LENESAS

-
»
12
o~
<
Q
S
-
D

RX130 Group

Renesas Starter Kit Code Generator Tutorial Manual
For CS+

RENESAS 32-Bit MCU
RX Family / RX100 Series

All information contained in these materials, including products and product specifications, represents
information on the product at the time of publication and is subject to change by Renesas Electronics
Corporation without notice. Please review the latest information published by Renesas Electronics
Corporation through various means, including the Renesas Electronics Corporation website
(http://www.renesas.com).

Renesas Electronics
Www.renesas.com Rev. 1.00 Nov 2015

Notice

1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the
operation of semiconductor products and application examples. You are fully responsible for the incorporation of these
circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for
any losses incurred by you or third parties arising from the use of these circuits, software, or information.

2. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas
Electronics does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever
for any damages incurred by you resulting from errors in or omissions from the information included herein.

3. Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property
rights of third parties by or arising from the use of Renesas Electronics products or technical information described in
this document. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other
intellectual property rights of Renesas Electronics or others.

4. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or
in part. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from such
alteration, modification, copy or otherwise misappropriation of Renesas Electronics product.

5. Renesas Electronics products are classified according to the following two quality grades: “Standard” and “High
Quality”. The recommended applications for each Renesas Electronics product depends on the product’s quality grade,
as indicated below.

“Standard”: Computers; office equipment; communications equipment; test and measurement equipment; audio
and visual equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial
robots etc.

“High Quality”: Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster
systems; anticrime systems; and safety equipment etc.

Renesas Electronics products are neither intended nor authorized for use in products or systems that may pose a
direct threat to human life or bodily injury (artificial life support devices or systems, surgical implantations etc.), or may
cause serious property damages (nuclear reactor control systems, military equipment etc.). You must check the quality
grade of each Renesas Electronics product before using it in a particular application. You may not use any Renesas
Electronics product for any application for which it is not intended. Renesas Electronics shall not be in any way liable
for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for
which the product is not intended by Renesas Electronics.

6. You should use the Renesas Electronics products described in this document within the range specified by Renesas
Electronics, especially with respect to the maximum rating, operating supply voltage range, movement power voltage
range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no
liability for malfunctions or damages arising out of the use of Renesas Electronics products beyond such specified
ranges.

7. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products
have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use
conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to
implement safety measures to guard them against the possibility of physical injury, and injury or damage caused by fire
in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including
but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or
any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult, please
evaluate the safety of the final products or systems manufactured by you.

8. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental
compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all
applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation,
the EU RoHS Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your
noncompliance with applicable laws and regulations.

9. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose
manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations. You should not
use Renesas Electronics products or technology described in this document for any purpose relating to military
applications or use by the military, including but not limited to the development of weapons of mass destruction. When
exporting the Renesas Electronics products or technology described in this document, you should comply with the
applicable export control laws and regulations and follow the procedures required by such laws and regulations.

10. Itis the responsibility of the buyer or distributor of Renesas Electronics products, who distributes, disposes of, or
otherwise places the product with a third party, to notify such third party in advance of the contents and conditions set
forth in this document, Renesas Electronics assumes no responsibility for any losses incurred by you or third parties as
a result of unauthorized use of Renesas Electronics products.

11. This document may not be reproduced or duplicated in any form, in whole or in part, without prior written consent of
Renesas Electronics.

12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this
document or Renesas Electronics products, or if you have any other inquiries.

(Note 1) “Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its
majority owned subsidiaries.

(Note 2) “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.

(2012.4)

Disclaimer

By using this Renesas Starter Kit (RSK), the user accepts the following terms:

The RSK is not guaranteed to be error free, and the entire risk as to the results and performance of the RSK is
assumed by the User. The RSK is provided by Renesas on an “as is” basis without warranty of any kind whether
express or implied, including but not limited to the implied warranties of satisfactory quality, fitness for a particular
purpose, title and non-infringement of intellectual property rights with regard to the RSK. Renesas expressly
disclaims all such warranties. Renesas or its affiliates shall in no event be liable for any loss of profit, loss of data,
loss of contract, loss of business, damage to reputation or goodwill, any economic loss, any reprogramming or recall
costs (whether the foregoing losses are direct or indirect) nor shall Renesas or its affiliates be liable for any other
direct or indirect special, incidental or consequential damages arising out of or in relation to the use of this RSK, even
if Renesas or its affiliates have been advised of the possibility of such damages.

Precautions

The following precautions should be observed when operating any RSK product:

This Renesas Starter Kit is only intended for use in a laboratory environment under ambient temperature and humidity
conditions. A safe separation distance should be used between this and any sensitive equipment. Its use outside the
laboratory, classroom, study area or similar such area invalidates conformity with the protection requirements of the
Electromagnetic Compatibility Directive and could lead to prosecution.

The product generates, uses, and can radiate radio frequency energy and may cause harmful interference to radio
communications. However, there is no guarantee that interference will not occur in a particular installation. If this
equipment causes harmful interference to radio or television reception, which can be determined by turning the
equipment off or on, you are encouraged to try to correct the interference by one or more of the following measures;

e ensure attached cables do not lie across the equipment

e reorient the receiving antenna

e increase the distance between the equipment and the receiver

e connect the equipment into an outlet on a circuit different from that which the receiver is connected
e power down the equipment when not in use

e consult the dealer or an experienced radio/TV technician for help NOTE: It is recommended that wherever
possible shielded interface cables are used.

The product is potentially susceptible to certain EMC phenomena. To mitigate against them it is recommended that the
following measures be undertaken;

e The user is advised that mobile phones should not be used within 20m of the product when in use.
e The user is advised to take ESD precautions when handling the equipment.

The Renesas Starter Kit does not represent an ideal reference design for an end product and does not fulfil the
regulatory standards for an end product.

How to Use This Manual

1. Purpose and Target Readers

This manual is designed to provide the user with an understanding of how to use Application Leading Tool
(Code Generator) for RX together with the CS+ IDE to create a working project for the RSK platform. It is
intended for users designing sample code on the RSK platform, using the many different incorporated
peripheral devices.

The manual comprises of step-by-step instructions to generate code and import it into CS+, but does not
intend to be a complete guide to software development on the RSK platform. Further details regarding
operating the RX130 microcontroller may be found in the Hardware Manual and within the provided sample
code.

Particular attention should be paid to the precautionary notes when using the manual. These notes occur within the body
of the text, at the end of each section, and in the Usage Notes section.

The revision history summarizes the locations of revisions and additions. It does not list all revisions. Refer to the text of
the manual for details.

The following documents apply to the RX130 Group. Make sure to refer to the latest versions of these
documents. The newest versions of the documents listed may be obtained from the Renesas Electronics Web
site.

Document Description Document Title Document No.
Type

User's Manual Describes the technical details of the RSKRX130 User’s Manual R20UT3444EG
RSK hardware.

Tutorial Manual Provides a guide to setting up RSK RSKRX130 Tutorial Manual R20UT3445EG
environment, running sample code and
debugging programs.

Quick Start Provides simple instructions to setup the RSKRX130 Quick Start Guide R20UT3446EG

Guide RSK and run the first sample.

Code Generator Provides a guide to code generation RSKRX130 Code Generator R20UT3447EG

Tutorial Manual and importing into the CS+ IDE. Tutorial Manual

Schematics Full detail circuit schematics of the RSK. RSKRX130 Schematics R20UT3443EG

Hardware Provides technical details of the RX130 RX130 Group Hardware RO1UHO0560EJ

Manual microcontroller. Manual

2. List of Abbreviations and Acronyms

Abbreviation

Full Form

ADC Analog-to-Digital Converter

API Application Programming Interface

bps Bits per second

CMT Compare Match Timer

COM COMmunications port referring to PC serial port

CPU Central Processing Unit

DVD Digital Versatile Disc

El Renesas On-chip Debugging Emulator

GUI Graphical User Interface

IDE Integrated Development Environment

IRQ Interrupt Request

LCD Liquid Crystal Display

LED Light Emitting Diode

LSB Least Significant Bit

LVD Low Voltage Detect

MCU Micro-controller Unit

MSB Most Significant Bit

PC Personal Computer

Pmod™ This is a Digilent Pmod™ Compatible connector. Pmod™ is registered to Digilent Inc.
Digilent-Pmod_Interface_Specification

PLL Phase-locked Loop

RAM Random Access Memory

ROM Read Only Memory

RSK Renesas Starter Kit

RTC Realtime Clock

SAU Serial Array Unit

SCI Serial Communications Interface

SPI Serial Peripheral Interface

TAU Timer Array Unit

TFT Thin Film Transistor

TPU Timer Pulse Unit

UART Universal Asynchronous Receiver/Transmitter

UsSB Universal Serial Bus

WDT Watchdog timer

All trademarks and registered trademarks are the property of their respective owners.

http://www.digilentinc.com/index.cfm

Table of Contents

O V=T TSP 7
L1 PUIPOSE ... 7
A 11U | =T PP PP PP PP TTPPPPPPP 7
P20 111 0T 3 Tox 1 o o 8
3. Project Creation WIth CS..... ..o e e e e e e e e e e e eeaenne 9
R 70 R [o1 1o T [V 1o o I PP PUPRRPT 9
3.2 Creating the PrOJECT ettt e e oo ekttt et e e e e e e s bt bb e e e e e e e e e sanbbneeeaaeeeaanne 9
4. Code Generation Using the CS+ PlUg iN......cooiiiiiiiieee e 11
R [01 o To [1 1o 1o o 11
B =Y =Y o] [T g To @0 To [T 1= =T - (o SRR 11
B O To [1= T 1T - (o] gl o U PRSP 12
S o To [1 =T o [T = Vi o] PP PRT TP 13
441 (O [oTod [©T =T 01T - o] U PP UUPP PR 13
4.4.2 La10=T 5 (0] o a0 a1 1o F=T g o RS 14
443 S oL I LT PSPPSR 15
4.4.4 (@] 04 o T= L LI AV F= L (od o T T 41T 16
4.4.5 12-Dit A/D CONVEITET ...ttt ettt ettt e e e e e skt e et e e e e e s e s abb e bt e e e e e e e e aanbbeeeeeaeeesannbbeeeaaaaaas 17
4.4.6 Serial CommUNICAtIONS INTEITACEcoiiiiiiiiii e 19
4.4.7 7@ 3 =0 T4 £SO PRR SRR 21
5. Completing the TULOral PrOJECT.......ccoviieeiiiie e e e e e e 25
LT R o o] [Tt GRS =Y 1] o TP UUUPPRRPT 25
LT o (o [11To] o F= VI o] (o [= = USRS OO PPPRRPT 27
LTS W @1 Bl oo (SN 1] C=To = 11T] o H TR UUUPRRPT 28
53.1 1] o I 0o Lo [PRSPPI 30
5.3.2 QLI o o RSP RR 31
L ATV (od W @ To [N [1 (=To | = 11T o DT PURPT 32
54.1 [a1=T 5 U] o] A e Lo [TP URT TP 32
5.4.2 De-boUNCE TIMEI COUEttt e e e e e et e e e e e e e s nabbeeeaaae s 34
5.4.3 Main SWILCh @Nd ADC COUE.....ccoiiuiiiieitiiee ettt ettt e e e sabe e e s st e e e s snbe e e e s sabeeeessnreeeennes 35
LTI 0 1= o 18 o [@ o (=T [41 (=0 = U1 o] o I OO RER 40
LN T U 7Y = I o o L= [g1 4=Te | = 1o o OO ER 40
5.6.1 L] O 1 oo [PRSP 40
5.6.2 MEIN UART COUEeiiiitiiie ettt ettt ettt e e e sttt e e e s ettt e e e shbe e e e s sabe e e e s sbbeeeesanbeeeesanbeeeeane 42
LT A 1 I o o L= [o]0 =To - 1o o OSSR 44
R BT=T o0 To o[To IR 1 g U= = (0] [T o S 46
7. Running the Code Generator TULONAlcooi i 47
7.1 RUNNING the TULOFIAL....cciii ettt e e e e ettt e e e e e e e e s aa bbbt e e e e e e e s bnbbeeeeaaeesannnbnneeas 47

8. AdAItioNAl INTOMMATION ...eeeee e e 48

LENESANS

RSKRX130
RENESAS STARTER KIT

R20UT3447EG0100
Rev. 1.00
Nov 30, 2015

1. Overview

1.1 Purpose

This RSK is an evaluation tool for Renesas microcontrollers. This manual describes how to use the CS+ IDE

code generator plug in to create a working project for the RSK platform.

1.2 Features

This RSK provides an evaluation of the following features:
« Project Creation with CS+

« Code Generation using the code generator plug in.
« User circuitry such as switches, LEDs and a potentiometer

The RSK board contains all the circuitry required for microcontroller operation.

