Old Company Name in Catalogs and Other Documents

On April 1st, 2010, NEC Electronics Corporation merged with Renesas Technology Corporation, and Renesas Electronics Corporation took over all the business of both companies. Therefore, although the old company name remains in this document, it is a valid Renesas Electronics document. We appreciate your understanding.

Renesas Electronics website: http://www.renesas.com

April 1st, 2010 Renesas Electronics Corporation

Issued by: Renesas Electronics Corporation (http://www.renesas.com)

Send any inquiries to http://www.renesas.com/inquiry.

Notice

- 1. All information included in this document is current as of the date this document is issued. Such information, however, is subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.
- Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights
 of third parties by or arising from the use of Renesas Electronics products or technical information described in this document.
 No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights
 of Renesas Electronics or others.
- 3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.
- 4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the use of these circuits, software, or information.
- 5. When exporting the products or technology described in this document, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas Electronics products or the technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations.
- 6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein.
- 7. Renesas Electronics products are classified according to the following three quality grades: "Standard", "High Quality", and "Specific". The recommended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular application. You may not use any Renesas Electronics product for any application categorized as "Specific" without the prior written consent of Renesas Electronics. Further, you may not use any Renesas Electronics product for any application for which it is not intended without the prior written consent of Renesas Electronics. Renesas Electronics shall not be in any way liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an application categorized as "Specific" or for which the product is not intended where you have failed to obtain the prior written consent of Renesas Electronics. The quality grade of each Renesas Electronics product is "Standard" unless otherwise expressly specified in a Renesas Electronics data sheets or data books, etc.
 - "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots.
 - "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-crime systems; safety equipment; and medical equipment not specifically designed for life support.
 - "Specific": Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.
- 8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the use of Renesas Electronics products beyond such specified ranges.
- 9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system manufactured by you.
- 10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.
- 11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas Electronics
- 12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries.
- (Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majority-owned subsidiaries.
- (Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

Renesas Starter Kit for R8C/L3AC

User's Manual

Renesas Single-Chip Microcomputer R8C Family

Disclaimer

By using this Renesas Starter Kit (RSK), the user accepts the following terms. The RSK is not guaranteed to be error free, and the entire risk as to the results and performance of the RSK is assumed by the User. The RSK is provided by Renesas on an "as is" basis without warranty of any kind whether express or implied, including but not limited to the implied warranties of satisfactory quality, fitness for a particular purpose, title and non-infringement of intellectual property rights with regard to the RSK. Renesas expressly disclaims all such warranties. Renesas or its affiliates shall in no event be liable for any loss of profit, loss of data, loss of contract, loss of business, damage to reputation or goodwill, any economic loss, any reprogramming or recall costs (whether the foregoing losses are direct or indirect) nor shall Renesas or its affiliates be liable for any other direct or indirect special, incidental or consequential damages arising out of or in relation to the use of this RSK, even if Renesas or its affiliates have been advised of the possibility of such damages.

Precautions

This Renesas Starter Kit is only intended for use in a laboratory environment under ambient temperature and humidity conditions. A safe separation distance should be used between this and any sensitive equipment. Its use outside the laboratory, classroom, study area or similar such area invalidates conformity with the protection requirements of the Electromagnetic Compatibility Directive and could lead to prosecution.

The product generates, uses, and can radiate radio frequency energy and may cause harmful interference to radio communications. However, there is no guarantee that interference will not occur in a particular installation. If this equipment causes harmful interference to radio or television reception, which can be determined by turning the equipment off or on, you are encouraged to try to correct the interference by one or more of the following measures;

- ensure attached cables do not lie across the equipment
- reorient the receiving antenna
- increase the distance between the equipment and the receiver
- connect the equipment into an outlet on a circuit different from that which the receiver is connected
- power down the equipment when not is use
- consult the dealer or an experienced radio/TV technician for help NOTE: It is recommended that wherever possible shielded
 interface cables are used.

The product is potentially susceptible to certain EMC phenomena. To mitigate against them, it is recommended that the following measures be undertaken:

- The user is advised that mobile phones should not be used within 10m of the product when in use.
- The user is advised to take ESD precautions when handling the equipment.

