
www.renesas.com

All information contained in these matenals, including products and product specifications,
represents information on the product at the time of publication and is subject to change by
Renesas Electronics Corp. without notice. Please review the latest information published by
Renesas Electronics Corp. through various means, including the Renesas Electronics Corp.
website (http://www.renesas.com).

U
ser's M

anual

RI78V4
Real-Time Operating System

User's Manual: Coding
Target Device
RL78 Family
78K0R Microcontroller

Rev.1.01 Apr 2012

Notice
1. All information included in this document is current as of the date this document is issued. Such information, however, is

subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please
confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to
additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.

2. Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights
of third parties by or arising from the use of Renesas Electronics products or technical information described in this document.
No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights
of Renesas Electronics or others.

3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.
4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of

semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software,
and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by
you or third parties arising from the use of these circuits, software, or information.

5. When exporting the products or technology described in this document, you should comply with the applicable export control
laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas
Electronics products or the technology described in this document for any purpose relating to military applications or use by
the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and
technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited
under any applicable domestic or foreign laws or regulations.

6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics
does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages
incurred by you resulting from errors in or omissions from the information included herein.

7. Renesas Electronics products are classified according to the following three quality grades: “Standard”, “High Quality”, and
“Specific”. The recommended applications for each Renesas Electronics product depends on the product’s quality grade, as
indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular
application. You may not use any Renesas Electronics product for any application categorized as “Specific” without the prior
written consent of Renesas Electronics. Further, you may not use any Renesas Electronics product for any application for
which it is not intended without the prior written consent of Renesas Electronics. Renesas Electronics shall not be in any way
liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an
application categorized as “Specific” or for which the product is not intended where you have failed to obtain the prior written
consent of Renesas Electronics. The quality grade of each Renesas Electronics product is “Standard” unless otherwise
expressly specified in a Renesas Electronics data sheets or data books, etc.

“Standard”: Computers; office equipment; communications equipment; test and measurement equipment; audio and visual
equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots.

“High Quality”: Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-
crime systems; safety equipment; and medical equipment not specifically designed for life support.

“Specific”: Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or
systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare
intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.

8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics,
especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation
characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or
damages arising out of the use of Renesas Electronics products beyond such specified ranges.

9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have
specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further,
Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to
guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a
Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire
control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because
the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system
manufactured by you.

10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental
compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable
laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS
Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with
applicable laws and regulations.

11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas
Electronics.

12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this
document or Renesas Electronics products, or if you have any other inquiries.

(Note 1) “Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its majority-
owned subsidiaries.

(Note 2) “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.

How to Use This Manual

Readers This manual is intended for users who design and develop application systems using

RL78 family and 78K0R microcontrollers products.

Purpose This manual is intended for users to understand the functions of real-time OS "RI78V4"

manufactured by Renesas Electronics, described the organization listed below.

Organization This manual consists of the following major sections.

CHAPTER 1 OVERVIEW

CHAPTER 2 SYSTEM CONSTRUCTION

CHAPTER 3 TASK MANAGEMENT FUNCTIONS

CHAPTER 4 TASK DEPENDENT SYNCHRONIZATION FUNCTIONS

CHAPTER 5 SYNCHRONIZATION AND COMMUNICATION FUNCTIONS

CHAPTER 6 MEMORY POOL MANAGEMENT FUNCTIONS

CHAPTER 7 TIME MANAGEMENT FUNCTIONS

CHAPTER 8 SYSTEM STATE MANAGEMENT FUNCTIONS

CHAPTER 9 INTERRUPT MANAGEMENT FUNCTIONS

CHAPTER 10 SYSTEM CONFIGURATION MANAGEMENT FUNCTIONS

CHAPTER 11 SCHEDULER

CHAPTER 12 SERVICE CALLS

CHAPTER 13 SYSTEM CONFIGURATION FILE

CHAPTER 14 CONFIGURATOR CF78V4

APPENDIX A WINDOW REFERENCE

APPENDIX B CAUTIONS

APPENDIX C INDEX

How to Read This Manual It is assumed that the readers of this manual have general knowledge in the fields of

electrical engineering, logic circuits, microcontrollers, C language, and assemblers.

To understand the hardware functions of the RL78 family and 78K0R microcontroller.

-> Refer to the User's Manual of each product.

Conventions Data significance: Higher digits on the left and lower digits on the right

Note: Footnote for item marked with Note in the text

Caution: Information requiring particular attention

Remark: Supplementary information

Numeric representation: Decimal ... XXXX

Hexadecimal ... 0xXXXX

Prefixes indicating power of 2 (address space and memory capacity):

K (kilo) 210 = 1024

M (mega) 220 = 10242

Related Documents The related documents indicated in this publication may include preliminary versions.

However, preliminary versions are not marked as such.

Caution The related documents listed above are subject to change without

notice. Be sure to use the latest edition of each document when

designing.

All trademarks or registered trademarks in this document are the property of their respective owners.

Document Name Document No.

RI Series Start R20UT0751E

Message R20UT0756E

RI78V4 Coding This manual

Debug R20UT0753E

Analysis R20UT0513E

TABLE OF CONTENTS

CHAPTER 1 OVERVIEW ... 10

1.1 Outline ... 10

1.1.1 Real-time OS ... 10

1.1.2 Multi-task OS ... 10

CHAPTER 2 SYSTEM CONSTRUCTION ... 11

2.1 Outline ... 11

2.2 Coding of Processing Program ... 12

2.3 Coding of System Configuration File ... 12

2.4 Coding of User-Own Coding Module ... 13

2.5 Coding of Directive File ... 14

2.5.1 k_system segment ... 15

2.5.2 k_info segment ... 15

2.5.3 k_const segment ... 15

2.5.4 k_data segment ... 15

2.5.5 k_stack segment ... 15

2.5.6 k_work0, k_work1, k_work2, k_work3 segment ... 16

2.6 Creating Load Module ... 17

2.7 Embedding System ... 21

CHAPTER 3 TASK MANAGEMENT FUNCTIONS ... 22

3.1 Outline ... 22

3.2 Tasks ... 22

3.2.1 Task state ... 22

3.2.2 Task priority ... 24

3.2.3 Create task ... 24

3.2.4 Delete task ... 24

3.2.5 Basic form of tasks ... 25

3.2.6 Internal processing of task ... 26

3.3 Activate Task ... 27

3.3.1 Queuing an activation request ... 27

3.3.2 Not queuing an activation request ... 28

3.4 Cancel Task Activation Requests ... 29

3.5 Terminate Task ... 30

3.5.1 Terminate invoking task ... 30

3.5.2 Terminate task ... 31

3.6 Change Task Priority ... 32

3.7 Reference Task State ... 33

CHAPTER 4 TASK DEPENDENT SYNCHRONIZATION FUNCTIONS ... 34

4.1 Outline ... 34

4.2 Put Task to Sleep ... 34

4.3 Wakeup Task ... 37

4.4 Cancel Task Wakeup Requests ... 38

4.5 Release Task from Waiting ... 39

4.6 Suspend Task ... 40

4.7 Resume Suspended Task ... 41

4.8 Delay Task ... 43

CHAPTER 5 SYNCHRONIZATION AND COMMUNICATION FUNCTIONS ... 44

5.1 Outline ... 44

5.2 Semaphores ... 44

5.2.1 Create semaphore ... 44

5.2.2 Delete semaphore ... 44

5.2.3 Release semaphore resource ... 45

5.2.4 Acquire semaphore resource ... 46

5.2.5 Reference semaphore state ... 49

5.3 Eventflags ... 50

5.3.1 Create eventflag ... 50

5.3.2 Delete eventflag ... 50

5.3.3 Set eventflag ... 51

5.3.4 Clear eventflag ... 52

5.3.5 Wait for eventflag ... 53

5.3.6 Reference eventflag state ... 58

5.4 Mailboxes ... 59

5.4.1 Create mailbox ... 59

5.4.2 Delete mailbox ... 59

5.4.3 Message ... 60

5.4.4 Send to mailbox ... 61

5.4.5 Receive from mailbox ... 62

5.4.6 Reference mailbox state ... 65

CHAPTER 6 MEMORY POOL MANAGEMENT FUNCTIONS ... 66

6.1 Outline ... 66

6.2 Fixed-Sized Memory Pool ... 66

6.2.1 Create fixed-sized memory pool ... 66

6.2.2 Delete fixed-sized memory pool ... 67

6.2.3 Acquire fixed-sized memory block ... 67

6.2.4 Release fixed-sized memory block ... 71

6.2.5 Reference fixed-sized memory pool state ... 72

CHAPTER 7 TIME MANAGEMENT FUNCTIONS ... 73

7.1 Outline ... 73

7.2 Timer Handler ... 73

7.2.1 Define timer handler ... 73

7.3 Delayed Wakeup ... 74

7.4 Timeout ... 74

7.5 Cyclic Handlers ... 75

7.5.1 Create cyclic handler ... 75

7.5.2 Delete cyclic handler ... 75

7.5.3 Basic form of cyclic handlers ... 75

7.5.4 Internal processing of cyclic handler ... 76

7.5.5 Start cyclic handler operation ... 77

7.5.6 Stop cyclic handler operation ... 78

7.5.7 Reference cyclic handler state ... 79

CHAPTER 8 SYSTEM STATE MANAGEMENT FUNCTIONS ... 80

8.1 Outline ... 80

8.2 Rotate Task Precedence ... 80

8.3 Reference Task ID in the RUNNING State ... 82

8.4 Lock the CPU ... 83

8.5 Unlock the CPU ... 85

8.6 Disable Dispatching ... 86

8.7 Enable Dispatching ... 88

8.8 Reference Contexts ... 89

8.9 Reference CPU State ... 90

8.10 Reference Dispatching State ... 91

8.11 Reference Dispatch Pending State ... 92

CHAPTER 9 INTERRUPT MANAGEMENT FUNCTIONS ... 93

9.1 Outline ... 93

9.2 Interrupt Entry Processing ... 93

9.2.1 Basic form of interrupt entry processing ... 94

9.2.2 Internal processing of interrupt entry processing ... 94

9.3 Interrupt Handlers ... 95

9.3.1 Define interrupt handler ... 95

9.3.2 Basic form of interrupt handlers ... 96

9.3.3 Internal processing of interrupt handler ... 98

9.4 Controlling Enabling/Disabling of Interrupts ... 99

9.4.1 Interrupt level under management of the RI78V4 ... 99

9.4.2 Controlling enabling/disabling of interrupts in the RI78V4 ... 99

9.4.3 Controlling enabling/disabling of interrupts in user processes ... 100

9.5 Multiple Interrupts ... 101

CHAPTER 10 SYSTEM CONFIGURATION MANAGEMENT FUNCTIONS ... 103

10.1 Outline ... 103

10.2 Boot Processing ... 104

10.2.1 Define boot processing ... 104

10.2.2 Basic form of boot processing ... 104

10.2.3 Internal processing of boot processing ... 105

10.3 Initialization Routine ... 106

10.3.1 Define initialization routine ... 106

10.3.2 Undefine initialization routine ... 106

10.3.3 Basic form of initialization routine ... 106

10.3.4 Internal processing of initialization routine ... 107

10.4 Kernel Initialization Module ... 107

10.5 Reference Version Information ... 108

CHAPTER 11 SCHEDULER ... 109

11.1 Outline ... 109

11.2 Driving Method ... 109

11.3 Scheduling System ... 109

11.4 Ready Queue ... 110

11.4.1 Create ready queue ... 110

11.4.2 Delete ready queue ... 110

11.4.3 Rotate task precedence ... 111

11.4.4 Change task priority ... 113

11.5 Scheduling Disabling ... 115

11.5.1 Disable dispatching ... 116

11.5.2 Enable dispatching ... 117

11.6 Delay of Scheduling ... 118

11.7 Idle Routine ... 119

11.7.1 Define idle routine ... 119

11.7.2 Undefine idle routine ... 119

11.7.3 Basic form of idle routine ... 119

11.7.4 Internal processing of idle routine ... 120

CHAPTER 12 SERVICE CALLS ... 121

12.1 Outline ... 121

12.2 Call Service Call ... 122

12.2.1 C language ... 122

12.2.2 Assembly language ... 123

12.3 Amount of Stack Used by Service Calls ... 124

12.4 Data Macros ... 126

12.4.1 Data types ... 126

12.4.2 Current state ... 127

12.4.3 WAITING types ... 127

12.4.4 Return value ... 128

12.4.5 Conditional compile macro ... 128

12.4.6 Others ... 128

12.5 Packet Formats ... 129

12.5.1 Task state packet ... 129

12.5.2 Semaphore state packet ... 131

12.5.3 Eventflag state packet ... 132

12.5.4 Message packet ... 133

12.5.5 Mailbox state packet ... 134

12.5.6 Fixed-sized memory pool state packet ... 135

12.5.7 Cyclic handler state packet ... 136

12.5.8 Version information packet ... 137

12.6 Task Management Functions ... 138

12.7 Task Dependent Synchronization Functions ... 149

12.8 Synchronization and Communication Functions (Semaphores) ... 163

12.9 Synchronization and Communication Functions (Eventflags) ... 171

12.10 Synchronization and Communication Functions (Mailboxes) ... 182

12.11 Memory Pool Management Functions ... 191

12.12 Time Management Functions ... 200

12.13 System State Management Functions ... 205

12.14 System Configuration Management Functions ... 218

CHAPTER 13 SYSTEM CONFIGURATION FILE ... 220

13.1 Notation Method ... 220

13.2 Configuration Information ... 221

13.2.1 Cautions ... 221

13.3 System Information ... 222

13.3.1 System stack information ... 222

13.3.2 Task priority information ... 223

13.4 Static API Information ... 224

13.4.1 Task information ... 224

13.4.2 Semaphore information ... 227

13.4.3 Eventflag information ... 228

13.4.4 Mailbox information ... 229

13.4.5 Fixed-sized memory pool information ... 230

13.4.6 Cyclic handler information ... 232

13.5 Stack Size Estimation ... 234

13.5.1 System stack size ... 234

13.5.2 Stack size of the task ... 235

13.6 Description Examples ... 237

CHAPTER 14 CONFIGURATOR CF78V4 ... 238

14.1 Outline ... 238

14.2 Activation Method ... 239

14.2.1 Activating from command line ... 239

14.2.2 Activating from CubeSuite+ ... 240

14.2.3 Command file ... 241

14.2.4 Command input examples ... 242

APPENDIX A WINDOW REFERENCE ... 243

A.1 Description ... 243

APPENDIX B CAUTIONS ... 260

B.1 Restriction of Compiler Option ... 260

B.2 Handling Register Bank ... 260

B.3 Pointer Declarations ... 261

APPENDIX C INDEX ... 262

RI78V4 CHAPTER 1 OVERVIEW

R20UT0511EJ0101 Rev.1.01 Page 10 of 272
Apr 01, 2012

CHAPTER 1 OVERVIEW

1.1 Outline

The RI78V4 is a built-in real-time, multi-task OS that provides a highly efficient real-time, multi-task environment to
increases the application range of processor control units.

The RI78V4 is a high-speed, compact OS capable of being stored in and run from the ROM of a target system.

1.1.1 Real-time OS

Control equipment demands systems that can rapidly respond to events occurring both internal and external to the
equipment. Conventional systems have utilized simple interrupt handling as a means of satisfying this demand. As control
equipment has become more powerful, however, it has proved difficult for systems to satisfy these requirements by means
of simple interrupt handling alone.

In other words, the task of managing the order in which internal and external events are processed has become
increasingly difficult as systems have increased in complexity and programs have become larger.

Real-time OS has been designed to overcome this problem.
The main purpose of a real-time OS is to respond to internal and external events rapidly and execute programs in the

optimum order.

1.1.2 Multi-task OS

A "task" is the minimum unit in which a program can be executed by an OS. "Multi-task" is the name given to the mode
of operation in which a single processor processes multiple tasks concurrently.

Actually, the processor can handle no more than one program (instruction) at a time. But, by switching the processor’s
attention to individual tasks on a regular basis (at a certain timing) it appears that the tasks are being processed
simultaneously.

A multi-task OS enables the parallel processing of tasks by switching the tasks to be executed as determined by the
system.

One important purpose of a multi-task OS is to improve the throughput of the overall system through the parallel
processing of multiple tasks.

RI78V4 CHAPTER 2 SYSTEM CONSTRUCTION

R20UT0511EJ0101 Rev.1.01 Page 11 of 272
Apr 01, 2012

CHAPTER 2 SYSTEM CONSTRUCTION

This chapter describes how to build a system (load module) that uses the functions provided by the RI78V4.

2.1 Outline

System building consists in the creation of a load module using the files (kernel library, etc.) installed on the user
development environment (host machine) from the RI78V4's supply media.

The following shows the procedure for organizing the system.

Figure 2-1 Example of System Construction

Processing Programs System Configuration File User-own Coding Module

Configurator

Information Files

C Compiler / Assembler

Object Files

Linker

Load Module

Directive File
Library Files

- Kernel Library
- Standard Library
- Runtime Library
etc.

RI78V4 CHAPTER 2 SYSTEM CONSTRUCTION

R20UT0511EJ0101 Rev.1.01 Page 12 of 272
Apr 01, 2012

2.2 Coding of Processing Program

Code the processing that should be implemented in the system.
In the RI78V4, the processing program is classified into the following three types, in accordance with the types and

purposes of the processing that should be implemented.

- Tasks
A task is processing program that is not executed unless it is explicitly manipulated via service calls provided by the
RI78V4, unlike other processing programs (cyclic handler and interrupt handler).

Note For details about the task, refer to “3.2 Tasks“.

- Cyclic Handlers
The cyclic handler is a routine dedicated to cycle processing that is activated periodically at a constant interval
(activation cycle).
The RI78V4 handles the cyclic handler as a “non-task (module independent from tasks)”. Therefore, even if a task
with the highest priority in the system is being executed, the processing is suspended when a specified activation
cycle has come, and the control is passed to the cyclic handler.

Note For details about the cyclic handler, refer to “7.5 Cyclic Handlers”.

- Interrupt Handlers
The interrupt handler is a routine dedicated to interrupt servicing that is activated when an interrupt occurs.
The RI78V4 handles the interrupt handler as a “non-task (module independent from tasks)”. Therefore, even if a task
with the highest priority in the system is being executed, the processing is suspended when an interrupt occurs, and
the control is passed to the interrupt handler.

Note 1 For details about the interrupt handler, refer to “9.3 Interrupt Handlers”.

Note 2 The user must code the interrupt handlers that calls the Timer Handler.

2.3 Coding of System Configuration File

Code the SYSTEM CONFIGURATION FILE required for creating information files (system information table file, system
information header file) that contain data to be provided for the RI78V4.

Note For details about the system configuration file, refer to “CHAPTER 13 SYSTEM CONFIGURATION FILE”.

RI78V4 CHAPTER 2 SYSTEM CONSTRUCTION

R20UT0511EJ0101 Rev.1.01 Page 13 of 272
Apr 01, 2012

2.4 Coding of User-Own Coding Module

Code the user-own coding modules that are extracted to allow the RI78V4 to be supported in various execution
environments.

In the RI78V4, the user-own coding module is classified into the following four types, in accordance with the types and
purposes of the processing that should be implemented.

- Interrupt Entry Processing
A routine dedicated to entry processing that is extracted from the INTERRUPT MANAGEMENT FUNCTIONS as a
user-own coding module to assign instructions to branch to relevant processing (such as Interrupt Handlers or Boot
Processing), to the vector table address to which the CPU forcibly passes the control when an interrupt occurs.

Note 1 For details about the interrupt entry processing, refer to “9.2 Interrupt Entry Processing”.

Note 2 For interrupt handlers written using the #pragma rtos_interrupt directive, the user is not required to write the
relevant interrupt entry processing because the C compiler automatically outputs the interrupt entry
processing corresponding to the interrupt request name.

- Boot Processing
A routine dedicated to initialization processing that is extracted from the SYSTEM CONFIGURATION
MANAGEMENT FUNCTIONS as a user-own coding module to initialize the minimum required hardware for the
RI78V4 to perform processing. It is called from Interrupt Entry Processing that is assigned to the vector table address
to which the CPU forcibly passes the control when a reset interrupt occurs.

Note For details about the boot processing, refer to “10.2 Boot Processing”.

- Initialization Routine
A routine dedicated to initialization processing that is extracted from the SYSTEM CONFIGURATION
MANAGEMENT FUNCTIONS as a user-own coding module to initialize the hardware dependent on the user
execution environment (such as the peripheral controller), and is called from the Kernel Initialization Module.

Note For details about the initialization routine, refer to “10.3 Initialization Routine”.

- Idle Routine
A routine dedicated to idle processing that is extracted from the SCHEDULER as a user-own coding module to utilize
the standby function provided by the CPU (to achieve the low-power consumption system), and is called from the
scheduler when there no longer remains a task subject to scheduling by the RI78V4 (task in the RUNNING or READY
state) in the system.

Note For details about the idle routine, refer to “11.7 Idle Routine”.

RI78V4 CHAPTER 2 SYSTEM CONSTRUCTION

R20UT0511EJ0101 Rev.1.01 Page 14 of 272
Apr 01, 2012

2.5 Coding of Directive File

Code the directive file used by the user to fix the address allocation done by the linker. In the RI78V4, the allocation
destinations (segment names) of management objects modularized for each function are specified.

The following lists the segment names prescribed in the RI78V4.

Table 2-1 RI78V4 Segments

Note 1 The k_stack segment can be allocated only to the near area (0xf0000 to 0xffe1f).

Note 2 Specification of k_work0, k_work1, k_work2 and k_work3 is required only when the relevant segment names
are specified in Fixed-sized memory pool information.

Note 3 The RI78V4 occupies the 8-byte area from the saddr area (0xffe20 to 0xfff1f). Therefore, the available saddr
area for the user is up to 247 bytes.

Note 4 For details about the directive file, refer to “CubeSuite+ Integrated Development Environment User's Manual:
RL78,78K0R Coding”.

Segment Name ROM/RAM Segment Attribute Description

k_system ROM
CSEG
UNITP

Area where the RI78V4’s core processing part and main
processing part of service calls provided by the RI78V4
are to be allocated.
The start can be aligned at an even address in the area
from 0x000c0 to 0xeffff.

k_info ROM
CSEG
UNITP

Area where information items such as the RI78V4
version are to be allocated.
The start can be aligned at an even address in the area
from 0x000c0 to 0xeffff.

k_const ROM
CSEG
PAGE64KP

Area where initial information items related to OS
resources that do not change dynamically are allocated
as system information tables.
The start can be aligned at an even address that does
not span a 64K boundary.
This segment should be located at 64k boundary + 4 or
later.

k_data RAM
DSEG
PAGE64KP

Area where information items required to implement the
functionalities provided by the RI78V4 and information
items related to OS resources that change dynamically
are allocated as management objects.
The start can be aligned at an even address that does
not span a 64K boundary.

k_stack RAM
DSEG
BASEP

Area where the system stack and the task stack are to
be allocated.
The start can be aligned at an even address in the built-
in RAM area from 0xfxxxx to 0xffeff.

k_work0
k_work1
k_work2
k_work3

RAM
DSEG
PAGE64KP

Area where fixed-sized memory pools are to be
allocated.
The start can be aligned at an even address that does
not span a 64K boundary.

RI78V4 CHAPTER 2 SYSTEM CONSTRUCTION

R20UT0511EJ0101 Rev.1.01 Page 15 of 272
Apr 01, 2012

2.5.1 k_system segment

The size of the k_system segment is approximately 1 KB to 8 KB depends on the service calls used in the processing
program.

2.5.2 k_info segment

The size of the k_info segment is approximately 1 KB.

2.5.3 k_const segment

The following shows an expression required for estimating the k_const segment size (unit: bytes).

const = (tsknum * 10) + semnum + flgnum + (mpfnum * 8) + (cycnum * 8) + (kindnum * 4) + 15

tsknum: Total amount of Task information
semnum: Total amount of Semaphore information
flgnum: Total amount of Eventflag information
mpfnum: Total amount of Fixed-sized memory pool information
kindnum: Total number of types defined in the system configuration file among five types of information related to

OS resources (Semaphore information, Eventflag information, Mailbox information, Fixed-sized memory
pool information and Cyclic handler information)

2.5.4 k_data segment

The following shows an expression required for estimating the k_data segment size (unit: bytes).
The expression varies depending on whether or not Semaphore information is defined in the system configuration file.

[When semaphore information is defined]
data = align2 (maxtpri + 1) + align2 { (tsknum * 24) + (semnum * 2) + 1 } + align2 (flgnum * 3) + (mbxnum * 8)

+ align2 (primbx) + (mpfnum * 4) + (cycnum * 8) + 40

[When semaphore information is not defined]
data = align2 (maxtpri + 1) + (tsknum * 24) + align2 (flgnum * 3) + (mbxnum * 8) + align2 (primbx) + (mpfnum

* 4) + (cycnum * 8) + 40

maxtpri: Priority range specified in Task priority information
tsknum: Total amount of Task information
semnum: Total amount of Semaphore information
flgnum: Total amount of Eventflag information
mbxnum: Total amount of Mailbox information
primbx: Total amount of Mailbox information for which the priority is specified for the attribute (message queuing

method)
mpfnum: Total amount of Fixed-sized memory pool information
cycnum: Total amount of Cyclic handler information

2.5.5 k_stack segment

The following shows an expression required for estimating the k_stack segment size (unit: bytes).

tsknum
stack = Σ(stksz k + 28) + (sys_stksz + 2)

k = 1

tsknum: Total amount of Task information
stksz k: Stack size specified in Task information

sys_stksz: Stack size specified in System stack information

RI78V4 CHAPTER 2 SYSTEM CONSTRUCTION

R20UT0511EJ0101 Rev.1.01 Page 16 of 272
Apr 01, 2012

2.5.6 k_work0, k_work1, k_work2, k_work3 segment

The following shows an expression required for estimating the size of the k_work0, k_work1, k_work2, and k_work3
segments (unit: bytes).

mpfnum
workX = Σ (blkcnt k * blksz k)

k = 1

mpfnum: Total number of segment units for Fixed-sized memory pool information
blkcnt k: Number of fixed-sized memory blocks specified in Fixed-sized memory pool information

blksz k: Block size specified in Fixed-sized memory pool information

RI78V4 CHAPTER 2 SYSTEM CONSTRUCTION

R20UT0511EJ0101 Rev.1.01 Page 17 of 272
Apr 01, 2012

2.6 Creating Load Module

Run a build on the CubeSuite+ for files created in sections from "2.2 Coding of Processing Program" to "2.5 Coding
of Directive File", and library files provided by the RI78V4 and C compiler package, to create a load module.

The following lists the files required for creating load modules.

1) Create or load a project

Create a new project, or load an existing one.

Note See “RI Series Real-Time Operating System User's Manual: Start” or “CubeSuite+ Integrated
Development Environment User's Manual: Start” for details about creating a new project or loading an
existing one.

2) Set a build target project

When making settings for or running a build, set the active project.
If there is no subproject, the project is always active.

Note See “CubeSuite+ Integrated Development Environment User's Manual: Build” for details about setting the
active project.

3) Set build target files

For the project, add or remove build target files and update the dependencies.

Note See “CubeSuite+ Integrated Development Environment User's Manual: Build” for details about adding or
removing build target files for the project and updating the dependencies.

The following lists the files required for creating a load module.

- C/assembly language source files created in "2.2 Coding of Processing Program"

- Tasks, Cyclic Handlers, Interrupt Handlers

- System configuration file created in “2.3 Coding of System Configuration File”

- SYSTEM CONFIGURATION FILE

Note Specify “cfg“ as the extention of the system configuration file name.
If the extension is different, "cfg" is automatically added (for example, if you designate "aaa.c" as a file
name, the file is named as "aaa.c.cfg").

- C/assembly language source files created in "2.4 Coding of User-Own Coding Module"

- Interrupt Entry Processing, Boot Processing, Initialization Routine, Idle Routine

- Directive file created in "2.5 Coding of Directive File"

- Directive file

- Library files provided by the RI78V4

- Kernel library

- Library files provided by the C compiler/assembler package

- Standard library, runtime library, etc.

Note 1 If the system configuration file is added to the Project Tree panel, the Realtime OS generated files node is
appeared.
The following information files are appeared under the Realtime OS generated files node. However, these
files are not generated at this point in time.

- System information table file

RI78V4 CHAPTER 2 SYSTEM CONSTRUCTION

R20UT0511EJ0101 Rev.1.01 Page 18 of 272
Apr 01, 2012

- System information header file (for C language)

- System information header file (for assembly language)

Figure 2-2 Project Tree Panel (After Adding sys.cfg)

Note 2 When replacing the system configuration file, first remove the added system configuration file from the
project, then add another one again.

Note 3 Although it is possible to add more than one system configuration files to a project, only the first file added
is enabled. Note that if you remove the enabled file from the project, the remaining additional files will not
be enabled; you must therefore add them again.

RI78V4 CHAPTER 2 SYSTEM CONSTRUCTION

R20UT0511EJ0101 Rev.1.01 Page 19 of 272
Apr 01, 2012

4) Set the output of information files

Select the system configuration file on the project tree to open the Property panel.
On the [System Configuration File Related Information] tab, set the output of information files (system information
table file and system information header files).

Figure 2-3 Property Panel: [System Configuration File Related Information] Tab

5) Specify the output of a load module file

Set the output of a load module file as the product of the build.

Note See “CubeSuite+ Integrated Development Environment User's Manual: RL78,78K0R Build” for details
about specifying the output of a load module file.

6) Set build options

Set the options for the compiler, assembler, linker, and the like.

Note See “CubeSuite+ Integrated Development Environment User’s Manual: RL78,78K0R Build” for details
about setting build options.

RI78V4 CHAPTER 2 SYSTEM CONSTRUCTION

R20UT0511EJ0101 Rev.1.01 Page 20 of 272
Apr 01, 2012

7) Run a build

Run a build to create a load module.

Note See “CubeSuite+ Integrated Development Environment User's Manual: RL78,78K0R Build” for details
about runnig a build.

Figure 2-4 Project Tree Panel (After Running Build)

8) Save the project

Save the setting information of the project to the project file.

Note See “CubeSuite+ Integrated Development Environment User's Manual: Start” for details about saving the
project.

RI78V4 CHAPTER 2 SYSTEM CONSTRUCTION

R20UT0511EJ0101 Rev.1.01 Page 21 of 272
Apr 01, 2012

2.7 Embedding System

If the output of hex files are set in 4) of "2.6 Creating Load Module", hex files are created.
After that, embed the modules to the system by using a flash programmer.

RI78V4 CHAPTER 3 TASK MANAGEMENT FUNCTIONS

R20UT0511EJ0101 Rev.1.01 Page 22 of 272
Apr 01, 2012

CHAPTER 3 TASK MANAGEMENT FUNCTIONS

This chapter describes the task management functions performed by the RI78V4.

3.1 Outline

The task control functions provided by the RI78V4 include a function to reference task statuses, in addition to a function
to manipulate task statuses.

3.2 Tasks

A task is processing program that is not executed unless it is explicitly manipulated via service calls provided by the
RI78V4, unlike other processing programs (cyclic handler and interrupt handler), and is called from the scheduler.

Note The execution environment information required for a task's execution is called "task context". During task
execution switching, the task context of the task currently under execution by the RI78V4 is saved and the task
context of the next task to be executed is loaded.

3.2.1 Task state

Tasks enter various states according to the acquisition status for the OS resources required for task execution and the
occurrence/non-occurrence of various events. In this process, the current state of each task must be checked and
managed by the RI78V4.

The RI78V4 classifies task states into the following six types.

Figure 3-1 Task State

WAITING state

WAITING-SUSPENDED state

SUSPENDED state

DORMANT state

RUNNING stateREADY state

RI78V4 CHAPTER 3 TASK MANAGEMENT FUNCTIONS

R20UT0511EJ0101 Rev.1.01 Page 23 of 272
Apr 01, 2012

- DORMANT state

State of a task that is not active, or the state entered by a task whose processing has ended.
A task in the DORMANT state, while being under management of the RI78V4, is not subject to the RI78V4 scheduling.

- READY state

State of a task for which the preparations required for processing execution have been completed, but since another
task with a higher priority level or a task with the same priority level is currently being processed, the task is waiting to
be given the CPU's use right.

- RUNNING state

State of a task that has acquired the CPU use right and is currently being processed.
Only one task can be in the running state at one time in the entire system.

- WAITING state

State in which processing execution has been suspended because conditions required for execution are not satisfied.
Resumption of processing from the WAITING state starts from the point where the processing execution was
suspended. The value of information required for resumption (such as task context) immediately before suspension is
therefore restored.
In the RI78V4, the WAITING state is classified into the following six types according to their required conditions and
managed.

Table 3-1 Waiting States

- SUSPENDED state

State in which processing execution has been suspended forcibly.
Resumption of processing from the SUSPENDED state starts from the point where the processing execution was
suspended. The value of information required for resumption (such as task context) immediately before suspension is
therefore restored.

- WAITING-SUSPENDED state

State in which the WAITING and SUSPENDED states are combined.
A task enters the SUSPENDED state when the WAITING state is cancelled, or enters the WAITING state when the
SUSPENDED state is cancelled.

Waiting States Description

Sleeping state
A task enters this state if the counter for the task (registering
the number of times the wakeup request has been issued)
indicates 0x0 upon the issuance of a slp_tsk or tslp_tsk.

Delayed state A task enters this state upon the issuance of a dly_tsk.

Waiting state for a semaphore resource
A task enters this state if it cannot acquire a resource from
the relevant semaphore upon the issuance of a wai_sem or
twai_sem.

Waiting state for an eventflag
A task enters this state if a relevant eventflag does not satisfy
a predetermined condition upon the issuance of a wai_flg or
twai_flg.

Receiving waiting state for a mailbox
A task enters this state if cannot receive a message from the
relevant mailbox upon the issuance of a rcv_mbx or
trcv_mbx.

Waiting state for a fixed-sized memory block
A task enters this state if it cannot acquire a fxed-sized mem-
ory block from the relevant memory pool upon the issuance
of a get_mpf or tget_mpf.

RI78V4 CHAPTER 3 TASK MANAGEMENT FUNCTIONS

R20UT0511EJ0101 Rev.1.01 Page 24 of 272
Apr 01, 2012

3.2.2 Task priority

A priority level that determines the order in which that task will be processed in relation to the other tasks is assigned to
each task.

As a result, in the RI78V4, the task that has the highest priority level of all the tasks that have entered an executable
state (RUNNING state or READY state) is selected and given the CPU use right.

In the RI78V4, the following two types of priorities are used for management purposes.

- Task initial priority
Priority set when a task is created.

- Task current priority
This is the general term used to describe the priority level of a task from the time it enters the READY state from the
DORMANT state until it returns to the DORMANT state.
Therefore, the current priority level of a task that enters the READY state from the DORMANT state has the same
value as the "initial priority level," and the current priority level when the priority level is changed by issuing chg_pri or
ichg_pri is the same value as the "priority level after change".

Note 1 In the RI78V4, a task having a smaller priority number is given a higher priority.

Note 2 The priority that can be specified in a system is in the priority range specified in Task priority information.

3.2.3 Create task

In the RI78V4, the method of creating a task is limited to "static creation by the Kernel Initialization Module".
Tasks therefore cannot be created dynamically using a method such as issuing a service call from a processing

program.

- Static create
Static task creation is realized by defining Task information in the system configuration file.
The RI78V4 executes task creation processing based on data stored in information files, using the Kernel Initialization
Module, and handles the created tasks as management targets.

3.2.4 Delete task

In the RI78V4, tasks created statically by the Kernel Initialization Module cannot be deleted dynamically using a method
such as issuing a service call from a processing program.

RI78V4 CHAPTER 3 TASK MANAGEMENT FUNCTIONS

R20UT0511EJ0101 Rev.1.01 Page 25 of 272
Apr 01, 2012

3.2.5 Basic form of tasks

When coding a task, use a void function with one VP_INT argument (any function name is fine) using the #pragma
rtos_task directive.

The extended information specified with Task information, or the start code specified when sta_tsk or ista_tsk is issued,
is set for the exinf argument.

The following shows the basic form of tasks.

[C Language]

[Assembly Language]

#pragma rtos_task func_task

#include <kernel.h> /*Standard header file definition*/
#include <kernel_id.h> /*System information header file definition*/

void
func_task (VP_INT exinf)
{
 /* */ /*Main processing*/

 ext_tsk (); /*Terminate invoking task*/
}

$INCLUDE (kernel.inc) ;Standard header file definition
$INCLUDE (kernel_id.inc) ;System information header file definition

 PUBLIC _func_task
 CSEG
_func_task:
 PUSH BC ;Stores the higher 2 bytes of argument exinf into stack
 PUSH AX ;Stores the lower 2 bytes of argument exinf into stack

 ; ;Main processing

 BR !!_ext_tsk ;Terminate invoking task
 END

RI78V4 CHAPTER 3 TASK MANAGEMENT FUNCTIONS

R20UT0511EJ0101 Rev.1.01 Page 26 of 272
Apr 01, 2012

3.2.6 Internal processing of task

In the RI78V4, original dispatch processing (task scheduling) is executed during task switching.
Therefore, note the following points when coding tasks.

- Coding method
Code tasks using C or assembly language in the format shown in "3.2.5 Basic form of tasks".

- Stack switching
In the RI78V4, switching to the stack for the switching destination task (task stack) is executed during task switching.
The user is therefore not required to code processing related to stack switching in tasks.

- Interrupt status
In the RI78V4, the initial interrupt state specified in Task information when a task is switched from the READY state to
the RUNNING state.
To change (disable or enable) the interrupt status in the task, writing of #pragma DI or #pragma EI directive and
calling of the DI or EI function are therefore required.

- Service call issuance
Service calls that can be issued in tasks are limited to the service calls that can be issued from tasks.

Note For details on the valid issuance range of each service call, refer to Table 12-8 to Table 12-16.

RI78V4 CHAPTER 3 TASK MANAGEMENT FUNCTIONS

R20UT0511EJ0101 Rev.1.01 Page 27 of 272
Apr 01, 2012

3.3 Activate Task

The RI78V4 provides two types of interfaces for task activation: queuing an activation request queuing and not queuing
an activation request.

3.3.1 Queuing an activation request

A task (queuing an activation request) is activated by issuing the following service call from the processing program.

- act_tsk, iact_tsk
These service calls move a task specified by parameter tskid from the DORMANT state to the READY state.
As a result, the target task is queued at the end on the ready queue corresponding to the initial priority and becomes
subject to scheduling by the RI78V4.
If the target task has been moved to a state other than the DORMANT state when this service call is issued, this
service call does not move the state but increments the activation request counter (by added 0x1 to the wakeup
request counter).
The following describes an example for coding this service call.

Note 1 The activation request counter managed by the RI78V4 is configured in 7-bit widths. If the number of
activation requests exceeds the maximum count value 127 as a result of issuing this service call, the counter
manipulation processing is therefore not performed but "E_QOVR" is returned.

Note 2 An extended information "Extended information: exinf" is passed to the task activated by issuing this service
call.

#pragma rtos_task func_task

#include <kernel.h> /*Standard header file definition*/
#include <kernel_id.h> /*System information header file definition*/

void
func_task (VP_INT exinf)
{
 ID tskid = ID_tskA; /*Declares and initializes variable*/

 /* */

 act_tsk (tskid); /*Activate task (queues an activation request)*/

 /* */
}

RI78V4 CHAPTER 3 TASK MANAGEMENT FUNCTIONS

R20UT0511EJ0101 Rev.1.01 Page 28 of 272
Apr 01, 2012

3.3.2 Not queuing an activation request

A task (not queuing an activation request) is activated by issuing the following service call from the processing program.

- sta_tsk, ista_tsk
These service calls move a task specified by parameter tskid from the DORMANT state to the READY state.
As a result, the target task is queued at the end on the ready queue corresponding to the initial priority and becomes
subject to scheduling by the RI78V4.
The following describes an example for coding this service call.

Note 1 This service call does not perform queuing of activation requests. If the target task is in a state other than the
DORMANT state, the counter manipulation processing is therefore not performed but "E_OBJ" is returned.

Note 2 An start code "stacd" is passed to the task activated by issuing this service call.

#pragma rtos_task func_task

#include <kernel.h> /*Standard header file definition*/
#include <kernel_id.h> /*System information header file definition*/

void
func_task (VP_INT exinf)
{
 ID tskid = ID_tskA; /*Declares and initializes variable*/
 VP_INT stacd = 1048575; /*Declares and initializes variable*/

 /* */

 sta_tsk (tskid, stacd); /*Activate task (does not queue an activation
 request)*/

 /* */
}

RI78V4 CHAPTER 3 TASK MANAGEMENT FUNCTIONS

R20UT0511EJ0101 Rev.1.01 Page 29 of 272
Apr 01, 2012

3.4 Cancel Task Activation Requests

An activation request is cancelled by issuing the following service call from the processing program.

- can_act
This service call cancels all of the activation requests queued to the task specified by parameter tskid (sets the
activation request counter to 0x0).
When this service call is terminated normally, the number of cancelled activation requests is returned.
The following describes an example for coding this service call.

#pragma rtos_task func_task

#include <kernel.h> /*Standard header file definition*/
#include <kernel_id.h> /*System information header file definition*/

void
func_task (VP_INT exinf)
{
 ER_UINT ercd; /*Declares variable*/
 ID tskid = ID_tskA; /*Declares and initializes variable*/

 /* */

 ercd = can_act (tskid); /*Cancel task activation requests*/

 if (ercd >= 0x0) {
 /* */ /*Normal termination processing*/
 }

 /* */
}

RI78V4 CHAPTER 3 TASK MANAGEMENT FUNCTIONS

R20UT0511EJ0101 Rev.1.01 Page 30 of 272
Apr 01, 2012

3.5 Terminate Task

The RI78V4 provides two types of interfaces for task termination: termination of invoking task and forced termination of
other tasks.

3.5.1 Terminate invoking task

An invoking task is terminated by issuing the following service call from the processing program.

- ext_tsk
This service call moves an invoking task from the RUNNING state to the DORMANT state.
As a result, the invoking task is unlinked from the ready queue and excluded from the RI78V4 scheduling subject.
If an activation request has been queued to the invoking task (the activation request counter is not set to 0x0) when
this service call is issued, this service call moves the task from the RUNNING state to the DORMANT state,
decrements the wakeup request counter (by subtracting 0x1 from the wakeup request counter), and then moves the
task from the DORMANT state to the READY state.
The following describes an example for coding this service call.

Note 1 This service call does not return the OS resource that the invoking task acquired by issuing a service call
such as sig_sem or get_mpf. The OS resource have been acquired must therefore be returned before
issuing this service call.

Note 2 When moving a task from the RUNNING state to the DORMANT state, this service call initializes the
following information to values that are set during task creation.

- Priority (current priority)

- Wakeup request count

- Suspension count

- Interrupt status

Note 3 If the return instruction is written in a task, it executes the same operation as this service call.

Note 4 In the RI78V4, code efficiency is enhanced by coding the return instruction as a "Terminate invoking task".

#pragma rtos_task func_task

#include <kernel.h> /*Standard header file definition*/
#include <kernel_id.h> /*System information header file definition*/

void
func_task (VP_INT exinf)
{
 /* */

 ext_tsk (); /*Terminate invoking task*/
}

RI78V4 CHAPTER 3 TASK MANAGEMENT FUNCTIONS

R20UT0511EJ0101 Rev.1.01 Page 31 of 272
Apr 01, 2012

3.5.2 Terminate task

Other tasks are forcibly terminated by issuing the following service call from the processing program.

- ter_tsk
This service call forcibly moves a task specified by parameter tskid to the DORMANT state.
As a result, the target task is excluded from the RI78V4 scheduling subject.
If an activation request has been queued to the target task (the activation request counter is not set to 0x0) when this
service call is issued, this service call moves the task to the DORMANT state, decrements the wakeup request
counter (by subtracting 0x1 from the wakeup request counter), and then moves the task from the DORMANT state to
the READY state.
The following describes an example for coding this service call.

Note 1 This service call does not return the OS resource that the target task acquired by issuing a service call such
as sig_sem or get_mpf. The OS resource have been acquired must therefore be returned before issuing this
service call.

Note 2 When moving a task to the DORMANT state, this service call initializes the following information to values
that are set during task creation.

- Priority (current priority)

- Wakeup request count

- Suspension count

- Interrupt status

#pragma rtos_task func_task

#include <kernel.h> /*Standard header file definition*/
#include <kernel_id.h> /*System information header file definition*/

void
func_task (VP_INT exinf)
{
 ID tskid = ID_tskA; /*Declares and initializes variable*/

 /* */

 ter_tsk (tskid); /*Terminate task*/

 /* */
}

RI78V4 CHAPTER 3 TASK MANAGEMENT FUNCTIONS

R20UT0511EJ0101 Rev.1.01 Page 32 of 272
Apr 01, 2012

3.6 Change Task Priority

The priority is changed by issuing the following service call from the processing program.

- chg_pri, ichg_pri
These service calls change the priority of the task specified by parameter tskid (current priority) to a value specified by
parameter tskpri.
The following describes an example for coding this service call.

Note If the target task is in the RUNNING or READY state after this service call is issued, this service call re-
queues the task at the end of the ready queue corresponding to the priority specified by parameter tskpri,
following priority change processing.

