
 Application Note

R20UT3475EJ0300 Rev.3.00 Page 1 of 35

May 31, 2019

RL78 Family C Compiler Package (CC-RL)

How to Divide Boot and Flash Areas

Introduction

This document describes the processing necessary to divide a program into boot and flash areas when using
the C compiler for the RL78 family (CC-RL).

Versions of Tools with which Correct Operation has been Confirmed

The following tools and versions were used for the descriptions in this document.

• C compiler for the RL78 family (CC-RL): V1.08.00

• e2 studio integrated development environment: V7.3.0

• CS+ for CC integrated development environment: V8.01.00

Contents

1. Overview ... 3

1.1 Dividing the Boot and Flash Areas .. 3

1.2 Allocating the Boot and Flash Areas ... 4

1.3 Procedures for Creating the Boot Area and Flash Area Projects ... 4

1.4 Overview of Build Processing for the Boot and Flash Areas .. 5

2. Common Processing for the Boot and Flash Areas ... 6

2.1 Creating projects ... 6

2.1.1 e2 studio ... 6

2.1.2 CS+ .. 8

2.2 Creating a common program for the boot and flash areas.. 10

2.2.1 Address definition file for the branch table (assembly language) ... 10

2.3 Hex files for the boot and flash areas .. 10

2.4 Initialization procedure .. 11

3. Boot Area .. 12

3.1 Creating boot area programs .. 12

3.1.1 Modifying the startup routine (cstart.asm) ... 12

3.1.2 Modifying hdwinit.asm and stkinit.asm .. 14

3.1.3 Creating the program such that the on-chip debug area is secured (ocdrom_ce.asm) 14

3.1.4 Creating a file for resolving the function addresses in the branch table (extern_ftable.asm) 14

3.2 Specifying boot area options ... 15

3.2.1 Output of a file for the externally defined symbols .. 15

3.2.2 Specifying the section allocation ... 17

3.2.3 Specifying a vector for branching to the interrupt function in the flash area 19

3.2.4 Making necessary settings for the on-chip debugging function .. 20

3.2.5 Specifying hex file output only to the boot area address range .. 22

R20UT3475EJ0300
Rev. 3.00

May 31, 2019

RL78 Family C Compiler Package (CC-RL) How to Divide Boot and Flash Areas

R20UT3475EJ0300 Rev.3.00 Page 2 of 35

May 31, 2019

4. Flash Area ... 23

4.1 Creating flash area programs .. 23

4.1.1 Modifying the startup routine (cstart.asm) ... 23

4.1.2 Creating a branch table program (ftable.asm) .. 23

4.1.3 Defining an interrupt function .. 24

4.2 Specifying flash area options .. 24

4.2.1 Registering the externally defined symbol file with the project ... 24

4.2.2 Specifying the section allocation ... 26

4.2.3 Specifying hex file output only to the flash area address range .. 28

4.2.4 Combining the hex files for the boot and flash areas .. 29

5. Debugging Tool ... 31

5.1 Downloading to Debugging Tool ... 31

6. Sample Programs .. 33

6.1 Sample program for the boot area (boot.c) ... 33

6.2 Sample program for the flash area (flash.c) .. 34

RL78 Family C Compiler Package (CC-RL) How to Divide Boot and Flash Areas

R20UT3475EJ0300 Rev.3.00 Page 3 of 35

May 31, 2019

1. Overview

1.1 Dividing the Boot and Flash Areas

The purpose of dividing the boot and flash areas is to ensure that only the program in the flash area can be
modified without reconfiguring the program in the boot area.

Figure 1 Divided Areas on System

Note: In this document, the boot area is defined as an area that cannot be modified following design of the

system while the flash area is defined as an area that can be modified or replaced on the system.

To divide the boot and flash areas, create two projects, one to be used as the boot area project and the other
to be used as the flash area project. These projects must satisfy the following conditions.

• The variables and functions in the boot area are accessible from the flash area.

⎯ The linker option -FSymbol should be used for the boot area project so that externally defined symbols

will be output in a file.

⎯ The above externally defined symbol file should be specified as a target of building in the flash area

project.

• The functions in the flash area can be called from the boot area through a function table.

⎯ When calling functions in the flash area, the boot area project should call the address of each branch

instruction for a function that is specified in the function table.

⎯ A table of branch instructions for functions to be called from the boot area project should be created in

the flash area project.

