

# IDT<sub>®</sub> Tsi572 Serial RapidIO Switch

# **Hardware Manual**

May 18, 2012

© 2019 Renesas Electronics Corporation

#### GENERAL DISCLAIMER

Integrated Device Technology, Inc. (1DT<sup>-</sup>) reserves the right to make changes to its products or specifications at any time, without notice, in order to improve design or performance. IDT does not assume responsibility for use of any circuitry described herein other than the circuitry embodied in an IDT product. Disclosure of the information herein does not convey a license or any other right, by implication or otherwise, in any patent, trademark, or other intellectual property right of IDT. IDT products may contain errata which can affect product performance to a minor or immaterial degree. Current characterized errata will be made available upon request. Items identified herein as "reserved" or "undefined" are reserved for future definition. IDT does not assume responsibility for conflicts or incompatibilities arising from the future definition of such items. IDT products have not been designed, tested, or manufactured for use in, and thus are not warranted for, applications where the failure, malfunction, or any inaccuracy in the application carries a risk of death, serious bodily injury, or damage to tangible property. Code examples provided herein by IDT are for illustrative purposes only and should not be relied upon for developing applications. Any use of such code examples shall be at the user's sole risk.

Copyright  $^{\odot}$  2012 Integrated Device Technology, Inc. All Rights Reserved.

The IDT logo is registered to Integrated Device Technology, Inc. IDT and CPS are trademarks of Integrated Device Technology, Inc.

# Contents

| 1. | Sigr        | nals and Package                     |  |  |  |  |
|----|-------------|--------------------------------------|--|--|--|--|
|    | 1.1         | Pinlist                              |  |  |  |  |
|    | 1.2         | Signals                              |  |  |  |  |
|    | 1.3         | Package Characteristics              |  |  |  |  |
|    | 1.4         | Thermal Characteristics              |  |  |  |  |
| 2. | Elec        | trical Characteristics               |  |  |  |  |
|    | 2.1         | Absolute Maximum Ratings             |  |  |  |  |
|    | 2.2         | Recommended Operating Conditions     |  |  |  |  |
|    | 2.3         | Power                                |  |  |  |  |
|    | 2.4         | Electrical Characteristics           |  |  |  |  |
| 3. | Lay         | Layout Guidelines                    |  |  |  |  |
|    | 3.1         | Overview                             |  |  |  |  |
|    | 3.2         | Impedance Requirements               |  |  |  |  |
|    | 3.3         | Tracking Topologies                  |  |  |  |  |
|    | 3.4         | Power Distribution                   |  |  |  |  |
|    | 3.5         | Decoupling Requirements              |  |  |  |  |
|    | 3.6         | Clocking and Reset                   |  |  |  |  |
|    | 3.7         | Modeling and Simulation              |  |  |  |  |
|    | 3.8         | Testing and Debugging Considerations |  |  |  |  |
|    | 3.9         | Reflow Profile                       |  |  |  |  |
| Α. | Cloc        | cking                                |  |  |  |  |
|    | A.1         | Line Rate Support                    |  |  |  |  |
|    | A.2         | P_CLK Programming                    |  |  |  |  |
| В. | Ord         | ering Information                    |  |  |  |  |
|    | <b>B</b> .1 | Ordering Information                 |  |  |  |  |
|    | B.2         | Part Numbering Information           |  |  |  |  |



# **About this Document**

This section discusses general document information about the Tsi572. The following topics are described:

- "Scope" on page 5
- "Document Conventions" on page 5
- "Revision History" on page 6

# Scope

The *Tsi572 Hardware Manual* discusses electrical, physical, and board layout information for the Tsi572. It is intended for hardware engineers who are designing system interconnect applications with these devices.

# **Document Conventions**

This document uses a variety of conventions to establish consistency and to help you quickly locate information of interest. These conventions are briefly discussed in the following sections.

#### **Non-differential Signal Notation**

Non-differential signals are either active-low or active-high. An active-low signal has an active state of logic 0 (or the lower voltage level), and is denoted by a lowercase "b". An active-high signal has an active state of logic 1 (or the higher voltage level), and is not denoted by a special character. The following table illustrates the non-differential signal naming convention.

| State       | Single-line signal | Multi-line signal |
|-------------|--------------------|-------------------|
| Active low  | NAME_b             | NAMEn[3]          |
| Active high | NAME               | NAME[3]           |

#### **Differential Signal Notation**

Differential signals consist of pairs of complement positive and negative signals that are measured at the same time to determine a signal's active or inactive state (they are denoted by "\_p" and "\_n", respectively). The following table illustrates the differential signal naming convention.

| State    | Single-line signal       | Multi-line signal                |
|----------|--------------------------|----------------------------------|
| Inactive | NAME_p = 0<br>NAME_n = 1 | NAME_p[3] = 0<br>NAME_n[3] =1    |
| Active   | NAME_p = 1<br>NAME_n = 0 | NAME_p[3] is 1<br>NAME_n[3] is 0 |

#### **Symbols**



This symbol indicates a basic design concept or information considered helpful.



This symbol indicates important configuration information or suggestions.



This symbol indicates procedures or operating levels that may result in misuse or damage to the device.

# **Revision History**

#### May 18, 2012, Formal

- Updated the first paragraph in "Power Sequencing" on page 33
- Changed the SP\_IO\_SPEED setting in Table 21 for 125 MHz / 1.25 Baud rate to 1,1

#### November 18, 2010, Formal

• Added a note to Table 13

#### August 2009, Formal

This is the current release of the *Serial RapidIO Switch*. There have been no technical changes to the document; the formatting has been updated to reflect IDT.

#### June 2009, Formal

Changes have been implemented throughout the document.

Serial RapidIO Switch May 18, 2012



#### July 2008, Advance

The changes to this documents includes adding industrial variants of the device to "Ordering Information" on page 87.

#### June 2008, Advance

This was the first version of the Serial RapidIO Switch.





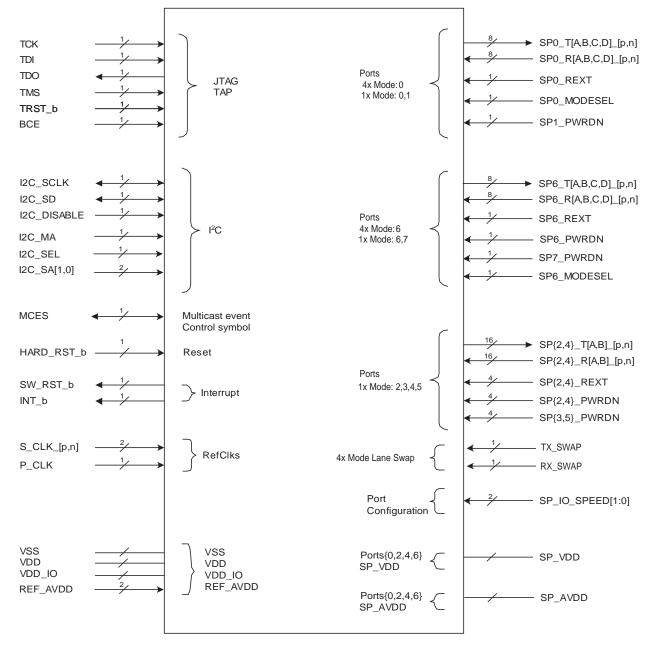
# 1. Signals and Package

This chapter describes the packaging (mechanical) features for the Tsi572. It includes the following information:

- "Pinlist" on page 9
- "Signals" on page 10
- "Package Characteristics" on page 24
- "Thermal Characteristics" on page 27

# 1.1 Pinlist

The pinlist and ballmap information for the Tsi572 are available by visiting www.idt.com. For more information, see the following documents:


- Tsi572 Pinlist
- Tsi572 Ballmap

9

10

# 1.2 Signals

#### Figure 1: Signal Grouping



### 1.2.1 Conventions

The following conventions are used in the signal description table:

- Signals with the suffix "\_p" are the positive half of a differential pair.
- Signals with the suffix "\_n" are the negative half of a differential pair.
- Signals with the suffix "\_b" are active low.

Signals are classified according to the types defined in Table 1.

#### Table 1: Signal Types

| Pin Type    | Definition                                                                                   |
|-------------|----------------------------------------------------------------------------------------------|
| 1           | Input                                                                                        |
| 0           | Output                                                                                       |
| I/O         | Input/Output                                                                                 |
| OD          | Open Drain                                                                                   |
| SRIO        | Differential driver/receiver defined by RapidIO<br>Interconnect Specification (Revision 1.3) |
| PU          | Pulled Up internal to the Tsi572                                                             |
| PD          | Pulled Down internal to the Tsi572                                                           |
| LVTTL       | CMOS I/O with LVTTL thresholds                                                               |
| Hyst        | Hysteresis                                                                                   |
| Core Power  | Core supply                                                                                  |
| Core Ground | Ground for core logic                                                                        |
| I/O Power   | I/O supply                                                                                   |
| N/C         | No connect<br>These signals must be left unconnected.                                        |

## 1.2.2 Endian Ordering

This document follows the bit-numbering convention adopted by *RapidIO Interconnect Specification (Revision 1.3)*, where [0:7] is used to represent an 8 bit bus with bit 0 as the most-significant bit.

### 1.2.3 Port Numbering

The following table shows the mapping between port numbers and the physical ports. These port numbers are used within the destination ID lookup tables for ingress RapidIO ports and in numerous register configuration fields.

#### **Table 2: Port Numbering**

| Port Number | RapidIO Port        | Mode     |
|-------------|---------------------|----------|
| 0           | Serial Port 0 (SP0) | 1x or 4x |
| 1           | Serial Port 1 (SP1) | 1x       |
| 2           | Serial Port 2 (SP2) | 1x       |
| 3           | Serial Port 3 (SP3) | 1x       |
| 4           | Serial Port 4 (SP4) | 1x       |
| 5           | Serial Port 5 (SP5) | 1x       |
| 6           | Serial Port 6 (SP6) | 1x or 4x |
| 7           | Serial Port 7 (SP7) | 1x       |



## 1.2.4 Signal Grouping

The following table lists the signals by group and their recommended termination.

| Pin Name                                | Туре    | Description                                                                                                                                                | Recommended<br>Termination <sup>a</sup> |  |  |  |
|-----------------------------------------|---------|------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|--|--|--|
| Signal Port Numbering<br>n = 0, 2, 4, 6 |         |                                                                                                                                                            |                                         |  |  |  |
| Serial Port Transmit                    |         |                                                                                                                                                            |                                         |  |  |  |
| SP{n}_TA_p                              | O, SRIO | Port n Lane A Differential Non-inverting Transmit<br>Data output (4x mode)<br>Port n Lane A Differential Non-inverting Transmit<br>Data output (1x mode)   | No termination required.                |  |  |  |
| SP{n}_TA_n                              | O, SRIO | Port n Lane A Differential Inverting Transmit Data<br>output (4x mode)<br>Port n Lane A Differential Inverting Transmit Data<br>output (1x mode)           | No termination required.                |  |  |  |
| SP{n}_TB_p                              | O, SRIO | Port n Lane B Differential Non-inverting Transmit<br>Data output (4x mode)<br>Port n+1 Lane B Differential Non-inverting<br>Transmit Data output (1x mode) | No termination required.                |  |  |  |
| SP{n}_TB_n                              | O, SRIO | Port n Lane B Differential Inverting Transmit Data<br>output (4x mode)<br>Port n+1 Lane B Differential Inverting Transmit<br>Data output (1x mode)         | No termination required.                |  |  |  |
| SP[0,6]_TC_p                            | O, SRIO | Port n Lane C Differential Non-inverting Transmit<br>Data output (4x mode)                                                                                 | No termination required.                |  |  |  |
| SP[0,6]_TC_n                            | O, SRIO | Port n Lane C Differential Inverting Transmit Data output(4x mode)                                                                                         | No termination required.                |  |  |  |
| SP[0,6]_TD_p                            | O, SRIO | Port n Lane D Differential Non-inverting Transmit<br>Data output (4x mode)                                                                                 | No termination required.                |  |  |  |
| SP[0,6]TD_                              | O, SRIO | Port n Lane D Differential Inverting Transmit Data output (4x mode)                                                                                        | No termination required.                |  |  |  |

14

| Pin Name            | Туре    | Description                                                                                                                                            | Recommended<br>Termination <sup>a</sup>  |
|---------------------|---------|--------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|
| Serial Port Receive |         |                                                                                                                                                        |                                          |
| SP{n}_RA_p          | I, SRIO | Port n Lane A Differential Non-inverting Receive<br>Data input (4x node)<br>Port n Lane A Differential Non-inverting Receive<br>Data input (1x mode)   | DC blocking capacitor of 0.1uF in series |
| SP{n}_RA_n          | I, SRIO | Port n Lane A Differential Inverting Receive Data<br>input (4x mode)<br>Port n Lane A Differential Inverting Receive Data<br>input (1x mode)           | DC blocking capacitor of 0.1uF in series |
| SP{n}_RB_p          | I, SRIO | Port n Lane B Differential Non-inverting Receive<br>Data input (4x mode)<br>Port n+1 Lane B Differential Non-inverting<br>Receive Data input (1x mode) | DC blocking capacitor of 0.1uF in series |
| SP{n}_RB_n          | I, SRIO | Port n Lane B Differential Inverting Receive Data<br>input (4x mode)<br>Port n+1 Lane B Differential Inverting Receive<br>Data input (1x mode)         | DC blocking capacitor of 0.1uF in series |
| SP[0,6]_RC_p        | I, SRIO | Port n Lane C Differential Non-inverting Receive Data input(4x mode)                                                                                   | DC blocking capacitor of 0.1uF in series |
| SP[0,6]_RC_n        | I, SRIO | Port n Lane C Differential Inverting Receive Data input (4x mode)                                                                                      | DC blocking capacitor of 0.1uF in series |
| SP[0,6]_RD_p        | I, SRIO | Port n Lane D Differential Non-inverting Receive<br>Data input(4x mode)                                                                                | DC blocking capacitor of 0.1uF in series |
| SP[0,6]_RD_n        | I, SRIO | Port n Lane D Differential Inverting Receive Data input (4x mode)                                                                                      | DC blocking capacitor of 0.1uF in series |

| Pin Name                  | Туре                      | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Recommended<br>Termination <sup>a</sup>                                                                                                                                                  |  |  |  |
|---------------------------|---------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Serial Port Configuration | Serial Port Configuration |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                          |  |  |  |
| SP{n}_REXT                | Analog                    | Used to connect a resistor to VSS to provide a reference current for the driver and equalization circuits.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Must be connected to VSS<br>with a 191-ohm (1%)<br>resistor.                                                                                                                             |  |  |  |
| SP{n}_MODESEL             | I/O,<br>LVTTL,<br>PD      | Selects the serial port operating mode for ports<br>Oand 6<br>0 = Port 0 or 6 operating in 4x mode<br>1 = Ports n and n+1 operating in 1x mode<br>Note: Output capability of this pin is only used in<br>test mode.<br>Must remain stable for 10 P_CLK cycles after<br>HW_RST_b is de-asserted in order to be sampled<br>correctly.<br>This signal is ignored after reset.                                                                                                                                                                                                                                                                                              | Pin must be tied off<br>according to the required<br>configuration. Either a 10K<br>pull up to VDD_IO or a<br>10K pull-down to VSS_IO.<br>Internal pull-down may be<br>used for logic 0. |  |  |  |
| SP{n}_PWRDN               | I/O,<br>LVTTL,<br>PU      | Port n Transmit and Receive Power Down control<br>This signal controls the state of Port n and Port<br>n+1<br>The PWRDN controls the state of all four lanes<br>(A/B/C/D) of SERDES Macro.<br>0 = Port n Powered Up. Port n+1 controlled by<br>SP{n+1}_PWRDN.<br>1 = Port n Powered Down. Port n+1 Powered<br>Down.<br>Override SP{n}_PWRDN using PWDN_x1 field in<br>"SRIO MAC x Clock Selection Register" in the<br><i>Tsi572 User Manual</i> .<br>Output capability of this pin is only used in test<br>mode.<br>Must remain stable for 10 P_CLK cycles after<br>HW_RST_B is de-asserted in order to be sampled<br>correctly.<br>This signal is ignored after reset. | Pin must be tied off<br>according to the required<br>configuration. Either a 10K<br>pull up to VDD_IO or a<br>10K pull-down to VSS_IO.<br>Internal pull-up may be<br>used for logic 1.   |  |  |  |

| Pin Name      | Туре                 | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Recommended<br>Termination <sup>a</sup>                                                                                                                                                |
|---------------|----------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| SP{n+1}_PWRDN | I/O,<br>LVTTL,<br>PU | Port n+1 Transmit and Receive Power Down<br>control<br>This signal controls the state of Port n+1. Note<br>that Port n+1 is never used when 4x mode is<br>selected for a Serial Rapid IO MAC, and it must<br>be powered down.<br>0 = Port n+1 Powered Up<br>1 = Port n+1 Powered Down<br>Override SP{n+1}_PWRDN using PWDN_x4 field<br>SRIO MAC x Clock Selection Register.<br>Output capability of this pin is only used in test<br>mode.<br>Must remain stable for 10 P_CLK cycles after<br>HW_RST_B is de-asserted in order to be sampled<br>correctly.<br>This signal is ignored after reset. | Pin must be tied off<br>according to the required<br>configuration. Either a 10K<br>pull up to VDD_IO or a<br>10K pull-down to VSS_IO.<br>Internal pull-up may be<br>used for logic 1. |

| Pin Name                 | Туре                     | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Recommended<br>Termination <sup>a</sup>                                                                                                                                                  |  |  |  |
|--------------------------|--------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Serial Port Speed Select | Serial Port Speed Select |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                          |  |  |  |
| SP_IO_SPEED[1]           | I/O,<br>LVTTL,<br>PU     | Serial Port Transmit and Receive operating<br>frequency select, bit 1. When combined with<br>SP_IO_SPEED[0], this pin selects the default<br>serial port frequency for all ports.<br>00 = 1.25 Gbit/s<br>01 = 2.5 Gbit/s<br>10 = 3.125 Gbit/s (default)<br>11 = Illegal<br>Selects the speed at which the ports operates<br>when reset is removed. This could be at either<br>HARD_RST_b being de-asserted or by the<br>completion of a self-reset.<br>These signals must remain stable for 10 P_CLK<br>cycles after HW_RST_b is de-asserted in order to<br>be sampled correctly.<br>These signals are ignored after reset and<br>software is able to over-ride the port frequency<br>setting in the SRIO MAC x Digital Loopback and<br>Clock Selection register.<br>The SP_IO_SPEED[1:0] setting is equal to the<br>IO_SPEED field in SRIO MAC x Clock Selection<br>Register.<br>Output capability of this pin is only used in test<br>mode. | Pin must be tied off<br>according to the required<br>configuration. Either a 10K<br>pull-up to VDD_IO or a<br>10K pull-down to VSS_IO.<br>Internal pull-down may be<br>used for logic 0. |  |  |  |
| SP_IO_SPEED[0]           | I/O,<br>LVTTL,<br>PD     | See SP_IO_SPEED[1]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Pin must be tied off<br>according to the required<br>configuration. Either a 10K<br>pull-up to VDD_IO or a<br>10K pull-down to VSS_IO.<br>Internal pull-up may be<br>used for logic 1.   |  |  |  |

