

TPS-1

User's Manual: Hardware

RENESAS ASSP
Ethernet Controller for PROFINET IO Devices

All information contained in these materials, including products and product specifications, represents information on the product at the time of publication and is subject to change by Renesas Electronics Corp. without notice. Please review the latest information published by Renesas Electronics Corp. through various means, including the Renesas Electronics Corp. website (http://www.renesas.com).

Notice

- 1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation or any other use of the circuits, software, and information in the design of your product or system. Renesas Electronics disclaims any and all liability for any losses and damages incurred by you or third parties arising from the use of these circuits, software, or information.
- 2. Renesas Electronics hereby expressly disclaims any warranties against and liability for infringement or any other claims involving patents, copyrights, or other intellectual property rights of third parties, by or arising from the use of Renesas Electronics products or technical information described in this document, including but not limited to, the product data, drawings, charts, programs, algorithms, and application examples.
- 3. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.
- 4. You shall not alter, modify, copy, or reverse engineer any Renesas Electronics product, whether in whole or in part. Renesas Electronics disclaims any and all liability for any losses or damages incurred by you or third parties arising from such alteration, modification, copying or reverse engineering.
- 5. Renesas Electronics products are classified according to the following two quality grades: "Standard" and "High Quality". The intended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below.
 - "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; industrial robots; etc.
 - "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control (traffic lights); large-scale communication equipment; key financial terminal systems; safety control equipment; etc.

Unless expressly designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics products are not intended or authorized for use in products or systems that may pose a direct threat to human life or bodily injury (artificial life support devices or systems; surgical implantations; etc.), or may cause serious property damage (space system; undersea repeaters; nuclear power control systems; aircraft control systems; key plant systems; military equipment; etc.). Renesas Electronics disclaims any and all liability for any damages or losses incurred by you or any third parties arising from the use of any Renesas Electronics product that is inconsistent with any Renesas Electronics data sheet, user's manual or other Renesas Electronics document.

- 6. When using Renesas Electronics products, refer to the latest product information (data sheets, user's manuals, application notes, "General Notes for Handling and Using Semiconductor Devices" in the reliability handbook, etc.), and ensure that usage conditions are within the ranges specified by Renesas Electronics with respect to maximum ratings, operating power supply voltage range, heat dissipation characteristics, installation, etc. Renesas Electronics disclaims any and all liability for any malfunctions, failure or accident arising out of the use of Renesas Electronics products outside of such specified ranges.
- 7. Although Renesas Electronics endeavors to improve the quality and reliability of Renesas Electronics products, semiconductor products have specific characteristics, such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Unless designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics products are not subject to radiation resistance design. You are responsible for implementing safety measures to guard against the possibility of bodily injury, injury or damage caused by fire, and/or danger to the public in the event of a failure or malfunction of Renesas Electronics products, such as safety design for hardware and software, including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult and impractical, you are responsible for evaluating the safety of the final products or systems manufactured by you.
- 8. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. You are responsible for carefully and sufficiently investigating applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive, and using Renesas Electronics products in compliance with all these applicable laws and regulations. Renesas Electronics disclaims any and all liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.
- 9. Renesas Electronics products and technologies shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations. You shall comply with any applicable export control laws and regulations promulgated and administered by the governments of any countries asserting jurisdiction over the parties or transactions.
- 10. It is the responsibility of the buyer or distributor of Renesas Electronics products, or any other party who distributes, disposes of, or otherwise sells or transfers the product to a third party, to notify such third party in advance of the contents and conditions set forth in this document.
- 11. This document shall not be reprinted, reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.
- 12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products.
- (Note1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its directly or indirectly controlled subsidiaries.
- (Note2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

(Rev.4.0-1 November 2017)

Corporate Headquarters

TOYOSU FORESIA, 3-2-24 Toyosu, Koto-ku, Tokyo 135-0061, Japan

www.renesas.com

Trademarks

Renesas and the Renesas logo are trademarks of Renesas Electronics Corporation. All trademarks and registered trademarks are the property of their respective owners.

Contact information

For further information on a product, technology, the most up-to-date version of a document, or your nearest sales office, please visit: www.renesas.com/contact/.

General Precautions in the Handling of Microprocessing Unit and Microcontroller Unit Products

The following usage notes are applicable to all Microprocessing unit and Microcontroller unit products from Renesas. For detailed usage notes on the products covered by this document, refer to the relevant sections of the document as well as any technical updates that have been issued for the products.

- 1. Precaution against Electrostatic Discharge (ESD)
 - A strong electrical field, when exposed to a CMOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps must be taken to stop the generation of static electricity as much as possible, and quickly dissipate it when it occurs. Environmental control must be adequate. When it is dry, a humidifier should be used. This is recommended to avoid using insulators that can easily build up static electricity. Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and measurement tools including work benches and floors must be grounded. The operator must also be grounded using a wrist strap. Semiconductor devices must not be touched with bare hands. Similar precautions must be taken for printed circuit boards with mounted semiconductor devices.
- 2. Processing at power-on
 - The state of the product is undefined at the time when power is supplied. The states of internal circuits in the LSI are indeterminate and the states of register settings and pins are undefined at the time when power is supplied. In a finished product where the reset signal is applied to the external reset pin, the states of pins are not guaranteed from the time when power is supplied until the reset process is completed. In a similar way, the states of pins in a product that is reset by an on-chip power-on reset function are not guaranteed from the time when power is supplied until the power reaches the level at which resetting is specified.
- 3. Input of signal during power-off state
 - Do not input signals or an I/O pull-up power supply while the device is powered off. The current injection that results from input of such a signal or I/O pull-up power supply may cause malfunction and the abnormal current that passes in the device at this time may cause degradation of internal elements. Follow the guideline for input signal during power-off state as described in your product documentation.
- 4. Handling of unused pins
 - Handle unused pins in accordance with the directions given under handling of unused pins in the manual. The input pins of CMOS products are generally in the high-impedance state. In operation with an unused pin in the open-circuit state, extra electromagnetic noise is induced in the vicinity of the LSI, an associated shoot-through current flows internally, and malfunctions occur due to the false recognition of the pin state as an input signal become possible.
- 5. Clock signals
 - After applying a reset, only release the reset line after the operating clock signal becomes stable. When switching the clock signal during program execution, wait until the target clock signal is stabilized. When the clock signal is generated with an external resonator or from an external oscillator during a reset, ensure that the reset line is only released after full stabilization of the clock signal. Additionally, when switching to a clock signal produced with an external resonator or by an external oscillator while program execution is in progress, wait until the target clock signal is stable.
- 6. Voltage application waveform at input pin
 - Waveform distortion due to input noise or a reflected wave may cause malfunction. If the input of the CMOS device stays in the area between V_{IL} (Max.) and V_{IH} (Min.) due to noise, for example, the device may malfunction. Take care to prevent chattering noise from entering the device when the input level is fixed, and also in the transition period when the input level passes through the area between V_{IL} (Max.) and V_{IH} (Min.).
- 7. Prohibition of access to reserved addresses
 - Access to reserved addresses is prohibited. The reserved addresses are provided for possible future expansion of functions. Do not access these addresses as the correct operation of the LSI is not quaranteed.
- 8. Differences between products
 - Before changing from one product to another, for example to a product with a different part number, confirm that the change will not lead to problems. The characteristics of a microprocessing unit or microcontroller unit products in the same group but having a different part number might differ in terms of internal memory capacity, layout pattern, and other factors, which can affect the ranges of electrical characteristics, such as characteristic values, operating margins, immunity to noise, and amount of radiated noise. When changing to a product with a different part number, implement a system-evaluation test for the given product.

How to Use This Manual

Purpose and Target Readers

This manual is designed to provide the user with an understanding of the hardware functions and electrical characteristics of the MCU. It is intended for users designing application systems incorporating the MCU. A basic knowledge of electric circuits, logical circuits, and MCUs is necessary in order to use this manual.

The manual comprises an overview of the product; descriptions of the CPU, system control functions, peripheral functions, and electrical characteristics; and usage notes.

Particular attention should be paid to the precautionary notes when using the manual. These notes occur within the body of the text, at the end of each section, and in the Usage Notes section.

The revision history summarizes the locations of revisions and additions. It does not list all revisions. Refer to the text of the manual for details.

The following documents apply to the xxx/xx Group. Make sure to refer to the latest versions of these documents. The newest versions of the documents listed may be obtained from the Renesas Electronics Web site.

Document Type	Description	Document Title	Document No.
Data Sheet	Hardware overview and electrical characteristics	TPS-1 Datasheet	R19DS0069
User's manual for Hardware	Hardware specifications (pin assignments, memory maps, peripheral function specifications, electrical characteristics, timing charts) and operation descriptiont	TPS-1 User's Manual: Hardware	This User's manual
User's manual	Description of CPU instruction set	User Manual TPS-1	Note
Driver Manual	TPS-1 API functions	Driver Interface TPS-1	Note
Application Note	PROFINET Device Design Guideline	PROFINET Device Design Guideline for TPS-1	R19AN0035

Note: These documents are available from Phoenix Contact Software.

2. Notation of Numbers and Symbols

Note : Explanation of (Note) in the text

Caution : Item deserving extra attention

Remark : Supplementary explanation to the text

Numeric notation : Binary XXXb

Decimal XXXX

Hexadecimal XXXXH or 0x XXXX

Prefixes representing powers of 2 (address space, memory capacity)

k (kilo): 210 = 1024

M (mega): 220 = 10242 = 1.048.576 G (giga): 230 = 10243 = 1.073.741.824

Data Type : Word 32 bits

Halfword 16 bits Byte 8 bits

3. List of Abbreviations and Acronyms

Abbreviation	Full Form
CSI	Clocked Serial Interface
FO	Fiber Optic
FPBGA	Fine Pitch Ball Grid Array
GND	Ground Potential
GPIO	General Purpose Input /Output
I	Input
I/O or IO	Input/Output
MISO	Master in Slave out (SPI signal)
MOSI	Master out Slave in (SPI signal)
MRP	Media Redundancy Protocol (IEC 61158)
0	Output
PCB	Printed Circuit Board
PCF	Photonic Crystal Fiber
PECL	Positive-Emitter-Coupled Logic
PLL	Phase Locked Loop
POF	Plastic Optical Fiber
POR	Power On Reset
RJ-45	Ethernet connection (copper wire)
SC-RJ	Ethernet connection (fiber optic)
SPI	Serial Peripheral Interface
UART	Universal Asynchronous Receiver/Transmitter
n.c.	Not connected
ppm	Parts per Million

Abbreviation	Full Form
AR	Application Relation (PROFINET terms)
CR	Communication Relation (PROFINET terms)
I&M	Identification & Maintenance
IRT	Isochronous Real-Time (PROFINET operating mode)
NRT	Non Real Time (PRFINET terms)
PNIO	PROFINET IO
RT	Real-Time Real-Time

Table of Contents

1.	OVE	SRVIEW	გ
	1.1.	FEATURES	8
	1.2.	ABSTRACT	
	1.3.	BLOCK DIAGRAM	
_	DDI		
2.	PIN	FUNCTION	11
	2.1.	SIGNAL OVERVIEW AND DESCRIPTION	11
	2.2.	GPIO MULTIPLEXING	14
	2.3.	SUPPLY VOLTAGE CIRCUITRY	15
	2.4.	SIGNALS FOR IRT COMMUNICATION	16
3.	HOS	ST INTERFACE	17
	3.1.	TESTING DPRAM INTERFACE	17
	3.2.	Parallel Interface	
	3.2.1		
	3.2.2		
	3.2.3		
	3.2.4		
	3.2.5		
	3.3.	SPI SLAVE INTERFACE	
	3.3.1		
	3.3.2	·	
	3.3.3	3. SPI Slave Interface Reset Timing	33
4.	SHA	ARED MEMORY STRUCTURE	34
	4.1.	EVENT COMMUNICATION WITH THE TPS-1 FIRMWARE.	
	4.2.	EVENTS FROM THE TPS-1 FIRMWARE TO THE HOST	
	4.3.	EVENTS FROM THE HOST TO THE TPS-1 FIRMWARE	
	4.4.	INTERRUPT COMMUNICATION WITH THE TPS-1	
	4.4.1	r v v v v v v v v v v v v v v v v v v v	
5.	TPS	3-1 BOOT SUBSYSTEM	43
	5.1.	HARDWARE STRUCTURE FOR THE BOOT OPERATION	
	5.2.	LOADING AND UPDATE OF THE FIRMWARE DURING THE MANUFACTURING PROCESS	44
	5.2.1		
	5.2.2	2. SPI master interface (Boot Flash)	45
6.	IO L	OCAL GPIO INTERFACE	47
	6.1.	GPIO (DIGITAL INPUT AND OUTPUT)	47
	6.2.	STATUS LEDS OF THETPS-1	
	6.3.	I2C-Bus – LWL Diagnostic	48
7.	TPS	S-1 WATCHDOG	49
	7.1.	SIGNAL WD_OUT (PIN B12)	40
	7.1. 7.2.	SIGNAL WD IN (PIN A11)	
8.		DFINET IO SWITCH	
	8.1.	100BASE-TX INTERFACE.	
	8.1.1		
	8.1.2		
	8.2.	100BASE-FX INTERFACE (FIBER OPTIC)	
	8.2.1		
	8.2.2		
	8.3.	I2C-Bus – LWC Diagnostic	
	8.4.	ADDITIONAL TPS-1 PINS	54

8.5.	INT	EGRATED VOLTAGE REGULATOR $1.5\mathrm{V}$	54
9. C	LOCK	CIRCUIT	56
9.1.	Usi	NG THE INTERNAL CLOCK OSCILLATOR	56
9.2.	EXT	CERNAL CLOCK SOURCE	57
10.	RESE	T OF THE TPS-1	58
11.	BOUN	IDARY SCAN INTERFACE (JTAG)	59
11.1.	. CIR	CUIT RECOMMENDATION OF THE JTAG INTERFACE	60
APPEN	JDIX.A	SETTING OF OPERATING MODES	61
A.1	Hos	ST INTERFACE	62
A.	.1.1	Host Parallel Interface	62
A.	.1.2	Host Serial Interface	63
A.2	Loc	CAL I/O-CONFIGURATION	64
A.	.2.1	IO Parallel	64
A.	.2.2	IO Serial Interface	67
A.	.2.3	IO Local Interface	69
A.	.2.4	IO Local parallel Interface	69
A.	.2.5	Configuration of the IO Local Parallel Interface	69
A.	.2.6	Configuration of the IO Local Serial interface (SPI Master)	
A.	.2.7	I&M0 Configuration (I&M0 data) "Deleted" OK?	
A.3	ETH	HERNET INTERFACE CONFIGURATION	72
A.4	COI	PYING THE CONFIGURATION DATA INTO THE BOOT FLASH	73
A.5	GE	NERATING A COMPLETE SERIAL BOOT FLASH IMAGE	74
APPEN	IDIX.B	BOARD DESIGN INFORMATION	75
B.1	Voi	TAGE SUPPLY	75
B.2	SWI	TCHING REGULATOR	75
В.	.2.1	Wiring for the Switching Regulator	76
В.	.2.2	Layout Example for Switching Regulator	77
B.3	Boa	ARD DESIGN RECOMMENDATIONS FOR ETHERNET PHY	78
В.	.3.1	Supply Voltage Circuitry	78
В.	.3.2	100BASE-TX Mode Circuitry	80
В.	.3.3	Unused 100Base-TX Interface	81
В.	.3.4	100BASE-FX Mode Circuitry	82
В.	.3.5	Unused 100Base-FX interface	85
APPEN	IDIX C	FAST START UP REQUIREMENTS	86

TPS-1

1. Overview

1.1. Features

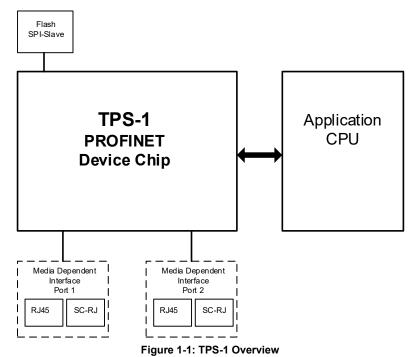
PROFINET Device Chip

- Integrated PROFINET CPU
- Host CPU interface (SPI-Slave or 8/16 bit parallel)
- SPI Master-Interface for direct connection of SPI-Slaves (to exchange process data)
- 48 GPIO for direct connection of digital peripheral signals (digital I/Os)
- · Serial Flash interface
- Support of PROFINET IO communication channels NRT, RT, and IRT
- · Watchdog support for connected host CPUs
- Compliance with PROFINET Conformance Class C
- · Hardware support for time-critical PROFINET protocols, including PTCP with LLDP
- Firmware download during the manufacturing process via JTAG Boundary Scan interface, Ethernet or UART interface
- Firmware update via Ethernet interface with BOOTP/TFTP
- Easy configuration of host interfaces and GPIOs
- 2 Fast Ethernet Ports with integrated PHYs
 - 100 Mbit full duplex data transmission
 - IRT Bridge Delay < 3 μsec
 - Auto Negotiation
 - Auto Cross-Over
 - Auto Polarity
 - Support for 100Base-TX and 100Base-FX ports
 - Monitoring of fiber optic transmission links with integrated I²C interfaces
- Power dissipation around < 1 W

Host Interface

- Serial (SPI up to 25 MHz) and parallel (8 or 16 bit) interface for use with an external host CPU
- Data exchange (cyclic and acyclic) with external host via integrated Shared Memory Area (event and interrupt controlled)
- 1016 Byte maximum data for cyclic exchange, dynamically distributed to two ARs (payload inclusive IOxS data)
- Two application relations available (from stack version V1.2 onwards)
- The TPS-1 firmware allows a up to 64 Slot/Subslots (e.g. 1 Slot with up to 64 Subslots)
- · Configuration of all host interfaces with software tool; configuration data are stored in a boot Flash

Note: A maximum data size of 1016 Byte is possible with stack version 1.4.0.14 or newer. This data size can be flexibly distributed over 2 PROFINET application relations (example: one AR uses 256 Bytes, the other AR uses 760 Bytes). With stack versions earlier than 1.4.0.14 the maximum data size is limited to 340 Bytes for each of the two configurable application relations.


