

To our customers,

Old Company Name in Catalogs and Other Documents

On April 1st, 2010, NEC Electronics Corporation merged with Renesas Technology

Corporation, and Renesas Electronics Corporation took over all the business of both
companies. Therefore, although the old company name remains in this document, it is a valid
Renesas Electronics document. We appreciate your understanding.

Renesas Electronics website: http://www.renesas.com

April 1st, 2010
Renesas Electronics Corporation

Issued by: Renesas Electronics Corporation (http://www.renesas.com)

Send any inquiries to http://www.renesas.com/inquiry.

Notice
1. All information included in this document is current as of the date this document is issued. Such information, however, is

subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please
confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to
additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.

2. Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights
of third parties by or arising from the use of Renesas Electronics products or technical information described in this document.
No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights
of Renesas Electronics or others.

3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.
4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of

semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software,
and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by
you or third parties arising from the use of these circuits, software, or information.

5. When exporting the products or technology described in this document, you should comply with the applicable export control
laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas
Electronics products or the technology described in this document for any purpose relating to military applications or use by
the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and
technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited
under any applicable domestic or foreign laws or regulations.

6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics
does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages
incurred by you resulting from errors in or omissions from the information included herein.

7. Renesas Electronics products are classified according to the following three quality grades: “Standard”, “High Quality”, and
“Specific”. The recommended applications for each Renesas Electronics product depends on the product’s quality grade, as
indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular
application. You may not use any Renesas Electronics product for any application categorized as “Specific” without the prior
written consent of Renesas Electronics. Further, you may not use any Renesas Electronics product for any application for
which it is not intended without the prior written consent of Renesas Electronics. Renesas Electronics shall not be in any way
liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an
application categorized as “Specific” or for which the product is not intended where you have failed to obtain the prior written
consent of Renesas Electronics. The quality grade of each Renesas Electronics product is “Standard” unless otherwise
expressly specified in a Renesas Electronics data sheets or data books, etc.

“Standard”: Computers; office equipment; communications equipment; test and measurement equipment; audio and visual
equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots.

“High Quality”: Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-
crime systems; safety equipment; and medical equipment not specifically designed for life support.

“Specific”: Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or
systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare
intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.

8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics,
especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation
characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or
damages arising out of the use of Renesas Electronics products beyond such specified ranges.

9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have
specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further,
Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to
guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a
Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire
control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because
the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system
manufactured by you.

10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental
compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable
laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS
Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with
applicable laws and regulations.

11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas
Electronics.

12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this
document or Renesas Electronics products, or if you have any other inquiries.

(Note 1) “Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its majority-
owned subsidiaries.

(Note 2) “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.

Preliminary User’s Manual

 NEC Electronics Corporation 2004

V850E2
32-bit Microprocessor Core

Architecture

Document No. U17135EJ1V1UM00 (1st edition)
Date Published July 2004 NS CP(K)

Preliminary User’s Manual U17135EJ1V1UM 2

[MEMO]

Preliminary User’s Manual U17135EJ1V1UM 3

1

2

3

4

VOLTAGE APPLICATION WAVEFORM AT INPUT PIN

Waveform distortion due to input noise or a reflected wave may cause malfunction. If the input of the

CMOS device stays in the area between VIL (MAX) and VIH (MIN) due to noise, etc., the device may

malfunction. Take care to prevent chattering noise from entering the device when the input level is fixed,

and also in the transition period when the input level passes through the area between VIL (MAX) and

VIH (MIN).

HANDLING OF UNUSED INPUT PINS

Unconnected CMOS device inputs can be cause of malfunction. If an input pin is unconnected, it is

possible that an internal input level may be generated due to noise, etc., causing malfunction. CMOS

devices behave differently than Bipolar or NMOS devices. Input levels of CMOS devices must be fixed

high or low by using pull-up or pull-down circuitry. Each unused pin should be connected to VDD or GND

via a resistor if there is a possibility that it will be an output pin. All handling related to unused pins must

be judged separately for each device and according to related specifications governing the device.

PRECAUTION AGAINST ESD

A strong electric field, when exposed to a MOS device, can cause destruction of the gate oxide and

ultimately degrade the device operation. Steps must be taken to stop generation of static electricity as

much as possible, and quickly dissipate it when it has occurred. Environmental control must be

adequate. When it is dry, a humidifier should be used. It is recommended to avoid using insulators that

easily build up static electricity. Semiconductor devices must be stored and transported in an anti-static

container, static shielding bag or conductive material. All test and measurement tools including work

benches and floors should be grounded. The operator should be grounded using a wrist strap.

Semiconductor devices must not be touched with bare hands. Similar precautions need to be taken for

PW boards with mounted semiconductor devices.

STATUS BEFORE INITIALIZATION

Power-on does not necessarily define the initial status of a MOS device. Immediately after the power

source is turned ON, devices with reset functions have not yet been initialized. Hence, power-on does

not guarantee output pin levels, I/O settings or contents of registers. A device is not initialized until the

reset signal is received. A reset operation must be executed immediately after power-on for devices

with reset functions.

NOTES FOR CMOS DEVICES

Preliminary User’s Manual U17135EJ1V1UM 4

These commodities, technology or software, must be exported in accordance
with the export administration regulations of the exporting country.
Diversion contrary to the law of that country is prohibited.

The information contained in this document is being issued in advance of the production cycle for the
product. The parameters for the product may change before final production or NEC Electronics
Corporation, at its own discretion, may withdraw the product prior to its production.
Not all products and/or types are available in every country. Please check with an NEC Electronics sales
representative for availability and additional information.
No part of this document may be copied or reproduced in any form or by any means without the prior written consent
of NEC Electronics. NEC Electronics assumes no responsibility for any errors that may appear in this document.
NEC Electronics does not assume any liability for infringement of patents, copyrights or other intellectual property
rights of third parties by or arising from the use of NEC Electronics products listed in this document or any other
liability arising from the use of such products. No license, express, implied or otherwise, is granted under any
patents, copyrights or other intellectual property rights of NEC Electronics or others.
Descriptions of circuits, software and other related information in this document are provided for illustrative purposes
in semiconductor product operation and application examples. The incorporation of these circuits, software and
information in the design of a customer's equipment shall be done under the full responsibility of the customer. NEC
Electronics assumes no responsibility for any losses incurred by customers or third parties arising from the use of
these circuits, software and information.
While NEC Electronics endeavors to enhance the quality, reliability and safety of NEC Electronics products,
customers agree and acknowledge that the possibility of defects thereof cannot be eliminated entirely. To minimize
risks of damage to property or injury (including death) to persons arising from defects in NEC Electronics products,
customers must incorporate sufficient safety measures in their design, such as redundancy, fire-containment and
anti-failure features.
NEC Electronics products are classified into the following three quality grades: "Standard", "Special" and "Specific".
The "Specific" quality grade applies only to NEC Electronics products developed based on a customer-designated
"quality assurance program" for a specific application. The recommended applications of an NEC Electronics
products depend on its quality grade, as indicated below. Customers must check the quality grade of each NEC
Electronics product before using it in a particular application.

•

•

•

•

•

•

•

M5D 02. 11-1

The quality grade of NEC Electronics products is "Standard" unless otherwise expressly specified in NEC
Electronics data sheets or data books, etc. If customers wish to use NEC Electronics products in applications
not intended by NEC Electronics, they must contact an NEC Electronics sales representative in advance to
determine NEC Electronics' willingness to support a given application.

(Note)
(1)

(2)

"NEC Electronics" as used in this statement means NEC Electronics Corporation and also includes its
majority-owned subsidiaries.
"NEC Electronics products" means any product developed or manufactured by or for NEC Electronics (as
defined above).

Computers, office equipment, communications equipment, test and measurement equipment, audio and
visual equipment, home electronic appliances, machine tools, personal electronic equipment and
industrial robots.
Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster
systems, anti-crime systems, safety equipment and medical equipment (not specifically designed for life
support).
Aircraft, aerospace equipment, submersible repeaters, nuclear reactor control systems, life support
systems and medical equipment for life support, etc.

"Standard":

"Special":

"Specific":

Preliminary User’s Manual U17135EJ1V1UM 5

Regional Information

• Device availability

• Ordering information

• Product release schedule

• Availability of related technical literature

• Development environment specifications (for example, specifications for third-party tools and
 components, host computers, power plugs, AC supply voltages, and so forth)

• Network requirements

In addition, trademarks, registered trademarks, export restrictions, and other legal issues may also vary
from country to country.

[GLOBAL SUPPORT]
 http://www.necel.com/en/support/support.html

NEC Electronics America, Inc. (U.S.)
Santa Clara, California
Tel: 408-588-6000
 800-366-9782

NEC Electronics Hong Kong Ltd.
Hong Kong
Tel: 2886-9318

NEC Electronics Hong Kong Ltd.
Seoul Branch
Seoul, Korea
Tel: 02-558-3737

NEC Electronics Shanghai Ltd.
Shanghai, P.R. China
Tel: 021-5888-5400

NEC Electronics Taiwan Ltd.
Taipei, Taiwan
Tel: 02-2719-2377

NEC Electronics Singapore Pte. Ltd.
Novena Square, Singapore
Tel: 6253-8311

J04.1

NEC Electronics (Europe) GmbH
Duesseldorf, Germany
Tel: 0211-65030

• Sucursal en España
Madrid, Spain
Tel: 091-504 27 87

Vélizy-Villacoublay, France
Tel: 01-30-67 58 00

• Succursale Française

• Filiale Italiana
Milano, Italy
Tel: 02-66 75 41

• Branch The Netherlands
Eindhoven, The Netherlands
Tel: 040-244 58 45

• Tyskland Filial
Taeby, Sweden
Tel: 08-63 80 820

• United Kingdom Branch
Milton Keynes, UK
Tel: 01908-691-133

Some information contained in this document may vary from country to country. Before using any NEC
Electronics product in your application, pIease contact the NEC Electronics office in your country to
obtain a list of authorized representatives and distributors. They will verify:

Preliminary User’s Manual U17135EJ1V1UM 6

PREFACE

Target Readers This manual is intended for users who wish to understand the functions of the V850E2

CPU core for designing application systems using the V850E2 CPU core.

Purpose This manual is intended for users to understand the architecture of the V850E2 CPU

core described in the Organization below.

Organization This manual contains the following information:

 • Register set

 • Data type

 • Instruction format and instruction set

 • Interrupts and exceptions

 • Pipeline operations

 • Shifting to debug mode

How to Use this Manual It is assumed that the reader of this manual has general knowledge in the fields of

electrical engineering, logic circuits, and microcontrollers.

 To learn about the hardware functions,
 → Read Hardware User’s Manual of each product.

 To learn about the functions of a specific instruction in detail,
 → Read CHAPTER 5 INSTRUCTIONS.

Conventions Data significance: Higher digits on the left and lower digits on the right
 Active low representation: ×××B (B is appended to pin or signal name)
 Note: Footnote for item marked with Note in the text
 Caution: Information requiring particular attention
 Remark: Supplementary information
 Numerical representation: Binary ... ×××× or ××××B
 Decimal ... ××××
 Hexadecimal ... ××××H
 Prefix indicating the power of 2 (address space, memory capacity):
 K (Kilo): 210 = 1,024
 M (Mega): 220 = 1,0242
 G (Giga): 230 = 1,0243

Preliminary User’s Manual U17135EJ1V1UM 7

Contents

CHAPTER 1 OVERVIEW... 13

1. 1 Features ..14
1. 2 Internal Configuration ...15

CHAPTER 2 REGISTER SET.. 16

2. 1 Program Registers...17
2. 2 System Registers...19

2. 2. 1 Interrupt Status-saving Registers (EIPC, EIPSW)..21

2. 2. 2 NMI Status-saving Registers (FEPC and FEPSW) ..22

2. 2. 3 Exception Cause Register (ECR) ...22

2. 2. 4 Program status word (PSW) ...23

2. 2. 5 CALLT Status-saving Registers (CTPC and CTPSW) ...25

2. 2. 6 Exception/Debug Trap Status-saving Registers (DBPC and DBPSW)26

2. 2. 7 CALLT base pointer (CTBP) ...27

2. 2. 8 Debug Interface register (DIR)..27

2. 2. 9 Breakpoint Control registers 0 to 3 (BPC0 to BPC3)..31

2. 2. 10 Program ID register (ASID)...34

2. 2. 11 Breakpoint Address Setup registers 0 to 3 (BPAV0 to BPAV3)34

2. 2. 12 Breakpoint Address Mask registers 0 to 3 (BPAM0 to BPAM3)35

2. 2. 13 Breakpoint Data Setup registers 0 to 3 (BPDV0 to BPDV3).......................................36

2. 2. 14 Breakpoint Data Mask Registers 0 to 3 (BPDM0 to BPDM3).....................................37

CHAPTER 3 DATA TYPE.. 38

3. 1 Data Format ..38
3. 2 Data Representation ..40

3. 2. 1 Integer ...40

3. 2. 2 Unsigned integer...40

3. 2. 3 Bit ..40

3. 3 Data Alignment...41

Preliminary User’s Manual U17135EJ1V1UM 8

CHAPTER 4 ADDRESS SPACE.. 42

4. 1 Memory Map ...43
4. 2 Addressing Modes ...44

4. 2. 1 Instruction address..44

4. 2. 2 Operand address ..47

CHAPTER 5 INSTRUCTIONS.. 49

5. 1 Instruction Formats ...49
5. 2 Outline of Instructions...53
5. 3 Instruction Set ..58

ADD...61

ADDI..62

ADF ...63

AND...64

ANDI..65

Bcond ..66

BSH ...68

BSW ..69

CALLT ...70

CLR1 ...71

CMOV..72

CMP ..74

CTRET ..75

DBRET ..76

DBTRAP..77

DI...78

DISPOSE ..79

DIV ..81

DIVH..82

DIVHU ...84

DIVU..85

EI ...86

HALT ...87

HSH...88

HSW ..89

JARL..90

Preliminary User’s Manual U17135EJ1V1UM 9

JMP ...91

JR..92

LD.B ..93

LD.BU..94

LD.H ..95

LD.HU ...96

LD.W ...97

LDSR...98

MAC ..99

MACU..100

MOV ..101

MOVEA ...102

MOVHI ..103

MUL...104

MULH ..106

MULHI ...107

MULU ..108

NOP ..110

NOT...111

NOT1...112

OR...113

ORI..114

PREPARE...115

RETI ..117

SAR...119

SASF...120

SATADD..121

SATSUB..123

SATSUBI...124

SATSUBR ...125

SBF ...126

SCH0L...127

SCH0R ..128

SCH1L...129

SCH1R ..130

SET1 ...131

SETF ...132

SHL ...134

SHR...135

Preliminary User’s Manual U17135EJ1V1UM 10

SLD.B ... 136

SLD.BU .. 137

SLD.H... 138

SLD.HU .. 139

SLD.W .. 140

SST.B ... 141

SST.H... 142

SST.W .. 143

ST.B ... 144

ST.H ... 145

ST.W .. 146

STSR.. 147

SUB .. 148

SUBR ... 149

SWITCH ... 150

SXB .. 151

SXH .. 152

TRAP.. 153

TST... 154

TST1... 155

XOR.. 156

XORI... 157

ZXB .. 158

ZXH .. 159

5. 4 Number of Instruction Execution Clock Cycle... 160

CHAPTER 6 INTERRUPTS AND EXCEPTIONS... 165

6. 1 Interrupt Servicing .. 166
6. 1. 1 Maskable interrupt.. 166

6. 1. 2 Non-maskable interrupt.. 168

6. 2 Exception Processing... 169
6. 2. 1 Software exception... 169

6. 2. 2 Exception trap .. 170

6. 2. 3 Debug traps and debug breaks.. 171

Preliminary User’s Manual U17135EJ1V1UM 11

6. 3 Interrupt/Exception Processing Return..172
6. 3. 1 Interrupt/software exception return ...172

6. 3. 2 Exception trap, debug trap, and debug break return ..173

CHAPTER 7 RESET .. 174

7. 1 Post-Reset Register Status...174
7. 2 Post-Reset Initialization ..175

CHAPTER 8 PIPELINE OPERATIONS ... 176

8. 1 Features ..178
8. 2 Pipeline Flow during Execution of Instructions ...180

8. 2. 1 Load instructions...180

8. 2. 2 Store instructions ..180

8. 2. 3 Multiplication instructions ..181

8. 2. 4 Multiplication with addition instructions...182

8. 2. 5 Arithmetic operation instructions...182

8. 2. 6 Conditional arithmetic instructions ..183

8. 2. 7 Saturation instructions ..183

8. 2. 8 Logical operation instructions ...184

8. 2. 9 Data operation instructions ...184

8. 2. 10 Bit search instructions...185

8. 2. 11 Division instructions ..185

8. 2. 12 Branch instructions ...186

8. 2. 13 Bit manipulation instructions ...188

8. 2. 14 Special instructions ...189

8. 2. 15 Instructions for debug function..194

CHAPTER 9 SHIFTING TO DEBUG MODE.. 195

9. 1 Methods for Shifting to Debug Mode...195
9. 2 Caution Points..202

APPENDIX A LIST OF INSTRUCTION ... 203

APPENDIX B INSTRUCTION OPCODE MAP... 219

Preliminary User’s Manual U17135EJ1V1UM 12

APPENDIX C DIFFERENCES WITH ARCHITECTURE OF
V850 CPU AND V850E1 CPU.. 224

APPENDIX D INSTRUCTIONS ADDED FOR V850E2 CPU COMPARED WITH

 V850 CPU AND V850E1 CPU... 227

APPENDIX E LIST OF CAUTION POINTS.. 230

APPENDIX F INSTRUCTION INDEX... 234

Preliminary User’s Manual U17135JJ1V1UM 13

CHAPTER 1 OVERVIEW

Real-time control systems are used in a wide range of applications including:
 • office equipment, such as HDDs (Hard Disk Drives), PPCs (Plain Paper Copiers), printers, and facsimiles;
 • automobile electronics, such as engine control systems and ABSs (Antilock Braking Systems); and
 • factory automation equipment, such as NC (Numerical Control) machine tools and various controllers.

The great majority of these systems conventionally employ 8-bit or 16-bit microcontrollers. However, the
performance level of these microcontrollers has become inadequate in recent years as control operations have
risen in complexity, leading to the development of increasingly complicated instruction sets and hardware designs.
As a result the need has arisen for a new generation of microcontrollers operable at much higher frequencies to
achieve an acceptable level of performance under today’s more demanding requirements.

The V850 Series of microcontrollers was developed to satisfy this need. This series uses RISC architecture that
can provide maximum performance with simpler hardware. It allows users to obtain a performance approximately
15 times higher than that of the existing 78K/III Series and 78K/IV Series of CISC single-chip microcontrollers at a
lower total cost.

In addition to the basic instructions of conventional RISC CPUs, the V850 Series is provided with special
instructions, such as saturate, bit manipulate, and multiply/divide (executed by a hardware multiplier) instructions,
which are especially suited for digital servo control systems. Moreover, instruction formats are designed for
maximum compiler coding efficiency, allowing the reduction of object code sizes.

The V850E2 CPU has strengthened further the performance of the V850E1 CPU which is the succeeding product
of this V850 CPU and the interruption response ability. Furthermore, the pipeline was increase to 7-stage in order
to raise the clock frequency of CPU. To increase the throughput of CPU, parallelization of pipeline processing was
performed, and the program area has been extended to 512M bytes. Moreover, in order to enable high-speed
memory access, the instruction/data cache interface has been built in. Because the instruction codes are upwardly
compatible with the V850 CPU or the V850E1 CPU at the object code level, the software resources of common
systems can be used unchanged.

CHAPTER 1 OVERVIEW

Preliminary User’s Manual U17135EJ1V1UM 14

1. 1 Features

(1) High-performance 32-bit architecture for embedded control

• Number of instructions: 93
• 32-bit general registers: 32
• Load/store instructions in long/short formats
• 3-operand instructions
• 7-stage pipeline of 1 clock cycle per stage
• Hardware interlock on register/flag hazards
• Memory space: 512 M Bytes linear for program space
 4 G Bytes linear for data space

(2) Special instructions

• Saturate operation instructions
• Bit manipulation instructions
• Multiply instructions (On-chip hardware multiplier executing multiplication in 1 clock)
 16 bits × 16 bits → 32 bits
 32 bits × 32 bits → 32 bits or 64 bits
• MAC operation instructions

32 bits × 32 bits + 64 bits → 64 bits

CHAPTER 1 OVERVIEW

Preliminary User’s Manual U17135EJ1V1UM 15

1. 2 Internal Configuration

The V850E2 CPU uses a 7-stage pipeline to execute nearly all instructions in one clock cycle. It includes address
calculations, arithmetic operations, logical operations, and data transfers. It also contains additional dedicated high-
speed features, such as a multiplier (32 × 32 bits) and a barrel shifter (32 bits/clock), to execute complex
instructions. Figure 1-1 shows the internal configuration.

Figure 1-1. V850E2 CPU Internal Configuration

Program counter

General registers

Multiplie
(32×32→64)

ALU

Barrel
shifter

Instruction queue

System register

Data cache Data memory

Instruction
memory

Instruction
cache

Preliminary User’s Manual U17135JJ1V1UM 16

CHAPTER 2 REGISTER SET

The registers can be classified into two types: program registers that can be used for general programming, and
system registers that can control the execution environment. All registers are 32-bit wide.

Figure 2-1. Registers

(a) Program registers

031
r0 (Zero register)

r1 (Assembler-reserved register)

r2

r3 (SP: Stack pointer)

r4 (GP: Global pointer)

r5 (TP: Text pointer)

r6

r7

r8

r9

r10

r11

r12

r13

r14

r15

r16

r17

r18

r19

r20

r21

r22

r23

r24

r25

r26

r27

r28

r29

r30 (EP: Element pointer)

r31 (LP: Link pointer)

PC (Program counter)

Note These registers are reserved for debug function.

(b) System registers

031
EIPC (Interrupt status-saving register)

EIPSW (Interrupt status-saving register)

FEPC (NMI status-saving register)

FEPSW (NMI status-saving register)

ECR (Exception cause register)

PSW (Program status word)

CTPC (CALLT status-saving register)

CTPSW (CALLT status-saving register)

DBPC (Exception/debug trap status-saving register)

DBPSW (Exception/debug trap status-saving register)

CTBP (CALLT base pointer)

DIR (Debug interface register)

BPC0 (Breakpoint control register 0)

ASID (Program ID register)

BPAV0 (Breakpoint address setting register 0)

BPAM1 (Breakpoint address mask register 1)

BPDV0 (Breakpoint data setting register 0)

BPDM1 (Breakpoint data mask register 1)

BPC1 (Breakpoint control register 1)

BPAV1 (Breakpoint address setting register 1)

BPAM0 (Breakpoint address mask register 0)

BPDV1 (Breakpoint data setting register 1)

BPDM0 (Breakpoint data mask register 0)

BPC2 (Breakpoint control register 2)

BPC3 (Breakpoint control register 3)

BPAV2 (Breakpoint address setting register 2)

BPAV3 (Breakpoint address setting register 3)

BPAM2 (Breakpoint address mask register 2)

BPAM3 (Breakpoint address mask register 3)

BPDV2 (Breakpoint data setting register 2)

BPDV3 (Breakpoint data setting register 3)

BPDM3 (Breakpoint data mask register 3)

BPDM2 (Breakpoint data mask register 2)

Note

031
EIPC (Interrupt status-saving register)

EIPSW (Interrupt status-saving register)

FEPC (NMI status-saving register)

FEPSW (NMI status-saving register)

ECR (Exception cause register)

PSW (Program status word)

CTPC (CALLT status-saving register)

CTPSW (CALLT status-saving register)

DBPC (Exception/debug trap status-saving register)

DBPSW (Exception/debug trap status-saving register)

CTBP (CALLT base pointer)

DIR (Debug interface register)

BPC0 (Breakpoint control register 0)

ASID (Program ID register)

BPAV0 (Breakpoint address setting register 0)

BPAM1 (Breakpoint address mask register 1)

BPDV0 (Breakpoint data setting register 0)

BPDM1 (Breakpoint data mask register 1)

BPC1 (Breakpoint control register 1)

BPAV1 (Breakpoint address setting register 1)

BPAM0 (Breakpoint address mask register 0)

BPDV1 (Breakpoint data setting register 1)

BPDM0 (Breakpoint data mask register 0)

BPC2 (Breakpoint control register 2)

BPC3 (Breakpoint control register 3)

BPAV2 (Breakpoint address setting register 2)

BPAV3 (Breakpoint address setting register 3)

BPAM2 (Breakpoint address mask register 2)

BPAM3 (Breakpoint address mask register 3)

BPDV2 (Breakpoint data setting register 2)

BPDV3 (Breakpoint data setting register 3)

BPDM3 (Breakpoint data mask register 3)

BPDM2 (Breakpoint data mask register 2)

Note

CHAPTER 2 REGISTER SET

Preliminary User’s Manual U17135EJ1V1UM 17

2. 1 Program Registers

There are general registers (r0 to r31) and program counter (PC) in the program registers.

Table 2-1. Program Registers

Program Register Name Function Description

General register r0 Zero register Always holds "0."

 r1 Assembler-reserved register Working register for address generation.

 r2 Address/data variable register (when the real-time OS to be used is not using r2)

 r3 Stack pointer (SP) Stack frame generation when function is called.

 r4 Global pointer (GP) Access global variables in data area.

 r5 Text pointer (TP) Register for pointing start address of the text area where

program code is placed.

 r6 to r29 Address/data variable registers

 r30 Element pointer (EP) Base pointer for address generation when memory is

accessed.

 r31 Link pointer (LP) Used when compiler calls function.

Program counter PC Holds instruction address during program execution.

Remark For detailed descriptions of r1, r3 to r5, and r31 used by an assembler or C compiler, refer to the CA850 (C
Compiler Package) Assembly Language User’s Manual.

(1) General-purpose registers (r0 to r31)

Thirty-two general-purpose registers, r0 to r31, are provided. All these registers can be used for data variables
or address variables.
However, care must be exercised as follows in using the r0 to r5, r30, and r31 registers.

(a) r0, r30

r0 and r30 are implicitly used by instructions.
r0 is a register that always holds 0, and is used for operations using 0 and offset 0 addressing. r30 is
used as a base pointer when accessing memory using the SLD and SST instructions.

(b) r1, r3 to r5, r31
r1, r3 to r5, and r31 are implicitly used by the assembler and C compiler.
Before using these registers, therefore, their contents must be saved so that they are not lost. The
contents must be restored to the registers after the registers have been used.

(c) r2
r2 is sometimes used by a real-time OS. When the real-time OS to be used is not using r2, r2 can be
used as an address variable register or a data variable register.

CHAPTER 2 REGISTER SET

Preliminary User’s Manual U17135EJ1V1UM 18

 (2) Program counter (PC)

This register holds an instruction address during program execution. The lower 29 bits of this register are
valid, and bits 31 to 29 are reserved for future function expansion (fixed to 0). If a carry occurs from bit 28 to
bit 29, it is ignored. Bit 0 is always fixed to 0, and execution cannot branch to an odd address.

Figure 2-2. Program Counter (PC)

31 2928 1 0

PC 0 Initial value
00000000H

0 0 0 (Instruction address during execution)

CHAPTER 2 REGISTER SET

Preliminary User’s Manual U17135EJ1V1UM 19

2. 2 System Registers

The system registers control the CPU status and hold information on interrupts.

System registers can be read or written by specifying the relevant system register number from the following list

using a system register load/store instruction (LDSR or STSR instruction).

 Table 2-2. System Register Numbers

Register name Operand Specifiability System register

No. LDSR

instruction

STSR

instruction

0 Interrupt status-saving register (EIPC) Yes Yes

1 Interrupt status-saving register (EIPSW) Yes Yes

2 NMI status-saving register (FEPC) Yes Yes

3 NMI status-saving register (FEPSW) Yes Yes

4 Exception cause register (ECR) No Yes

5 Program status word (PSW) Yes Yes

6-15 (Nos. reserved for future expansion (operation not guaranteed when accessed)) No No

16 CALLT status-saving register (CTPC) Yes Yes

17 CALLT status-saving register (CTPSW) Yes Yes

18 Exception/Debug trap status-saving register (DBPC) Yes Yes

19 Exception/Debug trap status-saving register (DBPSW) Yes Yes

20 CALLT base pointer (CTBP) Yes Yes

21 Debug Interface register (DIR) YesNote Yes

22-27 Varies according to channel set via DIR register (See Table 2-3). - -

28-31 (Nos. reserved for future expansion (operation not guaranteed when accessed)) No No

Note Some bits are undefined when read while in user mode (see 2. 2. 8 Debug Interface register (DIR)).

Caution After bit 0 in the EIPC, FEPC, or CTPC register is set (= 1) by the LDSR instruction, if interrupt
processing occurs and a RETI instruction is used to recover, the value of bit 0 is ignored (since the
PC bit 0 value is fixed to 0). When setting values to the EIPC, FEPC, or CTPC register, always set an
even number (bit 0 = 0) unless there is a particular reason to do otherwise.

Remark Yes: Access enabled

No: Access prohibited

CHAPTER 2 REGISTER SET

Preliminary User’s Manual U17135EJ1V1UM 20

Table 2-3. System Register List (System Register Nos.: 22 to 27)

Register name Operand Specifiability System register

No. LDSR

instruction

STSR

instruction

22 Breakpoint control register n (BPCn) Yes Yes

23 Program ID register (ASID) Yes Yes

24 Breakpoint address setting register n (BPAVn) Yes Yes

25 Breakpoint address mask register n (BPAMn) Yes Yes

26 Breakpoint data setting register n (BPDVn) Yes Yes

27 Breakpoint data mask register n (BPDMn) Yes Yes

Remark n = 0 to 3
Yes: Access enabled

CHAPTER 2 REGISTER SET

Preliminary User’s Manual U17135EJ1V1UM 21

2. 2. 1 Interrupt Status-saving Registers (EIPC, EIPSW)
Interrupt status-saving registers include the EIPC and EIPSW registers.
When a software exception, maskable interrupt, or runtime error exception has occurred, the value in the
program counter (PC) is saved in the EIPC register and the value in the program status word (PSW) is saved in
the EIPSW register (when a non-maskable interrupt (NMI) occurs, the value is saved in the NMI status-saving
registers (FEPC and FEPSW)).
Except for certain instructions, when a software exception, maskable interrupt, or runtime error exception
occurs, the address of the instruction after the instruction where the exception or interrupt occurs is stored in
the EIPC register (See Table 6-1. Interrupt/Exception Codes).
The current PSW value is saved in the EIPSW register.
Because only one pair of interrupt status-saving registers is provided, the contents of these registers must be
saved by program when multiple interrupts are enabled.
EIPC register bits 31 to 29 and EIPSW register bits 31 to 12, 9 and 8 are reserved (fixed to 0) for future
expanded functions.

Figure 2-3. Interrupt Status-saving Registers (EIPC and EIPSW)

31 0

EIPSW (Contents of PSW)

811

31 29 28 0

EIPC (Contents of PC)0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 00 0
Note

2 0
Note

1

91012

Initial value
undefined

Initial value
00000xxxH

(x: undefined)

0

Notes1. Contents of PSW's SS flag
Notes2. Contents of PSW's SB flag

CHAPTER 2 REGISTER SET

Preliminary User’s Manual U17135EJ1V1UM 22

2. 2. 2 NMI Status-saving Registers (FEPC and FEPSW)
The NMI status-saving registers include the FEPC and FEPSW registers.
When a non-maskable interrupt (NMI) or runtime error exception occurs, the value in the program counter (PC)
is saved in the FEPC register and the value in the program status word (PSW) is saved in the FEPSW register.
Except for certain instructions, when an NMI or runtime error exception occurs, the address of the instruction
after the instruction where the exception or interrupt occurs is stored in the FEPC register (See Table 6-1.
Interrupt/Exception Codes).
The current PSW value is saved in the FEPSW register.
Because only one pair of NMI status saving registers is provided, the contents of these registers must be saved
by program when multiple interrupts are enabled.
Bits 31 to 29 of FEPC register and bits 31 to 12, 9, and 8 of FEPSW register are reserved for future function
expansion (fixed to 0).

Figure 2-4. NMI Status-saving Registers (FEPC and FEPSW)

31 29 28 0

FEPC (Contents of PC)

31 0

FEPSW (Contents of PSW)

0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 00 0

811

0
Note

2 0
Note

1

91012

Initial value
undefined

Initial value
00000xxxH

(x: undefined)

0

Notes1. Contents of PSW's SS flag

2. Contents of PSW's SB flag

2. 2. 3 Exception Cause Register (ECR)

The Exception Cause register (ECR) stores the factor (code) that has caused an exception or interrupt to occur.
The values saved in the ECR register are exception code that are encoded for each interrupt factor (See Table
6-1. Interrupt/Exception Codes). Since the ECR register is a read-only register, the LDSR instruction cannot
be used to write data to this register.

Figure 2-5. Exception Cause Register (ECR)

31 0

ECR FECC EICC

16 15
Initial value
00000000H

 Bit position Bit name Meaning

 31-16 FECC Exception code of non-maskable interrupt (NMI) (initial value: 0)

 15-0 EICC Exception code of exception or maskable interrupt (initial value: 0)

CHAPTER 2 REGISTER SET

Preliminary User’s Manual U17135EJ1V1UM 23

2. 2. 4 Program status word (PSW)
The program status word (PSW) is a set of flags that indicate the program's status (instruction execution
results) and the CPU's status.
When the LDSR instruction is used to change the value in the bits in this register, the revised value becomes
valid as soon as execution of the LDSR instruction ends. However, if the ID flag is set (= 1), reception of
interrupt requests is prohibited during execution of the LDSR instruction.
Bits 31 to 12, 9, and 8 of this register are reserved for future expansion of functions, and writing values other
than 0 to them is prohibited. Their values when read is undefined.

Figure 2-6. Program Status Word (PSW) (1 of 2)

31 8 7 6 5 4 3 2 1 0

PSW N
P

S
A
T

E
P

I
D

O
V S ZC

Y
Initial value
00000020H

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 00 0 S
B 0 0

11
S
S

91012

 Bit position Flag name Meaning

 11 SS When this flag is set (= 1), a single-step operation is performed (debug trap occurs when each

instruction is executed) (initial value: 0).

However, when branching to an interrupt processing routine, the SB flag's value is transferred.

Therefore, when the SB flag is cleared to zero, single-step operation cannot be performed by

an interrupt processing routine.

Also, when the DIR register's SSE bit = 0, this flag is not set (it is fixed to zero).

 10 SB When branching to an interrupt processing routine, the SB flag's value is transferred to the SS

flag. Therefore, when the SB flag is set (= 1), single-step operation cannot be performed by an

interrupt processing routine.

CHAPTER 2 REGISTER SET

Preliminary User’s Manual U17135EJ1V1UM 24

Figure 2-6. Program Status Word (PSW) (2 of 2)

 Bit position Flag name Meaning

 7 NP This bit indicates when non-maskable interrupt (NMI) processing is in progress. When an NMI

request is received, this bit is set (= 1) and multiple interrupts are prohibited.

 0: NMI processing not in progress (initial value)

 1: NMI processing in progress

 6 EP This bit indicates when exception processing is in progress. When an exception has occurred,

this bit is set (= 1). Interrupts can be received when this bit = 1.

 0: Exception processing not in progress (initial value)

 1: Exception processing in progress

 5 ID This bit indicates whether or not maskable interrupt requests can be received.

 0: Enable interrupts (EI)

 1: Disable interrupts (DI) (Initial value)

 4 SATNote This indicates when a saturation instruction's result overflows, causing the result of the

operation to be saturated. Since this flag is a cumulative flag, it is set (= 1) when saturation

instruction's result is saturated and is not cleared to zero even when the subsequent

instruction's result is not saturated. The LDSR instruction must be used to clear this bit. This

bit is neither set (= 1) nor cleared (= 0) when an arithmetic operation instruction is executed.

 0: Not saturated (initial value)

 1: Saturated

 3 CY Indicates when a carry or borrow occurs in an operation result.

 0: Carry or borrow has not occurred (initial value)

 1: Carry or borrow has occurred

 2 OVNote Indicates when an overflow occurs in an operation result.

 0: Overflow has not occurred (initial value)

 1: Overflow has occurred

 1 SNote Indicates when operation result is a negative value.

 0: Operation result is a positive value or 0 (initial value)

 1: Operation result is a negative value.

 0 Z Indicates whether or not the operation result is "0".

 0: The operation result is not "0". (initial value)

 1: The operation result is "0".

 Note The value in the OV flag and S flag for the saturation operation determines the operation result of saturation

processing. If the OV flag is set (= 1) during saturation processing, the SAT flag is set (= 1).

 Operation result status Flag's status

 SAT OV S

Operation result after

saturation processing

 When beyond maximum positive value 1 1 0 7FFFFFFFH

 When beyond maximum negative value 1 1 1 80000000H

 Positive (Not exceeding maximum value) 0

 Negative

(Not exceeding maximum value)

Holds the

value before

operation

0

1

Operation result

CHAPTER 2 REGISTER SET

Preliminary User’s Manual U17135EJ1V1UM 25

2. 2. 5 CALLT Status-saving Registers (CTPC and CTPSW)
The CALLT status-saving registers include the CTPC register and CTPSW register.
When a CALLT instruction is executed, the value of the program counter (PC) is saved in the CTPC register
and the value in the program status word (PSW) is saved in the CTPSW register.
The value saved in the CTPC register is the addresses of the instruction following the CALLT instruction.
The current PSW value is saved in the CTPSW register.
CTPC register bits 31 to 29 and CTPSW register bits 31 to 12, 9 and 8 are reserved (fixed to 0) for future
expanded functions.

Figure 2-7. CALLT Status-saving Registers (CTPC and CTPSW)

31 29 28 0

CTPC (Contents of PC)

31 0

CTPSW (Contents of PSW)

0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 00 0

811
Note

2 0
Note

1

91012

Initial value
undefined

Initial value
00000xxxH

(x: undefined)

0

Notes1. Contents of PSW's SS flag

2. Contents of PSW's SB flag

CHAPTER 2 REGISTER SET

Preliminary User’s Manual U17135EJ1V1UM 26

2. 2. 6 Exception/Debug Trap Status-saving Registers (DBPC and DBPSW)
Two exception/debug trap status saving registers are provided: DBPC and DBPSW.

When an exception trap, debug trap, or debug break occurs, or when a single-step operation is executed, the

value in the program counter (PC) is saved in DBPC and the value in the program status word (PSW) is saved in

the DBPSW register.

The value saved in the DBPC register is described below.

Table 2-4. Value Saved in DBPC Register

Factor Value saved in DBPC

Exception trap occurs Address of instruction following instruction where exception trap factor

occurred

Debug trap occurs Address of instruction following instruction where debug trap factor

occurred

execution-related trap Address of instruction where break factor occurred

Misaligned access exception

Alignment error exception

Debug break

occurs

access-related trap Address of instruction following instruction where break factor occurred

Execution of single-step operation Address of next instruction to be executed (instruction executed when

recovering from debug monitor routine)

Remark For details of causes for saving, refer to CHAPTER 9 SHIFTING TO DEBUG MODE.

The current value of the PSW is saved to DBPSW.

Bits 31 to 29 of DBPC register and bits 31 to 12, 9 and 8 of DBPSW registerare reserved (fixed to zero) for

future expanded functions.

 Remark The DBPC and DBPSW registers are read/write accessible in user mode.

Figure 2-8. Exception/Debug Trap Status-saving Registers (DBPC and DBPSW)

31 29 28 0

DBPC (Contents of PC)

31

DBPSW

0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 00 0

0

(Contents of PSW)0

811
Note

2 0
Note

1

91012

Initial value
undefined

Initial value
00000xxxH

(x: undefined)

0

Notes1. Contents of PSW's SS flag

2. Contents of PSW's SB flag

CHAPTER 2 REGISTER SET

Preliminary User’s Manual U17135EJ1V1UM 27

2. 2. 7 CALLT base pointer (CTBP)
The CALLT base pointer (CTBP) is used to specify table addresses and create target addresses (bit 0 is fixed
to zero).
Bits 31 to 29 are reserved for future expanded functions (fixed to zero).

Figure 2-9. CALLT Base Pointer (CTBP)

31 29 28 0

CTBP (Base address)0 0 0 0 Initial value
undefined

31 29 28 0

CTBP (Base address)0 0 0 0 Initial value
undefined

31 29 28 0

CTBP (Base address)0 0 0 0 Initial value
undefined

2. 2. 8 Debug Interface register (DIR)
The Debug Interface register (DIR) is used to control and indicate the status of debug functions.
When the LDSR instruction is used to change the value in the bits in this register, the revised value becomes
valid as soon as execution of the LDSR instruction ends.
In debug mode, each bits can always be written (except write-prohibited-bits (bits 31, 27 to 23, 19 to 17, and
15) and read-only-bits (bits 3 and 0)). In user mode, only CSL bit can be written. Moreover, in both debug mode
and user mode, DIR register can always be read (the read value of bits 31, 27 to 23, 19 to 17, and 15 are
undefined). However, in user mode, the read value of bits other than CSL bit is undefined (except read-only-
bits (bits 3 and 0)).

Figure 2-10. DIR Register's Write-accessible Bits during user mode

C
S
L

31 8 7 3 2 1 011 910 4561213141530 29 28 27 26 25 24 23 22 21 20 19 18 17 16

CHAPTER 2 REGISTER SET

Preliminary User’s Manual U17135EJ1V1UM 28

Figure 2-11. Debug Interface Register (DIR) (1 of 3)

Cautions1. Either one of the DIR register's SQ1 and RE1 bits must be set (= 1) or both must be cleared (= 0).

Operation is not guaranteed if both are set (= 1).
2. Set a "1" to either the SQ0 or RE0 bit or zero-clear both of them. A break will not occur if both

bits are set (= 1).
3. Bit31, 27 to 23, 19 to 17, 15 of this register are writing values other than 0 to them is prohibited.

Their values when read is undefined.

 Bit position Bit name Meaning

 30 SQ1 Note1

Sets sequential break mode for Channels 2 and 3 (when break occurs, it occurs in the

sequence of Channel 2 → Channel 3).

 0: Normal break mode (initial value)

 1: Sequential break mode

 29 RE1 Note1 Sets range break mode for Channels 2 and 3 (when break occurs, it occurs at the same time

for Channels 2 and 3).

 0: Normal break mode (initial value)

 1: Range break mode

 28 CS1 Note1 Enables settings in control registers (BPCn, BPAVn, BPAMn, BPDVn, and BPDMn) (n = 2 or

3) for Channels 2 and 3 (not an enable/disable setting for break conditions).

 0: Enables settings in Channel 2 control register (BPC2, BPxx2) (initial value)

 1: Enables settings in Channel 3 control register (BPC3, BPxx3)

 22 CSL Enables settings in each channel's control register (see Table 2-5. Relation between CSL,

CS1, CS0 Bits and Valid and Channels and Registers)

 CSL Access target

 0 Channels 0 and 1 (initial value)

 1 Channels 2 and 3

 21 BT3 Note2 Set (= 1) when Channel 3 break occurs (cannot be freely set (= 1) by user program) (initial

value = 0)

 20 BT2 Note2 Set (= 1) when Channel 2 break occurs (cannot be freely set (= 1) by user program) (initial

value = 0)

 Notes1. When the INI bit is set (= 1), write is disabled for the SQ1, RE1, and CS1 bits. Also, setting the INI bit

automatically zero-clears each other bit.
Notes2. Bits BT2 and BT3 do not operate when the INI bit is set (= 1) (i.e., they are not set (= 1) when a break occurs).

Once these bits are set (= 1), they are not cleared to zero until the LDSR instruction sets a "0" to them or until the

INI bit is set (= 1).