R20UT3447EG0100 Rev. 1.00
Nov 30, 2015 RENESAS

Page 7 of 52

RSKRX130 2. Introduction

2. Introduction

This manual is designed to answer, in tutorial form, how to use the code generator plug in for the RX family
together with the CS+ IDE to create a working project for the RSK platform. The tutorials help explain the
following:

e Project generation using the CS+

e Detailed use of the code generator plug in for CS+
e Integration with custom code

e Building the project CS+

The project generator will create a tutorial project with three selectable build configurations:
o ‘DefaultBuild’ is a project with debug support and optimisation level set to two.
o ‘Debug’ is a project built with the debugger support included. Optimisation is set to zero.

o ‘Release’ is a project with optimised compile options (level two) and no outputs debugging information
options selected, producing code suitable for release in a product.

The tutorial examples in this manual assume that installation procedures described in the RSK Quick Start
Guide have been completed. Please refer to the Quick Start Guide for details of preparing the configuration.

These tutorials are designed to show you how to use the RSK and are not intended as a comprehensive introduction to
the CS+ debugger, compiler toolchains or the E1 emulator. Please refer to the relevant user manuals for more in-depth
information.

R20UT3447EG0100 Rev. 1.00 ———
Nov 30, 2015 RENESAS

RSKRX130 3. Project Creation with CS+

3. Project Creation with CS+

3.1 Introduction
In this section the user will be guided through the steps required to create a new C project for the RX130 MCU,

ready to generate peripheral driver code using Code Generator. This project generation step is necessary to
create the MCU-specific project and debug files.

3.2 Creating the Project

To use the program, start CS+:
Windows™ 7 & Vista: Start Menu > All Programs > Renesas Electronics CS+ > CS+ for CC (RL78,RX,RH850)

Windows™ 8.1 & 8: From Apps View @ click ‘CS+ for CC (RL78,RX,RH850)" icon

e CS+ will show the Start Page. Use the Create New Project
‘GO’ button to Create a New Project. A new project can be created . _ _—
A new project can also be created by reusing the file configuration registered to an existing project.
Create New Multi-cnre Proiant
e In the ‘Create Project’ dialog, select | |createProject =]
‘RX’ from the ‘Microcontroller’ pull-
Microcontroller: RX Iz‘
down.
e In the ‘Using Microcontroller’ list LT
control, scroll down to ‘RX130’ and £ RSF513054xFN Update...
expand the tree control by clicking ‘+'. FE R5F512035FL(42pin) | [Product Name:REF513054FN "
Select ‘R5F51305AXFN(80pin)’. ¥ R5F51303AFM(54pin) EreipEeem e AT
. . (80p) ¥ R5F513030FN(30pin) gg;tmaﬁ{?mmo::t[isﬁﬂgk?j;PLQPGDE.GKB-B
e Ensure that in the ‘Kind of project’ pull- % R5F51303ANE(48pin) :
‘ At _ v M R5F513050FK(B4pin)
down, ‘Empty Application(CC-RX)’ is 3 FoF51305AFL(48pin)
selected. B RS5F513055xFM(B4pin)
; » i
e Choose an appropriate name and Bl Z
!ocatlon’ for the project, then click Kind of project Empty Application(CC-RY) 5l
Create’.
. . . Preject name: CG_Tuteral
Note: this tutorial assumes the project raseiname —
is named and located at the place Place: Ciworkspace [=]
ShOWn Opposne' Make the project folder
* !f the f0|d,er _entered Ca_nnOt be found a CworkspacelCG_Tutoria\CG_Tutorial mtpj
Question’ dialogue will be displayed;
click ‘Yes'. [Pass the file composition of an existing project to the new project
Froject to be passed: Browse...
Copy composition files in the diverted project folder to a new project folder.
Create l ’ Cancel] ’ Help

Nov 30, 2015

RSKRX130

3. Project Creation with CS+

previously enabled.

e CS+ will create the blank project with | FreiectTres
the standard project tree. A ‘Code 8 @ 2 E
Generator’ node may also be shown, if

4

a[_ﬁ CG Tutorial (Project

_ ¥ R5F51305AFN (Microcontroller)
{Code Generator (Design Tool)
A Pin View

f;i Peripheral Functions

o Code Preview

4 CC-RX (Build Tool)

i, R Simulator (Debug Tool)

i [File

::__j Code Generator Property
4 (Generate File Mode
Coding format contral
Output folder
File generation control
Register files
Report type
4 Product Information

Release date

Version

R20UT3447EG0100 Rev. 1.00
Nov 30, 2015

RENESAS

Page 10 of 52

RSKRX130 4. Code Generation Using the CS+ plug in

4. Code Generation Using the CS+ plug in

4.1 Introduction

Code Generator is a Windows™ GUI tool for generating template ‘C’ source code and project settings for the
RX130. When using Code Generator, the user is able to configure various MCU features and operating
parameters using intuitive GUI controls, thereby bypassing the need in most cases to refer to sections of the
Hardware Manual.

By following the steps detailed in this tutorial, the user will generate a CS+ project called CG_Tutorial. A fully
completed Tutorial project is contained on the DVD and may be imported into CS+ by following the steps in
the Quick Start Guide. This tutorial is intended as a learning exercise for users who wish to use the Code
Generator to generate their own custom projects for CS+.

Once the user has configured the project, the ‘Generate Code’ function is used to generate three code
modules for each specific MCU feature selected. These code modules are name ‘r_cg_xxx.h’, ‘r_cg_xxx.c’,
and ‘r_cg_xxx_user.c’, where ‘xxx’ is a three letter acronym for the relevant MCU feature, for example ‘adc’.
Within these code modules, the user is then free to add custom code to meet their specific requirement.
Custom code should be added, whenever possible, in between the following comment delimiters:

/* Start user code for adding. Do not edit comment generated here */
/* End user code. Do not edit comment generated here */

Code Generator will locate these comment delimiters, and preserve any custom code inside the delimiters on
subsequent code generation operations. This is useful if, after adding custom code, the user needs to re-visit
Code Generator to change any MCU operating parameters.

The CG_Tutorial project uses interrupts for switch inputs, the ADC module, the 8bit Timer, the Compare Match
Timer (CMT), the Serial Communications Interface (SCI) and uses these modules to perform A/D conversion
and display the results via the Virtual COM port to a terminal program and also on the LCD display on the
RSK.

Following a tour of the key user interface features of Code Generator in 84.3, the reader is guided through
each of the peripheral function configuration dialogs in 84.4. In 85, the reader is familiarised with the structure
of the template code, as well as how to add their own code to the user code areas provided by the code
generator.

4.2 Enabling Code Generator

After installation of CS+, Code Generator must be enabled. This step is only required once, CS+ will
remember this setting on subsequent launches.

From the ‘Tool' pull-down menu select ‘Plug-in Setting...”. On the ‘Additional Function’ tab, click the box next to
the ‘Code Generator/Pin View Plug-in’ option and ensure it is ticked:

Basic Function

Module Name Description

[;(Code Generator Plug-in Plug-n to generate the device driver automatically.for V850, 78K0, V8KOR, RL78/G12, G13, G1
CodeGeneﬂon"Pn\ﬁav Plug-n Plug4n to generate the device driver automatically and to view the device configuration. for RX,

Click ‘OK’. CS+ needs to restart to enable this selection, select ‘Yes’ from the Question dialogue box.
After restarting, ‘Code Generator (Design Tool)' node will now be shown in the left-hand ‘Project Tree’ window
pane.

Project Tree o x
2 @ F
‘ = O 3 B:‘I Code Generator Property
[=)-|_T% CG Tutorial (Project 2 Generate File Mod
R5F51305AxFN (Microcontroller) API output control
*| Code Generator (Design Tool) Coding format control
4, CC-R¥ (Build Tool) Output folder
25 RX Simulator (Debug Tool) File generation contral
Register files

Report type

R20UT3447EG0100 Rev. 1.00 RENESAS Page 11 of 52
Nov 30, 2015

RSKRX130 4.

Code Generation Using the CS+ plug in

4.3 Code Generator Tour

This section presents a brief tour of Code Generator. For further details of the Code Generator paradigm and

reference, refer to the Application Leading Tool Common Operations manual.
You can download the latest document from: http://www.renesas.com/applilet

Application Leading Tool is the stand-alone version of Code Generator and this manual is applicable to the

Code Generator.

In the Project Tree pane, click on the icon next to ‘Code Generator’ node to expand the list.

Expand the ‘Peripheral Functions’ node by clicking on the next to it.
Open the ‘Peripheral Function’ tab by double clicking on the ‘Peripheral Functions’ name.

The CS+ main window will now contain a ‘Peripheral Functions’ tab with the Initial View as show in Figure 4-1.

@3 CG_Tutorial - C5+ for CC - [Peripheral Functions] (== =]
File Edit View Project Build Debug Tool Window Help

@ostat | [AEH G X B0 o588 & - | 100% ~ G G Defaultuild Tl i@y @ ® " @ 5= == g

DP38 9 o5
Project Tres i £3 Property | 53 Peripheral Functions ‘ [=][¢
: @ alE

%] Generate Code | £ [& B wf BB E %S s D D T D gy ool PR G w3

Clock setting | Block diagram |

VCC setting

@ 27()<VCC<55()) 24M<VEC<27 () © 18M<VEC<24 ()

Main clock oscillator
Operation

- Voltage Detection Circuit

&' Clock Frequency Accuracy N Main clock oscillation source Resenator -

..... &' Low Power Consumption ; 5 MH
..... & Interrupt Controller Unit R T
W Buses Oscilator wait time: G192 cycles v 2048 ()

..... &' Data Transfer Controll
ata Jranster Lentreter Oscillation stop detection function Dissbled -

Event Link Controller
/O Ports

m

PLL circuit setting

Multi-Function Timer Pulse] Operation

-

{

-

&' Port Output Enable 2

& 8-Bit Timer 1

W Compare Match Timer

&' Realtime Clock

..... ' Independent Watchdeg Tim
& Low Power Timer

Sib-clock ascillatar and RTC (RTCSC K setting

Serial Communications Intey
..... W' 12C Bus Interface

W' Serial Peripheral Interface
..... ' CRC Calculator

W' 12-Bit A/D Converter
..... &' D/A Converter o
& Comparator B

&' Data Operation Circuit

m

a8 Code Preview . ||\ All Messages /

Ll e T— v || ovput [Error st

F Fa F2 P Fs & F7 Fa |Fa

FFull-screen i

Fi2

1line 1ColumnReadonly gf;DISCONNECT

Figure 4-1 Initial View

Code Generator provides GUI features for configuration of MCU subsystems and peripherals. Once the user
has configured all required MCU subsystems and peripherals, the user can click the ‘Generate Code’ button,

resulting in a fully configured CS+ project.

Navigation to the MCU peripheral configuration screens may be performed by double-clicking the required

function in the Project Tree -> Project Name -> Peripheral Function on the left.

It is also possible to see a preview of the code that will be generated for the current peripheral function
settings by double-clicking the required function in the Project Tree -> Project Name -> Code Preview on the

left.

R20UT3447EG0100 Rev. 1.00

LENESAS
Nov 30, 2015 -2

Page 12 of 52

http://www.renesas.com/applilet

RSKRX130 4. Code Generation Using the CS+ plug in

4.4 Code Generation

In the following sub-sections, the reader is guided through the steps to configure the MCU for a simple project
containing interrupts for switch inputs, timers, ADC and a UART.

44.1 Clock Generator

Figure 4-2 shows a screenshot of Code Generator with the Clock Generator function open. Click on the
‘Clock setting’ sub tab. Configure the system clocks as shown in the figure. In this tutorial we are using the
on board 8 MHz crystal resonator for our main clock oscillation source and the PLL circuit is in operation. The
PLL output is used as the main system clock and the divisors should be set as shown in Figure 4-2.

5 Property 25l Peripheral Functions®

om—

%] GenerateCode | % 3 & &= @ ¥ A2 D O DD O @& T ooE T O oM
Clock setting | Block diagram |

VCC setting
@ 27(W<VCC<55(V)

D 24(V)sVCC <27 (V) D 1.8(W)<VCC<24 (W)

Main clock oscillator

[¥] Operation

Main clock oscillation source Resonator

Frequency 8 (MHz)
Oscillator wait time 8192 cycles v 2048 (ps)

Oscillation stop detection function Disabled
PLL circuit setting
[¥] Operation
Inpuit frequency division ratio x 12 -
Frequency muttiplication factor x8 -
Frequency 32 (MHz)
Sub-clock escillator and RTC (RTCSCLK) setting
[¥] Operation
Sub-clock oscillator drive capacity Drive capacity for low CL -
Frequency 32.768 kHz)
High speed clock oscillator (HOCO) setting
["] Operation
32
Low speed clock oscillator (LOCO) setting
[] Operation
System clock setting
Clock source PLL circuit -
System clock (ICLK) x1 - 32 (MHz)
Peripheral module clock (PCLKB) xil - 2 (MHz)
Peripheral module clock for ADC (PCLKD) x1 v 32 (MHz)
Hash IF clock (FCLK) x1 v 32 (MHz)

\/DT-dedicated low-speed clock oscillator (IWDTLOCO) setting
[] Operation

LPT clock (LPTCLK) setting

[] Operation
Sub-clock oscillator
2 16.384
CLKOUT pin setting
[T] Operation PE3
Main clock oscillator

x 112 8

Figure 4-2 Clock setting tab

Proceed to the next section on Interrupt.