1.2. Abstract

The PROFINET Device Chip TPS-1 is designed for easy and cost-efficient implementation of PROFINET interfaces for automation devices. It is a highly integrated single chip solution that meets all requirements of the PROFINET protocols. The configurable host interfaces facilitate the flexible realization of different use cases like direct connection of an external host CPU or digital I/Os without additional circuitry.

The TPS-1 complies with PROFINET Conformance Class C. The integrated components realize the complete interface functionality. The internal structure is designed to fulfill the requirements of the IRT protocol. Special synchronous signals are available to realize all synchronization tasks. To support line topologies in PROFINET networks, the TPS-1 is equipped with two integrated PHYs and an integrated IRT switch. Time-critical PROFINET protocols are supported by hardware.

For the complete implementation of a PROFINET device interface, only the TPS-1, a serial Flash device, an oscillator, and the physical adaptations for the Ethernet interface (transformers and connectors) are needed. The serial Flash component contains the individual chip configuration and firmware for the PROFINET CPU.

Due to the low space requirement and low power dissipation of the TPS-1, a PROFINET interface can also be integrated into automation devices with special requirements regarding housing size and protection classes. Conductor routing between the balls is still possible in order to keep down PCB cost.

R19UH0081ED0110 Rev. 1.10 Aug 21, 2023

TPS-1 User's Manual: Hardware 1. Overview

1.3. Block Diagram

The block diagram shows the internal structure and main components of the TPS-1.

The additional serial boot Flash component, the oscillator and the physical adaptation for the Ethernet interfaces are not listed.

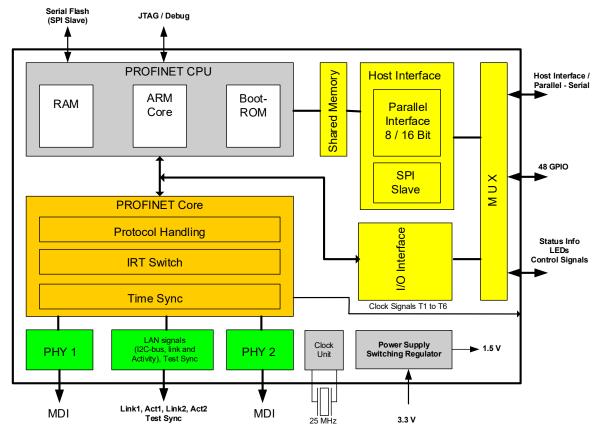


Figure 1-2: TPS-1 Block Diagram

The TPS-1 contains the PROFINET CPU, the PROFINET core, the I/O interface, and the Host Interface for connecting a host CPU. The PROFINET core processes the PROFINET communication. All time-critical services are implemented in hardware to realize high performance. The communication between an external host CPU and other PROFINET components is processed by the PROFINET CPU (connection establishment, administration and management of Application Relations, controlling of Ethernet connections, setup and monitoring of RT and IRT channels, etc.). Simple IO interfaces can be realized with the I/O interface only (e.g. digital I/Os)

2. Pin function

2.1. Signal overview and description

Table 2-1 contains an overview about all signals of the TPS-1.

Table 2-1: TPS-1 signal overview and description

Pin	Designation	Typ e	Function	Remark
		6	SPI Master for Boot Flash ROM	
M12	CS_FLASH_OUT	0	SPI Master Interface Firmware Flash: Chip Select (TPS-1)	(active low)
N13	SPI3_SCLK_OUT	0	SPI Master Interface Firmware Flash: CLOCK (TPS-1)	
M13	SPI3_SRXD_IN	I	SPI Master Interface Firmware Flash: Receive Data (TPS-1) -MISO	
M14	SPI3_STXD_OUT	0	SPI Master Interface Firmware Flash: Send Data (TPS-1) - MOSI	
			Synchronization signals	
N12	TEST_SYNC	0	Clock signal for certification	Note 2)
J11	T1	0	Clock signal 1 (isochronous mode, IRT)	
H11	T2	0	Clock signal 2 (isochronous mode, IRT)	
G11	Т3	0	Clock signal 3 (isochronous mode, IRT)	
F11	T4	0	Clock signal 4 (isochronous mode, IRT)	
E11	T5	0	Clock signal 5 (isochronous mode, IRT)	
D11	T6	0	Clock signal 6 (isochronous mode, IRT)	
	LED signals device status PROFINET			
B13	LED_BF_OUT	0	Control LED "Bus Failure"	(active low)
B11	LED_SF_OUT	0	Control LED "System Fail"	(active low)
C10	LED_READY_OUT	0	Control LED "Device Ready"	(active low)
B10	LED_MT_OUT	0	Control LED "Maintenance"	(active low)
			PHY Port 1	
C9	I2C_1_D_INOUT	I/O	Fiber Optic Port 1: I ² C-Bus "Data"	e.g. SC-RJ
C6	SCLK_1_INOUT	0	Fiber Optic Port 1: I ² C-Bus "Clock"	e.g. SC-RJ
C12	LINK_PHY1	0	LINK indication ETHERNET Port 1 (up or down)	(active high)
D10	ACT_PHY1	0	Activity ETHERNET Port 1	(active high)
F13	P1_TX_P	0	ETHERNET Port 1 transmit data (positive)	e.g. RJ45
F14	P1_TX_N	0	ETHERNET Port 1 transmit data (negative)	e.g. RJ45
E13	P1_RX_P	1	ETHERNET Port 1 Receive Data (positive)	e.g. RJ45
E14	P1_RX_N	1	ETHERNET Port 1 Receive Data (negative)	e.g. RJ45
B8	P1_SD_P	1	Fiber Optic Port 1: Signal Detect (positive)	e.g. SC-RJ
A8	P1_SD_N	1	Fiber Optic Port 1: Signal Detect (negative)	e.g. SC-RJ
В9	P1_RD_P	I	Fiber Optic Port 1: Receive Data (positive)	e.g. SC-RJ
A9	P1_RD_N	I	Fiber Optic Port 1: Receive Data (negative)	e.g. SC-RJ
B6	P1_TD_OUT_P	0	Fiber Optic Port 1: Transmit Data (negative)	e.g. SC-RJ
A6	P1_TD_OUT_N	0	Fiber Optic Port 1: Transmit Data (positive)	e.g. SC-RJ
A5	P1_FX_EN_OUT	0	Fiber Optic Port 1: Transmitter enable (active high)	e.g. SC-RJ
			PHY Port 2	
M11	I2C_2_D_INOUT	I/O	Fiber Optic Port 2: I ² C-Bus "Data"	e.g. SC-RJ

L11	SCLK_2_INOUT	0	Fiber Optic Port 2: I ² C-Bus "Clock"	e.g. SC-RJ
C11	LINK PHY2	0	LINK indication ETHERNET Port 2 (up or down)	(active high)
A10	ACT_PHY2	0	Activity ETHERNET Port 2	(active high)
J13	P2_TX_P	0	ETHERNET Port 2 Transmit Data (positive)	e.g. RJ45
J13		0	(1 /	
	P2_TX_N	_	ETHERNET Port 2 Preside Data (negative)	e.g. RJ45
K13	P2_RX_P	I	ETHERNET Port 2 Receive Data (positive)	e.g. RJ45
K14	P2_RX_N	1	ETHERNET Port 2 Receive Data (negative)	e.g. RJ45
N8	P2_SD_P	1	Fiber Optic Port 2: Signal Detect (positive)	e.g. SC-RJ
P8	P2_SD_N		Fiber Optic Port 2: Signal Detect (negative)	e.g. SC-RJ
N9	P2_RD_P	I	Fiber Optic Port 2: Receive Data (positive)	e.g. SC-RJ
P9	P2_RD_N	I	Fiber Optic Port 2: Receive Data (negative)	e.g. SC-RJ
N6	P2_TD_OUT_P	0	Fiber Optic Port 2: Transmit Data (negative)	e.g. SC-RJ
P6	P2_TD_OUT_N	0	Fiber Optic Port 2: Transmit Data (positive)	e.g. SC-RJ
P5	P2_FX_EN_OUT	0	Fiber Optic Port 2: Transmitter enable (active high)	e.g. SC-RJ
			Oscillator	
N11	XCLK1	1	Connection external oscillator (1), 25 MHz	
P11	XCLK2	0	Connection external oscillator (2), 25 MHz	
			JTAG – Interface	
L4	TM0	I	Test Input 0 (Chip Test - 10k to GND)	(pull down external)
J10	TM1	I	Test Input 1 (Chip Test - 10k to GND)	(pull down external)
K5	TRSTN	I	JTAG-Interface: "Test Reset"	(pull down external)
L6	TMS	I	JTAG-Interface: "Test Mode Select"	(pull-up external)
L7	TDO	0	JTAG-Interface: "Test Data Output"	
J5	TCK	I	JTAG-Interface: "Test Clock"	(pull-up external)
L5	TDI	I	JTAG-Interface: "Test Data Input"	(pull-up external)
			Reset / Test	
A12	RESETN	1	TPS-1 Reset (Global Reset)	(active low)
H12	ATP	I	Test pin for production test (n.c.)	
H13	EXTRES	0	External reference resistor (12.4 k Ω ,1 %), connect to analog GND	
E10	TMC1	ı	Test Mode Control 1 (production test)	(pull down external recommended)
K10	TMC2	I	Test Mode Control 2 (production test)	(pull down external recommended)
D6	TEST_1_IN	I	Test Pin 1 for hardware test of the TPS-1	(pull down external recommended)
D7	TEST_2_IN	I	Test Pin 2 for hardware test of the TPS-1	(pull down external recommended)
D8	TESTDOUT5	0	Test Data Output 5 (High Speed Signals for PHY)	
D9	TESTDOUT6	0	Test Data Output 6 (High Speed Signals for PHY)	
L8	TESTDOUT7	0	Test Data Output 7 (High Speed Signals for PHY)	
			Host interface	
A11	WD_IN	I	Watchdog input (from the Host) (the rising edge resets the watchdog counter of the TPS-1)	(active high)
B12	WD_OUT	0	Watchdog output (to the Host)	(active low)
K11	INT_OUT	0	Interrupt output (to the Host)	(active high)
			Boot interface (serial)	

C14	UART6_TX	UART6_TX O Boot UART "Transmit Data"		
C13	UART6_RX	Į	Boot UART "Receive Data"	
P12	BOOT_1	I	Forced Boot	
			Test signals for switching regulator	
НЗ	TEST1	I	Test Pin switching regulator (in combination with Test2, Test3)	
G3	TEST2	I	Test Pin switching regulator (in combination with Test1, Test3)	
E1	TEST3	I	Test Pin switching regulator (in combination with Test1, Test2)	
			PHY supply voltages	
E12	VDD33ESD		Analog test supply, 3.3 V	
C8	VDDQ_PECL_B1	1	PECL buffer power supply 3.3 V (Port 1)	
M8	VDDQ_PECL_B2	I	PECL buffer power supply 3.3 V (Port 2)	
D14	P1VDDARXTX	I	Analog Rx/Tx port power supply	
			Analog 1.5 V V _{DD} (must be generated via a filter from digital 1.5 V power supply) – Port 1	
L14	P2VDDARXTX	1	Analog Rx/Tx port power supply	
			Analog 1.5 V V _{DD} (must be generated via a filter from digital 1,5 V power supply) – Port 2	
H14	VDDACB	I	Analog 3.3 V V _{DD} (must be generated via a filter from digital 3.3 V power supply)	
G13	VSSAPLLCB		Analog central GND	
G14	VDDAPLL		Analog central power supply for PHYs, 1.5 V	
			Pins for core PLL power supply	
L9	PLL_AGND		PLL analog GND (core PLL)	
L10	PLL_AVDD		PLL analog 1.0 V (core PLL)	
			Pins for switching regulator	
J1	BVDD	I	Supply voltage for the switching regulator (3.3 V supply for the switching transistor)	
G1	BGND		GND for switching regulator (please place bypass capacitor between analog power supply and GND).	
F2	AVDD_REG		Analog VDD for regulator (3.3 V supply), smoothed voltage to feed the internal POR.	Note 1)
G2	AGND_REG		Analog GND switching regulator	
H1	LX	0	1.5 V output of the internal switching regulator	
F1	FB	ı	Feedback (regulator)	
			Configurable GPIOs	
	GPIO_00 - GPIO_47	I/O	(see table "Alternate use of the GPIO") After reset the GPIO pin are configured as Inputs (no pull up or down)	
Notes:		_		

Notes:

- 1. Pin F2 must be always connected to VDD33 (refer Figure 8-2: Internal voltage regulator).
- 2. The signal TEST_SYNC must be available for certification test (a reachable pad is enough).

2.2. GPIO multiplexing

Table 2-2: Alternate use of the GPIOs

Pin	Designation	Alternate Use	Description
D5	GPIO 0	LBU WR EN IN	Write Enable
B5	GPIO 1	LBU READ EN IN	Read Enable
C5	GPIO 2	LBU CS IN	Chip Select
C4	GPIO 3	LBU BE 1 IN	Byte Selection (low)
A4	GPIO 4	LBU BE 2 IN	Byte Selection (high)
B4	GPIO 5	LBU READY OUT	Ready Signal TPS-1 (Note 1), (Note 2)
C3	GPIO 6	LBU DATA0	Data Bit
A3	GPIO 7	LBU DATA1	Data Bit
B3	GPIO 8	LBU DATA2	Data Bit
B2	GPIO 9	LBU DATA3	Data Bit
D3	GPIO 10	LBU DATA4	Data Bit
D4	GPIO 11	LBU DATA5	Data Bit
C1	GPIO 12	LBU DATA6	Data Bit
C2	GPIO 13	LBU DATA7	Data Bit
D2	GPIO 14	LBU DATA8	Data Bit
D1	GPIO 15	LBU DATA9	Data Bit
E2	GPIO 16	LBU DATA10	Data Bit
E3	GPIO 17	LBU DATA11	Data Bit
E4	GPIO 18	LBU DATA12	Data Bit
E5	GPIO 19	LBU DATA13	Data Bit
F5	GPIO 20	LBU DATA14	Data Bit
F4	GPIO 21	LBU DATA15	Data Bit
F3	GPIO 22	LBU A0 IN	Address Bit
G5	GPIO 23	LBU A1 IN	Address Bit
G4	GPIO 24	LBU A2 IN	Address Bit
H5	GPIO 25	LBU A3 IN	Address Bit
H4	GPIO 26	LBU A4 IN	Address Bit
J4	GPIO 27	LBU A5 IN	Address Bit
J3	GPIO 28	LBU A6 IN	Address Bit
K3	GPIO 29	LBU A7 IN	Address Bit
K4	GPIO 30	LBU A8 IN	Address Bit
K2	GPIO 31	LBU A9 IN	Address Bit
L2	GPIO 32	LBU A10 IN	Address Bit
L3	GPIO 33	LBU A11 IN	Address Bit
L3 L1	GPIO 34	LBU A12 IN	Address Bit
M2	GPIO 35	LBU A13 IN	Address Bit
M1	GPIO 36	LBU SEGO IN	
M3	GPIO 37	LBU SEG1 IN	Segment choice 1 Segment choice 2
P3	GPIO 38	HOST RESET IN	Reset Host SPI Interface
N3	GPIO 40	HOST SPAN IN	Start new SPI Transfer (Note 3)
N2	GPIO 40	HOST SCLICIN	SPI Cleak
N4	GPIO 41	HOST SCLK IN	SPI Clock
M4	GPIO 42	HOST STXD OUT	SPI transmit data
P4	GPIO 43	HOST SHDR OUT	Header recognized
N5	GPIO 44	LOCAL SCLK OUT	SPI Clock (SPI master IO interface)
M5	GPIO 45	LOCAL SFRN OUT	SPI Chip Select (SPI master IO interface)
M6	GPIO 46	LOCAL SRXD IN	SPI receive date (SPI master IO interface)
M7	GPIO 47	LOCAL STXD OUT	SPI transmit data (SPI master IO interface)

Note: You can only use one interface exclusively. It is not allowed to use e.g. the parallel and serial host interface at the same time.

Note 1): The "LBU_READY_OUT" is designed to connect only to one microcontroller. If you want to connect additional devices you must add circuitry to realize the high-impedance state.

Note 2): If your processor does not have a READY Input, you can choose a wait time of 260 ns during each transfer cycle.

Note 3): As soon as the signal HOST_SFRN_IN is set to "1", no more data is received on the RxD interface. Setting the signal is not allowed during an ongoing transfer.

2.3. Supply Voltage Circuitry

The TPS-1 works with three operating voltages: VDD15 (1.5 V), VDD33 (3.3 V, IO) and VDD10 (1.0 V, core). Additionally, the on-chip PLL for the device clock generation requires a supply called PLL_AVDD (1.0 V), which is typically a filtered version of VDD10. The integrated PHYs of the TPS-1 require additional filtered operating voltages.

Table 2-3: Supply Voltage Circuitry

Pin	Pin Name	Function	Supply Voltage Generation
D14, L14	P1VDDARXTX P2VDDARXTX	Analog port RX/TX power supply, 1.5 V (PHY port 1 and port 2)	Must be generated from VDD15 via a filter.
G14	VDDAPLL	Analog central power supply, 1.5 V (PHY)	
H14	VDDACB	Analog central power supply, 3.3 V (PHY)	Must be generated from VDD33 via a filter.
E12	VDD33ESD	Analog test power supply, 3.3 V (PHY)	
G13	VSSAPLLCB	Analog central GND (PHY)	Must be generated from GND Core/IO via a filter or connected to GND Core/IO at the far end from TPS-1.
C8, M8	VDDQ_PECL_B1 VDDQ_PECL_B2	PECL buffer power supply 3.3 V (port 1 and port 2)	
L9	PLL_AGND	Analog Ground for the internal CPU clock generation	
L10	PLL_AVDD	Power supply for the internal CPU clock generation (1.0V)	
A1, A14, B7, F7, F8, F9, G6, G7, G8, G9, G10, G12, H6, H7, H8, H9, H10, J2, J6, J7, J8, J9, J12, M10, N7, N10, P1, P14	GND	Digital GND	
D12, D13, L12, L13	AGND	Analog Ground for PHYs	
B1, B14, C7, F6, F10, H2, N1, N14, P7, P10	VDD33	Voltage Supply 3.3 V	External
A2, A7, A13, F12, K1, K12, M9, P2, P13	VDD15	Voltage Supply 1.5 V	form Switching Regulator or external
E6, E7, E8, E9, K6, K7, K8, K9	VDD10	Voltage Supply 1.0 V	External

2.4. Signals for IRT Communication

The TPS-1 synchronizes the IO device to the PROFINET controller and generates trigger signals that are used for application synchronization. T_{IO} Input relates peripheral inputs and T_{IO} Output relates peripheral outputs to the data cycle.

