Old Company Name in Catalogs and Other Documents

On April 1st, 2010, NEC Electronics Corporation merged with Renesas Technology Corporation, and Renesas Electronics Corporation took over all the business of both companies. Therefore, although the old company name remains in this document, it is a valid Renesas Electronics document. We appreciate your understanding.

Renesas Electronics website: http://www.renesas.com

April 1st, 2010 Renesas Electronics Corporation

Issued by: Renesas Electronics Corporation (http://www.renesas.com)

Send any inquiries to http://www.renesas.com/inquiry.

Notice

- 1. All information included in this document is current as of the date this document is issued. Such information, however, is subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.
- Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights
 of third parties by or arising from the use of Renesas Electronics products or technical information described in this document.
 No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights
 of Renesas Electronics or others.
- 3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.
- 4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the use of these circuits, software, or information.
- 5. When exporting the products or technology described in this document, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas Electronics products or the technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations.
- 6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein.
- 7. Renesas Electronics products are classified according to the following three quality grades: "Standard", "High Quality", and "Specific". The recommended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular application. You may not use any Renesas Electronics product for any application categorized as "Specific" without the prior written consent of Renesas Electronics. Further, you may not use any Renesas Electronics product for any application for which it is not intended without the prior written consent of Renesas Electronics. Renesas Electronics shall not be in any way liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an application categorized as "Specific" or for which the product is not intended where you have failed to obtain the prior written consent of Renesas Electronics. The quality grade of each Renesas Electronics product is "Standard" unless otherwise expressly specified in a Renesas Electronics data sheets or data books, etc.
 - "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots.
 - "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-crime systems; safety equipment; and medical equipment not specifically designed for life support.
 - "Specific": Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.
- 8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the use of Renesas Electronics products beyond such specified ranges.
- 9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system manufactured by you.
- 10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.
- 11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas Electronics
- 12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries.
- (Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majority-owned subsidiaries.
- (Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

User's Manual

V850E/IA1

32-bit Single-Chip Microcontrollers

Hardware

μPD703116 μPD703116(A) μPD703116(A1) μPD70F3116 μPD70F3116(A) μPD70F3116(A1)

Document No. U14492EJ6V0UD00 (6th edition)
Date Published February 2008 N

[MEMO]

NOTES FOR CMOS DEVICES —

1 VOLTAGE APPLICATION WAVEFORM AT INPUT PIN

Waveform distortion due to input noise or a reflected wave may cause malfunction. If the input of the CMOS device stays in the area between $V_{\rm IL}$ (MAX) and $V_{\rm IH}$ (MIN) due to noise, etc., the device may malfunction. Take care to prevent chattering noise from entering the device when the input level is fixed, and also in the transition period when the input level passes through the area between $V_{\rm IL}$ (MAX) and $V_{\rm IH}$ (MIN).

(2) HANDLING OF UNUSED INPUT PINS

Unconnected CMOS device inputs can be cause of malfunction. If an input pin is unconnected, it is possible that an internal input level may be generated due to noise, etc., causing malfunction. CMOS devices behave differently than Bipolar or NMOS devices. Input levels of CMOS devices must be fixed high or low by using pull-up or pull-down circuitry. Each unused pin should be connected to VDD or GND via a resistor if there is a possibility that it will be an output pin. All handling related to unused pins must be judged separately for each device and according to related specifications governing the device.

③ PRECAUTION AGAINST ESD

A strong electric field, when exposed to a MOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps must be taken to stop generation of static electricity as much as possible, and quickly dissipate it when it has occurred. Environmental control must be adequate. When it is dry, a humidifier should be used. It is recommended to avoid using insulators that easily build up static electricity. Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and measurement tools including work benches and floors should be grounded. The operator should be grounded using a wrist strap. Semiconductor devices must not be touched with bare hands. Similar precautions need to be taken for PW boards with mounted semiconductor devices.

(4) STATUS BEFORE INITIALIZATION

Power-on does not necessarily define the initial status of a MOS device. Immediately after the power source is turned ON, devices with reset functions have not yet been initialized. Hence, power-on does not guarantee output pin levels, I/O settings or contents of registers. A device is not initialized until the reset signal is received. A reset operation must be executed immediately after power-on for devices with reset functions.

5 POWER ON/OFF SEQUENCE

In the case of a device that uses different power supplies for the internal operation and external interface, as a rule, switch on the external power supply after switching on the internal power supply. When switching the power supply off, as a rule, switch off the external power supply and then the internal power supply. Use of the reverse power on/off sequences may result in the application of an overvoltage to the internal elements of the device, causing malfunction and degradation of internal elements due to the passage of an abnormal current.

The correct power on/off sequence must be judged separately for each device and according to related specifications governing the device.

6 INPUT OF SIGNAL DURING POWER OFF STATE

Do not input signals or an I/O pull-up power supply while the device is not powered. The current injection that results from input of such a signal or I/O pull-up power supply may cause malfunction and the abnormal current that passes in the device at this time may cause degradation of internal elements. Input of signals during the power off state must be judged separately for each device and according to related specifications governing the device.

These commodities, technology or software, must be exported in accordance with the export administration regulations of the exporting country. Diversion contrary to the law of that country is prohibited.

- The information in this document is current as of December, 2007. The information is subject to change without notice. For actual design-in, refer to the latest publications of NEC Electronics data sheets or data books, etc., for the most up-to-date specifications of NEC Electronics products. Not all products and/or types are available in every country. Please check with an NEC Electronics sales representative for availability and additional information.
- No part of this document may be copied or reproduced in any form or by any means without the prior
 written consent of NEC Electronics. NEC Electronics assumes no responsibility for any errors that may
 appear in this document.
- NEC Electronics does not assume any liability for infringement of patents, copyrights or other intellectual property rights of third parties by or arising from the use of NEC Electronics products listed in this document or any other liability arising from the use of such products. No license, express, implied or otherwise, is granted under any patents, copyrights or other intellectual property rights of NEC Electronics or others.
- Descriptions of circuits, software and other related information in this document are provided for illustrative
 purposes in semiconductor product operation and application examples. The incorporation of these
 circuits, software and information in the design of a customer's equipment shall be done under the full
 responsibility of the customer. NEC Electronics assumes no responsibility for any losses incurred by
 customers or third parties arising from the use of these circuits, software and information.
- While NEC Electronics endeavors to enhance the quality, reliability and safety of NEC Electronics products, customers agree and acknowledge that the possibility of defects thereof cannot be eliminated entirely. To minimize risks of damage to property or injury (including death) to persons arising from defects in NEC Electronics products, customers must incorporate sufficient safety measures in their design, such as redundancy, fire-containment and anti-failure features.
- NEC Electronics products are classified into the following three quality grades: "Standard", "Special" and "Specific".
 - The "Specific" quality grade applies only to NEC Electronics products developed based on a customer-designated "quality assurance program" for a specific application. The recommended applications of an NEC Electronics product depend on its quality grade, as indicated below. Customers must check the quality grade of each NEC Electronics product before using it in a particular application.
 - "Standard": Computers, office equipment, communications equipment, test and measurement equipment, audio and visual equipment, home electronic appliances, machine tools, personal electronic equipment and industrial robots.
 - "Special": Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster systems, anti-crime systems, safety equipment and medical equipment (not specifically designed for life support).
 - "Specific": Aircraft, aerospace equipment, submersible repeaters, nuclear reactor control systems, life support systems and medical equipment for life support, etc.

The quality grade of NEC Electronics products is "Standard" unless otherwise expressly specified in NEC Electronics data sheets or data books, etc. If customers wish to use NEC Electronics products in applications not intended by NEC Electronics, they must contact an NEC Electronics sales representative in advance to determine NEC Electronics' willingness to support a given application.

(Note)

- (1) "NEC Electronics" as used in this statement means NEC Electronics Corporation and also includes its majority-owned subsidiaries.
- (2) "NEC Electronics products" means any product developed or manufactured by or for NEC Electronics (as defined above).

M8E 02.11-1

INTRODUCTION

Readers

This manual is intended for users who wish to understand the functions of the V850E/IA1 and design application systems using it.

The target products are as follows.

- Standard products: μPD703116, 70F3116
- Special products: μPD703116(A), 703116(A1), 70F3116(A), 70F3116(A1)

Purpose

This manual introduces the hardware functions of the V850E/IA1 shown below for user's understanding.

Organization

This manual is divided into two parts: Hardware (this manual) and Architecture (V850E1 Architecture User's Manual).

Hardware

- Pin functions
- CPU function
- Internal peripheral functions
- Flash memory programming
- Electrical specifications

Architecture

- Data type
- Register set
- Instruction format and instruction set
- Interrupt and exception
- Pipeline operation

How to Read This Manual

It is assumed that the readers of this manual have general knowledge in the fields of electrical engineering, logic circuits, and microcontrollers.

- Cautions 1. The application examples in this manual apply to "standard" quality grade products for general electronic systems. When using an example in this manual for an application that requires a "special" quality grade product, thoroughly evaluate the component and circuit to be actually used to see if they satisfy the special quality grade.
 - 2. When using this manual as a manual for a special grade product, read the part numbers as follows.

 μ PD703116 \rightarrow 703116(A), 703116(A1) μ PD70F3116 \rightarrow 70F3116(A), 70F3116(A1)

- To understand the overall functions of the V850E/IA1
 - →Read this manual according to the **CONTENTS**.
- To find the details of a register where the name is known
 - → Refer to APPENDIX B REGISTER INDEX.

- · How to read register formats
 - → The name of a bit whose number is in angle brackets (<>) is defined as a reserved word in the device file.

When the register format of each register describes 0 or 1, other values are prohibited to be specified.

- To understand the details of an instruction function
 - →Refer to the V850E1 Architecture User's Manual.
- To know details of the electrical specifications of the V850E/IA1
 - → Refer to CHAPTER 18 ELECTRICAL SPECIFICATIONS.

The mark <R> shows major revised points. The revised points can be easily searched by copying an "<R>" in the PDF file and specifying it in the "Find what:" field.

Conventions

Data significance: Higher digits on the left and lower digits on the right

Active low representation: \overline{xxx} (overscore over pin or signal name)

Memory map address: Higher address on the top and lower address on the

bottom

Note: Footnote for item marked with **Note** in the text

Caution: Information requiring particular attention

Remark: Supplementary information Numeric representation: Binary ... xxxx or xxxxB

Decimal ... xxxx

Hexadecimal ... xxxxH

Prefix indicating power of 2 (address space, memory

capacity): $K \text{ (kilo): } 2^{10} = 1,024$

M (mega): $2^{20} = 1,024^2$ G (giga): $2^{30} = 1,024^3$

α (gigα). 2 = 1,02+

Data type: Word ... 32 bits

Halfword ... 16 bits Byte ... 8 bits

Related Documents

The related documents indicated in this publication may include preliminary versions. However, preliminary versions are not marked as such.

Documents related to V850E/IA1

Document Name	Document No.
V850E1 Architecture User's Manual	U14559E
V850E/IA1 Hardware User's Manual	This manual
V850E/IA1, V850E/IA2 AC Motor Inverter Control Using Vector Operation Application Note	U14868E
Inverter Control by V850 Series 120° Excitation Method Control by Zero- Cross Detection Application Note	U17209E
Inverter Control by V850 Series Vector Control by Encoder Application Note	U17324E
Inverter Control by V850 Series Vector Control by Hole Sensor Application Note	U17338E
V850 Series Flash Memory Self-Programming User's Manual	U15673E

Documents related to development tools (User's Manuals)

Document Nam	Document No.	
IE-V850E-MC, IE-V850E-MC-A (In-circuit em	U14487E	
IE-703114-MC-EM1 (In-circuit emulator optio	n board)	U16533E
CA850 (Ver. 3.00) (C compiler package)	Operation	U17293E
	C Language	U17291E
	Assembly Language	U17292E
	Link Directives	U17294E
PM+ (Ver. 6.30) (Project manager)		U18416E
ID850 (Ver. 3.00) (Integrated debugger)	Operation	U17358E
TW850 (Ver. 2.00) (Performance analysis tun	ing tool)	U17241E
SM850 (Ver. 2.50) (System simulator)	Operation	U16218E
SM850 (Ver. 2.00 or later) (System External Part User Open simulator) Interface Specification		U14873E
SM+ (System simulator)	Operation	U18601E
	User Open Interface	U18212E
RX850 (Ver. 3.20) (Real-time OS)	Basics	U13430E
	Installation	U17419E
	Technical	U13431E
	Task Debugger	U17420E
RX850 Pro (Ver. 3.21) (Real-time OS)	Basics	U18165E
	Installation	U17421E
	Technical	U13772E
	Task Debugger	U17422E
RX-NET (Ver. 1.30) (TCP/IP library)	U15083E	
AZ850 (Ver. 3.30) (System performance analy	U17423E	
PG-FP4 Flash Memory Programmer	U15260E	
PG-FP5 Flash Memory Programmer	U18865E	

CONTENTS

CHAPTI	ER 1 IN	TRODUCTION	17
1.1	Outline	9	17
1.2	Feature	es	20
1.3	Applica	ations	22
1.4	Orderii	ng Information	22
1.5	Pin Co	nfiguration (Top View)	23
1.6	Config	uration of Function Block	25
	1.6.1	Internal block diagram	25
	1.6.2	Internal units	26
1.7	Differe	nces Between Products	28
CHAPTI		N FUNCTIONS	
2.1	List of	Pin Functions	29
2.2	Pin Sta	itus	35
2.3	Descri	ption of Pin Functions	36
2.4	Types	of Pin I/O Circuit and Connection of Unused Pins	44
2.5	Pin I/O	Circuits	46
CHAPTI	ER 3 CI	PU FUNCTION	47
3.1	Feature	es	47
3.2	CPU R	egister Set	48
	3.2.1	Program register set	49
	3.2.2	System register set	50
3.3	Operat	ion Modes	56
	3.3.1	Operation modes	56
	3.3.2	Operation mode specification	57
3.4	Addres	ss Space	58
	3.4.1	CPU address space	58
	3.4.2	Image	59
	3.4.3	Wrap-around of CPU address space	60
	3.4.4	Memory map	61
	3.4.5	Area	62
	3.4.6	External memory expansion	66
	3.4.7	Recommended use of address space	67
	3.4.8	On-chip peripheral I/O registers	69
	3.4.9	Programmable peripheral I/O registers	80
	3.4.10	Specific registers	97
	3.4.11	System wait control register (VSWC)	97
	3.4.12	Cautions	97
CHAPTI	ER 4 BI	US CONTROL FUNCTION	99
4.1	Feature	es	99
4.2		ontrol Pins	
	4.2.1	Pin status during internal ROM, internal RAM, and on-chip peripheral I/O access	99
4.3	Memor	y Block Function	100

	4.3.1	Chip select control function	101
4.4	Bus C	Cycle Type Control Function	104
4.5	Bus A	Access	105
	4.5.1	Number of access clocks	105
	4.5.2	Bus sizing function	106
	4.5.3	Word data processing format	106
	4.5.4	Bus width	107
4.6	Wait F	Function	113
	4.6.1	Programmable wait function	113
	4.6.2	External wait function	115
	4.6.3	Relationship between programmable wait and external wait	115
4.7	Idle St	tate Insertion Function	116
4.8	Bus H	lold Function	117
	4.8.1	Function outline	117
	4.8.2	Bus hold procedure	117
	4.8.3	Operation in power save mode	118
	4.8.4	Bus hold timing	118
4.9	Bus P	Priority Order	119
4.10	Bound	dary Operation Conditions	119
	4.10.1	Program space	119
	4.10.2	Data space	119
		MEMORY ACCESS CONTROL FUNCTION	
5.1		II, External ROM, External I/O Interface	
	5.1.1	Features	
	5.1.2	SRAM, external ROM, external I/O access	121
СНАРТ	FR 6 D	DMA FUNCTIONS (DMA CONTROLLER)	126
6.1		res	
6.2		guration	
6.3		ol Registers	
0.0	6.3.1	DMA source address registers 0 to 3 (DSA0 to DSA3)	
	6.3.2	DMA destination address registers 0 to 3 (DDA0 to DDA3)	
	6.3.3	DMA transfer count registers 0 to 3 (DBC0 to DBC3)	
	6.3.4	DMA addressing control registers 0 to 3 (DADC0 to DADC3)	
	6.3.5	DMA channel control registers 0 to 3 (DCHC0 to DCHC3)	
	6.3.6	DMA disable status register (DDIS)	
	6.3.7	DMA restart register (DRST)	
	6.3.8	DMA trigger factor registers 0 to 3 (DTFR0 to DTFR3)	
6.4		fer Mode	
0.4	6.4.1	Single transfer mode	
	6.4.2	Single-step transfer mode	
	6.4.3	Block transfer mode	
6.5		fer Types	
0.5	6.5.1	Two-cycle transfer	
6.6		fer Target	
0.0	6.6.1	Transfer type and transfer target	
	6.6.2	External bus cycles during DMA transfer (two-cycle transfer)	
	0.0.2	External bas by sice during birin than sier (two-by sie than sier)	

6.7	DMA (DMA Channel Priorities147			
6.8	Next Address Setting Function1				
6.9	DMA Transfer Start Factors				
6.10	Forcible Interruption				
6.11	DMA 7	Transfer End	150		
6.12	Forcit	ble Termination	151		
	6.12.1	Restriction related to DMA transfer forcible termination	152		
6.13	Times	Related to DMA Transfer	153		
6.14	Preca	utions	154		
	6.14.1	Interrupt factors	155		
		NTERRUPT/EXCEPTION PROCESSING FUNCTION			
7.1		res			
7.2	Non-M	Maskable Interrupt			
	7.2.1	Operation	161		
	7.2.2	Restore			
	7.2.3	Non-maskable interrupt status flag (NP)			
	7.2.4	Edge detection function			
7.3	Maska	able Interrupts	165		
	7.3.1	Operation			
	7.3.2	Restore	167		
	7.3.3	Priorities of maskable interrupts	168		
	7.3.4	Interrupt control register (xxICn)	172		
	7.3.5	Interrupt mask registers 0 to 3 (IMR0 to IMR3)	176		
	7.3.6	In-service priority register (ISPR)	177		
	7.3.7	Maskable interrupt status flag (ID)	178		
	7.3.8	Interrupt trigger mode selection	178		
7.4	Softwa	are Exception	187		
	7.4.1	Operation	187		
	7.4.2	Restore	188		
	7.4.3	Exception status flag (EP)	189		
7.5	Excep	otion Trap	190		
	7.5.1	Illegal opcode definition	190		
	7.5.2	Debug trap	192		
7.6	Multip	ole Interrupt Servicing Control	194		
7.7	Interru	upt Response Time	195		
7.8	Period	ds in Which CPU Does Not Acknowledge Interrupts	197		
CHAPTE	ER 8 C	CLOCK GENERATION FUNCTION	198		
8.1	Featu	res	198		
8.2	Config	guration	198		
8.3	Input	Clock Selection	199		
	8.3.1	Direct mode	199		
	8.3.2	PLL mode	199		
	8.3.3	Peripheral command register (PHCMD)	200		
	8.3.4	Clock control register (CKC)	201		
	8.3.5	Peripheral status register (PHS)			
8.4	PLL L	ockup			

8.5	Power	r Save Control	205
	8.5.1	Overview	205
	8.5.2	Control registers	208
	8.5.3	HALT mode	211
	8.5.4	IDLE mode	213
	8.5.5	Software STOP mode	215
8.6	Secur	ring Oscillation Stabilization Time	217
	8.6.1	Oscillation stabilization time security specification	217
	8.6.2	Time base counter (TBC)	218
CHADT	FR Q T	TIMER/COUNTER FUNCTION	210
9.1		· 0	
0	9.1.1	Features (timer 0)	
	9.1.2	Function overview (timer 0)	
	9.1.3	Basic configuration	
	9.1.4	Control registers	
	9.1.5	Operation	
	9.1.6	Operation timing	
9.2		· 1	
0.2	9.2.1	Features (timer 1)	
	9.2.2	Function overview (timer 1)	
	9.2.3	Basic configuration	
	9.2.4	Control registers	
	9.2.5	Operation	
	9.2.6	Supplementary description of internal operation	
9.3	Timer	· 2	
	9.3.1	Features (timer 2)	327
	9.3.2	Function overview (timer 2)	
	9.3.3	Basic configuration	329
	9.3.4	Control registers	336
	9.3.5	Operation	
	9.3.6	PWM output operation when timer 2 operates in compare mode	
9.4	Timer	· 3	375
	9.4.1	Features (timer 3)	375
	9.4.2	Function overview (timer 3)	375
	9.4.3	Basic configuration	376
	9.4.4	Control registers	381
	9.4.5	Operation	387
	9.4.6	Application examples	394
	9.4.7	Precautions	400
9.5	Timer	[,] 4	401
	9.5.1	Features (timer 4)	401
	9.5.2	Function overview (timer 4)	401
	9.5.3	Basic configuration	402
	9.5.4	Control register	406
	9.5.5	Operation	407
	9.5.6	Application example	409
	9.5.7	Precautions	409

9.6	Timer	Connection Function	410
	9.6.1	Overview	410
	9.6.2	Control register	411
CHAPTE	R 10	SERIAL INTERFACE FUNCTION	412
10.1	Featur	res	412
10.2	Async	chronous Serial Interface 0 (UART0)	413
	10.2.1	Features	413
	10.2.2	Configuration	414
	10.2.3	Control registers	416
	10.2.4	Interrupt requests	423
	10.2.5	Operation	424
	10.2.6	Dedicated baud rate generator 0 (BRG0)	436
	10.2.7	Precautions	443
10.3	Async	chronous Serial Interfaces 1, 2 (UART1, UART2)	444
	10.3.1	Features	444
	10.3.2	Configuration	445
	10.3.3	Control registers	447
	10.3.4	Interrupt requests	456
	10.3.5	Operation	457
	10.3.6	Synchronous mode	466
	10.3.7	Dedicated baud rate generators 1, 2 (BRG1, BRG2)	471
10.4	Clocke	ed Serial Interfaces 0, 1 (CSI0, CSI1)	479
	10.4.1	Features	479
	10.4.2	Configuration	479
	10.4.3	Control registers	481
	10.4.4	Operation	495
	10.4.5	Output pins	510
	10.4.6	Dedicated baud rate generator 3 (BRG3)	511
CHAPTE	R 11	FCAN CONTROLLER	515
11.1	Functi	ion Overview	515
11.2	Config	guration	516
11.3	Config	guration of Messages and Buffers	518
11.4	Time 9	Stamp Function	519
11.5	Messa	age Processing	522
	11.5.1	Message transmission	522
	11.5.2	Message reception	524
11.6	Mask	Function	525
11.7	Protoc	col	527
	11.7.1	Protocol mode function	527
	11.7.2	Message formats	528
11.8	Functi	ions	537
	11.8.1	Determination of bus priority	537
	11.8.2	Bit stuffing	537
	11.8.3	Multi-master	537
	11.8.4	Multi-cast	537
	11.8.5	CAN sleep mode/CAN stop mode function	538

	11.8.6 Error control function	538
	11.8.7 Baud rate control function	541
11.9	Cautions on Bit Set/Clear Function	544
11.10	0 Control Registers	546
11.11	1 Operations	598
	11.11.1 Initialization processing	598
	11.11.2 Transmit setting	611
	11.11.3 Receive setting	612
	11.11.4 CAN sleep mode	614
	11.11.5 CAN stop mode	615
11.12	2 Rules for Correct Setting of Baud Rate	617
11.13	3 Ensuring Data Consistency	621
	11.13.1 Sequential data read	621
	11.13.2 Burst read mode	622
11.14	4 Interrupt Conditions	623
	11.14.1 Interrupts that are generated for FCAN controller	623
	11.14.2 Interrupts that are generated for global CAN interface	623
11.15	5 How to Shut Down FCAN Controller	624
11.16	6 Cautions on Use	625
	ER 12 NBD FUNCTION (μ PD70F3116)	
12.1	Overview	
12.2		
12.3		
12.4		
	12.4.1 RAM monitoring, accessing NBD space	
	12.4.2 Event detection function	
	12.4.3 Chip ID registers (TID0 to TID2)	
12.5	3	
12.6		
	12.6.1 General restrictions	
	12.6.2 Restrictions related to read or write of RAM by NBD	
	12.6.3 Restrictions related to NBD event trigger function	
40.	12.6.4 How to detect termination of DMA initialization via NBD tool	
12.7	Initialization Required for DMA (2 Channels)	640
CLIADTE	ED 12 A/D CONVERTED	644
13.1	ER 13 A/D CONVERTERFeatures	
13.1	Configuration	
13.2	_	
13.4	•	
13.4		
13.3	13.5.1 A/D converter basic operation	
	13.5.2 Operation modes and trigger modes	
13.6		
15.0	13.6.1 Operation in select mode	
	13.6.2 Operation in scan mode	
13.7	·	

	13.7.1	Operation in select mode	. 664
	13.7.2	Operation in scan mode	. 665
13.8	Operat	ion in Timer Trigger Mode	. 666
	13.8.1	Operation in select mode	. 666
	13.8.2	Operation in scan mode	. 667
13.9	Operat	ion in External Trigger Mode	. 668
	13.9.1	Operation in select mode	. 668
	13.9.2	Operation in scan mode	. 669
13.10	Precau	tions on Operation	. 670
	13.10.1	Stopping A/D conversion operation	. 670
	13.10.2	Trigger input during A/D conversion operation	. 670
	13.10.3	External or timer trigger interval	. 670
	13.10.4	Operation in standby modes	. 670
	13.10.5	Compare match interrupt in timer trigger mode	. 671
	13.10.6	Timing that makes the A/D conversion result undefined	. 671
	13.10.7	Restriction caused by contention between occurrence of a timer trigger and input of an	
		external trigger	. 672
	13.10.8	Termination of A/D conversion when forcibly suspending scan mode (A/D trigger mode, A/D	
		trigger polling mode, timer trigger mode, external trigger mode) or select mode (A/D trigger	
		polling mode)	. 673
	13.10.9	Variation of A/D conversion results	. 673
	13.10.10	A/D conversion result hysteresis characteristics	. 673
		Read A/D Converter Characteristics Table	
14.1		98	
14.1		Configuration of Ports	
14.2		nctions of Each Port	
14.3	14.3.1	Port 0	
	14.3.1	Port 1	
	14.3.2	Port 2	
	14.3.3	Port 3	
	14.3.4	Port 4	
	14.3.5	Port DH	
	14.3.7	Port DL	
	14.3.7	Port CS	
	14.3.9	Port CT	
		Port CM	
14.4		ion of Port Function	
1-1-4	14.4.1	Writing to I/O port	
	14.4.2	Reading from I/O port	
	14.4.3	Output status of alternate function in control mode	
14.5	_	Eliminator	
	14.5.1	Interrupt pins	
	14.5.2	Timer 10, timer 11, timer 3 input pins	
	14.5.3	Timer 2 input pins	
		- r - r	0
CHAPTE	R 15 F	RESET FUNCTION	723

15.1	Features	723
15.2	Pin Functions	723
15.3	Initialization	725
CHAPTE	ER 16 FLASH MEMORY (μPD70F3116)	731
16.1	Features	731
16.2	Writing by Flash Memory Programmer	731
16.3	Programming Environment	733
16.4	Communication Mode	733
16.5	Pin Connection	735
	16.5.1 VPP pin	735
	16.5.2 Serial interface pin	735
	16.5.3 RESET pin	737
	16.5.4 NMI pin	737
	16.5.5 MODE0 to MODE2 pins	737
	16.5.6 Port pins	737
	16.5.7 Other signal pins	737
	16.5.8 Power supply	738
16.6	Programming Method	738
	16.6.1 Flash memory control	738
	16.6.2 Flash memory programming mode	739
	16.6.3 Selection of communication mode	739
	16.6.4 Communication commands	740
16.7	Flash Memory Programming by Self-Programming	741
	16.7.1 Outline of self-programming	741
	16.7.2 Self-programming function	742
	16.7.3 Outline of self-programming interface	
	16.7.4 Hardware environment	
	16.7.5 Software environment	
	16.7.6 Self-programming function number	746
	16.7.7 Calling parameters	
	16.7.8 Contents of RAM parameters	
	16.7.9 Errors during self-programming	
	16.7.10 Flash information	
	16.7.11 Area number	
	16.7.12 Flash programming mode control register (FLPMC)	
	16.7.13 Calling device internal processing	
	16.7.14 Erasing flash memory flow	
	16.7.15 Continuous writing flow	
	16.7.16 Internal verify flow	
	16.7.17 Acquiring flash information flow	
	16.7.18 Self-programming library	
16.8	How to Distinguish Flash Memory and Mask ROM Versions	
CHAPTE	R 17 TURNING ON/OFF POWER	763
	R 18 ELECTRICAL SPECIFICATIONS	
דער	Normal Liberation Mode	766

792
794
795
796
797
808
808
811
817
817
818

CHAPTER 1 INTRODUCTION

The V850E/IA1 is a product in NEC Electronics V850 single-chip microcontrollers. This chapter provides an overview of the V850E/IA1.

1.1 Outline

The V850E/IA1 is a 32-bit single-chip microcontroller that realizes high-precision inverter control of a motor due to high-speed operation. It uses the V850E1 CPU, a V850 microcontroller, and has on-chip ROM, RAM, bus interface, DMA controller, a variety of timers including a 3-phase sine wave PWM timer for a motor, various serial interfaces including FCAN, and peripheral facilities such as A/D converters.

(1) Implementation of V850E1 CPU

The V850E1 CPU supports a RISC instruction set in which instruction execution speeds are increased greatly through the use of basic instructions that execute one instruction per clock and optimized pipelines. Moreover, it supports multiply instructions using a 32-bit hardware multiplier, saturated product-sum operation instructions, and bit manipulation instructions as optimum instructions for digital servo control applications. Object code efficiency is increased in the C compiler by using 2-byte length basic instructions and instructions

Object code efficiency is increased in the C compiler by using 2-byte length basic instructions and instructions corresponding to high-level languages, which makes a program compact.

Furthermore, since interrupt response time including processing by the on-chip interrupt controller also is fast, this CPU is suited to the realm of advanced real-time control.

(2) External bus interface function

As the external bus interface, there is a multiplex bus configuration that is an address bus (24 bits) and data bus (select 8 bits or 16 bits) suitable for compact system design. SRAM and ROM memories can be connected.

In the DMA controller, a transfer is started using software and transfers between external memories can be made concurrent with internal CPU operations or data transfers. Real-time control such as motor control or communication control also can be realized simultaneously due to high speed, high-performance CPU instruction execution.

(3) On-chip flash memory (μPD70F3116)

The on-chip flash memory version (μ PD70F3116), which has a quickly accessible flash memory on-chip, can shorten system development time since it is possible to rewrite a program with the V850E/IA1 mounted in an application system. Moreover, it can greatly improve maintainability after a system ships.

(4) Complete middleware, development environment products

The V850E/IA1 can execute JPEG, JBIG, MH/MR/MMR and other middleware fast. Moreover, since middleware for realizing speech recognition, speech synthesis, and other processing also is provided, multimedia systems can be realized easily by combining with this middleware.

A development environment that integrates an optimizing C compiler, debugger, in-circuit emulator, simulator, and system performance analyzer also is provided.

Table 1-1 lists the differences between the V850E/IA1 and V850E/IA2. Table 1-2 lists the differences between the V850E/IA1 and V850E/IA2 register setting values.

Table 1-1. Differences Between V850E/IA1 and V850E/IA2

ltem		V850E/IA1	V850E/IA2
Maximum operating frequency		50 MHz ^{Note}	40 MHz
Internal ROM	Mask ROM	μPD703116: 256 KB	μPD703114: 128 KB
	Flash memory	μPD70F3116: 256 KB	μPD70F3114: 128 KB
Internal RAM	•	10 KB	6 KB
Timer	Timer 00, 01	Provided	Buffer register, compare register, and compare match interrupt added
	Timer 10, 11	Provided	Timer 10: Provided, Timer 11: Not provided
	Timer 20, 21	Provided	Provided
	Timer 3	Provided	TO3 output buffer off function added by INTP4 input
	Timer 4	Provided	Provided
Serial interface	UART0	Provided	Provided
	UART1	Provided	Provided (pins also used with CSI1)
	UART2	Provided	Not provided
	CSI0	Provided	Provided
	CSI1	Provided	Provided (pins also used with UART1)
	FCAN	Provided	Not provided
Debug support function	NBD	Provided	Not provided
A/D converter	Analog input	Total of two circuits: 16 ch A/D converter 0: 8 ch A/D converter 1: 8 ch	Total of two circuits: 14 ch A/D converter 0: 6 ch A/D converter 1: 8 ch
	AVDD, AVREF pins	Independent pins	Alternate-function pins
Supply voltage		V _{DD3} = 3.3 V ±0.3 V V _{DD5} = 5.0 V ±0.5 V	$V_{DD} = RV_{DD} = 5.0 \text{ V} \pm 0.5 \text{ V}$ Internal regulator
Package		144-pin plastic LQFP	100-pin plastic LQFP 100-pin plastic QFP

Note The maximum operating frequency of the in-circuit emulator is 40 MHz. A frequency of 50 MHz can be supported by upgrading the in-circuit emulator, so contact an NEC Electronics sales representative or distributor.

Remark For details, refer to the user's manual of each product.

Table 1-2. Differences Between V850E/IA1 and V850E/IA2 Register Setting Values

Register Name	V850E/IA1 ^{Note}	V850E/IA2	
System wait control register (VSWC)	12H	02H	
Timer 1/timer 2 clock selection register (PRM02)	00H or 01H	01H (initial value 00H)	

- Notes 1. Setting the TESnE1 and TESnE0 bits of timer 2 count clock/control edge select register 0 (CSE0) to 11B (both rising/falling edges) is prohibited when the PRM2 bit of the timer 1/timer 2 clock selection register (PRM02) is 1B (fclk = fxx/2)
 - 2. Set the VSWC register to 15H when the PRM2 bit of the timer 1/timer 2 clock selection register (PRM02) = 0B (fclk = fxx/4).

Remark For details, refer to the user's manual of each product.

1.2 Features

O Number of instructions 80

O Minimum instruction execution time

20 ns (@ internal 50 MHz operation)

O General-purpose registers 32 bits × 32 registers

O Instruction set V850E1 CPU

Signed multiplication (32 bits \times 32 bits \rightarrow 64 bits): 1 or 2 clocks

Saturated operation instructions (with overflow/underflow detection function)

32-bit shift instruction: 1 clock Bit manipulation instructions

Long/short format load/store instructions

Signed load instructions

O Memory space 256 MB linear address space (shared by program and data)

Chip select output function: 8 spaces

Memory block division function: 2, 4, or 8 MB/block

Programmable wait function Idle state insertion function

O External bus interface 16-bit data bus (address/data multiplex)

16-/8-bit bus sizing function

Bus hold function External wait function

O On-chip memory

Product Name	Internal ROM	Internal RAM
μPD703116	256 KB (mask ROM)	10 KB
μPD70F3116	256 KB (flash memory)	10 KB

O Interrupts/exceptions External interrupts: 20 (including NMI)

Internal interrupts: 45 sources
Exceptions: 1 cause
8 levels of priority definable

O Memory access control SRAM controller

O DMA controller 4-channel configuration

Transfer unit: 8 bits/16 bits

Maximum transfer count: 65,536 (2¹⁶)

Transfer type: 2-cycle transfer

Transfer modes: Single transfer, single-step transfer, block transfer Transfer subjects: Memory \leftrightarrow Memory, Memory \leftrightarrow I/O, I/O \leftrightarrow I/O

Transfer requests: On-chip peripheral I/O, software

Next address setting function

O I/O lines Input ports: 8

I/O ports: 75

O Timer/counter function 16-bit timer for 3-phase sine wave PWM inverter control: 2 channels

16-bit up/down counter/timer for 2-phase encoder input: 2 channels

General-purpose 16-bit timer/counter: 2 channels General-purpose 16-bit timer/event counter: 1 channel

16-bit interval timer: 1 channel

O Serial interface Asynchronous serial interface (UART): 3 channels

Clocked serial interface (CSI): 2 channels

FCAN (Full Controller Area Network): 1 channel

O NBD (Non Break Debug) function: 1 channel (μPD70F3116 only)

RAM monitoring Event detection

O A/D converter: 8 channels × 2 units

O Clock generator Multiplication function (×1, ×2.5, ×5, ×10) using PLL clock synthesizer

Divide-by-2 function using external clock input

O Power-saving function HALT, IDLE, and software STOP modes

O Power supply voltage Internal unit: 3.3 V, A/D converter: 5 V, external pin: 5 V

O Package 144-pin plastic LQFP (fine pitch) (20×20)

O CMOS technology Full static circuits

1.3 Applications

- μPD703116, 70F3116: Consumer equipment (inverter air conditioner)
 Industrial equipment (motor control, general-purpose inverter)
- μPD703116(A), 703116(A1), 70F3116(A), 70F3116(A1): Automobile applications (electrical power steering, electric car control)

1.4 Ordering Information

Part No.	Package	Quality Grade
μPD703116GJ-xxx-UEN	144-pin plastic LQFP (fine pitch) (20 \times 20)	Standard
μPD703116GJ-xxx-UEN-A	144-pin plastic LQFP (fine pitch) (20 \times 20)	Standard
μ PD70F3116GJ-UEN	144-pin plastic LQFP (fine pitch) (20 \times 20)	Standard
μ PD70F3116GJ-UEN-A	144-pin plastic LQFP (fine pitch) (20 \times 20)	Standard
μ PD703116GJ(A)-xxx-UEN	144-pin plastic LQFP (fine pitch) (20 \times 20)	Special
μ PD703116GJ(A)-xxx-UEN-A	144-pin plastic LQFP (fine pitch) (20 \times 20)	Special
μ PD703116GJ(A1)-xxx-UEN	144-pin plastic LQFP (fine pitch) (20 \times 20)	Special
μ PD703116GJ(A1)-xxx-UEN-A	144-pin plastic LQFP (fine pitch) (20 \times 20)	Special
μ PD70F3116GJ(A)-UEN	144-pin plastic LQFP (fine pitch) (20 \times 20)	Special
μ PD70F3116GJ(A)-UEN-A	144-pin plastic LQFP (fine pitch) (20 \times 20)	Special
μ PD70F3116GJ(A1)-UEN	144-pin plastic LQFP (fine pitch) (20 \times 20)	Special
μPD70F3116GJ(A1)-UEN-A	144-pin plastic LQFP (fine pitch) (20 \times 20)	Special

Remarks 1. xxx indicates the ROM code suffix.

2. Products with -A at the end of the part number are lead-free products.

Please refer to "Quality Grades on NEC Semiconductor Devices" (Document No. C11531E) published by NEC Electronics Corporation to know the specification of the quality grade on the device and its recommended applications.

Differences between \(\pu\)PD703116, 703116(A), 703116(A1), 70F3116, 70F3116(A), and 70F3116(A1)

Part No.	μPD703116	μPD703116(A)	μPD703116(A1)	μPD70F3116	μPD70F3116(A)	μPD70F3116(A1)
Item						
Quality grade	Standard grade	Special grade		Standard grade	Special grade	
Maximum operating frequency (MHz)	50 ^{Note}		32	50 ^{Note}		32
Operating ambient temperature (T _A)	-40 to +85°C		-40 to +110°C	–40 to +85°C		−40 to +110°C

Note The maximum operating frequency of the in-circuit emulator is 40 MHz. A frequency of 50 MHz can be supported by upgrading the in-circuit emulator, so contact an NEC Electronics sales representative or distributor.

1.5 Pin Configuration (Top View)

• 144-pin plastic LQFP (fine pitch) (20 × 20)

μPD703116GJ-xxx-UEN, 703116GJ-xxx-UEN-A, 703116GJ(A)-xxx-UEN, 703116GJ(A)-xxx-UEN-A, μPD703116GJ(A1)-xxx-UEN, 703116GJ(A1)-xxx-UEN-A, 70F3116GJ-UEN, 70F3116GJ-UEN-A, μPD70F3116GJ(A)-UEN, 70F3116GJ(A)-UEN-A, 70F3116GJ(A1)-UEN, 70F3116GJ(A1)-UEN-A

Pin Identification

A16 to A23: Address bus P20 to P27: Port 2 AD0 to AD15: Address/data bus P30 to P37: Port 3 AD0_DBG to AD3_DBG: Debug address/data bus Port 4 P40 to P47: Port CM ADTRG0, ADTRG1: A/D trigger input PCM0 to PCM4: Port CS ANI00 to ANI07, Analog input PCS0 to PCS7: ANI10 to ANI17: PCT0 to PCT7: Port CT ASCK1, ASCK2: Asynchronous serial clock PDH0 to PDH7: Port DH Address strobe PDL0 to PDL15: Port DL

ASTB: AV_{DD}: RD: Read strobe Analog power supply AVREFO. AVREF1: Analog reference voltage RESET: Reset

AVss: RXD0 to RXD2: Receive data Analog ground SCK0, SCK1: CKSEL: Clock generator operating mode select Serial clock CLK_DBG: Debug clock SI0, SI1: Serial input CLKOUT: Clock output SO0, SO1: Serial output

CRXD: Receive data for controller area network SYNC: Debug synchronization

CS0 to CS7: Chip select TCLR10, TCLR11, Timer clear

CTXD: Transmit data for controller area network TCLR2, TCLR3:

CV_{DD}: TCUD10, TCUD11: Timer control pulse input Clock generator power supply

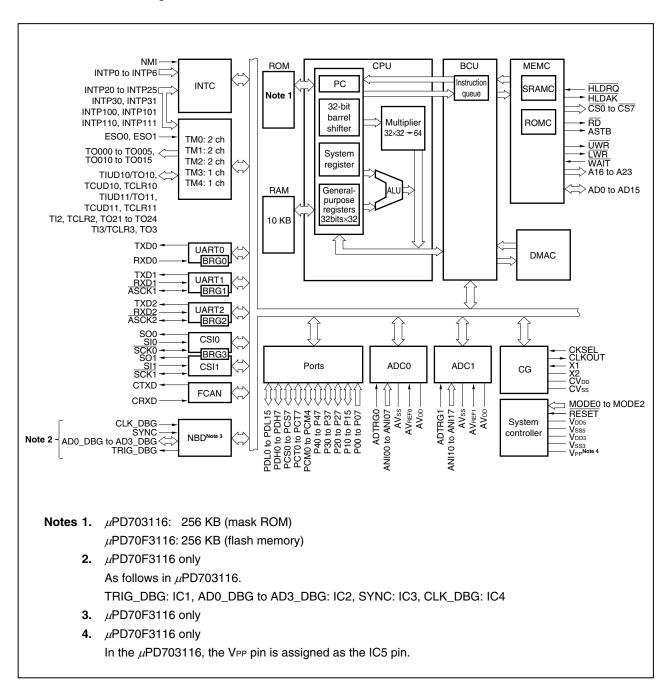
CVss: TI2, TI3: Clock generator ground Timer input

ESO0, ESO1: Emergency shut off TIUD10, TIUD11: Timer count pulse input HLDAK: Hold acknowledge TO000 to TO005, Timer output

HLDRQ: Hold request TO010 to TO015. IC1 to IC5: Internally connected TO10, TO11,

TO21 to TO24, TO3: INTP0 to INTP6, External interrupt input

TRIG_DBG: INTP100, INTP101, Debug trigger TXD0 to TXD2: INTP110, INTP111, Transmit data INTP20 to INTP25, **UWR**: Upper write strobe INTP30, INTP31: V_{DD3}, V_{DD5}: Power supply


LWR: Lower write strobe V_{PP}: Programming power supply

Mode MODE0 to MODE2: Vssa, Vssa: Ground WAIT: NMI: Non-maskable interrupt request Wait P00 to P07: X1, X2: Port 0 Crystal

Port 1 P10 to P15:

1.6 Configuration of Function Block

1.6.1 Internal block diagram

1.6.2 Internal units

(1) CPU

The CPU uses 5-stage pipeline control to execute address calculation, arithmetic and logical operation, data transfer, and most other instruction processing in one clock.

A multiplier (16 bits \times 16 bits \to 32 bits or 32 bits \times 32 bits \to 64 bits), barrel shifter (32-bit), and other dedicated hardware are on-chip to accelerate complex instruction processing.

(2) Bus control unit (BCU)

The BCU starts a required external bus cycle based on a physical address obtained from the CPU. If there is no bus cycle start request from the CPU when fetching an instruction from an external memory area, the BCU generates a prefetch address and prefetches the instruction code. The prefetched instruction code is fetched into the internal instruction queue of the CPU.

(3) Memory controller (MEMC)

The MEMC controls SRAM, ROM, and various I/O for external memory expansion.

(4) DMA controller (DMAC)

The DMA transfers data between memory and I/O in place of the CPU.

The address mode is two-cycle transfer. The three bus modes are single transfer, single-step transfer, and block transfer.

(5) ROM

There is on-chip flash memory (256 KB) in the μ PD70F3116, and mask ROM (256 KB) in the μ PD703116.

On an instruction fetch, the ROM can be accessed by the CPU in one clock.

When single-chip mode 0 or flash memory programming mode is set, ROM is mapped starting from address 00000000H.

When single-chip mode 1 is set, it is mapped starting from address 00100000H.

ROM cannot be accessed if ROMless mode 0 or 1 is set.

(6) RAM

RAM is mapped starting from address FFFFC000H.

It can be accessed by the CPU in one clock on an instruction fetch or data access.

(7) Interrupt controller (INTC)

The INTC services hardware interrupt requests from on-chip peripheral I/O and external sources (NMI, INTP0 to INTP6, INTP20 to INTP25, INTP30, INTP31, INTP100, INTP101, INTP110, INTP111). For these interrupt requests, eight levels of interrupt priority can be defined and multiprocessing controls against the interrupt sources can be performed.

(8) Clock generator (CG)

The CG provides a frequency that is 1, 2.5, 5, or 10 times (using the on-chip PLL) or 1/2 times (not using the on-chip PLL) the input clock (fx) as the internal system clock (fxx). As the input clock, connect an external resonator to pins X1 and X2 (only when using the on-chip PLL synthesizer) or input an external clock from the X1 pin.

(9) Timer/counter function

This unit incorporates a 2-channel 16-bit timer (TM0) for 3-phase sine wave PWM inverter control, a 2-channel 16-bit up/down counter (TM1) that can be used for 2-phase encoder input or as a general-purpose timer, a 2-channel 16-bit general-purpose timer unit (TM2), a 1-channel 16-bit timer/event counter (TM3), and a 1-channel 16-bit interval timer (TM4) on-chip, and can measure the pulse interval or frequency and can output a programmable pulse.

(10) Serial interface

A 3-channel asynchronous serial interface (UART), 2-channel clocked serial interface (CSI), and 1-channel FCAN are provided as serial interfaces.

The UART performs data transfer using pins TXDn and RXDn (n = 0 to 2).

The CSI performs data transfer using pins SOm, SIm, and $\overline{\text{SCKm}}$ (m = 0, 1).

FCAN performs data transfer using pins CTXD and CRXD.

(11) NBD function

There is a 1-channel NBD on-chip as a debugging interface (µPD70F3116 only).

(12) A/D converter (ADC)

Two units of a high-speed, high-resolution 10-bit A/D converter having eight analog input pins are implemented. The ADC converts using a successive approximation method.

(13) Ports

As shown in the table below, ports function as general-purpose ports and as control pins.

Port	I/O	Control Functions
Port 0	8-bit input	NMI input Timer/counter output stop signal input External interrupt input A/D converter external trigger input
Port 1	6-bit I/O	Timer/counter I/O External interrupt input
Port 2	8-bit I/O	Timer/counter I/O External interrupt input
Port 3	8-bit I/O	Serial interface I/O (UART0 to UART2)
Port 4	8-bit I/O	Serial interface I/O (CSI0, CSI1, FCAN)
Port DH	8-bit I/O	External address bus (A16 to A23)
Port DL	16-bit I/O	External address/data bus (AD0 to AD15)
Port CS	8-bit I/O	External bus interface control signal output
Port CT	8-bit I/O	External bus interface control signal output
Port CM	5-bit I/O	Wait insertion signal input Internal system clock output External bus interface control signal I/O

1.7 Differences Between Products

Item	μPD703116	μPD703116(A)	μPD703116(A1)	μPD70F3116	μPD70F3116(A)	иPD70F3116(A1)
Internal ROM	Mask ROM			Flash memory		
	256 KB					
Internal RAM	10 KB					
NBD (Non Break Debug) function	Not provided (IC1 to IC4)			Provided (TRIG_DBG, AD0_DBG to AD3_DBG, SYNC, CLK_DBG)		
Flash memory programming pin	Not provided (IC5)			Provided (VPP)		
Flash memory programming mode	Not provided			Provided (MODE0 = H/L, MODE1 = H, MODE2 = L, V _{PP} = 7.8 V)		
Quality grade	Standard grade Special grade			Standard grade Special grade		
Electrical specifications	The maximum operating frequency, operating ambient temperature, and power supply current differ (refer to CHAPTER 18 ELECTRICAL SPECIFICATIONS).					t differ (refer to
Other	The noise immun	The noise immunity and noise radiation differ because the circuit scale and mask layout are different.				

CHAPTER 2 PIN FUNCTIONS

The names and functions of the V850E/IA1 pins are shown below. These pins can be divided by function into port pins and non-port pins.

2.1 List of Pin Functions

(1) Port pins

(1/3)

Pin Name	I/O	Function	Alternate Function
P00	1	Port 0	NMI
P01		8-bit input-only port	ESO0/INTP0
P02		P00 is also used for indicating the NMI pin status. The NMI pin level can be read by reading the P0.P00 bit. P00 functions as an NMI input when a	ESO1/INTP1
P03		valid edge is input.	ADTRG0/INTP2
P04			ADTRG1/INTP3
P05			INTP4
P06			INTP5
P07			INTP6
P10	I/O	Port 1	TIUD10/TO10
P11		6-bit I/O port	TCUD10/INTP100
P12		Input/output can be specified in 1-bit units.	TCLR10/INTP101
P13			TIUD11/TO11
P14			TCUD11/INTP110
P15		TCLR11/INTP111	
P20	I/O	Port 2	TI2/INTP20
P21		8-bit I/O port Input/output can be specified in 1-bit units.	TO21/INTP21
P22		inputoutput can be specified in 1-bit units.	TO22/INTP22
P23			TO23/INTP23
P24			TO24/INTP24
P25			TCLR2/INTP25
P26			TI3/TCLR3/INTP30
P27			TO3/INTP31
P30	I/O	Port 3	RXD0
P31		8-bit I/O port Input/output can be specified in 1-bit units.	TXD0
P32		inpuroutput can be specified in 1-bit units.	RXD1
P33			TXD1
P34			ASCK1
P35			RXD2
P36			TXD2
P37			ASCK2

(2/3)

Pin Name	I/O	Function	Alternate Function
P40	I/O	Port 4	SIO
P41		8-bit I/O port Input/output can be specified in 1-bit units.	SO0
P42		inpuroutput can be specified in 1-bit units.	SCK0
P43			SI1
P44			SO1
P45			SCK1
P46			CRXD
P47			CTXD
PCM0	I/O	Port CM	WAIT
PCM1		5-bit I/O port Input/output can be specified in 1-bit units.	CLKOUT
PCM2		inpurouput can be specified in 1 bit units.	HLDAK
PCM3			HLDRQ
PCM4			=
PCT0	I/O	Port CT	LWR
PCT1		8-bit I/O port Input/output can be specified in 1-bit units.	ŪWR
PCT2		inpurouput can be specified in 1 bit units.	_
РСТ3			-
PCT4			RD
PCT5			=
PCT6			ASTB
PCT7			-
PCS0	I/O	Port CS	CS0
PCS1		8-bit I/O port	CS1
PCS2		Input/output can be specified in 1-bit units.	CS2
PCS3			CS3
PCS4			CS4
PCS5			CS5
PCS6			CS6
PCS7			CS7
PDH0	I/O	Port DH	A16
PDH1		8-bit I/O port Input/output can be specified in 1-bit units.	A17
PDH2		The state of the s	A18
PDH3			A19
PDH4			A20
PDH5			A21
PDH6			A22
PDH7			A23

(3/3)

Pin Name	I/O	Function	Alternate Function
PDL0	I/O	Port DL	AD0
PDL1		16-bit I/O port	AD1
PDL2		Input/output can be specified in 1-bit units.	AD2
PDL3			AD3
PDL4			AD4
PDL5			AD5
PDL6			AD6
PDL7			AD7
PDL8			AD8
PDL9			AD9
PDL10			AD10
PDL11			AD11
PDL12			AD12
PDL13			AD13
PDL14			AD14
PDL15			AD15

(2) Non-port pins

(1/3)

Pin Name	I/O	Function	Alternate Function
TO000	0	Timer 00 pulse signal output	-
TO001			
TO002			=
TO003			
TO004			
TO005			
TO010	0	Timer 01 pulse signal output	-
TO011			-
TO012			-
TO013			-
TO014			-
TO015			-
TO10	0	Timer 10 or 11 pulse signal output	P10/TIUD10
TO11			P13/TIUD11
TO21	0	Timer 2 pulse signal output	P21/INTP21
TO22			P22/INTP22
TO23			P23/INTP23
TO24			P24/INTP24
ТО3	0	Timer 3 pulse signal output	P27/INTP31
ESO0	I	Timer 00 or 01 output stop signal input	P01/INTP0
ESO1			P02/INTP1
TIUD10	I	External count clock input to up/down counter (timer 10 or 11)	P10/TO10
TIUD11			P13/TO11
TCUD10	I	Count operation switching signal to up/down counter (timer 10 or 11)	P11/INTP100
TCUD11			P14/INTP110
TCLR10	I	Clear signal input to up/down counter (timer 10 or 11)	P12/INTP101
TCLR11			P15/INTP111
TI2	I	Timer 2 or 3 external count clock input	P20/INTP20
TI3			P26/INTP30/TCLR3
TCLR2	I	Timer 2 or 3 clear signal input	P25/INTP25
TCLR3			P26/INTP31/TI3
INTP0	I	External maskable interrupt request input	P01/ESO0
INTP1			P02/ESO1
INTP2			P03/ADTRG0
INTP3			P04/ADTRG1
INTP4			P05
INTP5			P06
INTP6			P07

(2/3)

Pin Name	I/O	Function	Alternate Function
INTP100	I	External maskable interrupt request input and timer 10 external capture	P11/TCUD10
INTP101		trigger input	P12/TCLR10
INTP110	I	External maskable interrupt request input and timer 11 external capture	P14/TCUD11
INTP111		trigger input	P15/TCLR11
INTP20	I	External maskable interrupt request input and timer 2 external capture	P20/TI2
INTP21		trigger input	P21/TO21
INTP22			P22/TO22
INTP23			P23/TO23
INTP24			P24/TO24
INTP25			P25/TCLR2
INTP30	I	External maskable interrupt request input and timer 3 external capture	P26/TI3/TCLR3
INTP31	1	trigger input	P27/TO3
SO0	0	Serial transmit data output (3-wire) of CSI0 and CSI1	P41
SO1	1		P44
SI0	I	Serial receive data input (3-wire) of CSI0 and CSI1	P40
SI1			P43
SCK0	I/O	Serial clock I/O (3-wire) of CSI0 and CSI1	P42
SCK1			P45
TXD0	0	Serial transmit data output of UART0 to UART2	P31
TXD1	1		P33
TXD2			P36
RXD0	1	Serial receive data input of UART0 to UART2	P30
RXD1			P32
RXD2	L		P35
ASCK1	I/O	Serial clock I/O of UART1 and UART2	P34
ASCK2			P37
CTXD	0	FCAN serial transmit data output	P47
CRXD	1	FCAN serial receive data input	P46
ANI00 to ANI07	I	Analog input to A/D converter	_
ANI10 to ANI17			_
ADTRG0	1	External trigger input to A/D converter	P03/INTP2
ADTRG1			P04/INTP3
NMI	1	Non-maskable interrupt request input	P00
MODE0	1	Specifies V850E/IA1 operation mode	_
MODE1			-
MODE2	1		-
VPP ^{Note 1}	-	Power application for flash memory write	-
IC1 to IC5 ^{Note 2}	-	Internal connection pins	_

Notes 1. μ PD70F3116 only

2. μ PD703116 only

(3/3)

Pin Name	I/O	Function	Alternate Function
WAIT	I	Control signal input to insert wait in bus cycle	PCM0
HLDAK	0	Bus hold acknowledge output	PCM2
HLDRQ	I	Bus hold request input	РСМ3
LWR	0	External data lower byte write strobe signal output	PCT0
ŪWR	0	External data upper byte write strobe signal output	PCT1
RD	0	External data bus read strobe signal output	PCT4
ASTB	0	External data bus address strobe signal output	PCT6
CS0	0	Chip select signal output	PCS0
CS1			PCS1
CS2			PCS2
CS3			PCS3
CS4			PCS4
CS5			PCS5
CS6			PCS6
CS7			PCS7
AD0 to AD15	I/O	16-bit address/data bus for external memory	PDL0 to PDL15
A16 to A23	0	Upper 8-bit address bus for external memory	PDH0 to PDH7
RESET	I	System reset input	-
X1	I	Crystal resonator connection pin for system clock generation	-
X2	_	Input to X1 pin when providing clocks from outside.	_
CLKOUT	0	System clock output	PCM1
CKSEL	I	Input specifying clock generator operation mode	-
AV _{REF0}	I	Reference voltage input for A/D converter 0	-
AV _{REF1}	I	Reference voltage input for A/D converter 1	-
AV _{DD}	-	Positive power supply for A/D converter	-
AVss	-	Ground potential for A/D converter	-
CV _{DD}	_	Positive power supply for dedicated clock generator	-
CVss	_	Ground potential for dedicated clock generator	-
V _{DD5}	_	Positive power supply for peripheral interface	-
V _{SS5}	_	Ground potential for peripheral interface	-
V _{DD3}	=	3.3 V positive power supply pin for internal CPU	-
Vsss	=	Ground potential for internal CPU	-
CLK_DBG ^{Note}	I	Debugging interface clock input (3.3 V interface)	-
SYNC ^{Note}	I	Debugging interface command synchronization input (3.3 V interface)	-
AD0_DBG ^{Note}	I/O	Command interface input for debugging (3.3 V interface)	-
AD1_DBG ^{Note}	1		-
AD2_DBG ^{Note}	1		-
AD3_DBG ^{Note}	1		-
TRIG_DBG ^{Note}	0	Address match trigger signal output for debugging (3.3 V interface)	_

Note μ PD70F3116 only

2.2 Pin Status

The following table shows the status of each pin after a reset, in power-saving mode (software STOP mode, IDLE, HALT), on a DMA transfer, and on a bus hold.

Operating Status	Reset (Single-Chip Mode 0)	Reset (Single-Chip Mode 1, ROMless Mode 0 or 1)	IDLE Mode/ Software STOP Mode	HALT Mode/ During DMA Transfer	Bus Hold
A16 to A23 (PDH0 to PDH7)	Hi-Z	Hi-Z	Hi-Z	Operating	Hi-Z
AD0 to AD15 (PDL0 to PDL15)	Hi-Z	Hi-Z	Hi-Z	Operating	Hi-Z
CS0 to CS7 (PCS0 to PCS7)	Hi-Z	Hi-Z	Н	Operating	Hi-Z
LWR, UWR (PCT0, PCT1)	Hi-Z	Hi-Z	Н	Operating	Hi-Z
RD (PCT4)	Hi-Z	Hi-Z	Н	Operating	Hi-Z
ASTB (PCT6)	Hi-Z	Hi-Z	Н	Operating	Hi-Z
WAIT (PCM0)	Hi-Z	Hi-Z	-	Operating	-
CLKOUT (PCM1)	Hi-Z	Operating	L	Operating	Operating
HLDAK (PCM2)	Hi-Z	Hi-Z	Н	Operating	L
HLDRQ (PCM3)	Hi-Z	Hi-Z	-	Operating	Operating

Caution When controlling the external bus using an ASIC or the like in standby mode, provide a separate controller.

Remark Hi-Z: High impedance

H: High-level outputL: Low-level output

-: No input sampling

2.3 Description of Pin Functions

(1) P00 to P07 (Port 0) ... Input

Port 0 is an 8-bit input-only port in which all pins are fixed for input.

Besides functioning as an input port, in control mode, P00 to P07 operate as NMI input, timer/counter output stop signal input, external interrupt request input, and A/D converter (ADC) external trigger input. Normally, if function pins also serve as ports, one mode or the other is selected using a port mode control register. However, there is no such register for P00 to P07. Therefore, the input port cannot be switched with the NMI input pin, timer/counter output stop signal input pin, external interrupt request input pin, and A/D converter (ADC) external trigger input pin. Read the status of each pin by reading the port.

(a) Port mode

P00 to P07 are input-only.

(b) Control mode

P00 to P07 also serve as NMI, ESO0, ESO1, ADTRG0, ADTRG1, and INTP0 to INTP6 pins, but they cannot be switched.

(i) NMI (Non-maskable interrupt request) ... Input

This is non-maskable interrupt request input.

(ii) ESO0, ESO1 (Emergency shut off) ... Input

These pins input timer 00 and timer 01 output stop signals.

(iii) INTP0 to INTP6 (External interrupt input) ... Input

These are external interrupt request input pins.

(iv) ADTRG0, ADTRG1 (A/D trigger input) ... Input

These are A/D converter external trigger input pins.

(2) P10 to P15 (Port 1) ... I/O

Port 1 is a 6-bit I/O port in which input or output can be set in 1-bit units.

Besides functioning as an I/O port, in control mode, P10 to P15 operate as timer/counter I/O and external interrupt request input.

An operation mode of port or control mode can be selected for each bit and specified by the port 1 mode control register (PMC1).

(a) Port mode

P10 to P15 can be set to input or output in 1-bit units using the port 1 mode register (PM1).

(b) Control mode

P10 to P15 can be set to port or control mode in 1-bit units using PMC1.

(i) TO10, TO11 (Timer output) ... Output

These pins output timer 10 and timer 11 pulse signals.

(ii) TIUD10, TIUD11 (Timer count pulse input) ... Input

These are external count clock input pins to the up/down counter (timer 10, timer 11).

(iii) TCUD10, TCUD11 (Timer control pulse input) ... Input

These pins input count operation switching signals to the up/down counter (timer 10, timer 11).

(iv) TCLR10, TCLR11 (Timer clear) ... Input

These are clear signal input pins to the up/down counter (timer 10, timer 11).

(v) INTP100, INTP101 (External interrupt input) ... Input

These are external interrupt request input pins and timer 10 external capture trigger input pins.

(vi) INTP110, INTP111 (External interrupt input) ... Input

These are external interrupt request input pins and timer 11 external capture trigger input pins.

(3) P20 to P27 (Port 2) ... I/O

Port 2 is an 8-bit I/O port in which input or output can be set in 1-bit units.

Besides functioning as an I/O port, in control mode, P20 to P27 operate as timer/counter I/O and external interrupt request input.

An operation mode of port or control mode can be selected for each bit and specified by the port 2 mode control register (PMC2).

(a) Port mode

P20 to P27 can be set to input or output in 1-bit units using the port 2 mode register (PM2).

(b) Control mode

P20 to P27 can be set to port or control mode in 1-bit units using PMC2.

(i) TO21 to TO24 (Timer output) ... Output

These pins output a timer 2 pulse signal.

(ii) TO3 (Timer output) ... Output

This pin outputs a timer 3 pulse signal.

(iii) TI2, TI3 (Timer input) ... Input

These are timer 2 and timer 3 external count clock input pins.

(iv) TCLR2, TCLR3 (Timer clear) ... Input

These are timer 2 and timer 3 clear signal input pins.

(v) INTP20 to INTP25 (External interrupt input) ... Input

These are external interrupt request input pins and timer 2 external capture trigger input pins.

(vi) INTP30, INTP31 (External interrupt input) ... Input

These are external interrupt request input pins and timer 3 external capture trigger input pins.

(4) P30 to P37 (Port 3) ... I/O

Port 3 is an 8-bit I/O that can be set to input or output in 1-bit units.

Besides functioning as an I/O port, in control mode, P30 to P37 operate as serial interface (UART0 to UART2) I/O.

An operation mode of port or control mode can be selected for each bit and specified by the port 3 mode control register (PMC3).

(a) Port mode

P30 to P37 can be set to input or output in 1-bit units using the port 3 mode register (PM3).

(b) Control mode

P30 to P37 can be set to port or control mode in 1-bit units using PMC3.

(i) TXD0 to TXD2 (Transmit data) ... Output

These pins output serial transmit data of UART0 to UART2.

(ii) RXD0 to RXD2 (Receive data) ... Input

These pins input serial receive data of UART0 to UART2.

(iii) ASCK1, ASCK2 (Asynchronous serial clock) ... I/O

These are UART1 and UART2 serial clock I/O pins.

(5) P40 to P47 (Port 4) ... I/O

Port 4 is an 8-bit I/O port in which input or output can be set in 1-bit units.

Besides functioning as an I/O port, in control mode, P40 to P47 operate as serial interface (CSI0, CSI1, FCAN) I/O.

An operation mode of port or control mode can be selected for each bit and specified by the port 4 mode control register (PMC4).

(a) Port mode

P40 to P47 can be set to input or output in 1-bit units using the port 4 mode register (PM4).

(b) Control mode

P40 to P47 can be set to port or control mode in 1-bit units using PMC4.

(i) SO0, SO1 (Serial output) ... Output

These pins output CSI0 and CSI1 serial transmit data.

(ii) SI0, SI1 (Serial input) ... Input

These pins input CSI0 and CSI1 serial receive data.

(iii) SCK0, SCK1 (Serial clock) ... I/O

These are CSI0 and CSI1 serial clock I/O pins.

(iv) CTXD (Transmit data for controller area network) ... Output

This pin outputs FCAN serial transmit data.

(v) CRXD (Receive data for controller area network) ... Input

This pin inputs FCAN serial receive data.

(6) PCM0 to PCM4 (Port CM) ... I/O

Port CM is a 5-bit I/O port in which input or output can be set in 1-bit units.

Besides functioning as a port, in control mode, PCM0 to PCM4 operate as wait insertion signal input, internal system clock output, and bus hold control signal output.

An operation mode of port or control mode can be selected for each bit and specified by the port CM mode control register (PMCCM).

(a) Port mode

PCM0 to PCM4 can be set to input or output in 1-bit units using the port CM mode register (PMCM).

(b) Control mode

PCM0 to PCM4 can be set to port or control mode in 1-bit units using PMCCM.

(i) WAIT (Wait) ... Input

This control signal input pin, which inserts a data wait in a bus cycle, can input asynchronously with respect to a CLKOUT signal. Sampling is done at the falling edge of a CLKOUT signal in a bus cycle in a T2 or TW state. If the setup or hold time is not secured in the sampling timing, wait insertion may not be performed.

(ii) CLKOUT (Clock output) ... Output

This is an internal system clock output pin. In single-chip mode 1 and ROMless mode 0 or 1, output is not performed by the CLKOUT pin because it is in port mode during the reset period. To perform CLKOUT output, set this pin to control mode using the port CM mode control register (PMCCM).

(iii) HLDAK (Hold acknowledge) ... Output

This is an acknowledge signal output pin that shows that the V850E/IA1 received a bus hold request and that the external address/data bus and various strobe pins entered in a high-impedance state. While this signal is active, the external address/data bus and various strobe pins become high-impedance and transfer the bus mastership to the external bus master.

(iv) HLDRQ (Hold request) ... Input

This is the input pin by which an external device requests that the V850E/IA1 release the external address/data bus and various strobe pins. The signal via this pin can be input asynchronously with respect to the CLKOUT signal. When this pin becomes active, the V850E/IA1 makes the external address/data bus and various strobe pins high-impedance after the executing bus cycle terminates (or immediately if there is none) and releases the bus by making the HLDAK signal active.

To reliably set bus hold status, keep the HLDRQ signal active until a HLDAK signal is output.

(7) PCT0 to PCT7 (Port CT) ... I/O

Port CT is an 8-bit I/O port in which input or output can be set in 1-bit units.

Besides functioning as a port, in control mode, it operates as control signal output for when memory is expanded externally.

An operation mode of port or control mode can be selected for each bit and specified by the port CT mode control register (PMCCT).

(a) Port mode

PCT0 to PCT7 can be set to input or output in 1-bit units using the port CT mode register (PMCT).

(b) Control mode

PCT0 to PCT7 can be set to port or control mode in 1-bit units using PMCCT.

(i) LWR (Lower byte write strobe) ... Output

This is a strobe signal that shows that the executing bus cycle is a write cycle for SRAM, external ROM, or an external peripheral I/O area.

In the data bus, the lower byte is in effect. If the bus cycle is a lower memory write, it becomes active at the falling edge of a T1 state CLKOUT signal and becomes inactive at the falling edge of a T2 state CLKOUT signal.

(ii) UWR (Upper byte write strobe) ... Output

This is a strobe signal that shows that the executing bus cycle is a write cycle for SRAM, external ROM, or an external peripheral I/O area.

In the data bus, the upper byte is in effect. If the bus cycle is an upper memory write, it becomes active at the falling edge of a T1 state CLKOUT signal and becomes inactive at the falling edge of a T2 state CLKOUT signal.

(iii) RD (Read strobe) ... Output

This is a strobe signal that shows that the executing bus cycle is a read cycle for SRAM, external ROM, or external peripheral I/O. It is inactive in an idle state (TI).

(iv) ASTB (Address strobe) ... Output

This is the external address bus latch strobe signal output pin.

Output becomes low level in synchronous with the falling edge of the clock in a T1 state bus cycle, and high level in synchronous with the falling edge of the clock in a T3 state.

(8) PCS0 to PCS7 (Port CS) ... I/O

Port CS is an 8-bit I/O port in which input or output can be set in 1-bit units.

Besides functioning as a port, in control mode, these operate as chip select signal output for when memory is expanded externally.

An operation mode of port or control can be selected for each bit and specified by the port CS mode control register (PMCCS).

(a) Port mode

PCS0 to PCS7 can be set to input or output in 1-bit units using the port CS mode register (PMCS).

(b) Control mode

PCS0 to PCS7 can be set to port or control mode in 1-bit units using PMCCS.

(i) CS0 to CS7 (Chip select) ... Output

This is the chip select signal for external SRAM, external ROM, or external peripheral I/O.

The signal \overline{CSn} is assigned to memory block n (n = 0 to 7).

This is active for the period during which a bus cycle that accesses the corresponding memory block is activated.

It is inactive in an idle state (TI).

(9) PDH0 to PDH7 (Port DH) ... I/O

Port DH is an 8-bit I/O port in which input or output can be set in 1-bit units.

Besides functioning as a port, in control mode (external expansion mode), these operate as the address bus (A16 to A23) for when memory is expanded externally.

An operation mode of port or control mode can be selected for each bit and specified by the port DH mode control register (PMCDH).

(a) Port mode

PDH0 to PDH7 can be set to input or output in 1-bit units using the port DH mode register (PMDH).

(b) Control mode

PDH0 to PDH7 can be used as A16 to A23 by using PMCDH.

(i) A16 to A23 (Address) ... Output

This pin outputs the upper 8-bit address of the 24-bit address in the address bus on an external access.

(10) PDL0 to PDL7 (Port DL) ... I/O

Port DL is a 16-bit I/O port in which input or output can be set in 1-bit units.

Besides functioning as a port, in control mode (external expansion mode), these operate as the address/data bus (AD0 to AD15) for when memory is expanded externally.

An operation mode of port or control mode can be selected for each bit and specified by the port DL mode control register (PMCDL).

(a) Port mode

PDL0 to PDL15 can be set to input or output in 1-bit units using the port DL mode register (PMDL).

(b) Control mode

PDL0 to PDL15 can be used as AD0 to AD15 by using PMCDL.

(i) AD0 to AD15 (Address/data bus) ... I/O

This is a multiplexed bus for an address or data on an external access. When used for an address (T1 state) they are 24-bit address output pins A0 to A15, and when used for data (T2, TW, T3) they are 16-bit data I/O bus pins.

(11) TO000 to TO005 (Timer output) ... Output

These pins output the pulse signal of timer 00.

(12) TO010 to TO015 (Timer output) ... Output

These pins output the pulse signal of timer 01.

(13) ANI00 to ANI07, ANI10 to ANI17 (Analog input) ... Input

These are analog input pins to the A/D converter.

(14) CKSEL (Clock generator operating mode select) ... Input

This is the input pin that specifies the operation mode of the clock generator. Fix it so that the input level does not change during operation.

(15) MODE0 to MODE2 (Mode) ... Input

These are the input pins that specify the operation mode. Operation modes are broadly divided into normal operation modes and flash memory programming mode. The normal operation modes are single-chip modes 0 and 1 and ROMless modes 0 and 1 (see **3.3 Operation Modes** for details). The operation mode is determined by sampling the status of each of pins MODE0 to MODE2 on a reset.

Fix these so that the input level does not change during operation.

(a) μPD703116

MODE2	MODE1	MODE0	Operation Mode			
L	L	L	Normal operation mode	ROMless mode 0		
L	L	Н		ROMless mode 1		
L	Н	L	Single-chip mode 0			Single-chip mode 0
L	Н	Н		Single-chip mode 1		
Other than above			Setting prohibited			

(b) μPD70F3116

V _{PP}	MODE2	MODE1	MODE0	Operation Mode			
0 V	L	L	L	Normal operation mode	ROMless mode 0		
0 V	L	L	Н		ROMless mode 1		
0 V	L	Н	L	Single-chip mode 0	Single-chip mode 0		
0 V	L	Н	Н	Single-chip mode 1			
7.8 V	L	Н	×	Flash memory programming mode			
Other than above		Setting prohibited					

Remark L: Low-level input

H: High-level input

x: don't care

(16) RESET (Reset) ... Input

RESET input is asynchronous input. When a signal having a certain low level width is input in asynchronous with the operation clock, a system reset that takes precedence over all operations occurs.

Besides a normal initialize or start, this signal is also used to release a standby mode (HALT, IDLE, software STOP).

(17) X1, X2 (Crystal)

These pins connect a resonator for system clock generation.

They also can input external clocks. For external clock input, connect to the X1 pin and leave the X2 pin open.

(18) CVDD (Power supply for clock generator)

This is the positive power supply pin for the clock generator.

(19) CVss (Ground for clock generator)

This is the ground pin for the clock generator.

(20) VDD5 (Power supply)

This is the positive power supply pin for the peripheral interface.

(21) Vss5 (Ground)

This is the ground pin for the peripheral interface.

(22) VDD3 (Power supply)

This is the positive power supply pin for the internal CPU.

(23) Vss3 (Ground)

This is the ground pin for the internal CPU.

(24) CLK_DBG (Debug clock) ... Input

This is the clock input pin for the debug interface (3.3 V interface).

(25) SYNC (Debug synchronization) ... Input

This is the command synchronization input pin for debugging (3.3 V interface).

(26) AD0_DBG to AD3_DBG (Debug address/data bus) ... I/O

These are command interface pins for debugging (3.3 V interface).

(27) TRIG_DBG (Debug trigger) ... Output

This is the address match trigger signal output pin for debugging (3.3 V interface).

(28) AVDD (Analog power supply)

This is the analog positive power supply pin for the A/D converter.

(29) AVss (Analog ground)

This is the ground pin for the A/D converter.

(30) AVREF1 (Analog reference voltage) ... Input

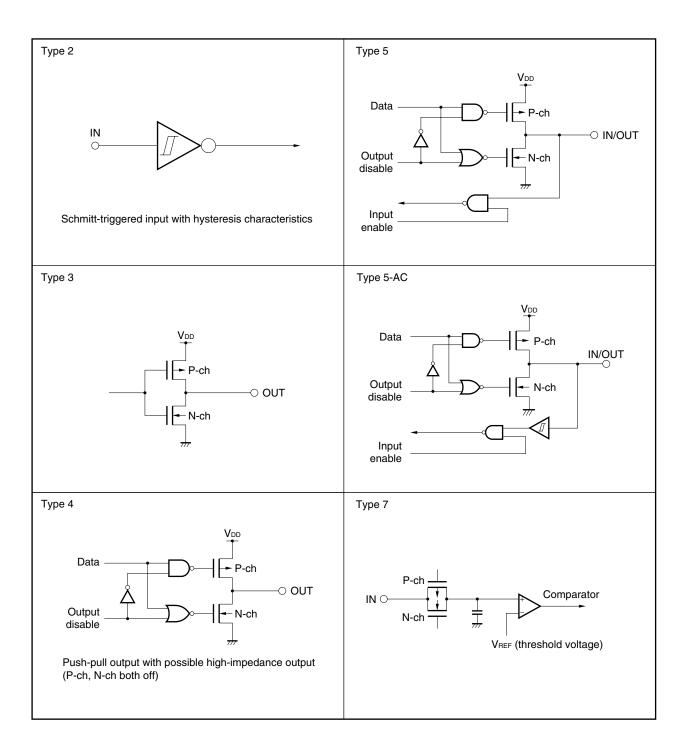
These are the reference voltage supply pins for the A/D converter.

2.4 Types of Pin I/O Circuit and Connection of Unused Pins

Connection of a 1 to 10 $k\Omega$ resistor is recommended when connecting to V_{DD5} , V_{SS5} , CV_{DD} , CV_{SS} , or AV_{SS} via a resistor.

(1/2)

Pin	I/O Circuit Type	Recommended Connection
P00/NMI	2	Connect directly to Vsss.
P01/ESO0/INTP0 P02/ESO1/INTP1		
P03/ADTRG0/INTP2 P04/ADTRG1/INTP3		
P05/INTP4 to P07/INTP6		
P10/TIUD10/TO10	5-AC	Input status: Independently connect to VDD5 or VSS5 via a resistor.
P11/TCUD10/INTP100		Output status: Leave open.
P12/TCLR10/INTP101		
P13/TIUD11/TO11		
P14/TCUD11/INTP110		
P15/TCLR11/INTP111		
P20/TI2/INTP20		
P21/TO21/INTP21 to P24/TO24/INTP24		
P25/TCLR2/INTP25		
P26/TI3/TCLR3/INTP30		
P27/TO3/INTP31		
P30/RXD0		
P31/TXD0	5	
P32/RXD1	5-AC	
P33/TXD1	5	
P34/ASCK1	5-AC	
P35/RXD2		
P36/TXD2	5	
P37/ASCK2	5-AC	
P40/SI0		
P41/SO0	5	
P42/SCK0	5-AC	
P43/SI1		
P44/S01	5	
P45/SCK1	5-AC	
P46/CRXD		
P47/CTXD	5	
PCM0/WAIT		
PCM1/CLKOUT		
PCM2/HLDAK		


(2/2)

Pin	I/O Circuit Type	Recommended Connection
PCM3/HLDRQ	5	Input status: Independently connect to VDDs or VSSs via a resistor.
PCM4	1	Output status: Leave open.
PCT0/LWR	1	
PCT1/UWR		
PCT2		
РСТ3		
PCT4/RD		
PCT5		
PCT6/ASTB		
PCT7		
PCS0/CS0		
PCS1/CS1		
PCS2/CS2		
PCS3/CS3		
PCS4/CS4		
PCS5/CS5		
PCS6/CS6		
PCS7/CS7		
PDH0/A16 to PDH7/A23		
PDL0/AD0 to PDL15/AD15		
AD0_DBG to AD3_DBG ^{Note 1}	5-AC	Independently connect to CV _{DD} or CV _{SS} via a resistor.
TRIG_DBG ^{Note 1}	3	Leave open (low-level output).
CLK_DBG ^{Note 1}	2	Independently connect to CVss via a resistor.
SYNC ^{Note 1}		Independently connect to CVDD via a resistor.
IC1 to IC4 ^{Note 2}	_	Leave open.
ANI00 to ANI07, ANI10 to ANI17	7	Connect to AVss.
TO000 to TO005, TO010 to TO015	4	Leave open.
MODE0 to MODE2	2	-
VPP ^{Note 1}]	Connect to V _{SS5} .
IC5 ^{Note 2}		Independently connect to V _{SS5} via a resistor.
RESET		-
CKSEL		-
X2	_	Leave open.
AVss	-	Connect to V _{SS5} .
AVREF0, AVREF1	-	Connect to Vsss.
AVDD	=	Connect to VDD5.

Notes 1. μ PD70F3116 only

2. μPD703116 only

2.5 Pin I/O Circuits

CHAPTER 3 CPU FUNCTION

The CPU of the V850E/IA1 is based on RISC architecture and executes almost all instructions in one clock cycle, using 5-stage pipeline control.

3.1 Features

- Minimum instruction execution time: 20 ns (@ internal 50 MHz operation)
- Memory space Program space: 64 MB linear
 Data space: 4 GB linear
- Thirty-two 32-bit general-purpose registers
- Internal 32-bit architecture
- Five-stage pipeline control
- Multiplication/division instructions
- Saturated operation instructions
- One-clock 32-bit shift instruction
- Long/short format load/store instructions
- Four types of bit manipulation instructions
 - SET1
 - CLR1
 - NOT1
 - TST1

3.2 CPU Register Set

The registers of the V850E/IA1 can be classified into two categories: a general-purpose program register set and a dedicated system register set. All the registers are 32-bit width.

For details, refer to V850E1 Architecture User's Manual.

(1) Program register set (2) System register set r0 (Zero register) **EIPC** (Status saving register during interrupt) **EIPSW** (Assembler-reserved register) (Status saving register during interrupt) r1 r2 (Stack pointer (SP)) r3 **FEPC** (Status saving register during NMI) (Global pointer (GP)) r4 FEPSW (Status saving register during NMI) (Text pointer (TP)) r5 r6 **ECR** (Interrupt source register) r7 r8 PSW (Program status word) r9 r10 CTPC (Status saving register during CALLT execution) r11 CTPSW (Status saving register during CALLT execution) r13 DBPC (Status saving register during exception/debug trap) r14 DBPSW (Status saving register during exception/debug trap) r15 r16 CTBP r17 (CALLT base pointer) r18 r19 r20 r21 r22 r23 r24 r25 r26 r27 r28 r29 r30 (Element pointer (EP)) r31 (Link pointer (LP)) РС (Program counter)

3.2.1 Program register set

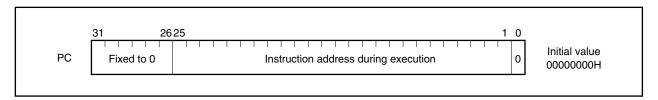
The program register set includes general-purpose registers and a program counter.

(1) General-purpose registers

Thirty-two general-purpose registers, r0 to r31, are available. Any of these registers can be used as a data variable or address variable.

However, r0 and r30 are implicitly used by instructions, and care must be exercised when using these registers. r0 is a register that always holds 0, and is used for operations using 0 and offset 0 addressing. r30 is used, by means of the SLD and SST instructions, as a base pointer for when memory is accessed. Also, r1, r3 to r5, and r31 are implicitly used by the assembler and C compiler. Therefore, before using these registers, their contents must be saved so that they are not lost. The contents must be restored to these registers after they have been used. r2 is sometimes used by a real-time OS. r2 can be used as a register for variables when it is not being used by the real-time OS.

Name	Usage	Operation
r0	Zero register	Always holds 0
r1	Assembler-reserved register	Working register for generating address
r2	Address/data variable register	(when not being used by the real-time OS)
r3	Stack pointer	Used to generate stack frame when function is called
r4	Global pointer	Used to access global variable in data area
r5	Text pointer	Register to indicate the start of the text area (where program code is located)
r6 to r29	Address/data variable register	s
r30	Element pointer	Base pointer for generating address when memory is accessed
r31	Link pointer	Used by compiler when calling function
PC	Program counter	Holds instruction address during program execution


Table 3-1. Program Registers

Remark For detailed descriptions about r1, r3 to r5, and r31, which are used by the assembler and C compiler, refer to CA850 (C Compiler Package) Assembly Language User's Manual.

(2) Program counter (PC)

This register holds the instruction address during program execution. The lower 26 bits of this register are valid, and bits 31 to 26 are fixed to 0. If a carry occurs from bit 25 to 26, it is ignored.

Bit 0 is fixed to 0, and branching to an odd address cannot be performed.

3.2.2 System register set

System registers control the status of the CPU and hold interrupt information.

To read/write these system registers, specify a system register number indicated below using the system register load/store instruction (LDSR or STSR instruction).

Table 3-2. System Register Numbers

No.	System Register Name	Operand S	pecification
		LDSR Instruction	STSR Instruction
0	Status saving register during interrupt (EIPC) ^{Note 1}	0	0
1	Status saving register during interrupt (EIPSW) ^{Note 1}	0	0
2	Status saving register during NMI (FEPC)	0	0
3	Status saving register during NMI (FEPSW)	0	0
4	Interrupt source register (ECR)	×	0
5	Program status word (PSW)	0	0
6 to 15	Reserved number for future function expansion (operations that access these register numbers cannot be guaranteed).	×	×
16	Status saving register during CALLT execution (CTPC)	0	0
17	Status saving register during CALLT execution (CTPSW)	0	0
18	Status saving register during exception/debug trap (DBPC)	O ^{Note 2}	O ^{Note 2}
19	Status saving register during exception/debug trap (DBPSW)	O ^{Note 2}	O ^{Note 2}
20	CALLT base pointer (CTBP)	0	0
21 to 31	Reserved number for future function expansion (operations that access these register numbers cannot be guaranteed).	×	×

- **Notes 1.** Because this register has only one set, to allow multiple interrupts, it is necessary to save this register by program.
 - 2. These registers can be accessed only after DBTRAP instruction or illegal instruction code execution and before DBRETI instruction execution.

Caution Even if bit 0 of EIPC, FEPC, or CTPC is set to 1 with the LDSR instruction, bit 0 will be ignored when the program is returned by the RETI instruction after interrupt servicing (because bit 0 of the PC is fixed to 0). When setting the value of EIPC, FEPC, or CTPC, use an even value (bit 0 = 0).

Remark O: Access allowed

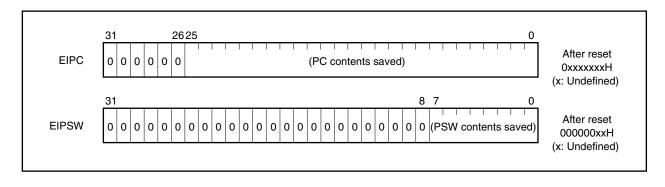
×: Access prohibited

<R>

(1) Interrupt status saving registers (EIPC, EIPSW)

There are two interrupt status saving registers, EIPC and EIPSW.

Upon occurrence of a software exception or a maskable interrupt, the contents of the program counter (PC) are saved to EIPC and the contents of the program status word (PSW) are saved to EIPSW (upon occurrence of a non-maskable interrupt (NMI), the contents are saved to the NMI status saving registers (FEPC, FEPSW)).


The address of the next instruction following the instruction executed when a software exception or maskable interrupt occurs is saved to EIPC, except for some instructions (refer to **7.8 Periods in Which CPU Does Not Acknowledge Interrupts**).

The current PSW contents are saved to EIPSW.

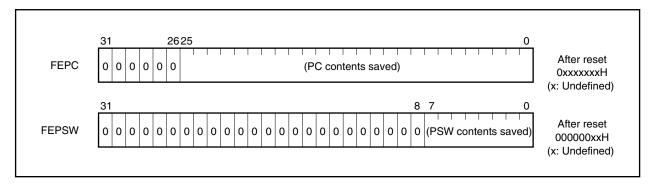
Since there is only one set of interrupt status saving registers, the contents of these registers must be saved by the program when multiple interrupt servicing is enabled.

Bits 31 to 26 of EIPC and bits 31 to 8 of EIPSW are reserved (fixed to 0) for future function expansion.

When the RETI instruction is executed, the values in EIPC and EIPSW are restored to the PC and PSW, respectively.

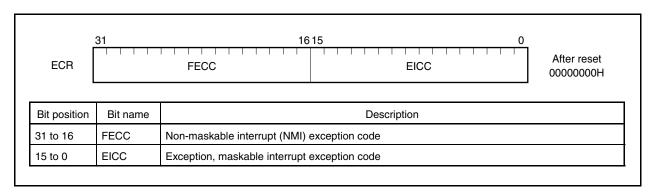
(2) NMI status saving registers (FEPC, FEPSW)

There are two NMI status saving registers, FEPC and FEPSW.


Upon occurrence of a non-maskable interrupt (NMI), the contents of the program counter (PC) are saved to FEPC and the contents of the program status word (PSW) are saved to FEPSW.

The address of the next instruction following the instruction executed when a non-maskable interrupt occurs is saved to FEPC, except for some instructions.

The current PSW contents are saved to FEPSW.


Bits 31 to 26 of FEPC and bits 31 to 8 of FEPSW are reserved (fixed to 0) for future function expansion.

When the RETI instruction has been executed, the values of FEPC and FEPSW are restored to the PC and PSW, respectively.

(3) Interrupt source register (ECR)

Upon occurrence of an interrupt or an exception, the interrupt source register (ECR) holds the source of an interrupt or an exception. The value held by ECR is the exception code coded for each interrupt source. This register is a read-only register, and thus data cannot be written to it using the LDSR instruction.

(4) Program status word (PSW)

The program status word (PSW) is a collection of flags that indicate the program status (instruction execution result) and the CPU status.

When the contents of this register are changed using the LDSR instruction, the new contents become valid immediately following completion of LDSR instruction execution. Interrupt request acknowledgment is held pending while a write to the PSW is being executed by the LDSR instruction.

Bits 31 to 8 are reserved (fixed to 0) for future function expansion.

(1/2)

	31	8 7 6 5 4 3 2 1 0	
PSW	RFU	NP EP ID SAT CY OV S Z	After reset 00000020H

Bit position	Flag name	Description
31 to 8	RFU	Reserved field. Fixed to 0.
7	NP	Indicates that non-maskable interrupt (NMI) servicing is in progress. This flag is set to 1 when an NMI request is acknowledged, and disables multiple interrupts. 0: NMI servicing not in progress 1: NMI servicing in progress
6	EP	Indicates that exception processing is in progress. This flag is set to 1 when an exception occurs. Moreover, interrupt requests can be acknowledged even when this bit is set. 0: Exception processing not in progress 1: Exception processing in progress
5	ID	Indicates whether maskable interrupt request acknowledgment is enabled. 0: Interrupt enabled (EI) 1: Interrupt disabled (DI)
4	SAT ^{Note}	Indicates that the result of executing a saturated operation instruction has overflowed and that the calculation result is saturated. Since this is a cumulative flag, it is set to 1 when the result of a saturated operation instruction becomes saturated, and it is not cleared to 0 even if the operation results of successive instructions do not become saturated. This flag is neither set nor cleared when arithmetic operation instructions are executed. 0: Not saturated 1: Saturated
3	CY	Indicates whether carry or borrow occurred as the result of an operation. 0: No carry or borrow occurred 1: Carry or borrow occurred
2	OV ^{Note}	Indicates whether overflow occurred during an operation. 0: No overflow occurred 1: Overflow occurred.
1	S ^{Note}	Indicates whether the result of an operation is negative. 0: Operation result is positive or 0. 1: Operation result is negative.
0	Z	Indicates whether operation result is 0. 0: Operation result is not 0. 1: Operation result is 0.

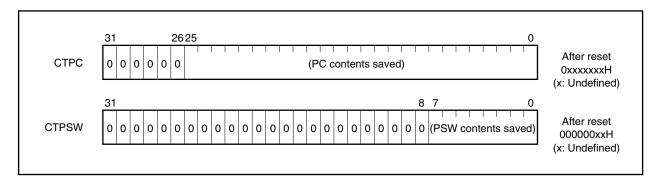
Remark Note is explained on the following page.

(2/2)

Note During saturated operation, the saturated operation results are determined by the contents of the OV flag and S flag. The SAT flag is set (to 1) only when the OV flag is set (to 1) during saturated operation.

Operation result status		Saturated		
	SAT	OV	S	operation result
Maximum positive value exceeded	1	1	0	7FFFFFFH
Maximum negative value exceeded	1	1	1	80000000H
Positive (maximum value not exceeded)	Holds value	0	0	Actual operation
Negative (maximum value not exceeded)	before operation		1	result

(5) CALLT execution status saving registers (CTPC, CTPSW)


There are two CALLT execution status saving registers, CTPC and CTPSW.

When the CALLT instruction is executed, the contents of the program counter (PC) are saved to CTPC, and the program status word (PSW) contents are saved to CTPSW.

The contents saved to CTPC consist of the address of the next instruction after the CALLT instruction.

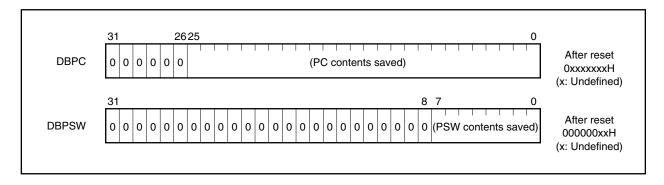
The current PSW contents are saved to CTPSW.

Bits 31 to 26 of CTPC and bits 31 to 8 of CTPSW are reserved (fixed to 0) for future function expansion.

(6) Exception/debug trap status saving registers (DBPC, DBPSW)

There are two exception/debug trap status saving registers, DBPC and DBPSW.

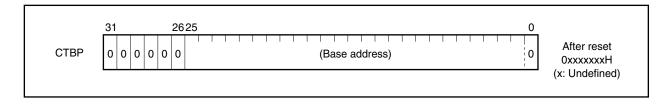
Upon occurrence of an exception trap or debug trap, the contents of the program counter (PC) are saved to DBPC, and the program status word (PSW) contents are saved to DBPSW.


The contents saved to DBPC consist of the address of the next instruction after the instruction executed when an exception trap or debug trap occurs.

The current PSW contents are saved to DBPSW.

These registers can be read or written only in the period between DBTRAP instruction or illegal instruction code execution and DBRET instruction execution.

Bits 31 to 26 of DBPC and bits 31 to 8 of DBPSW are reserved (fixed to 0) for future function expansion.


When the DBRET instruction has been executed, the values of DBPC and DBPSW are restored to the PC and PSW, respectively.

(7) CALLT base pointer (CTBP)

The CALLT base pointer (CTBP) is used to specify table addresses and generate target addresses (bit 0 is fixed to 0).

Bits 31 to 26 are reserved (fixed to 0) for future function expansion.

<R>

3.3 Operation Modes

3.3.1 Operation modes

The V850E/IA1 has the following operation modes. Mode specification is carried out by the MODE0 to MODE2 pins.

(1) Normal operation mode

(a) Single-chip modes 0, 1

Access to the internal ROM is enabled.

In single-chip mode 0, after the system reset is cleared, each pin related to the bus interface enters the port mode, program execution branches to the reset entry address of the internal ROM, and instruction processing starts. By setting the PMCDH, PMCDL, PMCCS, PMCCT, and PMCCM registers to control mode by instruction, an external device can be connected to the external memory area.

In single-chip mode 1, after the system reset is cleared, each pin related to the bus interface enters the control mode, program execution branches to the external device's (memory) reset entry address, and instruction processing starts. The internal ROM area is mapped from address 100000H.

(b) ROMIess modes 0, 1

After the system reset is cleared, each pin related to the bus interface enters the control mode, program execution branches to the external device's (memory) reset entry address, and instruction processing starts. Fetching of instructions and data access for internal ROM becomes impossible.

In ROMless mode 0, the data bus is a 16-bit data bus and in ROMless mode 1, the data bus is an 8-bit data bus.

(2) Flash memory programming mode (μPD70F3116 only)

If this mode is specified, it becomes possible for the flash memory programmer to run a program to the internal flash memory.

The initial values of the registers differ depending on the mode.

Op	peration Mode	PMCDH	PMCDL	PMCCS	PMCCT	PMCCM	BSC
Normal	ROMless mode 0	FFH	FFFFH	FFH	53H	0FH	5555H
operation mode	ROMless mode 1	FFH	FFFFH	FFH	53H	0FH	0000H
mode	Single-chip mode 0	00H	0000H	00H	00H	00H	5555H
	Single-chip mode 1	FFH	FFFFH	FFH	53H	0FH	5555H

3.3.2 Operation mode specification

The operation mode is specified according to the status of pins MODE0 to MODE2. In an application system fix the specification of these pins and do not change them during operation. Operation is not guaranteed if these pins are changed during operation.

(a) μ PD703116

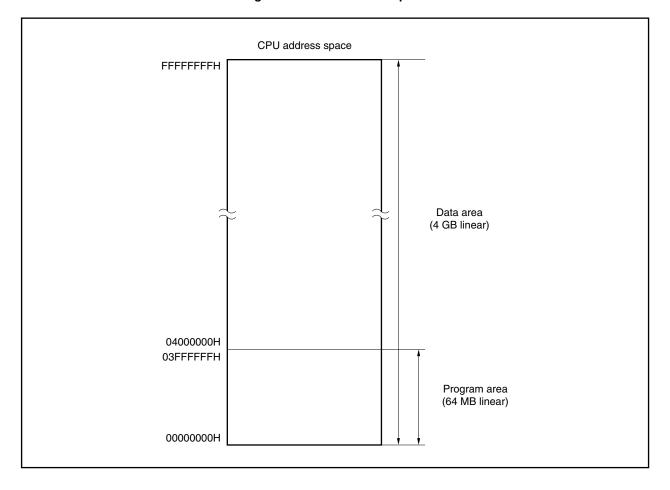
MODE2	MODE1	MODE0	Operation	Remark	
L	L	L	Normal operation mode	ROMless mode 0	16-bit data bus
L	L	Н		ROMless mode 1	8-bit data bus
L	Н	L		Single-chip mode 0	Internal ROM area is allocated from address 000000H.
L	Н	Н		Single-chip mode 1	Internal ROM area is allocated from address 100000H.
Other than above			Setting prohibited		

(b) μ PD70F3116

VPP	MODE2	MODE1	MODE0	Operation	Remark	
0 V	L	L	L	Normal operation mode	ROMless mode 0	16-bit data bus
0 V	L	L	Н		ROMless mode 1	8-bit data bus
0 V	L	Н	L		Single-chip mode 0	Internal ROM area is allocated from address 000000H.
0 V	L	Н	Н		Single-chip mode 1	Internal ROM area is allocated from address 100000H.
7.8 V	L	Н	H/L	Flash memory programming mode		_
Other than above				Setting prohibited		

Remark L: Low-level input

H: High-level input


3.4 Address Space

3.4.1 CPU address space

The CPU of the V850E/IA1 is of 32-bit architecture and supports up to 4 GB of linear address space (data space) during operand addressing (data access). For instruction addressing, a linear address space (program space) of up to 64 MB is supported.

Figure 3-1 shows the CPU address space.

Figure 3-1. CPU Address Space

3.4.2 Image

16 images, each containing a 256 MB physical address space, are seen in the 4 GB CPU address space. In actuality, the same 256 MB physical address space is accessed regardless of the values of bits 31 to 28 of the CPU address. Figure 3-2 shows the image of the virtual addressing space.

Physical address x0000000H can be seen as CPU address 00000000H, and in addition, can be seen as address 10000000H, address 20000000H, ..., address E0000000H, or address F0000000H.

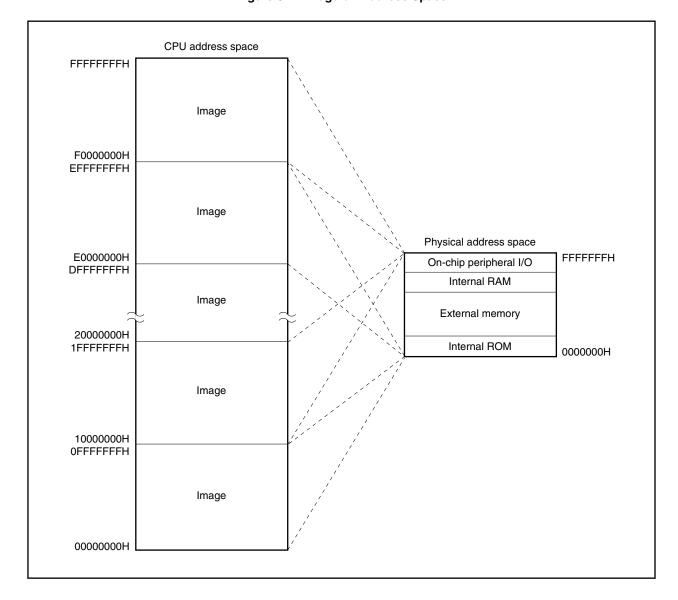
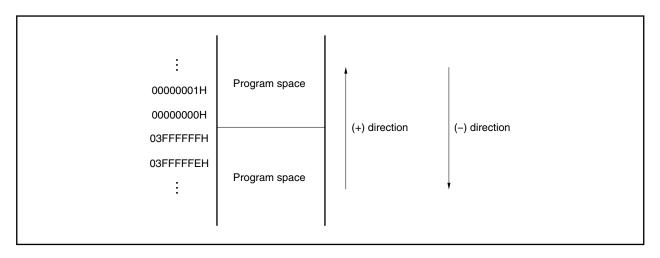


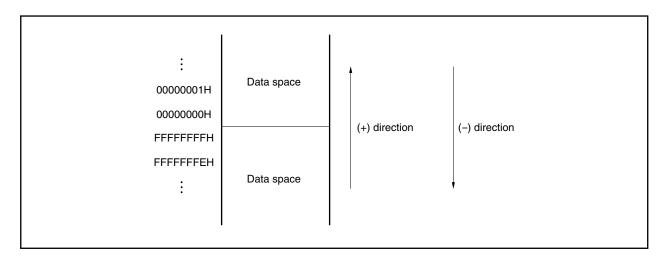
Figure 3-2. Image on Address Space


3.4.3 Wrap-around of CPU address space

(1) Program space

Of the 32 bits of the PC (program counter), the higher 6 bits are fixed to 0, and only the lower 26 bits are valid. Even if a carry or borrow occurs from bit 25 to 26 as a result of branch address calculation, the higher 6 bits ignore the carry or borrow.

Therefore, the upper-limit address of the program space, address 03FFFFFFH, and the lower-limit address 00000000H become contiguous addresses. Wrap-around refers to a situation like this whereby the lower-limit address and upper-limit address become contiguous.


Caution The 4 KB area of 03FFF000H to 03FFFFFH can be seen as an image of 0FFF000H to 0FFFFFFH. No instruction can be fetched from this area because this area is defined as on-chip peripheral I/O area. Therefore, do not execute any branch address calculation in which the result will reside in any part of this area.

(2) Data space

The result of an operand address calculation that exceeds 32 bits is ignored.


Therefore, the upper-limit address of the program space, address FFFFFFFH, and the lower-limit address 00000000H are contiguous addresses, and the data space is wrapped around at the boundary of these addresses.

3.4.4 Memory map

The V850E/IA1 reserves areas as shown below. Each mode is specified by the MODE0 to MODE2 pins.

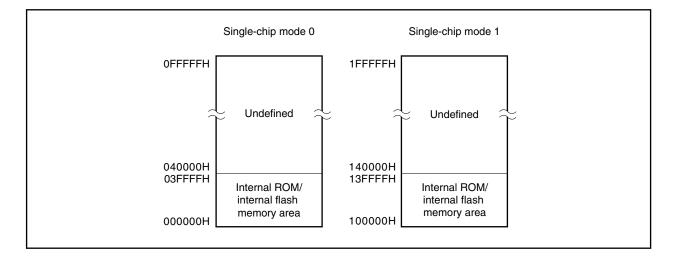
Figure 3-3. Memory Map

3.4.5 Area

(1) Internal ROM/internal flash memory area

(a) Memory map

Up to 1 MB of internal ROM/internal flash memory area is reserved. 256 KB are provided in the following addresses as physical internal ROM (mask ROM/flash memory).


• In single-chip mode 0: Addresses 000000H to 03FFFFH

(addresses 040000H to 0FFFFFH are undefined)

• In single-chip mode 1: Addresses 0100000H to 013FFFFH

(addresses 0140000H to 01FFFFFH are undefined)

Figure 3-4. Internal ROM/Internal Flash Memory Area

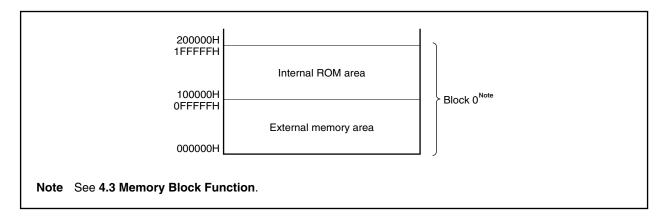
(b) Interrupt/exception table

The V850E/IA1 increases the interrupt response speed by assigning handler addresses corresponding to interrupts/exceptions.

The collection of these handler addresses is called an interrupt/exception table, which is located in the internal ROM area. When an interrupt/exception request is acknowledged, execution jumps to the handler address, and the program written at that memory is executed. Table 3-3 shows the sources of interrupts/exceptions, and the corresponding addresses.

Remark When in ROMless modes 0, 1, or in single-chip mode 1, in order to resume correct operation after reset, provide a handler address to the reset routine in address 0 of the external memory.

Table 3-3. Interrupt/Exception Table

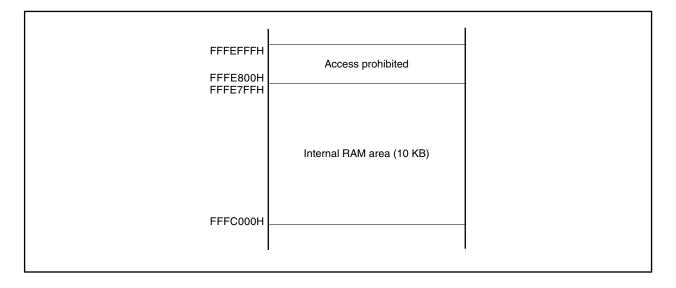

Start Address of Interrupt/Exception Table	Interrupt/Exception Source	Start Address of Interrupt/Exception Table	Interrupt/Exception Source		
00000000H	RESET	00000200H	INTP21/INTCC21		
00000010H	NMIO	00000210H	INTP22/INTCC22		
0000040H	TRAP0n (n = 0 to F)	00000220H	INTP23/INTCC23		
00000050H	TRAP1n (n = 0 to F)	00000230H	INTP24/INTCC24		
00000060H	ILGOP/DBG0	00000240H	INTP25/INTCC25		
00000080H	INTP0	00000250H	INTTM3		
0000090H	INTP1	00000260H	INTP30/INTCC30		
00000A0H	INTP2	00000270H	INTP31/INTCC31		
000000B0H	INTP3	00000280H	INTCM4		
000000C0H	INTP4	00000290H	INTDMA0		
00000D0H	INTP5	000002A0H	INTDMA1		
000000E0H	INTP6	000002B0H	INTDMA2		
000000F0H	INTDET0	000002C0H	INTDMA3		
00000100H	INTDET1	000002D0H	INTCREC		
00000110H	INTTM00	000002E0H	INTCTRX		
00000120H	INTCM003	000002F0H	INTCERR		
00000130H	INTTM01	00000300H	INTCMAC		
00000140H	INTCM013	00000310H	INTCSI0		
00000150H	INTP100/INTCC100	00000320H	INTCSI1		
00000160H	INTP101/INTCC101	00000330H	INTSR0		
00000170H	INTCM100	00000340H	INTST0		
00000180H	INTCM101	00000350H	INTSER0		
00000190H	INTP110/INTCC110	00000360H	INTSR1		
000001A0H	INTP111/INTCC111	00000370H	INTST1		
000001B0H	INTCM110	00000380H	INTSR2		
000001C0H	INTCM111	00000390H	INTST2		
000001D0H	INTTM20	000003A0H	INTAD0		
000001E0H	INTTM21	000003B0H	INTAD1		
000001F0H	INTP20/INTCC20				

(c) Internal ROM area relocation function

If set in single-chip mode 1, the internal ROM area is located beginning from address 100000H, so booting from external memory becomes possible.

Therefore, in order to resume correct operation after reset, provide a handler address to the reset routine in address 0 of the external memory.

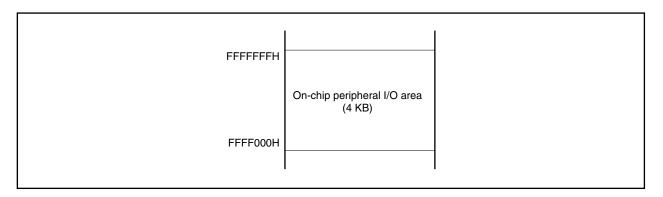
Figure 3-5. Internal ROM Area in Single-Chip Mode 1


(2) Internal RAM area

12 KB of memory, addresses FFFC000H to FFFEFFFH, is reserved for the internal RAM area.

The 12 KB area of 3FFC000H to 3FFEFFFH can be seen as an image of FFFC000H to FFFEFFFH.

In the V850E/IA1, 10 KB of memory, addresses FFFC000H to FFFE7FFH, is provided as physical internal RAM.


Access to the area of addresses FFFE800H to FFFEFFFH is prohibited.

(3) On-chip peripheral I/O area

4 KB of memory, addresses FFFF000H to FFFFFFH, is provided as an on-chip peripheral I/O area. An image of addresses FFFF000H to FFFFFFHH can be seen in the area between addresses 3FFF000H and 3FFFFFFHH^{Note}.

Note Access to the area of addresses 3FFF000H to 3FFFFFH is prohibited. To access the on-chip peripheral I/O, specify addresses FFFF000H to FFFFFFH.

On-chip peripheral I/O registers associated with the operation mode specification and the state monitoring for the on-chip peripherals I/O are all memory-mapped to the on-chip peripheral I/O area. Program fetches cannot be executed from this area.

- Cautions 1. The least significant bit of an address is not decoded. Therefore, if byte access is executed in the register at an odd address (2n + 1), the register at the even address (2n) will be accessed because of the hardware specification.
 - In the V850E/IA1, no registers exist that are capable of word access, but if a register is word accessed, halfword access is performed twice in the order of lower address, then higher address of the word area, ignoring the lower 2 bits of the address.
 - 3. For registers in which byte access is possible, if halfword access is executed, the higher 8 bits become undefined during the read operation, and the lower 8 bits of data are written to the register during the write operation.
 - 4. Addresses that are not defined as registers are reserved for future expansion. If these addresses are accessed, the operation is undefined and not guaranteed.
 - 5. Addresses 3FFF000H to 3FFFFFH cannot be specified as the source/destination address of DMA transfer. Be sure to use addresses FFFF000H to FFFFFFH for the source/destination address of DMA transfer.

In the on-chip peripheral I/O area, a 16 KB area of addresses from x0000H to x3FFFH is provided as a programmable peripheral I/O area. Within this area, the area between x2000H and x2FFFH is used exclusively for the FCAN controller (see **3.4.9 Programmable peripheral I/O registers**).

Caution When emulating the FCAN controller using the in-circuit emulator (IE-V850E-MC or IE-703116-MC-EM1), perform the following settings in the Configuration screen that appears when the debugger is started.

- Set the start address of the programmable peripheral I/O area that is set using the BPC register to the Programmable I/O Area field.
- Map the programmable peripheral I/O area as "Target" or "Emulation RAM" in the Memory Mapping field.

(4) External memory area

256 MB are available for external memory area. The lower 64 MB can be used as program/data area and the higher 192 MB as data area.

• When in single-chip mode 0: x0100000H to xFFFBFFFH

When in single-chip mode 1: x0000000H to x00FFFFFH, x0200000H to xFFFBFFH

• When in ROMless modes 0 and 1: x0000000H to xFFFBFFFH

Access to the external memory area uses the chip-select signal assigned to each memory block (which is carried out in the CS unit set by chip area selection control registers 0 and 1 (CSC0, CSC1)).

Note that, the internal ROM, internal RAM, on-chip peripheral I/O, and programmable peripheral I/O areas cannot be accessed as external memory areas.

3.4.6 External memory expansion

By setting the port n mode control register (PMCn) to control mode, an external device can be connected to the external memory space using each pin of ports DH, DL, CS, CT, and CM. Each register is set by selecting control mode for each pin of these ports using PMCn (n = DH, DL, CS, CT, CM).

Note that the status after reset differs as shown below in accordance with the operating mode specification set by pins MODE0 to MODE2 (refer to **3.3 Operation Modes** for details of the operation modes).

(a) In the case of ROMless mode 0

Because each pin of ports DH, DL, CS, CT, and CM enters control mode following a reset, external memory can be used without making changes to the port n mode control register (PMCn) (the external data bus width is 16 bits).

(b) In the case of ROMless mode 1

Because each pin of ports DH, DL, CS, CT, and CM enters control mode following a reset, external memory can be used without making changes to the port n mode control register (PMCn) (the external data bus width is 8 bits).

(c) In the case of single-chip mode 0

Since the internal ROM area is accessed after a reset, each pin of ports DH, DL, CS, CT, and CM enters the port mode, and external devices cannot be used.

To use external memory, set the port n mode control register (PMCn).

(d) In the case of single-chip mode 1

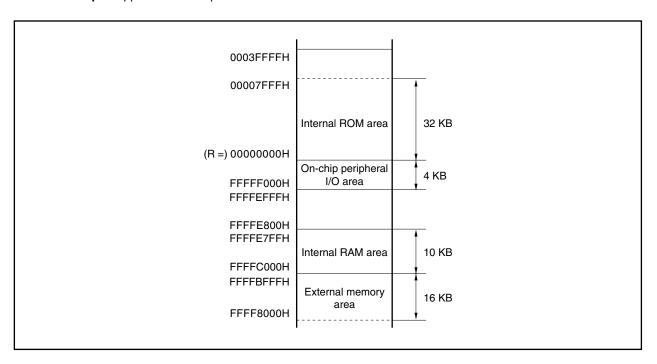
The internal ROM area is allocated from address 100000H. As a result, because each pin of ports DH, DL, CS, CT, and CM enters control mode following a reset, external memory can be used without making changes to the port n mode control register (PMCn) (the external data bus width is 16 bits).

Remark n = DH, DL, CS, CT, CM

3.4.7 Recommended use of address space

The architecture of the V850E/IA1 requires that a register that serves as a pointer be secured for address generation when accessing operand data in the data space. Operand data access from instruction can be directly executed at the address in this pointer register ±32 KB. However, because there is a limit to which general-purpose registers are used as a pointer register, by minimizing the deterioration of address calculation performance when changing the pointer value, the number of usable general-purpose registers for handling variables is maximized, and the program size can be saved.

To enhance the efficiency of using the pointer in connection with the memory map of the V850E/IA1, the following points are recommended:


(1) Program space

Of the 32 bits of the program counter (PC), the higher 6 bits are fixed to 0, and only the lower 26 bits are valid. Therefore, a contiguous 64 MB space starting from address 00000000H corresponds to the memory map of the program space.

(2) Data space

For the efficient use of resources that make use of the wrap-around feature of the data space, the continuous 16 MB address spaces 00000000H to 00FFFFFFH and FF000000H to FFFFFFFH of the 4 GB CPU are used as the data space. With the V850E/IA1, a 256 MB physical address space is seen as 16 images in the 4 GB CPU address space. The highest bit (bit 25) of this 26-bit address is assigned as address sign-extended to 32 bits.

Example Application of wrap-around

When R = r0 (zero register) is specified with the LD/ST disp16 [R] instruction, an addressing range of 00000000H ± 32 KB can be referenced with the sign-extended disp16. By mapping the external memory in the 16 KB area in the figure, all resources including internal hardware can be accessed with one pointer. The zero register (r0) is a register set to 0 by the hardware, and eliminates the need for additional registers

for the pointer.

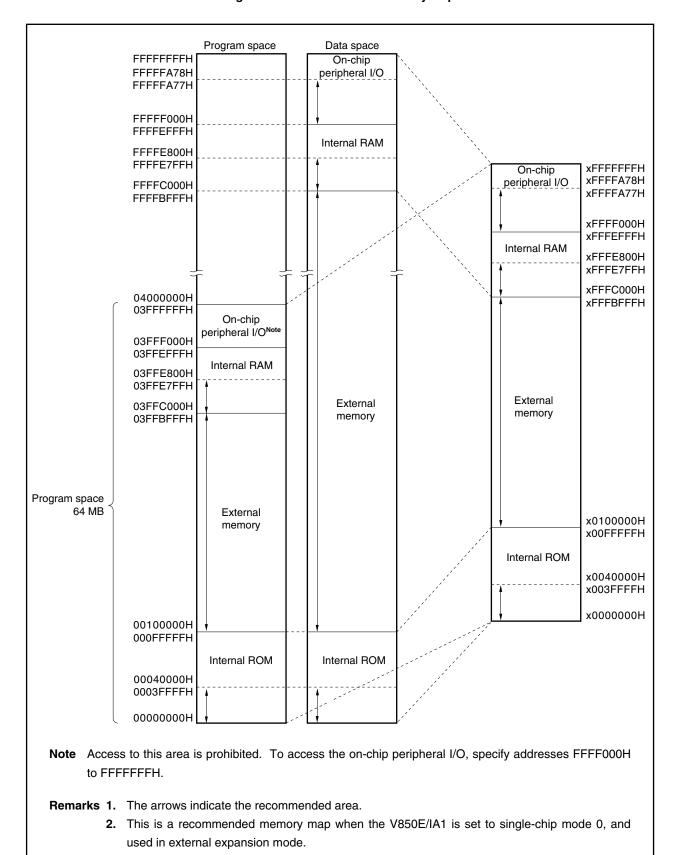


Figure 3-6. Recommended Memory Map

3.4.8 On-chip peripheral I/O registers

(1/11)

(1							
Address	Function Register Name	Symbol	R/W	Bit Units for Manipulation		Initial Value	
				1 Bit	8 Bits	16 Bits	
FFFFF004H	Port DL	PDL	R/W			√	Undefined
FFFFF004H	Port DLL	PDLL	R/W	√	√		Undefined
FFFFF005H	Port DLH	PDLH	R/W	√	√		Undefined
FFFFF006H	Port DH	PDH	R/W	√	√		Undefined
FFFFF008H	Port CS	PCS	R/W	√	√		Undefined
FFFFF00AH	Port CT	PCT	R/W	√	√		Undefined
FFFFF00CH	Port CM	PCM	R/W	√	√		Undefined
FFFFF024H	Port DL mode register	PMDL	R/W			√	FFFFH
FFFFF024H	Port DL mode register L	PMDLL	R/W	√	√		FFH
FFFFF025H	Port DL mode register H	PMDLH	R/W	√	√		FFH
FFFFF026H	Port DH mode register	PMDH	R/W	√	√		FFH
FFFFF028H	Port CS mode register	PMCS	R/W	√	√		FFH
FFFFF02AH	Port CT mode register	PMCT	R/W	√	√		FFH
FFFFF02CH	Port CM mode register	PMCM	R/W	√	√		FFH
FFFFF044H	Port DL mode control register	PMCDL	R/W			√	0000H/FFFFH
FFFFF044H	Port DL mode control register L	PMCDLL	R/W	√	√		00H/FFH
FFFFF045H	Port DL mode control register H	PMCDLH	R/W	√	√		00H/FFH
FFFFF046H	Port DH mode control register	PMCDH	R/W	√	√		00H/FFH
FFFFF048H	Port CS mode control register	PMCCS	R/W	√	√		00H/FFH
FFFFF04AH	Port CT mode control register	PMCCT	R/W	√	√		00H/53H
FFFFF04CH	Port CM mode control register	PMCCM	R/W	√	√		00H/0FH
FFFFF060H	Chip area selection control register 0	CSC0	R/W			√	2C11H
FFFFF062H	Chip area selection control register 1	CSC1	R/W			√	2C11H
FFFFF064H	Peripheral area selection control register	BPC	R/W			√	0000H
FFFFF066H	Bus size configuration register	BSC	R/W			√	0000H/5555H
FFFFF06EH	System wait control register	vswc	R/W		√		77H
FFFFF080H	DMA source address register 0L	DSA0L	R/W			√	Undefined
FFFFF082H	DMA source address register 0H	DSA0H	R/W			√	Undefined
FFFFF084H	DMA destination address register 0L	DDA0L	R/W			√	Undefined
FFFFF086H	DMA destination address register 0H	DDA0H	R/W			√	Undefined
FFFFF088H	DMA source address register 1L	DSA1L	R/W			√	Undefined
FFFFF08AH	DMA source address register 1H	DSA1H	R/W			√	Undefined
FFFF08CH	DMA destination address register 1L	DDA1L	R/W			√	Undefined
FFFFF08EH	DMA destination address register 1H	DDA1H	R/W			√	Undefined
FFFFF090H	DMA source address register 2L	DSA2L	R/W			√	Undefined
FFFFF092H	DMA source address register 2H	DSA2H	R/W			√	Undefined

(2/11)

			1	1			(2/11
Address	Function Register Name	Symbol	R/W	Bit Units for Manipulation			Initial Value
				1 Bit	8 Bits	16 Bits	
FFFFF094H	DMA destination address register 2L	DDA2L	R/W			√	Undefined
FFFFF096H	DMA destination address register 2H	DDA2H	R/W			√	Undefined
FFFFF098H	DMA source address register 3L	DSA3L	R/W			√	Undefined
FFFFF09AH	DMA source address register 3H	DSA3H	R/W			√	Undefined
FFFFF09CH	DMA destination address register 3L	DDA3L	R/W			√	Undefined
FFFFF09EH	DMA destination address register 3H	DDA3H	R/W			√	Undefined
FFFFF0C0H	DMA transfer count register 0	DBC0	R/W			√	Undefined
FFFFF0C2H	DMA transfer count register 1	DBC1	R/W			√	Undefined
FFFFF0C4H	DMA transfer count register 2	DBC2	R/W			√	Undefined
FFFFF0C6H	DMA transfer count register 3	DBC3	R/W			√	Undefined
FFFFF0D0H	DMA addressing control register 0	DADC0	R/W			√	0000H
FFFFF0D2H	DMA addressing control register 1	DADC1	R/W			√	0000H
FFFFF0D4H	DMA addressing control register 2	DADC2	R/W			√	0000H
FFFFF0D6H	DMA addressing control register 3	DADC3	R/W			√	0000H
FFFFF0E0H	DMA channel control register 0	DCHC0	R/W	V	√		00H
FFFFF0E2H	DMA channel control register 1	DCHC1	R/W	V	√		00H
FFFFF0E4H	DMA channel control register 2	DCHC2	R/W	V	√		00H
FFFFF0E6H	DMA channel control register 3	DCHC3	R/W	V	√		00H
FFFF0F0H	DMA disable status register	DDIS	R		√		00H
FFFFF0F2H	DMA restart register	DRST	R/W		√		00H
FFFFF100H	Interrupt mask register 0	IMR0	R/W			√	FFFFH
FFFF100H	Interrupt mask register 0L	IMR0L	R/W	√	√		FFH
FFFFF101H	Interrupt mask register 0H	IMR0H	R/W	V	√		FFH
FFFFF102H	Interrupt mask register 1	IMR1	R/W			√	FFFFH
FFFFF102H	Interrupt mask register 1L	IMR1L	R/W	√	√		FFH
FFFFF103H	Interrupt mask register 1H	IMR1H	R/W	√	√		FFH
FFFFF104H	Interrupt mask register 2	IMR2	R/W			√	FFFFH
FFFFF104H	Interrupt mask register 2L	IMR2L	R/W	√	√		FFH
FFFFF105H	Interrupt mask register 2H	IMR2H	R/W	V	V		FFH
FFFFF106H	Interrupt mask register 3	IMR3	R/W			√	FFFFH
FFFFF106H	Interrupt mask register 3L	IMR3L	R/W	√	√		FFH
FFFFF107H	Interrupt mask register 3H	IMR3H	R/W	√	√		FFH
FFFFF110H	Interrupt control register	P0IC0	R/W	√	√		47H
FFFFF112H	Interrupt control register	P0IC1	R/W	√	√		47H
FFFFF114H	Interrupt control register	P0IC2	R/W	√	√		47H
FFFFF116H	Interrupt control register	P0IC3	R/W	√	√		47H
4	·	_	.	!		 	

(3/11)

Address	Function Register Name	Symbol	R/W	Rit Unite	for Man	inulation	(3/11 Initial Value
Address	Function negister Name	Symbol	I I I / VV	1 Bit	8 Bits	16 Bits	ililliai value
	Late and a second of the second of	Polos	DAM		o bits	TO DILS	4711
FFFFF11AH	Interrupt control register	POIC5	R/W	√			47H
FFFFF11CH	Interrupt control register	P0IC6	R/W	√	√ ,		47H
FFFFF11EH	Interrupt control register	DETIC0	R/W	√ ,	√		47H
FFFFF120H	Interrupt control register	DETIC1	R/W	√	√ .		47H
FFFFF122H	Interrupt control register	TM0IC0	R/W	√	√		47H
FFFFF124H	Interrupt control register	CM03IC0	R/W	V	√		47H
FFFFF126H	Interrupt control register	TM0IC1	R/W	√	√		47H
FFFFF128H	Interrupt control register	CM03IC1	R/W	V	√		47H
FFFFF12AH	Interrupt control register	CC10IC0	R/W	√	√		47H
FFFFF12CH	Interrupt control register	CC10IC1	R/W	$\sqrt{}$	$\sqrt{}$		47H
FFFFF12EH	Interrupt control register	CM10IC0	R/W	$\sqrt{}$	√		47H
FFFFF130H	Interrupt control register	CM10IC1	R/W	V	√		47H
FFFFF132H	Interrupt control register	CC11IC0	R/W	V	√		47H
FFFFF134H	Interrupt control register	CC11IC1	R/W	V	√		47H
FFFFF136H	Interrupt control register	CM11IC0	R/W	V	V		47H
FFFFF138H	Interrupt control register	CM11IC1	R/W	V	√		47H
FFFFF13AH	Interrupt control register	TM2IC0	R/W	V	√		47H
FFFFF13CH	Interrupt control register	TM2IC1	R/W	V	√		47H
FFFFF13EH	Interrupt control register	CC2IC0	R/W	V	√		47H
FFFFF140H	Interrupt control register	CC2IC1	R/W	V	√		47H
FFFFF142H	Interrupt control register	CC2IC2	R/W	V	√		47H
FFFFF144H	Interrupt control register	CC2IC3	R/W	√	√		47H
FFFFF146H	Interrupt control register	CC2IC4	R/W	V	√		47H
FFFFF148H	Interrupt control register	CC2IC5	R/W	V	√		47H
FFFFF14AH	Interrupt control register	ТМ3ІС0	R/W	√	√		47H
FFFFF14CH	Interrupt control register	CC3IC0	R/W	√	√		47H
FFFFF14EH	Interrupt control register	CC3IC1	R/W	V	√		47H
FFFFF150H	Interrupt control register	CM4IC0	R/W	√	√		47H
FFFFF152H	Interrupt control register	DMAIC0	R/W	V	V		47H
FFFFF154H	Interrupt control register	DMAIC1	R/W	V	√		47H
FFFFF156H	Interrupt control register	DMAIC2	R/W	√	√		47H
FFFFF158H	Interrupt control register	DMAIC3	R/W	√	√		47H
FFFFF15AH	Interrupt control register	CANIC0	R/W	√	√		47H
FFFFF15CH	Interrupt control register	CANIC1	R/W	√	√		47H
FFFFF15EH	Interrupt control register	CANIC2	R/W	√	√		47H
FFFFF160H	Interrupt control register	CANIC3	R/W	√	√		47H
FFFFF162H	Interrupt control register	CSIIC0	R/W	√	√		47H

(4/11)

Address	Function Register Name	Symbol	R/W	Bit Units	for Man	ipulation	(4/11 Initial Value
,	. a.i.a.i.o.i. riagiata. rialina	2,111501		1 Bit	8 Bits	16 Bits	• 4140
FFFFF164H	Interrupt control register	CSIIC1	R/W	√	√ V	. 5 51.6	47H
FFFFF166H	Interrupt control register	SRIC0	R/W	√	√		47H
FFFFF168H	Interrupt control register	STIC0	R/W	√ √	√		47H
FFFFF16AH	Interrupt control register	SEIC0	R/W	√	√		47H
FFFFF16CH	Interrupt control register	SRIC1	R/W	, √	√ √		47H
FFFFF16EH	Interrupt control register	STIC1	R/W	√	√ √		47H
FFFFF170H	Interrupt control register	SRIC2	R/W	√	√		47H
FFFFF172H	Interrupt control register	STIC2	R/W	√ √	√ √		47H
FFFFF174H	Interrupt control register	ADIC0	R/W	√ √	√ √		47H
FFFFF176H	Interrupt control register	ADIC1	R/W	√ √	√ √		47H
FFFFF1FAH	In-service priority register	ISPR	R	√ √	√ √		00H
FFFFF1FCH	Command register	PRCMD	W	٧	√ √		Undefined
FFFFF1FEH	Power save control register	PSC	R/W	V	√ √		00H
FFFFF200H		ADSCM00	R/W	V	V	√	0000H
FFFFF200H	A/D scan mode register 00		R/W	√	√	V	0000H
	A/D scan mode register 00L	ADSCM00L		√ √	√ √		00H
FFFFF201H	A/D scan mode register 00H	ADSCM00H		V	٧	√	
FFFFF202H	A/D scan mode register 01	ADSCM01	R/W		√	V	0000H
FFFFF202H FFFFF203H	A/D scan mode register 01L	ADSCM01L	R/W	√	√ √		00H
	A/D scan mode register 01H	ADSCM01H		٧	٧	√	
FFFFF204H	A/D voltage detection mode register 0	ADETM0	R/W	√	√	٧	0000H
FFFFF204H	A/D voltage detection mode register 0L	ADETMOL	R/W	√ √	√ √		00H
FFFFF205H	A/D voltage detection mode register 0H	ADODOO	R/W	٧	٧	.1	00H
FFFFF210H	A/D conversion result register 00	ADCR00	R			√	0000H
FFFFF212H	A/D conversion result register 01	ADCR01	R			√	0000H
FFFFF214H	A/D conversion result register 02	ADCR02	R			√	0000H
FFFFF216H	A/D conversion result register 03	ADCR03	R			√	0000H
FFFFF218H	A/D conversion result register 04	ADCR04	R			√	0000H
FFFFF21AH	A/D conversion result register 05	ADCR05	R			√	0000H
FFFFF21CH	A/D conversion result register 06	ADCR06	R			√	0000H
FFFFF21EH	A/D conversion result register 07	ADCR07	R			√	0000H
FFFFF240H	A/D scan mode register 10	ADSCM10	R/W			√	0000H
FFFFF240H	A/D scan mode register 10L	ADSCM10L	R/W	√	√		00H
FFFFF241H	A/D scan mode register 10H	ADSCM10H	R/W	√	√		00H
FFFFF242H	A/D scan mode register 11	ADSCM11	R/W			√	0000H
FFFFF242H	A/D scan mode register 11L	ADSCM11L	R		√		00H
FFFFF243H	A/D scan mode register 11H	ADSCM11H	R/W	$\sqrt{}$	√		00H

(5/11)

Address	Function Dogister Name	Cumbal	R/W	Rit Unite	for Man	inulation	(5/11 Initial Value
Auuress	Function Register Name	Symbol	IT/VV	1 Bit	for Man	16 Bits	iiililai value
FFFFF04411	A/D and the model and the street of the street of	ADETM	DAM	I DIL	o DIIS	√ V	000011
FFFFF244H	A/D voltage detection mode register 1	ADETM1	R/W	,	1	٧	0000H
FFFFF244H	A/D voltage detection mode register 1L	ADETM1L	R/W	√	√		00H
FFFFF245H	A/D voltage detection mode register 1H	ADETM1H	R/W	√	√	,	00H
FFFFF250H	A/D conversion result register 10	ADCR10	R			√ .	0000H
FFFFF252H	A/D conversion result register 11	ADCR11	R			√	0000H
FFFFF254H	A/D conversion result register 12	ADCR12	R			√	0000H
FFFFF256H	A/D conversion result register 13	ADCR13	R			√	0000H
FFFFF258H	A/D conversion result register 14	ADCR14	R			√	0000H
FFFFF25AH	A/D conversion result register 15	ADCR15	R			√	0000H
FFFFF25CH	A/D conversion result register 16	ADCR16	R			√	0000H
FFFFF25EH	A/D conversion result register 17	ADCR17	R			√	0000H
FFFFF280H	A/D internal trigger selection register	ITRG0	R/W	√	√		00H
FFFFF400H	Port 0	P0	R	√	√		Undefined
FFFFF402H	Port 1	P1	R/W	√	√		Undefined
FFFFF404H	Port 2	P2	R/W	V	√		Undefined
FFFFF406H	Port 3	P3	R/W	√	√		Undefined
FFFFF408H	Port 4	P4	R/W	√	√		Undefined
FFFFF422H	Port 1 mode register	PM1	R/W	√	√		FFH
FFFFF424H	Port 2 mode register	PM2	R/W	√	√		FFH
FFFFF426H	Port 3 mode register	РМ3	R/W	√	√		FFH
FFFFF428H	Port 4 mode register	PM4	R/W	V	√		FFH
FFFFF442H	Port 1 mode control register	PMC1	R/W	√	√		00H
FFFFF444H	Port 2 mode control register	PMC2	R/W	√	√		00H
FFFFF446H	Port 3 mode control register	PMC3	R/W	√	√		00H
FFFFF448H	Port 4 mode control register	PMC4	R/W	√	√		00H
FFFFF462H	Port 1 function control register	PFC1	R/W	√	√		00H
FFFFF464H	Port 2 function control register	PFC2	R/W	√	√		00H
FFFFF480H	Bus cycle type configuration register 0	ВСТ0	R/W			√	ССССН
FFFFF482H	Bus cycle type configuration register 1	BCT1	R/W			V	ССССН
FFFFF484H	Data wait control register 0	DWC0	R/W			V	3333H
FFFFF486H	Data wait control register 1	DWC1	R/W			√	3333H
FFFFF488H	Address wait control register	AWC	R/W			√	0000H
FFFFF48AH	Bus cycle control register	всс	R/W			√	AAAAH
FFFFF540H	Timer 4	TM4	R			√	0000H
FFFFF542H	Compare register 4	CM4	R/W			√	0000H
FFFFF544H	Timer control register 4	TMC4	R/W	√	√		00H
FFFFF570H	Dead-time timer reload register 0	DTRR0	R/W			√	0FFFH

(6/11)

		1	l	1			(6/11
Address	Function Register Name	Symbol	R/W	Bit Units	for Man	ipulation	Initial Value
				1 Bit	8 Bits	16 Bits	
FFFFF572H	Buffer register CM00	BFCM00	R/W			$\sqrt{}$	FFFFH
FFFFF574H	Buffer register CM01	BFCM01	R/W			$\sqrt{}$	FFFFH
FFFFF576H	Buffer register CM02	BFCM02	R/W			$\sqrt{}$	FFFFH
FFFFF578H	Buffer register CM03	BFCM03	R/W			$\sqrt{}$	FFFFH
FFFF57AH	Timer control register 00	TMC00	R/W			√	0508H
FFFF57AH	Timer control register 00L	TMC00L	R/W	√	\checkmark		08H
FFFFF57BH	Timer control register 00H	ТМС00Н	R/W	$\sqrt{}$	$\sqrt{}$		05H
FFFFF57CH	Timer unit control register 00	TUC00	R/W	√	\checkmark		01H
FFFF57DH	Timer output mode register 0	TOMR0	R/W		\checkmark		00H
FFFF57EH	PWM software timing output register 0	PSTO0	R/W	$\sqrt{}$	$\sqrt{}$		00H
FFFF57FH	PWM output enable register 0	POER0	R/W	√	\checkmark		00H
FFFFF580H	TOMR write enable register 0	SPEC0	R/W			√	0000H
FFFFF5B0H	Dead-time timer reload register 1	DTRR1	R/W			√	0FFFH
FFFFF5B2H	Buffer register CM10	BFCM10	R/W			√	FFFFH
FFFFF5B4H	Buffer register CM11	BFCM11	R/W			√	FFFFH
FFFFF5B6H	Buffer register CM12	BFCM12	R/W			√	FFFFH
FFFFF5B8H	Buffer register CM13	BFCM13	R/W			V	FFFFH
FFFF5BAH	Timer control register 01	TMC01	R/W			√	0508H
FFFF5BAH	Timer control register 01L	TMC01L	R/W	√	√		08H
FFFF5BBH	Timer control register 01H	TMC01H	R/W	√	√		05H
FFFFF5BCH	Timer unit control register 01	TUC01	R/W	√	√		01H
FFFFF5BDH	Timer output mode register 1	TOMR1	R/W		√		00H
FFFFF5BEH	PWM software timing output register 1	PSTO1	R/W	√	√		00H
FFFFF5BFH	PWM output enable register 1	POER1	R/W	√	√		00H
FFFFF5C0H	TOMR write enable register 1	SPEC1	R/W			V	0000H
FFFFF5D0H	Timer 0 clock selection register	PRM01	R/W	√	√		00H
FFFFF5D8H	Timer 1/timer 2 clock selection register	PRM02	R/W	V	√		00H
FFFFF5E0H	Timer 10	TM10	R/W			V	0000H
FFFF5E2H	Compare register 100	CM100	R/W			V	0000H
FFFF5E4H	Compare register 101	CM101	R/W			√	0000H
FFFF5E6H	Capture/compare register 100	CC100	R/W			√	0000H
FFFF5E8H	Capture/compare register 101	CC101	R/W			√	0000H
FFFF5EAH	Capture/compare control register 0	CCR0	R/W	√	√		00H
FFFFF5EBH	Timer unit mode register 0	ТИМО	R/W	√	√		00H
FFFFF5ECH	Timer control register 10	TMC10	R/W	√	√		00H
FFFF5EDH	Signal edge selection register 10	SESA10	R/W	√	√		00H
FFFFF5EEH	Prescaler mode register 10	PRM10	R/W	√	V		07H
L		i .		i			

(7/11)

				1			(7/11
Address	Function Register Name	Symbol	R/W		for Man		Initial Value
				1 Bit	8 Bits	16 Bits	
FFFFF5EFH	Status register 0	STATUS0	R	√	√		00H
FFFFF5F6H	CC101 capture input selection register	CSL10	R/W	√	√		00H
FFFFF5F8H	Timer 10 noise elimination time selection register	NRC10	R/W	√	√		00H
FFFFF600H	Timer 11	TM11	R/W			√	0000H
FFFFF602H	Compare register 110	CM110	R/W			√	0000H
FFFFF604H	Compare register 111	CM111	R/W			√	0000H
FFFFF606H	Capture/compare register 110	CC110	R/W			√	0000H
FFFFF608H	Capture/compare register 111	CC111	R/W			√	0000H
FFFFF60AH	Capture/compare control register 1	CCR1	R/W	√	√		00H
FFFFF60BH	Timer unit mode register 1	TUM1	R/W	√	√		00H
FFFFF60CH	Timer control register 11	TMC11	R/W	√	√		00H
FFFFF60DH	Signal edge selection register 11	SESA11	R/W	√	√		00H
FFFFF60EH	Prescaler mode register 11	PRM11	R/W	V	V		07H
FFFFF60FH	Status register 1	STATUS1	R	V	√		00H
FFFFF616H	CC111 capture input selection register	CSL11	R/W	√	√		00H
FFFFF618H	Timer 11 noise elimination time selection register	NRC11	R/W	√	√		00H
FFFF620H	Timer connection selection register 0	TMIC0	R/W	√	√		00H
FFFF630H	Timer 2 input filter mode register 0	FEM0	R/W	√	√		00H
FFFFF631H	Timer 2 input filter mode register 1	FEM1	R/W	√	√		00H
FFFFF632H	Timer 2 input filter mode register 2	FEM2	R/W	√	√		00H
FFFFF633H	Timer 2 input filter mode register 3	FEM3	R/W	√	√		00H
FFFFF634H	Timer 2 input filter mode register 4	FEM4	R/W	√	√		00H
FFFFF635H	Timer 2 input filter mode register 5	FEM5	R/W	√	√		00H
FFFF640H	Timer 2 clock stop register 0	STOPTE0	R/W			√	0000H
FFFF640H	Timer 2 clock stop register 0L	STOPTE0L	R		√		00H
FFFFF641H	Timer 2 clock stop register 0H	STOPTE0H	R/W	√	√		00H
FFFFF642H	Timer 2 count clock/control edge selection register 0	CSE0	R/W			√	0000H
FFFFF642H	Timer 2 count clock/control edge selection register 0L	CSE0L	R/W	√	√		00H
FFFFF643H	Timer 2 count clock/control edge selection register 0H	CSE0H	R/W	√	√		00H
FFFFF644H	Timer 2 sub-channel input event edge selection register 0	SESE0	R/W			√	0000H
FFFFF644H	Timer 2 sub-channel input event edge selection register 0L	SESE0L	R/W	√	√		00H
FFFFF645H	Timer 2 sub-channel input event edge selection register 0H	SESE0H	R/W	√	√		00H

(8/11)

				1			(8/11
Address	Function Register Name	Symbol	R/W	Bit Units	for Man	ipulation	Initial Value
				1 Bit	8 Bits	16 Bits	
FFFFF646H	Timer 2 time base control register 0	TCRE0	R/W			√	0000H
FFFF646H	Timer 2 time base control register 0L	TCRE0L	R/W	√	√		00H
FFFF647H	Timer 2 time base control register 0H	TCRE0H	R/W	√	√		00H
FFFFF648H	Timer 2 output control register 0	OCTLE0	R/W			√	0000H
FFFF648H	Timer 2 output control register 0L	OCTLE0L	R/W	√	√		00H
FFFF649H	Timer 2 output control register 0H	OCTLE0H	R/W	√	√		00H
FFFFF64AH	Timer 2 sub-channel 0, 5 capture/compare control register	CMSE050	R/W			√	0000H
FFFFF64CH	Timer 2 sub-channel 1, 2 capture/compare control register	CMSE120	R/W			√	0000H
FFFFF64EH	Timer 2 sub-channel 3, 4 capture/compare control register	CMSE340	R/W			√	0000H
FFFFF650H	Timer 2 sub-channel 1 sub capture/compare register	CVSE10	R/W			√	0000H
FFFFF652H	Timer 2 sub-channel 1 main capture/compare register	CVPE10	R			√	0000H
FFFFF654H	Timer 2 sub-channel 2 sub capture/compare register	CVSE20	R/W			√	0000H
FFFFF656H	Timer 2 sub-channel 2 main capture/compare register	CVPE20	R			√	0000H
FFFFF658H	Timer 2 sub-channel 3 sub capture/compare register	CVSE30	R/W			√	0000H
FFFF65AH	Timer 2 sub-channel 3 main capture/compare register	CVPE30	R			√	0000H
FFFF65CH	Timer 2 sub-channel 4 sub capture/compare register	CVSE40	R/W			√	0000H
FFFFF65EH	Timer 2 sub-channel 4 main capture/compare register	CVPE40	R			√	0000H
FFFFF660H	Timer 2 sub-channel 0 capture/compare register	CVSE00	R/W			√	0000H
FFFFF662H	Timer 2 sub-channel 5 capture/compare register	CVSE50	R/W			√	0000H
FFFFF664H	Timer 2 time base status register 0	TBSTATE0	R/W			V	0101H
FFFF664H	Timer 2 time base status register 0L	TBSTATE0L	R/W	√	√		01H
FFFF665H	Timer 2 time base status register 0H	TBSTATE0H	R/W	√	√		01H
FFFFF666H	Timer 2 capture/compare 1 to 4 status register 0	CCSTATE0	R/W			√	0000H
FFFF666H	Timer 2 capture/compare 1 to 4 status register 0L	CCSTATE0L	R/W	√	√		00H
FFFF667H	Timer 2 capture/compare 1 to 4 status register 0H	CCSTATE0H	R/W	V	√		00H

(9/11)

Address	Function Register Name	Symbol	R/W	Bit Units	for Man	ipulation	Initial Value
				1 Bit	8 Bits	16 Bits	
FFFFF668H	Timer 2 output delay register 0	ODELE0	R/W			V	0000H
FFFF668H	Timer 2 output delay register 0L	ODELE0L	R/W	V	√		00H
FFFF669H	Timer 2 output delay register 0H	ODELE0H	R/W	√	√		00H
FFFFF66AH	Timer 2 software event capture register	CSCE0	R/W			√	0000H
FFFFF680H	Timer 3	ТМЗ	R			√	0000H
FFFFF682H	Capture/compare register 30	CC30	R/W			√	0000H
FFFFF684H	Capture/compare register 31	CC31	R/W			√	0000H
FFFFF686H	Timer control register 30	TMC30	R/W	V	√		00H
FFFFF688H	Timer control register 31	TMC31	R/W	V	√		20H
FFFFF689H	Valid edge selection register	SESC	R/W	$\sqrt{}$	√		00H
FFFFF690H	Timer 3 clock selection register	PRM03	R/W	V	√		00H
FFFFF698H	Timer 3 noise elimination time selection register	NRC3	R/W	V	√		00H
FFFFF800H	Peripheral command register	PHCMD	W		√		Undefined
FFFFF802H	Peripheral status register	PHS	R/W	V	√		00H
FFFFF810H	DMA trigger factor register 0	DTFR0	R/W	V	√		00H
FFFFF812H	DMA trigger factor register 1	DTFR1	R/W	V	√		00H
FFFFF814H	DMA trigger factor register 2	DTFR2	R/W	V	√		00H
FFFFF816H	DMA trigger factor register 3	DTFR3	R/W	V	√		00H
FFFFF820H	Power save mode register	PSMR	R/W	V	√		00H
FFFFF822H	Clock control register	CKC	R/W		√		00H
FFFFF824H	Lock register	LOCKR	R	$\sqrt{}$	√		0000000xB
FFFFF880H	External interrupt mode register 0	INTM0	R/W	$\sqrt{}$	√		00H
FFFFF882H	External interrupt mode register 1	INTM1	R/W	$\sqrt{}$	√		00H
FFFFF884H	External interrupt mode register 2	INTM2	R/W	$\sqrt{}$	√		00H
FFFFF8D4H	Flash programming mode control register	FLPMC	R/W	V	√		08H/0CH/00H ^{Note}
FFFFF900H	Clocked serial interface mode register 0	CSIM0	R/W	V	√		00H
FFFFF901H	Clocked serial interface clock selection register 0	CSIC0	R/W	√	V		00H
FFFFF902H	Clocked serial interface receive buffer register 0	SIRB0	R			√	0000H
FFFF902H	Clocked serial interface receive buffer register L0	SIRBL0	R	√	√		00H
FFFFF904H	Clocked serial interface transmit buffer register 0	SOTB0	R/W			√	0000H
FFFF904H	Clocked serial interface transmit buffer register L0	SOTBL0	R/W	√	√		00H

Note μ PD703116: 00H

 μ PD70F3116: 08H or 0CH (For details, refer to **16.7.12 Flash programming mode control register** (**FLPMC**).)

(10/11)

1		<u> </u>		1			(10/11
Address	Function Register Name	Symbol	R/W	Bit Units	for Man	ipulation	Initial Value
				1 Bit	8 Bits	16 Bits	
FFFFF906H	Clocked serial interface read-only receive buffer register 0	SIRBE0	R			√	0000H
FFFFF906H	Clocked serial interface read-only receive buffer register L0	SIRBEL0	R	√	√		00H
FFFFF908H	Clocked serial interface initial transmit buffer register 0	SOTBF0	R/W			√	0000H
FFFFF908H	Clocked serial interface initial transmit buffer register L0	SOTBFL0	R/W	√	√		00H
FFFFF90AH	Serial I/O shift register 0	SIO0	R			$\sqrt{}$	0000H
FFFFF90AH	Serial I/O shift register L0	SIOL0	R	$\sqrt{}$	√		00H
FFFFF910H	Clocked serial interface mode register 1	CSIM1	R/W	√	√		00H
FFFFF911H	Clocked serial interface clock selection register 1	CSIC1	R/W	√	√		00H
FFFFF912H	Clocked serial interface receive buffer register 1	SIRB1	R			√	0000H
FFFFF912H	Clocked serial interface receive buffer register L1	SIRBL1	R	√	√		00H
FFFFF914H	Clocked serial interface transmit buffer register 1	SOTB1	R/W			√	0000H
FFFFF914H	Clocked serial interface transmit buffer register L1	SOTBL1	R/W	√	√		00H
FFFFF916H	Clocked serial interface read-only receive buffer register 1	SIRBE1	R			√	0000H
FFFFF916H	Clocked serial interface read-only receive buffer register L1	SIRBEL1	R	√	√		00H
FFFFF918H	Clocked serial interface initial transmit buffer register 1	SOTBF1	R/W			√	0000H
FFFFF918H	Clocked serial interface initial transmit buffer register L1	SOTBFL1	R/W	√	√		00H
FFFFF91AH	Serial I/O shift register 1	SIO1	R			√	0000H
FFFFF91AH	Serial I/O shift register L1	SIOL1	R	√	√		00H
FFFFF920H	Prescaler mode register 3	PRSM3	R/W	√	√		00H
FFFFF922H	Prescaler compare register 3	PRSCM3	R/W		√		00H
FFFFF930H	FCAN clock selection register	PRM04	R/W	√	√		00H
FFFFFA00H	Asynchronous serial interface mode register 0	ASIM0	R/W	√	√		01H
FFFFFA02H	Receive buffer register 0	RXB0	R		√		FFH
FFFFFA03H	Asynchronous serial interface status register 0	ASIS0	R		√		00H
FFFFFA04H	Transmit buffer register 0	TXB0	R/W		√		FFH
FFFFFA05H	Asynchronous serial interface transmit status register 0	ASIF0	R	√	√		00H
FFFFFA06H	Clock selection register 0	CKSR0	R/W		V		00H

(11/11)

Address	Function Register Name	Symbol	R/W	Bit Units	for Man	ipulation	(11/11 Initial Value
	3			1 Bit	8 Bits	16 Bits	
FFFFFA07H	Baud rate generator control register 0	BRGC0	R/W		√		FFH
FFFFFA20H	2-frame continuous reception buffer register 1	RXB1	R			√	Undefined
FFFFFA22H	Receive buffer register L1	RXBL1	R		√		Undefined
FFFFFA24H	2-frame continuous transmission shift register 1	TXS1	W			√	Undefined
FFFFFA26H	Transmit shift register L1	TXSL1	W		√		Undefined
FFFFFA28H	Asynchronous serial interface mode register 10	ASIM10	R/W	√	√		81H
FFFFFA2AH	Asynchronous serial interface mode register 11	ASIM11	R/W	√	√		00H
FFFFFA2CH	Asynchronous serial interface status register 1	ASIS1	R	√	√		00H
FFFFFA2EH	Prescaler mode register 1	PRSM1	R/W	√	√		00H
FFFFFA30H	Prescaler compare register 1	PRSCM1	R/W		√		00H
FFFFFA40H	2-frame continuous reception buffer register 2	RXB2	R			√	Undefined
FFFFFA42H	Receive buffer register L2	RXBL2	R		√		Undefined
FFFFFA44H	2-frame continuous transmission shift register 2	TXS2	W			√	Undefined
FFFFFA46H	Transmit shift register L2	TXSL2	W		√		Undefined
FFFFFA48H	Asynchronous serial interface mode register 20	ASIM20	R/W	√	√		81H
FFFFFA4AH	Asynchronous serial interface mode register 21	ASIM21	R/W	√	√		00H
FFFFFA4CH	Asynchronous serial interface status register 2	ASIS2	R	√	√		00H
FFFFFA4EH	Prescaler mode register 2	PRSM2	R/W	V	√		00H
FFFFFA50H	Prescaler compare register 2	PRSCM2	R/W		√		00H
FFFFFA60H	RAM access data buffer register L	NBDL	R/W			√	0000H
FFFFA60H	RAM access data buffer register LL	NBDLL	R/W		√		00H
FFFFA61H	RAM access data buffer register LU	NBDLU	R/W		√		00H
FFFFFA62H	RAM access data buffer register H	NBDH	R/W			√	0000H
FFFFA62H	RAM access data buffer register HL	NBDHL	R/W		V		00H
FFFFA63H	RAM access data buffer register HU	NBDHU	R/W		√		00H
FFFFA64H	DMA source address setting register SL	NBDMSL	R			√	Undefined
FFFFFA66H	DMA source address setting register SH	NBDMSH	R			√	Undefined
FFFFFA68H	DMA destination address setting register DL	NBDMDL	R			√	Undefined
FFFFFA6AH	DMA destination address setting register DH	NBDMDH	R			√	Undefined

3.4.9 Programmable peripheral I/O registers

In the V850E/IA1, the 16 KB area of x0000H to x3FFFH is provided as a programmable peripheral I/O area. In this area, the area between x2000H and x2FFFH is used exclusively for the FCAN controller.

The internal bus of the V850E/IA1 becomes active when the on-chip peripheral I/O register area (FFFF000H to FFFFFFH) or the programmable peripheral I/O register area (xxxxm000H to xxxxnFFFH) is accessed (m = xx00B, n = xx11B). However, the on-chip peripheral I/O area is allocated to the last 4 KB of the programmable peripheral I/O register area. Note that when data is written to this area, the written contents are reflected on the on-chip peripheral I/O area. Therefore, access to this area is prohibited. To access the on-chip peripheral I/O area, be sure to specify addresses FFFF000H to FFFFFFFH.

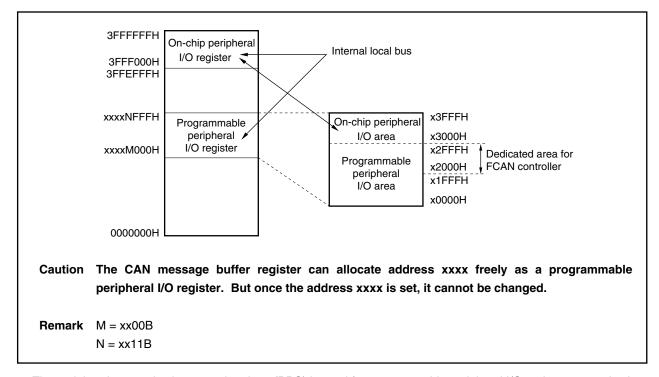
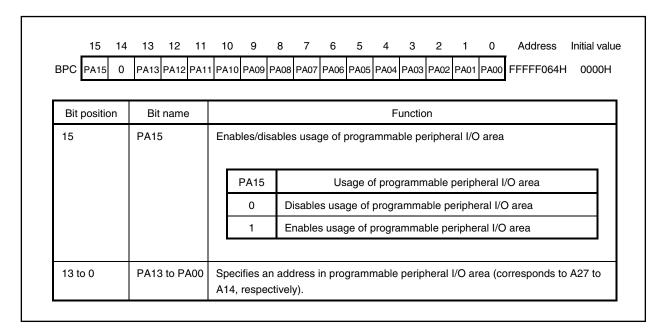
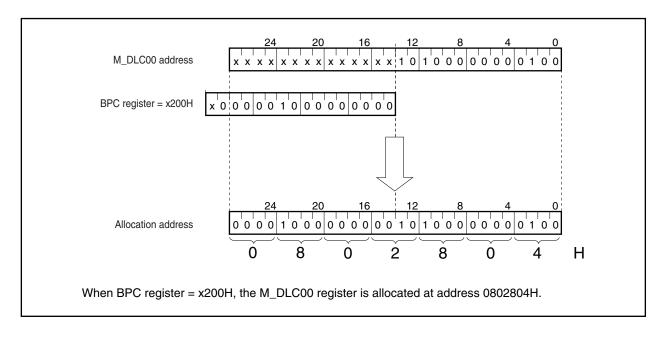


Figure 3-7. Programmable Peripheral I/O Register (Outline)


The peripheral area selection control register (BPC) is used for programmable peripheral I/O register area selection.

Caution When emulating the FCAN controller using the in-circuit emulator (IE-V850E-MC or IE-703116-MC-EM1), perform the following settings in the Configuration screen that appears when the debugger is started.

- Set the start address of the programmable peripheral I/O area that is set using the BPC register to the Programmable I/O Area field.
- Map the programmable peripheral I/O area as "Target" or "Emulation RAM" in the Memory Mapping field.


(1) Peripheral area selection control register (BPC)

This register can be read/written in 16-bit units.

An example of setting for the programmable peripheral I/O register allocation address is shown below.

Figure 3-8. Example of Programmable Peripheral I/O Register Allocation Address Setting

A list of the programmable peripheral I/O registers is shown below.