#pragma rtos_task func_task

#include <kernel.h> /*Standard header file definition*/
#include <kernel_id.h> /*System information header file definition*/

void
func_task (VP_INT exinf)
{
 ID tskid = ID_tskA; /*Declares and initializes variable*/
 PRI tskpri = 15; /*Declares and initializes variable*/

 /* */

 chg_pri (tskid, tskpri); /*Change task priority*/

 /* */
}

RI78V4 CHAPTER 3 TASK MANAGEMENT FUNCTIONS

R20UT0511EJ0101 Rev.1.01 Page 33 of 272
Apr 01, 2012

3.7 Reference Task State

A task status is referenced by issuing the following service call from the processing program.

- ref_tsk
Stores task state packet (such as current status) of the task specified by parameter tskid in the area specified by
parameter pk_rtsk.
The following describes an example for coding this service call.

Note For details about the task state packet, refer to "12.5.1 Task state packet".

#pragma rtos_task func_task

#include <kernel.h> /*Standard header file definition*/
#include <kernel_id.h> /*System information header file definition*/

void
func_task (VP_INT exinf)
{
 ID tskid = ID_tskA; /*Declares and initializes variable*/
 T_RTSK pk_rtsk; /*Declares data structure*/
 STAT tskstat; /*Declares variable*/
 PRI tskpri; /*Declares variable*/
 STAT tskwait; /*Declares variable*/
 ID wobjid; /*Declares variable*/
 UINT actcnt; /*Declares variable*/
 UINT wupcnt; /*Declares variable*/
 UINT suscnt; /*Declares variable*/

 /* */

 ref_tsk (tskid, &pk_rtsk);/*Reference task state*/

 tskstat = pk_rtsk.tskstat; /*Reference task current state*/
 tskpri = pk_rtsk.tskpri; /*Reference task current priority*/
 tskwait = pk_rtsk.tskwait; /*Reference reason for waiting*/
 wobjid = pk_rtsk.wobjid; /*Reference object ID number for which the task is
 waiting*/
 actcnt = pk_rtsk.actcnt; /*Reference activation request count*/
 wupcnt = pk_rtsk.wupcnt; /*Reference wakeup request count*/
 suscnt = pk_rtsk.suscnt; /*Reference suspension count*/

 /* */
}

RI78V4 CHAPTER 4 TASK DEPENDENT SYNCHRONIZATION FUNCTIONS

R20UT0511EJ0101 Rev.1.01 Page 34 of 272
Apr 01, 2012

CHAPTER 4 TASK DEPENDENT SYNCHRONIZATION
FUNCTIONS

This chapter describes the task dependent synchronization functions performed by the RI78V4.

4.1 Outline

The RI78V4 provides several task-dependent synchronization functions.

4.2 Put Task to Sleep

A task is moved to the sleeping state (waiting forever or with timeout) by issuing the following service call from the
processing program.

- slp_tsk
As a result, the invoking task is unlinked from the ready queue and excluded from the RI78V4 scheduling subject.
If a wakeup request has been queued to the target task (the wakeup request counter is not set to 0x0) when this
service call is issued, this service call does not move the state but decrements the wakeup request counter (by
subtracting 0x1 from the wakeup request counter).
The sleeping state is cancelled in the following cases, and then moved to the READY state.

The following describes an example for coding this service call.

Sleeping State Cancel Operation Return Value

A wakeup request was issued as a result of issuing wup_tsk. E_OK

A wakeup request was issued as a result of issuing iwup_tsk. E_OK

Forced release from waiting (accept rel_wai while waiting). E_RLWAI

Forced release from waiting (accept irel_wai while waiting). E_RLWAI

#pragma rtos_task func_task

#include <kernel.h> /*Standard header file definition*/
#include <kernel_id.h> /*System information header file definition*/

void
func_task (VP_INT exinf)
{
 ER ercd; /*Declares variable*/

 /* */

 ercd = slp_tsk (); /*Put task to sleep (waiting forever)*/

 if (ercd == E_OK) {
 /* */ /*Normal termination processing*/
 } else if (ercd == E_RLWAI) {
 /* */ /*Forced termination processing*/
 }

 /* */

RI78V4 CHAPTER 4 TASK DEPENDENT SYNCHRONIZATION FUNCTIONS

R20UT0511EJ0101 Rev.1.01 Page 35 of 272
Apr 01, 2012

}

RI78V4 CHAPTER 4 TASK DEPENDENT SYNCHRONIZATION FUNCTIONS

R20UT0511EJ0101 Rev.1.01 Page 36 of 272
Apr 01, 2012

- tslp_tsk
This service call moves an invoking task from the RUNNING state to the WAITING state (sleeping state).
As a result, the invoking task is unlinked from the ready queue and excluded from the RI78V4 scheduling subject.
If a wakeup request has been queued to the target task (the wakeup request counter is not set to 0x0) when this
service call is issued, this service call does not move the state but decrements the wakeup request counter (by
subtracting 0x1 from the wakeup request counter).
The sleeping state is cancelled in the following cases, and then moved to the READY state.

The following describes an example for coding this service call.

Note When TMO_FEVR is specified for wait time tmout, processing equivalent to slp_tsk will be executed.

Sleeping State Cancel Operation Return Value

A wakeup request was issued as a result of issuing wup_tsk. E_OK

A wakeup request was issued as a result of issuing iwup_tsk. E_OK

Forced release from waiting (accept rel_wai while waiting). E_RLWAI

Forced release from waiting (accept irel_wai while waiting). E_RLWAI

Polling failure or timeout. E_TMOUT

#pragma rtos_task func_task

#include <kernel.h> /*Standard header file definition*/
#include <kernel_id.h> /*System information header file definition*/

void
func_task (VP_INT exinf)
{
 ER ercd; /*Declares variable*/
 TMO tmout = 3600; /*Declares and initializes variable*/

 /* */

 ercd = tslp_tsk (tmout); /*Put task to sleep (with timeout)*/

 if (ercd == E_OK) {
 /* */ /*Normal termination processing*/
 } else if (ercd == E_RLWAI) {
 /* */ /*Forced termination processing*/
 } else if (ercd == E_TMOUT) {
 /* */ /*Timeout processing*/
 }

 /* */
}

RI78V4 CHAPTER 4 TASK DEPENDENT SYNCHRONIZATION FUNCTIONS

R20UT0511EJ0101 Rev.1.01 Page 37 of 272
Apr 01, 2012

4.3 Wakeup Task

A task is woken up by issuing the following service call from the processing program.

- wup_tsk, iwup_tsk
These service calls cancel the WAITING state (sleeping state) of the task specified by parameter tskid.
As a result, the target task is moved from the sleeping state to the READY state, or from the WAITING-SUSPENDED
state to the SUSPENDED state.
If the target task is in a state other than the sleeping state when this service call is issued, this service call does not
move the state but increments the wakeup request counter (by added 0x1 to the wakeup request counter).
The following describes an example for coding this service call.

Note 1 If the target task is moved to the READY state after this service call is issued, this service call also re-queues
the task at the end of the ready queue corresponding to the priority of the task.

Note 2 The wakeup request counter managed by the RI78V4 is configured in 7-bit widths. If the number of wakeup
requests exceeds the maximum count value 127 as a result of issuing this service call, the counter
manipulation processing is therefore not performed but "E_QOVR" is returned.

#pragma rtos_task func_task

#include <kernel.h> /*Standard header file definition*/
#include <kernel_id.h> /*System information header file definition*/

void
func_task (VP_INT exinf)
{
 ID tskid = ID_tskA; /*Declares and initializes variable*/

 /* */

 wup_tsk (tskid); /*Wakeup task*/

 /* */
}

RI78V4 CHAPTER 4 TASK DEPENDENT SYNCHRONIZATION FUNCTIONS

R20UT0511EJ0101 Rev.1.01 Page 38 of 272
Apr 01, 2012

4.4 Cancel Task Wakeup Requests

A wakeup request is cancelled by issuing the following service call from the processing program.

- can_wup, ican_wup
These service calls cancel all of the wakeup requests queued to the task specified by parameter tskid (the wakeup
request counter is set to 0x0).
When this service call is terminated normally, the number of cancelled wakeup requests is returned.
The following describes an example for coding this service call.

#pragma rtos_task func_task

#include <kernel.h> /*Standard header file definition*/
#include <kernel_id.h> /*System information header file definition*/

void
func_task (VP_INT exinf)
{
 ER_UINT ercd; /*Declares variable*/
 ID tskid = ID_tskA; /*Declares and initializes variable*/

 /* */

 ercd = can_wup (tskid); /*Cancel task wakeup requests*/

 if (ercd >= 0x0) {
 /* */ /*Normal termination processing*/
 }

 /* */
}

RI78V4 CHAPTER 4 TASK DEPENDENT SYNCHRONIZATION FUNCTIONS

R20UT0511EJ0101 Rev.1.01 Page 39 of 272
Apr 01, 2012

4.5 Release Task from Waiting

The WAITING state is forcibly cancelled by issuing the following service call from the processing program.

- rel_wai, irel_wai
These service calls forcibly cancel the WAITING state of the task specified by parameter tskid.
As a result, the target task unlinked from the wait queue and is moved from the WAITING state to the READY state, or
from the WAITING-SUSPENDED state to the SUSPENDED state.
"E_RLWAI" is returned from the service call that triggered the move to the WAITING state (slp_tsk, wai_sem, or the
like) to the task whose WAITING state is cancelled by this service call.
The following describes an example for coding this service call.

Note 1 If the target task is moved to the READY state after this service call is issued, this service call also re-queues
the task at the end of the ready queue corresponding to the priority of the task.

Note 2 This service call does not perform queuing of forced cancellation requests. If the target task is in a state
other than the WAITING or WAITING-SUSPENDED state, "E_OBJ" is returned.

#pragma rtos_task func_task

#include <kernel.h> /*Standard header file definition*/
#include <kernel_id.h> /*System information header file definition*/

void
func_task (VP_INT exinf)
{
 ID tskid = ID_tskA; /*Declares and initializes variable*/

 /* */

 rel_wai (tskid); /*Release task from waiting*/

 /* */
}

RI78V4 CHAPTER 4 TASK DEPENDENT SYNCHRONIZATION FUNCTIONS

R20UT0511EJ0101 Rev.1.01 Page 40 of 272
Apr 01, 2012

4.6 Suspend Task

A task is moved to the SUSPENDED state by issuing the following service call from the processing program.

- sus_tsk, isus_tsk
These service calls add 0x1 to the suspend request counter for the task specified by parameter tskid, and then move
the target task from the RUNNING state to the SUSPENDED state, from the READY state to the SUSPENDED state,
or from the WAITING state to the WAITING-SUSPENDED state.
If the target task has moved to the SUSPENDED or WAITING-SUSPENDED state when this service call is issued, the
counter manipulation processing is not performed but only the suspend request counter increment processing is
executed.
The SUSPENDED state is cancelled in the following cases, and then moved to the READY state.

The following describes an example for coding this service call.

Note 1 If the target task is the invoking task when this service call is issued, it is unlinked from the ready queue and
excluded from the RI78V4 scheduling subject.

Note 2 The suspend request counter managed by the RI78V4 is configured in 7-bit widths. If the number of suspend
requests exceeds the maximum count value 127 as a result of issuing this service call, the counter
manipulation processing is therefore not performed but "E_QOVR" is returned.

SUSPENDED State Cancel Operation Return Value

A cancel request was issued as a result of issuing rsm_tsk. E_OK

A cancel request was issued as a result of issuing irsm_tsk. E_OK

Forced release from suspended (accept frsm_tsk while suspended). E_OK

Forced release from suspended (accept ifrsm_tsk while suspended). E_OK

#pragma rtos_task func_task

#include <kernel.h> /*Standard header file definition*/
#include <kernel_id.h> /*System information header file definition*/

void
func_task (VP_INT exinf)
{
 ID tskid = ID_tskA; /*Declares and initializes variable*/

 /* */

 sus_tsk (tskid); /*Suspend task*/

 /* */
}

RI78V4 CHAPTER 4 TASK DEPENDENT SYNCHRONIZATION FUNCTIONS

R20UT0511EJ0101 Rev.1.01 Page 41 of 272
Apr 01, 2012

4.7 Resume Suspended Task

The SUSPENDED state is cancelled by issuing the following service call from the processing program.

- rsm_tsk, irsm_tsk
This service call subtracts 0x1 from the suspend request counter for the task specified by parameter tskid, and then
cancels the SUSPENDED state of the target task.
As a result, the target task is moved from the SUSPENDED state to the READY state, or from the WAITING-
SUSPENDED state to the WAITING state.
If a suspend request is queued (subtraction result is other than 0x0) when this service call is issued, the counter
manipulation processing is not performed but only the suspend request counter decrement processing is executed.
The following describes an example for coding this service call.

Note 1 If the target task is moved to the READY state after this service call is issued, this service call also re-queues
the task at the end of the ready queue corresponding to the priority of the task.

Note 2 This service call does not perform queuing of cancellation requests. If the target task is in a state other than
the SUSPENDED or WAITING-SUSPENDED state, "E_OBJ" is therefore returned.

#pragma rtos_task func_task

#include <kernel.h> /*Standard header file definition*/
#include <kernel_id.h> /*System information header file definition*/

void
func_task (VP_INT exinf)
{
 ID tskid = ID_tskA; /*Declares and initializes variable*/

 /* */

 rsm_tsk (tskid); /*Resume suspended task*/

 /* */
}

RI78V4 CHAPTER 4 TASK DEPENDENT SYNCHRONIZATION FUNCTIONS

R20UT0511EJ0101 Rev.1.01 Page 42 of 272
Apr 01, 2012

- frsm_tsk, ifrsm_tsk
These service calls set the suspend request counter for the task specified by parameter tskid to 0x1 f, and then
forcibly cancel the SUSPENDED state of the target task.
As a result, the target task is moved from the SUSPENDED state to the READY state, or from the WAITING-
SUSPENDED state to the WAITING state.
The following describes an example for coding this service call.

Note 1 If the target task is moved to the READY state after this service call is issued, this service call also re-queues
the task at the end of the ready queue corresponding to the priority of the task.

Note 2 This service call does not perform queuing of forced cancellation requests. If the target task is in a state
other than the SUSPENDED or WAITING-SUSPENDED state, "E_OBJ" is therefore returned.

#pragma rtos_task func_task

#include <kernel.h> /*Standard header file definition*/
#include <kernel_id.h> /*System information header file definition*/

void
func_task (VP_INT exinf)
{
 ID tskid = ID_tskA; /*Declares and initializes variable*/

 /* */

 frsm_tsk (tskid); /*Forcibly resume suspended task*/

 /* */
}

RI78V4 CHAPTER 4 TASK DEPENDENT SYNCHRONIZATION FUNCTIONS

R20UT0511EJ0101 Rev.1.01 Page 43 of 272
Apr 01, 2012

4.8 Delay Task

A task is moved to the delayed state by issuing the following service call from the processing program.

- dly_tsk
This service call moves the invoking task from the RUNNING state to the WAITING state (delayed state).
As a result, the invoking task is unlinked from the ready queue and excluded from the RI78V4 scheduling subject.
The delayed state is cancelled in the following cases, and then moved to the READY state.

The following describes an example for coding this service call.

Delayed State Cancel Operation Return Value

Delay time specified by parameter dlytim has elapsed. E_OK

Forced release from waiting (accept rel_wai while waiting). E_RLWAI

Forced release from waiting (accept irel_wai while waiting). E_RLWAI

#pragma rtos_task func_task

#include <kernel.h> /*Standard header file definition*/
#include <kernel_id.h> /*System information header file definition*/

void
func_task (VP_INT exinf)
{
 ER ercd; /*Declares variable*/
 RELTIM dlytim = 3600; /*Declares and initializes variable*/

 /* */

 ercd = dly_tsk (dlytim); /*Delay task*/

 if (ercd == E_OK) {
 /* */ /*Normal termination processing*/
 } else if (ercd == E_RLWAI) {
 /* */ /*Forced termination processing*/
 }

 /* */
}

RI78V4

R20UT0511EJ0101 Rev.1.01 Page 44 of 272
Apr 01, 2012

CHAPTER 5 SYNCHRONIZATION AND COMMUNICATION
FUNCTIONS

CHAPTER 5 SYNCHRONIZATION AND COMMUNICA-
TION FUNCTIONS

This chapter describes the synchronization and communication functions performed by the RI78V4.

5.1 Outline

The synchronization and communication functions of the RI78V4 consist of Semaphores, Eventflags, and Mailboxes
that are provided as means for realizing exclusive control, queuing, and communication among tasks.

5.2 Semaphores

In the RI78V4, non-negative number counting semaphores are provided as a means (exclusive control function) for
preventing contention for limited resources (hardware devices, library function, etc.) arising from the required conditions of
simultaneously running tasks.

The following shows a processing flow when using a semaphore.

Figure 5-1 Processing Flow (Semaphore)

5.2.1 Create semaphore

In the RI78V4, the method of creating a semaphore is limited to "static creation by the Kernel Initialization Module".
Semaphores therefore cannot be created dynamically using a method such as issuing a service call from a processing

program.

- Static create
Static semaphore creation is realized by defining Semaphore information in the system configuration file.
The RI78V4 executes semaphore creation processing based on data stored in information files, using the Kernel
Initialization Module, and handles the created semaphores as management targets.

5.2.2 Delete semaphore

In the RI78V4, semaphores created statically by the Kernel Initialization Module cannot be deleted dynamically using a
method such as issuing a service call from a processing program.

Task

Exclusive control period

Acquire semaphore resource

Release semaphore resource

RI78V4

R20UT0511EJ0101 Rev.1.01 Page 45 of 272
Apr 01, 2012

CHAPTER 5 SYNCHRONIZATION AND COMMUNICATION
FUNCTIONS

5.2.3 Release semaphore resource

A resource is returned by issuing the following service call from the processing program.

- sig_sem, isig_sem
These service calls return the resource to the semaphore specified by parameter semid (adds 0x1 to the semaphore
counter).
If a task is queued in the wait queue of the target semaphore when this service call is issued, the counter
manipulation processing is not performed but the resource is passed to the relevant task (first task of wait queue).
As a result, the relevant task is unlinked from the wait queue and is moved from the WAITING state (waiting state for
a semaphore resource) to the READY state, or from the WAITING-SUSPENDED state to the SUSPENDED state.
The following describes an example for coding this service call.

Note 1 If the first task linked in the wait queue is moved to the READY state after this service call is issued, this
service call also re-queues the task at the end of the ready queue corresponding to the priority of the task.

Note 2 The semaphore counter managed by the RI78V4 is configured in 7-bit widths. If the number of resources
exceeds the maximum count value 127 as a result of issuing this service call, the counter manipulation
processing is therefore not performed but "E_QOVR" is returned.

#pragma rtos_task func_task

#include <kernel.h> /*Standard header file definition*/
#include <kernel_id.h> /*System information header file definition*/

void
func_task (VP_INT exinf)
{
 ID semid = ID_semA; /*Declares and initializes variable*/

 /* */

 sig_sem (semid); /*Release semaphore resource*/

 /* */
}

RI78V4

R20UT0511EJ0101 Rev.1.01 Page 46 of 272
Apr 01, 2012

CHAPTER 5 SYNCHRONIZATION AND COMMUNICATION
FUNCTIONS

5.2.4 Acquire semaphore resource

A resource is acquired (waiting forever, polling, or with timeout) by issuing the following service call from the processing
program.

- wai_sem
This service call acquires a resource from the semaphore specified by parameter semid (subtracts 0x1 from the
semaphore counter).
If a resource could not be acquired from the target semaphore (semaphore counter is set to 0x0) when this service
call is issued, the counter manipulation processing is not performed but the invoking task is queued to the target
semaphore wait queue in the order of resource acquisition request (FIFO order).
As a result, the invoking task is unlinked from the ready queue and is moved from the RUNNING state to the
WAITING state (waiting state for a semaphore resource).
The waiting state for a semaphore state is cancelled in the following cases, and then moved to the READY state.

The following describes an example for coding this service call.

Waiting State for a Semaphore State Cancel Operation Return Value

The resource was returned to the target semaphore as a result of issuing sig_sem. E_OK

The resource was returned to the target semaphore as a result of issuing isig_sem. E_OK

Forced release from waiting (accept rel_wai while waiting). E_RLWAI

Forced release from waiting (accept irel_wai while waiting). E_RLWAI

#pragma rtos_task func_task

#include <kernel.h> /*Standard header file definition*/
#include <kernel_id.h> /*System information header file definition*/

void
func_task (VP_INT exinf)
{
 ER ercd; /*Declares variable*/
 ID semid = ID_semA; /*Declares and initializes variable*/

 /* */

 ercd = wai_sem (semid); /*Acquire semaphore resource (waiting forever)*/

 if (ercd == E_OK) {
 /* */ /*Normal termination processing*/
 } else if (ercd == E_RLWAI) {
 /* */ /*Forced termination processing*/
 }

 /* */
}

RI78V4

R20UT0511EJ0101 Rev.1.01 Page 47 of 272
Apr 01, 2012

CHAPTER 5 SYNCHRONIZATION AND COMMUNICATION
FUNCTIONS

- pol_sem
This service call acquires a resource from the semaphore specified by parameter semid (subtracts 0x1 from the
semaphore counter).
If a resource could not be acquired from the target semaphore (semaphore counter is set to 0x0) when this service
call is issued, the counter manipulation processing is not performed but "E_TMOUT" is returned.
The following describes an example for coding this service call.

#pragma rtos_task func_task

#include <kernel.h> /*Standard header file definition*/
#include <kernel_id.h> /*System information header file definition*/

void
func_task (VP_INT exinf)
{
 ER ercd; /*Declares variable*/
 ID semid = ID_semA; /*Declares and initializes variable*/

 /* */

 ercd = pol_sem (semid); /*Acquire semaphore resource (polling)*/

 if (ercd == E_OK) {
 /* */ /*Polling success processing*/
 } else if (ercd == E_TMOUT) {
 /* */ /*Polling failure processing*/
 }

 /* */
}

RI78V4

R20UT0511EJ0101 Rev.1.01 Page 48 of 272
Apr 01, 2012

CHAPTER 5 SYNCHRONIZATION AND COMMUNICATION
FUNCTIONS

- twai_sem
This service call acquires a resource from the semaphore specified by parameter semid (subtracts 0x1 from the
semaphore counter).
If a resource could not be acquired from the target semaphore (semaphore counter is set to 0x0) when this service
call is issued, the counter manipulation processing is not performed but the invoking task is queued to the target
semaphore wait queue in the order of resource acquisition request (FIFO order).
As a result, the invoking task is unlinked from the ready queue and is moved from the RUNNING state to the
WAITING state (waiting state for a semaphore resource).
The waiting state for a semaphore resource is cancelled in the following cases, and then moved to the READY state.

The following describes an example for coding this service call.

Note When TMO_FEVR is specified for wait time tmout, processing equivalent to wai_sem will be executed.
When TMO_POL is specified, processing equivalent to pol_sem will be executed.

Waiting State for a Semaphore Resource Cancel Operation Return Value

The resource was returned to the target semaphore as a result of issuing sig_sem. E_OK

The resource was returned to the target semaphore as a result of issuing isig_sem. E_OK

Forced release from waiting (accept rel_wai while waiting). E_RLWAI

Forced release from waiting (accept irel_wai while waiting). E_RLWAI

Polling failure or timeout. E_TMOUT

#pragma rtos_task func_task

#include <kernel.h> /*Standard header file definition*/
#include <kernel_id.h> /*System information header file definition*/

void
func_task (VP_INT exinf)
{
 ER ercd; /*Declares variable*/
 ID semid = ID_semA; /*Declares and initializes variable*/
 TMO tmout = 3600; /*Declares and initializes variable*/

 /* */

 /*Acquire semaphore resource (with timeout)*/
 ercd = twai_sem (semid, tmout);

 if (ercd == E_OK) {
 /* */ /*Normal termination processing*/
 } else if (ercd == E_RLWAI) {
 /* */ /*Forced termination processing*/
 } else if (ercd == E_TMOUT) {
 /* */ /*Timeout processing*/
 }

 /* */
}

RI78V4

R20UT0511EJ0101 Rev.1.01 Page 49 of 272
Apr 01, 2012

CHAPTER 5 SYNCHRONIZATION AND COMMUNICATION
FUNCTIONS

5.2.5 Reference semaphore state

A semaphore status is referenced by issuing the following service call from the processing program.

- ref_sem
Stores semaphore state packet (such as existence of waiting tasks) of the semaphore specified by parameter semid
in the area specified by parameter pk_rsem.
The following describes an example for coding this service call.

Note For details about the semaphore state packet, refer to "12.5.2 Semaphore state packet".

#pragma rtos_task func_task

#include <kernel.h> /*Standard header file definition*/
#include <kernel_id.h> /*System information header file definition*/

void
func_task (VP_INT exinf)
{
 ID semid = ID_semA; /*Declares and initializes variable*/
 T_RSEM pk_rsem; /*Declares data structure*/
 ID wtskid; /*Declares variable*/
 UINT semcnt; /*Declares variable*/

 /* */

 ref_sem (semid, &pk_rsem);/*Reference semaphore state*/

 wtskid = pk_rsem.wtskid; /*Reference ID number of the task at the head of
 the wait queue*/
 semcnt = pk_rsem.semcnt; /*Reference current resource count*/

 /* */
}

RI78V4

R20UT0511EJ0101 Rev.1.01 Page 50 of 272
Apr 01, 2012

CHAPTER 5 SYNCHRONIZATION AND COMMUNICATION
FUNCTIONS

5.3 Eventflags

The RI78V4 provides 16-bit eventflags as a queuing function for tasks, such as keeping the tasks waiting for execution,
until the results of the execution of a given processing program are output.

The following shows a processing flow when using an eventflag.

Figure 5-2 Processing Flow (Eventflag)

5.3.1 Create eventflag

In the RI78V4, the method of creating an eventflag is limited to "static creation by the Kernel Initialization Module".
Eventflags therefore cannot be created dynamically using a method such as issuing a service call from a processing

program.

- Static create
Static eventflag creation is realized by defining Eventflag information in the system configuration file.
The RI78V4 executes eventflag creation processing based on data stored in information files, using the Kernel
Initialization Module, and handles the created eventflags as management targets.

Note In the RI78V4, "0x0" is the initial bit pattern for eventflag creation processing.

5.3.2 Delete eventflag

In the RI78V4, eventflags created statically by the Kernel Initialization Module cannot be deleted dynamically using a
method such as issuing a service call from a processing program.

Wait for eventflag

Set eventflag

Task

Priority : High Priority: Low

Queuing period

Task

RI78V4

R20UT0511EJ0101 Rev.1.01 Page 51 of 272
Apr 01, 2012

CHAPTER 5 SYNCHRONIZATION AND COMMUNICATION
FUNCTIONS

5.3.3 Set eventflag

A bit pattern is set by issuing the following service call from the processing program.

- set_flg, iset_flg
These service calls set the result of ORing the bit pattern of the eventflag specified by parameter flgid and the bit
pattern specified by parameter setptn as the bit pattern of the target eventflag.
If the required condition of the task queued to the target eventflag wait queue is satisfied when this service call is
issued, the relevant task is unlinked from the wait queue at the same time as bit pattern setting processing.
As a result, the relevant task is moved from the WAITING state (waiting state for an eventflag) to the READY state, or
from the WAITING-SUSPENDED state to the SUSPENDED state.
The following describes an example for coding this service call.

Note 1 If the task linked in the wait queue is moved to the READY state after this service call is issued, this service
call also re-queues the task at the end of the ready queue corresponding to the priority of the task.

Note 2 If the bit pattern set to the target eventflag is B'1100 and the bit pattern specified by parameter setptn is
B'1010 when this service call is issued, the bit pattern of the target eventflag is set to B'1110.

#pragma rtos_task func_task

#include <kernel.h> /*Standard header file definition*/
#include <kernel_id.h> /*System information header file definition*/

void
func_task (VP_INT exinf)
{
 ID flgid = ID_flgA; /*Declares and initializes variable*/
 FLGPTN setptn = 0B1010; /*Declares and initializes variable*/

 /* */

 set_flg (flgid, setptn); /*Set eventflag*/

 /* */
}

RI78V4

R20UT0511EJ0101 Rev.1.01 Page 52 of 272
Apr 01, 2012

CHAPTER 5 SYNCHRONIZATION AND COMMUNICATION
FUNCTIONS

5.3.4 Clear eventflag

A bit pattern is cleared by issuing the following service call from the processing program.

- clr_flg
This service call sets the result of ANDing the bit pattern set to the eventflag specified by parameter flgid and the bit
pattern specified by parameter clrptn as the bit pattern of the target eventflag.
The following describes an example for coding this service call.

Note 1 This service call does not perform queuing of clear requests. If the bit pattern has been cleared, therefore, no
processing is performed but it is not handled as an error.

Note 2 If the bit pattern set to the target eventflag is B'1100 and the bit pattern specified by parameter clrptn is
B'1010 when this service call is issued, the bit pattern of the target eventflag is set to B'1110.

Note 3 This service call does not cancel tasks in the waiting state for an eventflag.

#pragma rtos_task func_task

#include <kernel.h> /*Standard header file definition*/
#include <kernel_id.h> /*System information header file definition*/

void
func_task (VP_INT exinf)
{
 ID flgid = ID_flgA; /*Declares and initializes variable*/
 FLGPTN clrptn = 0B1010; /*Declares and initializes variable*/

 /* */

 clr_flg (flgid, clrptn); /*Clear eventflag*/

 /* */
}

RI78V4

R20UT0511EJ0101 Rev.1.01 Page 53 of 272
Apr 01, 2012

CHAPTER 5 SYNCHRONIZATION AND COMMUNICATION
FUNCTIONS

5.3.5 Wait for eventflag

A bit pattern is checked (waiting forever, polling, or with timeout) by issuing the following service call from the processing
program.

- wai_flg
This service call checks whether the bit pattern specified by parameter waiptn and the bit pattern that satisfies the
required condition specified by parameter wfmode are set to the eventflag specified by parameter flgid.
If a bit pattern that satisfies the required condition has been set for the target eventflag, the bit pattern of the target
eventflag is stored in the area specified by parameter p_flgptn.
If the bit pattern of the target eventflag does not satisfy the required condition when this service call is issued, the
invoking task is queued to the target eventflag wait queue.
As a result, the invoking task is unlinked from the ready queue and is moved from the RUNNING state to the
WAITING state (waiting state for an eventflag).
The waiting state for an eventflag is cancelled in the following cases, and then moved to the READY state.

The following shows the specification format of required condition wfmode.

- wfmode = TWF_ANDW
Checks whether all of the bits to which 1 is set by parameter waiptn are set as the target eventflag.

- wfmode = TWF_ORW
Checks which bit, among bits to which 1 is set by parameter waiptn, is set as the target eventflag.

The following describes an example for coding this service call.

Waiting State for an Eventflag Cancel Operation Return Value

A bit pattern that satisfies the required condition was set to the target eventflag as a result of
issuing set_flg.

E_OK

A bit pattern that satisfies the required condition was set to the target eventflag as a result of
issuing iset_flg.

E_OK

Forced release from waiting (accept rel_wai while waiting). E_RLWAI

Forced release from waiting (accept irel_wai while waiting). E_RLWAI

#pragma rtos_task func_task

#include <kernel.h> /*Standard header file definition*/
#include <kernel_id.h> /*System information header file definition*/

void
func_task (VP_INT exinf)
{
 ER ercd; /*Declares variable*/
 ID flgid = ID_flgA; /*Declares and initializes variable*/
 FLGPTN waiptn = 0B1110; /*Declares and initializes variable*/
 MODE wfmode = TWF_ANDW; /*Declares and initializes variable*/
 FLGPTN p_flgptn; /*Declares variable*/

 /* */

 /*Wait for eventflag (waiting forever)*/
 ercd = wai_flg (flgid, waiptn, wfmode, &p_flgptn);

 if (ercd == E_OK) {
 /* */ /*Normal termination processing*/
 } else if (ercd == E_RLWAI) {
 /* */ /*Forced termination processing*/

RI78V4

R20UT0511EJ0101 Rev.1.01 Page 54 of 272
Apr 01, 2012

CHAPTER 5 SYNCHRONIZATION AND COMMUNICATION
FUNCTIONS

Note 1 In the RI78V4, the number of tasks that can be queued to the eventflag wait queue is one. If this service call
is issued for the eventflag to which a task is queued, therefore, "E_ILUSE" is returned regardless of whether
or not the required condition is immediately satisfied.

Note 2 The RI78V4 performs bit pattern clear processing (0x0 setting) when the required condition of the target
eventflag (TA_CLR attribute) is satisfied.

 }

 /* */
}

RI78V4

R20UT0511EJ0101 Rev.1.01 Page 55 of 272
Apr 01, 2012

CHAPTER 5 SYNCHRONIZATION AND COMMUNICATION
FUNCTIONS

- pol_flg
This service call checks whether the bit pattern specified by parameter waiptn and the bit pattern that satisfies the
required condition specified by parameter wfmode are set to the eventflag specified by parameter flgid.
If the bit pattern that satisfies the required condition has been set to the target eventflag, the bit pattern of the target
eventflag is stored in the area specified by parameter p_flgptn.
If the bit pattern of the target eventflag does not satisfy the required condition when this service call is issued,
"E_TMOUT" is returned.
The following shows the specification format of required condition wfmode.

- wfmode = TWF_ANDW
Checks whether all of the bits to which 1 is set by parameter waiptn are set as the target eventflag.

- wfmode = TWF_ORW
Checks which bit, among bits to which 1 is set by parameter waiptn, is set as the target eventflag.

The following describes an example for coding this service call.

Note 1 In the RI78V4, the number of tasks that can be queued to the eventflag wait queue is one. If this service call
is issued for the eventflag to which a task is queued, therefore, "E_ILUSE" is returned regardless of whether
or not the required condition is immediately satisfied.

Note 2 The RI78V4 performs bit pattern clear processing (0x0 setting) when the required condition of the target
eventflag (TA_CLR attribute) is satisfied.

#pragma rtos_task func_task

#include <kernel.h> /*Standard header file definition*/
#include <kernel_id.h> /*System information header file definition*/

void
func_task (VP_INT exinf)
{
 ER ercd; /*Declares variable*/
 ID flgid = ID_flgA; /*Declares and initializes variable*/
 FLGPTN waiptn = 0B1110; /*Declares and initializes variable*/
 MODE wfmode = TWF_ANDW; /*Declares and initializes variable*/
 FLGPTN p_flgptn; /*Declares variable*/

 /* */

 /*Wait for eventflag (polling)*/
 ercd = pol_flg (flgid, waiptn, wfmode, &p_flgptn);

 if (ercd == E_OK) {
 /* */ /*Polling success processing*/
 } else if (ercd == E_TMOUT) {
 /* */ /*Polling failure processing*/
 }

 /* */
}

RI78V4

R20UT0511EJ0101 Rev.1.01 Page 56 of 272
Apr 01, 2012

CHAPTER 5 SYNCHRONIZATION AND COMMUNICATION
FUNCTIONS

- twai_flg
This service call checks whether the bit pattern specified by parameter waiptn and the bit pattern that satisfies the
required condition specified by parameter wfmode are set to the eventflag specified by parameter flgid.
If the bit pattern that satisfies the required condition has been set to the target eventflag, the bit pattern of the target
eventflag is stored in the area specified by parameter p_flgptn.
If the bit pattern of the target eventflag does not satisfy the required condition when this service call is issued, the
invoking task is queued to the target eventflag wait queue.
As a result, the invoking task is unlinked from the ready queue and is moved from the RUNNING state to the
WAITING state (waiting state for an eventflag).
The waiting state for an eventflag is cancelled in the following cases, and then moved to the READY state.

The following shows the specification format of required condition wfmode.

- wfmode = TWF_ANDW
Checks whether all of the bits to which 1 is set by parameter waiptn are set as the target eventflag.

- wfmode = TWF_ORW
Checks which bit, among bits to which 1 is set by parameter waiptn, is set as the target eventflag.

The following describes an example for coding this service call.

Waiting State for an Eventflag Cancel Operation Return Value

A bit pattern that satisfies the required condition was set to the target eventflag as a result of
issuing set_flg.

E_OK

A bit pattern that satisfies the required condition was set to the target eventflag as a result of
issuing iset_flg.

E_OK

Forced release from waiting (accept rel_wai while waiting). E_RLWAI

Forced release from waiting (accept irel_wai while waiting). E_RLWAI

Polling failure or timeout. E_TMOUT

#pragma rtos_task func_task

#include <kernel.h> /*Standard header file definition*/
#include <kernel_id.h> /*System information header file definition*/

void
func_task (VP_INT exinf)
{
 ER ercd; /*Declares variable*/
 ID flgid = ID_flgA; /*Declares and initializes variable*/
 FLGPTN waiptn = 0B1110; /*Declares and initializes variable*/
 MODE wfmode = TWF_ANDW; /*Declares and initializes variable*/
 FLGPTN p_flgptn; /*Declares variable*/
 TMO tmout = 3600; /*Declares and initializes variable*/

 /* */

 /*Wait for eventflag (with timeout)*/
 ercd = twai_flg (flgid, waiptn, wfmode, &p_flgptn, tmout);

 if (ercd == E_OK) {
 /* */ /*Normal termination processing*/
 } else if (ercd == E_RLWAI) {
 /* */ /*Forced termination processing*/
 } else if (ercd == E_TMOUT) {
 /* */ /*Timeout processing*/
 }

RI78V4

R20UT0511EJ0101 Rev.1.01 Page 57 of 272
Apr 01, 2012

CHAPTER 5 SYNCHRONIZATION AND COMMUNICATION
FUNCTIONS

Note 1 In the RI78V4, the number of tasks that can be queued to the eventflag wait queue is one. If this service call
is issued for the eventflag to which a task is queued, therefore, "E_ILUSE" is returned regardless of whether
or not the required condition is immediately satisfied.

Note 2 The RI78V4 performs bit pattern clear processing (0x0 setting) when the required condition of the target
eventflag (TA_CLR attribute) is satisfied.

Note 3 When TMO_FEVR is specified for wait time tmout, processing equivalent to wai_flg will be executed. When
TMO_POL is specified, processing equivalent to pol_flg will be executed.

 /* */
}

RI78V4

R20UT0511EJ0101 Rev.1.01 Page 58 of 272
Apr 01, 2012

CHAPTER 5 SYNCHRONIZATION AND COMMUNICATION
FUNCTIONS

5.3.6 Reference eventflag state

An eventflag status is referenced by issuing the following service call from the processing program.

- ref_flg
Stores eventflag state packet (such as existence of waiting tasks) of the eventflag specified by parameter flgid in the
area specified by parameter pk_rflg.
The following describes an example for coding this service call.

Note For details about the eventflag state packet, refer to "12.5.3 Eventflag state packet".

#pragma rtos_task func_task

#include <kernel.h> /*Standard header file definition*/
#include <kernel_id.h> /*System information header file definition*/

void
func_task (VP_INT exinf)
{
 ID flgid = ID_flgA; /*Declares and initializes variable*/
 T_RFLG pk_rflg; /*Declares data structure*/
 ID wtskid; /*Declares variable*/
 FLGPTN flgptn; /*Declares variable*/

 /* */

 ref_flg (flgid, &pk_rflg);/*Reference eventflag state*/

 wtskid = pk_rflg.wtskid; /*Reference ID number of the task at the head of
 the wait queue*/
 flgptn = pk_rflg.flgptn; /*Reference current bit pattern*/

 /* */
}

RI78V4

R20UT0511EJ0101 Rev.1.01 Page 59 of 272
Apr 01, 2012

CHAPTER 5 SYNCHRONIZATION AND COMMUNICATION
FUNCTIONS

5.4 Mailboxes

The RI78V4 provides a mailbox, as a communication function between tasks, that hands over the execution result of a
given processing program to another processing program.

The following shows a processing flow when using a mailbox.

Figure 5-3 Processing Flow (Mailbox)

5.4.1 Create mailbox

In the RI78V4, the method of creating a mailbox is limited to "static creation by the Kernel Initialization Module".
Mailboxes therefore cannot be created dynamically using a method such as issuing a service call from a processing

program.

- Static create
Static mailbox creation is realized by defining Mailbox information in the system configuration file.
The RI78V4 executes mailbox creation processing based on data stored in information files, using the Kernel
Initialization Module, and handles the created mailboxes as management targets.

5.4.2 Delete mailbox

In the RI78V4, mailboxes created statically by the Kernel Initialization Module cannot be deleted dynamically using a
method such as issuing a service call from a processing program.

Receive from mailbox

Send to mailbox

Task

Priority: High

Task

Priority: Low

Reception wait period

RI78V4

R20UT0511EJ0101 Rev.1.01 Page 60 of 272
Apr 01, 2012

CHAPTER 5 SYNCHRONIZATION AND COMMUNICATION
FUNCTIONS

5.4.3 Message

The information exchanged among processing programs via the mailbox is called "messages".
Messages can be transmitted to any processing program via the mailbox, but it should be noted that, in the case of the

synchronization and communication functions of the RI78V4, only the start address of the message is handed over to the
receiving processing program, but the message contents are not copied to a separate area.

- Securement of memory area
In the case of the RI78V4, it is recommended to use the memory area secured by issuing service calls such as
get_mpf and pget_mpf for messages.

Note The RI78V4 uses the message start area as a link area during queuing to the wait queue for mailbox
messages. Therefore, if the memory area for messages is secured from other than the memory area
controlled by the RI78V4, it must be secured from 4-byte aligned addresses.

- Basic form of messages
In the RI78V4, the message contents and length are prescribed as follows, according to the attributes of the mailbox
to be used.

- When using a mailbox with the TA_MFIFO attribute
The contents and length past the first 4 bytes of a message (system reserved area msgque) are not restricted in
particular in the RI78V4.
Therefore, the contents and length past the first 4 bytes are prescribed among the processing programs that
exchange data using the mailbox with the TA_MFIFO attribute.
The following shows the basic form of coding TA_MFIFO attribute messages in C.

[Message packet for TA_MFIFO attribute]

- When using a mailbox with the TA_MPRI attribute
The contents and length past the first 5 bytes of a message (system reserved area msgque, priority level msgpri)
are not restricted in particular in the RI78V4.
Therefore, the contents and length past the first 5 bytes are prescribed among the processing programs that
exchange data using the mailbox with the TA_MPRI attribute.
The following shows the basic form of coding TA_MPRI attribute messages in C.

[Message packet for TA_MPRI attribute]

Note 1 In the RI78V4, a message having a smaller priority number is given a higher priority.

Note 2 A value between 1 and 31 can be specified for message priority.

Note 3 For details about the message packet, refer to "12.5.4 Message packet".

typedef struct t_msg {
 struct t_msg __far *msgque; /*Reserved for future use*/
} T_MSG;

typedef struct t_msg_pri {
 struct t_msg __far *msgque; /*Reserved for future use*/
 PRI msgpri; /*Message priority*/
} T_MSG_PRI;

RI78V4

R20UT0511EJ0101 Rev.1.01 Page 61 of 272
Apr 01, 2012

CHAPTER 5 SYNCHRONIZATION AND COMMUNICATION
FUNCTIONS

5.4.4 Send to mailbox

A message is transmitted by issuing the following service call from the processing program.

- snd_mbx
This service call transmits the message specified by parameter pk_msg to the mailbox specified by parameter mbxid
(queues the message in the wait queue).
If a task is queued to the target mailbox wait queue when this service call is issued, the message is not queued but
handed over to the relevant task (first task of the wait queue).
As a result, the relevant task is unlinked from the wait queue and is moved from the WAITING state (receiving waiting
state for a mailbox) to the READY state, or from the WAITING-SUSPENDED state to the SUSPENDED state.
The following describes an example for coding this service call.

Note 1 If the first task of the wait queue is moved to the READY state after this service call is issued, this service call
also re-queues the task at the end of the ready queue corresponding to the priority of the task.

Note 2 Messages are queued to the target mailbox wait queue in the order defined by Attribute (queuing method):
mbxatr during configuration (FIFO order or priority order).

Note 3 With the RI78V4 mailbox, only the start address of the message is handed over to the receiving processing
program, but the message contents are not copied to a separate area. The message contents can therefore
be rewritten even after this service call is issued.

Note 4 For details about the message packet, refer to "12.5.4 Message packet".

#pragma rtos_task func_task

#include <kernel.h> /*Standard header file definition*/
#include <kernel_id.h> /*System information header file definition*/

void
func_task (VP_INT exinf)
{
 ID mpfid = ID_mpfA; /*Declares and initializes variable*/
 VP p_blk; /*Declares variable*/
 char *p; /*Declares variable*/
 ID mbxid = ID_mbxA; /*Declares and initializes variable*/
 T_MSG_PRI *pk_msg; /*Declares data structure*/

 /* */

 get_mpf (mpfid, &p_blk); /*Secures memory area (for message)*/

 /*Initializes variable*/
 p = (char *)p_blk + sizeof (T_MSG_PRI);

 while (expr) {
 *p++ = /*Creates message (contents)*/
 }

 /*Initializes data structure*/
 (T_MSG_PRI *)p_blk->msgpri = 8;

 /*Send to mailbox*/
 snd_mbx (mbxid, (T_MSG_PRI *)p_blk);

 /* */
}

RI78V4

R20UT0511EJ0101 Rev.1.01 Page 62 of 272
Apr 01, 2012

CHAPTER 5 SYNCHRONIZATION AND COMMUNICATION
FUNCTIONS

5.4.5 Receive from mailbox

A message is received (waiting forever, polling, or with timeout) by issuing the following service call from the processing
program.

- rcv_mbx
This service call receives a message from the mailbox specified by parameter mbxid, and stores its start address in
the area specified by parameter ppk_msg.
If the message could not be received from the target mailbox (no messages were queued in the wait queue) when this
service call is issued, message reception processing is not executed but the invoking task is queued to the target
mailbox wait queue in the order of message reception request (FIFO order).
As a result, the invoking task is unlinked from the ready queue and is moved from the RUNNING state to the
WAITING state (receiving waiting for a mailbox).
The receiving waiting for a mailbox is cancelled in the following cases, and then moved to the READY state.