The Renesas Starter Kit does not represent an ideal reference design for an end product and does not fulfil the regulatory standards for an end product.

Table of Contents

Chapter 1. Preface	1
Chapter 2. Purpose	2
Chapter 3. Power Supply	3
3.1. Requirements	3
3.2. Power-up Behaviour	3
Chapter 4. Board Layout	4
4.1. Component Layout	4
4.2. Board Dimensions	5
Chapter 5. Block Diagram	6
Chapter 6. User Circuitry	7
6.1. Switches	7
6.2. LEDs	7
6.3. Potentiometer	7
6.4. Serial port	8
6.5. Debug LCD Module	8
6.6. LIN	9
6.7. Option Links	10
6.8. Oscillator Sources	20
6.9. Reset Circuit	20
Chapter 7. Modes	21
7.1. Boot modes	21
7.2. Single chip mode	22
Chapter 8. Programming Methods	23
Chapter 9. Headers	24
9.1. Microcontroller Ring Headers	24
9.2. Application Headers	26
Chapter 10. Code Development	30
10.1. Overview	30
10.2. Compiler Restrictions	30
10.3. Breakpoint Support	30
10.4. Memory Map	31
Chapter 11. Component Placement	32
Chapter 12. Additional Information	33

Chapter 1. Preface

Cautions

This document may be, wholly or partially, subject to change without notice.

All rights reserved. Duplication of this document, either in whole or part is prohibited without the written permission of Renesas Technology Europe Limited.

Trademarks

All brand or product names used in this manual are trademarks or registered trademarks of their respective companies or organisations.

Copyright

© 2010 Renesas Technology Europe Ltd. All rights reserved.

© 2010 Renesas Technology Corporation. All rights reserved.

© 2010 Renesas Solutions Corporation. All rights reserved.

Website: www.renesas.com

Glossary

ADC	Analog to Digital Converter	CD	Compact Disc
CPU	Central Processing Unit	DAC	Digital to Analog Converter
E8a	E8a on-chip debugger module	EMC	Electromagnetic compatibility
ESD	Electrostatic Discharge	HEW	High-Performance Embedded Workshop
I/O	Input / Output	LCD	Liquid Crystal Display
LED	Light Emitting Diode	LIN	Local Interconnect Network
MCU	Microcontroller Unit	PC	Personal Computer
RAM	Random Access Memory	ROM	Read-Only Memory
RSK	Renesas Starter Kit	UART	Universal Asynchronous Receiver Transmitter
USB	Universal Serial Bus		

Chapter 2. Purpose

This RSK is an evaluation tool for Renesas microcontrollers.

This manual describes the technical details of the RSK hardware. The Quick Start Guide and Tutorial Manual provide details of the software installation and debugging environment.

Features include:

- Renesas Microcontroller Programming.
- User Code Debugging.
- User Circuitry such as switches, LEDs and potentiometer.
- Sample Application.
- Sample peripheral device initialisation code.

The RSK board contains all the circuitry required for microcontroller operation.

Note:

* The option links for the user LEDs are not fitted by default. To use LEDs fit R76, R78, R80, R82 and disconnect Renesas LCD Panel from JA4.

** The option link for DLCDE pin is not fitted by default. To use Debug LCD fit R92 and disconnect Renesas LCD Panel from JA4.

Chapter 3. Power Supply

3.1. Requirements

This RSK board operates from a 5V DC power supply.

A diode provides reverse polarity protection only if a current limiting power supply is used.

This RSK board is supplied with an E8a debugger. This product is able to power the RSK board with up to 300mA. When the RSK is connected to another system then that system should supply power to the RSK.

All RSK boards have an optional centre positive supply connector using a 2.0mm barrel power jack.

Warning

The RSK board is neither under nor over voltage protected. Use a centre positive supply for this board.

3.2. Power-up Behaviour

When the RSK is purchased, the RSK board has the 'Release' or stand-alone code from the example tutorial code pre-programmed into the Renesas microcontroller. On powering up the board, all the segments of Renesas LCD panel connected to JA4 will start to flash. After 200 flashes or after pressing any switch the LCD panel will show ADC value controlled by the potentiometer.