(1/15)

	T	T					(1/15
Address	Function Register Name	Symbol	R/W	Bit Units	for Man	ipulation	Initial Value
				1 Bit	8 Bits	16 Bits	
xxxxn804H	CAN message data length register 00	M_DLC00	R/W		√		Undefined
xxxxn805H	CAN message control register 00	M_CTRL00	R/W		√		Undefined
xxxxn806H	CAN message time stamp register 00	M_TIME00	R/W			√	Undefined
xxxxn808H	CAN message data register 000	M_DATA000	R/W		√		Undefined
xxxxn809H	CAN message data register 001	M_DATA001	R/W		√		Undefined
xxxxn80AH	CAN message data register 002	M_DATA002	R/W		√		Undefined
xxxxn80BH	CAN message data register 003	M_DATA003	R/W		√		Undefined
xxxxn80CH	CAN message data register 004	M_DATA004	R/W		√		Undefined
xxxxn80DH	CAN message data register 005	M_DATA005	R/W		√		Undefined
xxxxn80EH	CAN message data register 006	M_DATA006	R/W		√		Undefined
xxxxn80FH	CAN message data register 007	M_DATA007	R/W		$\sqrt{}$		Undefined
xxxxn810H	CAN message ID register L00	M_IDL00	R/W			√	Undefined
xxxxn812H	CAN message ID register H00	M_IDH00	R/W			$\sqrt{}$	Undefined
xxxxn814H	CAN message configuration register 00	M_CONF00	R/W		√		Undefined
xxxxn815H	CAN message status register 00	M_STAT00	R		\checkmark		Undefined
xxxxn816H	CAN status set/clear register 00	SC_STAT00	W			√	0000H
xxxxn824H	CAN message data length register 01	M_DLC01	R/W		√		Undefined
xxxxn825H	CAN message control register 01	M_CTRL01	R/W		√		Undefined
xxxxn826H	CAN message time stamp register 01	M_TIME01	R/W			√	Undefined
xxxxn828H	CAN message data register 010	M_DATA010	R/W		√		Undefined
xxxxn829H	CAN message data register 011	M_DATA011	R/W		$\sqrt{}$		Undefined
xxxxn82AH	CAN message data register 012	M_DATA012	R/W		√		Undefined
xxxxn82BH	CAN message data register 013	M_DATA013	R/W		$\sqrt{}$		Undefined
xxxxn82CH	CAN message data register 014	M_DATA014	R/W		√		Undefined
xxxxn82DH	CAN message data register 015	M_DATA015	R/W		√		Undefined
xxxxn82EH	CAN message data register 016	M_DATA016	R/W		√		Undefined
xxxxn82FH	CAN message data register 017	M_DATA017	R/W		√		Undefined
xxxxn830H	CAN message ID register L01	M_IDL01	R/W			V	Undefined
xxxxn832H	CAN message ID register H01	M_IDH01	R/W			√	Undefined
xxxxn834H	CAN message configuration register 01	M_CONF01	R/W		√		Undefined
xxxxn835H	CAN message status register 01	M_STAT01	R		√		Undefined
xxxxn836H	CAN status set/clear register 01	SC_STAT01	W			√	0000H
xxxxn844H	CAN message data length register 02	M_DLC02	R/W		√		Undefined
xxxxn845H	CAN message control register 02	M_CTRL02	R/W		√		Undefined
xxxxn846H	CAN message time stamp register 02	M_TIME02	R/W			√	Undefined
xxxxn848H	CAN message data register 020	M_DATA020	R/W		√		Undefined

(2/15)

							(2/15
Address	Function Register Name	Symbol	R/W		for Man		Initial Value
				1 Bit	8 Bits	16 Bits	
xxxxn849H	CAN message data register 021	M_DATA021	R/W		√		Undefined
xxxxn84AH	CAN message data register 022	M_DATA022	R/W		√		Undefined
xxxxn84BH	CAN message data register 023	M_DATA023	R/W		√		Undefined
xxxxn84CH	CAN message data register 024	M_DATA024	R/W		√		Undefined
xxxxn84DH	CAN message data register 025	M_DATA025	R/W		√		Undefined
xxxxn84EH	CAN message data register 026	M_DATA026	R/W		√		Undefined
xxxxn84FH	CAN message data register 027	M_DATA027	R/W		√		Undefined
xxxxn850H	CAN message ID register L02	M_IDL02	R/W			√	Undefined
xxxxn852H	CAN message ID register H02	M_IDH02	R/W			√	Undefined
xxxxn854H	CAN message configuration register 02	M_CONF02	R/W		√		Undefined
xxxxn855H	CAN message status register 02	M_STAT02	R		√		Undefined
xxxxn856H	CAN status set/clear register 02	SC_STAT02	W			√	0000H
xxxxn864H	CAN message data length register 03	M_DLC03	R/W		V		Undefined
xxxxn865H	CAN message control register 03	M_CTRL03	R/W		√		Undefined
xxxxn866H	CAN message time stamp register 03	M_TIME03	R/W			√	Undefined
xxxxn868H	CAN message data register 030	M_DATA030	R/W		V		Undefined
xxxxn869H	CAN message data register 031	M_DATA031	R/W		√		Undefined
xxxxn86AH	CAN message data register 032	M_DATA032	R/W		V		Undefined
xxxxn86BH	CAN message data register 033	M_DATA033	R/W		V		Undefined
xxxxn86CH	CAN message data register 034	M_DATA034	R/W		V		Undefined
xxxxn86DH	CAN message data register 035	M_DATA035	R/W		V		Undefined
xxxxn86EH	CAN message data register 036	M_DATA036	R/W		V		Undefined
xxxxn86FH	CAN message data register 037	M_DATA037	R/W		V		Undefined
xxxxn870H	CAN message ID register L03	M_IDL03	R/W			√	Undefined
xxxxn872H	CAN message ID register H03	M_IDH03	R/W			√	Undefined
xxxxn874H	CAN message configuration register 03	M_CONF03	R/W		V		Undefined
xxxxn875H	CAN message status register 03	M_STAT03	R		V		Undefined
xxxxn876H	CAN status set/clear register 03	SC_STAT03	W			√	0000H
xxxxn884H	CAN message data length register 04	M_DLC04	R/W		√		Undefined
xxxxn885H	CAN message control register 04	M_CTRL04	R/W		V		Undefined
xxxxn886H	CAN message time stamp register 04	M_TIME04	R/W			√	Undefined
xxxxn888H	CAN message data register 040	M_DATA040	R/W		√		Undefined
xxxxn889H	CAN message data register 041	M_DATA041	R/W		V		Undefined
xxxxn88AH	CAN message data register 042	M_DATA042	R/W		√		Undefined
xxxxn88BH	CAN message data register 043	M_DATA043	R/W		√		Undefined
xxxxn88CH	CAN message data register 044	M_DATA044	R/W		√		Undefined

(3/15)

		1	T	1		1	(3/15
Address	Function Register Name	Symbol	R/W	Bit Units	for Man		Initial Value
				1 Bit	8 Bits	16 Bits	
xxxxn88DH	CAN message data register 045	M_DATA045	R/W		√		Undefined
xxxxn88EH	CAN message data register 046	M_DATA046	R/W		√		Undefined
xxxxn88FH	CAN message data register 047	M_DATA047	R/W		√		Undefined
xxxxn890H	CAN message ID register L04	M_IDL04	R/W			√	Undefined
xxxxn882H	CAN message ID register H04	M_IDH04	R/W			√	Undefined
xxxxn894H	CAN message configuration register 04	M_CONF04	R/W		√		Undefined
xxxxn895H	CAN message status register 04	M_STAT04	R		√		Undefined
xxxxn896H	CAN status set/clear register 04	SC_STAT04	W			√	0000H
xxxxn8A4H	CAN message data length register 05	M_DLC05	R/W		√		Undefined
xxxxn8A5H	CAN message control register 05	M_CTRL05	R/W		√		Undefined
xxxxn8A6H	CAN message time stamp register 05	M_TIME05	R/W			√	Undefined
xxxxn8A8H	CAN message data register 050	M_DATA050	R/W		√		Undefined
xxxxn8A9H	CAN message data register 051	M_DATA051	R/W		√		Undefined
xxxxn8AAH	CAN message data register 052	M_DATA052	R/W		√		Undefined
xxxxn8ABH	CAN message data register 053	M_DATA053	R/W		√		Undefined
xxxxn8ACH	CAN message data register 054	M_DATA054	R/W		√		Undefined
xxxxn8ADH	CAN message data register 055	M_DATA055	R/W		√		Undefined
xxxxn8AEH	CAN message data register 056	M_DATA056	R/W		√		Undefined
xxxxn8AFH	CAN message data register 057	M_DATA057	R/W		√		Undefined
xxxxn8B0H	CAN message ID register L05	M_IDL05	R/W			√	Undefined
xxxxn8B2H	CAN message ID register H05	M_IDH05	R/W			√	Undefined
xxxxn8B4H	CAN message configuration register 05	M_CONF05	R/W		√		Undefined
xxxxn8B5H	CAN message status register 05	M_STAT05	R		√		Undefined
xxxxn8B6H	CAN status set/clear register 05	SC_STAT05	W			√	0000H
xxxxn8C4H	CAN message data length register 06	M_DLC06	R/W		√		Undefined
xxxxn8C5H	CAN message control register 06	M_CTRL06	R/W		√		Undefined
xxxxn8C6H	CAN message time stamp register 06	M_TIME06	R/W			√	Undefined
xxxxn8C8H	CAN message data register 060	M_DATA060	R/W		√		Undefined
xxxxn8C9H	CAN message data register 061	M_DATA061	R/W		√		Undefined
xxxxn8CAH	CAN message data register 062	M_DATA062	R/W		√		Undefined
xxxxn8CBH	CAN message data register 063	M_DATA063	R/W		√		Undefined
xxxxn8CCH	CAN message data register 064	M_DATA064	R/W		√		Undefined
xxxxn8CDH	CAN message data register 065	M_DATA065	R/W		√		Undefined
xxxxn8CEH	CAN message data register 066	M_DATA066	R/W		√		Undefined
xxxxn8CFH	CAN message data register 067	M_DATA067	R/W		√		Undefined
xxxxn8D0H	CAN message ID register L06	M_IDL06	R/W			√	Undefined

(4/15)

Address	Function Register Name	Symbol	R/W	Bit Units	for Man	ipulation	(4/1) Initial Value
				1 Bit	8 Bits	16 Bits	
xxxxn8D2H	CAN message ID register H06	M_IDH06	R/W			√	Undefined
xxxxn8D4H	CAN message configuration register 06	M_CONF06	R/W		√		Undefined
xxxxn8D5H	CAN message status register 06	M_STAT06	R		√		Undefined
xxxxn8D6H	CAN status set/clear register 06	SC_STAT06	W			√	0000H
xxxxn8E4H	CAN message data length register 07	M_DLC07	R/W		V		Undefined
xxxxn8E5H	CAN message control register 07	M_CTRL07	R/W		V		Undefined
xxxxn8E6H	CAN message time stamp register 07	M_TIME07	R/W			V	Undefined
xxxxn8E8H	CAN message data register 070	M_DATA070	R/W		V		Undefined
xxxxn8E9H	CAN message data register 071	M_DATA071	R/W		V		Undefined
xxxxn8EAH	CAN message data register 072	M_DATA072	R/W		V		Undefined
xxxxn8EBH	CAN message data register 073	M_DATA073	R/W		√		Undefined
xxxxn8ECH	CAN message data register 074	M_DATA074	R/W		√		Undefined
xxxxn8EDH	CAN message data register 075	M_DATA075	R/W		√		Undefined
xxxxn8EEH	CAN message data register 076	M_DATA076	R/W		√		Undefined
xxxxn8EFH	CAN message data register 077	M_DATA077	R/W		V		Undefined
xxxxn8F0H	CAN message ID register L07	M_IDL07	R/W			√	Undefined
xxxxn8F2H	CAN message ID register H07	M_IDH07	R/W			√	Undefined
xxxxn8F4H	CAN message configuration register 07	M_CONF07	R/W		√		Undefined
xxxxn8F5H	CAN message status register 07	M_STAT07	R		√		Undefined
xxxxn8F6H	CAN status set/clear register 07	SC_STAT07	W			√	0000H
xxxxn904H	CAN message data length register 08	M_DLC08	R/W		√		Undefined
xxxxn905H	CAN message control register 08	M_CTRL08	R/W		√		Undefined
xxxxn906H	CAN message time stamp register 08	M_TIME08	R/W			√	Undefined
xxxxn908H	CAN message data register 080	M_DATA080	R/W		√		Undefined
xxxxn909H	CAN message data register 081	M_DATA081	R/W		√		Undefined
xxxxn90AH	CAN message data register 082	M_DATA082	R/W		√		Undefined
xxxxn90BH	CAN message data register 083	M_DATA083	R/W		√		Undefined
xxxxn90CH	CAN message data register 084	M_DATA084	R/W		√		Undefined
xxxxn90DH	CAN message data register 085	M_DATA085	R/W		√		Undefined
xxxxn90EH	CAN message data register 086	M_DATA086	R/W		√		Undefined
xxxxn90FH	CAN message data register 087	M_DATA087	R/W		√		Undefined
xxxxn910H	CAN message ID register L08	M_IDL08	R/W			√	Undefined
xxxxn912H	CAN message ID register H08	M_IDH08	R/W			√	Undefined
xxxxn914H	CAN message configuration register 08	M_CONF08	R/W		√		Undefined
xxxxn915H	CAN message status register 08	M_STAT08	R		√		Undefined
xxxxn916H	CAN status set/clear register 08	SC_STAT08	W			√	0000H

(5/15)

امام ۸	Function Devictor Nove	Courselle ed	D 444	District	fault-	(5/15	
Address	Function Register Name	Symbol	R/W		for Man		Initial Value
			_	1 Bit	8 Bits	16 Bits	
xxxxn924H	CAN message data length register 09	M_DLC09	R/W		√ .		Undefined
xxxxn925H	CAN message control register 09	M_CTRL09	R/W		√		Undefined
xxxxn926H	CAN message time stamp register 09	M_TIME09	R/W			√	Undefined
xxxxn928H	CAN message data register 090	M_DATA090	R/W		√		Undefined
xxxxn929H	CAN message data register 091	M_DATA091	R/W		√		Undefined
xxxxn92AH	CAN message data register 092	M_DATA092	R/W		√		Undefined
xxxxn92BH	CAN message data register 093	M_DATA093	R/W		√		Undefined
xxxxn92CH	CAN message data register 094	M_DATA094	R/W		√		Undefined
xxxxn92DH	CAN message data register 095	M_DATA095	R/W		√		Undefined
xxxxn92EH	CAN message data register 096	M_DATA096	R/W		√		Undefined
xxxxn92FH	CAN message data register 097	M_DATA097	R/W		$\sqrt{}$		Undefined
xxxxn930H	CAN message ID register L09	M_IDL09	R/W			√	Undefined
xxxxn932H	CAN message ID register H09	M_IDH09	R/W			√	Undefined
xxxxn934H	CAN message configuration register 09	M_CONF09	R/W		√		Undefined
xxxxn935H	CAN message status register 09	M_STAT09	R		V		Undefined
xxxxn936H	CAN status set/clear register 09	SC_STAT09	W			√	0000H
xxxxn944H	CAN message data length register 10	M_DLC10	R/W		√		Undefined
xxxxn945H	CAN message control register 10	M_CTRL10	R/W		√		Undefined
xxxxn946H	CAN message time stamp register 10	M_TIME10	R/W			√	Undefined
xxxxn948H	CAN message data register 100	M_DATA100	R/W		√		Undefined
xxxxn949H	CAN message data register 101	M_DATA101	R/W		√		Undefined
xxxxn94AH	CAN message data register 102	M_DATA102	R/W		√		Undefined
xxxxn94BH	CAN message data register 103	M_DATA103	R/W		√		Undefined
xxxxn94CH	CAN message data register 104	M_DATA104	R/W		√		Undefined
xxxxn94DH	CAN message data register 105	M_DATA105	R/W		√		Undefined
xxxxn94EH	CAN message data register 106	M_DATA106	R/W		√		Undefined
xxxxn94FH	CAN message data register 107	M_DATA107	R/W		√		Undefined
xxxxn950H	CAN message ID register L10	M_IDL10	R/W			√	Undefined
xxxxn952H	CAN message ID register H10	M_IDH10	R/W			√	Undefined
xxxxn954H	CAN message configuration register 10	M_CONF10	R/W		√		Undefined
xxxxn955H	CAN message status register 10	M_STAT10	R		√		Undefined
xxxxn956H	CAN status set/clear register 10	SC_STAT10	W			√	0000H
xxxxn964H	CAN message data length register 11	M_DLC11	R/W		√		Undefined
xxxxn965H	CAN message control register 11	M_CTRL11	R/W		√		Undefined
xxxxn966H	CAN message time stamp register 11	M_TIME11	R/W			√	Undefined
xxxxn968H	CAN message data register 110	M_DATA110	R/W		√		Undefined

(6/15)

	T	T					(6/15
Address	Function Register Name	Symbol	R/W	Bit Units	for Man		Initial Value
				1 Bit	8 Bits	16 Bits	
xxxxn969H	CAN message data register 111	M_DATA111	R/W		√		Undefined
xxxxn96AH	CAN message data register 112	M_DATA112	R/W		√		Undefined
xxxxn96BH	CAN message data register 113	M_DATA113	R/W		√		Undefined
xxxxn96CH	CAN message data register 114	M_DATA114	R/W		√		Undefined
xxxxn96DH	CAN message data register 115	M_DATA115	R/W		√		Undefined
xxxxn96EH	CAN message data register 116	M_DATA116	R/W		√		Undefined
xxxxn96FH	CAN message data register 117	M_DATA117	R/W		√		Undefined
xxxxn970H	CAN message ID register L11	M_IDL11	R/W			√	Undefined
xxxxn972H	CAN message ID register H11	M_IDH11	R/W			√	Undefined
xxxxn974H	CAN message configuration register 11	M_CONF11	R/W		√		Undefined
xxxxn975H	CAN message status register 11	M_STAT11	R		√		Undefined
xxxxn976H	CAN status set/clear register 11	SC_STAT11	W			√	0000H
xxxxn984H	CAN message data length register 12	M_DLC12	R/W		√		Undefined
xxxxn985H	CAN message control register 12	M_CTRL12	R/W		√		Undefined
xxxxn986H	CAN message time stamp register 12	M_TIME12	R/W			√	Undefined
xxxxn988H	CAN message data register 120	M_DATA120	R/W		√		Undefined
xxxxn989H	CAN message data register 121	M_DATA121	R/W		√		Undefined
xxxxn98AH	CAN message data register 122	M_DATA122	R/W		√		Undefined
xxxxn98BH	CAN message data register 123	M_DATA123	R/W		√		Undefined
xxxxn98CH	CAN message data register 124	M_DATA124	R/W		√		Undefined
xxxxn98DH	CAN message data register 125	M_DATA125	R/W		√		Undefined
xxxxn98EH	CAN message data register 126	M_DATA126	R/W		√		Undefined
xxxxn98FH	CAN message data register 127	M_DATA127	R/W		√		Undefined
xxxxn990H	CAN message ID register L12	M_IDL12	R/W			√	Undefined
xxxxn992H	CAN message ID register H12	M_IDH12	R/W			V	Undefined
xxxxn994H	CAN message configuration register 12	M_CONF12	R/W		V		Undefined
xxxxn995H	CAN message status register 12	M_STAT12	R		V		Undefined
xxxxn996H	CAN status set/clear register 12	SC_STAT12	W			V	0000H
xxxxn9A4H	CAN message data length register 13	M_DLC13	R/W		V		Undefined
xxxxn9A5H	CAN message control register 13	M_CTRL13	R/W		V		Undefined
xxxxn9A6H	CAN message time stamp register 13	M_TIME13	R/W			√	Undefined
xxxxn9A8H	CAN message data register 130	M_DATA130	R/W		V		Undefined
xxxxn9A9H	CAN message data register 131	M_DATA131	R/W		√		Undefined
xxxxn9AAH	CAN message data register 132	M_DATA132	R/W		√		Undefined
xxxxn9ABH	CAN message data register 133	M_DATA133	R/W		√		Undefined
xxxxn9ACH	CAN message data register 134	M_DATA134	R/W		√		Undefined

(7/15)

Address Function Register Name Symbol R/W Bit Units for Manipulation							(7/15
Address	Function Register Name	Symbol	R/W				Initial Value
				1 Bit	8 Bits	16 Bits	
xxxxn9ADH	CAN message data register 135	M_DATA135	R/W		√		Undefined
xxxxn9AEH	CAN message data register 136	M_DATA136	R/W		√		Undefined
xxxxn9AFH	CAN message data register 137	M_DATA137	R/W		√		Undefined
xxxxn9B0H	CAN message ID register L13	M_IDL13	R/W			√	Undefined
xxxxn9B2H	CAN message ID register H13	M_IDH13	R/W			√	Undefined
xxxxn9B4H	CAN message configuration register 13	M_CONF13	R/W		√		Undefined
xxxxn9B5H	CAN message status register 13	M_STAT13	R		√		Undefined
xxxxn9B6H	CAN status set/clear register 13	SC_STAT13	W			√	0000H
xxxxn9C4H	CAN message data length register 14	M_DLC14	R/W		√		Undefined
xxxxn9C5H	CAN message control register 14	M_CTRL14	R/W		√		Undefined
xxxxn9C6H	CAN message time stamp register 14	M_TIME14	R/W			√	Undefined
xxxxn9C8H	CAN message data register 140	M_DATA140	R/W		$\sqrt{}$		Undefined
xxxxn9C9H	CAN message data register 141	M_DATA141	R/W		$\sqrt{}$		Undefined
xxxxn9CAH	CAN message data register 142	M_DATA142	R/W		$\sqrt{}$		Undefined
xxxxn9CBH	CAN message data register 143	M_DATA143	R/W		√		Undefined
xxxxn9CCH	CAN message data register 144	M_DATA144	R/W		$\sqrt{}$		Undefined
xxxxn9CDH	CAN message data register 145	M_DATA145	R/W		√		Undefined
xxxxn9CEH	CAN message data register 146	M_DATA146	R/W		√		Undefined
xxxxn9CFH	CAN message data register 147	M_DATA147	R/W		√		Undefined
xxxxn9D0H	CAN message ID register L14	M_IDL14	R/W			$\sqrt{}$	Undefined
xxxxn9D2H	CAN message ID register H14	M_IDH14	R/W			$\sqrt{}$	Undefined
xxxxn9D4H	CAN message configuration register 14	M_CONF14	R/W		√		Undefined
xxxxn9D5H	CAN message status register 14	M_STAT14	R		√		Undefined
xxxxn9D6H	CAN status set/clear register 14	SC_STAT14	W			√	0000H
xxxxn9E4H	CAN message data length register 15	M_DLC15	R/W		√		Undefined
xxxxn9E5H	CAN message control register 15	M_CTRL15	R/W		√		Undefined
xxxxn9E6H	CAN message time stamp register 15	M_TIME15	R/W			√	Undefined
xxxxn9E8H	CAN message data register 150	M_DATA150	R/W		√		Undefined
xxxxn9E9H	CAN message data register 151	M_DATA151	R/W		√		Undefined
xxxxn9EAH	CAN message data register 152	M_DATA152	R/W		√		Undefined
xxxxn9EBH	CAN message data register 153	M_DATA153	R/W		V		Undefined
xxxxn9ECH	CAN message data register 154	M_DATA154	R/W		√		Undefined
xxxxn9EDH	CAN message data register 155	M_DATA155	R/W		V		Undefined
xxxxn9EEH	CAN message data register 156	M_DATA156	R/W		V		Undefined
xxxxn9EFH	CAN message data register 157	M_DATA157	R/W		V		Undefined
xxxxn9F0H	CAN message ID register L15	M_IDL15	R/W			√	Undefined

(8/15)

	1	1					(8/15
Address	Function Register Name	Symbol	R/W	Bit Units	for Man	ipulation	Initial Value
				1 Bit	8 Bits	16 Bits	
xxxxn9F2H	CAN message ID register H15	M_IDH15	R/W			√	Undefined
xxxxn9F4H	CAN message configuration register 15	M_CONF15	R/W		√		Undefined
xxxxn9F5H	CAN message status register 15	M_STAT15	R		√		Undefined
xxxxn9F6H	CAN status set/clear register 15	SC_STAT15	W			$\sqrt{}$	0000H
xxxxnA04H	CAN message data length register 16	M_DLC16	R/W		√		Undefined
xxxxnA05H	CAN message control register 16	M_CTRL16	R/W		√		Undefined
xxxxnA06H	CAN message time stamp register 16	M_TIME16	R/W			√	Undefined
xxxxnA08H	CAN message data register 160	M_DATA160	R/W		√		Undefined
xxxxnA09H	CAN message data register 161	M_DATA161	R/W		√		Undefined
xxxxnA0AH	CAN message data register 162	M_DATA162	R/W		√		Undefined
xxxxnA0BH	CAN message data register 163	M_DATA163	R/W		√		Undefined
xxxxnA0CH	CAN message data register 164	M_DATA164	R/W		√		Undefined
xxxxnA0DH	CAN message data register 165	M_DATA165	R/W		√		Undefined
xxxxnA0EH	CAN message data register 166	M_DATA166	R/W		√		Undefined
xxxxnA0FH	CAN message data register 167	M_DATA167	R/W		√		Undefined
xxxxnA10H	CAN message ID register L16	M_IDL16	R/W			√	Undefined
xxxxnA12H	CAN message ID register H16	M_IDH16	R/W			√	Undefined
xxxxnA14H	CAN message configuration register 16	M_CONF16	R/W		√		Undefined
xxxxnA15H	CAN message status register 16	M_STAT16	R		√		Undefined
xxxxnA16H	CAN status set/clear register 16	SC_STAT16	W			√	0000H
xxxxnA24H	CAN message data length register 17	M_DLC17	R/W		√		Undefined
xxxxnA25H	CAN message control register 17	M_CTRL17	R/W		√		Undefined
xxxxnA26H	CAN message time stamp register 17	M_TIME17	R/W			√	Undefined
xxxxnA28H	CAN message data register 170	M_DATA170	R/W		√		Undefined
xxxxnA29H	CAN message data register 171	M_DATA171	R/W		√		Undefined
xxxxnA2AH	CAN message data register 172	M_DATA172	R/W		√		Undefined
xxxxnA2BH	CAN message data register 173	M_DATA173	R/W		√		Undefined
xxxxnA2CH	CAN message data register 174	M_DATA174	R/W		√		Undefined
xxxxnA2DH	CAN message data register 175	M_DATA175	R/W		√		Undefined
xxxxnA2EH	CAN message data register 176	M_DATA176	R/W		√		Undefined
xxxxnA2FH	CAN message data register 177	M_DATA177	R/W		V		Undefined
xxxxnA30H	CAN message ID register L17	M_IDL17	R/W			√	Undefined
xxxxnA32H	CAN message ID register H17	M_IDH17	R/W			√	Undefined
xxxxnA34H	CAN message configuration register 17	M_CONF17	R/W		V		Undefined
xxxxnA35H	CAN message status register 17	M_STAT17	R		V		Undefined
xxxxnA36H	CAN status set/clear register 17	SC_STAT17	W			√	0000H

(9/15)

A alidore	Funding Desires N	01	D 444	Da LL		(9/15	
Address	Function Register Name	Symbol	R/W		for Man		Initial Value
				1 Bit	8 Bits	16 Bits	
xxxxnA44H	CAN message data length register 18	M_DLC18	R/W		√		Undefined
xxxxnA45H	CAN message control register 18	M_CTRL18	R/W		√		Undefined
xxxxnA46H	CAN message time stamp register 18	M_TIME18	R/W			√	Undefined
xxxxnA48H	CAN message data register 180	M_DATA180	R/W		√		Undefined
xxxxnA49H	CAN message data register 181	M_DATA181	R/W		√		Undefined
xxxxnA4AH	CAN message data register 182	M_DATA182	R/W		√		Undefined
xxxxnA4BH	CAN message data register 183	M_DATA183	R/W		√		Undefined
xxxxnA4CH	CAN message data register 184	M_DATA184	R/W		√		Undefined
xxxxnA4DH	CAN message data register 185	M_DATA185	R/W		√		Undefined
xxxxnA4EH	CAN message data register 186	M_DATA186	R/W		√		Undefined
xxxxnA4FH	CAN message data register 187	M_DATA187	R/W		V		Undefined
xxxxnA50H	CAN message ID register L18	M_IDL18	R/W			√	Undefined
xxxxnA52H	CAN message ID register H18	M_IDH18	R/W			√	Undefined
xxxxnA54H	CAN message configuration register 18	M_CONF18	R/W		√		Undefined
xxxxnA55H	CAN message status register 18	M_STAT18	R		√		Undefined
xxxxnA56H	CAN status set/clear register 18	SC_STAT18	W			√	0000H
xxxxnA64H	CAN message data length register 19	M_DLC19	R/W		√		Undefined
xxxxnA65H	CAN message control register 19	M_CTRL19	R/W		√		Undefined
xxxxnA66H	CAN message time stamp register 19	M_TIME19	R/W			V	Undefined
xxxxnA68H	CAN message data register 190	M_DATA190	R/W		√		Undefined
xxxxnA69H	CAN message data register 191	M_DATA191	R/W		√		Undefined
xxxxnA6AH	CAN message data register 192	M_DATA192	R/W		√		Undefined
xxxxnA6BH	CAN message data register 193	M_DATA193	R/W		√		Undefined
xxxxnA6CH	CAN message data register 194	M_DATA194	R/W		√		Undefined
xxxxnA6DH	CAN message data register 195	M_DATA195	R/W		√		Undefined
xxxxnA6EH	CAN message data register 196	M_DATA196	R/W		√		Undefined
xxxxnA6FH	CAN message data register 197	M_DATA197	R/W		√		Undefined
xxxxnA70H	CAN message ID register L19	M_IDL19	R/W			√	Undefined
xxxxnA72H	CAN message ID register H19	M_IDH19	R/W			√	Undefined
xxxxnA74H	CAN message configuration register 19	M_CONF19	R/W		√		Undefined
xxxxnA75H	CAN message status register 19	M_STAT19	R		√		Undefined
xxxxnA76H	CAN status set/clear register 19	SC_STAT19	W			√	0000H
xxxxnA84H	CAN message data length register 20	M_DLC20	R/W		√		Undefined
xxxxnA85H	CAN message control register 20	M_CTRL20	R/W		√		Undefined
xxxxnA86H	CAN message time stamp register 20	M_TIME20	R/W			√	Undefined
xxxxnA88H	CAN message data register 200	M_DATA200	R/W		√		Undefined

(10/15)

Address	Function Register Name	Symbol	R/W	Bit Unite	s for Man	ipulation	(10/15 Initial Value
Addicas	T unction riegister Name	Cymbol	1000	1 Bit	8 Bits	16 Bits	initial value
xxxxnA89H	CAN message data register 201	M DATA201	R/W	1 510	√ Jito	TO DILO	Undefined
xxxxnA8AH	CAN message data register 202	M_DATA202	R/W		· √		Undefined
xxxxnA8BH	CAN message data register 203	M DATA203	R/W		√ V		Undefined
xxxxnA8CH	CAN message data register 204	M_DATA204	R/W		√ V		Undefined
xxxxnA8DH	CAN message data register 205	M_DATA205	R/W		√		Undefined
xxxxnA8EH	CAN message data register 206	M DATA206	R/W		√ V		Undefined
xxxxnA8FH	CAN message data register 207	M_DATA207	R/W		√		Undefined
xxxxnA90H	CAN message ID register L20	M_IDL20	R/W			√	Undefined
xxxxnA92H	CAN message ID register H20	M_IDH20	R/W			√	Undefined
xxxxnA94H	CAN message configuration register 20	M_CONF20	R/W		√		Undefined
xxxxnA95H	CAN message status register 20	M_STAT20	R		√		Undefined
xxxxnA96H	CAN status set/clear register 20	SC_STAT20	W			√	0000H
xxxxnAA4H	CAN message data length register 21	M_DLC21	R/W		√		Undefined
xxxxnAA5H	CAN message control register 21	M_CTRL21	R/W		√		Undefined
xxxxnAA6H	CAN message time stamp register 21	M_TIME21	R/W			√	Undefined
xxxxnAA8H	CAN message data register 210	M_DATA210	R/W		√		Undefined
xxxxnAA9H	CAN message data register 211	M_DATA211	R/W		√		Undefined
xxxxnAAAH	CAN message data register 212	M_DATA212	R/W		√		Undefined
xxxxnAABH	CAN message data register 213	M_DATA213	R/W		√		Undefined
xxxxnAACH	CAN message data register 214	M_DATA214	R/W		√		Undefined
xxxxnAADH	CAN message data register 215	M_DATA215	R/W		√		Undefined
xxxxnAAEH	CAN message data register 216	M_DATA216	R/W		V		Undefined
xxxxnAAFH	CAN message data register 217	M_DATA217	R/W		V		Undefined
xxxxnAB0H	CAN message ID register L21	M_IDL21	R/W			V	Undefined
xxxxnAB2H	CAN message ID register H21	M_IDH21	R/W			√	Undefined
xxxxnAB4H	CAN message configuration register 21	M_CONF21	R/W		V		Undefined
xxxxnAB5H	CAN message status register 21	M_STAT21	R		√		Undefined
xxxxnAB6H	CAN status set/clear register 21	SC_STAT21	W			V	0000H
xxxxnAC4H	CAN message data length register 22	M_DLC22	R/W		√		Undefined
xxxxnAC5H	CAN message control register 22	M_CTRL22	R/W		V		Undefined
xxxxnAC6H	CAN message time stamp register 22	M_TIME22	R/W			V	Undefined
xxxxnAC8H	CAN message data register 220	M_DATA220	R/W		√		Undefined
xxxxnAC9H	CAN message data register 221	M_DATA221	R/W		√		Undefined
xxxxnACAH	CAN message data register 222	M_DATA222	R/W		√		Undefined
xxxxnACBH	CAN message data register 223	M_DATA223	R/W		√		Undefined
xxxxnACCH	CAN message data register 224	M_DATA224	R/W		V		Undefined

(11/15)

Address	Function Register Name	Symbol	R/W	Bit Units	for Man	ipulation	(11/15 Initial Value
				1 Bit	8 Bits	16 Bits	
xxxxnACDH	CAN message data register 225	M_DATA225	R/W		√		Undefined
xxxxnACEH	CAN message data register 226	M_DATA226	R/W		√		Undefined
xxxxnACFH	CAN message data register 227	M_DATA227	R/W		√		Undefined
xxxxnAD0H	CAN message ID register L22	M_IDL22	R/W			√	Undefined
xxxxnAD2H	CAN message ID register H22	M_IDH22	R/W			√	Undefined
xxxxnAD4H	CAN message configuration register 22	M_CONF22	R/W		V		Undefined
xxxxnAD5H	CAN message status register 22	M_STAT22	R		√		Undefined
xxxxnAD6H	CAN status set/clear register 22	SC_STAT22	W			V	0000H
xxxxnAE4H	CAN message data length register 23	M_DLC23	R/W		√		Undefined
xxxxnAE5H	CAN message control register 23	M_CTRL23	R/W		√		Undefined
xxxxnAE6H	CAN message time stamp register 23	M_TIME23	R/W			√	Undefined
xxxxnAE8H	CAN message data register 230	M_DATA230	R/W		√		Undefined
xxxxnAE9H	CAN message data register 231	M_DATA231	R/W		V		Undefined
xxxxnAEAH	CAN message data register 232	M_DATA232	R/W		√		Undefined
xxxxnAEBH	CAN message data register 233	M_DATA233	R/W		√		Undefined
xxxxnAECH	CAN message data register 234	M_DATA234	R/W		√		Undefined
xxxxnAEDH	CAN message data register 235	M_DATA235	R/W		√		Undefined
xxxxnAEEH	CAN message data register 236	M_DATA236	R/W		√		Undefined
xxxxnAEFH	CAN message data register 237	M_DATA237	R/W		√		Undefined
xxxxnAF0H	CAN message ID register L23	M_IDL23	R/W			√	Undefined
xxxxnAF2H	CAN message ID register H23	M_IDH23	R/W			√	Undefined
xxxxnAF4H	CAN message configuration register 23	M_CONF23	R/W		√		Undefined
xxxxnAF5H	CAN message status register 23	M_STAT23	R		√		Undefined
xxxxnAF6H	CAN status set/clear register 23	SC_STAT23	W			√	0000H
xxxxnB04H	CAN message data length register 24	M_DLC24	R/W		√		Undefined
xxxxnB05H	CAN message control register 24	M_CTRL24	R/W		√		Undefined
xxxxnB06H	CAN message time stamp register 24	M_TIME24	R/W			√	Undefined
xxxxnB08H	CAN message data register 240	M_DATA240	R/W		V		Undefined
xxxxnB09H	CAN message data register 241	M_DATA241	R/W		V		Undefined
xxxxnB0AH	CAN message data register 242	M_DATA242	R/W		V		Undefined
xxxxnB0BH	CAN message data register 243	M_DATA243	R/W		√		Undefined
xxxxnB0CH	CAN message data register 244	M_DATA244	R/W		V		Undefined
xxxxnB0DH	CAN message data register 245	M_DATA245	R/W		√		Undefined
xxxxnB0EH	CAN message data register 246	M_DATA246	R/W		V		Undefined
xxxxnB0FH	CAN message data register 247	M_DATA247	R/W		√		Undefined
xxxxnB10H	CAN message ID register L24	M_IDL24	R/W			V	Undefined

(12/15)

Address	Function Register Name	Symbol	R/W	Bit Units	for Man	ipulation	(12/15 Initial Value
71001000	T anotion register reame	- Cymbol	1000	1 Bit	8 Bits	16 Bits	milai vaido
xxxxnB12H	CAN message ID register H24	M_IDH24	R/W			√	Undefined
xxxxnB14H	CAN message configuration register 24	M_CONF24	R/W		√		Undefined
xxxxnB15H	CAN message status register 24	M_STAT24	R		√		Undefined
xxxxnB16H	CAN status set/clear register 24	SC_STAT24	W			√	0000H
xxxxnB24H	CAN message data length register 25	M_DLC25	R/W		√		Undefined
xxxxnB25H	CAN message control register 25	M_CTRL25	R/W		√		Undefined
xxxxnB26H	CAN message time stamp register 25	M_TIME25	R/W			√	Undefined
xxxxnB28H	CAN message data register 250	M_DATA250	R/W		√		Undefined
xxxxnB29H	CAN message data register 251	M_DATA251	R/W		√		Undefined
xxxxnB2AH	CAN message data register 252	M_DATA252	R/W		√		Undefined
xxxxnB2BH	CAN message data register 253	M_DATA253	R/W		V		Undefined
xxxxnB2CH	CAN message data register 254	M_DATA254	R/W		V		Undefined
xxxxnB2DH	CAN message data register 255	M_DATA255	R/W		V		Undefined
xxxxnB2EH	CAN message data register 256	M_DATA256	R/W		V		Undefined
xxxxnB2FH	CAN message data register 257	M_DATA257	R/W		V		Undefined
xxxxnB30H	CAN message ID register L25	M_IDL25	R/W			√	Undefined
xxxxnB32H	CAN message ID register H25	M_IDH25	R/W			√	Undefined
xxxxnB34H	CAN message configuration register 25	M_CONF25	R/W		V		Undefined
xxxxnB35H	CAN message status register 25	M_STAT25	R		V		Undefined
xxxxnB36H	CAN status set/clear register 25	SC_STAT25	W			√	0000H
xxxxnB44H	CAN message data length register 26	M_DLC26	R/W		√		Undefined
xxxxnB45H	CAN message control register 26	M_CTRL26	R/W		V		Undefined
xxxxnB46H	CAN message time stamp register 26	M_TIME26	R/W			√	Undefined
xxxxnB48H	CAN message data register 260	M_DATA260	R/W		√		Undefined
xxxxnB49H	CAN message data register 261	M_DATA261	R/W		V		Undefined
xxxxnB4AH	CAN message data register 262	M_DATA262	R/W		V		Undefined
xxxxnB4BH	CAN message data register 263	M_DATA263	R/W		√		Undefined
xxxxnB4CH	CAN message data register 264	M_DATA264	R/W		V		Undefined
xxxxnB4DH	CAN message data register 265	M_DATA265	R/W		√		Undefined
xxxxnB4EH	CAN message data register 266	M_DATA266	R/W		V		Undefined
xxxxnB4FH	CAN message data register 267	M_DATA267	R/W		V		Undefined
xxxxnB50H	CAN message ID register L26	M_IDL26	R/W			V	Undefined
xxxxnB52H	CAN message ID register H26	M_IDH26	R/W			√	Undefined
xxxxnB54H	CAN message configuration register 26	M_CONF26	R/W		V		Undefined
xxxxnB55H	CAN message status register 26	M_STAT26	R		√		Undefined
xxxxnB56H	CAN status set/clear register 26	SC_STAT26	W			√	0000H

(13/15)

Address	Function Register Name	Symbol	R/W	Bit Units	for Man	ipulation	(13/15 Initial Value
	, , , , , , , , , , , , , , , , , , ,			1 Bit	8 Bits	16 Bits	
xxxxnB64H	CAN message data length register 27	M_DLC27	R/W		V		Undefined
xxxxnB65H	CAN message control register 27	M_CTRL27	R/W		V		Undefined
xxxxnB66H	CAN message time stamp register 27	M_TIME27	R/W			√	Undefined
xxxxnB68H	CAN message data register 270	M_DATA270	R/W		√		Undefined
xxxxnB69H	CAN message data register 271	M_DATA271	R/W		√		Undefined
xxxxnB6AH	CAN message data register 272	M_DATA272	R/W		√		Undefined
xxxxnB6BH	CAN message data register 273	M_DATA273	R/W		√		Undefined
xxxxnB6CH	CAN message data register 274	M_DATA274	R/W		√		Undefined
xxxxnB6DH	CAN message data register 275	M_DATA275	R/W		√		Undefined
xxxxnB6EH	CAN message data register 276	M_DATA276	R/W		V		Undefined
xxxxnB6FH	CAN message data register 277	M_DATA277	R/W		√		Undefined
xxxxnB70H	CAN message ID register L27	M_IDL27	R/W			√	Undefined
xxxxnB72H	CAN message ID register H27	M_IDH27	R/W			√	Undefined
xxxxnB74H	CAN message configuration register 27	M_CONF27	R/W		√		Undefined
xxxxnB75H	CAN message status register 27	M_STAT27	R		V		Undefined
xxxxnB76H	CAN status set/clear register 27	SC_STAT27	W			√	0000H
xxxxnB84H	CAN message data length register 28	M_DLC28	R/W		√		Undefined
xxxxnB85H	CAN message control register 28	M_CTRL28	R/W		V		Undefined
xxxxnB86H	CAN message time stamp register 28	M_TIME28	R/W			√	Undefined
xxxxnB88H	CAN message data register 280	M_DATA280	R/W		√		Undefined
xxxxnB89H	CAN message data register 281	M_DATA281	R/W		√		Undefined
xxxxnB8AH	CAN message data register 282	M_DATA282	R/W		√		Undefined
xxxxnB8BH	CAN message data register 283	M_DATA283	R/W		√		Undefined
xxxxnB8CH	CAN message data register 284	M_DATA284	R/W		√		Undefined
xxxxnB8DH	CAN message data register 285	M_DATA285	R/W		√		Undefined
xxxxnB8EH	CAN message data register 286	M_DATA286	R/W		√		Undefined
xxxxnB8FH	CAN message data register 287	M_DATA287	R/W		√		Undefined
xxxxnB90H	CAN message ID register L28	M_IDL28	R/W			√	Undefined
xxxxnB92H	CAN message ID register H28	M_IDH28	R/W			√	Undefined
xxxxnB94H	CAN message configuration register 28	M_CONF28	R/W		√		Undefined
xxxxnB95H	CAN message status register 28	M_STAT28	R		√		Undefined
xxxxnB96H	CAN status set/clear register 28	SC_STAT28	W			√	0000H
xxxxnBA4H	CAN message data length register 29	M_DLC29	R/W		√		Undefined
xxxxnBA5H	CAN message control register 29	M_CTRL29	R/W		√		Undefined
xxxxnBA6H	CAN message time stamp register 29	M_TIME29	R/W			√	Undefined
xxxxnBA8H	CAN message data register 290	M_DATA290	R/W		√		Undefined

(14/15)

Address	Function Register Name	Symbol	R/W	Bit Units	for Man	ipulation	Initial Value
				1 Bit	8 Bits	16 Bits	
xxxxnBA9H	CAN message data register 291	M_DATA291	R/W		V		Undefined
xxxxnBAAH	CAN message data register 292	M_DATA292	R/W		V		Undefined
xxxxnBABH	CAN message data register 293	M_DATA293	R/W		√		Undefined
xxxxnBACH	CAN message data register 294	M_DATA294	R/W		√		Undefined
xxxxnBADH	CAN message data register 295	M_DATA295	R/W		√		Undefined
xxxxnBAEH	CAN message data register 296	M_DATA296	R/W		√		Undefined
xxxxnBAFH	CAN message data register 297	M_DATA297	R/W		V		Undefined
xxxxnBB0H	CAN message ID register L29	M_IDL29	R/W			√	Undefined
xxxxnBB2H	CAN message ID register H29	M_IDH29	R/W			√	Undefined
xxxxnBB4H	CAN message configuration register 29	M_CONF29	R/W		V		Undefined
xxxxnBB5H	CAN message status register 29	M_STAT29	R		V		Undefined
xxxxnBB6H	CAN status set/clear register 29	SC_STAT29	W			√	0000H
xxxxnBC4H	CAN message data length register 30	M_DLC30	R/W		√		Undefined
xxxxnBC5H	CAN message control register 30	M_CTRL30	R/W		√		Undefined
xxxxnBC6H	CAN message time stamp register 30	M_TIME30	R/W			√	Undefined
xxxxnBC8H	CAN message data register 300	M_DATA300	R/W		V		Undefined
xxxxnBC9H	CAN message data register 301	M_DATA301	R/W		√		Undefined
xxxxnBCAH	CAN message data register 302	M_DATA302	R/W		√		Undefined
xxxxnBCBH	CAN message data register 303	M_DATA303	R/W		√		Undefined
xxxxnBCCH	CAN message data register 304	M_DATA304	R/W		√		Undefined
xxxxnBCDH	CAN message data register 305	M_DATA305	R/W		√		Undefined
xxxxnBCEH	CAN message data register 306	M_DATA306	R/W		V		Undefined
xxxxnBCFH	CAN message data register 307	M_DATA307	R/W		√		Undefined
xxxxnBD0H	CAN message ID register L30	M_IDL30	R/W			√	Undefined
xxxxnBD2H	CAN message ID register H30	M_IDH30	R/W			√	Undefined
xxxxnBD4H	CAN message configuration register 30	M_CONF30	R/W		V		Undefined
xxxxnBD5H	CAN message status register 30	M_STAT30	R		√		Undefined
xxxxnBD6H	CAN status set/clear register 30	SC_STAT30	W			√	0000H
xxxxnBE4H	CAN message data length register 31	M_DLC31	R/W		V		Undefined
xxxxnBE5H	CAN message control register 31	M_CTRL31	R/W		√		Undefined
xxxxnBE6H	CAN message time stamp register 31	M_TIME31	R/W			V	Undefined
xxxxnBE8H	CAN message data register 310	M_DATA310	R/W		√		Undefined
xxxxnBE9H	CAN message data register 311	M_DATA311	R/W		V		Undefined
xxxxnBEAH	CAN message data register 312	M_DATA312	R/W		√		Undefined
xxxxnBEBH	CAN message data register 313	M_DATA313	R/W		√		Undefined
xxxxnBECH	CAN message data register 314	M_DATA314	R/W		√		Undefined

(15/15)

Address							
i l	Function Register Name	Symbol	R/W		for Man		Initial Value
				1 Bit	8 Bits	16 Bits	
xxxxnBEDH	CAN message data register 315	M_DATA315	R/W		√		Undefined
xxxxnBEEH	CAN message data register 316	M_DATA316	R/W		√		Undefined
xxxxnBEFH	CAN message data register 317	M_DATA317	R/W		V		Undefined
xxxxnBF0H	CAN message ID register L31	M_IDL31	R/W			√	Undefined
xxxxnBF2H	CAN message ID register H31	M_IDH31	R/W			√	Undefined
xxxxnBF4H	CAN message configuration register 31	M_CONF31	R/W		√		Undefined
xxxxnBF5H	CAN message status register 31	M_STAT31	R		$\sqrt{}$		Undefined
xxxxnBF6H	CAN status set/clear register 31	SC_STAT31	W			\checkmark	0000H
xxxxnC00H	CAN interrupt pending register	CCINTP	R			$\sqrt{}$	0000H
xxxxnC02H	CAN global interrupt pending register	CGINTP	R/W		√		00H
xxxxnC04H	CAN1 interrupt pending register	C1INTP	R/W		V		00H
xxxxnC0CH	CAN stop register	CSTOP	R/W			√	0000H
xxxxnC10H	CAN global status register	CGST	R/W			√	0100H
xxxxnC12H	CAN global interrupt enable register	CGIE	R/W			√	0A00H
xxxxnC14H	CAN main clock selection register	CGCS	R/W			√	7F05H
xxxxnC18H	CAN time stamp count register	CGTSC	R			√	0000H
xxxxnC1AH	CAN message search start register	CGMSS	W			√	0000H
	CAN message search result register	CGMSR	R			√	0000H
xxxxnC40H	CAN1 address mask 0 register L	C1MASKL0	R/W			√	Undefined
xxxxnC42H	CAN1 address mask 0 register H	C1MASKH0	R/W			√	Undefined
xxxxnC44H	CAN1 address mask 1 register L	C1MASKL1	R/W			√	Undefined
xxxxnC46H	CAN1 address mask 1 register H	C1MASKH1	R/W			√	Undefined
xxxxnC48H	CAN1 address mask 2 register L	C1MASKL2	R/W			√	Undefined
xxxxnC4AH	CAN1 address mask 2 register H	C1MASKH2	R/W			√	Undefined
xxxxnC4CH	CAN1 address mask 3 register L	C1MASKL3	R/W			√	Undefined
xxxxnC4EH	CAN1 address mask 3 register H	C1MASKH3	R/W			√	Undefined
xxxxnC50H	CAN1 control register	C1CTRL	R/W			√	0101H
xxxxnC52H	CAN1 definition register	C1DEF	R/W			√	0000H
xxxxnC54H	CAN1 information register	C1LAST	R			√	00FFH
xxxxnC56H	CAN1 error count register	C1ERC	R			√	0000H
xxxxnC58H	CAN1 interrupt enable register	C1IE	R/W			√	0900H
xxxxnC5AH	CAN1 bus active register	C1BA	R			√	00FFH
xxxxnC5CH	CAN1 bit rate prescaler register	C1BRP	R/W			√	0000H
	CAN1 bus diagnostic information register	C1DINF	R			√	0000H
xxxxnC5EH	CAN1 synchronization control register	C1SYNC	R/W			√	0218H

3.4.10 Specific registers

Specific registers are registers that are protected from being written with illegal data due to inadvertent program loop (runaway), etc. The V850E/IA1 has three specific registers, the power save control register (PSC) (refer to 8.5.2 (13) Power save control register (PSC)), clock control register (CKC) (refer to 8.3.4 Clock control register (CKC)), and flash programming mode control register (FLPMC) (refer to 16.7.12 Flash programming mode control register (FLPMC)).

3.4.11 System wait control register (VSWC)

Set the value shown below to this register.

This register can be read/written in 8-bit units (address: FFFFF06EH, initial value: 77H).

Remark If the timing of changing the flag or count value conflicts with the timing of accessing a register when a register including a status flag that indicates the status of an on-chip peripheral function (such as ASIF0) or a register indicating the count value of a timer (such as TM0n) is accessed, a register access retry operation is performed. As a result, a longer time may be required to access the on-chip peripheral I/O register.

Registe	VSWC Set Value		
System wait control register	When PRM02 register = 01H	12H (3 clocks are set for the wait)	
(VSWC)	When PRM02 register = 00H	15H (6 clocks are set for the wait)	

3.4.12 Cautions

(1) Register to be set first

When using the V850E/IA1, the following registers must be set from the beginning.

- System wait control register (VSWC)
 (See 3.4.11 System wait control register (VSWC))
- Clock control register (CKC)
 (See 8.3.4 Clock control register (CKC))

After setting VSWC and CKC, set other registers as required.

(2) Restriction on conflict between sld instruction and interrupt request

(a) Description

If a conflict occurs between the decode operation of an instruction in <2> immediately before the sld instruction following an instruction in <1> and an interrupt request before the instruction in <1> is complete, the execution result of the instruction in <1> may not be stored in a register.

Instruction <1>

Id instruction: Id.b, Id.h, Id.w, Id.bu, Id.hu
sld instruction: sld.b, sld.h, sld.w, sld.bu, sld.hu

• Multiplication instruction: mul, mulh, mulhi, mulu

Instruction <2>

mov reg1, reg2	not reg1, reg2	satsubr reg1, reg2	satsub reg1, reg2
satadd reg1, reg2	satadd imm5, reg2	or reg1, reg2	xor reg1, reg2
and reg1, reg2	tst reg1, reg2	subr reg1, reg2	sub reg1, reg2
add reg1, reg2	add imm5, reg2	cmp reg1, reg2	cmp imm5, reg2
mulh reg1, reg2	shr imm5, reg2	sar imm5, reg2	shl imm5, reg2

<Example>

<i> ld.w [r11], r10</i>	If the decode operation of the mov instruction <ii> immediately before the sld</ii>
•	instruction <iii> and an interrupt request conflict before execution of the Id</iii>
•	instruction <i> is complete, the execution result of instruction <i> may not be</i></i>
	stored in a register.

<ii> mov r10, r28 <iii> sld.w0x28, r10

(b) Countermeasure

<1> When compiler (CA850) is used

Use CA850 Ver. 2.61 or later because generation of the corresponding instruction sequence can be automatically suppressed.

<2> For assembler

When executing the sld instruction immediately after instruction <ii>, avoid the above operation using either of the following methods.

- Insert a nop instruction immediately before the sld instruction.
- Do not use the same register as the sld instruction destination register in the above instruction <ii> executed immediately before the sld instruction.

CHAPTER 4 BUS CONTROL FUNCTION

The V850E/IA1 is provided with an external bus interface function by which external I/O and memories, such as ROM and RAM, can be connected.

4.1 Features

- 16-bit/8-bit data bus sizing function
- 8-space chip select function
- Wait function
 - · Programmable wait function, through which up to 7 wait states can be inserted for each memory block
 - External wait function via WAIT pin
- · Idle state insertion function
- Bus hold function
- External device connection enabled via bus control/port alternate function pins

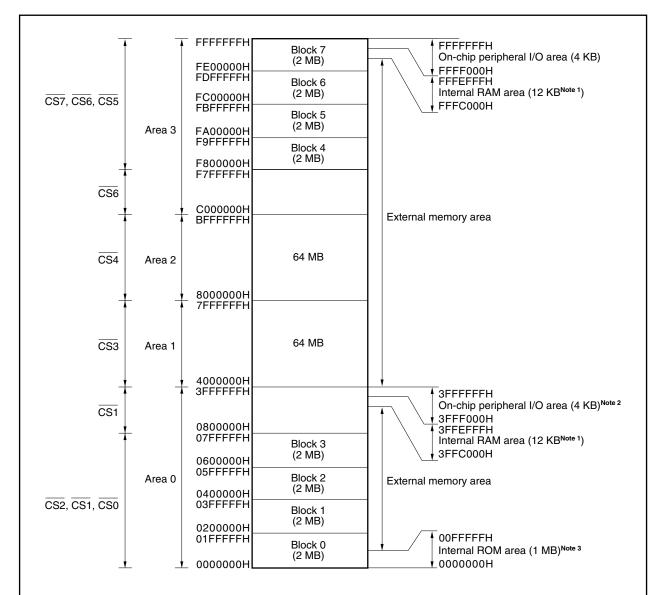
4.2 Bus Control Pins

The following pins are used for connection to external devices.

Bus Control Pin (Function When in Control Mode)	Function When in Port Mode	Register for Port/Control Mode Switching
Address/data bus (AD0 to AD15)	PDL0 to PDL15 (Port DL)	PMCDL
Address bus (A16 to A23)	PDH0 to PDH7 (Port DH)	PMCDH
Chip select (CS0 to CS7)	PCS0 to PCS7 (Port CS)	PMCCS
Read/write control (LWR/UWR, RD, ASTB)	PCT0, PCT1, PCT4, PCT6 (Port CT)	PMCCT
External wait control (WAIT)	PCM0 (Port CM)	PMCCM
Internal system clock (CLKOUT)	PCM1 (Port CM)	
Bus hold control (HLDRQ, HLDAK)	PCM2, PCM3 (Port CM)	

Remark In the case of single-chip mode 1 and ROMless modes 0 and 1, when the system is reset, each bus control pin becomes unconditionally valid.

4.2.1 Pin status during internal ROM, internal RAM, and on-chip peripheral I/O access


When the internal ROM and RAM are accessed, both the address bus and address/data bus become undefined. The external bus control signal becomes inactive.

When on-chip peripheral I/O are accessed, both the address bus and address/data bus output the addresses of the on-chip peripheral I/O currently being accessed. No data is output. The external bus control signal becomes inactive.

4.3 Memory Block Function

The 256 MB memory space is divided into memory blocks of 2 MB and 64 MB units. The programmable wait function and bus cycle operation mode can be independently controlled for each block.

The area that can be used as program area is the 64 MB space of addresses 00000000H to 3FFFFFFH.

- Notes 1. Physical internal RAM: 10 KB
 - **2.** Access to this area is prohibited. To access the on-chip peripheral I/O in this area, specify addresses FFFF000H to FFFFFFH.
 - **3.** When in single-chip mode 1 and ROMless modes 0 and 1, this becomes an external memory area. When in single-chip mode 1, addresses 0100000H to 01FFFFFH become an internal ROM area.

4.3.1 Chip select control function

Of the 256 MB memory area, the lower 8 MB (0000000H to 07FFFFFH) and the higher 8 MB (F800000H to FFFFFFFH) can be divided into 2 MB memory blocks by chip area selection control registers 0 and 1 (CSC0, CSC1) to control the chip select signal.

The memory area can be effectively used by dividing it into memory blocks using the chip select control function. The priority order is described below.

(1) Chip area selection control registers 0, 1 (CSC0, CSC1)

These registers can be read/written in 16-bit units and become valid by setting each bit to 1.

If different chip select signal outputs are set to the same block, the priority order is controlled as follows.

CSC0: $\overline{CS0} > \overline{CS2} > \overline{CS1}$ CSC1: $\overline{CS7} > \overline{CS5} > \overline{CS6}$

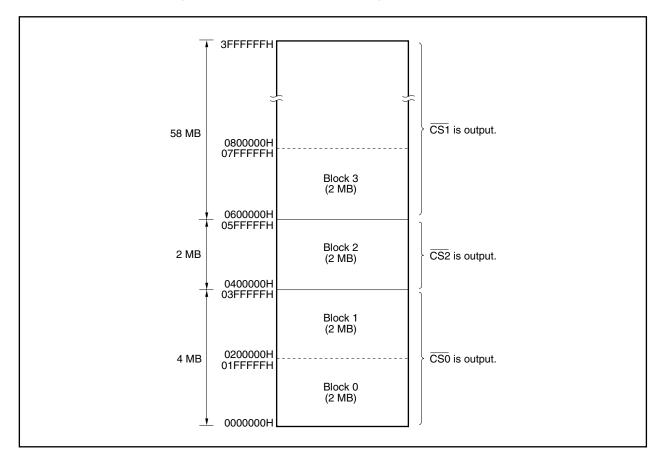
If both the CS0m and CS2m bits of the CSC0 register are set to 0, $\overline{CS1}$ is output to the corresponding block (m = 0 to 3).

Similarly, if both the CS5m and CS7m bits of the CSC1 register are set to 0, $\overline{\text{CS6}}$ is output to the corresponding block (m = 0 to 3).

Caution Write to the CSC0 and CSC1 registers after reset, and then do not change the set values.

	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0		
CSC0	CS33	CS32	CS31	CS30	CS23	CS22	CS21	CS20	CS13	CS12	CS11	CS10	CS03	CS02	CS01	CS00	Address FFFFF060H	Initial value 2C11H
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0		
CSC1	CS43	CS42	CS41	CS40	CS53	CS52	CS51	CS50	CS63	CS62	CS61	CS60	CS73	CS72	CS71	CS70	Address FFFFF062H	Initial value 2C11H

Bit position	Bit name	Function							
15 to 0	CSnm (n = 0 to 7)	Chip select enabled by setting CSnm bit to 1.							
	(m = 0 to 3)	CSnm	CS operation						
		CS00	CS0 output during block 0 access						
		CS01	CS0 output during block 1 access						
		CS02	CS0 output during block 2 access						
		CS03	CS0 output during block 3 access						
		CS10 to CS13	Note 1						
		CS20	CS2 output during block 0 access						
		CS21	CS2 output during block 1 access						
		CS22	CS2 output during block 2 access						
		CS23	CS2 output during block 3 access						
		CS30 to CS33	Note 2						
		CS40 to CS43	Note 3						
		CS50	CS5 output during block 7 access						
		CS51	CS5 output during block 6 access						
		CS52	CS5 output during block 5 access						
		CS53	CS5 output during block 4 access						
								CS60 to CS63	Note 4
		CS70	CS7 output during block 7 access						
		CS71	CS7 output during block 6 access						
		CS72	CS7 output during block 5 access						
		CS73	CS7 output during block 4 access						
		CS72	CS7 output during block 6 access CS7 output during block 5 access						


- **Notes 1.** If both the CS0m and CS2m bits have been set to 0, if area 0 is accessed, $\overline{\text{CS1}}$ will be output regardless of the setting of the CS1m bit.
 - 2. When area 1 is accessed, $\overline{CS3}$ will be output regardless of the setting of the CS3m bit.
 - 3. When area 2 is accessed, $\overline{\text{CS4}}$ will be output regardless of the setting of the CS4m bit.
 - **4.** If both the CS5m and CS7m bits have been set to 0, if area 3 is accessed, $\overline{\text{CS6}}$ will be output regardless of the setting of the CS6m bit.

The following diagram shows the $\overline{\text{CS}}$ signal, which is enabled for area 0 when the CSC0 register is set to 0703H.

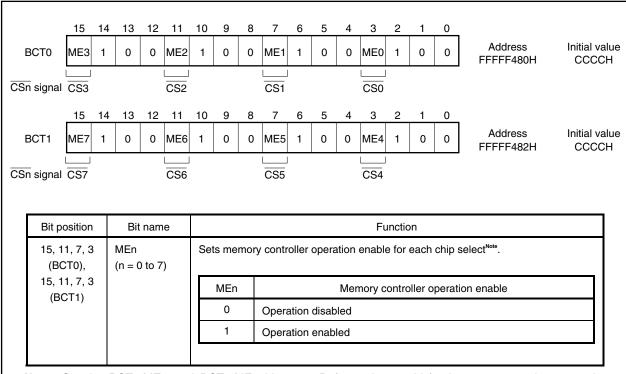
When the CSC0 register is set to 0703H, $\overline{\text{CS0}}$ and $\overline{\text{CS2}}$ are output to block 0 and block 1, but since $\overline{\text{CS0}}$ has priority over $\overline{\text{CS2}}$, $\overline{\text{CS0}}$ is output if the addresses of block 0 and block 1 are accessed.

If the address of block 3 is accessed, both the CS03 and CS23 bits of the CSC0 register are 0, and $\overline{\text{CS1}}$ is output.

Figure 4-1. Example When CSC0 Register Is Set to 0703H

4.4 Bus Cycle Type Control Function

In the V850E/IA1, the following external devices can be connected directly to each memory block.


• SRAM, external ROM, external I/O

Connected external devices are specified by bus cycle type configuration registers 0, 1 (BCT0, BCT1).

(1) Bus cycle type configuration registers 0, 1 (BCT0, BCT1)

These registers can be read/written in 16-bit units.

Caution Write to the BCT0 and BCT1 registers after reset, and then do not change the set values. Also, do not access an external memory area other than the one for this initialization routine until the initial setting of the BCT0 and BCT1 registers is complete. However, it is possible to access external memory areas whose initial settings are complete.

Note Set the BCT1.ME6 and BCT1.ME5 bits to 11B (operation enable) when an external memory is connected to the CS5 area or CS6 area.

Set the PMCCS register to x01xxxxxB when only CS5 is connected to the external memory and CS6 is used as a port (PCS6), and set the PMCCS register to x10xxxxxB when only CS6 is connected to the external memory and CS5 is used as a port (PCS5).

4.5 Bus Access

4.5.1 Number of access clocks

The number of base clocks required to access each resource is shown below.

Bus Cycle Status Resource (Bus Width)	Instruction Fetch	Operand Data Access		
Internal ROM (32 bits)	1 Note 1	5		
Internal RAM (32 bits)	1 Note 2	1		
On-chip peripheral I/O (16 bits)	_	5 ^{Note 3}		
Programmable peripheral I/O	_	5 ^{Note 3}		
External memory (16 bits)	3 ^{Note 3}	3 ^{Note 3}		

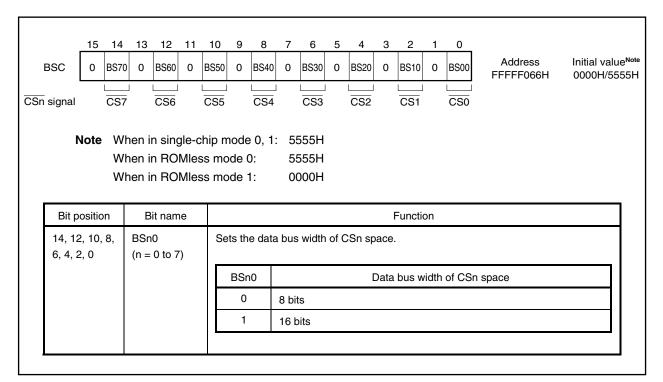
Notes 1. This value is 2 in the case of instruction branch

2. This value is 2 if there is contention with data access.

3. MIN. value

Remark Unit: Clock/access

4.5.2 Bus sizing function


The bus sizing function controls the data bus width for each CS space. The data bus width is specified by using the bus size configuration register (BSC).

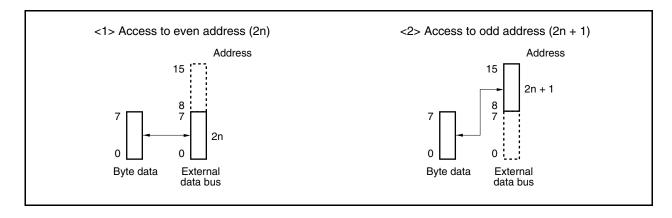
(1) Bus size configuration register (BSC)

This register can be read/written in 16-bit units.

- Cautions 1. Write to the BSC register after reset, and then do not change the set values. Also, do not access an external memory area other than the one for this initialization routine until the initial setting of the BSC register is complete. However, it is possible to access external memory areas whose initial settings are complete.
 - 2. When the data bus width is specified as 8 bits, only the signals shown below become active.

LWR: When accessing SRAM, external ROM, or external I/O (write cycle)

4.5.3 Word data processing format

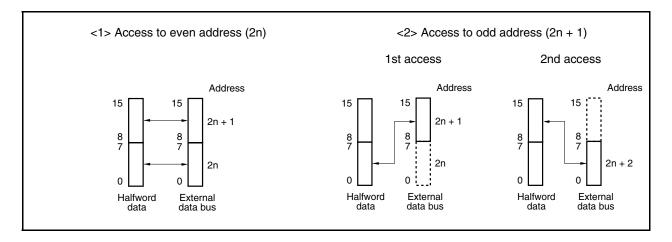

The word data in memory can be processed using the little endian method for CS space selected with a chip select signal ($\overline{\text{CS0}}$ to $\overline{\text{CS7}}$).

4.5.4 Bus width

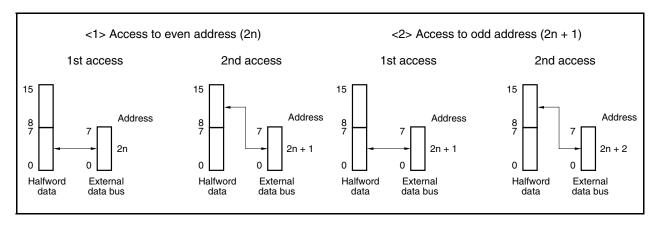
The V850E/IA1 accesses on-chip peripheral I/O and external memory in 8-bit, 16-bit, or 32-bit units. The following shows the operation for each type of access. Access all data in order starting from the lower side.

(1) Byte access (8 bits)

(a) When the data bus width is 16 bits (little endian)

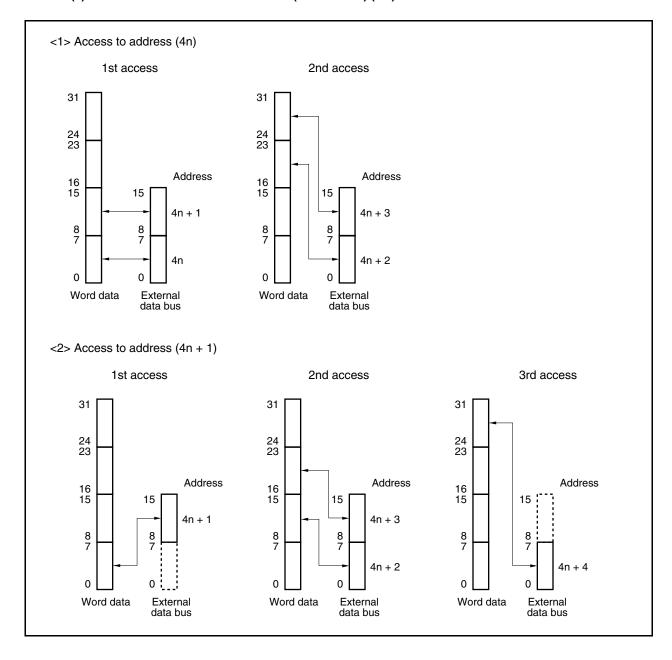


(b) When the data bus width is 8 bits (little endian)

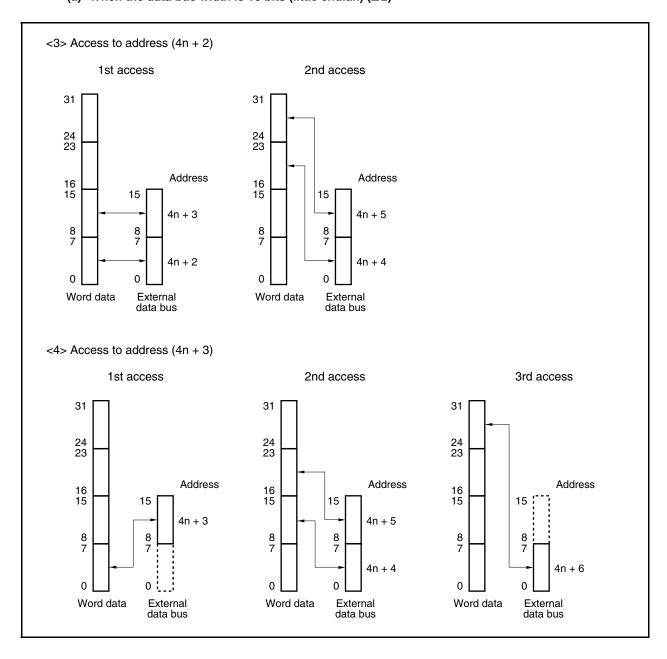


(2) Halfword access (16 bits)

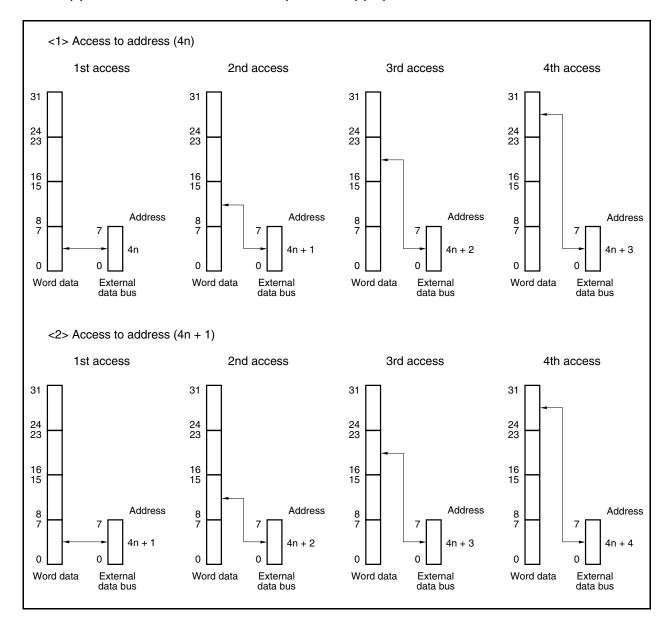
(a) When the data bus width is 16 bits (little endian)

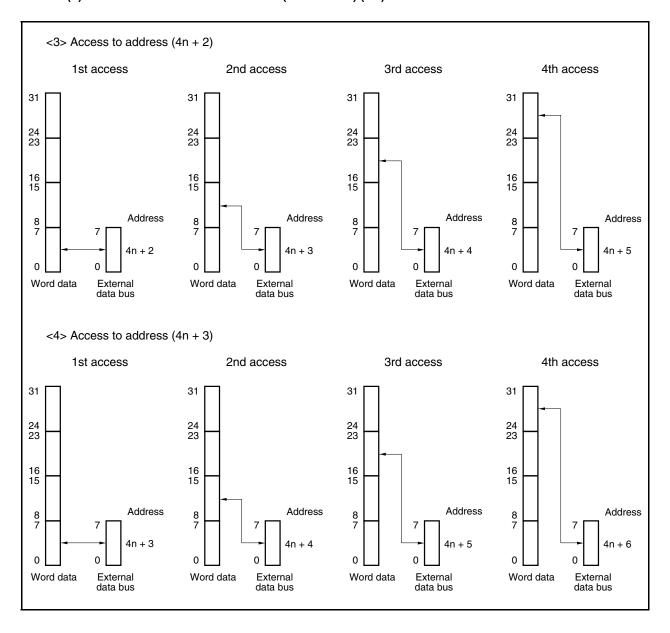


(b) When the data bus width is 8 bits (little endian)



(3) Word access (32 bits)


(a) When the data bus width is 16 bits (little endian) (1/2)

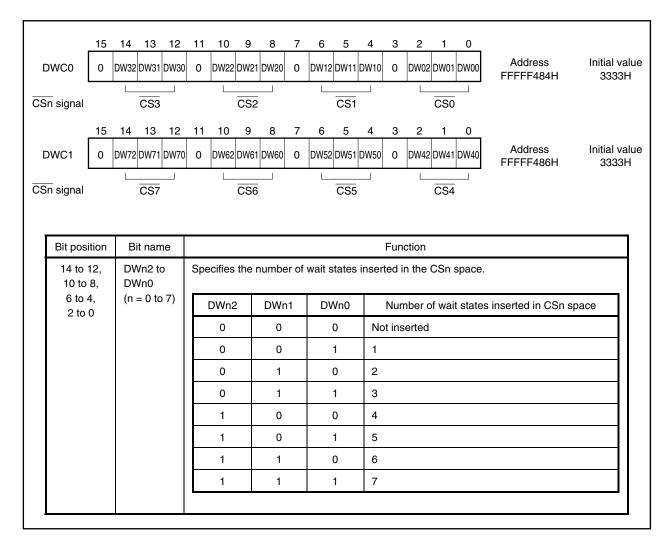

(a) When the data bus width is 16 bits (little endian) (2/2)

(b) When the data bus width is 8 bits (little endian) (1/2)

(b) When the data bus width is 8 bits (little endian) (2/2)

4.6 Wait Function

4.6.1 Programmable wait function

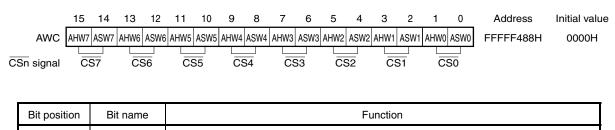

(1) Data wait control registers 0, 1 (DWC0, DWC1)

To facilitate interfacing with low-speed memory or with I/Os, it is possible to insert up to 7 data wait states in the starting bus cycle for each CS space.

The number of wait states can be specified by program using data wait control registers 0 and 1 (DWC0, DWC1). Just after system reset, all blocks have 3 data wait states inserted.

These registers can be read/written in 16-bit units.

- Cautions 1. The internal ROM area and internal RAM area are not subject to programmable waits and ordinarily no wait access is carried out. The on-chip peripheral I/O area is also not subject to programmable wait states, with wait control performed by each peripheral function only.
 - 2. Write to the DWC0 and DWC1 registers after reset, and then do not change the set values. Also, do not access an external memory area other than the one for this initialization routine until the initial setting of the DWC0 and DWC1 registers is complete. However, it is possible to access external memory areas whose initial settings are complete.


(2) Address wait control register (AWC)

In the V850E/IA1, address setup wait and address hold wait states can be inserted before and after the T1 cycle, respectively.

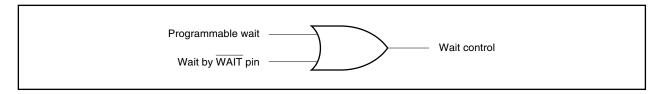
These wait states can be set for each CS space via the AWC register.

This register can be read/written in 16-bit units.

Caution Write to the AWC register after reset, and then do not change the set values.

Bit position	Bit name	Function
15, 13, 11, 9, 7, 5, 3, 1	AHWn (n = 0 to 7)	Sets the insertion of an address hold wait state in each CSn space after the T1 cycle. 0: Address hold wait state not inserted 1: Address hold wait state inserted
14, 12, 10, 8, 6, 4, 2, 0	ASWn (n = 0 to 7)	Sets the insertion of an address setup wait state in each CSn space before the T1 cycle. 0: Address setup wait state not inserted 1: Address setup wait state inserted

4.6.2 External wait function


When an extremely slow device, I/O, or asynchronous system is connected, an arbitrary number of wait states can be inserted in the bus cycle by the external wait pin (WAIT) for synchronization with the external device.

Just as with programmable waits, accessing internal ROM, internal RAM, and on-chip peripheral I/O areas cannot be controlled by external waits.

The external WAIT signal can be input asynchronously to CLKOUT and is sampled at the falling edge of the CLKOUT signal in the T2 and TW states of a bus cycle. If the setup/hold time in the sampling timing is not satisfied, the wait state may or may not be inserted in the next state.

4.6.3 Relationship between programmable wait and external wait

A wait cycle is inserted as the result of an OR operation between the wait cycle specified by the set value of the programmable wait and the wait cycle controlled by the $\overline{\text{WAIT}}$ pin.

For example, if the timings of the programmable wait and the $\overline{\text{WAIT}}$ pin signal are as illustrated below, three wait states will be inserted in the bus cycle.

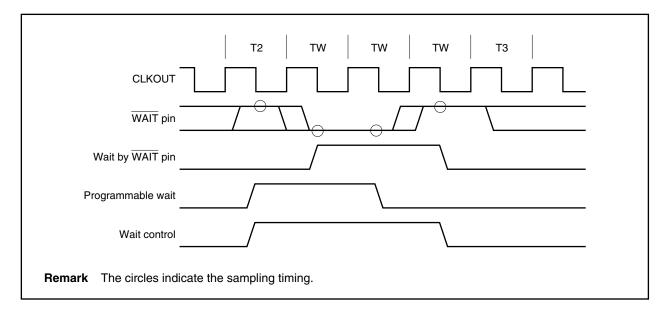
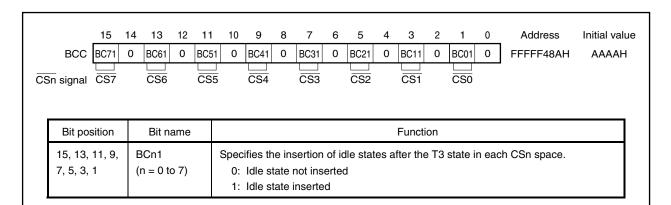


Figure 4-2. Example of Wait Insertion

4.7 Idle State Insertion Function

To facilitate interfacing with low-speed memory devices, a set number of idle states (TI) can be inserted into the starting bus cycle after the T3 state to secure the data output float delay time (tDF) of the memory when each CS space is read accessed. The bus cycle following the T3 state starts after the inserted idle state(s).

Idle states are inserted at the following timing.


• After the read cycle for SRAM, external I/O, or external ROM.

The idle state insertion setting can be specified using the bus cycle control register (BCC). Idle state insertion is automatically programmed for all memory blocks immediately after a system reset.

(1) Bus cycle control register (BCC)

This register can be read/written in 16-bit units.

- Cautions 1. Idle states cannot be inserted in internal ROM, internal RAM, on-chip peripheral I/O, or programmable peripheral I/O areas.
 - 2. Write to the BCC register after reset, and then do not change the set values. Also, do not access an external memory area other than the one for this initialization routine until the initial setting for this register is complete. However, it is possible to access external memory areas whose initial settings are complete.

4.8 Bus Hold Function

4.8.1 Function outline

If pins PCM2 and PCM3 are specified in the control mode, the HLDAK and HLDRQ functions become valid.

If it is determined that the $\overline{\text{HLDRQ}}$ pin has become active (low level) as a bus mastership request from another bus master, the external address/data bus and each strobe pin are shifted to high impedance and then released (bus hold state). If the $\overline{\text{HLDRQ}}$ pin becomes inactive (high level) and the bus mastership request is canceled, driving of these pins begins again.

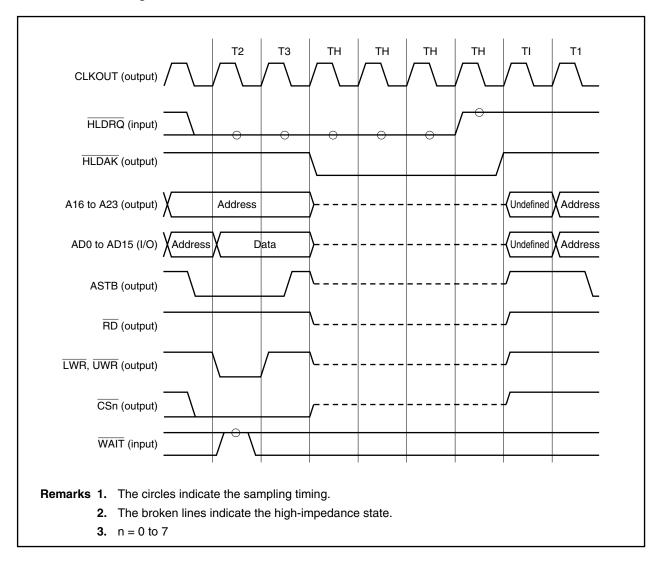

During the bus hold period, the internal operations of the V850E/IA1 continue until the external memory or on-chip peripheral I/O register is accessed.

The bus hold state can be known by the HLDAK pin becoming active (low level). The period from when the HLDAK pin becomes active (low level) is at least 2 clocks.

In a multiprocessor configuration, etc., a system with multiple bus masters can be configured.

4.8.2 Bus hold procedure

The procedure of the bus hold function is illustrated below.



4.8.3 Operation in power save mode

In the software STOP or IDLE mode, the internal system clock is stopped. Consequently, the bus hold state is not accepted and set since the HLDRQ pin cannot be accepted even if it becomes active.

In the HALT mode, the $\overline{\text{HLDAK}}$ pin immediately becomes active when the $\overline{\text{HLDRQ}}$ pin becomes active, and the bus hold state is set. When the $\overline{\text{HLDRQ}}$ pin becomes inactive after that, the $\overline{\text{HLDAK}}$ pin also becomes inactive. As a result, the bus hold state is cleared and the HALT mode is set again.

4.8.4 Bus hold timing

4.9 Bus Priority Order

There are four external bus cycles: bus hold, DMA cycle, operand data access, and instruction fetch.

In order of priority, bus hold is the highest, followed by DMA cycle, operand data access, and instruction fetch, in that order.

An instruction fetch may be inserted between a read access and write access during a read modify write access. Also, an instruction fetch may be inserted between bus accesses when the CPU bus is locked.

Priority
Order

High

Bus hold

External Bus Cycle

Bus Master

DMA cycle

DMA cycle

Operand data access

CPU

Instruction fetch

CPU

Table 4-1. Bus Priority Order

4.10 Boundary Operation Conditions

4.10.1 Program space

- (1) Branching to the on-chip peripheral I/O area or successive fetches from the internal RAM area to the on-chip peripheral I/O area are prohibited. If the above is performed (branching or successive fetch), a data to be fetched is undefined and the operation is not guaranteed.
- (2) If a branch instruction exists at the upper limit of the internal RAM area, a prefetch operation (invalid fetch) that straddles over the on-chip peripheral I/O area does not occur.

4.10.2 Data space

The V850E/IA1 is provided with an address misalign function.

Through this function, regardless of the data format (word data or halfword data), data can be allocated to all addresses. However, in the case of word data and halfword data, if the data is not subject to boundary alignment, the bus cycle will be generated at least 2 times and bus efficiency will drop.

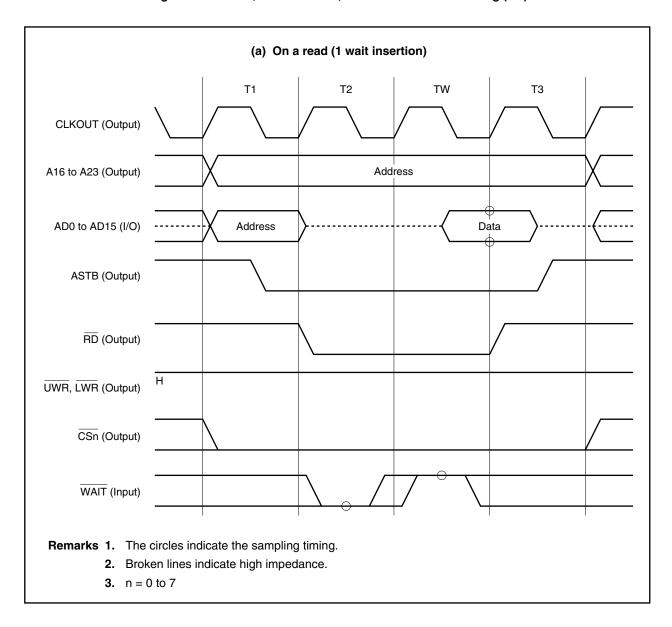
(1) In the case of halfword-length data access

When the address's LSB is 1, the byte-length bus cycle will be generated 2 times.

(2) In the case of word-length data access

- (a) When the address's LSB is 1, bus cycles will be generated in the order of byte-length bus cycle, halfword-length bus cycle, and byte-length bus cycle.
- (b) When the address's lowest 2 bits are 10, the halfword-length bus cycle will be generated 2 times.

CHAPTER 5 MEMORY ACCESS CONTROL FUNCTION


5.1 SRAM, External ROM, External I/O Interface

5.1.1 Features

- SRAM is accessed in a minimum of 2 states.
- A maximum of 7 programmable data wait states can be inserted according to DWC0 and DWC1 register settings.
- Data waits can be controlled by WAIT pin input.
- An idle state (1 state) can be inserted after a read/write cycle by setting the BCC register.
- An address hold wait state or address setup wait state can be inserted by setting the AWC register.

5.1.2 SRAM, external ROM, external I/O access

Figure 5-1. SRAM, External ROM, External I/O Access Timing (1/5)

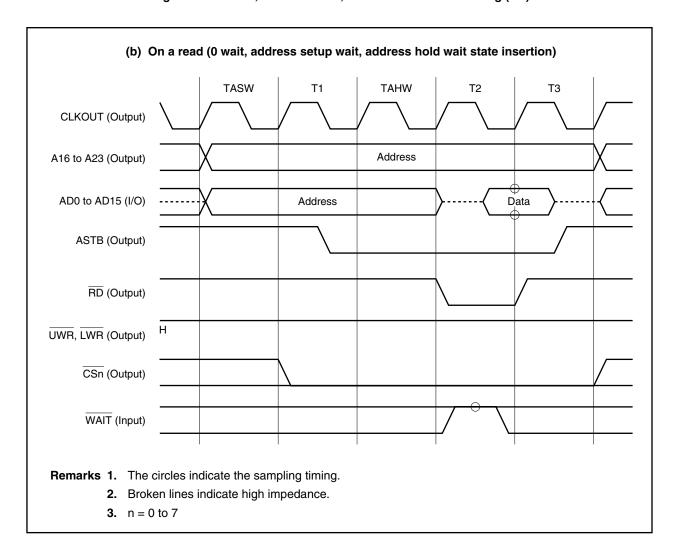


Figure 5-1. SRAM, External ROM, External I/O Access Timing (2/5)

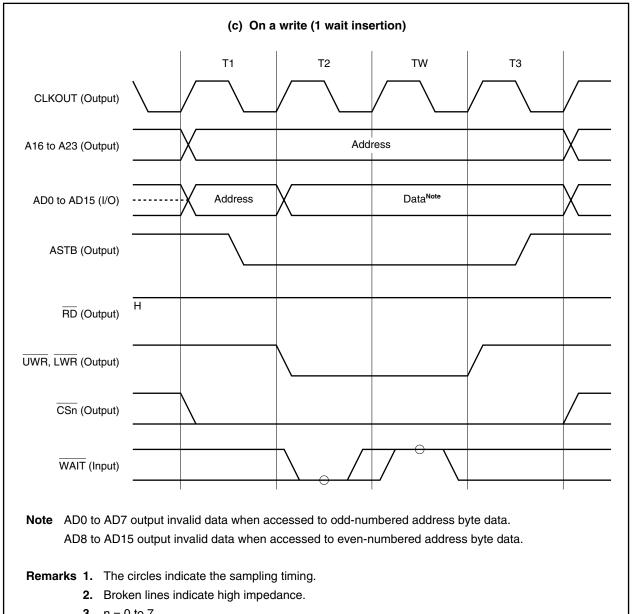


Figure 5-1. SRAM, External ROM, External I/O Access Timing (3/5)

3. n = 0 to 7

(d) On a write (0 wait insertion, for 8-bit data bus) T1 T2 ТЗ CLKOUT (Output) Address A16 to A23 (Output) Address AD8 to AD15 (I/O) Address DataNote AD0 to AD7 (I/O) ASTB (Output) RD (Output) UWR, LWR (Output) CSn (Output) WAIT (Input) Note AD0 to AD7 output invalid data when accessed to odd-numbered address byte data. Remarks 1. The circles indicate the sampling timing. 2. Broken lines indicate high impedance. 3. n = 0 to 7

Figure 5-1. SRAM, External ROM, External I/O Access Timing (4/5)

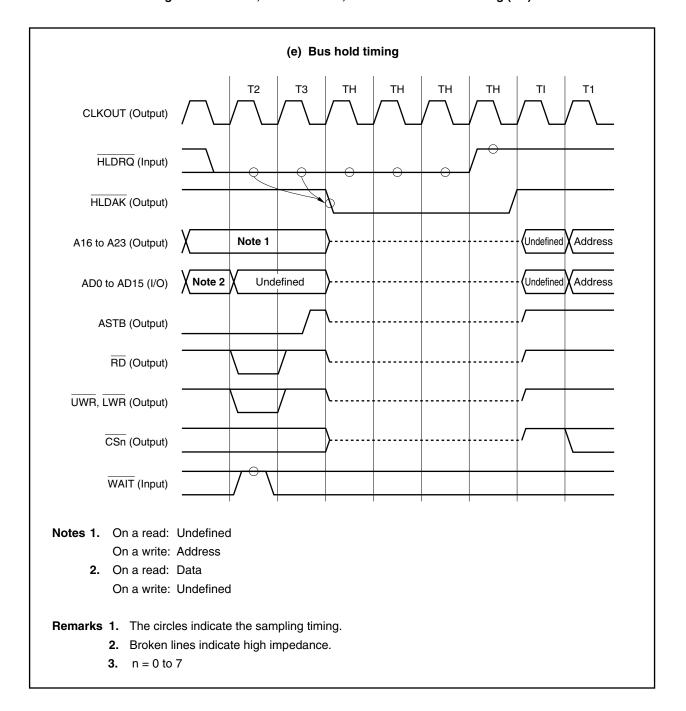
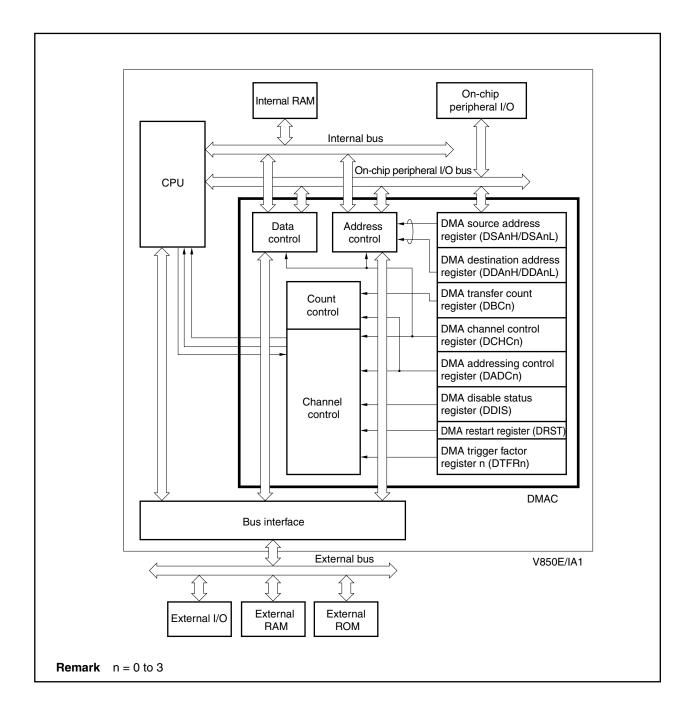


Figure 5-1. SRAM, External ROM, External I/O Access Timing (5/5)

CHAPTER 6 DMA FUNCTIONS (DMA CONTROLLER)


The V850E/IA1 includes a direct memory access (DMA) controller (DMAC) that executes and controls DMA transfer.

The DMAC controls data transfer between memory and peripheral I/O, among memories or among peripheral I/Os, based on DMA requests issued by the on-chip peripheral I/O (such as serial interface, timer/counter, and A/D converter), or software triggers (memory refers to internal RAM or external memory).

6.1 Features

- 4 independent DMA channels
- Transfer units: 8/16 bits
- Maximum transfer count: 65,536 (2¹⁶)
- Transfer type: Two-cycle transfer
- Three transfer modes
 - · Single transfer mode
 - Single-step transfer mode
 - · Block transfer mode
- Transfer requests
 - · Request by interrupts from on-chip peripheral I/O (such as serial interface, timer/counter, A/D converter)
 - · Requests by software trigger
- · Transfer targets
 - Memory ↔ peripheral I/O
 - Memory ↔ memory
 - Peripheral I/O ↔ peripheral I/O
- · Next address setting function

6.2 Configuration

6.3 Control Registers

6.3.1 DMA source address registers 0 to 3 (DSA0 to DSA3)

These registers are used to set the DMA source addresses (28 bits each) for DMA channel n (n = 0 to 3). They are divided into two 16-bit registers, DSAnH and DSAnL.

Since these registers are 2-stage FIFO buffer registers, a new source address for DMA transfer can be specified <R> during DMA transfer (refer to **6.8 Next Address Setting Function**). When setting the next address, if a new DSAn register is set, the value set will be transferred to the slave register and enabled only if DMA transfer ends normally, and the TCn bit of DMA channel control register n (DCHCn) has been set to 1 or the INITn bit of the DCHCn register has been set to 1 (n = 0 to 3).

(1) DMA source address registers 0H to 3H (DSA0H to DSA3H)

These registers can be read/written in 16-bit units.

Be sure to set bits 12 to 14 to "0". If they are set to 1, the operation is not guaranteed.

- Cautions 1. When setting an address of an on-chip peripheral I/O register for the source address, be sure to specify an address between FFFF000H and FFFFFFH. An address of the on-chip peripheral I/O register image (3FFF000H to 3FFFFFFH) must not be specified.
 - 2. Do not set the DSAnH register when DMA transfer has been suspended.

		15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0		
DS.	A0H	IR	0	0	0	SA27	SA26	SA25	SA24	SA23	SA22	SA21	SA20	SA19	SA18	SA17	SA16	Address FFFFF082H	Initial value Undefined
							ı	ı	ı					ı					
DS.	A1H	IR	0	0	0	SA27	SA26	SA25	SA24	SA23	SA22	SA21	SA20	SA19	SA18	SA17	SA16	FFFF08AH	Undefined
							1												
DS.	A2H	IR	0	0	0	SA27	SA26	SA25	SA24	SA23	SA22	SA21	SA20	SA19	SA18	SA17	SA16	FFFFF092H	Undefined
				ı			1												
DS.	АЗН	IR	0	0	0	SA27	SA26	SA25	SA24	SA23	SA22	SA21	SA20	SA19	SA18	SA17	SA16	FFFFF09AH	Undefined
г	Dit no	oition		Bit n	omo										ınctio	n			
	ы рс	sition	_	DILII	ame									ΓL	IIICIIO	11			
	1	5	IF	3		S	Specif							orol	I/O				
									al RA	-	, UII-	ruh þ	oeriph	ieral	i/ U				
	11	to 0	S	A27 t	0	S	Sets th	ne DN	//A so	urce	addre	esses	(A27	to A	16).	Durir	ng DMA	transfer, it stores	the next

DMA transfer source address.

SA16

(2) DMA source address registers 0L to 3L (DSA0L to DSA3L)

These registers can be read/written in 16-bit units.

		15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0		
DS	A0L	SA15	SA14	SA13	SA12	SA11	SA10	SA9	SA8	SA7	SA6	SA5	SA4	SA3	SA2	SA1	SA0	Address FFFFF080H	Initial value Undefined
				1															
DS	A1L	SA15	SA14	SA13	SA12	SA11	SA10	SA9	SA8	SA7	SA6	SA5	SA4	SA3	SA2	SA1	SA0	FFFF088H	Undefined
DS	A2L	SA15	SA14	SA13	SA12	SA11	SA10	SA9	SA8	SA7	SA6	SA5	SA4	SA3	SA2	SA1	SA0	FFFFF090H	Undefined
DS	A3L	SA15	SA14	SA13	SA12	SA11	SA10	SA9	SA8	SA7	SA6	SA5	SA4	SA3	SA2	SA1	SA0	FFFFF098H	Undefined
١.																			
	Bit p	ositior	ı	Bit n	ame									Fι	ınctio	n			
	15	to 0	S	A15 t	o SA		Sets th DMA t						(A15	to A	0). D	uring	DMA	transfer, it stores th	e next

6.3.2 DMA destination address registers 0 to 3 (DDA0 to DDA3)

These registers are used to set the DMA destination address (28 bits each) for DMA channel n (n = 0 to 3). They are divided into two 16-bit registers, DDAnH and DDAnL.

Since these registers are 2-stage FIFO buffer registers, a new destination address for DMA transfer can be <R> specified during DMA transfer (refer to **6.8 Next Address Setting Function**). When setting the next address, if a new DDAn register is set, the value set will be transferred to the slave register and enabled only if DMA transfer ends normally, and the TCn bit of DMA channel control register n (DCHCn) has been set to 1 or the INITn bit of the DCHCn register has been set to 1 (n = 0 to 3).

(1) DMA destination address registers 0H to 3H (DDA0H to DDA3H)

These registers can be read/written in 16-bit units.

Be sure to set bits 12 to 14 to "0". If they are set to 1, the operation is not guaranteed.

- Cautions 1. When setting an address of an on-chip peripheral I/O register for the destination address, be sure to specify an address between FFFF000H and FFFFFFH. An address of the on-chip peripheral I/O register image (3FFF000H to 3FFFFFFH) must not be specified.
 - 2. Do not set the DDAnH register when DMA transfer has been suspended.

		15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0		
DDA	A0H	IR	0	0	0	DA27	DA26	DA25	DA24	DA23	DA22	DA21	DA20	DA19	DA18	DA17	DA16	Address FFFFF086H	Initial value Undefined
DDA	A1H	IR	0	0	0	DA27	DA26	DA25	DA24	DA23	DA22	DA21	DA20	DA19	DA18	DA17	DA16	FFFFF08EH	Undefined
DDA	A2H	IR	0	0	0	DA27	DA26	DA25	DA24	DA23	DA22	DA21	DA20	DA19	DA18	DA17	DA16	FFFFF096H	Undefined
DDA	АЗН	IR	0	0	0	DA27	DA26	DA25	DA24	DA23	DA22	DA21	DA20	DA19	DA18	DA17	DA16	FFFFF09EH	Undefined
Γ	Bit no	osition		Bit n	ame									Fı	ınctio	n			
	-	5	IF		ame	S		xtern		emory				s.		·· <u> </u>			
	11 1	to 0	-	A27 1	to		ets the								to A1	6). E	uring D	MA transfer, it sto	res the

(2) DMA destination address registers 0L to 3L (DDA0L to DDA3L)

These registers can be read/written in 16-bit units.

		15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0		
DD	A0L	DA15	DA14	DA13	DA12	DA11	DA10	DA9	DA8	DA7	DA6	DA5	DA4	DA3	DA2	DA1	DA0	Address FFFFF084H	Initial value Undefined
DD	A1L	DA15	DA14	DA13	DA12	DA11	DA10	DA9	DA8	DA7	DA6	DA5	DA4	DA3	DA2	DA1	DA0	FFFFF08CH	Undefined
DD	A2L	DA15	DA14	DA13	DA12	DA11	DA10	DA9	DA8	DA7	DA6	DA5	DA4	DA3	DA2	DA1	DA0	FFFFF094H	Undefined
DD	A3L	DA15	DA14	DA13	DA12	DA11	DA10	DA9	DA8	DA7	DA6	DA5	DA4	DA3	DA2	DA1	DA0	FFFFF09CH	Undefined
	Bit p	ositior	ı	Bit n	ame									Fu	ınctio	n			
	15	to 0	D)A15 1	to DA		Sets th DMA t							(A15	to A0). Du	ıring E	OMA transfer, it store	s the next

6.3.3 DMA transfer count registers 0 to 3 (DBC0 to DBC3)

These 16-bit registers are used to set the byte transfer counts for DMA channel n (n = 0 to 3). They store the remaining transfer counts during DMA transfer.

Since these registers are 2-stage FIFO buffer registers, a new DMA byte transfer count for DMA transfer can be <R> specified during DMA transfer (refer to **6.9 Next Address Setting Function**). When setting the next address, if a new DBCn register is set, the value set will be transferred to the slave register and enabled only if DMA transfer ends normally, and the TCn bit of DMA channel control register n (DCHCn) has been set to 1 or the INITn bit of the DCHCn register has been set to 1 (n = 0 to 3).

These registers are decremented by 1 per transfer. Transfer is terminated if a borrow occurs.

These registers can be read/written in 16-bit units.

- Cautions 1. When performing 2-cycle transfer from the internal RAM, do not set the transfer count to 2 (by setting the DBCn register to 0001H). If it is required to perform DMA transfer twice, be sure to perform DMA transfer for which the transfer count is set to 1 (by setting the DBCn register to 0000H) twice.
 - 2. Do not set the DBCn register when DMA transfer has been suspended.

Remark If the DBCn register is read after a terminal count has occurred during DMA transfer without the value of the DBCn register being rewritten, the value set immediately before DMA transfer is read (0000H is not read even after completion of transfer).

	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0		
DBC0	BC15	BC14	BC13	BC12	BC11	BC10	ВС9	BC8	ВС7	BC6	BC5	BC4	вс3	BC2	BC1	BC0	Address FFFFF0C0H	Initial value Undefined
DBC1	BC15	BC14	BC13	BC12	BC11	BC10	ВС9	BC8	ВС7	BC6	BC5	BC4	всз	BC2	BC1	BC0	FFFFF0C2H	Undefined
BC2	BC15	BC14	BC13	BC12	BC11	BC10	ВС9	BC8	ВС7	BC6	BC5	BC4	всз	BC2	BC1	BC0	FFFFF0C4H	Undefined
	2015	DC14	BC13	BC12	BC11	BC10	BC0	BC0	BC7	BC6	BC5	BC4	BC3	BC2	BC1	DC0	FFFFF0C6H	Undefined
DBC3	BC15	DC 14	5010	DOTE	БОТТ	БОТО	всэ	ВСО	ВСТ	Воо	B 00	BC4	ВСЗ	DOZ	ВОТ	ВСО	FFFFFUC6H	Ondenned
-	t position	on	E	3it na	me	S		ne byt						Func	tion		yte transfer count d	
Bit	t position	on	E	Bit na	me	S	ets th	ne byt		nsfer				Func	tion		yte transfer count d	
Bit	t position	on	E	Bit na	me	S	ets th	ne byt	te trai	nsfer	coun	t. It s	tores	Function the re	tion emaii	ning by	yte transfer count d	uring DMA
Bit	t position	on	E	Bit na	me	S	ets th	ne byter. On (n	te trai	nsfer	coun	t. It s	nsfer	Function the recount	tion email	State	yte transfer count d	uring DMA
Bit	t position	on	E	Bit na	me	S	ets th	ne byter. On (n	= 0 to 0H 1H	nsfer	Count Byt Byt	t. It s	nsfer	Function the recount count	tion email : 1 or : 2 or	State remail remail :	yte transfer count d es ning byte transfer c	uring DMA ount ount

6.3.4 DMA addressing control registers 0 to 3 (DADC0 to DADC3)

These 16-bit registers are used to control the DMA transfer modes for DMA channel n (n = 0 to 3). These registers cannot be accessed during DMA operation.

These registers can be read/written in 16-bit units.

Be sure to set bits 0, 1, and 8 to 13 to "0". If they are set to 1, the operation is not guaranteed.

Cautions 1. The DS1 and DS0 bits are used to set how many bits of data are transferred.

When 8-bit data (DS1, DS0 bits = 00) is set, the lower data bus (AD0 to AD7) is not necessarily used.

When the transfer data size is set to 16 bits, the transfer must start from an address with bit 1 of the lower address aligned to "0". In this case, the transfer cannot start from an odd address.

- 2. Set the DADCn register when the corresponding channel is in one of the following periods (the operation is not guaranteed if set at another timing).
 - Time from system reset to generation of the first DMA transfer request
 - Time from DMA transfer end (after terminal count) to generation of the next DMA transfer request
 - Time from the forcible termination of DMA transfer (after the INITn bit of DMA channel control register n (DCHCn) has been set to 1) to generation of the next DMA transfer request

(1/2)

	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0		
DADC0	DS1	DS0	0	0	0	0	0	0	SAD1	SAD0	DAD1	DAD0	TM1	TM0	0	0	Address FFFFF0D0H	Initial value 0000H
DADC1	DS1	DS0	0	0	0	0	0	0	SAD1	SAD0	DAD1	DAD0	TM1	ТМО	0	0	FFFFF0D2H	0000Н
DADC2	DS1	DS0	0	0	0	0	0	0	SAD1	SAD0	DAD1	DAD0	TM1	TM0	0	0	FFFFF0D4H	0000H
DADC3	DS1	DS0	0	0	0	0	0	0	SAD1	SAD0	DAD1	DAD0	TM1	TM0	0	0	FFFFF0D6H	0000Н
	DS1		0 Sit na		0	0	0	0	SAD1	SAD0	DAD1	DAD0		TM0	0	0	FFFFF0D6H	0000Н
Bit po		В		me					SAD1				Fun		0	0	FFFFOD6H	0000Н
Bit po	osition	В	sit na	me	Set		trans						Fun	ection		0 data		0000Н
Bit po	osition	В	sit na	me	Set	s the	trans	fer d	ata siz				Fun	ection				0000H
Bit po	osition	В	sit na	me	Set	s the	trans	fer d	ata siz	ze for	DMA	A trans	Fun	ection				0000H

(2/2)

Bit position	Bit name			Function
7, 6	SAD1, SAD0	Sets the co	ount directi	on of the source address for DMA channel n (n = 0 to 3).
		SAD1	SAD0	Count direction
		0	0	Increment
		0	1	Decrement
		1	0	Fixed
		1	1	Setting prohibited
5, 4	DAD1, DAD0			on of the destination address for DMA channel n (n = 0 to 3).
		DAD1	DAD0	Count direction
		0	0	Increment
		0	1	Decrement
		1	0	Fixed
		1	1	Setting prohibited
3, 2	TM1, TM0	Sets the tra	ansfer mod	de during DMA transfer.
		TM1	TMO	Transfer mode
		0	0	Single transfer mode
		0	1	Single-step transfer mode
		1	0	Setting prohibited
		1	1	Block transfer mode

6.3.5 DMA channel control registers 0 to 3 (DCHC0 to DCHC3)

These 8-bit registers are used to control the DMA transfer operating mode for DMA channel n (n = 0 to 3).

These registers can be read/written in 8-bit or 1-bit units. (However, bit 7 is read only and bits 2 and 1 are write only. If bits 2 and 1 are read, the read value is always 0.)

Be sure to set bits 4 to 6 to "0". If they are set to 1, the operation is not guaranteed.

- Cautions 1. If transfer is completed with the MLEn bit set to 1, and the next transfer request is executed with the DMA transfer (hardware DMA) started by an interrupt from the on-chip peripheral I/O, the next transfer will be executed if the TCn bit is set to 1 (will not be automatically cleared to 0).
 - 2. Set the MLEn bit when the corresponding channel is in one of the following periods (the operation is not guaranteed if set at another timing).
 - Time from system reset to generation of the first DMA transfer request
 - Time from DMA transfer end (after terminal count) to generation of the next DMA transfer request
 - Time from the forcible termination of DMA transfer (after the INITn bit has been set to 1) to generation of the next DMA transfer request
 - 3. If DMA transfer is forcibly terminated in the last transfer cycle with the MLEn bit set to 1, the same operations as transfer completion (setting of the TCn bit to 1) are performed (the Enn bit will be cleared to 0 in forcible termination regardless of the value of the MLEn bit).
 In this case, at the next DMA transfer request, the Enn bit must be set to 1 and the TCn bit must be read (cleared to 0).
 - 4. During DMA transfer completion (terminal count), each bit is updated in the order of clearing the Enn bit to 0 and setting the TCn bit to 1. For this reason, if the TCn bit and Enn bit are in the polling mode, the value indicating "transfer not completed, and transfer prohibited" (TCn bit = 0, and Enn bit = 0) may be read in some cases if the DCHCn register is read while each of the above bits is being updated (this is not an error).
 - 5. Be sure to read (clear to 0) the TCn bit after end of DMA transfer (after terminal count). The TCn bit does not have to be read (cleared to 0) only if the following two conditions are satisfied.
 - The MLEn bit is set to 1 upon end of DMA transfer (during terminal count).
 - The next DMA transfer (hardware DMA) start factor is an interrupt from the on-chip peripheral I/O (hardware DMA)

If even one of these conditions is not satisfied, be sure to read (clear to 0) the TCn bit before the next DMA transfer request is generated.

The operation cannot be guaranteed if the next DMA transfer request is generated while the TCn bit is set to 1.

- 6. Do not set the Enn and STGn bits when DMA transfer has been suspended; otherwise the operation cannot be guaranteed.
- 7. Do not end DMA transfer by clearing the Enn bit to 0.
- 8. The relationship between the status of DMA transfer and the register value is as follows.

DMA transfer is in progress: TCn bit = 0, Enn bit = 1
 DMA transfer is aborted: TCn bit = 0, Enn bit = 0

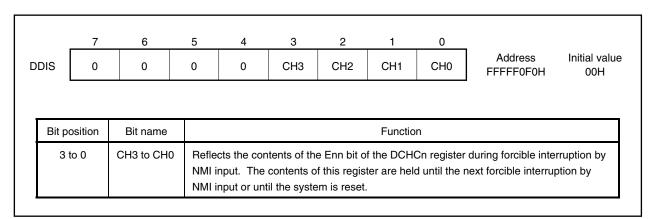
DMA transfer is stopped (ends): TCn bit = 1

<R>

<R> <R>

	<7>	6	5	4	<3>	<2>	<1>	<0>		
DCHC0	TC0	0	0	0	MLE0	INIT0	STG0	E00	Address FFFFF0E0H	Initial value 00H
DCHC1	TC1	0	0	0	MLE1	INIT1	STG1	E11	FFFFF0E2H	00H
DCHC2	TC2	0	0	0	MLE2	INIT2	STG2	E22	FFFFF0E4H	00H
DCHC3	TC3	0	0	0	MLE3	INIT3	STG3	E33	FFFFF0E6H	00H

Bit position	Bit name	Function
7	TCn	This status bit indicates whether DMA transfer through DMA channel n has ended or not. This bit is read-only. It is set to 1 when DMA transfer ends and cleared (to 0) when it is read. 0: DMA transfer had not ended. 1: DMA transfer had ended.
3	MLEn	When this bit is set to 1 when DMA transfer ends (at terminal count output), the Enn bit is not cleared to 0 and the DMA transfer enable state is retained. When the next DMA transfer start trigger is an interrupt from the on-chip peripheral I/O (hardware DMA), the DMA transfer request can be accepted even when the TCn bit is not read. When the next DMA transfer start trigger is the setting of the STGn bit to 1 (software DMA), the DMA transfer request can be accepted by reading and clearing the TCn bit to 0. When this bit is cleared to 0 when DMA transfer ends (at terminal count output), the Enn bit is cleared to 0 and the DMA transfer disable state is entered. At the next DMA transfer request, the setting of the Enn bit to 1 and the reading of the TCn bit are required.
2	INITn	When this bit is set to 1 during DMA transfer or DMA transfer suspension, DMA transfer is forcibly terminated (refer to 6.12.1 Restrictions related to DMA transfer forcible termination).
1	STGn	If this bit is set to 1 in the DMA transfer enable state (TCn bit = 0, Enn bit = 1), DMA transfer is started.
0	Enn	Specifies whether DMA transfer through DMA channel n is to be enabled or disabled. This bit is cleared to 0 when DMA transfer ends. It is also cleared to 0 when DMA transfer is forcibly suspended or terminated by means of setting the INITn bit to 1 or by NMI input. 0: DMA transfer disabled 1: DMA transfer enabled
		Caution After the Enn bit is set (1), do not set the Enn bit again until the number of DMA transfers set by the DBCn register are complete or DMA transfer is forcibly terminated using the INITn bit.

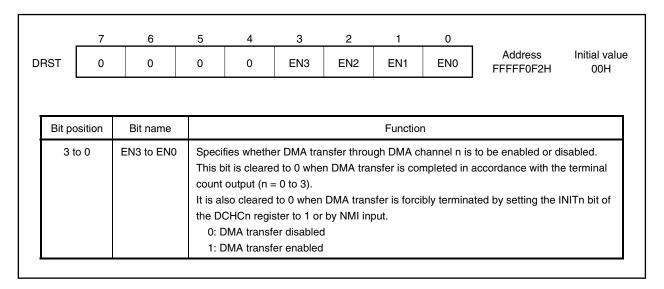

Remark n = 0 to 3

6.3.6 DMA disable status register (DDIS)

This register holds the contents of the Enn bit of the DCHCn register during forcible interruption by NMI input (n = 0 to 3).

This register is read-only, in 8-bit units.

Be sure to set bits 4 to 7 to "0". If they are set to 1, the operation is not guaranteed.



6.3.7 DMA restart register (DRST)

The ENn bit of the DRST register and the Enn bit of the DCHCn register are linked to each other, the Enn bit can also be used to set the enabling or disabling of DMA transfer independently for four channels, and the DRST register can be used to set the enabling or disabling of DMA transfer for four channels at the same time (n = 0 to 3).

This register can be read/written in 8-bit units.

Be sure to set bits 4 to 7 to "0". If they are set to 1, the operation is not guaranteed.

6.3.8 DMA trigger factor registers 0 to 3 (DTFR0 to DTFR3)

These 8-bit registers are used to control the DMA transfer start trigger through interrupt requests from on-chip peripheral I/O.

The interrupt requests set with these registers serve as DMA transfer start factors.

These registers can be read/written in 8-bit units. Only bit 7 (DFn) can be read/written in 1-bit units, and bits 5 to 0 (IFCn5 to IFCn0) can be read/written in 8-bit units (n = 0 to 3).

Be sure to set bit 6 to "0". If it is set to 1, the operation is not guaranteed.

Cautions 1. Be sure to stop DMA operation before making changes to DTFRn register settings.

- 2. An interrupt request input in a standby mode (IDLE or software STOP mode) cannot be used as a DMA transfer start factor except for INTP0 to INTP6 and INTP20 to INTP25 (when the noise elimination by analog filter is selected).
- 3. If the start factor for DMA transfer is changed using the IFCn5 to IFCn0 bits, be sure to clear (0) the DFn bit with the instruction immediately after the change.
- 4. Be sure to follow the steps below when changing the DTFRn register settings.
 - When the values to be set to the IFCn5 to IFCn0 bits are not set to the IFCm5 to IFCm0 bits of another channel (n = 0 to 3, m = 0 to 3, $n \ne m$)
 - <1> Follow steps <3> to <5> when the Enn bit of the DCHCn register is cleared to 0, and follow steps <2> to <5> when the Enn bit is set to 1.
 - <2> Stop the DMAn operation of the channel to be rewritten (INIT bit of DCHCn register = 1).
 - <3> Change the DTFRn register settings. (Be sure to set the DFn bit to 0 and change the settings in the 8-bit manipulation.)
 - <4> To clear a DMA transfer request, clear the DMA transfer request flag (DFn bit of DTFRn register) to 0.
 - <5> Enable the DMAn operation (Enn bit = 1).
 - When the values to be set to the IFCn5 to IFCn0 bits are set to the IFCm5 to IFCm0 bits of another channel (n = 0 to 3, m = 0 to 3, n ≠ m)
 - <1> Follow steps <4> to <6> when the Enn bit of the DCHCn register is cleared to 0, and follow steps <2> to <6> when the Enn bit is set to 1.
 - <2> Stop the DMAn operation of the channel to be rewritten (INIT bit of DCHCn register = 1).
 - <3> Stop the DMAm operation of the channel where the same values are set to the IFCm5 to IFCm0 bits as the values to be used to rewrite the IFCn5 to IFCn0 bits (INIT bit of DCHCm register = 1).
 - <4> Change the DTFRn register settings. (Be sure to set the DFn bit to 0 and change the settings in the 8-bit manipulation.)
 - <5> To clear a DMA transfer request, clear the DMA transfer request flag (DFn bit of DTFRn register) to 0.
 - <6> Enable the DMAn operation (Enn and Emm bits = 1).

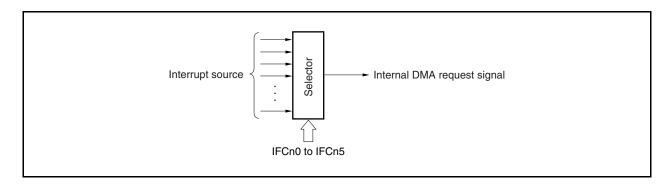
<R>

(1/2)

DTFR0	<7>	6	5 IFC05	4 IFC04	3 IFC03	2 IFC02	1 IFC01	0 IFC00	Address FFFFF810H	Initial value
L	<7>	6	5	4	3	2	1	0	l	
DTFR1	DF1	0	IFC15	IFC14	IFC13	IFC12	IFC11	IFC10	FFFFF812H	00H
<u>.</u>	<7>	6	5	4	3	2	1	0	•	
DTFR2	DF2	0	IFC25	IFC24	IFC23	IFC22	IFC21	IFC20	FFFFF814H	00H
_	<7>	6	5	4	3	2	1	0	•	
DTFR3	DF3	0	IFC35	IFC34	IFC33	IFC32	IFC31	IFC30	FFFFF816H	00H

Bit position	Bit name					Fun	ction	
7	DFn	1: DMA If an inter it has bee transfer reception	of the DFI DMA transfer rupt that en susper equest m if serial is	n bit to 1 sfer request causes Ended by a ust be cleareception the interior of the contract of	by softwa est DMA trans an NMI or eared, sto is in prog rrupt will	afer occur forcibly to op the oper gress), and	erminated eration cand then with again	oMA transfer is disabled (including if d by software), and if this DMA ausing the interrupt (e.g., disable rite 0 to the DFn bit. If it is clear in til DMA transfer is resumed next, it crupt.
5 to 0	IFCn5 to IFCn0	Sets the i	nterrupt	source th	at serves	as the D	MA trans	fer start factor. Interrupt Source
		0	0	0	0	0	0	DMA request from on-chip peripheral I/O disabled
		0	0	0	0	0	1	INTP0
		0	0	0	0	1	0	INTP1
		0	0	0	0	1	1	INTP2
		0	0	0	1	0	0	INTP3
		0	0	0	1	0	1	INTP4

Remark n = 0 to 3


(2/2)

Bit position	Bit name	Function						
5 to 0	IFCn5 to							
	IFCn0	IFCn5	IFCn4	IFCn3	IFCn2	IFCn1	IFCn0	Interrupt source
		0	0	0	1	1	0	INTP5
		0	0	0	1	1	1	INTP6
		0	0	1	0	0	0	INTDET0
		0	0	1	0	0	1	INTDET1
		0	0	1	0	1	0	INTTM00
		0	0	1	0	1	1	INTCM003
		0	0	1	1	0	0	INTTM01
		0	0	1	1	0	1	INTCM013
		0	0	1	1	1	0	INTP100/INTCC100
		0	0	1	1	1	1	INTP101/INTCC101
		0	1	0	0	0	0	INTCM100
		0	1	0	0	0	1	INTCM101
		0	1	0	0	1	0	INTP110/INTCC110
		0	1	0	0	1	1	INTP111/INTCC111
		0	1	0	1	0	0	INTCM110
		0	1	0	1	0	1	INTCM111
		0	1	0	1	1	0	INTTM20
		0	1	0	1	1	1	INTTM21
		0	1	1	0	0	0	INTP20/INTCC20
		0	1	1	0	0	1	INTP21/INTCC21
		0	1	1	0	1	0	INTP22/INTCC22
		0	1	1	0	1	1	INTP23/INTCC23
		0	1	1	1	0	0	INTP24/INTCC24
		0	1	1	1	0	1	INTP25/INTCC25
		0	1	1	1	1	0	INTTM3
		0	1	1	1	1	1	INTP30/INTCC30
		1	0	0	0	0	0	INTP31/INTCC31
		1	0	0	0	0	1	INTCM4
		1	0	0	0	1	0	INTDMA0
		1	0	0	0	1	1	INTDMA1
		1	0	0	1	0	0	INTDMA2
		1	0	0	1	0	1	INTDMA3
		1	0	0	1	1	0	INTCREC
		1	0	0	1	1	1	INTCTRX
		1	0	1	0	0	0	INTCERR
		1	0	1	0	0	1	INTCMAC
		1	0	1	0	1	0	INTCSI0
		1	0	1	0	1	1	INTCSI1
		1	0	1	1	0	0	INTSR0
		1	0	1	1	0	1	INTST0
		1	0	1	1	1	0	INTSER0
		1	0	1	1	1	1	INTSR1
		1	1	0	0	0	0	INTST1
		1	1	0	0	0	1	INTSR2
		1	1	0	0	1	0	INTST2
		1	1	0	0	1	1	INTAD0
		1	1	0	1	0	0	INTAD1
		1	1	0	1	0	1	NBDAD ^{Note}
		1	1	0	1	1	0	NBDREW ^{Note}
		Other t	han abov	е		U		Setting prohibited

Note μ PD70F3116 only

Remark n = 0 to 3

The relationship between the interrupt source and the DMA transfer trigger is as follows (n = 0 to 3).

Caution DMA transfer is triggered by an interrupt source set by the IFCn5 to IFCn0 bits. To prevent interrupt servicing from being performed, mask the interrupt by setting the interrupt request control register. DMA transfer starts even if an interrupt is masked.

<R>

6.4 Transfer Mode

6.4.1 Single transfer mode

In single transfer mode, the DMAC releases the bus at each byte/halfword transfer. If there is a subsequent DMA transfer request, transfer is performed again once. This operation continues until a terminal count occurs.

When the DMAC has released the bus, if another higher priority DMA transfer request is issued, the higher priority DMA request always takes precedence. However, if a lower priority DMA transfer request is generated within one clock after the end of a single transfer, even if the previous higher priority DMA transfer request signal stays active, this request is not prioritized, and the next DMA transfer after the bus is released for the CPU is a transfer based on the newly generated, lower priority DMA transfer request.

Figures 6-1 to 6-4 show examples of single transfer.

Figure 6-1. Single Transfer Example 1

Figure 6-2 shows a single transfer mode example in which a higher priority DMA transfer request is generated. DMA channels 0 to 2 are used for a block transfer, and channel 3 is used for a single transfer.

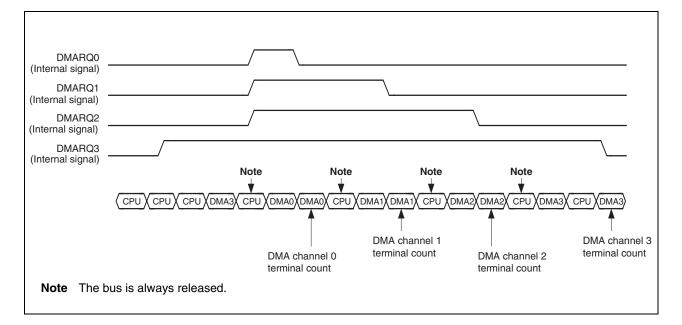


Figure 6-2. Single Transfer Example 2

Figure 6-3 shows a single transfer mode example in which a lower priority DMA transfer request is generated within one clock after the end of a single transfer. DMA channels 0 and 3 are used for a single transfer. When two DMA transfer request signals are activated at the same time, the two DMA transfers are performed alternately.

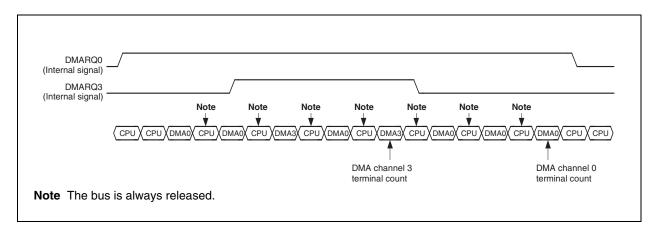


Figure 6-3. Single Transfer Example 3

Figure 6-4 shows a single transfer mode example in which two or more lower priority DMA transfer requests are generated within one clock after the end of a single transfer. DMA channels 0, 2, and 3 are used for a single transfer. When three or more DMA transfer request signals are activated at the same time, the two highest priority DMA transfers are performed alternately.

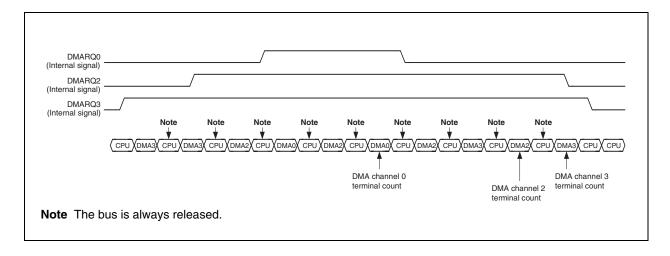


Figure 6-4. Single Transfer Example 4

6.4.2 Single-step transfer mode

In single-step transfer mode, the DMAC releases the bus at each byte/halfword transfer. Once a DMA transfer request signal is received, transfer is performed again. This operation continues until a terminal count occurs.

When the DMAC has released the bus, if another higher priority DMA transfer request is issued, the higher priority DMA request always takes precedence.

The following shows examples of single-step transfer. Figure 6-6 shows a single-step transfer mode example in which a higher priority DMA transfer request is generated. DMA channels 0 and 1 are used for the single-step transfer.

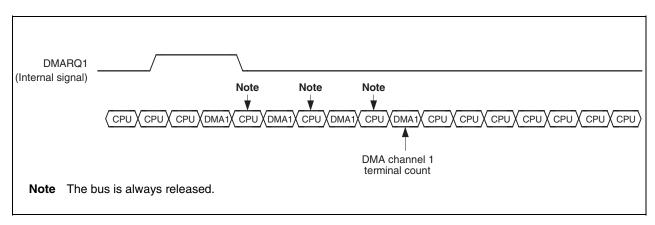
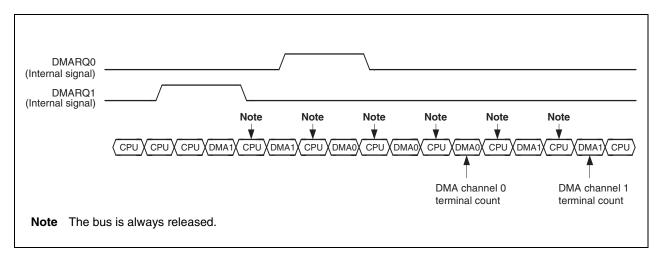



Figure 6-5. Single-Step Transfer Example 1

6.4.3 Block transfer mode

In the block transfer mode, once transfer starts, the DMAC continues the transfer operation without releasing the bus until a terminal count occurs. No other DMA requests are acknowledged during block transfer.

After the block transfer ends and the DMAC releases the bus, another DMA transfer can be acknowledged.

The following shows an example of block transfer in which a higher priority DMA request is issued. DMA channels 2 and 3 are in the block transfer mode.

Figure 6-7. Block Transfer Example

6.5 Transfer Types

6.5.1 Two-cycle transfer

In two-cycle transfer, data transfer is performed in two cycles, a read cycle (source to DMAC) and a write cycle (DMAC to destination).

In the first cycle, the source address is output and reading is performed from the source to the DMAC. In the second cycle, the destination address is output and writing is performed from the DMAC to the destination.

Caution An idle cycle of 1 to 2 clocks is always inserted between the read cycle and write cycle.

6.6 Transfer Target

6.6.1 Transfer type and transfer target

Table 6-1 shows the relationship between the transfer type and transfer target ($\sqrt{}$: transfer enabled, \times : transfer disabled).

Destination Internal ROM Internal RAM External Memory, On-Chip Peripheral I/ONote External I/O On-chip peripheral I/ONote $\sqrt{}$ $\sqrt{}$ × $\sqrt{}$ External I/O $\sqrt{}$ $\sqrt{}$ $\sqrt{}$ Internal RAM $\sqrt{}$ × $\sqrt{}$ $\sqrt{}$ $\sqrt{}$ External memory Internal ROM × ×

Table 6-1. Relationship Between Transfer Type and Transfer Target

Note If the transfer target is the on-chip peripheral I/O, only the single transfer mode can be used.

- Cautions 1. The operation is not guaranteed for combinations of transfer destination and source marked with "x" in Table 6-1.
 - Addresses between 3FFF000H and 3FFFFFH cannot be specified for the source and destination address of DMA transfer. Be sure to specify an address between FFFF000H and FFFFFFH.

Remark If the target of the DMA transfer is an on-chip peripheral I/O register (transfer source/transfer destination), be sure to specify the same transfer size as the register size. For example, in the case of DMA transfer to an 8-bit register, be sure to specify byte (8-bit) transfer.

<16-bit transfer>

- Transfer from a 16-bit bus to an 8-bit bus
 A read cycle (16 bits) is generated and then a write cycle (8 bits) is generated twice successively.
- Transfer from an 8-bit bus to a 16-bit bus

A read cycle (8 bits) is generated twice successively and then a write cycle (16 bits) is generated. Data is written to the transfer destination from the lowest byte in little-endian mode, and the highest byte in big-endian mode.

<8-bit transfer>

- Transfer from a 16-bit bus to an 8-bit bus
 A read cycle (the higher 8 bits go into a high-impedance state) is generated and then a write cycle (8 bits) is generated.
- Transfer from an 8-bit bus to a 16-bit bus

A read cycle (8 bits) is generated and then a write cycle (the higher 8 bits go into a high-impedance state) is generated. Data is written to the transfer destination from the lowest byte in little-endian mode, and the highest byte in big-endian mode.

6.6.2 External bus cycles during DMA transfer (two-cycle transfer)

The external bus cycles during DMA transfer (two-cycle transfer) are shown below.

Table 6-2. External Bus Cycles During DMA Transfer (Two-Cycle Transfer)

Transfer Target		External Bus Cycle
On-chip peripheral I/O, internal RAM	None	-
External memory, external I/O	Yes	SRAM, external ROM, external I/O access cycle

6.7 DMA Channel Priorities

The DMA channel priorities are fixed as follows.

DMA channel 0 > DMA channel 1 > DMA channel 2 > DMA channel 3

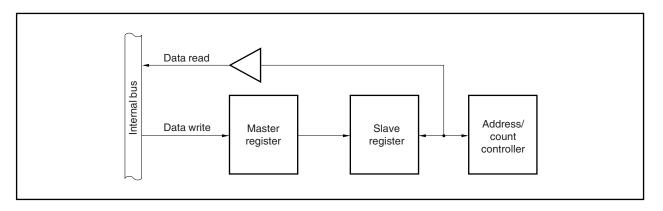
In the block transfer mode, the channel used for transfer is never switched.

In the single-step transfer mode, if a higher priority DMA transfer request is issued while the bus is released, the higher priority DMA transfer request is acknowledged.

Caution Do not start more than one DMA channel using the same start factor. If more than one DMA channel is started, a lower priority DMA channel may be acknowledged prior to a higher priority DMA channel.

6.8 Next Address Setting Function

The DMA source address registers (DSAnH, DSAnL), DMA destination address registers (DDAnH, DDAnL), and DMA transfer count register (DBCn) are 2-stage FIFO buffer registers configured with a master register and slave register (n = 0 to 3).


When the terminal count is issued, these registers are automatically rewritten with the value that was set immediately before.

If new DMA transfer setting is made to these registers during DMA transfer, therefore, the values of the registers are automatically updated to the new value after completion of transfer^{Note}.

Note Before making another DMA transfer setting, confirm that DMA transfer has started. If new settings are made before DMA transfer starts, the set values are overwritten to both the master and slave registers, preventing the DMA transfer based on the set value immediately before from being correctly performed.

Figure 6-8 shows the configuration of the buffer register.

Figure 6-8. Buffer Register Configuration

The actual DMA transfer is performed based on the settings of the slave register.

The settings incorporated in the master and slave registers differ as follows according to the timing (time) at which the settings were made.

(1) Time from system reset to generation of first DMA transfer request

The settings made are incorporated in both the master and slave registers.

(2) During DMA transfer (time from generation of DMA transfer request to end of DMA transfer)

The settings made are incorporated in only the master register, and not in the slave register (the slave register maintains the value set for the next DMA transfer).

However, the contents of the master register are automatically overwritten in the slave register after DMA transfer ends.

The value of the slave register is read if the value of each register is read during this period.

To check that DMA transfer has been started, confirm that the first transfer has been executed by reading the DBCn register (n = 0 to 3).

(3) Time from DMA transfer end to start of next DMA transfer

The settings made are incorporated in both the master and slave registers.

Remark "DMA transfer end" means one of the following.

- Completion of DMA transfer (terminal count)
- Forcible termination of DMA transfer (the INITn bit of the DCHCn register is set to 1)

6.9 DMA Transfer Start Factors

There are two types of DMA transfer start factors, as shown below.

- Cautions 1. Do not use two or more start factors ((1) and (2)) in combination for the same channel (if two or more start factors are generated at the same time, only one of them is valid, but the valid start factor cannot be identified). The operation is not guaranteed if two or more start factors are used in combination.
 - 2. If DMA transfer is started via software and if the software does not correctly detect whether the expected DMA transfer operation has been completed through manipulation (setting to 1) of the STGn bit of the DCHCn register, it cannot be guaranteed whether the next (second) manipulation of the STGn bit corresponds to the start of "the next DMA transfer expected by software" (n = 0 to 3).

For example, suppose single transfer is started by manipulating the STGn bit. Even if the STGn bit is manipulated next (the second time) without checking by software whether the single transfer has actually been executed, the next (second) DMA transfer is not always executed. This is because the STGn bit may be manipulated the second time before the first DMA transfer is started or completed because, for example, DMA transfer with a higher priority had already been started when the STGn bit was manipulated for the first time. It is therefore necessary to manipulate the STGn bit next time (the second time) after checking whether DMA transfer started by the first manipulation of the STGn bit has been completed. Completion of DMA transfer can be checked by checking the contents of the DBCn register.

(1) Request from software

If the STGn, Enn, and TCn bits of the DCHCn register are set as follows, DMA transfer starts (n = 0 to 3).

- STGn bit = 1
- Enn bit = 1
- TCn bit = 0

(2) Request from on-chip peripheral I/O

If, when the Enn and TCn bits of the DCHCn register are set as shown below, an interrupt request is issued from the on-chip peripheral I/O that is set in the DTFRn register, DMA transfer starts (n = 0 to 3).

- Enn bit = 1
- TCn bit = 0

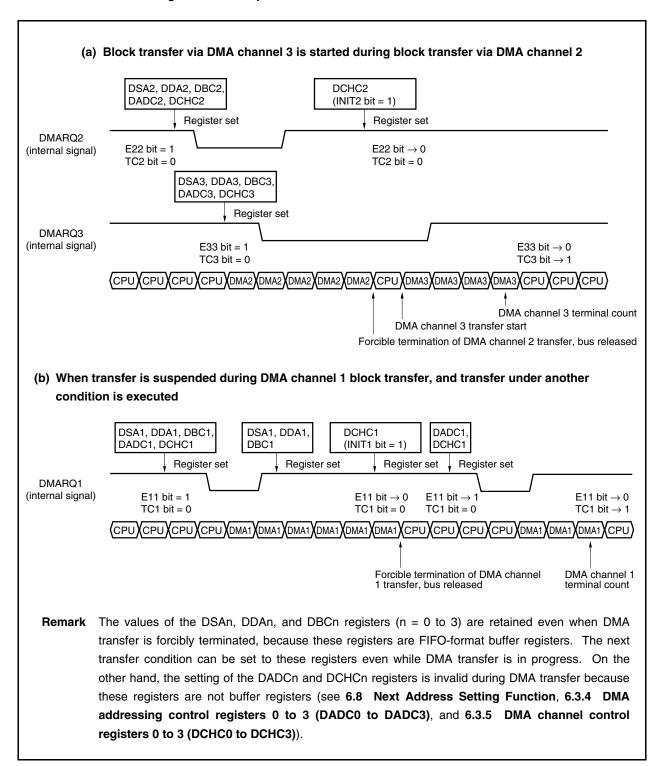
6.10 Forcible Interruption

DMA transfer can be forcibly interrupted by NMI input during DMA transfer.

At such a time, the DMAC clears the Enn bit of the DCHCn register of all channels to 0 and the DMA transfer disabled state is entered. An NMI request can then be acknowledged after the DMA transfer executed during NMI input is terminated (n = 0 to 3).

If DMA transfer has been forcibly interrupted, perform forcible termination of the DMA using the INITn bit of the DCHCn register and then initialize.

6.11 DMA Transfer End


When DMA transfer ends and the TCn bit of the DCHCn register is set to 1, a DMA transfer end interrupt (INTDMAn) is issued to the interrupt controller (INTC) (n = 0 to 3).

6.12 Forcible Termination

In addition to the forcible interruption operation by means of NMI input, DMA transfer can be forcibly terminated by the INITn bit of the DCHCn register (n = 0 to 3).

An example of forcible termination by the INITn bit of the DCHCn register is illustrated below (n = 0 to 3).

Figure 6-9. Example of Forcible Termination of DMA Transfer

6.12.1 Restriction related to DMA transfer forcible termination

When terminating a DMA transfer by setting the INITn bit of the DCHCn register, the transfer may not be terminated, but just suspended, even though the INITn bit is set to 1. As a result, when the DMA transfer of a channel that should have been terminated is resumed, the DMA transfer will terminate after an unexpected number of transfers are completed and a DMA transfer completion interrupt may occur.

[Preventive measures]

This problem can be avoided by implementing any of the following workarounds.

(1) Stop all the transfers from DMA channels temporarily.

The following measure is effective if the program does not assume that the TCn bit of the DCHCn register is 1 except for the following workaround processing. (Since the TCn bit of the DCHCn register is cleared to 0 when it is read, execution of the following procedure (ii) under step <5> clears this bit.)

- <1> Disable interrupts (DI state).
- <2> Read the DMA restart register (DRST) and transfer the ENn bit of each channel to a general-purpose register (value A).
- <3> Write 00H to the DMA restart register (DRST) twice^{Note}.
 By executing twice, the DMA transfer is definitely stopped before proceeding to <4>.
- <4> Set the INITn bit of the DCHCn register of the channel to be forcibly terminated to 1.
- <5> Perform the following operations for value A read in step <2>. (Value B)
 - (i) Clear the bit of the channel to be forcibly terminated to 0
 - (ii) If the TCn of the DCHCn register and ENn bit of the DRST register of the channel that is not terminated forcibly are 1 (AND makes 1), clear the bit of the channel to 0.
- <6> Write value B in <5> to the DRST register.
- <7> Enable interrupts (El state).

Note Execute three times if the transfer target (transfer source or transfer destination) is the internal RAM.

Caution Be sure to execute step <5> to prevent the ENn bit of the DRST register from being set illegally for channels that are terminated normally during the period of steps <2> and <3>.

Remark n = 0 to 3

(2) Repeat setting the INITn bit of the DCHCn register until forcible termination of DMA transfer is completed normally

The procedure is shown below.

- <1> Copy the initial transfer count of the channel to be forcibly terminated to a general-purpose register.
- <2> Set the INITn bit of the DCHCn register of the channel to be forcibly terminated to 1.
- <3> Read the value of DMA transfer count register n (DBCn) of the channel to be forcibly terminated, and compare that value with the value copied in step <1>. If the two values do not match, repeat steps <2> and <3>.
 - Cautions 1. If the DBCn register is read in step <3>, and if DMA transfer is stopped due to trouble, the remaining number of transfers will be read. If DMA transfer has been forcibly terminated correctly, the initial number of transfers will be read.
 - 2. With this procedure, it may take some time for the channel in question to be forcibly terminated in an application in which DMA transfer of a channel other than that to be forcibly terminated is frequently executed.

Remark n = 0 to 3

6.13 Times Related to DMA Transfer

The overhead before and after DMA transfer and minimum execution clock for DMA transfer are shown below.

Table 6-3. Number of Minimum Execution Clocks in DMA Cycle

D	MA Cycle	Number of Minimum Execution Clocks
<1> Time to respond t	o DMA request	4 clocks ^{Note 1}
<2> Memory access	Internal RAM access	2 clocks ^{Note 2}
	On-chip peripheral I/O register access	4 clocks + number of waits set by VSWC register

- **Notes 1.** If an external interrupt (INTPn) is specified as a factor of starting DMA transfer, noise elimination time is added (n = 0 to 6, 100, 101, 110, 111, 20 to 25, 30, or 31).
 - 2. Two clocks are required for the DMA cycle.

The minimum execution clock in the DMA cycle in each transfer mode is as follows.

Single transfer: DMA response time (<1>) + Transfer source memory access (<2>) + 1^{Note} + Transfer

destination memory access (<2>)

Block transfer: DMA response time (<1>) + (Transfer source memory access (<2>) + 1 Note + Transfer

destination memory access (<2>)) × Number of transfers

Note One clock is always inserted between the read cycle and write cycle of DMA transfer.

6.14 Precautions

(1) Memory boundary

The transfer operation is not guaranteed if the source or the destination address exceeds the area of DMA targets (external memory, internal RAM, or on-chip peripheral I/O) during DMA transfer.

(2) Transfer of misaligned data

DMA transfer of 16-bit bus width misaligned data is not supported.

If the source or the destination address is set to an odd address, the LSB of the address is forcibly handled as "0".

<R> (3) Bus arbitration for CPU

Because the DMA controller has a higher priority bus mastership than the CPU, a CPU access that takes place during DMA transfer is held pending until the DMA transfer cycle is completed and the bus is released to the CPU.

However, the CPU can access the internal ROM and internal RAM which DMA transfer is not being executed.

- The CPU can access the internal ROM and internal RAM when DMA transfer is being executed between the external memory and an on-chip peripheral I/O.
- The CPU can an access the internal ROM when DMA transfer is being executed between an on-chip peripheral I/O and internal RAM.

<R> (4) DMA start factor

Do not start two or more DMA channels with the same factor. If two or more DMA channels are started with the same factor, the DMA channel with a lower priority may be acknowledged before the DMA channel with a higher priority.

(5) Program execution and DMA transfer with internal RAM

Do not execute DMA transfer to/from the internal RAM and an instruction in the internal RAM simultaneously.

(6) Restrictions related to automatic clearing of TCn bit of DCHCn register

The TCn bit of the DCHCn register is automatically cleared to 0 when it is read. When DMA transfer is executed to transfer data to or from the internal RAM when two or more DMA transfer channels are simultaneously used, the TCn bit may not be cleared even if it is read after completion of DMA transfer (n = 0 to 3).

Caution This restriction does not apply if one of the following conditions is satisfied.

- Only one channel of DMA transfer is used.
- DMA is not executed to transfer data to or from the internal RAM.

[Preventive measures]

To read the TCn bit of the DCHCn register of the DMA channel that is used to transfer data to or from the internal RAM, be sure to read the TCn bit three times in a row. This can accurately clear the TCn bit to 0.

(7) Read values of DSAn and DDAn registers

If the values of the DSAn and DDAn registers are read during DMA transfer, the values in the middle of being updated may be read (n = 0 to 3).

For example, if the DSAnH register and the DSAnL register are read in that order when the value of the DMA transfer source address (DSAn register) is "0000FFFFH" and the counting direction is incremental (when the SADn1 and SADn0 bits of the DADCn register = 00), the value of the DSAnL register differs as follows depending on whether DMA transfer is executed immediately after the DSAnH register has been read.

(a) If DMA transfer does not occur while the DSAn register is being read

<1> Reading DSAnH register: DSAnH = 0000H <2> Reading DSAnL register: DSAnL = FFFFH

(b) If DMA transfer occurs while the DSAn register is being read

<1> Reading DSAnH register: DSAnH = 0000H

<2> Occurrence of DMA transfer

<3> Incrementing DSAn register : DSAn = 00010000H

<4> Reading DSAnL register: DSAnL = 0000H

6.14.1 Interrupt factors

DMA transfer is interrupted if a bus hold is issued.

If the factor (bus hold) interrupting DMA transfer disappears, DMA transfer promptly restarts.

CHAPTER 7 INTERRUPT/EXCEPTION PROCESSING FUNCTION

The V850E/IA1 is provided with an interrupt controller (INTC) that can process a total of 53 interrupt requests.

An interrupt is an event that occurs independently of program execution, and an exception is an event whose occurrence is dependent on program execution.

The V850E/IA1 can process interrupt requests from the on-chip peripheral hardware and external sources. Moreover, exception processing can be started by the TRAP instruction (software exception) or by generation of an exception event (i.e. fetching of an illegal opcode) (exception trap).

Eight levels of software-programmable priorities can be specified for each interrupt request.

Interrupt servicing starts after no fewer than 4 system clocks (80 ns (@ 50 MHz)) following the generation of an interrupt request.

7.1 Features

O Interrupts

Non-maskable interrupts: 1 source

Caution P00 alternately functions as NMI, and is fixed to input. P00 and NMI cannot be switched. If the P00 bit of the P0 register is read, the level of the P00/NMI pin is read.

Set the valid edge of the NMI pin using the ESN0 bit of the INTM0 register (default value: falling edge detection).

- Maskable interrupts: 52 sources
- 8 levels of programmable priorities (maskable interrupts)
- · Multiple interrupt control according to priority
- Masks can be specified for each maskable interrupt request.
- Noise elimination^{Note}, edge detection, and valid edge specification for external interrupt request signals.

Note For details of the noise eliminator, refer to **14.5 Noise Eliminator**.

O Exceptions

- Software exceptions: 32 sources
- Exception traps: 2 sources (illegal opcode exception and debug trap)

Interrupt/exception sources are listed in Table 7-1.

Table 7-1. Interrupt/Exception Source List (1/2)

Туре	Classification		Interrupt	/Exception Source		Default	Exception	Handler	Restored PC
		Name	Controlling Register	Generating Source	Generating Unit	Priority	Code	Address	
Reset	Interrupt	RESET	-	RESET input	Pin	_	0000H	00000000H	Undefined
Non-maskable	Interrupt	NMI0	-	NMI input	Pin	-	0010H	00000010H	nextPC
Software	Exception	TRAP0n ^{Note}	_	TRAP instruction	-	-	004nH ^{Note 1}	00000040H	nextPC
exception	Exception	TRAP1n ^{Note}	_	TRAP instruction	_	-	005nH ^{Note 1}	00000050H	nextPC
Exception trap	Exception	ILGOP/ DBG0	_	Illegal opcode/ DBTRAP instruction	_	-	0060H	00000060H	nextPC
Maskable	Interrupt	INTP0	P0IC0	INTP0 pin	Pin	0	0080H	00000080H	nextPC
	Interrupt	INTP1	P0IC1	INTP1 pin	Pin	1	0090H	00000090H	nextPC
	Interrupt	INTP2	P0IC2	INTP2 pin	Pin	2	00A0H	000000A0H	nextPC
	Interrupt	INTP3	P0IC3	INTP3 pin	Pin	3	00B0H	000000B0H	nextPC
	Interrupt	INTP4	P0IC4	INTP4 pin	Pin	4	00C0H	000000C0H	nextPC
	Interrupt	INTP5	P0IC5	INTP5 pin	Pin	5	00D0H	000000D0H	nextPC
	Interrupt	INTP6	P0IC6	INTP6 pin	Pin	6	00E0H	000000E0H	nextPC
	Interrupt	INTDET0	DETIC0	AD0 voltage detection	ADC0	7	00F0H	000000F0H	nextPC
	Interrupt	INTDET1	DETIC1	AD1 voltage detection	ADC1	8	0100H	00000100H	nextPC
	Interrupt	INTTM00	TM0IC0	TM00 underflow	TM00	9	0110H	00000110H	nextPC
	Interrupt	INTCM003	CM03IC0	CM003 match	TM00	10	0120H	00000120H	nextPC
	Interrupt	INTTM01	TM0IC1	TM01 underflow	TM01	11	0130H	00000130H	nextPC
	Interrupt	INTCM013	CM03IC1	CM013 match	TM01	12	0140H	00000140H	nextPC
	Interrupt	INTP100/ INTCC100	CC10IC0	INTP100 pin/ CC100 match	Pin/TM10	13	0150H	00000150H	nextPC
	Interrupt	INTP101/ INTCC101	CC10IC1	INTP101/INTP100 pin ^{Note 2} / CC101 match	Pin/TM10	14	0160H	00000160H	nextPC
	Interrupt	INTCM100	CM10IC0	CM100 match	TM10	15	0170H	00000170H	nextPC
	Interrupt	INTCM101	CM10IC1	CM101 match	TM10	16	0180H	00000180H	nextPC
	Interrupt	INTP110/ INTCC110	CC11IC0	INTP110 pin/ CC110 match	Pin/TM10	17	0190H	00000190H	nextPC
	Interrupt	INTP111/ INTCC111	CC11IC1	INTP111/INTP110 pin ^{Note 2} / CC111 match	Pin/TM11	18	01A0H	000001A0H	nextPC
	Interrupt	INTCM110	CM11IC0	CM110 match	TM11	19	01B0H	000001B0H	nextPC
	Interrupt	INTCM111	CM11IC1	CM111 match	TM11	20	01C0H	000001C0H	nextPC
	Interrupt	INTTM20	TM2IC0	TM20 overflow	TM20	21	01D0H	000001D0H	nextPC
	Interrupt	INTTM21	TM2IC1	TM21 overflow	TM21	22	01E0H	000001E0H	nextPC
	Interrupt	INTP20/ INTCC20	CC2IC0	INTP20 pin/CC20 match	Pin/TM20	23	01F0H	000001F0H	nextPC
	Interrupt	INTP21/ INTCC21	CC2IC1	INTP21 pin/CC21 match	Pin/ TM20/TM21	24	0200H	00000200H	nextPC
	Interrupt	INTP22/ INTCC22	CC2IC2	INTP22 pin/CC22 match	Pin/ TM20/TM21	25	0210H	00000210H	nextPC
	Interrupt	INTP23/ INTCC23	CC2IC3	INTP23 pin/ CC23 match	Pin/ TM20/TM21	26	0220H	00000220H	nextPC
	Interrupt	INTP24/ INTCC24	CC2IC4	INTP24 pin/ CC24 match	Pin/ TM20/TM21	27	0230H	00000230H	nextPC
	Interrupt	INTP25/ INTCC25	CC2IC5	INTP25 pin/ CC25 match	Pin/TM21	28	0240H	00000240H	nextPC
	Interrupt	INTTM3	TM3IC0	TM3 overflow	TM3	29	0250H	00000250H	nextPC

Notes 1. n = 0 to FH

2. Select using the CSL10 and CSL11 registers.

Table 7-1. Interrupt/Exception Source List (2/2)

Туре	Classification	Interrupt/Exception Source					Exception	Handler	Restored PC	
		Name	Controlling Register	Generating Source	Generating Unit	Priority	Code	Address		
Maskable	Interrupt	INTP30/ INTCC30	CC3IC0	INTP30 pin/CC30 match	Pin/TM3	30	0260H	00000260H	nextPC	
	Interrupt	INTP31/ INTCC31	CC3IC1	INTP31 pin/CC31 match	Pin/TM3	31	0270H	00000270H	nextPC	
	Interrupt	INTCM4	CM4IC0	CM4 match signal	TM4	32	0280H	00000280H	nextPC	
	Interrupt	INTDMA0	DMAIC0	End of DMA0 transfer	DMA	33	0290H	00000290H	nextPC	
	Interrupt	INTDMA1	DMAIC1	End of DMA1 transfer	DMA	34	02A0H	000002A0H	nextPC	
	Interrupt	INTDMA2	DMAIC2	End of DMA2 transfer	DMA	35	02B0H	000002B0H	nextPC	
	Interrupt	INTDMA3	DMAIC3	End of DMA3 transfer	DMA	36	02C0H	000002C0H	nextPC	
	Interrupt	INTCREC	CANIC0	CAN1 reception complete	FCAN	37	02D0H	000002D0H	nextPC	
	Interrupt	INTCTRX	CANIC1	CAN1 transmission complete	FCAN	38	02E0H	000002E0H	nextPC	
	Interrupt	INTCERR	CANIC2	CAN1 communication error	FCAN	39	02F0H	000002F0H	nextPC	
	Interrupt	INTCMAC	CANIC3	CAN illegal write	FCAN	40	0300H	00000300H	nextPC	
	Interrupt	INTCSI0	CSIIC0	CSI0 transmission/ reception complete	CSI0	41	0310H	00000310H	nextPC	
	Interrupt	INTCSI1	CSIIC1	CSI1 transmission/ reception complete	CSI1	42	0320H	00000320H	nextPC	
	Interrupt	INTSR0	SRIC0	UART0 reception complete	UART0	43	0330H	00000330H	nextPC	
	Interrupt	INTST0	STIC0	UART0 transmission complete	UART0	44	0340H	00000340H	nextPC	
	Interrupt	INTSER0	SEIC0	UART0 reception error	UART0	45	0350H	00000350H	nextPC	
	Interrupt	INTSR1	SRIC1	UART1 reception complete	UART1	46	0360H	00000360H	nextPC	
	Interrupt	INTST1	STIC1	UART1 transmission complete	UART1	47	0370H	00000370H	nextPC	
	Interrupt	INTSR2	SRIC2	UART2 reception complete	UART2	48	0380H	00000380H	nextPC	
	Interrupt	INTST2	STIC2	UART2 transmission complete	UART2	49	0390H	00000390H	nextPC	
	Interrupt	INTAD0	ADIC0	End of AD0 conversion	ADC0	50	03A0H	000003A0H	nextPC	
	Interrupt	INTAD1	ADIC1	End of AD1 conversion	ADC1	51	03B0H	000003B0H	nextPC	

Remarks 1. Default priority:

The priority order when two or more maskable interrupt requests are generated at the same time. The highest priority is 0.

Restored PC:

The value of the program counter (PC) saved to EIPC, FEPC, or DBPC of CPU when interrupt servicing is started. Note, however, that the restored PC when a non-maskable or maskable interrupt is acknowledged while one of the following instructions is being executed does not become the nextPC. (If an interrupt is acknowledged during instruction execution, execution stops, and then resumes after the interrupt servicing has finished. In this case, the address of the aborted instruction is the restore PC.)

- Load instructions (SLD.B, SLD.BU, SLD.H, SLD.HU, SLD.W)
- Division instructions (DIV, DIVH, DIVU, DIVHU)
- PREPARE, DISPOSE instructions (only if an interrupt is generated before the stack pointer is updated)

nextPC:

The PC value that starts the processing following interrupt/exception processing.

2. The execution address of the illegal instruction when an illegal opcode exception occurs is calculated by (Restored PC - 4).

7.2 Non-Maskable Interrupt

A non-maskable interrupt request is acknowledged unconditionally, even when interrupts are in the interrupt disabled (DI) status. An NMI is not subject to priority control and takes precedence over all the other interrupts.

A non-maskable interrupt request is input from the NMI pin. When the valid edge specified by bit 0 (ESN0) of the external interrupt mode register 0 (INTM0) is detected on the NMI pin, the interrupt occurs.

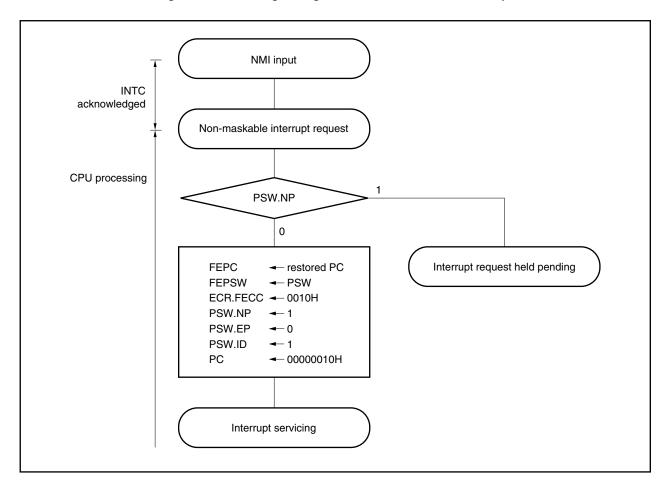
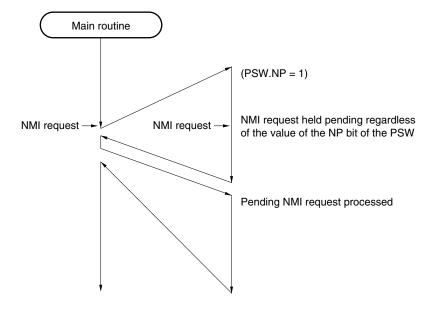
While the service program of the non-maskable interrupt is being executed, another non-maskable interrupt request is held pending. The pending NMI is acknowledged after the original service program of the non-maskable interrupt under execution has been terminated (by the RETI instruction). Note that if two or more NMI requests are input during the execution of the service program for an NMI, the number of NMIs that will be acknowledged after the RETI instruction is executed is only one.

7.2.1 Operation

If a non-maskable interrupt is generated by NMI input, the CPU performs the following processing, and transfers control to the handler routine.

- (1) Saves the restored PC to FEPC.
- (2) Saves the current PSW to FEPSW.
- (3) Writes exception code 0010H to the higher halfword (FECC) of ECR.
- (4) Sets the NP and ID bits of the PSW and clears the EP bit.
- (5) Sets the handler address (00000010H) corresponding to the non-maskable interrupt to the PC, and transfers control.

The servicing configuration of a non-maskable interrupt is shown in Figure 7-1.

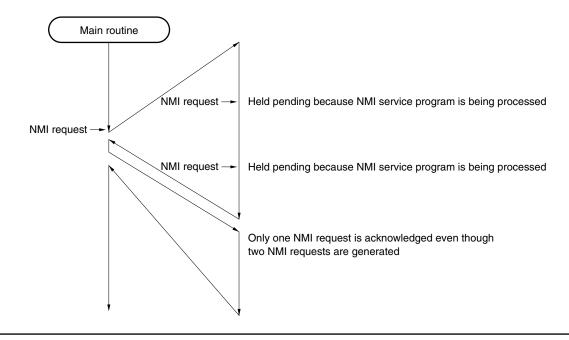

Figure 7-1. Servicing Configuration of Non-Maskable Interrupt

Figure 7-2. Acknowledging Non-Maskable Interrupt Request

(a) If a new NMI request is generated while an NMI service program is being executed

(b) If a new NMI request is generated twice while an NMI service program is being executed

7.2.2 Restore

Execution is restored from the non-maskable interrupt servicing by the RETI instruction.

When the RETI instruction is executed, the CPU performs the following processing, and transfers control to the address of the restored PC.

- (1) Restores the values of the PC and the PSW from FEPC and FEPSW, respectively, because the EP bit of the PSW is 0 and the NP bit of the PSW is 1.
- (2) Transfers control back to the address of the restored PC and PSW.

Figure 7-3 illustrates how the RETI instruction is processed.

PSW.EP

0

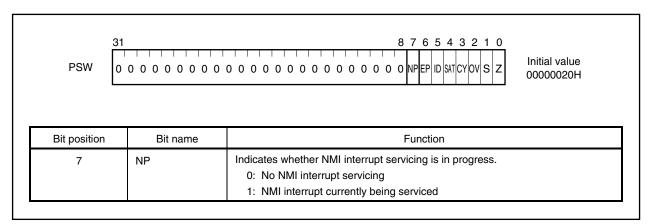
PSW.NP

1

PC +-EIPC
PSW +-EIPSW

Original processing restored

Figure 7-3. RETI Instruction Processing

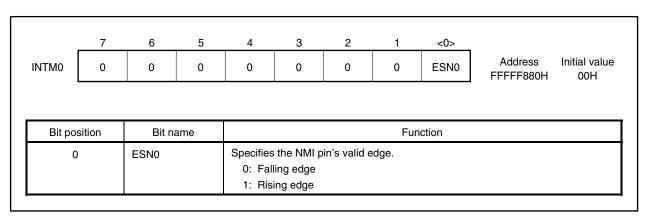

Caution When the PSW.EP bit and PSW.NP bit are changed by the LDSR instruction during non-maskable interrupt servicing, in order to restore the PC and PSW correctly during recovery by the RETI instruction, it is necessary to set PSW.EP back to 0 and PSW.NP back to 1 using the LDSR instruction immediately before the RETI instruction.

Remark The solid lines show the CPU processing flow.

7.2.3 Non-maskable interrupt status flag (NP)

The NP flag is a status flag that indicates that non-maskable interrupt (NMI) servicing is under execution.

This flag is set when an NMI interrupt has been acknowledged, and masks all interrupt requests and exceptions to prohibit multiple interrupts from being acknowledged.



7.2.4 Edge detection function

(1) External interrupt mode register 0 (INTM0)

External interrupt mode register 0 (INTM0) is a register that specifies the valid edge of a non-maskable interrupt (NMI). The NMI valid edge can be specified to be either the rising edge or the falling edge by the ESN0 bit.

This register can be read/written in 8-bit or 1-bit units.

7.3 Maskable Interrupts

Maskable interrupt requests can be masked by interrupt control registers. The V850E/IA1 has 52 maskable interrupt sources.

If two or more maskable interrupt requests are generated at the same time, they are acknowledged according to the default priority. In addition to the default priority, eight levels of priorities can be specified by using the interrupt control registers (programmable priority control).

When an interrupt request has been acknowledged, the acknowledgment of other maskable interrupt requests is disabled and the interrupt disabled (DI) status is set.

When the EI instruction is executed in an interrupt servicing routine, the interrupt enabled (EI) status is set, which enables servicing of interrupts having a higher priority than the interrupt request in progress (specified by the interrupt control register). Note that only interrupts with a higher priority will have this capability; interrupts with the same priority level cannot be nested.

However, if multiple interrupts are executed, the following processing is necessary.

- <1> Save EIPC and EIPSW in memory or a general-purpose register before executing the EI instruction.
- <2> Execute the DI instruction before executing the RETI instruction, then reset EIPC and EIPSW with the values saved in <1>.

7.3.1 Operation

If a maskable interrupt occurs by INT input, the CPU performs the following processing, and transfers control to a handler routine.

- (1) Saves the restored PC to EIPC.
- (2) Saves the current PSW to EIPSW.
- (3) Writes an exception code to the lower halfword of ECR (EICC).
- (4) Sets the ID bit of the PSW and clears the EP bit.
- (5) Sets the handler address corresponding to each interrupt to the PC, and transfers control.

The servicing configuration of a maskable interrupt is shown in Figure 7-4.

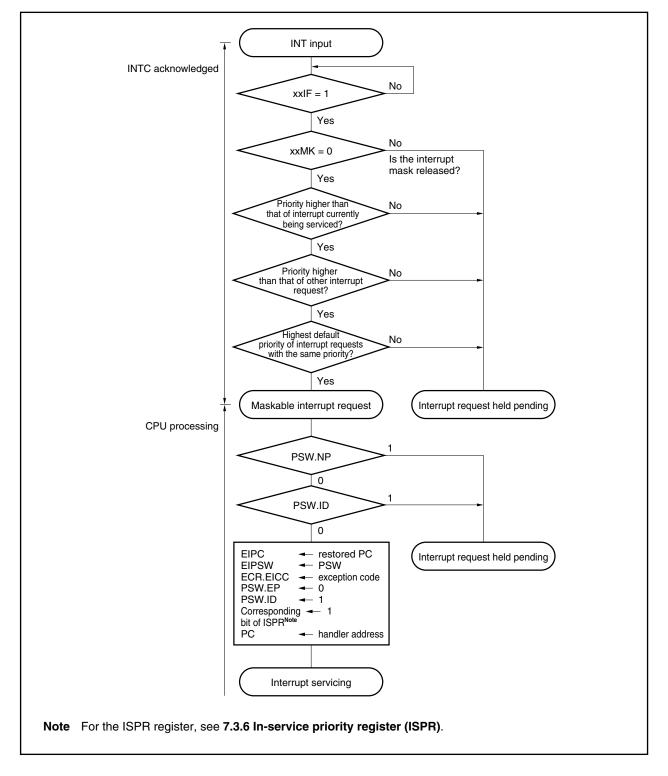


Figure 7-4. Servicing Configuration of Maskable Interrupt

The INT input masked by the interrupt controllers and the INT input that occurs while another interrupt is being serviced (when PSW.NP = 1 or PSW.ID = 1) are held pending internally by the interrupt controller. In such case, if the interrupts are unmasked, or when PSW.NP = 0 and PSW.ID = 0 as set by the RETI and LDSR instructions, input of the pending INT starts the new maskable interrupt servicing.

7.3.2 Restore

Recovery from maskable interrupt servicing is carried out by the RETI instruction.

When the RETI instruction is executed, the CPU performs the following processing, and transfers control to the address of the restored PC.

- (1) Restores the values of the PC and the PSW from EIPC and EIPSW because the EP bit of the PSW is 0 and the NP bit of the PSW is 0.
- (2) Transfers control to the address of the restored PC and PSW.

Figure 7-5 illustrates the processing of the RETI instruction.

RETI instruction

1
PSW.EP

0
PSW.NP
1
PC ← EIPC
PSW ← EIPSW
Corresponding ← 0
bit of ISPRNote

Restores original processing

Figure 7-5. RETI Instruction Processing

Note For the ISPR register, see 7.3.6 In-service priority register (ISPR).

Caution When the PSW.EP bit and the PSW.NP bit are changed by the LDSR instruction during maskable interrupt servicing, in order to restore the PC and PSW correctly during recovery by the RETI instruction, it is necessary to set PSW.EP back to 0 and PSW.NP back to 0 using the LDSR instruction immediately before the RETI instruction.

Remark The solid lines show the CPU processing flow.

7.3.3 Priorities of maskable interrupts

The V850E/IA1 provides multiple interrupt servicing in which an interrupt is acknowledged while another interrupt is being serviced. Multiple interrupts can be controlled by priority levels.

There are two types of priority level control: control based on the default priority levels, and control based on the programmable priority levels that are specified by the interrupt priority level specification bit (xxPRn) of the interrupt control register (xxICn). When two or more interrupts having the same priority level specified by the xxPRn bit are generated at the same time, interrupts are serviced in order depending on the priority level allocated to each interrupt request type (default priority level) beforehand. For more information, refer to **Table 7-1 Interrupt/Exception Source List**. The programmable priority control customizes interrupt requests into eight levels by setting the priority level specification flag.

Note that when an interrupt request is acknowledged, the ID flag of PSW is automatically set to 1. Therefore, when multiple interrupts are to be used, clear the ID flag to 0 beforehand (for example, by placing the EI instruction in the interrupt service program) to set the interrupt enable mode.

Remark xx: Identification name of each peripheral unit (refer to **Table 7-2**)

n: Peripheral unit number (refer to Table 7-2)

Main routine Servicing of a Servicing of b ΕI ĖΙ Interrupt Interrupt request a request b Interrupt request b is acknowledged because the (level 3) (level 2) priority of b is higher than that of a and interrupts are enabled. Servicing of c Interrupt request c Interrupt request d Although the priority of interrupt request d is higher (level 3) (level 2)than that of c, d is held pending because interrupts are disabled. Servicing of d Servicing of e ĒΙ Interrupt request e Interrupt request f Interrupt request f is held pending even if interrupts are (level 2) (level 3) enabled because its priority is lower than that of e. Servicing of f Servicing of g ĖΙ Interrupt request h Interrupt request g (level 1) Interrupt request h is held pending even if interrupts are (level 1) enabled because its priority is the same as that of g. Servicing of h

Figure 7-6. Example of Servicing in Which Another Interrupt Request Is Issued While an Interrupt Is Being Serviced (1/2)

Caution The values of the EIPC and EIPSW registers must be saved before executing multiple interrupts. When returning from multiple interrupt servicing, restore the values of EIPC and EIPSW after executing the DI instruction.

Remarks 1. a to u in the figure are the temporary names of interrupt requests shown for the sake of explanation.

2. The default priority in the figure indicates the relative priority between two interrupt requests.

Figure 7-6. Example of Servicing in Which Another Interrupt Request Is Issued While an Interrupt Is Being Serviced (2/2)

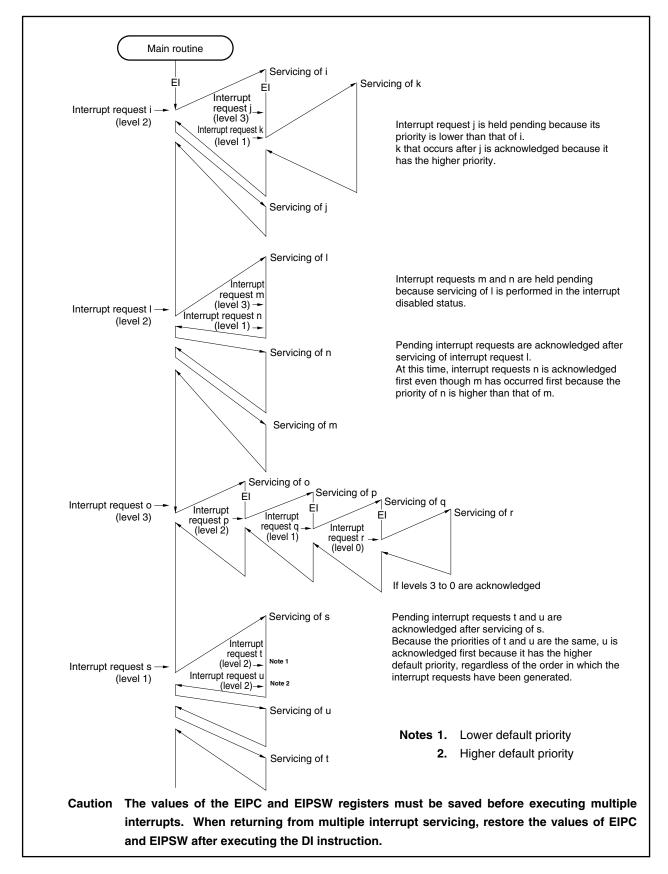
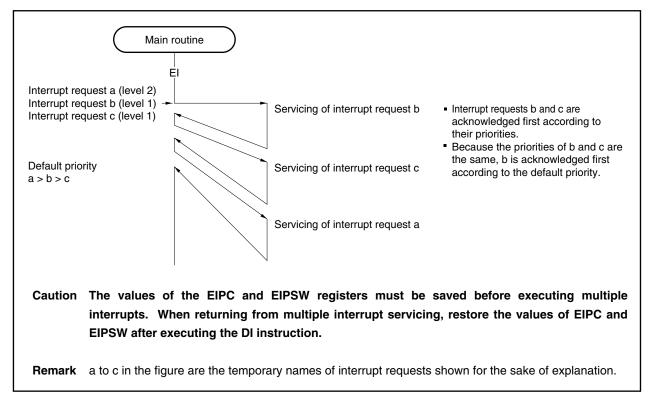



Figure 7-7. Example of Servicing Interrupt Requests Generated Simultaneously

7.3.4 Interrupt control register (xxlCn)

An interrupt control register is assigned to each interrupt request (maskable interrupt) and sets the control conditions for each maskable interrupt request.

This register can be read/written in 8-bit or 1-bit units.

- Cautions 1. Read the xxIFn bit of the xxICn register in the interrupt disabled (DI) state. Otherwise if the timing of interrupt acknowledgment and bit reading conflict, normal values may not be read.
 - If generation of an interrupt source and a bit manipulation instruction (SET1, NOT1, or CLR1 (except TST1)) that manipulates the xxMKn or xxPRn2 to xxPRn0 bits of the interrupt source that has been generated conflict, the interrupt request signal may not be generated.
 This can be avoided in the following two ways.
 - When a bit manipulation instruction is not used to the xxICn register
 - <1> Change from writing the xxMKn bit to a bit manipulation instruction that manipulates the IMRm register.
 - <2> Change from writing the xxPRn2 to xxPRn0 bits to a byte access to the xxlCn register.
 - When a bit manipulation instruction is used to the xxlCn register
 Execute a bit manipulation instruction that manipulates the xxlCn register after executing a dummy write (byte access) with the unused xxlCn.xxlFn bit cleared to 0 in the interrupt disabled (DI) status.

<R>

Bit position	Bit name	Function							
7	xxIFn	This is an interrupt request flag. 0: Interrupt request not issued 1: Interrupt request issued The flag xxIFn is reset automatically by the hardware if an interrupt request is acknowledged.							
6	xxMKn	This is an interrupt mask flag. 0: Enables interrupt servicing 1: Disables interrupt servicing (pending)							
2 to 0	xxPRn2 to xxPRn0	8 levels of priority order are specified for each interrupt.							
		xxPRn2	xxPRn1	xxPRn0	Interrupt priority specification bit				
		0	0	0	Specifies level 0 (highest).				
		0	0	1	Specifies level 1.				
		0	1	0	Specifies level 2.				
		0	1	1	Specifies level 3.				
		1	0	0	Specifies level 4.				
		1	0	1	Specifies level 5.				
		1	1	0	Specifies level 6.				
		1	1	1	Specifies level 7 (lowest).				

Remark xx: Identification name of each peripheral unit (refer to Table 7-2)

n: Peripheral unit number (refer to Table 7-2)

The address and bit of each interrupt control register are as follows.

Table 7-2. Addresses and Bits of Interrupt Control Registers (1/2)

Address	Register				В	Sit			
		<7>	<6>	5	4	3	<2>	<1>	<0>
FFFFF110H	P0IC0	P0IF0	P0MK0	0	0	0	P0PR02	P0PR01	P0PR00
FFFFF112H	P0IC1	P0IF1	P0MK1	0	0	0	P0PR12	P0PR11	P0PR10
FFFFF114H	P0IC2	P0IF2	P0MK2	0	0	0	P0PR22	P0PR21	P0PR20
FFFFF116H	P0IC3	P0IF3	P0MK3	0	0	0	P0PR32	P0PR31	P0PR30
FFFFF118H	P0IC4	P0IF4	P0MK4	0	0	0	P0PR42	P0PR41	P0PR40
FFFFF11AH	P0IC5	P0IF5	P0MK5	0	0	0	P0PR52	P0PR51	P0PR50
FFFFF11CH	P0IC6	P0IF6	P0MK6	0	0	0	P0PR62	P0PR61	P0PR60
FFFFF11EH	DETIC0	DETIF0	DETMK0	0	0	0	DETPR02	DETPR01	DETPR00
FFFFF120H	DETIC1	DETIF1	DETMK1	0	0	0	DETPR12	DETPR11	DETPR10
FFFFF122H	TM0IC0	TM0IF0	TM0MK0	0	0	0	TM0PR02	TM0PR01	TM0PR00
FFFFF124H	CM03IC0	CM03IF0	СМ03МК0	0	0	0	CM03PR02	CM03PR01	CM03PR00
FFFFF126H	TM0IC1	TM0IF1	TM0MK1	0	0	0	TM0PR12	TM0PR11	TM0PR10
FFFFF128H	CM03IC1	CM03IF1	CM03MK1	0	0	0	CM03PR12	CM03PR11	CM03PR10
FFFFF12AH	CC10IC0	CC10IF0	CC10MK0	0	0	0	CC10PR02	CC10PR01	CC10PR00
FFFFF12CH	CC10IC1	CC10IF1	CC10MK1	0	0	0	CC10PR12	CC10PR11	CC10PR10
FFFFF12EH	CM10IC0	CM10IF0	CM10MK0	0	0	0	CM10PR02	CM10PR01	CM10PR00
FFFFF130H	CM10IC1	CM10IF1	CM10MK1	0	0	0	CM10PR12	CM10PR11	CM10PR10
FFFFF132H	CC11IC0	CC11IF0	CC11MK0	0	0	0	CC11PR02	CC11PR01	CC11PR00
FFFFF134H	CC11IC1	CC11IF1	CC11MK1	0	0	0	CC11PR12	CC11PR11	CC11PR10
FFFFF136H	CM11IC0	CM11IF0	CM11MK0	0	0	0	CM11PR02	CM11PR01	CM11PR00
FFFFF138H	CM11IC1	CM11IF1	CM11MK1	0	0	0	CM11PR12	CM11PR11	CM11PR10
FFFFF13AH	TM2IC0	TM2IF0	TM2MK0	0	0	0	TM2PR02	TM2PR01	TM2PR00
FFFFF13CH	TM2IC1	TM2IF1	TM2MK1	0	0	0	TM2PR12	TM2PR11	TM2PR10
FFFFF13EH	CC2IC0	CC2IF0	CC2MK0	0	0	0	CC2PR02	CC2PR01	CC2PR00
FFFFF140H	CC2IC1	CC2IF1	CC2MK1	0	0	0	CC2PR12	CC2PR11	CC2PR10
FFFFF142H	CC2IC2	CC2IF2	CC2MK2	0	0	0	CC2PR22	CC2PR21	CC2PR20
FFFFF144H	CC2IC3	CC2IF3	CC2MK3	0	0	0	CC2PR32	CC2PR31	CC2PR30
FFFFF146H	CC2IC4	CC2IF4	CC2MK4	0	0	0	CC2PR42	CC2PR41	CC2PR40
FFFFF148H	CC2IC5	CC2IF5	CC2MK5	0	0	0	CC2PR52	CC2PR51	CC2PR50
FFFFF14AH	TM3IC0	TM3IF0	TM3MK0	0	0	0	TM3PR02	TM3PR01	TM3PR00
FFFFF14CH	CC3IC0	CC3IF0	CC3MK0	0	0	0	CC3PR02	CC3PR01	CC3PR00
FFFFF14EH	CC3IC1	CC3IF1	CC3MK1	0	0	0	CC3PR12	CC3PR11	CC3PR10
FFFFF150H	CM4IC0	CM4IF0	CANMK2	0	0	0	CM4PR02	CM4PR01	CM4PR00
FFFFF152H	DMAIC0	DMAIF0	DMAMK0	0	0	0	DMAPR02	DMAPR01	DMAPR00
FFFFF154H	DMAIC1	DMAIF1	DMAMK1	0	0	0	DMAPR12	DMAPR11	DMAPR10
FFFFF156H	DMAIC2	DMAIF2	DMAMK2	0	0	0	DMAPR22	DMAPR21	DMAPR20
FFFFF158H	DMAIC3	DMAIF3	DMAMK3	0	0	0	DMAPR32	DMAPR31	DMAPR30
FFFFF15AH	CANIC0	CANIF0	CANMK0	0	0	0	CANPR02	CANPR01	CANPR00
FFFFF15CH	CANIC1	CANIF1	CANMK1	0	0	0	CANPR12	CANPR11	CANPR10
FFFFF15EH	CANIC2	CANIF2	CANMK2	0	0	0	CANPR22	CANPR21	CANPR20
FFFFF160H	CANIC3	CANIF3	CANMK3	0	0	0	CANPR32	CANPR31	CANPR30
FFFFF162H	CSIIC0	CSIIF0	CSIMK0	0	0	0	CSIPR02	CSIPR01	CSIPR00

Table 7-2. Addresses and Bits of Interrupt Control Registers (2/2)

Address	Register		Bit						
		<7>	<6>	5	4	3	<2>	<1>	<0>
FFFFF164H	CSIIC1	CSIIF1	CSIMK1	0	0	0	CSIPR12	CSIPR11	CSIPR10
FFFFF166H	SRIC0	SRIF0	SRMK0	0	0	0	SRPR02	SRPR01	SRPR00
FFFFF168H	STIC0	STIF0	STMK0	0	0	0	STPR02	STPR01	STPR00
FFFFF16AH	SEIC0	SEIF0	SEMK0	0	0	0	SEPR02	SEPR01	SEPR00
FFFFF16CH	SRIC1	SRIF1	SRMK1	0	0	0	SRPR12	SRPR11	SRPR10
FFFFF16EH	STIC1	STIF1	STMK1	0	0	0	STPR12	STPR11	STPR10
FFFFF170H	SRIC2	SRIF2	SRMK2	0	0	0	SRPR22	SRPR21	SRPR20
FFFFF172H	STIC2	STIF2	STMK2	0	0	0	STPR22	STPR21	STPR20
FFFFF174H	ADIC0	ADIF0	ADMK0	0	0	0	ADPR02	ADPR01	ADPR00
FFFFF176H	ADIC1	ADIF1	ADMK1	0	0	0	ADPR12	ADPR11	ADPR10

7.3.5 Interrupt mask registers 0 to 3 (IMR0 to IMR3)

These registers set the interrupt mask state for the maskable interrupts.

The xxMKn bit of the IMR0 to IMR3 registers is equivalent to the xxMKn bit of the xxICn register.

IMRm can be read/written in 16-bit units (m = 0 to 3).

When the IMRm register is divided into two registers: higher 8 bits (IMRmH register) and lower 8 bits (IMRmL register), these registers can be read/written in 8-bit or 1-bit units.

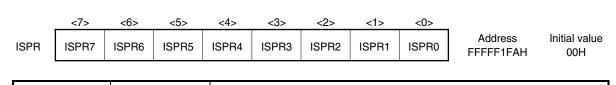
Caution The device file defines the xxMKn bit of the xxICn register as a reserved word. If a bit is manipulated with the name xxMKn, therefore, the xxICn register, rather than the IMRm register, is rewritten (as a result, the IMRm register is also rewritten).

	<15>	<14>	<13>	<12>	<11>	<10>	<9>	<8>	Address	Initial value
IMR0	CM10MK0	CC10MK1	CC10MK0	CM03MK1	TM0MK1	СМ03МК0	TM0MK0	DETMK1	FFFFF100H	FFFFH
	<7>	<6>	<5>	<4>	<3>	<2>	<1>	<0>		
	DETMK0	P0MK6	P0MK5	P0MK4	P0MK3	P0MK2	P0MK1	P0MK0		
	<15>	<14>	<13>	<12>	<11>	<10>	<9>	<8>	Address	Initial value
IMR1	CC3MK1	СС3МК0	ТМ3МК0	CC2MK5	CC2MK4	CC2MK3	CC2MK2	CC2MK1	FFFFF102H	FFFFH
	<7>	<6>	<5>	<4>	<3>	<2>	<1>	<0>		
	CC2MK0	TM2MK1	TM2MK0	CM11MK1	CM11MK0	CC11MK1	CC11MK0	CM10MK1		
	<15>	<14>	<13>	<12>	<11>	<10>	<9>	<8>	Address	Initial value
IMR2	STMK1	SRMK1	SEMK0	STMK0	SRMK0	CSIMK1	CSIMK0	CANMK3	FFFFF104H	FFFFH
	<7>	<6>	<5>	<4>	<3>	<2>	<1>	<0>		
	CANMK2	CANMK1	CANMK0	DMAMK3	DMAMK2	DMAMK1	DMAMK0	CM4MK0		
	15	14	13	12	11	10	9	8	Address	Initial value
		1	1	1	1	1	1	1	FFFFF106H	FFFFH
IMR3	1	ı	· .							
IMR3	7	6	5	4	<3>	<2>	<1>	<0>		

Bit position	Bit name	Function
15 to 0	xxMKn	Interrupt mask flag
(IMR0 to 2),		0: Interrupt servicing enabled
0 to 3 (IMR3)		1: Interrupt servicing disabled (pending)

Remark xx: Identification name of each peripheral unit (refer to Table 7-2)

n: Peripheral unit number (refer to Table 7-2)

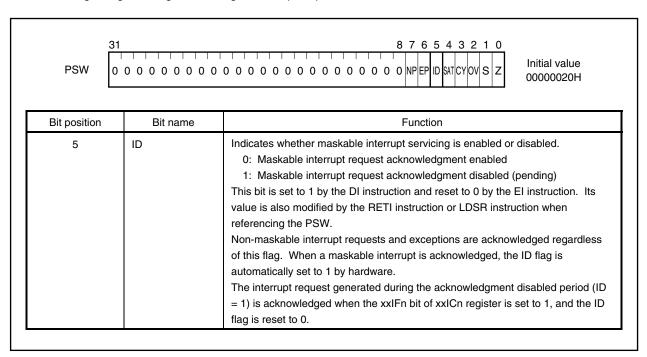

7.3.6 In-service priority register (ISPR)

This register holds the priority level of the maskable interrupt currently acknowledged. When an interrupt request is acknowledged, the bit of this register corresponding to the priority level of that interrupt request is set to 1 and remains set while the interrupt is serviced.

When the RETI instruction is executed, the bit corresponding to the interrupt request having the highest priority is automatically cleared to 0 by hardware. However, it is not cleared to 0 when execution is returned from non-maskable interrupt servicing or exception processing.

This register is read-only, in 8-bit or 1-bit units.

Caution In the interrupt enabled (EI) state, if an interrupt is acknowledged during the reading of the ISPR register, the value of the ISPR register may be read after the bit is set to 1 by this interrupt acknowledgment. To read the value of the ISPR register properly before interrupt acknowledgment, read it in the interrupt disabled (DI) state.



Bit position	Bit name	Function
7 to 0	ISPR7 to ISPR0	Indicates priority of interrupt currently acknowledged
		Interrupt request with priority n not acknowledged
		Interrupt request with priority n acknowledged

Remark n = 0 to 7 (priority level)

7.3.7 Maskable interrupt status flag (ID)

The ID flag is bit 5 of the PSW and this controls the maskable interrupt's operating state, and stores control information regarding enabling or disabling of interrupt requests.

7.3.8 Interrupt trigger mode selection

The valid edge of the INTPn, ADTRG0, ADTRG1, TIUD10, TIUD11, TCUD10, TCUD11, TCLR10, TCLR11, TCLR3, and TI3 pins can be selected by program. The edge that can be selected as the valid edge is one of the following (n = 0 to 6, 20 to 25, 30, 31, 100, 101, 110, 111).

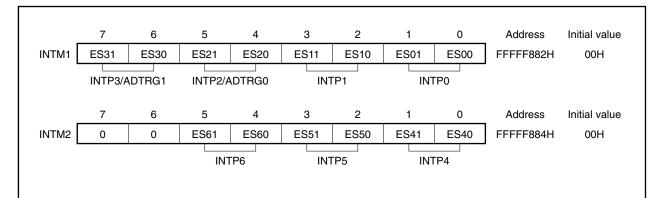
- · Rising edge
- · Falling edge
- Both the rising and falling edges

When the INTPn, ADTRG0, ADTRG1, TIUD10, TIUD11, TCUD10, TCUD11, TCLR10, TCLR11, TCLR3, and TI3 signals are edge-detected, they become an interrupt source or capture/trigger.

The valid edge is specified by external interrupt mode registers 1 and 2 (INTM1 and INTM2), signal edge selection registers 10 and 11 (SESA10 and SESA11), the valid edge selection register (SESC), and TM2 input filter mode registers 0 to 5 (FEM0 to FEM5).

(1) External interrupt mode registers 1, 2 (INTM1, INTM2)

These registers specify the valid edge for external interrupt requests (INTP0 to INTP6), input via external pins. The correspondence between each register and the external interrupt requests that register controls is shown below.


• INTM1: INTP0, INTP1, INTP2/ADTRG0, INTP3/ADTRG1

• INTM2: INTP4 to INTP6

INTP2 and INTP3 function alternately as ADTRG0 and ADTRG1 (A/D converter external trigger input). Therefore, if the external trigger mode has been set by the TRG0 to TRG2 bits of A/D converter mode register no (ADSCMn0), setting the ES20 and ES21, and ES30 and ES31 bits of INTM1 also specifies the valid edge of the external trigger input (ADTRG0 and ADTRG1) (n = 0, 1).

The valid edge can be specified independently for each pin (rising edge, falling edge, or both rising and falling edges).

These registers can be read/written in 8-bit or 1-bit units.

Bit position	Bit name		Function							
7 to 0 (INTM1),	ESn1, ESn0 (n = 0 to 6)	Specifies the v	Specifies the valid edge of the INTPn, ADTRG0 and ADTRG1 pins.							
5 to 0 (INTM2)		ESn1	ESn0	Operation						
(11411112)		0	0	Falling edge						
			0	1	Rising edge					
				1	0	Setting prohibited				
		1	1	Both rising and falling edges						

(2) Signal edge selection registers 10, 11 (SESA10, SESA11)

These registers specify the valid edge of external interrupt requests (INTP100, INTP101, INTP110, INTP111, TIUD10, TIUD11, TCUD10, TCUD11, TCLR10, and TCLR11), input via external pins. The correspondence between each register and the external interrupt requests that register controls is shown below.

- SESA10: TIUD10, TCUD10, TCLR10, INTP100, INTP101
- SESA11: TIUD11, TCUD11, TCLR11, INTP110, INTP111

The valid edge can be specified independently for each pin (rising edge, falling edge, or both rising and falling edges).

These registers can be read/written in 8-bit or 1-bit units.

- Cautions 1. The bits of the SESA1n register cannot be changed during TM1n operation (TM1CEn bit of timer control registers 10, 11 (TMC10, TMC11) = 1).
 - The TM1CEn bit must be set (1) before using the TCUD10/INTP100, TCLR10/INTP101, TCUD11/INTP110, and TCLR11/INTP111 pins as INTP100, INTP101, INTP110, and INTP111, even if not using timer 1.
 - Before setting the INTP100, INTP101, INTP110, INTP111, TIUD10, TIUD11, TCUD10,
 TCUD11, TCLR10, and TCLR11 pins to the trigger mode, set the PMC1 register.
 If the PMC1 register is set after the SESA10 and SESA11 registers have been set, an
 illegal interrupt may occur as soon as the PMC1 register is set.

(1/2)

ESA10 TESU	D01 TESUD00	CESUD01	CESUD00	IES1011	IES1010	IES1001	IES1000	FFFFF5EDH	00H
TIUE	D10, TCUD10	TCL	.R10	INTE	P101	INTE	P100		
7	6	5	4	3	2	1	0	Address	Initial valu
ESA11 TESU	D11 TESUD10	CESUD11	CESUD10	IES1111	IES1110	IES1101	IES1100	FFFFF60DH	00H
TIU	D11, TCUD11	TCL	R11	INTI	P111	INTE	P110		
Bit position	Bit name					Function			
7, 6	TESUDn1, TESUDn0	Specit	fies the val	id edge of t	he TIUD10), TIUD11, ⁻	ΓCUD10, ar	nd TCUD11 pins	S.
		TE	SUDn1	TESUDr	n0		Valid ed	lge	
			0	0	Falli	ng edge			
			0	1	Risi	ng edge			
			1	0	Sett	ing prohibit	ed		
			1	1	Both	Both rising and falling ed		20	
		Cauti	ons 1. Ti U 2. If sj	DC mode / TM1n ope	set to the 'A ^{Note 1} and Uration has	IDC mode been spe n1 and Ti	and TESUD B ^{Note 1} . cified in m	on0 bits are val ode 4 ^{Note 2} , the v	valid edge
5, 4	CESUDn1,		ons 1. TI U 2. If sp	DC mode A TM1n ope pecification	set to the A ^{Note 1} and Uration has n (TESUD) is is invali	IDC mode been spe n1 and TI d.	and TESUD B ^{Note 1} . cified in m ESUDn0 bi	on0 bits are val	valid edge
5, 4	CESUDn1, CESUDn0	Speci	ons 1. Ti U 2. If si To	DC mode A TM1n ope pecification CUD1n pin	set to the ANote I and Laration has n (TESUD is invali	IDC mode been spe n1 and TI d.	and TESUD B ^{Note 1} . ciffied in m ESUDn0 bi	on0 bits are valued ode 4 ^{Note 2} , the valued ts) for the Tile	valid edge
5, 4	-	Speci	ons 1. TI U 2. If sp	DC mode A TM1n ope pecification CUD1n pin	set to the And Laration has n (TESUD as is invalidated)	JDC mode been spe n1 and TE d.	and TESUD B ^{Note 1} . cified in m ESUDn0 bi	on0 bits are valued ode 4 ^{Note 2} , the valued ts) for the Tile	valid edge
5, 4	-	Speci	ons 1. Ti U 2. If si To	DC mode A TM1n ope pecification CUD1n pin lid edge of	set to the A ^{Note 1} and Usration has n (TESUD is invalidated the TCLR1	IDC mode been spe n1 and TI d.	and TESUD B ^{Note 1} . ciffied in m ESUDn0 bi	on0 bits are valued ode 4 ^{Note 2} , the valued ts) for the Tile	valid edge
5, 4	-	Speci	ons 1. Ti U 2. If si To fies the val	DC mode A TM1n ope pecification CUD1n pin lid edge of CESUDn 0	set to the And Laration has n (TESUD is is invalidated) The TCLR1	DDC mode been speen 1 and TE d. O and TCLI	and TESUD B ^{Note 1} . ciffied in m ESUDn0 bi	on0 bits are valued ode 4 ^{Note 2} , the valued ts) for the Tile	valid edge
5, 4	-	Speci	fies the values	DC mode A TM1n ope pecification CUD1n pin lid edge of CESUDn 0	set to the A ^{Note 1} and Useration has in (TESUD) as is invalidable. The TCLR1	DDC mode is been spe in 1 and Ti id. O and TCLI ng edge ing edge	and TESUD B ^{Note 1} . ciffied in m ESUDn0 bi	on0 bits are valued ode 4 ^{Note 2} , the valued ts) for the Tile	valid edge

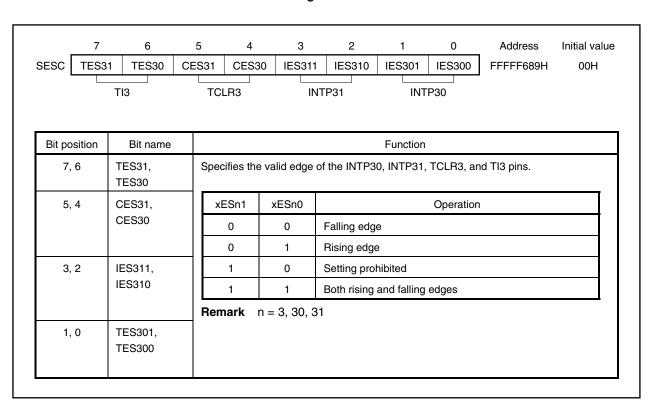
- Notes 1. See 9.2.4 (2) Timer unit mode registers 0, 1 (TUM0, TUM1)
 - 2. See 9.2.4 (6) Prescaler mode registers 10, 11 (PRM10, PRM11)

(2/2)

Bit position	Bit name		Function					
3, 2 IES1n11, IES1n10		Specifies the va (INTP1n1, INTF		pin selected using the CSLn bit of the CSL1n register				
		IES1n11	IES1n10	Valid edge				
		0	0	Falling edge				
		0	1	Rising edge				
		1	0	Setting prohibited				
		1	1	Both rising and falling edges				
1, 0	IES1n01, IES1n00	Specifies the va	lid edge of the	INTP100 and INTP110 pins.				
		IES1n01	IES1n00	Valid edge				
		0	0	Falling edge				
		0	1	Rising edge				
		1	0	Setting prohibited				
		1	1	Both rising and falling edges				

Remark n = 0, 1

(3) Valid edge selection register (SESC)


This register specifies the valid edge for external interrupt requests (INTP30, INTP31, TCLR3, and TI3), input via external pins.

The valid edge can be specified independently for each pin (rising edge, falling edge, or both rising and falling edges).

This register can be read/written in 8-bit or 1-bit units.

- Cautions 1. The TM3CAE and TM3CE bits of timer control register 30 (TMC30) must be set (1) before using the TI3/TCLR3/INTP30 and TO3/INTP31 pins as INTP30 and INTP31, even if not using timer 3.
 - 2. Before setting the INTP30, INTP31, TCLR3, and Tl3 pins to the trigger mode, set the PMC2 register.

If the PMC2 register is set after the SESC register has been set, an illegal interrupt may occur as soon as the PMC2 register is set.

(4) Timer 2 input filter mode registers 0 to 5 (FEM0 to FEM5)

These registers specify the valid edge for external interrupt requests input to timer 2 (INTP20 to INTP25). The correspondence between each register and the external interrupt request that register controls is shown below.

FEM0: INTP20FEM1: INTP21FEM2: INTP22FEM3: INTP23FEM4: INTP24

• FEM5: INTP25

The valid edge can be specified independently for each pin (rising edge, falling edge, or both rising and falling edges).

These registers can be read/written in 8-bit or 1-bit units.

- Cautions 1. The STFTE bit of timer 2 clock stop register 0 (STOPTE0) must be cleared (0) before using the TI2/INTP20, TO21/INTP21, TO22/INTP22, TO23/INTP23, TO24/INTP24, and TCLR2/INTP25 pins as INTP20, INTP21, INTP22, INTP23, INTP24, and INTP25, even if not using timer 2.
 - 2. Before setting the INTP2n pin to the trigger mode, set the PMC2 register. If the PMC2 register is set after the FEMn register has been set, an illegal interrupt may occur as soon as the PMC2 register is set (n = 0 to 5).
 - 3. The noise elimination function starts operating by setting the CEEn bit of the TCRE0 register to 1 (enabling count operations).