The following describes an example for coding this service call.

Note For details about the message packet, refer to "12.5.4 Message packet".

Receiving Waiting for a Mailbox Cancel Operation Return Value

A message was transmitted to the target mailbox as a result of issuing snd_mbx. E_OK

Forced release from waiting (accept rel_wai while waiting). E_RLWAI

Forced release from waiting (accept irel_wai while waiting). E_RLWAI

#pragma rtos_task func_task

#include <kernel.h> /*Standard header file definition*/
#include <kernel_id.h> /*System information header file definition*/

void
func_task (VP_INT exinf)
{
 ER ercd; /*Declares variable*/
 ID mbxid = ID_mbxA; /*Declares and initializes variable*/
 T_MSG *ppk_msg; /*Declares data structure*/

 /* */

 /*Receive from mailbox (waiting forever)*/
 ercd = rcv_mbx (mbxid, &ppk_msg);

 if (ercd == E_OK) {
 /* */ /*Normal termination processing*/
 } else if (ercd == E_RLWAI) {
 /* */ /*Forced termination processing*/
 }

 /* */
}

RI78V4

R20UT0511EJ0101 Rev.1.01 Page 63 of 272
Apr 01, 2012

CHAPTER 5 SYNCHRONIZATION AND COMMUNICATION
FUNCTIONS

- prcv_mbx
This service call receives a message from the mailbox specified by parameter mbxid, and stores its start address in
the area specified by parameter ppk_msg.
If the message could not be received from the target mailbox (no messages were queued in the wait queue) when this
service call is issued, message reception processing is not executed but "E_TMOUT" is returned.
The following describes an example for coding this service call.

Note For details about the message packet, refer to "12.5.4 Message packet".

#pragma rtos_task func_task

#include <kernel.h> /*Standard header file definition*/
#include <kernel_id.h> /*System information header file definition*/

void
func_task (VP_INT exinf)
{
 ER ercd; /*Declares variable*/
 ID mbxid = ID_mbxA; /*Declares and initializes variable*/
 T_MSG *ppk_msg; /*Declares data structure*/

 /* */

 /*Receive from mailbox (polling)*/
 ercd = prcv_mbx (mbxid, &ppk_msg);

 if (ercd == E_OK) {
 /* */ /*Polling success processing*/
 } else if (ercd == E_TMOUT) {
 /* */ /*Polling failure processing*/
 }

 /* */
}

RI78V4

R20UT0511EJ0101 Rev.1.01 Page 64 of 272
Apr 01, 2012

CHAPTER 5 SYNCHRONIZATION AND COMMUNICATION
FUNCTIONS

- trcv_mbx
This service call receives a message from the mailbox specified by parameter mbxid, and stores its start address in
the area specified by parameter ppk_msg.
If the message could not be received from the target mailbox (no messages were queued in the wait queue) when this
service call is issued, message reception processing is not executed but the invoking task is queued to the target
mailbox wait queue in the order of message reception request (FIFO order).
As a result, the invoking task is unlinked from the ready queue and is moved from the RUNNING state to the
WAITING state (receiving waiting for a mailbox).
The receiving waiting for a mailbox is cancelled in the following cases, and then moved to the READY state.

The following describes an example for coding this service call.

Note 1 When TMO_FEVR is specified for wait time tmout, processing equivalent to rcv_mbx will be executed. When
TMO_POL is specified, processing equivalent to prcv_mbx will be executed.

Note 2 For details about the message packet, refer to "12.5.4 Message packet".

Receiving Waiting for a Mailbox Cancel Operation Return Value

A message was transmitted to the target mailbox as a result of issuing snd_mbx. E_OK

Forced release from waiting (accept rel_wai while waiting). E_RLWAI

Forced release from waiting (accept irel_wai while waiting). E_RLWAI

Polling failure or timeout. E_TMOUT

#pragma rtos_task func_task

#include <kernel.h> /*Standard header file definition*/
#include <kernel_id.h> /*System information header file definition*/

void
func_task (VP_INT exinf)
{
 ER ercd; /*Declares variable*/
 ID mbxid = ID_mbxA; /*Declares and initializes variable*/
 T_MSG *ppk_msg; /*Declares data structure*/
 TMO tmout = 3600; /*Declares and initializes variable*/

 /* */

 /*Receive from mailbox (with timeout)*/
 ercd = trcv_mbx (mbxid, &ppk_msg, tmout);

 if (ercd == E_OK) {
 /* */ /*Normal termination processing*/
 } else if (ercd == E_RLWAI) {
 /* */ /*Forced termination processing*/
 } else if (ercd == E_TMOUT) {
 /* */ /*Timeout processing*/
 }

 /* */
}

RI78V4

R20UT0511EJ0101 Rev.1.01 Page 65 of 272
Apr 01, 2012

CHAPTER 5 SYNCHRONIZATION AND COMMUNICATION
FUNCTIONS

5.4.6 Reference mailbox state

A mailbox status is referenced by issuing the following service call from the processing program.

- ref_mbx
Stores mailbox state packet (such as existence of waiting tasks) of the mailbox specified by parameter mbxid in the
area specified by parameter pk_rmbx.
The following describes an example for coding this service call.

Note For details about the mailbox state packet, refer to "12.5.5 Mailbox state packet".

#pragma rtos_task func_task

#include <kernel.h> /*Standard header file definition*/
#include <kernel_id.h> /*System information header file definition*/

void
func_task (VP_INT exinf)
{
 ID mbxid = ID_mbxA; /*Declares and initializes variable*/
 T_RMBX pk_rmbx; /*Declares data structure*/
 ID wtskid; /*Declares variable*/
 T_MSG *pk_msg; /*Declares data structure*/

 /* */

 ref_mbx (mbxid, &pk_rmbx);/*Reference mailbox state*/

 wtskid = pk_rmbx.wtskid; /*Reference ID number of the task at the head of
 the wait queue*/
 pk_msg = pk_rmbx.pk_msg; /*Referenc start address of the message packet at
 the head of the message queue*/

 /* */
}

RI78V4 CHAPTER 6 MEMORY POOL MANAGEMENT FUNCTIONS

R20UT0511EJ0101 Rev.1.01 Page 66 of 272
Apr 01, 2012

CHAPTER 6 MEMORY POOL MANAGEMENT FUNC-
TIONS

This chapter describes the memory pool management functions performed by the RI78V4.

6.1 Outline

The statically secured memory areas in the Kernel Initialization Module are subject to management by the memory pool
management functions of the RI78V4.

In the RI78V4, the allocation destinations (segment names) of management objects modularized for each function are
specified.

The following lists the segment names prescribed in the RI78V4.

- k_system segment
Area where the RI78V4's core processing part and main processing part of service calls provided by the RI78V4 are
to be allocated.

- k_info segment
Area where information items such as the RI78V4 version are to be allocated.

- k_const segment
Area where initial information items related to OS resources that do not change dynamically are allocated as system
information tables.

- k_data segment
Area where information items required to implement the functionalities provided by the RI78V4 and information items
related to OS resources that change dynamically are allocated as management objects.

- k_stack segment
Area where the system stack and the task stack are to be allocated.

- k_work0, k_work1, k_work2, k_work3 segment
Area where fixed-sized memory pools are to be allocated.

6.2 Fixed-Sized Memory Pool

When a dynamic memory manipulation request is issued from a processing program in the RI78V4, the fixed-sized
memory pool is provided as a usable memory area.

Dynamic memory manipulation of the fixed-sized memory pool is executed in fixed size memory block units.

6.2.1 Create fixed-sized memory pool

In the RI78V4, the method of creating a fixed-sized memory pool is limited to "static creation by the Kernel Initialization
Module".

Fixed-sized memory pools therefore cannot be created dynamically using a method such as issuing a service call from
a processing program.

- Static create
Static fixed-sized memory pool creation is realized by defining Fixed-sized memory pool information in the system
configuration file.
The RI78V4 executes fixed-sized memory pool creation processing based on data stored in information files, using
the Kernel Initialization Module, and handles the created fixed-sized memory pools as management targets.

RI78V4 CHAPTER 6 MEMORY POOL MANAGEMENT FUNCTIONS

R20UT0511EJ0101 Rev.1.01 Page 67 of 272
Apr 01, 2012

6.2.2 Delete fixed-sized memory pool

In the RI78V4, fixed-sized memory pools created statically by the Kernel Initialization Module cannot be deleted
dynamically using a method such as issuing a service call from a processing program.

6.2.3 Acquire fixed-sized memory block

A memory block is acquired (waiting forever, polling, or with timeout) by issuing the following service call from the
processing program.

- get_mpf
This service call acquires the memory block from the fixed-sized memory pool specified by parameter mpfid and
stores the start address in the area specified by parameter p_blk.
If a memory block could not be acquired from the target fixed-sized memory pool (no available memory blocks exist)
when this service call is issued, memory block acquisition processing is not performed but the invoking task is queued
to the target fixed-sized memory pool wait queue in the order of memory block acquisition request (FIFO order).
As a result, the invoking task is unlinked from the ready queue and is moved from the RUNNING state to the
WAITING state (waiting state for a fixed-sized memory block).
The waiting state for a fixed-sized memory block is cancelled in the following cases, and then moved to the READY
state.

The following describes an example for coding this service call.

Waiting State for a Fixed-sized Memory Block Cancel Operation Return Value

A memory block was returned to the target fixed-sized memory pool as a result of issuing
rel_mpf.

E_OK

Forced release from waiting (accept rel_wai while waiting). E_RLWAI

Forced release from waiting (accept irel_wai while waiting). E_RLWAI

#pragma rtos_task func_task

#include <kernel.h> /*Standard header file definition*/
#include <kernel_id.h> /*System information header file definition*/

void
func_task (VP_INT exinf)
{
 ER ercd; /*Declares variable*/
 ID mpfid = ID_mpfA; /*Declares and initializes variable*/
 VP p_blk; /*Declares variable*/

 /* */

 /*Acquire fixed-sized memory block (wait
 forever)*/
 ercd = get_mpf (mpfid, &p_blk);

 if (ercd == E_OK) {
 /* */ /*Normal termination processing*/

 /*Release fixed-sized memory block*/
 rel_mpf (mpfid, p_blk);
 } else if (ercd == E_RLWAI) {
 /* */ /*Forced termination processing*/
 }

 /* */

RI78V4 CHAPTER 6 MEMORY POOL MANAGEMENT FUNCTIONS

R20UT0511EJ0101 Rev.1.01 Page 68 of 272
Apr 01, 2012

}

RI78V4 CHAPTER 6 MEMORY POOL MANAGEMENT FUNCTIONS

R20UT0511EJ0101 Rev.1.01 Page 69 of 272
Apr 01, 2012

- pget_mpf
This service call acquires the memory block from the fixed-sized memory pool specified by parameter mpfid and
stores the start address in the area specified by parameter p_blk.
If a memory block could not be acquired from the target fixed-sized memory pool (no available memory blocks exist)
when this service call is issued, memory block acquisition processing is not performed but "E_TMOUT" is returned.
The following describes an example for coding this service call.

#pragma rtos_task func_task

#include <kernel.h> /*Standard header file definition*/
#include <kernel_id.h> /*System information header file definition*/

void
func_task (VP_INT exinf)
{
 ER ercd; /*Declares variable*/
 ID mpfid = ID_mpfA; /*Declares and initializes variable*/
 VP p_blk; /*Declares variable*/

 /* */

 /*Acquire fixed-sized memory block (polling)*/
 ercd = pget_mpf (mpfid, &p_blk);

 if (ercd == E_OK) {
 /* */ /*Polling success processing*/

 /*Release fixed-sized memory block*/
 rel_mpf (mpfid, p_blk);
 } else if (ercd == E_TMOUT) {
 /* */ /*Polling failure processing*/
 }

 /* */
}

RI78V4 CHAPTER 6 MEMORY POOL MANAGEMENT FUNCTIONS

R20UT0511EJ0101 Rev.1.01 Page 70 of 272
Apr 01, 2012

- tget_mpf
This service call acquires the memory block from the fixed-sized memory pool specified by parameter mpfid and
stores the start address in the area specified by parameter p_blk.
If a memory block could not be acquired from the target fixed-sized memory pool (no available memory blocks exist)
when this service call is issued, memory block acquisition processing is not performed but the invoking task is queued
to the target fixed-sized memory pool wait queue in the order of memory block acquisition request (FIFO order).
As a result, the invoking task is unlinked from the ready queue and is moved from the RUNNING state to the
WAITING state (waiting state for a fixed-sized memory block).
The waiting state for a fixed-sized memory block is cancelled in the following cases, and then moved to the READY
state.

The following describes an example for coding this service call.

Note When TMO_FEVR is specified for wait time tmout, processing equivalent to get_mpf will be executed. When
TMO_POL is specified, processing equivalent to pget_mpf will be executed.

Waiting State for a Fixed-sized memory Block Cancel Operation Return Value

A memory block was returned to the target fixed-sized memory pool as a result of issuing
rel_mpf.

E_OK

Forced release from waiting (accept rel_wai while waiting). E_RLWAI

Forced release from waiting (accept irel_wai while waiting). E_RLWAI

Polling failure or timeout. E_TMOUT

#pragma rtos_task func_task

#include <kernel.h> /*Standard header file definition*/
#include <kernel_id.h> /*System information header file definition*/

void
func_task (VP_INT exinf)
{
 ER ercd; /*Declares variable*/
 ID mpfid = ID_mpfA; /*Declares and initializes variable*/
 VP p_blk; /*Declares variable*/
 TMO tmout = 3600; /*Declares and initializes variable*/

 /* */

 /*Acquire fixed-sized memory block (with
 timeout)*/
 ercd = tget_mpf (mpfid, &p_blk, tmout);

 if (ercd == E_OK) {
 /* */ /*Normal termination processing*/

 /*Release fixed-sized memory block*/
 rel_mpf (mpfid, p_blk);
 } else if (ercd == E_RLWAI) {
 /* */ /*Forced termination processing*/
 } else if (ercd == E_TMOUT) {
 /* */ /*Timeout processing*/
 }

 /* */
}

RI78V4 CHAPTER 6 MEMORY POOL MANAGEMENT FUNCTIONS

R20UT0511EJ0101 Rev.1.01 Page 71 of 272
Apr 01, 2012

6.2.4 Release fixed-sized memory block

A memory block is returned by issuing the following service call from the processing program.

- rel_mpf
This service call returns the memory block specified by parameter blk to the fixed-sized memory pool specified by
parameter mpfid.
If a task is queued to the target fixed-sized memory pool wait queue when this service call is issued, memory block
return processing is not performed but memory blocks are returned to the relevant task (first task of wait queue).
As a result, the relevant task is unlinked from the wait queue and is moved from the WAITING state (waiting state for
a fixed-sized memory block) to the READY state, or from the WAITING-SUSPENDED state to the SUSPENDED
state.
The following describes an example for coding this service call.

Note 1 If the first task of the wait queue is moved to the READY state after this service call is issued, this service call
also re-queues the task at the end of the ready queue corresponding to the priority of the task.

Note 2 The RI78V4 does not clear the memory blocks before returning them. The contents of the returned memory
blocks are therefore undefined.

#pragma rtos_task func_task

#include <kernel.h> /*Standard header file definition*/
#include <kernel_id.h> /*System information header file definition*/

void
func_task (VP_INT exinf)
{
 ER ercd; /*Declares variable*/
 ID mpfid = ID_mpfA; /*Declares and initializes variable*/
 VP blk; /*Declares variable*/

 /* */

 /*Acquire fixed-sized memory block*/
 ercd = get_mpf (mpfid, &blk);

 if (ercd == E_OK) {
 /* */ /*Normal termination processing*/

 /*Release fixed-sized memory block*/
 rel_mpf (mpfid, blk);
 } else if (ercd == E_RLWAI) {
 /* */ /*Forced termination processing*/
 }

 /* */
}

RI78V4 CHAPTER 6 MEMORY POOL MANAGEMENT FUNCTIONS

R20UT0511EJ0101 Rev.1.01 Page 72 of 272
Apr 01, 2012

6.2.5 Reference fixed-sized memory pool state

A fixed-sized memory pool status is referenced by issuing the following service call from the processing program.

- ref_mpf
Stores fixed-sized memory pool state packet (such as existence of waiting tasks) of the fixed-sized memory pool
specified by parameter mpfid in the area specified by parameter pk_rmpf.
The following describes an example for coding this service call.

Note For details about the fixed-sized memory pool state packet, refer to "12.5.6 Fixed-sized memory pool state
packet".

#pragma rtos_task func_task

#include <kernel.h> /*Standard header file definition*/
#include <kernel_id.h> /*System information header file definition*/

void
func_task (VP_INT exinf)
{
 ID mpfid = ID_mpfA; /*Declares and initializes variable*/
 T_RMPF pk_rmpf; /*Declares data structure*/
 ID wtskid; /*Declares variable*/
 UINT fblkcnt; /*Declares variable*/

 /* */

 ref_mpf (mpfid, &pk_rmpf);/*Reference fixed-sized memory pool state*/

 wtskid = pk_rmpf.wtskid; /*Reference ID number of the task at the head of
 the wait queue*/
 fblkcnt = pk_rmpf.fblkcnt; /*Reference number of free memory blocks*/

 /* */
}

RI78V4 CHAPTER 7 TIME MANAGEMENT FUNCTIONS

R20UT0511EJ0101 Rev.1.01 Page 73 of 272
Apr 01, 2012

CHAPTER 7 TIME MANAGEMENT FUNCTIONS

This chapter describes the time management functions performed by the RI78V4.

7.1 Outline

The time management functions of the RI78V4 include Delayed Wakeup, Timeout, and Cyclic Handlers that use timer
interrupts created as fixed intervals, as means for realizing time-dependent processing.

Note The RI78V4 does not execute initialization of hardware that creates timer interrupts (clock controller, etc.). This
initialization processing must therefore be coded by the user in the Boot Processing or Initialization Routine.

7.2 Timer Handler

The timer handler is a dedicated time control processing routine that consists of the processing required to realize
delayed wakeup of tasks, timeout during the WAITING state, and cyclic handler activation, and is called from the interrupt
handler that is activated upon output of a timer interrupt.

Note The timer handler is part of the functions provided by the RI78V4. The user therefore need not code the
processing contents of the timer handler.

7.2.1 Define timer handler

Timer handler registration is realized by coding the timer handler (function name: Timer_Handler) call processing in the
interrupt handler to be activated upon occurrence of a timer interrupt.

A timer handler call example is described below.

#pragma rtos_interrupt INTTM00 func_inthdr

#include <kernel.h> /*Standard header file definition*/
#include <kernel_id.h> /*System information header file definition*/

void
func_inthdr (void)
{
 Timer_Handler (); /*Call timer handler*/

 return; /*Terminate timer handler*/
}

RI78V4 CHAPTER 7 TIME MANAGEMENT FUNCTIONS

R20UT0511EJ0101 Rev.1.01 Page 74 of 272
Apr 01, 2012

7.3 Delayed Wakeup

Delayed wakeup the operation that makes the invoking task transit from the RUNNING state to the WAITING state
during the interval until a given length of time has elapsed, and makes that task move from the WAITING state to the
READY state once the given length of time has elapsed.

Delayed wakeup is implemented by issuing the following service call from the processing program.

Table 7-1 Delayed Wakeup

7.4 Timeout

Timeout is the operation that makes the target task move from the RUNNING state to the WAITING state during the
interval until a given length of time has elapsed if the required condition issued from a task is not immediately satisfied,
and makes that task move from the WAITING state to the READY state regardless of whether the required condition is
satisfied once the given length of time has elapsed.

A timeout is implemented by issuing the following service call from the processing program.

Table 7-2 Timeout

Service Call Function

dly_tsk Delay task.

Service Call Function

tslp_tsk Put task to sleep.

twai_sem Acquire semaphore resource.

twai_flg Wait for eventflag.

trcv_mbx Receive from mailbox.

tget_mpf Acquire fixed-sized memory block.

RI78V4 CHAPTER 7 TIME MANAGEMENT FUNCTIONS

R20UT0511EJ0101 Rev.1.01 Page 75 of 272
Apr 01, 2012

7.5 Cyclic Handlers

The cyclic handler is a routine dedicated to cycle processing that is activated periodically at a constant interval
(activation cycle), and is called from the Timer Handler.

The RI78V4 handles the cyclic handler as a "non-task (module independent from tasks)". Therefore, even if a task with
the highest priority in the system is being executed, the processing is suspended when a specified activation cycle has
come, and the control is passed to the cyclic handler.

7.5.1 Create cyclic handler

In the RI78V4, the method of creating a cyclic handler is limited to "static creation by the Kernel Initialization Module".
Cyclic handlers therefore cannot be created dynamically using a method such as issuing a service call from a

processing program.

- Static create
Static cyclic handler creation is realized by defining Cyclic handler information in the system configuration file.
The RI78V4 executes cyclic handler creation processing based on data stored in information files, using the Kernel
Initialization Module, and handles the created cyclic handlers as management targets.

7.5.2 Delete cyclic handler

In the RI78V4, cyclic handlers created statically by the Kernel Initialization Module cannot be deleted dynamically using
a method such as issuing a service call from a processing program.

7.5.3 Basic form of cyclic handlers

Write cyclic handlers using void type functions that do not have arguments (function: any).
The following shows the basic form of cyclic handlers.

[C Language]

[Assembly Language]

#include <kernel.h> /*Standard header file definition*/
#include <kernel_id.h> /*System information header file definition*/

void
func_cychdr (void)
{
 /* */ /*Main processing*/

 return; /*Terminate cyclic handler*/
}

$INCLUDE (kernel.inc) ;Standard header file definition
$INCLUDE (kernel_id.inc) ;System information header file definition

 PUBLIC _func_cychdr
 CSEG
_func_cychdr:
 ; ;Main Processing

 RET ;Terminate cyclic handler
 END

RI78V4 CHAPTER 7 TIME MANAGEMENT FUNCTIONS

R20UT0511EJ0101 Rev.1.01 Page 76 of 272
Apr 01, 2012

7.5.4 Internal processing of cyclic handler

The RI78V4 handles the cyclic handler as a "non-task".
Moreover, the RI78V4 executes "original pre-processing" when passing control to the cyclic handler, as well as "original

post-processing" when regaining control from the cyclic handler.
Therefore, note the following points when coding cyclic handlers.

- Coding method
Code cyclic handlers using C or assembly language in the format shown in "7.5.3 Basic form of cyclic handlers".

- Stack switching
The RI78V4 executes processing to switch to the system stack when passing control to the cyclic handler, and
processing to switch to the stack for the switch destination processing program (system stack or task stack) when
regaining control from the cyclic handler.
The user is therefore not required to code processing related to stack switching in cyclic handlers.

- Interrupt status
Maskable interrupt acknowledgement is prohibited in the RI78V4 when control is passed to the cyclic handler.
To change (enable) the interrupt status in the cyclic handler, writing of #pragma EI directive and calling of the EI
function are therefore required.

- Service call issuance
The RI78V4 handles the cyclic handler as a "non-task".
Service calls that can be issued in cyclic handlers are limited to the service calls that can be issued from non-tasks.

Note 1 For details on the valid issuance range of each service call, refer to Table 12-8 to Table 12-16.

Note 2 If a service call (ichg_pri, isig_sem, etc.) accompanying dispatch processing (task scheduling processing) is
issued in order to quickly complete the processing in the cyclic handler during the interval until the
processing in the cyclic handler ends, the RI78V4 executes only processing such as queue manipulation,
counter manipulation, etc., and the actual dispatch processing is delayed until a return instruction is issued
by the cyclic handler, upon which the actual dispatch processing is performed in batch.

RI78V4 CHAPTER 7 TIME MANAGEMENT FUNCTIONS

R20UT0511EJ0101 Rev.1.01 Page 77 of 272
Apr 01, 2012

7.5.5 Start cyclic handler operation

Moving to the operational state (STA state) is implemented by issuing the following service call from the processing
program.

- sta_cyc
This service call moves the cyclic handler specified by parameter cycid from the non-operational state (STP state) to
operational state (STA state).
As a result, the target cyclic handler is handled as an activation target of the RI78V4.
The following describes an example for coding this service call.

Note This service call does not perform queuing of start requests. If the target cyclic handler has been moved to
the operational state (STA state), only activation cycle re-set processing is executed.
The relative time interval from the output of this service call until the first activation request is output is
always the activation phase (activation cycle cyctim) using the output of this service call as the reference
point.

[Cyclic handler activation image]

#pragma rtos_task func_task

#include <kernel.h> /*Standard header file definition*/
#include <kernel_id.h> /*System information header file definition*/

void
func_task (VP_INT exinf)
{
 ID cycid = ID_cycA; /*Declares and initializes variable*/

 /* */

 sta_cyc (cycid); /*Start cyclic handler operation*/

 /* */
}

cyctimcyctim

Activation enabled by sta_cyc

Start

Activation disabled by stp_cyc

Creation (TA_STA attribute)

Activation enabled by sta_cyc

cyctim cyctim

cyctim

cyctim

cyctim

cyctim

Start Start Start Start

RI78V4 CHAPTER 7 TIME MANAGEMENT FUNCTIONS

R20UT0511EJ0101 Rev.1.01 Page 78 of 272
Apr 01, 2012

7.5.6 Stop cyclic handler operation

Moving to the non-operational state (STP state) is implemented by issuing the following service call from the processing
program.

- stp_cyc
This service call moves the cyclic handler specified by parameter cycid from the operational state (STA state) to non-
operational state (STP state).
As a result, the target cyclic handler is excluded from activation targets of the RI78V4 until issuance of sta_cyc.
The following describes an example for coding this service call.

Note This service call does not perform queuing of stop requests. If the target cyclic handler has been moved to
the non-operational state (STP state), therefore, no processing is performed but it is not handled as an error.

#pragma rtos_task func_task

#include <kernel.h> /*Standard header file definition*/
#include <kernel_id.h> /*System information header file definition*/

void
func_task (VP_INT exinf)
{
 ID cycid = ID_cycA; /*Declares and initializes variable*/

 /* */

 stp_cyc (cycid); /*Stop cyclic handler operation*/

 /* */
}

RI78V4 CHAPTER 7 TIME MANAGEMENT FUNCTIONS

R20UT0511EJ0101 Rev.1.01 Page 79 of 272
Apr 01, 2012

7.5.7 Reference cyclic handler state

A cyclic handler status by issuing the following service call from the processing program.

- ref_cyc
Stores cyclic handler state packet (such as current status) of the cyclic handler specified by parameter cycid in the
area specified by parameter pk_rcyc.
The following describes an example for coding this service call.

Note For details about the cyclic handler state packet, refer to "12.5.7 Cyclic handler state packet".

#pragma rtos_task func_task

#include <kernel.h> /*Standard header file definition*/
#include <kernel_id.h> /*System information header file definition*/

void
func_task (VP_INT exinf)
{
 ID cycid = ID_cycA; /*Declares and initializes variable*/
 T_RCYC pk_rcyc; /*Declares data structure*/
 STAT cycstat; /*Declares variable*/
 RELTIM lefttim; /*Declares variable*/

 /* */

 ref_cyc (cycid, &pk_rcyc);/*Reference cyclic handler state*/

 cycstat = pk_rcyc.cycstat; /*Reference cyclic handler operational state*/
 lefttim = pk_rcyc.lefttim; /*Reference time left before the next activation*/

 /* */
}

RI78V4 CHAPTER 8 SYSTEM STATE MANAGEMENT FUNCTIONS

R20UT0511EJ0101 Rev.1.01 Page 80 of 272
Apr 01, 2012

CHAPTER 8 SYSTEM STATE MANAGEMENT FUNC-
TIONS

This chapter describes the system state management functions performed by the RI78V4.

8.1 Outline

The system state control functions of the RI78V4 include, in addition to functions to manipulate the state of the system,
such as transition to the CPU locked state and transition to the dispatching disabled state, functions for referencing the
state of the system, such as context type referencing and CPU locked state referencing.

8.2 Rotate Task Precedence

A ready queue is rotated by issuing the following service call from the processing program.

- rot_rdq, irot_rdq
This service call re-queues the first task of the ready queue corresponding to the priority specified by parameter tskpri
to the end of the queue to change the task execution order explicitly.
The following shows the status transition when this service call is used.

Figure 8-1 Rotate Task Precedence

Task B Task C
READY state

Task Atskpri

1

maxtpri

Ready queue

READY state READY state

Invoking task
RUNNING state

Task A Task B
READY state

Task Ctskpri

1

maxtpri

Ready queue

READY state READY state

Invoking task
RUNNING state

rot_rdq (tskpri);

RI78V4 CHAPTER 8 SYSTEM STATE MANAGEMENT FUNCTIONS

R20UT0511EJ0101 Rev.1.01 Page 81 of 272
Apr 01, 2012

The following describes an example for coding this service call.

Note 1 This service call does not perform queuing of rotation requests. If no task is queued to the ready queue
corresponding to the relevant priority, therefore, no processing is performed but it is not handled as an error.

Note 2 Round-robin scheduling can be implemented by issuing this service call via a cyclic handler in a constant
cycle.

Note 3 The ready queue is a hash table that uses priority as the key, and tasks that have entered an executable
state (READY state or RUNNING state) are queued in FIFO order.
Therefore, the scheduler realizes the RI78V4's Scheduling System by executing task detection processing
from the highest priority level of the ready queue upon activation, and upon detection of queued tasks, giving
the CPU use right to the first task of the proper priority level.

#include <kernel.h> /*Standard header file definition*/
#include <kernel_id.h> /*System information header file definition*/

void
func_cychdr (void)
{
 PRI tskpri = 8; /*Declares and initializes variable*/

 /* */

 irot_rdq (tskpri); /*Rotate task precedence*/

 /* */

 return; /*Terminate cyclic handler*/
}

RI78V4 CHAPTER 8 SYSTEM STATE MANAGEMENT FUNCTIONS

R20UT0511EJ0101 Rev.1.01 Page 82 of 272
Apr 01, 2012

8.3 Reference Task ID in the RUNNING State

A RUNNING-state task is referenced by issuing the following service call from the processing program.

- get_tid, iget_tid
These service calls store the ID of a task in the RUNNING state in the area specified by parameter p_tskid.
The following describes an example for coding this service call.

Note This service call stores TSK_NONE in the area specified by parameter p_tskid if no tasks that have entered
the RUNNING state exist (all tasks in the IDLE state).

#include <kernel.h> /*Standard header file definition*/
#include <kernel_id.h> /*System information header file definition*/

void
func_cychdr (void)
{
 ID p_tskid; /*Declares variable*/

 /* */

 iget_tid (&p_tskid); /*Reference task ID in the RUNNING state*/

 /* */

 return; /*Terminate cyclic handler*/
}

RI78V4 CHAPTER 8 SYSTEM STATE MANAGEMENT FUNCTIONS

R20UT0511EJ0101 Rev.1.01 Page 83 of 272
Apr 01, 2012

8.4 Lock the CPU

A task is moved to the CPU locked state by issuing the following service call from the processing program.

- loc_cpu, iloc_cpu
These service calls change the system status type to the CPU locked state.
As a result, maskable interrupt acknowledgment processing is prohibited during the interval from this service call is
issued until unl_cpu or iunl_cpu is issued, and service call issuance is also restricted.
If a maskable interrupt is created during this period, the RI78V4 delays transition to the relevant interrupt processing
(interrupt handler) until either unl_cpu or iunl_cpu is issued.
The service calls that can be issued in the CPU locked state are limited to the one listed below.

The following shows a processing flow when using this service call.

Figure 8-2 Lock the CPU

Service Call Function

loc_cpu, iloc_cpu Lock the CPU.

unl_cpu, iunl_cpu Unlock the CPU.

sns_ctx Reference contexts.

sns_loc Reference CPU state.

sns_dsp Reference dispatching state.

sns_dpn Reference dispatch pending state.

Task

return

Interrupt

Interrupt handler

Suppressed period

Lock the CPU

Unlock the CPU

RI78V4 CHAPTER 8 SYSTEM STATE MANAGEMENT FUNCTIONS

R20UT0511EJ0101 Rev.1.01 Page 84 of 272
Apr 01, 2012

The following describes an example for coding this service call.

Note 1 The CPU locked state changed by issuing this service call must be cancelled before the processing program
that issued this service call ends.

Note 2 This service call does not perform queuing of lock requests. If the system is in the CPU locked state,
therefore, no processing is performed but it is not handled as an error.

Note 3 The RI78V4 implements disabling of maskable interrupt acknowledgment bu manipulating the interrupt
mask flag register (MKxx) and the in-service priority flag (ISPx) of the program status word (PSW).
Therefore, manipulating of these registers from the processing program is prohibited from when this service
call is issued until unl_cpu or iunl_cpu is issued.

#pragma rtos_task func_task

#include <kernel.h> /*Standard header file definition*/
#include <kernel_id.h> /*System information header file definition*/

void
func_task (VP_INT exinf)
{
 /* */

 loc_cpu (); /*Lock the CPU*/

 /* */ /*CPU locked state*/

 unl_cpu (); /*Unlock the CPU*/

 /* */
}

RI78V4 CHAPTER 8 SYSTEM STATE MANAGEMENT FUNCTIONS

R20UT0511EJ0101 Rev.1.01 Page 85 of 272
Apr 01, 2012

8.5 Unlock the CPU

The CPU locked state is cancelled by issuing the following service call from the processing program.

- unl_cpu, iunl_cpu
These service calls change the system status to the CPU unlocked state.
As a result, acknowledge processing of maskable interrupts prohibited through issuance of either loc_cpu or iloc_cpu
is enabled, and the restriction on service call issuance is released.
If a maskable interrupt is created during the interval from when either loc_cpu or iloc_cpu is issued until this service
call is issued, the RI78V4 delays transition to the relevant interrupt processing (interrupt handler) until this service call
is issued.
The following describes an example for coding this service call.

Note 1 This service call does not perform queuing of cancellation requests. If the system is in the CPU unlocked
state, therefore, no processing is performed but it is not handled as an error.

Note 2 The RI78V4 implements enabling of maskable interrupt acknowledgment bu manipulating the interrupt mask
flag register (MKxx) and the in-service priority flag (ISPx) of the program status word (PSW). Therefore,
manipulating of these registers from the processing program is prohibited from when loc_cpu or iloc_cpu is
issued until this service call is issued.

#pragma rtos_task func_task

#include <kernel.h> /*Standard header file definition*/
#include <kernel_id.h> /*System information header file definition*/

void
func_task (VP_INT exinf)
{
 /* */

 loc_cpu (); /*Lock the CPU*/

 /* */ /*CPU locked state*/

 unl_cpu (); /*Unlock the CPU*/

 /* */
}

RI78V4 CHAPTER 8 SYSTEM STATE MANAGEMENT FUNCTIONS

R20UT0511EJ0101 Rev.1.01 Page 86 of 272
Apr 01, 2012

8.6 Disable Dispatching

A task is moved to the dispatching disabled state by issuing the following service call from the processing program.

- dis_dsp
This service call changes the system status to the dispatching disabled state.
As a result, dispatch processing (task scheduling) is disabled from when this service call is issued until ena_dsp is
issued.
If a service call (chg_pri, sig_sem, etc.) accompanying dispatch processing is issued during the interval from when
this service call is issued until ena_dsp is issued, the RI78V4 executes only processing such as queue manipulation,
counter manipulation, etc., and the actual dispatch processing is delayed until ena_dsp is issued, upon which the
actual dispatch processing is performed in batch.
The following shows a processing flow when using this service call.

Figure 8-3 Disable Dispatching

The following describes an example for coding this service call.

Note 1 This service call does not perform queuing of disable requests. If the system is in the dispatching disabled
state, therefore, no processing is performed but it is not handled as an error.

#pragma rtos_task func_task

#include <kernel.h> /*Standard header file definition*/
#include <kernel_id.h> /*System information header file definition*/

void
func_task (VP_INT exinf)
{
 /* */

 dis_dsp (); /*Disable dispatching*/

 /* */ /*Dispatching disabled state*/

 ena_dsp (); /*Enable dispatching*/

 /* */
}

Enable Dispatching

Acquire semaphore resource

Task

Priority: High

Task

Priority: Low

Suppressed period

Disable Dispatching

Release semaphore resource

RI78V4 CHAPTER 8 SYSTEM STATE MANAGEMENT FUNCTIONS

R20UT0511EJ0101 Rev.1.01 Page 87 of 272
Apr 01, 2012

Note 2 The dispatching disabled state changed by issuing this service call must be cancelled before the task that
issued this service call moves to the DORMANT state.

RI78V4 CHAPTER 8 SYSTEM STATE MANAGEMENT FUNCTIONS

R20UT0511EJ0101 Rev.1.01 Page 88 of 272
Apr 01, 2012

8.7 Enable Dispatching

The dispatching disabled state is cancelled by issuing the following service call from the processing program.

- ena_dsp
This service call changes the system status to the dispatching enabled state.
As a result, dispatch processing (task scheduling) that has been disabled by issuing dis_dsp is enabled.
If a service call (chg_pri, sig_sem, etc.) accompanying dispatch processing is issued during the interval from when
dis_dsp is issued until this service call is issued, the RI78V4 executes only processing such as queue manipulation,
counter manipulation, etc., and the actual dispatch processing is delayed until this service call is issued, upon which
the actual dispatch processing is performed in batch.
The following describes an example for coding this service call.

Note This service call does not perform queuing of enable requests. If the system is in the dispatching enabled
state, therefore, no processing is performed but it is not handled as an error.

#pragma rtos_task func_task

#include <kernel.h> /*Standard header file definition*/
#include <kernel_id.h> /*System information header file definition*/

void
func_task (VP_INT exinf)
{
 /* */

 dis_dsp (); /*Disable dispatching*/

 /* */ /*Dispatching disabled state*/

 ena_dsp (); /*Enable dispatching*/

 /* */
}

RI78V4 CHAPTER 8 SYSTEM STATE MANAGEMENT FUNCTIONS

R20UT0511EJ0101 Rev.1.01 Page 89 of 272
Apr 01, 2012

8.8 Reference Contexts

The context type is referenced by issuing the following service call from the processing program.

- sns_ctx
This service call acquires the context type of the processing program that issued this service call (non-task context or
task context).
When this service call is terminated normally, the acquired context type (TRUE: non-task context, FALSE: task
context) is returned.

Non-task contexts: cyclic handler, interrupt handler
task contexts: task

The following describes an example for coding this service call.

#include <kernel.h> /*Standard header file definition*/
#include <kernel_id.h> /*System information header file definition*/

void
func_sub (void)
{
 BOOL ercd; /*Declares variable*/

 /* */

 ercd = sns_ctx (); /*Reference contexts*/

 if (ercd == TRUE) {
/* */ /*Non-task contexts*/

 } else if (ercd == FALSE) {
/* */ /*Task contexts*/

 }

 /* */
}

RI78V4 CHAPTER 8 SYSTEM STATE MANAGEMENT FUNCTIONS

R20UT0511EJ0101 Rev.1.01 Page 90 of 272
Apr 01, 2012

8.9 Reference CPU State

The CPU locked state is referenced by issuing the following service call from the processing program.

- sns_loc
This service call acquires the system status type when this service call is issued (CPU locked state or CPU unlocked
state).
When this service call is terminated normally, the acquired system state type (TRUE: CPU locked state, FALSE: CPU
unlocked state) is returned.
The following describes an example for coding this service call.

Note The system enters the CPU locked state when loc_cpu or iloc_cpu is issued, and enters the CPU unlocked
state when unl_cpu or iunl_cpu is issued.

#include <kernel.h> /*Standard header file definition*/
#include <kernel_id.h> /*System information header file definition*/

void
func_sub (void)
{
 BOOL ercd; /*Declares variable*/

 /* */

 ercd = sns_loc (); /*Reference CPU state*/

 if (ercd == TRUE) {
 /* */ /*CPU locked state*/
 } else if (ercd == FALSE) {
 /* */ /*CPU unlocked state*/

 }

 /* */
}

RI78V4 CHAPTER 8 SYSTEM STATE MANAGEMENT FUNCTIONS

R20UT0511EJ0101 Rev.1.01 Page 91 of 272
Apr 01, 2012

8.10 Reference Dispatching State

The dispatching state is referenced by issuing the following service call from the processing program.

- sns_dsp
This service call acquires the system status type when this service call is issued (dispatching disabled state or
dispatching enabled state).
When this service call is terminated normally, the acquired system state type (TRUE: dispatching disabled state,
FALSE: dispatching enabled state) is returned.
The following describes an example for coding this service call.

Note The system enters the dispatching disabled state when dis_dsp is issued, and enters the dispatching
enabled state when ena_dsp is issued.

#include <kernel.h> /*Standard header file definition*/
#include <kernel_id.h> /*System information header file definition*/

void
func_sub (void)
{
 BOOL ercd; /*Declares variable*/

 /* */

 ercd = sns_dsp (); /*Reference dispatching state*/

 if (ercd == TRUE) {
/* */ /*Dispatching disabled state*/

 } else if (ercd == FALSE) {
/* */ /*Dispatching enabled state*/

 }

 /* */
}

RI78V4 CHAPTER 8 SYSTEM STATE MANAGEMENT FUNCTIONS

R20UT0511EJ0101 Rev.1.01 Page 92 of 272
Apr 01, 2012

8.11 Reference Dispatch Pending State

The dispatch pending state is referenced by issuing the following service call from the processing program.

- sns_dpn
This service call acquires the system status type when this service call is issued (whether in dispatch pending state or
not).
When this service call is terminated normally, the acquired system state type (TRUE: dispatch pending state, FALSE:
dispatch not-pending state) is returned.
The following describes an example for coding this service call.

Note The dispatch pending state designates the state in which explicit execution of dispatch processing (task
scheduling processing) is prohibited by issuing either the dis_dsp, loc_cpu, or iloc_cpu service call, as well
as the state during which processing of a non-task is being executed.

#include <kernel.h> /*Standard header file definition*/
#include <kernel_id.h> /*System information header file definition*/

void
func_sub (void)
{
 BOOL ercd; /*Declares variable*/

 /* */

 ercd = sns_dpn (); /*Reference dispatch pending state*/

 if (ercd == TRUE) {
/* */ /*Dispatch pending state*/

 } else if (ercd == FALSE) {
/* */ /*Other state*/

 }

 /* */
}

RI78V4 CHAPTER 9 INTERRUPT MANAGEMENT FUNCTIONS

R20UT0511EJ0101 Rev.1.01 Page 93 of 272
Apr 01, 2012

CHAPTER 9 INTERRUPT MANAGEMENT FUNCTIONS

This chapter describes the interrupt management functions performed by the RI78V4.

9.1 Outline

The RI78V4 provides as interrupt management functions related to the interrupt handlers activated when a maskable
interrupt is occurred.

In the RI78V4, interrupt servicing managed by the RI78V4 is called "interrupt handler", which is distinguished from
interrupt servicing that operates without being managed by the RI78V4.

The following lists the differences between interrupt handlers and interrupt servicing.

Table 9-1 Differences Between Interrupt Handlers and Interrupt Servicing

* It is also possible to assign a level of 2 or 3 to an application that disables multiple interrupts.

Note 1 The interrupt priority level is set using the priority specification flag register of the target CPU.

Note 2 The RI78V4 does not execute initialization of hardware that creates interrupts (clock controller, etc.). This
initialization processing must therefore be coded by the user in the Boot Processing or Initialization Routine.

9.2 Interrupt Entry Processing

Interrupt entry processing is a routine dedicated to entry processing that is extracted as a user-own coding module to
assign instructions to branch to relevant processing (such as Interrupt Handlers or Boot Processing), to the vector table
address to which the CPU forcibly passes the control when an interrupt occurs.

Note For interrupt handlers written using the #pragma rtos_interrupt directive, the user is not required to write the
relevant interrupt entry processing because the C compiler automatically outputs the interrupt entry processing
corresponding to the interrupt request name.

Interrupt Handler Interrupt Servicing

Service call issuance Available Not available

Interrupt type Maskable interrupt
Maskable interrupt
Software interrupt
Reset interrupt

Interrupt priority level Levels 2, 3 Levels 0, 1 (*)

RI78V4 CHAPTER 9 INTERRUPT MANAGEMENT FUNCTIONS

R20UT0511EJ0101 Rev.1.01 Page 94 of 272
Apr 01, 2012

9.2.1 Basic form of interrupt entry processing

The code of interrupt entry processing varies depending on whether the relevant processing (Interrupt Handlers, Boot
Processing, or the like) is allocated to the near area or to the far area.

The following shows examples for coding interrupt entry processing.

[When the relevant processing (Interrupt Handlers, Boot Processing, or the like) is allocated to the near area]

[When the relevant processing (Interrupt Handlers, Boot Processing, or the like) is allocated to the far area]

9.2.2 Internal processing of interrupt entry processing

Interrupt entry processing is a routine dedicated to processing of entries called without using the RI78V4 when an
interrupt occurs. Therefore, note the following points when coding interrupt entry processing.

- Coding method
Code interrupt entry processing in assembly language, in formats compliant with the assembler's function calling
rules.

- Stack switching
No stack requiring switching exists in interrupt entry processing execution. The code regarding stack switching during
interrupt entry processing is therefore not required.

- Service call issuance
The RI78V4 prohibits issuance of service calls in interrupt entry processing.

The following lists processing that should be executed in interrupt entry processing.