Chapter 4. Board Layout

4.1. Component Layout

The following diagram shows the top layer component layout of the board.

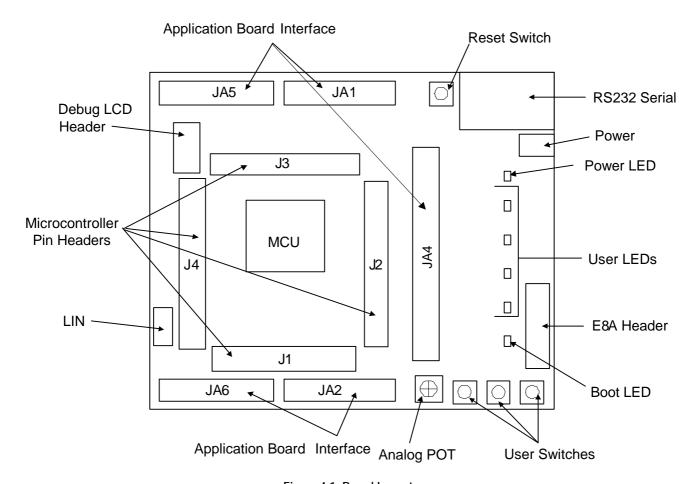


Figure 4-1: Board Layout

4.2. Board Dimensions

The following diagram gives the board dimensions and connector positions. All through-hole connectors are on a common 0.1" grid for easy interfacing.

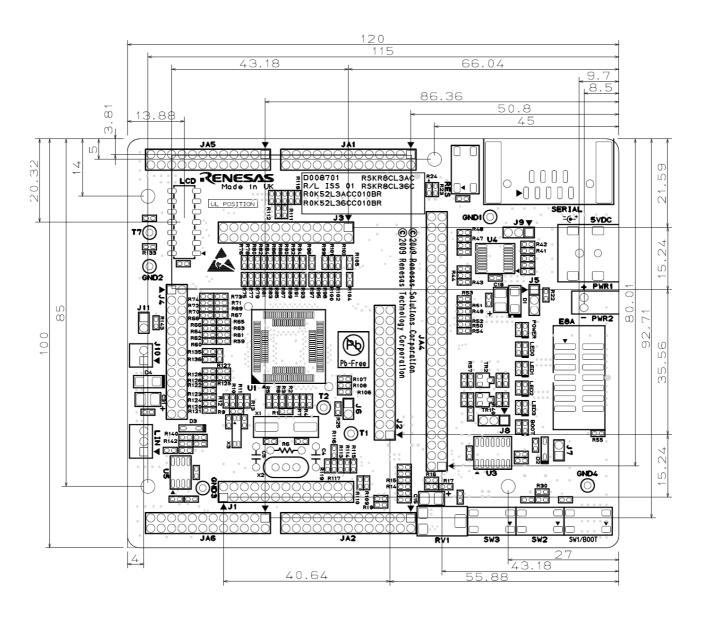


Figure 4-2: Board Dimensions

Chapter 5. Block Diagram

Figure 5-1 shows the RSK board components and their connectivity.

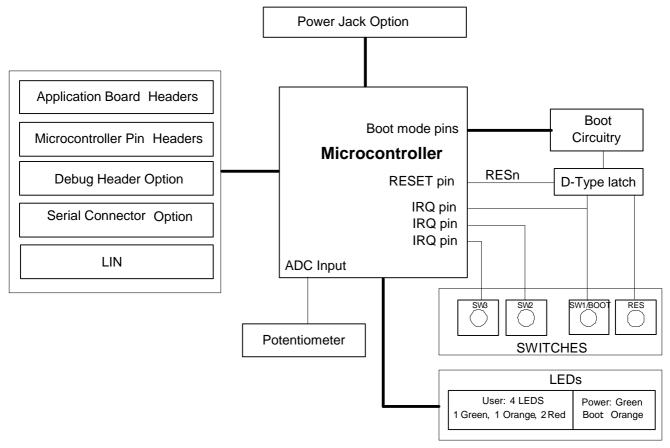


Figure 5-1: Block Diagram

Figure 5-2 shows E8a connections to the RSK.