C
S
L

0

31 8 7 3 2 1 0

DIR A
T

D
M

Initial value
00000040H

11 910

0 M
T0

45612131415
B
T
0

B
T
1

I
N
I

E
X
T

S
S
E

A
E
E

M
A
E

C
S
0

R
E
0

S
Q
0

30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

0
S
Q
1

C
S
1

R
E
1

0 0 0
B
T
3

B
T
2

0 0 0
S
T
T

00
C
S
L

0

31 8 7 3 2 1 0

DIR A
T

D
M

Initial value
00000040H

11 910

0 M
T0

45612131415
B
T
0

B
T
1

I
N
I

E
X
T

S
S
E

A
E
E

M
A
E

C
S
0

R
E
0

S
Q
0

30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

0
S
Q
1

C
S
1

R
E
1

0 0 0
B
T
3

B
T
2

0 0 0
S
T
T

00

CHAPTER 2 REGISTER SET

Preliminary User’s Manual U17135EJ1V1UM 29

Figure 2-11. Debug Interface Register (DIR) (2 of 3)

 Bit position Bit name Meaning

 16 STT This bit is set (= 1) when a debug trap is executed (it cannot be freely set (= 1) by a user

program) (initial value: 0).

Once this bit is set (= 1) it cannot be automatically cleared to zero (it can only be cleared by

the LDSR instruction).

 14 SQ0 Note Sets sequential break mode for Channels 0 and 1 (when break occurs, it occurs in the

sequence of Channel 0 → Channel 1).

 0: Normal break mode (initial value)

 1: Sequential break mode

 13 RE0 Note Sets range break mode for Channels 0 and 1 (when break occurs, it occurs at the same time

for Channels 0 and 1).

 0: Normal break mode (initial value)

 1: Range break mode

 12 CS0 Note Enables settings in control registers (BPCn, BPAVn, BPAMn, BPDVn, and BPDMn) (n = 0 or

1) for Channels 0 and 1 (not an enable/disable setting for break conditions).

 0: Enables settings in Channel 0 control register (BPC0, BPxx0) (initial value)

 1: Enables settings in Channel 1 control register (BPC1, BPxx1)

 10 MAE Sets enable/disable status of misaligned access exception detection.

 0: Disables misaligned access exception detection (initial value)

 1: Enables misaligned access exception detection

 9 AEE Sets enable/disable status of alignment error exception detection.

 0: Disables alignment error exception detection (initial value)

 1: Enables alignment error exception detection

 8 SSE Sets enable/disable status of PSW's SS flag write operation.

 0: Disables write to SS flag (SS flag is fixed to zero) (initial value)

 1: Enables write to SS flag

 7 EXT Sets valid/invalid status of extended debug function (function assigned to bits 31 to 15 of this

register).

 0: Invalid (V850E1 CPU compatible) (initial value)

 1: Valid

 Note When the INI bit is set (= 1), write is disabled to the SQ0, RE0, and CS0 bits. Each other bit is automatically

cleared to zero when the INI bit is set (= 1).

CHAPTER 2 REGISTER SET

Preliminary User’s Manual U17135EJ1V1UM 30

Figure 2-11. Debug Interface Register (DIR) (3 of 3)

 Bit position Bit name Meaning

 6 INI Note1 This bit is set (= 1) when the debug function is reset (initial value: 1).

After a reset, this bit is set (= 1), so be sure to clear it to zero (when this bit is set (= 1), write is

disabled to the SQn, REn, and CSn bits (n = 0 or 1). Also, bits BT3 to BT0 cannot be

operated.)

 5 BT1 Note2 This bit is set (= 1) when a break occurs in Channel 1 (cannot be freely set (= 1) by user

program) (initial value = 0).

 4 BT0 Note2 This bit is set (= 1) when a break occurs in Channel 0 (cannot be freely set (= 1) by user

program) (initial value = 0).

 2 MT Note1 This bit is set (= 1) when a misaligned access exception is detected (cannot be freely set (= 1)

by user program) (initial value = 0).

 1 AT Note1 This bit is set (= 1) when an alignment error exception is detected (cannot be freely set (= 1)

by user program) (initial value = 0).

 0 DM Note3 This bit is set (= 1) when processing goes to debug mode (initial value = 0).

This bit is not write-accessible.

 Notes1. When the INI, MT, or AT bit is set (= 1), this bit is not automatically cleared to zero (it can only be
cleared to zero by an LDSR instruction).

Notes2. When the INI bit is set (= 1), the BT0 and BT1 bits do not operate (they are not set (= 1) when a
break occurs). Also, once these bits are set (= 1), they is not cleared to zero unless cleared by the
LDSR instruction or when the INI bit is set (= 1).

3. The DM bit change as shown below.

Main
routine

Debug monitor
routine 1

Debug trap,
Debug break,
etc.

DM
bit

0

1

0

User mode

Debug mode

User mode

Main
routine

Debug monitor
routine 1

Debug trap,
Debug break,
etc.

DM
bit

0

1

0

User mode

Debug mode

User mode

CHAPTER 2 REGISTER SET

Preliminary User’s Manual U17135EJ1V1UM 31

Table 2-5. Relation between CSL, CS1, CS0 Bits and Valid Channels and Registers

CSL CS1 CS0 Channels and registers for which break conditions can be set

 Channel Registers

0 Don't care 0 Channel 0 BPC0, BPAV0, BPAM0, BPDV0, BPDM0

 1 Channel 1 BPC1, BPAV1, BPAM1, BPDV1, BPDM1

1 0 Don't care Channel 2 BPC2, BPAV2, BPAM2, BPDV2, BPDM2

 1 Don't care Channel 3 BPC3, BPAV3, BPAM3, BPDV3, BPDM3

2. 2. 9 Breakpoint Control registers 0 to 3 (BPC0 to BPC3)

Breakpoint Control registers 0 to 3 (BPC0 to BPC3) are used to control and indicate the debug functions for
Channels 0 to 3.
The valid registers are selected corresponding to the channels that are selected by the settings of the DIR
register's CSL, CS1, and CS0 bits (See Table 2-5. Relation between CSL, CS1, CS0 Bits and Valid
Channels and Registers).
When the LDSR instruction is used to change bit settings in this register, the modified bit settings become valid
as soon as execution of the LDSR instruction ends (if the FE bit is set (= 1), the timing for becoming valid is a
little slower, but the settings are reflected after the DBRET instruction has been executed).

Cautions1. Be sure to zero-clear bits 31 to 27, 14 to 12, 6, and 5 in the BPCn register (n = 0 to 3).

Operation is not guaranteed if any of these bits are set (= 1).
2. Only "0" can be written to bits FB2 to FB0 in the BPCn register (n = 0 to 3).

To update the values of these bits, clear the bits to zero. Operation is not guaranteed if
any of these bits are set (= 1).

CHAPTER 2 REGISTER SET

Preliminary User’s Manual U17135EJ1V1UM 32

Figure 2-12. Breakpoint Control Registers 0 to 3 (BPC0 to BPC3) (1 of 2)

31 8 7 3 2 1 0

BPC0 W
E

R
E

Initial value
00xxxxx0H

0 0 0 0 0 0 V
A

11 910

TY
V
D

M
D

F
E

12131415
B
E

T
E00

6

00I
E

162324

BP ASID

31 8 7 3 2 1 0

BPC1 W
E

R
E

Initial value
00xxxxx0H

0 0 0 0 0 0 V
A

11 910

TY
V
D

M
D

F
E

12131415
B
E

T
E00

6

00I
E

162324

BP ASID

(x: undefined)

(x: undefined)

4

4

5

5

31 8 7 3 2 1 0

BPC2 W
E

R
E

Initial value
00xxxxx0H

0 0 0 0 0 0 V
A

11 910

TY
V
D

M
D

F
E

12131415
B
E

T
E00

6

00I
E

162324

BP ASID

(x: undefined)

45

31 8 7 3 2 1 0

BPC3 W
E

R
E

Initial value
00xxxxx0H

0 0 0 0 0 0 V
A

11 910

TY
V
D

M
D

F
E

12131415
B
E

T
E00

6

00I
E

162324

BP ASID

(x: undefined)

45
F
B
0

F
B
1

F
B
2

252627

F
B
0

F
B
1

F
B
2

F
B
0

F
B
1

F
B
2

F
B
0

F
B
1

F
B
2

252627

252627

252627

 Bit position Bit name Meaning

 26-24 FB2-FB0 Indicates type of break that occurred when instruction fetch event occurred.

 FB2 FB1 FB0 Break type

 0 0 0 Break when execution of target instruction is interrupted (initial

value)

 0 1 0 Break when execution of target instruction and execution of

previous instruction are interrupted

 1 0 0 Break when execution of target instruction, execution of

previous instruction are interrupted, and execution of instruction

before last are interrupted

 0 0 1 Break when execution of target instruction ends

 (Other than above) (Reserved for future expansion of function)

 23-16 BP ASID Sets program ID where break occurred (initial value: undefined).

This setting is valid only when the IE bit has been set (= 1).

 15 IE Sets comparison between BP ASID bit and program ID set to ASID register (initial value:

undefined).

 0: Do not compare

 1: Compare

 11, 10 TY Sets access type for detecting break (initial value: undefined).

 Bit 11 Bit 10 Access type for detecting break

 0 0 Access of all data types

 0 1 Byte access (including bit manipulation)

 1 0 Half word access

 1 1 Word access

These registers' settings are invalid for execution-related traps.

CHAPTER 2 REGISTER SET

Preliminary User’s Manual U17135EJ1V1UM 33

Figure 2-12. Breakpoint Control Registers 0 to 3 (BPC0 to BPC3) (2 of 2)

 Bit position Bit name Meaning

 9 VD Sets match condition for data comparator (initial value: undefined)

 0: Break when match occurs

 1: Break when mismatch occurs

 8 VA Sets match condition for address comparator (initial value: undefined)

 0: Break when match occurs

 1: Break when mismatch occurs

 7 MD Sets operation of data comparator

 0: Break when data matches condition

 1: Ignore when data matches condition (ignore data comparator), regardless of VD bit value

 or settings in BPDVx and BPDMx registers.

 4 TE Sets enable/disable status of trigger output when event occurs for Channels 0 to 3

 0: Disable trigger output (initial value)

 1: Enable trigger output (corresponding trigger is output)

 3 BE Sets whether or not to notify CPU when break is triggered by event occurring for Channels 0

to 3

 0: Do not notify (initial value)

 1: Notify (break occurs)

 2 FE Sets whether or not to mask event during an instruction fetch operation

 0: Mask event (initial value)

 1: Event occurs Note1

 1 WE Sets whether or not to mask event during a data write operation

 0: Mask event (initial value)

 1: Event occurs Note2

 0 RE Sets whether or not to mask event during a data read operation

 0: Mask event (initial value)

 1: Event occurs Note2

 Notes 1. When the FE bit set (= 1), be sure to zero-clear the WE and RE bits.
2. When the WE bit or RE bit is set (= 1), be sure to zero-clear the FE bit.

CHAPTER 2 REGISTER SET

Preliminary User’s Manual U17135EJ1V1UM 34

2. 2. 10 Program ID register (ASID)
This register is used to set the ID of the program (application software) currently being executed.
The Program ID is used when changing to debug mode is required for executing certain programs, such as
when downloading different programs to the same address area in RAM. When the BPCn register's IE bit is
set, if the Program IDs set to the BP ASID bit and the ASID register do not match, the mode is not switched to
debug mode even if a break condition is met (n = 0 to 3).
In this register, bits 31 to 8 are reserved for future expanded functions (fixed to 0).

Figure 2-13. Program ID Register (ASID)

31 8 7 0

ASID 0 0 0 0 0 0 0 00 000 0 0 0 0 0 0 0 0 0 0 0 0 ASID
Initial value
000000xxH

(x: undefined)

 Bit position Flag name Meaning

 7-0 ASID ID of program being executed

2. 2. 11 Breakpoint Address Setup registers 0 to 3 (BPAV0 to BPAV3)

This register sets breakpoint addresses used by the address comparator.
Valid registers are selected via settings of the DIR register's CSL, CS1, and CS0 bits (See Table 2-5. Relation
between CSL, CS1, CS0 Bits and Valid Channels and Registers).
When not using these bits, make sure each bit is set (= 1).
In this register, bits 31 to 29 are reserved for future expanded functions (fixed to 0).

Figure 2-14. Breakpoint Address Setup Registers 0 to 3 (BPAV0 to BPAV3)

31 0

BPAV0 0 0 0 (Breakpoint address)

29 28
Initial value
undefined

31 0

BPAV1 0 0 0 (Breakpoint address)

29 28
Initial value
undefined

31 0

BPAV2 0 0 0 (Breakpoint address)

29 28
Initial value
undefined

31 0

BPAV3 0 0 0 (Breakpoint address)

29 28
Initial value
undefined

CHAPTER 2 REGISTER SET

Preliminary User’s Manual U17135EJ1V1UM 35

2. 2. 12 Breakpoint Address Mask registers 0 to 3 (BPAM0 to BPAM3)
These registers are used to set masking of bits for address comparison (1 = masked).
Valid registers are selected via settings of the DIR register's CSL, CS1, and CS0 bits (See Table 2-5. Relation
between CSL, CS1, CS0 Bits and Valid Channels and Registers).
When not using these bits, make sure each bit is set (= 1).
In this register, bits 31 to 29 are reserved for future expanded functions (fixed to 0).

Figure 2-15. Breakpoint Address Mask Registers 0 to 3 (BPAM0 to BPAM3)

31 0

BPAM0 0 0 0 (Breakpoint address mask)

29 28
Initial value
undefined

31 0

BPAM1 0 0 0 (Breakpoint address mask)

29 28
Initial value
undefined

31 0

BPAM2 0 0 0 (Breakpoint address mask)

29 28
Initial value
undefined

31 0

BPAM3 0 0 0 (Breakpoint address mask)

29 28
Initial value
undefined

CHAPTER 2 REGISTER SET

Preliminary User’s Manual U17135EJ1V1UM 36

2. 2. 13 Breakpoint Data Setup registers 0 to 3 (BPDV0 to BPDV3)
These registers are used to set breakpoint data used by the data comparator.
Valid registers are selected via settings of the DIR register's CSL, CS1, and CS0 bits (See Table 2-5. Relation
between CSL, CS1, CS0 Bits and Valid Channels and Registers).
When not using these bits, make sure each bit is set (= 1).

 Remark When setting instruction codes for 16-bit instructions, align the setting with the LSB.

When setting instruction codes for 32-bit instructions, enter the setting in little endian format.

Figure 2-16. Breakpoint Data Setup Registers 0 to 3 (BPDV0 to BPDV3)

31 0

BPDV0 Initial value
undefined(Breakpoint data)

31 0

BPDV1 Initial value
undefined(Breakpoint data)

31 0

BPDV2 Initial value
undefined(Breakpoint data)

31 0

BPDV3 Initial value
undefined(Breakpoint data)

31 0

BPDV0 Initial value
undefined(Breakpoint data)

31 0

BPDV1 Initial value
undefined(Breakpoint data)

31 0

BPDV2 Initial value
undefined(Breakpoint data)

31 0

BPDV3 Initial value
undefined(Breakpoint data)

CHAPTER 2 REGISTER SET

Preliminary User’s Manual U17135EJ1V1UM 37

2. 2. 14 Breakpoint Data Mask Registers 0 to 3 (BPDM0 to BPDM3)
These registers are used to set masking of bits for data comparison (1 = masked).
Valid registers are selected via settings of the DIR register's CSL, CS1, and CS0 bits (See Table 2-5. Relation
between CSL, CS1, CS0 Bits and Valid Channels and Registers).
When not using these bits, make sure each bit is set (= 1).

Figure 2-17. Breakpoint Data Mask Registers 0 to 3 (BPDM0 to BPDM3)

31 0

BPDM0 Initial value
undefined(Breakpoint data mask)

31 0

BPDM1 Initial value
undefined(Breakpoint data mask)

31 0

BPDM2 Initial value
undefined(Breakpoint data mask)

31 0

BPDM3 Initial value
undefined(Breakpoint data mask)

Preliminary User’s Manual U17135JJ1V1UM 38

CHAPTER 3 DATA TYPE

3. 1 Data Format

The following data types are supported. Refer to 3.2 Data Representation.

 • Integer (32, 16, 8 bits)
 • Unsigned integer (32, 16, 8 bits)
 • Bit

In the case of word (32 bits), half-word (16 bits), and byte (8 bits), byte 0 of any data is always the least

significant byte, known as "little endian." It occupies at the right-most position in figures throughout this manual. The

following describes the format of the fixed length data.

 (1) Word

A word is 4-byte (32-bit) contiguous data that starts at any word boundary. Note It is expressed by "A,"

"A+1," "A+2," and "A+3." Each bit is assigned a number from 0 to 31; the LSB (Least Significant Bit) is bit 0

and the MSB (Most Significant Bit) is bit 31. A word is specified by its address "A." The lowest 2 bits are

fixed to "0" with misalign access being disabled. Note

31 24 23 16 15 7 0

Data

8

AddressAA+1A+2A+3

L

B
S

M

B
S

 Note When misalign access is enabled, any byte boundary can be accessed whether access is gained

in half-word or word. Refer to 3. 3 Data Alignment.

(2) Half-word

A halfword is 2-byte (16-bit) contiguous data that starts from any halfword boundaryNote. Each bit is

assigned a number from 0 to 15. The LSB is bit 0 and the MSB is bit 15. A halfword is specified by its

address “A” (with the lowest bit fixed to 0Note), and occupies 2 bytes, A and A+1.

 15 7 0

Data

8

AddressAA+1

M

B
S

L

B
S

 Note When misalign access is enabled, any byte boundary can be accessed whether access is gained

in half-word or word. Refer to 3. 3 Data Alignment.

CHAPTER 3 DATA TYPE

Preliminary User’s Manual U17135EJ1V1UM 39

(3) Byte

A byte is 8-bit contiguous data that starts from any byte boundaryNote. Each bit is assigned a number from

0 to 7. The LSB is bit 0 and the MSB is bit 7. A byte is specified by its address “A”.

 7 0

Data

AddressA

L

B
S

M

B
S

 Note When misalign access is enabled, any byte boundary can be accessed whether access is gained

in half-word or word. Refer to 3. 3 Data Alignment.

(4) Bit
A bit is 1-bit data at the "n" th bit position in 8-bit data that starts at any byte boundaryNote. A bit is specified
by its address "A" and bit number "n."

7

Byte of address A ...

0

AddressA

Bit numbern

Data

 Note When misalign access is enabled, any byte boundary can be accessed whether access is gained

in half-word or word. Refer to 3. 3 Data Alignment.

CHAPTER 3 DATA TYPE

Preliminary User’s Manual U17135EJ1V1UM 40

3. 2 Data Representation

3. 2. 1 Integer
An integer is expressed as a binary number of 2’s complement and is 32-, 16-, or 8-bit long. Regardless of its
length, the bit 0 of an integer is the least significant bit. The higher the bit number, the more significant the bit.
The most significant bit is designated as signed bit. The integer range of each data length is as follows:

 • Word (32 bits): –2147483648 to +2147483647
 • Half-word (16 bits): –32768 to +32767
 • Byte (8 bits): –128 to +127

3. 2. 2 Unsigned integer

An integer partakes of a value of either positive or negative, whereas an unsigned integer is either positive or
"0." Signed or unsigned, an integer is expressed as 2’s complement and is 32-, 16-, or 8- bit long. Regardless
of its length, bit 0 of an unsigned integer is the least significant bit, and the higher the bit number, the more
significant the bit. No signed bit is used. The unsigned integer range of each data length is as follows.

 • Word (32 bits): 0 to 4294967295
 • Half-word (16 bits): 0 to 65535
 • Byte (8 bits): 0 to 255

3. 2. 3 Bit
The 1-bit data that can partakes of a value of "0" (cleared) or "1" (set) is available. Bit manipulation can be
executed only to the 1-byte data in the memory space. There are four types of bit manipulation:

 • SEt1
 • CLR1
 • NOT1
 • TST1

CHAPTER 3 DATA TYPE

Preliminary User’s Manual U17135EJ1V1UM 41

3. 3 Data Alignment

Data alignment (boundary alignment) may be required, depending on the setting (enabled/prohibited) for
misaligned access.
When the data to be processed is in half word format, misaligned access occurs when an address beyond the
half word boundary (when the address's MSB = 0) is accessed. When the data to be processed is in word format,
misaligned access occurs when an address beyond the word boundary (when the address's lowest two bits = 0)
is accessed.

 Remark In the V850E2 core, the enabled/prohibited setting for misaligned access is set by the level of input

to the IFIMAEN pin.

(1) When misaligned access is set as enabled

When misaligned access is set as enabled, data can be allocated to all addresses, regardless of the data
format (byte, half word, or word).
However, when the data format is half word or word, if the data is not aligned, at least one bus cycle will
occur, thereby lowering bus efficiency.

(2) When misaligned access is set as prohibited
The lower bits in the address (the MSB for half word data or the lower two bits for word data) are masked
(to zero) when accessed, and data can be lost or discarded if not correctly aligned. Therefore, when
setting data to be processed, be sure to set the data from correct boundary (the half word boundary for
data in half word format and the word boundary for data in word format).

Figure 3-1. Example of Data Allocation when Misaligned Access Is Prohibited

xxxxxx00H

xxxxxx01H

xxxxxx02H

xxxxxx03H

xxxxxx04H
←Half word boundary/word boundary

xxxxxx05H

xxxxxx06H

HW

HW

xxxxxx07H

←Half word boundaryW

HW

W

←Half word boundary/word boundary

←Half word boundary

←Half word boundary/word boundary

Remark W: Word data

HW: Half word data

Preliminary User’s Manual U17135JJ1V1UM 42

CHAPTER 4 ADDRESS SPACE

The V850E2 CPU supports a 4-GB linear address space. Both memory and I/O are mapped to this address space,
known as memory-mapped I/O. The V850E2 CPU outputs 32-bit addresses to the memory and I/O with the
maximum address being 232–1.
Byte data allocated at each address are defined with bit 0 as LSB and bit 7 as MSB. Multiple-byte data is formatted
in little endian, i.e., the byte with the lowest address value has the LSB (Least Significant Bit) and the byte with the
highest address value has the MSB (Most Significant Bit).
Throughout this specification the data comprising 2 or more bytes is illustrated as shown below, with the lower
address shown on the right and the higher address on the left.

31 24 23 16 15 7 0

Data

8

AddressAA+1A+2A+3

15 7 0

Data

8

AddressAA+1

7 0

Data

AddressA

.......
Word at
Address A

 ..
Half-word at
Address A

 ...
Byte at
Address A

CHAPTER 4 ADDRESS SPACE

Preliminary User’s Manual U17135EJ1V1UM 43

4. 1 Memory Map

The V850E2 CPU is a 32-bit architecture. It supports a linear address space (data area) of up to 4 GB for
operand addressing (data access) and a linear address space (program area) of up to 512 MB for instruction
addressing.
Figure 4-1 shows the memory map.

Figure 4-1. Memory Map

(a) Address space

(b) Program area

Data area
(4 GB linear)

00000000H

1FFFFFFFH
20000000H

FFFFFFFFH

 Program area
(512 MB linear)

Peripheral I/O

(4KB)

RAM

1FFFFFFFH

1FFFF000H
1FFFEFFFH

ROM

00000000H

512MB
External memory

CHAPTER 4 ADDRESS SPACE

Preliminary User’s Manual U17135EJ1V1UM 44

4. 2 Addressing Modes

CPU generates 2 types of addresses: instruction addresses used for instruction fetch and branch operations; and
operand addresses used for data access.

4. 2. 1 Instruction address
An instruction address is determined by the contents of the program counter (PC), and is automatically
incremented according to the number of instruction bytes to be fetched with each execution of instructions.
When a branch instruction is executed, the branch destination address is loaded into PC using one of the
following three addressing modes:

• relative addressing
• register addressing
• Based addressing

(1) Relative addressing (PC relative)

The signed 9-, 22-, or 32-bit data of an instruction code (displacement: disp×) is added to the value of the
program counter (PC), where the displacement data is treated as 2’s complement data with bits 8, 21, or
31 serving as sign bits (S). This addressing mode is used for JARL disp22, reg2 instruction, JR disp22
instruction, JARL disp32, reg1 instruction, JR disp32 instruction, and Bcond disp9 instruction only.

Figure 4-2. Relative Addressing (1 of 2)

(a) JARL disp22, reg2 instruction and JR disp22 instruction

31 28 0

0 PC0 0

31 22 0

Sign extension S

+
21

0disp22

Memory to be manipulated

31 28 0

0 PC0 0

29

29

0

0

CHAPTER 4 ADDRESS SPACE

Preliminary User’s Manual U17135EJ1V1UM 45

Figure 4-2. Relative Addressing (2 of 2)

(b) JARL disp32, reg1 instruction and JR disp32 instruction

31 28 0

0 PC0 0

31 0

S

+

0disp32

Memory to be manipulated

31 28 0

0 PC0 0

29

29

0

0

(c) Bcond disp9 instruction

31 28 0

0 PC0 0

31 0

Sign extension S

+

0disp9

Memory to be manipulated

31 28 0

0 PC0 0

29

29

89

0

0

CHAPTER 4 ADDRESS SPACE

Preliminary User’s Manual U17135EJ1V1UM 46

(2) Register addressing (register indirect)
The contents of the general register (reg1) specified by an instruction are transferred to the program
counter (PC). This addressing mode is applied to the JMP [reg1] instruction.

Figure 4-3. Register Addressing (JMP [reg1] instruction)

31 0

reg1

Memory to be manipulated

31 28 0

0 PC0 0

29

0

(3) Based addressing

The 32-bit displacement (disp32) data are added to the general register (reg1) contents and transferred to
the program counter (PC). This addressing mode is applied to the JMP disp32 [reg1] instruction.

Figure 4-4. Based Addressing (JMP disp32 [reg1] instruction)

31 0

reg1

31 0

S

+

0disp32

Memory to be manipulated

31 28 0

0 PC0 0

29

0

CHAPTER 4 ADDRESS SPACE

Preliminary User’s Manual U17135EJ1V1UM 47

4. 2. 2 Operand address
The instruction execution requires one of the following four addressing modes to specify the register or memory
area:

• Register addressing
• Immediate addressing
• Based addressing
• Bit addressing

(1) Register addressing

The general register or system register specified in the general register specification field is accessed as
operand. This addressing mode applies to instructions using the operand format reg1, reg2, reg3, or regID.

(2) Immediate addressing
The 5-bit or 16-bit data for manipulation is contained in the instruction code. This addressing mode
applies to instructions using the operand format imm5, imm16, vector, or cccc.

Remark vector: 5-bit immediate data operand specifies a trap vector (00H to 1FH) under TRAP instruction.
 cccc: 4-bit data operand specifies condition code under CMOV, SASF, and SETF instructions.

Assigned as 5-bit immediate data by adding 1-bit 0 to the highest bit.

(3) Based addressing

The following two types of based addressing are supported:

(a) Type 1
The address of the data memory location to be accessed is determined by adding the value in the
specified general register (reg1) to the 16-bit displacement data (disp16) contained in the instruction
code. This addressing mode applies to instructions using the operand format disp16 [reg1].

Figure 4-5. Based Addressing (Type 1)

31 0

reg1

Memory to be manipulated

31 0

Sign extension disp16

+
1516

CHAPTER 4 ADDRESS SPACE

Preliminary User’s Manual U17135EJ1V1UM 48

(b) Type 2
The address of the data memory location to be accessed is determined by adding the value in the
element pointer (r30) to the 7- or 8-bit displacement data (disp7, disp8). This addressing mode
applies to SLD and SST instructions.

Figure 4-6. Based Addressing (Type 2)

31 0

r30 (Element pointer)

Memory to be manipulated

31 0

0 (Zero extension) Disp8 or disp7

+
78

Remark Byte access: disp7

Half-word access and word access: disp8

(4) Bit addressing

This addressing is for accessing 1 bit (specified with bit#3 of 3-bit data) among 1 byte of the memory
space to be manipulated. It uses an operand address, expressed by the sum of the contents of a general
register (reg1) and a 16-bit displacement (disp16) data, sign-extended to word length. This addressing
mode applies only to the bit manipulation instructions.

Figure 4-7. Bit Addressing

31 0

reg1

Memory to be manipulated

31 0

Sign extension disp16

+
1516

n

Remark n: Bit position specified with 3-bit data (bit#3) (n = 0 to 7)

Preliminary User’s Manual U17135JJ1V1UM 49

CHAPTER 5 INSTRUCTIONS

5. 1 Instruction Formats

There are two types of instruction formats: 16-bit and 32-bit. The 16-bit format instructions include binary
operations, controls, and conditional branch operations; and the 32-bit format instructions include loading/storing,
jump operations, and 16-bit immediate data operations. An instruction is stored in memory as follows:

 • Lower bytes of instruction (including bit 0) → lower address
 • Higher bytes of instruction (including bit 16 or bit 31) → higher address

Caution Some instructions have an unused field (RFU). This field is reserved for future expansion
only and must be fixed to "0."

(1) reg-reg instruction (Format I)

A 16-bit instruction format consists of a 6-bit opcode field and two general register specification fields.

15 4 0511 10

reg2 opcode reg1

(2) imm-reg instruction (Format II)
A 16-bit instruction format consists of a 6-bit opcode field, 5-bit immediate field, and a general register
specification field.

15 4 0511 10

reg2 opcode imm

CHAPTER 5 INSTRUCTIONS

Preliminary User’s Manual U17135EJ1V1UM 50

(3) Conditional branch instruction (Format III)
A 16-bit instruction format consists of a 4-bit opcode field, 4-bit condition code field, and an 8-bit
displacement field.

15 4 0711 10

disp opcode cond

6

disp

3

(4) 16-bit load/store instruction (Format IV)

A 16-bit instruction format consists of a 4-bit opcode field, a general register specification field, and a 7-bit
displacement field (or 6-bit displacement field + 1-bit sub-opcode field).

15 0711 10

reg2 opcode

6

disp

1

disp/sub-opcode

A 16-bit instruction format consists of a 7-bit opcode field, a general register specification field, and a 4-bit
displacement field.

15 4 011 10

reg2 opcode disp

3

(5) Jump instruction (Format V)

A 32-bit instruction format consists of a 5-bit opcode field, a general register specification field, and a 22-bit
displacement field.

15 5 011 10

reg2 opcode disp

6 31 17 16

0

CHAPTER 5 INSTRUCTIONS

Preliminary User’s Manual U17135EJ1V1UM 51

(6) 3-operand instruction (Format VI)
A 32-bit instruction format consists of a 6-bit opcode field, two general register specification fields, and a
16-bit immediate field.

15 5 011 10

reg1opcode imm

4 31 16

reg2

(7) 32-bit load/store instruction (Format VII)
A 32-bit instruction format consists of a 6-bit opcode field, two general register specification fields, and a
16-bit displacement field (or 15-bit displacement field + 1-bit sub-opcode field).

15 5 011 10

reg1opcode disp

4 31 16

reg2

17

disp/sub-opcode

(8) Bit manipulation instruction (Format VIII)

A 32-bit instruction format consists of a 6-bit opcode field, 2-bit sub-opcode field, 3-bit bit specification field,
a general register specification field, and a 16-bit displacement field.

15 5 011 10

reg1opcode disp

4 31 16

sub

14

bit #

13

(9) Extended instruction format 1 (Format IX)

A 32-bit instruction format consists of a 6-bit opcode field, 6-bit sub-opcode field, and two general register
specification fields. One of the fields may be register number field (regID) or condition code field (cond).

15 5 011 10

reg1/regID/condopcode

4 31 16

reg2

1727 26 2021

0sub-opcodeRFU RFU

CHAPTER 5 INSTRUCTIONS

Preliminary User’s Manual U17135EJ1V1UM 52

(10) Extended instruction format 2 (Format X)
A 32-bit instruction format consists of a 6-bit opcode field and 6-bit sub-opcode field.

15 5 011 10

opcode

4 31 161727 26 2021

0sub-opcode

1213

RFU

RFU/sub-opcode

RFU/imm/vector RFURFU

(11) Extended instruction format 3 (Format XI)

A 32-bit instruction format consists of a 6-bit opcode field, 6-bit and 1-bit sub-opcode field, and three
general register specification fields.

15 5 011 10

reg1opcode reg3

4 31 16

reg2

1827 26 2021

RFU 0sub-opcode

17

sub-opcode

(12) Extended instruction format 4 (Format XII)

A 32-bit instruction format consists of a 6-bit opcode field, 4-bit and 1-bit sub-opcode field, 10-bit
immediate field, and two general register specification fields.

15 5 011 10

Imm (low)opcode reg3

4 31 16

reg2

1827 26

0sub-opcode

172223

Imm (high)

sub-opcode

(13) Stack manipulation instruction format 1 (Format XIII)

A 32-bit instruction format consists of a 5-bit opcode field, 5-bit immediate field, 12-bit register list field, and
one general register specification field (or 5-bit sub-opcode field).

15 5 011 10

immopcode list

31 16

RFU

2021

reg2/
sub-opcode

6 1

CHAPTER 5 INSTRUCTIONS

Preliminary User’s Manual U17135EJ1V1UM 53

5. 2 Outline of Instructions

(1) Load instructions:

Execute data transfer from memory to register. The following instructions (mnemonics) are provided.

(a) LD instructions

• LD.B: Load byte
• LD.BU: Load byte unsigned
• LD.H: Load half-word
• LD.HU: Load half-word unsigned
• LD.W: Load word

(b) SLD instructions

• SLD.B: Short format load byte
• SLD.BU: Short format load byte unsigned
• SLD.H: Short format load half-word
• SLD.HU: Short format load half-word unsigned
• SLD.W: Short format load word

(2) Store instructions:

Execute data transfer from register to memory. The following instructions (mnemonics) are provided.

(a) ST instructions

• ST.B: Store byte
• ST.H: Store half-word
• ST.W: Store word

(b) SST instructions

• SST.B: Short format store byte
• SST.H: Short format store half-word
• SST.W: Short format store word

CHAPTER 5 INSTRUCTIONS

Preliminary User’s Manual U17135EJ1V1UM 54

(3) Multiply instructions:
Execute multiplication in 1 clock with on-chip hardware multiplier. The following instructions (mnemonics)
are provided.

• MUL: Multiply word
• MULH: Multiply half-word
• MULHI: Multiply half-word immediate
• MULU: Multiply word unsigned

(4) Multiplication with addition instructions

After a multiplication operation, a value is added to the result. The following instructions (mnemonics) are
available.

• MAC: Multiply word and add
• MACU: Multiply word unsigned and add

(5) Arithmetic instructions:

Add, subtract, divide, transfer, or compare data between registers. The following instructions (mnemonics)
are provided.

• ADD: Add
• ADDI: Add immediate
• CMP: Compare
• MOV: Move
• MOVEA: Move effective address
• MOVHI: Move high half-word
• SUB: Subtract
• SUBR: Subtract reverse

(6) Conditional arithmetic instructions

Add and subtract operations are performed under specified conditions. The following instructions
(mnemonics) are available.

• ADF: Add on condition flag
• SBF: Subtract on condition flag

(7) Saturate instructions:

Execute saturate addition and subtraction. If the operation result exceeds the maximum positive value
(7FFFFFFFH), 7FFFFFFFH returns. If the operation result exceeds the maximum negative value
(80000000H), 80000000H returns. The following instructions (mnemonics) are provided.

• SATADD: Saturate add
• SATSUB: Saturate subtract
• SATSUBI: Saturate subtract immediate
• SATSUBR: Saturate subtract reverse

CHAPTER 5 INSTRUCTIONS

Preliminary User’s Manual U17135EJ1V1UM 55

(8) Logical instructions:
Include logical operation and shift instructions. The following instructions (mnemonics) are provided.

• AND: AND
• ANDI: AND immediate
• NOT: NOT
• OR: OR
• ORI: OR immediate
• TST: Test
• XOR: Exclusive OR
• XORI: Exclusive OR immediate

(9) Data manipulation instructions:

Include shift instructions with arithmetic shift and logical shift. Operands can be shifted by multiple bits in
one clock cycle through the on-chip barrel shifter. The following instructions (mnemonics) are provided:

• BSH: Byte swap half-word
• BSW: Byte swap word
• CMOV: Conditional move
• HSH: Half-word swap half-word
• SAR: Shift arithmetic right
• SASF: Shift and set flag condition
• SETF: Set flag condition
• SHL: Shift logical left
• SHR: Shift logical right
• SXB: Sign-extend byte
• SXH: Sign-extend half-word
• ZXB: Zero-extend byte
• ZXH: Zero-extend half-word

(10) Bit search instructions

The specified bit values are searched among data stored in registers.

• SCH0L: Search zero from left
• SCH0R: Search zero from right
• SCH1L: Search one from left
• SCH1R: Search one from right

CHAPTER 5 INSTRUCTIONS

Preliminary User’s Manual U17135EJ1V1UM 56

(11) Divide instructions:
Execute subtraction. The following instructions (mnemonics) are provided.

• DIV: Divide word
• DIVH: Divide half-word
• DIVHU: Divide half-word unsigned
• DIVU: Divide word unsigned

(12) Branch instructions:

Include unconditional branch instructions (JARL, JMP, and JR) and a conditional branch instruction
(Bcond) which accommodates the flag status to switch controls. Program control can be transferred to the
address specified by a branch instruction. The following instructions (mnemonics) are provided.

• Bcond: Branch on condition code (BC, BE, BGE, BGT, BH, BL, BLE, BLT, BN, BNC, BNE,
BNH, BNL, BNV, BNZ, BP, BR, BSA, BV, BZ)

• JARL: Jump and register link
• JMP: Jump register
• JR: Jump relative

(13) Bit manipulation instructions:

Execute logical operation on memory bit data. Only a specified bit is affected. The following instructions
(mnemonics) are provided.

• CLR1: Clear bit
• NOT1: Not bit
• SET1: Set bit
• TST1: Test bit

(14) Special instructions:

Include instructions not provided in the categories of instructions described above. The following
instructions (mnemonics) are provided.

• CALLT: Call with table look up
• CTRET: Return from CALLT
• DI: Disable interrupt
• DISPOSE: Function dispose
• EI: Enable interrupt
• HALT: Halt
• LDSR: Load system register
• NOP: No operation
• PREPARE: Function prepare
• RETI: Return from trap or interrupt
• STSR: Store system register
• SWITCH: Jump with table look up
• TRAP: Trap

CHAPTER 5 INSTRUCTIONS

Preliminary User’s Manual U17135EJ1V1UM 57

(15) Debug function instructions:
These instructions are instructions reserved for debug function. The following instructions (mnemonics)
are provided.

• DBRET: Return from debug trap
• DBTRAP: Debug trap

CHAPTER 5 INSTRUCTIONS

Preliminary User’s Manual U17135EJ1V1UM 58

5. 3 Instruction Set

This section details each instruction, dividing each mnemonic (in alphabetical order) into the following items.

• Instruction format: Indicates the description and the instruction operand (for symbols, refer to Table 5-1).
• Operation: Indicates the function of the instruction (for symbols, refer to Table 5-2).
• Format: Indicates the instruction format (refer to 5. 1 Instruction Formats).
• Opcode: Indicates the bit field of the instruction opcode (for symbols, refer to Table 5-3).
• Flag: Indicates the flag change after the instruction execution.

"0" is to clear (reset), "1" to set, and "--" to remain unchanged.
• Description: Describes the operation of the instruction.
• Remark: Provides supplementary information on instruction.
• Caution: Provides precautionary notes.

Table 5-1. Conventions of Instruction Format

Symbol Meaning

reg1 General register (as source register)

reg2 General register (primarily as destination register with some as source registers)

reg3 General register (primarily used to store the remainder of a division result and/or the higher 32 bits

of a multiply result)

bit#3 3-bit data to specify bit number

imm× ×-bit immediate data

disp× ×-bit displacement data

regID System register number

vector 5-bit data to specify trap vector (00H to1FH)

cccc 4-bit data to specify condition code

sp Stack pointer (r3)

ep Element pointer (r30)

list12 Lists of registers

CHAPTER 5 INSTRUCTIONS

Preliminary User’s Manual U17135EJ1V1UM 59

Table 5-2. Conventions of Operation

Symbol Meaning

← Assignment

GR [] General register

SR [] System register

zero-extend (n) Zero-extends "n" to word

sign-extend (n) Sign-extends "n" to word

load-memory (a, b) Reads data of size b from address a

store-memory (a, b, c) Writes data b of size c to address a

load-memory-bit (a, b) Reads bit b from address a

store-memory-bit (a, b, c) Writes c to bit b of address a

saturate (n) Performs saturate processing of "n."

If n > 7FFFFFFFH, n = 7FFFFFFFH.

If n < 80000000H, n = 80000000H.

result Outputs results on flag

Byte Byte (8 bits)

Half-word Half-word (16 bits)

Word Word (32 bits)

+ Add

– Subtract

|| Bit concatenation

× Multiply

÷ Divide

% Remainder of division results

AND And

OR Or

XOR Exclusive Or

NOT Logical negate

logically shift left by Logical left-shift

logically shift right by Logical right-shift

arithmetically shift right by Arithmetic right-shift

CHAPTER 5 INSTRUCTIONS

Preliminary User’s Manual U17135EJ1V1UM 60

Table 5-3. Conventions of Opcode

Symbol Meaning

R 1-bit data of code specifying reg1 or regID

r 1-bit data of code specifying reg2

w 1-bit data of code specifying reg3

D 1-bit data of displacement (indicates higher bits of displacement)

d 1-bit data of displacement

I 1-bit data of immediate (indicates higher bits of immediate)

i 1-bit data of immediate

cccc 4-bit data for condition code specification (Refer to Table 5-4. Conditions code)

CCCC 4-bit data for condition code specification of Bcond instruction

bbb 3-bit data for bit number specification

L 1-bit data of code specifying general register in register list

S 1-bit data of code specifying EIPC/FEPC, EIPSW/FEPSW in register list

P 1-bit data of code specifying PSW in register list

Table 5-4. Conditions code

Conditions code (cccc) Conditions formula

0000 OV = 1

1000 OV = 0

0001 CY = 1

1001 CY = 0

0010 Z = 1

1010 Z = 0

0011 (CY or Z) = 1

1011 (CY or Z) = 0

0100 S = 1

1100 S = 0

0101 always (Unconditional)

1101 SAT = 1

0110 (S xor OV) = 1

1110 (S xor OV) = 0

0111 ((S xor OV) or Z) = 1

1111 ((S xor OV) or Z) = 0

CHAPTER 5 INSTRUCTIONS

Preliminary User’s Manual U17135EJ1V1UM 61

<Arithmetic instruction>

Add register/immediate
ADD

Add

[Instruction format] (1) ADD reg1, reg2

(2) ADD imm5, reg2

[Operation] (1) GR [reg2] ← GR [reg2] + GR [reg1]

(2) GR [reg2] ← GR [reg2] + sign-extend (imm5)

[Format] (1) Format I

(2) Format II

[Opcode] 15 0

 (1) rrrrr001110RRRRR

 15 0

 (2) rrrrr010010iiiii

[Flags] CY "1" if a carry occurs from MSB; otherwise, "0".

OV "1" if overflow occurs; otherwise, "0".
S "1" if the operation result is negative; otherwise, "0".
Z "1" if the operation result is "0"; otherwise, "0".
SAT --

[Description] (1) Adds the word data of the general register reg1 to the word data of the general register

reg2 and stores the result in the general register reg2. The data of the general register reg1
is not affected.

(2) Adds the 5-bit immediate data, sign-extended to word length, to the word data of the
general register reg2 and stores the result in the general register reg2.

CHAPTER 5 INSTRUCTIONS

Preliminary User’s Manual U17135EJ1V1UM 62

<Arithmetic instruction>

Add immediate
ADDI

Add Immediate

[Instruction format] ADDI imm16, reg1, reg2

[Operation] GR [reg2] ← GR [reg1] + sign-extend (imm16)

[Format] Format VI

[Opcode] 15 0 31 16

 rrrrr110000RRRRR iiiiiiiiiiiiiiii

[Flags] CY "1" if a carry occurs from MSB; otherwise, "0".

OV "1" if overflow occurs; otherwise, "0".
S "1" if the operation result is negative; otherwise, "0".
Z "1" if the operation result is "0"; otherwise "0".
SAT --

[Description] Adds the 16-bit immediate data, sign-extended to word length, to the word data of the general

register reg1 and stores the result in the general register reg2. The reg1 data is not affected.

