To our customers,

Old Company Name in Catalogs and Other Documents

On April 1!, 2010, NEC Electronics Corporation merged with Renesas Technology
Corporation, and Renesas Electronics Corporation took over all the business of both
companies. Therefore, although the old company name remains in this document, it is a valid
Renesas Electronics document. We appreciate your understanding.

Renesas Electronics website: http://www.renesas.com

April 1%, 2010
Renesas Electronics Corporation

Issued by: Renesas Electronics Corporation (http://www.renesas.com)

Send any inquiries to http://www.renesas.com/inquiry.

Note that the following URLSs in this document are not available:
http://www.necel.com/
http://www2.renesas.com/

Please refer to the following instead:
Development Tools | http://www.renesas.com/tools
Download | http://www.renesas.com/tool_download

For any inquiries or feedback, please contact your region.
http://www.renesas.com/inquiry

LENESAS

Note that the following URLs in this document are not available:
http://www.necel.com/
http://www2.renesas.com/

Please refer to the following instead:
Development Tools | http://www.renesas.com/tools
Download | http://www.renesas.com/tool_download

For any inquiries or feedback, please contact your region.
http://www.renesas.com/inquiry

8.

10.

11.

12.

Notice

All information included in this document is current as of the date this document is issued. Such information, however, is
subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please
confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to
additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.

Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights
of third parties by or arising from the use of Renesas Electronics products or technical information described in this document.
No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights
of Renesas Electronics or others.

You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.

Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of
semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software,
and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by
you or third parties arising from the use of these circuits, software, or information.

When exporting the products or technology described in this document, you should comply with the applicable export control
laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas
Electronics products or the technology described in this document for any purpose relating to military applications or use by
the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and
technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited
under any applicable domestic or foreign laws or regulations.

Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics
does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages
incurred by you resulting from errors in or omissions from the information included herein.

Renesas Electronics products are classified according to the following three quality grades: “Standard”, “High Quality”, and
“Specific”. The recommended applications for each Renesas Electronics product depends on the product’s quality grade, as
indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular
application. You may not use any Renesas Electronics product for any application categorized as “Specific” without the prior
written consent of Renesas Electronics. Further, you may not use any Renesas Electronics product for any application for
which it is not intended without the prior written consent of Renesas Electronics. Renesas Electronics shall not be in any way
liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an
application categorized as “Specific” or for which the product is not intended where you have failed to obtain the prior written
consent of Renesas Electronics. The quality grade of each Renesas Electronics product is “Standard” unless otherwise
expressly specified in a Renesas Electronics data sheets or data books, etc.

“Standard”: Computers; office equipment; communications equipment; test and measurement equipment; audio and visual
equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots.

“High Quality”: Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-
crime systems; safety equipment; and medical equipment not specifically designed for life support.

“Specific”: Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or
systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare
intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.

You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics,

especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation
characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or
damages arising out of the use of Renesas Electronics products beyond such specified ranges.

Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have
specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further,
Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to
guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a
Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire
control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because
the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system
manufactured by you.

Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental
compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable
laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS
Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with
applicable laws and regulations.

This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas
Electronics.

Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this
document or Renesas Electronics products, or if you have any other inquiries.

(Note 1) “Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its majority-

owned subsidiaries.

(Note 2) “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.

RENESANS
User’s Manual

CC/8K0S

C Compiler Ver.1.30 or Later

Language

Target Devices
78K/0S Series

Document No. U14872EJ1VOUMOO (1st edition)
Date Published January 2001 N CP(K)

© NEC Corporation 2001
Printed in Japan

[MEMO]

2 User's Manual U14872EJ1VOUM

Windows and Windows NT are either registered trademarks or trademarks of Microsoft Corporation in the
United States and/or other countries.

PC/AT is a trademark of International Business Machines Corporation.

i386 is a trademark of Intel Corporation.

UNIX is aregistered trademark in the United States and other countries, licensed exclusively through X/Open
Company Limited.

SPARCstation is a trademark of SPARC International, Inc.

SunOS and Solaris are trademarks of Sun Microsystems, Inc.

HP9000 series 700 and HP-UX are trademarks of Hewlett-Packard Company.

User's Manual U14872EJ1VOUM 3

The information in this document is current as of November, 2000. The information is subject to
change without notice. For actual design-in, refer to the latest publications of NEC's data sheets or
data books, etc., for the most up-to-date specifications of NEC semiconductor products. Not all
products and/or types are available in every country. Please check with an NEC sales representative
for availability and additional information.

No part of this document may be copied or reproduced in any form or by any means without prior

written consent of NEC. NEC assumes no responsibility for any errors that may appear in this document.

NEC does not assume any liability for infringement of patents, copyrights or other intellectual property rights of

third parties by or arising from the use of NEC semiconductor products listed in this document or any other
liability arising from the use of such products. No license, express, implied or otherwise, is granted under any
patents, copyrights or other intellectual property rights of NEC or others.

Descriptions of circuits, software and other related information in this document are provided for illustrative

purposes in semiconductor product operation and application examples. The incorporation of these

circuits, software and information in the design of customer's equipment shall be done under the full
responsibility of customer. NEC assumes no responsibility for any losses incurred by customers or third
parties arising from the use of these circuits, software and information.

While NEC endeavours to enhance the quality, reliability and safety of NEC semiconductor products, customers
agree and acknowledge that the possibility of defects thereof cannot be eliminated entirely. To minimize
risks of damage to property or injury (including death) to persons arising from defects in NEC
semiconductor products, customers must incorporate sufficient safety measures in their design, such as
redundancy, fire-containment, and anti-failure features.

NEC semiconductor products are classified into the following three quality grades:

"Standard", "Special" and "Specific". The "Specific" quality grade applies only to semiconductor products

developed based on a customer-designated "quality assurance program" for a specific application. The

recommended applications of a semiconductor product depend on its quality grade, as indicated below.

Customers must check the quality grade of each semiconductor product before using it in a particular

application.

"Standard": Computers, office equipment, communications equipment, test and measurement equipment, audio
and visual equipment, home electronic appliances, machine tools, personal electronic equipment
and industrial robots

"Special”: Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster
systems, anti-crime systems, safety equipment and medical equipment (not specifically designed
for life support)

"Specific": Aircraft, aerospace equipment, submersible repeaters, nuclear reactor control systems, life
support systems and medical equipment for life support, etc.

The quality grade of NEC semiconductor products is "Standard" unless otherwise expressly specified in NEC's

data sheets or data books, etc. If customers wish to use NEC semiconductor products in applications not

intended by NEC, they must contact an NEC sales representative in advance to determine NEC's willingness
to support a given application.

(Note)

(1) "NEC" as used in this statement means NEC Corporation and also includes its majority-owned subsidiaries.

(2) "NEC semiconductor products" means any semiconductor product developed or manufactured by or for

NEC (as defined above).
MSE 00.4

User's Manual U14872EJ1VOUM

Regional Information

Some information contained in this document may vary from country to country. Before using any NEC
product in your application, please contact the NEC office in your country to obtain a list of authorized
representatives and distributors. They will verify:

+ Device availability
+ Ordering information

« Product release schedule

« Availability of related technical literature

- Development environment specifications (for example, specifications for third-party tools and
components, host computers, power plugs, AC supply voltages, and so forth)

+ Network requirements

In addition, trademarks, registered trademarks, export restrictions, and other legal issues may also vary

from country to country.

NEC Electronics Inc. (U.S.)

Santa Clara, California

Tel: 408-588-6000
800-366-9782

Fax: 408-588-6130
800-729-9288

NEC Electronics (Germany) GmbH
Duesseldorf, Germany

Tel: 0211-65 03 02

Fax: 0211-65 03 490

NEC Electronics (UK) Ltd.
Milton Keynes, UK

Tel: 01908-691-133

Fax: 01908-670-290

NEC Electronics lItaliana s.r.l.
Milano, Italy

Tel: 02-66 75 41

Fax: 02-66 75 42 99

NEC Electronics (Germany) GmbH
Benelux Office

Eindhoven, The Netherlands

Tel: 040-2445845

Fax: 040-2444580

NEC Electronics (France) S.A.
Velizy-Villacoublay, France

Tel: 01-30-67 58 00

Fax: 01-30-67 58 99

NEC Electronics (France) S.A.
Madrid Office

Madrid, Spain

Tel: 91-504-2787

Fax: 91-504-2860

NEC Electronics (Germany) GmbH
Scandinavia Office

Taeby, Sweden

Tel: 08-63 80 820

Fax: 08-63 80 388

User's Manual U14872EJ1VOUM

NEC Electronics Hong Kong Ltd.
Hong Kong

Tel: 2886-9318

Fax: 2886-9022/9044

NEC Electronics Hong Kong Ltd.
Seoul Branch

Seoul, Korea

Tel: 02-528-0303

Fax: 02-528-4411

NEC Electronics Singapore Pte. Ltd.
United Square, Singapore

Tel: 65-253-8311

Fax: 65-250-3583

NEC Electronics Taiwan Ltd.
Taipei, Taiwan

Tel: 02-2719-2377

Fax: 02-2719-5951

NEC do Brasil S.A.
Electron Devices Division
Guarulhos-SP Brasil

Tel: 55-11-6462-6810
Fax: 55-11-6462-6829

J00.7

INTRODUCTION

The CC78K0S C Compiler (hereafter referred to as this C compiler) was developed based on CHAPTER 2
ENVIRONMENT and CHAPTER 3 LANGUAGE in the Draft Proposed American National Standard for
Information Systems — Programming Language C (December 7, 1988). Therefore, by compiling C source
programs conforming to the ANSI standard with this C compiler, 78K/0S Series application products can be
developed.

The CC78K0S C Compiler Language (this manual) has been prepared to give those who develop software by
using this C compiler a correct understanding of the basic functions and language specifications of this C compiler.

This manual does not cover how to operate this C compiler. Therefore, after you have comprehended the
contents of this manual, read the CC78K0S C Compiler Operation (U14871E).

For the architecture of 78K/0S Series, refer to the user’'s manual of each product of 78K/0S Series.

6 User's Manual U14872EJ1VOUM

[Target Devices]

Software for the 78K/0S Series microcontrollers can be developed with this C compiler.

Note that an optional device file corresponding to the target device is necessary.

[Readers]

Although this manual is intended for those who have read the user's manual of the microcontroller subject to software

development and have experience in software programming, the readers need not necessarily have a knowledge of

C compilers or C language.

terminology.

[Organization]

Discussions in this manual assume that the readers are familiar with software

This manual consists of the following 13 chapters and appendixes:

CHAPTER 1

CHAPTER 2

CHAPTER 3

CHAPTER 4

CHAPTER 5

CHAPTER 6

CHAPTER 7

CHAPTER 8

CHAPTER 9

CHAPTER 10

CHAPTER 11

CHAPTER 12

CHAPTER 13

GENERAL

Outlines the general functions of C compilers and the performance characteristics and features of
this C compiler.

CONSTRUCTS OF C LANGUAGE

Explains the constituting elements of a C source module file.

DECLARATION OF TYPES AND STORAGE CLASSES

Explains the data types and storage classes used in C and how to declare the type and storage class
of a data object or function.

TYPE CONVERSIONS

Explains the conversions of data types to be automatically carried out by this C compiler.
OPERATORS AND EXPRESSIONS

Describes the operators and expressions that can be used in C and the precedence of operators.
CONTROL STRUCTURES OF C LANGUAGE

Explains the program control structures of C and the statements to be executed in C.

STRUCTURES AND UNIONS

Explains the concept of structures and unions and how to refer to structure and union members.
EXTERNAL DEFINITIONS

Describes the types of external definitions and how to use external declarations.

PREPROCESSING DIRECTIVES

Details the types of preprocessing directives and how to use each preprocessing directive.

LIBRARY FUNCTIONS

Details the types of C library functions and how to use each library function.

EXTENDED FUNCTIONS

Explains the extended functions of this C compiler that enable users to make the most of the target
device.

REFERENCING BETWEEN ASSEMBLER AND COMPATIBLES

Describes the method of linking a C source program with a program written in Assembly language.
EFFECTIVE UTILIZATION OF COMPILER

Outlines how to effectively use this C compiler.

APPENDIXES A through E

Contains a list of labels for saddr area, a list of segment names, a list of runtime libraries, a list of
library stack consumption, and index for quick reference.

User's Manual U14872EJ1VOUM 7

[How to Use This Manual]

* For those who are not familiar with C compilers or C language:
Read from CHAPTER 1, as this manual covers from the program control structures of C to the extended functions
of this C compiler. In CHAPTER 1, an example of a C source program is used to show the reference part in this
manual.

* For those who are familiar with C compilers or C language:
The language specifications of this C compiler conform to the ANSI Standard C. Therefore, you may start from
CHAPTER 11, which explains the extended functions unique to this C compiler. When reading CHAPTER 11,
also refer to the user's manual supplied with the target device in the 78K/0S Series if necessary.

[Related Documents]

Document Name Document No.

CC78K0S C Compiler Operation User's Manual U14871E

[Reference]
Draft Proposed American National Standard for Information Systems - Programming Language C (December
7,1988)

[Terms]
RTOS = 78K/0 Series Real-Time OS RX78K0

[Conventions]
The following symbols and abbreviations are used in this manual:

Symbol Meaning

Continuation (repetition) of data in the same format

Characters enclosed in a pair of double quotes must be input as is.
Characters enclosed in a pair of single quotes must be input as is.
This part of the program description is omitted.

/ Delimiter
\ Backslash
[] Parameters in square brackets may be omitted.

8 User's Manual U14872EJ1VOUM

CONTENTS

CHAPTER 1 GENERAL ..ottt ettt ettt e e e e e e e e e e e e e s bbb e et e e e s nbbreeeeeeee s 21
1.1 CLanguage and ASSEmMDIY LaNQUAGE.uuiiiiiiiiiiiiteiie ettt 21
1.2 Program Development Procedure by C COMPIlEr.....c.uuuiiiiieiiiiiiiiieiiee e 23
1.3 Basic Structure 0f C SOUICE PrOgramccuuiiiiiiiaeiiiiieiieee ettt e e e e e e e eabeeeeeaaa e as 25

1.31 Program fOrMat....... ... ettt e e e e ettt e e e e e e nbee e e e e e e nnbeneaaaeaaanneas 25
1.4 Reminders Before Program DeVvVelOPMENT ...t 28
1.5 Features of ThisS C COMPIIEE oo s s r e e e e e e arnrareaeeeas 30

(1) callt/_ _CAllt FUNCHONS ...eeeieeeeeee ettt e e e e et e e e e e s e e saatb e e eaaeeesenanneeeaeeeaasees 30

(2) ReGISIEr VArIADIESeiiiieeeee it 30

() USAQE Of SAUUN @I a......eeiiieeiiiiiiiiiiiee ettt e e e e e ettt e e e e e e e et e b e e e e e e e eesnsbaaeeaaeeesssssnneeaeeeaaases 30

[T G- == P PP PO E PR PP OPRPPI 30

() IR T 101 (30 {0 [T (o] o - TSP RPPTRROS 31

(6) NOrec/_ _leaf fUNCHONS.......cooiiiii et e et e e e nneas 31

(7) Dbit type variables and boolean/_ _boolean type variablesccccuviiiiiiiiiiciiie e 31

(8) ASM StAtEMENES ...ttt 31

() I L2 =Y (] o) & {01 Vo o) o SO PUPRRRIOS 31

(10) Interrupt FUNCHON QUATIFIETc..eeieiee et 31

(1) INEEITUPE FUNCHIONSttt ettt e e e e e ettt e e e e e e e e st e e e e eaeeessanssaeaessanssbneeeaeeeaannnses 31

(12) CPU CONLrOl INSIIUCTIONSceiiiiiiie ettt e et s e e st e e e s eanne e e nnnees 31

(13) Absolute address aCcCess FUNCHONoiiiiiiiiiiiie e e e e e e e e e s e eaae e e e e e ennees 31

(14) Bit field deClarationoooiiiii e 31

(15) Function to change compiler output SECHION NAMEoeiiiiiiiiiieie e 32

(16) Binary constant description fUNCLONooi i a e e 32

(17) Module name change fUNCHIONSuiiiiiiii et e e e e e e e e e e e s e e ssbrae e e e e e ennnees 32

(GRS) I e] €= 1 (=300 T 1 o o O REPR 32

(19) MUltipliCatioN FUNCHION.t e e e e e e e e e e s e s b e e e e e s sennnseeeeeaeeeannnnes 32

(240) I D 11V (53 o] o I8 {1 s Tex 1T o MO REPR 32

(21) BCD 0peration fUNCHON............uuiiiiiie e et e e e e e e e e e e e e e e sasb e e eeeeeesssseeeaeeeeaannnnes 32

(22) Data inSertion FUNCHION ...ttt e e e e ettt e e e e e e e e e naeb et e ea e e nnseeeeaaaeeaannees 32

(220) IS =1 (o201 Lo 1Y OSSOSO PEPRRRRIOS 32

(22 I Y/ o T3 g T o [1i o= 1 4o o IO REPRN 32

(25) Pascal FuNCHON (L _PASCAI)uuiiiiiiieie ittt e e e e et e e e e e e s etba e e e e e e e e s aenanaeeaaeeeeeannnaes 32

(26) Automatic pascal functionization of function call interface.............cccueiiiii i 32

(27) Method of int expansion limitation of argument/return value...............cccoooeiiiiiiiiiiiie e, 33

(28) Array offset calculation simplification Methodooiiiiiii e 33

(29) Register direct reference fUNCHONoiiiiiii e e e e e e e e e e e e e eanees 33

(30) Memory manipulation fUNCLIONo ettt e e e e e e e e e e e e e e e e annees 33

(31) Absolute address allocation SPecCifiCationoooiiiiiiiiiiiiii e 33

(32) Static model expansion SPECIfICAtIONii i 33

User’'s Manual U14872EJ1VOUM 9

(e) I =100 o Lo =T VA= T F= o [SRR 33

(34) Library supporting prologue/EPilOgUE.............uviiiiiii et e e e e e e e e e e e aaa s 33

CHAPTER 2 CONSTRUCTS OF C LANGUAGE ...ttt ettt a e e eeaanen 34

P R O = 1= ol €= ST =Y £ PO PPPROT 35

[I O] 0 = 1= Tor =Y g =T= SRRSO 35

(2) ©SCAPE SEUUENCES ...oeeeieiiie e e e e ettt et e e e e e te e et eea e e e e e aeeeeeaaaeaa e nneeeeeaaaeaa s nsaseeeeaaaesaannnseaaeeaannsnneeaeann 36

) I o = oL TR =T=Te [0 1= o PR 36

A =TT 0] o [PP PPPRTT 37

(1) ANSI-C KEYWOIASevieiieee ettt e ettt e e e e et e e e e e s et e e e e e e e e eaaaeaeeeeeeeeassassaeeaaeeaesnnsbaeaeeeeansnsrnneaaaeas 37

(2) Keywords added for the CCTBKOSoii it es 37

A T (o [T o1) =T PR TRPOPPPPPRTT 38

2.3.1 SCOPE OF IAENTITIEIS ... 39

(1) FUNCHON SCOPE ...ciii ittt et e e e e e ettt e e e e e e st e e e e e e e e s s asbaseeeaeeeaesnnsseeeeeannnes 39

(2) FilE SCOPE ...ttt et 39

(6) I =1 (o o1 [qE=Teto] o1 YT R PP PRPPTRN 40

(4) FUNCLION ProtOtYPE SCOPEciiiiiiiiiiii ettt et enee 40

2.3.2 Linkage Of ideNtifierS.........uviiiiiei e a e e e e aa e e e e nrrees 40

(1) EXErNal INKAGEccoiiiiie ittt e e nre e 40

(02 I 101 =Y g =1 I 1101 = Vo [T PR PRPPTN 40

(B) NOTINKAGE ...ttt e ettt e et e e n e e e e e e e 40

2.3.3 Name space for IdENTIfIEIScoii et e et e e e e e et r e e e e e e eanrnees 41

2.3.4 Storage duration Of ODJECESc..uiiiiiie s 41

(1) Static Storage dUrationcoociiiiiiii e e e e e e e e e e e e e e e e s eees 41

(2) Automatic Storage dUrationoocueeiiiiiiiiii e 41

D T T DT | = 10 1 o 1= T PO PRPPPP 41

(1) BASIC EYPES .ttt ettt e e 42

(02 I 1 o = 1= Tor (=Y g Y/ o L= PR PUPRPPN 46

(B) INCOMPIELE LYPES ..ot 46

[T D 1= V=T I Y/ o = PR UPRPPN 46

(D) SCaAIAK tYPES. ..ttt e 47

2.3.6 Compatible type and COMPOSItE tYPE......cociuuiiiiiiee e e e e e e e eraaeeeas 48

(1) ComPAtiDIE tYPE ...t 48

(2) COMPOSIEE TYPE .eeiiiieeiiieieeee ettt e e e e e e e e e e e s e b teeeeaeeeeesasbaaeeaaeeesaansnaeeeanane 48

A 0T 0 1] =1 | £SO PP PP PPPPPPPPPPR 49

241 Floating-point CONSTANTuiiiii e e e e e e e e e e e e e e e e e e aaaeae e e e e aeaeeeas 49

P (01 (= Te =Tl ot g 1] = o | SRS 49

(1) DeCimal CONSTANT.........uuiiiiiie it e e e e e e e e e e e e e s st abeeeeeaeeessansseaeeesnnne 49

(2) OCtal CONSTANT ... et e et e s er e 50

(8) Hexadecimal CONSIANT........ccoiiieeieee et e e e e e e e e e e e an b e e e e e e eanes 50

243 ENUMEration CONSIANTSoiiiii et e e e e et e e e e e e e e nnnee e e e e e nneneeas 50

A O - =Ty (Y oo 1] = | £ SRR 51

S T o Yo T (T - | SO PRRSRR 51

A I O 01 =] =110] £ T P T P T T U TP TP TP PP TP 51
10 User's Manual U14872EJ1VOUM

P2 A 1= 1 411 =T TP 52
P S B o (=T To =T gl N =T T T O PP PP TP PP PP PP 52
P2 ©a T 1 1] 14 T=T o PR R 52
CHAPTER 3 DECLARATION OF TYPES AND STORAGE CLASSES.......cccccciiiitiiiieee e 53
3.1 Storage Class SPECITIEIS ...t e e e e e b bt e e e e e e e s reeeaaaeeas 54
[R 77 1= L= O TR PR PR OPPPP 54

(020 T =Y < (=1 ¢ o USSP PUPRRRRIOS 54

(B) SHALIC 1ttt e e e e e e e e ae e e s e s 54

[T -1 | (o USSP PUPRRROS 54

() T Te 53 Y USSP PEPRR 54

K BV o LI o 1T ot} 1T = PP TURTPPPRT 55
3.2.1 Structure specifier and UNION SPECIFIENoiiiiiiiii e 57

(1) STTUCIUIE SPECITIEI ..o e e e e e e e e et r e e e e e e senaaaeeeaan 57

(2) UNION SPECITIEN ...ttt e et e e st e e snn et e e e 57

LS TN = 11 8 =1 o ISR PUP PSRN 58

3.2.2 ENUMEration SPECITIEIScoiiiiiiiiiiii ettt e e e e 59

G T2 T - o = PPN 60

IR T I V7 o L= @ U - | =T PP 61
I B T 1o = = (0] 3T 62
3.4.1 POINEEr AECIATATOrS ...t e et e e ser e s b e nnnes 62

B N 4 - VAo [=Tor b= = (o] = PPN 63

3.4.3 Function declarators (including prototype declarations)cccoeeieiiiiiiiei i 63

3.5 TYPE NAIMES ..ttt ettt ettt ettt ettt ettt et ettt e et e ettt e st eteaaaaaaaaaaaaaeas 64
T I Y/ o T=To 1= B 1= Tod - V-1 4T | =R 65
O A | a1 A =11 4=1 § o] IO PP P PP PPPPPP 67
(1) Initialization of objects which have a static storage durationccccooiiiiiiii e, 67

(2) Initialization of objects which have an automatic storage durationccccccceii i, 67

(3) Initialization Of CharaCter @rraysocueei it 67

(4) Initialization of aggregate or union type ODJECES..........coiiiiiiiiiii 68
CHAPTER 4 TYPE CONVERSIONS ...ttt as s ssss s s sssssnssensssnee 70
o R N 4 [U= (1o @ o Y= =T (o £SO 72
(1) Characters and integers (general integral Promotion)cooiiiiiiiiiiiiie e 72

(2) Signed integers and UNSIGNEA INTEGEIScooiiiiiiiiiiii et e et e e e e e e e e e e eneees 72

(3) Usual arithmetiC type CONVEISIONSuuiiiiieiiiiciiieeie et e e e e e e e e s e e aaesessasbaaeeeeeeannnees 73

A @ 1§ 1= @ o =T = T Lo K= SR 74
(1) Left-side values and fUNCHON [IOCALOTScoiiiiiiiiii e e e e e et eee e e e e eanees 74

72 TR oY1 S 74

() T o111 (=Y PO PUPRRRRO 74
CHAPTER 5 OPERATORS AND EXPRESSIONS ... 75

User's Manual U14872EJ1VOUM 11

5.1 PrimMary EXPrESSIONS coiiiuiiiiiiiee e it ittt e e e e s s s st e et e e e s s s s s e eeeeaeeessaastaeeeeaeeesaasntenneaaeeesansteeaeeeaanns 78
I o 1] £ 1D QO o1=T =1 {0] £ PP URPT R UUPPPPPRTTN 78
(G IR 10 o 1Yoty o] o] o 1= =1 (o PR 79

(020 T S V] (o1 1 (o] o I o= || PSPPSRI 80

(3) Structure and UNION MEMDET............iiiii et e e es 81

(4) Postfix increment/decrement OPEIAtOrSoiiiiiiiiiiiiiiie e e e e e e e e e e eeneaaaeeas 83

TG I B o F= 10 A @] o =T =1 o 84
(1) Prefix increment/decrement OPEratorsuuiiiiiiii it e e e e e e e e e e e s sareeaaaeeas 85

(2) Address and iNdir€Ct OPEIAtOrSeiiiiiieii et e e e e ettt e e e e e e e e s st e e e e e e aannneneeaaaeas 86

(3) Unary arithmetiC OPerators (= ~ 1) i e e e e e e e e e e e e e e e e ennsraeeeaaeas 87

[T V4o o] o =1 = | (o LSRRI 88

5.4 CASTE OPEIALON ... e 89
NI AN g4 g L= (o @ o T=T - o PSSR 90
(1) MUItiPlICAtiVe OPEIATOLSviiiiiei i e e et e e e e e s et e e e e e e eesntbaeaeeeeasnnraeeeaaeas 91

(70 T Vo [11 1YW o o 1Y = (o] SRR 92

5.6 BitWiSE Shift OPEIatOrS ...eeeiiiieiiiiieie ettt e ettt e e e e e s s bbb e e e e e e e e e sanbbeaaaeeaanas 93
I A = -1 1A o] g = I @] o =T = Lo RS URESRR 95
(G I S 1= o g F= 1] o 1=T = (o = PRSPPI 96

(7 T =L [0 E= 11 AV o] o 1= = (o] PSRRI 98

5.8 BitWiSe LOGICAl OPEIALOISoiiiiiiiiiiiiee ettt ettt et e e e e e ettt e e e e e e s s abbbeeeeaaaeesaannnneeeaeaanas 99
(1) BitwiSE AND OPEIALON......eeiiiitiieieti ettt e et e st e e e e st e e e ebe e s e e e e naneeeas 100

(02 I =1 Y T3 (@ T S Qo) o =Y = | (o P SUPTPRTPP 101

(3) Bitwise iNCIUSIVE OR OPEIAtOrccoiiiiieiitiie ettt e st e e e es 102

RS I o Yo [[of= L@ o L= -1 (o] T TP PUT PRI 103
(1) LOGICAl AND OPEIALON......eeiiiitite ettt et e e et e e et e e et e e e st e e e s b e e e e aabe e s nne e e e naneeeas 104

(024 I Moo [(o= W@ o] o 1T =1 (o] (O SRPTPTRP 105

N (O Oto T To T Ao Y F= 1B o X=T =1 4o Y £ P 106
5.11 ASSIGNMENT OPEIALOTS ...evtiiiiiiiiiiiiitiiiiet e e e e ettt e e e e e e e s e aabbe et e e e e e e s s aabbeeeeeaaeaasaasnbbeseeeaaaeasanseeeaens 107
(1) Simple assSigNMENT OPEIALOFeiiiiiiiee ittt e e e e et e e nree e s neneeeas 108

(2) Compound asSigNMENT OPEIALOIScceiiiiiiiiiiiiiiee e e e s ettt e e e e e e e e e e e e e e e erar e e e e e e e e e seasaraeeeaeeesnsanees 109

LT 2 Y 4[4 1= W@ =T > o | R 110
5.13 CONSIANT EXPIESSIONS . .uititiiiiiiee ettt e e ettt e e e e e e et e e e e e e e e e s s aanb b b e e e e e e e e e e annbbbeeeeaaeeersneaaaans 111
(1) General integral CONStANt EXPIrESSION.........uviii it 111

(2) Arithmetic CONStANTt EXPIrESSIONuiiiiiiiie e e e e e e e e e e e s aee e e e e e nnarneeas 111

(3) Address CONSIANT EXPIESSIONuuiiiiiiiee ittt e e e e et e e nnee e e naneeeas 111
CHAPTER 6 CONTROL STRUCTURES OF C LANGUAGE.......cccoiiiiiiiiiieee e 112
6.1 Labeled StatemMENTSuiiiiiieie e 114
(1) CASEIADEL ... ettt 115

(02 T o =1 £= 10 L =1 o 1= PSPPI 117

6.2 Compound Statements (BIOCKS) ..uuuiiiiiiiiiiiiiiiiieee ettt r e e e e s e e e e e e e e s s nnrnaeees 118
6.3 Expression Statements and Null StatemMeENts ... 118
6.4 SeleCtioN STALEMENTSoiiiiiieiiie et e e e e s e sn e e n e e sreennee e 119

12 User's Manual U14872EJ1VOUM

(1) ifandif ... else StateMENTSeeiii e e 120

(02 T) (ol I = (=Y 01T o | SO ST OPPERRRIN 121

6.5 ItEration STALEMENTS ...cciiiiiiiie et e et re e nn e 122
(1) WhIlE STAtEMENTt e et e e e e e e et e e e e e e e e s ssbaeeeeeeansnsbaeeeeaeeeannnees 123

(078 T o (o T3 =1 (=T 1 1= 0| OO RERRR 124

() TR (o T =1 €= 1 (=104 =Y o | SO PPRRRPN 125

6.6 BranCh STAteMENTScooiiiiiii e 126
(G I e (0] (e XX €= 1 (=10 0 =Y o OSSOSO PRPRPIN 127

(2) coNtiNUE STAtEMENT ... ettt ettt e e e e e e ettt e e e e e e e e s beeeeaaeeesaneeeeaaaeaaaannees 128

() I o] == 1 =] €= 1 (=10 =Y o PSP PPRPRPRN 129

(4) return StATEMENT ...t e e e e 130
CHAPTER 7 STRUCTURES AND UNIONSoiiiiiiiiiiit e e e e 131
A T VT o (U1 =L PO PP PP TP PPP 132
(1) Declaration of structure and structure variable ...t 132

(2) Structure declaration liSt............coiiiiiiiiiie e a e e e e e e e e e raaaaeeeaaaaas 132

(3) Arrays @nd POINLEIS......eiiiiiii ettt e bt e e ettt e sae et e e s b e e e e e ab et e e ene e e e e e e anre e e e e 133

(4) How to refer to Structure MEMDETSooiiiiiii e a e e 133

A ¥ 1 4T T o E PSPPSR 134
(1) Declaration of union and UNION Variable................eiiiii oo e e e 134

(2) UnNIon declaration liStcooiiiiiiiieie et e e 134

() UNION arrays @and POINTETS..........uuiiiiiiiiiiiiiieii e e e ee ettt e e e e e et e e e e e e e e st r e e e eaaeessaesasseeeeaaeseaseeeaaeeeannses 135

(4) How to refer to UNION MEMDEIS.ii et e et e e re e eaes 135
CHAPTER 8 EXTERNAL DEFINITIONSttt e e e e e e e 137
8.1 Function DefinitioNs. ... 138
8.2 External ObjJeCt DEfiNItIONS ...oviiiiiiiciieie e e s e e e e e s s e e e e e e e e nrerees 140
CHAPTER 9 PREPROCESSING DIRECTIVES (COMPILER DIRECTIVES)ccoiiiiiiiiiiieeiiieee e 141
9.1 ConditioNal INCIUSTON c...ciiiiiiiiee et e e e e s are e e e aanns 142
G T 1L L1=Te 11 T O PRSP TP PP PUPUPPPPRPPN 143

(0 T =Y 11 e 1 (=Y o2 (1YY PSSRSO PURRPRRINS 144

(B) FHFAES AITECHIVE ... et e e et e s e e n e e e e e enre e e e e 145

(T 13 T =Y o [T =Tox 1\ YU PRRRPNS 146

(B) HEISE AIFECLIVE ...ttt et et e e et e e e e e e aae 147

() I =Y g Lo 1o [T¢=Tor (VSO PRRRPN 148

9.2 SOUICE FIlE INCIUSION .ottt es 149
(1) FANCIUAE < > AIMECHVE ..coii ettt e e e e e e et e e e e e e e e s sntaeaeeeeessnsbaeeaaaeeeannnees 150

(2) FHNCIUAE “ 7 dIFECHIVE ...ttt e e et e st e e e e e 151

(3) #include preprocessing token String dir€CHIVEcooiiiiiiiiiiee e 152

LSRG T IV - Vot o B =T o] =Tt =10 =T o | PSPPSR 153

User's Manual U14872EJ1VOUM 13

(1) Actual argument replacementccuuiiiiiiii e e 153
(02 T - o] o 1= =1 (o) SO PRPRPRTRP 153
(B) FHH OPBIALON ...ttt e e s 153
(4) Re-scanning and further replacemMeNnt.............uuviiiiii i 154
(5) Scope of MACrO AEfiNItION......c.ooi et e e e e e e e e e e e e e eeaaans 154
(B) HAEFINE AIFECHIVEeeeieiiee e ettt e e e e e e e e e e e e e s et e e e e asnsseeeeaaeeesnsrnees 155
(7) HAEfINE () AIFECHVE. ... et e st e e es 156
() I 8T To [=) le L1 =3 Y= TSSO PUPRRSPP 157
LI S I 1 = o T | o) PSPPSR PPN 158
(1) Tochange the liNE NUMDET ... e e e e s e aarae e e e nnnrneees 158
(2) Tochange the line number and the file NAaME............ooiiiiiii e 158
(3) To change using preprocessor tOKEN SIINGc..ciiiiiiiiiiiiiee e a e e e eanees 158
9.5 #error PreproCesSing DIFECHIVE ...oocuuiiiiiii ettt s s e e e e e e e e e e e e e e e e nnnnrneee s 159
0.6 HPragma DIFBCTIVE...cci ittt ettt e e e e e e s e bbbt e e e e e e e s e anb bbb e e e e e e enbbrreaaaans 160
0.7 NUI DIFECEIVE .ttt ettt ettt se e st e s m e e n e e nnn e e s e enn e nneeennne e 160
9.8 Predefined MACIO NAIMESuuiiiiiiiie ittt ae et e e s e e s ann e e e e e nreennes 161
CHAPTER 10 LIBRARY FUNCTIONS... ..ottt 163
10.1 Interface BEtWEeNn FUNCHIONScii it nee e 164
10 T Pt N o 183 =Y o (O PPPPRPPN 164
10.1.2 RELUM VAIUES ..ottt ettt e et e e et e e e ee et e e ek et e s en e e e san et e e e anreeenans 165
10.1.3 Saving registers to be used by individual libraries.............ccccccooiiiiiiiiii e 165
(1) NO -ZR 0Option SPECITIEA........ueiiiieiiie it 166
(V2 B4 S o) o) o] 1] o 1=Tod =Y PRSPPI 167
O T o =T To [T PP SUR PPN 171
[T 117/ 1= 2 o PP PRSP 172
020 T =1= 1]] o 2N o PP PP PP PP PP 173
(3) stdarg.h (NOrmal MOl ONIY)ccoiee e e e e e e e e s ee e e e nnarnneas 174
L T (o 1o 1 PSSR 174
L5 T =) (o 1o 2 o PO PRSPPI 175
(S 14141 T o USROS 177
[T (] o PO PR PRSPPI 178
[I =Y 1 2 T 11 o USROS 178
LS T 11211 30 o OSSPSR 178
G0 TR 1 o 1= X o ST 180
(11) math.h (NOrmMal MOAEI ONIY) ...coeiii e e e e et e e e e e e st aaa e e e e annsrnees 181
G172 T o X=X o SRR 183
(13) assert.h (NOrmMal MOAEI ONIY).....cooiiiiiiiieee et e e e e e e e e e e e e e e e st beaeaeeeesnnsrnees 185
10.3 Re-entrantability (Normal Model ONlY) ..o 185
(1) Functions that cannot be re-entranCedcoocuiiiiiiiiii e 185
(2) Functions that use the area secured in the startup routine............cccccoiiii e, 185
(3) Functions that deal with floating-point NUMDErS............ccciiiiiii e 185
14 User's Manual U14872EJ1VOUM

10.4 Standard Library FUNCHIONS.......uiiiiiiiee ettt e e s e e e e e s s s s e e e e e e s s e et nae e e e e e e e e s annnaeaeeean 186

10.5 Batch Files for Update of Startup Routine and Library FUNCHIONScooiiiiiiiiiiiiiiiiieee, 296
10.5.1 USING DAICN FIlES ... e e 297
CHAPTER 11 EXTENDED FUNCTIONS.ottt e e e e e e e e e 300
I R =T o V=T 4 =T PP O P PR PPPTPPPRT 301
2 Q=AY oY o =P 302
[T L0 1 o1 (o] 1SS OPPRRRPRIN 302

(2) VAFIADIES ...t e et e ne e e e e e e e e e 303

RS I V1= 0 o] PP PPPPPPPPPPPP 304
(1) MEMOTY MOEL ...ttt e st e e e et e e e b e e e e aa b et e e et e e e snnn e e saneeeeasreeeneans 304

(02 T = Te [153 Y gl T o | USSP PRRRPN 304

) I (= o] VAT o X- Lo = USSP RERRR 304

11.4 HPragma DIiFECTHIVE ..ottt e et e et e e e e e e bbbt e e e e e e e s e anbbbbeeeaaaeeesabbneaaaaaaas 306
11.5 How to Use Extended FUNCLIONSc.cooiiiiiiiiiii et 308
[T o= 1188 {8 T 1 o] I PSSP PRRRPN 309

(2) ReGISIEr VArIADIES ...ttt e e e e 312

(B) HOW t0 USE the SAAAI @rEa........eiiiiiiiiiiiiieiee et e e e et e e e e e e et e e e e e e eesenbeeeaeeeesnnees 316

(4) HOW tO USE the STI @r@@.......ceiiiiiiiieiii ettt e e 323

((5) I 1 T= 101 (o 1 {010 Vo i o T o KOOSO PRRRPN 326

(B) NOFEC FUNCHION ...ttt et e et e e s b et e e et e e sr e e e sene e e e eereeenaans 330

(7) DIt TYPE VAMADIES ...t e e e e e e e e e et eeeee e e e s st aeeeeasasnsbeeeaeaeeeannnees 335

(8) ASM SEAtEMENTS ...t e et e e e e e e e e e 339

L) I [0 =Y] o) & {01 Vot oo PSSO PRRRPIN 342

(10) Interrupt function qualifier (L _iNterrupt)........ceioi e e 349

(11) INEEITUPE FUNCHIONS ...ttt e e e e e et e e e e e e s tb e et eeeaeseaassseeeasnsbaneaaaeeesnnnnes 351

(12) CPU CONLrOl INSIIUCTIONeeiiiiiee ettt e e et e e s e e sene e e e enreeeneans 354

(13) Absolute address aCcCess FUNCHONcoiiiiiiiiiiiieee e e e e e e e e e e e s e nsbae e e e ennees 356

(14) Bit field deClaration ettt et e e e e e e e et e eea e e e s nneeeeee e nnneeeeaaaeaeannees 360

(15) Changing compiler output SECLION NAMEuuiiiiiiii i a e e e 368

(16) BINAry CONSIANTt e ettt e e e e e oottt e e e e e e e e ettt eeaaaeaaansbeeeeeeeaannsbneaeaaeaaaannees 379

(17) Module name changing fUNCHIONuuiiiie e e e e e et e e e e e e e s earae e e e e e e snnees 381

(18) ROtate fUNCHION ...ttt ettt e e e e e e ettt e e e e e e e s e ntaeea e e eannnbeeeeaaeaeaannees 382

(19) MUIIPlICAtION TUNCHION.......cii e e e e e e e e e e ettt e e e e e e e e s aabaeeeessasnsbaeeeaaeeeannnees 385

(240) I 1AV 7T] o I 11 o 3 o] o SO RURTPN 387

(21) BCD 0peration fUNCHON ..ot e et e e e e e e et e e e e e e e e s santaeeeeeeensnsbeeeeaaeeeannnnes 390

(22) Data insertion fUNCHION i ettt e e e ettt e e e e e e s e et e e e e e e nnnseeeeaaeeaannees 394

(0220) IS = L1 o 4T To =1 PSP OU P PURRPN 396

(02 I Y o Y=Y g ToTo L1 71 (o] o USSP RURRRN 400

(25) PaSsCal TUNCHION ...t ie ettt e e ettt e e e e e e et e e eeeeeeea st beeeeaaeeesasssseeeseasnsbaneeaaeseannnens 402

(26) Automatic pascal functionization of function call interface.............ccoeiii i 405

(27) Method of int expansion limitation of argument/return value...............cccccooiiiiiiiii e, 406

User's Manual U14872EJ1VOUM 15

(28) Array offset calculation simplification Methodcooi i 409
(29) Register direct reference FUNCHONcoiiiiiiiiii e e e e 411
(30) Memory manipulation FUNCLIONocuiiiii e 415
(31) Absolute address allocation SPecCifiCationcoooiiiiiiiiiii i 418
(32) Static model expansion SPECIfICatioNociiiiiiiiiii e 422
(33) TemMPOrary VAri@DIES.......cccoiiiiiieiee ettt e e e e e e e e e e e e e e e st b e et e e e e s esasreeaaaaeeeannrnees 432
(34) Library supporting prologue/EpilOgUEceiiiiiiiiiieie ettt 435
11.6 MOdifiCatioNS OF € SOUICEuiieiiiiiiie ettt e e e e et e e e e e e e e s nnbabeeeeeeanns 444
11.7 FUNCLION Call INTEITACEieiiiii ettt e e 445
1171 REIUIMN VAIUE......ceieeii ettt ettt e ettt e e e et et e e e at e e e e smbe e e e e st e e e eateeeesmnreeeeanneeeeans 446
11.7.2 Ordinary function Call INtErfacec..oeiiiiiiii e 447
(1) PasSIiNG @rgUMENES.uuiiiiei it e ettt e e et e e e e e e e st b e e e e e e e eesnasbraeeeaeeesaasnsaeeaaaeannne 447
(2) Location and order of storing argumMENtS...........ooiiiiiiiiii e 448
(3) Location and order of storing automatic variables...............cccccoeieiiiiiiiiiiiee e 449
11.7.3 noauto function call interface (normal model ONIY)cuiiiiiiiii e 454
(1) PasSSIiNG @rgUMENES.......uviiiiieiiiiiiiiee et e e et e e e e e e e st e et e e e e e e s estssaeeaaeesaensnsseneeeeannne 454
(2) Location and order of StOriNg arguUMENTS...........coiiiiiiiiiiiiie e 454
(3) Location and order of storing automatic variables..............ccccieiiiiiiiiiiii e 455
11.7.4 norec function call interface (NOrmal MOdEl).........coouiiiiiiiiiie e 457
(1) PasSSIiNG @rgUMENES.......uuiiiiieiiiiiiiiie e et e e e e et e e e e e e e st e e e e e e e e s estssaeeaaeesaansnssaeeeeesanne 457
(2) Location and order of StOriNg arguUMENTS...........cciiiiiiii i 457
(3) Location and order of storing automatic variables..............ccccvieiiiiiiiiiii e 458
11.7.5 Static model function call INTEIrfaCEooo e 460
(1) PasSSIiNG @rgUMENES.......uuiiiiieiiiiiiiiieee et e e e e et e e e e e e e st eeeaeeesestaaaeeaaeeseassnsseeeeaesanne 460
(2) Location and order of StOring arguUMENTS...........coiiiiiiiiiiiiii e 460
(3) Location and order of storing automatic variables..............ccccvveiiiiiiiiiii e 461
11.7.6 Pascal function Call INterfacCeco et e e e reee e e e e e 465
CHAPTER 12 REFERENCING THE ASSEMBLER.......coooiiiiiiiiiiii 469
12.1 Accessing Arguments/Automatic Variablescccvvviviieiiiiiiie e 470
L2 I N o T o 1 = 43T o 1 SR TSSRPTRR 470
12.1.2 STAIC MOEI ...ttt e e oottt e e e e e e s tteee e e e e e e s e e nneeeeeaeannaneeeaaaaeaanns 473
12.2 StOriNG REIUIN VAIUEBS ...coiiiiiiiieeeie ettt ettt e e e ettt e e e e e e s st bbb e e e e e e e e e s annbabeaaeeaanns 475
12.3 Calling Assembly Language Routines from C LanQUage........cceeeeiviiiririrreieeeeesiiiininenneeeeenennn 476
12.4 Calling C Language Routines from ASsembly LangQUage.......cccueeriiiiiiiiiieieieeeiiiiiieieeeae e 480
(1) Calling the C language function from an assembly language program...........ccccocveeeerineeenncneeesnneenn. 480
(2) Referencing arguments in a C language fUNCHONoooiiiiiiiiiiiiiii e 481
12.5 Referencing Variables Defined in Other LanguUages........ccccvvvviieieeeieiiciiiieeiee e s essvieeeee e e 482
(1) Referencing variables defined in the C languagecoviiiiiiiiiiiiiiie e 482
(2) Referencing variables defined in the assembly language from the C languageccccoceveeenneeen. 483
D2 I 02 10 1 1T] 1= TP PUPPUPPPRPP 484
G I (V10 Lo (=1 ¢=TeT o] = ISR 484
(2) Argument positions 0N the STACKcoiiiiiiiiiiieicee e e 484
16 User's Manual U14872EJ1VOUM

CHAPTER 13 EFFECTIVE UTILIZATION OF COMPILER......coiiiiiiii e 485

T A o § o T=T o A @ Yo 112 T R PR RPPTPPRT 485
(1) Using external Variableooioiiiiii et 486

(2) 1D AEA ettt ettt ettt ettt ettt en et ee et 486

(3) FUNCHON AEfiNItIONSooieiei ettt et see e e e e e ere e e e e 486

(I @ o) i]091-4= 1o 0 o] o] o] o =TSRSS PSP PRRRPN 487

(5) Using extended deSCriPION........coii ettt e e ettt e e e e e e e e e e e e e e e e e aaaeeaaaeeeannaes 487
APPENDIX A LIST OF LABELS FOR SADDR AREA ...ttt 489
Y A o] 4 = LY, o To L= PP PPERPT 489

F N S = LT3 1V Lo o 1= PSPPI 491
APPENDIX B LIST OF SEGMENT NAMES ...t 492
B.1 List Of SEGMENT NAMES....ooiiiiiiiiiiie ettt e e e e e et e e e e e e e e e e nbn b e e e e e e e e e aaanaeaaaaaas 493

2 B o Yo 1A o] g o] RS =T | =1 o SRR 493
S I o Vg aF o] (oo) A O STo 11 | o] = PR PRP PRI 494
B.4 Example of Output Assembler MOAUIEooiiiiiiiiiiirc e 495
APPENDIX C LIST OF RUNTIME LIBRARIEScottiiiiiiitiiteee ettt e e 499
APPENDIX D LIST OF LIBRARY STACK CONSUMPTIONcooiiiiiiiiiiiieiiiiiiiieeee e 505
APPENDIX E ' INDEX ...oittttieiiiiiitteitt ettt ettt e e e e e skttt e e e 44 e s st e e e et e e e e e e aasbbe et e e e e e e aabreneeeaeesaannnes 514

User's Manual U14872EJ1VOUM 17

LIST OF FIGURES

Figure No. Title Page
g ol (o Vo) B @] 1 4] 011 =1 o] o NSO PPUPRTRPIN 22
1-2 Program Development Procedure by This C COMPIIEr..........oiiiii i a e e e 24
4-1 Usual Arithmetic TYPE CONVEISIONSccoiuiiiiiiiiiie ettt ettt et e st e s sen e e e e e e e e e ssne e e e snneeeeasneeeeaanee 73
6-1 Control Flows of Selection StatemeENntso e et e e e e e e e e e 119
6-2 Control Flows of lteration StatemMENtS.........cooiuiiiiiii e e e et e e e 122
6-3 Control Flows of Branch StatemeENts ...ttt e e e e e et e e e e e s e e e e e e e e e ennnnnnes 126
10-1 Stack Area When Function Is Called (NO -ZR Specified)ccuiiiiiiiiiiiiiie e 167
10-2 Syntax of FOrmMat COMMANGScoiiiiiiiiiee et ee e e e e e s et e e e e e e s e s aataeeeeaeseesntbaeeessasssseeeaeeeseansnrnes 198
10-3 Syntax of Input Format COMMANAScoiiiiiiee et e e e e ettt e e e e e e e e neae e e e e s s annnneeeeaaaeeaannnnens 202
11-1 Bit Allocation by Bit Field Declaration (EXample 1)........cooi it 362
11-2 Bit Allocation by Bit Field Declaration (EXample 2).........uuriiiiieiieiciee et e e e 363
11-3 Bit Allocation by Bit Field Declaration (EXample 3).........ccoiiiiiiiiiiiiiee et 365
12-1 Stack Area ALEr @ Call ... ettt e e e e e e ettt ee e e e e e e e anee et e e e e antbeeeaaae e e e e nnnnneeeaaeeaannrnns 476
12-2 Stack Area AftEr REIUININGoeiiiiiii i e et e e e s e e e e e e e et eeeeeaeeessseeeaaeeesasssaeeeaeeeeeannnnes 479
12-3 Placing ArgumENS ON STACK......ccooiiiiiiiiiiiie ettt e e e e ettt e e e e e e e e saeeeeeeaaeeaaanneeaaeeeaannsseeeaaaeaaannnnnes 480
12-4 Passing Arguments t0 C LAnNQUAGEcoiiiiiiiiiiiiiiiie ettt e ettt e e e e e e et e e e e e e e e e ssasaaeeeessensasaaeeaeesaeannnrees 481
12-5 Stack POSitioNS Of AFQUMENTS ..o ettt e ettt et e e e e e s ettt eeaaeeeaantseeeaaeasaannnnseeeaaaeaaannnnnes 484

18 User's Manual U14872EJ1VOUM

LIST OF TABLES (1/2)

Table No. Title Page
1-1 Maximum Performance Characteristics of ThisS C COMPIIETc.eeiiiiiiiiiiii e 28
2-1 LISt Of ESCAPE SEQUENCEScciiiiiieiiieee ettt e e ettt ettt e ettt e e ettt e e s bt e e ok b et e e sttt e e b e e e e e aa b b et e eabe e e e s nb e e e e anbr e e e nnne e e e nanees 36
R W o) B ({o = o] g ST =T 01T o (o O T PP PPUTPRTTPPI 36
2-3 LISt Of BASIC DALA TYPES .uiviieiiiiiteiiie ettt ettt e ettt e s st e e o b et e e e st e e e e s bt e e s ab e e e a4 es e e e nb et e e s bb e e e e e abr e e e entn e e e nanees 44
2-4 EXPONENt REIALIONSIIPS ...ttt e e e e e bbbttt e e e e e e ab b b et e e e e e e e snbbb e e e e e e e e annereeeas 45
2-5 LiSt Of OPEration EXCEPLIONSvviiiiiiiieiiiie ettt e e et et e e sttt e e b et e e ek bt et et e e s bb e e e e anbr e e e snne e e e nanees 46
4-1 List Of CONVEISIONS BEIWEEN TYPESuuiiiiiiiiieeiiitiie ettt ettt e ettt e s e e e as b e e e e b b et e e s b e e e e ah b et e e et b et e s annneeeanneee s 71
4-2 Conversions from Signed Integral Type to Unsigned Integral TYPe......occuueiieiiiiiiiiiiiiieee et 72
5-1 Evaluation PreCedenCe Of OPEIALOISuuiiiiie ittt e e ettt e e e e e et ee et e e e e e s e bbb et et e e e e s s abbbeeeeeeeaanebaneeeaeeaaannens 77
5-2 Signs of Division/Remainder Operation RESUIL.............ciiiiiiiiiii et e e 20
Lo I 111 @] o T=T = U1 0] L TP UPPPPPPPPTNE 93
5-4 BitWiSE AND OPEIALOTeeieittieeeitiit e ettt e e sttt e sttt e e et e e e sk bt e e e bbbt e e b e et e e s b et e e ek b et e e aab et e e e ne e e e as b et e e e nn et e e nnnn e e e s nneee s 100
5-5 BitWIiSE XOR OPEIALON........uueeiiiieiiiiititee e e e e e ettt e e e e e ettt e e e e e e e s e ba e b ettt e e e aaaa e be et e e e e e e s asbbbbeeeaaannbbaeeeeeeeeaannbbnneeaeaeaan 101
5-6 BitWiSE OR OPEIALONuieieeitiie e ettt ettt et e et e oot e e et bt e e e b e et a4 s ah et e e ok bt e e e aa b et e eh e e e e e an b et e e e nn e e e e nann e e e st s 102
5-7 LOQICAI AND OPEIALONeteetieeeeaiititeeee e e e ettt e e e e e s ettt e e e e e e e e s bbbt ettt e e e e e aaebe et e e e e e e e s nbbebe e e e e annbbbeeeeeeeesannbnnneeaeaeeas 104
5-8 LOGICAI OR OPEIALONeeeieiitete ettt e ettt ettt e sttt e bt e e skt e e aa b et e e st e oo e s e e e e e e a b et e e ek b et e enne e e e as b e e e e anne e e e nanneeesnbneee s 105
10-1 List of Passing First Argument (NOrmal MOEI)cooiiiiiiiiiiiieiec et 164
10-2 List of Passing Arguments (STatiCc MOGEI)oouuuiiiiiiiiee ettt e e e e e e e 165
10-3 List Of StOrING RELUIN VAIUEoeiiiiiiiee ettt e ke e e e e s et et et e e be e e e s b e e e s antneeenans 165
10-4 CONLENES OF CLYPE.N ...ttt e e oo oottt e e e e e e e e bb et e ee s e b bbb et e e e e e e aannnbbeeeaaeeeeantns 172
10-5 CoNtENtS OF SEUMP.N .oeiiiee et e ettt e e et e e st e e ekt e s e b e e e b e e e et e e 173
10-6 CONLENES OF SEAANG. N ettt e e e e e sttt e e s e bbb b et e e e e e e e nbbbeeeaaeeeeanens 174
10-7 CoNtENES OF SEAIO.N ...t e s e e ar e e e e et b e e e esbn e e e e nbbe e e e anbneeenans 174
10-8 Contents Of SAIID.Noeei e e 175
10-9 CoNtENS OF SIHNG. N ...t e e e er e e e et bt e e st e e s nnre e e s anbreeenans 177
10-10 ContentS OF MATN.N.....ooiiiii e e e st e e s e e e s nan 181
10-11 CONENTS OF BSSEITN..cciiiiiiie ettt e e ekt e e e st r e e s be e e ek b et e s eabe e e e e b neeeeantneeenans 185
10-12 Batch Files for Updating Library FUNCHONSiiiiiiiiiiiiiii ettt e e e s e e e e e e e anee 296

User's Manual U14872EJ1VOUM 19

LIST OF TABLES (2/2)

Table No. Title Page
11-1 List Of AQAEA KEYWOIAS ...ttt e e ettt e e e e e et e e e e e e eeaataaeeeaeeeabssaeaaeessassssaeeaeeeseannnnnns 302
11-2 Utilization of MEMOTY SPACEcciiiiiiiiiiiie ettt et e ettt s et e e ar e e e st e e e snnr e e e asreeeeaanee 305
11-3 List Of #Pragma DIFECHVESciiiiiiiiiiieiee et e e e e ettt e e e e e e et e e e e e e e e abeeeeaaeessasasaaeeaeeeeeannnenes 307
11-4 The Number of callt Attribute Functions That Can Be Used When the -QL Option Is Specified 310
11-5 Restrictions on callt FUNCHON USAQEcc.cciiiiiiiiiiiiee ettt e e e e e e e st e e e e e s aeeeaeeeeennnnnes 310
11-6 Restrictions on Register Variable USageeuiiiiiiii et e e e e 313
11-7 Restrictions on Sreg Variable USAQEccoiiiiiiiiiii ettt e e e e e e e st ae e s s saeeeaeeeeennnnnnes 317
11-8 Variables Allocated to saddr Area by -RD OPtiON.......ccooiieiiiii et e e e e e 319
11-9 Variables Allocated to saddr Area by -RS OPtioNcooiiiiiiiiiii et e e e 320
11-10 Variables Allocated to saddr Area by -RK Option ...t e e 321
11-11 Operators Using Only Constants 0 or 1 (with Bit Type Variable)cccooiiiiiiieiiii e 336
11-12 Save/Restore Area When Interrupt FUNCtion IS USed............ooiiiiiiii e 343
11-13 Details of Type Modification (Change from int and short Type to char Type)........cococviiiiiieeiiiiiciiieeeee e, 400
11-14 Details of Type Modification (Change from long Type to int TYPE) ...cooeriiiiiiiiiiiiee e 401
11-15 Interrupt Functions Targeted fOr SAVINGccuuiiiiiiie e e e s e e e e e e e eennenes 422
11-16 Location of Storing REUIN ValUEe ettt e e e e e a e e e e e e e e e e e nneees 446
11-17 Location Where First Argument Is Passed (on Function Call Side)cccccuiviiiiiiiiiiiiieeeee e 447
11-18 Areas to Which Arguments Are Passed in Static MOdel...........ooo i 460
12-1 Passing Arguments (FUNCLION Call SIA@)cooiueiiiiiiie ettt e e e e e e e nnneees 470
12-2 Storing of Arguments/Automatic Variables (Inside Called FUNCHON)ccooiiiiiiii i 471
12-3 Passing Arguments (FUNCLION Call SId@) ..ottt e e e e e e e e e nnnnnes 473
12-4 Storing of Arguments/Automatic Variables (Inside Called FUNCHON)cccoiiiiiiiii i, 473
12-5 Storage Location of REIUIN VaAlUESooo ettt e e e e e ee e e e e e e e e e e e nneees 475
C-1 List of RUNEIME LIDIAIESoooeiieeee ettt et e e s e e e e e b e e e anee 499
D-1 List of Standard Library Stack CONSUMPLIONooiiiiiiiiiii ettt e e e e e e e e e e e neeeeeeaens 508
D-2 List of Runtime Library Stack CONSUMPLIONooiiiiiiiiiiiiiie e e e e e s e e e e e e aeeeea s 513

20 User's Manual U14872EJ1VOUM

CHAPTER 1 GENERAL

The CC78K0S Series C Compiler is a language processing program which converts a source program written in
the C language for the 78K/0S Series or ANSI-C into machine language. Object files or assembler source files for
the 78K/0S Series can be obtained by using this CC78K0S Series C compiler.