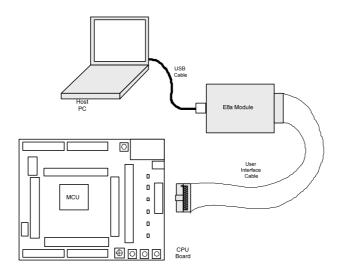


Figure 5-2: E8a RSK Connections

Chapter 6. User Circuitry

6.1. Switches

There are four switches located on the RSK board. The function of each switch and its connection are shown in Table 6-1

Switch	Function	Microcontroller	
RES	When pressed, the microcontroller is reset.	RESETn, Pin 10	
SW1 / BOOT*	Connects to an INT input for user controls.	INT4n, Pin 18 (Port 11, bit 4)	
	The switch is also used in conjunction with the RES switch to place the		
	device in BOOT mode when not using the E8a debugger.		
	The same MCU pin also function as Timer RA I/O.		
SW2*	Connects to an INT line for user controls.	INT5n, Pin 17 (Port 11, bit 5)	
SW3*	Connects to an INT line for user controls.	INT6n, Pin 16 (Port 11, bit 6)	
	Connects to an ADTRG input for AD trigger controls		

Table 6-1: Switch Functions

6.2. LEDs

There are six LEDs on the RSK board. The green 'POWER' LED lights when the board is powered. The orange 'BOOT' LED indicates the device is in BOOT mode when lit. The four user LEDs are connected to an I/O port and will light when their corresponding port pin is set low.

Table 6-2 below shows the LED pin references and their corresponding microcontroller port pin connections.

LED Reference (As	Colour	Microcontroller Port	Microcontroller
shown on silkscreen)		Pin function	Pin Number
LED0*	Green	Port 2, bit 4	70
LED1*	Orange	Port 2, bit 5	69
LED2*	Red	Port 2, bit 6	68
LED3*	Red	Port 2, bit 7	67

Table 6-2: LED Port

Note:

* The option links for the user LEDs are not fitted by default. To use LEDs fit R76, R78, R80, R82 and disconnect Renesas LCD Panel from JA4.

6.3. Potentiometer

A single-turn potentiometer is connected to pin AN0 (Port 13 bit 0, pin 4) of the microcontroller. This may be used to vary the input analog voltage value to this pin between AVCC and Ground.

Note: The potentiometer is fitted to offer an easy way of supplying a variable analog input to the controller. It does not necessarily reflect the accuracy of the controller's ADC. Please see the device manual for details.

^{*}Refer to the schematic for detailed connectivity information.

6.4. Serial port

Serial port UART2 is connected to the standard RS232 header. Serial port UART0 can optionally be connected to the RS232 transceiver by moving option resistors. The connections to be moved are listed in the **Table 6-3**.

Description	Function	Microcontroller	Fit for RS232	Remove for RS232
		Port Pin		
UART2	Default serial port (TX)	20 (Port 11, bit 2)	R53	R49, R51
UART2	Default serial port (RX)	21 (Port 11, bit 1)	R54	R50, R52
UART0	Spare Serial Port (TX)	3 (Port 13, bit 1)	R51, R123	R49, R53, R122, R124
UART0	Spare Serial Port (RX)	2 (Port 13, bit 2)	R52, R125	R50, R54, R126
UART1	UART1 Serial Port (TX)	58 (Port 4, bit 0)	R47, R99	R98
UART1	UART1 Serial Port (RX)	57 (Port 4, bit 1)	R48, R101	R100

Table 6-3: Serial port settings

The serial channel UART0 can also be accessed at 'J1' and 'JA6'; UART1 can be accessed at 'J3' and 'JA6'; UART2 can be accessed at 'J1' and 'JA2'.

The board is designed to accept a straight-through RS-232 male-to-female cable.