- Vector table address setting

- Passing of control to relevant processing (Interrupt Handlers, Boot Processing, or the like)

RESET CSEG AT 0000h ;Vector table address setting
 DW _boot ;Jump to boot processing

INTTM00 CSEG AT 002ch ;Vector table address setting
 DW _func_inthdr ;Jump to interrupt handler

 EXTRN intent_RESET ;Declares symbol external reference
 EXTRN intent_INTTM00 ;Declares symbol external reference

RESET CSEG AT 0000h ;Vector table address setting
 DW intent_RESET
INTTM00 CSEG AT 002ch ;Vector table address setting
 DW intent_INTTM00

intent CSEG UNITP
intent_RESET:
 BR !!_boot ;Jump to boot processing
intent_INTTM00:
 BR !!_func_inthdr ;Jump to interrupt handler

RI78V4 CHAPTER 9 INTERRUPT MANAGEMENT FUNCTIONS

R20UT0511EJ0101 Rev.1.01 Page 95 of 272
Apr 01, 2012

9.3 Interrupt Handlers

The interrupt handler is a routine dedicated to interrupt servicing that is activated when an interrupt occurs, and is called
from Interrupt Entry Processing.

The RI78V4 handles the interrupt handler as a "non-task (module independent from tasks)". Therefore, even if a task
with the highest priority in the system is being executed, the processing is suspended when an interrupt occurs, and the
control is passed to the interrupt handler.

The following shows a processing flow from when an interrupt occurs until the control is passed to the interrupt handler.

Figure 9-1 Processing Flow (Interrupt Handler)

9.3.1 Define interrupt handler

Interrupt handler registration is realized by coding Interrupt Entry Processing (branch instruction to interrupt handler) to
the vector table address to which the CPU forcibly passes control upon occurrence of an interrupt.

The code of Interrupt Entry Processing varies depending on whether the interrupt handler is allocated to the near area
or to the far area.

Note 1 For the coding method of interrupt entry processing, refer to "9.2 Interrupt Entry Processing".

Note 2 For interrupt handlers written using the #pragma rtos_interrupt directive, the user is not required to write the
relevant interrupt entry processing because the C compiler automatically outputs the interrupt entry processing
corresponding to the interrupt request name.

Interrupt Entry Processing

Interrupt

Interrupt handler

RI78V4 CHAPTER 9 INTERRUPT MANAGEMENT FUNCTIONS

R20UT0511EJ0101 Rev.1.01 Page 96 of 272
Apr 01, 2012

9.3.2 Basic form of interrupt handlers

When coding interrupt handlers in C, use void type functions that do not have arguments (any function name is fine)
using the #pragma rtos_interrupt directive or __rtos_interrupt qualifier.

The following shows the basic form of coding interrupt handlers in C.

[When using #pragma rtos_interrupt directive]

[When using __rtos_interrupt qualifier]

Note Interrupt handlers coded by using the #pragma rtos_interrupt directive or __rtos_interrupt qualifier can be
allocated to the near area only.

#pragma rtos_interrupt INTTM00 func_inthdr

#include <kernel.h> /*Standard header file definition*/
#include <kernel_id.h> /*System information header file definition*/

void
func_inthdr (void)
{
 /* */ /*Main processing*/

 return; /*Terminate interrupt handler*/
}

#include <kernel.h> /*Standard header file definition*/
#include <kernel_id.h> /*System information header file definition*/

__rtos_interrupt
void
func_inthdr (void)
{
 /* */ /*Main processing*/

 return; /*Terminate interrupt handler*/
}

RI78V4 CHAPTER 9 INTERRUPT MANAGEMENT FUNCTIONS

R20UT0511EJ0101 Rev.1.01 Page 97 of 272
Apr 01, 2012

When coding interrupt handlers in assembly language, use void type functions that do not have arguments (function:
any). Save registers and saddr areas at the beginning of the interrupt handler, call processing to switch to the system
stack (function name: _kernel_int_entry), and then call end processing at the end of the interrupt handler (function name:
ret_int).

[Assembly Language]

$INCLUDE (kernel.inc) ;Standard header file definition
$INCLUDE (kernel_id.inc) ;System information header file definition

 PUBLIC _func_inthdr
 EXTRN _@RTARG0
 EXTRN _@RTARG2
 EXTRN _@RTARG4
 EXTRN _@RTARG6
 EXTRN _@SEGAX
 EXTRN _@SEGDE
 CSEG
_func_inthdr:
 CALL !!__kernel_int_entry ;Switches to system stack, Saves registers

 MOVW AX, _@RTARG0 ;Saves saddr area
 PUSH AX
 MOVW AX, _@RTARG2
 PUSH AX
 MOVW AX, _@RTARG4
 PUSH AX
 MOVW AX, _@RTARG6
 PUSH AX
 MOVW AX, _@SEGAX
 PUSH AX
 MOVW AX, _@SEGDE
 PUSH AX

 ; ;Main processing

 POP AX ;Restores saddr area
 MOVW _@SEGDE, AX
 POP AX
 MOVW _@SEGAX, AX
 POP AX
 MOVW _@RTARG6, AX
 POP AX
 MOVW _@RTARG4, AX
 POP AX
 MOVW _@RTARG2, AX
 POP AX
 MOVW _@RTARG0, AX

 BR !!_ret_int ;Terminate interrupt handler, Restores registers
 END

RI78V4 CHAPTER 9 INTERRUPT MANAGEMENT FUNCTIONS

R20UT0511EJ0101 Rev.1.01 Page 98 of 272
Apr 01, 2012

9.3.3 Internal processing of interrupt handler

The RI78V4 handles the interrupt handler as a "non-task".
Moreover, the RI78V4 executes "original pre-processing" when passing control to the interrupt handler, as well as

"original post-processing" when regaining control from the interrupt handler.
Therefore, note the following points when coding interrupt handlers.

- Coding method
Code interrupt handlers using C or assembly language in the format shown in "9.3.2 Basic form of interrupt
handlers".

- Stack switching
For interrupt handlers written using the #pragma rtos_interrupt directive or __rtos_interrupt qualifier, the user is not
required to write the relevant stack switch processing because the C compiler automatically outputs the calls for
system stack switch processing (function name: _kernel_int_entry).
When coding interrupt handlers in assembly language, save registers and saddr areas at the beginning of the
interrupt handler, call processing to switch to the system stack (function name: _kernel_int_entry), and then call end
processing at the end of the interrupt handler (function name: ret_int), explicitly.

- Saving/storing of data in register and saddr areas
When executing an interrupt handler written with the #pragma rtos_interrupt directive or __rtos_interrupt qualifier, the
user does not need to write save/store processing for it because the C compiler automatically outputs
"_kernel_int_entry, ret_int". When executing an interrupt handler written in the assembly language, data of general-
purpose registers (AX, BC, DE, HL) and registers ES CS is saved and restored in that function execution, by explicitly
calling register data save processing (function name: _kernel_int_entry) at the beginning of the interrupt handler, and
calling data restore processing (function name: ret_int) at the end of the interrupt handler.
Saving and restoring of data in the saadr area (_@RTARGxx, _@SEGAX, or _SEGDE) must be written explicitly
before and after main processing of interrupt handlers.

Note 1 Data of the PSW and PC are automatically saved and stored by the CPU.

Note 2 Saving and restoring of data in the saddr area is unnecessary if functions written in C are not called or
service calls are not issued in the interrupt handler.

- Interrupt status
The RI78V4 goes into the following state when passing control to an interrupt handler.
Consequently, after control has passed to an interrupt handler, if an interrupt occurs with a higher precedence than
the current level, then multiple interrupts can be processed.

- Acceptance of maskable interrupts is permitted

IE = 1

- Interrupts with the precedence below are disabled
A level-2 interrupt handler process is ongoing: ISP1 = 0, ISP0 = 1
A level-3 interrupt handler process is ongoing: ISP1 = 1, ISP0 = 0

Note It is not possible to define level 0 or 1 as an interrupt handler.

Note Even if the acceptance of maskable interrupts is disabled inside an interrupt handler (IE = 0), it will be
enabled (IE = 1) after control returns from the interrupt handler.

- Service call issuance
The RI78V4 handles the interrupt handler as a "non-task".
Service calls that can be issued in interrupt handlers are limited to the service calls that can be issued from non-tasks.

Note 1 For details on the valid issuance range of each service call, refer to Table 12-8 to Table 12-16.

Note 2 If a service call (ichg_pri, isig_sem, etc.) accompanying dispatch processing (task scheduling processing) is
issued in order to quickly complete the processing in the interrupt handler during the interval until the
processing in the interrupt handler ends, the RI78V4 executes only processing such as queue manipulation,
counter manipulation, etc., and the actual dispatch processing is delayed until a return instruction is issued
by the interrupt handler, upon which the actual dispatch processing is performed in batch.

RI78V4 CHAPTER 9 INTERRUPT MANAGEMENT FUNCTIONS

R20UT0511EJ0101 Rev.1.01 Page 99 of 272
Apr 01, 2012

9.4 Controlling Enabling/Disabling of Interrupts

9.4.1 Interrupt level under management of the RI78V4

The microcontroller manages four levels of interrupts: level 0 to level 3. On the RI78V4, the interrupt levels at which
service calls can be issued from an interrupt are permanently set to levels 2 and 3, these are treated as the interrupt levels
managed by the RI78V4.

- Interrupt levels 2 and 3 are managed by the RI78V4.
Service calls can be issued from levels 2 and 3. Interrupt handlers, which are interrupts (including timer interrupts)
managed by the RI78V4, must be set to level 2 or 3.

- Interrupt levels 0 and 1 are not managed by the RI78V4
Service calls cannot be issued from levels 0 or 1. Behavior is not guaranteed if a service call is issued from level 0 or
1. Interrupt processes, which are interrupts not managed by the RI78V4, must be set to level 0 or 1. There is,
however, an exception: user applications that disable multiple interrupts (see below) can set interrupts to level 2 or 3.

9.4.2 Controlling enabling/disabling of interrupts in the RI78V4

The RI78V4 uses the "ISP1" and "ISP0" bits in the PSW register to enable and disable interrupts. Set ISP1 to 0 and
ISP0 to 1 to disable interrupts in the RI78V4. Set ISP1 to 1 and ISP0 to 1 to enable interrupts in the RI78V4.

Figure 9-2 ISP1 and ISP0 Bits in PSW Register

The "IE" bit of the RI78V4's PSW register inherits the value of the service call or RI78V4-function issuer. EI and DI
instructions do not manipulate the "IE" value. As exceptions, however, there are places in the RI78V4 where EI and DI
instructions are used.

- Immediately before starting a task specifying interrupts as disabled, a DI instruction is used to set IE to 0.

- Immediately before starting a task specifying interrupts as enabled, an EI instruction is used to set IE to 1.

- Immediately before starting the idle routine, an EI instruction is used to set IE to 1.

- Inside the __kernel_int_entry function, which performs interrupt handler start processing, IE is set to 1.

IEPSW register Z RBSB1 AC RBSB0 ISP1 ISP0 CY

ISP1 ISP0 Interrupt priority in current process

0 0
Enable level-0 interrupts
(While processing a level-1 or level-0 interrupt)

0 1
Enable level-0 and level-1 interrupts
(While processing a level-2 interrupt)

1 0
Enable level-0, level-1, and level-2 interrupts
(While processing a level-3 interrupt)

1 1
Enable all interrupts
(Standby for the acceptance of interrupts)

RI78V4 CHAPTER 9 INTERRUPT MANAGEMENT FUNCTIONS

R20UT0511EJ0101 Rev.1.01 Page 100 of 272
Apr 01, 2012

9.4.3 Controlling enabling/disabling of interrupts in user processes

User applications use the EI function (or EI instruction) and DI function (or DI instruction) to manipulate interrupts. In a
task or other user process, using the DI function disables all maskable interrupts from being accepted; using the EI
function enables maskable interrupts to be accepted in accordance with the state of the "ISP1" and "ISP0" bits.

The RI78V4 sets whether interrupts are enabled or disabled upon start of the user process. The states are listed below.

Table 9-2 States Enabling and Disabling Interrupts upon Process Start

Note that a separate "IE" state is maintained for each task. If a suspended task is resumed, the IE state before
suspension is restored.

Process to Start IE ISP1 ISP0 Interrupt Enabled/Disabled on Start

Initialization routine 0 1 1
Interrupts disabled (behavior is not
guaranteed when it is enabled by the
process)

Idle routine 1 1 1
Interrupts enabled; all interrupt levels
accepted

Task

When interrupts specified as
enabled

1 1 1
Interrupts enabled; all interrupt levels
accepted

When interrupts specified as
disabled

0 1 1
Interrupts disabled (if enabled, all interrupt
levels accepted)

Cyclic
handler

When a level-2 interrupt
occurs

1 0 1
Interrupts enabled; level-0 and level-1
levels accepted

When a level-3 interrupt
occurs

1 1 0
Interrupts enabled; level-0, level-1, and
level-2 levels accepted

Interrupt
handler

When a level-2 interrupt
occurs

1 0 1
Interrupts enabled; level-0 and level-1
levels accepted

When a level-3 interrupt
occurs

1 1 0
Interrupts enabled; level-0, level-1, and
level-2 levels accepted

Interrupt
servicing

When a level-0 interrupt
occurs

0 0 0
Interrupts disabled (if enabled, a lelvel-0
interrupt accepted)

When a level-1 interrupt
occurs

0 0 0
Interrupts disabled (if enabled, a lelvel-0
interrupt accepted)

When a level-2 interrupt
occurs

0 0 1
Interrupts disabled (if enabled, lelvel-0
and lebel-1 interrupts accepted)

When a level-3 interrupt
occurs

0 1 0
Interrupts disabled (if enabled, lelvel-0,
level-1, and lebel-2 interrupts accepted)

RI78V4 CHAPTER 9 INTERRUPT MANAGEMENT FUNCTIONS

R20UT0511EJ0101 Rev.1.01 Page 101 of 272
Apr 01, 2012

9.5 Multiple Interrupts

The reoccurrence of an interrupt within an interrupt handler is called "multiple interrupt".
The following shows the flow of the processing for handling multiple interrupts.

Figure 9-3 Multiple Interrupts

return

Task

Interrupt

Interrupt
Interrupt

Interrupt

Interrupt

handler handler

Calling of EI function

Interrupt

Interrupt
servicing

Interrupt
servicing

Calling of DI function

return

return

return

Level 3 Level 2 Level 1 Level 0

RI78V4 CHAPTER 9 INTERRUPT MANAGEMENT FUNCTIONS

R20UT0511EJ0101 Rev.1.01 Page 102 of 272
Apr 01, 2012

When control moves to an interrupt handler, then the state changes to acceptance of maskable interrupts enabled ("IE =
1"). For this reason, multiple interrupts are generally accepted from interrupt handlers. Multiple interrupts are likewise
accepted from timer interrupts and cyclic handlers called from them.

When control moves to an interrupt process, then the state changes to acceptance of maskable interrupts disabled
(because the RI78V4 does not mediate, the behavior is in accordance with that of the microcontroller). For this reason,
multiple interrupts are generally not accepted from interrupt processes. To enable the acceptance of multiple interrupts, it
is necessary to call the EI function from the interrupt process. It is not allowed to accept multiple interrupt handlers from an
interrupt process, and behavior is not guaranteed if this occurs.

If a user application enables multiple interrupts, then it is necessary to set the interrupt level of the interrupt handler/
process as shown below.

Table 9-3 Settable Interrupt Level (Enabling Multiple Interrupts from User Application)

If a user application disables multiple interrupts, then it is necessary to set the interrupt level of the interrupt handler/
process to one of the patterns shown below.

Pattern 1: Set the level of all interrupt handlers and interrupt processes to 2.
Pattern 2: Set the level of all interrupt handlers and interrupt processes to 3.
Pattern 3: Set the level of all interrupt handlers and to 2, and the level of all interrupt processes to either 2 or 3.

Interrupts are disabled during an interrupt process with an interrupt level of 3 (IE = 0).

Table 9-4 Settable Interrupt Level (Disabling Multiple Interrupts from User Application)

(*) Interrupts are disabled during this interrupt process (IE = 0).

Interrupt Handler Interrupt Servicing

Interrupt level 0 Not available Available

Interrupt level 1 Not available Available

Interrupt level 2 Available Not available

Interrupt level 3 Available Not available

Pattern 1 Pattern 2 Pattern 3

Interrupt
Handler

Interrupt
Servicing

Interrupt
Handler

Interrupt
Servicing

Interrupt
Handler

Interrupt
Servicing

Interrupt level 0 Not available Not available Not available Not available Not available Not available

Interrupt level 1 Not available Not available Not available Not available Not available Not available

Interrupt level 2 Available Available Not available Not available Available Available

Interrupt level 3 Not available Not available Available Available Not available Available (*)

RI78V4

R20UT0511EJ0101 Rev.1.01 Page 103 of 272
Apr 01, 2012

CHAPTER 10 SYSTEM CONFIGURATION MANAGEMENT
FUNCTIONS

CHAPTER 10 SYSTEM CONFIGURATION MANAGE-
MENT FUNCTIONS

This chapter describes the system configuration management functions performed by the RI78V4.

10.1 Outline

The system configuration management functions of the RI78V4 provides system initialization processing, which is
required from the reset interrupt output until control is passed to the task, and version information referencing processing.

The following shows a processing flow from when a reset interrupt occurs until the control is passed to the task.

Figure 10-1 Processing Flow (System Initialization)

Interrupt Entry Processing

Boot Processing

Kernel Initialization Module

Initialization Routine

SCHEDULER

Reset interrupt

Task

System initialization

RI78V4

R20UT0511EJ0101 Rev.1.01 Page 104 of 272
Apr 01, 2012

CHAPTER 10 SYSTEM CONFIGURATION MANAGEMENT
FUNCTIONS

10.2 Boot Processing

Boot processing is a routine dedicated to initialization processing that is extracted as a user-own coding module to
initialize the minimum required hardware for the RI78V4 to perform processing. Boot processing is called from Interrupt
Entry Processing that is assigned to the vector table address to which the CPU forcibly passes the control when a reset
interrupt occurs.

10.2.1 Define boot processing

Boot processing registration is realized by coding Interrupt Entry Processing (branch instruction to boot processing) to
the vector table address to which the CPU forcibly passes control upon occurrence of a reset interrupt.

The code of Interrupt Entry Processing varies depending on whether boot processing is allocated to the near area or to
the far area.

The following shows examples for coding Interrupt Entry Processing.

[When boot processing is allocated to the near area]

[When boot processing is allocated to the far area]

10.2.2 Basic form of boot processing

Write Boot processing as a function that does not include arguments and return values (function name: any name).
The following shows the basic form of boot processing.

RESET CSEG AT 0000h ;Vector table address setting
 DW _boot ;Jump to boot processing _boot

 EXTRN intent_RESET ;Declares symbol external reference

RESET CSEG AT 0000h ;Vector table address setting
 DW intent_RESET

intent CSEG UNITP
intent_RESET:
 BR !!_boot ;Jump to boot processing _boot

 PUBLIC _boot
 EXTRN ＿＠ STBEG, _hdwinit, __urx_start
@@LCODE CSEG BASE
_boot:
 SEL RB0 ;Sets register bank

 MOVW SP, #LOWW_@STBEG ;Sets stack pointer SP

 CALL !!_hdwinit ;Initializes internal units and peripheral
 ;controllers

 MOV B, #0FEDFH-0FE20H+1 ;Clears saddr area
 CLRW AX
LSADR1:
 DEC B
 DEC B
 MOVW 0FE20H[B], AX
 BNZ $LSADR1

 MOV ES, #0FH ;Clears RAM area
 MOVW BC, #0FE20H-0D700H

RI78V4

R20UT0511EJ0101 Rev.1.01 Page 105 of 272
Apr 01, 2012

CHAPTER 10 SYSTEM CONFIGURATION MANAGEMENT
FUNCTIONS

10.2.3 Internal processing of boot processing

Boot processing is a routine dedicated to initialization processing called from Interrupt Entry Processing without using
the RI78V4. Therefore, note the following points when coding boot processing.

- Coding method
Code boot processing in assembly language.

- Stack switching
Setting of stack pointer SP is not executed at the point when control is passed to boot processing.
To use a boot processing dedicated stack, setting of stack pointer SP must therefore be coded at the beginning of the
boot processing.

- Interrupt status
The Kernel Initialization Module is not executed at the point when control is passed to boot processing. The system
may therefore hang up when an interrupt is created before the processing is completed. To avoid this, explicitly
prohibit acknowledgment of maskable interrupts by manipulating interrupt enable flag IE of program status word PSW
during boot processing.

- Register bank setting
The RI78V4 prohibits switching of a register bank that was set before __urx_start is called in boot processing to
another register bank (except for the case when interrupt servicing not managed by the RI78V4).

- Service call issuance
The RI78V4 prohibits issuance of service calls in boot processing.

The following lists processing that should be executed in boot processing.

- Setting of stack pointer SP

- Setting of interrupt enable flag IE

- Initialization of internal units and peripheral controllers

- Initialization of RAM area (initialization of memory area without initial value, copying of initialization data)

- Passing of control to Kernel Initialization Module (function name: _urx_start)

Note Setting of stack pointer SP is required only when a stack dedicated to boot processing is used in boot
processing.

CLRW AX
LSADR2:

DECW BC
DECW BC
MOVW 0D700H[BC], AX
CMPW AX, BC
BNZ $LSADR2

BR !!__urx_start ;Jump to Kernel Initialization Module
END

RI78V4

R20UT0511EJ0101 Rev.1.01 Page 106 of 272
Apr 01, 2012

CHAPTER 10 SYSTEM CONFIGURATION MANAGEMENT
FUNCTIONS

10.3 Initialization Routine

The initialization routine is a routine dedicated to initialization processing that is extracted as a user-own coding module
to initialize the hardware dependent on the user execution environment (such as the peripheral controller), and is called
from the Kernel Initialization Module.

10.3.1 Define initialization routine

In the RI78V4, the method of registering an initialization routine is limited to "static registration by the Kernel Initialization
Module".

Initialization routines therefore cannot be created dynamically using a method such as issuing a service call from a
processing program.

- Static define
Static initialization routine registration is realized by coding initialization routines by using the prescribed function
name init_handler.
The RI78V4 executes initialization routine registration processing based on relevant symbol information, using the
Kernel Initialization Module, and handles the registered initialization routines as management targets.

10.3.2 Undefine initialization routine

In the RI78V4, initialization routines registered statically by the Kernel Initialization Module cannot be unregistered
dynamically using a method such as issuing a service call from a processing program.

10.3.3 Basic form of initialization routine

Write initialization routines using void type functions that do not have arguments (function: init_handler).
The following shows the basic form of initialization routine.

[C Language]

[Assembly Language]

#include <kernel.h> /*Standard header file definition*/
#include <kernel_id.h> /*System information header file definition*/

void
init_handler (void)
{
 /* */ /*Main processing*/

 return; /*Terminate initialization routine*/
}

$INCLUDE (kernel.inc) ;Standard header file definition
$INCLUDE (kernel_id.inc) ;System information header file definition

 PUBLIC _init_handler
 CSEG
_init_handler:
 ; ;Main processing

 RET ;Terminate initialization routine
 END

RI78V4

R20UT0511EJ0101 Rev.1.01 Page 107 of 272
Apr 01, 2012

CHAPTER 10 SYSTEM CONFIGURATION MANAGEMENT
FUNCTIONS

10.3.4 Internal processing of initialization routine

Moreover, the RI78V4 executes "original pre-processing" when passing control to the initialization routine, as well as
"original post-processing" when regaining control from the initialization routine.

Therefore, note the following points when coding initialization routines.

- Coding method
Code initialization routines using C or assembly language in the format shown in "10.3.3 Basic form of initialization
routine".

- Stack switching
The RI78V4 executes processing to switch to the system stack when passing control to the initialization routine, and
processing to switch to the stack for the Kernel Initialization Module when regaining control from the initialization
routine.
The user is therefore not required to code processing related to stack switching in initialization routines.

- Interrupt status
Maskable interrupt acknowledgement is prohibited in the RI78V4 when control is passed to the initialization routine.
Kernel Initialization Module is not completed at the point when control is passed to the initialization routine. The
system may therefore hang up when acknowledgment of maskable interrupts is explicitly enabled within the
initialization routine. Therefore, enabling maskable interrupt acknowledgment in the initialization routine is prohibited
in the RI78V4.

- Service call issuance
The RI78V4 prohibits issuance of service calls in initialization routines.

The following lists processing that should be executed in initialization routines.

- Initialization of internal units and peripheral controllers

- Initialization of RAM area (initialization of memory area without initial value, copying of initialization data)

- Returning of control to Kernel Initialization Module

10.4 Kernel Initialization Module

The kernel initialization module is a dedicated initialization processing routine provided for initializing the minimum
required software for the RI78V4 to perform processing, and is called from Boot Processing.

The following processing is executed in the kernel initialization module.

- Securement of memory area

- Creating and registering management objects

- Calling of initialization routine

- Passing of control to scheduler

Note The kernel initialization module is part of the functions provided by the RI78V4. The user therefore need not
code the processing contents of the kernel initialization module.

RI78V4

R20UT0511EJ0101 Rev.1.01 Page 108 of 272
Apr 01, 2012

CHAPTER 10 SYSTEM CONFIGURATION MANAGEMENT
FUNCTIONS

10.5 Reference Version Information

Version information is referenced by issuing the following service call from the processing program.

- ref_ver
The service call stores version information packet (such as kernel maker’s code) to the area specified by parameter
pk_rver.
The following describes an example for coding this service call.

Note For details about the version information packet, refer to "12.5.8 Version information packet".

#pragma rtos_task func_task

#include <kernel.h> /*Standard header file definition*/
#include <kernel_id.h> /*System information header file definition*/

void
func_task (VP_INT exinf)
{
 T_RVER pk_rver; /*Declares data structure*/
 UH maker; /*Declares variable*/
 UH prid; /*Declares variable*/
 UH spver; /*Declares variable*/
 UH prver; /*Declares variable*/
 UH prno[4]; /*Declares variable*/

 /* */

 ref_ver (&pk_rver); /*Reference version information*/

 maker = pk_rver.maker; /*Reference Kernel maker's code*/
 prid = pk_rver.prid; /*Reference identification number of the kernel*/
 spver = pk_rver.spver; /*Reference version number of the ITRON
 Specification*/
 prver = pk_rver.prver; /*Reference version number of the kernel*/
 prno[0] = pk_rver.prno[0]; /*Reference management information of the kernel
 product (version type)*/
 prno[1] = pk_rver.prno[1]; /*Reference management information of the kernel
 product (memory model)*/

 /* */
}

RI78V4 CHAPTER 11 SCHEDULER

R20UT0511EJ0101 Rev.1.01 Page 109 of 272
Apr 01, 2012

CHAPTER 11 SCHEDULER

This chapter describes the scheduler of the RI78V4.

11.1 Outline

The scheduling functions provided by the RI78V4 consist of functions manage/decide the order in which tasks are
executed by monitoring the transition states of dynamically changing tasks, so that the CPU use right is given to the
optimum task.

11.2 Driving Method

The RI78V4 employs the Event-driven system in which the scheduler is activated when an event (trigger) occurs.

- Event-driven system

Under the event-driven system of the RI78V4, the scheduler is activated upon occurrence of the events listed below
and dispatch processing (task scheduling processing) is executed.

- Issuance of service call that may cause task state transition

- Issuance of instruction for returning from non-task (cyclic handler, interrupt handler, etc.)

- Occurrence of clock interrupt used when achieving TIME MANAGEMENT FUNCTIONS

11.3 Scheduling System

As task scheduling methods, the RI78V4 employs the Priority level method, which uses the priority level defined for
each task, and the FCFS method, which uses the time elapsed from the point when a task becomes subject to the RI78V4
scheduling.

- Priority level method

A task with the highest priority level is selected from among all the tasks that have entered an executable state
(RUNNING state or READY state), and given the CPU use right.

Note In the RI78V4, a task having a smaller priority number is given a higher priority.

- FCFS method

The same priority level can be defined for multiple tasks in the RI78V4. Therefore, multiple tasks with the highest
priority level, which is used as the criterion for task selection under the Priority level method, may exist
simultaneously.
To remedy this, dispatch processing (task scheduling processing) is executed on a first come first served (FCFS)
basis, and the task for which the longest interval of time has elapsed since it entered an executable state (READY
state) is selected as the task to which the CPU use right is granted.

RI78V4 CHAPTER 11 SCHEDULER

R20UT0511EJ0101 Rev.1.01 Page 110 of 272
Apr 01, 2012

11.4 Ready Queue

The RI78V4 uses a "ready queue" to implement task scheduling.
The ready queue is a hash table that uses priority as the key, and tasks that have entered an executable state (READY

state or RUNNING state) are queued in FIFO order. Therefore, the scheduler realizes the RI78V4's scheduling method
(priority level or FCFS) by executing task detection processing from the highest priority level of the ready queue upon
activation, and upon detection of queued tasks, giving the CPU use right to the first task of the proper priority level.

The following shows the case where multiple tasks are queued to a ready queue.

Figure 11-1 Implementation of Scheduling Method (Priority Level Method or FCFS Method)

11.4.1 Create ready queue

In the RI78V4, the method of creating a ready queue is limited to "static creation by the Kernel Initialization Module".
Ready queues therefore cannot be created dynamically using a method such as issuing a service call from a processing

program.

- Static create
Static ready queue creation is realized by defining Task priority information in the system configuration file.
The RI78V4 executes ready queue creation processing based on data stored in information files, using the Kernel
Initialization Module, and handles the created ready queues as management targets.

11.4.2 Delete ready queue

In the RI78V4, ready queues created statically by the Kernel Initialization Module cannot be deleted dynamically using a
method such as issuing a service call from a processing program.

Priority: High

Priority: Low

Task A Task B
READY state

Task Ctskpri

1

maxtpri

Ready queue

READY state READY state

Invoking task
RUNNING state

RI78V4 CHAPTER 11 SCHEDULER

R20UT0511EJ0101 Rev.1.01 Page 111 of 272
Apr 01, 2012

11.4.3 Rotate task precedence

The RI78V4 provides a function to change the queuing order of tasks from the processing program, explicitly switching
the task execution order.

The following shows the status transition when the task queuing order is changed.

Figure 11-2 Rotate Task Precedence

Task B Task C
READY state

Task Atskpri

1

maxtpri

Ready queue

READY state READY state

Invoking task
RUNNING state

Task A Task B
READY state

Task Ctskpri

1

maxtpri

Ready queue

READY state READY state

Invoking task
RUNNING state

rot_rdq (tskpri);

RI78V4 CHAPTER 11 SCHEDULER

R20UT0511EJ0101 Rev.1.01 Page 112 of 272
Apr 01, 2012

A ready queue is rotated by issuing the following service call from the processing program.

- rot_rdq, irot_rdq
These service calls re-queue the first task of the ready queue corresponding to the priority specified by parameter
tskpri to the end of the queue to change the task execution order explicitly.
The following describes an example for coding this service call.

Note 1 This service call does not perform queuing of rotation requests. If no task is queued to the ready queue
corresponding to the relevant priority, therefore, no processing is performed but it is not handled as an error.

Note 2 Round-robin scheduling can be implemented by issuing this service call via a cyclic handler in a constant
cycle.

#include <kernel.h> /*Standard header file definition*/
#include <kernel_id.h> /*System information header file definition*/

void
func_cychdr (void)
{
 PRI tskpri = 8; /*Declares and initializes variable*/

 /* */

 irot_rdq (tskpri); /*Rotate task precedence*/

 /* */

 return; /*Terminate cyclic handler*/
}

RI78V4 CHAPTER 11 SCHEDULER

R20UT0511EJ0101 Rev.1.01 Page 113 of 272
Apr 01, 2012

11.4.4 Change task priority

The RI78V4 provides a function to change the priority level of tasks from the processing program, explicitly switching
the task execution order.

The following shows the status transition when this task priority is changed.

Figure 11-3 Change Task Priority

Task A Task C
READY state

Task B

tskpri

1

maxtpri

Ready queue

READY state

READY state

Invoking task
RUNNING state

Task A Task B
READY state

Task Ctskpri

1

maxtpri

Ready queue

READY state READY state

Invoking task
RUNNING state

chg_pri (ID_tskB, maxtpri);

RI78V4 CHAPTER 11 SCHEDULER

R20UT0511EJ0101 Rev.1.01 Page 114 of 272
Apr 01, 2012

A priority is changed by issuing the following service call from the processing program.

- chg_pri, ichg_pri
This service call changes the priority of the task specified by parameter tskid (current priority) to a value specified by
parameter tskpri.
The following describes an example for coding this service call.

Note If the target task is in the RUNNING or READY state after this service call is issued, this service call re-
queues the task at the end of the ready queue corresponding to the priority specified by parameter tskpri,
following priority change processing.

#pragma rtos_task func_task

#include <kernel.h> /*Standard header file definition*/
#include <kernel_id.h> /*System information header file definition*/

void
func_task (VP_INT exinf)
{
 ID tskid = ID_tskA; /*Declares and initializes variable*/
 PRI tskpri = 9; /*Declares and initializes variable*/

 /* */

 chg_pri (tskid, tskpri); /*Change task priority*/

 /* */
}

RI78V4 CHAPTER 11 SCHEDULER

R20UT0511EJ0101 Rev.1.01 Page 115 of 272
Apr 01, 2012

11.5 Scheduling Disabling

The RI78V4 provides a function to disable scheduler activation by referencing the system state from the processing
program and explicitly prohibiting dispatch processing (task scheduling processing).

The following shows a processing flow when using the scheduling suppressing function.

Figure 11-4 Scheduling Suppression Function

Disable dispatching

Enable dispatching

Release semaphore resource

Acquire semaphore resource

Task

Priority: High

Task

Priority: Low

Suppressed period

RI78V4 CHAPTER 11 SCHEDULER

R20UT0511EJ0101 Rev.1.01 Page 116 of 272
Apr 01, 2012

11.5.1 Disable dispatching

A task is moved to the dispatching disabled state by issuing the following service call from the processing program.

- dis_dsp
This service call changes the system status to the dispatching disabled state.
As a result, dispatch processing (task scheduling) is disabled from when this service call is issued until ena_dsp is
issued.
If a service call (chg_pri, sig_sem, etc.) accompanying dispatch processing is issued during the interval from when
this service call is issued until ena_dsp is issued, the RI78V4 executes only processing such as queue manipulation,
counter manipulation, etc., and the actual dispatch processing is delayed until ena_dsp is issued, upon which the
actual dispatch processing is performed in batch.
The following describes an example for coding this service call.

Note 1 This service call does not perform queuing of disable requests. If the system is in the dispatching disabled
state, therefore, no processing is performed but it is not handled as an error.

Note 2 The dispatching disabled state changed by issuing this service call must be cancelled before the task that
issued this service call moves to the DORMANT state.

#pragma rtos_task func_task

#include <kernel.h> /*Standard header file definition*/
#include <kernel_id.h> /*System information header file definition*/

void
func_task (VP_INT exinf)
{
 /* */

 dis_dsp (); /*Disable dispatching*/

 /* */ /*Dispatching disabled state*/

 ena_dsp (); /*Enable dispatching*/

 /* */
}

RI78V4 CHAPTER 11 SCHEDULER

R20UT0511EJ0101 Rev.1.01 Page 117 of 272
Apr 01, 2012

11.5.2 Enable dispatching

The dispatching disabled state is cancelled by issuing the following service call from the processing program.

- ena_dsp
This service call changes the system status to the dispatching enabled state.
As a result, dispatch processing (task scheduling) that has been disabled by issuing dis_dsp is enabled.
If a service call (chg_pri, sig_sem, etc.) accompanying dispatch processing is issued during the interval from when
dis_dsp is issued until this service call is issued, the RI78V4 executes only processing such as queue manipulation,
counter manipulation, etc., and the actual dispatch processing is delayed until this service call is issued, upon which
the actual dispatch processing is performed in batch.
The following describes an example for coding this service call.

Note This service call does not queue enable requests. If the system is in the dispatching enabled state, therefore,
no processing is performed but it is not handled as an error.

#pragma rtos_task func_task

#include <kernel.h> /*Standard header file definition*/
#include <kernel_id.h> /*System information header file definition*/

void
func_task (VP_INT exinf)
{
 /* */

 dis_dsp (); /*Disable dispatching*/

 /* */ /*Dispatching disabled state*/

 ena_dsp (); /*Enable dispatching*/

 /* */
}

RI78V4 CHAPTER 11 SCHEDULER

R20UT0511EJ0101 Rev.1.01 Page 118 of 272
Apr 01, 2012

11.6 Delay of Scheduling

If a service call (ichg_pri, isig_sem, etc.) accompanying dispatch processing (task scheduling processing) is issued in
order to quickly complete the processing in a non-task (cyclic handler, interrupt handler, etc.) during the interval until the
processing in the non-task ends, the RI78V4 executes only processing such as queue manipulation, counter manipulation,
etc., and the actual dispatch processing is delayed until a return instruction is issued by the non-task, upon which the
actual dispatch processing is performed in batch.

The following shows a processing flow when a service call that involves dispatch processing in a non-task is issued.

Figure 11-5 Delay of Scheduling

Task

Priority: High

Task

Priority: Low

Delayed period

Interrupt handler

return

Release semaphore resource

Acquire semaphore resource

Interrupt

RI78V4 CHAPTER 11 SCHEDULER

R20UT0511EJ0101 Rev.1.01 Page 119 of 272
Apr 01, 2012

11.7 Idle Routine

The idle routine is a routine dedicated to idle processing that is extracted as a user-own coding module to utilize the
standby function provided by the CPU (to achieve the low-power consumption system), and is called from the scheduler
when there no longer remains a task subject to scheduling by the RI78V4 (task in the RUNNING or READY state) in the
system.

11.7.1 Define idle routine

In the RI78V4, the method of registering an idle routine is limited to "static registration by the Kernel Initialization
Module".

Idle routines therefore cannot be created dynamically using a method such as issuing a service call from a processing
program.

- Static define
Static idle routine registration is realized by coding idle routines by using the prescribed function name idle_handler.
The RI78V4 executes idle routine registration processing based on relevant symbol information, using the Kernel
Initialization Module, and handles the registered idle routines as management targets.

11.7.2 Undefine idle routine

In the RI78V4, idle routines registered statically by the Kernel Initialization Module cannot be unregistered dynamically
using a method such as issuing a service call from a processing program.

11.7.3 Basic form of idle routine

Write idle routines using void type functions that do not have arguments (function: idle_handler).
The following shows the basic form of idle routine.

[C Language]

[Assembly Language]

#include <kernel.h> /*Standard header file definition*/
#include <kernel_id.h> /*System information header file definition*/

void
idle_handler (void)
{
 /* */ /*Main processing*/

 return; /*Terminate idle routine*/
}

$INCLUDE (kernel.inc) ;Standard header file definition
$INCLUDE (kernel_id.inc) ;System information header file definition

 PUBLIC _idle_handler
 CSEG
_idle_handler:
 ; ;Main processing

 RET ;Terminate idle routine
 END

RI78V4 CHAPTER 11 SCHEDULER

R20UT0511EJ0101 Rev.1.01 Page 120 of 272
Apr 01, 2012

11.7.4 Internal processing of idle routine

The RI78V4 handles the idle routine as a "non-task (module independent from tasks)".
Moreover, the RI78V4 executes "original pre-processing" when passing control to the idle routine, as well as "original

post-processing" when regaining control from the idle routine.
Therefore, note the following points when coding idle routines.

- Coding method
Code idle routines using C or assembly language in the format shown in "11.7.3 Basic form of idle routine”.

- Stack switching
The RI78V4 executes processing to switch to the system stack when passing control to the idle routine, and
processing to switch to the stack for the switch destination processing program (system stack or task stack) when
regaining control from the idle routine.
The user is therefore not required to code processing related to stack switching in idle routines.

- Interrupt status
Maskable interrupt acknowledgement is prohibited in the RI78V4 when control is passed to the idle routine.
The user is therefore not required to write the code related to maskable interrupt acknowledgment in idle routines.

- Service call issuance
The RI78V4 prohibits issuance of service calls in idle routines.

The following lists processing that should be executed in idle routines.

- Effective use of standby function provided by the CPU

RI78V4 CHAPTER 12 SERVICE CALLS

R20UT0511EJ0101 Rev.1.01 Page 121 of 272
Apr 01, 2012

CHAPTER 12 SERVICE CALLS

This chapter describes the service calls supported by the RI78V4.

12.1 Outline

The service calls provided by the RI78V4 are service routines provided for indirectly manipulating the resources (tasks,
semaphores, etc.) managed by the RI78V4 from a processing program. The service calls provided by the RI78V4 are
listed below by management module.

- Task Management Functions

act_tsk, iact_tsk, can_act, sta_tsk, ista_tsk, ext_tsk, ter_tsk, chg_pri, ichg_pri, ref_tsk

- Task Dependent Synchronization Functions

slp_tsk, tslp_tsk, wup_tsk, iwup_tsk, can_wup, ican_wup, rel_wai, irel_wai, sus_tsk, isus_tsk, rsm_tsk, irsm_tsk,
frsm_tsk, ifrsm_tsk, dly_tsk

- Synchronization and Communication Functions (Semaphores)

sig_sem, isig_sem, wai_sem, pol_sem, twai_sem, ref_sem

- Synchronization and Communication Functions (Eventflags)

set_flg, iset_flg, clr_flg, wai_flg, pol_flg, twai_flg, ref_flg

- Synchronization and Communication Functions (Mailboxes)

snd_mbx, rcv_mbx, prcv_mbx, trcv_mbx, ref_mbx

- Memory Pool Management Functions

get_mpf, pget_mpf, tget_mpf, rel_mpf, ref_mpf

- Time Management Functions

sta_cyc, stp_cyc, ref_cyc

- System State Management Functions

rot_rdq, irot_rdq, get_tid, iget_tid, loc_cpu, iloc_cpu, unl_cpu, iunl_cpu, ena_dsp, dis_dsp, sns_ctx, sns_loc,
sns_dsp, sns_dpn

- System Configuration Management Functions

ref_ver

RI78V4 CHAPTER 12 SERVICE CALLS

R20UT0511EJ0101 Rev.1.01 Page 122 of 272
Apr 01, 2012

12.2 Call Service Call

The method for calling service calls from processing programs coded either in C or assembly language is described
below.

12.2.1 C language

By calling using the same method as for normal C functions, service call parameters are handed over to the RI78V4 as
arguments and the relevant processing is executed.

[C Language]

Note To call the service calls provided by the RI78V4 from a processing program, the header files listed below must
be coded (include processing).

kernel.h: Standard header file (for C language)
kernel_id.h: System information header file (for C language)

#pragma rtos_func func_task

#include <kernel.h> /*Standard header file definition*/
#include <kernel_id.h> /*System information header file definition*/

void
func_task (VP_INT exinf)
{
 ER ercd; /*Declares variable*/
 ID tskid = ID_tskA; /*Declares and initializes variable*/

 ercd = act_tsk (tskid); /*Call service call*/

 /* */

 ext_tsk (); /*Call service call*/
}

RI78V4 CHAPTER 12 SERVICE CALLS

R20UT0511EJ0101 Rev.1.01 Page 123 of 272
Apr 01, 2012

12.2.2 Assembly language

By calling with the CALL instruction after performing the parameter settings according to the assembler's function calling
rules, the service call parameters are handed over to the RI78V4 and the relevant processing is executed.

[Assembly Language]

Note To call the service calls provided by the RI78V4 from a processing program, the header files listed below must
be coded (include processing).

kernel.inc: Standard header file (for assembly language)
kernel_id.inc: System information header file (for assembly language)

$INCLUDE (kernel.inc) ;standard header file definition
$INCLUDE (kernel_id.inc) ;System information header file definition

 DESG
_ercd: DS (2) ;Secures area for storing return value

 PUBLIC _func_task
 CSEG
_func_task:
 PUSH BC ;Stores the higher 2 bytes of argument exinf into stack
 PUSH AX ;Stores the lower 2 bytes of argument exinf into stack

 MOVW AX, #ID_tskA ;Parameter setting
 CALL !!_act_tsk ;Call service call
 MOVW AX, BC
 MOVW !_ercd, AX ;Return value setting

 ;

 BR !!_ext_tsk ;Call service call
 END

RI78V4 CHAPTER 12 SERVICE CALLS

R20UT0511EJ0101 Rev.1.01 Page 124 of 272
Apr 01, 2012

12.3 Amount of Stack Used by Service Calls

The RI78V4 saves/restores the values of registers PC, PSW and HL to/from the stack of the processing program that
issued the relevant service call (task stack or system stack) during preprocessing/postprocessing of the service call.

The stack of the processing program that issued a service call is used for storing the service call arguments, and the
system stack is used as the stack area required for executing internal processing of the service call.

When securing the task stack and system stack areas, the stack amount consumed upon issuance of a service call
must therefore be considered.

The following lists the stack sizes required upon issuance of a service call.