R20UT3447EG0100 Rev. 1.00

LENESAS
Nov 30, 2015 -2

Page 13 of 52

RSKRX130

4. Code Generation Using the CS+ plug in

4.4.2 Interrupt Controller Unit

Referring to the RSK schematic, SW1 is connected to IRQ1 (P31) and SW2 is connected to IRQ2 (P32).
SW3 is connected directly to the ADTRGOn and will be configured later in 84.4.5. Navigate to the ‘Interrupt
Controller Unit’ node in Code Generator and in the ‘General’ tab, configure these two interrupts as falling edge
triggered as shown in Figure 4-3 below.

Property E&’ Penipheral Functions™

%] GenerateCode | %= [S # H 2 s O O O O E

-

BIE T E b M

- Fast interrupt setting
[Fast intemupt

BSC (BUSERR vect=16)

— Software interrupt setting
[7] Software intemupt

Level 15 (highest)

Figure 4-3 Interrupt Functions tab

~NMI setting
[] NMI pin intemupt alid edge | Falling Digital fiter | No filter 0 Hz
-IRQO setting
[Ira0 = PDO Digital fiter | No filter 0 Hz
slid edge | Low level P Level 15 (highest)
-IRQ1 setting
IRQ1 Pin P31 - Digital fiter No filter 0 -
Valid edge Fzlling - Prioity Level 15 (highest)
- IRQ2 setting
IRQ2 Pin P32 - Digital fiter ~ Mo filter 0 Hz
Valid edge Falling - Priofity Level 15 (highest)
-IRQ3 setting
1 1RQ3 P P13 Digital fiter | No filter 0 H
alid edge | Low level P Level 15 (highest)
-|RQ4 setting
[IRQ4 = P14 gital fiter | No filter 0 Hz
edge | Low level P Level 15 (highest)

R20UT3447EG0100 Rev. 1.00
Nov 30, 2015

RENESAS

Page 14 of 52

RSKRX130

4. Code Generation Using the CS+ plug in

4.4.3 8bit Timer

Navigate to the ‘8bit Timer’ node in Code Generator. TMRO will be used as an interval timer for generation of

accurate delays.

In the ‘General setting’ sub-tab configure TMRO as shown in Figure 4-4.

Property 24l Peripheral Functions®

.

% GenerateCode | £ N S E ¢ PV E DO B DO D L F o8 T
¢ General setting | TMR0 | TMR1 | TMR2 | TMR3 |
- Function setting

TMRO 8-bit count mode -

TMR1 Unused -

TMR2 Unused -

TMR3 Unused -

Figure 4-4 General setting tab

Navigate to the ‘TMRO’ sub-tab configure TMRO as shown in Figure 4-5. This timer is configured to generate
We will use this interrupt later in the tutorial to provide an API for
generating high accuracy delays required in our application.

a High priority interrupt every 1ms.

'fi.j Generate Code

S OSE#B AT

@ BE F ooff T G

| General sethng| TMRO:

TMR1 | TMR2 | TMR3 |

Figure 4-5 TMRO tab

—Count setting
Clock source PCLKN024 * 3125 {Hz)
Extes T PH3
Counter clear Cleared by compare match A -
Extemal reset pin TMR P20
Compare match A value (TCORA) 1 ms - (Actual value: 0.952)
Compare match B value (TCORB) 1 ms (Actual value: 0.952)
- TMOU0 cutput setting
[Enable TMOD output
TMODp PH1
Output at co e Mo change
Output at co e Mo change
- Interrupt setting
Enable TCORA compare match intermupt (CMIAD)
[] Enable TCORB compare match intemupt (CMIBD)
[Enable TCNT overflow intermupt (0VI0)
Friority Level 10 -

R20UT3447EG0100 Rev. 1.00

Nov 30, 2015

RENESAS

Page 15 of 52

RSKRX130 4. Code Generation Using the CS+ plug in

444 Compare Match Timer

Navigate to the ‘Compare Match Timer’ node in Code Generator. CMTO and CMT1 will be used as timers in
de-bouncing of switch interrupts.

In the ‘CMTO’ sub-tab and configure CMTO as shown in Figure 4-6. This timer is configured to generate a
High priority interrupt after 20ms. This timer is used as our short switch de-bounce timer later in this tutorial.

5 Property |.?-}.4 Peripheral Functions™

%] Generate Code | £ (1 68 (& o #8252 30 5 O D DL
CMTO | cMT1 |
- Compare match timer operation setting

BT T W2

) Unused @ Used

- Count clock setting
© PCLK/B @ PCLK/32) PCLKA28) PCLK/512

- Interval value setting

Interval values 20 ms ~ (Actual value: 20)
— Interrupt setting
Enable compare match intermupt (CMI0)
Priciity Level 10 -

Figure 4-6 CMTO tab

Navigate to the ‘CMT1’" sub-tab and configure CMT1 as shown in Figure 4-7. This timer is configured to

generate a High priority interrupt after 200ms. This timer is used as our long switch de-bounce timer later in
this tutorial.

"E,:a! Peripheral Functions®
5] GenenteCoce | % 01 € @ B b5 10 D 00D B T E S b mT

| oo || CiATT |
— Compare match timer operation setting
) Unused @ lUsed
- Count clock setting
©) PCLK/8 &) PCLK/32 (7 PCLK/128 @ PCLK/512

~ Interval value setting
Interval value 200 ms » [Actual value: 200)

— Interrupt setting
Enable compare match intemupt (CMI1)

Pricrity Level 10 -

Figure 4-7 CMT1 tab

R20UT3447EG0100 Rev. 1.00 RENESAS Page 16 of 52
Nov 30, 2015

RSKRX130 4. Code Generation Using the CS+ plug in

4.4.5 12-bit A/D Converter

Navigate to the ‘12-bit A/D Converter’ tab in Code Generator. Refer to the screenshot shown in Figure 4-8,
Figure 4-9 and configure the S12AD as shown. We will be using the S12AD in 12-bit one shot mode on the
ANOOO input, which is connected to the RV1 potentiometer output on the RSK. The conversion start trigger
will be via the pin connected to SW3.

f] GenerateCode | X O S X ¢ M & DB D DO LEE ST ol FT I G W2

ME; \Window A setting | Window B setting I —_—

- 512AD operation setting

@ Unused @ Used
— Operation mode setting

@ Single scan mode) Group scan mode) Cortinuous scan mode
- Double trigger mode setting

@ Disable) Enable

AID conversion select

@ Highspeed) Low-cument
- Self di is setting
Mode Unused -

Use VREFHOx0

Disconnection detection assist setting
Charge setting Unused -
s 2 ADCLK

- Group scan priority setting

Group A without priority
B action Not restarted or continued due to Group A priority
A/D converted value count setting

@ Addition mode) Average mode

- High-Potential reference voltage select
@ AvCCo © VREFHO

Low-Potential reference voltage select

@ AVSS0 ©) VREFLO
—Window function setting

@ Disable) Enable
- Window A operation setting

@ Disable () Enable
Window B operation setting

@ Disable) Enable
- Data storage buffer setting -

@ Disable) Enable

— Analog input ch | setting

Convert (Group A) Convert (G B Add/Average AD value

ANDOD |

ANDO1

ANDO2

ANDO3

ANDD4

AN0D5

ANDDE

ANDO7

AND16

AND17

AND18

AND19

AND20

AND21

AND24

AND25

AND26

Temperature sensor output
Intemal reference voltage

15 T S

Figure 4-8 A/D Converter tab-1

R20UT3447EG0100 Rev. 1.00 RENESAS Page 17 of 52
Nov 30, 2015

RSKRX130

4. Code Generation Using the CS+ plug in

- Conversion start trigger setting
Conversion start trigger (Group A)

AD conversion start trigger pin -
Conversion start trigger (Group B)
Compare match with or input capture from MTUD.TGRA -

ADTRGO# pin selection F16 -

- Data registers setting

AD converted value addition count 1-time conversion -

Data placement Right-alignment -

Automatic clearing Disable automatic clearing -
— AMDOD / Self-diagnosis conversion time setting

Input sampling time: 3667 (s} (Actual value: 3.656)

—AMNO0O1 conversion time setting

Input sampling time: |3.G€? | ps) (Actual value:
— AMOO2 conversion time setting
Input sampling time: |3.6€? | (#s) (Actual value: 3.656)
— AMDO3 conversion time setting
Input sampling time: |3.ﬁﬁ? | (us) (Actual value: 3.656)
—AMNO0O4 conversion time setting
Input sampling time: |3.G€? | 153
— AMOO5 conversion time setting
Input sampling time |3.6€? | ps) (Actual value: 3.656)
— AMDDE conversion time setting
Input sampling time: |3.ﬁﬁ? | (us) (Actual value: 3.656)
—AMNOO7 conversion time setting
Input sampling time: |3.G€? | (us)
—AMOT6-AND21, ANDZ24-AN026 conversion time setting
Input sampling time: |3.6€? | (#s) (Actual value: 3.656)
— Temperature sensor output conversion time setting
Input sampling time: |5 | (=) (Actual value: 5)
- Internal reference voltage conversion time setting
Input sampling time: |5 | 1) (Actual value: 5)
— Conversion time setting
Total conversion time (Group A) 5031 (ps)
Total conversion time (Group B) | (us)
— Event link control setting
ELC scan end event generation condtion On completion of all scans -
Window A/B composite condition
| S1280WMELC is output when window A comparison conditions are met OR window B comparison conditions are met -
(S12ADWIUMELC is output in other cases)
— Interrupt setting
Enable AD conversion end intemupt (S12AD10)
Priority Level 15 (highest) -

[¥] Enable AD conversion end intemupt for group B (GBADI)
[Level 15 (highest) -]

Priority

Figure 4-9 A/D Converter tab-2

R20UT3447EG0100 Rev. 1.00

Nov 30, 2015

RENESAS

Page 18 of 52

RSKRX130

4.

Code Generation Using the CS+ plug in

4.4.6

Serial Communications Interface

Navigate to the ‘Serial Communications Interface’ tab in Code Generator, select the SCI6 sub-tab and apply

the settings shown in Figure 4-10. In the RSKRX130 SCI6 is used as an SPI master for the Pmod LCD on the
PMOD1 connector as shown in the schematic.

Froperty ‘iﬂ Peripheral Functions® ‘
—

%] Generate Code | %

SO0 EFRMESESDLDD DS#ESTHETLE LS ME

sch [scis | SCiE | scnz |

General setting ‘ Setting |

Function setting
) Unused
() Asynchronous mode

1 Asynchronous mode (Multi-processor)

Transmission

() Clock synchronous mode Transmission
() Smart card interface mode Transmission
) Simple IIC bus
@ Simple SP|bus Master transmit only -
- Pin setting
T PB1 RXC PBO
PB1 SSCL6 PBO
SMOSIE PB1 - PBO

Figure 4-10 SCI6 General Setting tab

Select the SCI6 ‘Setting’ sub-tab and configure the SPI Master as illustrated in Figure 4-11. Make sure the
‘Transfer direction setting’ is set to ‘MSB-first’ and the ‘Bit rate’ is set to 8000000. All other settings remain at

their defaults.

‘f:iJ Generate Code

P e N R R N - R SR AN

[scn | scis | scie | scin2 |

[General setting | Setting |

Transfer direction setting

[Enable clock polarity inversion

- Data handling setting

() LSBirst @ MSBHirst

- Data inversion setting
@ MNormal) Inverted

Transfer rate setting

Transfer clock Internal clock -~ PB2 -
Bit rate 8000000 - bps) (Actual value: 8000000, Emor : 0%)
[T Enable modulation duty comection
SCKB pin function selection Clock output -

~Clock setting
Clock delay Clock is not delayed -

Transmit data handling

- Interrupt setting

Data handled in interrupt service routine

TXI6. TEIG priority

- Callback function setting

Level 15 (highest) -

Transmission end

Figure 4-11 SCI6 SPI Master Setting

R20UT3447EG0100 Rev. 1.00
Nov 30, 2015

RENESAS

Page 19 of 52

RSKRX130

4. Code Generation Using the CS+ plug in

Staying in the ‘Serial Communications Interface’ tab in Code Generator, select the SCI1 sub-tab and apply the
settings shown in Figure 4-12. In the RSKRX130 SCI1 is connected via a Renesas RL78/G1C to provide a
USB virtual COM port as shown in the schematic.

