UT0005EJ0100 Rev.1.00 Page 466 of 573
Jul 01, 2010

[Example of use]

- To specify 30H at address 80H, 00H at address 81H, 00H at address 82H, 00H at address 83H, and 02H at

address 84H as the user option byte value, describe as:

C>lk78k0 k0main.rel -gb3000000002H

CubeSuite Ver.1.30 APPENDIX B COMMAND REFERENCE

R20UT0005EJ0100 Rev.1.00 Page 467 of 573
Jul 01, 2010

The help option is as follows.

- --

- -

[Description format]

- Interpretation when omitted

No display

[Function]

- The -- option outputs a help message on the display.

[Application]

- The help message is a list of explanations of the link options. See these when executing the linker.

[Description]

- When the -- option is specified, all other options are invalid.

- To read the next part of the help message, press the return key. To quit the help display, press any key other than

the return key and then press the return key.

Caution This option cannot be specified from CubeSuite.

[Example of use]

- To output a help message on the display, describe as:

Help specification

--

C>lk78k0 --

CubeSuite Ver.1.30 APPENDIX B COMMAND REFERENCE

R20UT0005EJ0100 Rev.1.00 Page 468 of 573
Jul 01, 2010

78K0 Linker Vx.xx [xx xxx xx]

 Copyright(C)NEC Electronics Corporation xxxx

usage : lk78k0 [option[...]] input-file [option[...]]

The option is as follows ([] means omissible).
-ffile :Input option or input-file name from specified file.

-dfile :Read directive file from specified file.

-bfile :Read library file from specified file.

-idirectory[,directory...] :Set library file search path.

-o[file]/-no :Create load module file [with specified name] / Not.

-p[file]/-np :Create link map file [with specified name] / Not.

-e[file]/-ne :Create error list file [with specified name] / Not.

-tdirectory :Set temporary directory.

-km/-nkm :Output map list to link map file / Not.

-kd/-nkd :Output directive file image to link map file / Not.

-kp/-nkp :Output public symbol list to link map file / Not.

-kl/-nkl :Output local symbol list to link map file / Not.

-ll[page length] :Specify link map file lines per page.

-lf/-nlf :Add Form Feed at end of the link map file / Not.

-s[memory area]/-ns :Create stack symbol [in specified memory area] / Not.

-g/-ng :Output symbol information to load module file / Not.

-ydirectory :Set device file search path.

-j/-nj :Create load module file if fatal error occurred / Not.

-w[n] :Change warning level(n=0 to 2).

-zbaddress :Create Boot file (address:flash start address).

-go[n] :Change On-chip debug program size(n=256 to 1024).

-giid :Set Security ID.

-- :Show this message.

DEFAULT ASSIGNMENT: -o -p -ne -km -kd -nkp -nkl -ll66 -nlf -ns -g -nj -w1

directive file usage:

 MEMORY memory-area-name:(origin-value,size)[/memory-space-name]

 MERGE segment-name:[location-type-definition][merge-type-definition]

 [=memory-area-name][/memory-space-name]

 example: MEMORY ROM:(0H,4000H)

 MEMORY RAMA:(0H,100H) / EX1

 MERGE CSEG1:=ROM

 MERGE DSEG1:AT(80H)

CubeSuite Ver.1.30 APPENDIX B COMMAND REFERENCE

R20UT0005EJ0100 Rev.1.00 Page 469 of 573
Jul 01, 2010

B.3.5 Boot-flash relink function

(1) Relink function

Some systems are equipped with flash area or detachable ROM.

To upgrade the version of the program, the contents of the flash area may be rewritten or the detachable ROM may

be replaced with a new ROM.

When changing the program even partially, basically the project itself is reorganized or "rebuilt". However, it would

be convenient if the allocation to be upgraded was limited to the flash area or external ROM and if it was not nec-

essary to reorganize the project. The boot area is fixed to the internal ROM. If a function is called between the

flash area to be rewritten and the boot area, and if the start address of the function is changed as a result of modi-

fying the function in the flash area, the function cannot be called correctly.

The "boot-flash relink function" (hereafter referred to as the "relink function") is used to prevent this and enable

functions to be called correctly.

This function is realized as follows.

(a) A "branch table" where instructions to branch to the functions in the flash area are written is prepared

in the flash area.

(b) When a function in the flash area is called from the boot area, execution jumps to the branch table in

the flash area, and then the instruction used to branch to the intended function is executed and jump

occurs.

This mechanism can be realized by the user. If the "relink function" is used, this can be done relatively easily.

To use this function, however, the functions to be called in the flash area must be determined when the boot area is

created. This mechanism is used to call a function from the boot area even if the function is modified in the flash

area.

Operation during a reset is as follows.

 RESET interrupt vector (boot area)

-> _@cstart (boot area)

-> _boot_main function (boot area)

-> ITBLTOP address (flash area)

-> _@cstart (flash area)

-> _main function (flash area)

2000H

RAM for flash

RAM for boot

Flash area

Branch table area

Boot area

<- Flash start address (ITBLTOP)

RAM

ROM

0000H

CubeSuite Ver.1.30 APPENDIX B COMMAND REFERENCE

R20UT0005EJ0100 Rev.1.00 Page 470 of 573
Jul 01, 2010

(2) Image of relink function

A function is called as shown below when the relink function is used.

(a) To call function in the boot area from the boot area

The function can be called without problem because addresses have been resolved before they are pro-

grammed to the boot area.

Figure B-7. In Boot Area

(b) To call function in the flash area from the flash area

The function can be called without problem because addresses have been resolved in the flash area.

Figure B-8. In Flash Area

void

func_rom1(void)

{

:

}

void

func_rom2(void)

{

:

 func_rom1();

:

}

The function can be called without problem.

void

func_flash1(void)

{

:

}

void

func_flash2(void)

{

:

 func_flash1();

:

}

The function can be called without problem.

CubeSuite Ver.1.30 APPENDIX B COMMAND REFERENCE

R20UT0005EJ0100 Rev.1.00 Page 471 of 573
Jul 01, 2010

(c) To call function in the flash area from the boot area

When a function in the flash area is called from the boot area, the address of the function cannot be known

from the boot area because the function size, etc., have been changed in the flash area. In other words, a

function in the flash area cannot be directly called. To solve this, execution jumps to the branch table in the

flash area.

Execute the jump instruction to the relevant function from that table and jump to the intended function.

Figure B-9. From Boot Area to Flash Area

In the same manner as functions, this is relevant to referencing external variables.

A global variable defined in the flash area cannot be referenced from the boot area. Therefore, an external

variable of the same name can be defined in both the boot area and flash area. Each of these external vari-

ables is referenced only from the respective areas.

(d) To call function in the boot area from the flash area

When a function in the boot area is called from the flash area, the contents of the boot area are not changed.

Therefore, a function in the boot area can be directly called from the flash area.

void

func_rom1(void)

{

:

}

void

func_rom2(void)

{

:

 func_flash1();

:

}

Execution jumps to the branch table of

flash area.

void

func_flash1(void)

{

:

}

void

func_flash2(void)

{

:

 func_flash();

:

}

Branch table

In boot area In flash area

br !!_func_flash2

br !!_func_flash1

CubeSuite Ver.1.30 APPENDIX B COMMAND REFERENCE

R20UT0005EJ0100 Rev.1.00 Page 472 of 573
Jul 01, 2010

Figure B-10. From Flash Area to Boot Area

In the same manner as functions, this is relevant to referencing external variables. A global variable defined in

the boot area cannot be referenced from the flash area.

(3) Realizing relink function

This section describes specifically how to realize the relink function.

(a) Project of CubeSuite

To realize the relink function, a boot area and flash area must be separately created. This means that only the

flash area is modified after the boot area has been created (after a program has been stored in ROM). When

creating a project with CubeSuite, therefore, divide the projects as follows.

- Project to be allocated to the boot area

- Project to be allocated to the flash area (project that may be modified in the future)

In addition, separately prepare a startup routine and link directive file for each project.

(b) #pragma ext_func directive

When calling a function in the flash area from the boot area, the name of the function to be called (label name)

and ID number are assigned to the boot area by using the #pragma ext_func directive. The format of the

#pragma ext_func directive is as follows.

Specify a positive number as the ID number. The different ID number must not be specified for the same func-

tion name or the same ID number must not be specified for the different function names.

When a function name in the flash area is specified in the boot area by using the #pragma ext_func directive, a

branch table is created. The address of this branch table is specified by the user.

#pragma ext_func function-name ID-number

void

func_rom1(void)

{

:

}

void

func_rom2(void)

{

:

}

A function in boot area can be directly

called from flash area.

void

func_flash1(void)

{

:

 func_rom2();

:

}

void

func_flash2(void)

{

:

}

Branch table

In boot area In flash area

br !!_func_flash1

br !!_func_flash2

CubeSuite Ver.1.30 APPENDIX B COMMAND REFERENCE

R20UT0005EJ0100 Rev.1.00 Page 473 of 573
Jul 01, 2010

Specify the address as follows, by using #pragma ext_table, when a load module of the boot area and a load

module of the flash area are created.

When execution branches to the body of a function, the actual function address is obtained by referencing the

offset of the ID number from the beginning of the created branch table, and then execution branches.

The example is shown below.

If the above two C functions are allocated to the flash area and they are called from the boot area, describe as

follows in the C source file for the boot area.

It is recommended to describe these #pragma ext_func directive in one file and include this file in all source

files by using the #include directive, in order to prevent missing descriptions or the occurrence of contradic-

tions, i.e., to prevent the error of specifying the different ID numbers for the same function name or specifying

the same ID number for the different function names.

An image of relink function is shown below.

<1> C source file for the boot area

#pragma ext_table 0x2000

func_flash0()

func_flash1()

#pragma ext_func func_flash0 1

#pragma ext_func func_flash1 2

#include "ext_def.h"

int boot_a = 0x12;

int boot_b = 0x34;

extern int func_flash1(int);

extern int func_flash2(int);

void boot_main()

{

 :

}

void func(void)

{

 int k;

 boot_a = func_flash1(boot_a);

 boot_b = func_flash2(boot_b);

}

CubeSuite Ver.1.30 APPENDIX B COMMAND REFERENCE

R20UT0005EJ0100 Rev.1.00 Page 474 of 573
Jul 01, 2010

<2> C source file for the flash area

<3> ext_def.h

(c) Startup routine

Separately prepare a startup routine for the boot area and a startup routine for the flash area. Startup routines

are provided for both the boot area and the flash area by the CA78K0.

Each startup routine must perform the following processing.

- Perform processing to initialize the RAM area to be used for the boot area

- Branching from the boot area to the startup routine of the flash area

- Perform processing to initialize the RAM area to be used for the flash area

- Moving to the processing of the flash area

#include "ext_def.h"

extern void func(void);

void main(void)

{

 func();

}

void func_flash1()

{

 :

}

void func_flash2()

{

 :

}

#pragma ext_table 0x2000

#pragma ext_func func_flash1 1

#pragma ext_func func_flash2 2

CubeSuite Ver.1.30 APPENDIX B COMMAND REFERENCE

R20UT0005EJ0100 Rev.1.00 Page 475 of 573
Jul 01, 2010

(d) How to create the projects specifically

<1> Create the boot area project

Create a project for the boot area and add the build target files to the project.

Figure B-11. Boot Area Project

<2> Set the build options for the boot area project

Select the build tool node on the project tree and set each of the build options on the Property panel.

<3> Set variables relocation options

Set the variables/functions relocation options to generate a variables information file and use it to allo-

cate variables and functions.

Select the [Variables Relocation Options] tab.

In the [Output File] category, set the [Output variables information file] property to [Yes] to generate an

empty variables information file, and add it to the project (it will also appear in the File node of the project

tree). The output destination is the file set in the [Output folder for variables information file] property and

the [Variables information file name] property.

Remark If a variables information file with the same name already exists, the build will be configured

to use it.

Figure B-12. [Output folder for variables information file] Property in Boot Area

Set the [Output folder for variables information file] property and the [Variables information file name]

property to change the output folder and file name of the variables information file. If the [Variables infor-

mation file] property is changed, an empty variables information file is generated and added to the

project (it will also appear in the File node of the project tree).

CubeSuite Ver.1.30 APPENDIX B COMMAND REFERENCE

R20UT0005EJ0100 Rev.1.00 Page 476 of 573
Jul 01, 2010

<4> Set compile options

Select the [Compile Options] tab.

Select [No] on the [Output objects for flash] property in the [Memory Model] category.

Figure B-13. [Memory Model] Category in Boot Area

Next, select [Yes(For boot area)] on the [Use standard startup routine] property in the [Startup] category.

Figure B-14. [Use standard startup routine] Property in Boot Area

<5> Set link options

Select the [Link Options] tab.

In the [Device] category, if you select [Yes(-zb)] on the [Set flash start address] property, the [Flash start

address] property is displayed.

Specify the start address of the flash memory area here. The range that can be specified for the value is

0 to FFFF.

Figure B-15. [Device] Category in Boot Area

<6> Set object convert options

Select the [Object Convert Options] tab.

Select [No] on the [Split hex file] property in the [Hex File] category (default).

Figure B-16. [Split hex file] Property in Boot Area

CubeSuite Ver.1.30 APPENDIX B COMMAND REFERENCE

R20UT0005EJ0100 Rev.1.00 Page 477 of 573
Jul 01, 2010

<7> Run a build of the boot area project

When you run a build of the boot area project, a load module file is created.

A hex file is also created.

If a variables information file is generated, it will be input into the compiler automatically, and a build will

be executed again.

Remark The variables information file generated in “<3> Set variables relocation options“ is overwrit-

ten by running a build.

Figure B-17. Created Files for Boot Area

<8> Create the flash area project

Create a project for the boot area and add the build target files to the project.

CubeSuite Ver.1.30 APPENDIX B COMMAND REFERENCE

R20UT0005EJ0100 Rev.1.00 Page 478 of 573
Jul 01, 2010

Figure B-18. Flash Area Project

<9> Set the build options for the flash area project

Select the build tool node on the project tree and set each of the build options on the Property panel.

<10> Set variables relocation options

Set the variables relocation options to generate a variables information file and use it to allocate vari-

ables and functions.

Select the [Variables Relocation Options] tab.

In the [Output File] category, set the [Output variables information file] property to [Yes] to generate an

empty variables information file, and add it to the project (it will also appear in the File node of the project

tree). The output destination is the file set in the [Output folder for variables information file] property and

the [Variables information file name] property.

Remark If a variables information file with the same name already exists, the build will be configured

to use it.

Figure B-19. [Output folder for variables information file] Property in Flash Area

Set the [Output folder for variables information file] property and the [Variables information file name]

property to change the output folder and file name of the variables information file. If the [Variables infor-

mation file] property is changed, an empty variables information file is generated and added to the

project (it will also appear in the File node of the project tree).

<11> Set compile options

Select the [Compile Options] tab.

Select [Yes(-zf)] on the [Output objects for flash] property in the [Memory Model] category.

CubeSuite Ver.1.30 APPENDIX B COMMAND REFERENCE

R20UT0005EJ0100 Rev.1.00 Page 479 of 573
Jul 01, 2010

Figure B-20. [Memory Model] Category in Flash Area

Next, select [Yes(For flash area)] on the [Use standard startup routine] property in the [Startup] category.

Figure B-21. [Use standard startup routine] Property in Flash Area

Next, add the created variables information file for the boot area to the flash area project. Specify the

variables information file for the boot area on the [Variables information file for boot area] property in the

[Variable Information File] category.

Figure B-22. [Variables information file for boot area] Property in Flash Area

<12> Set link options

Add the created boot area load module file to the flash area project. Select the [Link Options] tab.

Specify the boot area load module file on the [Boot area load module file name] property in the [Device]

category.

Figure B-23. [Boot area load module file name] Property in Flash Area

<13> Set object convert options

Select the [Object Convert Options] tab.

Select [Yes(-zf)] on the [Split hex file] property in the [Hex File] category.

Figure B-24. [Split hex file] Property in Flash Area

CubeSuite Ver.1.30 APPENDIX B COMMAND REFERENCE

R20UT0005EJ0100 Rev.1.00 Page 480 of 573
Jul 01, 2010

<14> Run a build of the flash area project

When you run a build of the flash area project, a load module file which implements the relink function is

created.

The boot area hex file (the same content as the file created by building the boot area project) and flash

area hex file are also created.

Figure B-25. Created Files for Flash Area

(e) How to change the branch table address

When setting the branch table's start address to other than 2000H, also change the interrupt vector processing

in the following manner.

- Change the address value of "ITBLTOP EQU 2000H" in vect.inc

The default installation location for vect.inc is as follows.

C:\Program Files\NEC Electronics CubeSuite\CubeSuite\CA78K0\Vx.xx\src\cc78k0\src

- ..\bat\repvect.bat

..\bat\mkstup.bat

on the DOS prompt and update the startup routine and library, copy to ..\..\..\lib78k0 and use for linking.

(f) Describing a link directive file

The following points should be noted when using a link directive file.

- If the address of a section placed in the RAM area overlaps in the boot area and flash area, the linker out-

puts an error. For the RAM area that must be referenced simultaneously in the boot area and flash area,

addresses must be specified so that they do not overlap.

- A link directive file related to the branch table does not have to be described. It is automatically allocated

to an address specified by the link option.