Table 2-4: IRT Communication Signals

Signal	Pin	Function	Comment
TEST_SYNC	N12	Start of bus cycle	A signal on this pin signalizes a new cycle event. It is used as well to test the synchronization during the certification. The signal should be made accessible for measurement purposes.
T1	J11	Ti (T_IO_Input)	Time at which the input data must be read from process.
T2	H11	To (T_IO_Output)	Data can be used by the application at this configured time.
Т3	G11	T_IO_InputValid	Time at which the input data must be in the transfer buffer.
T4	F11	T_IO_OutputValid	This signal indicates when the data for output are available.
T5	E11		-for further use
T6	D11		-for further use

3. Host Interface

The host interface is designed to connect external microprocessors. These processors access the internal shared memory of the TPS-1 in order to exchange cyclic or acyclic data with the PROFINET IO interface. The shared memory has an address space of 64 Kbyte. The data exchange is processed with the help of an "Event Unit".

Another way to inform the external host CPU about a new PROFINET status is the integrated interrupt system. The parallel interface can be switched to Motorola or Intel mode.

It is only possible to use the Host parallel interface or the Host serial interface. It is not possible to use both at the same time.

3.1. Testing DPRAM Interface

For testing the DPRAM Interface it is useful to have addresses with defined values. After start of the TPS-1 firmware the TPS-1 writes the magic number and the NRT Area Size into the addresses 0x8000 and 0x8004.

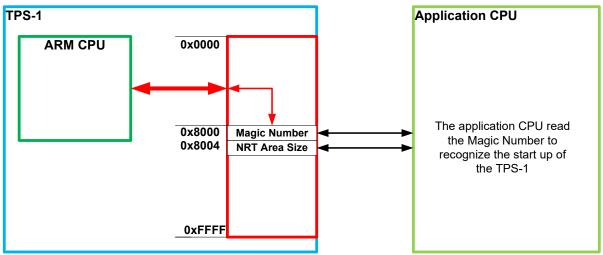


Figure 3-1: TPS-1 with address page 16 Kbyte

3.2. Parallel Interface

3.2.1. Operating modes of the parallel interface

The parallel interface can be used with an 8-bit or 16-bit data bus.

Table 3-1: Operating Modes of the parallel interface

Setting	Description
Operating mode	Separate Read / Write signal (Intel Mode)
	Read-/Write-Control (Motorola Mode)
Polarity of ready signal	Ready Signal "active low"
	Ready Signal "active high"
Data bus width	8 bit
	16 bit

The configuration of the parallel interface is also done with "TPS Configurator".

3.2.2. Signal description of the parallel interface

The shared memory has an address space of 64 Kbyte (refer to chapter "Shared memory structure"). The typical page size is 16 KByte. For a correct alignment you have to connect the highest address bits to the signals LBU_SEG0_IN and LBU_SEG1_IN (see Table 3-2, Figure 3-2 and Figure 3-3).

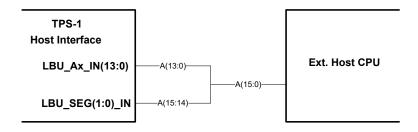


Figure 3-2: TPS-1 with address page 16 Kbyte

You can also choose a page size of 4 Kbyte. When you choose 4 Kbyte pages you have less space inside the NRT area for configuration slots and subslots.

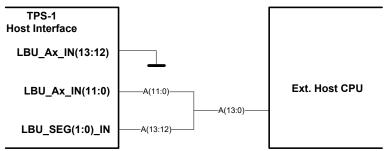


Figure 3-3: TPS-1 with address page 4 Kbyte

Table 3-2 describes all signals of the parallel Host interface.

Table 3-2: Parallel Host Interface Layout

Signal designation	Function	Remarks
LBU_WR_EN_IN	Write Control	active low (Intel mode)
		0: write; 1: read (Motorola mode)
LBU_READ_EN_IN	Read Control	active low (Intel-mode)
		no function (Motorola-Mode)
LBU_CS_IN	Chip Select	
LBU_BE_1_IN	Byte Selection 1	
LBU_BE_2_IN	Byte Selection 2	
LBU_READY_OUT	Ready Signal	polarity changeable
LBU_DATA0 – LBU_DATA15	data line 0 – 15	
LBU_A0_IN – LBU_A13_IN	Address lines 0 - 13	
LBU_SEG0_IN	Low Bit of the segment	page selection
LBU_SEG1_IN	High Bit of the segment	page selection

During a memory access, the TPS-1 behaves like a "16-bit Little Endian" device with an 8-bit or 16-bit memory. The possible access types are listed in Table 3-3.

Table 3-3: 16-Bit External Host Databus

LBU_BE_2_IN	LBU_BE_1_IN	Access type
1	0	8-Bit LOW
0	1	8-Bit HIGH
0	0	16-Bit
Other com	Not allowed	

Table 3-4: 8-Bit External Host Databus

LBU_A[1:0]	LBU_BE_2_IN	LBU_BE_1_IN	Access type
00	1	0	8-Bit access
01	1	0	8-Bit access
10	1	0	8-Bit access
11	1	0	8-Bit access
Other combinations			Not allowed

An illegal access results in an "Error-IRQ" from the event unit.

3.2.3. Memory Segmentation at 4 kByte and 16 kByte page size

You decide the page size with the TPS Configurator. A connected Host CPU selected the pages with the LBU_SEGx_IN signals. Table 3-5 shows the page decoding.

Table 3-5: Page selection with LBU_SEGx_IN signals

LBU_SEG(1:0)	Selected Page
0 0	Page 00
0 1	Page 01
1 0	Page 02
11	Page 03

The segmentation with 16 Kbyte pages is shown in Figure 3-4. With 16 address lines you can reach the whole 64 kByte address space.

16 K Page Size

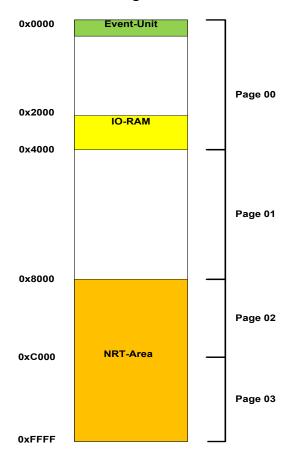


Figure 3-4: 16 kByte page size

Using the 4 kByte address pages limits the available address space of the NRT area. Figure 3-5 shows the pages. You can reach the complete Event-Unit and the complete IO-RAM. Out of the NRT area you can only use the address space between 0x8000 and 0x9FFF.

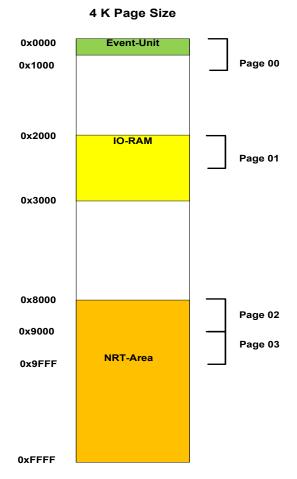


Figure 3-5: 4 kByte page size

Because of the page size, it is not possible to use the max. Possible number of slots and subslots. Other page sizes than 16 kByte and 4 kByte are not possible.

3.2.4. Connection example for an 8bit data bus

Figure 3-6 shows a connection example of an 8-bit data bus to the TPS-1.

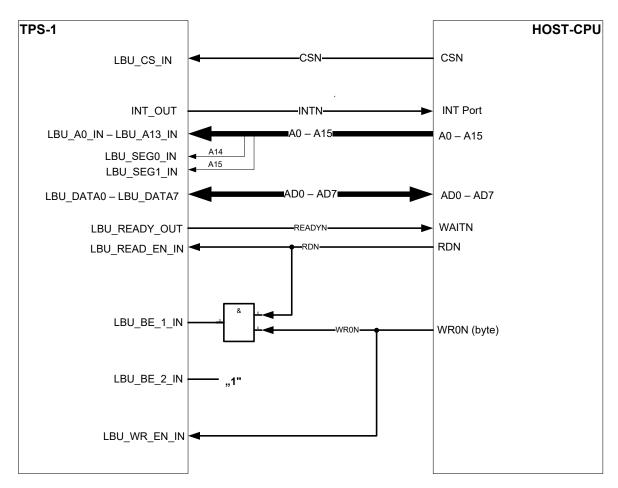


Figure 3-6: Connection example for an 8-bit data bus

3.2.5. Connection example for a 16-bit data bus

Figure 3-7 shows the connection of a 16-bit CPU to the TPS-1. The connection uses a 16-bit data bus and an address bus of 16 bit. Thus, it is possible to access the entire address space of 64 KByte. Address line A0 should not be connected using the 16-bit data bus. The Address line LBU_A0_IN should be connected to a pull down.

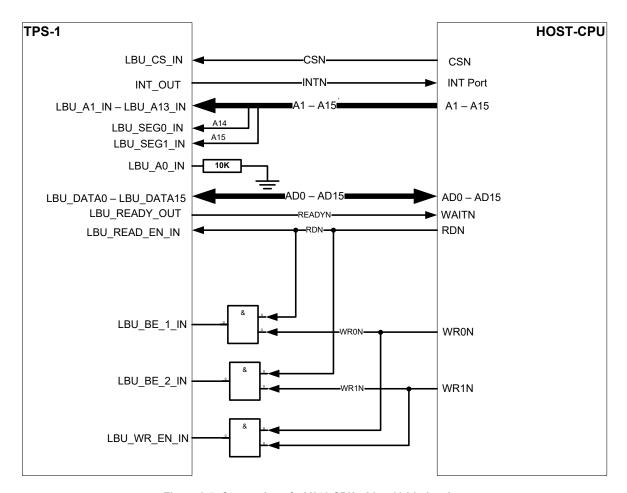


Figure 3-7: Connection of a V850 CPU with a 16-bit data bus

3.3. SPI Slave Interface

Another way to connect a host CPU is the SPI interface. The maximum speed for serial access to the shared memory is 25 MHz. The transmission clock frequency should range between 1 MHz and 25 MHz. A control unit for processing the SPI Master commands is implemented into the TPS-1. The SPI Master commands are described in this chapter.

Table 3-6: SPI host interface signals

Pin	GPIO Pin	Signal designation	Function	Remarks
P3	GPIO_38	HOST_RESET_IN	Serial Reset	The SPI Slave interface can be reset by using this signal (signal is active high).
N3	GPIO_39	HOST_SFRN_IN	Serial Frame	The start of a new SPI transfer is signalized.
N2	GPIO_40	HOST_SRXD_IN	Serial Data Input	MOSI (Master out Slave in)
N4	GPIO_41	HOST_SCLK_IN	Serial Clock Input	Serial Clock driven by the SPI Master
M4	GPIO_42	HOST_STXD_OUT	Serial Data Output	MISO (Master in Slave out)
P4	GPIO_43	HOST_SHDR_OUT	Serial Header Information	header information available

An unknown or wrong SPI access causes an "Error-IRQ" that is reported to the host CPU by the event unit.

The clock phase and the CPOL (clock polarity) is adjustable (active low, active high).

The following figure shows the connection of a host CPU (V850ES/JG2) to the SPI Slave interface of the TPS-1. The "chip select" line is not connected. The data transfer is controlled by the status of the "clock line" (CSI-Master).

The pins HOST_RESET_IN, HOST_SFRN_IN and HOST_SHDR_OUT are not supported directly by the HOST-CPU. They have to be simulated by the pins P02, P03 and P04.

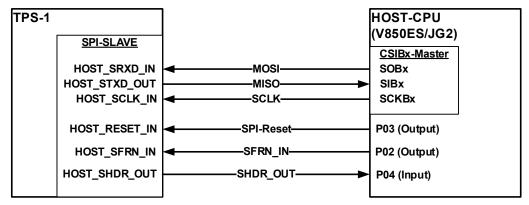


Figure 3-8: Connection of a V850 CPU to the SPI interface

3.3.1. Serial access to the shared memory

The access to the shared memory is processed with command bytes that are part of the SPI-Header. The command structure depends on the device.

Generally, an SPI interface works like a shift register. The clock is driven by the SPI master. After processing the SPI command, the SPI slave sends the requested data to the host CPU (or data is only sent to the SPI slave). As long as the chip select signal is active, data are exchanged between the devices (master – slave).

3.3.1.1. Header structure

The content and meaning of SPI data is defined by the implementation of the SPI slave. The following chapter describes the structure of the SPI slave commands.

Table 3-7: SPI header structure

		Header			Data
Byte 0	Byte 1	Byte 2	Byte 3	Byte 4	Byte 5 – max.
Command	Address	Address	Length	Length	
1 Byte	1 Byte	1 Byte	1 Byte	1 Byte	1 Byte max. length Shared Memory

An indirect command contains the length information in byte 3 and 4. A direct command contains the length information in the bits 0 to 3 of the command byte. The maximum address access is limited to 15 byte.

3.3.1.2. Structure of a command byte

Figure 3-9 shows the format of a command byte. A command byte can be followed by an address area, length area and data.

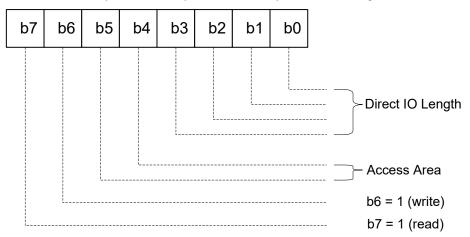


Figure 3-9: Command byte for SPI slaves (host interface)

The bits of the command byte have the following meaning:

- b7 indicates a read command,
- b6 indicates a write command,
- b5 and b4 describe the addressing range:
 - "00": MEM access to the complete shared memory (64 Kbyte)
 - "01": IO access to the input/output area
 - "10": access to a multicast provider CR (only write)
 - ",11": fractional access to an I-CR (b6 = 1) or MC-CR (b6 = 0)
- b3 .. b0 contain the length for an optimized direct data access
 - "= 0000": no direct access.
 - "≠ 0000": direct access length information (maximum of 15 byte)

3.3.1.3. **Command overview**

The SPI commands are optimized for the use with PROFINET. The following table describes the implemented commands.

Table 3-8: Implemented SPI commands

DirectMEM- Access	This gives the external host Each access transfers not m byte.				
Command	Description	Command code	Number of address bytes	Number of length bytes	Number of data bytes
Read MEM Direct	Reads from the transferred address. The length is coded in the command byte.	0b1000_nnnn (0x8n)	2	0	1 - 15
Write MEM Direct	Writes to the transferred address. The length is coded in the command byte.	0b0100_nnnn (0x4n)	2	0	1 - 15
	With this command the oute				•
MEM-Access	With this command, the extended Kbyte address space with a acyclic data).				
MEM-Access Command	Kbyte address space with a				
	Kbyte address space with a acyclic data).	maximum data ler	Number of address	e (access to cy Number of length	Number of data

3.3.2. SPI Slave Interface Timing

The SPI transfer is controlled by the signal HOST_SFRN_IN. A chip select signal is not used.

3.3.2.1. SPI Slave Interface Typical Timing

The following figure shows a typical SPI-Slave Timing (Motorola Mode).

Each transfer (a transmission of 8 bit) starts with a falling edge of the **HOST_SFRN_IN** signal. The transmission is controlled by the clock signal. All receive and transmit data is processed in the Little-Endian format by the serial host interface. When connecting a Big-Endian Host System, the format has to be changed into the correct order.

There is a maximum clock frequency of 25 MHz possible using this interface.

Figure 3-10: SPI Slave Timing

The signal HOST_SHDR_OUT is used to inform the SPI master, that header information has been received (HOST_SHDR_OUT = 0). When the signal goes to high level (HOST_SHDR_OUT = 1), payload data is expected.

As soon as the signal HOST_SFRN_IN is set to "1", no more data is received on the RxD interface. Setting the signal is not allowed during an ongoing transfer.

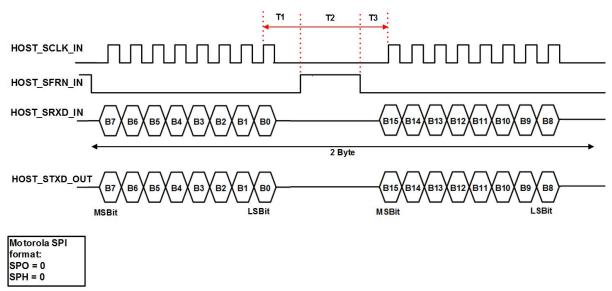


Figure 3-11: SPI Transfer with HOST_SFRN_IN Signal

The **HOST_SFRN_IN** signal is required to synchronize bytes transferred to the TPS-1 with the peripheral interface. The timing to be observed can be seen in Figure 3-11 (T1, T2 and T3).

The timing is based on the system clock of the TPS-1 (100 MHz, 10 ns); it must as well be applied in the situations shown in Figure 3-12, Figure 3-13 and Figure 3-14.

Table 9: Timing HOST_SFRN_IN signal

Phase	Timing	Description
T1	min. 1 system clock	The HOST_SFRN_IN signal may become active not earlier than one system clock after the rising edge of HOST_SCLK_IN.
T2	min. 2 system clock	The signal HOST_SFRN_IN must be active for at least 2 system clocks.
Т3	Min. 3 system clock	There must be at least 3 system clocks between the falling edge of HOST_SFRN_IN and the active edge of HOST_SCLK_IN.

RENESAS

3.3.2.2. SPI Slave Interface Handshake Mode

If the header contains a read or exchange command, it is necessary to wait for a short time after transferring the header in order to enable the slave interface to collect the data before transferring. There are two methods to do this.

You can enable the busy mode (polarity high or low) or use the wait mode.

3.3.2.2.1. SPI Slave Interface Handshake Busy Mode

The handshake mode and the polarity can be configured with the TPS Configurator.

After transmitting the header information, the Busy_Enable signal is set (no clock and HOST_SRXD_IN in high or low – depends on the Busy_POL). When the SPI slave interface can transmit the requested data, the **HOST_STXD_OUT** signal is set to its active level. This indicates to the SPI master that it can start the next cycle and the master release the Busy_Enable signal. This forces the SPI slave to release the Busy level and the master starts the next clock cycle.