The UARTO port is shared with the LIN module. For more details please refer to the section 6.6.

6.5. Debug LCD Module

A debug LCD module is supplied to be connected to the connector LCD. This should be fitted so that the debug LCD module lies over 'J3'. Care should be taken to ensure the pins are inserted correctly into LCD. The debug LCD module uses a 4 bit interface to reduce the pin allocation. No contrast control is provided; this is set by a resistor on the supplied display module.

Table 6-4 shows the pin allocation and signal names used on this connector.

The module supplied with the RSK board only supports 5V operation.

	LCD				
Pin	Circuit Net Name	Device Pin	Pin	Circuit Net Name	Device Pin
1	Ground	-	2	5V	-
3	No Connection	-	4	DLCDRS	61 (Port 3, bit 5)
5	R/W (Wired to write only	-	6	DLCDE * (+ 100k pull	62 (Port 3, bit 4)
	using 10K pull down))			down to ground)	
7	No Connection	-	8	No Connection	-
9	No Connection	-	10	No Connection	-
11	DLCDD4	66 (Port 3, bit 0)	12	DLCDD5	65 (Port 3, bit 1)
13	DLCDD6	64 (Port 3, bit 2)	14	DLCDD7	63 (Port 3, bit 3)

Table 6-4: Debug LCD Module Connections

Note:

^{*} The option link for DLCDE is not fitted by default. To use Debug LCD fit R92 and disconnect Renesas LCD Panel from JA4.

6.6. LIN

The serial port UART0 also functions as LIN port pins. The options links to be configured are listed in the Table 6-5

Description	Function	Circuit Net Name	Device Pin	Fit for Hardware	Remove for
				LIN	Hardware LIN
LIN	TXD	LINTXD	3	R124	R122, R123
LIN	RXD	LINRXD	2	R126	R125
LIN	NSLP	LINNSLP	1	R128	R127

Table 6-5: Hardware LIN Settings

When resistors R140 and R142 are fitted LIN device will be in master mode, when they are removed it will be Slave.

6.7. Option Links

In this section, the default configuration is indicated by $\ensuremath{\mathbf{BOLD}}$ text.

Table 6-6 below describes the function of the option links associated with serial port configuration.

		Option Link Settings		
Reference	Function	Fitted	Alternative (Removed)	Related To
R41	Serial Port Configuration	Connects channel 2 (Tx pin) of the RS232	Disconnects Channel 2	R47
		transceiver to pin 8 of the D-type serial port	(TX pin) of the RS232	
		connector	transceiver from the	
			D-type serial port	
			connector	
R42	Serial Port Configuration	Connects channel 2 (Rx pin) of the RS232	Disconnects Channel 2	R48
		transceiver to pin 7 of the D-type serial	(RX pin) of the RS232	
		port connector	transceiver from the	
			D-type serial port	
			connector	
R43	Serial Port Configuration	Disables the RS-232 Transceiver.	Enables the RS-232	-
			Transceiver	
R99	Serial Port Configuration	Connects the TxD pin of serial port UART1	Disconnects the TxD pin	R98
		to pin 9 of the application header 'JA6'	of serial port UART1 from	
			the application header	
			'JA6'	
R101	Serial Port Configuration	Connects the RxD pin of serial port UART1	Disconnects the RxD pin	R100
		to pin 12 of the application header 'JA6'	of serial port UART1 from	
			the application header	
			'JA6'	
	Serial Port Configuration	Connects the RS232 serial port (Tx) to the	Disconnects the RS232	R51, R53
R49		application board interface (JA6-5).	serial port (Tx) from	
			application board	
			interface (JA6-5)	
R50	Serial Port Configuration	Connects the RS-232 serial port (Rx) to	Disconnects the RS-232	R52, R54
		application board interface (JA6-6)	serial port (Rx) from	
			application board	
			interface (JA6-6)	
R53	Serial Port Configuration	Connects the TxD pin of serial port	Disconnects the TxD pin of	R49, R51,
		UART2 to the D-type connector via the	serial port UART2 from the	R111, R112
		RS232 transceiver	D-type connector	
R54	Serial Port Configuration	Connects the RxD pin of serial port	Disconnects the RxD pin of	R50, R52,
		UART2 to the D-type connector via the	serial port UART2 from the	R109, R110
		RS232 transceiver	D-type connector	
R51	Serial Port Configuration	Connects the TxD pin of serial port UARTO	Disconnects the TxD pin	R49, R53,
		to the D-type connector via the RS232	of serial port UARTO from	R122,
		transceiver	the D-type connector	R123, R124