CubeSuite Ver.1.30 APPENDIX B COMMAND REFERENCE

R20UT0005EJ0100 Rev.1.00 Page 481 of 573
Jul 01, 2010

(g) Library

If a library function is called from the boot area or flash area, the library is linked to the object on the calling

side. For example, even if a library is linked to the flash area, the same library is linked to the boot area if the

same library function is called from the boot area. When a library function is called, therefore, branching does

not take place between the boot area and flash area.

(h) Interrupt handler

Describe the part that calls an interrupt handler in the area where the address of the interrupt handler exists.

In the following case, an interrupt handler function name must also be specified by the #pragma interrupt direc-

tive.

- Interrupt handler address is in the boot area.

- Interrupt handler body is in the flash area.

CubeSuite Ver.1.30 APPENDIX B COMMAND REFERENCE

R20UT0005EJ0100 Rev.1.00 Page 482 of 573
Jul 01, 2010

B.4 Object Converter

The object converter inputs the load module file (all reference address data must be determined at this point) output by

the CA78K0 linker. It then converts this data into hexadecimal format and outputs it as an object module file.

The object converter also outputs the symbol information used for symbolic debugging as a symbol table file.

If an object converter error occurs, an error message appears on the display to clarify the cause of the error.

Figure B-26. I/O Files of Object Converter

B.4.1 I/O files

The I/O files of the object converter are shown below.

Table B-11. I/O Files of Object Converter

Type File Name Explanation Default File Type

Input files Load module file - Binary image file of the object codes output as

a result of linking

- File output by the linker

.lmf

Parameter file - File containing the parameters for the exe-

cuted commands (user-created file)

.poc

Output files Hex file - File created by converting the load module file

into hexadecimal object format

These files are used during mask ROM devel-

opment and PROM program use.

.hex

Symbol table file - File containing the symbol information

included in each module of an input files

.sym

Error list file - File containing error information generated

during object conversion

.eoc

Load module file

Hex fileSymbol table file Error list file

Temporary file

Object converter

CubeSuite Ver.1.30 APPENDIX B COMMAND REFERENCE

R20UT0005EJ0100 Rev.1.00 Page 483 of 573
Jul 01, 2010

B.4.2 Functions

(1) How the object converter handles extended space

When a code is output to segments located in extended memory space, the object converter generates a separate

hex file for each space.

To output a separate hex file to each space, specify the space for both memory and merge directives in the link

directive file. See "CubeSuite 78K0 Coding" for details about the link directive.

The object converter also generates a symbol table file for each space when symbols having ADDRESS or BIT

attributes are defined for segments located in extended space. All symbols having NUMBER attributes are output

to symbol table file generated for normal space.

The file types of the hex files and symbol table files generated for extended space are shown below.

Table B-12. Output File Types for Extended Space

(2) Flash memory self-rewriting mode support

The object converter can create separate hex files in the boot area and flash area for the code located in the flash

memory when the self-rewriting mode of the flash memory is used. To output separate hex files, specify the object

convert option (-zf). The file type is as follows:

Table B-13. File Type When -zf Option Is Specified

(3) Hex files

The hex file output by the object converter can be input to a hex loader such as a PROM programmer or a debug-

ger.

The following is the hex file of the sample program.

File Normal Space Extended Space

REGULAR EX1 EX2 EX3 EX4 ... EX13 EX14 EX15

Hex .hex .H1 .H2 .H3 .H4H13 .H14 .H15

Symbol .sym .S1 .S2 .S3 .S4S13 .S14 .S15

File File Type

Output file at boot area ROM program side .hxb

Output file at program side other than boot area ROM .hxf

: 0200000080007E

: 1000800011201A1620FE9A93001421FE63958462B3

: 1000900095FAFE617131809AA40073617131809A82

: 0D00A000A40072AF4D8D020D070D30AFA8

: 00000001FF

CubeSuite Ver.1.30 APPENDIX B COMMAND REFERENCE

R20UT0005EJ0100 Rev.1.00 Page 484 of 573
Jul 01, 2010

(a) Intel standard hex file format

Figure B-27. Intel Standard Format

Note The data record is repeated here.

- Data record

- End record

: 02 0000 00 8000 7E

(1) (2) (3) (4) (5) (6)

Item

Number

Description

(1) Record mark

Indicates beginning of record.

(2) Code number (2 digits)

Number of bytes in the code stored in the record. A maximum of 16 bytes can be stored.

(3) Location address (offset)

The start address (offset) of the code displayed in the record is shown as a 4-digit hexadecimal.

(4) Record type

Fixed at 00.

(5) Code (Max. 32 digits)

The object code is shown one byte at a time, with the higher 4 bits and lower 4 bits separated.

A maximum of 16 bytes can be expressed in the code.

(6) Check sum (2 digits)

A value is input subtracting in order from 0 which counts down the data from the code number to the

code.

: 00 0000 01 FF

(1) (2) (3) (4) (5)

Item

Number

Description

(1) Record mark

Indicates beginning of record.

(2) Code number

Fixed at 00.

Note

Data record

Data record

End record

CubeSuite Ver.1.30 APPENDIX B COMMAND REFERENCE

R20UT0005EJ0100 Rev.1.00 Page 485 of 573
Jul 01, 2010

(b) Intel extended hex file format

Figure B-28. Intel Extended Format

Note The extended address record and the data record are repeated here.

- Extended address record

(3) Fixed at 0000.

(4) Record type

Fixed at 01.

(5) Check sum

Fixed at FF.

: 02 0000 02 XXXX SS

(1) (2) (3) (4) (5) (6)

Item

Number

Description

(1) Record mark

Indicates beginning of record.

(2) Code number

Fixed at 02.

(3) Fixed at 0000.

(4) Record type

Fixed at 02.

(5) Paragraph value of the segment

The paragraph value of the segment is shown as a 4-digit hexadecimal.

Item

Number

Description

Note

Data record

Extended address record

Data record

End record

Data record

Extended address record

Start address record

CubeSuite Ver.1.30 APPENDIX B COMMAND REFERENCE

R20UT0005EJ0100 Rev.1.00 Page 486 of 573
Jul 01, 2010

- Data record

- Start address record

(6) Check sum (2 digits)

A value is input subtracting in order from 0 which counts down the data from the code number to the

higher 8-bit value of the address.

: 02 0000 00 80000 7E

(1) (2) (3) (4) (5) (6)

Item

Number

Description

(1) Record mark

Indicates beginning of record.

(2) Code number (2 digits)

Number of bytes in the code stored in the record. A maximum of 16 bytes can be stored.

(3) Location address (offset)

The start address (offset) of the code displayed in the record is shown as a 4-digit hexadecimal.

(4) Record type

Fixed at 00H.

(5) Code (Max. 32 digits)

The object code is shown one byte at a time, with the higher 4 bits and lower 4 bits separated.

A maximum of 16 bytes can be expressed in th.e code.

(6) Check sum (2 digits)

A value is input subtracting in order from 0 which counts down the data from the code number to the

code.

: 04 0000 03 0000 0000 F9

(1) (2) (3) (4) (5) (6) (7)

Item

Number

Description

(1) Record mark

Indicates beginning of record.

(2) Code number

Fixed at 04.

(3) Fixed at 0000.

(4) Record type

Fixed at 03.

(5) Fixed at 0000.

(6) Fixed at 0000.

Item

Number

Description

CubeSuite Ver.1.30 APPENDIX B COMMAND REFERENCE

R20UT0005EJ0100 Rev.1.00 Page 487 of 573
Jul 01, 2010

- End record

(c) Extended tektronix hex file format

Hex files are composed of the following three types of block.

- Data block

- Symbol block (This is an unused block. Symbol information uses the symbol table file.)

- Termination block

Each block starts with a header field composed of a common 6 characters, and ends with the string end-of-

line.

Maximum length of each block is 255, not including the start character % and end-of-line.

The format for the common header field is shown below.

Table B-14. Extended Tektronix Header Field

(7) Check sum

Fixed at F9.

: 00 0000 01 FF

(1) (2) (3) (4) (5)

Item

Number

Description

(1) Record mark

Indicates beginning of record.

(2) Code number

Fixed at 00.

(3) Fixed at 0000.

(4) Record type

Fixed at 01.

(5) Fixed at FF.

Item Number of ASCII

Characters

Description

% 1 The percent symbol specifies that the block is in extended

tektronix format.

Block length 2 This is a 2-digit hexadecimal which indicates the number of

characters in the block.

This number of characters does not include the start charac-

ter % and end-of-line.

Block type 1 6 = Data block

3 = Symbol block

8 = Termination block

Item

Number

Description

CubeSuite Ver.1.30 APPENDIX B COMMAND REFERENCE

R20UT0005EJ0100 Rev.1.00 Page 488 of 573
Jul 01, 2010

Note Character Values for Check Sum Evaluation

- Data block

The format for the data block is shown below.

Table B-15. Data Block Format for Extended Tektronix

Caution In extended Tektronix, the number of characters in a specific field is variable within 2 to 17

(1 to 16 characters of actual data). The first character in this variable field is a hexadecimal

which indicates the length of the field. The first character in this variable field is a hexadec-

imal which indicates the length of the field.The length of the character string is therefore 1

to 16 characters, and the length of the variable-length field including the character string

length indicator is 2 to 17.

Check sum 2 This is a 2-digit hexadecimal which indicates the remainder

produced when the total value of the charactersNote in the

block (except the start character %, the check sum, and end-

of-line) is divided by 256.

Character Value (Decimal)

0 to 9 0 to 9

A to Z 10 to 35

$ 36

% 37

. (period) 38

_ (underscore) 39

a to z 40 to 65

Field Number of ASCII

Characters

Description

Header 6 Standard header field

Block type = 6

Load address 2 to 17 Address from which the object code is loaded.

Number of characters is variable.

Object code 2n Number of bytes n, displayed as a 2-digit hexadecimal

% 15 6 1C 3 100 020202020202

(1) (2) (3) (4) (5) (6) (7)

Item

Number

Description

(1) Header character

Item Number of ASCII

Characters

Description

CubeSuite Ver.1.30 APPENDIX B COMMAND REFERENCE

R20UT0005EJ0100 Rev.1.00 Page 489 of 573
Jul 01, 2010

- Termination block

The format for the termination block is shown below.

Table B-16. Termination Block Format for Extended Tektronix

(2) Block length

15H = 21

(3) Block type

6

(4) Check sum

1CH

(5) Number of digits in load address

(6) Load address

100H

(7) Object code

6 bytes

Field Number of ASCII

Characters

Description

Header 6 Standard header field

Block type = 8

Load address 2 to 17 Start address for program execution.

Number of characters is variable.

% 08 8 1A 2 80

(1) (2) (3) (4) (5) (6)

Item

Number

Description

(1) Header character

(2) Block length

8H

(3) Block type

8

(4) Check sum

1AH

(5) Number of digits in load address

(6) Load address

80H

Item

Number

Description

CubeSuite Ver.1.30 APPENDIX B COMMAND REFERENCE

R20UT0005EJ0100 Rev.1.00 Page 490 of 573
Jul 01, 2010

- Symbol block (unused)

The extended Tech symbol block is data used for symbolic debugging. It may be assumed to have the follow-

ing characteristics.

Table B-17. Symbol Block Characteristics for Extended Tektronix

The format for the symbol block is shown below.

Table B-18. Symbol Block Format for Extended Tektronix

The symbols contained in a program are transferred as a symbol block. Each symbol block includes a section

name and a list of the symbols that belong to that section (If necessary, a scalar can also be included in any

section.)

Symbols in the same section can be placed in one or more blocks.

The formats for the section definition field and the symbol definition field in the symbol block are shown below.

Items Characteristics

Symbol 1 to 16 uppercase and lowercase alphabets, numerals, period and

underscore.

Numerals are not permitted for the start character.

Value Up to 64 bits (16-digit hexadecimal) are possible.

Type Address or scalar (a scalar indicates any numerical value other than

an address).

Addresses are divided into code addresses (instruction addresses)

and data addresses (addresses of data items).

Global/local specification Indicates whether a symbol is global (external reference enabled) or

local.

Section membership A section may be considered a range to which a memory name is

given.

Each address in a program belongs to at least one section. A scalar

does not belong to any section.

Field Number of ASCII

Characters

Description

Header 6 Standard header field

Block type = 3

Section name 2 to 17 This is the name of the section which includes the symbols

defined in the block. Number of characters is variable.

Section definition 5 to 35 This field must be displayed in one symbol block in each sec-

tion. This field may be placed before or after any number of

symbol definition fields.

See “Table B-19. Symbol Block Section Definition Fields for

Extended Tektronix” about this format.

Symbol definition 5 to 35 each This is a symbol definition field greater than 0.

See “Table B-20. Symbol Block Symbol Definition Fields for

Extended Tektronix” about this format.

CubeSuite Ver.1.30 APPENDIX B COMMAND REFERENCE

R20UT0005EJ0100 Rev.1.00 Page 491 of 573
Jul 01, 2010

Table B-19. Symbol Block Section Definition Fields for Extended Tektronix

Table B-20. Symbol Block Symbol Definition Fields for Extended Tektronix

(d) Motorola S-type format

Change generated hex files have three types of records, and consist of five records. The overall structure of

the file is shown in the figure below.

Figure B-29. Motorola S-type Format

Types of records are shown below.

Field Number of ASCII

Characters

Description

0 1 0 specifies that the field is a section definition field.

Base address 2 to 17 This is a section start address.

Number of characters is variable.

Length 2 to 17 Indicates the section length.

Number of characters is variable and is calculated by the fol-

lowing:

1 - (higher address - base address)

Field Number of ASCII

Characters

Description

Type 1 Displays 1-digit hexadecimal indicating global/local symbol

specification and type of value.

1 = Global address

2 = Global scalar

3 = Global code address

4 = Global data address

5 = Local address

6 = Local scalar

7 = Local code address

8 = Local data address

Symbol 2 to 17 Indicates the symbol length. This is variable.

Numerical value 2 to 17 This is the value corresponding to a symbol. Number of

characters is variable.

Data record

End record

Data record

Header record

CubeSuite Ver.1.30 APPENDIX B COMMAND REFERENCE

R20UT0005EJ0100 Rev.1.00 Page 492 of 573
Jul 01, 2010

Table B-21. Record Types for Motorola Hex File

Motorola hex format files are divided into standard 24-bit addresses and 32-bit addresses. Standard

addresses are composed of records S0, S2, and S8. The 32-bit addresses are composed of records S0, S3

and S7. Header record S0 is optional and is not output. A CR character is placed at the end of each S record.

The general formats and their meanings for each field in each record are shown below.

Table B-22. General Format for Each Record

Table B-23. Meanings of Fields

Type Record Type

Header record (optional) S0

Data record S2 (Standard 24 bits)

S3 (32 bits)

End record S8 (Standard 24 bits)

S7 (32 bits)

Record Type General Format

S0 S0XXYY ... YYZZZZ

S2 S2XXWWWWWWDD ... DDZZ

S3 S3XXWWWWWWWWDD ... DDZZ

S7 S7XXWWWWWWWWZZ

S8 S8XXWWWWWWZZ

Field Meaning

Sn Record type

XX Length of data record

Number of bytes in the address, hexadecimal data and check sum

YY … YY File name

ASCII code for the input file name expressed as a hexadecimal

WWWWWW [WW] 24th [32th] bit address

DD … DD Hexadecimal data

1 byte of data expressed as a 2-digit hexadecimal

ZZ Check sum

The lower 1 byte of complement 1 for the sum for each byte of the record

length, address and the hexadecimal data, expressed as a 2-digit hexadeci-

mal

S2 08 00FF11 D4520A20 A0

(1) (2) (3) (4) (5)

Item

Number

Description

(1) Record type

CubeSuite Ver.1.30 APPENDIX B COMMAND REFERENCE

R20UT0005EJ0100 Rev.1.00 Page 493 of 573
Jul 01, 2010

- S0 record

- S2 record

- S3 record

(2) Record length

(3) Load address (24-bit address)

(4) Hexadecimal data

(5) Check sum

S0 XX YYYYYYYY ZZ

(1) (2) (3) (4)

Item

Number

Description

(1) Record type

(2) Record length

This is the number of bytes in (3) plus the number of bytes in (4).

(3) File name

(4) Check sum

S2 XX WWWWWW DD … DD ZZ

(1) (2) (3) (4) (5)

Item

Number

Description

(1) Record type

(2) Record length

This is the number of bytes in (3) plus the number of bytes in (4) plus the number of bytes in (5).

(3) Load address

This is the 24-bit load address of the data in (4) within the range 0H to FFFFFFH.

(4) Data

This is the loaded data itself.

(5) Check sum

S3 XX WWWWWWWW DD … DD ZZ

(1) (2) (3) (4) (5)

Item

Number

Description

(1) Record type

Item

Number

Description

CubeSuite Ver.1.30 APPENDIX B COMMAND REFERENCE

R20UT0005EJ0100 Rev.1.00 Page 494 of 573
Jul 01, 2010

- S7 record

- S8 record

(2) Record length

This is the number of bytes in (3) plus the number of bytes in (4) plus the number of bytes in (5).

(3) Load address

This is the 32-bit load address of the data in (4) within the range 0H to FFFFFFFFH.

(4) Data

This is the loaded data itself.