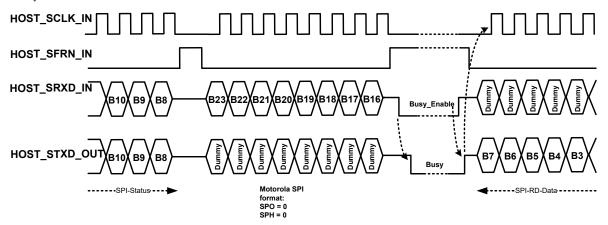


Figure 3-12: SPI Read-Timing (Busy_POL=0)

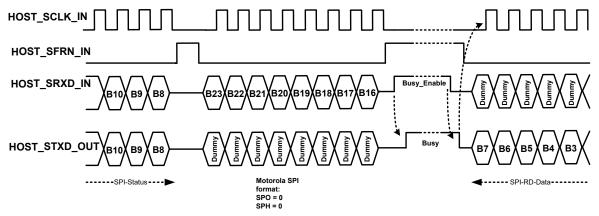


Figure 3-13: SPI Read-Timing (Busy_POL=1)

3.3.2.2.2. SPI Slave Interface Handshake Wait Mode

When using the Handshake Wait Mode, the SPI master deactivates the data transfer after the header has been transmitted and starts a wait time. During this time, the SPI Slave can provide the requested data.

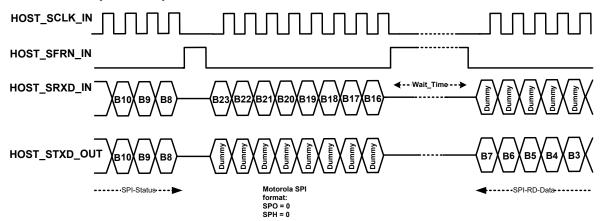


Figure 3-14: SPI Read-Timing Wait Mode

The following equation describes the Wait-Time after the command bytes, before starting the payload data:

$$T_{Wait} = ((32 * f_{sys}/f_{SPI}) - 10);$$
 $(T_{Wait} * 1/f_{sys} = Wait-Time)$

The following table shows a rough estimation for two frequencies:

Table 3-10: SPI Wait Time

SPI Clock (MHz)	Wait-Time (μs)
12.5	2.46 – 2.5
25	1.18 – 1.2

The time between two complete data transfers is calculated with the following equation:

$$L = ((4 * (T_{Wait} + 10)) - 8 * f_{sys}/f_{SPI})$$
 (L * 1/fsys = break between two cycle);

The following figure shows two SPI transfers (each 5 byte long) and the wait time between this cycles.

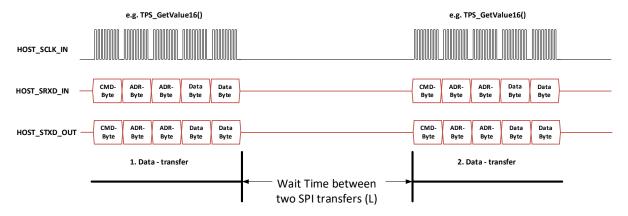


Figure 3-15: Two SPI transfers with wait time

3.3.3. SPI Slave Interface Reset Timing

Figure 3-14 describes the behavior when a reset for the SPI Slave interface occurs. The communication process is interrupted and after a wait time of 4 system clocks (40 ns for the TPS-1), the next transfer can start.

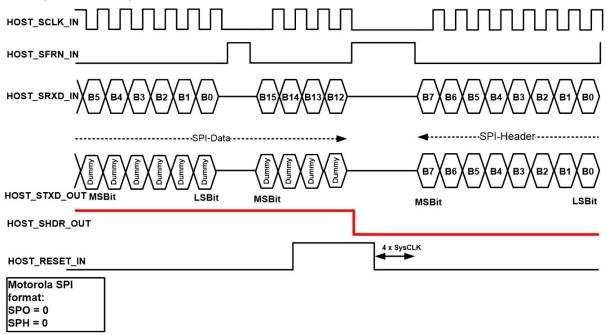


Figure 3-16: SPI Slave Reset Timing

The signal HOST_RESET_IN is the only way to set the slave interface to a defined status. The signal is active high. During the normal operation the signal is set to "low level".

If you want to ensure that the previous transfer is completed terminated, the following waiting time must be observed:

$$T_{Wait} = ((32 * f_{sys}/f_{SPI}) - 10) + 4 \text{ clock pulse};$$

This time applies after the rising clock edge of HOST_SCLK_IN. In addition, HOST_RESET_IN may only become active simultaneously with HOST_SFRN_IN at the earliest.

4. Shared memory structure

Figure 4-1 describes the structure of the shared memory. The serial and parallel interfaces see the same memory image (64 Kbyte). If you use 4 kByte memory pages then you can only use the NRT Area up to 0x9FFF.

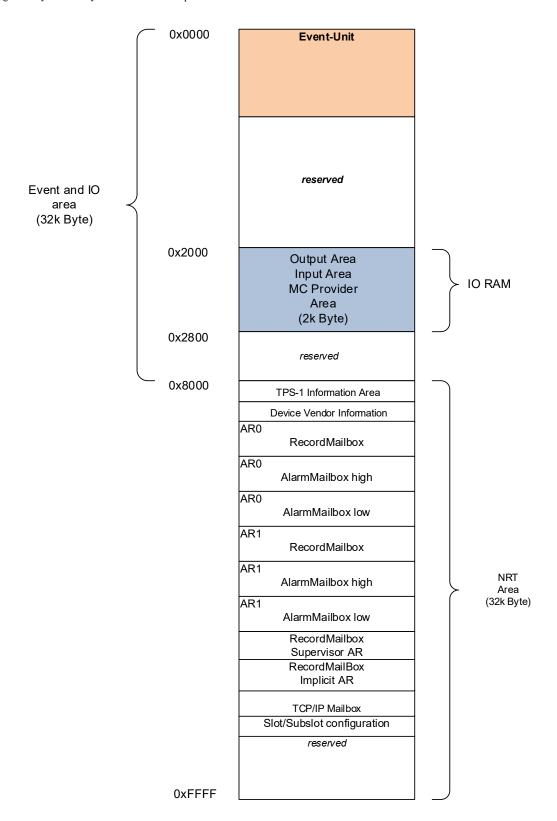


Figure 4-1: TPS-1 Shared Memory Structure (Dual Ported RAM)

The structure of the configuration written into the NRT area is checked by the TPS-1 firmware. If there are structure errors the TPS-1 firmware does not start.

The host interface and the NRT area are accessible in a continuous address space.

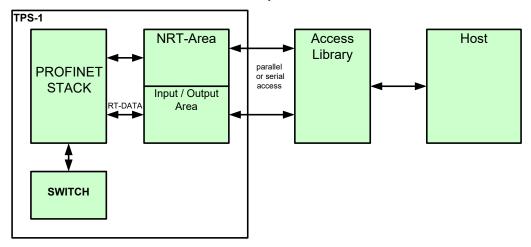


Figure 4-2: General overview host interface

Access to the NRT area and Input/Output area is processed with the support of a software library. The memory area (shared memory) is used for the access to acyclic and cyclic data. The size depends on the device.

Exchange of the cyclic data is managed in the peripheral interface (input / output area). The structure of this area is fixed. It is possible to manage one AR (Application Relations) in the first release.

- one I-Data-CR
- one O-Data CR

The IO data has a maximum size of 1016 Byte (cyclic data), dynamically distributed to two ARs. Note

Note:

A maximum data size of 1016 Byte is possible with stack version 1.4.0.14 or newer. This data size can be flexibly distributed over 2 PROFINET application relations (example: one AR uses 256 Bytes, the other AR uses 760 Bytes). With stack versions earlier than 1.4.0.14 the maximum data size is limited to 340 Bytes for each of the two configurable application relations.

4.1. Event communication with the TPS-1 Firmware

After system start up the communication between the TPS-1 and the host CPU is processed by the event register (one register for each direction). Each bit of the event register causes a special action.

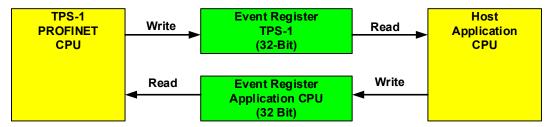


Figure 4-3: TPS-1 Event Communication

For process changes of the event register the TPS-1 and the host CPU has to poll these registers. You can also use an interrupt control mode if the host CPU supports this.

The event bits corresponding to the mail box access are not ambiguous. After receiving this event it is necessary to check each mail box. In the header of the respective mail box, the **READ_FLAG** is set.

The following tables describe the structure of the event register for each direction.

For each possible event bit in the event register a special callback function is implemented. For example, the event

"EVENT_ONCONNECT_REQ_REC_0" (bit 13) indicates a Connect.Req for the first AR (AR0). In this case the check function will call in the function OnConnect() and process the event.

4.2. Events from the TPS-1 firmware to the host

Table 4-1: TPS-1 Firmware Events

Name	Description
TPS_Event_Bits (Fir	mware Stack -> Host)
TPS_EVENT_ONCONNECTDONE_AR0	Set when a connection for IOAR0 is established.
TPS_EVENT_ONCONNECTDONE_AR1	Set when a connection for IOAR1 is established.
TPS_EVENT_ONCONNECTDONE_AR2	Set when a connection for IOSAR is established.
TPS_EVENT_ON_PRM_END_DONE_IOAR0	All parameter available for IOAR0.
TPS_EVENT_ON_PRM_END_DONE_IOAR1	All parameter available for IOAR1.
TPS_EVENT_ON_PRM_END_DONE_IOSAR	All parameter available for IOSAR
TPS_EVENT_ONABORT_IOAR0	Connection for IOAR0 is disconnected.
TPS_EVENT_ONABORT_IOAR1	Connection for IOAR1 is disconnected.
TPS_EVENT_ONABORT_IOSAR	Connection for IOSAR is disconnected.
TPS_EVENT_ONREADRECORD	Set when a Record Read Request is available in a Record-Mailbox.
TPS_EVENT_ONWRITERECORD	Set when a Record Write Request is available in a Record-Mailbox.
TPS_EVENT_ONALARM_ACK_0	Set when an alarm (low priority) is acknowledged from the controller.
TPS_EVENT_ONDIAG_ACK	Set if a diagnostic alarm is acknowledged.
TPS_EVENT_ONCONNECT_REQ_REC_0	Set if a Connect.Req for the first AR (AR0) is received.
TPS_EVENT_ONCONNECT_REQ_REC_1	Set if a Connect.Req for the first AR (AR1) is received.
TPS_EVENT_ONCONNECT_REQ_REC_2	Set if a Connect.Req for the third AR (AR2) is received.
TPS_EVENT_ON_SET_DEVNAME	Device name is send to the host application.
TPS_EVENT_ON_SET_IP_PERM	IP address should be set permanent.
TPS_EVENT_ON_SET_IP_TEMP	IP address should only be set temporary.
TPS_EVENT_ONDCP_BLINK_START	Action LED flashing is should start.
TPS_EVENT_ONDCP_FACTORY_RESET	All settings are set to the factory settings.
TPS_EVENT_ONALARM_ACK_1	Set when an alarm (high priority) is acknowledged from the controller.
TPS_EVENT_RESET	A RESET of the Host CPU is forced.
TPS_EVENT_ETH_FRAME_REC	A TCP/IP Ethernet Frame is received.
TPS_EVENT_TPS_MESSAGE	A TPS communication packet was received and is available in the Ethernet mailbox.
TPS_EVENT_ON_LED_STATE_CHANGE	New state of TPS LEDs was set.
TPS_EVENT_ON_SET_DEVNAME_PERM	A dcp.set request to change the name of station was received.
TPS_EVENT_ON_FSUDATA_CHANGE	FSU parameter was written or changed by TPS-1 firmware.

4.3. Events from the host to the TPS-1 firmware

Table 4-2: Host Events

Name	Description
Host E	vent Bits (Host -> Firmware Stack)
APP_EVENT_CONFIG_FINISHED	Set by TPS_StartDevice(). Configuration is valid.
APP_EVENT_APP_RDY_0	Set when the device is complete parameterized for AR0.
APP_EVENT_APP_RDY_1	Set when the device is complete parameterized for AR1.
APP_EVENT_APP_RDY_2	Set when the device is complete parameterized for AR2 (Supervisor AR).
APP_EVENT_RECORD_DONE	Set after processing a request of the Record Mailbox.
APP_EVENT_DIAG_CHANGED	Set when the status of the diagnostic mailbox changed.
APP_EVENT_ONCONNECT_OK_0	Connect AR0 ok. Is set after the host processes the Framelayout-Parameter out of a Connect Request of the AR0.
APP_EVENT_ONCONNECT_OK_1	Connect AR1 ok. Is set after the host processes the Framelayout-Parameter out of a Connect Request of the AR1.
APP_EVENT_ONCONNECT_OK_2	Connect AR2 ok. Is set after the host processes the Framelayout-Parameter out of a Connect Request of the AR2.
APP_EVENT_ABORT_AR_0	AR0 is disconnected by the host.
APP_EVENT_ABORT_AR_1	AR1 is disconnected by the host.
APP_EVENT_ABORT_AR_2	AR2 is disconnected by the host.
APP_EVENT_PULL_SUBMODULE	A submodule is pulled out of the device.
APP_EVENT_RETURN_SUBMODULE	A submodule returns in to the device.
APP_EVENT_ALARM_SEND_REQ_AR0	Set when an alarm for the AR0 is reported.
APP_EVENT_ALARM_SEND_REQ_AR1	Set when an alarm for the AR1 is reported.
APP_EVENT_ALARM_SEND_REQ_AR2	Set when an alarm for the AR2 is reported.
APP_EVENT_RESET_STACK_CONFIG	
APP_EVENT_ETH_FRAME_SEND	A TCP/IP Ethernet frame (MAC) should be send from the mailbox.
APP_EVENT_WRITE_INPUT_DATA	Process data written.
APP_EVENT_READ_OUTPUT_DATA	Process data read.
APP_EVENT_RESET_PN_STACK	Host CPU forces a software reset of the TPS-1
APP_EVENT_APP_MESSAGE	The application filled the Ethernet mailbox with a record request for the TPS Communication Interface. The TPS-1 will read the request and send a response to the application.

4.4. Interrupt Communication with the TPS-1

The communication between the TPS-1 and the Host CPU is processed by the Event-Unit. If you want to use the interrupt control, you need the registers shown in Table 4-3.

Table 4-3: Event Register List

Register Name:	Read / Write	Offset Address
Host_IRQ_low	R/-	0x0008
Host_IRQ_high	R/-	0x000C
Host_IRQmask_low	R/W	0x0010
Host_IRQmask_high	R/W	0x0014
Host_IRQack_low	-/W	0x0020
Host_IRQack_high	-/W	0x0024
Host_EOI	R/W	0x0028
PN_Event_low	R/W	0x003C
PN_Event_high	R/W	0x0040

4.4.1. How to generate an interrupt by an event

The following steps are necessary for generating an interrupt from an occurring event.

- 1. Set the mask register (low or high)
- 2. Acknowledge an Interrupt by deleting the event bits.
- 3. Write the Host_EOI register to reset the interrupt pin "INT_OUT".

It is only necessary to set the mask register during the start sequence of your device once. Each occurring event has to acknowledge by writing the **Host_IRQack_low** and **Host_IRQack_high** register.

After writing an acknowledge register the Host_EOI register must be written. The value written into this register disables the interrupt pin for the given period (period: count * 10ns – Wait Time). The interrupt signal is active high.

Note: You must write the register Host_EOI during the initialization (program start) to set the signal line to its passive state (low level).

The register PN_Event_low and PN_Event_high is used to inform the external host about events. An ISR can check the event by reading these registers.

Table 4-4: Register PN_Event_low

Name		PN_Event_low	
Address		0x003C	
Access		r/ w	
Bits	Type of Event	Description	Init:
31:00	Event-Bit (HW-Events)	high active events Bit 0: Bit 1: Bit 2: Bit 3: Bit 4: Bit 5: Bit 6: Bit 7: Receive Output Data AR1 Bit 8: Receive Output Data AR0 Bit 9 – 15: reserved Bit 16 – 31: further use	0X0000000

Name		PN_Event_high	
Address		0x0040	
Access		r/ w	
Bits	Type of Event	Description	Init:
31:00	Event-Bit (Stack Events)	high active events Bit 0: TPS_EVENT_ONCONNECTDONE_IOAR0 Bit 1: TPS_EVENT_ONCONNECTDONE_IOAR1 Bit 2: TPS_EVENT_ONCONNECTDONE_IOSAR Bit 3: TPS_EVENT_ON_PRM_END_DONE_IOAR0 Bit 4: TPS_EVENT_ON_PRM_END_DONE_IOAR1 Bit 5: TPS_EVENT_ON_PRM_END_DONE_IOAR1 Bit 5: TPS_EVENT_ONABORT_IOAR0 Bit 7: TPS_EVENT_ONABORT_IOAR1 Bit 8: TPS_EVENT_ONABORT_IOSAR Bit 9: TPS_EVENT_ONABORT_IOSAR Bit 9: TPS_EVENT_ONREADRECORD Bit 10: TPS_EVENT_ONVRITERECORD Bit 11: TPS_EVENT_ONALARM_ACK_0 Bit 12: TPS_EVENT_ONCONNECT_REQ_REC_0 Bit 13: TPS_EVENT_ONCONNECT_REQ_REC_1 Bit 15: TPS_EVENT_ON_SET_DEVNAME Bit 17: TPS_EVENT_ON_SET_IP_PERM Bit 18: TPS_EVENT_ON_SET_IP_TEMP Bit 19: TPS_EVENT_ONSET_IP_TEMP Bit 19: TPS_EVENT_ONDCP_BLINK_START Bit 20: TPS_EVENT_ONDCP_FACTORY_RESET Bit 21: TPS_EVENT_ONALARM_ACK_1 Bit 22: TPS_EVENT_ONALARM_ACK_1 Bit 22: TPS_EVENT_ESET Bit 23: TPS_EVENT_ETH_FRAME_REC Bit 24: TPS_EVENT_TPS_MESSAGE Bit 25 - 26: For internal use only Bit 27: TPS_EVENT_ON_SET_DEVNAME_PERM Bit 29: TPS_EVENT_ON_FSUDATA_CHANGE Bit 29: TPS_EVENT_ON_FSUDATA_CHANGE Bit 30 - 31: reserved for further use	0X0000000

One or more bits written in to these registers (*_low and *_high) process an external interrupt event (INT_OUT). A new one will influence no bits set before.