18

| Pin Name                  | Туре            | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Recommended<br>Termination <sup>a</sup>                                                                                                                                                                                                    |  |
|---------------------------|-----------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Serial Port Lane Ordering | Select          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                            |  |
| SP_RX_SWAP                | I, LVTTL,<br>PD | Configures the order of 4x receive lanes on serial<br>ports [0,6]<br>0 = A, B, C, D<br>1 = D, C, B, A<br>This signal is ignored in 1X mode.<br>Must remain stable for 10 P_CLK cycles after<br>HARD_RST_b is de-asserted in order to be<br>sampled correctly.<br>This signal is ignored after reset.<br>Note: Ports that require the use of lane swapping<br>for ease of routing will only function as 4x mode<br>ports. The re-configuration of a swapped port to<br>dual 1x mode operation results in the inability to<br>connect to a 1x mode link partner. | No termination required.<br>Internal pull-down can be<br>used for logic 0. Pull up to<br>VDD_IO through 10K if<br>external pull-up is desired.<br>Pull down to VSS_IO<br>through a 10K resistor if an<br>external pull-down is<br>desired. |  |
| SP_TX_SWAP                | I, LVTTL,<br>PD | Configures the order of 4x transmit lanes on serial<br>ports [0,6].<br>0 = A, B, C, D<br>1 = D, C, B, A<br>Must remain stable for 10 P_CLK cycles after<br>HARD_RST_b is de-asserted in order to be<br>sampled correctly.<br>This signal is ignored after reset.<br>Note: Ports that require the use of lane swapping for<br>ease of routing only function as 4x mode ports. The<br>re-configuration of a swapped port to dual 1x mode<br>operation results in the inability to connect to a 1x<br>mode link partner.                                          | No termination required.<br>Internal pull-down can be<br>used for logic 0. Pull up to<br>VDD_IO through 10K if<br>external pull-up is desired.<br>Pull down to VSS_IO<br>through 10K resistor if an<br>external pull-down is<br>desired.   |  |
| Clock and Reset           |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                            |  |
| P_CLK                     | I,<br>LVTTL     | This clock is used for the register bus clock.<br>The nominal frequency of this input clock is<br>100 MHz. For more information on programming<br>the P_CLK operating frequency, refer to "P_CLK<br>Programming" on page 75.                                                                                                                                                                                                                                                                                                                                   | No termination required.                                                                                                                                                                                                                   |  |

#### Table 3: Signal Descriptions and Recommended Termination

| Pin Name   | Туре                    | Description                                                                                                                                                                | Recommended<br>Termination <sup>a</sup>                                    |
|------------|-------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|
| S_CLK_p    | I,<br>CML               | Differential non-inverting reference clock. The<br>clock is used for following purposes: SERDES<br>reference clock, serial port system clock, ISF<br>clock and test clock. | AC coupling capacitor of 0.1uF required.                                   |
|            |                         | The maximum frequency of this input clock is 156.25 MHz.                                                                                                                   |                                                                            |
|            |                         | The clock frequency is defined in "Reference Clock, S_CLK_p/n" on page 35.                                                                                                 |                                                                            |
|            |                         | For more information on the S_CLK operating frequency, refer to "Line Rate Support" on page 71.                                                                            |                                                                            |
| S_CLK_n    | I,<br>CML               | Differential inverting reference clock. The clock is<br>used for following purposes: SerDes reference<br>clock, serial port system clock, ISF clock and test<br>clock.     | AC coupling capacitor of 0.1uF required.                                   |
|            |                         | The maximum frequency of this input clock is 156.25 MHz.                                                                                                                   |                                                                            |
|            |                         | The clock frequency is defined in "Reference Clock, S_CLK_p/n" on page 35.                                                                                                 |                                                                            |
|            |                         | For more information on the S_CLK operating frequency, refer to "Line Rate Support" on page 71.                                                                            |                                                                            |
| HARD_RST_b | I<br>LVTTL,             | Schmidt-triggered hard reset. Asynchronous active low reset for the entire device.                                                                                         | Connect to a power-up reset source.                                        |
|            | Hyst,<br>PU             | The Tsi572 does not contain a voltage detector to generate internal reset.                                                                                                 | Refer to "Reset<br>Requirements" on page 64                                |
| Interrupts |                         |                                                                                                                                                                            |                                                                            |
| INT_b      | O, OD,<br>LVTTL,<br>2mA | Interrupt signal (open drain output)                                                                                                                                       | External pull-up required.<br>Pull up to VDD_IO through<br>a 10K resistor. |

| Pin Name         | Туре                            | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Recommended<br>Termination <sup>a</sup>                                                                                                                                     |
|------------------|---------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| SW_RST_b         | O, OD,<br>LVTTL,<br>2mA         | Software reset (open drain output): This signal is<br>asserted when a RapidIO port receives a valid<br>reset request on a RapidIO link. If self-reset is not<br>selected, this pin remains asserted until the reset<br>request is cleared from the status registers. If<br>self-reset is selected, this pin remains asserted<br>until the self reset is complete. If the Tsi572 is<br>reset from the HARD_RST_b pin, this pin is<br>de-asserted and remains de-asserted after<br>HARD_RST_b is released.<br>For more information, refer to "Resets" in the<br>Tsi572 User's Manual. | External pull-up required.<br>Pull up to VDD_IO through<br>a 10K resistor.                                                                                                  |
| Multicast        |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                             |
| MCES             | I/O,<br>LVTTL,<br>PD            | Multicast Event Symbol pin.<br>As an input, an edge (rising or falling) will trigger a<br>Multicast Event Control Symbol will be sent to all<br>ports;<br>As an output, this pin will toggle its value every<br>time an Multicast Event Control Symbol is<br>received by any port which is enabled for<br>Multicast even control symbols.<br>Must remain stable for 10 P_CLK cycles <i>before</i><br><i>and after</i> a transition.                                                                                                                                                 | No termination required.<br>This pin must not be driven<br>by an external source until<br>all power supply rails are<br>stable.                                             |
| l <sup>2</sup> C |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                             |
| I2C_SCLK         | I/O, OD,<br>LVTTL,<br>PU<br>8mA | $I^2C$ input/output clock, up to 100 kHz.<br>If an EEPROM is present on the $I^2C$ bus, this<br>clock signal must be connected to the clock input<br>of the serial EEPROM on the $I^2C$ bus. If an<br>EEPROM is not present, the recommended<br>terminations should be used.                                                                                                                                                                                                                                                                                                        | No termination required.<br>Internal pull-up may be<br>used for logic 1.<br>Pull up to VDD_IO through<br>a minimum 470 ohms<br>resistor if higher edge rate<br>is required. |
| I2C_SD           | I/O, OD,<br>LVTTL,<br>PU<br>8mA | I <sup>2</sup> C input and output data bus (bidirectional open drain)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | No termination required.<br>Internal pull-up may be<br>used for logic 1.<br>Pull up to VDD_IO through<br>a minimum 470 ohms<br>resistor if higher edge rate<br>required.    |

| Pin Name    | Туре            | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Recommended<br>Termination <sup>a</sup>                                                                                                                                                                          |
|-------------|-----------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| I2C_DISABLE | I, LVTTL,<br>PD | Disable I <sup>2</sup> C register loading after reset. When<br>asserted, the Tsi572 does not attempt to load<br>register values from I <sup>2</sup> C.<br>0 = Enable I <sup>2</sup> C register loading<br>1 = Disable I <sup>2</sup> C register loading<br>Must remain stable for 10 P_CLK cycles after<br>HARD_RST_b is de-asserted in order to be<br>sampled correctly.<br>Note: This signal does not control the slave<br>accessibility of the interface.<br>This signal is ignored after reset. | No termination required.<br>Pull up to VDD_IO through<br>a 10K resistor if I <sup>2</sup> C<br>loading is not required.                                                                                          |
| I2C_MA      | I, CMOS,<br>PU  | <ul> <li>I<sup>2</sup>C Multibyte Address.</li> <li>When driven high, I<sup>2</sup>C module will expect<br/>multi-byte peripheral addressing; otherwise, when<br/>driven low, single-byte peripheral address is<br/>assumed.</li> <li>Must remain stable for 10 P_CLK cycles after<br/>HW_RST_b is de-asserted in order to be sampled<br/>correctly.</li> <li>This signal is ignored after reset.</li> </ul>                                                                                        | No termination required.<br>Internal pull-up may be<br>used for logic 1.<br>Pull up to VDD_IO through<br>10K resistor if an external<br>pull-up is desired. Pull<br>down to VSS_IO to<br>change the logic state. |
| I2C_SA[1,0] | I, CMOS,<br>PU  | I <sup>2</sup> C Slave Address pins.<br>The values on these two pins represent the<br>values for the lower 2 bits of the 7-bit address of<br>Tsi572 when acting as an I <sup>2</sup> C slave (see I <sup>2</sup> C Slave<br>Configuration register).<br>The values at these pins can be overridden by<br>software after reset.                                                                                                                                                                      | No termination required.<br>Internal pull-up may be<br>used for logic 1.<br>Pull up to VDD_IO through<br>10K resistor if an external<br>pull-up is desired. Pull<br>down to VSS_IO to<br>change the logic state. |

| Pin Name            | Туре                | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Recommended<br>Termination <sup>a</sup>                                                                           |
|---------------------|---------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|
| I2C_SEL             | I, CMOS,<br>PU      | <ul> <li>DS, I<sup>2</sup>C Pin Select. Together with the I2C_SA[1,0] pins, Tsi572 will determine the lower 2 bits of the 7-bit address of the EEPROM address it boots from.</li> <li>When asserted, the I2C_SA[1,0] values will also be used as the lower 2 bits of the EEPROM address.</li> <li>When de-asserted, the I2C_SA[1,0] pins will be ignored and the lower 2 bits of the EEPROM address are default to 00.</li> <li>The values of the lower 2 bits of the EEPROM address can be over-ridden by software after reset.</li> </ul> |                                                                                                                   |
| JTAG TAP Controller |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                   |
| тск                 | I, LVTTL,<br>PD     | IEEE 1149.1 Test Access Port Clock input                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Pull up to VDD_IO through 10K resistor if not used.                                                               |
| TDI                 | I, LVTTL,<br>PU     | IEEE 1149.1 Test Access Port Serial Data Input                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Pull up to VDD_IO through<br>a 10K resistor if the signal<br>is not used or a if higher<br>edge rate is required. |
| TDO                 | O,<br>LVTTL,<br>2mA | IEEE 1149.1 Test Access Port Serial Data Output                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | No connect if JTAG is not<br>used.<br>Pull up to VDD_IO through<br>a 10K resistor if used.                        |
| TMS                 | I, LVTTL,<br>PU     | IEEE 1149.1 Test Access Port Test Mode Select                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Pull up to VDD_IO through a 10K resistor if not used.                                                             |
| TRST_b              | I, LVTTL,<br>PU     | IEEE 1149.1 Test Access Port TAP Reset Input<br>This input must be asserted during the assertion<br>of HARD-RST_b. Afterwards, it may be left in<br>either state.<br>Combine the HARD_RST_b and TRST_b signals<br>with an AND gate and use the output to drive the<br>TRST_b pin.                                                                                                                                                                                                                                                           | Tie to VSS_IO through a 10K resistor if not used.                                                                 |

| Pin Name       | Туре            | Description                                                                                                                                                                                                                                                                                                                                                                                                                                    | Recommended<br>Termination <sup>a</sup>                                                     |  |
|----------------|-----------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|--|
| BCE            | I, LVTTL,<br>PU | Boundary Scan compatibility enabled pin. This<br>input is used to aid 1149.6 testing.<br>This signal also enables system level diagnostic<br>capability using features built into the SerDes. For<br>more information on this functionality, refer to the<br>Serial RapidIO Signal Analyzer documentation.<br>This signal must be tied to VDD_IO during normal<br>operation of the device, and during JTAG<br>accesses of the device registers | <ul><li>or The default setting is to be pulled-up.</li><li>Pulling the signal low</li></ul> |  |
| Power Supplies | -               |                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                             |  |
| SP_AVDD        | -               | Port n and n+1: 3.3V supply for bias generator circuitry. This is required to be a low-noise supply.                                                                                                                                                                                                                                                                                                                                           | Refer to ""Decoupling<br>Requirements" on<br>page 57"                                       |  |
| REF_AVDD       | -               | Analog 1.2V for Reference Clock (S_CLK_p/n).<br>Clock distribution network power supply.                                                                                                                                                                                                                                                                                                                                                       | Refer to ""Decoupling<br>Requirements" on<br>page 57"                                       |  |
| Common Supply  |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                             |  |
| VDD_IO         | -               | Common 3.3V supply for LVTTL I/O                                                                                                                                                                                                                                                                                                                                                                                                               | Refer to ""Decoupling<br>Requirements" on<br>page 57"                                       |  |
| VSS            | -               | Common ground supply for digital logic                                                                                                                                                                                                                                                                                                                                                                                                         | Refer to ""Decoupling<br>Requirements" on<br>page 57"                                       |  |
| VDD            | -               | Common 1.2V supply for digital logic                                                                                                                                                                                                                                                                                                                                                                                                           | Refer to ""Decoupling<br>Requirements" on<br>page 57"                                       |  |
| SP_VDD         | -               | 1.2V supply for CDR, Tx/Rx, and digital logic for all RapidIO ports                                                                                                                                                                                                                                                                                                                                                                            | Refer to ""Decoupling<br>Requirements" on<br>page 57"                                       |  |

a. Signals for unused serial ports do not require termination and can be left as N/Cs.

# **1.3 Package Characteristics**

The Tsi572's package characteristics are summarized in the following table. The following figures show the top, side, and bottom views of the Tsi572 package.

#### **Table 4: Package Characteristics**

| Feature                    | Description                       |
|----------------------------|-----------------------------------|
| Package Type               | Heat Slug Ball Grid Array (HSBGA) |
| Package Body Size          | 21 mm x 21 mm                     |
| JEDEC Specification        | 95-1 Section 14                   |
| Pitch                      | 1.00 mm                           |
| Ball pad size              | 500 um                            |
| Soldermask opening         | 400 um                            |
| Moisture Sensitivity Level | 3                                 |

# RENESAS



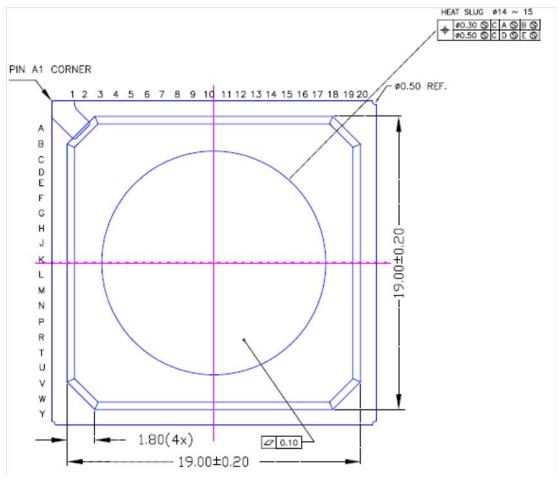
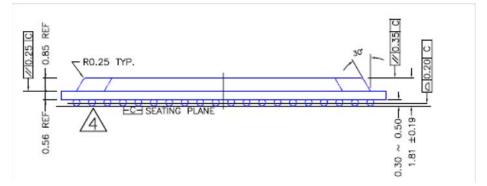




Figure 3: Package Diagram — Side View



21.00

Figure 4: Package Diagram — Bottom View

□ 0.20(4X)

Α

в

C

D

Ε

F G

н

J

к

L

М

N

Ρ

R

т

U

W

Y

RENESAS

# **1.4 Thermal Characteristics**

Heat generated by the packaged IC has to be removed from the package to ensure that the IC is maintained within its functional and maximum design temperature limits. If heat buildup becomes excessive, the IC temperature may exceed the temperature limits. A consequence of this is that the IC may fail to meet the performance specifications and the reliability objectives may be affected.

Failure mechanisms and failure rate of a device have an exponential dependence of the IC operating temperatures. Thus, the control of the package temperature, and by extension the Junction Temperature, is essential to ensure product reliability. The Tsi572 is specified safe for operation when the Junction Temperature is within the recommended limits.

Table 5 shows the simulated Theta jb and Theta jc thermal characteristics of the Tsi572 HSBGA package.

| Interface                    | Result      |
|------------------------------|-------------|
| Theta jb (junction to board) | 9.2 °C/watt |
| Theta jc (junction to case)  | 4.7 °C/watt |

#### **Table 5: Thermal Characteristics**

## 1.4.1 Junction-to-Ambient Thermal Characteristics (Theta ja)

The following table shows the simulated Theta ja thermal characteristic of the Tsi572 HSBGA package. The results in the table are based on a JEDEC Thermal Test Board configuration (JESD51-9) and do not factor in system level characteristics. As such, these values are for reference only.



The Theta ja thermal resistance characteristics of a package depend on multiple system level variables.