%] GenerateCode | % I S & # B S DO DO 0] LigT o L0 S MmE

scit | scis | scis [sciiz2 |
i General 5emng:‘.seﬂmg ‘

— Function setting
) Unused

@ Asynchronous mode
() Asynchronous mode (Multiprocessor)
Clock synchronous mode
() Smart card inteface mode
© Simple IIC bus
7 Simple SPlbus

- Pin setting

Transmission/reception -

Transmission

Slave transmit/receive

D1 P26 -
P26

P26

RXD1 P30 -
P15

GE

Figure 4-12 SCI1 General Setting tab

Select the SCI1 ‘Setting’ sub-tab and configure SCI1 as illustrated in Figure 4-13. Make sure the ‘Start bit
edge detection’ is set as ‘Falling edge on RXD1 pin’ and the ‘Bit rate’ is set to 19200 bps. All other settings

remain at their defaults.

5] GenersteCode | % 1 S # B AL ID O DO C R EETES LG b mE

scit | scis | scie | sci2

| General setting | Sert_lrm_‘

Start bit edge detection sefting
) Low level on RXD1 pin

@ Falling edge on RXD1 pin

- Data length setting

© 9bits @ 8bis @ 7bits
Parity setting
@ None) Even ©) Odd
Stop bit length setting
@ 1bit) 2bits
Transfer direction setting
@ LSBirst () MSBHirst
Transfer rate setting
Transfer clock Internal clock -
16 cycles for 1-bit period
Bit rate 15200 - bps) (Actual value: 19230769, Emor: 0.16%)
["] Enable modulation duty comection
SCK1 pin function SCK1is not used - P27
-~ Noise filter setting
[Enable noise fitter
se filte > Clock signal divided by 1 32000000
~ Hardware flow control setting
@ MNone 7 CTS RTS
P14
Datz handling setting
Transmit data handling Data handled in interrupt service routine -
Receive data handling .Dala handled in interrupt service routine -
Interrupt setting
[¥] Enable emor intemupt (ERI1)
TXI1. RXI1. TEI. ERI1 priority Level 15 (highest) -
Callback function setting
Transmission end Reception end Reception emor

Figure 4-13 SCI1 Asynchronous Setting

R20UT3447EG0100 Rev. 1.00
Nov 30, 2015

RENESAS Page 20 of 52

RSKRX130

Code Generation Using the CS+ plug in

4.4.7 I/O Ports

Referring to the RSK schematic, LEDO is connected to P21, LED1 is connected to P04, LED2 is connected to
P06 and LED3 is connected to PO7. Navigate to the ‘I/O Ports’ tab in Code Generator and configure these
four I/O lines as shown in Figure 4-14 and Figure 4-15 below. Ensure that the ‘Output 1’ tick box is checked.
This ensures that the code is generated to set LEDs initially off.

Property

f,:g Peripheral Functions®]

o] GenerateCode | L U S E #¥ M AU DO DD SE T BT L CudMm 2

| Portd | Portt || Bar2' | Port3 | Port4 | Perts | Porta | PortB | PortC | PortD | FortE | PortH | Ports |
P20

Figure 4-14 1/O ports — Port2

@ Unused © © Out e
-P21
) Unused @ In @ Out Output 1 [High-drive output
- P26
@ Unused © In ¥ D Out 8 Pull-up CMOS output H
P27
@ Unused In 7 Out CMOS output H

‘[’Ej Generate Code

SO @ # S 0DD0 0L EE T TR N

Figure 4-15 1/O ports — Port0

; Bort0 | Port1 | Port2 | Port3 | Port4 | Port5 | Porta | PortB | PortC | PortD | PortE | Portt | Ports |
o3
@ Unused ® In) Out
P04
O Unused) In @ Out [¥] Output 1
_PO5 -
@ Unused In) Out
PO
) Unused In @ Out [¥] Output 1
P07
) Unused In @ Out [¥] Output 1

R20UT3447EG0100 Rev. 1.00
Nov 30, 2015

RENESAS

Page 21 of 52

RSKRX130

4.

Code Generation Using the CS+ plug in

P17 is used as one of the LCD control lines, together with PB2, PC2 and PC3. Configure these lines as shown
in Figure 4-16, Figure 4-17 and Figure 4-18.

ﬁj Generate Code

Sl FHEHmOODDE ST TGS M

| Portd |} Bortl | Pori2 | Port3 | Port4 | Pori5 [PortA | PortB | PortC | PortD | Pori€ | PortH [Portd |

Figure 4-16 1/O ports — Portl

P12

@ Unused @ n ©) Out (] Pulup [CMOS output | [Output 1 [] High-drive output
P13

@Uwsed ©h ©Ow [JPuip |CMOSoutput ~] Ooupt1 [J Hghdive output
P14

@ Unused @ In ® Out (] Pulup [CMOS output -] [output 1 [] High-drive output
P15

@ Unused @ In © Out O] Pulup [CMOS output -| [Ouput1 [High-drive output
_pis

@Uused ©h @ ©O0w® [JPuup [CMOSoutput ~] Ooupt1 [Hghdive output
P17

) Unused @ In @ Out [Pullup CMOS output - Qutput 1 High-drive output

‘(;‘] Generate Code

SLsEFR LD ODD DS S ATE

G, g5 M 22

| Portd | Port1 | Port2 | Port3 | Port4 | Port5 | Porta [} PoriB| PoriC | PortD | PortE | PortH | Portd |
E0

@ Unused) In ©) Out Pulup [CMOS output -]] Output 1 [] High-drive output
- PB1

@ Unused @ In ® 0w @ [Pulup ‘CMDS output v‘ [Output 1 [High-drive output
- PB2

) Unused © I @ Out [Pullup CMOS output - Output 1] High-drive output
PR3

@ Unused ©h © Out ¥ Pull-up CMOS output v‘] Output 1 [] High-drive output
PB4

@ Unused @ In ® Out [] Pullup [] Output 1 [] High-drive output
-PB5

@ Unused ® In @) Out] Pullup [] Output 1 [] High-drive output
- PB&

@ Unused @ In) Out | Pullup [] Output 1 [] High-drive output
- PB7

@ Unused @ In © Oout [] Pullup [JOutput 1 [[] High-drive output

Figure 4-17 1/O ports — PortB

'i";“j Generate Code

SO0 SE#FE AT m D000 0OEETHESTE

B, 9 AM 22

| Portd | Porti | Port2 | Port3 | Port4 | Port5 | Porta | PortB | EoriC!| PortD | PortE | PortH | Portd |

- PCO

@ Unused @ © Out [Pullup [] Output 1 [] High-drive output
-PC1

@ Unused @ In @ Out] Pullup [] Output 1 [] High-drive output
-PC2

) Unused ® In @ Out] Pullup CMOS output - Output 1 [] High-drive output
-PC3

) Unused ® In @ Out [Pullup CMOS output - [7] Qutput 1 [] High-drive output
- PC4

@ Unused @ In) Out] Pull-up ‘CMDS output - [] output 1 [] High-drive output
- PCh

@ Unused © In) Out] Pullup ‘CMOS output - [] Output 1 [] High-drive output
-PC6

@ Unused @ In @ Out [] Pullup ‘CMDS output v [] Output 1 [] High-drive output
-PC7

@ Unused ® In © Out] Pullup ‘CMDS output -] Output 1 [] High-drive output

Figure 4-18 1/O ports — PortC

R20UT3447EG0100 Rev. 1.00

Nov 30, 2015

RENESAS

Page 22 of 52

RSKRX130 4. Code Generation Using the CS+ plug in

Peripheral function configuration is now complete. Save the project using the File -> Save Project menu item,
then click ‘Generate Code’. The Output pane should report ‘The operation of generating file was successful’,
as shown Figure 4-19 below.

M0409001:The following files were gensrated:,| a
M0409000:0g_sro\r_cg main.c was generated.|
M0403000:cg_sroir_cg_dbsct.c was generated.,]
M0403000:-cg_src\r_cg_intprg.c was generated |
M0409000:0g_sro\r_cg resetprg.c was generated. .|
M0409000:0g_sre\r_cg_sbrk.c was generated.|
M0403000:cg_src\r_cg_vecttbl.c was generated.,]
M0403000:0g_sre\r_cg_sbrk_h was generated_,|
M0409000:0g_sro\r_cg stacksct.h wes generated. .|
M0403000:cg_src\r_cg_vect.h was generated.|
M0403000:-cg_sro\r_cg_hardware_setup c was generated |
M0409000:0g_sro\r_cg_macrodriver h was generated.|
M0409000:eg_sro\r_cg_userdefine h wes generated.,|
M0403000:cg_src\r_cg_cgc.c was generated.,|
M0403000:0g_sro\r_cg_cge_user_c was generated |
M0409000:0g_sro\r_cg cge.h was generated.|
M0403000:cg_src\r_cg_icu.c was generated.,|
M0403000:-eg_sro\r_cg_icu_user c wss generated |
M0409000:0g_sre\r_cg_icu.h was generated.|
M0409000:0g_sre\r_cg_port.c was generated. |
M0403000:cg_src\r_cg_port_user.c was generated.,]
M0409000:eg_sro\r_cg_port.h was generated. .|
M0409000:0g_sro\r_cg tmr.c was generated.|
M0403000:cg_srohr_cg_tmr_user.c wes generated.,|
M0403000:-cg_src\r_cg_tmr h was generated | -
M0409000:0g_sro\r_cg_cmt.c was generated.|

M0409000:0g_sro\r_cg_cmt_user.c wes generated.,|

M0403000:cg_src\r_cg_cmt.h was generated.,|

M0403000:eg_sro\r_cg_sei.c was generated |

M0409000:0g_sro\r cg sci user.c wes generated.,|

M0403000:cg_sre\r_cg_sci.h was generated.,|

M0403000-eg_sro\r_cg_slZad c was generated |

M0409000:eg_sro\r_cg_sliad user.c was generated.,|

M0409000:eg_sro\r_cg_slZad.h was generated.]

M0403003:The operation of genersting file was successful.

[EZ0F]

m

Il Messages: | *Code Generator){ *Rapid Build / -

Figure 4-19 Code generator console

R20UT3447EG0100 Rev. 1.00 RENESAS Page 23 of 52
Nov 30, 2015

RSKRX130

4.

Code Generation Using the CS+ plug in

Figure 4-20 shows the Code Generator Files in the Project Tree pane. In the next section the CG_Tutorial
project will be completed by adding user code into these files and adding new source files to the project.

Project Tree

; @ 2=

B3

=7 CG Tutorial (Project)*

. % RSF51305AxFN (Microcontroller)

B_.__ﬂ Code Generator (Design Tool)
A, CC-RX (Build Teol)

----- e, Y Simulator (Debug Tool)

=3 File

ﬂ Build tocl generated files

& et

..... & r_cg_resetprg.c
..... t_:J r_cg_shrk.c

----- ‘_:J r_cg_vectthl.c

----- ‘_?J r_cg_hardware_setup.c
..... (_:J r_cg_cgc.c

..... f_:J r_Cg_cge_User.c
----- ‘_:J r_cg_icu.c

..... €| r_cg_icu_user.c
..... t_:J r_cg_port.c

..... tﬂ r_cg_port_user.c
----- ‘_’J r_cg_tmr.c

..... ‘fJ r_cg_tmr_user.c
..... & r_cg_cmt.c

..... tﬂ r_cg_cmt_user.c
..... ‘_:J r_cg_sl:i.c

..... €] r_cg_sci_user.c
..... !_ﬁJ r_cg_sl2ad.c

..... tﬂ r_cg_sl2ad_user.c
..... IIJ r_cg_sbrk.h

..... ilJ r_cg_stacksct.h
..... b=| r_cg_vect.h

..... i'_J r_cg_macrodriver.h

----- "J r_cg_sci.h
----- n| r_cg_s12ad.h

L3

m

Figure 4-20 Code Generator Files in the Project Tree

R20UT3447EG0100 Rev. 1.00

LENESAS
Nov 30, 2015 -

Page 24 of 52

RSKRX130 5. Completing the Tutorial Project

5. Completing the Tutorial Project

5.1 Project Settings

e In the ‘Project Tree’ pane, select | =

‘CC-RX (Build Tool). The build udmose [N

. . . . Change property value for all build modes at once No
properties will appear in the main | . cru
H Instruction set architectu RXv1 architecture(-: 1)
W|ndOW Ljsses Tlo:;:gfp::t operal;\eon instructions No(\:-\;pu) e
) i Endian type for data Little-endian data(-endian=itle)

e CS+ creates a si ngle build Rounding method for floating-point constant operations round 1o nearestiound=nearest)

. . . 1 Handling of denormalized numbers in floating-point constants Handles as zeros(<enomalize =off)
co nﬂg u rat| on Cal Ied D efau |t BU | Id Precislogn of the double type and long doub\egr,?; Handles in single precision(-dbl_size=4)
for the p rOJ eCt T h IS h aS Standard z;:la;ﬁetz?;’::: v steriiyee ::ndﬁes as unsigned char(-unsigned_char)