Figure 2 References to Variables and Functions between the Boot and Flash Areas

RL78 Family C Compiler Package (CC-RL) How to Divide Boot and Flash Areas

R20UT3475EJ0300 Rev.3.00 Page 4 of 35

May 31, 2019

1.2 Allocating the Boot and Flash Areas

Allocate the boot and flash areas as follows.

Figure 3 Example of Allocating the Boot and Flash Areas

1.3 Procedures for Creating the Boot Area and Flash Area Projects

Follow the procedures below to create the boot area and flash area projects.

1. Creating the boot area project

A. Create boot area programs in the source file.

B. Specify the necessary linker options.

C. Build the boot area project before the flash area project because the boot area project is required for

building the flash area project.

2. Creating the flash area project

A. Create flash area programs in the source files.

B. Specify the necessary linker options.

RL78 Family C Compiler Package (CC-RL) How to Divide Boot and Flash Areas

R20UT3475EJ0300 Rev.3.00 Page 5 of 35

May 31, 2019

1.4 Overview of Build Processing for the Boot and Flash Areas

Figure 4 shows an overview of build processing for the boot and flash areas.

Figure 4 Build Processing for the Boot and Flash Areas

RL78 Family C Compiler Package (CC-RL) How to Divide Boot and Flash Areas

R20UT3475EJ0300 Rev.3.00 Page 6 of 35

May 31, 2019

2. Common Processing for the Boot and Flash Areas

2.1 Creating projects

2.1.1 e2 studio

1. Create projects

Create a boot area project and a flash area project by following the procedures given in section 1.3,
Procedures for Creating the Boot and Flash Areas.

Place a tick in the “boot” checkbox to configure the flash area project to allow reference to the boot area
project from the flash area project when the flash area project is built. In such cases, the boot area project is
built before the flash area project.

Figure 5 Setting the Flash Area Project to Allow Reference to the Boot Area Project

RL78 Family C Compiler Package (CC-RL) How to Divide Boot and Flash Areas

R20UT3475EJ0300 Rev.3.00 Page 7 of 35

May 31, 2019

2. Add files as targets of building

A. Add the following files to the boot area project as targets of building.

• extern_ftable.asm

• ftable.inc

• ocdmon_ce.asm

B. Add the following files to the flash area project as targets of building.

• boot.fsy (this file is generated after the boot area project is built)

• ftable.asm

• ftable.inc

• int.c

• sub_mot.txt

Figure 6 Example of Creating Projects with the e2 studio

RL78 Family C Compiler Package (CC-RL) How to Divide Boot and Flash Areas

R20UT3475EJ0300 Rev.3.00 Page 8 of 35

May 31, 2019

2.1.2 CS+

1. Create projects

Create the flash area project as the main project and the boot area project as a sub-project*.

Note: The build order in CS+ should be [Sub-project] -> [Main project].

 The boot area program will not be modified once it is created. Therefore, when creating the second-

or a later generation flash area project, the sub-project can be deleted.

2. Exclude the automatically generated file from the targets of building

Exclude the following file from the boot area and flash area projects.

• main.c

3. Add files as targets of building

A. Add the following files to the boot area project.

• boot.c

• extern_ftable.asm

• ftable.inc

• ocdmon_ce.asm

B. Add the following files to the flash area project.

• flash.c

• ftable.asm

• ftable.inc

• int.c

• boot.fsy

RL78 Family C Compiler Package (CC-RL) How to Divide Boot and Flash Areas

R20UT3475EJ0300 Rev.3.00 Page 9 of 35

May 31, 2019

Figure 7 Example of Creating Projects with CS+

RL78 Family C Compiler Package (CC-RL) How to Divide Boot and Flash Areas

R20UT3475EJ0300 Rev.3.00 Page 10 of 35

May 31, 2019

2.2 Creating a common program for the boot and flash areas

2.2.1 Address definition file for the branch table (assembly language)

• Create ftable.inc, which is the address definition file for the branch table for reference from both the boot

and flash areas.

• FLASH_TABLE: Start address of the branch table

• INTERRUPT_OFFSET: Size of the interrupt area in the branch table

Example: ftable.inc

FLASH_TABLE .EQU 0x2000

INTERRUPT_OFFSET .EQU 0x100

2.3 Hex files for the boot and flash areas

File names used in this document are listed below (output procedures are described later).

• Hex file for the boot and flash areas combined: boot_flash.mot

• Hex file for the flash area: flash2000_ffff.mot

• Hex file for the boot area: boot0000_1fff.mot

Note: A load module file (*.abs) is separately generated for each of the boot and flash areas.