(5) Check sum

S7 XX WWWWWWWW ZZ

(1) (2) (3) (4)

Item

Number

Description

(1) Record type

(2) Record length

This is the number of bytes in (3) plus the number of bytes in (4).

(3) Entry address

This is the 32-bit entry address within the range 0H to FFFFFFFFH.

(4) Check sum

S8 XX WWWWWWWW ZZ

(1) (2) (3) (4)

Item

Number

Description

(1) Record type

(2) Record length

This is the number of bytes in (3) plus the number of bytes in (4).

(3) Entry address

This is the 24-bit entry address within the range 0H to FFFFFFH.

(4) Check sum

Item

Number

Description

CubeSuite Ver.1.30 APPENDIX B COMMAND REFERENCE

R20UT0005EJ0100 Rev.1.00 Page 495 of 573
Jul 01, 2010

(4) Symbol table file

The symbol table file output by the object converter is input to a debugger.

The following is the symbol table file of the sample program.

Figure B-30. Formats for Symbol Table File

#04

; FF PUBLIC

010097CONVAH

010000MAIN

010080START

00FE20_@STBEG

00FB00_@STEND

; FF SAMPM

<02FE20HDTSA

02FE21STASC

; FF SAMPS

<0100A8SASC

0100AESASC1

=

Start of symbol table

Start of public symbol

Start of local symbol

Repeated in units of

object module

End mark of symbol

table

#

=

4 blank spaces

;

Local symbols for

each module

Public symbol nameSymbol attributesNote ->

PUBLIC

04

FF

<

Symbol value

FF Module name 1

Local symbol name

Local symbol name

Module name 2;

;

CR LF

:

Public symbol

Symbol attributes

Symbol attributes

Symbol value

Symbol value

:

: : : : :

: : :

CR LF

CR LF

CR LF

CR LF

CR LF

CR LF

CR LF

: : : :

4 blank spaces

FF

4 blank spaces

4 blank spaces

CubeSuite Ver.1.30 APPENDIX B COMMAND REFERENCE

R20UT0005EJ0100 Rev.1.00 Page 496 of 573
Jul 01, 2010

Note Symbol attributes are the values shown below.

See the following figure about formats of symbol values

Figure B-31. Formats for Symbol Value

B.4.3 Method for manipulating

(1) Object converter startup

The following two methods can be used to start up the object converter.

(a) Startup from the command line

Value Symbol Attribute

00 Constant defined by the EQU directive

01 Label within a code segment

02 Label within a data segment

03 Bit symbol

FF Module name

X:[path-name]>oc78k0[Δoption] ... load-module-file-name[Δoption] ... [Δ]

X Current drive name

path-name Current folder name

oc78k0 Command name of the object converter

option Enter detailed instructions for the operation of the object converter.

When specifying two or more object convert options, separate the options with a blank

space.Uppercase characters and lowercase characters are not distinguished for the

object convert options. See “B.4.4 Option” for details about object convert options.

Enclose a path that includes a space in a pair of double quotation marks (" ").

load-module-file-name File name of load module to be converted

Enclose the file name of a path that includes a space in a pair of double quotation

marks (" ").

Constant value 4 digits

- When the symbol attribute is NUMBER

Address value 4 digits

- When the symbol attribute is LABEL

Upper 13 bits

- When the symbol attribute is a bit symbol]

Lower 3 bits

Upper 13 bits: The relative address from 0FE00H

Lower 3 bits: Bit position (0 to 7)

CubeSuite Ver.1.30 APPENDIX B COMMAND REFERENCE

R20UT0005EJ0100 Rev.1.00 Page 497 of 573
Jul 01, 2010

Example To output a hex file (sample.hex), describe as:

(b) Startup from a parameter file

Use the parameter file when the data required to start up the object converter will not fit on the command line,

or when the same object convert option is specified repeatedly each time object conversion is performed.

To start up the assembler from a parameter file, specify the parameter file option (-f) on the command line.

Start up the object converter from a parameter file as follows:

Remark Create the parameter file using an editor.

The rules for writing the contents of a parameter file are as follows:

- If the load module file name is omitted from the command line, only 1 load module file name can be spec-

ified in the parameter file.

- The load module file name can also be written after the option.

- Write in the parameter file all object convert options and output file names specified in the command line.

Example Create a parameter file k0.poc using an editor, and then start up the object converter.

(2) Execution start and end messages

(a) Execution start message

When the object converter is started up, an execution startup message appears on the display.

(b) Execution end message

If it detects no object conversion errors resulting from the object conversion, the object converter outputs the

following message to the display and returns control to the host operating system.

C>oc78k0 k0.lmf -osamle.hex

X>oc78k0[Δload-module-file]Δ-fparameter-file

-f Parameter file specification option

parameter-file-name A file which includes the data required to start up the object converter

[[[Δ]option[Δoption] ... [Δ]Δ]] ...

; parameter file

k0.lmf -osample.hex

-ssample.sym -r

C>ra78k0 -fk0main.pra

78K0 Object Converter Vx.xx [xx xxx xxxx]

 Copyright(C) NEC Electronics Corporation xxxx

CubeSuite Ver.1.30 APPENDIX B COMMAND REFERENCE

R20UT0005EJ0100 Rev.1.00 Page 498 of 573
Jul 01, 2010

If it detects an object conversion errors resulting from the object conversion, the object converter outputs the

error number to the display and returns control to the host operating system.

 If the object converter detects a fatal error during object conversion which makes it unable to continue object

convert processing, the object converter outputs a message to the display, cancels object conversion and

returns control to the host operating system.

Examples 1. A non-existent load module file is specified.

In the above example, a non-existent load module file is specified. An error occurs and the object

converter aborts the object conversion.

2. A non-existent object convert option is specified.

In the above example, a non-existent object convert option is specified. An error occurs and the

object converter aborts the object conversion.

Target chip : uPD78xxx

Device file : Vx.xx

Object Conversion Complete, 0 error(s) and 0 warning(s) found.

Target chip : uPD78xxx

Device file : Vx.xx

Object Conversion Complete, 3 error(s) and 0 warning(s) found.

C>oc78k0 sample.lmf

78K0 Object Converter Vx.xx [xx xxx xxxx]

 Copyright(C) NEC Electronics Corporation xxxx

RA78K0 error F4006 : File not found 'sample.lmf'

Program aborted.

C>oc78k0 k0.lmf -a

78K0 Object Converter Vx.xx [xx xxx xxxx]

 Copyright(C) NEC Electronics Corporation xxxx

RA78K0 error F4018 : Option is not recognized '-a'

Please enter 'OC78K0--' , if you want help messages.

Program aborted.

CubeSuite Ver.1.30 APPENDIX B COMMAND REFERENCE

R20UT0005EJ0100 Rev.1.00 Page 499 of 573
Jul 01, 2010

(3) Set options in CubeSuite

This section describes how to set object convert options from CubeSuite.

On CubeSuite's Project Tree panel, select the Build Tool node. Next, select [Property] from the [View] menu. The

Property panel opens. Next, select the [Object Convert Options] tab.

You can set the various object convert options by setting the necessary properties in this tab.

Figure B-32. Property Panel: [Object Convert Option] Tab

B.4.4 Option

(1) Types

The object convert options are detailed instructions for the operation of the object converter.

The types and explanations for object convert options are shown below.

Table B-24. Object Convert Options

Classification Option Description

Hex file output specification -o Specifies the format of a hex file.

-no

Symbol table file output specifi-

cation

-s Specifies the output of a symbol table file.

-ns

Object address order sort speci-

fication

-r Sorts hex-format objects in order of address.

-nr

Object filling value specification -u Outputs a specified filling value as an object code for an

address area to which no hex-format object has been output.
-nu

Error list file output specification -e Outputs an error list file.

-ne

CubeSuite Ver.1.30 APPENDIX B COMMAND REFERENCE

R20UT0005EJ0100 Rev.1.00 Page 500 of 573
Jul 01, 2010

Parameter file specification -f Inputs the input file name and options from a specified file.

Hex-format specification -ki Intel standard hex-format

-kie Intel expanded hex-format

-kt Extended tektronix format

-km Motorola S type format (standard address)

-kme Motorola S type format (32-bit address)

Device file search path specifica-

tion

-y Reads a device file from a specified path.

File separate output specifica-

tion for built-in flash memory

product

-zf Splits the file into separate files: one for the boot area and

one for other areas.

Help specification -- Outputs a help message on the display.

Classification Option Description

CubeSuite Ver.1.30 APPENDIX B COMMAND REFERENCE

R20UT0005EJ0100 Rev.1.00 Page 501 of 573
Jul 01, 2010

The hex file output specification options are as follows.

- -o/-no

-o/-no

[Description format]

- Interpretation when omitted

-oinput-file-name.hex

(The file type for extended space is '.H1' to '.H15'.)

[Function]

- The -o option specifies the output of a hex file.

It also specifies the location to which it is output and the file name.

- The -no option specifies that no hex file is output.

[Application]

- Use the -o option to specify the location to which a hex file is output or to change its file name.

- Specify the -no option when performing an object conversion only to output a symbol table file. This will shorten

object conversion time.

[Description]

- If "output-file-name" is omitted when the -o option is specified, the hex file "input-file-name.hex" will be output to

the current folder.

- If only the path name is specified in "output-file-name", "input-file-name.hex" will be output to the specified path.

- If both the -o and -no options are specified at the same time, the option specified last is valid.

- If the -zf option is specified, the file type is as follows.

- When a code is output to a segment allocated in extended space, the object converter generates a separate hex

file for each space.

The file types of hex files generated for extended space are as follows.

Hex file output specification

-o[output-file-name]

-no

File File Type

Output file at boot area ROM program side .hxb

Output file at program side other than boot area ROM .hxf

CubeSuite Ver.1.30 APPENDIX B COMMAND REFERENCE

R20UT0005EJ0100 Rev.1.00 Page 502 of 573
Jul 01, 2010

[Example of use]

- To output a hex file (sample.hex), describe as:

File Normal Space Extended Space

REGULAR EX1 EX2 EX3 EX4 EX5 ... EX13 EX14 EX15

Hex .hex .H1 .H2 .H3 .H4 .H5H13 .H14 .H15

C>oc78k0 k0.lmf -osample.hex

CubeSuite Ver.1.30 APPENDIX B COMMAND REFERENCE

R20UT0005EJ0100 Rev.1.00 Page 503 of 573
Jul 01, 2010

The Symbol table file output specification options are as follows.

- -s/-ns

-s/-ns

[Description format]

- Interpretation when omitted

-sinput-file-name.sym

(The file type for extended space is '.S1' to '.S15'.)

[Function]

- The -s option specifies the output of a symbol table file. It also specifies the location to which it is output and the

file name.

- The -ns option specifies that no symbol table file is output.

[Application]

- Use the -s option to specify the location to which a symbol table file is output or to change its file name.

- Specify the -ns option when performing object conversion only to output a hex file.

This will shorten object conversion time.

[Description]

- If "output-file-name" is omitted when the -s option is specified, the symbol table file "input-file-name.sym" will be

output to the current folder.

- If only the path name is specified in "output-file-name", "input-file-name.sym" will be output to the specified path.

- If both the -s and -ns options are specified at the same time, the option specified last is valid.

- When a symbol having an ADDRESS or BIT attribute is defined for a segment allocated in extended space, the

object converter generates a separate symbol table file for each space.

All symbols which have NUMBER attribute are output to a symbol table file in normal space.

The file types of symbol table files generated for extended space are as follows.

[Example of use]

- To output a symbol table file (sample.sym), describe as:

Symbol table file output specification

-s[output-file-name]

-ns

File Normal Space Extended Space

REGULAR EX1 EX2 EX3 EX4 EX5 ... EX13 EX14 EX15

Hex .hex .S1 .S2 .S3 .S4 .S5S13 .S14 .S15

C>oc78k0 k0.lmf -ssample.sym

CubeSuite Ver.1.30 APPENDIX B COMMAND REFERENCE

R20UT0005EJ0100 Rev.1.00 Page 504 of 573
Jul 01, 2010

The object address order sort specification options are as follows.

- -r/-nr

-r/-nr

[Description format]

- Interpretation when omitted

-r

[Function]

- The -r option outputs sorting of hex-format objects in order of address.

- The -nr option outputs hex-format objects in the order in which they are stored in the load module file.

[Application]

- Use the -nr option to specify when the hex-format objects do not need to be sorted in address order.

[Description]

- If both the -r and -nr options are specified at the same time, the option specified last is valid.

- If the -no option is specified, the -r and -nr option are invalid.

[Example of use]

- To sort hex-format objects in order of address, describe as:

Object address order sort specification

-r

-nr

C>oc78k0 k0.hex -r

CubeSuite Ver.1.30 APPENDIX B COMMAND REFERENCE

R20UT0005EJ0100 Rev.1.00 Page 505 of 573
Jul 01, 2010

The object filling value specification options are as follows.

- -u/-nu

-u/-nu

[Description format]

- Interpretation when omitted

-u0FFH (filled with 0FFH)

[Function]

- The -u option outputs a specified filling value as an object code for an address area to which no hex-format object

has been output.

- The -nu option disables the -u option.

[Application]

- Address areas to which no hex-format object has been output may become written with unnecessary code. When

such addresses are accessed by the program for any reason, their action may be unpredictable. By specifying the

-u option, write code in advance to address areas to which no hex-format object has been output.

[Description]

- The range that can be specified for the filling value is 0H to 0FFH.

It can be specified in binary, octal, decimal or hexadecimal numbers. An abort error occurs if a numerical value

outside this range, or something other than a numerical value is specified.

- Specify the start address of the address area for filling to be performed as start-address.

The range that can be specified for the value is 0H to the largest address in program space other than SFR area.

It can be specified in binary, octal, decimal or hexadecimal numbers. An abort error occurs if a numerical value

outside this range, or something other than a numerical value is specified.If the start address is omitted, it is

assumed that 0 has been specified.

- Specify the size of the address area for filling to be performed as size.

The range that can be specified for the value is 1H to the largest address in program space other than SFR area +

1H.

It can be specified in binary, octal, decimal or hexadecimal numbers. An abort error occurs if a numerical value

outside this range, or something other than a numerical value is specified. When start-address has been speci-

fied, size cannot be omitted.

- If start-address nor size is specified, the object converter performs processing assuming that the range of the inter-

nal ROM is specified.

- If both the -u and -nu options are specified at the same time, the option specified last is valid.

- If the -no option is specified, the -u and -nu option are invalid.

- Two or more address ranges cannot be specified by using the -u option.

Object filling value specification

-ufilling-value[,[start-address],size]

-nu

CubeSuite Ver.1.30 APPENDIX B COMMAND REFERENCE

R20UT0005EJ0100 Rev.1.00 Page 506 of 573
Jul 01, 2010

- Specification formats for start-address and size by the -u option and their interpretation are as follows.

(1) -ufilling-value

If the target device contains internal ROM, the internal ROM range

(2) -ufilling-value,size

From address 0 to "size - 1"

(3) -ufilling-value,start-address,size

From start-address to "start-address + size - 1"

- In a bank-supported product, specify the bank number + CPU address in the start address and size.

See "(11) Hex output method of bank-supported products" for details.

[Example of use]

- Fill an address area to which a hex-format object has not been output with code.

It is supposed that the following hex file exists. In this case, code cannot be written to the address area 003EH to

0FFFH.

To fill 00H to the address area 003EH to 0FFFH, describe as:

: 020000000200FC

: 100002002B41000BFC80FE2B40000944F7083A20EC ; (1)

: 100012001A6720FE2822006521FED350D25014FE1A ; (1)

: 10002200B900059F2835002431B900059F28350005 ; (1)

: 0C003200242156AF0A8302A807A830560C

: 01000003B5D0d0026A3... ; (2)

: 1010100024A5F622B667... ; (2)

 :

: 00000001FF

C>oc78k0 k0.lmf -u00h,003eh,0fc2h

(1)

(2)

Code is filled to this area.

1000H

0FFFH

0001H

0000H

0002H

003DH

003EH

CubeSuite Ver.1.30 APPENDIX B COMMAND REFERENCE

R20UT0005EJ0100 Rev.1.00 Page 507 of 573
Jul 01, 2010

The error list file output specification options are as follows.

- -e/-ne

-e/-ne

[Description format]

- Interpretation when omitted

-ne

[Function]

- The -e option specifies the output of an error list file.

It also specifies the location to which it is output and the file name.

- The -ne option disables the -e option.

[Application]

- Use the -e option to specify the location to which an error list file is output or to change its file name.

[Description]

- If the output file name is omitted when the -e option is specified, the output file name will be "input-file-name.eoc".

- If the drive name is omitted when the -e option is specified, the error list file will be output to the current drive.

- If both the -e and -ne options are specified at the same time, the option specified last is valid.

[Example of use]

- To create an error list file k0.eoc, describe as:

Error list file output specification

-e[output-file-name]

-ne

C>oc78k0 k0.lmf -ek0.eoc

CubeSuite Ver.1.30 APPENDIX B COMMAND REFERENCE

R20UT0005EJ0100 Rev.1.00 Page 508 of 573
Jul 01, 2010

The parameter file specification option is as follows.

- -f

-f

[Description format]

- Interpretation when omitted

Options or input file names can only be input from the command line.