R52	Serial Port Configuration	Connects the RxD pin of serial port UARTO	Disconnects the RxD pin	R50, R54,
		to the D-type connector via the RS232	of serial port UART0 from	R125, R126
		transceiver	the D-type connector	
R47	Serial Port Configuration	Connects the TxD pin of serial port	Disconnects the TxD pin of	R98
		UART1 to the D-type connector via the	serial port UART1 from the	
		RS232 transceiver	D-type connector	
R48	Serial Port Configuration	Connects the RxD pin of serial port	Disconnects the RxD pin of	R100
		UART1 to the D-type connector via the	serial port UART1 from the	
		RS232 transceiver	D-type connector	

Table 6-6: Serial port configuration links

Table 6-7 below describes the function of the option links associated with Power Source configuration.

	Option Link Settings				
Reference	Function	Fitted	Alternative (Removed)	Related	
				То	
R22	Power Source	Connects the voltage source from	Disconnects the Board_VCC from PWR1	-	
		PWR1 to Board_VCC	connector		
R23	Power Source	Connects the net CON_5V (JA1-1) to	Disconnects CON_5V from Board_VCC	R24	
		Board_VCC. External 5V supply can be			
		connected at CON_5V.			
		(R22 and R24 Must be removed if			
		supplying 5V from CON_5V)			
R24	Power Source	Connects the net CON_3V3 (JA1-3) to	Disconnects CON_3V3 from Board_VCC	R23	
		Board_VCC. External 3.3V supply can be			
		connected at CON_3V3.			
		(R22 and R23 Must be removed if			
		supplying 3.3V from CON_3V3)			
R25	Microcontroller	Supply power to the Microcontroller	Disables 5V power supply to the	-	
	Power Supply	VCC pin	microcontroller VCC pins. Supply current to		
			the MCU can be measured across 'J6'		

Table 6-7: Power configuration links

Table 6-8 below describes the function of the option links associated with Analog Voltage Source configuration.

	Option Link Settings					
Reference	Function	Fitted	Alternative (Removed)	Related		
				То		
R121	Analog Input	Connects on-board potentiometer	Disconnects the ADPOT from analog	R120		
		ADPOT to the analog input pin AN0 of	input AN0			
		the MCU (Port pin P13_0)				
R16	Analog Voltage	Connects UC_VCC to the	Disconnects UC_VCC from potentiometer	R17		
	Source	potentiometer RV1 and MCU pin VREF	RV1 and MCU pin VREF			
R17	Analog Reference	Connects MCU pin VREF to CON_VREF	Disconnects MCU pin VREF from	R16		
	Voltage	(JA1-7)	UC_VCC and CON_VREF			

Table 6-8: Analog Configuration Links

Table 6-9 below describes the function of the option links associated with application board interface.