Figure 8 Hex Files for the Boot and Flash Areas

RL78 Family C Compiler Package (CC-RL) How to Divide Boot and Flash Areas

R20UT3475EJ0300 Rev.3.00 Page 11 of 35

May 31, 2019

2.4 Initialization procedure

Figure 9 shows the initialization procedure.

Figure 9 Initialization Procedure

RL78 Family C Compiler Package (CC-RL) How to Divide Boot and Flash Areas

R20UT3475EJ0300 Rev.3.00 Page 12 of 35

May 31, 2019

3. Boot Area

3.1 Creating boot area programs

The following steps are required for boot area programs.

⎯ Modifying the startup routine

⎯ Modifying hdwinit.asm and stkinit.asm

⎯ Creating the program such that the on-chip debug area is secured

⎯ Creating a file for resolving the function addresses in the branch table

3.1.1 Modifying the startup routine (cstart.asm)

The procedure for modifying the startup routine (cstart.asm) is given below.

1. Add inclusion of the address definition file for the branch table.

Example: Modifying cstart.asm (1/6)

$IFNDEF __RENESAS_VERSION__

__RENESAS_VERSION__ .EQU 0x01000000

$ENDIF

$INCLUDE "ftable.inc"

2. Comment out the conditional assembly control instructions to make the definition of the .stack_bss

section valid.

Example: Modifying cstart.asm (2/6)

;$IF (__RENESAS_VERSION__ < 0x01010000) ; for CC-RL V1.00

;---

; stack area

;---

; !!! [CAUTION]!!!

; Set up stack size suitable for a project.

.SECTION .stack_bss, BSS

_stackend:

 .DS 0x200

_stacktop:

;$ENDIF

3. Modify the section name to exclude it from the target of the -FSymbol option (which is used to output

externally defined symbols).

Example: Modifying cstart.asm (3/6)

;--

; startup

;--

.SECTION .btext, TEXT

_start:

RL78 Family C Compiler Package (CC-RL) How to Divide Boot and Flash Areas

R20UT3475EJ0300 Rev.3.00 Page 13 of 35

May 31, 2019

4. Comment out the conditional assembly control instructions to specify the explicitly allocated .stack_bss

section as the stack pointer.

Example: Modifying cstart.asm (4/6)

 ;--

 ; setting the stack pointer

 ;--

;$IF (__RENESAS_VERSION__ >= 0x01010000)

; MOVW SP,#LOWW(__STACK_ADDR_START)

;$ELSE ; for CC-RL V1.00

 MOVW SP,#LOWW(_stacktop)

;$ENDIF

5. Modify the main function call to the call to the main function for the boot area, and add a branch

instruction to the flash area startup routine.

Example: Modifying cstart.asm (5/6)

 ;--

 ; call main function

 ;--

 CALL !!_boot_main ; main();

 BR !!FLASH_TABLE

6. Comment out the definition of the .const section when no mirror source area is included in the boot area.

Example: Modifying cstart.asm (6/6)

; section

;--

$IF (__RENESAS_VERSION__ >= 0x01010000)

.SECTION .RLIB, TEXTF

.L_section_RLIB:

.SECTION .SLIB, TEXTF

.L_section_SLIB:

$ENDIF

.SECTION .textf, TEXTF

.L_section_textf:

;.SECTION .const, CONST

;.L_section_const:

RL78 Family C Compiler Package (CC-RL) How to Divide Boot and Flash Areas

R20UT3475EJ0300 Rev.3.00 Page 14 of 35

May 31, 2019

3.1.2 Modifying hdwinit.asm and stkinit.asm

Modify the section name to exclude it from the target of the -FSymbol option (which is used to output
externally defined symbols).

Example: Modifying hdwinit.asm and stkinit.asm

.btextf .CSEG TEXTF

3.1.3 Creating the program such that the on-chip debug area is secured (ocdrom_ce.asm)

To use the on-chip debugging function, specific memory areas are required to be empty (filled with 0xff).

Specifying the -debug_monitor option of the linker leads to the generation of a load module file in which the
addresses 0x0002 to 0x0003, 0x00ce to 0x00d7, and the last 512 bytes of ROM are filled with 0xff (set up
according to the information in the device file specified with the -device option).

Since the last 512 bytes of ROM are part of the flash area, make the following settings for the boot area.

• Addresses 0x0002 to 0x0003

Specify 0xffff with the linker option -VECTN.

• Addresses 0x00ce to 0x00d7

Make definitions in the assembly source (see the following program).

Example: ocdrom_ce.asm

MON_CE .CSEG AT 0x00ce

 .DB8 0xffffffffffffffff

 .DB2 0xffff

• Last 512 bytes of ROM

Allocate this area through the flash area project.