Table 4-6: Register Host_IRQmask_low

Name		Host_IRQmask_low	
Address	0x0010		
Access	r/w		
Bits	Type of Event	Description	Init:
31:00	IRQ –Bits	"0": the Event is registered in PN_Event_low "1": the Event is not registered in PN_Event_low	0xFFFFFFF

Table 4-7: Register Host IRQmask high

Name		Host_IRQmask_high	
Address		0x0014	
Access		r/w	
Bits	Type of Event	Description	Init:
31:00	IRQ –Bits	"0": the Event is registered in PN_Event_high "1": the Event is not registered in PN_Event_high	0xFFFFFFF

After processing an event, the corresponding bit must be acknowledged by writing of acknowledgment register <code>Host_IRQack_low</code> and <code>Host_IRQack_high</code>.

Table 4-8: Register Host_IRQack_low

Name		Host_IRQack_low	
Address		0x0020	
Access		- / w	
Bits	Type of Event	Description	Init:
31:00	Ack –Bits	"0": the Event-Bit is not deleted in PN_Event_low "1": the Event-Bit is deleted in PN_Event_low	-

Table 4-9: Register Host IRQack high

Name		Host_IRQack_high	
Address		0x0024	
Access		- / w	
Bits	Type of Event	Description	Init:
31:00	Ack –Bits	"0": the Event-Bit is not deleted in PN_Event_high "1": the Event-Bit is deleted in PN_Event_high	-

You can verify the interrupt event sources by reading the Host_IRQ_low and Host_IRQ_high register. Each bit corresponds with a masked event. A bit set to "1" shows a masked bit.

Table 4-10: Register Host_IRQ_low

Name	<u></u>	Host_IRQ_low	
Address		0x0008	
Access		r/ -	
Bits	Type of Event	Description	Init:
31:00	IRQ -Bits	"0": PN_Event_low = "0" or Host_IRQMask_low = "1"	0X00000000
		"1": PN_Event_low = "1" and Host_IRQMask_low = "0"	

Table 4-11: Register Host_IRQ_high

Name		Host_IRQ_high	
Address		0x000C	
Access	r/ -		
Bits	Type of Event	Description	Init:
31:00	IRQ -Bits "0": PN_Event_low = "0" or Host_IRQMask_low = "1" 0X00000000		
		"1": PN_Event_low = "1" and Host_IRQMask_low = "0"	

The deactivation of the interrupt pin (INT_OUT) is processed by writing into the register "Host_EOI" (0x0028). A new activation of the interrupt pin depends on the written value (bits $17:00 - Wait_Time$). The activated events can be identified by reading the register Host_IRQ_low and Host_IRQ_high.

Table 4-12: Register Host_EOI

Name	gister riost_cor	Host_EOI	
Address	0x0028		
Access		r/ w	
Bits	Type of Event	Description	Init:
17:00	Wait_Time	Period of deactivating of the interrupt pin (INT_OUT). (Number of entities * 10ns – max. value 2,6 ms)	0X00000
31:18	reserved		

5. TPS-1 boot subsystem

During each startup of the TPS-1, the firmware and the configuration are read from the boot Flash. The configuration contains also the MAC addresses for the network ports which connect the device to other PROFINET IO devices.

5.1. Hardware Structure for the Boot Operation

The TPS-1 uses a boot loader which reads all necessary data from the boot Flash and carries out the necessary settings. The boot loader is integrated into the ASIC and cannot be changed.

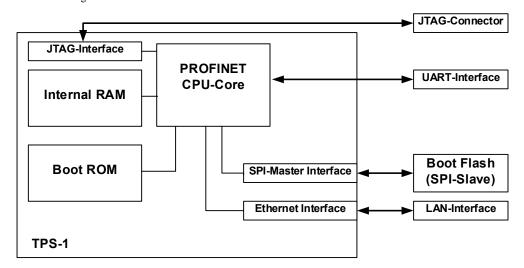


Figure 5-1: TPS-1 structure for the boot process

During the manufacturing process, the following data have to be written to the boot Flash:

- manufacturer information
- device data, device configuration
- I&M information
- operating mode of the TPS-1
- MAC addresses
- PROFINET CPU firmware (Target Host Image)

The necessary data for the boot Flash is assembled by the configuration tool TPS Configurator.

5.2. Loading and update of the firmware during the manufacturing process

The serial boot Flash can be written in several ways:

- before mounting with a programmer,
- via JTAG interface^{Note1},
- via serial interface (UART)^{Note1},
- via ETHERNET interface (BOOTP/TFTP)^{Note2}

Note

- 1 Basically we recommend to use serial interface (UART) during the development phase to fill an empty Flash.
- via ETHERNET is for firmware update only. If you have TPS-1 toolkit v1.1.0.2 or later, please pre-program empty Flash with "default image" in the toolkit before the Flash is soldered. It allows to do all required setting via ETHERNET.

5.2.1. UART interface (UART boot)

The UART interface is used for basic communication with the TPS-1. The interface is reduced to a minimum and has no modem lines.

Table 5-1: Boot UART lines

	into 1. Boot GART Into				
Pin	Signal TPS-1	Description			
C14	UART6_TX	Boot UART "Transmit data"			
C13	UART6_RX	Boot UART "Rec	Boot UART "Receive data"		
P12	BOOT_1	Forced Boot			
		Value Function			
		0x0 BROM: Boot from Boot Flash is enabled (normal operating mode).			
		0x1	0x1 UART: Boot via UART is enabled.		

The signal line BOOT_1 (Forced Boot) forces a firmware update. For this update, the UART interface is used. In this case also a corrupt version can be updated.

The following parameters are set (fix) for the Interface:

- Baudrate: 115200 baud
- 8-bit data length
- 1 stop bit
- no parity check
- no hardware flow control

5.2.2. SPI master interface (Boot Flash)

The TPS-1 has one SPI master interface for connecting a serial Flash device. The Flash contains the TPS-1 firmware as well as the device configuration and the three required MAC addresses. The operation of this interface is managed by the boot loader.

The interface operates at a maximum speed of 25 MHz. This speed is necessary to realize the "device fast startup" function with the TPS-1.

It is necessary to have a delay time (clock low to data valid) not greater than 8 ns.

The Flash contains the TPS-1 firmware as well as the device configuration and the three required MAC addresses. The serial Flash must have a minimum size of 1 MByte and must support the Motorola SPI-compatible interface. The serial flash must be able to write sectors with a size of 4 kByte.

The used SPI protocol configuration is as follows:

- Motorola SPI frame format;
- 8-bit data words;
- SPI clock out pin has a steady state high value, when data is not being transferred;
- Data is captured on the rising edges and propagated on the falling edges of the SPI clock signal.

You should avoid a device with write protection, particularly with a default setting after power up. The Flash ROM must support the SPI Commands listed in Table 5-3: SPI Boot Loader Driver Commands.

The following flash devices are recommended:

•	MX25L6406E (64M x 8)	Macronix
•	MX25L3206E (32M x 8)	Macronix
•	MX25L8006E (8M x 8)	Macronix

• AT25SF081B-SSHD-T adesto-technologies

W25Q16JVSSI Winbond

• FT25H16S-RT Fremont micro devices

IS25LP080D Integrated Silicon Solution, inc.-www.issi.com

N25Q032A
 Micron (with stack version V 1.3.1.16 or higher)

Table 5-2: Boot Flash SPI Master Interface

Pin	Signal name	Тур	Function	
M12	CS_FLASH_OUT	0	SPI-Master-Interface Firmware Flash: Chip Select (TPS-1) – active low	
N13	SPI3_SCLK_OUT	0	SPI-Master-Interface Firmware Flash: CLOCK (TPS-1)	
M13	SPI3_SRXD_IN	I	SPI-Master-Interface Firmware Flash: Receive Data (TPS-1) – MISO	
M14	SPI3_STXD_OUT	0	SPI- Master-Interface Firmware Flash: Send Data (TPS-1) – MOSI	

5.2.2.1. SPI Command Set

A SPI memory device must support the following commands. Writing to the flash requires the command Sector Erase (SE). It must be possible to write sectors with a size of 4 Kbyte.

Table 5-3: SPI Boot Loader Driver Commands

Instruction	Code	Address bytes	Dummy bytes	Data bytes
Write enable	0x06	0	0	0
Write disable	0x04	0	0	0
Read status register	0x05	0	0	1
Read Data	0x03	3	0	1 - ∞
Page Program	0x02	3	0	1 to 256
*Sector Erase (4KB)	0x20	3	0	0
Chip (Bulk) erase	0xC7	0	0	0
Read Identification	0x9F	0	0	3

^(*) This command requires a sector size of 4 Kbyte.

5.2.2.2. SPI Flash Timing Requirements

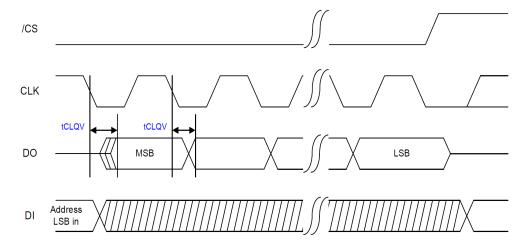


Figure 5-2: Serial Flash output timing requirement

/CS	Chip-select input of serial Flash device
CLK	Clock input of serial Flash device
DO	Data output of serial Flash device
DI	Data input of serial Flash device
tCLQV	Clock low to output valid time (max. 8 ns)

6. IO Local GPIO Interface

For the development of small IO-Devices the TPS-1 offers the IO Parallel Interface with a maximum of 48 IO lines. These lines could be used for input, output and diagnostic purposes.

There are some restrictions when using the IO Local Parallel interface.

- You can have only **one** Application Identifier (API).
- It is only one module (slot) possible.
- It is only one submodule (subslot) possible.
- The input, output and diagnostic bits must be in a connected order.
- You must always choose groups in byte range (8, 16, 24, 32, etc.).

The TPS Configurator supports the configuration of the IO Local Parallel Interface. (Refer Appendix. A "Configuration of the IO Local Parallel Interface")

6.1. GPIO (digital input and output)

The I/O interface supports **48 GPIOs** (General Purpose Inputs/Outputs). The GPIOs can be used for digital IOs. Each pin can be used individually or in combination with other pins.

Parallel use of the GPIOs and the host interface is not possible!

Unused GPIO pins should be pulled up (10 k Ω to Vcc33).

From stack version 1.4, the following applies:

Unused GPIO pins should be left open. After start up the unused signal lines are switched to outputs.

6.2. Status LEDs of the TPS-1

The TPS-1 uses 4 GPIOs to indicate the device status. These GPIOs can be connected directly to LEDs to display the status.

Table 6-1: Status LEDs PROFINET

LED:	Color:	Pin:	State:	Description:
LED_BF_OUT	Red B13	B13		Bus Communication:
			ON	No link status available.
			Flashing	Link status ok; no communication link to a PROFINET- Controller.
			OFF	The PROFINET -Controller has an active communication link to this PROFINET -Device.
LED_SF_OUT	Red	B11		System Fail:
			ON	PROFINET diagnostic exists.
			OFF	No PROFINET diagnostic.
LED_MT_OUT	Yellow	B10	ON	Maintenance required / demanded: PROFINET diagnostic alarm with maintenance state required or demanded.
			OFF	No diagnostic alarm with maintenance state required or demanded pending.
LED_READY_OUT	Green	C10		Device Ready:
			OFF	TPS-1 has not started correctly.
			Flashing	TPS-1 is waiting for the synchronization of the Host CPU (firmware start is complete).
			ON	TPS-1 has started correctly.

The status signals LED_BF_OUT, LED_SF_OUT, LED_READY_OUT and LED_MT_OUT are driven "active low".

6.3. I2C-Bus - LWL Diagnostic

The TPS-1 provides two "I²C Interface Lines" for fiber optics diagnostic purposes. The recommended AVAGO transceiver (AFBR-5978Z) features internal registers that can be read by the I²C interface. The transceiver can deliver diagnostic information via the I²C interface. If signal quality is dropping, an alarm indication can be sent to the controller.

Table 6-2: I²C interface lines

Pin	Signal TPS-1	Description
С9	I2C_1_D_INOUT	Fiber Optic Port1 I ² C-Bus "Data"
C6	SCLK_1_INOUT	Fiber Optic Port1 I ² C-Bus "Clock"
M11	I2C 2 D INOUT	Fiber Optic Port2 I ² C-Bus "Data"
L11	SCLK 2 INOUT	Fiber Optic Port2 I ² C-Bus "Clock"

7. TPS-1 Watchdog

The TPS-1 contains two watchdog controllers. One is used to control the PROFINET CPU. The other shall be used to control the connected Host CPU. The signals **WD_IN** and **WD_OUT** are used by the host CPU and the TPS-1 for mutual supervision and to force a restart if necessary.

Table 7-1: Watchdog signals

Pin	Signal TPS-1	Description	Remark
A11	WD_IN	Watchdog Input (from the Host)	This signal triggers the TPS-1 watchdog that monitors the Host CPU. A rising edge of this signal restarts the watchdog counter.
B12	WD_OUT	Watchdog Output (to the Host)	This signal is set when a watchdog trigger of the TPS-1 occurs (active low).

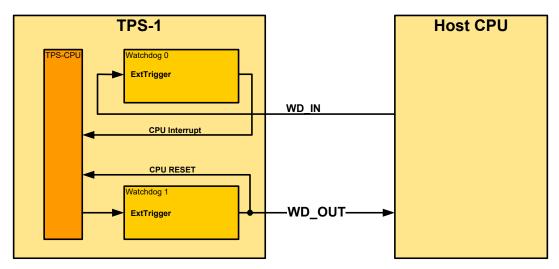


Figure 7-1: TPS-1 Watchdog Lines

7.1. Signal WD OUT (pin B12)

The WD_OUT signal is processed by the TPS-1. The TPS-1 starts its watchdog during start up (the signal is set to high level during power up). This is done by the TPS-1 firmware

The signal WD_OUT indicates that a watchdog error occurs inside the TPS-1.

A watchdog error forces the TPS-1 to a reset. All communication connections to a controller are dropped down. After a restart of the TPS-1, the host must configure the TPS-1 again.

If you are using the HOST-Interface, the external CPU must guarantee a **secure behavior** of the process output signals in case of a TPS-1 Watchdog.

In case of using the local IO interface, additional circuitry must avoid insecure signals for process outputs.

TPS-1 User's Manual: Hardware 7. TPS-1 Watchdog

7.2. Signal WD_IN (pin A11)

The signal **WD_IN** is implemented as a watchdog trigger. When recognizing the host watchdog event, the TPS-1 generates a diagnostic alarm and sets the IOPS of the input data to the BAD state.

The watchdog start of the host CPU depends on the individual host. The TPS-1 starts checking the host watchdog when receiving the event "APP_EVENT_CONFIG_FINISHED".

The Watchdog Interval can be configured with the TPS Configurator. This information is written into the Boot Flash and is active after the next restart. The watchdog interval can be chosen between 1 ms and 512 ms. During the development you can disable the Host CPU watchdog by setting the interval value to "0" (TPS Configurator). Be aware that the watchdog must be activated to avoid unsecure operations of the device.

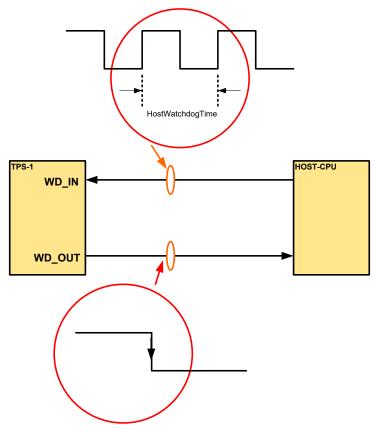


Figure 7-2: Watchdog Characteristics

8. PROFINET IO switch

The TPS-1 contains a PROFINET switch with 2 external ports. Thus, PNIO devices can be connected directly to each other without the need for external switching devices (line topology).

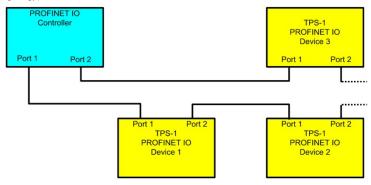


Figure 8-1: Network topologies with the TPS-1

All necessary PROFINET protocols are implemented (LLDP, PTCP, MRP, etc.). Additionally, the TPS-1 features 2 integrated PHY devices (IEEE 802.3, IEEE802.3u, ANSI X3.263-1995 and ISO/IEC9314).

Each port of the integrated PROFINET switch has its own MAC address. The MAC addresses are provided by the device manufacturer and stored in the Boot-Flash of the TPS-1.

The implemented hardware processes support all PROFINET communication channels (NRT, RT and IRT). The Ethernet standards 100BASE-TX and 100BASE-FX are supported.

Additionally, the PHYs support the following features:

- Auto-Negotiation,
- Auto-Crossing
- Auto-Polarity

In order to indicate network status and traffic, the TPS-1 provides respective signaling outputs:

Table 8-1: Status signals of the ETHERNET interface

Pin	Signal Name	Meaning
C12	Link_PHY1	LINK ETHERNET Port 1
D10	ACT_PHY1	Activity ETHERNET Port 1
C11	Link_PHY2	LINK ETHERNET Port 2
A10	ACT_PHY2	Activity ETHERNET Port 2

8.1. 100Base-TX interface

Physical transmission complies with the standard

• 100Base-TX: IEEE 802.3 Clause 25 (CAT 5)

For this interface, typically RJ45 plugs are used. However, it is recommended to use special connectors here that are suitable for industrial requirements. The interface hardware of the TPS-1 can be connected directly to the Ethernet transformer. The standard 100Base-TX requires CAT5 cables.

Interface activity is indicated by the signals LED *LINK_PHY1/(2)* and LED *ACTIVITY_PHY1/(2)*. The signal LED *LINK_PHY1/(2)* is also used to indicate the function "Search Device / Flashing".