[Function]

- The -f option inputs options and input file names from a specified file.

[Application]

- Use the -f option when the information required to start up the object converter will not fit on the command line.

- When specifying options repeatedly every time you perform object conversion, describe the options in the parame-

ter file and specify the -f option.

[Description]

- An abort error occurs if the file name is omitted.

- Nesting of parameter files is not permitted. An abort error occurs if the -f option is specified within a parameter file.

- The number of characters that can be described within a parameter file is unlimited.

- Separate options or input file names with a blank space, a tab or the line feed code (LF).

- Options and input file names within a parameter file will be expanded at the position specified for the parameter file

on the command line.

- The expanded options specified last is valid.

- The characters following ";" or "#" are all assumed to be comments, up to the line feed code (LF) or EOF.

- An abort error occurs if two or more -f option is specified.

[Example of use]

- Perform object conversion using a parameter file (78k0.poc).

The contents of the parameter file (78k0.poc) is as follows.

Enter the following from the command line.

Parameter file specification

-ffile-name

; parameter file

k0.lmf -osample.hex

-ssample.sym -r

C>oc78k0 k0.lmf -f78k0.poc

CubeSuite Ver.1.30 APPENDIX B COMMAND REFERENCE

R20UT0005EJ0100 Rev.1.00 Page 509 of 573
Jul 01, 2010

The hex-format specification options are as follows.

- -ki/-kie/-kt/-km/-kme

-ki/-kie/-kt/-km/-kme

[Description format]

- Interpretation when omitted

-kie

[Function]

- These options specify the format of a hex file to be output.

[Application]

- Use these options to specify the format of a hex file to be output from among “Intel standard”, “Intel extended”,

“Extended tektronix”, “Motorola S type (standard address)” and “Motorola S type (32-bit address)”.

[Description]

- This section describes each option.

[Example of use]

- To specify a hex file to be output as the Motorola S format (standard address), describe as:

Hex-format specification

-ki

-kie

-kt

-km

-kme

Option Hex Format Range

-ki Intel standard 0H to FFFFH (up to 64 KB)

-kie Intel expanded 0H to FFFFFH (up to 1 MB)

-kt Extended tektronix 0H to FFFFFFFFH (up to 4 GB)

-km Motorola S type (standard address) 0H to FFFFFFH (up to 16 MB)

-kme Motorola S type (32-bit address) 0H to FFFFFFFFH (up to 4 GB)

C>oc78k0 k0.lmf -km

CubeSuite Ver.1.30 APPENDIX B COMMAND REFERENCE

R20UT0005EJ0100 Rev.1.00 Page 510 of 573
Jul 01, 2010

The device file search path specification option is as follows.

- -y

-y

[Description format]

- Interpretation when omitted

The path from which the device file is read is determined according to the following sequence.

(1) Path registered in the device file installer

(2) Path by which the oc78k0.exe was started up

(3) Current folder

(4) The environmental variable PATH

[Function]

- The -y option reads a device file from the specified path.

[Application]

- Use the -y option to specify a path where a device file exists.

[Description]

- An abort error occurs if something other than a path name is specified after the -y option.

- An abort error occurs if the path name is omitted after the -y option.

- The path from which the device file is read is determined according to the following sequence.

(1) The path specified by the -y option

(2) Path registered in the device file installer

(3) Path by which the OC78K0 was started up

(4) Current folder

(5) The environmental variable PATH

Device file search path specification

-ypath-name

CubeSuite Ver.1.30 APPENDIX B COMMAND REFERENCE

R20UT0005EJ0100 Rev.1.00 Page 511 of 573
Jul 01, 2010

[Example of use]

- To specify the path for the device file as folder C:\78k0\dev, describe as:

- To specify the path for the device file as folder C:\Program Files\NEC Electronics Tools\device files, describe as:

C>oc78k0 k0.lmf -yC:\78k0\dev

C>oc78k0 k0.lmf -y”C:\Program Files\NEC Electronics Tools\device files”

CubeSuite Ver.1.30 APPENDIX B COMMAND REFERENCE

R20UT0005EJ0100 Rev.1.00 Page 512 of 573
Jul 01, 2010

The file separate output specification option for built-in flash memory product is as follows.

- -zf

-zf

[Description format]

- Interpretation when omitted

Not separately output

[Function]

- The -zf option splits the file into separate files: one for the boot area and one for other areas.

[Description]

- When specifying boot area ROM program linking for a product with built-in flash memory, add this option to split up

the file into separate hex format files, one for the boot area and one for other areas.

- If the -zf option is specified, the output file type at the boot area ROM program side is "hxb", and the output file type

at the side of the other programs is "hxf".

Caution Do not specify this option for a device that does not have a flash memory area self-programming

function.

[Example of use]

- To split the hex file into separate files: k0.hxb for the boot area and k0 for other areas, describe as:

File separate output specification for built-in flash memory product

-zf

C>oc78k0 k0.lmf -zf

CubeSuite Ver.1.30 APPENDIX B COMMAND REFERENCE

R20UT0005EJ0100 Rev.1.00 Page 513 of 573
Jul 01, 2010

The help option is as follows.

- --

- -

[Description format]

- Interpretation when omitted

No display

[Function]

- The -- option outputs a help message on the display.

[Application]

- The help message is a list of explanations of the object convert options.

See these when executing the object converter.

[Description]

- When the -- option is specified, all other options are invalid.

Caution This option cannot be specified from CubeSuite.

[Example of use]

- To output a help message on the display, describe as:

Help specification

--

C>oc78k0 --

CubeSuite Ver.1.30 APPENDIX B COMMAND REFERENCE

R20UT0005EJ0100 Rev.1.00 Page 514 of 573
Jul 01, 2010

78K0 Object Converter Vx.xx [xx xxx xx]

 Copyright(C) NEC Electronics Corporation xxxx

usage : oc78k0 [option[...]] input-file [option[...]]

The option is as follows ([] means omissible).

-ffile :Input option or input-file name from specified file.

-o[file]/-no :Create HEX module file [with specified name] / Not.

-s[file]/-ns :Create symbol table file [with specified name] / Not.

-e[file]/-ne :Create the error list file [with the specified name] / Not.

-r/-nr :Sort HEX object by address / Not.

-uvalue[,[start],size]/-nu :Fill up HEX object with specified value / Not.

-kkind :Select hex format. I;intel format IE;intel extend format

 T;tex format M;s format ME;s-32bit format

-ydirectory :Set device file search path.

-zf :Create boot hex module file (HXB), and flash hex module file(HXF).

-- :Show this message.

DEFAULT ASSIGNMENT: -o -s -r -u0ffh

CubeSuite Ver.1.30 APPENDIX B COMMAND REFERENCE

R20UT0005EJ0100 Rev.1.00 Page 515 of 573
Jul 01, 2010

B.5 Librarian

The librarian edits CA78K0 object module files and library files in units of one module. It also outputs a list file.

If a librarian error occurs, an error message is output to the display indicating the cause of the error.

Figure B-33. I/O Files of Librarian

B.5.1 I/O files

The I/O files of the librarian are shown below.

See "3.5 Librarian" for details about output lists.

Table B-25. I/O Files of Librarian

Type File Name Explanation Default File Type

Input files Subcommand file - File containing the subcommands and param-

eters for the executed commands (user-cre-

ated file)

None

Output files List file - File containing the result of library file informa-

tion output

.lst

I/O files Object module file - Object module file output by the compiler or

assembler

.rel

Library file - File used to input the library files output by the

librarian and update the contents

.lib

Temporary file - File created automatically by the librarian

when forming a library

Temporary files are deleted when execution of

the librarian ends.

Lbxxxxxx.$$y

(y = 1 to 6)

Object module file output by

the compiler or assembler Subcommand file

Library file List file

Temporary file

Librarian

CubeSuite Ver.1.30 APPENDIX B COMMAND REFERENCE

R20UT0005EJ0100 Rev.1.00 Page 516 of 573
Jul 01, 2010

B.5.2 Functions

(1) Formation of a library of modules

The assembler and linker create one file for every module they output.

This means that if a large number of modules are created, the number of files also grows. The assembler there-

fore includes a function for collecting a number of object modules in a single file. This function is called module

library formation, and a file which is organized as a library is called a library file.

A library file can be input to the linker. By creating a library file consisting of modules common to many programs,

users can make file management and operation efficient and easy when performing modular programming.

(2) Editing of library files

The librarian incorporates the following editing functions for library files.

- Addition of modules to library files

- Deletion of modules from library files

- Replacement of modules in library files

- Retrieval of modules from library files

See "B.5.5 Subcommands" for details about these functions.

(3) Output of library file information

The librarian incorporates functions for the editing and output of the following items of information stored in library

files.

- Module names

- Created programs

- Date of registration

- Date of update

- PUBLIC symbol information

Caution The librarian performs functions (2) and (3) explained above using subcommands. The librarian

carries out the process while explaining each subcommand in order. See "B.5.5 Subcom-

mands" the operation of subcommands.

The general procedure for creating library files is as follows.

CubeSuite Ver.1.30 APPENDIX B COMMAND REFERENCE

R20UT0005EJ0100 Rev.1.00 Page 517 of 573
Jul 01, 2010

B.5.3 Method for manipulating

(1) Librarian startup

The following two methods can be used to start up the librarian.

(a) Startup from the command line

Example To specify 20 as the number of lines per page and specify 80 as the number of characters per line

in a list file, describe as:

When the librarian is started up, an execution startup message appears on the display.

X:[path-name]>lb78k0[Δoption] ...

X Current drive name

path-name Current folder name

lb78k0 Command name of the librarian

option Enter detailed instructions for the operation of the librarian.

When specifying two or more create library options, separate the options with a blank

space. Uppercase characters and lowercase characters are not distinguished for the

create library options. See “B.5.4 Option” for details about create library options.

Enclose a path that includes a space in a pair of double quotation marks (" ").

C>lb78k0 -ll20 -lw80

... create subcommand

... add subcommand

... add subcommand

delete subcommand

replace subcommand

pick subcommand

... list subcommand

Registration of object module file

Creation of library file

Update or retrieval of object

module file

Output of library file information

START

END

CubeSuite Ver.1.30 APPENDIX B COMMAND REFERENCE

R20UT0005EJ0100 Rev.1.00 Page 518 of 573
Jul 01, 2010

After an asterisk (*), specify a librarian subcommand.

When input of subcommands is finished, processing of each subcommand begins. When processing of

one subcommand is complete, "*" appears again on the screen and the librarian waits for the next

subcommand to be entered. The librarian repeats this operation until the exit subcommand is entered.

Up to 128 characters can be specified per line.

If all the required operand data will not fit on 1 line, use "&" to continue specification on the next line.

Specification can be continued up to 15 lines.

(b) Startup from a subcommand file

A subcommand file is a file in which librarian subcommands are stored.

If a subcommand file is not specified when the librarian is started up, multiple subcommands must be specified

after "*" appears. By creating a subcommand file, these multiple subcommand files can all be processed at

once.

A subcommand file can also be used when the same subcommand is specified repeatedly each time library

formation is performed.

When using a subcommand file, describe "< " before the file name.

Start up the librarian from a subcommand file as follows:

Remark Create the subcommand file using an editor.

The rules for writing the contents of a subcommand file are as follows:

78K0 Librarian Vx.xx [xx xxx xxxx]

 Copyright(C) NEC Electronics Corporation xxxx

*

*create k0.lib

*add k0.lib k0main.rel k0sub.rel

*exit

X>lb78k0Δ<subcommand-file-name[Δoption] ...

< Be sure to add this when specifying a subcommand file

subcommand-file-name File in which subcommands are stored

Subcommand processing

*Specify subcommand

*Specify exit subcommand

 Exit librarian

:

Subcommand processing

*Specify subcommand

CubeSuite Ver.1.30 APPENDIX B COMMAND REFERENCE

R20UT0005EJ0100 Rev.1.00 Page 519 of 573
Jul 01, 2010

- When repeating one subcommand, describe "&" at the end of each line to indicate continuation.

- Everything described from a semicolon (";") to the end of the line will be assumed to be a comment, and

will not be interpreted by the librarian command.

- If the last subcommand in a subcommand file is not the exit subcommand, the librarian will automatically

interpret that an exit subcommand is specified.

- The librarian reads subcommands from the subcommand file and processes them.

The librarian quits after it completes processing of all subcommands in the subcommand file.

Example Create a subcommand file k0.slb using an editor, and then start up the librarian.

(2) Execution start and end messages

(a) Execution start message

When the librarian is started up, an execution startup message appears on the display.

(b) Execution end message

The librarian does not output an execution end message. When the user enters the exit subcommand after all

processing is complete, the librarian returns control to the host operating system.

If the librarian detects a fatal error which makes it unable to continue librarian processing, the librarian outputs

a message to the display and returns control to the operating system.

Example A non-existent create library option is specified.

Subcommand-name operand-data

Subcommand-name operand-data

 :

exit

; library creation command

create k0.lib

add k0.lib k0main.rel &

k0sub.rel

;

exit

C>lb78k0 <k0.slb

78K0 Librarian Vx.xx [xx xxx xxxx]

 Copyright(C) NEC Electronics Corporation xxxx

*

*create k0.lib

*add k0.lib k0main.rel k0sub.rel

*exit

C>lb78k0 -a

CubeSuite Ver.1.30 APPENDIX B COMMAND REFERENCE

R20UT0005EJ0100 Rev.1.00 Page 520 of 573
Jul 01, 2010

In the above example, a non-existent create library option is specified. An error occurs and the

librarian aborts the librarian execution.

(3) Set options in CubeSuite

This section describes how to set create library options from CubeSuite.

On CubeSuite's Project Tree panel, select the Build Tool node. Next, select [Property] from the [View] menu. The

Property panel opens. Next, select the [Create Library Options] tab.

You can set the various create library options by setting the necessary properties in this tab.

Figure B-34. Property Panel: [Create Library Options] Tab

B.5.4 Option

(1) Types

The create library options are detailed instructions for the operation of the librarian.

The types and explanations for create library options are shown below.

Table B-26. Create Library Options

78K0 Librarian Vx.xx [xx xxx xxxx]

 Copyright(C) NEC Electronics Corporation xxxx

RA78K0 error F5018 : Option is not recognized '-z'

Usage : LB78K0 [options]

Classification Option Description

List file format specification -lw Changes the number of characters printed per line in a list

file.

-ll Changes the number of lines printed per page in a list file.

-lf Inserts a form feed code at the end of a link list file.

-nlf

Temporary file creation path

specification

-t Creates a temporary file in the specified path.

Help specification -- Outputs a help message on the display.

CubeSuite Ver.1.30 APPENDIX B COMMAND REFERENCE

R20UT0005EJ0100 Rev.1.00 Page 521 of 573
Jul 01, 2010

The list file format specification options are as follows.

- -lw

- -ll

- -lf/-nlf

-lw

[Description format]

- Interpretation when omitted

-lw132 (80 characters in the case of display output)

[Function]

- The -lw option specifies the number of characters per line in a list file.

[Application]

- Use the -lw option to change the number of characters per line in a list file.

[Description]

- The range of number of characters that can be specified with the -lw option is 72 to 260 (80 characters in the case

of display output).

- An abort error occurs if a numerical value outside this range, or something other than a numerical value is speci-

fied.

- If the number of characters is omitted, it is assumed that 132 has been specified.However, when a list file is output

to display, it is assumed that 80 has been specified.

- The specified number of characters does not include the terminator (CR, LF).

- If the list subcommand is not specified, the -lw option is ignored.

- If two or more -lw options are specified, the option specified last is valid.

[Example of use]

- To specify 80 as the number of characters per line in a list file, describe as:

List file format specification

-lw[number-of-characters]

C>lb78k0 -lw80

CubeSuite Ver.1.30 APPENDIX B COMMAND REFERENCE

R20UT0005EJ0100 Rev.1.00 Page 522 of 573
Jul 01, 2010

-ll

[Description format]

- Interpretation when omitted

-ll66 (No page breaks in the case of display output)

[Function]

- The -ll option specifies the number of lines per page in a list file.

[Application]

- Use the -ll option to change the number of lines per page in a list file.

[Description]

- The range number of lines that can be specified with the -ll option is 0 and 20 to 32767.

- An abort error occurs if a numerical value outside this range, or something other than a numerical value is speci-

fied.

- If the number of lines is omitted, it is assumed that 66 has been specified.

- If the number of lines specified is 0, no page breaks will be made.

- If the list subcommand is not specified, the -ll option is ignored.

- If two or more -ll options are specified, the option specified last is valid.

[Example of use]

- To specify 20 as the number of lines per page in a list file, describe as:

-ll[number-of-lines]

C>lb78k0 -ll20

CubeSuite Ver.1.30 APPENDIX B COMMAND REFERENCE

R20UT0005EJ0100 Rev.1.00 Page 523 of 573
Jul 01, 2010

-lf/-nlf

[Description format]

- Interpretation when omitted

-nlf

[Function]

- The -lf option inserts a form feed (FF) code at the end of a list file.

- The -nlf option disables the -lf option.

[Application]

- Use the -lf option to insert a form feed code if you wish to add a page break after the contents of a list file are

printed.

[Description]

- If the list subcommand is not specified, the -lf option is ignored.

- If both the -lf and -nlf options are specified at the same time, the option specified last is valid.