CHAPTER 5 INSTRUCTIONS

Preliminary User’s Manual U17135EJ1V1UM 63

<Conditional Operation Instructions>

Add on condition flag
ADF

Add on condition flag

[Instruction format] ADF cccc, reg1, reg2, reg3

[Operation] if conditions are satisfied

then GR [reg3] ← GR [reg1] + GR [reg2] +1
else GR [reg3] ← GR [reg1] + GR [reg2] +0

[Format] Format XI

[Opcode] 15 0 31 16

 rrrrr111111RRRRR wwwww011101cccc0

[Flags] CY "1" if a carry occurs from MSB; otherwise, "0".

OV "1" if overflow occurs; otherwise, "0".
S "1" if the operation result is negative; otherwise, "0".
Z "1" if the operation result is "0"; otherwise, "0".
SAT --

[Description] In cases where the result of adding the word data of general purpose register reg1 to the word

data of general purpose register reg2 satisfies the condition designated in condition code [cccc],
1 is added, and in cases where it does not, 0 is added; the result is then stored in general
purpose register reg3. General-purpose register reg2 is not affected. Please designate one of
the condition codes shown in the following table as [cccc]. (However, cccc cannot equal 1101.)

Condition

Code

Condition Formula Condition

Code

Condition Formula

0000 OV = 1 0100 S = 1

1000 OV = 0 1100 S = 0

0001 CY = 1 0101 Always (Unconditional)

1001 CY = 0 0110 (S xor OV) = 1

0010 Z = 1 1110 (S xor OV) = 0

1010 Z = 0 0111 ((S xor OV) or Z) = 1

0011 (CY or Z) = 1 1111 ((S xor OV) or Z) = 0

1011 (CY or Z) = 0 (1101) Assignment Inhibited

CHAPTER 5 INSTRUCTIONS

Preliminary User’s Manual U17135EJ1V1UM 64

<Logical instruction>

AND
AND

And

[Instruction format] AND reg1, reg2

[Operation] GR [reg2] ← GR [reg2] AND GR [reg1]

[Format] Format I

[Opcode] 15 0

 rrrrr001010RRRRR

[Flags] CY --

OV 0
S "1" if operation result’s word data MSB is "1"; otherwise, "0".
Z "1" if the operation result is "0"; otherwise, "0".
SAT --

[Description] ANDs the word data of the general register reg2 with the word data of the general register reg1

and stores the result in the general register reg2. The reg1 data is not affected.

CHAPTER 5 INSTRUCTIONS

Preliminary User’s Manual U17135EJ1V1UM 65

<Logical instruction>

AND immediate
ANDI

And Immediate

[Instruction format] ANDI imm16, reg1, reg2

[Operation] GR [reg2] ← GR [reg1] AND zero-extend (imm16)

[Format] Format VI

[Opcode] 15 0 31 16

 rrrrr110110RRRRR iiiiiiiiiiiiiiii

[Flags] CY --

OV 0
S "1" if operation result’s word data MSB is "1"; otherwise, "0".
Z "1" if the operation result is "0"; otherwise, "0".
SAT --

[Description] ANDs the word data of the general register reg1 with the 16-bit immediate data, zero-extended

to word length, and stores the result in the general register reg2. The reg1 data is not affected.

CHAPTER 5 INSTRUCTIONS

Preliminary User’s Manual U17135EJ1V1UM 66

<Branch instruction>

Branch on condition code with 9-bit displacement
Bcond

Branch on Condition Code

[Instruction format] Bcond disp9

[Operation] if conditions are satisfied

then PC ← PC + sign-extend (disp9)

[Format] Format III

[Opcode] 15 0

 ddddd1011dddCCCC

 dddddddd is the higher 8 bits of disp9.

[Flags] CY --

OV --
S --
Z --
SAT --

[Description] Checks each PSW flag specified by the instruction and branches if a condition is met;

executes otherwise the next instruction. The PC branch destination is the sum of the current
PC value and the 9-bit displacement (= 8-bit immediate data shifted by 1 and sign-extended to
word length).

[Comment] Bit 0 of the 9-bit displacement is masked to "0". The current PC value used for calculation is the

address of the first byte of this instruction. The displacement value being "0" signifies that the
branch destination is the instruction itself.

CHAPTER 5 INSTRUCTIONS

Preliminary User’s Manual U17135EJ1V1UM 67

Table 5-5. Bcond Instructions

Instruction Condition Code

(cccc)

Flag Status Branch Condition

BGE 1110 (S xor OV) = 0 Greater than or equal to signed

BGT 1111 ((S xor OV) or Z) = 0 Greater than signed

BLE 0111 ((S xor OV) or Z) = 1 Less than or equal to signed

Signed

integer

BLT 0110 (S xor OV) = 1 Less than signed

BH 1011 (CY or Z) = 0 Higher (Greater than)

BL 0001 CY = 1 Lower (Less than)

BNH 0011 (CY or Z) = 1 Not higher (Less than or equal)

Unsigned

integer

BNL 1001 CY = 0 Not lower (Greater than or equal)

BE 0010 Z = 1 Equal Common

BNE 1010 Z = 0 Not equal

BC 0001 CY = 1 Carry

BN 0100 S = 1 Negative

BNC 1001 CY = 0 No carry

BNV 1000 OV = 0 No overflow

BNZ 1010 Z = 0 Not zero

BP 1100 S = 0 Positive

BR 0101 – Always (unconditional)

BSA 1101 SAT = 1 Saturated

BV 0000 OV = 1 Overflow

Others

BZ 0010 Z = 1 Zero

Caution The branch condition loses its meaning If a conditional branch instruction is executed on a signed
integer (BGE, BGT, BLE, or BLT) when the saturate instruction sets "1" to the SAT flag. In normal
operations, if an overflow occurs, the S flag is inverted (0 → 1 or 1 → 0). This is because the result
is a negative value if it exceeds the maximum positive value and it is a positive value if it exceeds
the maximum negative value. However, when a saturate instruction is executed, and if the result
exceeds the maximum positive value, the result is saturated with a positive value; if the result
exceeds the maximum negative value, the result is saturated with a negative value. Unlike the
normal operation, the S flag is not inverted even if an overflow occurs.

CHAPTER 5 INSTRUCTIONS

Preliminary User’s Manual U17135EJ1V1UM 68

<Data operation instruction>

Byte swap half-word
BSH

Byte swap of half-word

[Instruction format] BSH reg2, reg3

[Operation] GR [reg3] ← GR [reg2] (23:16) || GR [reg2] (31:24) || GR [reg2] (7:0) || GR [reg2] (15:8)

[Format] Format XII

[Opcode] 15 0 31 16

 rrrrr11111100000 wwwww01101000010

[Flags] CY "1" when at there is at least one byte value of zero in the lower half-word of the

operation result; otherwise; "0".
OV 0
S "1" if operation result’s word data MSB is "1"; otherwise, "0".
Z "1" when lower half-word of operation result is "0"; otherwise, "0".
SAT --

[Description] This instruction performs endian conversion.

CHAPTER 5 INSTRUCTIONS

Preliminary User’s Manual U17135EJ1V1UM 69

<Data manipulation instruction>

Byte swap word
BSW

Byte Swap Word

[Instruction format] BSW reg2, reg3

[Operation] GR [reg3] ← GR [reg2] (7:0) || GR [reg2] (15:8) || GR [reg2] (23:16) || GR [reg2] (31:24)

[Format] Format XII

[Opcode] 15 0 31 16

 rrrrr11111100000 wwwww01101000000

[Flags] CY "1" when at there is at least one byte value of zero in the word data of the

operation result; otherwise; "0".
OV 0
S "1" if operation result’s word data MSB is "1"; otherwise, "0".
Z "1" if operation result’s word data is "0"; otherwise, "0".
SAT --

[Description] Executes endian translation.

CHAPTER 5 INSTRUCTIONS

Preliminary User’s Manual U17135EJ1V1UM 70

<Special instruction>

Call with table look up
CALLT

Subroutine Call with Table Look Up

[Instruction format] CALLT imm6

[Operation] CTPC ← PC + 2 (return PC)

CTPSW ← PSW
adr ← CTBP + zero-extend (imm6 logically shift left by 1)
PC ← CTBP + zero-extend (Load-memory (adr, Half-word))

[Format] Format II

[Opcode] 15 0

 0000001000iiiiii

[Flags] CY --

OV --
S --
Z --
SAT --

[Description] The following steps are taken.

(1) Transfers the contents of both return PC and PSW to CTPC and CTPSW.
(2) Adds the CTBP value to the 6-bit immediate data, logically left-shifted by 1, and zero-

extended to word length, to generate a 32-bit table entry address.
(3) Loads the half-word entry data of the address generated in step (2) and zero-extend to

word length.
(4) Adds the CTBP value to the data generated in step (3) to generate a 32-bit target

address.
(5) Branches to the target address generated in step (4).

[Caution] When an interrupt occurs during the CALLT instruction execution, the execution is aborted after

the end of the read/write cycle.

CHAPTER 5 INSTRUCTIONS

Preliminary User’s Manual U17135EJ1V1UM 71

<Bit manipulation instruction>

Clear bit
CLR1

Clear Bit

[Instruction format] (1) CLR1 bit#3, disp16 [reg1]

(2) CLR1 reg2, [reg1]

[Operation] (1) adr ← GR [reg1] + sign-extend (disp16)

 Z flag ← Not (Load-memory-bit (adr, bit#3))
 Store-memory-bit (adr, bit#3, 0) …

 (2) adr ← GR [reg1]
 Z flag ← Not (Load-memory-bit (adr, reg2))
 Store-memory-bit (adr, reg2, 0) …

[Format] (1) Format VIII

(2) Format IX

[Opcode] 15 0 31 16

 (1) 10bbb111110RRRRR dddddddddddddddd

 15 0 31 16

 (2) rrrrr111111RRRRR 0000000011100100

[Flags] CY --

OV --
S --
Z "1" if bit specified by operand = "0", "0" if bit specified by operand = "1".
SAT --

[Description] (1) Adds the word data of general-purpose register reg1 to the 16-bit displacement, sign-

extended to word length, to generate a 32-bit address. Then reads the byte data
referenced by the generated address, clears the bit specified by the 3-bit bit number, and
writes back to the original address.

 (2) Reads the word data of general-purpose register reg1 to generate a 32-bit address. Then
reads the byte data referenced by the generated address, clears the bit specified by the
data of the lower 3 bits of reg2, and writes back to the original address.

[Comment] The Z flag of PSW indicates the initial status of the specified bit (0 or 1) and does not indicate

the content of the specified bit after this instruction has been executed.

CHAPTER 5 INSTRUCTIONS

Preliminary User’s Manual U17135EJ1V1UM 72

<Data operation instruction>

Conditional move
CMOV

Conditional move

[Instruction format] (1) CMOV cccc, reg1, reg2, reg3

(2) CMOV cccc, imm5, reg2, reg3

[Operation] (1) if conditions are satisfied

 then GR [reg3] ← GR [reg1]
 else GR [reg3] ← GR [reg2]

 (2) if conditions are satisfied
 then GR [reg3] ← sign-extended (imm5)
 else GR [reg3] ← GR [reg2]

[Format] (1) Format XI

(2) Format XII

[Opcode] 15 0 31 16

 (1) rrrrr111111RRRRR wwwww011001cccc0

 15 0 31 16

 (2) rrrrr111111iiiii wwwww011000cccc0

[Flags] CY --

OV --
S --
Z --
SAT --

[Description] (1) When the condition specified by condition code "cccc" is met, data in general-purpose register

reg1 is transferred to general-purpose register reg3. When that condition is not met, data in
general-purpose register reg2 is transferred to general-purpose register reg3. Specify one of
the conditions codes shown in the following table as "cccc".

Condition

code

Condition formula Condition

code

Condition formula

0000 OV = 1 0100 S = 1

1000 OV = 0 1100 S = 0

0001 CY = 1 0101 Always (unconditional)

1001 CY = 0 1101 SAT = 1

0010 Z = 1 0110 (S xor OV) = 1

1010 Z = 0 1110 (S xor OV) = 0

0011 (CY or Z) = 1 0111 ((S xor OV) or Z) = 1

1011 (CY or Z) = 0 1111 ((S xor OV) or Z) = 0

CHAPTER 5 INSTRUCTIONS

Preliminary User’s Manual U17135EJ1V1UM 73

(2) When the condition specified by condition code "cccc" is met, 5-bit immediate data with
word-length code extension is transferred to general-purpose register reg3. When that
condition is not met, the data in general-purpose register reg2 is transferred to general-
purpose register reg3. Specify one of the conditions codes shown in the following table as
"cccc".

Condition

code

Condition formula Condition

code

Condition formula

0000 OV = 1 0100 S = 1

1000 OV = 0 1100 S = 0

0001 CY = 1 0101 Always (unconditional)

1001 CY = 0 1101 SAT = 1

0010 Z = 1 0110 (S xor OV) = 1

1010 Z = 0 1110 (S xor OV) = 0

0011 (CY or Z) = 1 0111 ((S xor OV) or Z) = 1

1011 (CY or Z) = 0 1111 ((S xor OV) or Z) = 0

[Comment] See the description of the SETF instruction.

CHAPTER 5 INSTRUCTIONS

Preliminary User’s Manual U17135EJ1V1UM 74

<Arithmetic instruction>

Compare register/immediate (5-bit)
CMP

Compare

[Instruction format] (1) CMP reg1, reg2

(2) CMP imm5, reg2

[Operation] (1) result ← GR [reg2] − GR [reg1]

(2) result ← GR [reg2] − sign-extend (imm5)

[Format] (1) Format I

(2) Format II

[Opcode] 15 0

 (1) rrrrr001111RRRRR

 15 0

 (2) rrrrr010011iiiii

[Flags] CY "1" if a borrow occurs from MSB; otherwise, "0".

OV "1" if overflow occurs; otherwise, "0".
S "1" if the operation result is negative; otherwise, "0".
Z "1" if the operation result is "0"; otherwise, "0".
SAT --

[Description] (1) Compares the word data of the general register reg2 with the word data of the general

register reg1 and outputs the result through the PSW flags. Comparison is enabled by
subtracting the reg1 contents from the reg2 word data. The reg1 data and reg2 data are not
affected.

 (2) Compares the word data of the general register reg2 with the 5-bit immediate data, sign-
extended to word length, and outputs the result through the PSW flags. Comparison is
enabled by subtracting the sign-extended immediate data from the reg2 word data. The
reg2 data is not affected.

CHAPTER 5 INSTRUCTIONS

Preliminary User’s Manual U17135EJ1V1UM 75

<Special instruction>

Return from CALLT
CTRET

Return from CALLT

[Instruction format] CTRET

[Operation] PC ← CTPC

PSW ← CTPSW

[Format] Format X

[Opcode] 15 0 31 16

 0000011111100000 0000000101000100

[Flags] CY Value read from CTPSW is restored.

OV Value read from CTPSW is restored.
S Value read from CTPSW is restored.
Z Value read from CTPSW is restored.
SAT Value read from CTPSW is restored.

[Description] Fetches the return PC and PSW from the appropriate system register and returns from a routine

under CALLT instruction. The following steps are taken:
 (1) The return PC and PSW are read from the CTPC and CTPSW.
 (2) The values are restored to PC and PSW and the control is transferred to the return

address.

CHAPTER 5 INSTRUCTIONS

Preliminary User’s Manual U17135EJ1V1UM 76

<Debug function instruction>

Return from debug trap
DBRET

Return from debug trap

[Instruction format] DBRET

[Operation] PC ← DBPC

PSW ← DBPSW

[Format] Format X

[Opcode] 15 0 31 16

 0000011111100000 0000000101000110

[Flags] CY Value read from DBPSW is restored.

OV Value read from DBPSW is restored.
S Value read from DBPSW is restored.
Z Value read from DBPSW is restored.
SAT Value read from DBPSW is restored.

[Description] Fetches the return PC and PSW from the appropriate system register and returns from the

debug mode.

[Caution] Because the DBRET instruction is for debugging, it is essentially used by debug tools. When a

debug tool is using this instruction, therefore, use of it in the application may cause a
malfunction.

CHAPTER 5 INSTRUCTIONS

Preliminary User’s Manual U17135EJ1V1UM 77

<Debug function instruction>

Debug trap
DBTRAP

Debug trap

[Instruction format] DBTRAP

[Operation] DBPC ← PC + 2 (return PC)

DBPSW ← PSW
PSW.NP ← 1
PSW.EP ← 1
PSW.ID ← 1
DIR.DM ← 1
PC ← 00000060H

[Format] Format I

[Opcode] 15 0

 1111100001000000

[Flags] CY --

OV --
S --
Z --
SAT --

[Description] The following steps are taken:

(1) Saves the contents of both the return PC (the one subsequent to DBTRAP instruction)
and the current PSW in DBPC and DBPSW, respectively.

(2) Sets "1” to the flags of NP, EP, and ID as well as the DM bit on the DIR register.
(3) Sets the exception trap handler address (00000060H) to PC to move to the debug mode.

PSW flags, other than NP, EP, and ID, are not affected. Note that the value saved in DBPC is
the address of the instruction subsequent to the DBTRAP instruction.

[Caution] Because the DBTRAP instruction is for debugging, it is essentially used by debug tools. When a
debug tool is using this instruction, therefore, use of it in the application may cause a malfunction.

CHAPTER 5 INSTRUCTIONS

Preliminary User’s Manual U17135EJ1V1UM 78

<Special instruction>

Disable interrupt
DI

Disable Interrupt

[Instruction format] DI

[Operation] PSW.ID ← 1 (Disables maskable interrupt)

[Format] Format X

[Opcode] 15 0 31 16

 0000011111100000 0000000101100000

[Flags] CY --

OV --
S --
Z --
SAT --
ID 1

[Description] Sets "1" to the ID flag of PSW to immediately disable the acknowledgement of maskable

interrupts.

[Comment] Interrupts are not sampled during the DI instruction execution, thereby immediately disabling

the interrupts. The PSW flag becomes valid only after the next instruction commences. Non-
maskable interrupts (NMI) are not affected by this instruction.

CHAPTER 5 INSTRUCTIONS

Preliminary User’s Manual U17135EJ1V1UM 79

<Special instruction>

Function dispose
DISPOSE

Stack frame deletion

[Instruction format] (1) DISPOSE imm5, list12

(2) DISPOSE imm5, list12, [reg1]

[Operation] (1) sp ← sp + zero-extend (imm5 logically shift left by 2)

 GR [reg in list12] ← Load-memory (sp, Word)
 sp ← sp + 4
 repeat 2 steps above until all regs in list12 is loaded

 (2) sp ← sp + zero-extend (imm5 logically shift left by 2)
 GR [reg in list12] ← Load-memory (sp, Word)
 sp ← sp + 4
 repeat 2 states above until all regs in list12 is loaded
 PC ← GR [reg1]

[Format] Format XIII

[Opcode] 15 0 31 16

 (1) 0000011001iiiiiL LLLLLLLLLLL00000

 15 0 31 16

 (2) 0000011001iiiiiL LLLLLLLLLLLRRRRR

 The values of RRRRR must be other than "00000".
The values of LLLLLLLLLLLL are the corresponding bit values shown in register list
"list12" (for example, the "L" at bit 21 of the opcode corresponds to the value of bit21 in
list12).
list12 is a 32-bit register list, defined as follows.

 31 30 29 28 27 26 25 24 23 22 21 20 ... 1 0

 r24 r25 r26 r27 r20 r21 r22 r23 r28 r29 r31 -- r30

 Bits 31 to 21 and bit 0 correspond to general-purpose registers (r20 to r31), so that when

any of these bits is set (= 1), it specifies a corresponding register operation as a
processing target. For example, when r20 and r30 are specified, the values in list12
appear as shown below (register bits that do not correspond, i.e., bits 20 to 1 are set as
"Don't care").

 • When all of the register's non-corresponding bits are "0": 08000001H
 • When all of the register's non-corresponding bits are "1": 081FFFFFH

CHAPTER 5 INSTRUCTIONS

Preliminary User’s Manual U17135EJ1V1UM 80

[Flags] CY --
OV --
S --
Z --
SAT --

[Description] (1) Adds the 5-bit immediate data, logically left-shifted by 2 and zero-extended to word length,

to sp; returns to the general registers listed in list12 by loading the data from the address
specified by sp and adds 4 to sp. Bit 0 of the address is masked to "0".

 (2) Adds the 5-bit immediate data, logically left-shifted by 2 and zero-extended to word length,
to sp; returns to the general registers listed in list12 by loading the data from the address
specified by sp and adds 4 to sp; and transfers the control to the address specified by the
general register reg1. Bit 0 of the address is masked to "0".

[Comment] General registers in list12 are loaded in descending order (r31, r30, ... r20). The imm5 restores

a stack frame for automatic variables and temporary data. The lower 2-bit of address specified
by sp is always masked to "0" even if misaligned access is enabled.

 An interrupt, occurred before updating sp, aborts the execution to process the interrupt. The
execution resumes at the original instruction address upon returning from the interrupt. sp
retains its original values.

[Caution] If an interrupt is generated during instruction execution, due to manipulation of the stack, the

execution of that instruction may stop after the read/write cycle and register value rewriting are
complete. Execution is resumed after returning from the interrupt.

CHAPTER 5 INSTRUCTIONS

Preliminary User’s Manual U17135EJ1V1UM 81

<Divide instruction>

Divide word
DIV

Divide Word

[Instruction format] DIV reg1, reg2, reg3

[Operation] GR [reg2] ← GR [reg2] ÷ GR [reg1]

GR [reg3] ← GR [reg2] % GR [reg1]

[Format] Format XI

[Opcode] 15 0 31 16

 rrrrr111111RRRRR wwwww01011000000

[Flags] CY --

OV "1" if overflow occurs; otherwise, "0".
S "1" if the operation result is negative; otherwise, "0".
Z "1" if the operation result is "0"; otherwise, "0".
SAT --

[Description] Divides the word data of the general register reg2 by the word data of the general register reg1

and stores the quotient to the general register reg2 with the remainder to the general register
reg3. The data divided by 0 results in overflow with the quotient being undefined. The reg1
data is not affected.

[Comment] Overflow occurs when the maximum negative value (80000000H) is divided by –1 with the

quotient=80000000H and when the data is divided by 0 with quotient being undefined.
When an interrupt occurs during the DIV instruction execution, the execution is aborted to
process the interrupt. The execution resumes at the original instruction address upon returning
from the interrupt. The general register reg1 and the general register reg2 retain their initial
value. If reg2 and reg3 share the same address, the remainder is stored to reg2 (= reg3).

CHAPTER 5 INSTRUCTIONS

Preliminary User’s Manual U17135EJ1V1UM 82

<Divide instruction>

Divide half-word
DIVH

Divide Half-word

[Instruction format] (1) DIVH reg1, reg2

(2) DIVH reg1, reg2, reg3

[Operation] (1) GR [reg2] ← GR [reg2] ÷ GR [reg1]

(2) GR [reg2] ← GR [reg2] ÷ GR [reg1]
 GR [reg3] ← GR [reg2] % GR [reg1]

[Format] (1) Format I

(2) Format XI

[Opcode] 15 0

 (1) rrrrr000010RRRRR

 15 0 31 16

 (2) rrrrr111111RRRRR wwwww01010000000

[Flags] CY --

OV "1" if overflow occurs; otherwise, "0".
S "1" if the operation result is negative; otherwise, "0".
Z "1" if the operation result is "0"; otherwise, "0".
SAT --

[Description] (1) Divides the word data of the general register reg2 by the lower half-word data of the

general register reg1 and stores the quotient to the general register reg2. The data divided
by 0 results in overflow with the quotient being undefined. The reg1 data is not affected.

(2) Divides the word data of the general register reg2 by the lower half-word data of the general
register reg1 and stores the quotient to the general register reg2 with the remainder set to
the general register reg3. The data divided by 0 results in overflow with the quotient being
undefined. The reg1 data is not affected.

CHAPTER 5 INSTRUCTIONS

Preliminary User’s Manual U17135EJ1V1UM 83

[Comment] (1) The remainder is not stored. Overflow occurs when the maximum negative value
(80000000H) is divided by –1 with the quotient=80000000H and when the data is divided by
0 with quotient being undefined.
When an interrupt occurs during the DIVH instruction execution, the execution is aborted to
process the interrupt. The execution resumes at the original instruction address upon
returning from the interrupt. The general register reg1 and the general register reg2 retain
their initial value. Do not specify r0 as the destination register reg2. The higher 16 bits on
the general register reg1 are ignored during the divide execution.

(2) Overflow occurs when the maximum negative value (80000000H) is divided by –1 with the
quotient=80000000H and when the data is divided by 0 with quotient being undefined.
When an interrupt occurs during the DIVH instruction execution, the execution is aborted to
process the interrupt. The execution resumes at the original instruction address upon
returning from the interrupt. The general register reg1 and the general register reg2 retain
their initial value. Do not specify r0 as the destination register reg2. The higher 16 bits on
the general register reg1 are ignored during the divide execution. If reg2 and reg3 share the
same address, the remainder is stored to reg2 (= reg3).

CHAPTER 5 INSTRUCTIONS

Preliminary User’s Manual U17135EJ1V1UM 84

<Divide instruction>

Divide half-word unsigned
DIVHU

Divide Half-word Unsigned

[Instruction format] DIVHU reg1, reg2, reg3

[Operation] GR [reg2] ← GR [reg2] ÷ GR [reg1]

GR [reg3] ← GR [reg2] % GR [reg1]

[Format] Format XI

[Opcode] 15 0 31 16

 rrrrr111111RRRRR wwwww01010000010

[Flags] CY --

OV "1" if overflow occurs; otherwise, "0".
S “1” if the MSB of the word data of the operation result is “1”; otherwise, “0”.
Z "1" if the operation result is "0"; otherwise, "0".
SAT --

[Description] Divides the word data of the general register reg2 by the lower half-word data of the general

register reg1 and stores the quotient to the general register reg2 with the remainder set to the
general register reg3. The data divided by 0 results in overflow with the quotient being
undefined. The reg1 data is not affected.

[Comment] Overflow occurs when data is divided by 0 (in which case the quotient is undefined).

When an interrupt occurs during the DIVHU instruction execution, the execution is aborted to
process the interrupt. The execution resumes at the original instruction address upon returning
from the interrupt. The general register reg1 and the general register reg2 retain their initial
value. If reg2 and reg3 share the same address, the remainder is stored to reg2 (= reg3).

CHAPTER 5 INSTRUCTIONS

Preliminary User’s Manual U17135EJ1V1UM 85

<Divide instruction>

Divide word unsigned
DIVU

Divide Word Unsigned

[Instruction format] DIVU reg1, reg2, reg3

[Operation] GR [reg2] ← GR [reg2] ÷ GR [reg1]

GR [reg3] ← GR [reg2] % GR [reg1]

[Format] Format XI

[Opcode] 15 0 31 16

 rrrrr111111RRRRR wwwww01011000010

[Flags] CY --

OV "1" if overflow occurs; otherwise, "0".
S “1” if the MSB of the word data of the operation result is “1”; otherwise, “0”.
Z "1" if the operation result is "0"; otherwise, "0".
SAT --

[Description] Divides the word data of the general register reg2 by the lower half-word data of the general

register reg1 and stores the quotient to the general register reg2 with the remainder set to the
general register reg3. The data divided by 0 results in overflow with the quotient being
undefined. The reg1 data is not affected.

[Comment] Overflow occurs when data is divided by 0 (in which case the quotient is undefined).

When an interrupt occurs during the DIVU instruction execution, the execution is aborted to
process the interrupt. The execution resumes at the original instruction address upon returning
from the interrupt. The general register reg1 and the general register reg2 retain their initial
value. If reg2 and reg3 share the same address, the remainder is stored to reg2 (= reg3).

CHAPTER 5 INSTRUCTIONS

Preliminary User’s Manual U17135EJ1V1UM 86

<Special instruction>

Enable interrupt
EI

Enable Interrupt

[Instruction format] EI

[Operation] PSW.ID ← 0 (enables maskable interrupt)

[Format] Format X

[Opcode] 15 0 31 16

 1000011111100000 0000000101100000

[Flags] CY --

OV --
S --
Z --
SAT --
ID 0

[Description] Clears the ID flag of the PSW to "0" and enables the acknowledgement of maskable interrupts

starting the next instruction.

[Comment] Interrupts are not sampled during the EI instruction execution.

CHAPTER 5 INSTRUCTIONS

Preliminary User’s Manual U17135EJ1V1UM 87

<Special instruction>

Halt
HALT

Halt

[Instruction format] HALT

[Operation] Halt

[Format] Format X

[Opcode] 15 0 31 16

 0000011111100000 0000000100100000

[Flags] CY --

OV --
S --
Z --
SAT --

[Description] Stops the CPU operating clock and places the system in the HALT mode.

[Comment] The HALT mode can be released by any of the following three events.

 • Reset input
 • Non-maskable interrupt request
 • Unmasked maskable interrupt request

If an interrupt is acknowledged during the HALT mode, the next instruction address is stored to
EIPC or FEPC.

CHAPTER 5 INSTRUCTIONS

Preliminary User’s Manual U17135EJ1V1UM 88

<Data Manipulation Instructions>

Half-word swap half-word
HSH

Half-word Swap Half-word

[Instruction format] HSH reg2, reg3

[Operation] GR [reg3] ← GR [reg2]

[Format] Format XII

[Opcode] 15 0 31 16

 rrrrr11111100000 wwwww01101000110

[Flags] CY "1" if the lower half-word of the operation result is "0"; otherwise, "0".

OV 0
S "1" if operation result's word data MSB is "1"; otherwise, "0".
Z "1" if the lower half-word of the operation result is "0"; otherwise, "0".
SAT --

[Description] The content of general-purpose register reg2 is stored in general-purpose register reg3, and

the flag judgment result is stored in PSW.

CHAPTER 5 INSTRUCTIONS

Preliminary User’s Manual U17135EJ1V1UM 89

<Data manipulation instruction>

Half-word swap word
HSW

Half-word Swap Word

[Instruction format] HSW reg2, reg3

[Operation] GR [reg3] ← GR [reg2] (15:0) || GR [reg2] (31:16)

[Format] Format XII

[Opcode] 15 0 31 16

 rrrrr11111100000 wwwww01101000100

[Flags] CY "1" when at there is at least one half-word of zero in the word data of the

operation result; otherwise; "0".
OV 0
S "1" if operation result's word data MSB is "1"; otherwise, "0".
Z "1" if operation result's word data is "0"; otherwise, "0".
SAT --

[Description] Executes endian translation.

CHAPTER 5 INSTRUCTIONS

Preliminary User’s Manual U17135EJ1V1UM 90

<Branch instruction>

Jump and register link
JARL

Jump and Register Link

[Instruction format] (1) JARL disp22, reg2
 (2) JARL disp32, reg1

[Operation] (1) GR [reg2] ← PC + 4

 PC ← PC + sign-extend (disp22)
 (2) GR [reg1] ← PC + 6

 PC ← PC + disp32

[Format] (1) Format V
 (2) Format VI

[Opcode] 15 0 31 16

 (1) rrrrr11110dddddd ddddddddddddddd0

 ddddddddddddddddddddd is the higher 21 bits of disp22.

 15 0 31 16 47 32

 (2) 00000010111RRRRR ddddddddddddddd0 DDDDDDDDDDDDDDDD

 DDDDDDDDDDDDDDDDddddddddddddddd is the higher 31 bits of disp32.

[Flags] CY --

OV --
S --
Z --
SAT --

[Description] (1) Saves the current PC value+4 in the general register reg2, adds the 22-bit displacement data,

sign-extended to word length, to PC; stores the value in and transfers the control to PC. Bit 0
of the 22-bit displacement is masked to "0".

 (2) Saves the current PC value+6 in the general register reg1, adds the 32-bit displacement data to
PC and stores the value in and transfers the control to PC. Bit 0 of the 32-bit displacement is
masked to "0".

[Comment] The current PC value used for calculation is the address of the first byte of this instruction itself.

The jump destination is this instruction with the displacement value=0. JARL instruction
functions as a call-subroutine instruction, and saves the return PC address in either reg1 or
reg2. JMP instruction functions as a subroutine-return instruction, and can be used to specify
the general register containing the return address as reg1 to the return PC.

CHAPTER 5 INSTRUCTIONS

Preliminary User’s Manual U17135EJ1V1UM 91

<Branch instruction>

Jump register
JMP

Jump Register

[Instruction format] (1) JMP [reg1]
 (2) JMP disp32 [reg1]

[Operation] (1) PC ← GR [reg1]
 (2) PC ← GR [reg1] + disp32

[Format] (1) Format I
 (2) Format VI

[Opcode] 15 0

 (1) 00000000011RRRRR

 15 0 31 16 47 32

 (2) 00000110111RRRRR ddddddddddddddd0 DDDDDDDDDDDDDDDD

 DDDDDDDDDDDDDDDDddddddddddddddd is the higher 31 bits of disp32.

[Flags] CY --

OV --
S --
Z --
SAT --

[Description] (1) Transfers the control to the address specified by the general register reg1. Bit 0 of the

address is masked to "0".
(2) Adds the 32-bit displacement to the general register reg1, and transfers the control to the

resulting address specified by the general register reg1. Bit 0 of the address is masked to "0".

[Comment] Using this instruction as the subroutine-return instruction requires the return PC to be specified

by the general register reg1.

CHAPTER 5 INSTRUCTIONS

Preliminary User’s Manual U17135EJ1V1UM 92

<Branch instruction>

Jump relative
JR

Jump Relative

[Instruction format] (1) JR disp22
 (2) JR disp32

[Operation] (1) PC ← PC + sign-extend (disp22)
 (2) PC ← PC + disp32

[Format] (1) Format V
 (2) Format VI

[Opcode] 15 0 31 16

 (1) 0000011110dddddd ddddddddddddddd0

 ddddddddddddddddddddd is the higher 21 bits of disp22.

 15 0 31 16 47 32

 (2) 0000001011100000 ddddddddddddddd0 DDDDDDDDDDDDDDDD

 DDDDDDDDDDDDDDDDddddddddddddddd is the higher 31 bits of disp32.

[Flags] CY --

OV --
S --
Z --
SAT --

[Description] (1) Adds the 22-bit displacement data, sign-extended to word length, to the current PC and stores

the value in and transfers the control to PC. Bit 0 of the 22-bit displacement is masked to "0".
(2) Adds the 32-bit displacement data to the current PC and stores the value in PC and transfers

the control to PC. Bit 0 of the 32-bit displacement is masked to "0".

[Comment] The current PC value used for calculation is the address of the first byte of this instruction itself.

The displacement value being "0" signifies that the branch destination is the instruction itself.

CHAPTER 5 INSTRUCTIONS

Preliminary User’s Manual U17135EJ1V1UM 93

<Load instruction>

Load byte
LD.B

Load byte

[Instruction format] LD.B disp16 [reg1] , reg2

[Operation] adr ← GR [reg1] + sign-extend (disp16)

GR [reg2] ← sign-extend (Load-memory (adr, Byte))

[Format] Format VII

[Opcode] 15 0 31 16

 rrrrr111000RRRRR dddddddddddddddd

[Flags] CY --

OV --
S --
Z --
SAT --

[Description] Adds the word data of the general register reg1 to the 16-bit displacement data, sign-extended

to word length, to generate a 32-bit address. Byte data is read from the generated address,
sign-extended to word length, and stored to the general register reg2.

[Comment]
The bus cycle sequence may be changed if accessing the resources connected to a bus, such
as VFB, VDB, VSB, NPB, instruction cache bus, or data cache bus. The bus sequence change
will not occur for an access to the same bus.
If an interrupt occurs during instruction execution, execution is aborted, and the interrupt is
serviced. Upon returning from the interrupt, the execution is restarted from the beginning, with
the return address being the address of this instruction.

CHAPTER 5 INSTRUCTIONS

Preliminary User’s Manual U17135EJ1V1UM 94

<Load instruction>

Load byte unsigned
LD.BU

Load byte unsigned

[Instruction format] LD.BU disp16 [reg1] , reg2

[Operation] adr ← GR [reg1] + sign-extend (disp16)

GR [reg2] ← zero-extend (Load-memory (adr, Byte))

[Format] Format VII

[Opcode] 15 0 31 16

 rrrrr11110bRRRRR ddddddddddddddd1

 ddddddddddddddd is the higher 15 bits of disp16. b is the bit 0 of disp16.

[Flags] CY --

OV --
S --
Z --
SAT --

[Description] Adds the word data of the general register reg1 to the 16-bit displacement data, sign-extended

to word length, to generate a 32-bit address. Byte data is read from the generated address,
sign-extended to word length, and stored to the general register reg2.
Don’t specify 0 to be reg2.

[Comment] The bus cycle sequence may be changed if accessing the resources connected to a bus, such

as VFB, VDB, VSB, NPB, instruction cache bus, or data cache bus. The bus sequence change
will not occur for an access to the same bus.
If an interrupt occurs during instruction execution, execution is aborted, and the interrupt is
serviced. Upon returning from the interrupt, the execution is restarted from the beginning, with
the return address being the address of this instruction.

CHAPTER 5 INSTRUCTIONS

Preliminary User’s Manual U17135EJ1V1UM 95

<Load instruction>

Load half-word
LD.H

Load half-word

[Instruction format] LD.H disp16 [reg1] , reg2

[Operation] adr ← GR [reg1] + sign-extend (disp16)

GR [reg2] ← sign-extend (Load-memory (adr, Half-word))

[Format] Format VII

[Opcode] 15 0 31 16

 rrrrr111001RRRRR ddddddddddddddd0

 ddddddddddddddd is the higher 15 bits of disp16.

[Flags] CY --

OV --
S --
Z --
SAT --

[Description] Adds the word data of the general register reg1 to the 16-bit displacement data, sign-extended

to word length, to generate a 32-bit address. Half-word data is read from the generated
address, sign-extended to word length, and stored to the general register reg2.

[Caution] Adding the data of the general register reg1 to the 16-bit displacement data, sign-extended to

word length, can generate two types of results. It depends on the misaligned mode setting:

• Bit0 is masked to "0" and address is generated (when misaligned access is disabled).
• Bit0 is not masked and address is generated (when misaligned access is enabled).

For details on misaligned access, see 3.3 Data Alignment.

[Comment] The bus cycle sequence may be changed if accessing the resources connected to a bus, such

as VFB, VDB, VSB, NPB, instruction cache bus, or data cache bus. The bus sequence change
will not occur for an access to the same bus.
If an interrupt occurs during instruction execution, execution is aborted, and the interrupt is
serviced. Upon returning from the interrupt, the execution is restarted from the beginning, with
the return address being the address of this instruction.

CHAPTER 5 INSTRUCTIONS

Preliminary User’s Manual U17135EJ1V1UM 96

<Load instruction>

Load half-word unsigned
LD.HU

Load half-word unsigned

[Instruction format] LD.HU disp16 [reg1] , reg2

[Operation] adr ← GR [reg1] + sign-extend (disp16)

GR [reg2] ← zero-extend (Load-memory (adr, Half-word))

[Format] Format VII

[Opcode] 15 0 31 16

 rrrrr111111RRRRR ddddddddddddddd1

 ddddddddddddddd is the higher 15 bits of disp16.

[Flags] CY --

OV --
S --
Z --
SAT --

[Description] Adds the word data of the general register reg1 to the 16-bit displacement data, sign-extended

to word length, to generate a 32-bit address. Half-word data is read from the generated
address, sign-extended to word length, and stored to the general register reg2.
Don’t specify 0 to be reg2.

[Caution] Adding the word data of the general register reg1 to the 16-bit displacement data, sign-

extended to word length, can generate two types of results. It depends on the misaligned mode
setting:

• Bit0 is masked to "0" and address is generated (when misaligned access is disabled).
• Bit0 is not masked and address is generated (when misaligned access is enabled).

For details on misaligned access, see 3.3 Data Alignment.

[Comment] The bus cycle sequence may be changed if accessing the resources connected to a bus, such
as VFB, VDB, VSB, NPB, instruction cache bus, or data cache bus. The bus sequence change
will not occur for an access to the same bus.
If an interrupt occurs during instruction execution, execution is aborted, and the interrupt is
serviced. Upon returning from the interrupt, the execution is restarted from the beginning, with
the return address being the address of this instruction.

CHAPTER 5 INSTRUCTIONS

Preliminary User’s Manual U17135EJ1V1UM 97

<Load instruction>

Load word
LD.W

Load word

[Instruction format] LD.W disp16 [reg1] , reg2

[Operation] adr ← GR [reg1] + sign-extend (disp16)

GR [reg2] ← Load-memory (adr, Word)

[Format] Format VII

[Opcode] 15 0 31 16

 rrrrr111001RRRRR ddddddddddddddd1

 ddddddddddddddd is the higher 15 bits of disp16.

[Flags] CY --

OV --
S --
Z --
SAT --

[Description] Adds the word data of the general register reg1 to the 16-bit displacement data, sign-extended

to word length, to generate a 32-bit address. Word data is read from the generated address,
and stored to the general register reg2.

[Caution] Adding the word data of the general register reg1 to the 16-bit displacement data, sign-
extended to word length, can generate two types of results. It depends on the misaligned
mode setting:

• Bit0 and bit1 are masked to "0" and address is generated (when misaligned access is
disabled).

• Bit0 and bit1 are not masked and address is generated (when misaligned access is
enabled).

For details on misaligned access, see 3.3 Data Alignment.

[Comment] The bus cycle sequence may be changed if accessing the resources connected to a bus, such
as VFB, VDB, VSB, NPB, instruction cache bus, or data cache bus. The bus sequence change
will not occur for an access to the same bus.
If an interrupt occurs during instruction execution, execution is aborted, and the interrupt is
processed. Upon returning from the interrupt, the execution is restarted from the beginning,
with the return address being the address of this instruction.

CHAPTER 5 INSTRUCTIONS

Preliminary User’s Manual U17135EJ1V1UM 98

<Special instruction>

Load to system register
LDSR

Load to System Register

[Instruction format] LDSR reg2, regID

[Operation] SR [regID] ← GR [reg2]

[Format] Format IX

[Opcode] 15 0 31 16

 rrrrr111111RRRRR 0000000000100000

Caution The fields to define reg1 and reg2 are swapped in this instruction. “RRR” is

normally used for reg1 and is the source operand with “rrr” representing reg2
and the destination operand. In this instruction, “RRR” is still the source
operand, but is represented by reg2 with “rrr” being as the register destination,
as labeled below:

rrrrr: regID specification
RRRRR: reg2 specification

[Flags] CY --(Refer to Comment below.)

OV --(Refer to Comment below.)
S --(Refer to Comment below.)
Z --(Refer to Comment below.)
SAT --(Refer to Comment below.)

[Description] Loads the word data of the general register reg2 to a system register specified by the system

register number (regID). The reg2 data is not affected.

[Comment] If the system register number (regID) is 5 (PSW), the values of the corresponding bits of PSW

are set according to the reg2 contents. This only affects the flag bits, and the reserved bits
remain 0. Interrupts are not sampled when the PSW is updated, thereby immediately disabling
any interrupt. The ID flag becomes valid only after the next instruction commences.

[Caution] The system register number regID is to identify a system register. Accessing system registers

that are reserved or write-prohibited is prohibited.

CHAPTER 5 INSTRUCTIONS

Preliminary User’s Manual U17135EJ1V1UM 99

<Multiplication with addition instruction>

Multiply word and add
MAC

Multiplication with addition of (signed) word data

[Instruction format] MAC reg1, reg2, reg3, reg4

[Operation] GR [reg4+1] || GR [reg4] ← GR [reg2] × GR [reg1] + GR [reg3+1] || GR [reg3]

[Format] Format XI

[Opcode] 15 0 31 16

 rrrrr111111RRRRR wwww0011110mmmm0

[Flags] CY --

OV --
S --
Z --
SAT --

[Description] The word data in general-purpose register reg2 is multiplied by the word data in general-

purpose register reg1, then the result (64-bit data) is added to 64-bit data consisting of the
lower 32 bits of general-purpose register reg3 and the data in general-purpose registers reg3+1
(for example, this would be "r7" if the reg3 value is r6 and "1" is added) as the higher 32 bits. Of
the result (64-bit data), the higher 32 bits are stored in general-purpose register reg4+1 and the
lower 32 bits are stored in general-purpose register reg4.
This instruction treats contents of general-purpose register reg1 and reg2 as 32-bit signed
integer.
This has no effect on general-purpose register reg1, reg2, reg3, or reg3+1.