8.1.1. 100Base-TX interface (Port 1)

Table 8-2: Signal lines 100Base-TX interface (Port 1)

Pin	Designation	Description
F13	P1_TX_P	Transmit data+
F14	P1_TX_N	Transmit data-
E13	P1_RX_P	Receive data+
E14	P1_RX_N	Receive data-

8.1.2. 100Base-TX interface (Port 2)

Table 8-3: Signal lines 100Base-TX interface (Port 2)

Pin Designation		Description
J13	P2_TX_P	Transmit data+
J14	P2_TX_N	Transmit data-
K13	P2_RX_P	Receive data+
K14	P2_RX_N	Receive data-

8.2. 100Base-FX interface (Fiber Optic)

The physical transmission complies with the standard:

 $\bullet \quad \text{IEEE 802.3 Clause 26} - 100. \\ \text{Mbit/s Ethernet for multimode fiber optic.}$

The connection of fiber optic wiring (POF und PCF) should be done with Fiber Optic Diagnostic Transceivers (Avago Technologies QFBR-5978AZ – this transceiver fulfilled the requirements for the automation industry). These devices provide the medium conversion and line diagnostics.

8.2.1. 100Base-FX interface (Port 1)

Table 8-4: Signal lines 100Base-FX interface (Port 1)

Pin	Designation	Description
C9	I2C_1_D_INOUT	I ² C data line
C6	SCLK_1_INOUT	I ² C clock line
B8	P1_SD_P	Signal detect (Difference +)
A8	P1_SD_N	Signal detect (Difference -)
A9	P1_RD_N	Receive signal (Difference -)
B9	P1_RD_P	Receive signal (Difference +)
A5	P1_FX_EN_OUT	Transmitter enable (transceiver output)
B6	P1_TD_OUT_P	Transmit signal (Difference +)
A6	P1_TD_OUT_N	Transmit signal (Difference -)

8.2.2. 100Base-FX interface (Port 2)

Table 8-5: Signal lines 100Base-FX interface (Port 2)

Pin	Designation	Description	
M11	I2C_2_D_INOUT	I ² C data line	
L11	SCLK_2_INOUT	I ² C clock line	
N8	P2_SD_P	Signal detect (Difference +)	
P8	P2_SD_N	Signal detect (Difference -)	
P9	P2_RD_N	Receive signal (Difference -)	
N9	P2_RD_P	Receive signal (Difference +)	
P5	P2_FX_EN_OUT	Transmitter enable (transceiver output)	
N6	P2_TD_OUT_P	Transmit signal (Difference +)	
P6	P2_TD_OUT_N	Transmit signal (Difference -)	

8.3. I2C-Bus - LWC Diagnostic

The TPS-1 provides two "I²C Interface Lines" for fiber optics diagnostic purposes. The recommended AVAGO transceiver (AFBR-5978Z) features internal registers that can be read by the I²C interface. The transceiver can deliver diagnostic information via the I²C interface. If signal quality is dropping, an alarm indication can be sent to the controller.

Table 8-6: I²C interface lines

Pin	Signal TPS-1	Description
C9	I2C_1_D_INOUT	Fiber Optic Port1 I ² C-Bus "Data"
C6	SCLK_1_INOUT	Fiber Optic Port1 I ² C-Bus "Clock"
M11	I2C_2_D_INOUT	Fiber Optic Port2 I ² C-Bus "Data"
L11	SCLK_2_INOUT	Fiber Optic Port2 I ² C-Bus "Clock"

8.4. Additional TPS-1 pins

The pins ATP and EXTRES are used for PHY1 and PHY2.

Table 8-7: Additional TPS-1 pins

Pin	Designation	I/O	Description
H12	ATP	Al/O (analog	Analog Test:
		I/O)	This signal is used for the manufacturing process. Pin is left open.
H13	EXTRES	Al/O (analog	Reference resistor:
	I/O)		Connect via a resistor $12.4 K\Omega$ / 1% to GND. This external resistor should be placed as close as possible to the chip. It must be terminated to analog GND.

8.5. Integrated voltage regulator 1.5 V

The integrated PHY components require a supply voltage of 3.3 V and 1.5 V. The supply voltage 1.5 V is supported by an internal voltage regulator. For a correct operation, some additional electronic components are necessary. Figure 8-2: Internal voltage regulator shows the design of the switching regulator.

During normal operation (Switching Regulator is running and POR is active), the pins TEST1, TEST2, and TEST3 are connected to GND via a pull-down resistor.

It is also possible to feed the TPS-1 with an external voltage of 1.5 V. Then you have to switch off the regulator (Pin **TEST1** set to 1 with a pull-up). The regulator output (Pin **LX**) changes to HiZ status.

The POR function must be in operation because this signal is used in combination with the external signal RESETN to enable the TPS-1 dies.

Caution: The 3.3 V supply voltage has to be connected to BVDD (pin J1) and AVDD_REG (pin F2). AVDD_REG is used to generate the internal POR signal of the TPS-1. If you are not using the internal regulator the pin AVDD_REG has also been connected to 3.3 V to prevent reset blocking.

The other combinations of the signals TEST1, TEST2 and TEST3 are used for the chip test at the factory process.

The switching regulator is designed to supply the PHY components. It is not allowed to connect additional components. You will find a recommendation for the circuitry of the switching regulator in the Chapter "Board Design Information, Switching Regulator".

Table 8-8 describes the different modes of the switching regulator.

Table 8-8: Switching regulator operating modes

TEST3 (Pin E1)	TEST2 (Pin G3)	TEST1 (Pin H3)	Function
0	0	0	Normal mode: Regulator and POR on .
0	0	1	Only POR mode: Regulator off , POR on .
0	1	0	Regulator and POR circuitry switched off (Note).
			Other options reserved for test

Note: This combination should be avoided, because you set the TPS-1 permanently into the reset state.

It is important that the input **FB** is connected to a smoothed 1.5 V voltage. The regulator adjusts the output voltage with negative feedback using this pin.

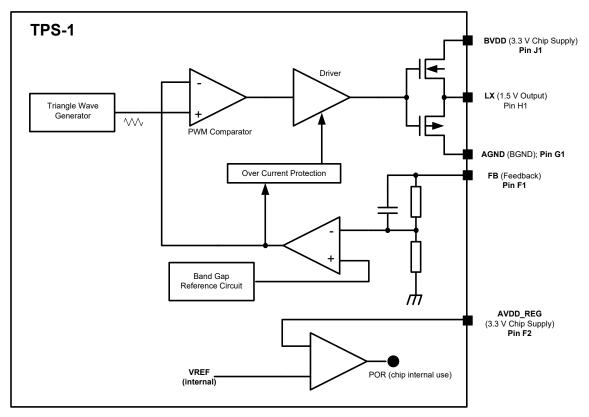


Figure 8-2: Internal voltage regulator

The time of power-supply rise to the point where all power supplies are stabilized must be reached within 100 ms.

The typical behavior of the power supplies is shown in Figure 8-3: TPS-1 Power-up sequence.

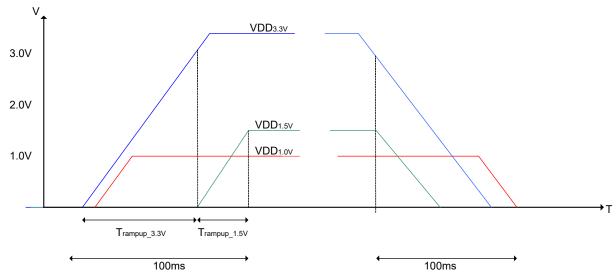


Figure 8-3: TPS-1 Power-up sequence

TPS-1 User's Manual: Hardware 9. Clock Circuit

9. Clock Circuit

9.1. Using the internal clock oscillator

The clock distribution of the TPS-1 requires an oscillator with 25 MHz (*XCLK1*, *XCLK2*). All necessary internal clock signals are derived from this external clock (internal clock unit).

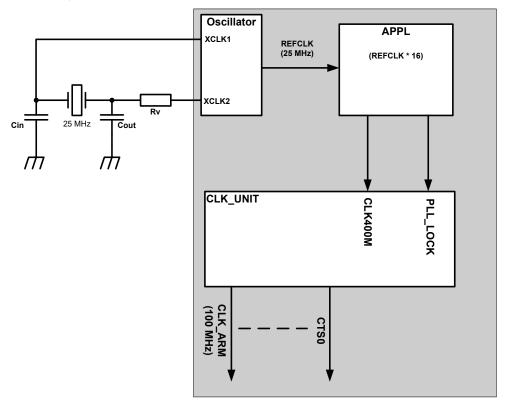


Figure 9-1: Wiring of the TPS-1 clock

The recommended circuitry (Figure 9-1: Wiring of the TPS-1 clock) is based on the Seiko Epson TSX-3225 Crystal Unit. It is recommended to use this crystal and circuitry recommendation (using Seiko Epson crystal). In any case it is the customer's responsibility to verify, whether crystal, circuitry and layout fulfill the requirements.

Table 9-1: Example for an oscillator crystal

Crystal	Frequency	Rv	Cin	Cout
Seiko Epson TSX-3225	25.00 MHz	1000 Ω	15 pF	15 pF

Note that the oscillator frequency must be 25 MHz, otherwise the PLL will not operate properly.

If a different crystal is used the following conditions have to be met:

- Crystal with 25 MHz with a maximum of +/- 50 ppm over the whole lifetime and temperature range.
- The values for R_V, C_{IN} and C_{OUT} have to be calculated accordingly (please contact the crystal provider)

9.2. External clock source

"Fast Start Up" applications require a maximum clock startup time of 20 ms. This cannot not be realized with a crystal. For "Fast Start Up" applications an external oscillator is recommended.

It is possible to use an external clock source instead of a quartz crystal as clock input for XCLK1 (Pin N11) as well. In this case the XCLK2 has to be left unconnected and the port XCLK1 has to fulfil the following requirements:

Table 9-2: Parameter for ex	ternal oscillato	r as cloc	k source
-----------------------------	------------------	-----------	----------

Description	Parameter	Min	Тур	Max	Unit
External clock source frequency	$ m f_{IN}$	1)	25	1)	MHz
XCLK1 high level voltage	V_{HL}	2	3,3	VDDACB (H14)	V
XCLK1 low level voltage	$V_{\rm IL}$	0	-	0,8	V
XCLK1 rise or fall time	$t_{ m RFC}$	0	1	4	ns
XCLK1 high or low time	$t_{ m W}$	16 ²⁾	20 2)	24 ²⁾	ns
XCLK1 jitter tolerance	t_{JIT}		20		ps (RMS)
XCLK1 duty cycle	DuCy	40	50	60	%

- 1) +/- 50 ppm over all (lifetime and temperature)
- 2) t_w was calculated at f_{IN(TYP)}=25 MHz, e.g. t_{w(MIN)} = 10 * (DuCy_(MIN) / f_{IN(TYP)})

Recommended external crystal oscillators:

- Epson SG-210 STF 25.000000 L MHz (85°C)
- Epson SG-210 STF 25.000000 Y MHz (105°C)

PCB layout hints:

- Place the input and output pins of the oscillator and the resistor and external component close to each other, and keep wiring as short as possible.
- Make the wiring between the ground side of the capacitor and the ground pin of the TPS-1 as short and as thick as
 possible.
- Keep the lead wire of the "crystal" and capacitor as short as possible, and fix the "crystal" and the capacitor to the printed circuit board to keep the influence of mechanical vibrations to a minimum.
- Layout the external constant portions so that it is surrounded by GND as far as possible.

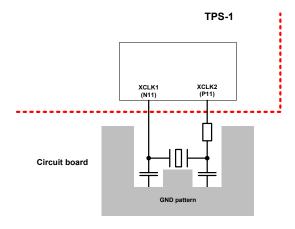
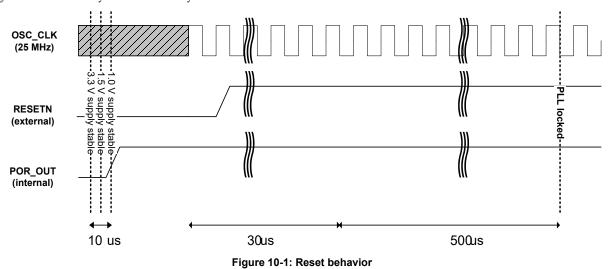



Figure 9-2: Ground pattern for crystal unit

TPS-1 User's Manual: Hardware 10. Reset of the TPS-1

10. Reset of the TPS-1

An external reset is caused by a "low" level at the signal pin **RESETN**. This condition is held until the "low" level changes to a "high" level. During startup of the power supply the 3.3 V voltage is controlled by the TPS-1 (internal). The 1.5 V voltage (if fed from external) and the 1.0 V voltage must be controlled by an external circuitry.

The start-up time of the oscillator depends on the external components (quartz, RLC). As a general rule of thumb, it is roughly in the range of 5 to 20 ms and at higher temperatures in the range of 80 ms.

Annotation:

A hardware reset during operation does not change the configuration of GPIO pins and the pins keep their state during the reset phase. When a signal e.g. was configured as an output, the last state is not changed and the output is driven further with the last signal level.

11. Boundary Scan Interface (JTAG)

The JTAG interface is used for the Boundary Scan test.

Table 11-1: JTAG interface pin definition

Pin	Designation	Туре	Description	Remark
K5	TRSTN	I	Test Reset	JTAG Reset. Input: Reset signal of the target port.
				External pull-down (4K7 Ω to GND)
L6	TMS	I	Test Mode Select	JTAG interface is activated from the debug unit.
				pull-up (4K7 Ω to V _{DD})
L7	TDO	0	Test Data Output	
J5	TCK	I	Test Clock	JTAG clock signal to the TPS-1. It is recommended that this pin be set to a defined state on the target board. External pull-up (4K7 Ω to V_{DD})
L5	TDI	I	Test Data Input	External pull-up (4K7 Ω to V_{DD})

Table 11-2: JTAG interface pin definition

Pin TM0	Pin TM1	Function
0	0	normal operation mode
1	1	Boundary scan mode (see BSDL file)

11.1. Circuit recommendation of the JTAG Interface

If the JTAG interface is unused in the customer application the TRSTN input of the TPS-1 should be connected to digital GND via a $4.7k\Omega$ resistor. The circuit recommendation for the interface looks as follows.

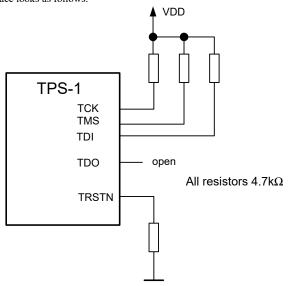


Figure 11-1: Unused JTAG Interface

If the customer wants to use the JTAG interface for boundary scan test, the customer has to check whether the boundary scan tool, that he intends to use, has specific requirements with respect to the TRSTN circuit in the target system. If the boundary scan tool has specific requirements, the circuit in the target system must be made configurable. The subsequent figure shows the situation, that the boundary scan tool requires a pull-up at the TRSTN input of TPS-1.

For using the JTAG interface with a boundary scan tool, you should implement the following.

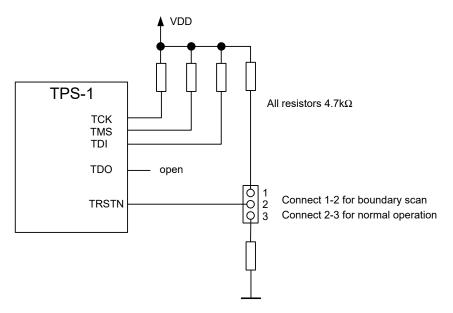


Figure 11-2: JTAG useable for boundary scan

Appendix.A Setting of operating modes

The basic configuration of the TPS-1 is managed with the "TPS Configurator" software. You can set the configuration of the host interface (serial, parallel) or the configuration of the Local IO Interface. There you can choose the IO interface (serial or parallel digital outputs).

When you choose one of the four operation modes from the **General Settings**, only that operation mode will be activated and the values can be modified. Other operation modes will be deactivated and their values can be viewed but not modified.

The configuration data and the firmware are stored into the serial boot Flash device. During each start-up the configuration is used to initialize the TPS-1. The necessary MAC-Addresses are permanently stored on the Flash Device. They cannot be changed after the initial setting (see "Ethernet Settings" (ab)

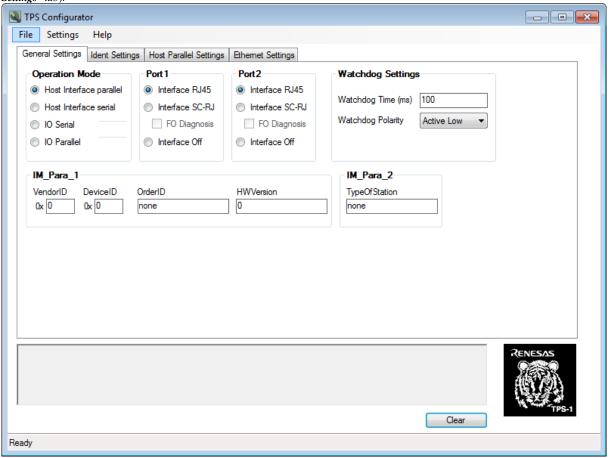


Figure A-1: First tab of the "TPS Configurator"

The configuration items on TAB "General Settings" set the basic operation modes.

- Host Serial: A host CPU is connected via the SPI slave interface
- Host Parallel: A host CPU is connected via the parallel interface
- IO Serial: An IO device is connected via a simple SPI master interface
- IO Parallel: The GPIO pins are used in a user-specific order

By choosing a special operation mode, the corresponding configuration tabs are activated. Only these tabs can be edited, all others are locked.

A.1 Host Interface

The host interface realizes the connection of external host CPUs. Data exchange is carried out via an internal *Shared Memory* area. Depending on the type of external host CPU, you can choose a serial (SPI slave) or a parallel interface.

A.1.1 Host Parallel Interface

The parallel host interface can be configured to work at 8-bit or 16-bit data width and in Motorola or Intel operating mode. Thus, the interface facilitates the connection of different processor types.

You find the respective parameters on the window tab "Host Parallel Settings".