Table 12-1 Stack Amount Used by Service Call (Unit: Bytes)

Service Call
For Service Call

Arguments

For Internal Processing by
Program Issued the

Service Call

For System Stack Internal
Processing

Task Management Functions

act_tsk, iact_tsk 0 10 4

can_act 0 10 4

sta_tsk, ista_tsk 0 8 4

ext_tsk 0 8 4

ter_tsk 0 8 4

chg_pri, ichg_pri 2 8 4

ref_tsk 4 8 4

Task Dependent Synchronization Functions

slp_tsk 0 8 4

tslp_tsk 0 8 4

wup_tsk, iwup_tsk 0 8 4

can_wup, ican_wup 0 8 4

rel_wai, irel_wai 0 8 4

sus_tsk, isus_tsk 0 8 4

rsm_tsk, irsm_tsk 0 8 4

frsm_tsk, ifrsm_tsk 0 8 4

dly_tsk 0 8 4

Synchronization and Communication Functions (Semaphores)

sig_sem, isig_sem 0 8 4

wai_sem 0 8 4

pol_sem 0 8 4

twai_sem 4 8 4

ref_sem 4 8 4

Synchronization and Communication Functions (Eventflags)

set_flg, iset_flg 2 8 4

clr_flg 2 8 4

wai_flg 8 8 6

pol_flg 8 8 6

twai_flg 12 8 6

RI78V4 CHAPTER 12 SERVICE CALLS

R20UT0511EJ0101 Rev.1.01 Page 125 of 272
Apr 01, 2012

ref_flg 4 8 4

Synchronization and Communication Functions (Mailboxes)

snd_mbx 4 8 4

rcv_mbx 4 8 6

prcv_mbx 4 8 6

trcv_mbx 8 8 6

ref_mbx 4 8 4

Memory Pool Management Functions

get_mpf 4 8 6

pget_mpf 4 8 6

tget_mpf 8 8 6

rel_mpf 4 8 6

ref_mpf 4 8 4

Time Management Functions

sta_cyc 0 8 4

stp_cyc 0 8 4

ref_cyc 4 8 4

System State Management Functions

rot_rdq, irot_rdq 0 8 4

get_tid, iget_tid 0 8 4

loc_cpu, iloc_cpu 0 8 4

unl_cpu, iunl_cpu 0 8 4

ena_dsp 0 8 4

dis_dsp 0 8 4

sns_ctx 0 8 4

sns_loc 0 8 4

sns_dsp 0 8 4

sns_dpn 0 8 4

System Configuration Management Functions

ref_ver 0 8 4

Service Call
For Service Call

Arguments

For Internal Processing by
Program Issued the

Service Call

For System Stack Internal
Processing

RI78V4 CHAPTER 12 SERVICE CALLS

R20UT0511EJ0101 Rev.1.01 Page 126 of 272
Apr 01, 2012

12.4 Data Macros

This section explains the data macros (for data types, current state, or the like) used when issuing a service call
provided by the RI78V4.

12.4.1 Data types

The following lists the data types of parameters specified when issuing a service call.
Macro definition of the data type is performed by header file <ri_root>\include\os\types.h, which is called from standard

header file <ri_root>\include\kernel.h.

Table 12-2 Data Types

Note The ID type definition in the RI78V4 differs from that of the uITRON 4.0 specification.

Macro Data Type Description

UH unsigned short int Unsigned 16-bit integer

*VP void __far Pointer to an unknown data type

UINT unsigned int Unsigned 16-bit integer

VP_INT signed long int
Pointer to an unknown data type, or a signed 32-bit
integer

ID Note unsigned char Object ID number

BOOL signed int Boolean value

STAT unsigned short int Object state

ER signed short int Return value

ER_UINT unsigned short int Unsigned 16-bit integer

PRI signed char Priority

FLGPTN unsigned short int Bit pattern

MODE unsigned char Service call operational mode

TMO signed long int Timeout (unit: ticks)

RELTIM unsigned long int Relative time (unit: ticks)

RI78V4 CHAPTER 12 SERVICE CALLS

R20UT0511EJ0101 Rev.1.01 Page 127 of 272
Apr 01, 2012

12.4.2 Current state

The following lists the status at the point acquired by issuing a service call (ref_tsk, ref_cyc).
Macro definition of the current status is performed by standard header file <ri_root>\include\kernel.h.

Table 12-3 Current State

12.4.3 WAITING types

The following lists WAITING types acquired by issuing a service call (ref_tsk).
Macro definition of the WAITING type is performed by standard header file <ri_root>\include\kernel.h.

Table 12-4 WAITING Types

Macro Value Description

TTS_RUN 0x01 RUNNING state

TTS_RDY 0x02 READY state

TTS_WAI 0x04 WAITING state

TTS_SUS 0x08 SUSPENDED state

TTS_WAS 0x0c WAITING-SUSPENDED state

TTS_DMT 0x10 DORMANT state

TCYC_STP 0x00 Non-operational state

TCYC_STA 0x01 Operational state

Macro Value Description

TTW_SLP 0x0001

A task enters this state if the counter for the task (register-
ing the number of times the wakeup request has been
issued) indicates 0x0 upon the issuance of a slp_tsk or
tslp_tsk.

TTW_DLY 0x0002
A task enters this state upon the issuance of a
dly_tsk.

TTW_SEM 0x0004
A task enters this state if it cannot acquire a
resource from the relevant semaphore upon the
issuance of a wai_sem or twai_sem.

TTW_FLG 0x0008
A task enters this state if a relevant eventflag does
not satisfy a predetermined condition upon the issu-
ance of a wai_flg or twai_flg.

TTW_MBX 0x0040
A task enters this state if cannot receive a message
from the relevant mailbox upon the issuance of a
rcv_mbx or trcv_mbx.

TTW_MPF 0x2000

A task enters this state if it cannot acquire a fixed-
sized memory block from the relevant fixed-sized
memory pool upon the issuance of a get_mpf or
tget_mpf.

RI78V4 CHAPTER 12 SERVICE CALLS

R20UT0511EJ0101 Rev.1.01 Page 128 of 272
Apr 01, 2012

12.4.4 Return value

The following lists the values returned from service calls.
Macro definition of the return value is performed by standard header file <ri_root>\include\kernel.h.

Table 12-5 Return Value

12.4.5 Conditional compile macro

The RI78V4 header files are conditionally compiled by the following macro.

Table 12-6 Conditional Compile Macro

12.4.6 Others

The following lists other macros used when issuing a service call.
Macro definition of other macros is performed by standard header file <ri_root>\include\kernel.h.

Table 12-7 Others

Macro Value Description

E_OK 0 Normal completion.

E_ILUSE -28 Illegal service call use.

E_OBJ -41 Object state error.

E_QOVR -43 Queue overflow.

E_RLWAI -49
Forced release from waiting (accept rel_wai/irel_wai while
waiting).

E_TMOUT -50 Polling failure or timeout.

FALSE 0 False

TRUE 1 True

Classification Macro Description

C compiler package __REL__ The CA78K0R is used.

Macro Value Description

TSK_SELF 0 Invoking task

TPRI_INI 0 Initial priority of the task

TMO_FEVR -1 Waiting forever

TMO_POL 0 Polling

TWF_ANDW 0x00 AND waiting condition

TWF_ORW 0x01 OR waiting condition

TPRI_SELF 0 Current priority of the invoking task

TSK_NONE 0 No applicable task

NULL 0 No applicable message

RI78V4 CHAPTER 12 SERVICE CALLS

R20UT0511EJ0101 Rev.1.01 Page 129 of 272
Apr 01, 2012

12.5 Packet Formats

This section explains the data structures (task state packet, semaphore state packet, or the like) used when issuing a
service call provided by the RI78V4.

12.5.1 Task state packet

The following shows task state packet T_RTSK used when issuing ref_tsk.
Definition of task state packet T_RTSK is performed by header file <ri_root>\include\os\{packet.h, packet.inc}, which is

called from standard header file <ri_root>\include\{kernel.h, kernel.inc}.

[packet.h]

[packet.inc]

The following shows details on task state packet T_RTSK.

- tskstat, rtsk_tskstat
Stores the current state of the task.

TTS_RUN: RUNNING state
TTS_RDY: READY state
TTS_WAI: WAITING state
TTS_SUS: SUSPENDED state
TTS_WAS: WAITING-SUSPENDED state
TTS_DMT: DORMANT state

- tskpri, rtsk_tskpri
Stores the current priority of the task.

- tskbpri, rtsk_tskbpri
System-reserved area.

- tskwait, rtsk_tskwait
Stores the reason for waiting.

TTW_NONE: Has not moved to the WAITING state.

typedef struct t_rtsk {
 STAT tskstat; /*Task current state*/
 PRI tskpri; /*Task current priority*/
 PRI tskbpri; /*Reserved for future use*/
 STAT tskwait; /*Reason for waiting*/
 ID wobjid; /*Object ID number for which the task is waiting*/
 TMO lefttmo; /*Reserved for future use*/
 UINT actcnt; /*Activation request count*/
 UINT wupcnt; /*Wakeup request count*/
 UINT suscnt; /*Suspension count*/
} T_RTSK;

rtsk_tskstat EQU 00h ;Task current state
rtsk_tskpri EQU 02h ;Task current priority
rtsk_tskbpri EQU 03h ;Reserved for future use
rtsk_tskwait EQU 04h ;Reason for waiting
rtsk_wobjid EQU 06h ;Object ID number for which the task is waiting
rtsk_lefttmo EQU 08h ;Reserved for future use
rtsk_actcnt EQU 0ch ;Activation request count
rtsk_wupcnt EQU 0eh ;Wakeup request count
rtsk_suscnt EQU 10h ;Suspension count

RI78V4 CHAPTER 12 SERVICE CALLS

R20UT0511EJ0101 Rev.1.01 Page 130 of 272
Apr 01, 2012

TTW_SLP: A task enters this state if the counter for the task (registering the number of times the wakeup
request has been issued) indicates 0x0 upon the issuance of a slp_tsk or tslp_tsk.

TTW_DLY: A task enters this state upon the issuance of a dly_tsk.
TTW_SEM: A task enters this state if it cannot acquire a resource from the relevant semaphore upon

the issuance of a wai_sem or twai_sem.
TTW_FLG: A task enters this state if a relevant eventflag does not satisfy a predetermined condition

upon the issuance of a wai_flg or twai_flg.
TTW_MBX: A task enters this state if cannot receive a message from the relevant mailbox upon the

issuance of a rcv_mbx or trcv_mbx.
TTW_MPF: A task enters this state if it cannot acquire a fixed-sized memory block from the relevant

fixed-sized memory pool upon the issuance of a get_mpf or tget_mpf.

- wobjid, rtsk_wobjid
Stores the object ID number for which the task is waiting.

- lefttmo, rtsk_lefttmo
System-reserved area.

- actcnt, rtsk_actcnt
Stores the activation request count of the task.

- wupcnt, rtsk_wupcnt
Stores the wakeup request count of the task.

- suscnt, rtsk_suscnt
Stores the suspention count of the task.

RI78V4 CHAPTER 12 SERVICE CALLS

R20UT0511EJ0101 Rev.1.01 Page 131 of 272
Apr 01, 2012

12.5.2 Semaphore state packet

The following shows semaphore state packet T_RSEM used when issuing ref_sem.
Definition of semaphore state packet T_RSEM is performed by header file <ri_root>\include\os\{packet.h, packet.inc},

which is called from standard header file <ri_root>\include\{kernel.h, kernel.inc}.

[packet.h]

[packet.inc]

The following shows details on semaphore state packet T_RSEM.

- wtskid, rsem_wtskid
Stores information whether a task is queued to the wait queue.

TSK_NONE: No applicable task.
Value: ID number of the task at the head of the wait queue

- semcnt, rsem_semcnt
Stores the current resource count of the semaphore.

typedef struct t_rsem {
 ID wtskid; /*ID number of the task at the head of the wait queue*/
 UINT semcnt; /*Current resource count*/
} T_RSEM;

rsem_wtskid EQU 00h ;ID number of the task at the head of the wait queue
rsem_semcnt EQU 02h ;Current resource count

RI78V4 CHAPTER 12 SERVICE CALLS

R20UT0511EJ0101 Rev.1.01 Page 132 of 272
Apr 01, 2012

12.5.3 Eventflag state packet

The following shows eventflag state packet T_RFLG used when issuing ref_flg.
Definition of eventflag state packet T_RFLG is performed by header file <ri_root>\include\os\{packet.h, packet.inc},

which is called from standard header file <ri_root>\include\{kernel.h, kernel.inc}.

[packet.h]

[packet.inc]

The following shows details on eventflag state packet T_RFLG.

- wtskid, rflg_wtskid
Stores information whether a task is queued to the wait queue.

TSK_NONE: No applicable task.
Value: ID number of the task at the head of the wait queue

- flgptn, rflg_flgptn
Stores the current bit pattern of the eventflag.

typedef struct t_rflg {
 ID wtskid; /*ID number of the task at the head of the wait queue*/
 FLGPTN flgptn; /*Current bit pattern*/
} T_RFLG;

rflg_wtskid EQU 00h ;ID number of the task at the head of the wait queue
rflg_flgptn EQU 02h ;Current bit pattern

RI78V4 CHAPTER 12 SERVICE CALLS

R20UT0511EJ0101 Rev.1.01 Page 133 of 272
Apr 01, 2012

12.5.4 Message packet

The following shows message packet T_MSG and T_MSG_PRI used when issuing snd_mbx, rcv_mbx, prcv_mbx, or
trcv_mbx.

Definition of message packet T_MSG and T_MSG_PRI is performed by header file <ri_root>\include\types.h, which is
called from standard header file <ri_root>\include\kernel.h.

[Message packet for TA_MFIFO attribute]

[Message packet for TA_MPRI attribute]

The following shows details on message packet T_MSG and T_MSG_PRI.

- msgque
System-reserved area.

- msgpri
Stores the priority of the message.

Note 1 In the RI78V4, a message having a smaller priority number is given a higher priority.

Note 2 Values that can be specified for the priority of a message are limited from 1 to 31.

typedef struct t_msg {
 struct t_msg __far *msgque; /*Reserved for future use*/
} T_MSG;

typedef struct t_msg_pri {
 struct t_msg __far *msgque; /*Reserved for future use*/
 PRI msgpri; /*Message priority*/
} T_MSG_PRI;

RI78V4 CHAPTER 12 SERVICE CALLS

R20UT0511EJ0101 Rev.1.01 Page 134 of 272
Apr 01, 2012

12.5.5 Mailbox state packet

The following shows mailbox state packet T_RMBX used when issuing ref_mbx.
Definition of mailbox state packet T_RMBX is performed by header file <ri_root>\include\os\{packet.h, packet.inc},

which is called from standard header file <ri_root>\include\{kernel.h, kernel.inc}.

[packet.h]

[packet.inc]

The following shows details on mailbox state packet T_RMBX.

- wtskid, rmbx_wtskid
Stores information whether a task is queued to the wait queue.

TSK_NONE: No applicable task.
Value: ID number of the task at the head of the wait queue

- pk_msg, rmbx_pk_msg
Stores information whether a message is queued to the message queue.

NULL: No applicable message.
Value: Start address of the message packet at the head of the message queue

typedef struct t_rmbx {
 ID wtskid; /*ID number of the task at the head of the wait
 queue*/
 T_MSG __far *pk_msg; /*Start address of the message packet at the head
 of the message queue*/
} T_RMBX;

rmbx_wtskid EQU 00h ;ID number of the task at the head of the wait
 ;queue
rmbx_pk_msg EQU 02h ;Start address of the message packet at the head
 ;of the message queue

RI78V4 CHAPTER 12 SERVICE CALLS

R20UT0511EJ0101 Rev.1.01 Page 135 of 272
Apr 01, 2012

12.5.6 Fixed-sized memory pool state packet

The following shows fixed-sized memory pool state packet T_RMPF used when issuing ref_mpf.
Definition of fixed-sized memory pool state packet T_RMPF is performed by header file <ri_root>\include\os\{packet.h,

packet.inc}, which is called from standard header file <ri_root>\include\{kernel.h, kernel.inc}.

[packet.h]

[packet.inc]

The following shows details on fixed-sized memory pool state packet T_RMPF.

- wtskid, rmpf_wtskid
Stores information whether a task is queued to the wait queue.

TSK_NONE: No applicable task.
Value: ID number of the task at the head of the wait queue

- fblkcnt, rmpf_fblkcnt
Stores the number of free memory blocks.

typedef struct t_rmpf {
 ID wtskid; /*ID number of the task at the head of the wait queue*/
 UINT fblkcnt; /*Number of free memory blocks*/
} T_RMPF;

rmpf_wtskid EQU 00h ;ID number of the task at the head of the wait queue
rmpf_fblkcnt EQU 02h ;Number of free memory blocks

RI78V4 CHAPTER 12 SERVICE CALLS

R20UT0511EJ0101 Rev.1.01 Page 136 of 272
Apr 01, 2012

12.5.7 Cyclic handler state packet

The following shows cyclic handler state packet T_RCYC used when issuing ref_cyc.
Definition of cyclic handler state packet T_RCYC is performed by header file <ri_root>\include\os\{packet.h, packet.inc},

which is called from standard header file <ri_root>\include\{kernel.h, kernel.inc}.

[packet.h]

[packet.inc]

The following shows details on cyclic handler state packet T_RCYC.

- cycstat, rcyc_cycstat
Stores the operational state of the cyclic handler.

TCYC_STP: Operational state
TCYC_STA: Non-operational state

- lefttim, rcyc_lefttim
Stores the time (unit: tick) left before the next activation.
The contents of this member become an undefined value if the target cyclic handler is in the non-operational state
(STP state).

typedef struct t_rcyc {
 STAT cycstat; /*Cyclic handler operational state*/
 RELTIM lefttim; /*Time left before the next activation*/
} T_RCYC;

rcyc_cycstat EQU 00h ;Cyclic handler operational state
rcyc_lefttim EQU 02h ;Time left before the next activation

RI78V4 CHAPTER 12 SERVICE CALLS

R20UT0511EJ0101 Rev.1.01 Page 137 of 272
Apr 01, 2012

12.5.8 Version information packet

The following shows version information packet T_RVER used when issuing ref_ver.
Definition of version information packet T_RVER is performed by header file <ri_root>\include\os\{packet.h, packet.inc},

which is called from standard header file <ri_root>\include\{kernel.h, kernel.inc}.

[packet.h]

[packet.inc]

The following shows details on version information packet T_RVER.

- maker, verinf_maker
Stores the kernel maker's code.

0x011b: Renesas Electronics Co., Ltd.

- prid, verinf_prid
Stores the identification number of the kernel.

0x0006: Identification number

- spver, verinf_spver
Stores the version number of the ITRON Specification.

0x5403: μITRON4.0 Specification Ver.4.03.00

- prver, verinf_prver
Stores the version number of the kernel.

0x01xx: Ver.1.xx

- prno[0], verinf_prno
Stores the kernel version type.

0x0: V-version

- prno[1], verinf_prno + 0x2
Stores the memory model of the kernel.

0x1: Large model

- prno[2], verinf_prno + 0x4
System-reserved area.

- prno[3], verinf_prno + 0x6
System-reserved area.

typedef struct t_rver {
 UH maker; /*Kernel maker's code*/
 UH prid; /*Identification number of the kernel*/
 UH spver; /*Version number of the ITRON Specification*/
 UH prver; /*Version number of the kernel*/
 UH prno[4]; /*Management information of the kernel product*/
} T_RVER;

verinf_maker EQU 00h ;Kernel maker's code
verinf_prid EQU 02h ;Identification number of the kernel
verinf_spver EQU 04h ;Version number of the ITRON Specification
verinf_prver EQU 06h ;Version number of the kernel
verinf_prno EQU 08h ;Management information of the kernel product

RI78V4 CHAPTER 12 SERVICE CALLS

R20UT0511EJ0101 Rev.1.01 Page 138 of 272
Apr 01, 2012

12.6 Task Management Functions

The following lists the service calls provided by the RI78V4 as the task management functions.

Table 12-8 Task Management Functios

Service Call Function Origin of Service Call

act_tsk Activate task (queues an activation request). Task, Non-task

iact_tsk Activate task (queues an activation request). Task, Non-task

can_act Cancel task activation requests. Task, Non-task

sta_tsk Activate task (does not queue an activation request). Task, Non-task

ista_tsk Activate task (does not queue an activation request). Task, Non-task

ext_tsk Terminate invoking task. Task

ter_tsk Terminate task. Task

chg_pri Change task priority. Task, Non-task

ichg_pri Change task priority. Task, Non-task

ref_tsk Reference task state. Task, Non-task

RI78V4 CHAPTER 12 SERVICE CALLS

R20UT0511EJ0101 Rev.1.01 Page 139 of 272
Apr 01, 2012

act_tsk
iact_tsk

Outline

Activate task (queues an activation request).

C format

Assembly format

Parameter(s)

Explanation

These service calls move a task specified by parameter tskid from the DORMANT state to the READY state.
As a result, the target task is queued at the end on the ready queue corresponding to the initial priority and becomes

subject to scheduling by the RI78V4.
If the target task has been moved to a state other than the DORMANT state when this service call is issued, this service

call does not move the state but increments the activation request counter (by added 0x1 to the wakeup request counter).

Note 1 The activation request counter managed by the RI78V4 is configured in 7-bit widths. If the number of activation
requests exceeds the maximum count value 127 as a result of issuing this service call, the counter
manipulation processing is therefore not performed but "E_QOVR" is returned.

Note 2 An extended infomration "Extended information: exinf" is passed to the task activated by issuing this service
call.

ER act_tsk (ID tskid);

ER iact_tsk (ID tskid);

MOVW AX, #tskid
CALL !!_act_tsk

MOVW AX, #tskid
CALL !!_iact_tsk

I/O Parameter Description

I ID tskid;

ID number of the task to be activated.

TSK_SELF: Invoking task.
Value: ID number of the task to be activated.

RI78V4 CHAPTER 12 SERVICE CALLS

R20UT0511EJ0101 Rev.1.01 Page 140 of 272
Apr 01, 2012

Return value

Macro Value Description

E_OK 0 Normal completion.

E_QOVR -43 Queue overflow (overflow of activation request count "127").

RI78V4 CHAPTER 12 SERVICE CALLS

R20UT0511EJ0101 Rev.1.01 Page 141 of 272
Apr 01, 2012

can_act

Outline

Cancel task activation requests.

C format

Assembly format

Parameter(s)

Explanation

This service call cancels all of the activation requests queued to the task specified by parameter tskid (sets the
activation request counter to 0x0).

When this service call is terminated normally, the number of cancelled activation requests is returned.

Return value

ER_UINT can_act (ID tskid);

MOVW AX, #tskid
CALL !!_can_act

I/O Parameter Description

I ID tskid;

ID number of the task for cancelling activation requests.

TSK_SELF: Invoking task.
Value: ID number of the task for cancelling activation requests.

Macro Value Description

- - Normal completion (activation request count: positive value or 0).

RI78V4 CHAPTER 12 SERVICE CALLS

R20UT0511EJ0101 Rev.1.01 Page 142 of 272
Apr 01, 2012

sta_tsk
ista_tsk

Outline

Activate task (does not queue an activation request).

C format

Assembly format

Parameter(s)

Explanation

These service calls move a task specified by parameter tskid from the DORMANT state to the READY state.
As a result, the target task is queued at the end on the ready queue corresponding to the initial priority and becomes

subject to scheduling by the RI78V4.

Note 1 This service call does not perform queuing of activation requests. If the target task is in a state other than the
DORMANT state, the counter manipulation processing is therefore not performed but "E_OBJ" is returned.

Note 2 A start code "stacd" is passed to the task activated by issuing this service call.

ER sta_tsk (ID tskid, VP_INT stacd);

ER ista_tsk (ID tskid, VP_INT stacd);

MOVW AX, #stacd_hi
PUSH AX
MOVW AX, #stacd_lo
PUSH AX
MOVW AX, #tskid
CALL !!_sta_tsk
addw sp, #04H

MOWW AX, #stacd_hi
PUSH AX
MOVW AX, #stacd_lo
PUSH AX
MOVW AX, #tskid
CALL !!_ista_tsk
addw sp, #04H

I/O Parameter Description

I ID tskid; ID number of the task to be activated.

I VP_INT stacd; Start code of the task.

RI78V4 CHAPTER 12 SERVICE CALLS

R20UT0511EJ0101 Rev.1.01 Page 143 of 272
Apr 01, 2012

Return value

Macro Value Description

E_OK 0 Normal completion.

E_OBJ -41 Object state error (specified task is not in the DORMANT state).

RI78V4 CHAPTER 12 SERVICE CALLS

R20UT0511EJ0101 Rev.1.01 Page 144 of 272
Apr 01, 2012

ext_tsk

Outline

Terminate invoking task.

C format

Assembly format

Parameter(s)

None.

Explanation

This service call moves an invoking task from the RUNNING state to the DORMANT state.
As a result, the invoking task is unlinked from the ready queue and excluded from the RI78V4 scheduling subject.
If an activation request has been queued to the invoking task (the activation request counter is not set to 0x0) when this

service call is issued, this service call moves the task from the RUNNING state to the DORMANT state, decrements the
wakeup request counter (by subtracting 0x1 from the wakeup request counter), and then moves the task from the
DORMANT state to the READY state.

Note 1 This service call does not return the OS resource that the invoking task acquired by issuing a service call such
as sig_sem or get_mpf. The OS resource have been acquired must therefore be returned before issuing this
service call.

Note 2 When moving a task from the RUNNING state to the DORMANT state, this service call initializes the following
information to values that are set during task creation.

- Priority (current priority)

- Wakeup request count

- Suspension count

- Interrupt status

Note 3 If the return instruction is written in a task, it executes the same operation as this service call.

Note 4 In the RI78V4, code efficiency is enhanced by coding the return instruction as a "Terminate invoking task".

Return value

None.

void ext_tsk (void);

BR !!_ext_tsk

RI78V4 CHAPTER 12 SERVICE CALLS

R20UT0511EJ0101 Rev.1.01 Page 145 of 272
Apr 01, 2012

ter_tsk

Outline

Terminate task.

C format

Assembly format

Parameter(s)

Explanation

This service call forcibly moves a task specified by parameter tskid to the DORMANT state.
As a result, the target task is excluded from the RI78V4 scheduling subject.
If an activation request has been queued to the target task (the activation request counter is not set to 0x0) when this

service call is issued, this service call moves the task to the DORMANT state, decrements the wakeup request counter (by
subtracting 0x1 from the wakeup request counter), and then moves the task from the DORMANT state to the READY
state.

Note 1 This service call does not return the OS resource that the target task acquired by issuing a service call such as
sig_sem or get_mpf. The OS resource have been acquired must therefore be returned before issuing this
service call.

Note 2 When moving a task to the DORMANT state, this service call initializes the following information to values that
are set during task creation.

- Priority (current priority)

- Wakeup request count

- Suspension count

- Interrupt status

Return value

ER ter_tsk (ID tskid);

MOVW AX, #tskid
CALL !!_ter_tsk

I/O Parameter Description

I ID tskid; ID number of the task to be terminated.

Macro Value Description

E_OK 0 Normal completion.

E_OBJ -41 Object state error (specified task is in the DORMANT state).

RI78V4 CHAPTER 12 SERVICE CALLS

R20UT0511EJ0101 Rev.1.01 Page 146 of 272
Apr 01, 2012

chg_pri
ichg_pri

Outline

Change task priority.

C format

Assembly format

Parameter(s)

Explanation

These service calls change the priority of the task specified by parameter tskid (current priority) to a value specified by
parameter tskpri.

Note If the target task is in the RUNNING or READY state after this service call is issued, this service call re-queues
the task at the end of the ready queue corresponding to the priority specified by parameter tskpri, following
priority change processing.

ER chg_pri (ID tskid, PRI tskpri);

ER ichg_pri (ID tskid, PRI tskpri);

MOVW AX, #tskpri
PUSH AX
MOVW AX, #tskid
CALL !!_chg_pri
POP AX

MOVW AX, #tskpri
PUSH AX
MOVW AX, #tskid
CALL !!_ichg_pri
POP AX

I/O Parameter Description

I ID tskid;

ID number of the task whose priority is to be changed.

TSK_SELF: Invoking task.
Value: ID number of the task whose priority is to be changed.

I PRI tskpri;

New current priority of the task.

TPRI_INI: Initial priority of the task.
Value: New current priority of the task.

RI78V4 CHAPTER 12 SERVICE CALLS

R20UT0511EJ0101 Rev.1.01 Page 147 of 272
Apr 01, 2012

Return value

Macro Value Description

E_OK 0 Normal completion.

E_OBJ -41 Object state error (specified task is in the DORMANT state).

RI78V4 CHAPTER 12 SERVICE CALLS

R20UT0511EJ0101 Rev.1.01 Page 148 of 272
Apr 01, 2012

ref_tsk

Outline

Reference task state.

C format

Assembly format

Parameter(s)

Explanation

Stores task state packet (such as current status) of the task specified by parameter tskid in the area specified by
parameter pk_rtsk.

Note For details about the task state packet, refer to "12.5.1 Task state packet".

Return value

ER ref_tsk (ID tskid, T_RTSK *pk_rtsk);

MOV A, ES
MOV C, A
MOVW DE, #pk_rtsk_lo
PUSH BC
PUSH DE
MOVW AX, #tskid
CALL !!_ref_tsk
addw sp, #04H

I/O Parameter Description

I ID tskid;

ID number of the task to be referenced.

TSK_SELF: Invoking task.
Value: ID number of the task to be referenced.

O T_RTSK *pk_rtsk; Pointer to the packet returning the task state.

Macro Value Description

E_OK 0 Normal completion.

RI78V4 CHAPTER 12 SERVICE CALLS

R20UT0511EJ0101 Rev.1.01 Page 149 of 272
Apr 01, 2012

12.7 Task Dependent Synchronization Functions

The following lists the service calls provided by the RI78V4 as the task dependent synchronization functions.

Table 12-9 Task Dependent Synchronization Functions

Service Call Function Origin of Service Call

slp_tsk Put task to sleep (waiting forever). Task

tslp_tsk Put task to sleep (with timeout). Task

wup_tsk Wakeup task. Task, Non-task

iwup_tsk Wakeup task. Task, Non-task

can_wup Cancel task wakeup requests. Task, Non-task

ican_wup Cancel task wakeup requests. Task, Non-task

rel_wai Release task from waiting. Task, Non-task

irel_wai Release task from waiting. Task, Non-task

sus_tsk Suspend task. Task, Non-task

isus_tsk Suspend task. Task, Non-task

rsm_tsk Resume suspended task. Task, Non-task

irsm_tsk Resume suspended task. Task, Non-task

frsm_tsk Forcibly resume suspended task. Task, Non-task

ifrsm_tsk Forcibly resume suspended task. Task, Non-task

dly_tsk Delay task. Task

RI78V4 CHAPTER 12 SERVICE CALLS

R20UT0511EJ0101 Rev.1.01 Page 150 of 272
Apr 01, 2012

slp_tsk

Outline

Put task to sleep (waiting forever).

C format

Assembly format

Parameter(s)

None.

Explanation

As a result, the invoking task is unlinked from the ready queue and excluded from the RI78V4 scheduling subject.
If a wakeup request has been queued to the target task (the wakeup request counter is not set to 0x0) when this service

call is issued, this service call does not move the state but decrements the wakeup request counter (by subtracting 0x1
from the wakeup request counter).

Return value

ER slp_tsk (void);

CALL !!_slp_tsk

Sleeping State Cancel Operation Return Value

A wakeup request was issued as a result of issuing wup_tsk. E_OK

A wakeup request was issued as a result of issuing iwup_tsk. E_OK

Forced release from waiting (accept rel_wai while waiting). E_RLWAI

Forced release from waiting (accept irel_wai while waiting). E_RLWAI

Macro Value Description

E_OK 0 Normal completion.

E_RLWAI -49 Forced release from waiting (accept rel_wai/irel_wai while waiting).

RI78V4 CHAPTER 12 SERVICE CALLS

R20UT0511EJ0101 Rev.1.01 Page 151 of 272
Apr 01, 2012

tslp_tsk

Outline

Put task to sleep (with timeout).

C format

Assembly format

Parameter(s)

Explanation

This service call moves an invoking task from the RUNNING state to the WAITING state (sleeping state).
As a result, the invoking task is unlinked from the ready queue and excluded from the RI78V4 scheduling subject.
If a wakeup request has been queued to the target task (the wakeup request counter is not set to 0x0) when this service

call is issued, this service call does not move the state but decrements the wakeup request counter (by subtracting 0x1
from the wakeup request counter).

The sleeping state is cancelled in the following cases, and then moved to the READY state.

Note When TMO_FEVR is specified for wait time tmout, processing equivalent to slp_tsk will be executed.

ER tslp_tsk (TMO tmout);

MOVW AX, #tmout_lo
MOVW BC, #tmout_hi
CALL !!_tslp_tsk

I/O Parameter Description

I TMO tmout;

Specified timeout (unit: ticks).

TMO_FEVR: Waiting forever.
TMO_POL: Polling.
Value: Specified timeout.

Sleeping State Cancel Operation Return Value

A wakeup request was issued as a result of issuing wup_tsk. E_OK

A wakeup request was issued as a result of issuing iwup_tsk. E_OK

Forced release from waiting (accept rel_wai while waiting). E_RLWAI

Forced release from waiting (accept irel_wai while waiting). E_RLWAI

Polling failure or timeout. E_TMOUT

RI78V4 CHAPTER 12 SERVICE CALLS

R20UT0511EJ0101 Rev.1.01 Page 152 of 272
Apr 01, 2012

Return value

Macro Value Description

E_OK 0 Normal completion.

E_RLWAI -49 Forced release from waiting (accept rel_wai/irel_wai while waiting).

E_TMOUT -50 Polling failure or timeout.

RI78V4 CHAPTER 12 SERVICE CALLS

R20UT0511EJ0101 Rev.1.01 Page 153 of 272
Apr 01, 2012

wup_tsk
iwup_tsk

Outline

Wakeup task.

C format

Assembly format

Parameter(s)

Explanation

These service calls cancel the WAITING state (sleeping state) of the task specified by parameter tskid.
As a result, the target task is moved from the sleeping state to the READY state, or from the WAITING-SUSPENDED

state to the SUSPENDED state.
If the target task is in a state other than the sleeping state when this service call is issued, this service call does not

move the state but increments the wakeup request counter (by added 0x1 to the wakeup request counter).

Note 1 If the target task is moved to the READY state after this service call is issued, this service call also re-queues
the task at the end of the ready queue corresponding to the priority of the task.

Note 2 The wakeup request counter managed by the RI78V4 is configured in 7-bit widths. If the number of wakeup
requests exceeds the maximum count value 127 as a result of issuing this service call, the counter
manipulation processing is therefore not performed but "E_QOVR" is returned.

ER wup_tsk (ID tskid);

ER iwup_tsk (ID tskid);

MOVW AX, #tskid
CALL !!_wup_tsk

MOVW AX, #tskid
CALL !!_iwup_tsk

I/O Parameter Description

I ID tskid;

ID number of the task to be woken up.

TSK_SELF: Invoking task.
Value: ID number of the task to be woken up.

RI78V4 CHAPTER 12 SERVICE CALLS

R20UT0511EJ0101 Rev.1.01 Page 154 of 272
Apr 01, 2012

Return value

Macro Value Description

E_OK 0 Normal completion.

E_OBJ -41 Object state error (specified task is in the DORMANT state).

E_QOVR -43 Queue overflow (overflow of wakeup request count "127").

RI78V4 CHAPTER 12 SERVICE CALLS

R20UT0511EJ0101 Rev.1.01 Page 155 of 272
Apr 01, 2012

can_wup
ican_wup

Outline

Cancel task wakeup requests.

C format

Assembly format

Parameter(s)

Explanation

These service calls cancel all of the wakeup requests queued to the task specified by parameter tskid (the wakeup
request counter is set to 0x0).

When this service call is terminated normally, the number of cancelled wakeup requests is returned.

Return value

ER_UINT can_wup (ID tskid);

ER_UINT ican_wup (ID tskid);

MOVW AX, #tskid
CALL !!_can_wup

MOVW AX, #tskid
CALL !!_ican_wup

I/O Parameter Description

I ID tskid;

ID number of the task for cancelling wakeup requests.

TSK_SELF: Invoking task.
Value: ID number of the task for cancelling wakeup requests.

Macro Value Description

E_OBJ -41 Object state error (specified task is in the DORMANT state).

- - Normal completion (wakeup request count: positive value or 0).

RI78V4 CHAPTER 12 SERVICE CALLS

R20UT0511EJ0101 Rev.1.01 Page 156 of 272
Apr 01, 2012

rel_wai
irel_wai

Outline

Release task from waiting.

C format

Assembly format

Parameter(s)

Explanation

These service calls forcibly cancel the WAITING state of the task specified by parameter tskid.
As a result, the target task unlinked from the wait queue and is moved from the WAITING state to the READY state, or

from the WAITING-SUSPENDED state to the SUSPENDED state.
"E_RLWAI" is returned from the service call that triggered the move to the WAITING state (slp_tsk, wai_sem, or the like)

to the task whose WAITING state is cancelled by this service call.

Note 1 If the target task is moved to the READY state after this service call is issued, this service call also re-queues
the task at the end of the ready queue corresponding to the priority of the task.

Note 2 This service call does not perform queuing of forced cancellation requests. If the target task is in a state other
than the WAITING or WAITING-SUSPENDED state, "E_OBJ" is returned.

Return value

ER rel_wai (ID tskid);

ER irel_wai (ID tskid);

MOVW AX, #tskid
CALL !!_rel_wai

MOVW AX, #tskid
CALL !!_irel_wai

I/O Parameter Description

I ID tskid; ID number of the task to be released from waiting.

Macro Value Description

E_OK 0 Normal completion.

E_OBJ -41
Object state error (specified task is neither in the WAITING state nor WAITING-
SUSPENDED state).

RI78V4 CHAPTER 12 SERVICE CALLS

R20UT0511EJ0101 Rev.1.01 Page 157 of 272
Apr 01, 2012

sus_tsk
isus_tsk

Outline

Suspend task.

C format

Assembly format

Parameter(s)

Explanation

These service calls add 0x1 to the suspend request counter for the task specified by parameter tskid, and then move the
target task from the RUNNING state to the SUSPENDED state, from the READY state to the SUSPENDED state, or from
the WAITING state to the WAITING-SUSPENDED state.

If the target task has moved to the SUSPENDED or WAITING-SUSPENDED state when this service call is issued, the
counter manipulation processing is not performed but only the suspend request counter increment processing is executed.

Note 1 If the target task is the invoking task when this service call is issued, it is unlinked from the ready queue and
excluded from the RI78V4 scheduling subject.

ER sus_tsk (ID tskid);

ER isus_tsk (ID tskid);

MOVW AX, #tskid
CALL !!_sus_tsk

MOVW AX, #tskid
CALL !!_isus_tsk

I/O Parameter Description

I ID tskid;

ID number of the task to be suspended.

TSK_SELF: Invoking task.
Value: ID number of the task to be suspended.

SUSPENDED State Cancel Operation Return Value

A cancel request was issued as a result of issuing rsm_tsk. E_OK

A cancel request was issued as a result of issuing irsm_tsk. E_OK

Forced release from suspended (accept frsm_tsk while suspended). E_OK

Forced release from suspended (accept ifrsm_tsk while suspended). E_OK

RI78V4 CHAPTER 12 SERVICE CALLS

R20UT0511EJ0101 Rev.1.01 Page 158 of 272
Apr 01, 2012

Note 2 The suspend request counter managed by the RI78V4 is configured in 7-bit widths. If the number of suspend
requests exceeds the maximum count value 127 as a result of issuing this service call, the counter
manipulation processing is therefore not performed but "E_QOVR" is returned.

Return value

Macro Value Description

E_OK 0 Normal completion.

E_OBJ -41 Object state error (specified task is in the DORMANT state).

E_QOVR -43 Queue overflow (overflow of suspension count "127").

RI78V4 CHAPTER 12 SERVICE CALLS

R20UT0511EJ0101 Rev.1.01 Page 159 of 272
Apr 01, 2012

rsm_tsk
irsm_tsk

Outline

Resume suspended task.

C format

Assembly format

Parameter(s)

Explanation

This service call subtracts 0x1 from the suspend request counter for the task specified by parameter tskid, and then
cancels the SUSPENDED state of the target task.

As a result, the target task is moved from the SUSPENDED state to the READY state, or from the WAITING-
SUSPENDED state to the WAITING state.

If a suspend request is queued (subtraction result is other than 0x0) when this service call is issued, the counter
manipulation processing is not performed but only the suspend request counter decrement processing is executed.

Note 1 If the target task is moved to the READY state after this service call is issued, this service call also re-queues
the task at the end of the ready queue corresponding to the priority of the task.

Note 2 This service call does not perform queuing of cancellation requests. If the target task is in a state other than the
SUSPENDED or WAITING-SUSPENDED state, "E_OBJ" is therefore returned.

Return value

ER rsm_tsk (ID tskid);

ER irsm_tsk (ID tskid);

MOVW AX, #tskid
CALL !!_rsm_tsk

MOVW AX, #tskid
CALL !!_irsm_tsk

I/O Parameter Description

I ID tskid; ID number of the task to be resumed.

Macro Value Description

E_OK 0 Normal completion.

RI78V4 CHAPTER 12 SERVICE CALLS

R20UT0511EJ0101 Rev.1.01 Page 160 of 272
Apr 01, 2012

E_OBJ -41
Object state error (specified task is neither in the SUSPENDED state nor
WAITING-SUSPENDED state).

Macro Value Description

RI78V4 CHAPTER 12 SERVICE CALLS

R20UT0511EJ0101 Rev.1.01 Page 161 of 272
Apr 01, 2012

frsm_tsk
ifrsm_tsk

Outline

Forcibly resume suspended task.

C format

Assembly format

Parameter(s)

Explanation

These service calls set the suspend request counter for the task specified by parameter tskid to 0x1 f, and then forcibly
cancel the SUSPENDED state of the target task.

As a result, the target task is moved from the SUSPENDED state to the READY state, or from the WAITING-
SUSPENDED state to the WAITING state.

Note 1 If the target task is moved to the READY state after this service call is issued, this service call also re-queues
the task at the end of the ready queue corresponding to the priority of the task.

Note 2 This service call does not perform queuing of forced cancellation requests. If the target task is in a state other
than the SUSPENDED or WAITING-SUSPENDED state, "E_OBJ" is therefore returned.

Return value

ER frsm_tsk (ID tskid);

ER ifrsm_tsk (ID tskid);

MOVW AX, #tskid
CALL !!_frsm_tsk

MOVW AX, #tskid
CALL !!_ifrsm_tsk

I/O Parameter Description

I ID tskid; ID number of the task to be resumed.

Macro Value Description

E_OK 0 Normal completion.

E_OBJ -41
Object state error (specified task is neither in the SUSPENDED state nor
WAITING-SUSPENDED state).

RI78V4 CHAPTER 12 SERVICE CALLS

R20UT0511EJ0101 Rev.1.01 Page 162 of 272
Apr 01, 2012

dly_tsk

Outline

Delay task.

C format

Assembly format

Parameter(s)

Explanation

This service call moves the invoking task from the RUNNING state to the WAITING state (delayed state).
As a result, the invoking task is unlinked from the ready queue and excluded from the RI78V4 scheduling subject.
The delayed state is cancelled in the following cases, and then moved to the READY state.

Return value

ER dly_tsk (RELTIM dlytim);

MOVW AX, #dlytim_lo
MOVW BC, #dlytim_hi
CALL !!_dly_tsk

I/O Parameter Description

I RELTIM dlytim; Amount of relative time to delay the invoking task (unit: ticks).

Delayed State Cancel Operation Return Value

Delay time specified by parameter dlytim has elapsed. E_OK

Forced release from waiting (accept rel_wai while waiting). E_RLWAI

Forced release from waiting (accept irel_wai while waiting). E_RLWAI

Macro Value Description

E_OK 0 Normal completion.

E_RLWAI -49 Forced release from waiting (accept rel_wai/irel_wai while waiting).

RI78V4 CHAPTER 12 SERVICE CALLS

R20UT0511EJ0101 Rev.1.01 Page 163 of 272
Apr 01, 2012

12.8 Synchronization and Communication Functions (Semaphores)

The following lists the service calls provided by the RI78V4 as the synchronization and communication functions (sema-
phores).

Table 12-10 Synchronization and Communication Functions (Semaphores)

Service Call Function Origin of Service Call

sig_sem Release semaphore resource. Task, Non-task

isig_sem Release semaphore resource. Task, Non-task

wai_sem Acquire semaphore resource (waiting forever). Task

pol_sem Acquire semaphore resource (polling). Task, Non-task

twai_sem Acquire semaphore resource (with timeout). Task

ref_sem Reference semaphore state. Task, Non-task

RI78V4 CHAPTER 12 SERVICE CALLS

R20UT0511EJ0101 Rev.1.01 Page 164 of 272
Apr 01, 2012

sig_sem
isig_sem

Outline

Release semaphore resource.

C format

Assembly format

Parameter(s)

Explanation

These service calls return the resource to the semaphore specified by parameter semid (adds 0x1 to the semaphore
counter).

If a task is queued in the wait queue of the target semaphore when this service call is issued, the counter manipulation
processing is not performed but the resource is passed to the relevant task (first task of wait queue).

As a result, the relevant task is unlinked from the wait queue and is moved from the WAITING state (waiting state for a
semaphore resource) to the READY state, or from the WAITING-SUSPENDED state to the SUSPENDED state.

Note 1 If the first task linked in the wait queue is moved to the READY state after this service call is issued, this service
call also re-queues the task at the end of the ready queue corresponding to the priority of the task.

Note 2 The semaphore counter managed by the RI78V4 is configured in 7-bit widths. If the number of resources
exceeds the maximum count value 127 as a result of issuing this service call, the counter manipulation
processing is therefore not performed but "E_QOVR" is returned.

Return value

ER sig_sem (ID semid);

ER isig_sem (ID semid);

MOVW AX, #semid
CALL !!_sig_sem

MOVW AX, #semid
CALL !!_isig_sem

I/O Parameter Description

I ID semid; ID number of the semaphore to which resource is released.

Macro Value Description

E_OK 0 Normal completion.

RI78V4 CHAPTER 12 SERVICE CALLS

R20UT0511EJ0101 Rev.1.01 Page 165 of 272
Apr 01, 2012

E_QOVR -43 Queue overflow (release will exceed maximum resource count "127").