3.1.4 Creating a file for resolving the function addresses in the branch table
(extern_ftable.asm)

• Define symbols for resolving the addresses for the branch table to be used to call functions in the flash

area from the boot area.

• Register this file in the project.

Example: Creating extern_ftable.asm

$INCLUDE "ftable.inc"

 .public _f1

_f1 .equ (FLASH_TABLE + INTERRUPT_OFFSET + (0 * 4))

 .public _f2

_f2 .equ (FLASH_TABLE + INTERRUPT_OFFSET + (1 * 4))

RL78 Family C Compiler Package (CC-RL) How to Divide Boot and Flash Areas

R20UT3475EJ0300 Rev.3.00 Page 15 of 35

May 31, 2019

3.2 Specifying boot area options

Make the following option settings for the boot area.

⎯ Output of a file for the externally defined symbols

⎯ Specify the section allocation

⎯ Specify a vector for branching to the interrupt function in the flash area

⎯ Make necessary settings for the on-chip debugging function

⎯ Specify hex file output only to the boot area address range

3.2.1 Output of a file for the externally defined symbols

The externally defined symbols need to be output to a file so that the flash area project has access to the
variables and functions in the boot area.

Register all target sections with the -FSymbol option.

Example: e2 studio

[Properties]→[C/C++ Build]→[Settings]→[Tool Settings] tabbed page

→[Linker]→[Output]→[Section that outputs external defined symbols to the file]

Figure 10 Example of Option Setting with the e2 studio

RL78 Family C Compiler Package (CC-RL) How to Divide Boot and Flash Areas

R20UT3475EJ0300 Rev.3.00 Page 16 of 35

May 31, 2019

Example: CS+

[CC-RL (Build Tool)]→[Link Options] tabbed page

→[Section]→[Section that outputs external defined symbols to the file]

Figure 11 Example of Option Setting with CS+

RL78 Family C Compiler Package (CC-RL) How to Divide Boot and Flash Areas

R20UT3475EJ0300 Rev.3.00 Page 17 of 35

May 31, 2019

3.2.2 Specifying the section allocation

Specify the section allocation in the boot area with the linker option -start. Make sure that the sections do not
overlap those in the flash area.

In addition, specify the stack area section.

Example: e2 studio

[Properties]→[C/C++ Build]→[Settings]→[Tool Settings] tabbed page

→[Linker]→[Section]→[Section Viewer]

Figure 12 Example of Option Setting with the e2 studio

RL78 Family C Compiler Package (CC-RL) How to Divide Boot and Flash Areas

R20UT3475EJ0300 Rev.3.00 Page 18 of 35

May 31, 2019

Example: CS+

[CC-RL (Build Tool)]→[Link Options] tabbed page

→[Section]→[Section start address]

Figure 13 Example of Option Setting with CS+

RL78 Family C Compiler Package (CC-RL) How to Divide Boot and Flash Areas

R20UT3475EJ0300 Rev.3.00 Page 19 of 35

May 31, 2019

3.2.3 Specifying a vector for branching to the interrupt function in the flash area

Specify the address in the branch table with the linker option -VECTN.

Example: e2 studio

[Properties]→[C/C++ Build]→[Settings]→[Tool Settings] tabbed page

→[Linker]→[Output]→[Address setting for specified area of vector table]

→8=0x2010 (to specify 0x2010 for address 8)

Figure 14 Example of Option Setting with the e2 studio

Example: CS+

[CC-RL (Build Tool)]→[Link Options] tabbed page

→[Output Code]→[Address setting for specified area of vector table]

→8=2010 (to specify 0x2010 for address 8)

Figure 15 Example of Option Setting with CS+

RL78 Family C Compiler Package (CC-RL) How to Divide Boot and Flash Areas

R20UT3475EJ0300 Rev.3.00 Page 20 of 35

May 31, 2019

3.2.4 Making necessary settings for the on-chip debugging function

1. Allocate the area of addresses 0x0002 and 0x0003 with the linker option -VECTN (if you are using the e2

studio, this area is automatically allocated).

2. Set the linker option –OCDBG to be enabled and specify the value for the on-chip debug option byte.

Example: e2 studio

[Properties]→[C/C++ Build]→[Settings]→[Tool Settings] tabbed page

→[Linker]→[Device]→[Set enable/disable on-chip debug by link option]

Note: If you are using a hardware-debug build configuration (i.e. with “E1/E2”, “E2”, or “E2 Lite” selected as

the debugger hardware), deselect the [Secure memory area of OCD monitor] checkbox.