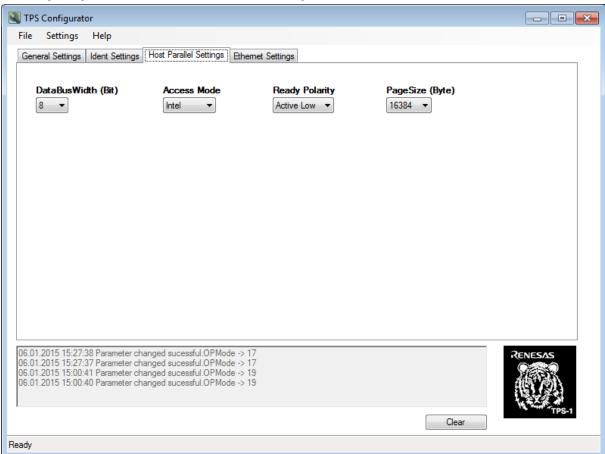


Figure A-2: Parallel host interface configuration

A.1.2 Host Serial Interface

The serial host interface is an SPI-Slave interface. The necessary hardware settings are available on TAB "Host Serial Settings".

The watchdog function for the host CPU is configured below the headline "General Settings". You can choose watchdog time and activity level.

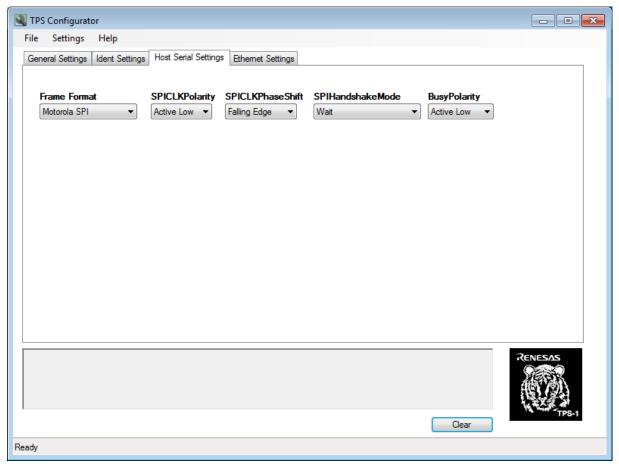


Figure A-3: Serial host interface configuration

Below the TAB "Host Serial Settings" you find the settings for the SPI interface (MotorolaSPI, Microwire, etc.).

A.2 Local I/O-Configuration

These settings control the 48 GPIOs and the SPI master interface. GPIOs can be set individually or in groups.

Single or groups of GPIOs can be configured to work as inputs or outputs. On the tab "Channel" you can configure some GPIOs for diagnostic functions (PROFINET ChannelDiagList).

A.2.1 IO Parallel

At first you have to configure the basic addressing (e.g. API, SlotNo, et cetera).

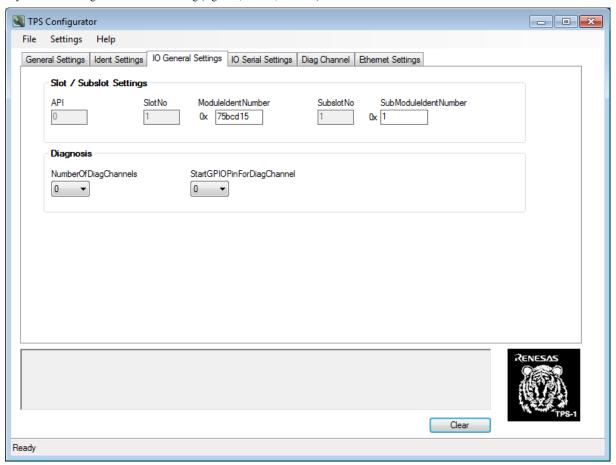


Figure A-4: IO Parallel interface configuration part 1 (General Settings)

You can configure here the number of diagnosis channels and the start GPIO (see box Diagnosis).

If you need diagnosis channel on the Local IO Parallel interface, you can configure a maximum of 16 pins (see Tab IO General Settings). The special behavior can be configured inside the Tab Diag Channel.

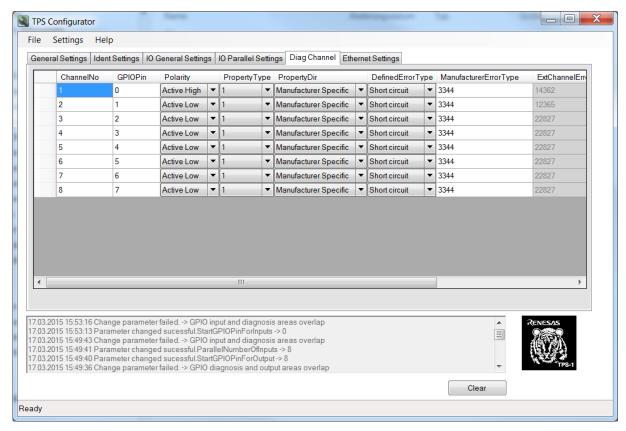


Figure A-5: Configuration of Diagnosis Channel if needed

To configure the GPIO's you must refer to the part IO Parallel Settings.

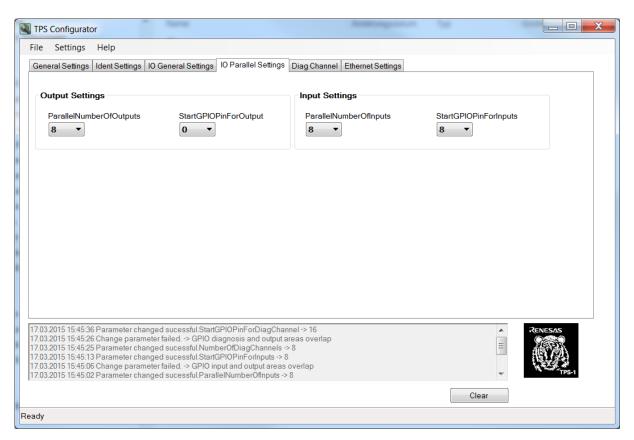


Figure A-6: IO Parallel Settings configuration part 2

A.2.2 IO Serial Interface

You can choose the IO Serial mode. This enables the SPI-Master interface of the TPS IO Local Mode

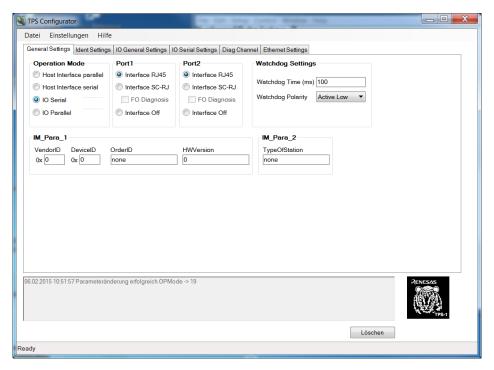


Figure A-7: IO Serial Mode - SPI Master

The communication parameter of the SPI Master interface must be set in the following Tab "IO Serial Settings"

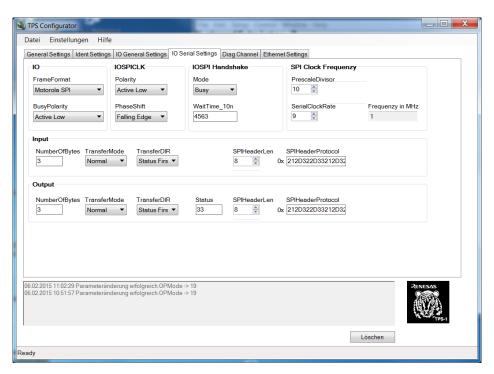


Figure A-8: IO Serial Settings of the SPI Master Interface

A.2.3 IO Local Interface

For the development of small IO-Devices the TPS-1 offers the IO Parallel and IO Serial Interface. This interface can be used without an external Host CPU.

.

A.2.4 IO Local parallel Interface

There are some restrictions when using the IO Local Parallel interface.

- You can have only **one** Application Identifier (API).
- It is only one module (slot) possible.
- It is only one submodule (subslot) possible.
- The input, output and diagnostic bits must be in a connected order.
- You must always choose groups in byte range (8, 16, 24, 32, etc.).

A.2.5 Configuration of the IO Local Parallel Interface

The TPS Configurator supports the configuration of the IO Local Parallel Interface.

You can set all necessary parameters for the IO Local Parallel Interface (e.g. API, SlotNumber, ModuleIdentNumber, etc.). On the next program tap you can configure the diagnostic channels.

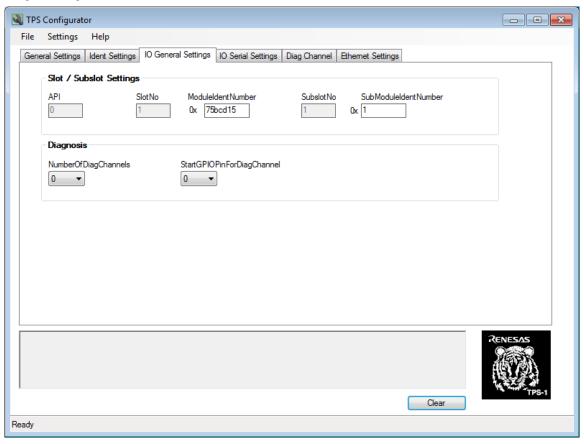


Figure A-9: IO Local Parallel Interface Mask

A.2.6 Configuration of the IO Local Serial interface (SPI Master)

The TPS Configurator supports in addition a SPI Master interface to connect another SPI Slave controller (e.g. connecting special IO devices or if you need more than 48 GPIO).

Please refer for the necessary adjustments the online help of the TPS Configurator. For using this feature the TPS Stack Version V.1.3.x.x is necessary.

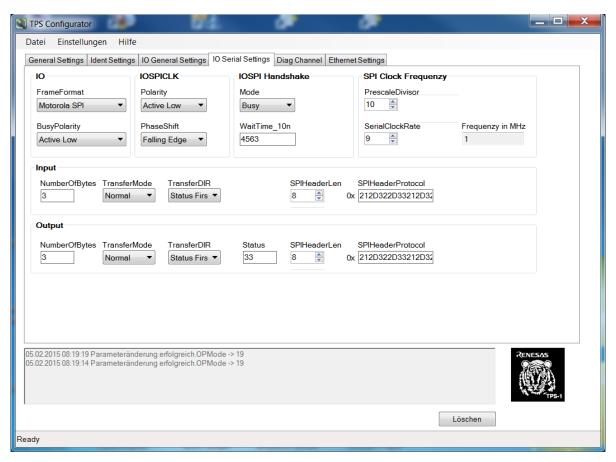


Figure A-10: Local IO Mode - SPI Master Interface

A.2.7 I&M0 Configuration (I&M0 data)

The provision of these parameter values is mandatory for every PROFINET device (I&M0 profile).

Table A-1: I&M0 Parameter

Parameter	Description
VENDOR ID	The parameter VENDOR_ID carries the ID of the respective device manufacturer. It is assigned by PI.
ORDER ID	This parameter contains the complete order number or at least a relevant part that allows unambiguous identification of the device/module within the manufacturer's web site.
SERIAL_NUMBER	A serial number is a unique production number of the device manufacturer even for devices with the same hardware, software or firmware edition.
Hardware-Revision	The content of this parameter characterizes the edition of the hardware only.
Software-Revision	The content of this parameter characterizes the edition of the software or firmware of a device or module.
REVISION_COUNTER	A changed value of the REVISION_COUNTER parameter of a given module marks a change of hardware or of its parameters.
PROFILE_ID	A module providing a special application profile may contain extended information (PROFILE_SPECIFIC_TYPE) about its function and/or sub devices, e.g. HART.
PROFILE_SPECIFIC_TYPE	In case a module provides a special application profile this parameter contains information about the usage of its channels and/or sub devices.
IM_VERSION	This parameter indicates the implemented version of the I&M functions.
IM_SUPORTED	This parameter indicates the availability of I&M records.

All parameters must be edited separately or can be copied as default values from the firmware. If you need more information regarding I&M0 parameters, please refer to the PROFINET specification.

A.3 Ethernet Interface Configuration

The Ethernet configuration is edited on TAB "Ethernet Settings". This is also the window for configuring the factory settings (e.g. MAC addresses).

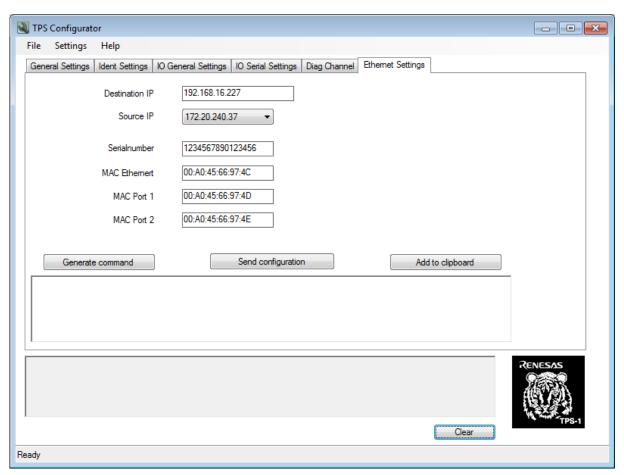


Figure A-11: Ethernet Interface Configuration

The TPS-1 needs three MAC addresses to operate. One is used for the TPS-1 itself; additionally, each of the two ports has an individual MAC address as well in order to support port-based communication services for e.g. LLDP.

The serial number of the device is edited in "S.N.". The IP addresses *Destination IP* and *Source IP* are needed for the transmission of configuration data via the Ethernet interface of the TPS-1.

The PC on which this tool is running represents the Source IP address. The Destination IP represents the PROFINET Device to configure. The configuration of the device is carried out in a subnet to which only the Source PC and the PROFINET Device belong (factory configuration). The device at first accepts any frame that contains the necessary MAC addresses. It is possible to program the MAC addresses one time (it is not allowed to change this initial configuration later).

A.4 Copying the configuration data into the Boot Flash

After the configuration data is complete, it has to be transferred to the PROFINET device. During the manufacturing process, the data can be copied into the Flash device with a special program (FS_Prog.exe). The TPS Configurator can generate a command with all the parameters (see "Generate Command").

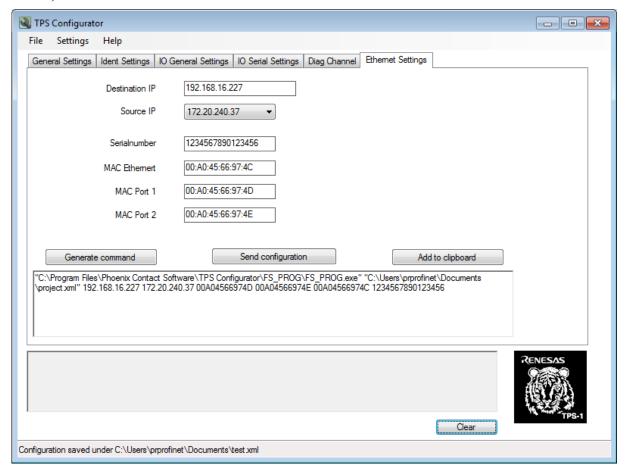


Figure A-12: Writing the TPS-1 configuration

By clicking "Send Configuration", the transfer of the configuration data to the PROPINET IO device is started.

A.5 Generating a complete serial boot Flash Image

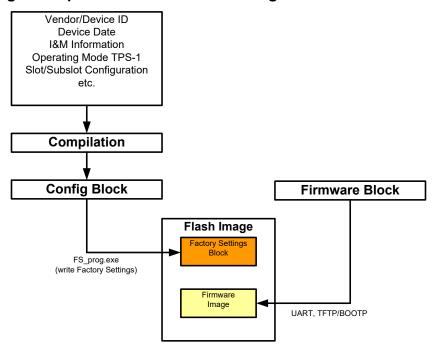


Figure A-13: Generating a Boot Flash Image

The generated XML file is compiled and assembled to a Configuration Block. (The TPS-Configurator build the Configuration Block that is transferred). The configuration data is then copied to the TPS-1 and stored into the serial boot Flash device (Factory Settings Block).

On the TPS-1 special software is running that enables you to copy a firmware image into the serial boot Flash device. The firmware block can be copied from every directory on your PC.

Appendix.B **Board Design Information**

This chapter provides useful information related to PCB design.

B.1 Voltage supply

The TPS-1 requires 3 supply voltages. The necessary supply voltages can be delivered directly from the power supply unit. In this case, the switching regulator is not needed (refer Chapter8.5). You can also use the integrated voltage regulator that is fed with 3.3 V. The recommended circuitry described in AppendixB.2

Necessary supply voltages of the TPS-1:

- 3.3 V nominal (between 3.0 V and 3.6 V)
- 1.5 V nominal (between 1.35 V and 1.65 V)
- 1.0 V nominal (between 0.9 V and 1.1 V, core voltage)

B.2 Switching Regulator

Switching regulator (features):

• Output voltage : 1.5V +/-5%

Output current : 250 mA (max. DC)
 Power supply voltage : 3.3V +/- 0.3V
 Switching frequency : 1 MHz (typ)

B.2.1 Wiring for the Switching Regulator

The following figure gives the recommendation of the wiring.

The switching regulator output (LX) delivers the 1.5 V voltage, that is smoothed with the external devices. This voltage is connected to pin $V_{DD1.5V.}$ The following external devices are necessary for the switching regulator:

Figure B-1 shows the wiring for the external regulator circuit if the regulator is used to generate the 1.5 V for the PHYs.

Notes:

- All components should be placed as close as possible to the TPS-1.
- Important: The characteristic of C1 is mandatory. A lower ESR will cause problems with the regulator oscillation.

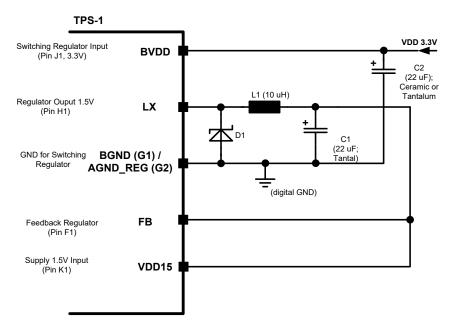


Figure B-1: Wiring of the switching regulator

Table B-1: Table B-1: Part Table for the Switching Regulator

Part	Туре	Characteristics	Recommended components
C1*	Tantalum Capacitor	22 uF +/- 20%	PSLB21A226M (NEC TOKIN)
		ESR: 150–350 mΩ	TCJB226M010R0300 (AVX)
			T494C226K016AT (KEMET)
C2	Capacitor	22uF +/- 20%	Ceramic or Tantalum
D1	Schottky Rectifier	30 V, 1 A	SBS005 (Sanyo)
	Diode		STPS1L30UPBF (ST)
L1	Inductor	10 uH	VLCF5028T (TDK)
C1a*	Ceramic Capacitor	22 uF +/- 10%	Evaluated with (Murata):
	·		GRM32ER71A226KE20L
R1a*	Resistor	100 mΩ +/- 1%	Evaluated with:
			MCR18EZHFLR100 (ROHM)

To avoid the recommended tantalum capacitor it is possible to compose the needed characteristics with a series connection of a resistor and a ceramic capacitor. If you use ceramic capacitors only C1 has to be replaced by a ceramic capacitor in connection with a series resistor. C2 did not need a series resistor.