Macro Value Description

RI78V4 CHAPTER 12 SERVICE CALLS

R20UT0511EJ0101 Rev.1.01 Page 166 of 272
Apr 01, 2012

wai_sem

Outline

Acquire semaphore resource (waiting forever).

C format

Assembly format

Parameter(s)

Explanation

This service call acquires a resource from the semaphore specified by parameter semid (subtracts 0x1 from the
semaphore counter).

If a resource could not be acquired from the target semaphore (semaphore counter is set to 0x0) when this service call
is issued, the counter manipulation processing is not performed but the invoking task is queued to the target semaphore
wait queue in the order of resource acquisition request (FIFO order).

As a result, the invoking task is unlinked from the ready queue and is moved from the RUNNING state to the WAITING
state (waiting state for a semaphore state).

Return value

ER wai_sem (ID semid);

MOVW AX, #semid
CALL !!_wai_sem

I/O Parameter Description

I ID semid; ID number of the semaphore from which resource is acquired.

Waiting State for a Semaphore State Cancel Operation Return Value

The resource was returned to the target semaphore as a result of issuing sig_sem. E_OK

The resource was returned to the target semaphore as a result of issuing isig_sem. E_OK

Forced release from waiting (accept rel_wai while waiting). E_RLWAI

Forced release from waiting (accept irel_wai while waiting). E_RLWAI

Macro Value Description

E_OK 0 Normal completion.

E_RLWAI -49 Forced release from waiting (accept rel_wai/irel_wai while waiting).

RI78V4 CHAPTER 12 SERVICE CALLS

R20UT0511EJ0101 Rev.1.01 Page 167 of 272
Apr 01, 2012

pol_sem

Outline

Acquire semaphore resource (polling).

C format

Assembly format

Parameter(s)

Explanation

This service call acquires a resource from the semaphore specified by parameter semid (subtracts 0x1 from the
semaphore counter).

If a resource could not be acquired from the target semaphore (semaphore counter is set to 0x0) when this service call
is issued, the counter manipulation processing is not performed but "E_TMOUT" is returned.

Return value

ER pol_sem (ID semid);

MOVW AX, #semid
CALL !!_pol_sem

I/O Parameter Description

I ID semid; ID number of the semaphore from which resource is acquired.

Macro Value Description

E_OK 0 Normal completion.

E_TMOUT -50 Polling failure.

RI78V4 CHAPTER 12 SERVICE CALLS

R20UT0511EJ0101 Rev.1.01 Page 168 of 272
Apr 01, 2012

twai_sem

Outline

Acquire semaphore resource (with timeout).

C format

Assembly format

Parameter(s)

Explanation

This service call acquires a resource from the semaphore specified by parameter semid (subtracts 0x1 from the
semaphore counter).

If a resource could not be acquired from the target semaphore (semaphore counter is set to 0x0) when this service call
is issued, the counter manipulation processing is not performed but the invoking task is queued to the target semaphore
wait queue in the order of resource acquisition request (FIFO order).

As a result, the invoking task is unlinked from the ready queue and is moved from the RUNNING state to the WAITING
state (waiting state for a semaphore resource).

ER twai_sem (ID semid, TMO tmout);

MOVW AX, #tmout_hi
PUSH AX
MOVW AX, #tmout_lo
PUSH AX
MOVW AX, #semid
CALL !!_twai_sem
addw sp, #04H

I/O Parameter Description

I ID semid; ID number of the semaphore from which resource is acquired.

I TMO tmout;

Specified timeout (unit: ticks).

TMO_FEVR: Waiting forever.
TMO_POL: Polling.
Value: Specified timeout.

Waiting State for a Semaphore Resource Cancel Operation Return Value

The resource was returned to the target semaphore as a result of issuing sig_sem. E_OK

The resource was returned to the target semaphore as a result of issuing isig_sem. E_OK

Forced release from waiting (accept rel_wai while waiting). E_RLWAI

Forced release from waiting (accept irel_wai while waiting). E_RLWAI

Polling failure or timeout. E_TMOUT

RI78V4 CHAPTER 12 SERVICE CALLS

R20UT0511EJ0101 Rev.1.01 Page 169 of 272
Apr 01, 2012

Note When TMO_FEVR is specified for wait time tmout, processing equivalent to wai_sem will be executed. When
TMO_POL is specified, processing equivalent to pol_sem will be executed.

Return value

Macro Value Description

E_OK 0 Normal completion.

E_RLWAI -49 Forced release from waiting (accept rel_wai/irel_wai while waiting).

E_TMOUT -50 Polling failure or timeout.

RI78V4 CHAPTER 12 SERVICE CALLS

R20UT0511EJ0101 Rev.1.01 Page 170 of 272
Apr 01, 2012

ref_sem

Outline

Reference semaphore state.

C format

Assembly format

Parameter(s)

Explanation

Stores semaphore state packet (such as existence of waiting tasks) of the semaphore specified by parameter semid in
the area specified by parameter pk_rsem.

Note For details about the semaphore state packet, refer to "12.5.2 Semaphore state packet".

Return value

ER ref_sem (ID semid, T_RSEM *pk_rsem);

MOV A, ES
MOV C, A
MOVW DE, #pk_rsem_lo
PUSH BC
PUSH DE
MOVW AX, #semid
CALL !!_ref_sem
addw sp, #04H

I/O Parameter Description

I ID semid; ID number of the semaphore to be referenced.

O T_RSEM *pk_rsem; Pointer to the packet returning the semaphore state.

Macro Value Description

E_OK 0 Normal completion.

RI78V4 CHAPTER 12 SERVICE CALLS

R20UT0511EJ0101 Rev.1.01 Page 171 of 272
Apr 01, 2012

12.9 Synchronization and Communication Functions (Eventflags)

The following lists the service calls provided by the RI78V4 as the synchronization and communication functions (event-
flags).

Table 12-11 Synchronization and Communication Functions (Eventflags)

Service Call Function Origin of Service Call

set_flg Set eventflag. Task, Non-task

iset_flg Set eventflag. Task, Non-task

clr_flg Clear eventflag. Task, Non-task

wai_flg Wait for eventflag (waiting forever). Task

pol_flg Wait for eventflag (polling). Task, Non-task

twai_flg Wait for eventflag (with timeout). Task

ref_flg Reference eventflag state. Task, Non-task

RI78V4 CHAPTER 12 SERVICE CALLS

R20UT0511EJ0101 Rev.1.01 Page 172 of 272
Apr 01, 2012

set_flg
iset_flg

Outline

Set eventflag.

C format

Assembly format

Parameter(s)

Explanation

These service calls set the result of ORing the bit pattern of the eventflag specified by parameter flgid and the bit pattern
specified by parameter setptn as the bit pattern of the target eventflag.

If the required condition of the task queued to the target eventflag wait queue is satisfied when this service call is issued,
the relevant task is unlinked from the wait queue at the same time as bit pattern setting processing.

As a result, the relevant task is moved from the WAITING state (waiting state for an eventflag) to the READY state, or
from the WAITING-SUSPENDED state to the SUSPENDED state.

Note 1 If the task linked in the wait queue is moved to the READY state after this service call is issued, this service call
also re-queues the task at the end of the ready queue corresponding to the priority of the task.

Note 2 If the bit pattern set to the target eventflag is B'1100 and the bit pattern specified by parameter setptn is B'1010
when this service call is issued, the bit pattern of the target eventflag is set to B'1110.

ER set_flg (ID flgid, FLGPTN setptn);

ER iset_flg (ID flgid, FLGPTN setptn);

MOVW AX, #setptn
PUSH AX
MOVW AX, #flgid
CALL !!_set_flg
POP AX

MOVW AX, #setptn
PUSH AX
MOVW AX, #flgid
CALL !!_iset_flg
POP AX

I/O Parameter Description

I ID flgid; ID number of the eventflag to be set.

I FLGPTN setptn; Bit pattern to set (16 bits).

RI78V4 CHAPTER 12 SERVICE CALLS

R20UT0511EJ0101 Rev.1.01 Page 173 of 272
Apr 01, 2012

Return value

Macro Value Description

E_OK 0 Normal completion.

RI78V4 CHAPTER 12 SERVICE CALLS

R20UT0511EJ0101 Rev.1.01 Page 174 of 272
Apr 01, 2012

clr_flg

Outline

Clear eventflag.

C format

Assembly format

Parameter(s)

Explanation

This service call sets the result of ANDing the bit pattern set to the eventflag specified by parameter flgid and the bit
pattern specified by parameter clrptn as the bit pattern of the target eventflag.

Note 1 This service call does not perform queuing of clear requests. If the bit pattern has been cleared, therefore, no
processing is performed but it is not handled as an error.

Note 2 If the bit pattern set to the target eventflag is B'1100 and the bit pattern specified by parameter clrptn is B'1010
when this service call is issued, the bit pattern of the target eventflag is set to B'1110.

Note 3 This service call does not cancel tasks in the waiting state for an eventflag.

Return value

ER clr_flg (ID flgid, FLGPTN clrptn);

MOVW AX, #clrptn
PUSH AX
MOVW AX, #flgid
CALL !!_clr_flg
POP AX

I/O Parameter Description

I ID flgid; ID number of the eventflag to be cleared.

I FLGPTN clrptn; Bit pattern to clear (16 bits).

Macro Value Description

E_OK 0 Normal completion.

RI78V4 CHAPTER 12 SERVICE CALLS

R20UT0511EJ0101 Rev.1.01 Page 175 of 272
Apr 01, 2012

wai_flg

Outline

Wait for eventflag (waiting forever).

C format

Assembly format

Parameter(s)

Explanation

This service call checks whether the bit pattern specified by parameter waiptn and the bit pattern that satisfies the
required condition specified by parameter wfmode are set to the eventflag specified by parameter flgid.

If a bit pattern that satisfies the required condition has been set for the target eventflag, the bit pattern of the target
eventflag is stored in the area specified by parameter p_flgptn.

If the bit pattern of the target eventflag does not satisfy the required condition when this service call is issued, the
invoking task is queued to the target eventflag wait queue.

As a result, the invoking task is unlinked from the ready queue and is moved from the RUNNING state to the WAITING
state (waiting state for an eventflag).

ER wai_flg (ID flgid, FLGPTN waiptn, MODE wfmode, FLGPTN *p_flgptn);

MOV A, ES
MOV C, A
MOVW DE, #p_flgptn_lo
PUSH BC
PUSH DE
MOVW AX, #wfmode
PUSH AX
MOVW AX, #waiptn
PUSH AX
MOVW AX, #flgid
CALL !!_wai_flg
addw sp, #08H

I/O Parameter Description

I ID flgid; ID number of the eventflag wait for.

I FLGPTN waiptn; Wait bit pattern (16 bits).

I MODE wfmode;

Wait mode.

TWF_ANDW: AND waiting condition.
TWF_ORW: OR waiting condition.

O FLGPTN *p_flgptn; Bit pattern causing a task to be released from waiting.

RI78V4 CHAPTER 12 SERVICE CALLS

R20UT0511EJ0101 Rev.1.01 Page 176 of 272
Apr 01, 2012

The following shows the specification format of required condition wfmode.

- wfmode = TWF_ANDW
Checks whether all of the bits to which 1 is set by parameter waiptn are set as the target eventflag.

- wfmode = TWF_ORW
Checks which bit, among bits to which 1 is set by parameter waiptn, is set as the target eventflag.

Note 1 In the RI78V4, the number of tasks that can be queued to the eventflag wait queue is one. If this service call is
issued for the eventflag to which a task is queued, therefore, "E_ILUSE" is returned regardless of whether or
not the required condition is immediately satisfied.

Note 2 The RI78V4 performs bit pattern clear processing (0x0 setting) when the required condition of the target
eventflag (TA_CLR attribute) is satisfied.

Return value

Waiting State for an Eventflag Cancel Operation Return Value

A bit pattern that satisfies the required condition was set to the target eventflag as a result of
issuing set_flg.

E_OK

A bit pattern that satisfies the required condition was set to the target eventflag as a result of
issuing iset_flg.

E_OK

Forced release from waiting (accept rel_wai while waiting). E_RLWAI

Forced release from waiting (accept irel_wai while waiting). E_RLWAI

Macro Value Description

E_OK 0 Normal completion.

E_ILUSE -28
Illegal service call use (there is already a task waiting for an eventflag with the
TA_WSGL attribute).

E_RLWAI -49 Forced release from waiting (accept rel_wai/irel_wai while waiting).

RI78V4 CHAPTER 12 SERVICE CALLS

R20UT0511EJ0101 Rev.1.01 Page 177 of 272
Apr 01, 2012

pol_flg

Outline

Wait for eventflag (polling).

C format

Assembly format

Parameter(s)

Explanation

This service call checks whether the bit pattern specified by parameter waiptn and the bit pattern that satisfies the
required condition specified by parameter wfmode are set to the eventflag specified by parameter flgid.

If the bit pattern that satisfies the required condition has been set to the target eventflag, the bit pattern of the target
eventflag is stored in the area specified by parameter p_flgptn.

If the bit pattern of the target eventflag does not satisfy the required condition when this service call is issued,
"E_TMOUT" is returned.

The following shows the specification format of required condition wfmode.

- wfmode = TWF_ANDW
Checks whether all of the bits to which 1 is set by parameter waiptn are set as the target eventflag.

ER pol_flg (ID flgid, FLGPTN waiptn, MODE wfmode, FLGPTN *p_flgptn);

MOV A, ES
MOV C, A
MOVW DE, #p_flgptn_lo
PUSH BC
PUSH DE
MOVW AX, #wfmode
PUSH AX
MOVW AX, #waiptn
PUSH AX
MOVW AX, #flgid
CALL !!_pol_flg
addw sp, #08H

I/O Parameter Description

I ID flgid; ID number of the eventflag wait for.

I FLGPTN waiptn; Wait bit pattern (16 bits).

I MODE wfmode;

Wait mode.

TWF_ANDW: AND waiting condition.
TWF_ORW: OR waiting condition.

O FLGPTN *p_flgptn; Bit pattern causing a task to be released from waiting.

RI78V4 CHAPTER 12 SERVICE CALLS

R20UT0511EJ0101 Rev.1.01 Page 178 of 272
Apr 01, 2012

- wfmode = TWF_ORW
Checks which bit, among bits to which 1 is set by parameter waiptn, is set as the target eventflag.

Note 1 In the RI78V4, the number of tasks that can be queued to the eventflag wait queue is one. If this service call is
issued for the eventflag to which a task is queued, therefore, "E_ILUSE" is returned regardless of whether or
not the required condition is immediately satisfied.

Note 2 The RI78V4 performs bit pattern clear processing (0x0 setting) when the required condition of the target
eventflag (TA_CLR attribute) is satisfied.

Note 3 In the RI78V4, the number of tasks that can be queued to the eventflag wait queue is one. If this service call is
issued for the eventflag to which a task is queued, therefore, "E_ILUSE" is returned regardless of whether or
not the required condition is immediately satisfied.

Note 4 The RI78V4 performs bit pattern clear processing (0x0 setting) when the required condition of the target
eventflag (TA_CLR attribute) is satisfied.

Return value

Macro Value Description

E_OK 0 Normal completion.

E_ILUSE -28
Illegal service call use (there is already a task waiting for an eventflag with the
TA_WSGL attribute).

E_TMOUT -50 Polling failure.

RI78V4 CHAPTER 12 SERVICE CALLS

R20UT0511EJ0101 Rev.1.01 Page 179 of 272
Apr 01, 2012

twai_flg

Outline

Wait for eventflag (with timeout).

C format

Assembly format

Parameter(s)

ER twai_flg (ID flgid, FLGPTN waiptn, MODE wfmode, FLGPTN *p_flgptn, TMO tmout
);

MOVW AX, #tmout_hi
PUSH AX
MOVW AX, #tmout_lo
PUSH AX
MOV A, ES
MOV C, A
MOVW DE, #p_flgptn_lo
PUSH BC
PUSH DE
MOVW AX, #wfmode
PUSH AX
MOVW AX, #waiptn
PUSH AX
MOVW AX, #flgid
CALL !!_twai_flg
addw sp, #0CH

I/O Parameter Description

I ID flgid; ID number of the eventflag wait for.

I FLGPTN waiptn; Wait bit pattern (16 bits).

I MODE wfmode;

Wait mode.

TWF_ANDW: AND waiting condition.
TWF_ORW: OR waiting condition.

O FLGPTN *p_flgptn; Bit pattern causing a task to be released from waiting.

I TMO tmout;

Specified timeout (unit: ticks).

TMO_FEVR: Waiting forever.
TMO_POL: Polling.
Value: Specified timeout.

RI78V4 CHAPTER 12 SERVICE CALLS

R20UT0511EJ0101 Rev.1.01 Page 180 of 272
Apr 01, 2012

Explanation

This service call checks whether the bit pattern specified by parameter waiptn and the bit pattern that satisfies the
required condition specified by parameter wfmode are set to the eventflag specified by parameter flgid.

If the bit pattern that satisfies the required condition has been set to the target eventflag, the bit pattern of the target
eventflag is stored in the area specified by parameter p_flgptn.

If the bit pattern of the target eventflag does not satisfy the required condition when this service call is issued, the
invoking task is queued to the target eventflag wait queue.

As a result, the invoking task is unlinked from the ready queue and is moved from the RUNNING state to the WAITING
state (waiting state for an eventflag).

The waiting state for an eventflag is cancelled in the following cases, and then moved to the READY state.

The following shows the specification format of required condition wfmode.

- wfmode = TWF_ANDW
Checks whether all of the bits to which 1 is set by parameter waiptn are set as the target eventflag.

- wfmode = TWF_ORW
Checks which bit, among bits to which 1 is set by parameter waiptn, is set as the target eventflag.

Note 1 In the RI78V4, the number of tasks that can be queued to the eventflag wait queue is one. If this service call is
issued for the eventflag to which a task is queued, therefore, "E_ILUSE" is returned regardless of whether or
not the required condition is immediately satisfied.

Note 2 The RI78V4 performs bit pattern clear processing (0x0 setting) when the required condition of the target
eventflag (TA_CLR attribute) is satisfied.

Note 3 When TMO_FEVR is specified for wait time tmout, processing equivalent to wai_flg will be executed. When
TMO_POL is specified, processing equivalent to pol_flg will be executed.

Return value

Waiting State for an Eventflag Cancel Operation Return Value

A bit pattern that satisfies the required condition was set to the target eventflag as a result of
issuing set_flg.

E_OK

A bit pattern that satisfies the required condition was set to the target eventflag as a result of
issuing iset_flg.

E_OK

Forced release from waiting (accept rel_wai while waiting). E_RLWAI

Forced release from waiting (accept irel_wai while waiting). E_RLWAI

Polling failure or timeout. E_TMOUT

Macro Value Description

E_OK 0 Normal completion.

E_ILUSE -28
Illegal service call use (there is already a task waiting for an eventflag with the
TA_WSGL attribute).

E_RLWAI -49 Forced release from waiting (accept rel_wai/irel_wai while waiting).

E_TMOUT -50 Polling failure or timeout.

RI78V4 CHAPTER 12 SERVICE CALLS

R20UT0511EJ0101 Rev.1.01 Page 181 of 272
Apr 01, 2012

ref_flg

Outline

Reference eventflag state.

C format

Assembly format

Parameter(s)

Explanation

Stores eventflag state packet (such as existence of waiting tasks) of the eventflag specified by parameter flgid in the
area specified by parameter pk_rflg.

Note For details about the eventflag state packet, refer to "12.5.3 Eventflag state packet".

Return value

ER ref_flg (ID flgid, T_RFLG *pk_rflg);

MOV A, ES
MOV C, A
MOVW DE, #pk_rflg_lo
PUSH BC
PUSH DE
MOVW AX, #flgid
CALL !!_ref_flg
addw sp, #04H

I/O Parameter Description

I ID flgid; ID number of the eventflag to be referenced.

O T_RFLG *pk_rflg; Pointer to the packet returning the eventflag state.

Macro Value Description

E_OK 0 Normal completion.

RI78V4 CHAPTER 12 SERVICE CALLS

R20UT0511EJ0101 Rev.1.01 Page 182 of 272
Apr 01, 2012

12.10 Synchronization and Communication Functions (Mailboxes)

The following lists the service calls provided by the RI78V4 as the synchronization and communication functions (mail-
boxes).

Table 12-12 Synchronization and Communication Functions (Mailboxes)

Service Call Function Origin of Service Call

snd_mbx Send to mailbox. Task, Non-task

rcv_mbx Receive from mailbox (waiting forever). Task

prcv_mbx Receive from mailbox (polling). Task, Non-task

trcv_mbx Receive from mailbox (with timeout). Task

ref_mbx Reference mailbox state. Task, Non-task

RI78V4 CHAPTER 12 SERVICE CALLS

R20UT0511EJ0101 Rev.1.01 Page 183 of 272
Apr 01, 2012

snd_mbx

Outline

Send to mailbox.

C format

Assembly format

Parameter(s)

Explanation

This service call transmits the message specified by parameter pk_msg to the mailbox specified by parameter mbxid
(queues the message in the wait queue).

If a task is queued to the target mailbox wait queue when this service call is issued, the message is not queued but
handed over to the relevant task (first task of the wait queue).

As a result, the relevant task is unlinked from the wait queue and is moved from the WAITING state (receiving waiting
for a mailbox) to the READY state, or from the WAITING-SUSPENDED state to the SUSPENDED state.

Note 1 If the first task of the wait queue is moved to the READY state after this service call is issued, this service call
also re-queues the task at the end of the ready queue corresponding to the priority of the task.

Note 2 Messages are queued to the target mailbox wait queue in the order defined by Attribute (queuing method):
mbxatr during configuration (FIFO order or priority order).

Note 3 With the RI78V4 mailbox, only the start address of the message is handed over to the receiving processing
program, but the message contents are not copied to a separate area. The message contents can therefore be
rewritten even after this service call is issued.

Note 4 For details about the message packet, refer to "12.5.4 Message packet".

ER snd_mbx (ID mbxid, T_MSG *pk_msg);

MOV A, ES
MOV C, A
MOVW DE, #pk_msg_lo
PUSH BC
PUSH DE
MOVW AX, #mbxid
CALL !!_and_mbx
addw sp, #04H

I/O Parameter Description

I ID mbxid; ID number of the mailbox to which the message is sent.

I T_MSG *pk_msg; Start address of the message packet to be sent to the mailbox.

RI78V4 CHAPTER 12 SERVICE CALLS

R20UT0511EJ0101 Rev.1.01 Page 184 of 272
Apr 01, 2012

Return value

Macro Value Description

E_OK 0 Normal completion.

RI78V4 CHAPTER 12 SERVICE CALLS

R20UT0511EJ0101 Rev.1.01 Page 185 of 272
Apr 01, 2012

rcv_mbx

Outline

Receive from mailbox (waiting forever).

C format

Assembly format

Parameter(s)

Explanation

This service call receives a message from the mailbox specified by parameter mbxid, and stores its start address in the
area specified by parameter ppk_msg.

If the message could not be received from the target mailbox (no messages were queued in the wait queue) when this
service call is issued, message reception processing is not executed but the invoking task is queued to the target mailbox
wait queue in the order of message reception request (FIFO order).

As a result, the invoking task is unlinked from the ready queue and is moved from the RUNNING state to the WAITING
state (receiving waiting state for a mailbox).

Note For details about the message packet, refer to "12.5.4 Message packet".

ER rcv_mbx (ID mbxid, T_MSG **ppk_msg);

MOV A, ES
MOV C, A
MOVW DE, #ppk_msg_lo
PUSH BC
PUSH DE
MOVW AX, #mbxid
CALL !!_rcv_msg
addw sp, #04H

I/O Parameter Description

I ID mbxid; ID number of the mailbox from which a message is received.

O T_MSG **ppk_msg; Start address of the message packet received from the mailbox.

Receiving Waiting State for a mailbox Cancel Operation Return Value

A message was transmitted to the target mailbox as a result of issuing snd_mbx. E_OK

Forced release from waiting (accept rel_wai while waiting). E_RLWAI

Forced release from waiting (accept irel_wai while waiting). E_RLWAI

RI78V4 CHAPTER 12 SERVICE CALLS

R20UT0511EJ0101 Rev.1.01 Page 186 of 272
Apr 01, 2012

Return value

Macro Value Description

E_OK 0 Normal completion.

E_RLWAI -49 Forced release from waiting (accept rel_wai/irel_wai while waiting).

RI78V4 CHAPTER 12 SERVICE CALLS

R20UT0511EJ0101 Rev.1.01 Page 187 of 272
Apr 01, 2012

prcv_mbx

Outline

Receive from mailbox (polling).

C format

Assembly format

Parameter(s)

Explanation

This service call receives a message from the mailbox specified by parameter mbxid, and stores its start address in the
area specified by parameter ppk_msg.

If the message could not be received from the target mailbox (no messages were queued in the wait queue) when this
service call is issued, message reception processing is not executed but "E_TMOUT" is returned.

Note For details about the message packet, refer to "12.5.4 Message packet".

Return value

ER prcv_mbx (ID mbxid, T_MSG **ppk_msg);

MOV A, ES
MOV C, A
MOVW DE, #ppk_msg_lo
PUSH BC
PUSH DE
MOVW AX, #mbxid
CALL !!_prcv_mbx
addw sp, #04H

I/O Parameter Description

I ID mbxid; ID number of the mailbox from which a message is received.

O T_MSG **ppk_msg; Start address of the message packet received from the mailbox.

Macro Value Description

E_OK 0 Normal completion.

E_TMOUT -50 Polling failure.

RI78V4 CHAPTER 12 SERVICE CALLS

R20UT0511EJ0101 Rev.1.01 Page 188 of 272
Apr 01, 2012

trcv_mbx

Outline

Receive from mailbox (with timeout).

C format

Assembly format

Parameter(s)

Explanation

This service call receives a message from the mailbox specified by parameter mbxid, and stores its start address in the
area specified by parameter ppk_msg.

If the message could not be received from the target mailbox (no messages were queued in the wait queue) when this
service call is issued, message reception processing is not executed but the invoking task is queued to the target mailbox
wait queue in the order of message reception request (FIFO order).

As a result, the invoking task is unlinked from the ready queue and is moved from the RUNNING state to the WAITING
state (receiving waiting state for a mailbox).

The receiving waiting state for a mailbox is cancelled in the following cases, and then moved to the READY state.

ER trcv_mbx (ID mbxid, T_MSG **ppk_msg, TMO tmout);

MOVW AX, #tmout_hi
PUSH AX
MOVW AX, #tmout_lo
PUSH AX
MOV A, ES
MOV C, A
MOVW DE, #ppk_msg_lo
PUSH BC
PUSH DE
MOVW AX, #mbxid
CALL !!_trcv_mbx
addw sp, #08H

I/O Parameter Description

I ID mbxid; ID number of the mailbox from which a message is received.

O T_MSG **ppk_msg; Start address of the message packet received from the mailbox.

I TMO tmout;

Specified timeout (unit: ticks).

TMO_FEVR: Waiting forever.
TMO_POL: Polling.
Value: Specified timeout.

RI78V4 CHAPTER 12 SERVICE CALLS

R20UT0511EJ0101 Rev.1.01 Page 189 of 272
Apr 01, 2012

Note 1 When TMO_FEVR is specified for wait time tmout, processing equivalent to rcv_mbx will be executed. When
TMO_POL is specified, processing equivalent to prcv_mbx will be executed.

Note 2 For details about the message packet, refer to "12.5.4 Message packet".

Return value

Receiving Waiting State for a mailbox Cancel Operation Return Value

A message was transmitted to the target mailbox as a result of issuing snd_mbx. E_OK

Forced release from waiting (accept rel_wai while waiting). E_RLWAI

Forced release from waiting (accept irel_wai while waiting). E_RLWAI

Polling failure or timeout. E_TMOUT

Macro Value Description

E_OK 0 Normal completion.

E_RLWAI -49 Forced release from waiting (accept rel_wai/irel_wai while waiting).

E_TMOUT -50 Polling failure or timeout.

RI78V4 CHAPTER 12 SERVICE CALLS

R20UT0511EJ0101 Rev.1.01 Page 190 of 272
Apr 01, 2012

ref_mbx

Outline

Reference mailbox state.

C format

Assembly format

Parameter(s)

Explanation

Stores mailbox state packet (such as existence of waiting tasks) of the mailbox specified by parameter mbxid in the area
specified by parameter pk_rmbx.

Note For details about the mailbox state packet, refer to "12.5.5 Mailbox state packet".

Return value

ER ref_mbx (ID mbxid, T_RMBX *pk_rmbx);

MOV A, ES
MOV C, A
MOVW DE, #pk_rmbx_lo
PUSH BC
PUSH DE
MOVW AX, #mbxid
CALL !!_ref_mbx
addw sp, #04H

I/O Parameter Description

I ID mbxid; ID number of the mailbox to be referenced.

O T_RMBX *pk_rmbx; Pointer to the packet returning the mailbox state.

Macro Value Description

E_OK 0 Normal completion.

RI78V4 CHAPTER 12 SERVICE CALLS

R20UT0511EJ0101 Rev.1.01 Page 191 of 272
Apr 01, 2012

12.11 Memory Pool Management Functions

The following lists the service calls provided by the RI78V4 as the memory pool management functions.

Table 12-13 Memory Pool Management Functions

Service Call Function Origin of Service Call

get_mpf Acquire fixed-sized memory block (waiting forever). Task

pget_mpf Acquire fixed-sized memory block (polling). Task, Non-task

tget_mpf Acquire fixed-sized memory block (with timeout). Task

rel_mpf Release fixed-sized memory block. Task, Non-task

ref_mpf Reference fixed-sized memory pool state. Task, Non-task

RI78V4 CHAPTER 12 SERVICE CALLS

R20UT0511EJ0101 Rev.1.01 Page 192 of 272
Apr 01, 2012

get_mpf

Outline

Acquire fixed-sized memory block (waiting forever).

C format

Assembly format

Parameter(s)

Explanation

This service call acquires the memory block from the fixed-sized memory pool specified by parameter mpfid and stores
the start address in the area specified by parameter p_blk.

If a memory block could not be acquired from the target fixed-sized memory pool (no available memory blocks exist)
when this service call is issued, memory block acquisition processing is not performed but the invoking task is queued to
the target fixed-sized memory pool wait queue in the order of memory block acquisition request (FIFO order).

As a result, the invoking task is unlinked from the ready queue and is moved from the RUNNING state to the WAITING
state (waiting state for a fixed-sized memory block).

The waiting state for a fixed-sized memory block is cancelled in the following cases, and then moved to the READY
state.

ER get_mpf (ID mpfid, VP *p_blk);

MOV A, ES
MOV C, A
MOVW DE, #p_blk_lo
PUSH BC
PUSH DE
MOVW AX, #mpfid
CALL !!_get_mpf
addw sp, #04H

I/O Parameter Description

I ID mpfid;
ID number of the fixed-sized memory pool from which a memory block
is acquired.

O VP *p_blk; Start address of the acquired memory block.

Waiting State for a Fixed-sized Memory Block Cancel Operation Return Value

A memory block was returned to the target fixed-sized memory pool as a result of issuing
rel_mpf.

E_OK

Forced release from waiting (accept rel_wai while waiting). E_RLWAI

Forced release from waiting (accept irel_wai while waiting). E_RLWAI

RI78V4 CHAPTER 12 SERVICE CALLS

R20UT0511EJ0101 Rev.1.01 Page 193 of 272
Apr 01, 2012

Return value

Macro Value Description

E_OK 0 Normal completion.

E_RLWAI -49 Forced release from waiting (accept rel_wai/irel_wai while waiting).

RI78V4 CHAPTER 12 SERVICE CALLS

R20UT0511EJ0101 Rev.1.01 Page 194 of 272
Apr 01, 2012

pget_mpf

Outline

Acquire fixed-sized memory block (polling).

C format

Assembly format

Parameter(s)

Explanation

This service call acquires the memory block from the fixed-sized memory pool specified by parameter mpfid and stores
the start address in the area specified by parameter p_blk.

If a memory block could not be acquired from the target fixed-sized memory pool (no available memory blocks exist)
when this service call is issued, memory block acquisition processing is not performed but "E_TMOUT" is returned.

Return value

ER pget_mpf (ID mpfid, VP *p_blk);

MOV A, ES
MOV C, A
MOVW DE, #p_blk_lo
PUSH BC
PUSH DE
MOVW AX, #mpfid
CALL !!_pget_mpf
addw sp, #04H

I/O Parameter Description

I ID mpfid;
ID number of the fixed-sized memory pool from which a memory block
is acquired.

O VP *p_blk; Start address of the acquired memory block.

Macro Value Description

E_OK 0 Normal completion.

E_TMOUT -50 Polling failure.

RI78V4 CHAPTER 12 SERVICE CALLS

R20UT0511EJ0101 Rev.1.01 Page 195 of 272
Apr 01, 2012

tget_mpf

Outline

Acquire fixed-sized memory block (with timeout).

C format

Assembly format

Parameter(s)

Explanation

This service call acquires the memory block from the fixed-sized memory pool specified by parameter mpfid and stores
the start address in the area specified by parameter p_blk.

If a memory block could not be acquired from the target fixed-sized memory pool (no available memory blocks exist)
when this service call is issued, memory block acquisition processing is not performed but the invoking task is queued to
the target fixed-sized memory pool wait queue in the order of memory block acquisition request (FIFO order).

As a result, the invoking task is unlinked from the ready queue and is moved from the RUNNING state to the WAITING
state (waiting state for a fixed-sized memory block).

The waiting state for a fixed-sized memory block is cancelled in the following cases, and then moved to the READY
state.

ER tget_mpf (ID mpfid, VP *p_blk, TMO tmout);

MOVW AX, #tmout_hi
PUSH AX
MOVW AX, #tmout_lo
PUSH AX
MOV A, ES
MOV C, A
MOVW DE, #p_blk_lo
PUSH BC
PUSH DE
MOVW AX, #mpfid
CALL !!_tget_mpf
addw sp, #08H

I/O Parameter Description

I ID mpfid;
ID number of the fixed-sized memory pool from which a memory block
is acquired.

O VP *p_blk; Start address of the acquired memory block.

I TMO tmout;

Specified timeout (unit: ticks).

TMO_FEVR: Waiting forever.
TMO_POL: Polling.
Value: Specified timeout.

RI78V4 CHAPTER 12 SERVICE CALLS

R20UT0511EJ0101 Rev.1.01 Page 196 of 272
Apr 01, 2012

Note When TMO_FEVR is specified for wait time tmout, processing equivalent to get_mpf will be executed. When
TMO_POL is specified, processing equivalent to pget_mpf will be executed.

Return value

Waiting State for a Fixed-sized Memory Block Cancel Operation Return Value

A memory block was returned to the target fixed-sized memory pool as a result of issuing
rel_mpf.

E_OK

Forced release from waiting (accept rel_wai while waiting). E_RLWAI

Forced release from waiting (accept irel_wai while waiting). E_RLWAI

Polling failure or timeout. E_TMOUT

Macro Value Description

E_OK 0 Normal completion.

E_RLWAI -49 Forced release from waiting (accept rel_wai/irel_wai while waiting).

E_TMOUT -50 Polling failure or timeout.

RI78V4 CHAPTER 12 SERVICE CALLS

R20UT0511EJ0101 Rev.1.01 Page 197 of 272
Apr 01, 2012

rel_mpf

Outline

Release fixed-sized memory block.

C format

Assembly format

Parameter(s)

Explanation

This service call returns the memory block specified by parameter blk to the fixed-sized memory pool specified by
parameter mpfid.

If a task is queued to the target fixed-sized memory pool wait queue when this service call is issued, memory block
return processing is not performed but memory blocks are returned to the relevant task (first task of wait queue).

As a result, the relevant task is unlinked from the wait queue and is moved from the WAITING state (waiting state for a
fixed-sized memory block) to the READY state, or from the WAITING-SUSPENDED state to the SUSPENDED state.

Note 1 If the first task of the wait queue is moved to the READY state after this service call is issued, this service call
also re-queues the task at the end of the ready queue corresponding to the priority of the task.

Note 2 The RI78V4 does not clear the memory blocks before returning them. The contents of the returned memory
blocks are therefore undefined.

ER rel_mpf (ID mpfid, VP blk);

MOV A, ES
MOV C, A
MOVW DE, #blk_lo
PUSH BC
PUSH DE
MOVW AX, #mpfid
CALL !!_rel_mpf
addw sp, #04H

I/O Parameter Description

I ID mpfid;
ID number of the fixed-sized memory pool to which the memory block is
released.

I VP blk; Start address of the memory block to be released.

RI78V4 CHAPTER 12 SERVICE CALLS

R20UT0511EJ0101 Rev.1.01 Page 198 of 272
Apr 01, 2012

Return value

Macro Value Description

E_OK 0 Normal completion.

RI78V4 CHAPTER 12 SERVICE CALLS

R20UT0511EJ0101 Rev.1.01 Page 199 of 272
Apr 01, 2012

ref_mpf

Outline

Reference fixed-sized memory pool state.

C format

Assembly format

Parameter(s)

Explanation

Stores fixed-sized memory pool state packet (such as existence of waiting tasks) of the fixed-sized memory pool
specified by parameter mpfid in the area specified by parameter pk_rmpf.

Note For details about the fixed-sized memory pool state packet, refer to "12.5.6 Fixed-sized memory pool state
packet".

Return value

ER ref_mpf (ID mpfid, T_RMPF *pk_rmpf);

MOV A, ES
MOV C, A
MOVW DE, #pk_rmpf_lo
PUSH BC
PUSH DE
MOVW AX, #mpfid
CALL !!_ref_mpf
addw sp, #04H

I/O Parameter Description

I ID mpfid; ID number of the fixed-sized memory pool to be referenced.

O T_RMPF *pk_rmpf; Pointer to the packet returning the fixed-sized memory pool state.

Macro Value Description

E_OK 0 Normal completion.

RI78V4 CHAPTER 12 SERVICE CALLS

R20UT0511EJ0101 Rev.1.01 Page 200 of 272
Apr 01, 2012

12.12 Time Management Functions

The following lists the service calls provided by the RI78V4 as the time management functions.

Table 12-14 Time Management Functions

Service Call Function Origin of Service Call

sta_cyc Start cyclic handler operation. Task, Non-task

stp_cyc Stop cyclic handler operation. Task, Non-task

ref_cyc Reference cyclic handler state. Task, Non-task

RI78V4 CHAPTER 12 SERVICE CALLS

R20UT0511EJ0101 Rev.1.01 Page 201 of 272
Apr 01, 2012

sta_cyc

Outline

Start cyclic handler operation.

C format

Assembly format

Parameter(s)

Explanation

This service call moves the cyclic handler specified by parameter cycid from the non-operational state (STP state) to
operational state (STA state).

As a result, the target cyclic handler is handled as an activation target of the RI78V4.

Note This service call does not perform queuing of start requests. If the target cyclic handler has been moved to the
operational state (STA state), only activation cycle re-set processing is executed.
The relative time interval from the output of this service call until the first activation request is output is always
the activation phase (activation cycle cyctim) using the output of this service call as the reference point.

[Cyclic handler activation image]

ER sta_cyc (ID cycid);

MOVW AX, #cycid
CALL !!_sta_cyc

I/O Parameter Description

I ID cycid; ID number of the cyclic handler operation to be started.

cyctimcyctim

Activation enabled by sta_cyc

Start

Activation disabled by stp_cyc

Creation (TA_STA attribute)

Activation enabled by sta_cyc

cyctim cyctim

cyctim

cyctim

cyctim

cyctim

Start Start Start Start

RI78V4 CHAPTER 12 SERVICE CALLS

R20UT0511EJ0101 Rev.1.01 Page 202 of 272
Apr 01, 2012

Return value

Macro Value Description

E_OK 0 Normal completion.

RI78V4 CHAPTER 12 SERVICE CALLS

R20UT0511EJ0101 Rev.1.01 Page 203 of 272
Apr 01, 2012

stp_cyc

Outline

Stop cyclic handler operation.

C format

Assembly format

Parameter(s)

Explanation

This service call moves the cyclic handler specified by parameter cycid from the operational state (STA state) to non-
operational state (STP state).
As a result, the target cyclic handler is excluded from activation targets of the RI78V4 until issuance of sta_cyc.

Note This service call does not perform queuing of stop requests. If the target cyclic handler has been moved to the
non-operational state (STP state), therefore, no processing is performed but it is not handled as an error.

Return value

ER stp_cyc (ID cycid);

MOVW AX, #cycid
CALL !!_stp_cyc

I/O Parameter Description

I ID cycid; ID number of the cyclic handler operation to be stopped.

Macro Value Description

E_OK 0 Normal completion.

RI78V4 CHAPTER 12 SERVICE CALLS

R20UT0511EJ0101 Rev.1.01 Page 204 of 272
Apr 01, 2012

ref_cyc

Outline

Reference cyclic handler state.

C format

Assembly format

Parameter(s)

Explanation

Stores cyclic handler state packet (such as current status) of the cyclic handler specified by parameter cycid in the area
specified by parameter pk_rcyc.

Note For details about the cyclic handler state packet, refer to "12.5.7 Cyclic handler state packet".

Return value

ER ref_cyc (ID cycid, T_RCYC *pk_rcyc);

MOV A, ES
MOV C, A
MOVW DE, #pk_rcyc_lo
PUSH BC
PUSH DE
MOVW AX, #cycid
CALL !!_ref_cyc
addw sp, #04H

I/O Parameter Description

I ID cycid; ID number of the cyclic handler to be referenced.

O T_RCYC *pk_rcyc; Pointer to the packet returning the cyclic handler state.

Macro Value Description

E_OK 0 Normal completion.

RI78V4 CHAPTER 12 SERVICE CALLS

R20UT0511EJ0101 Rev.1.01 Page 205 of 272
Apr 01, 2012

12.13 System State Management Functions

The following lists the service calls provided by the RI78V4 as the system state management functions.

Table 12-15 System State Management Functions

Service Call Function Origin of Service Call

rot_rdq Rotate task precedence. Task, Non-task

irot_rdq Rotate task precedence. Task, Non-task

get_tid Reference task ID in the RUNNING state. Task, Non-task

iget_tid Reference task ID in the RUNNING state. Task, Non-task

loc_cpu Lock the CPU. Task, Non-task

iloc_cpu Lock the CPU. Task, Non-task

unl_cpu Unlock the CPU. Task, Non-task

iunl_cpu Unlock the CPU. Task, Non-task

dis_dsp Disable dispatching. Task

ena_dsp Enable dispatching. Task

sns_ctx Reference contexts. Task, Non-task

sns_loc Reference CPU state. Task, Non-task

sns_dsp Reference dispatching state. Task, Non-task

sns_dpn Reference dispatch pending state. Task, Non-task

RI78V4 CHAPTER 12 SERVICE CALLS

R20UT0511EJ0101 Rev.1.01 Page 206 of 272
Apr 01, 2012

rot_rdq
irot_rdq

Outline

Rotate task precedence.

C format

Assembly format

Parameter(s)

Explanation

This service call re-queues the first task of the ready queue corresponding to the priority specified by parameter tskpri to
the end of the queue to change the task execution order explicitly.

Note 1 This service call does not perform queuing of rotation requests. If no task is queued to the ready queue
corresponding to the relevant priority, therefore, no processing is performed but it is not handled as an error.

Note 2 Round-robin scheduling can be implemented by issuing this service call via a cyclic handler in a constant
cycle.

Note 3 The ready queue is a hash table that uses priority as the key, and tasks that have entered an executable state
(READY state or RUNNING state) are queued in FIFO order.
Therefore, the scheduler realizes the RI78V4's Scheduling System by executing task detection processing
from the highest priority level of the ready queue upon activation, and upon detection of queued tasks, giving
the CPU use right to the first task of the proper priority level.

ER rot_rdq (PRI tskpri);

ER irot_rdq (PRI tskpri);

MOVW AX, #tskpri
CALL !!_rot_rdq

MOVW AX, #tskpri
CALL !!_irot_rdq

I/O Parameter Description

I PRI tskpri;

Priority of the tasks whose precedence is rotated.

TPRI_SELF: Current priority of the invoking task.
Value: Priority of the tasks whose precedence is rotated.

RI78V4 CHAPTER 12 SERVICE CALLS

R20UT0511EJ0101 Rev.1.01 Page 207 of 272
Apr 01, 2012

Return value

Macro Value Description

E_OK 0 Normal completion.

RI78V4 CHAPTER 12 SERVICE CALLS

R20UT0511EJ0101 Rev.1.01 Page 208 of 272
Apr 01, 2012

get_tid
iget_tid

Outline

Reference task ID in the RUNNING state.

C format

Assembly format

Parameter(s)

Explanation

These service calls store the ID of a task in the RUNNING state in the area specified by parameter p_tskid.

Note This service call stores TSK_NONE in the area specified by parameter p_tskid if no tasks that have entered the
RUNNING state exist (all tasks in the IDLE state).

Return value

ER get_tid (ID *p_tskid);

ER iget_tid (ID *p_tskid);

MOVW AX, #p_tskid_lo
MOVW BC, #p_tskid_hi
CALL !!_get_tid

MOVW AX, #p_tskid_lo
MOVW BC, #p_tskid_hi
CALL !!_iget_tid

I/O Parameter Description

O ID *p_tskid; ID number of the task in the RUNNING state.

Macro Value Description

E_OK 0 Normal completion.

RI78V4 CHAPTER 12 SERVICE CALLS

R20UT0511EJ0101 Rev.1.01 Page 209 of 272
Apr 01, 2012

loc_cpu
iloc_cpu

Outline

Lock the CPU.

C format

Assembly format

Parameter(s)

None.