1.1 C Language and Assembly Language

To have a microcontroller do its job, programs and data are necessary. These programs and data must be written
by a human being (programmer) and stored in the memory section of the microcontroller. Programs and data that
can be handled by the microcontroller are nothing but a set or combination of binary numbers called machine
language.

An assembly language is a symbolic language characterized by one-to-one correspondence of its symbolic
(mnemonic) statements with machine language instructions. Because of this one-to-one correspondence, the
assembly language can provide the computer with detailed instructions (for example, to improve I/O processing
speed). However, this means that the programmer must instruct each and every operation of the computer. For this
reason, it is difficult to understand the logic structure of the program at glance and the programmer is likely to make
errors in coding.

High-level languages were developed as substitutes for such assembly languages. The high-level languages
include a language called C, which allows the programmer to write a program without regard to the architecture of the
computer.

As compared with assembly language programs, it can be said that programs written in C have an easy-to-
understand logic structure.

C has a rich set of parts called functions for use in creating programs. In other words, the programmer can write a
program by combining these functions.

C is characterized by its ease of understanding by human beings. However, understanding of languages by the
microcontroller cannot be extended up to a program written in C. Therefore, to have the computer understand the C
language program, another program is required to translate C language statements into the corresponding machine
language instructions. A program that translates the C language into machine language is called a C compiler.

This C compiler accepts C source modules as inputs and generates object modules or assembler source modules
as outputs. Therefore, the programmer can write a program in C and if he or she wishes to instruct the computer up
to details of program execution, the C source program can be modified in assembly language. The flow of translation
by this C compiler is illustrated in Figure 1-1.

User's Manual U14872EJ1VOUM 21

CHAPTER 1 GENERAL

22

Figure 1-1. Flow of Compilation

Program written Program coded in a set
in C language of binary numbers
=l Q)) Ll

Translating program

|:| (Compiler) |:|

(C source module file) (Object module file)

\.

(Assembler source
module file)

Program coded in a set
of binary numbers

Translating program

(Assembler) [l

\

(Object module file)

User’'s Manual U14872EJ1VOUM

CHAPTER 1 GENERAL

1.2 Program Development Procedure by C Compiler

Product (program) development by the C compiler requires a linker to unite object module files created by the
compiler, a librarian to create library files, and a debugger to locate and correct bugs (errors or mistakes) in each
created C source program.

The software required in connection with this C compiler is shown below.

L Lo [(o] for source module file creation
* RA78KO0S assembler package

Assembler...........ccccociiiiiiiiin. for converting assembly language into machine language
LinKer....ovvveeieiiieee e, for linking object module files
for determining location address of relocatable segment
Object converterc...cccoeeu. for conversion to HEX-format object module file
Librarian...........ccoooeeieiiiiiee. for creating library files
» Debugger (for 78K/0S)................ for debugging C source module files

The product development procedure by the C compiler is as shown below.

<1> Divides the product into functions.

<2> Creates a C source module for each function.

<3> Translates each C source module.

<4> Registers the modules to be used frequently in the library.
<5> Links object module files.

<6> Debugs each module.

<7> Converts object modules into HEX-format object files.

As mentioned earlier, this C compiler translates (compiles) a C source module file and creates an object module
file or assembler source module file. By manually optimizing the created assembler source module file and
embedding it into the C source, efficient object modules can be created. This is useful when high-speed processing
is @ must or when modules must be made compact.

User's Manual U14872EJ1VOUM 23

CHAPTER 1 GENERAL

Figure 1-2. Program Development Procedure by This C Compiler

C source
H Structured H
[0 1] assembler source 0 | Include file
| Structured assembler | | C compiler H
0]

Assembler
source

source

MX78K0S

Object module file Library file -
I H
| Librarian |
.]

Assemble list Library

file

Load module file

System
simulator

List converter

Object converter

Integrated debugger

i |

Absolute Dedicated parallel
assemble list il Hex-format - interface
[0 | object H
[0 | In-circuit emulator

RS-232C

PROM programmer

24 User's Manual U14872EJ1VOUM

CHAPTER 1 GENERAL

1.3 Basic Structure of C Source Program

1.3.1 Program format

A C language program is a collection of functions. These functions must be created so that they have
independent special-purpose or characteristic actions. All C language programs must have a function main which
becomes the main routine in C and is the first function that is called when execution begins.

Each function consists of a header part, which defines its function name and arguments, and a body part, which
consists of declarations and statements. The format of C programs is shown below.

Definition of variables/constants —— Definition of each data, variable, and macro instruction
main (arguments) — Header of the function main
{ S
statement1;
statement?2;
function1 (arguments); — Body of the function main

function2 (arguments);

} _
function1 (arguments)
{
statement1; — Function 1
statement2;
} _
function2 (arguments)
{
statement1; — Function 2
statement?2;
} |

User's Manual U14872EJ1VOUM 25

CHAPTER 1 GENERAL

An actual C source program looks like this.

#define TRUE 1
#define FALSE O #define xxx Xxx Preprocessor directive (macro definition) <6>
#define SIZE 200
void printf(char *,int); :l— XXX XXXX (XXX, XXX) 2eveaennnenaasannnenns Function prototype declarator <7>
voi d putchar(char);
char mar k[SI ZE+1] ; —L char XXXccoeee. Type declarator <1> External definiton <5>
mai n() DO D U UPRTRON Operator <2>
{
int i,prinme,k,count; e 1100 ¢ ¢ QR Type declarator <1>
count =0; D T TSR SRRR Operator <2>
for(i=0;i<=SIZE;i ++) :I_ FOr (XX;XK;XX) XXX juvvrrernnneeeineeeeeaineeeennneeessnnes Control structure <3>
mar k[i] =TRUE;
for(i=0;i<=SIZE;i++){
if(mark[i]){
pri nme=i +i +3; XXX = XXX F XXX F XXX eeeeeeeeeieeeeeeeeeeeeeeeeeseseseeeeeeeeeeenees Operator <2>
Printf("oBd", Pri M) ; ———— XXX (XXX) } rererrrerrrrrereeesrreeneeessreesseessseessessssessnsessnnes Operator <2>
count ++;
if((count%B)==0) putchar('\n"); —— if (XXX) XXX} weerrerrrreeeirrrrenns Control structure <3>
for (k=i +pri ne; k<=SI ZE; k+=pri ne)
mar k[k] =FALSE;
}
}
printf("\n% primes found.",count); ——— XXX (XXX) juierrrrerrrrerireerireesreesireennnens Operator <2>
}
void printf(char *s,int i)
{
int j;
char *ss;
=i
SS=S;
}
voi d putchar(char c)
{
char d
d=c;
}
26 User's Manual U14872EJ1VOUM

CHAPTER 1 GENERAL

<1>

<2>

<3>

<4>

<5>

<6>

<7>

Declaration of type and storage class

The data type and storage class of an identifier that indicates a data object are declared. For details, see
CHAPTER 3 DECLARATION OF TYPES AND STORAGE CLASSES.

Operator and expression

These are the statements that instruct the compiler to perform operations such as arithmetic operations,
logical operations, or assignments. For details, see CHAPTER 5 OPERATORS AND EXPRESSIONS.
Control structure

This is a statement that specifies the program flow. C has several instructions for each of control structures
such as conditional control, iteration, and branch. For details, see CHAPTER 6 CONTROL STRUCTURES
OF C LANGUAGE.

Structure or union

A structure or union is declared. A structure is a data object that contains several subobjects or members
that may have different types. A union is defined when two or more variables share the same memory. For
details, see CHAPTER 7 STRUCTURES AND UNIONS.

External definition

A function or external object is declared. A function is one element when a C language program is divided
by a special-purpose or characteristic action. A C program is a collection of these functions. For details, see
CHAPTER 8 EXTERNAL DEFINITIONS.

Preprocessing directive

This is an instruction for the compiler. #define instructs the compiler to replace a parameter which is the
same as the first operand with the second operand if the parameter appears in the program. For details, see
CHAPTER 9 PREPROCESSING DIRECTIVES (COMPILER DIRECTIVES).

Declaration of function prototype

The return value and argument type of a function are declared.

User's Manual U14872EJ1VOUM 27

CHAPTER 1 GENERAL

1.4 Reminders Before Program Development

Before starting development of a program, keep in mind the points (limit values or minimum guaranteed values)
summarized in Table 1-1 below.

Table 1-1. Maximum Performance Characteristics of This C Compiler (1/2)

Limit Value/Min.
No. Item
Guaranteed Value
1 Nesting level of compound statements, looping statements, or | 45 levels
conditional control statements
2 Nesting of conditional translations 255 levels
3 Number of arithmetic type, structure type, pointer to qualify union type | 12 levels
or incomplete type, array, and function declarator in a declaration (or
any combination of these).
4 Nesting of parentheses per expression 32 levels
5 Number of characters which have a meaning as a macro name 256 characters
6 Number of characters which have a meaning as an internal or external | 249 characters
symbol name
7 Number of symbols per source module file 1,024 symbolsM*®
8 Number of symbols which has block scope within a block 255 symbolsNOIe !
9 Number of macros per source module file 10,000 macros"°*® 2
10 Number of parameters per function definition or function call 39 parameters
11 Number of parameters per macro definition or macro call 31 parameters
12 Number of characters per logical source line 2048 characters
13 Number of characters within a string literal after linkage 509 characters
14 Size of one data object 65,535 bytes
15 Nesting of #include directives 8 levels
16 Number of case labels per switch statement 257 labels
17 Number of source lines per translation unit Approx. 30,000 lines
18 Number of source lines that can be translated without temporary file [Approx. 300 lines
creation
19 Nest of function calls 40 levels
20 Number of labels within a function 33 labels

Notes 1. This value applies when symbols can be processed with the available memory space alone without using
any temporary files. When a temporary file is used because of insufficient memory space, this value must
be changed according to the file size.

2. This value includes the reserved macro definitions of the C compiler.

28 User's Manual U14872EJ1VOUM

CHAPTER 1 GENERAL

Table 1-1. Maximum Performance Characteristics of This C Compiler (2/2)

No. ltemn Limit Value/Min.
Guaranteed Value
21 Total size of code, data, and stack segments per object module 65,535 bytes
22 Number of members per structure or union 256 members
23 Number of enum constants per enumeration 255 constants
24 Nest of structures or unions inside a structure or union 15 levels
25 Nest of initializer elements 15 levels
26 Number of function definitions in 1 source module file 1,000
27 Level of the nest of declarator enclosed with parentheses inside a | 591
complete declarator.
28 Nest of macros 200
29 Number of -l include file path specifications 64

User’'s Manual U14872EJ1VOUM

29

CHAPTER 1 GENERAL

1.5 Features of This C Compiler

This C compiler has extended functions for CPU code generation that is not supported by the ANSI (American

National Standards Institute) Standard C. The extended functions of the C compiler allow the special function

registers for the 78K/0S Series to be described at the C language level and thus help shorten object code and

improve program execution speed. For details of these extended functions, see CHAPTER 11 EXTENDED
FUNCTIONS in this manual.

Outlined here are the extended functions used to help shorten object code and improve execution speed.

» Functions can be called using the callt table area.coeociiieiieeiiiinns callt /_ _callt functions

« Variables can be allocated to registers. ... Register variables

» Variables can be allocated to the saddr area..............ccccvvveeiiiiiiiiiiiiieee e, sreg/_ _sreg

o sfrnames can be USed.o sfr area

» Functions that do not output code for stack frame formation can be created. .. noauto functions,
norec/_ _leaf functions

* An assembly language program can be described in a C source program ASM statements

* Accessing the saddr or sfr area can be made on a bit-by-bit basis.................. bit type variables,
boolean/_ _boolean type
variables

» A bit field can be specified with unsigned char type.........ccccccooieiiiiiiennennn, Bit field declaration

+ The code to multiply can be directly output with inline expansion..................... Multiplication function

* The code to divide can be directly output with inline expansion. Division function

« The code to rotate can be directly output with inline expansion........................ Rotate function

» Specific addresses in the memory space can be accessed.ccceeuunnne Absolute address function

+ Specific data and instructions can be directly embedded in the code area. Data insertion function

* The used stack is corrected on the called function side.ccccceeeveeeiiinnns ___pascal function

An outline of the expansion functions of this compiler is shown below. For details of each expansion function, refer

to CHAPTER 11.

(1)

30

callt/_ _callt functions

Functions can be called by using the callt table area. The address of each function to be called (this function is
called a callt function) is stored in the callt table from which it can be called later. This makes the object code
shorter than for the ordinary call instruction call.

Register variables

Variables declared with the register storage class specifier are allocated to the register or saddr area.
Instructions to the variables allocated to the register or saddr area are shorter in code length than those to
memory. This helps shorten object and improves program execution speed as well.

Usage of saddr area

Variables declared with the keyword sreg can be allocated to the saddr area. Instructions to these sreg
variables are shorter in code length than those to memory. This helps shorten object code and also improves
program execution speed. Variables can be allocated to the saddr area also by option.

sfr area
By declaring use of sfr names, manipulations on the sfr area can be described in the C source file.

User’'s Manual U14872EJ1VOUM

CHAPTER 1 GENERAL

(5) noauto functions
Functions declared as noauto do not output code for preprocessing and postprocessing (stack frame formation).
By calling a noauto function, arguments are passed via registers. This helps shorten object code and improve
program execution speed as well. This function has restrictions with argument/automatic variables. For the
details, refer to Section 11.5 (5) noauto function.

(6) norec/__leaf functions
Functions declared as norec/_ _leaf do not output code for preprocessing and postprocessing (stack frame
formation). By calling a norec/_ _leaf function, arguments are passed via registers as much as possible.
Automatic variables to be used inside a norec/_ _leaf function are allocated to registers or the saddr area. This
helps shorten object code and also improve program execution speed. This function has restrictions with
argument/automatic variables and is not allowed to call a function. For the details, refer to Section 11.5 (6)
norec function.

(7) bit type variables and boolean/_ _boolean type variables
Variables having a 1-bit storage area are generated. By using the bit type variable or boolean/_ _boolean type
variable, the saddr area can be accessed in bit units.
The boolean/_ _boolean type variable is the same as the bit type variable in terms of both function and usage.

(8) ASM statements
The assembler source program described by the user can be embedded in an assembler source file to be output
by this C compiler.

(9) Interrupt functions
The preprocessing directive outputs a vector table and outputs an object code corresponding to the interrupt.
This directive allows programming of interrupt functions at the C source level.

(10) Interrupt function qualifier
This qualifier allows the setting of a vector table and interrupt function definitions to be described in a separate
file.

(11) Interrupt functions
An interrupt disable instruction and an interrupt enable instruction are embedded in objects.

(12) CPU control instructions
Each of the following instructions is embedded in objects:
Instruction to set the value for halt to the STBC register
Instruction to set the value for stop to the STBC register
nop instruction

(13) Absolute address access function
Codes that access the ordinary memory space are created through direct inline expansion without resort to a
function call, and an object file is created.

(14) Bit field declaration

By specifying a bit field to be unsigned char type, the memory can be saved, object code can be shortened, and
execution speed can be improved.

User's Manual U14872EJ1VOUM 31

CHAPTER 1 GENERAL

(15) Function to change compiler output section name
By changing the compiler section output name, the section can be independently allocated with a linker.

(16) Binary constant description function
Binary can be described in the C source.

(17) Module name change functions
Object module names can be freely changed in the C source.

(18) Rotate function
The code to rotate the value of an expression to the object can be directly output with inline expansion.

(19) Multiplication function
The code to multiply the value of an expression to the object can be directly output with inline expansion. This
function can shorten the object code and improve the execution speed.

(20) Division function
The code to divide the value of an expression to the object can be directly output with inline expansion. This
function can shorten the object code and improve the execution speed.

(21) BCD operation function
This function uses direct inline expansion to output the code that performs a BCD operation on the operation
value in an object. A BCD operation is an operation for converting each digit of a decimal number into binary
and storing it in 4 bits.

(22) Data insertion function
Constant data is inserted in the current address. Specific data and instructions can be embedded in the code
area without using assembler description.

(23) Static model
Specifying the -SM option during compilation enables the shortening of object codes, improvement of execution
speed, realization of high-speed interrupt processing, and saving of memory space.

(24) Type modification
By specifying the -ZI option and -ZL option, int/short types are regarded as char type, and long type is
regarded as int type.

(25) Pascal function (_ _pascal)
The stack correction used for placing arguments during the function call is performed on the function callee, not
on the function caller. This shortens the object code when a lot of function call appears.

(26) Automatic pascal functionization of function call interface

By specifying the -ZR option during compilation, the _ _pascal attribute is added to functions other than the
norec/_ _interrupt/variable length argument functions.

32 User's Manual U14872EJ1VOUM

CHAPTER 1 GENERAL

(27) Method of int expansion limitation of argument/return value
By specifying the -ZB option during compilation, the object code can be shortened and execution speed can be
improved.

(28) Array offset calculation simplification method
By specifying the -QW2, -QW3, -QW4, and -QWS5 options during compilation, the offset calculation code is
simplified, the object code is shortened, and the execution speed is improved.

(29) Register direct reference function
Register access can be made easily by the C specification by coding this function in the source in the same
format as the function call or by declaring the use of this register direct reference function by the #pragma
realregister directive in the module.

(30) Memory manipulation function
By the #pragma inline directive, an object file is generated by the output of the standard library functions
memcpy and memset with direct inline expansion instead of function call. This function can improve the
execution speed.

(31) Absolute address allocation specification
By declaring _ _directmap in the module in which the variable to be allocated to an absolute address is to be
defined, one or more variables can be allocated to the same arbitrary address.

(32) Static model expansion specification
By specifying the -ZM option during compilation, restrictions on existing static models can be relaxed, improving
descriptiveness.

(33) Temporary variables
By specifying the -SM and -ZM options during compilation and declaring _ _temp for arguments and automatic
variables, an area for arguments and automatic variables can be reserved.
In addition, if the sections containing arguments and those containing automatic variables are clearly identified
and the _ _temp declaration is applied to variables that do not require a guaranteed value match before and

after a function call, memory can be reserved.
(34) Library supporting prologue/epilogue

By specifying the -ZD option during compilation, the prologue/epilogue code can be replaced by a library,
shortening the object code.

User's Manual U14872EJ1VOUM 33

CHAPTER 2 CONSTRUCTS OF C LANGUAGE

This chapter explains the constituting elements of a C source module file.

A C source module file consists of the following tokens (distinguishable units in a sequence of characters).

Keywords Identifiers Constants
String literal Operators Delimiters
Header name No. of preprocesses Comment

The tokens used in the C program description example are shown below.

#i ncl ude “expand. h”

extern void testb(void); EXEEIN .
extern void chgb(void);

extern bit datal;

extern bit data2; datal, data2........cccccoviiiiiii
voi d mai n() VOI et
{
dat al=1; e
dat a2=0; L0 P UURR
whi | e(dat al) { Whle..ooooooi
dat al=dat a2; L
testb(); T aaaan
}
i f (dat al&&dat a2) { T et e e ans
chgb(); &
} () oo
}
void lprintf(char *s,int i) IPFIN e
{ CRAL, INT e
int j; S,y s
char *ss; P PRSP RRPTPPPR
j=i;
SS=s;
}

Keyword

Identifiers

Keyword

Constant
Constant

Keyword
Delimiter
Operator

Keyword
Operator
Operator

Identifier
Keywords
Identifiers

Operator

34 User's Manual U14872EJ1VOUM

CHAPTER 2 CONSTRUCTS OF C LANGUAGE

2.1 Character Sets

(1) Character sets
Character sets to be used in C programs include a source character set to be used to describe a source file and
an execution character set to be interpreted in the execution environment.
The value of each character in the execution character set is represented by JIS code.
The following characters can be used in the source character set and execution character set:

26 uppercase letters
A B C D E F G H I

N O P Q R

»
—
c
<
EQ
x X
<
N Z

26 lowercase letters
a b ¢ d e f g h i | k| m
n o p g r s t u v w X y z

10 decimal numbers
0 1 2 3 4 5 6 7 8 9

29 graphic characters
et #E % & «)y * + ., - . |
o< = >?2 [v 1 ~ —={ 1 } -

and nonprintable control characters which indicate Space, Horizontal Tab, Vertical Tab, Form Feed, etc. (see

escape sequences below.)

Remark In character constants, string literal, and comment statements, characters other than above may also be

used.

User's Manual U14872EJ1VOUM 35

CHAPTER 2 CONSTRUCTS OF C LANGUAGE

)

®)

36

Escape sequences

Nongraphic characters used for control characters as for alert, formfeed, and such are represented by escape

sequences. Each escape sequence consists of the \ sign and an alphabetic character.
Nongraphic characters represented by escape sequences are shown below.

Table 2-1. List of Escape Sequences

Escape Sequence Meaning Character Code
\a Alert 07H
\b Backspace 08H
\f Formfeed OCH
\n New Line 0AH
\r Carriage Return ODH
\t Horizontal Tab 09H
\v Vertical Tab 0BH

Trigraph sequences

When a source file includes a list of the three characters (called “trigraph sequence”) shown in the left column of
the table below, the list of the three characters is converted into the corresponding single character shown in the

right column.

Table 2-2. List of Trigraph Sequence

Trigraph Sequence

Meaning

?7=

#

2%

22/

2?)

27

> |— |- |—

27<

27!

27>

27-

User's Manual U14872EJ1VOUM

CHAPTER 2 CONSTRUCTS OF C LANGUAGE

2.2 Keywords

(1) ANSI-C keywords
The following tokens are used by the C compiler as keywords and thus cannot be used as labels or variable

names.
auto br eak case char const conti nue
def aul t do doubl e el se enum extern f or
fl oat goto if i nt | ong register return
short si gned si zeof static struct switch
t ypedef uni on unsi gned void volatile while

(2) Keywords added for the CC78K0S
In this C compiler the following tokens have been added as keywords to implement its expanded functions.
These tokens cannot be used as labels or variable names nor can ANSI (when an uppercase character is

included, the token is not regarded as a keyword).
Keywords which do not start with “_ _” can be made invalid by specifying the option (-ZA) that enables only

ANSI-C language specification.
callf, _ _callf, _ _banked 1 to 15, _ _rtos_interrupt, and _ _interrupt_brk are taken as keywords for compatibility

with the CC78KO.

_o_callt/cal It
_callf/cal lf i,
- =Te A=Y g =T o P

NOAUL O covveiiiiiiiiei e

_ _bool ean/ bool ean..........ccccceeee.

_odinterrupt .

_ _interrupt_brk......

_ _banked 1 to 15

_ _pascal

Declaration of callt function
Declaration of callf function
Declaration of sreg variable
Declaration of noauto function
Declaration of norec function
Declaration of bit type variable
Declaration of boolean type variable
Hardware interrupt function
Software interrupt function
Bank function

asm statement

Interrupt handler for RTOS
Pascal function

Absolute address allocation specification

Temporary variable

__mxcall function™°*®

Note Reserved keyword for interface with MX

. This keyword must not be used by users.

User's Manual U14872EJ1VOUM

37

CHAPTER 2 CONSTRUCTS OF C LANGUAGE

2.

3 Identifiers

An identifier is the name given to a variable such as:

Function

Object

Tag of structure, union, or enumeration type
Member of structure, union, or enumeration type
typedef name

Label name

Macro name

Macro parameter

Each identifier can consist of uppercase letters, lowercase letters, numeric characters, and the underscores. The

following characters can be used as identifiers.

There is no restriction for the maximum length of the identifier. In this compiler, however, only the first 249

characters can be identified (refer to Table 1-1 Maximum Performance Characteristics of this C Compiler).

_(underscore) a b c d e f g h i j k | m
n o p q r s t u % w X y z
A B C D E F G H | J K L M

All identifiers must begin with other than a numerical character (namely, a letter or an underscore) and must not be

the same as any keyword.

38

User's Manual U14872EJ1VOUM

CHAPTER 2 CONSTRUCTS OF C LANGUAGE

2.3.1 Scope of identifiers

The range within which the use of an identifier becomes effective is determined by the location at which the

identifier is declared. The scope of identifiers is divided into the following four types.

* Function scope

* File scope

+ Block scope

* Function prototype scope

extern __bool ean datal, data2; ——— datal,data2........ccccccoviieviiiiiiiiiiiiiiiiie i, File scope
void testb (int x); T Xttt e Function prototype scope

voi d mai n(voi d)

{
int cot; GO Block scope
dat al=1;
dat a2=0;
whi | e(dat al){
dat al=dat a2;
j 1 S I PSP PRORRTIN Function scope
testb(cot);
}
}
voi d testh(int x) e X Block scope
{
(1) Function scope

)

Function scope refers to the entirety within a function. An identifier with function scope can be referenced from
anywhere within a specified function.
Identifiers that have function scope are label names only.

File scope

File scope refers to the entirety of a translation (compiling) unit. Identifiers that are declared outside a block or
parameter list all have file scope. An identifier that has file scope can be referenced from anywhere within the
program.

User's Manual U14872EJ1VOUM 39

CHAPTER 2 CONSTRUCTS OF C LANGUAGE

®)

(4)

Block scope

Block scope refers to the range of a block (a sequence of declarations and statements enclosed by a pair of

curly braces { } which begins with the opening brace and ends with the closing brace.

Identifiers that are declared inside a block or parameter list all have block scope. An identifier that has block

scope is valid until the innermost brace pair including the declaration of the identifier is closed.

Function prototype scope

Function prototype scope refers to the range of a declared function from its beginning to the end. Identifiers that
are declared inside a parameter list within a function prototype all have function prototype scope. An identifier

that has function prototype scope is valid within a specified function.

2.3.2 Linkage of identifiers

scopes or in the same scope can be referenced as the same object or function. By being linked, identifiers are
regarded to be one and the same. Identifiers may be linked in the following three different ways: external linkage,

The linkage of identifiers refers to the situation whereby the same identifier declared more than once in different

internal linkage and no linkage

1)

)

®)

40

External linkage

External linkage refers to identifiers to be linked in translation (compiling) units that constitute the entire program

and as a collection of libraries.
The following identifiers have external linkage examples:

« The identifier of a function declared without storage class specification
» The identifier of an object or function declared as extern, which has no storage class specification
» The identifier of an object which has file scope but has no storage class specification.

Internal linkage
Internal linkage refers to identifiers to be linked within one translation (compiling) unit.
The following identifier has an internal linkage example:

« The identifier of an object or function which has file scope and contains the storage class specifier static.
No linkage

An identifier that has no linkage to any other identifier is an inherent entity.

Examples of identifiers that have no linkage are as follows:

« An identifier which does not refer to a data object or function

» An identifier declared as a function parameter
» The identifier of an object which does not have storage class specifier extern inside a block

User's Manual U14872EJ1VOUM

CHAPTER 2 CONSTRUCTS OF C LANGUAGE

2.3.3 Name space for identifiers

All identifiers are classified into the following “name spaces”.

Label Nameuueeeicic e, Distinguished by a label declaration.

Tag name of structure, union, or enumeration... Distinguished by the keyword struct, union or enum

Member name of structure or union................... Distinguished by the dot (.) operator or arrow (->) operator.
Ordinary identifiers (other than above) Declared as ordinary declarators or enumeration type constants.

2.3.4 Storage duration of objects

Each object has a storage duration that determines its lifetime (how long it can remain in memory). This storage

duration is divided into the following two categories: static storage duration and automatic storage duration

1)

)

Static storage duration

Before executing an object program that has a static duration, an area is reserved for objects and values to be
stored are initialized once. The objects exist throughout the execution of the entire program and retain the
values last stored.

Objects that have a static storage duration are as follows.

» Objects that have external linkage
» Objects that have internal linkage
» Objects declared by storage class specifier static

Automatic storage duration

For objects that have automatic storage duration, an area is reserved when they enter a block to be declared.

If initialization is specified, the objects are initialized as they enter from the beginning of the block. In this case, if
any object enters the block by jumping to a label within the block, the object will not be initialized.

For objects that have automatic storage duration, the reserved area will not be guaranteed after the execution of
the declared block.

Objects that have automatic storage duration are as follows.

» Objects that have no linkage
» Objects declared inside a block without storage class specifier static

2.3.5 Datatypes

Data types determine the meaning of a value to be stored in each object and are divided into the following three

categories.

ObjeCt tYPe..eveviee i Type that indicates an object with size information

Function type Type that indicates a function

Incomplete type ... Type that indicates an object without size information

The type categories are shown below.

User's Manual U14872EJ1VOUM 41

CHAPTER 2 CONSTRUCTS OF C LANGUAGE

» Basic types —1— Integral types ——char type
(Arithmetic types) — Signed signed char
integral short int
types int

long int
—Unsigned integral types
(specified by unsigned)
— Enumeration type
— Floating-point types——float

—double
—long double
* Character types —— char
— signed char
— unsigned char
* Incomplete types = —— Array with an indefinite object size, structure, union, and void type

* Derived types — Array type

A te t
— Structure typej_ ggregate type
— Union type

— Function type

— Pointer type

* Scalar types —I: Basic (Arithmetic types)
Pointer type

(1) Basic types
Basic data types are also referred to as “arithmetic types”. The arithmetic types consist of integral types and
floating-point types.

(@) Integral types
Integral data types are subdivided into four types. Each of these types has a value represented by the
binary numbers 0 and 1.

» char type

+ Signed integral type

* Unsigned integral type
* Enumeration type

(i) char type
The char type has a sufficient size to store any character in the basic execution character set. The
value of a character to be stored in a char type object becomes positive. Data other than characters is
handled as an unsigned integer. In this case, however, if an overflow occurs, the overflowed part will
be ignored.

42 User's Manual U14872EJ1VOUM

CHAPTER 2 CONSTRUCTS OF C LANGUAGE

(b)

(ii) Signed integral type

The signed integral type is subdivided into the following four types:

* signed char

e shortint
o int
* longint

An object declared with the signed char type has an area of the same size as the char type without a
qualifier.

An int object without a qualifier has a size natural to the CPU architecture of the execution
environment. A signed integral type data has its corresponding unsigned integral type data. Both
share an area of the same size. The positive number of a signed integral type data is a subset of
unsigned integral type data.

(iii) Unsigned integral type

The unsigned integral type is data defined with the unsigned keyword. No overflow occurs in any
computation involving unsigned integral type data. The reason is that if the result of a computation
involving unsigned integral type data becomes a value which cannot be represented by an integral
type, the value will be divided by the maximum number which can be represented by an unsigned
integral type plus 1 and substituted with the remainder in the result of the division.

(iv) Enumeration type

Enumeration is a collection or list of named integer constants. An enumeration type consists of one or
more sets of enumeration.

Floating-point types

The floating-point types are subdivided into the three types.

In

float
double
long double

this compiler, double and long double types as well as float type are supported as a floating-point

expression for the single-precision normalized number that is specified in ANSI/IEEE 754-1985. Thus,

float, double, and long double types have the same value range.

User's Manual U14872EJ1VOUM 43

CHAPTER 2 CONSTRUCTS OF C LANGUAGE

44

Table 2-3. List of Basic Data Types

Type Value Range
(signed) char -128 to +127
unsigned char 0 to 255
(signed) short int —32768 to +32767
unsigned short int 0 to 65535
(signed) int —32768 to +32767
unsigned int 0 to 65535
(signed) long int —2147483648 to +2147483647
unsigned long int 0 to 4294967295
float 1.17549435E-38F to 3.40282347E+38F
double 1.17549435E-38F to 3.40282347E+38F
long double 1.17549435E-38F to 3.40282347E+38F

+ The signed keyword can be omitted. However, with the char type, it is judged as signed char or
unsigned char depending on the condition at compilation.

« short int data and int data are handled as data which have the same value range but are of different
types.

+ unsigned short int data and unsigned int data are handled as data which have the same value range
but are of different types.

« float, double, and long double data are handled as data which have the same value range but are of
different types.

(i) Floating-point number (float type) specifications
+ Format
The floating-point number format is shown below.

(Higher address) | s e m (Lower address)

31 30 23 22 0
The numerical values in this format are as follows.

(Value of sign) (Value of exponent)
=1 * (Value of mantissa) *2

s: Sign (1 bit)
0 for a positive number and 1 for a negative number.

e: Exponent (8 bits)
An exponent with a base of 2 is expressed as a 1-byte integer (expressed by two’s complement
in the case of a negative), and used after having a further bias of 7FH added. These
relationships are shown in Table 2-4 below.

User's Manual U14872EJ1VOUM

CHAPTER 2 CONSTRUCTS OF C LANGUAGE

Table 2-4. Exponent Relationships

Exponent (Hexadecimal) Value of Exponent
FE 127
81 2
80
7F 0
7E -1
01 -126

m: Mantissa (23 bits)
The mantissa is expressed as an absolute value, with bit positions 22 to 0 equivalent to the 1st to
23rd places of a binary number. Except for when the value of the floating point is 0, the value of
the exponent is always adjusted so that the mantissa is within the range of 1 to 2 (normalization).
The result is that the position of 1 (i.e. the value of 1) is always 1, and is thus represented by
omission in this format.

Zero expression
When exponent = 0 and mantissa = 0, +0 is expressed as follows.

(Value of sign)
=1 Y

Infinity expression
When exponent = FFH and mantissa = 0, o is expressed as follows.

(Value of sign)
=1 * 00

Unnormalized value
When exponent = 0 and mantissa # 0, the unnormalized value is expressed as follows.

(Value of sign) -126
=1 * (Value of mantissa) *2

Remark The mantissa value here is a number less than 1, so bit
positions 22 to 0 of the mantissa express as is the 1st to
23rd decimal places.

Not-a-number (NaN) expression
When exponent = FFH and mantissa # 0, NaN is expressed, regardless of the sign.

Operation result rounding

Numerical values are rounded down to the nearest even number. If the operation result cannot be
expressed in the above floating-point format, round to the nearest expressible number.

If there are two values that can express the differential of the prerounded value, round to an even
number (a number whose lowest binary bit is 0).

User's Manual U14872EJ1VOUM 45

CHAPTER 2 CONSTRUCTS OF C LANGUAGE

* Operation exceptions
There are five types of operation exceptions, as shown below.

Table 2-5. List of Operation Exceptions

Exception Return Value
Underflow Unnormalized number
Inexact +0
Overflow +00
Zero division *00
Operation impossible Not-a-number (NaN)

Calling the matherr function causes a warning to appear when an exception occurs.

(2) Character types
The character data types include the following three types.

e char
* signed char
* unsigned char

(3) Incomplete types
The incomplete data types include the following four types.

» Arrays with indefinite object size
« Structures

* Unions

* void type

(4) Derived types
The derived types are divided into the following three categories.

* Array type

» Structure type
* Union type

* Function type
* Pointer type

(&) Aggregate type
The aggregate type is subdivided into two types.
Array type and Structure type. An aggregate type data is a collection of member objects to be taken
successively.

46 User's Manual U14872EJ1VOUM

CHAPTER 2 CONSTRUCTS OF C LANGUAGE

©)

(b)

()

(d)

Sc

(i) Arraytype
The array type continuously allocates a collection of member objects called the element type. Member
objects all have an area of the same size. The array type specifies the number of element types and
the elements of the array. It cannot create the array of incomplete type.

(ii) Structure type
The structure type continuously allocates member objects each differing in size. Giving it a name can
specify each member object.

Union type
The union type is a collection of member objects that overlap each other in memory. These member
objects differ in size and name and can be specified individually.

Function type

The function type represents a function that has a specified return value. A function type data specifies the
type of return value, the number of parameters, and the type of parameter. If the type of return value is T,
the function is referred to as a function that returns T.

Pointer type

The pointer type is created from a function type object type called a referenced type as well as from an
incomplete type. The pointer type represents an object. The value indicated by the object is used to
reference the entity of a referenced type.

A pointer type data created from the referenced type T is called a pointer to T.

alar types

The arithmetic types (basic type) and pointer type are collectively called the scalar types. The scalar types

include the following data types:

char type

Signed integral type
Unsigned integral type
Enumeration type
Floating-point type
Pointer type

User's Manual U14872EJ1VOUM 47

CHAPTER 2 CONSTRUCTS OF C LANGUAGE

2.3.6 Compatible type and composite type

1)

)

Compatible type

If two types are the same, they are said to be compatible or have compatibility. For example, if two structures,
unions, or enumeration types that are declared in separate translation (compiling) units have the same number
of members, the same member name and compatible member types, they have a compatible type. In this case,
the individual members of the two structures or unions must be in the same order and the individual members
(enumerated constants) of the two enumerated types must have the same values.

All declarations related to the same objects or functions must have a compatible type.

Composite type
A composite type is created from two compatible types. The following rules apply to the composite type.

« If either of the two types is an array of known type size, the composite type is an array of that size.

« If only one of the types is a function type with a parameter type list (declared with a prototype), the composite
type is a function prototype with a parameter type list.

« If both types have a parameter type list (i.e., functions with prototypes), the composite type is the one with a
prototype consisting of all information that can be combined from the two prototypes.

[Example of composite type]

Assume that two declarations that have file scope are as follows.

int f(int(*)(),double(*)[3]);
int f(int(*)(char *),double(*)[]);

The composite type of the function in this case becomes as follows.

int f(int(*)(char *),double(*)[3]);

48

User's Manual U14872EJ1VOUM

CHAPTER 2 CONSTRUCTS OF C LANGUAGE

2.4 Constants

A constant is a variable that does not change in value during the execution of the program, and its value must be
set beforehand. A type for each constant is determined according to the format and value specified for the constant.
The following four constant types are available.

* Floating-point constants
* Integer constants

« Enumeration constants
» Character constants

2.4.1 Floating-point constant
A floating-point constant consists of a valid digit part, exponent part, and floating-point suffix.

Valid digit part: Integer part, decimal point, and fraction part
Exponent part: e or E, signed exponent
Floating point suffix: f/F (float)

I/L (long double)

If omitted (double)

The signed exponent of the exponent part and the floating-point suffix can be omitted.
Either the integer part or fraction part must be included in the valid digits. Also, either the decimal point or
exponent part must be included (example: 1.23F, 2e3).

2.4.2 Integer constant

An integer constant starts with a number and does not have the decimal point or the exponent part. An unsigned
suffix can be added after the integer constant to indicate that the integer constant is unsigned. A long suffix can be
added after the integer constant to indicate that the integer constant is long.

There are the following three types of integer constant.

« Decimal constant: Decimal number that starts with a number other than 0
Decimal number = 123456789
* Octal constant: Integer suffix 0 + octal number

Octal number = 01234567
* Hexadecimal constant: Integer suffix Ox or 0X + hexadecimal number
Hexadecimal number = 0123456789
abcdef ABCDEF

Unsigned suffix
uu
Long suffix
I L

(1) Decimal constant
A decimal constant is an integer value with a base (radix) of 10 and must begin with a number other than 0
followed by any numbers 0 through 9 (example: 56U).

User's Manual U14872EJ1VOUM 49

CHAPTER 2 CONSTRUCTS OF C LANGUAGE

(2) Octal constant

An octal constant is an integer value with a base of 8 and must begin with 0 followed by any numbers 0 through
7 (example: 034U).

(3) Hexadecimal constant

A hexadecimal constant is an integer value with a base of 16 and must begin with Ox or 0X followed by any

numbers 0 through 9 and a through f or A through F which represent 10 through 15 (example: OxF3).

The type of integer constant is regarded as the first of the “representable type” shown below.

In this compiler, the type of the unsubscripted constant can be changed to char or unsigned char depending on

the compile condition (option).

243

(Integer constant) (Representable type)
Unsuffixed decimal number..............cccccvveeeeeeenn. int, long int, unsigned long int
Unsuffixed octal, hexadecimal number int, unsigned int, long int, unsigned long int

Suffixed u or U unsigned int, unsigned long int
Suffixed 1 or Looeveiiieiiieee long int, unsigned long int
unsigned long int

Suffixed u or U, and suffixed | or L

Enumeration constants

Enumeration constants are used for indicating an element of an enumeration type variable, that is, the value of an

enumeration type variable that can have only the specific value indicated by an identifier.

The enumeration type (enum) is whichever is the first type from the top of the list of three types shown below that

can represent all the enumeration constants. The enumeration constant is indicated by the identifier.

signed char
unsigned char
signed int

It is described as ‘enum enumeration type {list of enumeration constant}'.

Example enum nont hs{January=1, February, March, April, May};

When the integer is specified with =, the enumeration variable has the integer value, and the
following value of enumeration variable has that integer value + 1. In the example shown above, the
enumeration variable has 1, 2, 3, 4, 5, respectively. When there is not ‘= 1’, each constant has 0, 1,
2, 3, 4, 5, respectively.

50

User's Manual U14872EJ1VOUM

CHAPTER 2 CONSTRUCTS OF C LANGUAGE

2.4.4 Character constants

A character constant is one or more character strings enclosed in a pair of single quotes as in ‘X’ or ‘ab’.

A character constant does not include single quote (), backslash (¥ or \), and line feed character (¥n). To
represent these characters, escape sequences are used. There are the following three types of escape sequences.

» Simple escape sequence: \’ \” \? \ ¥
\a \b \ f \'n \r \ t \v
» Octal escape sequence: \ octal number [octal number octal number]
(example:\ 012, \o0"°*Y)
* Hexadecimal escape sequence: \ x hexadecimal number

(example: \ x FF°'¢ 2)

Notes 1. Null character
2. In this compiler, \xFF represents —1. If the condition (option) that regards char as unsigned char is
added, however, it represents +255.

2.5 String Literal

A string literal is a string of zero or more characters enclosed in a pair of double quotes as in “xxx” (example:
“Nyz").

A single quote (’) is represented by the single quotation mark itself or by escape sequence Y, whereas a double

quote () is represented by escape sequence \”.
Array elements have char type string literal and are initialized by tokens given (example: char array [] = “abc™;).

2.6 Operators

The operators are shown below.

(r o . ->

++ -- & * + - ~ ! si zeof

/ % << >> > <= >= == 1=
U B - R

?

= * = /= o= += -= <<= >>=

&= N= | =

, # ##

The[], (), and ?: operators must always be used in pairs.

An expression may be described in brackets “[]”, in parentheses “()”, or between “?” and “”.

The # and ## operators are used only for defining macros in preprocessing directives. (For the description, refer
to CHAPTER 5 OPERATORS AND EXPRESSIONS.)

User's Manual U14872EJ1VOUM 51

CHAPTER 2 CONSTRUCTS OF C LANGUAGE

2.7 Delimiters

A delimiter is a symbol that has an independent syntax or meaning. However, it never generates a value.
The following delimiters are available for use in C.

o {0 , : = ; . #

An expression declaration or statement may be described in brackets “[], parentheses “()”, or braces “{ }".
These delimiters must always be used in pairs as shown above. The delimiter # is used only for preprocessing
directives.

2.8 Header Name

The header name indicates the name of an external source file. This name is used only in the preprocessing
directive “#include”.

An example of an #include instruction of a header name is shown below. For the details of each #include
instruction, refer to 9.2 Source File Inclusion Directive.

#i ncl ude <header name>
#i ncl ude “header name”

2.9 Comment

A comment refers to a statement to be included in a C source module for information only. It begins with “/*” and
ends with “*/”. The part after “//” to the line feed can be identified as a comment statement by the -ZP option.

Example / * comment statement */
/ | comment statement

52 User's Manual U14872EJ1VOUM

CHAPTER 3 DECLARATION OF TYPES AND STORAGE CLASSES

This chapter explains how data (variables) or functions to be used in C should be declared as well as the scope for
each data or function. A declaration means the specification of an interpretation or attribute for an identifier or a

collection of identifiers. A declaration to reserve a storage area for an object or function named by an identifier is
referred to as a “definition”.

An example of a declaration is shown below.

#define TRUE 1
#define FALSE O
#define SIZE 200

voi d mai n(voi d)
{

auto int i,prinme,Kk; /* declaration of automatic variables */

for(i=0;i<=SIZE;i++)
mar k[i] =TRUE;

A declaration consists of a storage class specifier, type specifier, initialize declarator, etc. The storage class
specifier and type specifier specify the linkage, storage duration, and the type of entity indicated by the declarator.
An initialize declarator list is a list of declarators each delimited with a comma. Each declarator may have additional
type information or an initializer or both.

If an identifier for an object declares that it has no linkage, the type for the object must be perfect (the object with
information related to the size) at the end of the declarator or initialize declarator (if there is any).

User's Manual U14872EJ1VOUM 53

CHAPTER 3 DECLARATION OF TYPES AND STORAGE CLASSES

3.1 Storage Class Specifiers

A storage class specifier specifies the storage class of an object. It indicates the storage location of the value that

the object has, and the scope of the object. In a declaration, only one storage class specifier can be described. The

following five storage class specifiers are available.

+ typedef
« extern

+ static

e auto

* register

1)

)

®)

(4)

(®)

54

typedef
The typedef specifier declares a synonym for the specified type. See 3.6 typedef for details of the typedef
specifier.

extern
The extern specifier indicates (tells the compiler) that a variable immediately before this specifier is declared
elsewhere in the program (i.e., an external variable).

static

The static specifier indicates that an object has static storage duration. For an object that has static storage
duration, an area is reserved before the program execution and the value to be stored is initialized only once.
The object exists throughout the execution of the entire program and retains the value last stored in it.

auto

The auto specifier indicates that an object has automatic storage duration. For an object that has automatic
storage duration, an area is reserved when the object enters a block to be declared.

At entry into the declared block from its top, the object is initialized if so specified. If the object enters the block
by jumping to a label within the block, the object will not be initialized.

The area reserved for an object with automatic storage duration will not be guaranteed after the execution of the
declared block.

register

The register specifier indicates that an object is assigned to a register of the CPU. With this C compiler, it is
allocated to the register or saddr area of the CPU. See CHAPTER 11 EXTENDED FUNCTIONS for details of
register variables.

User's Manual U14872EJ1VOUM

CHAPTER 3 DECLARATION OF TYPES AND STORAGE CLASSES

3.2 Type Specifiers

A type specifier specifies (or refers to) the type of an object. The following type specifiers are available.

+ void

* char

+ short

* int

* long

« float

+ doubl e

* long doubl e

* signed

* unsi gned

+ Structure or union specifier
» Enumeration specifier
+ typedef name

In this C compiler, the following type specifiers have been added.

* bit/bool ean/ _ _bool ean

User's Manual U14872EJ1VOUM

55

CHAPTER 3 DECLARATION OF TYPES AND STORAGE CLASSES

The following is an explanation of the meaning of each type specifier and the limit values that can be expressed

with this compiler (the values enclosed in the parentheses). Since this compiler supports only the single precision of
IEEE Std 754-1985 for floating-point operations, double and long double data are regarded as having the same

format as float data.

* signed char
* unsi gned char
si gned short,

signed short
* unsi gned short,
e int,

int,

N e
unsi gned short
signed int ...

* short, short
int ...
si gned,
unsi gned i nt
signed | ong,

* unsigned, unsigned int ...
* |long,
signed long int

* unsi gned | ong,

long int,

« fl oat

e long doubl € .ccovviiiiiiiie e

+ Structure/union specifiercccccvviiieiciiinnnen.
* Enumeration specifiercccccceveeiiiieiieeiieens
o typedef Nname......ccoccoiiiiiiiiiie e

e bit, bool ean,

Collection of null values

Size of the basic character set that can be stored
Signed integer (-128 to +127)

Unsigned integer (0 to 255)

Signed integer (—-32768 to +32767)
Unsigned integer (0 to 65535)
Signed integer (-32768 to +32767)
Unsigned integer (0 to 65535)

Signed integer (—2147483648 to +2147483647)

Unsigned integer (0 to 4294967295)

Single-precision floating-point number (1.17549435E-38F to
3.40282347E+38F)

Double-precision floating-point number (1.17549435E-38F
to 3.40282347E+38F)

Extended precision floating point number
(1.17549435E-38F to 3.40282347E+38F)

Collection of member objects

Collection of int type constants

Synonym of specified type

Integers represented with a single bit (0 to 1)

Type specifiers separated from each other with a slash have the same size.

56

User's Manual U14872EJ1VOUM

CHAPTER 3 DECLARATION OF TYPES AND STORAGE CLASSES

3.2.1 Structure specifier and union specifier

Both the structure specifier and union specifier indicate a collection of named members (objects). These member

objects can have different types from one another.

1)

Structure specifier

The structure specifier declares a collection of two or more different types of variables as one object. Each type
of object is called a member and can be given a name. For members, continuous areas are reserved in the
order of their declarations.

However, because the 78K/0S Series contains a restriction whereby word data is unable to be read from or
written to odd addresses, the code size is prioritized by default, and align data is inserted to ensure members of
2 bytes or more are allocated to even addresses. Gaps may therefore occur between members due to the align
data.

The -RC option can be specified to inhibit insertion of align data and enable structures to be packed. In this
case, although the size of the data is reduced, members of 2 or more bytes allocated to odd addresses are
read/written using 1-byte unit read/write code, which increases the code size.

The structure is declared as follows. The declaration will not yet allocate memory since it does not have a list of
structure variables. For the definition of the structure variables, refer to CHAPTER 7 STRUCTURES AND
UNIONS.

struct identifier {member declaration list};

Example of structure declaration

struct tnode{
int count;
struct tnode *left,*right;

I

)

Union specifier

The union specifier declares a collection of two or more different types of variables as one object. Each type of
object is called a member and can be given a name. The members of a union overlay each other in area,
namely, they share the same area.