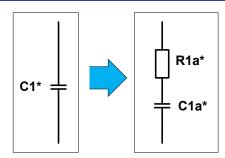


Figure B-2: Change Tantalum to Ceramic Capacitor

B.2.2 Layout Example for Switching Regulator

This chapter shows an example for the connection between the external output and regulator. The real design of the layout must be done on the PCB board.

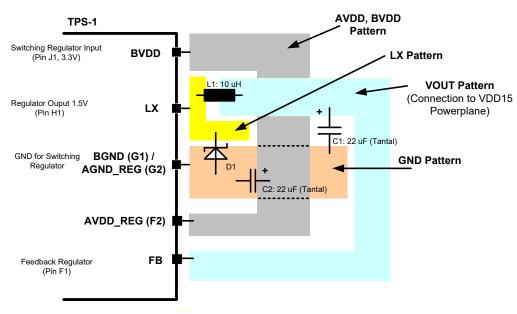


Figure B-3: Switching Regulator layout example

Instead of the tantalum capacitors you can also use ceramic capacitors. Please refer to chapter B.2.1.

B.3 Board Design Recommendations for Ethernet PHY

B.3.1 Supply Voltage Circuitry

The on-chip PHYs of the TPS-1 require additional filtered operating voltages as shown in the table below.

Table B- 2: Supply Voltages Circuitry for Ethernet PHY

Pin	Pin Name	Function	Supply Voltage Generation	
D14	P1VDDARXTX	Analog port RX/TX power supply, 1.5 V (PHY port 1)	Must be generated from VDD15 (1.5 V) via a filter.	
L14	P2VDDARXTX	Analog port RX/TX power supply, 1.5 V (PHY port 2)		
G14	VDDAPLL	Analog central power supply, 1.5 V		
H14	VDDACB	Analog central power supply, 3.3 V	Must be generated from VDD33 (3.3 V) via a filter.	
E12	VDD33ESD	Analog test power supply, 3.3 V		
G13	VSSAPLLCB	Analog central GND	Must be derived from GND Core/IO via a filter or connected to GND Core/IO at the far end from TPS-1.	
D12, D13, L12, L13	AGND	Analog GND for PHYs.	Must be generated from digital GND by filter.	

Besides filtering, the PHY-specific supply voltages should be equipped with pairs of decoupling capacitors. 10 nF and 22 nF capacitors should be used for **VDD33ESD**, **VDDAPLL**, **VDDACB** and **P(2:1)VDDARXTX**. They should be placed as close as possible to the chip.

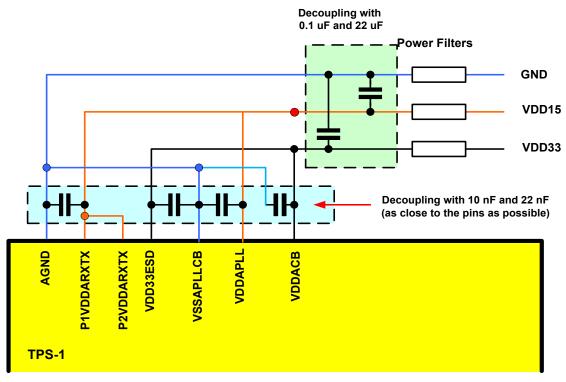


Figure B-4: Decoupling capacitors for supply voltage

Additional pairs of 0.1 μF and 22 μF capacitors should be applied to VDD33ESD and P(2:1)VDDARXTX.

Figure B-5 illustrates the power supply pins and their recommended connection. Digital supply and digital ground is not shown.

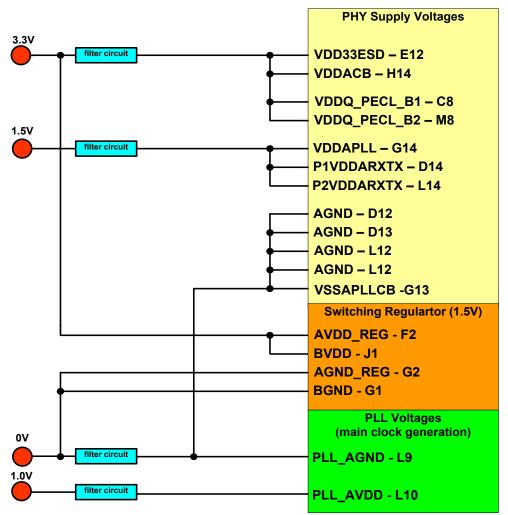


Figure B-5: Voltage Supply Concept

B.3.2 100BASE-TX Mode Circuitry

The analog input and output signals are very noise-sensitive and the PCB layout of these signals should be done very carefully. Transmit and receive lines must be routed with differential $100~\Omega$ impedance and the trace length must be kept as short as possible.

The EXTRES input must be connected to analog GND with a 12.4 kΩ resistor (1% tolerance). See "Additional TPS-1 Pins".

The figure below shows a typical circuit example for a 100BASE-TX operation mode.

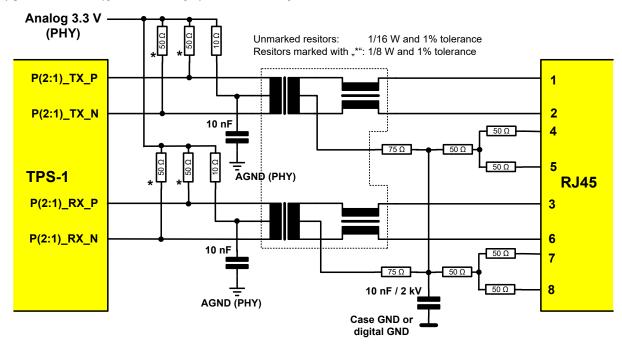


Figure B-6: 100BASE-TX Interface circuit Example

B.3.3 Unused 100Base-TX Interface

In applications that do not use the 100BASE-TX mode, but only the 100BASE-FX mode, the analog I/Os should be left open. Only EXTRES must still be connected with the 12.4 k Ω resistor to analog GND.

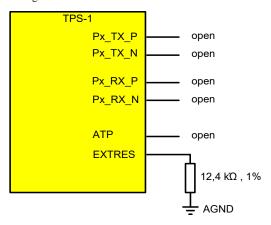


Figure B-7: Unused 100BASE-TX Interface

B.3.4 100BASE-FX Mode Circuitry

In case of 100BASE-FX operation, a PN-IO compliant optical transceiver module like **Avago AFBR-5978Z** or **QFBR-5978Z** is connected to the FX interface. The signals between the PHY and the transceiver module are $100\,\Omega$ differential respectively $50\,\Omega$ single-ended signals.

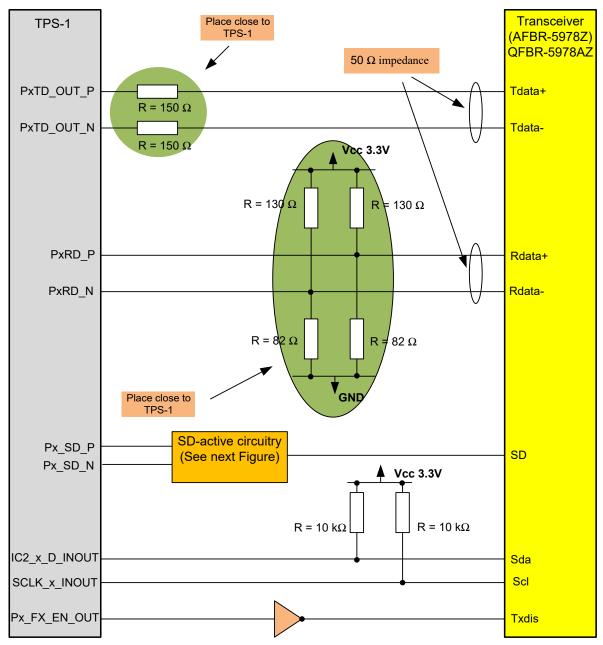


Figure B-8: 100BASE-FX Interface Example

Note: All resistors in this example should have a tolerance of 1%.

The circuitry for the connection of the SD-Pin of the transceiver to the SD_P/SD_N Pin of the TPS-1 is shown in Figure B-9. The active circuitry is necessary because the QFBR/AFBR transceiver provides no differential signal.

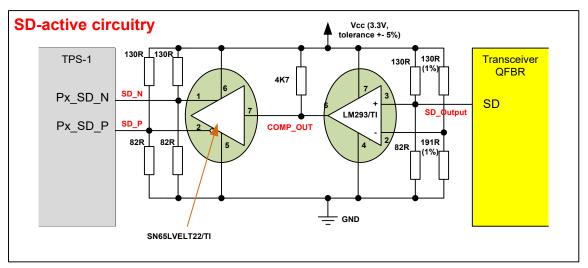


Figure B-9: Circuitry for the SD Signal

Table B-3: SD Signal for Transceiver

	SD Output	COMP OUT	SD N	SD P
No Link	<u>0</u>	<u>0</u>	<u>1</u>	0
Link	1	1	0	1

Using the AVAGO QFBR-5978Z or AFBR-5978Z Transceiver you must ensure the tolerance of the Supply Voltage (3.3V) between +- 5%. Note: All resistors in this example should have a tolerance of 5% (see the exceptions).

If you want to use the FO diagnostic features, you can implement the AVAGO QFBR-5978AZ transceiver. For using the special features of this transceiver you must connect the TPS-1 to the transceiver by an I2C-bus.

Receive and transmit lines are compliant to the LVPECL technology. These lines must be routed carefully to avoid influence from e.g. the I²C buses. The power supply for the AVAGO transceiver is divided into the transmitter and receiver part. You need additional electronic components to reduce noise. It is important to take care in the layout of the device board to achieve optimum performance from the transceiver. It is recommended to add a filter to the power supply for the transmitter and receiver part.

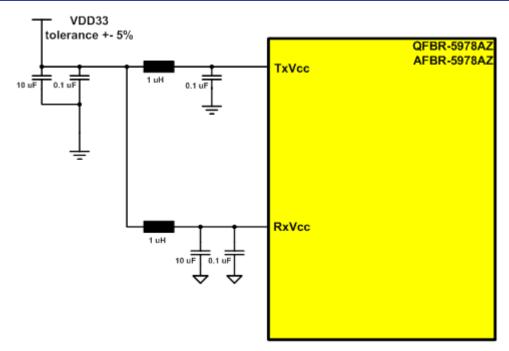


Figure B-10: Power Supply for AVAGO Transceiver

It is further recommended that a contiguous ground plane is provided in the device board directly under the transceiver to provide a low inductance ground for signal return current. The ground plane for the receiver and transmitter should also be divided and connected with a filter.

During the operation of the transceiver peaks on the supply voltage can occur so it is useful to add additional capacitors (see also the data sheet of the transceiver).

B.3.5 Unused 100Base-FX interface

Figure B-11 shows the wiring of an unused "Fiber Optic Transceiver". The interface uses PECL lines.

If a 100Base-FX interface is not used, the pins **Px_TD_OUT_P** and **Px_TD_OUT_N** can remain open (no Pull-Up or Pull-Down resistor necessary). All other signals should be connected to GND level.

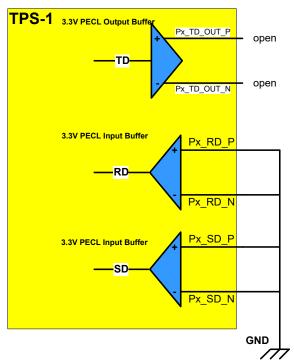


Figure B-11: Unused pins at 100Base-FX interface

Appendix.C Fast Start Up Requirements

Prioritized startup refers to the PROFINET function for accelerating the startup of IO devices in a PROFINET IO system with RT and IRT communication. It shortens the time that the respective configured IO device requires in order to reach the cyclic user data exchange.

The PROFINET standard does not specify a time specification. If a start-up time of 500 ms (some customers require this time) is to be achieved, the application must be optimized compared to the example application with the aim of a higher start speed.

If you want to realize this feature be aware that the complete device (TPS-1 and you own Application) must come up to this time requirement. The function Autonegotiation is disabled and the system operates with a fixed transmission rate. To avoid the usage of crossover cables the Port 2 must get a crossover of the TX and RX lines

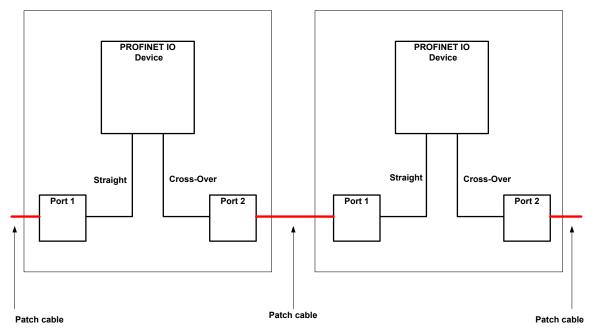


Figure C-1: Line Structure with crossover on board

The reset time of a device is very important for calculating the Start Up time. It is necessary to keep the reset time short.

REVISION HISTORY		ORY	TPS-1 User's Manual: Hardware	
Rev. Date			Description	
		Page	Summary	
1.00	Sep 20, 2012	_	First Edition issued	
1.01	Dec 12, 2012	8	1.1 Features added regarding TPS-1 Stack version 1.1	
		19	3.1.3 Connection example for a 8bit data bus added.	
		20	3.1.4 Connection example for a 16bit data bus, Figure 3-4 changed.	
		34-37	4.4 Interrupt Communication with the TPS-1 added.	
		40	5.2 add note 1 and 2 loading firmware to an empty Flash recommendation.	
		71-73	B.3.4 100BASE-FX Mode Circuitry changed	
		75	C Fast Start Up Requirements added	
1.02	Jan 25, 2013	17-18	3.1.2 Signal description of the parallel interface corrected, Figure 3-1. Figure 3-2. corrected.	
		40	5.2 Note1 changed.	
		75	C Figure C-1. correct spelling errors	
1.03	Jul 17, 2014	all	Changed - new printouts of the "TPS Configurator"	
		all	Changed - Name PROFINET IO changed to PROFINET	
		11-13	Chapter 2. , Table 2-1 : changed	
		14	Chapter 2. , Table 2-2 : changed	
		18	Chapter 3.3. , Table 3-3 : changed - LBU_BE(x)_IN	
		27	Chapter 3.2.2.1. , figure 3-9 : changed - HOST_SCLK_IN	
		29	Chapter 3.2.2.2.2 : added - the equitation for calculating the wait- and latency-time for the TPS-1 SPI Wait Mode	
		31	Chapter 4. , Figure 4-1 : changed	
		43	Chapter 5.2.2. : added - Flash types	
		55	Chapter 11. : changed	
		68,69	Appendix.B.2.1. and B.2.2. : added - alternative description to avoid a tantalum capacitor.	
1.04	Jul 13, 2015	16	Added chapter 3.1 Testing DPRAM Interface (additional information for testing the memory interface.	
		75	Table B-3 added (FX interface)	
1.05	Dec 16, 2016	12	Chapter 2: changed - Signal description INT_OUT changed from active low to active high	
		16	Added - Chapter 2.4 – Signals for IRT Communication	
		35	Chapter 4.2 : added - new event in table	
			TPS_EVENT_TPS_MESSAGE	
			TPS_EVENT_ON_LED_STATE_CHANGE	
		36	Chapter 4.3 : added - new event in table.	
			APP_EVENT_APP_MESSAGE	
		37	Chapter 4.4.1 : changed - interrupt signal active high	
		43	Chapter 5.2.2.: added - flash N25Q032A added to the list of recommended flashes	
		45	Chapter 6.1 : changed - change for unused GPIOs.	
			added - additional text regarding version 1.4.	
		54	Chapter 9 : added - Example for an oscillator crystal information	
			changed - Deleted option register in Figure 9-1	
		55	added - chapter 9.2	
		61	Appendix. A: added - appendiex.A.1.2. Host Serial Interface	
		68	added - chapter A.2.6 Configuration of the IO Local Serial interface (SPI Master)	

Rev.	Date	Description	
		Page	Summary
1.06	Jan 31, 2018	8	Chapter 1.1 : Changed - Number of application relations (From one to two)
		14	Chapter 2.2. : Added - Note 3) for HOST_SFRN_IN in Table 2-2
		28	Chapter 3.3.2 : Added - Description about HOST_SFRN_IN
		35	Chapter 4.2. : Added - two events in Table 4-1
		38	Chapter 4.4.1 : Added - Description of Bit 24 to 29.
		46	Chapter 6.2 : Added - Description of LED_MT_OUT
1.07	Jul 30.2018	29	Chapter 3.2.2 : Added - Timing specification of HOST_SFRN_IN signal
		32	Chapter 3.3.2.2.2 : Added - Figure 3-15 Two SPI transfer with wait time
		33	Chapter 3.3.3. : Added - Equation of Twait
		45	Chapter 5.2.2 : Changed - recommended flash memory list
1.08	Apr. 17.2020	28	Figure 3 10: Changed - Pin name "HOST_STXD_IN" to "HOST_STXD_OUT"
		29	Figure 3 11: Changed - Pin name "HOST_STXD_IN" to "HOST_STXD_OUT"
		30	Chapter 3.3.2.2.1 : Changed - Pin name "HOST_STXD_IN" to "HOST_STXD_OUT"
		33	Figure 3 16: Changed - Pin name "HOST_STXD_IN" to "HOST_STXD_OUT"
1.09	Mar. 15.2022	45	Modify recommended flash device.
1.10	Aug. 21.2023	86	Modify Appendix.C Fast Start Up Requirements

TPS-1 User's Manual: Hardware

Publication Date: Rev.1.00 Sep. 20, 2012

Rev.1.10 Aug. 21, 2023

Published by: Renesas Electronics Corporation