(1/2)

	7	6	5	4	3	2	1	0	Address	Initial value
FEM0	DFEN00	0	0	0	EDGE010	EDGE000	TMS010	TMS000	FFFFF630H	00H
		_	_							
					INT	P20				
	7	6	5	4	3	2	1	0	Address	Initial value
									Addiess	miliai vaiuc
FEM1	DFEN01	0	0	0	EDGE011	EDGE001	TMS011	TMS001	FFFFF631H	00H
					INT	P21				
	7	6	5	4	3	2	1	0	Address	Initial value
FEM2	DFEN02	0	0	0	EDGE012	EDGE002	TMS012	TMS002	FFFFF632H	00H
					INT	P22				
	7	6	5	4	3	2	1	0	Address	Initial value
FEM3	DFEN03	0	0	0	EDGE013	EDGE003	TMS013	TMS003	FFFFF633H	00H
					INT	P23				
	7	6	5	4	3	2	1	0	Address	Initial value
FEM4	DFEN04	0	0	0	EDGE014	EDGE004	TMS014	TMS004	FFFFF634H	00H
					INT	P24				
	7	6	5	4	3	2	1	0	Address	Initial value
FEM5	DFEN05	0	0	0	EDGE015	EDGE005	TMS015	TMS005	FFFFF635H	00H
					INT	P25				
I										

Bit position	Bit name	Function						
7	DFEN0n	Specifies the filter of the INTP2n pin. 0: Analog filter 1: Digital filter Caution When the DFEN0n bit = 1, the sampling clock of the digital filter is fxxtt (clock of TM20 and TM21 selected by PRM02 register).						
3, 2	EDGE01n, EDGE00n	Specifies the valid edge of the INTP2n pin.						
		EDGE01n	EDGE00n	Operation				
		0	0	Interrupt by INTCC2n ^{Note}				
		0	1	Rising edge				
		1	0	Falling edge				
		1	1	Both rising and falling edges				
				elected by a match between TM20, TM21 and the sub-r (specified by the TMS01n, TMS00n bits) (n = 0 to 5).				

Remark n = 0 to 5

(2/2)

Bit position	Bit name	Function								
1, 0	TMS01n, TMS00n	Selects the capt	Selects the capture input ^{Note} .							
		TMS01n	TMS00n	Operation						
		0	0	Used as a pin						
		0	1	Digital filter (noise eliminator specification)						
		1	0	Timer-based capture to sub-channel 1						
		1	1	Timer-based capture to sub-channel 2						

Note Selection of capture input based on INTCM100 and INTCM101 is valid only for the FEM1 and FEM2 registers. Set the TMS01m and TMS00m bits of the FEMm register to 00B or 01B. All other settings are prohibited (m = 1, 3 to 5).

Sub-channels 1 and 2 of timer 2 can be captured by INTP21, INTP22, and INTCM100, INTCM101. An example is given below.

(a) When sub-channel 1 is captured by INTCM101

FEM1 register = xxxxxx10B TMIC0 register = 00000010B

(b) When sub-channel 2 is captured by INTCM101

FEM2 register = xxxxxx11B TMIC0 register = 00001000B

Remark n = 0 to 5

7.4 Software Exception

A software exception is generated when the CPU executes the TRAP instruction, and can be always acknowledged.

7.4.1 Operation

If a software exception occurs, the CPU performs the following processing, and transfers control to the handler routine.

- (1) Saves the restored PC to EIPC.
- (2) Saves the current PSW to EIPSW.
- (3) Writes an exception code to the lower 16 bits (EICC) of ECR (interrupt source).
- (4) Sets the EP and ID bits of the PSW.
- (5) Sets the handler address (00000040H or 00000050H) corresponding to the software exception to the PC, and transfers control.

Figure 7-8 illustrates the processing of a software exception.

TRAP instructionNote

EIPC — restored PC
EIPSW — PSW
ECR.EICC — exception code
PSW.EP — 1
PSW.ID — 1
PC — handler address

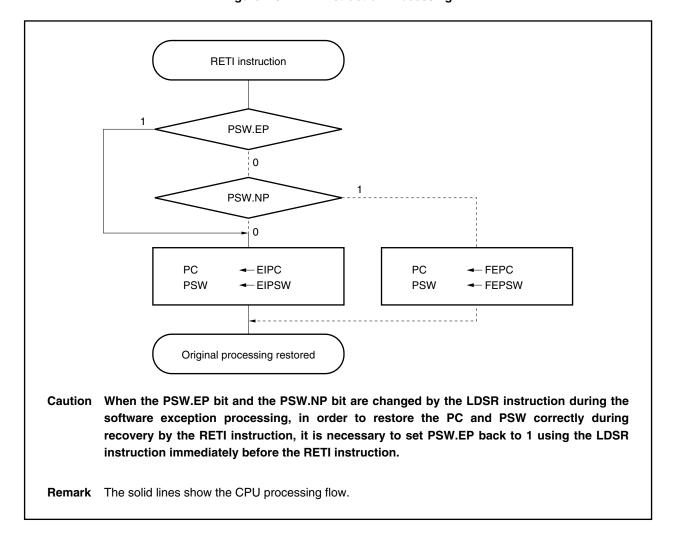
Exception processing

Note TRAP instruction format: TRAP vector (the vector is a value from 00H to 1FH.)

Figure 7-8. Software Exception Processing

The handler address is determined by the TRAP instruction's operand (vector). If the vector is 00H to 0FH, it becomes 00000040H, and if the vector is 10H to 1FH, it becomes 00000050H.

7.4.2 Restore


Recovery from software exception processing is carried out by the RETI instruction.

By executing the RETI instruction, the CPU carries out the following processing and shifts control to the restored PC's address.

- (1) Loads the restored PC and PSW from EIPC and EIPSW because the EP bit of the PSW is 1.
- (2) Transfers control to the address of the restored PC and PSW.

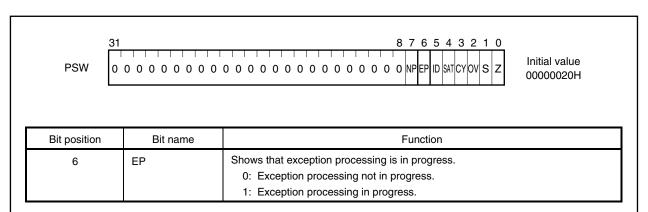
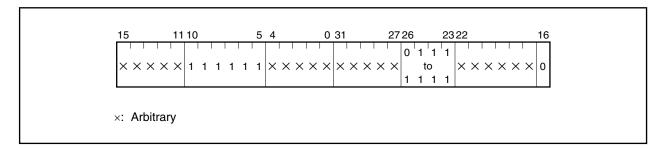

Figure 7-9 illustrates the processing of the RETI instruction.

Figure 7-9. RETI Instruction Processing

7.4.3 Exception status flag (EP)

The EP flag is bit 6 of PSW, and is a status flag used to indicate that exception processing is in progress. It is set when an exception occurs.



7.5 Exception Trap

An exception trap is an interrupt that is requested when an illegal execution of an instruction takes place. In the V850E/IA1, an illegal opcode exception (ILGOP: Illegal Opcode Trap) is considered as an exception trap.

7.5.1 Illegal opcode definition

The illegal instruction has an opcode (bits 10 to 5) of 111111B, a sub-opcode (bits 26 to 23) of 0111B to 1111B, and a sub-opcode (bit 16) of 0B. An exception trap is generated when an instruction applicable to this illegal instruction is executed.

Caution Since it is possible to assign this instruction to an illegal opcode in the future, it is recommended that it not be used.

(1) Operation

If an exception trap occurs, the CPU performs the following processing, and transfers control to the handler routine.

- (1) Saves the restored PC to DBPC.
- (2) Saves the current PSW to DBPSW.
- (3) Sets the NP, EP, and ID bits of the PSW.
- (4) Sets the handler address (00000060H) corresponding to the exception trap to the PC, and transfers control.

Figure 7-10 illustrates the processing of the exception trap.

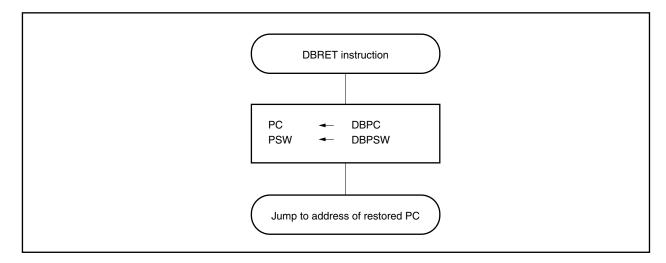
Exception trap (ILGOP) occurs

DBPC — restored PC
DBPSW — PSW
PSW.NP — 1
PSW.EP — 1
PSW.ID — 1
PC — 00000060H

Exception processing

Figure 7-10. Exception Trap Processing

(2) Restore


Recovery from an exception trap is carried out by the DBRET instruction. By executing the DBRET instruction, the CPU carries out the following processing and controls the address of the restored PC.

- (1) Loads the restored PC and PSW from DBPC and DBPSW.
- (2) Transfers control to the address indicated by the restored PC and PSW.

Caution DBPC and DBPSW can be accessed only during the period between when the illegal opcode is executed and when the DBRET instruction is executed.

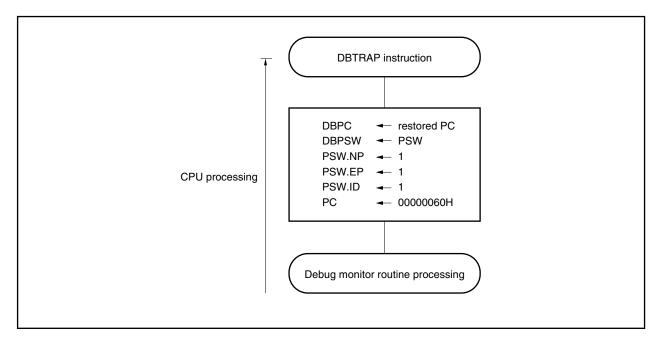
Figure 7-11 illustrates the restore processing from an exception trap.

Figure 7-11. Restore Processing from Exception Trap

<R>

7.5.2 Debug trap

The debug trap is an exception that can be acknowledged every time and is generated by execution of the DBTRAP instruction.


When the debug trap is generated, the CPU performs the following processing.

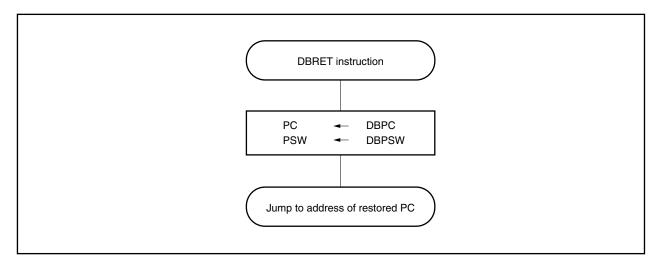
(1) Operation

- (1) Saves the restored PC to DBPC.
- (2) Saves the current PSW to DBPSW.
- (3) Sets the NP, EP and ID bits of the PSW.
- (4) Sets the handler address (00000060H) corresponding to the debug trap to the PC and transfers control.

Figure 7-12 illustrates the processing of the debug trap.

Figure 7-12. Debug Trap Processing

(2) Restore


Restoration from a debug trap is carried out by the DBRET instruction. By executing the DBRET instruction, the CPU carries out the following processing and controls the address of the restored PC.

- (1) Loads the restored PC and PSW from DBPC and DBPSW.
- (2) Transfers control to the address indicated by the restored PC and PSW.

Caution DBPC and DBPSW can be accessed during the period between when the DBTRAP is executed and when the DBRET instruction is executed.

Figure 7-13 illustrates the processing for restoring from a debug trap.

Figure 7-13. Processing for Restoring from Debug Trap

7.6 Multiple Interrupt Servicing Control

Multiple interrupt servicing control is a process by which an interrupt request that is currently being serviced can be interrupted during servicing if there is an interrupt request with a higher priority level, and the higher priority interrupt request is acknowledged and serviced first.

If there is an interrupt request with a lower priority level than the interrupt request currently being serviced, that interrupt request is held pending.

Maskable interrupt multiple servicing control is executed when interrupts are enabled (ID = 0). Thus, if multiple interrupts are executed, it is necessary for interrupts to be enabled (ID = 0) even during an interrupt servicing routine.

If a maskable interrupt or a software exception is generated in a maskable interrupt or software exception service program, it is necessary to save EIPC and EIPSW.

This is accomplished by the following procedure.

(1) Acknowledgment of maskable interrupts in service program

Service program of maskable interrupt or exception

...

- · EIPC saved to memory or register
- · EIPSW saved to memory or register
- El instruction (interrupt acknowledgment enabled)

...

DI instruction (interrupt acknowledgment disabled)

- Saved value restored to EIPSW
- · Saved value restored to EIPC
- RETI instruction

Maskable interrupt acknowledgment

(2) Generation of exception in service program

Service program of maskable interrupt or exception

•••

- · EIPC saved to memory or register
- EIPSW saved to memory or register

...

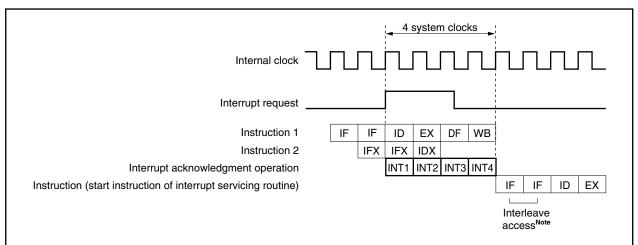
• TRAP instruction

- · Saved value restored to EIPSW
- Saved value restored to EIPC
- RETI instruction

← Exception such as TRAP instruction acknowledged.

The priority order for multiple interrupt servicing control has 8 levels, from 0 to 7 for each maskable interrupt request (0 is the highest priority), but it can be set as desired via software. Setting of the priority order level is done using the xxPRn0 to xxPRn2 bits of the interrupt request control register (xxlCn), which is provided for each maskable interrupt request. After system reset, an interrupt request is masked by the xxMKn bit and the priority order is set to level 7 by the xxPRn0 to xxPRn2 bits.

The priority order of maskable interrupts is as follows.


Interrupt servicing that has been suspended as a result of multiple servicing control is resumed after the servicing of the higher priority interrupt has been completed and the RETI instruction has been executed. A pending interrupt request is acknowledged after the current interrupt servicing has been completed and the RETI instruction has been executed.

Caution In a non-maskable interrupt servicing routine (time until the RETI instruction is executed), maskable interrupts are suspended and not acknowledged.

7.7 Interrupt Response Time

The following table describes the V850E/IA1 interrupt response time (from interrupt generation to start of interrupt servicing).

Figure 7-14. Pipeline Operation at Interrupt Request Acknowledgment (Outline)

Note For details of interleave access, refer to 8.1.2 2-clock branch in V850E1 Architecture User's Manual (U14559E).

Remark INT1 to INT4: Interrupt acknowledgment processing

IFX: Invalid instruction fetch
IDX: Invalid instruction decode

Interrupt re	sponse time	e (internal system cloc	k (fxx))		Condition	
	Internal					
	interrupt	INTP0 to INTP6, INTP20 to INTP25	INTP20 to INTP25	INTP100, INTP101, INTP110, INTP111 INTP30, INTP31		
Minimum	4	4 + analog delay time	4 + digital noise filter	4 + Note 1 + digital noise filter	The following cases are exceptions. • In IDLE/software STOP	
Maximum	7Note 2	7 + analog delay time	7 + digital noise filter	7 + Note 1 + digital noise filter	mode External bus access Two or more interrupt request non-sampling instructions are executed in succession Access to on-chip peripheral I/O register Access to programmable peripheral I/O register	

Notes 1. The number of internal system clocks are as follows.

• For timers 10, 11 (TM10, TM11) using INTP100, INTP101, INTP110, and INTP111 as external interrupt inputs (see 9.2.4 (1) Timer 1/timer 2 clock selection register (PRM02)):

 $f_{CLK} = f_{XX}/2$ (PRM2 bit = 1): 2

 $f_{CLK} = f_{XX}/4$ (PRM2 bit = 0): 4

For timer 3 (TM3) using INTP30 and INTP31 as external interrupt inputs (see 9.4.4 (1) Timer
 3 clock selection register (PRM03)):

fclk = fxx (PRM3 bit = 1): 2

 $f_{CLK} = f_{XX}/2$ (PRM3 bit = 0): 4

2. When LD instruction is executed to internal ROM (during align access)

7.8 Periods in Which CPU Does Not Acknowledge Interrupts

The CPU acknowledges an interrupt while an instruction is being executed. However, no interrupt will be acknowledged between an interrupt request non-sampling instruction and the next instruction (interrupt is held pending).

The interrupt request non-sampling instructions are as follows.

- El instruction
- DI instruction
- LDSR reg2, 0x5 instruction (for PSW)
- The store instruction for the command register (PRCMD)
- The store instructions or bit manipulation instructions of SET1, CLR1, and NOT1 instructions for the following registers:
 - Interrupt-related registers:

Interrupt control register (xxICn), interrupt mask registers 0 to 3 (IMR0 to IMR3)

- Power save control register (PSC)
- CSI-related registers:

Clocked serial interface mode registers 0, 1 (CSIM0, CSIM1)

Clocked serial interface clock selection registers 0, 1 (CSIC0, CSIC1)

Clocked serial interface receive buffer registers 0, 1 (SIRB0, SIRB1)

Clocked serial interface receive buffer registers L0, L1 (SIRBL0, SIRBL1)

Clocked serial interface transmit buffer registers 0, 1 (SOTB0, SOTB1)

Clocked serial interface transmit buffer registers L0, L1 (SOTBL0, SOTBL1)

Clocked serial interface read-only receive buffer registers 0, 1 (SIRBE0, SIRBE1)

Clocked serial interface read-only receive buffer registers L0, L1 (SIRBEL0, SIRBEL1)

Clocked serial interface initial transmit buffer registers 0, 1 (SOTBF0, SOTBF1)

Clocked serial interface initial transmit buffer registers L0, L1 (SOTBFL0, SOTBFL1)

Serial I/O shift registers 0, 1 (SIO0, SIO1)

Serial I/O shift registers L0, L1 (SIOL0, SIOL1)

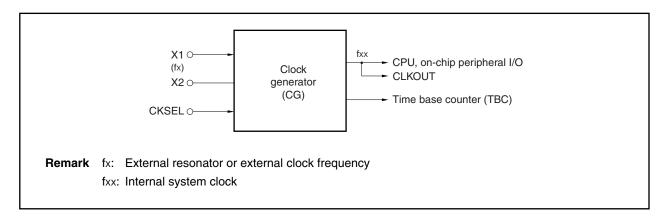
Prescaler mode register (PRSM3)

Prescaler compare register (PRSCM3)

• FCAN clock selection register (PRM04)

Remark xx: Identification name of each peripheral unit (refer to Table 7-2)

n: Peripheral unit number (refer to **Table 7-2**)


CHAPTER 8 CLOCK GENERATION FUNCTION

The clock generator (CG) generates and controls the internal system clock (fxx) that is supplied to each internal unit, such as the CPU.

8.1 Features

- Multiplier function using a phase locked loop (PLL) synthesizer
- · Clock sources
 - · Oscillation by connecting a resonator
 - External clock
- Power saving modes
 - HALT mode
 - IDLE mode
 - Software STOP mode
- Internal system clock output function

8.2 Configuration

8.3 Input Clock Selection

The clock generator consists of an oscillator and a PLL synthesizer. For example, connecting a 5.0 MHz crystal resonator or ceramic resonator to pins X1 and X2 enables a 50 MHz internal system clock (fxx) to be generated when the multiplier is 10. Also, an external clock can be input directly to the oscillator. In this case, the clock signal should be input only to pin X1 (pin X2 should be left open). Two basic operation modes are provided for the clock generator. These are PLL mode and direct mode. The operation mode is selected by the CKSEL pin. The input to this pin is latched on reset.

CKSEL	Operating Mode
0	PLL mode
1	Direct mode

Caution The input level for the CKSEL pin must be fixed. If it is switched during operation, a malfunction may occur.

8.3.1 Direct mode

In direct mode, an external clock is divided by two and the divided clock is supplied as the internal system clock. The maximum frequency that can be input in direct mode is 50 MHz. The V850E/IA1 is mainly used in application systems in which operates at relatively low frequencies.

Caution In direct mode, an external clock must be input (an external resonator should not be connected).

8.3.2 PLL mode

In PLL mode, an external resonator is connected or external clock is input and multiplied by the PLL synthesizer. The multiplied PLL output is divided by the division ratio specified by the clock control register (CKC) to generate a system clock that is 10, 5, 2.5, or 1 times the frequency (fx) of the external resonator or external clock.

After reset, an internal system clock (fxx) that is 1 time the frequency (1 \times fx) of the input clock frequency (fx) is generated.

When a frequency that is 10 times $(10 \times fx)$ the input clock frequency (fx) is generated, a system with low noise and low power consumption can be realized because a frequency of up to 50 MHz is obtained based on a 5 MHz external resonator or external clock.

In PLL mode, if the clock supply from an external resonator or external clock source stops, operation of the internal system clock (fxx) based on the self-propelled frequency of the clock generator's internal voltage controlled oscillator (VCO) continues. In this case, fxx is undefined. However, do not devise an application method expecting to use this self-propelled frequency.

Example: Clocks when PLL mode ($fxx = 10 \times fx$) is used

Internal System Clock Frequency (fxx)	External Resonator or External Clock Frequency (fx)
50.000 MHz	5.0000 MHz
40.000 MHz	4.0000 MHz

Caution When using the PLL mode, only an fx (4 to 5 MHz) value for which $10 \times fx$ does not exceed the system clock maximum frequency (50 MHz) can be used for the oscillation frequency or external clock frequency.

When $5 \times fx$, $2.5 \times fx$, or $1 \times fx$ is used, a frequency of 4 to 6.4 MHz can be used.

Remark Note the following when PLL mode is selected ($fxx = 5 \times fx$, $fxx = 2.5 \times fx$, or $fxx = 1 \times fx$)

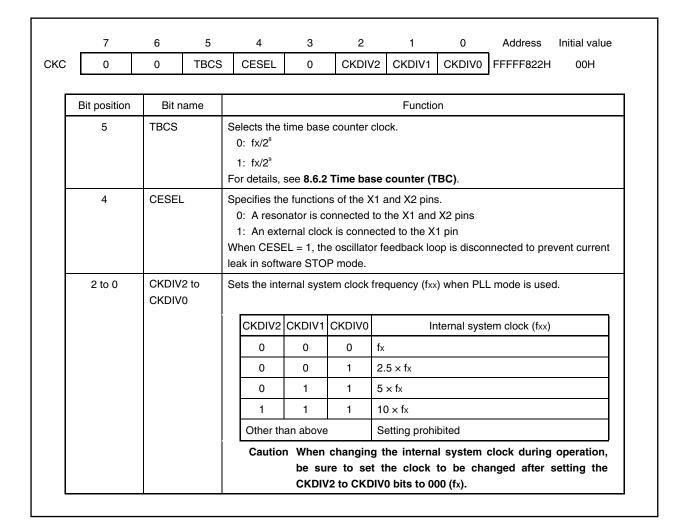
If the V850E/IA1 need not be operated at high frequency, use $fxx = 5 \times fx$, $fxx = 2.5 \times fx$, or $fxx = 1 \times fx$ to reduce the power consumption by lowering the system clock frequency using software.

8.3.3 Peripheral command register (PHCMD)

This is an 8-bit register that is used to set protection for writing to registers that can significantly affect the system so that the application system is not halted unexpectedly due to erroneous program execution. This register can be written only in 8-bit units (when it is read, undefined data is read out).

Writing to the first specific register (CKC or FLPMC register) is only valid after first writing to the PHCMD register. Because of this, the register value can be overwritten only with the specified sequence, preventing an illegal write operation from being performed.

	7	6	5	4	3	2	1	0	Address	Initial value
PHCMD	REG7	REG6	REG5	REG4	REG3	REG2	REG1	REG0	FFFFF800H	Undefined
_										
ſ	Bit position	Bit n	ame				Functio	n		
	7 to 0	REG7		Registration code (arbitrary 8-bit data) The specific registers targeted are as follows. Clock control register (CKC) Flash programming mode control register (FLPMC)						


The generation of an illegal store operation can be checked with the PRERR bit of the peripheral status register (PHS).

8.3.4 Clock control register (CKC)

The clock control register is an 8-bit register that controls the internal system clock (fxx) in PLL mode. It can be written to only by a specific sequence combination so that it cannot easily be overwritten by mistake due to erroneous program execution.

This register can be read/written in 8-bit units.

Caution Do not change bits CKDIV2 to CKDIV0 in direct mode.

Example Clock generator settings

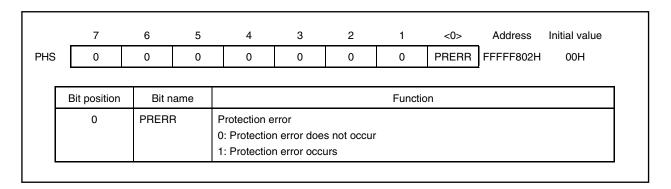
Operation	CKSEL Pin		CKC Register		Input Clock (fx)	Internal System
Mode		CKDIV2	CKDIV1	CKDIV0		Clock (fxx)
Direct mode	High-level input	0	0	0	16 MHz	8 MHz
PLL mode	Low-level input	0	0	0	5 MHz	5 MHz
		0	0	1	5 MHz	12.5 MHz
		0	1	1	5 MHz	25 MHz
		1	1	1	5 MHz	50 MHz
Other than above	ve				Setting prohibited	Setting prohibited

Data is set in the clock control register (CKC) according to the following sequence.

- <1> Disable interrupts (set the NP bit of PSW to 1).
- <2> Prepare data in any one of the general-purpose registers to set in the specific register.
- <3> Write arbitrary data to the peripheral command register (PHCMD).
- <4> Set the clock control register (CKC) (with the following instructions).
 - Store instruction (ST/SST instruction)
- <5> Insert five or more NOP instructions (5 instructions (<5> to <9>))
- <10> Release the interrupt disabled state (set the NP bit of PSW to 0).

```
[Sample coding] <1> LDSR rX, 5 
 <2> MOV 0x07, r10 
 <3> ST.B r10, PHCMD [r0] 
 <4> ST.B r10, CKC [r0] 
 <5> NOP 
 <6> NOP 
 <7> NOP 
 <8> NOP 
 <9> NOP 
 <10> LDSR rY, 5
```

Remark rX: Value written to PSW rY: Value returned to PSW


No special sequence is required to read the specific register.

- Cautions 1. If an interrupt is acknowledged between the issuing of data to the PHCMD (<3>) and writing to the specific register immediately after (<4>), the write operation to the specific register is not performed and a protection error (the PRERR bit of the PHS register = 1) may occur. Therefore, set the NP bit of the PSW to 1 (<1>) to disable interrupt acknowledgment. Also disable interrupt acknowledgment as well when selecting a bit manipulation instruction for the specific register setting.
 - 2. Although the data written to the PHCMD register is dummy data however, use the same register as the general-purpose register used in specific register setting (<4>) for writing to the PHCMD register (<3>). The same method should be applied when using a general-purpose register for addressing.
 - 3. Before executing this processing, complete all DMA transfer operations.

8.3.5 Peripheral status register (PHS)

If a write operation is not performed in the correct sequence including access to the command register for the protection-targeted internal registers, writing is not performed and a protection error is generated, setting the status flag (PRERR) to 1. This flag is a cumulative flag. After checking the PRERR flag, it is cleared to 0 by an instruction.

This register can be read/written in 8-bit or 1-bit units.

The operation conditions of the PRERR flag are as follows.

Set conditions:

- <1> If the operation of the relevant store instruction for the on-chip peripheral I/O is not a write operation for the PHCMD register, but the peripheral specific register is written to.
- <2> If the first store instruction operation after the write operation to the PHCMD register is for memory other than the specific registers and on-chip peripheral I/O.

Reset conditions: <1> If the PRERR flag of the PHS register is set to 0.

<2> If the system is reset

8.4 PLL Lockup

The lockup time (frequency stabilization time) is the time from when the power is turned on or the software STOP mode is released until the phase locks at the prescribed frequency. The state until this stabilization occurs is called a lockup state, and the stabilized state is called a lock state.

(1) Lock register (LOCKR)

The lock register (LOCKR) has a LOCK flag that reflects the stabilized state of the PLL frequency. This register is read-only, in 8-bit or 1-bit units.

Caution When the PLL is locked, the LOCK flag is 0. If the system then enters an unlocked state due to a standby, the LOCK flag becomes 1. If anything other than a standby causes the system to enter an unlocked state, the LOCK flag is not affected (LOCK = 0).

	7	6	5	4	3	2	1	<0>	Address Initial value		
LOCKR	0	0	0	0	0	0	0	LOCK	FFFFF824H 0000000xB		
	Bit position	Bit na	ame	Function							
	0	LOCK		long as a loc 0: Indicate	ckup state ites that the		ed and is need.	ot initialize	nis flag holds the value 0 as and by a system reset.		

If the clock stops, the power fails, or some other factor operates to cause an unlock state to occur, for control processing that depends on software execution speed, such as real-time processing, be sure to judge the LOCK flag using software immediately after operation begins so that processing does not begin until after the clock stabilizes.

On the other hand, static processing such as the setting of internal hardware or the initialization of register data or memory data can be executed without waiting for the LOCK flag to be reset.

The relationship between the oscillation stabilization time (the time from when the resonator starts to oscillate until the input waveform stabilizes) when a resonator is used, and the PLL lockup time (the time until frequency stabilizes) is shown below.

Oscillation stabilization time < PLL lockup time

8.5 Power Save Control

8.5.1 Overview

The power save function has the following three modes.

(1) HALT mode

In this mode, the clock generator (oscillator and PLL synthesizer) continues to operate, but the CPU's operation clock stops. Since the supply of clocks to on-chip peripheral functions other than the CPU continues, operation continues. The power consumption of the overall system can be reduced by intermittent operation that is achieved due to a combination of HALT mode and normal operation mode.

The system is switched to HALT mode by a specific instruction (the HALT instruction).

(2) IDLE mode

In this mode, the clock generator (oscillator and PLL synthesizer) continues to operate, but the supply of internal system clocks is stopped, which causes the overall system to stop.

When the system is released from IDLE mode, it can be switched to normal operation mode quickly because the oscillator's oscillation stabilization time need not be secured.

The system is switched to IDLE mode according to the PSMR register setting.

IDLE mode is located midway between software STOP mode and HALT mode in relation to the clock stabilization time and current consumption. It is used for situations in which a low current consumption mode is to be used and the clock stabilization time is to be eliminated after the mode is released.

(3) Software STOP mode

In this mode, the overall system is stopped by stopping the clock generator (oscillator and PLL synthesizer). The system enters an ultra-low power consumption state in which only leak current is lost.

The system is switched to software STOP mode according to a PSMR register setting.

(a) PLL mode

The system is switched to software STOP mode by setting the register according to software. The PLL synthesizer's clock output is stopped at the same time that the oscillator is stopped. After software STOP mode is released, the oscillator's oscillation stabilization time must be secured until the system clock stabilizes. Also, PLL lockup time may be required depending on the program. When a resonator or external clock is connected, following the release of the software STOP mode, execution of the program is started after the count time of the time base counter has elapsed.

(b) Direct mode

To stop the clock, set the X1 pin to low level. After the release of software STOP mode, execution of the program is started after the count time of the time base counter has elapsed.

Table 8-1 shows the operation of the clock generator in normal operation mode, HALT mode, IDLE mode, and software STOP mode.

An effective low power consumption system can be realized by combining these modes and switching modes according to the required use.

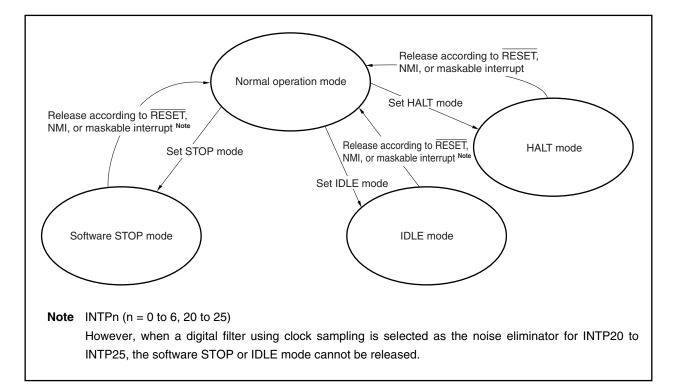


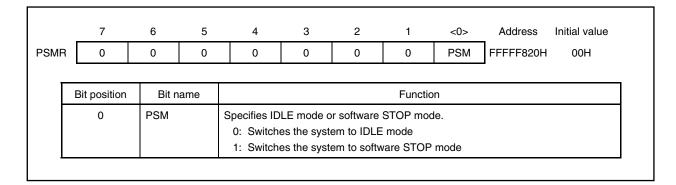
Figure 8-1. Power Save Mode State Transition Diagram

Table 8-1. Clock Generator Operation Using Power Save Control

Clock Source		Power Save Mode	Oscillator	PLL Synthesizer	Clock Supply to Peripheral I/O	Clock Supply to CPU
PLL mode	Oscillation with	Normal operation	√	$\sqrt{}$	$\sqrt{}$	\checkmark
	resonator	HALT mode	√	V	V	_
		IDLE mode	√	V	-	-
		Software STOP mode	-	-	-	-
	External clock	Normal operation	-	V	V	√
		HALT mode	-	V	V	-
		IDLE mode	-	V	-	-
		Software STOP mode	-	-	-	-
Direct mode	External clock	Normal operation	-	-	V	V
		HALT mode	-	-	V	
	IDLE mode		-	-	-	
		Software STOP mode	-	-	-	-

Remark √: Operating

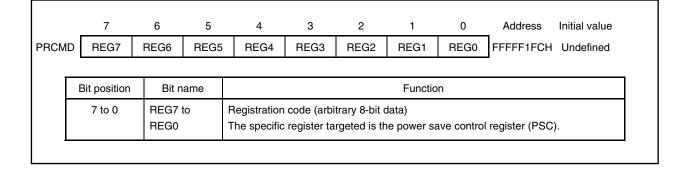
-: Stopped


8.5.2 Control registers

(1) Power save mode register (PSMR)

This is an 8-bit register that controls power save mode. It is effective only when the STB bit of the PSC register is set to 1.

Writing to the PSMR register is executed by the store instruction (ST/SST instruction) and a bit manipulation instruction (SET1/CLR1/NOT1 instruction).


This register can be read/written in 8-bit or 1-bit units.

(2) Command register (PRCMD)

This is an 8-bit register that is used to set protection for write operations to registers that can significantly affect the system so that the application system is not halted unexpectedly due to erroneous program execution. Writing to the first specific register (power save control register (PSC)) is only valid after first writing to the PRCMD register. Because of this, the register value can be overwritten only by the specified sequence, preventing an illegal write operation from being performed.

This register can only be written in 8-bit units. The undefined data is read out if read.

(3) Power save control register (PSC)

This is an 8-bit register that controls the power save function.

If releasing of interrupts are enabled by the setting of the NMIM and INTM bits, the software STOP mode can be released by an interrupt request (except when interrupt servicing is disabled by the interrupt mask registers (IMR0 to IMR3)).

The software STOP mode is specified by the setting of the STB bit.

This register, which is one of the specific registers, is effective only when accessed by a specific sequence during a write operation.

This register can be read/written in 8-bit or 1-bit units.

Be sure to clear bits 7 and 6 to 0. If they are set to 1, the operation is not guaranteed.

Caution It is impossible to set STB bit and NMIM or INTM bit at the same time. Be sure to set STB bit after setting NMIM or INTM bit.

	7	6	<5>	<4>	3	2	<1>	0	Address Initial value
PSC	0	0	NMIM	INTM	0	0	STB	0	FFFFF1FEH 00H
	Bit position	Bit name Function							
	5	NMIM		This is the enable/disable setting bit for standby mode release using valid edge input of NMI ^{Note} . 0: Enables NMI cancellation 1: Disables NMI cancellation					
				input of NMI 0: Enable	^{Note} . s NMI can	cellation	bit for stand	dby mod	e release using valid edge

If 1 is written to this bit, the system enters IDLE or software STOP mode (set by the PSM bit of the PSMR register). When standby mode is released, this bit is

Note Setting these bits is valid only in the IDLE/software STOP mode.

Data is set in the power save control register (PSC) according to the following sequence.

automatically reset to 0.0: Standby mode is released1: Standby mode is in effect

Indicates the standby mode status.

- <1> Set the power save mode register (PSMR) (with the following instructions).
 - Store instruction (ST/SST instruction)

STB

1

- Bit manipulation instruction (SET1/CLR1/NOT1 instruction)
- <2> Prepare data in any one of the general-purpose registers to set in the specific register.
- <3> Write arbitrary data to the command register (PRCMD).
- <4> Set the power save control register (PSC) (with the following instructions).
 - Store instruction (ST/SST instruction)
 - Bit manipulation instruction (SET1/CLR1/NOT1 instruction)
- <5> Insert the NOP instructions (5 instructions (<5> to <9>).

[Sample coding]

```
<1>ST.B r11, PSMR [r0] ; Set PSMR register
<2> MOV
         0x07, r10
                        ; Prepare data for setting specific register in
                            arbitrary general-purpose register
<3> ST.B r10, PRCMD [r0] ; Write PRCMD register
<4>ST.B r10, PSC [r0]
                         ; Set PSC register
<5> NOP
                          ; Dummy instruction
<6> NOP
                          ; Dummy instruction
<7> NOP
                          ; Dummy instruction
<8> NOP
                          ; Dummy instruction
<9> NOP
                          ; Dummy instruction
(next instruction)
                          ; Execution routine after software STOP mode and IDLE
                            mode release
```

No special sequence is required to read the specific register.

- Cautions 1. A store instruction for the command register does not acknowledge interrupts. This coding is made on assumption that <3> and <4> above are executed by the program with consecutive store instructions. If another instruction is set between <3> and <4>, the above sequence may become in effective when the interrupt is acknowledged by that instruction, and a malfunction of the program may result.
 - 2. Although the data written to the PRCMD register is dummy data, use the same register as the general-purpose register used in specific register setting (<4>) for writing to the PRCMD register (<3>). The same method should be applied when using a general-purpose register for addressing.
 - 3. At least 5 NOP instructions must be inserted after executing a store instruction to the PSC register to set software STOP or IDLE mode.
 - 4. Before executing this processing, complete all DMA transfer operations.

8.5.3 HALT mode

(1) Setting and operation status

In HALT mode, the clock generator (oscillator and PLL synthesizer) continues to operate, but the operation clock of the CPU is stopped. Since the supply of clocks to on-chip peripheral I/O units other than the CPU continues, operation continues. The power consumption of the overall system can be reduced by setting the system to HALT mode while the CPU is idle.

The system is switched to HALT mode by the HALT instruction.

Although program execution stops in HALT mode, the contents of all registers, internal RAM, and ports are maintained in the state they were in immediately before HALT mode began. Also, operation continues for all on-chip peripheral I/O units (other than ports) that do not depend on CPU instruction processing. Table 8-2 shows the status of each hardware unit in HALT mode.

Table 8-2. Operation Status in HALT Mode

Function	Operation Status
Clock generator	Operating
Internal system clock	Operating
CPU	Stopped
Ports	Maintained
On-chip peripheral I/O (excluding ports)	Operating
Internal data	All internal data such as CPU registers, statuses, data, and the contents of internal RAM are maintained in the state they were in immediately before HALT mode began.
AD0 to AD15	Operating
A16 to A23	
RD, ASTB	
UWR, LWR	
CS0 to CS7	
HLDRQ	
HLDAK	
WAIT	
CLKOUT	Clock output

(2) Release of HALT mode

HALT mode is released by a non-maskable interrupt request, an unmasked maskable interrupt request (INTPn), or $\overline{\text{RESET}}$ pin input (n = 0 to 6, 20 to 25, 30, 31, 100, 101, 110, 111).

(a) Release by a non-maskable interrupt request or an unmasked maskable interrupt request

HALT mode is released by a non-maskable interrupt request or by an unmasked maskable interrupt request regardless of the priority. However, if the system is set to HALT mode during an interrupt servicing routine, operation will differ as follows.

- (i) If an interrupt request is generated with a lower priority than that of the interrupt request that is currently being serviced, HALT mode is released, but the newly generated interrupt request is not acknowledged. The new interrupt request is held pending.
- (ii) If an interrupt request (including non-maskable interrupt requests) is generated with a higher priority than that of the interrupt request that is currently being serviced, HALT mode is released and the newly generated interrupt request is acknowledged.

Table 8-3. Operation After HALT Mode Is Released by Interrupt Request

Release Source	Enable Interrupt (EI) Status	Disable Interrupt (DI) Status
Non-maskable interrupt request	Branch to handler address	
Maskable interrupt request	Branch to handler address or execute next instruction	Execute next instruction

(b) Release by RESET pin input

This is the same as a normal reset operation.

8.5.4 IDLE mode

(1) Setting and operation status

In IDLE mode, the clock generator (oscillator and PLL synthesizer) continues to operate, but the supply of internal system clocks is stopped which causes the overall system to stop.

When IDLE mode is released, the system can be switched to normal operation mode quickly because the oscillator's oscillation stabilization time or the PLL lockup time need not be secured.

The system is switched to IDLE mode by setting the PSC or PSMR register using a store instruction (ST or SST instruction) or a bit manipulation instruction (SET1, CLR1, or NOT1 instruction) (see **8.5.2 Control registers**).

In IDLE mode, program execution is stopped, and the contents of all registers, internal RAM, and ports are maintained in the state they were in immediately before execution stopped. The operation of on-chip peripheral I/O units (excluding ports) also is stopped.

Table 8-4 shows the status of each hardware unit in IDLE mode.

Table 8-4. Operation Status in IDLE Mode

Function	Operation Status
Clock generator	Operating
Internal system clock	Stopped
CPU	Stopped
Ports	Maintained
On-chip peripheral I/O (excluding ports)	Stopped (CSI0 and CSI1 are operable in slave mode) ^{Note}
Internal data	All internal data such as CPU registers, statuses, data, and the contents of internal RAM are maintained in the state they were in immediately before IDLE mode began.
AD0 to AD15	High impedance
A16 to A23	
RD	High-level output
UWR, LWR	
CS0 to CS7	
HLDAK	High impedance
HLDRQ	Input (no sampling)
WAIT	
ASTB	High-level output
CLKOUT	Low-level output

Note NBD cannot be used in IDLE mode.

(2) Release of IDLE mode

IDLE mode is released by a non-maskable interrupt request, an unmasked maskable interrupt request $(INTPn)^{Note}$, or \overline{RESET} pin input (n = 0 to 6, 20 to 25).

Note When a digital filter using clock sampling is selected as the noise eliminator for INTP20 to INTP25, the IDLE mode cannot be released.

(a) Release by a non-maskable interrupt request or an unmasked maskable interrupt request

The IDLE mode can be released by an interrupt request only when transition to IDLE mode is performed with the INTM and NMIM bits of the PSC register set to 0.

IDLE mode is released by a non-maskable interrupt request or by an unmasked maskable interrupt request (INTPn) regardless of the priority (n = 0 to 6, 20 to 25). The operation after release is as follows.

Caution When the NMIM and INTM bits of the PSC register = 1, the IDLE mode cannot be released by the non-maskable interrupt request signal and unmasked maskable interrupt request signal.

Table 8-5. Operation After IDLE Mode Is Released by Interrupt Request

Release Source	Enable Interrupt (EI) Status	Disable Interrupt (DI) Status
Non-maskable interrupt request	Branch to handler address	
Maskable interrupt request	Branch to handler address or execute next instruction	Execute next instruction

If the system is set to IDLE mode during a maskable interrupt servicing routine, operation will differ as follows.

- (i) If an interrupt request is generated with a lower priority than that of the interrupt request that is currently being serviced, IDLE mode is released, but the newly generated interrupt request is not acknowledged. The new interrupt request is held pending.
- (ii) If an interrupt request (including non-maskable interrupt requests) is generated with a higher priority than that of the interrupt request that is currently being serviced, IDLE mode is released and the newly generated interrupt request is acknowledged.

If the system is set to IDLE mode during an NMI servicing routine, IDLE mode is released, but the interrupt is not acknowledged (interrupt is held pending).

Interrupt servicing that is started when IDLE mode is released by NMI pin input is handled in the same way as normal NMI interrupt servicing that occurs during an emergency (because the NMI interrupt handler address is unique). Therefore, when a program must be able to distinguish between these two situations, a software status must be prepared in advance and that status must be set before setting the PSMR register using a store instruction or a bit manipulation instruction. By checking for this status during NMI interrupt servicing, an ordinary NMI can be distinguished from the processing that is started when IDLE mode is released by NMI pin input.

(b) Release by RESET pin input

This is the same as a normal reset operation.

8.5.5 Software STOP mode

(1) Setting and operation status

In software STOP mode, the clock generator (oscillator and PLL synthesizer) is stopped. The overall system is stopped, and ultra-low power consumption is achieved in which only leak current is lost.

The system is switched to software STOP mode by using a store instruction (ST or SST instruction) or bit manipulation instruction (SET1, CLR1, or NOT1 instruction) to set the PSC and PSMR registers (see **8.5.2 Control registers**).

When PLL mode and resonator connection mode (CESEL bit of CKC register = 0) are used, the oscillator's oscillation stabilization time must be secured after software STOP mode is released.

In both PLL and direct modes, following the release of software STOP mode, execution of the program is started after the count time of the time base counter has elapsed.

Although program execution stops in software STOP mode, the contents of all registers, internal RAM, and ports are maintained in the state they were in immediately before software STOP mode began. The operation of all on-chip peripheral I/O units (excluding ports) is also stopped.

Table 8-6 shows the status of each hardware unit in software STOP mode.

Table 8-6. Operation Status in Software STOP Mode

Function	Operation Status
Clock generator	Stopped
Internal system clock	Stopped
CPU	Stopped
Ports	Retained ^{Note 1}
On-chip peripheral I/O (excluding ports)	Stopped (CSI0 and CSI1 are operable in slave mode)Note 2
Internal data	All internal data such as CPU registers, statuses, data, and the contents of internal RAM are retained in the state before software STOP mode has been set ^{Note 1} .
AD0 to AD15	High impedance
A16 to A23	
RD	High-level output
UWR, LWR	
CS0 to CS7	
HLDAK	High impedance
HLDRQ	Input (no sampling)
WAIT	
ASTB	High-level output
CLKOUT	Low-level output

Notes 1. When the V_{DD5} value is within the operable range. However, even if it drops below the minimum operable voltage, as long as the data retention voltage V_{DDDR} is maintained, the contents of only the internal RAM will be retained.

2. NBD cannot be used in software STOP mode.

(2) Release of software STOP mode

Software STOP mode is released by a non-maskable interrupt request, an unmasked maskable interrupt request (INTPn)^{Note}, or $\overline{\text{RESET}}$ pin input. Also, to release software STOP mode when PLL mode (CKSEL pin = low level) and resonator connection mode (CESEL bit of CKC register = 0) are used, the oscillator's oscillation stabilization time must be secured (n = 0 to 6, 20 to 25).

Moreover, PLL lockup time may be required depending on the program. See 8.4 PLL Lockup for details.

Note When a digital filter using clock sampling is selected as the noise eliminator for INTP20 to INTP25, the software STOP mode cannot be released.

(a) Release by a non-maskable interrupt request or an unmasked maskable interrupt request

The software STOP mode can be released by an interrupt request only when transition to software STOP mode is performed with the INTM and NMIM bits of the PSC register set to 0.

Software STOP mode is released by a non-maskable interrupt request or by an unmasked maskable interrupt request (INTPn) regardless of the priority (n = 0 to 6, 20 to 25). The operation after release is as follows.

Caution When the NMIM and INTM bits of the PSC register = 1, the software STOP mode cannot be released by the non-maskable interrupt request signal and unmasked maskable interrupt request signal.

Table 8-7. Operation After Software STOP Mode Is Released by Interrupt Request

Release Source	Enable Interrupt (EI) Status	Disable Interrupt (DI) Status
Non-maskable interrupt request	Branch to handler address	
Maskable interrupt request	Branch to handler address or execute next instruction	Execute next instruction

If the system is set to software STOP mode during a maskable interrupt servicing routine, operation will differ as follows.

- (i) If an interrupt request is generated with a lower priority than that of the interrupt request that is currently being serviced, software STOP mode is released, but the newly generated interrupt request is not acknowledged. The new interrupt request is held pending.
- (ii) If an interrupt request (including non-maskable interrupt requests) is generated with a higher priority than that of the interrupt request that is currently being serviced, software STOP mode is released and the newly generated interrupt request is acknowledged.

If the system is set to software STOP mode during an NMI servicing routine, software STOP mode is released, but the interrupt is not acknowledged (interrupt is held pending).

Interrupt servicing that is started when software STOP mode is released by NMI pin input is handled in the same way as normal NMI interrupt servicing that occurs during an emergency (because the NMI interrupt handler address is unique). Therefore, when a program must be able to distinguish between these two situations, a software status must be prepared in advance and that status must be set before setting the PSMR register using a store instruction or a bit manipulation instruction.

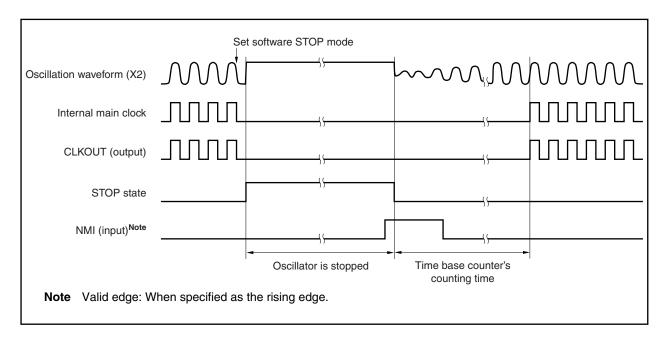
By checking for this status during NMI interrupt servicing, an ordinary NMI can be distinguished from the servicing that is started when software STOP mode is released by NMI pin input.

(b) Release by RESET pin input

This is the same as a normal reset operation.

8.6 Securing Oscillation Stabilization Time

8.6.1 Oscillation stabilization time security specification


Two specification methods can be used to secure the time from when software STOP mode is released until the stopped oscillator stabilizes.

(1) Securing the time using an on-chip time base counter

Software STOP mode is released when a valid edge is input to the NMI pin or a maskable interrupt request is input (INTPn). When a valid edge is input to the pin causing the start of oscillation, the time base counter (TBC) starts counting, and the time until the clock output from the oscillator stabilizes is secured during that counting time (n = 0 to 6, 20 to 25).

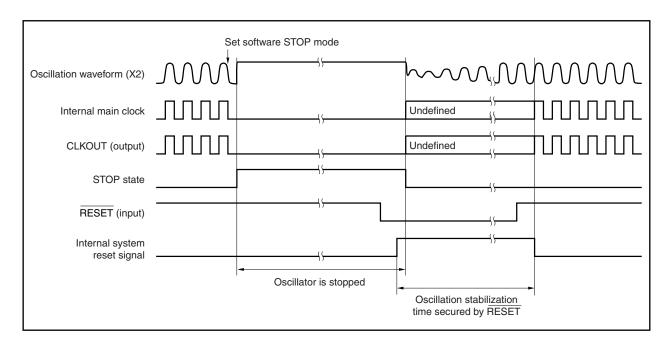
Oscillation stabilization time = TBC counting time

After a fixed time, internal system clock output begins, and processing branches to the NMI interrupt or maskable interrupt (INTPn) handler address.

The NMI pin should usually be set to an inactive level (for example, high level when the valid edge is specified as the falling edge) in advance.

Software STOP mode is immediately released if an operation is performed according to NMI valid edge input or maskable interrupt request input (INTPn) timing in which software STOP mode is set until the CPU acknowledges the interrupt.

If direct mode or external clock connection mode (CESEL bit of CKC register = 1) is used, program execution begins after the count time of the time base counter has elapsed.


Also, even if PLL mode and resonator connection mode (CESEL bit of CKC register = 0) are used, program execution begins after the oscillation stabilization time is secured according to the time base counter.

(2) Securing the time according to the signal level width (RESET pin input)

Software STOP mode is released due to falling edge input to the RESET pin.

The time until the clock output from the oscillator stabilizes is secured according to the low level width of the signal that is input to the pin.

The supply of internal system clocks begins after a rising edge is input to the $\overline{\text{RESET}}$ pin, and processing branches to the handler address used for a system reset.

8.6.2 Time base counter (TBC)

The time base counter (TBC) is used to secure the oscillator's oscillation stabilization time when software STOP mode is released.

When an external clock is connected (CESEL bit of CKC register = 1) or a resonator is connected (PLL mode and CESEL bit of CKC register = 0), the TBC counts the oscillation stabilization time after software STOP mode is released, and program execution begins after the count is completed.

The TBC count clock is selected according to the TBCS bit of the CKC register, and the next counting time can be set.

 TBCS Bit
 Count Clock
 Counting Time

 fx = 4.0000 MHz fx = 5.0000 MHz

 0
 $fx/2^8$ 16.4 ms 13.2 ms

 1
 $fx/2^9$ 32.8 ms 26.3 ms

Table 8-8. Counting Time Examples ($fxx = 10 \times fx$)

fxx: Internal system clock

fx: External oscillation frequency

CHAPTER 9 TIMER/COUNTER FUNCTION

9.1 Timer 0

9.1.1 Features (timer 0)

Timers 00, 01 (TM00, TM01) are 16-bit timer/counters that are ideal for controlling high-speed inverters such as motors.

• 3-phase PWM output function

PWM mode 0 (symmetric triangular wave)

PWM mode 1 (asymmetric triangular wave)

PWM mode 2 (sawtooth wave)

• Interrupt culling function

Culling ratios (1/1, 1/2, 1/4, 1/8, 1/16)

• Forcible 3-phase PWM output stop function

3-phase PWM output can be forcibly stopped by inputting a signal from external signal input pin ESOn during anomalies.

This function can also be used when the clock is stopped.

· Real-time output function

3-phase PWM output or rectangular wave output can be selected at the desired timing.

• Output of positive phase and negative phase or positive phase and in-phase of 3-phase PWM output

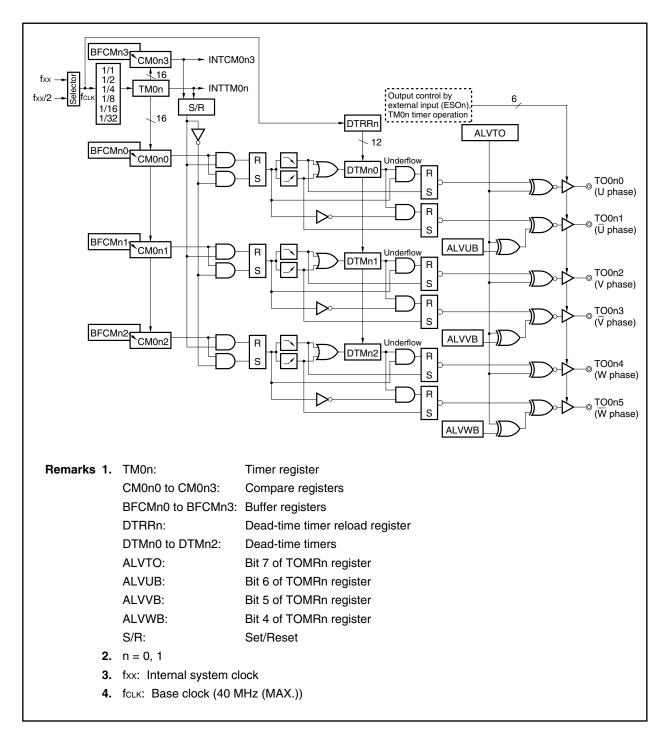
9.1.2 Function overview (timer 0)

- 16-bit timer (TM0n) for 3-phase PWM inverter control: 2 channels
- Compare registers: 4 registers × 2 channels
- 12-bit dead-time timers (DTMn0 to DTMn2): 3 timers × 2 channels
- Count clock division selectable by prescaler (set the frequency of the count clock to 40 MHz or less)
- Base clock (fclk): 2 types (set fclk to 40 MHz or less)
 fxx and fxx/2 can be selected
- · Prescaler division ratio

The following division ratios can be selected according to the base clock (fclk).

Division Ratio	Base Clock (fclk)						
	fxx Selected	fxx/2 Selected					
1/1	fxx	fxx/2					
1/2	fxx/2	fxx/4					
1/4	fxx/4	fxx/8					
1/8	fxx/8	fxx/16					
1/16	fxx/16	fxx/32					
1/32	fxx/32	fxx/64					

- Interrupt request sources
 - Compare-match interrupt request: 2 types INTCM0n3 generated by CM0n3 match signal
 - Underflow interrupt request: 2 types INTTM0n generated by underflow
- External pulse output (TO0n0 to TO0n5): 6×2 channels


Remark fxx: Internal system clock

n = 0, 1

9.1.3 Basic configuration

The basic configuration is shown below.

Figure 9-1. Block Diagram of Timer 0 (Mode 0: Symmetric Triangular Wave, Mode 1: Asymmetric Triangular Wave)

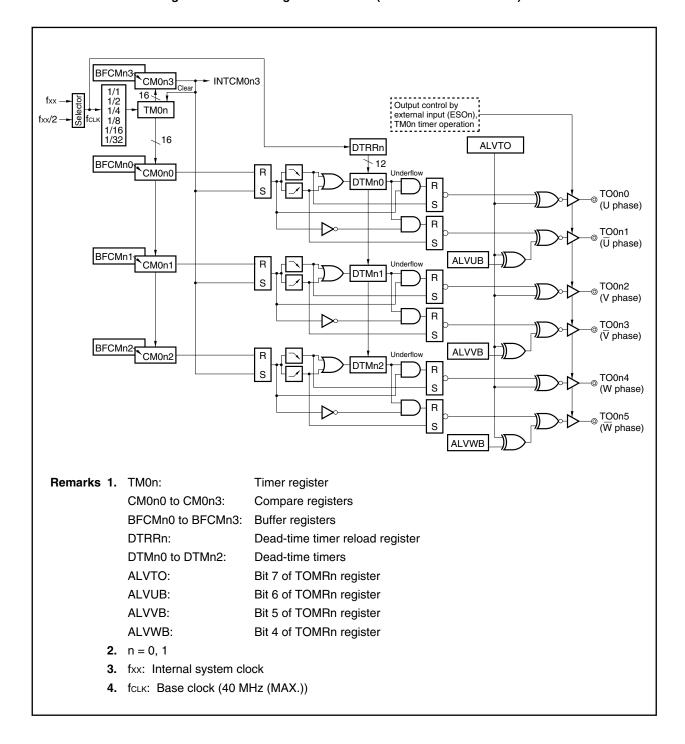


Figure 9-2. Block Diagram of Timer 0 (Mode 2: Sawtooth Wave)

(1) Timers 00, 01 (TM00, TM01)

TM0n operates as a 16-bit up/down timer or up timer. The cycle is controlled by compare register 0n3 (CM0n3) (n = 0, 1).

TM0n start/stop is controlled by the TM0CEn bit of timer control register 0n (TMC0n).

Division by the prescaler can be selected for the count clock from among fclk, fclk/2, fclk/4, fclk/8, fclk/16, fclk/32 with the PRM02 to PRM00 bits of the TMC0n register (fclk: base clock, see **9.1.4** (1) Timer 0 clock selection register (PRM01)).

The conditions when TM0n becomes 0000H are as follows.

- Reset input
- TM0CEn bit = 0
- TM0n register and compare register 0n3 (CM0n3) match (PWM mode 2 (sawtooth wave) only)
- Immediately after overflow or underflow

The TM0n timer has 3 operation modes, shown in Table 9-1. The operation mode is selected with timer control register 0n (TMC0n).

Table 9-1. Timer 0 Operation Modes

Operation Mode	Count Operation	Timer Clear Source	Interrupt Source	BFCMn3 → CM0n3 Transfer Timing	BFCMn0 to BFCMn2→ CM0n0 to CM0n2 Transfer Timing
PWM mode 0 (symmetric triangular wave)	Up/down	-	INTTM0n INTCM0n3	INTTM0n	INTTM0n
PWM mode 1 (asymmetric triangular wave)	Up/down	_	INTTM0n INTCM0n3	INTTM0n	INTTM0n INTCM0n3
PWM mode 2 (sawtooth wave)	Up	INTCM0n3	INTCM0n3	INTCM0n3	INTCM0n3

Caution An interrupt does not occur and the operation of timer 0 is not affected even if TM0ICn, CM03ICn, or the interrupt mask flag of the IMR0 register (TM0MKn or CM03MKn) is set (interrupts disabled) as the interrupt source.

(2) Dead-time timers 00 to 02, 10 to 12 (DTM00 to DTM02, DTM10 to DTM12)

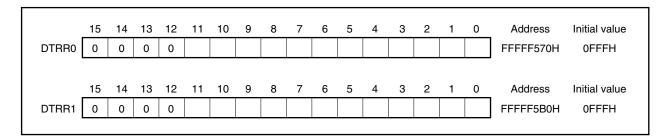
DTMn0 to DTMn2 are dedicated 12-bit down timers that generate dead time suitable for inverter control application. DTMn0 to DTMn2 operate as one-shot timers.

Counting by a dead-time timer is enabled or disabled by the TM0CEDn bit of timer control register 0n (TMC0n) and cannot be controlled by software. Dead-time timer count start and stop is controlled by hardware.

A dead-time timer starts counting down when the value of the dead-time timer reload register n (DTRRn) is transferred in synchronization with the compare match timing of CM0n0 to CM0n2.

When the value of a dead-time timer changes from 000H to FFFH, the dead-time timer generates an underflow signal, and the timer stops at the value FFFH.

If the value of a dead-time timer matches the value of the corresponding compare register before underflow of the dead-time timer takes place, the value of DTRRn is transferred to the dead-time timer again, and the timer starts counting down.


The count clock of the dead-time timer is fixed to the base clock (fclk), and the dead-time width is (set value of DTRRn + 1)/base clock (fclk).

If TM0n operates in PWM mode 0, PWM mode 1 with the dead-time timer count operation disabled, an inverted signal without dead time is output to TO0n0 and TO0n1, TO0n2 and TO0n3, and TO0n4 and TO0n5.

(3) Dead-time timer reload registers 0, 1 (DTRR0, DTRR1)

DTRRn register is a 12-bit register used to set the values of the three dead-time timers (DTMn0 to DTMn2 registers) (n = 0, 1). However, a value is transferred from the DTRRn register to each dead-time register independently.

DTRRn can be read/written in 16-bit units. All 0s are read for the higher 4 bits when 16-bit read access is performed to the DTRRn register.

Cautions 1. Changing the value of the DTRRn register during TM0n operation (TM0CEn bit of TMC0n register = 1) is prohibited.

2. Be sure to write 0 to the higher 4 bits.

(4) Compare registers 000 to 002, 010 to 012 (CM000 to CM002, CM010 to CM012)

CM0n0 to CM0n2 are 16-bit registers that always compare their own values with the value of TM0n. If the value of a compare register matches the value of TM0n, the compare register outputs a trigger signal, and changes the contents of the flip-flop (F/F) connected to the compare register. Each of CM0n0 to CM0n2 is provided with a buffer register (BFCMn0 to BFCMn2), so that the contents of the buffer are transferred to CM0n0 to CM0n2 at the next transfer timing. Transfer is enabled or disabled by the BFTEN bit of the TMC0n register.

(5) Compare registers 003, 013 (CM003, CM013)

CM0n3 is a 16-bit register that always compare its value with the value of TM0n. If the values match, CM0n3 outputs an interrupt signal (INTCM0n3). CM0n3 controls the maximum count value of TM0n, and if the values match, it performs the following operations at the next timer count clock.

- In triangular wave setting mode (PWM modes 0, 1): Switches TM0n operation from count up to count down
- Sawtooth wave setting mode (PWM mode 2):
 Clears the count value of TM0n

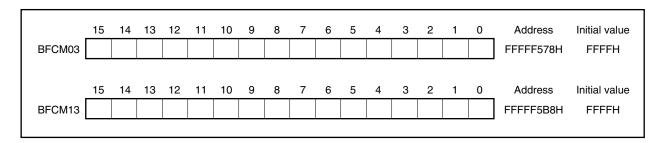
CM0n3 also has a buffer register (BFCMn3) and transfers the buffer contents at the timing of the next transfer to CM0n3. Transfer enable or disable is controlled by the BFTE3 bit of the TMC0n register.

(6) Buffer registers CM00 to CM02, CM10 to CM12 (BFCM00 to BFCM02, BFCM10 to BFCM12)

BFCMn0 to BFCMn2 are 16-bit registers that transfer data to the compare register (CM0n0 to CM0n2) corresponding to each buffer register when an interrupt signal (INTCM0n3/INTTM0n) is generated. BFCMn0 to BFCMn2 can be read/written in 16-bit units.

Caution The set values of the BFCMn0 to BFCMn2 registers are transferred to the CM0n0 to CM0n2 registers in the following timing (n = 0, 1).

- When TM0CEn bit of TMC0n register = 0: Transfer at next operation timing after writing to BFCMn0 to BFCMn2 registers
- When TM0CEn bit of TMC0n register = 1: Value of BFCMn0 to BFCMn2 registers is transferred to CM0n0 to CM0n2 registers upon occurrence of INTTM0n or INTCM0n3. At this time, transfer enable or disable is controlled by the BFTEN bit of the timer control register (TMC0n).


BFCM00	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	Address FFFF572H	Initial value FFFFH
BFCM10	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	Address FFFF5B2H	Initial value FFFFH
BFCM01	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	Address FFFF574H	Initial value FFFFH
BFCM11	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	Address FFFF5B4H	Initial value
BFCM02	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	Address FFFF576H	Initial value FFFFH
BFCM12	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	Address FFFF5B6H	Initial value FFFFH

(7) Buffer registers CM03, CM13 (BFCM03, BFCM13)

BFCMn3 is a 16-bit register that transfers data to the compare register at any timing. Transfer enable or disable is controlled by the BFTE3 bit of the TMC0n register.

BFCMn3 can be read/written in 16-bit units.

- Cautions 1. The set value of the BFCMn3 register is transferred to the CM0n3 register in the following timing (n = 0, 1).
 - When TM0CEn bit of TMC0n register = 0: Transfer at next operation timing after writing to BFCMn3 register
 - When TM0CEn bit of TMC0n register = 1: Value of BFCMn3 register is transferred to CM0n3 register upon occurrence of INTTM0n. At this time, transfer enable or disable is controlled by the BFTE3 bit of the timer control register (TMC0n).
 - 2. Setting the BFCMn3 register to 0000H is prohibited.

9.1.4 Control registers

(1) Timer 0 clock selection register (PRM01)

The PRM01 register is used to select the base clock (fclk) of timer 0 (TM0n). It can be read/written in 8-bit or 1-bit units.

Caution Always set this register before using the timer.

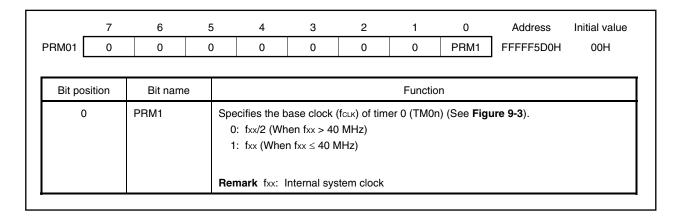
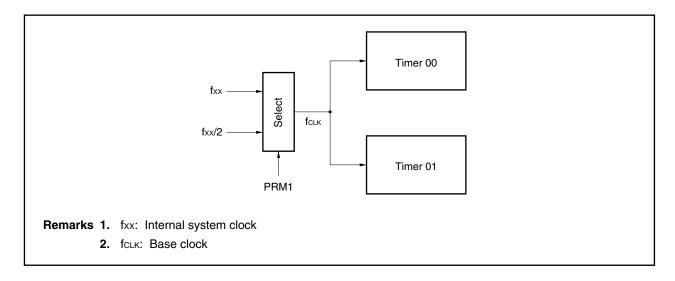



Figure 9-3. Timer 00 and Timer 01 Clock

(2) Timer control registers 00, 01 (TMC00, TMC01)

TMC0n register is a 16-bit register that sets the operation of timer 0 (TM0n).

The TMC0n register can be read/written in 16-bit units.

If the higher 8 bits of the TMC0n register are used as the TMC0nH register and the lower 8 bits as the TMC0nL register, the register can be read/written in 8-bit or 1-bit units.

Caution To operate timer 0, first set TM0CEn = 0 and then set TM0CEn = 1.

(1/4)

TMCOO TM0CE0 STINTO CUL02 CUL01 CUL00 PRM02 PRM01 PRM00 O O TM0CED0 BFTE3 BFTEN MBFTE MOD01 MOD00 FFFF57AH 05081																.,
TMC01 TM0Ce1 STINT1 CUL02 CUL01 CUL00 PRM02 PRM01 PRM00 O O TM0CeD1 BFTE3 BFTEN MBFTE MOD01 MOD00 FFFF5BAH 05081	TMC00	 								1		 _	$\overline{}$		Initial value 0508H	
	TMCO4	 	_			_				1		 _	$\overline{}$		Initial value	
Bit position Bit name Function					PRMU2	PKM01	PRM00	0	0	IMOCEDI	BF1E3		МОДОО	FEFFESBAH	0508H	7
15 TM0CEn Specifies the operation of TM0n.	•			 ne								4				

Bit position	Bit name		Function								
15	TM0CEn	0	Specifies the operation of TM0n. 0: Count disabled (stops after all count values are cleared) 1: Count enabled								
14	STINTn	Specifies interrupt during TM0n timer start. 0: Don't generate interrupt at operation start 1: Generate interrupt at operation start When STINTn bit = 1, an interrupt is generated immediately after the rising edge of the TM0CEn signal. When the MOD01 bit = 0 (triangular wave mode), the INTTM0n interrupt (see Figure 9-4) is generated, and when the MOD01 bit = 1 (sawtooth wave mode), the INTCM0n3 interrupt is generated. Caution Changing the STINTn bit during TM0n operation (TM0CEn bit = 1) is prohibited.									
13 to 11	CUL02 to CUL00	Spe	ecifies the int	errupt cullino	g ratio.						
			CUL02	CUL01	CUL00	Interrupt culling ratio					
			0	0	0	1/1					
			0	0	1	1/2					
			0	1	0	1/4					
			0	1	1	1/8					
			1	0	0	1/16					
		Other than above Culling is not performed									
					0						

(2/4)

Bit position	Bit name			Function	on					
13 to 11	CUL02 to CUL00	to CUL00 Cautions 1. INTTM0n and INTCM0n3 interrupts can be culled with the same culling ratio (1/1, 1/2, 1/4, 1/8, 1/16). 2. Even when BFTE3 bit = 1, BFTEN bit = 1 (settings to transfer d from BFCMn0 to BFCMn3 registers to CM0n0 to CM0n3 registers), transfer is not performed with the generation timing culled INTTM0n and INTCM0n3 interrupts if the MBFTE bit = 0. 3. If the culling ratio is changed during count operation, the new culling ratio is applied after an interrupt has occurred with the culling ratio prior to the change (see Figure 9-5).								
10 to 8	PRM02 to PRM00	Specifies the co	unt clock for	TM0n.						
		PRM02	PRM01	PRM00	Count clock					
		0	0	0	fclк					
		0	0	1	fclk/2					
		0	1	0	fclk/4					
		0	1	1	fclk/8					
		1	0	0	fcLk/16					
		1	0	1	fcLk/32					
		Other than	above		Setting prohibited					
		bec in th is n Remark For th	ome 0000H ne timing that ot switched ne base cloc	and an INTTM0i at corresponds	is from when the TM0n value has n interrupt has occurred. Therefore, to interrupt culling, the division rati					
5	TM0CEDn	(PRM01). TM0CEDn Specifies the operation of DTMn0 to DTMn2 timers. 0: DTMn0 to DTMn2 perform count operation 1: DTMn0 to DTMn2 stopped								
		is 2. If	prohibited TM0n is op	erated when the	during TM0n operation (TM0CEn = 1 TM0CEDn bit = 1, a signal without D0n0 to TO0n5 pins.					

(3/4)

Bit position	Bit name		Function	
4	BFTE3	0: Transf	nsfer of data from BFCMn3 regist er disabled er enabled	-
		The transfer	timing from the BFCMn3 register	to the CM0n3 register is as follows.
		BFTE3	TM0n operation mode	BFCMn3 → CM0n3 transfer timing
		0	All modes	Don't transfer
		1	PWM mode 0 (symmetric triangular wave)	INTTM0n
		1	PWM mode 1 (asymmetric triangular wave)	INTTM0n
		1	PWM mode 2 (sawtooth wave)	INTCM0n3
			TTE3 bit = 1, the value of the BFC ster upon occurrence of an INTTM	· ·
3	BFTEN	registers. 0: Transf	nsfer of data from BFCMn0 to BF er disabled er enabled	CMn2 registers to CM0n0 to CM0n2
		BFTEN	TM0n operation mode	BFCMn0 to BFCMn2 → CM0n0 to CM0n2 transfer timing
		0	All modes	Don't transfer
		1	PWM mode 0 (symmetric triangular wave)	INTTM0n
		1	PWM mode 1 (asymmetric triangular wave)	INTTM0n, INTCM0n3
		1	PWM mode 2 (sawtooth wave)	INTCM0n3
			_	CMn0 to BFCMn2 registers are upon occurrence of an INTTM0n or
2	MBFTE	bits, specifie occurrence of the control of the con	s whether enable or disable the Bof an interrupt for culling. le the set values of BFTE3, BFT upt e the set values of BFTE3, BFT	rrupts is set with the CUL02 to CUL FTE3 and BFTEN bit settings upon FEN bits upon occurrence of a cul FEN bits upon occurrence of a cul
		The variou	us combinations are as follows.	
		MBFTE		rrence of interrupt for culling
			0	1
		BFTEN	0 BFCMn0 to BFCMn2 → CM0n0 to CM0n2 transfer disabled	BFCMn0 to BFCMn2 → CM0n0 to CM0n2 transfer disabled
			1 BFCMn0 to BFCMn2 →	BFCMn0 to BFCMn2 → CM0n0
			CM0n0 to CM0n2 transfer disabled	to CM0n2 transfer enabled
		BFTE3	CM0n0 to CM0n2 transfer	

230

(4/4)

Bit position	Bit name		Function								
1, 0	MOD01, MOD00	Specifies t	he oper	ation mode of TM0	n.						
		MOD 01	MOD 00	Operation mode	TM0n operation	Timer clear source	BFCMn3 → CM0n3 timing	BFCMn0 to BFCMn2 → CM0n0 to CM0n2 timing			
		0	0	PWM mode 0 (symmetric triangular wave)	Up/down	_	INTTM0n	INTTM0n			
		0	1	PWM mode 1 (asymmetric triangular wave)	Up/down	_	INTTM0n	INTTM0n, INTCM0n3			
		1	0	PWM mode 2 (sawtooth wave)	Up	INTCM0n3	INTCM0n3	INTCM0n3			
		1	1	Setting prohibited	l						
				ng the value of th En bit = 1) is proh		MOD00 bits d	uring TM0n o	peration			

Figure 9-4. Specification of INTTM0n Interrupt During PWM Mode 0 (Symmetric Triangular Wave), PWM Mode 1 (Asymmetric Triangular Wave) (MOD01, MOD00 Bits of TMC0n Register = 0n)

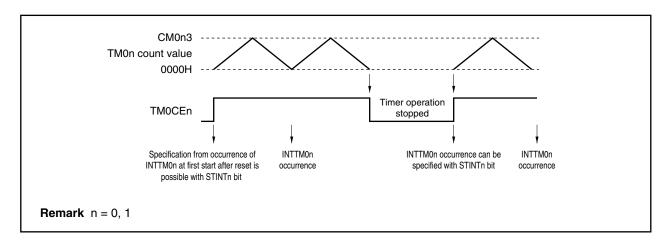
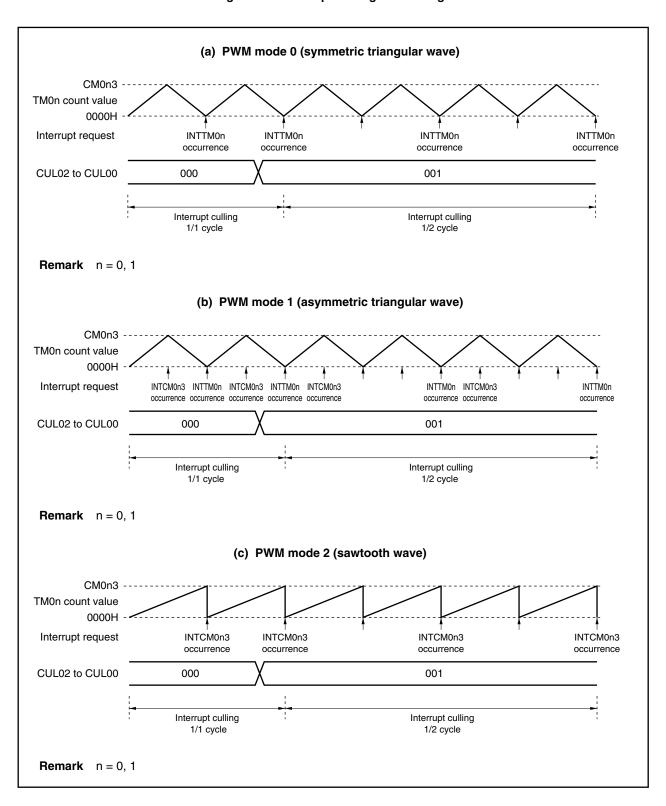
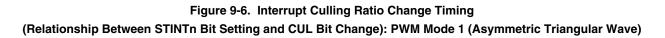
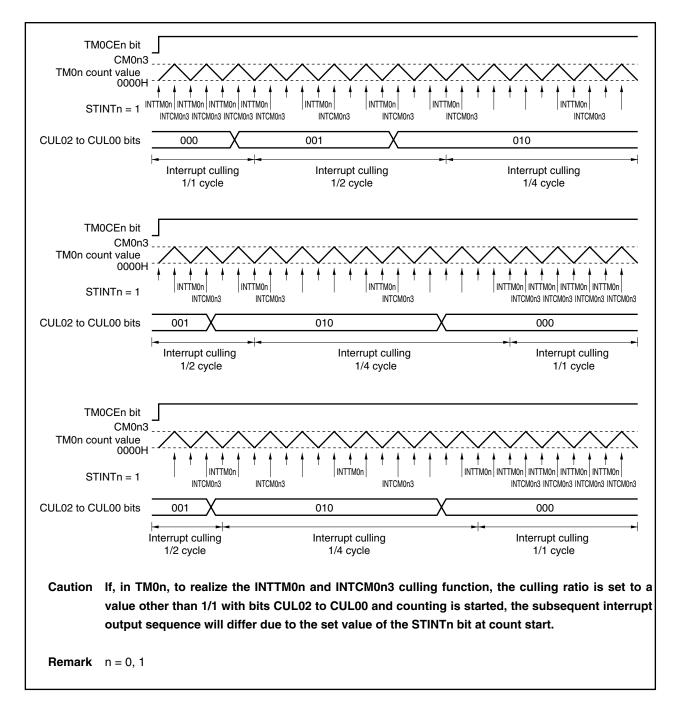





Figure 9-5. Interrupt Culling Processing

(3) Timer unit control registers 00, 01 (TUC00, TUC01)

TUC0n register is an 8-bit register that controls TO0n0 to TO0n5 outputs.

TUC0n can be read/written in 8-bit or 1-bit units. However, bit 0 is read-only.

TUC00	7	6	5	4	3	2	<1>	<0>	Address FFFF57CH	Initial value
10000	U	U	U	0	U	U	TORSU	1031A0	FFFF57CH	UIH
_	7	6	5	4	3	2	<1>	<0>	Address	Initial value
TUC01	0	0	0	0	0	0	TORS1	TOSTA1	FFFFF5BCH	01H

Bit position	Bit name	Function
1	TORSn	Flag that restarts TO0n0 to TO0n5 pin output that was forcibly stopped by ESOn pin input. Causes output to resume by writing "1" to TORSn bit. Cautions 1. If the level is set for the ESOn pin input level (TOMR register TOEDG1 bit = 1, TOEDG0 bit = 0 or 1), the output disabled state is not released (TOSTAn bit = 1) even if "1" is written to the TORSn bit while the output is disabled (TOSTAn bit = 1). If the input level is inactive, the output disabled state is released (TOSTAn bit = 0). The value of the TORSn bit is held. 2. If the edge is set for the ESOn pin input (TOEDG1 bit = 0, TOEDG0 bit = 0 or 1), the output disabled state is released (TOSTAn bit = 0) by writing "1" to the TORSn bit while the output is disabled
		(TOSTAn bit = 1). 3. After reset, be sure to write "1" to the TORSn bit prior to starting output of TO0n0 to TO0n5. "0" is read when the TORSn bit is read.
0	TOSTAn	TO0n0 to TO0n5 pin output status flag through ESOn pin input 0: Output enabled status 1: Output disabled status

(4) Timer output mode registers 0, 1 (TOMR0, TOMR1)

The TOMRn register controls timer output from the TO0n0 to TO0n5 pins.

To prevent abnormal output from pins TO0n0 to TO0n5 due to illegal access, data write to the TOMRn register consists of the following two sequences.

- (a) Write access to the TOMR write enable register (SPECn), followed by
- (b) Write access to the TOMRn register

Write is not enabled hardware-wise unless these two sequences are implemented.

TOMRn can be read/written in 8-bit units.

Caution When interrupt requests are generated during write access to the TOMRn register (after write access to the SPECn register and prior to write to the TOMRn register), write processing to the TOMRn register may not be performed normally if access to other addresses is performed using the internal bus during servicing of these interrupts. Add one of the following processing items during the TOMRn register write routine.

- Prior to write access to the TOMRn register, disable acknowledge of all interrupts of CPU.
- Following write access to the TOMRn register, check that write was performed normally.

(1/2)

TOMR0	7 ALVTO	6 ALVUB	5 ALVVB	4 ALVWB	3 TOSP	2	1 TOEDG1	0 TOEDG0	Address FFFF57DH	Initial value
TOME	ALVIO	ALVUD	ALVVD	ALVVVD	1035	0	TOEDGT	TOLDGO	TTTT57DH	ООП
_	7	6	5	4	3	2	1	0	Address	Initial value
TOMR1	ALVTO	ALVUB	ALVVB	ALVWB	TOSP	0	TOEDG1	TOEDG0	FFFFF5BDH	00H

Bit position	Bit name	Function
7	ALVTO	Specifies the active level of TO0n0, TO0n2, and TO0n4 pins. 0: Active level is low level 1: Active level is high level
		Caution Changing the ALVTO bit during TM0n operation (TM0CEn = 1) is prohibited.
6	ALVUB	Specifies the output level of the TO0n1 pin. 0: Inverted level of active level set by ALVTO bit 1: Active level set by ALVTO bit When the ALVUB bit = 1, the output level of the TO0n1 output is the same as TO0n0.
		Caution Changing the ALVUB bit during TM0n operation (TM0CEn = 1) is prohibited.

(2/2)

Bit position	Bit name			Function									
5	ALVVB	0: Inverted level 1: Active level 9 When the ALVVB TO0n2.	Caution Changing the ALVVB bit during TM0n operation (TM0CEn = 1) is										
		prohib											
4	ALVWB	0: Inverted level 1: Active level When the ALVWB TO0n4. Caution Changi											
3	TOSP	prohib											
·	100	0: Enables ESC 1: Disables ESC Cautions 1. The TOI eve 2. Bef	On pin input On pin input On pin input On pin input On pin if output On if output One chang One granging TO										
1, 0	TOEDG1, TOEDG0			dge or level when setting forcible stop of TO0n0 to pin input with the TOSP bit.									
		TOEDG1	TOEDG0	Operation									
		0	0	Rising edge									
		0	1	Falling edge									
		1	0	Low level									
		1	1	High level									
		(TM 2. Bef wri	l0CEn = 1) ore chang	e TOEDG1, TOEDG0 bits during TM0n operation is prohibited. ging the settings of bits TOEDG1 and TOEDG0, the TORSn bit of the TUC0n register to reset the ESC									

 $\textbf{Remark} \quad n=0,\,1$

Examples of the output waveforms of TO000 and TO001 when the higher 4 bits (ALVTO, ALVUB, ALVVB, and ALVWB) of the TOMRn register are set in PWM mode 0 (symmetric triangular waves) are shown below.

Figure 9-7. Output Waveforms of TO000 and TO001 in PWM Mode 0 (Symmetric Triangular Waves) (Without Dead Time (TM0CED0 Bit = 1))

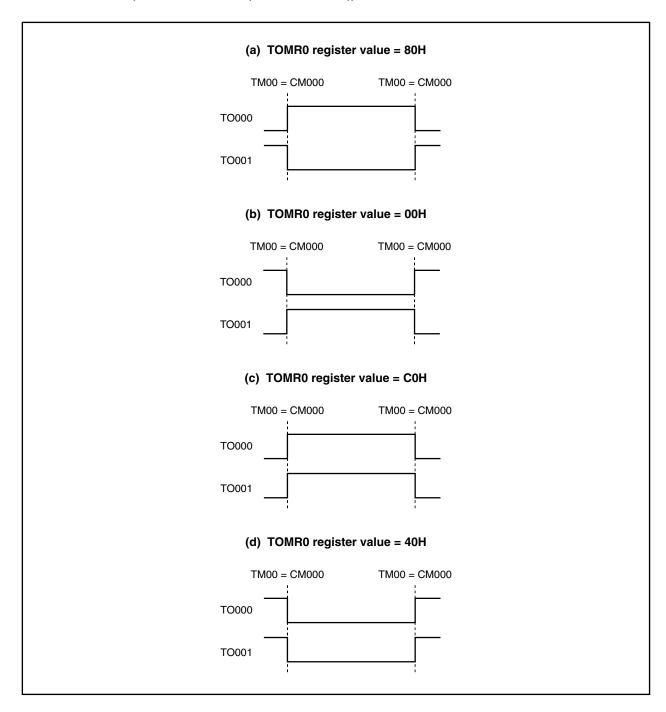
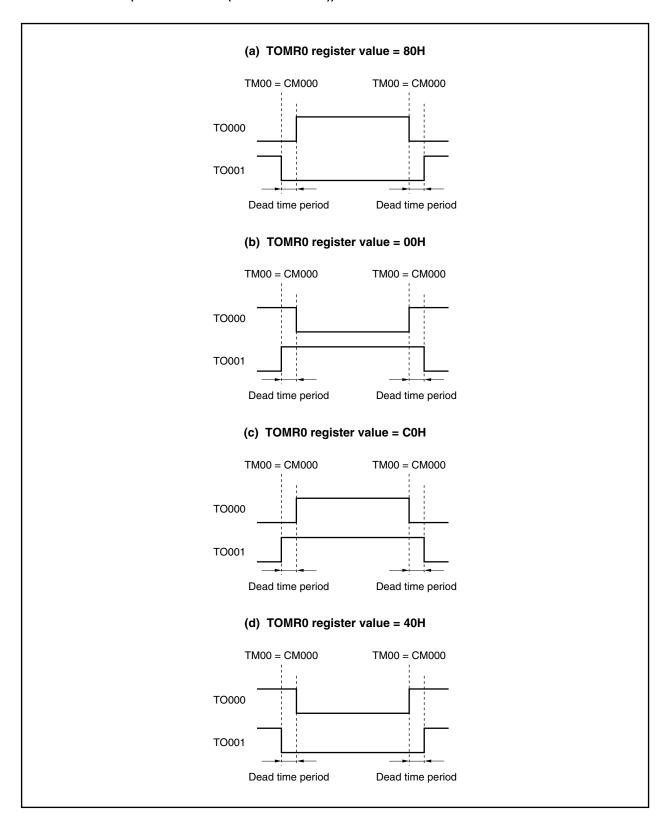



Figure 9-8. Output Waveforms of TO000 and TO001 in PWM Mode 0 (Symmetric Triangular Waves) (With Dead Time (TM0CED0 Bit = 0))

Data setting to timer output mode registers 0, 1 (TOMR0, TOMR1) is done in the following sequence.

- <1> Prepare the data to be set to timer output mode registers 0, 1 (TOMR0, TOMR1) in a general-purpose register.
- <2> Write data to the TOMR write enable registers 0, 1 (SEPC0, SPEC1).
- <3> Set timer output mode registers 0, 1 (TOMR0, TOMR1) (performed with the following instructions).
 - Store instruction (ST/SST instructions)
 - Bit manipulation instruction (SET1/CLR1/NOT1 instructions)

Remark n = 0, 1

To read the TOMRn register, no special sequence is required.

- Cautions 1. Disable interrupts between SPECn issue (<2>) and TOMRn register write that immediately follows (<3>).
 - 2. The data written to the SPECn register is dummy data; use the same register as the general-purpose register used to set the TOMRn register (<3> in the above example) for SPECn register write (<2> in the above example). The same applies when using a general-purpose register for addressing.
 - 3. Do not write to the SPECn register or TOMRn register via DMA transfer.

(5) PWM output enable registers 0, 1 (POER0, POER1)

The POERn register is used to make the external pulse output (TO0n0 to TO0n5) status inactive by software. POERn can be read/written in 8-bit or 1-bit units.

	7	6	<5>	<4>	<3>	<2>	<1>	<0>	Address	Initial value
POER0	0	0	OE210	OE200	OE110	OE100	OE010	OE000	FFFFF57FH	00H
·									•	
	7	6	<5>	<4>	<3>	<2>	<1>	<0>	Address	Initial value
POER1	0	0	OE211	OE201	OE111	OE101	OE011	OE001	FFFFF5BFH	00H

Bit position	Bit name	Function
5	OE21n	Specifies output status of TO0n5 pin. 0: TO0n5 output status is high impedance. 1: TO0n5 output status is controlled by TM0CEn bit of TMC0n register and TORTOn bit of PSTOn register and ESOn pin.
4	OE20n	Specifies output status of TO0n4 pin. 0: TO0n4 output status is high impedance. 1: TO0n4 output status is controlled by TM0CEn bit of TMC0n register and TORTOn bit of PSTOn register and ESOn pin.
3	OE11n	Specifies output status of TO0n3 pin. 0: TO0n3 output status is high impedance. 1: TO0n3 output status is controlled by TM0CEn bit of TMC0n register and TORTOn bit of PSTOn register and ESOn pin.
2	OE10n	Specifies output status of TO0n2 pin. 0: TO0n2 output status is high impedance. 1: TO0n2 output status is controlled by TM0CEn bit of TMC0n register and TORTOn bit of PSTOn register and ESOn pin.
1	OE01n	Specifies output status of TO0n1 pin. 0: TO0n1 output status is high impedance. 1: TO0n1 output status is controlled by TM0CEn bit of TMC0n register and TORTOn bit of PSTOn register and ESOn pin.
0	OE00n	Specifies output status of TO0n0 pin. 0: TO0n0 output status is high impedance. 1: TO0n0 output status is controlled by TM0CEn bit of TMC0n register and TORTOn bit of PSTOn register and ESOn pin.

(6) PWM software timing output registers 0, 1 (PSTO0, PSTO1)

The PSTOn register is used to perform settings to output the desired waveforms to the external pulse output pins (TO0n0 to TO0n5) by software.

PSTOn can be read/written in 8-bit or 1-bit units.

Cautions 1. When the value of the TORTOn bit has been changed from 0 to 1 during timer output (setting changed to software output), the timing is delayed by the dead-time portion when the output level differs from the timer output signal during output due to the settings of the UPORTn, VPORTn, and WPORTn bits.

When the output level is the same as the timer output signal during output due to the settings of the UPORTn, VPORTn, and WPORTn bits, output is performed maintaining the same output level.

2. If software output is enabled (TORTOn bit = 1), the INTTM0n and INTCM0n3 interrupts and TO0n0 to TO0n5 output statuses are as follows during TM0n operation (TM0CEn bit = 1).

INTTM0n and INTCM0n3 interrupts: Continue occurring at each timing in accordance

with timer and compare operations.

TO0n0 to TO0n5 outputs: Software output has priority.

3. If the TORTOn bit is changed from 1 to 0 during TM0n operation (TM0CEn bit = 1), the software output state is retained for the TO0n0 to TO0n5 outputs until one of the set/reset condition of the flip-flop for the TO0n0 to TO0n5 outputs shown in (a) below is generated.

(a) Set/reset conditions of flip-flop for TO0n0 to TO0n5 outputs

	Output Status	Operation Mode	Conditions
Set	Timer output	Triangular wave mode (PWM mode 0, 1)	Compare match while TM0n is counting up
		Sawtooth wave mode (PWM mode 2)	Match between TM0n and CM0n3 registers
	Software output	-	Set (to 1) UPORTn, VPORTn, and WPORTn bits
Reset	Timer output	Triangular wave mode (PWM mode 0, 1)	Compare match while TM0n is counting down
		Sawtooth wave mode (PWM mode 2)	Compare match with TM0n
	Software output	-	Clear (to 0) UPORTn, VPORTn, and WPORTn bits

Remark n = 0, 1

4. If the same value is written to the UPORTn (VPORTn, WPORTn) bit when TORTOn = 1, the TO0n0 and TO0n1 outputs (TO0n2 and TO0n3, TO0n4 and TO0n5) are not changed.

(1/2)

	<7>	6	5	4	3	<2>	<1>	<0>	Address	Initial value				
PSTO0	TORTO0	0	0	0	0	UPORT0	VPORT0	WPORT0	FFFFF57EH	00H				
	<7>	6	5	4	3	<2>	<1>	<0>	Address	Initial value				
PSTO1	TORTO1	0	0	0	0	UPORT1	VPORT1	WPORT1	FFFFF5BEH	00H				
Bit p	osition	Bit na	me	Function										
	7	TORTOn		Specifies TO0n0 to TO0n5 output control. 0: Timer output 1: Software output The change of the TO0n0 to TO0n5 signals during software output occurs when the TORTOn bit is set (to 1) and a value is written to the UPORTn, VPORTn, and										
				WPORTn bi										
	2	UPORTn		Specifies the	e TO0n0 (I	U phase)/T	O0n1 (U pl	nase) pin ou	utput value.					
				UPORTn				Operation						
				0	TO0n0	Inverted	evel of AL\	/TO bit setti	ing					
					TO0n1	When AL	When ALVUB = 0 Level of ALVTO bit setting							
						When AL	.VUB = 1	Inverte	d level of ALVT	O bit setting				
				1	TO0n0	Level of	ALVTO bit	setting						
					TO0n1	When AL	O bit setting							
						When AL	.VUB = 1	Level c	of ALVTO bit se	VTO bit setting				
				de in	ad-time s the same	etting bec way as di	omes valid	d for the TO						
	1	VPORTn		Specifies the	e TO0n2 (V phase)/T	O0n3 (V pł	nase) pin ou	tput value.					
				VPORTn			(Operation						
				0	TO0n2	Inverted	level of AL	VTO bit sett	ing					
					TO0n3	When AL	VVB = 0	Level	of ALVTO bit se	etting				
						When AL	.VVB = 1	Inverte	ed level of ALV	ΓO bit setting				
	1 TO0n2 Level of ALVTO bit setting													
TO0n3 When ALVVB = 0 Inverted level of ALV														
						When AL	.VVB = 1	Level	of ALVTO bit se	etting				
Caution If the VPORTn bit setting value is changed when TORTOn = dead-time setting becomes valid for the TO0n2/TO0n3 output in the same way as during normal timer operation.														

Remark n = 0, 1

ALVUB bit: Bit 7 of the TOMRn register ALVUB bit: Bit 6 of the TOMRn register ALVVB bit: Bit 5 of the TOMRn register

(2/2)

Bit position	Bit name	Function									
0	WPORTn	Specifies the TO0n4 (W phase)/TO0n5 (W phase) pin output value.									
		WPORTn Operation									
		0	TO0n4	Inverted level of ALVT	O bit setting						
			TO0n5	When ALVWB = 0	Level of ALVTO bit setting						
				When ALVWB = 1 Inverted level of ALVTO bit setting							
		1	TO0n4	Level of ALVTO bit se	etting						
			TO0n5	When ALVWB = 0	Inverted level of ALVTO bit setting						
				When ALVWB = 1	Level of ALVTO bit setting						
		Caution If the WPORTn bit setting value is changed when TORTOn = 1									
			dead-time setting becomes valid for the T00n4/T00n5 output signal in the same way as during normal timer operation.								

Remark n = 0, 1

ALVTO bit: Bit 7 of the TOMRn register ALVWB bit: Bit 4 of the TOMRn register

The TO0n0 to TO0n5 pins can be set to timer output by a match between TM0n and the compare register or to software output using the PSTOn register (TORTOn bit = 1). Software output has the priority over timer output.

Consequently, when the setting changes from TM0CEn = 1 (timer operation enabled), TORTOn = 1 (software output enabled) to TM0CEn = 1 (timer operation enabled), TORTOn = 0 (software output disabled), the TO0n0 to TO0n0 pins continue to perform software output until the occurrence of the first F/F set/reset due to a match between TM0n and the compare register after the TORTOn bit setting changes.

The relationship between the settings of the TORTOn and TM0CEn bits when ALVTO = 1 and the output of TO0n0 (positive phase side) is shown on the following pages (the negative phase side (TO0n1, TO0n3, and TO0n5) is dependent on the ALVUB, ALVVB, and ALVWB bits, so refer to the explanations of each of these bits).

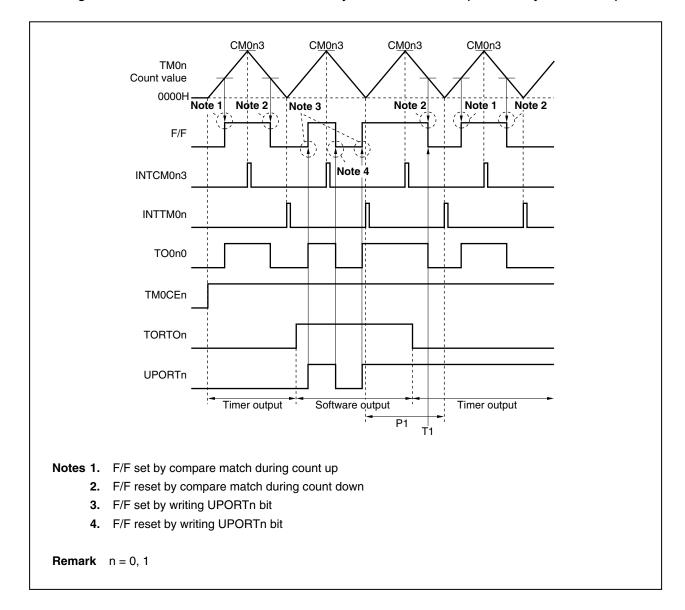


Figure 9-9. When UPORTn = 1 Is Set Immediately Before TORTOn = 0 (Switched by Active Value)

If the setting of the TORTOn bit changes from 1 to 0 while the UPORTn bit is set to 1 in the P1 period in Figure 9-9 above, the F/F continues to hold the TORTOn bit setting of "1" until the T1 timing.

However, because the F/F is reset at the T1 timing (by a compare match of TM0n during counting down), the T00n0 output changes from 1 to 0.

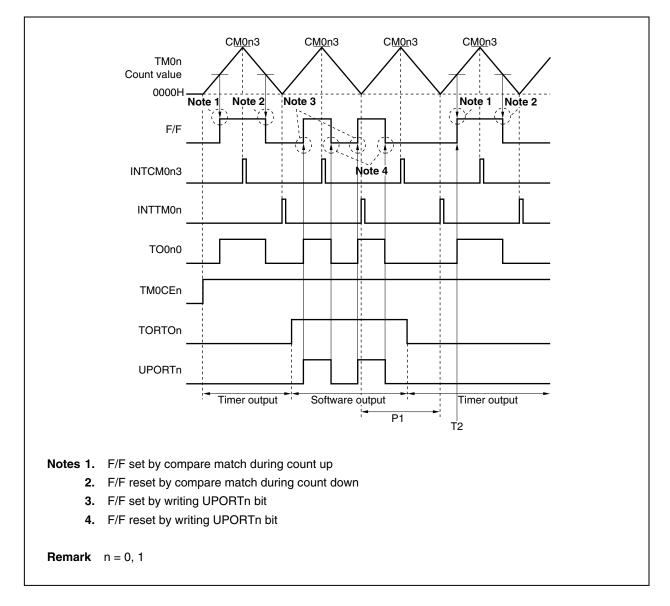


Figure 9-10. When UPORTn = 0 Is Set Immediately Before TORTOn = 0 (Switched by Inactive Value)

If the setting of the TORTOn bit changes from 1 to 0 while the UPORTn bit is set to 0 in the P1 period in Figure 9-10 above, the F/F continues to hold the TORTOn bit setting of "0" until the T2 timing.

However, because the F/F is set at the T2 timing (by a compare match of TM0n during counting up), the TO0n0 output changes from 1 to 0.

Note that TO0n0 to TO0n5 output will stop if the TORTOn bit setting is changed from 1 to 0 while the TM0CEn bit is 0.

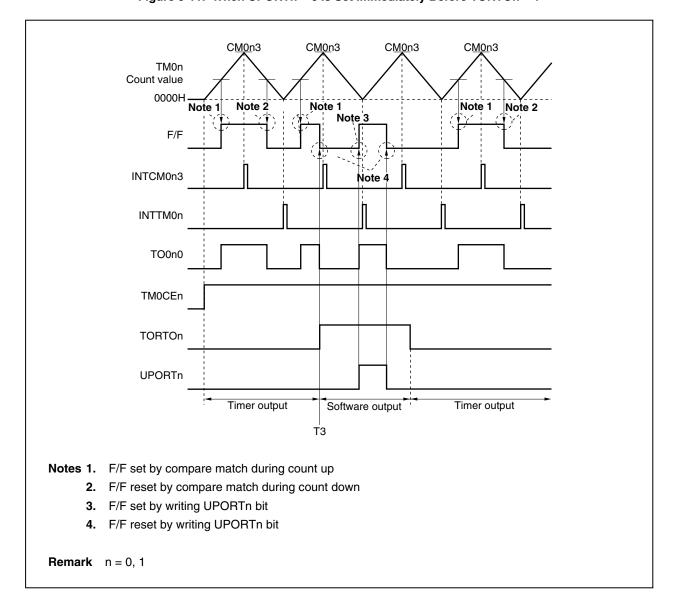


Figure 9-11. When UPORTn = 0 Is Set Immediately Before TORTOn = 1

If the setting of the TORTOn bit changes from 0 to 1 while the UPORTn bit is set to 0 during TM0n operation (TM0CEn = 1), the TO0n0 output changes from 1 to 0 because the F/F is reset at the T3 timing.

Examples of the software output waveforms of TO000 and TO001 based on the settings of the TORTOn, UPORTn, VPORTn, and WPORTn bits are shown on the following pages.

Figure 9-12. Software Output Waveforms of TO000 and TO001 (Without Dead Time (TM0CED0 = 1))

Figure 9-13. Software Output Waveforms of TO000 and TO001 (With Dead Time (TM0CED0 = 0))

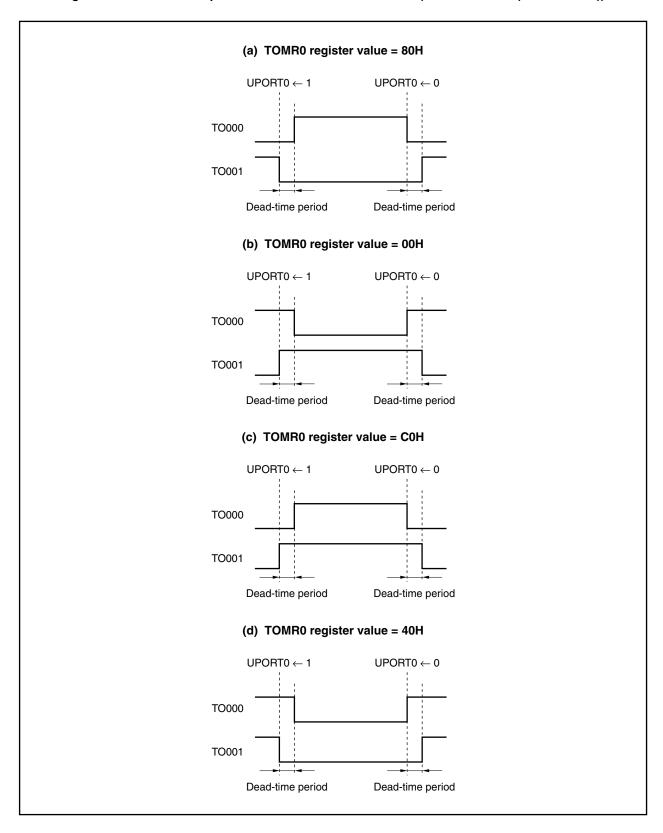
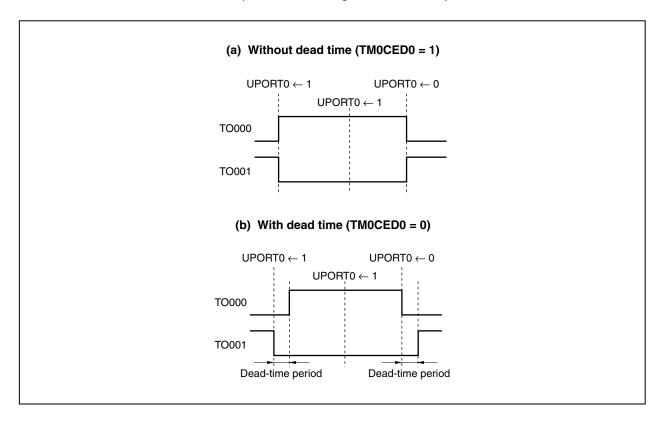



Figure 9-14. Software Output Waveforms of TO000 and TO001 When "1" Is Written to UPORT0 Bit While TORTO0 = 1 (When TOMR0 Register Value = 80H)

The following table shows the output status of external pulse output (in the case of TO0n0).

Table 9-2. Output Status of External Pulse Output (In Case of TO0n0)

OE00n Bit	TORTOn, UPORTn Bits	TM0CEn Bit	TO0n0
0	0/1	0/1	High impedance
1	0	0	High impedance
		1	Timer output
	1	0/1	Output by UPORTn bit

Remarks 1. OE00n bit: Bit 0 of POERn register

TORTOn bit: Bit 7 of PSTOn register UPORTn bit: Bit 2 of PSTOn register TM0CEn bit: Bit 15 of TMC0n register

2. n = 0, 1

(7) TOMR write enable registers 0, 1 (SPEC0, SPEC1)

The SPECn register enables write to the TOMRn register. Unless write to the TOMRn register is performed following immediately after write to the SPECn register (any data can be written), write processing to the TOMRn register is not performed normally. Normally, 0000H is read.

The SPECn register can be read/written in 16-bit units.

SPEC0	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	Address FFFF580H	Initial value 0000H
SPEC1	15	14 0	13	12	11	10	9	8	7	6	5	0	3	0	0	0	Address FFFF5C0H	Initial value 0000H

9.1.5 Operation

Remarks 1. In the description of the operation in 9.1.5, it is assumed that each bit that affects the output of TO0n0 to TO0n5 is set as follows.

ALVTO = 1, ALVUB = 0, ALVVB = 0, ALVWB = 0, TORTOn = 0

2. F/F mentioned in 9.1.5 is a flip-flop that controls output of the TO0n0 to TO0n5 pins.

(1) Basic operation

Timer 0 (TM0n) is a 16-bit interval timer that operates as an up/down timer or as an up timer. The cycle is controlled by compare register 0n3 (CM0n3) (n = 0, 1).

All TM0n bits are cleared (0) by RESET input and count operation is stopped.

Count operation enable/disable is controlled by the TM0CEn bit of timer control register 0n (TMC0n). The count operation is started by setting the TM0CEn bit to 1 by software. Resetting the TM0CEn bit to 0 clears TM0n and stops the count operation.

When the value of compare register 0n3 (CM0n3) set beforehand and the value of the TM0n counter match, a match interrupt (INTCM0n3) is generated.

The count clock to TM0n can be selected from among 6 internal clocks with the TMC0n register. If the TM0n has been set as an up/down timer, an underflow interrupt (INTTM0n) is generated when TM0n becomes 0000H during counting down.

The TM0n has the following three operation modes, which are selected with timer control register 0n (TMC0n).

- PWM mode 0: Triangular wave modulation (Right-left symmetric waveform control)
- PWM mode 1: Triangular wave modulation (Right-left asymmetric waveform control)
- PWM mode 2: Sawtooth wave modulation control

Table 9-3. Timer 0 (TM0n) Operation Modes

TMC0n Register		Operation Mode	TM0n	Timer Clear	Interrupt	BFCMn3 →	BFCMn0 to
MOD01	MOD00		Operation	Source	Source	CM0n3 Timing	BFCMn2→ CM0n0 to CM0n2 Timing
0	0	PWM mode 0 (symmetric triangular wave)	Up/down	ı	INTTM0n INTCM0n3	INTTM0n	INTTM0n
0	1	PWM mode 1 (asymmetric triangular wave)	Up/down	-	INTTM0n INTCM0n3	INTTM0n	INTTM0n INTCM0n3
1	0	PWM mode 2 (sawtooth wave)	Up	INTCM0n3	INTCM0n3	INTCM0n3	INTCM0n3
1	1	Setting prohibited					

Caution Changing bits MOD01, MOD00 during TM0n operation (TM0CEn = 1) is prohibited.

Remark n = 0, 1

The various operation modes are described below.

(2) PWM mode 0: Triangular wave modulation (right-left symmetric waveform control)

[Setting procedure]

- (a) Set PWM mode 0 (symmetric triangular wave) with bits MOD01 and MOD00 of the TMC0n register. Also set the active level of pins TO0n0 to TO0n5 with the ALVTO bit of the TOMRn register (n = 0, 1).
- (b) Set the count clock of TM0n with bits PRM02 to PRM00 of the TMC0n register. The transfer operation from BFCMn3 to CM0n3 is set with bit BFTE3, and the transfer operation from BFCMn0 to BFCMn2 to CM0n0 to CM0n2 is set with bit BFTEN.
- (c) Set the initial values.
 - (i) Specify the interrupt culling ratio with bits CUL02 to CUL00 of the TMC0n register.
 - (ii) Set the half-cycle width of the PWM cycle in BFCMn3.
 - PWM cycle = BFCMn3 value × 2 × TM0n count clock (The TM0n count clock is set with the TMC0n register.)
 - (iii) Set the dead-time width in DTRRn.
 - Dead-time width = (DTRRn + 1)/fclk fclk: Base clock
 - (iv) Set the set/reset timing of the F/F used in the PWM cycle in BFCMn0 to BFCMn2.
- (d) Clear (0) the TM0CEDn bit of the TMC0n register to enable dead-time timer operation. Set TM0CEDn = 1 when not using dead time.
- (e) Setting (1) the TM0CEn bit of the TMC0n register starts TM0n counting, and a 6-channel PWM signal is output from pins TO0n0 to TO0n5.

Cautions 1. Setting CM0n3 to 0000H is prohibited.

2. Setting BFCMnx > BFCMn3 is prohibited when the TM0CEn bit of the TMC0n register = 0 because output of the TO0n0 to TO0n5 pins is inverted from the setting (x = 0 to 2). In addition, setting BFCMnx > BFCMn3 is also prohibited when the TM0CEn bit of the TMC0n register = 1 and the CM0nx register = 0.

Remark The TM0CEn bit of the TMC0n register indicates transfer operation under the following conditions.

- When TM0CEn bit of TMC0n register is 0
 Transfer to the CM0n0 to CM0n2 registers is performed at the next base clock (fclk) after writing to registers BFCMn0 to BFCMn2.
- When TM0CEn bit of TMC0n register is 1
 The value of the BFCMn0 to BFCMn2 registers is transferred to the CM0n0 to CM0n2 registers upon occurrence of the INTTM0n interrupt. Transfer enable/disable at this time is controlled by bit BFTEN of the TMC0n register.

[Operation]

In PWM mode 0, TM0n performs count up/down operation. When TM0n = 0000H during counting down, an underflow interrupt (INTTM0n) is generated, and when TM0n = CM0n3 during counting up, a match interrupt (INTCM0n3) is generated (n = 0, 1).

Switching from counting up to counting down is performed when TM0n and CM0n3 match (INTCM0n3), and switching from counting down to counting up is performed when TM0n underflow occurs after TM0n becomes 0000H.

The PWM cycle in this mode is (BFCMn3 value \times 2 \times TM0n count clock). Concerning setting of data to BFCMn3, the next PWM cycle width is set to BFCMn3.

The data of BFCMn3 is automatically transferred by hardware to CM0n3 upon generation of the INTTM0n interrupt. Furthermore, calculation is performed by software processing started by INTTM0n, and the data for the next cycle is set to BFCMn3.

Data setting to CM0n0 to CM0n2, which control the PWM duty, is explained next.

Setting of data to CM0n0 to CM0n2 consists in setting the duty output from BFCMn0 to BFCMn2.

The values of BFCMn0 to BFCMn2 are automatically transferred by hardware to CM0n0 to CM0n2 upon generation of the INTTM0n interrupt. Furthermore, software processing is started up and calculation performed, and set/reset timing of the F/F for the next cycle is set to BFCMn0 to BFCMn2.

The PWM cycle and the PWM duty are set in the above procedure.

The F/F set/reset conditions upon match of CM0n0 to CM0n2 are as follows.

- Set: CM0n0 to CM0n2 match detection during TM0n count up operation
- Reset: CM0n0 to CM0n2 match detection during TM0n count down operation

In this mode, the F/F set/reset timing is performed in the same timing (right-left symmetric control). The values of DTRRn are transferred to the corresponding dead-time timers (DTMn0 to DTMn2) in synchronization with the set/reset timing of the F/F, and counting down is started. DTMn0 to DTMn2 count down to 000H, and stop when they count down further to FFFH.

DTMn0 to DTMn2 can automatically generate a width (dead time) at which the active levels of the positive phase (TO0n0, TO0n2, TO0n4) and negative phase (TO0n1, TO0n3, TO0n5) do not overlap.

In this way, software processing is started by an interrupt (INTTM0n) that occurs once during every PWM cycle after initial setting has been performed, and by setting the PWM cycle and PWM duty to be used in the next cycle, it is possible to automatically output a PWM waveform to TO0n0 to TO0n5 pins taking into consideration the dead-time width (in case of interrupt culling ratio of 1/1).

[Output waveform width in respect to set value]

- PWM cycle = BFCMn3 × 2 × T_{TM0n}
- Dead-time width TDnm = (DTRRn + 1)/fclk
- Active width of positive phase (TO0n0, TO0n2, TO0n4 pins)

=
$$\{(CM0n3 - CM0nXup) + (CM0n3 - CM0nXdown)\} \times TTM0n - TDnm$$

• Active width of negative phase (TO0n1, TO0n3, TO0n5 pins)

=
$$(CM0nX_{down} + CM0nX_{up}) \times T_{TM0n} - T_{Dnm}$$

• In this mode, CM0nXup = CM0nXdown (However, within the same PWM cycle).

Since CM0nX $_{up}$ and CM0nX $_{down}$ in the negative phase formula are prepared in a separate PWM cycle, CM0nX $_{up} \neq$ CM0nX $_{down}$.

fclk: Base clock
Ttmon: TM0n count clock

CM0nX_{up}: Set value of CM0n0 to CM0n2 while TM0n is counting up CM0nX_{down}: Set value of CM0n0 to CM0n2 while TM0n is counting down

The pin level when the TO0n0 to TO0n5 pins are reset is the high impedance state. When the control mode is selected thereafter, the following levels are output until the TM0n is started.

 $\bullet \quad \text{TO0n0, TO0n2, TO0n4}... \quad \text{When low active} \rightarrow \text{High level}$

When high active → Low level

• TO0n1, TO0n3, TO0n5... When low active \rightarrow Low level

When high active → High level

The active level is set with the ALVTO bit of the TOMRn register. The default is low active.

Caution If a value such that the positive phase or negative phase active width is "0" or a negative value in the above formula, the TO0n0 to TO0n5 pins output a waveform fixed to the inactive level waveform with active width "0".

Remark m = 0 to 2n = 0, 1

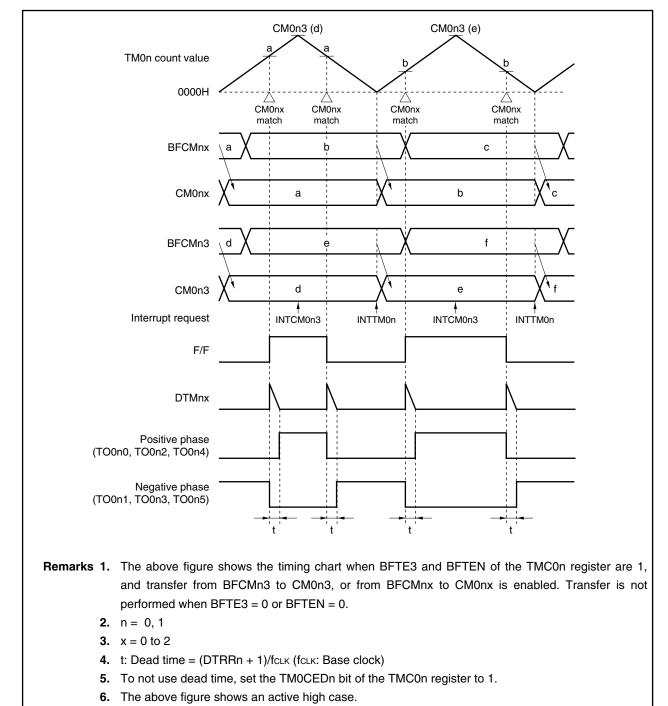


Figure 9-15. Operation Timing in PWM Mode 0 (Symmetric Triangular Wave)

- Figure 9-16 shows the overall operation image.

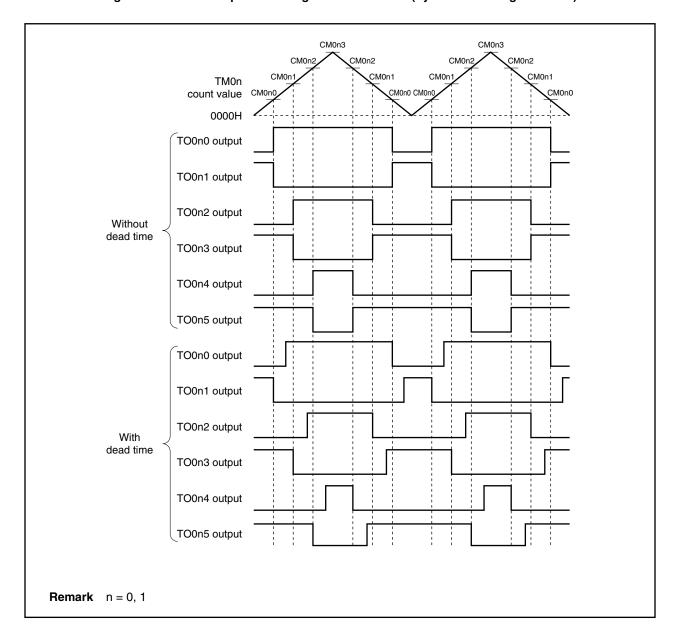
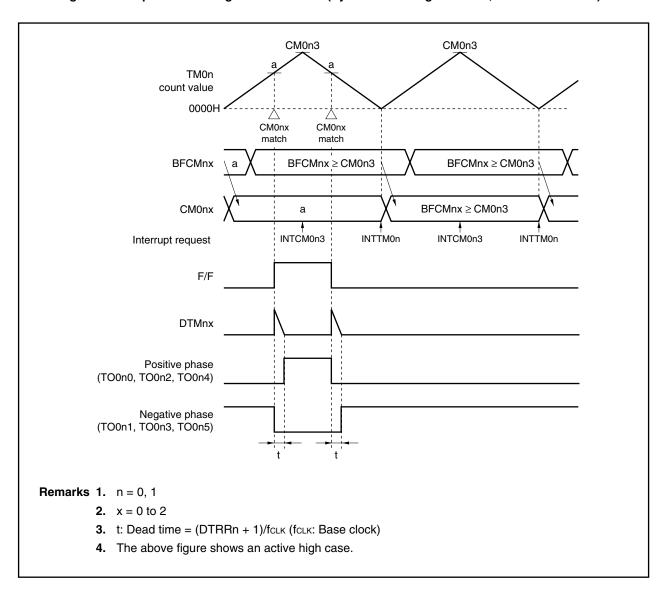
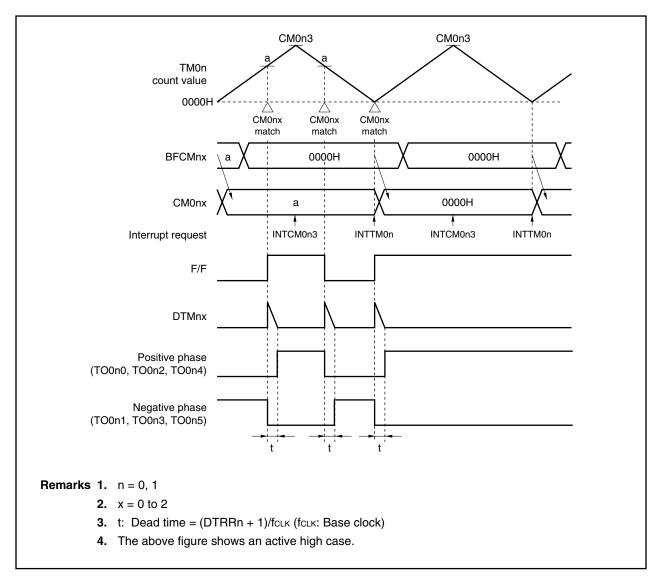



Figure 9-16. Overall Operation Image of PWM Mode 0 (Symmetric Triangular Wave)

Next, an example of the operation timing, which depends on the values set to CM0n0 to CM0n2 (BFCMn0 to BFCMn2) is shown.

(a) When CM0nx (BFCMnx) ≥ CM0n3 is set

Figure 9-17. Operation Timing in PWM Mode 0 (Symmetric Triangular Wave, BFCMnx ≥ CM0n3)



When a value greater than CM0n3 is set to BFCMnx, the positive phase side (TO0n0, TO0n2, TO0n4 pins) outputs a low level, and the negative phase side (TO0n1, TO0n3, TO0n5 pins) continues to output a high level. This feature is effective for outputting a low-level or high-level width exceeding the PWM cycle in an application such as inverter control. Furthermore, if CM0nx = CM0n3 is set, matching of TM0n and CM0nx is detected during counting down by TM0n, so that the F/F remains reset as is, and does not get set.

The above explanation applies to an active high case. In an active low case, the levels of positive and negative phases are merely inverted and other operations remain the same.

(b) When CM0nx (BFCMnx) = 0000H is set

Figure 9-18. Operation Timing in PWM Mode 0 (Symmetric Triangular Wave, BFCMnx = 0000H)

Since TM0n = CM0nx = 0000H match is detected during counting up by TM0n, the F/F is just set and does not get reset. Even when the setting value is 0000H, F/F is changed in the cycle during which transfer is performed from BFCMnx to CM0nx similarly to when the setting value is other than 0000H. Figure 9-19 shows the change timing from the 100% duty state.

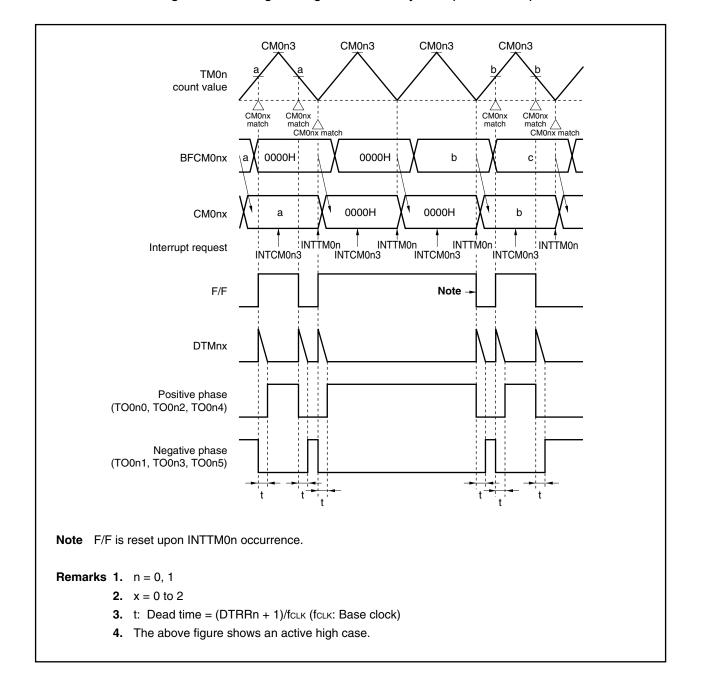


Figure 9-19. Change Timing from 100% Duty State (PWM Mode 0)

(3) PWM mode 1: Triangular wave modulation (right-left asymmetric waveform control)

[Setting procedure]

- (a) Set PWM mode 1 (asymmetric triangular wave) with bits MOD01 and MOD00 of the TMC0n register. Also set the active level of pins TO0n0 to TO0n5 with the ALVTO bit of the TOMRn register (n = 0, 1).
- (b) Set the count clock of TM0n with bits PRM02 to PRM00 of the TMC0n register. The transfer operation from BFCMn3 to CM0n3 is set with bit BFTE3, and the transfer operation from BFCMn0 to BFCMn2 to CM0n0 to CM0n2 is set with bit BFTEN.
- (c) Set the initial values.
 - (i) Specify the interrupt culling ratio with bits CUL02 to CUL00 of the TMC0n register.
 - (ii) Set the half-cycle width of the PWM cycle in BFCMn3.
 - PWM cycle = BFCMn3 value × 2 × TM0n count clock (The TM0n count clock is set with the TMC0n register.)
 - (iii) Set the dead-time width in DTRRn.
 - Dead-time width = (DTRRn + 1)/fclk fclk: Base clock
 - (iv) Set the set timing of the F/F used in the PWM cycle in BFCMn0 to BFCMn2.
- (d) Clear (0) the TM0CEDn bit of the TMC0n register to enable dead-time timer operation. Set TM0CEDn = 1 when not using dead time.
- (e) Setting (1) the TM0CEn bit of the TMC0n register starts TM0n counting, and a 6-channel PWM signal is output from pins TO0n0 to TO0n5.

Caution Setting CM0n3 to 0000H is prohibited.

Remark The TM0CEn bit of the TMC0n register indicates transfer operation under the following conditions.

- When TM0CEn bit of TMC0n register is 0
 Transfer to the CM0n0 to CM0n2 registers is performed at the next base clock (fclk) after writing to registers BFCMn0 to BFCMn2.
- When TM0CEn bit of TMC0n register is 1
 The value of the BFCMn0 to BFCMn2 registers is transferred to the CM0n0 to CM0n2 registers upon occurrence of the INTTM0n or INTCM0n3 interrupt. Transfer enable/disable at this time is controlled by bit BFTEN of the TMC0n register.

[Operation]

In PWM mode 1, TM0n performs count up/down operation. When TM0n = 0000H during counting down, an underflow interrupt (INTTM0n) is generated, and when TM0n = CM0n3 during counting up, a match interrupt (INTCM0n3) is generated (n = 0, 1).

Switching from counting up to counting down is performed when TM0n and CM0n3 match (INTCM0n3), and switching from counting down to counting up is performed by INTTM0n.

The PWM cycle in this mode is (BFCMn3 value \times 2 \times TM0n count clock). Concerning setting of data to BFCMn3, the next PWM cycle width is set to BFCMn3.

The data of BFCMn3 is automatically transferred by hardware to CM0n3 upon generation of the INTTM0n interrupt. Furthermore, calculation is performed by software processing started by INTTM0n, and the data for the next cycle is set to BFCMn3.

Data setting to CM0n0 to CM0n2, which control the PWM duty, is explained next.

Setting of data to CM0n0 to CM0n2 consists in setting the duty output from BFCMn0 to BFCMn2.

The values of BFCMn0 to BFCMn2 are automatically transferred by hardware to CM0n0 to CM0n2 upon generation of the INTTM0n and INTCM0n3 (TM0n and CM0n3 match interrupts). Furthermore, software processing is started up and calculation performed, and the set/reset timing of the F/F after a half cycle is set in BFCMn0 to BFCMn2.

The PWM cycle and the PWM duty are set in the above procedure.

The F/F set/reset conditions upon match of CM0n0 to CM0n2 are as follows.

- Set: CM0n0 to CM0n2 match detection during TM0n count up operation
- Reset: CM0n0 to CM0n2 match detection during TM0n count down operation

The values of DTRRn are transferred to the corresponding dead-time timers (DTMn0 to DTMn2) in synchronization with the set/reset timing of the F/F, and counting down is started. DTMn0 to DTMn2 count down to 000H, and stop when they count down further to FFFH.

DTMn0 to DTMn2 can automatically generate a width (dead time) at which the active levels of the positive phase (TO0n0, TO0n2, TO0n4) and negative phase (TO0n1, TO0n3, TO0n5) do not overlap.

In this way, software processing is started by two interrupts (INTTM0n and INTCM0n3) that occur during every PWM cycle after initial setting has been performed, and by setting the PWM cycle and PWM duty to be used after a half cycle, it is possible to automatically output a PWM waveform to TO0n0 to TO0n5 pins taking into consideration the dead-time width (in case of interrupt culling ratio of 1/1).

The difference between right-left symmetric waveform control and control in this mode (right-left asymmetric waveform control) is that BFCMn0 to BFCMn2 are transferred to CM0n0 to CM0n2, and that the interrupt signals that start software processing consist just of INTTM0n (generated once per PWM cycle) in the case of right-left symmetric waveform control, and INTTM0n and INTCM0n3 (generated twice per PWM cycle, or once per half cycle) in the case of right-left asymmetric waveform control.

[Output waveform width in respect to set value]

- PWM cycle = BFCMn3 × 2 × T™on
- Dead-time width TDnm = (DTRRn + 1)/fclk
- Active width of positive phase (TO0n0, TO0n2, TO0n4 pins)

$$= \{ (CM0n3 - CM0nXup) + (CM0n3 - CM0nXdown) \} \times TTM0n - TDnm$$

• Active width of negative phase (TO0n1, TO0n3, TO0n5 pins)

```
= (CM0nX_{down} + CM0nX_{up}) \times T_{TM0n} - T_{Dnm}
```

fclk: Base clock

TTM0n: TM0n count clock

CM0nX_{up}: Set value of CM0n0 to CM0n2 while TM0n is counting up CM0nX_{down}: Set value of CM0n0 to CM0n2 while TM0n is counting down

The pin level when the TO0n0 to TO0n5 pins are reset is the high impedance state. When the control mode is selected thereafter, the following levels are output until the TM0n is started.

 \bullet TO0n0, TO0n2, TO0n4... When low active \rightarrow High level

When high active → Low level

TO0n1, TO0n3, TO0n5... When low active → Low level

When high active → High level

The active level is set with the ALVTO bit of the TOMRn register. The default is low active.

Caution If a value such that the positive phase or negative phase active width is "0" or a negative value in the above formula, the TO0n0 to TO0n5 pins output a waveform fixed to the inactive level waveform with active width "0".

Remark m = 0 to 2

n = 0, 1

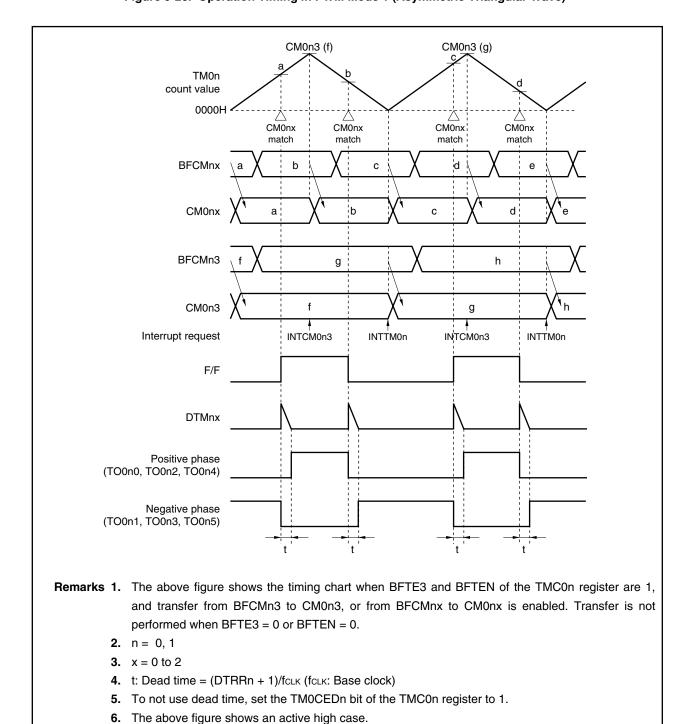


Figure 9-20. Operation Timing in PWM Mode 1 (Asymmetric Triangular Wave)

- Figure 9-21 shows the overall operation image.

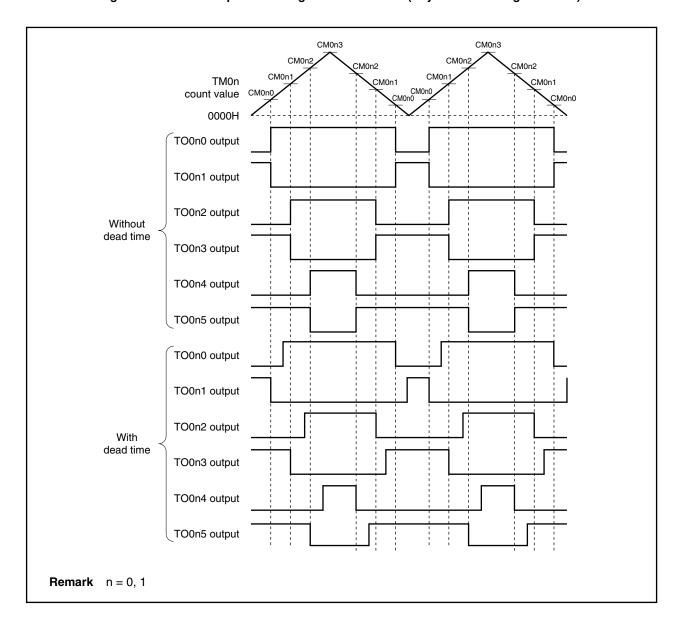
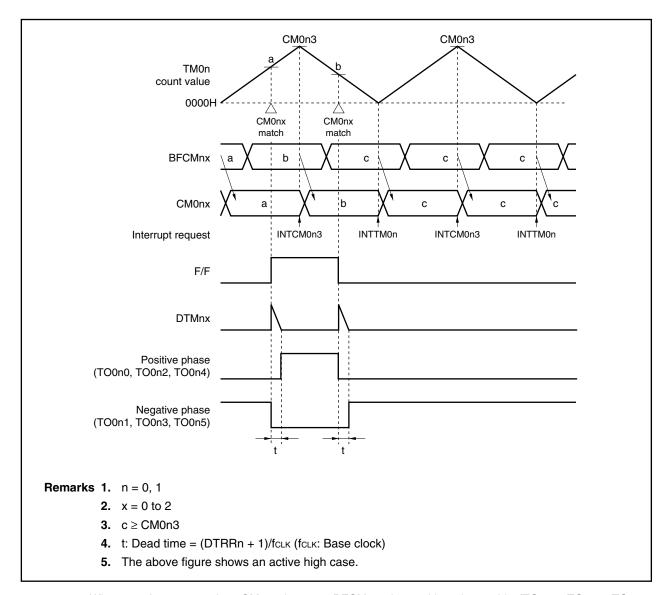
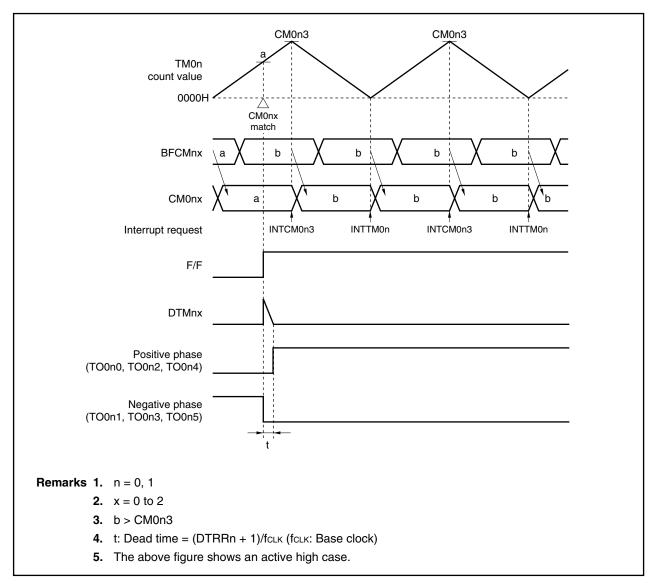



Figure 9-21. Overall Operation Image of PWM Mode 1 (Asymmetric Triangular Wave)

(a) When BFCMnx ≥ CM0n3 is set in software processing started by INTCM0n3

Figure 9-22. Operation Timing in PWM Mode 1 (Asymmetric Triangular Wave, BFCMnx ≥ CM0n3)



When a value greater than CM0n3 is set to BFCMnx, the positive phase side (TO0n0, TO0n2, TO0n4 pins) outputs a low level, and the negative phase side (TO0n1, TO0n3, TO0n5 pins) continues to output a high level. This feature is effective for outputting a low-level or high-level width exceeding the PWM cycle in an application such as inverter control. Furthermore, if CM0nx = CM0n3 is set, matching of TM0n and CM0nx is detected during counting down by TM0n, so that the F/F remains reset as is, and does not get set.

The above explanation applies to an active high case. In an active low case, the levels of positive and negative phases are merely inverted and other operations remain the same.

(b) When BFCMnx > CM0n3 is set in software processing started by INTTM0n

Figure 9-23. Operation Timing in PWM Mode 1 (Asymmetric Triangular Wave, BFCMnx > CM0n3)

When a value greater than CM0n3 is set to BFCMnx, the positive phase side (TO0n0, TO0n2, TO0n4 pins) outputs a high level, and the negative phase side (TO0n1, TO0n3, TO0n5 pins) continues to output a low level. This feature is effective for outputting a low-level or high-level width exceeding the PWM cycle in an application such as inverter control.

The above explanation applies to an active high case. In an active low case, the levels of positive and negative phases are merely inverted and other operations remain the same.

Figure 9-24 shows the change timing from the 100% duty state.

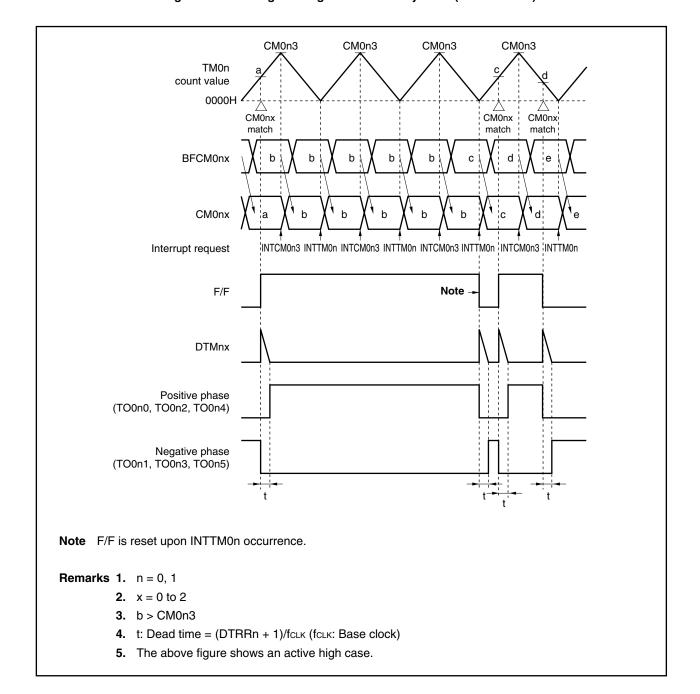
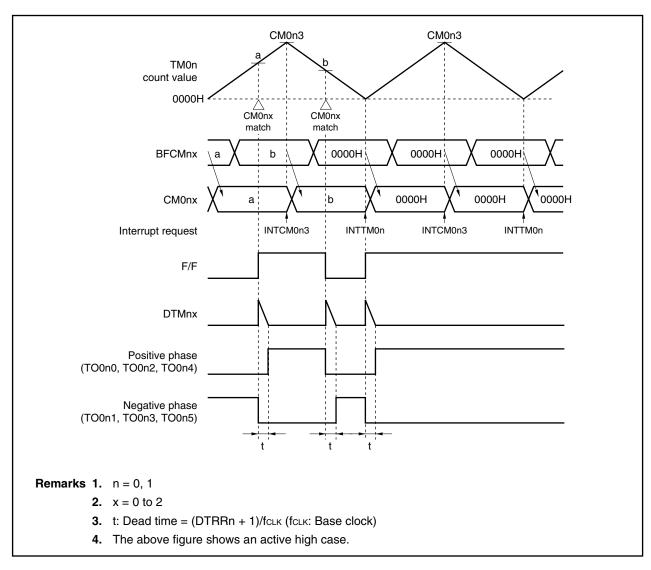



Figure 9-24. Change Timing from 100% Duty State (PWM Mode 1)

(c) When BFCMnx = 0000H is set in software processing started by INTCM0n3

Figure 9-25. Operation Timing in PWM Mode 1 (Asymmetric Triangular Wave, BFCMnx = 0000H) (1)

Since TM0n = CM0nx = 0000H match is detected during counting up by TM0n, the F/F is just set and does not get reset. Moreover, the F/F gets set upon match detection in the cycle when 0000H is transferred to CM0nx by INTTM0n interrupt.

Figure 9-26 shows the change timing from the 100% duty state.

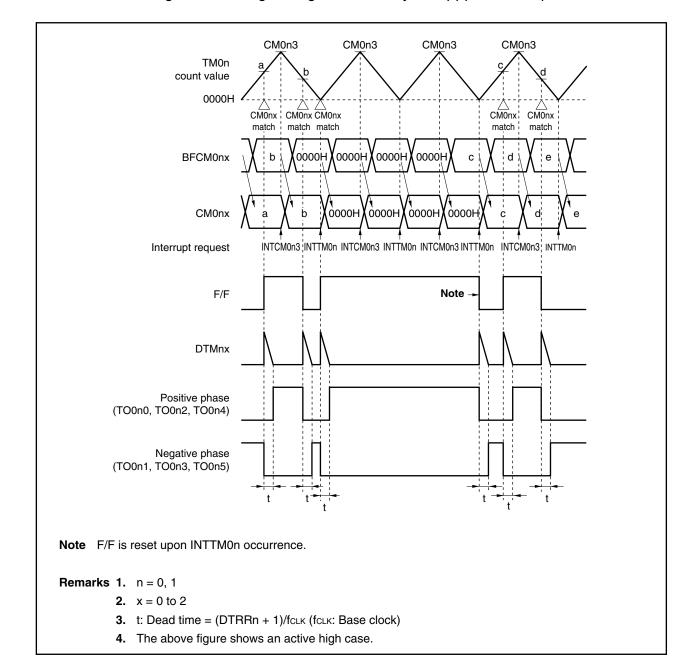
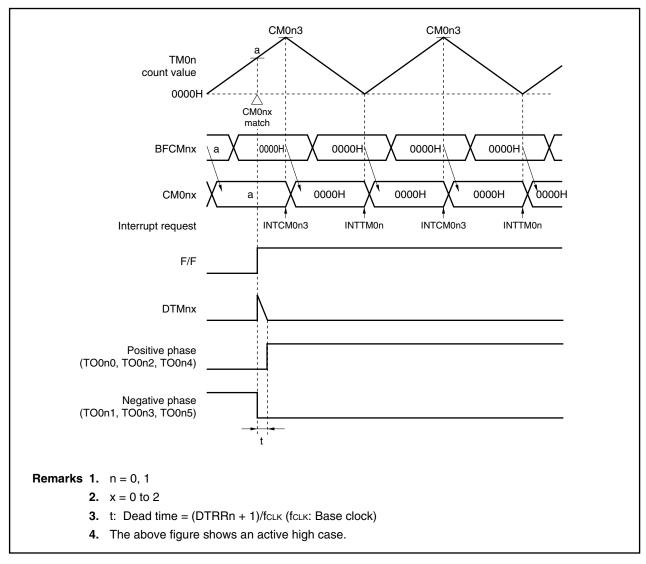



Figure 9-26. Change Timing from 100% Duty State (1) (PWM Mode 1)

(d) When BFCMnx = 0000H is set in software processing started by INTTM0n

Figure 9-27. Operation Timing in PWM Mode 1 (Asymmetric Triangular Wave, BFCMnx = 0000H) (2)

Since TM0n = CM0nx = 0000H match is detected during counting up by TM0n, the F/F is just set and does not get reset. Therefore, the positive phase side (TO0n0, TO0n2, TO0n4 pins) outputs a high level, and the negative phase side (TO0n1, TO0n3, TO0n5 pins) continues to output a low level.

The above explanation applies to an active high case. In an active low case, the levels of positive and negative phases are merely inverted and other operations remain the same.

Figure 9-28 shows the change timing from the 100% duty state.

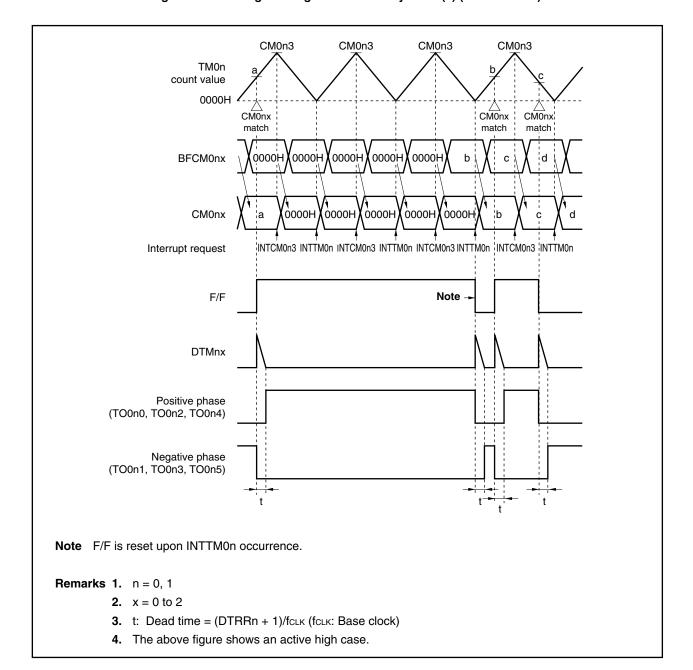
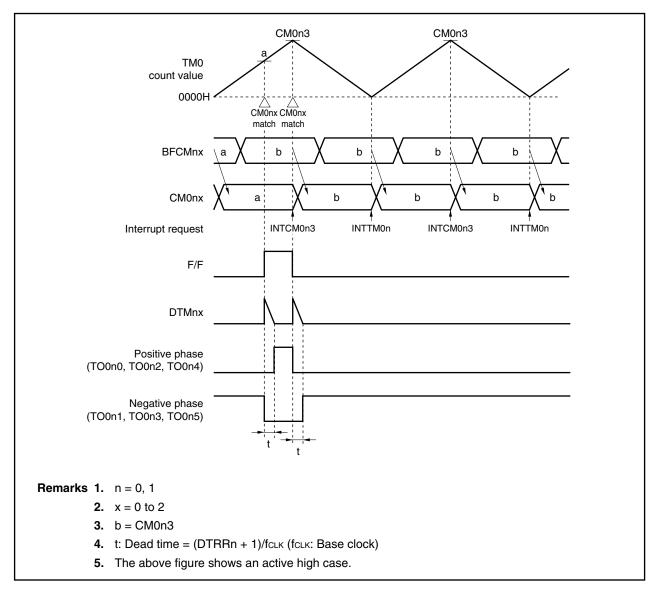



Figure 9-28. Change Timing from 100% Duty State (2) (PWM Mode 1)

(e) When BFCMnx = CM0n3 is set in software processing started by INTTM0n

Figure 9-29. Operation Timing in PWM Mode 1 (Asymmetric Triangular Wave, BFCMnx = CM0n3)

Since TM0n and CM0nx match is detected during count down of TM0n when BFCMnx = CM0n3 has been set, the F/F remains reset as is and does not get set. Therefore, the positive phase side (TO0n0, TO0n2, TO0n4 pins) outputs a low level, and the negative phase side (TO0n1, TO0n3, TO0n5 pins) continues to output a high level. Moreover, the timing of matching with TM0n with CM0nx = CM0n3 is the cycle when transfer is performed from BFCMnx to CM0nx by INTCM0n3.

The above explanation applies to an active high case. In an active low case, the levels of positive and negative phases are merely inverted and other operations remain the same.

(4) PWM mode 2: Sawtooth wave modulation

[Setting procedure]

- (a) Set PWM mode 2 (sawtooth wave) with bits MOD01 and MOD00 of the TMC0n register. Also set the active level of pins TO0n0 to TO0n5 with the ALVTO bit of the TOMRn register.
- (b) Set the count clock of TM0n with bits PRM02 to PRM00 of the TMC0n register. The transfer operation from BFCMn3 to CM0n3 is set with bit BFTE3, and the transfer operation from BFCMn0 to BFCMn2 to CM0n0 to CM0n2 is set with bit BFTEN.
- (c) Set the initial values.
 - (i) Specify the interrupt culling ratio with bits CUL02 to CUL00 of the TMC0n register.
 - (ii) Set the cycle width of the PWM cycle in BFCMn3.
 - PWM cycle = (BFCMn3 value + 1) × TM0n count clock (The TM0n count clock is set with the TMC0n register.)
 - (iii) Set the dead-time width in DTRRn.
 - Dead-time width = (DTRRn + 1)/fclk fclk: Base clock
 - (iv) Set the set/reset timing of the F/F used in the PWM cycle in BFCM0n0 to BFCM0n2.
- (d) Clear (0) the TM0CEDn bit of the TMC0n register to enable dead-time timer operation. Set TM0CEDn = 1 when not using dead time.
- (e) Setting (1) the TM0CEn bit of the TMC0n register starts TM0n counting, and a 6-channel PWM signal is output from pins TO0n0 to TO0n5.

Caution Setting CM0n3 to 0000H is prohibited.

[Operation]

In PWM mode 2, TM0n performs count up operation, and when it matches the value of CM0n3, match interrupt INTCM0n3 is generated and TM0n is cleared (n = 0, 1).

The PWM cycle in this mode is ((BFCMn3 value + 1) \times TM0n count clock). Concerning setting of data to CM0n3, the next PWM cycle width is set to BFCMn3.

The data of BFCMn3 is automatically transferred by hardware to CM0n3 upon generation of the INTCM0n3 interrupt. Furthermore, calculation is performed by software processing started by INTCM0n3, and the data for the next cycle is set to BFCMn3.

Data setting to CM0n0 to CM0n2, which control the PWM duty, is explained next.

Setting of data to CM0n0 to CM0n2 consists in setting the duty output from BFCMn0 to BFCMn2.

The values of BFCMn0 to BFCMn2 are automatically transferred by hardware to CM0n0 to CM0n2 upon generation of the INTCM0n3 interrupt. Furthermore, software processing is started up and calculation performed, and reset timing of the F/F for the next cycle is set to BFCMn0 to BFCMn2.

The PWM cycle and the PWM duty are set in the above procedure.

The F/F set/reset conditions upon match of CM0n0 to CM0n2 are as follows.

- Set: TM0n and CM0n3 match detection and rising edge of TM0CEn bit of TMC0n register
- Reset: TM0n and CM0n0 to CM0n2 match detection

The values of DTRRn are transferred to the corresponding dead-time timers (DTMn0 to DTMn2) in synchronization with the set/reset timing of the F/F, and counting down is started. DTMn0 to DTMn2 count down to 000H, and stop when they count down further to FFFH.

DTMn0 to DTMn2 can automatically generate a width (dead time) at which the active levels of the positive phase (TO0n0, TO0n2, TO0n4) and negative phase (TO0n1, TO0n3, TO0n5) do not overlap.

In this way, software processing is started by an interrupt (INTCM0n3) that occurs once during every PWM cycle after initial setting has been performed, and by setting the PWM cycle and PWM duty to be used in the next cycle, it is possible to automatically output a PWM waveform to TO0n0 to TO0n5 pins taking into consideration the dead-time width (in case of interrupt culling ratio of 1/1).

[Output waveform width in respect to set value]

- PWM cycle = (BFCMn3 + 1) × TTMon
- Dead-time width TDnm = (DTRRn + 1)/fclk
- Active width of positive phase (TO0n0, TO0n2, TO0n4 pins)

$$= (CM0nX + 1) \times TTM0n - TDnm$$

• Active width of negative phase (TO0n1, TO0n3, TO0n5 pins)

=
$$(CM0n3 - CM0nX) \times T_{TM0n} - T_{Dnm}$$

fclk: Base clock
Ttmon: TM0n count clock

CM0nX: Set value of CM0n0 to CM0n2

The pin level when the TO0n0 to TO0n5 pins are reset is the high impedance state. When the control mode is selected thereafter, the following levels are output until the TM0n is started.

• TO0n0, TO0n2, TO0n4... When low active → High level

When high active \rightarrow Low level

• TO0n1, TO0n3, TO0n5... When low active → Low level

When high active → High level

The active level is set with the ALVTO bit of the TOMRn register. The default is low active.

Caution If a value such that the positive phase or negative phase active width is "0" or a negative value in the above formula, the TO0n0 to TO0n5 pins output a waveform fixed to the inactive level waveform with active width "0".

Remark
$$m = 0 \text{ to } 2$$

 $n = 0, 1$

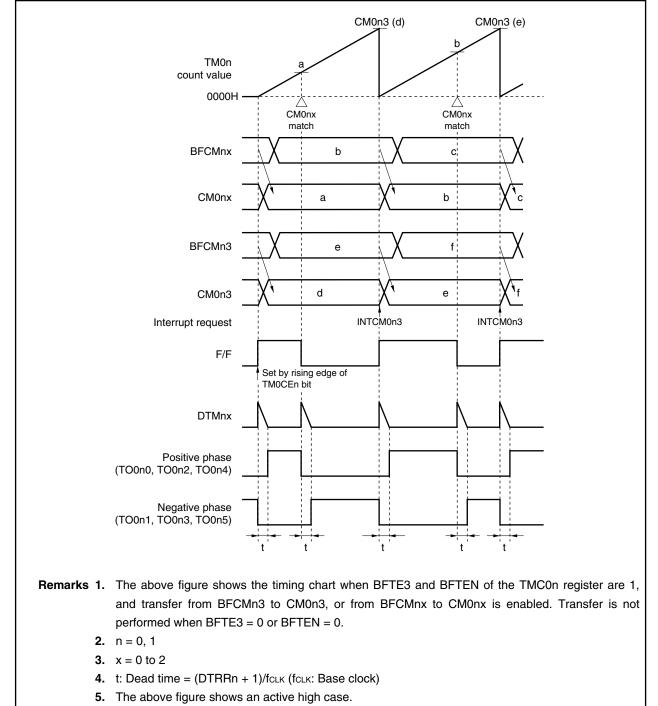


Figure 9-30. Operation Timing in PWM Mode 2 (Sawtooth Wave)

Figure 9-31 shows the overall operation image.

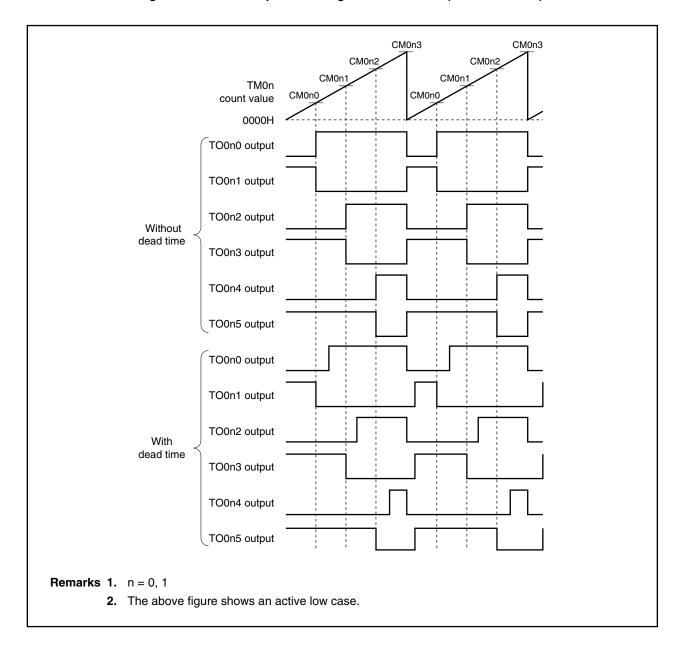
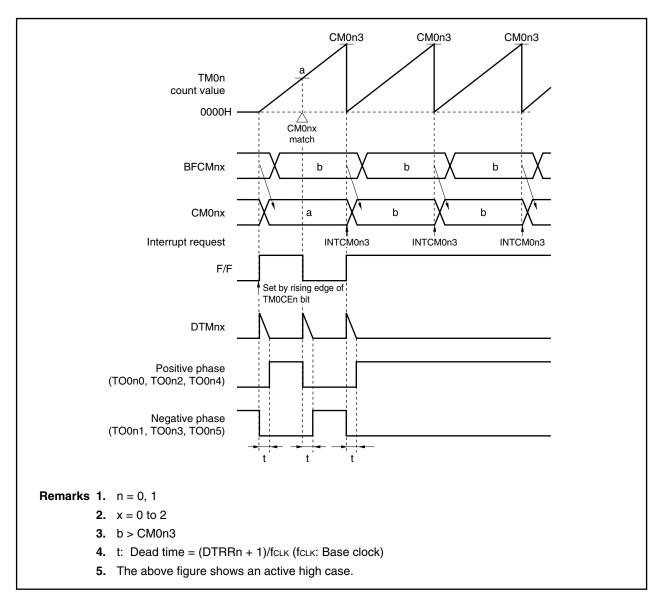



Figure 9-31. Overall Operation Image of PWM Mode 2 (Sawtooth Wave)

Since the F/F is set at the rising edge of the TM0CEn bit of the TMC0n register in the first cycle, the PWM signal can be output.

(a) When BFCMnx > CM0n3 is set

Figure 9-32. Operation Timing in PWM Mode 2 (Sawtooth Wave, BFCMnx > CM0n3)

When a value greater than CM0n3 is set to BFCMnx, the positive phase side (TO0n0, TO0n2, TO0n4 pins) outputs a high level, and the negative phase side (TO0n1, TO0n3, TO0n5 pins) continues to output a low level. Since TM0n and CM0nx match does not occur, the F/F does not get reset. This feature is effective for outputting a low-level or high-level width exceeding the PWM cycle in an application such as inverter control.

The above explanation applies to an active high case. In an active low case, the levels of positive and negative phases are merely inverted and other operations remain the same.

Figure 9-33 shows the change timing from the 100% duty state.

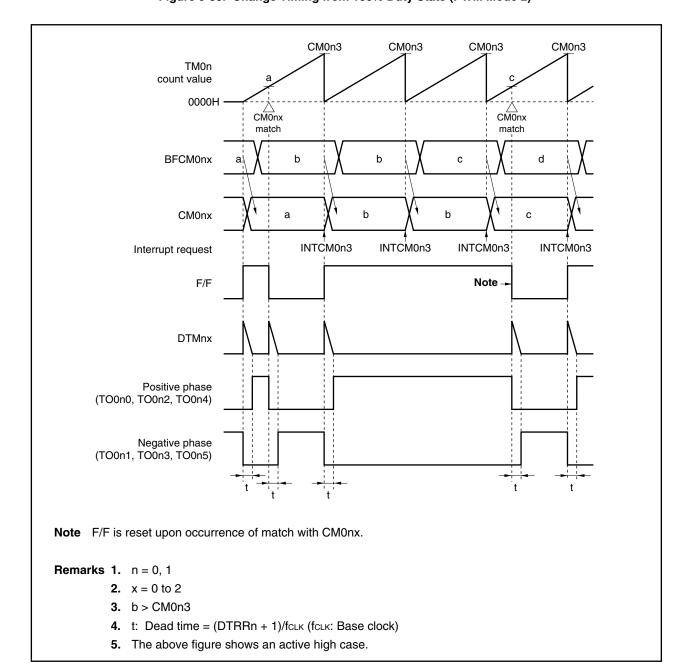
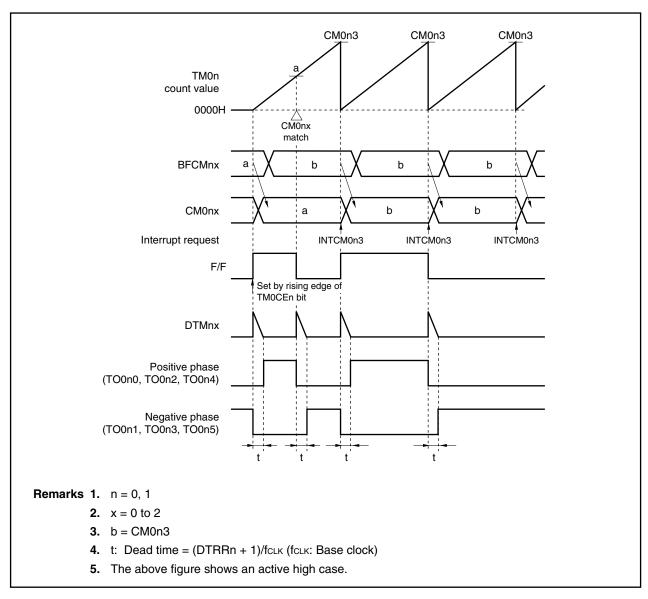
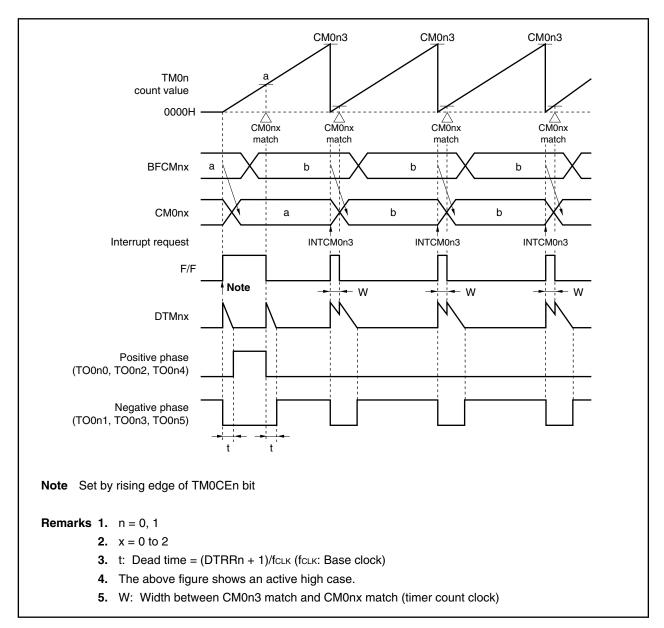



Figure 9-33. Change Timing from 100% Duty State (PWM Mode 2)

The timing at which the F/F is reset is upon occurrence of match with CM0nx as normal.

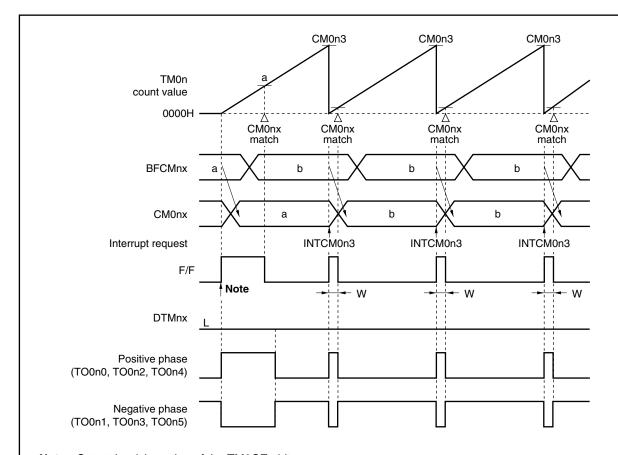
(b) When BFCMnx = CM0n3 is set


Figure 9-34. Operation Timing in PWM Mode 2 (Sawtooth Wave, BFCMnx = CM0n3)

If match signal INTCM0n3 for TM0n and CM0n3 and the match signal for TM0n and CM0nx conflict, reset of the F/F takes precedence, so that the F/F does not get set following match of CM0nx (= CM0n3) with TM0n.

(c) When BFCMnx = 0000H is set

Figure 9-35. Operation Timing in PWM Mode 2 (Sawtooth Wave, BFCMnx = 0000H)



If CM0nx = 0000H has been set, the output waveform resulting from the TM0n count clock rate and the DTRRn set value differ.

(d) When BFCMnx = 0000H is set while DTMnx = 000H or TM0CEDn bit = 1

A pulse equivalent to one count clock of the timer is output.

Figure 9-36. Operation Timing in PWM Mode 2 (Sawtooth Wave, BFCMnx = 0000H While DTMnx = 000H or TM0CEDn Bit = 1)

Note Set at the rising edge of the TM0CEn bit.

Remarks 1. n = 0, 1

- **2.** x = 0 to 2
- 3. The above figure shows an active-high case.
- 4. W: Width of a pulse equivalent to one count clock of the timer from CM0n3 match

(e) When BFCMnx = CM0n3 = a is set

Figure 9-37. Operation Timing in PWM Mode 2 (Sawtooth Wave, BFCMnx = CM0n3 = a)

(When DTRRn = 0000H, TM0CEDn Bit of TMC0n Register = 1, ALVTO Bit of TOMRn

Register = 1 (PWM Driving, Active Level = High) Are Set)

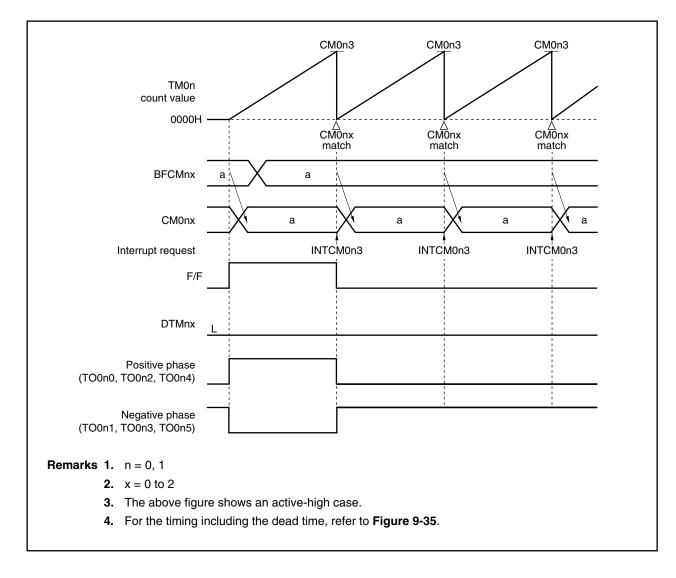
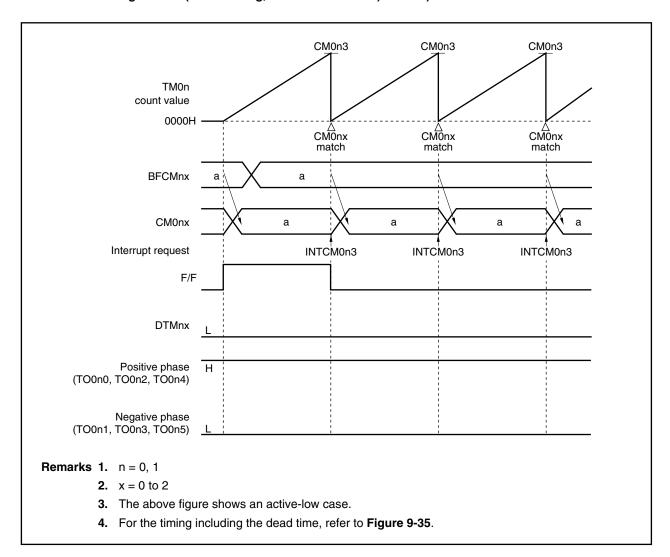
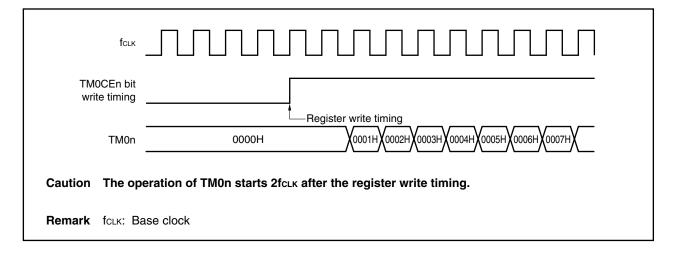



Figure 9-38. Operation Timing in PWM Mode 2 (Sawtooth Wave, BFCMnx = CM0n3 = a)

(When DTRRn = 0000H, TM0CEDn Bit of TMC0n Register = 1, ALVTO Bit of TOMRn

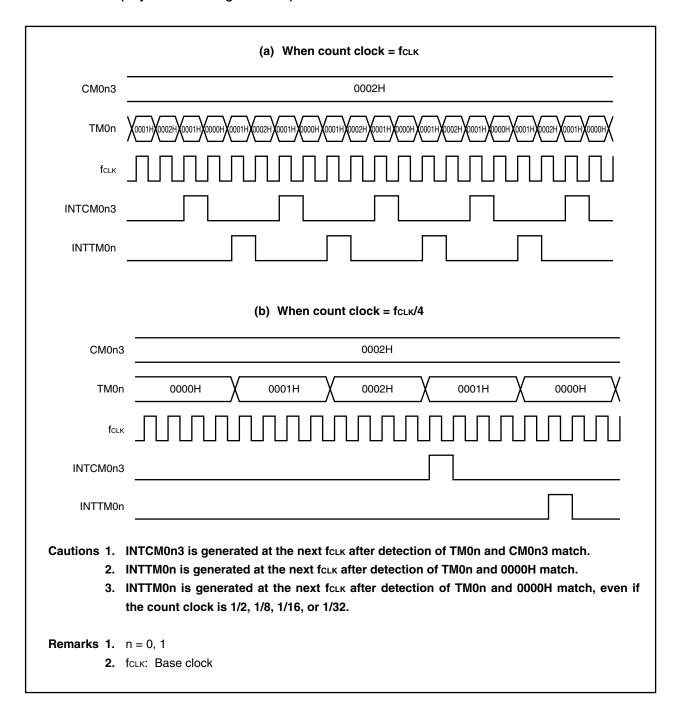
Register = 0 (PWM Driving, Active Level = Low) Are Set)



9.1.6 Operation timing

(1) TM0CEn bit write and TM0n timer operation timing

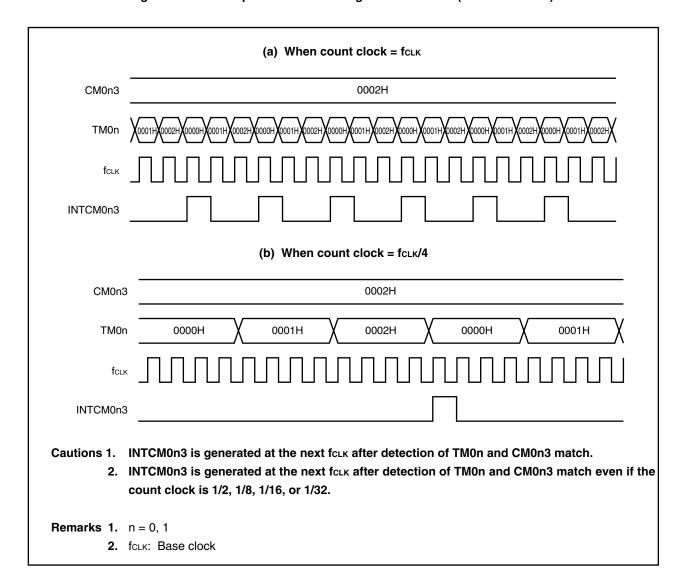
Figure 9-39 shows the timing from write of the TM0CEn bit of the TMC0n register until the TM0n timer starts operating.

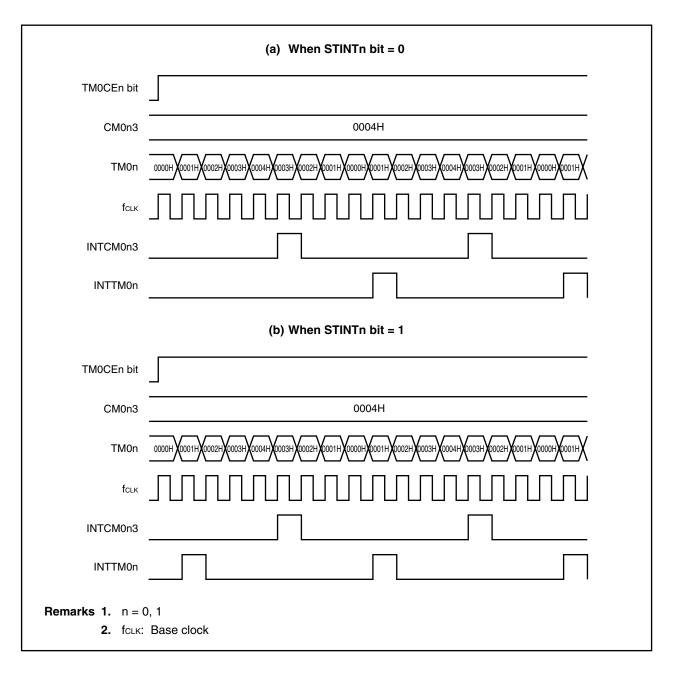

Figure 9-39. TM0CEn Bit Write and TM0n Timer Operation Timing

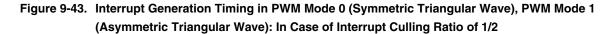
(2) Interrupt generation timing

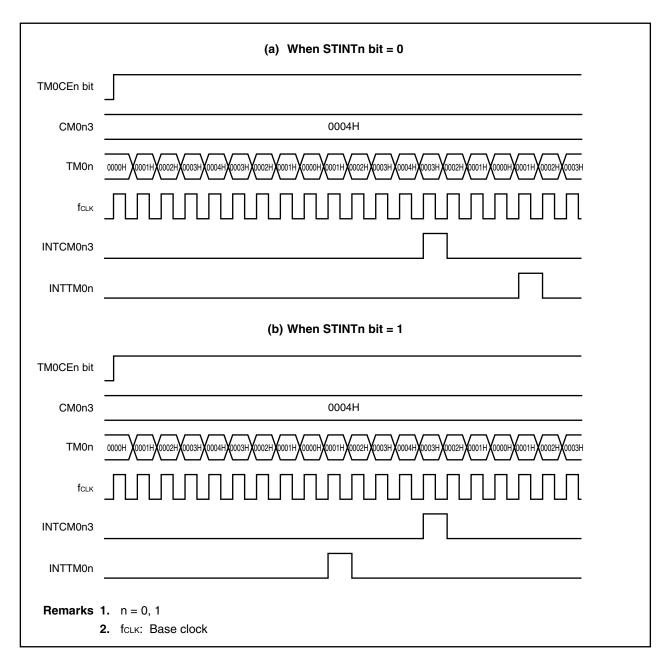
The interrupt generation timing with the count clock setting (PRM02 to PRM00 bits of the TMC0n register) to TM0n in the various modes is described below.

Figure 9-40. Interrupt Generation Timing in PWM Mode 0 (Symmetric Triangular Wave), PWM Mode 1 (Asymmetric Triangular Wave)




Figure 9-41. Interrupt Generation Timing in PWM Mode 2 (Sawtooth Wave)


(3) Relationship between interrupt generation and STINTn bit of TMC0n register


The interrupt generation timing for the setting of the STINTn bit of the TMC0n register and the interrupt culling ratio setting (bits CUL02 to CUL00) in the various modes is described below.

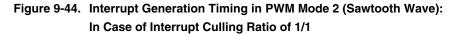

If, to realize the INTTM0n and INTCM0n3 interrupt culling function for TM0n, bits CUL02 to CUL00 of the TMC0n register are set for a culling ratio other than 1/1, and count operation is started, the interrupt output order differs according to the setting of the STINTn bit when counting starts.