Explanation

These service calls change the system status type to the CPU locked state.
As a result, maskable interrupt acknowledgment processing is prohibited during the interval from this service call is

issued until unl_cpu or iunl_cpu is issued, and service call issuance is also restricted.
If a maskable interrupt is created during the interval from this service call is issued until unl_cpu or iunl_cpu is issued,

the RI78V4 delays transition to the relevant interrupt processing (interrupt handler) until either unl_cpu or iunl_cpu is
issued.

The service calls that can be issued in the CPU locked state are limited to the one listed below.

Note 1 The CPU locked state changed by issuing this service call must be cancelled before the processing program
that issued this service call ends.

Note 2 This service call does not perform queuing of lock requests. If the system is in the CPU locked state, therefore,
no processing is performed but it is not handled as an error.

ER loc_cpu (void);

ER iloc_cpu (void);

CALL !!_loc_cpu

CALL !!_iloc_cpu

Service Call Function

loc_cpu, iloc_cpu Lock the CPU.

unl_cpu, iunl_cpu Unlock the CPU.

sns_ctx Reference contexts.

sns_loc Reference CPU state.

sns_dsp Reference dispatching state.

sns_dpn Reference dispatch pending state.

RI78V4 CHAPTER 12 SERVICE CALLS

R20UT0511EJ0101 Rev.1.01 Page 210 of 272
Apr 01, 2012

Note 3 The RI78V4 implements disabling of maskable interrupt acknowledgment bu manipulating the interrupt mask
flag register (MKxx) and the in-service priority flag (ISPx) of the program status word (PSW). Therefore,
manipulating of these registers from the processing program is prohibited from when this service call is issued
until unl_cpu or iunl_cpu is issued.

Return value

Macro Value Description

E_OK 0 Normal completion.

RI78V4 CHAPTER 12 SERVICE CALLS

R20UT0511EJ0101 Rev.1.01 Page 211 of 272
Apr 01, 2012

unl_cpu
iunl_cpu

Outline

Unlock the CPU.

C format

Assembly format

Parameter(s)

None.

Explanation

These service calls change the system status to the CPU unlocked state.
As a result, acknowledge processing of maskable interrupts prohibited through issuance of either loc_cpu or iloc_cpu is

enabled, and the restriction on service call issuance is released.
If a maskable interrupt is created during the interval from when either loc_cpu or iloc_cpu is issued until this service call

is issued, the RI78V4 delays transition to the relevant interrupt processing (interrupt handler) until this service call is
issued.

Note 1 This service call does not perform queuing of cancellation requests. If the system is in the CPU unlocked state,
therefore, no processing is performed but it is not handled as an error.

Note 2 The RI78V4 implements enabling of maskable interrupt acknowledgment bu manipulating the interrupt mask
flag register (MKxx) and the in-service priority flag (ISPx) of the program status word (PSW). Therefore,
manipulating of these registers from the processing program is prohibited from when loc_cpu or iloc_cpu is
issued until this service call is issued.

Return value

ER unl_cpu (void);

ER iunl_cpu (void);

CALL !!_unl_cpu

CALL !!_iunl_cpu

Macro Value Description

E_OK 0 Normal completion.

RI78V4 CHAPTER 12 SERVICE CALLS

R20UT0511EJ0101 Rev.1.01 Page 212 of 272
Apr 01, 2012

dis_dsp

Outline

Disable dispatching.

C format

Assembly format

Parameter(s)

None.

Explanation

This service call changes the system status to the dispatching disabled state.
As a result, dispatch processing (task scheduling) is disabled from when this service call is issued until ena_dsp is

issued.
If a service call (chg_pri, sig_sem, etc.) accompanying dispatch processing is issued during the interval from when this

service call is issued until ena_dsp is issued, the RI78V4 executes only processing such as queue manipulation, counter
manipulation, etc., and the actual dispatch processing is delayed until ena_dsp is issued, upon which the actual dispatch
processing is performed in batch.

Note 1 This service call does not perform queuing of disable requests. If the system is in the dispatching disabled
state, therefore, no processing is performed but it is not handled as an error.

Note 2 The dispatching disabled state changed by issuing this service call must be cancelled before the task that
issued this service call moves to the DORMANT state.

Return value

ER dis_dsp (void);

CALL !!_dis_dsp

Macro Value Description

E_OK 0 Normal completion.

RI78V4 CHAPTER 12 SERVICE CALLS

R20UT0511EJ0101 Rev.1.01 Page 213 of 272
Apr 01, 2012

ena_dsp

Outline

Enable dispatching.

C format

Assembly format

Parameter(s)

None.

Explanation

This service call changes the system status to the dispatching enabled state.
As a result, dispatch processing (task scheduling) that has been disabled by issuing dis_dsp is enabled.
If a service call (chg_pri, sig_sem, etc.) accompanying dispatch processing is issued during the interval from when

dis_dsp is issued until this service call is issued, the RI78V4 executes only processing such as queue manipulation,
counter manipulation, etc., and the actual dispatch processing is delayed until this service call is issued, upon which the
actual dispatch processing is performed in batch.

Note This service call does not perform queuing of enable requests. If the system is in the dispatching enabled state,
therefore, no processing is performed but it is not handled as an error.

Return value

ER ena_dsp (void);

CALL !!_ena_dsp

Macro Value Description

E_OK 0 Normal completion.

RI78V4 CHAPTER 12 SERVICE CALLS

R20UT0511EJ0101 Rev.1.01 Page 214 of 272
Apr 01, 2012

sns_ctx

Outline

Reference contexts.

C format

Assembly format

Parameter(s)

None.

Explanation

This service call acquires the context type of the processing program that issued this service call (non-task context or
task context).

When this service call is terminated normally, the acquired context type (TRUE: non-task context, FALSE: task context)
is returned.

Non-task contexts: cyclic handler, interrupt handler
Task contexts: task

Return value

BOOL sns_ctx (void);

CALL !!_sns_ctx

Macro Value Description

TRUE 1 Normal completion (Non-task contexts).

FALSE 0 Normal completion (Task contexts).

RI78V4 CHAPTER 12 SERVICE CALLS

R20UT0511EJ0101 Rev.1.01 Page 215 of 272
Apr 01, 2012

sns_loc

Outline

Reference CPU state.

C format

Assembly format

Parameter(s)

None.

Explanation

This service call acquires the system status type when this service call is issued (CPU locked state or CPU unlocked
state).

When this service call is terminated normally, the acquired system state type (TRUE: CPU locked state, FALSE: CPU
unlocked state) is returned.

Note The system enters the CPU locked state when loc_cpu or iloc_cpu is issued, and enters the CPU unlocked
state when unl_cpu or iunl_cpu is issued.

Return value

BOOL sns_loc (void);

CALL !!_sns_loc

Macro Value Description

TRUE 1 Normal completion (CPU locked state).

FALSE 0 Normal completion (CPU unlocked state).

RI78V4 CHAPTER 12 SERVICE CALLS

R20UT0511EJ0101 Rev.1.01 Page 216 of 272
Apr 01, 2012

sns_dsp

Outline

Reference dispatching state.

C format

Assembly format

Parameter(s)

None.

Explanation

This service call acquires the system status type when this service call is issued (dispatching disabled state or
dispatching enabled state).

When this service call is terminated normally, the acquired system state type (TRUE: dispatching disabled state,
FALSE: dispatching enabled state) is returned.

Note The system enters the dispatching disabled state when dis_dsp is issued, and enters the dispatching enabled
state when ena_dsp is issued.

Return value

BOOL sns_dsp (void);

CALL !!_sns_dsp

Macro Value Description

TRUE 1 Normal completion (dispatching disabled state).

FALSE 0 Normal completion (dispatching enabled state).

RI78V4 CHAPTER 12 SERVICE CALLS

R20UT0511EJ0101 Rev.1.01 Page 217 of 272
Apr 01, 2012

sns_dpn

Outline

Reference dispatch pending state.

C format

Assembly format

Parameter(s)

None.

Explanation

This service call acquires the system status type when this service call is issued (whether in dispatch pending state or
not).

When this service call is terminated normally, the acquired system state type (TRUE: dispatch pending state, FALSE:
dispatch not-pending state) is returned.

Note The dispatch pending state designates the state in which explicit execution of dispatch processing (task
scheduling processing) is prohibited by issuing either the dis_dsp, loc_cpu, or iloc_cpu service call, as well as
the state during which processing of a non-task is being executed.

Return value

BOOL sns_dpn (void);

CALL !!_sns_dpn

Macro Value Description

TRUE 1 Normal completion (dispatch pending state).

FALSE 0 Normal completion (other state).

RI78V4 CHAPTER 12 SERVICE CALLS

R20UT0511EJ0101 Rev.1.01 Page 218 of 272
Apr 01, 2012

12.14 System Configuration Management Functions

The following lists the service calls provided by the RI78V4 as the system configuration management functions.

Table 12-16 System Configuration Management Functions

Service Call Function Origin of Service Call

ref_ver Reference version information. Task, Non-task

RI78V4 CHAPTER 12 SERVICE CALLS

R20UT0511EJ0101 Rev.1.01 Page 219 of 272
Apr 01, 2012

ref_ver

Outline

Reference version information.

C format

Assembly format

Parameter(s)

Explanation

The service call stores version information packet (such as kernel maker’s code) to the area specified by parameter
pk_rver.

Note For details about the version information packet, refer to "12.5.8 Version information packet".

Return value

ER ref_ver (T_RVER *pk_rver);

MOV A, ES
MOV C, A
MOVW AX, #pk_rver_lo
CALL !!_ref_ver

I/O Parameter Description

O T_RVER *pk_rver; Pointer to the packet returning the version information.

Macro Value Description

E_OK 0 Normal completion.

RI78V4 CHAPTER 13 SYSTEM CONFIGURATION FILE

R20UT0511EJ0101 Rev.1.01 Page 220 of 272
Apr 01, 2012

CHAPTER 13 SYSTEM CONFIGURATION FILE

This chapter explains the coding method of the system configuration file required to output information files (system
information table file and system information header file) that contain data to be provided for the RI78V4.

13.1 Notation Method

The following shows the notation method of system configuration files.

- Character code
Create the system configuration file using ASCII code.
The CF78V4 distinguishes lower cases "a to z" and upper cases "A to Z".

Note For japanese language coding, Shit-JIS codes can be used only for comments.

- Comment
In a system configuration file, parts between /* and */ and parts from two successive slashes (//) to the line end are
regarded as comments.

- Numeric
In a system configuration file, words starting with a numeric value (0 to 9) are regarded as numeric values.
The CF78V4 distinguishes numeric values as follows.

Octal: Words starting with 0
Decimal: Words starting with a value other than 0
Hexadecimal: Words starting with 0x or 0X

Note Elements of a word are limited to numeric values 0 to 9.

- Object name
In a system configuration file, words starting with a letter of "a to z, A to Z", or underscore "_", within 24 characters,
are regarded as object names.

Note Elements of a word are limited to alphanumeric characters "a to z, A to Z, 0 to 9", and underscore "_".

- Symbol name
In a system configuration file, words starting with a letter of "a to z, A to Z", or underscore "_", within 30 characters,
are regarded as symbol names.

Note 1 Elements of a word are limited to alphanumeric characters "a to z, A to Z, 0 to 9", and underscore "_".

Note 2 The CF78V4 distinguishes the object name and symbol name according to the context in the system
configuration file.

- Keywords
The words shown below are reserved by the CF78V4 as keywords.
Using these words for any other purpose specified is therefore prohibited.

CRE_CYC, CRE_FLG, CRE_MBX, CRE_MPF, CRE_SEM, CRE_TSK, kl_work0, k_work1, k_work2, k_work3,
MAX_PRI, null, NULL, SYS_STK, TA_ACT, TA_ASM, TA_CLR, TA_DISINT, TA_ENAINT, TA_HLNG, TA_MFIFO,
TA_MPRI, TA_PHS, TA_RSTR, TA_STA, TA_TFIFO, TA_TPRI, TA_WMUL, TA_WSGL

Note The CF78V4 does not call C preprocessors. Coding of preprocessing directives (#include, #define, #if, or the
like) in the system configuration file is therefore prohibited.

RI78V4 CHAPTER 13 SYSTEM CONFIGURATION FILE

R20UT0511EJ0101 Rev.1.01 Page 221 of 272
Apr 01, 2012

13.2 Configuration Information

The configuration information that is described in a system configuration file is divided into the following two main types.

- System Information
This information consists of fundamental data required for the RI78V4 operation.

- System stack information

- Task priority information

- Static API Information
This information consists of data for management objects required to implement the functions probided by the
RI78V4.

- Task information

- Semaphore information

- Eventflag information

- Mailbox information

- Fixed-sized memory pool information

- Cyclic handler information

13.2.1 Cautions

In the system configuration file, describe the system configuration information (System Information, Static API
Information) in the following order.

1) System Information description

2) Static API Information description

The following describes a system configuration file description format.

Figure 13-1 System Configuration File Description Format

Note Up to 40,000 lines and up to 1,000 characters per line can be written in a system configuration file.

-- System Information (System stack information, etc.) descriptin

/* */

-- Static API Information(Task information, etc.) description
/* */

RI78V4 CHAPTER 13 SYSTEM CONFIGURATION FILE

R20UT0511EJ0101 Rev.1.01 Page 222 of 272
Apr 01, 2012

13.3 System Information

The following describes the format that must be observed when describing the system information in the system
configuration file.

The GOTHIC-FONT characters in following descriptions are the reserved words, and italic face characters are the
portion that the user must write the relevant numeric value.

Items enclosed by square brackets "[]" can be omitted.

13.3.1 System stack information

Define the following item as system stack information:

1) Stack size: sys_stksz

Only one information item can be defined as stack information.
The following shows the system stack information format.

The items constituting the system stack information are as follows.

1) Stack size: sys_stksz

Specifies the system stack size (in bytes).
A value between 0 and 65534, aligned to a 2-byte boundary, can be specified for sys_stksz.

Note 1 The system stack is allocated to the k_stack segment.

Note 2 For details about the estimation of the system stack size, refer to See “13.5.1　System stack size“.

SYS_STK (sys_stksz);

RI78V4 CHAPTER 13 SYSTEM CONFIGURATION FILE

R20UT0511EJ0101 Rev.1.01 Page 223 of 272
Apr 01, 2012

13.3.2 Task priority information

Define the following items as task priority information:

1) Priority range: maxtpri

The number of task priority information items that can be specified is defined as being within the range of 0 to 1.
The following shows the task priority information format.

The items constituting the task priority information are as follows.

1) Priority range: maxtpri

Specifies the priority range of a task (maximum value of Initial priority: itskpri, or maximum value of priority specified
when issuing chg_pri).
A value between 1 and 15 can be specified for maxtpri.

Note If definition of this information is omitted, the task priority range is set to "15".

[MAX_PRI (maxtpri);]

RI78V4 CHAPTER 13 SYSTEM CONFIGURATION FILE

R20UT0511EJ0101 Rev.1.01 Page 224 of 272
Apr 01, 2012

13.4 Static API Information

The following describes the format that must be observed when describing the static API information in the system
configuration file.

The GOTHIC-FONT characters in following descriptions are the reserved words, and italic face characters are the
portion that the user must write the relevant numeric value, symbol name, or keyword.

Items enclosed by square brackets "[]" can be omitted.

13.4.1 Task information

Define the following items as task information:

1) Task name: tskid

2) Attribute (coding language, initial activation status, initial interrupt status): tskatr

3) Extended information: exinf

4) Start address: task

5) Initial priority: itskpri

6) Stack size: stksz

7) System-reserved area: stk

The number of task information items that can be specified is defined as being within the range of 1 to 127.
The following shows the task information format.

The items constituting the task information are as follows.

1) Task name: tskid

Specifies the task name.
An object name can be specified for tskid.

Note The CF78V4 outputs to the system information header file the correspondence between the task names
and IDs, in the following format. Consequently, task names can be used in the place of IDs by including
the relevant system information header file using the processing program.

[Output format to system information header file (for C)]

[Output format to system information header file (for assembly language)]

2) Attribute (coding language, initial activation status, initial interrupt status): tskatr

Specifies the attributes (coding language, initial activation status, initial interrupt status) of the task.
The keywords that can be specified for tskatr are TA_HLNG, TA_ASM, TA_ACT, TA_ENAINT and TA_DISINT.

[Coding language]
TA_HLNG: Start a processing unit through a C language interface.
TA_ASM: Start a processing unit through an assembly language interface.

[Initial activation status]
TA_ACT: Task is activated after the creation.

CRE_TSK (tskid, { tskatr, exinf, task, itskpri, stksz, stk });

#define tskid ID

tskid equ ID

RI78V4 CHAPTER 13 SYSTEM CONFIGURATION FILE

R20UT0511EJ0101 Rev.1.01 Page 225 of 272
Apr 01, 2012

[Initial interrupt status]
TA_ENAINT: Enables acknowledgment of maskable interrupts.
TA_DISINT: Disables acknowledgment of maskable interrupts.

Note 1 If specification of TA_ACT is omitted, the initial task activation status is set to the "DORMANT state".

Note 2 If specification of TA_ENAINT and TA_DISINT is omitted, the initial task interrupt status is set to "interrupts
acknowledgment enabled".

3) Extended information: exinf

Specifies the extended information of the task.
Values that can be specified for exinf are from 0 to 1048575, or symbol names written in C.

Note exinf is passed as an extended information to the target task when the task is activated by act_tsk or
iact_tsk. The target task can therefore handle exinf in the same manner as handling function parameters.

4) Start address: task

Specifies the start address of the task.
Values that can be specified for task are symbol names written in C.

Note 1 When a task is in written in C as shown below, the value specified by this item is "func_task".

Note 2 When a task is in written in assembly language as shown below, the value specified by this item is
"func_task".

5) Initial priority: itskpri

Specifies the initial priority of the task.
Values that can be specified for itskpri are limited to "1 to Priority range: maxtpri".

#pragma rtos_task func_task

#include <kernel.h>
#include <kernel_id.h>

void
func_task (VP_INT exinf)
{
 /* */

 ext_tsk ();
}

$INCLUDE (kernel.inc)
$INCLUDE (kernel_id.inc)

 PUBLIC _func_task
 CSEG
_func_task:
 PUSH BC
 PUSH AX

 ;

 BR !!_ext_tsk
 END

RI78V4 CHAPTER 13 SYSTEM CONFIGURATION FILE

R20UT0511EJ0101 Rev.1.01 Page 226 of 272
Apr 01, 2012

6) Stack size: stksz

Specifies the stack size (in bytes) of the task.
A value between 0 and 65534, aligned to a 2-byte boundary, can be specified for stksz.

Note 1 The task stack is allocated to the k_stack segment.

Note 2 For details about the estimation of the stack size of the task, refer to See “13.5.2　Stack size of the task“.

7) System-reserved area: stk

System-reserved area.
Values that can be specified for stk are limited to NULL characters.

RI78V4 CHAPTER 13 SYSTEM CONFIGURATION FILE

R20UT0511EJ0101 Rev.1.01 Page 227 of 272
Apr 01, 2012

13.4.2 Semaphore information

Define the following items as semaphore information:

1) Semaphore name: semid

2) Attribute (queuing method): sematr

3) Initial resource count: isemcnt

4) System-reserved area: maxsem

The number of semaphore information items that can be specified is defined as being within the range of 0 to 127.
The following shows the semaphore information format.

The items constituting the semaphore information are as follows.

1) Semaphore name: semid

Specifies the semaphore name.
An object name can be specified for semid.

Note The CF78V4 outputs to the system information header file the correspondence between the semaphore
names and IDs, in the following format. Consequently, semaphore names can be used in the place of IDs
by including the relevant system information header file using the processing program.

[Output format to system information header file (for C)]

[Output format to system information header file (for assembly language)]

2) Attribute (queuing method): sematr

Specifies the attribute (queuing method) of the semaphore.
The keywords that can be specified for sematr are TA_TFIFO.

[Queuing method]
TA_TFIFO: If a resource could not be acquired (semaphore counter is set to 0x0) when wai_sem or twai_sem

is issued, the task is queued to the semaphore wait queue in the order of resource acquisition
request.

3) Initial resource count: isemcnt

Specifies the initial resource count of the semaphore.
A value between 0 and 127 can be specified for isemcnt.

4) System-reserved area: maxsem

System-reserved area.
Values that can be specified for maxsem are limited to 127.

CRE_SEM (semid, { sematr, isemcnt, maxsem });

#define semid ID

semid equ ID

RI78V4 CHAPTER 13 SYSTEM CONFIGURATION FILE

R20UT0511EJ0101 Rev.1.01 Page 228 of 272
Apr 01, 2012

13.4.3 Eventflag information

Define the following items as eventflag information:

1) Eventflag name: flgid

2) Attribute (queuing method, queuing count, bit pattern clear): flgatr

3) System-reserved area: iflgptn

The number of eventflag information items that can be specified is defined as being within the range of 0 to 127.
The following shows the eventflag information format.

The items constituting the eventflag information are as follows.

1) Eventflag name: flgid

Specifies the eventflag name.
An object name can be specified for flgid.

Note The CF78V4 outputs to the system information header file the correspondence between the eventflag
names and IDs, in the following format. Consequently, eventflag names can be used in the place of IDs by
including the relevant system information header file using the processing program.

[Output format to system information header file (for C)]

[Output format to system information header file (for assembly language)]

2) Attribute (queuing method, queuing count, bit pattern clear): flgatr

Specifies the attributes (queuing method, queuing count, clear) of the eventflag.
The keywords that can be specified for flgatr are TA_TFIFO, TA_WSGL and TA_CLR.

[Queuing method]
TA_TFIFO: If the bit pattern of the eventflag does not satisfy the required condition when wai_flg or twai_flg is

issued, the task is queued to the eventflag wait queue.

[Queuing count]
TA_WSGL: Only one task is allowed to be in the waiting state for the eventflag.

[Bit pattern clear]
TA_CLR: Bit pattern is cleared when a task is released from the waiting state for that eventflag.

Note If specification of TA_CLR is omitted, "not clear bit patterns if the required condition is satisfied" is set.

3) System-reserved area: iflgptn

System-reserved area.
Values that can be specified for iflgptn are limited to 0.

CRE_FLG (flgid, { flgatr, iflgptn });

#define flgid ID

flgid equ ID

RI78V4 CHAPTER 13 SYSTEM CONFIGURATION FILE

R20UT0511EJ0101 Rev.1.01 Page 229 of 272
Apr 01, 2012

13.4.4 Mailbox information

Define the following items as mailbox information:

1) Mailbox name: mbxid

2) Attribute (queuing method): mbxatr

3) System-reserved area: maxmpri

4) System-reserved area: mprihd

The number of mailbox information items that can be specified is defined as being within the range of 0 to 127.
The following shows the mailbox information format.

The items constituting the mailbox information are as follows.

1) Mailbox name: mbxid

Specifies the mailbox name.
An object name can be specified for mbxid.

Note The CF78V4 outputs to the system information header file the correspondence between the mailbox
names and IDs, in the following format. Consequently, mailbox names can be used in the place of IDs by
including the relevant system information header file using the processing program.

[Output format to system information header file (for C)]

[Output format to system information header file (for assembly language)]

2) Attribute (queuing method): mbxatr

Specifies the attributes (task queuing method, message queuing method) of the mailbox.
The keywords that can be specified for mbxatr are TA_TFIFO, TA_MFIFO and TA_MPRI.

[Task queuing method]
TA_TFIFO: If the message could not be received from the mailbox (no messages were queued in

the wait queue) when rcv_mbx or trcv_mbx is issued, the task is queued to the mailbox
wait queue in the order of message reception request.

[Message queuing method]
TA_MFIFO: If a task is not queued to the mailbox wait queue when snd_mbx is issued, the message is

queued to the mailbox wait queue in the order of message transmission request.
TA_MPRI: If a task is not queued to the mailbox wait queue when snd_mbx is issued, the message is

queued to the mailbox wait queue in the order of message priority.

3) System-reserved area: maxmpri

System-reserved area.
Values that can be specified for maxmpri are limited to 0.

4) System-reserved area: mprihd

System-reserved area.
The keywords that can be specified for mprihd are NULL.

CRE_MBX (mbxid, { mbxatr, maxmpri, mprihd });

#define mbxid ID

mbxid equ ID

RI78V4 CHAPTER 13 SYSTEM CONFIGURATION FILE

R20UT0511EJ0101 Rev.1.01 Page 230 of 272
Apr 01, 2012

13.4.5 Fixed-sized memory pool information

Define the following items as fixed-sized memory pool information:

1) Fixed-sized memory pool name: mpfid

2) Attribute (queuing method): mpfatr

3) Total number of memory blocks: blkcnt

4) Memory block size: blksz

5) Segment name: seg_nam

6) System-reserved area: mpf

The number of fixed-sized memory pool information items that can be specified is defined as being within the range of 0
to 127.

The following shows the fixed-sized memory pool information format.

The items constituting the fixed-sized memory pool information are as follows.

1) Fixed-sized memory pool name: mpfid

Specifies the fixed-sized memory pool name.
An object name can be specified for mpfid.

Note The CF78V4 outputs to the system information header file the correspondence between the fixed-sized
memory pool names and IDs, in the following format. Consequently, fixed-sized memory pool names can
be used in the place of IDs by including the relevant system information header file using the processing
program.

[Output format to system information header file (for C)]

[Output format to system information header file (for assembly language)]

2) Attribute (queuing method): mpfatr

Specifies the attribute (queuing method) of the fixed-sized memory pool.
The keywords that can be specified for mpfatr are TA_TFIFO.

[Queuing method]
TA_TFIFO: If a memory block could not be acquired (no available memory blocks exist) when get_mpf or

tget_mpf is issued, the task is queued to the fixed-sized memory pool wait queue in the order of
memory block acquisition request.

3) Total number of memory blocks: blkcnt

Specifies the total number of memory blocks.
A value between 1 and 16383 can be specified for blkcnt.

4) Memory block size: blksz

Specifies the memory block size (in bytes).
A value between 4 and 65534, aligned to a 2-byte boundary, can be specified for blksz.

CRE_MPF (mpfid, { mpfatr, blkcnt, blksz[:seg_nam], mpf });

#define mpfid ID

mpfid equ ID

RI78V4 CHAPTER 13 SYSTEM CONFIGURATION FILE

R20UT0511EJ0101 Rev.1.01 Page 231 of 272
Apr 01, 2012

5) Segment name: seg_nam

Specifies where the fixed-sized memory pool is to be allocated.
Values that can be specified for seg_nam are limited to k_work0, k_work1, k_work2, or k_work3.

[Fixed-sized memory pool allocation segment]
k_work0: Allocates the fixed-sized memory pool to the k_work0 segment.
k_work1: Allocates the fixed-sized memory pool to the k_work1 segment.
k_work2: Allocates the fixed-sized memory pool to the k_work2 segment.
k_work3: Allocates the fixed-sized memory pool to the k_work3 segment.

Note If specification of seg_nam is omitted, the fixed-sized memory pool is allocated to the k_work0 segment.

6) System-reserved area: mpf

System-reserved area.
Values that can be specified for mpf are limited to NULL characters.

RI78V4 CHAPTER 13 SYSTEM CONFIGURATION FILE

R20UT0511EJ0101 Rev.1.01 Page 232 of 272
Apr 01, 2012

13.4.6 Cyclic handler information

Define the following items as cyclic handler information:

1) Cyclic handler name: cycid

2) Attribute (coding language, initial activation status): cycatr

3) System-reserved area: exinf

4) Start address: cychdr

5) Activation cycle: cyctim

6) System-reserved area: cycphs

The number of cyclic handler information items that can be specified is defined as being within the range of 0 to 127.
The following shows the cyclic handler information format.

The items constituting the cyclic handler information are as follows.

1) Cyclic handler name: cycid

Specifies the cyclic handler name.
An object name can be specified for cycid.

Note The CF78V4 outputs to the system information header file the correspondence between the cyclic handler
names and IDs, in the following format. Consequently, cyclic handler names can be used in the place of
IDs by including the relevant system information header file using the processing program.

[Output format to system information header file (for C)]

[Output format to system information header file (for assembly language)]

2) Attribute (coding language, initial activation status): cycatr

Specifies the attributes (coding language, initial activation status) of the cyclic handler.
The keywords that can be specified for cycatr are TA_HLNG, TA_ASM and TA_STA.

[Coding language]
TA_HLNG: Start a processing unit through a C language interface.
TA_ASM: Start a processing unit through an assembly language interface.

[Initial operation status]
TA_STA: Cyclic handler is in an operational state after the creation.

Note If specification of TA_STA is omitted, the cyclic handler initial activation status is set to "non-operational
state (STP state)".

3) System-reserved area: exinf

System-reserved area.
Values that can be specified for exinf are limited to 0.

CRE_CYC (cycid, { cycatr, exinf, cychdr, cyctim, cycphs });

#define cycid ID

cycid equ ID

RI78V4 CHAPTER 13 SYSTEM CONFIGURATION FILE

R20UT0511EJ0101 Rev.1.01 Page 233 of 272
Apr 01, 2012

4) Start address: cychdr

Specifies the start address of the cyclic handler.
Values that can be specified for cychdr are symbol names written in C.

Note 1 When the cyclic handler is in written in C as shown below, the value specified by this item is "func_cychdr".

Note 2 When the cyclic handler is in written in assembly language as shown below, the value specified by this
item is "func_cychdr".

5) Activation cycle: cyctim

Specifies the activation cycle (unit: ticks) of the cyclic handler.
A value between 1 and 4294967295 can be specified for cyctim.

6) System-reserved area: cycphs

System-reserved area.
Values that can be specified for cycphs are limited to 0.

#include <kernel.h>
#include <kernel_id.h>

void
func_cychdr (void)
{
 /* */

 return;
}

$INCLUDE (kernel.inc)
$INCLUDE (kernel_id.inc)

 PUBLIC _func_cychdr
 CSEG
_func_cychdr:
 ;

 RET
 END

RI78V4 CHAPTER 13 SYSTEM CONFIGURATION FILE

R20UT0511EJ0101 Rev.1.01 Page 234 of 272
Apr 01, 2012

13.5 Stack Size Estimation

13.5.1 System stack size

The formula for calculating the system stack size is shown below.

[Expression 1: System stack size]
sys_stk = MAX(sys_stkA, sys_stkB, sys_stkC) + 2 (bytes)

[Expression 2: System stack size use pattern A]
sys_stkA = tsksvc + int0 + int1 + int2 + int3

[Expression 3: System stack size use pattern B]
sys_stkB = Size used by user in idle routine

[Expression 4: System stack size use pattern C]
sys_stkC = Size used by user in initialization routine

[Expression 5: Maximum size of system stack used during service call executed by task]
Maximum size of system stack used during service call executed by task

[Expression 6: Size of int0, int1]
Intx = Maximum size of interrupts used by stack in interrupts of level x

= Size used by user in interrupts

[Expression 7: Size of int2, int2]
intx = Maximum size of interrupts used by stack in interrupts of level x

= Size used by user in interrupts + allsvc + 16

[Expression 8: Total size used by system calls used in interrupt]
allsvc = For service call arguments + For internal processing by program issued the service call + For system stack

internal processing

Specify the system stack size in the system configuration file. Note, however, that the size that is actually secured is the
value specified in the configurator + 2 bytes. Consequently, the value that is actually specified in the system configuration
file is the sys_stk value calculated in expression 1 minus 2 bytes.

We recommend specifying a system stack size higher than the estimate in order to reduce the danger of a stack
overflow.

The example is shown below.

[Conditions]

- Execute a pol_flg service call from task "task1".

- Execute a snd_mbx service call from task "task2".

- Interrupt int0 is a level-0 interrupt process not managed by the OS. The stack is not used in the interrupt.

- Interrupt int2 is a level-2 OS interrupt handler. Execute the snd_mbx service call, and use 12 bytes of stack in the
interrupt.

- Interrupt int3A is a level-3 OS interrupt handler. Execute the pol_flg service call, and use 16 bytes of stack in the
interrupt.

- Interrupt int3B is a level-3 OS interrupt handler. Execute Timer_Handler, the stack is not used in the interrupt.

- Idle "idl" does not use the stack.

- The initialization routine "ini" uses 24 bytes of stack in the routine.

RI78V4 CHAPTER 13 SYSTEM CONFIGURATION FILE

R20UT0511EJ0101 Rev.1.01 Page 235 of 272
Apr 01, 2012

[Expression]

tsksvc = MAX(size of system stack used by pol_flg, size of system stack used by snd_mbx)
= MAX(6,4) = 6 bytes

int0 = 0 + 0 = 0 byte

int1 = undefined = 0 byte

int2 = 12 + (4 + 8 + 4) + 16 = 44 bytes

int3 = MAX(int3A, int3B) = MAX(54,20) = 54 bytes

int3A = 16 + (8 + 8 + 6) + 16 = 54 bytes

int3B = 0 + (0 + 0 + 6) + 16 = 20 bytes

sys_stkA = tsksvc + int0 + int1 + int2 + int3
= 6 ＋ 0 ＋ 0 ＋ 44 ＋ 54
= 104 bytes

Note This is the max in sys_stkA/B/C, so after this size or greater is secured.

sys_stkB = Stack size used by user in idle routine = 0 byte

sys_stkC = Stack size used by user in initialization routine = 20 bytes

sys_stk = MAX(sys_stkA, sys_stkB, sys_stkC) ＋ 2
= MAX(104, 0, 20)
= 104 + 2 = 106 bytes

The system stack size will be the 104 bytes of sys_stkA.
The size specified in the system configuration file will be 104 bytes.

Note Below is shown the stack size used in service calls/functions used in the example.

13.5.2 Stack size of the task

The formula for calculating the stack size of the task is shown below.

[Expression 1: No interrupts generated in task]
Task stack size = size used by user + service-call argument size + 28 (bytes)

[Expression 2: Interrupts generated in task]
Task stack size = size used by user + service-call argument size + 28 + 18 (bytes)

Specify the task stack size in the system configuration file. Note, however, that the size that is actually secured is the
value specified in the configurator 28 bytes. Consequently, the value that is actually specified in the system configuration
file is the sys_stk value calculated in expression 1 or expression 2 minus 28 bytes.

These 28 bytes include the stack size used when system calls are issued. Note, however, that the stack size used when
issuing system calls must secure the size used by the user in addition to the 28 bytes of argument stack size. The
argument stack sized used by each service call is different. Table 12-1 summarizes these sizes.

The task stack size is the largest stack size used in the task in question. For this reason, if there is a service call with an
argument stack of 4 bytes, and another with 8 bytes, then the pattern that uses the most stack - 8 bytes - will be secured.

For Service Call
Arguments

For Internal Processing
by Program Issued the

Service Call

For System Stack
Internal Processing

pol_flg 8 8 6

snd_mbx 4 8 4

Timer_Handler function 0 － 6

RI78V4 CHAPTER 13 SYSTEM CONFIGURATION FILE

R20UT0511EJ0101 Rev.1.01 Page 236 of 272
Apr 01, 2012

The above material refers to tasks where interrupts are not accepted (all interrupts are disabled). An additional 18 bytes
must be secured for tasks where interrupts are accepted.

Note that these 18 bytes include the stack size when the _kernel_int_entry function is called (required to be called when
an interrupt starts). _kernel_int_entry only retires the 18 bytes of data from the stack, it does not replace it. The data is
recovered upon the call to the ret_int function, which must be called when the interrupt ends.

Example 1 Task "task1" uses the pol_flg and snd_mbx service calls, and has no other functions or processes that use
the stack.

If interrupts are not accepted in the task, interrupts are not accepted in task1, so Expression 1 is the
formula for calculating stack usage.
Because there are no functions or processes that use the stack, the size used by the user is 0.
When the size of arguments to all service calls is investigated, the results are as shown below.

Service-call argument size (pol_flg) = 8 bytes
Service-call argument size (snd_mbx) = 4 bytes

The largest stack size is used in the call to pol_flg, so this is specified in Expression 1.

Task stack size = size used by user + service-call argument size (pol_flg) + 28
= 0 ＋ 8 ＋ 28
= 36 bytes

The size specified in the system configuration file will be the above minus 28 bytes, which equals 8 bytes.

Example 2 In task "task1", function A (using 12 bytes of stack) makes a pol_flg service call, and function B (using 20
bytes of stack) makes a snd_mbx service call.

Since interrupts are accepted in the task, Expression 2 is used as the calculation formula. List the patterns
in order to find the one that uses the most stack.

Pattern A = size used by user (for function A) + service-call argument size (pol_flg) + 28 + 18
= 12 ＋ 8 ＋ 28 ＋ 18
= 66 bytes

Pattern B = size used by user (for function B) + service-call argument size (snd_mbx) + 28 + 18
= 20 ＋ 4 ＋ 28 ＋ 18
= 70 bytes

Compare pattern B with pattern A. The pattern that uses the most stack is pattern A, at 70 bytes.
The size specified in the system configuration file will be the above minus 28 bytes, which equals 42
bytes.

RI78V4 CHAPTER 13 SYSTEM CONFIGURATION FILE

R20UT0511EJ0101 Rev.1.01 Page 237 of 272
Apr 01, 2012

13.6 Description Examples

 The following describes an example for coding the system configuration file.

Figure 13-2 Example of System Configuration File

-- System Information description
SYS_STK (256);
MAX_PRI (15);

-- Static API Information description
CRE_TSK (ID_tsk, { TA_HLNG | TA_ACT | TA_DISINT, 0xa, func_task, 1 256, NULL });
CRE_TSK (ID_tskA, { TA_HLNG | TA_ACT, 0x14, func_taskA, 2, 256, NULL });
CRE_TSK (ID_tskB, { TA_ASM | TA_ENAINT, 0x1e, func_taskB, 3, 512, NULL });

CRE_SEM (ID_semA, { TA_TFIFO, 0, 127 });
CRE_SEM (ID_semB, { TA_TFIFO, 127, 127 });

CRE_FLG (ID_flgA, { TA_TFIFO | TA_WSGL | TA_CLR, 0 });
CRE_FLG (ID_flgB, { TA_TFIFO | TA_WSGL, 0 });

CRE_MBX (ID_mbxA, { TA_TFIFO | TA_MFIFO, 0, NULL });
CRE_MBX (ID_mbxB, { TA_TFIFO | TA_MPRI, 0, MULL });

CRE_MPF (ID_mpfA, { TA_TFIFO, 10, 8:k_work1, NULL });
CRE_MPF (ID_mpfB, { TA_TFIFO, 8, 16, NULL });

CRE_CYC (ID_cycA, { TA_HLNG | TA_STA, 0, func_cychdrA, 1, 0 });
CRE_CYC (ID_cycB, { TA_ASM, 0, func_cychdrB, 2, 0 });

RI78V4 CHAPTER 14 CONFIGURATOR CF78V4

R20UT0511EJ0101 Rev.1.01 Page 238 of 272
Apr 01, 2012

CHAPTER 14 CONFIGURATOR CF78V4

This chapter explains configurator CF78V4, which is provided by the RI78V4 as a utility tool useful for system
construction.

14.1 Outline

To build systems (load module) that use functions provided by the RI78V4, the information storing data to be provided
for the RI78V4 is required.

Since information files are basically enumerations of data, it is possible to describe them with various editors.
Information files, however, do not excel in descriptiveness and readability; therefore substantial time and effort are

required when they are described.
To solve this problem, the RI78V4 provides a utility tool (configurator CF78V4) that converts a system configuration file

which excels in descriptiveness and readability into information files.
The CF78V4 reads the system configuration file as a input file, and then outputs information files.
The information files output from the CF78V4 are explained below.

- System information table file
An information file that stores data required for the operation of the RI78V4.

- System information header file
An information file that stores matching between ID numbers and object names (e.g. task, and semaphore names)
described in the system configuration file.
The CF78V4 can output two types of system information header files for C and assembly languages.

RI78V4 CHAPTER 14 CONFIGURATOR CF78V4

R20UT0511EJ0101 Rev.1.01 Page 239 of 272
Apr 01, 2012

14.2 Activation Method

14.2.1 Activating from command line

The following is how to activate the CF78V4 from the command line.
Note that, in the examples below, "C>" indicates the command prompt, "" indicates pressing of the space key, and

"<Enter>" indicates pressing of the enter key.
The activation options enclosed in "[]" can be omitted.

The details of each activation option are explained below:

- @command file
Specifies the command file name to be input.

If omitted The activation options specified on the command line is valid.

Note 1 Specify the input file name “command file” within 255 characters including the path name.

Note 2 For the details about the command file, refer to “14.2.3 Command file”.

- -i<SIT file>
Specifies the system information table file name to be output.

If omitted If omitted, the CF78V4 interprets it that -isit.asm is specified.

Note Specify the output file name “<SIT file>” within 255 characters including the path name.

- -ni
Disables output of the system information table file.

If omitted If omitted, the CF78V4 interprets it that -isit.asm is specified.

- -dc<C header file>
Specifies the system information header file (for C language) name to be output.

If omitted If omitted, the CF78V4 interprets it that -dckernel_id.h is specified.

Note Specify the output file name “<SIT file>” within 255 characters including the path name.

- -ndc
Disables output of the system information header file (for C language).

If omitted If omitted, the CF78V4 interprets it that -dckernel_id.h is specified.

- -da<ASM header file>
Specifies the system information header file (for assembly language) name to be output.

If omitted If omitted, the CF78V4 interprets it that -dakernel_id.inc is specified.

C> cf78v4.exe [@command file] [-i <SIT file> | -ni]
 [-dc <C header file> | -ndc] [-da <ASM header file> | -nda] [-V]
 [-help] <CF file> <Enter>

RI78V4 CHAPTER 14 CONFIGURATOR CF78V4

R20UT0511EJ0101 Rev.1.01 Page 240 of 272
Apr 01, 2012

Note Specify the output file name “<ASM header file>” within 255 characters including the path name.

- -nda
Disables output of the system information header file (for assembly language).

If omitted If omitted, the CF78V4 interprets it that -dakernel_id.inc .inc is specified.

- -V
Outputs version information for the CF78V4 to the standard output.

Note If this activation option is specified, the CF78V4 handles other activation options as invalid options and
suppresses outputting of information files.

- -help
Outputs the usage of the activation options for the CF78V4 to the standard output.

Note If this activation option is specified, the CF78V4 handles other activation options as invalid options and
suppresses outputting of information files.

- <CF file>
Specifies the system configuration file name to be input.

Note 1 Specify the input file name “<CF file>” within 255 characters including the path name.

Note 2 This input file name can be omitted only when -V or -help is specified.

14.2.2 Activating from CubeSuite+

This is started when the CubeSuite+ performs a build, in accordance with the setting on the Property panel, on the
[System Configuration File Related Information] tab.

RI78V4 CHAPTER 14 CONFIGURATOR CF78V4

R20UT0511EJ0101 Rev.1.01 Page 241 of 272
Apr 01, 2012

14.2.3 Command file

The CF78V4 performs command file support from the objectives that eliminate specified probable activation option
character count restrictions in the command lines.

Description formats of the command file are described below.

1) Comment lines
Lines that start with # are treated as comment lines.

2) Dilimiting activation options
Delimit activation options using a space code, tab code, or a linefeed code.

Note For activation options consist of the -xxx part and parameter part, like "-i<SIT file>", "-dc<C header
file>", and "-da<ASM header file>", delimit the -xxx part and parameter part using a space code, tab
code, or a linefeed code.
When specifying a folder name that includes a space code in the parameter part, enclose the parameter
part using double-quotation marks (") as shown in Figure 14-1.

3) Maximum number of characters
Up to 50 lines and up to 4,096 characters per line can be coded in a command file.

The following shows an example of activation option coding whereby "system configuration file CF_file.cfg is loaded
from the current folder, system information table filesit_file.asm is output to a folder in C:\Program Files\tmp, system
information header file C_header.h (for C) is output to a folder in C:\tmp, system information header file ASM_header.inc
(for assembly language) is output to a folder in C:\tmp".

Figure 14-1 Example of Command File Description

Command File
-i "C:\Program Files\tmp\sit_file.asm"
-dc C:\tmp\C_header.h
-da
"C:\tmp\ASM_header.inc"
CF_file.cfg

RI78V4 CHAPTER 14 CONFIGURATOR CF78V4

R20UT0511EJ0101 Rev.1.01 Page 242 of 272
Apr 01, 2012

14.2.4 Command input examples

The following shows the CF78V4 command input examples.
In these examples, "C>" indicates the command prompt, "" indicates the space key input, and "<Enter>" indicates the

ENTER key input.

1) After loading command file cmd_file from the current folder, the activation option defined in cmd_file is executed.

2) After loading system configuration file CF_file.cfg from the current folder, system information table filesit_file.asm,
the system information header file C_header.h (for C) and system information header file ASM_header.inc (for
assembly language) are output to the current folder.

3) After loading system configuration file CF_file.cfg from the current folder, system information table filesit.asm, the
system information header file kernel_id.h (for C) and system information header file kernel_id.inc (for assembly
language) are output to the current folder.

4) After loading system configuration file CF_file.cfg from a folder in C:\tmp, system information table filesit_file.asm,
the system information header file C_header.h (for C) is output to a folder in C:\tmp.

5) After loading system configuration file CF_file.cfg from a folder in C:\tmp, the system information table file
sit_file.asm is output to a folder in C:\Program Files\tmp.

6) CF78V4 version information is output to the standard output.

7) Information related to the CF78V4 activation option (type, usage, or the like) is output to the standard output.