#### **Table 6: Simulated Junction to Ambient Characteristics**

|              | Theta ja at specified airflow (no Heat Sink) |              |              |  |
|--------------|----------------------------------------------|--------------|--------------|--|
| Package      | 0 m/s 1 m/s 2 m/s                            |              |              |  |
| Tsi572 HSBGA | 13.0 C/watt                                  | 12.0 °C/watt | 11.4 °C/watt |  |

RENESAS

#### 1.4.1.1 System-level Characteristics

In an application, the following system-level characteristics and environmental issues must be taken into account:

- Package mounting (vertical / horizontal)
- System airflow conditions (laminar / turbulent)
- Heat sink design and thermal characteristics
- Heat sink attachment method
- PWB size, layer count and conductor thickness
- Influence of the heat dissipating components assembled on the PWB (neighboring effects)

#### Example on Thermal Data Usage

Based on the Theta<sub>JA</sub> data and specified conditions, the following formula can be used to derive the junction temperature (Tj) of the Tsi572 with a 0m/s airflow:

•  $Tj = \hat{e}_{JA} * P + Tamb.$ 

Where: Tj is Junction Temperature, P is the Power consumption, Tamb is the Ambient Temperature

Assuming a power consumption (P) of 3 W and an ambient temperature (Tamb) of 70°C, the resulting junction temperature (Tj) would be 109°C.



# 2. Electrical Characteristics

This chapter provides the electrical characteristics for the Tsi572. It includes the following information:

- "Absolute Maximum Ratings" on page 29
- "Recommended Operating Conditions" on page 30
- "Power" on page 31

# 2.1 Absolute Maximum Ratings

Operating the device beyond the listed operating conditions is not recommended. Stressing the Tsi572 beyond the Absolute Maximum Rating can cause permanent damage.

Table 7 lists the absolute maximum ratings.

| Symbol                               | Parameter                                 | Min  | Мах    | Unit |
|--------------------------------------|-------------------------------------------|------|--------|------|
| T <sub>storage</sub>                 | Storage Temperature                       | -55  | 125    | °C   |
| V <sub>DD_IO</sub>                   | 3.3 V DC Supply Voltage                   | -0.5 | 4.6    | V    |
| SP_AVDD                              | 3.3 V Analog Supply Voltage               | -0.5 | 4.6    | V    |
| V <sub>DD,</sub> SP_VDD,<br>REF_AVDD | 1.2 V DC Supply Voltage                   | -0.3 | 1.7    | V    |
| $V_{I\_SP\{n\}-R\{A-D\}_{p,n\}}}$    | SERDES Port Receiver Input Voltage        | -0.3 | 3      | V    |
| $V_{O_SP\{n\}-T\{A-D\}_{p,n\}}}$     | SERDES Port VM Transmitter Output Voltage | -0.3 | 3      | V    |
| SP_AVDD                              | Transient di/dt                           | -    | 0.0917 | A/nS |
| SP_VDD                               | Transient di/dt                           | -    | 0.136  | A/nS |

#### **Table 7: Absolute Maximum Ratings**

#### **Table 7: Absolute Maximum Ratings**

| Symbol               | Parameter                                                                                                                           | Min  | Мах                     | Unit |
|----------------------|-------------------------------------------------------------------------------------------------------------------------------------|------|-------------------------|------|
| V <sub>O_LVTTL</sub> | LVTTL Output or I/O Voltage                                                                                                         | -0.5 | V <sub>DD_IO</sub> +0.5 | V    |
| V <sub>ESD_HBM</sub> | Maximum ESD Voltage Discharge Tolerance<br>for Human Body Model (HBM). [Test<br>Conditions per JEDEC standard -<br>JESD22-A114-B]   | -    | 2000                    | V    |
| V <sub>ESD_CDM</sub> | Maximum ESD Voltage Discharge Tolerance<br>for Charged Device Model (CDM). Test<br>Conditions per JEDEC standard -<br>JESD22-C101-A | -    | 500                     | V    |

# 2.2 Recommended Operating Conditions

Table 8 lists the recommended operating conditions.



Continued exposure of IDT's devices to the maximum limits of the specified junction temperature could affect the device reliability. Subjecting the devices to temperatures beyond the maximum/minimum limits could result in a permanent failure of the device.

| Symbol                               | Parameter                                  | Min  | Max  | Unit |
|--------------------------------------|--------------------------------------------|------|------|------|
| Тj                                   | Junction temperature                       | -40  | 125° | °C   |
| V <sub>DD_IO</sub>                   | 3.3 V DC Supply Voltage                    | 2.97 | 3.63 | V    |
| SP_AVDD                              | 3.3 V Analog Supply Voltage                | 2.97 | 3.63 | V    |
| V <sub>DD</sub> ,SP_VDD,<br>REF_AVDD | 1.2 V DC Supply Voltage                    | 1.14 | 1.29 | V    |
| I <sub>VDD_IO</sub>                  | 3.3 V IO Supply Current <sup>a</sup>       | -    | 15   | mA   |
| I <sub>SP_VDD</sub>                  | SerDes Digital Supply Current <sup>a</sup> | -    | 482  | mA   |
| I <sub>SP_AVDD</sub>                 | 3.3 V SerDes Supply Current <sup>a</sup>   | -    | 382  | mA   |
| I <sub>VDD</sub>                     | 1.2 V Core Supply Current <sup>a</sup>     | -    | 1176 | mA   |
| I <sub>REF_AVDD</sub>                | 1.2 V Ref Clock Supply Current             | -    | 12.5 | mA   |

#### **Table 8: Recommended Operating Conditions**

| Symbol               | Parameter                                                           | Min | Max | Unit             |
|----------------------|---------------------------------------------------------------------|-----|-----|------------------|
| V <sub>ripple1</sub> | Power Supply ripple for Voltage Supplies:<br>SP_VDD, VDD and VDD_IO | -   | 100 | mV <sub>pp</sub> |
| V <sub>ripple2</sub> | Power Supply ripple for Voltage Supplies:<br>SP{n}_AVDD, REF_AVDD   | -   | 50  | mV <sub>pp</sub> |
| I <sub>REXT</sub>    | External reference resistor current                                 | -   | 10  | uA               |

#### **Table 8: Recommended Operating Conditions**

a. The current values provided are maximum values and dependent on device configuration, such as port usage, traffic, etc.

# 2.3 Power

The following sections describe the Tsi572's power dissipation and power sequencing.

### 2.3.1 **Power Dissipation**

The Tsi572's power dissipation values are dependent on device configuration, such as line rate, port configuration, and traffic.

The following tables show the power in both 1x and 4x mode configurations in 125°C ambient temperature, typical process and voltage conditions.

| Line Rate                      | 1.25GBaud | 2.5GBaud | 3.125GBaud | Notes    |
|--------------------------------|-----------|----------|------------|----------|
| VDD_CORE                       | 0.67      | 1.00     | 1.15       | 2,9      |
| SP_VDD                         | 0.39      | 0.40     | 0.49       | 3        |
| SP_AVDD                        | 0.80      | 0.93     | 1.05       | 4        |
| VDD_IO                         | 0.01      | 0.01     | 0.01       | 5        |
|                                |           |          |            |          |
| Total Power Consumption<br>(W) | 1.88      | 2.33     | 2.70       | 1,6,7, 8 |

#### Notes

- 1. Voltage, temperature and process are all nominal
- 2. VDD\_CORE supplies the ISF and other internal digital logic
- 3. SP\_VDD supplies the digital portion of the Serial RapidIO SerDes
- 4. SPn\_AVDD supplies the analog portion of the Serial RapidIO SerDes
- 5. VDD\_IO supplies power for all non-Serial RapidIO I/O
- 6. Total power is independent of Serial RapidIO distance travelled due to Voltage Mode Driver technology used for Serial RapidIO I/O
- 7. Slight power variations must expected across different applications
- 8. Power is provided for fully utilized Serial RapidIO lanes
- 9. Core power reduces by approximately 10% under light traffic conditions

| Line Rate                      | 1.25GBaud | 2.5GBaud | 3.125GBaud | Notes    |
|--------------------------------|-----------|----------|------------|----------|
| VDD_CORE                       | 0.70      | 1.03     | 1.21       | 2,9      |
| SP_VDD                         | 0.40      | 0.37     | 0.45       | 3        |
| SP_AVDD                        | 0.77      | 0.85     | 0.96       | 4        |
| VDD_IO                         | 0.01      | 0.01     | 0.01       | 5        |
|                                |           |          |            |          |
| Total Power Consumption<br>(W) | 1.87      | 2.26     | 2.62       | 1,6,7, 8 |

#### Table 10: Power Consumption for Eight Links in 1x Mode

#### **Notes**

- 1. Voltage, temperature and process are all nominal
- 2. VDD\_CORE supplies the ISF and other internal digital logic
- 3. SP\_VDD supplies the digital portion of the Serial RapidIO SerDes
- 4. SPn\_AVDD supplies the analog portion of the Serial RapidIO SerDes
- 5. VDD\_IO supplies power for all non-Serial RapidIO I/O
- 6. Total power is independent of Serial RapidIO distance travelled due to Voltage Mode Driver technology used for Serial RapidIO I/O

- 7. Slight power variations must expected across different applications
- 8. Power is provided for fully utilized Serial RapidIO lanes
- 9. Core power reduces by approximately 10% under light traffic conditions

#### 2.3.2 Power Sequencing

Power-up option pins that are controlled by a logic device, in addition to all clocks, must not be driven until all power supply rails to the Tsi572 are stable. External devices also must not be permitted to sink current from, or source current to, the device because of the risk of triggering ESD protection or causing a latch-up condition.

The Tsi572 must have the supplies powered-up in the following order:

- VDD (1.2 V) must be powered up first
- SP\_VDD (1.2 V) and REF\_AVDD (1.2 V) should power up at approximately the same time as VDD
- Delays between the powering up of VDD, SP\_VDD, and REF\_AVDD are acceptable.
- No more than 50ms after VDD is at a valid level, VDD\_IO (3.3 V) should be powered up to a valid level
- VDD\_IO (3.3V) must not power up before VDD (1.2 V)
- SP\_AVDD (3.3V) should power up at approximately the same time as VDD\_IO
- Delays between powering up VDD\_IO and SP\_AVDD are acceptable
- SP\_AVDD must not power up before SP\_VDD



It is recommended that there is no more than 50ms between ramping of the 1.2 V and 3.3 V supplies. The power supply ramp rates must be kept between 10 V/s and 1x10E6 V/s to minimize power current spikes during power up.

If it is necessary to sequence the power supplies in a different order than that recommended above, the following precaution must be taken:

• Any power-up option pins must be current limited with 10 K ohms to VDD\_IO or VSS\_IO as required to set the desired logic level.

#### 2.3.2.1 Power-down

Power down is the reverse sequence of power up:

- VDD\_IO (3.3V) and SP\_AVDD
- VDD (1.2V), SP\_VDD and REF\_AVDD power-down at the same time
- Or all rails falling simultaneously

Integrated Device Technology www.idt.com

# 2.4 Electrical Characteristics

This section describes the AC and DC signal characteristics for the Tsi572.

# 2.4.1 SerDes Receiver (SP{n}\_RD\_p/n)

Table 11 lists the electrical characteristics for the SerDes Receiver in the Tsi572.

Serial RapidIO signals may be presented to the receiver differential inputs while the switch is in an un-powered state only if a return current path (VSS) is present between the Tsi572 and the source of the signal. For example, this situation can occur if the Tsi572 is located on an AMC card that has been inserted into an active uTCA chassis and the slot power has been left in the off state.

#### **Table 11: SerDes Receiver Electrical Characteristics**

| Symbol                           | Parameter                              | Min | Тур | Max  | Unit | Notes                                                                 |
|----------------------------------|----------------------------------------|-----|-----|------|------|-----------------------------------------------------------------------|
| Z <sub>DI</sub>                  | RX Differential Input impedance        | 90  | 100 | 110  | Ohm  | -                                                                     |
| V <sub>DIFFI</sub>               | RX Differential Input<br>Voltage       | 170 | -   | 1600 | mV   | -                                                                     |
| L <sub>CR</sub>                  | RX Common Mode<br>Return Loss          | -   | -   | 6    | dB   | Over a range 100MHz to 0.8* Baud<br>Frequency                         |
| L <sub>DR</sub>                  | RX Differential Return<br>Loss         | -   | -   | 10   | dB   | Over a range 100MHz to 0.8* Baud<br>Frequency                         |
| V <sub>LOS</sub>                 | RX Loss of Input<br>Differential Level | 55  | -   | -    | mV   | Port Receiver Input level below which<br>Low Signal input is detected |
| T <sub>RX_ch_skew</sub>          | Channel Skew                           |     | -   | 24   | ns   | Between channels in a given x4 port @ 1.25/2.5Gb/s                    |
|                                  | Tolerance                              | -   | -   | 22   | ns   | Between channels in a given x4 port @ 3.125Gb/s                       |
| R <sub>TR,</sub> R <sub>TF</sub> | RX Input Rise/Fall times               | -   | -   | 160  | ps   | Between 20% and 80% levels                                            |

# 2.4.2 SerDes Transmitter (SP{n}\_TD\_p/n)

Table 12 lists the electrical characteristics for the SerDes transmitter in the Tsi572.

**Table 12: SerDes Transmitter Electrical Characteristics** 

| Symbol                           | Parameter                                   | Min | Тур                         | Max                              | Unit      | Notes                                                                                                  |
|----------------------------------|---------------------------------------------|-----|-----------------------------|----------------------------------|-----------|--------------------------------------------------------------------------------------------------------|
| Z <sub>SEO</sub>                 | TX Single-Ended<br>Output impedance         | 45  | 50                          | 55                               | Ohm       | -                                                                                                      |
| Z <sub>DO</sub>                  | TX Differential Output<br>Impedance         | 90  | 100                         | 110                              | Ohm       | -                                                                                                      |
| V <sub>SW</sub>                  | TX Output Voltage<br>Swing (Single-ended)   | 425 |                             | 600                              | mVp<br>-p | $V_{SW}$ (in mV) = $Z_{SEO}/2 \times Inom \times RIdr/Inom$ , where Ridr/Inom is the Idr to Inom ratio |
| V <sub>DIFFO</sub>               | TX Differential Output<br>Voltage Amplitude | -   | 2*V <sub>SW</sub>           |                                  | mVp<br>-p | +/- 2%                                                                                                 |
| V <sub>OL</sub>                  | TX Output Low-level<br>Voltage              | -   | 1.2 -<br>V <sub>SW</sub>    |                                  | V         | -                                                                                                      |
| V <sub>OH</sub>                  | TX Output High-level<br>Voltage             | -   | 1.2                         |                                  | V         | -                                                                                                      |
| V <sub>TCM</sub>                 | TX common-mode<br>Voltage                   | -   | 1.2 -<br>V <sub>SW</sub> /2 |                                  | V         | -                                                                                                      |
| L <sub>DR1</sub>                 | TX Differential Return<br>Loss              | -   | -                           | 10                               | dB        | Baud Frequency)/10 <freq(f)<625 mhz<="" td=""></freq(f)<625>                                           |
| L <sub>DR2</sub>                 | TX Differential Return<br>Loss              | -   | -                           | 10 +<br> 10log(f<br>/625M<br>Hz) | dB        | 625 MHz<=Freq(f)<= Baud Frequency                                                                      |
| T <sub>TX_skew</sub>             | TX Differential signal skew                 | -   | -                           | 15                               | ps        | Skew between _p and _n signals on a give Serial channel                                                |
| T <sub>TR,</sub> T <sub>TF</sub> | TX Output Rise/Fall times                   | 80  | -                           | 110                              | ps        | Between 20% and 80% levels                                                                             |

# 2.4.3 Reference Clock, S\_CLK\_p/n

Table 13 lists the electrical characteristics for the differential SerDes Reference clock input  $(S_CLK_p/n)$  in the Tsi572.

35

The S\_CLK differential signal may be presented to the reference clock input while the switch is in an un-powered state only if a return current path (VSS) is present between the Tsi572 and the source of the signal. For example, this situation can occur if the Tsi572 is located on an AMC card that has been inserted into an active uTCA chassis and the slot power has been left in the off state.

Table 13: Reference Clock (S\_CLK\_p/n) Electrical Characteristics

| Symbol                                       | Parameter                                                                | Min <sup>a</sup>                        | Тур | Мах    | Unit              | Notes                             |
|----------------------------------------------|--------------------------------------------------------------------------|-----------------------------------------|-----|--------|-------------------|-----------------------------------|
| V <sub>SW</sub>                              | Input voltage swing                                                      | 0.1                                     | 0.5 | 1      | V                 | -                                 |
| V <sub>DIFF</sub>                            | Differential input voltage swing                                         | V <sub>DIFF =</sub> V <sub>SW</sub> * 2 |     | V      | -                 |                                   |
| V <sub>CM</sub>                              | Differential Input<br>Common Mode<br>Range<br>((S_CLK_p +<br>S_CLK_n)/2) | 175                                     | -   | 2000   | mV                | The S_CLK_p/n must be AC coupled. |
| Fin                                          | Input Clock<br>Frequency                                                 | 156.25                                  | -   | 156.25 | MHz               | -                                 |
| F <sub>S_CLK_P/N</sub>                       | Ref Clock Frequency<br>Stability                                         | -100                                    | -   | +100   | ppm               | PPM with respect to 156.25 MHz.   |
| Fin_DC                                       | Ref Clock Duty Cycle                                                     | 40                                      | 50  | 60     | %                 | -                                 |
| T <sub>skew</sub>                            | Ref Clock Skew                                                           | -                                       | -   | 0.32   | ns                | Between _p and _n inputs.         |
| T <sub>R_SCLK</sub> ,<br>T <sub>F_SCLK</sub> | S_CLK_p/n Input<br>Rise/Fall Time                                        | -                                       | -   | 1      | ns                | -                                 |
| J <sub>CLK-REF</sub>                         | Total Phase Jitter,<br>rms                                               | -                                       | -   | 3      | ps <sub>rms</sub> | See below <sup>b</sup>            |
| Zin                                          | Input Impedance                                                          | 80                                      | 100 | 114    | ohms              | -                                 |

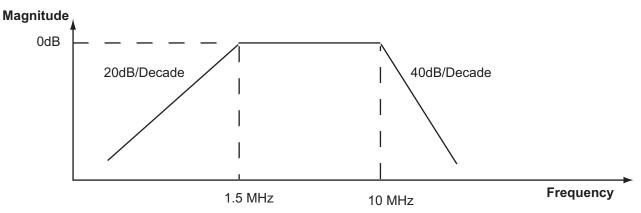
a. RMS jitter from phase noise:

{\*\* notation means "to the power of"}

{dBc will be a negative value from the data sheet}

RMSjitter pS(rms)= [((10\*\*(dBc/10))\*\*1/2) \* 2] / [2 \* pi \* (freq in hz)]

{For 312.5 MHz and a phase noise of -63dBc, the RMS jitter = 0.72pS}


Peak to Peak jitter from RMS:

RJ(p-p) = a \* RJ(rms) where a= 14.069 (a constant based on bit error rate for a given standard deviation)

b. Total Permissible Phase Jitter on the Reference Clock is 3 ps rms. This value is specified with assumption that the measurement is done with a 20 G Samples/s scope with more than 1 million samples taken. The zero-crossing times of each rising edges are recorded and an average Reference Clock is calculated. This average period may be subtracted from each sequential, instantaneous period to find the difference between each reference clock rising edge and the ideal placement to produce the Phase Jitter Sequence. The PSD of the phase jitter is calculated and integrated after being weighted with the transfer function shown in Figure 5. The square root of the resulting integral is the rms Total Phase Jitter.