Figure 16 Example of Option Setting with the e2 studio

RL78 Family C Compiler Package (CC-RL) How to Divide Boot and Flash Areas

R20UT3475EJ0300 Rev.3.00 Page 21 of 35

May 31, 2019

Example: CS+

[CC-RL (Build Tool)]→[Link Options] tabbed page

→[Device]→[Option byte values for OCD]

→[Section]→[Address setting for specified area of vector table]

→2=ffff (to set 0xffff at address 2)

Figure 17 Example of Option Setting with CS+

RL78 Family C Compiler Package (CC-RL) How to Divide Boot and Flash Areas

R20UT3475EJ0300 Rev.3.00 Page 22 of 35

May 31, 2019

3.2.5 Specifying hex file output only to the boot area address range

Specify the output file name and output addresses.

Example: e2 studio

[Properties]→[C/C++ Build]→[Settings]→[Tool Settings] tabbed page

→[Converter]→[Output]

→Select the [Output hex file] checkbox.

→Select [Motorola S-record file] as the output file format.

→Specify the output file name and output addresses in [Division output file].

Figure 18 Example of Option Setting with the e2 studio

Example: CS+

[CC-RL (Build Tool)]→[Hex Output Options] tabbed page

→[Output File]→Specify the output file name and output addresses in [Division output file].

Figure 19 Example of Option Setting with CS+

RL78 Family C Compiler Package (CC-RL) How to Divide Boot and Flash Areas

R20UT3475EJ0300 Rev.3.00 Page 23 of 35

May 31, 2019

4. Flash Area

4.1 Creating flash area programs

The following steps are required for flash area programs.

⎯ Modifying the startup routine

⎯ Creating a branch table program

⎯ Defining an interrupt function

4.1.1 Modifying the startup routine (cstart.asm)

Comment out the stack pointer settings. The stack pointer specified in the boot area startup routine should
be used; a stack pointer must not be specified again in the flash area.

Example: cstart.asm

 ;--

 ; setting the stack pointer

 ;--

;$IF (__RENESAS_VERSION__ >= 0x01010000)

; MOVW SP,#LOWW(__STACK_ADDR_START)

;$ELSE ; for CC-RL V1.00

; MOVW SP,#LOWW(_stacktop)

;$ENDIF

4.1.2 Creating a branch table program (ftable.asm)

At the addresses called from the boot area, write instructions for branching to the function addresses in the
flash area.

Example: ftable.asm

$INCLUDE "ftable.inc"

 .EXTERN _start

 .EXTERN _f1

 .EXTERN _f2

.jtext .CSEG AT FLASH_TABLE

 br !!_start ; RESET

 .DB4 0xffffffff ;

 .DB4 0xffffffff ; INTWDTI

 .DB4 0xffffffff ; INTLVI

 br !!_int_INTP0 ; INTP0

 .DB4 0xffffffff ; INTP1

 .DB4 0xffffffff ; INTP2

 Omitted

.jtext2 .CSEG AT FLASH_TABLE+INTERRUPT_OFFSET

 br !!_f1

 br !!_f2

For functions

For interrupts

RL78 Family C Compiler Package (CC-RL) How to Divide Boot and Flash Areas

R20UT3475EJ0300 Rev.3.00 Page 24 of 35

May 31, 2019

4.1.3 Defining an interrupt function

• The interrupt vector should be defined in the boot area project.

• Do not specify the vector address (vect) with the #pragma interrupt directive in the flash area.

Example: int.c

#include "iodefine.h"

#pragma interrupt int_INTP0

volatile char f;

void int_INTP0(void)

{

 f = 1;

}

4.2 Specifying flash area options

Make the following option settings for the flash area.

⎯ Register the externally defined symbol file with the project

⎯ Specify the section allocation

⎯ Specify hex file output only to the flash area address range

⎯ Combine the hex files for the boot and flash areas

4.2.1 Registering the externally defined symbol file with the project

Register the externally defined symbol file created in the boot area with the project to allow access to the
variables and functions in the boot area.

Example: e2 studio

If you are using the e2 studio, build the boot area project and then manually register the externally defined
symbol file (boot.fsy) created in the boot area with the flash area project.

Figure 20 Example of Option Setting with the e2 studio

RL78 Family C Compiler Package (CC-RL) How to Divide Boot and Flash Areas

R20UT3475EJ0300 Rev.3.00 Page 25 of 35

May 31, 2019

Example: CS+

If you are using CS+, building the boot area project will automatically register the externally defined symbol
file (boot.fsy) with the flash area project.