1 1 1 Sign of the bit-field ty Handles as unsigned{-unsigned_bitfield)
COde 0pt|m|sat|0n turned on by Segleds theenumrajt?; type size automatically No 9 :
default. Order of bit-field members Allocates from fight (bit_order=ight)
Assumes the boundary alignment value for structure members is 1 Nof-unpack)
Enables C++ exceptional handling function (try, catch and throw) No{-noexception)
Enables the C++ exceptional handling function (dynamic_cast and typeid) No(tti=off)
General registers used only in fast interrupt functions None{fint_register=0)
Branch width size Compiles within 24 bits(branch=24)
Base register for ROM None
Base reqgister for RAM None
Address value of base register that sets the address value =4 00000000
Vﬂiuild‘l;;de" T T =
Selects the build mode name to be used during build.
e Select the ‘Compile Options’ tab at _

. . guage of the C zource file C99(-lang=c99)
the bottom of the properties window Lanquags of the Ce+ source fle CICE5] ange)
pane_ Under ‘Language of the C s Additional include paths C

fl y I t ‘ng I _ 99 , > Spstem include paths paTTEO
source Tile’ selec (- ang_c) > Inchude files at the head of compiling units Include files at the head of col
as shown opposite_ > Macro definition Macro definition[0]
Irvealidates the oredefined macra
e Select the ‘Link Options’ tab at the | “ g;ﬁ",‘iz?i""t No optmzsNOOPUze)
. . ImiZaton 0 optimizel-| imize
bottom of the properties window | , eocmm
pane. Under ‘Section -> ROM to Section start address B_1.R_1.B_2,R_2.B.R.SU.51/04,PResetPRG/OFFFED0D0.C_1.C
RAM m apped section ” add the » The specified section that outputs The specified section that outputs extemally defined symbols to th
. > Section alignment Section alignment[0]
three. mappings as Shown | | Fomer ey 2OM to RAM mapped section(3] (]
opposite. . [0] D=R
[1] D_1=R_1
[2] D_2=R 2
. Thes_e settings are easily added_by Text Edit =
clicking the button *..." and pasting Tet:
the following text into the dialog: o
D_1=R_1
D_2=R_2
D=R
D 1=R 1
D 2=R 2
e This ensures that the linker assigns
RAM rather than ROM addresses
to C variables.
el 3
0K || canced || He
R20UT3447EG0100 Rev. 1.00 RENESAS Page 25 of 52

Nov 30, 2015

RSKRX130

5. Completing the Tutorial Project

e From the ‘Build’ menu, select ‘Build
Mode Settings...”. Click ‘Duplicate’
and in the resulting ‘Character
String Input’ dialog, enter ‘Debug’
for the name of the duplicate build
mode.

=

Build Mode Settings

=]

Selected build mode:
| Apply to A
Build mode list:

e

(o= []
e The new ‘Debug’ build mode will be | 4 ccRxFropety @) (@ &l
i i i 4 Build Mode
added to the Build mode 1St Clck | 1 o — o1 =
Close'. NOW, in the main CC-RX Change property value for all build modes at once DefaultBuild
Property window, under the . gru”m
‘Common Options’ tab, click on the Pt Bl Turr et B |
line containing ‘Build Mode’, click
the pull-down arrow and select
‘Debug’ from the pull-down’.
e Inthe ‘Frequently Used Options (for | 4 CCAXFropety @ (& &l
Compile)’ group, select the | < BuldMed
‘Optimization Level’ Option and Change property value for all build modes at once No
select ‘0’ from the pull-down. We : gl';'jm
have now created a ‘Debug’ build 4 OutputFile Type and Path
mode with no code Optimisation Output file type Execute Module(Load Module File)
. . . Intermediate file output folder “%BuildModeName .
and will be using the Build mode t0 | . Frequently Used Opsionsior Compile)
create and debug the project. b Additional include paths Additional include paths[2]
I System include paths System include paths[0]
> Macro definition Macro definition[0]
QOutputs debugging information Yes(debug)
[T I o(-optimize=0) [~]
Outputs additional information for inter-module optimization [ESiyFC=1)
Optimization type 1(-optimize=1)
Outputs a source list file 2(-optimize=2)
4+ Freq ly Used Options(for A bie) Max(-optimize=max)
R20UT3447EG0100 Rev. 1.00 RENESAS Page 26 of 52

Nov 30, 2015

RSKRX130

5. Completing the Tutorial Project

e All of the sample code projects
contained in this RSK are
configured with three Build modes;
‘DefaultBuild’, ‘Debug’ and
‘Release’. ‘Release’ is created in
the same way as above; by
duplicating ‘Default Build'.
‘Release’ build mode leaves code
optimisation turned on and
removes debug information from
the output file.

e To remove debug information from
the ‘Release’ build mode, in the
‘CC-RX Property’ window, select
the ‘Common Options’ tab at the
bottom of the window pane. For
the ‘Outputs debugging information’
option, select ‘No(-nodebug).

e Reset the build mode back to
‘Debug’ using the ‘Build Mode’ pull-
down control.

e From the menus, select ‘File ->

@ (& =L

"\ CC-RX Property
4 Build Mode
Build mode Release
Change property value for all build modes at once No
» CPU
PIC/PID
Qutput File Type and Path
Output file type
Intermediate file output folder
4 Frequently Used Options(for Compile)
» Additional include paths
b System include paths System include paths[0]
> Macro definition Macro definition[0]
No(nodebug) [~]
Optimization level Yes(-debug)
Outputs additional information for inter-module optimization JREIERES =T
Optimization type op ESWIITE
Outputs a source list file No(nolistfile)
4 Frequently Used Options(for Assemble)
> Additional include paths
> System include paths
> Macro definition
4+ Frequently Used Options(for Link)
B>

Execute Module{Load Module File)
%BuildModeName %

Additional include paths[2]

Additional include paths [0]
System include paths [0]
Macro definition [0]

Using libraries Using libraries[0]
B R e L R B N o A s hm b Al s b b il W DUt
Outputs debugging information

Selects whether to output debugging information
This corresponds to the -debug and -nodebug options of the compiler.

Save AlI' to save all project
settings.
5.2 Additional Folders

e Before new source files are added
to the project, we will create two
additional folders in the CS+
Project Tree.

¢ In the Project Tree pane, right-click
the CG_Tutorial project and select
‘Add -> Add New Category’.

CG_Tutorial - CS+ for CC - [Project Tree]
File Edit View Project Build Debug Tool Window Help

Bsat | JEH@ X BR[O HBE B - Bl T Defaulte
D83 Q

it el | 75 Property 2%l Peripheral Functions®

- ® 3 = f\ CG_Tutorial Property

=] xf rtorial (Pro R I
i J% RSF51305AFN L] 8uild CG_Tutoria E

Code Generatd TL] Rebuild CG_Tuterial solute path
A, CC-RX (Build | Clean CG_Tuterial ites
&3 RX Simulator (|
a3 File i'& Open Folder with Explorer

& Windows Explorer Menu
[Add

-

‘ |+ﬁ Add Subproject...

[f% Add New Subproject...
Y AddFile..

] Add New File...

‘I: i) Add New Category

rﬂ Set CG_Tutorial as Active Project
[#7] Save Project and Development Tools as Package...
4 Paste Ctrl+V

Rename F2
&

e Rename the newly-created ‘New
Category’ folder to ‘C Source Files'.
Repeat these steps to create a new
category folder for ‘Dependencies’.

= % CG Tutorial (Project)*
e 3:% R5F513054xFMN (Microcontroller)

B:,J Code Generator (Design Tool)
w A, CC-RX (Build Tool)

L RX Simulator (Debug Tool)

=) File
; ﬂ Build tocl generated files
I_E Code Generator

W] Cource e

R20UT3447EG0100 Rev. 1.00
Nov 30, 2015

RENESAS Page 27 of 52

RSKRX130 5. Completing the Tutorial Project

5.3 LCD Code Integration

API functions for the Okaya LCD display are provided with the RSK. Refer to the Tutorial project folder
created according to the Quick Start Guide procedure. Locate the files ascii.h, r_okaya lIcd.h, iodefine.h,
ascii.c, and r_okaya_lcd.c in this folder. Copy these files into the C:\Workspace\CG_Tutorial folder.

e Right-click on the ‘C Source Files’ | -3 File
in the Project Tree and select ‘Add - £ Build tool generated files
> Add File...’. | Code Generator

e Browse to the files ascii.c, and i....]) Dependen Add 3 Addrie.

r_okaya_lcd.c in the B Ooen Folder with Exol #] Add New Fil

H Ulpen Folder with exXplorer ™ ew rile...

C:\Workspace\CG_Tutorial folder s —pen rolderwiih Spors _

and click ‘Add’ =) Windows Explorer Menu 1) Add New Category
e Repeat the above steps to add the & Remove from Project Shift+Del

iles ascii.h, r_okaya lcd.h to the iy Copy Ctrl+C

fil h, r_okaya Icd.h to th 3 Copy

‘Dependencies’ folder. &l paste Cirl+V

e Repeat the above steps to add the
file iodefine.h to the ‘File’ folder.

Code must be inserted in to the user code area in many files in this project, in the areas delimited by
comments as follows:

/* Start user code for _xxxxx_. Do not edit comment generated here */
/* End user code. Do not edit comment generated here */

Where _xxxx_ depends on the particular area of code, i.e. ‘function’ for insertion of user functions and
prototypes, ‘global’ for insertion of user global variable declarations, or ‘include’ for insertion of pre-processor
include directives. User code inserted inside these comment delimiters is protected from being overwritten by
Code Generator, if the user needs to subsequently change any of the Code Generator-generated code.

In the CS+ Project Tree, expand the ‘Code Generator’ folder and open the file ‘r_cg_userdefine.h’ by double-
clicking on it. Insert the following #defines in between the user code delimiter comments as shown below.

R20UT3447EG0100 Rev. 1.00 RENESAS Page 28 of 52
Nov 30, 2015

RSKRX130 5. Completing the Tutorial Project

/* Start user code for function. Do not edit comment generated here */
#define TRUE @)

#define FALSE ()

/* End user code. Do not edit comment generated here */

In the CS+ Project Tree, open the file ‘r_cg_main.c’ by double-clicking on it. Insert #include "r_okaya_lcd.h" in
between the user code delimiter comments as shown below.

/* Start user code for include. Do not edit comment generated here */
#include "r_okaya lcd.h"
/* End user code. Do not edit comment generated here */

Scroll down to the ‘main()’ function and insert the highlighted code as shown below into the beginning of the
user code area of the main() function:

void main(void)

{
R_MAIN_UserlInit(Q);
/* Start user code. Do not edit comment generated here */
/* Initialize the debug LCD */
R_LCD_InitQ);
/* Displays the application name on the debug LCD */
R_LCD_Display(0, (uint8_t *)" RSKRX130 ");
R_LCD_Display(1l, (uint8_t *)" Tutorial ");
R_LCD_Display(2, (uint8_t *)" Press Any Switch ");
while (1U)
{
/* End user code. Do not edit comment generated here */
3
R20UT3447EG0100 Rev. 1.00 RENESAS Page 29 of 52

Nov 30, 2015

RSKRX130 5. Completing the Tutorial Project

5.3.1 SPI Code

The Okaya LCD display is driven by the SPI Master that was configured using Code Generator in §84.4.6. In
the CS+ Project Tree, open the file ‘r_cg_sci.h’ by double-clicking on it. Insert the following code in the user
code area at the end of the file:

/* Start user code for function. Do not edit comment generated here */
MD_STATUS R_SCI6_SPIMasterTransmit(uint8_t * const tx_buf, const uintl6_t tx_num);
/* End user code. Do not edit comment generated here */

Now, open the r_cg_sci_user.c file and insert the following code in the user area for global:

/* Start user code for global. Do not edit comment generated here */
/* Flag used locally to detect transmission complete */

static volatile uint8_t sci6_txdone;

/* End user code. Do not edit comment generated here */

Insert the following code in the transmitend call-back function for SCI6:

static void r_sci6_callback_transmitend(void)

/* Start user code. Do not edit comment generated here */
sci6_txdone = TRUE;
/* End user code. Do not edit comment generated here */

}

Now insert the following function in the user code area at the end of the file:

/

* Function Name: R_SCI6_SPIMasterTransmit

* Description : This function sends SPI6 data to slave device.
* Arguments : tx_buf -

* transfer buffer pointer

* t>x_num -

* buffer size

* Return Value : status -

*

MD_OK or MD_ARGERROR

/
MD_STATUS R_SCI6_SPIMasterTransmit (uint8_t * const tx_buf, const uintl6_t tx_num)

{
MD_STATUS status = MD_OK;

/* clear the flag before initiating a new transmission */
sci6_txdone = FALSE;

/* Send the data using the APlI */
status = R_SCI6_SPI1_Master_Send(tx_buf, tx_num);

/* Wait for the transmit end flag */
while (FALSE == sci6_txdone)

/* Wait */
}

return (status);

* N

End of function R_SCI16_SPIMasterTransmit

/

This function uses the transmit end callback function to perform flow control on the SPI transmission to the
LCD, and is used as the main API call in the LCD code module.