Tsi572 Hardware Manual May 18, 2012

### RENESAS



### Figure 5: Weighing function for RMS Phase Jitter Calculation

### 2.4.4 LVTTL I/O and Open Drain Signals

Table 14 lists the electrical characteristics for the 3.3 V digital LVTTL Interface pins on the Tsi572.

| Symbol                                      | Parameter                                    | Min                        | Тур | Max  | Unit | Notes                                                                                                            |
|---------------------------------------------|----------------------------------------------|----------------------------|-----|------|------|------------------------------------------------------------------------------------------------------------------|
| V <sub>IL</sub>                             | LVTTL Input Low<br>Voltage                   | -                          | -   | 0.8  | V    | All inputs and I/Os of LVTTL type                                                                                |
| V <sub>IH</sub>                             | LVTTL Input High<br>Voltage                  | 2.0                        | -   | -    | V    | All inputs and I/Os of LVTTL type                                                                                |
| I <sub>IL</sub>                             | LVTTL Input Low<br>Current                   | -                          | -   | 10   | uA   | All non-PU inputs and I/Os of LVTTL type                                                                         |
| I <sub>IH</sub>                             | LVTTL Input High<br>Current                  | -                          | -   | -10  | uA   | All non-PD inputs and I/Os of LVTTL type                                                                         |
| I <sub>OZL_PU</sub> , I <sub>IL_PU</sub>    | LVTTL Input Low/<br>Output Tristate Current  | 5                          | -   | 100  | uA   | All PU inputs and I/Os of LVTTL type for voltages from 0 to $V_{DD_{-}IO}$ on the pin.                           |
| I <sub>OZH_PD</sub> ,<br>I <sub>IH_PD</sub> | LVTTL Input High/<br>Output Tristate Current | -5                         | -   | -100 | uA   | All PD inputs and I/Os of LVTTL type for voltages from 0 to $V_{DD_{-}IO}$ on the pin.                           |
| V <sub>OL</sub>                             | LVTTL Output Low<br>Voltage                  | -                          | -   | 0.4  | V    | I <sub>OL</sub> =2mA for INT_b, SW_RST_b,<br>and TDO pins<br>I <sub>OL</sub> =8mA for I2C_CLK and I2C_SD<br>pins |
| V <sub>OH</sub>                             | LVTTL Output High<br>Voltage                 | V <sub>DD_IO</sub><br>-0.5 | -   | -    | V    | I <sub>OH</sub> =2mA for INT_b, SW_RST_b,<br>and TDO pins                                                        |

Table 14: LVTTL I/O and Open Drain Electrical Characteristics

### Table 14: LVTTL I/O and Open Drain Electrical Characteristics

| Symbol                   | Parameter                                                            | Min  | Тур | Мах  | Unit             | Notes                                                                                                                                            |
|--------------------------|----------------------------------------------------------------------|------|-----|------|------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|
| V <sub>OVERSHOOT</sub>   | Dynamic Overshoot                                                    | -    | -   | 0.9  | V                | 0.9V Max with a maximum energy of 0.75 V-ns                                                                                                      |
| VUNDERSHOOT              | Dynamic Undershoot                                                   | -    | -   | -0.9 | V                | -0.9V Max with a maximum energy of 0.75 V-ns                                                                                                     |
| V <sub>Hyst</sub>        | LVTTL Input<br>Hysteresis Voltage                                    | -    | 200 | -    | mV               | All Hyst inputs and I/Os of LVTTL type                                                                                                           |
| C <sub>Pad</sub>         | LVTTL Pad<br>Capacitance                                             | -    | -   | 10   | pF               | All pads of LVTTL type                                                                                                                           |
| T <sub>cfgpS</sub>       | Configuration Pin<br>Setup Time                                      | 100  | -   | -    | ns               | For all Configuration pins (except<br>SP{n}_MODESEL with respect to<br>HARD_RST_b rising edge                                                    |
| T <sub>cfgpH</sub>       | Configuration Pin Hold<br>Time                                       | 100  | -   | -    | ns               | For all Configuration pins (except<br>SP{n}_MODESEL) with respect to<br>HARD_RST_b rising edge                                                   |
| T <sub>sp_modeselS</sub> | SP{n}_MODESEL<br>Setup Time                                          | 5    | -   | -    | ns               | with respect to rising edge of<br>P_CLK. SP{n}_MODESEL pins are<br>sampled on every rising edge of<br>P_CLK.                                     |
| T <sub>sp_modeseH</sub>  | SP{n}_MODESEL<br>Hold Time                                           | 5    | -   | -    | ns               | with respect to rising edge of<br>P_CLK. SP{n}_MODESEL pins are<br>sampled on every rising edge of<br>P_CLK.                                     |
| T <sub>ISOV1</sub>       | INT_b/SW_RST_b<br>Output Valid Delay<br>from rising edge of<br>P_CLK | -    | -   | 15   | ns               | Measured between 50% points on<br>both signals. Output Valid delay is<br>guaranteed by design.                                                   |
| T <sub>ISOF1</sub>       | INT_b/SW_RST_b<br>Output Float Delay<br>from rising edge of<br>P_CLK | -    | -   | 15   | ns               | A float condition occurs when the output current becomes less than $I_{LO}$ , where $I_{LO}$ is 2 x $I_{OZ}$ . Float delay guaranteed by design. |
| $F_{in_P_CLK}$           | Input Clock Frequency                                                | 100  | -   | 100  | MHz              | -                                                                                                                                                |
| F <sub>in_STAB</sub>     | P_CLK Input Clock<br>Frequency Stability                             | -100 | -   | +100 | ppm              | -                                                                                                                                                |
| F <sub>in_PCLK_DC</sub>  | P_CLK Input Clock<br>Duty Cycle                                      | 40   | 50  | 60   | %                | -                                                                                                                                                |
| J <sub>PCLK</sub>        | P_CLK Input Jitter                                                   | -    | -   | 300  | ps <sub>pp</sub> | -                                                                                                                                                |

| Symbol                                       | Parameter                     | Min | Тур | Max  | Unit | Notes                    |
|----------------------------------------------|-------------------------------|-----|-----|------|------|--------------------------|
| T <sub>R_PCLK</sub> ,<br>T <sub>F_PCLK</sub> | P_CLK Input Rise/Fall<br>Time | -   | -   | 2.5  | ns   | -                        |
| f <sub>MCES</sub>                            | MCES pin frequency            | -   | -   | 1    | MHz  | both as input and output |
| R pull-up                                    | Resistor pull-up              | 82K | -   | 260K | ohms | @Vil=0.8V                |
| R pull-down                                  | Resistor pull-down            | 28K | -   | 54K  | ohms | @Vih=2.0V                |

Table 14: LVTTL I/O and Open Drain Electrical Characteristics

### 2.4.5 I<sup>2</sup>C Interface

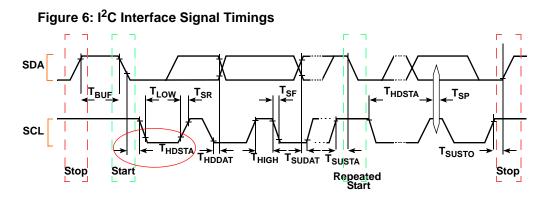

Table 15 lists the AC specifications for Tsi572's I<sup>2</sup>C Interface. The I2C interfaces includes balls: I2C\_SCLK, I2C\_SD, I2C\_DISABLE, I2C\_MA, I2C\_SEL, I2C\_SA[1:0] and I2C\_SEL.

Table 15: AC Specifications for I<sup>2</sup>C Interface

| Symbol              | Parameter                                      | Min | Мах  | Units | Notes |
|---------------------|------------------------------------------------|-----|------|-------|-------|
| F <sub>SCL</sub>    | I2C_SD/I2C_SCLK Clock Frequency                | 0   | 100  | kHz   | -     |
| T <sub>BUF</sub>    | Bus Free Time Between STOP and START Condition | 4.7 | -    | μS    | 1     |
| T <sub>LOW</sub>    | I2C_SD/I2C_SCLK Clock Low Time                 | 4.7 | -    | μS    | 1     |
| T <sub>HIGH</sub>   | I2C_SD/I2C_SCLK Clock High Time                | 4   | -    | μS    | 1     |
| T <sub>HDSTA</sub>  | Hold Time (repeated) START condition           | 4   | -    | μS    | 1,2   |
| T <sub>SUSTA</sub>  | Setup Time for a Repeated START condition      | 4.7 | -    | μS    | 1     |
| T <sub>HDDAT</sub>  | Data Hold Time                                 | 0   | 3.45 | μS    | 1     |
| T <sub>SUDAT</sub>  | Data Setup Time                                | 250 | -    | ns    | 1     |
| T <sub>SR</sub>     | Rise Time for I2C_xxx (all I2C signals)        | -   | 1000 | ns    | 1     |
| T <sub>SF</sub>     | Fall Time for I2C_xxx (all I2C signals)        | -   | 300  | ns    | 1     |
| T <sub>SUSTOP</sub> | Setup Time for STOP Condition                  | 4   | -    | μS    | 1     |

Notes:

- 1. See Figure 6, I<sup>2</sup>C Interface Signal Timings.
- 2. After this period, the first clock pulse is generated.



### 2.4.6 Boundary Scan Test Interface Timing

Table 16 lists the test signal timings for Tsi572.

**Table 16: Boundary Scan Test Signal Timings** 

| Symbol               | Parameter                                                    | Min | Max | Units | Notes                                                                                    |
|----------------------|--------------------------------------------------------------|-----|-----|-------|------------------------------------------------------------------------------------------|
| T <sub>BSF</sub>     | TCK Frequency                                                | 0   | 25  | MHz   | -                                                                                        |
| T <sub>BSCH</sub>    | TCK High Time                                                | 50  | -   | ns    | <ul><li>Measured at 1.5V</li><li>Note test</li></ul>                                     |
| T <sub>BSCL</sub>    | TCK Low Time                                                 | 50  | -   | ns    | <ul><li>Measured at 1.5V</li><li>Note test</li></ul>                                     |
| T <sub>BSCR</sub>    | TCK Rise Time                                                | -   | 25  | ns    | <ul><li> 0.8V to 2.0V</li><li> Note test</li></ul>                                       |
| T <sub>BSCF</sub>    | TCK Fall Time                                                | -   | 25  | ns    | <ul><li> 2.0V to 0.8V</li><li>Note test</li></ul>                                        |
| T <sub>BSIS1</sub>   | Input Setup to TCK                                           | 10  | -   | ns    | -                                                                                        |
| T <sub>BSIH1</sub>   | Input Hold from TCK                                          | 10  | -   | ns    | -                                                                                        |
| T <sub>BSOV1</sub>   | TDO Output Valid Delay from falling edge of TCK <sup>a</sup> | -   | 15  | ns    | -                                                                                        |
| T <sub>OF1</sub>     | TDO Output Float Delay from falling edge<br>of TCK           | -   | 15  | ns    | -                                                                                        |
| T <sub>BSTRST1</sub> | TRST_B release before HARD_RST_b release                     | -   | 10  | ns    | TRST_b must become<br>asserted while<br>HARD_RST_b is asserted<br>during device power-up |
| T <sub>BSTRST2</sub> | TRST_B release before TMS or TDI activity                    | 1   | -   | ns    | -                                                                                        |

a. Outputs precharged to VDD.

### 3. Layout Guidelines

This chapter describes the layout guidelines for the Tsi572. It includes the following information:

- "Impedance Requirements" on page 41
- "Tracking Topologies" on page 42
- "Power Distribution" on page 55
- "Decoupling Requirements" on page 57
- "Clocking and Reset" on page 61
- "Modeling and Simulation" on page 65
- "Testing and Debugging Considerations" on page 66
- "Reflow Profile" on page 69

### 3.1 Overview

The successful implementation of a Tsi572 in a board design is dependent on properly routing the Serial RapidIO signals and maintaining good signal integrity with a resultant low bit error rate. The sections that follow contain information for the user on principals that will maximize the signal quality of the links.

Since every situation is different, IDT urges the designer to model and simulate their board layout and verify that the layout topologies chosen will provide the performance required of the product.

### 3.2 Impedance Requirements

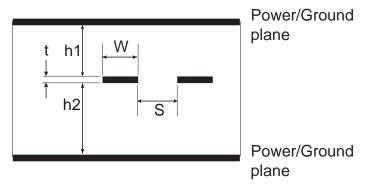
The impedance requirement of the Serial RapidIO interface is 100 ohms differential.

### 3.3 Tracking Topologies

The tracking topologies required to maintain a consistent differential impedance of 100 ohms to the signal placed on the transmission line are limited to Stripline and Microstrip types. The designer must decide whether the signalling must be moved to an outer layer of the board using a Microstrip topology, or if the signalling may be placed on an inner layer as stripline where shielding by ground and power planes above and below is possible.



In order to prevent consuming received eye margin, the =/- track skew of a lane should be constrained to a maximum of 15 pS.




The skew limitation between the shortest lane and longest lane of the RX or TX of a port is 22 ns.

### 3.3.1 Stripline

The RapidIO buses should be routed in a symmetrical edge-coupled stripline structure in order to ensure a constant impedance environment. The symmetrical stripline construction is shown in Figure 7. This method also provides clean and equal return paths through VSS and VDD from the I/O cell of the Tsi572 to the adjacent RapidIO device. The use of broadside coupled stripline construction as shown in Figure 9 is discouraged because of its inability to maintain a constant impedance throughout the entire board signal layer.

The minimum recommended layer count of a board design consists of 12 layers. The optimum design consists of 16 layers. The designer should consider both of these designs and weigh their associated costs versus performance.



### Figure 7: Recommended Edge Coupled Differential Stripline (symmetric when h1=h2)

Figure 8: Equations for Stripline and Differential Stripline Impedance (in Ohms):

$$Zo = \frac{60}{\sqrt{\mathcal{E}_r}} \times \ln\left(\frac{1.9(2(h1+h2)+t)}{0.67 \pi (0.8 w+t)}\right)$$
$$Zdiff = 2 \times Zo\left(1 - 0.374 \ e^{-2.9\left[\frac{s}{h1+h2}\right]}\right)$$

The broadside coupled stripline construction is not recommended for use with RapidIO because of the manufacturing variations in layer spacings. These variations will cause impedance mismatch artifacts in the signal waveforms and will degrade the performance of the link.

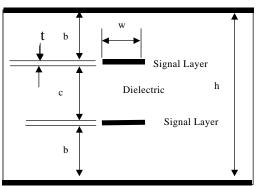
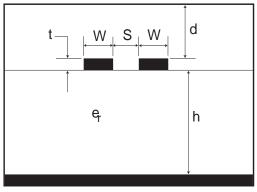




Figure 9: Not Recommended Broadside Coupled or Dual Stripline Construction

### 3.3.1.1 Microstrip

When it is necessary to place the differential signal pairs on the outer surfaces of the board, the differential microstrip construction is used. Figure 10 shows the construction of the microstrip topology. Below the figure are the design equations for calculating the impedance of the trace pair.





Integrated Device Technology www.idt.com

Figure 11: Equations for the Differential Microstrip Construction:

$$Z_{o} = \frac{60}{\sqrt{0.475\varepsilon_{r} + 0.67}} \ln \left[\frac{4h}{0.67(0.8w+t)}\right] ohms$$

$$Z_{diff} \cong 2Z_o \left( 1 - 0.48e^{-0.96\frac{s}{h}} \right) ohms$$

#### 3.3.1.2 Signal Return Paths

The return path is the route that current takes to return to its source. It can take a path through ground planes, power planes, other signals, or integrated circuits. The return path is based on electro-magnetic field effects. The return path follows the path of least resistance nearest to the signal conductor. Discontinuities in the return path often have signal integrity and timing effects that are similar to the discontinuities in the signal conductor. Therefore, the return paths need to be given similar consideration.

A simple way to evaluate return path parasitic inductance is to draw a loop that traces the current from the driver through the signal conductor to the receiver, then back through the ground/power plane to the driver again. The smaller the area of the loop, the lower the parasitic inductance.

If via densities are large and most of the signals switch at the same time (as would be the case when a whole data group switches layers), the layer to layer bypass capacitors may fail to provide an acceptably short signal return path to maintain timing and noise margins.

When the signals are routed using symmetric stripline, return current is present on both the VDD and VSS planes. If a layer change must occur, then both VDD and VSS vias must be placed as close to the signal via as possible in order to provide the shortest possible path for the return current.

The following return path rules apply to all designs:

- Always trace out the return current path and provide as much care to the return path as the path of the signal conductor.
- Do not route impedance controlled signals over splits in the reference planes.
- Do not route signals on the reference planes in the vicinity of system bus signals.
- Do not make signal layer changes that force the return path to make a reference plane change.
- Decoupling capacitors do not adequately compensate for a plane split.
- Do not route over via anti-pads or socket anti-pads.

If reference plane changes must be made:

- Change from a VSS reference plane to another VSS reference plane and place a minimum of one via connecting the two planes as close as possible to the signal via. This also applies when making a reference plane change from one VDD plane to another VDD plane.
- For symmetric stripline, provided return path vias for both VSS and VDD.
- Do not switch the reference plane from VDD to VSS or vice versa.