The union is declared as follows. The declaration will not yet allocate memory since it does not have a list of
union variables. For the definition of the union variables, refer to CHAPTER 7 STRUCTURES AND UNIONS.

uni on identifier {member declaration list};

Example of union declaration

uni on u_tag{
int varl ;
| ong var?2 ;

I

Each member object can be any type other than the incomplete types or function types. The member can be
declared with the number of bits specified. The member with the number of bits specified is called a bit field.

User's Manual U14872EJ1VOUM 57

CHAPTER 3 DECLARATION OF TYPES AND STORAGE CLASSES

®)

In this compiler, extended functions related to bit field declaration have been added. For details, refer to 11.5
(14) Bit field declaration.

Bit field
A bit field is an integral type area consisting of a specified number of bits. For the bit field, int type, unsigned

Note 1

int type, and signed int type data can be specified. The MSB of an int field which has no qualifier or a

signed int field will be judged as a sign bit."°" 2
If two or more bit fields exist, the second and subsequent bit fields are packed into the adjacent bit positions,
provided there is sufficient space within the same memory unit. By placing an unnamed bit field with a width of
0, the next bit field will not be packed into a space within the same memory unit. An unnamed bit field has no
declarator and declares a colon and a width only.

Unary&operator (address) cannot be applied to the bit field object.

Notes 1. In this compiler, char type, unsigned char type, and signed char type can also be specified. All of
them are regarded as unsigned type since this compiler does not support signed type bit field.
2. In this compiler, the direction of bit field allocation can be changed by compiler option -RB (for
details, refer to CHAPTER 11 EXTENDED FUNCTIONS).

The following shows an example of a bit field.

struct data{
unsigned int a:2;
unsigned int b:3;
unsigned int c:1;
}noil;

58

User's Manual U14872EJ1VOUM

CHAPTER 3 DECLARATION OF TYPES AND STORAGE CLASSES

3.2.2 Enumeration specifiers

An enumeration type specifier indicates a list of objects to be put in sequence. Objects to be declared with the
enum specifier will be declared as constants that have int types.

The enumeration specifier is declared as shown below.

enumidentifier {enumerator list}

Objects are declared with an enumerator list. Values are defined for all objects in the list in the order of their
declaration by assigning the value of 0 to the first object and the value of the previous object plus 1 to the 2nd and
subsequent objects. A constant value may also be specified with “=".

In the following example, “hue” is assumed as the tag name of the enumeration, “col” as an object that has this
(enum) type, and “cp” as a pointer to an object of this type. In this declaration, the values of the enumeration
become “{0, 1, 20, 21}".

enum hue{
chartreuse,
bur gundy,
cl ar et =20,
wi nedar k
s
enum hue col , *cp;
voi d mai n(void) {
col =cl aret;
cp=&col ;
[*...*%] (*cp!=burgundy) /*...*/

User's Manual U14872EJ1VOUM 59

CHAPTER 3 DECLARATION OF TYPES AND STORAGE CLASSES

3.2.3 Tags

A tag is a name given to a structure, union, or enumeration type. A tag has a declared data type and objects of
the same type can be declared with a tag.

The identifier in the following declaration is a tag name.

structure/union identifier {member declaration list}
or
enum identifier {enumerator list}

A tag contains the contents of the structure/union or enumeration defined by a member. In the next and
subsequent declarations, the structure of a struct, union, or enum type becomes the same as that of the tag’s list. In
the subsequent declarations within the same scope, the list enclosed in braces must be omitted. The following type
specifier is undefined with respect to its contents and thus the structure or union has an incomplete type.

structure/union identifier

A tag to specify the type of this type specifier can be used only when the object size is unnecessary. The reason
is that by defining the contents of the tag within the same scope, the type specification becomes incomplete.

In the following example, the tag “thode” specifies a structure that includes pointers to an integer and two objects
of the same type.

struct tnode{
int count;
struct tnode *left, *right;

I

The next example declares “s” as an object of the type indicated by the tag (tnode) and “sp” as a pointer to the
object of the type indicated by the tag. By this declaration, the expression “sp - left” indicates a pointer to “struct
tnode” on the left of the object pointed to by “sp” and the expression “s.right — count” indicates “count” which is a

member of “struct tnode” on the right of “s”.

typedef struct tnode TNODE;
struct tnode{
int count;
struct tnode *left, *right;

I

TNODE s *sp;

voi d mai n(voi d) {
sp->l eft=sp->right;
s. right->count =2;

60 User's Manual U14872EJ1VOUM

CHAPTER 3 DECLARATION OF TYPES AND STORAGE CLASSES

3.3 Type Qualifiers

Two type qualifiers are available: const and volatile. These type qualifiers affect left-side values only.

Using a left-side value that has non-const type qualifier cannot change an object that has been defined with const
type qualifier. Using a left-side value that has non-volatile type qualifier cannot reference an object that has been
defined with volatile type qualifier.

An object that has volatile qualifier type can be changed by a method not recognizable by the compiler or may
have other unnoticeable side effects. Therefore, an expression that references this object must be strictly evaluated
according to the sequence rules that regulate abstractly how programs written in C should be executed. In addition,
the values to be last stored in the object at every sequence point must be in agreement with those determined by the
program except the changes due to the factors unrecognizable by the compiler as mentioned above.

If an array type is specified with type qualifiers, the qualifiers apply to the array members, not the array itself.

No type qualifier can be included in the specification of a function type. However, callt, __ callt, callf, _ _ callf,
noauto, norec, _ _leaf, _ _interrupt, _ _ interrupt_brk, _ _rtos_interrupt, _ _pascal, which are the type qualifiers
unique to this compiler mentioned in 2.2 Keywords, can be included as type qualifiers.

sreg,

sreg, _ _directmap, and _ _temp are also type qualifiers.

In the following example, “real_time_clock” can be changed by hardware, but operations such as assignment,
increment, and decrement are not allowed.

extern const volatile int real _tine_clock;

An example of modifying aggregate type data with type qualifiers is shown below.

const struct s{int mem} cs={1};

struct s ncs; /* object ncs is changeable */

typedef int A[2][3];

const A a={{4,5,6},{7,8,9}};, [* arrayof const int array */
int *pi;

const int *pci;

ncs=cs; [* correct */

CsS=ncs; [* violates restriction of Lvalue which has modifiable assignment operator */
pi =&ncs. mem /* correct */

pi =&cs. mem [* violates restriction of the type of assignment operator = */

pci =&cs. mem /* correct */

pi =a[0] ; /* incorrect:a[0] has “const int *” type */

User's Manual U14872EJ1VOUM 61

CHAPTER 3 DECLARATION OF TYPES AND STORAGE CLASSES

3.4 Declarators

A declarator declares an identifier. Here, pointer declarators, array declarators, and function declarators are
mainly discussed. The scope of an identifier and a function or object which has a storage duration and a type are
determined by declarators.

A description of each declarator is provided below.

3.4.1 Pointer declarators
A pointer declarator indicates that an identifier to be declared is a pointer. A pointer points to (indicates) the
location where a value is stored. Pointer declarations are performed as follows.

* type qualifier list identifier

By this declaration, the identifier becomes a pointer to T1.
The following two declarations indicate a variable pointer to a constant value and an invariable pointer to a
variable value, respectively.

const int *ptr_to_constant;
int *const constant ptr;

The first declaration indicates that the value of the constant “const int” pointed by the pointer “ptr_to_constant”
cannot be changed, but the pointer “ptr_to_constant” itself may be changed to point to another “const int”. Likewise,
the second declaration indicates that the value of the variable “int” pointed by the pointer “constant_ptr” may be
changed, but the pointer “constant_ptr” itself must always point to the same position.

The declaration of the invariable pointer “constant_ptr’ can be made distinct by including a definition for the pointer
type to the int type data.

The following example declares “constant_ptr’ as an object that has a const qualifier pointer type to int.

typedef int *int_ptr;
const int_ptr constant_ptr;

62 User's Manual U14872EJ1VOUM

CHAPTER 3 DECLARATION OF TYPES AND STORAGE CLASSES

3.4.2 Array declarators
An array declarator declares to the compiler that an identifier to be declared is an object that has an array type.
Array declaration is performed as shown below.

type identifier [constant expression]

By this declaration, the identifier becomes an array that has the declared type. The value of the constant
expression becomes the number of elements in the array. The constant expression must be an integer constant
expression which has a value greater than 0. In the declaration of an array, if a constant expression is not specified,
the array becomes an incomplete type.

In the following example, a char type array “a[]” which consists of 11 elements and a char type pointer array

“ap[]” which consists of 17 elements have been declared.

char a[11], *ap[17];

In the following two examples of declarations, “x” in the first declaration specifies a pointer to an int type data and

y” in the second declaration specifies an array to an int type data which has no size specification and is to be
declared elsewhere in the program.

extern int *x;
extern int y[];

3.4.3 Function declarators (including prototype declarations)

A function declarator declares the type of return value, argument, and the type of the argument value of a function
to be referenced.

Function declaration is performed as follows.

type identifier (parameter list or identifier list)

By this declaration, the identifier becomes a function which has the parameter specified by the parameter type list
and returns the value of the type declared before the identifier. Parameters of a function are specified by a
parameter identifier lists. By these lists, an identifier, which indicates argument and its type, are specified. A macro
defined in the header file “stdarg.h” converts the list described by the ellipsis (, ...) into parameters. For a function
that has no parameter specification, the parameter list will become “void”.

User's Manual U14872EJ1VOUM 63

CHAPTER 3 DECLARATION OF TYPES AND STORAGE CLASSES

3.5 Type Names

A type name is the name of the data type that indicates the size of a function or object. Syntax-wise, it is a

function or object declaration less identifiers.

64

Examples of type names are given below.

* int (*const[]) (unsigned int, ...) ...

Specifies an int type.

Specifies a pointer to an int type.

Specifies an array which has three pointers to an int type.

Specifies a pointer to an array which has three int types.

Specifies a function which returns a pointer to an int type which has no
parameter specification.

Specifies a pointer to a function which returns an int type which no
parameter specification.

Specifies an indefinite number of arrays which have one parameter of
unsigned int type and an invariable pointer to each function that returns an int

type.

User's Manual U14872EJ1VOUM

CHAPTER 3 DECLARATION OF TYPES AND STORAGE CLASSES

3.6 typedef Declarations

The typedef keyword defines that an identifier is synonymous with a specified type. The defined identifier

becomes a typedef name.
The syntax of typedef names is shown below.

t ypedef type identifier;

In the following example, “distance” is an int type, the type of “metricp” is a pointer to a function that returns an
int type that has no parameter specification, the type of “z” is a specified structure, and “zp” is a pointer to this

structure.

typedef int M LES, KLI CKSP();

typedef struct{long re,in} conplex;
[*. . 0%

M LES di st ance;

extern KLICKSP *netri cp;

conpl ex z, *zp;

In the following example, typedef name t is declared with signed int type, and typedef name plain is declared with
int type, respectively, and the structure with three bit field members is declared. The bit field members are as

follows.

» Bit field member with name t and the value 0 to 15
+ Bit field member without a name and the const qualified value —16 to +15 (if accessed)
» Bit field member with name r and the value —16 to +15

typedef signed int t;
typedef int plain;
struct tag{
unsi gned t: 4;
const t:5;
plain r:5;

I

In this example, these two bit field declarations differ in the point that the first bit field declaration has unsigned as the
type specifier (therefore, t becomes the name of the structure member), and the second bit field declaration, has
const as the type qualifier (qualifiers t which can be referred to as typedef name). After this declaration, if:

t f(t(t));
long t;

is found within the valid range, the function f is declared as “function which has one parameter and returns signed
int”, and the parameter is declared as “pointer type for the function which has one parameter and returns signed int”.

The identifier t is declared as long type.

User's Manual U14872EJ1VOUM 65

CHAPTER 3 DECLARATION OF TYPES AND STORAGE CLASSES

typedef names may be used to facilitate program reading. For example, the following three declarations for the
function signal all specify the same type as the first declaration that does not use typedef.

typedef void fv(int);
typedef void (*pfv)(int);

voi d(*signal (int,void(*)(int)))(int);
fv *signal (int,fv *);
pfv signal (int,pfv);

66 User's Manual U14872EJ1VOUM

CHAPTER 3 DECLARATION OF TYPES AND STORAGE CLASSES

3.7 Initialization

Initialization refers to setting a value in an object beforehand. Initializers carry out the initialization of an object.

Initialization is performed as follows.

object = {initializer list}

An initializer list must contain initializers for the number of objects to be initialized.

All expressions in initializers or an initializer list for objects that have static storage duration and objects that have
an aggregate type or a union type must be specified with constant expressions.

Identifiers that declare block scope but have external or internal linkage cannot be initialized.

(1) Initialization of objects which have a static storage duration
If no attempt is made to initialize an arithmetic type object that has static storage duration, the value of the object
will be implicitly initialized to 0.
Likewise, a pointer type object which has a static storage duration will be initialized to a null pointer constant.

Example unsi gned int gval 1; /* initialized by 0 */
static int gval 2; /* initialized by 0 */
voi d func(void){

static char aval; /* initialized by 0 */
}

(2) Initialization of objects which have an automatic storage duration
The value of an object which has an automatic storage duration becomes indefinite and will not be guaranteed if

it is not initialized.

Example voi d func(void){
char aval; /*undefined at this point */
aval =1, /* initialized to 1 */
}

(3) Initialization of character arrays
A character array can be initialized with a character string literal (character string enclosed in “ ”). Likewise, a
character string in which a series of character string literals are contained initializes the individual members or

elements of an array.
In the following example, the array objects “s” and “t” with no type qualifier are defined and the elements of each

array will be initialized by character string literal.

char s[]="abc",t[3]="abc";

The next example is the same as the above example of array initialization.

User's Manual U14872EJ1VOUM 67

CHAPTER 3 DECLARATION OF TYPES AND STORAGE CLASSES

The next example defines p as “pointer to char” type and the member is initialized by character string literal so
that the length indicates a “char array” type object.

char *p="abc";

(4)

Initialization of aggregate or union type objects

* Aggregate type
An aggregate type object is initialized with a list of initializers described in ascending order of subscripts or
members. The initializer list to be specified must be enclosed in braces.
If the number of initializers in the list is less than the number of aggregate members, the members not
covered by the initializers will be implicitly initialized just the same as an object which has a static storage
duration.
With an array of unknown size, the number of elements is governed by the number of initializers and the array
will no longer become an incomplete type.

* Union type
A union type object is initialized of initializer for the first member of the union that is enclosed in braces.

In the following example, the array “x” of unknown size will change to a one-dimensional array that has three
elements as a result of its initialization.

int x[]={1,3,5};

The next example shows a complete definition which has initializers enclosed in braces. “{1, 3, 5} initializes
“y [0] [0]", “y [O] [1]”, and “y [0] [2]” in the 1st line of the array object “y[0]". Likewise, in the second line, the
elements of the array objects “y [1]” and “y [2]” are initialized. The initial value of “y[3]” is O since it is not
specified.

char y[4][3]={
{1, 3, 5},
{2, 4, 6},
{3,5, 7},
};

The next example produces the same result as the above example.

char z[4][3]={
1,3,5,2,4,6,3,5,7
b

68

“

In the following example, the elements in the first row of “z” are initialized to the specified values and the rest of

the elements are initialized to 0.

User's Manual U14872EJ1VOUM

CHAPTER 3 DECLARATION OF TYPES AND STORAGE CLASSES

char z[4][3] ={
{1}, {2}, {3}, {4

In the next example, a three-dimensional array is initialized.
q[0] [0] [O] are initialized to 1, q[1] [0] [0] to 2, and q[1] [0] [1] to 3. 4, 5 and 6 initialize q[2] [0] [O], q[2] [O] [1], and
q[2] [1] [O], respectively. The rest of the elements are all initialized to 0.

short q[4][3][2] = {

{1},
{2, 3}
{4, 5, 6}

I

The following example produces the same result as the above initialization of the three-dimensional array.

short q[4][3][2] ={
1, 0, 0, 0, 0, O
2, 3,0 0, 0, 0,
4, 5, 6

The following example shows a complete definition of the above initialization using braces.

Short q[4][3]1[2] = {

{

{1},
b
{

{2, 3},
b
{

{4, 5, 6},
}

User's Manual U14872EJ1VOUM 69

CHAPTER 4 TYPE CONVERSIONS

In an expression, if two operands differ in data type, the compiler automatically performs a type conversion
operation. This conversion is similar to the change obtained by the cast operator. This automatic type conversion is
called an implicit type conversion. In this chapter, this implicit type conversion is explained.

Type conversion operations include usual arithmetic conversions, conversions involving truncation/round off, and
conversions involving sign change. A list of conversions between types is shown in Table 4-1.

70 User's Manual U14872EJ1VOUM

CHAPTER 4 TYPE CONVERSIONS

Table 4-1. List of Conversions Between Types

fter Conversion

Before Conversion

(signed)
char

unsigned
char

shortint | shortint |int int

(signed) | unsigned| (signed) | unsigned

(signed)
long int

unsigned
long int

float

double

long
double

(signed) char

+ AN

o

©)
@)

©)

o

©)

-1 N

N

unsigned char

N

(signed) short int

unsigned short int

(signed) int

unsigned int

s/ ||/ |/|o]|o
Jlzlol|/|z|o|lo|=z
> ||/ | |/|/|o|o]|o

J1lz|lo|/|z|o|o|z]|oO

(signed) long int

unsigned long int

>|/|/|lololo|lo|lo|lo]|o]o

Jlzlolo|z|o|lo|z|o|o|=z

float

/lolo|lo|lo|lo|lo|o|lo|lo|o|o|oO

double

long double

Jl/lololo|lo|o|o|jo|o|O|O|O|O]|O

1 /|lolo|lo|o|o|o|lo|o|lo|o|o]|o

Remarks 1. The signed keyword can be omitted. However, with a char type data, the data type is regarded as the

signed char or unsigned char type depending on the compile-time condition (option).

2. Conventions

O:
\:
N:
A:

Type conversion will be performed properly.

Type conversion will not be performed.

A correct value will not be generated. (The data type will be regarded as an unsigned int type.)

The data type will not change bit-image-wise. However, if a positive number cannot represent it

sufficiently, no correct value will be generated (regarded as an unsigned integer)

Blank:An overflow in the result of the conversion will be truncated. The + or — sign of the data may be

changed depending on the type after the conversion.

User’'s Manual U14872EJ1VOUM

71

CHAPTER 4 TYPE CONVERSIONS

4.1 Arithmetic Operands

1)

)

72

Characters and integers (general integral promotion)

The data types of char, short int, and int bit fields (whether they are signed or unsigned) or of objects that have
an enumeration type will be converted to int types if their values are within the range that can be represented
with int types. If not within the range, they will be converted to unsigned int types. These implicit type
conversions are referred to as “general integral general promotion”. All other arithmetic types will not be
changed by this general integral promotion.

General integral promotion will retain the value of the original data type including its sign.

char type data without a type qualifier will normally be handled as signed char in this compiler. It can be
handled as an unsigned char using an option.

Signed integers and unsigned integers

When a value with an integer type is converted to another, the value will not be changed if the value can be
expressed with the integer type after conversion.

When a signed integer is converted to an unsigned integer of the same or larger size, the value is not changed
unless the value of the signed integer is negative. If the value of the signed integer is negative and the unsigned
integer has a size larger than that of the signed integer, the signed integer is expanded to the signed integer with
the same size as the unsigned integer, and then it is added with the value equal to the maximum number that
can be expressed with the unsigned integer plus 1, and the signed integer before conversion is converted to the
unsigned value.

When a value with an integer type is converted to an unsigned integer with a smaller size, the conversion result
is a non-negative remainder which the value is divided with that value which 1 is added to the maximum number
that can be expressed with an unsigned integer after conversion. When a value with an integer type is
converted to a signed integer with smaller size or when an unsigned integer is converted to a signed integer with
the same size, the overflown value is ignored if the value after conversion cannot be expressed. For the
conversion pattern, refer to Table 4-1. List of Conversions Between Types.

Conversion operations from signed integral type to unsigned integral type are as listed in Table 4-2 below.

Table 4-2. Conversions from Signed Integral Type to Unsigned Integral Type

unsigned
Smaller in Value Range Greater in Value Range
+ / ©)
signed
- / +

O:Type conversion will be performed properly.

+: The data will be converted to a positive integer.

[The result of the conversion will be the remainder of the integer value,
modulo the largest possible value of the type to be converted plus 1.

User’'s Manual U14872EJ1VOUM

CHAPTER 4 TYPE CONVERSIONS

(3) Usual arithmetic type conversions
Types obtained as a result of operations on arithmetic type data will have a wide range of values.
The type conversion of the operation result is performed as follows.

« If either one of the operands has long double type, the other operand is converted to long double type.
« If either one of the operands has double type, the other operand is converted to double type.

« If either one of the operands has float type, the other operand is converted to float type.

In cases other than above, general integer expansion is performed for both operands according to the following
rules. Figure 4-1 shows the rules.

Figure 4-1. Usual Arithmetic Type Conversions

unsigned long int

------------------------- If either of the two operands is unsigned long int type, or with one
operand being long int type and the other being unsigned int type,
if the value of unsigned int type cannot represented by long int type,
both operands will be converted to unsigned long int type.

long int

------------------------- In cases other than above, if one operand is long int type and if the value of
the other operand can be represented by long int type, the other operand will be
| unsigned int | converted to long int type.

------------------------- In cases other than above, if one operand is unsigned int type, the other operand
will be converted to unsigned int type.

int | e In cases other than above, both operands will have int type.

In this compiler, the conversion to int type can be intentionally disabled by compile condition (optimizing option)
(For the details, refer to CC78K0S C Compiler Operation (U14871E) CHAPTER 5 COMPILER OPTION).

User's Manual U14872EJ1VOUM 73

CHAPTER 4 TYPE CONVERSIONS

4.2 Other Operands

1)

)

®)

74

Left-side values and function locators

A left-side value refers to an expression that specifies an object (and has an incomplete type other than object
type or void type).

Left-side values that do not have array types, incomplete types, or const qualifier types, and structures or unions
which have no const qualifier type members are “modifiable left-side values”.

A left-side value which has no array type will be converted to a value stored in the object to be specified, except
when it is the operand of the sizeof operator, unary & operator, ++ operator, or - - operator or the left operand of
an operator or an assignment operator. By being converted, it will no longer serve as a left-side value.

The behavior of left-side values that have incomplete types but no array types will not be guaranteed.

A left-side value which has an “... array” type except character arrays will be converted to an expression which
has a “pointer to ...” type. This expression is no longer a left-side value.

A function locator is an expression that has a function type. With the exception of the operand of the sizeof
operator or unary & operator, a function locator that has a “function type that returns ...” will be converted to an
expression that has a “pointer type to a function that returns ...”.

void

The value (non-existent) of a void expression (i.e., an expression that has the void type) cannot be used in any
way. Neither implicit nor explicit conversion to exclude void will be applied to this expression. If an expression
of another type appears in the context which requires a void expression, the value of the expression or specifier
is assumed to be non-existent.

Pointers

A void pointer can be converted to a pointer to any incomplete type or object type. Conversely, a pointer to any
incomplete type or object type can be converted to a void pointer. In either case, the result value must be equal
to that of the original pointer.

An integer constant expression which has the value of 0 and has been cast to the void * type is referred to as a
“null pointer constant”. If the null pointer constant is substituted with, equal to, or compared with some pointer,
the null pointer constant will be converted to that pointer.

User’'s Manual U14872EJ1VOUM

CHAPTER 5 OPERATORS AND EXPRESSIONS

This chapter describes the operators and expressions to be used in the C language.

C has an abundance of operators for arithmetic, logical, and other operations. This rich set of operators also
includes those for bit and address operations.

An expression is a string or combination of an operator and one or more operands. The operator defines the
action to be performed on the operand(s) such as computation of a value, instructions on an object or function,
generation of side effects, or a combination of these.

Examples of operators are given below.

#define TRUE 1
#define FALSE O
#define SIZE 200

void Ilprintf(char*, int);
voi d putchar(char c);
char mar k[SI ZE+1] ; F e Arithmetic operator

voi d mai n(voi d) {

nt i,prine,k,count;
count =0;
for(i=0;i<=SlIZE;i++)
mar k[i] =TRUE;

Assignment operator
Postfix operator

Relational operator

for(i=0;i<=SIZE;i++){

if(mark[i]){
pri nme=i +i +3; F s Arithmetic operator
I printf("%", prine);
count ++; Postfix operator

i f((count%B)==0)
putchar('\n");

for (k=i +prine; k<=SI ZE; k+=pri ne) F e, Assignment operator
mar k[k] =FALSE;

Relational operator

User's Manual U14872EJ1VOUM 75

CHAPTER 5 OPERATORS AND EXPRESSIONS

I printf(“Total

%\ n”,

count);

| oopl:

goto | oopl;

}

Iprintf(char *s,int;){
int j;
char *ss;
j=i;
SS=S;

}

voi d puttchar(char c){
char d;
d=c;

}

76 User’s Manual U14872EJ1VOUM

CHAPTER 5 OPERATORS AND EXPRESSIONS

Table 5-1 shows the evaluation precedence of operators used in C.

Table 5-1. Evaluation Precedence of Operators

Type of Expression Operator Linkage | Priority
Postfix [1().—>++—- - Highest
Unary ++ —— & * + — ~ | sizeof - +
Cast (type) -
Multiplicative I % -

Additive +— N
Bitwise shift << >> .
Relational < ><=>= .
Equality == |= R
Bitwise AND & -
Bitwise XOR A -
Bitwise OR | o
Logical AND && -
Logical OR || 5
Conditional ?: -
Assignment = *= [= %= 4= —= -
<<= >>= &= A= | = v
Comma - Lowest

Operations in the same line contain the same priority.

The arrow (- or) in the Linkage column denotes that when an expression contains two or more operators of the

same precedence, the operations are carried out in the direction of the arrow “-” (from left to right) or “~” (from right

to left).

User's Manual U14872EJ1VOUM

77

CHAPTER 5 OPERATORS AND EXPRESSIONS

5.1 Primary Expressions
Primary expressions include the following.

+ |dentifier declared as an object or function
(identifier primary expression)

« Constant (constant primary expression)

+ String literal (constant primary expression)

« Expression enclosed in parentheses
(parenthesized expression)

An identifier which becomes a primary expression is a left-side value if an object is declared or a function locator if
a function is declared. The data type of a constant is determined according to the value specified for the constant as
explained in 2.4 Constants. String literal(s) become a left-side value that has a data type as explained in 2.5 String
Literal.

5.2 Postfix Operators

A postfix operator is an operator that appears or is placed after an object or function.
The primary expressions are explained on the following pages.

78 User's Manual U14872EJ1VOUM

CHAPTER 5 OPERATORS AND EXPRESSIONS

(1) Subscript operator

Postfix Operators [] Subscript Operator

FUNCTION
The [] subscript operator specifies or refers to a single member of an array object. The array or expression “E1
[E2]" is evaluated as if it were “(*(E1+(E2)))”. In other words, the value of E1 is a pointer to the first member of
the array and E2 (if it is an integer) indicates the E2th member of E1 (counting from 0). With a multidimensional
array, as many subscript operators as the number of dimensions must be connected.
In the following example, x becomes an int type array of 3*5. In other words, x is an array which has three
members each consisting of five int type members.

int x[3][5];

A multidimensional array may be specified by connecting subscript operators. Assuming that E is an array of nth
dimension (where n > 2) consisting of i*j*...*k, the array can be specified with the n number of subscript
operators. In this case, E becomes a pointer to an array of (n — 1)th dimension consisting of j*...*k.

SYNTAX

postfix-expression [subscripted expression]

NOTE
A postfix expression must have a

“

.... pointer to object”. The subscripted expression of an array must be
specified with integral type data. The result of the expression will become “.....” type.

User's Manual U14872EJ1VOUM 79

CHAPTER 5 OPERATORS AND EXPRESSIONS

(2) Function call

Postfix Operators () Function Call

FUNCTION

The postfix operator () calls a function. The function to be called is specified with a postfix expression and
argument(s) to passed to the function are indicated in parentheses ().

The description related to the function includes the function prototype declaration, the function definition (the
body of the function), and the function call. The function prototype declaration specifies the value a function
returns, the type of argument, and the storage class.

If the function prototype declaration is not referred to in a function call, each argument is extended with a general
integer. This is called “default actual argument extension”. Performing a function prototype declaration avoids
default actual argument extension and detects the mistakes of the type and number of arguments and the type
of the return value.

Calling a function which has neither a storage class specification nor a data type specification such as “identifier
();” is interpreted as calling a function which has an external object and returns an int type which has no
information on arguments. In other words, the following declaration will be made implicitly:

extern int identifier ();

SYNTAX

postfix-expression (Cargument-expression list0) ;

[Example of function call]

int func(char,int); /* function prototype declaration */
char a;
int b,ret;
voi d mai n(voi d) {
ret=func(a, b); /* function call */
}
int func(char c, int i){ /* function definition */
return i;

NOTE

80

A function that returns an object other than array types can be called with this operator. The postfix expression
must be of a pointer type to this function.

In a function call including a prototype, the type of argument must be of a type that can be assigned to the
corresponding parameter(s). The number of arguments must also be in agreement.

User's Manual U14872EJ1VOUM

CHAPTER 5 OPERATORS AND EXPRESSIONS

(3) Structure and union member

Postfix Operators .o

<1> . (dot) operator

FUNCTION
The . (dot) operator (also called a member operator) specifies the individual members of a structure or union.
The postfix expression is the name of the structure or union object to be specified, and the identifier is the name
of the member.

SYNTAX

postfix-expression . identifier

<2> -> (arrow) operator

FUNCTION
The -> (arrow) operator (also called an indirect membership operator) specifies the individual members of a
structure or union. The postfix expression is the name of the pointer to the structure or union object to be
specified, and the identifier is the name of the member.

SYNTAX

postfix-expression - > identifier

User's Manual U14872EJ1VOUM 81

CHAPTER 5 OPERATORS AND EXPRESSIONS

Postfix Operators

->

[Examples of ‘., ‘->" operators]

#i ncl ude <stdlib. h>

uni on{
struct{
int type;
in;
struct {
int type;
int intnode;
}ni;
struct {
int type;
struct{
| ong | ongnode;
}enl _p;
inl;
tu;

voi d func(voi d){

u. nl.type=1;
u. nl . nl _p->l ongnode=-31415L;
[*..0.*

i f(u.n.type==1)
u. nl . nl _p->l ongnode=l abs(u. nl. nl _p->l ongnode) ;

82 User's Manual U14872EJ1VOUM

CHAPTER 5 OPERATORS AND EXPRESSIONS

(4) Postfix increment/decrement operators

Postfix Operators ++ ——

<1> Postfix increment operator
FUNCTION
The postfix increment operator increments the value of an object by 1. This increment operation is performed by

taking the data type of the object into account.

SYNTAX

postfix-expression ++

<2> Postfix decrement operator
FUNCTION
The postfix decrement operator decrements the value of an object by 1. This decrement operation is performed

by taking the data type of the object into account.

SYNTAX

postfix expression —

NOTE
The operand of the postfix increment or decrement operator must be a modifiable Lvalue (qualified or
unqualified).

User's Manual U14872EJ1VOUM 83

CHAPTER 5 OPERATORS AND EXPRESSIONS

5.3 Unary Operators

A unary operator performs an operation on one object or parameter (i.e., operand). The following unary operators
are available.

» Prefix increment and decrement operators
++ —
* Address and indirect operators
& *
* Unary arithmetic operators
+ - ~ !
» sizeof operator
si zeof

The unary operators are explained in the following pages.

84 User's Manual U14872EJ1VOUM

CHAPTER 5 OPERATORS AND EXPRESSIONS

(1) Prefix increment/decrement operators

Unary Operators ++ ——

<1> Prefix increment operator

FUNCTION
The prefix increment operator increments the value of an object by 1. The expression “++E” of the prefix
increment operator will produce the same result as the following expression.

or
E+=1

SYNTAX

++ unary-expression

<2> Prefix decrement operator

FUNCTION
The prefix decrement operator decrements the value of an object by 1. The expression

“

— —E” of the prefix
decrement operator will produce the same result as the following expression:

SYNTAX

—— unary-expression

User's Manual U14872EJ1VOUM 85

CHAPTER 5 OPERATORS AND EXPRESSIONS

(2) Address and indirect operators

Unary Operators & *

<1> Unary & operator

FUNCTION
The unary & operator returns the pointer of a specified object (i.e., the address of the variable it precedes).

SYNTAX

& operand

<2> Unary * operator

FUNCTION
The unary * operator returns the value indicated by a specified pointer (i.e., takes the value of the variable it
precedes and uses that value as the address of the information in memory).

SYNTAX

* operand

NOTE
The operand of the unary & operator must be a left-side value referring to an object not declared with the register
storage class specifier. Neither a function locator nor a bit field can be used as the operand of this unary
operator.
The operand of the unary * operator must have a pointer type.

86 User's Manual U14872EJ1VOUM

CHAPTER 5 OPERATORS AND EXPRESSIONS

(3) Unary arithmetic operators (+ —~!)

Unary Operators + -~

FUNCTIONS
The + (unary plus) operator performs positive integral promotion on its operand.
The — (unary minus) operator performs negative integral promotion on its operand.
The ~ (tilde) operator is a bitwise one’s complement operator which inverts all the bits in a byte of its operand.
The ! NOT or logical negation operator returns 0 if its operand is 0 and 1 if it is not 0. In other words, the
operator changes each 0 to 1 and 1 to 0.

SYNTAX

+ operand
— operand
~ operand
I operand

User's Manual U14872EJ1VOUM 87

CHAPTER 5 OPERATORS AND EXPRESSIONS

(4) sizeof operator

Unary Operators sizeof Operator

FUNCTION
The sizeof operator returns the size of a specified object in bytes. The return value is governed by the data type
of the object and the value of the object itself is not evaluated.
The value to be returned by an unsigned char or signed char object (including its qualified type) on which a
sizeof operation is performed is 1. With an array type object, the return value will be the total number of bytes in
the array. With a structure or union type object, the result value will be the total number of bytes that the object
would occupy including bytes necessary to pad out to the next appropriate alignment boundary.
The type of the sizeof operation result is an integral type and its name is size_t. This name is defined in the
<stddef.h> header. The sizeof operator is used mainly to allocate memory areas and transfer data to/from the
I/O system.

SYNTAX

si zeof unary-expression
or
si zeof (type-name)

EXAMPLE
The following example finds the number of elements of an array by dividing the total number of bytes in the array
by the size of a single element. Num becomes 5.

int num
char array[]= {0, 1, 2, 3, 4};

voi d func(void){
num = sizeof array / sizeof array [0];

NOTE
An expression that has a function type or incomplete type and a left-side value which refers to a bit field object
cannot be used as the operand of this operator.

88 User's Manual U14872EJ1VOUM

CHAPTER 5 OPERATORS AND EXPRESSIONS

5.4 Cast Operator

A cast is a special operator which forces one data type to be converted into another. The cast operator is mainly

used when converting a pointer type.

Cast Operator (type-name)

FUNCTION

The cast operator converts the data type of another object (or the result of another expression) into the type

specified in parentheses ().

SYNTAX

(type-name) expression

EXAMPLE

voi d func(void){

int val;

float f;

f =3. 14F;

val =(int)f; /* val becomes 3 by cast */
val =*(int *)0x10000; [* cast constant */

User's Manual U14872EJ1VOUM

89

CHAPTER 5 OPERATORS AND EXPRESSIONS

5.5 Arithmetic Operators

Arithmetic operators are divided into multiplicative operators and additive operators, in that order of priority.

Multiplicative operators find the product, quotient, and remainder of two operands. Additive operators find the sum
and difference of two operands.

* Multiplicative operators * / %

« Additive operators + -

Table 5-2. Signs of Division/Remainder Operation Result

a/b a%b

Remark a and b indicate the operands.

Division is performed with two integers whose sign, if any, is removed through the usual arithmetic conversion and
the result will be truncated towards 0 if necessary. Likewise, a remainder or modulo division operation is performed
with two integers whose sign, if any, is removed through the usual arithmetic conversion. Table 5-2 shows the results
of calculations only on the signs of two operands in division and remainder operations, respectively. The following

explain multiplying operators and adding operators. E1 and E2 used in the explanation of syntax indicate operands
or expressions.

90 User's Manual U14872EJ1VOUM

CHAPTER 5 OPERATORS AND EXPRESSIONS

(1) Multiplicative operators

Multiplicative Operators * | %

<1> * operator

FUNCTION
The * operator performs normal multiplication on two operands and returns the product.

SYNTAX

El * E2

<2> [operator

FUNCTION
The / operator performs normal division on two operands and returns the quotient.

SYNTAX

El / E2

<3> % operator

FUNCTION
The % operator performs a remainder (or modulo division) operation on two operands and returns the remainder
in the result.

SYNTAX

El % E2

User's Manual U14872EJ1VOUM 91

CHAPTER 5 OPERATORS AND EXPRESSIONS

(2) Additive operators

Additive Operators + -

<1> + operator

FUNCTION
The + operator performs addition on two operands and returns the sum of the two numbers.

SYNTAX

El + E2

<2> — operator

FUNCTION
The — operator performs subtraction on two operands and returns the difference between the two numbers (the
first operand minus the second operand).

SYNTAX

El - E2

92 User's Manual U14872EJ1VOUM

CHAPTER 5 OPERATORS AND EXPRESSIONS

5.6 Bitwise Shift Operators

A shift operator shifts its first (left) operand in the direction (left or right) indicated by the operator by the number of
bits specified by its second operand. There are the following two shift operators.

+ shift operator << >>

Table 5-3. Shift Operations

a<<b bNote a>>b bNote
+ 0 + 0
a a
- 0 - | -

Note The table indicates when the right operand is greater than the number of bits in the left operand or
when an overflow occurs in the result of the shift operation.
If the right operand is negative, the value is processed as an unsigned positive number.

Remark a and b indicate the operands.

The shift operators are explained in the following pages. E1 and E2 indicate operands or expressions.

User's Manual U14872EJ1VOUM 93

CHAPTER 5 OPERATORS AND EXPRESSIONS

Shift Operators << >>

<1> Left shift (<<) operator

FUNCTION
The << operator shifts the left operand to the left the number of bits specified by the right operand and fills zeros
in vacated bits. If the left operand E1 has an unsigned type in “E1 << E2”, the result will become a value
obtained by multiplying E1 by the E2th power of 2.

SYNTAX

El << E2

<2> Right shift (>>) operator

FUNCTION
The >> operator shifts the left operand to the right the number of bits specified by the right operand. If the left
operand is unsigned, zeros are filled in vacated bits (logical shift). If the left operand is signed, a copy of the
sign bit is filled in vacated bits.
If the left operand E1 is unsigned or signed and has a non-negative value in “E1>>E2”, the result will become a
value obtained by dividing E1 by the E2th power of 2.

SYNTAX

El >> E2

94 User's Manual U14872EJ1VOUM

CHAPTER 5 OPERATORS AND EXPRESSIONS

5.7 Relational Operators

There are two types of operators to indicate the relationship between two operands: “relational operators” and
“equality operators”.

The relational operators indicate the value relationship between two operands such as greater than and less than.
The equality operators indicate that two operands are equal or not equal.

The relational operators and equality operators are shown below.

* Relational operators < > <= >=
« Equality operators = I=

The value relationship between two pointers compared by relational operators is determined by the relative
location in the address space of the object indicated by the pointer.

In this compiler, relational operators and equality operators generate ‘1’ if the specified relationship is true and ‘0’ if
it is false. The results have int type.

The relational operators and equality operators are explained in the following pages. E1 and E2 used in the
explanation of syntax indicate operands or expressions.

User's Manual U14872EJ1VOUM 95

CHAPTER 5 OPERATORS AND EXPRESSIONS

(1) Relational operators

Relational Operators < > <= >=

<1> < (less than) operator

FUNCTION
The < operator returns 1 if the left operand is less than the right operand; otherwise 0 is returned.

SYNTAX

El < E2

<2> > (greater than) operator

FUNCTION
The > operator returns 1 if the left operand is greater than the right operand; otherwise 0 is returned.

SYNTAX

El > E2

<3> <= (less than or equal) operator

FUNCTION
The <= operator returns 1 if the left operand is less than or equal to the right operand; otherwise 0 is returned.

SYNTAX

El <= E2

96 User's Manual U14872EJ1VOUM

CHAPTER 5 OPERATORS AND EXPRESSIONS

Relational Operator < > <= >=

<4> >=(greater than or equal) operator

FUNCTION
The >= operator returns 1 if the left operand is greater than or equal to the right operand; otherwise 0 is returned.

SYNTAX

El >= E2

User's Manual U14872EJ1VOUM 97

CHAPTER 5 OPERATORS AND EXPRESSIONS

(2) Equality operators

Equality Operators

<1> == (equal) operator

FUNCTION
The = = operator returns 1 if its two operands are equal to each other; otherwise 0 is returned.

SYNTAX

El == E2

<2> = (not equal) operator

FUNCTION

The != operator returns 1 if both operands are not equal to each other; otherwise 0 is returned.

SYNTAX

El !'= E2

98 User's Manual U14872EJ1VOUM

CHAPTER 5 OPERATORS AND EXPRESSIONS

5.8 Bitwise Logical Operators

Bitwise logical operators perform a specified logical operation on the value of an object in bit units. The bitwise
logical expressions include bitwise AND (&), bitwise exclusive OR (#), and bitwise inclusive OR (|).
Each logical operation is indicated by the operators shown below.

* Betwise AND operator &
+ Bitwise XOR operator A
» Bitwise OR operator |

The bitwise logical operators are explained in the following pages. E1 and E2 used in the explanation of syntax
indicate operands or expressions.

User's Manual U14872EJ1VOUM 99

CHAPTER 5 OPERATORS AND EXPRESSIONS

(1) Bitwise AND operator

Bitwise AND Operator &

FUNCTION
The & operator is a bitwise AND operator which returns an integral value that has “1” bits in positions where both
operands have “1” bits and that has “0” bits everywhere else.
The bitwise AND operator must be specified with an “& operator”.

Table 5-4. Bitwise AND Operator

Value of Each Bit in Left Operand
1 0
Value of 1 1 0
sl I IIE o

SYNTAX

El & E2

100 User's Manual U14872EJ1VOUM

CHAPTER 5 OPERATORS AND EXPRESSIONS

(2) Bitwise XOR operator

Bitwise XOR Operator

FUNCTION

The * (caret) operator is a bitwise exclusive OR operator which returns an integral value that has a “1” bit in each

position where exactly one of the operands has a “1” bit and that has a “0” bit in each position where both

operands have a “1” bit or both have a “0” bit.

Table 5-5. Bitwise XOR Operator

Value of Each Bit in Left Operand

1 0
Value of 1 0 1
each bit in 0 1 0
right operand

SYNTAX

El ~ E2

User's Manual U14872EJ1VOUM

101

CHAPTER 5 OPERATORS AND EXPRESSIONS

(3) Bitwise inclusive OR operator

Bitwise Inclusive OR Operator

FUNCTION

The | operator is a bitwise inclusive OR operator which returns an integral value that has a “1” bit in each position
where at least one of the operands has a “1” bit and that has a “0” bit in each position where both operands have

a “0” bit.
Table 5-6. Bitwise OR Operator
Value of Each Bit in Left Operand
1 0

Value of 1 1 1
each bit in 0 1 0
right operand

SYNTAX

El | E2
102 User’s Manual U14872EJ1VOUM

CHAPTER 5 OPERATORS AND EXPRESSIONS

5.9 Logical Operators

Logical operators perform logical OR and logical AND operations. A logical OR operation is specified with a
logical OR operator, and a logical AND operation is specified with a logical AND operator. Each operator is shown
below.

* Logical AND operator &&
» Logical OR operator |]

Each operand of both the operators returns the value of int type ‘0’ or ‘1’. The following explains each logical
operator. E1 and E2 used in the explanation of syntax indicate operands or expressions.

User's Manual U14872EJ1VOUM 103

CHAPTER 5 OPERATORS AND EXPRESSIONS

(1) Logical AND operator

Logical AND Operator &&

FUNCTION
The && operator performs a logical AND operation on two operands and returns a “1” if both operands have
nonzero values; otherwise a “0” is returned. The type of the result is int.

Table 5-7. Logical AND Operator

Value of Left Operand

Zero Nonzero
Value of Zero 0 0
right operand Nonzero 0 1

SYNTAX

El && E2

NOTE
This operator always evaluates its operands from left to right. If the value of the left operand is “0”, the right
operand is not evaluated.

104 User's Manual U14872EJ1VOUM

CHAPTER 5 OPERATORS AND EXPRESSIONS

(2) Logical OR operator

Logical OR Operator

FUNCTION

The | | operator performs a logical OR operation on two operands and returns a “0” if both operands are zero;

otherwise a “1” is returned. The type of the result is int.

Table 5-8. Logical OR Operator

Value of Each Bit in Left Operand

Zero Nonzero
Value of Zero 0 1
each bit in Nonzero 1 1
right operand

SYNTAX

El || E2

NOTE

This operator always evaluates its operands from left to right. If the value of the left operand is nonzero, the right

operand is not evaluated.

User's Manual U14872EJ1VOUM

105

CHAPTER 5 OPERATORS AND EXPRESSIONS

5.10 Conditional Operators

Conditional operators judge the processing to be performed next by the value of the first operand. Conditional
operators judge by “?’ and ‘. The conditional operators are explained below.

Conditional Operators ?

FUNCTION
If the value of the first operand is nonzero, it evaluates the second operand before the colon. If the value of the
first operand is zero, it evaluates the third operand after the colon. The result of the entire conditional expression
will be the value of the second or third operand.

SYNTAX

1st-operand ? 2nd-operand : 3rd-operand

EXAMPLE

#define TRUE 1
#define FALSE O

char flag;

int ret;

int func(){
ret=flag ? TRUE : FALSE;
return ret;

}

NOTE
If both the second and third operand types are arithmetic types, normal arithmetic type conversion is performed
to make them common types. The type of result is the common type. If both the operand types are structure
types or union types, the result becomes those types. If both the operand types are void types, the result is
void type.

106 User's Manual U14872EJ1VOUM

CHAPTER 5 OPERATORS AND EXPRESSIONS

5.11 Assignment Operators

Assignment operators include a simple assignment expression that stores the right operand in the left operand

and a compound assignment expression that stores the result of an operation on both operands in the left operand.
The assignment operators are shown below.

» Assignment Operators

= *= = O += —= <<= >>=

The assignment operators are explained in the following pages.

E1 and E2 used in the explanation of syntax
indicate operands or expressions.

User's Manual U14872EJ1VOUM 107

CHAPTER 5 OPERATORS AND EXPRESSIONS

1)

Simple assighment operator

Simple Assignment Operator =

FUNCTION

The = operator converts the right operand (expression) to the type of the left operand before the value is stored
in the left object.

In the following example, the value of an int type to be returned from the function by the type conversion of the
simple assignment expression will be converted to a char type and an overflow in the result will be truncated.
The comparison of the value with “—1” will then be made after the value is converted back to the int type. If the
variable “c” declared without a qualifier is not interpreted as unsigned char, the result of the variable will not
become negative and its comparison with “—1” will never result in equal. In such a case, the variable “c” must be
declared with an int type to ensure complete portability.

int f(void);

char c;
[*..0.0% ((c=f())==-1) [*...*/

SYNTAX

El = E2

108

User's Manual U14872EJ1VOUM

CHAPTER 5 OPERATORS AND EXPRESSIONS

(2) Compound assignment operators

Compound Assignment Operators *= [z Op= 4= —=
<<= >>= &= = |=

FUNCTION
The compound assignment operators perform a specified operation on both operands and store the result in the
left object. The value to be stored in the left object will be converted to the type of the left operand. The
compound assignment expression “E1 op = E2” (where op indicates a suitable binary operator) is equivalent to
the simple assignment expression “E1 = E1 op (E2)”, except that the left operand (E1) is only evaluated once.
The following compound assignment expressions will produce the same result as the respective simple
assignment expressions on the right.

a*=b; a=a*b;
al =b; a=al b;
a%b; a=a%b:;
a+=b; a=a+tb;
a—=b; a=a-b;
a<<=b; a=a<<b;
a>>=b; a=a>>b;
a&=b; a=a&b;
a"=b; a=a’b;
a| =b; a=a| b;
SYNTAX
El *= E2
El /= E2
El % E2
El += E2
El —= E2
El <<= E2
El >>= E2
El & E2
El "= E2
El |= E2

User's Manual U14872EJ1VOUM 109

CHAPTER 5 OPERATORS AND EXPRESSIONS

5.12 Comma Operator

Comma Operator

FUNCTION
The comma operator evaluates the left operand as a void type (that is, ignores its value) and then evaluates the
right operand. The type and value of the result of the comma expression are the type and value of the right
operand.
If a comma has another meaning (as in a list of function arguments or in a list of variable initializations), comma
expressions must be enclosed in parentheses. In other words, the comma operator described in this chapter will
not appear in such a list.
In the following example, the comma operator finds the value of the second argument of the function “f ()”. The
value of the second argument becomes 5.

Int a, ¢, t;
voi d mai n(void) {
f(a, (t=3,t+2),c);
}

SYNTAX

El, E2

110 User's Manual U14872EJ1VOUM

CHAPTER 5 OPERATORS AND EXPRESSIONS

5.13 Constant Expressions

Constant expressions include general integral constant expressions, arithmetic constant expressions, address

constant expressions, and initialization constant expressions. Most of these constant expressions can be calculated

at translation time instead of execution time.

In a constant expression, the following operators cannot be used except when they appear inside sizeof

expressions.

1)

)

®)

» Assignment operators
* Increment operators

» Decrement operators

* Function call operator
» Comma operator

General integral constant expression
A general integral constant expression has a general integral type. The following operands may be used.

* Integer constants

* Enumerated value constants
» Character constants

» sizeof expressions

* Floating point constants

Arithmetic constant expression
An arithmetic constant expression has an integral type. The following operands may be used.

» Integer constants

* Enumerated value constants
* Character constants

» sizeof expressions

* Floating point constants

Address constant expression

An address constant expression is a pointer to an object that has a static storage duration or a pointer to a
function locator. Such an expression must be created explicitly using the unary & operator or implicitly using an
expression with an array type or function type. The following operands may be used.

* Array subscript operator []

* . (dot) operator

* —>(arrow) operator

» & address operator

* *indirection operator

» Pointer casts

However, none of these operators can be used to access the value of an object.

User's Manual U14872EJ1VOUM 111

CHAPTER 6 CONTROL STRUCTURES OF C LANGUAGE

This chapter describes the program control structures of C language and the statements to be executed in C.

Generally speaking, no matter how complicated a process is, it can be expressed with three basic control

structures. These three control structures are: sequential, selection, and iteration. An additional control structure,

branch, is used to change the flow of a program by force.

1)

@)

®)

(4)

Sequential processing
Statements in a program are executed one by one from top to bottom in the order of their description in the
program.

Conditional control (selection) processing

According to the status of the program under execution, the next executable statement is selected and executed.
The selection condition is specified in a control statement. The control statement determines which of the two
alternative statement groups or multiway (three or more) alternative statement groups is to be executed.

Looping (iteration) processing
The same processing is executed two or more times. The execution of an executable statement is repeated a
specified number of times while in the state indicated by the control statement.

Branch processing
The current program flow is forcibly interrupted and control is transferred to a specified label. Program execution

starts from the statement next to the specified label.

There are six types of statements used in C.

* Labeled statement.................coeel Causes a branch according to the value of the switch statement
and the destination of the goto statement

» Compound statement (block).............. Collects two or more statements to be processed as one unit

» Expression statement.......................... A statement consisting of an expression and a semicolon

» Selection statement..........................l Selects a statement out of several statements according to the
value of the expression

* lteration statement Repeatedly performs a statement called the body of a loop until the
control expression becomes equal to 0.

* Branch statement.................cccco Causes an unconditional branch to different destination

112 User's Manual U14872EJ1VOUM

CHAPTER 6 CONTROL STRUCTURES OF C LANGUAGE

A description example of these statements is shown below.

[Description example]

#define SIZE 10
#define TRUE 1
#define FALSE 0O

extern void putchar(char);
extern void lprintf(char *, int);

char mark [Sl ZE+1] ;
voi d mai n(voi d){

int i, prime, k, count;
count = O;
for(i =0 ; i <= SIZE ; i++4) FAal (o) SRR PUUPR Iteration statement */
mark [i] = TRUE ;
for(i =0 ; i <= SIZE ; i++) { [*fOr e, Iteration statement */
if(mark[i]){ L f e Conditional statement */
prime =i +i + 3
lprintf("%d", prine);
if((countu®) == 0) | PR Conditional statement * /
putchar('\n");
for(k =i + prinme ; k <= SIZE ; k += prine)
mark [k] = FALSE;
}
}
lprintf("Total %\n", count);
| oop1l; Tl [oTo] o X P Labeled statement * /
goto | oopl; /* Branch statement * /

User's Manual U14872EJ1VOUM 113

CHAPTER 6 CONTROL STRUCTURES OF C LANGUAGE

6.1 Labeled Statements

A labeled statement specifies the destination of a switch or goto statement. The switch statement selects the
statement specified by a control expression from among statements with two or more options. The labeled statement
becomes the label of the statement to be executed by the switch statement. The goto statement causes
unconditional branching to the applicable label from the normal flow of processing.

The syntax of labeled statements is given below.

114 User's Manual U14872EJ1VOUM

CHAPTER 6 CONTROL STRUCTURES OF C LANGUAGE

(1) case label

Labeled Statements case label

FUNCTION
case labels are used only in the body of a switch statement to enumerate values to be taken by the control
expression of the switch statement.

SYNTAX

case constant-expression : statement

EXAMPLE 1
int f(void),i;
voi d mai n(voi d) {
[* ... %]
switch(f()){
case 1:
i =i +4;
br eak;
case 2:
i=i+3;
br eak;
case 3:
i=i+2;
}
[|
}
EXPLANATION

In example 1, if the return value of f() is 1, the first case clause (statement) is selected and the expression
“i=i+4” is executed. Likewise, if the return value of f() is 2 or 3, the second or third case statement is selected,
respectively. Each break statement in the above example is for exiting the switch statement.

As in this example, case labels are used when two or more options are involved.

User's Manual U14872EJ1VOUM 115

CHAPTER 6 CONTROL STRUCTURES OF C LANGUAGE

Labeled Statements case label
EXAMPLE 2
int i ;
void main (void){
[* ... %
i = 2;
switch(i) {
case 1:
i =i + 4 ;
case 2:
i =i +3;
case 3:
i =i + 2 ;
}
[* ... %
}

EXPLANATION
In example 2, the processing starts in the second case statement since i is 2. The third statement is also

consecutively performed since the case statement does not include a break statement. Thus, if the constant
expression and the control expression in the case statement match, the programs thereafter are performed
sequentially. A break statement is used to exit the switch statement.