[Example of use]

- Inserts a form feed code at the end of a list file.

-lf

-nlf

C>lb78k0 -lf

CubeSuite Ver.1.30 APPENDIX B COMMAND REFERENCE

R20UT0005EJ0100 Rev.1.00 Page 524 of 573
Jul 01, 2010

The temporary file creation path specification option is as follows.

- -t

-t

[Description format]

- Interpretation when omitted

Path specified by environmental variable TMP

Current path, if environmental variable TMP is not specified.

[Function]

- The -t option specifies a path in which a temporary file is created.

[Application]

- Use the -t option to specify the location for creation of a temporary file.

[Description]

- Only a path can be specified as a path name.

- The path name is cannot be omitted.

- Even if a previously created temporary file exists, if the file is not protected it will be overwritten.

- As long as the required memory size is available, the temporary file will be expanded in memory.

If not enough memory is available, the contents of the temporary file will be written to a disk. Such temporary files

may be accessed later through the saved disk file.

- Temporary files are deleted when library formation is finished. They are also deleted when library formation is

aborted by pressing the keys ([CTRL] + [C] key).

- The path in which the temporary file is created is determined according to the following sequence.

(1) The path specified by the -t option

(2) Path specified by environmental variable TMP (when the -t option is omitted)

(3) Current path (when TMP is not set)

Caution When (1) or (2) is specified, if the temporary file cannot be created in the specified path, an abort

error occurs.

[Example of use]

- To output a temporary file to folder C:\tmp, describe as:

Temporary file creation path specification

-tpath-name

C>lb78k0 -tC:\tmp

CubeSuite Ver.1.30 APPENDIX B COMMAND REFERENCE

R20UT0005EJ0100 Rev.1.00 Page 525 of 573
Jul 01, 2010

- To output a temporary file to folder C:\Program Files\NEC Electronics Tools\temporary files, describe as:

C>lb78k0 -t”C:\Program Files\NEC Electronics Tools\temporary files”

CubeSuite Ver.1.30 APPENDIX B COMMAND REFERENCE

R20UT0005EJ0100 Rev.1.00 Page 526 of 573
Jul 01, 2010

The help option is as follows.

- --

- -

[Description format]

- Interpretation when omitted

No display

[Function]

- The -- option outputs a help message on the display.

[Application]

- The help message is a list of explanations of the subcommands. See these when executing the librarian.

[Description]

- When the -- option is specified, all other options are invalid.

Caution This option cannot be specified from CubeSuite.

[Example of use]

- To output a help message on the display, describe as:

Help specification

--

C>lb78k0 --

CubeSuite Ver.1.30 APPENDIX B COMMAND REFERENCE

R20UT0005EJ0100 Rev.1.00 Page 527 of 573
Jul 01, 2010

78K0 Librarian Vx.xx [xx xxx xx]

 Copyright(C) NEC Electronics Corporation xxxx

+---+

| Subcommands : create,add,delete,replace,pick,list,help,exit |

| |

| Usage : subcommand[option] masterLBF[option] transaction[option] |

| |

| transaction :== OMFname |

| LBFname[(modulename[,...])] |

| |

| <create > : create masterLBF[transaction] |

| <add > : add masterLBF transaction |

| <delete > : delete masterLBF(modulename[,...]) |

| <replace> : replace masterLBF transaction |

| <pick > : pick masterLBF(modulename[,...]) |

| <list > : list[option] masterLBF[(modulename[,...]) |

| option : -p = output public symbol |

| -np = no output public symbol |

| -o filename = specify output file name |

| <help > : help |

| <exit > : exit |

| |

+---+

CubeSuite Ver.1.30 APPENDIX B COMMAND REFERENCE

R20UT0005EJ0100 Rev.1.00 Page 528 of 573
Jul 01, 2010

B.5.5 Subcommands

(1) Types

The subcommands are detailed instructions for the operation of the librarian.

The types and explanations for subcommands are shown below.

Table B-27. Subcommands

(2) General format of subcommand files

Remark Uppercase characters and lowercase characters are not distinguished for the subcommands and

options.

Subcommand Name Abbrev. Description

create c Creates a new library file.

add a Adds a module to a library file.

delete d Deletes a module from a library file.

replace r Replaces a module in a library file with other module.

pick p Retrieves a module from the library file.

list l Outputs information on modules in a library file.

help h Outputs a help message on the display.

exit e Exits the librarian.

*subcommand[Δoption]Δlibrary-file-name[Δoption]transaction[Δoption]

library-file-name The library file name specified immediately before can be replaced with '.'.

transaction transaction = Δobject-module-file-name ΔDlibrary-file-name[Δ(Δmodule-name[Δ, …])]

CubeSuite Ver.1.30 APPENDIX B COMMAND REFERENCE

R20UT0005EJ0100 Rev.1.00 Page 529 of 573
Jul 01, 2010

[Description format]

[Function]

- The create subcommand creates a new library file.

[Description]

- The size of the created library file is 0.

- When a transaction is specified, a module is registered while the library file is created.

- library-file-name:

If a specified file already exists, it will be overwritten.

- transaction:

An object module file carrying the same public symbol as the public symbol in the library file cannot be registered.

A module with the same name as a module in the library file cannot be registered.

- If an error occurs, processing is interrupted and the library file cannot be created.

[Example of use]

- To register modules m1 and m2 while the library file (k0.lib) is created, describe as:

create

createΔlibrary-file-name[Δtransaction]

cΔlibrary-file-name[Δtransaction] ; abbreviated form

*create k0.lib m1.rel m2.rel

<Before file creation>

<After file creation>

k0.lib

m1 m2

m1

m2

CubeSuite Ver.1.30 APPENDIX B COMMAND REFERENCE

R20UT0005EJ0100 Rev.1.00 Page 530 of 573
Jul 01, 2010

[Description format]

[Function]

- The add subcommand adds a module to a library file.

[Description]

- A module can be added to a library file even if no modules are stored in the library.

- An abort error occurs if a module with the same name as the module to be added already exists in the library file.

- An abort error occurs if the module to be added carries the same public symbol as the public symbol in the library

file.

[Example of use]

- To add module m3 to the library file (k0.lib), describe as:

add

addΔlibrary-file-nameΔtransaction

aΔlibrary-file-nameΔtransaction ; Abbreviated form

*add k0.lib m3.rel

<Before module addition>

k0.lib

<After module addition>

k0.lib

m1

m1

m2

m2

m3

m3

CubeSuite Ver.1.30 APPENDIX B COMMAND REFERENCE

R20UT0005EJ0100 Rev.1.00 Page 531 of 573
Jul 01, 2010

[Description format]

[Function]

- The delete subcommand deletes a module from a library file.

[Description]

- An error occurs if the specified module does not exist in the library file.

- If an error occurs, processing is interrupted and the condition of the library file will not be changed.

[Example of use]

- To delete modules m1 and m3 from the library file (k0.lib), describe as:

delete

deleteΔlibrary-file-nameΔ(Δmodule-name[Δ, ...]Δ)

dΔlibrary-file-nameΔ(Δmodule-name[Δ, ...]Δ) ; Abbreviated form

*delete k0.lib (m1.rel , m3.rel)

<Before module deletion>

k0.lib

<After module deletion>

k0.lib

m1

m2

m3

m2

CubeSuite Ver.1.30 APPENDIX B COMMAND REFERENCE

R20UT0005EJ0100 Rev.1.00 Page 532 of 573
Jul 01, 2010

[Description format]

[Function]

- The replace subcommand replaces an existing module in a library file with the module in other object module files.

[Description]

- An abort error occurs if no module with the same name as the module to be replaced exists in the library file.

- An abort error occurs if the module to be replaced carries the same public symbol as the public symbol in the

library file.

- The file name of the object module to be replaced must be the same as the file name under which it was registered

in the library file.

- If an error occurs, processing is interrupted and the condition of the library file will not be changed.

[Example of use]

- To replace module m2 in the library file (k0.lib), describe as:

Because the new module (m2) is registered after the module (m2) in the library file is deleted, m2 is last in order in

the library file.

replace

replaceΔlibrary-file-nameΔtransaction

rΔlibrary-file-nameΔtransaction ; Abbreviated form

*replace k0.lib m2.rel

<Before module replacement>

k0.lib

<After module replacement>

k0.lib

m2
m1

m2

m3

m1

m3

m2

CubeSuite Ver.1.30 APPENDIX B COMMAND REFERENCE

R20UT0005EJ0100 Rev.1.00 Page 533 of 573
Jul 01, 2010

[Description format]

[Function]

- The pick subcommand retrieves a specified module from an existing library file.

[Description]

- The retrieved module becomes an object module file with the file name under which it was registered in the library

file.

- An error occurs if the specified module does not exist in the library file.

- If an error occurs, processing is interrupted. However, if an error occurs when two or more modules are specified,

the modules retrieved before the module which caused the error become valid and are saved onto a disk.

[Example of use]

- To retrieve module m2 from the library file (k0.lib), describe as:

pick

pickΔlibrary-file-nameΔ(Δmodule-name[Δ, ...]Δ)

pΔlibrary-file-nameΔ(Δmodule-name[Δ, ...]Δ) ; Abbreviated form

*pick k0.lib (m2.rel)

<Before module retrieval>

k0.lib

<After module retrieval>

k0.lib

m1

m2

m3

m1

m2

m3

m2

CubeSuite Ver.1.30 APPENDIX B COMMAND REFERENCE

R20UT0005EJ0100 Rev.1.00 Page 534 of 573
Jul 01, 2010

[Description format]

[Function]

- The list subcommand outputs information on modules in a library file.

[Description]

- Two or more options can be specified. Uppercase characters and lowercase characters are not distinguished for

the options.

- -o:

An error occurs if output-file-name is omitted.

If the file type is omitted, it is assumed that "input-file-name.lst" is entered.

- -public/-nopublic:

It can also be specified as -p/-np.

-public specifies the output of public symbol information.

The -nopublic option disables the -public option.

If both the -public and -nopublic options are specified at the same time, the option specified last takes precedence.

[Example of use]

- Output a module information in the library file (k0.lib) to the list file (k0.lst). At this time, specify the -p option so as

to output public symbol information.

The contents of the list file (k0.lst) is as follows.

list

list[Δoption]Δlibrary-file-name[Δ(Δmodule-name[Δ, ...]Δ)]

l[Δoption]Δlibrary-file-name[Δ(Δmodule-name[Δ, ...]Δ)] ; Abbreviated form

 option : -public/-nopublic

 : -oΔfile-name

*list -p -ok0.lst k0.lib

78K0 librarian Vx.xx DATE : xx xxx xx PAGE 1

LIB-FILE NAME : k0.lib (xx xxx xxxx)

 0001 m1.rel (xx xxx xxxx)

 sym1 sym2 sym3

 NUMBER OF PUBLIC SYMBOLS : 3

 0002 m3.rel (xx xxx xxxx)

 NUMBER OF PUBLIC SYMBOLS : 0

CubeSuite Ver.1.30 APPENDIX B COMMAND REFERENCE

R20UT0005EJ0100 Rev.1.00 Page 535 of 573
Jul 01, 2010

 0003 m2.rel (xx xxx xxxx)

 bit1 bit2

 NUMBER OF PUBLIC SYMBOLS : 2

CubeSuite Ver.1.30 APPENDIX B COMMAND REFERENCE

R20UT0005EJ0100 Rev.1.00 Page 536 of 573
Jul 01, 2010

[Description format]

[Function]

- The help command outputs a help message on the display.

[Description]

- The help message is a list of explanations of the subcommands. Specify the help command or the - - option to see

these when executing the librarian.

[Example of use]

- To output a help message on the display, describe as:

help

help

h ; Abbreviated form

*help

+---+

| Subcommands : create,add,delete,replace,pick,list,help,exit |

| |

| Usage : subcommand[option] masterLBF[option] transaction[option] |

| |

| transaction :== OMFname |

| LBFname[(modulename[,...])] |

| |

| <create > : create masterLBF[transaction] |

| <add > : add masterLBF transaction |

| <delete > : delete masterLBF(modulename[,...]) |

| <replace> : replace masterLBF transaction |

| <pick > : pick masterLBF(modulename[,...]) |

| <list > : list[option] masterLBF[(modulename[,...]) |

| option : -p = output public symbol |

| -np = no output public symbol |

| -o filename = specify output file name |

| <help > : help |

| <exit > : exit |

| |

+---+

CubeSuite Ver.1.30 APPENDIX B COMMAND REFERENCE

R20UT0005EJ0100 Rev.1.00 Page 537 of 573
Jul 01, 2010

[Description format]

[Function]

- The exit subcommand exits the librarian.

[Description]

- Use this subcommand to exit the librarian.

[Example of use]

- To exit the librarian, describe as:

exit

exit

e ; Abbreviated form

*exit

CubeSuite Ver.1.30 APPENDIX B COMMAND REFERENCE

R20UT0005EJ0100 Rev.1.00 Page 538 of 573
Jul 01, 2010

B.6 List Converter

The list converter inputs assemble list files and object module files output by the assembler and load module files out-

put by the linker.

It embeds actual addresses in the relocatable addresses and symbols in the input file and outputs an absolute assem-

bly list.

Figure B-35. I/O Files of List Converter

B.6.1 I/O files

The I/O files of the list converter are shown below.

Table B-28. I/O Files of List Converter

Type File Name Explanation Default File Type

Input files Object module file - Binary fils containing relocation information

and symbol information regarding machine

language information and machine language

location addresses

.rel

Assemble list file - File containing assembly information such as

assemble lists and cross reference lists

.prn

Load module file - Binary image file of the object codes output as

a result of linking

.lmf

Parameter file - File containing the parameters for the exe-

cuted commands (user-created file)

.plv

Output files Absolute assemble list file - List file which embed actual addresses in

relocatable addresses and symbols in input

files

.p

Error list file - File containing error information generated

during converting lists

.elv

Assemble list file Object module file Load module file

Absolute assemble list file Error list file

Parameter file

List Converter

CubeSuite Ver.1.30 APPENDIX B COMMAND REFERENCE

R20UT0005EJ0100 Rev.1.00 Page 539 of 573
Jul 01, 2010

B.6.2 Functions

(1) Resolving disadvantages of the assembler (relocatable assembler)

The list converter offers a solution to disadvantages of relocatable assembler by embedding the location and object

codes in the assemble list file.

- The absolute assemble list output by the list converter agrees completely with the addresses used in actual

program operation.

- The actual values of external symbols are embedded in the list.

- Relocatable values are embedded in the list as actual values.

- For the symbol values in symbol tables or cross reference lists, the actual values are embedded in the list.

Examples of the absolute assemble list file that can be acquired by the list converter are shown below.

Example Relocation data is embedded as shown below.

- Assemble list

21 21 ---- CSEG

22 22 0000 START :

23 23

24 24 ; chip initialize

25 25

26 26 0000 11201A MOV HDTSA , #1AH

27 27 0003 1620FE MOVW HL , #HDTSA ; set hex 2-code data in HL registor

28 28

29 29 0006 R9A0000 CALL !CONVAH ; convert ASCII <- HEX

30 30 ; output BC-register <- ASCII code

31 31 0009 1421FE MOVW DE , #STASC ; set DE <- store ASCII code table

32 32 000C 63 MOV A , B

33 33 000D 95 MOV [DE] , A

34 34 000E 84 INCW DE

35 35 000F 62 MOV A , C

36 36 0010 95 MOV [DE] , A

37 37

38 38 0011 FAFE BR $$

39 39

40 40 END

CubeSuite Ver.1.30 APPENDIX B COMMAND REFERENCE

R20UT0005EJ0100 Rev.1.00 Page 540 of 573
Jul 01, 2010

- Absolute assemble list

Example The object codes are embedded as shown below.

- Assemble list

21 21 ---- CSEG

22 22 0080 START :

23 23

24 24 ; chip initialize

25 25

26 26 0080 11201A MOV HDTSA , #1AH

27 27 0083 1620FE MOVW HL , #HDTSA ; set hex 2-code data in HL registor

28 28

29 29 0086 R9A9300 CALL !CONVAH ; convert ASCII <- HEX

30 30 ; output BC-register <- ASCII code

31 31 0089 1421FE MOVW DE , #STASC ; set DE <- store ASCII code table

32 32 008C 63 MOV A , B

33 33 008D 95 MOV [DE] , A

34 34 008E 84 INCW DE

35 35 008F 62 MOV A , C

36 36 0090 95 MOV [DE] , A

37 37

38 38 0091 FAFE BR $$

39 39

40 40 END

21 21 ---- CSEG

22 22 0000 START :

23 23

24 24 ; chip initialize

25 25

26 26 0000 11201A MOV HDTSA , #1AH

27 27 0003 1620FE MOVW HL , #HDTSA ; set hex 2-code data in HL registor

28 28

29 29 0006 R9A0000 CALL !CONVAH ; convert ASCII <- HEX

30 30 ; output BC-register <- ASCII code

31 31 0009 1421FE MOVW DE , #STASC ; set DE <- store ASCII code table

32 32 000C 63 MOV A , B

33 33 000D 95 MOV [DE] , A

34 34 000E 84 INCW DE

35 35 000F 62 MOV A , C

36 36 0010 95 MOV [DE] , A

37 37

38 38 0011 FAFE BR $$

39 39

40 40 END

CubeSuite Ver.1.30 APPENDIX B COMMAND REFERENCE

R20UT0005EJ0100 Rev.1.00 Page 541 of 573
Jul 01, 2010

- Absolute assemble list

21 21 ---- CSEG

22 22 0080 START :

23 23

24 24 ; chip initialize

25 25

26 26 0080 11201A MOV HDTSA , #1AH

27 27 0083 1620FE MOVW HL , #HDTSA ; set hex 2-code data in HL registor

28 28

29 29 0086 R9A9300 CALL !CONVAH ; convert ASCII <- HEX

30 30 ; output BC-register <- ASCII code

31 31 0089 1421FE MOVW DE , #STASC ; set DE <- store ASCII code table

32 32 008C 63 MOV A , B

33 33 008D 95 MOV [DE] , A

34 34 008E 84 INCW DE

35 35 008F 62 MOV A , C

36 36 0090 95 MOV [DE] , A

37 37

38 38 0091 FAFE BR $$

39 39

40 40 END

CubeSuite Ver.1.30 APPENDIX B COMMAND REFERENCE

R20UT0005EJ0100 Rev.1.00 Page 542 of 573
Jul 01, 2010

B.6.3 Method for manipulating

(1) List converter startup

The following two methods can be used to start up the list converter.