Figure 9-42. Interrupt Generation Timing in PWM Mode 0 (Symmetric Triangular Wave), PWM Mode 1 (Asymmetric Triangular Wave): In Case of Interrupt Culling Ratio of 1/1

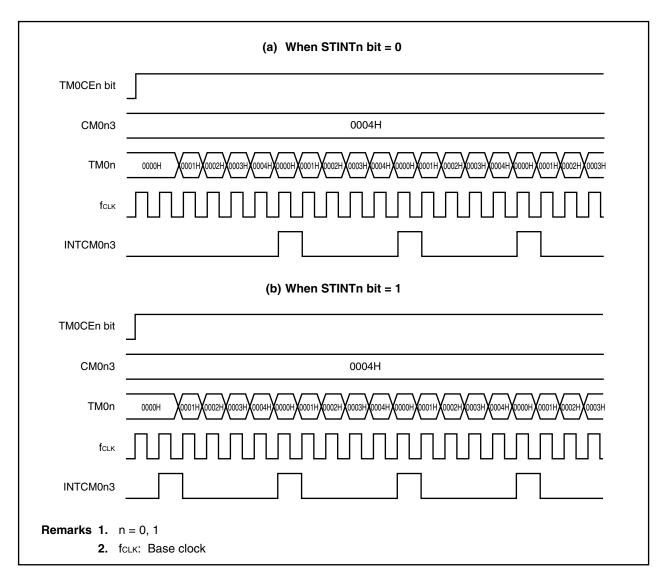
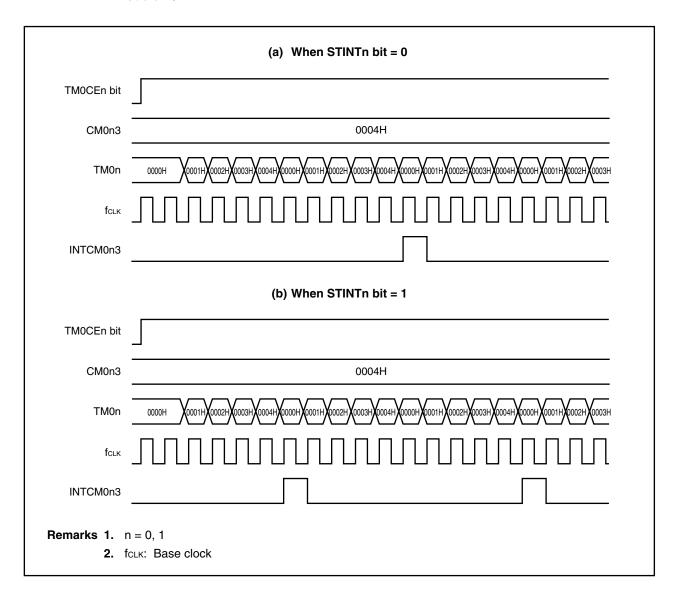
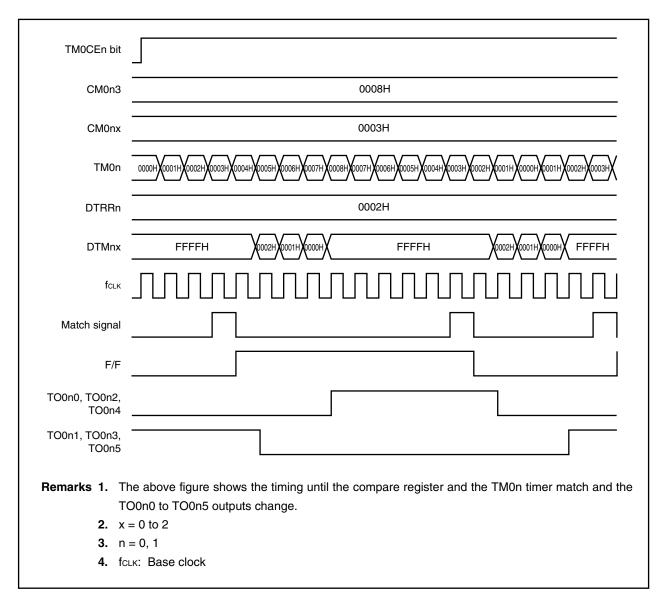




Figure 9-45. Interrupt Generation Timing in PWM Mode 2 (Sawtooth Wave): In Case of Interrupt Culling Ratio of 1/2

(4) TO0n0 to TO0n5 output timing

Figure 9-46. TO0n0 to TO0n5 Output Timing in PWM Mode 0 (Symmetric Triangular Wave), PWM Mode 1 (Asymmetric Triangular Wave)

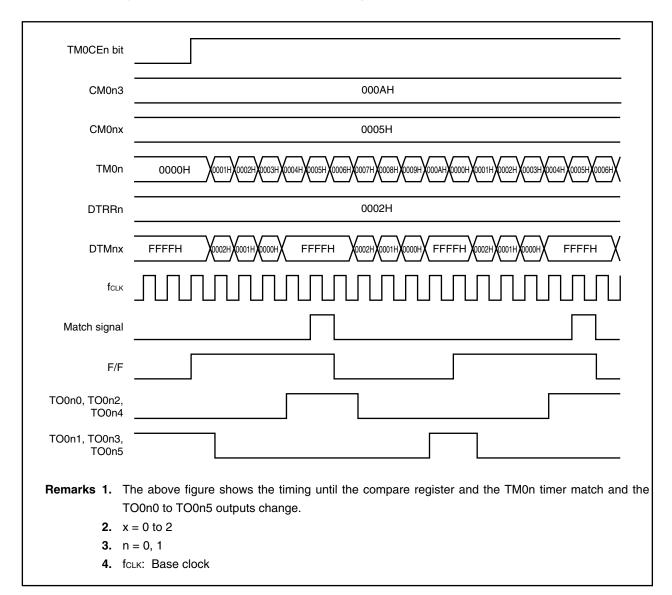


Figure 9-47. TO0n0 to TO0n5 Output Timing in PWM Mode 2 (Sawtooth Wave)

9.2 Timer 1

9.2.1 Features (timer 1)

Timers 10, 11 (TM10, TM11) are 16-bit up/down counters that perform the following operations.

• General-purpose timer mode (See 9.2.5 (1) Operation in general-purpose timer mode.)

Free-running timer

PWM output

• Up/down counter mode (See 9.2.5 (2) Operation in UDC mode.)

UDC mode A (mode 1, mode 2, mode 3, mode 4)

UDC mode B (mode 1, mode 2, mode 3, mode 4)

9.2.2 Function overview (timer 1)

- 16-bit 2-phase encoder input up/down counter & general-purpose timer (TM1n): 2 channels
- Compare register: 2 × 2 channels
- Capture/compare register: 2 × 2 channels
- Interrupt request source
 - Capture/compare match interrupt: 2 types × 2 channels
 - Compare match interrupt request: 2 types × 2 channels
- Capture request signal: 2 types × 2 channels
 - The TM1n value can be latched using the valid edge of the INTP1n0, INTP1n1 pins corresponding to the capture/compare register as the capture trigger.
- Count clocks selectable through division by prescaler (set the frequency of the count clock to 8 MHz or less)
- Base clock (fclk): 2 types (set fclk to 16 MHz or less)

fxx/2 and fxx/4 can be selected

• Prescaler division ratio

The following division ratios can be selected according to the base clock (fclk).

Division Ratio	Base Clo	ock (fclk)		
	fxx/2 Selected	fxx/4 Selected		
1/2	fxx/4	fxx/8		
1/4	fxx/8	fxx/16		
1/8	fxx/16	fxx/32		
1/16	fxx/32	fxx/64		
1/32	fxx/64	fxx/128		
1/64	fxx/128	fxx/256		
1/128	fxx/256	fxx/512		

PWM output function

In the general-purpose timer mode, 16-bit resolution PWM output can be output from the TO1n pin.

• Timer clear

The following timer clear operations are performed according to the mode that is used.

- (a) General-purpose timer mode: Timer clear operation is possible upon occurrence of match with CM1n0 set value.
- (b) Up/down counter mode: The timer clear operation can be selected from among the following four conditions.
 - (i) Timer clear performed upon occurrence of match with CM1n0 set value during TM1n count up operation, and timer clear performed upon occurrence of match with CM1n1 set value during TM1n count down operation.
 - (ii) Timer clear performed only by external input.
 - (iii) Timer clear performed upon occurrence of match between TM1n count value and CM1n0 set value.
 - (iv) Timer clear performed upon occurrence of external input and match between TM1n count value and CM1n0 set value.
- External pulse output (TO1n): 1 × 2 channels

Remark fxx: Internal system clock

n = 0, 1

9.2.3 Basic configuration

The basic configuration is shown below.

Table 9-4. Timer 1 Configuration List

Timer	Count	Clock	Register	Read/Write	Generated	Capture Trigger	
	Note 1	Note 2			Interrupt Signal		
Timer 1	fxx/4,	fxx/8,	TM10	Read/write	_	_	
	fxx/8, fxx/16,	fxx/16, fxx/32, fxx/64, fxx/128, fxx/256, fxx/512	fxx/16,	CM100	Read/write	INTCM100	_
	fxx/32,		CM101	Read/write	INTCM101	_	
	fxx/64,			CC100	Read/write	INTCC100	INTP100
	fxx/128, fxx/256		CC101	Read/write	INTCC101	INTP100 or INTP101	
			TM11	Read/write	-	_	
			CM110	Read/write	INTCM110	_	
			CM111	Read/write	INTCM111	_	
			CC110	Read/write	INTCC110	INTP110	
		CC111	Read/write	INTCC111	INTP110 or INTP111		

Notes 1. When fxx/2 is selected as the base clock to TM1n.

2. When fxx/4 is selected as the base clock to TM1n.

Remark fxx: Internal system clock

Figure 9-48 shows the block diagram of timer 1.

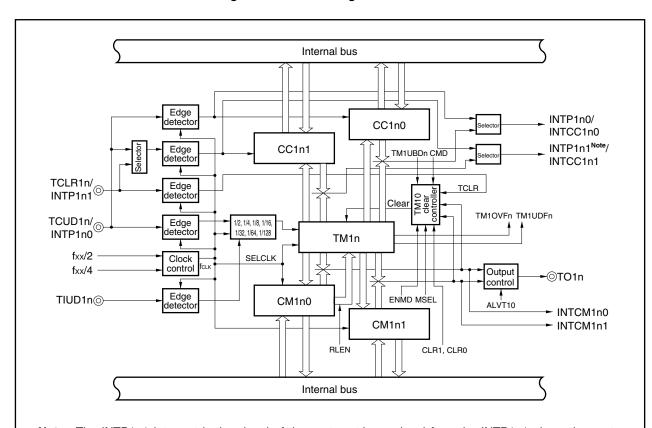


Figure 9-48. Block Diagram of Timer 1

Note The INTP1n1 interrupt is the signal of the capture trigger signal from the INTP1n1 pin or the capture trigger signal from the INTP1n0 pin, selected by the CSLn bit of the CSL1n register.

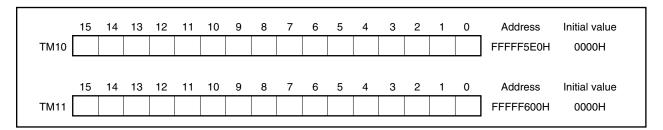
Remarks 1. n = 0, 1

2. fxx: Internal system clock

3. fclk: Base clock (16 MHz (MAX.))

(1) Timers 10, 11 (TM10, TM11)

TM1n is a general-purpose timer (in general-purpose mode) and 2-phase encoder input up/down counter (in UDC mode).


This timer counts up in the general-purpose timer mode and counts up/down in the UDC mode.

TM1n can be read/written in 16-bit units.

- Cautions 1. Write to TM1n is enabled only when the TM1CEn bit of the TMC1n register is "0" (count operation disabled).
 - 2. Continuous reading of TM1n is prohibited. If TM1n is continuously read, the second read value may differ from the actual value. If TM1n must be read twice, be sure to read another register between the first and the second read operation.

Correct usage example	Incorrect usage example
TM10 read	TM10 read
TM11 read	TM10 read
TM10 read	TM11 read
TM11 read	TM11 read

3. Writing the same value to the TM1n, CC1n0, and CC1n1 registers, and the STATUSn register is prohibited. Writing the same value to the CCRn, TUMn, TMC1n, SESA1n, and PRM1n registers, and CM1n0 and CM1n1 registers is permitted (writing the same value is guaranteed even during a count operation).

TM1n start and stop is controlled by the TM1CEn bit of timer control register 1n (TMC1n).

The TM1n operation consists of the following two modes.

(a) General-purpose timer mode

In the general-purpose timer mode, TM1n operates as a 16-bit interval timer, free-running timer, or for PWM output.

Counting is performed based on the clock selected by software.

Division by the prescaler can be selected for the count clock from among fcLk/2, fcLk/4, fcLk/8, fcLk/16, fcLk/32, fcLk/64, or fcLk/128 with bits PRM12 to PRM10 of prescaler mode register 1n (PRM1n). (fcLk: base clock, refer to 9.2.4 (1) Timer 1/timer 2 clock selection register (PRM02)).

(b) Up/down counter mode (UDC mode)

In the UDC mode, TM1n functions as a 16-bit up/down counter, counting based on the TCUD1n and TIUD1n input signals.

This mode is divided into the UDC mode A and UDC mode B, depending on the condition of clearing TM1n.

The conditions for clearing the TM1n are classified as follows depending on the operation mode.

Table 9-5. Timer 1 (TM1n) Clear Conditions

Operation Mode	TUMn I	Register	TM	C1n Regis	ster	TM1n Clear
	CMD Bit	MSEL Bit	ENMD Bit	CLR1 Bit	CLR0 Bit	
General-purpose	0	0	0	×	×	Clearing not performed (free-running timer)
timer mode			1	×	×	Cleared upon match with CM1n0 set value
UDC mode A	1	0	×	0	0	Cleared only by TCLR1n input
			×	0	1	Cleared upon match with CM1n0 set value during count up operation
			×	1	0	Cleared by TCLR1n input or upon match with CM1n0 set value during count up operation
			×	1	1	Clearing not performed
UDC mode B	1	1	×	×	×	Cleared upon match with CM1n0 set value during count up operation or upon match with CM1n1 set value during count down operation
Settings other than t	he above					Setting prohibited

Remarks 1. n = 0, 1

2. \times : Indicates that the set value of that bit is ignored.

9.2.4 Control registers

(1) Timer 1/timer 2 clock selection register (PRM02)

The PRM02 register is used to select the base clock (fcLk) of timer 1 (TM1n) and timer 2 (TM2n).

This register can be read/written in 8-bit or 1-bit units.

Caution Always set this register before using the timers 1 and 2.

	7	6	5	4	3	2	1	0	Address	Initial value
PRM02	0	0	0	0	0	0	0	PRM2	FFFFF5D8H	00H

Bit position	Bit name	Function
0	PRM2	Specifies the base clock (fclk) of timer 1 (TM1n) and timer 2 (TM2n) ^{Note} . 0: fclk = fxx/4 1: fclk = fxx/2

Note Set the VSWC register to 15H when the PRM2 bit of the timer 1/timer 2 clock selection register (PRM02) = 0B ($f_{CLK} = f_{XX}/4$), and set the VSWC register to 12H when the PRM2 bit = 1B ($f_{CLK} = f_{XX}/2$).

Remark fxx: Internal system clock

n = 0, 1

(2) Timer unit mode registers 0, 1 (TUM0, TUM1)

The TUMn register is an 8-bit register used to specify the TM1n operation mode or to control the operation of the PWM output pin.

TUMn can be read/written in 8-bit or 1-bit units.

- Cautions 1. Changing the value of the TUMn register during TM1n operation (TM1CEn bit of TMCn register = 1) is prohibited.
 - 2. When the CMD bit = 0 (general-purpose timer mode), setting MSEL bit = 1 (UDC mode B) is prohibited.

ſ	7	6	5	4	3	2	1	0	Address	Initial value
TUM0	CMD	0	0	0	TOE10	ALVT10	0	MSEL	FFFFF5EBH	00H
_	7	6	5	4	3	2	1	0	Address	Initial value
TUM1	CMD	0	0	0	TOE10	ALVT10	0	MSEL	FFFFF60BH	00H
Bit position Bit name			Function							

Bit position	Bit name	Function
7	CMD	Specifies TM1n operation mode. 0: General-purpose timer mode (count up) 1: UDC mode (count up/down)
3	TOE10	Specifies timer output (TO1n) enable. 0: Timer output disabled 1: Timer output enabled
		Caution When CMD bit = 1 (UDC mode), timer output is not performed regardless of the setting of the TOE10 bit. At this time, timer output consists of the negative phase level of the level set by the ALVT10 bit.
2	ALVT10	Specifies active level of timer output (TO1n). 0: Active level is high level 1: Active level is low level Caution When CMD bit = 1 (UDC mode), timer output is not performed regardless of the setting of the TOE10 bit. At this time, timer output consists of the negative phase level of the level set by the ALVT10 bit.
0	MSEL	Specifies operation in UDC mode (count up/down). 0: UDC mode A TM1n can be cleared by setting the CLR1, CLR0 bits of the TMC1n register. 1: UDC mode B TM1n is cleared in the following cases. • Upon match with CM1n0 during TM1n count up operation • Upon match with CM1n1 during TM1n count down operation When UDC mode B is set, the ENMD, CLR1, and CLR0 bits of the TMC1n register becomes invalid.

(3) Timer control registers 10, 11 (TMC10, TMC11)

The TMC1n register is used to enable/disable TM1n operation and to set transfer and timer clear operations. TMC1n can be read/written in 8-bit or 1-bit units.

Caution Changing the value of bits of the TMC1n register other than the TM1CEn bit during TM1n operation (TM1CEn bit = 1) is prohibited.

(1/2)

TMC10	7	<6>	5	4	3 RLEN	2 ENMD	1 CLR1	0 CLR0	Address FFFFF5ECH	Initial value
TMC11	7	<6>	5	4	3 RLEN	2 ENMD	1 CLR1	0 CLR0	Address FFFFF60CH	Initial value 00H

Bit position	Bit name	Function
6	TM1CEn	Enables/disables TM1n operation. 0: Disable TM1n count operation 1: Enable TM1n count operation
3	RLEN	Enables/disables transfer from CM1n0 to TM1n. 0: Disable transfer 1: Enable transfer Cautions 1. When RLEN = 1, the value set to CM1n0 is transferred to TM1n upon occurrence of TM1n underflow. 2. The RLEN bit is valid only in UDC mode A (CMD bit of TUMn register = 1 and MSEL bit = 0). In the general-purpose timer mode (CMD bit = 0) and UDC mode B (CMD bit = 1, MSEL bit = 1), a transfer operation is not executed even if the RLEN bit is set to 1.
2	ENMD	Enables/disables clearing of TM1n in general-purpose timer mode (CMD bit of TUMn register = 0). 0: Disable clear (free-running mode) Clearing is not performed even when TM1n and CM1n0 values match. 1: Enable clear Clearing is performed when TM1n and CM1n0 values match. Caution The ENMD bit setting becomes invalid in UDC mode (CMD bit of TUMn register = 1).

(2/2)

Bit position	Bit name	Function								
1, 0	CLR1, CLR0	Cont	Controls TM1n clear operation in UDC mode A.							
			CLR1	CLR0	Specify TM1n clear source					
			0	0	Clear only by external input (TCLR1n)					
			0	1	Clear upon match of TM1n count value and CM1n0 set value					
			1	0	Clear by TCLR1n input or upon match of TM1n count value and CM1n0 set value					
			1	1	Don't clear					
		Caut	2	is valid cleared 2. The CL timer n 3. The CL (MSEL 1. When o	g by match of the TM1n count value and CM1n0 set value only during TM1n count up operation (TM1n is not a during TM1n count down operation). R1 and CLR0 bit settings are invalid in general-purpose node (CMD bit of TUMn register = 0). R1 and CLR0 bit settings are invalid in UDC mode B bit of TUMn register = 1). Clearing by TCLR1n has been enabled with bits CLR1 are clearing is performed whether the value of the TM1CEn					

(4) Capture/compare control registers 0, 1 (CCR0, CCR1)

The CCRn register specifies the operation mode of the capture/compare registers (CC1n0, CC1n1). CCRn can be read/written in 8-bit or 1-bit units.

Caution Overwriting the CCRn register during TM1n operation (TM1CEn bit = 1) is prohibited.

CCR0	7	6	5	4 0	3	2	1 CMS1	0 CMS0	Address FFFF5EAH	Initial value
CCR1	7	6	5	4	3	2	1 CMS1	0 CMS0	Address FFFFF60AH	Initial value

Bit position	Bit name	Function
1	CMS1	Specifies operation mode of CC1n1. 0: Capture register 1: Compare register
0	CMS0	Specifies operation mode of CC1n0. 0: Capture register 1: Compare register

(5) Signal edge selection registers 10, 11 (SESA10, SESA11)

The SESA1n register is used to specify the valid edge of external interrupt requests from external pins (INTP100, INTP101, INTP110, INTP111, TIUD10, TIUD11, TCUD10, TCUD11, TCLR10, TCLR11). The correspondences between each register and the external interrupt requests it controls are as follows.

- SESA10: TIUD10, TCUD10, TCLR10, INTP100, INTP101
- SESA11: TIUD11, TCUD11, TCLR11, INTP110, INTP111

The valid edge (rising edge, falling edge, or both edges) can be specified independently for each pin. SESA1n can be read/written in 8-bit or 1-bit units.

- Cautions 1. Changing the values of the SESA1n register bits during TM1n operation (TM1CEn bit = 1) is prohibited.
 - Be sure to set (to 1) the TM1CEn bit of timer control registers 10, 11 (TMC10, TMC11) even when timer 1 is not used and the TCUD10/INTP100, TCLR10/INTP101, TCUD11/INTP110, and TCLR11/INTP111 pins are used as INTP100, INTP101, INTP110, and INTP111.

(1/2)2 0 Initial value Address SESA10 TESUD01 TESUD00 CESUD01 CESUD00 IES1011 IES1010 IES1001 | IES1000 FFFFF5EDH 00H TIUD10, TCUD10 TCLR10 INTP101 INTP100 Initial value 4 0 Address 3 1 SESA11 TESUD11 TESUD10 CESUD11 CESUD10 IES1111 IES1110 IES1101 | IES1100 FFFFF60DH 00H TIUD11, TCUD11 INTP110 TCLR11 INTP111 Bit position Bit name **Function** 7, 6 TESUDn1, Specifies valid edge of pins TIUD10, TIUD11, TCUD10, TCUD11. TESUDn0 TESUDn1 TESUDn0 Valid edge 0 0 Falling edge 0 1 Rising edge 1 0 Setting prohibited 1 Both rising and falling edges Cautions 1. The set values of the TESUDn1 and TESUDn0 bits are only valid in UDC mode A and UDC mode B. 2. If mode 4 is specified as the operation mode of TM1n (specified with PRM12 to PRM10 bits of PRM1n register), the valid edge specifications for pins TIUD1n and TCUD1n (bits TESUDn1 and TESUDn0) are not valid. **Remark** n = 0, 1

305

(2/2)

Bit position	Bit name			Function									
5, 4	CESUDn1,	Specifies vali	d edge of pins To	CLR10, TCLR11.									
	CESUDn0	CESUDn	1 CESUDn0	Valid edge									
		0	0	Falling edge									
		0	1	Rising edge									
		1	0	Low level									
		1	1	High level									
3, 2	IES1n11,	O0: TM1n cleared after detection of falling edge of TCLR1n O1: TM1n cleared after detection of rising edge of TCLR1n 10: TM1n cleared status held while TCLR1n input is low level 11: TM1n cleared status held while TCLR1n input is high level Caution The set values of the CESUDn1 and CESUDn0 bits are valid only in UDC mode A. Specifies valid edge of the pin (INTP1n1/INTP1n0) selected by the CSLn bit of the											
	IES1n10	CSL1n regist	er.										
		IES1n11	IES1n10	Valid edge									
		0	0	Falling edge									
		0	1	Rising edge									
		0	1 0	Rising edge Setting prohibited									
		0	1	Rising edge									
1, 0	IES1n01,	0 1	1 0 1	Rising edge Setting prohibited									
1, 0	IES1n01, IES1n00	0 1	1 0 1	Rising edge Setting prohibited Both rising and falling edges									
1, 0	*	0 1 1 Specifies vali	1 0 1	Rising edge Setting prohibited Both rising and falling edges TP100, INTP110.									
1, 0	*	0 1 1 Specifies vali	1 0 1 1 dedge of pins IN 1 IES1n00	Rising edge Setting prohibited Both rising and falling edges TP100, INTP110. Valid edge									
1, 0	*	0 1 1 Specifies vali IES1n01 0	1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Rising edge Setting prohibited Both rising and falling edges TP100, INTP110. Valid edge Falling edge									

(6) Prescaler mode registers 10, 11 (PRM10, PRM11)

The PRM1n register is used to perform the following selections.

- Selection of count clock in the general-purpose timer mode (CMD bit of TUMn register = 0)
- Selection of count operation mode in the UDC mode (CMD bit = 1)

PRM1n can be read/written in 8-bit or 1-bit units.

- Cautions 1. Overwriting the PRM1n register during TM1n operation (TM1CEn bit = 1) is prohibited.
 - 2. Clearing the PRM12 bit to 0 is prohibited in UDC mode (CMD bit of TUMn register = 1).
 - 3. When TM1n is in mode 4, specification of the valid edge for the TIUD1n and TCUD1n pins is invalid.

_	7	6	5	4	3	2	1	0	Address	s Initial value		
PRM10 0 0 0		0	0	PRM12	PRM11	PRM10	FFFFF5E	EH 07H				
	7	6	5	4	3	2	1	0	Address	s Initial value		
PRM11	0	0	0	0	0	PRM12	PRM11	PRM10	FFFFF60I	EH 07H		
Bit position Bit name Function												
2 to 0 PRM12 to Specifies the count up/down operation mode during input of the clock rate when the internal clock of the TM1n is used, or during external clock (TIUD1n) input.												
				PRM12	PRM11	PRM10	CMD	= 0	СМЕ	CMD = 1		
							Count	clock (Count clock	UDC mode		
				0	0	0	Setting prohibite		Setting prohibited			
				0	0	1	fclk/2					
				0	1	0	fclk/4					
				0	1	1	fclk/8					
				1	0	0	fclk/16	1	ΓIUD1n	Mode 1		
				1	0	1	fclk/32			Mode 2		
				1	1	0	fclk/64			Mode 3		
				1	1	1	fclk/128			Mode 4		
				-								

(a) In general-purpose timer mode (CMD bit of TUMn register = 0)

The count clock is specified with the PRM12 to PRM10 bits.

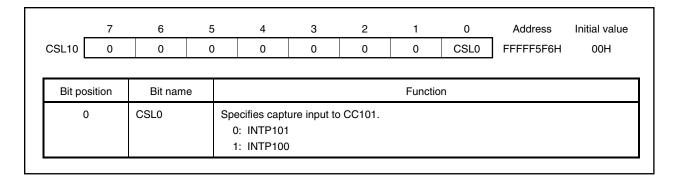
(b) UDC mode (CMD bit of TUMn register = 1)

The TM1n count sources in the UDC mode are as follows.

Operation Mode	TM1n Operation
Mode 1	Count down when TCUD1n = high level Count up when TCUD1n = low level
Mode 2	Count up upon detection of valid edge of TIUD1n input Count down upon detection of valid edge of TCUD1n input
Mode 3	Count up upon detection of valid edge of TIUD1n input when TCUD1n = high level Count down upon detection of valid edge of TIUD1n input when TCUD1n = low level
Mode 4	Automatic judgment upon detection of both edges of TIUD1n input and both edges of TCUD1n input

(7) Status registers 0, 1 (STATUS0, STATUS1)

The STATUSn register indicates the operating status of TM1n. STATUSn is read-only, in 8-bit or 1-bit units.


	7	6	5	4	3	<2>	<1>	<0>	Address	Initial value
STATUS0	0	0	0	0	0	TM1UDF0	TM1OVF0	TM1UBD0	FFFFF5EFH	00H
	7	6	5	4	3	<2>	<1>	<0>	Address	Initial value
STATUS1	0	0	0	0	0	TM1UDF1	TM1OVF1	TM1UBD1	FFFFF60FH	00H

Bit position	Bit name	Function
2	TM1UDFn	TM1n underflow flag 0: No TM1n count underflow 1: TM1n count underflow
		Caution The TM1UDFn bit is cleared (to "0") upon completion of read access to the STATUSn register from the CPU.
1	TM1OVFn	TM1n overflow flag 0: No TM1n count overflow 1: TM1n count overflow Caution The TM1OVFn bit is cleared (to "0") upon completion of read access
0	TM1UBDn	Indicates the operating status of TM1n count up/down. O: TM1n count up in progress 1: TM1n count down in progress
		Caution The state of the TM1UBDn bit differs according to the mode as follows. • The TM1UBDn bit is fixed to 0 in general-purpose timer mode (CMD bit of TUMn register = 0). • The TM1UBDn bit indicates the TM1n count up-/down status in UDC mode (CMD bit of TUMn register = 1).

(8) CC101 capture input selection register (CSL10)

The CSL10 register is used to select the INTP101 or INTP100 pin to input a capture signal when the CC101 register is used as a capture register.

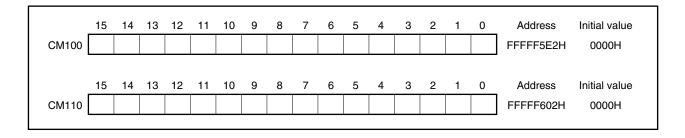
CSL10 can be read/written in 8-bit or 1-bit units.

(9) CC111 capture input selection register (CSL11)

The CSL11 register is used to select the INTP111 or INTP110 pin to input a capture signal when the CC111 register is used as a capture register.

CSL11 can be read/written in 8-bit or 1-bit units.

7	6	5	4	3	2	1	0	Address	Initial value				
CSL11 0	0	0	0	0	0	0	CSL1	FFFFF616H	00H				
Bit position	Bit nam	ne	Function										
0	CSL1	S	Specifies capture input to CC111. 0: INTP111 1: INTP110										

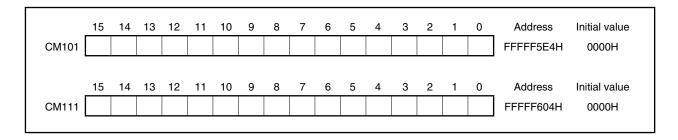

(10) Compare registers 100, 110 (CM100, CM110)

CM1n0 is a 16-bit register that always compares its value with the value of TM1n. When the value of a compare register matches the value of TM1n, an interrupt signal is generated. The interrupt generation timing in the various modes is described below.

- In the general-purpose timer mode (CMD bit of TUMn register = 0) and UDC mode A (MSEL bit of TUMn register = 0), an interrupt signal (INTCM1n0) is generated upon occurrence of a match.
- In UDC mode B (MSEL bit of TUMn register = 1), an interrupt signal (INTCM1n0) is generated only upon occurrence of a match during count up operation.

CM1n0 can be read/written in 16-bit units.

Caution When the TM1CEn bit of the TMC1n register is "1", it is prohibited to overwrite the value of the CM1n0 register.


(11) Compare registers 101, 111 (CM101, CM111)

CM1n1 is a 16-bit register that always compares its value with the value of TM1n. When the value of a compare register matches the value of TM1n, an interrupt signal is generated. The interrupt generation timing in the various modes is described below.

- In the general-purpose timer mode (CMD bit of TUMn register = 0) and UDC mode A (MSEL bit of TUMn register = 0), an interrupt signal (INTCM1n1) is generated upon occurrence of a match.
- In UDC mode B (MSEL bit of TUMn register = 1), an interrupt signal (INTCM1n1) is generated only upon occurrence of a match during count down operation.

CM1n1 can be read/written in 16-bit units.

Caution When the TM1CEn bit of the TMC1n register is "1", it is prohibited to overwrite the value of the CM1n1 register.

(12) Capture/compare registers 100, 110 (CC100, CC110)

CC1n0 is a 16-bit register. It can be used as a capture register or as a compare register through specification with capture/compare control register n (CCRn). CC1n0 can be read/written in 16-bit units.

- Cautions 1. When used as a capture register (CMS0 bit of CCRn register = 0), write access is prohibited.
 - 2. When used as a compare register (CMS0 bit of CCRn register = 1) during TM1n operation (TM1CEn bit of TMC1n register = 1), overwriting the CC1n0 register values is prohibited.
 - 3. When TM1n has been stopped (TM1CEn bit of TMC1n register = 0), the capture trigger is disabled.
 - 4. When the operation mode is changed from capture register to compare register, newly set a compare value.
 - 5. Continuous reading of CC1n0 is prohibited. If CC1n0 is continuously read, the second read value may differ from the actual value. If CC1n0 must be read twice, be sure to read another register between the first and the second read operation.

Correct usage example	Incorrect usage example
CC100 read	CC100 read
CC110 read	CC100 read
CC100 read	CC110 read
CC110 read	CC110 read

Remark n = 0, 1

CC100	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	Address FFFF5E6H	Initial value 0000H
CC110	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	Address FFFF606H	Initial value 0000H

(a) When set as a capture register

When CC1n0 is set as a capture register, the valid edge of the corresponding external interrupt signal (INTP1n0) is detected as the capture trigger. TM1n latches the count value in synchronization with the capture trigger (capture operation). The latched value is held in the capture register until the next capture operation.

The valid edge of external interrupts (rising edge, falling edge, both rising and falling edges) is selected with signal edge selection register 1n (SESA1n).

When the CC1n0 register is specified as a capture register, interrupts are generated upon detection of the valid edge of the INTP1n0 signal.

(b) When set as a compare register

When CC1n0 is set as a compare register, it always compares its own value with the value of TM1n. If the value of CC1n0 matches the value of the TM1n, CC1n0 generates an interrupt signal (INTCC1n0).

(13) Capture/compare registers 101, 111 (CC101, CC111)

CC1n1 is a 16-bit register. It can be used as a capture register or as a compare register through specification with capture/compare control register n (CCRn). CC1n1 can be read/written in 16-bit units.

- Cautions 1. When used as a capture register (CMS1 bit of CCRn register = 0), write access is prohibited.
 - 2. When used as a compare register (CMS1 bit of CCRn register = 1) during TM1n operation (TM1CEn bit of TMC1n register = 1), overwriting the CC1n1 register values is prohibited.
 - 3. When TM1n has been stopped (TM1CEn bit of TMC1n register = 0), the capture trigger is disabled.
 - 4. When the operation mode is changed from capture register to compare register, newly set a compare value.
 - 5. Continuous reading of CC1n1 is prohibited. If CC1n1 is continuously read, the second read value may differ from the actual value. If CC1n1 must be read twice, be sure to read another register between the first and the second read operation.

Correct usage example	Incorrect usage example
CC101 read	CC101 read
CC111 read	CC101 read
CC101 read	CC111 read
CC111 read	CC111 read

Remark n = 0, 1

CC101	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	Address FFFF5E8H	Initial value 0000H
CC111	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	Address FFFFF608H	Initial value 0000H

(a) When set as a capture register

When CC1n1 is set as a capture register, the valid edge of either corresponding external interrupt signal (INTP1n0 or INTP1n1) is selected with the selector, and the valid edge of the selected external interrupt signal is detected as the capture trigger. TM1n latches the count value in synchronization with the capture trigger (capture operation). The latched value is held in the capture register until the next capture operation.

The valid edge of external interrupts (rising edge, falling edge, both rising and falling edges) is selected with signal edge selection register 1n (SESA1n).

When the CC1n1 register is specified as a capture register, interrupts are generated upon detection of the valid edge of either the INTP1n0 or INTP1n1 signal.

(b) When set as a compare register

When CC1n1 is set as a compare register, it always compares its own value with the value of TM1n. If the value of CC1n1 matches the value of the TM1n, CC1n1 generates an interrupt signal (INTCC1n1).

9.2.5 Operation

(1) Operation in general-purpose timer mode

TM1n can perform the following operations in the general-purpose timer mode.

(a) Interval operation (when ENMD bit of TMC1n register = 1)

TM1n and CM1n0 always compare their values and the INTCM1n0 interrupt is generated upon occurrence of a match. TM1n is cleared (0000H) at the count clock following the match. Furthermore, when one more count clock is input, TM1n counts up to 0001H.

The interval time can be calculated with the following formula.

Interval time = (CM1n0 value + 1) × TM1n count clock rate

(b) Free-running operation (when ENMD bit of TMC1n register = 0)

TM1n performs full count operation from 0000H to FFFFH, and after the TM1OVFn bit of the STATUSn register is set (to "1"), TM1n is cleared to 0000H at the next count clock and resumes counting.

The free-running cycle can be calculated with the following formula.

Free-running cycle = 65536 × TM1n count clock rate

(c) Compare function

TM1n connects two compare register (CM1n0, CM1n1) channels and two capture/compare register (CC1n0, CC1n1) channels.

When the TM1n count value and the set value of one of the compare registers match, a match interrupt (INTCM1n0, INTCM1n1, INTCC1n0^{Note}, INTCC1n1^{Note}) is output. Particularly in the case of interval operation, TM1n is cleared upon generation of the INTCM1n0 interrupt.

Note This match interrupt is generated when CC1n0 and CC1n1 are set to the compare register mode.

(d) Capture function

TM1n connects two capture/compare register (CC1n0, CC1n1) channels.

When CC1n0 and CC1n1 are set to the capture register mode, the value of TM1n is captured in synchronization with the corresponding capture trigger signal.

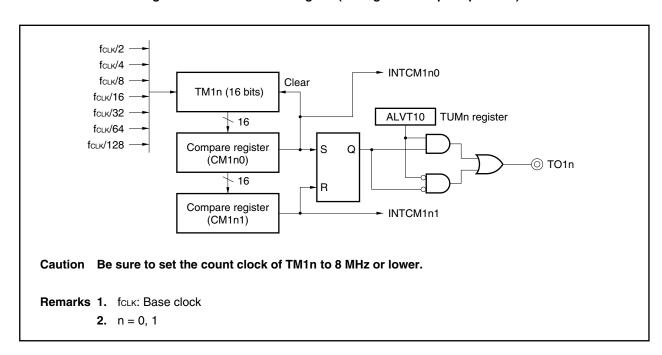
Furthermore, an interrupt request signal (INTCC1n0, INTCC1n1) is generated by the valid edge of the INTP1n0, INTP1n1 input signals specified as the capture trigger signals.

Table 9-6. Capture Trigger Signal (TM1n) to 16-Bit Capture Register

Capture Register	Capture Trigger Signal						
CC1n0	INTP1n0						
CC1n1	INTP1n0 or INTP1n1						

Remarks 1. CC1n0 and CC1n1 are capture/compare registers. Which of these registers is used is specified with capture/compare control register n (CCRn).

2. n = 0, 1

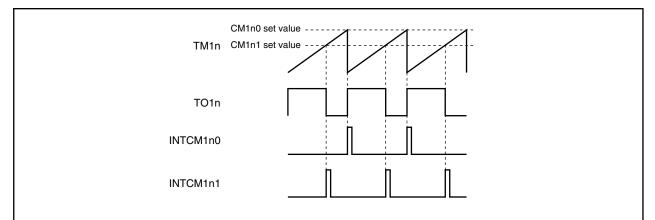

The valid edge of the capture trigger is specified by signal edge selection register 1n (SESA1n). If both the rising edge and the falling edge are selected as the capture triggers, it is possible to measure the input pulse width from external. If a single edge is selected as the capture trigger, the input pulse cycle can be measured.

(e) PWM output operation

PWM output operation is performed from the TO1n pin by setting TM1n to the general-purpose timer mode (CMD bit = 0) using timer unit mode register n (TUMn).

The resolution is 16 bits, and the count clock can be selected from among seven internal clocks (fclk/2, fclk/8, fclk/16, fclk/32, fclk/64, fclk/128).

Figure 9-49. TM1n Block Diagram (During PWM Output Operation)



(i) Description of operation

The CM1n0 register is a compare register used to set the PWM output cycle. When the value of this register matches the value of TM1n, the INTCM1n0 interrupt is generated. Compare match is saved by hardware, and TM1n is cleared at the next count clock after the match.

The CM1n1 register is a compare register used to set the PWM output duty. Set the duty required for the PWM cycle.

- Cautions 1. Changing the values of the CM1n0 and CM1n1 registers is prohibited during TM1n operation (TM1CEn bit of TMC1n register = 1).
 - 2. Changing the value of the ALVT10 bit of the TUMn register is prohibited during TM1n operation.
 - 3. PWM signal output is performed from the second PWM cycle after the TM1CEn bit is set (to "1").

(2) Operation in UDC mode

(a) Overview of operation in UDC mode

The count clock input to TM1n in the UDC mode (CMD bit of TUMn register = 1) can only be external input from the TIUD1n and TCUD1n pins. Count up/down judgment in the UDC mode is determined based on the phase difference of the TIUD1n and TCUD1n pin inputs according to the PRM1n register setting (there is a total of four choices).

Table 9-7. List of Count Operations in UDC Mode

PRM1n Register			Operation	TM1n Operation
PRM12	PRM11	PRM10	Mode	тмтп Орегация
1	0	0	Mode 1	Count down when TCUD1n = high level Count up when TCUD1n = low level
1	0	1	Mode 2	Count up upon detection of valid edge of TIUD1n input Count down upon detection of valid edge of TCUD1n input
1	1	0	Mode 3	Count up upon detection of valid edge of TIUD1n input when TCUD1n = high level Count down upon detection of valid edge of TIUD1n input when TCUD1n = low level
1	1	1	Mode 4	Automatic judgment upon detection of both edges of TIUD1n input and both edges of TCUD1n input

The UDC mode is further divided into two modes according to the TM1n clear conditions (count operation is performed only with TIUD1n, TCUD1n input in both modes).

• UDC mode A (TUMn register's CMD bit = 1, MSEL bit = 0)

The TM1n clear source can be selected as only external clear input (TCLR1n), a match signal between the TM1n count value and the CM1n0 set value during count up operation, or logical sum (OR) of the two signals, using bits CLR1 and CLR0 of the TMC1n register.

TM1n can transfer the value of CM1n0 upon occurrence of TM1n underflow.

• UDC mode B (TUMn register's CMD bit = 1, MSEL bit = 1)

The status of TM1n after match of the TM1n count value and CM1n0 set value is as follows.

- <1> In the case of count up operation, TM1n is cleared (0000H), and the INTCM1n0 interrupt is generated.
- <2> In the case of count down operation, the TM1n count value is decremented (-1).

The status of TM1n after match of the TM1n count value and CM1n1 set value is as follows.

- <1> In the case of count up operation, the TM1n count value is incremented (+1).
- <2> In the case of count down operation, TM1n is cleared (0000H), and the INTCM1n1 interrupt is generated.

(b) Count up/down operation in UDC mode

TM1n count up/down judgment in the UDC mode is determined based on the phase difference of the TIUD1n and TCUD1n pin inputs according to the PRM1n register setting.

(i) Mode 1 (PRM1n register's PRM12 bit = 1, PRM11 bit = 0, PRM10 bit = 0)

In mode 1, the following count operations are performed based on the level of the TCUD1n pin upon detection of the valid edge of the TIUD1n pin.

- TM1n count down operation when TCUD1n pin = high level
- TM1n count up operation when TCUD1n pin = low level

Figure 9-51. Mode 1 (When Rising Edge Is Specified as Valid Edge of TIUD1n Pin)

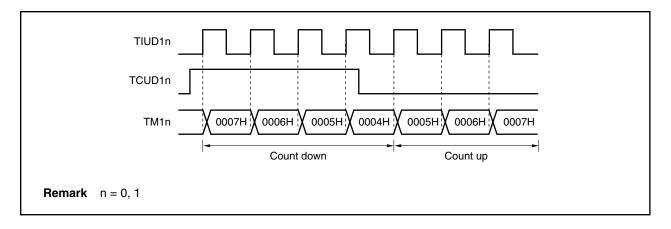
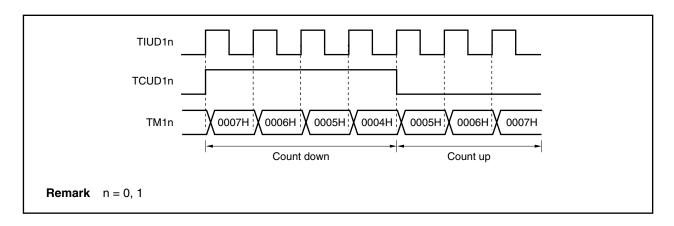
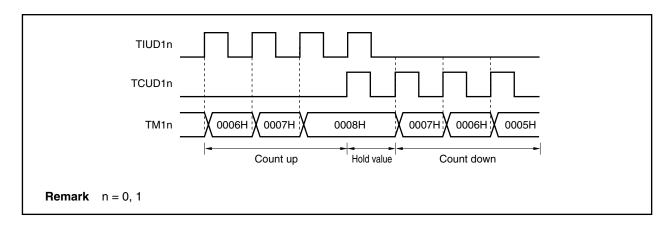



Figure 9-52. Mode 1 (When Rising Edge Is Specified as Valid Edge of TIUD1n Pin):
In Case of Simultaneous TIUD1n, TCUD1n Pin Edge Timing


(ii) Mode 2 (PRM1n register's PRM12 bit = 1, PRM11 bit = 0, PRM10 bit = 1)

The count conditions in mode 2 are as follows.

- TM1n count up upon detection of valid edge of TIUD1n pin
- TM1n count down upon detection of valid edge of TCUD1n pin

Caution If the count clock is simultaneously input to the TIUD1n pin and the TCUD1n pin, count operation is not performed and the immediately preceding value is held.

Figure 9-53. Mode 2 (When Rising Edge Is Specified as Valid Edge of TIUD1n, TCUD1n Pins)

(iii) Mode 3 (PRM1n register's PRM12 = 1, PRM11 = 1, PRM10 = 0)

In mode 3, when two signals 90 degrees out of phase are input to the TIUD1n and TCUD1n pins, the level of the TCUD1n pin is sampled at the input of the valid edge of the TIUD1n pin (refer to **Figure 9-54**).

If the TCUD1n pin level sampled at the valid edge input to the TIUD1n pin is low, TM1n counts down when the valid edge is input to the TIUD1n pin.

If the TCUD1n pin level sampled at the valid edge input to the TIUD1n pin is high, TM1n counts up when the valid edge is input to the TIUD1n pin.

Figure 9-54. Mode 3 (When Rising Edge Is Specified as Valid Edge of TIUD1n Pin)

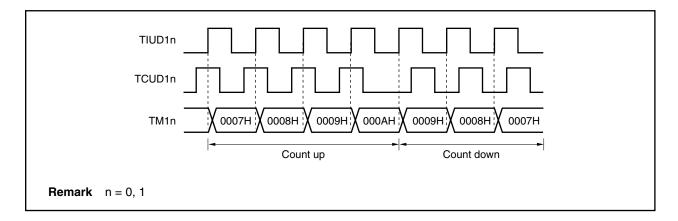
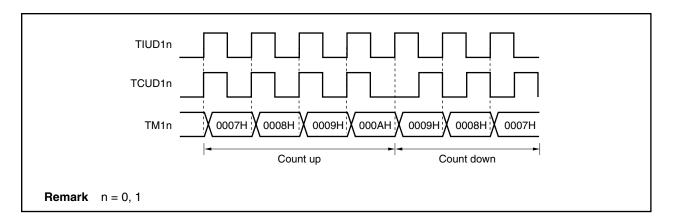



Figure 9-55. Mode 3 (When Rising Edge Is Specified as Valid Edge of TIUD1n Pin):
In Case of Simultaneous TIUD1n, TCUD1n Pin Edge Timing

(iv) Mode 4 (PRM1n register's PRM12 = 1, PRM11 = 1, PRM10 = 1)

In mode 4, when two signals out of phase are input to the TIUD1n and TCUD1n pins, up/down operation is automatically judged and counting is performed according to the timing shown in **Figure 9-56**.

In mode 4, counting is executed at both the rising and falling edges of the two signals input to the TIUD1n and TCUD1n pins. Therefore, TM1n counts four times per cycle of an input signal (\times 4 count).

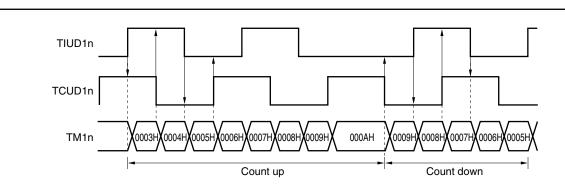


Figure 9-56. Mode 4

- Cautions 1. When mode 4 is specified as the operation mode of TM1n, the valid edge specifications for pins TIUD1n and TCUD1n are not valid.
 - 2. If the TIUD1n pin edge and TCUD1n pin edge are input simultaneously in mode 4, TM1n continues the same count operation (up or down) it was performing immediately before the input.

(c) Operation in UDC mode A

(i) Interval operation

The operations at the count clock following match of the TM1n count value and the CM1n0 set value are as follows.

- In case of count up operation: TM1n is cleared (0000H) and the INTCM1n0 interrupt is generated.
- In case of count down operation: The TM1n count value is decremented (-1) and the INTCM1n0 interrupt is generated.


Remark The interval operation can be combined with the transfer operation.

(ii) Transfer operation

If TM1n becomes 0000H during counting down when the RLEN bit of the TMC1n register is 1, the CM1n0 register set value is transferred to TM1n at the next count clock.

- Remarks 1. Transfer enable/disable can be set with the RLEN bit of the TMC1n register.
 - **2.** The transfer operation can be combined with the interval operation.

Figure 9-57. Example of TM1n Operation When Interval Operation and Transfer Operation Are Combined

(iii) Compare function

TM1n connects two compare register (CM1n0, CM1n1) channels and two capture/compare register (CC1n0, CC1n1) channels.

When the TM1n count value and the set value of one of the compare registers match, a match interrupt (INTCM1n0, INTCM1n1, INTCC1n0^{Note}, INTCC1n1^{Note}) is output.

Note This match interrupt is generated when CC1n0 and CC1n1 are set to the compare register mode.

(iv) Capture function

TM1n connects two capture/compare register (CC1n0, CC1n1) channels.

When CC1n0 and CC1n1 are set to the capture register mode, the value of TM1n is captured in synchronization with the corresponding capture trigger signal. A capture interrupt (INTCC1n0, INTCC1n1) is generated upon detection of the valid edge.

(d) Operation in UDC mode B

(i) Basic operation

The operations at the next count clock after the count value of TM1n and the CM1n0 set value match when TM1n is in UDC mode B are as follows.

- In case of count up operation: TM1n is cleared (0000H) and the INTCM1n0 interrupt is generated.
- In case of count down operation: The TM1n count value is decremented (-1).

The operations at the next count clock after the count value of TM1n and the CM1n1 set value match when TM1n is in UDC mode B are as follows.

- In case of count up operation: The TM1n count value is incremented (+1).
- In case of count down operation: TM1n is cleared (0000H) and the INTCM1n1 interrupt is generated.

CM1n0 set value

TM1n not cleared if count clock counts up following match

TM1n count value

Clear TM1n not cleared if count clock counts down following match

CM1n1 set value

Remark n = 0, 1

Figure 9-58. Example of TM1n Operation in UDC Mode

(ii) Compare function

TM1n connects two compare register (CM1n0, CM1n1) channels and two capture/compare register (CC1n0, CC1n1) channels.

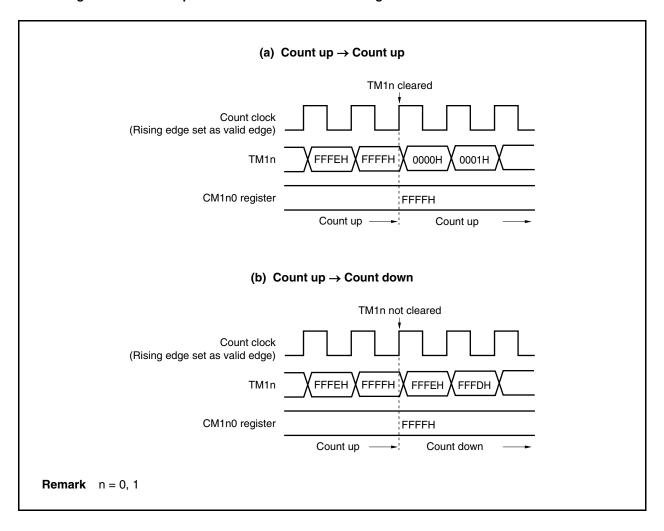
When the TM1n count value and the set value of one of the compare registers match, a match interrupt (INTCM1n0 (only during count up operation), INTCM1n1 (only during count down operation), INTCC1n0^{Note}, INTCC1n1^{Note}) is output.

Note This match interrupt is generated when CC1n0 and CC1n1 are set to the compare register mode.

(iii) Capture function

TM1n connects two capture/compare register (CC1n0, CC1n1) channels.

When CC1n0 and CC1n1 are set to the capture register mode, the value of TM1n is captured in synchronization with the corresponding capture trigger signal. A capture interrupt (INTCC1n0, INTCC1n1) is generated upon detection of the valid edge.


9.2.6 Supplementary description of internal operation

(1) Clearing of count value in UDC mode B

When TM1n is in UDC mode B, the conditions to clear the count value are as follows.

- In case of TM1n count up operation: TM1n count value is cleared upon match with the CM1n0 register
- In case of TM1n count down operation: TM1n count value is cleared upon match with the CM1n1 register

Figure 9-59. Clear Operation After Match of CM1n0 Register Set Value and TM1n Count Value

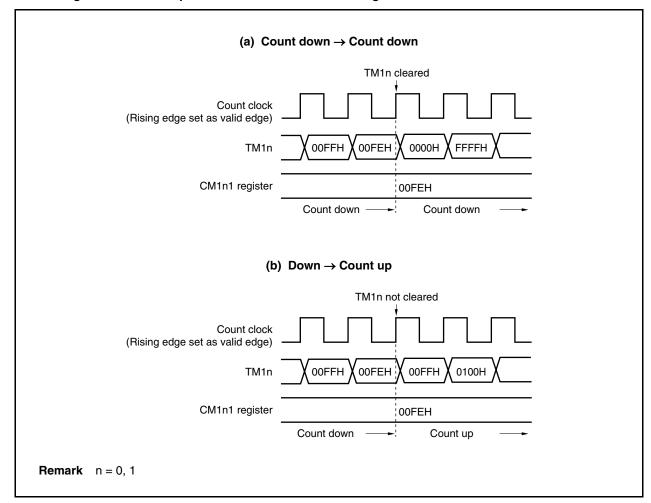
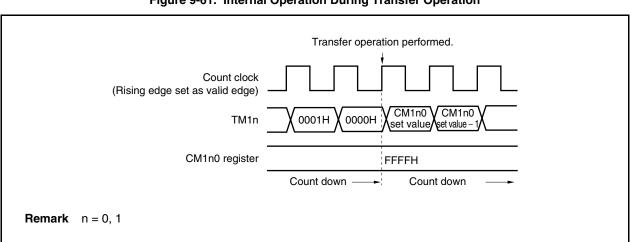
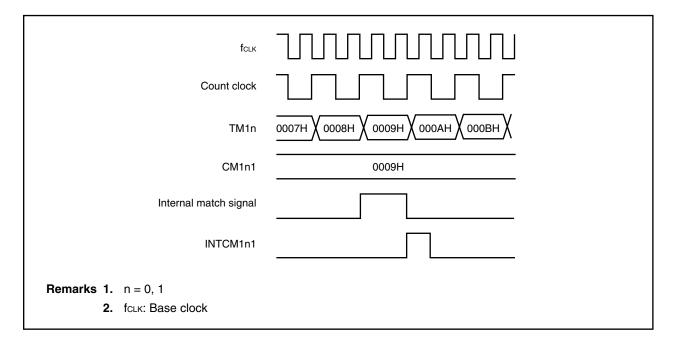


Figure 9-60. Clear Operation After Match of CM1n1 Register Set Value and TM1n Count Value

(2) Transfer operation

If TM1n becomes 0000H during counting down when the RLEN bit of the TMC1n register is 1 in UDC mode A, the set value of the CM1n0 register is transferred to TM1n at the next count clock. The transfer operation is not performed during counting up.



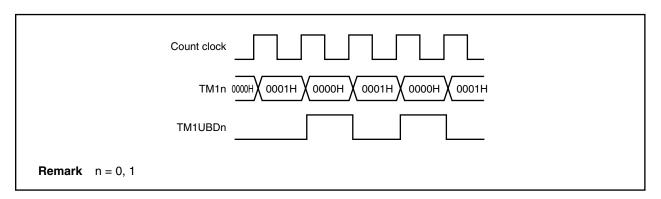

Figure 9-61. Internal Operation During Transfer Operation

(3) Interrupt signal output upon compare match

An interrupt signal is output when the count value of TM1n matches the set value of the CM1n0, CM1n1, CC1n0^{Note}, or CC1n1^{Note} register. The interrupt generation timing is as follows.

Note When CC1n0 and CC1n1 are set to the compare register mode.

Figure 9-62. Interrupt Output upon Compare Match (CM1n1 with Operation Mode Set to General-Purpose Timer Mode and Count Clock Set to fclk/2)



An interrupt signal such as illustrated in Figure 9-62 is output at the next count clock following a match of the TM1n count value and the set value of a corresponding compare register.

(4) TM1UBDn flag (bit 0 of STATUSn register) operation

In the UDC mode (CMD bit of TUMn register = 1), the TM1UBDn flag changes as follows during TM1n count up/down operation at every internal operation clock.

Figure 9-63. TM1UBDn Flag Operation

9.3 Timer 2

9.3.1 Features (timer 2)

Timers 20, 21 (TM20, TM21) are 16-bit general-purpose timer units that perform the following operations.

- Pulse interval or frequency measurement and programmable pulse output
- Interval timer
- PWM output timer
- 32-bit capture timer when 2 timer/counter channels are connected in cascade (In this case, four 32-bit capture register channels can be used.)

9.3.2 Function overview (timer 2)

- 16-bit timer/counter (TM20, TM21): 2 channels
- Bit length

Timer 2 registers (TM20, TM21): 16 bits

During cascade operation: 32 bits (higher 16 bits: TM21, lower 16 bits: TM20)

• Capture/compare register

In 16-bit mode: 6

In 32-bit mode: 4 (capture mode only)

- Count clock division selectable by prescaler (set the frequency of the count clock to 8 MHz or less)
- Base clock (fclk): 2 types (set fclk to 16 MHz or less)

fxx/2 and fxx/4 can be selected

· Prescaler division ratio

The following division ratios can be selected according to the base clock (fclk).

Division Ratio	Base Clo	ock (fclk)
	fxx/2 Selected	fxx/4 Selected
1/2	fxx/4	fxx/8
1/4	fxx/8	fxx/16
1/8	fxx/16	fxx/32
1/16	fxx/32	fxx/64
1/32	fxx/64	fxx/128
1/64	fxx/128	fxx/256
1/128	fxx/256	fxx/512

- Interrupt request sources
 - Compare-match interrupt request: 6 types

Perform comparison with sub-channel n capture/compare register and generate the INTCC2n interrupt upon compare match.

• Timer/counter overflow interrupt request: 2 types

The INTTM20 (INTTM21) interrupt is generated when the count value of TM20 (TM21) becomes FFFFH.

Capture request

The count values of TM20, TM21 can be latched using external pin (INTP2n)^{Notes 1, 2}, TM10, TM11 interrupt signals (INTCM100, INTCM101) and interrupt requests by software as capture triggers.

PWM output function

Control of the outputs of pins TO21 to TO24 in the compare mode and PWM output can be performed using the compare match timing of sub-channels 1 to 4 and the zero count signal of the timer/counter.

Timer count operation with external clock input^{Note 2}

Timer count operation can be performed with the pin TI2 clock input signal.

• Timer count enable operation Note 3 with external pin input Note 2

Timer count enable operation can be performed with the TCLR2 pin input signal.

• Timer/counter clear operation Notes 3, 4 with external pin input Note 2

Timer/counter clear operation can be performed with the TCLR2 pin input signal.

Count up/down control^{Notes 3, 5} with external pin input^{Note 2}

Count up/down operation in the compare mode can be controlled with the TCLR2 pin input signal.

· Output delay operation

A clock-synchronized output delay can be added to the output signal of pins TO21 to TO24.

This is effective as an EMI countermeasure.

Input filter

An input filter can be inserted at the input stage of external pins (TI2, INTP20 to INTP25, TCLR2) and the TM10, TM11 interrupt signals (refer to 14.5.3 (1) Timer 2 input filter mode registers 0 to 5 (FEM0 to FEM5)).

- Notes 1. For the registers used to specify the valid edge for external interrupt requests (INTP20 to INTP25) to timer 2, refer to 7.3.8 (4) Timer 2 input filter mode registers 0 to 5 (FEM0 to FEM5).
 - 2. The pairs TI2 and INTP20, TO21 and INTP21, TO22 and INTP22, TO23 and INTP23, TO24 and INTP24, TCLR2 and INTP25 are each alternate function pins.
 - **3.** The count enable operation for the timer/counter through external pin input, timer/counter clear operation, and count up/down control cannot be performed combined all at the same time.
 - **4.** In the case of 32-bit cascade connection, clear operation by external pin input (TCLR2) cannot be performed.
 - 5. Count up/down control using 32-bit cascade connection cannot be performed.

Remark fxx: Internal system clock

n = 0 to 5

9.3.3 Basic configuration

The basic configuration is shown below.

Table 9-8. Timer 2 Configuration List

Timer	Coun	t Clock	Register	Read/Write	Generated	Capture Trigger	Other Functions
	Note 1	Note 2			Interrupt Signal		
Timer 2	fxx/4,	fxx/8,	TM20	-	INTTM20	-	Note 3
	fxx/8, fxx/16,	fxx/16, fxx/32,	TM21	-	INTTM21	-	Note 3
	fxx/32,	fxx/64,	CVSE00	Read/write	INTCC20	INTP20/INTP25	_
	fxx/64,	fxx/128,	CVSE10	Read/write	INTCC21	INTP21/INTP24	Buffer/Note 4
	fxx/128, fxx/256	fxx/256, fxx/512	CVSE20	Read/write	INTCC22	INTP22/INTP23	Buffer/Note 4
	1,00,200	1,50,012	CVSE30	Read/write	INTCC23	INTP23/INTP22	Buffer/Note 4
			CVSE40	Read/write	INTCC24	INTP24/INTP21	Buffer/Note 4
			CVSE50	Read/write	INTCC25	INTP25/INTP20	_
			CVPE40	Read	INTCC24	INTP24/INTP21	Note 4
			CVPE30	Read	INTCC23	INTP23/INTP22	Note 4
			CVPE20	Read	INTCC22	INTP22/INTP23	Note 4
			CVPE10	Read	INTCC21	INTP21/INTP24	Note 4

Notes 1. When fxx/2 is selected as the base clock input to TM2n

- 2. When fxx/4 is selected as the base clock input to TM2n
- 3. Cascade operation with TM20 and TM21 is enabled.
- **4.** Cascade operation using the CVSEn0 register and CVPEn0 register is enabled (n = 1 to 4).

Remark fxx: Internal system clock

The following shows the capture/compare operation sources.

Table 9-9. Capture/Compare Operation Sources

Register	Sub-channel No.	Timer to Be Captured	Timer to Be Compared	Timer Captured in 32-Bit Cascade Connection
CVSE00	0	TM20	TM20	-
CVPEn0	n	TM21 when BFEEy bit of CMSEm0 register = 0	TM20 when TB1Ey, TB0Ey bits of CMSEm0 register = 01	TM21
CVSEn0	n	TM20 when BFEEy bit of CMSEm0 register = 0	Used as buffer	TM20
CVSE50	5	TM21	TM21	-

Remark
$$n = 1 \text{ to } 4$$

 $m: m = 12 \text{ when } n = 1, 2, m = 34 \text{ when } n = 3, 4$
 $y: y = 1, 2 \text{ when } m = 12, y = 3, 4 \text{ when } m = 34$

The following shows the output level sources during timer output.

Table 9-10. Output Level Sources During Timer Output

TO2n	55	Mode 0 TMEn0 = 00)		Mode 1 TMEn0 = 01)		Mode 2 TMEn0 = 10)		Mode 3 TMEn0 = 11)
Trigger	Compare mat channel n	ch of sub-	Compare match of sub- channel n	TM20 = 0	Compare match of sub- channel n	TM21 = 0	Compare match of sub- channel n	Compare match of sub- channel n + 1
Output level	Active output	Inactive output	Active output	Inactive output	Active output	Inactive output	Active output	Inactive output

Remarks 1. n = 1 to 4

2. OTMEn1, OTMEn0: Bits 13, 12, 9, 8, 5, 4, 1, and 0 of timer 2 output control register 0 (OCTLE0)

Figure 9-64 shows the block diagram of timer 2.

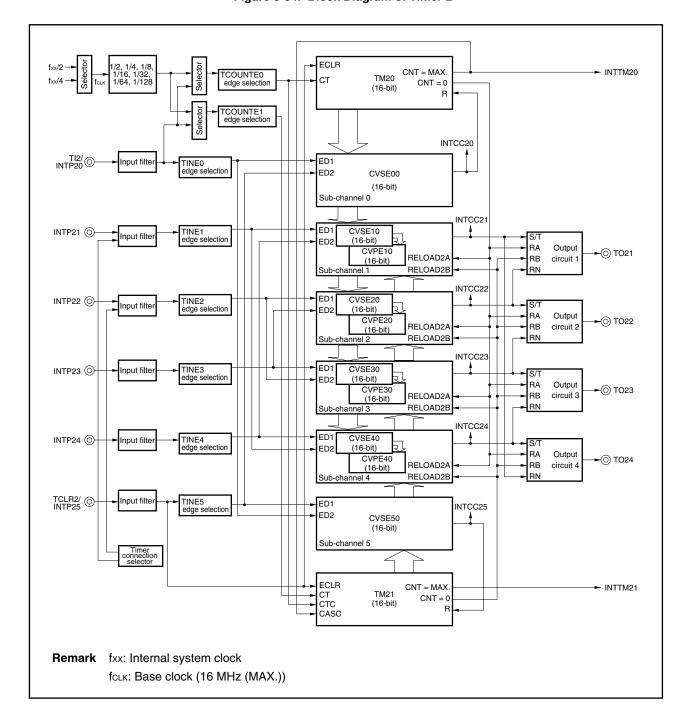


Figure 9-64. Block Diagram of Timer 2

Table 9-11. Meaning of Signals in Block Diagram

Signal Name	Meaning
CASC ^{Note 1}	TM21 count signal input in 32-bit mode
CNT	Count value of timer 2 (CNT = MAX.: Maximum value count signal output of timer 2 (generated when TM2n = FFFFH), CNT = 0: Zero count signal output of timer 2 (generated when TM2n = 0000H))
СТ	TM2n count signal input in 16-bit mode
СТС	TM21 count signal input in 32-bit mode
ECLR	External control signal input from TCLR2 input
ED1, ED2	Capture event signal input from edge selector
R ^{Note 2}	Compare match signal input (sub-channel 0/5)
RA	TM20 zero count signal input (reset signal of output circuit)
RB	TM21 zero count signal input (reset signal of output circuit)
RELOAD2A	TM20 zero count signal input (generated when TM20 = 0000H)
RELOAD2B	TM21 zero count signal input (generated when TM21 = 0000H)
RN	Sub-channel x interrupt signal input (reset signal of output circuit)
S/T	Sub-channel x interrupt signal input (set signal of output circuit)
TCOUNTE0, TCOUNTE1	Timer 2 count enable signal input
TINEm	Timer 2 sub-channel m capture event signal input

- **Notes 1.** TM21 performs count operation when CASC (CNT = MAX. for TM20) is generated and the rising edge of CTC is detected in the 32-bit mode.
 - 2. TM20/TM21 clear by sub-channel 0/5 compare match or count direction can be controlled.

Remark m = 0 to 5 n = 0, 1x = 1 to 4

(1) Timers 20, 21 (TM20, TM21)

The features of TM2n are listed below.

- Free-running counter that enables counter clearing by compare match of sub-channel 0 and sub-channel 5
- Can be used as a 32-bit capture timer when TM20 and TM21 are connected in cascade.
- Up/down control, counter clear, and count operation enable/disable can be controlled with external pin (TCLR2).
- Counter up/down and clear operation control method can be set by software.
- Stop upon occurrence of count value 0 and count operation start/stop can be controlled by software.

(2) Timer 2 sub-channel 0 capture/compare register (CVSE00)

The CVSE00 register is a 16-bit capture/compare register of sub-channel 0.

In the capture register mode, it captures the TM20 count value.

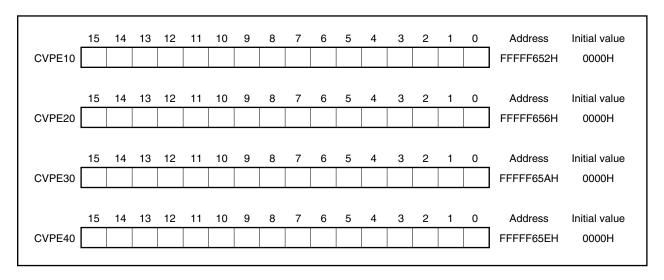
In the compare register mode, it detects match with TM20.

This register can be read/written in 16-bit units.

	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	Address	Initial value
CVSE00																	FFFFF660H	0000H

(3) Timer 2 sub-channel n main capture/compare register (CVPEn0) (n = 1 to 4)

The CVPEn0 register is a sub-channel n 16-bit main capture/compare register.


In the capture register mode, this register captures the value of TM21 when the BFEEn bit of the CMSEm0 register = 0 (m = 12, 34). When the BFEEn bit = 1, this register holds the value of TM20 or TM21.

In the compare register mode, a match between this register and TM2x is detected (TM2x = timer/counter selected by TB1En and TB0En bits).

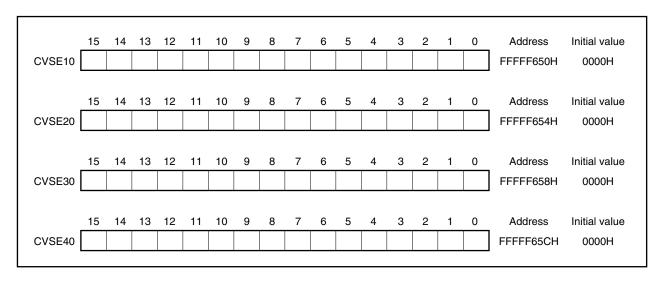
If the capture register mode is selected in the 32-bit mode (value of TB1En, TB0En bits of CMSEm0 register = 11B), this register captures the contents of TM21 (higher 16 bits).

This register is read-only, in 16-bit units.

Caution When the BFEEn bit = 1, a compare match occurs on starting the timer in the compare register mode because the values of both the TM2x and CVPEn0 registers are 0 after reset (TM2x = timer/counter selected by TB1En and TB0En bits, n = 1 to 4). After that, the value of the sub register (CVSEn0) is written to the main register (CVPEn0).

(4) Timer 2 sub-channel n sub capture/compare register (CVSEn0) (n = 1 to 4)

The CVSEn0 register is a sub-channel n 16-bit sub capture/compare register.


In the compare register mode, this register can be used as a buffer. In the capture register mode, this register captures the value of TM20 when the BFEEn bit of the CMSEm0 register = 0 (m = 12, 34).

If the capture register mode is selected in the 32-bit mode (value of TB1En and TB0En bits of CMSEm0 register = 11B), this register captures the contents of TM20 (lower 16 bits).

The CVSEn0 register can be written only in the compare register mode. If this register is written in the capture register mode, the contents written to CVSEn0 register will be lost.

This register can be read/written in 16-bit units.

Caution When the BFEEn bit = 1, a compare match occurs on starting the timer in the compare register mode because the values of both the TM2x and CVPEn0 registers are 0 after reset (TM2x = timer/counter selected by TB1En and TB0En bits, n = 1 to 4). After that, the value of the sub register (CVSEn0) is written to the main register (CVPEn0).

(5) Timer 2 sub-channel 5 capture/compare register (CVSE50)

The CVSE50 register is a sub-channel 5 16-bit capture/compare register.

In the capture register mode, it captures the count value of TM21.

In the compare register mode, it detects match with TM21.

This register can be read/written in 16-bit units.

	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	Address	Initial value
CVSE50																	FFFFF662H	0000H

9.3.4 Control registers

(1) Timer 1/timer 2 clock selection register (PRM02)

The PRM02 register is used to select the base clock (fclk) of timer 1 and timer 2.

This register can be read/written in 8-bit or 1-bit units.

Caution Always set this register before using timer 1 and timer 2.

	7	6	5	4	3	2	1	0	Address	Initial value
PRM02	0	0	0	0	0	0	0	PRM2	FFFFF5D8H	00H

Bit position	Bit name	Function
0	PRM2	Specifies the base clock (fcLK) of timer 1 and timer 2 ^{Note} . 0: fcLK = fxx/4 1: fcLK = fxx/2

Note Set the VSWC register to 15H when the PRM2 bit of the timer 1/timer 2 clock selection register (PRM02) = $0B (f_{CLK} = f_{XX}/4)$ and set the VSWC register to 12H when the PRM2 bit = $1B (f_{CLK} = f_{XX}/2)$.

Remark fxx: Internal system clock

n = 0, 1

(2) Timer 2 clock stop register 0 (STOPTE0)

The STOPTE0 register is used to stop the operation clock input to timer 2.

This register can be read/written in 16-bit units.

When the higher 8 bits of the STOPTE0 register are used as the STOPTE0H register, and the lower 8 bits are used as the STOPTE0L register, the STOPTE0H register can be read/written in 8-bit or 1-bit units, and the STOPTE0L register is read-only, in 8-bit units.

- Cautions 1. Initialize timer 2 when the STFTE bit = 0. Timer 2 cannot be initialized when the STFTE bit = 1.
 - 2. If, following initialization, the value of the STFTE bit is made "1", the initialized state is maintained.

	<15>	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	Address	Initial value
STOPTE0	STFTE	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	FFFFF640H	0000H

Bit position	Bit name	Function
15	STFTE	Stops the operation clock to timer 2. 0: Normal operation
		1: Stop operation clock to timer 2

(3) Timer 2 count clock/control edge selection register 0 (CSE0)

The CSE0 register is used to specify the TM2n count clock and the control valid edge (n = 0, 1).

This register can be read/written in 16-bit units.

When the higher 8 bits of the CSE0 register are used as the CSE0H register, and the lower 8 bits are used as the CSE0L register, they can be read/written in 8-bit or 1-bit units.

(1/2)

SEO 0 0	O O TES1E1 TES	S1E0 TES0E	1 TESOEO CESE	CESEO CSE12	CSE11 C	CSE10	CSE02 CSE01 CSE00	FFFFF642H	0000H
Bit position	Bit name						Function		
11, 10, 9, 8	TESnE1, TESnE0	Spe	cifies the v	alid edge of	f the TN	//2n ir	nternal count cloc	k (TCOUNTEr	n) signal.
			TESnE1	TESnE	:0		Valid	d edge	
			0	0	F	alling	g edge		
			0	1	F	Rising	g edge		
			1	0	S	Setting	g prohibited		
			1	1	Е	Both r	rising and falling e	dges ^{Note}	
7, 6	CESE1, CESE0	Spe				/l2n e	external clear inpu		
		1 F	CESE1	CESE				d edge	
			0	0			g edge		
			1	0			g edge ugh input (no clear	operation)	
			<u>'</u>	1			rising and falling e		
		-			ı				
5 to 3, 2 to 0	CSEn2, CSEn1,	Sele	ects interna	al count cloc	k (TCC	UNT	En) of TM2n.		
	CSEn0		CSEn2	CSEn1	CSE	n0	(Count clock	
			0	0	0		fclk/2 ^{Note 1}		
			0	0	1		fclk/4		
			0	1	0		fclk/8		
			0	1	1		fclk/16		
			1	0	0		fclk/32		
			1	0	1		fclk/64		
			1	1	0		fclk/128		
			1	1	1		Selects input signification input pin (TI2) a		rnal clock

(2/2)

Note Setting the TESnE1 and TESnE0 bits to 11B and the CSEn2 to CSEn0 bits to 000B for timer 2 count clock/control edge select register 0 (CSE0) is prohibited.

Caution Set the VSWC register to 15H when the PRM2 bit of the timer 1/timer 2 clock selection register (PRM02) = 0B ($f_{CLK} = f_{XX}/4$) and set the VSWC register to 12H when the PRM2 bit = 1B ($f_{CLK} = f_{XX}/2$).

Remark n = 0, 1

fclk: Base clock

(4) Timer 2 sub-channel input event edge selection register 0 (SESE0)

The SESE0 register specifies the valid edge of the external capture signal input (TINEn) for the sub-channel n capture/compare register performing capture (n = 0 to 5).

This register can be read/written in 16-bit units.

When the higher 8 bits of the SESE0 register are used as the SESE0H register, and the lower 8 bits are used as the SESE0L register, they can be read/written in 8-bit or 1-bit units.

	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	Address	Initial value
SESE0	0	0	0	0	IESE51	IESE50	IESE41	IESE40	IESE31	IESE30	IESE21	IESE20	IESE11	IESE10	IESE01	IESE00	FFFFF644H	0000H

Bit position	Bit name				Function
11 to 0	IESEn1, IESEn0	1		_	ernal capture signal input (TINEn) for sub-channel n orming capture.
			IESEn1	IESEn0	Valid edge
			0	0	Falling edge
			0	1	Rising edge
			1	0	Setting prohibited
			1	1	Both rising and falling edges
		'			_

Remark n = 0 to 5

(5) Timer 2 time base control register 0 (TCRE0)

The TCRE0 register controls the operation of TM2n (n = 0, 1).

This register can be read/written in 16-bit units.

When the higher 8 bits of the TCRE0 register are used as the TCRE0H register, and the lower 8 bits are used as the TCRE0L register, they can be read/written in 8-bit or 1-bit units.

- Cautions 1. If ECREn = 1 and ECEEn = 1 have been set, it is not possible to input an external clear signal (TCLR2) for TM2n. In this case, first set CLREn = 1, and then clear TM2n by software (n = 0, 1).
 - 2. When clearing is performed using the ECLR signal, the TM2n counter is cleared with a delay of (1 internal count clock set with bits CSEn2 to CSEn0 of the CSE0 register) + 2 base clocks. Therefore, if external clock input is selected as the internal count clock, the counter is not cleared until the external clock (TI2) is input.
 - 3. The ECREn bit and the ECEEn bit cannot be set to 1.
 - 4. If the ECEEn bit is set to 1 and the ECREn bit is set to 0, a count down operation cannot be performed.
 - 5. When UDSEn1, UDSEn0 = 01 and OSTEn = 1, the counter does not count up when the counter value is 0. Therefore, when the counter value is 0, set OSTEn = 0, and after the value of the counter ceases to be 0, set OSTEn = 1. Also, on the application, change the value of OSTEn from 0 to 1 using the sub-channels 0 and 5 interrupt signals.
 - When the TM2n count value is cleared (0) by setting CLREn to 1, the CLREn = 1 setting
 must be held for at least one of the internal count clocks set by the CSEn2 to CSEn0
 bits of the CSE0 register.

Example When timer 20 (TM20) is cleared (0)

<1> Select fclk/2 as TM20 internal count clock

	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
CSE0	0	0	0	0	×	×	×	×	×	×	×	×	×	0	0	0

<2> Clear (0) the TM20 count value

	7	6	5	4	3	2	1	0
TCRE0L	0	1	0	0	0	×	×	×

<3> Set the conditions required for the TM20 count clock

	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
CSE0	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×

<4> Start the TM20 count operation

	7	6	5	4	3	2	1	0
TCRE0L	0	0	1	0	0	×	×	×

(1/2)

CASE1	Specifies 32-bit cascade operation mode for TM21 (TM21 counts upon overflow of TM20 (carry count)). 0: Not connected in cascade ^{Note 1} 1: 32-bit cascade operation mode ^{Notes 2, 3}
	Notes 1. TM21 counts at CT signal input in the count enabled state. 2. TM21 counts at CTC and CASC signal inputs in the count enabled state. 3. Only the capture register mode can be used for the capture/compare
	register.
	Cautions 1. When CASE1 = 1, set the TByE1 and TByE0 bits of the CMSEx0 register to 11 ($x = 12, 34, y$: When $x = 12, y = 1, 2$, and when $x = 34, y = 3, 4$).
	2. When CASE1 = 0, TCOUNTE1 is selected as the count of TM21.
	When CASE1 = 1, TCOUNTE0 and the TM20 overflow signal are
	selected as the count of TM21.
CLREn	Specifies software clear for TM2n.
	0: TM2n operation continued
	1: TM2n count value cleared (0)
	Caution Do not perform the software clear and hardware clear operations simultaneously.
CEEn	Specifies TM2n count operation enable/disable.
	0: Count operation stopped
	1: Count operation enabled
ECREn	Specifies TM2n external clear (TCLR2) operation enable/disable via ECLR signal input.
	0: TM2n external clear (TCLR2) operation not enabled
	1: TM2n external clear (TCLR2) operation enabled
	Cautions 1. In the 32-bit cascade operation mode (CASE1 = 1), the TM2
	external clear operation is not performed.
	2. When the count value is cleared by inputting the ECLR signa
	while ECREn = 1, the ECREn = 1 setting must be held for at least
	one of the internal count clocks set by the CSEn2 to CSEn0 bit
	of the CSE0 register.
	3. In the 32-bit cascade operation mode (CASE1 = 1), only TM21 i
	CLREn

Remark n = 0, 1

(2/2)

Bit position	Bit name			Function						
11, 3	ECEEn	0: TM2n d	ount operat	eration enable/disable through ECLR signal input. ion not enabled ion enabled						
10, 2	OSTEn	Specifies stop 0: TM2n c 1: TM2n c Caution W	When the the CSE0 In the 32-affected to p mode. Sount stoppes sount not stopped then the Till the Till the the Till t	e-bit cascade operation mode (CASE1 = 1), the TM: eration using ECLR signal input is not performed. ECEEn bit = 1, always set the CESE1 and CESE0 bits register to 10 (through input). ebit cascade operation mode (CASE1 = 1), only TM21 by the ECEEn bit setting. ed when count value is 0. epped when count value is 0. M2n count stop is cancelled when the OSTE1n bit = it is stopped when the count value is 0), TM2n counts is						
			-	n the UDSEn1, UDSEn0 bits = 10. The count direction SEn1 and UDSEn0 bits = 10 is determined by the value.						
			fen me ot ECLR.	SETT and ODSENO bits = 10 is determined by the van						
9, 8, 1, 0	UDSEn1, UDSEn0	Specifies TM	2n count up	/down.						
		UDSEn1	UDSEn0	Count						
		0	0	Perform only count up. Clear TM2n with compare match signal.						
		0	1	Count up after TM2n has become 0, and count down after a compare match occurs for sub-channels 0, 5 (triangular wave count up/down).						
		1	0	Selects count up/down according to the ECLR signal input. Count up when ECLR = 1 Count down when ECLR = 0						
		1	1	Setting prohibited						
		Cautions 1.	In the 32	-bit cascade operation mode (CASE1 bit = 1), set the						
				and UDSEn0 bits to 00.						
		2.	When the	e UDSEn1 and UDSEn0 bits = 10, be sure to set t						
			CESE1 ar	nd CESE0 bits of the CSE0 register to 10 (through inpu						
		3. When the UDSEn1 and UDSEn0 bits = 10, con								
			between	TM2n and CVSEx0 has no effect on the TM2n cou						

 $\textbf{Remark} \quad n=0,\,1$

(6) Timer 2 output control register 0 (OCTLE0)

The OCTLE0 register controls timer output from the TO2n pin (n = 1 to 4).

This register can be read/written in 16-bit units.

When the higher 8 bits of the OCTLE0 register are used as the OCTLE0H register, and the lower 8 bits are used as the OCTLE0L register, they can be read/written in 8-bit or 1-bit units.

مريامين المتقامية

	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	Address	Initial valu				
OCTLE0	SWFE	ALV	E OTME	ОТМЕ	SWFE	ALVE	OTME	ОТМЕ	SWFE	ALVE	OTME	OTME	SWFE	ALVE	ОТМЕ	ОТМЕ	FFFFF648H	0000H				
	4	4	41	40	3	3	31	30	2	2	21	20	1	1	11	10						
			·																			
Bit po	sition		Bi	it nam	ne								Fı	unctic	n							
15, 11	1, 7, 3		SWFE	n		Fi	xes th	ne TO	2n pir	outp	ut lev	el ac	cordir	ng to t	he se	etting o	of ALVEn bit.					
						0: Don't fix output level.1: When ALVEn = 0, fix output level to low level.																
							1: W	hen A	ALVEr	n = 0,	fix ou	ıtput l	level t	o low	level							
							W	hen A	ALVEr	n = 1,	fix ou	ıtput l	level t	o hig	n leve	ıl.						
14, 10	0, 6, 2		ALVEn																			
							0: Active level is high level															
					1: Active level is low level																	
13, 12	2, 9, 8,	,	ОТМЕ	MEn1, Specifies toggle mode.																		
5, 4,	1, 0		OTME	n0																		
							OTM	1En1	OTN	∕IEn0					Tog	ggle m	ode					
							()		0	Tog	ggle n	node	0:								
																	output every time	e a sub-				
											cha	nnel	n con	npare	matc	h occi	urs.					
							()		1	Tog	ggle n	node	1:								
																				•	match, set TO2r	
							to active level, and when TM20 to inactive level.) is "0", set TO2	n output						
								1		0	1 '		node :		n 00m	nara	match, set TO2r	o output				
																•	1 is "0", set TO21					
													e lev				, · - -					
								1		1	Tog	ggle n	node	3:								
									Up	on su	b-cha	nnel	n com	npare i	match, set TO2r	output						
																hannel n + 1 co	-					
									ma	tch, s	et TO	2n oı	utput t	to inac	ctive level (when	n = "4",						

Remark n = 1 to 4

and RN signal inputs.

n + 1 becomes "1").

Cautions 1. When the OTMEn1, OTMEn0 bits = 11 (toggle mode 3), if the

simultaneously upon 1 sub-channel n compare match.

same output delay operation settings are made when setting bits ODLEn2 to ODLEn0 of the ODELE0 register, two outputs change

2. If two or more signals are input simultaneously to the same output circuit, S/T signal input has a higher priority than RA, RB,

(a) Caution for PWM output change timing

If the SWFEn bit is changed from 1 to 0 when the timer is operating while the internal PWM output operation is being performed, then the output level becomes active. After that, PWM output from the TO2n pin is performed upon a compare match at subchannel n. However, the first PWM output change timing varies as follows, depending on the internal output level and the SWFEn bit clear timing.

(i) Example 1 Internal output level SWFEn bit TO2n output (ALVEn bit = 1)PWM output change timing (ii) Example 2 Internal output level SWFEn bit TO2n output (ALVEn bit = 1)PWM output change timing **Remark** n = 1 to 4

Figure 9-65. PWM Output Change Timing

<R> (b) Timer output in toggle mode 0

In toggle mode 0, PWM output from TO2n is used by TM2m to count up the value from 0000H, the output level is inverted upon a match between the values of subchannel n and TM2m, the TM2m count value is cleared, and then TM2m counts up the value again from 0000H.

The level of outputs from timer 2 is either active or inactive. In toggle mode 1, for example, the TO2n output level is inverted to be active upon a match between the values of subchannel n and TM20, or is inverted to be inactive upon a match between the values of subchannel 0 and TM20. Therefore, whether the current level is active or inactive can be judged by checking the value set to the ALVEn bit and the PWM output level.

In toggle mode 0, however, the output inversion is toggled upon a match between the values of subchannel n and TM2m, so the level cannot be judged. The TO2n output level is as shown in Figure 9-66, according to the value set to the ALVEn bit and the internal output level.

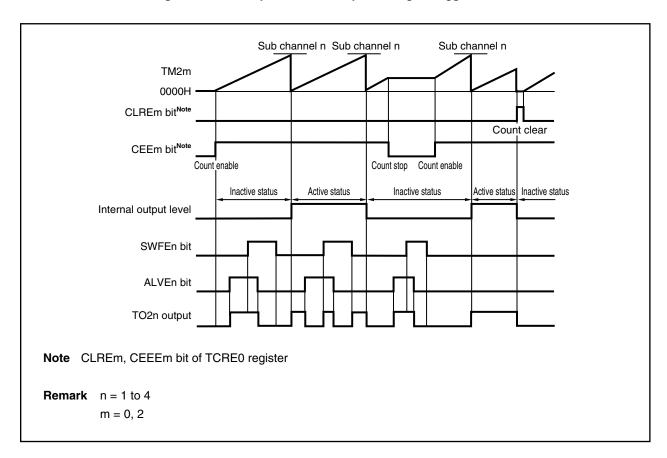


Figure 9-66. Example of Timer Output Timing in Toggle Mode 0

(7) Timer 2 sub-channel 0, 5 capture/compare control register (CMSE050)

The CMSE050 register controls timer 2 sub-channel 0 capture/compare register (CVSE00) and timer 2 sub-channel 5 capture/compare register (CVSE50).

This register can be read/written in 16-bit units.

	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	Address	Initial value
CMSE050	0	0	EEVE5	0	LNKE5	CCSE5	0	0	0	0	EEVE0	0	LNKE0	CCSE0	0	0	FFFFF64AH	0000H

Bit position	Bit name	Function
13, 5	EEVEn	 Enables/disables event detection by sub-channel n capture/compare register. 0: ED1 and ED2 signal inputs ignored (nothing is done even if these signals are input). 1: Operation caused by ED1 and ED2 signal inputs enabled.
11, 3	LNKEn	Specifies capture event signal input from edge selection to ED1 or ED2. 0: In capture register mode, select ED1 signal input. In compare register mode, LNKEn bit has no influence. 1: In capture register mode, select ED2 signal input. In compare register mode, LNKEn bit has no influence.
10, 2	CCSEn	Selects capture/compare register operation mode. 0: Operate in capture register mode. The TM20 and TM21 count statuses can be read with sub-channel 0 and sub-channel 5, respectively. 1: Operate in compare register mode. TM2m is cleared upon detection of match between sub-channel n and TM2m.

Remark m = 0, 1

n = 0, 5

(8) Timer 2 sub-channel 1, 2 capture/compare control register (CMSE120)

The CMSE120 register controls the timer 2 sub-channel n sub capture/compare register (CVSEn0) and the timer 2 sub-channel n main capture/compare register (CVPEn0) (n = 1, 2).

This register can be read/written in 16-bit units.

(1/2)

15 SE120 0	14 13 12 11 0 EEVE2 BFEE2 LNKE2	10 9 8 7 6 5 4 3 2 1 0 Address Initial value CCSE2 TB1E2 TB0E2 0 0 EEVE1 BFEE1 LNKE1 CCSE1 TB1E1 TB0E1 FFFFF64CH 0000H
Bit position	Bit name	Function
13, 5	EEVEn	 Enables/disables event detection for CMSE120 register. 0: ED1 and ED2 signal inputs ignored (nothing is done even if these signals are input). 1: Operation caused by ED1 and ED2 signal inputs enabled.
12, 4	BFEEn	1: Operation caused by ED1 and ED2 signal inputs enabled. Specifies the buffer operation of sub-channel n sub capture/compare register (CVSEn0). 0: Don't use sub-channel n sub capture/compare register (CVSEn0) as buffer. 1: Use sub-channel n sub capture/compare register (CVSEn0) as buffer. Caution When the BFEEn bit = 1, a compare match occurs on starting the timer in the compare register mode because the values of both the TM2x and CVPEn0 registers are 0 after reset (TM2x = timer/counter selected by TB1En and TB0En bits, n = 1 to 4). After that, the value of the sub register (CVSEn0) is written to the main register (CVPEn0 Remarks 1. The operations in the capture register mode and compare register mode when the sub-channel n sub capture/compare register (CVSEn0 is not used as a buffer are shown below. • In capture register mode: The CPU can read both the master register (CVPEn0) and slave register (CVSEn0). The next event is ignore until the CPU finishes reading the master register, and TM21 capture is performed by the slave register, and TM21 capture is performed by the slave register, and TM21 capture is performed by the master register.
		 In compare register mode: The CPU writes to the slave register (CVSEn0), and immediately after, the same contents as those of the slave register are written to the master register (CVPEn0). 2. The operations in the capture register mode and compare register mode when the sub-channel n sub capture/compare register (CVSEnd is used as a buffer are shown below. In capture register mode: When the CPU reads the master register (CVPEn0), the master register updates the value held by the slave register (CVSEn0) immediately before the CPU read operation. When a capture event occurs, the timer/counter value at that time always saved in the slave register. In compare register mode: The CPU writes to the slave register (CVSEn0) and these contents are transferred to the master register (CVPEn0) set with the LNKEn bits.

Remark n = 1, 2

(2/2)

Bit position	Bit name				Function							
11, 3	LNKEn	S	elects captu	ire event si	gnal input from edge selection and specifies transfer							
		operation in compare register mode.										
		0: Select ED1 signal input in capture register mode.										
		In the compare register mode, the data of the CVSEn0 register is transferred to										
		the CVPEn0 register upon occurrence of TM2x compare match (TM2x = timer/counter selected with bits TB1En, TB0En).										
					input in capture register mode.							
				Ū	gister mode, the data of the CVSEn0 register is transferred to							
		the CVPEn0 register when the TM2x count value becomes "0" (TM2x = timer/										
		counter selected with bits TB1En, TB0En).										
10, 2	CCSEn	Selects capture/compare register operation mode.										
		0: Capture register mode										
		1: Compare register mode										
9, 8, 1, 0	TB1En, TB0En	S	ets sub-cha	nnel n time	r/counter.							
			TB1En	TB0En	Sub-channel n timer/counter							
			0	0	Don't use sub-channel n.							
			0	1	Set TM20 to sub-channel n.							
			1	0	Set TM21 to sub-channel n.							
			1	1	32-bit mode ^{Note} (select both TM20 and TM21.)							
		N	ote In the	32-bit mod	de, influence of the BFEEn bit is ignored. Also, the CVSEn							
		register cannot be used as a buffer in this mode.										
			register carmot be used as a buller in this mode.									
		Caution When the TB1En, TB0En bits are set to "11", set the CASE1 bit										
			th	e TCRE0 r	egister to "1".							

Remark n = 1, 2

(9) Timer 2 sub-channel 3, 4 capture/compare control register (CMSE340)

The CMSE340 register controls the timer 2 sub-channel n sub capture/compare register (CVSEn0) and the timer 2 sub-channel n main capture/compare register (CVPEn0) (n = 3, 4).

This register can be read/written in 16-bit units.

(1/2)

15 6E340 0
Dit
Bit position
13, 5
12, 4

Remark n = 3, 4

(2/2)

Bit position	Bit name		Function									
11, 3	LNKEn	Selects capture event signal input from edge selection and specifies transfer operation in compare register mode. 0: Select ED1 signal input in capture register mode. In the compare register mode, the data of the CVSEn0 register is transferred to the CVPEn0 register upon occurrence of TM2x compare match (TM2x = timer/counter selected with bits TB1En, TB0En). 1: Select ED2 signal input in capture register mode. In the compare register mode, the data of the CVSEn0 register is transferred to the CVPEn0 register when the TM2x count value becomes "0" (TM2x = timer/										
		counter selected with bits TB1En, TB0En).										
10, 2	CCSEn	Selects capture/compare register operation mode. 0: Capture register mode 1: Compare register mode										
9, 8, 1, 0	TB1En, TB0En	Sets sub-channel n timer/counter.										
			TB1En	Sub-channel n timer/counter								
			0	0	Don't use sub-channel n.							
			0	1	Set TM20 to sub-channel n.							
			1	0	Set TM21 to sub-channel n.							
			1 1 32-bit mode ^{Note} (select both TM20 and TM21.)									
		Note In the 32-bit mode, influence of the BFEEn bit is ignored. Also, to register cannot be used as a buffer in this mode.										
		C			B1En, TB0En bits are set to "11", set the CASE1 bit o							

Remark n = 3, 4

(10) Timer 2 time base status register 0 (TBSTATE0)

The TBSTATE0 register indicates the status of TM2n (n = 0, 1).

This register can be read/written in 16-bit units.

When the higher 8 bits of the TBSTATE0 register are used as the TBSTATE0H register, and the lower 8 bits are used as the TBSTATE0L register, they can be read/written in 8-bit or 1-bit units.

Caution The ECFEn, RSFEn, and UDFEn bits are read-only bits.

	15	14	13	12	<11>	<10>	<9>	<8>	7	6	5	4	<3>	<2>	<1>	<0>	Address	Initial value
TBSTATE0	0	0	0	0	OVFE1	ECFE1	RSFE1	UDFE1	0	0	0	0	OVFE0	ECFE0	RSFE0	UDFE0	FFFF664H	0101H

Bit position	Bit name	Function					
11, 3	OVFEn	Indicates TM2n overflow status. 0: No overflow 1: Overflow					
		Caution If write access to the TBSTATE0 register is performed while overflow is not detected, the OVFEn bit is cleared (0).					
10, 2	ECFEn	Indicates the ECLR signal input status. 0: Low level 1: High level					
9, 1	RSFEn	Indicates the TM2n count status. 0: TM2n is not counting. 1: TM2n is counting (either up or down)					
8, 0	UDFEn	Indicates the TM2n count up/down status. 0: TM2n is in the count down mode. 1: TM2n is in the count up mode.					

Remark n = 0, 1

(11) Timer 2 capture/compare 1 to 4 status register 0 (CCSTATE0)

The CCSTATE0 register indicates the status of the timer 2 sub-channel sub capture/compare register (CVSEn0) and the timer 2 sub-channel main capture/compare register (CVPEn0) (n = 1 to 4).

This register can be read/written in 16-bit units.

When the higher 8 bits of the CCSTATE0 register are used as the CCSTATE0H register, and the lower 8 bits are used as the CCSTATE0L register, they can be read/written in 8-bit or 1-bit units.

Caution The BFFEn1 and BFFEn0 bits are read-only bits.

	CEFE4 BFFE41 BFFE40 O	CEFE3 BFFE31 BFFE	30 O CEFE2	BFFE21 BFFE20 O CEFE1 BFFE11 BFFE10 FFFFF666H 0000							
Bit position	Bit name			Function							
14, 10, 6, 2	CEFEn	CEFEn Indicates the capture/compare event occurrence status. 0: In capture register mode: No capture operation has occurred. In compare register mode: No compare match has occurred. 1: In capture register mode: At least one capture operation has occurred. In compare register mode: At least one compare match has occurred. Caution The CEFEn bit can be cleared (0) by performing write access to the CCSTATE0 register while no capture operation or compare match occurs. When bit manipulation is performed for the CEFE1 (CEFE3) bit and the CEFE2 (CEFE4) bit, both bits are cleared.									
13, 12, 9, 8, 5, 4, 1, 0	BFFEn1, Indicates the capture buffer status. BFFEn0										
		BFFEn1	BFFEn0	Capture buffer status							
		0	0	No value in buffer							
		0	1	Sub-channel n master register (CVPEn0) contains a capture value. Slave register (CVSEn0) does not contain a value.							
		1	0	Both sub-channel n master register (CVPEn0) and slave register (CVSEn0) contain a capture value.							
		1	1	Unused							
		n	sub capt	and BFFEn0 bits return a value only when sub-chanure/compare register (CVSEn0) buffer operation (ISEm0 register = 1) is selected or when capture regis							

Remark m = 12, 34

n = 1 to 4

when the compare register mode (CCSEn bit = 1) is selected.

(12) Timer 2 output delay register 0 (ODELE0)

The ODELE0 register sets the output delay operation synchronized with the clock to the TO2n pin's output delay circuit (n = 1 to 4).

This register can be read/written in 16-bit units.

When the higher 8 bits of the ODELE0 register are used as the ODELE0H register, and the lower 8 bits are used as the ODELE0L register, they can be read/written in 8-bit or 1-bit units.

ODELEO	15 1 ₀		12 1 ODLE40	11	10 ODLE32	9 ODLE31	8 ODLE30	7	6 ODLE22	5 ODLE21	4 ODLE20	0	2 0DLE12	1 ODLE11	O ODLE10	Address FFFF668H	Initial value																																				
Bit position Bit name						Function																																															
14 to 12, 6 to 4,		OD	_En2, _En1,		Sp	oecifie	s outp	ut d	elay o	perat	ion.																																										
		OD	_En0			ODLEn2 ODLEn1 ODLE							Set output delay operation																																								
							0		0		0		Don't	Don't perform output delay operation.																																							
																																											0		0		1		Set ou	ıtput	delay o	f 1 system cloc	k.
																											0		1		0		Set output delay of 2 system clocks.				ks.																
						(0		1		1		Set ou	ıtput	delay o	of 3 system clocks.																																					
													l								1		0		0		Set ou	ıtput	delay o	f 4 system cloc	ks.																						
																									1		0		1		Set ou	ıtput	delay o	f 5 system cloc	ks.																		
							1		1		0		Set output delay of 6 system clocks.																																								
							1		1		1		Set ou	ıtput	delay o	f 7 system cloc	ks.																																				
					R	emar	k The	OD	LEn2,	ODI	En1, a	and	ODLE	n0 bi	ts are ι	sed for EMI																																					

countermeasures.

Remark n = 1 to 4

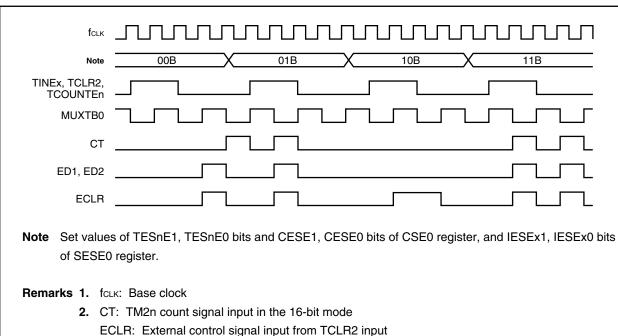
(13) Timer 2 software event capture register (CSCE0)

The CSCE0 register sets capture operation by software in the capture register mode.

This register can be read/written in 16-bit units.

Bit position	Bit name	Function
5 to 0	SEVEn	Specifies capture operation by software in capture register mode. 0: Continue normal operation. 1: Perform capture operation. Cautions 1. The SEVEn bit ignores the settings of the EEVEn and the LNKEn bits of the CMSEm0 register. 2. The SEVEn bit is automatically cleared (0) at the end of an event. 3. The SEVEn bit ignores all the internal limitation statuses of the timer 2 unit.

Remark m = 12, 34, 05


n = 0 to 5

9.3.5 Operation

(1) Edge detection

The edge detection timing is shown below.

Figure 9-67. Edge Detection Timing

ECLR: External control signal input from TCLR2 input ED1, ED2: Capture event signal input from edge selector

MUXTB0: TM20 multiplex signal

TCOUNTEn: Timer 2 count enable signal input

TINEx: Timer 2 sub-channel x capture event signal input

3. n = 0, 1x = 0 to 5

(2) Basic operation of timer 2

Figures 9-68 to 9-71 show the basic operation of timer 2.

Figure 9-68. Timer 2 Count Up Timing
(When TCRE0 Register's UDSEn1, UDSEn0 Bits = 00B,
ECEEn Bit = 0, ECREn Bit = 0, CLREn Bit = 0, CASE1 Bit = 0)

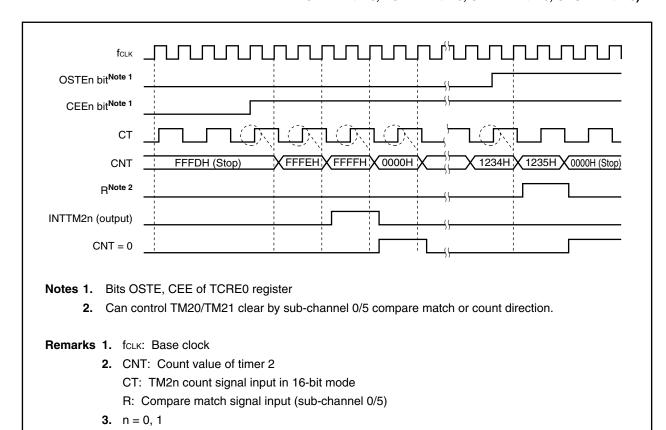
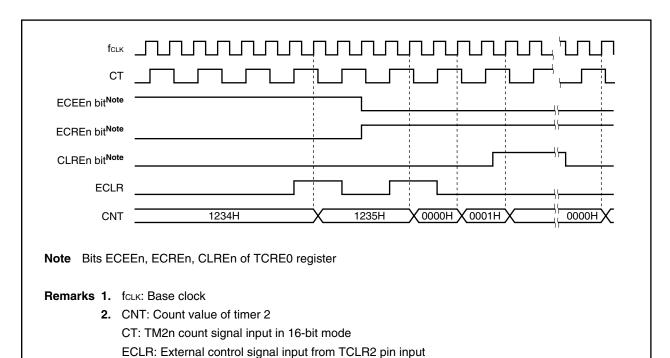
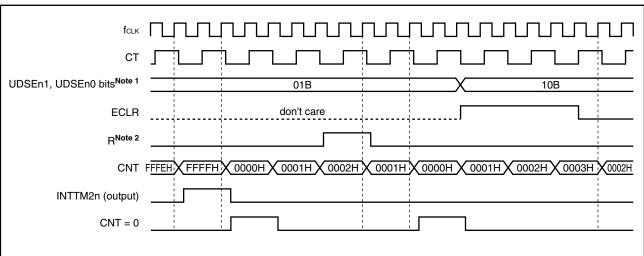



Figure 9-69. External Control Timing of Timer 2
(When TCRE0 Register's UDSEn1, UDSEn0 Bits = 00B,
OSTEn Bit = 0, CEEn Bit = 1, CASE1 Bit = 0)



3. n = 0, 1

Figure 9-70. Operation in Timer 2 Count Up/Down Mode

(When TCRE0 Register's ECEEn Bit = 0, ECREn Bit = 0, CLREn Bit = 0,

OSTEn Bit = 0, CEEn Bit = 1, CASE1 Bit = 0)

Notes 1. UDSEn1, UDSEn0 bits of TCRE0 register

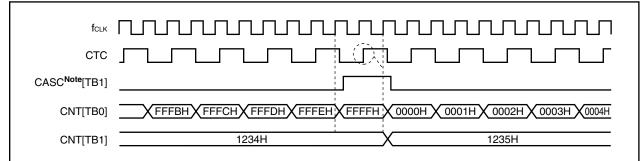
2. Can control TM20/TM21 clear by sub-channel 0/5 compare match or count direction.

Remarks 1. fclk: Base clock

2. CNT: Count value of timer 2

CT: TM2n count signal input in 16-bit mode

ECLR: External control signal input from TCLR2 pin input


R: Compare match signal input (sub-channel 0/5)

3. n = 0, 1

Figure 9-71. Timing in 32-Bit Cascade Operation Mode

(When TCRE0 Register's UDSEn1, UDSEn0 Bits = 00B, ECEEn Bit = 0, ECREn Bit = 0, CLREn Bit = 0, OSTEn Bit = 0, CEEn Bit = 1,

CASE1 Bit = 1)

Note If, in the 32-bit mode, CASC (CNT = MAX. for TM20) is input to TM21 and the CTC rising edge is detected, TM21 performs count operation.

Remarks 1. fclk: Base clock

2. CASC: TM21 count signal input in 32-bit mode

CNT: Count value of timer 2

CTC: TM21 count signal input in 32-bit mode

TB0: Count value of TM20 TB1: Count value of TM21

3. n = 0, 1

(3) Operation of capture/compare register (sub-channels 1 to 4)

Sub-channels 1 to 4 receive the count value of the timer 2 multiplex count generator.

The multiplex count generator is an internal unit of TM2n that supplies the multiplex count value MUXCNT to sub-channels 1 to 4. The count value of TM20 is output to sub-channels 1 to 4 at the rising edge of MUXTB0, and the count value of TM21 is output to sub-channels 1 to 4 at the rising edge of MUXTB1.

Figure 9-72 shows the block diagram of the timer 2 multiplex count generator, and Figure 9-73 shows the multiplex count timing.

Figure 9-72. Block Diagram of Timer 2 Multiplex Count Generator

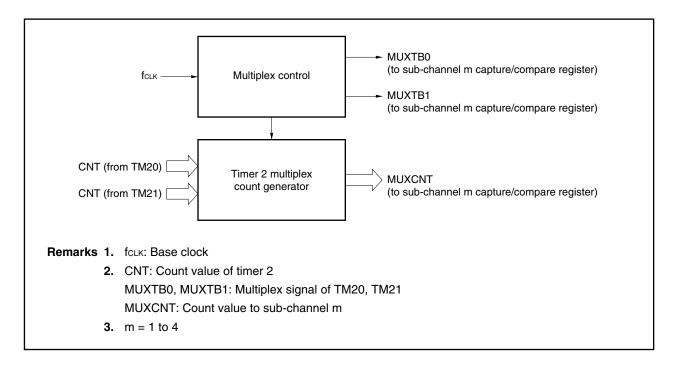
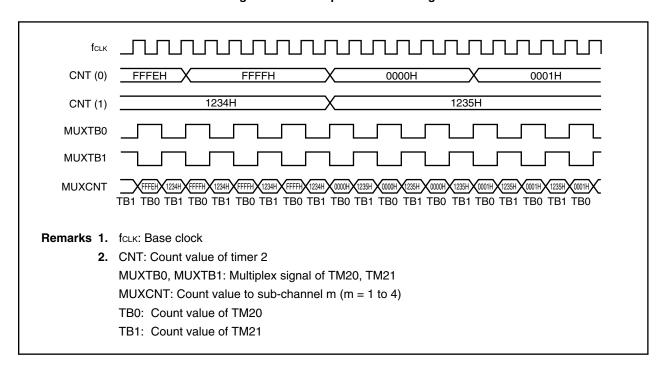
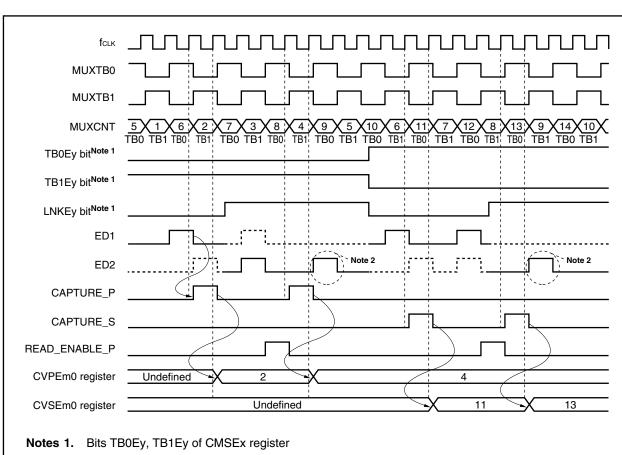




Figure 9-73. Multiplex Count Timing

Figures 9-74 to 9-79 show the operation of the capture/compare register (sub-channels 1 to 4).

Figure 9-74. Capture Operation: 16-Bit Buffer-Less Mode
(When Operation Is Delayed Through Setting of LNKEy Bit of CMSEx0
Register, and CMSEx0 Register's CCSEy Bit = 0, BFEEy Bit = 0,
EEVEy Bit = 1, and CSCE0 Register's SEVEy Bit = 0)

2. If an event occurs in this timing, it is ignored.

Remarks 1. fclk: Base clock

2. CAPTURE_P: Capture trigger signal of main capture register

CAPTURE_S: Capture trigger signal of sub capture register

ED1, ED2: Capture event signal input from edge selector

MUXCNT: Count value to sub-channel m

MUXTB0, MUXTB1: Multiplex signal of TM20, TM21

READ_ENABLE_P: Read timing for CVPEm0 register

TB0: Count value of TM20

TB1: Count value of TM21

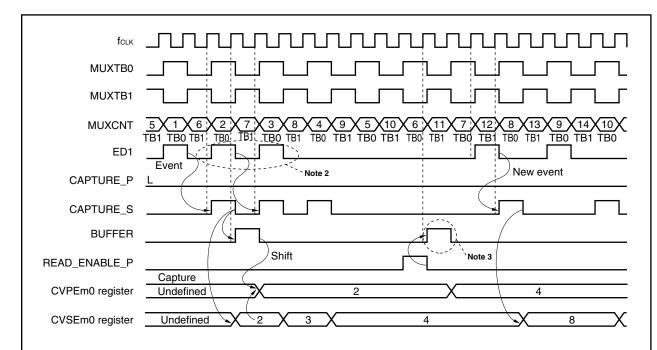

3. m = 1 to 4, x = 12, 34

Figure 9-75. Capture Operation: Mode with 16-Bit Buffer^{Note 1}

(When CMSEx0 Register's TByE1 Bit = 0, TByE0 Bit = 1, CCSEy Bit = 0,

LNKEy Bit = 0, BFEEy Bit = 1, EEVEy Bit = 1, and CSCE0 Register's

SEVEy Bit = 0)

- **Notes 1.** To operate TM2n in the mode with 16-bit buffer, perform capture at least twice at the start of operation and read the CVPEm0 register. Also, read the CVPEm0 register after performing capture at least once
 - 2. Write operation to the CVPEn0 register is not performed at these signal inputs because the CVSEm0 register operates as a buffer.
 - 3. After this timing, write operation from the CVSEm0 register to the CVPEm0 register is enabled.

Remarks 1. fclk: Base clock

2. BUFFER: Timing of write operation from CVSEm0 register to CVPEm0 register

CAPTURE_P: Capture trigger signal of main capture register

CAPTURE_S: Capture trigger signal of sub capture register

ED1: Capture event signal input from edge selector

MUXCNT: Count value to sub-channel m

MUXTB0, MUXTB1: Multiplex signal of TM20, TM21

READ_ENABLE_P: Read timing of CVPEm0 register

TB0: Count value of TM20; TB1: Count value of TM21

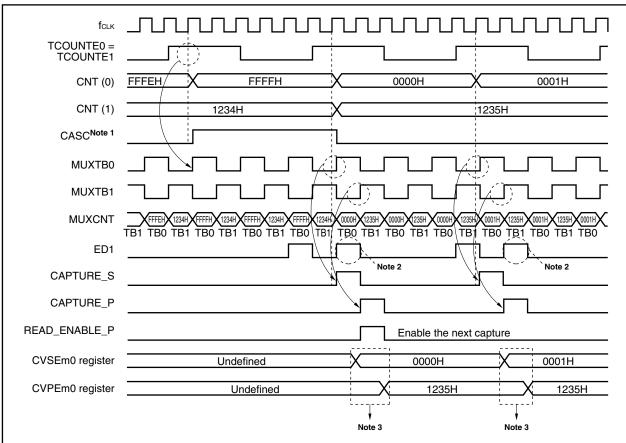

3. m = 1 to 4, x = 12, 34

Figure 9-76. Capture Operation: 32-Bit Cascade Operation Mode

(When CMSEx Register's TByE1 Bit = 1, TByE0 Bit = 1, CCSEy Bit = 0,

LNKEy Bit = 0, BFEEy Bit = Arbitrary, EEVEy Bit = 1, and CSCE0

Register's SEVEy Bit = 0)

- **Notes 1.** TM21 performs count operation when, in the 32-bit mode, CASC (CNT = MAX. for TM20) is input to TM21 and the rising edge of CTC is detected.
 - 2. If an event occurs during this timing, it is ignored.
 - **3.** CPU read access is not performed in this timing (wait status).

Remarks 1. fclk: Base clock

2. CAPTURE_P: Capture trigger signal of main capture register

CAPTURE_S: Capture trigger signal of sub capture register

CASC: TM21 count signal in 32-bit mode

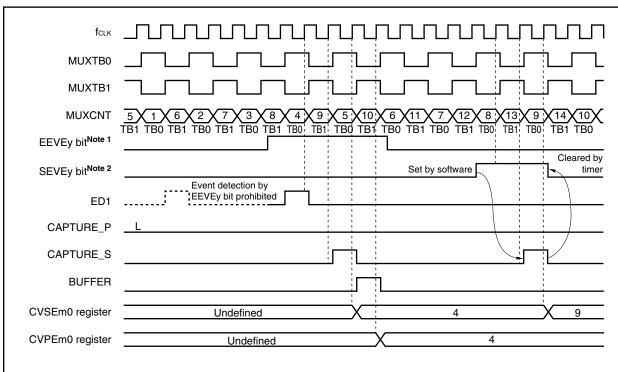
CNT: Count value of timer 2

ED1: Capture event signal input from edge selector

MUXCNT: Count value to sub-channel m

MUXTB0, MUXTB1: Multiplex signal of TM20, TM21

READ_ENABLE_P: Read timing of CVPEm0 register


TB0: Count value of TM20

TB1: Count value of TM21

TCOUNTE0, TCOUNTE1: Count enable signal input of timer 2

3. m = 1 to 4, x = 12, 34

Figure 9-77. Capture Operation: Capture Control by Software and Trigger Timing
(When CMSEx0 Register's TByE1 Bit = 0, TByE0 Bit = 1, CCSEy Bit = 0, LNKEy Bit
= 0, BFEEy Bit = 1)

Notes 1. EEVEy bit of CMSEx0 register

2. SEVEy bit of CSCE0 register

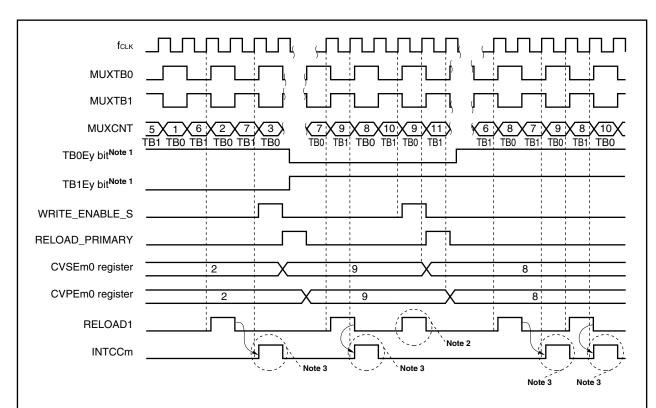
Remarks 1. fclk: Base clock

2. BUFFER: Timing of write operation from CVSEm0 register to CVPEm0 register

CAPTURE_P: Capture trigger signal of main capture register

CAPTURE_S: Capture trigger signal of sub capture register

ED1: Capture event signal input from edge selector


MUXCNT: Count value to sub-channel m

MUXTB0, MUXTB1: Multiplex signal of TM20, TM21

TB0: Count value of TM20
TB1: Count value of TM21

3. m = 1 to 4, x = 12, 34

Figure 9-78. Compare Operation: Buffer-Less Mode
(When CMSEx0 Register's CCSEy Bit = 1, LNKEy Bit = Arbitrary,
BFEEy Bit = 0)

Notes 1. TB1Ey, TB0Ey bits of CMSEx0 register

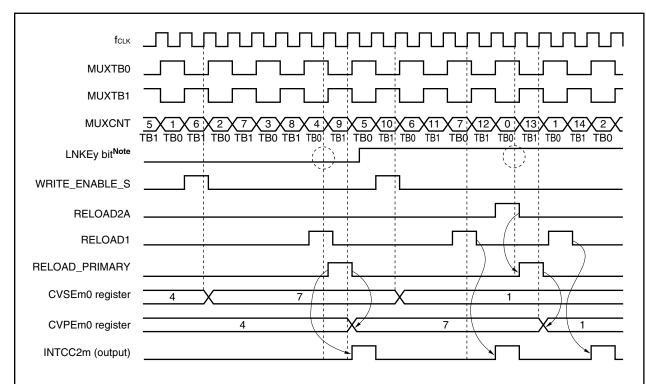
- 2. No interrupt is generated due to compare match with counter differing from TB1Ey, TB0Ey bit settings.
- 3. INTCC2m is generated to match the cycle from rising edge to falling edge of MUXTB0.

Remarks 1. fclk: Base clock

2. MUXCNT: Count value to sub-channel m

MUXTB0, MUXTB1: Multiplex signal of TM20, TM21

RELOAD1: Compare match signal


RELOAD_PRIMARY: Timing of write operation from CVSEm0 register to CVPEm0 register

WRITE_ENABLE_S: Timing of CVSEm0 register write operation

TB0: Count value of TM20 TB1: Count value of TM21

3. m = 1 to 4, x = 12, 34

Figure 9-79. Compare Operation: Mode with Buffer
(When Operation Is Delayed Through Setting of LNKEy Bit of CMSEx0
Register, CMSEx0 Register's CCSEy Bit = 1, BFEEy Bit = 1)

Note LNKEy bit of CMSEx0 register

Remarks 1. fclk: Base clock

2. MUXCNT: Count value to sub-channel m

MUXTB0, MUXTB1: Multiplex signal of TM20, TM21

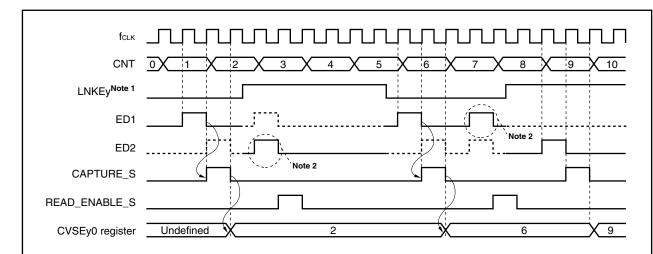
RELOAD1: Compare match signal

RELOAD2A: Zero count signal input of TM20 (occurs when TM20 = 0000H)

RELOAD_PRIMARY: Timing of write operation from CVSEm0 register to CVPEm0 register

WRITE_ENABLE_S: Timing of CVSEm0 register write operation

TB0: Count value of TM20 (In this figure, the maximum count value is 7.)


TB1: Count value of TM21

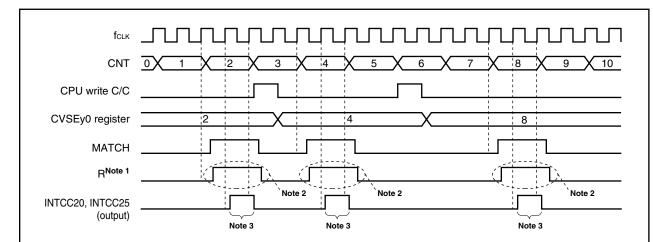
3. m = 1 to 4, x = 12, 34

(4) Operation of capture/compare register (sub-channels 0, 5)

Figures 9-80 and 9-81 show the operation of the capture/compare register (sub-channels 0, 5).

Figure 9-80. Capture Operation: Timer 2 Count Value Read Timing
(When CMSE050 Register's CCSEy Bit = 0, EEVEy Bit = 1, and CSCE0
Register's SEVEy Bit = 0)

Notes 1. LNKEy bit of CMSE050 register


2. If an event occurs in this timing, it is ignored.

Remarks 1. fclk: Base clock

2. CNT: Count value of timer 2 CAPTURE_S: Capture trigger signal of sub capture register ED1, ED2: Capture event signal inputs from edge selector READ_ENABLE_S: Read timing for CVSEy0 register

3. y = 0, 5

Figure 9-81. Compare Operation: Timing of Compare Match and Write Operation to Register (When CMSE050 Register's CCSEy Bit = 1, EEVEy Bit = Arbitrary, and CSCE0 Register's SEVEy Bit = Arbitrary)

- **Notes 1.** Can control TM20/TM21 clear by sub-channel 0/5 compare match or count direction.
 - 2. When MATCH signal occurs, the same waveform as the MATCH signal is generated.
 - 3. The pulse width is always 1 clock.

Remarks 1. fclk: Base clock

2. CNT: Count value of timer 2

MATCH: CVSEy0 register compare match timing R: Compare match input (sub-channel 0/5)

(5) Operation of output circuit

Figures 9-82 to 9-85 show the output circuit operation.

Figure 9-82. Signal Output Operation: Toggle Mode 0 and Toggle Mode 1

(When OCTLE0 Register's SWFEn Bit = 0, and ODELE0 Register's ODLEn2
to ODLEn0 Bits = 0)

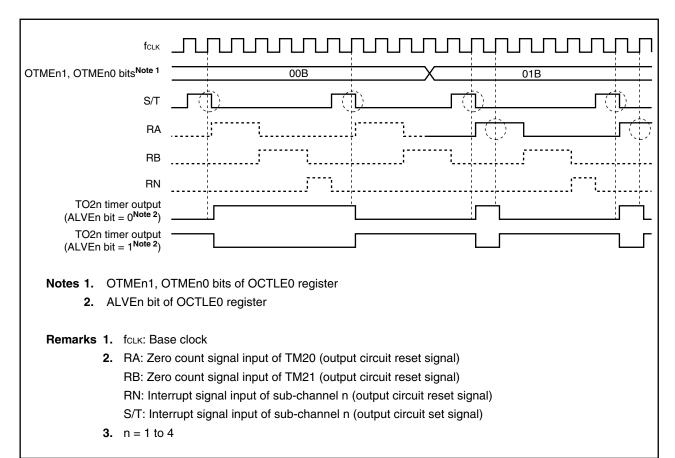


Figure 9-83. Signal Output Operation: Toggle Mode 2 and Toggle Mode 3
(When OCTLE0 Register's SWFEn Bit = 0, and ODELE0 Register's ODLEn2
to ODLEn0 Bits = 0)

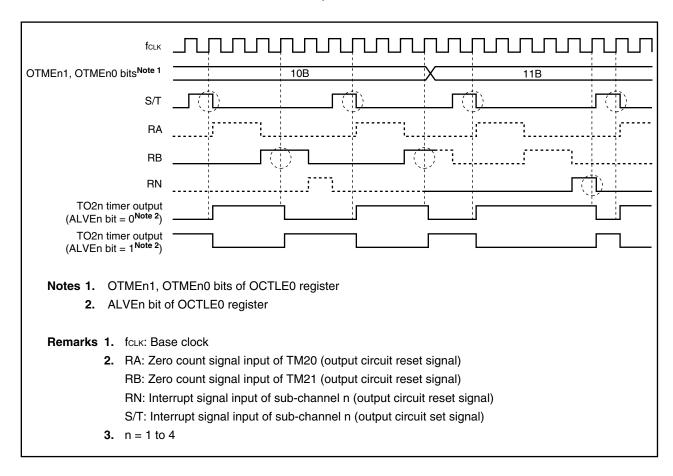


Figure 9-84. Signal Output Operation: During Software Control

(When OCTLE0 Register's OTMEn1, OTMEn0 Bits = Arbitrary, SWFEn Bit

= 1, and ODELE0 Register's ODLEn2 to ODLEn0 Bits = 0)

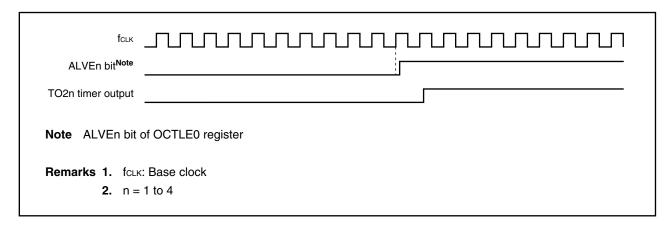
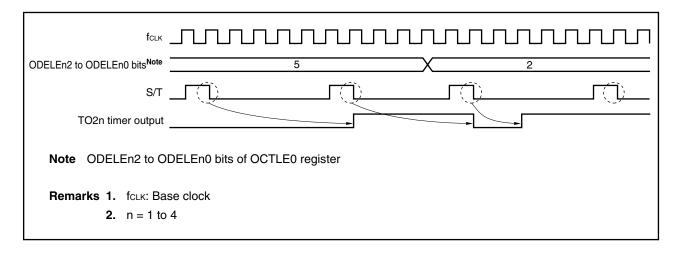
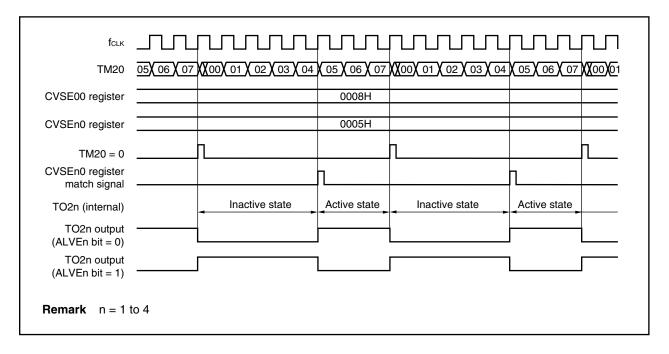



Figure 9-85. Signal Output Operation: During Delay Output Operation
(When OCTLE0 Register's OTMEn1, OTMEn0 Bits = 0, ALVEn = 0, SWFEn Bit = 0)



9.3.6 PWM output operation when timer 2 operates in compare mode

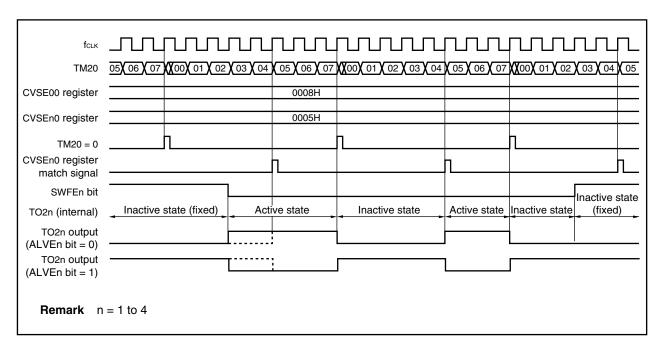
(1) Operation when TO2n pin performs PWM output operation in toggle mode 1

In toggle mode 1, the TO2n output (internal) becomes inactive triggered by a signal when TM20 = 0, and becomes active triggered by a sub-channel 1 (CVPEn0 register) compare match signal. In accordance with the state of this TO2n (internal), the TO2n pin outputs a high or low level depending on the OCTLE0.ALVEn bit setting.

Figure 9-86. Normal Output Operation (When OCTLE0 Register's OTMEn1, OTMEn0 Bits = 01, ODELE0 Register's ODLEn2 to ODLEn0 Bits = 000)

(2) Operation when TO2n pin output is controlled by manipulating OCTLE0.SWFEn bit in toggle mode 1

(a) When a sub-channel n compare match signal is output immediately after the SWFEn bit is cleared to 0

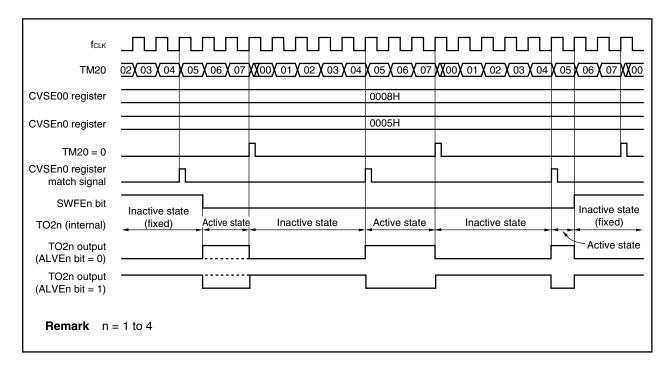

Figures 9-87 and 9-88 show the waveforms when output from the TO2n output pin is started or ended by manipulating the SWFEn bit in toggle mode 1.

In the V850E/IA1, timer 2 outputs a level according to the ALVEn bit setting (low level when ALVEn bit = 0, and high level when ALVEn bit = 1) by fixing the TO2n output to the inactive state when the SWFEn bit is 1. When the SWFEn bit is 0, TO2n (internal) synchronizes with a trigger signal and an active or inactive level is output from the TO2n output pin.

However, TO2n output is forcibly fixed to the active state when the SWFEn bit is cleared to 0, and inactive state when the SWFEn bit is set to 1.

Therefore, if the sub-channel n compare match signal is output immediately after the SWFEn bit is cleared to 0, the active period from when the SWFEn bit is cleared to 0 to when the compare match signal is output will be added to the ordinary TO2n output active period, so the first active period becomes long (refer to **Figure 9-87**).

Figure 9-87. When Output Operation Is Started/Ended Normally (When OCTLE0 Register's OTMEn1, OTMEn0 Bits = 01, ODELD0 Register's ODLEn2 to ODLEn0 Bits = 000)



(b) When the trigger signal of TM20 = 0 is output immediately after the SWFEn bit is cleared to 0

When the trigger signal of TM20 = 0 is output immediately after the SWFEn bit is cleared to 0, from when the SWFEn bit is cleared to 0 to when the trigger signal of TM20 = 0 is output is the first active period, so a pulse shorter than the active period of the ordinary TO2n output is output.

In addition, since TO2n output is forcibly fixed to the inactive level when the SWFEn bit is set to 1, the active level output period also becomes shorter if the SWFEn bit is set to 1 while an active level is being output (refer to **Figure 9-88**).

Figure 9-88. When Output Operation Is Started/Ended Normally (When OCTLE0 Register's OTMEn1, OTMEn0 Bits = 01, ODELD0 Register's ODLEn2 to ODLEn0 Bits = 000)

9.4 Timer 3

9.4.1 Features (timer 3)

Timer 3 (TM3) is a 16-bit timer/counter that can perform the following operations.

- Interval timer function
- PWM output
- External signal cycle measurement

9.4.2 Function overview (timer 3)

• 16-bit timer/counter (TM3): 1 channel

• Capture/compare registers: 2

Count clock division selectable by prescaler (set the frequency of the count clock to 16 MHz or less)

• Base clock (fclk): 2 types (set fclk to 32 MHz or less)

fxx and fxx/2 can be selected

Prescaler division ratio

The following division ratios can be selected according to the base clock (fclk).

Division Ratio	Base Clo	ock (fclk)
	fxx Selected	fxx/2 Selected
1/2	fxx/2	fxx/4
1/4	fxx/4	fxx/8
1/8	fxx/8	fxx/16
1/16	fxx/16	fxx/32
1/32	fxx/32	fxx/64
1/64	fxx/64	fxx/128
1/128	fxx/128	fxx/256
1/256	fxx/256	fxx/512

- Interrupt request sources
 - Capture/compare match interrupt requests: 2 sources

In case of capture register: INTCC3n generated by INTP3n input

In case of compare register: INTCC3n generated by CC3n match signal

• Overflow interrupt request: 1 source

INTTM3 generated upon overflow of TM3 register

• Timer/counter count clock sources: 2 types

(Selection of external pulse input, internal system clock cycle)

- One of two operation modes when the timer/counter overflows can be selected: free-running mode or overflow stop mode
- The timer/counter can be cleared by match of timer/counter and compare register
- External pulse output (TO3): 1

Remarks 1. fxx: Internal system clock

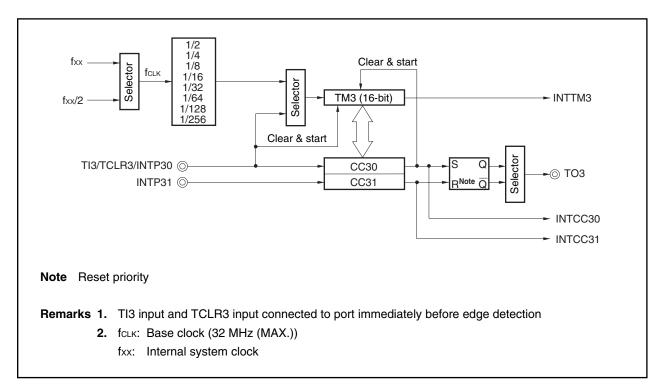
2. n = 0, 1

9.4.3 Basic configuration

Table 9-12. Timer 3 Configuration List

Timer	Coun	t Clock	Register	Read/Write	Generated	Capture	Timer Output
	Note 1	Note 2			Interrupt Signal	Trigger	S/R
Timer 3	fxx/2, fxx/4, fxx/8, fxx/16, fxx/32,	fxx/4, fxx/8, fxx/16, fxx/32, fxx/64,	TM3	Read/write	INTTM3	INTP30	TO3 (S)
	fxx/64, fxx/128, fxx/256	fxx/128, fxx/256, fxx/512	CC31	Read/write	INTC31	INTP31	TO3 (R)

Notes 1. When fxx is selected as the base clock (fclk) of TM3

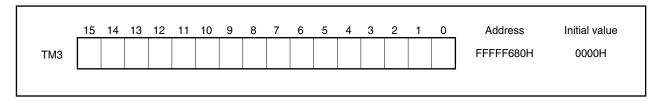

2. When fxx/2 is selected as the base clock (fclk) of TM3

Remark fxx: Internal system clock

S/R: Set/Reset

Figure 9-89 shows the block diagram of timer 3.

Figure 9-89. Block Diagram of Timer 3



(1) Timer 3 (TM3)

TM3 functions as a 16-bit free-running timer or as an event counter for an external signal. Besides being mainly used for cycle measurement, TM3 can be used as pulse output.

TM3 is read-only, in 16-bit units.

- Cautions 1. The TM3 register can only be read. If writing is performed to the TM3 register, the subsequent operation is undefined.
 - 2. If the TM3CAE bit of the TMC30 register is cleared (0), a reset is performed asynchronously.
 - 3. Continuous reading of TM3 is prohibited. If TM3 is continuously read, the second read value may differ from the actual value.

TM3 performs the count-up operations of an internal count clock or external count clock. Timer starting and stopping are controlled by the TM3CE bit of timer control register 30 (TMC30).

The internal or external count clock is selected by the ETI bit of timer control register 31 (TMC31).

(a) Selection of the external count clock

TM3 operates as an event counter.

When the ETI bit of timer control register 31 (TMC31) is set (1), TM3 counts the valid edges of the external clock input (TI3), synchronized with the internal count clock. The valid edge is specified by valid edge selection register (SESC).

Caution If the INTP30, TI3, and TCLR3 pins are used as the TI3 and TCLR3, either mask the INTP30 interrupt or set CC3n in compare mode (n = 0, 1).

(b) Selection of the internal count clock

TM3 operates as a free-running timer.

When an internal clock is specified as a count clock by timer control register 31 (TMC31), TM3 is counted up for each input clock cycle specified by the CS2 to CS0 bits of the TMC30 register.

A division by the prescaler can be selected for the count clock from among fclk/2, fclk/4, fclk/16, fclk/32, fclk/64, fclk/128 and fclk/256 by the TMC30 register (fclk: base clock).

An overflow interrupt can be generated if the timer overflows. Also, the timer can be stopped following an overflow by setting the OST bit of the TMC31 register to 1.

Caution The count clock cannot be changed while the timer is operating.

The conditions when the TM3 register becomes 0000H are shown below.

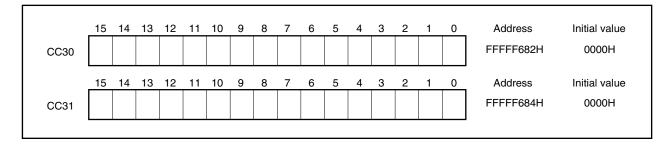
(i) Asynchronous reset

- TM3CAE bit of TMC30 register = 0
- Reset input

(ii) Synchronous reset

- TM3CE bit of TMC30 register = 0
- The CC30 register is used as a compare register, and the TM3 and CC30 registers match when clearing the TM3 register is enabled (CCLR bit of the TMC31 register = 1)

(2) Capture/compare registers 30 and 31 (CC30 and CC31)


These capture/compare registers 30 and 31 are 16-bit registers.

They can be used as capture registers or compare registers according to the CMS1 and CMS0 bit specifications of timer control register 31 (TMC31).

These registers can be read/written in 16-bit units (however, write operations can only be performed in compare mode).

Caution Continuous reading of CC3n is prohibited. If CC3n is continuously read, the second read value may differ from the actual value. If CC3n must be read twice, be sure to read another register between the first and the second read operation.

Correct usage example	Incorrect usage example
CC30 read	CC30 read
CC31 read	CC30 read
CC30 read	CC31 read
CC31 read	CC31 read

(a) Setting these registers to capture registers (CMS1 and CMS0 of TMC31 = 0)

When these registers are set to capture registers, the valid edges of the corresponding external interrupt signals INTP30 and INTP31 are detected as capture triggers. The timer TM3 is synchronized with the capture trigger, and the value of TM3 is latched in the CC30 and CC31 registers (capture operation).

The valid edge of the INTP30 pin is specified (rising, falling, or both edges) according to the IES301 and IES300 bits of the SESC register, and the valid edge of the INTP31 pin is specified according to the IES311 and IES310 bits of the SESC register.

The capture operation is performed asynchronously relative to the count clock. The latched value is held in the capture register until the next capture operation is performed.

When the TM3CAE bit of timer control register 30 (TMC30) is 0, 0000H is read.

If these registers are specified as capture registers, an interrupt is generated by detecting the valid edge of signals INTP30 and INTP31.

Caution If the capture operation and the TM3 register count prohibit setting (TM3CE bit of TMC30 register = 0) timings conflict, the captured data becomes undefined, and no INTCC3n interrupt is generated (n = 0, 1).

(b) Setting these registers to compare registers (CMS1 and CMS0 of TMC31 = 1)

When these registers are set to compare registers, the TM3 and register values are compared for each count clock, and an interrupt is generated by a match. If the CCLR bit of timer control register 31 (TMC31) is set (1), the TM3 value is cleared (0) at the same time as a match with the CC30 register (it is not cleared (0) by a match with the CC31 register).

A compare register is equipped with a set/reset output function. The corresponding timer output (TO3) is set or reset, synchronized with the generation of a match signal.

The interrupt selection source differs according to the function of the selected register.

- Cautions 1. To write to capture/compare registers 30 and 31 (CC30, CC31), always set the TM3CAE bit to 1 first. When the TM3CAE bit is 0, even if writing to registers CC30 and CC31, the data that is written will be invalid because the reset is asynchronous.
 - 2. Perform a write operation to capture/compare registers 30 and 31 after setting them to compare registers according to the TMC30, TMC31 register setting. If they are set to capture registers (CMS1 and CMS0 bits of TMC31 register = 0), no data is written even if a write operation is performed to CC30 and CC31.
 - 3. When these registers are set to compare registers, INTP30 and INTP31 cannot be used as external interrupt input pins.

9.4.4 Control registers

(1) Timer 3 clock selection register (PRM03)

The PRM03 register is used to select the base clock (fcLK) of timer 3 (TM3).

This register can be read/written in 8-bit or 1-bit units.

Cautions 1. Always set this register before using the timer.

2. Set fclk to 32 MHz or less.

	7	6	5	4	3	2	1	0	Address	Initial value
PRM03	0	0	0	0	0	0	0	PRM3	FFFFF690H	00H

Bit position	Bit name	Function
0	PRM3	Specifies the base clock (fcLk) of timer 3 (TM3). 0: $fxx/2$ (when $fxx > 32$ MHz) 1: fxx (when $fxx \le 32$ MHz)

Remark fxx: Internal system clock

(2) Timer control register 30 (TMC30)

The TMC30 register controls the operation of TM3.

This register can be read/written in 8-bit or 1-bit units.

- Cautions 1. The TM3CAE bit and other bits cannot be set at the same time. Be sure to set the TM3CAE bit and then set the other bits and the other registers of TM3. To use an external pin related to the timer function when using timer 3, be sure to set (1) the TM3CAE bit after setting the external pin to the control mode.
 - 2. If occurrence of an overflow conflicts with writing to the TMC30 register, the value of the TM30VF bit is the value written to the TMC30 register.

(1/2)

	<7>	6	5	4	3	2	<1>	<0>	Address	Initial value
TMC30	TM3OVF	CS2	CS1	CS0	0	0	ТМЗСЕ	TM3CAE	FFFF686H	00H

Bit position	Bit name	Function
7	TM3OVF	Flag that indicates TM3 overflow. 0: No overflow 1: Overflow The TM3OVF bit becomes "1" when TM3 changes from FFFFH to 0000H. An overflow interrupt request (INTTM3) is generated at the same time. However, if CC30 is set to the compare mode (CMS0 bit of the TMC31 register = 1) and match clear during comparison of TM3 and CC30 is enabled (CCLR bit of TMC31 register = 1), and TM3 is cleared to 0000H following match at FFFFH, TM3 is considered to have been cleared and the TM3OVF bit does not become "1", nor is the INTTM3 interrupt generated. The TM3OVF bit holds a "1" until "0" is written to it or an asynchronous reset is applied while the TM3CAE bit = 0. Interrupts by overflow and the TM3OVF bit are independent, and even if the TM3OVF bit is manipulated, this does not affect the interrupt request flag for INTTM3 (TM3IF0). If an overflow occurs while the TM3OVF bit is being read, the value of the flag changes and the value is returned at the next read.

(2/2)

Bit position	Bit name	Function						
6 to 4	CS2 to CS0	Selects the internal count clock for TM3.						
		CS2	CS1	CS0	Count clock			
		0	0	0	fclk/2			
		0	0	1	fclk/4			
		0	1	0	fclk/8			
		0	1	1	fclk/16			
		1	0	0	fclk/32			
		1	0	1	fclk/64			
		1	1	0	fclk/128			
		1	1	1	fclk/256			
	TM3CE	Controls the operation of TM3. 0: Disable count (timer stopped at 0000H and does not operate) 1: Perform count operation.						
	TIMOGE	0: Disable	,	r stopped a	t 0000H and does not operate)			
		0: Disable 1: Perform Caution If	m count oper	r stopped a ation. , the exterr	nal pulse output (TO3) becomes inactive lev			
0	TM3CAE	0: Disable 1: Perforr Caution II (I	TM3CE = 0 the active le egister).	r stopped a ation. the extern vel of TO3	nal pulse output (TO3) becomes inactive lev			
0		0: Disable 1: Perforr Caution II (I reconstruction of the controls the control the con	TM3CE = 0 the active le egister).	r stopped a ation. the exterr vel of TO3 at clock. et entire TN	nal pulse output (TO3) becomes inactive levoutput is set with the ALV bit of the TMC31			
0		0: Disable 1: Perform Caution If (i) Controls the 0: Asynch 1: Supply Cautions 1	the active leegister). internal countronously residuate clock (. When TM: asynchronously residuate clock (r stopped a ation. the exterr vel of TO3 at clock. tet entire TM fcLk) to TM3 BCAE = 0 is nously.	nal pulse output (TO3) becomes inactive level output is set with the ALV bit of the TMC31 M3 unit. Stop base clock supply to TM3 unit. 3 unit. s set, the TM3 unit can be reset			
0		0: Disable 1: Perform Caution If (i) Controls the 0: Asynch 1: Supply Cautions 1	the active lesses lesses clock (When TM: asynchroic TM3CE = 0 the active lesses lesses clock (When TM: asynchroic TM:	r stopped a ation. the exterr vel of TO3 at clock. tet entire TM fcLk) to TM3 BCAE = 0 is nously.	nal pulse output (TO3) becomes inactive level output is set with the ALV bit of the TMC31 M3 unit. Stop base clock supply to TM3 unit. a set, the TM3 unit can be reset the TM3 unit is in a reset state. To operate			

(3) Timer control register 31 (TMC31)

The TMC31 register controls the operation of TM3.

This register can be read/written in 8-bit or 1-bit units.

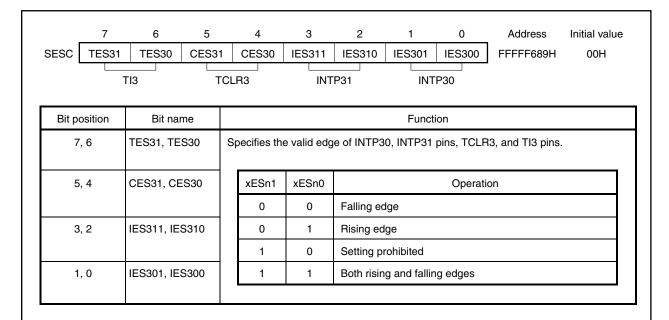
- Cautions 1. Do not change the bits of the TMC31 register during timer operation. If they are to be changed, they must be changed after setting the TM3CE bit of the TMC30 register to "0".

 If the TMC31 register is overwritten during timer operation, the operation is not guaranteed.
 - 2. If the ENT1 bit and the ALV bit are changed simultaneously, a glitch (spike-shaped noise) may be generated in the TO3 pin output. Either design the circuit that will not malfunction even if a glitch is generated, or make sure that the ENT1 bit and the ALV bit do not change at the same time.
 - TO3 output remains unchanged by external interrupt signals (INTP30, INTP31). When using the TO3 signal, set the capture/compare register to the compare register (CMS1, CMS0 bits of TMC31 register = 1).

Remark A reset takes precedence for the flip-flop of the TO3 output.

	7	6	5	4	3	2	1	0	Address	Initial value
TMC31	OST	ENT1	ALV	ETI	CCLR	ECLR	CMS1	CMS0	FFFFF688H	20H

Bit position	Bit name	Function
7	OST	Sets the operation when TM3 overflows. 0: Continue count operation after overflow (free-running mode) 1: After overflow, timer holds 0000H and stops count operation (overflow stop mode). At this time, the TM3CE bit of TMC30 remains "1". The count operation is resumed by again writing "1" to the TM3CE bit.
6	ENT1	 Enables/disables output of external pulse output (TO3). 0: Disable external pulse output. Output of inactive level of ALV bit to TO3 pin is fixed. TO3 pin level remains unchanged even if match signal from corresponding compare register is generated. 1: Enable external pulse output. Compare register match causes TO3 output to change. However, in capture mode, TO3 output does not change. An ALV bit inactive level is output from the time when timer output is enabled until a match signal is generated.
		Caution If either CC30 or CC31 is specified as a capture register, the ENT1 bit must be set to "0".
5	ALV	Specifies active level of external pulse output (TO3). 0: Active level is low level. 1: Active level is high level.
		Caution The initial value of the ALV bit is "1".
4	ETI	Switches count clock between external clock and internal clock. 0: Specifies input clock (internal). The count clock can be selected with bits CS2 to CS0 of TMC30. 1: Specifies external clock (TI3). Valid edge can be selected with bits TES31, TES30 of SESC.
3	CCLR	Enables/disables TM3 clearing during compare operation. 0: Disable clearing. 1: Enable clearing (TM3 is cleared when CC30 and TM3 match during compare operation).
2	ECLR	Enables TM3 clearing by external clear input (TCLR3). 0: Disable clearing by TCLR3. 1: Enable clearing by TCLR3 (counting resumes after clearing).
1	CMS1	Selects operation mode of capture/compare register (CC31). 0: Register operates as capture register. 1: Register operates as compare register.
0	CMS0	Selects operation mode of capture/compare register (CC30). 0: Register operates as capture register. 1: Register operates as compare register.


(4) Valid edge selection register (SESC)

This register specifies the valid edge of external interrupt requests (TI3, TCLR3, INTP30, INTP31) from an external pin.

The rising edge, the falling edge, or both rising and falling edges can be specified as the valid edge independently for each pin.

This register can be read/written in 8-bit or 1-bit units.

Caution Do not change the bits of SESC register during timer operation. If they are to be changed, they must be changed after setting the TM3CE bit of the TMC30 register to "0". If the SESC register is overwritten during timer operation, the operation is not guaranteed.

Remark n = 3, 30, 31

9.4.5 Operation

(1) Count operation

Timer 3 can function as a 16-bit free-running timer or as an external signal event counter. The setting for the type of operation is specified by timer control register 3n (TMC3n) (n = 0, 1).

When it operates as a free-running timer, if the CC30 or CC31 register and the TM3 count value match, an interrupt signal is generated and the timer output signal (TO3) can be set or reset. Also, a capture operation that holds the TM3 count value in the CC30 or CC31 register is performed, synchronized with the valid edge that was detected from the external interrupt request input pin as an external trigger. The capture value is held until the next capture trigger is generated.

Caution If the INTP30/TI3/TCLR3 pin is used as TI3 or TCLR3, either mask the INTP30 interrupt or set the CC3n register to compare mode (n = 0, 1).

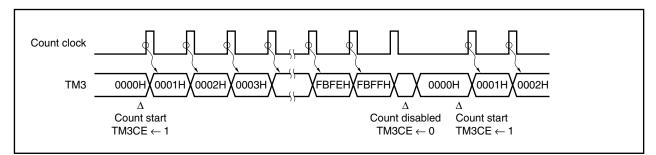


Figure 9-90. Basic Operation of Timer 3

(2) Overflow

When the TM3 register has counted the count clock from FFFFH to 0000H, the TM3OVF bit of the TMC30 register is set (1), and an overflow interrupt (INTTM3) is generated at the same time. However, if the CC30 register is set to compare mode (CMS0 bit = 1) and to the value FFFFH when match clearing is enabled (CCLR bit = 1), then the TM3 register is considered to be cleared and the TM3OVF bit is not set (1) when the TM3 register changes from FFFFH to 0000H. Also, the overflow interrupt (INTTM3) is not generated.

When the TM3 register is changed from FFFFH to 0000H because the TM3CE bit changes from 1 to 0, the TM3 register is considered to be cleared, but the TM3OVF bit is not set (1) and no INTTM3 interrupt is generated.

Also, timer operation can be stopped after an overflow by setting the OST bit of the TMC31 register to 1. When the timer is stopped due to an overflow, the count operation is not restarted until the TM3CE bit of the TMC30 register is set (1).

Operation is not affected even if the TM3CE bit is set (1) during a count operation.

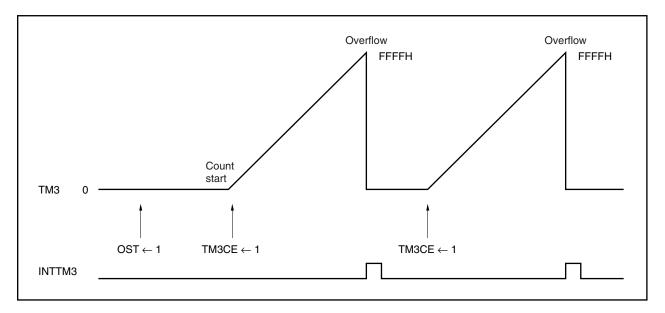


Figure 9-91. Operation After Overflow (When OST = 1)

(3) Capture operation

The TM3 register has two capture/compare registers. These are the CC30 register and the CC31 register. A capture operation or a compare operation is performed according to the settings of both the CMS1 and CMS0 bits of the TMC31 register. If the CMS1 and CMS0 bits of the TMC31 register are set to 0, the register operates as a capture register.

A capture operation that captures and holds the TM3 count value asynchronously relative to the count clock is performed synchronized with an external trigger. The valid edge that is detected from an external interrupt request input pin (INTP30 or INTP31) is used as an external trigger (capture trigger). The TM3 count value during counting is captured and held in the capture register, synchronized with that capture trigger signal. The capture register value is held until the next capture trigger is generated.

Also, an interrupt request (INTCC30 or INTCC31) is generated by INTP30 or INTP31 signal input.

The valid edge of the capture trigger is set by valid edge selection register (SESC).

If both the rising and falling edges are set as capture triggers, the input pulse width from an external source can be measured. Also, if only one of the edges is set as the capture trigger, the input pulse cycle can be measured.

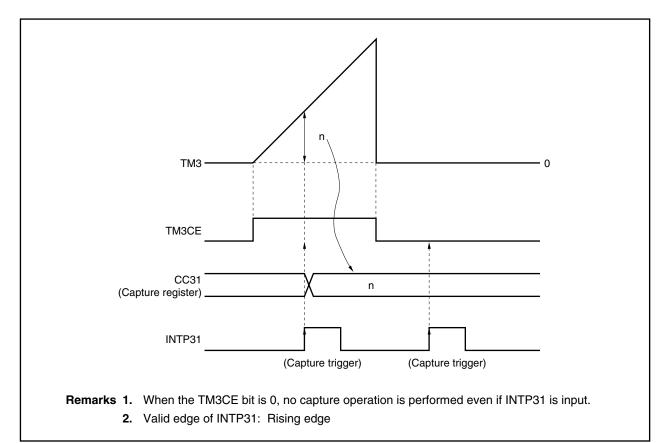


Figure 9-92. Capture Operation Example

(TM3 count values)

TM3

Count start
TM3CE ← 1

Interrupt request (INTP31)

Capture register (CC31)

D0

D1

D2

Remark

D0 to D2: TM3 count values

Figure 9-93. TM3 Capture Operation Example (When Both Edges Are Specified)

(4) Compare operation

The TM3 register has two capture/compare registers. These are the CC30 register and the CC31 register. A capture operation or a compare operation is performed according to the settings of both the CMS1 and CMS0 bits of the TMC31 register. If 1 is set in the CMS1 and CMS0 bits of the TMC31 register, the register operates as a compare register.

A compare operation that compares the value that was set in the compare register and the TM3 count value is performed.

If the TM3 count value matches the value of the compare register, which had been set in advance, a match signal is sent to the output controller. The match signal causes the timer output pin (TO3) to change and an interrupt request signal (INTCC30, INTCC31) to be generated at the same time.

If the CC30 or CC31 register is set to 0000H, the 0000H after the TM3 register counts up from FFFFH to 0000H is judged as a match. In this case, the value of the TM3 register is cleared to 0 at the next count timing, but 0000H is not judged as a match at that time. 0000H when the TM3 register begins counting is not judged as a match either.

If match clearing is enabled (CCLR bit = 1) for the CC30 register, the TM3 register is cleared when a match with the TM3 register occurs during a compare operation.

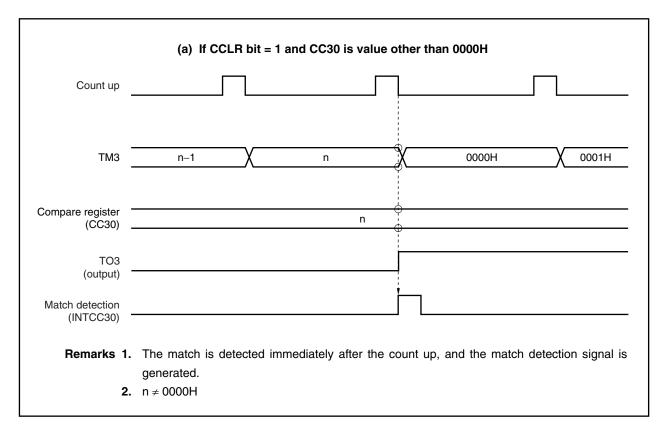


Figure 9-94. Compare Operation Example (1/2)

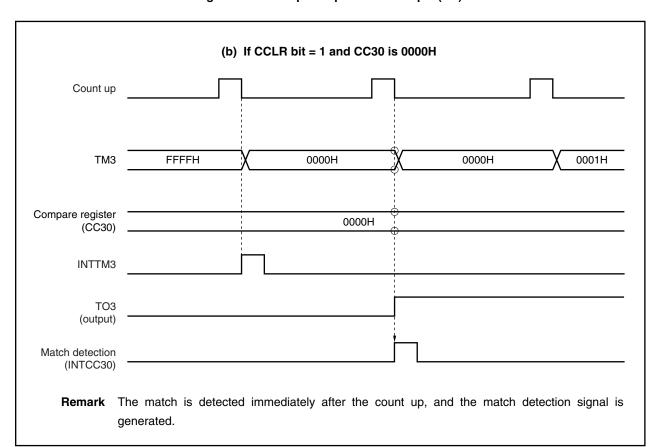
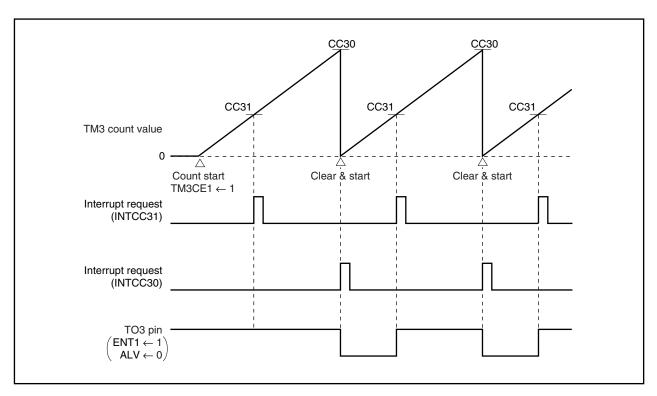


Figure 9-94. Compare Operation Example (2/2)

(5) External pulse output

Timer 3 has one timer output pin (TO3).

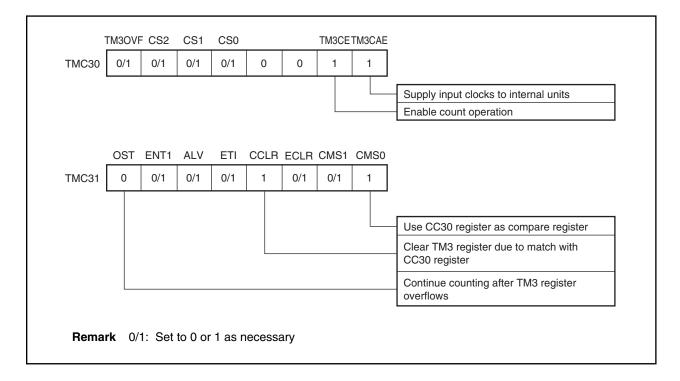
An external pulse output (TO3) is generated when a match of the two compare registers (CC30 and CC31) and the TM3 register is detected.


If a match is detected when the TM3 count value and the CC30 value are compared, the output level of the TO3 pin is set. Also, if a match is detected when the TM3 count value and the CC31 value are compared, the output level of the TO3 pin is reset.

The output level of the TO3 pin can be specified by the TMC31 register.

ENT1 ALV TO3 Output External Pulse Output **Output Level** 0 0 High level Disable Low level 0 1 Disable 0 Enable When the CC30 register is matched: Low level When the CC31 register is matched: High level 1 1 Enable When the CC30 register is matched: High level When the CC31 register is matched: Low level

Table 9-13. TO3 Output Control


9.4.6 Application examples

(1) Interval timer

By setting the TMC30 and TMC31 registers as shown in Figure 9-96, timer 3 operates as an interval timer that repeatedly generates interrupt requests with the value that was set in advance in the CC30 register as the interval.

When the counter value of the TM3 register matches the setting value of the CC30 register, the TM3 register is cleared (0000H) and an interrupt request signal (INTCC30) is generated at the same time that the count operation resumes.

Figure 9-96. Contents of Register Settings When Timer 3 Is Used as Interval Timer

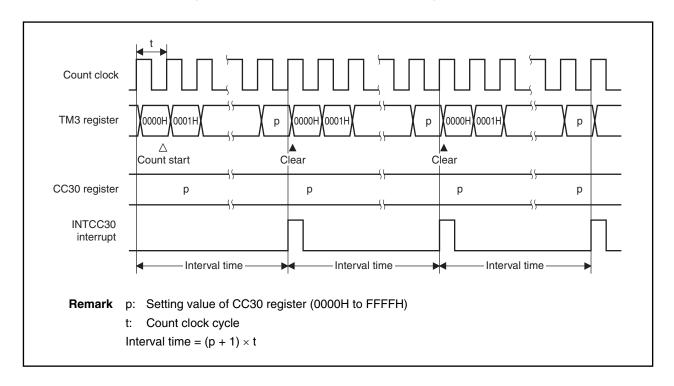


Figure 9-97. Interval Timer Operation Timing Example

(2) PWM output

By setting the TMC30 and TMC31 registers as shown in Figure 9-98, timer 3 can output a PWM of the frequency determined by the setting of the CS2 to CS0 bits of the TMC30 register with the values that were set in advance in the CC30 and CC31 registers as the intervals.

When the counter value of the TM3 register matches the setting value of the CC30 register, the TO3 output becomes active. Then, when the count value of the TM3 register matches the setting value of the CC31 register, the TO3 output becomes inactive. The TM3 register continues counting, and when an overflow occurs, clears the count value to 0000H and continues counting. This enables a PWM of the frequency determined by the setting of the CS2 to CS0 bits of the TMC30 register to be output. When the setting value of the CC30 register and the setting value of the CC31 register are the same, the TO3 output remains inactive and does not change.

The active level of TO3 output can be set by the ALV bit of the TMC31 register.

TM3OVF CS2 CS1 CS0 TM3CETM3CAE 0/1 0/1 0 0/1 0/1 Λ TMC30 1 Supply input clocks to internal units Enable count operation OST ENT1 CCLR ECLR CMS1 CMS0 ALV ETI TMC31 0/1 0/1 0/1 1 Use CC30 register as compare register Use CC31 register as compare register Disable clearing of TM3 register due to match with CC30 register Enable external pulse output (TO3) Continue counting after TM3 register overflows **Remark** 0/1: Set to 0 or 1 as necessary

Figure 9-98. Contents of Register Settings When Timer 3 Is Used for PWM Output

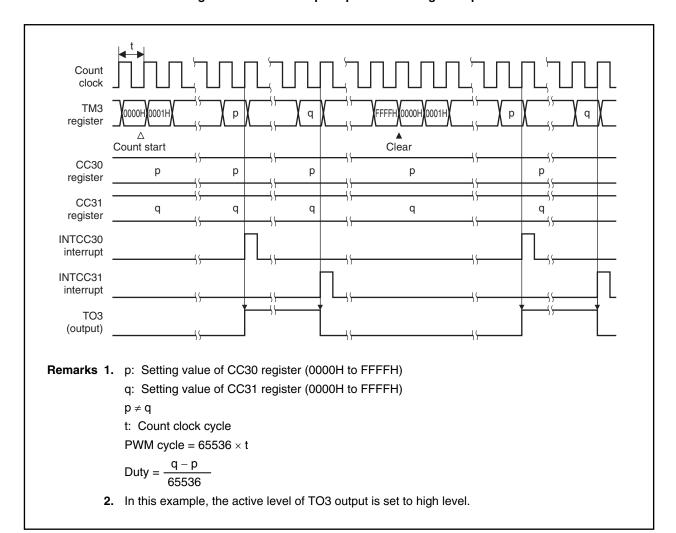


Figure 9-99. PWM Output Operation Timing Example

(3) Cycle measurement

By setting the TMC30 and TMC31 registers as shown in Figure 9-100, timer 3 can measure the cycle of signals input to the INTP30 pin or INTP31 pin.

The valid edge of the INTP30 pin is selected according to the IES301 and IES300 bits of the SESC register, and the valid edge of the INTP31 pin is selected according to the IES311 and IES310 bits of the SESC register. Either the rising edge, the falling edge, or both edges can be selected as the valid edges of both pins.

If the CC30 register is set to a capture register and TM3 is started, the valid edge input of the INTP30 pin is set as the trigger for capturing the TM3 register value in the CC30 register. When this value is captured, an INTCC30 interrupt is generated.

Similarly, if the CC31 register is set to a capture register and TM3 is started, the valid edge input of the INTP31 pin is set as the trigger for capturing the TM3 register value in the CC31 register. When this value is captured, an INTCC31 interrupt is generated.

The cycle of signals input to the INTP30 pin is calculated by obtaining the difference between the TM3 register's count value (Dx) that was captured in the CC30 register according to the x-th valid edge input of the INTP30 pin and the TM3 register's count value (D(x+1)) that was captured in the CC30 register according to the (x+1)-th valid edge input of the INTP30 pin and multiplying the value of this difference by the cycle of the clock control signal.

The cycle of signals input to the INTP31 pin is calculated by obtaining the difference between the TM3 register's count value (Dx) that was captured in the CC31 register according to the x-th valid edge input of the INTP31 pin and the TM3 register's count value (D(x+1)) that was captured in the CC31 register according to the (x+1)-th valid edge input of the INTP31 pin and multiplying the value of this difference by the cycle of the clock control signal.

TM3OVF CS2 CS1 CS₀ TM3CFTM3CAF **TMC30** 0/1 0/1 0/1 0 Supply input clocks to internal units Enable count operation OST ENT1 ALV ETI CCLR ECLR CMS1 CMS0 0/1 0/1 0/1 TMC31 0/10/10 0 Use CC30 register as capture register (when measuring the cycle of INTP30 input) Use CC31 register as capture register (when measuring the cycle of INTP31 input) Continue counting after TM3 register overflows **Remark** 0/1: Set to 0 or 1 as necessary

Figure 9-100. Contents of Register Settings When Timer 3 Is Used for Cycle Measurement

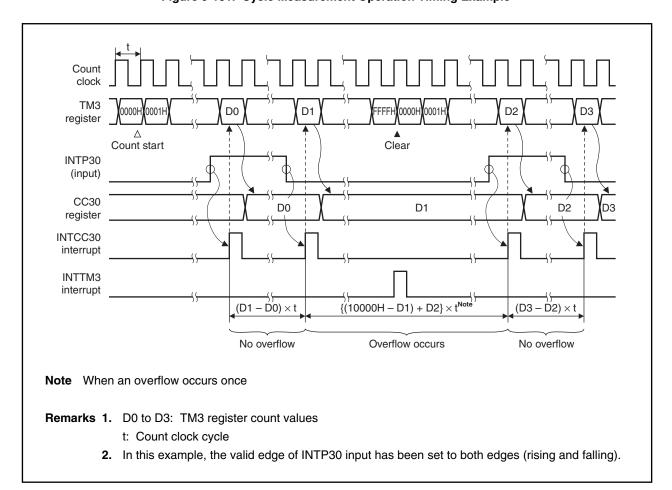


Figure 9-101. Cycle Measurement Operation Timing Example

399

9.4.7 Precautions

Various precautions concerning timer 3 are shown below.

- (1) If a conflict occurs between the reading of the CC30 register and a capture operation when the CC30 register is used in capture mode, an external trigger (INTP30) valid edge is detected and an external interrupt request signal (INTCC30) is generated however, the timer value is not stored in the CC30 register.
- (2) If a conflict occurs between the reading of the CC31 register and a capture operation when the CC31 register is used in capture mode, an external trigger (INTP31) valid edge is detected and an external interrupt request signal (INTCC31) is generated however, the timer value is not stored in the CC31 register.
- (3) The following bits and registers must not be rewritten during operation (TMC30 register TM3CE = 1).
 - CS2 to CS0 bits of TMC30 register
 - TMC31 register
 - SESC register
- (4) The TM3CAE bit of the TMC30 register is a TM3 reset signal. To use TM3, first set (1) the TM3CAE bit.
- (5) The analog noise elimination time + two count clocks are required to detect a valid edge of the external interrupt input (INTP30 or INTP31) and external clock input (TI3). Therefore, edge detection will not be performed normally for changes that are less than the analog noise elimination time + two count clocks. For the analog noise elimination, refer to 14.5 Noise Eliminator.
- (6) The operation of an external interrupt output (INTCC30 or INTCC31) is automatically determined according to the operating state of the capture/compare registers 30, 31 (CC30, CC31). When the capture/compare register is used for a capture mode, the external trigger (INTP30, INTP31) is used for valid edge detection. When the capture/compare register is used for a compare mode, the external interrupt output is used for a match interrupt indicating a match with the TM3 register.
- (7) If the ENT1 and ALV bits of the TMC31 register are changed at the same time, a glitch (spike shaped noise) may be generated in the TO3 pin output. Either create a circuit configuration that will not malfunction even if a glitch is generated or make sure that the ENT1 and ALV bits do not change at the same time.

9.5 Timer 4

9.5.1 Features (timer 4)

Timer 4 (TM4) functions as a 16-bit interval timer.

9.5.2 Function overview (timer 4)

• 16-bit interval timer: 1 channel

• Compare register: 1

 Count clock selected from divisions of internal system clock (set the frequency of the count clock to 16 MHz or less)

 Base clock (fclk): 1 type (set fclk to 32 MHz or less) fxx/2

• Prescaler division ratio

The following division ratios can be selected according to the base clock (fclk).

Division Ratio	Base Clock (fclk)
1/2	fxx/4
1/4	fxx/8
1/8	fxx/16
1/16	fxx/32
1/32	fxx/64
1/64	fxx/128
1/128	fxx/256
1/256	fxx/512

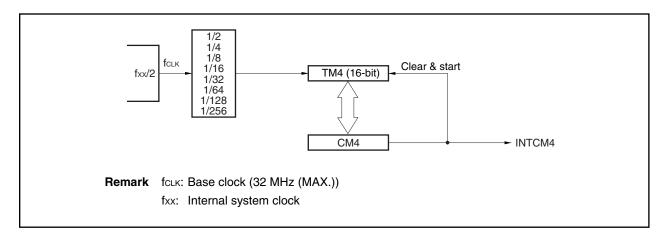
- Interrupt request source: 1
 - Compare match interrupt INTCM4 generated with CM4 match signal
- Timer clear

TM4 register can be cleared by CM4 register match.

Remark fxx: Internal system clock

9.5.3 Basic configuration

Table 9-14. Timer 4 Configuration List


Timer	Count Clock	Register	Read/Write	Generated Interrupt Signal	Capture Trigger	Timer Output S/R	Other Functions
Timer 4	fxx/4, fxx/8, fxx/16, fxx/32,	TM4	Read	-	-	-	-
	fxx/64, fxx/128, fxx/256, fxx/512	CM4	Read/write	INTCM4	ı	-	-

Remark fxx: Internal system clock

S/R: Set/Reset

Figure 9-102 shows the block diagram of timer 4.

Figure 9-102. Block Diagram of Timer 4

(1) Timer 4 (TM4)

TM4 is a 16-bit timer. It is mainly used as an interval timer for software.

Starting and stopping TM4 is controlled by the TM4CE0 bit of the timer control register 4 (TMC4).

A division by the prescaler can be selected for the count clock from among fxx/4, fxx/8, fxx/16, fxx/32, fxx/64, fxx/128, fxx/256, and fxx/512 by the CS2 to CS0 bits of the TMC4 register (fxx: Internal system clock).

TM4 is read-only, in 16-bit units.

	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	Address	Initial value
TM4																	FFFFF540H	0000H

The conditions for which the TM4 register becomes 0000H are shown below.

- Reset input
- TM4CAE0 bit = 0
- TM4CE0 bit = 0
- Match of TM4 register and CM4 register
- Overflow
 - Cautions 1. If the TM4CAE0 bit of the TMC4 register is cleared (0), a reset is performed asynchronously.
 - 2. If the TM4CE0 bit of the TMC4 register is cleared (0), a reset is performed, synchronized with the internal clock. Similarly, a synchronized reset is performed after a match with the CM4 register and after an overflow.
 - 3. The count clock must not be changed during a timer operation. If it is to be overwritten, it should be overwritten after the TM4CE0 bit is cleared (0).
 - 4. Up to 4 internal system clocks are required after a value is set in the TM4CE0 bit until the set value is transferred to internal units. When a count operation begins, the count cycle from 0000H to 0001H differs from subsequent count cycles.
 - 5. After a compare match is generated, the timer is cleared at the next count clock. Therefore, if the division ratio is large, the timer value may not be zero even if the timer value is read immediately after a match interrupt is generated.

(2) Compare register 4 (CM4)

CM4 and the TM4 register count value are compared, and an interrupt request signal (INTCM4) is generated when a match occurs. TM4 is cleared, synchronized with this match. If the TM4CAE0 bit of the TMC4 register is set to 0, a reset is performed asynchronously, and the registers are initialized.

The CM4 register is configured with a master/slave configuration. When a write operation to a CM4 register is performed, data is first written to the master register and then the master register data is transferred to the slave register. In a compare operation, the slave register value is compared with the count value of the TM4 register. When a read operation to a CM4 register is performed, data in the master side is read out. CM4 can be read/written in 16-bit units.

- Cautions 1. A write operation to a CM4 register requires 4 internal system clocks until the value that was set in the CM4 register is transferred to internal units. When writing continuously to the CM4 register, be sure to reserve a time interval of at least 4 internal system clocks.
 - 2. The CM4 register can be overwritten only once in a single TM4 register cycle (from 0000H until an INTCM4 interrupt is generated due to a match of the TM4 register and CM4 register). If this cannot be secured by the application, make sure that the CM4 register is not overwritten during timer operation.
 - 3. Note that an INTCM4 interrupt will be generated after an overflow if a value less than the counter value is written in the CM4 register during TM4 register operation (Figure 9-103).

	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	Address	Initial value
CM4																	FFFFF542H	0000H
													'					

(a) When TM4 < CM4 TM4 — TM4CAE0 TM4CE0 _____ CM4 χN INTCM4 **Remark** M = TM4 value when overwritten N = CM4 value when overwritten M < N(b) When TM4 > CM4 TM4 — TM4CAE0 TM4CE0 _____ CM4 INTCM4 ______ **Remark** M = TM4 value when overwritten

Figure 9-103. Example of Timing During TM4 Operation

N = CM4 value when overwritten

M > N

9.5.4 Control register

(1) Timer control register 4 (TMC4)

The TMC4 register controls the operation of timer 4.

This register can be read/written in 8-bit or 1-bit units.

Caution The TM4CAE0 bit and other bits cannot be set at the same time. Be sure to set the TM4CAE0 bit and then set the other bits and the other registers of TM4.

	7	6	5	4	3	2	<1>	<0>	Address	Initial value
TMC4	0	CS2	CS1	CS0	0	0	TM4CE0	TM4CAE0	FFFF544H	00H

Bit position	Bit name		Function							
6 to 4	CS2 to CS0	Selects the	TM4 coun	t clock.						
		CS2	CS1	CS0	Count clock					
		0	0	0	fxx/4					
		0	0	1	fxx/8					
		0	1	0	fxx/16					
		0	1	1	fxx/32					
		1	0	0	fxx/64					
		1	0	1	fxx/128					
		1	1 1 0 fxx/256							
		1	1 1 1 fxx/512							
1	TM4CE0	1: Perform	e count (tir n count op M4CE0 bi	ner stopp eration t is not c	ed at 0000H and does not operate) leared even if a match is detected by the To stop the count operation, clear the TM4C					
0	TM4CAE0	0: Asynch unit. 1: Supply Cautions 1.	Controls the internal count clock. 0: Asynchronously reset entire TM4 unit. Stop base clock (fclk) supply to TM4 unit. 1: Supply base clock (fclk) to TM4 unit. Cautions 1. When TM4CAE0 = 0 is set, the TM4 unit can be reset asynchronously. 2. When TM4CAE0 = 0, the TM4 unit is in a reset state. To operate TM4, first set TM4CAE0 = 1. 3. When the TM4CAE0 bit is changed from 1 to 0, all the registers							

9.5.5 Operation

(1) Compare operation

TM4 can be used for a compare operation in which the value that was set in a compare register (CM4) is compared with the TM4 count value.

If a match is detected by the compare operation, an interrupt (INTCM4) is generated. The generation of the interrupt causes TM4 to be cleared (0) at the next count timing. This function enables timer 4 to be used as an interval timer.

CM4 can also be set to 0. In this case, when an overflow occurs and TM4 becomes 0, a match is detected and INTCM4 is generated. Although the TM4 value is cleared (0) at the next count timing, INTCM4 is not generated according to this match.

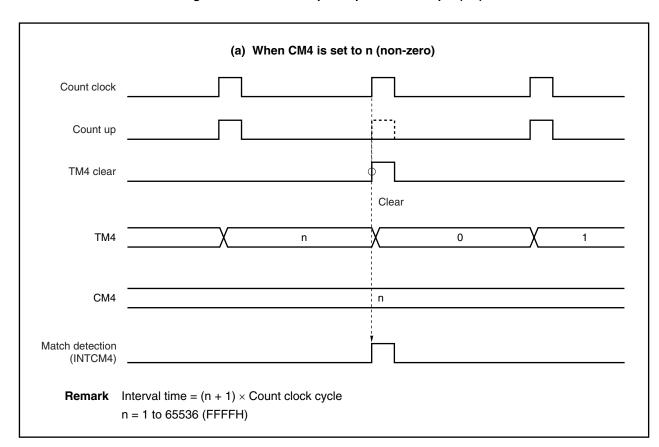


Figure 9-104. TM4 Compare Operation Example (1/2)

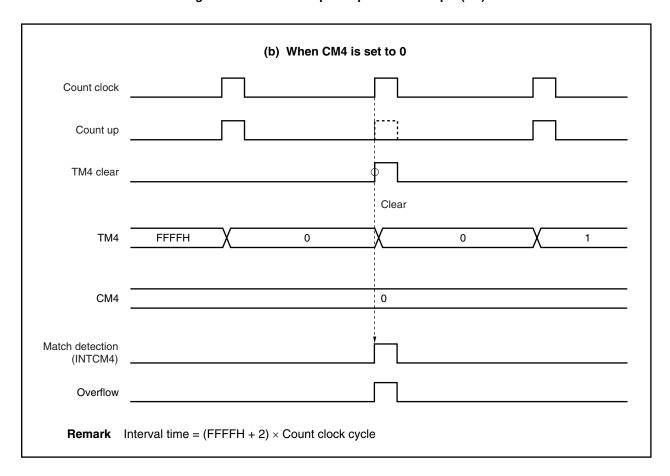


Figure 9-104. TM4 Compare Operation Example (2/2)

9.5.6 Application example

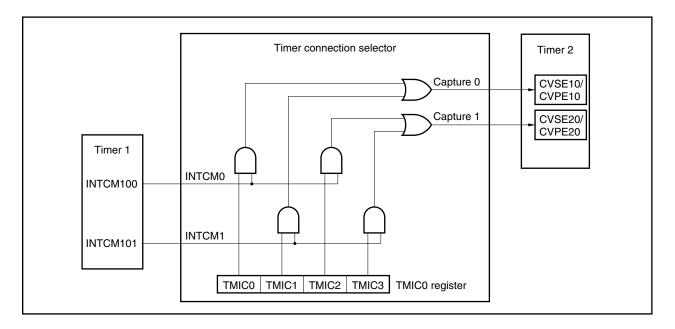
(1) Interval timer

This section explains an example in which timer 4 is used as an interval timer with 16-bit precision. Interrupt requests (INTCM4) are output at equal intervals (refer to **Figure 9-104 TM4 Compare Operation Example**). The setup procedure is shown below.