116 User's Manual U14872EJ1VOUM

CHAPTER 6 CONTROL STRUCTURES OF C LANGUAGE

(2) default label

Labeled Statements default label

FUNCTION
A default label is a special case label used only in the body of a switch statement to specify a process to be
executed by C if the value of the control expression does not match any of the case constants.

SYNTAX

def aul t; statement

EXAMPLE

int f (void), i ;

switch (f()) {

case 1:
i =i + 4 ;
br eak;
case 2:
i =i +3;
br eak;
case 3:
i =i +2;
defaul t:
i = 1;
}
EXPLANATION

In the above example, if the return value of f() is 1, 2, or 3, the corresponding case clause (statement) is
selected and the expression that follows the case label is executed. Each break statement in the above
example is for exiting the switch statement. If the return value of f() is other than 1 to 3, the expression that
follows the default label is executed. In this case, the value of i becomes 1.

User's Manual U14872EJ1VOUM 117

CHAPTER 6 CONTROL STRUCTURES OF C LANGUAGE

6.2 Compound Statements (Blocks)

A compound statements consist of two or more statements grouped together with enclosing braces and executed
as one unit syntax-wise. In other words, by enclosing zero or more declarations followed by zero or more statements
all in braces, these statements can be processed as a compound statement whenever a single statement is
expected.

6.3 Expression Statements and Null Statements
An expression statement consists of a statement and a semicolon. A null statement consists of only a semicolon
and is used for labels that require a statement and in looping that does not need any body.

The description examples of expression statements and null statements are given below.

As in the following example, for a function to be called as an expression statement merely to obtain side effects,
the value of its return value can be discarded by using a cast expression.

int p(int) ;
voi d mai n(voi d) {
[* .o00*
(void)p(0) ;
}

A null statement can be used as the body of a looping statement as shown below.

char *s ;

voi d mai n(voi d){
[*...%]
while (*s++ !'="'0") ;
[*...%]

In addition, it can be used to place a label before a brace (}) which closes a compound statement as shown
below.

voi d func(void){

[*. .. %]
whi | e(1 oopl){
[*. .. %]
whi | e(1 oop2) {
[*.000%

i f(want _out)
goto end_| oopl;
[*.000*]
}
end_| oopl:;

}

118 User's Manual U14872EJ1VOUM

CHAPTER 6 CONTROL STRUCTURES OF C LANGUAGE

6.4 Selection Statements

Selection statements include if and switch statements. The if or switch statement allows the program to choose
one of several groups of statements to execute, based on the value of the control expression enclosed in
parentheses.

The control flows of the if and switch statements are illustrated in Figure 6-1 below.

Figure 6-1. Control Flows of Selection Statements

Control flow of if statement

if
condition

False

Executes Executes
statement statement
that follows that follows

if. else.

Control flow of switch statement

<>

case 1 case 2 case 3 default :

User's Manual U14872EJ1VOUM 119

CHAPTER 6 CONTROL STRUCTURES OF C LANGUAGE

(1) if and if ... else statements

Selection Statements if, if ... else

FUNCTION
An if statement executes the statement that follows the control expression enclosed in parentheses if the value
of the control expression is nonzero.
An if ... else statement executes the statement-1 that follows the control expression if the value of the control
expression is nonzero or the statement-2 that follows else if the value of the control expression is zero.

SYNTAX

i f (expression) statement
i f (expression) statement-1 el se statement-2

EXAMPLE

unsi gned char uc;
void func (void){
if(uc <10){

/[* 111 */
}
el se{
[* 222 *]
}
}
EXPLANATION

In the above example, if the value of uc is less than 10 based on the control expression in the if statement, the
block “{/*111*/}" is executed. If the value is greater than 10, the block “{/*222*/}" is executed.

NOTE

When the processing after if statement/if...else statement is not enclosed with “{ }*, only the processing of one
line after the if statement/if...else statement is performed regarding it as the body.

120 User's Manual U14872EJ1VOUM

CHAPTER 6 CONTROL STRUCTURES OF C LANGUAGE

(2) switch statement

Selection Statements switch

FUNCTION
A switch statement has a multiway branching structure and passes control to one of a series of statements that
have the case labels in the switch body depending on the value of the control expression enclosed in
parentheses. If no case label that corresponds to the control expression exists, the statement that follows the
default label is executed. If no default label exists, no statement is executed.

SYNTAX

swi t ch (expression) statement

EXAMPLE

extern void func(void);
unsi gned char node;
voi d mai n(voi d){

swi t ch(nmode) {

case 2:
nmode=8;
br eak;

case 4:
node=2;
br eak;

case 8:
func();

}
}
NOTE

The same value cannot be set in each case label in the switch statement. Only one default label can be used
in the switch statement.

User's Manual U14872EJ1VOUM 121

CHAPTER 6 CONTROL STRUCTURES OF C LANGUAGE

6.5 Iteration Statements

An iteration statement executes a group of statements in the loop body as long as the value of the control
expression enclosed in parentheses is true (nonzero). C has the following three types of iteration statements.

* whi | e statement
* do statement
« for statement

The control flow of each type of iteration statement is illustrated in Figure 6-2 below.

Figure 6-2. Control Flows of Iteration Statements

Control flow of while loop Control flow of do-while loop Control flow of for loop
Loop |
Loop
Loop
while False
condition
Executes
statement (s)
that ng-low fo.r . False
condition
Executes
statement (s)
that follow True “hile

while. condition Executes
‘ statement (s)

that follow

l for.
Reevaluates
control
expression.
|

——

122 User's Manual U14872EJ1VOUM

CHAPTER 6 CONTROL STRUCTURES OF C LANGUAGE

(1) while statement

Iteration Statements while statement

FUNCTION
A while statement executes one or more statements (the body of the while loop) several times as long as the

value of the control expression enclosed in parentheses is true (nonzero). The while statement evaluates the

control expression before executing its loop body.

SYNTAX

whi | e (expression) statements

EXAMPLE
int i, x;
void main (void){

i=1, x=0 ;

while(i < 11){
X += i

i ++

EXPLANATION
The above example finds the sum total of integers from 1 to 10 for x. The two statements enclosed in braces are
the body of this while loop. The control expression “i<11” returns 0 if the value of i becomes 11. For this
reason, the loop body is executed repeatedly as long as the value of i is less than 11 (between 1 and 10).
“while(1) {statement}” is used to endlessly perform a loop statement.

User's Manual U14872EJ1VOUM 123

CHAPTER 6 CONTROL STRUCTURES OF C LANGUAGE

(2) do statement

Ilteration Statements do statement

FUNCTION
A do statement executes the body of the loop and then tests the control expression enclosed in parentheses to

see if its value is true (nonzero). The do statement evaluates the control expression after the loop body has
been executed.

SYNTAX

do statements whi | e (expression) ;

EXAMPLE

int i, x;
voi d mai n(voi d){
=1, x=0;

do{
X+=i
i ++;

Iwhil e(i<11);

EXPLANATION
The above example finds the sum total of integers from 1 to 10 for x. The two statements enclosed in braces are
the body of this do ... while loop. The control expression “i<11” returns 0 if the value of i becomes 11. For this
reason, the loop body is executed repeatedly as long as the value of i is less than 11 (between 1 and 10). The
body of the loop is always performed once or more since the control expression of a do statement is evaluated
after execution.

124 User's Manual U14872EJ1VOUM

CHAPTER 6 CONTROL STRUCTURES OF C LANGUAGE

(3) for statement

Iteration Statements for statement

FUNCTION
A for statement executes the body of the for loop a specified number of times as long as the value of the control
expression is nonzero (true). Of the three expressions inside the parentheses separated by semicolons, the first
expression is an initializing statement to initialize a variable to be used as a counter and is executed only once in
the beginning of the loop, the second is the control expression for testing the counter value, and the third is a
step statement executed at the end of every loop, after which the variable is reevaluated.

SYNTAX

f or (1st-expression ; 2nd-expression ; 3rd-expression) statements

EXAMPLE

int i,x=0;

for(i=1;i<11;++i)

X+=1

EXPLANATION
The above example finds the sum total of integers from 1 to 10 for x. “x+=i" is the body of this for loop. The
control expression “i<11” returns O if the value of i becomes 11. For this reason, the loop body is executed
repeatedly as long as the value of i is less than 11 (between 1 and 10).

NOTE
When the processing after the for statement is not enclosed with “{ }”, only the processing of one line after the
for statements is regarded as the body of the loop of the for statement. The first and the third expression of a
for statement can be omitted. When the second expression is omitted, it is replaced with a constant other than
0. The description of “for (; ;) statement” is used to endlessly perform the body of the loop.

User's Manual U14872EJ1VOUM 125

CHAPTER 6 CONTROL STRUCTURES OF C LANGUAGE

6.6 Branch Statements

A branch statement is used to exit from the current control flow and transfer control to elsewhere in the program.
Branch statements include the following four statements.

* got o statement

* conti nue statement
* break statement

* return statement

The control flow of each type of branch statement is shown in Figure 6-3.

Figure 6-3. Control Flows of Branch Statements

continue break

Loop Loop

~—{ continue break

126 User's Manual U14872EJ1VOUM

CHAPTER 6 CONTROL STRUCTURES OF C LANGUAGE

(1) goto statement

Branch Statements goto

FUNCTION
A goto statement causes program execution to unconditionally jump to the label name specified in the goto
statement within the current function.

SYNTAX

got o identifier ;

EXAMPLE
do{
[*.000%]
goto point ;
[*.000%]
Iwhile(/*...*) ;
[*.000%]
point: ;
EXPLANATION

In the above example, when control is passed to the goto statement, C unconditionally jumps out of the current
do ... while loop processing and transfers control to the statement next to “point”.

NOTE
The label name (branch destination) to be specified in a goto statement must have been specified within the
current function that includes the goto statement. In other words, a goto can branch only within the current
function - not from one function to another.

User's Manual U14872EJ1VOUM 127

CHAPTER 6 CONTROL STRUCTURES OF C LANGUAGE

(2) continue statement

Branch Statements continue

FUNCTION
A continue statement is used in the loop body of an iteration statement. continue ends one cycle of the loop by
transferring control to the end of the loop body. When a continue statement is enclosed by more than one loop,
it ends a cycle of the smallest enclosing loop.

SYNTAX

conti nue ;

EXAMPLE

while(/*...*/){

[*.0.0*
conti nue;
[*.0.0*
contin:;
}
EXPLANATION

In the above example, when the while loop processing by C reaches the continue statement, C unconditionally
branches to the label “contin”. The label “contin” indicates the branch destination and may be omitted. The
same branching operation may be performed by using “goto contin ;” instead of continue.

NOTE
A continue statement can only be used in the body of loops.

128 User's Manual U14872EJ1VOUM

CHAPTER 6 CONTROL STRUCTURES OF C LANGUAGE

(3) break statement

Branch Statements break

FUNCTION
A break statement may appear in the body of an iteration or switch statement and causes control to be
transferred to the statement next to the iteration or switch statement.

SYNTAX

break ;

EXAMPLE

int i;
unsi gned char count, flag;

voi d mai n(voi d) {
[*000*]
for(i = 0;i < 20;i++){
swi tch(count) {

case 10:
flag = 1;
br eak; /* exit switch statement */
defaul t:
func() ;
}
if (flag)
br eak; [*exit for loop */
}
}
EXPLANATION

In the above example, break statements are used so that more than required evaluations are not performed in
the body of the switch statement. If the corresponding case label is found in evaluating the switch statement,
the break statement causes C to exit from the switch statement.

NOTE
A break statement can only be used in the loop or switch body.

User's Manual U14872EJ1VOUM 129

CHAPTER 6 CONTROL STRUCTURES OF C LANGUAGE

(4) return statement

Branch Statements return

FUNCTION
A return statement exits the function that includes the return and passes controls to the function that called the
return, and calls and returns the value of the return statement expression as the value of the function call
expression. Two or more return statements may be used in a function. Using the closing brace “} ” at the end
of a function produces the same result as when a return statement without an expression is executed.

SYNTAX

return expression)

EXAMPLE

int f(int);

voi d mai n(voi d) {

[*.000%]
int i=0,y=0;
y=t(i);
[*.000%

}

int f(int i){
int x=0;
[*.000%]
return(x);

}

EXPLANATION

In the above example, when control is passed to the return statement, the function f() returns a value to the
function main. Because the value of the variable “x” is returned as the return value, the assignment operator

“

causes the variable “y” to be substituted with the value of the variable “x”.

NOTE
With a void type function, an expression that indicates a return value cannot be used for a return statement.

130 User's Manual U14872EJ1VOUM

CHAPTER 7 STRUCTURES AND UNIONS

A structure or union is a collection of member objects that have different types and grouped under one given
name. The member objects of a structure are allocated successively to memory space, while the member objects of
a union share the same memory.

User's Manual U14872EJ1VOUM 131

CHAPTER 7 STRUCTURES AND UNIONS

7.1 Structures
As mentioned earlier, a structure is a collection of member objects successively allocated to memory space.
(1) Declaration of structure and structure variable
A structure declaration list and a structure variable are declared with the keyword struct. Any tag name can be
given to the structure declaration list.

Subsequently, the structure variables of the same structure may be declared using this tag name.

[Declaration of structure]

struct tag name { structure declaration list} variable name;

In the following example, in the first struct declaration, the int type array “code” and char type arrays name,
addr, and tel, with the tag name “data” are specified and nol is declared as the structure variable. In the
second struct declaration, the structure variables no2, no3, no4, and no5, which have the same structure as
nol are declared.

[Example]

struct data{
int code;
char name[12];
char addr[50];
char tel[12];
}noil;
struct data no2, no3, no4, no5;

(2) Structure declaration list
The structure declaration list specifies the structure of a structure type to be declared. Individual elements in the
structure declaration list are called members and an area is allocated for each of these members in the order of
their declaration. In the following [Example of structure declaration list], an area is allocated in the order of
variable a, array b, and two-dimensional array c.
Neither an incomplete type (an array of unknown size) nor a function type can be specified as the type of each
member. Therefore, the structure itself cannot be included in the structure declaration list.
Each member can have any object type other than the above two types. A bit field that specifies each member
in bits can also be specified.
If a variable takes a binary value “0” or “1”, the minimum required number of bits is specified as 1 for a bit field.
By this specification of the minimum required number of bits with the bit field, two or more members can be
stored in an integer area.

[Example of structure declaration list]

int a;
char b[7];
char c[5][10];

132 User's Manual U14872EJ1VOUM

CHAPTER 7 STRUCTURES AND UNIONS

[Example of bit field declaration]

struct bf_tag{
unsigned int a:2;
unsigned int b:3; :| bit field
unsigned int c:1;
}bit_field;

(3) Arrays and pointers
Structure variables may also be declared as an array or referenced using a pointer.

[Structure arrays]
An array of structures is declared in the same ways as other objects.

struct data{
char nane[12];
char addr[50];
char tel[12];
b

struct data no[5];

[Structure pointers]
A pointer to a structure has the characteristics of the structure indicated by the pointer. In other words, if a
structure pointer is incremented, adding the size of the structure to the pointer points to the next structure.
In the following example, “dt_p” is a pointer to the value of “struct data” type. Here, if the pointer “dt_p” is
incremented, the pointer becomes the same value as “&no[1]".

struct data no[5];
struct data *dt_p=no;

(4) How to refer to structure members
A structure member (or structure element) may be referenced in two ways: one by using a structure variable and
the other by using a pointer to a variable.

[Reference by using a structure variable]
The . (dot) operator is used for referring to a structure member by using a structure variable.

struct data{
char name[12];
char addr[50];
char tel[12];
}no[5] ={" NAME", "ADDR', "TEL"}; *dat a_pt r =no;

voi d mai n(){
char c¢ ;
c=no[0] . nane[1] ;

User's Manual U14872EJ1VOUM 133

CHAPTER 7 STRUCTURES AND UNIONS

[Reference by using a pointer to a variable]

The —> (arrow) operator is used for referring to a structure member by using a pointer to a variable.

struct data{
char nane[12];
char addr[50];
char tel[12];
}no[5] ={" NAME", "ADDR', "TEL"}, *dat a_pt r =no;

voi d mai n() {
char c;
data_ptr->tel [3]="E;

7.2

Unions

As mentioned earlier, a union is a collection of members that share the same memory space (or overlap in
memory).

1)

Declaration of union and union variable

A union declaration list and a union variable are declared with the keyword union. Any name called a tag name
can be given to the union declaration list. Subsequently, the union variables of the same union may be declared
using this tag name.

[Declaration of union]

uni on tag name { union declaration list} variable name;

In the following example, in the first union declaration, char type arrays “name”, “addr”, and “tel” with the tag
name “data” are specified and “no1” is declared as the union variable. In the second union declaration, the
union variables “no2, no3, no4, and no5” which are of the same union as “no1” are declared.

uni on dat af
char nane[12];
char addr[50];
char tel[12];
}noil;
uni on data no2, no3, no4, no5;

)

134

Union declaration list

A union declaration list specifies the structure of a union type to be declared. Individual elements in the union
declaration list are called members and an area is allocated for each of these members in the order of their
declaration. In the following [Example of union declaration list], an area is allocated to ‘c’, which becomes the
largest area of the members. The other members are not allocated new areas but use the same area.

Neither an incomplete type (an array of unknown size) nor a function type can be specified as the type of each
member same as the union declaration list.

Each member can have any object type other than the above two types.

User’'s Manual U14872EJ1VOUM

CHAPTER 7 STRUCTURES AND UNIONS

[Union declaration list]

int a;
char b[7];
char c[5][10];

(3) Union arrays and pointers
Union variables may also be declared as an array or referenced using a pointer (in much the same way as
structure arrays and pointers).

[Union arrays]
An array of unions is declared in the same ways as other objects.

uni on dat af
char name[12];
char addr[50];
char tel[12];
b

uni on data no[5];

[Union pointers]
A pointer to a union has the characteristics of the union indicated by the pointer. In other words, if a union
pointer is incremented, adding the size of the union to the pointer points to the next union.
In the following example, “dt_p” is a pointer to the value of “union data” type.

uni on data no[5];
uni on data *dt_p=no;

(4) How to refer to union members
A union member (or union element) may be referenced in two ways: one by using a union variable and the other
by using a pointer to a variable.

[Reference by using a union variable]
The . (dot) operator is used for referring to a union member by using a union variable.

uni on dat a{
char name[12];
char addr[50];
char tel[12];
}no[5] ={" NAME", "ADDR", "TEL"};

voi d mai n(voi d){
no[0] . addr[10] ='B';

User's Manual U14872EJ1VOUM 135

CHAPTER 7 STRUCTURES AND UNIONS

[Reference by using a pointer to a variable]
The —> (arrow) operator is used for referring to a union member by using a pointer to a variable.

uni on dat af{
char nane[12];
char addr[50];
char tel[12];
}data_ptr;

voi d mai n(voi d) {
data_ptr->nane[1]='"N ;

136 User's Manual U14872EJ1VOUM

CHAPTER 8 EXTERNAL DEFINITIONS

In a program, lists of external declarations come after the preprocessing. These declarations are referred to as

“external declarations” because they appear outside a function and have valid file ranges.

A declaration to give a name to external objects via an identifier or a declaration to secure storage for a function is
called an external definition. If an identifier declared with external linkage is used in an expression (except the
operand part of the sizeof operator), one external definition for the identifier must exist somewhere in the entire

program.
The syntax of external definitions is given below.

#define TRUE 1
#define FALSE 0O
#define SIZE 200

void printf(char*,int);
voi d putchar(char c);

char mark[S| ZE+1]; <+— External object definition

mai n()

{

int i,prine,k,count;
count =0;

for(i=0;i<=SIZE;i++)
mar k[i] =TRUE;
for(i=0;i<=8IZE;i++){
if(mark[i]){
prime=i +i +3;
printf("%d", prine);
count ++;
if((count9®)==0) putchar('\n");
for (k=i +pri me; k<=Sl ZE; k+=pri ne)
mar k[k] =FALSE;

}
printf("Total %l\n", count);

| oopl:
goto | oopl;

User’'s Manual U14872EJ1VOUM

137

CHAPTER 8 EXTERNAL DEFINITIONS

8.1 Function Definitions

A function definition is an external definition that begins with a declaration of the function. If the storage class
specifier is omitted from the declaration, extern is assumed to have been defined. An external function definition
means that the defined function may be referenced from other files. For example, in a program consisting of two or
more files, if a function in another file is to be referenced, this function must be defined externally.

The storage class specifier of an external function is extern or static. If a function is declared as extern, the
function can be referenced from another file. If declared as static, it cannot be referenced from another file.

In the following example, the storage class specifier is “extern” and the type specifier is “int”. These two are
default values and thus may be omitted. The function declarator is “max(int a, int b)” and the body of the function is
“{return a>b?a:b;)".

[Example of function definition]

extern int max(int a, int b)

{

return a>b ? a: b;

Because this function definition specifies a parameter type in the function declaration, the type of argument is
forcibly converted by the compiler. This type conversion can be described by using the form of an identifier list for the
parameters. An example of this identifier list is shown below.

extern int max(a, b)
int a, b;
{

return a>b ? a: b;

The address of the function may be passed as an argument to a function call. A pointer to the function can be
generated by using the function name in the expression.

int f(void);
voi d mai n() {

a(f);

138 User's Manual U14872EJ1VOUM

CHAPTER 8 EXTERNAL DEFINITIONS

In the above example, the function g is passed to the function f by a pointer that points to the function f. The
function g must be defined in either of the following two ways.

void g(int(*funcp)(void))

{
(*funcp)(); /* or funcp();*/

or
void g(int func(void))

{

func(); /* or (*func) ();*/

User's Manual U14872EJ1VOUM 139

CHAPTER 8 EXTERNAL DEFINITIONS

8.2 External Object Definitions

An external object definition refers to the declaration of an identifier for an object that has a file scope or initializer.
If the declaration of an identifier for an object which has file scope has no initializer without a storage class
specification or has the storage class static, the object definition is considered to be temporary, because it becomes
a declaration which has file scope with initializer 0.

Examples of external object definitions are shown below.

[Example of external object definition]

int i1=1; e, Definition with external linkage

static int i2=2; .ceeunnnnen. Definition with internal linkage

extern int i3=3; Definition with external linkage

I Nt T4} e Temporary definition with external linkage

static int i5 i, Temporary definition with internal linkage

PNt 1L e Valid temporary definition which refers to previous declaration
Nt 12 e Violation of linkage rule

PNt 35 e Valid temporary definition which refers to previous declaration
IiNt T4, e, Valid temporary definition which refers to previous declaration
Nt 05 e Violation of linkage rule

extern int Reference to previous declaration which has external linkage

extern int Reference to previous declaration which has internal linkage

extern int Reference to previous declaration which has external linkage

extern int Reference to previous declaration which has external linkage

extern int Reference to previous declaration which has internal linkage

140 User's Manual U14872EJ1VOUM

CHAPTER 9 PREPROCESSING DIRECTIVES (COMPILER DIRECTIVES)

A preprocessing directive is a string of preprocessing tokens between the # preprocessing token and the line feed
character.

White-space characters that can be used between preprocessor token strings are only spaces and horizontal tabs.

A preprocessing directive specifies the processing performed before compiling a source file. Preprocessing
directives include such operations as processing or skipping a part of a source file depending on the condition,
obtaining additional code from other source files, and replacing the original source code with other text as in macro
expansion. The preprocessing directives are explained in the following pages.

User's Manual U14872EJ1VOUM 141

CHAPTER 9 PREPROCESSING DIRECTIVES (COMPILER DIRECTIVES)

9.1 Conditional Inclusion

Conditional inclusion skips part of a source file according to the value of a constant expression. If the value of the
constant expression specified by a conditional inclusion directive is 0, the statements that follow the directive are not
translated (compiled). The sizeof operator, cast operator, or an enumerated type constant cannot be used in the
constant expression of any conditional inclusion directive.

Conditional inclusion directives include #if, #elif, #ifdef, #ifndef, #else, and #endif.

In preprocessing directives, the following unary expressions called defined expressions may be used.

def i ned identifier
defi ned (identifier)

The unary expressions return 1 if the identifier has been defined with the #define preprocessing directive and 0 if
the identifier has never been defined or its definition has been canceled.

[Example]
In this example, the unary expression returns 1 and compiles between #if and #endif because SYM has been
defined (for the explanation of #if through #endif, refer to the explanations in the following pages).

#define SYM O

#if defined SYM

#endi f

142 User's Manual U14872EJ1VOUM

CHAPTER 9 PREPROCESSING DIRECTIVES (COMPILER DIRECTIVES)

(1) #if directive

Conditional Inclusion #if

FUNCTION
The #if directive tells the translation phase of C to skip (discard) a section of source code if the value of the
constant expression is 0.

SYNTAX

#i f constant expression new-line [group

EXAMPLE
#i f FLAG==0
#endi f
EXPLANATION
In the above example, the constant expression “FLAG == 0” is evaluated to determine whether a set of

statements (i.e., source code) between #if and #endif is to be used in the translation phase. If the value of
“FLAG” is nonzero, the source code between #if and #endif will be discarded. If the value is zero, the source
code between #if and #endif will be translated.

User's Manual U14872EJ1VOUM 143

CHAPTER 9 PREPROCESSING DIRECTIVES (COMPILER DIRECTIVES)

(2) #elif directive

Conditional Inclusion #elif

FUNCTION
The #elif directive normally follows the #if directive. If the value of the constant expression of the #if directive is
0, the constant expression of the #elif directive is evaluated. If the constant expression of the #elif directive is 0,
the translation phase of C will skip (discard) the statements (a section of source code) between #elif and #endif.

SYNTAX

#el i f constant-expression new-line [groupd

EXAMPLE

#i f FLAG==0

#elif FLAG =0

#endi f

EXPLANATION
In the above example, the constant expression “FLAG= =0" or “FLAG!=0" is evaluated to determine whether a
set of statements that follow #if and another set of statements that follow #elif are to be used in the translation
phase. If the value of “FLAG” is zero, the source code between #if and #elif will be translated. If the value is
nonzero, the source code between #elif and #endif will be translated.

144 User's Manual U14872EJ1VOUM

CHAPTER 9 PREPROCESSING DIRECTIVES (COMPILER DIRECTIVES)

(3) #ifdef directive

Conditional Inclusion #ifdef

FUNCTION
The #ifdef directive is equivalent to:
#if defined (identifier)
If the identifier has been defined with the #define directive, the statements between #ifdef and #endif will be
translated. If the identifier has never been defined or its definition has been canceled, the translation phase will
skip the source code between #ifdef and #endif.

SYNTAX

#i f def identifier new-line [groupd

EXAMPLE

#define ON
#i fdef ON

#endi f

EXPLANATION
In the above example, the identifier “ON” has been defined with the #define directive. Thus, the source code
between #ifdef and #endif will be translated. If the identifier “ON” has never been defined, the source code
between #ifdef and #endif will be discarded.

User's Manual U14872EJ1VOUM 145

CHAPTER 9 PREPROCESSING DIRECTIVES (COMPILER DIRECTIVES)

(4) #ifndef directive

Conditional Inclusion #ifndef

FUNCTION
The #ifndef directive is equivalent to:
#if !defined (identifier)
If the identifier has never been defined with the #define directive, the source code between #ifndef and #endif
will not be translated.

SYNTAX

#i f ndef identifier new-line [groupO

EXAMPLE

#define ON
#i f ndef ON

#endi f

EXPLANATION
In the above example, the identifier “ON” has been defined with the #define directive. Thus, the program
between #ifndef and #endif will not be translated. If the identifier “ON” has never been defined, the program
between #ifndef and #endif will be translated.

146 User's Manual U14872EJ1VOUM

CHAPTER 9 PREPROCESSING DIRECTIVES (COMPILER DIRECTIVES)

(5) #else directive

Conditional Inclusion t#else

FUNCTION
The #else directive tells the translation phase of C to discard a section of source code that follows #else if the
identifier of the preceding conditional inclusion directive is nonzero.
The #if, #elif, #ifdef, or #ifndef directive may precede the #else directive.

SYNTAX

#el se new-line [groupd

EXAMPLE

#define ON
#i fdef ON

#el se

#endi f

EXPLANATION
In the above example, the identifier “ON” has been defined with the #define directive. Thus, the source code
between #ifndef and #endif will be translated. If the identifier “ON” has never been defined, the source code
between #else and #endif will be translated.

User's Manual U14872EJ1VOUM 147

CHAPTER 9 PREPROCESSING DIRECTIVES (COMPILER DIRECTIVES)

(6) #endif directive

Conditional Inclusion #endif

FUNCTION
The #endif directive indicates the end of a #ifdef block.

SYNTAX

#endi f new-line

EXAMPLE

#define ON
#i fdef ON

#endi f

EXPLANATION
In the above example, #endif indicates the end of the #ifdef block (effective range of #ifdef directive).

148 User's Manual U14872EJ1VOUM

CHAPTER 9 PREPROCESSING DIRECTIVES (COMPILER DIRECTIVES)

9.2 Source File Inclusion

The preprocessing directive #include searches for a specified header file and replaces the #include directive with
the entire contents of the header file. The #include directive may take one of the following three forms for inclusion
of other source files.

« #include <file-name>

+ #include “file-name”

+ #include preprocessing token string

An #include directive may appear in the source obtained by #include. In this compiler, however, there are
restrictions for #include directive nesting. For the restrictions, refer to Table 1-1 Maximum Performance

Characteristics of This C Compiler.

Remark Preprocessor token string: Character string defined by the #define directive

User's Manual U14872EJ1VOUM 149

CHAPTER 9 PREPROCESSING DIRECTIVES (COMPILER DIRECTIVES)

(1) #include < >directive

Source File Inclusion #include< >

FUNCTION
If the directive form is #include < >, the C compiler searches the directory specified by the -i compiler option,
directory specified by the INC78K environment variable, and directory \NECTools32\INC78K0S registered in the
registry for the header file specified in angle brackets and replaces the #include directive line with the entire
contents of the specified file.

SYNTAX

#i ncl ude <file-name> new-line

EXAMPLE

#i ncl ude <stdio. h>

EXPLANATION
In the above example, the C compiler searches the directory specified by the INC78K environment variable and
directory \NECTools32\INC78K0S registered in the registry for the file stdio.h and replaces the directive line
#include<stdio.h> with the entire contents of the specified file stdio.h.

Caution The above directories differ depending on the installation method.

150 User's Manual U14872EJ1VOUM

CHAPTER 9 PREPROCESSING DIRECTIVES (COMPILER DIRECTIVES)

(2) #include " ” directive

Source File Inclusion #include * ”
FUNCTION
If the directive form is #include “ ”, the current working directory is first searched for the header file specified in

double quotes. If it is not found, the directory specified by the -i compiler option, directory specified by the
INC78K environment variable, and directory \NECTools32\INC78K0S registered in the registry is searched.
Then, the compiler replaces the #include directive line with the entire contents of the specified file thus

searched.

SYNTAX

#i ncl ude "file-name" new-line

EXAMPLE

#i ncl ude "myprog. h"

EXPLANATION
In the above example, the C compiler searches the current working directory, the directory specified by the
INC78K environment variable, and directory \NECTools32\INC78KO0S registered in the registry for the file
myprog.h specified in double quotes and replaces the directive line #include “myprog.h” with the entire
contents of the specified file myprog.h.

Caution The above directories differ depending on the installation method.

User's Manual U14872EJ1VOUM 151

CHAPTER 9 PREPROCESSING DIRECTIVES (COMPILER DIRECTIVES)

(3) #include preprocessing token string directive

Source File Inclusion #include token string

FUNCTION
If the directive form is #include preprocessing token string, the header file to be searched is specified by macro
replacement and the #include directive line is replaced by the entire contents of the specified file.

SYNTAX

#i ncl ude preprocessing token string new-line

EXAMPLE

#define | NCFI LE "nyprog. h"
#define | NCFI LE

EXPLANATION

In the inclusion of other source files with the directive form #include preprocessing token string, the specified
“preprocessing token string” must be replaced by <file-name> or “file name” using macro replacement. If the
token string is replaced by <file-name>, the C compiler searches the directory specified by the -i compiler option,
directory specified by the INC78K environment variable, and directory \NECTools32\INC78K0S registered in the
registry for the specified file. If the token string is replaced by “file name”, the current working directory is
searched. If the specified file is not found, the directory specified by the -i compiler option, directory specified by
the INC78K environment variable, and directory \NECTools32\INC78K0S registered in the registry is searched.

152 User's Manual U14872EJ1VOUM

CHAPTER 9 PREPROCESSING DIRECTIVES (COMPILER DIRECTIVES)

9.3 Macro Replacement

The macro replacement directives #define and #undef are used to replace the character string (macro name)

specified by the identifier with “substitution list”. The #define directive has two forms: object format and function

format:

* Object format
#def i ne identifier replacement-list new-line

* Function format
#def i ne identifier ([dentifier-listd) replacement-list new-line

1)

)

®)

Actual argument replacement

Actual argument replacement is executed after the arguments in the function-form macro call are identified. If
the # or ## preprocessing token is not prefixed to a parameter in the replacement list or if the ## preprocessing
token does not follow any such parameter, all macros in the list will be expanded before replacement with the
corresponding macro arguments.

operator

The # preprocessing token replaces the corresponding macro argument with a char string processing token. In
other words, if this preprocessing token is prefixed to a parameter in the replacement list, the corresponding
macro argument will be translated into a character or character string.

operator
The ## preprocessing token concatenates the two tokens on either side of the ## symbol into one token. This
concatenation will take place before the next macro expansion and the ## preprocessing token will be deleted
after the concatenation. The token generated from this concatenation will undergo macro expansion if it has a
macro name.
[Example of ## operation]
The above macro replacement directive will be expanded as follows.

printf("x""1""=9%d, x""2""=9%", x1, x2);

The concatenated char string will look like this.

printf("x1=%l, x2=%", x1, x2) ;

#i ncl ude <stdio. h>
#define debug(s, t) printf("x"#s"=0%a, x"#t"=968", x##s, Xx##t);

voi d mai n() {
int x1, x2;
debug (1, 2);

User's Manual U14872EJ1VOUM 153

CHAPTER 9 PREPROCESSING DIRECTIVES (COMPILER DIRECTIVES)

(4) Re-scanning and further replacement
The preprocessing token string resulting from replacement of macro parameters in the list will be scanned again,
together with all remaining preprocessing tokens in the source file. Macro names currently being replaced (not
including the remaining preprocessing tokens in the source file) will not be replaced even if they are found during

scanning of the replacement list.
(5) Scope of macro definition

A macro definition (#define directive) continues macro replacement until it encounters the corresponding #undef

directive.

154 User's Manual U14872EJ1VOUM

CHAPTER 9 PREPROCESSING DIRECTIVES (COMPILER DIRECTIVES)

(6) #define directive

Macro Replacement #define

FUNCTION
The #define directive in its simplest form replaces the specified identifier with a given replacement list whenever
the same identifier appears in the source code after the definition by this directive.

SYNTAX

#def i ne identifier replacement-list new-line

EXAMPLE

#define PAl 3.1415

EXPLANATION
In the above example, the identifier “PAI” will be replaced with “3.1415” whenever it appears in the source code
after definition by this directive.

User's Manual U14872EJ1VOUM 155

CHAPTER 9 PREPROCESSING DIRECTIVES (COMPILER DIRECTIVES)

(7) #define () directive

Macro Replacement #define ()

FUNCTION
The function-form #define directive replaces the identifier specified in the function format with a given
replacement list whenever the same identifier appears in the source code after definition by this directive.
Function-form macro replacement also includes replacing argument.

SYNTAX

#def i ne identifier ([Odentifier listd) replacement-list new-line

EXAMPLE

#define F(n) (n*n)
voi d mai n(){

int i;
=F(2)

EXPLANATION
In the above example, #define directive will replace “F(2)” with “(2*2)” and thus the value of i will become 4. For
the sake of safety, be sure to enclose the replacement list in parentheses, because unlike a function definition,
this function-form macro merely replaces a sequence of characters.

156 User's Manual U14872EJ1VOUM

CHAPTER 9 PREPROCESSING DIRECTIVES (COMPILER DIRECTIVES)

(8) #undef directive

Macro Replacement #undef

FUNCTION
The #undef directive ends the scope of the identifier that has been set by the corresponding #define directive.

SYNTAX

#undef identifier new-line

EXAMPLE

#define F(n) (n*n)

#undef F

EXPLANATION
In the above example, the #undef directive will invalidate the identifier “F” previously specified by “#define F(n)
(n*n)”.

User's Manual U14872EJ1VOUM 157

CHAPTER 9 PREPROCESSING DIRECTIVES (COMPILER DIRECTIVES)

9.4 Line Control

The preprocessing directive for line control #line replaces the line number to be used by the C compiler in
translation with the number specified by this directive. If a string (character string) is given in addition to the number,
the directive also replaces the source file name the C compiler has with the specified string.

(1) To change the line number
To change the line number, the specification is made as follows. 0 and numbers larger than 32767 cannot be
specified.

#| i ne numeric-string new-line

[Example]

#line 10

(2) To change the line number and the file name
To change the line number and file name, the specification is made as follows.

#| i ne numeric-string " character string” new-line

[Example]

#line 10 "filel.c"

(3) To change using preprocessor token string
In addition to the specifications above, the following specification can also be made. In this case, the specified
preprocessing token string must be either one of the above two examples after all the replacement.

#| i ne preprocessing-token-string new-line

[Example]

#define LI NE_NUM 100
#l i ne LI NE_NUM

158 User's Manual U14872EJ1VOUM

CHAPTER 9 PREPROCESSING DIRECTIVES (COMPILER DIRECTIVES)

9.5 #error Preprocessing Directive

The #error preprocessing directive is a directive that outputs a message including the specified preprocessing
tokens and incompletely terminates a compile. This preprocessing is used to terminate a compile.
This preprocessing is specified as follows.

#error " preprocessing-token-string” new-line

[Example]
In this example, the macro name _ KOS _ _, which indicates the device series that this compiler has, is used. If
the device is the 78K/0S Series, the program between #if and #else is compiled. In the other cases, the
program between #else and #endif is compiled, but the compilation will be terminated with an error message
“not for 78K0S” output by #error directive.

#i f KOS

#el se
#error "not for 78K0S"

#endi f

User's Manual U14872EJ1VOUM 159

CHAPTER 9 PREPROCESSING DIRECTIVES (COMPILER DIRECTIVES)

9.6 #pragma Directive

The #pragma directive is a directive to instruct the compiler to operate using the compiler definition method. In
this compiler, there are several #pragma directives to generate codes for the 78K/0S Series (For details of the
#pragma directives, refer to CHAPTER 11 EXTENDED FUNCTIONS).

[Example]
In this example, the #pragma NOP directive enables the description to directly output a NOP instruction in the C
source.

#pragma NOP

9.7 Null Directive

Source lines that contain only the # character and white space are called null directives. Null directives are simply
discarded during preprocessing. In other words, these directives have no effect on the compiler. The syntax of null
directives is given below.

new-line

160 User's Manual U14872EJ1VOUM

CHAPTER 9 PREPROCESSING DIRECTIVES (COMPILER DIRECTIVES)

9.8 Predefined Macro Names

In this C compiler, the following macro names have been defined.

_ _LINE_ _ Line number of the current source line (decimal constant)

_ _FILE_ _ Source file name (string literal)

__DATE_ _ Date the source file was compiled (string literal in the form of “Mmm dd yyyy”)
__TIME_ _ Time of day the source file was compiled (string literal in the form of “hh:mm:ss”)
__STDC_ _ Decimal constant “1” that indicates the compliance with ANS|Nte specification

Note ANSI is the acronym for American National Standards Institute

A #define or #undef preprocessing directive must not be applied to these macro names and defined identifiers.
All the macro names of the compiler definition start with an underscore followed by an uppercase character or a
second underscore.

In addition to the above macro names, macro names indicating the series names of devices depending on the
device subject to applied product development and macro names indicating device names are provided. To output
the object code for the target device, these macro names must be specified by the option at compilation time or by

the processor type in the C source.

* Macro name indicating the series names of devices
'_ _Kos_ '
* Macro name indicating the device name
‘ _’is added before the device type name and ‘_’ is added after the device type name.
Describe English characters in uppercase.

(Example) _ _9026_ _ _9216Y_

Remark The device type names are the same as the ones specified by -C option. For the device type names, refer

to the reference related to device files.

This C compiler has a macro name indicating the memory model.

» Define as follows when the static model is specified
#define _ _STATIC MODEL_ _ 1

The device type for compilation is specified by adding the following to the command line
‘-c device type name’

(Example) cc78ks —c9216Y prinme.c

User's Manual U14872EJ1VOUM 161

CHAPTER 9 PREPROCESSING DIRECTIVES (COMPILER DIRECTIVES)

The device type does not need to be specified on compilation by specifying it at the start of the C source program.

‘#pragma PC (device type)

(Example) #pragnma PC(9216Y)

However, the following can be described before ‘#pragma PC (device type)’

+ Comment statement
* Preprocessing directives that do not generate a definition/reference of variables nor functions.

162 User's Manual U14872EJ1VOUM

CHAPTER 10 LIBRARY FUNCTIONS

C has no instructions to transfer (input or output) data to and from external sources (peripheral devices and
equipment). This is because of the C language designer's intent to hold the functions of C to a minimum. However,
for actually developing a system, |/O operations are requisite. Thus, C is provided with library functions to perform
I/O operations.

This C compiler is provided with library functions such as 1/0, character/memory manipulation, program control,
and mathematical functions. This chapter describes the library functions provided in this compiler.

User's Manual U14872EJ1VOUM 163

CHAPTER 10 LIBRARY FUNCTIONS

10.1 Interface Between Functions

To use a library function, the function must be called. Calling a library function is carried out by a call instruction.
The arguments and return value of a function are passed by a stack and a register, respectively. However, when the
old function interface supporting option (-ZO) is not specified in the normal model, the first argument is, if possible,
also passed by the register. In addition, all of the arguments are passed by the register in the static model.

For the -ZO option, refer to the CC78K0S C Compiler Operation User’'s Manual (U14871E) CHAPTER 5
COMPILER OPTION.

10.1.1 Arguments

Placing or removing arguments on or from the stack is performed by the caller (calling side). The callee (called
side) only references the argument values. However, when the argument is passed by the register, the callee directly
refers to the register and copies the value of the argument to another register, if necessary. Also, when specifying
the function call interface automatic pascal function option -ZR, removal of arguments from the stack is performed by
the called side if the argument is passed on the stack.

Arguments are placed on the stack one by one in descending order from last to top if the argument is passed on
the stack.

The minimum unit of data that can be stacked is 16 bits. A data type larger than 16 bits is stacked in units of 16
bits one by one from its MSB. An 8-bit type data is extended to a 16-bit type data for stacking.

For the static model, all of arguments are passed by a register.

A maximum of 3 arguments and a total of 6 bytes can be passed. Passing float, double, and structure arguments
is not supported.

Lists of argument passing are shown below. The second argument and thereafter is passed via a stack in the
normal model.

The function interface (passing of argument and storing of return value) of the standard library is the same as that
of a normal function.

Table 10-1. List of Passing First Argument (Normal Model)

Type of First Argument Passing Method
1-byte, 2-byte integers AX
3-byte integer AX, BC
4-byte integer AX, BC
Floating-point number AX, BC
(float type)
Floating-point number (double type) AX, BC
Others Passed via a stack

Remark Of the types shown above, 1- to 4-byte integers include structures and unions.

164 User's Manual U14872EJ1VOUM

CHAPTER 10 LIBRARY FUNCTIONS

Table 10-2. List of Passing Arguments (Static Model)

Type of Argument 1st Argument 2nd Argument 3rd Argument
1-byte integer A B H
2-byte integer AX BC HL

Remark If the arguments are a total of 4 bytes, some of the arguments are allocated to AX and BC, and the rest to

HL or H.

1- to 4-byte integers do not include structures and unions.

10.1.2 Return values

The return value of a function is stored in units of 16 bits starting from its LSB in the direction from register BC to
register DE. When returning a structure, the first address of the structure is stored in register BC. When returning a

pointer, the first address of the structure is stored in register BC.
The following shows a list of the storing of the return value. The method of storing return values is the same as

that of normal function.

Table 10-3. List of Storing Return Value

(1) Normal model

Type of Return Value

Method of Storing

1 bit

CcYy

1-byte, 2-byte integers

BC

4-byte integer

BC (lower), DE (higher)

Floating-point number (float type)

BC (lower), DE (higher)

Floating-point number (double type)

BC (lower), DE (higher)

Structure Copies the structure to return to the area specific to the
function and stores the address to BC
Pointer BC
(2) Static model
Type of Return Value Method of Storing

1 bit CcY

1-byte integer A

2-byte integer AX

4-byte integer

AX (lower), BC (higher)

Pointer

AX

10.1.3 Saving registers to be used by individual libraries
Libraries that use HL (normal model) and DE (static model) save the registers used to a stack.
Libraries that use saddr area save the saddr area used to a stack. A stack area is used as a work area for each

library.

User's Manual U14872EJ1VOUM 165

CHAPTER 10 LIBRARY FUNCTIONS

(1) No -ZR option specified

The procedure of passing arguments and return values is shown below.

Called function "1 ong func(int a, long b, char *c);"

166

<1>

<2>

<3>

<4>

<5>

<6>

<7>

<8>

<9O>

Placing arguments on the stack (by the caller)

The higher 16 bits of arguments “c” and “b” and lower 16 bits of argument “b” are placed on the stack in the
order named. a is passed by the AX register.

Calling func by call instruction (by the caller)

The return address is placed on the stack next to the lower 16 bits of argument “b” and control is

transferred to the function func.

Saving registers to be used within the function (by the callee)
If register HL is to be used, HL is placed on the stack.

Placing the first argument passed by the register on the stack (by the callee)

Processing func and storing the return value in registers (by the callee)

The lower 16 bits of the return value “long” are stored in BC and the higher 16 bits of the return value in
DE.

Restoring the stored first argument (by the callee)

Restoring the saved registers (by the callee)

Returning control to the caller with ret instruction (by the callee)

Removing arguments from the stack (by the caller)

The number of bytes (in units of 2 bytes) of the arguments is added to the stack pointer. In the example
shown in Figure 10-1, 6 is added.

User’'s Manual U14872EJ1VOUM

CHAPTER 10 LIBRARY FUNCTIONS

Figure 10-1. Stack Area When Function Is Called (No -ZR Specified)

Return value in <5> is stored
Lower 16 bits Higher 16 bits
BC DE
Stack pointer after <4> —— a
Stack pointer after <3> ——» HL < Stack pointer after <6>
Stack pointer after <2> —— Return address ~<— Stack pointer after <7>
Stack pointer after <1> —~ Lower 16 bits of b ~— Stack pointer after <8>
Upper 16 bits of b
c
Stack pointer before ——
stacking arguments ~— Stack pointer after <9>

High address

(2) -ZR option specified
The following example shows the procedure of passing arguments and return values when the -ZR option is
specified.

Called function "1 ong func(int a, long b, char *c);"

<1> Placing arguments on the stack (by the caller)

The higher 16 bits of arguments “c” and “b” and the lower 16 bits of argument “b” are placed on the stack in
that order. a is passed by the AX register.

Low address T

Stack pointer —| Lower 16 bits of b

Higher 16 bits of b

Stack pointer before
stacking arguments —

High address L

User's Manual U14872EJ1VOUM 167

CHAPTER 10 LIBRARY FUNCTIONS

<2> Calling func by a call instruction (by the caller)
Control is transferred to the function func when the stack is in the state shown below.

Low address ?

Stack pointer — Return

Lower 16 bits of b

Higher 16 bits of b

High address ¢

<3> Saving the register used (by the callee)

Low address ?

Stack pointer — HL
Stack pointer — Return
when called

Lower 16 bits of b

Higher 16 bits of b

High address L

<4> The first argument called by the register is placed on the stack

Low address T

Stack pointer —— a

HL

Return

Lower 16 bits of b

Higher 16 bits of b

High address L

168 User's Manual U14872EJ1VOUM

CHAPTER 10 LIBRARY FUNCTIONS

<5> Performing processing of the function func, and storing return values in the register (by the callee)
The lower 16 bits of the return value are stored in BC and the higher 16 bits are stored in DE.

BC DE

Lower 16 bits of return value Higher 16 bits of return value

<6> Restoring the first placed argument (by the callee)

Low address T

Stack pointer —— HL

Return

Lower 16 bits of b

Higher 16 bits of b

High address L

<7> Restoring the saved registers (by the callee)

Low address ?

Stack pointer —— Return

Lower 16 bits of b

Higher 16 bits of b

High address L

<8> Storing the return address in the register and removing the arguments from the stack by shifting the stack
pointer to the position before arguments were placed.

Low address ?

Stack pointer — Return

Lower 16 bits of b

Higher 16 bits of b

High address ¢

User's Manual U14872EJ1VOUM 169

CHAPTER 10 LIBRARY FUNCTIONS

170

<9> Restoring the return address stored in the register (by the callee)

Low address ?

Return

~—— Stack pointer

Stack pointer before —1
arguments were stacked

High address ¢

<10> Returning control to the functions on the caller by the ret instruction (by the callee)

Low address ?

Stack pointer before ——

arguments were stacked

High address ¢

User’'s Manual U14872EJ1VOUM

~—— Stack pointer

CHAPTER 10 LIBRARY FUNCTIONS

10.2 Headers

This C compiler has 13 headers (or header files). Each header defines or declares standard library functions, data
type names, and macro names.

The headers of this C compiler are as shown below.

ctype. h setjnmp. h stdarg. h stdio.h
stdlib.h string.h error.h errno. h
limts.h stddef. h mat h. h float.h
assert.h

Caution

The functions to be supported differ depending on the memory models (hormal model and static
model). Also, functions that operate during normal operation differ depending on the -ZI and -ZL
options. For functions that do not operate normally because of the existence of -ZI and -ZL
options, a warning message “The prototype declaration is not performed” is output.

User's Manual U14872EJ1VOUM 171

CHAPTER 10 LIBRARY FUNCTIONS

(1) ctype.h
This header is used to define character and string functions. In this standard header, the following library
functions have been defined.
However, when the compiler option -ZA (the option that disables the functions not compliant with ANSI
specifications and enables a part of the functions of ANSI specifications) is specified, _toupper and _tolower
are not defined. Instead, tolow and toup are defined. When -ZA is not specified, tolow and toup are not
defined. The function to be declared differs depending on the options and the specification models.

Table 10-4. Contents of ctype.h

Existence of -ZI, or -ZL Normal Model Static Model

Specification | None Zl ZL Zl None Zl ZL Zl
Function Name ZL ZL
isalnum v v v v v — v —
isalpha v v v v v — v —
iscntrl v v v v v — v —
isdigit v v v v v — v —
isgraph v v v v v — v —
islower v v v v v — v —
isprint v v v v v — v —
ispunct v v v v v — v —
isspace v v v v v — v —
isupper v v v v v — v —
isxdigit v v v v v — v —
tolower v v v v v — v —
toupper v v v v v — v —
isascii v v v v v — v —
toascii v v v v v — v —
_toupper v v v v v — v —
_tolower v v v v v — v —
tolow v v v v v — v —
toup v v v v v — v —

V: Supported
—: Not supported

172 User's Manual U14872EJ1VOUM

CHAPTER 10 LIBRARY FUNCTIONS

(2) setjmp.h
This header is used to define program control functions. In this header, the following functions are defined. The
function to be declared differs depending on the option and the specification models.

Table 10-5. Contents of setjmp.h

Existence of -ZI, or -ZL Normal Model Static Model
Specification | None Zl ZL ZI None Zl ZL ZI
Function Name ZL ZL
setjmp v v v v v — v —
longjmp v v v v v — v —
V: Supported
—: Not supported

In the header setjmp.h, the following object has been defined.
[Declaration of int array type jmp_buf]

* Normal model

typedef int jnp_buf[11];

« Static model

typedef int jnmp_buf[3];

User's Manual U14872EJ1VOUM 173

CHAPTER 10 LIBRARY FUNCTIONS

(3) stdarg.h (normal model only)

This header used to define special functions. In this header, the following three functions have been defined.

Table 10-6. Contents of stdarg.h

Existence of -ZI, or -ZL

Normal Model

Specification None VA ZL VAl
Function Name ZL
va_arg v v v v
va_start A A A A
va_end vV v v \

V: Supported

A: Operation is guaranteed, however there are limitations

In the header stdarg.h the following object has been declared.

[Declaration of pointer type va_list to char]

typedef char *va_list;

(4) stdio.h

This header is used to define I/O functions. In this header, next functions have been defined.
The function to be declared differs depending on the options and the specification models.

Table 10-7. Contents of stdio.h

Existence of -ZI, or -ZL

Normal Model

Static Model

ecification None VA|

Function Name

ZL

Zl
ZL

None

Zl

ZL

Zl
ZL

sprintf

sscanf

printf

scanf

vprintf

X

vsprintf

getchar

gets

putchar

LS S I S N S N B RS
X

(<)X

puts

S A AN YA A YRS AN RS AS

(<) x

LS S I R

<[

V: Supported
x: Operation is not guaranteed
—: Not supported

The following macro names are declared.

#define EOF (-1)
#define NULL (void *)O0

174 User's Manual U14872EJ1VOUM

CHAPTER 10 LIBRARY FUNCTIONS

(5) stdlib.h
This header is used to define character and string functions, memory functions, program control functions,
mathematical functions, and special functions. In this standard header, the following library functions have been
defined.
However, when the compiler option -ZA (the option that disables the functions not compliant with ANSI
specifications and enables a part of the functions of ANSI specifications) is specified, brk, sbrk, itoa, Itoa, and
ultoa are not defined. Instead, strbrk, strsbrk, stritoa, strltoa, and strultoa are defined. When -ZA is not
specified, these functions are not defined.

Table 10-8. Contents of stdlib.h

Existence of -ZI, or -ZL Normal Model Static Model
Specification | None Zl ZL Zl None Zl ZL Vd
Function Name ZL ZL

atoi

X
|
|
|
|

atol
strtol
strtoul

X
X
|
|
|
|

calloc

free

malloc

realloc
abort
atexit

exit

L=< 1] X
LS R N I I R S S
LS RN RN RN AN RS LN RN
L LI 1<

abs
div
labs
Idiv
brk
sbrk
atof
strtod
itoa

L BN B B BN RN Y Y AN A R

X
|
|
|
|

<<
<<

|

Itoa

ultoa

rand

srand

bsearch

qsort
strbrk
strsbrk
stritoa

<<=

stritoa

SN RN RN B B R B S R RN A S RN RN L R R RN B RN RN A S AN RN RN N b N N R N .