		Option Link Settings		
Referen ce	Function	Fitted	Alternative (Removed)	Related To
R59	Application Board	Connects MCU port pin P0_0 (pin 90) to	Disconnects MCU port pin P0_0 (pin	R60
	Interface	SEG0 at JA4-11	90) from SEG0	
R60	Application Board	Connects MCU port pin P0_0 (pin 90) to	Disconnects MCU port pin P0_0 (pin	R59
	Interface	AN4 at JA1-9	90) from AN4	
R61	Application Board	Connects MCU port pin P0_1 (pin 89) to	Disconnects MCU port pin P0_1 (pin	R62
	Interface	SEG1 at JA4-12	89) from SEG1	
R62	Application Board	Connects MCU port pin P0_1 (pin 89) to	Disconnects MCU port pin P0_1 (pin	R61
	Interface	AN5 at JA1-10	89) from AN5	
R63	Application Board	Connects MCU port pin P0_2 (pin 88) to	Disconnects MCU port pin P0_2 (pin	R64
	Interface	SEG2 at JA4-13	88) from SEG2	
R64	Application Board	Connects MCU port pin P0_2 (pin 88) to	Disconnects MCU port pin P0_2 (pin	R63
	Interface	AN6 at JA1-11	88) from AN6	
R65	Application Board	Connects MCU port pin P0_3 (pin 87)to	Disconnects MCU port pin P0_3 (pin	R66
	Interface	SEG3 at JA4-14	87) from SEG3	
R66	Application Board	Connects MCU port pin P0_3 (pin 87) to	Disconnects MCU port pin P0_3 (pin	R65
	Interface	AN7 at JA1-12	87) from AN7	
R67	Application Board	Connects MCU port pin P0_4 (pin 86)to	Disconnects MCU port pin P0_4 (pin	R68
	Interface	SEG4 at JA4-15	86) from SEG4	
R68	Application Board	Connects MCU port pin P0_4 (pin 86) to	Disconnects MCU port pin P0_4 (pin	R67
	Interface	AN8 at JA5-1	86) from AN8	
R69	Application Board	Connects MCU port pin P0_5 (pin 85) to	Disconnects MCU port pin P0_5 (pin	R70
	Interface	SEG5 at JA4-16	85) from SEG5	
R70	Application Board	Connects MCU port pin P0_5 (pin 85)to	Disconnects MCU port pin P0_5 (pin	R69
	Interface	AN9 at JA5-2	85) from AN9	
R71	Application Board	Connects MCU port pin P0_6 (pin 84) to	Disconnects MCU port pin P0_6 (pin	R72
	Interface	SEG6 at JA4-17	84) from SEG6	
R72	Application Board	Connects MCU port pin P0_6 (pin 84) to	Disconnects MCU port pin P0_6 (pin	R71
	Interface	AN10 at JA5-3	84) from AN10	
R73	Application Board	Connects MCU port pin P0_7 (pin 83) to	Disconnects MCU port pin P0_7 (pin	R74
	Interface	SEG7at JA4-18	83) from SEG7	
R74	Application Board	Connects MCU port pin P0_7 (pin 83) to	Disconnects MCU port pin P0_7 (pin	R73
	Interface	AN11 at JA5-4	83) from AN11	
R75	Application Board	Connects MCU port pin P2_4 (pin 70) to	Disconnects MCU port pin P2_4 (pin	R76
	Interface	SEG20 at JA4-19	70) from SEG20	
R76	Application Board	Connects MCU port pin P2_4 (pin 70) to	Disconnects MCU port pin P2_4 (pin	R75
	Interface	LED0	70) from LED0	