[Caution] The general-purpose registers that can be specified as reg3 or reg4 must be an even-

numbered register (r0, r2, r4, …, r30). The result is undefined if an odd-numbered register (r1, r3,
…, r31) is specified.

CHAPTER 5 INSTRUCTIONS

Preliminary User’s Manual U17135EJ1V1UM 100

<Multiplication with addition instruction>

Multiply word unsigned and add
MACU

Multiplication with addition of (unsigned) word data

[Instruction format] MACU reg1, reg2, reg3, reg4

[Operation] GR [reg4+1] || GR [reg4] ← GR [reg2] × GR [reg1] + GR [reg3+1] || GR [reg3]

[Format] Format XI

[Opcode] 15 0 31 16

 rrrrr111111RRRRR wwww0011111mmmm0

[Flags] CY --

OV --
S --
Z --
SAT --

[Description] The word data in general-purpose register reg2 is multiplied by the word data in general-

purpose register reg1, then the result (64-bit data) is added to 64-bit data consisting of the
lower 32 bits of general-purpose register reg3 and the data in general-purpose registers reg3+1
(for example, this would be "r7" if the reg3 value is r6 and "1" is added) as the higher 32 bits. Of
the result (64-bit data), the higher 32 bits are stored in general-purpose register reg4+1 and the
lower 32 bits are stored in general-purpose register reg4.
This instruction treats contents of general-purpose register reg1 and reg2 as 32-bit unsigned
integer.
This has no effect on general-purpose register reg1, reg2, reg3, or reg3+1.

[Caution] The general-purpose registers that can be specified as reg3 or reg4 must be an even-

numbered register (r0, r2, r4, …, r30). The result is undefined if an odd-numbered register (r1, r3,
…, r31) is specified.

CHAPTER 5 INSTRUCTIONS

Preliminary User’s Manual U17135EJ1V1UM 101

<Arithmetic instruction>

Move register/immediate (5-bit) /immediate (32-bit)
MOV

Move

[Instruction format] (1) MOV reg1, reg2

(2) MOV imm5, reg2
(3) MOV imm32, reg1

[Operation] (1) GR [reg2] ← GR [reg1]

(2) GR [reg2] ← sign-extend (imm5)
(3) GR [reg1] ← imm32

[Format] (1) Format I

(2) Format II
(3) Format VI

[Opcode] 15 0

 (1) rrrrr000000RRRRR

 15 0

 (2) rrrrr010000iiiii

 15 0 31 16 47 32

 (3) 00000110001RRRRR iiiiiiiiiiiiiiii IIIIIIIIIIIIIIII

i (bits 31 to 16) refers to the lower 16 bits of 32-bit immediate data.
I (bits 47 to 32) refers to the higher 16 bits of 32-bit immediate data.

[Flags] CY --

OV --
S --
Z --
SAT --

[Description] (1) Transfers the word data of the general register reg1 to the general register reg2. The reg1

data is not affected.
 (2) Transfers the 5-bit immediate data, sign-extended to word length, to the general register

reg2. Do not specify r0 as the destination register reg2.
 (3) Transfers the 32-bit immediate data to the general register reg1.

CHAPTER 5 INSTRUCTIONS

Preliminary User’s Manual U17135EJ1V1UM 102

<Arithmetic instruction>

Move effective address
MOVEA

Move Effective Address

[Instruction format] MOVEA imm16, reg1, reg2

[Operation] GR [reg2] ← GR [reg1] + sign-extend (imm16)

[Format] Format VI

[Opcode] 15 0 31 16

 rrrrr110001RRRRR iiiiiiiiiiiiiiii

[Flags] CY --

OV --
S --
Z --
SAT --

[Description] Adds the 16-bit immediate data, sign-extended to word length, to the word data of the general

register reg1 and stores the result in the general register reg2. Neither the reg1 data nor the
flags is affected. Do not specify r0 as the destination register reg2.

[Comment] This instruction is to execute a 32-bit address calculation with PSW flag value intact.

CHAPTER 5 INSTRUCTIONS

Preliminary User’s Manual U17135EJ1V1UM 103

<Arithmetic instruction>

Move high half-word
MOVHI

Move High Half-word

[Instruction format] MOVHI imm16, reg1, reg2

[Operation] GR [reg2] ← GR [reg1] + (imm16 || 016)

[Format] Format VI

[Opcode] 15 0 31 16

 rrrrr110010RRRRR iiiiiiiiiiiiiiii

[Flags] CY --

OV --
S --
Z --
SAT --

[Description] Adds the word data with its higher 16 bits specified by the 16-bit immediate data and the lower

16 bits being "0" to the word data of the general register reg1 and stores the result in the
general register reg2. Neither the reg1 data nor the flags is affected. Do not specify r0 as the
destination register reg2.

[Comment] This instruction is to generate the higher 16 bits of a 32-bit address.

CHAPTER 5 INSTRUCTIONS

Preliminary User’s Manual U17135EJ1V1UM 104

<Multiplication instruction>

Multiply word by register/immediate (9-bit)
MUL

Multiplication of (signed) word data

[Instruction format] (1) MUL reg1, reg2, reg3

(2) MUL imm9, reg2, reg3

[Operation] (1) GR [reg3] || GR [reg2] ← GR [reg2] × GR [reg1]

(2) GR [reg3] || GR [reg2] ← GR [reg2] × sign-extend (imm9)

[Format] (1) Format XI

(2) Format XII

[Opcode] 15 0 31 16

 (1) rrrrr111111RRRRR wwwww01000100000

 15 0 31 16

 (2) rrrrr111111iiiii wwwww01001IIII00

iiiii are the lower 5 bits of 9-bit immediate data.
IIII are the upper 4 bits of 9-bit immediate data.

[Flags] CY --

OV --
S --
Z --
SAT --

[Description] (1) The word data in general-purpose register reg2 is multiplied by the word data in general-

purpose register reg1, then upper 32 bits of the result (64-bit data) are stored in general-
purpose register reg3 and the lower 32 bits are stored in general-purpose register reg2.
This instruction treats contents of general-purpose register reg1 and reg2 as 32-bit signed
integer. This has no effect on general-purpose register reg1.

(2) The word data in general-purpose register reg2 is multiplied by 9-bit immediate data with
word-length code extension, then upper 32 bits of the result (64-bit data) are stored in
general-purpose register reg3 and the lower 32 bits are stored in general-purpose register
reg2.
This instruction treats contents of general-purpose register reg2 as 32-bit signed integer.

[Caution] In the “MUL reg1, reg2, reg3” instruction, do not use registers in combinations that satisfy all

the following conditions. If the instruction is executed with all the following conditions satisfied,
the operation is not guaranteed.

 • reg1 = reg3
 • reg1 ≠ reg2
 • reg1 ≠ r0
 • reg3 ≠ r0

CHAPTER 5 INSTRUCTIONS

Preliminary User’s Manual U17135EJ1V1UM 105

[Comment] When general-purpose register reg2 and general-purpose register reg3 are the same register,
only the upper 32 bits of the multiplication result are stored in the register.

CHAPTER 5 INSTRUCTIONS

Preliminary User’s Manual U17135EJ1V1UM 106

<Multiply instruction>

Multiply half-word by register/immediate (5-bit)
MULH

Multiply Half-word

[Instruction format] (1) MULH reg1, reg2

(2) MULH imm5, reg2

[Operation] (1) GR [reg2] (32) ← GR [reg2] (16) × GR [reg1] (16)

(2) GR [reg2] ← GR [reg2] × sign-extend (imm5)

[Format] (1) Format I

(2) Format II

[Opcode] 15 0

 (1) rrrrr000111RRRRR

 15 0

 (2) rrrrr010111iiiii

[Flags] CY --

OV --
S --
Z --
SAT --

[Description] (1) Multiplies the lower half-word data of the general register reg2 by the lower half-word data

of the general register reg1 and stores the result in the general register reg2 as word data.
The data of the general register reg1 is not affected. Do not specify r0 as the destination
register reg2.

(2) Multiplies the lower half-word data of the general register reg2 by the 5-bit immediate data,
sign-extended to half-word length, and stores the result in the general register reg2.
Do not specify r0 as the destination register reg2.

[Comment] In the case of a multiplier or a multiplicand, the higher 16 bits of the general registers, reg1 and

reg2, are ignored.

CHAPTER 5 INSTRUCTIONS

Preliminary User’s Manual U17135EJ1V1UM 107

<Multiply instruction>

Multiply half-word by immediate (16-bit)
MULHI

Multiply Half-word Immediate

[Instruction format] MULHI imm16, reg1, reg2

[Operation] GR [reg2] ← GR [reg1] × imm16

[Format] Format VI

[Opcode] 15 0 31 16

 rrrrr110111RRRRR iiiiiiiiiiiiiiii

[Flags] CY --

OV --
S --
Z --
SAT --

[Description] Multiplies the lower half-word data of the general register reg1 by the 16-bit immediate data

and stores the result in the general register reg2. The data of the general register reg1 is not
affected. Do not specify r0 as the destination register reg2.

[Comment] In the case of a multiplicand, The higher 16 bits of the general register reg1 are ignored.

CHAPTER 5 INSTRUCTIONS

Preliminary User’s Manual U17135EJ1V1UM 108

<Multiplication instruction>

Multiply word unsigned by register/immediate (9-bit)
MULU

Multiplication of (unsigned) word data

[Instruction format] (1) MULU reg1, reg2, reg3

(2) MULU imm9, reg2, reg3

[Operation] (1) GR [reg3] || GR [reg2] ← GR [reg2] × GR [reg1]

(2) GR [reg3] || GR [reg2] ← GR [reg2] × zero-extend (imm9)

[Format] (1) Format XI

(2) Format XII

[Opcode] 15 0 31 16

 (1) rrrrr111111RRRRR wwwww01000100010

 15 0 31 16

 (2) rrrrr111111iiiii wwwww01001IIII10

iiiii are the lower 5 bits of 9-bit immediate data.
IIII are the upper 4 bits of 9-bit immediate data.

[Flags] CY --

OV --
S --
Z --
SAT --

[Description] (1) The word data in general-purpose register reg2 is multiplied by the word data in general-

purpose register reg1, then upper 32 bits of the result (64-bit data) are stored in general-
purpose register reg3 and the lower 32 bits are stored in general-purpose register reg2.
This instruction treats contents of general-purpose register reg1 and reg2 as 32-bit
unsigned integer.
This has no effect on general-purpose register reg1.

(2) The word data in general-purpose register reg2 is multiplied by 9-bit immediate data with
word-length code extension, then upper 32 bits of the result (64-bit data) are stored in
general-purpose register reg3 and the lower 32 bits are stored in general-purpose register
reg2.
This instruction treats contents of general-purpose register reg2 as 32-bit unsigned integer.

[Caution] In the “MULU reg1, reg2, reg3” instruction, do not use registers in combinations that satisfy all

the following conditions. If the instruction is executed with all the following conditions satisfied,
the operation is not guaranteed.

 • reg1 = reg3
 • reg1 ≠ reg2
 • reg1 ≠ r0
 • reg3 ≠ r0

CHAPTER 5 INSTRUCTIONS

Preliminary User’s Manual U17135EJ1V1UM 109

[Comment] When general-purpose register reg2 and general-purpose register reg3 are the same register,
only the upper 32 bits of the multiplication result are stored in the register.

CHAPTER 5 INSTRUCTIONS

Preliminary User’s Manual U17135EJ1V1UM 110

<Special instruction>

No operation
NOP

No Operation

[Instruction format] NOP

[Operation] Executes nothing and consumes at least one clock.

[Format] Format I

[Opcode] 15 0

 0000000000000000

[Flags] CY --

OV --
S --
Z --
SAT --

[Description] Executes nothing and consumes a minimum of one clock cycle.

[Comment] The PC contents are incremented by +2. The opcode is the same as that of MOV r0, r0.

CHAPTER 5 INSTRUCTIONS

Preliminary User’s Manual U17135EJ1V1UM 111

<Logical instruction>

NOT
NOT

Not

[Instruction format] NOT reg1, reg2

[Operation] GR [reg2] ← NOT (GR [reg1])

[Format] Format I

[Opcode] 15 0

 rrrrr000001RRRRR

[Flags] CY --

OV 0
S "1" if operation result's word data MSB is "1"; otherwise, "0".
Z "1" if the operation result is "0"; otherwise, "0".
SAT --

[Description] Logically negates the word data of the general register reg1 using the 1’s complement and

stores the result in the general register reg2. The reg1 data is not affected.

CHAPTER 5 INSTRUCTIONS

Preliminary User’s Manual U17135EJ1V1UM 112

<Bit manipulation instruction>

NOT bit
NOT1

Not Bit

[Instruction format] (1) NOT1 bit#3, disp16 [reg1]

(2) NOT1 reg2, [reg1]

[Operation] (1) adr ← GR [reg1] + sign-extend (disp16)

 Z flag ← Not (Load-memory-bit (adr, bit#3))
 Store-memory-bit (adr, bit#3, Z flag)
(2) adr ← GR [reg1]
 Z flag ← Not (Load-memory-bit (adr, reg2))
 Store-memory-bit (adr, reg2, Z flag)

[Format] (1) Format VIII

(2) Format IX

[Opcode] 15 0 31 16

 (1) 01bbb111110RRRRR dddddddddddddddd

 15 0 31 16

 (2) rrrrr111111RRRRR 0000000011100010

[Flags] CY --

OV --
S --
Z "1" if bit specified by operand = "0", "0" if bit specified by operand = "1".
SAT --

[Description] (1) Adds the word data of general-purpose register reg1 to a 16-bit displacement, sign-

extended to word length to generate a 32-bit address. Then reads the byte data referenced
by the generated address, inverts the bit specified by the 3-bit bit number (0 → 1 or 1 → 0),
and writes back to the original address.

 (2) Reads the word data of general-purpose register reg1 to generate a 32-bit address. Then
reads the byte data referenced by the generated address, inverts the bit specified by the
data of lower 3 bits of reg2 (0 → 1 or 1 → 0), and writes back to the original address.

[Comment] The Z flag of PSW indicates the initial status of the specified bit (0 or 1) and does not indicate

the content of the specified bit resulting from the instruction execution.

CHAPTER 5 INSTRUCTIONS

Preliminary User’s Manual U17135EJ1V1UM 113

<Logical instruction>

OR
OR

Or

[Instruction format] OR reg1, reg2

[Operation] GR [reg2] ← GR [reg2] OR GR [reg1]

[Format] Format I

[Opcode] 15 0

 rrrrr001000RRRRR

[Flags] CY --

OV 0
S "1" if operation result's word data MSB is "1"; otherwise, "0".
Z "1" if the operation result is "0"; otherwise, "0".
SAT --

[Description] ORs the word data of the general register reg2 with the word data of the general register reg1

and stores the result in the general register reg2. The reg1 data is not affected.

CHAPTER 5 INSTRUCTIONS

Preliminary User’s Manual U17135EJ1V1UM 114

<Logical instruction>

OR immediate (16-bit)
ORI

Or Immediate

[Instruction format] ORI imm16, reg1, reg2

[Operation] GR [reg2] ← GR [reg1] OR zero − extend (imm16)

[Format] Format VI

[Opcode] 15 0 31 16

 rrrrr110100RRRRR iiiiiiiiiiiiiiii

[Flags] CY --

OV 0
S "1" if operation result's word data MSB is "1"; otherwise, "0".
Z "1" if the operation result is "0"; otherwise, "0".
SAT --

[Description] ORs the word data of the general register reg1 with the 16-bit immediate data, zero-extended

to word length, and stores the result in the general register reg2. The reg1 data is not affected.

CHAPTER 5 INSTRUCTIONS

Preliminary User’s Manual U17135EJ1V1UM 115

<Special instruction>

Function prepare
PREPARE

Create stack frame

[Instruction format] (1) PREPARE list12, imm5

(2) PREPARE list12, imm5, sp/immNote

 Note The sp/imm values are specified by bits 19 and 20 of the sub opcode.

[Operation] (1) Store-memory (sp − 4, GR [reg in list12], Word) sp ← sp − 4

 repeat 1 step above until all regs in list12 is stored
 sp ← sp − zero-extend (imm5)
(2) Store-memory (sp − 4, GR [reg in list12], Word) sp ← sp − 4
 repeat 1 step above until all regs in list12 is stored
 sp ← sp − zero-extend (imm5)
 ep ← sp/imm

[Format] Format XIII

[Opcode] 15 0 31 16

 (1) 0000011110iiiiiL LLLLLLLLLLL00001

 15 0 31 16 Option (47-32 or 63-32)

 (2) 0000011110iiiiiL LLLLLLLLLLLff011 imm16 / imm32

In the case of 32-bit immediate data (imm32), bits 47 to 32 are the lower 16 bits of imm32
and bits 63 to 48 are the upper 16 bits of imm32.

ff = 00: sp is loaded to ep
ff = 01: Code-extended 16-bit immediate data (bits 47 to 32) is loaded to ep
ff = 10: 16 bit logical left-shifted 16-bit immediate data (bits 47 to 32) is loaded to ep
ff = 11: 32-bit immediate data (bits 63 to 32) is loaded to ep

The values of LLLLLLLLLLLL are the corresponding bit values shown in register list
"list12" (for example, the "L" at bit 21 of the opcode corresponds to the value of bit21 in
list12).
list12 is a 32-bit register list, defined as follows.

 31 30 29 28 27 26 25 24 23 22 21 20 ... 1 0

 r24 r25 r26 r27 r20 r21 r22 r23 r28 r29 r31 -- r30

CHAPTER 5 INSTRUCTIONS

Preliminary User’s Manual U17135EJ1V1UM 116

Bits 31 to 21 and bit 0 correspond to general-purpose registers (r20 to r31), so that when
any of these bits is set (= 1), it specifies a corresponding register operation as a
processing target. For example, when r20 and r30 are specified, the values in list12
appear as shown below (register bits that do not correspond, i.e., bits 20 to 1 are set as
"Don't care").

 • When all of the register's non-corresponding bits are "0": 08000001H
 • When all of the register's non-corresponding bits are "1": 081FFFFFH

[Flags] CY --

OV --
S --
Z --
SAT --

[Description] (1) The general-purpose registers specified in list12 are saved (4 is subtracted from the sp

value and the data is stored in that address). Next, 2-bit logical left shifts are used to create
5-bit immediate data with zeros extended to word length, which is subtracted from the sp
value.

(2) The general-purpose registers specified in list12 are saved (4 is subtracted from the sp
value and the data is stored in that address). Next, 2-bit logical left shifts are used to create
5-bit immediate data with zeros extended to word length, which is subtracted from the sp
value.
Next, the data specified by the third operand (sp/imm) is loaded to ep.

[Comment] list12's general-purpose registers are saved in ascending order (r20, r21, ..., r31).

imm5 is used to create a stack frame that is used for auto variables and temporary data.
Even when misaligned access is enabled, the lower two bit address specified by sp is always
masked (= 0).
If an interrupt occurs before the sp is updated, execution is stopped and the interrupt is
processed using the return address as this instruction's start address, then once the interrupt
processing is completed execution of this instruction is resumed. In such cases, the sp and ep
values prior to execution of this instruction are retained.

[Caution] When an interrupt occurs during execution of an instruction, the stack operation may cause

execution of the instruction to be stopped after the read/write cycles and register overwrite
operations have been completed.

CHAPTER 5 INSTRUCTIONS

Preliminary User’s Manual U17135EJ1V1UM 117

<Special instruction>

Return from trap or interrupt
RETI

Return from Trap or Interrupt

[Instruction format] RETI

[Operation] if PSW.EP = 1

then PC ← EIPC
 PSW ← EIPSW
else if PSW.NP = 1
 then PC ← FEPC
 PSW ← FEPSW
 else PC ← EIPC
 PSW ← EIPSW

[Format] Format X

[Opcode] 15 0 31 16

 0000011111100000 0000000101000000

[Flags] CY Value read from FEPSW or EIPSW is restored.

OV Value read from FEPSW or EIPSW is restored.
S Value read from FEPSW or EIPSW is restored.
Z Value read from FEPSW or EIPSW is restored.
SAT Value read from FEPSW or EIPSW is restored.

[Description] Reads the return PC and PSW from the appropriate system register and returns from a

software exception or interrupt routine. The following steps are taken:
 (1) If the EP flag of PSW is "1", the return PC and PSW are read from EIPC and EIPSW,

regardless of the status of the NP flag of PSW.
If the EP flag of PSW is "0" and the NP flag of PSW is "1", the return PC and PSW are read
from FEPC and FEPSW.
If the EP flag of PSW is "0" and the NP flag of PSW is "0", the return PC and PSW are read
from EIPC and EIPSW.

 (2) The values are restored to PC and PSW and the control is transferred to the return address.

CHAPTER 5 INSTRUCTIONS

Preliminary User’s Manual U17135EJ1V1UM 118

[Caution] In order to correctly restore the PC and PSW values when using a RETI instruction to recover
from non-maskable interrupt processing or software exception processing, the NP and EP flags
must be set as follows before executing the RETI instruction.

• When using RETI instruction to recover from non-maskable interrupt processing: NP = 1 and

EP = 0
• When using RETI instruction to recover from software exception processing: EP = 1

The LDSR instruction is used for program-based settings.
Due to the operation of the interrupt controller, interrupts cannot be received in the ID stage
during the second half of this instruction.

CHAPTER 5 INSTRUCTIONS

Preliminary User’s Manual U17135EJ1V1UM 119

<Data manipulation instruction>

Shift arithmetic right by register/immediate (5-bit)
SAR

Shift Arithmetic Right

[Instruction format] (1) SAR reg1, reg2

(2) SAR imm5, reg2
(3) SAR reg1, reg2, reg3

[Operation] (1) GR [reg2] ← GR [reg2] arithmetically shift right by GR [reg1]

(2) GR [reg2] ← GR [reg2] arithmetically shift right by zero-extend
(3) GR [reg3] ← GR [reg2] arithmetically shift right by GR [reg1]

[Format] (1) Format IX

(2) Format II
(3) Format XI

[Opcode] 15 0 31 16

 (1) rrrrr111111RRRRR 0000000010100000

 15 0

 (2) rrrrr010101iiiii

 15 0 31 16

 (3) rrrrr111111RRRRR wwwww00010100010

[Flags] CY "1" if the last bit shifted out is "1"; otherwise, "0" including non-shift.

OV 0
S "1" if the operation result is negative; otherwise, "0".
Z "1" if the operation result is "0"; otherwise, "0".
SAT --

[Description] (1) Arithmetically right-shifts the word data of the general register reg2 by ‘n’ (0 to +31), the

position specified by the lower 5 bits on the general register reg1, by copying the pre-shift
MSB value to the post-shift MSB. The result is written to the general register reg2. In cases
where the shift number is 0, general-purpose register reg2 retains the value prior to execution
of instructions. The reg1 data is not affected.

(2) Arithmetically right-shifts the word data of the general register reg2 by ‘n’ (0 to +31), the
position specified by the 5-bit immediate data, zero-extended to word length (after the shift,
the MSB prior to shift execution is copied and set as the new MSB value). The result is
written to the general register reg2. In cases where the shift number is 0, general-purpose
register reg2 retains the value prior to execution of instructions.

 (3) For the portion of the word data of general purpose register reg2 for which the shift
 number is indicated by the lower 5 bits of general purpose register reg1, 0 through +31
 are arithmetic right-shifted (MSB value prior to shift is copied to the post-shift MSB) and
 written into general purpose register reg3. In cases where the shift number is 0, general-
purpose register reg3 retains the value prior to execution of instructions. General purpose
registers reg1 and reg2 are not affected.

CHAPTER 5 INSTRUCTIONS

Preliminary User’s Manual U17135EJ1V1UM 120

<Data manipulation instruction>

Shift and set flag condition
SASF

Shift and Set Flag Condition

[Instruction format] SASF cccc, reg2

[Operation] if conditions are satisfied

 then GR [reg2] ← (GR [reg2] Logically shift left by 1) OR 00000001H
 else GR [reg2] ← (GR [reg2] Logically shift left by 1) OR 00000000H

[Format] Format IX

[Opcode] 15 0 31 16

 rrrrr1111110cccc 0000001000000000

[Flags] CY --

OV --
S --
Z --
SAT --

[Description] When the condition specified by condition code "cccc" is met, register reg2 is logically left-

shifted by "1"; if a condition is met, the least significant bit (LSB) of the register 2 is set to "1"
and if a condition is not met, the least significant bit (LSB) of the register 2 is set to "0".
Please designate one of the condition codes shown in the following table as [cccc].

Condition

code

Condition formula Condition

code

Condition formula

0000 OV = 1 0100 S = 1

1000 OV = 0 1100 S = 0

0001 CY = 1 0101 always (unconditional)

1001 CY = 0 1101 SAT = 1

0010 Z = 1 0110 (S xor OV) = 1

1010 Z = 0 1110 (S xor OV) = 0

0011 (CY or Z) = 1 0111 ((S xor OV) or Z) = 1

1011 (CY or Z) = 0 1111 ((S xor OV) or Z) = 0

[Comment] Refer to the SETF instruction.

CHAPTER 5 INSTRUCTIONS

Preliminary User’s Manual U17135EJ1V1UM 121

<Saturated Operation Instructions>

Saturated add register/immediate (5-bit)
SATADD

Saturated add register/immediate (5-bit)

[Instruction format] (1) SATADD reg1, reg2

(2) SATADD imm5, reg2
(3) SATADD reg1, reg2, reg3

[Operation] (1) GR [reg2] ← saturated (GR [reg2] + GR [reg1])

(2) GR [reg2] ← saturated (GR [reg2] + sigh-extend (imm5))
(3) GR [reg3] ← saturated (GR [reg2] + GR [reg1])

[Format] (1) Format I

(2) Format II
(3) Format XI

[Opcode] 15 0

 (1) rrrrr000110RRRRR

 15 0

 (2) rrrrr010001iiiii

 15 0 31 16

 (3) rrrrr111111RRRRR wwwww01110111010

[Flags] CY "1" if a carry occurs from MSB; otherwise, "0".

OV "1" if overflow occurs; otherwise, "0".
S "1" if saturated operation result is negative; otherwise, "0".
Z "1" if saturated operation result is "0"; otherwise, "0".
SAT "1" if OV = 1; otherwise, does not change.

[Description] (1) The word data of general-purpose register reg1 are added to the word data of general

purpose register reg2, and the result is stored in general-purpose register reg2. However, in
cases where the result exceeds the maximum positive value 7FFFFFFFH, 7FFFFFFFH is
stored in reg2, and in cases where it exceeds the maximum negative value 80000000H,
80000000H is stored in reg2; then the SAT flag is set at (1). General-purpose register reg1
is not affected.
Please do not designate r0 in reg2.

(2) The 5-bit immediate code-extended to the word length is added to the word data of general
purpose register reg2, and the result is stored in general purpose register reg2. However,
in cases where the result exceeds the maximum positive value 7FFFFFFFH, 7FFFFFFFH is
stored in reg2, and in cases where it exceeds the maximum negative value 80000000H,
80000000H is stored in reg2; then the SAT flag is set at (1).
Please do not designate r0 in reg2.

CHAPTER 5 INSTRUCTIONS

Preliminary User’s Manual U17135EJ1V1UM 122

 (3) The word data of general-purpose register reg1 are added to the word data of general
purpose register reg2, and the result is stored in general-purpose register reg3. However, in
cases where the result exceeds the maximum positive value 7FFFFFFFH, 7FFFFFFFH is
stored in reg3, and in cases where it exceeds the maximum negative value 80000000H,
80000000H is stored in reg3; then the SAT flag is set at (1). General-purpose register reg1
and reg2 are not affected.

[Comment] The SAT flag is a cumulative flag. The saturate result sets the flag to "1" and will not be cleared
to "0" even if the result of the subsequent operation is not saturated. The saturate instruction is
executed normally, even with the SAT flag set to "1".

[Caution] To clear the SAT flag to 0, load data to the PSW by using the LDSR instruction.

CHAPTER 5 INSTRUCTIONS

Preliminary User’s Manual U17135EJ1V1UM 123

<Saturate instruction>

Saturated subtract
SATSUB

Saturate Subtract

[Instruction format] (1) SATSUB reg1, reg2

(2) SATSUB reg1, reg2, reg3

[Operation] (1) GR [reg2] ← saturated (GR [reg2] − GR [reg1])
(2) GR [reg3] ← saturated (GR [reg2] − GR [reg1])

[Format] (1) Format I

(2) Format XI

[Opcode] 15 0

 (1) rrrrr000101RRRRR

 15 0 31 16

 (2) rrrrr111111RRRRR wwwww01110011010

[Flags] CY "1" if a borrow occurs from MSB; otherwise, "0".

OV "1" if overflow occurs; otherwise, "0".
S "1" if saturated operation result is negative; otherwise, "0".
Z "1" if saturated operation result is "0"; otherwise, "0".
SAT "1" if OV = 1; otherwise, does not change.

[Description] (1) Subtracts the word data of the general register reg1 from the word data of the general

register reg2 and stores the result in the general register reg2. If the result exceeds the
maximum positive value 7FFFFFFFH, 7FFFFFFFH is stored to reg2; if the result exceeds
the maximum negative value 80000000H, 80000000H is stored to reg2. The SAT flag is set
to "1". The reg1 data is not affected. Do not specify r0 as the destination register reg2.

(2) The word data of general-purpose register reg1 are subtracted to the word data of
 general-purpose register reg2, and the result is stored in general purpose register reg3.
 However, in cases where the result exceeds the maximum positive value
 7FFFFFFFH, 7FFFFFFFH is stored in reg3, and in cases where it exceeds the maximum
 negative value 80000000H, 80000000H is stored in reg3; then the SAT flag is set at (1).
 General-purpose register reg1 and reg2 are not affected.

[Comment] The SAT flag is a cumulative flag. The saturate result sets the flag to "1" and will not be cleared

to "0" even if the result of the subsequent operation is not saturated. The saturate instruction is
executed normally, even with the SAT flag set to "1".

[Caution] To clear the SAT flag to 0, load data to the PSW by using the LDSR instruction.

CHAPTER 5 INSTRUCTIONS

Preliminary User’s Manual U17135EJ1V1UM 124

<Saturate instruction>

Saturated subtract immediate
SATSUBI

Saturate Subtract Immediate

[Instruction format] SATSUBI imm16, reg1, reg2

[Operation] GR [reg2] ← saturated (GR [reg1] − sign-extend (imm16))

[Format] Format VI

[Opcode] 15 0 31 16

 rrrrr110011RRRRR iiiiiiiiiiiiiiii

[Flags] CY "1" if a borrow occurs from MSB; otherwise, "0".

OV "1" if overflow occurs; otherwise, "0".
S "1" if saturated operation result is negative; otherwise, "0".
Z "1" if saturated operation result is "0"; otherwise, "0".
SAT "1" if OV = 1; otherwise, does not change.

[Description] Subtracts the 16-bit immediate data, sign-extended to word length, from the word data of the

general register reg1 and stores the result in the general register reg2. If the result exceeds the
maximum positive value 7FFFFFFFH, 7FFFFFFFH is stored to reg2; if the result exceeds the
maximum negative value 80000000H, 80000000H is stored to reg2. The SAT flag is set to "1".
The reg1 data is not affected. Do not specify r0 as the destination register reg2.

[Comment] The SAT flag is a cumulative flag. The saturate result sets the flag to "1" and will not be cleared

to "0" even if the result of the subsequent operation is not saturated. The saturate instruction is
executed normally, even with the SAT flag set to "1".

[Caution] To clear the SAT flag to 0, load data to the PSW by using the LDSR instruction.

CHAPTER 5 INSTRUCTIONS

Preliminary User’s Manual U17135EJ1V1UM 125

<Saturate instruction>

Saturated subtract reverse
SATSUBR

Saturate Subtract Reverse

[Instruction format] SATSUBR reg1, reg2

[Operation] GR [reg2] ← saturated (GR [reg1] − GR [reg2])

[Format] Format I

[Opcode] 15 0

 rrrrr000100RRRRR

[Flags] CY "1" if a borrow occurs from MSB; otherwise, "0".

OV "1" if overflow occurs; otherwise, "0".
S "1" if saturated operation result is negative; otherwise, "0".
Z "1" if saturated operation result is "0"; otherwise, "0".
SAT "1" if OV = 1; otherwise, does not change.

[Description] Subtracts the word data of the general register reg2 from the word data of the general register

reg1 and stores the result in the general register reg2. If the result exceeds the maximum
positive value 7FFFFFFFH, 7FFFFFFFH is stored to reg2; if the result exceeds the maximum
negative value 80000000H, 80000000H is stored to reg2. The SAT flag is set to "1". The reg1
data is not affected. Do not specify r0 as the destination register reg2.

[Comment] The SAT flag is a cumulative flag. The saturate result sets the flag to "1" and will not be cleared

to "0" even if the result of the subsequent operation is not saturated. The saturate instruction is
executed normally, even with the SAT flag set to "1".

[Caution] To clear the SAT flag to 0, load data to the PSW by using the LDSR instruction.

CHAPTER 5 INSTRUCTIONS

Preliminary User’s Manual U17135EJ1V1UM 126

<Conditional Operation Instructions>

Subtract on condition flag
SBF

Subtract on condition flag

[Instruction format] SBF cccc, reg1, reg2, reg3

[Operation] if conditions are satisfied

then GR [reg3] ← GR [reg2] − GR [reg1] −1
else GR [reg3] ← GR [reg2] − GR [reg1] −0

[Format] Format XI

[Opcode] 15 0 31 16

 rrrrr111111RRRRR wwwww011100cccc0

[Flags] CY "1" if a borrow occurs from MSB; otherwise, "0".

OV "1" if overflow occurs; otherwise, "0".
S "1" if operation result is negative; otherwise, "0".
Z "1" if operation result is "0"; otherwise, "0".
SAT --

[Description] In cases where the result of subtracting the content of general purpose register reg1 from the

word data of general purpose register reg2 satisfies the condition designated in condition code
[cccc], 1 is subtracted, and in cases where it does not, 0 is substracted; the result is then stored
in general purpose register reg3. General purpose register reg2 is not affected. Please
designate one of the condition codes shown in the following table as [cccc]. (However, cccc
cannot equal 1101.)

Condition

Code

Condition formula Condition

Code

Condition formula

0000 OV = 1 0100 S = 1

1000 OV = 0 1100 S = 0

0001 CY = 1 0101 always (Unconditional)

1001 CY = 0 0110 (S xor OV) = 1

0010 Z = 1 1110 (S xor OV) = 0

1010 Z = 0 0111 ((S xor OV) or Z) = 1

0011 (CY or Z) = 1 1111 ((S xor OV) or Z) = 0

1011 (CY or Z) = 0 (1101) Assignment Inhibited

CHAPTER 5 INSTRUCTIONS

Preliminary User’s Manual U17135EJ1V1UM 127

<Bit Search Instructions>

Search zero from left
SCH0L

Bit (0) search from MSB side

[Instruction format] SCH0L reg2, reg3

[Operation] GR [reg3] ← search zero from left of GR [reg2]

[Format] Format IX

[Opcode] 15 0 31 16

 rrrrr11111100000 wwwww01101100100

[Flags] CY "1" if bit (0) is found eventually; otherwise, "0".

OV 0
S 0
Z "1" if bit (0) is not found; otherwise, "0".
SAT --

[Description] Word data of general purpose register reg2 are searched from the left side (MSB side), and the

position at which bit (0) is first found is written into general purpose register reg3 in base 16
(e.g., in cases where bit 31 of reg2 is 0, 01H is written into reg3).
In cases where bit (0) is not found, 0 is written into reg3, and the Z-flag is simultaneously set at
(1). In cases where bit (0) is eventually found, the CY flag is set at (1).

CHAPTER 5 INSTRUCTIONS

Preliminary User’s Manual U17135EJ1V1UM 128

<Bit Search Instructions>

Search zero from right
SCH0R

Bit (0) search from LSB side

[Instruction format] SCH0R reg2, reg3

[Operation] GR [reg3] ← search zero from right of GR [reg2]

[Format] Format IX

[Opcode] 15 0 31 16

 rrrrr11111100000 wwwww01101100000

[Flags] CY "1" if bit (0) is found eventually; otherwise, "0".

OV 0
S 0
Z "1" if bit (0) is not found; otherwise, "0".
SAT --

[Description] Word data of general purpose register reg2 are searched from the right side (LSB side), and

the position at which bit (0) is first found is written into general purpose register reg3 in base 16
(e.g., in cases where bit 0 of reg2 is 0, 01H is written into reg3).
In cases where bit (0) is not found, 0 is written into reg3, and the Z-flag is simultaneously set at
(1). In cases where bit (0) is eventually found, the CY flag is set at (1).

CHAPTER 5 INSTRUCTIONS

Preliminary User’s Manual U17135EJ1V1UM 129

<Bit Search Instructions>

Search one from left
SCH1L

Bit (1) search from MSB side

[Instruction format] SCH1L reg2, reg3

[Operation] GR [reg3] ← search one from left of GR [reg2]

[Format] Format IX

[Opcode] 15 0 31 16

 rrrrr11111100000 wwwww01101100110

[Flags] CY "1" if bit (1) is found eventually; otherwise, "0".

OV 0
S 0
Z "1" if bit (1) is not found; otherwise, "0".
SAT --

[Description] Word data of general purpose register reg2 are searched from the left side (MSB side), and the

position at which bit (1) is first found is written into general purpose register reg3 in base 16
(e.g., in cases where bit 31 of reg2 is 1, 01H is written into reg3).
In cases where bit (1) is not found, 0 is written into reg3, and the Z-flag is simultaneously set at
(1). In cases where bit (1) is eventually found, the CY flag is set at (1).

CHAPTER 5 INSTRUCTIONS

Preliminary User’s Manual U17135EJ1V1UM 130

<Bit Search Instructions>

Search one from right
SCH1R

Bit (1) search from LSB side

[Instruction format] SCH1R reg2, reg3

[Operation] GR [reg3] ← search one from right of GR [reg2]

[Format] Format IX

[Opcode] 15 0 31 16

 rrrrr11111100000 wwwww01101100010

[Flags] CY "1" if bit (1) is found eventually; otherwise, "0".

OV 0
S 0
Z "1" if bit (1) is not found; otherwise, "0".
SAT --

[Description] Word data of general purpose register reg2 are searched from the right side (LSB side), and

the position at which bit (1) is first found is written into general purpose register reg3 in base 16
(e.g., in cases where bit 0 of reg2 is 1, 01H is written into reg3).
In cases where bit (1) is not found, 0 is written into reg3, and the Z-flag is simultaneously set at
(1). In cases where bit (1) is eventually found, the CY flag is set at (1).

CHAPTER 5 INSTRUCTIONS

Preliminary User’s Manual U17135EJ1V1UM 131

<Bit manipulation instruction>

Set bit
SET1

Set Bit

[Instruction format] (1) SET1 bit#3, disp16 [reg1]

(2) SET1 reg2, [reg1]

[Operation] (1) adr ← GR [reg1] + sign-extend (disp16)

 Z flag ← Not (Load-memory-bit (adr, bit#3))
 Store-memory-bit (adr, bit#3, 1)
(2) adr ← GR [reg1]
 Z flag ← Not (Load-memory-bit (adr, reg2))
 Store-memory-bit (adr, reg2, 1)

[Format] (1) Format VIII

(2) Format IX

[Opcode] 15 0 31 16

 (1) 00bbb111110RRRRR dddddddddddddddd

 15 0 31 16

 (2) rrrrr111111RRRRR 0000000011100000

[Flags] CY --

OV --
S --
Z "1" if bit specified by operand = "0", "0" if bit specified by operand = "1".
SAT --

[Description] (1) Adds the 16-bit displacement, sign-extended to word length, to the word data of general-

purpose register reg1 to generate a 32-bit address. Then reads the byte data referenced
by the generated address, sets the bit specified by the 3-bit bit number to 1, and writes
back to the original address.

 (2) Reads the word data of general-purpose register reg1 to generate a 32-bit address. Then
reads the byte data referenced by the generated address, sets the bit specified by the data
of lower 3 bits of reg2 to 1, and writes back to the original address.

[Comment] The Z flag of PSW indicates the initial status of the specified bit (0 or 1) and does not indicate

the content of the specified bit resulting from the instruction execution.

CHAPTER 5 INSTRUCTIONS

Preliminary User’s Manual U17135EJ1V1UM 132

<Data manipulation instruction>

Set flag condition
SETF

Set Flag Condition

[Instruction format] SETF cccc, reg2

[Operation] if conditions are satisfied

 then GR [reg2] ← 00000001H
 else GR [reg2] ← 00000000H

[Format] Format IX

[Opcode] 15 0 31 16

 rrrrr1111110cccc 0000000000000000

[Flags] CY --

OV --
S --
Z --
SAT --

[Description] When the condition specified by condition code "cccc" is met, Sets "1" to the general register

reg2 if a condition is met and sets "0" if a condition is not met.
Please designate one of the condition codes shown in the following table as [cccc].

Condition

code

Condition formula Condition

code

Condition formula

0000 OV = 1 0100 S = 1

1000 OV = 0 1100 S = 0

0001 CY = 1 0101 Always (unconditional)

1001 CY = 0 1101 SAT = 1

0010 Z = 1 0110 (S xor OV) = 1

1010 Z = 0 1110 (S xor OV) = 0

0011 (CY or Z) = 1 0111 ((S xor OV) or Z) = 1

1011 (CY or Z) = 0 1111 ((S xor OV) or Z) = 0

CHAPTER 5 INSTRUCTIONS

Preliminary User’s Manual U17135EJ1V1UM 133

[Comment] Examples of SETF instruction:
(1) Translation of multiple condition clauses

If A of statement if (A) in C language consists of two or more condition clauses (a1, a2, a3,
and so on), it is usually translated to a sequence of if (a1) then, if (a2) then. The object
code executes "conditional branch" by checking the result of evaluation equivalent to an.
Since a pipeline operation requires more time to execute "condition judgment" + "branch"
than to execute an ordinary operation, the result of evaluating each condition clause if (an)
is stored to register Ra. By performing a logical operation to Ran after all the condition
clauses have been evaluated, the pipeline delay can be prevented.

(2) Double-length operation
To execute a double-length operation, such as "Add with Carry", the result of the CY flag
can be stored to the general register reg2. Therefore, a carry from the lower bits can be
expressed as a numeric value.

CHAPTER 5 INSTRUCTIONS

Preliminary User’s Manual U17135EJ1V1UM 134

<Data manipulation instruction>

Shift logical left by register/immediate (5-bit)
SHL

Shift Logical Left

[Instruction format] (1) SHL reg1, reg2

(2) SHL imm5, reg2
(3) SHL reg1, reg2, reg3

[Operation] (1) GR [reg2] ← GR [reg2] logically shift left by GR [reg1]

(2) GR [reg2] ← GR [reg2] logically shift left by zero-extend (imm5)
(3) GR [reg3] ← GR [reg2] logically shift left by GR [reg1]

[Format] (1) Format IX

(2) Format II
(3) Format XI

[Opcode] 15 0 31 16

 (1) rrrrr111111RRRRR 0000000011000000

 15 0

 (2) rrrrr010110iiiii

 15 0 31 16

 (3) rrrrr111111RRRRR wwwww00011000010

[Flags] CY "1" if the last bit shifted out is "1"; otherwise, "0" including non-shift.

OV 0
S "1" if the operation result is negative; otherwise, "0".
Z "1" if the operation result is "0"; otherwise, "0".
SAT --

[Description] (1) Logically left-shifts the word data of the general register reg2 by ‘n’(0 to +31), the position

specified by the lower 5 bits on the general register reg1, by shifting "0" to LSB. The result
is written to the general register reg2. In cases where the shift number is 0, general-purpose
register reg2 retains the value prior to execution of instructions. The data of the general
register reg1 is not affected.