### 3.3.1.3 Guard Traces

Guard traces are used to minimize crosstalk. Guard traces are tracks that run parallel to a signal trace for the entire length and are connected to the reference plane to which the signal(s) are associated. Guard traces can lower the radiated crosstalk by as much as 20dB.

The use of guard tracks requires some planning and foresight. The guard tracks will consume board real estate but in a dense routing where the potential for crosstalk is present, guard traces will save overall space that would have been consumed by separation space. Simulation has shown that a 5 mil ground trace with 5 mil spaces between the aggressor and receptor traces offers as much isolation as a 20 mil space between aggressor and receptor traces. The aggressor trace is the trace with a driven waveform on it. The receptor trace is the trace onto which the crosstalk is coupled.

Guard tracks are required to be stitched or connected with vias, to the reference plane associated with the signal. To ensure that there is no resonance on the guard traces, the stitching vias should be spaced at intervals that equal 1/20l of the 3rd harmonic.

### Figure 12: Equation

$$\lambda = \sqrt{\varepsilon_r} \times \frac{c}{f}$$

$$\frac{1}{20} \lambda_{3rd} = \frac{3 \times 10^8 \, m/s}{20 \times f_{3rd} \sqrt{\varepsilon_r}}$$

In the case of the 3.125 Gb/s data rate, the rise and fall times must be less than 40 pS. This relates to an upper frequency of 25 Ghz and a corresponding wavelength of 25 mm based on a permittivity of 4.3. Therefore, the stitching vias must not be further apart than 8 mm.

#### 3.3.1.4 **Via Construction**

Due to the high frequency content of the Serial RapidIO signals, it is necessary to minimize the discontinuities imposed by crossing ground and power planes when it is necessary to transition to different signal layers. The use of a controlled impedance via is recommended The construction of a differential via is shown in Figure 13.



Detailed design information can be found in bibliography entry 15, "Designing Controlled Impedance Vias" by Thomas Neu, EDN Magazine October 2, 2003.

# Figure 13: Differential Controlled Impedance Via Signal Via Anti-pad which **Differential Signal** 4 vias connected touches the ground vias to ground planes Reference ground plane Reference ground plane

#### 3.3.1.5 Layer Transitioning with Vias

The basic rule in high speed signal routing is to keep vias in the signal path down to a minimum. Vias can represent a significant impedance discontinuity and should be minimized. When routing vias, try to ensure that signals travel through the via rather than across the via.

A via where the signal goes through the via, has a much different effect than a via where the signal travels across the via. These two cases are shown in Figure 17 and in Figure 18. The "in" and "out" nodes of the via model are shown on the their corresponding locations in the figures.

Transitioning across a via that is not blind or buried leaves a stub which appears as a capacitive impedance discontinuity. The portion of the via that conducts current appears inductive while the stub that develops only an electric field will appear capacitive.

Tsi572 Hardware Manual May 18, 2012

In order to minimize the effects of a via on a signal, the following equations may be used to

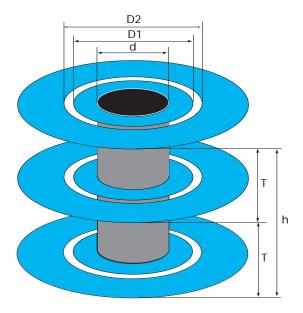
approximate the capacitance and inductance of the via design. It can be seen that the proximity of the pad and antipad have a direct relationship on the capacitance, and that the length of the barrel (h) has a direct effect on the inductance.

#### Figure 14: Equation 1

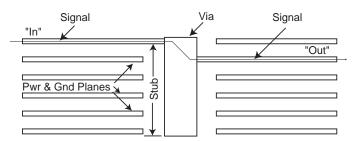
$$L = 5.08h \left[ \ln \left( \frac{4h}{d} \right) + 1 \right]$$

#### **Equation parameters:**

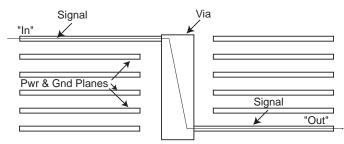
- L is the inductance in nH.
- h is the overall length of the via barrel.
- d is the diameter of the via barrel.


#### Figure 15: Equation 2

$$C = \frac{1.41\varepsilon_r T D_1}{D_2 - D_1}$$


#### **Equation parameters:**

- C is the capacitance in pF.
- T is the thickness of the circuit board or thickness of pre-preg.
- $D_1$  is the diameter of the via pad.
- $D_2$  is the diameter of the antipad.
- $\mathcal{E}_{r}$  is the dielectric constant of the circuit board material.


### Figure 16: Via Construction

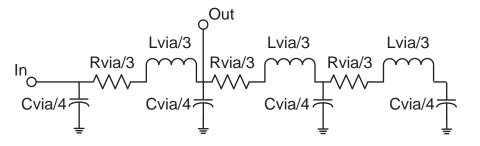


### Figure 17: Signal Across a Via

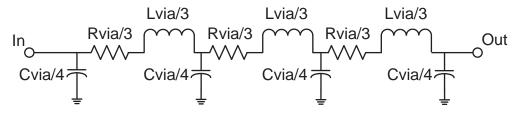


### Figure 18: Signal Through a Via




Because of the high frequencies present in the RapidIO signal, vias become a significant contributor to signal degradation. Most vias are formed by a cylinder going through the PCB board. Because the via has some length, there is an inductance associated with the via. Parasitic capacitance comes from the power and ground planes through which the via passes. From this structure, the model of the vias in RLC lumps as shown in Figure 19 and Figure 20.

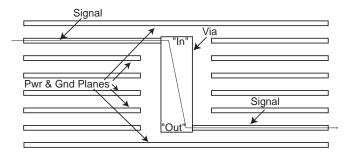
The figure parameters are:


- Cvia is the total capacitance of the via to ground or power
- Rvia is the total resistance through the via, and Lvia is the total inductance of the via.

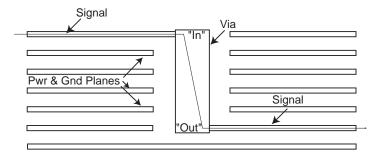
These parameters may be extracted using 3D parasitic extraction tools. By distributing the R, L, and C, the model better represents the fact that the capacitance, resistance and inductance are distributed across the length of the via. For the Via model to be accurate in simulation, the propagation delay of each LC section should be less than 1/10 of the signal risetime. This is to ensure the frequency response of the via is modeled correctly up to the frequencies of interest. More information may be found in reference [16].

#### Figure 19: Signal Transitioning Across a Via Simulation Model




#### Figure 20: Signal Transitioning Through a Via Simulation Model




### 3.3.1.6 Buried Vs. Blind

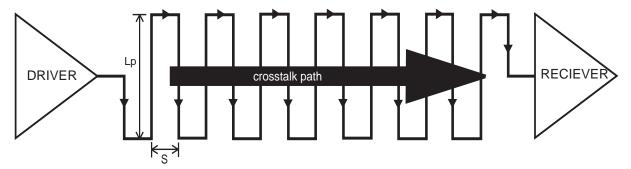
The use of buried and blind vias is recommended because in both cases the signal travels through the via and not across it. Examples of these two types of structures are shown in Figure 21 and Figure 22.

#### Figure 21: Buried Via Example



#### Figure 22: Blind Via Example




### 3.3.1.7 Serpentine Traces

During layout, it is necessary to adjust the lengths of tracks in order to accommodate the requirements of equal track lengths for pairs of signals. In the case of the differential signals, this ensures that both the negative and positive halves of the signals arrive at the receiver simultaneously, thus maximizing the data sampling window in the eye diagram. Creating a serpentine track is a method of adjusting the track length.

Ensure that the wave front does not propagate along the trace and through the crosstalk path perpendicular to the parallel sections, as shown in Figure 23. The arrival of a wave front at the receiver ahead of the wave front travelling along the serpentine route is caused by the self-coupling between the parallel sections of the transmission line (Lp).

### RENESAS

#### Figure 23: Serpentine Signal Routing





To maximize the signal integrity, clock lines should not be serpentine.

Figure 26 describes the guidelines for length matching a differential pair. If it is necessary to serpentine a trace, follow these guidelines:

- Make the minimum spacing between parallel sections of the serpentine trace (see "S" in Figure 23) at least 3 to 4 times the distance between the signal conductor and the reference ground plane.
- Minimize the total length (see "Lp" in Figure 23) of the serpentine section in order to minimize the amount of coupling.
- Use an embedded microstrip or stripline layout instead of a microstrip layout.



For a detailed discussion about serpentine layouts, refer to Section 12.8.5 of *"High-Speed Signal Propagation, Advanced Black Magic"* by Howard Johnson and Martin Graham.

### 3.3.2 Crosstalk Considerations

The Serial RapidIO signals easily capacitively couple to adjacent signals due to their high frequency. It is therefore recommended that adequate space be used between different differential pairs, and that channel transmit and receive be routed on different layers. Cross coupling of differential signals results in an effect called Inter-Symbol Interference (ISI). This coupling causes pattern dependent errors on the receptor, and can substantially increase the bit error rate of the channel.

### 3.3.3 Receiver DC Blocking Capacitors

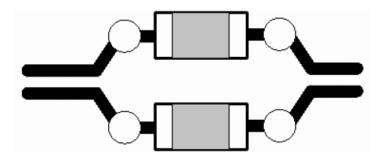

The Serial RapidIO interface requires that the port inputs be capacitor coupled in order to isolate the receiver from any common mode offset that may be present in the transmitter outputs. DC blocking capacitors should be selected such that they have low dissipation factor and low series inductance. The recommended capacitor value is 0.1uF ceramic in an 0402 size.

Figure 24 shows the recommended tracking and capacitor pad placement required. It will be necessary to model and simulate the effects of the changed track spacing on the channel quality and determine if any changes are required to the topology. An often used method of correcting the decreased impedance caused by the larger capacitor mounting pads is to create a slot in the shield plane below the capacitor bodies and soldering pads. Since the impedance change caused by the slot is dependent on the capacitor geometry, core thickness, core material characteristics and layer spacings, the size and shape of the slot will have to be determined by simulation.

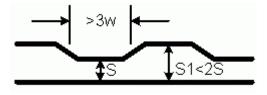


Do not place the capacitors along the signal trace at a  $\lambda/4$  increment from the driver in order to avoid possible standing wave effects.

### Figure 24: Receiver Coupling Capacitor Positioning Recommendation



### 3.3.4 Escape Routing


All differential nets should maintain a uniform spacing throughout a route. Separation of differential pairs to go around objects should not be allowed. Figure 25 illustrates several options for breaking out a differential pair from the Tsi572 device. The order of preference is from A to D.

Case D below has a small serpentine section used to match the inter-pair skew of the differential pair. In this case each serpentine section should be greater than 3 x W (W=width), and the gap should not increase by more than 2x. Figure 26 illustrates these requirements.

Tsi572 Hardware Manual May 18, 2012

Figure 25: Escape Routing for Differential Signal Pairs

Figure 26: Differential Skew Matching Serpentine



### 3.3.5 Board Stackup

The recommended board stack up is shown in Figure 27. This design makes provision for four stripline layers and two outer microstrip layers. Layers eight and nine are provisioned as orthogonal low speed signal routing layers.

RENESAS

### Figure 27: Recommended Board Stackup

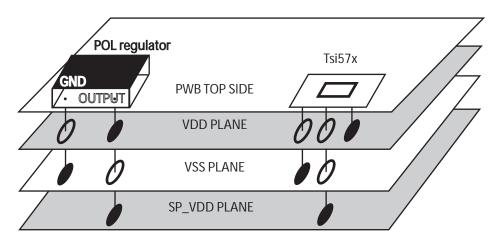
|         |       |                             | Layer Layer     |            | strip       | oline     | edge coupled diff |                 |  |
|---------|-------|-----------------------------|-----------------|------------|-------------|-----------|-------------------|-----------------|--|
| .ayers  | Thks. | Cross Section Diagram       | Туре            | Definition | Trace Width | Impedance | Trace Width       | Impedance       |  |
|         |       |                             | mask            |            |             |           |                   | 8               |  |
|         | 1.6   |                             | plating         |            |             |           |                   |                 |  |
| L01     | 0.6   |                             | .5oz foil       | PRI        |             |           |                   |                 |  |
|         | 7.9   |                             | prepreg         |            |             |           |                   | 3               |  |
| L02     | 1.2   |                             |                 | pwr        |             |           |                   |                 |  |
|         | 2.0   |                             | 1/1zbc          |            |             |           |                   |                 |  |
| L03     | 1.2   |                             |                 | gnd        |             |           |                   |                 |  |
|         | 5.3   |                             | prepreg         |            |             |           |                   |                 |  |
| L04     | 0.6   |                             |                 | sig        | 5           | 50.0 Ω    | 4line6sp          | 100.0 Ω         |  |
| 1       | 5.0   |                             | .5/1core        |            |             |           |                   |                 |  |
| L05     | 1.2   |                             |                 | gnd        |             |           |                   |                 |  |
|         | 5.3   |                             | prepreg         |            |             |           |                   | 1               |  |
| L06     | 0.6   |                             |                 | sig        | 5           | 50.0 Ω    | 4line6sp          | 100.0 Ω         |  |
|         | 5.0   |                             | .5/1core        | 11         |             |           |                   |                 |  |
| L07     | 1.2   |                             |                 | gnd        |             |           | 39.4              | 1 mm breakout   |  |
|         | 4.4   |                             | prepreg         |            |             | -         | 3.53.5            | with necked     |  |
| L08     | 0.6   |                             |                 | sig        | 5           | 50.0 Ω    | 20pad 🛛 🖬 20pa    | d downtraces    |  |
|         | 5.0   |                             | .5/.5core       |            | _           |           |                   | 10dia via in 20 |  |
| L09     | 0.6   |                             |                 | sig        | 5           | 50.0 Ω    |                   | pad             |  |
|         | 4.4   |                             | prepreg         |            |             |           |                   |                 |  |
| L10     | 1.2   |                             |                 | gnd        |             |           |                   |                 |  |
|         | 5.0   |                             | .5/1core        |            | -           |           | 4 or 5 4 or 5     | 100.0.0         |  |
| L11     | 0.6   |                             |                 | sig        | 5           | 50.0 Ω    | 4line6sp          | 100.0 Ω         |  |
| 1.40    | 5.3   |                             | prepreg         |            |             |           |                   |                 |  |
| L12     | 1.2   |                             |                 | gnd        |             |           |                   |                 |  |
| 1.40    | 5.0   |                             | .5/1core        |            |             | 60.0.0    | All made and      | 100.0.0         |  |
| L13     | 0.6   |                             |                 | sig        | 5           | 50.0 Ω    | 4line6sp          | 100.0 Ω         |  |
| 1.4.4   | 5.3   |                             | prepreg         | and a      |             |           |                   |                 |  |
| L14     | 1.2   |                             |                 | gnd        |             |           |                   |                 |  |
| L15     | 2.0   |                             | 1/1zbc          |            |             |           |                   |                 |  |
| L15     | 1.2   |                             |                 | pwr        |             |           |                   |                 |  |
| L16     | 7.9   |                             | prepreg         |            |             |           |                   |                 |  |
| L10     | 0.6   |                             | .5 oz foil      | sec        |             |           |                   |                 |  |
|         | 1.0   |                             | plating<br>mask |            |             |           |                   |                 |  |
| Total:  | 00    | Finish thickness over lami  | noto + 408      | ·          |             |           |                   |                 |  |
| , otal: | 92    | Finish thickness over plati |                 | 0          |             |           |                   |                 |  |
|         | 92    | runsh unchness over plat    | ng +-10%        |            |             |           |                   |                 |  |

### 3.4 **Power Distribution**

The Tsi572 is a high speed device with both digital and analogue components in its design. The core logic has a high threshold of noise sensitivity within its 1.2 V operating range. However, the analogue portion of the switch is considerably more sensitive.

The correct treatment of the power rails, plane assignments, and decoupling is important to maximize Tsi572 performance. The largest indicator of poor performance on the Serial RapidIO interfaces is the presence of jitter. The die, I/O, and package designs have all been optimized to provide jitter performance well below the limits required by the Serial RapidIO specifications. The guidelines provided below will assist the user in achieving a board layout that will provide the best performance possible. The required decoupling by each voltage rail can be found in "Electrical Characteristics" on page 29. The ripple specifications for each rail are maximums, and every effort should be made to target the layout to achieve lower values in the design.

A solid, low impedance plane must be provided for the VDD 1.2V core supply referenced to VSS. It is strongly recommended that the VDD and VSS planes be constructed with the intent of creating a buried capacitance. The connection to the power supply must also be low impedance in order to minimize noise conduction to the other supply planes.


A solid, low impedance plane must be provided for the SP\_VDD 1.2V SerDes supply, referenced to the VSS plane. This supply can be derived from the same power supply as VDD, as long as a *Kelvin connection* is used. The preference however, is to use a separate power supply.



The term *Kelvin connection* is used to describe a single point of contact so that power from one power plane does not leak past the power supply pin into the other power plane. The leakage can be prevented by the fact the output of a power supply is a very low impedance point in order to be able to supply a large amount of current. Because it is such a low impedance point, any noise presented to it by the power plane is sent to ground.

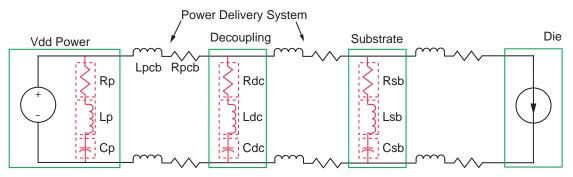
A kelvin connection enables two power planes to be connected together at a single point. Using this technique, the same power supply module can be used to provide power to a noisy digital power plane (VDD), as well as a quiet analog power plane (SP\_VDD).

Figure 28: Kelvin Connection Example



Example of connection points described as a Kelvin Connection VDD and SP\_VDD planes are only connected to each other at the POL regulator output pin.

The SP\_AVDD 3.3V SerDes analogue supply also needs low impedance supply plane. This supply voltage powers the RapidIO receivers and transmitters, and their associated PLLs. Connect all of the SP\_AVDD pins to this plane and decouple the plane directly to VSS. The plane must be designed as a low impedance plane in order to minimize transmitter jitter and maximize receiver sensitivity. Construction of this plane as a buried capacitance referenced to VSS is suggested.