R20UT3447EG0100 Rev. 1.00 RENESAS Page 30 of 52
Nov 30, 2015

RSKRX130 5. Completing the Tutorial Project

5.3.2 TMR Code

The LCD code needs to insert delays to meet the timing requirements of the display module. This is achieved
using the dedicated timer which was configured using Code Generator in 84.4.3. Open the file r_cg_tmr.h and
insert the following code in the user area for function at the end of the file:

/* Start user code for function. Do not edit comment generated here */
void R_TMR_MsDelay(const uintl6_t millisec);
/* End user code. Do not edit comment generated here */

Open the file r_cg_tmr_user.c and insert the following code in the user area for global at the beginning of the
file:

/* Start user code for global. Do not edit comment generated here */
static volatile uint8_t one_ms_delay complete = FALSE;
/* End user code. Do not edit comment generated here */

Scroll down to the r_tmr_cmiaO_interrupt() function and insert the following line in the user code area:

static void r_tmr_cmiaO_interrupt(void)

{
/* Start user code. Do not edit comment generated here */
one_ms_delay_complete = TRUE;
/* End user code. Do not edit comment generated here */
3

Then insert the following function in the user code area at the end of the file:

Function Name: R_TMR_MsDelay

Description : Uses TMRO to wait for a specified number of milliseconds
Arguments : uintlé_t millisecs, number of milliseconds to wait
Return Value : None

X X ok T~

void R_TMR_MsDelay (const uintl6_t millisec)
uintl6é_t ms_count = O;

do
{
R_TMRO_Start();
while (FALSE == one_ms_delay_complete)

{
/* Wait */

(o)

R_TMRO_Stop();
one_ms_delay complete = FALSE;
ms_count++;
3} while (ms_count < millisec);
}
/
End of function R_TMR_MsDelay

/

Select ‘Build Project’ from the ‘Build’ menu, or press F7. CS+ will build the project with no errors.

The project may now be run using the debugger as described in 86. The program will display ‘RSKRX130
Tutorial Press Any Switch’ on 3 lines in the LCD display.

R20UT3447EG0100 Rev. 1.00 RENESAS Page 31 of 52
Nov 30, 2015

RSKRX130 5. Completing the Tutorial Project

5.4 Switch Code Integration

API functions for user switch control are provided with the RSK. Refer to the Tutorial project folder created
according to the Quick Start Guide procedure. Locate the files rskrx130def.h, r_rsk _switch.h and
r_rsk_switch.c in this folder. Copy these files into the C:\Workspace\CG_Tutorial folder. Import these three
files into the project in the same way as the LCD files.

The switch code uses interrupt code in the files r_cg_icu.h, r_cg_icu.c and r_cg_icu_user.c and timer code in
the files r_cg_cmt.h, r_cg_cmt.c and r_cg_cmt_user.c, as described in §4.4.2 and 84.4.4. It is necessary to
provide additional user code in these files to implement the switch press/release detection and de-bouncing
required by the API functions in r_rsk_switch.c.

54.1 Interrupt Code

In the CS+ Project Tree, expand the ‘Code Generator’ folder and open the file ‘r_cg_icu.h’ by double-clicking
on it. Insert the following code in the user code area at the end of the file:

/* Start user code for function. Do not edit comment generated here */

/* Function prototypes for detecting and setting the edge trigger of ICU_IRQ */
uint8_t R_ICU_IRQIsFallingEdge(const uint8_t irg_no);

void R_ICU_IRQSetFallingEdge(const uint8_t irg_no, const uint8_t set_f_edge);
void R_ICU_IRQSetRisingEdge(const uint8_t irg_no, const uint8_t set_r_edge);

/* End user code. Do not edit comment generated here */

R20UT3447EG0100 Rev. 1.00 RENESAS Page 32 of 52
Nov 30, 2015

RSKRX130 5. Completing the Tutorial Project

Now, open the r_cg_icu.c file and insert the following code in the user code area at the end of the file:

Function Name: R_ICU_IRQIsFallingEdge

Description : This function returns 1 if the specified ICU_IRQ is set to
falling edge triggered, otherwise O.

Arguments uint8_t irg_no

Return Value : 1 if falling edge triggered, O if not

o oX X XN

uint8_t R_ICU_IRQIsFallingEdge (const uint8_t irg_no)
{
uint8_t falling_edge_trig = 0xO0;
iT (ICU.IRQCR[irg_no]-BYTE & _04 I1CU_IRQ_EDGE_FALLING)

falling_edge_trig = 1;
3

return falling_edge_trig;

N

End of function R_ICU_IRQIsFallingEdge

/
* Function Name: R_ICU_IRQSetFallingEdge

* Description : This function sets/clears the falling edge trigger for the

* specified ICU_IRQ.

* Arguments : uint8_t irg_no

* uint8_t set_f edge, 1 if setting falling edge triggered, O if
* clearing

* Return Value : None

/
void R_ICU_IRQSetFallingEdge (const uint8_t irg_no, const uint8_ t set f_edge)

iT (1 == set_T _edge)
ICU. IRQCRLirg_no].BYTE |= _04_ ICU_IRQ_EDGE_FALLING;
}

else

ICU. IRQCR[irg_no].BYTE &= (uint8_t) ~ 04 ICU_IRQ EDGE_FALLING;
}

}
/
* End of function R_ICU_IRQSetFallingEdge

Function Name: R_ICU_IRQSetRisingEdge

Description : This function sets/clear the rising edge trigger for the
specified ICU_IRQ.

Arguments D uint8_t irg_no
uint8_t set_r_edge, 1 if setting rising edge triggered, O if
clearing

Return Value : None

FOooF X X % X XN\

void R_ICU_IRQSetRisingEdge (const uint8_t irg_no, const uint8_t set_r_edge)
if (1 == set_r_edge)
ICU. IRQCR[irqg_no].BYTE |= _08_ICU_IRQ EDGE RISING;
}

else

ICU. IRQCR[irg_no].BYTE &= (uint8_t) ~_08_ICU_IRQ EDGE_RISING;

* NS

End of function R_ICU_IRQSetRisingEdge

R20UT3447EG0100 Rev. 1.00 RENESAS Page 33 of 52
Nov 30, 2015

RSKRX130 5. Completing the Tutorial Project

Open the r_cg_icu_user.c file and insert the following code in the user code area for include near the top of
the file:

/* Start user code for include. Do not edit comment generated here */

/* Defines switch callback functions required by interrupt handlers */
#include "'r_rsk switch.h"

/* End user code. Do not edit comment generated here */

In the same file insert the following code in the user code area inside the function r_icu_irql_interrupt():

/* Start user code. Do not edit comment generated here */

/* Switch 1 callback handler */
R_SWITCH_IsrCallbackl();

/* End user code. Do not edit comment generated here */

In the same file insert the following code in the user code area inside the function r_icu_irg2_interrupt():

/* Start user code. Do not edit comment generated here */

/* Switch 2 callback handler */
R_SWITCH_IsrCallback2();

/* End user code. Do not edit comment generated here */

5.4.2 De-bounce Timer Code

Open the r_cg_cmt_user.c file and insert the following code in the user code area for include near the top of
the file:

/* Start user code for include. Do not edit comment generated here */

/* Defines switch callback functions required by interrupt handlers */
#include "r_rsk_switch.h"

/* End user code. Do not edit comment generated here */
In the same file insert the following code in the user code area inside the function r_cmt_cmiO_interrupt():

/* Start user code. Do not edit comment generated here */

/* Stop this timer - we start it again in the de-bounce routines */
R_CMTO_Stop();

/* Call the de-bounce call back routine */
R_SWITCH_DebouncelsrCal lback();

/* End user code. Do not edit comment generated here */

In the same file insert the following code in the user code area inside the function r_cmt_cmil_interrupt():

/* Start user code. Do not edit comment generated here */

/* Stop this timer - we start it again in the de-bounce routines */
R_CMT1_Stop(Q);

/* Call the de-bounce call back routine */
R_SWITCH_DebouncelsrCal lback();

/* End user code. Do not edit comment generated here */

R20UT3447EG0100 Rev. 1.00 RENESAS Page 34 of 52
Nov 30, 2015

RSKRX130 5. Completing the Tutorial Project

5.4.3 Main Switch and ADC Code

In this part of the tutorial we add the code to act on the switch presses to activate A/D conversions and display
the result on the LCD. In 84.4.5, we configured the ADC to be triggered from the ADTRGO0# pin, SW3. In this
code, we also perform software triggered A/D conversion from the user switches SW1 and SW2, by
reconfiguring the ADC trigger source on-the-fly once an SW1 or SW2 press is detected.

In the CS+ Project Tree, expand the ‘Code Generator’ folder and open the file ‘'r_cg_userdefine.h’ by double-
clicking on it. Insert the following code the user code area, resulting in the code shown below:

/* Start user code for function. Do not edit comment generated here */
#define TRUE (€D
#define FALSE)

extern volatile uint8_t g_adc_trigger;
/* End user code. Do not edit comment generated here */

Open the file ‘r_cg_main.c’ and insert #include "r_rsk_switch.h" in the user code area for include, resulting in
the code shown below:

/* Start user code for include. Do not edit comment generated here */
#include "r_okaya lcd.h"

#include "r_rsk_switch.h"

/* End user code. Do not edit comment generated here */

Next add the switch module initialization function call highlighted in the user code area inside the main()
function, resulting in the code shown below:

void main(void)

{
R_MAIN_UserlInit(Q);
/* Start user code. Do not edit comment generated here */
/* Initialize the switch module */
R_SWITCH_InitQ);
/* Initialize the debug LCD */
R_LCD_InitQ);
/* Displays the application name on the debug LCD */
R_LCD_Display(0, (uint8_t *)" RSKRX130 ');
R_LCD Display(1, (uint8_t *)" Tutorial ");
R_LCD Display(2, (uint8_t *)" Press Any Switch ");
while (1U)
by
/* End user code. Do not edit comment generated here */
3

In the same file, insert the declarations in the user code area for global, resulting in the code shown below:

/* Start user code for global. Do not edit comment generated here */

/* Prototype declaration for cb_switch_press */
static void cb_switch_press (void);

/* Prototype declaration for get _adc */
static uintl6_t get_adc(void);

/* Prototype declaration for lcd _display_adc */
static void lcd_display adc (const uintl6_t adc_result);

/* Variable for flagging user requested ADC conversion */
volatile uint8_t g_adc_trigger = FALSE;

/* End user code. Do not edit comment generated here */

R20UT3447EG0100 Rev. 1.00 RENESAS Page 35 of 52
Nov 30, 2015

RSKRX130

5.

Completing the Tutorial Project

Next add the highlighted code below in the user code area inside the main() function and the code inside the

while loop, resulting in the code shown below:

void main(void)

{
R_MAIN_UserlInit(Q);
/* Start user code. Do not edit comment generated here */
/* Initialize the switch module */
R_SWITCH_Init();
/* Set the call back function when SW1 or SW2 is pressed */
R_SWITCH_SetPressCal lback(cb_switch_press);
/* Initialize the debug LCD */
R_LCD_Init ;
/* Displays the application name on the debug LCD */
R_LCD_Display(0, (uint8_t *)"™ RSKRX130 ");
R_LCD_Display(1, (uint8_t *)" Tutorial ");
R_LCD _Display(2, (uint8_t *)" Press Any Switch ");
/* Start the A/D converter */
R_S12AD_Start();
while (1U)
{
uintlé_t adc_result;
/* Wait for user requested A/D conversion flag to be set (SW1 or SW2) */
iT (TRUE == g_adc_trigger)
{
/* Call the function to perform an A/D conversion */
adc_result = get_adc();
/* Display the result on the LCD */
Icd_display_adc(adc_result);
/* Reset the flag */
g_adc_trigger = FALSE;
3
/* SW3 is directly wired into the ADTRGOn pin so will
cause the interrupt to fire */
else If (TRUE == g_adc_complete)
{
/* Get the result of the A/D conversion */
R_S12AD_Get_ValueResult(ADCHANNELO, &adc_result);
/* Display the result on the LCD */
Icd_display_adc(adc_result);
/* Reset the flag */
g_adc_complete = FALSE;
}
else
/* do nothing */
}
/* End user code. Do not edit comment generated here */
3

Then add the definition for the switch call-back, get_adc() and Icd_display_adc() functions in the user code

area for adding at the end of the file, as shown below:

R20UT3447EG0100 Rev. 1.00 RENESAS
Nov 30, 2015

Page 36 of 52

RSKRX130 5. Completing the Tutorial Project

Function Name : cb_switch_press

Description : Switch press callback function. Sets g_adc_trigger flag.
Argument > none

Return value : none

L R I N

static void cb_switch_press (void)
/* Check if switch 1 or 2 was pressed */
ifT (g_switch_flag & (SWITCHPRESS_ 1 | SWITCHPRESS_2))
/* set the flag indicating a user requested A/D conversion is required */
g_adc_trigger = TRUE;

/* Clear flag */
g_switch_flag = 0xO0;

N

End of function cb_switch_press

Function Name : get_adc

Description : Reads the ADC result, converts it to a string and displays
it on the LCD panel.