LI x <11
|
|
|
|
|

strultoa

V: Supported
x: Operation is not guaranteed

—: Not supported

In the header stdlib.h the following objects have been defined.

User's Manual U14872EJ1VOUM 175

CHAPTER 10 LIBRARY FUNCTIONS

[Declaration of structure type div_t which has int type members quot and rem (except static model)]

typedef struct{
i nt quot;
int rem
}div_t;

[Declaration of structure type Idiv_t which has long int type members quot and rem (except when -ZL is specified in
static model and normal model)]

typedef struct{
| ong int quot;
long int rem
Hdiv_t;

[Definition of macro name RAND_MAX]

#defi ne RAND_MAX 32767

[Declaration of macro name]

define EXI T_SUCCESS 0
define EXIT_FAI LURE 1

176 User's Manual U14872EJ1VOUM

CHAPTER 10 LIBRARY FUNCTIONS

(6) string.h
This header is used to define character and string functions, memory functions, and special functions. In this
header, the following functions have been defined. The function to be defined differs depending on the options
and specification models.

Table 10-9. Contents of string.h

Existence of -ZI, or -ZL Normal Model Static Model

Specification | None Zl ZL ZI None Zl ZL ZI
Function Name ZL ZL
memcpy v v v v v — v —
memmove v v v v v — v —
strcpy v v v v v v v v
strncpy v v v v v — v —
strcat v v v v v v v v
strncat v v v v v — v —
memcmp v x v X v — v —
strcmp v x v X v — v —
strncmp v x v X v — v —
memchr v v v v v — v —
strchr v v v v v — v —
strcspn v x v X v — v —
strpbrk v v v v v v v v
strrchr v v v v v — v —
strspn v x v X v — v —
strstr v v v v v v v v
strtok v v v v v v v v
memset v v v v v — v —
strerror v v v v v — v —
strlen v x v x v — v —
strcoll v x v x v — v —
strxfrm v x v x v — v —

V: Supported

x: Operation is not guaranteed
—: Not supported

User's Manual U14872EJ1VOUM 177

CHAPTER 10 LIBRARY FUNCTIONS

(7) error.h
error.h includes errno.h.

(8) errno.h
In this header, the following objects have been defined.

[Definitions of macro names “EDOM”, “ERANGE”, and “ENOMEM”]

#defi ne EDOM 1
#defi ne ERANGE 2
#def i ne ENOVEM 3

[Declaration of volatile int type external variable errno]

extern volatile int errno;

(9) limits.h
In this header, the following macro names have been defined.

#define CHAR BI T 8

#defi ne CHAR_MAX +127
#define CHAR_ M N -128
#define | NT_MAX +32767
#define INT_MN -32768
#defi ne LONG_MAX +2147483647
#define LONG M N —2147483648
#defi ne SCHAR_MAX +127

#defi ne SCHAR_M N -128

#defi ne SHRT_MAX +32767
#define SHRT_M N -32768
#def i ne UCHAR_MAX 255U

#defi ne U NT_MAX 65535U
#def i ne ULONG_MAX 4294967295U
#def i ne USHRT_MAX 65535U
#defi ne SI NT_MAX +32767
#define SINT_MN -32768
#defi ne SSHRT_MAX +32767
#define SSHRT_M N -32768

However, when the -QU option, which regards unqualified char as unsigned char, is specified, CHAR_MAX
and CHAR_MIN are declared as follows, via the macro _ _CHAR_UNSIGNED _ _ declared by the compiler.

#def i ne CHAR MAX (255U)
#define CHAR_ M N (0)

178 User's Manual U14872EJ1VOUM

CHAPTER 10 LIBRARY FUNCTIONS

When the -ZI option (int and short types are regarded as char type, unsigned int and unsigned short as
unsigned char) is specified as a compiler option, INT_MAX, INT_MIN, SHRT_MAX, SHRT_MIN, SINT_MAX,
SINT_MIN, SSHRT_MAX, SSHRT_MIN, UINT_MAX, and USHRT_MAX are declared as follows, via the macro
_ _FROM_INT_TO_CHAR_ _ declared by the compiler.

#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i

ne
ne
ne
ne
ne
ne
ne
ne
ne
ne

| NT_MAX
INT_M N

SHRT_MAX
SHRT_M N
SI NT_MAX
SINT_M N
SSHRT_MAX
SSHRT_M N
Ul NT_MAX
USHRT _MAX

CHAR MAX
CHAR M N
CHAR MAX
CHAR M N
SCHAR MAX
SCHAR M N
SCHAR MAX
SCHAR M N
UCHAR MAX
UCHAR M N

When the -ZL option (long type is regarded as int type and unsigned long as unsigned int) is specified as a
compiler option, LONG_MAX, LONG_MIN, and ULONG_MAX are declared as follows, via the macro
_ _FROM_LONG_TO_INT_ _ declared by the compiler.

#def i ne LONG_MAX
#define LONG M N
#defi ne ULONG_MAX

(+32767)
(-32768)
(65535U)

User’'s Manual U14872EJ1VOUM

179

CHAPTER 10 LIBRARY FUNCTIONS

(10) stddef.h
In this header, the following objects have been declared and defined.

[Declaration of int type ptrdiff_t]

typedef int ptrdiff _t;

[Declaration of unsigned int type size_t]

typedef unsigned int size_t;

[Definition of macro name NULL]

#define NULL (voi d*)O0;

[Definition of macro name offsetof]

#define of fsetof (type, menber) ((size_t)&(((type*)O0)->nenber))

« offsetof (type, member specifier)

offsetof is expanded to the general integer constant expression that has type size_t and the value is an
offset value in byte units from the start of the structure (that is specified by the type) to the structure member
(that is specified by the member specifier).

The member specifier must be the one that the result of evaluation of the expression & (t. member specifier)
becomes an address constant when static type t; is declared. When the specified member is a bit field, the
operation will not be guaranteed.

180 User's Manual U14872EJ1VOUM

CHAPTER 10 LIBRARY FUNCTIONS

(11) math.h (normal model only)

math.h defines the following functions.

Table 10-10. Contents of math.h (1/2)

Function Name

Existence of -ZI, or -ZL

Normal Model

Specification None

Zl

ZL

NN

acos

asin

atan

atan2

cos

sin

tan

cosh

sinh

tanh

exp

frexp

Idexp

log

log10

modf

pow

sqrt

ceil

fabs

floor

fmod

S RS RS S N N N R R R R R RS A Y RS RN R L N RN

S R N N A A Y A SN A A N RS AN AN RSN R Y A RS AN AR YA SRS

matherr

acosf

asinf

atanf

atan2f

cosf

sinf

tanf

coshf

sinhf

tanhf

expf

frexpf

Idexpf

logf

log10f

modff

S RS N e N N YA Y A AR Y AN AN A A AN A SN R RN A RSN R A A R S A R S R R A R R R R R RS

L[I I s

S RS L R R R N A Y A N N R N N S N S S N N D R R S RS R N N S S N S S N R

S RS RS SRS N S S RS RS S NEYEYAESES

V: Supported
—: Not supported

User’'s Manual U14872EJ1VOUM

181

CHAPTER 10 LIBRARY FUNCTIONS

Table 10-10. Contents of math.h (2/2)

Existence of -ZI, or -ZL
Specification

Function Name

Normal Model

None

Zl

ZL

powf

sqrtf

ceilf

fabsf

floorf

fmodf

S S E S G N R

L (L)<

L (L)<

V: Supported

The following objects are defined.

[Definition of macro name HUGE_VAL]

#define HUGE VAL DBL_MAX

182 User's Manual U14872EJ1VOUM

CHAPTER 10 LIBRARY FUNCTIONS

(12) float.h
float.h defines the following objects.
When the size of a double type is 32 bits, the macros to be defined are sorted by the macro
_ _DOUBLE_IS_32BITS_ _ declared by the compiler.

#i fndef _FLOAT H

#defi ne FLT_ROUNDS 1
#defi ne FLT_RADI X 2

#ifdef _ DOUBLE IS 32BITS _

#define FLT_MANT_DI G 24

#defi ne DBL_MANT_DI G 24

#define LDBL_MANT_DI G 24

#define FLT_D G 6

#define DBL_DI G 6

#define LDBL_DI G 6

#define FLT_M N_EXP -125

#define DBL_M N_EXP -125

#define LDBL_M N_EXP -125

#define FLT_M N_10_EXP -37

#define DBL_M N_10_EXP =37

#define LDBL_M N_10_EXP -37

#defi ne FLT_MAX_EXP +128

#defi ne DBL_MAX_EXP +128

#defi ne LDBL_MAX_EXP +128

#define FLT_MAX 10_EXP +38

#defi ne DBL_MAX 10_EXP +38

#defi ne LDBL_MAX_10_EXP +38

#defi ne FLT_MAX 3. 40282347E+38F
#defi ne DBL_MAX 3.40282347E+38F
#defi ne LDBL_MAX 3. 40282347E+38F
#define FLT_EPSILON 1. 19209290E-07F
#defi ne DBL_EPSI LON 1.19209290E-07F
#defi ne LDBL_EPSI LON 1. 19209290E-07F
#define FLT_MN 1. 1749435E-38F
#define DBL_M N 1. 17549435E-38F
#define LDBL_M N 1. 17549435E-38F

User’'s Manual U14872EJ1VOUM

183

CHAPTER 10 LIBRARY FUNCTIONS

#el se

#def i
#def i
#def i

#def i
#def i
#def i

#def i
#def i
#def i

#def i
#def i
#def i

#def i
#def i
#def i

#def i
#def i
#def i

#def i
#def i
#def i

#def i
#def i
#def i

#def i
#def i
#def i
#end

#def i

ne
ne
ne

ne
ne
ne

ne
ne
ne

ne
ne
ne

ne
ne
ne

ne
ne
ne

ne
ne
ne

ne
ne
ne

ne

ne
ne

ne

#endi f

/* _ DOUBLE IS 32BITS

FLT _MANT DI G
DBL_MANT DI G
LDBL_MANT DI G

FLT DI G
DBL_DI G
LDBL_DI G

FLT M N_EXP
DBL_M N_EXP
LDBL_M N_EXP

FLT M N_10_EXP
DBL_M N_10_EXP
LDBL_M N_10_EXP

FLT _MAX_EXP
DBL_NMAX_EXP
LDBL_MAX_EXP

FLT _MAX 10 _EXP
DBL_MAX_10_EXP
LDBL_MAX_10_EXP

FLT MAX
DBL_MAX
LDBL_MAX

FLT_EPSI LON
DBL_EPSI LON
LDBL_EPSI LON

FLT M N
DBL_M N
LDBL_M N

24
53
53

15
15

-1
-1
-1

-3
-3
-3

+1
+1
+1

+3
+3
+3

*/

25
021
021

7
07
07

28
024
024

8
08
08

3.40282347E+38F

. 7976931348623157E+308

1. 7976931348623157E+308

1.
2.
2.

. 19209290E- 07F
. 2204460492503131E- 016
. 2204460492503131E- 016

17549435E- 38F
225073858507201E- 308
225073858507201E- 308

/* _ _DOUBLE_IS 32BITS _ */

_FLOAT_H

/* | _FLOAT_H */

184

User’'s Manual U14872EJ1VOUM

CHAPTER 10 LIBRARY FUNCTIONS

(13) assert.h (normal model only)

Table 10-11. Contents of assert.h

Existence of -ZI, or -ZL Normal Model
Specification None Vd| 7L Vd|
Function Name ZL
__assertfail v v v v
V: Supported

assert.h defines the following objects.

#i f def NDEBUG
#define assert(p) ((void)DO0)

#el se
extern int _ _assertfail(char*_ _msg, char*_ _cond, char*_ file, int_ _line);
#define assert(p) ((p) ? (void)0 : (void)_ _assertfail(\

"Assertion failed: %, file %, line %\n", #p, _ _FILE_ _, _ _LINE_))

#endi f /* NDEBUG */

However, if the assert.h header file references another macro, NDEBUG, which is not defined by the assert.h
header file, and if NDEBUG is defined as a macro when the assert.h is captured to the source file, the assert.h
header file simply declares the assert macro as:

#define assert(p) ((void)DO0)

and does not define _ _ assertfail.
10.3 Re-entrantability (Normal Model Only)
Re-entrant is a state where a function called from a program can be consecutively called from another program.
The standard library of this compiler does not use static area allowing re-entrantability. Therefore, data in the
storage area used by functions will not be destroyed by a call from another program.

However, the functions shown in (1) to (3) are not re-entrant.

(1) Functions that cannot be re-entranced
setjmp, longjmp, atexit, exit

(2) Functions that use the area secured in the startup routine
div, Idiv, brk, sbrk, rand, srand, strtok

(3) Functions that deal with floating-point numbers
sprintf, sscanf, printf, scanf, vprintf, vsprinth‘”e, atof, strtod, all the mathematical functions

Note Among sprintf, sscanf, printf, scanf, vprintf, and vsprintf, functions that do not support floating-point
numbers are re-entrant.

User's Manual U14872EJ1VOUM 185

CHAPTER 10 LIBRARY FUNCTIONS

10.4 Standard Library Functions

This section explains the standard library functions of this C compiler classified by function as follows. All standard
library functions are supported even when the -ZF option is specified.

* ltem (1-x) Character and character string functions
« ltem (2-x) Program control functions

* ltem (3-x) Special functions

+ ltem (4-x) I/O functions

* ltem (5-x) Utility functions

+ ltem (6-x) Character string/memory functions

* ltem (7-x) Mathematical functions

* ltem (8-x) Diagnostic functions

186 User's Manual U14872EJ1VOUM

CHAPTER 10 LIBRARY FUNCTIONS

1-1 is-

Character & String Functions

FUNCTION

is- judges the type of character.

HEADER

ctype.h for all the character functions

FUNCTION PROTOTYPE
int is-(int c);

Function Arguments Return Value

is- c.. Character to be judged 1 if character c is included in
the character range.
0 if character c is not included
in the character range.

EXPLANATION
Function Character Range

isalpha Alphabetic character Ato Zorato z

isupper Uppercase letters A to Z

islower Lowercase letters a to z

isdigit Numeric characters 0 to 9

isalnum Alphanumeric characters 0to 9and AtoZorato z

isxdigit Hexadecimal numbers 0to 9 and Ato Forato f

isspace White-space characters (space, tab, carriage return, new-line,

vertical tab, and form-feed)

ispunct Punctuation characters except white-space characters

isprint Printable characters

isgraph Printable nonblank characters

iscntrl Control characters

isascii ASCII character set

User’'s Manual U14872EJ1VOUM

187

CHAPTER 10 LIBRARY FUNCTIONS

1-2 toupper Character & String Functions
tolower

FUNCTION
The character functions toupper and tolower both convert one type of character to another.

The toupper function returns the uppercase equivalent of c if c is a lowercase letter.
The tolower function returns the lowercase equivalent of c if ¢ is a uppercase letter.

HEADER
ctype.h

FUNCTION PROTOTYPE
int to-(int c);

Function Arguments Return Value

toupper, tolower c.. Character to be converted Uppercase equivalent if c is a
convertible character.

Character “c” is returned
unchanged if not convertible.

EXPLANATION

toupper
» The toupper function checks to see if the argument is a lowercase letter and if so converts the letter to its

uppercase equivalent.
tolower

» The tolower function checks to see if the argument is a uppercase letter and if so converts the letter to its

lowercase equivalent.

188 User's Manual U14872EJ1VOUM

CHAPTER 10 LIBRARY FUNCTIONS

1-3 toascii Character & String Functions

FUNCTION
The character function toascii converts “c” to an ASCII code.

HEADER
ctype.h

FUNCTION PROTOTYPE
int toascii(int c);

Function Arguments Return Value

toascii c.. Character to be converted Value obtained by converting
the bits outside the ASCII

=

code range of “c” to 0.

EXPLANATION
The toascii function converts the bits (bits 7 to 15) of “c” outside the ASCII code range of “c”
and returns the converted bit value.

User’'s Manual U14872EJ1VOUM

(bits 0 to 6) to “0”

189

CHAPTER 10 LIBRARY FUNCTIONS

1-4 _toupper/toup Character & String Functions
_tolower/tolow

FUNCTION
The character function _toupper/toup subtracts “a” from “c” and adds “A” to the result.
The character function _tolower/tolow subtracts “A” from “c” and adds “a” to the result.
(_toupper is exactly the same as toup, and _tolower is exactly the same as the tolow)

Remark a: Lowercase; A: Uppercase

HEADER
ctype.h

FUNCTION PROTOTYPE
int to-(int c);

Function Arguments Return Value
_toupper c.. Character to be converted Value obtained by adding “A”
toup to the result of subtracting “a”

from “c”
_tolower Value obtained by adding “a”
tolow to the result of subtracting “A”
from “c”

Remark a: Lowercase; A: Uppercase

EXPLANATION
_toupper
« The _toupper function is similar to toupper except that it does not test to see if the argument is a lowercase
letter.

_tolower

» The _tolower function is similar to tolower, except it does not test to see if the argument is an uppercase
letter.

190 User's Manual U14872EJ1VOUM

CHAPTER 10 LIBRARY FUNCTIONS

2-1 setjmp Program Control Functions

longjmp

FUNCTION
The program control function setjmp saves the environment information (current state of the program) when a
call to this function is made.
The program control function longjmp restores the environment information saved by setjmp.

HEADER
setjmp. h

FUNCTION PROTOTYPE
int setjnp(jnmp_buf env);
voi d | ongj nmp(j np_buf env,int val);

Function Arguments Return Value

setjmp

env ... Array to which
environment information is to
be saved

» 0 if called directly

* Value given by “val” if
returning from the
corresponding longjmp or 1
if “val “is 0

longjmp

env ... Array to which
environment information was
saved by setjmp

val ... Return value to setjmp

longjmp will not return
because program execution
resumes at statement next to
setjmp that saved
environment to “env”.

EXPLANATION
setjmp

» setjmp, when called directly, saves the saddr area, SP, and the return address of the function, which are

used as the HL register or register variables, to env and returns 0.

longjmp

* The longjmp restores the saved environment to env (saddr area and SP used as HL register or register
variables). Program execution continues as if the corresponding setjmp returns val (however, if val is 0, 1 is
returned).

User's Manual U14872EJ1VOUM 191

CHAPTER 10 LIBRARY FUNCTIONS

3-1 va_start (hormal model only)
va_arg (normal model only)
va_end (normal model only)

Special Functions

FUNCTION

The va_start function (macro) is used to start a variable argument list.

The va_arg function (macro) obtains the value of an argument from a variable argument list.
The va_end function (macro) indicates that the end of a variable argument list is reached.

HEADER
stdarg. h

FUNCTION PROTOTYPE
void va_start(va_list ap, parmN);
type va_arg(va_list ap,type);
void va_end(va_list ap);

Function Arguments

Return Value

va_start ap ... Variable to be
initialized so as to be used in
va_arg and va_end

parmN ... The argument
before variable argument

None

va_arg ap ... Variable to process

an argument list

type... Type to point the
relevant place of variable
argument (type is a type of
variable length; for example,
int type if described as va_arg
(va_list ap, int) or long type if
described as va_arg (va_list
ap, long))

Normal case ... Value in the
relevant place of variable
argument

If ap is a null pointer ... 0

va_end ap Variable to process the

variable number of arguments

None

192 User's Manual U14872EJ1VOUM

CHAPTER 10 LIBRARY FUNCTIONS

va_start (normal model only) Special Functions
va_arg (normal model only)
va_end (normal model only)

EXPLANATION
va_start
* Inthe va_start macro, the argument ap must be a va_list type (char* type) object.
* A pointer to the next argument of parmN is stored in ap.
« parmN is the name of the last (right-most) parameter specified in the function's prototype.
« If parmN has the register storage class, proper operation of this function is not guaranteed.

va_arg

» In the va_arg macro, the argument ap must be the same as the va_list type object initialized with va_start
(otherwise normal operation is not guaranteed).

* va_arg returns a value in the relevant place of variable arguments as a type of type.
The relevant place is the first variable argument immediately after va_start and each va_arg following that.

« If the argument pointer ap is a null pointer, va_arg returns 0 (of type type).

va_end

* The va_end macro sets a null pointer in the argument pointer ap to inform the macro processor that all the
parameters in the variable argument list have been processed.

User's Manual U14872EJ1VOUM 193

CHAPTER 10 LIBRARY FUNCTIONS

4-1 sprintf (normal model only) I/O Functions

FUNCTION
The sprintf function writes data into a character string (array) according to the format.

HEADER
stdio.h

FUNCTION PROTOTYPE

int sprintf(char *s,const char *format,...);
Function Arguments Return Value
sprintf s ... Pointer to the string into Number of characters written
which the output is to be in s (terminating null character
written is not counted.)

format ... Pointer to the string
which indicates format
commands

...... Zero or more arguments
to be converted

EXPLANATION

194

If there are fewer actual arguments than formats, operation is not guaranteed. If formats run out with actual
arguments still remaining, the excess actual arguments are just evaluated and ignored.

sprintf converts zero or more arguments that follow format according to the format command specified by
format and writes (copies) them into the string s.

Zero or more format commands may be used. Ordinary characters (other than format commands that begin
with a % character) are output as is to the string s. Each format command takes zero or more arguments that
follow format and outputs them to the string s.

Each format command begins with a % character and is followed by these:

» Zero or more flags (to be explained later) that modify the meaning of the format command

» Optional decimal integer which specify a minimum field width

If the output width after the conversion is less than this minimum field width, this specifier pads the output with

“ »

blanks of zeros on its left. (If the left-justifying flag “-” (minus) sign follows %, zeros are padded out to the right
of the output.)

The default padding is done with spaces. If the output is to be padded with 0s, place a 0 before the field width
specifier. If the number or string is greater than the minimum field width, it will still be printed in full and not

truncated.

User’'s Manual U14872EJ1VOUM

CHAPTER 10 LIBRARY FUNCTIONS

sprintf (normal model only) I/O Functions

Optional precision (number of decimal places) specification (. integer)

With d, i, 0, u, X, and X type specifiers, the minimum number of digits is specified. With the s type specifier,
the maximum number of characters (maximum field width) is specified. The number of digits to be output
following the decimal point is specified for e, E, and f conversions. The number of maximum valid digits is
specified for g and G conversions. This precision specification must be made in the form of (.integers). If the
integer part is omitted, 0 is assumed to have been specified. The amount of padding resulting from this
precision specification takes precedence over the padding by the field width specification.

Optional h, | and L modifiers

The h modifier instructs the sprintf function to perform the d, i, 0, u, X, or X type conversion that follows this
modifier on short int or unsigned short int type. The h modifier instructs the sprintf function to perform the n
type conversion that follows this modifier on a pointer to short int type.

The | modifier instructs the sprintf function to perform the d, i, 0, u, X, or X type conversion that follows this
modifier on long int or unsigned long int type. The h modifier instructs the sprintf function to perform the n
type conversion that follows this modifier on a pointer to long int type.

For other type specifiers, the h, | or L modifier is ignored.

Character that specifies the conversion (to be explained later)

In the minimum field width or precision (number of decimal places) specification, * may be used in place of an
integer string. In this case, the integer value will be given by the int argument (before the argument to be
converted). Any negative field width resulting from this will be interpreted as a positive field that follows the -
(minus) flag. All negative precision will be ignored.

The following flags are used to modify a format command:

e The result of a conversion is left-justified within the field.

T The result of a signed conversion always begins with a + or - sign.

Space........... If the result of a signed conversion has no sign, a space is prefixed to the output. If the +
(plus) flag and space flag are specified at the same time, the space flag will be ignored.

S The result is converted in the assignment form.
In the o type conversion, precision is increased so that the first digit becomes 0. In the x or X
type conversion, 0x or 0X is prefixed to a nonzero result. In the e, E, and f type conversions, a
decimal point is forcibly inserted to all the output values (in the default without #, a decimal
point is displayed only when there is a value to follow).
In the g and G type conversions, a decimal point is forcibly inserted in all the output values,
and truncation of 0 to follow will not be allowed (in the default without #, a decimal point is
displayed only when there is a value to follow. The 0 to follow will be truncated). In all the
other conversions, the # flag is ignored.

User's Manual U14872EJ1VOUM 195

CHAPTER 10 LIBRARY FUNCTIONS

sprintf (normal model only) I/O Functions

196

The format codes for output conversion specifications are as follows,

Converts int argument to signed decimal format.

Converts int argument to signed decimal format.

Converts int argument to unsigned octal format.

Converts int argument to unsigned decimal format.

Converts int argument to unsigned hexadecimal format (with lowercase letters abcdef).
Converts int argument to unsigned hexadecimal format (with uppercase letters ABCDEF).

With d, i, 0, u, x and X type specifiers, the minimum number of digits (minimum field width) of the result is

specified.

If the output is shorter than the minimum field width, it is padded with zeros. If no precision is

specified, 1 is assumed to have been specified. Nothing will appear if 0 is converted with O precision.

Converts double argument as a signed value with [-] dddd.dddd format.

dddd is one or more decimal number(s). The number of digits before the decimal point is
determined by the absolute value of the number, and the number of digits after the decimal
point is determined by the required precision. When the precision is omitted, it is interpreted
as 6.

Converts double argument as a signed value with [-] d.dddd e [sign] ddd format. d is one
decimal number, and dddd is one or more decimal number(s). ddd is exactly a three-digit
decimal number, and the sign is + or —. When the precision is omitted, it is interpreted as 6
The same format as that of e except E is added instead of e before the exponent.

Uses whichever shorter method of f or e format when converting double argument based on
the specified precision. e format is used only when the exponent of the value is smaller than —
4 or larger than the specified number by precision.

The following Os are truncated, and the decimal point is displayed only when one or more
numbers follow.

The same format as that of g except E is added instead of e before the exponent.

Converts int argument to unsigned char and writes the result as a single character.

The associated argument is a pointer to a string of characters and the characters in the string
are written up to the terminating null character (but not included in the output). If precision is
specified, the characters exceeding the maximum field width will be truncated off the end.
When the precision is not specified or larger than the array, the array must include a null
character.

The associated argument is a pointer to void and the pointer value is displayed in
hexadecimal 4 digits (with Os prefixed to less than a 4-digit pointer value). The precision
specification if any will be ignored.

The associated argument is an integer pointer into which the number of characters written
thus far in the string “s” is placed. No conversion is performed.

Prints a % sign. The associated argument is not converted (but the flag and minimum field
width specifications are valid).

User’'s Manual U14872EJ1VOUM

CHAPTER 10 LIBRARY FUNCTIONS

sprintf (normal model only) I/O Functions

» Operations for invalid conversion specifiers are not guaranteed.

* When the actual argument is a union or a structure, or the pointer to indicate them (except the character type
array in % s conversion or the pointer in % p conversion), operations are not guaranteed.

* The conversion result will not be truncated even when there is no field width or the field width is small. In
other words, when the number of characters of the conversion result are larger than the field width, the field is
extended to the width that includes the conversion result.

» The formats of the special output character string in %f, %e, %E, %g, %G conversions are shown below.

non-numeric - “(NaN)”
+00 - “(+INF)”
—00 > “(=INF)”

sprintf writes a null character at the end of the string s. (This character is included in the return value count.)
The syntax of format commands is illustrated in Figure 10-2.

User's Manual U14872EJ1VOUM 197

CHAPTER 10 LIBRARY FUNCTIONS

sprintf (normal model only) I/O Functions

Figure 10-2. Syntax of Format Commands

Ordinary char.
Ordinary

characters: Characters except %

Format command: —» (Flags Min. field width)M(Precision)l[

Flags: @

Format codes:

©0Q0

Space

Precision: — Digits

O,
(Cspace)
®
Minimum field width:

0000000000000V

198 User's Manual U14872EJ1VOUM

CHAPTER 10 LIBRARY FUNCTIONS

4-2

sscanf (normal model only)

I/0 Functions

FUNCTION
The sscanf function reads data from the input string (array) according to the format.

HEADER
stdio.h

FUNCTION PROTOTYPE

i nt sscanf(const char *s,const char *format,...);
Function Arguments Return Value
sscanf s ... Pointer to the input string —1 if the string s is empty.

format ... Pointer to the string
which indicates the input

Number of assigned input data
items if the string s is not

format commands empty.
...... Pointer to object in which
converted values are to be
stored, and zero or more
arguments

EXPLANATION

sscanf inputs data from the string pointed to by s. The string pointed to by format specifies the input string
allowed for input. Zero or more arguments after format are used as pointers to an object. format specifies
how data is to be converted from the input string.
If there are insufficient arguments to match the format commands pointed to by format, proper operation by
the compiler is not guaranteed.
For excessive arguments, expression evaluation will be performed but no data will be input.
The control string pointed to by format consists of zero or more format commands which are classified into
the following three types.
(a) White-space characters (one or more characters for which isspace becomes true)
(b) Non-white-space characters (other than %)
(c) Format specifiers
Each format specifier begins with the % character and is followed by these:
» Optional * character which suppresses assignment of data to the corresponding argument
» Optional decimal integer which specifies a maximum field width
« Optional h, | or L modifier which indicates the object size on the receiving side
If h precedes the d, i, 0, or x format specifier, the argument is a pointer to not int but short int.
If | precedes any of these format specifiers, the argument is a pointer to long int.
Likewise, if h precedes the u format specifier, the argument is a pointer to unsigned short int.
If | precedes the u format specifier, the argument is a pointer to unsigned long int.
If | precedes the conversion specifier e, E, f, g, G, the argument is a pointer to double (a pointer to float in
default without I). If L precedes, it is ignored.

Remark Conversion specifier: Character to indicate the type of corresponding conversion (to be described
later)

User's Manual U14872EJ1VOUM 199

CHAPTER 10 LIBRARY FUNCTIONS

sscanf (normal model only) I/O Functions

200

sscanf executes the format commands in “format” in sequence and if any format command fails, the function will
terminate.

(a) A white-space character in the control string causes sscanf to read any number (including zero) of white-
space characters up to the first non-white-space character (which will not be read). This white-space
character command fails if it does not encounter any non-white-space characters.

(b) A non-white-space character causes sscanf to read and discard a matching character. This command
fails if the specified character is not found.

(c) The format commands define a collection of input streams for each type specifier (to be described later).
The format commands are executed according to the following steps.

* The input white-space characters (specified by isspace) are skipped over, except when the type
specifier is [, ¢, or n.

The input data items are read from the string “s”, except when the type specifier is n. The input data items are
defined as the longest input stream of the first partial stream of the string indicated by the type specifier (but
up to the maximum field width if so specified). The character next to the input data items is interpreted as not
having been read. If the length of the input data items is 0, the format command execution fails.

The input data items (number of input characters with the type specifier n) are converted to the type specified
by the type specifier except the type specifier %. If the input data items do not match the specified type, the
command execution fails. Unless assignment is suppressed by *, the result of the conversion is stored in the
object pointed to by the first argument which follows “format” and has not yet received the result of the
conversion.

The following type specifiers are available:

Ao Converts a decimal integer (which may be signed). The corresponding argument must
be a pointer to an integer.

[T Converts an integer (which may be signed). If a number is preceded by 0x or 0X, the
number is interpreted as a hexadecimal integer. If a number is preceded by 0, the
number is interpreted as an octal integer. Other numbers are regarded as decimal
integers. The corresponding argument must be a pointer to an integer.

(o I Converts an octal integer (which may be signed). The corresponding argument must be
a pointer to an integer.

U TR Converts an unsigned decimal integer.
The corresponding argument must be a pointer to an unsigned integer.

X eeteaeeeeaeee e e e Converts a hexadecimal integer (which may be signed).

e, Ef g, G....... Floating point value consists of optional sign (+ or —), one or more consecutive decimal

number(s) including decimal point, optional exponent (e or E), and the following optional
signed integer value. When overflow occurs as a result of conversion, or when
underflow occurs with the conversion result o, a non-normalized number or +0
becomes the conversion result. The corresponding argument is a pointer to float.

User’'s Manual U14872EJ1VOUM

CHAPTER 10 LIBRARY FUNCTIONS

sscanf (normal model only) I/O Functions

S e Input a character string consisting of a non-white-space character string. The
corresponding argument is a pointer to an integer. Ox or 0X can be allocated at the first
hexadecimal integer. The corresponding argument must be a pointer an array that has
sufficient size to accommodate this character string and a null terminator. The null
terminator will be automatically added.

[Inputs a character string consisting of expected character groups (called a scanset).
The corresponding argument must be a pointer to the first character of an array that has
sufficient size to accommodate this character string and a null terminator. The null
terminator will be automatically added. The format commands continue from this
character up to the closing square bracket (]). The character string (called a scanlist)
enclosed in the square brackets constitutes a scanset except when the character
immediately after the opening square bracket is a circumflex ().

When the character is a circumflex, all the characters other than a scanlist between the
circumflex and the closing square bracket constitute a scanset. However, when a
scanlist begins with [] or [], this closing square bracket is contained in the scanlist
and the next closing square list becomes the end of the scanlist.

A hyphen (=) at other than the left or right end of a scanlist is interpreted as the
punctuation mark for hyphenation if the character at the left of the range specifying
hyphen (=) is not smaller than the right-hand character in ASCII code.

C ot Inputs a character string consisting of the number of characters specified by the field
width. (If the field width specification is omitted, 1 is assumed.) The corresponding
argument must be a pointer to the first character of an array that has sufficient size to
accommodate this character string. The null terminator will not be added.

R Reads an unsigned hexadecimal integer. The corresponding argument must be a
pointer to void.

3 IR Receives no input from the string s. The corresponding argument must be a pointer to
an integer. The number of characters that are read thus far by this function from the
string “s” is stored in the object that is pointed to by this pointer. The %n format
command is not included in the return value assignment count.

D0 Reads a % sign. Neither conversion nor assignment takes place.

If a format specification is invalid, the format command execution fails.

If a null terminator appears in the input stream, sscanf will terminate.

If an overflow occurs in an integer conversion (with the d, i, 0, u, X, or p format specifier), the higher bits will be
truncated depending on the number of bits of the data type after the conversion.

The syntax of input format commands is illustrated below.

User's Manual U14872EJ1VOUM 201

CHAPTER 10 LIBRARY FUNCTIONS

sscanf (normal model only)

I/0 Functions

202

Figure 10-3. Syntax of Input Format Commands

White-space
characters: 14 2\
Format Space

. White-space
“ Ordinary “

char.

Format

specifier

Characters except
% and white space
4> Max. field width ?

(2)
N\

Ordinary characters:

Format command:

Max. field width:

Format specifiers:

scanlist:

User’'s Manual U14872EJ1VOUM

Format specifier

Characters
except |
Characters
except]

CHAPTER 10 LIBRARY FUNCTIONS

4-3 printf (normal model only) I/O Functions

FUNCTION

printf outputs data to SFR according to the format.

HEADER
stdio.h

FUNCTION PROTOTYPE

int printf(const char *format, ...);
Function Arguments Return Value
printf format ...Pointer to the Number of character output to

character string that indicates s (the null character at the end
the output conversion is not counted)
specification
...... 0 or more arguments to
be converted

EXPLANATION

« (0 or more) arguments following the format are converted and output using the putchar function, according to

the output conversion specification specified in the format.

« The output conversion specification is 0 or more directives.

output using the putchar function by fetching and converting the following (0 or more) arguments.

« Each conversion specification is the same as that of the sprintf function.

User’'s Manual U14872EJ1VOUM

Normal characters (other than the conversion

specification starting with %) are output as is using the putchar function. The conversion specification is

203

CHAPTER 10 LIBRARY FUNCTIONS

4-4 scanf (normal model only) I/O Functions

FUNCTION
scanf reads data from SFR according to the format.

HEADER
stdio.h

FUNCTION PROTOTYPE

int scanf(const char *format, ...);
Function Arguments Return Value
scanf format ... Pointer to the When the character string s is
character string to indicate not null ... Number of input
input conversion specification items assigned

...... Pointer (0 or more)
argument to the object to
assign the converted value

EXPLANATION
» Performs input using the getchar function. Specifies the input string permitted by the character string
indicated by format. Uses the argument after format as the pointer to an object. format specifies how the
conversion is performed by the input string.
* When there are not enough arguments for format, normal operation is not guaranteed. When the number of
arguments is excessive, the expression will be evaluated but not input.
« format consists of 0 or more directives. The directives are as follows.

(1) One or more null character (character that makes isspace true)
(2) Normal character (other than %)

(3) Conversion indication

« If a conversion ends with an input character that conflicts with the input character, the conflicting input
character is rounded down. The conversion indication is the same as that of the sscanf function.

204 User's Manual U14872EJ1VOUM

CHAPTER 10 LIBRARY FUNCTIONS

4-5 vprintf (normal model only) I/O Functions

FUNCTION
vprintf outputs data to SFR according to the format.

HEADER
stdio.h

FUNCTION PROTOTYPE
int vprintf(const char *format,va_list p);

Function Arguments Return Value
vprintf format ... Pointer to the Number of output characters
character string that indicates (the null character at the end
output conversion is not counted)
specification
p ... Pointer to the argument
list

EXPLANATION

» The argument that the pointer of the argument list indicates is converted and output using the putchar
function according to the output conversion specification specified by the format.
» Each conversion specification is the same as that of the sprintf function.

User's Manual U14872EJ1VOUM 205

CHAPTER 10 LIBRARY FUNCTIONS

4-6 vsprintf (normal model only)

FUNCTION

vsprintf writes data to character strings according to the format.

HEADER
stdio.h

FUNCTION PROTOTYPE

int vsprintf(char *s,const char * format,va_list p);

Function Arguments Return Value
vsprintf s ... Pointer to the character Number of characters output
string that writes the output to s (the null character at the
format ... Pointer to the end is not counted)

character string that indicates
output conversion
specification

p ... Pointer to the argument
list

EXPLANATION

» Writes out the argument that the pointer of argument list indicates to the character strings that s indicates

according to the output conversion specification specified by format.

» The output specification is the same as that of the sprintf function.

206

User’'s Manual U14872EJ1VOUM

I/0 Functions

CHAPTER 10 LIBRARY FUNCTIONS

4-7 getchar I/O Functions

FUNCTION
getchar reads a character from SFR

HEADER
stdio.h

FUNCTION PROTOTYPE
i nt getchar(void);

Function Arguments Return Value

getchar None A character read from SFR

EXPLANATION
* Returns the value read from SFR symbol PO (port 0).
« Error check related to reading is not performed.
» To change SFR to read, it is necessary either that the source be changed to be re-registered to the library or
that the user create a new getchar function.

User's Manual U14872EJ1VOUM 207

CHAPTER 10 LIBRARY FUNCTIONS

4-8 gets I/O Functions

FUNCTION
gets reads a character string.

HEADER
stdio.h

FUNCTION PROTOTYPE
char *gets(char *s);

Function Arguments Return Value
gets s ... Pointer to input character Normal ... s
string If the end of the file is
detected without reading a
character
... Null pointer

EXPLANATION

» Reads a character string using the getchar function and stores in the array that s indicates.

* When the end of the file is detected (getchar function returns -1) or when a line feed character is read, the
reading of a character string ends. The line feed character read is abandoned, and a null character is written
at the end of the last character stored in the array.

¢« When the return value is normal, it returns s.

* When the end of the file is detected and no character is read in the array, the contents of the array remain

unchanged, and a null pointer is returned.

208 User's Manual U14872EJ1VOUM

CHAPTER 10 LIBRARY FUNCTIONS

4-9 putchar I/O Functions

FUNCTION
putchar outputs a character to SFR.

HEADER
stdio.h

FUNCTION PROTOTYPE
int putchar(int c);

Function Arguments Return Value

putchar c ... Character to be output Character output

EXPLANATION
» Writes the character specified by ¢ to the SFR symbol PO (port 0) (converted to unsigned char type).
« Error check related to writing is not performed.
» To change SFR to write, it is necessary either that the source is changed and re-registered to the library or
that the user create a new putchar function.

User's Manual U14872EJ1VOUM 209

CHAPTER 10 LIBRARY FUNCTIONS

4-10 puts I/O Functions

FUNCTION
puts outputs a character string.

HEADER
stdio.h

FUNCTION PROTOTYPE
int puts(const char *s);

Function Arguments Return Value
puts s ...Pointer to an output Normal ... 0
character string When putchar function
returns —1 ... —1

EXPLANATION
» Writes the character string indicated by s using the putchar function, a line feed character is added at the
end of the output.
» Writing of the null character at the end of the character string is not performed.
* When the return value is normal, 0 is returned, and when the putchar function returns —1, —1 is returned.

210 User's Manual U14872EJ1VOUM

CHAPTER 10 LIBRARY FUNCTIONS

5-1 atoi
atol

Utility Functions

FUNCTION

The string function atoi converts the contents of a decimal integer string to an int value.

The string function atol converts the contents of a decimal integer string to a long int value.

HEADER
stdlib.h

FUNCTION PROTOTYPE

int atoi (const char *nptr);

long int atol (const char *nptr);

Function

Arguments

Return Value

atoi

atol

nptr... String to be converted

int value if converted
properly

INT_MAX (32767) if positive
overflow occurs

INT_MIN (-32768) if
negative overflow occurs

0 if the string is invalid

long int value if converted
properly;

LONG_MAX (2147483647)
for positive overflow;
LONG_MIN (—2147483648)
for negative overflow;

0 if the string is invalid

User’'s Manual U14872EJ1VOUM

211

CHAPTER 10 LIBRARY FUNCTIONS

atoi Utility Functions
atol

EXPLANATION

atoi

« The atoi function converts the first part of the string pointed to by pointer nptr to an int value.

» The atoi function skips over zero or more white-space characters (for which isspace becomes true) from the
beginning of the string and converts the string from the character next to the skipped white-spaces to an
integer (until other than digits or a null character appears in the string). If no digits to convert are found in the
string, the function returns 0. If an overflow occurs, the function returns INT_MAX (32767) for a positive
overflow and INT_MIN (-32768) for a negative overflow.

atol

« The atol function converts the first part of the string pointed to by pointer nptr to a long int value.

» The atol function skips over zero or more white-space characters (for which isspace becomes true) from the
beginning of the string and converts the string from the character next to the skipped white-spaces to an
integer (until other than digits or a null character appears in the string). If no digits to convert are found in the
string, the function returns 0. If an overflow occurs, the function returns LONG_MAX (2147483647) for a
positive overflow and LONG_MIN (-2147483648) for a negative overflow.

212 User's Manual U14872EJ1VOUM

CHAPTER 10 LIBRARY FUNCTIONS

5-2 strtol
strtoul

Utility Functions

FUNCTION

The string function strtol converts a string to a long integer.

The string function strtoul converts a string to an unsigned long integer.

HEADER
stdlib.h

FUNCTION PROTOTYPE
long int strtol (const char *nptr,char **endptr,int base);
unsigned long int strtoul (const char *nptr,char **endptr,int base);

Function

Arguments

Return Value

strtol

strtoul

nptr... String to be converted
endptr ... Pointer storing
pointer to unrecognizable
section

base ... Specified base
number

long int value if converted
properly

LONG_MAX

(2147483647) for positive
overflow

LONG_MIN
(—2147483648) for negative
overflow

0 if not converted

unsigned long if converted
properly

ULONG_MAX
(4294967295U)) if overflow
occurs

0 if not converted

User’'s Manual U14872EJ1VOUM

213

CHAPTER 10 LIBRARY FUNCTIONS

strtol Utility Functions
strtoul

EXPLANATION
strtol

214

The strtol function disassembles the string pointed by pointer nptr into the following three parts.
(1) String of white-space characters that may be empty (to be specified by isspace)
(2) Integer representation by the base determined by the value of base
(3) String of one or more characters that cannot be recognized (including null terminators)
The strtol function converts part (2) of the string into an integer and returns this integer value.

A base of 0 indicates that the base should be determined from the leading digits of the string. A leading Ox or
0X indicates a hexadecimal number; a leading O indicates an octal number; otherwise, the number is
interpreted as decimal. (In this case, the number may be signed).

If the base is 2 to 36, the set of letters from a to z or A to Z which can be part of a number (and which may be
signed) with any of these bases are taken to represent 10 to 35. A leading Ox or OX is ignored if the base is
16.

If endptr is not a null pointer, a pointer to the part (3) of the string is stored in the object pointed to by endptr.
If the correct value causes an overflow, the function returns LONG_MAX (2147483647) for a positive overflow
or LONG_MIN (-2147483648) for a negative overflow depending on the sign and sets errno to ERANGE (2).
If the string (2) is empty or the first non-white-space character of the string (2) is not appropriate for an integer
with the given base, the function performs no conversion and returns 0. In this case, the value of the string
nptr is stored in the object pointed to by endptr (if it is not a null string). This holds true with the bases 0 and
2 to 36.

strtoul

The strtoul function disassembles the string pointed by pointer nptr into the following three parts.

(1) String of white-space characters that may be empty (to be specified by isspace)

(2) Integer representation by the base determined by the value of base

(3) String of one or more characters that cannot be recognized (including null terminators)

The strtoul function converts part (2) of the string into a unsigned integer and returns this unsigned integer
value.

A base of 0 indicates that the base should be determined from the leading digits of the string. A leading Ox or
0X indicates a hexadecimal number; a leading O indicates an octal number; otherwise, the number is
interpreted as decimal.

If the base is 2 to 36, the set of letters from a to z or A to Z which can be part of a number (and which may be
signed) with any of these bases are taken to represent 10 to 35. A leading Ox or OX is ignored if the base is
16.

If endptr is not a null pointer, a pointer to the part (3) of the string is stored in the object pointed to by endptr.

User’'s Manual U14872EJ1VOUM

CHAPTER 10 LIBRARY FUNCTIONS

strtol Utility Functions
strtoul

« |If the correct value causes an overflow, the function returns ULONG_MAX (4294967295U) and sets errno to
ERANGE (2).

« If the string (2) is empty or the first non-white-space character of the string (2) is not appropriate for an
integer with the given base, the function performs no conversion and returns 0. In this case, the value of the
string nptr is stored in the object pointed to by endptr (if it is not a null string). This holds true with the bases

0 and 2 to 36.

User's Manual U14872EJ1VOUM 215

CHAPTER 10 LIBRARY FUNCTIONS

5-3 calloc Utility Functions

FUNCTION
The memory function calloc allocates an array area and then initializes the area to 0.

HEADER
stdlib.h

FUNCTION PROTOTYPE
voi d *call oc(size_t nnmenb, size_t size);

Function Arguments Return Value
calloc nmemb ... Number of + Pointer to the beginning of
members in the array the allocated area if the
size ... Size of each member requested size is allocated

* Null pointer if the requested
size is not allocated

EXPLANATION

216

The calloc function allocates an area for an array consisting of n number of members (specified by nmemb),
each of which has the number of bytes specified by size and initializes the area (array members) to zero.
Returns the pointer to the beginning of the allocated area if the requested size is allocated.

Returns the null pointer if the requested size is not allocated.

The memory allocation will start from a break value and the address next to the allocated space will become a
new break value. See 5-11 brk for break value setting with the memory function brk.

User’'s Manual U14872EJ1VOUM

CHAPTER 10 LIBRARY FUNCTIONS

5-4 free Utility Functions

FUNCTION

The memory function free releases the allocated block of memory.

HEADER
stdlib.h

FUNCTION PROTOTYPE
void free(void *ptr);

Function Arguments Return Value

free ptr ... Pointer to the beginning | None

of block to be released

EXPLANATION

The free function releases the allocated space (before a break value) pointed to by ptr. (malloc, calloc, or
realloc called after free will allocate space from ptr.)

If ptr does not point to the allocated space, the free will take no action.

(Freeing the allocated space is
performed by setting ptr as a new break value.)

User's Manual U14872EJ1VOUM 217

CHAPTER 10 LIBRARY FUNCTIONS

5-5 malloc Utility Functions

FUNCTION
The memory function malloc allocates a block of memory.

HEADER
stdlib.h

FUNCTION PROTOTYPE
void *mal |l oc(size_t size);

Function Arguments Return Value
malloc size ... Size of memory block + Pointer to the beginning of
to be allocated the allocated area if the

requested size is allocated
* Null pointer if the requested
size is not allocated

EXPLANATION
» The malloc function allocates a block of memory for the number of bytes specified by size and returns a
pointer to the first byte of the allocated area.
» If memory cannot be allocated, the function returns a null pointer.
« This memory allocation will start from a break value and the address next to the allocated area will become a
new break value. See 5-11 brk for break value setting with the memory function brk.

218 User's Manual U14872EJ1VOUM

CHAPTER 10 LIBRARY FUNCTIONS

5-6 realloc Utility Functions

FUNCTION
The memory function realloc reallocates a block of memory (namely, changes the size of the allocated memory).

HEADER
stdlib.h

FUNCTION PROTOTYPE
void *realloc(void *ptr,size_t size);

Function Arguments Return Value
realloc ptr ... Pointer to the beginning + Pointer to the beginning of
of block previously allocated the reallocated space if the
size ... New size to be given to requested size is
this block reallocated

+ Pointer to the beginning of
the allocated space if ptr is
a null pointer

* Null pointer if the requested
size is not reallocated or
“ptr” is not a null pointer

EXPLANATION

The realloc function changes the size of the allocated space (before a break value) pointed to by ptr to that
specified by size. If the value of size is greater than the size of the allocated space, the contents of the
allocated space up to the original size will remain unchanged. The realloc function allocates only for the
increased space. If the value of size is less than the size of the allocated space, the function will free the
reduced space of the allocated space.

If ptr is a null pointer, the realloc function will newly allocate a block of memory of the specified size (same as
malloc).

If ptr does not point to the block of memory previously allocated or if no memory can be allocated, the
function executes nothing and returns a null pointer.

Reallocation will be performed by setting the address of ptr plus the number of bytes specified by size as a
new break value.

User's Manual U14872EJ1VOUM 219

CHAPTER 10 LIBRARY FUNCTIONS

5-7 abort

Utility Functions

FUNCTION

The program control function abort causes immediate, abnormal termination of a program.

HEADER
stdlib.h

FUNCTION PROTOTYPE
voi d abort(void);

Function

Arguments

Return Value

abort

None

No return

EXPLANATION

* The abort function loops and can never return to its caller.

» The user must create the abort processing routine.

220

User’'s Manual U14872EJ1VOUM

CHAPTER 10 LIBRARY FUNCTIONS

5-8 atexit Utility Functions
exit

FUNCTION
atexit registers the function called at the normal termination.
exit terminates a program.

HEADER
stdlib.h

FUNCTION PROTOTYPE
int atexit(void(*func)(void));
void exit(int status);

Function Arguments Return Value
atexit func ... Pointer to function to + 0 if function is registered as
be registered wrap-up function
» 1 if function cannot be
registered
exit status ... Status value No return.
indicating termination

EXPLANATION
atexit
« The atexit function registers the wrap-up function pointed to by func so that it is called without argument upon
normal program termination by calling exit or returning from main.
« Up to 32 wrap-up functions may be established. If the wrap-up function can be registered, atexit returns 0. If
no more wrap-up functions can be registered because 32 wrap-up functions have already been registered, the
function returns 1.

exit

* The exit function causes immediate, normal termination of a program.

« This function calls the wrap-up functions in the reverse of the order in which they were registered with atexit.
* The exit function loops and can never return to its caller.

« The user must create the exit processing routine.

User's Manual U14872EJ1VOUM 221

CHAPTER 10 LIBRARY FUNCTIONS

5-9 abs Utility Functions
labs

FUNCTION
The mathematical function abs returns the absolute value of its int type argument.
The mathematical function labs returns the absolute value of its long type argument.

HEADER
stdlib.h

FUNCTION PROTOTYPE
int abs(int j);
long int labs(long int j);

Function Arguments Return Value

abs j ... Absolute value to be » Absolute value of j if j falls
obtained within:
—32767 <j < 32767
+ —32768 (0x8000) if j is
-32768

labs * Absolute value of j if j falls
within
—2147483647 <j<
2147483647

+ —2147483648
(0x80000000) if the value of
jis —2147483648

EXPLANATION
abs
* The abs returns the absolute value of its int type argument.
» Ifjis —=32768, the function returns —32768.

labs

« The labs returns the absolute value of its long type argument.
» If the value of j is —2147483648, the function returns —2147483648.

222 User's Manual U14872EJ1VOUM

CHAPTER 10 LIBRARY FUNCTIONS

5-10 div (normal model only) Utility Functions

Idiv (normal model only)

FUNCTION

The mathematical function div performs the integer division of numerator divided by denominator.
The mathematical function Idiv performs the long integer division of numerator divided by denominator.

HEADER
stdlib.h

FUNCTION PROTOTYPE
div_t div(int nuner,int denom;
Idiv_t Idiv(long int numer,long int denom;

Function Arguments Return Value
div numer ... Numerator of the Quotient to the quot element
division and the remainder to the rem
denom ... Denominator of the element of div_t type member
Idiv division

Quotient to the quot element
and the remainder to the rem
element of Idiv_t type
member

EXPLANATION
div

The div function performs the integer division of numerator divided by denominator.

The absolute value of the quotient is defined as the largest integer not greater than the absolute value of
numer divided by the absolute value of denom. The remainder always has the same sign as the result of the
division (plus if numer and denom have the same sign; otherwise minus).

The remainder is the value of numer — denom*quotient.

If denom is 0, the quotient becomes 0 and the remainder becomes numer.

If numer is —32768 and denom is —1, the quotient becomes -32768 and the remainder becomes 0.

Idiv

.

The Idiv function performs the long integer division of numerator divided by denominator.

The absolute value of the quotient is defined as the largest long int type integer not greater than the absolute
value of numer divided by the absolute value of denom. The remainder always has the same sign as the
result of the division (plus if numer and denom have the same sign; otherwise minus).

The remainder is the value of numer — denom*quotient.

If denom is 0, the quotient becomes 0 and the remainder becomes numer.

If numer is —2147483648 and denom is —1, the quotient becomes —2147483648 and the remainder becomes
0.

User's Manual U14872EJ1VOUM 223

CHAPTER 10 LIBRARY FUNCTIONS

5-11 brk Utility Functions
sbrk

FUNCTION
The memory function brk sets a break value.
The memory function sbrk increments or decrements the set break value.