The REF\_AVDD pins provide power to the S\_CLK distribution circuits in the switch. The voltage should be derived from the SP\_VDD plane. One ferrite will suffice to isolate the SP\_VDD from the REF\_AVDD. Two decoupling capacitors should be assigned to each pin.

Tsi572 Hardware Manual May 18, 2012 The VDD\_IO supply powers the 3.3V I/O cells on the switch. This supply requires no special filtering other than the decoupling to the VSS plane.

### 3.5 Decoupling Requirements

This section deals with the subject of decoupling capacitors required by the Tsi572. To accomplish the goal of achieving maximum performance and reliability, the power supply distribution system needs to be broken down into its individual pieces, and each designed carefully. The standard model for representing the components of a typical system are shown in Figure 29. This figure graphically represents the parasitics present in a power distribution system.

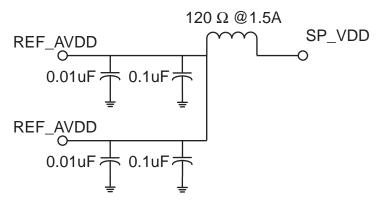
### Figure 29: System Power Supply Model



### 3.5.1 Component Selection

The recommended decoupling capacitor usage for the Tsi572 is shown in "Electrical Characteristics" on page 29. The capacitors should be selected with the smallest surface mount body that the applied voltage permits in order to minimize the body inductance. Ceramic X7R type are suggested for all of the values listed. The larger value capacitors should be low ESR type.

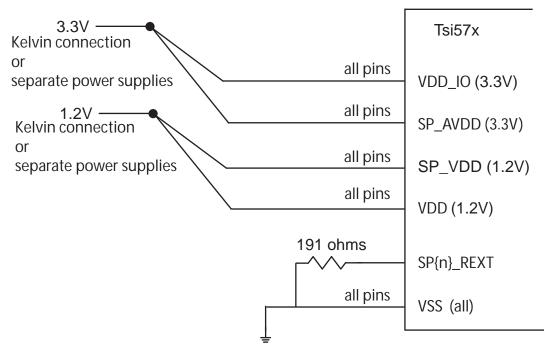
The components should be distributed evenly around the device in order to provide filtering and bulk energy evenly to all of the ports.




Use the Tsi572 ball map (available at www.idt.com) to aid in the distribution of the capacitors.

#### 3.5.1.1 **REF\_AVDD**

The REF\_AVDD pins require extra care in order to minimize jitter on the transmitted signals. The circuit shown in Figure 30 is recommended for the REF\_AVDD signal. One filter is required for the two pins.


#### Figure 30: PLL Filter



#### 3.5.1.2 Power and REXT

The circuit in Figure 31 shows the connection of the power rails as required by the device.

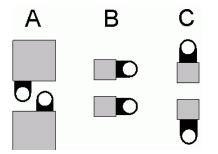
#### Figure 31: Power and REXT Diagram



Tsi572 Hardware Manual May 18, 2012

### 3.5.2 Effective Pad Design

Table 17: Decoupling Capacitor Quantities and Values Recommended for the Tsi572


| Voltage | Usage                      | Acronym  | Component Requirements |             |                                      |           |
|---------|----------------------------|----------|------------------------|-------------|--------------------------------------|-----------|
| 1.2V    | Logic Core                 | VDD      | 20 x 0.1uF             | 20 x 0.01uF | 16 x 1nF                             | 16 x 22uF |
| 1.2V    | SerDes core, SerDes bias   | SP_VDD   | 8 x 0.1uF              | 30 x 0.01uF | 4 x 10uF                             | 4 x 100uF |
| 3.3V    | SerDes transceivers        | SPn_AVDD | 8 x 0.1uF              | 8 x 0.01uF  | -                                    | -         |
| 3.3V    | Single ended I/O ports     | VDD_IO   | 12 x 0.1uF             | 12 x 0.01uF | -                                    | -         |
| 1.2V    | Clock distribution circuit | REF_AVDD | 2 x 0.1uF              | 2 x 0.01uF  | 1 x ferrite bead 120 ohm @<br>1.5Amp |           |

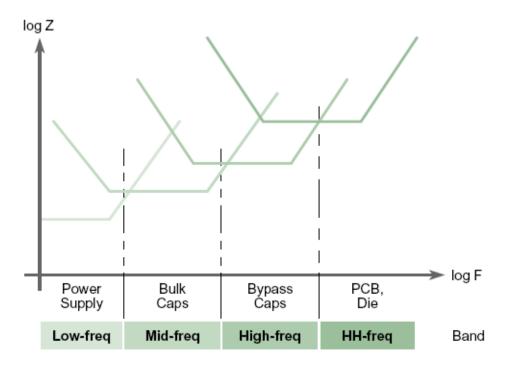
Breakout vias for the decoupling capacitors should be kept as close together as possible. The trace connecting the pad to the via should also be kept as short as possible with a maximum length of 50mils. The width of the breakout traces should be 20mils, or the width of the pad.



Via sharing should not be used in board design with the Tsi572.

#### Figure 32: Recommended Decoupling Capacitor Pad Designs




### 3.5.3 Power Plane Impedance and Resonance

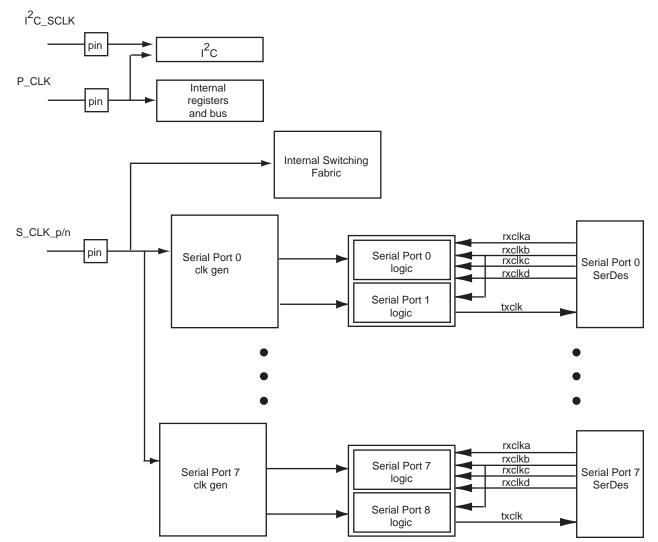
The intent of adding decoupling to a board is to lower the impedance of the power supply to the devices on the board. It is necessary to pay attention to the resonance of the combined bulk capacitance and to stagger the values in order to spread the impedance valleys broadly across the operating frequency range. Figure 34 demonstrates the concept of staggered bands of decoupling. Calculate the impedance of each of the capacitor values at the knee frequency to determine their impact on resonance.

#### Figure 33: Equation

$$F_{knee} = \frac{0.5}{T_{rise}}$$
 where  $T_{rise}$  = time from 10% to 90%






As the frequency changes, each part of the power distribution system responds proportionally; the low-impedance power supply responds to slow events, bulk capacitors to mid-frequency events, and so forth.

### 3.6 Clocking and Reset

This section discusses the requirements of the clock and reset inputs.

### 3.6.1 Clock Overview

The Tsi572 switch input reference clocks that are used to drive the switch's internal clock domains.



### Figure 35: Tsi572 Clocking Architecture

Integrated Device Technology www.idt.com

The reference clocks are described in Table 18. For more information about special line rate support see "Clocking" on page 71.

#### Table 18: Clock Input Sources

| Clock Input Pin | Туре         | Maximum<br>Frequency | Clock Domain                                                                                                                                                                                             |
|-----------------|--------------|----------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| S_CLK_[p/n]     | Differential | 156.25 MHz           | Serial Transmit Domain (Nominally 156.25MHz)<br>Internal Switching Fabric (ISF) Domain<br>For more information on programming the S_CLK operating<br>frequency, refer to "Line Rate Support" on page 71. |
| P_CLK           | Single Ended | 100 MHz              | Internal Register Domain and I <sup>2</sup> C Domain<br>For more information on programming the P_CLK operating<br>frequency, refer to "P_CLK Programming" on page 75.                                   |

#### 3.6.1.1 Clock Sources

The clock signals should be shielded from neighboring signal lines using ground traces on either side. This reduces jitter by minimizing crosstalk from the neighboring signal lines. Since P\_CLK is single-ended, extra precaution should be taken so that noise does not get coupled onto it.

In order to preserve the quality of the low jitter 156.25 MHz clock, the shielding requirement of the clock lines is critical. It is possible that low-frequency noise can interfere with the operation of PLLs, which can cause the PLLs to modulate at the same frequency as the noise. The high-frequency noise is generally beyond the PLL bandwidth which is about 1/10th the S\_CLK frequency. For more information, refer to Figure 5 on page 37.

### 3.6.1.2 Stability, Jitter and Noise Content

The maximum input jitter on the S\_CLK input is 3pS RMS from 1.5 to 10 MHz to avoid passing through the PLL loop filter in the SerDes and affecting the transmit data streams. The maximum input jitter allowable on the P\_CLK input is 300 pSpp. Jitter on this input would be reflected outside of the chip on the I<sup>2</sup>C bus. For more information, refer to Figure 5 on page 37.

### **Jitter Equation**

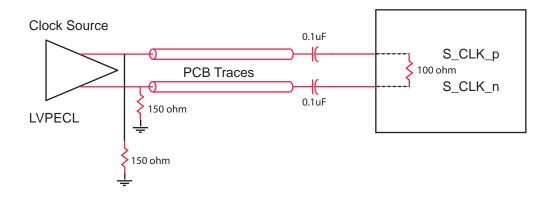
The following equation can be used to convert Phase Noise in dBc to RMS jitter:

RMSjitter pS(rms) =  $[((10^{(dBc/10)})^{1/2}) * 2] / [2 * pi * (frequency in hz)]$ 

Using this equation, an example of 312.5 MHz and a phase noise of -63dBc, would produce 0.72pS RMS jitter.

### 3.6.2 Clock Domains

#### Table 19: Tsi572 Clock Domains


| Clock Domain                        | Clock Source          | Description                                                                                                                                                                                                                                                                  |
|-------------------------------------|-----------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Internal Register Domain            | P_CLK                 | This clock domain includes all of the internal registers and their interconnect bus.<br>The domain uses the input P_CLK directly.<br>For more information on programming the P_CLK operating frequency, refer to "P_CLK Programming" on page 75.                             |
| Internal Switching Fabric<br>Domain | S_CLK_[p/n]           | This clock domain includes the switching matrix of the ISF and the portion of each RapidIO block that interfaces to the ISF.                                                                                                                                                 |
| I <sup>2</sup> C Domain             | P_CLK divided by 1000 | This clock domain is responsible for driving the I <sub>2</sub> C output clock<br>pin I <sub>2</sub> C_SCLK.<br>This clock domain is generated by dividing the P_CLK input by<br>1000.<br>The majority of the I <sup>2</sup> C logic runs in the Internal Register<br>Domain |
| Serial Transmit Domain              | S_CLK_[p/n]           | This clock domain is used to clock all of the Serial RapidIO transmit ports.                                                                                                                                                                                                 |

### 3.6.2.1 Interfacing to the S\_CLK\_x Inputs

The interface for a LVPECL clock source to the receiver input cell is shown in Figure 36. In the diagram, an AC-coupled interface is required to ensure only the AC information of the clock source is transmitted to the clock inputs of the Tsi572.

Two 150 ohm resistors are used in the diagram because LVPECL outputs need DC biasing and a DC path for the source current. The requirements for DC biasing when interfacing a clock driver's output to a CML input should be checked with the suppliers of the clock driver.

#### Figure 36: LVPECL Clock Source to a Receiver Input Cell



### 3.6.3 Reset Requirements

The Tsi572 requires only one reset input, HARD\_RST\_b. The signal provided to the device must be a monotonic 3.3V swing that de-asserts a minimum of 1mS after supply rails are stable. The signal de-assertion is used to release synchronizers based on P\_CLK which control the release from reset of the internal logic. P\_CLK must therefore be operating and stable before the 1mS HARD\_RST\_b countdown begins.



TRST\_b must be asserted while HARD\_RST\_b is asserted following a device power-up to ensure the correct setup of the tap controller. TRST\_b is not required to be re-asserted for non power cycle assertions of HARD\_RST\_b

The most versatile solution to this requirement is to AND the HARD\_RST\_b and TRST\_b signals together to form an output to drive the TRST\_b pin on the switch.

Power up option pins are double sampled at the release of HARD\_RST\_b. As such, there is no set-up time requirement, but the signals must be stable at the release of HARD\_RST\_b. There is a hold time requirement of 100nS or 10 P\_CLK cycles minimum.

Tsi572 Hardware Manual May 18, 2012

### 3.7 Modeling and Simulation

Verifying the signal integrity of the board design is very important for designs using GHz signalling. IDT recommends that the designer invest in a simulation tool as an aid to a successful RapidIO design. Tools are available from companies such as Mentor Graphics (HyperLynx GHZ), Ansoft (SIwave) and SiSoft (SiAuditor).

### 3.7.1 IBIS

The use of IBIS for signal integrity checking at the high frequencies of the Serial RapidIO link have been found to be too inaccurate to be useful. Also, we have found that most tools do not yet support the *IBIS Specification (Revision 3.2)* for the support of multi-staged slew rate controlled buffers.

Contact IDT, at www.idt.com, for an IBIS file which supports the LVTTL pins on the device.

### 3.7.2 Encrypted HSPICE

Contact IDT, at www.idt.com, to request the Model License Agreement form required to acquire the encrypted model.

www.idt.com

Integrated Device Technology

RENESAS

### 3.8 Testing and Debugging Considerations

Making provisions for debugging and testing tools speeds-up board bring-up. This section provides information on the probing requirements for monitoring the serial RapidIO link between two devices. At GHz frequencies, standard probing techniques are intrusive and cause excessive signal degradation introducing additional errors in the link stream. The recommended solution is an ultra low capacitance probe that operates in conjunction with a logic analyzer. The addition of the appropriate disassembler software to the analyzer makes it a very powerful tool for examining the traffic on a link and aiding in software debugging. Please contact your local test equipment vendor for appropriate solutions for your requirements.

### 3.8.1 Logic Analyzer Connection Pads

The pinout for a recommended Serial RapidIO 8-channel probe is shown in Table 20. This pin/signal assignment has been adopted by several tool vendors but is not an established standard.

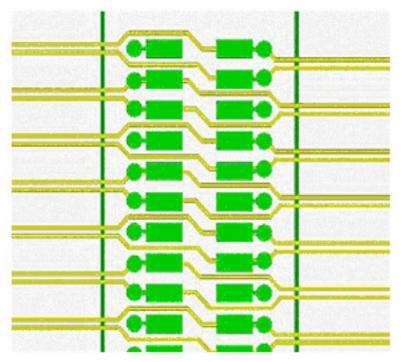
The following notes apply:

Footprint Channel versus Lane/Link Designations

- Channel = either an upstream OR downstream differential pair for a given lane
- C<letter> = the designator for a channel which accepts a given differential pair of signals
- C<letter> = the two signals of the differential pair. The signals within a given pair may be assigned to either P or N regardless of polarity.

### 3.8.1.1 General Rules for Signal Pair Assignment of Analyzer Probe

The differential pairs that make up the Serial RapidIO links must be assigned to specific pins of the footprint in order to take advantage of the pre-assigned channel assignments provided by Nexus when purchasing the Serial RapidIO pre-processor.

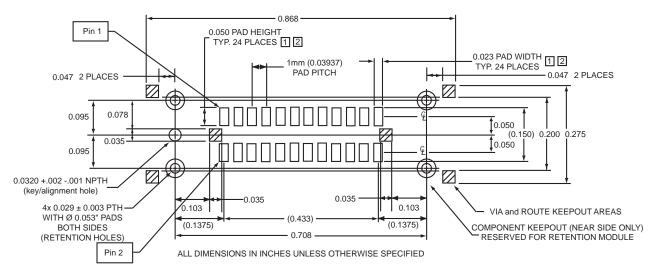

| Pin<br>Number | Signal Name | Pin<br>Number | Signal Name |
|---------------|-------------|---------------|-------------|
| 2             | GND         | 1             | CAp/Tx0     |
| 4             | CBp/Rx0     | 3             | CAn/Tx0     |
| 6             | CBn/Rx0     | 5             | GND         |
| 8             | GND         | 7             | CCp/Tx1     |
| 10            | CDp/Rx1     | 9             | CCn/Tx1     |
| 12            | CDn/Rx1     | 11            | GND         |

#### Table 20: 8-Channel Probe Pin Assignment

| Pin<br>Number | Signal Name | Pin<br>Number | Signal Name |
|---------------|-------------|---------------|-------------|
| 14            | GND         | 13            | CEp/Tx2     |
| 16            | CFp/Rx2     | 15            | CEn/Tx2     |
| 18            | CFn/Rx2     | 17            | GND         |
| 20            | GND         | 19            | CGp/Tx3     |
| 22            | CHp/Rx3     | 21            | CGn/Tx3     |
| 24            | CHn/rX3     | 23            | GND         |

Table 20: 8-Channel Probe Pin Assignment

Figure 37: Analyzer Probe Pad Tracking Recommendation




68

RENESAS

#### Figure 38: Analyzer Probe Footprint

- Image: Must maintain a soldermask web between Pads<br/>When traces are routed between the Pads on the same<br/>Layer. However, soldermask may not encroach onto<br/>The Pads within the Pad dimensions shown.
- 2 VIA-IN-PAD NOT ALLOWED ON THESE PADS. HOWEVER, VIA EDGES MAY BE TANGENT TO THE PAD EDGES.
- 3 PERMISSABLE SURFACE FINISHES ON PADS ARE HASL, IMMERSION SILVER, OR GOLD OVER NICKEL.



### 3.8.2 JTAG Connectivity

The Joint Test Action Group (JTAG) created the boundary-scan testing standard (documented in the *IEEE 1149.1 Standard*) for testing printed circuit boards (PCBs).

The boundary-scan approach involves designing boundary-scan circuitry into the integrated circuit. PCBs populated with 1149.1 compliant devices can be then tested for connectivity, correct device orientation, correct device location, and device identification. All the pins on compliant devices can be controlled and observed using (typically) five pins that are routed to the board edge connector. Board designers can develop a standard test for all 1149.1 compliant devices regardless of device manufacturer, package type, technology, or device speed.