Argument I none

Return value : uintl6_t adc value

% F % % F N

static uintl6_t get _adc (void)

/* A variable to retrieve the adc result */
uintl6_t adc_result;

/* Stop the A/D converter being triggered from the pin ADTRGOn */
R_S12AD_Stop();

/* Start a conversion */
R_S12AD0O_SWTriggerStart();

/* Wait for the A/D conversion to complete */
while (FALSE == g_adc_complete)

/* Wait */
}

/* Stop conversion */
R_S12ADO_SWTriggerStop(Q);

/* Clear ADC flag */
g_adc_complete = FALSE;

R_S12AD_Get_ValueResult(ADCHANNELO, &adc_result);
/* Set AD conversion start trigger source back to ADTRGOn pin */

R_S12AD_Start();

return adc_result;

}
/

* End of function get_adc

Function Name : lcd_display_adc

Description : Converts adc result to a string and displays
it on the LCD panel.

Argument : uintl6_t adc result

Return value : none

XX X ok EN

static void lcd_display_adc (const uintl6_t adc_result)

{

/* Declare a temporary variable */
uint8_t a;

R20UT3447EG0100 Rev. 1.00 RENESAS Page 37 of 52
Nov 30, 2015

RSKRX130 5. Completing the Tutorial Project

/* Declare temporary character string */
char Icd_buffer[11] = " ADC: XXXH";

/* Convert ADC result into a character string, and store in the local.
Casting to ensure use of correct data type. */

a = (uint8_t)((adc_result & O0xOF00) >> 8);

Icd_buffer[6] = (char)((a < Ox0A) ? (a + 0x30) : (a + 0x37));

a = (uint8_t)((adc_result & 0x00F0) >> 4);

Icd_buffer[7] = (char)((a < Ox0A) ? (a + 0x30) : (a + 0x37));

a = (uint8_t)(adc_result & O0x000F);

Icd_buffer[8] = (char)((a < Ox0A) ? (a + 0x30) : (a + 0x37));

/* Display the contents of the local string lcd_buffer */
R_LCD_Display(3, (uint8_t *)lcd_buffer);

* N -

End of function lcd_display_adc

/

Open the file ‘r_cg_s12ad.h’ by double-clicking on it. Insert the following code in the user code area for
function, resulting in the code shown below:

/* Start user code for function. Do not edit comment generated here */

/* Flag indicates when A/D conversion is complete */
extern volatile uint8_t g_adc_complete;

/* Functions for starting and stopping software triggered A/D conversion */
void R_S12ADO_SWTriggerStart(void);

void R_S12AD0O_SWTriggerStop(void);

/* End user code. Do not edit comment generated here */

Open the file ‘r_cg_sl12ad.c’ by double-clicking on it. Insert the following code in the user code area for
adding at the end of the file, resulting in the code shown below:

/* Start user code for adding. Do not edit comment generated here */

Function Name: R_S12ADO_SWTriggerStart

Description : This function starts the ADO converter.
Arguments : None

Return Value : None

L T R N

void R_S12ADO_SWTriggerStart(void)
{

IR(S12AD, S12ADIO) = OU;
IEN(S12AD, S12ADI0) = 1U;

S12AD.ADCSR.BIT_ADST = 1U;
3

/
End of function R_S12AD0 SWTriggerStart

Function Name: R_S12ADO_SWTriggerStop

Description : This function stops the ADO converter.
Arguments : None

Return Value : None

Ok Ok XN

void R_S12ADO_SWTriggerStop(void)
{
S12AD.ADCSR.BIT.ADST = 0U;

IEN(S12AD, S12ADIO) = OU;
IR(S12AD, S12ADI0) = 0U;
3
/
End of function R_S12ADO_SWTriggerStop

/* End user code. Do not edit comment generated here */

R20UT3447EG0100 Rev. 1.00 RENESAS Page 38 of 52
Nov 30, 2015

RSKRX130 5. Completing the Tutorial Project

Open the file r_cg_sl12ad_user.c and insert the following code in the user code area for global, resulting in the
code shown below:

/* Start user code for global. Do not edit comment generated here */
/* Flag indicates when A/D conversion is complete */

volatile uint8_t g_adc_complete;

/* End user code. Do not edit comment generated here */

Insert the following code in the user code area of the r_s12ad_interrupt () function, resulting in the code shown
below:

static void r_sl2ad_interrupt(void)

/* Start user code. Do not edit comment generated here */
g_adc_complete = TRUE;
/* End user code. Do not edit comment generated here */

}

Select ‘Build Project’ from the ‘Build’ menu, or press F7. CS+ will build the project with no errors.

The project may now be run using the debugger as described in 86. When any switch is pressed, the
program will perform an A/D conversion of the voltage level on the ADPOT line and display the result on the
LCD panel. Return to this point in the CG_Tutorial to add the UART user code.

R20UT3447EG0100 Rev. 1.00 RENESAS Page 39 of 52
Nov 30, 2015

RSKRX130 5. Completing the Tutorial Project

5.5 Debug Code Integration

API functions for trace debugging via the RSK serial port are provided with the RSK. Refer to the Tutorial
project folder created according to the Quick Start Guide procedure. Locate the files r_rsk_debug.h and
r_rsk_debug.c in this folder. Copy these files into the C:\Workspace\CG_Tutorial folder. Import these two files
into the project in the same way as the LCD files.

In the r_rsk_debug.h file, ensure the following macro definition is included:

/* Macro for definition of serial debug transmit function - user edits this */
#define SERIAL_DEBUG_WRITE (R_SCI1_AsyncTransmit)

This macro is referenced in the r_rsk_debug.c file and allows easy re-direction of debug output if a different
debug interface is used.

5.6 UART Code Integration

5.6.1 SCI Code

In the CS+ Project Tree, expand the ‘Code Generator’ folder and open the file ‘r_cg_sci.h’ by double-clicking
on it. Insert the following code in the user code area at the end of the file:

/* Start user code for function. Do not edit comment generated here */

/* Exported functions used to transmit a number of bytes and wait for completion */

MD_STATUS R_SCI6_SPIMasterTransmit(uint8_t * const tx_buf, const uintl6_t tx_num);

MD_STATUS R_SCI1_AsyncTransmit(uint8_t * const tx_buf, const uintl6_t tx_num);

/* Character is used to receive key presses from PC terminal */
extern uint8_t g_rx_char;

/* Flag used to control transmission to PC terminal */
extern volatile uint8_t g_tx flag;

/* End user code. Do not edit comment generated here */

Open the file ‘r_cg_sci_user.c. Insert the following code in the user area for global near the beginning of the
file:

/* Start user code for global. Do not edit comment generated here */

/* Global used to receive a character from the PC terminal */
uint8_t g_rx_char;

/* Flag used to control transmission to PC terminal */
volatile uint8_t g_tx_flag = FALSE;

/* Flag used locally to detect transmission complete */
static volatile uint8_t sci6_txdone;
static volatile uint8_t scil_txdone;

/* End user code. Do not edit comment generated here */

In the same file, insert the following code in the user code area inside the r_scil_callback transmitend()
function:

static void r_scil_callback_transmitend(void)

{
/* Start user code. Do not edit comment generated here */
scil_txdone = TRUE;
/* End user code. Do not edit comment generated here */
}
R20UT3447EG0100 Rev. 1.00 .zEN ESNS Page 40 of 52

Nov 30, 2015

RSKRX130 5. Completing the Tutorial Project

In the same file, insert the following code in the user code area inside the r_scil_callback_receiveend()

function:

static void r_scil_callback_receiveend(void)

{

/* Start user code. Do not edit comment generated here */

/* Check the contents of g_rx char */
if (("c” == g_rx_char) || (C" == g_rx_char))
{

g_adc_trigger = TRUE;
H

/* Set up SCI1 receive buffer and callback function again */
R_SC11_Serial_Receive((uint8_t *)&g_rx_char, 1);

/* End user code. Do not edit comment generated here */

}

At the end of the file, in the user code area for adding, add the following function definition:

Function Name: R_SCI1_AsyncTransmit
Description : This function sends SCI1 data and waits for the transmit end flag.
Arguments - tx_buf -

transfer buffer pointer

t>x_num -

buffer size
Return Value : status -

MD_OK or MD_ARGERROR

o X Ok X Ok X XN\

/
MD_STATUS R_SCI1_AsyncTransmit (uint8_t * const tx_buf, const uintl6_t tx_num)

MD_STATUS status = MD_OK;

/* clear the flag before initiating a new transmission */
scil_txdone = FALSE;

/* Send the data using the APlI */
status = R_SCI1_Serial_Send(tx_buf, tx_num);

/* Wait for the transmit end flag */
while (FALSE == scil_txdone)

/* Wait */

return (status);

}

/
* End of function R_SCI1_AsyncTransmit

R20UT3447EG0100 Rev. 1.00 RENESAS
Nov 30, 2015

Page 41 of 52

RSKRX130 5. Completing the Tutorial Project

5.6.2 Main UART code

Open the file ‘r_cg_main.c’. Add the following declaration to the user code area for include near the top of the
file:

#include "r_rsk_debug.h"
Add the following declaration to the user code area for global near the top of the file:

/* Prototype declaration for uart_display_adc */
static void uart_display adc(const uint8_t adc_count, const uintl6_t adc_result);

/* Variable to store the A/D conversion count for user display */
static uint8_t adc_count = 0;

Add the following highlighted code to the user code area in the main function:

void main(void)

{
R_MAIN_UseriInit(Q);
/* Start user code. Do not edit comment generated here */
/* Initialize the switch module */
R_SWITCH_InitQ);
/* Set the call back function when SW1 or SW2 is pressed */
R_SWITCH_SetPressCal lback(cb_switch_press);
/* Initialize the debug LCD */
R_LCD_Init Q;
/* Displays the application name on the debug LCD */
R_LCD Display(0, (uint8_t *)" RSKRX130 ");
R_LCD Display(1, (uint8_t *)" Tutorial ");
R_LCD Display(2, (uint8_t *)" Press Any Switch ");
/* Start the A/D converter */
R_S12AD_Start();
/* Set up SCI1 receive buffer and callback function */
R_SC11_Serial_Receive((uint8_t *)&g_rx_char, 1);
/* Enable SCI1 operations */
R_SCI1_Start();
while (1U)
{
uintl6é_t adc_result;
/* Wait for user requested A/D conversion flag to be set */
if (TRUE == g_adc_trigger)
{
/* Call the function to perform an A/D conversion */
adc_result = get_adc();
/* Display the result on the LCD */
Icd_display_adc(adc_result);
/* Increment the adc_count */
if (16 == ++adc_count)
{
adc_count = 0;
}
/* Send the result to the UART */
uart_display_adc(adc_count, adc_result);
/* Reset the flag */
g_adc_trigger = FALSE;
3
R20UT3447EG0100 Rev. 1.00 .(EN ESNS Page 42 of 52

Nov 30, 2015

RSKRX130

5.

Completing the Tutorial Project

/*

SW3 is directly wired into the ADTRGOn pin so will
cause the interrupt to fire */

else if (TRUE == g_adc_complete)

{
h
els
¥
H
/* End

}

/* Get the result of the A/D conversion */
R_S12AD_Get_ValueResult(ADCHANNELO, &adc_result);

/* Display the result on the LCD */
Icd_display_adc(adc_result);

/* Increment the adc_count */
if (16 == ++adc_count)
{

}

/* Send the result to the UART */
uart_display_adc(adc_count, adc_result);

adc_count = 0;

/* Reset the flag */
g_adc_complete = FALSE;

e

/* do nothing */

user code. Do not edit comment generated here */

Then, add the following function definition in the user code area at the end of the file:

/

* Function Name : uart_display_adc

* Description : Converts adc result to a string and sends it to the UARTL.
* Argument : uint8_t : adc_count

* uintl6_t: adc result

* Return value : none

static void uart_display_adc (const uint8_t adc_count, const uintl6_t adc_result)

/* Declare a temporary variable */

/* Declare temporary character string */
static char uart_buffer[] = "ADC xH Value: »xxH\r\n";

/* Convert ADC result into a character string, and store in the

ing to ensure use of correct data type. */

a = (char)(adc_count & 0x000F);

uart_buffer[4] = (char)((a < 0x0A) ? (a + 0x30)

a = (char)((adc_result & 0x0F00) >> 8);

uart_buffer[14] = (char)((a < 0x0A) ? (a + 0x30)

a = (char)((adc_result & 0Ox00F0) >> 4);

uvart_buffer[15] = (char)((a < 0x0A) ? (a + 0x30)

a = (char)(adc_result & 0x000F);

uart_buffer[16] = (char)((a < 0x0A) ? (a + 0x30)

the string to the UART */

R_DEBUG_Print(uart_buffer);

{
char a;
Cast
/* Send

b

- (a + 0x37));
: (a + 0x37));
: (a + 0x37));

: (a + 0x37));

local.