HEADER
stdlib.h

FUNCTION PROTOTYPE
int brk(char *endds);
char *sbrk(int incr);

Function Arguments Return Value
brk endds ... Break value to be » 0if break value is set
set block to be released properly
« —1 if break value cannot be
changed
sbrk incr ... Value (bytes) by which + Old break value if
set break value is to be incremented or
incremented/decremented. decremented properly
+ —1if old break value cannot
be incremented or
decremented

EXPLANATION
brk
» The brk function sets the value given by endds as a break value (the address next to the end address of an
allocated block of memory).
« If endds is outside the permissible address range, the function sets no break value and sets errno to
ENOMEM (3).

sbrk

« The sbrk function increments or decrements the set break value by the number of bytes specified by incr.
(Increment or decrement is determined by the plus or minus sign of incr.)

« If the incremented or decremented break value is outside the permissible address range, the function does
not change the original break value and sets errno to ENOMEM (3).

224 User's Manual U14872EJ1VOUM

CHAPTER 10 LIBRARY FUNCTIONS

5-12 atof
strtod

Utility Functions

FUNCTION

The string function atof converts the contents of a decimal integer string to a double value.

The string function strtod converts the contents of a string to a double value.

HEADER
stdlib.h

FUNCTION PROTOTYPE

doubl e atof (const char *nptr);

doubl e strtod(const char *nptr,

char **endptr);

Function

Arguments

Return Value

atof

nptr ... String to be converted

Converted value if
converted properly
HUGE_VAL (with sign of
overflowed value) if positive
overflow occurs

0 if negative overflow
occurs

0 if the string is invalid

strtod

nptr ... String to be converted

endptr ... Pointer storing
pointer to unrecognizable
block

Converted value if
converted properly
HUGE_VAL (with sign of
overflowed value) if positive
overflow occurs

0 if negative overflow
occurs

0 if the string is invalid

User’'s Manual U14872EJ1VOUM

225

CHAPTER 10 LIBRARY FUNCTIONS

atof Utility Functions
strtod

EXPLANATION
atof

226

The atof function converts the string pointed to by pointer nptr to a double value.

The atof function skips over zero or more white-space characters (for which isspace becomes true) from the
beginning of the string and converts the string from the character next to the skipped white-spaces to a
floating-point number (until other than digits or a null character appears in the string).

A floating-point number is returned when converted properly.

If an overflow occurs on conversion, HUGE_VAL with the sign of the overflowed value is returned and
ERANGE is set to errno.

If valid digits are deleted due to an underflow or an overflow, a non-normalized number and +0 are returned
respectively, and ERANGE is set to errno.

IF conversion cannot be performed, 0 is returned.

strtod

The strtod function converts the string pointed to by pointer nptr to a double value.

The strtod function skips over zero or more white-space characters (for which isspace becomes true) from
the beginning of the string and converts the string from the character next to the skipped white-spaces to a
floating-point number (until other than digits or a null character appears in the string).

A floating-point number is returned when converted properly.

If an overflow occurs on conversion, HUGE_VAL with the sign of the overflowed value is returned and
ERANGE is set to errno.

If valid digits are deleted due to an underflow or an overflow, a non-normalized number and +0 are returned
respectively, and ERANGE is set to errno. In addition, endptr stores a pointer for next character string at that
time.

IF conversion cannot be performed, 0 is returned.

User’'s Manual U14872EJ1VOUM

CHAPTER 10 LIBRARY FUNCTIONS

5-13 itoa
Itoa (normal model only)
ultoa (normal model only)

Utility Functions

FUNCTION
The string function itoa converts an int integer to its string equivalent.
The string function Itoa converts a long int integer to its string equivalent.
The string function ultoa converts an unsigned long integer to its string equivalent.

HEADER
stdlib.h

FUNCTION PROTOTYPE
char *itoa(int value,char *string,int radix);
char *ltoa(long val ue, char *string,int radix);
char *ultoa(unsigned | ong val ue,char *string,int radix);

conversion result
radix ... Base of output string

Function Arguments Return Value
itoa, value ... String to which » Pointer to the converted
Itoa, integer is to be converted string if converted properly
ultoa string ... Pointer to the * Null pointer if not converted

properly

EXPLANATION
itoa, Itoa, ultoa

« The itoa, Itoa, and ultoa functions all convert the integer value specified by value to its string equivalent

which is terminated with a null character and store the result in the area pointed to by “string”.

» The base of the output string is determined by radix, which must be in the range 2 through 36. Each function

performs conversion based on the specified radix and returns a pointer to the converted string.

If the

specified radix is outside the range 2 through 36, the function performs no conversion and returns a null

pointer.

User’'s Manual U14872EJ1VOUM

227

CHAPTER 10 LIBRARY FUNCTIONS

5-14 rand Utility Functions
srand

FUNCTION
The mathematical function rand generates a sequence of psuedo-random numbers.
The mathematical function srand sets a starting value (seed) for the sequence generated by rand.

HEADER
stdlib.h

FUNCTION PROTOTYPE
int rand(void);
voi d srand(unsigned int seed);

Function Arguments Return Value

rand None Psuedo-random integer in the
range of 0 to RAND_MAX

srand seed ... Starting value for None
psuedo-random number
generator

EXPLANATION
rand
« Each time the rand function is called, it returns a psuedo-random integer in the range of 0 to RAND_MAX.

srand

» The srand function sets a starting value for a sequence of random numbers. seed is used to set a starting
point for a progression of random numbers that is a return value when rand is called. If the same seed value
is used, the sequence of psuedo-random numbers is the same when srand is called again.

« Calling rand before srand is used to set a seed is the same as calling rand after srand has been called with
seed = 1. (The default seed is 1.)

228 User's Manual U14872EJ1VOUM

CHAPTER 10 LIBRARY FUNCTIONS

5-15 bsearch (normal model only) Utility Functions

FUNCTION
The bsearch function performs a binary search.

HEADER
stdlib.h

FUNCTION PROTOTYPE
voi d *bsearch(const void *key, const void *base, si ze_t nmenb,

size_t size,int (*compare)(const void *,const void *));

Function Arguments Return Value

bsearch key ... Pointer to key for which | « Pointer to the first member
search is made that matches “key” if the
base ... Pointer to sorted array array contains the key;
which contains information to * Null pointer if the key is not
search contained in the array
nmemb ... Number of array
elements
size ... Size of an array
compare ... Pointer to function
used to compare two keys

EXPLANATION

The bsearch function performs a binary search on the sorted array pointed to by base and returns a pointer
to the first member that matches the key pointed to by key. The array pointed to by base must be an array
which consists of nmemb number of members each of which has the size specified by size and must have
been sorted in ascending order.

The function pointed to by compare takes two arguments (key as the 1st argument and array element as the
2nd argument), compares the two arguments, and returns:

- Negative value if the 1st argument is less than the 2nd argument

- 0if both arguments are equal

- Positive integer if the 1st argument is greater than the 2nd argument

When the -ZR option is specified, the function passed to the argument of the bsearch function must be a
pascal function.

User's Manual U14872EJ1VOUM 229

CHAPTER 10 LIBRARY FUNCTIONS

5-16 gsort (normal model only) Utility Functions

FUNCTION
The gsort function sorts the members of a specified array using a quicksort algorithm.

HEADER
stdlib.h

FUNCTION PROTOTYPE
voi d gsort(voi d *base, si ze_t nnenb, size_t size,
int (*conpare)(const void *,const void *));

Function Arguments Return Value

gsort base ... Pointer to array to be None
sorted

nmemb ... Number of
members in the array

size ... Size of an array
member

compare ... Pointer to function
used to compare two keys

EXPLANATION
« The gsort function sorts the members of the array pointed to by base in ascending order. The array pointed
to by base consists of nmemb number of members each of that has the size specified by size.
« The function pointed to by compare takes two arguments (array elements 1 and 2), compares the two
arguments, and returns:
« The array element 1 as the 1st argument and array element 2 as the 2nd argument

Negative value if the 1st argument is less than the 2nd argument
0 if both arguments are equal
Positive integer if the 1st argument is greater than the 2nd argument

« If the two array elements are equal, the element nearest to the top of the array will be sorted first.

* When the -ZR option is specified, the function passed to the argument of the gsort function must be a pascal
function.

230 User's Manual U14872EJ1VOUM

CHAPTER 10 LIBRARY FUNCTIONS

5-17 strbrk

Utility Functions

FUNCTION
strbrk sets a break value.

HEADER
stdlib.h

FUNCTION PROTOTYPE
int strbrk(char *endds);

Function Arguments

Return Value

strbrk ends ... Break value to set

Normal ... 0
When a break value cannot be
changed ... —1

EXPLANATION

» Sets the value given by endds to the break value (the address following the address at the end of the area to

be allocated).

* When endds is out of the permissible range, the break value is not changed. ENOMEM(3) is set to errno

and —1 is returned.

User’'s Manual U14872EJ1VOUM

231

CHAPTER 10 LIBRARY FUNCTIONS

5-18 strsbrk Utility Functions

FUNCTION
strsbrk increases/decreases a break value.

HEADER
stdlib.h

FUNCTION PROTOTYPE
char *strsbrk(int incr);

Function Arguments Return Value
strsbrk incr ... Amount to Normal ... Old break value
increase/decrease a break When a break value cannot be
value increased/decreased ... —1

EXPLANATION
* incr byte increases/decreases a break value (depending on the sign of incr).
« When the break value is out of the permissible range after increasing/decreasing, a break value is not
changed. ENOMEM(3) is set to errno, and —1 is returned.

232 User's Manual U14872EJ1VOUM

CHAPTER 10 LIBRARY FUNCTIONS

5-19 stritoa Utility Functions
stritoa (normal model only)

strultoa (normal model only)

FUNCTION
stritoa converts int to a character string.
strltoa converts long to a character string.
strultoa converts unsigned long to a character string.

HEADER
stdlib.h

FUNCTION PROTOTYPE
char *stritoa(int value,char *string,int radix);
char *strltoa(l ong val ue, char *string,int radix);
char *strul toa(unsi gned | ong val ue,char *string,int radix);

Function Arguments Return Value
stritoa value ... Character string to Normal ... Pointer to the
stritoa convert converted character string
strultoa string ... Pointer to conversion | Other ... Null pointer

result
radix ... Radix to specify

EXPLANATION
stritoa, stritoa, strultoa
» Converts the specified numeric value value to a character string that ends with a null character, and stores

the result in the area specified by string. The conversion is performed using the specified radix, and the
pointer to the converted character string will be returned.

» radix must be a value in the range of 2 to 36. In other cases, the conversion is not performed and a null
pointer is returned.

User's Manual U14872EJ1VOUM 233

CHAPTER 10 LIBRARY FUNCTIONS

6-1 memcpy Character String/Memory Functions
memmove

FUNCTION
The memory function memcpy copies a specified number of characters from a source area of memory to a
destination area of memory.
The memory function memmove is identical to memcpy, except that it allows overlap between the source and
destination areas.

HEADER
string.h

FUNCTION PROTOTYPE
voi d *menctpy (void *sl1, const void *s2, size_t n);
voi d *memmove (void *sl1, const void *s2, size_t n);

Function Arguments Return Value
memcpy, sl ... Pointer to object into Value of s1
memmove which data is to be copied

s2 ... Pointer to object
containing data to be copied
n ... Number of characters to
be copied

EXPLANATION
memcpy
» The memcpy function copies n number of consecutive bytes from the object pointed to by s2 to the object
pointed to by s1.
* If s2<sl<s2+n (sl and s2 overlap), the memory copy operation by memcpy is not guaranteed (because
copying starts in sequence from the beginning of the area).

memmove

» The memmove function also copies n number of consecutive bytes from the object pointed to by s2 to the
object pointed to by s1.

» Evenif s1 and s2 overlap, the function performs memory copying properly.

234 User's Manual U14872EJ1VOUM

CHAPTER 10 LIBRARY FUNCTIONS

6-2 strcpy Character String/Memory Functions
strncpy

FUNCTION
The string function strcpy is used to copy the contents of one character string to another.
The string function strncpy is used to copy up to a specified number of characters from one character string to
another.

HEADER
string.h

FUNCTION PROTOTYPE
char *strcpy (char *sl1, const char *s2);
char *strncpy (char *sl1, const char *s2, size_t n);

Function Arguments Return Value
strcpy, sl... Pointer to copy Value of s1
strncpy destination array
s2 ... Pointer to copy source
array
n ... Number of characters to
be copied

EXPLANATION
strcpy
» The strcpy function copies the contents of the character string pointed to by s2 to the array pointed to by s1
(including the terminating character).
* If s2 <sl < (s2 + Character length to be copied), the behavior of strcpy is not guaranteed (as copying starts
in sequence from the beginning, not from the specified string).

strncpy

« The strncpy function copies up to the characters specified by n from the string pointed to by s2 to the array
pointed to by s1.

* If s2 < sl <(s2 + Character length to be copied or minimum value of s2 + n — 1), the behavior of strncpy is
not guaranteed (as copying starts in sequence from the beginning, not from the specified string).

« If the string pointed by s2 is less than the characters specified by n, nulls will be appended to the end of s1
until n characters have been copied. If the string pointed to by s2 is longer than n characters, the resultant
string that is pointed to by s1 will not be null terminated.

User's Manual U14872EJ1VOUM 235

CHAPTER 10 LIBRARY FUNCTIONS

6-3 strcat Character String/Memory Functions
strncat

FUNCTION
The string function strcat concatenates one character string to another.
The string function strncat concatenates up to a specified number of characters from one character string to
another.

HEADER
string.h

FUNCTION PROTOTYPE
char *strcat (char *sl1, const char *s2);
char *strncat (char *sl1, const char *s2, size_t n);

Function Arguments Return Value
strcat, sl... Pointer to a string to Value of s1
strncat which a copy of another string

(s2) is to be concatenated

s2 ... Pointer to a string, copy
of which is to be concatenated
to another string (s1).

n ... Number of characters to
be concatenated

EXPLANATION
strcat
« The strcat function concatenates a copy of the string pointed to by s2 (including the null terminator) to the
string pointed to by s1. The null terminator originally ending s1 is overwritten by the first character of s2.
* When copying is performed between objects overlapping each other, the operation is not guaranteed.

strncat

» The strncat function concatenates not more than the characters specified by n of the string pointed to by s2
(excluding the null terminator) to the string pointed to by s1. The null terminator originally ending sl is
overwritten by the first character of s2.

« If the string pointed to by s2 has fewer characters than specified by n, the strncat function concatenates the
string including the null terminator. If there are more characters than specified by n, the n character section is
concatenated starting from the top.

* The null terminator must always be concatenated.

* When copying is performed between objects overlapping each other, the operation is not guaranteed.

236 User's Manual U14872EJ1VOUM

CHAPTER 10 LIBRARY FUNCTIONS

6-4 memcmp Character String/Memory Functions

FUNCTION

The memory function memcmp compares two data objects, with respect to a given number of characters.

HEADER
string.h

FUNCTION PROTOTYPE
int mencnp (const void *sl1l, const void *s2, size_ t n);

Function Arguments Return Value
memcmp s1, s2 ... Pointers to two data * 0ifsland s2 are equal
objects to be compared » Positive value if s1is
n ... Number of characters to greater than s2; negative
compare value if s1is less than s2
(s1-s2)

EXPLANATION
« The memcmp function compares the data object pointed to by s1 with the data object pointed to by s2 with
respect to the number of bytes specified by n.
» If the two objects are equal, the function returns 0.

« The function returns a positive value if the object s1 is greater than the object s2 and a negative value if s1 is
less than s2.

User's Manual U14872EJ1VOUM 237

CHAPTER 10 LIBRARY FUNCTIONS

6-5 strcmp Character String/Memory Functions
strncmp

FUNCTION
The string function strcmp compares two character strings.
The string function strncmp compares not more than a specified number of characters from two character
strings.

HEADER
string.h

FUNCTION PROTOTYPE
char *strcmp (char *sl1, const char *s2);
char *strncnmp (char *sl1, const char *s2, size_t n);

Function Arguments Return Value
strcmp sl... Pointer to one string to * Oifslisequal tos2
be compared * Integer less than 0 or
s2 ... Pointer to the other greater than 0 if s1 is less
string to be compared than or greater than s2 (s1
—s2)
strncmp sl... Pointer to one string to » 0if slis equal to s2 within
be compared characters specified by n
s2 ... Pointer to the other « Integer less than 0 or
string to be compared greater than 0 if s1 is less
n ... Number of characters to than or greater than s2 (s1
be compared — s2) within characters
specified by n

EXPLANATION
strcmp
» The strcmp function compares the two null terminated strings pointed to by s1 and s2, respectively.
« If slis equal to s2, the function returns 0. If sl is less than or grater than s2, the function returns an integer
less than 0 (a negative number) or greater than 0 (a positive number) (s1 — s2).

strncmp

* The strncmp function compares not more than the characters specified by n from the two null terminated
strings pointed to by s1 and s2, respectively.

« If s1is equal to s2 within the specified characters, the function returns 0. If sl is less than or greater than s2
within the specified characters, the function returns an integer less than 0 (a negative number) or greater than
0 (a positive number) (s1 —s2).

238 User's Manual U14872EJ1VOUM

CHAPTER 10 LIBRARY FUNCTIONS

6-6 memchr Character String/Memory Functions

FUNCTION
The memory function memchr converts a specified character to unsigned char, searches for it, and returns a
pointer to the first occurrence of this character in an object of a given size.

HEADER
string.h

FUNCTION PROTOTYPE
voi d *mencthr (const void *s, int c, size_t n);

Function Arguments Return Value
memchr s ... Pointer to objects in » Pointer to the first
memory subject to search occurrence of ¢ if ¢ is found

¢ ... Character to be searched * Null pointer if ¢ is not found
n ... Number of bytes to be
searched

EXPLANATION
» The memchr function first converts the character specified by ¢ to unsigned char and then returns a pointer
to the first occurrence of this character within the n number of bytes from the beginning of the object pointed
to by s.
« If the character is not found, the function returns a null pointer.

User's Manual U14872EJ1VOUM 239

CHAPTER 10 LIBRARY FUNCTIONS

6-7 strchr Character String/Memory Functions
strrchr

FUNCTION
The string function strchr returns a pointer to the first occurrence of a specified character in a string.
The string function strrchr returns a pointer to the last occurrence of a specified character in a string.

HEADER
string.h

FUNCTION PROTOTYPE
char *strchr (const char *s, int c);
char *strrchr (const char *s, int c);

Function Arguments Return Value
strchr, s... Pointer to string to be » Pointer indicating the first or
strrchr searched last occurrence of c in string
¢ ... Character specified for sifcisfoundins
search * Null pointer if ¢ is not found
ins

EXPLANATION
strchr
« The strchr function searches the string pointed to by s for the character specified by ¢ and returns a pointer
to the first occurrence of ¢ (converted to char type) in the string.
* The null terminator is regarded as part of the string.
 If the specified character is not found in the string, the function returns a null pointer.

strrchr

« The strrchr function searches the string pointed to by s for the character specified by ¢ and returns a pointer
to the last occurrence of ¢ (converted to char type) in the string.

* The null terminator is regarded as part of the string.

» If no match is found, the function returns a null pointer.

240 User's Manual U14872EJ1VOUM

CHAPTER 10 LIBRARY FUNCTIONS

6-8 strspn
strcspn

Character String/Memory Functions

FUNCTION

The string function strspn returns the length of the initial substring of a string that is made up of only those

characters contained in another string.
The string function strcspn returns the length of the initial substring of a string that is made up of only those

characters not contained in another string.

HEADER
string.h

FUNCTION PROTOTYPE

size_t strspn (const char *sl1l, const char *s2);

size_t strcspn (const

char

*sl1l, const char *2);

Function

Arguments

Return Value

strspn

strcspn

sl... Pointer to string to be
searched

s2 ... Pointer to string whose
characters are specified for

match

Length of substring of the
string s1 that is made up of
only those characters
contained in the string s2

Length of substring of the
string s1 that is made up of
only those characters not
contained in the s2

EXPLANATION
strspn

» The strspn function returns the length of the substring of the string pointed to by s1 that is made up of only

those characters contained in the string pointed to by s2. In other words, this function returns the index of the

first character in the string s1 that does not match any of the characters in the string s2.

* The null terminator of s2 is not regarded as part of s2.

strcspn

» The strcspn function returns the length of the substring of the string pointed to by s1 that is made up of only

those characters not contained in the string pointed to by s2. In other words, this function returns the index of

the first character in the string s1 that matches any of the characters in the string s2.

* The null terminator of s2 is not regarded as part of s2.

User's Manual U14872EJ1VOUM

241

CHAPTER 10 LIBRARY FUNCTIONS

6-9 strpbrk Character String/Memory Functions

FUNCTION
The string function strpbrk returns a pointer to the first character in a string to be searched that matches any

character in a specified string.

HEADER
string.h

FUNCTION PROTOTYPE
char *strpbrk (const char *sl1, const char *s2);

Function Arguments Return Value
strpbrk sl... Pointer to string to be » Pointer to the first character
searched in the string s1 that
s2 ... Pointer to string whose matches any character in
characters are specified for the string s2 if any match is
match found
* Null pointer if no match is
found

EXPLANATION
« The strpbrk function returns a pointer to the first character in the string pointed to by s1 that matches any

character in the string pointed to by s2.
* If none of the characters in the string s2 is found in the string s1, the function returns a null pointer.

242 User's Manual U14872EJ1VOUM

CHAPTER 10 LIBRARY FUNCTIONS

6-10 strstr Character String/Memory Functions

FUNCTION

The string function strstr returns a pointer to the first occurrence in the string to be searched of a specified

string.

HEADER
string.h

FUNCTION PROTOTYPE
char *strstr (const char *sl1, const char *s2);

s2 ... Pointer to specified string

Function Arguments Return Value
strstr sl... Pointer to string to be » Pointer to the first
searched appearance in the string s1

of the string s2 if s2 is
found in s1

* Null pointer if s2 is not
found in s1

» Value of s1ifs2is anull
string

EXPLANATION

« The strstr function returns a pointer to the first appearance in the string pointed to by s1 of the string pointed

to by s2 (except the null terminator of s2).

« If the string s2 is not found in the string s1, the function returns a null pointer.
» If the string s2 is a null string, the function returns the value of s1.

User's Manual U14872EJ1VOUM

243

CHAPTER 10 LIBRARY FUNCTIONS

6-11 strtok Character String/Memory Functions

FUNCTION
The string function strtok returns a pointer to a token taken from a string (by disassembling it into a string

consisting of characters other than delimiters).

HEADER
string.h

FUNCTION PROTOTYPE
char *strtok (char *sl1, const char *s2);

Function Arguments Return Value
strtok sl... Pointer to string from » Pointer to the first character
which tokens are to be of a token if it is found
obtained or null pointer * Null pointer if there is no
s2 ... Pointer to string token to return
containing delimiters of token

EXPLANATION

244

A token is a string consisting of characters other than delimiters in the string to be specified.

If sl is a null pointer, the string pointed to by the saved pointer in the previous strtok call will be
disassembled. However, if the saved pointer is a null pointer, the function returns a null pointer without doing
anything.

If s1 is not a null pointer, the string pointed to by s1 will be disassembled.

The strtok function searches the string pointed to by s1 for any character not contained in the string pointed
to by s2. If no character is found, the function changes the saved pointer to a null pointer and returns it. If
any character is found, the character becomes the first character of a token.

If the first character of a token is found, the function searches for any characters contained in the string s2
after the first character of the token. If none of the characters is found, the function changes the saved
pointer to a null pointer. If any of the characters is found, the character is overwritten by a null character and
a pointer to the next character becomes a pointer to be saved.

The function returns a pointer to the first character of the token.

User's Manual U14872EJ1VOUM

CHAPTER 10 LIBRARY FUNCTIONS

6-12 memset

Character String/Memory Functions

FUNCTION

The memory function memset initializes a specified number of bytes in an object in memory with a specified

character.

HEADER
string.h

FUNCTION PROTOTYPE
void *menset (void *s,

int

c, size_t n);

Function

Arguments

Return Value

memset

s ... Pointer to object in Value of s

memory to be initialized

¢ ... Character whose value is
to be assigned to each byte

n ... Number of bytes to be
initialized

EXPLANATION

» The memset function first converts the character specified by ¢ to unsigned char and then assigns the value

of this character to the n number of bytes from the beginning of the object pointed to by s.

User's Manual U14872EJ1VOUM

245

CHAPTER 10 LIBRARY FUNCTIONS

6-13 strerror Character String/Memory Functions

FUNCTION
The strerror function returns a pointer to the location which stores a string describing the error message

associated with a given error number.

HEADER
string.h

FUNCTION PROTOTYPE
char *strerror (int errnum;

Function Arguments Return Value

strerror errnum ... Error number » Pointer to string describing
error message if message
associated with error
number exists

* Null pointer if no message
associated with error
number exists

EXPLANATION
« The strerror function returns a pointer to one of the following strings associated with the value of errnum.
(O SRR “Error 0”
1 (EDOM)......... “Argument too large”
2 (ERANGE).... “Result too large”
3 (ENOMEM) ... “Not enough memory”
Otherwise, the function returns a null pointer.

246 User's Manual U14872EJ1VOUM

CHAPTER 10 LIBRARY FUNCTIONS

6-14 strlen

Character String/Memory Functions

FUNCTION

The string function strlen returns the length of a character string.

HEADER
string.h

FUNCTION PROTOTYPE
size_t strlen (const char *s);

Function

Arguments

Return Value

strlen

s... Pointer to character string

Length of string s

EXPLANATION
The strlen function returns the length of the null terminated string pointed to by s.

User's Manual U14872EJ1VOUM

247

CHAPTER 10 LIBRARY FUNCTIONS

6-15 strcoll Character String/Memory Functions

FUNCTION
strcoll compares two character strings based on the information specific to the area.

HEADER
string.h

FUNCTION PROTOTYPE
int strcoll (const char *sl1, const char *s2) ;

Function Arguments Return Value
strcoll sl ... Pointer to comparison When character strings s1
character string and s2 are equal ... 0
s2 ... Pointer to comparison When character strings s1
character string and s2 are different

... The difference between the
values whose first different
characters are converted to int
(character of s1 — character of
s2)

EXPLANATION

» This compiler does not support operations specific to the cultural sphere. The operations are the same as
that of stremp.

248 User's Manual U14872EJ1VOUM

CHAPTER 10 LIBRARY FUNCTIONS

6-16 strxfrm Character String/Memory Functions

FUNCTION
strxfrm converts a character string based on the information specific to the area.

HEADER
string.h

FUNCTION
size_t strxfrm (char *sl1, const char *s2, size_t n) ;

Function Arguments Return Value
strxfrm sl ... Pointer to a compared Returns the length of the

character string character string of the result of

s2 ... Pointer to a compared the conversion (does not

character string include a character string to

n ... Maximum number of indicate the end)

characters in s1 If the returned value is n or
more, the contents of the
array indicated by sl is
undefined.

EXPLANATION
« This compiler does not support operations specific to the cultural sphere. The operations are the same as
those of the following functions.
strncpy (s1, s2,¢);
return (strlen (s2)) ;

User's Manual U14872EJ1VOUM 249

CHAPTER 10 LIBRARY FUNCTIONS

7-1 acos (normal model only)

Mathematical Functions

FUNCTION
acos finds acos.

HEADER
math.h

FUNCTION PROTOTYPE

doubl e acos (doubl e x)

Function

Arguments

Return Value

acos

X ... Numeric value on which
operation is performed

When -1 <x<1...acos of x
When x < -1, 1 <x, x = NaN
.. NaN

EXPLANATION

» Calculates acos of x (range between 0 and p).

*« When x is non-numeric, NaN is returned.

* In the case of the definition area error of x < -1, 1 < x, NaN is returned and EDOM is set.

250

User's Manual U14872EJ1VOUM

CHAPTER 10 LIBRARY FUNCTIONS

7-2 asin (normal model only)

Mathematical Functions

FUNCTION
asin finds asin.

HEADER
math.h

FUNCTION PROTOTYPE

doubl e asin (doubl e x)

Function

Arguments

Return Value

asin

X ... Numeric value on which
operation is performed

When -1 <x <1 ... asin of x
When x -1, 1< x, x =NaN
... NaN

When x =-0 ... -0

When underflow occurs ...
Non-normalized number

EXPLANATION

» Calculates asin (range between —772 and +772) of x.

¢ In the case of area error of x < -1, 1 < x, NaN is returned and EDOM is set to errno.

* When x is non-numeric, NaN is returned.

* When x is =0, -0 is returned.

< If an underflow occurs as a result of conversion, a non-normalized number is returned.

User's Manual U14872EJ1VOUM

251

CHAPTER 10 LIBRARY FUNCTIONS

7-3 atan (normal model only)

Mathematical Functions

FUNCTION
atan finds atan.

HEADER
math.h

FUNCTION PROTOTYPE
doubl e atan (double x) ;

Function Arguments

Return Value

atan X ... Numeric value on which
operation is performed

Normal ... atan of x
When x = NaN ... NaN
Whenx =-0... -0

EXPLANATION
» Calculates atan (range between —72 and +772) of x.
*« When x is non-numeric, NaN is returned.
* When x is -0, —0 is returned.

« [f an underflow occurs as a result of conversion, a non-normalized number is returned.

252 User's Manual U14872EJ1VOUM

CHAPTER 10 LIBRARY FUNCTIONS

7-4 atan2 (normal model only) Mathematical Functions

FUNCTION
atan?2 finds atan of y/x.

HEADER
math.h

FUNCTION PROTOTYPE
doubl e atan2 (double y, double x) ;

Function Arguments Return Value
atan2 X ... Numeric value on which Normal ... atan of y/x
operation is performed When both x and y are 0 or
Yy ... Numeric value on which y/x is the value that cannot be
operation is performed expressed, or either x ory is
NaN and both x and y are +
.. NaN
Non-normalized number ...
When underflow occurs

EXPLANATION
e atan (range between —mrand +m) of y/x is calculated. When both x and y are 0 or y/x is the value that cannot
be expressed, or when both x and y are infinite, NaN is returned and EDOM is set to errno.
« |If either x or y is non-numeric, NaN is returned.
« If an underflow occurs as a result of operation, a non-normalized number is returned.

User's Manual U14872EJ1VOUM 253

CHAPTER 10 LIBRARY FUNCTIONS

7-5 cos (normal model only) Mathematical Functions

FUNCTION
cos finds cos.

HEADER
math.h

FUNCTION PROTOTYPE
doubl e cos (doubl e x)

Function Arguments Return Value
cos X ... Numeric value on which Normal ... cos of x
operation is performed When x = NaN, x =+ ... NaN

EXPLANATION
» Calculates cos of x.
¢ [f x is non-numeric, NaN is returned.
» If x is infinite, NaN is returned and EDOM is set to errno.

If the absolute value of x is extremely large, the result of an operation becomes an almost meaningless value.

254 User's Manual U14872EJ1VOUM

CHAPTER 10 LIBRARY FUNCTIONS

7-6

sin (normal model only)

Mathematical Functions

FUNCTION
sin finds sin.

HEADER
math.h

FUNCTION PROTOTYPE

doubl e sin (double x)

Function

Arguments

Return Value

sin

X ... Numeric value on which
operation is performed

Normal ... sin of x

When x = NaN, x =+ ... NaN
When underflow occurs ...
Non-normalized number

EXPLANATION
Calculates sin of x.

If X is non-numeric, NaN is returned.

If x is infinite, NaN is returned and EDOM is set to errno.

If an underflow occurs as a result of operation, a non-normalized number is returned.

If the absolute value of x is extremely large, the result of an operation becomes an almost meaningless value.

User's Manual U14872EJ1VOUM

255

CHAPTER 10 LIBRARY FUNCTIONS

7-7 tan (normal model only) Mathematical Functions

FUNCTION
tan finds tan.

HEADER
math.h

FUNCTION PROTOTYPE
doubl e tan (double x) ;

Function Arguments Return Value
tan X ... Numeric value on which Normal ... tan of x
operation is performed When x = NaN, x =+ ... NaN

When underflow occurs ...
Non-normalized number

EXPLANATION
» Calculates tan of x.
¢ [f x is non-numeric, NaN is returned.
» If x is infinite, NaN is returned and EDOM is set to errno.
» If an underflow occurs as a result of operation, a non-normalized number is returned.
« If the absolute value of x is extremely large, the result of an operation becomes an almost meaningless value.

256 User's Manual U14872EJ1VOUM

CHAPTER 10 LIBRARY FUNCTIONS

7-8 cosh (normal model only) Mathematical Functions

FUNCTION
cosh finds cosh.

HEADER
math.h

FUNCTION PROTOTYPE
doubl e cosh (double x) ;

Function Arguments Return Value
cosh X ... Numeric value on which Normal ... cosh of x
operation is performed When overflow occurs, x =

NaN, x =+ ... HUGE_VAL
(with positive sign)
x =NaN ... NaN

EXPLANATION
» Calculates cosh of x.
¢ [f x is non-numeric, NaN is returned.
» If x is infinite, a positive infinite value is returned.
« If an overflow occurs as a result of the operation, HUGE_VAL with a positive sign is returned, and ERANGE is
set to errno.

User's Manual U14872EJ1VOUM 257

CHAPTER 10 LIBRARY FUNCTIONS

7-9 sinh (normal model only) Mathematical Functions

FUNCTION
sinh finds sinh.

HEADER
math.h

FUNCTION PROTOTYPE
doubl e sinh (double x) ;

Function Arguments Return Value
sinh X ... Numeric value on which Normal ... sinh of x
operation is performed When x = NaN ... NaN

When X =t ... £00

When overflow occurs ...
HUGE_VAL (with the sign of
the overflown value)

When underflow occurs ... 0

EXPLANATION
» Calculates sinh of x.
¢ [f x is non-numeric, NaN is returned.
e If X is +o0, +0 is returned.
« If an overflow occurs as a result of the operation, HUGE_VAL with the sign of the overflowed value is
returned, and ERANGE is set to errno.
« If an underflow occurs as a result of the operation, $0 is returned.

258 User's Manual U14872EJ1VOUM

CHAPTER 10 LIBRARY FUNCTIONS

7-10 tanh (normal model only)

Mathematical Functions

FUNCTION
tanh finds tanh.

HEADER
math.h

FUNCTION PROTOTYPE

doubl e tanh (doubl e x)

Function

Arguments

Return Value

tanh

X ... Numeric value on which
operation is performed

Normal ... tanh of x
When x = NaN ... NaN
When x = o0 ... £1

When underflow occurs ... £

EXPLANATION

« Calculates tanh of x.

¢ [f x is non-numeric, NaN is returned.

e Ifx is +o0, +1 is returned.

« If an underflow occurs as a result of the operation, $0 is returned.

User's Manual U14872EJ1VOUM

259

CHAPTER 10 LIBRARY FUNCTIONS

7-11 exp (normal model only) Mathematical

FUNCTION
exp finds the exponent function.

HEADER
math.h

FUNCTION PROTOTYPE
doubl e exp (double x) ;

Function Arguments Return Value
exp X ... Numeric value on which Normal ... exponent function of x
operation is performed When x = NaN ... NaN

When X =t ... £00

When overflow occurs ...
HUGE_VQAL (with positive
sign)

When underflow occurs ...
Non-normalized number
When annihilation of valid
digits occurs due to underflow
.. +0

EXPLANATION
» Calculates exponent function of x.
¢ [f x is non-numeric, NaN is returned.
e If X is +o0, +0 is returned.
« If an underflow occurs as a result of the operation, a non-normalized number is returned.
« If annihilation of valid digits due to underflow occurs as a result of the operation, +0 is returned.
« If an overflow occurs as a result of the operation, HUGE_VAL with a positive sign is returned and ERANGE is
set to errno.

260 User's Manual U14872EJ1VOUM

CHAPTER 10 LIBRARY FUNCTIONS

7-12 frexp (normal model only) Mathematical Functions

FUNCTION
frexp finds the mantissa and exponent part.

HEADER
math.h

FUNCTION PROTOTYPE
doubl e frexp (double x, int *exp) ;

Function Arguments Return Value
frexp X ... Numeric value on which Normal ... mantissa of x
operation is performed When x = NaN, x =+ ... NaN
exp ... Pointer to store When x =10 ... 20
exponent part

EXPLANATION
» Divides a floating point number x by mantissa m and exponent n such as x = m*2*n and returns mantissa m.
« Exponent n is stored where the pointer exp indicates. The absolute value of m, however, is 0.5 or more and
less than 1.0.
« If x is non-numeric, NaN is returned and the value of *exp is 0.
» If x is infinite, NaN is returned, and EDOM is set to errno with the value of *exp as 0.
« Ifxis 0, £0 is returned and the value of *exp is 0.

User's Manual U14872EJ1VOUM 261

CHAPTER 10 LIBRARY FUNCTIONS

7-13 Idexp (normal model only) Mathematical Functions

FUNCTION
Idexp finds x*2”exp.

HEADER
math.h

FUNCTION PROTOTYPE
doubl e | dexp (double x, int exp) ;

Function Arguments Return Value

exp X ... Numeric value on which Normal ... x*2 * exp
operation is performed When x = NaN ... NaN

exp ... Exponent When X =t ... £00

When x =10 ... £0

When overflow occurs ...
HUGE_VAL (with the sign of
the overflown value)

When underflow occurs ...
Non-normalized number
When annihilation of valid
digits occurs due to underflow
.. 20

EXPLANATION

» Calculates x*2%exp.

¢ [f x is non-numeric, NaN is returned.

e If X is o0, +0 is returned.

* [If xis £0, 0 is returned.

« If an overflow occurs as a result of the operation, HUGE_VAL with the overflowed value is returned and
ERANGE is set to errno.

» If an underflow occurs as a result of the operation, a non-normalized number is returned.

« If annihilation of valid digits due to underflow occurs as a result of the operation, +0 is returned.

262 User's Manual U14872EJ1VOUM

CHAPTER 10 LIBRARY FUNCTIONS

7-14 log (normal model only)

Mathematical Functions

FUNCTION
log finds the natural logarithm.

HEADER
math.h

FUNCTION PROTOTYPE
doubl e 1 og (double x) ;

Function Arguments

Return Value

log X ... Numeric value on which
operation is performed

Normal ... Natural logarithm of
X

When x <0 ... HUGE_VAL
(with negative sign)

When x is non-numeric ...
NaN

When x is infinite ... +oo

EXPLANATION

Finds the natural logarithm of x.
If X is non-numeric, NaN is returned.
If X is +o0, +00 is returned.

In the case of an area error of x < 0, HUGE_VAL with a negative sign is returned and EDOM is set to errno.
If x = 0, HUGE_VAL with a negative sign is returned, and ERANGE is set to errno.

User's Manual U14872EJ1VOUM

263

CHAPTER 10 LIBRARY FUNCTIONS

7-15 10910 (normal model only) Mathematical Functions

FUNCTION
log10 finds a logarithm with 10 as the base.

HEADER
math.h

FUNCTION PROTOTYPE
doubl e 1 0g10 (double x) ;

Function Arguments Return Value
log10 X ... Numeric value on which Normal ... Logarithm with 10
operation is performed of x as the base

When x <0 ... HUGE_VAL
(with negative sign)

When x is non-numeric ...
NaN

When x is infinite ... +oo

EXPLANATION
» Finds a logarithm with 10 of x as the base.
¢ [f x is non-numeric, NaN is returned.
e |f X is +o0, +o0 is returned.
* In the case of an area error of x < 0, HUGE_VAL with a negative sign is returned and EDOM is set to errno.
« Ifx =0, HUGE_VAL with a negative sign is returned, and ERANGE is set to errno.

264 User's Manual U14872EJ1VOUM

CHAPTER 10 LIBRARY FUNCTIONS

7-16 modf (normal model only) Mathematical Functions

FUNCTION
modf finds the fraction part and integer part.

HEADER
math.h

FUNCTION PROTOTYPE
doubl e nodi f (double x, double *iptr) ;

Function Arguments Return Value
modif X ... Numeric value on which Normal ... Fraction part of x
operation is performed When x is non-numeric or
iptr ... Pointer to integer part infinite ... NaN
When x is 20 ... +0

EXPLANATION

» Divides a floating point number x by a fraction part and an integer part

» Returns the fraction part with the same sign as that of x, and stores the integer part to the location indicated
by the pointer iptr.

» If x is non-numeric, NaN is returned and stored in the location indicated by the pointer iptr.

» If x is infinite, NaN is returned and stored in the location indicated by the pointer iptr, and EDOM is set to
errno.

» If x =0, +0 is stored in the location indicated by the pointer iptr.

User's Manual U14872EJ1VOUM 265

CHAPTER 10 LIBRARY FUNCTIONS

7-17 pow (normal model only) Mathematical Functions

FUNCTION
pow finds the yth power of x.

HEADER
math.h

FUNCTION PROTOTYPE
doubl e pow (double x, double y) ;

Function Arguments Return Value
pow X ... Numeric value on which Normal ... x*y
operation is performed Either when x = NaN ory =
y ... Multiplier NaN,

X =+ andy =0

X < 0 and y# integer,
x<0andy = oo,
x=0andy<0... NaN
When underflow occurs ...
Non-normalized number
When overflow occurs ...
HUGE_VAL (with the sign of
overflown value)

When annihilation of valid
digits occurs due to underflow
.. 20

EXPLANATION

» Calculates x"y.

« If an overflow occurs as a result of the operation, HUGE_VAL with the sign of overflowed value is returned,
and ERANGE is set to errno.

*« When x = NaN or y = NaN, NaN is returned.

* Whenanyofx=+oandy=0,x<0andy #integer,x <0andy =0 orx =0 andy <0, NaN is returned and
EDOM is set to errno.

« |f an underflow occurs, a non-normalized number is returned.

 If annihilation of valid digits occurs due to underflow, +0 is returned.

266 User's Manual U14872EJ1VOUM

CHAPTER 10 LIBRARY FUNCTIONS

7-18 sqrt (normal model only)

Mathematical Functions

FUNCTION

sgrt finds the square root.

HEADER
math.h

FUNCTION PROTOTYPE

doubl e sqrt (doubl e x)

Function

Arguments

Return Value

sqrt

X ... Numeric value on which
operation is performed

When x 2 0 ... Square root of
X

When x =10 ... 20

When x <0 ... NaN

EXPLANATION

» Calculates the square root of x.

* In the case of an area error of x <0, 0 is returned and EDOM is set to errno.
« If x is non-numeric, NaN is returned.
¢ [If xis £0, 0 is returned.

User's Manual U14872EJ1VOUM

267

CHAPTER 10 LIBRARY FUNCTIONS

7-19 ceil (normal model only) Mathematical Function

FUNCTION
ceil finds the minimum integer no less than x.

HEADER
math.h

FUNCTION PROTOTYPE
doubl e ceil (double x) ;

Function Arguments Return Value
ceil X ... Numeric value on which Normal ... The minimum
operation is performed integer no less than x
When x is non-numeric or x =
+oo ... NaN

When x =-0 ... +0

When the minimum integer no
less than x cannot be
expressed ... X

EXPLANATION
* Finds the minimum integer no less than x.
¢ [f x is non-numeric, NaN is returned.
e Ifx is =0, +0 is returned.
« [f x is infinite, NaN is returned and EDOM is set to errno.
» If the minimum integer no less than x cannot be expressed, x is returned.

268 User's Manual U14872EJ1VOUM

CHAPTER 10 LIBRARY FUNCTIONS

7-20 fabs (normal model only) Mathematical Functions

FUNCTION
fabs returns the absolute value of the floating-point number x .

HEADER
math.h

FUNCTION PROTOTYPE
doubl e fabs (double x) ;

Function Arguments Return Value
fabs X ... Numeric value to find the Normal ... Absolute value of x
absolute value When X is non-numeric ...
NaN
When x =-0 ... +0

EXPLANATION
» Finds the absolute value of x.
¢ [f x is non-numeric, NaN is returned.
* Ifx is =0, +0 is returned.

User's Manual U14872EJ1VOUM 269

CHAPTER 10 LIBRARY FUNCTIONS

7-21 floor (normal model only) Mathematical Functions

FUNCTION
floor finds the maximum integer no more than x.

HEADER
math.h

FUNCTION PROTOTYPE
doubl e floor (double x) ;

Function Arguments Return Value
floor X ... Numeric value on which Normal ... The maximum
operation is performed integer no more than x
When X is non-numeric or x =
+oo ... NaN

When x =-0 ... +0

When the maximum integer
no more than x cannot be
expressed

EXPLANATION
¢ Finds the maximum integer no more than x.
¢ [f x is non-numeric, NaN is returned.
e Ifx is =0, +0 is returned.
« [f x is infinite, NaN is returned and EDOM is set to errno.
» If the maximum integer no more than x cannot be expressed, x is returned.

270 User's Manual U14872EJ1VOUM

CHAPTER 10 LIBRARY FUNCTIONS

7-22 fmod (normal model only)

Mathematical Functions

FUNCTION

fmod finds the remainder of x/y.

HEADER
math.h

FUNCTION PROTOTYPE

doubl e fnod (doubl e x,

When x Zcoandy = oo ...

doubl e y) ;
Function Arguments Return Value
fmod X ... Numeric value on which Normal ... Remainder of x/y
operation is performed When x is non-numeric or y is
Yy ... Numeric value on which non-numeric, when y is £0,
operation is performed when X is o ... NaN

X

EXPLANATION

» Calculates the remainder of x/y expressed with x —i*y. iis an integer.

« Ify #0, the return value has the same sign as that of x and the absolute value is less than that of y.

* Ifyis+0orx =z, NaN is returned and EDOM is set to errno.

* If x is non-numeric or y is non-numeric, NaN is returned.

» Ifyisinfinite, x is returned unless x is infinite.

User's Manual U14872EJ1VOUM

271

CHAPTER 10 LIBRARY FUNCTIONS

7-23 matherr (normal model only) Mathematical Functions

FUNCTION
matherr performs exception processing of the library that deals with floating-point numbers.

HEADER
math.h

FUNCTION PROTOTYPE
voi d matherr (struct exception *x) ;

Function Arguments Return Value
matherr struct exception { None
int type;
char *name;
}

type......Numeric value to
indicate arithmetic exception
name ...Function name

EXPLANATION
* When an exception occurs, matherr is automatically called in the standard library and runtime library, which
deal with floating-point numbers.
* When called from the standard library, EDOM and ERANGE are set to errno.
The following shows the relationship between the arithmetic exception type and errno.

Type Arithmetic Exception Value Set to errno
1 Underflow ERANGE
2 Annihilation ERANGE
3 Overflow ERANGE
4 Zero division EDOM
5 Inoperable EDOM

Original error processing can be performed by changing or creating matherr.

272 User's Manual U14872EJ1VOUM

CHAPTER 10 LIBRARY FUNCTIONS

7-24 acosf (normal model only)

Mathematical Functions

FUNCTION
acosf finds acos.

HEADER
math.h

FUNCTION PROTOTYPE

float acosf (float x)

Function

Arguments

Return Value

acosf

X ... Numeric value on which
operation is performed

When -1 <x <1 ... acos of x
Whenx <-1,1<X,Xx = ...
NaN

EXPLANATION

» Calculates acos (range between 0 and 1) of x.

¢ [f x is non-numeric, NaN is returned.

* In the case of a definition area error of x <—1, 1 < x, NaN is returned and EDOM is set to errno.

User's Manual U14872EJ1VOUM

273

CHAPTER 10 LIBRARY FUNCTIONS

7-25 asinf (normal model only)

Mathematical Functions

FUNCTION
asinf finds asin.

HEADER
math.h

FUNCTION PROTOTYPE

float asinf (float x)

Function

Arguments

Return Value

asinf

X ... Numeric value on which
operation is performed

When -1 <x <1 ... asin of x
When x <£-1,1<x, x =NaN
... NaN

x=-0..-0

When underflow occurs ...

Non-normalized number

EXPLANATION
Calculates asin (range between —772 and +772) of x.

274

If X is non-numeric, NaN is returned.

In the case of a definition area error of x < -1, 1 < x, NaN is returned and EDOM is set to errno.
If x = -0, -0 is returned.

If an underflow occurs as a result of operation, a non-normalized number is returned.

User's Manual U14872EJ1VOUM

CHAPTER 10 LIBRARY FUNCTIONS

7-26 atanf (normal model only)

Mathematical Functions

FUNCTION
atanf finds atan.

HEADER
math.h

FUNCTION PROTOTYPE

float atanf (float x)

Function

Arguments

Return Value

atanf

X ... Numeric value on which
operation is performed

Normal ... atan of x
When x = NaN ... NaN
Whenx =-0... -0

EXPLANATION

» Calculates atan (range between —772 and +772) of x.

¢ [f x is non-numeric, NaN is returned.

e |f x =-0, -0 is returned.

« If an underflow occurs as a result of the operation, a non-normalized number is returned.

User's Manual U14872EJ1VOUM

275

CHAPTER 10

LIBRARY FUNCTIONS

7-27 atan2f (normal model only)

Mathematical Functions

FUNCTION
atan2f finds atan of y/x.

HEADER
math.h

FUNCTION PROTOTYPE

float atan2l (float vy,

float x) ;

Function

Arguments

Return Value

atan21

X ... Numeric value on which
operation is performed
Yy ... Numeric value on which
operation is performed

Normal ... atan of y/x

When both x andy are O or a
value whose y/x cannot be
expressed, or either x ory is

NaN, both x and y are o ...
NaN

When underflow occurs ...
Non-normalized number

EXPLANATION
» Calculates atan (range between —rrand +m) of y/x. When both x and y are 0 or the value whose y/x cannot
be expressed, or when both x and y are infinite, NaN is returned and EDOM is set to errno.
* When either x ory is non-numeric, NaN is returned.
« If an underflow occurs as a result of the operation, a non-normalized number is returned.

276 User's Manual U14872EJ1VOUM

CHAPTER 10 LIBRARY FUNCTIONS

7-28 cosf (normal model only) Mathematical Functions

FUNCTION
cosf finds cos.

HEADER
math.h

FUNCTION PROTOTYPE
float cost (float x)

Function Arguments Return Value
cosf X ... Numeric value on which Normal ... cos of x
operation is performed When x = NaN, x =+ ... NaN

EXPLANATION
» Calculates cos of x.
¢ [f x is non-numeric, NaN is returned.
» If x is infinite, NaN is returned and EDOM is set to errno.

If the absolute value of x is extremely large, the result of an operation becomes an almost meaningless value.

User's Manual U14872EJ1VOUM 277

CHAPTER 10 LIBRARY FUNCTIONS

7-29 sinf (normal model only) Mathematical Functions

FUNCTION
sinf finds sin.

HEADER
math.h

FUNCTION PROTOTYPE
float sinf (float x) ;

Function Arguments Return Value
sinf X ... Numeric value on which Normal ... sin of x
operation is performed When x = NaN, x =+ ... NaN

When underflow occurs ...
Non-normalized number

EXPLANATION
» Calculates sin of x.
¢ [f x is non-numeric, NaN is returned.
» If x is infinite, NaN is returned and EDOM is set to errno.
« If an underflow occurs as a result of the operation, a non-normalized number is returned.
« If the absolute value of x is extremely large, the result of an operation becomes an almost meaningless value.

278 User's Manual U14872EJ1VOUM

CHAPTER 10 LIBRARY FUNCTIONS

7-30 tanf (normal model only)

Mathematical Functions

FUNCTION
tanf finds tan.

HEADER
math.h

FUNCTION PROTOTYPE
float tanf (float x)

Function

Arguments

Return Value

tanf

X ... Numeric value on which
operation is performed

Normal ... tan of x

When x = NaN, x =+ ... NaN
When underflow occurs ...
Non-normalized number

EXPLANATION
Calculates tan of x.

If X is non-numeric, NaN is returned.

If x is infinite, NaN is returned and EDOM is set to errno.

If an underflow occurs as a result of operation, a non-normalized number is returned.

If the absolute value of x is extremely large, the result of an operation becomes an almost meaningless value.

User's Manual U14872EJ1VOUM

279

CHAPTER 10 LIBRARY FUNCTIONS

7-31 coshf (normal model only) Mathematical Functions

FUNCTION
coshf finds cosh.

HEADER
math.h

FUNCTION PROTOTYPE
float coshf (float x) ;

Function Arguments Return Value
coshf X ... Numeric value on which Normal ... cosh of x
operation is performed When overflow occurs, X = oo
... HUGE_VAL (with a positive
sign)
x = NaN ... NaN

EXPLANATION
» Calculates cosh of x.
¢ [f x is non-numeric, NaN is returned.
» If x is infinite, positive infinite value is returned.
« If an overflow occurs as a result of the operation, HUGE_VAL with a positive sign is returned and ERANGE is
set to errno.

280 User's Manual U14872EJ1VOUM

CHAPTER 10 LIBRARY FUNCTIONS

7-32 sinhf (normal model only)

Mathematical Functions

FUNCTION
sinhf finds sinh.

HEADER
math.h

FUNCTION PROTOTYPE
float sinhf (float x) ;

Function

Arguments

Return Value

sinhf

X ... Numeric value on which
operation is performed

Normal ... sinh of x

When overflow occurs ...
HUGE_VAL (with a sign of the
overflown value)

x = NaN ... NaN

When X =t ... +00

When underflow occurs ... 0

EXPLANATION

Calculates sinh of x.

If X is non-numeric, NaN is returned.

If X is o0, o0 is returned.

If an overflow occurs as a result of the operation, HUGE_VAL with the sign of overflowed value is returned

and ERANGE is set to errno.

If an underflow occurs as a result of the operation, +0 is returned.

User's Manual U14872EJ1VOUM

281

CHAPTER 10 LIBRARY FUNCTIONS

7-33 tanhf (normal model only) Mathematical Functions

FUNCTION
tanhf finds tanh.

HEADER
math.h

FUNCTION PROTOTYPE
float tanhf (float x) ;

Function Arguments Return Value
tanhf X ... Numeric value on which Normal ... tanh of x
operation is performed x = NaN ... NaN

When x = tco0 ... £1
When underflow occurs ... 0

EXPLANATION
» Calculates tanh of x.
¢ [f x is non-numeric, NaN is returned.
e Ifx is +o0, +1 is returned.
« If an underflow occurs as a result of the operation, $0 is returned.

282 User's Manual U14872EJ1VOUM

CHAPTER 10 LIBRARY FUNCTIONS

7-34 expf (normal model only)

Mathematical Functions

FUNCTION

expf finds the exponent function.

HEADER
math.h

FUNCTION PROTOTYPE
float expf (float x)

Function

Arguments

Return Value

expf

X ... Numeric value on which
operation is performed

Normal ... Exponent function of
X

When overflow occurs ...
HUGE_VAL (with positive sign)
x = NaN ... NaN

When X =t ... +00

When underflow occurs ...
Non-normalized number
When annihilation of effective
digits occurs due to underflow
.. +0

EXPLANATION
Calculates the exponent function of x.