In addition to the 1149.1 compliant boundary scan TAP controller, the Tsi572 also contains an 1149.6 compliant TAP controller to aid in the production testing of the SerDes pins.

The Tsi572 also has the capability to read and write all internal registers through the JTAG interface. Through this interface, users may load and modify configuration registers and look up tables without the use of RapidIO maintenance transactions or an  $I^2C$  EEPROM.

### 3.9 Reflow Profile

The Tsi572 adheres to JEDEC-STD-020C for its reflow profile. For the leaded version, the peak reflow temperature is  $225^{\circ}C$  (+0/-5°C). For the lead-free version, the peak reflow temperature is  $260^{\circ}C$  (+0/-5°C).



## A. Clocking

This appendix describes device behavior outside the *RapidIO Interconnect Specification (Revision 1.3)* recommended operating line rates and clock frequencies.

The following topics are discussed:

- "Line Rate Support" on page 71
- "P\_CLK Programming" on page 75

### A.1 Line Rate Support

The Tsi572 supports all of the *RapidIO Interconnect Specification (Revision 1.3)* specified line rates of 1.25, 2.50, and 3.125 Gbaud. The device also supports line rates that are outside of the RapidIO specification. The ability to support multiple line rates gives the Tsi572 flexibility in both application support and power consumption.

Table 21 shows the supported line rates for the Tsi572. The Serial Port Select pin, SP\_IO\_SPEED[1,0] must be set to the values shown in Table 21 to achieve the documented line rates.

| S_CLK_p/n (MHz) | Baud Rate (Gbaud)                    | SP_IO_SPEED[1,0] Bit<br>Settings | Register Settings |
|-----------------|--------------------------------------|----------------------------------|-------------------|
| 153.60          | 1.2288<br>CPRI Line Rate             | 0,0                              | -                 |
| 153.60          | 1.536<br>OBSAI Line Rate             | 0,1                              | -                 |
| 153.60          | 2.4576<br>CPRI Line Rate             | 0,1                              | -                 |
| 153.60          | 3.0720<br>CPRI Line Rate             | 1,0                              | -                 |
| 156.25          | 1.2500<br>Standard RapidIO Line Rate | 0,0                              | -                 |
| 156.25          | 2.5000<br>Standard RapidIO Line Rate | 0,1                              | -                 |
| 156.25          | 3.1250<br>Standard RapidIO Line Rate | 1,0                              | -                 |

#### Table 21: Tsi572 Supported Line Rates <sup>1</sup>

| S_CLK_p/n (MHz) | Baud Rate (Gbaud)                    | SP_IO_SPEED[1,0] Bit<br>Settings | Register Settings                                                                              |
|-----------------|--------------------------------------|----------------------------------|------------------------------------------------------------------------------------------------|
| 125.00          | 1.2500<br>Standard RapidIO Line Rate | 1,1                              | -                                                                                              |
| 125.00          | 2.5000<br>Standard RapidIO Line Rate | 1,0                              | -                                                                                              |
| 125.00          | 3.1250<br>Standard RapidIO Line Rate | 1,0                              | See "Register Requirements<br>Using 125 MHz S_CLK for a<br>3.125 Gbps Link Rate" on<br>page 72 |

#### Table 21: Tsi572 Supported Line Rates (Continued)<sup>1</sup>

1. This information assumes a +/- 100 ppm clock tolerance that must be obeyed between link partners.

All bit and register settings that are documented for operation with  $S_CLK = 156.25$  .MHz also apply to the use of 153.6 MHz and 125 MHz. For more clocking information, see "Clocks" in the *Tsi572* User Manual.

### A.1.1 Register Requirements Using 125 MHz S\_CLK for a 3.125 Gbps Link Rate

In order to use S\_CLK at 125 MHz to create a 3.125 Gbps link baud rate, the default values in the SerDes PLL Control Register must be modified from a x20 multiplier to a x25 multiplier. On power-up, the default PLL multipliers of x20 causes the 125 MHz source to create a 2.5 Gbps link rate. Changing this link rate to 3.125 Gbps requires either intervention by the I<sup>2</sup>C boot EEPROM during boot loading to reconfigure the SerDes, or the intervention of an external host to modify the SerDes registers through the use of maintenance transactions. However, modifying by EEPROM is the recommended method.



The SerDes PLL Control Registers are volatile. Applying HARD\_RST\_b or asserting PWRDN\_x4 results in the SerDes PLL Control Register default value being re-applied.

#### A.1.1.1 Modification by EEPROM Boot Load

Modifying the EEPROM is the recommended method for using the S\_CLK at 125 MHz to create a 3.125 Gbps link baud rate because the EEPROM boot load accesses the required configuration registers before the SerDes are released from reset. This can be performed by modifying the EEPROM loading script (for more information, see "EEPROM Scripts" in the *Tsi572 User Manual*).

Once the boot load is complete, the modified switch ports operate at 3.125 Gbps, while the remaining ports operate at 2.5 Gbps.

# Using the Script

The example EEPROM loading script in the "EEPROM Scripts" appendix of the *Tsi572 User Manual* configures ports six and eight of the Tsi572. Other ports can be added to the script and configured by editing the text. The script is written assuming that no other contents are required in the EEPROM. Additional register configurations may be appended to the script as required, as well as the value written to location 0 of the EEPROM to indicate the number (hex) of registers the bootloader is required to initialize. For more information regarding configuring the contents of the EEPROM, see "I2C Interface" in the *Tsi572 User Manual*.

# A.1.1.2 Modification by Maintenance Transaction

Modification by maintenance transactions must occur after the link to the host processor tasked with changing the port speeds has initialized. The process involves performing the sequence of operations listed in "Example Maintenance Transaction Sequence" on page 73.



The possibility of link instability exists should the process not be followed in the stated sequence

#### **Example Maintenance Transaction Sequence**

The following procedure configures port two. After these steps are complete, port two can train with its link partner at a baud rate of 3.125Gbps.

- 1. Reset the MAC by asserting SOFT\_RST\_x4 and leave the IO\_SPEED set to 3.125
  - Write offset 0x132C8 with 0x7FFF0012
- 2. Set the BYPASS\_INIT bit to enable control of the following: MPLL\_CK\_OFF, SERDES\_RESET, MPLL\_PWRON, TX\_EN, RX\_PLL\_PWRON, RX\_EN
  - Write offset 0x132C0 with 0xCA060084
- 3. Clear the RX\_EN bit in the SMAC\_x SerDes Configuration Register Channel 0 3
  - Write offset 0x132B0 with 0x203CA513
  - Write offset 0x132B4 with 0x203CA513
  - Write offset 0x132B8 with 0x203CA513
  - Write offset 0x132BC with 0x203CA513
- 4. Clear the RX\_PLL\_PWRON bit in the SMAC\_x SerDes Configuration Register Channel 0 3
  - Write offset 0x132B0 with 0x203C2513
  - Write offset 0x132B4 with 0x203C2513
  - Write offset 0x132B8 with 0x203C2513
  - Write offset 0x132BC with 0x203C2513
- 5. Clear the TX\_EN field in the SMACx\_CFG\_CH0
  - Write offset 0x132B0 with 0x200C2513
  - Write offset 0x132B4 with 0x200C2513

73

- Write offset 0x132B8 with 0x200C2513
- Write offset 0x132BC with 0x200C2513
- 6. Clear the MPLL\_PWRON bit in the SMACx\_CFG\_GLOBAL register
  - Write offset 0x132c0 with 0xCA060004
  - Ensure that BYPASS\_INIT remains asserted
- 7. Set the MPLL\_CK\_OFF bit in the SMACx\_CFG\_GLOBAL register
  - Write offset 0x132c0 with 0xCA060044
- 8. Change the multipliers by:
  - Write offset 0x132C4 with 0x002C0545
  - Write offset 0x132C0 with 0xCA060045
- 9. Clear the MPLL\_CK\_OFF bit in the SMACx\_CFG\_GBL register
  - Write offset 0x132C0 with 0xCA060005
- 10. Toggle the SERDES\_RSTN bit in the SMACx\_CFG\_GBL register
  - Write offset 0x132C0 with 0x4A060005
  - Write offset 0x132c0 with 0xCA060005
- 11. Set the MPLL\_PWRON bit in the SMACx\_CFG\_GLOBAL register
  - Write offset 0x132C0 with 0xCA060085
  - Ensure that BYPASS\_INIT remains asserted
- 12. Set TX\_EN[2:0] to 0b011 in the SMACx\_CFG\_CH0-3 register
  - Write offset 0x132B0 with 0x203C2513
  - Write offset 0x132B4 with 0x203C2513
  - Write offset 0x132B8 with 0x203C2513
  - Write offset 0x132BC with 0x203C2513
- 13. Set the RX\_PLL\_PWRON bit in the SMACx\_CFG\_CH0-3 register
  - Write offset 0x132B0 with 0x203CA513
  - Write offset 0x132B4 with 0x203CA513
  - Write offset 0x132B8 with 0x203CA513
  - Write offset 0x132BC with 0x203CA513
- 14. Set the RX\_EN bit in the SMACx\_CFG\_CH0-3 register
  - Write offset 0x132B0 with 0x203CE513
  - Write offset 0x132B4 with 0x203CE513
  - Write offset 0x132B8 with 0x203CE513
  - Write offset 0x132BC with 0x203CE513

15. Release the MAC from reset

Write offset 0x132c8 with 0x7FFF0002

# A.2 P\_CLK Programming

The Tsi572 recommends a P\_CLK operating frequency of 100 MHz. However, the device also supports P\_CLK frequencies less than the recommended 100 MHz. The ability to support other P\_CLK frequencies gives the Tsi572 flexibility in both application support and design.



The minimum frequency supported by the P\_CLK input is 25 MHz. Operation above 100 MHz or below 25 MHz is not tested or guaranteed.

The following sections describe the effects on the Tsi572 when the input frequency of the P\_CLK source is decreased from the recommended 100 MHz operating frequency.

# A.2.1 RapidIO Specifications Directly Affected by Changes in the P\_CLK Frequency

The following sections describe how changing the P\_CLK frequency to below the recommended 100 MHz operation affect the counters and state machines in the Tsi572 that are defined in the *RapidIO Interconnect Specification (Revision 1.3)*.

### A.2.1.1 Port Link Time-out CSR

# RapidIO Part 6: 1x/4x LP-Serial Physical Layer Specification Revision 1.3: Section 6.6.2.2 Port Link Time-out CSR (Block Offset 0x20)

The RapidIO Interconnect Specification (Revision 1.3) defines the Port Link Time-out CSR as follows:

The port-link time-out control register contains the time-out timer value for all ports on a device. This time-out is for link events, such as sending a packet to receiving the corresponding acknowledge and sending a link-request to receiving the corresponding link-response. The reset value is the maximum time-out interval, and represents between three and six seconds.

#### **IDT Implementation**

The Tsi572 supports this timer in the RapidIO Switch Port Link Time Out Control CSR. Effects of changing the P\_CLK frequency are shown in the following formula:

- Time-out =  $32/F \times TVAL$ 
  - F is P\_CLK frequency in MHz
  - TVAL is the 24-bit counter setting
    - Maximum TVAL decimal value of 16,777,215 (0xFFFFFF)

Effects of changing the P\_CLK frequency and TVAL setting can be seen in Table 22.

| P_CLK Setting | TVAL Setting                            | Equation                     | Timer Value  |  |
|---------------|-----------------------------------------|------------------------------|--------------|--|
| 25 MHz        | 2,343,750 (0x23C346)                    | 32/25 x 2,343,750            | 3 seconds    |  |
| 25 MHz        | 4,687,500 (0x47868C)                    | 32/25 x 4,687,500            | 6 seconds    |  |
| 50 MHz        | 4,687,500 (0x47868C)                    | 0x47868C) 32/50 x 4,687,500  |              |  |
| 50 MHz        | 9,375,000 (0x8F0D18)                    | 32/50 x 9,375,000            | 6 seconds    |  |
| 50 MHz        | 16,777,215 (0xFFFFF) 32/50 x 16,777,215 |                              | 10.4 seconds |  |
| 100 MHz       | 9,375,000 (0x8F0D18)                    | 32/100 x 9,375,000 3 seconds |              |  |
| 100 MHz       | 16,777,215 (0xFFFFFF)                   | 32/100 x 16,777,215          | 5.4 seconds  |  |

Table 22: Timer Values with P\_CLK and TVAL Variations

# A.2.1.2 RapidIO Part 6: 1x/4x LP-Serial Physical Layer Specification Revision 1.3: Section 4.7.3.2 State Machine Variables and Functions

### SILENCE\_TIMER\_DONE

The *RapidIO Interconnect Specification (Revision 1.3)* defines the SILENCE\_TIMER\_DONE as follows:

Asserted when the SILENCE\_TIMER\_EN has been continuously asserted for 120 +/- 40 $\mu$ s and the state machine is in the SILENT state. The assertion of SILENCE\_TIMER\_DONE causes SILENCE\_TIMER\_EN to be deasserted. When the state machine is not in the SILENT state, SILENCE\_TIMER\_DONE is deasserted

#### **IDT Implementation**

The Tsi572's silence timer does not have user programmable registers. The silence timer is sourced from the P\_CLK and any changes to P\_CLK are directly reflected in the timer timeout period.

### DISCOVERY\_TIMER\_DONE

The *RapidIO Interconnect Specification (Revision 1.3)* defines the DISCOVERY\_TIMER\_DONE as follows:

Asserted when DISCOVERY\_TIMER\_EN has been continuously asserted for 12 +/- 4msec and the state machine is in the DISCOVERY state. The assertion of DISCOVERY\_TIMER\_DONE causes DISCOVERY\_TIMER\_EN to be de-asserted. When the state machine is not in the DISCOVERY state, DISCOVERY\_TIMER\_DONE is de-asserted.

#### **IDT Implementation**

The Tsi572's discovery timer is programmed in the RapidIO Port x Discovery Timer. The DISCOVERY\_TIMER field is used by serial ports configured to operate in 4x mode. The DISCOVERY\_TIMER allows time for the link partner to enter its discovery state, and if the link partner supports 4x mode, for all four lanes to be aligned.



The DISCOVERY\_TIMER field is a 4-bit field whose value is used as a pre-scaler for a 17-bit counter clocked by P\_CLK.

The DISCOVERY\_TIMER has a default value of 9 decimal, but can be programmed to various values. The results of changing the DISCOVERY\_TIMER value and P\_CLK are shown in Table 23.

#### Table 23: Timer Values with DISCOVERY\_TIMER and P\_CLK Variations

| P_CLK Setting | DISCOVERY_TIMER<br>Setting | Equation                | Timer Value |  |
|---------------|----------------------------|-------------------------|-------------|--|
| 100 MHz       | 9 decimal                  | 9 * 0x1FFFF * 1/ P_CLK  | 11.79 mS    |  |
| 100 MHz       | 9 decimal                  | 9 * 131071 * 1/ P_CLK   | 11.79 mS    |  |
| 25 MHz        | 1 decimal                  | 1 * 131071 * 1/25 MHz   | 5.24 mS     |  |
| 25 MHz        | 2 decimal                  | 2 * 131071 * 1/25 MHz   | 10.48 mS    |  |
| 25 MHz        | 15 decimal                 | 15 * 131071 * 1/25 MHz  | 78.6 mS     |  |
| 50 MHz        | 1 decimal                  | 1 * 131071 * 1/ 50 MHz  | 2.62 mS     |  |
| 50 MHz        | 5 decimal                  | 5 * 131071 * 1/ 50 MHz  | 13.1 mS     |  |
| 50 MHz        | 15 decimal                 | 15 * 131071 *1/ 50 MHz  | 19.7 mS     |  |
| 100 MHz       | 1 decimal                  | 1 * 131071 * 1/ 100 MHz | 1.31 mS     |  |
| 100 MHz       | 9 decimal                  | 9 * 131071 * 1/ 100 MHz | 11.79 mS    |  |
| 100 MHz       | 15 decimal                 | 15 * 131071 *1/ 100 MHz | 19.7 mS     |  |

78

# A.2.2 IDT Specific Timers

The following sections describe how changing the P\_CLK frequency to below the recommended 100 MHz operation affect the IDT-specific counters and state machines in the Tsi572.

#### A.2.2.1 Dead Link Timer

The Dead Link Timer period is controlled by the DLT\_THRESH field in the SRIO MAC x Digital Loopback and Clock Selection Register.

Each time a silence is detected on a link, the counter is reloaded from this register and starts to count down. When the count reaches 0, the link is declared dead, which means that all packets are flushed from the transmit queue and no new packets are admitted to the queue until the link comes up.

The duration of the dead link timer is computed by the following formula:

- 2^^13 \* DLT\_THRESH \* P\_CLK period
  - P\_CLK is 100 MHz (which gives a P\_CLK period of 10nS)
  - Default value of DLT\_THRESH is 0x7FFF (which corresponds to 32767)
- Using these parameters, the populated formula is 8192\*32767\*10e-9 = 2.68 seconds

When enabled, this timer is used to determine when a link is powered up and enabled, but dead (that is, there is no link partner responding). When a link is declared dead, the transmitting port on the Tsi572 removes all packets from its transmit queue and ensure that all new packets sent to port are dropped rather than placed in the transmit queue.

The DLT\_THRESH is a 15-bit counter with a maximum value of 32767. Table 24 shows equations using different values for DLT\_THRESH and P\_CLK.

#### Table 24: Timer Values with P\_CLK and DLT\_THRESH Variations

| P_CLK Setting | Equation                 | Timer Value   |  |
|---------------|--------------------------|---------------|--|
| 25 MHz        | 8192 * 1 * 1/25 MHz      | 327 uS        |  |
|               | 8192 * 32767 * 1/25 MHz  | 10.74 seconds |  |
| 50 MHz        | 8192 * 1 * 1/50 MHz      | 163.8 uS      |  |
|               | 8192 * 32767 * 1/50 MHz  | 5.37 seconds  |  |
| 100 MHz       | 8192 * 1 * 1/100 MHz     | 81.9 uS       |  |
|               | 8192 * 32767 * 1/100 MHz | 2.68 seconds  |  |

# A.2.3 I<sup>2</sup>C interface and Timers

The I<sup>2</sup>C interface clock is derived from the P\_CLK. Decreasing the frequency of P\_CLK causes a proportional decrease in the I<sup>2</sup>C serial clock and affects the I<sup>2</sup>C timers. The timer values can be re-programmed during boot loading but the changes does not take effect until after the boot load has completed. As a result, a decrease from 100 MHz to 50 MHz of P\_CLK causes a doubling of the boot load time of the EEPROM. Once boot loading has completed, the new values take effect and the I<sup>2</sup>C interface can operate at the optimum rate of the attached devices.