Figure 21 Example of Option Setting with CS+

RL78 Family C Compiler Package (CC-RL) How to Divide Boot and Flash Areas

R20UT3475EJ0300 Rev.3.00 Page 26 of 35

May 31, 2019

4.2.2 Specifying the section allocation

Specify the section allocation in the flash area with the linker option -start.

• Make sure that the sections do not overlap those in the boot area.

• Do not allocate anything to the branch table area.

Example: e2 studio

[Properties]→[C/C++ Build]→[Settings]→[Tool Settings] tabbed page

→[Linker]→[Section]→[Section Viewer]

Figure 22 Example of Option Setting with the e2 studio

RL78 Family C Compiler Package (CC-RL) How to Divide Boot and Flash Areas

R20UT3475EJ0300 Rev.3.00 Page 27 of 35

May 31, 2019

Example: CS+

[CC-RL (Build Tool)]→[Link Options] tabbed page

→[Section]→[Section start address]

Figure 23 Example of Option Setting with CS+

RL78 Family C Compiler Package (CC-RL) How to Divide Boot and Flash Areas

R20UT3475EJ0300 Rev.3.00 Page 28 of 35

May 31, 2019

4.2.3 Specifying hex file output only to the flash area address range

Specify the output file name and output addresses.

Example: e2 studio

[Properties]→[C/C++ Build]→[Settings]→[Tool Settings] tabbed page

→[Converter]→[Output]

→Select the [Output hex file] checkbox.

→Select [Motorola S-record file] as the output file format.

→Specify the output file name and output addresses in [Division output file].

Figure 24 Example of Option Setting with the e2 studio

Example: CS+

[CC-RL (Build Tool)]→[Hex Output Options] tabbed page

→[Output File]→Specify the output file name and output addresses in [Division output file].

Figure 25 Example of Option Setting with CS+

RL78 Family C Compiler Package (CC-RL) How to Divide Boot and Flash Areas

R20UT3475EJ0300 Rev.3.00 Page 29 of 35

May 31, 2019

4.2.4 Combining the hex files for the boot and flash areas

To combine the hex files for the boot and flash areas into one file, add the linker execution step after the
build processing.

Example: e2 studio

[Properties]→[C/C++ Build]→[Settings]→[Build Steps] tabbed page→[Post-build steps]

→Add the command to execute the linker (rlink.exe -subcommand=..¥src¥sub_mot.txt) to [Command(s):].

Figure 26 Example of Option Setting with the e2 studio

Example: CS+

[CC-RL (Build Tool)]→[Common Options] tabbed page→[Others]

→Add the command to execute the linker ("%MicomToolPath%¥CC-RL¥V1.08.00¥bin¥rlink.exe" -

subcommand=sub_mot.txt) to [Commands executed after build processing].

Figure 27 Example of Option Setting with CS+

RL78 Family C Compiler Package (CC-RL) How to Divide Boot and Flash Areas

R20UT3475EJ0300 Rev.3.00 Page 30 of 35

May 31, 2019

Specify the input hex files, their format, and the output file name in the subcommand file for input to the
linker.

Example: sub_mot.txt (e2 studio)

-input=..¥..¥boot¥HardwareDebug¥boot0000_1fff.mot

-input=flash2000_ffff.mot

-form=stype

-output=boot_flash.mot

Example: sub_mot.txt (CS+)

-input=.¥boot¥DefaultBuild¥boot0000_1fff.mot

-input=.¥DefaultBuild¥flash2000_ffff.mot

-form=stype

-output=.¥DefaultBuild¥boot_flash.mot

RL78 Family C Compiler Package (CC-RL) How to Divide Boot and Flash Areas

R20UT3475EJ0300 Rev.3.00 Page 31 of 35

May 31, 2019

5. Debugging Tool

5.1 Downloading to Debugging Tool

Two load module files (*.abs) are generated; one for each of the boot and flash areas. Download both of the
load module files to the debugging tool.

Example: e2 studio

[Debug]→[Debug Configurations]→[flash HardwareDebug]→[Startup] tabbed page

→[Load image and symbols]

Add the load module file for the boot area to the project for the flash area.

Figure 28 Example of Option Setting with the e2 studio

*Note on e2 studio

Set boot.x to "No" when
connecting the debugging
tool. Download it after
connection.

RL78 Family C Compiler Package (CC-RL) How to Divide Boot and Flash Areas

R20UT3475EJ0300 Rev.3.00 Page 32 of 35

May 31, 2019

Example: CS+

[RL78 Simulator (Debug Tool)]→[Download File Settings] tabbed page

→[Download]→[Download files]

Add the load module file for the boot area to the project for the flash area.