(2) Logically left-shifts the word data of the general register reg2 by ‘n’(0 to +31), the position
specified by the 5-bit immediate data, zero-extended to word length, by shifting "0" to LSB.
The result is written to the general register reg2. In cases where the shift number is 0,
general-purpose register reg2 retains the value prior to execution of instructions.

 (3) For the portion of the word data of general purpose register reg2 for which the shift
number is indicated by the lower 5 bits of general-purpose register reg1, 0 through +31 are
logic left-shifted (0 is fed into the LSB side) and written into general purpose register reg3.
In cases where the shift number is 0, general-purpose register reg3 retains the value prior
to execution of instructions. General purpose registers reg1 and reg2 are not affected.

CHAPTER 5 INSTRUCTIONS

Preliminary User’s Manual U17135EJ1V1UM 135

<Data manipulation instruction>

Shift logical right by register/immediate (5-bit)
SHR

Shift Logical Right

[Instruction format] (1) SHR reg1, reg2

(2) SHR imm5, reg2
(3) SHR reg1, reg2, reg3

[Operation] (1) GR [reg2] ← GR [reg2] logically shift right by GR [reg1]

(2) GR [reg2] ← GR [reg2] logically shift right by zero-extend(imm5)
(3) GR [reg3] ← GR [reg2] logically shift right by GR [reg1]

[Format] (1) Format IX

(2) Format II
(3) Format XI

[Opcode] 15 0 31 16

 (1) rrrrr111111RRRRR 0000000010000000

 15 0

 (2) rrrrr010100iiiii

 15 0 31 16

 (3) rrrrr111111RRRRR wwwww00010000010

[Flags] CY "1" if the last bit shifted out is "1"; otherwise, "0" including non-shift.

OV 0
S "1" if the operation result is negative; otherwise, "0".
Z "1" if the operation result is "0"; otherwise, "0".
SAT --

[Description] (1) Logically right-shifts the word data of the general register reg2 by ‘n’ (0 to +31), the

position specified by the lower 5 bits on the general register reg1, by shifting "0" to MSB.
The result is written to the general register reg2. In cases where the shift number is 0,
general-purpose register reg2 retains the value prior to execution of instructions. The data
of the general register reg1 is not affected.

(2) Logically right-shifts the word data of the general register reg2 by ‘n’ (0 to +31), the position
specified by the 5-bit immediate data, zero-extended to word length, by shifting "0" to MSB.
The result is written to the general register reg2. In cases where the shift number is 0,
general-purpose register reg2 retains the value prior to execution of instructions.

(3) For the portion of the word data of general purpose register reg2 for which the shift
number is indicated by the lower 5 bits of general-purpose register reg1, 0 through +31 are
logic right-shifted (0 is fed into the MSB side) and written into general purpose register reg3.
In cases where the shift number is 0, general-purpose register reg3 retains the value prior
to execution of instructions. General purpose registers reg1 and reg2 are not affected.

CHAPTER 5 INSTRUCTIONS

Preliminary User’s Manual U17135EJ1V1UM 136

<Load instruction>

Short format load byte
SLD.B

Short format load byte

[Instruction format] SLD.B disp7 [ep] , reg2

[Operation] adr ← ep + zero-extend (disp7)

GR [reg2] ← sign-extend (Load-memory (adr, Byte))

[Format] Format IV

[Opcode] 15 0

 rrrrr0110ddddddd

[Flags] CY --

OV --
S --
Z --
SAT --

[Description] Adds the 7-bit displacement data, zero-extended to word length, to the element pointer to

generate a 32-bit address. Byte data is read from the generated address, sign-extended to
word length, and stored to reg2.

[Comment] When an interrupt occurs during the SLD.B instruction execution, the execution is aborted to
process the interrupt. The execution resumes at the original instruction address upon returning
from the interrupt.
The bus cycle sequence may be changed if accessing the resources connected to a bus, such
as VFB, VDB, VSB, NPB, instruction cache bus, or data cache bus. The bus sequence change
will not occur for an access to the same bus.

CHAPTER 5 INSTRUCTIONS

Preliminary User’s Manual U17135EJ1V1UM 137

<Load instruction>

Short format load byte unsigned
SLD.BU

Short format load byte unsigned

[Instruction format] SLD.BU disp4 [ep] , reg2

[Operation] adr ← ep + zero-extend (disp4)

GR [reg2] ← zero-extend (Load-memory (adr, Byte))

[Format] Format IV

[Opcode] 15 0

 rrrrr0000110dddd

rrrrr must be other than 00000.

[Flags] CY --

OV --
S --
Z --
SAT --

[Description] Adds the 4-bit displacement data, zero-extended to word length, to the element pointer to

generate a 32-bit address. Byte data is read from the generated address, sign-extended to
word length, and stored to reg2.

[Comment] When an interrupt occurs during the SLD.BU instruction execution, the execution is aborted to

process the interrupt. The execution resumes at the original instruction address upon returning
from the interrupt.
The bus cycle sequence may be changed if accessing the resources connected to a bus, such
as VFB, VDB, VSB, NPB, instruction cache bus, or data cache bus. The bus sequence change
will not occur for an access to the same bus.

CHAPTER 5 INSTRUCTIONS

Preliminary User’s Manual U17135EJ1V1UM 138

<Load instruction>

Short format load half-word
SLD.H

Short format load half-word

[Instruction format] SLD.H disp8 [ep] , reg2

[Operation] adr ← ep + zero-extend (disp8)

GR [reg2] ← sign-extend (Load-memory (adr, Half-word))

[Format] Format IV

[Opcode] 15 0

 rrrrr1000ddddddd

ddddddd is the higher 7 bits of disp8.

[Flags] CY --
OV --
S --
Z --
SAT --

[Description] Adds the element pointer to the 8-bit displacement data, sign-extended to word length, to

generate a 32-bit address. Half-word data is read from the generated address, sign-extended
to word length, and stored to the general register reg2.

[Comment] When an interrupt occurs during the SLD.H instruction execution, the execution is aborted to

process the interrupt. The execution resumes at the original instruction address upon returning
from the interrupt.
The bus cycle sequence may be changed if accessing the resources connected to a bus, such
as VFB, VDB, VSB, NPB, instruction cache bus, or data cache bus. The bus sequence change
will not occur for an access to the same bus.

[Caution] Adding the element pointer to the 8-bit displacement data, zero-extended to word length, can

generate two types of results. It depends on the misaligned mode setting:

• Bit0 is masked to "0" and address is generated (when misaligned access is disabled).
• Bit0 is are not masked and address is generated (when misaligned access is enabled).

 For details on misaligned access, see 3.3 Data Alignment.

CHAPTER 5 INSTRUCTIONS

Preliminary User’s Manual U17135EJ1V1UM 139

<Load instruction>

Short format load half-word unsigned
SLD.HU

Short format load half-word unsigned

[Instruction format] SLD.HU disp5 [ep] , reg2

[Operation] adr ← ep + zero-extend (disp5)

GR [reg2] ← zero-extend (Load-memory (adr, Half-word))

[Format] Format IV

[Opcode] 15 0

 rrrrr0000111dddd

dddd is the higher 4 bits of disp5. rrrrr must be other than 00000.

[Flags] CY --

OV --
S --
Z --
SAT --

[Description] Adds the element pointer to the 5-bit displacement data, sign-extended to word length, to

generate a 32-bit address. Half-word data is read from the generated address, sign-extended
to word length, and stored to the general register reg2.

[Comment] When an interrupt occurs during the SLD.HU instruction execution, the execution is aborted to

process the interrupt. The execution resumes at the original instruction address upon returning
from the interrupt.
The bus cycle sequence may be changed if accessing the resources connected to a bus, such
as VFB, VDB, VSB, NPB, instruction cache bus, or data cache bus. The bus sequence change
will not occur for an access to the same bus.

[Caution] Adding the element pointer to the 8-bit displacement data, zero-extended to word length, can

generate two types of results. It depends on the misaligned mode setting:

• Bit0 is masked to "0" and address is generated (when misaligned access is disabled).
• Bit0 is not masked and address is generated (when misaligned access is enabled).

 For details on misaligned access, see 3.3 Data Alignment.

CHAPTER 5 INSTRUCTIONS

Preliminary User’s Manual U17135EJ1V1UM 140

<Load instruction>

Short format load word
SLD.W

Short format load word

[Instruction format] SLD.W disp8 [ep] , reg2

[Operation] adr ← ep + zero-extend (disp8)

GR [reg2] ← Load-memory (adr, Word)

[Format] Format IV

[Opcode] 15 0

 rrrrr1010dddddd0

dddddd is the higher 6 bits of disp8.

[Flags] CY --
OV --
S --
Z --
SAT --

[Description] Adds the element pointer to the 8-bit displacement data, sign-extended to word length, to

generate a 32-bit address. Word data is read from the generated address, and stored to the
general register reg2.

[Comment] When an interrupt occurs during the SLD.W instruction execution, the execution is aborted to

process the interrupt. The execution resumes at the original instruction address upon returning
from the interrupt.
The bus cycle sequence may be changed if accessing the resources connected to a bus, such
as VFB, VDB, VSB, NPB, instruction cache bus, or data cache bus. The bus sequence change
will not occur for an access to the same bus.

Caution Adding the element pointer to the 8-bit displacement data, zero-extended to word length, can

generate two types of results. It depends on the misaligned mode setting:

• Bit0 and bit1 are masked to "0" and address is generated (when misaligned access is
disabled).

• Bit0 and bit1 are not masked and address is generated (when misaligned access is enabled).

 For details on misaligned access, see 3.3 Data Alignment.

CHAPTER 5 INSTRUCTIONS

Preliminary User’s Manual U17135EJ1V1UM 141

<Store instruction>

Short format store byte
SST.B

Short format store byte

[Instruction format] SST.B reg2, disp7 [ep]

[Operation] adr ← ep + zero-extend (disp7)

Store-memory (adr, GR [reg2] , Byte)

[Format] Format IV

[Opcode] 15 0

 rrrrr0111ddddddd

[Flags] CY --

OV --
S --
Z --
SAT --

[Description] Adds the 7-bit displacement data, zero-extended to word length, to the element pointer to

generate a 32-bit address and stores the data on the lowest byte of reg2 to the generated
address.

[Comment] If an interrupt occurs during instruction execution, execution is aborted, and the interrupt is

serviced. Upon returning from the interrupt, the execution is restarted from the beginning, with
the return address being the address of this instruction.
The bus cycle sequence may be changed if accessing the resources connected to a bus, such
as VFB, VDB, VSB, NPB, instruction cache bus, or data cache bus. The bus sequence change
will not occur for an access to the same bus.

CHAPTER 5 INSTRUCTIONS

Preliminary User’s Manual U17135EJ1V1UM 142

<Store instruction>

Short format store half-word
SST.H

Short format store half-word

[Instruction format] SST.H reg2, disp8 [ep]

[Operation] adr ← ep + zero-extend (disp8)

Store-memory (adr, GR [reg2] , Half-word)

[Format] Format IV

[Opcode] 15 0

 rrrrr1001ddddddd

ddddddd is the higher 7 bits of disp8.

[Flags] CY --

OV --
S --
Z --
SAT --

[Description] Adds the 8-bit displacement data, zero-extended to word length, to the element pointer to

generate a 32-bit address, and stores the lower half-word data on the reg2 to the generated 32-
bit address.

 [Caution] Adding the element pointer to the 8-bit displacement data, zero-extended to word length, can
generate two types of results. It depends on the misaligned mode setting:

• Bit0 is masked to "0" and address is generated (when misaligned access is disabled).
• Bit0 is not masked and address is generated (when misaligned access is enabled).

 For details on misaligned access, see 3.3 Data Alignment.

[Comment] If an interrupt occurs during instruction execution, execution is aborted, and the interrupt is

serviced. Upon returning from the interrupt, the execution is restarted from the beginning, with
the return address being the address of this instruction.
The bus cycle sequence may be changed if accessing the resources connected to a bus, such
as VFB, VDB, VSB, NPB, instruction cache bus, or data cache bus. The bus sequence change
will not occur for an access to the same bus.

CHAPTER 5 INSTRUCTIONS

Preliminary User’s Manual U17135EJ1V1UM 143

<Store instruction>

Short format store word
SST.W

Short format store word

[Instruction format] SST.W reg2, disp8 [ep]

[Operation] adr ← ep + zero-extend (disp8)

Store-memory (adr, GR [reg2] , Word)

[Format] Format IV

[Opcode] 15 0

 rrrrr1010dddddd1

dddddd is the higher 6 bits of disp8.

[Flags] CY --

OV --
S --
Z --
SAT --

[Description] Adds the 8-bit displacement data, zero-extended to word length, to the element pointer to

generate a 32-bit address and stores the word data on the reg2 to the generated 32-bit address.

[Caution] Adding the element pointer to the 8-bit displacement data, zero-extended to word length, can

generate two types of results. It depends on the misaligned mode setting:

• Bit0 and bit1 are masked to "0" and address is generated (when misaligned access is
disabled).

• Bit0 and bit1 are not masked and address is generated (when misaligned access is enabled).

 For details on misaligned access, see 3.3 Data Alignment.

[Comment] If an interrupt occurs during instruction execution, execution is aborted, and the interrupt is

serviced. Upon returning from the interrupt, the execution is restarted from the beginning, with
the return address being the address of this instruction.
The bus cycle sequence may be changed if accessing the resources connected to a bus, such
as VFB, VDB, VSB, NPB, instruction cache bus, or data cache bus. The bus sequence change
will not occur for an access to the same bus.

CHAPTER 5 INSTRUCTIONS

Preliminary User’s Manual U17135EJ1V1UM 144

<Store instruction>

Store byte
ST.B

Store byte

[Instruction format] ST.B reg2, disp16 [reg1]

[Operation] adr ← GR [reg1] + sign-extend (disp16)

Store-memory (adr, GR [reg2], Byte)

[Format] Format VII

[Opcode] 15 0 31 16

 rrrrr111010RRRRR dddddddddddddddd

[Flags] CY --

OV --
S --
Z --
SAT --

[Description] Adds the data of the general register reg1 to the 16-bit displacement data, sign-extended to

word length, to generate a 32-bit address and stores the lowest byte data of the general
register reg2 to the generated address.

[Comment] If an interrupt occurs during instruction execution, execution is aborted, and the interrupt is

serviced. Upon returning from the interrupt, the execution is restarted from the beginning, with
the return address being the address of this instruction.
The bus cycle sequence may be changed if accessing the resources connected to a bus, such
as VFB, VDB, VSB, NPB, instruction cache bus, or data cache bus. The bus sequence change
will not occur for an access to the same bus.

CHAPTER 5 INSTRUCTIONS

Preliminary User’s Manual U17135EJ1V1UM 145

<Store instruction>

Store half-word
ST.H

Store half-word

[Instruction format] ST.H reg2, disp16 [reg1]

[Operation] adr ← GR [reg1] + sign-extend (disp16)

Store-memory (adr, GR [reg2], Half-word)

[Format] Format VII

[Opcode] 15 0 31 16

 rrrrr111011RRRRR ddddddddddddddd0

ddddddddddddddd is the higher 15 bits of disp16.

[Flags] CY --

OV --
S --
Z --
SAT --

[Description] Adds the data of the general register reg1 to the 16-bit displacement data, sign-extended to

word length, to generate a 32-bit address and stores the lower half-word data of the general
register reg2 to the generated 32-bit address.

[Caution] Adding the data of the general register reg1 to the 16-bit displacement data, sign-extended to

word length, can generate two types of results. It depends on the misaligned mode setting:

• Bit0 is masked to "0" and address is generated (when misaligned access is disabled).
• Bit0 is not masked and address is generated (when misaligned access is enabled).

 For details on misaligned access, see 3.3 Data Alignment.

[Comment] If an interrupt occurs during instruction execution, execution is aborted, and the interrupt is

serviced. Upon returning from the interrupt, the execution is restarted from the beginning, with
the return address being the address of this instruction.
The bus cycle sequence may be changed if accessing the resources connected to a bus, such
as VFB, VDB, VSB, NPB, instruction cache bus, or data cache bus. The bus sequence change
will not occur for an access to the same bus.

CHAPTER 5 INSTRUCTIONS

Preliminary User’s Manual U17135EJ1V1UM 146

<Store instruction>

Store word
ST.W

Store word

[Instruction format] ST.W reg2, disp16 [reg1]

[Operation] adr ← GR [reg1] + sign-extend (disp16)

Store-memory (adr, GR [reg2], Word)

[Format] Format VII

[Opcode] 15 0 31 16

 rrrrr111011RRRRR ddddddddddddddd1

ddddddddddddddd is the higher 15 bits of disp16.

[Flags] CY --

OV --
S --
Z --
SAT --

[Description] Adds the data of the general register reg1 to the 16-bit displacement data, sign-extended to

word length, to generate a 32-bit address and stores the word data of the general register reg2
to the generated 32-bit address

[Caution] Adding the data of the general register reg1 to the 16-bit displacement data, sign-extended to

word length, can generate two types of results. It depends on the misaligned mode setting:

• Bit0 and bit1 are masked to "0" and address is generated (when misaligned access is
disabled).

• Bit0 and bit1 are not masked and address is generated (when misaligned access is enabled).

 For details on misaligned access, see 3.3 Data Alignment.

[Comment] If an interrupt occurs during instruction execution, execution is aborted, and the interrupt is

serviced. Upon returning from the interrupt, the execution is restarted from the beginning, with
the return address being the address of this instruction.
The bus cycle sequence may be changed if accessing the resources connected to a bus, such
as VFB, VDB, VSB, NPB, instruction cache bus, or data cache bus. The bus sequence change
will not occur for an access to the same bus.

CHAPTER 5 INSTRUCTIONS

Preliminary User’s Manual U17135EJ1V1UM 147

<Special instruction>

Store contents of system register
STSR

Store Contents of System Register

[Instruction format] STSR regID, reg2

[Operation] GR [reg2] ← SR [regID]

[Format] Format IX

[Opcode] 15 0 31 16

 rrrrr111111RRRRR 0000000001000000

[Flags] CY --

OV --
S --
Z --
SAT --

[Description] Stores the system register contents specified by the system register number (regID) to the

general register reg2. The system-register contents are not affected.

[Caution] The system register number regID is to identify a system register. Accessing reserved system

registers is prohibited.

CHAPTER 5 INSTRUCTIONS

Preliminary User’s Manual U17135EJ1V1UM 148

<Arithmetic instruction>

Subtract
SUB

Subtract

[Instruction format] SUB reg1, reg2

[Operation] GR [reg2] ← GR [reg2] − GR [reg1]

[Format] Format I

[Opcode] 15 0

 rrrrr001101RRRRR

[Flags] CY "1" if a borrow occurs from MSB; otherwise, "0".

OV "1" if overflow occurs; otherwise, "0".
S "1" if the operation result is negative; otherwise, "0".
Z "1" if the operation result is "0"; otherwise, "0".
SAT --

[Description] Subtracts the word data of the general register reg1 from the word data of the general register

reg2 and stores the result in the general register reg2. The reg1 data is not affected.

CHAPTER 5 INSTRUCTIONS

Preliminary User’s Manual U17135EJ1V1UM 149

<Arithmetic instruction>

Subtract reverse
SUBR

Subtract Reverse

[Instruction format] SUBR reg1, reg2

[Operation] GR [reg2] ←GR [reg1] − GR [reg2]

[Format] Format I

[Opcode] 15 0

 rrrrr001100RRRRR

[Flags] CY "1" if a borrow occurs from MSB; otherwise, "0".

OV "1" if overflow occurs; otherwise, "0".
S "1" if the operation result is negative; otherwise, "0".
Z "1" if the operation result is "0"; otherwise, "0".
SAT --

[Description] Subtracts the word data of the general register reg2 from the word data of general register reg1

and stores the result in the general register reg2. The reg1 data is not affected.

CHAPTER 5 INSTRUCTIONS

Preliminary User’s Manual U17135EJ1V1UM 150

<Special instruction>

Jump with table look up
SWITCH

Jump with Table Look Up

[Instruction format] SWITCH reg1

[Operation] adr ← (PC + 2) + (GR [reg1] logically shift left by 1)

PC ← (PC + 2) + (sign-extend (Load-memory (adr, Half-word))) logically shift left by 1

[Format] Format I

[Opcode] 15 0

 00000000010RRRRR

[Flags] CY --

OV --
S --
Z --
SAT --

[Description] The following steps are taken.

(1) Adds the entry address (the one subsequent to the SWITCH instruction) to the data of the
general register reg1, logically left-shifted by 1, to generate a 32-bit table entry address.

(2) Loads the half-word entry data indicated by the address generated in step (1) and sign-
extends to word length.

(3) Adds the table entry address after logically left-shifting it by 1 (the one subsequent to the
SWITCH instruction) to generate a 32-bit target address.

(4) Jumps to the target address generated in step (3).

CHAPTER 5 INSTRUCTIONS

Preliminary User’s Manual U17135EJ1V1UM 151

<Data manipulation instruction>

Sign extend byte
SXB

Sign-Extend Byte

[Instruction format] SXB reg1

[Operation] GR [reg1] ← sign-extend (GR [reg1] (7:0))

[Format] Format I

[Opcode] 15 0

 00000000101RRRRR

[Flags] CY --

OV --
S --
Z --
SAT --

[Description] Sign-extends the lowest byte of the general register reg1 to word length.

CHAPTER 5 INSTRUCTIONS

Preliminary User’s Manual U17135EJ1V1UM 152

<Data manipulation instruction>

Sign extend half-word
SXH

Sign-Extend Half-word

[Instruction format] SXH reg1

[Operation] GR [reg1] ← sign-extend (GR [reg1] (15:0))

[Format] Format I

[Opcode] 15 0

 00000000111RRRRR

[Flags] CY --

OV --
S --
Z --
SAT --

[Description] Sign-extends the lower half-word on the general register reg1 to word length.

CHAPTER 5 INSTRUCTIONS

Preliminary User’s Manual U17135EJ1V1UM 153

<Special instruction>

Trap
TRAP

Trap

[Instruction format] TRAP vector

[Operation] EIPC ← PC + 4 (return PC)

EIPSW ← PSW
ECR.EICC ← exception code (40H-4FH, 50H-5FH)
PSW.EP ← 1
PSW.ID ← 1
PC ← 00000040H (vector 00H-0FH (exception code: 40H-4FH))
 00000050H (vector 10H-1FH (exception code: 50H-5FH))

[Format] Format X

[Opcode] 15 0 31 16

 00000111111iiiii 0000000100000000

[Flags] CY --

OV --
S --
Z --
SAT --

[Description] The following steps are taken:

(1) Saves the return PC and PSW to EIPC and EIPSW, respectively.
(2) Sets the exception code (EICC of ECR).
(3) Sets the PSW flags by assigning "1" to EP flag and ID flag.
(4) Jumps to the handler address corresponding to the trap vector (00H to 1FH) specified by the

vector to start exception processing.

PSW flags, other than EP and ID, are not affected. The return PC is the address of the
instruction subsequent to the TRAP instruction.

CHAPTER 5 INSTRUCTIONS

Preliminary User’s Manual U17135EJ1V1UM 154

<Logical instruction>

Test
TST

Test

[Instruction format] TST reg1, reg2

[Operation] result ← GR [reg2] AND GR [reg1]

[Format] Format I

[Opcode] 15 0

 rrrrr001011RRRRR

[Flags] CY --

OV 0
S "1" if operation result's word data MSB is "1"; otherwise, "0".
Z "1" if the operation result is "0"; otherwise, 0.
SAT --

[Description] ANDs the word data of the general register reg2 with the word data of the general register reg1.

The result is not stored with only the flags being changed. The reg1 data and reg2 data are not
affected.

CHAPTER 5 INSTRUCTIONS

Preliminary User’s Manual U17135EJ1V1UM 155

<Bit manipulation instruction>

Test bit
TST1

Test Bit

[Instruction format] (1) TST1 bit#3, disp16 [reg1]

(2) TST1 reg2, [reg1]

[Operation] (1) adr ← GR [reg1] + sign-extend (disp16)

 Z flag ← Not (Load-memory-bit (adr, bit#3))
(2) adr ← GR [reg1]
 Z flag ← Not (Load-memory-bit (adr, reg2))

[Format] (1) Format VIII

(2) Format IX

[Opcode] 15 0 31 16

 (1) 11bbb111110RRRRR dddddddddddddddd

 15 0 31 16

 (2) rrrrr111111RRRRR 0000000011100110

[Flags] CY --

OV --
S --
Z "1" if bit specified by operand = "0", "0" if bit specified by operand = "1".
SAT --

[Description] (1) Adds the data of the general register reg1 to the16-bit displacement data, sign-extended

to word length, to generate a 32-bit address; checks the bit specified by the 3-bit bit number
at the byte data location referenced by the generated address. If the specified bit is "0", "1"
is set to the Z flag of PSW and if the bit is "1", the Z flag is cleared to "0". The byte data,
including the specified bit, is not affected.

(2) Reads the data of the general register reg1 to generate a 32-bit address; checks the bit
specified by the lower 3-bits of reg2 at the byte data location referenced by the generated
address. If the specified bit is "0", "1" is set to the Z flag of PSW and if the bit is "1", the Z
flag is cleared to "0". The byte data, including the specified bit, is not affected.

CHAPTER 5 INSTRUCTIONS

Preliminary User’s Manual U17135EJ1V1UM 156

<Logical instruction>

Exclusive OR
XOR

Exclusive Or

[Instruction format] XOR reg1, reg2

[Operation] GR [reg2] ← GR [reg2] XOR GR [reg1]

[Format] Format I

[Opcode] 15 0

 rrrrr001001RRRRR

[Flags] CY --

OV 0
S "1" if operation result's word data MSB is "1"; otherwise, "0".
Z "1" if the operation result is "0"; otherwise, "0".
SAT --

[Description] Exclusively ORs the word data of the general register reg2 with the word data of the general

register reg1 and stores the result in the general register reg2. The reg1 data is not affected.

CHAPTER 5 INSTRUCTIONS

Preliminary User’s Manual U17135EJ1V1UM 157

<Logical instruction>

Exclusive OR immediate (16-bit)
XORI

Exclusive Or Immediate

[Instruction format] XORI imm16, reg1, reg2

[Operation] GR [reg2] ← GR [reg1] XOR zero-extend (imm16)

[Format] Format VI

[Opcode] 15 0 31 16

 rrrrr110101RRRRR iiiiiiiiiiiiiiii

[Flags] CY --

OV 0
S "1" if operation result's word data MSB is "1"; otherwise, "0".
Z "1" if the operation result is "0"; otherwise, "0".
SAT --

[Description] Exclusively ORs the word data of the general register reg1 with the 16-bit immediate data,

zero-extended to word length, and stores the result in the general register reg2. The reg1 data
is not affected.

CHAPTER 5 INSTRUCTIONS

Preliminary User’s Manual U17135EJ1V1UM 158

<Data manipulation instruction>

Zero extend byte
ZXB

Zero-Extend Byte

[Instruction format] ZXB reg1

[Operation] GR [reg1] ← zero-extend (GR [reg1] (7:0))

[Format] Format I

[Opcode] 15 0

 00000000100RRRRR

[Flags] CY --

OV --
S --
Z --
SAT --

[Description] Zero-extends the lowest byte of the general register reg1 to word length.

CHAPTER 5 INSTRUCTIONS

Preliminary User’s Manual U17135EJ1V1UM 159

<Data manipulation instruction>

Zero extend half-word
ZXH

Zero-Extend Half-word

[Instruction format] ZXH reg1

[Operation] GR [reg1] ← zero-extend (GR [reg1] (15:0))

[Format] Format I

[Opcode] 15 0

 00000000110RRRRR

[Flags] CY --

OV --
S --
Z --
SAT --

[Description] Zero-extends the lower half-word on the general register reg1 to word length.

CHAPTER 5 INSTRUCTIONS

Preliminary User’s Manual U17135EJ1V1UM 160

5. 4 Number of Instruction Execution Clock Cycles

Table 5-6 Shows clock requirements for each instruction execution. Combination of instructions may change the
number of clock cycles required. For details, refer to CHAPTER 8 PIPELINE OPERATIONS.

Table 5-6. Clock Requirements (1 of 4)

Instruction type Mnemonics Operand Byte Number of clocks required

 issue repeat latency

parallel

issuance Note1

Load instruction LD.B disp16 [reg1] , reg2 4 1 1 Note 2 Yes(L)

 LD.H disp16 [reg1] , reg2 4 1 1 Note 2 Yes(L)

 LD.W disp16 [reg1] , reg2 4 1 1 Note 2 Yes(L)

 LD.BU disp16 [reg1] , reg2 4 1 1 Note 2 Yes(L)

 LD.HU disp16 [reg1] , reg2 4 1 1 Note 2 Yes(L)

 SLD.B disp7 [ep] , reg2 2 1 1 Note 2 Yes(L)

 SLD.BU disp4 [ep] , reg2 2 1 1 Note 2 Yes(L)

 SLD.H disp8 [ep] , reg2 2 1 1 Note 2 Yes(L)

 SLD.HU disp5 [ep] , reg2 2 1 1 Note 2 Yes(L)

 SLD.W disp8 [ep] , reg2 2 1 1 Note 2 Yes(L)

Store instruction ST.B reg2, disp16 [reg1] 4 1 1 1 Yes(L)

 ST.H reg2, disp16 [reg1] 4 1 1 1 Yes(L)

 ST.W reg2, disp16 [reg1] 4 1 1 1 Yes(L)

 SST.B reg2, disp7 [ep] 2 1 1 1 Yes(L)

 SST.H reg2, disp8 [ep] 2 1 1 1 Yes(L)

 SST.W reg2, disp8 [ep] 2 1 1 1 Yes(L)

MUL reg1, reg2, reg3 4 1 1 3 Yes(L)

MUL imm9, reg2, reg3 4 1 1 3 Yes(L)

Multiply

instruction

MULH reg1, reg2 2 1 1 3 Yes(L)

 MULH imm5, reg2 2 1 1 3 Yes(L)

 MULHI imm16, reg1, reg2 4 1 1 3 Yes(L)

 MULU reg1, reg2, reg3 4 1 1 3 Yes(L)

 MULU imm9, reg2, reg3 4 1 1 3 Yes(L)

MAC reg1, reg2, reg3, reg4 4 1 1 3 No Multiplication

with addition

instruction
MACU reg1, reg2, reg3, reg4 4 1 1 3 No

ADD reg1, reg2 2 1 1 1 Yes(R/L) Arithmetic

instruction ADD imm5, reg2 2 1 1 1 Yes(R/L)

 ADDI imm16, reg1, reg2 4 1 1 1 Yes(R/L)

 CMP reg1, reg2 2 1 1 1 Yes(R/L)

 CMP imm5, reg2 2 1 1 1 Yes(R/L)

CHAPTER 5 INSTRUCTIONS

Preliminary User’s Manual U17135EJ1V1UM 161

Table 5-6. Clock Requirements (2 of 4)

Instruction type Mnemonics Operand Byte Number of clocks required

 issue repeat latency

parallel

issuance Note1

Arithmetic MOV reg1, reg2 2 1 1 1 Yes(R/L)

instruction MOV imm5, reg2 2 1 1 1 Yes(R/L)

 MOV imm32, reg1 6 1 1 1 No

MOVEA imm16, reg1, reg2 4 1 1 1 Yes(R/L)

 MOVHI imm16, reg1, reg2 4 1 1 1 Yes(R/L)

 SUB reg1, reg2 2 1 1 1 Yes(R/L)

 SUBR reg1, reg2 2 1 1 1 Yes(R/L)

ADF cccc, reg1, reg2, reg3 4 1 1 1 No Conditional

Operation

Instructions
SBF cccc, reg1, reg2, reg3 4 1 1 1 No

SATADD reg1, reg2 2 1 1 1 Yes(R/L) Saturate

instruction SATADD imm5, reg2 2 1 1 1 Yes(R/L)

 SATADD reg1, reg2, reg3 4 1 1 1 No

 SATSUB reg1, reg2 2 1 1 1 Yes(R/L)

 SATSUB reg1, reg2, reg3 4 1 1 1 No

 SATSUBI imm16, reg1, reg2 4 1 1 1 Yes(R/L)

 SATSUBR reg1, reg2 2 1 1 1 Yes(R/L)

AND reg1, reg2 2 1 1 1 Yes(R/L) Logical

instruction ANDI imm16, reg1, reg2 4 1 1 1 Yes(R/L)

 NOT reg1, reg2 2 1 1 1 Yes(R/L)

 OR reg1, reg2 2 1 1 1 Yes(R/L)

 ORI imm16, reg1, reg2 4 1 1 1 Yes(R/L)

 TST reg1, reg2 2 1 1 1 Yes(R/L)

 XOR reg1, reg2 2 1 1 1 Yes(R/L)

 XORI imm16, reg1, reg2 4 1 1 1 Yes(R/L)

BSH reg2, reg3 4 1 1 1 Yes(R)

BSW reg2, reg3 4 1 1 1 Yes(R)

Data

manipulation

instruction CMOV cccc, reg1, reg2, reg3 4 1 1 1 Yes(R)

 CMOV cccc, imm5, reg2, reg3 4 1 1 1 Yes(R)

 HSH reg2, reg3 4 1 1 1 Yes(R)

 HSW reg2, reg3 4 1 1 1 Yes(R)

 SAR reg1, reg2 4 1 1 1 Yes(R)

 SAR imm5, reg2 2 1 1 1 Yes(R)

 SAR reg1, reg2, reg3 4 1 1 1 Yes(R)

 SASF cccc, reg2 4 1 1 1 Yes(R)

CHAPTER 5 INSTRUCTIONS

Preliminary User’s Manual U17135EJ1V1UM 162

Table 5-6. Clock Requirements (3 of 4)

Instruction type Mnemonics Operand Byte Number of clocks required

 issue repeat latency

parallel

issuance Note1

Data manipulation SETF cccc, reg2 4 1 1 1 Yes(R)

instruction SHL reg1, reg2 4 1 1 1 Yes(R)

 SHL imm5, reg2 2 1 1 1 Yes(R)

 SHL reg1, reg2, reg3 4 1 1 1 Yes(R)

 SHR reg1, reg2 4 1 1 1 Yes(R)

 SHR imm5, reg2 2 1 1 1 Yes(R)

 SHR reg1, reg2, reg3 4 1 1 1 Yes(R)

 SXB reg1 2 1 1 1 No

 SXH reg1 2 1 1 1 No

 ZXB reg1 2 1 1 1 No

 ZXH reg1 2 1 1 1 No

SCH0L reg2, reg3 4 1 1 1 Yes(R) Bit Search

Instructions SCH0R reg2, reg3 4 1 1 1 Yes(R)

 SCH1L reg2, reg3 4 1 1 1 Yes(R)

 SCH1R reg2, reg3 4 1 1 1 Yes(R)

Divide instruction DIV reg1, reg2, reg3 4 35 35 35 No

 DIVH reg1, reg2 2 35 35 35 No

 DIVH reg1, reg2, reg3 4 35 35 35 No

 DIVHU reg1, reg2, reg3 4 34 34 34 No

 DIVU reg1, reg2, reg3 4 34 34 34 No

Bcond disp9 (When condition is

satisfied)

2 4 Note3 4 Note3 4 Note3 Yes(B+R/L) Branch instruction

 disp9 (When condition is

not satisfied)

2 1 1 1 Yes(B+R/L)

 JARL disp22, reg2 4 4 4 4 Yes(B+R/L)

 JARL disp32, reg1 6 4 4 4 No

 JMP [reg1] 2 5 5 5 Yes(B+R/L)

 JMP disp32 [reg1] 6 5 5 5 No

 JR disp22 4 4 4 4 Yes(B+R/L)

 JR disp32 6 4 4 4 No

CLR1 bit#3, disp16 [reg1] 4 4 Note4 4 Note4 4 Note4 No Bit manipulation

instruction CLR1 reg2, [reg1] 4 4 Note4 4 Note4 4 Note4 No

 NOT1 bit#3, disp16 [reg1] 4 4 Note4 4 Note4 4 Note4 No

 NOT1 reg2, [reg1] 4 4 Note4 4 Note4 4 Note4 No

 SET1 bit#3, disp16 [reg1] 4 4 Note4 4 Note4 4 Note4 No

CHAPTER 5 INSTRUCTIONS

Preliminary User’s Manual U17135EJ1V1UM 163

Table 5-6. Clock Requirements (4 of 4)

Instruction type Mnemonics Operand Byte Number of clocks required parallel

 issue repeat latency issuance Note1

Bit manipulation SET1 reg2, [reg1] 4 4 Note4 4 Note4 4 Note4 No

instruction TST1 bit#3, disp16 [reg1] 4 4 Note4 4 Note4 4 Note4 No

 TST1 reg2, [reg1] 4 4 Note4 4 Note4 4 Note4 No

Special CALLT imm6 2 8 8 8 No

instruction CTRET -- 4 9 9 9 No

 DI -- 4 2 2 2 No

 DISPOSE imm5, list12 4 n+1 Note5 n+1 Note5 n+1 Note5 No

 DISPOSE imm5, list12, [reg1] 4 n+1 Note5 n+1 Note5 n+1 Note5 No

 EI -- 4 2 2 2 No

 HALT -- 4 1 1 1 No

 LDSR reg2, regID 4 2 2 2 No

 NOP -- 2 1 1 1 Yes(R/L)

PREPARE list12, imm5 4 n+1 Note5 n+1 Note5 n+1 Note5 No

PREPARE list12, imm5, sp 4 n+1 Note5 n+1 Note5 n+1 Note5 No

 PREPARE list12, imm5, imm16 6 n+1 Note5 n+1 Note5 n+1 Note5 No

 PREPARE list12, imm5, imm32 8 n+1 Note5 n+1 Note5 n+1 Note5 No

 RETI -- 4 undefined undefined undefined No

 STSR regID, reg2 4 1 1 1 No

 SWITCH reg1 2 8 8 8 No

 TRAP vector 4 9 9 9 No

DBRET -- 4 undefined undefined undefined No Debug function

instruction DBTRAP -- 2 undefined undefined undefined No

Undefined instruction code 4 4 4 4 --

Notes1. "Yes" indicates when an instruction can be issued at the same time as another instruction, and "No"
indicates when such parallel issuance of instructions is not possible (instructions must be issued one at a
time). The pipeline that is used for parallel issuance is shown in parentheses (L: Lpipe, R: Rpipe, B: Bpipe,
and R/L: Rpipe or Lpipe). For details, see CHAPTER 8 PIPELINE OPERATIONS.

Notes2. According to the number of wait states (if there are no wait states, then value is 3).
Notes3. Value is 6 if previous instruction overwrites PSW.
Notes4. When there are no wait states (4 + number of read access wait states).
Notes5. n is the total number of registers specified by list12 (This depends on the number of wait states (if there are

no wait states, then n is the total number of registers specified by list12. This is the same whether n = 0 or n
= 1)).

CHAPTER 5 INSTRUCTIONS

Preliminary User’s Manual U17135EJ1V1UM 164

Remarks1. Operand convention

Symbol Meaning

reg1 General register (as source register)

reg2 General register (primarily as destination register with some as source registers)

reg3 General register (primarily used to store the remainder of a division result and/or the

higher 32 bits of a multiply result)

bit#3 3-bit data to specify bit number

imm × ×-bit immediate data

disp × ×-bit displacement data

regID System register number

vector 5-bit data to specify trap vector (00H to1FH)

cccc 4-bit data to specify condition code

sp Stack pointer (r3)

ep Element pointer (r30)

list12 Lists of registers

Remarks2. Execution clock convention

Symbol Meaning

issue When other instruction is executed immediately after executing an instruction

repeat When the same instruction is repeatedly executed immediately after the instruction

has been executed

latency When a subsequent instruction uses the result of execution of the preceding

instruction immediately after its execution

Preliminary User’s Manual U17135EJ1V1UM 165

CHAPTER 6 INTERRUPTS ANDEXCEPTIONS

Interrupts are events that occur independently of the program execution and are divided into two types: maskable
interrupts and non-maskable interrupts (NMI). Exceptions are events that are program-execution dependent and
are divided into four types: software exception, exception trap, debug trap, and debug break. When either an
interrupt or an exception occurs, controls are transferred to a handler whose address is determined by the
interrupt/exception source. The interrupt/exception source is specified by the exception code stored in the
exception cause register (ECR). The handler analyzes the ECR register for appropriate interrupt servicing or
exception processing. The return PC and restore PSW are subsequently written to the status-saving registers.
Two instructions, RETI and DBRET, are used. RETI instruction enables a return from interrupt or software
exception processing. DBRET instruction enables a return from exception trap, debug trap or debug break. The
return PC and PSW can be read from the status-saving registers, and controls are subsequently transferred to the
return PC.

Table 6-1. Interrupt/Exception Codes

Interrupt/Exception Source Classification Return PC

Name Triggered by

Exception

Code

Handler

Address

Non-maskable interrupt (NMI) NMI0 input Interrupt 0010H 00000010H next PC Note 1

 NMI1 input Interrupt 0020H 00000020H next PC Note 1,2

 NMI2 input Note 3 Interrupt 0030H 00000030H next PC Note 1,2

Maskable interrupt Note 4 Interrupt Note 4 Note 5 next PC Note 2

TRAP0n(n = 0-FH) TRAP instruction Exception 004nH 00000040H next PC Software

exception TRAP1n(n = 0-FH) TRAP instruction Exception 005nH 00000050H next PC

Exception trap (ILGOP) Illegal instruction code Exception 0060H 00000060H next PC Note6

Debug trap DBTRAP instruction Exception 0060H 00000060H next PC

Debug break Debug break Exception 0060H 00000060H next PC

Notes 1. Except when an interrupt is acknowledged during execution of the one of the instructions listed below (if an
interrupt is acknowledged during instruction execution, execution is stopped, and then resumed after the
completion of interrupt servicing).
• Divide instructions (DIV, DIVH, DIVU, DIVHU)
• PREPARE and DISPOSE instructions (if an interrupt is generated before the stack pointer updates).

Notes 2. RETI instruction cannot restore the PC content. A system reset is required after interrupt servicing.
Notes 3. Non-maskable interrupt can be acknowledged even if the NP flag of PSW is set to "1."
Notes 4. Varies based on the type of interrupts.
Notes 5. The upper 16bits are 0000H. For the lower 16 bits, see the Exception Code column.
Notes 6. The execution address of the illegal instruction is obtained by “Return PC – 4”.
Remark Return PC indicates PC value saved to EIPC or FEPC at the outset of interrupt/exception processing.

Next PC indicates PC value to initiate process after interrupt/exception processing.

CHAPTER 6 INTERRRUPTS AND EXCEPTIONS

Preliminary User’s Manual U17135EJ1V1UM 166

6. 1 Interrupt Servicing

6. 1. 1 Maskable interrupt
The INTC (interrupt controller) register can be masked by interrupt controller registers (PICS). The INTC register
issues an interrupt request to CPU in the order of highest priority interrupt. The interrupt request input (INT input)
enables CPU to perform the following steps, followed by a control transfer to the handler routine:

(1) Saves the return PC to EIPC.
(2) Saves the current PSW to EIPSW.
(3) Writes the exception code to the lower half-word of ECR (EICC).
(4) Sets "1" to ID flag of PSW and clears EP flag to "0."
(5) The value of SB flag of PSW is transmitted to SS flag.
(6) Sets a handler address for each interrupt to PC and executes a control transfer.

EIPC and EIPSW are used as the status-saving registers. INT inputs are held pending at INTC when one of the
two conditions occur: INT input masked by its interrupt controller or interrupt service routine currently being
executed (when the NP flag of PSW is "1" or when the ID flag of PSW is "1"). Interrupts are enabled either by
clearing the mask condition or using LDSR instruction that sets "0" to the NP flag and the ID flag, prompting the
pending INT input to perform the next maskable interrupt servicing. Because only a single set of EIPC and
EIPSW is provided, in order to enable multiple interrupts, the contents of both the EIPC register and the EIPSW
register need be saved. Figure 6-1 shows a flow for maskable interrupt servicing.