If X is non-numeric, NaN is returned.

If X is o0, o0 is returned.

If an overflow occurs as a result of the operation, HUGE_VAL with a positive sign is returned and ERANGE is

set to errno.

If an underflow occurs as a result of the operation, a non-normalized number is returned.

If annihilation of valid digits occurs due to underflow as a result of the operation, +0 is returned.

User's Manual U14872EJ1VOUM

283

CHAPTER 10 LIBRARY FUNCTIONS

7-35 frexpf (normal model only) Mathematical Functions

FUNCTION
frexpf finds the mantissa and exponent parts.

HEADER
math.h

FUNCTION PROTOTYPE
float frexpf (float x, int *exp) ;

Function Arguments Return Value
frexpf X ... Numeric value on which Normal ... Mantissa of x
operation is performed When x = NaN, x =+ ... NaN
exp ... Pointer to store exponent [When x =0 ... £0
part

EXPLANATION
» Divides a floating-point number x by mantissa m and exponent n such as x = m*2*n and returns mantissa m.
« Exponent n is stored where the pointer exp indicates. The absolute value of m, however, is 0.5 or more and
less than 1.0.
« If x is non-numeric, NaN is returned and the value of *exp is 0.
* If x is oo, NaN is returned, and EDOM is set to errno with the value of *exp as 0.
« Ifxis £0, £0 is returned and the value of *exp is 0.

284 User's Manual U14872EJ1VOUM

CHAPTER 10 LIBRARY FUNCTIONS

7-36

Idexpf (normal model only)

Mathematical Functions

FUNCTION
Idexpf finds x*2%exp.

HEADER
math.h

FUNCTION PROTOTYPE
float |dexpf (float x, int exp) ;

Function

Arguments

Return Value

Idexpf

X ... Numeric value on which
operation is performed
exp ... Exponent

Normal ... x*2%exp

When x = NaN ... NaN
When X =t ... £00

When x =40 ... £0

When overflow occurs ...
HUGE_VAL (with the sign of
overflown value)

When underflow occurs ...
Non-normalized numberV
When annihilation of valid
digits occurs due to underflow
.. 20

EXPLANATION

Calculates x*2%exp.

If x is non-numeric, NaN is returned. If x is xo, o is returned. If x is £0, +0 is returned.

If an overflow occurs as a result of the operation, HUGE_VAL with the sign of overflowed value is returned

and ERANGE is set to errno.

If an underflow occurs as a result of the operation, a non-normalized number is returned .

If annihilation of valid digits due to underflow occurs as a result of the operation, +0 is returned.

User's Manual U14872EJ1VOUM

285

CHAPTER 10 LIBRARY FUNCTIONS

7-37 logf (normal model only) Mathematical Functions

FUNCTION
logf finds the natural logarithm.

HEADER
math.h

FUNCTION PROTOTYPE
float logf (float x) ;

Function Arguments Return Value
logf X ... Numeric value on which Normal ... Natural logarithm of x
operation is performed When x is non-numeric ... NaN

When x is infinite ... +o
When x <0 ... HUGE_VAL
(with negative sign)

EXPLANATION
* Finds the natural logarithm of x.
¢ [f x is non-numeric, NaN is returned.
e |f X is +o0, +o0 is returned.
* In the case of an area error of x < 0, HUGE_VAL with a negative sign is returned, and EDOM is set to errno.
« Ifx =0, HUGE_VAL with a negative sign is returned, and ERANGE is set to errno.

286 User's Manual U14872EJ1VOUM

CHAPTER 10 LIBRARY FUNCTIONS

7-38 10g10f (normal model only)

Mathematical Functions

FUNCTION
log10f finds a logarithm with 10 as the base.

HEADER
math.h

FUNCTION PROTOTYPE
float |ogl0f (float x) ;

Function Arguments

Return Value

log10f X ... Numeric value on which
operation is performed

Normal ... Logarithm with 10 of
x as the base

When x is non-numeric ... NaN
When X = +oo ... +00

When x <0 ... HUGE_VAL
(with negative sign)

EXPLANATION

Finds a logarithm with 10 of x as the base.
If X is non-numeric, NaN is returned.
If X is +o0, +00 is returned.

In the case of an area error of x < 0, HUGE_VAL with a negative sign is returned, and EDOM is set to errno.
If x = 0, HUGE_VAL with a negative sign is returned, and ERANGE is set to errno.

User's Manual U14872EJ1VOUM

287

CHAPTER 10 LIBRARY FUNCTIONS

7-39 modff (normal model only)

Mathematical Functions

FUNCTION
modff finds the fraction part and integer part.

HEADER
math.h

FUNCTION PROTOTYPE
float nodff (float x,

float *iptr) ;

Function

Arguments

Return Value

modff

X ... Numeric value on which
operation is performed
iptr ... Pointer for integer part

Normal ... Fraction part of x
When x is non-numeric or
infinite ... NaN

When x =10 ... 20

EXPLANATION
Divides a floating point number x by the fraction part and integer part.

288

Returns the fraction part with the same sign as that of x, and stores the integer part in the location indicated

by the pointer iptr.

If x is non-numeric, NaN is returned and stored in the location indicated by the pointer iptr.

If x is infinite, NaN is returned and stored in the location indicated by the pointer iptr, and EDOM is set to

errno.

If x = +0, +0 is returned and stored in the location indicated by the pointer iptr.

User's Manual U14872EJ1VOUM

CHAPTER 10 LIBRARY FUNCTIONS

7-40 powf (normal model only)

Mathematical Functions

FUNCTION
powf finds the yth power of x.

HEADER
math.h

FUNCTION PROTOTYPE

float powf (float x,

float y) ;

Function

Arguments

Return Value

powf

X ... Numeric value on which
operation is performed
y ... Multiplier

Normal ... x*y

Either when =

x = NaN ory = NaN

X =+ andy=0

X < 0 and y# integer,
x<0andy =+ow

x =0and y#0 ... NaN

When underflow occurs ...
Non-normalized number
When overflow occurs ...
HUGE_VAL (with the sign of
overflown value)

When annihilation of valid
digits occurs due to underflow
.. 20

EXPLANATION

Calculates x"y.

If an overflow occurs as a result of the operation, HUGE_VAL with the sign of overflowed value is returned,

and ERANGE is set to errno.

When x = NaN or y = NaN, NaN is returned.

When any of x = +e0andy =0, x <0 andy #integer, x <0 andy = +o, or x = 0 and y < 0, NaN is returned

and EDOM is set to errno.

If an underflow occurs, a non-normalized number is returned.

If annihilation of valid digits occurs due to underflow, +0 is returned.

User's Manual U14872EJ1VOUM

289

CHAPTER 10 LIBRARY FUNCTIONS

7-41 sqrtf (normal model only)

Mathematical Functions

FUNCTION

sqrtf finds the square root.

HEADER
math.h

FUNCTION PROTOTYPE

float sqrtf (float x)

Function

Arguments

Return Value

sqrtf

X ... Numeric value on which
operation is performed

When x 2 0 ... Square root of x
When x =0 ... 0
When x <0 ... NaN

EXPLANATION

» Calculates the square root of x.

* In the case of area error of x < 0, 0 is returned and EDOM is set to errno.
« If x is non-numeric, NaN is returned.
¢ [If xis £0, 0 is returned.

290

User's Manual U14872EJ1VOUM

CHAPTER 10 LIBRARY FUNCTIONS

7-42 ceilf (normal model only) Mathematical Functions

FUNCTION
ceilf finds the minimum integer no less than x.

HEADER
math.h

FUNCTION PROTOTYPE
float ceilf (float x) ;

Function Arguments Return Value
ceilf X ... Numeric value on which Normal ... The minimum
operation is performed integer no less than x
When x is non-numeric or x =
+oo ... NaN

When x =-0 ... +0

When the minimum integer no
less than x cannot be
expressed ... X

EXPLANATION
* Finds the minimum integer no less than x.
¢ [f x is non-numeric, NaN is returned.
* Ifx is =0, +0 is returned.
¢ [f x is infinite, NaN is returned and EDOM is set to errno.
» If the minimum integer no less than x cannot be expressed, X is returned.

User's Manual U14872EJ1VOUM 291

CHAPTER 10 LIBRARY FUNCTIONS

7-43 fabsf (normal model only)

Mathematical Functions

FUNCTION

fabsf returns the absolute value of the floating point number x.

HEADER
math.h

FUNCTION PROTOTYPE

float fabsf (float x)

Function

Arguments

Return Value

fabsf

X ... Numeric value to find the
absolute value

Normal ... Absolute value of x
When X is non-numeric ... NaN
When x =-0 ... +0

EXPLANATION

* Finds the absolute value of x.

¢ [f x is non-numeric, NaN is returned.

* Ifx is =0, +0 is returned.

292

User's Manual U14872EJ1VOUM

CHAPTER 10 LIBRARY FUNCTIONS

7-44 floorf (normal model only) Mathematical Functions

FUNCTION
floorf finds the maximum integer no more than x.

HEADER
math.h

FUNCTION PROTOTYPE
float floorf (float x) ;

Function Arguments Return Value
floorf X ... Numeric value on which Normal ... The maximum
operation is performed integer no more than x
When x is non-numeric or
infinite ... NaN

When x =-0 ... +0

When the maximum integer no
more than x cannot be
expressed ... X

EXPLANATION
¢ Finds the maximum integer no more than x.
¢ [f x is non-numeric, NaN is returned.
* Ifx is =0, +0 is returned.
« [f x is infinite, NaN is returned and EDOM is set to errno.
» If the maximum integer no more than x cannot be expressed, x is returned.

User's Manual U14872EJ1VOUM 293

CHAPTER 10 LIBRARY FUNCTIONS

7-45 fmodf (normal model only) Mathematical Functions

FUNCTION
fmodf finds the remainder of x/y.

HEADER
math.h

FUNCTION PROTOTYPE
float frnodf (float x, float y) ;

Function Arguments Return Value
fmodf X ... Numeric value on which Normal ... Remainder of x/y
operation is performed When x is non-numeric or y is
y ... Numeric value on which non-numeric
operation is performed When y is 0, when X is oo ...
NaN
When x Z 0 and y = oo ... X

EXPLANATION
» Calculates the remainder of x/y expressed with x —i*y. iis an integer.
« Ify #0, the return value has the same sign as that of x and the absolute value is less than y.
* Ifyis+0orx =z, NaN is returned and EDOM is set to errno.
* If x is non-numeric or y is non-numeric, NaN is returned.
» Ifyisinfinite, x is returned unless x is infinite.

294 User's Manual U14872EJ1VOUM

CHAPTER 10 LIBRARY FUNCTIONS

8-1 _ _assertfail (normal model only) Diagnostic Functions

FUNCTION

_ _assertfail supports the assert macro.

HEADER
math.h

FUNCTION PROTOTYPE

int _ _assertfail (char*_ _msg, char*_ _cond, char*_ file, int_ _line) ;
Function Arguments Return Value
_ _assertfail _ _msg ... Pointer to character | Undefined

string to indicate output
conversion specification to be
passed to printf function

_ _cond ... Actual argument of
assert macro

_ _file ... Source file name

_ _line ... Source line number

EXPLANATION

The _ _assertfail function receives information from the assert macro (refer to 10.2 Headers (13) assert.h),
calls the printf function, outputs information, and calls the abort function.

The assert macro adds diagnostic functions to a program. When the assert macro is executed, if p is false
(equal to 0), the assert macro passes information related to the specific call that has brought the false value
(actual argument text, source file name, and source line number are included in the information. The other
two are the values of macro _ _FILE_ _and _ _LINE_ _)to the _ _assertfail function.

User's Manual U14872EJ1VOUM 295

CHAPTER 10 LIBRARY FUNCTIONS

10.5 Batch Files for Update of Startup Routine and Library Functions

This compiler is provided with batch files for updating a part of the standard library functions and the startup
routine. The batch files in the BAT directory are shown in Table 10-12 below.

Caution The file d9026.78k in the BAT directory is used during batch file activation for updating the
library, not for development. When developing a system, it is necessary to have a device file

(sold separately).

Table 10-12. Batch Files for Updating Library Functions

Batch File Application

mkstup.bat Updates the startup routine (cstart[n].asm).
When changing the startup routine, perform assembly using this batch file.

reprom.bat Updates the firmware ROM termination routine (rom.asm).
When changing rom.asm, update the library using this batch file.

repgetc.bat Updates the getchar function.
The default assumption sets PO of the SFR to input port. When it is necessary to change this setting, change
the defined value of EQU of PORT in getchar.asm and update the library using this batch file.

repputc.bat Updates the putchar function.
The default assumption sets PO of the SFR to output port. When it is necessary to change this setting,
change the defined value of EQU of PORT in putchar.asm and update the library using this batch file.

repputcs.bat Updates the putchar function to SM78K0S-supporting.
When it is necessary to check the output of the putchar function using the SM78K0S, update the library using
this batch file.

repselo.bat Saves/restores the reserved area of the compiler (_ @KREGXxx) as part of the save/restore processing of the
setjmp/longjmp functions (the default assumption is to not save/restore). Update the library using this batch
file when the -QR option is specified.

repselon.bat Does not save/restore the reserved area of the compiler (_ @KREGXxx) as part of the save/restore processing
of the setjmp/longjmp functions (the default assumption is to not save/restore). Update the library using this
batch file when the -QR option is not specified.

296 User's Manual U14872EJ1VOUM

CHAPTER 10 LIBRARY FUNCTIONS

10.5.1 Using batch files

Use the batch files in the subdirectory BAT. Because these files are the batch files used to activate the assembler
and librarian, an environment in which the assembler package RA78K0S Ver.1.30 or later operates is necessary.
Before using the batch files, set the directory that contains the RA78K0S execution format file using the environment
variable PATH.

Create a subdirectory (LIB) of the same level as BAT for the batch files and put the post-assembly files in this
subdirectory. When a C startup routine or library is installed in a subdirectory LIB that is the same level as BAT,
these files are overwritten.

To use the batch files, move the current directory to the subdirectory BAT and execute each batch file. At this
time, the following parameters are necessary.

Product type = chiptype (classification of target chip)
9026 --- uPD789026, etc.

The following is an illustration of how to use each batch file.

The batch file for:

(1) Startup routine

e For PC-9800 series, IBM PC/AT and compatibles
mkstup chiptype

Example mkstup 9026

e For HP900O0 series 700™, SPARCstation™ Family
/bin/sh mkstup.sh chiptype

Example /bin/sh mkstup.sh 9026

(2) Firmware ROM routine update

e For PC-9800 series, IBM PC/AT and compatibles
reprom chiptype

Example reprom 9026

e For HP900O series 700, SPARCstation Family
/bin/sh reprom.sh chiptype

Example /bin/sh reprom.sh 9026

User's Manual U14872EJ1VOUM 297

CHAPTER 10 LIBRARY FUNCTIONS

(3) getchar function update

* For PC-9800 series, IBM PC/AT and compatibles

repgetc chiptype

Example repgetc 9026

* For HP900O0 series 700, SPARCstation Family

/bin/sh repgetc.sh chiptype

Example /bin/sh repgetc.sh 9026

(4) putchar function update

* For PC-9800 series, IBM PC/AT and compatibles

repputc chiptype

Example repputc 9026

» For HP900O0 series 700, SPARCstation Family

/bin/sh repputc.sh chiptype

Example /bin/sh repputc.sh 9026

(5) putchar function (SM78K0S-supporting) update

* For PC-9800 series, IBM PC/AT and compatibles

repputcs chiptype

Example repputcs 9026

* For HP900O0 series 700, SPARCstation Family

/bin/sh repputcs.sh chiptype

Example /bin/sh repputcs.sh 9026

298

User's Manual U14872EJ1VOUM

CHAPTER 10 LIBRARY FUNCTIONS

(6) setjmp/longjmp function update (with restore/save processing)

* For PC-9800 series, IBM PC/AT and compatibles
repselo chiptype

Example repselo 9026

» For HP900O0 series 700, SPARCstation Family
/bin/sh repselo.sh chiptype

Example /bin/sh repselo.sh 9026

(7) setjmp/longjmp function update (without restore/save processing)

» For PC-9800 series, IBM PC/AT and compatibles
repselon chiptype

Example repselon 9026

» For HP900O0 series 700, SPARCstation Family
/bin/sh repselon.sh chiptype

Example /bin/sh repselon.sh 9026

User's Manual U14872EJ1VOUM 299

CHAPTER 11 EXTENDED FUNCTIONS

This chapter describes the extended functions unique to this C compiler and not specified in the ANSI (American
National Standards Institute) Standard for C.

The extended functions of this C compiler are used to generate codes for effective utilization of the target devices
in the 78K/0S Series. Not all of these extended functions are always effective. Therefore, it is recommended to use
only the effective ones according to the user's purpose. For the effective use of the extended functions, refer to
CHAPTER 13 EFFECTIVE UTILIZATION OF COMPILER along with this chapter.

C source programs created by using the extended functions of the C compiler utilize microcontroller-dependent
functions. As regards portability to other microcontrollers, they are compatible at the C language level. For this
reason, C source programs developed by using these extended functions are portable to other microcontrollers with
easy-to-make modifications.

Remark In the explanation of this chapter, “RTOS” stands for the 78K/0 Series real-time OS.

300 User's Manual U14872EJ1VOUM

CHAPTER 11 EXTENDED FUNCTIONS

11.1 Macro Names

This C compiler has two types of macro names: those indicating the series names for target devices and those
indicating device names (processor types). These macro names are specified according to the option at compilation
to output object code for a specific target device or according to the processor type in the C source. In the example
below, _KOS__and _ 9026 _ are specified.

For details of these macro names, see 9.8 Predefined Macro Names.

[Example]

Compile option
>CC78KOS -C9026 prime.c ...

Specification of device type:
#pragma pc (9026)

User's Manual U14872EJ1VOUM 301

CHAPTER 11 EXTENDED FUNCTIONS

11.2 Keywords

The following tokens have been added to this C compiler as keywords to realize the extended functions. As with
ANSI-C keywords, these tokens cannot be used as labels or variable names. All the keywords must be described in
lowercase letters. A keyword containing uppercase letters, is not interpreted as such by the C compiler.

The following shows the list of keywords added to this compiler. Of these keywords, ones not starting with “_ _”
can be disabled by specifying the option (-ZA) that enables only ANSI-C language specifications (for the ANSI-C
keywords, refer to 2.2 Keywords).

Table 11-1. List of Added Keywords

Keyword Use
__callt callt callt/__callt functions
__callfiere callf callf/__callf functions
__sreg sreg sreg/__sreg variables
noauto noauto functions
__leaf norec norec/__leaf functions
___boolean boolean boolean type/__boolean type variables
bit bit type variables
___interrupt Hardware interrupt
__interrupt_brk"'*¢ Software interrupt
__banked 1 to 15M'* Bank function
asm ASM statements

Note

___rtos_interrupt Handler to allocate for RTOS

_ _pascal Pascal function
__directmap Absolute address allocation specification
__temp Temporary variable
Note A warning is output for the descriptions callf, _ _callf, _ _interrupt_brk, _ _banked 1 to 15, and

_ _rtos_interrupt and they are ignored.

(1) Functions
The keywords callt, _ _callt, noauto, norec, _ _leaf, _ _interrupt, and _ _pascal are attribute qualifiers.
These keywords must be described before any function declaration. The format of each attribute qualifier is
shown below.

attribute qualifier ordinary declarator function name (parameter type list/identifier list)

[Example]

__callt int func (int);

Attribute qualifier specifications are limited to those listed below. (The noauto and norec/_ _leaf qualifiers
cannot be specified at the same time.) callt and _ _callt, callf and _ _callf, norec and _ _leaf are regarded as
the same specifications. However, the qualifiers with ‘' added are enabled even when the -ZA option is
specified.

302 User's Manual U14872EJ1VOUM

CHAPTER 11 EXTENDED FUNCTIONS

e callt
e noauto
e norec

e callt noauto
e callt norec
e noauto callt
e norec callt

e _ _interrupt

e _ _pascal

e _ _pascal noauto

e _ _pascal callt

e noauto _ _pascal

e callt _ _pascal

e callt noauto _ _pascal

(2) Variables

» The same regulations apply to the sreg or _ _sreg specification as to register in C language (refer to 11.5 (3)
How to use the saddr area for details).

* The same regulations apply to the bit, boolean or _ _boolean specification as to the char or int type
specifier in C language.
However, these types can be specified only for the variables defined outside a function (external variables).

« The same regulations apply to the _ _directmap specification as to the type qualifier in C language (refer to
11.5 (31) Absolute address allocation specification for details).

« The same regulations apply to the _ _temp specification as to the type qualifier in C language (refer to 11.5
(33) Temporary variables for details).

User's Manual U14872EJ1VOUM 303

CHAPTER 11 EXTENDED FUNCTIONS

11.3 Memory
The memory model is determined by the memory space of the target device.

(1) Memory model
Since memory space is a maximum of 64 KB, the model is 64 KB with code division and data division combined.

(2) Register bank
There is no register bank.

(3) Memory space
This C compiler uses memory space as shown below.

304 User's Manual U14872EJ1VOUM

CHAPTER 11 EXTENDED FUNCTIONS

Table 11-2. Utilization of Memory Space

(@ Normal model (default)

Address Use Size (bytes)

00 \ 40 to 7FH CALLT table 64
FE i 20 to D7H sreg variables, boolean type variables 184
FE . D8 to E7TH Register variables"**®* 16

1
FE ' E8to EFH Arguments of norec functions™°'® 2 8
FE . FOto F7H Automatic variables of norec functions"**® 8

! Note 4
FE ! F8to FFH Arguments of runtime library"°'® 8
FF 1 00 to FFH sfr variables 256

(b) Static model (at -SM16 specification)

Address Use Size (bytes)
00 | 40 to 7FH CALLT table 64
FE ' 20 to EFH sreg variables, boolean type variables 208
FE i FOto FFH Shared area™**®® 16
FE ! Consecutive For arguments, automatic variables, and work"°*® 8
, areas
| between 20
1 and FFH
FF 1 00 to FFH sfr variables 256
Notes 1. Area not used for register variables is used for sreg variables and boolean type variables.
2. If not completely used for register variables, area not used for norec function arguments is used for sreg
variables and boolean type variables.
3. If not completely used for register variables and norec function arguments, area not used for norec
function automatic variables is used for sreg variables and boolean type variables.
4. If not completely used for register variables and norec function arguments/automatic variables, area not
used for runtime library arguments is used for sreg variables and boolean type variables.
5. The area used by the compiler varies depending on the parameters of the —SM option. Area not used as
shared area is used for sreg variables and boolean type variables.
6. Valid only when the static model expansion specification option (-ZM) is specified.
Remark If the register variable optimization option (-QR) is not specified, the area in Notes 1 to 3 is always used for

sreg variables and boolean type variables.

User's Manual U14872EJ1VOUM 305

CHAPTER 11 EXTENDED FUNCTIONS

11.4 #pragma Directive

The #pragma directive is one of the preprocessing directives supported by ANSI. The #pragma directive,
depending on the character string to follow #pragma, instructs the compiler to translate using the method determined
by the compiler. If the compiler does not support the #pragma directive, the #pragma directive is ignored and
compilation is continued. If keywords are added by the directive, an error is output if the C source includes the
keywords. In order to avoid this, the keywords in the C source should either be deleted or sorted by the #ifdef
directive.

This C compiler supports the following #pragma directives to realize the extended functions.

The keywords specified after #pragma can be described either in uppercase or lowercase letters.

For the extended functions using #pragma directives, refer to 11.5 How to Use Extended Functions.

306 User's Manual U14872EJ1VOUM

CHAPTER 11 EXTENDED FUNCTIONS

Table 11-3. List of #pragma Directives

#pragma Directive

Applications

#pragma sfr

Describes SFR name in C - 11.5 (4) How to use the sfr area

#pragma asm

Inserts ASM statement in C source - 11.5 (8) ASM statements

#pragma vect
#pragma interrupt

Describes interrupt processing in C - 11.5 (9) Interrupt functions

#pragma di
#pragma ei

Describes DI/El instructions in C - 11.5 (11) Interrupt functions

#pragma halt
#pragma stop
#pragma nop

Describes CPU control instructions in C - 11.5 (12) CPU control instruction

#pragma access

Uses absolute address access functions — 11.5 (13) Absolute address access function

#pragma section

Changes compiler output section name and specifies section location
- 11.5 (15) Changing compiler output section name

#pragma name

Changes module name - 11.5 (17) Module name changing function

#pragma rot

Uses rotate function - 11.5 (18) Rotate function

#pragma mul Uses multiplication function — 11.5 (19) Multiplication function
#pragma div Uses division function - 11.5 (20) Division function
#pragma bcd Uses BCD operation function —» 11.5 (21) BCD operation function

#pragma opc

Uses data insertion function - 11.5 (22) Data insertion function

#pragma realregister

Uses register direct reference function - 11.5 (29) Register direct reference function

#pragmainline

Expands the standard library functions memcpy and memset inline
- 11.5 (30) Memory manipulation function

User’'s Manual U14872EJ1VOUM

307

CHAPTER 11 EXTENDED FUNCTIONS

11.5 How to Use Extended Functions

This section describes each of these extended functions in the following format.

FUNCTION:
Outlines the function that can be implemented with the extended function.

EFFECT:
Explains the effect brought about by the extended function.

USAGE:
Explains how to use the extended function.

EXAMPLE:
Indicates an application example of the extended function.

RESTRICTIONS:
Explains restrictions, if any, on the use of the extended function.

EXPLANATION:
Explains the above application example.

COMPATIBILITY:

Explains the compatibility of a C source program developed by another C compiler when it is to be compiled with
this C compiler.

308 User's Manual U14872EJ1VOUM

CHAPTER 11 EXTENDED FUNCTIONS

(1) callt functions

callt Functions callt/__callt

FUNCTION
» The callt instruction stores the address of a function to be called in an area [40H to 7FH] called the callt
table, so that the function can be called with a shorter code than the one used to call the function directly.
» To call a function declared by the callt (or _ _ callt) (called the callt function), a name with ? prefixed to the
function name is used. To call the function, the callt instruction is used.
» The function to be called does not differ from an ordinary function.

EFFECT
The object code can be shortened.

USAGE
Add the callt/_ _ callt attribute to the function to be called as follows (described at the beginning).

callt extern type-nanme function-nane
_ _callt extern type-nanme function-name

EXAMPLE

_ _callt void funcl (void) ;

__callt void funcl (void) {

/* function body */

User's Manual U14872EJ1VOUM 309

CHAPTER 11 EXTENDED FUNCTIONS

callt Functions

callt/__callt

RESTRICTIONS

.

The address of each function declared with callt/_ _ callt will be allocated to the callt table when object
modules are linked. For this reason, when using the callt table in an assembler source module, the routine to
be created must be made “relocatable” using symbols.

A check on the number of callt functions is made at linking.

When the -ZA option is specified, _ _callt is enabled and callt is disabled.

The area of the callt table is 40H to 7FH.

When the callt table is used exceeding the number of permitted callt attribute functions, a compile error will
occur.

The callt table is used by specifying the -QL option. For that reason, the number of callt attributes permitted
per load module and the total in the linking modules is as shown in Table 11-4.

When the option for using the library that supports prologue/epilogue (-ZD option) is specified, the -QL4
option cannot be used. Also, because two callt entries are used by the library that supports prologue/epilogue
in the case of a normal model and up to ten in the case of a static model, the maximum number of callt
entries is reduced by two in the case of a normal model and by up to ten in the case of a static model.

Table 11-4. The Number of callt Attribute Functions That Can Be Used When the -QL Option Is Specified

When QQ option is not specified simultaneously

Option -QL1 -QL2 -QL3 -QL4
Normal model 30 27 13 0
Static model 30 29 15 12

* When QQ option is specified simultaneously

Option -QL1 -QL2 -QL3 -QL4
Normal model 30 27 18 11
Static model 30 29 20 13

» Cases where the -QL option is not used and the defaults are as shown below.

Table 11-5. Restrictions on callt Function Usage

callt Function

Restriction Value

Number per load module

30 max.

Total number in linked module

30 max.

310

User’'s Manual U14872EJ1VOUM

CHAPTER 11

EXTENDED FUNCTIONS

EXAMPLE

(C source)

__callt externint tsub ();

void main ()

__callt int tsub ()

{ {
int ret_val; int val;
ret_val =tsub (); return val;
} }
(Output object of compiler)
cal module
EXTRN ?t sub ;. Declaration
callt [?t sub] ; Call
ca2 module
PUBLI C _tsub ;. Declaration
PUBLI C ?t sub ;
@CALT CSEG CALLTO ; Allocation to segment
?tsub: DW _tsub
@ACODE CSEG
_tsub: ; Function definition
function body
EXPLANATION

« The callt attribute is given to the function tsub() so that it can be stored in the callt table.

COMPATIBILITY
<From another C compiler to this C compiler>

» The C source program need not be modified if the keyword callt/_ _ callt is not used.

» To change functions to callt functions, observe the procedure described in the USAGE above.

<From this C compiler to another C compiler>

« #define must be used. For details, see 11.6 Modifications of C Source.

User's Manual U14872EJ1VOUM 311

CHAPTER 11 EXTENDED FUNCTIONS

(2) Register variables

Register Variables register

FUNCTION

e Allocates the declared variables (including arguments of function) to the register (HL) and saddr area
(_@KREGO00 to _@KREG15). Saves and restores registers or saddr area during the preprocessing/
postprocessing of the module that declared a register.

* The allocation is performed based on the number of times referenced. Therefore, it is undetermined to which
register or saddr area the register variable is allocated.

» For details of register variable allocation, refer to 11.7 Function Call Interface.

* Reqister variables are allocated to different areas depending on the compile condition as shown below (for
each option, refer to the CC78K0S C Compiler Operation (U14871E)).

1. In the case of the normal model, the register variables are allocated based on the number of times
referenced to register HL or the saddr area [FEDOH to FEDFH]. If there is no stack frame, register
variables are allocated to register HL. Only when the -QR option is specified, register variables are
allocated to the saddr area.

2. In the case of the static model, the register variables are allocated to register DE or _ @KREGxx secured
by -SM specification according to the number of times referenced. Only when the -ZM2 option is specified,
register variables are allocated to the _ @KREGxx. For details of the -ZM2 option, refer to 11.5 (32) Static
model expansion specifications.

EFFECT
« Instructions to the variables allocated to the registers or saddr area are generally shorter in code length than
those to memory. This helps shorten object code and also improves program execution speed.

USAGE
Declare a variable with the register storage class specifier as follows.

register type-name variable-name

EXAMPLE

void main (void)

register unsigned char c ;

312 User's Manual U14872EJ1VOUM

CHAPTER 11 EXTENDED FUNCTIONS

Register Variables register

RESTRICTIONS
« |If register variables are not used so frequently, object code may increase (depending on the size and contents
of the source).
» Register variable declarations may be used for char/int/short/long/float/double/long double and pointer
data types.

(Normal model)

« char uses half the area of other types. long/float/double/long double use twice the area. Between char
types there are byte boundaries but in other cases, there are word boundaries.

« In the case of int/short and pointers, a maximum of 8 variables per function is usable. From the 9th variable,
the register variables are assigned to the normal memory.

» In the case of a function without a stack frame, a maximum of 8 variables per function is usable for int/short
and pointers. From the 9th variable, the register variables are assigned to the normal memory.

(Static model)

« char uses half the area of other types.

* In the case of int/short and pointers, a maximum of 1 variable per function is usable.
* From the 2nd variable, the register variables are assigned to the normal memory.

» The register variables are invalid for long/float/double/long double.

Table 11-6. Restrictions on Register Variable Usage

Data Type Usable Number (per Function)

Normal Model Static Model
int/short 8 variables max. 1 variable max.
Pointer 8 variables max. 1 variable max.

(9 variables max. if function without stack frame)

User's Manual U14872EJ1VOUM 313

CHAPTER 11 EXTENDED FUNCTIONS

Register Variables register

EXAMPLE

(C source)

void func ();
void main ()

{
register int i, j;
=0 j =1L
i +=;
func ();
}

(Output object of compiler)
* When the -SM option is not specified (example of register variable allocation to register HL and the saddr

area)
The following labels are declared by the startup routine (refer to APPENDIX A LIST OF LABELS FOR saddr
AREA).
EXTRN _@REX0 ;. References the saddr area to be used
_main:
push hl ; Saves the contents of the register at the beginning of the function
nmovw ax, _@KREGL4 ; Saves the contents of the saddr at the beginning of the function
push ax ;
novw hl, #00H ; The following codes are output in the middle of the function
nmvw ax, hl ;
i ncw ax ;
nmovw _@REGL4, ax ;
xch a, X ;
add a, | ;
xch a, X ;
addc a, | ;
novw hl, ax ;
cal | I func ;
pop ax ; Restores contents of the saddr at the end of the function
novw _@RE®0, ax ;
pop hl ; Restores contents of the register at the end of the function
ret

314 User's Manual U14872EJ1VOUM

CHAPTER 11 EXTENDED FUNCTIONS

Register Variables register

* When the -SM option is specified (Example of register variable allocation to register DE)

_main:
push de ; Saves the contents of the register at the beginning of the function

novw de, #00H, O ;

novw de, ax ;
i ncw ax ;
movw 1?2L0003+1, a ;
xch a, X ;
mov 1?2L0003, a ;
add a, e ;
xch a, X ;
addc a, d ;
nov de, ax ;
cal | I _func
pop de ; Restores the contents of the register at the end of the function
ret

EXPLANATION

» To use register variables, you only need to declare them with the register storage class specifier.
» Labels such as _ @KREGOO0 include the modules declared with PUBLIC in the library attached to this C
compiler.

COMPATIBILITY
<From another C compiler to this C compiler>
» The C source program need not be modified if the other C compiler supports register declarations.
» To change to register variables, add the register declarations for the variables to the program.

<From this C compiler to another C compiler>

» The C source program need not be modified if the other compiler supports register declarations.

« How many variable registers can be used and to which area they will be allocated depends on the
implementations of the other C compiler.

User's Manual U14872EJ1VOUM 315

CHAPTER 11 EXTENDED FUNCTIONS

(3) How to use the saddr area

Usage of saddr Area sreg/__sreg

(1) Usage with sreg declaration

FUNCTION

» The external variables and in-function static variables (called sreg variables) declared with the keyword sreg
or _ _sreg are automatically allocated to the saddr area [FE20H to FED7H] (normal model) and [FE20H to
FEEFH] (static model) with relocatability. When those variables exceed the area shown above, a compile
error occurs.

» The sreg variables are treated in the same manner as the ordinary variables in the C source.

» Each bit of sreg variables of char, short, int, and long type become boolean type variables automatically.

» sreg variables declared without an initial value take 0 as the initial value.

» The area that can be referenced by the sreg variables declared in the assembler source is the saddr area
[FE20H to FEFFH]. The area [FED8H to FEFFH] (normal model) and [FEFOH to FEFFH] (static model) are
used by compiler, so care must be taken (refer to Table 11-2 Utilization of Memory Space).

EFFECT
« Instructions to the saddr area are generally shorter in code length than those to memory. This helps shorten
object code and also improves program execution speed.

USAGE
» Declare variables with the keywords sreg and _ _sreg inside a module and a function which defines the
variables. Only variables with a static storage class specifier can become sreg variables inside a function.

sreg type-name variable-name / sreg static type-name variable-name
_ _sreg type-name variable-name / _ _sreg static type-name variable-name

» Declare the following variables inside a module that refers to sreg external variables. They can be described
inside a function as well.

extern sreg type-name variable-name / extern _ _sreg type-name variable-name

316 User's Manual U14872EJ1VOUM

CHAPTER 11 EXTENDED FUNCTIONS

Usage of saddr Area sreg/__sreg

RESTRICTIONS

If const type is specified, or if sreg/_ _sreg is specified for a function, a warning message is output, and the
sreg declaration is ignored.

char type uses a half the space of other types and long/float/double/long double types use twice the space
of other types.

Between char types there are byte boundaries, but in other cases, there are word boundaries.

When -ZA is specified, only _ _sreg is enabled and sreg is disabled.

In the case of int/short and pointers, a maximum of 92 variables per load module is usable (when saddr area
[FE20H to FED7H] is used). Note that the number of usable variables decreases when bit and boolean type
variables, register variables, or norec and noauto functions are used (normal model).

In the case of int/short and pointers, a maximum of 104 variables per load module is usable (when saddr
area [FE20H to FEEFH] is used). Note that the number of usable variables decreases when bit, boolean
type variables, and shared areas are used (static model).

The following shows the maximum number of sreg variables that can be used per load module.

Table 11-7. Restrictions on sreg Variable Usage

Data Type Usable Number of sreg Variables (per Load Module)
When saddr Area [FE20H to FED7H] is Used When saddr Area [FE20H to FEEFH] is Used
int/short, pointer 92 variables max.*'*® 104 variables max.\°*®

Note When bit and boolean type variables are used, the usable number decreases.

EXAMPLE
(C source)

extern sreg int hsmmoO;
extern sreg int hsmml;

extern sreg int *hsptr;

void main () {

hsmm0 -= hsmml;

User's Manual U14872EJ1VOUM 317

CHAPTER 11 EXTENDED FUNCTIONS

Usage of saddr Area

sreg/__sreg

(Assembler source)

The following example shows a definition code for an sreg variable created by the user. If an extern declaration

is not made in the C source, the C compiler outputs the following codes. In this case, the ORG quasi-directive

will not be output.

@ADATS

_hsm:
_hsm:
_hsptr:

PUBLI C _hsmmD
PUBLI C _hsmml
PUBLI C _hsptr

DSEG ~ SADDRP
OFE20H
(2)
(2)
(2)

8883

Declaration

Allocation to segment

(Output object of compiler)

The following codes are output in the function.

nmovw
xch
sub
xch
subc
novw

ax, _hsmmD
a, x

a, _hsmil
a, x

a, _hsmml+1
_hsmD, ax

COMPATIBILITY

<From another C compiler to this C compiler>

» Modifications are not needed if the other compiler does not use the keyword sreg/_ _sreg.
To change to sreg variables, modifications are made according to the method shown above.

<From this C compiler to another C compiler>

* Modifications are made by #define.

For details, refer to 11.6 Modifications of C Source.

modifications allow sreg variables to be handled as ordinary variables.

318

User’'s Manual U14872EJ1VOUM

These

CHAPTER 11 EXTENDED FUNCTIONS

Usage of saddr Area -RD

(2) Usage with saddr automatic allocation option of external variables/external static variables

FUNCTION
« External variables/external static variables (except const type) are automatically allocated to the saddr area
regardless of whether an sreg declaration is made or not.
» Depending on the value of n, the external variables and external static variables to be allocated can be

specified as follows.

Table 11-8. Variables Allocated to saddr Area by -RD Option

Value of n Variables Allocated to saddr Area
1 Variables of char and unsigned char types
2 Variables for when n = 1, plus variables of short, unsigned short, int, unsigned int,

enum, and pointer type

4 Variables for when n = 2, plus variables of long, unsigned long, float, double, and
long double type

When omitted All variables (including the structures, unions, and arrays in this case only)

» Variables declared with the keyword sreg are allocated to the saddr area, regardless of the above
specification.

« The above rule also applies to variables referenced by the extern declaration, and processing is performed as
if these variables were allocated to the saddr area.

» The variables allocated to the saddr area by this option are treated in the same manner as sreg variables.
The functions and restrictions of these variables are as described in (1).

METHOD OF SPECIFICATION
Specify the -RD [n] (n: 1, 2, or 4) option.

RESTRICTIONS
* Inthe -RD [n] option, modules specifying a different n value cannot be linked to each other.

User's Manual U14872EJ1VOUM 319

CHAPTER 11 EXTENDED FUNCTIONS

Usage of saddr Area -RS

(3) Usage with saddr automatic allocation option of internal static variables

FUNCTION
« Automatically allocates internal static variables (except const type) to saddr area regardless of whether or
sreg declaration is made or not.
« Depending on the value of n, the internal static variables to be allocated can be specified as follows.

Table 11-9. Variables Allocated to saddr Area by -RS Option

Value of n Variables Allocated to saddr Area
1 Variables of char and unsigned char types
2 Variables for when n = 1, plus variables of short, unsigned short, int, unsigned int,

enum, and pointer type

4 Variables if n is 2 and variables of long, unsigned long, float, double, and long
double type
When omitted All variables (including the structures, unions, and arrays in this case only)

» Variables declared with the keyword sreg are allocated to the saddr area regardless of the above
specification.

» The variables allocated to the saddr area by this option are handled in the same manner as sreg variables.
The functions and restrictions for these variables are as described in (1).

METHOD OF SPECIFICATION
Specify the -RS [n] (n: 1, 2, or 4) option.

Remark In the -RS [n] option, modules specifying a different n value can be linked to each other.

320 User's Manual U14872EJ1VOUM

CHAPTER 11 EXTENDED FUNCTIONS

Usage of saddr Area -RK

(4) Usage with saddr automatic allocation option for arguments/automatic variables

FUNCTION
« Arguments and automatic variables (except const type) are automatically allocated to the saddr area
regardless of whether an sreg declaration is made or not.
» The arguments and automatic variables to be allocated are specified using the values of n.

Table 11-10. Variables Allocated to saddr Area by -RK Option

Value of n Variables Allocated to saddr Area
1 Variables of char and unsigned char types
2 Variables for when n = 1, plus variables of short, unsigned short, int, unsigned int,

enum, and pointer type

4 Variables for when n = 2, plus variables of long, unsigned long, float, double, and
long double type

When omitted All variables (including the structures, unions, and arrays in this case only)

» Variables declared with sreg are allocated to the saddr area regardless of the above specifications.
« Variables allocated to the saddr area by this option are handled in the same way as sreg variables.
* Modules that have different n values specified in the -RK [n] option can be linked.

USAGE
» Specify the -RK [n] option (where nis 1, 2, or 4).

RESTRICTIONS
* Only the static model is supported. When the -SM option is not specified, a warning message is output and
the automatic allocation is ignored.
» Arguments/variables that have been declared register variables are not allocated to the saddr area.
* When the -QV option is specified simultaneously, allocation to register DE has priority.

User's Manual U14872EJ1VOUM 321

CHAPTER 11 EXTENDED FUNCTIONS

Usage of saddr Area

-RK

EXA

MPLE

(C source)

sub(int hsmarqg)

{

int hsnauto;

hsmaut o = hsmar g;

(Output object of compiler)

@AATS DSEG
?L0003: DS
?L0004: DS
@arODE CSEG
_sub:
movw
novw
ret

SADDRP
(2)
(2)

?L0003, ax
?L0004, ax ; hsmaut o

322

User’'s Manual U14872EJ1VOUM

CHAPTER 11 EXTENDED FUNCTIONS

(4) How to use the sfr area

Usage of sfr Area sfr

FUNCTION
» The sfr area refers to a group of special function registers such as mode registers and control registers for
the various peripherals of the 78K/0S Series microcontrollers.
« By declaring the use of sfr names, manipulations on the sfr area can be described at the C source level.
» sfr variables are external variables without initial values (undefined).
» A write check will be performed on read-only sfr variables.
* A read check will be performed on write-only sfr variables.
« Assignment of illegal data to an sfr variable will result in a compile error.
* The sfr names that can be used are those allocated to an area consisting of addresses FFOOH to FFFFH.

EFFECT
* Manipulations to the sfr area can be described at the C source level.
» Instructions to the sfr area are shorter in code length than those to memory. This helps shorten object code
and also improves program execution speed.

USAGE
» Declare the use of an sfr name in the C source with the #pragma preprocessing directive, as follows (the
keyword sfr can be described in uppercase or lowercase letters.):

#ipragma sfr

» The #pragma sfr directive must be described at the beginning of the C source line. If #pragma PC
(processor type) is specified, however, describe #pragma sfr after that.
The following statement and directives may precede the #pragma sfr directive:
* Comment statement
» Preprocessing directives that do not define or refer to a variable or function

* In the C source program, describe an sfr name that the device has as is (without change). In this case, the
sfr need not be declared.

User's Manual U14872EJ1VOUM 323

CHAPTER 11 EXTENDED FUNCTIONS

Usage of sfr Area sfr

RESTRICTIONS

All sfr names must be described in uppercase letters. Lowercase letters are treated as ordinary variables.

EXAMPLE

(C source)

#ifdef _ KOS _

#pragma sfr
#endi f

voi d mai n()
{
PO -= RXBOO;
/* RXBOO = 10; ==> error */

(Output object of compiler)

Codes that relate to declarations are not output and the following codes are output in the middle of the function.

mov a, PO
sub a, RXB0OO
mov PO, a

324 User's Manual U14872EJ1VOUM

CHAPTER 11 EXTENDED FUNCTIONS

Usage of sfr Area sfr

COMPATIBILITY
<From another C compiler to this C compiler>
» Those portions of the C source program not dependent on the device or compiler need not be modified.

<From this C compiler to another C compiler>

» Delete the #pragma sfr statement or sort by #ifdef and add the declaration of the variable that was formerly
an sfr variable. An example is shown below.

#ifdef _ _KOS_
#pragma sfr

#el se

/* Declaration of variables */
unsi gned char PO;

#endi f

voi d mai n(void) {
PO = 0;

» For devices with the sfr or its alternative functions, a dedicated library must be created to access that area.

User's Manual U14872EJ1VOUM 325

CHAPTER 11 EXTENDED FUNCTIONS

(5) noauto function

noauto Function noauto

FUNCTION

The noauto function sets restrictions for automatic variables not to output the codes of preprocessing/
postprocessing (generation of stack frame).

All the arguments are allocated to registers or the saddr area (FEE4H to FEE7H) for register variables. If
there is an argument that cannot be allocated to registers, a compile error occurs.

Automatic variables can be used only if all the automatic variables are allocated to the registers or saddr area
for register variable-use left over after argument allocation.

The noauto function allocates arguments to the saddr area for register variable-use, but only if the -QR
option has been specified during compilation.

The noauto function stores arguments other than arguments allocated to the registers in the saddr area for
register variable-use, and stores the arguments' descriptions in ascending sequence (refer to APPENDIX A
LIST OF LABELS FOR saddr AREA).

The code output when calling the noauto function is the same code as the code for calling a normal function.
When the -SM option is specified, a warning message is only output to the line in which noauto is described
first, and all the noauto functions are handled as normal functions.

EFFECT

The object code can be shortened and execution speed can be improved.

USAGE
Declare a function with the noauto attribute in the function declaration, as follows.

noaut o type-name function-name

326

User’'s Manual U14872EJ1VOUM

CHAPTER 11 EXTENDED FUNCTIONS

noauto Function noauto

RESTRICTIONS
* When the -ZA option is specified, the noauto function is disabled.
» The arguments and automatic variables of the noauto function have restrictions for their types and numbers.
The following shows the types of arguments that can be used inside a noauto function. Arguments other
than long/signed long/unsigned long, float/double/long double are allocated to register HL.

* Pointer

* char/signed char/unsi gned char

e int/signed int/unsigned int

* short/signed short/unsigned short
* long/signed | ong/unsi gned | ong

« float/doubl e/l ong double

* The number of arguments and automatic variables that can be used is a maximum of 6 bytes in total size.
» These restrictions are checked at compilation.
» If arguments are declared with a register, the register declaration is ignored.

EXAMPLE

(C source)
When the -QR option is specified

noaut o short nfunc(short a, short b, short c);

short |, m
voi d mai n()
{
static short ii, jj, Kkk;
I = nfunc(ii, jj, kk);
}
noaut o short nfunc(short a, short b, short c)
{

m=a+ b + c;
return(nj;

User's Manual U14872EJ1VOUM 327

CHAPTER 11

EXTENDED FUNCTIONS

noauto Function

noauto

(Output object of compiler)

@ACODE CSEG

_main:
line
line

5:
6:

static short ii, jj, Kkk;
I = nfunc(ii, jj, kk);
a, !?L0005
a, X

a, !?L0005+1
ax

a, !?L0004
a, X

a, !?L0004+1
ax

a, !?L0003
a, X

a, !?L0003+1
I nfunc

ax

ax

ax, bc

1 1+1, a

a, X

11, a

}

noaut o short nfunc (short
{

h

a, X

a, _@REGL2
a, X

a, _@XREGL3
ax

ax, _@KREGl4
ax

ax, sp

hl, ax

a, [hl +10]

a, X

a, [hl +11]
_@REGL4, ax
a, [hl +8]

a, X

a, [hl +9]

hl, ax

s kk
s kk
i
i
s i

s i
; Calls nfunc (a, b, c¢) function

; Assigns the return value to external variable |

a, short b, short c)

; Saves HL

; Sets argument a to _ @KREG12

; Saves _@KREG12

)

; Saves _@KREG14

; Sets argument c to _ @KREG14

)

)

; Sets argument b to HL

328

User’'s Manual U14872EJ1VOUM

CHAPTER 11 EXTENDED FUNCTIONS

noauto Function

noauto

(Output object of compiler ...continued)

;line 10 m=a + b + c;

nmovw ax, hl ;
xch a, X ;
add a, _@XREGL2 ;
xch a, X ;
addc a, _@XREGL3 ;
xch a, X ;
add a, _@REGl4 ;
xch a, X ;
addc a, _@REGL5 ; Adds b(HL) and ¢c(_ @KREG14) to a(_ @KREG12)
nmov I mtl, a ; Assigns the calculation result to external variable m
xch a, X
nmov I m a
;line 11: return(m;
xch a, X
nmovw bc, ax ; Returns the contents of external variable m
;line 12: }
pop ax ;
nmovw _@REGL4, ax ; Restores _ @KREG14
pop ax ;
nmovw _@REGL2, ax ; Restores _ @KREG12
pop hi ; Restores HL
ret
EXPLANATION

» In the above example, the noauto attribute is added at the header part of the C source.

noauto is declared and stack frame formation is not performed.

COMPATIBILITY

<From another C compiler to this C compiler>
» The C source program need not be modified if the keyword noauto is not used.

* To change variables to noauto variables, modify the program according to the procedure described in
USAGE above.

<From this C compiler to another C compiler>
« #define must be used. For details, see 11.6 Modifications of C Source.

User’'s Manual U14872EJ1VOUM

329

CHAPTER 11 EXTENDED FUNCTIONS

(6) norec function

norec Function norec

FUNCTION

A function that does not call another function by itself can be changed to a norec function.

With norec functions, code for preprocessing and postprocessing (stack frame formation) is not output.

The arguments of the norec function are allocated to registers and saddr area (FEE8H to FEEFH) for norec
function arguments.

If arguments cannot be allocated to registers and saddr area, a compile error occurs.

Arguments are stored either in the register or the saddr area (FEE8H to FEEFH) and the norec function is
called.

Automatic variables are allocated to the saddr area (FEFOH to FEF7H) and so are the register variables.

The saddr area is not used for allocation when the -QR option is specified during compilation.

If arguments other than long/float/double/long double types are used, the first argument is stored in register
AX, the second in register DE, and the third and successive arguments are stored in the saddr area. Note
that the arguments stored in registers AX and DE are one argument each regardless of the type of argument.
The argument stored in register AX is copied to register DE if DE does not have the argument stored at the
beginning of the norec function. If there is an argument stored in register DE already, the argument stored in
AXis copied to _@RTARG6 and 7.

If automatic variables other than long/float/double/long double types are used, the arguments that are left
after allocation are stored in the declared order; DE, @RTARG6 and 7, and _ @NRARGO, 1...

If automatic variables long/float/double/long double types are used, the arguments that are left after
allocation are stored in the declared order; @NRARGO, 1...

The rest of the arguments are stored in the saddr area in the declared order (refer to APPENDIX A LIST OF
LABELS FOR saddr AREA).

EFFECT

The object code can be shortened and program execution speed can be improved.

USAGE
Declare a function with the norec attribute in the function declaration, as follows.

norec type-name function-name

330

_ _ leaf can also be described instead of norec.

User's Manual U14872EJ1VOUM

CHAPTER 11 EXTENDED FUNCTIONS

norec Function norec

RESTRICTIONS

No other function can be called from a norec function.

There are restrictions on the type and number of arguments and automatic variables that can be used in a
norec function.

When -ZA is specified, norec is disabled and only _ _leaf is enabled.

When the -SM option is specified, a warning message is only output to the line in which norec is described
first, and all the norec functions are handled as normal functions.

The restrictions for arguments and automatic variables are checked at compilation, and an error occurs.

If arguments and automatic variables are declared with a register, the register declaration is ignored.

The following shows the types of arguments and automatic variables that can be used in norec functions.
norec functions are allocated to the saddr area consecutively if between char/signed char/unsigned char,
however if connected to other types, allocation is performed in two-byte alignment.

Pointer

char/signed char/unsigned char
int/signed int/unsigned int
short/signed short/unsigned short
| ong/ si gned | ong/ unsi gned | ong

fl oat/ doubl e/l ong doubl e

(When the -QR option is not specified)

The number of arguments that can be used in a norec function is 2 variables, if other than
long/float/double/long double types. Arguments cannot be used for long/float/double/long double types.
Automatic variables can use the area that is the combined total of the number of bytes remaining unused by
arguments. If types other than long/float/double/long double are used, automatic variables can use up to 4
bytes. Arguments can not be used for long/float/double/long double types.

(When the -QR option is specified)

The number of arguments is 6 variables, if types other than long/float/double/long double are used, and 2
variables if long/float/double/long double types are used.

Automatic variables can use the area that is the combined total of the number of bytes remaining unused by
arguments and the number of saddr area bytes. If types other than long/float/double/long double are used,
automatic variables can use up to 20 bytes and if long/float/double/long double types are used, automatic
variables can use up to 16 bytes.

These restrictions are checked at compilation and an error will occur if not satisfied.