- <1> Set (1) the TM4CAE0 bit.
- <2> Set each register.
 - · Select the count clock using the CS2 to CS0 bits of the TMC4 register.
 - Set the compare value in the CM4 register.
- <3> Start counting by setting (1) the TM4CE0 bit.
- <4> If the TM4 register and CM4 register values match, an INTCM4 interrupt is generated.
- <5> INTCM4 interrupts are generated thereafter at equal intervals.

9.5.7 Precautions

Various precautions concerning timer 4 are shown below.

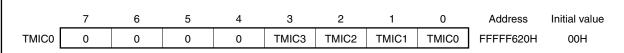

- (1) To operate TM4, first set (1) the TM4CAE0 bit of the TMC4 register.
- (2) Up to 4 internal system clocks are required after a value is set in the TM4CE0 bit of the TMC4 register until the set value is transferred to internal units. When a count operation begins, the count cycle from 0000H to 0001H differs from subsequent count cycles.
- (3) To initialize the TM4 register status and start counting again, clear (0) the TM4CE0 bit and then set (1) the TM4CE0 bit after an interval of 4 internal system clocks has elapsed.
- (4) Up to 4 internal system clocks are required until the value that was set in the CM4 register is transferred to internal units. When writing continuously to the CM4 register, be sure to secure a time interval of at least 4 internal system clocks.
- (5) The CM4 register can be overwritten only once during a timer/counter operation (from 0000H until an INTCM4 interrupt is generated due to a match of the TM4 register and CM4 register). If this cannot be secured by the application, make sure that the CM4 register is not overwritten during a timer/counter operation.
- (6) The count clock must not be changed during a timer operation. If it is to be overwritten, it should be overwritten after the TM4CE0 bit is cleared (0). If the count clock is overwritten during a timer operation, operation cannot be guaranteed.
- (7) An INTCM4 interrupt will be generated after an overflow if a value less than the counter value is written in the CM4 register during TM4 register operation.

9.6 Timer Connection Function

9.6.1 Overview

The V850E/IA1 provides a function to connect timer 1 and timer 2.

Figure 9-105. Block Diagram of Timer Connection Function



9.6.2 Control register

(1) Timer connection selection register 0 (TMIC0)

The TMIC0 register enables/disables input of the INTCM100, INTCM101 signals to the CVSEn0/CVPEn0 registers (n = 1, 2).

This register can be read/written in 8-bit or 1-bit units.

Bit position	Bit name	Function
3	TMIC3	Enables/disables input of INTCM101 signal to CVSE20/CVPE20 registers. 0: Don't input INTCM101 signal to CVSE20/CVPE20 registers. 1: Input INTCM101 signal to CVSE20/CVPE20 registers.
2	TMIC2	Enables/disables input of INTCM100 signal to CVSE20/CVPE20 registers. 0: Don't input INTCM100 signal to CVSE20/CVPE20 registers. 1: Input INTCM100 signal to CVSE20/CVPE20 registers.
1	TMIC1	Enables/disables input of INTCM101 signal to CVSE10/CVPE10 registers. 0: Don't input INTCM101 signal to CVSE10/CVPE10 registers. 1: Input INTCM101 signal to CVSE10/CVPE10 registers.
0	TMIC0	Enables/disables input of INTCM100 signal to CVSE10/CVPE10 registers. 0: Don't input INTCM100 signal to CVSE10/CVPE10 registers. 1: Input INTCM100 signal to CVSE10/CVPE10 registers.

CHAPTER 10 SERIAL INTERFACE FUNCTION

10.1 Features

The serial interface function provides three types of serial interfaces combining a total of six transmit/receive channels. All six channels can be used simultaneously.

The three interface formats are as follows.

- (1) Asynchronous serial interfaces (UART0 to UART2): 3 channels
- (2) Clocked serial interfaces (CSI0, CSI1): 2 channels
- (3) FCAN controller: 1 channel

Remark For details about the FCAN controller, refer to CHAPTER 11 FCAN CONTROLLER.

UART0 to UART2, whereby one byte of serial data is transmitted/received following a start bit, support full-duplex communication. In the UART1 and UART2 interfaces, one higher bit is added to 8 bits of transmit/receive data, enabling communication using 9-bit data.

CSI0 and CSI1 perform data transfer according to three types of signals, namely serial clocks (SCK0, SCK1), serial inputs (SI0, SI1), and serial outputs (SO0, SO1) (3-wire serial I/O).

FCAN conforms to CAN specification Ver. 2.0 PartB active, and provides a 32-message buffer.

10.2 Asynchronous Serial Interface 0 (UART0)

10.2.1 Features

- Transfer rate: 300 bps to 1562.5 Kbps (using a dedicated baud rate generator and an internal system clock of 50 MHz)
- Full-duplex communications

On-chip receive buffer register 0 (RXB0)

On-chip transmit buffer register 0 (TXB0)

Two-pin configuration^{Note}

TXD0: Transmit data output pin RXD0: Receive data input pin

- Reception error detection functions
 - Parity error
 - Framing error
 - Overrun error
- Interrupt sources: 3 types

Reception error interrupt (INTSER0):
 Interrupt is generated according to the logical OR of the

three types of reception errors

Reception completion interrupt (INTSR0):
 Interrupt is generated when receive data is transferred from

the receive shift register to receive buffer register 0 after serial transfer is completed during a reception enabled state

• Transmission completion interrupt (INTST0): Interrupt is generated when the serial transmission of

transmit data (8 or 7 bits) from the transmit shift register is

completed

- The character length of transmit/receive data is specified according to the ASIM0 register
- Character length: 7 or 8 bits
- Parity functions: Odd, even, 0, or none
- Transmission stop bits: 1 or 2 bits
- · On-chip dedicated baud rate generator

Note The SCK and CTS pins are not available for UART0.

10.2.2 Configuration

UART0 is controlled by asynchronous serial interface mode register 0 (ASIM0), asynchronous serial interface status register 0 (ASIS0), and asynchronous serial interface transmit status register 0 (ASIF0). Receive data is maintained in receive buffer register 0 (RXB0), and transmit data is written to transmit buffer register 0 (TXB0).

Figure 10-1 shows the configuration of asynchronous serial interface 0 (UART0).

(1) Asynchronous serial interface mode register 0 (ASIM0)

The ASIM0 register is an 8-bit register for specifying the operation of the asynchronous serial interface.

(2) Asynchronous serial interface status register 0 (ASIS0)

The ASISO register consists of a set of flags that indicate the error contents when a reception error occurs. The various reception error flags are set (1) when a reception error occurs and are reset (0) when the ASISO register is read.

(3) Asynchronous serial interface transmit status register 0 (ASIF0)

The ASIF0 register is an 8-bit register that indicates the status when a transmit operation is performed.

This register consists of a transmit buffer data flag, which indicates the hold status of TXB0 data, and the transmit shift register data flag, which indicates whether transmission is in progress.

(4) Reception control parity check

The receive operation is controlled according to the contents set in the ASIMO register. A check for parity errors is also performed during a receive operation, and if an error is detected, a value corresponding to the error contents is set in the ASISO register.

(5) Receive shift register

This is a shift register that converts the serial data that was input to the RXD0 pin to parallel data. One byte of data is received, and if a stop bit is detected, the receive data is transferred to receive buffer register 0 (RXB0).

This register cannot be directly manipulated.

(6) Receive buffer register 0 (RXB0)

This is an 8-bit buffer register for holding receive data. When 7 characters are received, 0 is stored in the MSB.

During a reception enabled state, receive data is transferred from the receive shift register to the RXB0 register, synchronized with the end of the shift-in processing of one frame.

Also, the reception completion interrupt request (INTSR0) is generated by the transfer of data to the RXB0 register.

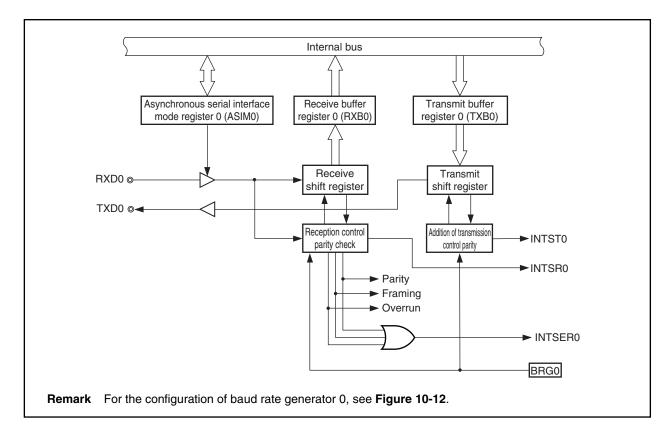
(7) Transmit shift register

This is a shift register that converts the parallel data that was transferred from transmit buffer register 0 (TXB0) to serial data.

When one byte of data is transferred from the TXB0 register, the shift register data is output from the TXD0 pin.

The transmission completion interrupt request (INTST0) is generated synchronized with the completion of transmission of one frame.

This register cannot be directly manipulated.


(8) Transmit buffer register 0 (TXB0)

This is an 8-bit buffer for transmit data. A transmit operation is started by writing transmit data to TXB0.

(9) Addition of transmission control parity

A transmit operation is controlled by adding a start bit, parity bit, or stop bit to the data that is written to the TXB0 register, according to the contents that were set in the ASIM0 register.

Figure 10-1. Asynchronous Serial Interface 0 Block Diagram

10.2.3 Control registers

(1) Asynchronous serial interface mode register 0 (ASIM0)

The ASIM0 register is an 8-bit register that controls the UART0 transfer operation.

This register can be read/written in 8-bit or 1-bit units.

- Cautions 1. When using UART0, be sure to set the external pins related to the UART0 function to the control mode before setting clock selection register 0 (CKSR0) and baud rate generator control register 0 (BRGC0), and then set the UARTCAE0 bit to 1. Then set the other bits.
 - Set the UARTCAE0 and RXE0 bits to 1 while a high level is input to the RXD0 pin. If these bits are set to 1 while a low high level is input to the RXD0 pin, reception will be started.

(1/3)

	<7>	<6>	<5>	4	3	2	1	0	Address	Initial value
ASIM0	UARTCAE0	TXE0	RXE0	PS1	PS0	CL	SL	ISRM	FFFFA00H	01H

Bit position	Bit name	Function
7	UARTCAE0	Controls the operating clock. 0: Stops clock supply to UART0. 1: Supplies clock to UART0.
		Cautions 1. When UARTCAE0 = 0 is set, UART0 is asynchronously reset ^{Note} . 2. When UARTCAE0 = 0, UART0 is in a reset state. To operate UART0, first set UARTCAE0 = 1. 3. When the UARTCAE0 bit is cleared from 1 to 0, all the registers of UART0 are initialized. When setting UARTCAE0 = 1 again, be sure to re-set the registers of UART0.
		The output of the TXD0 pin goes high when transmission is disabled, regardless of the setting of the UARTCAE0 bit.
6	TXE0	Enables/disables transmission. 0: Disable transmission 1: Enable transmission
		Cautions 1. Set the TXE0 bit to 1 after setting the UARTCAE0 bit to 1 at startup. Set the UARTCAE0 bit to 0 after setting the TXE0 bit to 0 to stop. 2. To initialize the transmission unit, clear (0) the TXE0 bit, and after letting 2 cycles of the base clock elapse, set (1) the TXE0 bit again. If the TXE0 bit is not set again, initialization may not be successful (for details about the base clock, refer to 10.2.6 (1) (a) Base clock).

Note Only the ASIS0, ASIF0, and RXB0 registers are reset.

(2/3)

Bit position	Bit name			Function							
5	RXE0	1: Enable Cautions 1.	O: Disable reception 1: Enable reception Cautions 1. Set the RXE0 bit to 1 after setting the UARTCAE0 bit to 1 at startup. Set the UARTCAE0 bit to 0 after setting the RXE0 bit to 0 to stop. 2. To initialize the reception unit status, clear (0) the RXE0 bit, and after letting 2 cycles of the base clock elapse, set (1) the RXE0 bit again. If the RXE0 bit is not set again, initialization may not be successful (for details about the base clock, refer to 10.2.6 (1) (a) Base clock).								
4, 3	PS1, PS0	Controls parity bit.									
		Even par If the trar bit is set bit is clea in the tranch During redata and generate Odd parit In contrar.	RXE0 bit If "0 par perform the PE is ity asmit data (1). If it co ared (0). To assmit data exception, to the parity d. ity st to even	its. ity" is selected for receptioned. Therefore, no error into the ASISO register is contains an odd number of contains an even number of both and the parity bit so that it is the number of bits with the value bit is counted, and if the number of parity, odd parity controls the parity, odd parity controls the	bits with the value "1", the parity its with the value "1", the parity its with the value "1" contained is an even number.						

Note When reception is disabled, the receive shift register does not detect a start bit. No shift-in processing or transfer processing to receive buffer register 0 (RXB0) is performed, and the contents of the RXB0 register are retained.

When reception is enabled, the reception shift operation starts, synchronized with the detection of the start bit, and when the reception of one frame is completed, the contents of the receive shift register are transferred to the RXB0 register. A reception completion interrupt (INTSR0) is also generated in synchronization with the transfer to the RXB0 register.

(3/3)

Bit position	Bit name	Function
4, 3	PS1, PS0	 0 parity During transmission, the parity bit is cleared (0) regardless of the transmit data During reception, no parity error is generated because no parity bit is checked. No parity No parity bit is added to transmit data. During reception, the receive data is considered to have no parity bit. No parit error is generated because there is no parity bit.
2	CL	Specifies character length of 1 frame of transmit/receive data. 0: 7 bits 1: 8 bits Caution To overwrite the CL bit, first clear (0) the TXE0 and RXE0 bits.
1	SL	Specifies stop bit length of transmit data. 0: 1 bit 1: 2 bits Cautions 1. To overwrite the SL bit, first clear (0) the TXE0 bit. 2. Since reception is always done with a stop bit length of 1, the SL bit setting does not affect receive operations.
0	ISRM	Enables/disables generation of reception completion interrupt requests when an error occurs. 0: Generate a reception error interrupt request (INTSER0) as an interrupt when an error occurs. In this case, no reception completion interrupt request (INTSR0) is generated. 1: Generate a reception completion interrupt request (INTSR0) as an interrupt when an error occurs. In this case, no reception error interrupt request (INTSER0) is generated.
		Caution To overwrite the ISRM bit, first clear (0) the RXE0 bit.

(2) Asynchronous serial interface status register 0 (ASIS0)

The ASIS0 register, which consists of 3-bit error flags (PE, FE, and OVE), indicates the error status when UART0 reception is completed.

The ASIS0 register is cleared to 00H by a read operation. When a reception error occurs, receive buffer register 0 (RXB0) should be read and the error flag should be cleared after the ASIS0 register is read. This register is read-only, in 8-bit units.

- Cautions 1. When the UARTCAE0 bit or RXE0 bit of the ASIM0 register is set to 0, or when the ASIS0 register is read, the PE, FE, and OVE bits of the ASIS0 register are cleared (0).
 - 2. Manipulation using a bit manipulation instruction is prohibited.

	7	6	5	4	3	2	1	0	Address Initial value
ASIS0	0	0	0	0	0	PE	FE	OVE	FFFFFA03H 00H

Bit position	Bit name	Function
2	PE	This is a status flag that indicates a parity error. 0: When the ASIM0 register's UARTCAE0 and RXE0 bits are both set to 0, or after the ASIS0 register is read 1: When reception was completed, the receive data parity did not match the parity bit Caution The operation of the PE bit differs according to the settings of the
		PS1 and PS0 bits of the ASIM0 register.
1	FE	 This is a status flag that indicates a framing error. 0: When the ASIM0 register's UARTCAE0 and RXE0 bits are both set to 0, or after the ASIS0 register is read 1: When reception was completed, no stop bit was detected
		Caution For receive data stop bits, only the first bit is checked regardless of the stop bit length.
0	OVE	This is a status flag that indicates an overrun error. O: When the ASIM0 register's UARTCAE0 and RXE0 bits are both set to 0, or after the ASIS0 register is read. 1: UART0 completed the next receive operation before reading the RXB0 register receive data.
		Caution When an overrun error occurs, the next receive data value is not written to the RXB0 register and the data is discarded.

(3) Asynchronous serial interface transmit status register 0 (ASIF0)

The ASIF0 register, which consists of 2-bit status flags, indicates the status during transmission.

By writing the next data to the TXB0 register after data is transferred from the TXB0 register to the transmit shift register, transmit operations can be performed continuously without suspension even during an interrupt interval. When transmission is performed continuously, data should be written after referencing the TXBF0 bit of the ASIF0 register to prevent writing to the TXB0 register by mistake.

This register is read-only, in 8-bit or 1-bit units.

	7	6	5	4	3	2	<1>	<0>	Address	Initial value
ASIF0	0	0	0	0	0	0	TXBF0	TXSF0	FFFFFA05H	00H

Bit position	Bit name	Function
1	TXBF0	This is a transmit buffer data flag.
		Data to be transferred next to TXB0 register does not exist (When the ASIM0 register's UARTCAE0 or TXE0 bit is 0, or when data has been transferred to the transmit shift register)
		1: Data to be transferred next exists in TXB0 register (Data exists in TXB0
		register when the TXB0 register has been written to)
		Caution When transmission is performed continuously, data should be written to the TXB0 register after confirming that this flag is 0. If writing to TXB0 register is performed when this flag is 1, transmit data cannot be guaranteed.
0	TXSF0	This is a transmit shift register data flag. It indicates the transmission status of UARTO.
		Initial status or a waiting transmission (When the ASIM0 register's UARTCAE0 or TXE0 bit is set to 0, or when following transmission completion, the next data transfer from the TXB0 register is not performed)
		Transmission in progress (When data has been transferred from the TXB0 register)
		Caution When the transmission unit is initialized, initialization should be executed after confirming that this flag is 0 following the occurrence of a transmission completion interrupt (INTST0). If initialization is performed when this flag is 1, transmit data cannot be guaranteed.

(4) Receive buffer register 0 (RXB0)

The RXB0 register is an 8-bit buffer register for storing parallel data that had been converted by the receive shift register.

When reception is enabled (RXE0 bit = 1 in the ASIM0 register), receive data is transferred from the receive shift register to the RXB0 register, synchronized with the completion of the shift-in processing of one frame. Also, a reception completion interrupt request (INTSR0) is generated by the transfer to the RXB0 register. For information about the timing for generating this interrupt request, refer to 10.2.5 (4) Reception operation.

If reception is disabled (RXE0 bit = 0 in the ASIM0 register), the contents of the RXB0 register are retained, and no processing is performed for transferring data to the RXB0 register even when the shift-in processing of one frame is completed. Also, no INTSR0 signal is generated.

When 7 bits is specified for the data length, bits 6 to 0 of the RXB0 register are transferred for the receive data and the MSB (bit 7) is always 0. However, if an overrun error (OVE bit of ASIS0 register = 1) occurs, the receive data at that time is not transferred to the RXB0 register.

Except when a reset is input, the RXB0 register becomes FFH even when UARTCAE0 bit = 0 in the ASIM0 register.

This register is read-only, in 8-bit units.

	7	6	5	4	3	2	1	0	Address	Initial value
RXB0	RXB7	RXB6	RXB5	RXB4	RXB3	RXB2	RXB1	RXB0	FFFFFA02H	FFH

Bit position	Bit name	Function
7 to 0	RXB7 to RXB0	Stores receive data. 0 can be read for RXB7 when 7-bit or character data is received.
	TIADO	o can be read for the when y bit of character data is received.

(5) Transmit buffer register 0 (TXB0)

The TXB0 register is an 8-bit buffer register for setting transmit data.

When transmission is enabled (TXE0 bit = 1 in the ASIM0 register), the transmit operation is started by writing data to TXB0 register.

When transmission is disabled (TXE0 bit = 0 in the ASIM0 register), even if data is written to TXB0 register, the value is ignored.

The TXB0 register data is transferred to the transmit shift register, and a transmission completion interrupt request (INTST0) is generated, synchronized with the completion of the transmission of one frame from the transmit shift register. For information about the timing for generating this interrupt request, refer to 10.2.5 (2) Transmission operation.

When TXBF0 bit = 1 in the ASIF0 register, writing must not be performed to TXB0 register.

This register can be read/written in 8-bit units.

	7	6	5	4	3	2	1	0	Address	Initial value
TXB0	TXB7	TXB6	TXB5	TXB4	TXB3	TXB2	TXB1	TXB0	FFFFA04H	FFH

Bit position	Bit name	Function
7 to 0	TXB7 to TXB0	Writes transmit data.

10.2.4 Interrupt requests

The following three types of interrupt requests are generated from UARTO.

- Reception completion interrupt (INTSR0)
- Transmission completion interrupt (INTST0)
- Reception error interrupt (INTSER0)

The default priorities among these three types of interrupt requests is, from high to low, reception completion interrupt, transmission completion interrupt, and reception error interrupt.

Table 10-1. Generated Interrupts and Default Priorities

Interrupt	Priority
Reception completion	1
Transmission completion	2
Reception error	3

(1) Reception completion interrupt (INTSR0)

When reception is enabled, an INTSR0 signal is generated when data is shifted in to the receive shift register and transferred to receive buffer register 0 (RXB0).

An INTSR0 signal can be generated in place of a reception error interrupt (INTSER0) according to the ISRM bit of the ASIM0 register even when a reception error has occurred.

When reception is disabled, no INTSR0 signal is generated.

(2) Transmission completion interrupt (INTST0)

An INTST0 signal is generated when one frame of transmit data containing 7-bit or 8-bit characters is shifted out from the transmit shift register.

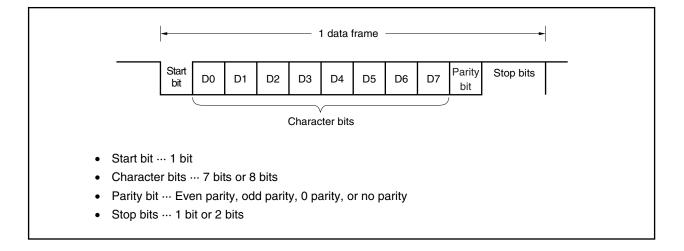
(3) Reception error interrupt (INTSER0)

When reception is enabled, an INTSER0 signal is generated according to the logical OR of the three types of reception errors explained for the ASIS0 register. Whether an INTSER0 signal or INTSR0 signal is generated when an error occurs can be specified using the ISRM bit of the ASIM0 register.

When reception is disabled, no INTSER0 signal is generated.

10.2.5 Operation

(1) Data format


Full-duplex serial data transmission and reception can be performed.

The transmit/receive data format consists of one data frame containing a start bit, character bits, a parity bit, and stop bits as shown in Figure 10-2.

The character bit length within one data frame, the type of parity, and the stop bit length are specified according to the asynchronous serial interface mode register 0 (ASIM0).

Also, data is transferred with LSB first.

Figure 10-2. Asynchronous Serial Interface Transmit/Receive Data Format

(2) Transmission operation

When UARTCAE0 bit is set to 1 in the ASIM0 register, a high level is output from the TXD0 pin.

Then, when TXE0 bit is set to 1 in the ASIM0 register, transmission is enabled, and the transmit operation is started by writing transmit data to transmit buffer register 0 (TXB0).

(a) Transmission enabled state

This state is set by the TXE0 bit in the ASIM0 register.

- TXE0 = 1: Transmission enabled state
- TXE0 = 0: Transmission disabled state

Since UART0 does not have a CTS (transmission enabled signal) input pin, a port should be used to confirm whether the destination is in a reception enabled state.

(b) Transmission operation start

In transmission enabled state, a transmission operation is started by writing transmit data to transmit buffer register 0 (TXB0). When a transmit operation is started, the data in the TXB0 register is transferred to the transmit shift register. Then, the transmit shift register outputs data to the TXD0 pin (the transmit data is transferred sequentially starting with the start bit). The start bit, parity bit, and stop bits are added automatically.

(c) Transmission interrupt request

When the transmit shift register becomes empty, a transmission completion interrupt request (INTST0) is generated. The timing for generating the INTST0 signal differs according to the specification of the stop bit length. The INTST0 signal is generated at the same time that the last stop bit is output.

If the data to be transmitted next has not been written to the TXB0 register, the transmit operation is suspended.

Caution Normally, when the transmit shift register becomes empty, a transmission completion interrupt (INTST0) is generated. However, no INTST0 signal is generated if the transmit shift register becomes empty due to the input of a RESET.

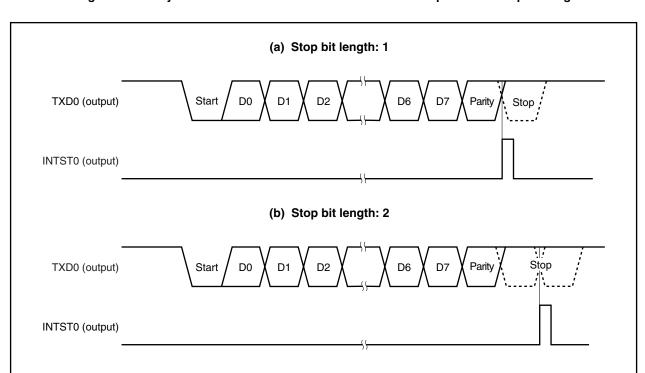


Figure 10-3. Asynchronous Serial Interface Transmission Completion Interrupt Timing

(3) Continuous transmission operation

UART0 can write the next transmit data to the TXB0 register at the timing that the transmit shift register starts the shift operation. This enables an efficient transmission rate to be realized by continuously transmitting data even during the servicing of the transmission completion interrupt (INTST0) after the transmission of one data frame. In addition, reading the TXSF0 bit of the ASIF0 register after the generation of an INTST0 signal enables the TXB0 register to be efficiently written twice (2 bytes) without waiting for the transmission of 1 data frame.

When continuous transmission is performed, data should be written after referencing the ASIF0 register to confirm the transmission status and whether or not data can be written to the TXB0 register.

Caution The values of the TXBF0 and TXSF0 bits of the ASIF0 register change from $10 \rightarrow 11 \rightarrow 01$ in continuous transmission.

Therefore, do not confirm the status based on the combination of the TXBF0 and TXSF0 bits.

Read only the TXBF0 bit during continuous transmission.

TXBF0	Whether or Not Writing to TXB0 Register Is Enabled
0	Writing is enabled
1	Writing is not enabled

Caution When transmission is performed continuously, write the first transmit data (first byte) to the TXB0 register and confirm that the TXBF0 bit is 0, and then write the next transmit data (second byte) to TXB0 register. If writing to the TXB0 register is performed when the TXBF0 bit is 1, transmit data cannot be guaranteed.

The communication status can be confirmed with the TXSF0 bit.

TXSF0	Transmission Status
0	Transmission is completed
1	Under transmission

- Cautions 1. When initializing the transmission unit when continuous transmission is completed, confirm that the TXSF0 bit is 0 after the occurrence of the transmission completion interrupt, and then execute initialization. If initialization is performed when the TXSF0 bit is 1, transmit data cannot be guaranteed.
 - While transmission is being performed continuously, an overrun error may occur if the
 next transmission is completed before the INTSTO interrupt servicing following the
 transmission of 1 data frame is executed. An overrun error can be detected by
 embedding a program that can count the number of transmit data and referencing
 TXSFO bit.

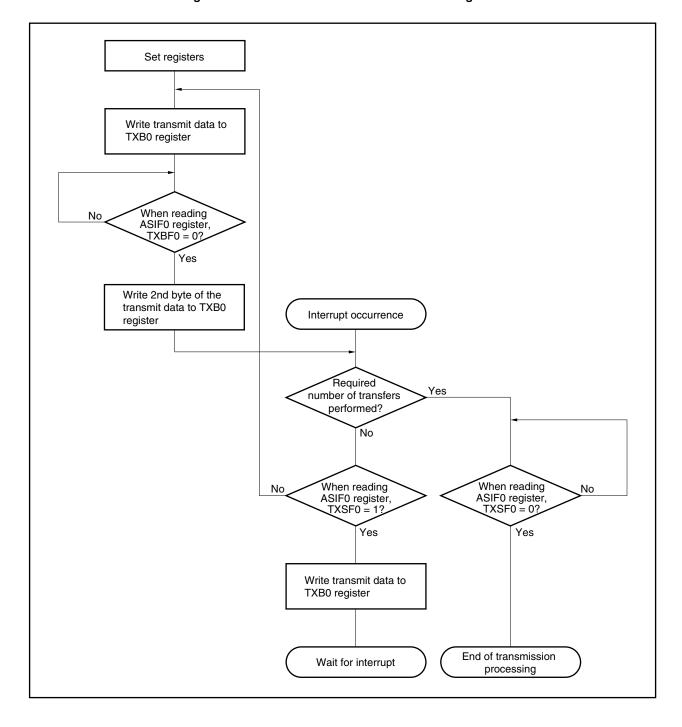
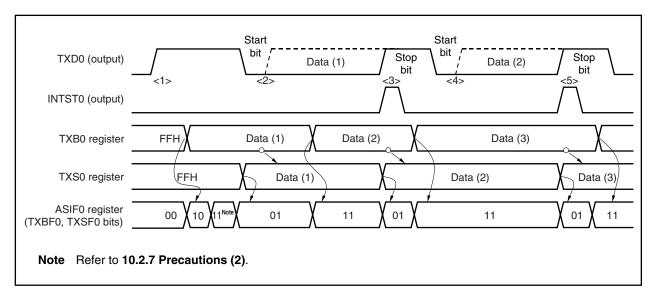



Figure 10-4. Continuous Transmission Processing Flow

(a) Starting procedure

The procedure to start continuous transmission is shown below.

Figure 10-5. Continuous Transmission Starting Procedure

Transmission Starting Procedure	Internal Operation	ASIF0 F	Register
		TXBF0	TXSF0
Set transmission mode	<1> Start transmission unit	0	0
Write data (1)	-	1	0
	<2> Generate start bit	1	1 Note
		0	1 Note
	Start data (1) transmission	0	1
• Read ASIF0 register (confirm that TXBF0 bit = 0) ◆		<u>0</u>	1
Write data (2)	-	1	1
	< <transmission in="" progress="">></transmission>		
	<3> INTST0 interrupt occurs	0	1
• Read ASIF0 register (confirm that TXBF0 bit = 0) ◆		<u>0</u>	1
Write data (3)		1	1
	<4> Generate start bit		
	Start data (2) transmission		
	< <transmission in="" progress="">></transmission>		
	<5> INTST0 interrupt occurs	0	1
• Read ASIF0 register (confirm that TXBF0 bit = 0) ◆		<u>0</u>	1
Write data (4)		1	1

Note Refer to 10.2.7 Precautions (2).

(b) Ending procedure

TXE0 bit

The procedure for ending continuous transmission is shown below.

Start Start Stop Stop TXD0 (output) Data (m - 1) Data (m) bit bit <6> <7> <9> <10> **<**11> INTST0 (output) TXB0 register Data (m - 1) Data (m) Transmit shift FFH Data (m-1)Data (m) register ASIF0 register 01 00 11 01 (TXBF0, TXSF0 bits) UARTCAE0 bit

Figure 10-6. Continuous Transmission End Procedure

Transmission End Procedure	Internal Operation	ASIF0 I	Register
		TXBF0	TXSF0
	<6> Transmission of data (m – 2) is in progress	1	1
	<7> INTST0 interrupt occurs	0	1
Read ASIF0 register (confirm that TXBF0 bit = 0)		<u>0</u>	1
Write data (m)	-	1	1
	<8> Generate start bit		
	Start data (m – 1) transmission		
	< <transmission in="" progress="">></transmission>		
	<9> INTST0 interrupt occurs	0	1
Read ASIF0 register (confirm that TXSF0 bit = 1)		0	1
There is no write data			
	<10> Generate start bit		
	Start data (m) transmission		
	< <transmission in="" progress="">></transmission>		
	<11> Generate INTST0 interrupt	0	0
Read ASIF0 register (confirm that TXSF0 bit = 0)		0	<u>0</u>
Clear (0) the UARTCAE0 bit or TXE0 bit	Initialize internal circuits		

(4) Reception operation

An awaiting reception state is set by setting UARTCAE0 bit to 1 in the ASIM0 register and then setting RXE0 bit to 1 in the ASIM0 register. To start the receive operation, start sampling at the falling edge when the falling of the RXD0 pin is detected. If the RXD0 pin is low level at a start bit sampling point, the start bit is recognized. When the receive operation begins, serial data is stored sequentially in the receive shift register according to the baud rate that was set. A reception completion interrupt (INTSR0) is generated each time the reception of one frame of data is completed. Normally, the receive data is transferred from receive buffer register 0 (RXB0) to memory by this interrupt servicing.

(a) Reception enabled state

The receive operation is set to reception enabled state by setting the RXE0 bit in the ASIM0 register to 1.

- RXE0 bit = 1: Reception enabled state
- RXE0 bit = 0: Reception disabled state

In reception disabled state, the reception hardware stands by in the initial state. At this time, the contents of receive buffer register 0 (RXB0) are retained, and no reception completion interrupt or reception error interrupt is generated.

(b) Start of reception operation

A reception operation is started by the detection of a start bit.

The RXD0 pin is sampled according to the serial clock from the baud rate generator 0 (BRG0).

(c) Reception completion interrupt

When RXE0 = 1 in the ASIM0 register and the reception of one frame of data is completed (the stop bit is detected), a reception completion interrupt (INTSR0) is generated and the receive data in the receive shift register is transferred to the RXB0 register at the same time.

Also, if an overrun error (OVE bit of ASIS0 register = 1) occurs, the receive data at that time is not transferred to receive buffer register 0 (RXB0), and either an INTSR0 signal or a reception error interrupt (INTSER0) is generated according to the ISRM bit setting in the ASIM0 register.

Even if a parity error (PE bit of ASIS0 register = 1) or framing error (FE bit of ASIS0 register = 1) occurs during a receive operation, the receive operation continues until stop bit is received, and after reception is completed, either an INTSR0 signal or an INTSER0 signal is generated according to the ISRM bit setting in the ASIM0 register (the receive data in the receive shift register is transferred to the RXB0 register).

If the RXE0 bit is cleared (0) during a receive operation, the receive operation is immediately stopped. The contents of receive buffer register 0 (RXB0) and of the asynchronous serial interface status register (ASIS0) at this time do not change, and no INTSR0 or INTSER0 signal is generated.

No INTSR0 or INTSER0 signal is generated when RXE0 = 0 (reception is disabled).

RXD0 (input)

Start D0 D1 D2 Parity Stop

INTSR0 (output)

RXB0 register

Figure 10-7. Asynchronous Serial Interface Reception Completion Interrupt Timing

Cautions 1. Even if a reception error occurs, be sure to read receive buffer register 0 (RXB0). If the RXB0 register is not read, an overrun error will occur at the next data reception, and the reception error state will continue indefinitely.

Reception is always performed with the stop bit length set to 1.A second stop bit is ignored.

(5) Reception error

The three types of error that can occur during a receive operation are a parity error, framing error, or overrun error. The data reception result is that the various flags of the ASISO register are set (1), and a reception error interrupt (INTSERO) or a reception completion interrupt (INTSRO) is generated at the same time. The ISRM bit of the ASIMO register specifies whether an INTSERO or INTSRO signal is generated.

The type of error that occurred during reception can be detected by reading the contents of the ASIS0 register during the INTSER0 or INTSR0 interrupt servicing.

The contents of the ASIS0 register are cleared (0) by reading the ASIS0 register.

Table 10-2. Reception Error Causes

Error Flag	Reception Error	Cause
PE	Parity error	The parity specification during transmission did not match the parity of the reception data
FE	Framing error	No stop bit was detected
OVE	Overrun error	The reception of the next data was completed before data was read from receive buffer register 0 (RXB0)

(a) Separation of reception error interrupt

A reception error interrupt can be separated from the INTSR0 signal and generated as an INTSER0 signal by clearing the ISRM bit of the ASIM0 register to 0.

Figure 10-8. When Reception Error Interrupt Is Separated from INTSR0 Interrupt (ISRM Bit = 0)

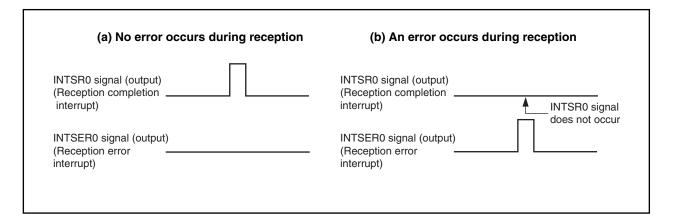
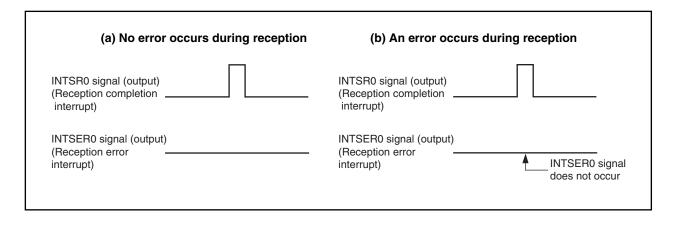



Figure 10-9. When Reception Error Interrupt Is Included in INTSR0 Interrupt (ISRM Bit = 1)

(6) Parity types and corresponding operation

A parity bit is used to detect a bit error in communication data. Normally, the same type of parity bit is used at the transmission and reception sides.

(a) Even parity

(i) During transmission

The parity bit is controlled so that the number of bits with the value "1" within the transmit data including the parity bit is even. The parity bit value is as follows.

- If the number of bits with the value "1" within the transmit data is odd: 1
- If the number of bits with the value "1" within the transmit data is even: 0

(ii) During reception

The number of bits with the value "1" within the receive data including the parity bit is counted, and a parity error is generated if this number is odd.

(b) Odd parity

(i) During transmission

In contrast to even parity, the parity bit is controlled so that the number of bits with the value "1" within the transmit data including the parity bit is odd. The parity bit value is as follows.

- If the number of bits with the value "1" within the transmit data is odd: 0
- If the number of bits with the value "1" within the transmit data is even: 1

(ii) During reception

The number of bits with the value "1" within the receive data including the parity bit is counted, and a parity error is generated if this number is even.

(c) 0 parity

During transmission the parity bit is set to "0" regardless of the transmit data.

During reception, no parity bit check is performed. Therefore, no parity error is generated regardless of whether the parity bit is "0" or "1".

(d) No parity

No parity bit is added to the transmit data.

During reception, the receive operation is performed as if there were no parity bit. Since there is no parity bit, no parity error is generated.

(7) Receive data noise filter

The RXD0 signal is sampled at the rising edge of the prescaler output base clock (fclk). If the same sampling value is obtained twice, the match detector output changes, and this output is sampled as input data. Therefore, data not exceeding one clock width is judged to be noise and is not delivered to the internal circuit (see **Figure 10-11**). Refer to **10.2.6 (1) (a) Base clock** regarding the base clock.

Also, since the circuit is configured as shown in Figure 10-10, internal processing during a receive operation is delayed by up to 2 clocks according to the external signal status.

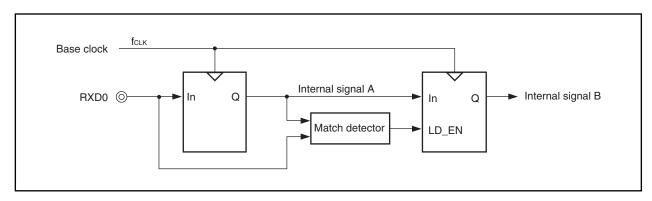
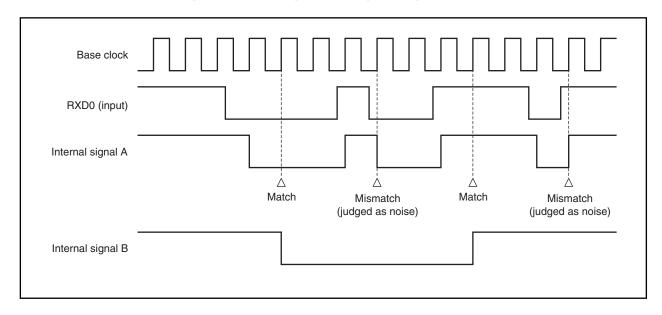
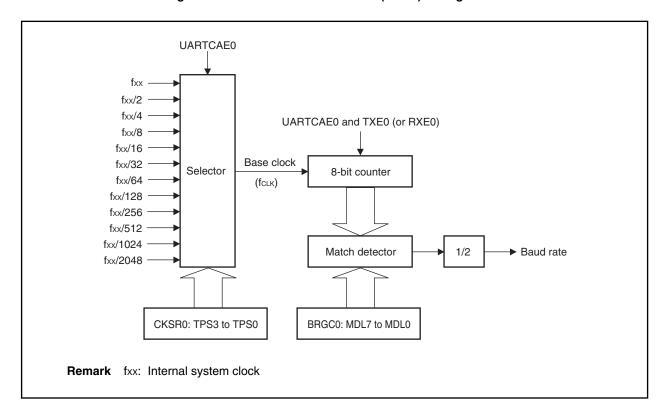



Figure 10-10. Noise Filter Circuit


10.2.6 Dedicated baud rate generator 0 (BRG0)

A dedicated baud rate generator, which consists of a source clock selector and an 8-bit programmable counter, generates serial clocks during transmission/reception at UART0. The dedicated baud rate generator output can be selected as the serial clock for each channel.

Separate 8-bit counters exist for transmission and for reception.

(1) Baud rate generator 0 (BRG0) configuration

Figure 10-12. Baud Rate Generator 0 (BRG0) Configuration

(a) Base clock

When UARTCAE0 bit = 1 in the ASIM0 register, the clock selected according to the TPS3 to TPS0 bits of the CKSR0 register is supplied to the transmission/reception unit. This clock is called the base clock (f_{CLK}). When UARTCAE0 bit = 0, f_{CLK} is fixed at low level.

(2) Serial clock generation

A serial clock can be generated according to the settings of the CKSR0 and BRGC0 registers.

The base clock to the 8-bit counter is selected according to the TPS3 to TPS0 bits of the CKSR0 register.

The 8-bit counter divisor value can be set according to the MDL7 to MDL0 bits of the BRGC0 register.

(a) Clock selection register 0 (CKSR0)

The CKSR0 register is an 8-bit register for selecting the base clock (fclk) according to the TPS3 to TPS0 bits. The clock selected by the TPS3 to TPS0 bits becomes fclk of the transmission/reception module. This register can be read/written in 8-bit units.

Cautions 1. The maximum allowable frequency of the base clock (fclk) is 25 MHz. Therefore, when the system clock's frequency is 50 MHz, bits TPS3 to TPS0 cannot be set to 0000B.

To use 50 MHz, set the TPS3 to TPS0 bits to a value other than 0000B, and set the UARTCAE0 bit of the ASIM0 register to 1.

2. If the TPS3 to TPS0 bits are to be overwritten, the UARTCAE0 bit of the ASIM0 register should be set to 0 first.

	7	6	5		4	3	2	1	0	Address	Initial value
(SR0	0	0	0		0	TPS3	TPS2	TPS	TPS0	FFFFFA06H	00H
		_		1							
	Bit position	Bit n	ame					Fur	nction		
	3 to 0	TPS3 to	0	Spe	cifies the	e base clo	ock (fclk).				
					TPS3	TPS2	TPS1	TPS0	Е	Base clock (fclk)	
					0	0	0	0	fxx		
					0	0	0	1	fxx/2		
					0	0	1	0	fxx/4		
					0	0	1	1	fxx/8		
					0	1	0	0	fxx/16		
					0	1	0	1	fxx/32		
					0	1	1	0	fxx/64		
					0	1	1	1	fxx/128		
					1	0	0	0	fxx/256		
					1	0	0	1	fxx/512		
					1	0	1	0	fxx/1024		
					1	0	1	1	fxx/2048		
					1	1	Arbitrary	Arbitrary	Setting prof	nibited	

(b) Baud rate generator control register 0 (BRGC0)

The BRGC0 register is an 8-bit register that controls the baud rate (serial transfer speed) of UART0. This register can be read/written in 8-bit units.

Caution If the MDL7 to MDL0 bits are to be overwritten, the TXE0 bit and RXE0 bit of the ASIM0 register should be set to 0 first.

7 6 5 4 3 2 1 0 Address Initial value BRGC0 MDL7 MDL5 MDL1 FFFFFA07H MDL6 MDL4 MDL3 MDL2 MDL0 FFH

Bit position	Bit name							F	unctio	n		
7 to 0	MDL7 to MDL0	Sp	ecifies	s the 8	-bit co	ounter'	s divis	ion va	lue.			
			MDL7	MDL6	MDL5	MDL4	MDL3	MDL2	MDL1	MDL0	Set value (k)	Serial clock
			0	0	0	0	0	х	х	х	-	Setting prohibited
	!		0	0	0	0	1	0	0	0	8	fclk/8
	!		0	0	0	0	1	0	0	1	9	fclk/9
	!		0	0	0	0	1	0	1	0	10	fclk/10
			:							:		:
	!		1	1	1	1	1	0	1	0	250	fclk/250
			1	1	1	1	1	0	1	1	251	fcLk/251
	!		1	1	1	1	1	1	0	0	252	fclk/252
			1	1	1	1	1	1	0	1	253	fclk/253
			1	1	1	1	1	1	1	0	254	fc_к/254
			1	1	1	1	1	1	1	1	255	fclk/255
												<u> </u>

Remarks 1. fclk: Frequency [Hz] of base clock selected according to TPS3 to TPS0 bits of CKSR0 register

2. k: Value set according to MDL7 to MDL0 bits (k = 8, 9, 10, ..., 255)

3. The baud rate is the output clock for the 8-bit counter divided by 2

4. x: don't care

(c) Baud rate

The baud rate is the value obtained according to the following formula.

Baud rate =
$$\frac{f_{CLK}}{2 \times k}$$
 [bps]

 f_{CLK} = Frequency [Hz] of base clock selected according to TPS3 to TPS0 bits of CKSR0 register k = Value set according to MDL7 to MDL0 bits of BRGC0 register (k = 8, 9, 10, ..., 255)

(d) Baud rate error

The baud rate error is obtained according to the following formula.

Error (%) =
$$\left(\frac{\text{Actual baud rate (baud rate with error)}}{\text{Target baud rate (normal baud rate)}} - 1\right) \times 100 [\%]$$

- Cautions 1. Make sure that the baud rate error during transmission does not exceed the allowable error of the reception destination.
 - 2. Make sure that the baud rate error during reception is within the allowable baud rate range during reception, which is described in (4) Allowable baud rate range during reception.

Example: Base clock frequency (fclk) = 20 MHz = 20,000,000 Hz

Settings of MDL7 to MDL0 bits in BRGC0 register = 01000001B (k = 65)

Target baud rate = 153,600 bps

Baud rate =
$$20M/(2 \times 65)$$

= $20000000/(2 \times 65) = 153,846$ [bps]

Error =
$$(153846/153600 - 1) \times 100$$

= 0.160 [%]

(3) Baud rate setting example

Table 10-3. Baud Rate Generator Setting Data

Baud Rate	fxx	× = 50 MH	Нz	fx	× = 40 MH	Нz	fx	× = 33 MI	Нz	fx	x = 10 MH	Нz
(bps)	fclk	k	ERR	fclk	k	ERR	fclk	k	ERR	fclk	k	ERR
300	fxx/2 ⁹	163	0.15	fxx/2 ¹⁰	65	0.16	fxx/2 ⁸	215	-0.07	fxx/2 ⁷	130	0.16
600	fxx/2 ⁸	163	0.15	fxx/2 ⁹	65	0.16	fxx/2 ⁷	215	-0.07	fxx/2 ⁶	130	0.16
1200	fxx/2 ⁷	163	0.15	fxx/2 ⁸	65	0.16	fxx/2 ⁶	215	-0.07	fxx/2 ⁵	130	0.16
2400	fxx/2 ⁶	163	0.15	fxx/2 ⁷	65	0.16	fxx/2 ⁵	215	-0.07	fxx/2 ⁴	130	0.16
4800	fxx/2 ⁵	163	0.15	fxx/2 ⁶	65	0.16	fxx/2 ⁴	215	-0.07	fxx/2 ³	130	0.16
9600	fxx/2 ⁴	163	0.15	fxx/2 ⁵	65	0.16	fxx/2 ³	215	-0.07	fxx/2 ²	130	0.16
19200	fxx/2 ³	163	0.15	fxx/2 ⁴	65	0.16	fxx/2 ²	215	-0.07	fxx/2 ¹	130	0.16
31250	fxx/2 ³	100	0	fxx/2 ³	80	0	fxx/2 ²	132	0	fxx/2 ¹	80	0
38400	fxx/2 ²	163	0.15	fxx/2 ³	65	0.16	fxx/2 ¹	215	-0.07	fxx/2°	130	0.16
76800	fxx/2 ¹	163	0.15	fxx/2 ²	65	0.16	fxx/2 ¹	107	0.39	fxx/2°	65	0.16
153600	fxx/2 ¹	81	0.47	fxx/2 ¹	65	0.16	fxx/2 ¹	54	-0.54	fxx/2°	33	-1.36
312500	fxx/2 ¹	40	0	fxx/2 ¹	32	0	fxx/2 ¹	26	1.54	fxx/2°	16	0
625000	fxx/2 ¹	20	0	fxx/2 ¹	16	0	fxx/2 ¹	13	1.54	fxx/2°	8	0
1250000	fxx/2 ¹	10	0	fxx/2 ¹	8	0	fxx/2 ¹	8	-17.5	ı	-	_
1562500	fxx/2 ¹	8	0	fxx/2 ¹	8	-18.6	=	=	=	=	=	=

Caution The maximum allowable frequency of the base clock (fclk) is 25 MHz.

Remark fxx: Internal system clock frequency

fclk: Base clock frequency

k: Setting values of MDL7 to MDL0 bits in BRGC0 register

ERR: Baud rate error [%]

(4) Allowable baud rate range during reception

The degree to which a discrepancy from the transmission destination's baud rate is allowed during reception is shown below.

Caution The equations described below should be used to set the baud rate error during reception so that it always is within the allowable error range.

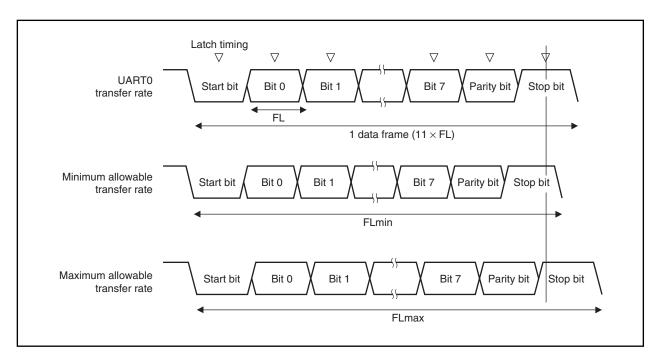


Figure 10-13. Allowable Baud Rate Range During Reception

As shown in Figure 10-13, after the start bit is detected, the receive data latch timing is determined according to the counter that was set by the BRGC0 register. If all data up to the final data (stop bit) is in time for this latch timing, the data can be received normally.

Applying this to 11-bit reception is, theoretically, as follows.

Brate: UART0 baud rate

k: BRGC0 register setting value

FL: 1-bit data length

When the latch timing margin is made 2 base clocks, the minimum allowable transfer rate (FLmin) is as follows.

$$FLmin = 11 \times FL - \frac{k-2}{2k} \times FL = \frac{21k+2}{2k} FL$$

Therefore, the transfer destination's maximum baud rate (BRmax) that can be received is as follows.

BRmax =
$$(FLmin/11)^{-1} = \frac{22k}{21k + 2}$$
 Brate

Similarly, the maximum allowable transfer rate (FLmax) can be obtained as follows.

$$\frac{10}{11} \times FLmax = 11 \times FL - \frac{k+2}{2 \times k} \times FL = \frac{21k-2}{2 \times k} FL$$

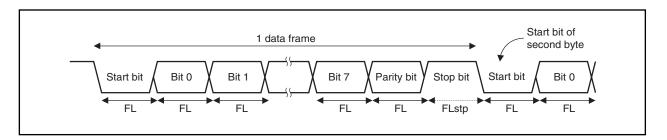
$$FLmax = \frac{21k-2}{20k} FL \times 11$$

Therefore, the transfer destination's minimum baud rate (BRmin) that can be received is as follows.

BRmin =
$$(FLmax/11)^{-1} = \frac{20k}{21k - 2}$$
 Brate

The allowable baud rate error of UART0 and the transfer destination can be obtained as follows from the expressions described above for computing the minimum and maximum baud rate values.

Table 10-4. Maximum and Minimum Allowable Baud Rate Error


Division Ratio (k)	Maximum Allowable Baud Rate Error	Minimum Allowable Baud Rate Error
8	+3.53%	-3.61%
20	+4.26%	-4.31%
50	+4.56%	-4.58%
100	+4.66%	-4.67%
255	+4.72%	-4.73%

- **Remarks 1.** The reception precision depends on the number of bits in one frame, the base clock frequency, and the division ratio (k). The higher the base clock frequency and the larger the division ratio (k), the higher the precision.
 - 2. k: BRGC0 register setting value

(5) Transfer rate during continuous transmission

During continuous transmission, the transfer rate from a stop bit to the next start bit is extended two clocks of base clock longer than normal. However, on the reception side, the transfer result is not affected since the timing is initialized by the detection of the start bit.

Figure 10-14. Transfer Rate During Continuous Transmission

Representing the 1-bit data length by FL, the stop bit length by FLstp, and the base clock frequency by fclk yields the following equation.

Therefore, the transfer rate during continuous transmission is as follows (when stop bit length = 1).

Transfer rate =
$$11 \times FL + (2/fclk)$$

10.2.7 Precautions

Precautions to be observed when using UART0 are shown below.

- (1) When the supply of clocks to UART0 is stopped (for example, IDLE or software STOP mode), operation stops with each register retaining the value it had immediately before the supply of clocks was stopped. The TXD0 pin output also holds and outputs the value it had immediately before the supply of clocks was stopped. However, operation is not guaranteed after the supply of clocks is restarted. Therefore, after the supply of clocks is restarted, the circuits should be initialized by setting UARTCAE0 bit = 0, RXE0 bit = 0, and TXE0 bit = 0 in the ASIM0 register.
- (2) UART0 has a 2-stage buffer configuration consisting of transmit buffer register 0 (TXB0) and the transmit shift register, and has status flags (TXBF0 and TXSF0 bits of ASIF0 register) that indicate the status of each buffer. If the TXBF0 and TXSF0 bits are read in continuous transmission simultaneously, the values change from 10 → 11 → 01. Thus, judge the timing for writing the next data to the TXB0 register by reading only the TXBF0 bit during continuous transmission.

10.3 Asynchronous Serial Interfaces 1, 2 (UART1, UART2)

10.3.1 Features

- Clocked (synchronous) mode/asynchronous mode can be selected
- Operation clock

Synchronous mode: Baud rate generator/external clock selectable

Asynchronous mode: Baud rate generator

Transfer rate

600 bps to 153,600 bps (in asynchronous mode, fxx = 50 MHz)

4,800 bps to 1,000,000 bps (in synchronous mode)

• Full-duplex communications (LSB first)

On-chip receive buffer register n (RXBn)

• Three-pin configuration

TXDn: Transmit data output pin RXDn: Receive data input pin

ASCKn: Synchronous serial clock I/O

- Reception error detection function
 - · Parity error
 - Framing error
 - Overrun error
- Interrupt sources: 2 types
 - Reception completion interrupt (INTSRn): Interrupt is generated when receive data is transferred from the shift register to receive buffer register n (RXBn) after serial transfer is completed during a reception enabled state.
 - Transmission completion interrupt (INTSTn): Interrupt is generated when the serial transmission of transmit data (8/7 bits) from the shift register is completed.
- The character length of transmit/receive data is specified with the ASIMn0 register (extension bits are specified with the ASIMn1 register)
- Character length: 7 or 8 bits

9 bits (when extension bit is added)

- Parity functions: Odd, even, 0, or no parity
- Transmission stop bits: 1 or 2 bits
- Communication mode: 1-frame transfer or 2-frame continuous transfer enabled
- On-chip dedicated baud rate generator

Remarks 1. n = 1, 2

2. fxx: Internal system clock

10.3.2 Configuration

UART1 and UART2 are controlled by asynchronous serial interface mode registers 10, 11, 20, and 21 (ASIM10, ASIM11, ASIM20, ASIM21) and asynchronous serial interface status registers 1 and 2 (ASIS1, ASIS2). Receive data is held in the receive buffer registers (RXB1, RXBL1, RXB2, RXBL2), and transmit data is held in the transmit shift registers (TXS1, TXSL1, TXS2, TXSL2).

Figure 10-15 shows the configuration of asynchronous serial interfaces 1 and 2 (UART1, UART2).

(1) Asynchronous serial interface mode registers 10, 11, 20, 21 (ASIM10, ASIM11, ASIM20, ASIM21)

The ASIMn0 and ASIMn1 registers are 8-bit registers that specify the operation of the asynchronous serial interface (n = 1, 2).

(2) Asynchronous serial interface status registers 1, 2 (ASIS1, ASIS2)

The ASIS1 and ASIS2 registers consist of a transmission status flag (SOTn), reception status flag (SIRn), a bit (RB8) that indicates the 9th bit when extension bit addition is enabled, and 3-bit error flags (PEn, FEn, OVEn) that indicate the error status at reception end (n = 1, 2).

(3) Reception control parity check

The receive operation is controlled according to the contents set in the ASIMn0 and ASIMn1 registers. A check for parity errors is also performed during receive operation, and if an error is detected, a value corresponding to the error contents is set in the ASIS1 and ASIS2 registers.

(4) 2-frame continuous reception buffer registers (RXB1, RXB2)/receive buffer registers (RXBL1, RXBL2)

RXBn is a 16-bit (during 2-frame continuous reception, 9-bit extension data reception) buffer register that holds receive data. During 7, 8 bit/character reception, 0 is stored in the MSB.

For 16-bit access to this register, specify RXB1, RXB2, and for access to the lower 8 bits, specify RXBL1, RXBL2.

In the reception enabled state, receive data is transferred from the receive shift register to the receive buffer in synchronization with the completion of shift-in processing of one frame.

A reception completion interrupt request (INTSRn) is generated upon transfer to the receive buffer (when 2-frame continuous reception is specified, receive buffer transfer of the second frame).

(5) 2-frame continuous transmission shift registers (TXS1, TXS2)/transmit shift registers (TXSL1, TXSL2)

TXSn is a 9-bit/2-frame continuous transmission processing shift register. Transmission is started by writing data to this register.

A transmission completion interrupt request (INTSTn) is generated in synchronization with the end of transmission of 1 frame or 2 frames including the TXSn data.

For 16-bit access to this register, specify TXS1, TXS2, and for access to the lower 8 bits, specify TXSL1, TXSL2.

(6) Addition of transmission control parity

A transmission operation is controlled by adding a start bit, parity bit, or stop bit to the data that is written to the TXSn or TXSLn register, according to the contents set in the ASIMn0, ASIMn1 registers.

(7) Selector

The selector selects the serial clock source.

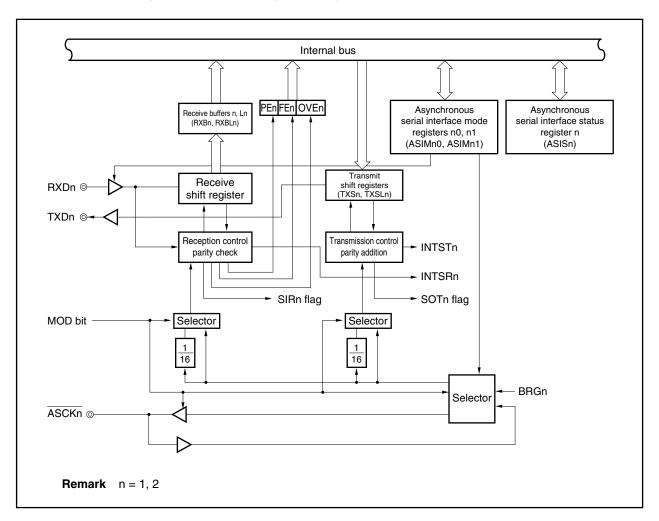


Figure 10-15. Block Diagram of Asynchronous Serial Interfaces 1, 2

10.3.3 Control registers

(1) Asynchronous serial interface mode registers 10, 20 (ASIM10, ASIM20)

The ASIMn0 register is an 8-bit register that controls the UART1, UART2 transfer operation (n = 1, 2). This register can be read/written in 8-bit or 1-bit units.

- Cautions 1. If a bit other than the RXEn bit of the ASIMn0 register is changed during UARTn transmission or reception, the UARTn operation cannot be guaranteed (n = 1, 2).
 - 2. Set a bit other than the RXEn bit of the ASIMn0 register when the UARTn operation is stopped (when RXEn bit = 0 and transmission is completed). Change the port 3 mode control register (PMC3) after setting the communication mode for bits other than the RXEn bit of the ASIMn0 register.
 - 3. In the case of serial clock output in the clocked (synchronous) mode, ensure that nodes do not output to one another causing conflicts.

ASIM10	7	<6>	5 PS1	4 PS0	3 CL	2 SL	0	0 SCLS	Address Initial value
•	7	<6>	5	4	3	2	-1	0	Address Initial value
ı		<0>	<u> </u>	4	3		1		Address Illiliai valde 1
ASIM20	1	RXE2	PS1	PS0	CL	SL	0	SCLS	FFFFFA48H 81H

Bit position	Bit name		Function							
6	RXEn	0: Disable	Enables/disables reception. 0: Disable reception 1: Enable reception							
5, 4	PS1, PS0	Specifies pa	ırity bit len	gth.						
		PS1	PS0	Ope	ration					
		0	0	No parity, extension bit ope	eration					
		0 1 0 parity Transmit side → Transmission with Receive side → No parity error ge reception								
		1	0	Odd parity						
		1 1 Even parity								
3	CL	Specifies ch 0: 7 bits 1: 8 bits	aracter le	ngth of transmit/receive data ((1 frame).					
2	SL	Specifies sto 0: 1 bit 1: 2 bits	op bit leng	th of transmit data.						
0	SCLS	Specifies se	rial clock	source.						
		SC	CLS	Ope	ration					
				In asynchronous mode	In synchronous mode					
			0	Internal baud rate	External clock input					
			1	generator						

Remark n = 1, 2

(2) Asynchronous serial interface mode registers 11, 21 (ASIM11, ASIM21)

The ASIMn1 register is an 8-bit register that controls the UART1 and UART2 transfer modes. This register can be read/written in 8-bit or 1-bit units.

	7	6	5	4	3	2	1	0	Address Initial value
ASIM11	0	0	0	0	MOD	UMST	UMSR	EBS	FFFFFA2AH 00H
	7	6	5	4	3	2	1	0	Address Initial value
ASIM21	0	0	0	0	MOD	UMST	UMSR	EBS	FFFFA4AH 00H

Bit position	Bit name	Function
3	MOD	Specifies operation mode (asynchronous/synchronous mode). 0: Asynchronous mode 1: Synchronous mode
2	UMST	Specifies number of continuous frame transmissions. 0: 1-frame data transmission 1: 2-frame continuous data transmission
1	UMSR	Specifies number of continuous frame receptions. 0: 1-frame data reception 1: 2-frame continuous data reception
0	EBS	Specifies extension bit operation for transmit/receive data when no parity is specified (PS0 = PS1 = 0). 0: Disable extension bit addition 1: Enable extension bit addition When the extension bit is specified, 1 data bit is added on top of the 8 bits of transmit/receive data, enabling 9-bit data communication. Extension bit specification is valid only when no parity (ASIMn0 register's PS0 bit = PS1 bit = 0) and 1-frame data transmission (UMST bit = 0) are specified. When 0
		parity, odd parity, or even parity are specified, or when 2-frame continuous data transmission (UMST bit = 1) is specified, the EBS bit setting becomes invalid and extension bit addition is not performed. Extension bit addition (EBS bit = 1) and 2-frame continuous data reception (UMSR bit = 1) cannot be set simultaneously.

(3) Asynchronous serial interface status registers 1, 2 (ASIS1, ASIS2)

The ASISn register is a register that is configured of a UARTn transmission status flag (SOTn), reception status flag (SIRn), a bit (RB8) indicating the 9th bit when extension bit addition is enabled, and 3-bit error flags (PEn, FEn, OVEn) that indicate the error status at reception end (n = 1, 2).

The status flag that indicates reception errors always indicates the most recent error status. In other words, if the same error occurs several times before receive data is read, this flag holds only the status of the error that occurred last.

Each time the ASISn register is read after a receive completion interrupt (INTSRn), read the receive buffer (RXBn or RXBLn). The error flag is cleared when the receive buffer (RXBn or RXBLn) is read.

Also, clear the error flag by reading the receive buffer (RXBn or RXBLn) when a reception error occurs. This register is read-only, in 8-bit or 1-bit units.

ACIC1	<7>	<6>	5	4	3	<2>	<1>	<0>	Address	Initial value
ASIS1	SOT1	SIR1	0	RB8	0	PE1	FE1	OVET	J FFFFFAZCH	00H
	<7>	<6>	5	4	3	<2>	<1>	<0>	Address	Initial value
ASIS2	SOT2	SIR2	0	RB8	0	PE2	FE2	OVE2	FFFFFA4CH	00H

Bit position	Bit name	Function					
7	SOTn	Status flag indicating transmission status 0: Transmission end timing (when INTSTn is generated) 1: Indicates transmission status ^{Note}					
		Note The transmission status is the status until the specified number of stop bits has been transmitted following write operation to the transmit register. During 2-frame continuous transmission, this status is until the stop bit of the 2nd frame has been transmitted.					
6	SIRn	Status flag indicating reception status 0: Reception end timing (when INTSRn is generated) 1: Indicates reception status ^{Note}					
		Note The reception status is the status until stop bit detection from the start bit detection timing.					
4	RB8	Indicates contents of receive data extension bit (1 bit) when 9-bit extended formal is specified (EBS bit of ASIMn1 register = 1).					
2	PEn	Status flag indicating parity error 0: Processing to read data from receive buffer 1: When transmit parity and receive parity don't match					
		Caution No parity error is generated if no parity is specified or 0 parity is specified with the PS1, PS0 bits of the ASIMn0 register.					
1	FEn	Status flag indicating framing error 0: Processing to read data from receive buffer 1: When stop bit is not detected					
0	OVEn	Status flag indicating overrun error 0: Processing to read data from receive buffer 1: When UARTn has completed next reception processing prior to loading receive data from receive buffer					
		Since the contents of the receive shift register are transferred to the receive buffer (RXBn, RXBLn) every time 1 frame is received, the following receive data is overwritten to the receive buffer (RXBn, RXBLn) and the previous receive data is discarded.					

Remark n = 1, 2

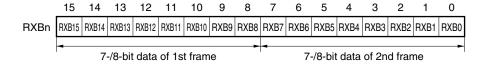
(4) 2-frame continuous reception buffer registers 1, 2 (RXB1, RXB2)/receive buffer registers L1, L2 (RXBL1, RXBL2)

The RXBn register is a 16-bit buffer register that holds receive data (during 2-frame continuous reception (UMSR bit of ASIMn1 register = 1), during 9-bit extended data reception (EBS bit of ASIMn1 register = 1)) (n = 1, 2). During 7 or 8 bit/character reception, 0 is stored in the MSB.

For 16-bit access to this register, specify RXBn, and for access to the lower 8 bits, specify RXBLn.

In the receive enabled status, receive data is transferred from the receive shift register to the receive buffer in synchronization with the end of shift-in processing for 1 frame of data.

The reception completion interrupt request (INTSRn) is generated upon transfer of data to the receive buffer (when 2-frame continuous reception is specified, receive buffer transfer of the second frame).


In the reception disabled status, transfer processing to the receive buffer is not performed even if shift-in processing for 1 frame of data has been completed, and the contents of the receive buffer are held.

Neither is a reception completion interrupt request generated.

The RXBn register is read-only, in 16-bit units, and the RXBLn register is read-only, in 8-bit units.

[2-frame continuous reception buffer register 1] Address Initial value RXB1 | RXB15 | RXB14 | RXB13 | RXB12 | RXB11 | RXB10 | RXB9 | RXB8 | RXB7 | RXB6 | RXB5 | RXB4 | RXB3 | RXB2 | RXB1 | RXB0 FFFFA20H Undefined [Receive buffer register L1] 6 3 0 Address Initial value RXBL1 RXB7 RXB6 RXB5 RXB4 RXB3 RXB2 RXB1 RXB0 FFFFA22H Undefined [2-frame continuous reception buffer register 2] n 12 11 10 3 Address Initial value RXB2 | RXB15 | RXB14 | RXB13 | RXB12 | RXB11 | RXB10 | RXB9 | RXB8 | RXB7 | RXB6 | RXB5 | RXB4 | RXB3 | RXB2 | RXB1 | RXB0 FFFFA40H Undefined [Receive buffer register L2] 5 3 0 Address Initial value RXBL2 RXB7 RXB6 RXB5 RXB4 RXB3 RXB2 RXB1 RXB0 FFFFA42H Undefined Bit position Bit name Function 15 to 0 RXB15 to Stores receive data. RXB0 0 can be read for the RXBn register when 7, 8 bit/character data is received. When an extension bit is set during 9 bit/character data reception, the extension bit (RXB8) is stored in RB8 of the ASISn register simultaneously with saving to the receive buffer. 0 can be read for the RXB7 bit of the RXBLn register during 7 bit/character data reception.

(a) When 2-frame continuous reception is set

(b) When 9-bit extension reception is set

When 9-bit extension is set, the extension bit (RXB8) is stored in the RB8 bit of the ASISn register simultaneously with saving to the receive buffer.

(c) Cautions

<1> Operation upon occurrence of overrun error during 2-frame continuous reception

 During n 	ormal reception		
Receptio	n completion interrupt (INTSR	n) generated upon end of re	eception of 2nd frame, no error
RXDn	Frame 1	Frame 2	
Reception	on of 3rd frame started before	re performing reception or	ocessina
-		· · · · · · · · · · · · · · · · · · ·	eception of 2nd frame, no error
RXDn	Frame 1	Frame 2	
ПХЫП	Traine 1	Traine 2	J
Receptio	n completion interrupt not gen	erated upon end of receptio	n of 3rd frame, occurrence of error
RXDn .	Frame 3	Frame 3	1
	OVEn bit of ASISn register be		
Start of i	reception of 3rd frame and 4	th frame before performin	g reception processing
Receptio	n completion interrupt (INTSR	n) generated upon end of re	eception of 2nd frame, no error
RXDn	Frame 1	Frame 2	
			_
Receptio	n completion interrupt not gen	erated upon end of receptio	n of 3rd frame, occurrence of error
RXDn	Frame 3	Frame 3	
Value of	OVEn bit of ASISn register be	ecomes 1.	
Receptio	n completion interrupt (INTSR	n) generated upon end of re	eception of 4th frame, no error
RXDn	Frame 3	Frame 4	
Value of	OVEn bit of ASISn register re	mains 1.	
Start of	reception of 3rd frame before	ore performing reception	processing, start of reception of
4th fram	e after performing receptior	processing	
Receptio	n completion interrupt (INTSR	n) generated upon end of re	eception of 2nd frame, no error
RXDn	Frame 1	Frame 2]
Receptio	n completion interrupt not gen	erated upon end of receptio	n of 3rd frame, occurrence of error
RXDn	Frame 3	Frame 3]
Value of	OVEn bit of ASISn register be	ecomes 1.	
Value of	OVEn flag becomes 0 during	reception processing.	
Receptio	n completion interrupt (INTSR	n) generated upon end of re	eception of 4th frame, no error
RXDn	Frame 3	Frame 4	J
No occur	rence of error		

(5) 2-frame continuous transmission shift registers 1, 2 (TXS1, TXS2)/transmit shift registers L1, L2 (TXSL1, TXSL2)

The TXSn register is a 9-bit/2-frame continuous transmission processing shift register (n = 1, 2). Transmission is started by writing data to this register.

A transmission completion interrupt request (INTSTn) is generated in synchronization with the end of transmission of 1 frame or 2 frames including the TXSn data.

For 16-bit access to this register, specify TXSn, and for access to the lower 8 bits, specify TXSLn.

The TXSn register is write-only, in 16-bit units, and the TXSLn register is write-only, in 8-bit units.

Caution TXSn, TXSLn can be read, but since shifting is done in synchronization with the shift clock, the data that is read cannot be guaranteed.

	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	Address	Initial value
TXS1	TXS15	TXS14	TXS13	TXS12	TXS11	TXS10	TXS9	TXS8	TXS7	TXS6	TXS5	TXS4	TXS3	TXS2	TXS1	TXS0	FFFFA24H	Undefined
[Trans	mit e	hift r	onie	tor I	11													
Litalis	onnic S	11111	egisi	lei L	']				7	6	5	4	3	2	1	0	Address	Initial value
							TX	SL1	r i				_			TXS0	FFFFFA26H	
								-										
[2-fran	2-frame continuous transmission shift register 2]																	
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	Address	Initial value
TXS2	_		_	12 TXS12						_	_		_			O TXS0		Initial value Undefined
TXS2	TXS15	TXS14	TXS13	TXS12	TXS11		TXS9	TXS8	TXS7	TXS6	TXS5	TXS4	TXS3	TXS2	TXS1	TXS0	FFFFFA44H Address	Undefined
	TXS15	TXS14	TXS13	TXS12	TXS11		TXS9		TXS7	TXS6	TXS5	TXS4	TXS3	TXS2	TXS1	TXS0	FFFFFA44H Address	Undefined
[Trans	TXS15	TXS14	TXS13	TX\$12	TXS11		TXS9	TXS8	TXS7	TXS6	TXS5	TXS4 4 TXS4	TXS3 3 TXS3	Z TXS2	TXS1	TXS0	FFFFFA44H Address	Undefined
[Trans	TXS15	TXS14	TXS13	TXS12	TXS11		TXS9	TXS8	TXS7	TXS6	TXS5	TXS4 4 TXS4	TXS3	Z TXS2	TXS1	TXS0	FFFFFA44H Address	Undefined

10.3.4 Interrupt requests

The following two types of interrupt request are generated from UARTn (n = 1, 2).

- Reception completion interrupt (INTSRn)
- Transmission completion interrupt (INTSTn)

The reception completion interrupt has higher default priority than the transmission completion interrupt.

Table 10-5. Default Priority of Generated Interrupts

Interrupt	Priority
Reception completion	1
Transmission completion	2

(1) Reception completion interrupt (INTSRn)

In the reception enabled state, the reception completion interrupt (INTSRn) is generated when data in the receive shift register undergoes shift-in processing and is transferred to the receive buffer.

The reception completion interrupt request (INTSRn) is generated following stop bit sampling. The reception completion interrupt (INTSRn) is generated upon occurrence of an error.

In the reception disabled state, no reception completion interrupt is generated.

Caution A reception completion interrupt (INTSRn) is generated when the last bit of receive data (stop bit) is sampled.

(2) Transmission completion interrupt (INTSTn)

Since UARTn does not have a transmit buffer, a transmission completion interrupt request (INTSTn) is generated when one frame of data containing 7-bit or 8-bit characters or two frames of data containing 9-bit characters are shifted out from the transmit shift register (TXSn, TXSLn).

10.3.5 Operation

(1) Data format

Full-duplex serial data is transmitted and received.

Figure 10-16 shows the format of transmit/receive data. One data frame consists of a start bit, character bits, a parity bit, and a stop bit(s). When 2 data frame transfer is set, both frames have the above-described format.

Specification of the character bit length in one data frame, parity selection, and specification of the stop bit length is done using asynchronous serial interface mode registers 10, 20 (ASIM10, ASIM20). Specification of the number of frames and specification of the extension bit is done with asynchronous serial interface mode registers 11, 21 (ASIM11, ASIM21). Data is transmitted LSB first.

Figure 10-16. Asynchronous Serial Interface Transmit/Receive Data Format

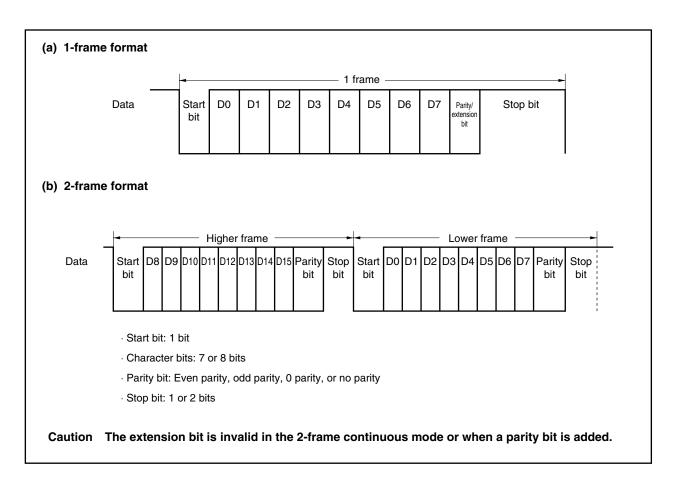


Table 10-6. ASIMn0, ASIMn1 Register Settings and Data Format

	ASIMn0, A	SIMn1 Register	Settings	Data Format						
CL Bit	PS1 Bit	PS0 Bit	SL Bit	EBS Bit	D0 to D6	D7	D8	D9	D10	
0	0	0	0	0	DATA	Stop bit	_	_	_	
0	Other than PS1	= PS0 = 0			DATA	Parity bit	Stop bit	_	_	
1	0	0			DATA	DATA	Stop bit	_	_	
1	Other than PS1	= PS0 = 0			DATA	DATA	Parity bit	Stop bit	_	
0	0	0	1	0	DATA	Stop bit	Stop bit	_	_	
0	Other than PS1	= PS0 = 0			DATA	Parity bit	Stop bit	Stop bit	_	
1	0	0			DATA	DATA	Stop bit	Stop bit	_	
1	Other than PS1	= PS0 = 0			DATA	DATA	Parity bit	Stop bit	Stop bit	
0	0	0	0	1	DATA	Stop bit	_	_	_	
0	Other than PS1 = PS0 = 0				DATA	Parity bit	Stop bit	_	_	
1	0	0			DATA	DATA	DATA	Stop bit	_	
1	Other than PS1			DATA	DATA	Parity bit	Stop bit	_		
0	0	0	1	1	DATA	Stop bit	Stop bit	_	_	
0	Other than PS1 = PS0 = 0				DATA	Parity bit	Stop bit	Stop bit	_	
1	0	0			DATA	DATA	DATA	Stop bit	Stop bit	
1	Other than PS1			DATA	DATA	Parity bit	Stop bit	Stop bit		

(2) Transmission operation

The transmission operation is started by writing data to 2-frame continuous transmission shift registers 1, 2 (TXS1, TXS2)/transmit shift registers L1, L2 (TXSL1, TXSL2).

Following data write, the start bit is transmitted from the next shift timing.

Since the UARTn does not have a CTS (transmission enable signal) input pin, use a port when the other party confirms the reception enabled status (n = 1, 2).

(a) Transmission operation start

The transmission operation is started by writing transmit data to 2-frame continuous transmission shift registers 1, 2 (TXS1, TXS2)/transmit shift registers L1, L2 (TXSL1, TXSL2). Then data is output in sequence from LSB to the TXDn pin (transmission in sequence from the start bit). A start bit, parity bit, and stop bit(s) are automatically added.

(b) Transmission interrupt request

When the transmit shift register becomes empty upon completion of the transmission of 1 or 2 frames of data, a transmission completion interrupt request (INTSTn) is generated. The INTSTn interrupt generation timing differs depending on the specified stop bit length. The INTSTn interrupt is generated at the same time that the last stop bit is output.

The transmission operation remains stopped until the data to be transmitted next has been written to the TXSn/TXSLn registers.

Figure 10-17 shows the INTSTn interrupt generation timing.

- Cautions 1. Normally, the transmission completion interrupt (INTSTn) is generated when the transmit shift register becomes empty. However, if the transmit shift register has become empty due to input of RESET, no transmission completion interrupt (INTSTn) is generated.
 - No data can be written to the TXSn or TXSLn registers during transmission operation until INTSTn is generated. Even if data is written, this does not affect the transmission operation.

(a) When stop bit length = 1 bit TXDn (output) Start Parity Stop INTSTn interrupt Flag in transmission (SOTn) (b) When stop bit length = 2 bits TXDn (output) Start Stop INTSTn interrupt Flag in transmission (SOTn) (c) In 2-frame continuous transmission mode TXDn (output) Stop 1st frame 2nd frame INTSTn interrupt Flag in transmission (SOTn)

Figure 10-17. Asynchronous Serial Interface Transmission Completion Interrupt Timing

(3) Continuous transmission of 3 or more frames

In addition to the 1-frame/2-frame transmission function, UARTn also enables continuous transmission of 3 or more frames, using the method shown below (n = 1, 2).

(a) How to continuously transmit 3 or more frames (when the stop bit is 1 bit (SL bit = 0))

Three frames can be continuously transmitted by writing transmit data to the TXSn/TXSLn register in the period between the generation of the transmission completion interrupt request (INTSTn) and $4 \times 2 / f x x$ before the output of the last stop bit.

The INTSTn interrupt becomes high level 2/fxx after being output and returns to low level 2/fxx later. TXSn/TXSLn can only be written after the INTSTn interrupt level has fallen. The time from INTSTn interrupt generation to the completion of transmit data writing (t) is therefore indicated by the following expression.

 $t = (Time of one stop bit) - (2 \times 2/fxx + 4 \times 2/fxx)$

fxx = Internal system clock

Caution 4 × 2/fxx has a margin of double the clock that can actually be used for operation.

Example Count clock frequency = 32 MHz = 32,000,000 Hz

Target baud rate in synchronous mode = 9,600 bps

t = (1/9615.385) - ((4 + 8)/32,000,000)

= 104.000 - 0.375

 $= 103.625 [\mu s]$

Therefore, be sure to write transmit data to TXSn/TXSLn within 103 μ s of the generation of the INTSTn interrupt.

Note, however, that because writing to TXSn/TXSLn may be delayed depending on the priority order of the INTSTn interrupt or the interrupt servicing time, be sure to allow sufficient time for writing transmit data after the INTSTn interrupt has been generated. If there is not enough time for continuous transmission due to a delay in writing to TXSn/TXSLn, a 1-bit high level is transmitted.

Note also that if the stop bit length is 2 bits (SL bit = 1), the INTSTn interrupt will be generated when the second stop bit is output.

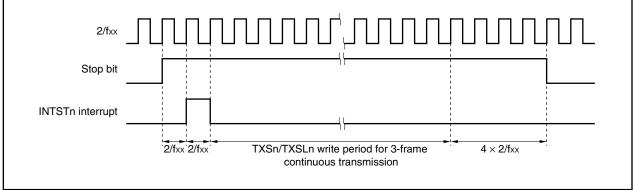


Figure 10-18. Continuous Transmission of 3 or More Frames (When SL Bit = 0)

(4) Reception operation

The reception wait status is entered by setting the RXEn bit of the ASIMn0 register to 1 (n = 1, 2). To start the reception operation, first perform start bit detection. Start bit detection is done by performing sampling of the RXDn pin. When the reception operation is started, serial data is stored to the receive shift register in sequence at the set baud rate. Each time reception of 2 frames or 1 frame of RXBn or RXBLn data has been completed, a reception completion interrupt (INTSRn) is generated. Receive data is transmitted from the receive buffer (RXBn/RXBLn) to memory when this interrupt is serviced.

(a) Reception enabled status

The reception operation is enabled by setting (1) the RXEn bit of the ASIMn0 register.

- RXEn = 1: Reception enabled status
- RXEn = 0: Reception disabled status

In the reception disabled status, the reception hardware is in standby in an initialized state. At this time, no reception completion interrupt is generated, and the contents of the receive buffer are held.

(b) Start of reception operation

The reception operation is started through detection of the start bit.

• In asynchronous mode (MOD bit of ASIMn1 register = 0)

The RXDn pin is sampled using the serial clock from the baud rate generator. After 8 serial clocks have been output following detection of the falling edge of the RXDn pin, the RXDn pin is again sampled. If a low level is detected at this time, the falling edge of the RXDn pin is interpreted as a start bit, the operation shifts to reception processing, and the RXDn pin input is sampled from this point on in units of 16 serial clock output.

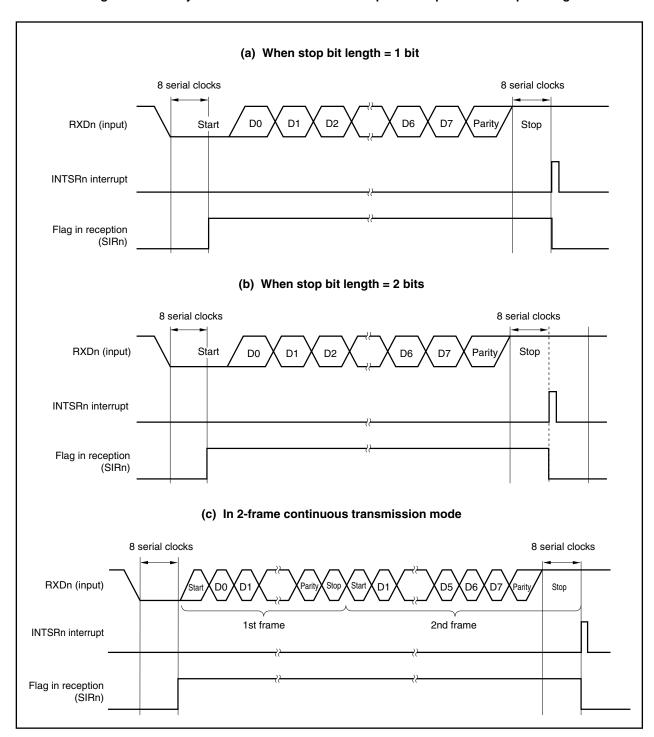
If the high level is detected during sampling after 8 serial clocks from detection of the falling edge of the RXDn pin, this falling edge is not recognized as a start bit. The serial clock counter that generates the sample timing is initialized and stops, and input of the next falling edge is waited for.

In synchronous mode (MOD bit of ASIMn1 register = 1)

The RXDn pin is sampled using the serial clock from the baud rate generator or at the rising edge of serial clock I/O. If the RXDn pin is low level at this time, this is interpreted as a start bit and reception processing starts.

If reception data is interrupted at the fixed low level during reception, reception of this receive data (including error detection) is completed and reception completion interrupt is generated. However, even if the RXD line is fixed at low level, the next reception operation is not started (start bit detection is not performed).

Be sure to set the high level when restarting the reception operation. If the high level is not set, the start bit detection position becomes undefined, and correct reception operation cannot be performed.


(c) Reception completion interrupt request

When reception of one frame of data has been completed (stop bit detection) when the RXEn bit of the ASIMn0 register = 1, the receive data in the shift register is transferred to RXBn/RXBLn and a reception completion interrupt request (INTSRn) is generated after 1 frame or 2 frames of data have been transferred to RXBn/RXBLn.

A reception completion interrupt is also generated upon detection of an error.

When the RXEn bit = 0 (reception disabled), no reception completion interrupt is generated.

Figure 10-19. Asynchronous Serial Interface Reception Completion Interrupt Timing

- Cautions 1. Even if a reception error occurs, be sure to read 2-frame continuous reception buffer register n (RXBn)/receive buffer register n (RXBLn). If the RXBn or RXBLn register is not read, an overrun error will occur at the next data reception, and the reception error state will continue indefinitely.
 - 2. Reception is always performed with the stop bit length set to 1 bit. A second stop bit is ignored.

(5) Reception errors

The three types of error flags of parity errors, framing errors, and overrun errors are affected in synchronization with reception operation. As a result of data reception, the PEn, FEn, and OVEn flags of the ASISn register are set (1) and a reception completion interrupt request (INTSRn) is generated at the same time.

The contents of error that occurred during reception can be detected by reading the contents of the PEn, FEn, and OVEn flags of the ASISn register during the INTSRn interrupt servicing.

The contents of the ASISn register are reset (0) by reading the ASISn register (if the next receive data contains an error, the corresponding error flag is set (1)).

 Error Flag
 Reception Error
 Causes

 PEn
 Parity error
 The parity specification during transmission did not match the parity of the reception data

 FEn
 Framing error
 No stop bit was detected

 OVEn
 Overrun error
 The reception of the next data was completed before data was read from the receive buffer

Table 10-7. Reception Error Causes

(6) Parity types and corresponding operation

A parity bit is used to detect a bit error in communication data. Normally, the same type of parity bit is used at the transmission and reception sides.

(a) Even parity

<1> During transmission

The parity bit is controlled so that number of bits with the value "1" within the transmit data including the parity bit is even. The parity bit value is as follows.

- If the number of bits with the value "1" within the transmit data is odd: 1
- If the number of bits with the value "1" within the transmit data is even: 0

<2> During reception

The number of bits with the value "1" within the receive data including the parity bit is counted, and a parity error is generated if this number is odd.

(b) Odd parity

<1> During transmission

In contrast to even parity, the parity bit is controlled so that the number of bits with the value "1" within the transmit data including the parity bit is odd. The parity bit value is as follows.

- If the number of bits with the value "1" within the transmit data is odd: 0
- If the number of bits with the value "1" within the transmit data is even: 1

<2> During reception

The number of bits with the value "1" within the receive data including the parity bit is counted, and a parity error is generated if this number is even.

(c) 0 parity

During transmission, the parity bit is set to "0" regardless of the transmit data.

During reception, no parity bit check is performed. Therefore, no parity error is generated regardless of whether the parity bit is "0" or "1".

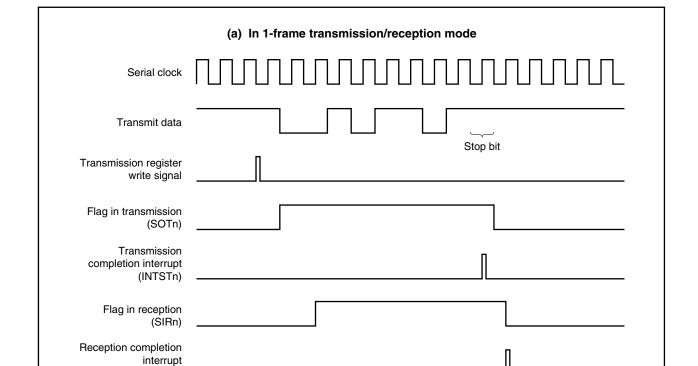
(d) No parity

No parity bit is added to the transmit data.

During reception, the receive operation is performed as if there were no parity bit. Since there is no parity bit, no parity error is generated.

10.3.6 Synchronous mode

The synchronous mode can be set with the \overline{ASCKn} pin, which is the serial clock I/O pin (n = 1, 2).


The synchronous mode is set with the MOD bit of the ASIMn1 register, and the serial clock to be used for synchronization is selected with the SCLS bit of the ASIMn0 register.

In the synchronous mode, external clock input is selected when the value of the SCLS bit is 0 (default), and the serial clock output is selected in the case of all other settings. Therefore, when performing settings, make sure that outputs between connection nodes do not conflict.

In the synchronous mode, the falling edge of the serial clock is used as the transmission timing, and the rising edge as the reception timing, but transmit data is output with a delay of 1 system clock (serial clock) (in the external clock synchronous mode, the maximum delay is 2.5 system clocks).

ASCKn Output data Parity Stop (TXDn) Input data Start D0 D1 D2 D3 D4 D5 D6 Stop (RXDn) On the data output side, the data changes at the falling edge of the serial clock output. On the data input side, the data is latched at the rising edge of the serial clock output. Serial clock output continues as long as the setting is not canceled. Remark n = 1, 2

Figure 10-20. Transmission/Reception Timing in Synchronous Mode

Undefined (hold previous value)

Undefined (hold previous value)

(INTSRn)

(RXBn)

(RXBLn)

Reception buffer

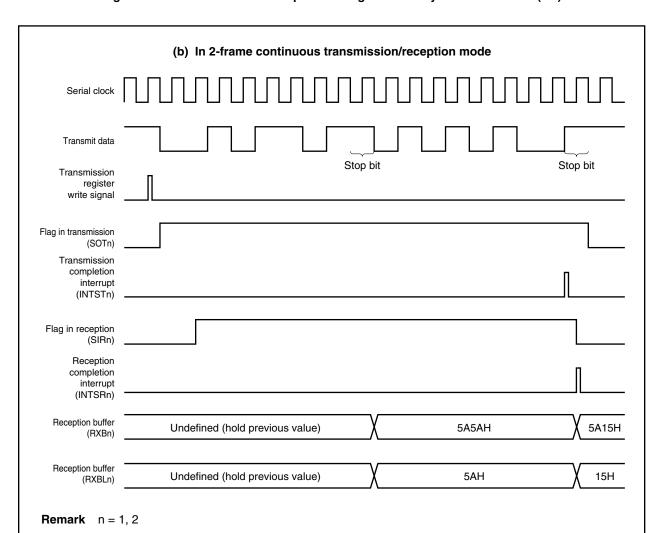
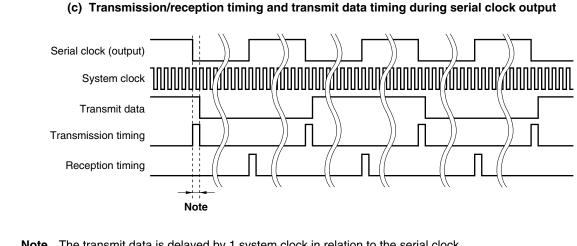
Reception buffer

Remark n = 1, 2

Figure 10-21. Transmission/Reception Timing Chart for Synchronous Mode (1/3)

005AH

5AH

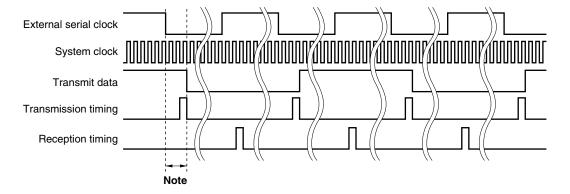
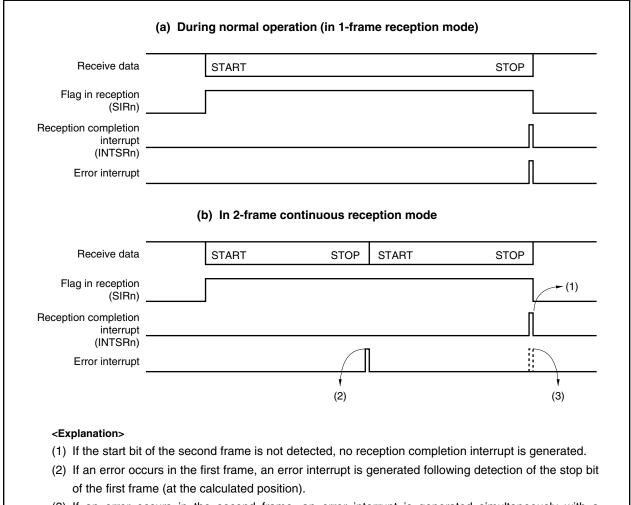

Figure 10-21. Transmission/Reception Timing Chart for Synchronous Mode (2/3)

Figure 10-21. Transmission/Reception Timing Chart for Synchronous Mode (3/3)


Note The transmit data is delayed by 1 system clock in relation to the serial clock.

(d) Transmission/reception timing and transmit data timing using external serial clock

Note Since, during external serial clock synchronization, synchronization is done with the internal system clock when feeding the external serial clock to the internal circuit, a delay ranging from 1 system clock to a maximum of 2.5 system clocks results.

Figure 10-22. Reception Completion Interrupt and Error Interrupt Generation Timing During Synchronous Mode Reception

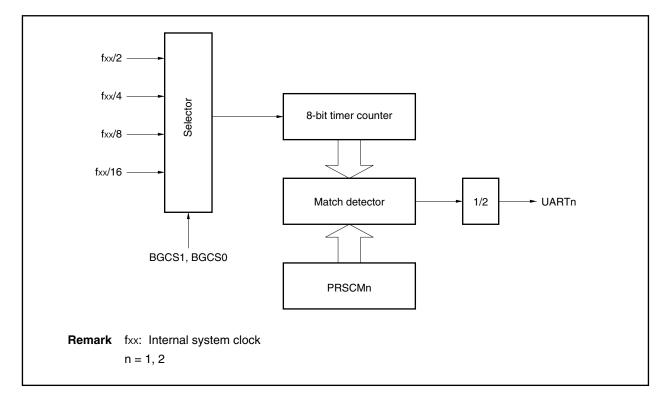
(3) If an error occurs in the second frame, an error interrupt is generated simultaneously with a reception completion interrupt.

If an error occurs in the first frame, no error interrupt is generated even if an error occurs in the second frame.

Remark n = 1, 2

10.3.7 Dedicated baud rate generators 1, 2 (BRG1, BRG2)

(1) Configuration of baud rate generators 1, 2 (BRG1, BRG2)


For UART1 and UART2, the serial clock can be selected from the dedicated baud rate generator output or internal system clock (fxx) for each channel.

The serial clock source is specified with registers ASIM10 and ASIM20.

If dedicated baud rate generator output is specified, BRG1 and BRG2 are selected as the clock sources.

Since the same serial clock can be shared for transmission and reception for one channel, baud rate is the same for the transmission/reception.

Figure 10-23. Block Diagram of Baud Rate Generators 1, 2 (BRG1, BRG2)

(2) Dedicated baud rate generators 1, 2 (BRG1, BRG2)

BRGn is configured of an 8-bit timer counter for baud rate signal generation, a prescaler mode register that controls the generation of the baud rate signal (PRSMn), a prescaler compare register that sets the value of the 8-bit timer counter (PRSCMn), and a prescaler (n = 1, 2).

(a) Input clock

The internal system clock (fxx) is input to BRGn.

(b) Prescaler mode registers 1, 2 (PRSM1, PRSM2)

The PRSMn register controls generation of the UARTn baud rate signal (n = 1, 2).

These registers can be read/written in 8-bit or 1-bit units.

Cautions 1. Do not change the values of the BGCS1 and BGCS0 bits during transmission/reception operations.

2. Set PRSMn register other than the UARTCEn bit prior to setting the UARTCEn bit to 1 (n = 1, 2).

	<7>	6	5	4	3	2	1	0	Address	Initial value
PRSM1	UARTCE1	0	0	0	0	0	BGCS1	BGCS0	FFFFFA2EH	00H
									•	
	<7>	6	5	4	3	2	1	0	Address	Initial value
PRSM2	UARTCE2	0	0	0	0	0	BGCS1	BGCS0	FFFFFA4EH	00H

Bit position	Bit name				Function
7	UARTCEn	0: S	Stop baud r		ration. eration and fix baud rate output signal to "0". operation and start baud rate output operation.
1, 0	BGCS1, BGCS0	Select	s count clo	ock to baud rate	e counter.
			BGCS1	BGCS0	Count clock selection
			0	0	fxx/2
			0	1	fxx/4
			1	0	fxx/8
			1	1	fxx/16
		Rema	1 rk fxx: Int	1 ternal system o	

Remark n = 1, 2

(c) Prescaler compare registers 1, 2 (PRSCM1, PRSCM2)

PRSCMn is an 8-bit compare register that sets the value of the 8-bit timer counter (n = 1, 2). These registers can be read/written in 8-bit units.

- Cautions 1. The internal timer counter is cleared by writing to the PRSCMn register. Therefore, do not overwrite the PRSCMn register during transmission operation.
 - Perform PRSCMn register settings prior to setting the UARTCEn bit to 1. If the contents of the PRSCMn register are overwritten when the value of the UARTCEn bit is 1, the cycle of the baud rate signal is not guaranteed.
 - 3. Set the baud rate to 153,600 bps or lower in asynchronous mode, and 1,000,000 bps or lower in synchronous mode.

DDSCM1	7 DDSCM7	6 PRSCM6	5 PRSCM5	4 DDSCM4	3 DDSCM3	2 DDSCM2	1 DDSCM1	0 PBSCM0	Address FFFFA30H	Initial value
FROUNT	F NOCIVI7	FNJCIVIO	FNJOIVID	r nocivi4	FNOCIVIO	FNJUNZ	FNSCIVIT	FROCIVIO	TTTTASUF	1 0011
	7	6	5	4	3	2	1	0	Address	Initial value
PRSCM2	PRSCM7	PRSCM6	PRSCM5	PRSCM4	PRSCM3	PRSCM2	PRSCM1	PRSCM0	FFFFFA50H	I 00H

(d) Baud rate generation

First, when the UARTCEn bit of the PRSMn register is overwritten with 1, the 8-bit timer counter for baud rate signal generation starts counting up with the clock selected with bits BGCS1 and BGCS0 of the PRSMn register. The count value of the 8-bit timer counter is compared with the value of the PRSCMn register, and if these values match, a timer count clock pulse of 1 cycle is output to the output controller for the baud rate.

The output controller for the baud rate reverses the baud rate signal in synchronization with the rising edge of the timer count clock when this pulse is "1".

(e) Cycle of baud rate signal

The cycle of the baud rate signal is calculated as follows.

- When setting value of PRSCMn register is 00H
 (Cycle of signal selected with bits BGCS1, BGCS0 of PRSMn register) × 256 × 2
- In cases other than above

(Cycle of signal selected with bits BGCS1, BGCS0 of PRSMn register) \times (setting value of PRSCMn register) \times 2

(f) Baud rate setting value

The formulas for calculating the baud rate in the asynchronous mode and the synchronous mode and the formula for calculating the error are as follows.

<1> Formula for calculating baud rate in asynchronous mode

Baud rate =
$$\frac{f_{XX}}{2 \times m \times 2^k \times 16}$$
 [bps]

fxx = Internal system clock frequency [Hz]

= CPU clock/2 [Hz]

m: Setting value of PRSCMn register (1 \leq m \leq 256^{Note})

k: Value set with bits BGCS1, BGCS0 of PRSMn register (k = 0, 1, 2, 3)

Note The setting of m = 256 is performed by writing 00H to the PRSCMn register.

<2> Formula for calculating the baud rate in synchronous mode

Baud rate =
$$\frac{fxx}{2 \times m \times 2^k}$$
 [bps]

fxx = Internal system clock frequency [Hz]

= CPU clock/2 [Hz]

m: Setting value of PRSCMn register ($1 \le m \le 256^{Note}$)

k: Value set with bits BGCS1, BGCS0 of PRSMn register (k = 0, 1, 2, 3)

Note The setting of m = 256 is performed by writing 00H to the PRSCMn register.

<3> Formula for calculating error

Error [%] =
$$\left(\frac{\text{Actual baud rate} - \text{Target baud rate}}{\text{Target baud rate}}\right) \times 100$$

Example $(9520 - 9600)/9600 \times 100 = -0.833$ [%]

Remark Actual baud rate: Baud rate with error

Target baud rate: Normal baud rate

<4> Baud rate setting example

In an actual system, the output of a prescaler module, etc. is connected to input clock. Table 10-8 shows the baud rate generator setting data at this time.

Table 10-8. Baud Rate Generator Setting Data (BRG = fxx/2) (1/2)

(a) When fxx = 32 MHz

Target Ba	aud Rate	Actual B	aud Rate	BGCSm Bit	PRSCMn	Error
Synchronous Mode	Asynchronous Mode	Synchronous Mode	Asynchronous Mode	(m = 0, 1)	Register Setting Value (n = 1, 2)	
4800	300	4807.692	300.4808	3	208	0.16
9600	600	9615.385	600.9615	3	104	0.16
19200	1200	19230.77	1201.923	3	52	0.16
38400	2400	38461.54	2403.846	3	26	0.16
76800	4800	76923.08	4807.692	3	13	0.16
153600	9600	153846.2	9615.385	2	13	0.16
166400	10400	166666.7	10416.67	1	24	0.16
307200	19200	307692.3	19230.77	1	13	0.16
614400	38400	615384.6	38461.54	0	13	0.16
Setting prohibited	76800	=	71428.57	0	7	-6.99
Setting prohibited	153600	=	166666.7	0	3	8.51

(b) When fxx = 40 MHz

Target Ba	aud Rate	Actual Ba	aud Rate	BGCSm Bit	PRSCMn	Error
Synchronous Mode	Asynchronous Mode	Synchronous Mode	Asynchronous Mode	(m = 0, 1)	Register Setting Value (n = 1, 2)	
4800	300	4882.813	305.1758	3	256	1.73
9600	600	9615.385	600.9615	3	130	0.16
19200	1200	19230.77	1201.923	3	65	0.16
38400	2400	38461.54	2403.846	2	65	0.16
76800	4800	76923.08	4807.692	1	65	0.16
153600	9600	153846.2	9615.385	0	65	0.16
166400	10400	166666.7	10416.67	0	60	0.16
307200	19200	303030.3	18939.39	0	33	-1.36
614400	38400	625000	39062.5	0	16	1.73
Setting prohibited	76800	-	78125	0	8	1.73
Setting prohibited	153600	-	156250	0	4	1.73

Table 10-8. Baud Rate Generator Setting Data (BRG = fxx/2) (2/2)

(c) When fxx = 50 MHz

Target Ba	aud Rate	Actual B	aud Rate	BGCSm Bit	PRSCMn	Error
Synchronous Mode	Asynchronous Mode	Synchronous Mode	Asynchronous Mode	(m = 0, 1)	Register Setting Value (n = 1, 2)	
9600	600	9585.89	599.1181	3	163	-0.15
19200	1200	19171.78	1198.236	2	163	-0.15
38400	2400	38343.56	2396.472	1	163	-0.15
76800	4800	76687.12	4792.945	0	163	-0.15
153600	9600	154321	9645.062	0	81	0.47
166400	10400	166666.7	10416.67	0	75	0.16
307200	19200	312500	19531.25	0	40	1.73
614400	38400	625000	39062.5	0	20	1.73
Setting prohibited	76800	-	78125	0	10	1.73
Setting prohibited	153600	-	156250	0	5	1.73

(3) Allowable baud rate range during reception

The degree to which a discrepancy from the transmission destination's baud rate is allowed during reception is shown below.

Caution The equations described below should be used to set the baud rate error during reception so that it always is within the allowable error range.

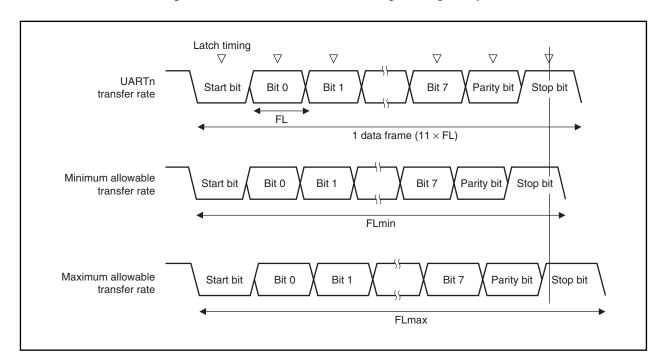


Figure 10-24. Allowable Baud Rate Range During Reception

As shown in Figure 10-24, after the start bit is detected, the receive data latch timing is determined according to the counter that was set by the PRSCMn register. If all data up to the final data (stop bit) is in time for this latch timing, the data can be received normally.

If this is applied to 11-bit reception, the following is theoretically true.

Brate: UARTn baud rate

k: PRSCMn register setting value

FL: 1-bit data length

When the latch timing margin is 2 clocks of fxx/2, the minimum allowable transfer rate (FLmin) is as follows (fxx: Internal system clock).

$$FLmin = 11 \times FL - \frac{k-2}{2k} \times FL = \frac{21k+2}{2k} FL$$

Therefore, the transfer destination's maximum receivable baud rate (BRmax) is as follows.

BRmax =
$$(FLmin/11)^{-1} = \frac{22k}{21k + 2}$$
 Brate

Similarly, the maximum allowable transfer rate (FLmax) can be obtained as follows.

$$\frac{10}{11} \times FLmax = 11 \times FL - \frac{k+2}{2 \times k} \times FL = \frac{21k-2}{2 \times k} FL$$

$$FLmax = \frac{21k-2}{20k} FL \times 11$$

Therefore, the transfer destination's minimum receivable baud rate (BRmin) is as follows.

BRmin =
$$(FLmax/11)^{-1} = \frac{20k}{21k - 2}$$
 Brate

(4) Transfer rate in 2-frame continuous reception

In 2-frame continuous reception, the timing is initialized by detecting the start bit of the second frame, so the transfer results are not affected.

10.4 Clocked Serial Interfaces 0, 1 (CSI0, CSI1)

10.4.1 Features

High-speed transfer: Maximum 5 Mbps

Full-duplex communications

Transmission and reception cannot be performed separately. (Transmission and reception occur at the same time.)

- · Master mode or slave mode can be selected
- · Transmission data length: 8 bits or 16 bits can be set
- Transfer data direction can be switched between MSB first and LSB first
- Eight clock signals can be selected (7 master clocks and 1 slave clock)
- 3-wire type SOn: Serial transmit data output

SIn: Serial receive data input

SCKn: Serial clock I/O

- Interrupt sources: 1 type
 - Transmission/reception completion interrupt (INTCSIn)
- Transmission/reception mode and reception-only mode can be specified
- Two transmission buffers (SOTBFn/SOTBFLn, SOTBn/SOTBLn) and two reception buffers (SIRBn/SIRBLn, SIRBEn/SIRBELn) are provided on chip
- · Single transfer mode and repeat transfer mode can be specified

Remark n = 0, 1

10.4.2 Configuration

CSIn is controlled via the clocked serial interface mode register (CSIMn) (n = 0, 1). Transmission/reception of data is performed by writing/reading the SIOn register (n = 0, 1).

(1) Clocked serial interface mode registers 0, 1 (CSIM0, CSIM1)

The CSIMn register is an 8-bit register that specifies the operation of CSIn.

(2) Clocked serial interface clock selection registers 0, 1 (CSIC0, CSIC1)

The CSICn register is an 8-bit register that controls the CSIn serial transfer operation.

(3) Serial I/O shift registers 0, 1 (SIO0, SIO1)

The SIOn register is a 16-bit shift register that converts parallel data into serial data.

The SIOn register is used for both transmission and reception.

Data is shifted in (reception) and shifted out (transmission) from the MSB or LSB side.

The actual transmission/reception operations are started up by accessing the buffer register.

(4) Serial I/O shift registers L0, L1 (SIOL0, SIOL1)

The SIOLn register is an 8-bit shift register that converts parallel data into serial data.

The SIOLn register is used for both transmission and reception.

Data is shifted in (reception) and shifted out (transmission) from the MSB or LSB side.

The actual transmission/reception operations are started up by accessing the buffer register.

<R>

(5) Clocked serial interface receive buffer registers 0, 1 (SIRB0, SIRB1)

The SIRBn register is a 16-bit buffer register that stores receive data.

(6) Clocked serial interface receive buffer registers L0, L1 (SIRBL0, SIRBL1)

The SIRBLn register is an 8-bit buffer register that stores receive data.

(7) Clocked serial interface read-only receive buffer registers 0, 1 (SIRBE0, SIRBE1)

The SIRBEn register is a 16-bit buffer register that stores receive data.

The SIRBEn register is the same as the SIRBn register. It is used to read the contents of the SIRBn register.

(8) Clocked serial interface read-only receive buffer registers L0, L1 (SIRBEL0, SIRBEL1)

The SIRBELn register is an 8-bit buffer register that stores receive data.

The SIRBELn register is the same as the SIRBLn register. It is used to read the contents of the SIRBLn register.

(9) Clocked serial interface transmit buffer registers 0, 1 (SOTB0, SOTB1)

The SOTBn register is a 16-bit buffer register that stores transmit data.

(10) Clocked serial interface transmit buffer registers L0, L1 (SOTBL0, SOTBL1)

The SOTBLn register is an 8-bit buffer register that stores transmit data.

(11) Clocked serial interface initial transmit buffer registers (SOTBF0, SOTBF1)

The SOTBFn register is a 16-bit buffer register that stores the initial transmit data in the repeat transfer mode.

(12) Clocked serial interface initial transmit buffer register L (SOTBFL0, SOTBFL1)

The SOTBFLn register is an 8-bit buffer register that stores initial transmit data in the repeat transfer mode.

(13) Selector

The selector selects the serial clock to be used.

(14) Serial clock controller

Controls the serial clock supply to the shift register. Also controls the clock output to the $\overline{\text{SCKn}}$ pin when the internal clock is used.

(15) Serial clock counter

Counts the serial clock output or input during transmission/reception operation, and checks whether 8-bit or 16-bit data transmission/reception has been performed.

(16) Interrupt controller

Controls the interrupt request timing.

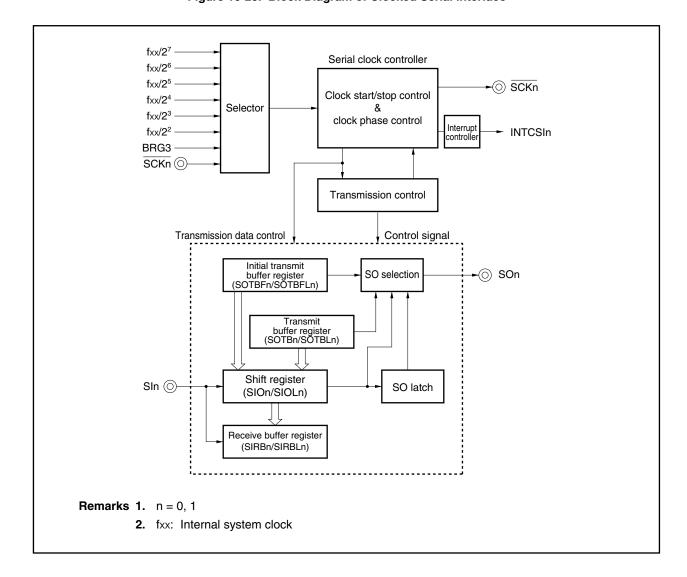


Figure 10-25. Block Diagram of Clocked Serial Interface

10.4.3 Control registers

(1) Clocked serial interface mode registers 0, 1 (CSIM0, CSIM1)

The CSIMn register controls the CSIn operation (n = 0, 1).

These registers can be read/written in 8-bit or 1-bit units (however, bit 0 is read-only).

Caution Overwriting the TRMDn, CCL, DIRn, CSIT, and AUTO bits of the CSIMn register can be done only when the CSOTn bit = 0. If these bits are overwritten at any other time, the operation cannot be guaranteed.

	<7>	<6>	5	<4>	3	2	1	<0>	Address Initial value
CSIM0	CSICAE0	TRMD0	CCL	DIR0	CSIT	AUTO	0	CSOT0	FFFFF900H 00H
	<7>	<6>	5	<4>	3	2	1	<0>	Address Initial value
CSIM1	CSICAE1	TRMD1	CCL	DIR1	CSIT	AUTO	0	CSOT1	FFFFF910H 00H

Bit position	Bit name	Function
7	CSICAEn	Enables/disables CSIn operation. 0: Disable CSIn operation. 1: Enable CSIn operation. The internal CSIn circuit can be reset asynchronously by setting the CSICAEn bit to 0. For the SCKn and SOn pin output status when the CSICAEn bit = 0, refer to 10.4.5 Output pins.
6	TRMDn	Specifies transmission/reception mode. 0: Receive-only mode 1: Transmission/reception mode When the TRMDn bit = 0, receive-only transfer is performed and the SOn pin output is fixed to low level. Data reception is started by reading the SIRBn register. When the TRMDn bit = 1, transmission/reception is started by writing data to the SOTBn register.
5	CCL	Specifies data length. 0: 8 bits 1: 16 bits
4	DIRn	Specifies transfer direction mode (MSB/LSB). 0: First bit of transfer data is MSB 1: First bit of transfer data is LSB
3	CSIT	Controls delay of interrupt request signal. 0: No delay 1: Delay mode (interrupt request signal is delayed 1/2 cycle). Caution The delay mode (CSIT bit = 1) is valid only in the master mode (CKS2 to CSK0 bits of the CSICn register are not 111B). In the slave mode (CKS2 to CKS0 bits are 111B), do not set the delay mode.
2	AUTO	Specifies single transfer mode or repeat transfer mode. 0: Single transfer mode 1: Repeat transfer mode
0	CSOTn	Flag indicating transfer status. 0: Idle status 1: Transfer execution status Caution The CSOTn bit is cleared (0) by writing 0 to the CSICAEn bit.

Remark n = 0, 1

(2) Clocked serial interface clock selection registers 0, 1 (CSIC0, CSIC1)

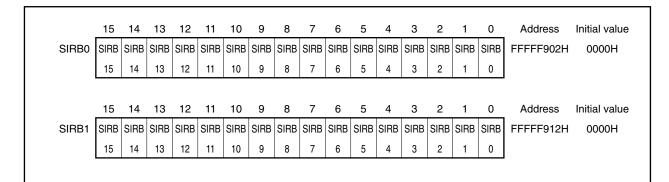
The CSICn register is an 8-bit register that controls the CSIn transfer operation (n = 0, 1).

These registers can be read/written in 8-bit or 1-bit units.

Caution The CSICn register can be overwritten only when the CSICAEn bit of the CSIMn register = 0.

	7	6	5	4	3	2	1	0	Address	Initial value						
CSIC0	0	0	0	CKP	DAP	CKS2	CKS1	CKS0	FFFFF901H	00H						
	7	6	5	4	3	2	1	0	Address	Initial value						
CSIC1	0	0	0	CKP	DAP	CKS		CKS0	FFFFF911H	00H						
00101	U		U	Oiti	DAI	OROZ	- OROT	ORGO	1111131111	0011						
Е	Bit position	Bit na	ame				Function	n								
	4, 3	CKP, D	AP	Specifies o	peration mo	ode.										
				CKP	DAP		0	peration mo	ode							
				0	0	SCKr	(//O) —			¬						
						SOn (ou	· · ·	XDO6XDO5XD	04 X D03 X D02 X D0	D1 X D00						
						SIn (i	· · · · · · · · · · · · · · · · · · ·		14 X DI3 X DI2 X D							
						,	. ,,									
				0	1			. – –								
						SCKr										
						SOn (ou	· · — — ·		4 X DO3 X DO2 X DO1							
						SIn (i	nput) X DI7 X	DI6 X DI5 X DI4	DI3 DI2 DI1	X DIO						
				1	0											
						SCKn	(I/O)			⊔L I						
						SOn (ou	itput) DO	7 \ DO6 \ DO5 \ D	004 X D03 X D02 X D	001 X D00						
						SIn (ii	nput) DI7	XDI6 XDI5 XI	DI4 X DI3 X DI2 X [DI1 X DI0						
				1	1											
						SCKn	· ·									
						SOn (ou SIn (ii			XDO3XDO2XDO1							
					DI3 DI2 DI1	X DIO										
						l										
				Remark	n = 0, 1											
-	0.1- 0	01400.1														
	2 to 0	CKS2 to)	Specifies s	епаї сіоск.											
				CKS2	CKS1	CKS0	Seri	al clock	Me	ode						
				0	0	0	fxx/2 ⁷			r mode						
				0	0	1	fxx/2 ⁶			r mode						
				0	1	0	fxx/2 ⁵			r mode						
				0	1	1	fxx/2 ⁴			r mode						
				1	0	0	fxx/2 ³			r mode						
				1	0	1	fxx/2 ²			r mode						
				1	1	0	Clock gene	rated by BR		r mode						
				1	1	1 External clock (SCKn)				e mode						
				Remark	fxx: Into	_	stem clock fr	equency								

(3) Clocked serial interface receive buffer registers 0, 1 (SIRB0, SIRB1)


The SIRBn register is a 16-bit buffer register that stores receive data (n = 0, 1).

When the receive-only mode is set (TRMDn bit of CSIMn register = 0), the reception operation is started by reading data from the SIRBn register.

These registers are read-only, in 16-bit units.

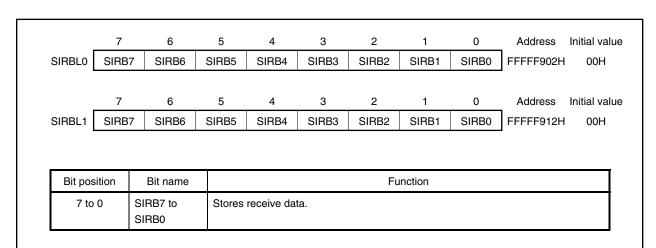
In addition to reset input, these registers can also be initialized by clearing (0) the CSICAEn bit of the CSIMn register.

- Cautions 1. Read the SIRBn register only when the 16-bit data length has been set (CCL bit of CSIMn register = 1).
 - 2. When the single transfer mode has been set (AUTO bit of CSIMn register = 0), perform read operation only in the idle state (CSOTn bit of CSIMn register = 0). If the SIRBn register is read during data transfer, the data cannot be guaranteed.

Bit position	Bit name	Function
15 to 0	SIRB15 to SIRB0	Stores receive data.

(4) Clocked serial interface receive buffer registers L0, L1 (SIRBL0, SIRBL1)

The SIRBLn register is an 8-bit buffer register that stores receive data (n = 0, 1).


When the receive-only mode is set (TRMDn bit of CSIMn register = 0), the reception operation is started by reading data from the SIRBLn register.

These registers are read-only, in 8-bit or 1-bit units.

In addition to reset input, these registers can also be initialized by clearing (0) the CSICAEn bit of the CSIMn register.

The SIRBLn register is the same as the lower bytes of the SIRBn register.

- Cautions 1. Read the SIRBLn register only when the 8-bit data length has been set (CCL bit of CSIMn register = 0).
 - 2. When the single transfer mode is set (AUTO bit of CSIMn register = 0), perform read operation only in the idle state (CSOTn bit of CSIMn register = 0). If the SIRBLn register is read during data transfer, the data cannot be guaranteed.

(5) Clocked serial interface read-only receive buffer registers 0, 1 (SIRBE0, SIRBE1)

The SIRBEn register is a 16-bit buffer register that stores receive data (n = 0, 1).

These registers are read-only, in 16-bit units.

In addition to reset input, this register can also be initialized by clearing (0) the CSICAEn bit of the CSIMn register.

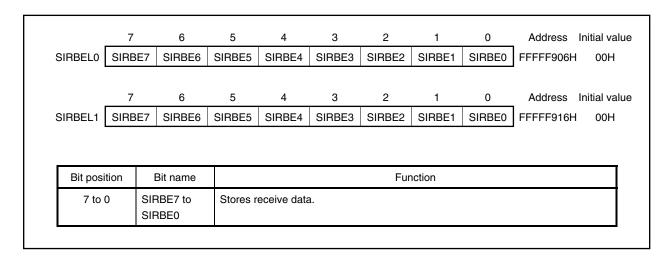
The SIRBEn register is the same as the SIRBn register. It is used to read the contents of the SIRBn register.

Cautions 1. The receive operation is not started even if data is read from the SIRBEn register.

2. The SIRBEn register can be read only if the 16-bit data length is set (CCL bit of CSIMn register = 1).

	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	Address	Initial val
SIRBE0	SIRBE	SIRBE	SIRBE	SIRBE	SIRBE	SIRBE	SIRBE	SIRBE	SIRBE	SIRBE	SIRBE	SIRBE	SIRBE	SIRBE	SIRBE	SIRBE	FFFFF906H	0000H
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0		
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	Address	Initial val
SIRBE1	SIRBE	SIRBE	SIRBE	SIRBE	SIRBE	SIRBE	SIRBE	SIRBE	SIRBE	SIRBE	SIRBE	SIRBE	SIRBE	SIRBE	SIRBE	SIRBE	FFFFF916H	0000H
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0		
Bit po	sition		Bit n	ame								Fu	ınctioı	า				
	15 to 0 SIRBE15 to SIRBE0				S	Stores receive data.												

(6) Clocked serial interface read-only receive buffer registers L0, L1 (SIRBEL0, SIRBEL1)


The SIRBELn register is an 8-bit buffer register that stores receive data (n = 0, 1).

These registers are read-only, in 8-bit or 1-bit units.

In addition to reset input, this register can also be initialized by clearing (0) the CSICAEn bit of the CSIMn register.

The SIRBELn register is the same as the SIRBLn register. It is used to read the contents of the SIRBLn register.

- Cautions 1. The receive operation is not started even if data is read from the SIRBELn register.
 - 2. The SIRBELn register can be read only if the 8-bit data length has been set (CCL bit of CSIMn register = 0).

(7) Clocked serial interface transmit buffer registers 0, 1 (SOTB0, SOTB1)

The SOTBn register is a 16-bit buffer register that stores transmit data (n = 0, 1).

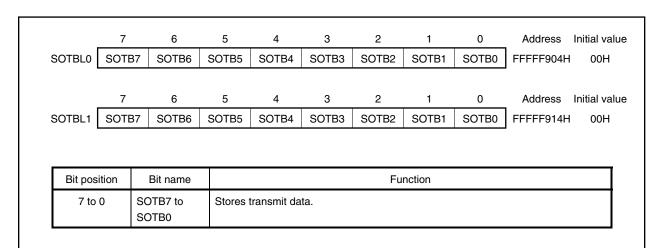
When the transmission/reception mode is set (TRMDn bit of CSIMn register = 1), the transmission operation is started by writing data to the SOTBn register.

These registers can be read/written in 16-bit units.

- Cautions 1. Access the SOTBn register only when the 16-bit data length is set (CCL bit of CSIMn register = 1).
 - 2. When the single transfer mode is set (AUTO bit of CSIMn register = 0), perform access only in the idle state (CSOTn bit of CSIMn register = 0). If the SOTBn register is accessed during data transfer, the data cannot be guaranteed.

	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	Address	Initial val
SOTB0	SOTB	SOTB	SOTB	SOTB	SOTB	SOTB	SOTB	SOTB	SOTB	SOTB	SOTB	SOTB	SOTB	SOTB	SOTB	SOTB	FFFFF904H	0000H
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0		
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	Address	Initial valu
SOTB1	SOTB	SOTB	SOTB	SOTB	SOTB	SOTB	SOTB	SOTB	SOTB	SOTB	SOTB	SOTB	SOTB	SOTB	SOTB	SOTB	FFFFF914H	0000H
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0		
Bit po	sition		Bit n	ame								F	unctic	n				
15	to 0	S	OTB1	5 to	S	Stores	trans	smit d	ata.									
		S	отво)														

(8) Clocked serial interface transmit buffer registers L0, L1 (SOTBL0, SOTBL1)


The SOTBLn register is an 8-bit buffer register that stores transmit data (n = 0, 1).

When the transmission/reception mode is set (TRMDn bit of CSIMn register = 1), the transmission operation is started by writing data to the SOTBLn register.

These registers can be read/written in 8-bit or 1-bit units.

The SOTBLn register is the same as the lower bytes of the SOTBn register.

- Cautions 1. Access the SOTBLn register only when the 8-bit data length has been set (CCL bit of CSIMn register = 0).
 - 2. When the single transfer mode is set (AUTO bit of CSIMn register = 0), perform access only in the idle state (CSOTn bit of CSIMn register = 0). If the SOTBLn register is accessed during data transfer, the data cannot be guaranteed.

(9) Clocked serial interface initial transmit buffer registers 0, 1 (SOTBF0, SOTBF1)

The SOTBFn register is a 16-bit buffer register that stores initial transmission data in the repeat transfer mode (n = 0, 1).

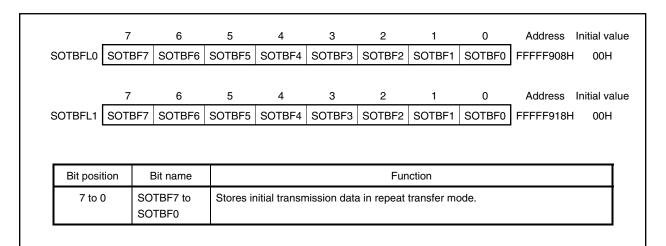
The transmission operation is not started even if data is written to the SOTBFn register.

These registers can be read/written in 16-bit units.

Caution Access the SOTBFn register only when the 16-bit data length has been set (CCL bit of CSIMn register = 1), and only in the idle state (CSOTn bit of CSIMn register = 0). If the SOTBFn register is accessed during data transfer, the data cannot be guaranteed.

	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	Address	Initial val
SOTBF0	SOTBF	SOTBF	SOTBF	SOTBF	SOTBF	SOTBF	SOTBF	SOTBF	SOTBF	SOTBF	SOTBF	SOTBF	SOTBF	SOTBF	SOTBF	SOTBF	FFFFF908H	0000H
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0		
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	Address	Initial val
SOTBF1	SOTBF	SOTBF	SOTBF	SOTBF	SOTBF	SOTBF	SOTBF	SOTBF	SOTBF	SOTBF	SOTBF	SOTBF	SOTBF	SOTBF	SOTBF	SOTBF	FFFFF918H	0000H
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0		
	Bit position 15 to 0		Bit na	ame		Function												
Bit po			SOTBF15 to SOTBF0			Stores initial transmission data in repeat transfer mode.												

(10) Clocked serial interface initial transmit buffer registers L0, L1 (SOTBFL0, SOTBFL1)


The SOTBFLn register is an 8-bit buffer register that stores initial transmission data in the repeat transfer mode (n = 0, 1).

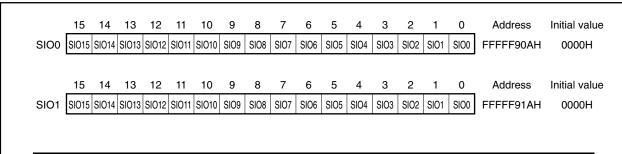
The transmission operation is not started even if data is written to the SOTBFLn register.

These registers can be read/written in 8-bit or 1-bit units.

The SOTBFLn register is the same as the lower bytes of the SOTBFn register.

Caution Access the SOTBFLn register only when the 8-bit data length has been set (CCL bit of CSIMn register = 0), and only in the idle state (CSOTn bit of CSIMn register = 0). If the SOTBFLn register is accessed during data transfer, the data cannot be guaranteed.

(11) Serial I/O shift registers 0, 1 (SIO0, SIO1)


The SIOn register is a 16-bit shift register that converts parallel data into serial data (n = 0, 1).

The transfer operation is not started even if the SIOn register is read.

These registers are read-only, in 16-bit units.

In addition to reset input, this register can also be initialized by clearing (0) the CSICAEn bit of the CSIMn register.

Caution Read the SIOn register only when the 16-bit data length has been set (CCL bit of CSIMn register = 1), and only in the idle state (CSOTn bit of CSIMn register = 0). If the SIOn register is read during data transfer, the data cannot be guaranteed.

Bit position	Bit name	Function								
15 to 0	SIO15 to SIO0	Data is shifted in (reception) or shifted out (transmission) from the MSB or LSB side.								

(12) Serial I/O shift registers L0, L1 (SIOL0, SIOL1)

The SIOLn register is an 8-bit shift register that converts parallel data into serial data (n = 0, 1).

The transfer operation is not started even if the SIOLn register is read.

These registers are read-only, in 8-bit or 1-bit units.

In addition to reset input, this register can also be initialized by clearing (0) the CSICAEn bit of the CSIMn register.

The SIOLn register is the same as the lower bytes of the SIOn register.

Caution Read the SIOLn register only when the 8-bit data length has been set (CCL bit of CSIMn register = 0), and only in the idle state (CSOTn bit of CSIMn register = 0). If the SIOLn register is read during data transfer, the data cannot be guaranteed.

	7	6	5	4	3	2	1	0	Address	Initial value			
SIOL0	SIO7	SIO6	SIO5	SIO4	SIO3	SIO2	SIO1	SIO0	FFFFF90AH	00H			
_	7	6	5	4	3	2	1	0	Address	Initial value			
SIOL1	SIO7	SIO6	SIO5	SIO4	SIO3	SIO2	SIO1	SIO0	FFFFF91AH	00H			
_									-				
			1										
Bit po	sition	Bit name		Function									
7 to	0 0	SIO7 to SIO	Data	m the MSB or	LSB								

10.4.4 Operation

(1) Single transfer mode

(a) Usage

In the receive-only mode (TRMDn bit of CSIMn register = 0), transfer is started by reading^{Note 1} the receive data buffer register (SIRBn/SIRBLn) (n = 0, 1).

In the transmission/reception mode (TRMDn bit of CSIMn register = 1), transfer is started by writing^{Note 2} to the transmit data buffer register (SOTBn/SOTBLn).

In the slave mode, the operation must be enabled beforehand (CSICAEn bit of CSIMn register = 1).

When transfer is started, the value of the CSOTn bit of the CSIMn register becomes 1 (transmission execution status).

Upon transfer completion, the transmission/reception completion interrupt (INTCSIn) is set (1), and the CSOTn bit is cleared (0). The next data transfer request is then waited for.

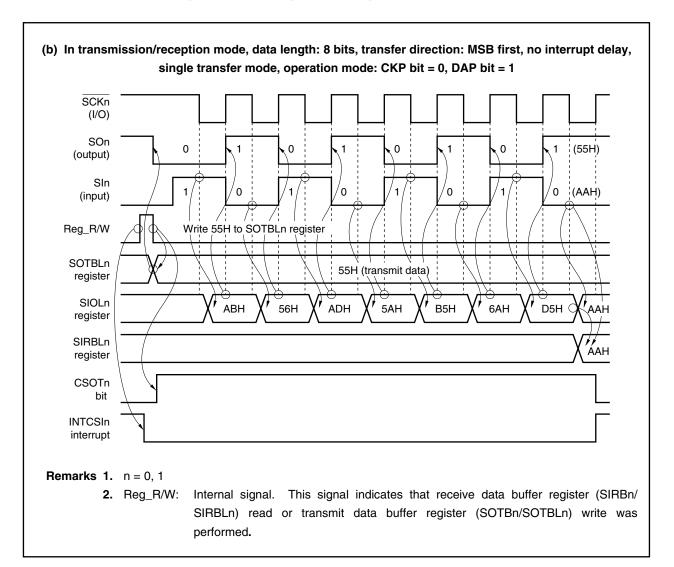
- Notes 1. When the 16-bit data length (CCL bit of CSIMn register = 1) has been set, read the SIRBn register.

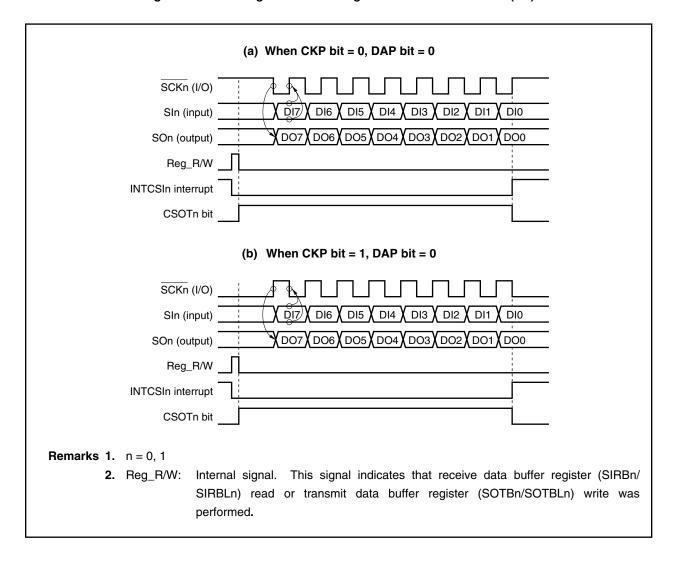
 When the 8-bit data length (CCL bit of CSIMn register = 0) has been set, read the SIRBLn register.
 - 2. When the 16-bit data length (CCL bit of CSIMn register = 1) has been set, write to the SOTBn register. When the 8-bit data length (CCL bit of CSIMn register = 0) has been set, write to the SOTBLn register.

Caution When the CSOTn bit of the CSIMn register = 1, do not manipulate the CSIn register.

Figure 10-26. Timing Chart in Single Transfer Mode (1/2)

496



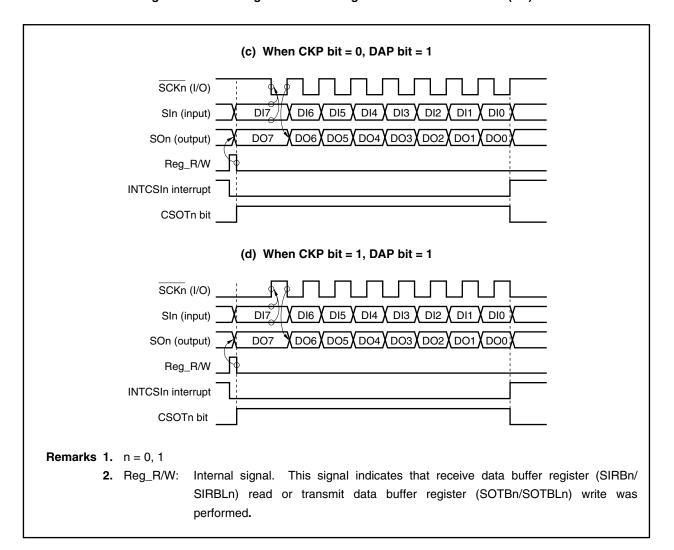

Figure 10-26. Timing Chart in Single Transfer Mode (2/2)

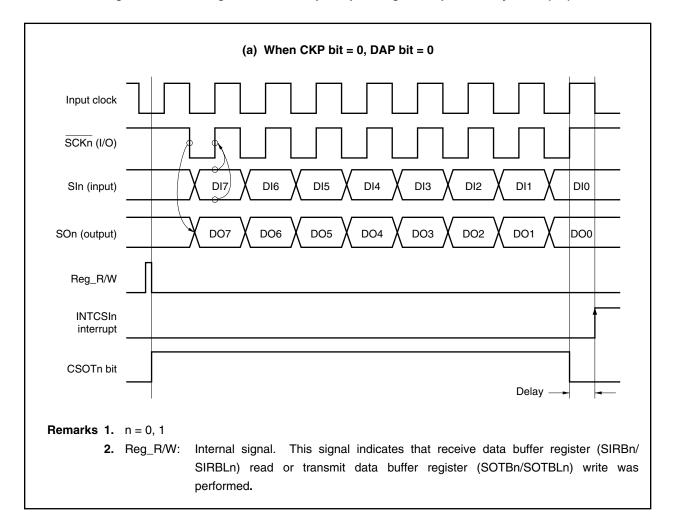
(b) Clock phase selection

The following shows the timing when changing the conditions for clock phase selection (CKP bit of CSICn register) and data phase selection (DAP bit of CSICn register) under the following conditions.

- Data length = 8 bits (CCL bit of CSIMn register = 0)
- First bit of transfer data = MSB (DIRn bit of CSIMn register = 0)
- No interrupt request signal delay control (CSIT bit of CSIMn register = 0)

Figure 10-27. Timing Chart According to Clock Phase Selection (1/2)




Figure 10-27. Timing Chart According to Clock Phase Selection (2/2)

(c) Transmission/reception completion interrupt request signals (INTCSI0, INTCSI1)

INTCSIn is set (1) upon completion of data transmission/reception.

Caution The delay mode (CSIT bit = 1) is valid only in the master mode (bits CKS2 to CKS0 of the CSICn register are not 111B). The delay mode cannot be set when the slave mode is set (bits CKS2 to CKS0 = 111B).

Figure 10-28. Timing Chart of Interrupt Request Signal Output in Delay Mode (1/2)

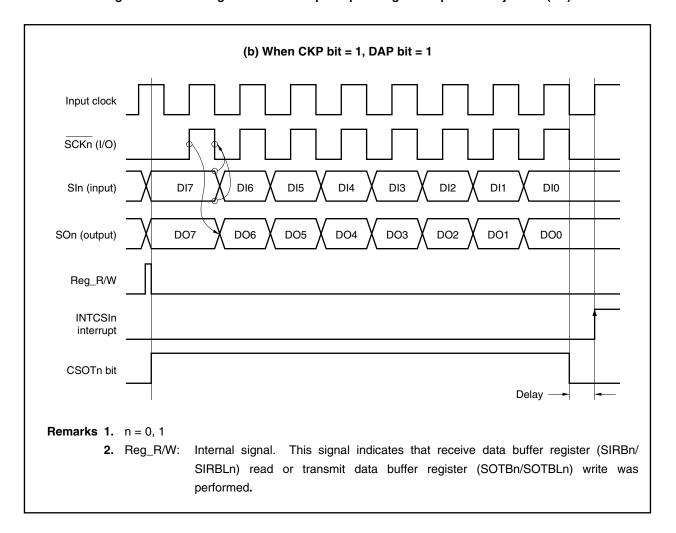


Figure 10-28. Timing Chart of Interrupt Request Signal Output in Delay Mode (2/2)

(2) Repeat transfer mode

(a) Usage (receive-only)

- <1> Set the repeat transfer mode (AUTO bit of CSIMn register = 1) and the receive-only mode (TRMDn bit of CSIMn register = 0).
- <2> Read SIRBn register (start transfer with dummy read).
- <3> Wait for transmission/reception completion interrupt request (INTCSIn).
- <4> When the transmission/reception completion interrupt request (INTCSIn) has been set (1), read the SIRBn register^{Note} (reserve next transfer).
- <5> Repeat steps <3> and <4> (N-2) times (N: Number of transfer data).
- <6> Following output of the last transmission/reception completion interrupt request (INTCSIn), read the SIRBEn register and the SIOn register^{Note}.

Note When transferring N number of data, receive data is loaded by reading the SIRBn register from the first data to the (N-2)th data. The (N-1)th data is loaded by reading the SIRBEn register, and the Nth (last) data is loaded by reading the SIOn register.

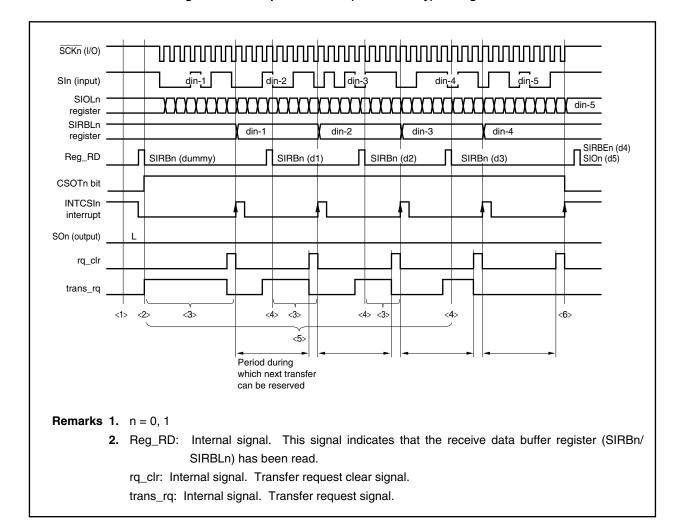


Figure 10-29. Repeat Transfer (Receive-Only) Timing Chart

In the case of the repeat transfer mode, two transfer requests are set at the start of the first transfer. Following the transmission/reception completion interrupt request (INTCSIn), transfer is continued if the SIRBn register can be read within the next transfer reservation period. If the SIRBn register cannot be read, transfer ends and the SIRBn register does not receive the new value of the SIOn register.

The last data can be obtained by reading the SIOn register following completion of the transfer.

(b) Usage (transmission/reception)

- <1> Set the repeat transfer mode (AUTO bit of CSIMn register = 1) and the transmission/reception mode (TRMDn bit of CSIMn register = 1).
- <2> Write the first data to the SOTBFn register.
- <3> Write the 2nd data to the SOTBn register (start transfer).
- <4> Wait for a transmission/reception completion interrupt request (INTCSIn).
- <5> When the transmission/reception completion interrupt request (INTCSIn) has been set (1), write the next data to the SOTBn register (reserve next transfer), and read the SIRBn register to load the receive data.
- <6> Repeat steps <4> and <5> as long as data to be sent remains.
- <7> Wait for the INTCSIn interrupt. When the interrupt request signal is set (1), read the SIRBn register to load the (N 1)th receive data (N: Number of transfer data).
- <8> Following the last transmission/reception completion interrupt request (INTCSIn), read the SIOn register to load the Nth (last) receive data.

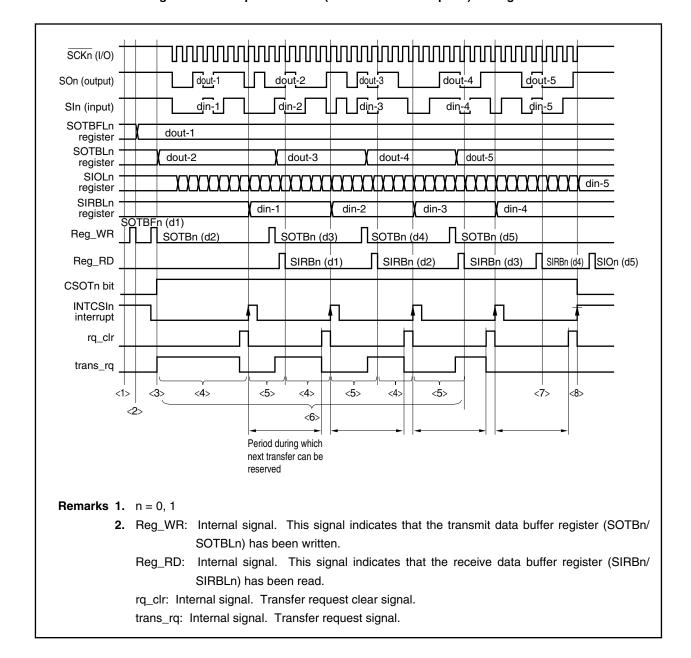


Figure 10-30. Repeat Transfer (Transmission/Reception) Timing Chart

In the case of the repeat transfer mode, two transfer requests are set at the start of the first transfer. Following the transmission/reception completion interrupt request (INTCSIn), transfer is continued if the SOTBn register can be written within the next transfer reservation period. If the SOTBn register cannot be written, transfer ends and the SIRBn register does not receive the new value of the SIOn register.

The last receive data can be obtained by reading the SIOn register following completion of the transfer.

(c) Next transfer reservation period

In the repeat transfer mode, the next transfer must be prepared with the period shown in Figure 10-31.

Figure 10-31. Timing Chart of Next Transfer Reservation Period (1/2)

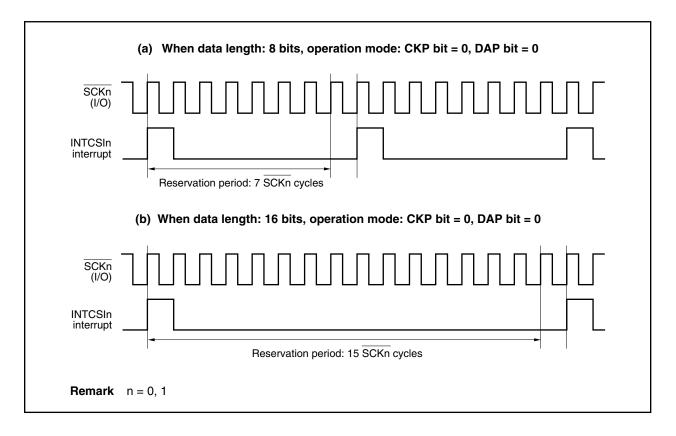
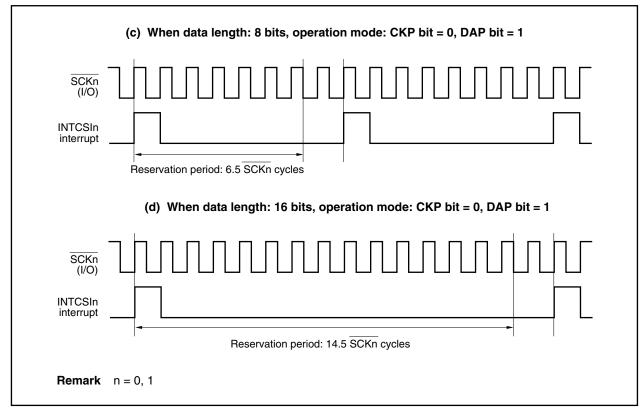



Figure 10-31. Timing Chart of Next Transfer Reservation Period (2/2)

(d) Cautions

To continue repeat transfers, it is necessary to either read the SIRBn register or write to the SOTBn register during the transfer reservation period.

If access is performed to the SIRBn register or the SOTBn register when the transfer reservation period is over, the following occurs.

(i) In case of contention between transfer request clear and register access

Since request cancellation has higher priority, the next transfer request is ignored. Therefore, transfer is interrupted, and normal data transfer cannot be performed.

Transfer reservation period

SCKn
(I/O)

INTCSIn
interrupt

Figure 10-32. Transfer Request Clear and Register Access Contention

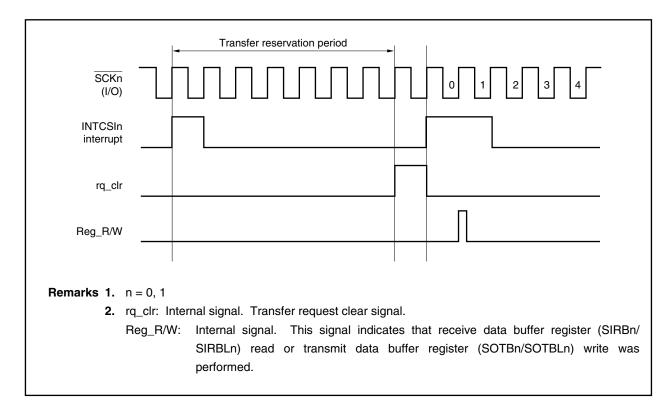
Remarks 1. n = 0, 1

rq_clr

Reg_R/W

2. rq_clr: Internal signal. Transfer request clear signal.

Reg_R/W: Internal signal. This signal indicates that the receive data buffer register (SIRBn/SIRBLn) read or transmit data buffer register (SOTBn/SOTBLn) write was performed.


(ii) In case of contention between interrupt request and register access

Since continuous transfer has stopped once, executed as a new repeat transfer.

In the slave mode, a bit phase error transfer error results (refer to Figure 10-33).

In the transmission/reception mode, the value of the SOTBFn register is retransmitted, and illegal data is sent.

Figure 10-33. Interrupt Request and Register Access Contention

10.4.5 Output pins

(1) SCKn pin

When the CSIn operation is disabled (CSICAEn bit of CSIMn register = 0), the \overline{SCKn} pin output status is as follows (n = 0, 1).

Table 10-9. SCKn Pin Output Status

CKP	CKS2	CKS1	CKS0	SCKn Pin Output
0	Don't care	Don't care	Don't care	Fixed to high level
1	1	1	1	Fixed to high level
	Other than above			Fixed to low level

Remarks 1. n = 0, 1

2. When any of bits CKP and CKS2 to CKS0 of the CSICn register is overwritten, the SCKn pin output changes.

(2) SOn pin

When the CSIn operation is disabled (CSICAEn bit of CSIMn register = 0), the SOn pin output status is as follows (n = 0, 1).

Table 10-10. SOn Pin Output Status

TRMDn	DAP	AUTO	CCL	DIRn	SOn Pin Output
0	Don't care	Don't care	Don't care	Don't care	Fixed to low level
1	0	Don't care	Don't care	Don't care	SO latch value (low level)
	1	0	0	0	SOTB7 value
				1	SOTB0 value
			1	0	SOTB15 value
				1	SOTB0 value
		1	0	0	SOTBF7 value
				1	SOTBF0 value
			1	0	SOTBF15 value
				1	SOTBF0 value

Remarks 1. n = 0, 1

- 2. When any of bits TRMDn, CCL, DIRn, and AUTO of the CSIMn register or DAP bit of the CSICn register is overwritten, the SOn pin output changes.
- **3.** SOTBm: Bit m of SOTBn register (m = 0, 7, 15)
- **4.** SOTBFm: Bit m of SOTBFn register (m = 0, 7, 15)

10.4.6 Dedicated baud rate generator 3 (BRG3)

(1) Configuration of baud rate generator 3 (BRG3)

The CSI0 and CSI1 serial clocks can be selected from the dedicated baud rate generator output or internal system clock (fxx).

The serial clock source is specified with registers CSIC0 and CSIC1.

If dedicated baud rate generator output is specified, BRG3 is selected as the clock source.

Since the same serial clock can be shared for transmission and reception, baud rate is the same for the transmission/reception.

fxx/8

fxx/16

fxx/32

BGCS1, BGCS0

Remark fxx: Internal system clock n = 0, 1

Figure 10-34. Block Diagram of Baud Rate Generator 3 (BRG3)

(2) Dedicated baud rate generator 3 (BRG3)

BRG3 is configured of an 8-bit timer counter that generates the baud rate signal, a prescaler mode register 3 (PRSM3) that controls baud rate signal generation, a prescaler compare register 3 (PRSCM3) that sets the value of the 8-bit timer counter, and a prescaler.

(a) Input clock

The internal system clock (fxx) is input to BRG3.

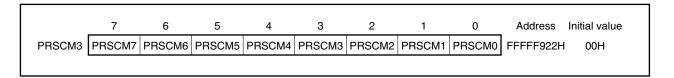
(b) Prescaler mode register 3 (PRSM3)

The PRSM3 register controls generation of the CSI0 and CSI1 baud rate signals.

This register can be read/written in 8-bit or 1-bit units.

Cautions 1. Do not change the values of the BGCS1 and BGCS0 bits during transmission/reception operation.

2. Set the PRSM3 register prior to setting the CSICAEn bit of the CSIMn register to 1 (n = 0, 1).


7	6	5	4	3	2	1	0	Address	Initial value
)	0	0	CE	0	0	BGCS1	BGCS0	FFFFF920H	00H
ion	Bit name					Function			
C	CE	0:	Enables baud rate counter operation. 0: Stop baud rate counter operation and fix baud rate output signal to 0. 1: Enable baud rate counter operation and start baud rate output operation.						
		Sel	Selects count clock for baud rate counter.						
			BGCS1	BGCS		Co	ount clock s	election	
			0	0	fxx/4	1			
			0	1	fxx/8	3			
			1 0 fxx/16						
		[1	1	fxx/3	32			
	E	0 0	O 0 0 ion Bit name CE Ena 0: 1: BGCS1, Selo	ion Bit name CE Enables baud r 0: Stop baud 1: Enable ba BGCS1, BGCS0 BGCS1 0 0	ion Bit name CE Enables baud rate counter 0: Stop baud rate counte 1: Enable baud rate count BGCS1, BGCS0 BGCS1 BGCS0 0 0 0 1	Description Description	ion Bit name Function CE Enables baud rate counter operation. 0: Stop baud rate counter operation and fix b. 1: Enable baud rate counter operation and st BGCS1, BGCS0 BGCS1 BGCS0 Co 0 0 fxx/4 0 1 fxx/8 1 0 fxx/16	ion Bit name Function CE Enables baud rate counter operation. 0: Stop baud rate counter operation and fix baud rate out: Enable baud rate counter operation and start baud rate selects count clock for baud rate counter. BGCS1, BGCS0 BGCS1 BGCS0 Count clock selects count clock for baud rate counter.	DO O CE O O BGCS1 BGCS0 FFFF920H Sion Bit name Function CE Enables baud rate counter operation. O: Stop baud rate counter operation and fix baud rate output signal to COUNTY 1: Enable baud rate counter operation and start baud rate output operation and start baud rat

(c) Prescaler compare register 3 (PRSCM3)

PRSCM3 is an 8-bit compare register that sets the value of the 8-bit timer counter.

This register can be read/written in 8-bit units.

- Cautions 1. The internal timer counter is cleared by writing to the PRSM3 register. Therefore, do not write to the PRSCM3 register during transmission.
 - 2. Set the PRSCM3 register prior to setting the CSICAEn bit of the CSIMn register to 1. If the contents of the PRSCM3 register are overwritten when the value of the CSICAEn bit is 1, the cycle of the baud rate signal is not guaranteed.

(d) Baud rate signal cycle

The baud rate signal cycle is calculated as follows.

- When setting value of PRSCM3 register is 00H
 - (Cycle of signal selected with bits BGCS1, BGCS0 of PRSM3 register) \times 256 \times 2
- In cases other than above

(Cycle of signal selected with bits BGCS1, BGCS0 of PRSM3 register) \times (setting value of PRSCM3 register) \times 2

(e) Baud rate setting value

Table 10-11. Baud Rate Generator Setting Data

(a) When fxx = 32 MHz

BGCS1	BGCS0	PRSCM Register Value	Clock (Hz)
0	0	1	4000000
0	0	2	2000000
0	0	4	1000000
0	0	8	500000
0	0	16	250000
0	0	40	100000
0	0	80	50000
0	0	160	25000
0	1	200	10000
1	0	200	5000

(b) When fxx = 40 MHz

BGCS1	BGCS0	PRSCM Register Value	Clock (Hz)
0	0	2	2500000
0	0	5	1000000
0	0	10	500000
0	0	20	250000
0	0	50	100000
0	0	100	50000
0	0	200	25000
0	1	250	10000
1	0	250	5000

(c) When fxx = 50 MHz

BGCS1	BGCS0	PRSCM Register Value	Clock (Hz)
0	0	2	3125000
0	0	4	1562500
0	0	5	1250000
0	0	10	625000
0	0	25	250000
0	0	50	125000
0	0	125	50000
0	0	250	25000
0	1	250	12500
1	0	250	6250

Caution Set the transfer clock so that it does not fall below the minimum value of 200 ns of the SCKn cycle (tcysk1) prescribed in the electrical specifications.

CHAPTER 11 FCAN CONTROLLER

The V850E/IA1 features a 1 channel on-chip FCAN (Full Controller Area Network) controller that complies with the CAN specification Ver. 2.0, PartB active.

11.1 Function Overview

Table 11-1 presents an overview of V850E/IA1 functions.

Table 11-1. Overview of Functions

Function	Description
Protocol	CAN Protocol Ver. 2.0, PartB active (standard and extended frame transmission/reception)
Baud rate	Maximum 1 Mbps (during 16 MHz clock input)
Data storage	 Allocated to common access-enabled RAM area RAM that is mapped to an unused message byte can be used for CPU processing or other processing
Mask functions	• Four
	Global masks and local masks can be used without distinction
Message configuration	Can be declared as transmit or receive messages
No. of messages	32
Message storage method	 Storage to receive buffer corresponding to ID Storage to buffer specified by receive mask function
Remote reception	 Remote frames can be received in either the receive message buffer or the transmit message buffer If a remote frame is received by a transmit message buffer, there is a choice between having the remote request processed by the CPU or starting the auto transmit function.
Remote transmission	The remote frame can be sent either by setting the transmit message's RTR bit (M_CTRLn register) or by setting the receive message's send request.
Time stamp function	A time stamp function can be set for receive messages and transmit messages.
Diagnostic functions	 Read-enabled error counter is provided. "Valid protocol operation flag" is provided for verification of bus connections. Receive-only mode (with auto baud rate detection) is provided. Diagnostic processing mode is provided.
Low-power mode	 CAN sleep mode (wake up function using CAN bus is enabled) CAN stop mode (wake up function using CAN bus is disabled)

Remark n = 00 to 31

11.2 Configuration

FCAN is composed of the following four blocks.

(1) NPB interface

This functional block provides an NPB (NEC peripheral I/O bus) interface as a means of transmitting and receiving signals.

(2) MAC (Memory Access Controller)

This functional block controls access to the CAN module and to the CAN RAM within the FCAN.

(3) CAN module

This functional block is involved in the operation of the CAN protocol layer and its related settings.

(4) CAN RAM

This is the CAN memory functional block, which is used to store message IDs, message data, etc.

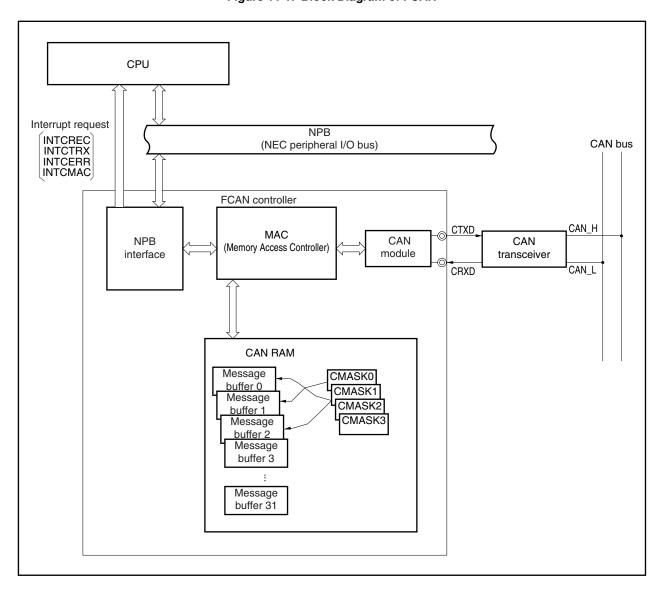


Figure 11-1. Block Diagram of FCAN

11.3 Configuration of Messages and Buffers

Table 11-2. Configuration of Messages and Buffers

Address ^{Note} (m = 2, 6, A, E)	Register Name	Address ^{Note} (m = 2, 6, A, E)	Register Name
xxxxm800H to xxxxm81FH	Message buffer 0 field	xxxxmA00H to xxxxmA1FH	Message buffer 16 field
xxxxm820H to xxxxm83FH	Message buffer 1 field	xxxxmA20H to xxxxmA3FH	Message buffer 17 field
xxxxm840H to xxxxm85FH	Message buffer 2 field	xxxxmA40H to xxxxmA5FH	Message buffer 18 field
xxxxm860H to xxxxm87FH	Message buffer 3 field	xxxxmA60H to xxxxmA7FH	Message buffer 19 field
xxxxm880H to xxxxm89FH	Message buffer 4 field	xxxxmA80H to xxxxmA9FH	Message buffer 20 field
xxxxm8A0H to xxxxm8BFH	Message buffer 5 field	xxxxmAA0H to xxxxmABFH	Message buffer 21 field
xxxxm8C0H to xxxxm8DFH	Message buffer 6 field	xxxxmAC0H to xxxxmADFH	Message buffer 22 field
xxxxm8E0H to xxxxm8FFH	Message buffer 7 field	xxxxmAE0H to xxxxmAFFH	Message buffer 23 field
xxxxm900H to xxxxm91FH	Message buffer 8 field	xxxxmB00H to xxxxmB1FH	Message buffer 24 field
xxxxm920H to xxxxm93FH	Message buffer 9 field	xxxxmB20H to xxxxmB3FH	Message buffer 25 field
xxxxm940H to xxxxm95FH	Message buffer 10 field	xxxxmB40H to xxxxmB5FH	Message buffer 26 field
xxxxm960H to xxxxm97FH	Message buffer 11 field	xxxxmB60H to xxxxmB7FH	Message buffer 27 field
xxxxm980H to xxxxm99FH	Message buffer 12 field	xxxxmB80H to xxxxmB9FH	Message buffer 28 field
xxxxm9A0H to xxxxm9BFH	Message buffer 13 field	xxxxmBA0H to xxxxmBBFH	Message buffer 29 field
xxxxm9C0H to xxxxm9DFH	Message buffer 14 field	xxxxmBC0H to xxxxmBDFH	Message buffer 30 field
xxxxm9E0H to xxxxm9FFH	Message buffer 15 field	xxxxmBE0H to xxxxmBFFH	Message buffer 31 field

Note CAN message buffer registers can be allocated to the xxxx addresses as programmable peripheral I/O registers. Note, however, that the xxxx addresses cannot be changed after being set.

Caution When emulating the FCAN controller using the in-circuit emulator (IE-V850E-MC or IE-703116-MC-EM1), perform the following settings in the Configuration screen that appears when the debugger is started.

- Set the start address of the programmable peripheral I/O area that is set using the BPC register to the Programmable I/O Area field.
- Map the programmable peripheral I/O area as "Target" or "Emulation RAM" in the Memory Mapping field.

Remark For details of message buffers, see 3.4.9 Programmable peripheral I/O registers.

11.4 Time Stamp Function

The FCAN controller supports a time stamp function. This function is needed to build a global time system.

The time stamp function is implemented using a 16-bit free-running time stamp counter.

Two types of time stamp function can be selected for message reception in the FCAN controller. Use bit 3 (TMR) of the CAN1 control register (C1CTRL) to set the desired time stamp function. When the TMR bit is 0, the time stamp counter value is captured after the SOF is detected on the CAN bus (see Figure 11-2) and when the TMR bit is 1, the time stamp counter value is captured after the EOF is detected on the CAN bus (a valid message is confirmed) (see Figure 11-3).

Figure 11-2. Time Stamp Function Setting for Message Reception (When C1CTRL Register's TMR Bit = 0)

<Explanation>

- <1> The time stamp counter value is captured to the temporary buffer when the SOF is detected on the CAN
- <2> A message is stored in CAN message buffer n and the value in the temporary buffer is copied to the M_TIMEn register in CAN message buffer n when the EOF is detected on the CAN bus.

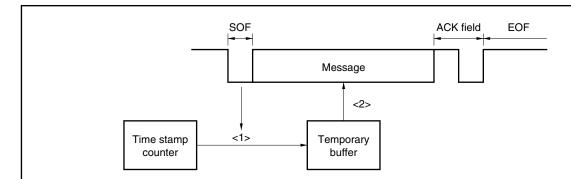
Remark n = 00 to 31

SOF **EOF** ACK field Message CAN message buffer n <1> Time stamp M_TIMEn counter <Explanation> <1> When the EOF is detected on the CAN bus (a valid message is acknowledged), the captured time stamp counter value is copied to the M_TIMEn register in CAN message buffer n when a message is stored in

Figure 11-3. Time Stamp Function Setting for Message Reception (When C1CTRL Register's TMR Bit = 1)

CAN message buffer n.

Remark n = 00 to 31


In a global time system, the timer value must be captured using the SOF.

In addition, the ability to capture the time stamp counter value when message is stored in CAN message buffer n is useful for evaluating the FCAN controller's performance.

The captured time stamp counter value is stored in CAN message buffer n, so CAN message buffer n has its own time stamp function (n = 00 to 31).

When the SOF is detected on the CAN bus while transmitting a message, there is an option to replace the last two bytes of the message with the captured time stamp counter value by setting bit 5 (ATS) of CAN message control register n (M_CTRLn). This function can be selected for CAN message buffer n on a buffer by buffer basis. Figure 11-4 shows the time stamp setting when the ATS bit = 1.

Figure 11-4. Time Stamp Function Setting for Message Transmission (When M_CTRL Register's ATS Bit = 1)

<Explanation>

- <1> The time stamp counter value is captured to the temporary buffer when the SOF is detected on the CAN bus.
- <2> The value of the temporary buffer is added to the last 2 bytes of the data length code^{Note} specified by bits DLC3 to DLC0 of the M_DLCn register.

Note The ATS bit of the M_CTRLn register must be 1 and the data length must be more than 2 bytes to add the time stamp counter value to the transmit message.

Remark n = 00 to 31

Table 11-3. Example When Adding Captured Time Stamp Counter Value to Last 2 Bytes of Transmit Message

Data Field DLC	Data 1	Data 2	Data 3	Data 4	Data 5	Data 6	Data 7	Data 8
Bit Value ^{Note1}								
1	M_DATAn0 register value	-	_	-	_	_	-	-
2	Note 2	Note 3	-	-	_	_	_	-
3	M_DATAn0 register value	Note 2	Note 3	_	_	_	_	_
4	M_DATAn0 register value	M_DATAn1 register value	Note 2	Note 3	_	_	_	_
5	M_DATAn0 register value	M_DATAn1 register value	M_DATAn2 register value	Note 2	Note 3	_	_	_
6	M_DATAn0 register value	M_DATAn1 register value	M_DATAn2 register value	M_DATAn3 register value	Note 2	Note 3	_	_
7	M_DATAn0 register value	M_DATAn1 register value	M_DATAn2 register value	M_DATAn3 register value	M_DATAn4 register value	Note 2	Note 3	_
8	M_DATAn0 register value	M_DATAn1 register value	M_DATAn2 register value	M_DATAn3 register value	M_DATAn4 register value	M_DATAn5 register value	Note 2	Note 3
9 to 15	M_DATAn0 register value	M_DATAn1 register value	M_DATAn2 register value	M_DATAn3 register value	M_DATAn4 register value	M_DATAn5 register value	Note 2	Note 3

Notes 1. See 11.10 (2) CAN message data length registers 00 to 31 (M_DLC00 to M_DLC31).

- 2. The lower 8 bits of the time stamp counter value when the SOF is detected on the CAN bus
- 3. The higher 8 bits of the time stamp counter value when the SOF is detected on the CAN bus

Remark n = 00 to 31

11.5 Message Processing

A modular system is used for the FCAN controller. Consequently, messages can be placed at any location within the message area.

The messages can be linked to mask functions that are in turn linked to CAN modules.

11.5.1 Message transmission

The FCAN system is a multiplexed communication system. The priority of message transmission within this system is determined based on message identifiers (IDs).

To facilitate communication processing by application software when there are several messages awaiting transmission, the CAN module uses hardware to check the message IDs and automatically determine whether or not linked messages are prioritized.

This eliminates the need for software-based priority control.

In addition, the priority at transmission can be controlled by setting the PBB bit of the C1DEF register.

• When the PBB bit is set to 0 (see Figure 11-5)

Transmission priority is controlled by the identifier (ID).

The number^{Note} of messages waiting to be transmitted in the message buffer that can be set simultaneously by application software is up to five messages per CAN module.

Note The number of message buffers when the TRQ bit of the M_STAT00 to M_STAT31 registers = 1.

When the PBB bit is set to 1 (see Figure 11-6)

Transmission priority is controlled by the message numbers.

The number of messages waiting to be transmitted in the message buffer is not limited by the application software.

Figure 11-5. Message Processing Example (When PBB Bit = 0)

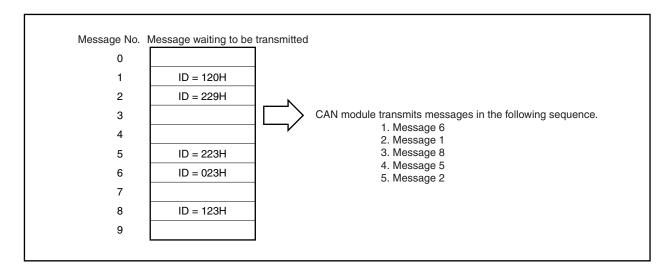
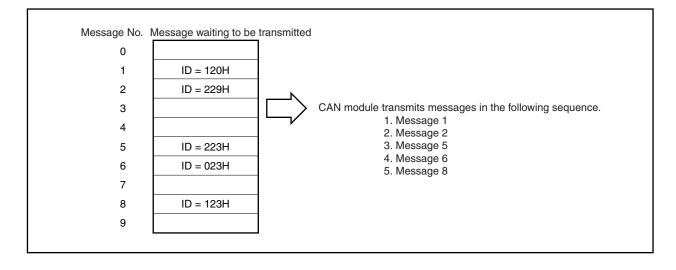



Figure 11-6. Message Processing Example (When PBB Bit = 1)

11.5.2 Message reception

When two or more message buffers of the CAN module receive a message, the storage priority of the received messages is as follows (the storage priority differs between data frames and remote frames).

Table 11-4. Storage Priority for Data Frame Reception

Priority	Conditions
2 (High)	Unmasked message buffer
3	Message buffer linked to mask 0
4	Message buffer linked to mask 1
5	Message buffer linked to mask 2
6 (Low)	Message buffer linked to mask 3

Table 11-5. Storage Priority for Remote Frame Reception

Priority	Conditions
1 (High)	Transmit message buffer
2	Unmasked message buffer
3	Message buffer linked to mask 0
4	Message buffer linked to mask 1
5	Message buffer linked to mask 2
6 (Low)	Message buffer linked to mask 3

A message (data frame or remote frame) is always stored in a receive message buffer with a higher priority, not in a receive buffer with a lower priority. For example, when the unmasked receive message buffer and the message buffer linked to mask 0 have the same ID, a message is always stored in the unmasked receive message buffer even if the unmasked receive message buffer has already received a message.

When two or more message buffers with the same priority exist in the same CAN module, the priority is as follows.

Table 11-6. Priority of Same Priority Level

Priority	Condition
1 (High)	DN bit of M_STAT register is not set (1)
2 (Low)	DN bit of M_STAT register is set (1)

When two or more message buffers with the same priority exist, the message buffer with the smaller message number takes precedence.

Also, when two or more message buffers with the same ID exist, the message buffer with the smaller message number takes precedence.

11.6 Mask Function

A mask linkage function can be defined for each received message.

This means that there is no need to distinguish between local masks and global masks.

When the mask function is used, the received message's identifier is compared with the message buffer's identifier and the message can be stored in the defined message buffer regardless of whether the mask sets "0" or "1" as a result of the comparison.

When the mask function is operating, a bit whose value is defined as "1" by masking is not subject to the abovementioned comparison between the received message's identifier and the message buffer's identifier.

However, this comparison is performed for any bit whose value is defined as "0" by masking.

For example, let us assume that all messages that have a standard-format ID in which bits ID27 to ID25 = 0 and bits ID24 and ID22 = 1 are to be stored in message buffer 14 (which is linked by mask 1 as explained in **11.10 (7)**). The procedure for this example is shown below.

<1> Identifier bits to be stored in message buffer

_	ID28	ID27	ID26	ID25	ID24	ID23	ID22	ID21	ID20	ID19	ID18
ĺ	х	0	0	0	1	x	1	x	x	x	х

Remark x = don't care

Messages with an ID in which bits ID27 to ID25 = 0 and bits ID24 and ID22 = 1 are registered (initialized) in message buffer 14 (see **11.10 (6)**).

<2> Identifier bits set to message buffer 14 (example) (Using CAN message ID registers L14 and H14 (M_IDL14 and M_IDH14))

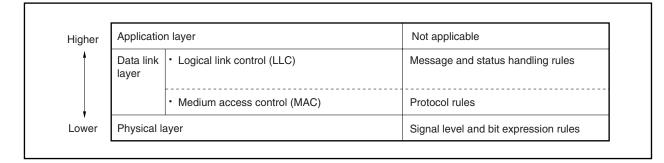
ID28	ID27	ID26	ID25	ID24	ID23	ID22	ID21	ID20	ID19	ID18
0	0	0	0	1	0	1	0	0	0	0
ID17	ID16	ID15	ID14	ID13	ID12	ID11	ID10	ID9	ID8	ID7
0	0	0	0	0	0	0	0	0	0	0
ID6	ID5	ID4	ID3	ID2	ID1	ID0	_			
0	0	0	0	0	0	0				

Message buffer 14 is set as a standard-format identifier linked to mask 1 (see 11.10 (7)).

<3> Mask setting for mask 1 (example)
(Using CAN1 address mask 1 registers L and H (C1MASKL1 and C1MASKH1))

CMID28	CMID27	CMID26	CMID25	CMID24	CMID23	CMID22	CMID21	CMID20	CMID19	CMID18
1	0	0	0	0	1	0	1	1	1	1
CMID17	CMID16	CMID15	CMID14	CMID13	CMID12	CMID11	CMID10	CMID9	CMID8	CMID7
1	1	1	1	1	1	1	1	1	1	1
CMID6	CMID5	CMID4	CMID3	CMID2	CMID1	CMID0				
1	1	1	1	1	1	1				

Remark 1: Do not compare (mask)


0: Compare

Values are written to mask 1 (see 11.10 (19)), bits CMID27 to CMID24 and CMID22 are set to 0 and bits CMID28, CMID23, and CMID21 to CMID0 are set to 1.

11.7 Protocol

FCAN is a high-speed multiplex communication protocol designed to enable real-time communications in automotive applications. The CAN specification is generally divided into two layers (physical layer and data link layer). The data link layer is further divided into logical link control and medium access control. The composition of these layers is illustrated below.

Figure 11-7. Composition of Layers

11.7.1 Protocol mode function

(1) Standard format mode

2048 different identifiers can be set in this mode.

The standard format mode uses 11-bit identifiers, which means that it can handle up to 2032 messages.

(2) Extended format mode

This mode is used to extend the number of identifiers that can be set.

- While the standard format mode uses 11-bit identifiers, the extended format mode uses 29-bit (11 bits + 18 bits) identifiers which expands the amount of messages that can be handled to 2048 × 2¹⁸ messages.
- Extended format mode is set when "recessive (R): recessive in wired OR" is set for both the SRR and IDE bits in the arbitration field.
- When an extended format mode message and a standard format mode remote frame are transmitted at the same time, the node that transmitted the extended format mode message is set to receive mode.

11.7.2 Message formats

Four types of frames are used in CAN protocol messages. The output conditions for each type of frame are as follows.

• Data frame: Frame used for transmit data

Remote frame: Frame used for transmit requests from receiving side
 Error frame: Frame that is output when an error has been detected
 Overload frame: Frame that is output when receiving side is not ready

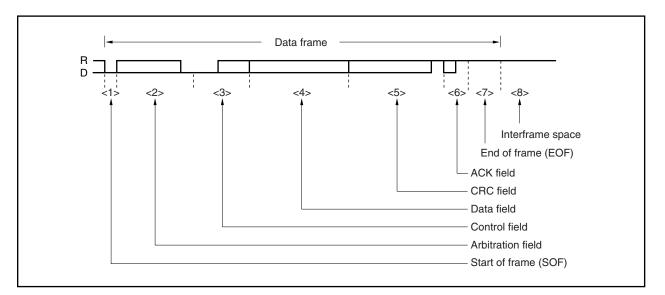
Remark Dominant (D): Dominant in wired OR Recessive (R): Recessive in wired OR In the figure shown below, (D) = 0 and (R) = 1.