C> cf78v4.exe @cmd_file <Enter>

C> cf78v4.exe -isit_file.asm -dc C_header.h -da ASM_header.inc
 CF_file.cfg <Enter>

C> cf78v4.exe CF_file.cfg <Enter>

C> cf78v4.exe -i C:\tmp\sit_file.asm -dc C:\tmp\C_header.h -nda
 C:\tmp\CF_file.cfg <Enter>

C> cf78v4.exe-i ”C:\Program Files\tmp\sit_file.asm" -ndc -nda
 C:\tmp\CF_file.cfg <Enter>

C> cf78v4.exe -V <Enter>

C> cf78v4.exe -help <Enter>

RI78V4 APPENDIX A WINDOW REFERENCE

R20UT0511EJ0101 Rev.1.01 Page 243 of 272
Apr 01, 2012

APPENDIX A WINDOW REFERENCE

This appendix explains the window/panels that are used when the activation option for the CF78V4 is specified from the
integrated development environment platform “CubeSuite+”.

A.1 Description

The following shows the list of window/panels.

Table A-1 List of Window/Panels

Window/Panel Name Function Description

Main window
This is the first window to be open when the CubeSuite+ is
launched.

Project Tree panel This panel is used to display the project components in tree view.

Property panel

This panel is used to display the detailed information on the
Realtime OS node, system configuration file, or the like that is
selected on the Project Tree panel and change the settings of the
information.

RI78V4 APPENDIX A WINDOW REFERENCE

R20UT0511EJ0101 Rev.1.01 Page 244 of 272
Apr 01, 2012

Main window

Outline

This is the first window to be open when the CubeSuite+ is launched.
This window is used to control the user program execution and open panels for the build process.

This window can be opened as follows:

- Select Windows [start] -> [All programs] -> [Renesas Electronics CubeSuite+] -> [CubeSuite+]

Display image

RI78V4 APPENDIX A WINDOW REFERENCE

R20UT0511EJ0101 Rev.1.01 Page 245 of 272
Apr 01, 2012

Explanation of each area

1) Menu bar

Displays the menus relate to realtime OS.
Contents of each menu can be customized in the User Setting dialog box.

- [View]

2) Toolbar

Displays the buttons relate to realtime OS.
Buttons on the toolbar can be customized in the User Setting dialog box. You can also create a new toolbar in the
same dialog box.

- Realtime OS toolbar

3) Panel display area

The following panels are displayed in this area.

- Project Tree panel

- Property panel

- Output panel

See the each panel section for details of the contents of the display.

Note See “CubeSuite+ Integrated Development User's Manual: RL78,78K0R Build” for details about the Output
panel.

Realtime OS
The [View] menu shows the cascading menu to start the tools of realtime
OS.

Resource Information
Opens the Realtime OS Resource Information panel.
Note that this menu is disabled when the debug tool is not connected.

Performance Analyzer
Opens the AZ78K0R window.
Note that this menu is disabled when the debug tool is not connected.

Opens the Realtime OS Resource Information panel.
Note that this button is disabled when the debug tool is not connected.

RI78V4 APPENDIX A WINDOW REFERENCE

R20UT0511EJ0101 Rev.1.01 Page 246 of 272
Apr 01, 2012

Project Tree panel

Outline

This panel is used to display the project components such as Realtime OS node, system configuration file, etc. in tree
view.

This panel can be opened as follows:

- From the [View] menu, select [Project Tree].

Display image

RI78V4 APPENDIX A WINDOW REFERENCE

R20UT0511EJ0101 Rev.1.01 Page 247 of 272
Apr 01, 2012

Explanation of each area

1) Project tree area

Project components are displayed in tree view with the following given node.

Context menu

1) When the Realtime OS node or Realtime OS generated files node is selected

2) When the system configuration file or an information file is selected

Node Description

RI78V4(Realtime OS)
(referred to as “Realtime OS
node”)

Realtime OS to be used.

xxx.cfg System configuration file.

Realtime OS generated files
(referred to as “Realtime OS
generated files node”)

The following information files appear directly below the node created when
a system configuration file is added.

- System information table file (.asm)

- System information header file (for C language) (.h)

- System information header file (for assembly language) (.inc)

This node and files displayed under this node cannot be deleted directly.
This node and files displayed under this node will no longer appear if you
remove the system configuration file from the project.

Property Displays the selected node's property on the Property panel.

Assemble

Assembles the selected assembler source file.
Note that this menu is only displayed when a system information table file is
selected.
Note that this menu is disabled when the build tool is in operation.

Open
Opens the selected file with the application corresponds to the file
extension.
Note that this menu is disabled when multiple files are selected.

Open with Internal Editor...
Opens the selected file with the Editor panel.
Note that this menu is disabled when multiple files are selected.

Open with Selected
Application...

Opens the Open with Program dialog box to open the selected file with the
designated application.
Note that this menu is disabled when multiple files are selected.

Open Folder with Explorer Opens the folder that contains the selected file with Explorer.

Add Shows the cascading menu to add files and category nodes to the project.

Add File...
Opens the Add Existing File dialog box to add the selected file to the
project.

Add New File...
Opens the Add File dialog box to create a file with the selected file type and
add to the project.

RI78V4 APPENDIX A WINDOW REFERENCE

R20UT0511EJ0101 Rev.1.01 Page 248 of 272
Apr 01, 2012

Add New Category

Adds a new category node at the same level as the selected file. You can
rename the category.
This menu is disabled while the build tool is running, and if categories are
nested 20 levels.

Remove from Project
Removes the selected file from the project.
The file itself is not deleted from the file system.
Note that this menu is disabled when the build tool is in operation.

Copy
Copies the selected file to the clipboard.
When the file name is in editing, the characters of the selection are copied
to the clipboard.

Paste This menu is always disabled.

Rename
You can rename the selected file.
The actual file is also renamed.

Property Displays the selected file's property on the Property panel.

RI78V4 APPENDIX A WINDOW REFERENCE

R20UT0511EJ0101 Rev.1.01 Page 249 of 272
Apr 01, 2012

Property panel

Outline

This panel is used to display the detailed information on the Realtime OS node, system configuration file, or the like that
is selected on the Project Tree panel by every category and change the settings of the information.

This panel can be opened as follows:

- On the Project Tree panel, select the Realtime OS node, system configuration file, or the like, and then select the
[View] menu -> [Property] or the [Property] from the context menu.

Note When either one of the Realtime OS node, system configuration file, or the like on the Project Tree panel
while the Property panel is opened, the detailed information of the selected node is displayed.

Display image

Explanation of each area

1) Selected node area

Display the name of the selected node on the Project Tree panel.
When multiple nodes are selected, this area is blank.

2) Detailed information display/change area

In this area, the detailed information on the Realtime OS node, system configuration file, or the like that is selected
on the Project Tree panel is displayed by every category in the list. And the settings of the information can be
changed directly.

Mark indicates that all the items in the category are expanded. Mark indicates that all the items are collapsed.
You can expand/collapse the items by clicking these marks or double clicking the category name
See the section on each tab for the details of the display/setting in the category and its contents.

3) Property description area

Display the brief description of the categories and their contents selected in the detailed information display/change
area.

RI78V4 APPENDIX A WINDOW REFERENCE

R20UT0511EJ0101 Rev.1.01 Page 250 of 272
Apr 01, 2012

4) Tab selection area

Categories for the display of the detailed information are changed by selecting a tab.
In this panel, the following tabs are contained (see the section on each tab for the details of the display/setting on
the tab).

- When the Realtime OS node is selected on the Project Tree panel

- [RI78V4] tab

- When the system configuration file is selected on the Project Tree panel

- [System Configuration File Related Information] tab

- [File Information] tab

- When the Realtime OS generated files node is selected on the Project Tree panel

- [Category Information] tab

- When the system information table file is selected on the Project Tree panel

- [Build Settings] tab

- [Individual Assemble Options] tab

- [File Information] tab

- When the system information header file is selected on the Project Tree panel

- [File Information] tab

Note1 See “CubeSuite+ Integrated Development Environment User’s Manual: RL78,78K0R Build” for details
about the [File Information] tab, [Category Information] tab, [Build Settings] tab, and [Individual Assemble
Options] tab.

Note2 When multiple components are selected on the Project Tree panel, only the tab that is common to all the
components is displayed. If the value of the property is modified, that is taken effect to the selected
components all of which are common to all.

[Edit] menu (only available for the Project Tree panel)

Context menu

Undo Cancels the previous edit operation of the value of the property.

Cut
While editing the value of the property, cuts the selected characters and copies
them to the clip board.

Copy Copies the selected characters of the property to the clip board.

Paste While editing the value of the property, inserts the contents of the clip board.

Delete While editing the value of the property, deletes the selected character string.

Select All
While editing the value of the property, selects all the characters of the selected
property.

Undo Cancels the previous edit operation of the value of the property.

Cut
While editing the value of the property, cuts the selected characters and copies
them to the clip board.

Copy Copies the selected characters of the property to the clip board.

RI78V4 APPENDIX A WINDOW REFERENCE

R20UT0511EJ0101 Rev.1.01 Page 251 of 272
Apr 01, 2012

Paste While editing the value of the property, inserts the contents of the clip board.

Delete While editing the value of the property, deletes the selected character string.

Select All
While editing the value of the property, selects all the characters of the selected
property.

Reset to Default

Restores the configuration of the selected item to the default configuration of the
project.
For the [Individual Assemble Options] tab, restores to the configuration of the
general option.

Reset All to Default

Restores all the configuration of the current tab to the default configuration of the
project.
For the [Individual Assemble Options] tab, restores to the configuration of the
general option.

RI78V4 APPENDIX A WINDOW REFERENCE

R20UT0511EJ0101 Rev.1.01 Page 252 of 272
Apr 01, 2012

[RI78V4] tab

Outline

This tab shows the detailed information on the RI78V4 to be used categorized by the following.

- Version Information

Display image

Explanation of each area

1) [Version Information]

The detailed information on the version of the RI78V4 are displayed.

Kernel version

Display the version of the RI78V4 to be used.
Note that the version is set permanently when the project is created, and
cannot be changed.

Default Using the RI78V4 version

How to
change

Changes not allowed

Install folder

Display the folder in which the RI78V4 to be used is installed with the
absolute path.

Default The folder in which the RI78V4 to be used is installed

How to
change

Changes not allowed

Memory model

Display the memory model set in the project.
Display the same value as the value of the [Memory model type] property of
the build tool.

Default The memory model selected in the property of the build tool

How to
change

Changes not allowed

RI78V4 APPENDIX A WINDOW REFERENCE

R20UT0511EJ0101 Rev.1.01 Page 253 of 272
Apr 01, 2012

[System Configuration File Related Information] tab

Outline

This tab shows the detailed information on the using system configuration file categorized by the following and the
configuration can be changed.

- System information table file

- System information header file (for C language)

- System information header file (for assembly language)

Display image

RI78V4 APPENDIX A WINDOW REFERENCE

R20UT0511EJ0101 Rev.1.01 Page 254 of 272
Apr 01, 2012

Explanation of each area

1) [System Information Table File]

The detailed information on the system information table file are displayed and the configuration can be changed.

Generate a file

Select whether to generate a system information table file and whether to
update the file when the system configuration file is changed.

Default Yes(It updates the file when the .cfg file is changed)(-i)

How to
change

Select from the drop-down list.

Restriction

Yes(It
updates the
file when the
.cfg file is
changed)(-i)

Generates a new system information table
file and displays it on the project tree.
If the system configuration file is changed
when there is already a system information
table file, then the system information table
file is updated.

Yes(It does
not update
the file when
the .cfg file
is
changed)(-
ni)

Does not update the system information
table file when the system configuration file
is changed.
An error occurs during build if this item is
selected when the system information table
file does not exist.

No(It does
not register
the file to the
project)(-ni)

Does not generate a system information
table file and does not display it on the
project tree.
If this item is selected when there is already
a system information table file, then the file
itself is not deleted.

Output folder

Specify the folder for outputting the system information table file.
If a relative path is specified, the reference point of the path is the project
folder.
If an absolute path is specified, the reference point of the path is the project
folder (unless the drives are different).
The following macro name is available as an embedded macro.
%BuildModeName%: Replaces with the build mode name.
If this field is left blank, macro name "%BuildModeName%" will be
displayed.
This property is not displayed when [No(It does not register the file that is
added to the project)(-ni)] in the [Generate a file] property is selected.

Default %BuildModeName%

How to
change

Directly enter to the text box or edit by the Browse For
Folder dialog box which appears when clicking the [...]
button.

Restriction Up to 247 characters

RI78V4 APPENDIX A WINDOW REFERENCE

R20UT0511EJ0101 Rev.1.01 Page 255 of 272
Apr 01, 2012

File name

Specify the system information table file name.
If the file name is changed, the name of the file displayed on the project
tree.
Use the extension ".asm". If the extension is different or omitted, ".asm" is
automatically added.
This property is not displayed when [No(It does not register the file that is
added to the project)(-ni)] in the [Generate a file] property is selected.

Default sit.asm

How to
change

Directly enter to the text box.

Restriction Up to 259 characters

RI78V4 APPENDIX A WINDOW REFERENCE

R20UT0511EJ0101 Rev.1.01 Page 256 of 272
Apr 01, 2012

2) [System Information Header File (for C Language)]

The detailed information on the system information header file (for C language) are displayed and the configuration
can be changed.

Generate a file

Select whether to generate a system information header file (for C
language) and whether to update the file when the system configuration file
is changed.

Default Yes(It updates the file when the .cfg file is changed)(-dc)

How to
change

Select from the drop-down list.

Restriction

Yes(It
updates the
file when the
.cfg file is
changed)(-
dc)

Generates a system information header file
and displays it on the project tree.
If the system configuration file is changed
when there is already a system information
header file, then the system information
header file is updated.

Yes(It does
not update
the file when
the .cfg file
is
changed)(-
ndc)

Does not update the system information
header file when the system configuration
file is changed.
An error occurs during build if this item is
selected when the system information
header file does not exist.

No(It does
not register
the file to the
project)(-
ndc)

Does not generate a system information
header file and does not display it on the
project tree.
If this item is selected when there is already
a system information header file, then the
file itself is not deleted.

Output folder

Specify the folder for outputting the system information header file (for C
language).
If a relative path is specified, the reference point of the path is the project
folder.
If an absolute path is specified, the reference point of the path is the project
folder (unless the drives are different).
The following macro name is available as an embedded macro.
%BuildModeName%: Replaces with the build mode name.
If this field is left blank, macro name "%BuildModeName%" will be
displayed.
This property is not displayed when [No(It does not register the file that is
added to the project)(-ndc)] in the [Generate a file] property is selected.

Default %BuildModeName%

How to
change

Directly enter to the text box or edit by the Browse For
Folder dialog box which appears when clicking the [...]
button.

Restriction Up to 247 characters

RI78V4 APPENDIX A WINDOW REFERENCE

R20UT0511EJ0101 Rev.1.01 Page 257 of 272
Apr 01, 2012

File name

Specify the system information header file (for C language) name.
If the file name is changed, the name of the file displayed on the project
tree.
Use the extension ".h". If the extension is different or omitted, ".h" is
automatically added.
This property is not displayed when [No(It does not register the file that is
added to the project)(-ndc)] in the [Generate a file] property is selected.

Default kernel_id.h

How to
change

Directly enter to the text box.

Restriction Up to 259 characters

RI78V4 APPENDIX A WINDOW REFERENCE

R20UT0511EJ0101 Rev.1.01 Page 258 of 272
Apr 01, 2012

3) [System Information Header File (for Assembly Language)]

The detailed information on the system information header file (for assembly language) are displayed and the
configuration can be changed.

Generate a file

Select whether to generate a system information header file (for assembly
language) and whether to update the file when the system configuration file
is changed.

Default Yes(It updates the file when the .cfg file is changed)(-da)

How to
change

Select from the drop-down list.

Restriction

Yes(It
updates the
file when the
.cfg file is
changed)(-
da)

Generates a system information header file
and displays it on the project tree.
If the system configuration file is changed
when there is already a system information
header file, then the system information
header file is updated.

Yes(It does
not update
the file when
the .cfg file
is
changed)(-
nda)

Does not update the system information
header file when the system configuration
file is changed.
An error occurs during build if this item is
selected when the system information
header file does not exist.

No(It does
not register
the file to the
project)(-
nda)

Does not generate a system information
header file and does not display it on the
project tree.
If this item is selected when there is already
a system information header file, then the
file itself is not deleted.

Output folder

Specify the folder for outputting the system information header file (for
assembly language).
If a relative path is specified, the reference point of the path is the project
folder.
If an absolute path is specified, the reference point of the path is the project
folder (unless the drives are different).
The following macro name is available as an embedded macro.
%BuildModeName%: Replaces with the build mode name.
If this field is left blank, macro name "%BuildModeName%" will be
displayed.
This property is not displayed when [No(It does not register the file that is
added to the project)(-nda)] in the [Generate a file] property is selected.

Default %BuildModeName%

How to
change

Directly enter to the text box or edit by the Browse For
Folder dialog box which appears when clicking the [...]
button.

Restriction Up to 247 characters

RI78V4 APPENDIX A WINDOW REFERENCE

R20UT0511EJ0101 Rev.1.01 Page 259 of 272
Apr 01, 2012

File name

Specify the system information header file (for assembly language) name.
If the file name is changed, the name of the file displayed on the project
tree.
Use the extension ".inc". If the extension is different or omitted, ".inc" is
automatically added.
This property is not displayed when [No(It does not register the file that is
added to the project)(-nda)] in the [Generate a file] property is selected.

Default kernel_id.inc

How to
change

Directly enter to the text box.

Restriction Up to 259 characters

RI78V4 APPENDIX B CAUTIONS

R20UT0511EJ0101 Rev.1.01 Page 260 of 272
Apr 01, 2012

APPENDIX B CAUTIONS

B.1 Restriction of Compiler Option

Systems embedding the RI78V4 cannot use the following compile options.

B.2 Handling Register Bank

Systems embedding the RI78V4 should generally operate with register bank 0.
If it is necessary to change the register bank, do so in accordance with the specifications below. Changing the register

bank is enabled for some routines, and disabled for others.

[Routines where changing the register bank is enabled]

- Task
In the task, the initial register bank number is set permanently to 0.
When switching tasks in the RI78V4, only the register bank number and one bank's worth of general registers (task-
switching bank) are retired/restored.
The remaining three banks of general registers are not retired or restored, so if more than two register banks are to be
used in the task process, then when changing the register banks, the general register of the register bank before the
change must be retired. If it is not retired, then the register bank could be corrupted in the task that is switched to.

- Interrupt servicing not managed by an OS
When changing a register bank in an interrupt process not matched by the OS, restore the register bank number of
the interrupt source when the interrupt ends.

[Routines where changing the register bank is disabled]

- Interrupt handler
Interrupt handlers inherit the register bank number of the source of the interrupt.

- Cyclic handler
Cyclic handlers inherit the register bank number of the source of the timer handler interrupt.

- Idle routine
In the idle routine, the initial register bank number is set permanently to 0.

- Initialization routine
In the initialization routine, the initial register bank number is set permanently to 0. It is overwritten by register bank 0,
regardless of the register bank set before OS initialization (before the call to the __urx_start function).

Option Meaning

-rc
Prohibits from inserting the align data to allocate the members (consisting of 2 or more bytes) in a
structure to even address.

RI78V4 APPENDIX B CAUTIONS

R20UT0511EJ0101 Rev.1.01 Page 261 of 272
Apr 01, 2012

B.3 Pointer Declarations

When passing a pointer to the RI78V4 service call, care is needed to ensure that a far pointer is passed. Behavior is not
guaranteed subsequent to passing a near pointer.

Particular care is needed if a small model or medium model is selected, because pointers will be near if not explicitly
declared as near or far. As shown below, explicitly declare the pointer as far, and cast it to a far pointer when passing it to
a service call.

The example is shown below.

Particular care is needed if a small model or medium model is selected, because pointers will be near if not explicitly
declared as near or far. Care must be taken, however, not to pass pointers explicitly declared as near to a service call.

VP __far *pk_msg;

get_mpf(ID_MPF1, (VP __far *)&pk_msg);
snd_mbx(ID_MBX1, (T_MSG __far *)pk_msg);

RI78V4 APPENDIX C INDEX

R20UT0511EJ0101 Rev.1.01 Page 262 of 272
Apr 01, 2012

A

act_tsk ... 139

B

boot processing ... 13, 104

basic form ... 104

internal processing ... 105

C

can_act ... 141

can_wup ... 155

CF78V4 ... 238

activation method ... 239

chg_pri ... 146

clr_flg ... 174

conditional compile macro ... 128

configuration information ... 221

static API information ... 221

system information ... 221

configurator ... 238

current priority ... 24

current state ... 127

cyclic handler ... 12, 75

basic form ... 75

internal processing ... 76

cyclic handler information ... 232

cyclic handler state packet ... 136

D

data type ... 126

directive file ... 14

dis_dsp ... 212

dly_tsk ... 162

DORMANT state ... 23

driving method ... 109

event-driven system ... 109

E

embedding system ... 21

ena_dsp ... 213

event-driven system ... 109

eventflag ... 50

clr_flg ... 174

iset_flg ... 172

pol_flg ... 177

ref_flg ... 181

set_flg ... 172

twai_flg ... 179

wai_flg ... 175

eventflag information ... 228

eventflag state packet ... 132

ext_tsk ... 144

F

FCFS method ... 109

fixed-sized memory pool ... 66

get_mpf ... 192

pget_mpf ... 194

ref_mpf ... 199

rel_mpf ... 197

tget_mpf ... 195

fixed-sized memory pool information ... 230

fixed-sized memory pool state packet ... 135

frsm_tsk ... 161

G

get_mpf ... 192

get_tid ... 208

I

iact_tsk ... 139

ican_wup ... 155

ichg_pri ... 146

idle routine ... 13, 119

basic form ... 119

internal processing ... 120

ifrsm_tsk ... 161

APPENDIX C INDEX

RI78V4 APPENDIX C INDEX

R20UT0511EJ0101 Rev.1.01 Page 263 of 272
Apr 01, 2012

iget_tid ... 208

iloc_cpu ... 209

initialization routine ... 13, 106

basic form ... 106

internal processing ... 107

initial priority ... 24

interrupt entry processing ... 13, 93

basic form ... 94

internal processing ... 94

interrupt handler ... 12, 95

basic form ... 96

internal processing ... 98

interrupt management function ... 93

irel_wai ... 156

irot_rdq ... 206

irsm_tsk ... 159

iset_flg ... 172

isig_sem ... 164

ista_tsk ... 142

isus_tsk ... 157

iunl_cpu ... 211

iwup_tsk ... 153

K

k_const segment ... 15, 66

k_data segment ... 15, 66

kernel initialization module ... 107

k_info segment ... 15, 66

k_stack segment ... 15, 66

k_system segment ... 15, 66

k_work0 segment ... 16, 66

k_work1 segment ... 16, 66

k_work2 segment ... 16, 66

k_work3 segment ... 16, 66

L

load module ... 17

loc_cpu ... 209

M

mailbox ... 59

message ... 60

prcv_mbx ... 187

rcv_mbx ... 185

ref_mbx ... 190

snd_mbx ... 183

trcv_mbx ... 188

mailbox information ... 229

mailbox state packet ... 134

Main window ... 244

memory pool management function ... 66, 191

message ... 60

basic form ... 60

securement of memory area ... 60

message packet ... 133

multiple interrupts ... 101

multi-task OS ... 10

P

packet format ... 129

cyclic handler state packet ... 136

eventflag state packet ... 132

fixed-sized memory pool packet ... 135

mailbox state packet ... 134

message packet ... 133

semaphore state packet ... 131

task state packet ... 129

version information packet ... 137

pget_mpf ... 194

pol_flg ... 177

pol_sem ... 167

prcv_mbx ... 187

priority ... 24

current priority ... 24

initialpriority ... 24

priority level method ... 109

processing program ... 12

cyclic handler ... 12

interrupt handler ... 12

task ... 12

Project Tree panel ... 246

Property panel ... 249

RI78V4 APPENDIX C INDEX

R20UT0511EJ0101 Rev.1.01 Page 264 of 272
Apr 01, 2012

R

rcv_mbx ... 185

ready queue ... 110

READY state ... 23

real-time OS ... 10

ref_cyc ... 204

ref_flg ... 181

ref_mbx ... 190

ref_mpf ... 199

ref_sem ... 170

ref_tsk ... 148

ref_ver ... 219

rel_mpf ... 197

rel_wai ... 156

return value ... 128

RI78V4 ... 10

[RI78V4] tab ... 252

rot_rdq ... 206

rsm_tsk ... 159

RUNNING state ... 23

S

scheduler ... 109

driving method ... 109

scheduling system ... 109

scheduling system ... 109

FCFS method ... 109

priority level method ... 109

segment ... 14

k_const ... 15, 66

k_data ... 15, 66

k_info ... 15, 66

k_stack ... 15, 66

k_system ... 15, 66

k_work0 ... 16, 66

k_work1 ... 16, 66

k_work2 ... 16, 66

k_work3 ... 16, 66

semaphore ... 44

isig_sem ... 164

pol_sem ... 167

ref_sem ... 170

sig_sem ... 164

twai_sem ... 168

wai_sem ... 166

semaphore information ... 227

semaphore state packet ... 131

set_flg ... 172

service call ... 121

sig_sem ... 164

slp_tsk ... 150

snd_mbx ... 183

sns_ctx ... 214

sns_dpn ... 217

sns_dsp ... 216

sns_loc ... 215

stack size estimation ... 234

sta_cyc ... 201

static API information ... 221, 224

cyclic handler information ... 232

eventflag information ... 228

fized-sized memory pool information ... 230

mailbox information ... 229

semaphore information ... 227

task information ... 224

sta_tsk ... 142

stp_cyc ... 203

SUSPENDED state ... 23

sus_tsk ... 157

synchronization and communication function ... 44

eventflag ... 50, 171

mailbox ... 59, 182

semaphore ... 44, 163

[System Configuration File Related Information] tab

 ... 253

system configuration file ... 12, 220

system configuration management function ... 103, 218

ref_ver ... 219

system construction ... 11

system information ... 221, 222

sytem stack information ... 222

task priority information ... 223

RI78V4 APPENDIX C INDEX

R20UT0511EJ0101 Rev.1.01 Page 265 of 272
Apr 01, 2012

system information header file ... 238

system information table file ... 238

system stack information ... 222

system state management function ... 80, 205

dis_dsp ... 212

ena_dsp ... 213

get_tid ... 208

iget_tid ... 208

iloc_cpu ... 209

irot_rdq ... 206

iunl_cpu ... 211

loc_cpu ... 209

rot_rdq ... 206

sns_ctx ... 214

sns_dpn ... 217

sns_dsp ... 216

sns_loc ... 215

unl_cpu ... 211

T

task ... 12, 22

basic form ... 25

internal processing ... 26

task dependent synchronization function ... 34, 149

ican_wup ... 155

can_wup ... 155

dly_tsk ... 162

frsm_tsk ... 161

ifrsm_tsk ... 161

irel_wai ... 156

irsm_tsk ... 159

isus_tsk ... 157

iwup_tsk ... 153

rel_wai ... 156

rsm_tsk ... 159

slp_tsk ... 150

sus_tsk ... 157

tslp_tsk ... 151

wup_tsk ... 153

task information ... 224

task management function ... 22, 138

act_tsk ... 139

can_act ... 141

chg_pri ... 146

ext_tsk ... 144

iact_tsk ... 139

ichg_pri ... 146

ista_tsk ... 142

ref_tsk ... 148

sta_tsk ... 142

ter_tsk ... 145

task priority information ... 223

task state ... 22

DORMANT state ... 23

READY state ... 23

RUNNING state ... 23

SUSPENDED state ... 23

WAITING state ... 23

WAITING-SUSPENDED state ... 23

task state packet ... 129

ter_tsk ... 145

tget_mpf ... 195

time management function ... 73, 200

ref_cyc ... 204

sta_cyc ... 201

stp_cyc ... 203

timeout ... 74

timer handler ... 73

trcv_mbx ... 188

tslp_tsk ... 151

twai_flg ... 179

twai_sem ... 168

U

unl_cpu ... 211

user-own coding module ... 13

boot processing ... 13

idle routine ... 13

initialization routine ... 13

interrupt entry processing ... 13

RI78V4 APPENDIX C INDEX

R20UT0511EJ0101 Rev.1.01 Page 266 of 272
Apr 01, 2012

V

version information packet ... 137

W

wai_flg ... 175

wai_sem ... 166

WAITING state ... 23

WAITING-SUSPENDED state ... 23

WAITING type ... 127

wup_tsk ... 153

Revision Record

Rev. Date
Description

Page Summary

1.00 Apr 01, 2011 - First Edition issued

1.01 Apr 01, 2012 14 Table 2-1 RI78V4 Segments
Changed as follows: the information contained in "Segment
Attribute" column of "k_system" line and "k_info" line.

CSEG UINTP
 -->
CSEG UNITP

14 Table 2-1 RI78V4 Segments
Changed as follows: the information contained in "Description"
column of "k_system" line and "k_info" line.

... from 0x000c0 to 0x0ffff.
 -->
... from 0x000c0 to 0xeffff.

127 Table 12-4 WAITING Types
Changed as follows: the information contained in "Description"
column.

Sleeping state.
Delayed state.
Waiting state for a semaphore resource.
Waiting state for an eventflag.
Receiving waiting state for a mailbox.
Waiting state for a fixed-sized memory block.
 -->
A task enters this state if the counter for the task (registering the
number of times the wakeup request has been issued) indicates 0x0
upon the issuance of a slp_tsk or tslp_tsk.
A task enters this state upon the issuance of a dly_tsk.
A task enters this state if it cannot acquire a resource from the
relevant semaphore upon the issuance of a wai_sem or
twai_sem.
A task enters this state if a relevant eventflag does not satisfy
a predetermined condition upon the issuance of a wai_flg or
twai_flg.
A task enters this state if cannot receive a message from the
relevant mailbox upon the issuance of a rcv_mbx or trcv_mbx.
A task enters this state if it cannot acquire a fixed-sized mem-
ory block from the relevant fixed-sized memory pool upon the
issuance of a get_mpf or tget_mpf.

130 12.5.1 Task state packet
Changed as follows: the sentence in the item "tskwait,
rtsk_wait".

Sleeping state.
Delayed state.
Waiting state for a semaphore resource.
Waiting state for an eventflag.

1.01 Apr 01, 2012 Receiving waiting state for a mailbox.
Waiting state for a fixed-sized memory block.
 -->
A task enters this state if the counter for the task (registering the
number of times the wakeup request has been issued) indicates 0x0
upon the issuance of a slp_tsk or tslp_tsk.
A task enters this state upon the issuance of a dly_tsk.
A task enters this state if it cannot acquire a resource from the
relevant semaphore upon the issuance of a wai_sem or
twai_sem.
A task enters this state if a relevant eventflag does not satisfy
a predetermined condition upon the issuance of a wai_flg or
twai_flg.
A task enters this state if cannot receive a message from the
relevant mailbox upon the issuance of a rcv_mbx or trcv_mbx.
A task enters this state if it cannot acquire a fixed-sized mem-
ory block from the relevant fixed-sized memory pool upon the
issuance of a get_mpf or tget_mpf.

209 loc_cpu/iloc_cpu
Changed as follows: the sentence in the "Explanation".

If a maskable interrupt is created during this period, ...
 -->
If a maskable interrupt is created during the interval from this
service call is issued until unl_cpu or iunl_cpu is issued, ...

221 13.2.1 Cautions
Changed as follows: the sentence in this section.

Figure 13-1 illustrates how the system configuration file is
described.
 -->
The following describes a system configuration file description
format.

227 13.4.2 Semaphore information
Changed as follows: the sentence in the item "2)" - "[Queuing
method]" - "TA_TFIFO".

Task wait queue is in FIFO order.
 -->
If a resource could not be acquired (semaphore counter is set
to 0x0) when wai_sem or twai_sem is issued, the task is
queued to the semaphore wait queue in the order of resource
acquisition request.

228 13.4.3 Eventflag information
Changed as follows: the sentence in the item "2)" - "[Queuing
method]" - "TA_TFIFO".

Task wait queue is in FIFO order.
 -->
If the bit pattern of the eventflag does not satisfy the required
condition when wai_flg or twai_flg is issued, the task is

Rev. Date
Description

Page Summary

1.01 Apr 01, 2012 queued to the eventflag wait queue.

229 13.4.4 Mailbox information
Change as follows: the sentence in the item "2)" - "[Task queu-
ing]" - "TA_TFIFO".

Task wait queue is in FIFO order.
 -->
If the message could not be received from the mailbox (no
messages were queued in the wait queue) when rcv_mbx or
trcv_mbx is issued, the task is queued to the mailbox wait
queue in the order of message reception request.

229 13.4.4 Mailbox information
Changed as follows: the sentence in the item "2)" - "[Message
queuing method]" - "TA_MFIFO".

Message queue is in FIFO order.
 -->
If a task is not queued to the mailbox wait queue when
snd_mbx is issued, the message is queued to the mailbox
wait queue in the order of message transmission request.

229 13.4.4 Mailbox information
Changed as follows: the sentence in the item "2)" - "[Message
queuing method]" - "TA_MPRI".

Message queue is in message priority order.
 -->
If a task is not queued to the mailbox wait queue when
snd_mbx is issued, the message is queued to the mailbox
wait queue in the order of message priority.

230 13.4.5 Fixed-sized memory pool information
Changed as follows: the sentence in the item "2)" - "[Queuing
method]" - "TA_TFIFO".

Task wait queue is in FIFO order.
 -->
If a memory block could not be acquired (no available memory
blocks exist) when get_mpf or tget_mpf is issued, the task is
queued to the fixed-sized memory pool wait queue in the
order of memory block acquisition request.

Rev. Date
Description

Page Summary

RI78V4 User's Manual:
Coding

Publication Date: Rev.1.00 Apr 01, 2011
Rev.1.01 Apr 01, 2012

Published by: Renesas Electronics Corporation

http://www.renesas.com
Refer to "http://www.renesas.com/" for the latest and detailed information.

Renesas Electronics America Inc.
2880 Scott Boulevard Santa Clara, CA 95050-2554, U.S.A.
Tel: +1-408-588-6000, Fax: +1-408-588-6130
Renesas Electronics Canada Limited
1101 Nicholson Road, Newmarket, Ontario L3Y 9C3, Canada
Tel: +1-905-898-5441, Fax: +1-905-898-3220
Renesas Electronics Europe Limited
Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K
Tel: +44-1628-585-100, Fax: +44-1628-585-900
Renesas Electronics Europe GmbH
Arcadiastrasse 10, 40472 Düsseldorf, Germany
Tel: +49-211-65030, Fax: +49-211-6503-1327
Renesas Electronics (China) Co., Ltd.
7th Floor, Quantum Plaza, No.27 ZhiChunLu Haidian District, Beijing 100083, P.R.China
Tel: +86-10-8235-1155, Fax: +86-10-8235-7679
Renesas Electronics (Shanghai) Co., Ltd.
Unit 204, 205, AZIA Center, No.1233 Lujiazui Ring Rd., Pudong District, Shanghai 200120, China
Tel: +86-21-5877-1818, Fax: +86-21-6887-7858 / -7898
Renesas Electronics Hong Kong Limited
Unit 1601-1613, 16/F., Tower 2, Grand Century Place, 193 Prince Edward Road West, Mongkok, Kowloon, Hong Kong
Tel: +852-2886-9318, Fax: +852 2886-9022/9044
Renesas Electronics Taiwan Co., Ltd.
13F, No. 363, Fu Shing North Road, Taipei, Taiwan
Tel: +886-2-8175-9600, Fax: +886 2-8175-9670
Renesas Electronics Singapore Pte. Ltd.
1 harbourFront Avenue, #06-10, keppel Bay Tower, Singapore 098632
Tel: +65-6213-0200, Fax: +65-6278-8001
Renesas Electronics Malaysia Sdn.Bhd.
Unit 906, Block B, Menara Amcorp, Amcorp Trade Centre, No. 18, Jln Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia
Tel: +60-3-7955-9390, Fax: +60-3-7955-9510
Renesas Electronics Korea Co., Ltd.
11F., Samik Lavied' or Bldg., 720-2 Yeoksam-Dong, Kangnam-Ku, Seoul 135-080, Korea
Tel: +82-2-558-3737, Fax: +82-2-558-5141

SALES OFFICES

© 2012 Renesas Electronics Corporation. All rights reserved.

Colophon 1.1

RI78V4

R20UT0511EJ0101

	COVER
	How to Use This Manual
	CHAPTER 1 OVERVIEW
	1.1 Outline
	1.1.1 Real-time OS
	1.1.2 Multi-task OS

	CHAPTER 2 SYSTEM CONSTRUCTION
	2.1 Outline
	2.2 Coding of Processing Program
	2.3 Coding of System Configuration File
	2.4 Coding of User-Own Coding Module
	2.5 Coding of Directive File
	2.5.1 k_system segment
	2.5.2 k_info segment
	2.5.3 k_const segment
	2.5.4 k_data segment
	2.5.5 k_stack segment
	2.5.6 k_work0, k_work1, k_work2, k_work3 segment

	2.6 Creating Load Module
	2.7 Embedding System

	CHAPTER 3 TASK MANAGEMENT FUNCTIONS
	3.1 Outline
	3.2 Tasks
	3.2.1 Task state
	3.2.2 Task priority
	3.2.3 Create task
	3.2.4 Delete task
	3.2.5 Basic form of tasks
	3.2.6 Internal processing of task

	3.3 Activate Task
	3.3.1 Queuing an activation request
	3.3.2 Not queuing an activation request

	3.4 Cancel Task Activation Requests
	3.5 Terminate Task
	3.5.1 Terminate invoking task
	3.5.2 Terminate task

	3.6 Change Task Priority
	3.7 Reference Task State

	CHAPTER 4 TASK DEPENDENT SYNCHRONIZATION FUNCTIONS
	4.1 Outline
	4.2 Put Task to Sleep
	4.3 Wakeup Task
	4.4 Cancel Task Wakeup Requests
	4.5 Release Task from Waiting
	4.6 Suspend Task
	4.7 Resume Suspended Task
	4.8 Delay Task

	CHAPTER 5 SYNCHRONIZATION AND COMMUNICATION FUNCTIONS
	5.1 Outline
	5.2 Semaphores
	5.2.1 Create semaphore
	5.2.2 Delete semaphore
	5.2.3 Release semaphore resource
	5.2.4 Acquire semaphore resource
	5.2.5 Reference semaphore state

	5.3 Eventflags
	5.3.1 Create eventflag
	5.3.2 Delete eventflag
	5.3.3 Set eventflag
	5.3.4 Clear eventflag
	5.3.5 Wait for eventflag
	5.3.6 Reference eventflag state

	5.4 Mailboxes
	5.4.1 Create mailbox
	5.4.2 Delete mailbox
	5.4.3 Message
	5.4.4 Send to mailbox
	5.4.5 Receive from mailbox
	5.4.6 Reference mailbox state

	CHAPTER 6 MEMORY POOL MANAGEMENT FUNCTIONS
	6.1 Outline
	6.2 Fixed-Sized Memory Pool
	6.2.1 Create fixed-sized memory pool
	6.2.2 Delete fixed-sized memory pool
	6.2.3 Acquire fixed-sized memory block
	6.2.4 Release fixed-sized memory block
	6.2.5 Reference fixed-sized memory pool state

	CHAPTER 7 TIME MANAGEMENT FUNCTIONS
	7.1 Outline
	7.2 Timer Handler
	7.2.1 Define timer handler

	7.3 Delayed Wakeup
	7.4 Timeout
	7.5 Cyclic Handlers
	7.5.1 Create cyclic handler
	7.5.2 Delete cyclic handler
	7.5.3 Basic form of cyclic handlers
	7.5.4 Internal processing of cyclic handler
	7.5.5 Start cyclic handler operation
	7.5.6 Stop cyclic handler operation
	7.5.7 Reference cyclic handler state

	CHAPTER 8 SYSTEM STATE MANAGEMENT FUNCTIONS
	8.1 Outline
	8.2 Rotate Task Precedence
	8.3 Reference Task ID in the RUNNING State
	8.4 Lock the CPU
	8.5 Unlock the CPU
	8.6 Disable Dispatching
	8.7 Enable Dispatching
	8.8 Reference Contexts
	8.9 Reference CPU State
	8.10 Reference Dispatching State
	8.11 Reference Dispatch Pending State

	CHAPTER 9 INTERRUPT MANAGEMENT FUNCTIONS
	9.1 Outline
	9.2 Interrupt Entry Processing
	9.2.1 Basic form of interrupt entry processing
	9.2.2 Internal processing of interrupt entry processing

	9.3 Interrupt Handlers
	9.3.1 Define interrupt handler
	9.3.2 Basic form of interrupt handlers
	9.3.3 Internal processing of interrupt handler

	9.4 Controlling Enabling/Disabling of Interrupts
	9.4.1 Interrupt level under management of the RI78V4
	9.4.2 Controlling enabling/disabling of interrupts in the RI78V4
	9.4.3 Controlling enabling/disabling of interrupts in user processes

	9.5 Multiple Interrupts

	CHAPTER 10 SYSTEM CONFIGURATION MANAGEMENT FUNCTIONS
	10.1 Outline
	10.2 Boot Processing
	10.2.1 Define boot processing
	10.2.2 Basic form of boot processing
	10.2.3 Internal processing of boot processing

	10.3 Initialization Routine
	10.3.1 Define initialization routine
	10.3.2 Undefine initialization routine
	10.3.3 Basic form of initialization routine
	10.3.4 Internal processing of initialization routine

	10.4 Kernel Initialization Module
	10.5 Reference Version Information

	CHAPTER 11 SCHEDULER
	11.1 Outline
	11.2 Driving Method
	11.3 Scheduling System
	11.4 Ready Queue
	11.4.1 Create ready queue
	11.4.2 Delete ready queue
	11.4.3 Rotate task precedence
	11.4.4 Change task priority

	11.5 Scheduling Disabling
	11.5.1 Disable dispatching
	11.5.2 Enable dispatching

	11.6 Delay of Scheduling
	11.7 Idle Routine
	11.7.1 Define idle routine
	11.7.2 Undefine idle routine
	11.7.3 Basic form of idle routine
	11.7.4 Internal processing of idle routine

	CHAPTER 12 SERVICE CALLS
	12.1 Outline
	12.2 Call Service Call
	12.2.1 C language
	12.2.2 Assembly language

	12.3 Amount of Stack Used by Service Calls
	12.4 Data Macros
	12.4.1 Data types
	12.4.2 Current state
	12.4.3 WAITING types
	12.4.4 Return value
	12.4.5 Conditional compile macro
	12.4.6 Others

	12.5 Packet Formats
	12.5.1 Task state packet
	12.5.2 Semaphore state packet
	12.5.3 Eventflag state packet
	12.5.4 Message packet
	12.5.5 Mailbox state packet
	12.5.6 Fixed-sized memory pool state packet
	12.5.7 Cyclic handler state packet
	12.5.8 Version information packet

	12.6 Task Management Functions
	act_tsk
	iact_tsk
	can_act
	sta_tsk
	ista_tsk
	ext_tsk
	ter_tsk
	chg_pri
	ichg_pri
	ref_tsk

	12.7 Task Dependent Synchronization Functions
	slp_tsk
	tslp_tsk
	wup_tsk
	iwup_tsk
	can_wup
	ican_wup
	rel_wai
	irel_wai
	sus_tsk
	isus_tsk
	rsm_tsk
	irsm_tsk
	frsm_tsk
	ifrsm_tsk
	dly_tsk

	12.8 Synchronization and Communication Functions (Semaphores)
	sig_sem
	isig_sem
	wai_sem
	pol_sem
	twai_sem
	ref_sem

	12.9 Synchronization and Communication Functions (Eventflags)
	set_flg
	iset_flg
	clr_flg
	wai_flg
	pol_flg
	twai_flg
	ref_flg

	12.10 Synchronization and Communication Functions (Mailboxes)
	snd_mbx
	rcv_mbx
	prcv_mbx
	trcv_mbx
	ref_mbx

	12.11 Memory Pool Management Functions
	get_mpf
	pget_mpf
	tget_mpf
	rel_mpf
	ref_mpf

	12.12 Time Management Functions
	sta_cyc
	stp_cyc
	ref_cyc

	12.13 System State Management Functions
	rot_rdq
	irot_rdq
	get_tid
	iget_tid
	loc_cpu
	iloc_cpu
	unl_cpu
	iunl_cpu
	dis_dsp
	ena_dsp
	sns_ctx
	sns_loc
	sns_dsp
	sns_dpn

	12.14 System Configuration Management Functions
	ref_ver

	CHAPTER 13 SYSTEM CONFIGURATION FILE
	13.1 Notation Method
	13.2 Configuration Information
	13.2.1 Cautions

	13.3 System Information
	13.3.1 System stack information
	13.3.2 Task priority information

	13.4 Static API Information
	13.4.1 Task information
	13.4.2 Semaphore information
	13.4.3 Eventflag information
	13.4.4 Mailbox information
	13.4.5 Fixed-sized memory pool information
	13.4.6 Cyclic handler information

	13.5 Stack Size Estimation
	13.5.1 System stack size
	13.5.2 Stack size of the task

	13.6 Description Examples

	CHAPTER 14 CONFIGURATOR CF78V4
	14.1 Outline
	14.2 Activation Method
	14.2.1 Activating from command line
	14.2.2 Activating from CubeSuite+
	14.2.3 Command file
	14.2.4 Command input examples

	APPENDIX A WINDOW REFERENCE
	A.1 Description
	Main window
	Project Tree panel
	Property panel
	[RI78V4] tab
	[System Configuration File Related Information] tab

	APPENDIX B CAUTIONS
	B.1 Restriction of Compiler Option
	B.2 Handling Register Bank
	B.3 Pointer Declarations

	APPENDIX C INDEX