# A.2.3.1 I<sup>2</sup>C Time Period Divider Register

The I2C Time Period Divider Register provides programmable extension of the reference clock period into longer periods used by the timeout and idle detect timers.

# USDIV Period Divider for Micro-Second Based Timers

The USDIV field divides the reference clock down for use by the Idle Detect Timer, the Byte Timeout Timer, the I2C\_SCLK Low Timeout Timer, and the Milli-Second Period Divider.

- Period(USDIV) = Period(P\_CLK) \* (USDIV + 1)
- P\_CLK is 10 ns
- Tsi572 reset value is 0x0063

### MSDIV Period Divider for Milli-Second Based Timers

The MSDIV field divides the USDIV period down further for use by the Arbitration Timeout Timer, the Transaction Timeout Timer, and the Boot/Diagnostic Timeout Timer.

- Period (MSDIV) = Period(USDIV) \* (MSDIV + 1)
- Tsi572 reset value is 0x03E7

# A.2.3.2 I2C Start Condition Setup/Hold Timing Register

The I2C Start Condition Setup/Hold Timing Register programs the setup and hold timing for the start condition when generated by the master control logic. The timer periods are relative to the reference clock.

This register is shadowed during boot loading, and can be reprogrammed prior to a chain operation without affecting the bus timing for the current EEPROM.

# START\_SETUP Count for the START Condition Setup Period

The START\_SETUP field defines the minimum setup time for the START condition; that is, both I2C\_SCLK and I2C\_SD seen high prior to I2C\_SD pulled low. This is a master-only timing parameter.



This value also doubles as the effective Stop Hold time.

KENESAS

- Period (START\_SETUP) = (START\_SETUP \* Period(PCLK))
  - PCLK is 10ns
  - Reset time is 4.71 microseconds.
  - Tsi572 reset value is 0x01D7

#### START\_HOLD Count for the START Condition Hold Period

The START\_HOLD field defines the minimum hold time for the START condition; that is, from I2C\_SD seen low to I2C\_SCLK pulled low. This is a master only timing parameter.

- Period (START\_HOLD) = (START\_HOLD \* Period(P\_CLK))
- P\_CLK is 10 ns
- Reset time is 4.01 microseconds
- Tsi572 reset value is 0x0191

#### A.2.3.3 I2C Stop/Idle Timing Register

The I2C Stop/Idle Timing Register programs the setup timing for the Stop condition when generated by the master control logic and the Idle Detect timer.



The START\_SETUP time doubles as the Stop Hold.

The Stop/Idle register is broken down as follows:

- The timer period for the STOP\_SETUP is relative to the reference clock
- The timer period for the Idle Detect is relative to the USDIV period
- The STOP\_SETUP time is shadowed during boot loading, and can be reprogrammed prior to a chain operation without affecting the bus timing for the current EEPROM.

#### STOP\_SETUP Count for STOP Condition Setup Period

The STOP\_SETUP field defines the minimum setup time for the STOP condition (that is, both I2C\_SCLK seen high and I2C\_SD seen low prior to I2C\_SD released high). This is a master-only timing parameter.

- Period(STOP\_SETUP) = (STOP\_SETUP \* Period(P\_CLK))
  - P\_CLK is 10ns
  - Reset time is 4.01 microseconds
  - Tsi572 reset value is 0x0191

# IDLE\_DET Count for Idle Detect Period

The IDLE\_DET field is used in two cases. First, it defines the period after reset during which the I2C\_SCLK signal must be seen high in order to call the bus idle. This period is needed to avoid interfering with an ongoing transaction after reset. Second, it defines the period before a master transaction during which the I2C\_SCLK and I2C\_SD signals must both be seen high in order to call the bus idle.

This period is a protection against external master devices not correctly idling the bus.

• Period(IDLE\_DET) = (IDLE\_DET \* Period(USDIV)), where USDIV is the microsecond time defined in the I2C Time Period Divider Register



A value of zero results in no idle detect period, meaning the bus will be sensed as idle immediately.

- Reset time is 51 microseconds
- Tsi572 reset value is 0x0033

#### A.2.3.4 I2C\_SD Setup and Hold Timing Register

The I2C\_SD Setup and Hold Timing Register programs the setup and hold times for the I2C\_SD signal when output by either the master or slave interface. It is shadowed during boot loading, and can be reprogrammed prior to a chain operation without affecting the bus timing for the current EEPROM.

#### SDA\_SETUP Count for the I2C\_SD Setup Period

The SDA\_SETUP field defines the minimum setup time for the I2C\_SD signal; that is, I2C\_SD is set to a desired value prior to rising edge of I2C\_SCLK. This applies to both slave and master interface.



This value should be set to the sum of the I2C\_SD setup time and the maximum rise/fall time of the I2C\_SD signal in order to ensure that the signal is valid on the output at the correct time. This time is different than the raw I2C\_SD setup time in the  $I^2C$  Specification.

- Period(SDA\_SETUP) = (SDA\_SETUP \* Period(P\_CLK)), where P\_CLK is 10ns.
  - Reset time is 1260 nanoseconds
  - Tsi572 reset value is 0x007E

#### SDA\_HOLD Count for I2C\_SD Hold Period

The SDA\_HOLD field defines the minimum hold time for the I2C\_SD signal; that is, I2C\_SD valid past the falling edge of I2C\_SCLK. This applies to both slave and master interface.

- Period(SDA\_HOLD) = (SDA\_HOLD \* Period(P\_CLK)), where P\_CLK is 10 ns.
  - Reset time is 310 nanoseconds
  - Tsi572 reset value is 0x001F

81

#### A.2.3.5 I2C\_SCLK High and Low Timing Register

The I2C\_SCLK High and Low Timing Register programs the nominal high and low periods of the I2C\_SCLK signal when generated by the master interface.

It is shadowed during boot loading, and can be reprogrammed prior to a chain operation without affecting the bus timing for the current EEPROM.

#### SCL\_HIGH Count for I2C\_SCLK High Period

The SCL\_HIGH field defines the nominal high period of the clock, from rising edge to falling edge of I2C\_SCLK. This is a master-only parameter.

The actual observed period may be shorter if other devices pull the clock low.

- Period(SCL\_HIGH) = (SCL\_HIGH \* Period(P\_CLK))
  - P\_CLK is 10 ns
  - Reset time is 5.00 microseconds (100 kHz)
  - Tsi572 reset value is 0x01F4

#### SCL\_LOW Count for I2C\_SCLK Low Period

The SCL\_LOW field defines the nominal low period of the clock, from falling edge to rising edge of I2C\_SCLK. This is a master-only parameter.

The actual observed period may be longer if other devices pull the clock low.

- Period(SCL\_LOW) = (SCL\_LOW \* Period(P\_CLK))
  - P\_CLK is 10 ns
  - Reset time is 5.00 microseconds (100 kHz)
  - Tsi572 reset value is 0x01F4

#### A.2.3.6 I2C\_SCLK Minimum High and Low Timing Register

The I2C\_SCLK Minimum High and Low Timing Register programs the minimum high and low periods of the I2C\_SCLK signal when generated by the master interface. It is shadowed during boot loading, and can be reprogrammed prior to a chain operation without affecting the bus timing for the current EEPROM.

#### SCL\_MINH Count for I2C\_SCLK High Minimum Period

The SCL\_MINH field defines the minimum high period of the clock, from rising edge seen high to falling edge of I2C\_SCLK. This is a master-only parameter.

The actual observed period may be shorter if other devices pull the clock low.

- Period(SCL\_MINH) = (SCL\_MINH \* Period(P\_CLK))
  - P\_CLK is 10 ns
  - Reset time is 4.01 microseconds
  - Tsi572 reset value is 0x0191

Tsi572 Hardware Manual May 18, 2012

#### SCL\_MINL Count for I2C\_SCLK Low Minimum Period

The SCL\_MINL defines the minimum low period of the clock, from falling edge seen low to rising edge of I2C\_SCLK. This is a master-only parameter.

The actual observed period may be longer if other devices pull the clock low.

- Period(SCL\_MINL) = (SCL\_MINL \* Period(P\_CLK))
  - P\_CLK is 10 ns
  - Reset time is 4.71 microseconds
  - Tsi572 reset value is 0x01D7

#### A.2.3.7 I2C\_SCLK Low and Arbitration Timeout Register

The I2C\_SCLK Low and Arbitration Timeout Register programs the I2C\_SCLK low timeout and the Arbitration timeout. The arbitration timer period is relative to the MSDIV period, and the I2C\_SCLK low timeout period is relative to the USDIV period.

#### SCL\_TO Count for I2C\_SCLK Low Timeout Period

The SCL\_TO field defines the maximum amount of time for a slave device holding the I2C\_SCLK signal low. This timeout covers the period from I2C\_SCLK falling edge to the next I2C\_SCLK rising edge. A value of 0 disables the timeout.

- Period(SCL\_TO) = (SCL\_TO \* Period(USDIV))
  - USDIV is the microsecond time defined in the I2C Time Period Divider Register.
  - The reset value of this timeout is 26 milliseconds
  - Tsi572 reset value is 0x65BB

#### ARB\_TO Count for Arbitration Timeout Period

The ARB\_TO field defines the maximum amount of time for the master interface to arbitrate for the bus before aborting the transaction. This timeout covers the period from master operation start (see setting the START bit in the I2C Master Control Register) until the ACK/NACK is received from the external slave for the slave device address. A value of 0 disables the timeout.

- Period(ARB\_TO) = (ARB\_TO \* Period(MSDIV))
  - MSDIV is the millisecond time defined in I2C Time Period Divider Register.
  - The reset value of this timeout is 51 milliseconds
    - This timeout is not active during the boot load sequence.
  - Tsi572 reset value is 0x0033

RENESAS

#### A.2.3.8 I2C Byte/Transaction Timeout Register

The I2C Byte/Transaction Timeout Register programs the Transaction and Byte time-outs. The timer periods are relative to the USDIV period for the byte timeout, and relative to the MSDIV period for the transaction timeout.

#### BYTE\_TO Count for Byte Timeout Period

The BYTE\_TO field defines the maximum amount of time for a byte to be transferred on the  $I^2C$  bus. This covers the period from Start condition to next ACK/NACK, between two successive ACK/NACK bits, or from ACK/NACK to Stop/Restart condition. A value of 0 disables the timeout.

- Period(BYTE\_TO) = (BYTE\_TO \* Period(USDIV))
  - USDIV is the microsecond time defined in I2C Time Period Divider Register.
  - This timeout is disabled on reset, and is not used during boot load.
  - Tsi572 reset value is 0x0000

#### TRAN\_TO Count for Transaction Timeout Period

The TRAN\_TO field defines the maximum amount of time for a transaction on the I2C bus. This covers the period from Start to Stop. A value of 0 disables the timeout.

- Period(TRAN\_TO) = (TRAN\_TO \* Period(MSDIV))
  - MSDIV is the millisecond time defined in I2C Time Period Divider Register.
  - This timeout is disabled on reset, and is not used during boot load
  - Tsi572 reset value is 0x0000

#### A.2.3.9 I2C Boot and Diagnostic Timer

The I2C Boot and Diagnostic Timer programs a timer used to timeout the boot load sequence, and can be used after boot load as a general purpose timer.

#### **COUNT Count for Timer Period**

The COUNT field defines the period for the timer. The initial reset value is used for overall boot load timeout. A value of 0 disables the timeout.



During normal operation, this timer can be used for any general purpose timing.

The timer begins counting when this register is written. If this register is written while the counter is running, the timer is immediately restarted with the new COUNT, and the DTIMER/BLTO event is not generated.

When the timer expires, either the BLTO or DTIMER event is generated, depending on whether the boot load sequence is active. If FREERUN is set to 1 when timer expires, then the timer is restarted immediately (the event is still generated), providing a periodic interrupt capability.

- Period(DTIMER) = (COUNT \* Period(MSDIV))
  - MSDIV is the millisecond period define in I2C Time PeriodDivider Register.
  - The reset value for the boot load timeout is four seconds. If the boot load completes before the timer expires, the timer is set to zero (disabled).
  - Tsi572 reset value is 0x0FA0

# A.2.4 Other Performance Factors

This section describes any other factors that may impact the performance of the Tsi572 if P-CLK is programmed to operate lower than the recommended 100 MHz frequency.

### A.2.4.1 Internal Register Bus Operation

The internal register bus, where all the internal registers reside, is a synchronous bus clocked by the P\_CLK source. A decrease in the P\_CLK frequency causes a proportional increase in register access time during RapidIO maintenance transactions, JTAG registers accesses, and I<sup>2</sup>C register accesses.

### **RapidIO Maintenance Transaction**

Maintenance transactions use the internal register bus to read and write registers in the Tsi572. If the P\_CLK frequency is decreased, it may be necessary to review the end point's response latency timer value to ensure that it does not expire before the response is returned.



Changing the frequency of the P\_CLK does not affect the operation or performance of the RapidIO portion of the switch, in particular its ability to route or multicast packets between ports.

#### JTAG Register Interface

Changing the P\_CLK frequency affects accesses to the internal registers through the JTAG register interface because the interface uses the internal register bus. However, the decreased performance will not be noticeable.

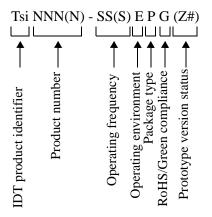
Boundary scan operations are not affected by a chance in the P\_CLK frequency because these transactions use the JTAG TCK clock signal and do not access the internal register bus.



# **B.** Ordering Information

This chapter discusses ordering information and describes the part numbering system for the Tsi572.

# **B.1** Ordering Information


When ordering the Tsi572 please refer to the device by its full part number, as displayed in Table 25.

| Part Number   | Frequency         | Temperature | Package            | Pin Count |
|---------------|-------------------|-------------|--------------------|-----------|
| TSI572-10GCL  | 1.25–3.125 Gbit/s | Commercial  | HSBGA              | 399       |
| TSI572-10GCLV | 1.25–3.125 Gbit/s | Commercial  | HSBGA (RoHS/Green) | 399       |
| TSI572-10GIL  | 1.25–3.125 Gbit/s | Industrial  | HSBGA              | 399       |
| TSI572-10GILV | 1.25–3.125 Gbit/s | Industrial  | HSBGA (RoHS/Green) | 399       |

#### Table 25: Tsi572 Ordering Information

# **B.2** Part Numbering Information

The part numbering system is explained as follows.



- () Indicates optional characters.
- Tsi IDT system interconnect product identifier.
- NNNN Product number (may be three or four digits).
- SS(S) Maximum operating frequency or data transfer rate of the fastest interface. For operating frequency numbers, M and G represent MHz and GHz. For transfer rate numbers, M and G represent Mbps and Gbps.

RENESAS

- E Operating environment in which the product is guaranteed. This code may be one of the following characters:
  - C Commercial temperature range (0 to  $+70^{\circ}$ C)
  - I Industrial temperature range (-40 to  $+85^{\circ}$ C)
  - E Extended temperature range (-55 to  $+125^{\circ}$ C)
- P The Package type of the product:
  - B Ceramic ball grid array (CBGA)
  - E, L, J, and K Plastic ball grid array (PBGA)
  - G Ceramic pin grid array (CPGA)
  - M Small outline integrated circuit (SOIC)
  - Q Plastic quad flatpack (QFP)
- G IDT products fit into three RoHS-compliance categories:
  - Y RoHS Compliant (6of6) These products contain none of the six restricted substances above the limits set in the EU Directive 2002/95/EC.
  - Y RoHS Compliant (Flip Chip) These products contain only one of the six restricted substances: Lead (Pb). These flip-chip products are RoHS compliant through the Lead exemption for Flip Chip technology, Commission Decision 2005/747/EC, which allows Lead in solders to complete a viable electrical connection between semiconductor die and carrier within integrated circuit Flip Chip packages.
  - V RoHS Compliant/Green These products follow the above definitions for RoHS Compliance and meet JIG (Joint Industry Guide) Level B requirements for Brominated Flame Retardants (other than PBBs and PBDEs).
- Z# Prototype version status (optional). If a product is released as a prototype then a "Z" is added to the end of the part number. Further revisions to the prototype prior to production release would add a sequential numeric digit. For example, the first prototype version of device would have a "Z," a second version would have "Z1," and so on. The prototype version code is dropped once the product reaches production status.



#### IMPORTANT NOTICE AND DISCLAIMER

RENESAS ELECTRONICS CORPORATION AND ITS SUBSIDIARIES ("RENESAS") PROVIDES TECHNICAL SPECIFICATIONS AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING, WITHOUT LIMITATION, ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT OF THIRD-PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for developers who are designing with Renesas products. You are solely responsible for (1) selecting the appropriate products for your application, (2) designing, validating, and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. Renesas grants you permission to use these resources only to develop an application that uses Renesas products. Other reproduction or use of these resources is strictly prohibited. No license is granted to any other Renesas intellectual property or to any third-party intellectual property. Renesas disclaims responsibility for, and you will fully indemnify Renesas and its representatives against, any claims, damages, costs, losses, or liabilities arising from your use of these resources. Renesas' products are provided only subject to Renesas' Terms and Conditions of Sale or other applicable terms agreed to in writing. No use of any Renesas resources expands or otherwise alters any applicable warranties or warranty disclaimers for these products.

(Disclaimer Rev.1.01 Jan 2024)

#### **Corporate Headquarters**

TOYOSU FORESIA, 3-2-24 Toyosu, Koto-ku, Tokyo 135-0061, Japan www.renesas.com

#### Trademarks

Renesas and the Renesas logo are trademarks of Renesas Electronics Corporation. All trademarks and registered trademarks are the property of their respective owners.

#### **Contact Information**

For further information on a product, technology, the most up-to-date version of a document, or your nearest sales office, please visit <u>www.renesas.com/contact-us/</u>.