Figure 29 Example of Option Setting with CS+

RL78 Family C Compiler Package (CC-RL) How to Divide Boot and Flash Areas

R20UT3475EJ0300 Rev.3.00 Page 33 of 35

May 31, 2019

6. Sample Programs

The following pages show examples of boot and flash area programs that were created through the
procedures described in earlier sections.

6.1 Sample program for the boot area (boot.c)

#include "iodefine.h" /* SFR definition file */

#pragma interrupt int_INTP1(vect=INTP1) /* Interrupt definition in the boot

area */

int boot_a = 0x12;

int boot_b = 0x34;

extern int f1(int); /* Prototype declaration of a function in the flash area

*/

extern int f2(int); /* Prototype declaration of a function in the flash area

*/

void boot_main(void) /* Main function in the boot area */

{

 /* Main processing in the boot area */
}

void boot_func(void)

{

 boot_a = f1(boot_a); /* Call of a function in the flash area */

 boot_b = f2(boot_b); /* Call of a function in the flash area */

}

void int_INTP1(void) /* Interrupt processing in the boot area */
{

 boot_a = 1;

}

RL78 Family C Compiler Package (CC-RL) How to Divide Boot and Flash Areas

R20UT3475EJ0300 Rev.3.00 Page 34 of 35

May 31, 2019

6.2 Sample program for the flash area (flash.c)

#include "iodefine.h" /* SFR definition file */

int flash_a, b;

extern int boot_a, boot_b; /* Functions defined in the boot area */

extern void boot_func(void); /* Function defined in the boot area */

int f1(int a)

{

 return (++a);

}

int f2(int b)

{

 return (--b);

}

void main(void) /* Main function in the flash area */

{

 boot_a++; /* Access to a variable in the boot area */

 boot_b++; /* Access to a variable in the boot area */

 boot_func(); /* Access to a variable in the boot area */

}

RL78 Family C Compiler Package (CC-RL) How to Divide Boot and Flash Areas

R20UT3475EJ0300 Rev.3.00 Page 35 of 35

May 31, 2019

Revision History

Rev. Date

Description

Page Summary

1.00 - New release

2.00 All

P3, P29,

P32, P47

P32, P33

P40

Changed the format of this document

Updated the version numbers of tools

Corrected the values to be specified with the -VECTN option

Corrected the branch instruction to the _int_INTP0 label

3.00 All Changed the format of this document

Updated the version numbers of tools

© 2019 Renesas Electronics Corporation. All rights reserved.

Notice

1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products

and application examples. You are fully responsible for the incorporation or any other use of the circuits, software, and information in the design of

your product or system. Renesas Electronics disclaims any and all liability for any losses and damages incurred by you or third parties arising from the

use of these circuits, software, or information.

2. Renesas Electronics hereby expressly disclaims any warranties against and liability for infringement or any other claims involving patents, copyrights,

or other intellectual property rights of third parties, by or arising from the use of Renesas Electronics products or technical information described in this

document, including but not limited to, the product data, drawings, charts, programs, algorithms, and application examples.

3. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics

or others.

4. You shall not alter, modify, copy, or reverse engineer any Renesas Electronics product, whether in whole or in part. Renesas Electronics disclaims any

and all liability for any losses or damages incurred by you or third parties arising from such alteration, modification, copying or reverse engineering.

5. Renesas Electronics products are classified according to the following two quality grades: “Standard” and “High Quality”. The intended applications for

each Renesas Electronics product depends on the product’s quality grade, as indicated below.

 "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home

electronic appliances; machine tools; personal electronic equipment; industrial robots; etc.

 "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control (traffic lights); large-scale communication equipment; key

financial terminal systems; safety control equipment; etc.

Unless expressly designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas

Electronics document, Renesas Electronics products are not intended or authorized for use in products or systems that may pose a direct threat to

human life or bodily injury (artificial life support devices or systems; surgical implantations; etc.), or may cause serious property damage (space

system; undersea repeaters; nuclear power control systems; aircraft control systems; key plant systems; military equipment; etc.). Renesas

Electronics disclaims any and all liability for any damages or losses incurred by you or any third parties arising from the use of any Renesas

Electronics product that is inconsistent with any Renesas Electronics data sheet, user’s manual or other Renesas Electronics document.