CHAPTER 6 INTERRRUPTS AND EXCEPTIONS

Preliminary User’s Manual U17135EJ1V1UM 167

Figure 6-1. Maskable Interrupt Servicing

Interrupt request input

(INT input)

xxIF = 1
No

Interrupt request?

xxMK = 0
No

Is the interrupt
mask released?

Yes

Yes

No

No

No

Maskable interrupt request Interrupt request pending

PSW.NP = 0

PSW.ID = 0

No

No

Interrupt servicing pending

Yes

Yes

Interrupt servicing

CPU processing

INTC processing

Yes

Yes

Yes

Priority higher than
that of interrupt currently

being serviced?

Priority higher
than that of other interrupt

request?

Highest default
priority of interrupt requests

with the same priority?

EIPC
EIPSW
ECR.EICC
PSW.EP
PSW.ID
PC

Restored PC
PSW
Exception code
0
1
Handler address

CHAPTER 6 INTERRRUPTS AND EXCEPTIONS

Preliminary User’s Manual U17135EJ1V1UM 168

6. 1. 2 Non-maskable interrupt
The non-maskable interrupt (NMI) are acknowledged at any time and cannot be disabled by an instruction. The
non-maskable interrupt is generated through the NMI input, which enables CPU to perform the following steps,
followed by a control transfer to the handler routine:

(1) Saves the restore PC to FEPC.
(2) Saves the current PSW to FEPSW.
(3) Writes the exception code (0010H) to the higher half-word of ECR (FECC).
(4) Sets "1" to NP and ID flags of PSW and clears EP flag to "0."
(5) The value of SB flag of PSW is transmitted to SS flag.
(6) Sets a handler address for the non-maskable interrupt to PC and executes a control transfer.

FEPC and FEPSW are used as the status-saving registers. NMI inputs are held pending at the INTC while a non-
maskable interrupt is being executed (when the NP flag of PSW is "1"). Non-maskable interrupts are enabled by
RETI and LDSR instructions that set "0" to the NP flag of PSW, prompting the pending NMI input to perform the
next non-maskable interrupt servicing.

However, when NMI2 or the run time error set as "DIR register 's UTT bit = 1 1" occurs, it is not based on the
value of NP flag, but NMI processing is performed.
Figure 6-2 shows a flow for non-maskable interrupt servicing.

Figure 6-2. Non-Maskable Interrupt Servicing

Non-maskable
interrupt request

FEPC ←Return PC
FEPSW ←PSW
ECR.FECC ←Exception

 code
PSW.NP ←1
PSW.EP ←0
PSW.ID ←1
PSW.SS ←PSW.SB
PC ←Handler

 address

Yes

PSW.NP = 0 ?

INTC acknowledgement

CPU processing

No

NMI input

Interrupt servicing Interrupt servicing pending

CHAPTER 6 INTERRRUPTS AND EXCEPTIONS

Preliminary User’s Manual U17135EJ1V1UM 169

6. 2 Exception Processing

6. 2. 1 Software exception
A software exception is generated by TRAP instruction and can be acknowledged at any time. If a software
exception occurs, CPU performs the following steps, followed by a control transfer to the handler routine.

(1) Saves the return PC to EIPC.
(2) Saves the current PSW to EIPSW.
(3) Writes the exception code to the lower 16 bits (EICC) of ECR (interrupt source).
(4) Sets "1" to EP and ID flags of PSW.
(5) Sets a handler address (00000040H, 00000050H, or 00000070H) for software exception to PC and

executes a control transfer.

Figure 6-3 shows a flow for software exception processing

Figure 6-3. Software Exception Processing

EIPC ←Return PC
EIPSW ←PSW
ECR.EICC ← Exception
 code
PSW.EP ←1
PSW.ID ←1
PC ←Handler
 address

CPU processing

TRAP instructions

Exception processing

CHAPTER 6 INTERRRUPTS AND EXCEPTIONS

Preliminary User’s Manual U17135EJ1V1UM 170

6. 2. 2 Exception trap
An exception trap is generated when an illegal instruction is executed. The illegal opcode trap (ILGOP) is the
exception trap.

The illegal instruction is an instruction in which bits 10 to 5 are "1" and bit 16 is "0" and bit 26 is "1". An illegal
opcode instruction of this kind generates an exception trap.

Figure 6-4. Illegal Instruction Code

15 5 011 10 4 31 16

×

17

0× × × × 1 1 1 1 1 1 × × × × × × × × × × × × × × × ×1 × × ×

2627 25

If an exception trap occurs, CPU performs the following steps, followed by a control transfer to the handler routine
(Debug monitor routine).

(1) Saves the return PC to DBPC.
(2) Saves the current PSW to DBPSW.
(3) Sets the NP, EP, and ID flags of PSW to "1."
(4) DIR register's DM bit is set (= 1).
(5) Sets a handler address (00000060H) for exception trap to PC, and control is passed to a debug monitor

routine.

Figure 6-5 shows a flow for the exception trap processing.

Figure 6-5. Exception Trap Processing

DBPC ←Return PC
DBPSW ←PSW
PSW.NP ←1
PSW.EP ←1
PSW.ID ←1
DIR.DM ←1
PC ←00000060H

CPU processing

Exception processing

Exception trap (ILGOP)
occurs

Caution The operation using the instruction undefined is not guaranteed.
Remark The execution address of the illegal instruction is obtained by “Return PC – 4”.

CHAPTER 6 INTERRRUPTS AND EXCEPTIONS

Preliminary User’s Manual U17135EJ1V1UM 171

6. 2. 3 Debug traps and debug breaks
Debug traps and debug breaks are exceptions that can always be received.
Debug traps are issued by executing a DBTRAP instruction.
When a debug trap or debug break has occurred, the CPU performs the following processing, then control is
passed to a debug monitor routine and the mode is switched to debug mode.

<1> Return PC is saved to DBPC.
<2> Current PSW value is saved to DBPSW.
<3> PSW's NP, EP, and ID flags are set (= 1).
<4> DIR register's DM bit is set (= 1).
<5> The debug trap or debug break's corresponding handler address (00000060H) is set to the PC, and

control is passed to a debug monitor routine.

The processing of debug traps and debug breaks is illustrated below.

Figure 6-6. Processing of Debug Trap and Debug Break

DBPC ←Return PC
DBPSW ←PSW
PSW.NP ←1
PSW.EP ←1
PSW.ID ←1
DIR.DM ←1
PC ←00000060H

CPU processing

Debug monitor routine
processing

Debug Trap and
Debug Break occurs

CHAPTER 6 INTERRRUPTS AND EXCEPTIONS

Preliminary User’s Manual U17135EJ1V1UM 172

6. 3 Interrupt/Exception Processing Return

6. 3. 1 Interrupt/software exception return
RETI instruction executes all return and restore operations involving interrupts and software exceptions. Under
RETI instruction, CPU performs the following steps to execute a transfer control to the return PC address:

(1) If the EP flag of PSW is "0" and the NP flag of PSW is "1," the return PC and PSW are read from FEPC

and FEPSW. The return PC and PSW are otherwise read from EIPC and EIPSW.
(2) Transfer control is executed on the address of the return PC and PSW.

Returns from each interrupt servicing require the NP and EP flags of PSW to be set to the appropriate values
immediately before the execution of RETI instruction. This is to ensure a normal operation, and the task
requires LDSR instruction. Values are as follows:

• To return from non-maskable interrupt servicingNote: NP flag of PSW = "1" and EP flag ="0."
• To return from maskable interrupt servicing: NP flag of PSW = "0" and EP flag = "0."
• To return from exception processing: EP flag of PSW = "1"

 Note By RETI instruction, the return from NMI1, NMI2 or the run time error set as "DIR register 's UTT bit =

1 1" is not possible. Perform a system reset after interrupt servicing.
NMI2 or the run time error set as "DIR register 's UTT bit = 1 1" is received even if NP flag of PSW is
set(1).

Figure 6-7 shows a flow for the return operation from interrupt/exception processing.

Figure 6-7. Return from Interrupt and Software Exceptions

PC ← EIPC
PSW ← EIPSW

Yes

PSW.EP = 0 ?
No

Jump to the return
PC address

RETI instruction

Yes

PSW.NP = 0 ?
No

<Return from maskable interrupt>

<Return from non-maskable interrupt>

<Return from
software exception>

PC ← FEPC
PSW ← FEPSW

PC ← EIPC
PSW ← EIPSW

Yes

PSW.EP = 0 ?
No

Jump to the return
PC address

Jump to the return
PC address

RETI instructionRETI instruction

Yes

PSW.NP = 0 ?
No

<Return from maskable interrupt>

<Return from non-maskable interrupt>

<Return from
software exception>

PC ← FEPC
PSW ← FEPSW

CHAPTER 6 INTERRRUPTS AND EXCEPTIONS

Preliminary User’s Manual U17135EJ1V1UM 173

6. 3. 2 Exception trap, debug trap, and debug break return
DBRET instruction executes a return from exception trap, debug trap, and debug break. Under DBRET
instruction, CPU performs the following steps to execute a transfer control on the return PC address.

(1) The return PC and PSW are read from DBPC and DBPSW.
(2) Transfer control is executed on the address of the return PC and PSW.
(3) DIR register's DM bit is clear (= 0).

Figure 6-8 shows a flow for returns from exception trap/debug trap/debug break processing.

Figure 6-8. Return from Exception Trap/Debug Trap/Debug Break

PC ← DBPC
PSW ← DBPSW
DIR.DM ← 0

Jump to the return
PC address

DBRET instruction

Preliminary User’s Manual U17135EJ1V1UM 174

CHAPTER 7 RESET

7. 1 Post-Reset Register Status

A low-level signal applied to a reset pin executes the system reset, resulting in an address change to both
program registers and system registers. Table 7-1 shows the post-reset status of both program registers and
system registers. When the reset signal turns to "high," the reset status is cleared, followed by the program
execution. Initialize the contents of each register, as needed.

Table 7-1. Post-Reset Register Status (1 of 2)

Register Post-reset status (initial value)

General register (r0) 00000000H (fixed) Program registers

General register (r1 to r31) Undefined

 Program counter (PC) 00000000H

Interrupt status-saving register (EIPC) 000x xxxx xxxx xxxx

xxxx xxxx xxxx xxx0B

System registers

Interrupt status-saving register (EIPSW) 0000 0000 0000 0000

0000 x00x xxxx xxxxB

 NMI status-saving register (FEPC) 000x xxxx xxxx xxxx

xxxx xxxx xxxx xxx0B

 NMI status-saving register (FEPSW) 0000 0000 0000 0000

0000 x00x xxxx xxxxB

 Exception cause register (ECR) 00000000H

 Program status word (PSW) 00000020H

 CALLT status-saving register (CTPC) 000x xxxx xxxx xxxx

xxxx xxxx xxxx xxx0B

 CALLT status-saving register (CTPSW) 0000 0000 0000 0000

0000 x00x xxxx xxxxB

 Exception/debug trap status-saving register (DBPC) 000x xxxx xxxx xxxx

xxxx xxxx xxxx xxxxB

 Exception/debug trap status-saving register (DBPSW) 0000 0000 0000 0000

0000 x00x xxxx xxxxB

 CALLT base pointer (CTBP) 000x xxxx xxxx xxxx

xxxx xxxx xxxx xxx0B

 Debug interface register (DIR) 00000040H

 Breakpoint control register 0 (BPC0)

 Breakpoint control register 1 (BPC1)

0000 0000 xxxx xxxx

x000 xxxx x000 0000B

 Breakpoint control register 2 (BPC2)

 Breakpoint control register 3 (BPC3)

CHAPTER 7 RESET

Preliminary User’s Manual U17135EJ1V1UM 175

Table 7-1. Post-Reset Register Status (2 of 2)

Register Post-reset status (initial value)

System registers Program ID register (ASID) 000000xxH

 Breakpoint address setting register 0 (BPAV0)

 Breakpoint address setting register 1 (BPAV1)

000x xxxx xxxx xxxx

xxxx xxxx xxxx xxxxB

 Breakpoint address setting register 2 (BPAV2)

 Breakpoint address setting register 3 (BPAV3)

 Breakpoint address mask register 0 (BPAM0)

 Breakpoint address mask register 1 (BPAM1)

000x xxxx xxxx xxxx

xxxx xxxx xxxx xxxxB

 Breakpoint address mask register 2 (BPAM2)

 Breakpoint address mask register 3 (BPAM3)

 Breakpoint data setting register 0 (BPDV0) Undefined

 Breakpoint data setting register 1 (BPDV1)

 Breakpoint data setting register 2 (BPDV2)

 Breakpoint data setting register 3 (BPDV3)

 Breakpoint data mask register 0 (BPDM0) Undefined

 Breakpoint data mask register 1 (BPDM1)

 Breakpoint data mask register 2 (BPDM2)

 Breakpoint data mask register 3 (BPDM3)

Remark "x" indicates an undefined value.

7. 2 Post-Reset Initialization

CPU begins a program execution from the address 00000000H after it has been reset. No immediate interrupt
requests are acknowledged after reset. Program interrupts are enabled with the ID flag of PSW="0."

Preliminary User’s Manual U17135EJ1V1UM 176

CHAPTER 8 PIPELINE OPERATIONS

The V850E2 CPU is based on the RISC architecture, which executes nearly all the instructions in one clock cycle
through the 7-stage pipeline operation. The instruction execution sequence consists of seven stages ranging from
instruction fetch (IF) to write back (WB), with the execution time depending on the instruction type and the memory
access type. Figure 8-1 shows an example of pipeline operation where twelve standard instructions are
simultaneously executed.

CHAPTER 8 PIPELINE OPERATIONS

Preliminary User’s Manual U17135EJ1V1UM 177

Figure 8-1. Example of Executing Twelve Standard Instructions

IF DP
ID

EX WB

EX AT WBDF

ID

IF

Ins.2
compl'd

DP
ID

EX WB

<1> <2> <3> <4> <5> <6> <7> <8> <9> <10> <11> <12>

Instruction1

...................................

........................

...

Instruction2

..............

Instruction3

Instruction4

..

Instruction5

..

Instruction6

Instruction7

Instruction8

Simultaneous CPU operations

System clock

Time

Ins.4
compl'd

Ins.1
Ins.6

compl'd

Ins.3
Ins.8

compl'd

Ins.5
Ins.10

compl'd

Ins.7
Ins.12

compl'd

Ins.9
compl'd

Ins.11
compl'd

Execution performed per 1 clock

Instruction9

EX AT WBDF

...

Instruction10

Instruction11

Instruction12

..............

........................

...................................

..

ID

..

IF DP
ID

EX WB

EX AT WBDF

ID

IF DP
ID

EX WB

EX AT WBDF

ID

IF DP
ID

EX WB

EX AT WBDF

ID

IF DP
ID

EX WB

EX AT WBDF

ID

IF (instruction fetch): Fetches Instructions and increments the fetch pointer.
DP (dispatch): Checks both instruction type and instruction sequence for dispatch operations;

It issues to a corresponding pipeline.
ID (instruction decode): Decodes instructions, generates the immediate data, and reads the

registers.
EX (ALU/multiplier/barrel shifter): Executes instructions.
AT (address transfer): Transfers the address to the appropriate memory.
DF (data fetch): Reads the data.
WB (write back): Writes the execution result to the registers.

Remark <1> to <12> indicate CPU state. Standard instruction enables the parallel execution of 2 instructions
per one clock.

CHAPTER 8 PIPELINE OPERATIONS

Preliminary User’s Manual U17135EJ1V1UM 178

8. 1 Features

The V850E2 CPU includes the following three independent pipelines.

 • Instruction fetch pipeline (Fpipe)
 • Left instruction execution pipeline (Lpipe)
 • Right instruction execution pipeline (Rpipe)

The V850E2 CPU detects interdependencies among instructions and is configured to enable up to two
instructions to be issued at the same time. Figure 8-2 shows the configuration of the V850E2 CPU's pipelines.

Figure 8-2. Pipeline Configuration

Left instruction execution
pipeline (Lpipe)

Instruction fetch pipeline (Fpipe)

Right instruction decode unitLeft instruction decode unit

Write back unit

MUL
unit

MEM
unit

ALU
 unit

BSFT
 unit

Register file

ALU
 unit

Instruction fetch unit (Bpipe)

Dispatch unit

Instruction buffer

Right instruction execution
pipeline (Rpipe)

Data memory,
data cache

Instruction memory,
instruction cache

CHAPTER 8 PIPELINE OPERATIONS

Preliminary User’s Manual U17135EJ1V1UM 179

(1) Instruction fetch pipeline (Fpipe)
This pipeline includes the following three units.

 (a) Instruction fetch unit (Bpipe)

Up to 8 instructions (when there are 16 bits per instruction) can be fetched in one cycle from the 128-
bit fetch bus (iLB).

 (b) Dispatch unit

A 128-bit, two-stage instruction queue is included. This queue is used to detect interdependencies
among instructions so that up to 2 instructions can be issued efficiently to the instruction execution
pipeline.

 (c) Instruction buffer

 The instruction stores instructions that have been fetched by the instruction fetch unit (Bpipe).

 (2) Left instruction execution pipeline (Lpipe)
This pipeline includes the following three units.

 (a) Left instruction decode unit

This unit decodes instructions issued from the dispatch unit.

 (b) ALU unit
This unit executes instructions that perform integer arithmetic operations and logical operations.

 (c) MEM unit

This unit executes instructions that perform memory access, such as load instructions and store
instructions.

 (3) Right instruction execution pipeline (Rpipe)

This pipeline includes the following three units.

 (a) Right instruction decode unit
This unit decodes instructions issued from the dispatch unit.

 (b) ALU unit

This unit executes instructions that perform integer arithmetic operations and logical operations.

 (c) BSFT unit
This unit executes data manipulation instructions.

 (4) MUL unit

This unit executes instructions that perform integer multiplication.

 (5) Write back unit
This unit controls write back operations to register files.

CHAPTER 8 PIPELINE OPERATIONS

Preliminary User’s Manual U17135EJ1V1UM 180

8. 2 Pipeline Flow during Execution of Instructions

This section describes the flow of pipeline processing when various instructions are being executed.

8. 2. 1 Load instructions
Load instructions are executed by the left instruction execution pipeline (Lpipe)'s MEM unit.

[Target instructions] LD.B, LD.BU, LD.H, LD.HU, LD.W, SLD.B, SLD.BU, SLD.H, SLD.HU, and SLD.W

[Pipeline]

Load instruction

<1> <2> <3> <4> <5>

IF WB

Next instruction

<6> <7> <8>

DP ID EX AT DF

IF WBDP ID EX AT DF

[Description] This pipeline has seven stages: IF, DP, ID, EX, AT, DF, and WB. In the figure above, a load

instruction is executed by the Lpipe and then the next instruction is issued to the Lpipe. If
the right instruction execution pipeline (Rpipe) has no dependency with the load instruction,
it can execute its own processing independently. However, immediately after the load
instruction is executed, if an instruction that uses the execution result is issued, a data wait
period will occur.
Each of these instructions can be issued at the same time as another instruction.

8. 2. 2 Store instructions

Store instructions are executed by the left instruction execution pipeline (Lpipe)'s MEM unit.

[Target instructions] ST.B, ST.H, ST.W, SST.B, SST.H, and SST.W

[Pipeline]

Store instruction

Next instruction

<1> <2> <3> <4> <5>

IF WB

<6> <7> <8>

DP ID EX AT DF

IF WBDP ID EX AT DF

[Description] This pipeline also has seven stages (IF, DP, ID, EX, AT, DF, and WB), but its WB stage

does not operate because there is no writing of data to registers.
In the figure above, a store instruction is executed by the Lpipe and then the next instruction
is issued to the Lpipe. If the right instruction execution pipeline (Rpipe) has no dependency
with the store instruction, it can execute its own processing independently.
Each of these instructions can be issued at the same time as another instruction.

CHAPTER 8 PIPELINE OPERATIONS

Preliminary User’s Manual U17135EJ1V1UM 181

8. 2. 3 Multiplication instructions
The multiplication instructions are executed by the left instruction execution pipeline (Lpipe)'s MUL unit.

[Target instructions] MUL, MULH, MULHI, and MULU

[Pipeline] (a) If the next instruction is not a multiplication instruction (or a multiplication with addition

instruction)

Multiplication instruction

Next instruction

<1> <2> <3> <4> <5>

IF WB

<6> <7> <8>

DP ID EX1 EX2 DF

IF WBDP ID EX AT DF

 (b) If the next instruction is a multiplication instruction (or a multiplication with addition

instruction)

Multiplication instruction1

Multiplication instruction2

<1> <2> <3> <4> <5>

IF WB

<6> <7> <8>

DP ID EX1 EX2 DF

IF WBDP ID EX1 EX2 DF

[Description] This pipeline has seven stages: IF, DP, ID, EX, AT, DF, and WB. Although two clock cycles

are required by the EX stages, EX1 and EX2 operate independently. Consequently, only one
clock cycle is required per instruction even when the multiplication instruction (or
multiplication with addition instruction) is repeated.
In the figure above, a multiplication instruction is executed by the Lpipe and then the next
instruction is issued to the Lpipe. If the right instruction execution pipeline (Rpipe) has no
dependency with the multiplication instruction, it can execute its own processing
independently. However, immediately after the multiplication instruction is executed, if an
instruction that uses the execution result is issued, a data wait period will occur.
Each of these instructions can be issued at the same time as another instruction.

CHAPTER 8 PIPELINE OPERATIONS

Preliminary User’s Manual U17135EJ1V1UM 182

8. 2. 4 Multiplication with addition instructions
Multiplication with addition instructions are executed by the left instruction execution pipeline (Lpipe)'s MUL unit.

[Target instructions] MAC and MACU

[Pipeline] (a) When the next instruction is not a multiplication instruction (or multiplication with addition

instruction)

Multiplication with
addition instruction

Next instruction

<1> <2> <3> <4> <5>

IF WB

<6> <7> <8>

DP ID EX1 EX2 DF

IF WBDP ID EX AT DF

 (b) When the next instruction is a multiplication instruction (or multiplication with addition

instruction)

Multiplication with
addition instruction

Multiplication instruction

<1> <2> <3> <4> <5>

IF WB

<6> <7> <8>

DP ID EX1 EX2 DF

IF WBDP ID EX1 EX2 DF

[Description] This pipeline has seven stages: IF, DP, ID, EX, AT, DF, and WB. Although two clock cycles

are required by the EX stages, EX1 and EX2 operate independently. Consequently, only one
clock cycle is required per instruction even when the multiplication instruction (or multiplication
with addition instruction) is repeated.
In the figure above, a multiplication instruction is executed by the Lpipe and then the next
instruction is issued to the Lpipe. If the right instruction execution pipeline (Rpipe) has no
dependency with the multiplication instruction, it can execute its own processing
independently. However, immediately after the multiplication instruction is executed, if an
instruction that uses the execution result is issued, a data wait period will occur.
These instructions are issued one at a time.

8. 2. 5 Arithmetic operation instructions

Arithmetic operation instructions are executed by the ALU unit of the left instruction execution pipeline or the
right instruction execution pipeline (Lpipe or Rpipe).

[Target instructions] ADD, ADDI, CMP, MOV, MOVEA, MOVHI, SUB, and SUBR

[Pipeline]

Arithmetic operation instruction

Next instruction

<1> <2> <3> <4> <5>

IF WB

<6>

DP ID EX

IF WBDP ID EX

[Description] This pipeline has five stages: IF, DP, ID, EX, and WB.

In the figure above, an arithmetic operation instruction is executed by the Rpipe and then the
next instruction is issued to the Rpipe. If the Lpipe has no dependency with the arithmetic
operation instruction, it can execute its own processing independently.
Each instruction except for the MOV imm32 reg1 instruction can be issued at the same time
as another instruction (the MOV imm32 reg1 instruction must be issued by themselves).

CHAPTER 8 PIPELINE OPERATIONS

Preliminary User’s Manual U17135EJ1V1UM 183

8. 2. 6 Conditional arithmetic instructions
Conditional arithmetic instructions are executed by the ALU unit of the left instruction execution pipeline or right
instruction execution pipeline (Lpipe or Rpipe).

[Target instructions] ADF and SBF

[Pipeline]

Conditional arithmetic instruction

Next instruction

<1> <2> <3> <4> <5>

IF WB

<6>

DP ID EX

IF WBDP ID EX

[Description] This pipeline has five stages: IF, DP, ID, EX, and WB.

In the figure above, an arithmetic operation instruction is executed by the Rpipe and then the
next instruction is issued to the Rpipe. If the Lpipe has no dependency with the arithmetic
operation instruction, it can execute its own processing independently.
These instructions are issued one at a time.

8. 2. 7 Saturation instructions

Saturation instructions are executed by the ALU unit of the left instruction execution pipeline or the right
instruction execution pipeline (Lpipe or Rpipe).

[Target instructions] SATADD, SATSUB, SATSUBI, and SATSUBR

[Pipeline]

Saturation instruction

Next instruction

<1> <2> <3> <4> <5>

IF WB

<6>

DP ID EX

IF WBDP ID EX

[Description] This pipeline has five stages: IF, DP, ID, EX, and WB.

In the figure above, a saturation instruction is executed by the Rpipe and then the next
instruction is issued to the Rpipe. If the Lpipe has no dependency with the saturation
instruction, it can execute its own processing independently.
Each instruction except for the SATADD reg1, reg2, reg3 instruction and the SATSUB reg1,
reg2, reg3 instruction can be issued at the same time as another instruction (the SATADD
reg1, reg2, reg3 instruction and SATSUB reg1, reg2, reg3 instruction must be issued by
themselves).

CHAPTER 8 PIPELINE OPERATIONS

Preliminary User’s Manual U17135EJ1V1UM 184

8. 2. 8 Logical operation instructions
Logical operation instructions are executed by the ALU unit of the left instruction execution pipeline or right

instruction execution pipeline (Lpipe or Rpipe).

[Target instructions] AND, ANDI, NOT, OR, ORI, TST, XOR, and XORI

[Pipeline]

Logical operation instruction

Next instruction

<1> <2> <3> <4> <5>

IF WB

<6>

DP ID EX

IF WBDP ID EX

[Description] This pipeline has five stages: IF, DP, ID, EX, and WB.

In the figure above, a logical operation instruction is executed by the Rpipe and then the next
instruction is issued to the Rpipe. If the Lpipe has no dependency with the logical operation
instruction, it can execute its own processing independently.
Each of these instructions can be issued at the same time as another instruction.

8. 2. 9 Data operation instructions

Data operation instructions are executed by the right instruction execution pipeline (Rpipe)'s BSFT unit.

[Target instructions] BSH, BSW, CMOV, HSH, HSW, SAR, SASF, SETF, SHL, SHR, SXB, SXH, ZXB, and

ZXH

[Pipeline]

Data operation instruction

Next instruction

<1> <2> <3> <4> <5>

IF WB

<6>

DP ID EX

IF WBDP ID EX

[Description] This pipeline has five stages: IF, DP, ID, EX, and WB.

In the figure above, a data operation instruction is executed by the Rpipe and then the next
instruction is issued to the Rpipe. If the left instruction execution (Lpipe) has no dependency
with the data operation instruction, it can execute its own processing independently.
Each of these instructions can be issued at the same time as another instruction.

CHAPTER 8 PIPELINE OPERATIONS

Preliminary User’s Manual U17135EJ1V1UM 185

8. 2. 10 Bit search instructions
Bit search instructions are executed by the right instruction execution pipeline (Rpipe)'s BSFT unit.

[Target instructions] SCH0L, SCH0R, SCH1L, and SCH1R

[Pipeline]

Bit search instruction

Next instruction

<1> <2> <3> <4> <5>

IF WB

<6>

DP ID EX

IF WBDP ID EX

[Description] This pipeline has five stages: IF, DP, ID, EX, and WB.

In the figure above, a data operation instruction is executed by the Rpipe and then the next
instruction is issued to the Rpipe. If the left instruction execution (Lpipe) has no dependency
with the data operation instruction, it can execute its own processing independently.
Each of these instructions can be issued at the same time as another instruction.

8. 2. 11 Division instructions

Division instructions are executed by the right instruction execution pipeline (Rpipe)'s ALU unit.

[Target instructions] DIV, DIVH, DIVHU, and DIVU

[Pipeline] (a) When DIV or DIVH

Division instruction

Instruction after next instruction

<1> <2> <3> <4> <5>

IF WB

<36> <37>

DP ID EX1 EX2

IF WBDP- EX

<38> <39> <40>

Next instruction IF WB- - EX

ID-

-: Idle inserted for wait timing

EX33 EX34 EX35

DP - -

-

ID

-

<41>

 (b) When DIVU or DIVHU

Division instruction

Instruction after next instruction

<1> <2> <3> <4> <5>

IF WB

<36> <37>

DP ID EX1 EX2

IF WBDP- EX

<38> <39> <40>

Next instruction IF WB- - EX

ID-

-: Idle inserted for wait timing

EX33 EX34

DP -

-

ID

[Description] For the DIV and DIVH instructions, the pipeline has 39 stages: IF, DP, ID, EX1 to EX35, and
WB. For the DIVU and DIVHU instructions, it has 38 stages: IF, DP, ID, EX1 to EX34, and WB.
In the figure above, a division instruction is executed by the Rpipe and then the next instruction
is issued to the Rpipe.
However, the dispatch unit does not issue any instructions to the Rpipe during the time when a
division instruction is being decoded in the ID stage or when it is being executed during the EX
stages.
These instructions are issued one at a time.

CHAPTER 8 PIPELINE OPERATIONS

Preliminary User’s Manual U17135EJ1V1UM 186

8. 2. 12 Branch instructions
Branch instructions are executed by the instruction fetch unit (Bpipe).

 (1) Conditional branch instruction (excludes BR instruction)

[Target instruction] Bcond

[Pipeline] (a) When condition has not been met

Conditional branch instruction

Instruction after next instruction

<1> <2> <3> <4> <5>

IF

<6> <7> <8>

DP ID EX

IF WBDP EX AT DF

Next instruction WBEX AT DFIF DP

ID

ID

<9>

(b) When condition has been met
<10>

Conditional branch instruction

Instruction after next instruction

<1> <2> <3> <4> <5>

IF

<6> <7> <8>

DP ID EX

IF

WBDP EX AT DF

<9>

Next instruction IF DP Instruction is flushed after condition and branch are confirmed

 Instruction is flushed after condition and branch are confirmed

IFBranch destination instruction ID

<11>

[Description] The figure above shows a Bcond instruction being executed by the Bpipe, with all

instructions being executed via the left instruction execution pipeline (Lpipe).
Each of these instructions can be executed at the same time as another instruction.
The numbers of execution clock cycles are listed below.

Branch instruction Execution clock cycles

 (a) When condition is not met 1

 (b) When condition is met 4Note

 Note This number is 3 (4 -1 = 3) if there are no target instructions in the instruction
buffer. This number is 6 if a PSW write instruction was executed as the previous
instruction.

CHAPTER 8 PIPELINE OPERATIONS

Preliminary User’s Manual U17135EJ1V1UM 187

(2) BR instruction and unconditional branch instructions (excluding JMP instruction)

[Target instructions] BR, JARL, and JR

[Pipeline]

<10>
BR instruction or

unconditional branch instruction

Instruction after next instruction

<1> <2> <3> <4> <5>

IF

<6> <7> <8>

DP ID EX

IF

WBDP EX AT DF

<9>

Next instruction IF DP Instruction is flushed since branch is unconditional

IFBranch destination instruction

WB

 Instruction is flushed since branch is unconditional

<11>

ID

[Description] The figure above shows a branch instruction being executed by the Bpipe, with all

instructions being executed via the left instruction execution pipeline (Lpipe).
Each of these instructions, except for the JARL disp32, reg1 instruction and JR disp32
instruction, can be executed at the same time as another instruction.
Four clock cycles are required for execution of these instructions (this number is 3 (4 -
1 = 3) if there are no target instructions in the instruction buffer).

 (3) JMP instruction

[Pipeline]

<10> <11>

JMP instruction

Instruction after next instruction

<1> <2> <3> <4> <5>

IF

<6> <7> <8>

DP ID EX

IF

WBDP EX AT DF

<9>

Next instruction IF DP Instruction is flushed since branch is unconditional

IFBranch destination instruction

 Instruction is flushed since branch is unconditional

AT

ID

<12>

[Description] The figure above shows a JMP instruction being executed by the Bpipe, with all

instructions being executed via the left instruction execution pipeline (Lpipe).
The JMP [reg1] instruction can be executed at the same time as another instruction
(this is not possible for the JMP disp32 [reg1] instruction).
Five clock cycles are required for execution of these instructions (this number is 4 (5 -
1 = 4) if there are no target instructions in the instruction buffer).

CHAPTER 8 PIPELINE OPERATIONS

Preliminary User’s Manual U17135EJ1V1UM 188

8. 2. 13 Bit manipulation instructions
Bit manipulation instructions are executed by the left instruction execution pipeline (Lpipe)'s ALU unit.

(1) CLR1, NOT1, and SET1 instructions

[Pipeline]

(1)

Next instruction

<1> <2> <3> <4> <5>

IF WB

<6> <7> <8>

DP ID EX AT DF

IF WBDP - EX AT DF

<9> <10> <11>

(2) ID WB- - EX AT DF

ID- -

-: Idle inserted for wait timing

Bit manipulation instruction

[Description] Each instruction is divided into two instructions at the ID stage. The load instruction is

executed first, then the store instruction that includes bit manipulation is executed.
However, since there is no writing of data to registers, nothing occurs at the WB stage.
In the figure above, a bit manipulation instruction is executed by the Lpipe and then the
next instruction is issued to the Lpipe. If the right instruction execution pipeline (Rpipe)
has no dependency with the bit manipulation instruction, it can execute its own
processing independently. The dispatch unit is not able to issue instructions to the Lpipe
during decoding of instructions at the ID stage.
These instructions are issued one at a time.

 (2) TST1 instruction

[Pipeline]

Next instruction

<1> <2> <3> <4> <5>

IF WB

<6> <7> <8>

DP ID EX AT DF

IF WBDP - EX AT DF

<9> <10> <11>

ID WB- - EX

ID- -

-: Idle inserted for wait timing

(1)

(2)
Bit manipulation instruction

[Description] Each instruction is divided into two instructions at the ID stage. The load instruction is

executed first, then the bit manipulation instruction is executed. However, since there is
no writing of data to registers, nothing occurs at the WB stage. In the figure above, the
TST1 instruction is executed by the Lpipe, then the next instruction is issued to the Lpipe.
If the Rpipe has no dependency with the bit manipulation instruction, it can execute its
own processing independently. The dispatch unit is not able to issue instructions to the
Lpipe during decoding of instructions at the ID stage.
These instructions are issued one at a time.

CHAPTER 8 PIPELINE OPERATIONS

Preliminary User’s Manual U17135EJ1V1UM 189

8. 2. 14 Special instructions

 (1) CALLT instruction

The CALLT instruction is executed by the left instruction execution pipeline (Lpipe)'s ALU unit.

[Pipeline]

<10> <11><1> <2> <3> <4> <5>

IF

<6> <7> <8>

DP ID

(IF)

DP

EX AT-

<9>

ID

IFBranch destination instruction

 forwardingWBEX AT DF

-

ID EX

<12>

-: Idle inserted for wait timing
(IF): Invalid instruction fetch

(1)

(2)
CALLT instruction

Next instruction (cancel)

[Description] This instruction is divided into two instructions at the ID stage. The load instruction is

executed first, then the branch instruction corresponding to CTBP is executed. However,
since there is no writing of data to registers, nothing occurs at the WB stage. In the
above figure, the CALLT instruction is executed by the Lpipe, then an instruction is
fetched from the branch destination. If the right instruction execution pipeline (Rpipe)
has no dependency with the CALLT instruction, it can execute its own processing
independently.
These instruction is issued one at a time.
The number of execution clock cycles is eight.

 (2) SWITCH instruction
The SWITCH instruction is executed by the left instruction execution pipeline (Lpipe)'s ALU unit.

[Pipeline]

<10> <11><1> <2> <3> <4> <5>

IF

<6> <7> <8>

DP ID

(IF)

DP

EX AT-

<9>

ID

IFBranch destination instruction

 forwardingWBEX AT DF

-

ID EX

<12>

-: Idle inserted for wait timing
(IF): Invalid instruction fetch

(1)

(2)
SWITCH instruction

Next instruction (cancel)

[Description] This instruction is divided into two instructions at the ID stage. The load instruction is

executed first, then the branch instruction corresponding to PC is executed. However,
since there is no writing of data to registers, nothing occurs at the WB stage. In the
above figure, the SWITCH instruction is executed by the Lpipe, then the next instruction
is issued to the Lpipe. If the right instruction execution pipeline (Rpipe) has no
dependency with the SWITCH instruction, it can execute its own processing
independently.
These instruction is issued one at a time.
The number of execution clock cycles is eight.

CHAPTER 8 PIPELINE OPERATIONS

Preliminary User’s Manual U17135EJ1V1UM 190

 (3) DI, EI, and LDSR instructions
The DI, EI, and LDSR instructions are executed by the right instruction execution pipeline (Rpipe)'s ALU

unit.

[Pipeline]

DI, EI, LDSR
 instruction

<1> <2> <3> <4> <5>

IF

<6>

DP ID EX

Next instruction - WBEXIF DP

WB Update system register

ID - Dummy slot

AT DF

<7> <8>

EX

-: Idle inserted for wait timing

<9>

ID

[Description] This pipeline has five stages: IF, DP, ID, EX, and WB.

In the above figure, a DI, EI, or LDSR instruction is executed by the Rpipe, and all other
instructions are also executed by the Rpipe.
These instructions are issued one at a time.

 (4) HALT instruction
The HALT instruction is executed by the instruction fetch pipeline (Fpipe)'s dispatch unit.

[Pipeline]

HALT instruction

Instruction after next instruction

<1> <2> <3>

IF DP

IF WBDP EX

Next instruction

ID

IF -

HALT release

- DP WBEXID

-: Idle inserted for wait timing

[Description] Once a HALT instruction is detected at the DP stage, instructions cannot be issued to

the ID stage until the HALT instruction has been canceled. Consequently, when the next
instruction is issued, the ID stage is delayed for that instruction until the HALT instruction
is canceled. In the above figure, the right instruction execution pipeline (Rpipe) executes
the HALT instruction, then the next instruction is issued to the Rpipe.
These instruction is issued one at a time.

 (5) STSR instruction

The STSR instruction is executed by the right instruction execution pipeline (Rpipe)'s ALU unit.

[Pipeline]

STSR instruction

<1> <2> <3> <4> <5>

IF

<6>

DP ID EX

Next instruction ID WBEXIF DP

WB

[Description] This pipeline has five stages: IF, DP, ID, EX, and WB.

In the above figure, the STSR instruction is executed by the Rpipe, then the next
instruction is issued to the Rpipe. If the left instruction execution pipeline (Lpipe) has no
dependency with the STSR instruction, it can execute its own processing independently.
These instruction is issued one at a time.

CHAPTER 8 PIPELINE OPERATIONS

Preliminary User’s Manual U17135EJ1V1UM 191

 (6) NOP instruction
The NOP instruction is executed by the ALU unit of the left instruction execution pipeline or the right

instruction execution pipeline (Lpipe or Rpipe).

[Pipeline]

NOP instruction

<1> <2> <3> <4> <5>

IF

<6>

DP ID EX

Next instruction ID WBEXIF DP

WB

[Description] This pipeline has five stages: IF, DP, ID, EX, and WB, but since there are no processing

and no writing of data to registers, there are no operations at the EX and WB stages.
In the above figure, the NOP instruction is executed by the Rpipe, then the next
instruction is issued to the Rpipe. If the Lpipe has no dependency with the NOP
manipulation instruction, it can execute its own processing independently.
This instruction can be issued at the same time as another instruction.

 (7) CTRET and TRAP instructions

The CTRET and TRAP instructions are executed by the instruction fetch unit (Bpipe).

[Pipeline]

<10> <11>
CTRET,

TRAP instruction

Instruction after next instruction

<1> <2> <3> <4> <5>

IF

<6> <7> <8>

DP ID EX1

IF

WBDP EX AT DF

<9>

Next instruction IF DP Instruction is flushed since branch is unconditional

IFBranch destination instruction

 Instruction is flushed since branch is unconditional

EX2 EX3 EX4 EX5 EX6

<12> <13> <14> <15>

ID

<16>

[Description] In the above figure, a CTRET or TRAP instruction is executed by the Bpipe, with all

instructions executed via the Lpipe.
These instructions are issued one at a time.
The number of execution clock cycles is nine.

 (8) RETI instruction

The RETI instruction is executed by the instruction fetch unit (Bpipe).

[Pipeline]

RETI instruction

Instruction after next instruction

<1> <2> <3> <4> <5>

IF DP ID EX1

IF

WBDP EX AT DF

Next instruction IF DP Instruction is flushed since branch is unconditional

IFBranch destination instruction

 Instruction is flushed since branch is unconditional

EX2 EXn

ID

[Description] In the above figure, a RETI instruction is executed by the Bpipe, with all instructions
executed via the left instruction execution pipeline (Lpipe).
These instructions are issued one at a time.
The number of execution clock cycles is varies according to the system (it depends on
the interrupt controller's operation specifications).

CHAPTER 8 PIPELINE OPERATIONS

Preliminary User’s Manual U17135EJ1V1UM 192

(9) PREPARE instruction
The PREPARE instruction is executed by the left instruction execution pipeline (Lpipe)'s ALU unit.

[Pipeline]

<1> <2> <3> <4> <5>

IF WB

<6> <7>

DP

ID AT

IF DP - EX

..... <n+3>

WB

ID

-

DF

-Next instruction -

EX AT DF

ID EX

ID-

<n+5><n+6><n+4><n+2>

ID AT DFEX

-

EX

WB

WB

<n+1>

DP

DP

DP

-

-: Idle inserted for wait timing

(1)

(2)

PREPARE instruction

(n)

(n+1)

…
..

…
..

Remark n is the number of registers specified in the register list (list12).

[Description] This instruction is divided into n + 1 instructions at the DP stage, and the store
instruction of the first n instruction is executed first, then an instruction that writes to the
stack pointer (SP) is executed. However, since the store instruction does not write any
data to registers, no operations occur at the WB stage. In the above figure, the
PREPARE instruction is executed by the Lpipe, then the next instruction is issued to the
Lpipe. If the right instruction execution pipeline (Rpipe) has no dependency with the
PREPARE instruction, it can execute its own processing independently.
The dispatch unit does not issue any instructions to the Lpipe when an instruction is
being decoded in the DP stage.
This instruction is issued one at a time.

CHAPTER 8 PIPELINE OPERATIONS

Preliminary User’s Manual U17135EJ1V1UM 193

 (10) DISPOSE instruction
The DISPOSE instruction is executed by the right instruction execution pipeline (Rpipe)'s ALU unit.

[Pipeline] (a) When branch does not occur

-: Idle inserted for wait timing

<1> <2> <3> <4> <5>

IF WB

<6> <7>

DP ID AT

IF DP - EX

..... <n+3>

WB

ID

-

DF

- -

EX AT DF WB

ID EX

ID-

<n+5><n+6><n+4><n+2>

ID AT DF WBEX

-

…
..

DP

-

DP

DP

<n+1>

…
..

Next instruction

(1)

(2)

DISPOSE instruction

(n)

(n+1)

 (b) When branch occurs

DISPOSE instruction
(JMP)

<1> <2> <3> <4> <5>

IF
WB

<6> <7>

DP
ID

EX

….. <n+3>

WB

ID

EX

EX AT DF WB

ID EX

ID-

<n+5><n+6><n+4><n+1>

ID AT DF WBEX

-

EX

ID

IF DP EXBranch destination instruction ID--

(IF)

-: Idle inserted for wait timing
(IF): Invalid instruction fetch

 Instruction is flushed since branch is unconditional

AT

…
..

<n+2>

DP

DP

DP

-

…
..

Next instruction

(1)

(2)

DISPOSE instruction

(n)

(n+1)

Remark n is the number of registers specified in the register list (list12).