/

/

* End of function uart_display_adc

/

Select ‘Build Project’ from the ‘Build’ menu, or press F7. CS+ will build the project with no errors.

R20UT3447EG0100 Rev. 1.00 RENESAS

Nov 30, 2015

Page 43 of 52

RSKRX130 5. Completing the Tutorial Project

The project may now be run using the debugger as described in 86. Connect the RSK G1CUSBO port to a
USB port on a PC. If this is the first time the RSK has been connected to the PC then a device driver will be
installed automatically. Open Device Manager, the virtual COM port will now appear under 'Port (COM & LPT)'
as 'RSK USB Serial Port (COMXx)', where x is a number.

Open a terminal program, such as HyperTerminal, on the PC with the same settings as for SCI1 (see §4.4.6).
When any switch is pressed, or when ‘c’ is sent via the COM port, the program will perform an A/D conversion
of the voltage level on the ADPOT line and display the result on the LCD panel and send the result to the PC
terminal program via the SCI1. Return to this point in the CG_Tutorial to add the LED user code.

5.7 LED Code Integration

Open the file ‘r_cg_main.c’. Add the following declaration to the user code area for include near the top of the
file:

#include "'rskrx130def.h"

Add the following declaration to the user code area for global near the top of the file:

/* Prototype declaration for led_display_count */
static void led_display_count(const uint8_t count);

Add the following highlighted code to the user code area in the main function:

void main(void)

{
R_MAIN_UseriInit(Q);
/* Start user code. Do not edit comment generated here */
/* Initialize the switch module */
R_SWITCH_Init();
/* Set the call back function when SW1 or SW2 is pressed */
R_SWITCH_SetPressCallback(cb_switch_press);
/* Initialize the debug LCD */
R_LCD_Init Q;
/* Displays the application name on the debug LCD */
R_LCD Display(0, (uint8_t *)'" RSKRX130 ");
R_LCD Display(1, (uint8_t *)" Tutorial ");
R_LCD Display(2, (uint8_t *)" Press Any Switch ");
/* Start the A/D converter */
R_S12AD_Start();
/* Set up SCI1 receive buffer and callback function */
R_SCI11_Serial_Receive((uint8_t *)&g_rx_char, 1);
/* Enable SCI1 operations */
R_SCI1_Start();
while (1U)
{
uintlé_t adc_result;
/* Wait for user requested A/D conversion flag to be set(SW1 or Sw2) */
if (TRUE == g_adc_trigger)
{
/* Call the function to perform an A/D conversion */
adc_result = get_adc();
/* Display the result on the LCD */
Icd_display_adc(adc_result);
/* Increment the adc_count and display using the LEDs */
if (16 == ++adc_count)
{
adc_count = 0;
3
R20UT3447EG0100 Rev. 1.00 .zEN ESNS Page 44 of 52

Nov 30, 2015

RSKRX130

5.

Completing the Tutorial Project

led_display_count(adc_count);

/* Send the result to the UART */
uart_display_adc(adc_count, adc_result);

/* Reset the flag */
g_adc_trigger = FALSE;

by

/* SW3 is directly wired into the ADTRGOn pin so will
cause the interrupt to fire */

else if (TRUE == g_adc_complete)

{

}

/* Get the result of the A/D conversion */
R_S12AD_Get_ValueResult(ADCHANNELO, &adc_result);

/* Display the result on the LCD */
Icd_display_adc(adc_result);

/* Increment the adc_count and display using the LEDs */
if (16 == ++adc_count)
{

adc_count = 0;

led_display_count(adc_count);

/* Send the result to the UART */
uart_display_adc(adc_count, adc_result);

/* Reset the flag */
g_adc_complete = FALSE;

else

{
}

/* do nothing */

/* End user code. Do not edit comment generated here */

}

Then, add the following function definition in the user code area at the end of the file:

/
* Function Name : led_display_count
* Description : Converts count to binary and displays on 4 LEDSO-3
* Argument I uint8_t count
* Return value : none
/
static void led_display_count (const uint8_t count)
{
/* Set LEDs according to lower nibble of count parameter */
LEDO = (uint8_t)((count & 0x01) ? LED_ON : LED_OFF);
LED1 = (uint8_t)((count & 0x02) ? LED_ON : LED_OFF);
LED2 = (uint8_t)((count & 0x04) ? LED_ON : LED_OFF);
LED3 = (uint8_t)((count & 0x08) ? LED_ON : LED_OFF);
by
/
* End of function led_display_count
/

Select ‘Build Project’ from the ‘Build’ menu, or press F7. CS+ will build the project with no errors.

The project may now be run using the debugger as described in 86. The code will perform the same but now

the LEDs wi

Il display the adc_count in binary form.

R20UT3447EG0100 Rev. 1.00

Nov 30, 2015

RENESAS

Page 45 of 52

RSKRX130 6. Debugging the Project

6. Debugging the Project

e Inthe ‘Project Tree’ pane, right- | ./ CG Tutorial (Project)* =
click the ‘RX Simulator (Debug . % RSF51305AxFN (Microcontroller) siz
Tool). Select ‘psmg Debug E\ =5 Code Generator (Design Tool) Siz
Tool -> RX El(SerlaI)’. A\ CC-RX (Build Tool) 4 En

SN R Simulator (Debug T== Enc
& 15 e Using Debug Tool » || RXEL(Seria) |k
@ﬂ Build tocl generat] R, Property RX E20(Serial) E
..h] iodefine.h o
: v | RX Simulator '
@U]. Code Generator i

...]l C Source Files

I rer

(] Double-click ‘RX El(SeriaI) 4 Internal ROM/RAM
(Debug Tool)' to display the
debugger tool properties.
Under ‘Clock’, change the main

4 Clock
clock frequency to 8 MHz and Main clock source EXTAL
operating frequency to 32MHz. Main clock frequency[MHz] 8.0000
e Under ‘Connection with Target DR e S o
Allow changing of the clock source on writing internal flash memory Mo

Board’, change ‘Power target e
' C with Emulator
from the emulator.(MAX 200mA) ‘ En‘::;:ﬂ::ﬂ No.

to ‘Yes’ 4 Connection with Target Board

e All other settings can remain at i = kI) b
their defaults Sty L
' Communications method FINE
FINE baud rate[bps] 2000000
e Connect the E1 to the PC and
the RSK El connector.
Connect the Pmod LCD to the
PMOD1 connector.
e From the ‘Debug’ menu select
‘Download’ to start the debug
session and download code to
the target.
R20UT3447EG0100 Rev. 1.00 RENES NS Page 46 of 52

Nov 30, 2015

RSKRX130 7. Running the Code Generator Tutorial

7. Running the Code Generator Tutorial

7.1 Running the Tutorial

Click the ‘Go’ button or press F5 to begin the program from the current program counter
position. It is recommended that you run through the program once first, and then continue to
the Tutorial manual to review the code.

Once the program has been downloaded onto the RSK device, the program can be executed. @

R20UT3447EG0100 Rev. 1.00 RENESAS Page 47 of 52
Nov 30, 2015

RSKRX130

8.

Additional Information

8. Additional Information

Technical Support

For details on how to use CS+, refer to the
help file by opening CS+, then selecting Help
> Help Contents from the menu bar.

sol Window | Help

Learn

bet| About...

) S |® Help
B @, Open Help for Start Panel F1
— @\ One Point Advice...

B Tutorial

@] Browse Renesas Electronics Microcontrollers Web

(i Detail Version Information...

For information about the RX130 group microcontroller refer to the RX130 Group Hardware Manual.

For information about the RX assembly language, refer to the RX Family Software Manual.

Technical Contact Details

Please refer to the contact details listed in section 9 of the “Quick Start Guide”.

General information on Renesas microcontrollers can be found on the Renesas website at:

http://www.renesas.com/

Trademarks

All brand or product names used in this manual are trademarks or registered trademarks of their respective

companies or organisations.

Copyright

This document may be, wholly or partially, subject to change without notice. All rights reserved. Duplication of
this document, either in whole or part is prohibited without the written permission of Renesas Electronics

Europe Limited.

© 2015 Renesas Electronics Europe Limited. All rights reserved.
© 2015 Renesas Electronics Corporation. All rights reserved.
© 2015 Renesas System Design Co., Ltd. All rights reserved.

R20UT3447EG0100 Rev. 1.00
Nov 30, 2015

RENESAS

Page 48 of 52

http://www.renesas.com/

REVISION HISTORY

RSKRX130 Code Generator Tutorial Manual

Rev.

Date

Description

Page

Summary

1.00

Nov 30, 2015

First Edition issued

Page 49 of 52

Renesas Starter Kit Manual: Code Generator Tutorial Manual

Publication Date: Rev. 1.00 Nov 30, 2015

Published by: Renesas Electronics Corporation

RENESAS

SALES OFFICES Renesas Electronics Corporation

http://www.renesas.com

Refer to "http://www.renesas.com/" for the latest and detailed information.

Renesas Electronics America Inc.
2801 Scott Boulevard Santa Clara, CA 95050-2549, U.S.A.
Tel: +1-408-588-6000, Fax: +1-408-588-6130

Renesas Electronics Canada Limited
9251 Yonge Street, Suite 8309 Richmond Hill, Ontario Canada L4C 9T3
Tel: +1-905-237-2004

Renesas Electronics Europe Limited
Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K
Tel: +44-1628-585-100, Fax: +44-1628-585-900

Renesas Electronics Europe GmbH

Arcadiastrasse 10, 40472 Dusseldorf, Germany
Tel: +49-211-6503-0, Fax: +49-211-6503-1327

Renesas Electronics (China) Co., Ltd.
Room 1709, Quantum Plaza, No.27 ZhiChunLu Haidian District, Beijing 100191, P.R.China
Tel: +86-10-8235-1155, Fax: +86-10-8235-7679

Renesas Electronics (Shanghai) Co., Ltd.
Unit 301, Tower A, Central Towers, 555 Langao Road, Putuo District, Shanghai, P. R. China 200333
Tel: +86-21-2226-0888, Fax: +86-21-2226-0999

Renesas Electronics Hong Kong Limited

Unit 1601-1611, 16/F., Tower 2, Grand Century Place, 193 Prince Edward Road West, Mongkok, Kowloon, Hong Kong
Tel: +852-2265-6688, Fax: +852 2886-9022

Renesas Electronics Taiwan Co., Ltd.

13F, No. 363, Fu Shing North Road, Taipei 10543, Taiwan

Tel: +886-2-8175-9600, Fax: +886 2-8175-9670

Renesas Electronics Singapore Pte. Ltd.

80 Bendemeer Road, Unit #06-02 Hyflux Innovation Centre, Singapore 339949

Tel: +65-6213-0200, Fax: +65-6213-0300

Renesas Electronics Malaysia Sdn.Bhd.

Unit 1207, Block B, Menara Amcorp, Amcorp Trade Centre, No. 18, Jin Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia

Tel: +60-3-7955-9390, Fax: +60-3-7955-9510

Renesas Electronics India Pvt. Ltd.

No.777C, 100 Feet Road, HALII Stage, Indiranagar, Bangalore, India
Tel: +91-80-67208700, Fax: +91-80-67208777

Renesas Electronics Korea Co., Ltd.

12F., 234 Teheran-ro, Gangnam-Gu, Seoul, 135-080, Korea

Tel: +82-2-558-3737, Fax: +82-2-558-5141

© 2015 Renesas Electronics Corporation. All rights reserved.
Colophon 4.0

RX130 Group

LENESNS

Renesas Electronics Corporation

R20UT3447EG0100

	1. Overview
	1.1 Purpose
	1.2 Features

	2. Introduction
	3. Project Creation with CS+
	3.1 Introduction
	3.2 Creating the Project

	4. Code Generation Using the CS+ plug in
	4.1 Introduction
	4.2 Enabling Code Generator
	4.3 Code Generator Tour
	4.4 Code Generation
	4.4.1 Clock Generator
	4.4.2 Interrupt Controller Unit
	4.4.3 8bit Timer
	4.4.4 Compare Match Timer
	4.4.5 12-bit A/D Converter
	4.4.6 Serial Communications Interface
	4.4.7 I/O Ports

	5. Completing the Tutorial Project
	5.1 Project Settings
	5.2 Additional Folders
	5.3 LCD Code Integration
	5.3.1 SPI Code
	5.3.2 TMR Code

	5.4 Switch Code Integration
	5.4.1 Interrupt Code
	5.4.2 De-bounce Timer Code
	5.4.3 Main Switch and ADC Code

	5.5 Debug Code Integration
	5.6 UART Code Integration
	5.6.1 SCI Code
	5.6.2 Main UART code

	5.7 LED Code Integration

	6. Debugging the Project
	7. Running the Code Generator Tutorial
	7.1 Running the Tutorial

	8. Additional Information