User's Manual U14872EJ1VOUM 331

CHAPTER 11 EXTENDED FUNCTIONS

norec Function

norec

EXAMPLE

(C source)

norec int rout (int a, int b, int c);

m

+ rout (k, I, m + ++k ;

norec int rout (int a, int b, int c)

yi

int i, j;

void min () {
int Kk,
i =1

}

{
int x,
return

}

(x + (a<<2));

332

User’'s Manual U14872EJ1VOUM

CHAPTER 11 EXTENDED FUNCTIONS

norec Function norec

(Output object of compiler)

When the -QR option is specified
EXTRN _@\RARXD ;. References saddr area to be used
EXTRN _ @G\RARGL ;
EXTRN _ @\RARGS ;
_@\RARQD ~ m ; Stores argument in saddr area
de <1 ; Stores argument to DE
ax ~ k ; Stores argument in AX
cal | I rout ; Calls norec function

_rout:
nmovw _@RTARGG, ax

; Receives argument from saddr area
mov c, #O02H
xch a, X
add a, a
xch a, X
rolc a, 1
dbnz c, $%$-5
xch a, X
add a, _@\RARGL ;. Uses automatic variables of saddr area
xch a, X ;
addc a, _@RARGL+1 ;. Uses automatic variables of saddr area
nmovw bc, ax ;
ret
User's Manual U14872EJ1VOUM 333

CHAPTER 11 EXTENDED FUNCTIONS

norec Function norec

EXPLANATION
In the above example, the norec attribute is added in the definition of the rout function as well to indicate that
the function is norec.

COMPATIBILITY
<From another C compiler to this C compiler>
» The C source program need not be modified if the keyword norec is not used.
» To change variables to norec variables, modify the program according to the procedure described in USAGE
above.

<From this C compiler to another C compiler>
« #define must be used. For details, see 11.6 Modifications of C Source.

334 User's Manual U14872EJ1VOUM

CHAPTER 11 EXTENDED FUNCTIONS

(7) bit type variables

bit Type Variables bit
boolean Type Variables boolean
___boolean

FUNCTION

« A bit or boolean type variable is handled as 1-bit data and allocated to the saddr area.
» These variables can be handled the same as external variables that have no initial value (or have an unknown

value).
» The C compiler outputs the following bit manipulation instructions for these variables.

SET1, CLR1, NOT1l, BT, BF instruction

EFFECT
* Programming at the assembler source level can be performed in C, and the saddr and sfr areas can be

accessed in bit units.

USAGE
» Declare a bit or boolean type inside a module in which the bit or boolean type variable is to be used, as

follows:
* _ _boolean can also be described instead of bit.

bi t variable-name
bool ean variable-name
_ _bool ean variable-name

» Declare a bit or boolean type inside a module in which the bit or boolean type variable is to be used, as

follows.

extern bit variable-name
extern bool ean variable-name
extern _ _bool ean variable-name

« char, int, short, and long type sreg variables (except the elements of arrays and members of structures) and
8-bit sfr variables can be automatically used as bit type variables.

variable-name. n (where n = 0 to 31)

User's Manual U14872EJ1VOUM 335

CHAPTER 11 EXTENDED FUNCTIONS

bit Type Variables bit
boolean Type Variables boolean
___boolean

RESTRICTIONS

336

An operation on two bit or boolean type variables is performed by using the CY (carry) flag.

For this reason, the contents of the carry flag between statements are not guaranteed.

Arrays cannot be defined or referenced.

A bit or boolean type variable cannot be used as a member of a structure or union.

This type of variable cannot be used as the argument type of a function.

A bit type variable cannot be used as the type of an automatic variable (other than static model).

With bit type variables only, up to 1472 variables can be used per load module (when saddr area [FE20H to
FED7H] is used) (normal model).

With bit type variables only, up to 1664 variables can be used per load module (when saddr area [FE20H to
FEEFH] is used) (static model).

The variable cannot be declared with an initial value.

If the variable is described along with a const declaration, the const declaration is ignored.

Only operations using 0 and 1 can be performed by the operators and constants shown in Table 11-11.

*, & (pointer reference, address reference), and sizeof operations cannot be performed.

When the -ZA option is specified, only _ _boolean is enabled.

Table 11-11. Operators Using Only Constants 0 or 1 (with Bit Type Variable)

Classification Operator Classification Operator
Assignment =
Bitwise AND &, &= Bitwise OR l, I=
Bitwise XOR A A=
Logical AND && Logical OR Il
Equal == Not Equal 1=

Remark If sreg variables are used or if -RD, -RS, and -RK (saddr automatic allocation option) options are

specified, the number of usable bit type variables decreases.

User’'s Manual U14872EJ1VOUM

CHAPTER 11 EXTENDED FUNCTIONS

bit Type Variables bit
boolean Type Variables boolean
___boolean
EXAMPLE
(C source)

#define ON 1
#define OFF O

extern bit datal;
extern bit data2;

voi d mai n()

{
datal = ON,
data2 = OFF;
whil e(datal) {
datal = data2z;
testb();
}
i f(datal && data2){
chgb();
}
}

(Assembler source)

This example is for cases when the user has generated a definition code for a bit type variable. If an extern
declaration has not been attached, the compiler outputs the following code. The ORG quasi-directive is not
output in this case.

PUBLI C _datal : Declaration

PUBLI C _data2

@m®l TS BSEG ; Allocation to segment
ORG OFE20H

_datal DBI T

_data2 DBI T

User's Manual U14872EJ1VOUM 337

CHAPTER 11 EXTENDED FUNCTIONS

bit Type Variables bit
boolean Type Variables boolean
___boolean

(Output object of compiler)
The following codes are output in a function.

setl _datal ; Initialized
clrl _data2 ; Initialized
bf _datal, $?L0001 ; Judgment
bf _datal, $?L0005 ; Logical AND expression
bf _data2, $?L0005 ; Logical AND expression

COMPATIBILITY
<From another C compiler to this C compiler>
» The C source program need not be modified if the keyword bit, boolean, or _ _boolean is not used.
* To change variables to bit or boolean type variables, modify the program according to the procedure
described in USAGE above.

<From this C compiler to another C compiler>

« #define must be used. For details, see 11.6 Modifications of C Source (as a result of this, the bit or
boolean type variables are handled as ordinary variables.).

338 User's Manual U14872EJ1VOUM

CHAPTER 11 EXTENDED FUNCTIONS

(8) ASM statements

ASM Statements #asm, #endasm
__asm

FUNCTION
(@) #asm - #endasm
+ The assembler source program described by the user can be embedded in an assembler source file to
be output by this C compiler by using the preprocessing directives #asm and #endasm.
« #asm and #endasm lines will not be output.

(b) __asm
* An assembly instruction is output by describing an assembly code to a character string literal and is
inserted in an assembler source.

EFFECT
* The global variables of the C source can be manipulated in the assembler source
* Functions that cannot be described in the C source can be implemented
» The assembler source output by the C compiler can be hand-optimized and embedded in the C source (to
obtain efficient objects)

USAGE
(@) #asm - #endasm
+ Indicate the start of the assembler source with the #asm directive and the end of the assembler source
with the #endasm directive. Describe the assembler source between #asm and #endasm.

#asm

[*assembler source*/

#endasm

(b) _ _asm

+ Use of _ _asm is declared by the #pragma asm specification made at the beginning of the module in
which the ASM statement is to be described (uppercase letters and lowercase letters are distinguished
for the keywords following #pragma).

» The following items can be described before #pragma asm.
 Comments
« Other #pragma directives
» Preprocessing directives that neither define nor reference variables or functions

» The ASM statement is described in the following format in the C source.

__asm (string literal) ;

» The description method of a character string literal conforms to ANSI, and a line can be continued by using an
escape character string (\n: line feed, \t: tab) or ¥, or character strings can be linked.

User's Manual U14872EJ1VOUM 339

CHAPTER 11 EXTENDED FUNCTIONS

ASM Statements #asm, #endasm
__asm

RESTRICTIONS
» Nesting of #asm directives is not allowed.
« If ASM statements are used, no object module file will be created. Instead, an assembler source file will be

created.

* Only lowercase letters can be described for _ _asm. If _ _asm is described with uppercase and lowercase
characters mixed, it is regarded as a user function.

* When the -ZA option is specified, only _ _asm is enabled.

* #asm - #endasm and _ _asm can only be described inside a function of the C source. Therefore, the
assembler source is output to CSEG with the segment name @@CODE.

EXAMPLE
(@) #asm - #endasm

(C source)

void min () {
#asm
callt [init]
#endasm

(Output object of compiler)
The assembler source written by the user is output to the assembler source file.

@acobE CSEG

callt [init]
ret
END

EXPLANATION
* In the above example, statements between #asm and #endasm will be output as an assembler source

program to the assembler source file.

340 User's Manual U14872EJ1VOUM

CHAPTER 11 EXTENDED FUNCTIONS

ASM Statements #asm, #endasm
__asm
(b) __asm
(C source)

#pragma asm

void main () {
__asm(“\tmovw ax, _al\t;ax <- a");
__asm(“\tmovw b, ax\t;b <- ax");

(Assembler source)

@@CODE CSEG

_main:
movw ax, _a ;ax <- a
movw b, ax ;b <- ax
ret
END

COMPATIBILITY

« With a C compiler that supports #asm, modify the program according to the format specified by the C
compiler.
« If the target device is different, modify the assembler source part of the program.

User's Manual U14872EJ1VOUM 341

CHAPTER 11 EXTENDED FUNCTIONS

(9) Interrupt functions

Interrupt Functions #pragma vect
#pragma interrupt

FUNCTION
* The address of a described function name is registered to an interrupt vector table corresponding to a
specified interrupt request name.
* An interrupt function outputs a code to save or restore the following data (except that used in the ASM

statement) to or from the stack at the beginning and end of the function:

(1) Registers

(2) saddr area for register variables

(3) saddr area for arguments/auto variables of norec function (regardless of whether the arguments or
variables are used)

(4) saddr area for runtime library (normal model only)

Note, however, that depending on the specification or status of the interrupt function, saving/restoring is
performed differently, as follows.

« If “no change” is specified, codes that save/restore register contents, and that save/restore the contents of the
saddr area are not output regardless of whether the codes are used or not.

« If “no change” is not specified and if a function is called in the interrupt function, however, the entire register
area is saved or restored, regardless of whether use of registers is specified or not.

(Normal model)
« If the -QR option is not specified at compilation, the saddr area for register variables and the saddr area for

the arguments/auto variables of the norec function is not used; therefore, the save/restore code is not output.
If the size of the save code is smaller than that of the restore code, the restore code is output.
* Table 11-12 summarizes the above and shows the save/restore area.

342 User's Manual U14872EJ1VOUM

CHAPTER 11 EXTENDED FUNCTIONS

Interrupt Functions

#pragma vect
#pragma interrupt

Table 11-12. Save/Restore Area When Interrupt Function Is Used

Save/Restore Area

NO BANK

Function Called

Function Not Called

Withou

t-QR With -QR

Without -QR

With -QR

Register used

X

X

v

v

All registers

v

\/

X

X

saddr area for runtime library used

X

v

v

saddr area for all runtime libraries

saddr area for register variable used

All saddr area for arguments/auto
variables of norec function

< | << | <

V: Saved
x : Not saved

(Static model)

» Since the saddr area for register variables, the saddr area for automatic variables or norec function
arguments, and the saddr area for the runtime library is not used when the -SM option is specified during
compilation, only the save and restore code for registers is output; not the code for saddr area. However,
when leafwork 1 to 16 has been specified, the code for saving and restoring the byte number to the stack is
output from the higher-level address of shared area at the beginning and end of the interrupt function (Refer
to 11.5 (23) Static model when the -ZM option is not specified, and 11.5 (32) Static model expansion

specification when the -ZM option is specified).

Caution If there is an ASM statement in an interrupt function, and if the area reserved for registers of

the compiler is used in that ASM statement, the area must be saved by the user.

User's Manual U14872EJ1VOUM

343

CHAPTER 11 EXTENDED FUNCTIONS

Interrupt Functions #pragma vect
#pragma interrupt

EFFECT
» Interrupt functions can be described at the C source level.
« Itis not necessary to be aware of the addresses of the vector table to recognize an interrupt request name.

USAGE
» Specify an interrupt request name, a function name, stack switching, registers, and whether the saddr area is
saved/restored, with the #pragma directive. Describe the #pragma directive at the beginning of the C source
(for the interrupt request names, refer to the user's manual of the target device used).
* When describing #pragma PC (processor type), describe this #pragma directive after that. The following
items can be described before this #pragma directive.

+ Comment statements
» Preprocessing directives that neither define nor reference variables or functions

#pr agmalAvect (ori nt er r upt)Ainterrupt request nameAfunction nameA

[stack change specification] A stack use specification
No change specification
Shared area save/ restore specification
Save/restore target

344 User's Manual U14872EJ1VOUM

CHAPTER 11 EXTENDED FUNCTIONS

Interrupt Functions #pragma vect

#pragma interrupt

Interrupt request name: Described in uppercase letters. Refer to the user's manual of the
target device used (example: NMI, INTPO, etc.).

Function name: Name of the function that describes interrupt processing

Stack change specification: SP = array name [+ offset location] (example: SP = buff + 10)
Define the array by unsigned char (example: unsigned char buff
[10];).

Stack use specification: STACK (default)

No change specification: NOBANK

Shared area save/restore specification: leafwork 1 to 16 (when -SM option specified)

Save/restore target: SAVE_R Save/restore target limited to registers

SAVE_RN Save/restore target limited to registers and _ @NRATXx
(when -SM, -ZM option specified)
A: Space

RESTRICTIONS

Register bank specification is not supported.

An interrupt request name must be described in uppercase letters.

A duplication check on interrupt request names will be made within only one module.

If the same or another interrupt occurs due to the contents of the priority specification flag register and
interrupt mask flag register while a vectored interrupt is processed, the contents of the registers may be
changed if no change is specified, resulting in an error. The compiler, however, cannot check this error.
callt/noauto/norec/_ _callt/_ _leaf/_ _pascal cannot be specified as the interrupt functions.

An interrupt function is specified with void type (example: void func (void);) because it cannot have an
argument or a return value.

Even if an ASM statement exists in the interrupt function, codes saving all the registers and variable areas are
not output. If an area reserved for the compiler is used in the ASM statement in the interrupt function,
therefore, or if a function is called in the ASM statement, the user must save the registers and variable areas.
If a function specifying no change, register bank, or stack change as the saving destination in #pragma
vect/#pragma interrupt specification is not defined in the same module, a warning message is output and
the stack change is ignored. In this case, the default stack is used.

User's Manual U14872EJ1VOUM 345

CHAPTER 11 EXTENDED FUNCTIONS

Interrupt Functions #pragma vect

#pragma interrupt

When stack change is specified, the stack pointer is changed to the location where the offset is added to the
array name symbol. The area of the array name is not secured by the #pragma directive. It needs to be
defined separately as a global unsigned char type array.

The code that changes the stack pointer is generated at the start of a function, and the code that sets the
stack pointer back is generated at the end of a function.

When keywords sreg/_ _sreg are added to the array for stack change, it is assumed that two or more
variables with the different attributes and the same name are defined, and a compile error occurs. It is
possible to allocate an array in saddr area by the -RD option, but code and speed efficiency will not be
improved because the array is used as a stack. It is recommended to use the saddr area for purposes other
than a stack.

The stack change cannot be specified simultaneously with the no change. If specified so, an error occurs.
The stack change must be described before the stack use specification. If the stack change is described after
the stack use specification, an error occurs.

If leafwork 1 to 16 is specified when the -SM option is not specified, a warning is output and the save/restore
specification of the shared area is ignored.

EXAMPLE

(C source)
When there is a shared area (static model only)

#pragma i nterrupt |INTPO inter |eafwork4
void func();
void inter()

{
func();

346

User's Manual U14872EJ1VOUM

CHAPTER 11 EXTENDED FUNCTIONS

Interrupt Functions #pragma vect
#pragma interrupt

(Compiler output object)

EXTRN __@KREG12
EXTRN __@KREG14

@@CODE CSEG

_inter:
push ax ; Saves the register
push bc ; Saves the register
push hl ; Saves the register
movw ax, _@KREG12 ; Saves the shared area
push ax ; Saves the shared area
movw ax, _@KREG14 ; Saves the shared area
push ax ; Saves the shared area
call ! func
pop ax ; Restores the shared area
movw _@KREG14, ax ; Restores the shared area
pop ax ; Restores the shared area
movw _@KREG12, ax : Restores the shared area
pop hl ; Restores registers
pop bc ; Restores registers
pop ax ; Restores registers
reti

@@VECT06 CSEG AT 0006H

_@vecto06:
DW _inter

User's Manual U14872EJ1VOUM 347

CHAPTER 11 EXTENDED FUNCTIONS

Interrupt Functions #pragma vect

#pragma interrupt

COMPATIBILITY
<From another C compiler to this C compiler>

348

The C source program need not be modified if interrupt functions are not used at all.
To change an ordinary function to an interrupt function, modify the program according to the procedure
described in USAGE above.

<From this C compiler to another C compiler>

An interrupt function can be used as an ordinary function by deleting its specification with the #pragma vect
or #pragma interrupt directive.
When an ordinary function is to be used as an interrupt function, change the program according to the
specifications of each compiler.

User's Manual U14872EJ1VOUM

CHAPTER 11 EXTENDED FUNCTIONS

(20) Interrupt function qualifier (_ _interrupt)

Interrupt Function Qualifier ___interrupt

FUNCTION

» A function declared with the _ _interrupt qualifier is regarded as a hardware interrupt function, and execution
is returned by the return RETI instruction for the non-maskable/maskable interrupt function.

» A function declared with this qualifier is regarded as a (non-maskable/maskable) interrupt function, and saves
or restores the registers and variable areas (1) and (4) below, which are used as the work area of the
compiler, to or from the stack.

If a function call is described in this function, however, all the variable areas are saved to the stack.

1)
2)
3) saddr area for arguments/auto variables of norec function (regardless of whether used or not)
4)

Registers
saddr area for register variables

(
(
(
(

saddr area for runtime library

Remark If the -QR option is not specified (default) at compilation, save/restore codes are not output because
areas (2) and (3) are not used. If the -SM option is specified at compilation, save/restore codes are
not output because areas (2), (3) and (4) are not used.

EFFECT
» By declaring a function with this qualifier, the setting of a vector table and interrupt function definition can be
described in separate files.

USAGE
» Describe _ _interrupt as the qualifier of an interrupt function.

(For non-maskable/maskable interrupt function)
_ _interrupt void func() {processing}

RESTRICTIONS
e _ _interrupt_brk is not supported because there is no software interrupt. A warning message is output
where _ _interrupt_brk first appeared, the keyword is ignored, and _ _interrupt_brk is handled as a normal
function.
* The interrupt function cannot specify callt/noauto/norec/_ _callt/_ _leaf/ __pascal.

User's Manual U14872EJ1VOUM 349

CHAPTER 11 EXTENDED FUNCTIONS

Interrupt Function Qualifier _ _interrupt

CAUTIONS

« The vector address is not set by merely declaring this qualifier. The vector address must be separately set by
using the #pragma vect/interrupt directive or assembler description.

» The saddr area and registers are saved to the stack.

« Even if the vector address is set or the saving destination is changed by #pragma vect (or interrupt) ..., the
change in the saving destination is ignored if there is no function definition in the same file, and the default
stack is assumed.

« To define an interrupt function in the same file as the #pragma vect (or interrupt) ... specification, the
function name specified by #pragma vect (or interrupt) ... is judged as the interrupt function, even if this
qualifier is not described (for details of #pragma vect/interrupt, refer to USAGE of 11.5 (9) Interrupt
functions).

EXAMPLE
Declare or define interrupt functions in the following format. The code to set the vector address is generated by
#pragma interrupt.

#pragma interrupt INTPO inter

__interrupt void inter(); [*prototype declaration*/
__interrupt void inter() {processing}; [*function body*/

COMPATIBILITY
<From another C compiler to this C compiler>
e The C source program need not be modified unless interrupt functions are supported.
« Modify the interrupt functions, if necessary, according to the procedure described in USAGE above.

<From this C compiler to another C compiler>

« #define must be used to allow the interrupt qualifiers to be handled as ordinary functions.

« To use the interrupt qualifiers as interrupt functions, modify the program according to the specifications of
each compiler.

350 User's Manual U14872EJ1VOUM

CHAPTER 11 EXTENDED FUNCTIONS

(11) Interrupt functions

Interrupt Functions #pragma DI

#pragma El

FUNCTIONS

The DI and EI codes are output to an object and an object file is created.

If there is no #pragma directive, DI() and EI() are regarded as ordinary functions.

If “DI();” is described at the beginning of a function (except the declaration of an automatic variable,
comment, and preprocessing directive), the DI code is output before the preprocessing of the function
(immediately after the label of the function name).

To output the DI code after the preprocessing of the function, open a new block before describing “DI();”
(delimit this block with ‘{*).

If “EI();” is described at the end of a function (except comments and preprocessing directives), the El code is
output after the postprocessing of the function (immediately before the code RET).

To output the El code before the postprocessing of a function, close a new block after describing “EI();”
(delimit this block with }).

EFFECT

A function disabling interrupts can be created.

USAGE

Describe the #pragma DI and #pragma EIl directives at the beginning of the C source. However, the
following items may precede the #pragma DI and #pragma El directives.

+ Comment statements

+ Other #pragma directives

» Preprocessing directives that neither define nor reference variables or functions

Describe DI(); or EI(); in the source in the same manner as a function call.

DI and El can be described in either uppercase or lowercase letters after #pragma.

User's Manual U14872EJ1VOUM 351

CHAPTER 11 EXTENDED FUNCTIONS

Interrupt Functions #pragma DI
#pragma El

RESTRICTIONS
* When using these interrupt functions, DI and El cannot be used as function names.
« DI and EI must be described in uppercase letters. If described in lowercase letters, they will be handled as
ordinary functions.

EXAMPLE

#ifdef _ _KOS_ _
#pragma DI
#pragma El

#endi f

(C source 1)

#pragma Dl
#pragma El
void main ()
{
D();
function body
B ()
}

(Output object of compiler)

di
preprocessing
function body
postprocessing
ei

ret

352 User's Manual U14872EJ1VOUM

CHAPTER 11 EXTENDED FUNCTIONS

Interrupt Functions #pragma DI
#pragma El

<To output DI and El after and before preprocessing/postprocessing>

(C source 2)

#pragma DI
#pragma El
void main ()
{
{
D)
function body
B ()
}
}

(Output object of compiler)

preprocessing
di

function body
ei
post-processing
ret

COMPATIBILITY
<From another C compiler to this C compiler>
* The C source program need not be modified if interrupt functions are not used at all.
* To change an ordinary function to an interrupt function, modify the program according to the procedure
described in USAGE above.

<From this C compiler to another C compiler>

* DI and El can be used as ordinary function names (example: #ifdef_ _KOS_ _ ... #endif) by deleting the
#pragma DI and #pragma El directives or delimiting them with #ifdef.

« To use an ordinary function as an interrupt function, modify the program according to the specifications of
each compiler.

User's Manual U14872EJ1VOUM 353

CHAPTER 11 EXTENDED FUNCTIONS

(12) CPU control instruction

CPU Control Instruction #pragma HALT/STOP/NOP

FUNCTION
» The following codes are output to the object to create an object file.

(1) Instruction for HALT operation (HALT)
(2) Instruction for STOP operation (STOP)
(3) NOP instruction

EFFECT
« The standby function of a microcontroller can be used with a C program.
* The clock can be advanced without the CPU operating.

USAGE

« Describe the #pragma HALT, #pragma STOP, and #pragma NOP instructions at the beginning of the C
source.

» The following items can be described before the #pragma directive.
* Comment statements
» Other #pragma directives
» Preprocessing directives that neither define nor reference variables or functions

» The keywords following #pragma can be described in either uppercase or lowercase letters.

» Describe as follows in uppercase letters in the C source in the same format as a function call.

(1) HALT ();
(2) STOP (1);
() NoP ()

RESTRICTIONS
* When this feature is used, HALT(), STOP(), and NOP() cannot be used as function names.
» Describe HALT, STOP, and NOP in uppercase letters. If they are described in lowercase letters, they are
handled as ordinary functions.

354 User's Manual U14872EJ1VOUM

CHAPTER 11 EXTENDED FUNCTIONS

CPU Control Instruction #pragma HALT/STOP/NOP

EXAMPLE

(C source)

#pragma HALT

#pragma STOP
#pragma NOP
main ()
{
HALT ();
STOP (1);
NOP ()
}

(Output object of compiler)

@aCODE CSEG
_main:
hal t
stop
nop

COMPATIBILITY
<From another C compiler to this C compiler>
» The C source program need not be modified if the CPU control instructions are not used.
» Modify the program according to the procedure described in USAGE above when the CPU control instructions

are used.

<From this C compiler to another C compiler>

* HALT, STOP, and NOP can be used as function names by deleting the “#pragma HALT”, “#pragma STOP”,
and “#pragma NOP” statements or delimiting them with #ifdef.

» To use these instructions as the CPU control instructions, modify the program according to the specifications
of each compiler (such as #asm, #endasm, and asm();).

User's Manual U14872EJ1VOUM 355

CHAPTER 11 EXTENDED FUNCTIONS

(13) Absolute address access function

Absolute Address Access Function #pragma access

FUNCTION
* A code to access the ordinary RAM space is output to the object through direct inline expansion, not by
function call, and an object file can be created.
« If the #pragma directive is not described, a function accessing an absolute address is regarded as an

ordinary function.

EFFECT
» A specific address in the ordinary memory space can be easily accessed through C description.

USAGE
» Describe the #pragma access directive at the beginning of the C source.
» Describe the directive in the source in the same format as a function call.
» The following items can be described before #pragma access.
+ Comment statements
» Other #pragma directives
* Preprocessing directives that neither define nor reference variables or functions
» The keywords following #pragma can be described in either uppercase or lowercase letters.

The following four function names are available for absolute address accessing.

peekb, peekw, pokeb, pokew

356 User's Manual U14872EJ1VOUM

CHAPTER 11 EXTENDED FUNCTIONS

Absolute Address Access Function #pragma access

[List of functions for absolute address accessing]

(@) unsigned char peekb (addr);
unsi gned int addr;

Returns 1-byte contents of address addr.

(b) unsigned int peekw (addr);
unsi gned int addr;

Returns 2-byte contents of address addr.
(c) void pokeb (addr, data);

unsi gned int addr;
unsi gned char dat a;

Writes 1-byte contents of data to the position indicated by address addr.
(d) void pokew (addr, data);

unsi gned int addr;
unsi gned int data;

Writes 2-byte contents of data to the position indicated by address addr.
RESTRICTIONS
« A function name for absolute address accessing must not be used.

» Describe functions for absolute address accessing in lowercase letters. Functions described in uppercase
letters are handled as ordinary functions.

User's Manual U14872EJ1VOUM 357

CHAPTER 11 EXTENDED FUNCTIONS

Absolute Address Access Function

#pragma access

EXAMPLE

(C source)

#pragma access

char
i nt

a;

void main ()

{

o T 9 9
I n

pokeb (0x1234,
pokeb (Oxfe23,
pokew (0x1256
pokew (Oxfe68

peekb (0x1234);
peekb (0xfe23);
peekw (0x1256)
peekw (0xf e68)

5);
5);
7);
7);

358

User's Manual U14872EJ1VOUM

CHAPTER 11 EXTENDED FUNCTIONS

Absolute Address Access Function

#pragma access

(Output assembler source)

a, !'01234H
l_a, a

a, OFE23H
l_a, a

a, !'01256H
a, X

a, !'01257H
de, # b

[@dei st]
ax, OFE68H
[@Gdei st]

a, #05H
101234H, a
OFE23H, #05H
ax, #07H
101257H, a
a, X
101256H, a
ax, #07H
OFE68H, ax

COMPATIBILITY

<From another C compiler to this C compiler>

» The source program need not be modified if a function for absolute address accessing is not used.

* Modify the program according to the procedure described in USAGE above if a function for absolute address

accessing is used.

<From this compiler to another C compiler>

» The function name of absolute address accessing can be used as a function name by deleting the “#pragma

access” statement or delimiting it with #ifdef.

« To use a function for absolute address accessing, modify the program according to the specifications of each

compiler (#asm, #endasm, asm, etc.).

User's Manual U14872EJ1VOUM

CHAPTER 11 EXTENDED FUNCTIONS

(14) Bit field declaration

Bit Field Declaration

Bit field declaration

(1) Extension of type specifier

FUNCTION

« The bit field of unsigned char type is not allocated straddling over a byte boundary.

» The bit field of unsigned int type is not allocated straddling over a word boundary, but can be allocated

straddling over a byte boundary.

» The bit fields of the same type are allocated in the same byte units (or word units). If the types are different,

the bit fields are allocated in different byte units (or word units).

EFFECT

* The memory can be saved, the object code can be shortened, and the execution speed can be improved.

USAGE
« As a bit field type specifier, unsigned char type can be specified in addition to unsigned int type. Declare as
follows.
struct tag- name {
unsi gned char Field name: bit width;
unsi gned char Field name: bit width;
unsi gned int Field name: bit width;
b
EXAMPLE
struct tagnane {
unsi gned char A: 1
unsi gned char B: f1;
unsigned int C: 2;
unsigned int D:

360

User's Manual U14872EJ1VOUM

CHAPTER 11 EXTENDED FUNCTIONS

Bit Field Declaration Bit field declaration

COMPATIBILITY
<From another C compiler to this C compiler>
* The source program need not be modified.
» Change the type specifier to use unsigned char as the type specifier.

<From this C compiler to another C compiler>
» The source program need not be modified if unsigned char is not used as a type specifier.
« Change unsigned char, if it is used as a type specifier, into unsigned int.

(2) Allocation direction of bit field

FUNCTION
» The direction in which a bit field is to be allocated is changed and the bit field is allocated from the MSB side
when the -RB option is specified.
« If the -RB option is not specified, the bit field is allocated from the LSB side.

USAGE
» Specify the -RB option at compile time to allocate the bit field from the MSB side.
» Do not specify the option to allocate the bit field from the LSB side.

EXAMPLE 1

(Bit field declaration)

struct t {
unsi gned char A 1;
unsi gned char B:1;
unsi gned char C: 1;
unsi gned char D:1;
unsi gned char E: 1;
unsi gned char F:1;
unsi gned char G 1;
unsi gned char H 1;

User's Manual U14872EJ1VOUM 361

CHAPTER 11 EXTENDED FUNCTIONS

Bit Field Declaration

Bit field declaration

EXPLANATION

Because a through h are 8 bits or less, they are allocated in 1-byte units.

Figure 11-1. Bit Allocation by Bit Field Declaration (Example 1)

Bit allocation from MSB
with -RB option specified

MSB

Bit allocation from LSB
without -RB option specified

LSB MSB

lalelclplelFlc|H]| L H |

EXAMPLE 2

(Bit field declaration)

G|F|E|D|C|B|A|

struct t {
char a;
unsi gned char b: 2;
unsi gned char c:3;
unsi gned char d: 4;
int e
unsi gned char f
unsi gned char g:
unsi gned char h

unsi gned i nt i

362

User's Manual U14872EJ1VOUM

CHAPTER 11 EXTENDED FUNCTIONS

Bit Field Declaration

Bit field declaration

EXPLANATION

Figure 11-2. Bit Allocation by Bit Field Declaration (Example 2)

Bit field allocated from the MSB side
when the -RB option is specified

Bit field allocated from the LSB side
when the -RB option is not specified

MSB LSB MSB LSB
b c Vacant Vacant c b a
[L]
0

a

1 0 1

Member a of char type is allocated to the first byte unit. Members b and c are allocated to subsequent byte
units, starting from the second byte unit. If a byte unit does not have enough space to hold the type char
member, that member will be allocated to the following byte unit. In this case, if there is only space for 3 bits in
the second byte unit, and member d has four bits, it will be allocated to the third byte unit.

Vacant d Vacant Vacant Vacant d
EREEEEEEEEE NN LIl
3 2 3 2
e e e e
EEEENEEENEE NN LIl
5 4 5 4
f g g Vacant Vacant g g f
LI HEEEEEEE RN
7 6 7 6
Vacant h Vacant Vacant Vacant h
EREEEEEEEEE N HEEEEEEEE NN
9 8 9 8

Since member g is a bit field of type unsigned int, it can be allocated across byte boundaries. Since h is a bit
field of type unsigned char, it is not allocated in the same byte unit as the g bit field of type unsigned int, but is

allocated in the next byte unit.

i Vacant

Vacant

11

10

Vacant

Vacant

11

Since i is a bit field of type unsigned int, it is allocated in the next word unit.

User's Manual U14872EJ1VOUM

10

CHAPTER 11 EXTENDED FUNCTIONS

Bit Field Declaration

Bit field declaration

When the -RC option is specified (to pack the structure members), the above bit field becomes as follows.

b ¢ | Vacant a
EENEEEEEEEE NN
1 0

e d Vacant
HEENEEEEEEEE N
3 2
Vacant e
AN ER RN
5 4
h Vacant f g
EENEEEEEEEE NN
7 6

i Vacant Vacant
HEENEEEEEEE RN
9 8

Remark The numbers below the allocation diagrams indicate the byte offset values from the beginning of the

structure.

364

Vacant| ¢ b a
LIl
1 0
e Vacant d
LIl
3 2
g f e
NN
5 4
Vacant h Vacant g
LIl
7 6
Vacant Vacant i
HEEEEEEEE NN
9 8

User's Manual U14872EJ1VOUM

CHAPTER 11 EXTENDED FUNCTIONS

Bit Field Declaration Bit field declaration

EXAMPLE 3

(Bit field declaration)

struct t {
char
unsi gned i nt
unsi gned i nt
unsi gned i nt
unsi gned char
unsi gned char

l_\ - -

0;

T Fe T a0 o
w AN O

unsi gned char 2;
unsi gned char 5;
unsi gned i nt 6;
s
Figure 11-3. Bit Allocation by Bit Field Declaration (Example 3)
Bit field allocated from the MSB side Bit field allocated from the LSB side
when the -RB option is specified when the -RB option is not specified
MSB LSB MSB LSB
Vacant a Vacant a
L] L PPl
1 0 1 0
b c c Vacant Vacant c c b
L] LIl
3 2 3 2
Since b and c are bit fields of type unsigned int, they are allocated from the next word unit.
Since d is also a bit field of type unsigned int, it is allocated from the next word unit.

d Vacant Vacant Vacant Vacant d
L] EEEEEEEEEEEEEE
5 4 5 4

Vacant e Vacant Vacant Vacant e
L] LIl
7 6 7 6

Since e is a bit field of type unsigned char, it is allocated to the next byte unit.

User's Manual U14872EJ1VOUM 365

CHAPTER 11

EXTENDED FUNCTIONS

Bit Field Declaration

Bit field declaration

Vacant

|1

f
HENEEE
9

8

Vacant

i Vacant

f
HEEENE
8

Vacant

h
HENEEE
11

10

11

fand g, and h and i are each allocated to separate word units.

h
HEEENE
10

When the -RC option is specified (to pack the structure members), the above bit field becomes as follows.

MSB LSB
[Vacant a
L[] HEEEEN
1 0
Vacant b c
EREENEEEEEE NN
3 2
e Vacant d Vacant
L[] L]
5 4
f f Vacant
LTI
7 6
h i i Vacant
L]
9 8
Remark
structure.
366

MSB LSB
c b a
EEEEEEEE RN
1 0
Vacant d Vacant c
HEEEEN L[]
3 2
Vacant e Vacant
HEEEEEEE RN
5 4
Vacant f f
ANEREREENERENE
7 6
Vacant i i h
LI
9 8

User's Manual U14872EJ1VOUM

The numbers below the allocation diagrams indicate the byte offset values from the beginning of the

CHAPTER 11 EXTENDED FUNCTIONS

Bit Field Declaration Bit field declaration

COMPATIBILITY
<From another C compiler to this C compiler>
* The source program need not be modified.

<From this C compiler to another C compiler>

* The source program must be modified if the -RB option is used and coding is performed taking the bit field
allocation sequence into consideration.

User's Manual U14872EJ1VOUM 367

CHAPTER 11 EXTENDED FUNCTIONS

(15) Changing compiler output section name

#pragma section... #pragma section...

FUNCTION

A compiler output section name is changed and a start address is specified. If the start address is omitted,
the default allocation is assumed. For the compiler output section name and default location, refer to
APPENDIX B LIST OF SEGMENT NAMES. In addition, the location of sections can be specified by omitting
the start address and using the link directive file at the time of link. For the link directives, refer to the
RA78K0S Assembler Package User’'s Manual Operations (U14876E).

To change the section name @@CALT with an AT start address specified, the callt function must be
described before or after the other functions in the source file.

If data is described after the #pragma directive is described, that data is located in the data change section.
Another change directive is possible, so if data is described after the rechange directive, that data is located
in the rechange section. If data defined before a change is redefined after the change, it is located in the
rechanged section. Furthermore, this is valid in the same way for static variables (within the function).

EFFECT

Changing the compiler output section repeatedly in one file enables location of each section independently,
so that data can be located in the desired data units.

USAGE

Specify the name of the section to be changed, a new section name, and the start address of the section, by
using the #pragma directive as indicated below.

Describe this #pragma directive at the beginning of the C source.

Describe this #pragma directive after #pragma PC (processor type).

The following items can be described before this #pragma directive.

+ Comment statements
* Preprocessing directives that neither define nor reference variables or functions

However, all sections in BSEG and DSEG, and the @@CNST section in CSEG can be described anywhere in
the C source, and rechange directives can be performed repeatedly. To return to the original section name,

describe the compiler output section name in the changed section.

Declare as follows at the beginning of the file.

#pragma secti on compiler output section name new section name [AT start address]

368

Of the keywords to be described after #pragma, be sure to describe the compiler output section name in
uppercase letters. section, AT can be described in either uppercase or lowercase letters, or in a combination
of both.

User's Manual U14872EJ1VOUM

CHAPTER 11 EXTENDED FUNCTIONS

#pragma section... #pragma section...

» The format in which the new section name is to be described must conform to the assembler specifications
(up to eight letters can be used for a segment name).

* Only the hexadecimal numbers of the C language and the hexadecimal numbers of the assembler can be
described as the start address.

[Hexadecimal numbers of C language]

Oxn / 0xn...n
OXn / 0Oxn...n
(n=0,1, 2, 3, 4, 5 6, 7, 8 9, A B C D E F

[Hexadecimal numbers of assembler]

nH n...nH
nh/n...nh
(n=0,1, 2, 3, 4, 5 6, 7, 8 9, A B C D E F

* The hexadecimal number must start with a numeral.

Example: To express a numeric value with a value of 255 as a hexadecimal number, specify zero before F.
It is therefore OFFH.

« For sections other than the @@CNST section in CSEG, that is, sections in which functions are located, this
#pragma directive cannot be described other than at the beginning of the C source (after the C text is
described); otherwise it causes an error.

« |If this #pragma directive is executed after the C text is described, an assembler source file is created without
an object module file being created.

« |If this #pragma directive is after the C text is described, a file that contains this #pragma directive and that
does not have the C text (including external reference declarations for variables and functions) cannot be
included. This results in an error (refer to the error description in Example 1).

* An #include statement cannot be described in a file that executes this #pragma directive following the C text
description. If described, it causes an error. (refer to the following error description in Example 2).

« If the #include statement follows the C text, this #pragma directive cannot be described after this description.
If described, it causes an error (refer to the following error description in Example 3).

User's Manual U14872EJ1VOUM 369

CHAPTER 11 EXTENDED FUNCTIONS

#pragma section... #pragma section...

EXAMPLE 1
Section name @@CODE is changed to CC1 and address 2400H is specified as the start address.

(C source)

#pragnma secti on @aCODE CCl1 AT 2400H

voi d mai n()

{
Function body

(Output object)

CcC1 CSEG AT 2400H

Preprocessing
Function body
Post-processing
ret

EXAMPLE 2

The following is a code example in which the main C code is followed by a #pragma directive. The contents are
allocated in the section following "//".

#pragma secti on @ADATA ??DATA

int al; /I ?7?DATA

sreg int bi; /I @@DATS

int cl =1, /I @@INIT and @@R_INIT
const int dl = 1; Il @@CNST

#pragma section @AATS ??DATS

int az; /I ?7?DATA

sreg int b2; / ??DATS

int c2 = 1; /I @@INIT and @@R_INIT
const int d2 = 1; Il @@CNST

#pragma secti on @ADATA ??DATA2
/I ??DATA is automatically closed and ??DATA2 becomes valid

int a3; /I ?7?DATA2

sreg int b3; / ??DATS

int c3 = 3; /I @@INIT and @@R_INIT
const int d3 = 3; Il @@CNST

370 User's Manual U14872EJ1VOUM

CHAPTER 11 EXTENDED FUNCTIONS

#pragma section... #pragma section...

(EXAMPLE 2 ...continued)

#pragma secti on @ADATA @ADATA

/I ??DATAZ2 is closed and processing returns to the default @@DATA

#pragma section @NT ??2INT

#ipragma section @R INIT ??R_INT

/I ROMization is invalidated unless both names (@@INIT and @@R_INIT) are changed.
/I This is the user's responsibility.

int a4; /I ?7?DATA

sreg int b4; / ??DATS

int c4 = 1; /I ?2?INIT and ??R_INIT
const int d4 = 1; Il @@CNST

#pragma section @GNT @GNT

#ipragma section @R INT @R INT

/I ??INIT and ??R_INIT are closed and processing returns to the default setting
#pragma section @@l TS ??BI TS

_ _bool ean e4; /1 ?2?BITS
#pragma secti on @ACNST ??CNST
char*const p = "Hell o"; /I p and "Hello" are both ??CNST
EXAMPLE 3

#pragma section @ANT ??2INIT1
#pragma section @R INIT ??R_INT1
#pragma section @ADATA ??DATAL
char c1;
int i2;
#pragma section @GN T ??2IN T2
#pragma section @R INIT ??R_IN T2
#pragma secti on @ADATA ??DATA2
char cl;
int i2 = 1;
#pragma section @ADATA ??DATA3
#pragma section @ANT ??2INI T3
#pragma section @R INIT ??R_IN T3
extern char cl; /I ?7?DATA3
int i2; /I ??INIT3 and ??R_INIT3
#pragma secti on @ADATA ??DATA4
#pragma section @ANT ??2INI T4
#pragma section @R INIT ??R_I N T4

User's Manual U14872EJ1VOUM 371

CHAPTER 11 EXTENDED FUNCTIONS

#pragma section...

#pragma section...

Restrictions when this #pragma directive has been specified after the main C code are explained in the following

coding error examples.

CODING ERROR EXAMPLE 1

al.h
#pragnma section @ADATA ??DATAL

a2. h
extern int funcl (void);
#pragnma section @ADATA ??DATA2

a3. h
#pragma section @ADATA ??DATA3

ad.h
#pragnma section @ADATA ??DATA3
extern int func2 (void);

#i ncl ude "al. h"
#include "a2.h"
#i ncl ude "a3. h"

#i ncl ude "a4. h"

/I File containing only the #pragma section

Il File containing the main C code followed by the #pragma
// directive

/I File containing only the #pragma section.

/I File that includes the main C code.

/I — Results in an error.

/l Because the a2.h file contains the main C code followed by this
/I #pragma directive, file a3.h, which includes only this #pragma
/I directive, cannot be included.

372 User's Manual U14872EJ1VOUM

CHAPTER 11 EXTENDED FUNCTIONS

#pragma section...

#pragma section...

CODING ERROR EXAMPLE 2

bl.h
const int i;
b2.h
const int j;

#i ncl ude "bil.h"

b.c

const int k;

#pragnma section @ADATA ??DATAL
#i ncl ude "b2. h"

/I This does not result in an error since it is not file (b.c) in which
// the main C code is followed by this #pragma directive.

I/l « Results in an error

/I Since an #include statement cannot be coded afterward in file
Il (b.c) in which the main C code is followed by this #pragma

/I directive.

CODING ERROR EXAMPLE 3

cl.h
extern int j;
#pragma section @ADATA ??DATAL

c2.h
extern int k;
#pragma section @ADATA ??DATA2

c3.h

#include “cl.h”

extern int i;

#i nclude “c2.h”

#pragna section @ADATA ??DATA3

c.c
#i nclude “c3.h”
#pragma secti on @ADATA??DATA4

int i;

/I This does not result in an error since the #pragma directive is
/I included and processed before the processing of ¢3.h.

/I — Results in an error.
/I This #include statement is specified after the main C code in
/l ¢3.h, and the #pragma directive cannot be specified afterward.

/I — Results in an error.
/I This #include statement is specified after the main C code, and
/Il the #pragma directive cannot be specified afterward.

/I — Results in an error.
/I This #include statement is specified after the main C code in
/l ¢3.h, and the #pragma directive cannot be specified afterward.

User's Manual U14872EJ1VOUM 373

CHAPTER 11 EXTENDED FUNCTIONS

#pragma section... #pragma section...

COMPATIBILITY
<From another C compiler to this C compiler>
» The source program need not be modified if the section name change function is not supported.

» To change the section name, modify the source program according to the procedure described in USAGE
above.

<From this C compiler to another C compiler>
» Delete #pragma section ... or delimit it with #ifdef.

* To change the section name, modify the program according to the specifications of each compiler.

RESTRICTIONS
» A section name that indicates a segment for the vector table (e.g., @@VECT02, etc.) must not be changed.
» If two or more sections with the same name as the one specifying the AT start address exist in another file, a
link error occurs.

* When changing compiler output section names @@DATS, @@BITS, and @@INIS, limit the range of the
specified address within OFE20H to OFED7H.

CAUTION

» A section is equivalent to a segment of the assembler.

* The compiler does not check whether the new section name is duplicated with another symbol. Therefore,
the user must check to see whether the section name is not duplicated by assembling the output assemble
list.

» If a section name (*) related to ROMization is changed by using #pragma section, the startup routine must
be changed by the user on his/her own responsibility.

(*) ROMization-related section name

@R INT, @@RINS @NT, @GN S

The startup routine to be used when a section related to ROMization is changed, and an example of changing
the end module are described later.

374 User's Manual U14872EJ1VOUM

CHAPTER 11 EXTENDED FUNCTIONS

#pragma section... #pragma section...

[Examples of Changing Startup Routine in Connection with Changing Section Name Related to ROMization]

Here are examples of changing the startup routine (cstart.asm or cstartn.asm) and end module (rom.asm) in

connection with changing a section name related to ROMization.

(C source)

#pragma section @R INT RTT1
#pragma section @A N T TT1

If a section name that stores an external variable with an initial value has been changed by describing #pragma
section indicated above, the user must add to the startup routine the initial processing of the external variable to
be stored to the new section.

To the startup routine, therefore, add the declaration of the first label of the new section and the portion that
copies the initial value, and add the portion that declares the end label to the end module, as described below.
RTT1_S and RTT1_E are the names of the first and end labels of section RTT1, and TT1_S and TT1_E are the

names of the first and end labels of section TT1.

(Example of changing startup routine cstartx.asm)
<1> Add the declaration of the label indicating the end of the section with the changed name

EXTRN _main,_exit, @TBEG

EXTRN _?RINT, _?RINS, _?DATA, _?DATS
EXTRN RTT1_E, TT1_E ~ Adds EXTRN declaration of RTT1_E and TT1_E

User's Manual U14872EJ1VOUM 375

CHAPTER 11 EXTENDED FUNCTIONS

#pragma section...

#pragma section...

<2> Add a section to copy the initial values from the RTT1 section with the changed name to the TT1 section.

LDATS1:

LDATS2:

LTT1:

LTT2:

CVPW
BZ

I NCW
BR

cvPwW
BZ

I NCW
I NCW
BR

CALL

CALL
BR

AX, HL

AX, #_?DATS
$LDATS2

A, #0

[HL], A

HL

$LDATS1

DE, #TT1_S
HL, #RTT1_S

AX, HL

AX, #RTT1_E
$LTT2

A [HL]

[DE], A
HL

DE

$LTTL

! _main
AX, #0

I exit
$$

>

Adds section to copy the initial values from
the RTT1 section to the TT1 section

;o main();

;oexit(0);

376

User's Manual U14872EJ1VOUM

CHAPTER 11 EXTENDED FUNCTIONS

#pragma section...

#pragma section...

<3> Set the label of the start of the section with the changed name.

@R INT

@R INT:

@R INS

@R INS:

@NT
_@NT:
@AATA
_@ATA
@N S
_@N S
@ADATS
_@ATS:

RTT1
RTT1_S:
TT1
TTL_S:

@@ALT
@QINST
@Bl TS

cseG
CSEG
DSEG
DSEG
DSEG

DSEG

CSEG
DSEG
CSEG
CSEG

BSEG

END

UNI TP

SADDRP

SADDRP

CALLTO

Indicates the start of the RTT1 section
Adds the label setting

Indicates the start of the TT1 section
Adds the label setting

User's Manual U14872EJ1VOUM

377

CHAPTER 11 EXTENDED FUNCTIONS

#pragma section...

#pragma section...

(Example of changing end module rom.asm)

(1) Add the declaration of the label indicating the end of the section with the changed name

NANE @om

PUBLI C _?RINT, ?RINS

PUBLI C _?INIT, _?DATA, _?I NI S, _?DATS
PUBLI C RTT1_E, TT1_E - Adds RTT1_E and TT1_E
@R INT CSEG

_?RINT:

@R INS CSEG UNI TP

_?RINS:

@ N T DSEG

_?INT:

@ODATA DSEG

_?DATA:

@ N S DSEG SADDRP

_?INS:

@ODATS DSEG SADDRP

_?DATS

(2) Setting the label indicating the end

RTT1

CSEG ; Adds the label setting indicating the end of the RTT1 section.
RTT1_E: Adds the label setting
TT1 DSEG ; Adds the label setting indicating the end of the TT1 section.
TT1_E: ; Adds the label setting

END

378

User's Manual U14872EJ1VOUM

CHAPTER 11 EXTENDED FUNCTIONS

(16) Binary constant

Binary Constant Binary constant Obxxx

FUNCTION
« Describes binary constants at the location where integer constants can be described.

EFFECT
» Constants can be described in bit strings without being replaced with an octal or hexadecimal number.
Readability is also improved.

USAGE
» Describe binary constants in the C source. The following shows the description method of binary constants.

Ob binary number
OB binary number

Remark Binary number: either ‘0’ or ‘1’

» A binary constant has Ob or OB at the start and is followed by the list of numbers 0 or 1.
» The value of a binary constant is calculated with 2 as the base.
» The type of a binary constant is the first one that can express the value in the following list.
» Subscripted binary number: int,
unsigned int,

long int

unsigned long int
+ Subscripted u or U: unsigned int,

unsigned long int
» Subscripted | or L: long int

unsigned long int
» Subscripted u or U and subscripted | or L with:
unsigned long int

User's Manual U14872EJ1VOUM 379

CHAPTER 11 EXTENDED FUNCTIONS

Binary Constant Binary constant Obxxx

EXAMPLE

(C source)

unsi gned i;
i = 0bl11100101;
Output object of compiler is the same as the following case.
unsi gned i;
i = OxE5;

COMPATIBILITY
<From another C compiler to this C compiler>
* Modifications are not needed.

<From this C compiler to another C compiler>

» Modifications are needed to meet the specifications of the compiler if the compiler supports binary constants.

* Modifications into other integer formats such as octal, decimal, and hexadecimal are needed if the compiler
does not support binary constants.

380 User's Manual U14872EJ1VOUM

CHAPTER 11 EXTENDED FUNCTIONS

(17) Module name changing function

Module Name Changing Function #pragma name
FUNCTION
« Outputs the first eight letters of the specified module name to the symbol information table in a object module
file.

« Outputs the first eight letters of the specified module name to the assemble list file as symbol information
(MOD_NAM) when -G2 is specified and as the NAME quasi directive when -NG is specified.

« If a module name with nine or more letters is specified, a warning message is output.

» If unauthorized letters are described, an error occurs and the processing is aborted.

« If more than one of this #pragma directive exists, a warning message is output, and whichever directive is
described later is enabled.

EFFECT
* The module name of an object can be changed to any name.

USAGE
» The following shows the description method.

#pragma name module name

A module name must consist of the characters that the OS authorizes as a file name except ‘(' ‘). Upper case
and lowercase letters are distinguished.

EXAMPLE

#pragma name nodul el

COMPATIBILITY
<From another C compiler to this C compiler>

» Modifications are not needed if the compiler does not support the module name changing function.
» To change a module name, modifiy according to USAGE above.

<From this C compiler to another C compiler>

» Delete #pragma name . . . or delimit it with #ifdef.
» To change a module name, modify the program according to the specifications of each compiler.

User's Manual U14872EJ1VOUM 381

CHAPTER 11 EXTENDED FUNCTIONS

(18) Rotate function

Rotate Function #pragma rot

FUNCTION
» Outputs the code that rotates the value of an expression to the object with direct inline expansion instead of
function call and generates an object file.
« |If there is no #pragma directive, the rotate function is regarded as an ordinary function.

EFFECT
» The rotate function can be realized by the C source or ASM description even if the processing to perform
rotate is not described.

USAGE
» Describe in the source in the same format as the function call. The following four function names are
available for the rotate function.

rorb,rol b,rorw, rolw

[List of functions for rotate]
(@ unsigned char rorb (x, y) ;

unsi gned char x ;
unsi gned char y ;

Rotates x to the right y times.
(b) unsigned char rolb (x, y) ;

unsi gned char x ;
unsi gned char y ;

Rotates x to the left y times.
(c) unsigned int rorw (X, y) ;

unsigned int x ;
unsi gned char y ;

Rotates x to the right y times.
(d) unsigned int rolw (x, Yy)

unsigned int x ;
unsi gned char y ;

Rotates x to the left y times.

Caution The above-mentioned function declaration is not affected by the -ZI option.

382 User's Manual U14872EJ1VOUM

CHAPTER 11 EXTENDED FUNCTIONS

Rotate Function #pragma rot

» Declare the use of the function for rotate by the #pragma rot directive of the module.
However, the following items can be described before #pragma rot.
+ Comments
« Other #pragma directives
» Preprocessing directives that neither define nor reference variables or functions
« Keywords following #pragma can be described in either uppercase or lowercase letters.

EXAMPLE

(C source)

#pragna rot
unsi gned char a 0x11 ;

2,

unsi gned char b
unsi gned char c ;
void main () {

c =rorb(a, b) ;

(Output assembler source)

nmov a,! b
nmov c,a
mv a,!_a
ror a, 1
dbnz ¢, $3-1
nmov l c,a

RESTRICTIONS
» The function names for rotate cannot be used as function names.
» The function names for rotate must be described in lowercase letters. If the functions for rotate are described
in uppercase letters, they are handled as ordinary functions.

User's Manual U14872EJ1VOUM 383

CHAPTER 11 EXTENDED FUNCTIONS

Rotate Function #pragma rot

COMPATIBILITY
<From another C compiler to this C compiler>
» Modification is not needed if the compiler does not use the functions for rotate.
» To change to functions for rotate, modify according to USAGE above.

<From this C compiler to another C compiler>

» Delete the #pragma rot statement or delimit it with #ifdef.

* To use as a function for rotate, mo