[Description] This instruction is divided into n + 1 instructions at the DP stage, and the load instruction

of the first n instruction is executed first, then an instruction that writes to the stack
pointer (SP) is executed. In the above figure, DISPOSE instruction is executed by the
Lpipe, then the next instruction is issued to the Lpipe. If the right instruction execution
pipeline (Rpipe) has no dependency with the DISPOSE instruction, it can execute its
own processing independently.
The dispatch unit does not issue any instructions to the Lpipe when an instruction is
being decoded in the DP stage.
This instruction is issued one at a time.

CHAPTER 8 PIPELINE OPERATIONS

Preliminary User’s Manual U17135EJ1V1UM 194

8. 2. 15 Instructions for debug function
All instructions for the debug function are executed by the instruction fetch unit (Bpipe).

[Target instructions] DBTRAP and DBRET

[Pipeline]

DBTRAP,
DBRET instruction

Instruction after next instruction

<1> <2> <3> <4> <5>

IF DP ID EX1

IF

WBDP EX AT DF

Next instruction IF DP Instruction is flushed since branch is unconditional

IFBranch destination instruction

 Instruction is flushed since branch is unconditional

EX2 EXn

ID

[Description] In the above figure, a DBTRAP or DBRET instruction is executed by the Bpipe, and all other

instructions are executed by the left instruction execution pipeline (Lpipe).
These instructions are issued one at a time.
Since this instruction is retained in the CPU, the branch destination instruction is not
executed before completion of this instruction's processing.

Preliminary User’s Manual U17135EJ1V1UM 195

CHAPTER 9 SHIFTING TO DEBUG MODE

When a debug trap, exception trap, or debug break occurs, the V850E2 CPU sets the handler address
(00000060H) to the program counter (PC) and shifts to debug mode.
The mode can be shifted to debug mode each time a single-step operation is set and an instruction is executed.

Caution When the mode is shifted to debug mode, the data cache (dCACHE) is set to Hold mode and its

data and tags are not updated. If a cacheable area of external memory is accessed during
debug mode, cohesion may be lost even when the dCACHE is valid and access is only to
external memory. Therefore, before manipulating any data in a cacheable area as part of a
debug monitor routine, be sure to first return to user mode and clear the dCACHE (for write
through) or flush and clear it (for write back).

9. 1 Methods for Shifting to Debug Mode

 (1) Debug trap

When the DBTRAP instruction is executed, a debug trap occurs and the mode is shifted to debug mode.

 (2) Exception trap
When an instruction is executed incorrectly (or illegally), an exception trap occurs and the mode is shifted
to debug mode.

 (3) Debug break

There are three types of debug breaks, as described below.

 • Break set by breakpoint (4 channels)
 • Break triggered by misaligned access exception
 • Break triggered by alignment error exception

The following system registers are used to set debug breaks.

 • Debug Interface register (DIR)
 • Breakpoint Control registers 0 to 3 (BPC0 to BPC3)
 • Breakpoint Address Setup registers 0 to 3 (BPAV0 to BPAV3)
 • Breakpoint Address Mask registers 0 to 3 (BPAM0 to BPAM3)
 • Breakpoint Data Setup registers 0 to 3 (BPDV0 to BPDV3)
 • Breakpoint Data Mask registers 0 to 3 (BPDM0 to BPDM3)

(a) Break set by breakpoint (4 channels)

The mode is shifted to debug mode based on breakpoints that are set (for 4 channels) when the
following break conditions are met. These conditions are set via the BPCn registers (n = 0 to 3).

Caution When the BPCn register's IE bit is set, if the Program IDs set via the BP ASID bit and

ASID register do not match, the mode will not be shifted to debug mode even if the
break condition has been met.

CHAPTER 9 SHIFTING TO DEBUG MODE

Preliminary User’s Manual U17135EJ1V1UM 196

Table 9-1. Break Conditions

Type Break condition BPxxn register's settingNote 2 BPCn register's MD, FE,

 RE, and WE bit settings

 Address Note 1 Data

Break timing

BP

AVn

BP

AMn

BP

DVn

BP

DMn

MD FE RE,

WE

Any execution address - Before

execution

<1> <1> <1> <1> 1 1 0Note 4 Execution

-related

trap Designated execution

address

- 9 <0> <1> <1>

 Designated execution

address range

- 9 9 <1> <1>

Designated data After

execution Note 3

<1> <1> 9 <0> 0 0 0/1Note 5Access-

related

trap

Any access address

Designated data

range

Immediately

After execution
<1> <1> 9 9

 Any data 9 <0> <1> <1> Don't

care

Designated access

address

Designated data 9 <0> 9 <0> 0

 Designated data

range

After

executionNote 3

9 <0> 9 9

 Any data Immediately

After execution
9 9 <1> <1> Don't

care

Designated access

address range

Designated data 9 9 9 <0> 0

 Designated data

range

After

executionNote 3 9 9 9 9

Notes1. Execution addresses refers to addresses used during instruction fetch operations and access addresses
refer to addresses where access occurs during instruction execution.

Notes2. Enter the following settings.
9: Set a break condition.
<0>: Zero-clear all bits.
<1>: A condition setting is not required, but since the initial value is undefined, all bits should be set (= 1)
 (except for bits 31 to 29 in the BPAVn and BPAMn registers, which are fixed to zero).

Notes3. When writing data: After execution
When reading data: Execution after several instruction (slip)

Notes4. Bit value must be 0 (operation is not guaranteed if any of these bits are set (= 1)).
Notes5. Set according to type of access (read only, write only, or read/write-accessible).
Remarks1. n = 0 to 3
Remarks2. If several break conditions have been set, the mode will be shifted to debug mode if any of the previously

set break conditions is met.

CHAPTER 9 SHIFTING TO DEBUG MODE

Preliminary User’s Manual U17135EJ1V1UM 197

The following two types of operations can be performed sequentially between channels 0 and 1, or channels 2 and

3 (these operations cannot be performed at the same time).

<1> Break triggered by sequential execution (sequential break mode)
The mode is shifted to debug mode only when break conditions are met in the order of channels 0
→ 1 or channels 2 → 3. To make this setting, set a "1" to the SQ0 bit (when using channels 0 and
1) or the SQ1 bit (when using channels 2 and 3) in the Debug Interface register (DIR).

<2> Break triggered by simultaneous execution (latency break mode)

The mode is shifted to debug mode only when break conditions are met at the same time in
channels 0 and 1, or in channels 2 or 3. To make this setting, set a "1" to the RE0 bit (when using
channels 0 and 1), or the RE1 bit (when using channels 2 and 3) in the Debug Interface register
(DIR).

Cautions 1. The timing by which break conditions are met differs between execution-

related traps and access-related traps. Consequently, even when sequential
break mode has been set, normal operation may not occur if an execution-
related trap occurs after an access-related trap.

2. When in latency break mode, set either execution-related traps or access-
related traps (when using channels 0 and 1 or channels 2 and 3).

 (b) Break triggered by misaligned access exception

To make this setting, set "1" to the MT bit in the Debug Interface register (DIR).
If misaligned access occurs during execution of a load instruction or store instruction, the mode is
shifted to debug mode (this does not depend on enabled/prohibited setting for misaligned access, set by
the level of input to the IFIMAEN pin).

(c) Break triggered by alignment error exception

To make this setting, set "1" to the AT bit in the Debug Interface register (DIR).
The mode is shifted to debug mode when an alignment error occurs.
An alignment error can occur in the following cases.
 • When the stack pointer (SP) is forcibly aligned so as not to be at the word boundary during

execution of a PREPARE or DISPOSE instruction

When a debug break occurs, the address of the instruction that triggered the break is stored in the DBPC,
except when there is an access-related trap while using channels 0 to 3 (since the mode is shifted to
debug mode before execution of the instruction is completed). Therefore, after shifting from debug mode to
user mode, the instruction which caused a break is re-detected, and an additional debug break occurs (not
ignored).

CHAPTER 9 SHIFTING TO DEBUG MODE

Preliminary User’s Manual U17135EJ1V1UM 198

(4) Single-step operation
When the PSW's SS flag is set (= 1), single-step operation is set, in which case a debug break can occur
each time an instruction is executed. Single-step operation is set and canceled via the following steps.

 (a) Steps for setting single-step operation
<1> Use a debug trap (execute the DBTRAP instruction) to shift to debug mode.
<2> Set a "1" to the SSE bit in the DIR register to control the PSW's SS flag.
<3> Set a "1" to bit 11 in the DBPSW register to set (= 1) the PSW's SS flag when shifting to user

mode.
<4> Transfer the return PC value to the DBPC register.
<5> Execute the DBRET instruction to shift to user mode (when shifting, set a "1" to the PSW's SS

flag to set single-step operation).

 (b) Steps for canceling single-step operation
<1> When operating in the debug mode processing routine, clear bits both 10 (SB bit) and 11 (SS bit)

of the DBPSW register to 0.
<2> When operating in the debug mode processing routine, clear bits both 10 (SB bit) and 11 (SS bit)

of the PSW register to 0.
<3> When operating in the debug mode processing routine, clear bit 8 (SSE bit) of the DIR register to

0.
<4> Return to the user mode via the DBRET instruction.

CHAPTER 9 SHIFTING TO DEBUG MODE

Preliminary User’s Manual U17135EJ1V1UM 199

Figure 9-1. Single-step Operation Execution Flow

Execution of DBTRAP instruction

DIR.SSE ← 1
DBPSW [11] ← 1
DBPC ← Return PC

Execution of 1 instruction

User mode Debug mode

Debug monitor routine

Execution of DBRET instruction

Execution of 1 instruction

Debug monitor routine

.

.

.

DBPSW [10] ← 0
DBPSW[11] ← 0
PSW[10] ← 0
PSW[11] ← 0
DIR.SSE ← 0

Execution of DBRET instruction

Execution of 1 instruction

Execution of 1 instruction

Processing of
single step operation

Processing of
single step cancellation

DBPC ← Return PC
DBPSW ← PSW
PSW.NP ← 1
PSW.EP ← 1
PSW.ID ← 1
DIR.DM ← 1
PC ← 00000060H

DBPC ← Return PC
DBPSW ← PSW
PSW.NP ← 1
PSW.EP ← 1
PSW.ID ← 1
DIR.DM ← 1
PC ← 00000060H

Execution of DBTRAP instruction

DIR.SSE ← 1
DBPSW [11] ← 1
DBPC ← Return PC

Execution of 1 instruction

User mode Debug mode

Debug monitor routine

Execution of DBRET instruction

Execution of 1 instruction

Debug monitor routine

.

.

.

DBPSW [10] ← 0
DBPSW[11] ← 0
PSW[10] ← 0
PSW[11] ← 0
DIR.SSE ← 0

Execution of DBRET instruction

Execution of 1 instruction

Execution of 1 instruction

Processing of
single step operation

Processing of
single step cancellation

DBPC ← Return PC
DBPSW ← PSW
PSW.NP ← 1
PSW.EP ← 1
PSW.ID ← 1
DIR.DM ← 1
PC ← 00000060H

DBPC ← Return PC
DBPSW ← PSW
PSW.NP ← 1
PSW.EP ← 1
PSW.ID ← 1
DIR.DM ← 1
PC ← 00000060H

CHAPTER 9 SHIFTING TO DEBUG MODE

Preliminary User’s Manual U17135EJ1V1UM 200

Remark During single-step operation, if an interrupt request occurs while in user mode, the
setting of the PSW's SB flag is transferred to the SS flag before shifting to the interrupt
processing routine. Accordingly, if the SB flag is set (= 1), the interrupt processing
routine is performed as a single-step operation. If the SB flag is cleared (= 0), the
interrupt processing routine is not performed as a single-step operation (compatible with
V850E1 CPU).
The SS flag is set (= 1) again by the processing to return from the interrupt processing
routine (EIPSW → PSW) (regardless of the SB flag's value).
The processing flow differs according to the instruction that is being executed when the
interrupt occurs (see Figure 9-2).

CHAPTER 9 SHIFTING TO DEBUG MODE

Preliminary User’s Manual U17135EJ1V1UM 201

Figure 9-2. Processing Flow when Interrupt Request Occurs during Single-step Operation

(a) When execution of instruction is not

stopped by interrupt request

 User mode Debug mode
.
.
.

Execution of 1 instruction
(not stopped)

Interrupt request

DBPC ← Return PC
DBPSW ← PSW
PSW.NP ← 1
PSW.EP ← 1
PSW.ID ← 1
PC ← 00000060H

EIPC ← Return PC
EIPSW ← PSW
PSW.ID ← 1
PSW.SS ← 0
PC ← Handler
 address

Interrupt processing
routine

PC ← EIPC
PSW ← EIPSW
 (SS = 1)

Execution of 1 instruction

DBPC ← Return PC
DBPSW ← PSW
PSW.NP ← 1
PSW.EP ← 1
PSW.ID ← 1
PC ← 00000060H

.

.

.

Debug monitor routine

Debug monitor routine

Debug monitor routine

(b) When execution of instruction is

stopped by interrupt request

 User mode Debug mode
.
.
.

Execution of 1 instruction
(stopped)

EIPC ← Return PC
EIPSW ← PSW
PSW.ID ← 1
PSW.SS ← 0
PC ← Handler
 address

Interrupt processing
routine

PC ← EIPC
PSW ← EIPSW
 (SS = 1)

Execution of 1 instruction
(stopped instruction)

DBPC ← Return PC
DBPSW ← PSW
PSW.NP ← 1
PSW.EP ← 1
PSW.ID ← 1
PC ← 00000060H

.

.

.

DBPC ← Return PC
DBPSW ← PSW
PSW.NP ← 1
PSW.EP ← 1
PSW.ID ← 1
PC ← 00000060H

 Interrupt request
Debug monitor routine

Debug monitor routine

Debug monitor routine

Remarks 1. When execution is stopped by an interrupt request (See Table 6-1 Interrupt/Exception Codes),
interrupt processing is performed without waiting for execution of the instruction to be completed. After
returning from the interrupt processing routine, the mode is shifted to debug mode without executing any
instructions.

2. The above figure shows an example where the PSW's SB flag have been cleared (= 0).

CHAPTER 9 SHIFTING TO DEBUG MODE

Preliminary User’s Manual U17135EJ1V1UM 202

9. 2 Caution Points

When using channels 0 to 3, if access is performed using bit manipulation instructions, the settings in the BPDVn
register differ depending on the address being accessed (n = 0 to 3).
The following shows examples of break condition settings for access addresses corresponding to various access
sizes.

Table 9-2. Break Condition Setting Examples

Access size

 (Data example is in

parentheses)

Access

sizeNote 1

Bus cycle TY bit of BPCn register BPAVn register Note1 BPDVn register Note2

Word (44332211H) 0H W 0H 44332211H

 1H

1, 1

 (Word access) 1H

 2H 2H

 3H 3H

Half word (2211H) 0H HW 0H xxxx2211H

 1H 1H

 2H

1, 0

 (Half word access)

2H

 3H 3H

Byte (11H) 0H B 0H xxxxxx11H

 1H

0, 1

 (Byte access) 1H

 2H 2H

 3H 3H

Bit (11H) 0H B 0H xxxxxx11H

 1H

0, 1

 (Byte access) 1H xxxx11xxH

 2H 2H xx11xxxxH

 3H 3H 11xxxxxxH

Notes 1. The value of the lower two bits is shown.
2. "x" indicates that the value is masked by the BPDMn register.

Remarks 1. W: Word data transfer cycle

HW: Half word data transfer cycle
B: Byte data transfer cycle

2. n = 0 to 3

Preliminary User’s Manual U17135EJ1V1UM 203

APPENDIX A LIST OF INSTRUCTION

Table A-1 lists the instruction function in alphabetical order. Table A-2 lists instruction format in numeral order.

Table A-1. Instruction Function (in Alphabetical Order) (1 of 12)

 Flag Mnemonic Operand Format

CY OV S Z SAT

Instruction Function

ADD reg1, reg2 I 0/1 0/1 0/1 0/1 -- Add: Adds the reg1 word data to the reg2 word data

and stores the result in reg2.

ADD imm5, reg2 II 0/1 0/1 0/1 0/1 -- Add: Adds the 5-bit immediate data, sign-extended to

word length, to the reg2 word data, and stores the result

in reg2.

ADDI imm16, reg1, reg2 VI 0/1 0/1 0/1 0/1 -- Add Immediate: Adds the 16-bit immediate data, sign-

extended to word length, to the reg1 word data, and

stores the result in reg2.

ADF cccc, reg1, reg2, reg3 XI 0/1 0/1 0/1 0/1 -- Conditional addition.

Either 1 (if the addition result meets the condition

specified in condition code "cccc") or 0 (if the addition

result does not meet the condition specified in condition

code "cccc") is added to the result of adding the word

data in reg2 to the value of reg1, and the final result is

stored in reg3.

AND reg1, reg2 I -- 0 0/1 0/1 -- And: ANDs the reg2 word data with the reg1 word data

and stores the result in reg2.

ANDI imm16, reg1, reg2 VI -- 0 0 0/1 -- And: ANDs the reg1 word data with the 16-bit

immediate data, zero-extended to word length, and

stores the result in reg2.

Bcond disp9 III -- -- -- -- -- Conditional Branching (If Carry): Checks the condition

flag specified by an instruction, branches if a condition

is met and executes the next instruction if not. The

branch destination PC holds the sum of the current PC

value and the 9-bit displacement data (=8-bit

immediate, shifted by 1 and sign-extended to word

length).

APPENDIX A LIST OF INSTRUCTION

Preliminary User’s Manual U17135EJ1V1UM 204

Table A-1. Instruction Function (in Alphabetical Order) (2 of 12)

 Flag Mnemonic Operand Format

CY OV S Z SAT

Instruction Function

BSH reg2, reg3 XII 0/1 0 0/1 0/1 -- Half-Word Byte Swap: Executes endian conversion.

BSW reg2, reg3 XII 0/1 0 0/1 0/1 -- Word Byte Swap: Executes endian conversion.

CALLT imm6 II -- -- -- -- -- Call with Table Look Up: Updates PC and transfers the

control based on CTBP contents.

CLR1 bit#3, disp16 [reg1] VIII -- -- -- 0/1 -- Clear Bit: Adds the reg1 data to the 16-bit

displacement, sign-extended to word length, to

generate a 32-bit address; clears the bit data specified

by the bit #3 referenced by the generated address.

CLR1 reg2, [reg1] IX -- -- -- 0/1 -- Clear Bit: Reads the reg1 data to generate a 32-bit

address, and clears the bit specified by the lower 3 bits

of the reg2 byte data referenced by the generated

address.

CMOV cccc, reg1, reg2, reg3 XI -- -- -- -- -- Conditional Move: The reg 1 data is set to reg3 if a

condition specified by condition code “cccc” is met and

reg2 data are set if not.

CMOV cccc, imm5, reg2, reg3 XII -- -- -- -- -- Conditional Move: The 5-immediate data, sign-

extended to word length, is set to reg3 if a condition

specified by condition code “cccc” is met and the reg2

data is set if not.

CMP reg1, reg2 I 0/1 0/1 0/1 0/1 -- Compare: Subtracts the reg1 word data from the reg2

word data for reg1-reg2 comparison and results via

PSW flags.

CMP imm5, reg2 II 0/1 0/1 0/1 0/1 -- Compare: Subtracts the 5-bit immediate data, sign-

extended to word length, from the reg2 word data for

imm5-reg2 comparison and results via PSW flags.

CTRET -- X 0/1 0/1 0/1 0/1 0/1 Return from CALLT: Fetches the return PC and PSW

from the appropriate system register and returns from a

routine under CALLT.

DBRET -- X 0/1 0/1 0/1 0/1 0/1 Return from Debug Trap: Fetches the return PC and

PSW from the appropriate system register and returns

from a debug monitor routine.

DBTRAP -- I -- -- -- -- -- Debug Trap: Saves the return PC and PSW in the

system register and transfers the control by setting a

handler address (00000060H) to PC.

DI -- X -- -- -- -- -- Disables Interrupt: Sets "1" to the ID flag of PSW to

immediately disable the maskable interrupts

acknowledgement; interrupts are disabled beginning

this instruction execution.

APPENDIX A LIST OF INSTRUCTION

Preliminary User’s Manual U17135EJ1V1UM 205

Table A-1. Instruction Function (in Alphabetical Order) (3 of 12)

 Flag Mnemonic Operand Format

CY OV S Z SAT

Instruction Function

DISPOSE imm5, list12 XIII -- -- -- -- -- Dispose: Adds the 5-bit immediate data, logically left-

shifted by 2, and zero-extended to word length, to sp;

pop the general registers listed in list 12 by adding 4 to

sp.

DISPOSE imm5, list12, [reg1] XIII -- -- -- -- -- Dispose. Adds the 5-bit immediate data, logically left-

shifted by 2, zero-extended to word length, to sp; pop

the general registers listed in list12 by loading data

from the address specified by sp and adding 4 to sp;

and transfers the control to the address specified by

reg1.

DIV reg1, reg2, reg3 XI -- 0/1 0/1 0/1 -- Divide: Divides the reg2 word data by the reg1 word

data and stores the quotient in reg2 and the remainder

in reg3.

DIVH reg1, reg2 I -- 0/1 0/1 0/1 -- Divide Half-Word: Divides the reg2 word data by the

reg1 lower half-word data and stores the quotient in

reg2.

DIVH reg1, reg2, reg3 XI -- 0/1 0/1 0/1 -- Divide Half-Word: Divides the reg2 word data by the

reg1 lower half-word data and stores the quotient in

reg2 and the remainder in reg3.

DIVHU reg1, reg2, reg3 XI -- 0/1 0/1 0/1 -- Divide Half-Word Unsigned: Divides the reg2 word data

by the reg1 lower half-word data and stores the

quotient in reg2 and the remainder in reg3.

DIVU reg1, reg2, reg3 XI -- 0/1 0/1 0/1 -- Divide Unsigned: Divides the reg2 word data by the

reg1 word data and stores the quotient in reg2 and the

remainder in reg3.

EI -- X -- -- -- -- -- Enables Interrupt: Clears the ID flag of PSW to "0" to

enable the maskable interrupts acknowledgement

beginning the next instruction.

HALT -- X -- -- -- -- -- Halt: Stops the CPU operating clock to set CPU in the

HALT mode.

HSH reg2, reg3 XII 0/1 0 0/1 0/1 -- Half word swap of half word data.

The value of reg2 is stored in reg3 and the flag

judgment result is stored in the PSW.

HSW reg2, reg3 XII 0/1 0 0/1 0/1 -- Half-Word Swap Word: Executes endian conversion.

APPENDIX A LIST OF INSTRUCTION

Preliminary User’s Manual U17135EJ1V1UM 206

Table A-1. Instruction Function (in Alphabetical Order) (4 of 12)

 Flag Mnemonic Operand Format

CY OV S Z SAT

Instruction Function

JARL disp22, reg2 V -- -- -- -- -- Jump and Register Link: Saves the current PC value+4

in reg2, adds the 22-bit displacement data, sign-

extended to word length, to PC, and transfers the

control to PC. Bit 0 of 22-bit displacement is masked to

"0."

JARL disp32, reg1 VI -- -- -- -- -- Jump and Register Link: Saves the current PC value+6

in reg1, adds the 32-bit displacement data to PC, and

transfers the control to PC. Bit 0 of 32-bit displacement

is masked to "0."

JMP [reg1] I -- -- -- -- -- Jump: Transfers the control to the address specified by

reg1. Bit 0 of the address is masked to "0."

JMP disp32 [reg1] VI -- -- -- -- -- Jump: Adds the 32-bit displacement data to reg1, load

the result to PC, and transfers the control to PC. Bit 0

of the address is masked to "0."

JR disp22 V -- -- -- -- -- Jump Relative: Adds the 22-bit displacement data,

sign-extended to word length, to the current PC, and

transfer the control to PC. Bit 0 of 22-bit displacement

is masked to "0."

JR disp32 VI -- -- -- -- -- Jump Relative: Adds the 32-bit displacement data to

the current PC and transfer the control to PC. Bit 0 of

32-bit displacement is masked to "0."

LD.B disp16 [reg1] , reg2 VII -- -- -- -- -- Load Byte: Adds the reg1 data to the 16-bit

displacement data, sign-extended to word length, to

generate a 32-bit address. Byte data is read from the

generated address, sign-extended to word length, and

stored in reg2.

LD.BU disp16 [reg1] , reg2 VII -- -- -- -- -- Load Unsigned Byte: Adds the reg1 data to the 16-bit

displacement data, sign-extended to word length, to

generate a 32-bit address. Byte data is read from the

generated address, zero-extended to word length, and

stored in reg2.

LD.H disp16 [reg1], reg2 VII -- -- -- -- -- Load Half-Word: Adds the reg1 data to the 16-bit

displacement data, sign-extended to word length, to

generate a 32-bit address. Half-word data is read from

the generated address, sign-extended to word length,

and stored in reg2.

LD.HU disp16 [reg1] , reg2 VII -- -- -- -- -- Load Half-Word Unsigned: Adds the reg1 data to the

16-bit displacement data, sign-extended to word length,

to generate a 32-bit address. Half-word data is read

from the generated address, zero-extended to word

length, and stored in reg2.

APPENDIX A LIST OF INSTRUCTION

Preliminary User’s Manual U17135EJ1V1UM 207

 Table A-1. Instruction Function (in Alphabetical Order) (5 of 12)

 Flag Mnemonic Operand Format

CY OV S Z SAT

Instruction Function

LD.W disp16 [reg1] , reg2 VII -- -- -- -- -- Load Word: Adds the reg1 data to the 16-bit

displacement data, sign-extended to word length, to

generate a 32-bit address. Word data is read from the

generated address, and stored in reg2.

LDSR reg2, regID IX -- -- -- -- -- Load System Register: Sets the reg2 word data to the

system register specified by regID. If regID is PSW, the

corresponding reg2 bits values are set to the PSW

flags.

MAC reg1, reg2, reg3, reg4 XI -- -- -- -- -- Multiplication with addition of (signed) word data.

The word data in reg2 is multiplied by the word data in

reg1 and the result is added to the 64-bit data created

by combining reg3 with reg3 + 1, then this sum (64-bit

data) is stored in reg4 and reg4 + 1.

MACU reg1, reg2, reg3, reg4 XI -- -- -- -- -- Multiplication with addition of (unsigned) word data.

The word data in reg2 is multiplied by the word data in

reg1 and the result is added to the 64-bit data created

by combining reg3 with reg3 + 1, then this sum (64-bit

data) is stored in reg4 and reg4 + 1.

MOV reg1, reg2 I -- -- -- -- -- Move: Transfers the reg1 word data to reg2.

MOV imm5, reg2 II -- -- -- -- -- Move: Transfers the 5-bit immediate data, sign-

extended to word length, to reg2.

MOV imm32, reg1 VI -- -- -- -- -- Move: Transfers the 32-bit immediate data to reg1.

MOVEA imm16, reg1, reg2 VI -- -- -- -- -- Move Effective Address: Adds the 16-bit immediate

data, sign-extended to word length, to the reg1 word

data and stores the result in reg2.

MOVHI imm16, reg1, reg2 VI -- -- -- -- -- Move High Half-word: Adds the word data, where the

higher 16 bits are defined by the 16-bit immediate data

with the lower 16 bits set to "0," to the reg1 word data

and stores the result in reg2.

MUL reg1, reg2, reg3 XI -- -- -- -- -- Multiply Word: Multiplies the reg2 word data by the

reg1 word data and stores the result in reg2 and reg3

as double-word data.

MUL imm9, reg2, reg3 XII -- -- -- -- -- Multiply Word: Multiplies the reg2 word data by the 9-

bit immediate data, sign-extended to word length, and

stores the result in reg2 and reg3.

MULH reg1, reg2 I -- -- -- -- -- Multiply Half-Word: Multiplies the reg2 lower half-word

data by the reg1 lower half-word data, and stores the

result in reg2 as word data.

APPENDIX A LIST OF INSTRUCTION

Preliminary User’s Manual U17135EJ1V1UM 208

Table A-1. Instruction Function (in Alphabetical Order) (6 of 12)

 Flag Mnemonic Operand Format

CY OV S Z SAT

Instruction Function

MULH imm5, reg2 II -- -- -- -- -- Multiply Half-Word: Multiplies the reg2 lower half-word

data by the 5-bit immediate data, sign-extended to half-

word length, and stores the result in reg2 as word data.

MULHI imm16, reg1, reg2 VI -- -- -- -- -- Multiply Half-word Immediate: Multiplies the reg1 lower

half-word data by the 16-bit immediate data and stores

the result in reg2.

MULU reg1, reg2, reg3 XI -- -- -- -- -- Multiply Word Unsigned: Multiplies the reg2 word data

by the reg1 word data and stores the result in reg2 and

reg3 as double-word data. reg1 not affected.

MULU imm9, reg2, reg3 XII -- -- -- -- -- Multiply Word Unsigned. Multiplies the reg2 word data

by the 9-bit immediate data, zero-extended to word

length, and store the result in reg2 and reg3.

NOP -- I -- -- -- -- -- No Operation.

NOT reg1, reg2 I -- 0 0/1 0/1 -- Not: Logically negates the reg1 word data by 1’s

complement and stores the result in reg2.

NOT1 bit#3, disp16 [reg1] VIII -- -- -- 0/1 -- Not Bit: Adds the reg1 data to the 16-bit displacement,

sign-extended to word length, to generate a 32-bit

address. Bit specified by the bit #3 is inverted at the

byte data location referenced by the generated

address.

NOT1 reg2, [reg1] IX -- -- -- 0/1 -- Not Bit: Reads reg1 to generate a 32-bit address. Bit

specified by the lower 3 bits of the reg2 byte data of the

generated address is inverted.

OR reg1, reg2 I -- 0 0/1 0/1 -- Or: ORs the reg2 word data with the reg1 word data

and stores the result in reg2.

ORI imm16, reg1, reg2 VI -- 0 0/1 0/1 -- Or Immediate: ORs the reg1 word data with the 16-bit

immediate data, zero-extended to word length and

stores the result in reg2.

PREPARE list12, imm5 XIII -- -- -- -- -- Prepare: Saves the general register in list12 by

subtracting 4 from sp and stores the data in that

address; subtracts from sp the 5-bit immediate data,

logically left-shifted by 2, zero-extended to word length.

PREPARE list12, imm5, sp/imm XIII -- -- -- -- -- Prepare: Saves the general register in list12 by

subtracting 4 from sp and the data in that address;

subtract from sp the 5-bit immediate data, logically left-

shifted by 2, zero-extended to word length; and loads

the data specified by the third operand to ep.

APPENDIX A LIST OF INSTRUCTION

Preliminary User’s Manual U17135EJ1V1UM 209

 Table A-1. Instruction Function (in Alphabetical Order) (7 of 12)

 Flag Mnemonic Operand Format

CY OV S Z SAT

Instruction Function

RETI -- X 0/1 0/1 0/1 0/1 0/1 Return from Trap or Interrupt: Reads the return PC and

PSW from the system register to return from interrupt

or exception processing.

SAR reg1,reg2 IX 0/1 0 0/1 0/1 -- Shift Arithmetic Right: Arithmetically right-shifts the

reg2 word data by ‘n’ positions, where ‘n’ is specified

by the lower 5 bits of reg1 (the pre-shift MSB value is

copied and set as the new MSB); writes the result to

reg2.

SAR imm5, reg2 II 0/1 0 0/1 0/1 -- Shift Arithmetic Right. Arithmetically right-shifts the

reg2 word data by ‘n’ positions, where "n" is specified

by the lower 5-bit immediate data, zero-extended to

word length (the pre-shift MSB value is copied and set

as the new MSB); writes the result to reg2.

SAR reg1, reg2, reg3 XI 0/1 0 0/1 0/1 -- Arithmetic right shift.

The word data in reg2 is arithmetically right-shifted the

number of times indicated by the lower 5 bits of reg1

(MSB value prior to shifting is copied in MSB-first

order) and the result is written to reg3.

SASF cccc, reg2 IX -- -- -- -- -- Shift and Set Flag Condition: reg2 is logically left-

shifted by 1; "1" is set to LSB if a “cccc”-specified

condition is met and "0" is set to LSB if not.

SATADD reg1, reg2 I 0/1 0/1 0/1 0/1 0/1 Saturate Add: Adds the reg1 word data to the reg2

word data and stores the result in reg2; if the result

exceeds the maximum positive value, the maximum

positive value is stored in reg2 and if the result exceeds

the maximum negative value, the maximum negative

value is stored in reg2. "1" is set to the SAT flag.

SATADD imm5,reg2 II 0/1 0/1 0/1 0/1 0/1 Saturate Add: Adds the 5-bit immediate data, sign-

extended to word length, to the reg2 word data and

stores the result in reg2; if the result exceeds the

maximum positive value, the maximum positive value is

stored to reg2 and if the result exceeds the maximum

negative value, the maximum negative value is stored

to reg2. "1" is set to the SAT flag.

APPENDIX A LIST OF INSTRUCTION

Preliminary User’s Manual U17135EJ1V1UM 210

Table A-1. Instruction Function (in Alphabetical Order) (8 of 12)

 Flag Mnemonic Operand Format

CY OV S Z SAT

Instruction Function

SATADD reg1, reg2, reg3 XI 0/1 0/1 0/1 0/1 0/1 Saturation addition.

The word data in reg2 is added to the word data in reg1

and the result is stored in reg3. However, if the result

exceeds the maximum positive value, the maximum

positive value is instead stored in reg3 (or if it exceeds

the maximum negative value, the maximum negative

value is instead stored in reg3) and the SAT flag is set

(= 1).

SATSUB reg1, reg2 I 0/1 0/1 0/1 0/1 0/1 Saturate Subtract: Subtracts the reg1 word data from

the reg2 word data and stores the result in reg2; if the

result exceeds the maximum positive value, the

maximum positive value is stored in reg2 and if the

result exceeds the maximum negative value, the

maximum negative value is stored in reg2. "1" is set to

the SAT flag.

SATSUB reg1, reg2, reg3 XI 0/1 0/1 0/1 0/1 0/1 Saturation multiplication.

The word data in reg1 is subtracted from the word data

in reg2, and the result is stored in reg3. However, if the

result exceeds the maximum positive value, the

maximum positive value is instead stored in reg3 (or if

it exceeds the maximum negative value, the maximum

negative value is instead stored in reg3) and the SAT

flag is set (= 1).

SATSUBI imm16, reg1, reg2 VI 0/1 0/1 0/1 0/1 0/1 Saturate Subtract Immediate: Subtracts the 16-bit

immediate data, sign-extended to word length, from the

reg1 word data and stores the result in reg2; if the

result exceeds the maximum positive value, the

maximum positive value is stored in reg2 and if the

result exceeds the maximum negative value, the

maximum negative value is stored in reg2. "1" is set to

the SAT flag.

SATSUBR reg1, reg2 I 0/1 0/1 0/1 0/1 0/1 Saturate Subtract Reverse: Subtracts the reg2 word

data from the reg1 word data and stores the result in

reg2; if the result exceeds the maximum positive value,

the maximum positive value is stored in reg2 and if the

result exceeds the maximum negative value, the

maximum negative value is stored in reg2. "1" is set to

the SAT flag.

SBF cccc, reg1, reg2, reg3 XI 0/1 0/1 0/1 0/1 -- Conditional subtraction.

The value of reg1 is subtracted from the word data in

reg2, and either 1 (if the subtraction result meets the

condition set by condition code "cccc") or 0 ((if the

subtraction result does not meet the condition set by

condition code "cccc") is subtracted from the result,

then the final result is stored in reg3.

APPENDIX A LIST OF INSTRUCTION

Preliminary User’s Manual U17135EJ1V1UM 211

Table A-1. Instruction Function (in Alphabetical Order) (9 of 12)

 Flag Mnemonic Operand Format

CY OV S Z SAT

Instruction Function

SCH0L reg2, reg3 IX 0/1 0 0 0/1 -- Search "0" from MSB side.

The word data in reg2 is searched starting from the left

side (MSB side) and the position where the first "0" bit

is found is written in hexadecimal format to reg3. If this

"0" bit is not found, "0" is written to reg3 and the Z flag

is set (= 1). Lastly, if this "0" bit is found, the CY flag is

set (= 1).

SCH0R reg2, reg3 IX 0/1 0 0 0/1 -- Search zero from LSB side.

The word data in reg2 is searched starting from the

right side (LSB side) and the position where the first "0"

bit is found is written in hexadecimal format to reg3. If

this "0" bit is not found, "0" is written to reg3 and the Z

flag is set (= 1). Lastly, if this "0" bit is found, the CY

flag is set (= 1).

SCH1L reg2, reg3 IX 0/1 0 0 0/1 -- Search "1" from MSB side.

The word data in reg2 is searched starting from the left

side (MSB side) and the position where the first "1" bit

is found is written in hexadecimal format to reg3. If this

"1" bit is not found, "0" is written to reg3 and the Z flag

is set (= 1). Lastly, if this "1" bit is found, the CY flag is

set (= 1).

SCH1R reg2, reg3 IX 0/1 0 0 0/1 -- Search "1" from LSB side.

The word data in reg2 is searched starting from the left

side (LSB side) and the position where the first "1" bit is

found is written in hexadecimal format to reg3. If this

"1" bit is not found, "0" is written to reg3 and the Z flag

is set (= 1). Lastly, if this "1" bit is found, the CY flag is

set (= 1).

SET1 bit#3, disp16 [reg1] VIII -- -- -- 0/1 -- Set Bit: Adds the 16-bit displacement, sign-extended to

word length, to the reg1 data to generate a 32-bit

address. Bit specified by the bit #3 is set to "1" at the

byte data location specified by the generated address.

SET1 reg2, [reg1] IX -- -- -- 0/1 -- Set Bit: Reads the reg1 data to generate a 32-bit

address. Bit specified by the reg2 data of the lower 3

bits is set to "1" at the byte data location referenced by

the generated address.

SETF cccc, reg2 IX -- -- -- -- -- Set Flag Condition: "1" is set to reg2 if a "cccc"-

specified condition is met and "0" is stored in reg2 if

not.

APPENDIX A LIST OF INSTRUCTION

Preliminary User’s Manual U17135EJ1V1UM 212

Table A-1. Instruction Function (in Alphabetical Order) (10 of 12)

 Flag Mnemonic Operand Format

CY OV S Z SAT

Instruction Function

SHL reg1, reg2 IX 0/1 0 0/1 0/1 -- Shift Logical Left: Logically left-shifts the reg2 word

data by ‘n’ positions, where ‘n’ is specified by the lower

5 bits of reg1 ("0" is shifted to the LSB side), and writes

the result in reg2.

SHL imm5, reg2 II 0/1 0 0/1 0/1 -- Shift Logical Left: Logically left-shifts the reg2 word

data by ‘n’ positions, where ‘n’ is specified by the 5-bit

immediate data, zero-extended to word length ("0" is

shifted to the LSB side) and writes the result in reg2.

SHL reg1, reg2, reg3 XI 0/1 0 0/1 0/1 -- Logical left shift.

The word data in reg2 is logically left-shifted (toward

LSB side) the number of times indicated by the lower 5

bits of reg1, and the result is written to reg3.

SHR reg1, reg2 IX 0/1 0 0/1 0/1 -- Shift Logical Right. Logically right-shifts the reg2 word

data by ‘n’ positions, where ‘n’ is specified by the lower

5 bits of reg1(“0” is shifted to the MSB side), and writes

the result in reg2.

SHR imm5, reg2 II 0/1 0 0/1 0/1 -- Shift Logical Right. Logically right-shifts the reg2 word

data by ‘n’ positions, where ‘n’ is specified by the 5-bit

immediate data, zero-extended to word length ("0" is

shifted to the MSB side), and writes the result in reg2.

SHR reg1, reg2, reg3 XI 0/1 0 0/1 0/1 -- Logical right shift.

The word data in reg2 is logically right-shifted (toward

MSB side) the number of times indicated by the lower 5

bits of reg1, and the result is written to reg3.

SLD.B disp7 [ep], reg2 IV -- -- -- -- -- Byte Load. Adds the 7-bit displacement, zero-extended

to word length, to the element pointer to generate a 32-

bit address. Byte data is read from the generated

address, sign-extended to word length, and stored in

reg2.

SLD.BU disp4 [ep], reg2 IV -- -- -- -- -- Byte Load Unsigned. Adds the 4-bit displacement,

zero-extended to word length, to the element pointer to

generate a 32-bit address. Byte data is read from the

generated address, zero-extended to word length, and

stored in reg2.

SLD.H disp8 [ep], reg2 IV -- -- -- -- -- Half-Word Load. Adds the 8-bit displacement, zero-

extended to word length, to the element pointer to

generate a 32-bit address. Half-word data is read from

the generated address with bit 0 masked to "0," sign-

extended to word length, and stored in reg2.

APPENDIX A LIST OF INSTRUCTION

Preliminary User’s Manual U17135EJ1V1UM 213

Table A-1. Instruction Function (in Alphabetical Order) (11 of 12)

 Flag Mnemonic Operand Format

CY OV S Z SAT

Instruction Function

SLD.HU disp5 [ep], reg2 IV -- -- -- -- -- Half-Word Load Unsigned. Adds the 5-bit

displacement, zero-extended to word length, to the

element pointer to generate a 32-bit address. Half-word

data is read from the generated address with bit 0

masked to "0," zero-extended to word length, and

stored in reg2.

SLD.W disp8 [ep], reg2 IV -- -- -- -- -- Load Word: Adds the 8-bit displacement data, zero-

extended to word length, to the element pointer to

generate a 32-bit address. Word data is read from the

generated address with bits 0 and 1 masked to "0" and

stored in reg2.

SST.B reg2, disp7 [ep] IV -- -- -- -- -- Store Byte: Adds the 7-bit displacement data, zero-

extended to word length, to the element pointer to

generate a 32-bit address, and stores the reg2 lowest

byte data in the generated address.

SST.H reg2,disp8 [ep] IV -- -- -- -- -- Store Half-Word: Adds the 8-bit displacement data,

zero-extended to word length, to the element pointer to

generate a 32-bit address and stores the reg2 lower

half-word in the generated address with bit 0 masked to

"0."

SST.W reg2, disp8 [ep] IV -- -- -- -- -- Store Word: Adds the 8-bit displacement data, zero-

extended to word length, to the element pointer to

generate a 32-bit address and stores the reg2 word

data in the generated address with bits 0 and 1 masked

to "0."

ST.B reg2, disp16 [reg1] VII -- -- -- -- -- Store Byte: Adds the 16-bit displacement data, sign-

extended to word length, to the reg1 data to generate a

32-bit address and stores the reg2 lowest byte data in

the generated address.

ST.H reg2, disp16 [reg1] VII -- -- -- -- -- Store Half-Word: Adds the 16-bit displacement data,

sign-extended to word length, to the reg1 data to

generate a 32-bit address, and stores the reg2 lower

half-word in the generated address with bit 0 masked to

"0."

ST.W reg2, disp16 [reg1] VII -- -- -- -- -- Store Word: Adds the 16-bit displacement data, sign-

extended to word length, to the reg1 data to generate

a 32-bit address, and stores the reg2 word data in the

generated address with bits 0 and 1 masked to "0."

STSR regID, reg2 IX -- -- -- -- -- Store System Register: Stores the system register

contents specified by regID in reg2.

APPENDIX A LIST OF INSTRUCTION

Preliminary User’s Manual U17135EJ1V1UM 214

Table A-1. Instruction Function (in Alphabetical Order) (12 of 12)

 Flag Mnemonic Operand Format

CY OV S Z SAT

Instruction Function

SUB reg1, reg2 I 0/1 0/1 0/1 0/1 -- Subtract: Subtracts the reg1 word data from the reg2

word data and stores the result in reg2.

SUBR reg1, reg2 I 0/1 0/1 0/1 0/1 -- Subtract Reverse. Subtracts the reg2 word data from

the reg1 word data and stores the result in reg2.

SWITCH reg1 I -- -- -- -- -- Jump with Table Look Up: Adds the table entry address

(the one next to SWITCH instruction) to the reg1 data,

logically left-shifted by 1, to generate a target address;

loads the half-word entry data specified by the table

entry address; logically left-shifts the loaded data by 1,

and sign-extend it to word length, branches to the

target address.