(a) Startup from the command line

Caution If only the primary name of the assemble list is specified in the command line, the primary

names of the object module file and load module file must be identical with the primary

name of the assemble list file.

The file types must also be as shown below.

Example If the primary name is different between an assemble list file (k0main.prn) and a load module file

(sample.lmf), describe as follows so as to specify the input of a load module file (sample.lmf).

(b) Startup from a parameter file

Use the parameter file when the data required to start up the list converter will not fit on the command line, or

when the same list convert option is specified repeatedly each time list conversion is performed.

To start up the assembler from a parameter file, specify the parameter file option (-f) on the command line.

Start up the object converter from a parameter file as follows:

X:[path-name]>lc78k0[Δoption] ... input-file-name[Δoption] ... [Δ]

X Current drive name

path-name Current folder name

lc78k0 Command name of the list converter

option Enter detailed instructions for the operation of the list converter.

When specifying two or more list convert options, separate the options with a blank

space. Uppercase characters and lowercase characters are not distinguished for the

list convert options.

See “B.6.4 Option” for details about list convert options.

Enclose a path that includes a space in a pair of double quotation marks (" ").

input-file-name Primary name of assemble list

Enclose the file name of a path that includes a space in a pair of double quotation

marks (" ").

Use the extension .prn.

File Name Type

Object module type .rel

Load module file .lmf

C>lc78k0 k0main.prn -lsample.lmf

X>lc78k0[Δinput-file-name]Δ-fparameter-file-name

-f Parameter file specification option

CubeSuite Ver.1.30 APPENDIX B COMMAND REFERENCE

R20UT0005EJ0100 Rev.1.00 Page 543 of 573
Jul 01, 2010

Remark Create the parameter file using an editor.

The rules for writing the contents of a parameter file are as follows:

- If the input file name is omitted from the command line, only 1 input file name can be specified in the

parameter file.

- The input file name can also be written after the option.

- Write in the parameter file all list convert options and output file names specified in the command line.

Example Create a parameter file k0.plv using an editor, and then start up the list converter.

(2) Execution start and end messages

(a) Execution start message

When the list converter is started up, an execution startup message appears on the display.

(b) Execution end message

If it detects no list conversion errors resulting from the list conversion, the list converter outputs the following

message to the display and returns control to the host operating system.

If the list converter detects a fatal error during list conversion which makes it unable to continue list convert

processing, the list converter outputs a message to the display, cancels list conversion and returns control to

the host operating system.

parameter-file-name A file which includes the data required to start up the list converter

[[[Δ]option[Δoption] ... [Δ]Δ]] ...

; parameter file

k0main -lk0.lmf

-ek0.elv

C>ra78k0 -fk0main.pra

List Conversion Program for RA78K0 Vx.xx [xx xxx xxxx]

 Copyright(C) NEC Electronics Corporation xxxx

Pass1 : start ...

Pass2 : start ...

Conversion complete.

CubeSuite Ver.1.30 APPENDIX B COMMAND REFERENCE

R20UT0005EJ0100 Rev.1.00 Page 544 of 573
Jul 01, 2010

Example A non-existent list convert option is specified.

(3) Set options in CubeSuite

CubeSuite includes list convert options in the assemble options.

See the [Assemble Options] tab in the Property panel for details about setting the assemble options.

B.6.4 Option

(1) Types

The list convert options are detailed instructions for the operation of the list converter.

The types and explanations for list convert options are shown below.

Table B-29. List Convert Options

List Conversion Program for RA78K0 Vx.xx [xx xxx xxxx]

 Copyright(C) NEC Electronics Corporation xxxx

RA78K0 error F6018 : Option is not recognized '-a'

Program aborted.

Classification Option Description

Object module file input specifi-

cation

-r Inputs an object module file.

Load module file input specifica-

tion

-l Inputs a load module file.

Absolute assemble list file output

specification

-o Outputs an absolute assemble list file.

Error list file output specification -e Outputs an error list file.

-ne

Parameter file specification -f Inputs the input file name and options from a specified file.

Help specification -- Outputs a help message on the display.

CubeSuite Ver.1.30 APPENDIX B COMMAND REFERENCE

R20UT0005EJ0100 Rev.1.00 Page 545 of 573
Jul 01, 2010

The object module file input specification option is as follows.

- -r

-r

[Description format]

- Interpretation when omitted

-rassemble-list-file-name.rel

[Function]

- The -r option specifies the input of an object module file.

[Application]

- Use the -r option when the primary name of an object module file is different from the primary name of the assem-

ble list file, or if its file type is not ".rel".

[Description]

- When a fatal error occurs, the absolute assemble list file cannot be output.

- If only the primary name of the input file name is specified, the list converter will add ".rel" to the file name as the

file type and input the file.

[Example of use]

- If the primary name is different between an assemble list file (k0main.prn) and an object module file (sample.rel),

describe as follows so as to specify the input of a load module file (sample.rel).

Object module file input specification

-r[input-file-name]

C>lc78k0 k0main.prn -lsample.rel

CubeSuite Ver.1.30 APPENDIX B COMMAND REFERENCE

R20UT0005EJ0100 Rev.1.00 Page 546 of 573
Jul 01, 2010

The load module file input specification option is as follows.

- -l

-l

[Description format]

- Interpretation when omitted

-lassemble-list-file-name.lmf

[Function]

- The -l option specifies the input of a load module file.

[Application]

- Use the -l option when the primary name of a load module file is different from the primary name of the assemble

list file, or if its file type is not ".lmf".

[Description]

- When a fatal error occurs, the absolute assemble list file cannot be output.

- If only the primary name of the input file name is specified, the list converter will add ".lmf" to the file name as the

file type and input the file.

[Example of use]

- If the primary name is different between an assemble list file (k0main.prn) and a load module file (sample.lmf),

describe as follows so as to specify the input of a load module file (sample.lmf).

Load module file input specification

-l[input-file-name]

C>lc78k0 k0main.prn -lsample.lmf

CubeSuite Ver.1.30 APPENDIX B COMMAND REFERENCE

R20UT0005EJ0100 Rev.1.00 Page 547 of 573
Jul 01, 2010

The absolute assemble list file output specification option is as follows.

- -o

-o

[Description format]

- Interpretation when omitted

-oassemble-list-file-name.p

[Function]

- The -o option specifies the output of an absolute assemble list file.

It also specifies the location to which it is output and the file name.

[Application]

- Use the -o option to specify the location to which an absolute assemble list file is output or to change its file name.

[Description]

- An abort error occurs if the same device is specified for the file name as for the error file.

- If the output file name is omitted when the -o option is specified, the output file name will be "assemble-list-file-

name.p".

- If only the primary name of the output file name is specified, the list converter will add ".p" to the file name as the

file type and output the file.

- If the drive name is omitted when the -o option is specified, the absolute assemble list file will be output to the cur-

rent drive.

[Example of use]

- To output an absolute assemble list file (sample.p), describe as:

Absolute assemble list file output specification

-o[output-file-name]

C>lc78k0 k0main.prn -osample.p -lk0.lmf

CubeSuite Ver.1.30 APPENDIX B COMMAND REFERENCE

R20UT0005EJ0100 Rev.1.00 Page 548 of 573
Jul 01, 2010

The error list file output specification options are as follows.

- -e/-ne

-e/-ne

[Description format]

- Interpretation when omitted

-ne

[Function]

- The -e option specifies the output of an error list file.

It also specifies the location to which it is output and the file name.

- The -ne option disables the -e option.

[Application]

- Use the -e option to save an error message into a file.

[Description]

- An abort error occurs if the same device is specified for the file name as for the absolute assemble list file.

- If the output file name is omitted when the -e option is specified, the output file name will be "assemble-list-file-

name.elv".

- If only the primary name of the output file name is specified, the list converter will add ".elv" to the file name as the

file type and output the file.

- If the drive name is omitted when the -e option is specified, the error list file will be output to the current drive.

- If both the -e and -ne options are specified at the same time, the option specified last is valid.

[Example of use]

- To create an error list file (sample.elv), describe as:

The contents of the error list file (sample.elv), is as follows.

Error list file output specification

-e[output-file-name]

-ne

C>lc78k0 k0main.prn -esample.elv

RA78K0 warning W6701: Load module file is older than object module file 'k0main.lmf,
k0main.rel'

Pass1 : start

RA78K0 error F6105: Segment name is not found is load module file 'DATA'

CubeSuite Ver.1.30 APPENDIX B COMMAND REFERENCE

R20UT0005EJ0100 Rev.1.00 Page 549 of 573
Jul 01, 2010

The parameter file specification option is as follows.

- -f

-f

[Description format]

- Interpretation when omitted

Options or input file names can only be input from the command line.

[Function]

- The -f option inputs options and input file names from a specified file.

[Application]

- Use the -f option when the information required to start up the list converter will not fit on the command line.

- When specifying options repeatedly every time you perform list conversion, describe the options in the parameter

file and specify the -f option.

[Description]

- An abort error occurs if the file name is omitted.

- If only the primary name of the output file name is specified, the list converter will add ".plv" to the file name as the

file type and open the file.

- Nesting of parameter files is not permitted. An abort error occurs if the -f option is specified within a parameter file.

- The number of characters that can be described within a parameter file is unlimited.

- Separate options or input file names with a blank space, a tab or the line feed code (LF).

- Options and input file names within a parameter file will be expanded at the position specified for the parameter file

on the command line.

- The expanded options specified last is valid.

- An abort error occurs if two or more -f option is specified.

- The characters following ";" or "#" are all assumed to be comments, up to the line feed code (LF) or EOF.

[Example of use]

- Perform list conversion using a parameter file (k0.plv).

The contents of the parameter file (k0.plv) is as follows.

Enter the following from the command line.

Parameter file specification

-ffile-name

: parameter file

k0main -lk0.lmf

-ek0.elv

CubeSuite Ver.1.30 APPENDIX B COMMAND REFERENCE

R20UT0005EJ0100 Rev.1.00 Page 550 of 573
Jul 01, 2010

C>lc78k0 -fk0.plv

CubeSuite Ver.1.30 APPENDIX B COMMAND REFERENCE

R20UT0005EJ0100 Rev.1.00 Page 551 of 573
Jul 01, 2010

The help option is as follows.

- --

- -

[Description format]

- Interpretation when omitted

No display

[Function]

- The -- option outputs a help message on the display.

[Application]

- The help message is a list of explanations of the list convert options. See these when executing the list converter.

[Description]

- When the -- option is specified, all other options are invalid.

Caution This option cannot be specified from CubeSuite.

[Example of use]

- To output a help message on the display, describe as:

Help specification

--

C>lc78k0 --

List Conversion Program for RA78K0 Vx.xx [xx xxx xx]

 Copyright(C) NEC Electronics Corporation xxxx

usage : LC78K0 [option[...]] input-file [option[...]]

The option is as follows ([] means omissible).

-r[file]: Specify object module file.

-l[file]: Specify load module file.

-o[file]: Specify output list file (absolute assemble list file).

-ffile : Input option or input-file name from specified file.

-e[file]: Create error list file.

-- : Show this message.

CubeSuite Ver.1.30 APPENDIX B COMMAND REFERENCE

R20UT0005EJ0100 Rev.1.00 Page 552 of 573
Jul 01, 2010

B.7 Variables Information File Generator

The variables information file generator uses a number of object module files to be output by the C compiler or assem-

bler and outputs a variables information file that contains information for efficiently allocating variables.

If an error occurs, an error message is output to the display to clarify the cause of the error. When an error occurs, the

variables information file will not be output.

Figure B-36. I/O Files of Variables Information File Generator

B.7.1 I/O files

The I/O files of the variables information file generator are shown below.

See "3.7 Variables Information File Generator" for details about output file.

Table B-30. I/O Files of Variables Information File Generator

Types File Name Description Default File Type

Input files Object module file - Binary file including machine-language infor-

mation, relocation information relating to

machine-language allocation addresses, and

symbol information

- File output by the compiler or assembler

.rel

Library file - File in which two or more object module files

are included

- File output by the librarian

.lib

Link directive file - File which contain link directives for the linker

(user-created file)

.dr

Parameter file - File containing the parameters for the exe-

cuted programs (user-created file)

.plk

Load module file - Load module file to be re-input during self-

programming

.lmf

Object module file Library file Link directive file

Variables information file

Load module file

Parameter file

Variables information file generator

CubeSuite Ver.1.30 APPENDIX B COMMAND REFERENCE

R20UT0005EJ0100 Rev.1.00 Page 553 of 573
Jul 01, 2010

B.7.2 Functions

(1) Generating the variables information file

The variables/functions information file generator counts the number of references when resolving relocations of

variables, and outputs a file with information to allocate them efficiently.

This information file can be used to reduce code by specifying the optimum allocation to the saddr area by the C

compiler.

(2) ROM/RAM usage display

The variables/functions information file generator displays the ROM/RAM usage after the linking to the standard

output.

B.7.3 Variables/functions information

(1) Areas

(a) saddr area

The 78K0 has areas that can be addressed with a type of 8-bit addressing called saddr addressing (short

direct addressing).

saddr addressing targets the 256 bytes starting at FE20H. Note allocating user variables here, however,

because this area also contains general registers and ports. The saddr area targeted by the variables informa-

tion file generator for alignment is thus 192 bytes (FE20H to FEDFH).

(b) CALLT table area

The area from 0040H to 007FH can be registered as a branch destination of the 32 addresses.

Output file Variables information file - File specifying allocation to the saddr area

and callt table area; it is a list of variables to

be referenced

.vfi

Types File Name Description Default File Type

CubeSuite Ver.1.30 APPENDIX B COMMAND REFERENCE

R20UT0005EJ0100 Rev.1.00 Page 554 of 573
Jul 01, 2010

Figure B-37. Memory Map

(2) Variable information

(a) Reference counting

The variables/functions information file generator counts the number of times reference symbols are refer-

enced during relocation resolution.

(b) Vacant area detection

The variables/functions information file generator detects the start address and size of vacant area in the saddr

area after normal allocation.

(c) Determining priority

The value calculated via the expression below, taking into account the code reduction rate per byte, deter-

mines the priority (higher values mean higher priority).

Note Reference type

normal: 1 (changing from the normal area to the saddr area reduces code by 1 byte)

sreg: 0 (variables already allocated to the saddr area via the sreg specification are not targets for alloca-

tion)

Example

number-of-references / symbol-size * reference-typeNote

Variable Number of References Symbol Size Reference Type Priority

sym1 10 times 2 bytes normal 10 / 2 * 1 = 5

sym3 6 times 1 byte sreg 6 / 1 * 0 = 0

FEDFH

FE20H

0000H

SFR

RAM

ROM

General registers

saddr area

2nd SFR

CALLT table area

saddr addressing

CubeSuite Ver.1.30 APPENDIX B COMMAND REFERENCE

R20UT0005EJ0100 Rev.1.00 Page 555 of 573
Jul 01, 2010

Variable sym3 is not eligible for allocation, since it has already been allocated to the saddr area.

Remark The following variables are excluded from prioritization.

(d) Alignment considerations

The following variables can be allocated to odd addresses.

- Variables with a size of 1 byte (char, unsigned char, enumeration type, structure, and union)

- Arrays of variables with a size of 1 byte (char, unsigned char)

- Arrays of variables of enumeration type, structure, and union with a size of 1 byte, and having 1 element

(3) Function information

(a) Reference counting

The variables information file generator counts the number of times reference symbols are referenced during

relocation resolution.

However, all functions are excluded from allocation specification targets, and they are output as a comment.

(b) Vacant area detection

The variables/functions information file generator detects the start address and size of vacant area in the callt

area after normal allocation.

(c) Determining priority

The value calculated via the expression below determines the priority (higher values mean higher priority).

const variable const variables are not eligible for allocation to the saddr area because

they are allocated to the internal ROM area.

However, that references to them are counted, and output to the file as

comments.

sreg variable Variables for which sreg has already been specified are not eligible for allo-

cation.

However, that references to them are counted, and output to the file as

comments.

static variable static variables are not eligible for allocation, whether they are inside a file

or a function.