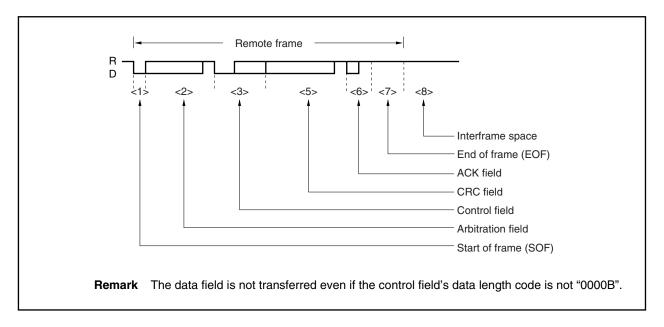
(1) Data frame and remote frame

<1> Data frame

A data frame is the frame used for transmit data.

This frame is composed of seven fields.



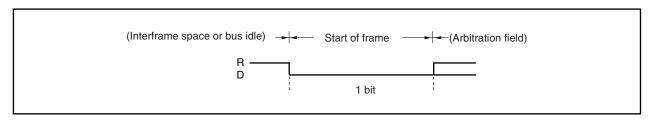

Figure 11-8. Data Frame

<2> Remote frame

A remote frame is transmitted when the receiving node issues a transmit request.

A remote frame is similar to a data frame, except that the "data field" is deleted and the RTR bit of the "arbitration field" is recessive.

Figure 11-9. Remote Frame



(2) Description of fields

<1> Start of frame (SOF)

The start of frame field is a 1-bit dominant (D) field that is located at the start of a data frame or remote frame.

Figure 11-10. Start of Frame (SOF)

- The start of frame field starts when the bus line level changes.
- When "dominant (D)" is detected at the sample point, reception continues.
- When "recessive (R)" is detected at the sample point, bus idle mode is set.

<2> Arbitration field

The arbitration field is used to set the priority, data frame or remote frame, and protocol mode. This field includes an identifier, frame setting (RTR bit), and protocol mode setting bit.

Figure 11-11. Arbitration Field (In Standard Format Mode)

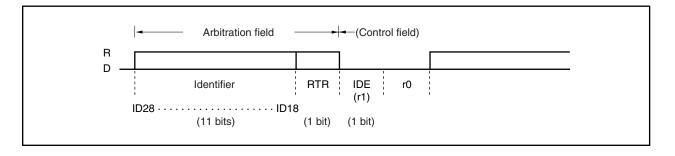


Figure 11-12. Arbitration Field (In Extended Format Mode)

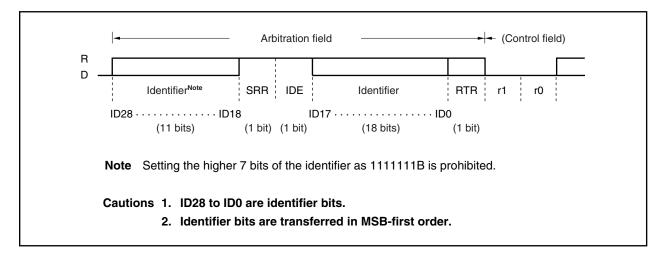
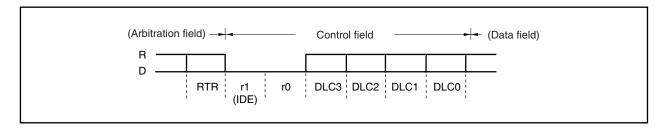


Table 11-7. RTR Bit Settings

Frame Type	RTR Bit		
Data frame	Dominant		
Remote frame	Recessive		

Table 11-8. Protocol Mode Setting and Number of Identifier (ID) Bits

Protocol Mode	SRR Bit	IDE Bit	No. of Bits	
Standard format mode	None	Dominant (D)	11 bits	
Extended format mode	Recessive (R)	Recessive (R)	29 bits	


<3> Control field

The control field sets "N" as the number of data bytes in the data field (N = 0 to 8).

r1 and r0 are fixed as dominant (D). The data length code bits (DLC3 to DLC0) set the byte count.

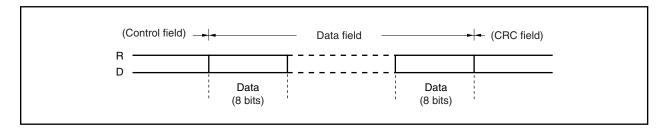
Remark DLC3 to DLC0: Bits 3 to 0 in CAN message data length registers 00 to 31 (M_DLC00 to M_DLC31) (see **11.10 (2)**)

Figure 11-13. Control Field

In standard format mode, the arbitration field's IDE bit is the same bit as the r1 bit.

Table 11-9. Data Length Code Settings

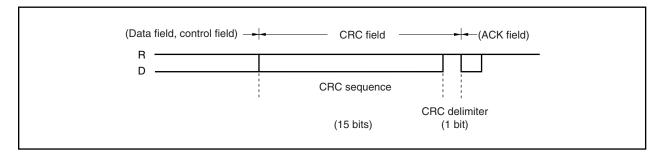
	Data Len	gth Code	Data Byte Count	
DLC3	DLC2	DLC1	DLC0	
0	0	0	0	0 bytes
0	0	0	1	1 byte
0	0	1	0	2 bytes
0	0	1	1	3 bytes
0	1	0	0	4 bytes
0	1	0	1	5 bytes
0	1	1	0	6 bytes
0	1	1	1	7 bytes
1 0 0		0	0	8 bytes
	Other tha	an above	8 bytes regardless of the values of DLC3 to DLC0	


Caution In the remote frame, there is no data field even if the data length code is not 0000B.

<4> Data field

The data field contains the amount of data set by the control field. Up to 8 units of data can be set.

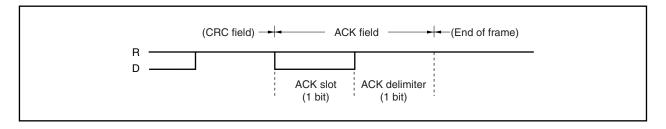
Remark Data units in the data field are each 8 bits long and are ordered MSB first.


Figure 11-14. Data Field

<5> CRC field

The CRC field is a 16-bit field that is used to check for errors in transmit data. It includes a 15-bit CRC sequence and a 1-bit CRC delimiter.

Figure 11-15. CRC Field


- The polynomial P(X) used to generate the 15-bit CRC sequence is expressed as: $X^{15} + X^{14} + X^{10} + X^{8} + X^{7} + X^{4} + X^{3} + 1$
- Transmitting node: No bit stuffing in start of frame, arbitration field, control field, or data field: The transferred CRC sequence is calculated entirely from basic data bits.
- Receiving node: The CRC sequence calculated using data bits that exclude the stuffing bits in the receive data is compared with the CRC sequence in the CRC field. If the two CRC sequences do not match, the node is passed to an error frame.

<6> ACK field

The ACK field is used to confirm normal reception.

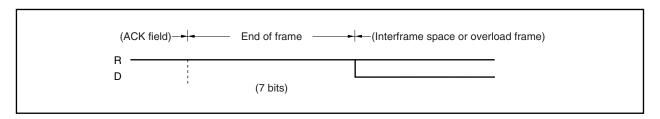
It includes a 1-bit ACK slot and a 1-bit ACK delimiter.

Figure 11-16. ACK Field

• The receiving node outputs the following depending on whether or not an error is detected between the start of frame field and the CRC field.

If an error is detected: ACK slot = Recessive (R)

If no error is detected: ACK slot = Dominant (D)


• The transmitting node outputs two "recessive (R)" bits and confirms the receiving node's receive status.

<7> End of frame (EOF)

The end of frame field indicates the end of transmission or reception.

It includes 7 "recessive (R)" bits.

Figure 11-17. End of Frame (EOF)

<8> Interframe space

The interframe space is inserted after the data frame, remote frame, error frame, and overload frame to separate one frame from the next one.

· Error active node

When the bus is idle, transmit enable mode is set for each node. Transmission then starts from a node that has received a transmit request.

If the node is an error active node, the interframe space is composed of a 3- or 2-bit intermission field and bus idle field.

· Error passive node

After an 8-bit bus idle field, transmit enable mode is set. Receive mode is set if a transmission starts from a different node in bus idle mode.

The error passive node is composed of an intermission field, suspend transmission field, and bus idle field.

Figure 11-18. Interframe Space

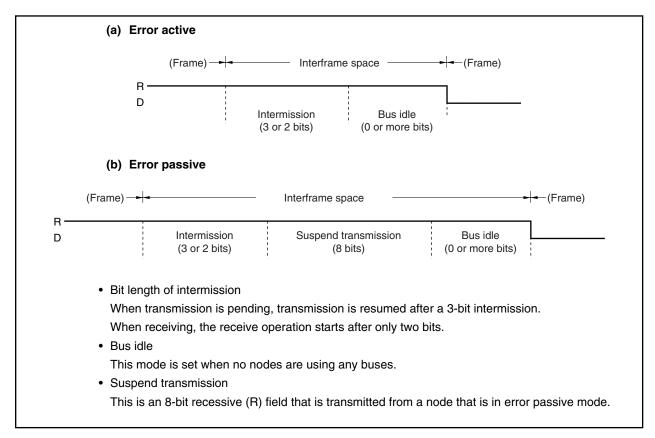
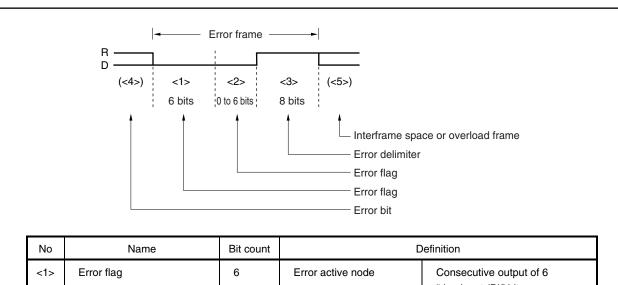


Table 11-10. Operation When Third Bit of Intermission Is "Dominant (D)"

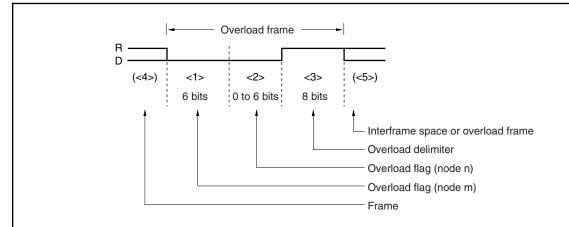

Transmit Status	Operation			
No pending transmissions	Receive operation is performed when start of frame output by other node is detected.			
Pending transmission exists	Identifier is transmitted when start of frame output by local node is detected.			

<9> Error frame

An error frame is used to output from a node in which an error has been detected.

When a passive error flag is being output, if there is "dominant (D)" output from another node, the passive error flag does not end until 6 consecutive bits are detected on the same level. If the bit following the 6 consecutive "recessive (R)" bits is "dominant (D)", the error frame ends when the next "recessive (R)" bit is detected.

Figure 11-19. Error Frame


No	Name	Bit count	Definition		
<1>	Error flag	6	Error active node	Consecutive output of 6 "dominant (D)" bits	
			Error passive node	Consecutive output of 6 "recessive (R)" bits	
<2>	Error flag	0 to 6	A node that receives an error flag is a node in which bit stuffing errors are detected, after which an error flag is output.		
<3>	Error delimiter	8	8 consecutive "recessive (R)" bits are output. If a "dominant (D)" bit is detected as the eighth bit, an overload frame is sent starting at the next bit.		
<4>	Error bit	-	This bit is output following the bit where an error occurred. If the error is a CRC error, it is output following an ACK delimiter.		
<5>	Interframe space or overload frame	3/10 20 MAX.	An interframe space or overload frame starts from here.		

<10> Overload frame

An overload frame is output starting from the first bit in an intermission in cases where the receiving node is not yet ready to receive.

If a bit error is detected in intermission mode, it is output starting from the bit following the bit where the bit error was detected.

Figure 11-20. Overload Frame

No	Name	Bit count	Definition
<1>	1> Overload flag starting from 6 node m		Consecutive output of 6 "dominant (D)" bits. Output when node m is not ready to receive.
<2>	Overload flag starting from node n	0 to 6	Node n, which has received an overload flag in the interframe space, outputs an overload flag.
<3>	Overload delimiter	8	8 consecutive "recessive (R)" bits are output. If a "dominant (D)" bit is detected as the eighth bit, an overload frame is sent starting at the next bit.
<4>	Frame	_	Output following an end of frame, error delimiter, or overload delimiter.
<5>	Interframe space or overload frame	3/10 20 MAX.	An interframe space or overload frame starts from here.

Remark $n \neq m$

11.8 Functions

11.8.1 Determination of bus priority

(1) When one node has started transmitting

• In bus idle mode, the node that outputs data first starts transmission.

(2) When several nodes have started transmitting

- The node that has the longest string of consecutive "dominant (D)" bits starting from the first bit in the
 arbitration field has top priority for bus access ("dominant (D)" bits take precedence due to wired OR bus
 arbitration).
- The transmitting node compares the arbitration field which it has output and the bus data level.

Table 11-11. Determination of Bus Priority

Matched levels	Transmission continues
Mismatched levels	When a mismatch is detected, data output stops at the next bit, and the operation switches to receiving.

(3) Priority between data frame and remote frame

• If a bus conflict occurs between a data frame and a remote frame, the data frame takes priority because its last bit (RTR) is "dominant (D)".

11.8.2 Bit stuffing

Bit stuffing is when one bit of inverted data is added for resynchronization to prevent burst errors when the same level is maintained for five consecutive bits.

Table 11-12. Bit Stuffing

Transmit	When transmitting data frames and remote frames, if the same level is maintained for five bits between the start of frame and CRC fields, one bit of data whose level is inverted from the previous level is inserted before the next bit.
Receive	When receiving data frames and remote frames, if the same level is maintained for five bits between the start of frame and CRC fields, the next bit of data is deleted before receiving is resumed.

11.8.3 Multi-master

Since bus priority is determined based on the identifier, any node can be used as the bus master.

11.8.4 Multi-cast

Even when there is only one transmitting node, the same identifier can be set for several nodes, so that the same data can be received by several nodes at the same time.

11.8.5 CAN sleep mode/CAN stop mode function

The CAN sleep mode/CAN stop mode function is able to set the FCAN controller to sleep (standby) mode to reduce power consumption.

The CAN sleep mode is set via the procedure stipulated in the CAN specification. The CAN sleep mode can be set to wake up by the bus operation, however the CAN stop mode cannot be set to wake up by the bus operation (this is controlled via CPU access).

11.8.6 Error control function

(1) Types of errors

Table 11-13. Types of Errors

Error Type	Description	on of Error	Detected Status			
	Detection Method	Detection Condition	Transmit/ Receive	Field/Frame		
Bit error	Bit error Comparison of output level and bus level levels (excludes stuff bits)		Transmitting/ receiving nodes	Bits outputting data on bus in start of frame to end of frame, error frame, or overload frame		
Stuff error	Use stuff bits to check receive data	Six consecutive bits of same-level data	Transmitting/ receiving nodes	Start of frame to CRC sequence		
CRC error Comparison of CRC generated from receive data and received CRC sequence		CRC mismatch	Receiving node	Start of frame to data field		
Form error	Check fixed-format field/frame	Detection of inverted fixed format	Receiving node	 CRC delimiter ACK field End of frame Error frame Overload frame 		
ACK error	Use transmitting node to check ACK slot	Use ACK slot to detect recessive	Transmitting node	ACK slot		

(2) Error frame output timing

Table 11-14. Error Frame Output Timing

Error Type	Output Timing
Bit error, stuff error, form error, ACK error	Error frame is output at the next bit following the bit where error was detected
CRC error	Error frame is output at the next bit following the ACK delimiter

(3) Handling of errors

The transmitting node retransmits the data frame or remote frame after the error frame has been transmitted.

(4) Error statuses

(a) Types of error statuses

The three types of error statuses are listed below.

Error active Error passive Bus off

- Error status is controlled by the transmit error counter and receive error counter (see 11.10 (23) CAN1 error count register (C1ERC)).
- The various error statuses are categorized according to their error counter values.
- The error flags used to output error statuses differ between transmit and receive operations.
- When the error counter value reaches 96 or more, the bus status must be tested since the bus may become seriously damaged.
- During startup, if only one node is active, the error frame and data are repeatedly resent because no ACK is returned even data has been transmitted.
 - In such cases, bus off mode cannot be set. Even if the node that is sending the transmit message repeatedly experiences an error status, bus off mode cannot be set.

Table 11-15. Types of Error Statuses

Error Status Type	Operation	Error Counter Value	Type of Output Error Flag
Error active	Transmit/ receive	0 to 127	Active error flag (6 consecutive "dominant (D)" bits)
Error passive	Transmit Receive	128 to 255 128 or more	Passive error flag (6 consecutive "recessive (R)" bits)
Bus off	Transmit	256 or more	Transfer is not possible. When a string of at least 11 consecutive "recessive (R)" bits occurs 128 times, the error counter is zero-cleared and the error active status can be resumed.

(b) Error counter

The error counter value is incremented each time an error occurs and is decremented when a transmit or receive operation ends normally. The count-up/count-down timing occurs at the first bit of the error delimiter.

Table 11-16. Error Counter

Status	Transmit Error Counter (TEC7 to TEC0)	Receive Error Counter (REC7 to REC0)
Receiving node has detected an error (except for bit errors that occur in an active error flag or overload flag)	No change	+1
"Dominant (D)" is detected following error frame's error flag output by the receiving node	No change	+8
Transmitting node has sent an error flag [When error counter = ±0] <1> When an ACK error was detected during error passive status and a "dominant (D)" was not detected during passive error flag output <2> When a stuff error occurs in the arbitration field	+8	No change
Detection of bit error during output of active error flag or overload flag (transmitting node with error active status)	+8	No change
Detection of bit error during output of active error flag or overload flag (receiving node with error active status)	No change	+8
14 consecutive "dominant (D)" bits were detected from the start of each node's active error flag or overload flag, followed by detection of eight consecutive dominant bits. Each node has detected eight consecutive dominant bits after a passive error flag.	+8	+8
The transmitting node has completed a transmit operation without any errors (±0 if error counter value is 0).	-1	No change
The receiving node has completed a receive operation without any errors.	No change	-1 (1 ≤ REC7 to REC0 ≤ 127) ±0 (REC7 to REC0 = 0) 127 is set (REC7 to REC0 > 127)

(c) Occurrence of bit error during intermission

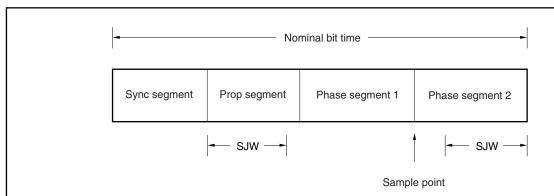
In this case, an overload frame occurs.

Caution When an error occurs, error control is performed according to the contents of the transmitting and receiving error counters as they existed prior to the error's occurrence.

The error counter value is incremented only after an error flag has been output.

11.8.7 Baud rate control function

(1) Prescaler


The FCAN controller of the V850E/IA1 includes a prescaler for dividing the clock supplied to the CAN (fmem1). This prescaler generates a clock (fbtl) that is based on a division ratio ranging from 2 to 128 applied to the CAN base clock (fmem) when the C1BRP register's TLM bit = 0 and based on a division ratio ranging from 2 to 256 applied to the CAN base clock (fmem) when the TLM bit = 1 (refer to 11.10 (26) CAN1 bit rate prescaler register (C1BRP)).

(2) Nominal bit time (8 to 25 time quantum)

A definition of 1 data bit time is shown below.

Remark 1 time quantum = 1/fbtl

Figure 11-21. Nominal Bit Time

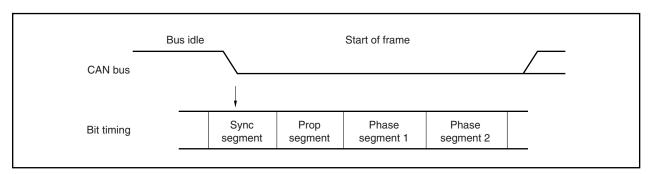
Segment name	Segment length	Description			
Sync segment (Synchronization Segment)	1	This segment begins when resynchronization occurs.			
Prop segment (Propagation Segment)	1 to 8 (programmable)	This segment is used to absorb the delays caused by the output buffer, CAN bus, and input buffer. It is set to return an ACK signal until phase segment 1 begins. Prop segment time ≥ (output buffer delay) + (CAN bus delay) + (input buffer delay)			
Phase segment 1 (Phase Buffer Segment 1)	1 to 8 (programmable)	This segment is used to compensate for errors in the data bit time. It accommodates a wide margin or error			
Phase segment 2 (Phase Buffer Segment 2)	Maximum value from phase segment 1 or IPT ^{Note} (IPT = 0 to 2)	but slows down communication speed.			
SJW (reSynchronization Jump Width)	1 to 4 (programmable)	This sets the range for bit synchronization.			

Note IPT: Information Processing Time

IPT is a period in which the current bit level is referenced and judgment for the next processing is performed. IPT is indicated by the expression below using the clock supplied to CAN (fmem1).

 $IPT = 1/f_{\text{MEM1}} \times 3$

(3) Data bit synchronization

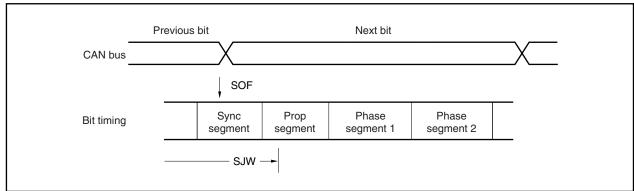

- Since the receiving node has no synchronization signal, synchronization is performed using level changes that occur on the bus.
- As for the transmitting node, data is transmitted in sync with the transmitting node's bit timing.

(a) Hardware synchronization

This is bit synchronization that is performed when the receiving node has detected a start of frame in bus idle mode.

- When a falling edge is detected on the bus, the current bit is assigned to the sync segment and the
 next bit is assigned to the prop segment. In such cases, synchronization is performed regardless of
 the SJW.
- Since bit synchronization must be established after a reset or after a wake-up, hardware synchronization is performed only at the first level change that occurs on the bus (for the second and subsequent level changes, bit synchronization is performed as shown below).

Figure 11-22. Coordination of Data Bit Synchronization



(b) Resynchronization

Resynchronization is performed when a level change is detected on the bus (only when the previous sampling is at the recessive level) during a receive operation.

- The edge's phase error is produced by the relative positions of the detected edge and sync segment.
 <Phase error symbols>
 - 0: When edge is within sync segment
 - Positive: Edge is before sample point (phase error)
 - Negative: Edge is after sample point (phase error)
- When the edge is detected as within the bit timing specified by the SJW, synchronization is performed in the same way as hardware synchronization.
- When the edge is detected as extending beyond the bit timing specified by the SJW, synchronization is performed on the following basis.
 - When phase error is positive: Phase segment 1 is lengthened to equal the SJW
 - When phase error is negative: Phase segment 2 is shortened to equal the SJW
- A "shifting" of the baud rate for the transmitting and receiving nodes moves the relative position of the sample point for data on the receiving node.

Figure 11-23. Resynchronization

11.9 Cautions on Bit Set/Clear Function

The FCAN control registers include registers whose bits can be set or cleared via the CPU and via the CAN interface. An operation error occurs if the following registers are written to directly, so do not directly write (via bit manipulation, read/modify/write, or direct writing of target values) values to them.

- · CAN global status register (CGST)
- CAN global interrupt enable register (CGIE)
- CAN1 control register (C1CTRL)
- CAN1 definition register (C1DEF)
- CAN1 interrupt enable register (C1IE)

All 16 bits in the above registers can be read via the usual method. Use the procedure described in Figure 11-24 below to set or clear the lower 8 bits in these registers.

Setting or clearing of lower 8 bits in the above registers is performed in combination with the higher 8 bits (see **Figure 11-25**). Figure 11-24 shows how the values of set bits or clear bits relate to set/clear/no change operations in the corresponding register.

Register's current values Write values set clear No change change No change Bit status Clear Clear Set Set Register's value after write operations

Figure 11-24. Example of Bit Setting/Clearing Operations

Figure 11-25. 16-Bit Data During Write Operation

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
set 7	set 6	set 5	set 4	set 3	set 2	set 1	set 0	clear 7	clear 6	clear 5	clear 4	clear 3	clear 2	clear 1	clear 0

set n	clear n	Bit n status after bit set/clear operation
0	0	No change
0	1	0
1	0	1
1	1	No change

Remark n = 0 to 7

11.10 Control Registers

(1) FCAN clock selection register (PRM04)

The PRM04 register is used to select the clock (fmem1) supplied to CAN1.

The clock is selected according to the clock frequency.

This register can be read/written in 8-bit or 1-bit units.

Caution Set this register before using FCAN.

	7		6	5	4	3	2	1	0	Address	Initial value
RM04	0		0	0	0	0	0	PRM5	PRM4	FFFFF930H	00H
Bit pos	ition	Bit	name					Function			
1, 0)	PRM PRM	,	Specifies	Specifies FCAN clock (fMEM1) supplied to CAN1.						
				PRM5	PRM4	ŀ		Input c	ock specifi	cation	
				0	0	fxx/4	l (when fxx	> 48 MHz)			
				0	1	fxx/2 (when 16 MHz < fxx ≤ 32 MHz)					
			1	0	fxx/3	fxx/3 (when 32 MHz < fxx ≤ 48 MHz)					
				1	1	fyy (when fxx <	16 MHz)			

Remark fxx: Internal system clock

(2) CAN message data length registers 00 to 31 (M_DLC00 to M_DLC31)

The M_DLCn register sets the byte count in the data field of CAN message buffer n (n = 00 to 31). When receiving, the receive data field's byte count is set (to 1).

These registers can be read/written in 8-bit units.

Caution When receiving a remote frame with an extended ID and storing it in the receive message buffer, the values of DLC3 to DLC0 in the message buffer are cleared to 0 regardless of the values of DLC3 to DLC0 on the CAN bus.

	7	6	5	4	3	2	1	0	Address	Initial value
M_DLCn (n = 00 to 31)	RFU ^{Note}	RFU ^{Note}	RFU ^{Note}	RFU ^{Note}	DLC3	DLC2	DLC1	DLC0	See Table 11-17	Undefined

Bit position	Bit name				Function	on			
3 to 0	DLC3 to DLC0	Control field data for setting the number of bytes in the data field							
		DLC3	DLC2	DLC1	DLC0	Data Length Code of Transmit/Receive Message			
		0	0	0	0	0 bytes			
		0	0	0	1	1 byte			
		0	0	1	0	2 bytes			
		0	0	1	1	3 bytes			
		0	1	0	0	4 bytes			
		0	1	0	1	5 bytes			
		0	1	1	0	6 bytes			
		0	1	1	1	7 bytes			
		1	0	0	0	8 bytes			
		Other than	above			8 bytes regardless of the values of DLC3 to DLC0			

Note RFU (Reserved for Future Use) indicates a reserved bit. Be sure to clear this bit to 0 when writing the M_DLCn register.

Table 11-17. Addresses of M_DLCn (n = 00 to 31)

Register Name	Address ^{Note} (m = 2, 6, A, E)	Register Name	Address ^{Note} (m = 2, 6, A, E)
M_DLC00	xxxxm804H	M_DLC16	xxxxmA04H
M_DLC01	xxxxm824H	M_DLC17	xxxxmA24H
M_DLC02	xxxxm844H	M_DLC18	xxxxmA44H
M_DLC03	xxxxm864H	M_DLC19	xxxxmA64H
M_DLC04	xxxxm884H	M_DLC20	xxxxmA84H
M_DLC05	xxxxm8A4H	M_DLC21	xxxxmAA4H
M_DLC06	xxxxm8C4H	M_DLC22	xxxxmAC4H
M_DLC07	xxxxm8E4H	M_DLC23	xxxxmAE4H
M_DLC08	xxxxm904H	M_DLC24	xxxxmB04H
M_DLC09	xxxxm924H	M_DLC25	xxxxmB24H
M_DLC10	xxxxm944H	M_DLC26	xxxxmB44H
M_DLC11	xxxxm964H	M_DLC27	xxxxmB64H
M_DLC12	xxxxm984H	M_DLC28	xxxxmB84H
M_DLC13	xxxxm9A4H	M_DLC29	xxxxmBA4H
M_DLC14	xxxxm9C4H	M_DLC30	xxxxmBC4H
M_DLC15	xxxxm9E4H	M_DLC31	xxxxmBE4H

Note CAN message buffer registers can be allocated to the xxxx addresses as programmable peripheral I/O registers. Note, however, that the xxxx addresses cannot be changed after being set.

(3) CAN message control registers 00 to 31 (M_CTRL00 to M_CTRL31)

The M_CTRLn register is used to set the frame format of the data field in messages stored in CAN message buffer n (n = 00 to 31).

These registers can be read/written in 8-bit units.

(1/2)

	7	6	5	4	3	2	1	0	Address	Initial value
M_CTRLn (n = 00 to 31)	RMDE1	RMDE0	ATS	IE	MOVR	RFU ^{Notes 1, 2}	RFU ^{Notes 1, 3}	RTR	See Table 11-18	Undefined

Bit position	Bit name	Function
7	RMDE1	Specifies operation of the DN flag when a remote frame is received on a transmit message buffer. 0: DN flag not set when remote frame is received 1: DN flag set when remote frame is received
		Cautions 1. When the RMDE1 bit is set, the setting of the RMDE0 bit is irrelevant. 2. If a remote frame arrives at the transmit message buffer when the RMDE1 bit has not been set, the CPU is not notified, nor are other operations performed.
6	RMDE0	Specifies setting/clearing status of remote frame auto acknowledge function. 0: Remote frame auto acknowledge function cleared 1: Remote frame auto acknowledge function set
		Cautions 1. The RMDE0 bit's setting is used only for transmit messages. 2. When the RTR bit has been set (to 1) (when the receive message or transmit message has a remote frame), the RMDE0 bit is processed as RMDE0 = 0. This prevents a worst-case scenario (in which transmission of a remote frame draws a 100% bus load due to reception of the same remote frame).

- **Notes 1.** RFU (Reserved for Future Use) indicates a reserved bit. Be sure to clear this bit to 0 when writing the M_DLCn register.
 - 2. The value of the r1 bit on the CAN bus is set during reception.
 - 3. The value of the r0 bit on the CAN bus is set during reception.

Remark DN: Bit 2 of M_STATn register (see 11.10 (8) CAN message status registers 00 to 31 (M_STAT00 to M_STAT31))

(2/2)

Bit position	Bit name	Function
5	ATS	Specifies whether or not to add a time stamp when transmitting. 0: Time stamp not added when transmitting 1: Time stamp added when transmitting Cautions 1. The ATS bit is used only for transmit messages. 2. When the ATS bit has been set (to 1) and the data length code specifie at least two bytes, the last two bytes are replaced by a time stamp (se Table 11-3). The added time stamp counter value is sent over the bu via the SOF of the message. When this occurs, the last two byte (which are defined as a data field) are ignored.
4	IE	Specifies the enable/disable setting for interrupt requests. 0: Interrupt requests disabled 1: Interrupt requests enabled Cautions 1. An interrupt request is generated when interrupts are enabled under the following conditions. • When a message is transmitted from the transmit message buffer • When a message is received by the receive message buffer • When a remote frame is transmitted from the receive message buffer • When a remote frame is received by the transmit message buffer
		when the auto acknowledge function has not been set (RMDE0 bit = 0) 2. An interrupt request is not generated when interrupts are enable under the following conditions. • When a remote frame is received by the transmit message buffer when the auto acknowledge function has been set (RMDE0 bit = 1) 3. An interrupt request is generated under the following conditions even interrupts are disabled. • When a remote frame is received by the receive message buffer when the auto acknowledge function has not been set (RMDE0 bit = 0)
3	MOVR	This is the flag that indicates a message buffer overwrite. 0: Overwrite does not occur after DN bit is cleared 1: Overwrite occurs at least once after DN bit is cleared Caution An overwrite of the message buffer occurs when the CAN module write new data to the message buffer or when the DN bit has already been see (to 1). The MOVR bit is updated each time new data is stored in the message buffer.
0	RTR	Specifies frame type. 0: Data frame transmit/receive 1: Remote frame transmit/receive Caution When the RTR bit has been set (to 1) for a transmit message, a remot frame is transmitted instead of a data frame.

Remark DN: Bit 2 of M_STATn register (see 11.10 (8) CAN message status registers 00 to 31 (M_STAT00 to M_STAT31))

Table 11-18. Addresses of M_CTRLn (n = 00 to 31)

Register Name	Address ^{Note} (m = 2, 6, A, E)	Register Name	Address ^{Note} (m = 2, 6, A, E)
M_CTRL00	xxxxm805H	M_CTRL16	xxxxmA05H
M_CTRL01	xxxxm825H	M_CTRL17	xxxxmA25H
M_CTRL02	xxxxm845H	M_CTRL18	xxxxmA45H
M_CTRL03	xxxxm865H	M_CTRL19	xxxxmA65H
M_CTRL04	xxxxm885H	M_CTRL20	xxxxmA85H
M_CTRL05	xxxxm8A5H	M_CTRL21	xxxxmAA5H
M_CTRL06	xxxxm8C5H	M_CTRL22	xxxxmAC5H
M_CTRL07	xxxxm8E5H	M_CTRL23	xxxxmAE5H
M_CTRL08	xxxxm905H	M_CTRL24	xxxxmB05H
M_CTRL09	xxxxm925H	M_CTRL25	xxxxmB25H
M_CTRL10	xxxxm945H	M_CTRL26	xxxxmB45H
M_CTRL11	xxxxm965H	M_CTRL27	xxxxmB65H
M_CTRL12	xxxxm985H	M_CTRL28	xxxxmB85H
M_CTRL13	xxxxm9A5H	M_CTRL29	xxxxmBA5H
M_CTRL14	xxxxm9C5H	M_CTRL30	xxxxmBC5H
M_CTRL15	xxxxm9E5H	M_CTRL31	xxxxmBE5H

Note CAN message buffer registers can be allocated to the xxxx addresses as programmable peripheral I/O registers. Note, however, that the xxxx addresses cannot be changed after being set.

(4) CAN message time stamp registers 00 to 31 (M_TIME00 to M_TIME31)

The M_TIMEn register is the register where the time stamp counter value is written upon completion of data reception (n = 00 to 31).

These registers can be read/written in 16-bit units.

Bit position	Bit name	Function
15 to 0	TS15 to TS0	Indicates the time stamp counter value.
		Caution When a data frame or remote frame is received in the receive message buffer, if the new data is stored in the message buffer, a 16-bit time tag (time stamp counter value) is stored in the M_TIMEn register only when the MT2 to MT0 bits of the M_CONFn register are set to value other than "000" or "110" (receive message). This time tag is set according to the FCAN's time stamp setting, which is either the time stamp counter value that was captured when the SOF was sent via the bus or the value captured when the CAN module writes data to the message buffer.

Table 11-19. Addresses of M_TIMEn (n = 00 to 31)

Register Name	Address ^{Note} (m = 2, 6, A, E)	Register Name	Address ^{Note} (m = 2, 6, A, E)
M_TIME00	xxxxm806H	M_TIME16	xxxxmA06H
M_TIME01	xxxxm826H	M_TIME17	xxxxmA26H
M_TIME02	xxxxm846H	M_TIME18	xxxxmA46H
M_TIME03	xxxxm866H	M_TIME19	xxxxmA66H
M_TIME04	xxxxm886H	M_TIME20	xxxxmA86H
M_TIME05	xxxxm8A6H	M_TIME21	xxxxmAA6H
M_TIME06	xxxxm8C6H	M_TIME22	xxxxmAC6H
M_TIME07	xxxxm8E6H	M_TIME23	xxxxmAE6H
M_TIME08	xxxxm906H	M_TIME24	xxxxmB06H
M_TIME09	xxxxm926H	M_TIME25	xxxxmB26H
M_TIME10	xxxxm946H	M_TIME26	xxxxmB46H
M_TIME11	xxxxm966H	M_TIME27	xxxxmB66H
M_TIME12	xxxxm986H	M_TIME28	xxxxmB86H
M_TIME13	xxxxm9A6H	M_TIME29	xxxxmBA6H
M_TIME14	xxxxm9C6H	M_TIME30	xxxxmBC6H
M_TIME15	xxxxm9E6H	M_TIME31	xxxxmBE6H

Note CAN message buffer registers can be allocated to the xxxx addresses as programmable peripheral I/O registers. Note, however, that the xxxx addresses cannot be changed after being set.

(5) CAN message data registers n0 to n7 (M_DATAn0 to M_DATAn7) (n = 00 to 31)

The M_DATAnx registers are areas where up to 8 bytes of transmit or receive data is stored (n = 00 to 31, x = 0 to 7).

These registers can be read/written in 8-bit units.

	7	6	5	4	3	2	1	0	Address Initial valu	ле
M_DATAn0 (n = 00 to 31)	D0_7	D0_6	D0_5	D0_4	D0_3	D0_2	D0_1	D0_0	See Table 11-20 Undefine	:d
	7	6	5	4	3	2	1	0	Address Initial valu	ле
M_DATAn1 (n = 00 to 31)	D1_7	D1_6	D1_5	D1_4	D1_3	D1_2	D1_1	D1_0	See Table 11-20 Undefine	ed
	7	6	5	4	3	2	1	0	Address Initial valu	ле
M_DATAn2 (n = 00 to 31)	D2_7	D2_6	D2_5	D2_4	D2_3	D2_2	D2_1	D2_0	See Table 11-20 Undefine	ed
	7	6	5	4	3	2	1	0	Address Initial valu	ле
M_DATAn3 (n = 00 to 31)	D3_7	D3_6	D3_5	D3_4	D3_3	D3_2	D3_1	D3_0	See Table 11-20 Undefine	ed
	7	6	5	4	3	2	1	0	Address Initial valu	Je
M_DATAn4 (n = 00 to 31)	D4_7	D4_6	D4_5	D4_4	D4_3	D4_2	D4_1	D4_0	See Table 11-20 Undefine	;d
	7	6	5	4	3	2	1	0	Address Initial valu	ле
M_DATAn5 (n = 00 to 31)	D5_7	D5_6	D5_5	D5_4	D5_3	D5_2	D5_1	D5_0	See Table 11-20 Undefine	ed
	7	6	5	4	3	2	1	0	Address Initial valu	aL
M_DATAn6 (n = 00 to 31)	D6_7	D6_6	D6_5	D6_4	D6_3	D6_2	D6_1	D6_0	See Table 11-20 Undefine	ed
,	7	6	5	4	3	2	1	0	Address Initial valu	ле
M_DATAn7 (n = 00 to 31)	D7_7	D7_6	D7_5	D7_4	D7_3	D7_2	D7_1	D7_0	See Table 11-20 Undefine	: d

Bit position	Bit name	Function
7 to 0	D7_7 to D0_0	Indicates the contents of the message data.
		 Cautions 1. The M_DATAn0 to M_DATAn7 registers are fields used to hold receive data and transmit data. When data is transmitted, the number of messages defined by the DLC3 to DLC0 bits in the M_DLCn register are transmitted via the CAN bus. When the M_CTRLn register's ATS bit has been set (to 1) and the value of the DLC3 to DLC0 bits in the M_DLCn register is at least two bytes, the last two bytes that are sent normally via the CAN bus are ignored and the time stamp value is sent. When a new message is received, all data fields are updated, even when the value of the DLC3 to DLC0 bits in the M_DLCn register is less than 8 bytes. The values of data bytes that have not been received may be updated, but they are ignored.

Remark n = 00 to 31

Table 11-20. Addresses of M_DATAnx (n = 00 to 31, x = 0 to 7)

Register	M_DATAn0 ^{Note}	M_DATAn1 ^{Note}	M_DATAn2 ^{Note}	M_DATAn3 ^{Note}	M_DATAn4 ^{Note}	M_DATAn5 ^{Note}	M_DATAn6 ^{Note}	M_DATAn7 ^{Note}
n Name	(m = 2, 6, A, E)							
00	xxxxm808H	xxxxm809H	xxxxm80AH	xxxxm80BH	xxxxm80CH	xxxxm80DH	xxxxm80EH	xxxxm80FH
01	xxxxm828H	xxxxm829H	xxxxm82AH	xxxxm82BH	xxxxm82CH	xxxxm82DH	xxxxm82EH	xxxxm82FH
02	xxxxm848H	xxxxm849H	xxxxm84AH	xxxxm84BH	xxxxm84CH	xxxxm84DH	xxxxm84EH	xxxxm84FH
03	xxxxm868H	xxxxm869H	xxxxm86AH	xxxxm86BH	xxxxm86CH	xxxxm86DH	xxxxm86EH	xxxxm86FH
04	xxxxm888H	xxxxm889H	xxxxm88AH	xxxxm88BH	xxxxm88CH	xxxxm88DH	xxxxm88EH	xxxxm88FH
05	xxxxm8A8H	xxxxm8A9H	xxxxm8AAH	xxxxm8ABH	xxxxm8ACH	xxxxm8ADH	xxxxm8AEH	xxxxm8AFH
06	xxxxm8C8H	xxxxm8C9H	xxxxm8CAH	xxxxm8CBH	xxxxm8CCH	xxxxm8CDH	xxxxm8CEH	xxxxm8CFH
07	xxxxm8E8H	xxxxm8E9H	xxxxm8EAH	xxxxm8EBH	xxxxm8ECH	xxxxm8EDH	xxxxm8EEH	xxxxm8EFH
08	xxxxm908H	xxxxm909H	xxxxm90AH	xxxxm90BH	xxxxm90CH	xxxxm90DH	xxxxm90EH	xxxxm90FH
09	xxxxm928H	xxxxm929H	xxxxm92AH	xxxxm92BH	xxxxm92CH	xxxxm92DH	xxxxm92EH	xxxxm92FH
10	xxxxm948H	xxxxm949H	xxxxm94AH	xxxxm94BH	xxxxm94CH	xxxxm94DH	xxxxm94EH	xxxxm94FH
11	xxxxm968H	xxxxm969H	xxxxm96AH	xxxxm96BH	xxxxm96CH	xxxxm96DH	xxxxm96EH	xxxxm96FH
12	xxxxm988H	xxxxm989H	xxxxm98AH	xxxxm98BH	xxxxm98CH	xxxxm98DH	xxxxm98EH	xxxxm98FH
13	xxxxm9A8H	xxxxm9A9H	xxxxm9AAH	xxxxm9ABH	xxxxm9ACH	xxxxm9ADH	xxxxm9AEH	xxxxm9AFH
14	xxxxm9C8H	xxxxm9C9H	xxxxm9CAH	xxxxm9CBH	xxxxm9CCH	xxxxm9CDH	xxxxm9CEH	xxxxm9CFH
15	xxxxm9E8H	xxxxm9E9H	xxxxm9EAH	xxxxm9EBH	xxxxm9ECH	xxxxm9EDH	xxxxm9EEH	xxxxm9EFH
16	xxxxmA08H	xxxxmA09H	xxxxmA0AH	xxxxmA0BH	xxxxmA0CH	xxxxmA0DH	xxxxmA0EH	xxxxmA0FH
17	xxxxmA28H	xxxxmA29H	xxxxmA2AH	xxxxmA2BH	xxxxmA2CH	xxxxmA2DH	xxxxmA2EH	xxxxmA2FH
18	xxxxmA48H	xxxxmA49H	xxxxmA4AH	xxxxmA4BH	xxxxmA4CH	xxxxmA4DH	xxxxmA4EH	xxxxmA4FH
19	xxxxmA68H	xxxxmA69H	xxxxmA6AH	xxxxmA6BH	xxxxmA6CH	xxxxmA6DH	xxxxmA6EH	xxxxmA6FH
20	xxxxmA88H	xxxxmA89H	xxxxmA8AH	xxxxmA8BH	xxxxmA8CH	xxxxmA8DH	xxxxmA8EH	xxxxmA8FH
21	xxxxmAA8H	xxxxmAA9H	xxxxmAAAH	xxxxmAABH	xxxxmAACH	xxxxmAADH	xxxxmAAEH	xxxxmAAFH
22	xxxxmAC8H	xxxxmAC9H	xxxxmACAH	xxxxmACBH	xxxxmACCH	xxxxmACDH	xxxxmACEH	xxxxmACFH
23	xxxxmAE8H	xxxxmAE9H	xxxxmAEAH	xxxxmAEBH	xxxxmAECH	xxxxmAEDH	xxxxmAEEH	xxxxmAEFH
24	xxxxmB08H	xxxxmB09H	xxxxmB0AH	xxxxmB0BH	xxxxmB0CH	xxxxmB0DH	xxxxmB0EH	xxxxmB0FH
25	xxxxmB28H	xxxxmB29H	xxxxmB2AH	xxxxmB2BH	xxxxmB2CH	xxxxmB2DH	xxxxmB2EH	xxxxmB2FH
26	xxxxmB48H	xxxxmB49H	xxxxmB4AH	xxxxmB4BH	xxxxmB4CH	xxxxmB4DH	xxxxmB4EH	xxxxmB4FH
27	xxxxmB68H	xxxxmB69H	xxxxmB6AH	xxxxmB6BH	xxxxmB6CH	xxxxmB6DH	xxxxmB6EH	xxxxmB6FH
28	xxxxmB88H	xxxxmB89H	xxxxmB8AH	xxxxmB8BH	xxxxmB8CH	xxxxmB8DH	xxxxmB8EH	xxxxmB8FH
29	xxxxmBA8H	xxxxmBA9H	xxxxmBAAH	xxxxmBABH	xxxxmBACH	xxxxmBADH	xxxxmBAEH	xxxxmBAFH
30	xxxxmBC8H	xxxxmBC9H	xxxxmBCAH	xxxxmBCBH	xxxxmBCCH	xxxxmBCDH	xxxxmBCEH	xxxxmBCFH
31	xxxxmBE8H	xxxxmBE9H	xxxxmBEAH	xxxxmBEBH	xxxxmBECH	xxxxmBEDH	xxxxmBEEH	xxxxmBEFH

Note CAN message buffer registers can be allocated to the xxxx addresses as programmable peripheral I/O registers. Note, however, that the xxxx addresses cannot be changed after being set.

(6) CAN message ID registers L00 to L31 and H00 to H31 $\,$

(M_IDL00 to M_IDL31 and M_IDH00 to M_IDH31)

The M_IDLn and M_IDHn registers are areas used to set identifiers (n = 00 to 31).

These registers can be read/written in 16-bit units.

When in standard format mode, any data can be stored in the following areas.

Bits ID17 to ID10: First byte of receive data^{Note} is stored.

Bits ID9 to ID2: Second byte of receive data^{Note} is stored.

Bits ID1, ID0: Third byte (higher two bits) of receive data^{Note} is stored.

Note See 11.10 (5) CAN message data registers n0 to n7 (M_DATAn0 to M_DATAn7) (n = 00 to 31).

M_IDHn (n = 00 to 31)	15 IDE	14	13	12 ID28	11 ID27	_	_		7 ID23	_		_		 Address See Table 11-22	Initial value Undefined
M_IDLn (n = 00 to 31)		14 ID14	13 ID13	12 ID12	11 ID11		-	8 ID8		-	_	3 ID3		Address See Table 11-21	Initial value Undefined

Bit position	Bit name	Function
15	IDE	Specifies format setting mode.
(M_IDHn)	(M_IDHn)	0: Standard format mode (ID28 to ID18: 11 bits)
		1: Extended format mode (ID28 to ID0: 29 bits)

Remark n = 00 to 31

Table 11-21. Addresses of M_IDLn (n = 00 to 31)

Register Name	Address ^{Note} (m = 2, 6, A, E)	Register Name	Address ^{Note} (m = 2, 6, A, E)
M_IDL00	xxxxm810H	M_IDL16	xxxxmA10H
M_IDL01	xxxxm830H	M_IDL17	xxxxmA30H
M_IDL02	xxxxm850H	M_IDL18	xxxxmA50H
M_IDL03	xxxxm870H	M_IDL19	xxxxmA70H
M_IDL04	xxxxm890H	M_IDL20	xxxxmA90H
M_IDL05	xxxxm8B0H	M_IDL21	xxxxmAB0H
M_IDL06	xxxxm8D0H	M_IDL22	xxxxmAD0H
M_IDL07	xxxxm8F0H	M_IDL23	xxxxmAF0H
M_IDL08	xxxxm910H	M_IDL24	xxxxmB10H
M_IDL09	xxxxm930H	M_IDL25	xxxxmB30H
M_IDL10	xxxxm950H	M_IDL26	xxxxmB50H
M_IDL11	xxxxm970H	M_IDL27	xxxxmB70H
M_IDL12	xxxxm990H	M_IDL28	xxxxmB90H
M_IDL13	xxxxm9B0H	M_IDL29	xxxxmBB0H
M_IDL14	xxxxm9D0H	M_IDL30	xxxxmBD0H
M_IDL15	xxxxm9F0H	M_IDL31	xxxxmBF0H

Note CAN message buffer registers can be allocated to the addresses xxxx as programmable peripheral I/O registers. Note, however, that the xxxx addresses cannot be changed after being set.

Table 11-22. Addresses of M_IDHn (n = 00 to 31)

Register Name	Address ^{Note} (m = 2, 6, A, E)	Register Name	Address ^{Note} (m = 2, 6, A, E)
M_IDH00	xxxxm812H	M_IDH16	xxxxmA12H
M_IDH01	xxxxm832H	M_IDH17	xxxxmA32H
M_IDH02	xxxxm852H	M_IDH18	xxxxmA52H
M_IDH03	xxxxm872H	M_IDH19	xxxxmA72H
M_IDH04	xxxxm892H	M_IDH20	xxxxmA92H
M_IDH05	xxxxm8B2H	M_IDH21	xxxxmAB2H
M_IDH06	xxxxm8D2H	M_IDH22	xxxxmAD2H
M_IDH07	xxxxm8F2H	M_IDH23	xxxxmAF2H
M_IDH08	xxxxm912H	M_IDH24	xxxxmB12H
M_IDH09	xxxxm932H	M_IDH25	xxxxmB32H
M_IDH10	xxxxm952H	M_IDH26	xxxxmB52H
M_IDH11	xxxxm972H	M_IDH27	xxxxmB72H
M_IDH12	xxxxm992H	M_IDH28	xxxxmB92H
M_IDH13	xxxxm9B2H	M_IDH29	xxxxmBB2H
M_IDH14	xxxxm9D2H	M_IDH30	xxxxmBD2H
M_IDH15	xxxxm9F2H	M_IDH31	xxxxmBF2H

Note CAN message buffer registers can be allocated to the addresses xxxx as programmable peripheral I/O registers. Note, however, that the xxxx addresses cannot be changed after being set.

(7) CAN message configuration registers 00 to 31 (M_CONF00 to M_CONF31)

The M_CONFn register is used to set the message buffer type and mask (n = 00 to 31). These registers can be read/written in 8-bit units.

7 6 5 4 3 2 1 0 Address Initial value

M_CONFn
(n = 00 to 31) 0 0 MT2 MT1 MT0 0 0 MA See **Table 11-23** Undefined

	Bit name	Function								
5 to 3	MT2 to MT0	Specifies me	essage type	and mask s	etting.					
		MT2	MT1	МТО	Operation					
		0	0	0	Transmit message					
		0	0	Receive message (no mask setting)						
		0	1	0	Receive message (mask 0 is set)					
		0	1	1	Receive message (mask 1 is set)					
		1	0	0	Receive message (mask 2 is set)					
		1	0	1	Receive message (mask 3 is set)					
		1	1	0	Setting prohibited					
		1	1 1 1 Receive message (used in diagnos mode)							
0	MA	the FCAN if received are • Storage to	nas been se stored rega other mess ype (standar e or remote	et to diagno urdless of the age buffer d frame or e frame	set as "111", processing can be performed only who stic processing mode. In such cases, all message of following conditions.					
0	MA	the FCAN is received are Storage to Identifier to Data frame	nas been se stored rega other mess ype (standar e or remote	et to diagno urdless of the age buffer d frame or e frame	stic processing mode. In such cases, all message following conditions. extended frame)					
0	MA	the FCAN has received are storage to ldentifier by Data frame Specifies me	nas been se e stored rega other mess ype (standar e or remote t essage buffe	et to diagno urdless of the age buffer d frame or e frame or's address.	stic processing mode. In such cases, all message following conditions. extended frame) Operation					
0	MA	the FCAN is received are Storage to Identifier to Data frame	e stored regal other mess. ype (standar e or remote the essage buffer Message	et to diagno urdless of the age buffer d frame or e frame	e following conditions. extended frame) Operation used					

Table 11-23. Addresses of M_CONFn (n = 00 to 31)

Register Name	Address ^{Note} (m = 2, 6, A, E)	Register Name	Address ^{Note} (m = 2, 6, A, E)
M_CONF00	xxxxm814H	M_CONF16	xxxxmA14H
M_CONF01	xxxxm834H	M_CONF17	xxxxmA34H
M_CONF02	xxxxm854H	M_CONF18	xxxxmA54H
M_CONF03	xxxxm874H	M_CONF19	xxxxmA74H
M_CONF04	xxxxm894H	M_CONF20	xxxxmA94H
M_CONF05	xxxxm8B4H	M_CONF21	xxxxmAB4H
M_CONF06	xxxxm8D4H	M_CONF22	xxxxmAD4H
M_CONF07	xxxxm8F4H	M_CONF23	xxxxmAF4H
M_CONF08	xxxxm914H	M_CONF24	xxxxmB14H
M_CONF09	xxxxm934H	M_CONF25	xxxxmB34H
M_CONF10	xxxxm954H	M_CONF26	xxxxmB54H
M_CONF11	xxxxm974H	M_CONF27	xxxxmB74H
M_CONF12	xxxxm994H	M_CONF28	xxxxmB94H
M_CONF13	xxxxm9B4H	M_CONF29	xxxxmBB4H
M_CONF14	xxxxm9D4H	M_CONF30	xxxxmBD4H
M_CONF15	xxxxm9F4H	M_CONF31	xxxxmBF4H

Note CAN message buffer registers can be allocated to the xxxx addresses as programmable peripheral I/O registers. Note, however, that the xxxx addresses cannot be changed after being set.

(8) CAN message status registers 00 to 31 (M_STAT00 to M_STAT31)

The M_STATn register indicates the transmit/receive status information of each message buffer (n = 00 to 31).

These registers are read-only, in 8-bit units.

- Cautions 1. Writing directly to M_STATn register cannot be performed. Writing must be performed using CAN status set/clear register n (SC_STATn).
 - 2. Messages are transmitted only when the M_STATn register's TRQ and RDY bits have been set (to 1).

	7	6	5	4	3	2	1	0	Address	Initial value
M_STATn $(n = 00 \text{ to } 31)$	0	0	0	0	RFU ^{Note 1}	DN	TRQ	RDY ^{Note 2}	See Table 11-24	Undefined

Bit position	Bit name	Function
2	DN	This is the message update flag. 0: No message was received after DN bit was cleared. 1: At least one message was received after DN bit was cleared.
		When the DN bit has been set (to 1) by the transmit message buffer, it indicates that the message buffer has received a remote frame. When this message is sent, the DN bit is automatically cleared (to 0).
		When a frame is again received in the receive message buffer for which the DN bit has been set (to 1), an overwrite condition occurs and the M_CTRLn register's MOVR bit is set (to 1) (n = 00 to 31).
1	TRQ	This is the transmit request flag. 0: Message transmission disabled 1: Message transmission enabled
		 A transmit request is processed as a CAN module only when the RDY bit is set to 1. A remote frame is transmitted for the receive message buffer in which the TRQ bit is set to 1.
0	RDY	This is the transmit message ready flag. 0: Message is not ready. 1: Message is ready.
		 A receive operation is performed only for a message buffer in which the RDY bit is set to 1 during reception. A transmit operation is performed only for a message buffer in which the RDY bit is set to 1 and the TRQ bit is set to 1 during transmission.

- **Notes 1.** RFU (Reserved for Future Use) indicates a reserved bit. 0 or 1 is read from this bit regardless of the message buffer setting.
 - 2. The FCAN controller incorporated in the V850E/IA1 can perform reception even if the RDY bit is not set. However, in products other than the V850E/IA1, the RDY bit must be set for reception. In order to maintain software compatibility, be sure to set the RDY bit even for the FCAN controller of the V850E/IA1 prior to reception.

Table 11-24. Addresses of M_STATn (n = 00 to 31)

Register Name	Address ^{Note} (m = 2, 6, A, E)	Register Name	Address ^{Note} (m = 2, 6, A, E)
M_STAT00	xxxxm815H	M_STAT16	xxxxmA15H
M_STAT01	xxxxm835H	M_STAT17	xxxxmA35H
M_STAT02	xxxxm855H	M_STAT18	xxxxmA55H
M_STAT03	xxxxm875H	M_STAT19	xxxxmA75H
M_STAT04	xxxxm895H	M_STAT20	xxxxmA95H
M_STAT05	xxxxm8B5H	M_STAT21	xxxxmAB5H
M_STAT06	xxxxm8D5H	M_STAT22	xxxxmAD5H
M_STAT07	xxxxm8F5H	M_STAT23	xxxxmAF5H
M_STAT08	xxxxm915H	M_STAT24	xxxxmB15H
M_STAT09	xxxxm935H	M_STAT25	xxxxmB35H
M_STAT10	xxxxm955H	M_STAT26	xxxxmB55H
M_STAT11	xxxxm975H	M_STAT27	xxxxmB75H
M_STAT12	xxxxm995H	M_STAT28	xxxxmB95H
M_STAT13	xxxxm9B5H	M_STAT29	xxxxmBB5H
M_STAT14	xxxxm9D5H	M_STAT30	xxxxmBD5H
M_STAT15	xxxxm9F5H	M_STAT31	xxxxmBF5H

Note CAN message buffer registers can be allocated to the xxxx addresses as programmable peripheral I/O registers. Note, however, that the xxxx addresses cannot be changed after being set.

(9) CAN status set/clear registers 00 to 31 (SC_STAT00 to SC_STAT31)

The SC_STATn register is used to set/clear the transmit/receive status information (n = 00 to 31). These registers are write-only, in 16-bit units.

	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	Address	Initial value
SC_STATn	0	0	0	0	0			set	0	0	0	0	0				See Table 11-25	0000H
(n = 00 to 31)						DN	TRQ	RDY						DN	TRQ	RDY		

Bit position	Bit name		Function							
10, 2	set DN, clear DN	Specifies setting/clearing of the message update flag.								
		set DN	clear DN	Operation						
		0	1	Cleared (DN bit cleared)						
		1	0	Set (DN bit set)						
		Other th	an above	No change in DN bit value						
9, 1	set TRQ, clear TRQ	Specifies se	tting/clearing	of the transmit request flag.						
		set TRQ	clear TRQ	Operation						
		0	1	Cleared (TRQ bit cleared)						
		1	0	Set (TRQ bit set)						
		Other th	an above	No change in TRQ bit value						
8, 0	set RDY, clear RDY	Specifies se	tting of the m	nessage ready flag.						
		set RDY	clear RDY	Operation						
		0	1	Cleared (RDY bit cleared)						
		1	0	Set (RDY bit set)						
		Other th		No change in RDY bit value	<u></u>					

Remark DN: Bit 2 of CAN message status register n (M_STATn)

TRQ: Bit 1 of CAN message status register n (M_STATn) RDY: Bit 0 of CAN message status register n (M_STATn)

Table 11-25. Addresses of SC_STATn (n = 00 to 31)


Register Name	Address ^{Note} (m = 2, 6, A, E)	Register Name	Address ^{Note} (m = 2, 6, A, E)
SC_STAT00	xxxxm816H	SC_STAT16	xxxxmA16H
SC_STAT01	xxxxm836H	SC_STAT17	xxxxmA36H
SC_STAT02	xxxxm856H	SC_STAT18	xxxxmA56H
SC_STAT03	xxxxm876H	SC_STAT19	xxxxmA76H
SC_STAT04	xxxxm896H	SC_STAT20	xxxxmA96H
SC_STAT05	xxxxm8B6H	SC_STAT21	xxxxmAB6H
SC_STAT06	xxxxm8D6H	SC_STAT22	xxxxmAD6H
SC_STAT07	xxxxm8F6H	SC_STAT23	xxxxmAF6H
SC_STAT08	xxxxm916H	SC_STAT24	xxxxmB16H
SC_STAT09	xxxxm936H	SC_STAT25	xxxxmB36H
SC_STAT10	xxxxm956H	SC_STAT26	xxxxmB56H
SC_STAT11	xxxxm976H	SC_STAT27	xxxxmB76H
SC_STAT12	xxxxm996H	SC_STAT28	xxxxmB96H
SC_STAT13	xxxxm9B6H	SC_STAT29	xxxxmBB6H
SC_STAT14	xxxxm9D6H	SC_STAT30	xxxxmBD6H
SC_STAT15	xxxxm9F6H	SC_STAT31	xxxxmBF6H

Note CAN message buffer registers can be allocated to the xxxx addresses as programmable peripheral I/O registers. Note, however, that the xxxx addresses cannot be changed after being set.

(10) CAN interrupt pending register (CCINTP)

The CCINTP register is used to confirm the pending status of various interrupts.

This register is read-only, in 16-bit units.

Bit position	Bit name	Function
14	INTMAC	Indicates an MAC error ^{Note 2} interrupt (GINT2, GINT1) is pending. 0: Not pending 1: Pending
2	CAN1ERR	Indicates a CAN access error interrupt (C1INT6 to C1INT2) is pending. 0: Not pending 1: Pending
1	CAN1REC	Indicates a CAN receive completion interrupt (C1INT1) is pending. 0: Not pending 1: Pending
0	CAN1TRX	Indicates a CAN transmit completion interrupt (C1INT0) is pending. 0: Not pending 1: Pending

Notes 1. xxxx: CAN message buffer registers can be allocated to the xxxx addresses as programmable peripheral I/O registers. Note, however, that the xxxx addresses cannot be changed after being set.

m = 2, 6, A, E

2. MAC (Memory Access Control) errors are errors that are set only when an interrupt source has occurred for the CAN global interrupt pending register (CGINTP).

Remark GINT3 to GINT1: Bits 3 to 1 of the CAN global interrupt pending register (CGINTP)

C1INT6 to C1INT0: Bits 6 to 0 of the CAN1 interrupt pending register (C1INTP)

(11) CAN global interrupt pending register (CGINTP)

The CGINTP register is used to confirm the pending status of MAC error interrupts.

This register can be read/written in 8-bit units.

- Cautions 1. When "1" is written to a bit in the CGINTP register, that bit is cleared (to 0). When "0" is written to it, the bit's value does not change.
 - 2. An interrupt is generated when the corresponding interrupt request is enabled and when no interrupt pending bit has been set (to 1) for a new interrupt.

The correct or incorrect timing of setting the interrupt pending bit (to 1) is controlled by an interrupt service routine. The earlier that the interrupt service routine clears the interrupt pending bit (to 0), the more quickly the interrupt is generated without losing any new interrupts of the same type.

The interrupt pending bit can be set (to 1) only when the interrupt enable bit has been set (to 1). However, the interrupt pending bit is not automatically cleared (to 0) just because the interrupt enable bit has been cleared (to 0).

Use software processing to clear the interrupt pending bit (to 0).

Remark For details of invalid write access error interrupts and unavailable memory address access error interrupts, see **11.14.2 Interrupts that are generated for global CAN interface**.

	7	6	5	4	3	2	1	0	Address	Initial value
CGINTP	0	0	0	0	GINT3	GINT2	GINT1	0	xxxxmC02H ^{Note}	00H

Bit position	Bit name	Function
3	GINT3	Indicates that a wake-up interrupt from CAN sleep mode with stopped clock supply to FCAN is pending. 0: Not pending 1: Pending
2	GINT2	Indicates that an invalid write access error interrupt is pending. 0: Not pending 1: Pending
1	GINT1	Indicates that an unavailable memory address access error interrupt is pending. 0: Not pending 1: Pending

Note xxxx: CAN message buffer registers can be allocated to the xxxx addresses as programmable peripheral I/O registers. Note, however, that the xxxx addresses cannot be changed after being set.

(12) CAN1 interrupt pending register (C1INTP)

The C1INTP register is used to confirm the pending status of interrupts issued to FCAN. This register can be read/written in 8-bit units.

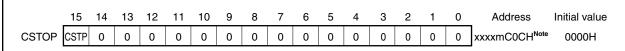
- Cautions 1. When "1" is written to a bit in the C1INTP register, that bit is cleared (to 0). When "0" is written to it, the bit's value does not change.
 - 2. An interrupt is generated when the corresponding interrupt request is enabled and when no interrupt pending bit has been set (to 1) for a new interrupt.

The correct or incorrect timing of setting the interrupt pending bit (to 1) is controlled by an interrupt service routine. The earlier that the interrupt service routine clears the interrupt pending bit (to 0), the more quickly the interrupt is generated without losing any new interrupts of the same type.

The interrupt pending bit can be set (to 1) only when the interrupt enable bit has been set (to 1). However, the interrupt pending bit is not automatically cleared (to 0) just because the interrupt enable bit has been cleared (to 0). Use software processing to clear the interrupt pending bit (to 0).

	7	6	5	4	3	2	1	0	Address	Initial value
C1INTP	0	C1INT6	C1INT5	C1INT4	C1INT3	C1INT2	C1INT1	C1INT0	xxxxmC04H ^{Note}	00H

Bit position	Bit name	Function
6	C1INT6	Indicates pending status of the CAN error interrupt. 0: Not pending 1: Pending
5	C1INT5	Indicates pending status of the CAN bus error interrupt. 0: Not pending 1: Pending
4	C1INT4	Indicates pending status of the wake-up interrupt from CAN sleep mode. 0: Not pending 1: Pending
3	C1INT3	Indicates pending status of the CAN receive error passive status interrupt. 0: Not pending 1: Pending
2	C1INT2	Indicates pending status of the CAN transmit error passive or bus-off status interrupt. 0: Not pending 1: Pending
1	C1INT1	Indicates pending status of the CAN receive completion interrupt. 0: Not pending 1: Pending
0	C1INT0	Indicates pending status of the CAN transmit completion interrupt. 0: Not pending 1: Pending


Note xxxx: CAN message buffer registers can be allocated to the xxxx addresses as programmable peripheral I/O registers. Note, however, that the xxxx addresses cannot be changed after being set.

(13) CAN stop register (CSTOP)

The CSTOP register controls clock supply to the entire CAN system.

This register can be read/written in 16-bit units.

- Cautions 1. Be sure to set the CSTP bit (to 1) if the FCAN function will not be used.
 - When the CSTP bit has been set (to 1), access to FCAN registers other than the CSTOP register is prohibited. Access to FCAN (other than the CSTOP register) is possible only when the CSTP bit has not been set (to 1).
 - 3. When a change occurs on the CAN bus via a CSTP bit setting while the clock supply to the CPU or peripheral functions is stopped, CPU can be woken up.
 - 4. If the CAN main clock (fMEM1) is stopped in other than CAN sleep mode, first set the CAN module to initial mode (INIT bit of C1CTRL register = 1), clear (0) the GOM bit of the CGST register, and then set (1) the CSTP bit.

Bit position	Bit name	Function
15	CSTP	Controls clock supply to FCAN. 0: FCAN is operating (supplies clock to FCAN) 1: FCAN is stopped (access to FCAN is disabled)

Note xxxx: CAN message buffer registers can be allocated to the xxxx addresses as programmable peripheral I/O registers. Note, however, that the xxxx addresses cannot be changed after being set.

(14) CAN global status register (CGST)

The CGST register indicates global status information.

This register can be read/written in 16-bit units.

- Cautions 1. Both bitwise writing and direct writing to the CGST register are prohibited. Attempts to write directly to this register may result in operation faults, so be sure to follow the sequence described in 11.9 Cautions on Bit Set/Clear Function.
 - 2. When writing to the CGST register, set or clear bits according to the register configuration shown in part (b) Write.

(1/3)

	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	Address	Initial value
CGST	0	0	0	0	0	0	0	1	MERR	0	0	0	EFSD	TSM	0	GOM	xxxxmC10H ^{Note}	0100H
(Read)																		
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0		
CGST					set	set			clear					clear		clear		
(Write)	0	0	0	0	EFSD	TSM	0	GOM	MERR	0	0	0	EFSD	TSM	0	GOM		

(a) Read (1/2)

Bit position	Bit name	Function
7	MERR	This is the status flag that indicates an MAC error. 0: Error has not occurred after the MERR bit has been cleared. 1: Error occurred at least once after the MERR bit was cleared.
		Caution MAC errors occur under the following conditions. • When invalid address is accessed • When access prohibited by MAC is performed • When the GOM bit is cleared (0) before the INIT bit of the C1CTRL register is set (1)
3	EFSD	Indicates shutdown request. 0: Shutdown disabled 1: Shutdown enabled Caution Be sure to set the EFSD bit (to 1) before clearing the GOM bit (to 0) (needs to be accessed twice). The EFSD bit will be cleared (to 0) automatically when the CGST register is accessed again.

Note xxxx: CAN message buffer registers can be allocated to the xxxx addresses as programmable peripheral I/O registers. Note, however, that the xxxx addresses cannot be changed after being set.

(2/3)

(a) Read (2/2)

Bit position	Bit name	Function
2	TSM	Indicates the operation status of the time stamp counter ^{Note} . 0: Time stamp counter is stopped 1: Time stamp counter is operating
		Note See 11.10 (17) CAN time stamp count register (CGTSC)
0	GOM	Indicates the status of the global operation mode. 0: Access to CAN module register ^{Note 1} is prohibited 1: Access to CAN module register ^{Note 1} is enabled
		Cautions 1. The GOM bit controls the method the memory is accessed by the MAC and CAN module operation state. • When GOM bit = 0 • All the CAN modules are reset. • Access to the CAN module register is prohibited (if accessed, a MAC error interrupt occurs) ^{Note 2} . • Read/write access to the temporary buffer is enabled. • Access to the message buffer area is enabled. • When GOM bit = 1 • Access to the CAN module register is enabled ^{Note 3} . • Access to the temporary buffer is prohibited (if access is attempted,
		 a MAC error interrupt occurs). Access to the message buffer area is enabled. 2. The GOM bit is cleared to 0 only when all the CAN modules are in the initial status (when the ISTAT bit of the C1CTRL register = 1). If one of the CAN modules is not in the initial status, the GOM bit remains set (1) even if it is cleared to 0. 3. To clear (0) the GOM bit, first set (1) the INIT bit of the C1CTRL register, and then set (1) the EFSD bit. Do not manipulate the GOM bit and EFSD bit simultaneously.

Notes 1. Register with a name starting with "C1"

- 2. The CGCS register can be accessed.
 - Write accessing the CGMSS register is prohibited. If the CGMSS register is write accessed, the wrong search result is reflected in the CGMSR register.
- 3. Write-accessing the CGCS register is prohibited. Write-accessing the CGMSS register is possible.

(3/3)

Bit position	Bit name			Function				
11, 3	set EFSD, clear EFSD	Sets/clears t	the EFSD bit					
		set EFSD	clear EFSD	Operation				
		0	1	EFSD bit cleared (to 0)				
		1	0	EFSD bit set (to 1)				
		Other th	an above	No change in EFSD bit value				
10, 2	set TSM, clear TSM	Sets/clears t	the TSM bit.					
		set TSM	clear TSM	Operation				
		0	1	TSM bit cleared (to 0)				
		1	0	TSM bit set (to 1)				
		Other th	an above	No change in TSM bit value				
8, 0	set GOM, clear GOM	Sets/clears t	the GOM bit.					
		set GOM	clear GOM	Operation				
		0	1	GOM bit cleared (to 0)				
		1	0	GOM bit set (to 1)				
		Other th	an above	No change in GOM bit value				
7	clear MERR	Clears the MERR bit. 0: No change in the MERR bit 1: MERR bit cleared (to 0)						

(15) CAN global interrupt enable register (CGIE)

The CGIE register is used to issue interrupt requests for global interrupts.

This register can be read/written in 16-bit units.

- Cautions 1. Both bitwise writing and direct writing to the CGIE register are prohibited. Attempts to write directly to this register may result in operation faults, so be sure to follow the sequence described in 11.9 Cautions on Bit Set/Clear Function.
 - 2. When writing to the CGIE register, set or clear bits according to the register configuration during a write operation.

	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	Address Initial value
CGIE (Read)	0	0	0	0	1	0	1	0	0	0	0	0	0	G_IE2	G_IE1	0	xxxxmC12H ^{Note} 0A00H
'	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	•
CGIE (Write)	0	0	0	0	0	set G_IE2	set G_IE1	0	0	0	0	0	0	clear G_IE2	clear G_IE1	0	

(a) Read

Bit position	Bit name	Function
2	G_IE2	This is the invalid write access (to temporary buffer, etc.) interrupt enable flag. 0: Interrupt disabled 1: Interrupt enabled
1	G_IE1	This is the unavailable memory address access interrupt enable flag. 0: Interrupt disabled 1: Interrupt enabled

(b) Write

Bit position	Bit name	Function										
10, 9, 2, 1	set G_IEn, clear	Sets/clears the	G_IEn bit.									
	G_IEn	set G_IEn	clear G_IEn	Setting of G_IEn Bit								
		0	1	G_IEn bit cleared								
		1	0	G_IEn bit set								
		Other tha	an above	No change in G_IEn bit value								

Note xxxx: CAN message buffer registers can be allocated to the xxxx addresses as programmable peripheral I/O registers. Note, however, that the xxxx addresses cannot be changed after being set.

m = 2, 6, A, E

Remark n = 1, 2

(16) CAN main clock selection register (CGCS)

The CGCS register is used to select the main clock.

This register can be read/written in 16-bit units.

Caution When the GOM bit of the CGST register is 1, write accessing the CGCS register is prohibited.

(1/2)

_15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	Address	Initial value
CGCS CG1	SCGTS	CGTS						GTCS	GTCS	0	O ^{Note 1}	МСР3	MCP2	MCP1	MCP0	xxxxmC14H ^{Note 3}	7F05H
7	6	5	4	3	2	1	0	1	0								

Bit position	Bit name							Func	tion					
15 to 8	CGTS7 to	Indicat	es glob	oal tim	er syst	em clo	ск (fgтs	s) (see	Figure	11-26	i).			
	CGTS0	n	CGTS 7	CGTS 6	CGTS 5	CGTS 4	CGTS 3	CGTS 2	CGTS 1	CGTS 0	System timer prescaler selection fers = fers1/(n + 1)			
		0	0	0	0	0	0	0	0	0	fgrs = fgrs1/1			
		1	0	0	0	0	0	0	0	1	fgts = fgts1/2			
						:	_				$f_{GTS} = f_{GTS1}/(n + 1)$			
		127	0	1	1	1	1	1	1	1	fgts = fgts1/128 (after reset)			
										$f_{GTS} = f_{GTS1}/(n + 1)$				
		254	1	1	1	1	1	1	1	0	feтs = feтs1/255			
		255	1	1	1	1	1	1	1	1	fgrs = fgrs1/256			
7, 6	GTCS1,	The gl	d for th	e time	stamp	function	on.				the time stamp counter ^{Note 3} that			
7, 0	GTCS1,	<u> </u>	TCS1	giobai	GTCS	ì	igisi) (s				all all ation (f			
		G				-		G	iodai ti	mer cic	ock selection (fgts1)			
		 	0		0		fмем/2							
			0		1		fмем/4							
			1		0		fмем/8							
			1		1		fмем/16	6	fмем/16					

Notes 1. When writing to this bit, always set it to 0.

2. xxxx: CAN message buffer registers can be allocated to the xxxx addresses as programmable peripheral I/O registers. Note, however, that the xxxx addresses cannot be changed after being set.

m = 2, 6, A, E

3. Refer to 11.10 (17) CAN time stamp count register (CGTSC).

(2/2)

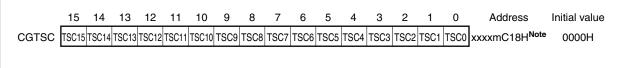
Bit position	Bit name						Function								
3 to 0	MCP3 to MCP0	Specifi	Specifies the clock to memory access controller (fmem) (see Figure 11-26).												
		n	МСРЗ	MCP2	MCP1	МСР0	Selection of clock to memory access controller (fmem)								
		0	0	0	0	0	f мем1								
		1	0	0	0	1	fмем1/2								
		2	0	0	1	0	fмем1/3								
							:								
		14	1	1	1	0	fмем ₁ /15								
		15	1	1	1	1	fмем1/16								

FCAN CAN main clock selection register (CGCS) CGTS7 CGTS6 CGTS5 CGTS4 CGTS3 CGTS2 CGTS1 CGTS0 GTCS1 GTCS0 MCP3 MCP2 MCP1 MCP0 fмEм1 **f**мем fgTS1 Global timer Global timer Prescaler Time stamp counter fxx/3 clock prescaler system clock fxx/4 PRM04 CAN1 synchronization **f**BTL Baud rate generator control register (C1SYNC) Data bit time BTYPE BRP7^{Note} BRP6^{Note} BRP5 BRP4 BRP3 BRP2 BRP1 BRP0 CAN1 bit rate prescaler register (C1BRP)

Figure 11-26. FCAN Clocks

Note Only when the TLM bit of the CAN1 bit rate prescaler register (C1BRP) is 1

Caution When using a 1 Mbps transfer rate for the CPU, input f_{MEM1} as a 16 MHz clock signal. If input at another frequency, subsequent operation is not guaranteed.


(17) CAN time stamp count register (CGTSC)

The CGTSC register indicates the contents of the time stamp counter.

This register can be read at any time.

This register can be written to only when clearing bits. The clear function writes 0 to all bits in the CGTSC register.

This register is read-only, in 16-bit units.

Note xxxx: CAN message buffer registers can be allocated to the xxxx addresses as programmable peripheral I/O registers. Note, however, that the xxxx addresses cannot be changed after being set.

(18) CAN message search start/result register (CGMSS (during write)/CGMSR (during read))

The CGMSS/CGMSR register indicates the message search start/result status. Messages in the message buffer that match the specified search criteria can be searched quickly.

These registers can be read/written in 16-bit units.

Caution Execute a search by writing the CGMSS register only once.

(1/2)

CGMSR (Read)	15	14 0	13	12	11	10	9 MM	8 AM	7	6	5	4 MFND4	3 MFND3	2 MFND2	1 MFND1	O MFND0	Address xxxxmC1AH ^{Note}	Initial value 0000H
CGMSS (Write)	15 CIDE	14	13 CTRQ	12 CMSK	11 CDN	10 0	9	8 SMNO	7	6	5	4 STRT4	3 STRT3	2 STRT2	1 STRT1	O STRT0		

(a) Read

Bit position	Bit name	Function
9	MM	Confirms multiple hits from message search. 0: No messages or only one message meets the search criteria 1: Several messages meet the search criteria
		If several message buffers that meet search criteria are detected, the MM bit is set (to 1).
8	AM	Confirms hits from message search. 0: No messages meet the search criteria 1: At least one message meets the search criteria
4 to 0	MFND4 to MFND0	Indicates searched message number (0 to 31). When multiple message buffer numbers match as a result of a search (MM = 1), the return value of the MFND4 to MFND0 bits is the lowest message buffer number. When no message buffer numbers match as a result of a search (AM = 0), the return value of the MFND4 to MFND0 bits is the number of message buffers – 1.

Note xxxx: CAN message buffer registers can be allocated to the xxxx addresses as programmable peripheral I/O registers. Note, however, that the xxxx addresses cannot be changed after being set.

(2/2)

(b) Write

Bit position	Bit name	Function
15	CIDE	Checks message identifier (ID) format flag. 0: Message identifier format flag not checked 1: Only message with standard format identifier checked
13	CTRQ	Checks transmit request and message ready flag. 0: Transmit request and message ready flag not checked 1: Transmit request and message ready flag checked
12	CMSK	Checks masked messages. 0: Masked messages not checked 1: Only masked messages checked
11	CDN	Checks status of the DN flag of M_STATn register (n = 00 to 31). 0: Status of the DN flag of M_STATn register not checked 1: Status of the DN flag of M_STATn register checked
8	SMNO	Sets search module. 0: No search module setting 1: CAN module set as search target
4 to 0	STRT4 to STRT0	Indicates message search start position. 0 to 31: Message search start position (message number)
		Search starts from the message number defined by bits STRT4 to STRT0. Search continues until it reaches the message buffer having the highest number among the usable message buffers. If the search results include several message buffer numbers among the matching messages, the message buffer with the lowest message buffer number is selected. To fetch the next message buffer number without changing the search criteria, "(MFND4 to MFND0) + 1" must be set as the values of bits STRT4 to STRT0.

(19) CAN1 address mask a registers L and H (C1MASKLa and C1MASKHa)

The C1MASKLa and C1MASKHa registers are used to extend the number of receivable messages by masking part of the message's identifier (ID) and then ignoring the masked parts (a = 0 to 3).

These registers can be read/written in 16-bit units.

- Cautions 1. When the receive message buffer is linked to the C1MASKLa and C1MASKHa registers, regardless of whether the ID in the receive message buffer is a standard ID (11 bits) or extended ID (29 bits), set all the 32-bit values of the C1MASKLa and C1MASKHa registers (a = 0 to 3).
 - 2. When the C1MASKLa and C1MASKHa registers are linked to a message buffer for standard ID, the lower 18 bits of the data field in the data frame are also automatically compared. Therefore, if it is not necessary to compare the lower 18 bits (i.e., to mask the lower 18 bits), set the CMID17 to CMID0 bits to 1 (a = 0 to 3). The standard ID and extended ID can use the same mask.

	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	Address	Initial value
C1MASKHa	CMIDE	_		CMID	See Table 11-26	Undefined												
(a = 0 to 3)	CMIDE	0	0	28	27	26	25	24	23	22	21	20	19	18	17	16		
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	Address	Initial value
C1MASKLa	CMID	CMID	CMID	CMID	CMID	CMID	CMID	CMID	CMID	CMID	CMID	CMID	CMID	CMID	CMID	CMID	See Table 11-26	Undefined
(a = 0 to 3)	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0		

Bit position	Bit name	Function
15 (C1MASKHa)	CMIDE	Sets mask for identifier (ID) format. 0: ID format (standard or extended) checked 1: ID format (standard or extended) not checked When the CMIDE bit is set (1), the higher 11 bits of the ID are compared. The receive message and the ID format stored in a message buffer are not compared.
12 to 0 (C1MASKHa) 15 to 0 (C1MASKLa)	(C1MASKHa)	ID bit in message buffer linked to bits CMID28 to CMID0 not compared (ID bit masked) with received ID bit

Remark n = 0 to 3

Table 11-26. Addresses of C1MASKLa and C1MASKHa (a = 0 to 3)

Register Name	Address ^{Note} (m = 2, 6, A, E)
C1MASKL0	xxxxmC40H
C1MASKH0	xxxxmC42H
C1MASKL1	xxxxmC44H
C1MASKH1	xxxxmC46H
C1MASKL2	xxxxmC48H
C1MASKH2	xxxxmC4AH
C1MASKL3	xxxxmC4CH
C1MASKH3	xxxxmC4EH

Note CAN message buffer registers can be allocated to the xxxx addresses as programmable peripheral I/O registers. Note, however, that the xxxx addresses cannot be changed after being set.

(20) CAN1 control register (C1CTRL)

The C1CTRL register is used to control the operation of the CAN module.

This register can be read/written in 16-bit units.

- Cautions 1. Both bitwise writing and direct writing to the C1CTRL register are prohibited. Attempts to write directly to this register may result in operation faults, so be sure to follow the sequence described in 11.9 Cautions on Bit Set/Clear Function.
 - 2. When writing to the C1CTRL register, set or clear bits according to the register configuration during a write operation.
 - 3. When canceling CAN stop mode, CAN sleep mode must be canceled at the same time.

(1/4)

	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	Address	Initial value
C1CTRL	TECS1	TECS0	RECS1	RECS0	BOFF	TSTAT	RSTAT	ISTAT	0	DLEVR	DLEVT	OVM	TMR	STOP	SLEEP	INIT	xxxxmC50H ^{Note}	0101H
(Read)																		
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0		
C1CTRL		set	set	set	set	set	set	set		clear								
(Write)		DLEVR	DLEVT	OVM	TMR	STOP	SLEEP	INIT	0	DLEVR	DLEVT	OVM	TMR	STOP	SLEEP	INIT		

(a) Read (1/3)

Bit position	Bit name	Function									
15, 14	TECS1, TECS0	This is the to	ransmit error	counter status flag.							
		TECS1	TECS0	Status of transmit error counter							
		0	0	Transmit error counter value < 96							
		0	1	Transmit error counter value = 96 to 127 (warning level)							
		1	0	Not used							
		1	1	Transmit error counter value ≥ 128 (error passive)							
		_									
13, 12	RECS1, RECS0	This is the re	eceive error	counter status flag.							
		RECS1	RECS0	Status of receive error counter							
		0	0	Receive error counter value < 96							
		0	1	Receive error counter value = 96 to 127 (warning level)							
		1	0	Not used							
		1	1	Receive error counter value ≥ 128 (error passive)							

Note xxxx: CAN message buffer registers can be allocated to the xxxx addresses as programmable peripheral I/O registers. Note, however, that the xxxx addresses cannot be changed after being set.

(2/4)

(a) Read (2/3)

Bit position	Bit name	Function
11	BOFF	This is the bus off status flag. 0: Transmit error counter < 256 (not bus off status) 1: Transmit error counter ≥ 256 (bus off status)
10	TSTAT	This is the transmit status flag. 0: Transmission stopped status 1: Transmitting status
9	RSTAT	This is the receive status flag. 0: Reception stopped status 1: Receiving status
8	ISTAT	This is the initialization status flag. 0: Normal operating status 1: FCAN is stopped and initialized
		Cautions 1. The ISTAT bit is set (to 1) when the CAN protocol layer acknowledges the settings of the INIT and STOP bits. Also, this bit is automatically cleared (to 0) when the INIT and STOP bits are cleared (to 0). 2. In the initialization status, "recessive" is output to the CTXD pin. 3. The C1SYNC and C1BRP registers can be written only in initialization mode. 4. In the initialization status, the error counter (see 11.10 (23) CAN1 error count register (C1ERC)) is cleared (to 0) and the error status (bits TECS1, TECS0, RECS0, and RECS1) is reset.
6	DLEVR	This is the dominant level control bit for receive pins. 0: A low level to a receive pin is acknowledged as dominant 1: A high level to a receive pin is acknowledged as dominant
5	DLEVT	This is the dominant level control bit for transmit pins. 0: A low level is transmitted from a transmit pin as dominant 1: A high level is transmitted from a transmit pin as dominant
4	OVM	This is the overwrite mode control bit. 0: New messages stored in message buffer in which DN bit of M_STATn register (n = 00 to 31) is set 1: New messages in message buffer in which DN bit is set are discarded. When the OVM bit = 1, the receive completion interrupt (INTCREC) is not generated even in
3	TMR	new messages are received in the message buffer in which the DN bit is set. This is the time stamp control bit for reception. 0: Captures time stamp counter value when SOF is detected on CAN bus 1: Captures time stamp counter value when EOF is detected on CAN bus (a valid message is confirmed)
2	STOP	This is the CAN stop mode control bit. 0: No CAN stop mode setting 1: CAN stop mode
		The CAN stop mode can be selected only when the CAN module is set to CAN sleep mode (the SLEEP bit is set (to 1)). CAN stop mode can be canceled only by the CPU (STOP bit cleared (to 0)).

(3/4)

(a) Read (3/3)

Bit position	Bit name	Function
1	SLEEP	This is the CAN sleep mode control bit. 0: Normal operation mode 1: Switch to CAN sleep mode. Change in CAN bus performs wake-up.
		Cautions 1. CAN sleep mode can be set only when the CAN bus is in the idle state. 2. CAN sleep mode is canceled under the following conditions. • When the CPU has cleared the SLEEP bit (to 0) • When the CAN bus changes (only when CAN stop mode has not been set) 3. The WAKE bit (see 11.10 (21) CAN1 definition register (C1DEF)) can be set (to 1) only when CAN sleep mode is canceled by the change of the CAN bus, and an error interrupt occurs.
0	INIT	This is the initialization request bit used to initialize the CAN module. 0: Normal operation mode 1: Initialization mode
		Cautions 1. Be sure to confirm that the CAN module has entered the initialization mode using the ISTAT bit (ISTAT bit = 1) after setting the INIT bit (to 1). When the ISTAT bit = 0, set the INIT bit (to 1) again. 2. If the INIT bit is set (to 1) when the CAN module is in the bus off status (BOFF bit = 1), the CAN module enters initialization mode (ISTAT bit = 1) after returning from the bus off status (BOFF bit = 0).

(b) Write (1/2)

Bit position	Bit name			Function								
14, 6	Set	Sets/clears t	Sets/clears the DLEVR bit.									
	DLEVR, clear	set DLEVR	clear DLEVR	Operation								
	DLEVR	0	1	DLEVR bit cleared (to 0)								
		1	0	DLEVR bit set (to 1)								
		Other than	above	DLEVR bit not changed								
13, 5	Set	Sets/clears t	Sets/clears the DLEVT bit.									
	DLEVT, clear	set DLEVT	clear DLEVT	Operation								
	DLEVT	0	1	DLEVT bit cleared (to 0)								
		1	0	DLEVT bit set (to 1)								
		Other than		DLEVT bit not changed								

(4/4)

Bit position	Bit name			Function						
12, 4	set OVM,	Sets/clears t	the OVM bit.							
	clear OVM	set OVM	clear OVM	Operation						
		0	1	OVM bit cleared (to 0)						
		1	0	OVM bit set (to 1)						
		Other than	n above	OVM bit not changed						
11, 3	set TMR,	Sets/clears t	the TMR bit.							
	clear TMR	set TMR	clear TMR	Operation						
		0	1	TMR bit cleared (to 0)						
		1	0	TMR bit set (to 1)						
		Other than	n above	TMR bit not changed						
10, 2	set STOP, clear STOP	Sets/clears to set	the STOP bi clear STOP	t. Operation						
		0	1	STOP bit cleared (to 0)						
		1	0	STOP bit set (to 1)						
		Other than	above	STOP bit not changed						
9, 1	set	Sets/clears t	the SLEEP t	oit.						
	SLEEP, clear SLEEP	set SLEEP	clear SLEEP	Operation						
	SLLLI	0	1	SLEEP bit cleared (to 0)						
		1	0	SLEEP bit set (to 1)						
		Other than	n above	SLEEP bit not changed						
8, 0	set INIT,	Sets/clears t	the INIT bit.							
	clear INIT	set INIT	clear INIT	Operation						
		0	1	INIT bit cleared (to 0)						
		1	0	INIT bit set (to 1)						
		Other than	n above	INIT bit not changed						

(21) CAN1 definition register (C1DEF)

The C1DEF register is used to define the operation of the CAN module.

This register can be read/written in 16-bit units.

- Cautions 1. Both bitwise writing and direct writing to the C1DEF register are prohibited. Attempts to write directly to this register may result in operation faults, so be sure to follow the sequence described in 11.9 Cautions on Bit Set/Clear Function.
 - 2. When writing to the C1DEF register, set or clear bits according to the register configuration during a write operation.

(1/4)

	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	Address	Initial value
C1DEF	0	0	0	0	0	0	0	0	DGM	MOM	SSHT	PBB	BERR	VALID	WAKE	OVR	xxxxmC52H ^{Note}	0000H
(Read)																		
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0		
C1DEF	set	set	set	set	0	0	0	0	clear									
(Write)	DGM	MOM	SSHT	PBB			J		DGM	MOM	SSHT	PBB	BERR	VALID	WAKE	OVR		

(a) Read (1/3)

Bit position	Bit name	Function
7	DGM	Specifies diagnostic processing mode. 0: Only when receiving, valid messages received using message buffer used for diagnostic processing mode (Bits MT2 to MT0 of M_CONF register = 111) 1: Only when receiving, valid messages received using normal operation mode.
		The diagnostic processing mode (MOM bit = 1) is used for CAN baud rate detection and for diagnostic purposes. When this mode has been set, the following operations are performed. When the VALID bit = 1, it indicates that the current receive operation is valid. Setting the DGM bit confirms whether or not valid data has been stored in the message buffer used for diagnostic processing mode, the same as for normal operation mode.

Note xxxx: CAN message buffer registers can be allocated to the xxxx addresses as programmable peripheral I/O registers. Note, however, that the xxxx addresses cannot be changed after being set.

(2/4)

(a) Read (2/3)

Bit position	Bit name	Function
6	МОМ	Specifies the CAN module operation mode. 0: Normal operating mode 1: Diagnostic processing mode
		Cautions 1. When in diagnostic processing mode (MOM bit = 1), the C1BRP register can be accessed only when the CAN module has been set to initialization mode (i.e., when the C1CTRL register's ISTAT bit = INIT bit = 1).
		 When the CAN module is operating (i.e., when the C1CTRL register' ISTAT bit = 0), the C1BRP register cannot be used, and the CAN1 bu diagnostic information register (refer to 11. 10 (27) CAN1 bu diagnostic information register (C1DINF)) can be used instead. 2. The CAN protocol layer does not send ACK, error frame, or transm messages, nor does it operate an error counter. The internal transmit output is fed back to the internal input due to aut baud rate detection.
5	SSHT	Specifies single shot mode. 0: Normal operating mode 1: Single shot mode
		In single shot mode, the CAN module can transmit a message only one time. The M_STATn register's TRQ bit is then cleared (to 0) regardless of whether or not there are any pending normal transmit operations (n = 00 to 31). Also, if a bus error has occurred due to a transmission, it is handled as an incomplete transmission.
		Cautions 1. In single shot mode, even if the CAN lost in arbitration, it is handled a a completed message transmission. When in this mode, the BERR bit is set (to 1) but the error counted value (refer to 11.10 (23) CAN1 error count register (C1ERC)) does not change since there are no CAN bus errors.
		 In single shot mode, even when transmission is stopped due to error detection or a loss in the arbitration phase, the transmissio completion interrupt occurs. During the time when the CAN module is active, the CPU switche
		between normal operation mode and single shot mode without causin any errors to occur on the CAN bus.
4	PBB	Specifies priority control for transmission. 0: Identifier (ID) based priority control 1: Message number based priority control
		Ordinarily, priority for transmission is defined based on message IDs, but when the PBB be has been set (to 1) priority becomes based instead on the position of messages, so that messages with lower message numbers have higher priority.
3	BERR	Indicates CAN bus error status. 0: CAN bus error was not detected 1: CAN bus error was detected at least once after bit was cleared
2	VALID	Indicates valid message detection status. 0: Valid message was not detected 1: Valid message was detected at least once after bit was cleared

(3/4)

(a) Read (3/3)

Bit position	Bit name	Function
1	WAKE	Indicates CAN sleep mode cancellation status. 0: Normal operation 1: CAN sleep mode canceled
		Cautions 1. The WAKE bit is set (1) only when the CAN sleep mode is released due to a change in the CAN bus and an error interrupt occurs. 2. While the WAKE bit is set (1), the error interrupt signal holds the active status. Therefore, always clear (0) the WAKE bit after recognition that the WAKE bit is set.
0	OVR	Indicates overrun error status. 0: Normal operation 1: Overrun occurred during RAM access Caution When an overrun error has occurred, the OVR bit is set (to 1) and an error interrupt occurs at the same time. The source of the overrun error may be that the RAM access clock is slower than the selected CAN baud rate.

(4/4)

(b) Write Bit position Bit name Function 15, 7 set DGM, Sets/clears the DGM bit. clear DGM set DGM | clear DGM Operation 0 1 DGM bit cleared (to 0) 0 1 DGM bit set (to 1) Other than above DGM bit not changed 14, 6 set MOM, Sets/clears the MOM bit. clear set MOM clear MOM Operation MOM 0 MOM bit cleared (to 0) 1 0 MOM bit set (to 1) Other than above MOM bit not changed 13, 5 set SSHT, Sets/clears the SSHT bit. clear set SSHT clear SSHT Operation SSHT 0 1 SSHT bit cleared (to 0) 1 0 SSHT bit set (to 1) Other than above SSHT bit not changed 12, 4 set PBB, Sets/clears the PBB bit. clear PBB set PBB clear PBB Operation 0 1 PBB bit cleared (to 0) 1 PBB bit set (to 1) Other than above PBB bit not changed 3 clear Clears the BERR bit. **BERR** 0: No change in BERR bit 1: BERR bit cleared (to 0) 2 clear Clears the VALID bit. **VALID** 0: No change in VALID bit 1: VALID bit cleared (to 0) 1 clear Clears the WAKE bit. WAKE 0: No change in WAKE bit

1: WAKE bit cleared (to 0)

0: No change in OVR bit1: OVR bit cleared (to 0)

Clears the OVR bit.

0

clear OVR

(22) CAN1 information register (C1LAST)

The C1LAST register indicates the CAN module's error information and the number of the message buffer received last.

This register is read-only, in 16-bit units.

C1LAST 0 0 0 LERR3 LERR2 LERR1 LERR0 LREC7 LREC6 LREC5 LREC4 LREC3 LREC2 LREC1 LREC0 XXXXmC54HNote O0FFH

Bit position	Bit name				Function	n
11 to 8	LERR3 to	Indicates the	e last error in	formation.		
	LERR0	LERR3	LERR2	LERR1	LERR0	Last error information
		0	0	0	0	Error not detected
		0	0	0	1	Bit error
		0	0	1	0	Stuff error
		0	0	1	1	CRC error
		0	1	0	0	Form error
		0	1	0	1	ACK error
		0	1	1	0	Arbitration lost (only in single shot mode (C1DEF register's SSHT bit = 1))
		0	1	1	1	CAN overrun error
		1	0	0	0	Wake-up from CAN bus
			Other tha	an above		Undefined
			Since the L retained un			annot be cleared, the current status is s.
7 to 0	LREC7 to LREC0	Indicates the 0 to 31: To 32 to 255:	he number o	·		at received

Note xxxx: CAN message buffer registers can be allocated to the xxxx addresses as programmable peripheral I/O registers. Note, however, that the xxxx addresses cannot be changed after being set.

(23) CAN1 error count register (C1ERC)

The C1ERC register indicates the count values of the transmission/reception error counters. This register is read-only, in 16-bit units.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Address Initial value C1ERC REC7 REC6 REC5 REC4 REC3 REC2 REC1 REC0 TEC7 TEC6 TEC5 TEC4 TEC3 TEC2 TEC1 TEC0 xxxxmC56HNote 0000H

Bit position	Bit name	Function
15 to 8	REC7 to REC0	Indicates the reception error count. 0 to 255: The number of reception errors
		This reflects the current status of the reception error counter. The number of counts is defined by the CAN protocol.
7 to 0	TEC7 to TEC0	Indicates the transmission error count. 0 to 255: The number of transmission errors
		This reflects the current status of the transmission error counter. The number of counts is defined by the CAN protocol.

Note xxxx: CAN message buffer registers can be allocated to the xxxx addresses as programmable peripheral I/O registers. Note, however, that the xxxx addresses cannot be changed after being set.

(24) CAN1 interrupt enable register (C1IE)

The C1IE register is used to enable/disable the CAN module's interrupts.

This register can be read/written in 16-bit units.

- Cautions 1. Both bitwise writing and direct writing to the C1IE register are prohibited. Attempts to write directly to this register may result in operation faults, so be sure to follow the sequence described in 11.9 Cautions on Bit Set/Clear Function.
 - 2. When writing to the C1IE register, set or clear bits according to the register configuration during a write operation.

(1/3)

	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	Address	Initial value
C1IE	0	0	0	0	1	0	0	1	0	E_INT6	E_INT5	E_INT4	E_INT3	E_INT2	E_INT1	E_INT0	xxxxmC58H ^{Note}	0900H
(Read)																		
	15	4.4	10	10	11	10	0	0	7	6	-	4	0	0	4	0		
	15	14	13	12	11	10	9	8		6	5	4	3	2		0	•	
C1IE	0	set	0	clear														
(Write)		E_INT6	E_INT5	E_INT4	E_INT3	E_INT2	E_INT1	E_INT0		E_INT6	E_INT5	E_INT4	E_INT3	E_INT2	E_INT1	E_INT0		

(a) Read (1/2)

Bit position	Bit name	Function
6	E_INT6	This is the CAN module error interrupt enable flag. 0: Interrupt disabled 1: Interrupt enabled
5	E_INT5	This is the CAN bus error interrupt enable flag. 0: Interrupt disabled 1: Interrupt enabled
4	E_INT4	This is the wake up from CAN sleep mode interrupt enable flag. 0: Interrupt disabled 1: Interrupt enabled
3	E_INT3	This is the receive error passive interrupt enable flag. 0: Interrupt disabled 1: Interrupt enabled
2	E_INT2	This is the transmit error passive or bus off interrupt enable flag. 0: Interrupt disabled 1: Interrupt enabled

Note xxxx: CAN message buffer registers can be allocated to the xxxx addresses as programmable peripheral I/O registers. Note, however, that the xxxx addresses cannot be changed after being set.

(2/3)

(a) Read (2/2)

Bit position	Bit name	Function
1	E_INT1	This is the receive completion interrupt enable flag. 0: Interrupt disabled 1: Interrupt enabled • When IE bit of the M_CTRLn register is 1, a reception completion interrupt occurs regardless of the setting of the E_INT1 bit if the transmit message buffer receives a remote frame while the auto response function is not set (RMDE0 bit of the M_CTRLn register = 0) (n = 00 to 31).
0	E_INT0	This is the transmit completion interrupt enable flag. 0: Interrupt disabled 1: Interrupt enabled

(b) Write (1/2)

Bit position	Bit name			Function				
14, 6	set	Sets/clears t	he E_INT6 b	it.				
	E_INT6,	set E_INT6 clear E_INT6		Operation				
	clear E_INT6	0	1	E_INT6 interrupt cleared (to 0)				
		1	0	E_INT6 interrupt set (to 1)				
		Other than	above	E_INT6 interrupt not changed				
13, 5	set	Sets/clears t	he E INT5 b	it.				
,	E_INT5,		_ clear E_INT5	Operation				
	clear E_INT5	0	1	E_INT5 interrupt cleared (to 0)				
	L_IIVIO	1	0	E_INT5 interrupt set (to 1)				
		Other than	above	E_INT5 interrupt not changed				
12, 4	set	Sets/clears the E_INT4 bit.						
	E_INT4, clear	set E_INT4	clear E_INT4	Operation				
	E_INT4	0	1	E_INT4 interrupt cleared (to 0)				
		1	0	E_INT4 interrupt set (to 1)				
		Other than	above	E_INT4 interrupt not changed				
11, 3	set E INT3,	Sets/clears t	_					
	clear	set E_INT3	clear E_INT3	Operation				
	E_INT3	0	1	E_INT3 interrupt cleared (to 0)				
		1	0	E_INT3 interrupt set (to 1)				
		Other than	above	E_INT3 interrupt not changed				

(3/3)

Bit position	Bit name		Function							
10, 2	set	Sets/clears t	Sets/clears the E_INT2 bit.							
	E_INT2,	set E_INT2	clear E_INT2	Operation						
	clear E_INT2	0	1	E_INT2 interrupt cleared (to 0)						
	_	1	0	E_INT2 interrupt set (to 1)						
		Other than	n above	E_INT2 interrupt not changed						
9, 1 set		Sets/clears t	he E_INT1 b	it.						
	E_INT1,	set E_INT1	clear E_INT1	Operation						
	E_INT1	0	1	E_INT1 interrupt cleared (to 0)						
		1	0	E_INT1 interrupt set (to 1)						
		Other than	n above	E_INT1 interrupt not changed						
8, 0	set	Sets/clears t	the E_INT0 b	it.						
	E_INT0,	set E_INT0	clear E_INT0	Operation						
	clear E_INT0	0	1	E_INT0 interrupt cleared (to 0)						
		1	0	E_INT0 interrupt set (to 1)						
		Other than	above	E_INT0 interrupt not changed						

(25) CAN1 bus active register (C1BA)

The C1BA register indicates frame information output via the CAN bus.

This register is read-only, in 16-bit units.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Address Initial value

C1BA 0 0 CACT4 CACT3 CACT2 CACT1 CACT0 TMN07 TMN06 TMN05 TMN04 TMN03 TMN02 TMN01 TMN00 xxxxmC5AHNote O0FFH

Bit position	Bit name				Functi	on	
12 to 8	CACT4 to CACT0	Indicates CA	AN module s	status.			
		CACT4	CACT3	CACT2	CACT1	CACT0	CAN module status
		0	0	0	0	0	Reset state
		0	0	0	0	1	Bus idle wait
		0	0	0	1	0	Bus idle state
		0	0	0	1	1	Start of frame
		0	0	1	0	0	Standard identifier area
		0	0	1	0	1	Data length code area
		0	0	1	1	0	Data field area
		0	0	1	1	1	CRC field area
		0	1	0	0	0	CRC delimiter
		0	1	0	0	1	ACK slot
		0	1	0	1	0	ACK delimiter
		0	1	0	1	1	End of frame area
		0	1	1	0	0	Intermission state
		0	1	1	0	1	Suspend transmission
		0	1	1	1	0	Error frame
		0	1	1	1	1	Error delimiter wait
		1	0	0	0	0	Error delimiter
		1	0	0	1	0	Extended identifier area
7 to 0	TMNO7 to TMNO0	32 to 254	lessage nur : Not used	mber of mes	sage awaitii	ng transmiss	sion or being transmitted

Note xxxx: CAN message buffer registers can be allocated to the xxxx addresses as programmable peripheral I/O registers. Note, however, that the xxxx addresses cannot be changed after being set.

(26) CAN1 bit rate prescaler register (C1BRP)

The C1BRP register is used to set the transmission baud rate for the CAN module.

Use the C1BRP register to select the CAN protocol layer base system clock (f_{BTL}). The baud rate is determined by the value set to the C1SYNC register.

While in normal operation mode (C1DEF register's MOM bit = 0), the C1BRP register can only be accessed when the initialization mode has been set (C1CTRL register's INIT bit = 1).

This register can be read/written in 16-bit units.

Caution While in diagnostic processing mode (C1DEF register's MOM bit = 1), the C1BRP register can only be accessed when the initialization mode has been set (C1CTRL register's INIT bit = 1) (refer to 11.10 (21) CAN1 definition register (C1DEF)).

(1/2)

Address Initial value C1BRP BTYPE BRP5 BRP4 BRP3 BRP2 BRP1 BRP0 xxxxmC5CHNote TLM 0000H (TLM = 0)C1BRP TLM BTYPE BRP7 BRP6 BRP5 BRP4 BRP3 BRP2 BRP1 BRP0 (TLM = 1)

(a) When TLM = 0

Bit position	Bit name					Fund	ction			
15	TLM	Specifies transfer layer mode. 0: 6-bit prescaler mode								
6	BTYPE	Specifies CAN bus type. 0: Low speed (≤ 125 kbps) 1: High speed (> 125 kbps)								
5 to 0	BRP5 to BRP0	Specifie	s CAN pr	otocol lay	er base s	ystem clo	ck (f _{BTL}) f	or CAN m	odule.	
		n	BRP5	BRP4	BRP3	BRP2	BRP1	BRP0	CAN protocol layer base system clock (f _{BTL})	
		0	0	0	0	0	0	0	fмем/2	
		1	0	0	0	0	0	1	fмем/4	
		2	0	0	0	0	1	0	fмем/6	
		3	0	0	0	0	1	1	fмем/8	
			1	1	•	1	1	1	fмем/(n + 1) × 2	
		60	1	1	1	1	0	0	fмем/122	
		61	1	1	1	1	0	1	fмем/124	
		62	1	1	1	1	1	0	fмем/126	
		63	1	1	1	1	1	1	fмем/128	
		Remar	n = 0	to 63 (s	+ 1) × 2} et by bita	s BRP5		-	e system clock	

Note xxxx: CAN message buffer registers can be allocated to the xxxx addresses as programmable peripheral I/O registers. Note, however, that the xxxx addresses cannot be changed after being set.

(2/2)

Bit position	Bit name		Function										
15	TLM		Specifies transfer layer mode. 1: 8-bit prescaler mode										
8	ВТҮРЕ	0: Lo	Specifies CAN bus type. 0: Low speed (≤ 125 kbps) 1: High speed (> 125 kbps)										
7 to 0	BRP7 to BRP0	Specifi	es CAN	l protoc	ol layer	base s	system	clock (f	вть) for	CAN m	odule.		
		n	BRP7	BRP6	BRP5	BRP4	BRP3	BRP2	BRP1	BRP0	CAN protocol layer base system clock (f _{BTL})		
		0	0	0	0	0	0	0	0	0	Setting prohibited		
		1	0	0	0	0	0	0	0	1	fмем/2		
		2	0	0	0	0	0	0	1	0	fмем/3		
		3	0	0	0	0	0	0	1	1	fмем/4		
					•	:					fмем/(n + 1)		
		252	1	1	1	1	1	1	0	0	fмем/253		
		253	1	1	1	1	1	1	0	1	fмем/254		
		254	1	1	1	1	1	1	1	0	fмем/255		
		255	1	1	1	1	1	1	1	1	fмем/256		
		Rema			w/(n + 255 (s	•				•	em clock		
					AN bas	-			/				

(27) CAN1 bus diagnostic information register (C1DINF)

The C1DINF register indicates all CAN bus bits, including stuff bits, delimiters, etc. This information is used only for diagnostic purposes.

Because the number of bits starting from SOF is added at each frame, the actual number of bits is the value obtained by subtracting the previous data.

This register is read-only, in 16-bit units.

- Cautions 1. While in diagnostic processing mode (C1DEF register's MOM bit = 1) and in normal operation mode (C1CTRL register's INIT bit = 0), the C1DINF register can only be accessed. In normal operation mode (C1DEF register's MOM bit = 0), this register cannot be accessed.
 - 2. Storage of the last 8 bits is automatically stopped if an error or a valid message (ACK delimiter) is detected on the CAN bus. Reset is automatically performed each time when the SOF is detected on the CAN bus.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Address Initial value C1DINF DINF15 DINF14 DINF13 DINF12 DINF11 DINF10 DINF9 DINF8 DINF7 DINF6 DINF5 DINF4 DINF3 DINF2 DINF1 DINF0 xxxxmC5CHNote 0000H

Bit position	Bit name	Function				
15 to 0	DINF15 to	Indicates CAN bus diagn	nostic information.			
	DINF0	Bit name	CAN Bus Diagnostic Information			
		DINF15 to DINF8	Number of bits starting from SOF			
		DINF7 to DINF0	Information from last 8 bits			

Note xxxx: CAN message buffer registers can be allocated to the xxxx addresses as programmable peripheral I/O registers. Note, however, that the xxxx addresses cannot be changed after being set.

(28) CAN1 synchronization control register (C1SYNC)

The C1SYNC register controls the data bit time for transmission speed.

This register can be read/written in 16-bit units.

- Cautions 1. The CPU is able to read the C1SYNC register at any time.
 - 2. Writing to the C1SYNC register is enabled when in initialization mode (when C1CTRL register's INIT bit = 1).
 - 3. The limit values of the CAN protocol when setting the SPTn bit and DBTn bit are as follows.

 $5 \times BTL \le SPT$ (sampling point) $\le 17 \times BTL$ [$4 \le SPT4$ to SPT0 set values ≤ 16] $8 \times BTL \le DBT$ (data bit time) $\le 25 \times BTL$ [$7 \le DBT4$ to DBT0 set values ≤ 24] SJW (synchronization jump width) $\le DBT - SPT$

2 ≤ (DBT – SPT) ≤ 8

Remark BTL = 1/fbtl (fbtl: CAN protocol layer base system clock)

(1/3)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Address Initial value

C1SYNC 0 0 SAMP SJW1 SJW0 SPT4 SPT3 SPT2 SPT1 SPT0 DBT4 DBT3 DBT2 DBT1 DBT0 xxxxmC5EHNote 0218H

Bit position	Bit name	Function						
12	SAMP	Specifies bit sampling. 0: Receive data sampled once at the sampling point. 1: Receive data sampled three times and the majority value used as the sampled value.						
11, 10	SJW1, SJW0	Specifies sy PartB active		on jump width stipulated in the CAN protocol specification, Ver. 2.0,				
		SJW1	SJW0	Synchronization jump width ^{Note}				
		0	0	BTL				
		0	1	BTL × 2				
		1	0	BTL × 3				
		1	1	BTL × 4				
		Note Stipulated in CAN protocol specification Ver. 2.0, PartB active						
		Remark BTL = 1/fbtl (fbtl: CAN protocol layer base system clock)						

Note xxxx: CAN message buffer registers can be allocated to the xxxx addresses as programmable peripheral I/O registers. Note, however, that the xxxx addresses cannot be changed after being set.

(2/3)

9 to 5	SPT4 to SPT0	Specifies position of sampling points.						
		SPT4	SPT3	SPT2	SPT1	SPT0	Position of sampling point	
		0	0	0	1	0	BTL × 3 ^{Note}	
		0	0	0	1	1	$BTL \times 4^{Note}$	
		0	0	1	0	0	BTL × 5	
		0	0	1	0	1	BTL × 6	
		0	0	1	1	0	BTL × 7	
		0	0	1	1	1	BTL × 8	
		0	1	0	0	0	BTL × 9	
		0	1	0	0	1	BTL × 10	
		0	1	0	1	0	BTL × 11	
		0	1	0	1	1	BTL × 12	
		0	1	1	0	0	BTL × 13	
		0	1	1	0	1	BTL × 14	
		0	1	1	1	0	BTL × 15	
		0	1	1	1	1	BTL × 16	
		1	0	0	0	0	BTL × 17	
		Other tha	n above	Setting prohibited				
		Note This setting is reserved for setting sample point extension and is not compliant we the CAN protocol specifications.						

(3/3)

Bit position	Bit name	Function							
4 to 0	DBT4 to	Sets data bit time.							
	DBT0	DBT4	DBT3	DBT2	DBT1	DBT0	Data bit time		
		0	0	1	1	1	BTL × 8		
		0	1	0	0	0	BTL × 9		
		0	1	0	0	1	BTL × 10		
		0	1	0	1	0	BTL × 11		
		0	1	0	1	1	BTL × 12		
		0	1	1	0	0	BTL × 13		
		0	1	1	0	1	BTL × 14		
		0	1	1	1	0	BTL × 15		
		0	1	1	1	1	BTL × 16		
		1	0	0	0	0	BTL × 17		
		1	0	0	0	1	BTL × 18		
		1	0	0	1	0	BTL × 19		
		1	0	0	1	1	BTL × 20		
		1	0	1	0	0	BTL × 21		
		1	0	1	0	1	BTL × 22		
		1	0	1	1	0	BTL × 23		
		1	0	1	1	1	BTL × 24		
		1	1	0	0	0	BTL × 25		
		Other that	n above				Setting prohibited		

Remark BTL = 1/fbtl (fbtl: CAN protocol layer base system clock)

11.11 Operations

11.11.1 Initialization processing

Figure 11-27 shows a flowchart of initialization processing. The register setting flow is shown in Figures 11-28 to 11-40.

Figure 11-27. Initialization Processing

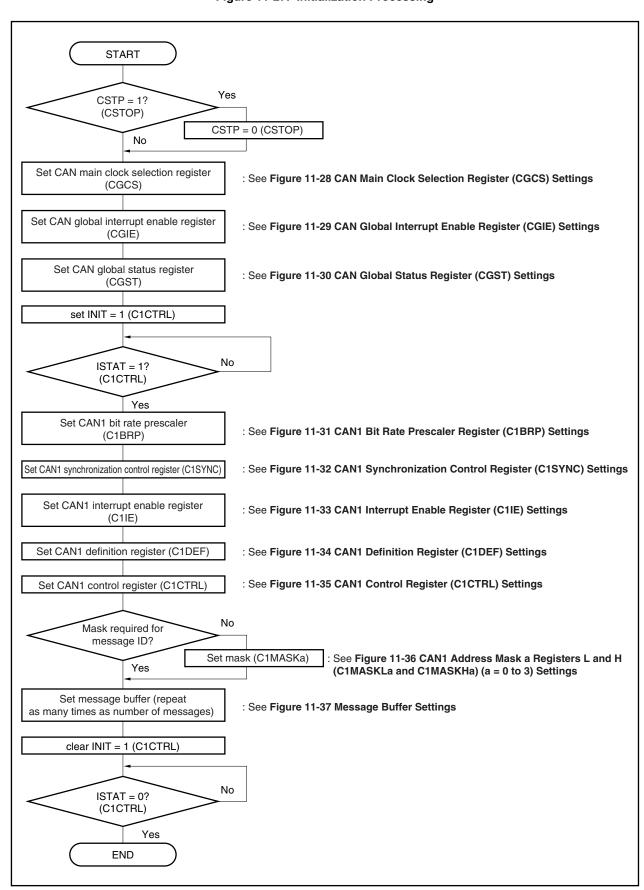


Figure 11-28. CAN Main Clock Selection Register (CGCS) Settings

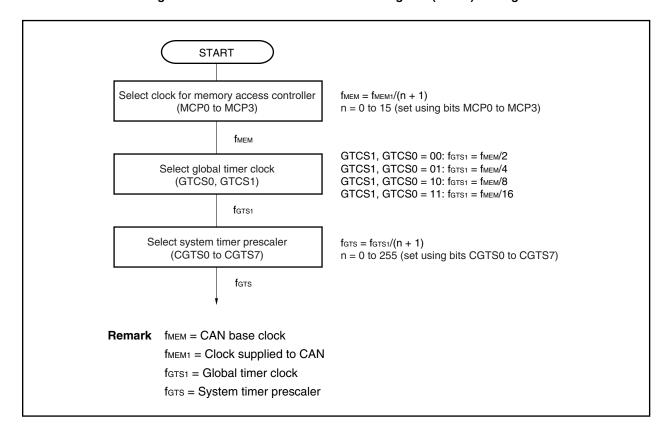


Figure 11-29. CAN Global Interrupt Enable Register (CGIE) Settings

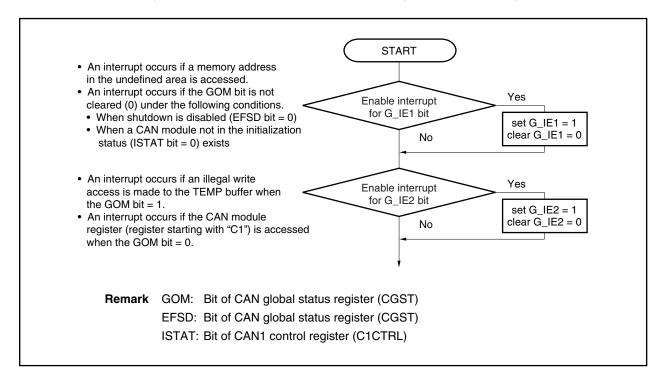


Figure 11-30. CAN Global Status Register (CGST) Settings

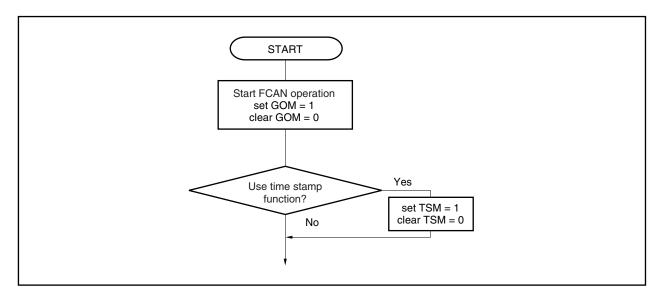
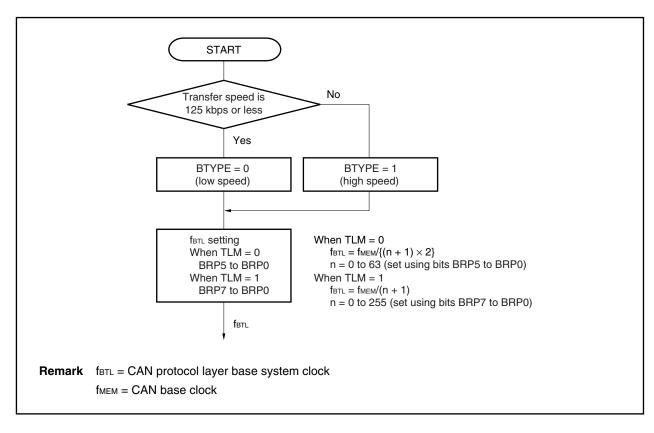



Figure 11-31. CAN1 Bit Rate Prescaler Register (C1BRP) Settings

START Set data bit time 1 bit time = $BTL \times (m + 1)$ m = 7 to 24 (set using bits DBT4 to DBT0) (DBT4 to DBT0) Set sampling point Sampling point = $BTL \times (m + 1)$ m = 2 to 16 (set using bits SPT4 to SPT0)^{Note} (SPT4 to SPT0) Set SJW $SJW = BTL \times (m + 1)$ (SJW1, SJW0) m = 0 to 3 (set using bits SJW1 and SJW0) Set once-only No (single shot) sampling Yes SAMP = 1 SAMP = 0Set sampling for Set sampling for one location only three locations Note The setting of m = 2, 3 is reserved for setting sample point extension, and is not compliant with the CAN protocol specifications. Remark BTL = 1/fbtl (fbtl: CAN protocol layer base system clock)

Figure 11-32. CAN1 Synchronization Control Register (C1SYNC) Settings

602

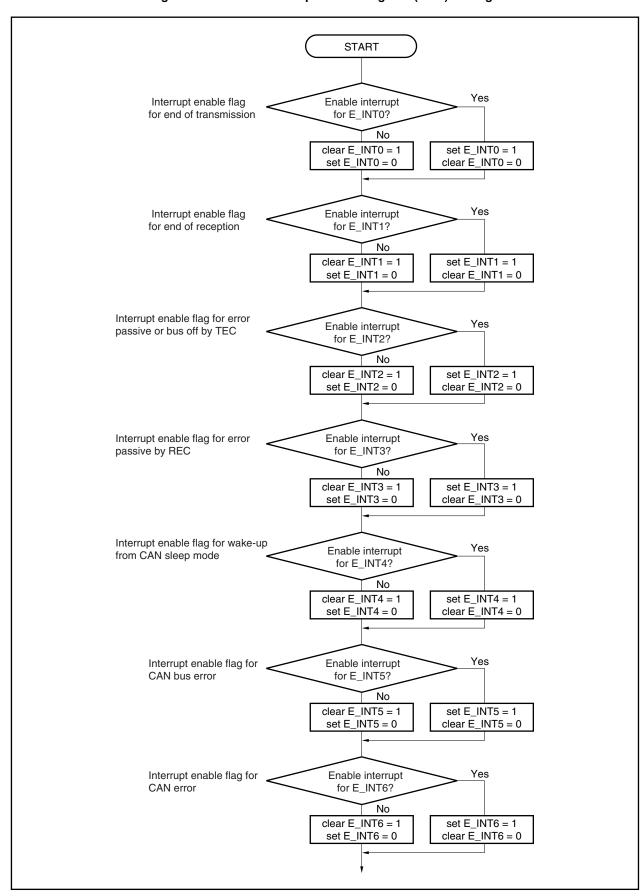


Figure 11-33. CAN1 Interrupt Enable Register (C1IE) Settings

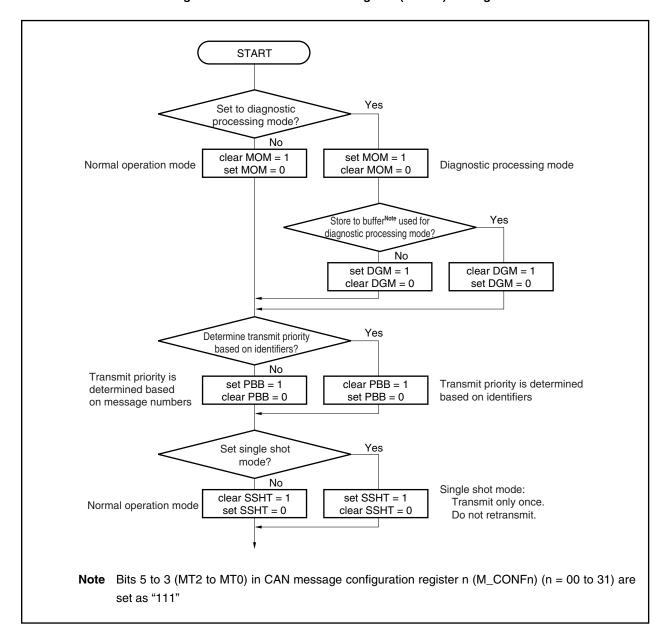


Figure 11-34. CAN1 Definition Register (C1DEF) Settings

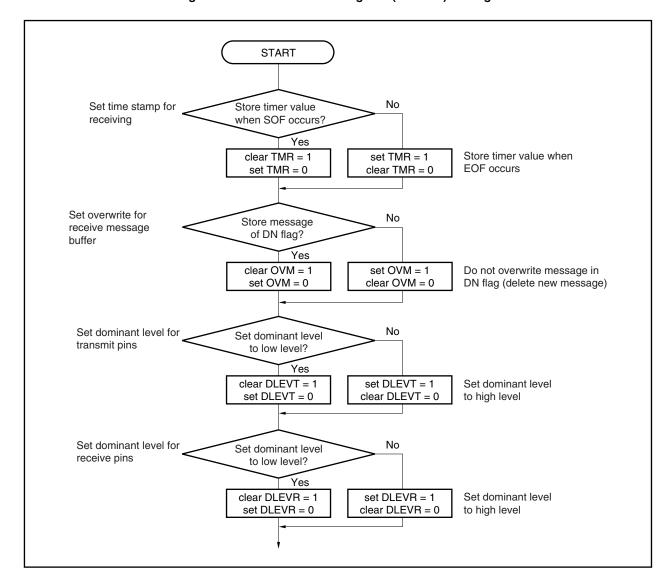


Figure 11-35. CAN1 Control Register (C1CTRL) Settings



Figure 11-36. CAN1 Address Mask a Registers L and H (C1MASKLa and C1MASKHa) (a = 0 to 3) Settings

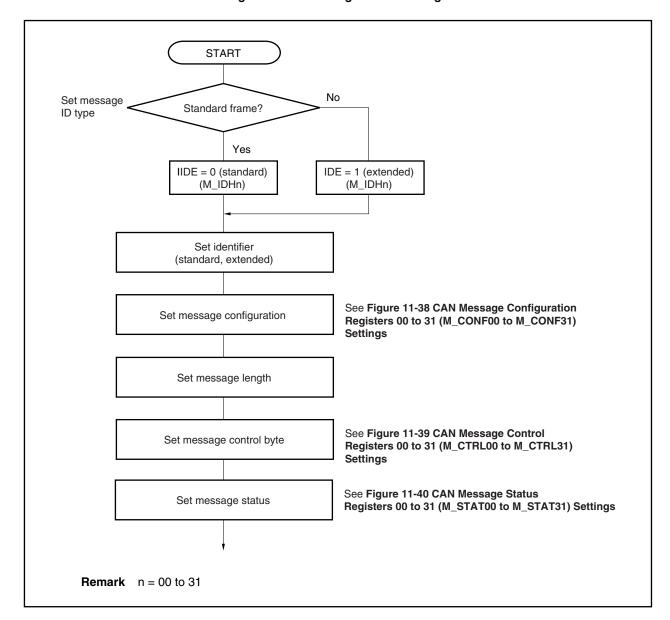


Figure 11-37. Message Buffer Settings

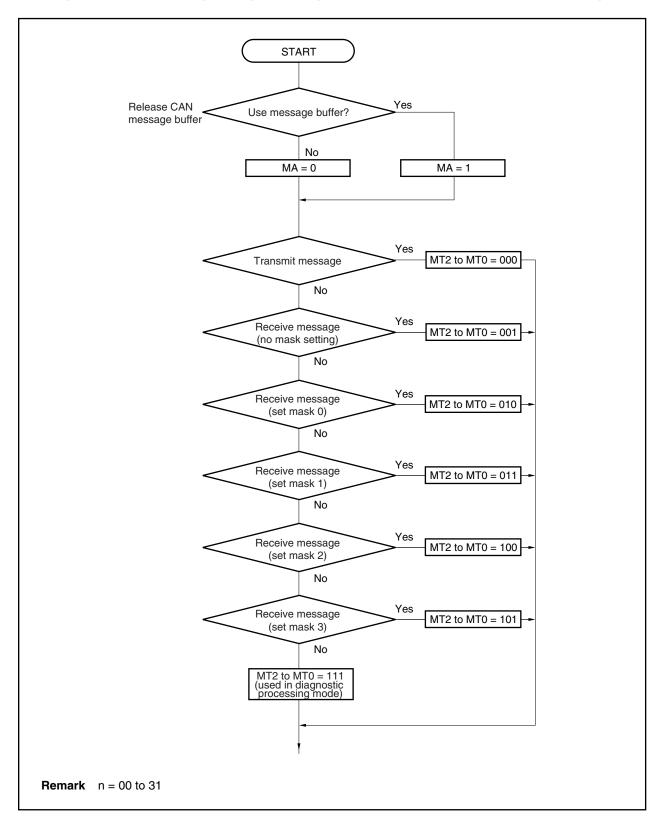


Figure 11-38. CAN Message Configuration Registers 00 to 31 (M_CONF00 to M_CONF31) Settings

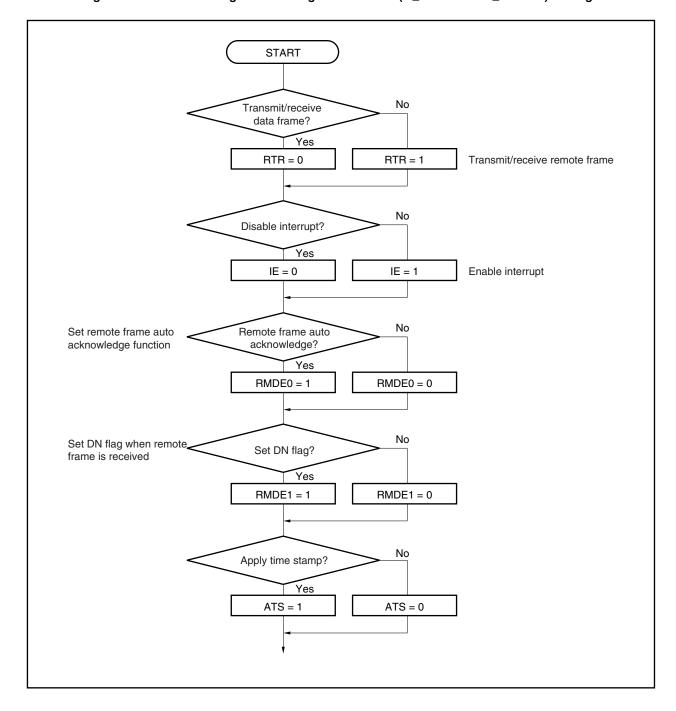
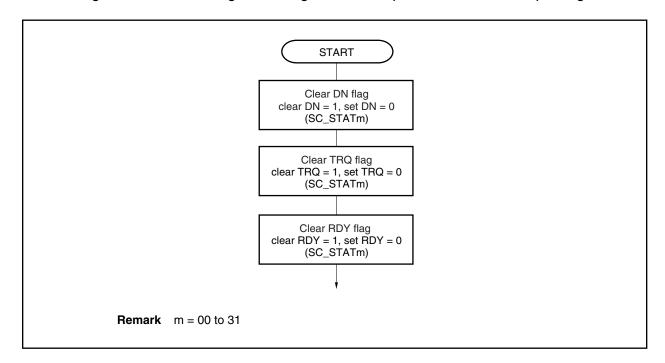
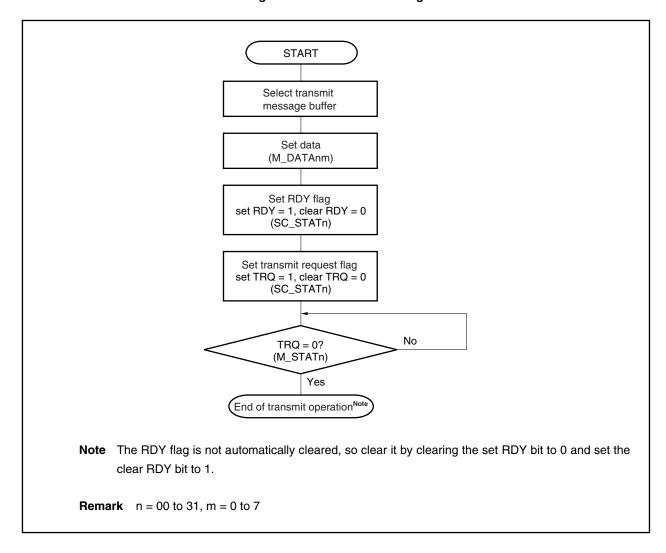
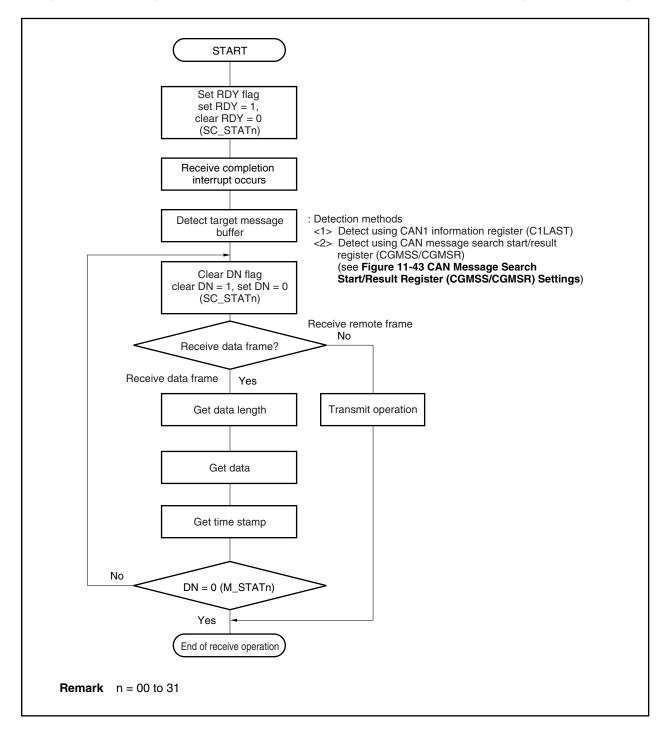



Figure 11-39. CAN Message Control Registers 00 to 31 (M_CTRL00 to M_CTRL31) Settings


Figure 11-40. CAN Message Status Registers 00 to 31 (M_STAT00 to M_STAT31) Settings

11.11.2 Transmit setting

Transmit messages are output from the target message buffer.


Figure 11-41. Transmit Setting

11.11.3 Receive setting

Receive messages are retrieved from the target message buffer.

Figure 11-42. Setting of Receive Completion Interrupt and Reception Operation Using Reception Polling

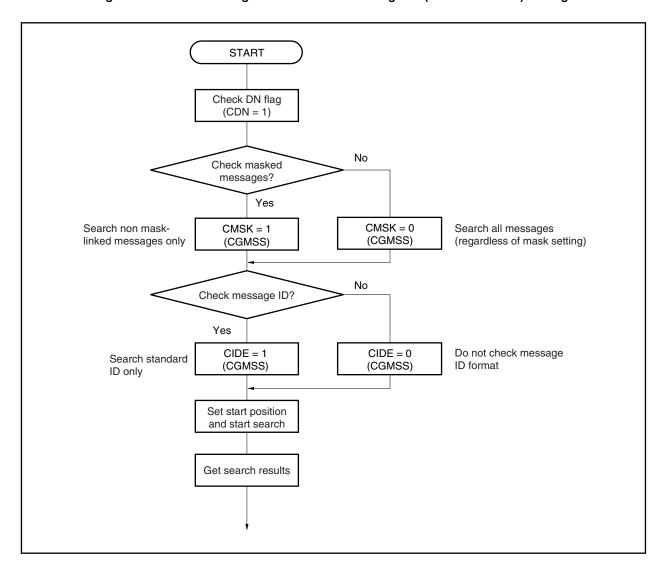


Figure 11-43. CAN Message Search Start/Result Register (CGMSS/CGMSR) Settings

11.11.4 CAN sleep mode

In CAN sleep mode, the FCAN controller can be set to standby mode. A wake-up occurs when there is a bus operation.

Figure 11-44. CAN Sleep Mode Settings

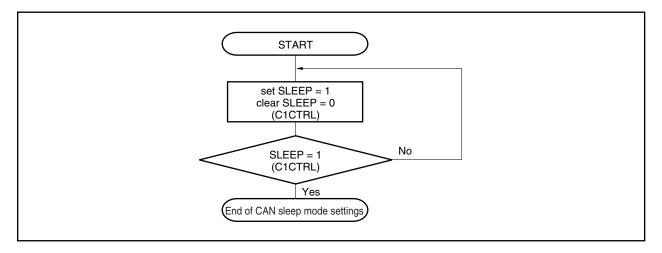


Figure 11-45. Clearing of CAN Sleep Mode by CAN Bus Active Status

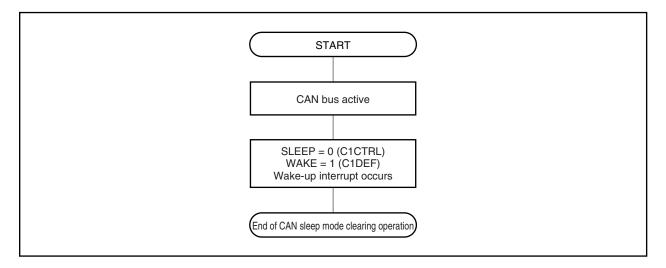
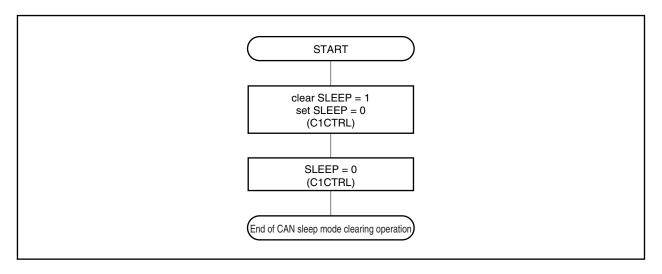



Figure 11-46. Clearing of CAN Sleep Mode by CPU

11.11.5 CAN stop mode

In CAN stop mode, the FCAN controller can be set to standby mode. No wake-up occurs when there is a bus operation (stop mode is controlled by CPU access only).

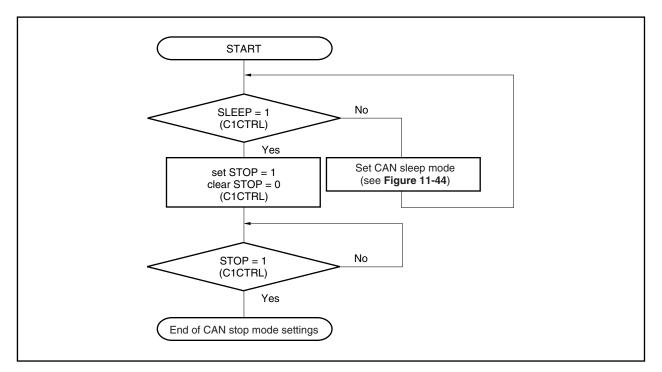
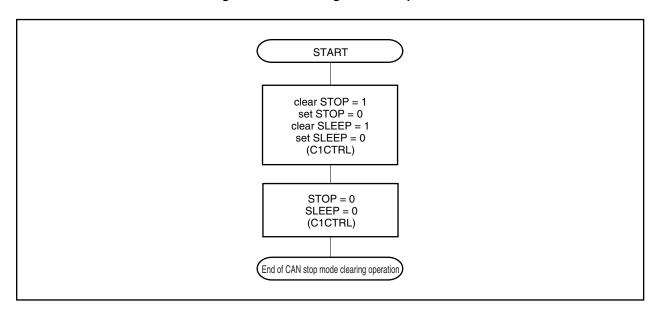



Figure 11-47. CAN Stop Mode Settings

Figure 11-48. Clearing of CAN Stop Mode

11.12 Rules for Correct Setting of Baud Rate

The CAN protocol limit values for ensuring correct operation of FCAN are described below. If these limit values are exceeded, a CAN protocol violation may occur, which can result in operation faults. Always make sure that settings are within the range of limit values.

- (a) $5 \times BTL \le SPT$ (sampling point) $\le 17 \times BTL$ [$4 \le SPT4$ to SPT0 set values ≤ 16]
- (b) $8 \times BTL \le DBT$ (data bit time) $\le 25 \times BTL$ [$7 \le DBT4$ to DBT0 set values ≤ 24]
- (c) SJW (synchronization jump width) ≤ DBT SPT
- (d) $2 \times (DBT SPT) \leq 8$

Remark BTL = 1/fbtl (fbtl: CAN protocol layer base system clock)

SPT4 to SPT0 (Bits 9 to 5 of CAN1 synchronization control register (C1SYNC))

DBT4 to DBT0 (Bits 4 to 0 of CAN1 synchronization control register (C1SYNC))

(1) Example of FCAN baud rate setting (when C1BRP register's TLM bit = 0)

The following is an example of how correct settings for the C1BRP register and C1SYNC register can be calculated.

Conditions from CAN bus:

<1> CAN base clock frequency (fMEM): 16 MHz

<2> CAN bus baud rate: 83 kbps</br>
<3> Sampling point: 80% or more<4> Synchronization jump width: 3 BTL

First, calculate the ratio between the CAN base clock frequency and the CAN bus baud rate frequency as shown below.

fmem/CAN bus baud rate = 16 MHz/83 kHz \neq 192.77 \neq 2⁶ \times 3

Set an even number between 2 and 128 to the C1BRP register's bits BRP5 to BRP0 as the setting for the prescaler (CAN protocol layer base system clock: fbtl), then set a value between 8 and 25 to the C1SYNC register's bits DBT4 to DBT0 as the data bit time.

Since it is assumed that the SJW (synchronization jump width) value is 3, the maximum setting for SPT (sampling point) is 3 less than the data bit time setting and is 17.

 $(SPT \le DBT - 3 \text{ and } SPT = 17)$

Given the above limit values, the following four settings are possible.

Prescaler	DBT	SPT (MAX.)	Calculated SPT
24	8	5	5/8 = 62.5%
16	12	9	9/12 = 75%
12	16	13	13/16 = 81%
8	24	17	17/24 = 71%

The settings that can actually be made for the V850E/IA1 are in the range from <4> to <7> above (the section enclosed in broken lines).

Among these options in the range from <4> to <7> above, option <6> is the ideal setting for the specifications when actually setting the register.

(i) Prescaler (CAN protocol layer base system clock: fbtl) setting

fbtl is calculated as below.

• $fBTL = fMEM/\{(a + 1) \times 2\}$: $[0 \le a \le 63]$

Value a is set using bits 5 to 0 (BRP5 to BRP0) of the C1BRP register.

$$f_{BTL} = 16 \text{ MHz/12}$$
= 16 MHz/{(5 + 1) \times 2} thus a = 5

Therefore, C1BRP register = 0005H

(ii) DBT (data bit time) setting

```
DBT is calculated as below.
```

• DBT = BTL \times (a + 1) : [7 \leq a \leq 24]

Value a is set using bits 4 to 0 (DBT4 to DBT0) of the C1SYNC register.

$$DBT = BTL \times 16$$
$$= BTL \times (a + 1)$$
thus $a = 15$

Therefore, C1SYNC register's bits DBT4 to DBT0 = 01111B

```
Note that 1/DBT = fbtl/16 \cong 1333 \text{ kHz/16} \cong 83 \text{ kbps (nearly equal to the CAN bus baud rate)}
```

(iii) SPT (sampling point) setting

```
Given SJW = 3: SJW \le DBT - SPT3 \le 16 - SPTSPT \le 13Therefore, SPT is set as 13 (max.)
```

SPT is calculated as below.

• SPT = BTL
$$\times$$
 (a + 1) : [4 \leq a \leq 16]

Value a is set using bits 9 to 5 (SPT4 to SPT0) of the C1SYNC register.

```
SPT = BTL \times 13= BTL \times (12 + 1)thus a = 12
```

Therefore, the SPT4 to SPT0 bits of the C1SYNC register = 01100B

(iv) SJW (synchronization jump width) setting

```
SJW is calculated as below. 

• SJW = BTL \times (a + 1) : [0 \leq a \leq 3] 

Value a is set using bits11 and 10 (SJW1, SJW0) of the C1SYNC register. 

C1SYNC register's bits SJW1 and SJW0 = BTL \times 3 

= BTL \times (2 + 1) 

thus a = 2 

Therefore, the SJW1 and SJW0 bits of the C1SYNC register = 10B.
```

The C1SYNC register settings based on these results are shown in Figure 11-49 below.

Figure 11-49. C1SYNC Register Settings

	15	14	13	12	11	10	9	8
C1SYNC		0	0	SAMP	SJW1	SJW0	SPT4	SPT3
Setting	0	0	0	0	1	0	0	1
	7	6	5	4	3	2	1	0
	SPT2	SPT1	SPT0	DBT4	DBT3	DBT2	DBT1	DBT0
Setting	1	0	0	0	1	1	1	1

11.13 Ensuring Data Consistency

When the CPU reads data from CAN message buffers, it is essential for the read data to be consistent.

Two methods are used to ensure data consistency: sequential data read and burst read mode.

11.13.1 Sequential data read

When the CPU performs sequential access of a CAN message buffer, data is read from the buffer in the order shown in Figure 11-50 below.

Only the FCAN internal operation can set the M_STATn register's DN bit (to 1) and only the CPU can clear it (to 0), so during the read operation the CPU must be able to check whether or not any new data has been stored in the message buffer.

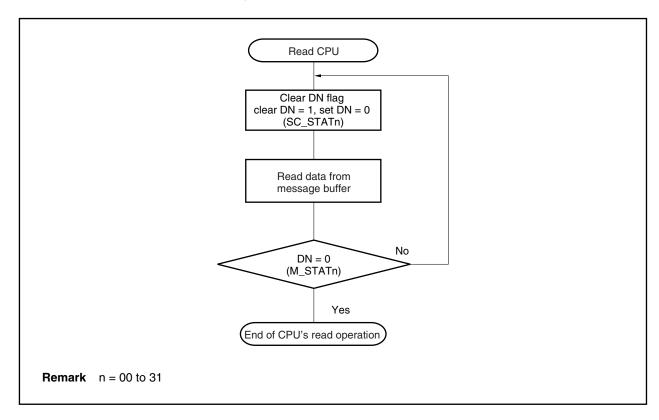


Figure 11-50. Sequential Data Read

11.13.2 Burst read mode

Burst read mode is implemented in the FCAN to enable faster access to complete messages and secure the synchrony of data.

Burst read mode starts up automatically each time the CPU reads the M_DLCn register and data is then copied from the message buffer area to a temporary read buffer.

Data continues to be read from the temporary buffer as long as the CPU keeps directly incrementing (+1) the read address (when data is read in the following order: M_DLCn register $\rightarrow M_CTRLn$ register $\rightarrow M_TIMEn$ register $\rightarrow M_DATAn0$ to M_DATAn0 registers $\rightarrow M_IDLn$, M_IDHn register).

If these linear address rules are not followed or if access is attempted to an address that is lower than the M_IDHn register's address (such as the M_CONFn register or M_STATn register), burst read mode becomes invalid.

- Cautions 1. 16-bit read access is required for the memory buffer area when using the burst read mode.

 If 8-bit access (byte read operation) is attempted, burst read mode does not start up even if the address is linearly incremented (+1) as described above.
 - 2. Be sure to read out the value of FCAN control registers other than the M_DLCn register before starting the burst read mode.

Remark n = 00 to 31

11.14 Interrupt Conditions

11.14.1 Interrupts that are generated for FCAN controller

When interrupts are enabled (condition <1>: M_CTRLn register's IE bit = 1, conditions other than <1>: C1IE register's interrupt enable flag = 1), interrupts will be generated under the following conditions (n = 00 to 31).

- <1> Message-related operation has succeeded
 - · When a message has been received in the receive message buffer
 - When a remote frame has been received in the transmit message buffer (when auto acknowledge mode has not been set, i.e., when the M_CTRLn register's RMDE0 bit = 0)
 - · When a message has been transmitted from the transmit message buffer
- <2> When a CAN bus error has been detected
 - · Bit error
 - · Bit stuff error
 - · Form error
 - · CRC error
 - · ACK error
- <3> When the CAN bus mode has been changed
 - · Error passive status elapsed while FCAN was transmitting
 - Bus off status was set while FCAN was transmitting
 - · Error passive status elapsed while FCAN was receiving
- <4> Internal error
 - Overrun error

11.14.2 Interrupts that are generated for global CAN interface

Interrupts are generated for the global CAN interface under the following conditions.

- · An undefined area is accessed
- If the GOM bit is cleared to 0 when one of the CAN modules is not in the initialization status (ISTAT bit of C1CTRL register = 0) with the EFSD bit of the CGST register = 0
- A CAN module register (register starting with "C1") is accessed when the GOM bit of the CGST register = 0
- A temporary buffer (in the area following the address of the C1SYNC register) is accessed when the GOM bit of the CGST register = 1

11.15 How to Shut Down FCAN Controller

The following procedure should be used to stop CAN bus operations in order to stop the clock supply to the CAN interface (to set low power mode).

- <1> FCAN controller's initialization mode setting
 - Set initialization mode (INIT bit = 1 in C1CTRL register (set INIT bit = 1, clear INIT bit = 0))
- <2> Stop time stamp counter
 - Set TSM bit = 0 in CGST register (set TSM bit = 0, clear TSM bit = 1)
- <3> Stop CAN interface
 - Set GOM bit = 0 in CGST register (set GOM bit = 0, clear GOM bit = 1)
 - Stop CAN clock

Caution If the above procedure is not performed correctly, the CAN interface (in active status) can cause operation faults.

11.16 Cautions on Use

- <1> Bit manipulation is prohibited for all FCAN controller registers.
- <2> Be sure to properly clear (0) all interrupt request flags^{Note} in the interrupt routine. If these flags are not cleared (0), subsequent interrupt requests may not be generated. Note also that if an interrupt is generated at the same time as a CPU clear operation, that interrupt request flag will not be cleared (0). It is therefore important to confirm that interrupt request flags have been properly cleared (0).

Note See 11.10 (10) CAN interrupt pending register (CCINTP), 11.10 (11) CAN global interrupt pending register (CGINTP), and 11.10 (12) CAN1 interrupt pending register (C1INTP).

- <3> When a change occurs on the CAN bus via a setting of the CSTP bit in the CSTOP register while the clock supply to the CPU or peripheral functions is stopped, the CPU can be woken up.
- <4> Do not read the same register of the FCAN controller twice or more in a row. If the same register is read twice or more in a row, and even if the value of the register is changed while it is being read the second or subsequent time, the new value is not reflected, and the same value as the one read the first time is always read.

Example Reading the C1CTRL and C1BA registers

(i) Correct usage: New value is reflected when C1CTRL is read the second time.

C1CTRL read

C1BA read

C1CTRL read

(ii) Incorrect usage: The second read value of C1CTRL is the same as the first read value of C1CTRL.

C1CTRL read

C1CTRL read

C1BA read

<5> When receiving a remote frame with an extended ID and storing it in the receive message buffer, the values of DLC3 to DLC0 in the message buffer are cleared to 0 regardless of the values of DLC3 to DLC0 on the CAN bus.

<6> If the OS (OSEK/COM) is not used, be sure to execute the following processing.

[When CAN communication is performed using an interrupt routine]

- Clear (0) the following interrupt pending bits at the start of the corresponding interrupt routine.
 - C1INTm bit of C1INTP register (m = 0 to 6)
 - GINT1 bit of CGINTP register (m = 1 to 3)
- Clear (0) the following enable bits during the corresponding interrupt routine.
 - E_INTm bit of C1IE register (m = 0 to 6)
 - G_IEn bit of CGIE register (n = 1, 2)

[When CAN communication is performed by polling of bits, not using interrupt routines]

- The following interrupt mask flags and interrupt enable bits are used when set (1) (do not clear (0) them).
 - CANMKn bit of CANICn register (n = 0 to 3)
 - E_INTm bit of C1IE register (m = 0 to 6)
 - G_IEn bit of CGIE register (n = 1, 2)
 - IE bit of M_CTRLn register (n = 00 to 31)
- Clear (0) the following interrupt pending bits in accordance with procedures (i) to (iii) below.
 - C1INTm bit of C1INTP register (m = 0 to 6)
 - GINTn bit of CGINTP register (n = 1 to 3)
 - (i) Poll the corresponding interrupt request flag.
 - (ii) If the value of the bit in procedure (i) is 1, clear (0) the corresponding interrupt pending bit.
 - (iii) After executing procedure (ii), clear (0) the interrupt request flag.

Example CAN reception

- (i) Poll until the CANIF0 bit of the CANIC0 register becomes 1.
- (ii) Clear (0) the C1INT1 bit of the C1INTP register.
- (iii) Clear (0) the CANIF0 bit of the CANIC0 register.
- <7> When emulating the FCAN controller using the in-circuit emulator (IE-V850E-MC or IE-703116-MC-EM1), perform the following settings in the Configuration screen that appears when the debugger is started.
 - Set the start address of the programmable peripheral I/O area that is set using the BPC register to the Programmable I/O Area field.
 - Maps the programmable peripheral I/O area as "Target" or "Emulation RAM" in the Memory Mapping field.

CHAPTER 12 NBD FUNCTION (µPD70F3116)

The V850E/IA1 provides the Non Break Debug (NBD) function for on-chip data tuning.

12.1 Overview

The NBD function encompasses the following functions.

(1) RAM monitoring function

This function makes an arbitrary RAM area readable or writable using an NBD tool via DMA.

[Corresponding RAM area]

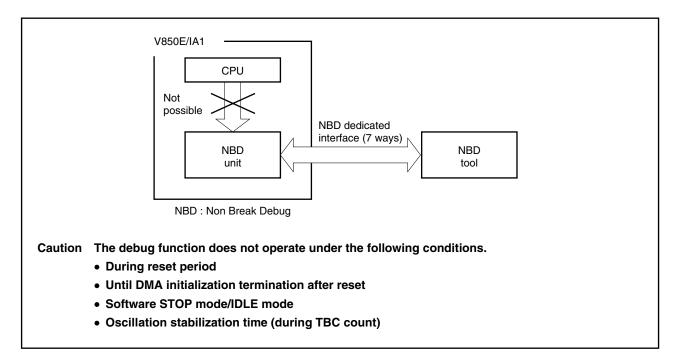
XFFFC000H to XFFFE7FFH

If executed using an address outside the above, the function instantly returns "ready". Output is undefined on a read, and the write operation is not performed on a write.

(2) Event detection function

By having a comparator (24-bit address setting) for match detection on-chip, this function outputs a match trigger (falling edge) to the NBD tool when the address match detection shown below is performed. The lower 2 bits are masked.

- Execution PC address match detection
- Internal RAM area address write timing match detection


[Detection range]

ROM: X0000000H to X003FFFH
RAM: XFFFC000H to XFFFE7FFH

Table 12-1. NBD Block Dedicated Pin Summary

Pin Name	I/O	Function Summary	
CLK_DBG	Input	Serial clock input for debugging interface	
SYNC	Input	Synchronization signal for debugging	
AD0_DBG to AD3_DBG	I/O	Command data and RAM data I/O (4 bits)	
TRIG_DBG	Output	Outputs trigger (falling edge) synchronized to timing of write to arbitrary specified RAM address or to timing of execution of instruction at specified address.	

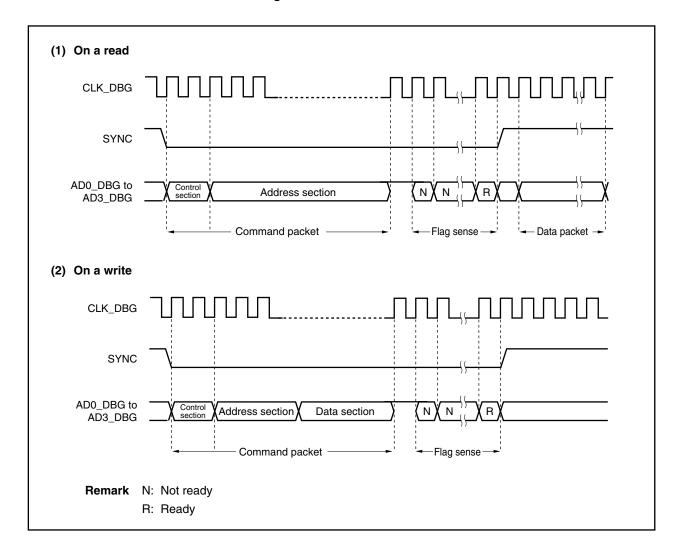
Figure 12-1. Image of NBD Space

12.2 NBD Function Register Map

Table 12-2 shows a map of the control registers of the NBD function. The NBD space does not exist in the internal space of the CPU but exists independently as NBD space. Because of this, the NBD space is space that cannot be read or written from the CPU but can only be read or written via the NBD dedicated interface (refer to **Figure 12-1**).

Table 12-2. NBD Space Map

Address	Register Name	Symbol	R/W	After Reset
000H	Chip ID register 0	TID0	R	4EH
001H	Chip ID register 1	TID1		01H
002H	Chip ID register 2	TID2		01H
800H	User event address setting register	EVTU_A0 to EVTU_A7	R/W	Undefined
801H		EVTU_A8 to EVTU_A15		Undefined
802H		EVTU_A16 to EVTU_A23		Undefined
803H		EVTU_A24 to EVTU_A27		Undefined
820H	User event condition setting register	EVTU_C0		Undefined


Caution Since the V850E/IA1 NBD uses the DMA controller that is incorporated in the V850E1 CPU core, settings for the DMA controller are initialized after reset.

12.3 NBD Function Protocol

The basic protocol of the NBD function is shown below.

(1) Basic protocol

Figure 12-2. Basic Protocol

(2) Command packet

NBD Bus Line	AD3_DBG	AD2_DBG	AD1_DBG	AD0_DBG
1st	aux3	aux2	aux1	aux0
2nd	SIZ1	SIZ0	R/W	I/T
3rd	АЗ	A2	A1	A0
4th	A7	A6	A 5	A4
5th	A11	A10	A9	A8
6th	A15	A14	A13	A12
7th	A19	A18	A17	A16
8th	A23	A22	A21	A20
9th	D3	D2	D1	D0
10th	D7	D6	D5	D4
11th	D11	D10	D9	D8
12th	D15	D14	D13	D12
13th	D19	D18	D17	D16
14th	D23	D22	D21	D20
15th	D27	D26	D25	D24
16th	D31	D30	D29	D28

Caution Values are for command packet maximum setup.

Access to NBD space Address: 12 bits (A0 to A11) [Fixed]

Data: 8 bits (D0 to D7)

• Access to target space Address: 24 bits (A0 to A23) [Fixed]

Data: 32 bits (D0 to D31)

(a) aux0 to aux3: Expansion bits

aux0	aux1	aux2	aux3	Remarks
0	0	0	0	Fixed
Other than 0000				For future expansion

(b) I/T: Access address space mode specification

I/T	Remarks
0	Specifies access to NBD space
1	Specifies access to target space

(c) R/W: Access mode specification from NBD tool

R/W	Remarks
0	Read mode from NBD tool
1	Write mode from NBD tool

(d) SIZ0, SIZ1: Access data size specification

SIZ1	SIZ0	Target Space Access	NBD Space Access
0	0	8-bit length ^{Note 1}	8-bit length
0	1	16-bit length ^{Note 1}	Setting prohibitedNote 2
1	0	32-bit length	
1	1	Setting prohibited ^{Note 2}	

Notes 1. Can be set only on a read.

If set on a write, RAM data will be lost.

2. A write is invalid and read data is undefined in cases where "Setting prohibited" is specified.

(3) Flag sense packet

NBD Bus Line	AD3_DBG	AD2_DBG	AD1_DBG	AD0_DBG
1st	0	0	0	RFLG

RFLG 0: Not Ready

1: Ready

(4) Data packet

The data packet data size is the data size specified by SIZ1 and SIZ0 in a command packet (8, 16, or 32 bits).

NBD Bus Line	AD3_DBG	AD2_DBG	AD1_DBG	AD0_DBG
1st	D3	D2	D1	D0
2nd	D7	D6	D5	D4
3rd	D11	D10	D9	D8
4th	D15	D14	D13	D12
5th	D19	D18	D17	D16
6th	D23	D22	D21	D20
7th	D27	D26	D25	D24
8th	D31	D30	D29	D28

12.4 NBD Function

12.4.1 RAM monitoring, accessing NBD space

The NBD function performs reading and writing of internal RAM data for addresses in internal RAM via the DMA (direct memory access) controller. It also performs reading or writing to the NBD space.

(1) RAM monitoring

The following are the commands for reading and writing to internal RAM areas from the NBD tool.

(a) Write command

The target address (real address of target: lower 24 bits) at which a write to internal RAM is to be performed and the data sent from the NBD tool are received as a command packet. After receiving the command packet shown below from the NBD tool, a Ready command is output following write completion.

Command packets can be received once more from the NBD tool (after Ready command SYNC inactive confirmation).

ADn_DBG	AD3_DBG	AD2_DBG	AD1_DBG	AD0_DBG		
1st	0	0	0	0		
2nd	SIZ1	SIZ0	1	1		
3rd to 8th	Target space write address specification (24 bits)					
9th to 16th	Write data (data specified by SIZ0 and SIZ1)					

Table 12-3. Command Packet (Write Access)

(b) Read command

The target address (real address of target: lower 24 bits), at which read of internal RAM is to be performed, which is sent from the NBD tool, is received as a command packet. After receiving the command packet from the NBD tool, a Ready command is output, SYNC is made inactive, and the data at the address specified by the command packet is transmitted to the NBD tool. The address (A27 to A24) during read is "1111".

Table 12-4. Command Packet (Read Access)

ADn_DBG	AD3_DBG	AD2_DBG	AD1_DBG	AD0_DBG				
1st	0	0	0	0				
2nd	SIZ1	SIZ0	0	1				
3rd to 8th	Target space read address specification (24 bits)							

Caution In read mode, the output data section from the NBD tool is deleted.

Table 12-5. Data Packet (Read Access)

ADn_DBG	AD3_DBG	AD2_DBG	AD1_DBG	AD0_DBG			
1st to 8th	Target space read data						

(2) Access to NBD space

The following are the commands for reading or writing to the NBD space from the NBD tool. For the NBD space, the access address length is fixed to 12 bits and the access data length is fixed to 8 bits.

(a) Write command

The address (NBD space address: 12 bits) at which write to the NBD space is to be performed and the data sent from the NBD tool are received as a command packet. After receiving the command packet shown in Table 12-6 from the NBD tool, a Ready command is output following write completion.

Command packets can be received once more from the NBD tool (after Ready command SYNC inactive confirmation).

ADn_DBG	AD3_DBG	AD2_DBG	AD1_DBG	AD0_DBG
1st	0	0	0	0
2nd	0	0	1	0
3rd	А3	A2	A1	A0
4th	A7	A6	A5	A4
5th	A11	A10	A9	A8
6th	D3	D2	D1	D0

Table 12-6. Command Packet (Write Access to NBD Space)

Caution The length of an NBD space write address is fixed to 12 bits.

The length of the write data is fixed to 8 bits.

D6

D7

(b) Read command

7th

The target address (real address of target: 12 bits), at which read of internal RAM is to be performed, which is sent from the NBD tool, is received as a command packet. After receiving the command packet from the NBD tool, a Ready command is output, SYNC is made inactive, and the data at the address specified by the command packet is transmitted to the NBD tool.

D5

D4

ADn_DBG AD3_DBG AD2_DBG AD1_DBG AD0_DBG

Table 12-7. Command Packet (Read Access to NBD Space)

1st 0 0 0 2nd 0 0 0 0 3rd АЗ A2 Α1 A0 4th Α7 Α5 A6 **A4** 5th A11 A10 Α9 **A8**

Caution The length of an NBD space read address is fixed to 12 bits.

In read mode, the output data section from the NBD tool is deleted.

Table 12-8. Data Packet

ADn_DBG	AD3_DBG	AD2_DBG	AD1_DBG	AD0_DBG
1st	D3	D2	D1	D0
2nd	D7	D6	D5	D4

Caution The length of the read data is fixed to 8 bits.

12.4.2 Event detection function

By having a comparator (24-bit address setting) for match detection on-chip, this function detects match of the address setting registers shown below and outputs a match trigger (falling edge) to the NBD tool. Event trigger output is low active and during the active period it is output synchronous with the system clock of the target CPU. The active width is one cycle of the internal system clock of the CPU.

(1) Event detection conditions

Execution PC address match
 Match detection range for timing of a write to a set address in the internal RAM area
 XFFFC000H to XFFFE7FFH

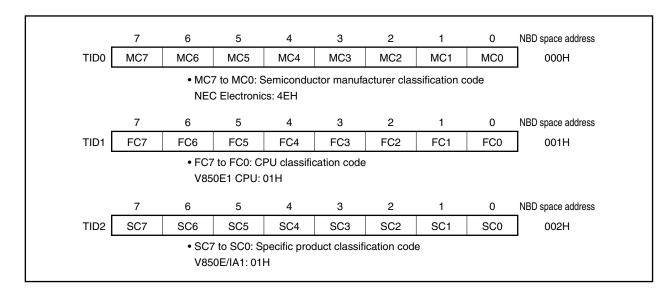
(2) Event detection function control register


(a) NBD event condition setting register (EVTU_C)

	7		6	5	4	3	2	1	0	NBD space address	Initial value	
EVTU_C7 to EVTU_C0	0		0	0	0	0	0	0	PCU/DTU	820H	Undefined	
		1										
Bit pos	ition	Bit	name		Function							
		DO11/	DTU			50						

•						
0	PCU/DTU	Selects an execution PC event or RAM access event. 0: Internal RAM access event is invalid Note 1: Execution PC event is invalid				
		Note	If the EVTU_C register is set to a location other than the internal RAM area, an event also is output when writing to other than the RAM.			

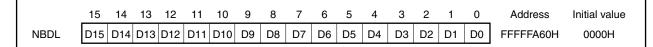
(b) NBD event address register (EVTU_A)


The EVTU_A register sets the value of the address that is the subject of the event.

12.4.3 Chip ID registers (TID0 to TID2)

The chip ID registers are stored in NBD space 000H to 002H. By reading the ID codes in the chip ID registers from the NBD tool in NBD mode, the semiconductor manufacturer, CPU code, and specific product type can be identified. The chip ID registers have fixed values for each product.

The chip ID registers (TID0 to TID2) are read-only registers.


12.5 Control Registers

(1) RAM access data buffer register L (NBDL)

The NBDL register operates as the buffer between the DMA controller and the NBD tool when reading or writing RAM from the NBD tool via the DMA controller.

This register can be read/written in 16-bit units.

When the higher 8 bits of the NBDL register are used as the NBDLU register, and the lower 8 bits are used as the NBDLL register, they can be read/written in 8-bit units.

- Cautions 1. Although the NBDL, NBDLU, and NBDLL registers can be used for reading or writing, physically separate registers are used when reading and when writing, so written values cannot be read.
 - 2. Use both the NBDL and NBDH registers (refer to 12.5 (2)) for 32-bit access of RAM.

Remark Register values written from the NBD tool can be read by DMA (CPU) and values written by DMA (CPU) can be read by the NBD tool.

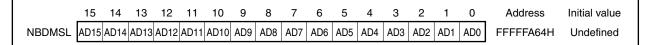
(2) RAM access data buffer register H (NBDH)

The NBDH register operates as the buffer between the DMA controller and the NBD tool when reading or writing RAM from the NBD tool via the DMA controller.

This register can be read/written in 16-bit units.

When the higher 8 bits of the NBDH register are used as the NBDHU register, and the lower 8 bits are used as the NBDHL register, they can be read/written in 8-bit units.

- Cautions 1. Although the NBDH, NBDHU, and NBDHL registers can be used for reading or writing, physically separate registers are used when reading and when writing, so written values cannot be read.
 - 2. Use both the NBDL and NBDH registers (refer to 12.5 (1)) for 32-bit access of RAM.


Remark Register values written from the NBD tool can be read by DMA (CPU) and values written by DMA (CPU) can be read by the NBD tool.

(3) DMA source address setting register SL (NBDMSL)

The NBDMSL register specifies a DMA source address.

This register can be written from the NBD tool and read by the DMA controller (CPU).

This register is read-only, in 16-bit units.

- **Remarks 1.** When reading RAM using the NBD tool, an address signal sent from the NBD tool can be read via the NBDMSL register using the DMA controller (CPU).
 - 2. When writing to RAM using the NBD tool, the NBDL register value can be read via the NBDMSL register using the DMA controller (CPU).

(4) DMA source address setting register SH (NBDMSH)

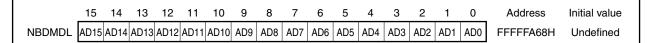
The NBDMSH register specifies a DMA source address.

This register can be written from the NBD tool and read by the DMA controller (CPU).

This register is read-only, in 16-bit units.

	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	Address	Initial value
NBDMSH	IR	0	0	0	AD27	AD26	AD25	AD24	AD23	AD22	AD21	AD20	AD19	AD18	AD17	AD16	FFFFFA66H	Undefined

Bit position	Bit name	Function
15	IR	Shows read or write status when NBD accesses internal RAM of the V850E/IA1. 0: NBD is write accessing RAM 1: NBD is read accessing RAM


- **Remarks 1.** When reading RAM using the NBD tool, an address signal sent from the NBD tool can be read via the NBDMSH register using the DMA controller (CPU).
 - 2. When writing to RAM using the NBD tool, the NBDL register value can be read via the NBDMSH register using the DMA controller (CPU).

(5) DMA destination address setting register DL (NBDMDL)

The NBDMDL register specifies a DMA destination address.

This register can be written from the NBD tool and read by the DMA controller (CPU).

This register is read-only, in 16-bit units.

- **Remarks 1.** When writing to RAM using the NBD tool, an address signal sent from the NBD tool can be read via the NBDMDL register using the DMA controller (CPU).
 - 2. When reading RAM using the NBD tool, the NBDL register value can be read via the NBDMDL register using the DMA controller (CPU).

(6) DMA destination address setting register DH (NBDMDH)

The NBDMDH register specifies a DMA destination address.

This register can be written from the NBD tool and read by the DMA controller (CPU).

This register is read-only, in 16-bit units.

Bit position	Bit name	Function
15	IR	Shows read or write status when NBD accesses internal RAM of the V850E/IA1. 0: NBD is read accessing RAM 1: NBD is write accessing RAM

- **Remarks 1.** When writing to RAM using the NBD tool, an address signal sent from the NBD tool can be read via the NBDMDH register using the DMA controller (CPU).
 - 2. When reading RAM using the NBD tool, the NBDL register value can be read via the NBDMDH register using the DMA controller (CPU).

12.6 Restrictions on NBD

12.6.1 General restrictions

- (1) CLK_DBG operates at less than half the speed of the internal system clock (fxx) and is 12.5 MHz maximum.
- (2) If a command packet is sent during a reset period, "ready" is not returned afterwards. Reset again.

12.6.2 Restrictions related to read or write of RAM by NBD

- Initialize the DMA controller in user software.
- (2) On a write, RAM can only be accessed in 32-bit units.
 On a read-only, RAM can be accessed in 32-, 16-, or 8-bit units.
 On a read/write, RAM can be accessed in 32-bit units.
- (3) NBD does not function from the start of reset until completion of DMA controller initialization after the reset.

 If a read or write of RAM is performed in this interval, NBD does not return "ready" afterwards. Reset again.

12.6.3 Restrictions related to NBD event trigger function

- (1) If a ROM execution address event trigger is set to the address after a branch instruction, an event is generated due to pipeline processing even if it is not executed. The trigger must be set to an address at least 32 bits × 3 words after a branch instruction.
- (2) Since an event trigger is cleared by a reset, it must be set again after a reset.
- (3) Unless there is a ROM fetch, a trigger occurs even on a read.
- (4) ROM address match functions only for internal ROM. The lower 2 bits are masked. RAM address match functions only for internal RAM. The lower 2 bits are masked.

Caution ROM and RAM address match cannot be used in the in-circuit emulator.

12.6.4 How to detect termination of DMA initialization via NBD tool

Set an event trigger using a RAM write and send a write command from NBD to the relevant address. If an event trigger occurs at this time, DMA initialization has terminated.

12.7 Initialization Required for DMA (2 Channels)

- (1) The DMA initialization in a setting change request must be performed by user software.
- (2) Assign DMA two channels in NBD.At this time, assign an NBDAD interrupt to a higher priority channel than an NBDREW interrupt.
- (3) Initialize registers of the channel to which the NBDAD interrupt is assigned.

 Set contents so that the contents of NBDMSL/NDBMSH and NBDMDL/NBDMDH (read-only SFR) transfer to DMA source address registers nL and nH (DSAnL, DSAnH)^{Note} and DMA destination address registers nL and nH (DDAnL, DDAnH)^{Note} of the DMA channel assigned to the NBDREW interrupt in 16 bits × 4 blocks (n = 0 to 3).

Note DMA registers are 16-bit access only.

(4) Set DMA addressing control register n (DADCn) of the DMA channel assigned to the NBDREW interrupt for 32-bit transfer (bit transfer settings of 8 bits × 4, 16 bits × 2, and 32 bits × 1^{Note}) (n = 0 to 3). In addition, set the counter direction of the DMA transfer source address and DMA transfer destination address to increment mode (SADm bit of DADCn register = 0, DADm bit = 0 (m = 0,1)) (since DMA judges data transfer terminated on reading or writing the uppermost 8 bits).

Note Bits that can be manipulated on 8 bits \times 4, 16 bits \times 2, and 32 bits \times 1 bit transfer are shown below. 8 bits \times 4: 32-, 16-, or 8-bit read is possible.

16 bits \times 2: 16- or 8-bit read is possible.

32 bits \times 1: 32-bit read is possible. This is the highest read speed.

Settings other than the above are prohibited. Moreover, make the setting 32 bits \times 1 when reading or writing RAM.

Caution In DMA initialization, set the DMA request selection last.

Examples of DMA initialization on 32-bit transfer, 16-bit transfer, and 8-bit transfer are shown below.

(a) Example of 32-bit transfer DMA initialization

```
-- DMA INITIAL --
 mov
          0x0000FA64 ,
                           r24 -- DMACHO Source
                                                     Address --
         r24 , DSAL0[r0]
 st.h
          0x00000FFF ,
                            r24 -- DMACHO Source Address --
 mov
         r24 , DSAH0[r0]
 st.h
          0x0000F088 ,
                            r24 -- DMACHO Destination Address --
 mov
 st.h
          r24 , DDAL0[r0]
          0x00000FFF ,
 mov
                            r24 -- DMACHO Destination Address --
 st.h
          r24 , DDAH0[r0]
          0x0000400c ,
                           r24 -- DMACHO Block MODE 16Bit MODE --
 mov
          r24 , DADC0[r0]
 st.h
          0x0000800c ,
                            r24 -- DMACH1 Block MODE 32Bit MODE --
 mov
 st.h
          r24 , DADC1[r0]
 mov
          0x00000003 ,
                            r24 -- DMACHO Block MODE 16Bit*4 --
          r24 , DBC0[r0]
 st.h
          0x00000000 ,
                            r24 -- DMACH1 Block MODE 32Bit*1 --
 mov
 st.h
          r24 , DBC1[r0]
 mov
          0x00000009 ,
                           r24 -- DMACH0&1 DMA ready --
 st.b
          r24 , DCHC0[r0]
 st.b
         r24 , DCHC1[r0]
          0x00000035 ,
                           r24 -- DMACHO Trigger --
 mov
 st.b
          r24 , DTFR0[r0]
          0x00000036 ,
                            r24 -- DMACH1 Trigger --
 mov
 st.b
          r24 , DTFR1[r0]
```

(b) Example of 16-bit transfer DMA initialization

```
-- DMA INITIAL --
 mov
          0x0000FA64 ,
                          r24 -- DMACHO Source
                                                   Address --
          r24 , DSAL0[r0]
 st.h
 mov
          0x00000FFF ,
                           r24 -- DMACHO Source
                                                    Address --
        r24 , DSAH0[r0]
 st.h
          0x0000F088 ,
                          r24 -- DMACHO Destination Address --
 mov
         r24 , DDAL0[r0]
 st.h
                          r24 -- DMACHO Destination Address --
          0x00000FFF ,
 mov
         r24 , DDAH0[r0]
 st.h
 mov
          0x0000400c ,
                           r24 -- DMACHO Block MODE 16Bit MODE --
          r24 , DADC0[r0]
 st.h
         0x0000400c ,
                          r24 -- DMACH1 Block MODE 16Bit MODE -
 mov
 st.h
          r24 , DADC1[r0]
          0x00000003 ,
                           r24 -- DMACHO Block MODE 16Bit*4 --
 mov
 st.h
          r24 , DBC0[r0]
          0x00000001 ,
 mov
                           r24 -- DMACH1 Block MODE 16Bit*2 --
          r24 , DBC1[r0]
 st.h
          0x00000009 ,
                           r24 -- DMACH0&1 DMA ready --
 mov
         r24 , DCHC0[r0]
 st.b
          r24 , DCHC1[r0]
 st.b
 mov
         0x00000035 ,
                          r24 -- DMACHO Trigger --
 st.b
         r24 , DTFR0[r0]
          0x00000036 , r24 -- DMACH1 Trigger --
 mov
 st.b
         r24 , DTFR1[r0]
```

(c) Example of 8-bit transfer DMA initialization

```
-- DMA INITIAL --
 mov
          0x0000FA64 ,
                           r24 -- DMACHO Source Address --
          r24 , DSAL0[r0]
 st.h
 mov
          0x00000FFF ,
                            r24 -- DMACHO Source
                                                      Address --
          r24 , DSAH0[r0]
 st.h
          0x0000F088 ,
                           r24 -- DMACHO Destination Address --
 mov
          r24 , DDAL0[r0]
 st.h
          0x00000FFF ,
 mov
                            r24 -- DMACHO Destination Address --
 st.h
          r24 , DDAH0[r0]
 mov
          0x0000400c ,
                            r24 -- DMACHO Block MODE 16Bit MODE --
          r24 , DADC0[r0]
 st.h
          0x000000c ,
                            r24 -- DMACH1 Block MODE 8Bit MODE -
 mov
 st.h
          r24 , DADC1[r0]
          0x00000003 ,
                            r24 -- DMACHO Block MODE 16Bit*4 --
 mov
 st.h
          r24 , DBC0[r0]
          0x00000003 ,
 mov
                            r24 -- DMACH1 Block MODE 8Bit*4 --
          r24 , DBC1[r0]
 st.h
          0x00000009 ,
                            r24 -- DMACH0&1 DMA ready --
 mov
          r24 , DCHC0[r0]
 st.b
          r24 , DCHC1[r0]
 st.b
 mov
          0x00000035 ,
                            r24 -- DMACHO Trigger --
 st.b
          r24 , DTFR0[r0]
          0x00000036 ,
                           r24 -- DMACH1 Trigger --
 mov
 st.b
          r24 , DTFR1[r0]
```

CHAPTER 13 A/D CONVERTER

13.1 Features

- Two 10-bit resolution on-chip A/D converters (A/D converter 0 and 1)
 Simultaneous sampling by two circuits is possible.
- · Analog input: 8 channels per circuit
- On-chip A/D conversion result registers 0n, 1n (ADCR0n, ADCR1n)

10 bits \times 8 registers \times 2

• A/D conversion trigger mode

A/D trigger mode

A/D trigger polling mode

Timer trigger mode

External trigger mode

- · Successive approximation technique
- · Voltage detection mode

Remark n = 0 to 7

13.2 Configuration

A/D converters 0 and 1, which employ a successive approximation technique, perform A/D conversion operation using A/D scan mode registers 00, 01, 10, and 11 (ADSCM00, ADSCM01, ADSCM10, and ADSCM11) and registers ADCR0n and ADCR1n (n = 0 to 7).