6. When using Renesas Electronics products, refer to the latest product information (data sheets, user’s manuals, application notes, “General Notes for

Handling and Using Semiconductor Devices” in the reliability handbook, etc.), and ensure that usage conditions are within the ranges specified by

Renesas Electronics with respect to maximum ratings, operating power supply voltage range, heat dissipation characteristics, installation, etc.

Renesas Electronics disclaims any and all liability for any malfunctions, failure or accident arising out of the use of Renesas Electronics products

outside of such specified ranges.

7. Although Renesas Electronics endeavors to improve the quality and reliability of Renesas Electronics products, semiconductor products have specific

characteristics, such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Unless designated as a high reliability

product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics

products are not subject to radiation resistance design. You are responsible for implementing safety measures to guard against the possibility of bodily

injury, injury or damage caused by fire, and/or danger to the public in the event of a failure or malfunction of Renesas Electronics products, such as

safety design for hardware and software, including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for

aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult and impractical, you

are responsible for evaluating the safety of the final products or systems manufactured by you.

8. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas

Electronics product. You are responsible for carefully and sufficiently investigating applicable laws and regulations that regulate the inclusion or use of

controlled substances, including without limitation, the EU RoHS Directive, and using Renesas Electronics products in compliance with all these

applicable laws and regulations. Renesas Electronics disclaims any and all liability for damages or losses occurring as a result of your noncompliance

with applicable laws and regulations.

9. Renesas Electronics products and technologies shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is

prohibited under any applicable domestic or foreign laws or regulations. You shall comply with any applicable export control laws and regulations

promulgated and administered by the governments of any countries asserting jurisdiction over the parties or transactions.

10. It is the responsibility of the buyer or distributor of Renesas Electronics products, or any other party who distributes, disposes of, or otherwise sells or

transfers the product to a third party, to notify such third party in advance of the contents and conditions set forth in this document.

11. This document shall not be reprinted, reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.

12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas

Electronics products.

(Note1) “Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its directly or indirectly controlled

subsidiaries.

(Note2) “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.

(Rev.4.0-1 November 2017)

Corporate Headquarters Contact information
TOYOSU FORESIA, 3-2-24 Toyosu,

Koto-ku, Tokyo 135-0061, Japan

www.renesas.com

 For further information on a product, technology, the most up-to-date

version of a document, or your nearest sales office, please visit:

www.renesas.com/contact/.

Trademarks

Renesas and the Renesas logo are trademarks of Renesas Electronics

Corporation. All trademarks and registered trademarks are the property

of their respective owners.

https://www.renesas.com/
https://www.renesas.com/contact/

	1. Overview
	1.1 Dividing the Boot and Flash Areas
	1.2 Allocating the Boot and Flash Areas
	1.3 Procedures for Creating the Boot Area and Flash Area Projects
	1.4 Overview of Build Processing for the Boot and Flash Areas

	2. Common Processing for the Boot and Flash Areas
	2.1 Creating projects
	2.1.1 e2 studio
	2.1.2 CS+

	2.2 Creating a common program for the boot and flash areas
	2.2.1 Address definition file for the branch table (assembly language)

	2.3 Hex files for the boot and flash areas
	2.4 Initialization procedure

	3. Boot Area
	3.1 Creating boot area programs
	3.1.1 Modifying the startup routine (cstart.asm)
	3.1.2 Modifying hdwinit.asm and stkinit.asm
	3.1.3 Creating the program such that the on-chip debug area is secured (ocdrom_ce.asm)
	3.1.4 Creating a file for resolving the function addresses in the branch table (extern_ftable.asm)

	3.2 Specifying boot area options
	3.2.1 Output of a file for the externally defined symbols
	3.2.2 Specifying the section allocation
	3.2.3 Specifying a vector for branching to the interrupt function in the flash area
	3.2.4 Making necessary settings for the on-chip debugging function
	3.2.5 Specifying hex file output only to the boot area address range

	4. Flash Area
	4.1 Creating flash area programs
	4.1.1 Modifying the startup routine (cstart.asm)
	4.1.2 Creating a branch table program (ftable.asm)
	4.1.3 Defining an interrupt function

	4.2 Specifying flash area options
	4.2.1 Registering the externally defined symbol file with the project
	4.2.2 Specifying the section allocation
	4.2.3 Specifying hex file output only to the flash area address range
	4.2.4 Combining the hex files for the boot and flash areas

	5. Debugging Tool
	5.1 Downloading to Debugging Tool

	6. Sample Programs
	6.1 Sample program for the boot area (boot.c)
	6.2 Sample program for the flash area (flash.c)

	Revision History
	Notice