However, that references to them are counted, and output to the file as

comments.

Variables not defined in the C

source

Variables not defined in the C source are not eligible for allocation (e.g.

definitions in the assembler source or runtime libraries).

They are also not output to the output file.

Variables defined in the boot

area and referenced by the

flash area

Variables defined in the boot area and referenced by the flash area are not

eligible for allocation.

However, that references to them are counted, and output to the file as

comments.

Unreferenced variables They are also not output to the output file.

number-of-references * reference-typeNote

CubeSuite Ver.1.30 APPENDIX B COMMAND REFERENCE

R20UT0005EJ0100 Rev.1.00 Page 556 of 573
Jul 01, 2010

Note Reference Type

normal: 1 (changing from the normal area to the callt area reduces code by 2 byte)

callt: 0 (functions already allocated to the callt area are not targets for allocation)

Example

Function func3 is not eligible for allocation, since it has already been allocated to the callt area.

Remark The following functions are excluded from prioritization.

(4) Symbols not output to the variables information file

The following symbols are not output to the variables information file.

- Unreferenced symbols

- Symbols defined in libraries

- EXTERN symbols in other than load modules

- Symbols defined in assembler source

- The relocation attribute of the location segment is AT

- Interrupt handlers for RTOS tasks or RTOS

- Firm ROM functions

- Vector interrupt functions

- Symbols which type is T_NULL

Function Number of References Reference Type Priority

func1 10 times normal 10 * 2 = 20

func3 10 times callt 10 * 0 = 0

Function in the flash area Functions in the flash area are not eligible for allocation because they can-

not be registered in the callt area.

However, that references to them are counted, and output to the file as

comments.

Allocation is also not possible if one is in the boot area and referenced

from the flash area; these will be output to the file as comments.

callt function These are not eligible for allocation because they have already been regis-

tered in the callt table.

However, that references to them are counted, and output to the file as

comments.

static function static functions are not eligible for allocation, whether they are inside a file

or a function.

However, that references to them are counted, and output to the file as

comments.

Functions not defined in the C

source

Functions not defined in the C source are not eligible for allocation (e.g.

definitions in the assembler source or runtime libraries).

They are also not output to the output file.

Unreferenced functions They are also not output to the output file.

CubeSuite Ver.1.30 APPENDIX B COMMAND REFERENCE

R20UT0005EJ0100 Rev.1.00 Page 557 of 573
Jul 01, 2010

B.7.4 Method for manipulating

(1) Variables information file generator startup

The following two methods can be used to start up the variables information file generator.

(a) Startup from the command line

Caution Add options specific to the variables information file generator after specifying the same

options and object module file name as those specified for the linker.

Example To output a variables information file (info.vfi), describe as:

(b) Startup from a parameter file

Use the parameter file when the data required to start up the C compiler will not fit on the command line, or

when the same compiler option is specified repeatedly each time a variables information file is generated.

To start up the assembler from a parameter file, specify the parameter file option (-f) on the command line.

Start up the object converter from a parameter file as follows:

Remark Create the parameter file using an editor.

The rules for writing the contents of a parameter file are as follows:

X:[path-name]>vf78k0[Δoption] ... object-module-file-name[Δobject-module-file-name]
... [Δoption] ... [Δ]

X Current drive name

path-name Current folder name

vf78k0 Command name of the variables information file generator

option Enter detailed instructions for the operation of the variables information file generator.

When specifying two or more variables relocation options, separate the options with a

blank space. Uppercase characters and lowercase characters are not distinguished

for the variables relocation options. See “B.7.5 Option” for details about variables

relocation options.

Enclose a path that includes a space in a pair of double quotation marks (" ").

object-module-file-name The name of the object module file to generate the variables information file

Up to 1024 items can be input as an input module.

Enclose the file name of a path that includes a space in a pair of double quotation

marks (" ").

C>vf78k0 main.rel sub.rel -voinfo.vfi

X>vf78k0[Δobject-module-file]Δ-fparameter-file-name

-f Parameter file specification option

parameter-file-name A file which includes the data required to start up the variables information file genera-

tor

[[[Δ]option[Δoption] ... [Δ]Δ]] ...

CubeSuite Ver.1.30 APPENDIX B COMMAND REFERENCE

R20UT0005EJ0100 Rev.1.00 Page 558 of 573
Jul 01, 2010

- If the source file name is omitted from the command line, only 1 source file name can be specified in the

parameter file.

- The source file name can also be written after the option.

- Write in the parameter file all variables relocation options and output file names specified in the command

line.

Example Create a parameter file sample.plk using an editor, and then start up the variables information file

generator.

(2) Execution start and end messages

(a) Execution start message

When the variables information file generator is started up, an execution startup message appears on the dis-

play.

(b) Execution end message

If it detects no errors resulting from the variables information file generation, the variables information file gen-

erator outputs the following message to the display and returns control to the host operating system.

If the variables information file generator detects a fatal error during variables/functions information file gener-

ation which makes it unable to continue variables information file generate processing, the variables/functions

information file generator outputs a message to the display, cancels variables information file generation and

returns control to the host operating system.

In the above example, a non-existent object module file is specified. An error occurs and the variables infor-

mation file generator aborts the execution.

; parameter file

main.rel sub.rel -osample.lmf -psample.map -e

-tC:\tmp

C>vf78k0 -fsapmle.plk -voinfo.vfi

78K0 Var-Func-Inf Vx.xx [xx xxx xxxx]

 Copyright(C) NEC Electronics Corporation xxxx

Target chip : uPD780xx

Device file : Vx.xx

VF check complete, 0 error(s) and 0 warning(s) found.

78K0 Var-Func-Inf Vx.xx [xx xxx xxxx]

 Copyright(C) NEC Electronics Corporation xxxx

VF78K0 error F0006 : File not found 'samp1.rel'

VF78K0 error F0006 : File not found 'samp2.rel'

Program Aborted.

CubeSuite Ver.1.30 APPENDIX B COMMAND REFERENCE

R20UT0005EJ0100 Rev.1.00 Page 559 of 573
Jul 01, 2010

- A non-existent variables relocation option is specified.

In the above example, a non-existent variables relocation option is specified. An error occurs and the vari-

ables/functions information file generator aborts the execution.

(3) Set options in CubeSuite

This section describes how to set variables relocation options from CubeSuite.

On CubeSuite's Project Tree panel, select the Build Tool node. Next, select [Property] from the [View] menu. The

Property panel opens. Next, select the [Variables Relocation Options] tab.

You can set the various options by setting the necessary properties in this tab.

Figure B-38. Property Panel: [Variables Relocation Options] Tab

C>vf78k0 main.rel sub.rel -z

78K0 Var-Func-Inf Vx.xx [xx xxx xxxx]

 Copyright(C) NEC Electronics Corporation xxxx

VF78K0 error F0018 : Option is not recognized '-z'

Program Aborted.

CubeSuite Ver.1.30 APPENDIX B COMMAND REFERENCE

R20UT0005EJ0100 Rev.1.00 Page 560 of 573
Jul 01, 2010

B.7.5 Option

(1) Types

The variables relocation options are detailed instructions for the operation of the variables information file genera-

tor.

The types and explanations for variables relocation options are shown below.

Table B-31. Variables Relocation Options

Classification Option Description

Variables information file output

specification

-vo Specifies the output of a variables information file.

Vacant saddr area specification -vs Specifies the margin size of the saddr area.

ROM/RAM usage output specifi-

cation

-vx Outputs ROM/RAM usage after the linking to the standard

output.

CubeSuite Ver.1.30 APPENDIX B COMMAND REFERENCE

R20UT0005EJ0100 Rev.1.00 Page 561 of 573
Jul 01, 2010

The variables information file output specification option is as follows.

- -vo

-vo

[Description format]

- Interpretation when omitted

This option cannot be omitted (except when specifying -vx option).

[Function]

- -The -vo option specifies the output of a variables information file.

It also specifies the location to which it is output and the file name.

[Application]

- Use the -vo option to specify the output of a variables information file.

[Description]

- The default file type is ".vfi".

- “output file name“ which includes a path name can be specified.

- Even if the -vo option is specified, when an error occurs before linking is complete, the variables information file

cannot be output.

- Both the -vo and -vx options cannot be specified at the same time.

[Example of use]

- To output a variables information file (info.vfi), describe as:

Variables information file output specification

-vooutput-file-name

C>vf78k0 main.rel sub.rel -voinfo.vfi

CubeSuite Ver.1.30 APPENDIX B COMMAND REFERENCE

R20UT0005EJ0100 Rev.1.00 Page 562 of 573
Jul 01, 2010

The vacant saddr area specification option is as follows.

- -vs

-vs

[Description format]

- Interpretation when omitted

-vs0

[Function]

- After allocating variables to the saddr area via this tool, an alignment error may occur during compilation or linking

due to the relationship between processing order and alignment. In this situation, performing allocation with a mar-

gin in the saddr area can avoid this error.

The -vs option specifies the margin size of the saddr area.

[Application]

- Use the -vs option to avoid allocation errors during compilation or linking after allocating variables to the saddr area

via this tool.

[Description]

- Specify the margin size (number of bytes) of the saddr area as ”size”.

- It can be specified in decimal, hexadecimal, or binary numbers.

Up to 192 (in decimal numbers) can be specified. An error occurs if 193 or more is specified.

- An error occurs if the specified amount of vacant area is greater than the actual amount of vacant area.

- If the -vo option is specified, the -vs option is valid.

[Example of use]

- To specify the margin size of the saddr area as 10 bytes (in decimal numbers), describe as:

- To specify the margin size of the saddr area as 0AH bytes (in hexadecimal numbers), describe as:

- To specify the margin size of the saddr area as 1010B bytes (in binary numbers), describe as:

Vacant saddr area specification

-vs[size]

C>vf78k0 main.rel .sub.rel -voinfo.vfi -vs10

C>vf78k0 main.rel sub.rel -voinfo.vfi -vs0AH

C>vf78k0 main.rel sub.rel -voinfo.vfi -vs1010B

CubeSuite Ver.1.30 APPENDIX B COMMAND REFERENCE

R20UT0005EJ0100 Rev.1.00 Page 563 of 573
Jul 01, 2010

The ROM/RAM usage output specification option is as follows.

- -vx

-vx

[Description format]

- Interpretation when omitted

ROM/RAM usage is not output to the standard output.

[Function]

- The -vx option outputs ROM/RAM usage after the linking to the standard output.

[Application]

- Use the -vx option to output ROM/RAM usage after the linking.

[Description]

- Both the -vx and -vo options cannot be specified at the same time.

- ROM/RAM usage output example is shown below.

- When the default memory area name is used

- When the memory area name is defined in the memory directive

ROM/RAM usage output specification

-vx

*** Memory Area Information ***

ROM : xxxxxH byte(s) real data

RAM : xxxxxH byte(s) real data

*** Memory Area Information in ROM ***

ROM : xxxxxH byte(s)

*** Memory Area Information in RAM ***

RAM : xxxxxH byte(s)

CubeSuite Ver.1.30 APPENDIX B COMMAND REFERENCE

R20UT0005EJ0100 Rev.1.00 Page 564 of 573
Jul 01, 2010

First the total amount uses is output, followed by the usage for each defined memory area.

[Example of use]

- To output ROM/RAM usage after the linking to the standard output, describe as:

*** Memory Area Information ***

ROM : xxxxxH byte(s) real data

RAM : xxxxxH byte(s) real data

*** Memory Area Information in ROM ***

ROM : xxxxxH byte(s)

ROM1 : xxxxxH byte(s)

*** Memory Area Information in RAM ***

RAM : xxxxxH byte(s)

RAM1 : xxxxxH byte(s)