(1) Input circuit

The input circuit selects an analog input (ANI0n or ANI1n) according to the mode set in the ADSCM00 or ADSCM10 register and sends it to the sample and hold circuit (n = 0 to 7).

(2) Sample and hold circuit

The sample and hold circuit individually samples analog inputs sent sequentially from the input circuit and sends them to the comparator. It holds sampled analog inputs during A/D conversion.

(3) Voltage comparator

The voltage comparator compares the analog input voltage that was input with the output voltage of the D/A converter.

(4) D/A converter

The D/A converter is used to generate a voltage that matches an analog input.

The output voltage of the D/A converter is controlled by the successive approximation register (SAR).

(5) Successive approximation register (SAR)

The SAR is a 10-bit register that controls the output value of the D/A converter for comparing with an analog input voltage value. When an A/D conversion terminates, the current contents of the SAR (conversion result) are stored in an A/D conversion result register (ADCR0n, ADCR1n) (n = 0 to 7). When all specified A/D conversions terminate, there also is an A/D conversion termination interrupt (INTAD0, INTAD1).

(6) A/D conversion result registers 0n, 1n (ADCR0n, ADCR1n)

ADCR0n and ADCR1n are 10-bit registers that hold A/D conversion results (n = 0 to 7). Whenever an A/D conversion terminates, the conversion result from the successive approximation register (SAR) is loaded. RESET input sets these registers to 0000H.

(7) Controller

The controller selects an analog input, generates sample and hold circuit operation timing, controls conversion triggers, and specifies the conversion operation time according to the mode set in the ADSCMn0 or ADSCMn1 register (n = 0, 1).

(8) ANI0n, ANI1n pins (n = 0 to 7)

The ANI0n and ANI1n pins are the 8-channel (total of 16 channels for two circuits) analog input pins to A/D converters 0 and 1. They input analog signals to be A/D converted.

Caution Use input voltages to ANI0n and ANI1n that are within the range of the ratings. In particular, if a voltage (including noise) higher than AVDD or lower than AVss (even one within the range of absolute maximum ratings) is input, the conversion value of that channel is invalid, and the conversion values of other channels also may be affected.

(9) AVREFO, AVREF1 pins

The AVREF0 and AVREF1 pins are used to input reference voltages to A/D converters 0 and 1. A signal input to the ANI0n or ANI1n pin is converted to a digital signal based on the voltage applied between AVREF0 and AVss or between AVREF1 and AVss (n = 0 to 7).

Caution If not using the AVREFO or AVREF1 pin, connect it to VSS5.

(10) AVss pin

The AVss pin is the ground voltage pin of A/D converters 0 and 1. Even if not using A/D converters 0 and 1, always make this pin have the same potential as the Vsss pin.

(11) AVDD pin

The AV_{DD} pin is the analog power supply pin of A/D converters 0 and 1. Even if not using A/D converters 0 and 1, always make this pin have the same potential as the V_{DD5} pin.

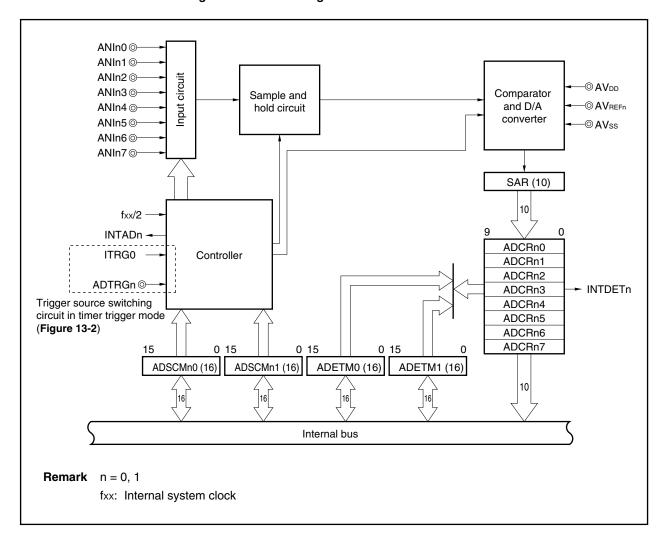


Figure 13-1. Block Diagram of A/D Converter 0 or 1

Cautions 1. Noise at an analog input pin (ANI0n, ANI1n) or reference voltage input pin (AVREF0, AVREF1) may give rise to an invalid conversion result.

Software processing is needed in order to prevent this invalid conversion result from adversely affecting the system.

The following are examples of software processing.

- Use the average value of the results of multiple A/D conversions as the A/D conversion result.
- Perform A/D conversion multiple consecutive times and use conversion results with the exception of any abnormal conversion results that are obtained.
- If an A/D conversion result from which it is judged that an abnormality occurred in the system is obtained, do not perform abnormality processing at once but perform it upon reconfirming the occurrence of an abnormality.
- 2. Be sure that voltages outside the range [AVss to AVREF0, AVss to AVREF1] are not applied to pins being used as A/D converter 0 and 1 input pins.

ADTRG0 🗇 A/D converter 0 Selector ITRG0 INTCM003 Selector INTCM013 -ADTRG1 ⊚-A/D converter 1 Selector ITRG0 INTTM00 Selector INTTM01 ITRG0 ITRG22 ITRG21 ITRG20 ITRG12 ITRG11 ITRG10 Internal bus Caution For the selection of the trigger source in timer trigger mode, refer to 13.3 (5) A/D internal trigger selection register (ITRG0).

Figure 13-2. Block Diagram of Trigger Source Switching Circuit in Timer Trigger Mode

647

13.3 Control Registers

(1) A/D scan mode registers 00 and 10 (ADSCM00, ADSCM10)

The ADSCMn0 registers are 16-bit registers that select analog input pins, specify operation modes, and control conversion operation.

The ADSCMn0 register can be read/written in 16-bit units.

When the higher 8 bits of the ADSCMn0 register are used as the ADSCMn0H register, and the lower 8 bits are used as the ADSCMn0L register, they can be read/written in 8-bit or 1-bit units.

However, writing to an ADSCMn0 register during A/D conversion operation initializes conversion operation and starts the conversion over from the beginning. At this time, overwrite the ADSCMn0 register with the same value. If writing a different value, be sure to clear the ADCEn bit to 0 first before overwriting.

Caution Before changing the trigger mode by using the ADPLMn and TRG2 to TRG0 bits, clear the ADCEn bit to 0 (n = 0 or 1). The operation is not guaranteed if the trigger mode is changed and the ADCEn bit is cleared at the same time (by the same instruction). Be sure to access the register twice.

(1/2)

				<12>									_			O ANISO	Address FFFFF200H	Initial value 0000H
	<15>	<14>	13	<12>	<11>	10	9	8	7	6	5	4	3	2	1	0	Address	Initial value
ADSCM10	ADCE1	ADCS1	0	ADMS1	ADPLM1	TRG2	TRG1	TRG0	SANI3	SANI2	SANI1	SANI0	ANIS3	ANIS2	ANIS1	ANIS0	FFFFF240H	0000H

Bit position	Bit name	Function								
15	ADCEn	Specifies enabling or disabling A/D conversion. 0: Disable 1: Enable								
14	ADCSn	Shows status of A/D converter 0 or 1. This bit is read-only. 0: Stopped 1: Operating The ADCSn bit is "0" for the duration of 6 × fxx/2 immediately after the start of A/D conversion, and is then set to "1". In the scan mode, this operation is performed each time the analog input pin to be A/D converted is switched.								
12	ADMSn	Specifies operation mode of A/D converter 0 or 1. 0: Scan mode 1: Select mode								
11 to 8	ADPLMn, TRG2 to TRG0	ADPLMn: S TRG2 to TR		•	node.					
		ADPLMn	TRG2	TRG1	TRG0	Trigger mode				
		0	0	0	0	A/D trigger mode				
		0	0	0	1	Timer trigger mode				
		0	1	1	1	External trigger mode				
		1	0	0	0	A/D trigger polling mode				
		Other than	n above			Setting prohibited				

Remark n = 0, 1

(2/2)

7 to 4	SANI3 to SANI0	Specifies co		_		scan mode.			
		SANI3	SANI2	SANI1	SANI0	Scan start a	nalog input pin		
		0	0	0	0	ANIn0			
		0	0	0	1	ANIn1			
		0	0	1	0	ANIn2			
		0	0	1 0	1 0	ANIn3			
		0				ANIn4			
		0	1	0	1	ANIn5			
		0	1	1	0	ANIn6			
		0	1	1	1	ANIn7			
		Other tha	n above			Setting prohibited			
3 to 0	ANIS3 to	Specifies at	bits Al	NIS3 to AN	t mode.				
3 to 0	ANIS3 to ANIS0	In scan mod	bits An	pin in selec	t mode.	on analog input pin.	oin number than th		
3 to 0			bits Al	NIS3 to AN	t mode.				
3 to 0		In scan mod	bits An	pin in selec	t mode.	on analog input pin.	umber that is set b		
3 to 0		In scan mod	nalog input de, specifies	pin in selects conversion	t mode. n terminatio	on analog input pin. In select mode	In scan mode		
3 to 0		ANIS3	nalog input de, specifies ANIS2	pin in selects conversion ANIS1	t mode. n termination ANISO	on analog input pin. In select mode ANIn0	In scan mode ANIn0		
3 to 0		ANIS3 0 0	nalog input de, specifies ANIS2 0	pin in selects conversion ANIS1 0 0	t mode. n termination ANISO 0	In select mode ANIn0 ANIn1	In scan mode ANIn0 SANI → ANIn1		
3 to 0		ANIS3 0 0 0	nalog input de, specifies ANIS2 0 0	pin in selects conversion ANIS1 0 1	t mode. n termination ANISO 0 1	In select mode ANIn0 ANIn1 ANIn2	In scan mode ANIn0 SANI → ANIn1 SANI → ANIn2		
3 to 0		ANIS3 0 0 0 0	nalog input de, specifies ANIS2 0 0 0	pin in selects conversion ANIS1 0 1 1	t mode. n termination ANISO 0 1 0 1	In select mode ANIn0 ANIn1 ANIn2 ANIn3	In scan mode ANIn0 SANI → ANIn1 SANI → ANIn2 SANI → ANIn3		
3 to 0		ANIS3 0 0 0 0 0	nalog input de, specifies ANIS2 0 0 0 1	pin in selects conversion ANIS1 0 1 1 0	t mode. n termination ANISO 0 1 0 1	In select mode ANIn0 ANIn1 ANIn2 ANIn3 ANIn4	In scan mode ANIn0 SANI → ANIn1 SANI → ANIn2 SANI → ANIn3 SANI → ANIn4		
3 to 0		ANIS3 O O O O O	halog input de, specifies ANIS2 0 0 0 1	pin in selects conversion ANIS1 0 1 1 0 0	t mode. n termination ANISO 0 1 0 1 0 1	In select mode ANIn0 ANIn1 ANIn2 ANIn3 ANIn4 ANIn5	In scan mode ANIn0 SANI → ANIn1 SANI → ANIn2 SANI → ANIn3 SANI → ANIn4 SANI → ANIn5		
3 to 0		ANIS3 O O O O O O	nalog input de, specifies ANIS2 0 0 1 1 1	pin in selects conversion ANIS1 0 1 1 0 1	t mode. n termination ANISO 0 1 0 1 0 1	In select mode ANIn0 ANIn1 ANIn2 ANIn3 ANIn4 ANIn5 ANIn6	In scan mode ANIn0 SANI → ANIn1 SANI → ANIn2 SANI → ANIn3 SANI → ANIn4 SANI → ANIn5 SANI → ANIn6		
3 to 0		ANIS3 O O O O O O O O O O O O O	halog input de, specifies ANIS2 0 0 1 1 1 1 nabove ANIS	pin in selects conversion ANIS1 0 1 1 0 1 1 1	t mode. n termination ANISO 0 1 0 1 0 1	In select mode ANIn0 ANIn1 ANIn2 ANIn3 ANIn4 ANIn5 ANIn6 ANIn7	In scan mode ANIn0 SANI → ANIn1 SANI → ANIn2 SANI → ANIn3 SANI → ANIn4 SANI → ANIn5 SANI → ANIn6		

(2) A/D scan mode registers 01 and 11 (ADSCM01, ADSCM11)

The ADSCMn1 registers are 16-bit registers that set the conversion time of the A/D converter.

The ADSCMn1 register can be read/written in 16-bit units.

When the higher 8 bits of the ADSCMn1 register are used as the ADSCMn1H register, and the lower 8 bits are used as the ADSCMn1L register, the ADSCMn1H register can be read/written in 8-bit or 1-bit units, and the ADSCMn1L register is read-only, in 8-bit units.

Caution Do not write to the ADSCMn1 registers during A/D conversion operation. If a write is performed, conversion operation is suspended and subsequently terminates.

_15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	Addre	ess	Initial valu
DSCM01 0	0	0	0	0	FR2	FR1	FR0	0	0	0	0	0	0	0	0	FFFFF2	202H	0000H
						_				_		_	_		_			
15 DSCM11 0	14	13	12 0	11	10	9	8	7	6	5	0	0	0	0	0 Address Initial val			
DSCM11 0	0	U	U	0 FR2 FR1 FR0 0 0 0 0 0 0 0 0 FFFFF242H 0000H														
Bit position	Bit	name	Э		Function													
10 to 8	FR2 FR0			Spec	Specifies conversion time.													
				FR	2 FR1 FR0 Conversion Clocks Conversion time (μs) ^{Note}													
												fxx :	= 50 l	ИНz	fxx =	40 MHz	fxx =	33 MHz
				0		0	0		3	344			6.88			8.60		-
				0		0	1		2	248		- 6.20 7.		7.51				
				0		1	0		-	176			-			=	5	.33
				0		1	1		•	128			_			-		-
				1		0	0		•	104			_			=		=
				1		0	1			80			-			=		=
				1		1	0			56			_			=		=
				1		1	1	Se	etting	prohi	bited		=			=		=
				Note			ne time g time =								nation	l.		
				Caution Be sure to secure the conversion time within a range of 5 to 10 μ s. Conversion time = fxx × Conversion clocks														
				_			nternal											

(3) A/D voltage detection mode registers 0 and 1 (ADETM0, ADETM1)

The ADETMn registers are 16-bit registers that set voltage detection mode. In voltage detection mode, the analog input pin for which voltage detection is being performed and a reference voltage value are compared and an interrupt is set in response to the comparison result.

The ADETMn register can be read/written in 16-bit units.

When the higher 8 bits of the ADETMn register are used as the ADETMnH register, and the lower 8 bits are used as the ADETMnL register, they can be read/written in 8-bit or 1-bit units.

Caution Do not write to an ADETMn register during A/D conversion operation. If a write is performed, conversion is suspended and it subsequently terminates.

	<14> 13 12		9 8 7		4 3	2 1 0 DET DET DET	Address FFFFF204H	Initial value		
DETM0						CMP2 CMP1 CMP0	1111120411	000011		
<15>	<14> 13 12	11 10	9 8 7	6 5	4 3	2 1 0	Address	Initial val		
DETM1 I						DET DET DET	FFFFF244H	0000H		
Bit position	Bit name				Function	1				
15	ADETENn		ltage detecti e in normal r e in voltage (node	ode					
14	ADETLHn	0: Genera	Gets voltage comparison detection. 0: Generate INTDETn interrupt if reference voltage value > analog input pin voltage. 1: Generate INTDETn interrupt if reference voltage value ≤ analog input pin voltage.							
13 to 10	DETANI3 to DETANI0	Selects anal DETCMP0 v				voltage value se	et by DETCMP9) to		
		DETANI3	DETANI2	DETANI1	DETANI0	Voltage dete	ection analog in	out pin		
		0	0	0	0	ANIn0				
			0	0						
		0	U	U	1	ANIn1				
		0	0	1	0	ANIn1 ANIn2				
		l 	-	_						
		0	0	1	0	ANIn2				
		0	0	1	0	ANIn2 ANIn3				
		0 0 0	0 0 1	1 1 0	0 1 0	ANIn2 ANIn3 ANIn4				
		0 0 0	0 0 1 1 1	1 1 0	0 1 0 1	ANIn2 ANIn3 ANIn4 ANIn5				
		0 0 0 0	0 0 1 1 1 1	1 1 0 0	0 1 0 1	ANIn2 ANIn3 ANIn4 ANIn5 ANIn6	ited			
		0 0 0 0 0	0 0 1 1 1 1 1	1 1 0 0 0 1 1 ×	0 1 0 1 0	ANIn2 ANIn3 ANIn4 ANIn5 ANIn6 ANIn7	ited			

Remark n = 0, 1

(4) A/D conversion result registers 00 to 07 and 10 to 17 (ADCR00 to ADCR07, ADCR10 to ADCR17)

The ADCR0n and ADCR1n registers are 10-bit registers that hold the results of A/D conversions (n = 0 to 7). One A/D converter is equipped with eight 10-bit registers for 8 channels, and A/D converters 0 and 1 together have sixteen 10-bit registers.

These registers are read-only, in 16-bit units.

When reading 10 bits of data of an A/D conversion result from an ADCR0n or ADCR1n register, only the lower 10 bits are valid and the higher 6 bits are always read as 0.

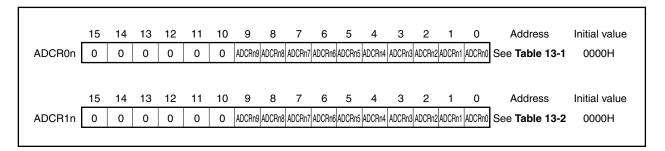


Table 13-1. Correspondence Between ADCR0n (n = 0 to 7) Register Names and Addresses

Register Name	Address
ADCR00	FFFFF210H
ADCR01	FFFFF212H
ADCR02	FFFFF214H
ADCR03	FFFFF216H
ADCR04	FFFFF218H
ADCR05	FFFFF21AH
ADCR06	FFFFF21CH
ADCR07	FFFFF21EH

Table 13-2. Correspondence Between ADCR1n (n = 0 to 7) Register Names and Addresses

Register Name	Address
ADCR10	FFFFF250H
ADCR11	FFFFF252H
ADCR12	FFFFF254H
ADCR13	FFFFF256H
ADCR14	FFFFF258H
ADCR15	FFFFF25AH
ADCR16	FFFFF25CH
ADCR17	FFFFF25EH

The correspondence between each analog input pin and the ADCR0n and ADCR1n registers is shown below.

Table 13-3. Correspondence Between Each Analog Input Pin and ADCR0n and ADCR1n Registers

A/D Converter	Analog Input Pin	A/D Conversion Result Register
A/D converter 0	ANI00	ADCR00
	ANI01	ADCR01
	ANI02	ADCR02
	ANI03	ADCR03
	ANI04	ADCR04
	ANI05	ADCR05
	ANI06	ADCR06
	ANI07	ADCR07
A/D converter 1	ANI10	ADCR10
	ANI11	ADCR11
	ANI12	ADCR12
	ANI13	ADCR13
	ANI14	ADCR14
	ANI15	ADCR15
	ANI16	ADCR16
	ANI17	ADCR17

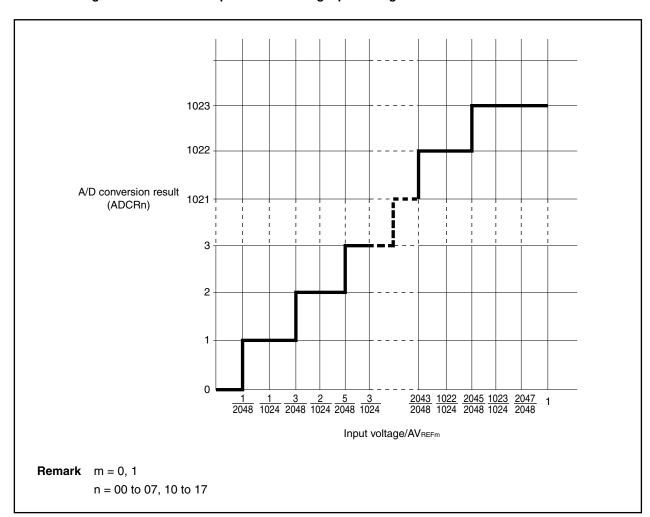
The relationship between the analog voltage input to an analog input pin (ANI0n or ANI1n) and the value of the A/D conversion result register (ADCR0n or ADCR1n) is as follows (n = 0 to 7):

ADCR = INT (
$$\frac{V_{IN}}{AV_{REF}} \times 1,024 + 0.5$$
)

Or,

$$(ADCR-0.5)\times \frac{AV_{REF}}{1,024} \le V_{IN} < (ADCR+0.5)\times \frac{AV_{REF}}{1,024}$$

INT (): Function that returns integer of value in ()


VIN: Analog input voltage

AVREF: AVREFO or AVREF1 pin voltage

ADCR: Value of A/D conversion result register (ADCR0n or ADCR1n)

Figure 13-3 illustrates the relationship between the analog input voltages and A/D conversion results.

Figure 13-3. Relationship Between Analog Input Voltages and A/D Conversion Results

(5) A/D internal trigger selection register (ITRG0)

The ITRG0 register is the register that switches the trigger source in timer trigger mode. The timer trigger source of A/D converters 0 and 1 can be set using the ITRG0 register.

This register can be read/written in 8-bit or 1-bit units.

	7	6	5	4	3	2		1	0	Address	Initial valu
rrgo	0	ITRG22	ITRG21	ITRG20	0	ITRO	312 ľ	TRG11	ITRG10	FFFFF280H	00H
Bit pos	sition	Bit name						nction			
6 to 4 ITRG22 to ITRG20		Sets time	er trigger so	urce of A	/D conve	erter 1.					
			ITRG2	2 ITRG	21 ITF	RG20	ITRG	110	Tr	igger Source	
			0	0		×	0	Se	elect INTCM	1003	
			0	0		×	1	Se	elect INTCM	013	
			0	1		0	×	Se	elect INTTM	00	
			0	1		1	×	Se	elect INTTM	01	
			1	×		0	0	Se	elect INTCM	003 and INTT	M00
			1	×		0	1	Se	elect INTCM	013 and INTT	M00
			1	×		1	0	Se	elect INTCM	003 and INTT	M01
			1	×		1	1	Se	elect INTCM	013 and INTT	M01
			Rem	ark ×: A	rbitrary						
2 to	0	ITRG12 to ITRG10	Specifies	timer trigg	er source	of A/D	convert	er 0.			
			ITRG1	2 ITRG	11 ITI	RG20	ITRG	i10	Tr	igger Source	
			0	0		×	0	Se	elect INTCM	1003	
			0	0		×	1	Se	elect INTCM	013	
			0	1		0	×	Se	elect INTTM	00	
			0	1		1	×	Se	elect INTTM	01	
			1	×		0	0	Se	elect INTCM	003 and INTT	M00
			1	×		0	1	Se	elect INTCM	013 and INTT	M00
			1	×		1	0	Se	elect INTCM	003 and INTT	M01
			1	×		1	1	Se	elect INTCM	013 and INTT	M01
			Rem	ark ×: A	rbitrary	L		ı			<u> </u>

13.4 Interrupt Requests

A/D converters 0 and 1 generate two kinds of interrupts.

- A/D conversion termination interrupts (INTAD0, INTAD1)
- Voltage detection interrupts (INTDET0, INTDET1)

(1) A/D conversion termination interrupts (INTAD0, INTAD1)

In A/D conversion enabled status, an A/D conversion termination interrupt is generated when a specified number of A/D conversions have terminated.

A/D Converter	A/D Conversion Termination Interrupt Signal					
0	Generate INTAD0					
1	Generate INTAD1					

(2) Voltage detection interrupts (INTDET0, INTDET1)

In voltage detection mode (ADETEN0 or ADETEN1 bit of ADETM0 or ADETM1 = 1), the value of the ADCR0n or ADCR1n register of the relevant analog input pin is compared to the reference voltage set in the DETCMP9 to DETCMP0 bits of the ADETM0 or ADETM1 register and a voltage detection interrupt is generated in response to the value of the ADETLH0 or ADETLH1 bit of the ADETM0 or ADETM1 register (n = 0 to 7).

A/D Converter	Voltage Detection Interrupt Signal
0	Generate INTDET0
1	Generate INTDET1

13.5 A/D Converter Operation

13.5.1 A/D converter basic operation

A/D conversion is performed using the following procedure.

- (1) Set the analog input selection and the operation mode and trigger mode specifications using the ADSCM00 or ADSCM10 register^{Note 1}. Setting (1) the ADCE0 or ADCE1 bit of the ADSCM00 or ADSCM10 register when in A/D trigger mode or A/D trigger polling mode starts A/D conversion. In timer trigger mode or external trigger mode, the status becomes trigger standby^{Note 2}.
- (2) When A/D conversion starts, compare the analog input to the voltage generated by the D/A converter.
- (3) When 10-bit comparison terminates, store the conversion result in the ADCR0n or ADCR1n register. When the specified number of A/D conversions have terminated, generate an A/D conversion termination interrupt (INTAD0, INTAD1) (n = 0 to 7).
- **Notes 1.** If the ADSCM00 or ADSCM10 register is overwritten with the same value during A/D conversion, the A/D conversion operation preceding the overwrite stops and the conversion result is not stored in the ADCR0n or ADCR1n register. The conversion operation is initialized and conversion starts from the beginning.
 - 2. In timer trigger mode or external trigger mode, there is a transition to trigger standby status when the ADCE0 or ADCE1 bit of the ADSCM00 or ADSCM10 register is set to 1. A/D conversion operation is activated by a trigger signal and there is a return to trigger standby status when A/D conversion operation terminates.

The timer trigger is selected by the ITRG0 register.

13.5.2 Operation modes and trigger modes

Diverse conversion operations can be specified for A/D converters 0 and 1 by specifying operation modes and trigger modes. Operation modes and trigger modes are set using the ADSCM00 or ADSCM10 register.

The relationship between operation modes and trigger modes is shown below.

Trigger Mode	Operation Mode	Setting					
		ADSCM00	ADSCM10				
AD trigger	Select	XX010000XXXXXXXXB	XX010000XXXXXXXXB				
	Scan	XX000000XXXXXXXXB	XX000000XXXXXXXXB				
AD trigger polling	Select	XX011000XXXXXXXXB	XX011000XXXXXXXXB				
	Scan	XX001000XXXXXXXXB	XX001000XXXXXXXXB				
Timer trigger	Select	XX010001XXXXXXXXB	XX010001XXXXXXXXB				
	Scan	XX000001XXXXXXXXB	XX000001XXXXXXXXB				
External trigger	Select	XX010111XXXXXXXXB	XX010111XXXXXXXXB				
	Scan	XX000111XXXXXXXXB	XX000111XXXXXXXXB				

(1) Trigger modes

The four trigger modes that serve as the start timing of A/D conversion processing are available: A/D trigger mode, A/D trigger polling mode, timer trigger mode, and external trigger mode.

These trigger modes are set using the ADSCM00 and ADSCM10 registers.

(a) A/D trigger mode

A/D trigger mode, which starts the conversion timing of the analog input set for the ANI0n or ANI1n pin (n = 0 to 7), is a mode that starts A/D conversion by setting the ADCE0 or ADCE1 bit of the ADSCM00 or ADSCM10 register to 1. In this mode, it is necessary to set the ADCE0 or ADCE1 bit to 1 as an A/D conversion restart operation after an INTAD0 or INTAD1 interrupt (ADCS0 or ADCS1 = 0).

(b) A/D trigger polling mode

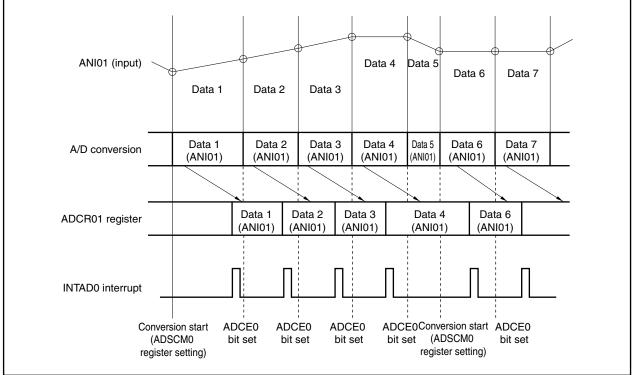
A/D trigger polling mode, which starts the conversion timing of the analog input set for the ANI0n or ANI1n pin (n = 0 to 7), is a mode that starts A/D conversion by setting the ADCE0 or ADCE1 bit of the ADSCM00 or ADSCM10 register to 1. In this mode, it is not necessary to set the ADCE0 or ADCE1 bit to 1 as an A/D conversion restart operation after an INTAD0 or INTAD1 interrupt (ADCS0 or ADCS1 = 1). The specified analog input is converted serially until the ADCE0 or ADCE1 bit is set to 0. An INTAD0 or INTAD1 interrupt occurs each time a conversion terminates.

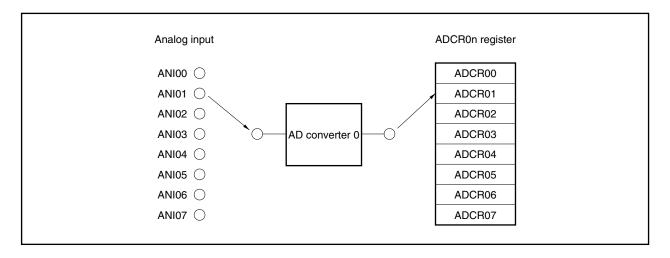
(c) Timer trigger mode

Timer trigger mode, which starts the conversion timing of the analog input set for the ANI0n or ANI1n pin (n = 0 to 7), is a mode governed by a trigger specified in the A/D internal trigger selection register 0 (ITRG0).

(d) External trigger mode

External trigger mode, which starts the conversion timing of the analog input set for the ANI0n or ANI1n pin, is a mode specified using the ADTRG0 or ADTRG1 pin.


(2) Operation modes


The two operation modes, which are the modes that set the ANI00 to ANI07 and ANI10 to ANI17 pins, are select mode and scan mode. These modes are set using the ADSCM00 and ADSCM10 registers.

(a) Select mode

Select mode A/D converts one analog input specified in the ADSCM00 or ADSCM10 register. It stores the conversion result in the ADCR0n or ADCR1n register corresponding to the analog input (ANI1n or ANIOn) (n = 0 to 7).

Figure 13-4. Example of Select Mode Operation Timing (ANI01): For A/D Converter 0

(b) Scan mode

Scan mode sequentially selects and A/D converts pins from the A/D conversion start analog input pin through the A/D conversion termination analog input pin specified in the ADSCM00 or ADSCM10 register. It stores the A/D conversion result in the ADCR0n or ADCR1n register corresponding to the analog input (n = 0 to 7). When the specified analog input conversion terminates, there is an A/D conversion termination interrupt (INTAD1).

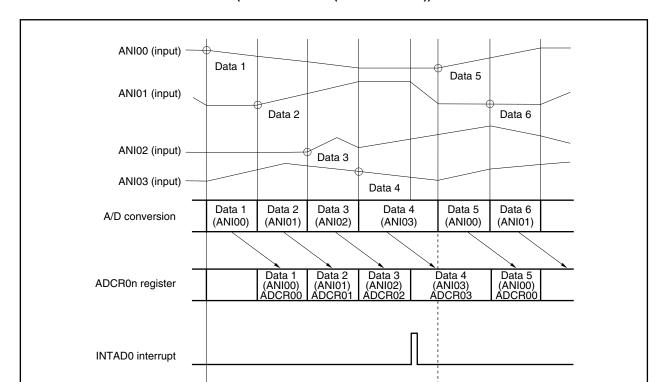
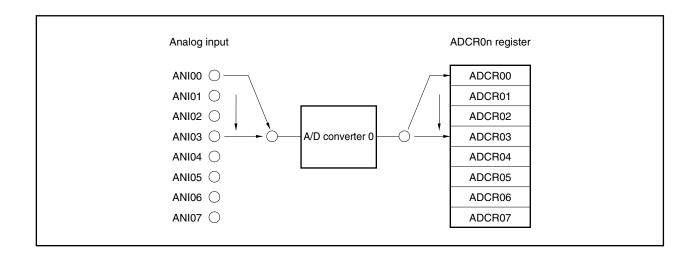



Figure 13-5. Example of Scan Mode Operation Timing: For A/D Converter 0 (4-Channel Scan (ANI00 to ANI03))

Conversion start

(ADSCM00 register setting)

Conversion start

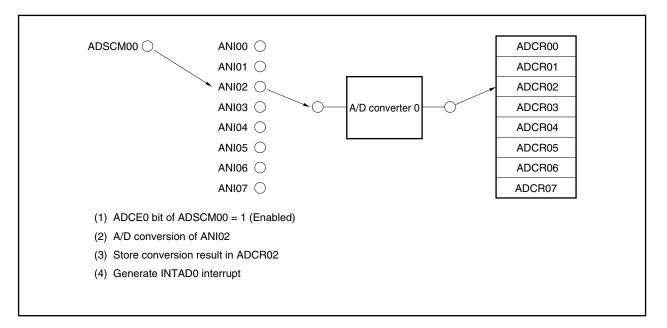
(ADSCM00 register setting)

13.6 Operation in A/D Trigger Mode

Setting the ADCE0 or ADCE1 bit of the ADSCM00 or ADSCM10 register to 1 starts A/D conversion.

13.6.1 Operation in select mode

One analog input specified in the ADSCM00 or ADSCM10 register is A/D converted at a time and the result is stored in an ADCR0n or ADCR1n register. Analog inputs correspond one-to-one with ADCR0n or ADCR1n registers (n = 0 to 7).


An A/D conversion termination interrupt (INTAD0, INTAD1) is generated for each A/D conversion termination, which terminates A/D conversion (ADCS0 or ADCS1 bit = 0).

Analog Input	A/D Conversion Result Register
ANIx	ADCRx

Remark x = 00 to 07, 10 to 17

To restart A/D conversion, write 1 in the ADCE0 or ADCE1 bit of the ADSCM00 or ADSCM10 register. This is optimal for an application that reads a result for each A/D conversion.

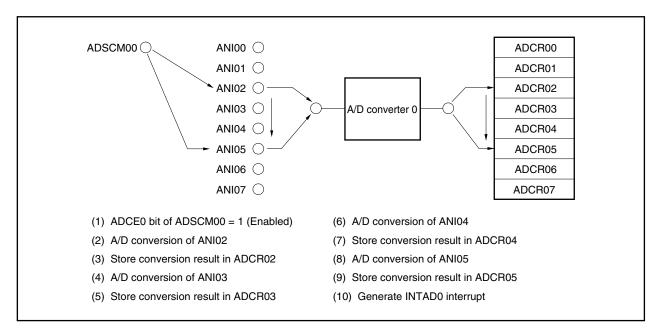
Figure 13-6. Example of Select Mode (A/D Trigger Select) Operation (ANI02): For A/D Converter 0

13.6.2 Operation in scan mode

Pins from the conversion start analog input pin through the conversion termination analog input pin specified in the ADSCM00 or ADSCM10 register are sequentially selected and A/D converted. An A/D conversion result is stored in the ADCR0n or ADCR1n register corresponding to the analog input (n = 0 to 7). When conversion terminates for all analog inputs through the conversion termination analog input pin, an A/D conversion termination interrupt (INTAD0, INTAD1) is generated, which terminates A/D conversion (ADCS0 or ADCS1 bit of ADSCM0 or ADSCM1 register = 0).

Analog Input	A/D Conversion Result Register
ANIx ^{Note 1}	ADCRx
I	_
ANIx ^{Note 2}	ADCRx

Notes 1. Set using SANI3 to SANI0 bits of ADSCM00 or ADSCM10 register.


Be sure to set a pin number that is smaller than the conversion termination analog input pin number set according to Note 2.

2. Set using ANIS3 to ANIS0 bits of ADSCM00 or ADSCM10 register.

Remark x = 00 to 07, 10 to 17

To restart A/D conversion, write 1 in the ADCE0 or ADCE1 bit of the ADSCM00 or ADSCM10 register. This is optimal for an application that regularly monitors multiple analog inputs.

Figure 13-7. Example of Scan Mode (A/D Trigger Scan) Operation (ANI02 to ANI05): For A/D Converter 0

13.7 Operation in A/D Trigger Polling Mode

Setting the ADCE0 or ADCE1 bit of the ADSCM00 or ADSCM10 register to 1 starts A/D conversion.

Both select mode and scan mode are available in A/D trigger polling mode. Since the ADCS0 or ADCS1 bit of the ADSCM00 or ADSCM10 register remains 1 after an INTAD0 or INTAD1 interrupt in this mode, it is not necessary to write 1 in the ADCE0 or ADCE1 bit as an A/D conversion restart operation.

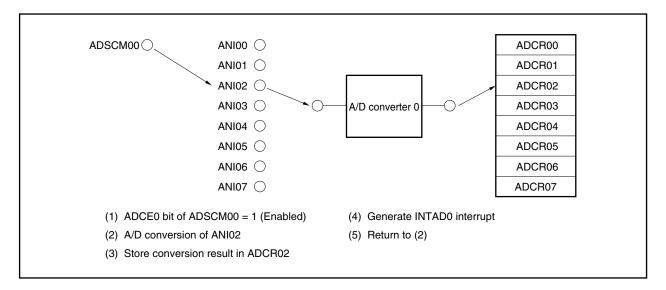
13.7.1 Operation in select mode

The analog input specified in the ADSCM00 or ADSCM10 register is A/D converted. The conversion result is stored in the ADCR0n or ADCR1n register (n = 0 to 7).

One analog input is A/D converted at a time and the result is stored in one ADCR0n or ADCR1n register. Analog inputs correspond one-to-one with ADCR0n or ADCR1n register.

An A/D conversion termination interrupt (INTAD0 or INTAD1) is generated for each A/D conversion termination. A/D conversion operation is repeated until the ADCE0 or ADCE1 bit = 0 (ADCS0 or ADCS1 bit = 1).

Analog Input	A/D Conversion Result Register
ANIx	ADCRx


Remark x = 00 to 07, 10 to 17

In A/D trigger polling mode, it is not necessary to write 1 in the ADCE0 or ADCE1 bit of the ADSCM00 or ADSCM10 register as an A/D conversion restart operation^{Note}.

This is optimal for applications that regularly read A/D conversion values.

Note In A/D trigger polling mode, the fact that the ADCE0 or ADCE1 bit of the ADSCM00 or ADSCM10 register is 0 means that A/D conversion operation does not stop as long as the ADCS0 or ADCS1 bit is not 0. Therefore, if the ADCR0n or ADCR1n register is not read before the next A/D conversion, it is overwritten.

Figure 13-8. Example of Select Mode (A/D Trigger Polling Select) Operation (ANI02): For A/D Converter 0

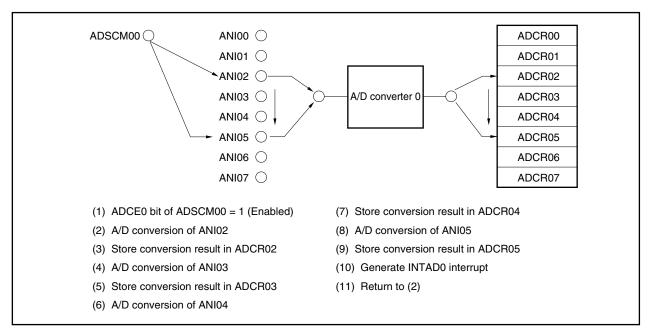
13.7.2 Operation in scan mode

Pins from the conversion start analog input pin through the conversion termination analog input pin specified in the ADSCM00 or ADSCM10 register are sequentially selected and A/D converted. An A/D conversion result is stored in the ADCR0n or ADCR1n register corresponding to the analog input (n = 0 to 7). When conversion terminates for all analog inputs through the conversion termination analog input pin, an A/D conversion termination interrupt (INTAD0, INTAD1) is generated. A/D conversion operation repeats until the ADCE0 or ADCE1 bit = 0 (ADCS0 or ADCS1 bit = 1).

Analog Input	A/D Conversion Result Register
ANIx ^{Note 1}	ADCRx
I	
ANIx ^{Note 2}	ADCRx

Notes 1. Set using SANI3 to SANI0 bits of ADSCM00 or ADSCM10 register.
Be sure to set a pin number that is smaller than the conversion termination analog input pin number set according to Note 2.

2. Set using ANIS3 to ANIS0 bits of ADSCM00 or ADSCM10 register.


Remark x = 00 to 07, 10 to 17

It is not necessary to write 1 in the ADCE0 or ADCE1 bit of the ADSCM00 or ADSCM10 register as an A/D conversion restart operation in A/D trigger polling mode^{Note}.

This is optimal for applications that regularly read A/D conversion values.

Note In A/D trigger polling mode, the fact that the ADCE0 or ADCE1 bit of the ADSCM00 or ADSCM10 register is 0 means that A/D conversion operation does not stop as long as the ADCS0 or ADCS1 bit is not 0. Therefore, if the ADCR0n or ADCR1n register is not read before the next A/D conversion, it is overwritten.

Figure 13-9. Example of Scan Mode (A/D Trigger Polling Scan) Operation (ANI02 to ANI05) : For A/D Converter 0

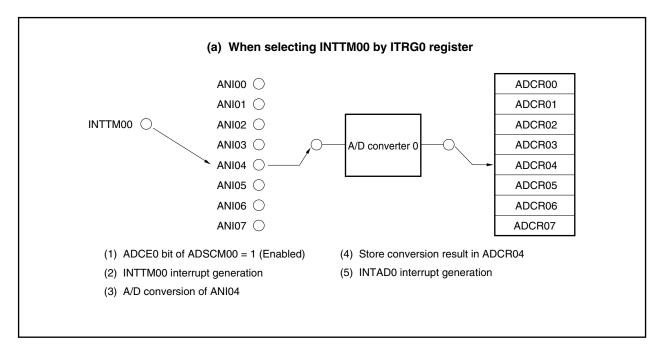
13.8 Operation in Timer Trigger Mode

The A/D converter can set an interrupt signal specified by the A/D internal trigger selection register 0 (ITRG0) as a conversion trigger for up to 8 channels (a total of 16 channels in 2 circuits) of analog input (ANI00 to ANI07, ANI10 to ANI17).

The four interrupt signals that can be selected as triggers are the TM0n timer 0 register underflow interrupt signals (INTTM00 and INTTM01) and the CM003 and CM013 match interrupt signals (INTCM003 and INTCM013) (n = 0, 1).

13.8.1 Operation in select mode

Taking the interrupt signal specified by the A/D internal trigger selection register 0 (ITRG0) as a trigger, one analog input (ANI00 to ANI07, ANI10 to ANI17) specified by the ADSCM00 or ADSCM10 register is A/D converted once. The conversion result is stored in the ADCR0n or ADCR1n register corresponding to the analog input (n = 0 to 7). An A/D conversion termination interrupt (INTAD0 or INTAD1) is generated for each A/D conversion, which terminates A/D conversion (ADCS0 or ADCS1 = 0).


This is optimal for applications that read A/D conversion values synchronized to a timer trigger.

Trigger	Analog Input	A/D Conversion Result Register	
Interrupt specified by ITRG0 register	ANIx	ADCRx	

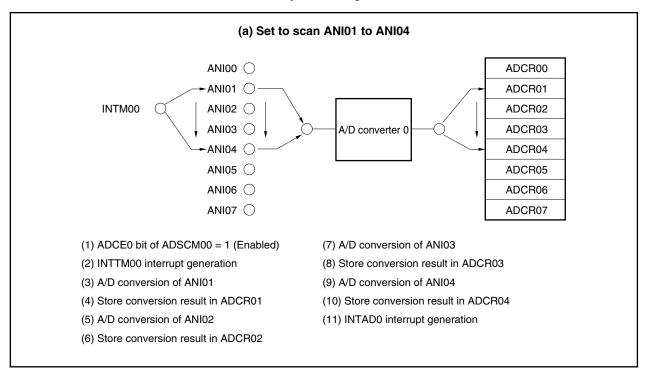
Remark x = 00 to 07, 10 to 17

After A/D conversion termination, A/D converter 0 or 1 changes to trigger wait status (ADCE0 or ADCE1 = 1). It performs A/D conversion operation again when the interrupt signal specified in the ITRG0 register occurs.

Figure 13-10. Example of Timer Trigger Select Mode Operation (ANI04): For A/D Converter 0

13.8.2 Operation in scan mode

Using the interrupt signal specified by the A/D internal trigger selection register 0 (ITRG0) as a trigger, the conversion start analog input pin through the conversion termination analog input pin specified by the ADSCM00 or ADSCM10 register are sequentially selected and A/D converted. Conversion results are stored in the ADCR0n or ADCR1n registers corresponding to the analog inputs. When all of the specified A/D conversions terminate, an A/D conversion termination interrupt (INTAD0 or INTAD1) is generated, which terminates A/D conversion (ADCS0 or ADCS1 = 0).


This is optimal for applications that regularly monitor multiple analog inputs in synchronization with a timer trigger.

Trigger	Analog Input	A/D Conversion Result Register
Interrupt specified by ITRG0 register	ANIn0	ADCRn0
	ANIn1	ADCRn1
	ANIn2	ADCRn2
	ANIn3	ADCRn3
	ANIn4	ADCRn4
	ANIn5	ADCRn5
	ANIn6	ADCRn6
	ANIn7	ADCRn7

Remark n = 0, 1

After all of the specified A/D conversions terminate, the A/D converter changes to trigger wait status (ADCE0 or ADCE1 = 1). It performs A/D conversion operation again when the interrupt signal specified in the ITRG0 register occurs.

Figure 13-11. Example of Timer Trigger Scan Mode Operation (For A/D Converter 0)
: INTTM00 Selected by ITRG0 Register

13.9 Operation in External Trigger Mode

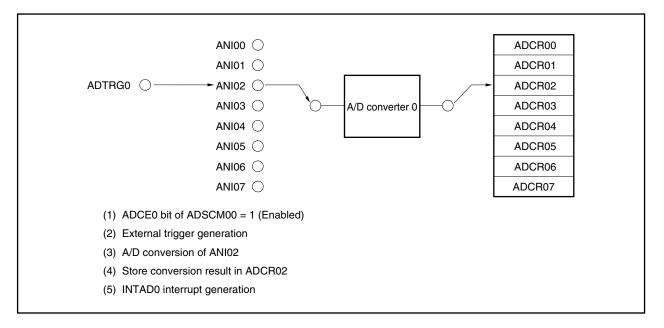
In external trigger mode, analog input (ANI00 to ANI07, ANI10 to ANI17) is A/D converted on ADTRG0 or ADTRG1 pin input timing.

The valid edge of an external input signal in external trigger mode can be specified as a rising edge, a falling edge, or a rising or falling edge in the ES21 or ES20 bit of the INTM1 register for A/D converter 0 and in the ES31 or ES30 bit of the INTM1 register for A/D converter 1.

13.9.1 Operation in select mode

One analog input (ANI00 to ANI07, ANI10 to ANI17) specified by the ADSCM00 or ADSCM10 register is A/D converted. The conversion result is stored in the ADCR0n or ADCR1n register (n = 0 to 7).

Using an ADTRG0 or ADTRG1 signal as a trigger, one analog input at a time is A/D converted and the result is stored in one ADCR0n or ADCR1n register. Analog inputs correspond one-to-one with A/D conversion result registers. For each A/D conversion, an A/D conversion termination interrupt (INTAD0 or INTAD1) is generated, which terminates A/D conversion (ADCS0 or ADCS1 bit = 0).


Trigger	Analog Input	A/D Conversion Result Register	
ADTRGm signal	ANImn	ADCRmn	

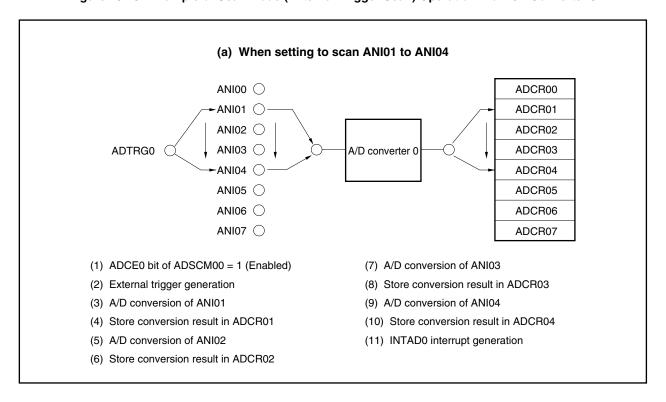
Remark m = 0, 1n = 0 to 7

To restart A/D conversion, a trigger must be input again from the ADTRGn pin (n = 0, 1).

This is optimal for applications that read results each time there is an A/D conversion in synchronization with an external trigger.

Figure 13-12. Example of Select Mode (External Trigger Select) Operation (ANI02): For A/D Converter 0

13.9.2 Operation in scan mode


Using an ADTRG0 or ADTRG1 signal as a trigger, pins from the conversion start analog input pin through the conversion termination analog input pin specified by the ADSCM00 or ADSCM10 register are sequentially selected and A/D converted. A/D conversion results are stored in the ADCR0n or ADCRN1n registers corresponding to the analog inputs (n = 0 to 7). When conversion terminates for all of the specified analog inputs, an INTAD0 or INTAD1 interrupt is generated, which terminates A/D conversion (ADCS0 or ADCS1 = 0).

Trigger	Analog Input A/D Conversion Result Register	
ADTRGn signal	ANIn0	ADCRn0
	ANIn1	ADCRn1
	ANIn2	ADCRn2
	ANIn3	ADCRn3
	ANIn4	ADCRn4
	ANIn5	ADCRn5
	ANIn6	ADCRn6
	ANIn7	ADCRn7

Remark n = 0, 1

After all specified A/D conversions terminate, A/D conversion is restarted when an external trigger signal occurs. This is optimal for applications that regularly monitor multiple analog inputs in synchronization with an external trigger.

Figure 13-13. Example of Scan Mode (External Trigger Scan) Operation: For A/D Converter 0

13.10 Precautions on Operation

13.10.1 Stopping A/D conversion operation

If 0 is written in the ADCE0 or ADCE1 bit of the ADSCM00 or ADSCM10 register during A/D conversion operation, it stops A/D conversion operation and an A/D conversion result is not stored in the ADCR0n or ADCR1n register (n = 0 to 7).

13.10.2 Trigger input during A/D conversion operation

If a trigger is input during A/D conversion operation, that trigger input is ignored.

13.10.3 External or timer trigger interval

Make the trigger interval (input time interval) in external or timer trigger mode longer than the conversion time specified by the FR2 to FR0 bits of the ADSCM01 or ADSCM11 register.

(1) When interval = 0

If multiple triggers are input simultaneously, they are processed as one trigger signal.

(2) When 0 < interval < conversion time

If an external or timer trigger is input during A/D conversion operation, that trigger input is ignored.

(3) When interval = conversion time

If an external or timer trigger is input at the same time as A/D conversion termination (comparison termination signal and trigger contention), interrupt generation and ADCR0n or ADCR1n register storage of the value with which conversion terminated are performed correctly (n = 0 to 7).

13.10.4 Operation in standby modes

(1) HALT mode

A/D conversion operation is suspended. If released by NMI or maskable interrupt input, the ADSCM00, ADSCM10, ADSCM01, or ADSCM11 register and ADCR0n or ADCR1n register maintain their values (n = 0 to 7).

If released by RESET input, the ADCR0n or ADCR1n register is initialized.

(2) IDLE mode, software STOP mode

Since clock supply to A/D converter 0 or 1 stops, A/D conversion operation is not performed.

If released by NMI or maskable interrupt input, the ADSCM00, ADSCM10, ADSCM01, or ADSCM11 register and ADCR0n or ADCR1n register maintain their values (n = 0 to 7). However, if IDLE mode or software STOP mode is set during A/D conversion operation, A/D conversion operation stops.

If released by RESET input, the ADCR0n or ADCR1n register is initialized.

13.10.5 Compare match interrupt in timer trigger mode

A TM0n timer 0 register underflow interrupt (INTTM00 or INTTM01) and CM003 or CM013 interrupt (INTCM003 or INTCM013) is an A/D conversion start trigger that starts conversion operation (n = 0, 1). At this time, the CM003 or CM013 match interrupt (INTCM003 or INTCM013) also functions as a compare register match interrupt for the CPU. In order not to generate these match interrupts for the CPU, disable interrupts using the mask bits (TM0MK0, TM0MK1, CM03MK0, CM03MK1) of the interrupt control registers (TM0IC0, TM0IC1, CM03IC0, CM03IC1).

13.10.6 Timing that makes the A/D conversion result undefined

If the timing of the end of A/D conversion and the timing of the stop of operation of the A/D converter conflict, the A/D conversion value may be undefined. Because of this, be sure to read the A/D conversion result while the A/D converter is in operation. Furthermore, when reading an A/D conversion result after the A/D converter operation has stopped, be sure to have done so by the time the next conversion result is complete.

The conversion result read timing is shown in Figures 13-14 and 13-15 below.

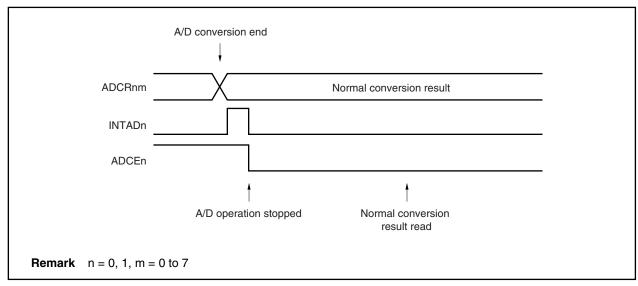



Figure 13-14. Conversion Result Read Timing (When Conversion Result Is Undefined)

Figure 13-15. Conversion Result Read Timing (When Conversion Result Is Normal)

<R> 13.10.7 Restriction caused by contention between occurrence of a timer trigger and input of an external trigger

A/D conversion may not start if occurrence of a timer trigger and input of an external trigger contend in timer trigger mode or external trigger mode. If a new trigger is input in this state, however, A/D conversion starts and ends normally.

The A/D converter has two external trigger input pins, ADTRG0 and ADTRG1, which alternately function as external interrupt request input pins (INTP2, INTP3) or port input pins (P03, P04), but each alternative function cannot be masked. Therefore, even if these pins are used as external interrupt request input pins or port input pins, not as external trigger input pins, they input an external trigger upon detection of the valid edge set by the INTM1 register, which may result in the contention.

The V850E/IA1 has two A/D converter circuits. Among two external trigger input pins, the ADTRG0 pin is used by A/D converter 0, and the ADTRG1 pin is used by A/D converter 1. Therefore, input from the ADTRG0 pin does not affect the operation of A/D converter 1, and vice versa.

[Conditions not affected by this restriction]

This restriction does not occur in A/D trigger mode and A/D trigger polling mode.

[Countermeasures]

- In timer trigger mode, implement either of the following.
 - <1> Set A/D trigger mode or A/D trigger polling mode as the A/D conversion trigger mode, set an A/D conversion trigger via software during servicing of the timer interrupt that was to be set in the ITRG0 register, and then perform A/D conversion.
 - <2> Fix the level of input from external trigger input pins (ADTRG0, ADTRG1).
- In external trigger mode, implement either of the following.
 - <1> Set A/D trigger mode or A/D trigger polling mode as the A/D conversion trigger mode, set an A/D conversion trigger via software during external interrupt servicing, and then perform A/D conversion.
 - <2> Set timer 0 to PWM mode 2 (sawtooth wave) and set interrupt INTTM00 or INTTM01 in the ITRG0 register. Interrupts INTTM00 and INTTM01 do not occur in PWM mode 2 (sawtooth wave).

<R> 13.10.8 Termination of A/D conversion when forcibly suspending scan mode (A/D trigger mode, A/D trigger polling mode, timer trigger mode, external trigger mode) or select mode (A/D trigger polling mode)

When forcibly suspending A/D conversion being performed in scan mode (A/D trigger mode, A/D trigger polling mode, timer trigger mode or external trigger mode) or select mode (A/D trigger polling mode) by clearing the ADCEn bit of the ADSCMn0 register to 0, be sure to execute the clearing three times in succession as shown below.

In the case of scan mode, A/D conversion may not stop but be completed up to the last analog input pin subject to conversion, upon which an A/D conversion end interrupt (INTADn) may occur.

- <1> DI instruction (acknowledgment of interrupts disabled)
 <2> ADCEn bit of ADSCMn0 register = 0
 <3> ADCEn bit of ADSCMn0 register = 0
 <4> ADCEn bit of ADSCMn0 register = 0
 <5> EI instruction (acknowledgment of interrupts enabled)
- <R>> 13.10.9 Variation of A/D conversion results

The results of the A/D conversion may vary depending on the fluctuation of the supply voltage, or may be affected by noise. To reduce the variation, take counteractive measures with the program, such as by averaging the A/D conversion results.

<R> 13.10.10 A/D conversion result hysteresis characteristics

Successive comparison type A/D converters hold an analog input voltage in an internal sample & hold capacitor and then perform A/D conversion. After the A/D conversion has finished, the analog input voltage remains in the internal sample & hold capacitor. As a result, the following phenomena may occur if the output impedance from the analog input source is too high.

- When the same channel is used for A/D conversions, if the voltage is higher or lower than the previous A/D conversion, then hysteresis characteristics may appear where the conversion result is affected by the previous value. Even if the conversion were to be performed at the same potential, the results may thus vary.
- When switching the analog input channel, hysteresis characteristics may appear where the conversion result is affected by the previous channel value. This is because one A/D converter is used for the A/D conversions. Even if the conversion were to be performed at the same potential, the results may thus vary.

To obtain more accurate conversion results, lower the output impedance from the analog input source or execute A/D conversion twice consecutively on the same channel, and discard the first conversion result.

13.11 How to Read A/D Converter Characteristics Table

Here, special terms unique to the A/D converter are explained.

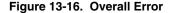
(1) Resolution

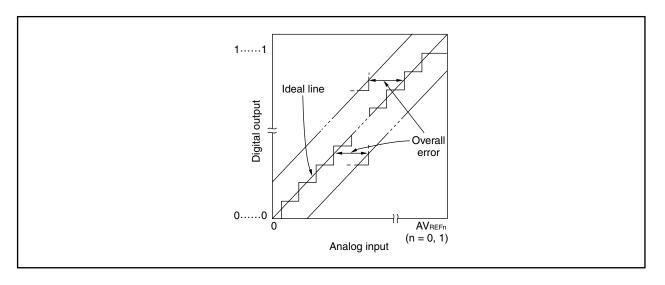
This is the minimum analog input voltage that can be identified. That is, the percentage of the analog input voltage per bit of digital output is called 1LSB (Least Significant Bit). The percentage of 1LSB with respect to the full scale is expressed by %FSR (Full Scale Range). %FSR indicates the ratio of analog input voltage that can be converted as a percentage, and is always represented by the following formula regardless of the resolution.

1%FSR = (Max. value of analog input voltage that can be converted – Min. value of analog input voltage that can be converted)/100 = (AVREFn – 0)/100

Remark n = 0, 1

 $= AV_{REFn}/100$


1LSB is as follows when the resolution is 10 bits.


$$1LSB = 1/2^{10} = 1/1024$$

= 0.098 %FSR

Accuracy has no relation to resolution, but is determined by overall error.

(2) Overall error

This shows the maximum error value between the actual measured value and the theoretical value. It is a total of zero-scale error, full-scale error, linearity error, and a combination of these errors. Note that the quantization error is not included in the overall error in the characteristics table.

(3) Quantization error

When analog values are converted to digital values, a $\pm 1/2$ LSB error naturally occurs. In an A/D converter, an analog input voltage in a range of $\pm 1/2$ LSB is converted to the same digital code, so a quantization error cannot be avoided.

Note that the quantization error is not included in the overall error, zero-scale error, full-scale error, integral linearity error, and differential linearity error in the characteristics table.

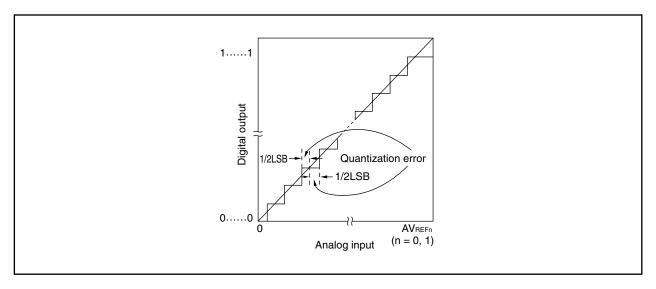


Figure 13-17. Quantization Error

(4) Zero-scale error

This shows the difference between the actual measurement value of the analog input voltage and the theoretical value (1/2LSB) when the digital output changes from 0......000 to 0......001.

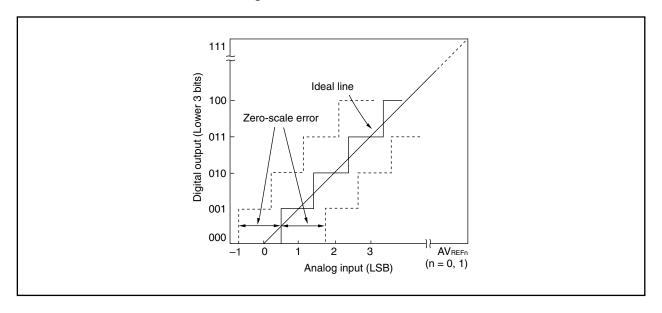


Figure 13-18. Zero-Scale Error

(5) Full-scale error

This shows the difference between the actual measurement value of the analog input voltage and the theoretical value (full scale – 3/2LSB) when the digital output changes from 1......110 to 1......111.

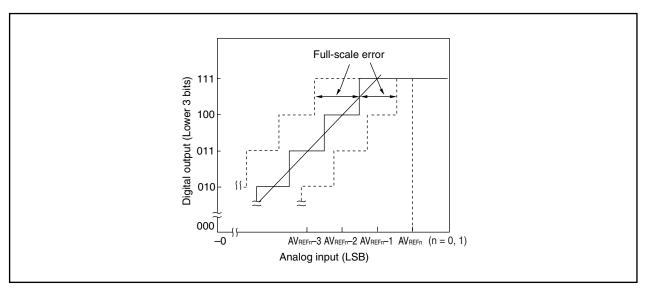


Figure 13-19. Full-Scale Error

(6) Differential linearity error

While the ideal width of code output is 1LSB, this indicates the difference between the actual measurement value and the ideal value.

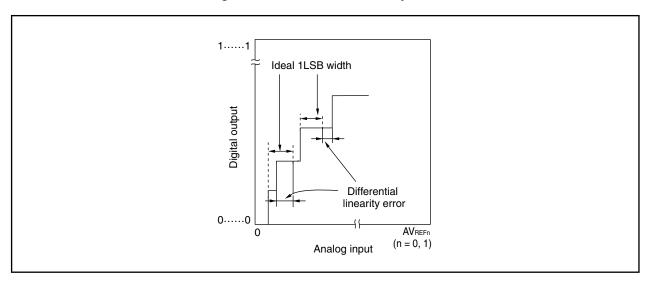


Figure 13-20. Differential Linearity Error

(7) Integral linearity error

This shows the degree to which the conversion characteristics deviate from the ideal linear relationship. It expresses the maximum value of the difference between the actual measurement value and the ideal straight line when the zero-scale error and full-scale error are 0.

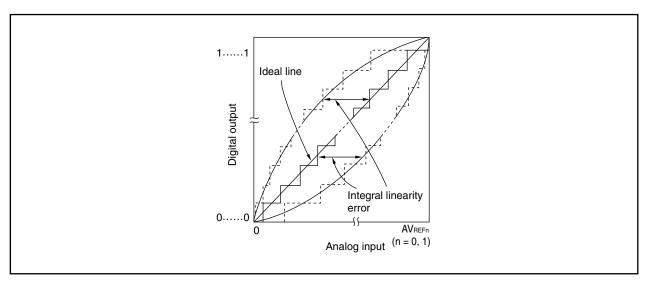


Figure 13-21. Integral Linearity Error

(8) Conversion time

This expresses the time from when a trigger was generated to the time when the digital output was obtained. The sampling time is included in the conversion time in the characteristics table.

(9) Sampling time

This is the time the analog switch is turned on for the analog voltage to be sampled by the sample & hold circuit.

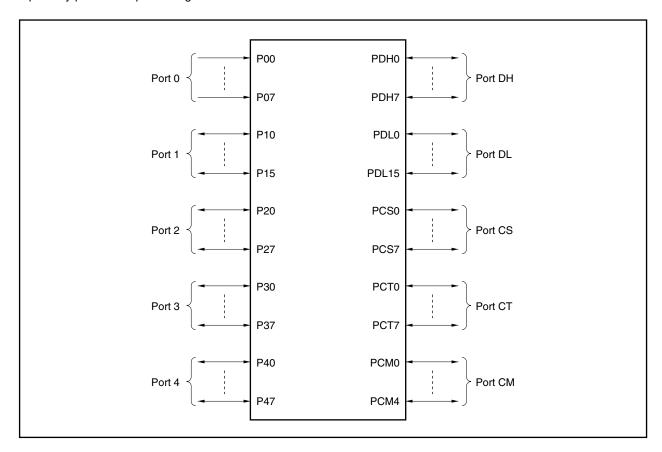
Sampling ____ time _____

Figure 13-22. Sampling Time

CHAPTER 14 PORT FUNCTIONS

14.1 Features

• Input dedicated ports: 8


I/O ports: 75

• Ports alternate as I/O pins of other peripheral functions

• Input or output can be specified in bit units

14.2 Basic Configuration of Ports

The V850E/IA1 has a total of 83 on-chip input/output ports (ports 0 to 4, DH, DL, CS, CT, CM), of which 8 are input-only ports. The port configuration is shown below.

(1) Functions of each port

The V850E/IA1 has the ports shown below.

Any port can operate in 8-bit or 1-bit units and can provide a variety of controls.

Moreover, besides its function as a port, each has functions as the I/O pins of on-chip peripheral I/O in control mode.

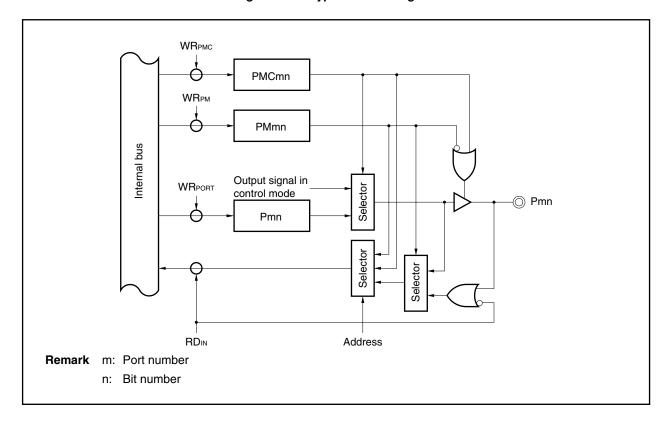
Refer to (3) Port block diagrams for a block diagram of the block type of each port.

Port Name	Pin Name	Port Function	Function in Control Mode	Block Type
Port 0	P00 to P07	8-bit input	NMI input, timer/counter output stop signal input, external interrupt input, A/D converter (ADC) external trigger input	F
Port 1	P10 to P15	6-bit I/O	Timer/counter I/O External interrupt input	B, N
Port 2	P20 to P27	8-bit I/O	Timer/counter I/O External interrupt input	B, N
Port 3	P30 to P37	8-bit I/O	Serial interface I/O (UART0 to UART2)	A, C, G, H, M
Port 4	P40 to P47	8-bit I/O	Serial interface I/O (CSI0, CSI1, FCAN)	A, C, M
Port DH	PDH0 to PDH7	8-bit I/O	External address bus (A16 to A23)	Р
Port DL	PDL0 to PDL15	16-bit I/O	External address/data bus (AD0 to AD15)	0
Port CS	PCS0 to PCS7	8-bit I/O	External bus interface control signal output	J
Port CT	PCT0 to PCT7	8-bit I/O	External bus interface control signal output	E, J
Port CM	PCM0 to PCM4	5-bit I/O	Wait insertion signal input, internal system clock output, external bus interface control signal I/O	D, E, J

- Cautions 1. When switching to the control mode, be sure to set ports that operate as output pins or I/O pins in the control mode using the following procedure.
 - <1> Set the inactive level for the signal output in the control mode in the corresponding bits of port n (n = 0 to 4, CM, CS, CT, DH, and DL).
 - <2> Switch to the control mode using the port n mode control register (PMCn).

If <1> above is not performed, the contents of port n may be output for a moment when switching from the port mode to the control mode.

- When port manipulation is performed by a bit manipulation instruction (SET1, CLR1, or NOT1), perform byte data read for the port and process the data of only the bits to be manipulated, and write the byte data after conversion back to the port.
 - For example, in ports in which input and output are mixed, because the contents of the output latch are overwritten to bits other than the bits for manipulation, the output latch of the input pin becomes undefined (in the input mode, however, the pin status does not change because the output buffer is off).
 - Therefore, when switching the port from input to output, set the output expected value to the corresponding bit, and then switch to the output port. This is the same as when the control mode and output port are mixed.
- 3. The state of the port pin can be read by setting the port n mode register (PMn) to the input mode regardless of the settings of the PMCn register. When the PMn register is set to the output mode, the value of the port n register (Pn) can be read in the port mode while the output state of the alternate function can be read in the control mode.


(2) Functions of each port pin after reset and registers that set port or control mode

Port Name	Pin Name		Pin Function After Reset				
		Single-Chip Mode 0	Single-Chip Mode 1	ROMless Mode 0	ROMless Mode 1	Register	
Port 0	P00/NMI	P00 (Input m	P00 (Input mode)				
	P01/ESO0/INTP0	P01 (Input m	P01 (Input mode)				
	P02/ESO1/INTP1	P02 (Input m	node)				
	P03/ADTRG0/INTP2	P03 (Input m	node)				
	P04/ADTRG1/INTP3	P04 (Input m	node)				
	P05/INTP4	P05 (Input m	node)				
	P06/INTP5	P06 (Input m	node)				
	P07/INTP6	P07 (Input m	node)				
Port 1	P10/TIUD10/TO10	P10 (Input m	node)			PMC1, PFC1	
	P11/TCUD10/INTP100	P11 (Input m	node)			PMC1	
	P12/TCLR10/INTP101	P12 (Input m	node)				
	P13/TIUD11/TO11	P13 (Input m	P13 (Input mode)				
	P14/TCUD11/INTP110	P14 (Input m	P14 (Input mode)				
	P15/TCLR11/INTP111	P15 (Input m	P15 (Input mode)				
Port 2	P20/TI2/INTP20	P20 (Input m	P20 (Input mode)				
	P21/TO21/INTP21	P21 (Input m	P21 (Input mode)				
	P22/TO22/INTP22	P22 (Input m	P22 (Input mode)				
	P23/TO23/INTP23	P23 (Input m	P23 (Input mode)				
	P24/TO24/INTP24	P24 (Input m	P24 (Input mode)				
	P25/TCLR2/INTP25	P25 (Input m	P25 (Input mode)			PMC2	
	P26/TI3/TCLR3/INTP30	P26 (Input m	P26 (Input mode)				
	P27/TO3/INTP31	P27 (Input m	P27 (Input mode)				
Port 3	P30/RXD0	P30 (Input m	node)			РМС3	
	P31/TXD0	P31 (Input m	P31 (Input mode)]	
	P32/RXD1	P32 (Input m	P32 (Input mode)				
	P33/TXD1	P33 (Input m	node)				
	P34/ASCK1	P34 (Input m	P34 (Input mode)				
	P35/RXD2	P35 (Input m	node)				
	P36/TXD2	P36 (Input m	node)				
	P37/ASCK2	P37 (Input m	node)				

Port Name	Pin Name		Pin Function After Reset				
		Single-Chip Mode 0	Single-Chip Mode 1	ROMless Mode 0	ROMless Mode 1	Register	
Port 4	P40/SI0	P40 (Input mode)					
	P41/S00	P41 (Input mo	1				
	P42/SCK0	P42 (Input mo	P42 (Input mode)				
	P43/SI1	P43 (Input mo	P43 (Input mode)				
	P44/SO1	P44 (Input mo	P44 (Input mode)				
	P45/SCK1	P45 (Input mo	P45 (Input mode)				
	P46/CRXD	P46 (Input mo	de)				
	P47/CTXD	P47 (Input mo	de)				
Port CM	PCM0/WAIT	PCM0 (Input mode)	WAIT			PMCCM	
	PCM1/CLKOUT	PCM1 (Input mode)	CLKOUT				
	PCM2/HLDAK	PCM2 (Input mode)	HLDAK				
	PCM3/HLDRQ	PCM3 (Input mode)	HLDRQ				
	PCM4	PCM4 (Input n	node)			-	
Port CT	PCT0/LWR	PCT0 (Input mode)	LWR			PMCCT	
	PCT1/UWR	PCT1 (Input mode)	ŪWR				
	PCT2	PCT2 (Input m	node)			-	
	PCT3	PCT3 (Input m	node)				
	PCT4/RD	PCT4 (Input mode)	RD			PMCCT	
	PCT5	PCT5 (Input m	node)			_	
	PCT6/ASTB	PCT6 (Input mode)	ASTB			PMCCT	
	PCT7	PCT7 (Input m	node)			-	
Port CS	PCS0/CS0 to PCS7/CS7	PCS0 to PCS7 (Input mode)	CS0 to CS7			PMCCS	
Port DH	PDH0/A16 to PDH7/A23	PDH0 to PDH7 (Input mode)	A16 to A23			PMCDH	
Port DL	PDL0/AD0 to PDL15/AD15	PDL0 to PDL15 (Input mode)	AD0 to AD15			PMCDL	

(3) Port block diagrams

Figure 14-1. Type A Block Diagram

 WR_{PMC} PMCmn WR_{PM} PMmn Internal bus WR_{PORT}
→

○

Pmn Pmn Selector Selector Address RD_{IN} Input signal in _control mode Noise elimination Edge detection Remark m: Port number n: Bit number

Figure 14-2. Type B Block Diagram

WRPM
PMC
PMCm
WRPM
PMm
PMm
WRPORT
Pmn
WRPORT
Pmn
Address
RDin
Input signal in control mode
Remark m: Port number
n: Bit number

Figure 14-3. Type C Block Diagram

MODE0 to MODE2 WRPMC PMCmn WR_{PM} PMmn Internal bus WRPORT Pmn O Pmn Selector Selector Address RD_{IN} Input signal in control mode Remark m: Port number n: Bit number

Figure 14-4. Type D Block Diagram

Figure 14-5. Type E Block Diagram

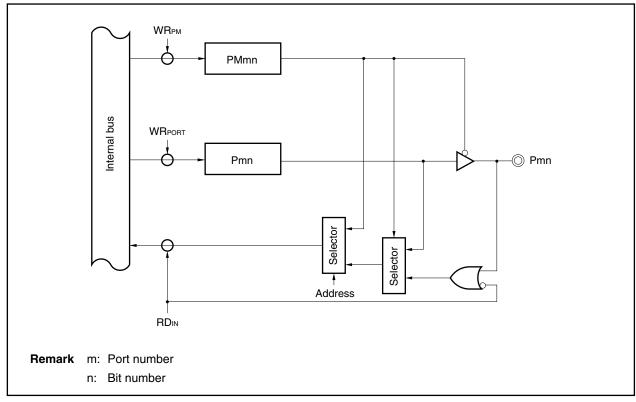


Figure 14-6. Type F Block Diagram

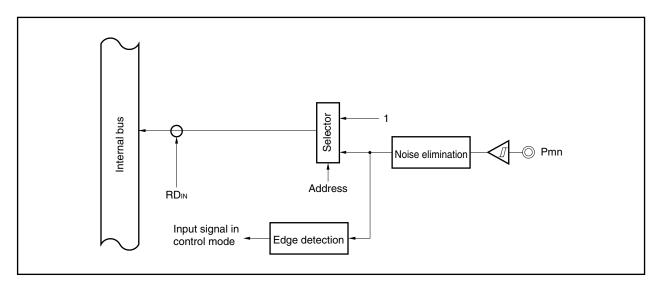
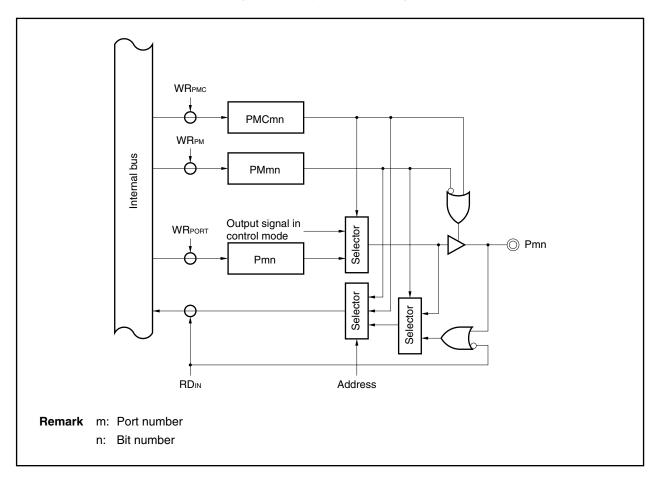



Figure 14-7. Type G Block Diagram

WRemc
PMCmn
WRem
WRemT
Pmn
Pmn
Pmn
Input signal in control mode
Remark m: Port number
n: Bit number

Figure 14-8. Type H Block Diagram

MODE0 to MODE2 WRPMC **PMCmn** WR_{PM} PMmn Internal bus Output signal in control mode Selector WR_{PORT} -⊚ Pmn Pmn Selector Selector RD_{IN} Address Remark m: Port number n: Bit number

Figure 14-9. Type J Block Diagram

SCKx, ASCKy output enable signal WRPMC **PMCmn** WR_{PM} PMmn Output signal in Internal bus WR_{PORT} control mode Selector - Pmn Pmn Selector Selector Address RDIN Input signal in control mode **Remark** mn: 34, 37, 42, 45 0 (When mn = 42)1 (When mn = 45) 1 (When mn = 34) y: 2 (When mn = 37)

Figure 14-10. Type M Block Diagram

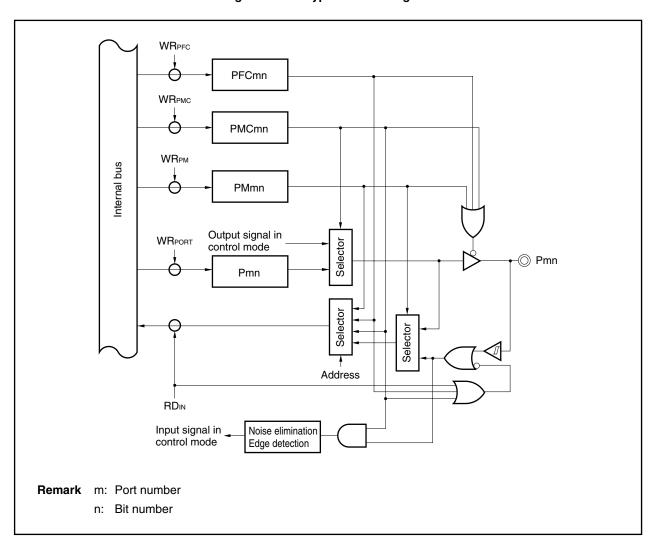


Figure 14-11. Type N Block Diagram

MODE0 to MODE2 WRPMC I/O control **PMCmn** WR_{PM} PMmn Internal bus Output signal in control mode WRPORT Selector O Pmn Pmn Selector Selector Address RDIN Input signal in control mode I/O control Remark m: Port number n: Bit number

Figure 14-12. Type O Block Diagram

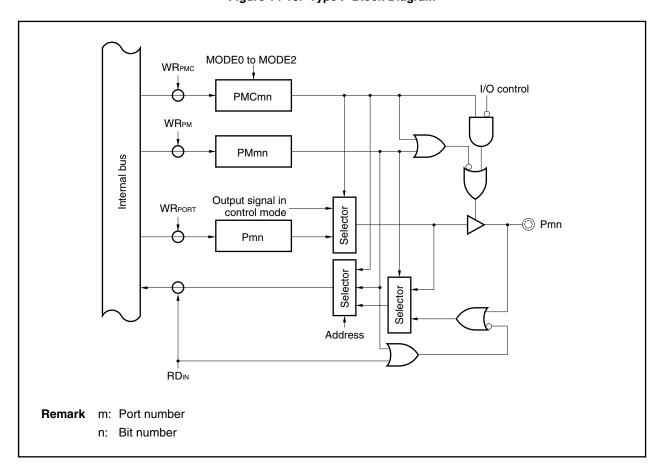
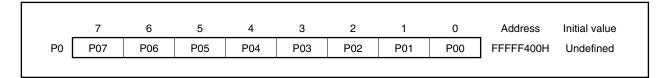



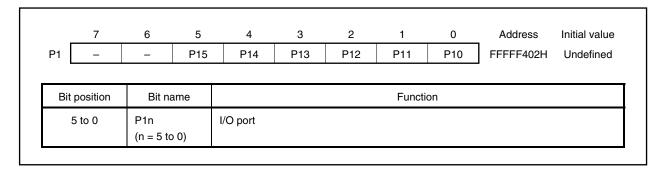
Figure 14-13. Type P Block Diagram

14.3 Pin Functions of Each Port

14.3.1 Port 0

Port 0 is an 8-bit input dedicated port in which all pins are fixed for input.

Besides functioning as an input port, in control mode, it also can operate as the timer/counter output stop signal input, external interrupt request input, and A/D converter (ADC) external trigger input.


Although this port also serves as NMI, ESO0/INTP0, ESO1/INTP1, ADTRG0/INTP2, ADTRG1/INTP3, and INTP4 to INTP6, NMI, ESO0/INTP0, ESO1/INTP1, ADTRG0/INTP2, ADTRG1/INTP3, and INTP4 to INTP6 cannot be switched with input port. The status of each pin is read by reading the port.

(1) Operation in control mode

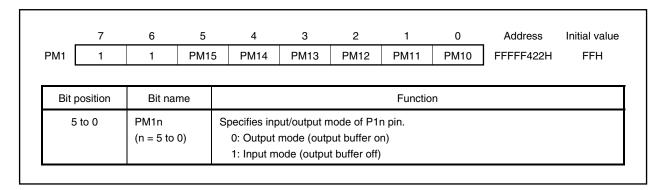
Р	ort	Alternate Pin Name	Remarks	Block Type
Port 0	0 P00 NMI P01 ESO0/INTP0 P02 ESO1/INTP1		Non-maskable interrupt request input	F
			Timer/counter output stop signal input or external	
			interrupt request input	
	P03	ADTRG0/INTP2	A/D converter (ADC) external trigger input or external	
	P04 ADTRG1/INTP3 interre		interrupt request input	
	P05 to P07	INTP4 to INTP6	External interrupt request input	

14.3.2 Port 1

Port 1 is a 6-bit I/O port in which input or output can be specified in 1-bit units.

Besides functioning as a port, in control mode, it also can operate as the timer/counter I/O and external interrupt request input.

(1) Operation in control mode


P	ort	Alternate Pin Name	Remarks	Block Type
Port 1	P10	TIUD10/TO10	Timer/counter I/O	N
	P11	TCUD10/INTP100	Timer/counter input or external interrupt request input	В
	P12	TCLR10/INTP101		
	P13	TIUD11/TO11	Timer/counter I/O	N
	P14	TCUD11/INTP110	Timer/counter input or external interrupt request input	В
	P15	TCLR11/INTP111		

(2) Setting in I/O mode and control mode

Port 1 is set in I/O mode using the port 1 mode register (PM1). In control mode, it is set using the port 1 mode control register (PMC1) and port 1 function control register (PFC1).

(a) Port 1 mode register (PM1)

This register can be read/written in 8-bit or 1-bit units. Write 1 in bits 6 and 7.

(b) Port 1 mode control register (PMC1)

This register can be read/written in 8-bit or 1-bit units. Write 0 in bits 6 and 7.

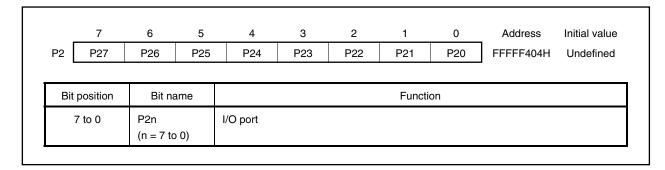
Caution The PMC11, PMC12, PMC14, and PMC15 bits also serve as external interrupts (INTP100, INTP101, INTP110, and INTP111). When not using them as external interrupts, mask interrupt requests (refer to 7.3.4 Interrupt control register (xxICn)).

	7	6	5	4	3	2	1	0	Address	Initial value
PMC1	0	0	PMC15	PMC14	PMC13	PMC12	PMC11	PMC10	FFFFF442H	00H

Bit position	Bit name	Function
5	PMC15	Specifies operation mode of P15 pin. 0: I/O port mode 1: TCLR11 input mode or external interrupt request (INTP111) input mode
4	PMC14	Specifies operation mode of P14 pin. 0: I/O port mode 1: TCUD11 input mode or external interrupt request (INTP110) input mode
3	PMC13	Specifies operation mode of P13 pin. 0: I/O port mode 1: TIUD11 input mode or TO11 output mode
2	PMC12	Specifies operation mode of P12 pin. 0: I/O port mode 1: TCLR10 input mode or external interrupt request (INTP101) input mode
1	PMC11	Specifies operation mode of P11 pin. 0: I/O port mode 1: TCUD10 input mode or external interrupt request (INTP100) input mode
0	PMC10	Specifies operation mode of P10 pin. 0: I/O port mode 1: TIUD10 input mode or TO10 output mode

(c) Port 1 function control register (PFC1)

This register can be read/written in 8-bit or 1-bit units. Write 0 in bits other than 0 and 3.


Caution When port mode is specified by the port 1 mode control register (PMC1), the setting of this register is invalid.

	7	6	5	4	3	2	1	0	Address	Initial value
PFC1	0	0	0	0	PFC13	0	0	PFC10	FFFFF462H	00H

Bit position	Bit name	Function
3	PFC13	Specifies operation mode of P13 pin in control mode. 0: TIUD11 input mode 1: TO11 output mode
0	PFC10	Specifies operation mode of P10 pin in control mode. 0: TIUD10 input mode 1: TO10 output mode

14.3.3 Port 2

Port 2 is an 8-bit I/O port in which input or output can be specified in 1-bit units.

Besides functioning as a port, in control mode, it also can operate as the timer/counter I/O and external interrupt request input.

(1) Operation in control mode

Р	ort	Alternate Pin Name	Remarks	Block Type
Port 2	P20	TI2/INTP20	Timer/counter input or external interrupt request input	В
	P21 to P24	TO21/INTP21 to TO24/INTP24	Timer/counter output or external interrupt request input	N
	P25	TCLR2/INTP25	Timer/counter input or external interrupt request input	В
	P26	TI3/TCLR3/INTP30		
	P27	TO3/INTP31	Timer/counter output or external interrupt request input	N

(2) Setting in I/O mode and control mode

Port 2 is set in I/O mode using the port 2 mode register (PM2). In control mode, it is set using the port 2 mode control register (PMC2) and port 2 function control register (PFC2).

(a) Port 2 mode register (PM2)

PM2	7 PM27	6 PM26	5 PM25	4 PM24	3 PM23	2 PM22	1 PM21	0 PM20	Address FFFFF424H	Initial value
Bit position Bit name							Functio	n		
7 to 0 PM2n (n = 7 to 0)				Specifies input/output mode of P2n pin. 0: Output mode (output buffer on) 1: Input mode (output buffer off)						

(b) Port 2 mode control register (PMC2)

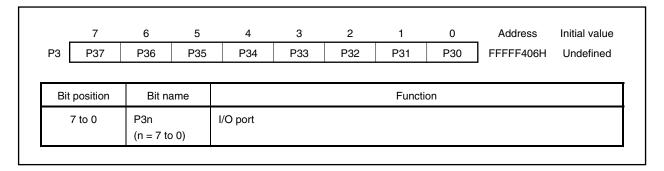
This register can be read/written in 8-bit or 1-bit units.

Caution The PMC20, PMC25, and PMC26 bits also serve as external interrupts (INTP20, INTP25, and INTP30). When not using them as external interrupts, mask interrupt requests (refer to 7.3.4 Interrupt control register (xxICn)).

	7	6	5	4	3	2	1	0	Address	Initial value
PMC2	PMC27	PMC26	PMC25	PMC24	PMC23	PMC22	PMC21	PMC20	FFFFF444H	00H
Dit n	oosition	Bit nan					Function			
ыц								ı		
7 PMC27				Specifies operation mode of P27 pin. 0: I/O port mode						
	6	PMC26	Sp	1: TO3 output mode or external interrupt request (INTP31) input mode Specifies operation mode of P26 pin. 0: I/O port mode 1: TI3, TCLR3 input mode or external interrupt request (INTP30) input mode						
	5	PMC25		Specifies operation mode of P25 pin. 0: I/O port mode 1: TCLR2 input mode or external interrupt request (INTP25) input mode						
4	to 1	PMC24 to PMC21		Specify operation mode of P24 to P21 pins. 0: I/O port mode 1: TO24 to TO21 output mode or external interrupt request (INTP24 to INTP input mode					INTP21)	
	0	PMC20		Specifies operation mode of P20 pin. 0: I/O port mode 1: TI2 input mode or external interrupt request (INTP20) input mode					0) input mode	

(c) Port 2 function control register (PFC2)

This register can be read/written in 8-bit or 1-bit units. Write 0 in bits 0, 5, and 6.


Caution When port mode is specified by the port 2 mode control register (PMC2), the setting of this register is invalid.

	7	6	5	4	3	2	1	0	Address	Initial value
PFC2	PFC27	0	0	PFC24	PFC23	PFC22	PFC21	0	FFFFF464H	00H

Bit position	Bit name	Function
7	PFC27	Specifies operation mode of P27 pin in control mode. 0: External interrupt request (INTP31) input mode 1: TO3 output mode
4 to 1	PFC24 to PFC21	Specify operation mode of P24 to P21 pins in control mode. 0: External interrupt request (INTP24 to INTP21) input mode 1: TO24 to TO21 output mode

14.3.4 Port 3

Port 3 is an 8-bit I/O port in which input or output can be specified in 1-bit units.

Besides functioning as a port, in control mode, it also can operate as the serial interface (UART0 to UART2) I/O.

(1) Operation in control mode

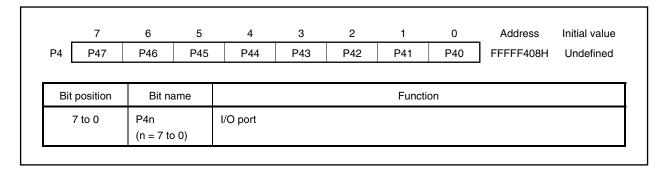
Р	ort	Alternate Pin Name	Remarks	Block Type
Port 3	P30	RXD0	Serial interface (UART0 to UART2) I/O	Н
	P31	TXD0		G
	P32	RXD1		С
	P33	TXD1		Α
	P34	ASCK1		М
	P35	RXD2		С
	P36	TXD2		Α
	P37	ASCK2		М

(2) Setting in I/O mode and control mode

Port 3 is set in I/O mode using the port 3 mode register (PM3). In control mode, it is set using the port 3 mode control register (PMC3).

(a) Port 3 mode register (PM3)

	7	6	5	4	3	2	1	0	Address	Initial value
РМЗ	PM37	PM36	PM35	PM34	PM33	PM32	PM31	PM30	FFFFF426H	FFH
Bit	oosition	Bit naı	me				Functio	n		
Bit position 7 to 0		PM3n (n = 7 to		Specifies input/output mode of P3n pin. 0: Output mode (output buffer on) 1: Input mode (output buffer off)						


(b) Port 3 mode control register (PMC3)

	7	6	5	4	3	2	1	0	Address	Initial value
PMC3	PMC37	PMC36	PMC35	PMC34	PMC33	PMC32	PMC31	PMC30	FFFFF446H	00H

Bit position	Bit name	Function
7	PMC37	Specifies operation mode of P37 pin. 0: I/O port mode 1: ASCK2 I/O mode
6	PMC36	Specifies operation mode of P36 pin. 0: I/O port mode 1: TXD2 output mode
5	PMC35	Specifies operation mode of P35 pin. 0: I/O port mode 1: RXD2 input mode
4	PMC34	Specifies operation mode of P34 pin. 0: I/O port mode 1: ASCK1 I/O mode
3	PMC33	Specifies operation mode of P33 pin. 0: I/O port mode 1: TXD1 output mode
2	PMC32	Specifies operation mode of P32 pin. 0: I/O port mode 1: RXD1 input mode
1	PMC31	Specifies operation mode of P31 pin. 0: I/O port mode 1: TXD0 output mode
0	PMC30	Specifies operation mode of P30 pin. 0: I/O port mode 1: RXD0 input mode

14.3.5 Port 4

Port 4 is an 8-bit I/O port in which input or output can be specified in 1-bit units.

Besides functioning as a port, in control mode, it also can operate as the serial interface (CSI0, CSI1, FCAN) I/O.

(1) Operation in control mode

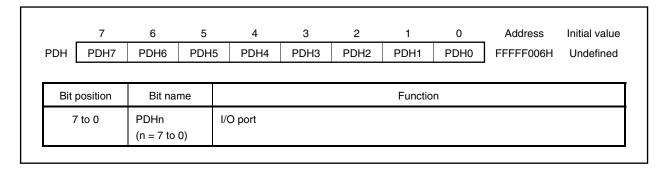
F	Port	Alternate Pin Name	Remarks	Block Type
Port 4	P40	SIO	Serial interface (CSI0, CSI1, FCAN) I/O	С
	P41	SO0		А
	P42	SCK0		М
	P43	SI1		С
	P44	SO1		Α
	P45	SCK1		М
	P46	CRXD		С
	P47	CTXD		Α

(2) Setting in I/O mode and control mode

Port 4 is set in I/O mode using the port 4 mode register (PM4). In control mode, it is set using the port 4 mode control register (PMC4).

(a) Port 4 mode register (PM4)

PM4	7 PM47	6 PM46	5 PM45	4 PM44	3 PM43	2 PM42	1 PM41	0 PM40	Address FFFFF428H	Initial value FFH
Bit position Bit name Function										
7 to 0 PM4n (n = 7 to 0)		0)	Specifies input/output mode of P4n pin. 0: Output mode (output buffer on) 1: Input mode (output buffer off)							


(b) Port 4 mode control register (PMC4)

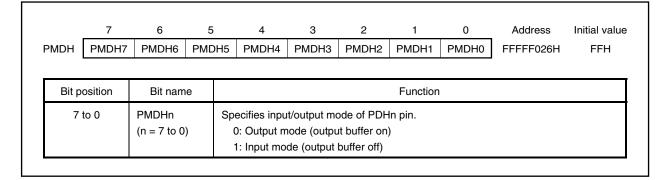
	7	6	5	4	3	2	1	0	Address	Initial value
PMC4	PMC47	PMC46	PMC45	PMC44	PMC43	PMC42	PMC41	PMC40	FFFFF448H	00H

Bit position	Bit name	Function
7	PMC47	Specifies operation mode of P47 pin. 0: I/O port mode 1: CTXD output mode
6	PMC46	Specifies operation mode of P46 pin. 0: I/O port mode 1: CRXD input mode
5	PMC45	Specifies operation mode of P45 pin. 0: I/O port mode 1: SCK1 I/O mode
4	PMC44	Specifies operation mode of P44 pin. 0: I/O port mode 1: SO1 output mode
3	PMC43	Specifies operation mode of P43 pin. 0: I/O port mode 1: SI1 input mode
2	PMC42	Specifies operation mode of P42 pin. 0: I/O port mode 1: SCK0 I/O mode
1	PMC41	Specifies operation mode of P41 pin. 0: I/O port mode 1: SO0 output mode
0	PMC40	Specifies operation mode of P40 pin. 0: I/O port mode 1: SI0 input mode

14.3.6 Port DH

Port DH is an 8-bit I/O port in which input or output can be specified in 1-bit units.

Besides functioning as a port, in control mode, this can operate as an address bus when memory is expanded externally.


(1) Operation in control mode

Р	ort	Alternate Pin Name	Remarks	Block Type
Port DH	PDH7 to PDH0	A23 to A16	Memory expansion address bus	Р

(2) Setting in I/O mode and control mode

Port DH is set in I/O mode using the port DH mode register (PMDH). In control mode, it is set using the port DH mode control register (PMCDH).

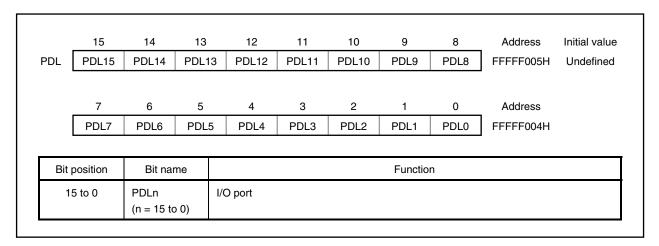
(a) Port DH mode register (PMDH)

(b) Port DH mode control register (PMCDH)

This register can be read/written in 8-bit or 1-bit units.

7 6 5 4 3 2 1 0 Address Initial value Note
PMCDH PMCDH7 PMCDH6 PMCDH5 PMCDH4 PMCDH3 PMCDH2 PMCDH1 PMCDH0 FFFFF046H 00H/FFH

Note 00H: Single-chip mode 0


FFH: Single-chip mode 1, ROMless mode 0 or 1

Bit position	Bit name	Function
7 to 0	PMCDHn (n = 7 to 0)	Specifies operation mode of PDHn pin. 0: I/O port mode 1: A23 to A16 output mode

14.3.7 Port DL

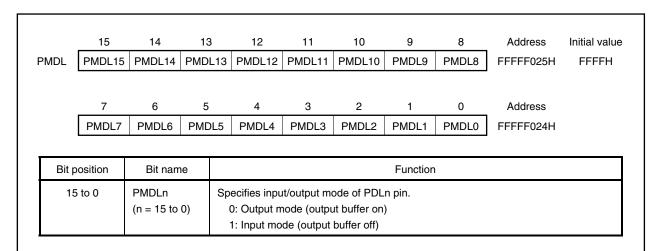
Port DL is a 16-bit or 8-bit I/O port in which input or output can be specified in 1-bit units.

When using the higher 8 bits of PDL as PDLH and the lower 8 bits as PDLL, it can be used as an 8-bit I/O port that can specify input or output in 1-bit units.

Besides functioning as a port, in control mode, this can operate as an address/data bus when memory is expanded externally.

(1) Operation in control mode

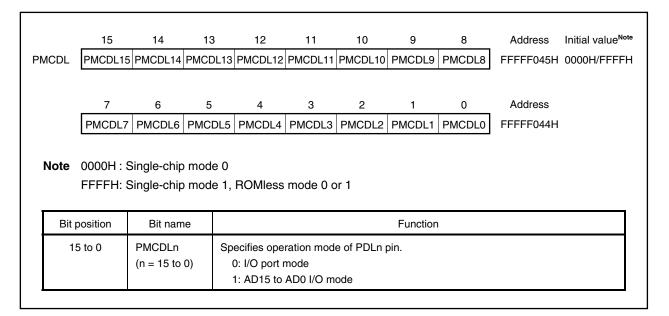
Р	ort	Alternate Pin Name	Remarks	Block Type
Port DL	PDL15 to PDL0	AD15 to AD0	Memory expansion address/data bus	0


(2) Setting in I/O mode and control mode

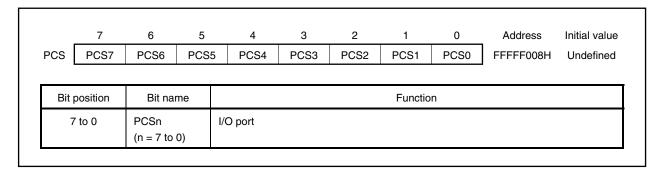
Port DL is set in I/O mode using the port DL mode register (PMDL). In control mode, it is set using the port DL mode control register (PMCDL).

(a) Port DL mode register (PMDL)

The PMDL register can be read/written in 16-bit units.


When using the higher 8 bits of the PMDL register as the PMDLH register and the lower 8 bits as the PMDLL register, it can be read/written in 8-bit or 1-bit units.

(b) Port DL mode control register (PMCDL)


The PMCDL register can be read/written in 16-bit units.

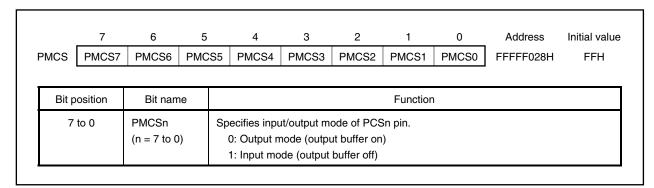
When using the higher 8 bits of the PMCDL register as the PMCDLH register and the lower 8 bits as the PMCDLL register, it can be read/written in 8-bit or 1-bit units.

14.3.8 Port CS

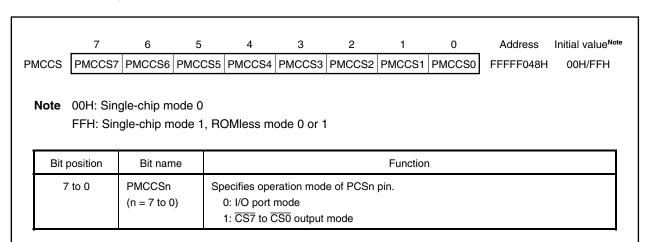
Port CS is an 8-bit I/O port in which input or output can be specified in 1-bit units.

Besides functioning as a port, in control mode, this can operate as the chip select signal output when memory is expanded externally.

(1) Operation in control mode

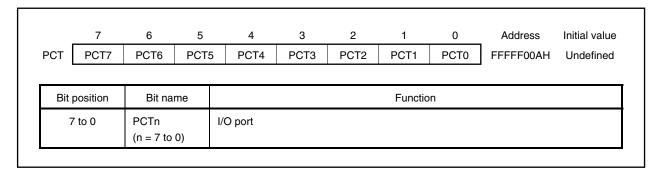

Р	ort	Alternate Pin Name	Remarks	Block Type
Port CS	PCS7 to PCS0	CS0 to CS7	Chip select signal output	J

(2) Setting in I/O mode and control mode


Port CS is set in I/O mode using the port CS mode register (PMCS). In control mode, it is set using the port CS mode control register (PMCCS).

(a) Port CS mode register (PMCS)

This register can be read/written in 8-bit or 1-bit units.



(b) Port CS mode control register (PMCCS)

14.3.9 Port CT

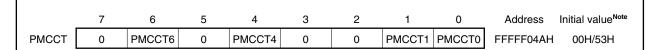
Port CT is an 8-bit I/O port in which input or output can be specified in 1-bit units.

Besides functioning as a port, in control mode, this can operate as control signal outputs when memory is expanded externally.

(1) Operation in control mode

Р	ort	Alternate Pin Name	Remarks	Block type
Port CT	PCT0	LWR	Write strobe signal output	J
	PCT1	ŪWR		
	PCT2 PCT3	-	Fixed in port mode	E
	PCT4	RD	Read strobe signal output	J
	PCT5	-	Fixed in port mode	E
	PCT6	ASTB	Address strobe signal output	J
	PCT7	_	Fixed in port mode	Е

(2) Setting in I/O mode and control mode

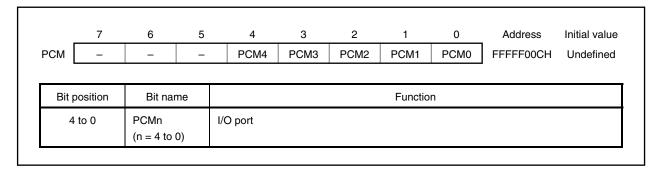

Port CT is set in I/O mode using the port CT mode register (PMCT). In control mode, it is set using the port CT mode control register (PMCCT).

(a) Port CT mode register (PMCT)

	7	6	5	4	3	2	1	0	Address	Initial value
PMCT	PMCT7	PMCT6	PMCT5	PMCT4	PMCT3	PMCT2	PMCT1	PMCT0	FFFFF02AH	FFH
Bit p	osition	Bit nam	Bit name Function							
7 to 0		PMCTn (n = 7 to 0))	Specifies input/output mode of PCTn pin. 0: Output mode (output buffer on) 1: Input mode (output buffer off)						

(b) Port CT mode control register (PMCCT)

This register can be read/written in 8-bit or 1-bit units.


Note 00H: Single-chip mode 0

53H: Single-chip mode 1, ROMless mode 0 or 1

Bit position	Bit name	Function
6	PMCCT6	Specifies operation mode of PCT6 pin. 0: I/O port mode 1: ASTB output mode
4	PMCCT4	Specifies operation mode of PCT4 pin. 0: I/O port mode 1: RD output mode
1	PMCCT1	Specifies operation mode of PCT1 pin. 0: I/O port mode 1: UWR output mode
0	PMCCT0	Specifies operation mode of PCT0 pin. 0: I/O port mode 1: LWR output mode

14.3.10 Port CM

Port CM is a 5-bit I/O port in which input or output can be specified in 1-bit units.

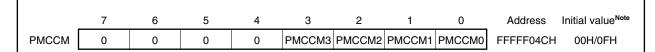
Besides functioning as a port, in control mode, this can operate as the wait insertion signal input, internal system clock output, and bus hold control signal output.

(1) Operation in control mode

Р	ort	Alternate Pin Name	Remarks	Block Type
Port CM	PCM0	WAIT ^{Note}	Wait insertion signal input	D
	PCM1	CLKOUT	Internal system clock output	J
	PCM2	HLDAK	Bus hold acknowledge signal output	J
	PCM3	HLDRQ ^{Note}	Bus hold request signal input	D
	PCM4	-	Fixed in port mode	Е

Note The WAIT and HLDRQ signals are set to control mode by default in ROMless mode 0, 1 or single-chip mode 1. Be sure to fix these pins to the inactive level when not used. These pins function in control mode until port mode is set using the port CM mode control register (PMCCM), so be sure to set these pins to the inactive level before setting PMCCM.

(2) Setting in I/O mode and control mode


Port CM is set in I/O mode using the port CM mode register (PMCM). In control mode, it is set using the port CM mode control register (PMCCM).

(a) Port CM mode register (PMCM)

PMCM	7	6	5 1	4 PMCM4	3 PMCM3	2 PMCM2	1 PMCM1	0 PMCM0	Address FFFFF02CH	Initial value FFH	
Bit p	Bit position Bit nan		e Function								
4 to 0		PMCMn (n = 4 to 0)		oecifies inpu 0: Output n 1: Input mo	node (outpu	ut buffer on	•				

(b) Port CM mode control register (PMCCM)

This register can be read/written in 8-bit or 1-bit units.

Note 00H: Single-chip mode 0

0FH: Single-chip mode 1, ROMless mode 0 or 1

Bit position	Bit name	Function
3	РМССМ3	Specifies operation mode of PCM3 pin. 0: I/O port mode 1: HLDRQ input mode
2	PMCCM2	Specifies operation mode of PCM2 pin. 0: I/O port mode 1: HLDAK output mode
1	PMCCM1	Specifies operation mode of PCM1 pin. 0: I/O port mode 1: CLKOUT output mode
0	PMCCM0	Specifies operation mode of PCM0 pin. 0: I/O port mode 1: WAIT input mode

14.4 Operation of Port Function

The operation of a port differs depending on whether it is set in the input or output mode, as follows.

14.4.1 Writing to I/O port

(1) In output mode

A value can be written to the output latch (Pn) by writing it to the port n register (Pn). The contents of the output latch are output from the pin.

Once data is written to the output latch, it is held until new data is written to the output latch.

(2) In input mode

A value can be written to the output latch (Pn) by writing it to the port n register (Pn). However, the status of the pin does not change because the output buffer is off.

Once data is written to the output latch, it is held until new data is written to the output latch.

Caution A bit manipulation instruction (CLR1, SET1, NOT1) manipulates 1 bit but accesses a port in 8-bit units. If this instruction is executed to manipulate a port with a mixture of input and output bits, the contents of the output latch of a pin set in the input mode, in addition to the bit to be manipulated, are overwritten to the current input pin status and become undefined.

14.4.2 Reading from I/O port

(1) In output mode

The contents of the output latch (Pn) can be read by reading the port n register (Pn). The contents of the output latch do not change.

(2) In input mode

The status of the pin can be read by reading the port n register (Pn). The contents of the output latch (Pn) do not change.

14.4.3 Output status of alternate function in control mode

The status of a port pin is not dependent upon the setting of the PMCn register and can be read by setting the port n mode register (PMn) to the input mode. If the PMn register is set to the output mode, the value of the port n register (Pn) can be read in the port mode, and the output status of the alternate function can be read in the control mode.

14.5 Noise Eliminator

14.5.1 Interrupt pins

A timing controller to guarantee the noise elimination times shown below is added to the pins that operate as NMI and valid edge inputs in port control mode. Signal input that changes in less than these elimination times is not accepted internally.

Pin	Noise Elimination Time
P00/NMI P01/ESO0/INTP0, P02/ESO1/INTP1 P03/ADTRG0/INTP2, P04/ADTRG1/INTP3 P05/INTP4 to P07/INTP6	Analog delay (Approx. 10 ns)

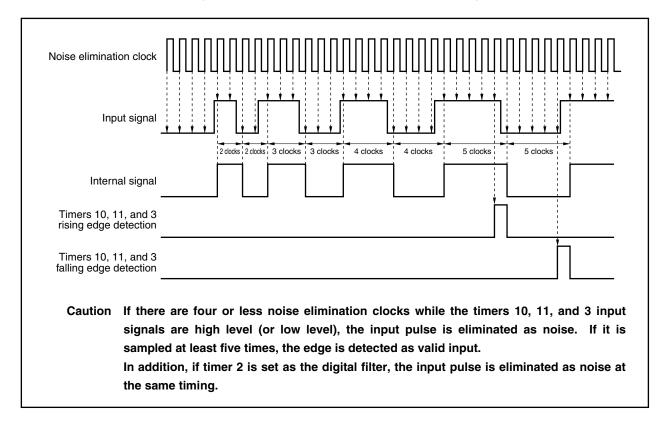
- Cautions 1. The above non-maskable/maskable interrupt pins are used to release standby mode. A clock control timing circuit is not used since the internal system clock is stopped in standby mode.
 - 2. The noise eliminator is valid only in control mode.

14.5.2 Timer 10, timer 11, timer 3 input pins

Noise filtering using the clock sampling shown below is added to the pins that operate as valid edge inputs to timer 10, timer 11, and timer 3. A signal input that changes in less than these elimination times is not accepted internally.

	Pin	Noise Elimination Time	Sampling Clock
Timer 10	P10/TIUD10/TO10 P11/TCUD10/INTP100 P12/TCLR10/INTP101	4 to 5 clocks	Select from fxxtm10,11 fxxtm10,11/2 fxxtm10,11/4
Timer 11	P13/TIUD11/TO11 P14/TCUD11/INTP110 P15/TCLR11/INTP111		fxxтм10,11/8
Timer 3	P26/TI3/INTP30/TCLR3		Select from fxxtms/2 fxxtms/4 fxxtms/8 fxxtms/16
	P27/TO3/INTP31		Select from fxxтмз/32 fxxтмз/64 fxxтмз/128 fxxтмз/256

Cautions 1. Since the above pin noise filtering uses clock sampling, input signals are not received when the CPU clock is stopped.


2. The noise eliminator is valid only in control mode.

Remark fxxtm10,11: Clock of TM10 and TM11 selected by PRM02 register

fxxtm3: Clock of TM3 selected by PRM03 register

<R>

Figure 14-14. Example of Noise Elimination Timing

(1) Timer 10 noise elimination time selection register (NRC10)

The NRC10 register is used to set the clock source of timer 10 input pin noise elimination times.

This register can be read/written in 8-bit or 1-bit units.

Caution The noise elimination function starts operating by setting the TM1CE0 bit of the TMC10 register to 1 (enabling count operations).

	7		6	5	4	3	2	1	0	Address	Initial value	
NRC10	0		0	0	0	0	0	NRC101	NRC100	FFFFF5F8H	00H	
Bit position Bit name Function												
1, (0		C101, C100	Selects th clocks.	e TIUD10/	TO10, TCI	UD10/INT	P100, and T	CLR10/INTI	P101 pin noise	elimination	
				NRC10	1 NRC1	00		Noise (elimination o	clock		
				0	0	fxxtv	110/8					
				0	1	fxxtv	110/4					
				1	0	fxxtM	fххтм10/2					
				1	1	fxxtM	110					
ļ					_	•					*	

(2) Timer 11 noise elimination time selection register (NRC11)

The NRC11 register is used to set the clock source of timer 11 input pin noise elimination times.

This register can be read/written in 8-bit or 1-bit units.

Caution The noise elimination function starts operating by setting the TM1CE1 bit of the TMC11 register to 1 (enabling count operations).

0	0	0	0	0	NRC111	NIDO440	EEEEE04011			
				•	NHOTTI	NRC110	FFFFF618H	00H		
Bit position Bit name Function										
NRC111, NRC110	Selects the clocks.	TIUD11/TO1	11, TCUD11	/INTP1	10, and T0	CLR11/INTF	P111 pin noise e	elimination		
	NRC111	NRC111 NRC110 Noise elimination clock								
	0	0	fxxтм11/8							
	0	0 1 fxxtm11/4								
	1	0	fxxтм11/2							
	1	1	fxxtm11							
	-	NRC110 clocks. NRC111 0 0	NRC110 clocks. NRC111 NRC110 0 0 0 0 1 0 1 0 1 0 0	NRC110 clocks. NRC111 NRC110	NRC110 clocks. NRC111 NRC110	NRC110 clocks. NRC111 NRC110 Noise 6	NRC110 clocks. NRC111 NRC110 Noise elimination of the control of the contr	NRC110 clocks. NRC111 NRC110 Noise elimination clock		

(3) Timer 3 noise elimination time selection register (NRC3)

The NRC3 register is used to set the clock source of timer 3 input pin noise elimination times.

This register can be read/written in 8-bit or 1-bit units.

Caution The noise elimination function starts operating by setting the TM3CE bit of the TMC30 register to 1 (enabling count operations).

_	7		6	5	4	3	2	1	0	Address	Initial value
NRC3	0		0	0	0	NRC3	33 NRC32	NRC31	NRC30	FFFFF698H	00H
Bit pos	sition	Bi	t name				1	Function			
3, 2	2		C33, C32	Selects t	Selects the TO3/INTP31 pin noise elimination clock.						
				NRC3	3 NR	C32		Noise	elimination	clock	
				0	() fs	«хтмз/ 2 56				
				0	1	l fo	хтмз/128				
				1	() fs	ххтмз/64				
				1	1	l fo	«хтмз/ 32				
				Rem	ark fxx	гмз: СІос	ck selected b	y PRM03	register		
1, (0		C31, C30	Selects t	he TI3/IN7	ΓΡ30/TCl	_R3 pin noise	elimination	clock.		
				NRC3	1 NR	C30		Noise	elimination	clock	
				0	() f>	«хтмз/ 16				
				0	1	l fo	хтмз/8				
				1	() f>	кхтмз/4				
				1	1	l fo	хтмз/2				

14.5.3 Timer 2 input pins

A noise eliminator using analog filtering and digital filtering using clock sampling are added to the timer 2 input pins. A signal input that changes in less than these elimination times is not accepted internally.

Pin	Analog Filter Noise	Digital Filter		
	Elimination Time Noise Elimination		Sampling Clock	
P20/TI2/INTP20 P21/TO21/INTP21 to P24/TO24/INTP24 P25/TCLR2/INTP25	10 to 100 ns	4 to 5 clocks	fxxтм2	

- Cautions 1. Since digital filtering uses clock sampling, if it is selected, input signals are not received when the CPU clock is stopped.
 - 2. The noise eliminator is valid only in control mode.
 - 3. Refer to Figure 14-14 for an example of a noise eliminator.

Remark fxxtm2: Clock of TM20 and TM21 selected by PRM02 register

(1) Timer 2 input filter mode registers 0 to 5 (FEM0 to FEM5)

The FEMn registers are used to specify timer 2 input pin filtering and to set the clock source of noise elimination times and the input valid edge.

These registers can be read/written in 8-bit or 1-bit units.

- Cautions 1. Even when using the TI2/INTP20, TO21/INTP21, TO22/INTP22, TO23/INTP23, TO24/INTP24, and TCLR2/INTP25 pins as INTP20, INTP21, INTP22, INTP23, INTP24, and INTP25 without using timer 2, be sure to clear the STFTE bit of timer 2 clock stop register 0 (STOPTE0) to 0.
 - 2. Before setting the INTP2n pin to the trigger mode, set the PMC2 register. If the PMC2 register is set after the FEMn register has been set, an illegal interrupt may occur as soon as the PMC2 register is set (n = 0 to 5).
 - 3. The noise elimination function starts operating by setting the CEEn bit of the TCRE0 register to 1 (enabling count operations).

	7	6	5	4	3	2	1	0	Address	Initial value
FEM0	DFEN0	0 0	0	0	EDGE010	EDGE000	TMS010	TMS000	FFFFF630H	00H
					INT	P20				
	7	6	5	4	3	2	1	0	Address	Initial value
FEM1	DFEN0	1 0	0	0	EDGE011	EDGE001	TMS011	TMS001	FFFFF631H	00H
		'	•		INIT	P21				
	7	6	5	4	3	2	1	0	Address	Initial value
FEM2	DFEN0	2 0	0	0	EDGE012	EDGE002	TMS012	TMS002	FFFFF632H	00H
					INIT	P22				
	7	6	5	4	3	2	1	0	Address	Initial value
FEM3	DFEN0		0	0	1	EDGE003		TMS003	FFFFF633H	00H
								J		
	7	6	5	4	3	P23 2	1	0	Address	Initial value
FEM4	DFEN0		0	0		EDGE004	TMS014	TMS004	FFFFF634H	00H
	2. 2.10	.								
	7	6	-	4	IN I 3	P24 2	1	0	Address	Initial value
FEM5	DFEN0	6 5 0	5	0		EDGE005	TMS015	TMS005	FFFFF635H	00H
LIVIO	DILINO	5 0	U	U			11013013	11013003	1111100011	0011
					INT	P25				
Bit po	sition	Bit name					unction			
7 DFEN0n		0: Ana	s the INTF log filter ital filter	22n pin filter.		-				
			Caution		e DFEN0n l f TM20 and				e digital filter i ter).	s f xxтм2

721

(2/2)

Bit position	Bit name	Function				
3, 2	EDGE01n, EDGE00n	Specifies the	e INTP2n pin	valid edge.		
		EDGE01n	EDGE00n	Operation		
		0	0	Interrupt due to INTCC2n ^{Note}		
		0	1	Rising edge		
		1	0	Falling edge		
		1	1	Both rising and falling edges		
1, 0	TMS01n,	а	and sub-chann $= 0$ to 5).	on selecting INTCC2n according to match of TM20, TM20 annel compare registers (TMS01n, TMS00n bit settings		
	TMS00n		Г			
		TMS01n	TMS00n	Operation		
		0	0	Use as pin		
		0	1	Digital filter (noise eliminator specification)		
		1	0	Capture to sub-channel 1 according to timer		
		1	1	Capture to sub-channel 2 according to timer		
		s tl S C p E	elected on the TMS01r Settings oth Capture accossible for Examples and Capture FEM1 re TMIC0 of the TMIC0 of	but according to INTCM100 and INTCM101 can be by for the FEM1 and FEM2 registers. Set the values of an and TMS00m bits in the FEMm register to 00B or 01B er than these are prohibited (m = 1, 3 to 5). Fording to INTP21, INTP22 and INTCM100, INTCM101 is sub-channel 1 and sub-channel 2 of timer 2. For shown below. For sub-channel 1 on INTCM101 For sister = xxxxxxx10B For sister = 00000010B For sub-channel 2 on INTCM101 For sister = xxxxxxx11B		

Remark n = 0 to 5

CHAPTER 15 RESET FUNCTION

When a low level is input to the RESET pin, there is a system reset and each hardware item of the V850E/IA1 is initialized to its initial status.

When the RESET pin changes from low level to high level, reset status is released and the CPU starts program execution. Initialize the contents of various registers as needed within the program.

15.1 Features

Noise elimination using analog delay (approx. 60 ns) in reset pin (RESET)

15.2 Pin Functions

During a system reset period, most pin output is high impedance (all pins except CLKOUT^{Note}, RESET, X2, VDD5, VSS5, VDD3, VSS3, CVDD, CVSS, AVDD, AVREF1, and AVSS pins).

Thus, if for example memory is extended externally, a pull-up (or pull-down) resistor must be attached to each pin of ports DH, DL, CS, CT, and CM. If there are no resistors, the external memory that is connected may be destroyed when these pins become high impedance.

Similarly, perform pin processing so that on-chip peripheral I/O function signal output and output ports are not affected.

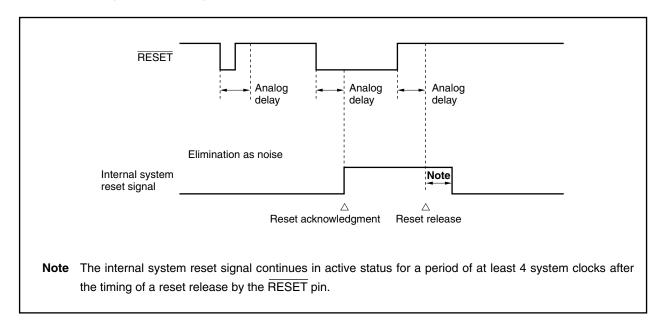
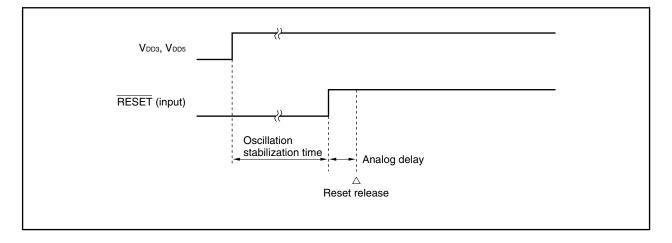

Note In ROMless mode 0 or 1 and single-chip mode 1, CLKOUT signals also are output during a reset period. In single-chip mode 0, CLKOUT signals are not output until the PMCCM register is set.

Table 15-1 shows the operation status of each pin during a reset period.

Table 15-1. Operation Status of Each Pin During Reset Period


	Pin Name		Pin Status				
		In Single-Chip Mode 0	In Single-Chip In ROMless In ROMle Mode 1 Mode 0 Mode 1				
· ·	A16 to A23, AD0 to AD15, CS0 to CS7, LWR, UWR, RD, ASTB, WAIT, HLDAK, HLDRQ		High impedance				
CLKOUT		(Port mode)	Operation				
Port pins	ns Ports 0 to 4 (Input)						
	Ports CM, CS, CT, DH, DL	(Input)	(Control mode)				

(1) Reset signal acknowledgment

(2) Reset at power-on

A reset operation at power-on (power supply application) must guarantee oscillation stabilization time from power-on until reset acknowledgment due to the low level width of the $\overline{\text{RESET}}$ signal.

15.3 Initialization

Initialize the contents of each register as needed within a program.

Table 15-2 shows the initial values of the CPU, internal RAM, and on-chip peripheral I/O after reset.

Table 15-2. Initial Values of CPU, Internal RAM, and On-Chip Peripheral I/O After Reset (1/6)

On-C	Chip Hardware	Register Name	Initial Value After Reset
CPU	Program registers	General-purpose register (r0)	00000000H
		General-purpose registers (r1 to r31)	Undefined
		Program counter (PC)	00000000H
	System registers	Status saving register during interrupt (EIPC, EIPSW)	Undefined
		Status saving register during NMI (FEPC, FEPSW)	Undefined
		Interrupt source register (ECR)	00000000H
		Program status word (PSW)	00000020H
		Status saving register during CALLT execution (CTPC, CTPSW)	Undefined
		Status saving register during exception/debug trap (DBPC, DBPSW)	Undefined
		CALLT base pointer (CTBP)	Undefined
Internal RA	M	-	Undefined
On-chip	Bus control	Chip area selection control register n (CSCn) (n = 0, 1)	2C11H
peripheral	function	Peripheral area selection control register (BPC)	0000H
I/O		Bus size configuration register (BSC)	0000H/5555H
		System wait control register (VSWC)	77H
	Memory control function	Bus cycle type configuration register n (BCTn) (n = 0, 1)	ССССН
		Data wait control register n (DWCn) (n = 0, 1)	3333H
		Address wait control register (AWC)	0000H
		Bus cycle control register (BCC)	ААААН
	DMA function	DMA source address register nL (DSAnL) (n = 0 to 3)	Undefined
		DMA source address register nH (DSAnH) (n = 0 to 3)	Undefined
		DMA destination address register nL (DDAnL) (n = 0 to 3)	Undefined
		DMA destination address register nH (DDAnH) (n = 0 to 3)	Undefined
		DMA transfer count register n (DBCn) (n = 0 to 3)	Undefined
		DMA addressing control register n (DADCn) (n = 0 to 3)	0000H
		DMA channel control register n (DCHCn) (n = 0 to 3)	00H
		DMA disable status register (DDIS)	00H
		DMA restart register (DRST)	00H
		DMA trigger factor register n (DTFRn) (n = 0 to 3)	00H
	Interrupt/exception	In-service priority register (ISPR)	00H
	control function	External interrupt mode register n (INTMn) (n = 0 to 2)	00H
		Interrupt mask register n (IMRn) (n = 0 to 3)	FFFFH
		Interrupt mask register nL (IMRnL) (n = 0 to 3)	FFH
		Interrupt mask register nH (IMRnH) (n = 0 to 3)	FFH

Table 15-2. Initial Values of CPU, Internal RAM, and On-Chip Peripheral I/O After Reset (2/6)

On-C	Chip Hardware	Register Name	Initial Value After Rese
On-chip peripheral I/O	Interrupt/exception	Signal edge selection register n (SESA1n) (n = 10, 11)	00H
	control function	Valid edge selection register (SESC)	00H
		Timer 2 input filter mode register n (FEMn) (n = 0 to 5)	00H
		Interrupt control registers (P0IC0 to P0IC6, DETIC0, DETIC1, TM0IC0, CM03IC0, TM0IC1, CM03IC1, CC10IC0, CC10IC1, CM10IC0, CM10IC1, CC11IC0, CC11IC1, CM11IC0, CM11IC1, TM2IC0, TM2IC1, CC2IC0 to CC2IC5, TM3IC0, CC3IC0, CC3IC1, CM4IC0, DMAIC0 to DMAIC3, CANIC0 to CANIC3, CSIIC0, CSIIC1, SRIC0 to SRIC2, STIC0 to STIC2, SEIC0, ADIC0, ADIC1)	47H
	Power save	Command register (PRCMD)	Undefined
	control function	Power save control register (PSC)	00H
		Clock control register (CKC)	00H
		Power save mode register (PSMR)	00H
		Lock register (LOCKR)	0000000xB
	System control	Peripheral command register (PHCMD)	Undefined
		Peripheral status register (PHS)	00H
	Timer 0	Dead-time timer reload register n (DTRRn) (n = 0, 1)	0FFFH
		Buffer registers CM0n, CM1n (BFCM0n, BFCM1n) (n = 0 to 3)	FFFFH
		Timer control register 0n (TMC0n) (n = 0, 1)	0508H
		Timer control register 0nL (TMC0nL) (n = 0, 1)	08H
		Timer control register 0nH (TMC0nH) (n = 0, 1)	05H
		Timer unit control register 0n (TUC0n) (n = 0, 1)	01H
		Timer output mode register n (TOMRn) (n = 0, 1)	00H
		PWM software timing output register n (PSTOn) (n = 0, 1)	00H
		PWM output enable register n (POERn) (n = 0, 1)	00H
		TOMR write enable register n (SPECn) (n = 0, 1)	0000H
		Timer 0 clock selection register (PRM01)	00H
	Timer 1	Timer 1n (TM1n) (n = 0, 1)	0000H
		Compare register 1n (CM1n) (n = 00, 01, 10, 11)	0000H
		Capture/compare register 1n (CC1n) (n = 00, 01, 10, 11)	0000H
		Capture/compare control register n (CCRn) (n = 0, 1)	00H
		Timer unit mode register n (TUMn) (n = 0, 1)	00H
		Timer control register 1n (TMC1n) (n = 0, 1)	00H
		Signal edge selection register 1n (SESA1n) (n = 0, 1)	00H
		Prescaler mode register 1n (PRM1n) (n = 0, 1)	07H
		Status register n (STATUSn) (n = 0, 1)	00H
		Timer connection selection register 0 (TMIC0)	00H
		Timer 1/timer 2 clock selection register (PRM02)	00H
		CC1n1 capture input selection register (CSL1n) (n = 0, 1)	00H
		Timer 1n noise elimination time selection register (NRC1n) (n = 0, 1)	00H

Table 15-2. Initial Values of CPU, Internal RAM, and On-Chip Peripheral I/O After Reset (3/6)

On-C	chip Hardware	Register Name	Initial Value After Reset
On-chip	Timer 2	Timer 2 clock stop register 0 (STOPTE0)	0000H
peripheral I/O		Timer 2 clock stop register 0L (STOPTE0L)	00H
		Timer 2 clock stop register 0H (STOPTE0H)	00H
		Timer 2 count clock/control edge selection register 0 (CSE0)	0000H
		Timer 2 count clock/control edge selection register 0L (CSE0L)	00H
		Timer 2 count clock/control edge selection register 0H (CSE0H)	00H
		Timer 2 sub-channel input event edge selection register 0 (SESE0)	0000H
		Timer 2 sub-channel input event edge selection register 0L (SESE0L)	00H
		Timer 2 sub-channel input event edge selection register 0H (SESE0H)	00H
		Timer 2 time base control register 0 (TCRE0)	0000H
		Timer 2 time base control register 0L (TCRE0L)	00H
		Timer 2 time base control register 0H (TCRE0H)	00H
		Timer 2 output control register 0 (OCTLE0)	0000H
		Timer 2 output control register 0L (OCTLE0L)	00H
		Timer 2 output control register 0H (OCTLE0H)	00H
		Timer 2 sub-channel 0, 5 capture/compare control register (CMSE050)	0000H
		Timer 2 sub-channel 1, 2 capture/compare control register (CMSE120)	0000Н
		Timer 2 sub-channel 3, 4 capture/compare control register (CMSE340)	0000H
		Timer 2 sub-channel n sub capture/compare register (CVSEn0) (n = 1 to 4)	0000Н
		Timer 2 sub-channel n main capture/compare register (CVPEn0) (n = 1 to 4)	0000H
		Timer 2 sub-channel n capture/compare register (CVSEn0) (n = 0, 5)	0000H
		Timer 2 time base status register 0 (TBSTATE0)	0101H
		Timer 2 time base status register 0L (TBSTATE0L)	01H
		Timer 2 time base status register 0H (TBSTATE0H)	01H
		Timer 2 capture/compare 1 to 4 status register 0 (CCSTATE0)	0000H
		Timer 2 capture/compare 1 to 4 status register 0L (CCSTATE0L)	00H
		Timer 2 capture/compare 1 to 4 status register 0H (CCSTATE0H)	00H
		Timer 2 output delay register 0 (ODELE0)	0000H
		Timer 2 output delay register 0L (ODELE0L)	00H
		Timer 2 output delay register 0H (ODELE0H)	00H
		Timer 2 software event capture register (OSCE0)	0000H
	Timer 3	Timer 3 (TM3)	0000H
		Capture/compare register 3n (CC3n) (n = 0, 1)	0000H
		Timer control register 30 (TMC30)	00H
		Timer control register 31 (TMC31)	20H

Table 15-2. Initial Values of CPU, Internal RAM, and On-Chip Peripheral I/O After Reset (4/6)

On-C	Chip Hardware	Register Name	Initial Value After Reset
On-chip	Timer 3	Valid edge selection register (SESC)	00H
peripheral I/O		Timer 3 clock selection register (PRM03)	00H
1/0		Timer 3 noise elimination time selection register (NRC3)	00H
	Timer 4	Timer 4 (TM4)	0000H
		Compare register 4 (CM4)	0000H
		Timer control register 4 (TMC4)	00H
	Serial interface	Clocked serial interface mode register n (CSIMn) (n = 0, 1)	00H
	function (CSI0, CSI1)	Clocked serial interface clock selection register n (CSICn) (n = 0, 1)	00H
	(311)	Clocked serial interface receive buffer register n (SIRBn) (n = 0, 1)	0000H
		Clocked serial interface receive buffer register Ln (SIRBLn) (n = 0, 1)	00H
		Clocked serial interface transmit buffer register n (SOTBn) (n = 0, 1)	0000H
		Clocked serial interface transmit buffer register Ln (SOTBLn) (n = 0, 1)	00H
		Clocked serial interface read-only receive buffer register n (SIRBEn) (n = 0, 1)	0000H
		Clocked serial interface read-only receive buffer register Ln (SIRBELn) (n = 0, 1)	00H
		Clocked serial interface initial transmit buffer register n (SOTBFn) (n = 0, 1)	0000H
		Clocked serial interface initial transmit buffer register Ln (SOTBFLn) (n = 0, 1)	00H
		Serial I/O shift register n (SIOn) (n = 0, 1)	0000H
		Serial I/O shift register Ln (SIOLn) (n = 0, 1)	00H
		Prescaler mode register (PRSM3)	00H
		Prescaler compare register (PRSCM3)	00H
	Serial interface	Asynchronous serial interface mode register 0 (ASIM0)	01H
	function (UART0)	Receive buffer register 0 (RXB0)	FFH
		Asynchronous serial interface status register 0 (ASIS0)	00H
		Transmit buffer register 0 (TXB0)	FFH
		Asynchronous serial interface transmit status register 0 (ASIF0)	00H
		Baud rate generator control register 0 (BRGC0)	FFH
		Clock selection register 0 (CKSR0)	00H
	Serial interface	Asynchronous serial interface mode register n0 (ASIMn0) (n = 1, 2)	81H
	function (UART1, UART2)	Asynchronous serial interface mode register n1 (ASIMn1) (n = 1, 2)	00H
	JAIN2)	Asynchronous serial interface status register n (ASISn) (n = 1, 2)	00H
		2-frame continuous reception buffer register n (RXBn) (n = 1, 2)	Undefined
		Receive buffer register Ln (RXBLn) (n = 1, 2)	Undefined
		2-frame continuous transmission shift register n (TXSn) (n = 1, 2)	Undefined

Table 15-2. Initial Values of CPU, Internal RAM, and On-Chip Peripheral I/O After Reset (5/6)

On-C	Chip Hardware	Register Name	Initial Value After Reset
On-chip	Serial interface	Transmit shift register Ln (TXSLn) (n = 1, 2)	Undefined
peripheral I/O	function (UART1, UART2)	Prescaler mode register n (PRSMn) (n = 1, 2)	00H
1/0	OARTZ)	Prescaler compare register n (PRSCMn) (n = 1, 2)	00H
	Serial interface	CAN message data length register n (M_DLCn) (n = 00 to 31)	Undefined
	function (FCAN)	CAN message control register n (M_CTRLn) (n = 00 to 31)	Undefined
		CAN message time stamp register n (M_TIMEn) (n = 00 to 31)	Undefined
		CAN message data register nm (M_DATAnm) $(n = 00 \text{ to } 31, m = 0 \text{ to } 7)$	Undefined
		CAN message ID register Ln, Hn (M_IDLn, M_IDHn) (n = 00 to 31)	Undefined
		CAN message configuration register n (M_CONFn) (n = 00 to 31)	Undefined
		CAN message status register n (M_STATn) (n = 00 to 31)	Undefined
		CAN status set/clear register n (SC_STATn) (n = 00 to 31)	0000H
		CAN interrupt pending register (CCINTP)	0000H
		CAN global interrupt pending register (CGINTP)	00H
		CAN1 interrupt pending register (C1INTP)	00H
		CAN stop register (CSTOP)	0000H
		CAN global status register (CGST)	0100H
		CAN global interrupt enable register (CGIE)	0A00H
		CAN main clock selection register (CGCS)	7F05H
		CAN time stamp count register (CGTSC)	0000H
		CAN message search start/result register (CGMSS on write; CGMSR on read)	0000H
		CAN1 address mask n register L, H (C1MASKLn, C1MASKHn) (n = 0 to 3)	Undefined
		CAN1 control register (C1CTRL)	0101H
		CAN1 definition register (C1DEF)	0000H
		CAN1 information register (C1LAST)	00FFH
		CAN1 error count register (C1ERC)	0000H
		CAN1 interrupt enable register (C1IE)	0900H
		CAN1 bus active register (C1BA)	00FFH
		CAN1 bit rate prescaler register (C1BRP)	0000H
		CAN1 bus diagnostic information register (C1DINF)	0000H
		CAN1 synchronization control register (C1SYNC)	0218H
		FCAN clock selection register (PRM04)	00H
	A/D converter	A/D scan mode register n0 (ADSCMn0) (n = 0, 1)	0000H
		A/D scan mode register n0L (ADSCMn0L) (n = 0, 1)	00H
		A/D scan mode register n0H (ADSCMn0H) (n = 0, 1)	00H
		A/D scan mode register n1 (ADSCMn1) (n = 0, 1)	0000H
		A/D scan mode register n1L (ADSCMn1L) (n = 0, 1)	00H
		A/D scan mode register n1H (ADSCMn1H) (n = 0, 1)	00H

Table 15-2. Initial Values of CPU, Internal RAM, and On-Chip Peripheral I/O After Reset (6/6)

On-C	Chip Hardware	Register Name	Initial Value After Reset
On-chip	A/D converter	A/D voltage detection mode register n (ADETMn) (n = 0, 1)	0000H
peripheral I/O		A/D voltage detection mode register nL (ADETMnL) (n = 0, 1)	00H
1/0		A/D voltage detection mode register nH (ADETMnH) (n = 0, 1)	00H
		A/D conversion result register 0n (ADCR0n) (n = 0 to 7)	0000H
		A/D conversion result register 1n (ADCR1n) (n = 0 to 7)	0000H
		A/D internal trigger selection register (ITRG0)	00H
	Port function	Ports (P0 to P4, PDH, PCS, PCT, PCM)	Undefined
		Port (PDL)	Undefined
		Port (PDLL)	Undefined
		Port (PDLH)	Undefined
		Mode registers (PM1 to PM4, PMDH, PMCS, PMCT, PMCM)	FFH
		Mode register (PMDL)	FFFFH
		Mode register (PMDLL)	FFH
		Mode register (PMDLH)	FFH
		Mode control registers (PMC1 to PMC4)	00H
		Mode control registers (PMCDH, PMCCS)	00H/FFH
		Mode control register (PMCDL)	0000H/FFFFH
		Mode control register (PMCDLL)	00H/FFH
		Mode control register (PMCDLH)	00H/FFH
		Mode control register (PMCCT)	00H/53H
		Mode control register (PMCCM)	00H/0FH
		Function control registers (PFC1, PFC2)	00H
	NBD function	RAM access data buffer register L (NBDL)	0000H
		RAM access data buffer register LL (NBDLL)	00H
		RAM access data buffer register LU (NBDLU)	00H
		RAM access data buffer register H (NBDH)	0000H
		RAM access data buffer register HL (NBDHL)	00H
		RAM access data buffer register HU (NBDHU)	00H
		DMA source address setting register SL (NBDMSL)	Undefined
		DMA source address setting register SH (NBDMSH)	Undefined
		DMA destination address setting register DL (NBDMDL)	Undefined
		DMA destination address setting register DH (NBDMDH)	Undefined
	Flash memory	Flash programming mode control register (FLPMC)	08H/0CH/00H ^{Note}

Note μPD703116: 00H

 μ PD70F3116: 08H or 0CH (For details, refer to **16.7.12 Flash programming mode control register** (**FLPMC**).)

Caution In the table above, "Undefined" means either undefined at the time of a power-on reset or undefined due to data destruction when RESET ↓ input and data write timing are synchronized.

On a RESET ↓ other than this, data is maintained in its previous status.

CHAPTER 16 FLASH MEMORY (µPD70F3116)

The μ PD70F3116 is the flash memory version of the V850E/IA1 and it has an on-chip 256 KB flash memory configured as two 128 KB areas.

Caution There are differences in noise immunity and noise radiation between the flash memory and mask ROM versions. When pre-producing an application set with the flash memory version and then mass producing it with the mask ROM version, be sure to conduct sufficient evaluations on the commercial samples (CS) (not engineering samples (ES)) of the mask ROM versions.

Writing to a flash memory can be performed with memory mounted on the target system (on board). The dedicated flash memory programmer is connected to the target system to perform writing.

The following can be considered as the development environment and the applications using a flash memory.

- Software can be changed after the V850E/IA1 is solder mounted on the target system.
- Small scale production of various models is made easier by differentiating software.
- Data adjustment in starting mass production is made easier.

16.1 Features

- All area batch erase, or erase in area units (128 KB)
- · Communication through serial interface from the dedicated flash memory programmer
- Erase/write voltage: VPP = 7.8 V
- · On-board programming
- Flash memory programming is possible by the self-programming in area units (128 KB)

16.2 Writing by Flash Memory Programmer

Writing can be performed either on-board or off-board by the dedicated flash memory programmer.

Caution When writing data with the flash memory programmer, the operation is always performed at the frequency multiplied by 5 in the PLL mode.

(1) On-board programming

The contents of the flash memory is rewritten after the V850E/IA1 is mounted on the target system. Mount connectors, etc., on the target system to connect the dedicated flash memory programmer.

(2) Off-board programming

Writing to a flash memory is performed by the dedicated program adapter (FA Series), etc., before mounting the V850E/IA1 on the target system.

Remark The FA Series is a product of Naito Densei Machida Mfg. Co., Ltd.

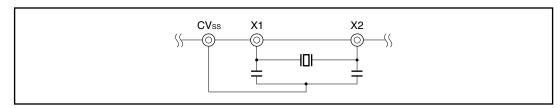
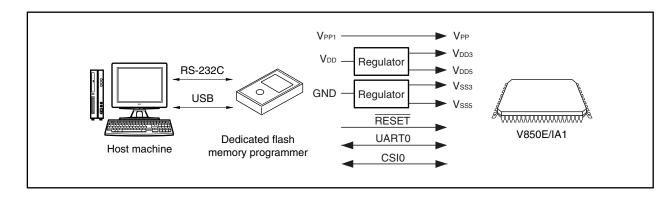

When the flash programming adapter (FA-144GJ-8EU) is used for writing, connect the pins as follows.

Table 16-1. Connection of V850E/IA1 Flash Programming Adapter (FA-144GJ-8EU)

FA-144GJ-8EU		V850	E/IA1	
Silk Name	UA	RT0	CS	SIO
	Pin Name	Pin No.	Pin Name	Pin No.
SI	TXD0/P31	38	SO0/P41	30
SO	RXD0/P30	37	SI0/P40	29
SCK	-	=	SCK0/P42	31
X1	X1	23 ^{Note 1}	X1	23 ^{Note 1}
X2	X2	24 ^{Note 1}	X2	24 ^{Note 1}
/RESET	RESET	20	RESET	20
V _{PP}	VPP/IC5	89	Vpp/IC5	89
RESERVE/HS	-	-	A16/PDH0 ^{Note 2}	73
LVDD ^{Note 3}	V _{DD3}	53, 128	V _{DD3}	53, 128
	CV _{DD}	21	CV _{DD}	21
VDD	V _{DD5}	56, 91, 125	V _{DD5}	56, 91, 125
	AV _{REF0}	137	AV _{REF0}	137
	AV _{REF1}	4	AV _{REF1}	4
	MODE1	27	MODE1	27
	AV _{DD}	2, 135	AV _{DD}	2, 135
GND	Vsss	54, 127	V _{SS3}	54, 127
	V _{SS5}	55, 90, 126	V _{SS5}	55, 90, 126
	AVss	3, 136	AVss	3, 136
	CVss	22	CVss	22
	MODE0	26	MODE0	26
	MODE2	28	MODE2	28
	NMI/P00	111	NMI/P00	111
Note 4	CKSEL	25	CKSEL	25

Notes 1. Configure the oscillator on the FA-144GJ-8EU board using a resonator and a capacitor. The following figure shows an example of the oscillator.

Example


- 2. Connection is not required for this pin when not using handshakes.
- 3. The option of dual-power-supply adapter (FA-TVC) for generating 3.3 V is available.
- **4.** In PLL mode: GND In direct mode: VDD5

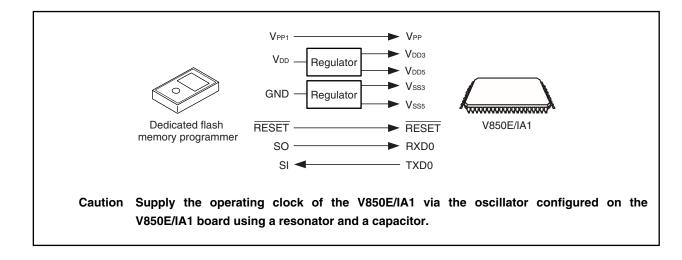
Remark -: Leave open

16.3 Programming Environment

The following shows the environment required for writing programs to the flash memory of the V850E/IA1.

Figure 16-1. Environment for Writing Program to Flash Memory

A host machine is required for controlling the dedicated flash memory programmer.

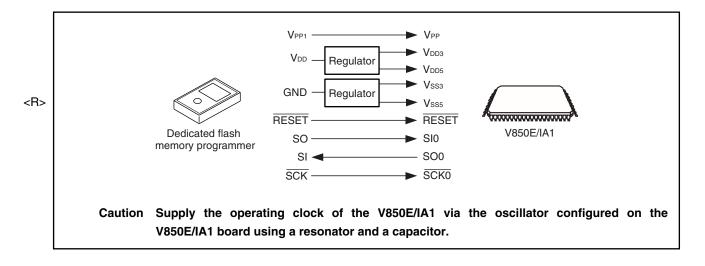

UART0 or CSI0 is used for the interface between the dedicated flash memory programmer and the V850E/IA1 to perform writing, erasing, etc. A dedicated program adapter (FA Series) is required for off-board writing. Supply the operating clock of the V850E/IA1 via the oscillator configured on the V850E/IA1 board using a resonator and a capacitor.

16.4 Communication Mode

(1) **UARTO**

Transfer rate: 4,800 bps to 76,800 bps (LSB first)

Figure 16-2. Communication with Dedicated Flash Memory Programmer (UART0)

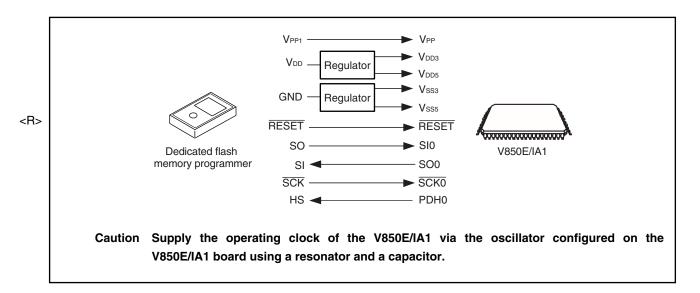

<R>

<R>

(2) CSI0

Transfer rate: up to 2 MHz (MSB first)

Figure 16-3. Communication with Dedicated Flash Memory Programmer (CSI0)



The dedicated flash memory programmer outputs transfer clocks and the V850E/IA1 operates as a slave.

(3) Handshake-supported CSI communication

Transfer rate: up to 2 MHz (MSB first)

Figure 16-4. Communication with Dedicated Flash Memory Programmer (Handshake-Supported CSI Communication)

16.5 Pin Connection

When performing on-board writing, install a connector on the target system to connect to the dedicated flash memory programmer. Also, install a function on-board to switch from the normal operation mode (single-chip modes 0, 1 or ROMless modes 0, 1) to the flash memory programming mode.

In the flash memory programming mode, all the pins not used for flash memory programming become the same status as they were immediately after reset in single-chip mode 0. Therefore, all the ports enter the output high-impedance status, so that pin handling is required when the external device does not acknowledge the output high-impedance status.

16.5.1 VPP pin

In the normal operation mode, 0 V is input to the VPP pin. In the flash memory programming mode, 7.8 V writing voltage is supplied to the VPP pin. The following shows an example of the connection of the VPP pin.

Dedicated flash memory programmer connection pin

Pull-down resistor (R_{VPP} = 4.7 to 47 kΩ)

Figure 16-5. Connection Example of VPP Pin

16.5.2 Serial interface pin

The following shows the pins used by each serial interface.

 Serial Interface
 Pins Used

 CSI0
 SO0, SI0, \$\overline{SCK0}\$

 CSI0 + HS
 SO0, SI0, \$\overline{SCK0}\$, PDH0

 UARTO
 TXD0, RXD0

Table 16-2. Pins Used by Each Serial Interface

When connecting a dedicated flash memory programmer to a serial interface pin that is connected to other devices on-board, care should be taken to avoid the conflict of signals and the malfunction of other devices, etc.

(1) Conflict of signals

When connecting a dedicated flash memory programmer (output) to a serial interface pin (input) which is connected to another device (output), a conflict of signals occurs. To avoid the conflict of signals, isolate the connection to the other device or set the other device to the output high-impedance status.

Conflict of signals

Other device

Output pin

In the flash memory programming mode, the signal that the dedicated flash memory programmer sends out conflicts with signals the other device outputs. Therefore, isolate the signals on the other device side.

Figure 16-6. Conflict of Signals (Serial Interface Input Pin)

(2) Malfunction of the other device

When connecting a dedicated flash memory programmer (output or input) to a serial interface pin (input or output) connected to another device (input), the signal output to the other device may cause the device to malfunction. To avoid this, isolate the connection to the other device or make the setting so that the input signal to the other device is ignored.

V850E/IA1 Dedicated flash memory programmer connection pin Pin Other device Input pin In the flash memory programming mode, if the signal the V850E/IA1 outputs affects the other device, isolate the signal on the other device side. V850E/IA1 Dedicated flash memory programmer connection pin Pin Other device Input pin In the flash memory programming mode, if the signal the dedicated flash memory programmer outputs affects the other device, isolate the signal on the other device side.

Figure 16-7. Malfunction of Other Device

16.5.3 RESET pin

When connecting the reset signals of the dedicated flash memory programmer to the RESET pin, which is connected, to the reset signal generator on-board, a conflict of signals occurs. To avoid the conflict of signals, isolate the connection to the reset signal generator.

When the reset signal is input from the user system in flash memory programming mode, the programming operation will not be performed correctly. Therefore, do not input signals other than the reset signals from the dedicated flash memory programmer.

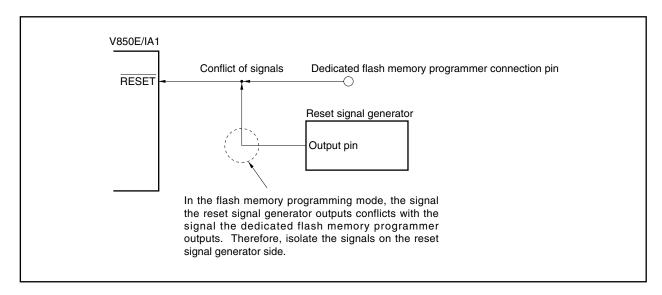


Figure 16-8. Conflict of Signals (RESET Pin)

16.5.4 NMI pin

Do not change the input signal to the NMI pin in flash memory programming mode. If it is changed in flash memory programming mode, programming may not be performed correctly.

16.5.5 MODE0 to MODE2 pins

To shift to the flash memory programming mode, set MODE0 to high-level or low-level input, MODE1 to high-level input, and MODE2 to low-level input, apply the writing voltage (7.8 V) to the VPP pin, and release reset.

16.5.6 Port pins

When the flash memory programming mode is set, all the port pins except the pins which communicate with the dedicated flash memory programmer become output high-impedance status. Nothing need be done to these port pins. If problems such as disabling output high-impedance status should occur to the external devices connected to the ports, connect them to VDD5 or VSS5 via resistors.

16.5.7 Other signal pins

Connect X1 and X2 to the same status as in the normal operation mode.

The amplitude is 3.3 V.

16.5.8 Power supply

Supply the power supply (VDD3, VSS3, VDD5, VSS5, AVDD, AVREF1, AVSS, CVDD, and CVSS) the same as in normal operation mode. Connect VDDNote and GND of the dedicated flash memory programmer to VDD3, VSS3, VDD5, and VSS5 (VDD of the dedicated flash memory programmer is provided with a power supply monitoring function).

Note Connect V_{DD} after converting the power supply to 3.3 V using a regulator.

16.6 Programming Method

16.6.1 Flash memory control

The following shows the procedure for manipulating the flash memory.

Start

Supply VPP pulse

Switch to flash memory programming mode

Select communication mode

Manipulate flash memory

Yes

End?

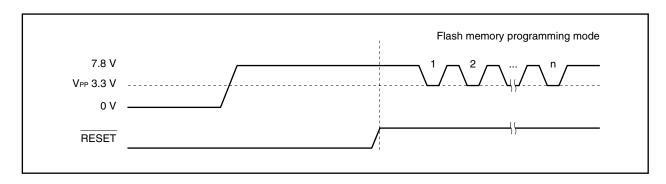
Yes

End

Figure 16-9. Flash Memory Manipulating Procedure

16.6.2 Flash memory programming mode

When rewriting the contents of flash memory using the dedicated flash memory programmer, set the V850E/IA1 in the flash memory programming mode. To switch to this mode, set the MODE0, MODE1, MODE2, and VPP pins before canceling reset.


When performing on-board writing, change modes using a jumper, etc.

• MODE0: High-level or low-level input

MODE1: High-level inputMODE2: Low-level input

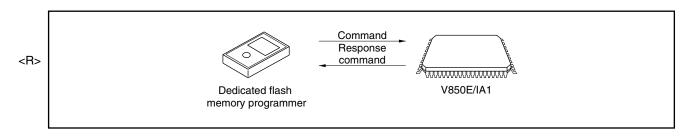
VPP: 7.8 V

Figure 16-10. Flash Memory Programming Mode

16.6.3 Selection of communication mode

In the V850E/IA1, a communication mode is selected by inputting pulses (16 pulses max.) to VPP pin after switching to the flash memory programming mode. The VPP pulse is generated by the dedicated flash memory programmer.

The following shows the relationship between the number of pulses and the communication mode.


Table 16-3. List of Communication Mode

V _{PP} Pulse	Communication Mode	Remarks
0	CSI0	V850E/IA1 performs slave operation, MSB first
3	Handshake-supported CSI	
8	UART0	Communication rate: 9600 bps (after reset), LSB first
Others	RFU (reserved)	Setting prohibited

16.6.4 Communication commands

The V850E/IA1 communicates with the dedicated flash memory programmer by means of commands. A command sent from the dedicated flash memory programmer to the V850E/IA1 is called a "command". The response signal sent from the V850E/IA1 to the dedicated flash memory programmer is called the "response command".

Figure 16-11. Communication Commands

The following shows the commands for controlling flash memory of the V850E/IA1. All of these commands are issued from the dedicated flash memory programmer, and the V850E/IA1 performs the various processing corresponding to the commands.

Table 16-4. Commands for Controlling Flash Memory

Category	Command Name	Function
Verify	Batch verify command	Compares the contents of the entire memory and the input data.
	Area verify command	Compares the contents of the specified area and the input data.
Erase	Batch erase command	Erases the contents of the entire memory.
	Area erase command	Erases the contents of the specified area.
	Write back command	Writes back the contents which were erased.
Blank check	Batch blank check command	Checks the erase state of the entire memory.
	Area blank check command	Checks the erase state of the specified area.
Data write	High-speed write command	Writes data by the specification of the write address and the number of bytes to be written, and executes verify check.
	Continuous write command	Writes data from the address following the high- speed write command executed immediately before, and executes verify check.
System setting and control	Status read out command	Acquires the status of operations.
	Oscillation frequency setting command	Sets the oscillation frequency.
	Erasing time setting command	Sets the erasing time of batch erase.
	Writing time setting command	Sets the writing time of data write.
	Write back time setting command	Sets the write back time.
	Silicon signature command	Reads outs the silicon signature information.
	Reset command	Escapes from each state.

The V850E/IA1 sends back response commands for the commands issued from the dedicated flash memory programmer. The following shows the response commands the V850E/IA1 sends out.

Table 16-5. Response Commands

Response Command Name	Function	
ACK (acknowledge)	Acknowledges command/data, etc.	
NAK (not acknowledge)	Acknowledges illegal command/data, etc.	

16.7 Flash Memory Programming by Self-Programming

The μ PD70F3116 supports a self-programming function to rewrite the flash memory using a user program. By using this function, the flash memory can be rewritten with a user application. This self-programming function can be also used to upgrade the program in the field.

16.7.1 Outline of self-programming

Self-programming implements erasure and writing of the flash memory by calling the self-programming function (device's internal processing) on the program placed in the block 0 space (000000H to 1FFFFFH) and areas other than internal ROM area. To place the program in the block 0 space and internal ROM area, copy the program to areas other than 000000H to 1FFFFFH (e.g. internal RAM area) and execute the program to call the self-programming function.

To call the self-programming function, change the operating mode from normal operation mode to self-programming mode using the flash programming mode control register (FLPMC).

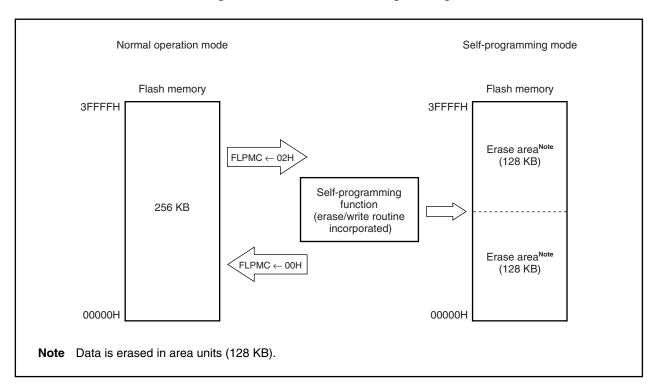


Figure 16-12. Outline of Self-Programming

16.7.2 Self-programming function

The μ PD70F3116 provides self-programming functions, as shown in Table 16-6. By combining these functions, erasing/writing flash memory becomes possible.

Table 16-6. Function List

Туре	Function Name	Function
Erase	Area erase	Erases the specified area.
Write	Continuous write in word units	Continuously writes the specified memory contents from the specified flash memory address, for the number of words specified in 4-byte units.
	Pre-write	Writes 0 to flash memory before erasure.
Check	Erase verify	Checks whether an over erase occurred after erasure.
	Erase byte verify	Checks whether erasure is complete.
	Internal verify	Checks whether the signal level of the post-write data in flash memory is appropriate.
Write back	Area write back	Writes back the flash memory area in which an over erase occurred.
Acquire information	Flash memory information read	Reads out information about flash memory.

16.7.3 Outline of self-programming interface

To execute self-programming using the self-programming interface, the environmental conditions of the hardware and software for manipulating the flash memory must be satisfied.

It is assumed that the self-programming interface is used in an assembly language.

(1) Entry program

This program is to call the internal processing of the device.

It is a part of the application program, and must be executed in memory other than the block 0 space and internal ROM area (flash memory).

(2) Device internal processing

This is manipulation of the flash memory executed inside the device.

This processing manipulates the flash memory after it has been called by the entry program.

(3) RAM parameter

This is a RAM area to which the parameters necessary for self-programming, such as write time and erase time, are written. It is set by the application program and referenced by the device internal processing.

The self-programming interface is outlined below.

Entry program

Self-programming interface

Device internal processing

Flash-memory manipulation

Flash memory

Figure 16-13. Outline of Self-Programming Interface

16.7.4 Hardware environment

To write or erase the flash memory, a high voltage must be applied to the V_{PP} pin. To execute self-programming, a circuit that can generate a write voltage (V_{PP}) and that can be controlled by software is necessary on the application system. An example of a circuit that can select a voltage to be applied to the V_{PP} pin by manipulating a port is shown below.

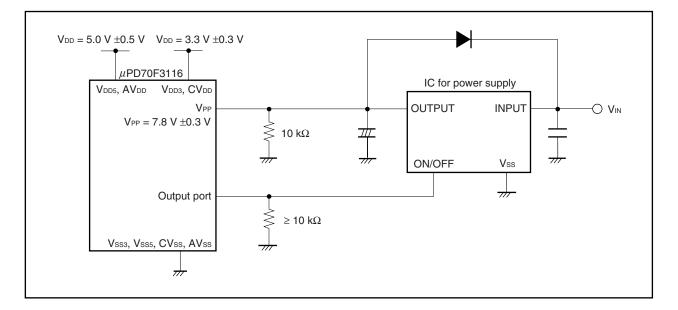
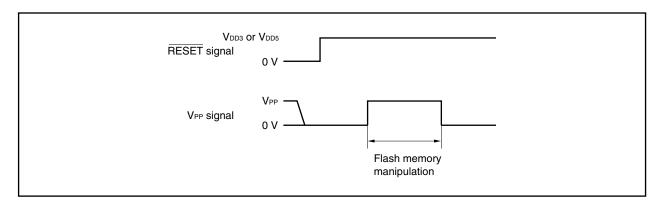



Figure 16-14. Example of Self-Programming Circuit Configuration

The voltage applied to the VPP pin must satisfy the following conditions:

- Hold the voltage applied to the VPP pin at 0 V in the normal operation mode and hold the VPP voltage only while the flash memory is being manipulated.
- The V_{PP} voltage must be stable from before manipulation of the flash memory starts until manipulation is complete.
- Cautions 1. Apply 0 V to the VPP pin when reset is released.
 - 2. Implement self-programming in single-chip mode 0 or 1.
 - 3. Apply the voltage to the VPP pin in the entry program.
 - 4. If both writing and erasing are executed by using the self-programming function and flash memory programmer on the target board, be sure to communicate with the programmer using CSI0 (do not use the handshake-supported CSI).

Figure 16-15. Timing to Apply Voltage to VPP Pin

16.7.5 Software environment

The following conditions must be satisfied before using the entry program to call the device internal processing.

Table 16-7. Software Environmental Conditions

Item	Description
Location of entry program	Execute the entry program in memory other than the block 0 space and flash memory area. The device internal processing cannot be directly called by the program that is executed on the flash memory.
Execution status of program	The device internal processing cannot be called while an interrupt is being serviced (NP bit of PSW = 0, ID bit of PSW = 1).
Masking interrupts	Mask all the maskable interrupts used. Mask each interrupt by using the corresponding interrupt control register. To mask a maskable interrupt, be sure to specify masking by using the corresponding interrupt control register. Mask the maskable interrupt even when the ID bit of the PSW = 1 (interrupts are disabled).
Manipulation of VPP voltage	Stabilize the voltage applied to the VPP pin (VPP voltage) before starting manipulation of the flash memory. After completion of the manipulation, return the voltage of the VPP pin to 0 V.
Initialization of internal timer	Do not use the internal timer while the flash memory is being manipulated. Because the internal timer is initialized after the flash memory has been used, initialize the timer with the application program to use the timer again.
Stopping reset signal input	Do not input the reset signal while the flash memory is being manipulated. If the reset signal is input while the flash memory is being manipulated, the contents of the flash memory under manipulation become undefined.
Stopping NMI signal input	Do not input the NMI signal while the flash memory is being manipulated. If the NMI signal is input while the flash memory is being manipulated, the flash memory may not be correctly manipulated by the device internal processing. If an NMI occurs while the device internal processing is in progress, the occurrence of the NMI is reflected in the NMI flag of the RAM parameter. If manipulation of the flash memory is affected by the occurrence of the NMI, the function of each self-programming function is reflected in the return value.
Reserving stack area	The device internal processing takes over the stack used by the user program. It is necessary that an area of 300 bytes be reserved for the stack size of the user program when the device internal processing is called. r3 is used as the stack pointer.
Saving general-purpose registers	The device internal processing rewrites the contents of r6 to r14, r20, and r31 (lp). Save and restore these register contents as necessary.

16.7.6 Self-programming function number

To identify a self-programming function, the following numbers are assigned to the respective functions. These function numbers are used as parameters when the device internal processing is called.

Table 16-8. Self-Programming Function Number

Function No.	Function Name
0	Acquiring flash information
1	Erasing area
2 to 4	RFU
5	Area write back
6 to 8	RFU
9	Erase byte verify
10	Erase verify
11 to 15	RFU
16	Continuous write in word units
17 to 19	RFU
20	Pre-write
21	Internal verify
Other	Prohibited

Remark RFU: Reserved for Future Use

16.7.7 Calling parameters

The arguments used to call the self-programming function are shown in the table below. In addition to these arguments, parameters such as the write time and erase time are set to the RAM parameters indicated by ep (r30).

Table 16-9. Calling Parameters

Function Name	First Argument (r6) Function No.	Second Argument (r7)	Third Argument (r8)	Fourth Argument (r9)	Return Value (r10)
Acquiring flash information	0	Option number ^{Note 1}	-	_	Note 1
Erasing area	1	Area erase start address	-	-	0: Normal completion Other than 0: Error
Area write back	5	None (acts on erase manipulation area immediately before)	_	_	None
Erase byte verify	9	Verify start address	Number of bytes to be verified	-	0: Normal completion Other than 0: Error
Erase verify	10	None (acts on erase manipulation area immediately before)	-	-	0: Normal completion Other than 0: Error
Continuous write in word units ^{Note 2}	16	Write start address ^{Note 3}	Start address of write source data ^{Note 3}	Number of words to be written (word units)	0: Normal completion Other than 0: Error
Pre-write	20	Write start address	Number of bytes to be written	-	0: Normal completion Other than 0: Error
Internal verify	21	Verify start address	Number of bytes to be verified	-	0: Normal completion Other than 0: Error

Notes 1. See 16.7.10 Flash information for details.

- 2. Prepare write source data in memory other than the flash memory when data is written continuously in word units.
- 3. This address must be at a 4-byte boundary.

Caution For all the functions, ep (r30) must indicate the first address of the RAM parameter.

16.7.8 Contents of RAM parameters

Reserve the following 48-byte area in the internal RAM or external RAM for the RAM parameters, and set the parameters to be input. Set the base addresses of these parameters to ep (r30).

Table 16-10. Description of RAM Parameter

Address	Size	I/O	Description
ep+0	4 bytes	-	For internal operations
ep+4:Bit 5 ^{Note 1}	1 bit	Input	Operation flag (Be sure to set this flag to 1 before calling the device internal processing.) 0: Normal operation in progress 1: Self-programming in progress
ep+4:Bit 7 ^{Notes 2, 3}	1 bit	Output	NMI flag 0: NMI not detected 1: NMI detected
ep+8	4 bytes	Input	Erase time (unsigned 4 bytes) Expressed as 1 count value in units of the internal operation unit time (100 μ s). Set value = Erase time (μ s)/internal operation unit time (μ s) Example: If erase time is 0.4 s $\rightarrow 0.4 \times 1,000,000/100 = 4,000$ (integer operation)
ep+0xc	4 bytes	Input	Write back time (unsigned 4 bytes) Expressed as 1 count value in units of the internal operation unit time (100 μ s). Set value = Write back time (μ s)/internal operation unit time (μ s) Example: If write back time is 1 ms \rightarrow 1 × 1,000/100 = 10 (integer operation)
ep+0x10	2 bytes	Input	Timer set value for creating internal operation unit time (unsigned 2 bytes) Write a set value that makes the value of timer 4 the internal operation unit time (100 μs). Set value = Operating frequency (Hz)/1,000,000 × Internal operation unit time (μs)/ Timer division ratio (4) + 1 ^{Note 4} Example: If the operating frequency is 50 MHz → 50,000,000/1,000,000 × 100/4 + 1 = 1,251 (integer operation)
ep+0x12	2 bytes	Input	Timer set value for creating write time (unsigned 2 bytes) Write a set value that makes the value of timer 4 the write time. Set value = Operating frequency (Hz)/Write time (µs)/Timer division ratio (4) + 1 ^{Note 4} Example: If the operating frequency is 50 MHz and the write time is 20 µs → 50,000,000/1,000,000 × 20/4 + 1 = 251 (integer operation)
ep+0x14	28 bytes		For internal operations

- Notes 1. Fifth bit of address of ep+4 (least significant bit is bit 0.)
 - 2. Seventh bit of address of ep+4 (least significant bit is bit 0.)
 - 3. Clear the NMI flag by the user program because it is not cleared by the device internal processing.
 - **4.** The device internal processing sets this value minus 1 to the timer. Because the fraction is rounded up, add 1 as indicated by the expression of the set value.

Caution Be sure to reserve the RAM parameter area at a 4-byte boundary.

16.7.9 Errors during self-programming

The following errors related to manipulation of the flash memory may occur during self-programming. An error occurs if the return value (r10) of each function is not 0.

Table 16-11. Errors During Self-Programming

Error	Function	Description
Overerase error	Erase verify	Excessive erasure occurs.
Undererase error (blank check error)	Erase byte verify	Erasure is insufficient. Additional erase operation is needed.
Verify error	Continuous write in word units	The written data cannot be correctly read. Either an attempt has been made to write to flash memory that has not been erased, or writing is not sufficient.
Internal verify error	Internal verify	The written data is not at the correct signal level.

Caution The overerase error and undererase error may simultaneously occur in the entire flash memory.

16.7.10 Flash information

For the flash information acquisition function (function No. 0), the option number (r7) to be specified and the contents of the return value (r10) are as follows. To acquire all flash information, call the function as many times as required in accordance with the format shown below.

Table 16-12. Flash Information

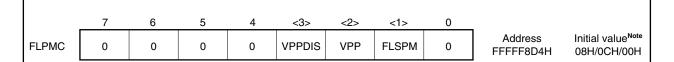

Option No. (r7)	Return Value (r10)	
0	Specification prohibited	
1	Specification prohibited	
2	Bit representation of return value (MSB: bit 31) FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF	
3+0	End address of area 0	
3+1	End address of area 1	

- Cautions 1. The start address of area 0 is 0. The "end address + 1" of the preceding area is the start address of the next area.
 - 2. The flash information acquisition function does not check values such as the maximum number of areas specified by the argument of an option. If an illegal value is specified, an undefined value is returned.

16.7.11 Area number

The area numbers and memory map of the μ PD70F3116 are shown below.

Figure 16-16. Area Configuration


16.7.12 Flash programming mode control register (FLPMC)

The flash programming mode control register (FLPMC) is a register used to enable/disable writing to flash memory and to specify the self-programming mode.

This register can be read/written in 8-bit or 1-bit units (the VPP bit (bit 2) is read-only).

Cautions 1. Be sure to transfer control to the internal RAM or external memory beforehand to manipulate the FLSPM bit. However, in on-board programming mode set by the flash memory programmer, the specification of FLSPM bit is ignored.

2. Do not change the initial value of bits 0 and 4 to 7.

Note $\,$ 08H: When writing voltage is not applied to the V_{PP} pin

0CH: When writing voltage is applied to the VPP pin

00H: Product not provided with flash memory (μPD703116)

Bit position	Bit name	Function
3	VPPDIS	Enables/disables writing/erasing on-chip flash memory. When this bit is 1, writing/erasing on-chip flash memory is disabled even if a high voltage is applied to the V _{PP} pin. 0: Enables writing/erasing flash memory 1: Disables writing/erasing flash memory
2	VPP	Indicates the voltage applied to the VPP pin reaches the writing-enabled level (read-only). This bit is used to check whether writing is possible or not in the self-programming mode. 0: Indicates high-voltage application to VPP pin is not detected (the voltage has not reached the writing voltage enable level) 1: Indicates high-voltage application to VPP pin is detected (the voltage has reached the writing voltage enable level)
1	FLSPM	Controls switching between internal ROM and the self-programming interface. This bit can switch the mode between the normal mode set by the mode pin on the application system and the self-programming mode. The setting of this bit is valid only if the voltage applied to the VPP pin reaches the writing voltage enable level. 0: Normal mode (for all addresses, instruction fetch is performed from on-chip flash memory) 1: Self-programming mode (device internal processing is started)

Setting data to the flash programming mode control register (FLPMC) is performed in the following sequence.

- <1> Disable interrupts (set the NP bit and ID bit of the PSW to 1).
- <2> Prepare the data to be set in the specific register in a general-purpose register.
- <3> Write data to the peripheral command register (PHCMD).
- <4> Set the flash programming mode control register (FLPMC) by executing the following instructions.
 - Store instruction (ST/SST instructions)
 - Bit manipulation instruction (SET1/CLR1/NOT1 instructions)
- <5> Insert NOP instructions (5 instructions (<5> to <9>)).
- <10> Cancel the interrupt disabled state (reset the NP bit of the PSW to 0).

Remark rX: Value written to the PSW rY: Value returned to the PSW

No special sequence is required for reading a specific register.

- Cautions 1. If an interrupt is acknowledged between when PHCMD is issued (<3>) and writing to a specific register (<4>) immediately after issuing PHCMD, writing to the specific register may not be performed and a protection error may occur (the PRERR bit of the PHS register = 1). Therefore, set the NP bit of the PSW to 1 (<1>) to disable interrupt acknowledgment. Similarly, disable acknowledgment of interrupts when a bit manipulation instruction is used to set a specific register.
 - 2. Use the same general-purpose register used to set a specific register (<3>) for writing to the PHCMD register (<4>) even though the data written to the PHCMD register is dummy data. This is the same as when a general-purpose register is used for addressing.
 - 3. Before executing this processing, complete all DMA transfer operations.

16.7.13 Calling device internal processing

This section explains the procedure to call the device internal processing from the entry program.

Before calling the device internal processing, make sure that all the conditions of the hardware and software environments are satisfied and that the necessary arguments and RAM parameters have been set. Call the device internal processing by setting the FLSPM bit of the flash programming mode control register (FLPMC) to 1 and then executing the trap 0x1f instruction. The processing is always called using the same procedure. It is assumed that the program of this interface is described in an assembly language.

- <1> Set the FLPMC register as follows:
 - VPPDIS bit = 0 (to enable writing/erasing flash memory)
 - FLSPM bit = 1 (to select self-programming mode)
- <2> Clear the NP bit of the PSW to 0 (to enable NMIs (only when NMIs are used on the application)).
- <3> Execute trap 0x1f to transfer the control to the device's internal processing.
- <4> Set the NP bit and ID bit of the PSW to 1 (to disable all interrupts).
- <5> Set the value to the peripheral command register (PHCMD) that is to be set to the FLPMC register.
- <6> Set the FLPMC register as follows:
 - VPPDIS bit = 1 (to disable writing/erasing flash memory)
 - FLSPM bit = 0 (to select normal operation mode)
- <7> Wait for the internal manipulation setup time (see 16.7.13 (5) Internal manipulation setup parameter).

(1) Parameter

- r6: First argument (sets a self-programming function number)
- r7: Second argument
- r8: Third argument
- r9: Fourth argument
- ep: First address of RAM parameter

(2) Return value

r10: Return value (return value from device internal processing of 4 bytes)

ep+4:Bit 7: NMI flag (flag indicating whether an NMI occurred while the device internal processing was being executed)

- 0: NMI did not occur while device internal processing was being executed.
- 1: NMI occurred while device internal processing was being executed.

If an NMI occurs while control is being transferred to the device internal processing, the NMI request may never be reflected. Because the NMI flag is not internally reset, this bit must be cleared before calling the device internal processing. After the control returns from the device internal processing, NMI dummy processing can be executed by checking the status of this flag using software.

(3) Description

Transfer control to the device internal processing specified by a function number using the trap instruction. To do this, the hardware and software environmental conditions must be satisfied. Even if trap 0x1f is used in the user application program, trap 0x1f is treated as another operation after the FLPMC register has been set. Therefore, use of the trap instruction is not restricted on the application.