SXB reg1 I -- -- -- -- -- Sign Extend Byte: Sign-extends the reg1 lowest byte to

word length.

SXH reg1 I -- -- -- -- -- Sign Extend Half-word: Sign-extends the reg1 lower

half-word to word length.

TRAP vector X -- -- -- -- -- Trap: Saves the return PC and PSW; sets the

exception code and the PSW flags; jumps to the trap

handler address corresponding to the vector-specified

trap vector to begin exception processing.

TST reg1, reg2 I -- 0 0/1 0/1 -- Test: ANDs the reg2 word data with the reg1 word

data. The result is not stored, changing the flags only.

TST1 bit#3, disp16 [reg1] VIII -- -- -- 0/1 -- Test Bit: Adds the reg1 data to a 16-bit displacement,

sign-extended to word length, to generate a 32-bit

address; checks the bit specified by the bit #3 at the

byte data location referenced by the generated

address. "1" is set to Z flag if the specified bit =0 and Z

flag cleared to "0" if the bit=1.

TST1 reg2, [reg1] IX -- -- -- 0/1 -- Test Bit: Reads the reg1 data to generate a 32-bit

address. "1" is set to the Z flag If the bits indicated by

the lower 3 bits of the reg2 byte data of the generated

address are 0, and the Z flag is cleared to "0" if they

are 1.

XOR reg1, reg2 I -- 0 0/1 0/1 -- Exclusive Or: Exclusively ORs the reg2 word data with

the reg1 word data and stores the result in reg2.

XORI imm16, reg1, reg2 VI -- 0 0/1 0/1 -- Exclusive Or Immediate: Exclusively ORs the reg1

word data with a 16-bit immediate data, zero-extended

to word length, and stores the result in reg2.

ZXB reg1 I -- -- -- -- -- Zero Extend Byte: Zero-extends the reg1 lowest byte to

word length.

ZXH reg1 I -- -- -- -- -- Zero Extend Half-word. Zero-extends the reg1 lower

half-word to word length.

APPENDIX A LIST OF INSTRUCTION

Preliminary User’s Manual U17135EJ1V1UM 215

 Table A-2. Instruction Format (in Numeral Order) (1 of 4)

Format Opcode Mnemonic Operand

 15 0 31 16

I 0000000000000000 -- NOP --

 rrrrr000000RRRRR -- MOV reg1, reg2

 rrrrr000001RRRRR -- NOT reg1, reg2

 rrrrr000010RRRRR -- DIVH reg1, reg2

 00000000010RRRRR -- SWITCH reg1

 00000000011RRRRR -- JMP [reg1]

 rrrrr000100RRRRR -- SATSUBR reg1, reg2

 rrrrr000101RRRRR -- SATSUB reg1, reg2

 rrrrr000110RRRRR -- SATADD reg1, reg2

 rrrrr000111RRRRR -- MULH reg1, reg2

 00000000100RRRRR -- ZXB reg1

 00000000101RRRRR -- SXB reg1

 00000000110RRRRR -- ZXH reg1

 00000000111RRRRR -- SXH reg1

 rrrrr001000RRRRR -- OR reg1, reg2

 rrrrr001001RRRRR -- XOR reg1, reg2

 rrrrr001010RRRRR -- AND reg1, reg2

 rrrrr001011RRRRR -- TST reg1, reg2

 rrrrr001100RRRRR -- SUBR reg1, reg2

 rrrrr001101RRRRR -- SUB reg1, reg2

 rrrrr001110RRRRR -- ADD reg1, reg2

 rrrrr001111RRRRR -- CMP reg1, reg2

 1111100001000000 -- DBTRAP --

II rrrrr010000iiiii -- MOV imm5, reg2

 rrrrr010001iiiii -- SATADD imm5, reg2

 rrrrr010010iiiii -- ADD imm5, reg2

 rrrrr010011iiiii -- CMP imm5, reg2

 0000001000iiiiii -- CALLT imm6

 rrrrr010100iiiii -- SHR imm5, reg2

 rrrrr010101iiiii -- SAR imm5, reg2

 rrrrr010110iiiii -- SHL imm5, reg2

 rrrrr010111iiiii -- MULH imm5, reg2

III ddddd1011dddCCCC -- Bcond disp9

IV rrrrr0000110dddd -- SLD.BU disp4 [ep], reg2

 rrrrr0000111dddd -- SLD.HU disp5 [ep], reg2

 rrrrr0110ddddddd -- SLD.B disp7 [ep], reg2

 rrrrr0111ddddddd -- SST.B reg2, disp7 [ep]

 rrrrr1000ddddddd -- SLD.H disp8 [ep], reg2

 rrrrr1001ddddddd -- SST.H reg2, disp8 [ep]

 rrrrr1010dddddd0 -- SLD.W disp8 [ep], reg2

APPENDIX A LIST OF INSTRUCTION

Preliminary User’s Manual U17135EJ1V1UM 216

Table A-2. Instruction Format (in Numeral Order) (2 of 4)

Format Opcode Mnemonic Operand

 15 0 31 16

IV rrrrr1010dddddd1 -- SST.W reg2, disp8 [ep]

V rrrrr11110dddddd ddddddddddddddd0 JARL disp22, reg2

 0000011110dddddd ddddddddddddddd0 JR disp22

VI 0000001011100000 Note1 JR disp32

 00000010111RRRRR Note1 JARL disp32, reg1

 rrrrr110000RRRRR iiiiiiiiiiiiiiii ADDI imm16, reg1, reg2

 rrrrr110001RRRRR iiiiiiiiiiiiiiii MOVEA imm16, reg1, reg2

 rrrrr110010RRRRR iiiiiiiiiiiiiiii MOVHI imm16, reg1, reg2

 rrrrr110011RRRRR iiiiiiiiiiiiiiii SATSUBI imm16, reg1, reg2

 00000110001RRRRR Note2 MOV imm32, reg1

 rrrrr110100RRRRR iiiiiiiiiiiiiiii ORI imm16, reg1, reg2

 rrrrr110101RRRRR iiiiiiiiiiiiiiii XORI imm16, reg1, reg2

 rrrrr110110RRRRR iiiiiiiiiiiiiiii ANDI imm16, reg1, reg2

 rrrrr110111RRRRR iiiiiiiiiiiiiiii MULHI imm16, reg1, reg2

 00000110111RRRRR Note1 JMP disp32 [reg1]

VII rrrrr111000RRRRR dddddddddddddddd LD.B disp16 [reg1], reg2

 rrrrr111001RRRRR ddddddddddddddd0 LD.H disp16 [reg1], reg2

 rrrrr111001RRRRR ddddddddddddddd1 LD.W disp16 [reg1], reg2

 rrrrr111010RRRRR dddddddddddddddd ST.B reg2, disp16 [reg1]

 rrrrr111011RRRRR ddddddddddddddd0 ST.H reg2, disp16 [reg1]

 rrrrr111011RRRRR ddddddddddddddd1 ST.W reg2, disp16 [reg1]

 rrrrr11110bRRRRR ddddddddddddddd1 LD.BU disp16 [reg1], reg2

 rrrrr111111RRRRR ddddddddddddddd1 LD.HU disp16 [reg1], reg2

VIII 00bbb111110RRRRR dddddddddddddddd SET1 bit#3, disp16 [reg1]

 01bbb111110RRRRR dddddddddddddddd NOT1 bit#3, disp16 [reg1]

 10bbb111110RRRRR dddddddddddddddd CLR1 bit#3, disp16 [reg1]

 11bbb111110RRRRR dddddddddddddddd TST1 bit#3, disp16 [reg1]

Notes1. 32-bit displacement data. The higher 32 bits (bits 16 to 47) are as follows.

 31 16 47 32

 ddddddddddddddd0 DDDDDDDDDDDDDDDD

Notes2. 32-bit immediate data. The higher 32 bits (bits 16 to 47) are as follows.

 31 16 47 32

 iiiiiiiiiiiiiiii IIIIIIIIIIIIIIII

APPENDIX A LIST OF INSTRUCTION

Preliminary User’s Manual U17135EJ1V1UM 217

Table A-2. Instruction Format (in Numeral Order) (3 of 4)

Format Opcode Mnemonic Operand

 15 0 31 16

IX rrrrr1111110cccc 0000000000000000 SETF cccc, reg2

 rrrrr111111RRRRR 0000000000100000 LDSR reg2, regID

 rrrrr111111RRRRR 0000000001000000 STSR regID, reg2

 rrrrr111111RRRRR 0000000010000000 SHR reg1, reg2

 rrrrr111111RRRRR 0000000010100000 SAR reg1, reg2

 rrrrr111111RRRRR 0000000011000000 SHL reg1, reg2

 rrrrr111111RRRRR 0000000011100000 SET1 reg2, [reg1]

 rrrrr111111RRRRR 0000000011100010 NOT1 reg2, [reg1]

 rrrrr111111RRRRR 0000000011100100 CLR1 reg2, [reg1]

 rrrrr111111RRRRR 0000000011100110 TST1 reg2, [reg1]

 rrrrr1111110cccc 0000001000000000 SASF cccc, reg2

 rrrrr11111100000 wwwww01101100000 SCH0R reg2, reg3

 rrrrr11111100000 wwwww01101100010 SCH1R reg2, reg3

 rrrrr11111100000 wwwww01101100100 SCH0L reg2, reg3

 rrrrr11111100000 wwwww01101100110 SCH1L reg2, reg3

X 00000111111iiiii 0000000100000000 TRAP vector

 0000011111100000 0000000100100000 HALT --

 0000011111100000 0000000101000000 RETI --

 0000011111100000 0000000101000100 CTRET --

 0000011111100000 0000000101000110 DBRET --

 0000011111100000 0000000101100000 DI --

 1000011111100000 0000000101100000 EI --

XI rrrrr111111RRRRR wwwww00010000010 SHR reg1, reg2, reg3

 rrrrr111111RRRRR wwwww00010100010 SAR reg1, reg2, reg3

 rrrrr111111RRRRR wwwww00011000010 SHL reg1, reg2, reg3

 rrrrr111111RRRRR wwwww01000100000 MUL reg1, reg2, reg3

 rrrrr111111RRRRR wwwww01000100010 MULU reg1, reg2, reg3

 rrrrr111111RRRRR wwwww01010000000 DIVH reg1, reg2, reg3

APPENDIX A LIST OF INSTRUCTION

Preliminary User’s Manual U17135EJ1V1UM 218

Table A-2. Instruction Format (in Numeral Order) (4 of 4)

Format Opcode Mnemonic Operand

 15 0 31 16

XI rrrrr111111RRRRR wwwww01010000010 DIVHU reg1, reg2, reg3

 rrrrr111111RRRRR wwwww01011000000 DIV reg1, reg2, reg3

 rrrrr111111RRRRR wwwww01011000010 DIVU reg1, reg2, reg3

 rrrrr111111RRRRR wwwww011001cccc0 CMOV cccc, reg1, reg2, reg3

 rrrrr111111RRRRR wwwww011100cccc0 SBF cccc, reg1, reg2, reg3

 rrrrr111111RRRRR wwwww01110011010 SATSUB reg1, reg2, reg3

 rrrrr111111RRRRR wwwww011101cccc0 ADF cccc, reg1, reg2, reg3

 rrrrr111111RRRRR wwwww01110111010 SATADD reg1, reg2, reg3

 rrrrr111111RRRRR wwww0011110mmmm0 MAC reg1, reg2, reg3, reg4

 rrrrr111111RRRRR wwww0011111mmmm0 MACU reg1, reg2, reg3, reg4

XII rrrrr111111iiiii wwwww01001IIII00 MUL imm9, reg2, reg3

 rrrrr111111iiiii wwwww01001IIII10 MULU imm9, reg2, reg3

 rrrrr111111iiiii wwwww011000cccc0 CMOV cccc, imm5, reg2, reg3

 rrrrr11111100000 wwwww01101000000 BSW reg2, reg3

 rrrrr11111100000 wwwww01101000010 BSH reg2, reg3

 rrrrr11111100000 wwwww01101000100 HSW reg2, reg3

 rrrrr11111100000 wwwww01101000110 HSH reg2, reg3

XIII 0000011001iiiiiL LLLLLLLLLLLRRRRR DISPOSE imm5, list12, [reg1]

 0000011001iiiiiL LLLLLLLLLLL00000 DISPOSE imm5, list12

 0000011110iiiiiL LLLLLLLLLLL00001 PREPARE list12, imm5

 0000011110iiiiiL LLLLLLLLLLLff011 PREPARE list12, imm5, sp/imm

Preliminary User’s Manual U17135EJ1V1UM 219

APPENDIX B INSTRUCTION OPCODE MAP

The instruction opcode map is as follows:

(1) 16-bit format instruction

15 5 011 10

Sub-opcode (refer to [b])

4

(refer to [a])
Opcode

(2) 32-bit format instruction

15 5 011 10 31 162021414 13 12 2627 19 18 17

Sub-Opcode (refer to [h])
Sub-Opcode (refer to [d] , [h])

Sub-Opcode

(refer to [f], [g], [i], [j])
Sub-Opcode

(refer to [a])
Opcode

(refer to [e])
Sub-Opcode

(refer to [c])

Operand convention

Symbol Meaning

R reg1: General register (as source register).

r reg2: General register (Primarily as destination register with some used as source registers).

w reg3: General register (Primarily to store the remainder of division results or the higher 32

bits of multiply results).

bit#3 3-bit data to specify bit number.

imm× ×-bit immediate data.

disp× ×-bit displacement data.

cccc 4-bit data to specify condition code.

APPENDIX B INSTRUCTION OPCODE MAP

Preliminary User’s Manual U17135EJ1V1UM 220

[a] Opcode

Bits 6, 5 Bit10 Bit9 Bit8 Bit7

0,0 0,1 1,0 1,1

Format

0 0 0 0 MOV R, r

NOP Note1

NOT DIVH

SWITCH Note2

DBTRAP Note3

Undefined Note3

JMP [reg1] Note4

SLD.BU Note5

SLD.HU Note6

I, IV

0 0 0 1 SATSUBR

ZXB Note4

SATSUB

SXB Note4

SATADD R, r

ZXH Note4

MULH

SXH Note4

I

0 0 1 0 OR XOR AND TST

0 0 1 1 SUBR SUB ADD R, r CMP R, r

0 1 0 0 MOV imm5, r SATADD imm5, r ADD imm5, r CMP imm5, r II, VI

 CALLT Note4

0 1 0 1 SHR imm5, r SAR imm5, r SHL imm5, r MULH imm5, r

JR disp32 Note1

JARL disp32, reg1Note2

0 1 1 0 SLD.B IV

0 1 1 1 SST.B

1 0 0 0 SLD.H

1 0 0 1 SST.H

1 0 1 0 SLD.W Note7

SST.W Note7

1 0 1 1 Bcond III

1 1 0 0 ADDI MOVHI SATSUBI VI, XIII

MOVEA

MOV imm32, R Note4
DISPOSE Note4

1 1 0 1 ORI XORI ANDI MULHI

JMP disp32 [reg1]Note4

VI

1 1 1 0 LD.B LD.H Note8

LD.W Note8

ST.B ST.H Note8

ST.W Note8

VII

1 1 1 1 JR disp22

JARL disp22, reg2

LD.BU Note10

PREPARE Note11

 Bit manipulation 1
Note9

LD.HU Note10

UndefinedNote11

Expansion 1 Note12

V, VII,

VIII,

IX, X, XI,

XII, XIII,

Notes 1. If R (reg1) = r0 and r (reg2) = r0 (instruction without reg1 and reg2).
 2. If R (reg1) ≠ r0 and r (reg2) = r0 (instruction with reg1 and without reg2).
 3. If R (reg1) = r0 and r (reg2) ≠ r0 (instruction without reg1 and with reg2).
 4. If r (reg2) = r0 (instruction without reg2).
 5. If bit 4 = 0 and r (reg2) ≠ r0 (instruction with reg2).

Notes 6. If bit 4 = 1 and r (reg2) ≠ r0 (instruction with reg2).
 7. Refer to [b].
 8. Refer to [c].
 9. Refer to [d].

APPENDIX B INSTRUCTION OPCODE MAP

Preliminary User’s Manual U17135EJ1V1UM 221

Notes10. If bit 16 = 1 and r (reg2) ≠ r0 (instruction with reg2).
 11. If bit 16 = 1 and r (reg2) = r0 (instruction without reg2).
 12. Refer to [e].

[b] Short format load/store instructions (displacement/sub-opcode)

Bit 0 Bit10 Bit9 Bit8 Bit7

0 1

0 1 1 0 SLD.B

0 1 1 1 SST.B

1 0 0 0 SLD.H

1 0 0 1 SST.H

1 0 1 0 SLD.W SST.W

[c] Load/store instructions (displacement/sub-opcode)

Bit 6 Bit 5 Bit 16

 0 1

0 0 LD.B

0 1 LD.H LD.W

1 0 ST.B

1 1 ST.H ST.W

[d] Bit manipulation instructions 1 (sub-opcode)

Bit 15 Bit 14

 0 1

0 SET1 bit#3, disp16 [R] NOT1 bit#3, disp16 [R]

1 CLR1 bit#3, disp16 [R] TST1 bit#3, disp16 [R]

APPENDIX B INSTRUCTION OPCODE MAP

Preliminary User’s Manual U17135EJ1V1UM 222

[e] Expansion 1 (sub-opcode)
Bits: 22 and 21 Bit26 Bit25 Bit24 Bit23

0,0 0,1 1,0 1,1

Format

0 0 0 0 SETF LDSR STSR Undefined IX

0 0 0 1 SHR SAR SHL Bit manipulation 2

Note1

0 0 1 0 TRAP HALT RETI Note2

CTRET Note2

DBRET Note2

Undefined

EI Note3

DI Note3

Undefined

X

0 0 1 1 Undefined Undefined --

0 1 0 0 SASF MUL R, r, w

MULU R, r, w Note4

MUL imm9, r, w

MULU imm9, r, w Note4

IX, XI, XII

0 1 0 1 DIVH

DIVHU Note4

 DIV

DIVU Note4

 XI

0 1 1 0 CMOV

cccc, imm5, r, w

CMOV

cccc, R, r, w

BSW Note5

BSH Note5

HSW Note5

HSH Note5

SCH0R Note6

SCH1R Note6

SCH0L Note6

SCH1L Note6

IX, XI, XII

0 1 1 1 SBF

SATSUB R, r, w Note7

ADF

SATADD R, r, w Note7

MAC MACU XI

1 x x x Illegal instruction --

Notes 1. Refer to [f].
 2. Refer to [g].

 3. Refer to [h].
 4. If bit 17 = 1.
 5. Refer to [i].
 6. Refer to [j].
 7. If bit 20 to 17 = 1, 1, 0, 1.

[f] Bit manipulation instructions 2 (sub-opcode)

Bit 18 Bit 17

 0 1

0 SET1 r, [R] NOT1 r, [R]

1 CLR1 r, [R] TST1 r, [R]

 [g] Return instructions (sub-opcode)

Bit 18 Bit 17

 0 1

0 RETI Undefined

1 CTRET DBRET

APPENDIX B INSTRUCTION OPCODE MAP

Preliminary User’s Manual U17135EJ1V1UM 223

[h] PSW operation instructions (sub-opcode)
Bit 15 Bit 14 Bits: 13, 12, and 11

 0,0,0 0,0,1 0,1,0 0,1,1 1,0,0 1,0,1 1,1,0 1,1,1

0 0 DI Undefined

0 1 Undefined

1 0 EI Undefined

1 1 Undefined

[i] Endian conversion instructions (sub-opcode)

Bit 18 Bit 17

 0 1

0 BSW BSH

1 HSW HSH

[j] Bit search instructions (sub-opcode)

Bit 18 Bit 17

 0 1

0 SCH0R SCH1R

1 SCH0L SCH1L

Preliminary User’s Manual U17135EJ1V1UM 224

APPENDIX C DIFFERENCES WITH ARCHITECTURE OF
V850 CPU AND V850E1 CPU

(1/3)

Item V850E2 CPU V850E1 CPU V850 CPU

Instructions ADF cccc, reg1, reg2, reg3 Provided Not provided Not provided

(Operand included) HSH reg2, reg3

 JARL disp32, reg1

 JMP disp32 [reg1]

 JR disp32

 MAC reg1, reg2, reg3, reg4

 MACU reg1, reg2, reg3, reg4

 SAR reg1, reg2, reg3

 SATADD reg1, reg2, reg3

 SATSUB reg1, reg2, reg3

 SBF cccc, reg1, reg2, reg3

 SCH0L reg2, reg3

 SCH0R reg2, reg3

 SCH1L reg2, reg3

 SCH1R reg2, reg3

 SHL reg1, reg2, reg3

 SHR reg1, reg2, reg3

 BSH reg2, reg3 Provided

 BSW reg2, reg3

 CALLT imm6

 CLR1 reg2, [reg1]

 CMOV cccc, imm5, reg2, reg3

 CMOV cccc, reg1, reg2, reg3

 CTRET

 DBRET

 DBTRAP

 DISPOSE imm5, list12

 DISPOSE imm5, list12 [reg1]

 DIV reg1, reg2, reg3

 DIVH reg1, reg2, reg3

 DIVHU reg1, reg2, reg3

 DIVU reg1, reg2, reg3

 HSW reg2, reg3

APPENDIX C DIFFERENCES WITH ARCHITECTURE OF V850 CPU AND V850E1 CPU

Preliminary User’s Manual U17135EJ1V1UM 225

(2/3)

Item V850E2 CPU V850E1 CPU V850 CPU

Instructions LD.BU disp16 [reg1], reg2 Provided Not provided

(Operand included) LD.HU disp16 [reg1], reg2

 MOV imm32, reg1

 MUL imm9, reg2, reg3

 MUL reg1, reg2, reg3

 MULU reg1, reg2, reg3

 MULU imm9, reg2, reg3

 NOT1 reg2, [reg1]

 PREPARE list12, imm5

 PREPARE list12, imm5, sp/imm

 SASF cccc, reg2

 SET1 reg2, [reg1]

 SLD.BU disp4 [ep], reg2

 SLD.HU disp5 [ep], reg2

 SWITCH reg1

 SXB reg1

 SXH reg1

 TST1 reg2, [reg1]

 ZXB reg1

 ZXH reg1

Instruction format Format IV Format varies for some instructions.

 Format XI Provided Not provided

 Format XII

 Format XIII

Instruction execution clocks Value varies for some instructions.

Program space 512M bytes 64M bytes 16M bytes

Valid bits of program counter (PC) Lower 29 bits Lower 26 bits Lower 24 bits

System register Program Status Word (PSW) Functions differ.

 CALLT execution status-saving

registers (CTPC, CTPSW)

Provided

 Not provided

 Exception/debug trap status-saving

registers (DBPC, DBPSW)

 CALLT base pointer (CTBP)

APPENDIX C DIFFERENCES WITH ARCHITECTURE OF V850 CPU AND V850E1 CPU

Preliminary User’s Manual U17135EJ1V1UM 226

(3/3)

Item V850E2 CPU V850E1 CPU V850 CPU

System register Debug-interface register (DIR) Provided (Functions differ.)

 Breakpoint control registers 0 and 1

(BPC0, BPC1)

 Program ID register (ASID) Provided

 Breakpoint address setting registers

0 and 1 (BPAV0, BPAV1)

Provided (Initial values differ.)

 Breakpoint address mask registers 0

and 1 (BPAM0, BPAM1)

 Breakpoint data setting registers 0

and 1 (BPDV0, BPDV1)

Provided

 Breakpoint data mask registers 0 and 1

(BPDM0, BPDM1)

 Breakpoint control register 2 to 6

(BPC2 to BPC6)

Provided Not provided

 Breakpoint address setting register 2,

3 (BPAV2, BPAV3)

 Breakpoint address mask register 2,3

(BPAM2, BPAM3)

 Breakpoint data setting register 2 to 5

(BPDV2 to BPDV5)

 Breakpoint data mask register 2, 3

(BPDM2, BPDM3)

 Exception trap status-saving registers DBPC, DBPSW EIPC, EIPSW

Illegal instruction code Instruction code areas vary.

Misaligned access enable/disable setting Can be set depending on the product. Cannot be set

(misaligned access

disabled).

Input 3 1 Non-maskable

interrupt (NMI) Exception code 0010H, 0020H, 0030H 0010H

 Handler address 00000010H, 00000020H, 00000030H 00000010H

Debug trap Provided Not provided

Debug break Provided

(4 factors)

Provided

(2 factors) Note

Not provided

Pipeline 7 steps 5 steps

 Pipeline flow differs for each instruction.

Note An equivalent function can be performed by BPC0, BPC1 register setup.

Preliminary User’s Manual U17135EJ1V1UM 227

APPENDIX D INSTRUCTIONS ADDED FOR V850E2 CPU
COMPARED WITH V850 CPU AND V850E1 CPU

V850E2 differs from its predecessors in that (1) V850E2 CPU instruction codes are upward-compatible at the object
code level and (2) instructions, such as those requiring the r0 register write, are extended as additional instructions.
Table D-1 compares the V850E2 CPU instructions with the V850 CPU instructions, Table D-2 compares the
V850E2 CPU instructions with the V850E1 CPU instructions, listing the new additions to V850E2 CPU in the left
column and the existing V850 CPU and V850E1 CPU instructions in the right column.

Table D-1. Instructions Added to V850E2 CPU and Compatible V850 CPU Instructions (1 of 2)

Instructions Added to V850E2CPU Compatible V850 CPU Instructions

CALLT imm6 MOV imm5, r0 or SATADD imm5, r0

DISPOSE imm5, list12 MOVHI imm16, reg1, r0 or SATSUBI imm16, reg1, r0

DISPOSE imm5, list12 [reg1] MOVHI imm16, reg1, r0 or SATSUBI imm16, reg1, r0

MOV imm32, reg1 MOVEA imm16, reg1, r0

SWITCH reg1 DIVH reg1, r0

SXB reg1 SATSUB reg1, r0

SXH reg1 MULH reg1, r0

ZXB reg1 SATSUBR reg1, r0

ZXH reg1 SATADD reg1, r0

JARL disp32, reg1 MULH imm5, r0

JMP disp32 [reg1] MULHI imm16, reg1, r0

JR disp32 MULH 0x0, r0

ADF cccc, reg1, reg2, reg3 Illegal instruction

BSH reg2, reg3

BSW reg2, reg3

CMOV cccc, imm5, reg2, reg3

CMOV cccc, reg1, reg2, reg3

CTRET

DIV reg1, reg2, reg3

DIVH reg1, reg2, reg3

DIVHU reg1, reg2, reg3

DIVU reg1, reg2, reg3

HSH reg2, reg3

HSW reg2, reg3

MAC reg1, reg2, reg3, reg4

MACU reg1, reg2, reg3, reg4

MUL imm9, reg2, reg3

APPENDIX D INSTRUCTIONS ADDED FOR V850E2 CPU COMPARED WITH V850 CPU AND V850E1 CPU

Preliminary User’s Manual U17135EJ1V1UM 228

Table D-1. Instructions Added to V850E2 CPU and Compatible V850 CPU Instructions (2 of 2)

Instructions Added to V850E2CPU Compatible V850 CPU Instructions

MUL reg1, reg2, reg3 Illegal instruction

MULU reg1, reg2, reg3

MULU imm9, reg2, reg3

SASF cccc, reg2

SATADD reg1, reg2, reg3

SATSUB reg1, reg2, reg3

SBF cccc, reg1, reg2, reg3

SCH0L reg2, reg3

SCH0R reg2, reg3

SCH1L reg2, reg3

SCH1R reg2, reg3

CLR1 reg2, [reg1] Undefined

DBRET

DBTRAP

LD.BU disp16 [reg1], reg2

LD.HU disp16 [reg1], reg2

NOT1 reg2, [reg1]

PREPARE list12, imm5

PREPARE list12, imm5, sp/imm

SAR reg1, reg2, reg3

SET1 reg2, [reg1]

SHL reg1, reg2, reg3

SHR reg1, reg2, reg3

SLD.BU disp4 [ep], reg2

SLD.HU disp5 [ep], reg2

TST1 reg2, [reg1]

APPENDIX D INSTRUCTIONS ADDED FOR V850E2 CPU COMPARED WITH V850 CPU AND V850E1 CPU

Preliminary User’s Manual U17135EJ1V1UM 229

 Table D-2. Instructions Added to V850E2 CPU and Compatible V850E1 CPU Instructions

Instructions Added to V850E2CPU Compatible V850E1 CPU Instructions

ADF cccc, reg1, reg2, reg3 Illegal instruction

SATADD reg1, reg2, reg3

SATSUB reg1, reg2, reg3

SBF cccc, reg1, reg2, reg3

HSH reg2, reg3 Undefined

JARL disp32, reg1

JMP disp32 [reg1]

JR disp32

MACU reg1, reg2, reg3, reg4

SAR reg1, reg2, reg3

SCH0L reg2, reg3

SCH0R reg2, reg3

SCH1L reg2, reg3

SCH1R reg2, reg3

SHL reg1, reg2, reg3

SHR reg1, reg2, reg3

MAC reg1, reg2, reg3, reg4 Undefined, or a part of product-sum operation instructions

Preliminary User’s Manual U17135EJ1V1UM 230

APPENDIX E LIST OF CAUTION POINTS

 (1/4)

Location Description

2. 2

System Registers

After bit 0 in the EIPC, FEPC, or CTPC register is set (= 1) by the LDSR instruction, if interrupt

processing occurs and a RETI instruction is used to recover, the value of bit 0 is ignored (since

the PC bit 0 value is fixed to 0). When setting values to the EIPC, FEPC, or CTPC register,

always set an even number (bit 0 = 0) unless there is a particular reason to do otherwise.

2. 2. 8

Debug Interface register

(DIR)

Either one of the DIR register's SQ1 and RE1 bits must be set (= 1) or both must be cleared (=

0). Operation is not guaranteed if both are set (= 1).

Be sure to zero-clear bits 31 to 27, 14 to 12, 6, and 5 in the BPCn register (n = 0 to 3).

Operation is not guaranteed if any of these bits are set (= 1).

2. 2. 9

Breakpoint Control registers 0

to 3 (BPC0 to BPC3) Only "0" can be written to bits FB2 to FB0 in the BPCn register (n = 0 to 3).

To update the values of these bits, clear the bits to zero. Operation is not guaranteed if any of

these bits are set (= 1).

5. 1

Instruction Formats

Some instructions have an unused field (RFU). This field is reserved for future expansion only

and must be fixed to "0."

5. 3

Instruction Set

Bcond The branch condition loses its meaning If a conditional branch instruction is executed on a

signed integer (BGE, BGT, BLE, or BLT) when the saturate instruction sets "1" to the SAT flag.

In normal operations, if an overflow occurs, the S flag is inverted (0 → 1 or 1 → 0). This is

because the result is a negative value if it exceeds the maximum positive value and it is a

positive value if it exceeds the maximum negative value. However, when a saturate instruction

is executed, and if the result exceeds the maximum positive value, the result is saturated with

a positive value; if the result exceeds the maximum negative value, the result is saturated with

a negative value. Unlike the normal operation, the S flag is not inverted even if an overflow

occurs.

 CALLT When an interrupt occurs during the CALLT instruction execution, the execution is aborted

after the end of the read/write cycle.

 DBRET

DBTRAP

Because this instruction is for debugging, it is essentially used by debug tools. When a debug

tool is using this instruction, therefore, use of it in the application may cause a malfunction.

 DISPOSE When an interrupt occurs during the DISPOSE instruction execution, the execution is aborted

after the end of the read/write cycle, due to stack operation.

 LD.H

LD.HU

Adding the data of the general register reg1 to the 16-bit displacement data, sign-extended to

word length, can generate two types of results. It depends on the misaligned mode setting:

•Bit0 is masked to "0" and address is generated (when misaligned access is disabled).

•Bit0 is not masked and address is generated (when misaligned access is enabled).

For details on misaligned access, see 3.3 Data Alignment.

APPENDIX E List of Caution Points

Preliminary User’s Manual U17135EJ1V1UM 231

(2/4)

Location Description

5. 3

Instruction Set

LD.W Adding the data of the general register reg1 to the 16-bit displacement data, sign-extended to

word length, can generate two types of results. It depends on the misaligned mode setting:

•Bit0 and bit1 are masked to "0" and address is generated (when misaligned access is

disabled).

•Bit0 and bit1 are not masked and address is generated (when misaligned access is enabled).

For details on misaligned access, see 3.3 Data Alignment.

 LDSR The fields to define reg1 and reg2 are swapped in this instruction. “RRR” is normally used for

reg1 and is the source operand with “rrr” representing reg2 and the destination operand. In this

instruction, “RRR” is still the source operand, but is represented by reg2 with “rrr” being as the

register destination, as labeled below:

rrrrr: regID specification

RRRRR: reg2 specification

 The system register number regID is to identify a system register. Accessing system registers

that are reserved or write-prohibited is prohibited.

 MAC

MACU

The general-purpose registers that can be specified as reg3 or reg4 must be an even-

numbered register (r0, r2, r4, …, r30). The result is undefined if an odd-numbered register (r1,

r3, …, r31) is specified.

 MUL

MULU

In the“MUL reg1, reg2, reg3”, “MULU reg1, reg2, reg3” instruction, do not use registers in

combinations that satisfy all the following conditions. If the instruction is executed with all the

following conditions satisfied, the operation is not guaranteed.

 • reg1 = reg3

 • reg1 ≠ reg2

 • reg1 ≠ r0

 • reg3 ≠ r0

 PREPARE When an interrupt occurs during execution of an instruction, the stack operation may cause

execution of the instruction to be stopped after the read/write cycles and register overwrite

operations have been completed.

 RETI In order to correctly restore the PC and PSW values when using a RETI instruction to recover

from non-maskable interrupt processing or software exception processing, the NP and EP

flags must be set as follows before executing the RETI instruction.

• When using RETI instruction to recover from non-maskable interrupt processing: NP = 1

and EP = 0

• When using RETI instruction to recover from software exception processing: EP = 1

The LDSR instruction is used for program-based settings.

Due to the operation of the interrupt controller, interrupts cannot be received in the ID stage

during the second half of this instruction.

 SATADD

SATSUB

SATSUBI

SATSUBR

Use LDSR instruction to clear the SAT flag to "0."

APPENDIX E List of Caution Points

Preliminary User’s Manual U17135EJ1V1UM 232

(3/4)

Location Description

5. 3

Instruction Set

SLD.H

SLD.HU

SST.H

Adding the element pointer to the 8-bit displacement data, zero-extended to word length, can

generate two types of results. It depends on the misaligned mode setting:

•Bit0 is masked to "0" and address is generated (when misaligned access is disabled).

•Bit0 is not masked and address is generated (when misaligned access is enabled).

For details on misaligned access, see 3.3 Data Alignment.

 SLD.W

SST.W

Adding the element pointer to the 8-bit displacement data, zero-extended to word length, can

generate two types of results. It depends on the misaligned mode setting:

•Bit0 and bit1 are masked to "0" and address is generated (when misaligned access is

disabled).

•Bit0 and bit1 are not masked and address is generated (when misaligned access is enabled).

For details on misaligned access, see 3.3 Data Alignment.

 ST.H Adding the data of the general register reg1 to the 16-bit displacement data, sign-extended to

word length, can generate two types of results. It depends on the misaligned mode setting:

•Bit0 is masked to "0" and address is generated (when misaligned access is disabled).

•Bit0 is not masked and address is generated (when misaligned access is enabled).

For details on misaligned access, see 3.3 Data Alignment.

 ST.W Adding the data of the general register reg1 to the 16-bit displacement data, sign-extended to

word length, can generate two types of results. It depends on the misaligned mode setting:

• Bit0 and bit1 are masked to "0" and address is generated (when misaligned access is

disabled).

• Bit0 and bit1 are not masked and address is generated (when misaligned access is enabled).

For details on misaligned access, see 3.3 Data Alignment.

 STSR The system register number regID is to identify a system register. Accessing reserved system

registers is prohibited.

6. 2. 2

Exception trap

The operation using the instruction undefined is not guaranteed.

CHAPTER 9

Shifting to Debug Mode

When the mode is shifted to debug mode, the data cache (dCACHE) is set to Hold mode and

its data and tags are not updated. If a cacheable area of external memory is accessed during

debug mode, cohesion may be lost even when the dCACHE is valid and access is only to

external memory. Therefore, before manipulating any data in a cacheable area as part of a

debug monitor routine, be sure to first return to user mode and clear the dCACHE (for write

through) or flush and clear it (for write back).

APPENDIX E List of Caution Points

Preliminary User’s Manual U17135EJ1V1UM 233

(4/4)

Location Description

9. 1

Methods for Switching to

Debug Mode

When the BPCn register's IE bit is set, if the Program IDs set via the BP ASID bit and ASID

register do not match, the mode will not be switched to debug mode even if the break condition

has been met.

 The timing by which break conditions are met differs between execution-related traps and

access-related traps. Consequently, even when sequential break mode has been set, normal

operation may not occur if an execution-related trap occurs after an access-related trap.

 When in latency break mode, set either execution-related traps or access-related traps (when

using channels 0 and 1 or channels 2 and 3).

9. 2

Caution Points

(Refer to the text)

Preliminary User’s Manual U17135EJ1V1UM 234

APPENDIX F INSTRUCTION INDEX

[A]

ADD................... 61

ADDI.................. 62

ADF 63

AND................... 64

ANDI.................. 65

 [B]

Bcond 66

BSH................... 68

BSW 69

 [C]

CALLT 70

CLR1 71

CMOV................ 72

CMP 74

CTRET 75

 [D]

DBRET 76

DBTRAP............ 77

DI....................... 78

DISPOSE 79

DIV 81

DIVH.................. 82

DIVHU 84

DIVU.................. 85

 [E]

EI 86

 [H]

HALT 87

HSH................... 88

HSW.................. 89

 [J]

JARL 90

JMP................... 91

JR...................... 92

 [L]

LD.B 93

LD.BU................ 94

LD.H 95

LD.HU 96

LD.W 97

LDSR................. 98

 [M]

MAC 99

MACU.............. 100

MOV................ 101

MOVEA 102

MOVHI 103

MUL................. 104

MULH 106

MULHI 107

MULU 108

 [N]

NOP 110

NOT................. 111

NOT1............... 112

 [O]

OR................... 113

ORI.................. 114

 [P]

PREPARE 115

[R]

RETI.................117

 [S]

SAR..................119

SASF................120

SATADD121

SATSUB...........123

SATSUBI..........124

SATSUBR125

SBF..................126

SCH0L127

SCH0R.............128

SCH1L129

SCH1R.............130

SET1................131

SETF................132

SHL..................134

SHR135

SLD.B...............136

SLD.BU137

SLD.H138

SLD.HU............139

SLD.W..............140

SST.B...............141

SST.H142

SST.W..............143

ST.B144

ST.H.................145

ST.W................146

STSR147

SUB..................148

SUBR...............149

SWITCH...........150

SXB..................151

SXH..................152

 [T]

TRAP153

TST..................154

TST1................155

 [X]

XOR.................156

XORI157

 [Z]

ZXB..................158

ZXH..................159

	COVER
	PREFACE
	CHAPTER 1 OVERVIEW
	1.1 Features
	1.2 Internal Configuration

	CHAPTER 2 REGISTER SET
	2.1 Program Registers
	2.2 System Registers
	2.2.1 Interrupt Status-saving Registers (EIPC, EIPSW)
	2.2.2 NMI Status-saving Registers (FEPC and FEPSW)
	2.2.3 Exception Cause Register (ECR)
	2.2.4 Program status word (PSW)
	2.2.5 CALLT Status-saving Registers (CTPC and CTPSW)
	2.2.6 Exception/Debug Trap Status-saving Registers (DBPC and DBPSW)
	2.2.7 CALLT base pointer (CTBP)
	2.2.8 Debug Interface register (DIR)
	2.2.9 Breakpoint Control registers 0 to 3 (BPC0 to BPC3)
	2.2.10 Program ID register (ASID)
	2.2.11 Breakpoint Address Setup registers 0 to 3 (BPAV0 to BPAV3)
	2.2.12 Breakpoint Address Mask registers 0 to 3 (BPAM0 to BPAM3)
	2.2.13 Breakpoint Data Setup registers 0 to 3 (BPDV0 to BPDV3)
	2.2.14 Breakpoint Data Mask Registers 0 to 3 (BPDM0 to BPDM3)

	CHAPTER 3 DATA TYPE
	3.1 Data Format
	3.2 Data Representation
	3.2.1 Integer
	3.2.2 Unsigned integer
	3.2.3 Bit

	3.3 Data Alignment

	CHAPTER 4 ADDRESS SPACE
	4.1 Memory Map
	4.2 Addressing Modes
	4.2.1 Instruction address
	4.2.2 Operand address

	CHAPTER 5 INSTRUCTIONS
	5.1 Instruction Formats
	5.2 Outline of Instructions
	5.3 Instruction Set
	ADD
	ADDI
	ADF
	AND
	ANDI
	Bcond
	BSH
	BSW
	CALLT
	CLR1
	CMOV
	CMP
	CTRET
	DBRET
	DBTRAP
	DI
	DISPOSE
	DIV
	DIVH
	DIVHU
	DIVU
	EI
	HALT
	HSH
	HSW
	JARL
	JMP
	JR
	LD.B
	LD.BU
	LD.H
	LD.HU
	LD.W
	LDSR
	MAC
	MACU
	MOV
	MOVEA
	MOVHI
	MUL
	MULH
	MULHI
	MULU
	NOP
	NOT
	NOT1
	OR
	ORI
	PREPARE
	RETI
	SAR
	SASF
	SATADD
	SATSUB
	SATSUBI
	SATSUBR
	SBF
	SCH0L
	SCH0R
	SCH1L
	SCH1R
	SET1
	SETF
	SHL
	SHR
	SLD.B
	SLD.BU
	SLD.H
	SLD.HU
	SLD.W
	SST.B
	SST.H
	SST.W
	ST.B
	ST.H
	ST.W
	STSR
	SUB
	SUBR
	SWITCH
	SXB
	SXH
	TRAP
	TST
	TST1
	XOR
	XORI
	ZXB
	ZXH

	5.4 Number of Instruction Execution Clock Cycles

	CHAPTER 6 INTERRUPTS ANDEXCEPTIONS
	6.1 Interrupt Servicing
	6.1.1 Maskable interrupt
	6.1.2 Non-maskable interrupt

	6.2 Exception Processing
	6.2.1 Software exception
	6.2.2 Exception trap
	6.2.3 Debug traps and debug breaks

	6.3 Interrupt/Exception Processing Return
	6.3.1 Interrupt/software exception return
	6.3.2 Exception trap, debug trap, and debug break return

	CHAPTER 7 RESET
	7.1 Post-Reset Register Status
	7.2 Post-Reset Initialization

	CHAPTER 8 PIPELINE OPERATIONS
	8.1 Features
	8.2 Pipeline Flow during Execution of Instructions
	8.2.1 Load instructions
	8.2.2 Store instructions
	8.2.3 Multiplication instructions
	8.2.4 Multiplication with addition instructions
	8.2.5 Arithmetic operation instructions
	8.2.6 Conditional arithmetic instructions
	8.2.7 Saturation instructions
	8.2.8 Logical operation instructions
	8.2.9 Data operation instructions
	8.2.10 Bit search instructions
	8.2.11 Division instructions
	8.2.12 Branch instructions
	8.2.13 Bit manipulation instructions
	8.2.14 Special instructions
	8.2.15 Instructions for debug function

	CHAPTER 9 SHIFTING TO DEBUG MODE
	9.1 Methods for Shifting to Debug Mode
	9.2 Caution Points

	APPENDIX A LIST OF INSTRUCTION
	APPENDIX B INSTRUCTION OPCODE MAP
	APPENDIX C DIFFERENCES WITH ARCHITECTURE OF V850 CPU AND V850E1 CPU
	APPENDIX D INSTRUCTIONS ADDED FOR V850E2 CPU COMPARED WITH V850 CPU AND V850E1 CPU
	APPENDIX E LIST OF CAUTION POINTS
	APPENDIX F INSTRUCTION INDEX