C>vf78k0 main.rel sub.rel -vx

CubeSuite Ver.1.30 APPENDIX C INDEX

R20UT0005EJ0100 Rev.1.00 Page 565 of 573
Jul 01, 2010

APPENDIX C INDEX

Symbols

--/-?/-h (CC78K0) ... 380

-- (LB78K0) ... 526

-- (LCNV78K0) ... 551

-- (LK78K0) ... 467

-- (OC78K0) ... 513

-- (RA78K0) ... 423

#pragma pc ... 332

.asm ... 381

.cer ... 322

.dr ... 425, 552

.ecc ... 322

.elk ... 426

.elv ... 538

.eoc ... 482

.er ... 322

.era ... 382

.her ... 322

.hex ... 482

.lib ... 425, 515, 552

.lmf ... 426, 482, 538, 552

.lst ... 515

.map ... 426

.p ... 538

.plk ... 425, 552

.plv ... 538

.poc ... 482

.pra ... 381

.prn ... 382, 538

.rel ... 382, 425, 515, 538, 552

.sym ... 482

.vfi ... 553

A

-a (CC78K0) ... 353

Absolute assemble list ... 116

Active project ... 71

add ... 530

Add a build mode ... 73

Add a file to a project ... 19

Add Existing File dialog box ... 296

Add File dialog box ... 270

Add Folder and File dialog box ... 272

Assemble list ... 104

Assembler ... 381

Assembler source file ... 93

B

-b (LK78K0) ... 452

Batch build ... 78, 83

Batch Build dialog box ... 288

Boot-flash relink function ... 469

Browse For Folder dialog box ... 298

Build ... 78, 80

Build mode ... 73, 75

Build Mode Settings dialog box ... 286

Build tool version ... 16

C

-c (CC78K0) ... 332

-c (RA78K0) ... 388

C compiler ... 321

Category ... 24

Change the build mode ... 75

Change the output file name ... 29

Character String Input dialog box ... 274

Clean ... 85

-common (CC78K0) ... 377

-common (RA78K0) ... 421

create ... 529

Cross reference list ... 106

Cross reference list file ... 100

D

-d (CC78K0) ... 349

-d (LK78K0) ... 438

CubeSuite Ver.1.30 APPENDIX C INDEX

R20UT0005EJ0100 Rev.1.00 Page 566 of 573
Jul 01, 2010

-d (RA78K0) ... 420

delete ... 531

Delete a build mode ... 76

E

-e (CC78K0) ... 357

-e (LCNV78K0) ... 548

-e (LK78K0) ... 451

-e (OC78K0) ... 507

-e (RA78K0) ... 412

Editor panel ... 263

Error list ... 108, 113, 116

Error list file ... 96

exit ... 537

F

-f (CC78K0) ... 370

-f (LCNV78K0) ... 549

-f (LK78K0) ... 455

-f (OC78K0) ... 508

-f (RA78K0) ... 414

File dependencies ... 26

File display order ... 25

File Save Settings dialog box ... 282

G

-g (CC78K0) ... 345

-g (LK78K0) ... 435

-g (RA78K0) ... 391

-ga (RA78K0) ... 393

-gb (LK78K0) ... 465

[General - Build/Debug] category ... 294

-gi (LK78K0) ... 463

-go (LK78K0) ... 462

Go to the Location dialog box ... 290

H

help ... 536

I

-i (CC78K0) ... 351

-i (LK78K0) ... 453

-i (RA78K0) ... 394

INC78K0 ... 351

Include file ... 132

J

-j (LK78K0) ... 434

-j (RA78K0) ... 390

K

-k (CC78K0) ... 347

-ka (RA78K0) ... 397

-kd (LK78K0) ... 442

-ki (OC78K0) ... 509

-kie (OC78K0) ... 509

-kl (LK78K0) ... 446

-km (LK78K0) ... 440

-km (OC78K0) ... 509

-kme (OC78K0) ... 509

-kp (LK78K0) ... 444

-ks (RA78K0) ... 399

-kt (OC78K0) ... 509

-kx (RA78K0) ... 400

L

-l (LCNV78K0) ... 546

-lf (CC78K0) ... 366

-lf (LB78K0) ... 523

-lf (LK78K0) ... 450

-lf (RA78K0) ... 411

-lh (RA78K0) ... 406

-li (CC78K0) ... 367

Librarian ... 515

Link list file ... 109

Link Order dialog box ... 284

Linker ... 425

list ... 534

List converter ... 538

-ll (CC78K0) ... 364

-ll (LB78K0) ... 522

-ll (LK78K0) ... 448

-ll (RA78K0) ... 404

Load module file ... 426, 482, 538

CubeSuite Ver.1.30 APPENDIX C INDEX

R20UT0005EJ0100 Rev.1.00 Page 567 of 573
Jul 01, 2010

Local symbol list ... 112

-lt (CC78K0) ... 365

-lt (RA78K0) ... 409

-lw (CC78K0) ... 363

-lw (LB78K0) ... 521

-lw (RA78K0) ... 402

M

-ma (CC78K0) ... 378

Main window ... 140

Map list ... 110

-mf (CC78K0) ... 379

N

-ne (LCNV78K0) ... 548

-ne (LK78K0) ... 451

-ne (OC78K0) ... 507

-ne (RA78K0) ... 412

-ng (CC78K0) ... 345

-ng (LK78K0) ... 435

-ng (RA78K0) ... 391

-nga (RA78K0) ... 393

-nj (LK78K0) ... 434

-nj (RA78K0) ... 390

-nka (RA78K0) ... 397

-nkd (LK78K0) ... 442

-nkl (LK78K0) ... 446

-nkm (LK78K0) ... 440

-nkp (LK78K0) ... 444

-nks (RA78K0) ... 399

-nkx (RA78K0) ... 400

-nlf (LB78K0) ... 523

-nlf (LK78K0) ... 450

-nlf (RA78K0) ... 411

-no (CC78K0) ... 335

-no (LK78K0) ... 433

-no (OC78K0) ... 501

-no (RA78K0) ... 389

-np (LK78K0) ... 439

-np (RA78K0) ... 396

-nq (CC78K0) ... 342

-nr (CC78K0) ... 336, 338, 339, 341

-nr (OC78K0) ... 504

-ns (LK78K0) ... 436

-ns (OC78K0) ... 503

-nu (OC78K0) ... 505

-nv (CC78K0) ... 369

-nz (CC78K0) ... 372

O

-o (CC78K0) ... 335

-o (LCNV78K0) ... 547

-o (LK78K0) ... 433

-o (OC78K0) ... 501

-o (RA78K0) ... 389

Object converter ... 482

Open with Program dialog box ... 306

Option dialog box ... 292

[General - Build/Debug] category ... 294

Output an assemble list ... 30

Output map information ... 31

Output panel ... 267

Output symbol information ... 31

P

-p (CC78K0) ... 346

-p (LK78K0) ... 439

-p (RA78K0) ... 396

Parameter file ... 381, 425, 482, 497, 538

Path Edit dialog box ... 278

pick ... 533

Preprocess list file ... 99

Progress Status dialog box ... 291

Project Tree panel ... 144

Property panel ... 156

[Assemble Options] tab ... 197

[Build Settings] tab ... 231

[Category Information] tab ... 262

[Common Options] tab ... 159

[Compile Options] tab ... 171

[Create Library Options] tab ... 219

[File Information] tab ... 260

CubeSuite Ver.1.30 APPENDIX C INDEX

R20UT0005EJ0100 Rev.1.00 Page 568 of 573
Jul 01, 2010

[Individual Assemble Options] tab ... 253

[Individual Compile Options] tab ... 235

[Link Options] tab ... 204

[Memory Bank Relocation Options] tab ... 226

[Object Convert Options] tab ... 213

[Variables Relocation Options] tab ... 223

Public symbol list ... 111

Q

-q (CC78K0) ... 342

R

-r (CC78K0) ... 336

-r (LCNV78K0) ... 545

-r (OC78K0) ... 504

Rapid build ... 78, 81

-rd (CC78K0) ... 338

Rebuild ... 78, 81

Relink function ... 469

replace ... 532

-rk (CC78K0) ... 339

-rs (CC78K0) ... 341

Run a build ... 78

Runtime library ... 325

S

-s (LK78K0) ... 436

-s (OC78K0) ... 503

-sa (CC78K0) ... 354

Save As dialog box ... 304

-se (CC78K0) ... 359

-self (RA78K0) ... 422

Set assemble options ... 38

Set compile options ... 33

Set create library options ... 45

Set link options ... 41

Set memory bank relocation options ... 51

Set object convert options ... 43

Set variables relocation options ... 46

-sm (CC78K0) ... 375

Specify Boot Area Load Module File dialog box ... 302

Specify Variables Information File for Boot Area dialog

box ... 300

Standard library ... 325

Subcommands ... 528

Symbol list ... 105

System Include Path Order dialog box ... 280

T

-t (CC78K0) ... 371

-t (LB78K0) ... 524

-t (LK78K0) ... 456

-t (RA78K0) ... 415

Tag jump ... 268

Text Edit dialog box ... 276

U

-u (CC78K0) ... 350

-u (OC78K0) ... 505

V

-v (CC78K0) ... 369

-vo (VF78K0) ... 561

-vs (VF78K0) ... 562

-vx (VF78K0) ... 563

W

-w (CC78K0) ... 368

-w (LK78K0) ... 460

X

-x (CC78K0) ... 361

Y

-y (CC78K0) ... 374

-y (LK78K0) ... 458

-y (OC78K0) ... 510

-y (RA78K0) ... 418

Z

-z (CC78K0) ... 372

-zb (LK78K0) ... 461

-ze (RA78K0) ... 417

-zf (OC78K0) ... 512

-zn (RA78K0) ... 417

CubeSuite Ver.1.30 APPENDIX C INDEX

R20UT0005EJ0100 Rev.1.00 Page 569 of 573
Jul 01, 2010

-zs (RA78K0) ... 417

Revision Record

Rev. Date
Description

Page Summary

1.00 Jul 01, 2010 - First Edition issued

CubeSuite Ver.1.30
User’s Manual: 78K0 Build

Publication Date: Rev.1.00 Jul 01, 2010

Published by: Renesas Electronics Corporation

http://www.renesas.com
Refer to "http://www.renesas.com/" for the latest and detailed information.

Renesas Electronics America Inc.
2880 Scott Boulevard Santa Clara, CA 95050-2554, U.S.A.
Tel: +1-408-588-6000, Fax: +1-408-588-6130
Renesas Electronics Canada Limited
1101 Nicholson Road, Newmarket, Ontario L3Y 9C3, Canada
Tel: +1-905-898-5441, Fax: +1-905-898-3220
Renesas Electronics Europe Limited
Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K
Tel: +44-1628-585-100, Fax: +44-1628-585-900
Renesas Electronics Europe GmbH
Arcadiastrasse 10, 40472 Düsseldorf, Germany
Tel: +49-211-65030, Fax: +49-211-6503-1327
Renesas Electronics (China) Co., Ltd.
7th Floor, Quantum Plaza, No.27 ZhiChunLu Haidian District, Beijing 100083, P.R.China
Tel: +86-10-8235-1155, Fax: +86-10-8235-7679
Renesas Electronics (Shanghai) Co., Ltd.
Unit 204, 205, AZIA Center, No.1233 Lujiazui Ring Rd., Pudong District, Shanghai 200120, China
Tel: +86-21-5877-1818, Fax: +86-21-6887-7858 / -7898
Renesas Electronics Hong Kong Limited
Unit 1601-1613, 16/F., Tower 2, Grand Century Place, 193 Prince Edward Road West, Mongkok, Kowloon, Hong Kong
Tel: +852-2886-9318, Fax: +852 2886-9022/9044
Renesas Electronics Taiwan Co., Ltd.
7F, No. 363 Fu Shing North Road Taipei, Taiwan
Tel: +886-2-8175-9600, Fax: +886 2-8175-9670
Renesas Electronics Singapore Pte. Ltd.
1 harbourFront Avenue, #06-10, keppel Bay Tower, Singapore 098632
Tel: +65-6213-0200, Fax: +65-6278-8001
Renesas Electronics Malaysia Sdn.Bhd.
Unit 906, Block B, Menara Amcorp, Amcorp Trade Centre, No. 18, Jln Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia
Tel: +60-3-7955-9390, Fax: +60-3-7955-9510
Renesas Electronics Korea Co., Ltd.
11F., Samik Lavied' or Bldg., 720-2 Yeoksam-Dong, Kangnam-Ku, Seoul 135-080, Korea
Tel: +82-2-558-3737, Fax: +82-2-558-5141

SALES OFFICES

© 2010 Renesas Electronics Corporation. All rights reserved.

Colophon 1.0

CubeSuite Ver.1.30

R20UT0005EJ0100

	COVER
	How to Use This Manual
	CHAPTER 1 GENERAL
	1.1 Overview
	1.2 Features

	CHAPTER 2 FUNCTIONS
	2.1 Overview
	2.1.1 Create a load module
	2.1.2 Create a user library

	2.2 Change the Build Tool Version
	2.3 Set Build Target Files
	2.3.1 Set a startup routine
	2.3.2 Add a file to a project
	2.3.3 Remove a file from a project
	2.3.4 Remove a file from the build target
	2.3.5 Classify a file into a category
	2.3.6 Change the file display order
	2.3.7 Update file dependencies

	2.4 Set the Type of the Output File
	2.4.1 Change the output file name
	2.4.2 Output an assemble list
	2.4.3 Output map information
	2.4.4 Output symbol information

	2.5 Set Compile Options
	2.5.1 Perform optimization with the code size precedence
	2.5.2 Perform optimization with the execution speed precedence
	2.5.3 Add an include path
	2.5.4 Set a macro definition
	2.5.5 Enable C++ comments
	2.5.6 Use floating point-compatible standard input/output functions
	2.5.7 Change the setting to use the multiplier and divider

	2.6 Set Assemble Options
	2.6.1 Add an include path
	2.6.2 Set a macro definition

	2.7 Set Link Options
	2.7.1 Add a user library

	2.8 Set Object Convert Options
	2.8.1 Set the output of a hex file

	2.9 Set Create Library Options
	2.9.1 Set the output of a library file

	2.10 Set Variables Relocation Options
	2.10.1 Efficiently allocate variables
	2.10.2 Display ROM/RAM usage

	2.11 Set Memory Bank Relocation Options
	2.11.1 Relocate C source files to the optimum area

	2.12 Set Build Options Separately
	2.12.1 Set build options at the project level
	2.12.2 Set build options at the file level

	2.13 Prepare for Using On-chip Debugger
	2.14 Prepare for Implementing Boot-flash Relink Function
	2.14.1 Prepare the build target files
	2.14.2 Set the boot area project
	2.14.3 Set the flash area project

	2.15 Make Settings for Build Operations
	2.15.1 Set the link order of files
	2.15.2 Change the file build order of subprojects
	2.15.3 Display a list of build options
	2.15.4 Change the file build target project
	2.15.5 Add a build mode
	2.15.6 Change the build mode
	2.15.7 Delete a build mode
	2.15.8 Set the current build options as the standard for the project

	2.16 Run a Build
	2.16.1 Run a build of updated files
	2.16.2 Run a build of all files
	2.16.3 Run a build in parallel with other operations
	2.16.4 Run builds in batch with build modes
	2.16.5 Compile/assemble individual files
	2.16.6 Stop running a build
	2.16.7 Save the build results to a file
	2.16.8 Delete intermediate files and generated files

	2.17 Using Stack Usage Tracer
	2.17.1 Starting and exiting
	2.17.2 Check the call relationship
	2.17.3 Check the stack information
	2.17.4 Check unknown functions
	2.17.5 Change the frame size

	CHAPTER 3 BUILD OUTPUT LISTS
	3.1 C Compiler
	3.1.1 Assembler source file
	3.1.2 Error list file
	3.1.3 Preprocess list file
	3.1.4 Cross reference list file

	3.2 Assembler
	3.2.1 Assemble list file headers
	3.2.2 Assemble list
	3.2.3 Symbol list
	3.2.4 Cross reference list
	3.2.5 Error list

	3.3 Linker
	3.3.1 Link list file headers
	3.3.2 Map list
	3.3.3 Public symbol list
	3.3.4 Local symbol list
	3.3.5 Error list

	3.4 Object Converter
	3.4.1 Error list

	3.5 Librarian
	3.5.1 Library information output list

	3.6 List Converter
	3.6.1 Absolute assemble list
	3.6.2 Error list

	3.7 Variables Information File Generator
	3.7.1 Variables information file

	3.8 Memory Bank Relocation Support Tool
	3.8.1 Function information file
	3.8.2 Replacement information file
	3.8.3 Object information file
	3.8.4 Reference information file

	CHAPTER 4 SAMPLE PROGRAMS
	4.1 C Compiler
	4.1.1 C source file

	4.2 Assembler
	4.2.1 k0main.asm
	4.2.2 k0sub.asm

	CHAPTER 5 CAUTIONS
	APPENDIX A WINDOW REFERENCE
	A.1 Description
	Main window
	Project Tree panel
	Property panel
	[Common Options] tab
	[Compile Options] tab
	[Assemble Options] tab
	[Link Options] tab
	[Object Convert Options] tab
	[Create Library Options] tab
	[Variables Relocation Options] tab
	[Memory Bank Relocation Options] tab
	[Build Settings] tab
	[Individual Compile Options] tab
	[Individual Assemble Options] tab
	[File Information] tab
	[Category Information] tab

	Editor panel
	Output panel
	Add File dialog box
	Add Folder and File dialog box
	Character String Input dialog box
	Text Edit dialog box
	Path Edit dialog box
	System Include Path Order dialog box
	File Save Settings dialog box
	Link Order dialog box
	Build Mode Settings dialog box
	Batch Build dialog box
	Go to the Location dialog box
	Progress Status dialog box
	Option dialog box
	[General - Build/Debug] category

	Add Existing File dialog box
	Browse For Folder dialog box
	Specify Variables Information File for Boot Area dialog box
	Specify Boot Area Load Module File dialog box
	Save As dialog box
	Open with Program dialog box
	Stack Usage Tracer window
	Stack Size Unknown / Adjusted Function Lists dialog box
	Adjust Stack Size dialog box
	Open dialog box

	APPENDIX B COMMAND REFERENCE
	B.1 C Compiler
	B.1.1 I/O files
	B.1.2 Functions
	B.1.3 Method for manipulating
	B.1.4 Option
	Device type specification
	-c

	Object module file creation specification
	-o/-no

	Memory assignment specification
	-r/-nr
	-rd/-nr
	-rk/-nr
	-rs/-nr

	Optimization specification
	-q/-nq

	Debug information output specification
	-g/-ng

	Preprocess list file creation specification
	-p
	-k

	Preprocess specification
	-d
	-u
	-i

	Assembler source file creation specification
	-a
	-sa

	Error list file creation specification
	-e
	-se

	Cross reference list file creation specification
	-x

	List format specification
	-lw
	-ll
	-lt
	-lf
	-li

	Warning output specification
	-w

	Execution state display specification
	-v/-nv

	Parameter file specification
	-f

	Temporary file creation folder specification
	-t

	Function expansion specification
	-z/-nz

	Device file search path specification
	-y

	Static model specification
	-sm

	Common object specification
	-common

	Variables information file specification
	-ma

	Function information file specification
	-mf

	Help specification
	--/-?/-h

	B.2 Assembler
	B.2.1 I/O files
	B.2.2 Functions
	B.2.3 Method for manipulating
	B.2.4 Option
	Device type specification
	-c

	Object module file output specification
	-o/-no

	Forced object module file output specification
	-j/-nj

	Debug information output specification
	-g/-ng
	-ga/-nga

	Include file read path specification
	-i

	Assemble list file output specification
	-p/-np

	Assemble list file information specification
	-ka/-nka
	-ks/-nks
	-kx/-nkx

	Assemble list file format specification
	-lw
	-ll
	-lh
	-lt
	-lf/-nlf

	Error list file output specification
	-e/-ne

	Parameter file specification
	-f

	Temporary file creation path specification
	-t

	Kanji code (2-byte code) specification
	-zs/-ze/-zn

	Device file search path specification
	-y

	Symbol definition specification
	-d

	Common object specification
	-common

	Self-programming specification
	-self

	Help specification
	--

	B.3 Linker
	B.3.1 I/O files
	B.3.2 Functions
	B.3.3 Method for manipulating
	B.3.4 Option
	Load module file output specification
	-o/-no

	Forced load module file output specification
	-j/-nj

	Debug information output specification
	-g/-ng

	Stack decision symbols generation specification
	-s/-ns

	Link directive file specification
	-d

	Link list file output specification
	-p/-np

	Link list file information specification
	-km/-nkm
	-kd/-nkd
	-kp/-nkp
	-kl/-nkl

	Link list file format specification
	-ll
	-lf/-nlf

	Error list file output specification
	-e/-ne

	Library file specification
	-b

	Library file read path specification
	-i

	Parameter file specification
	-f

	Temporary file creation path specification
	-t

	Device file search path specification
	-y

	Warning message output specification
	-w

	Boot area ROM program linking specification for a product with built-in flash memory
	-zb

	On-chip debug specification
	-go

	Security ID specification
	-gi

	User option byte specification
	-gb

	Help specification
	--

	B.3.5 Boot-flash relink function

	B.4 Object Converter
	B.4.1 I/O files
	B.4.2 Functions
	B.4.3 Method for manipulating
	B.4.4 Option
	Hex file output specification
	-o/-no

	Symbol table file output specification
	-s/-ns

	Object address order sort specification
	-r/-nr

	Object filling value specification
	-u/-nu

	Error list file output specification
	-e/-ne

	Parameter file specification
	-f

	Hex-format specification
	-ki/-kie/-kt/-km/-kme

	Device file search path specification
	-y

	File separate output specification for built-in flash memory product
	-zf

	Help specification
	--

	B.5 Librarian
	B.5.1 I/O files
	B.5.2 Functions
	B.5.3 Method for manipulating
	B.5.4 Option
	List file format specification
	-lw
	-ll
	-lf/-nlf

	Temporary file creation path specification
	-t

	Help specification
	--

	B.5.5 Subcommands
	create
	add
	delete
	replace
	pick
	list
	help
	exit

	B.6 List Converter
	B.6.1 I/O files
	B.6.2 Functions
	B.6.3 Method for manipulating
	B.6.4 Option
	Object module file input specification
	-r

	Load module file input specification
	-l

	Absolute assemble list file output specification
	-o

	Error list file output specification
	-e/-ne

	Parameter file specification
	-f

	Help specification
	--

	B.7 Variables Information File Generator
	B.7.1 I/O files
	B.7.2 Functions
	B.7.3 Variables/functions information
	B.7.4 Method for manipulating
	B.7.5 Option
	Variables information file output specification
	-vo

	Vacant saddr area specification
	-vs

	ROM/RAM usage output specification
	-vx

	APPENDIX C INDEX