(4) Program example

An example of a program in which the entry program is executed as a subroutine is shown below. In this example, the return address is saved to the stack and then the device internal processing is called. This program must be located in memory other than the block 0 space and flash memory area.

```
ISETUP
           130
                                             -- Internal manipulation setup parameter
EntryProgram:
   add
               -4, sp
                                              -- Prepare
   st.w
               lp, 0[sp]
                                             -- Save return address
               lo(0x00a0), r0, r10
   movea
   ldsr
               r10, 5
                                              -- PSW = NP, ID
               lo(0x0002), r10
   mov
               r10, PHCMD[r0]
                                             -- PHCMD = 2
   st.b
               r10, FLPMC[r0]
                                             -- VPPDIS = 0, FLSPM = 1
   st.b
   nop
   nop
   nop
   nop
   nop
               lo(0x0020), r0, r10
   movea
   ldsr
               r10, 5
                                             -- PSW = ID
   trap
               0x1f
                                             -- Device Internal Process
               lo(0x00a0), r0, r6
   movea
               r6, 5
   ldsr
                                             -- PSW = NP, ID
               1o(0x08), r6
   mov
   st.b
               r6, PHCMD[r0]
                                             -- PHCMD = 8
               r6, FLPMC[r0]
                                             -- VPPDIS = 1, FLSPM = 0
   st.b
   nop
   nop
   nop
   nop
   nop
               ISETUP, lp
                                             -- loop time = 130
   mov
loop:
   divh
               r6, r6
                                             -- To kill time
   add
               -1, lp
                                             -- Decrement counter
               loop
   jne
   ld.w
               0[sp], lp
                                             -- Reload lp
   add
               4, sp
                                             -- Dispose
               [lp]
                                             -- Return to caller
   jmp
```

(5) Internal manipulation setup parameter

If the self-programming mode is switched to the normal operation mode, the μ PD70F3116 must wait for 100 μ s before it accesses the flash memory. In the program example in (4) above, the elapse of this wait time is ensured by setting ISETUP to "130" (@ 50 MHz operation). The total number of execution clocks in this example is 39 clocks (divh instruction (35 clocks) + add instruction (1 clock) + jne instruction (3 clocks)). Ensure that a wait time of 100 μ s elapses by using the following expression.

39 clocks (total number of execution clocks) \times 20 ns (@ 50 MHz operation) \times 130 (ISETUP) = 101.4 μ s (wait time)

16.7.14 Erasing flash memory flow

The procedure to erase the flash memory is illustrated below. The processing of each function number must be executed in accordance with the specified calling procedure.

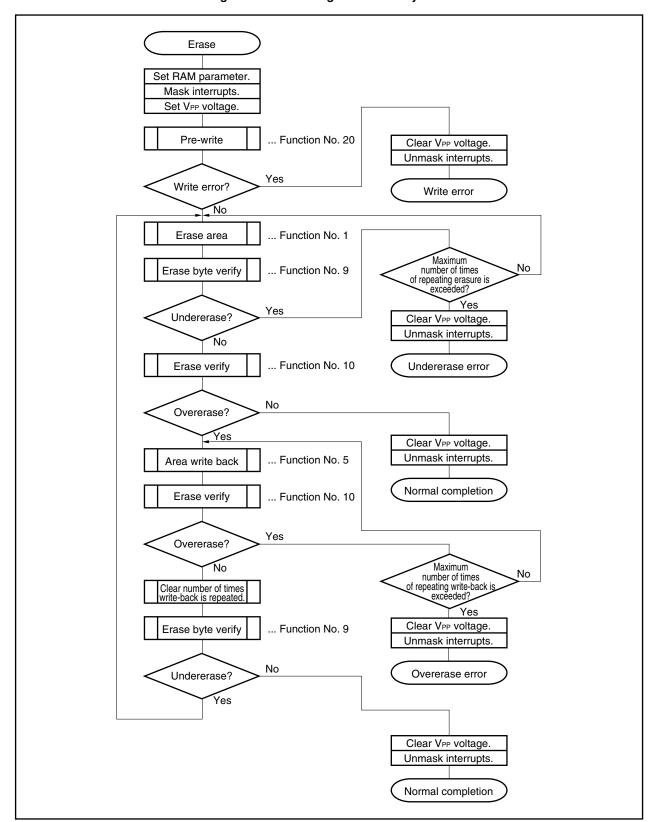


Figure 16-17. Erasing Flash Memory Flow

16.7.15 Continuous writing flow

The procedure to write data all at once to the flash memory by using the function to continuously write data in word units is illustrated below. The processing of each function number must be executed in accordance with the specified calling procedure.

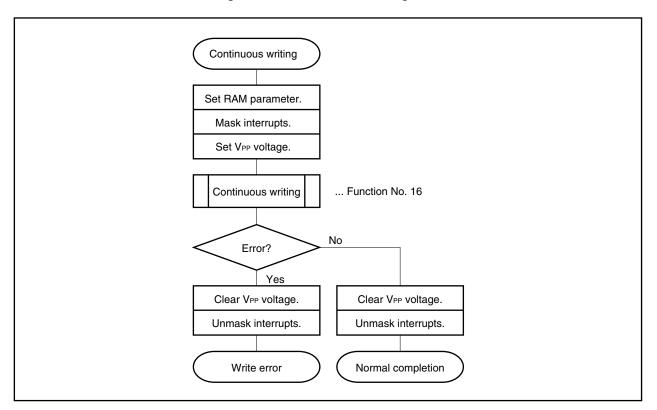


Figure 16-18. Continuous Writing Flow

16.7.16 Internal verify flow

The procedure of internal verification is illustrated below. The processing of each function number must be executed in accordance with the specified calling procedure.

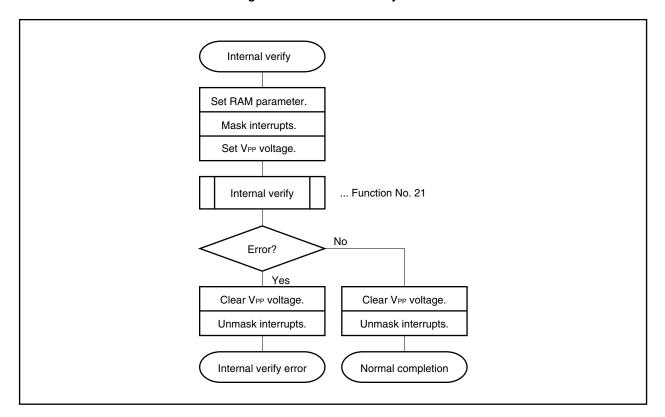


Figure 16-19. Internal Verify Flow

16.7.17 Acquiring flash information flow

The procedure to acquire the flash information is illustrated below. The processing of each function number must be executed in accordance with the specified calling procedure.

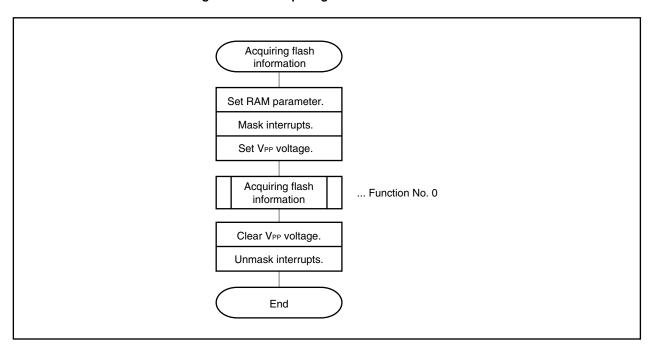


Figure 16-20. Acquiring Flash Information Flow

16.7.18 Self-programming library

V850 Series Flash Memory Self-Programming User's Manual is available for reference when executing self-programming.

In this manual, the library uses the self-programming interface of the V850 microcontrollers and can be used in C as a utility and as part of the application program. To use the library, thoroughly evaluate it on the application system.

(1) Functional outline

Figure 16-21 outlines the function of the self-programming library. In this figure, a rewriting module is located in area 0 and the data in area 1 is rewritten or erased.

The rewriting module is a user program to rewrite the flash memory. The other areas can be also rewritten by using the flash functions included in this self-programming library. The flash functions expand the entry program in the external memory or internal RAM and call the device internal processing.

When using the self-programming library, make sure that the hardware conditions, such as the write voltage, and the software conditions, such as interrupts, are satisfied.

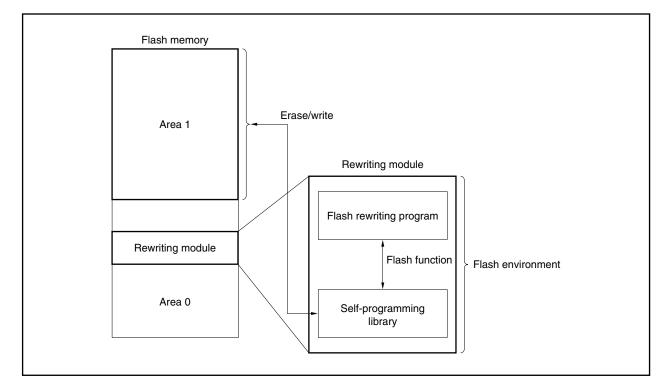
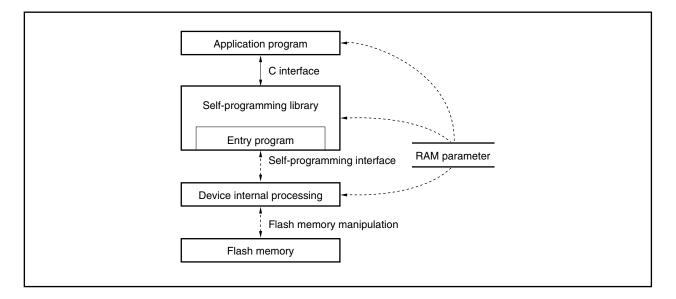



Figure 16-21. Functional Outline of Self-Programming Library

The configuration of the self-programming library is outlined below.

Figure 16-22. Outline of Self-Programming Library Configuration

16.8 How to Distinguish Flash Memory and Mask ROM Versions

It is possible to distinguish a flash memory version (μ PD70F3116) and a mask ROM version (μ PD703116) by means of software, using the methods shown below.

- <1> Disable interrupts (set the NP bit of PSW to 1).
- <2> Write data to the peripheral command register (PHCMD).
- <3> Set the VPPDIS bit of the flash programming mode control register (FLPMC) to 1.
- <4> Insert NOP instructions (5 instructions (<4> to <8>)).
- <9> Cancel the interrupt disabled state (reset the NP bit of the PSW to 0).
- <10> Read the VPPDIS bit of the flash programming mode control register (FLPMC).
 - If the value read is 0: Mask ROM version (μPD703116)
 - If the value read is 1: Flash memory version (μ PD70F3116)

```
[Description example]
                      <1> LDSR rX, 5
                      <2> ST.B r10, PHCMD[r0]
                      <3> SET1 3, FLPMC[r0]
                      <4> NOP
                      <5> NOP
                      <6> NOP
                      <7> NOP
                      <8> NOP
                      <9> LDSR rY, 5
                      <10> TST1
                                 3, FLPMC[r0]
                                               <Start address of self-programming routine>
                           BNZ
                                               <Routine when writing is not performed>
                           BR
```

- Remark rX: Value written to the PSW
 - rY: Value returned to the PSW
- Cautions 1. If an interrupt is acknowledged between when PHCMD is issued (<2>) and writing to a specific register (<3>) immediately after issuing PHCMD, writing to a specific register may not be performed and a protection error may occur (the PRERR bit of the PHS register = 1). Therefore, set the NP bit of the PSW to 1 (<1>) to disable interrupt acknowledgment. Similarly, disable acknowledgment of interrupts when a bit manipulation instruction is used to set a specific register.
 - 2. When a store instruction is used for setting a specific register, be sure to use the same general-purpose register used to set the specific register for writing to the PHCMD register even though the data written to the PHCMD register is dummy data. This is the same as when a general-purpose register is used for addressing.
 - 3. Before executing this processing, complete all DMA transfer operations.

CHAPTER 17 TURNING ON/OFF POWER

The V850E/IA1 has three types of power supply pins: 3.3 V power supply pins for internal units (V_{DD3} and CV_{DD}), 5 V power supply pins for external pins (V_{DD5} and AV_{DD}), and a flash programming power supply pin (V_{PP})^{Note}.

This chapter explains the I/O pin status when power is turned ON/OFF.

Note μ PD70F3116 only

[Recommended timing of turning ON/OFF power]

- To turn ON
 - Keep the voltage on the V_{DD5} and AV_{DD} pins at 0 V until the voltage on the V_{DD3} pin rises to the level at which the operation is guaranteed (3.0 to 3.6 V).
- To turn OFF
 - Keep the voltage on the V_{DD3} pin at the level at which the operation is guaranteed (3.0 to 3.6 V), until the voltage on the V_{DD5} and AV_{DD} pins has dropped to 0 V.
- When releasing reset status by RESET pin
 Release the reset status by the RESET pin after both the 3.3 V power supply and 5 V power supply have risen.

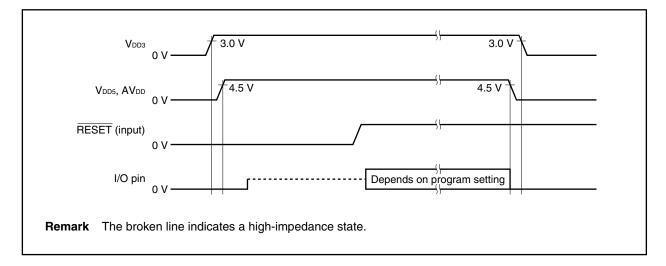


Figure 17-1. Recommended Timing of Turning ON/OFF Power

[Other timing]

- If power is supplied to the VDD5 and AVDD pins before the voltage on the VDD3 pins rises to the level at which the operation is guaranteed (3.0 to 3.6 V), the status of the I/O pin is undefined^{Note} until the voltage on the VDD3 pin reaches 3.0 V.
- If the voltage on the V_{DD3} pin drops below the level at which the operation is guaranteed (3.0 to 3.6 V) before the voltage on the V_{DD5} and AV_{DD} pins drops to 0 V, the status of the I/O pin is undefined^{Note}.

Note This means that the input or output mode of an I/O pin, or the output level of an output pin is not determined.

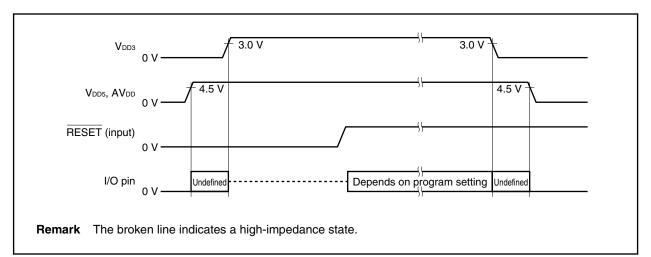
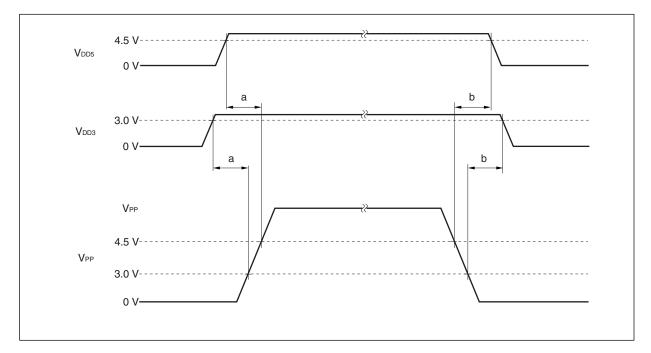


Figure 17-2. Other Timing


CHAPTER 18 ELECTRICAL SPECIFICATIONS

18.1 Normal Operation Mode

Absolute Maximum Ratings (T_A = 25°C)

Parameter	Symbol	Conditio	ns	Ratings	Unit
Power supply voltage	V _{DD3}	V _{DD3} pin		-0.5 to +4.6	٧
	V _{DD5}	V _{DD5} pin		-0.5 to +7.0	٧
	CV _{DD}	CV _{DD} pin		-0.5 to +4.6	٧
	CVss	CVss pin		-0.5 to +0.5	٧
	AV _{DD}	AV _{DD} pin		-0.5 to V _{DD5} + 0.5 ^{Note 1}	V
	AVss	AVss pin		-0.5 to +0.5	V
Input voltage	VII	Other than X1 pin and	pins for NBD ^{Note 2}	-0.5 to V _{DD5} + 0.5 ^{Note 1}	٧
	V _{I2}	V _{PP} pin, <i>μ</i> PD70F3116	Note 3	-0.5 to +8.5	٧
	Vıз	Pins for NBD ^{Note 2}		-0.5 to V _{DD3} + 0.5 ^{Note 1}	٧
	V _{I4}	RESET pin (when Vot	os is supplied)	-0.5 to +6.0	٧
Clock input voltage	Vĸ	X1 pin		-0.5 to V _{DD3} + 1.0 ^{Note 1}	٧
Analog input voltage	VIAN	ANI00 to ANI07 pins,	$AV_{\text{DD}} > V_{\text{DD5}}$	-0.5 to V _{DD5} + 0.5 ^{Note 1}	V
		ANI10 to ANI17 pins	$V_{\text{DD5}} \geq AV_{\text{DD}}$	-0.5 to AV _{DD} + 0.5 ^{Note 1}	V
Analog reference input voltage	AVREF	AVREFO pin,	$AV_{\text{DD}} > V_{\text{DD5}}$	-0.5 to V _{DD5} + 0.5 ^{Note 1}	V
		AVREF1 pin	$V_{\text{DD5}} \geq AV_{\text{DD}}$	-0.5 to AV _{DD} + 0.5 ^{Note 1}	V
Output current, low	loL	Per pin for TO000 to TO010 to TO015 pins		15	mA
		Per pin other than for TO005 and TO010 to		4.0	mA
		Total for all pins		210	mA
Output current, high	Іон	Per pin		-4.0	mA
		Total for all pins		-100	mA
Operating ambient temperature	Та	μPD703116, 703116(A), μPD70F3116, 70F3116(A)		-40 to +85	°C
		μPD703116(A1), 70F	3116(A1)	-40 to +110	°C
Storage temperature	T _{stg}			-65 to +150	°C

- Notes 1. Be sure not to exceed the absolute maximum ratings (MAX. value) of each power supply voltage.
 - 2. CLK_DBG, SYNC, AD0_DBG to AD3_DBG pins (μPD70F3116 only)
 - **3.** Make sure that the following conditions of the V_{PP} voltage application timing are satisfied when the flash memory is written.
 - When power supply voltage rises V_{PP} must exceed V_{DD3} and V_{DD5} 10 μ s or more after V_{DD3} and V_{DD5} have reached the lower-limit value (V_{DD3} : 3.0 V, V_{DD5} : 4.5 V) of the operating voltage range (see a in the figure below).
 - When power supply voltage drops
 V_{DD3} and V_{DD5} must be lowered 10 μs or more after V_{PP} falls below the lower-limit value (V_{DD3}: 3.0 V,
 V_{DD5}: 4.5 V) of the operating voltage range of V_{DD3} and V_{DD5} (see b in the figure below).

- Cautions 1. Do not directly connect output (or I/O) pins of IC products to each other, or to VDD, VCC, and GND. Open drain pins or open collector pins, however, can be directly connected to each other. Direct connection of the output pins between an IC product and an external circuit is possible, if the output pins can be set to the high-impedance state and the output timing of the external circuit is designed to avoid output conflict.
 - 2. Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any parameter. That is, the absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions that ensure that the absolute maximum ratings are not exceeded.

The ratings and conditions shown below for DC characteristics and AC characteristics are within the range for normal operation and quality assurance.

Capacitance (TA = 25°C, VDD3 = VDD5 = VSS3 = VSS5 = 0 V)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Input capacitance	Сі	fc = 1 MHz			15	pF
I/O capacitance	Сю	Unmeasured pins returned to 0 V.			15	pF
Output capacitance	Со				15	pF

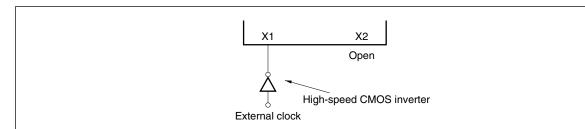

Operating Conditions

Operation Mode	Internal System Clock Frequ	uency (fxx)	Operating Ambient	Power Sup	ply Voltage
	Tem		Temperature (T _A)	V _{DD3}	V_{DD5}
Direct mode	μPD703116, 703116(A), 70F3116, 70F3116(A)	4 to 25 MHz	–40 to +85°C	3.3 V ±0.3 V	5.0 V ±0.5 V
	μPD703116(A1), 70F3116(A1)	4 to 16 MHz	–40 to +110°C	3.3 V ±0.3 V	5.0 V ±0.5 V
PLL mode	μPD703116, 703116(A), 70F3116, 70F3116(A)	4 to 50 MHz	–40 to +85°C	3.3 V ±0.3 V	5.0 V ±0.5 V
	μPD703116(A1), 70F3116(A1)	4 to 32 MHz	–40 to +110°C	3.3 V ±0.3 V	5.0 V ±0.5 V

Caution When interfacing to the external devices using the CLKOUT signal, make the internal system clock frequency (fxx) 32 MHz or lower.

Clock Oscillator Characteristics (T_A = -40 to +85°C: μ PD703116, 703116(A), 70F3116, 70F3116(A), T_A = -40 to +110°C: μ PD703116(A1), 70F3116(A1))

(a) Ceramic resonator or crystal resonator connection



Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Oscillation frequency	fx		4		6.4	MHz

Remarks 1. Connect the oscillator as close to the X1 and X2 pins as possible.

- 2. Do not wire any other signal lines in the area indicated by the broken lines.
- **3.** For the resonator selection and oscillator constant, customers are required to either evaluate the oscillation themselves or apply to the resonator manufacturer for evaluation.

(b) External clock input

Cautions 1. Connect the high-speed CMOS inverter as closely to the X1 pin as possible.

2. Thoroughly evaluate the matching between the V850E/IA1 and the high-speed CMOS inverter.

Recommended Oscillator Constant

(a) Ceramic resonator

(i) Murata Mfg. Co., Ltd (T_A = -40 to +85°C: μ PD703116, 703116(A), 70F3116, 70F3116(A), T_A = -40 to +110°C: μ PD703116(A1), 70F3116(A1))

Туре	Product Name	Oscillation Recommended Circuit Constant Recommended Vol Frequency Range			Recommended Circuit Constant		
		fx (MHz)	C1 (pF)	C2 (pF)	R _d (Ω)	MIN. (V)	MAX. (V)
Surface mount	CSTCR4M00G55-R0	4.0	On-chip	On-chip	0	3.0	3.6
	CSTCR6M00G55-R0	6.0	On-chip	On-chip	0	3.0	3.6

Caution This oscillator constant is a reference value based on evaluation under a specific environment by the resonator manufacturer.

If optimization of oscillator characteristics is necessary in the actual application, apply to the resonator manufacturer for evaluation on the implementation circuit.

The oscillation voltage and oscillation frequency indicate only oscillator characteristics. Use the V850E/IA1 so that the internal operating conditions are within the specifications of the DC and AC characteristics.

DC Characteristics (Ta = -40 to +85°C: μ PD703116, 703116(A), 70F3116, 70F3116(A), Ta = -40 to +110°C: μ PD703116(A1), 70F3116(A1),

 $VDD3 = CVDD = 3.0 \text{ to } 3.6 \text{ V}, VDD5 = 5 \text{ V} \pm 0.5 \text{ V}, VSS3 = VSS5 = CVSS = 0 \text{ V}) (1/2)$

Parameter	Symbol	Co	Conditions			MAX.	Unit
Input voltage, high	V _{IH1}	Pins for bus contro	Ol ^{Note 1}	2.2		V _{DD5}	V
	V _{IH2}	Pins for NBD ^{Note 2}		0.8V _{DD3}		V _{DD3}	V
	V _{IH3}	Port pins ^{Note 3}		0.7V _{DD5}		V _{DD5}	V
	V _{IH4}	Port pins other that	ın Notes 1, 2, 3	0.8V _{DD5}		V _{DD5}	V
	V _{IH5}	X1 pin		0.8V _{DD3}		V _{DD3} +0.3	V
	V _{IH6}	RESET pin		0.8V _{DD3}		5.5	V
Input voltage, low	V _{IL1}	Pins for bus contro	Ol ^{Note 1}	0		0.8	V
	V _{IL2}	Pins for NBD ^{Note 2}		0		0.2V _{DD3}	V
	V _{IL3}	Port pins ^{Note 3}		0		0.3V _{DD5}	V
	V _{IL4}	Port pins other that	ın Notes 1, 2, 3	0		0.2V _{DD5}	V
	V _{IL5}	X1 pin		-0.5		0.15V _{DD3}	V
	V _{IL6}	RESET pin	RESET pin			0.2V _{DD3}	V
Output voltage, high	V _{OH1}	Pins other than Note 4	lон = −2.5 mA	V _{DD5} -1.0			V
	V _{OH2}	Pins for NBD ^{Note 4}	Iон = −2.5 mA	V _{DD3} -1.0			V
Output voltage, low	V _{OL1}	PWM output ^{Note 5}	IoL = 15 mA			2.0	V
			IoL = 2.5 mA			0.4	V
	V _{OL2}	Pins other than Notes 4, 5	loL = 2.5 mA			0.4	V
	Vol3	Pins for NBD ^{Note 4}	IoL = 2.5 mA			0.4	V
Input leakage current, high	Ішн	VI = VDD5				10	μA
Input leakage current, low	ILIL	Vı = 0 V				-10	μΑ
Output leakage current, high	Ісон	Vo = VDD5				10	μΑ
Output leakage current, low	ILOL	Vo = 0 V				-10	μA
Analog pin input leakage current	ILIAN	ANI00 to ANI07, Af	NI10 to ANI17 pins			±10	μА

Notes 1. AD0/PDL0 to AD15/PDL15, A16/PDH0 to A23/PDH7, \(\overline{LWR}/PCT0\), \(\overline{UWR}/PCT1\), PCT2, PCT3, \(\overline{RD}/PCT4\), PCT5, ASTB/PCT6, PCT7, \(\overline{WAIT}/PCM0\), CLKOUT/PCM1, \(\overline{HLDAK}/PCM2\), \(\overline{HLDRQ}/PCM3\), PCM4, \(\overline{CS0}/PCS0\) to \(\overline{CS7}/PCS7\) pins

- **2.** CLK_DBG, SYNC, AD0_DBG to AD3_DBG pins (μ PD70F3116 only)
- 3. P31/TXD0, P33/TXD1, P36/TXD2, P41/S00, P44/S01, P47/CTXD pins
- **4.** AD0_DBG to AD3_DBG, TRIG_DBG pins (μPD70F3116 only)
- **5.** TO000 to TO005, TO010 to TO015 pins

DC Characteristics (TA = -40 to $+85^{\circ}$ C: μ PD703116, 703116(A), 70F3116, 70F3116(A),

TA = -40 to +110°C: μ PD703116(A1), 70F3116(A1),

 $VDD3 = CVDD = 3.0 \text{ to } 3.6 \text{ V}, VDD5 = 5 \text{ V} \pm 0.5 \text{ V}, VSS3 = VSS5 = CVSS = 0 \text{ V})$ (2/2)

Parame	eter	Symbol		Conditions		MIN.	TYP.	MAX.	Unit
Power supply	In	I _{DD1}	μPD703116	V _{DD3} + CV _{DD}	Note 2		1.9fxx + 2.8	2.5fxx + 5.0	mA
current ^{Note 1}	normal mode			V _{DD5}	Note 3		0.8fxx + 0.8	1.0fxx	mA
mode	mode		μPD70F3116	V _{DD3} + CV _{DD}	Note 2		2.4fxx + 12	3.6fxx + 18	mA
				V _{DD5}	Note 3		30	50	mA
In HALT	In HALT	I _{DD2}	μPD703116	V _{DD3} + CV _{DD}	Note 2		0.9 fxx + 6.8	1.8fxx + 4.0	mA
	mode			V _{DD5}	Note 3		20	40	mA
			μPD70F3116	V _{DD3} + CV _{DD}	Note 2		1.2fxx	2.3fxx	mA
				V _{DD5}	Note 3		20	40	mA
	In IDLE	IDD3	V _{DD3} + CV _{DD}				3.0	10	mA
	mode		V _{DD5}	Note 3	Note 3		0.5	2.0	mA
	In STOP	I _{DD4}	VDD3 + CVDD	-40°C ≤ T _A ≤ +	$-40^{\circ}\text{C} \le T_{\text{A}} \le +85^{\circ}\text{C}$		20	1200	μΑ
	mode			$-40^{\circ}C \le T_A \le +$	$-40^{\circ}C \le T_A \le +110^{\circ}C$		20	3500	μА
			V _{DD5}	Note 3			10	120	μΑ

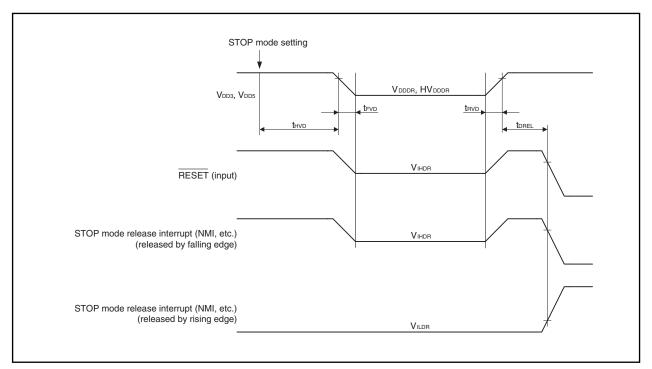
Notes 1. Value in the PLL mode

- 2. Determine the value by calculating fxx from the operating conditions.
- 3. The current of the TO000 to TO005 and TO010 to TO015 pins is not included.

Remarks 1. fxx: Internal system clock frequency (MHz)

- 2. An example of calculating the power supply current is shown below.
 - Power supply current (TYP.) of the V850E/IA1 in normal mode when fxx = 32 MHz

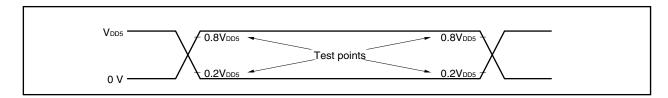
 $V_{DD3} + CV_{DD}$: $I_{DD1} = 2.4 f_{XX} + 12 = 2.4 \times 32 + 12 = 88.8 mA$

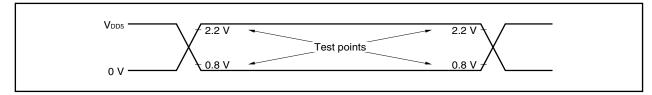

V_{DD5}: I_{DD1} = 30 mA

Data Retention Characteristics (T_A = -40 to +85°C: μ PD703116, 703116(A), 70F3116, 70F3116(A), T_A = -40 to +110°C: μ PD703116(A1), 70F3116(A1))

Parameter	Symbol		Conditions			TYP.	MAX.	Unit
Data retention voltage	VDDDR	STOP r	STOP mode, V _{DD3} = V _{DDDR}				3.6	V
	HVDDDR	STOP r	STOP mode, VDD5 = HVDDDR				5.5	V
Data retention current	Idddr	$V_{DD3} = $			20	1200	μ A	
					20	3500	μ A	
	HIDDDR	V _{DD5} = H	IV _{DDDR}	Note 1		10	120	μ A
Power supply voltage rise time	trvd				200			μS
Power supply voltage fall time	t FVD				200			μS
Power supply voltage retention time (from STOP mode setting)	t HVD				0			ms
STOP release signal input time	t DREL				0			ns
Data retention input voltage, high	VIHDR	Note 2			0.8HVDDDR		HVDDDR	V
		Note 3			0.8VDDDR		V _{DDDR}	V
Data retention input voltage, low	VILDR	Note 2			0		0.2HVDDDR	V
		Note 3			0		0.2VDDDR	V

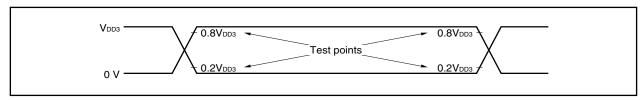
- Notes 1. The current of the TO000 to TO005 and TO010 to TO015 pins is not included.
 - 2. P00/NMI, P01/ESO0/INTP0, P02/ESO1/INTP1, P03/ADTRG0/INTP2, P04/ADTRG1/INTP3, P05/INTP4 to P07/INTP6, P10/TIUD10/TO10, P11/TCUD10/INTP100, P12/TCLR10/INTP101, P13/TIUD11/TO11, P14/TCUD11/INTP110, P15/TCLR11/INTP111, P20/TI2/INTP20, P21/TO21/INTP21 to P24/TO24/INTP24, P25/TCLR2/INTP25, P26/TI3/TCLR3/INTP30, P27/TO3/INTP31, P30/RXD0, P32/RXD1, P34/ASCK1, P35/RXD2, P37/ASCK2, P40/SI0, P42/SCK0, P43/SI1, P45/SCK1, P46/CRXD, MODE0 to MODE2, CKSEL, RESET pins
 - 3. CLK_DBG, SYNC, AD0_DBG to AD3_DBG pins (µPD70F3116 only)


Remark The TYP. value is a reference value for when $T_A = 25$ °C.

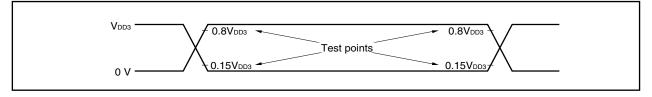

AC Characteristics (TA = -40 to $+85^{\circ}$ C: μ PD703116, 703116(A), 70F3116, 70F3116(A), TA = -40 to $+110^{\circ}$ C: μ PD703116(A1), 70F3116(A1), VDD3 = CVDD = 3.0 to 3.6 V, VDD5 = 5 V ±0.5 V, VSS3 = VSS5 = CVSS = 0 V, output pin load capacitance: CL = 50 pF)

AC test input test points

(a) Other than (b) to (d) below

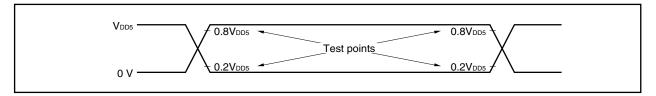


(b) AD0/PDL0 to AD15/PDL15, A16/PDH0 to A23/PDH7, \(\overline{LWR}\)/PCT0, \(\overline{UWR}\)/PCT1, PCT2, PCT3, \(\overline{RD}\)/PCT4, PCT5, ASTB/PCT6, PCT7, \(\overline{WAIT}\)/PCM0, CLKOUT/PCM1, \(\overline{HLDAK}\)/PCM2, \(\overline{HLDRQ}\)/PCM3, PCM4, \(\overline{CS0}\)/PCS0 to \(\overline{CS7}\)/PCS7 pins

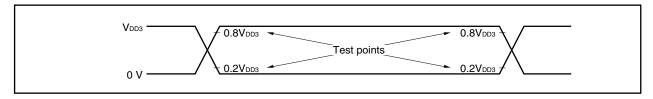


(c) CLK_DBG^{Note}, SYNC^{Note}, AD0_DBG to AD3_DBG^{Note}, RESET pins

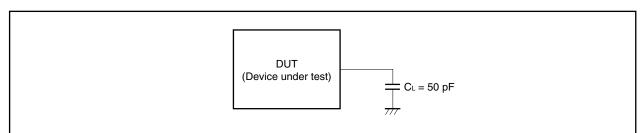
Note μ PD70F3116 only



(d) X1 pin



AC test output test points


(a) Pins other than (b) below

(b) AD0_DBG to AD3_DBG, TRIG_DBG pins (μPD70F3116 only)

Load conditions

Caution In cases where the load capacitance is greater than 50 pF due to the circuit configuration, insert a buffer or other element to reduce the device's load capacitance to 50 pF or lower.

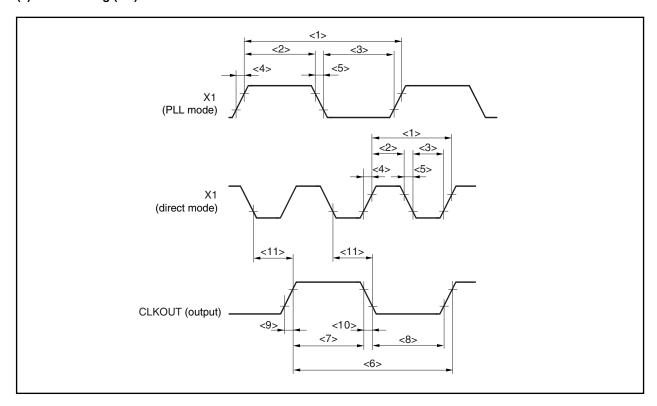
(1) Clock timing (1/2)

(TA = -40 to +85°C: μ PD703116, 703116(A), 70F3116, 70F3116(A),

TA = -40 to +110°C: μ PD703116(A1), 70F3116(A1),

 $VDD3 = CVDD = 3.0 \text{ to } 3.6 \text{ V}, VDD5 = 5 \text{ V} \pm 0.5 \text{ V}, VSS3 = VSS5 = CVSS = 0 \text{ V},$

output pin load capacitance: CL = 50 pF)


Parameter	Syn	nbol	Conc	litions	MIN.	MAX.	Unit
X1 input cycle	<1>	tcyx	Direct mode	Note 1	31.25	125	ns
			PLL mode		156	250	ns
			Direct mode	Note 2	20	125	ns
			PLL mode		156	250	ns
X1 input high-level width	<2>	twxн	Direct mode		6		ns
			PLL mode		50		ns
X1 input low-level width	<3>	twxL	Direct mode		6		ns
			PLL mode		50		ns
X1 input rise time	<4>	txR	Direct mode			4	ns
			PLL mode			10	ns
X1 input fall time	<5>	txF	Direct mode			4	ns
			PLL mode			10	ns
CPU operation frequency	-	fxx	Note 2		4	50	MHz
			Note 1		4	32	MHz
			CLKOUT signal	l used ^{Note 3}	4	32	MHz
CLKOUT output cycle	<6>	tсүк	Note 2		20	250	ns
			Note 1		31.25	250	ns
			CLKOUT signal	l used ^{Note 3}	31.25	250	ns
CLKOUT high-level width	<7>	twкн			0.5T – 9		ns
CLKOUT low-level width	<8>	twĸL			0.5T – 11		ns
CLKOUT rise time	<9>	t kr				11	ns
CLKOUT fall time	<10>	t KF				9	ns
Delay time from X1↓ to CLKOUT	<11>	toxk	Direct mode			40	ns

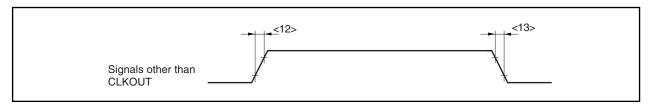
Notes 1. $-40^{\circ}C \le T_A \le +110^{\circ}C$

- **2.** $-40^{\circ}C \le T_A \le +85^{\circ}C$
- **3.** When interfacing to the external devices using the CLKOUT signal, make the internal system clock frequency (fxx) 32 MHz or lower.

Remark T = tcyk

(1) Clock timing (2/2)

(2) Output waveform (except for CLKOUT)


(TA = -40 to +85°C: μ PD703116, 703116(A), 70F3116, 70F3116(A),

TA = -40 to +110°C: μ PD703116(A1), 70F3116(A1),

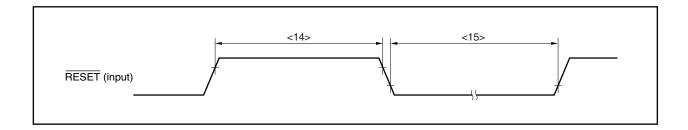
 $V\text{DD3} = C\text{VDD} = 3.0 \text{ to } 3.6 \text{ V}, \text{VDD5} = 5 \text{ V} \pm 0.5 \text{ V}, \text{VSS3} = \text{VSS5} = \text{CVSS} = 0 \text{ V},$

output pin load capacitance: CL = 50 pF)

Parameter	Symbol		Conditions	MIN.	MAX.	Unit
Output rise time	<12>	tor			15	ns
Output fall time	<13>	tor			15	ns

(3) Reset timing

 $(TA = -40 \text{ to } +85^{\circ}\text{C}: \mu\text{PD703116}, 703116(A), 70F3116, 70F3116(A),$


Ta = -40 to +110°C: μ PD703116(A1), 70F3116(A1),

VDD3 = CVDD = 3.0 to 3.6 V, VDD5 = 5 V \pm 0.5 V, VSS3 = VSS5 = CVSS = 0 V, CL = 50 pF)

Parameter	Symbol		Conditions	MIN.	MAX.	Unit
RESET pin high-level width	<14>	twrsh		500		ns
RESET pin low-level width	<15>	twrsL	At power-on and at STOP mode release	500 + Tоsт		ns
			Other than at power-on and at STOP mode release	500		ns

Caution Thoroughly evaluate the oscillation stabilization time.

Remark Tost: Oscillation stabilization time

(4) Multiplex bus timing

(a) CLKOUT asynchronous (TA = -40 to $+85^{\circ}$ C: μ PD703116, 703116(A), 70F3116, 70F3116(A), TA = -40 to $+110^{\circ}$ C: μ PD703116(A1), 70F3116(A1), VDD3 = CVDD = 3.0 to 3.6 V, VDD5 = 5 V \pm 0.5 V, VSS3 = VSS5 = CVSS = 0 V, output pin load capacitance: CL = 50 pF)

Parameter	Sy	mbol	Conditions	MIN.	MAX.	Unit
Address setup time (to ASTB↓)	<16>	t sast		(0.5 + was)T – 16		ns
Address hold time (from ASTB↓)	<17>	thsta		(0.5 + WAH)T – 15		ns
Address float delay time from $\overline{\text{RD}}$ ↓	<18>	t FRDA			11	ns
Data input setup time from address	<19>	tsaid			(2 + w + was + wah)T - 40	ns
Data input setup time from $\overline{\text{RD}}$ \downarrow	<20>	t srdid			(1 + w)T - 40	ns
Delay time from ASTB↓ to RD, LWR, UWR↓	<21>	t DSTRDWR		(0.5 + WAH)T - 15		ns
Data input hold time (from RD↑)	<22>	tHRDID		0		ns
Address output time from RD↑	<23>	t drda		(1 + i)T – 15		ns
Delay time from RD, LWR, UWR ↑ to ASTB↑	<24>	t DRDWRST		0.5T – 15		ns
Delay time from RD↑ to ASTB↓	<25>	tordst		(1.5 + i + was)T - 15		ns
RD, LWR, UWR low-level width	<26>	twrdwrl		(1 + w)T – 22		ns
ASTB high-level width	<27>	t wsth		(1 + was)T - 15		ns
Data output time from LWR , UWR ↓	<28>	towrod			10	ns
Data output setup time (to LWR, UWR↑)	<29>	tsodwr		(1 + w)T – 25		ns
Data output hold time (from LWR, UWR↑)	<30>	thwrod		T – 20		ns
WAIT setup time (to address)	<31>	tsawt1	w ≥ 1		(1.5 + was + waн)Т - 40	ns
	<32>	tsawt2			(1.5 + w + was+wah)T -40	ns
WAIT hold time (from address)	<33>	thawt1	w ≥ 1	(0.5 + w + was+wah)T		ns
	<34>	thawt2		(1.5 + w + was+wah)T		ns
WAIT setup time (to ASTB↓)	<35>	tsstwt1	w ≥ 1		(1 +waн)T – 32	ns
	<36>	tsstwt2			(1 + w +waн)T - 32	ns
WAIT hold time (from ASTB↓)	<37>	thstwt1	w ≥ 1	(w +wah)T		ns
	<38>	t нsтwт2		(1 + w + wah)T		ns
HLDRQ high-level width	<39>	twнqн		T + 10		ns
HLDAK low-level width	<40>	twhal		T – 15		ns
Delay time from address float to $\overline{HLDAK} \downarrow$	<41>	t DFHA		-12		ns
Delay time from HLDAK↑ to bus output	<42>	t DHAC		-7		ns
Delay time from HLDRQ↓ to HLDAK↓	<43>	tdhqha1		2T		ns
Delay time from HLDRQ↑ to HLDAK↑	<44>	tdhqha2		0.5T	1.5T + 30	ns

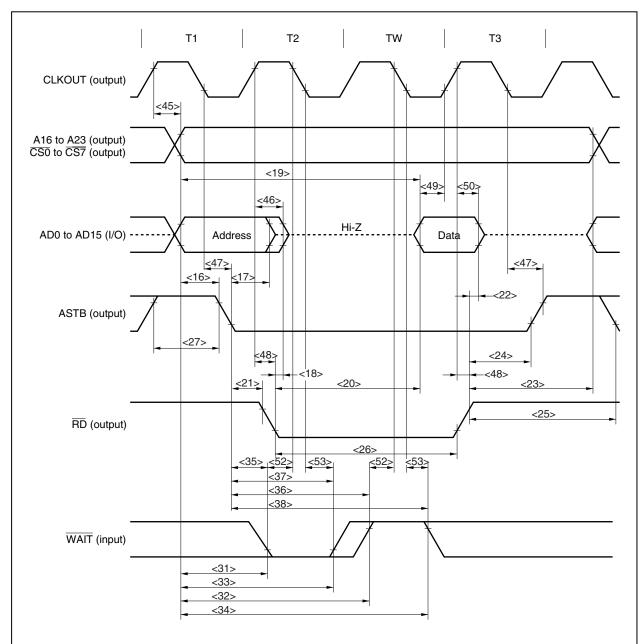
Remarks 1. $T = t_{CYK}$

2. w: Number of wait clocks inserted in the bus cycle

The sampling timing changes when a programmable wait is inserted.

- 3. i: Number of idle states inserted after the read cycle (0 or 1)
- 4. was: Number of address setup wait states (0 or 1)
- **5.** WAH: Number of address hold wait states (0 or 1)
- 6. Observe at least either of the data input hold time thkid or throdo.
- 7. For the number of wait clocks to be inserted, refer to 4.6.3 Relationship between programmable wait and external wait.
- (b) CLKOUT synchronous (Ta = -40 to $+85^{\circ}$ C: μ PD703116, 703116(A), 70F3116, 70F3116(A), Ta = -40 to $+110^{\circ}$ C: μ PD703116(A1), 70F3116(A1),

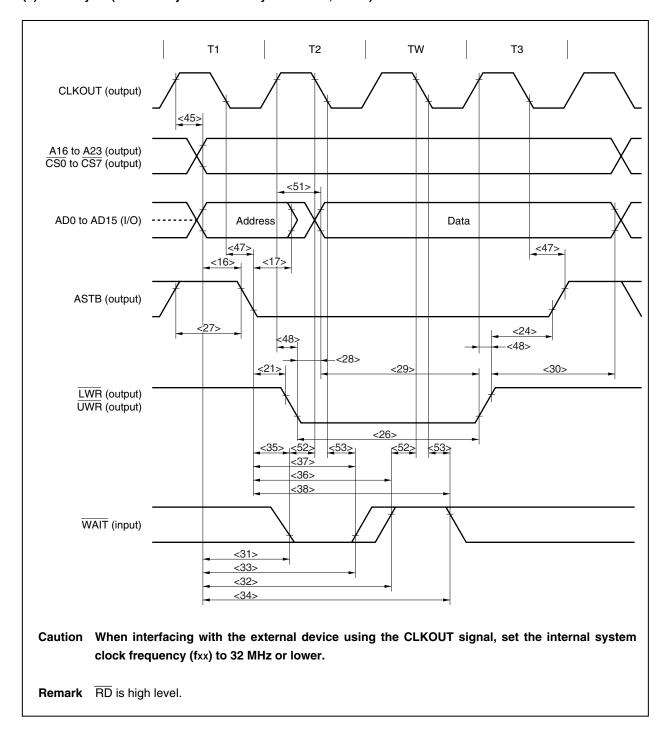
 $\mbox{Vdd3} = \mbox{CVdd} = 3.0 \mbox{ to } 3.6 \mbox{ V}, \mbox{Vdd5} = 5 \mbox{ V} \pm 0.5 \mbox{ V}, \mbox{Vss3} = \mbox{Vss5} = \mbox{CVss} = 0 \mbox{ V}, \label{eq:Vdd5}$

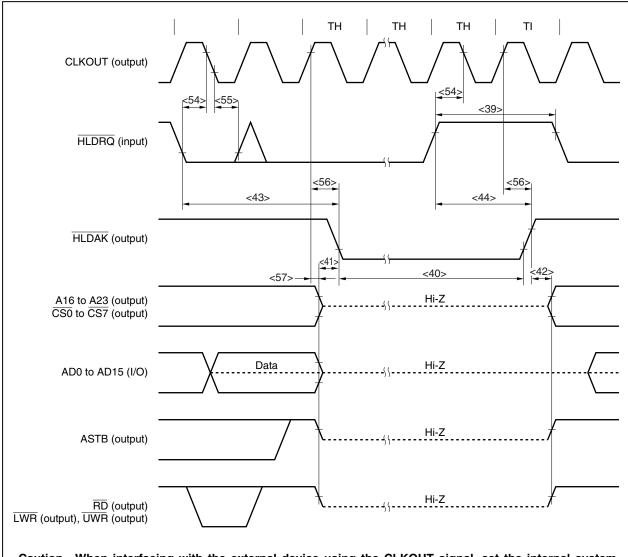

output pin load capacitance: CL = 50 pF)

Parameter	S	ymbol	Conditions	MIN.	MAX.	Unit
Delay time from CLKOUT↑ to address	<45>	t dka		-7	19	ns
Delay time from CLKOUT↑ to address float	<46>	t FKA		-12	15	ns
Delay time from CLKOUT↓ to ASTB	<47>	t DKST		−3 + wahT	19 + wahT	ns
Delay time from CLKOUT↑ to RD, LWR, UWR	<48>	t DKRDWR		- 5	19	ns
Data input setup time (to CLKOUT↑)	<49>	tsidk		21		ns
Data input hold time (from CLKOUT [↑])	<50>	thkid		5		ns
Delay time from CLKOUT↑ to data output	<51>	t DKOD			19	ns
WAIT setup time (to CLKOUT↓)	<52>	t swtk		21		ns
$\overline{\text{WAIT}}$ hold time (from CLKOUT \downarrow)	<53>	tнкwт		5		ns
HLDRQ setup time (to CLKOUT↓)	<54>	tsнак		21		ns
HLDRQ hold time (from CLKOUT↓)	<55>	tнкно		5		ns
Delay time from CLKOUT↑ to HLDAK	<56>	t dkha			19	ns
Delay time from CLKOUT↑ to address float	<57>	t DKF			19	ns

Remarks 1. $T = t_{CYK}$

- 2. WAH: Number of address hold wait states (0 or 1)
- 3. Observe at least either of the data input hold time thkid or through.


(c) Read cycle (CLKOUT synchronous/asynchronous, 1 wait)


Caution When interfacing with the external device using the CLKOUT signal, set the internal system clock frequency (fxx) to 32 MHz or lower.

Remark \overline{LWR} and \overline{UWR} are high level.

(d) Write cycle (CLKOUT synchronous/asynchronous, 1 wait)

(e) Bus hold

Caution When interfacing with the external device using the CLKOUT signal, set the internal system clock frequency (fxx) to 32 MHz or lower.

(5) Interrupt timing

 $(TA = -40 \text{ to } +85^{\circ}\text{C}: \mu\text{PD703116}, 703116(A), 70F3116, 70F3116(A),$

Ta = -40 to +110°C: μ PD703116(A1), 70F3116(A1),

 $VDD3 = CVDD = 3.0 \text{ to } 3.6 \text{ V}, VDD5 = 5 \text{ V} \pm 0.5 \text{ V}, VSS3 = VSS5 = CVSS = 0 \text{ V}, CL = 50 \text{ pF})$

Parameter	Symbol		Conditions	MIN.	MAX.	Unit
NMI high-level width	<58>	twnih		500		ns
NMI low-level width	<59>	twnil		500		ns
INTPn high-level width	<60>	twiтн	n = 0 to 6	500		ns
			n = 100, 101, 110, 111, 30, 31	5T + 10		ns
			n = 20 to 25 (when analog filter specified)	500		ns
			n = 20 to 25 (when digital filter specified)	5T + 10		ns
INTPn low-level width	<61>	twı⊤∟	n = 0 to 6	500		ns
			n = 100, 101, 110, 111, 30, 31	5T + 10		ns
			n = 20 to 25 (when analog filter specified)	500		ns
			n = 20 to 25 (when digital filter specified)	5T + 10		ns

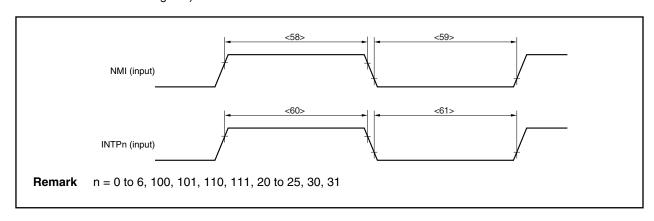
Remark T: Digital filter sampling clock

T can be selected by setting the following registers.

• INTP100, INTP101:

Can be selected from fxxTM10/2, fxxTM10/4, and fxxTM10/8 by setting the NRC101 and NRC100 bits of the timer 10 noise elimination time selection register (NRC10) (fxxTM10: clock selected with the timer 1/timer 2 clock selection register (PRM02)).

• INTP110, INTP111:


Can be selected from fxxTM11, fxxTM11/2, fxxTM11/4, and fxxTM11/8 by setting the NRC111 and NRC110 bits of the timer 11 noise elimination time selection register (NRC11) (fxxTM11: clock selected with the PRM02 register).

• INTP30:

Can be selected from fxxtm3/2, fxxtm3/4, fxxtm3/8, and fxxtm3/16 by setting the NRC31 and NRC30 bits of the timer 3 noise elimination time selection register (NRC3) (fxxtm3: clock selected with the timer 3 clock selection register (PRM03)).

• INTP31:

Can be selected from fxxTM3/32, fxxTM3/64, fxxTM3/128, and fxxTM3/256 by setting the NRC33 and NRC32 bits of the timer 3 noise elimination time selection register (NRC3) (fxxTM3: clock selected with the PRM03 register).

(6) Timer input timing

 $(TA = -40 \text{ to } +85^{\circ}\text{C}: \mu\text{PD703116}, 703116(A), 70F3116, 70F3116(A),$

TA = -40 to +110°C: μ PD703116(A1), 70F3116(A1),

 $VDD3 = CVDD = 3.0 \text{ to } 3.6 \text{ V}, VDD5 = 5 \text{ V} \pm 0.5 \text{ V}, VSS3 = VSS5 = CVSS = 0 \text{ V}, CL = 50 \text{ pF})$

Parameter	Symbol		Conditions	MIN.	MAX.	Unit
TIUDn, TCUDn high-/low-level width	<62>	twudh, twudl	n = 10, 11	5T + 10		ns
TIUDn, TCUDn input time difference	<63>	tрнир	n = 10, 11	2T + 10		ns
TCLRn high-/low-level width	<64>	t wтсн, t wтс∟	n = 10, 11, 2 (other than for through input), 3	5T + 10		ns
			n = 2 (for through input ^{Note})	2T + 10		ns
TIn high-/low-level width	<65>	twтiн, twтiL	n = 2 (other than for through input), 3	5T + 10		ns
			n = 2 (for through input ^{Note})	2T + 10		ns

Note When setting the timer 2 count clock/control edge selection register 0 (CSE0)'s CESE1 bit to 1 and CESE0 bit to 0

Remarks 1. T: Digital filter sampling clock

T can be selected by setting the following registers.

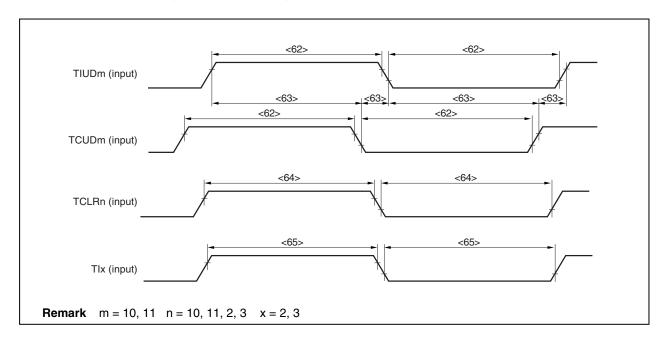
• When using TIUDn, TCUDn, and TCLRn (n = 10, 11), the following cycles can be selected by setting the NRCn1 and NRCn0 bits of timer n noise elimination time selection register (NRCn).

When fxx/2 is selected for the timer n base clock: fxx/2, fxx/4, fxx/8, fxx/16

When fxx/4 is selected for the timer n base clock: fxx/4, fxx/8, fxx/16, fxx/32

 When using TCLR2 and TI2, the following cycles can be selected by setting the PRM2 bit of the timer 1/timer 2 clock selection register (PRM02).

When fxx/2 is selected for the timer 2 base clock: fxx/2


When fxx/4 is selected for the timer 2 base clock: fxx/4

 When using TCLR3 and TI3, the following cycles can be selected by setting the NRC31 and NRC30 bits of timer 3 noise elimination time selection register (NRC3).

When fxx is selected for the timer 3 base clock: fxx/2, fxx/4, fxx/8, fxx/16

When fxx/2 is selected for the timer 3 base clock: fxx/4, fxx/8, fxx/16, fxx/32

2. fxx: Internal system clock frequency

(7) Timer operating frequency

(TA = -40 to +85°C: μ PD703116, 703116(A), 70F3116, 70F3116(A),

TA = -40 to +110°C: μ PD703116(A1), 70F3116(A1),

 $VDD3 = CVDD = 3.0 \text{ to } 3.6 \text{ V}, VDD5 = 5 \text{ V} \pm 0.5 \text{ V}, VSS3 = VSS5 = CVSS = 0 \text{ V},$

output pin load capacitance: CL = 50 pF)

Parameter	Symbol	Conditions	MIN.	MAX.	Unit
Timer 00, 01 operating frequency	T ₀	$-40^{\circ}\text{C} \le T_{\text{A}} \le +85^{\circ}\text{C}$		40	MHz
		$-40^{\circ}C \le T_A \le +110^{\circ}C$		32	MHz
Timer 10, 11 operating frequency	T ₁			16	MHz
Timer 20, 21 operating frequency ^{Note}	T ₂			16	MHz
Timer 3 operating frequency	Тз			32	MHz

- Notes 1. Setting the TESnE1 and TESnE0 bits of timer 2 count clock/control edge select register 0 (CSE0) to 11B (both rising/falling edges) is prohibited when the PRM2 bit of the timer 1/timer 2 clock selection register (PRM02) is 1B (fclk = fxx/2)
 - 2. Set the VSWC register to 15H when the PRM2 bit of the timer 1/timer 2 clock selection register (PRM02) = 0B (fclk = fxx/4).

(8) CSI timing (1/2)

(a) Master mode

 $(TA = -40 \text{ to } +85^{\circ}C: \mu PD703116, 703116(A), 70F3116, 70F3116(A),$

TA = -40 to +110°C: μ PD703116(A1), 70F3116(A1),

 $VDD3 = CVDD = 3.0 \text{ to } 3.6 \text{ V}, VDD5 = 5 \text{ V} \pm 0.5 \text{ V}, VSS3 = VSS5 = CVSS = 0 \text{ V},$

output pin load capacitance: CL = 50 pF)

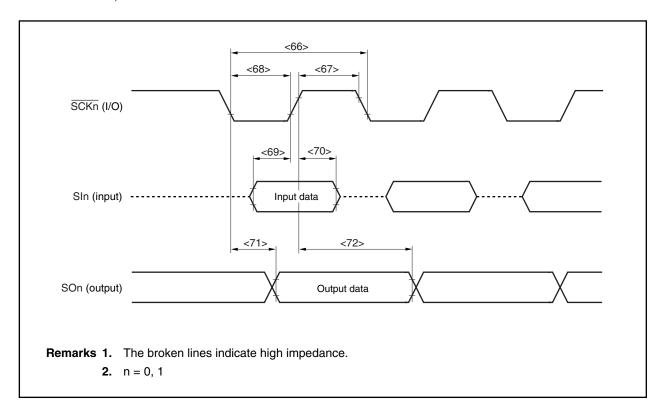
Parameter	Syr	nbol	Conditions	MIN.	MAX.	Unit
SCKn cycle	<66>	tcysk1	Output	200		ns
SCKn high-level width	<67>	twsk1H	Output	0.5tcүsк1 — 25		ns
SCKn low-level width	<68>	twsk1L	Output	0.5tcysk1 – 25		ns
SIn setup time (to SCKn↑)	<69>	tssisk		35		ns
SIn hold time (from SCKn↑)	<70>	thsksi		30		ns
SOn output delay time (from SCKn↓)	<71>	toskso			30	ns
SOn output hold time (from SCKn↑)	<72>	thskso		0.5tcүsк1 — 20		ns

Remark n = 0, 1

(8) CSI timing (2/2)

(b) Slave mode

(TA = -40 to +85°C: μ PD703116, 703116(A), 70F3116, 70F3116(A),


TA = -40 to +110°C: μ PD703116(A1), 70F3116(A1),

 $V \texttt{DD3} = \texttt{CVDD} = 3.0 \text{ to } 3.6 \text{ V}, V \texttt{DD5} = 5 \text{ V} \pm 0.5 \text{ V}, V \texttt{SS3} = V \texttt{SS5} = \texttt{CVSS} = 0 \text{ V},$

output pin load capacitance: CL = 50 pF)

Parameter	Symbol		Conditions	MIN.	MAX.	Unit
SCKn cycle	<66>	tcysk1	Input	200		ns
SCKn high-level width	<67>	twsk1H	Input	90		ns
SCKn low-level width	<68>	twsk1L	Input	90		ns
SIn setup time (to SCKn↑)	<69>	tssisk		50		ns
SIn hold time (from SCKn↑)	<70>	thsksi		50		ns
SOn output delay time (from SCKn↓)	<71>	toskso			55	ns
SOn output hold time (from SCKn↑)	<72>	thskso		twsĸ1H		ns

Remark n = 0, 1

(9) UART0 timing

(TA = -40 to +85°C: μ PD703116, 703116(A), 70F3116, 70F3116(A),

TA = -40 to +110°C: μ PD703116(A1), 70F3116(A1),

 $VDD3 = CVDD = 3.0 \text{ to } 3.6 \text{ V}, VDD5 = 5 \text{ V} \pm 0.5 \text{ V}, VSS3 = VSS5 = CVSS = 0 \text{ V},$

output pin load capacitance: CL = 50 pF)

Parameter	Symbol	Conditions	MIN.	MAX.	Unit
UART0 baud rate generator input	fBRG			25	MHz
frequency					

Remark ferg (UART0 baud rate generator input frequency) can be selected from fxx, fxx/2, fxx/4, fxx/8, fxx/16, fxx/32, fxx/64, fxx/128, fxx/256, fxx/512, fxx/1024, and fxx/2048 by setting the TPS3 to TPS0 bits of clock selection register 0 (CKSR0) (fxx: Internal system clock frequency).

(10) UART1, UART2 timing (1/2)

(a) Clocked master mode

 $(TA = -40 \text{ to } +85^{\circ}\text{C}: \mu\text{PD703116}, 703116(A), 70F3116, 70F3116(A),$

TA = -40 to +110°C: μ PD703116(A1), 70F3116(A1),

 $VDD3 = CVDD = 3.0 \text{ to } 3.6 \text{ V}, VDD5 = 5 \text{ V} \pm 0.5 \text{ V}, VSS3 = VSS5 = CVSS = 0 \text{ V},$

output pin load capacitance: CL = 50 pF)

Parameter	Symbol		Conditions	MIN.	MAX.	Unit
ASCKn cycle	<73>	tcysko	Output	1000		ns
ASCKn high-level width	<74>	twsk0H	Output	k T – 20		ns
ASCKn low-level width	<75>	twskol	Output	k T – 20		ns
RXDn setup time (to ASCKn↑)	<76>	tsrxsk		1.5 T + 35		ns
RXDn hold time (from ASCKn↑)	<77>	thskrx		0		ns
TXDn output delay time (from ASCKn↓)	<78>	tdsktx			T + 10	ns
TXDn output hold time (from ASCKn↑)	<79>	tнsктх		(k + 1)T – 20		ns

- **Remarks 1.** T = 2tcyk
 - 2. k: Setting value of prescaler compare register n (PRSCMn) of UARTn
 - **3.** n = 1, 2

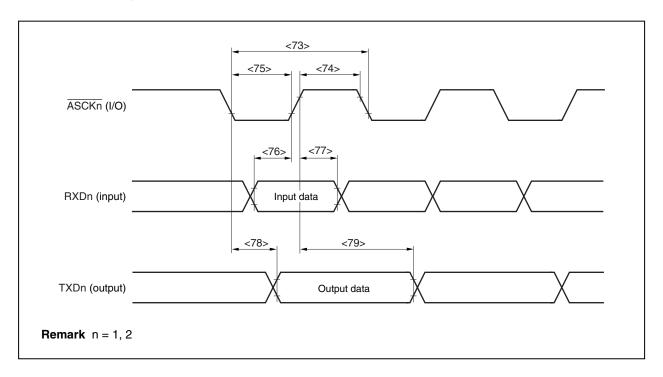
(10) UART1, UART2 timing (2/2)

(b) Clocked slave mode

(TA = -40 to +85°C: μ PD703116, 703116(A), 70F3116, 70F3116(A),

TA = -40 to +110°C: μ PD703116(A1), 70F3116(A1),

VDD3 = CVDD = 3.0 to 3.6 V, VDD5 = 5 V ± 0.5 V, VSS3 = VSS5 = CVSS = 0 V,


output pin load capacitance: CL = 50 pF)

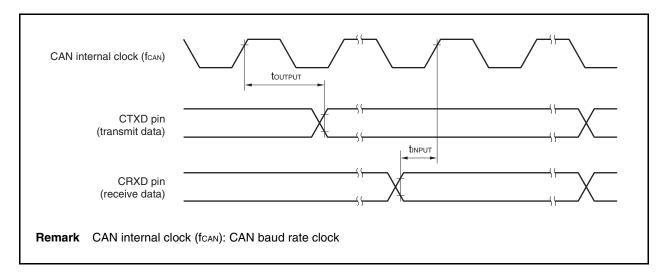
Parameter	Symbol		Conditions	MIN.	MAX.	Unit
ASCKn cycle	<73>	tcysko	Input	1000		ns
ASCKn high-level width	<74>	twsкон	Input	4 T + 80		ns
ASCKn low-level width	<75>	twskol	Input	4 T + 80		ns
RXDn setup time (to ASCKn↑)	<76>	tsrxsk		T + 10		ns
RXDn hold time (from ASCKn↑)	<77>	thskrx		T + 10		ns
TXDn output delay time (from ASCKn↓)	<78>	tosktx			2.5 T + 45	ns
TXDn output hold time (from ASCKn↑)	<79>	tнsктх		k T + 1.5 T		ns

Remarks 1. T = 2tcyk

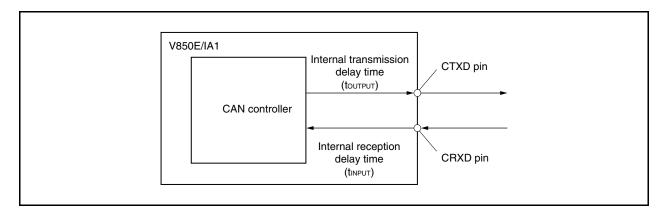
2. k: Setting value of PRSCMn register of UARTn

3. n = 1, 2

<R> (11) CAN timing

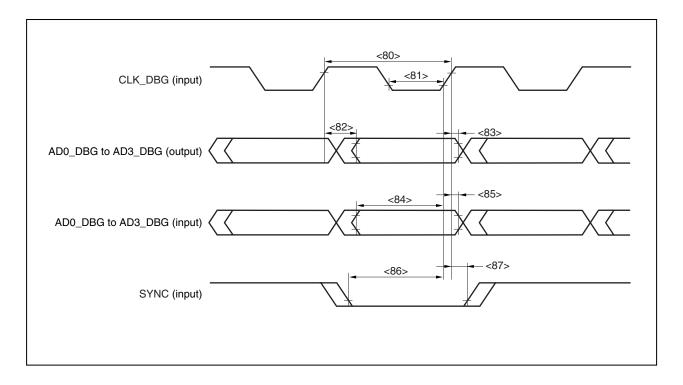

 $(TA = -40 \text{ to } +85^{\circ}\text{C}: \mu\text{PD703116}, 703116(A), 70F3116, 70F3116(A),$

Ta = -40 to +110°C: μ PD703116(A1), 70F3116(A1),


 $VDD3 = CVDD = 3.0 \text{ to } 3.6 \text{ V}, VDD5 = 5 \text{ V} \pm 0.5 \text{ V}, VSS3 = VSS5 = CVSS = 0 \text{ V},$

output pin load capacitance: CL = 50 pF)

Parameter	Symbol	Conditions	MIN.	MAX.	Unit
Transmit rate				1	Mbps
Internal delay time	tnode			100	ns


Internal delay time (tnode) = Internal transmission delay time (toutput) + Internal reception delay time (tinput)

(12) NBD timing (μ PD70F3116 only)

(TA = 0 to +40°C, VDD3 = CVDD = 3.0 to 3.6 V, VDD5 = 5 V \pm 0.5 V, VSS3 = VSS5 = CVSS = 0 V, output pin load capacitance: C_L = 100 pF)

Parameter	Symbol		Conditions	MIN.	MAX.	Unit
NBD cycle	<80>	tndcyc		80		ns
NBD cycle low-level width	<81>	tndl		35		ns
NBD data output delay time	<82>	tndd		5	tndcyc - 20	ns
NBD data output hold time	<83>	tndhd		2		ns
NBD data input setup time	<84>	tnds		20		ns
NBD data input hold time	<85>	tndh		5		ns
SYNC input setup time	<86>	tndsys		20		ns
SYNC input hold time	<87>	tndsyh		5		ns

A/D Converter Characteristics

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}: \mu\text{PD703116}, 703116(A), 70F3116, 70F3116(A),$

 $T_A = -40 \text{ to } +110^{\circ}\text{C}$: μ PD703116(A1), 70F3116(A1),

 $V_{DD3} = CV_{DD} = 3.0 \ to \ 3.6 \ V, \ AV_{DD} = V_{DD5} = 5 \ V \ \pm 0.5 \ V, \ AV_{SS} = V_{SS3} = V_{SS3} = CV_{SS} = 0 \ V, \ C_L = 50 \ pF)$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Resolution	-		10			bit
Overall error ^{Note 1}	_				±5	LSB
Quantization error	-				±1/2	LSB
Conversion time	tconv		5		10	μs
Sampling time	tsamp		833			ns
Zero-scale error ^{Note 1}	-				±3	LSB
Full-scale error ^{Note 1}	_				±3	LSB
Differential linearity errorNote 1	_				±3	LSB
Integral linearity error ^{Note 1}	_				±5	LSB
Analog input voltage	VIAN		-0.3		AVREFn + 0.3	V
Analog reference voltage	AVREF	AVREFn = AVDD	4.5		5.5	V
AVREFn input currentNote 2	Alref			1	2	mA
AV _{DD} power supply current ^{Note 2}	Aldd			3	6	mA

Notes 1. The quantization error (±0.5 LSB) is not included.

2. The V850E/IA1 incorporates two A/D converters. This is the rated value for one converter.

Remarks 1. LSB: Least Significant Bit

2. n = 0, 1

18.2 Flash Memory Programming Mode (μPD70F3116 only)

Basic Characteristics (T_A = 0 to 70°C (during rewrite),

 $T_A = -40$ to +85°C (except during rewrite): μ PD70F3116, 70F3116(A),

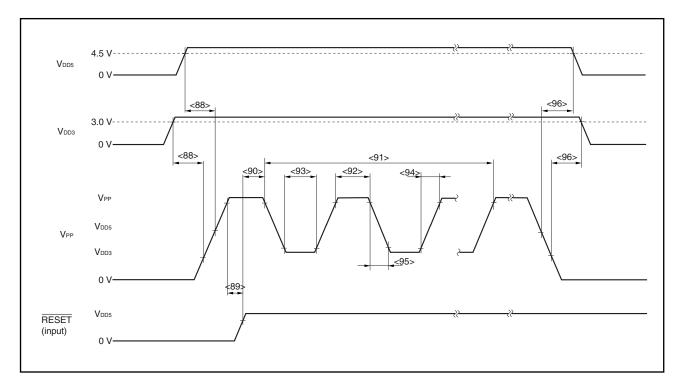
 $T_A = -40 \text{ to } +110^{\circ}\text{C}$ (except during rewrite): μ PD70F3116(A1),

 $V_{DD3} = CV_{DD} = 3.0 \text{ to } 3.6 \text{ V}, V_{DD5} = 5 \text{ V} \pm 0.5 \text{ V}, V_{SS3} = V_{SS5} = CV_{SS} = 0 \text{ V}$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Operating frequency	fx		4		50	MHz
VPP supply voltage	V _{PP1}	During flash memory programming	7.5	7.8	8.1	V
	V _{PPL}	V _{PP} low-level detection	-0.3		0.2V _{DD3}	V
	V _{PPM}	V _{PP} , V _{DD3} level detection	0.65V _{DD3}		V _{DD3} + 0.3	V
	V _{РРН}	V _{PP} high-voltage level detection	7.5	7.8	8.1	V
V _{DD3} supply current	I _{DD1}	VPP = VPP1			4.5fx	mA
VPP supply current	IPP	V _{PP} = 7.8 V			100	mA
Step erase time	ter	Note 1	0.398	0.4	0.402	s
Overall erase time per area	tera	When the step erase time = 0.4 s, Note 2			40	s/area
Write-back time	twB	Note 3	0.99	1	1.01	ms
Number of write-backs per write-back command	Сwв	When the write-back time = 1 ms, Note 4			300	Count/write- back command
Number of erase/write-backs	Сегив				16	Count
Step writing time	twт	Note 5	18	20	22	μs
Overall writing time per word	twтw	When the step writing time = 20 μ s (1 word = 4 bytes), Note 6	20		200	μs/word
Number of rewrites per area	Cerwr	1 erase + 1 write after erase = 1 rewrite, Note 7		100		Count/area

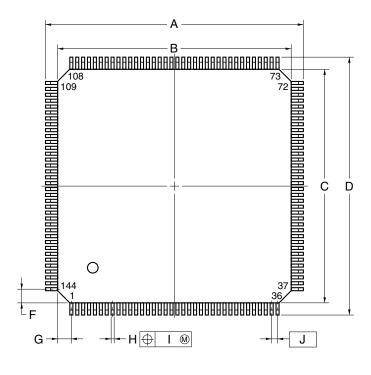
- **Notes 1.** The recommended setting value of the step erase time is 0.4 s.
 - 2. The prewrite time prior to erasure and the erase verify time (write-back time) are not included.
 - **3.** The recommended setting value of the write-back time is 1 ms.
 - **4.** Write-back is executed once by the issuance of the write-back command. Therefore, the retry count must be the maximum value minus the number of commands issued.
 - **5.** The recommended setting value of the step writing time is 20 μ s.
 - **6.** 20 μ s is added to the actual writing time per word. The internal verify time during and after the writing is not included.
 - **7.** When writing initially to shipped products, it is counted as one rewrite for both "erase to write" and "write only".

```
Example (P: Write, E: Erase) Shipped product \longrightarrow P \rightarrow E \rightarrow P \rightarrow E \rightarrow P: 3 rewrites Shipped product \rightarrow E \rightarrow P \rightarrow E \rightarrow P \rightarrow E \rightarrow P: 3 rewrites
```

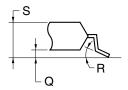

- Remarks 1. When the PG-FP4 or PG-FP5 are used, a time parameter required for writing/erasing by downloading parameter files is automatically set. Do not change the settings unless otherwise specified.
 - 2. Area 0 = 00000H to 1FFFFH, area 1 = 20000H to 3FFFFH

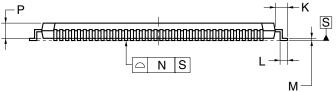
Serial Write Operation Characteristics ($T_A = 0$ to 70° C, $V_{DD3} = CV_{DD} = 3.0$ to 3.6 V,

 $V_{DD5} = 5 V \pm 0.5 V$, $V_{SS3} = V_{SS5} = CV_{SS} = 0 V$)


Parameter	Syr	mbol	Conditions	MIN.	TYP.	MAX.	Unit
V _{DD3} , V _{DD5} ↑ to V _{PP} ↑ set time	<88>	torpsr		10			μS
V _{PP} ↑ to RESET↑ set time	<89>	tpsrrf		1			μS
RESET↑ to V _{PP} count start time	<90>	trefof	V _{PP} = 7.8 V	10T + 1500			ns
Count execution time	<91>	tcount				15	ms
VPP counter high-level width	<92>	tсн		1			μS
VPP counter low-level width	<93>	tcL		1			μS
VPP counter rise time	<94>	tr				1	μS
VPP counter fall time	<95>	tF				1	μS
V _{PP} ↓ to V _{DD3} , V _{DD5} ↓ reset time	<96>	t PFDR		10			μS

Remark T = tcyk




CHAPTER 19 PACKAGE DRAWING

144-PIN PLASTIC LQFP (FINE PITCH) (20x20)

detail of lead end

NOTE

Each lead centerline is located within 0.08 mm of its true position (T.P.) at maximum material condition.

ITEM	MILLIMETERS
Α	22.0±0.2
В	20.0±0.2
С	20.0±0.2
D	22.0±0.2
F	1.25
G	1.25
Н	0.22±0.05
I	0.08
J	0.5 (T.P.)
K	1.0±0.2
L	0.5±0.2
М	$0.17^{+0.03}_{-0.07}$
N	0.08
Р	1.4
Q	0.10±0.05
R	3°+4° -3°
S	1.5±0.1
	S144GJ-50-UEN

CHAPTER 20 RECOMMENDED SOLDERING CONDITIONS

V850E/IA1 should be soldered and mounted under the following recommended conditions. For technical information, see the following website.

Semiconductor Device Mount Manual (http://www.necel.com/pkg/en/mount/index.html)

Table 20-1. Surface Mounting Type Soldering Conditions

(1) μ PD703116GJ-xxx-UEN: 144-pin plastic LQFP (fine pitch) (20 × 20) μ PD703116GJ(A)-xxx-UEN: 144-pin plastic LQFP (fine pitch) (20 × 20) μ PD7053116GJ-UEN: 144-pin plastic LQFP (fine pitch) (20 × 20) μ PD70F3116GJ-UEN: 144-pin plastic LQFP (fine pitch) (20 × 20) μ PD70F3116GJ(A)-UEN: 144-pin plastic LQFP (fine pitch) (20 × 20) μ PD70F3116GJ(A1)-UEN: 144-pin plastic LQFP (fine pitch) (20 × 20)

Soldering Method	Soldering Conditions	Recommended Condition Symbol
Infrared reflow	Package peak temperature: 230°C, Time: 30 seconds max. (at 210°C or higher), Count: Two times or less, Exposure limit: 3 days ^{Note} (after that, prebake at 125°C for 10 to 72 hours)	IR30-103-2
VPS	Package peak temperature: 215°C, Time: 25 to 40 seconds (at 200°C or higher), Count: Two times or less, Exposure limit: 3 days ^{Note} (after that, prebake at 125°C for 10 to 72 hours)	VP15-103-2
Partial heating	Pin temperature: 350°C max., Time: 3 seconds max. (per pin row)	_

(2) μ PD70F3116GJ-UEN-A: 144-pin plastic LQFP (fine pitch) (20 × 20) μ PD70F3116GJ(A1)-UEN-A: 144-pin plastic LQFP (fine pitch) (20 × 20)

Soldering Method	Soldering Conditions	Recommended Condition Symbol
Infrared reflow	Package peak temperature: 260°C, Time: 60 seconds max. (at 220°C or higher), Count: Three times or less, Exposure limit: 3 days ^{Note} (after that, prebake at 125°C for 20 to 72 hours)	IR60-203-3
Wave soldering	For details, consult an NEC Electronics sales representative.	-
Partial heating	Pin temperature: 350°C max., Time: 3 seconds max. (per pin row)	-

Note After opening the dry pack, store it at 25°C or less and 65% RH or less for the allowable storage period.

Caution Do not use different soldering methods together (except for partial heating).

Remarks 1. Products with -A at the end of the part number are lead-free products.

- **2.** For soldering methods and conditions other than those recommended above, consult an NEC Electronics sales representative.
- **3.** For soldering conditions for the μ PD703116GJ-xxx-UEN-A, 703116GJ(A)-xxx-UEN-A, 703116GJ(A1)-xxx-UEN-A, and 70F3116GJ(A)-UEN-A, consult an NEC Electronics sales representative.

APPENDIX A NOTES ON TARGET SYSTEM DESIGN

The following shows a diagram of the connection conditions between the in-circuit emulator option board and conversion connector. Design your system making allowances for conditions such as the form of parts mounted on the target system based on this configuration.

Side view In-circuit emulator In-circuit emulator IE-V850E-MC option board IE-703116-MC-EM1 Conversion connector YQGUIDE YQPACK144SD NQPACK144SD Target system Note YQSOCKET144SDN (sold separately) can be inserted here to adjust the height (height: 3.2 mm). Top view IE-V850E-MC Target system IE-703116-MC-EM1 YQPACK144SD, NQPACK144SD, YQGUIDE Connection condition diagram IE-703116-MC-EM1 Connect to IE-V850E-MC YQGUIDE YQPACK144SD NQPACK144SD 17.99 mm Target system 27.205 mm

Figure A-1. 144-Pin Plastic LQFP (Fine Pitch) (20 × 20)

APPENDIX B REGISTER INDEX

(1/11)

			(1/11)
Symbol	Register Name	Unit	Page
ADCR00	A/D conversion result register 00	ADC	653
ADCR01	A/D conversion result register 01	ADC	653
ADCR02	A/D conversion result register 02	ADC	653
ADCR03	A/D conversion result register 03	ADC	653
ADCR04	A/D conversion result register 04	ADC	653
ADCR05	A/D conversion result register 05	ADC	653
ADCR06	A/D conversion result register 06	ADC	653
ADCR07	A/D conversion result register 07	ADC	653
ADCR10	A/D conversion result register 10	ADC	653
ADCR11	A/D conversion result register 11	ADC	653
ADCR12	A/D conversion result register 12	ADC	653
ADCR13	A/D conversion result register 13	ADC	653
ADCR14	A/D conversion result register 14	ADC	653
ADCR15	A/D conversion result register 15	ADC	653
ADCR16	A/D conversion result register 16	ADC	653
ADCR17	A/D conversion result register 17	ADC	653
ADETM0	A/D voltage detection mode register 0	ADC	652
ADETM0H	A/D voltage detection mode register 0H	ADC	652
ADETM0L	A/D voltage detection mode register 0L	ADC	652
ADETM1	A/D voltage detection mode register 1	ADC	652
ADETM1H	A/D voltage detection mode register 1H	ADC	652
ADETM1L	A/D voltage detection mode register 1L	ADC	652
ADIC0	Interrupt control register	INTC	172
ADIC1	Interrupt control register	INTC	172
ADSCM00	A/D scan mode register 00	ADC	648
ADSCM00H	A/D scan mode register 00H	ADC	648
ADSCM00L	A/D scan mode register 00L	ADC	648
ADSCM01	A/D scan mode register 01	ADC	651
ADSCM01H	A/D scan mode register 01H	ADC	651
ADSCM01L	A/D scan mode register 01L	ADC	651
ADSCM10	A/D scan mode register 10	ADC	648
ADSCM10H	A/D scan mode register 10H	ADC	648
ADSCM10L	A/D scan mode register 10L	ADC	648
ADSCM11	A/D scan mode register 11	ADC	651
ADSCM11H	A/D scan mode register 11H	ADC	651
ADSCM11L	A/D scan mode register 11L	ADC	651
ASIF0	Asynchronous serial interface transmit status register 0	UART0	420
ASIM0	Asynchronous serial interface mode register 0	UART0	416

(2/11)

			(2/11)
Symbol	Register Name	Unit	Page
ASIM10	Asynchronous serial interface mode register 10	UART1	447
ASIM11	Asynchronous serial interface mode register 11	UART1	449
ASIM20	Asynchronous serial interface mode register 20	UART2	447
ASIM21	Asynchronous serial interface mode register 21	UART2	449
ASIS0	Asynchronous serial interface status register 0	UART0	419
ASIS1	Asynchronous serial interface status register 1	UART1	450
ASIS2	Asynchronous serial interface status register 2	UART2	450
AWC	Address wait control register	BCU	114
BCC	Bus cycle control register	BCU	116
ВСТ0	Bus cycle type configuration register 0	BCU	104
BCT1	Bus cycle type configuration register 1	BCU	104
BFCM00	Buffer register CM00	TM00	225
BFCM01	Buffer register CM01	TM00	225
BFCM02	Buffer register CM02	TM00	225
BFCM03	Buffer register CM03	TM00	226
BFCM10	Buffer register CM10	TM01	225
BFCM11	Buffer register CM11	TM01	225
BFCM12	Buffer register CM12	TM01	225
BFCM13	Buffer register CM13	TM01	226
BPC	Peripheral area selection control register	CPU	81
BRGC0	Baud rate generator control register 0	UART0	438
BSC	Bus size configuration register	BCU	106
C1BA	CAN1 bus active register	FCAN	591
C1BRP	CAN1 bit rate prescaler register	FCAN	592
C1CTRL	CAN1 control register	FCAN	578
C1DEF	CAN1 definition register	FCAN	582
C1DINF	CAN1 bus diagnostic information register	FCAN	595
C1ERC	CAN1 error count register	FCAN	587
C1IE	CAN1 interrupt enable register	FCAN	588
C1INTP	CAN1 interrupt pending register	FCAN	565
C1LAST	CAN1 information register	FCAN	586
C1MASKH0	CAN1 address mask 0 register H	FCAN	576
C1MASKH1	CAN1 address mask 1 register H	FCAN	576
C1MASKH2	CAN1 address mask 2 register H	FCAN	576
C1MASKH3	CAN1 address mask 3 register H	FCAN	576
C1MASKL0	CAN1 address mask 0 register L	FCAN	576
C1MASKL1	CAN1 address mask 1 register L	FCAN	576
C1MASKL2	CAN1 address mask 2 register L	FCAN	576
C1MASKL3	CAN1 address mask 3 register L	FCAN	576
C1SYNC	CAN1 synchronization control register	FCAN	596
CANIC0	Interrupt control register	INTC	172

			(3/11
Symbol	Register Name	Unit	Page
CANIC1	Interrupt control register	INTC	172
CANIC2	Interrupt control register	INTC	172
CANIC3	Interrupt control register	INTC	172
CC100	Capture/compare register 100	TM10	312
CC101	Capture/compare register 101	TM10	313
CC10IC0	Interrupt control register	INTC	172
CC10IC1	Interrupt control register	INTC	172
CC110	Capture/compare register 110	TM11	312
CC111	Capture/compare register 111	TM11	313
CC11IC0	Interrupt control register	INTC	172
CC11IC1	Interrupt control register	INTC	172
CC2IC0	Interrupt control register	INTC	172
CC2IC1	Interrupt control register	INTC	172
CC2IC2	Interrupt control register	INTC	172
CC2IC3	Interrupt control register	INTC	172
CC2IC4	Interrupt control register	INTC	172
CC2IC5	Interrupt control register	INTC	172
CC30	Capture/compare register 30	TM3	379
CC31	Capture/compare register 31	TM3	379
CC3IC0	Interrupt control register	INTC	172
CC3IC1	Interrupt control register	INTC	172
CCINTP	CAN interrupt pending register	FCAN	563
CCR0	Capture/compare control register 0	TM10	304
CCR1	Capture/compare control register 1	TM11	304
CCSTATE0	Timer 2 capture/compare 1 to 4 status register 0	TM2	351
CCSTATE0H	Timer 2 capture/compare 1 to 4 status register 0H	TM2	351
CCSTATE0L	Timer 2 capture/compare 1 to 4 status register 0L	TM2	351
CGCS	CAN main clock selection register	FCAN	571
CGIE	CAN global interrupt enable register	FCAN	570
CGINTP	CAN global interrupt pending register	FCAN	564
CGMSR	CAN message search result register	FCAN	574
CGMSS	CAN message search start register	FCAN	574
CGST	CAN global status register	FCAN	567
CGTSC	CAN time stamp count register	FCAN	573
CKC	Clock control register	CG	201
CKSR0	Clock selection register 0	UART0	437
CM000	Compare register 000	TM00	224
CM001	Compare register 001	TM00	224
CM002	Compare register 002	TM00	224
CM003	Compare register 003	TM00	225
CM010	Compare register 010	TM01	224

(4/11)

		•	(4/11
Symbol	Register Name	Unit	Page
CM011	Compare register 011	TM01	224
CM012	Compare register 012	TM01	224
CM013	Compare register 013	TM01	225
CM03IC0	Interrupt control register	INTC	172
CM03IC1	Interrupt control register	INTC	172
CM100	Compare register 100	TM10	311
CM101	Compare register 101	TM10	311
CM10IC0	Interrupt control register	INTC	172
CM10IC1	Interrupt control register	INTC	172
CM110	Compare register 110	TM11	311
CM111	Compare register 111	TM11	311
CM11IC0	Interrupt control register	INTC	172
CM11IC1	Interrupt control register	INTC	172
CM4	Compare register 4	TM4	404
CM4IC0	Interrupt control register	INTC	172
CMSE050	Timer 2 subchannel 0, 5 capture/compare control register	TM2	345
CMSE120	Timer 2 subchannel 1, 2 capture/compare control register	TM2	346
CMSE340	Timer 2 subchannel 3, 4 capture/compare control register	TM2	348
CSC0	Chip area selection control register 0	BCU	101
CSC1	Chip area selection control register 1	BCU	101
CSCE0	Timer 2 software event capture register	TM2	353
CSE0	Timer 2 count clock/control edge selection register 0	TM2	337
CSE0H	Timer 2 count clock/control edge selection register 0H	TM2	337
CSE0L	Timer 2 count clock/control edge selection register 0L	TM2	337
CSIC0	Clocked serial interface clock selection register 0	CSI0	483
CSIC1	Clocked serial interface clock selection register 1	CSI1	483
CSIIC0	Interrupt control register	INTC	172
CSIIC1	Interrupt control register	INTC	172
CSIM0	Clocked serial interface mode register 0	CSI0	481
CSIM1	Clocked serial interface mode register 1	CSI1	481
CSL10	CC101 capture input selection register	TM10	311
CSL11	CC111 capture input selection register	TM11	311
CSTOP	CAN stop register	FCAN	566
CVPE10	Timer 2 subchannel 1 main capture/compare register	TM2	334
CVPE20	Timer 2 subchannel 2 main capture/compare register	TM2	334
CVPE30	Timer 2 subchannel 3 main capture/compare register	TM2	334
CVPE40	Timer 2 subchannel 4 main capture/compare register	TM2	334
CVSE00	Timer 2 subchannel 0 capture/compare register	TM2	333
CVSE10	Timer 2 subchannel 1 sub capture/compare register	TM2	335
CVSE20	Timer 2 subchannel 2 sub capture/compare register	TM2	335
CVSE30	Timer 2 subchannel 3 sub capture/compare register	TM2	335

			(5/11)
Symbol	Register Name	Unit	Page
CVSE40	Timer 2 subchannel 4 sub capture/compare register	TM2	335
CVSE50	Timer 2 subchannel 5 capture/compare register	TM2	335
DADC0	DMA addressing control register 0	DMAC	133
DADC1	DMA addressing control register 1	DMAC	133
DADC2	DMA addressing control register 2	DMAC	133
DADC3	DMA addressing control register 3	DMAC	133
DBC0	DMA transfer count register 0	DMAC	132
DBC1	DMA transfer count register 1	DMAC	132
DBC2	DMA transfer count register 2	DMAC	132
DBC3	DMA transfer count register 3	DMAC	132
DCHC0	DMA channel control register 0	DMAC	135
DCHC1	DMA channel control register 1	DMAC	135
DCHC2	DMA channel control register 2	DMAC	135
DCHC3	DMA channel control register 3	DMAC	135
DDA0H	DMA destination address register 0H	DMAC	130
DDA0L	DMA destination address register 0L	DMAC	131
DDA1H	DMA destination address register 1H	DMAC	130
DDA1L	DMA destination address register 1L	DMAC	131
DDA2H	DMA destination address register 2H	DMAC	130
DDA2L	DMA destination address register 2L	DMAC	131
DDA3H	DMA destination address register 3H	DMAC	130
DDA3L	DMA destination address register 3L	DMAC	131
DDIS	DMA disable status register	DMAC	137
DETIC0	Interrupt control register	INTC	172
DETIC1	Interrupt control register	INTC	172
DMAIC0	Interrupt control register	INTC	172
DMAIC1	Interrupt control register	INTC	172
DMAIC2	Interrupt control register	INTC	172
DMAIC3	Interrupt control register	INTC	172
DRST	DMA restart register	DMAC	137
DSA0H	DMA source address register 0H	DMAC	128
DSA0L	DMA source address register 0L	DMAC	129
DSA1H	DMA source address register 1H	DMAC	128
DSA1L	DMA source address register 1L	DMAC	129
DSA2H	DMA source address register 2H	DMAC	128
DSA2L	DMA source address register 2L	DMAC	129
DSA3H	DMA source address register 3H	DMAC	128
DSA3L	DMA source address register 3L	DMAC	129
DTFR0	DMA trigger factor register 0	DMAC	138
DTFR1	DMA trigger factor register 1	DMAC	138
DTFR2	DMA trigger factor register 2	DMAC	138

(6/11)

Symbol	Register Name	Unit	Page
DTFR3	DMA trigger factor register 3	DMAC	138
DTM00	Dead-time timer 00	TM00	224
DTM01	Dead-time timer 01	TM00	224
DTM02	Dead-time timer 02	TM00	224
DTM10	Dead-time timer 10	TM01	224
DTM11	Dead-time timer 11	TM01	224
DTM12	Dead-time timer 12	TM01	224
DTRR0	Dead-time timer reload register 0	TM00	224
DTRR1	Dead-time timer reload register 1	TM01	224
DWC0	Data wait control register 0	TM2	113
DWC1	Data wait control register 1	TM2	113
FEM0	Timer 2 input filter mode register 0	TM2	184, 721
FEM1	Timer 2 input filter mode register 1	TM2	184, 721
FEM2	Timer 2 input filter mode register 2	TM2	184, 721
FEM3	Timer 2 input filter mode register 3	TM2	184, 721
FEM4	Timer 2 input filter mode register 4	TM2	184, 721
FEM5	Timer 2 input filter mode register 5	TM2	184, 721
FLPMC	Flash programming mode control register	CPU	751
IMR0	Interrupt mask register 0	INTC	176
IMR0H	Interrupt mask register 0H	INTC	176
IMR0L	Interrupt mask register 0L	INTC	176
IMR1	Interrupt mask register 1	INTC	176
IMR1H	Interrupt mask register 1H	INTC	176
IMR1L	Interrupt mask register 1L	INTC	176
IMR2	Interrupt mask register 2	INTC	176
IMR2H	Interrupt mask register 2H	INTC	176
IMR2L	Interrupt mask register 2L	INTC	176
IMR3	Interrupt mask register 3	INTC	176
IMR3H	Interrupt mask register 3H	INTC	176
IMR3L	Interrupt mask register 3L	INTC	176
INTM0	External interrupt mode register 0	INTC	164
INTM1	External interrupt mode register 1	INTC	179
INTM2	External interrupt mode register 2	INTC	179
ISPR	In-service priority register	INTC	177
ITRG0	A/D internal trigger selection register	ADC	656
LOCKR	Lock register	CPU	204
M_CONF00 to M_CONF31	CAN message configuration registers 00 to 31	FCAN	557
M_CTRL00 to M_CTRL31	CAN message control registers 00 to 31	FCAN	549

(7/11)

			(7/11)
Symbol	Register Name	Unit	Page
M_DATAn0 to M_DATAn7	CAN message data registers n0 to n7 (n = 00 to 31)	FCAN	553
M_DLC00 to M_DLC31	CAN message data length registers 00 to 31	FCAN	547
M_IDH00 to M_IDH31	CAN message ID registers H00 to H31	FCAN	555
M_IDL00 to M_IDL31	5 5		555
M_STAT00 to M_STAT31	CAN message status registers 00 to 31	FCAN	559
M_TIME00 to M_TIME31	CAN message time stamp registers 00 to 31	FCAN	552
NBDH	RAM access data buffer register H	NBD	636
NBDHL	RAM access data buffer register HL	NBD	636
NBDHU	RAM access data buffer register HU	NBD	636
NBDL	RAM access data buffer register L	NBD	636
NBDLL	RAM access data buffer register LL	NBD	636
NBDLU	RAM access data buffer register LU	NBD	636
NBDMDH	DMA destination address setting register DH	NBD	638
NBDMDL	DMA destination address setting register DL	NBD	638
NBDMSH	DMA source address setting register SH	NBD	637
NBDMSL	DMA source address setting register SL	NBD	637
NRC10	Timer 10 noise elimination time selection register	TM10	718
NRC11	Timer 11 noise elimination time selection register	TM11	718
NRC3	Timer 3 noise elimination time selection register	TM3	719
OCTLE0	Timer 2 output control register 0	TM2	342
OCTLE0H	Timer 2 output control register 0H	TM2	342
OCTLE0L	Timer 2 output control register 0L	TM2	342
ODELE0	Timer 2 output delay register 0	TM2	352
ODELE0H	Timer 2 output delay register 0H	TM2	352
ODELE0L	Timer 2 output delay register 0L	TM2	352
P0	Port 0	Port	693
P0IC0	Interrupt control register	INTC	172
P0IC1	Interrupt control register	INTC	172
P0IC2	Interrupt control register	INTC	172
P0IC3	Interrupt control register	INTC	172
P0IC4	Interrupt control register	INTC	172
P0IC5	Interrupt control register	INTC	172
P0IC6	Interrupt control register	INTC	172
P1	Port 1	Port	694
P2	Port 2	Port	697
P3	Port 3	Port	700

(8/11)

Symbol	Register Name	Unit	Page
P4	Port 4	Port	702
PCM	Port CM	Port	712
PCS	Port CS	Port	708
PCT	Port CT	Port	710
PDH	Port DH	Port	704
PDL	Port DL	Port	706
PDLH	Port DLH	Port	706
PDLL	Port DLL	Port	706
PFC1	Port 1 function control register	Port	696
PFC2	Port 2 function control register	Port	699
PHCMD	Peripheral command register	CPU	200
PHS	Peripheral status register	CPU	203
PM1	Port 1 mode register	Port	694
PM2	Port 2 mode register	Port	697
PM3	Port 3 mode register	Port	700
PM4	Port 4 mode register	Port	702
PMC1	Port 1 mode control register	Port	695
PMC2	Port 2 mode control register	Port	698
PMC3	Port 3 mode control register	Port	701
PMC4	Port 4 mode control register	Port	703
PMCCM	Port CM mode control register	Port	713
PMCCS	Port CS mode control register	Port	709
PMCCT	Port CT mode control register	Port	711
PMCDH	Port DH mode control register	Port	705
PMCDL	Port DL mode control register	Port	707
PMCDLH	Port DL mode control register H	Port	707
PMCDLL	Port DL mode control register L	Port	707
PMCM	Port CM mode register	Port	712
PMCS	Port CS mode register	Port	709
PMCT	Port CT mode register	Port	710
PMDH	Port DH mode register	Port	704
PMDL	Port DL mode register	Port	707
PMDLH	Port DL mode register H	Port	707
PMDLL	Port DL mode register L	Port	707
POER0	PWM output enable register 0	TM00	240
POER1	PWM output enable register 1	TM01	240
PRCMD	Command register	CPU	208
PRM01	Timer 0 clock selection register	TMO	227
PRM02	Timer 1/timer 2 clock selection register	TM1/TM2	300, 336
PRM03	Timer 3 clock selection register	TM3	381
PRM04	FCAN clock selection register	FCAN	546

(9/11)

			(9/11)
Symbol	Register Name	Unit	Page
PRM10	Prescaler mode register 10	TM10	307
PRM11	Prescaler mode register 11	TM11	307
PRSCM1	Prescaler compare register 1	UART1	473
PRSCM2	Prescaler compare register 2	UART2	473
PRSCM3	Prescaler compare register 3	CSI0, CSI1	513
PRSM1	Prescaler mode register 1	UART1	472
PRSM2	Prescaler mode register 2	UART2	472
PRSM3	Prescaler mode register 3	CSI0, CSI1	513
PSC	Power save control register	CPU	209
PSMR	Power save mode register	CPU	208
PSTO0	PWM software timing output register 0	TM00	241
PSTO1	PWM software timing output register 1	TM01	241
RXB0	Receive buffer register 0	UART0	421
RXB1	2-frame continuous reception buffer register 1	UART1	452
RXB2	2-frame continuous reception buffer register 2	UART2	452
RXBL1	Receive buffer register L1	UART1	452
RXBL2	Receive buffer register L2	UART2	452
SC_STAT00 to SC_STAT31	CAN status set/clear registers 00 to 31	FCAN	561
SEIC0	Interrupt control register		172
SESA10	Signal edge selection register 10	INTC, TM10	180, 305
SESA11	Signal edge selection register 11	INTC, TM11	180, 305
SESC	Valid edge selection register	INTC, TM3	183, 386
SESE0	Timer 2 sub-channel input event edge selection register 0	TM2	338
SESE0H	Timer 2 sub-channel input event edge selection register 0H	TM2	338
SESE0L	Timer 2 sub-channel input event edge selection register 0L	TM2	338
SIO0	Serial I/O shift register 0	CSI0	493
SIO1	Serial I/O shift register 1	CSI1	493
SIOL0	Serial I/O shift register L0	CSI0	494
SIOL1	Serial I/O shift register L1	CSI1	494
SIRB0	Clocked serial interface receive buffer register 0	CSI0	485
SIRB1	Clocked serial interface receive buffer register 1	CSI1	485
SIRBE0	Clocked serial interface read-only receive buffer register 0	CSI0	487
SIRBE1	Clocked serial interface read-only receive buffer register 1	CSI1	487
SIRBEL0	Clocked serial interface read-only receive buffer register L0	CSI0	488
SIRBEL1	Clocked serial interface read-only receive buffer register L1	CSI1	488
SIRBL0	Clocked serial interface receive buffer register L0	CSI0	486
SIRBL1	Clocked serial interface receive buffer register L1	CSI1	486
SOTB0	Clocked serial interface transmit buffer register 0	CSI0	489
SOTB1	Clocked serial interface transmit buffer register 1	CSI1	489
SOTBF0	Clocked serial interface initial transmit buffer register 0	CSI0	491

			(10/11)
Symbol	Register Name	Unit	Page
SOTBF1	Clocked serial interface initial transmit buffer register 1	CSI1	491
SOTBFL0	Clocked serial interface initial transmit buffer register L0	CSI0	492
SOTBFL1	Clocked serial interface initial transmit buffer register L1	CSI1	492
SOTBL0	Clocked serial interface transmit buffer register L0	CSI0	490
SOTBL1	Clocked serial interface transmit buffer register L1	CSI1	490
SPEC0	TOMR write enable register 0	TM00	250
SPEC1	TOMR write enable register 1	TM01	250
SRIC0	Interrupt control register	INTC	172
SRIC1	Interrupt control register	INTC	172
SRIC2	Interrupt control register	INTC	172
STATUS0	Status register 0	TM10	309
STATUS1	Status register 1	TM11	309
STIC0	Interrupt control register	INTC	172
STIC1	Interrupt control register	INTC	172
STIC2	Interrupt control register	INTC	172
STOPTE0	Timer 2 clock stop register 0	TM2	336
STOPTE0H	Timer 2 clock stop register 0H	TM2	336
STOPTE0L	Timer 2 clock stop register 0L	TM2	336
TBSTATE0	Timer 2 time base status register 0	TM2	350
TBSTATE0H	Timer 2 time base status register 0H	TM2	350
TBSTATE0L	Timer 2 time base status register 0L	TM2	350
TCRE0	Timer 2 time base control register 0	TM2	339
TCRE0H	Timer 2 time base control register 0H	TM2	339
TCRE0L	Timer 2 time base control register 0L	TM2	339
TM00	Timer 00	TM00	223
TM01	Timer 01	TM01	223
TM0IC0	Interrupt control register	INTC	172
TM0IC1	Interrupt control register	INTC	172
TM10	Timer 10	TM10	298
TM11	Timer 11	TM11	298
TM20	Timer 20	TM2	333
TM21	Timer 21	TM2	333
TM2IC0	Interrupt control register	INTC	172
TM2IC1	Interrupt control register	INTC	172
TM3	Timer 3	TM3	377
TM3IC0	Interrupt control register	INTC	172
TM4	Timer 4	TM4	403
TMC00	Timer control register 00	TM00	228
TMC00H	Timer control register 00H	TM00	228
TMC00L	Timer control register 00L	TM00	228
TMC01	Timer control register 01	TM01	228

APPENDIX B REGISTER INDEX

(11/11)

Symbol	Register Name	Unit	Page
TMC01H	Timer control register 01H	TM01	228
TMC01L	Timer control register 01L	TM01	228
TMC10	Timer control register 10	TM10	302
TMC11	Timer control register 11	TM11	302
TMC30	Timer control register 30	TM3	382
TMC31	Timer control register 31	TM3	384
TMC4	Timer control register 4	TM4	406
TMIC0	Timer connection selection register 0	TM1/TM2	411
TOMR0	Timer output mode register 0	TM00	235
TOMR1	Timer output mode register 1	TM01	235
TUC00	Timer unit control register 00	TM00	234
TUC01	Timer unit control register 01	TM01	234
TUM0	Timer unit mode register 0	TM10	301
TUM1	Timer unit mode register 1	TM11	301
TXB0	Transmit buffer register 0	UART0	422
TXS1	2-frame continuous transmission shift register 1	UART1	455
TXS2	2-frame continuous transmission shift register 2	UART2	455
TXSL1	Transmit shift register L1	UART1	455
TXSL2	Transmit shift register L2	UART2	455
VSWC	System wait control register	BCU	97

APPENDIX C INSTRUCTION SET LIST

C.1 Functions

(1) Symbols used in operand descriptions

Symbol	Explanation
reg1	General-purpose register (Used as source register)
reg2	General-purpose register (Usually used as destination register. Used as source register in some instructions.)
reg3	General-purpose register (Usually stores remainder of division result or higher 32 bits of multiplication result.)
bit#3	3-bit data for bit number specification
immX	X-bit immediate data
dispX	X-bit displacement data
regID	System register number
vector	5-bit data that specifies a trap vector (00H to 1FH)
cccc	4-bit data that shows a condition code
sp	Stack pointer (r3)
ер	Element pointer (r30)
list×	X-item register list

(2) Symbols used in operands

Symbol	Explanation
R	1 bit of data of code that specifies reg1 or regID
r	1 bit of data of code that specifies reg2
w	1 bit of data of code that specifies reg3
d	1 bit of data of a displacement
1	1 bit of immediate data (Shows higher bit of immediate data)
i	1 bit of immediate data
cccc	4-bit data that shows a condition code
CCCC	4-bit data that shows condition code of Bcond instruction
bbb	3-bit data for bit number specification
L	1 bit of data that specifies a program register in a register list
S	1 bit of data that specifies a system register in a register list

(3) Symbols used in operations

Symbol	Explanation
←	Assignment
GR[]	General-purpose register
SR[]	System register
zero-extend (n)	Zero-extend n to word length.
sign-extend (n)	Sign-extend n to word length.
load-memory (a, b)	Read data of size "b" from address "a".
store-memory (a, b, c)	Write data "b" of size "c" to address "a".
load-memory-bit (a, b)	Read bit "b" of address "a".
store-memory-bit (a, b, c)	Write "c" in bit "b" of address "a".
saturated (n)	Perform saturation processing of n (n is 2's complement). If n is a computation result and $n \ge 7$ FFFFFFFH, make $n = 7$ FFFFFFH. If n is a computation result and $n \le 80000000$ H, make $n = 80000000$ H.
result	Reflect result in flag.
Byte	Byte (8 bits)
Half-word	Halfword (16 bits)
Word	Word (32 bits)
+	Addition
_	Subtraction
II	Bit concatenation
×	Multiplication
÷	Division
%	Remainder of division result
AND	Logical product
OR	Logical sum
XOR	Exclusive logical sum
NOT	Logical negation
logically shift left by	Logical shift left
logically shift right by	Logical shift right
arithmetically shift right by	Arithmetic shift right

(4) Symbols used in execution clock

Symbol	Explanation
i	When executing another instruction immediately after instruction execution (issue)
r	When repeating same instruction immediately after instruction execution (repeat)
	When using instruction execution result in instruction immediately after instruction execution (latency)

(5) Symbols used in flag operations

Symbol	Explanation
(Blank)	No change
0	Clear to 0.
×	Set or cleared according to result.
R	Previously saved value is restored.

(6) Condition codes

Condition Name (cond)	Condition Code (cccc)	Condition Expression	Explanation
٧	0000	OV = 1	Overflow
NV	1000	OV = 0	No overflow
C/L	0001	CY = 1	Carry Lower (Less than)
NC/NL	1001	CY = 0	No carry No lower (Greater than or equal)
Z/E	0010	Z = 1	Zero Equal
NZ/NE	1010	Z = 0	Not zero Not equal
NH	0011	(CY or Z) = 1	Not higher (Less than or equal)
Н	1011	(CY or Z) = 0	Higher (Greater than)
N	0100	S = 1	Negative
Р	1100	S = 0	Positive
Т	0101	-	Always (Unconditional)
SA	1101	SAT = 1	Saturated
LT	0110	(S xor OV) = 1	Less than signed
GE	1110	(S xor OV) = 0	Greater than or equal signed
LE	0111	((S xor OV) or Z) = 1	Less than or equal signed
GT	1111	((S xor OV) or Z) = 0	Greater than signed

C.2 Instruction Set (Alphabetical Order)

(1/5)

			I		1							(1/5)
Mnemonic	Operands	Opcode	Operation		Exe	cution (Clock			Flags		
					i	r	I	CY	OV	S	Z	SAT
ADD	reg1, reg2	rrrrr0011110RRRRR	GR[reg2] ← GR[reg2] + GR[reg1]		1	1	1	×	×	×	×	
	imm5, reg2	rrrr010010iiii	$GR[reg2] \leftarrow GR[reg2] + sign-extend (imm5)$		1	1	1	×	×	×	×	
ADDI	imm16,	rrrr110000RRRRR	GR[reg2] ← GR[reg1] + sign-ext	tend (imm16)	1	1	1	×	×	×	×	
	reg1, reg2	iiiiiiiiiiiiiiiiii										
AND	reg1, reg2	rrrr001010RRRRR	GR[reg2] ← GR[reg2] AND GR[reg1]	1	1	1		0	×	×	
ANDI	imm16, reg1, reg2	rrrrr110110RRRRR iiiiiiiiiiiiiiii	GR[reg2] ← GR[reg1] AND zero	-extend (imm16)	1	1	1		0	0	×	
Bcond	disp9	ddddd1011dddcccc		Conditions satisfied	3	3	3					
		Note 1	then PC ← PC + sign-extend (disp9)	Conditions not satisfied	Note 2	Note 2	Note 2					
BSH	reg2, reg3	rrrr11111100000 wwwww01101000010			1	1	1	×	0	×	×	
BSW	reg2, reg3	rrrr11111100000 wwwww0110100000	GR[reg3] ← GR[reg2] (7:0) GR [reg2] (23:16) GR[reg2] (31:24		1	1	1	×	0	×	×	
CALLT	imm6	000000100011111	CTPC ← PC + 2 (return PC) CTPSW ← PSW adr ← CTBP + zero-extend (imm6 logically shift left by 1) PC ← CTBP + zero-extend (Load-memory (adr, Halfword)		5	5	5					
CLR1	bit#3, disp16[reg1]		adr ← GR[reg1] + sign-extend (disp16) Z flag ← Not (Load-memory-bit (adr, bit#3)) Store-memory-bit (adr, bit#3, 0)		3 Note 3	3 Note 3	3 Note 3				×	
	reg2, [reg1]	10bbb111110RRRRR dddddddddddddddd			3 Note 3	3 Note 3	3 Note 3				×	
CMOV	cccc, imm5, reg2, reg3	rrrr1111111iiii wwwww011000cccc0	if conditions are satisfied then GR[reg3] ← sign-extend (imm5) else GR[reg3] ← GR[reg2]		1	1	1					
	cccc, reg1, reg2, reg3	rrrr1111111RRRRR wwwww011001cccc0	if conditions are satisfied then GR[reg3] ← GR[reg1] else GR[reg3] ← GR[reg2]		1	1	1					
CMP	reg1, reg2	rrrr001111RRRRR	result ← GR[reg2] – GR[reg1]		1	1	1	×	×	×	×	
	imm5, reg2	rrrr010011iiii	result ← GR[reg2] – sign-extend	I (imm5)	1	1	1	×	×	×	×	
CTRET		000001111110000000000000000000000000000			4	4	4	R	R	R	R	R
DBRET		000001111110000000000000000000000000000			4	4	4	R	R	R	R	R
DBTRAP		1111100001000000	DBPC ← PC + 2 (return PC) DBPSW ← PSW PSW.NP ← 1 PSW.EP ← 1 PSW.ID ← 1 PC ← 00000060H		4	4	4					
DI		0000011111100000	PSW.ID ← 1	PSW.ID ← 1		1	1					

(2/5)

Mnemonic	Operanda	Oncode	2	ration	<u> </u>				(2/5)			
Mnemonic	Operands	Opcode	Oper	ration		1		211		Flags	_	
DISPOSE	imm5, list12	0000011001iiiii L		nemory (sp, Word)	n+1 Note 4	r n+1 Note 4	n+1 Note 4	CY	OV	S	Z	SAT
	imm5, list12[reg1]	0000011001iiiiL LLLLLLLLLLRRRRR Note 5		nemory (sp, Word)	n+3 Note 4	n+3 Note 4	n+3 Note 4					
DIV	reg1, reg2, reg3	rrrr1111111RRRRR wwwww010111000000			35	35	35		×	×	×	
DIVH	reg1, reg2	rrrrr000010RRRRR	$GR[reg2] \leftarrow GR[reg2] \div GF$	R[reg1] Note 6	35	35	35		×	×	×	
	reg1, reg2, reg3	rrrr1111111RRRRR wwwww010100000000	$GR[reg2] \leftarrow GR[reg2] \div GF$ $GR[reg3] \leftarrow GR[reg2]\%GR$		35	35	35		×	×	×	
DIVHU	reg1, reg2, reg3	rrrr1111111RRRRR wwwww0101010000010			34	34	34		×	×	×	
DIVU	reg1, reg2, reg3	rrrr1111111RRRRR wwwww010111000010			34	34	34		×	×	×	
EI		1 0 0 0 0 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0	PSW.ID ← 0		1	1	1					
HALT		0000011111100000	Stop		1	1	1					
HSW	reg2, reg3	rrrr11111100000 wwwww01101000100	GR[reg3] ← GR[reg2] (15:	0) II GR[reg2] (31:16)	1	1	1	×	0	×	×	
JARL	disp22, reg2	rrrrr11110dddddd ddddddddddddddd Note 7		(sp22)	3	3	3					
JMP	[reg1]	0 0 0 0 0 0 0 0 0 1 1 R R R R R	PC ← GR[reg1]		4	4	4					
JR	disp22	0 0 0 0 0 1 1 1 1 1 0 d d d d d d d d d d d d d d d d d d d	PC ← PC + sign-extend (di	sp22)	3	3	3					
LD.B	disp16[reg1], reg2	rrrrr111000RRRRR dddddddddddddddd			1	1	Note 11					
LD.BU	disp16[reg1], reg2	rrrr11110bRRRRR ddddddddddddd1 Notes 8,10		` ' '	1	1	Note 11					
LD.H	disp16[reg1], reg2	rrrr111001RRRRR ddddddddddddddd Note 8			1	1	Note 11					
LDSR	reg2, regID	rrrr111111RRRRR	$SR[regID] \leftarrow GR[reg2]$	Other than regID = PSW	1	1	1					
		0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 Note 12		regID = PSW	1	1	1	×	×	×	×	×
LD.HU	disp16[reg1], reg2	rrrrr111001RRRRR dddddddddddddd1 Note8	GR[reg2] ← zero-extend (L		1	1	Note 11					

(3/5)

				1							(3/5
Mnemonic	Operands	Opcode	Operation	Exe	cution (Clock			Flags		
				i	r	I	CY	OV	S	Z	SAT
LD.W	disp16[reg1], reg2		adr ← GR[reg1] + sign-extend (disp16) GR[reg2] ← Load-memory (adr, Word)	1	1	Note 11					
MOV	reg1, reg2	rrrr0000000RRRRR	$GR[reg2] \leftarrow GR[reg1]$	1	1	1					
	imm5, reg2	rrrr010000iiiii	GR[reg2] ← sign-extend (imm5)	1	1	1					
	imm32, reg1	00000110001RRRRR iiiiiiiiiiiiiiiiii IIIIIIIIIIIIII	GR[reg1] ← imm32	2	2	2					
MOVEA	imm16, reg1, reg2	rrrr110001RRRRR iiiiiiiiiiiiiiiii	GR[reg2] ← GR[reg1] + sign-extend (imm16)	1	1	1					
MOVHI	imm16, reg1, reg2	rrrr110010RRRRR iiiiiiiiiiiiiiii	GR[reg2] ← GR[reg1] + (imm16 0 ¹⁶)	1	1	1					
MUL ^{Note 22}	reg1, reg2, reg3	rrrr111111RRRRR wwwww0100010000	GR[reg3] GR[reg2] \leftarrow GR[reg2] \times GR[reg1] reg1 \neq reg2 \neq reg3, reg3 \neq r0	1	2 Note 14	2					
	imm9, reg2, reg3	rrrr1111111iii wwwww01001IIII00 Note13	$\begin{aligned} & GR[reg3] \mid I \; GR[reg2] \leftarrow GR[reg2] \times sign-extend \\ & (imm9) \end{aligned}$	1	2 Note 14	2					
MULH	reg1, reg2	rrrr000111RRRRR	$GR[reg2] \leftarrow GR[reg2]^{Note 6} \times GR[reg1]^{Note 6}$	1	1	2					
	imm5, reg2	rrrr010111iiii	$GR[reg2] \leftarrow GR[reg2]^{Note 6} \times sign-extend (imm5)$	1	1	2					
MULHI	imm16, reg1, reg2	rrrr110111RRRRR iiiiiiiiiiiiiiiii	$GR[reg2] \leftarrow GR[reg1]^{\text{Note 6}} \times imm16$	1	1	2					
MULU ^{Note 22}	reg1, reg2, reg3	rrrr111111RRRRR wwwww01000100010	GR[reg3] GR[reg2] \leftarrow GR[reg2] \times GR[reg1] reg1 \neq reg2 \neq reg3, reg3 \neq r0	1	2 Note 14	2					
	imm9, reg2, reg3	rrrr1111111iii wwwww01001IIII10 Note13	$\begin{aligned} & \text{GR[reg3] II GR[reg2]} \leftarrow \text{GR[reg2]} \times \text{zero-extend} \\ & \text{(imm9)} \end{aligned}$	1	2 Note 14	2					
NOP		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Passes at least 1 cycle doing nothing.	1	1	1					
NOT	reg1, reg2	rrrrr000001RRRRR	$GR[reg2] \leftarrow NOT (GR[reg1])$	1	1	1		0	×	×	
NOT1	bit#3, disp16[reg1]		adr ← GR[reg1] + sign-extend (disp16) Z flag ← Not (Load-memory-bit (adr, bit#3)) Store-memory-bit (adr, bit#3, Z flag)	3 Note 3	3 Note 3	3 Note 3				×	
	reg2, [reg1]	rrrr1111111RRRRR 00000000011100010	adr ← GR[reg1] Z flag ← Not (Load-memory-bit (adr, reg2)) Store-memory-bit (adr, reg2, Z flag)	3 Note 3	3 Note 3	3 Note 3				×	
OR	reg1, reg2	rrrrr0011000RRRRR	GR[reg2] ← GR[reg2] OR GR[reg1]	1	1	1		0	×	×	
ORI	imm16, reg1, reg2	rrrr110100RRRRR iiiiiiiiiiiiiiiii	GR[reg2] ← GR[reg1] OR zero-extend (imm16)	1	1	1		0	×	×	
PREPARE	list12, imm5	0000011110iiiii LLLLLLLLLL00001	Store-memory (sp–4, GR[reg in list12], Word) sp ← sp–4 repeat 1 steps above until regs in list12 is stored sp ← sp-zero-extend (imm5)	n+1 Note 4	n+1 Note 4	n+1 Note 4					
	list12, imm5, sp/imm ^{Note 15}	0 0 0 0 0 1 1 1 1 0 i i i i i L LLLLLLLLLLLff0 1 1 imm16/imm32	Store-memory (sp–4, GR[reg in list12], Word) GR[reg in list12] \leftarrow Load-memory (sp, Word) sp \leftarrow sp + 4 repeat 2 steps above until regs in list12 is loaded PC \leftarrow GR[reg1]	n+2 Note 4 Note 17	n+2 Note 4 Note 17	n+2 Note 4 Note 17					

(4/5)

Mnemonic	Operands	Opcode	Operation	Exe	cution C	Clock	Flags				
		·	, i	i r l			CY	OV	s	Z	SAT
RETI		0000011111100000		4	4	4	R	R	R	R	R
SAR	reg1, reg2	rrrr1111111RRRRR 000000000010100000	GR[reg2] ← GR[reg2] arithmetically shift right by GR[reg1]	1	1	1	×	0	×	×	
	imm5, reg2	rrrr010101iiii	$\label{eq:GR} \begin{split} &\text{GR[reg2]} \leftarrow \text{GR[reg2]} \text{ arithmetically shift right by zero-extend (imm5)} \end{split}$	1	1	1	×	0	×	×	
SASF	cccc, reg2	rrrr1111110ccc	if conditions are satisfied then GR[reg2] ← (GR[reg2] Logically shift left by 1) OR 00000001H else GR[reg2] ← (GR[reg2] Logically shift left by 1) OR 00000000H	1	1	1					
SATADD	reg1, reg2	rrrr000110RRRR	GR[reg2] ← saturated (GR[reg2] + GR[reg1])	1	1	1	×	×	×	×	×
	imm5, reg2	rrrr010001iiiii	GR[reg2] ← saturated (GR[reg2] + sign-extend (imm5))	1	1	1	×	×	×	×	×
SATSUB	reg1, reg2	rrrrr000101RRRRR	GR[reg2] ← saturated (GR[reg2] – GR[reg1])	1	1	1	×	×	×	×	×
SATSUBI	imm16, reg1, reg2	rrrr110011RRRRR iiiiiiiiiiiiiiiii	GR[reg2] ← saturated (GR[reg1] – sign-extend (imm16))	1	1	1	×	×	×	×	×
SATSUBR	reg1, reg2	rrrr000100RRRRR	GR[reg2] ← saturated (GR[reg1] – GR[reg2])	1	1	1	×	×	×	×	×
SETF	cccc, reg2	rrrr11111110cccc		1	1	1					
SET1	bit#3, disp16 [reg1]		adr ← GR[reg1] + sign-extend (disp16) Z flag ← Not (Load-memory-bit (adr, bit#3)) Store-memory-bit (adr, bit#3, 1)	3 Note 3	3 Note 3	3 Note 3				×	
	reg2, [reg1]	rrrr1111111RRRRR 00000000111100000	adr ← GR[reg1] Z flag ← Not (Load-memory-bit (adr, reg2)) Store-memory-bit (adr, reg2, 1)	3 Note 3	3 Note 3	3 Note 3				×	
SHL	reg1, reg2	rrrr1111111RRRRR 00000000011000000	GR[reg2] ← GR[reg2] logically shift left by GR[reg1]	1	1	1	×	0	×	×	
	imm5, reg2	rrrr010110iiii	GR[reg2] ← GR[reg2] logically shift left by zero-extend (imm5)	1	1	1	×	0	×	×	
SHR	reg1, reg2	rrrr1111111RRRRR 00000000001000000	GR[reg2] ← GR[reg2] logically shift right by GR[reg1]	1	1	1	×	0	×	×	
	imm5, reg2	rrrr010100iiiii	GR[reg2] ← GR[reg2] logically shift right by zero-extend (imm5)	1	1	1	×	0	×	×	
SLD.B	disp7[ep], reg2	rrrrr0110ddddddd	adr ← ep + zero-extend (disp7) GR[reg2] ← sign-extend (Load-memory (adr, Byte))	1	1	Note 9					
SLD.BU	disp4[ep], reg2	rrrrr0000110dddd Note 18		1	1	Note 9					
SLD.H	disp8[ep], reg2	rrrrr1000ddddddd Note 19	adr ← ep + zero-extend (disp8) GR[reg2] ← sign-extend (Load-memory (adr, Halfword))	1	1	Note 9					

(5/5)

		T				-					(5/5)
Mnemonic	Operands	Opcode	Operation	Exec	cution C	Clock			Flags		
				i	i r l			OV	S	Z	SAT
SLD.HU	disp5[ep], reg2	rrrr 0 0 0 0 1 1 1 d d d d Notes 18, 20	adr ← ep + zero-extend (disp5) GR[reg2] ← zero-extend (Load-memory (adr, Halfword))	1	1	Note 9					
SLD.W	disp8[ep], reg2	rrrrr1010dddddd0 Note 21	adr ← ep + zero-extend (disp8) GR[reg2] ← Load-memory (adr, Word)	1	1	Note 9					
SST.B	reg2, disp7[ep]	rrrrr0111ddddddd	adr ← ep + zero-extend (disp7) Store-memory (adr, GR[reg2], Byte)	1	1	1					
SST.H	reg2, disp8[ep]	rrrrr1001ddddddd Note19		1	1	1					
SST.W	reg2, disp8[ep]	rrrrr1010ddddd1 Note 21	1 ' ' '	1	1	1					
ST.B	reg2, disp16 [reg1]		adr ← GR[reg1] + sign-extend (disp16) Store-memory (adr, GR[reg2], Byte)	1	1	1					
ST.H	reg2, disp16 [reg1]	rrrrr111011RRRRR ddddddddddddddd Note8	adr ← GR[reg1] + sign-extend (disp16) Store-memory (adr, GR[reg2], Halfword)	1	1	1					
ST.W	reg2, disp16 [reg1]	rrrrr111011RRRRR dddddddddddddd1 Note8	adr ← GR[reg1] + sign-extend (disp16) Store-memory (adr, GR[reg2], Word)	1	1	1					
STSR	regID, reg2	rrrr111111RRRRR 00000000000100000	GR[reg2] ← SR[regID]	1	1	1					
SUB	reg1, reg2	rrrr001101RRRR	GR[reg2] ← GR[reg2] – GR[reg1]	1	1	1	×	×	×	×	
SUBR	reg1, reg2	rrrr001100RRRR	GR[reg2] ← GR[reg1] – GR[reg2]	1	1	1	×	×	×	×	
SWITCH	reg1	000000000010RRRR	$\begin{split} & \text{adr} \leftarrow (\text{PC} + 2) + (\text{GR[reg1] logically shift left by 1}) \\ & \text{PC} \leftarrow (\text{PC} + 2) + (\text{sign-extend} \\ & \text{(Load-memory (adr, Halfword))) logically shift left by 1} \end{split}$	5	5	5					
SXB	reg1	0 0 0 0 0 0 0 0 0 1 0 1 R R R R R	GR[reg1] ← sign-extend (GR[reg1] (7:0))	1	1	1					
SXH	reg1	0 0 0 0 0 0 0 0 1 1 1 R R R R R	GR[reg1] ← sign-extend (GR[reg1] (15:0))	1	1	1					
TRAP	vector	0 0 0 0 0 1 1 1 1 1 1 1 i i i i i i i 0 0 0 0	EIPC ← PC + 4 (return PC) EIPSW ← PSW ECR.EICC ← exception code	4	4	4					
TST	reg1, reg2	rrrrr001011RRRRR	result ← GR[reg2] AND GR[reg1]	1	1	1		0	×	×	
TST1	bit#3, disp16 [reg1]		adr ← GR[reg1] + sign-extend (disp16) Z flag ← Not (Load-memory-bit (adr, bit#3))	3 Note 3	3 Note 3	3 Note 3				×	
	reg2, [reg1]	rrrr1111111RRRRR 00000000011100110	$adr \leftarrow GR[reg1]$ Z flag \leftarrow Not (Load-memory-bit (adr, reg2))	3 Note 3	3 Note 3	3 Note 3				×	
XOR	reg1, reg2	rrrrr001001RRRRR	GR[reg2] ← GR[reg2] XOR GR[reg1]	1	1	1		0	×	×	
XORI	imm16, reg1, reg2	rrrr110101RRRRR iiiiiiiiiiiiiiiii	GR[reg2] ← GR[reg1] XOR zero-extend (imm16)	1	1	1		0	×	×	
ZXB	reg1	0 0 0 0 0 0 0 0 1 0 0 R R R R R	GR[reg1] ← zero-extend (GR[reg1] (7:0))	1	1	1					
ZXH	reg1	0 0 0 0 0 0 0 0 1 1 0 R R R R R	GR[reg1] ← zero-extend (GR[reg1] (15:0))	1	1	1	_				

- Notes 1. dddddddd is the higher 8 bits of disp9.
 - 2. 4 if there is an instruction to overwrite the contents of the PSW immediately before
 - 3. If there is no wait state (3 + number of read access wait states)
 - **4.** n is the total number of load registers in list12. (According to the number of wait states. If there are no wait states, n is the number of registers in list12. When n = 0, the operation is the same as n = 1.)
 - 5. RRRRR: Other than 00000
 - 6. Only the lower halfword of data is valid.
 - 7. dddddddddddddddddddddis the higher 21 bits of disp22.
 - 8. dddddddddddddddis the higher 15 bits of disp16.
 - 9. According to the number of wait states (1 if there are no wait states)
 - 10. b: Bit 0 of disp16
 - **11.** According to the number of wait states (2 if there are no wait states)
 - 12. In this instruction, although the source register is regarded as reg2 for convenience of the mnemonic description, the reg1 field is used in the opcode. Therefore, the meanings of register specifications assigned in the mnemonic description and in the opcode differ from those in other instructions.

```
rrrr = regID specification
RRRRR = reg2 specification
```

- **13.** iiiii: Lower 5 bits of imm9 IIII: Higher 4 bits of imm9
- **14.** Shortened by 1 clock if reg2 = reg3 (lower 32 bits of result are not written to register) or reg3 = r0 (higher 32 bits of result are not written to register).
- 15. sp/imm: Specify in bits 19 and 20 of sub-opcode.
- **16.** ff = 00: Load sp in ep.
 - 01: Load sign-extended 16-bit immediate data (bits 47 to 32) in ep.
 - 10: Load 16-bit immediate data (bits 47 to 32) logically shifted 16 bits to the left in ep.
 - 11: Load 32-bit immediate data (bits 63 to 32) in ep.
- 17. n + 3 clocks when imm = imm32
- 18. rrrrr: Other than 00000
- 19. ddddddd is the higher 7 bits of disp8.
- 20. dddd is the higher 4 bits of disp5.
- 21. dddddd is the higher 6 bits of disp8.
- **22.** Do not make a combination that satisfies all the following conditions when using the "MUL reg1, reg2, reg3" instruction and "MULU reg1, reg2, reg3" instruction. Operation is not guaranteed when an instruction that satisfies the following conditions is executed.
 - Reg1 = reg3
 - Reg1 ≠ reg2
 - Reg1 ≠ r0
 - Reg3 ≠ r0

APPENDIX D REVISION HISTORY

D.1 Major Revisions in This Edition

Page	Description
p. 50	Modification of description in Table 3-2 System Register Numbers
p. 55	Modification of description in 3.2.2 (6) Exception/debug trap status saving registers (DBPC, DBPSW)
p. 128	Modification of description in 6.3.1 DMA source address registers 0 to 3 (DSA0 to DSA3)
p. 130	Modification of description in 6.3.2 DMA destination address registers 0 to 3 (DDA0 to DDA3)
p. 132	Modification of description in 6.3.3 DMA transfer count registers 0 to 3 (DBC0 to DBC3)
p. 135	Addition of Caution to 6.3.5 DMA channel control registers 0 to 3 (DCHC0 to DCHC3)
p. 138	Modification of description in 6.3.8 DMA trigger factor registers 0 to 3 (DTFR0 to DTFR3)
p. 154	Modification of description in 6.14 (3) Bus arbitration for CPU
p. 154	Modification of description in 6.14 (4) DMA start factor
p. 172	Addition of description to 7.3.4 Interrupt control register (xxICn)
p. 191	Addition of description to 7.5.1 (2) Restore
p. 344	Addition of 9.3.4 (6) (b) Timer output in toggle mode 0
p. 479	Modification of description in 10.4.1 Features
p. 672	Addition of 13.10.7 Restriction caused by contention between occurrence of a timer trigger and input of an external trigger
p. 673	Addition of 13.10.8 Termination of A/D conversion when forcibly suspending scan mode (A/D trigger mode, A/D trigger polling mode, timer trigger mode, external trigger mode) or select mode (A/D trigger polling mode)
p. 673	Addition of 13.10.9 Variation of A/D conversion results
p. 673	Addition of 13.10.10 A/D conversion result hysteresis characteristics
p. 717	Modification of description in Figure 14-14 Example of Noise Elimination Timing
p. 733	Modification of Figure 16-1 Environment for Writing Program to Flash Memory
p. 733	Modification of Figure 16-2 Communication with Dedicated Flash Memory Programmer (UART0)
p. 734	Modification of Figure 16-3 Communication with Dedicated Flash Memory Programmer (CSI0)
p. 734	Modification of Figure 16-4 Communication with Dedicated Flash Memory Programmer (Handshake-Supported CSI Communication)
p. 738	Modification of description in Figure 16-9 Flash Memory Manipulating Procedure
p. 740	Modification of Figure 16-11 Communication Commands
p. 789	Addition of 18.1 AC Characteristics (11) CAN timing
p. 792	Addition of description to 18.2 Flash Memory Programming Mode (µPD70F3116 only) Basic Characteristics

D.2 Revision History up to Previous Edition

The following table shows the revision history up to the previous editions. The "Applied to:" column indicates the chapters of each edition in which the revision was applied.

(1/15)

Edition	Major Revision from Previous Edition	Applied to:
2nd edition	 Deletion of the following product μPD703117GJ-xxx-UEN 	Throughout
	• Addition of the following products $\mu \text{PD703116GJ-xxx-UEN, 703116GJ(A)-xxx-UEN, 7073116GJ(A)-uEN, 70F3116GJ(A)-UEN}$	
	• Change of status of the following product from "under development" to "developed" μ PD70F3116GJ-UEN	
	 Clarification of bits defined as reserved words in the device file (names of bits whose numbers are in angle brackets) 	
	Addition of Table 1-1 Differences Between V850E/IA1 and V850E/IA2	CHAPTER 1
	Addition of Table 1-2 Differences Between V850E/IA1 and V850E/IA2 Register Setting Values	INTRODUCTION
	Modification of description in 1.3 Applications	
	Modification of description in 1.4 Ordering Information	
	Modification of Caution in 1.5 Pin Configuration	
	Addition of 1.7 Differences Between Products	
	Modification of pin status of ASTB (PCT6) and HLDRQ (PCM3) pins in 2.2 Pin Status	CHAPTER 2 PIN
	Modification of description in 2.4 Types of Pin I/O Circuit and Connection of Unused Pins	FUNCTIONS
	Modification of I/O circuit type from 5-K to 5-AC in 2.5 Pin I/O Circuits	
	Modification of description in 3.4.5 (1) (a) Memory map	CHAPTER 3 CPU
	Modification of description in 3.4.5 (2) Internal RAM area	FUNCTION
	Addition of Note and modification of Caution in 3.4.5 (3) On-chip peripheral I/O area	
	Deletion of part of description in 3.4.7 (1) Program space	
	Modification of part of description in example of wrap-around application in 3.4.7 (2) Data space	
	Modification of Figure 3-6 Recommended Memory Map	
	Modification of description in 3.4.8 Peripheral I/O registers	
	Modification of description in 3.4.9 Programmable peripheral I/O registers	
	Modification of bit name in 3.4.9 (1) Peripheral area selection control register (BPC)	
	Modification of description of programmable peripheral I/O register area in 3.4.9 Programmable peripheral I/O registers	
	Modification of description on bits that can be manipulated, modification of description in table, and addition of Remark in 3.4.11 System wait control register (VSWC)	
	Modification and addition of description in 4.2.1 Pin status during internal ROM, internal RAM, and peripheral I/O access	CHAPTER 4 BUS CONTROL
	Addition of Note in 4.3 Memory Block Function	FUNCTION

(2/15)

		(2/15)		
Edition	Major Revision from Previous Edition	Applied to:		
2nd edition	Addition of Caution in 4.3.1 (1) Chip area selection control registers 0, 1 (CSC0, CSC1)	CHAPTER 4 BUS CONTROL		
edition	Modification of description in table in 4.5.1 Number of access clocks	FUNCTION		
	Addition of Caution in 4.6.1 (2) Address wait control register (AWC)			
	Modification of timing chart in Figure 4-2 Example of Wait Insertion			
	Addition of description in 4.8.1 Function outline			
	Modification of description in 4.9 Bus Priority Order			
	Modification of description (1) in 4.10.1 Program space			
	Modification of timing chart in Figure 5-1 SRAM, External ROM, External I/O Access Timing	CHAPTER 5 MEMORY ACCESS CONTROL FUNCTION		
	Addition of description in 6.3.3 DMA transfer count registers 0 to 3 (DBC0 to DBC3)	CHAPTER 6 DMA		
	Addition of Caution and modification of bit settings in 6.3.4 DMA addressing control registers 0 to 3 (DADC0 to DADC3)	FUNCTIONS (DMA CONTROLLER)		
	Modification of description and Caution in 6.3.5 DMA channel control registers 0 to 3 (DCHC0 to DCHC3)			
	Modification of description on bits that can be manipulated in 6.3.6 DMA disable status register (DDIS)			
	Modification of description on bits that can be manipulated in 6.3.7 DMA restart register (DRST)			
	Modification of description and addition of bit names and bit description in 6.3.8 DMA trigger factor registers 0 to 3 (DTFR0 to DTFR3)			
	Addition of description in 6.5.1 Single transfer mode			
	Addition of description in 6.5.2 Single-step transfer mode			
	Addition of Caution in 6.6.1 Two-cycle transfer			
	Modification of description in 6.7.1 Transfer type and transfer target			
	Modification of description in Table 6-1 Relationship Between Transfer Type and Transfer Target			
	Addition and deletion of description in Table 6-2 External Bus Cycles During DMA Transfer (Two-Cycle Transfer)			
	Addition of Caution in 6.8 DMA Channel Priorities			
	Addition of part of description in Remark in 6.13 Forcible Termination			
	Modification of description in 6.14 (3) Times related to DMA transfer			
	Addition of 6.14 (5) DMA start factor			
	Modification of description in CHAPTER 7 INTERRUPT/EXCEPTION PROCESSING FUNCTION	CHAPTER 7 INTERRUPT/		
	Modification of description in Table 7-1 Interrupt/Exception Source List	EXCEPTION		
	Modification of description in Figure 7-2 Acknowledging Non-Maskable Interrupt Request	- PROCESSING FUNCTION		
	Addition of Caution in 7.3.5 Interrupt mask registers 0 to 3 (IMR0 to IMR3)			
	Addition of Caution and modification of bit description in 7.3.8 (2) Signal edge selection registers 10, 11 (SESA10, SESA11)			

(3/15)

Edition	Major Revision from Previous Edition	Applied to:
2nd	Addition of Caution in 7.3.8 (3) Valid edge selection register (SESC)	CHAPTER 7
edition	Addition of Caution and addition of Caution in bit description in 7.3.8 (4) Timer 2 input filter mode registers 0 to 5 (FEM0 to FEM5)	INTERRUPT/ EXCEPTION PROCESSING
	Modification of description in Figure 7-14 Pipeline Operation at Interrupt Request Acknowledgment (Outline)	FUNCTION
	Addition and modification of description in 7.8 Periods in Which Interrupts Are Not Acknowledged	
	Modification of description in 8.3.1 Direct mode	CHAPTER 8
	Addition of description on Caution in 8.3.2 PLL mode	CLOCK GENERATION
	Modification of description on bit that can be manipulated and data setting sequence to CKC, and modification of Caution in 8.3.4 Clock control register (CKC)	FUNCTION
	Modification of register symbol and initial value in 8.4 PLL Lockup	
	Modification of Note in Figure 8-1 Power Save Mode State Transition Diagram	
	Modification of data setting sequence to PSC and Caution in 8.5.2 (3) Power save control register (PSC)	
	Modification of description in Table 8-4 Operation Status in IDLE Mode	
	Addition of Note and addition and modification of description in 8.5.4 (2) Release of IDLE mode	
	Modification of description in Table 8-6 Operation Status in Software STOP Mode	
	Addition of Note and addition and modification of description in 8.5.5 (2) Release of software STOP mode	
	Addition and modification of description and modification of timing chart in 8.6.1 (1) Securing the time using an on-chip time base counter	
	Modification of timing chart in 8.6.1 (2) Securing the time according to the signal level width (RESET pin input)	
	Modification of description in Table 8-8 Counting Time Examples (f xx = $10 \times fx$)	
	Modification of Figure 9-1 Block Diagram of Timer 0 (Mode 0: Symmetric Triangular Wave, Mode 1: Asymmetric Triangular Wave)	CHAPTER 9 TIMER/COUNTER
	Modification of Figure 9-2 Block Diagram of Timer 0 (Mode 2: Sawtooth Wave)	FUNCTION (REAL- TIME PULSE UNIT)
	Addition of Caution in Table 9-1 Timer 0 Operation Modes	TIME I GEGE GIVITY
	Addition of Caution in 9.1.3 (3) Dead-time timer reload registers 0, 1 (DTRR0, DTRR1)	
	Modification of bit names in 9.1.4 (2) Timer control registers 00, 01 (TMC00, TMC01)	
	Addition of description, modification of bit names, and addition of Caution in bit description in 9.1.4 (3) Timer unit control registers 00, 01 (TUC00, TUC01)	
	Addition of bit names and bit descriptions in 9.1.4 (4) Timer output mode registers 0, 1 (TOMR0, TOMR1)	
	Addition of Figure 9-7 Output Waveforms of TO000 and TO001 in PWM Mode 0 (Symmetric Triangular Waves) (Without Dead Time (TM0CED0 Bit = 1))	
	Addition of Figure 9-8 Output Waveforms of TO000 and TO001 in PWM Mode 0 (Symmetric Triangular Waves) (With Dead Time (TM0CED0 Bit = 0))	
	Modification of bit names in 9.1.4 (5) PWM output enable registers 0, 1 (POER0, POER1)	

(4/15)

		(4/15)
Edition	Major Revision from Previous Edition	Applied to:
2nd edition	Addition of Caution , modification of bit names and bit descriptions, and addition of Figures 9-9 to 9-14 in 9.1.4 (6) PWM software timing output registers 0, 1 (PSTO0, PSTO1)	CHAPTER 9 TIMER/COUNTER
	Addition of Remark in 9.1.5 Operation	FUNCTION (REAL- TIME PULSE UNIT)
	Addition of Remark in Figure 9-30 Operation Timing in PWM Mode 2 (Sawtooth Wave)	TAMIL FOLSE UNIT)
	Modification of Figure 9-45 Block Diagram of Timer 1	
	Modification of bit names and addition of Caution in bit description in 9.2.4 (3) Timer control registers 10, 11 (TMC10, TMC11)	
	Modification of bit description in 9.2.4 (5) Signal edge selection registers 10, 11 (SESA10, SESA11)	
	Modification of bit names in 9.2.4 (7) Status registers 0, 1 (STATUS0, STATUS1)	
	Modification of description in Table 9-8 Timer 2 Configuration List	
	Addition of Table 9-9 Capture/Compare Operation Sources	
	Addition of Table 9-10 Output Level Sources During Timer Output	
	Modification of Figure 9-62 Block Diagram of Timer 2	
	Addition of Caution in 9.3.3 (3) Timer 2 sub-channel n main capture/compare register (CVPEn0) (n = 1 to 4)	
	Addition of Caution in 9.3.3 (4) Timer 2 sub-channel n sub capture/compare register (CVSEn0) (n = 1 to 4)	
	Modification of description on bits that can be manipulated in 9.3.4 (2) Timer 2 clock stop register 0 (STOPTE0)	
	Modification of description on bits that can be manipulated in 9.3.4 (3) Timer 2 count clock/control edge selection register 0 (CSE0)	
	Modification of description on bits that can be manipulated in 9.3.4 (4) Timer 2 sub- channel input event edge selection register 0 (SESE0)	
	Modification of description on bits that can be manipulated, addition of Caution , and addition of Caution in bit description in 9.3.4 (5) Timer 2 time base control register 0 (TCRE0)	
	Modification of description on bits that can be manipulated in 9.3.4 (6) Timer 2 output control register 0 (OCTLE0)	
	Addition of Caution in bit description in 9.3.4 (8) Timer 2 sub-channel 1, 2 capture/compare control register (CMSE120)	
	Addition of Caution in bit description in 9.3.4 (9) Timer 2 sub-channel 3, 4 capture/compare control register (CMSE340)	
	Modification of description on bits that can be manipulated and modification of initial value in 9.3.4 (10) Timer 2 time base status register 0 (TBSTATE0)	
	Modification of description on bits that can be manipulated in 9.3.4 (11) Timer 2 capture/compare 1 to 4 status register 0 (CCSTATE0)	
	Modification of description on bits that can be manipulated in 9.3.4 (12) Timer 2 output delay register 0 (ODELE0)	
	Modification of Caution in 9.4.3 (1) (a) Selection of the external count clock	
	Addition of Caution and modification of bit names in 9.4.4 (2) Timer control register 30 (TMC30)	
	Addition of Caution in 9.4.5 (1) Count operation	

(5/15)

		(5/15)
Edition	Major Revision from Previous Edition	Applied to:
2nd	Modification of Figure 9-88 Compare Operation Example	CHAPTER 9
edition	Addition of Note and deletion of Caution in Figure 9-95 Cycle Measurement Operation Timing Example	TIMER/COUNTER FUNCTION (REAL- TIME PULSE UNIT)
	Modification of Figure 9-97 Example of Timing During TM4 Operation	TIME POLSE ONT)
	Modification of bit names in 9.5.4 (1) Timer control register 4 (TMC4)	
	Modification of Figure 9-98 TM4 Compare Operation Example	
	Addition of Caution and modification of bit names and bit descriptions in 10.2.3 (1) Asynchronous serial interface mode register 0 (ASIM0)	CHAPTER 10 SERIAL
	Modification of description on bits that can be manipulated in 10.2.3 (2) Asynchronous serial interface status register 0 (ASIS0)	INTERFACE FUNCTION
	Modification of bit names and addition of Caution in bit description in 10.2.3 (3) Asynchronous serial interface transmission status register 0 (ASIF0)	
	Modification of description on bits that can be manipulated in 10.2.3 (4) Reception buffer register 0 (RXB0)	
	Modification of description on bits that can be manipulated in 10.2.3 (5) Transmission buffer register 0 (TXB0)	
	Addition and modification of description in 10.2.5 (3) Continuous transmission operation	
	Addition of Figure 10-4 Continuous Transmission Processing Flow	
	Addition of Note and modification of description in table in Figure 10-5 Continuous Transmission Starting Procedure	
	Modification of description in table in Figure 10-6 Continuous Transmission End Procedure	
	Addition of Caution in Figure 10-7 Asynchronous Serial Interface Reception Completion Interrupt Timing	
	Modification of description on bits that can be manipulated and addition of Caution in 10.2.6 (2) (a) Clock selection register 0 (CKSR0)	
	Modification of description on bits that can be manipulated in 10.2.6 (2) (b) Baud rate generator control register 0 (BRGC0)	
	Addition of baud rate item in Table 10-3 Baud Rate Generator Setting Data	
	Addition of (2) in 10.2.7 Precautions]
	Modification of bit names in 10.3.3 (1) Asynchronous serial interface mode registers 10, 20 (ASIM10, ASIM20)	
	Modification of bit names in 10.3.3 (3) Asynchronous serial interface status registers 1, 2 (ASIS1, ASIS2)	
	Modification of description on bits that can be manipulated in 10.3.3 (4) 2-frame continuous reception buffer registers 1, 2 (RXB1, RXB2)/reception buffer registers L1, L2 (RXBL1, RXBL2)	
	Addition of Caution in 10.3.4 (1) Reception completion interrupt (INTSRn)	
	Addition of 10.3.5 (3) Continuous transmission of 3 or more frames	
	Modification of bit names in 10.3.7 (2) (b) Prescaler mode registers 1, 2 (PRSM1, PRSM2)	

(6/15)

Edition	Major Revision from Previous Edition	(6/15) Applied to:
2nd edition	Modification of description on bits that can be manipulated in 10.3.7 (2) (c) Prescaler compare registers 1, 2 (PRSCM1, PRSCM2)	CHAPTER 10 SERIAL
	Addition of 10.3.7 (3) Allowable baud rate range during reception	INTERFACE
	Addition of 10.3.7 (4) Transfer rate in 2-frame continuous reception	FUNCTION
	Modification of bit names in 10.4.3 (1) Clocked serial interface mode registers 0, 1 (CSIM0, CSIM1)	
	Modification of description on bits that can be manipulated in 10.4.3 (4) Clocked serial interface reception buffer registers L0, L1 (SIRBL0, SIRBL1)	
	Modification of description on bits that can be manipulated in 10.4.3 (6) Clocked serial interface read-only reception buffer registers L0, L1 (SIRBEL0, SIRBEL1)	
	Modification of description on bits that can be manipulated in 10.4.3 (8) Clocked serial interface transmission buffer registers L0, L1 (SOTBL0, SOTBL1)	
	Modification of description on bits that can be manipulated in 10.4.3 (10) Clocked serial interface initial transmission buffer registers L0, L1 (SOTBFL0, SOTBFL1)	
	Modification of description on bits that can be manipulated in 10.4.3 (12) Serial I/O shift registers L0, L1 (SIOL0, SIOL1)	
	Modification of description on bits that can be manipulated in 10.4.6 (2) (c) Prescaler compare register 3 (PRSCM3)	
	Modification of Figure 11-1 Block Diagram of FCAN	CHAPTER 11
	Addition of description in 11.5 Message Processing	FCAN CONTROLLER
	Modification of description in Table 11-6 Data Length Code Settings	CONTROLLER
	Modification of description in 11.8.7 (1) Prescaler	
	Modification of description in 11.8.7 (2) Nominal bit time (8 to 25 time quantum)	
	Addition of Caution and modification of bit description in 11.10 (2) CAN message data length registers 00 to 31 (M_DLC00 to M_DLC31)	
	Deletion of one of Notes for bits, addition of Caution and modification of bit description in 11.10 (3) CAN message control registers 00 to 31 (M_CTRL00 to M_CTRL31)	
	Addition of Caution in bit description in 11.10 (4) CAN message time stamp registers 00 to 31 (M_TIME00 to M_TIME31)	
	Modification of description in 11.10 (6) CAN message ID registers L00 to L31 and H00 to H31 (M_IDL00 to M_IDL31 and M_IDH00 to M_IDH31)	
	Deletion of part of bit description in 11.10 (7) CAN message configuration registers 00 to 31 (M_CONF00 to M_CONF31)	
	Addition of bit description in 11.10 (8) CAN message status registers 00 to 31 (M_STAT00 to M_STAT31)	
	Modification of description on bits that can be manipulated, modification of Caution in bit description, and addition of Note in 11.10 (14) CAN global status register (CGST)	
	Modification of description on bits that can be manipulated in 11.10 (15) CAN global interrupt enable register (CGIE)	
	Modification of Figure 11-25 FCAN Clocks	
	Modification of bit description in 11.10 (18) CAN message search start/result register (CGMSS (during write)/CGMSR (during read))	

(7/15)

Edition	Major Revision from Previous Edition	Applied to:
2nd edition	Addition of Caution and deletion of part of bit description in 11.10 (19) CAN1 address mask a registers L and H (C1MASKLa and C1MASKHa)	CHAPTER 11 FCAN
	Addition of Caution and addition of bit description in 11.10 (20) CAN1 control register (C1CTRL)	CONTROLLER
	Modification of description on bits that can be manipulated, addition and deletion of bit description, and deletion of Caution and modification of bit description in 11.10 (21) CAN1 definition register (C1DEF)	
	Modification of description on bits that can be manipulated in 11.10 (24) CAN1 interrupt enable register (C1IE)	
	Modification of bit settings in 11.10 (25) CAN1 bus active register (C1BA)	
	Modification of Caution and bit settings in 11.10 (28) CAN1 synchronization control register (C1SYNC)	
	Modification of Figure 11-28 CAN Global Interrupt Enable Register (CGIE) Settings	
	Modification of Figure 11-35 CAN1 Address Mask a Registers L and H (C1MASKLa and C1MASKHa) (a = 0 to 3) Settings	
	Modification of 11.11.3 Receive setting	
	Modification of Figure 11-44 CAN Stop Mode Settings	
	Modification of Figure 11-45 Clearing of CAN Stop Mode	
	Modification of description in 11.12 Rules for Correct Setting of Baud Rate	
	Modification of description in 11.14.2 Burst read mode	
	Addition of description in 11.15.1 Interrupts that are generated for FCAN controller	
	Modification of description in 11.15.2 Interrupts that are generated for global CAN interface	
	Addition of <2> and <3> in 11.17 Cautions on Use	
	Addition of description in 12.1 (2) Event detection function	CHAPTER 12
	Modification of Figure 12-1 Image of NBD Space	NBD FUNCTION (μPD70F3116)
	Addition of description in 12.4.1 (1) (b) Read command	(μΡΟ/0Ε3116)
	Addition of Caution in 12.4.2 (2) (b) NBD event address register (EVTU_A)	
	Addition of description for NBDLL, modification of description on bits that can be manipulated, and deletion of part of Remark in 12.5 (1) RAM access data buffer register L (NBDL)	
	Addition of description for NBDHL, modification of description on bits that can be manipulated, and deletion of part of Remark in 12.5 (2) RAM access data buffer register H (NBDH)	
	Addition of description to (1) in 12.6.1 General restrictions	
	Addition of description and Caution to (4) in 12.6.3 Restrictions related to NBD event trigger function	
	Modification of description on bits that can be manipulated, modification of bit names, and addition of bit descriptions in 13.3 (1) A/D scan mode registers 00 and 10 (ADSCM00, ADSCM10)	CHAPTER 13 A/D CONVERTER
	Modification of description on bits that can be manipulated and modification of bit description in 13.3 (2) A/D scan mode registers 01 and 11 (ADSCM01, ADSCM11)	

(8/15)

		(8/15)
Edition	Major Revision from Previous Edition	Applied to:
2nd edition	Modification of description on bits that can be manipulated and modification of bit names in 13.3 (3) A/D voltage detection mode registers 0 and 1 (ADETM0, ADETM1)	CHAPTER 13 A/D CONVERTER
	Addition of description in 13.10.4 (1) HALT mode	
	Modification of description in 13.10.4 (2) IDLE mode, software STOP mode	
	Addition of 13.10.6 Timing that makes the A/D conversion result undefined	
	Addition of 13.11 How to Read A/D Converter Characteristics Table	
	Modification of block type and addition of Caution in 14.2 (1) Functions of each port	CHAPTER 14
	Modification of Figure 14-2 Type B Block Diagram	PORT FUNCTIONS
	Modification of Figure 14-3 Type C Block Diagram	
	Modification of Figure 14-4 Type D Block Diagram	
	Addition of Figure 14-5 Type E Block Diagram	
	Modification of Figure 14-8 Type H Block Diagram	
	Modification of Figure 14-9 Type J Block Diagram	
	Modification of Figure 14-10 Type M Block Diagram	
	Modification of Figure 14-11 Type N Block Diagram	
	Modification of Figure 14-12 Type O Block Diagram	
	Addition of Figure 14-13 Type P Block Diagram	
	Modification of block type in 14.3.2 (1) Operation in control mode	
	Modification of block type in 14.3.6 (1) Operation in control mode	
	Modification of block type in 14.3.9 (1) Operation in control mode	
	Modification of block type in 14.3.10 (1) Operation in control mode	CHAPTER 15 RESET FUNCTION
	Addition of Caution and addition of Caution in bit description in 14.4.3 (1) Timer 2 input filter mode registers 0 to 5 (FEM0 to FEM5)	
	Addition and modification of description in Table 15-2 Initial Values of CPU, Internal RAM, and On-Chip Peripheral I/O After Reset	
	Addition of Caution in 16.2 Writing by Flash Programmer	CHAPTER 16
	Addition of Note in Table 16-1 Connection of V850E/IA1 Flash Programming Adapter (FA-144GJ-8EU)	FLASH MEMORY (μPD70F3116)
	Addition of batch erase command in erase item in Table 16-4 Commands for Controlling Flash Memory	
	Addition of 16.7.3 Outline of self-programming interface	
	Addition of 16.7.5 Software environment	
	Addition of 16.7.6 Self-programming function number	
	Addition of 16.7.7 Calling parameters	
	Addition of 16.7.8 Contents of RAM parameters	
	Addition of 16.7.9 Errors during self-programming	
	Addition of 16.7.10 Flash information	
	Addition of 16.7.11 Area number	

(9/15)

		(9/15)
Edition	Major Revision from Previous Edition	Applied to:
2nd edition	Addition of initial value 00H and modification of Caution in 16.7.12 Flash programming mode control register (FLPMC)	CHAPTER 16 FLASH MEMORY (µPD70F3116) CHAPTER 17 TURNING ON/OFF POWER APPENDIX B INSTRUCTION SET LIST
	Addition of 16.7.13 Calling device internal processing	
	Addition of 16.7.14 Erasing flash memory flow	
	Addition of 16.7.15 Continuous writing flow	
	Addition of 16.7.16 Internal verify flow	
	Addition of 16.7.17 Acquiring flash information flow	
	Addition of 16.7.18 Self-programming library	
	Modification of Caution in 16.8 How to Distinguish Flash Memory and Mask ROM Versions	
	Addition of CHAPTER 17 TURNING ON/OFF POWER	
	Modification of description in B.2 Instruction Set (Alphabetical Order)	
3rd edition	Modification of description in 4.2.1 Pin status during internal ROM, internal RAM, and on-chip peripheral I/O access	CHAPTER 4 BUS CONTROL FUNCTION
	Addition of description to 6.3.1 DMA source address registers 0 to 3 (DSA0 to DSA3)	CHAPTER 6 DMA FUNCTIONS (DMA CONTROLLER)
	Addition of description to 6.3.1 (1) DMA source address registers 0H to 3H (DSA0H to DSA3H)	
	Addition of description to 6.3.2 DMA destination address registers 0 to 3 (DDA0 to DDA3)	
	Addition of description to 6.3.2 (1) DMA destination address registers 0H to 3H (DDA0H to DDA3H)	
	Addition of description to 6.3.3 DMA transfer count registers 0 to 3 (DBC0 to DBC3)	
	Addition of description to 6.3.4 DMA addressing control registers 0 to 3 (DADC0 to DADC3)	
	Addition of description to 6.3.5 DMA channel control registers 0 to 3 (DCHC0 to DCHC3)	
	Addition and modification of description in 6.3.6 DMA disable status register (DDIS)	
	Addition of description to 6.3.7 DMA restart register (DRST)	
	Addition of description to 6.3.8 DMA trigger factor registers 0 to 3 (DTFR0 to DTFR3)	
	Modification of description in Table 6-1 Relationship Between Transfer Type and Transfer Target	
	Modification of description in Remark in 6.7.1 Transfer type and transfer target	
	Modification and addition of description in 6.9 Next Address Setting Function	
	Modification of description in 6.11 Forcible Interruption	
	Modification of description in 6.14 (4) Bus arbitration for CPU	
	Addition of 6.14 (6) Execution of program and DMA transfer in internal RAM	
		ı

(10/15)

Edition	Major Davision from Dravious Edition	(10/15)
Edition	Major Revision from Previous Edition	Applied to:
3rd edition	Addition of Caution to 7.3.4 Interrupt control register (xxICn)	CHAPTER 7 INTERRUPT/
		EXCEPTION
		PROCESSING
		FUNCTION
	Addition of Caution to 7.3.6 In-service priority register (ISPR)	
	Modification of description in Remark in 9.1.5 (2) PWM mode 0: Triangular wave	CHAPTER 9
	modulation (right-left symmetric waveform control)	TIMER/COUNTER FUNCTION (REAL-
		TIME PULSE UNIT)
	Addition of Caution to 14.2 (1) Functions of each port	CHAPTER 14
	Modification of description in Figure 14-14 Example of Noise Elimination Timing	PORT FUNCTIONS
	Addition of CHAPTER 18 ELECTRICAL SPECIFICATIONS	CHAPTER 18
		ELECTRICAL
		SPECIFICATIONS
	Addition of CHAPTER 19 PACKAGE DRAWING	CHAPTER 19 PACKAGE
		DRAWING
	Addition of CHAPTER 20 RECOMMENDED SOLDERING CONDITIONS	CHAPTER 20
		RECOMMENDED
		SOLDERING
		CONDITIONS
	Addition of APPENDIX A NOTES ON TARGET SYSTEM DESIGN	APPENDIX A NOTES ON
		TARGET SYSTEM
		DESIGN
	Addition of APPENDIX E REVISION HISTORY	APPENDIX E
		REVISION
		HISTORY
4th edition	Addition of Note to Table 1-1 Differences Between V850E/IA1 and V850E/IA2	CHAPTER 1 INTRODUCTION CHAPTER 3 CPU FUNCTION
edition	Addition of Notes 1 and 2 to Table 1-2 Differences Between V850E/IA1 and V850E/IA2 Register Setting Values	
	Addition of Note to 1.4 Ordering Information	
	Addition of Note 3 to 1.5 Pin Configuration (Top View)	
	Addition of Caution to 3.4.5 (3) On-chip peripheral I/O area	
	Addition of Caution to 3.4.9 Programmable peripheral I/O registers and modification of	
	bit units for manipulation and initial values	
	Modification of description in 3.4.11 System wait control register (VSWC)	
	Addition of Note to 4.4 (1) Bus cycle type configuration registers 0, 1 (BCT0, BCT1)	CHAPTER 4 BUS
		CONTROL FUNCTION

(11/15)

Edition	Major Revision from Previous Edition	Applied to:
4th edition	Addition of Caution 2 to 6.3.1 (1) DMA source address registers 0H to 3H (DSA0H to DSA3H)	CHAPTER 6 DMA FUNCTIONS (DMA CONTROLLER)
	Addition of Caution 2 to 6.3.2 (1) DMA destination address registers 0H to 3H (DDA0H to DDA3H)	
	Addition of Cautions 1 and 2 to 6.3.3 DMA transfer count registers 0 to 3 (DBC0 to DBC3)	
	Modification and addition of description to Caution in 6.3.5 DMA channel control registers 0 to 3 (DCHC0 to DCHC3)	
	Deletion of Note from Table 6-2 External Bus Cycles During DMA Transfer (Two-Cycle Transfer)	
	Modification of description in 6.9 Next Address Setting Function and addition of Note	
	Addition of Cautions 1 and 2 to 6.10 DMA Transfer Start Factors	
	Addition of 6.13.1 Restrictions related to DMA transfer forcible termination	
	Modification of description in 6.14 Times Related to DMA Transfer	
	Addition of 6.15 (5) Restrictions related to automatic clearing of TCn bit of DCHCn register and (6) Read values of DSAn and DDAn registers	-
	Modification of description in CHAPTER 7 INTERRUPT/EXCEPTION PROCESSING FUNCTION	CHAPTER 7 INTERRUPT/ EXCEPTION PROCESSING FUNCTION
	Addition of Caution 2 to 9.1.5 (2) PWM mode 0: Triangular wave modulation (right-left symmetric waveform control)	CHAPTER 9 TIMER/COUNTER FUNCTION (REAL- TIME PULSE UNIT)
	Addition of Notes 1 and 2 to 9.2.4 (1) Timer 1/timer 2 clock selection register (PRM02)	
	Addition of Notes 1 and 2 to 9.3.4 (1) Timer 1/timer 2 clock selection register (PRM02)	
	Addition of Notes 1 and 2 to 9.3.4 (3) Timer 2 count clock/control edge selection register 0 (CSE0)	
	Addition of 9.3.6 PWM output operation when timer 2 operates in compare mode	
	Modification of description in Figure 9-92 TM3 Compare Operation Example (Set/Reset Output Mode)	
	Addition of Caution 2 to 10.2.3 (1) Asynchronous serial interface mode register (ASIM0)	CHAPTER 10 SERIAL INTERFACE FUNCTION
	Addition of Caution to 10.2.5 (3) Continuous transmission operation	
	Addition of description of transfer rate to 10.3.1 Features	
	Modification of description in Cautions 1 and 2 in 10.3.3 (1) Asynchronous serial interface mode registers 10, 20 (ASIM10, ASIM20)	
	Addition of Caution 3 to 10.3.7 (2) (c) Prescaler compare registers 1, 2 (PRSCM1, PRSCM2)	
	Modification of description in Table 10-8 Baud Rate Generator Setting Data (BRG = fxx/2)	

(12/15)

Edition	Major Revision from Previous Edition	(12/18 Applied to:
4th edition	Addition of Caution to Table 11-2 Configuration of Messages and Buffers	CHAPTER 11
	Addition of description to 11.5 Message Processing	FCAN
	Addition of description to Note in Figure 11-21 Nominal Bit Time	CONTROLLER
	Modification of description in 11.10 (2) CAN message data length registers 00 to 31 (M_DLC00 to M_DLC31) and addition of Note	
	Modification of description in 11.10 (3) CAN message control registers 00 to 31 (M_CTRL00 to M_CTRL31) and addition of Note	
	Modification of description in 11.10 (8) CAN message status registers 00 to 31 (M_STAT00 to M_STAT31)	
	Modification of description in 11.10 (11) CAN global interrupt pending register (CGINTP)	
	Modification of description in 11.10 (12) CAN1 interrupt pending register (C1INTP)	
	Addition of Caution to 11.10 (13) CAN stop register (CSTOP)	
	Modification of description in 11.10 (14) CAN global status register (CGST) and addition of description to Note and Caution	
	Modification of description in 11.10 (16) CAN main clock selection register (CGCS) and addition of description to Note and Caution	
	Addition of Caution to 11.10 (18) CAN message search start/result register (CGMSS (during write)/CGMSR (during read))	
	Addition of description to 11.10 (19) CAN1 address mask a registers L and H (C1MASKLa and C1MASKHa)	
	Addition of description to Caution in 11.10 (20) CAN1 control register (C1CTRL)	
	Addition of description to Caution in 11.10 (21) CAN1 definition register (C1DEF)	
	Addition of description to 11.10 (24) CAN1 interrupt enable register (C1IE)	
	Addition of description to 11.10 (28) CAN1 synchronization control register (C1SYNC) and addition of Note	
	Addition of description to Figure 11-27 Initialization Processing	
	Addition of Note to Figure 11-32 CAN1 Synchronization Control Register (C1SYNC) Settings	
	Addition of description to Figure 11-37 Message Buffer Settings	
	Addition of Figure 11-40 CAN Message Status Registers 00 to 31 (M_STAT00 to M_STAT31) Settings	
	Modification of description in Figure 11-42 Setting of Receive Completion Interrupt and Reception Operation Using Reception Polling	
	Addition of Figure 11-43 CAN Message Search Start/Result Register (CGMSS/CGMSR) Settings	
	Addition of description to Figure 11-47 CAN Stop Mode Settings	
	Addition of description to Figure 11-48 Clearing of CAN Stop Mode	
	Modification of description in 11.12 Rules for Correct Setting of Baud Rate	
	Modification of description in Figure 11-50 Sequential Data Read	
	Addition of description to Caution in 11.13.2 Burst read mode	

(13/15)

F	Material Control of the Control	(13/15
Edition	Major Revision from Previous Edition	Applied to:
4th edition	Addition of description to 11.16 Cautions on Use	CHAPTER 11 FCAN CONTROLLER
	Addition of 14.4 Operation of Port Function	CHAPTER 14 PORT FUNCTIONS
	Addition of Caution to 18.1 (4) (c) Read cycle (CLKOUT synchronous/asynchronous, 1 wait)	CHAPTER 18 ELECTRICAL SPECIFICATIONS
	Addition of Caution to 18.1 (4) (d) Write cycle (CLKOUT synchronous/asynchronous, 1 wait)	
	Addition of Caution to 18.1 (4) (e) Bus hold	
	Addition of Notes 1 and 2 to 18.1 (7) Timer operating frequency	
	Modification of description of VPP supply voltage (VPPL) in Basic Characteristics in 18.2 Flash Memory Programming Mode (μPD70F3116 only)	
	Addition of APPENDIX A NOTES	APPENDIX A NOTES
	Addition of Note 22 to MUL, MULU in APPENDIX D D.2 Instruction Set (Alphabetical Order)	APPENDIX D INSTRUCTION SET LIST
	Modification of description in APPENDIX E REVISION HISTORY	APPENDIX E REVISION HISTORY
5th edition	Addition of the following lead-free products	Throughout
	μPD703116GJ-xxx-UEN-A, 70F3116GJ-UEN-A, 703116GJ(A)-xxx-UEN-A,	
	70F3116GJ(A)-UEN-A, 703116GJ(A1)-xxx-UEN-A, 70F3116GJ(A1)-UEN-A	
	Change of number of instructions in 1.2 Features	CHAPTER 1 INTRODUCTION
	Addition of Note to Table 3-2 System Register Numbers	CHAPTER 3 CPU
	Addition of 3.2.2 (1) Interrupt status saving registers (EIPC, EIPSW), (2) NMI status saving registers (FEPC, FEPSW), (5) CALLT execution status saving registers (CTPC, CTPSW), (6) Exception/debug trap status saving registers (DBPC, DBPSW), and (7) CALLT base pointer (CTBP)	FUNCTION
	Addition of Figure 3-8 Example of Programmable Peripheral I/O Register Allocation Address Setting	
	Change of bit units for manipulation and initial values in 3.4.9 Programmable peripheral I/O registers	
	Modification of descriptions in table in 3.4.11 System wait control register (VSWC)	
	Addition of 3.4.12 (2) Restriction on conflict between sld instruction and interrupt request	
	Modification of description in 6.3.5 DMA channel control registers 0 to 3 (DCHC0 to DCHC3)	CHAPTER 6 DMA FUNCTIONS (DMA CONTROLLER)
	Modification of description in 6.3.7 DMA restart register (DRST)	
	Modification of description and addition of Caution to 6.3.8 DMA trigger factor registers 0 to 3 (DTFR0 to DTFR3)	
	Addition of Figure 6-7 Block Transfer Example	
	Modification of description of Caution in 6.5.1 Two-cycle transfer	
	Addition of Note to Table 6-1 Relationship Between Transfer Type and Transfer Target	

(14/15)

Edition	Major Revision from Previous Edition	(14/15) Applied to:
5th edition	,	CHAPTER 6 DMA
	Deletion of a part of description in 6.7 DMA Channel Priorities Modification of description in 6.9 Next Address Setting Function	FUNCTIONS (DMA - CONTROLLER)
	Modification of description in 6.8 Next Address Setting Function Addition of Figure 6-9 Example of Forcible Termination of DMA Transfer	
	Modification of descriptions in 6.14 (2) Transfer of misaligned data and (4) DMA start factor	
	Addition of 6.14 (5) Program execution and DMA transfer with internal RAM	
	Addition of Caution to 7.1 Features	CHAPTER 7
	Addition of Note and Remark to Table 7-1 Interrupt/Exception Source List	INTERRUPT/EXCEPT ON PROCESSING FUNCTION
	Addition of Caution to 7.3.8 (4) Timer 2 input filter mode registers 0 to 5 (FEM0 to FEM5)	
	Addition of Caution to 7.5.2 (2) Restore	
	Modification of description in 7.8 Periods in Which CPU Does Not Acknowledge Interrupts	
	Modification of descriptions in 8.5.2 (3) Power save control register (PSC)	CHAPTER 8 CLOCK
	Addition of description to Table 8-4 Operation Status in IDLE Mode	GENERATION
	Addition of Caution to 8.5.4 (2) (a) Release by a non-maskable interrupt request or an unmasked maskable interrupt request	FUNCTION
	Addition of description to Table 8-6 Operation Status in Software STOP Mode	
	Addition of Caution to 8.5.5 (2) (a) Release by a non-maskable interrupt request or an unmasked maskable interrupt request	
	Addition of 9.1.5 (4) [Output waveform width in respect to set value] (d) When BFCMnx = 0000H is set while DTMnx = 000H or TM0CEDn bit = 1	CHAPTER 9 TIMER/COUNTER FUNCTION
	Addition of 9.1.5 (4) [Output waveform width in respect to set value] (e) When BFCMnx = CM0n3 = a is set	
	Addition of Caution to 9.2.3 (1) Timers 10, 11 (TM10, TM11)	
	Deletion of Note and modification of description in 9.2.4 (1) Timer 1/timer 2 clock selection register (PRM02)	
	Modification of description in table in 9.2.4 (6) (b) UDC mode (CMD bit of TUMn register = 1)	
	Modification of description in Table 9-7 List of Count Operations in UDC Mode	
	Deletion of Note and modification of description in 9.3.4 (1) Timer 1/timer 2 clock selection register (PRM02)	
	Modification of description in 9.3.4 (3) Timer 2 count clock/control edge selection register 0 (CSE0)	
	Addition of 9.3.4 (6) (a) Caution for PWM output change timing	
	Addition of Remark to Figure 10-1 Asynchronous Serial Interface 0 Block Diagram	CHAPTER 10 SERIAL
	Deletion of a part of description and addition of Caution to 10.2.3 (2) Asynchronous serial interface status register 0 (ASIS0)	INTERFACE FUNCTION
	Addition of description to 10.2.6 (5) Transfer rate during continuous transmission	
	Addition of description to 10.2.7 Precautions (2)	
	Modification of Figure 10-19 Asynchronous Serial Interface Reception Completion Interrupt Timing	

(15/15)

Edition	Major Revision from Previous Edition	Applied to:
5th edition	Modification of description in 11.10 (11) CAN global interrupt pending register (CGINTP)	CHAPTER 11 FCAN CONTROLLER
	Modification of description in 11.10 (12) CAN1 interrupt pending register (C1INTP)	
	Addition of Caution to 14.5.2 (1) Timer 10 noise elimination time selection register (NRC10)	CHAPTER 14 PORT FUNCTIONS CHAPTER 16 FLASH MEMORY (µPD70F3116)
	Addition of Caution to 14.5.2 (2) Timer 11 noise elimination time selection register (NRC11)	
	Addition of Caution to 14.5.2 (3) Timer 3 noise elimination time selection register (NRC3)	
	Addition of Caution to 14.5.3 (1) Timer 2 input filter mode registers 0 to 5 (FEM0 to FEM5)	
	Modification of description in Figure 16-10 Flash Memory Programming Mode	
	Addition of (2) to Table 20-1 Surface Mounting Type Soldering Conditions	CHAPTER 20 RECOMMENDED SOLDERING CONDITIONS

For further information, please contact:

NEC Electronics Corporation

1753, Shimonumabe, Nakahara-ku, Kawasaki, Kanagawa 211-8668, Japan Tel: 044-435-5111 http://www.necel.com/

[America]

NEC Electronics America, Inc.

2880 Scott Blvd. Santa Clara, CA 95050-2554, U.S.A. Tel: 408-588-6000 800-366-9782 http://www.am.necel.com/

[Europe]

NEC Electronics (Europe) GmbH

Arcadiastrasse 10 40472 Düsseldorf, Germany Tel: 0211-65030 http://www.eu.necel.com/

Hanover Office

Podbielskistrasse 166 B 30177 Hannover Tel: 0 511 33 40 2-0

Munich Office

Werner-Eckert-Strasse 9 81829 München Tel: 0 89 92 10 03-0

Stuttgart Office

Industriestrasse 3 70565 Stuttgart Tel: 0 711 99 01 0-0

United Kingdom Branch

Cygnus House, Sunrise Parkway Linford Wood, Milton Keynes MK14 6NP, U.K. Tel: 01908-691-133

Succursale Française

9, rue Paul Dautier, B.P. 52 78142 Velizy-Villacoublay Cédex France Tel: 01-3067-5800

Sucursal en España

Juan Esplandiu, 15 28007 Madrid, Spain Tel: 091-504-2787

Tyskland Filial

Täby Centrum Entrance S (7th floor) 18322 Täby, Sweden Tel: 08 638 72 00

Filiale Italiana

Via Fabio Filzi, 25/A 20124 Milano, Italy Tel: 02-667541

Branch The Netherlands

Steijgerweg 6 5616 HS Eindhoven The Netherlands Tel: 040 265 40 10

[Asia & Oceania]

NEC Electronics (China) Co., Ltd

7th Floor, Quantum Plaza, No. 27 ZhiChunLu Haidian District, Beijing 100083, P.R.China Tel: 010-8235-1155 http://www.cn.necel.com/

Shanghai Branch

Room 2509-2510, Bank of China Tower, 200 Yincheng Road Central, Pudong New Area, Shanghai, P.R.China P.C:200120 Tel:021-5888-5400 http://www.cn.necel.com/

Shenzhen Branch

Unit 01, 39/F, Excellence Times Square Building, No. 4068 Yi Tian Road, Futian District, Shenzhen, P.R.China P.C:518048 Tel:0755-8282-9800 http://www.cn.necel.com/

NEC Electronics Hong Kong Ltd.

Unit 1601-1613, 16/F., Tower 2, Grand Century Place, 193 Prince Edward Road West, Mongkok, Kowloon, Hong Kong Tel: 2886-9318 http://www.hk.necel.com/

NEC Electronics Taiwan Ltd.

7F, No. 363 Fu Shing North Road Taipei, Taiwan, R. O. C. Tel: 02-8175-9600 http://www.tw.necel.com/

NEC Electronics Singapore Pte. Ltd.

238A Thomson Road, #12-08 Novena Square, Singapore 307684 Tel: 6253-8311 http://www.sg.necel.com/

NEC Electronics Korea Ltd.

11F., Samik Lavied'or Bldg., 720-2, Yeoksam-Dong, Kangnam-Ku, Seoul, 135-080, Korea Tel: 02-558-3737 http://www.kr.necel.com/