R77	Application Board	Connects MCU port pin P2_5 (pin 69) to	Disconnects MCU port pin P2_5 (pin	R78
	Interface	SEG21 at JA4-20	69) from SEG21	
R78	Application Board	Connects MCU port pin P2_5 (pin 69) to	Disconnects MCU port pin P2_5 (pin	R77
	Interface	LED1	69) from LED1	
R79	Application Board	Connects MCU port pin P2_6 (pin 68) to	Disconnects MCU port pin P2_6 (pin	R80
	Interface	SEG22 at JA4-21	68) from SEG22	
R80	Application Board	Connects MCU port pin P2_6 (pin 68) to	Disconnects MCU port pin P2_6 (pin	R79
	Interface	LED2	68) from LED2	
R81	Application Board	Connects MCU port pin P2_7 (pin 67) to	Disconnects MCU port pin P2_7 (pin	R82
	Interface	SEG23 at JA4-22	67) from SEG23	
R82	Application Board	Connects MCU port pin P2_7 (pin 67) to	Disconnects MCU port pin P2_7 (pin	R81
	Interface	LED3	67) from LED3	
R83	Application Board	Connects MCU port pin P3_0 (pin 66) to	Disconnects MCU port pin P3_0 (pin	R84
	Interface	SEG24 at JA4-23	66) from SEG24	
R84	Application Board	Connects MCU port pin P3_0 (pin 66) to	Disconnects MCU port pin P3_0 (pin	R83
	Interface	DLCD4	66) from DLCD4	
R85	Application Board	Connects MCU port pin P3_1 (pin 65) to	Disconnects MCU port pin P3_1 (pin	R86
	Interface	SEG25 at JA4-24	65) from SEG25	
R86	Application Board	Connects MCU port pin P3_1 (pin 65) to	Disconnects MCU port pin P3_1 (pin	R85
	Interface	DLCD5	65) from DLCD5	
R87	Application Board	Connects MCU port pin P3_2 (pin 64) to	Disconnects MCU port pin P3_2 (pin	88
	Interface	SEG26 at JA4-25	64) from SEG26	
R88	Application Board	Connects MCU port pin P3_2(pin 64) to	Disconnects MCU port pin P3_2 (pin	87
	Interface	DLCD6	64) from DLCD6	
R89	Application Board	Connects MCU port pin P3_3 (pin 63) to	Disconnects MCU port pin P3_3 (pin	90
	Interface	SEG27 at JA4-26	63) from SEG27	
R90	Application Board	Connects MCU port pin P3_3 (pin 63) to	Disconnects MCU port pin P3_3 (pin	89
	Interface	DLCD7	63) from DLCD7	
R91	Application Board	Connects MCU port pin P3_4 (pin 62) to	Disconnects MCU port pin P3_4 (pin	R92
	Interface	SEG28 at JA4-27	62) from SEG28	
R92	Application Board	Connects MCU port pin P3_4 (pin 62) to	Disconnects MCU port pin P3_4 (pin	R91
	Interface	DLCDE	62) from DLCDE	
R93	Application Board	Connects MCU port pin P3_5 (pin 61) to	Disconnects MCU port pin P3_5 (pin	R94
	Interface	SEG29 at JA4-28	61) from SEG29	
R94	Application Board	Connects MCU port pin P3_5 (pin 61) to	Disconnects MCU port pin P3_5 (pin	R93
	Interface	DLCDRS	61) from DLCDRS	
R95	Application Board	Connects MCU port pin P3_7 (pin 59) to	Disconnects MCU port pin P3_7 (pin	R96, R97
	Interface	SEG31 at JA4-30	59) from SEG31	

R96	Application Board	Connects MCU port pin P3_7 (pin 59) to	Disconnects MCU port pin P3_7 (pin	R95, R97
	Interface	ADTRGn at JA1-8	59) from ADTRGn	
R97	Application Board	Connects MCU port pin P3_7 (pin 59) to	Disconnects MCU port pin P3_7 (pin	R95, R96,
	Interface	SW3	59) from SW3	R119
R98	Application Board	Connects MCU port pin P4_0 (pin 58) to	Disconnects MCU port pin P4_0 (pin	R99
	Interface	SEG32 at JA4-31	58) from SEG32	
R99	Application Board	Connects MCU port pin P4_0 (pin 58) to	Disconnects MCU port pin P4_0 (pin	R98
	Interface	TXD1 at JA6-9	58) from TXD1	
R100	Application Board	Connects MCU port pin P4_1 (pin 57) to	Disconnects MCU port pin P4_1 (pin	R101
	Interface	SEG33 at JA4-32	57) from SEG33	
R101	Application Board	Connects MCU port pin P4_1 (pin 57) to	Disconnects MCU port pin P4_1 (pin	R100, R148
	Interface	RXD1 at JA6-12	57) from RXD1	
R102	Application Board	Connects MCU port pin P4_2 (pin 56) to	Disconnects MCU port pin P4_2 (pin	R103
	Interface	SEG34 at JA4-33	56) from SEG34	
R103	Application Board	Connects MCU port pin P4_2 (pin 56) to	Disconnects MCU port pin P4_2 (pin	R102
	Interface	CLK1 JA6-11	56) from CLK1	
R104	Application Board	Connects MCU port pin P4_5 (pin 53) to	Disconnects MCU port pin P4_5 (pin	R105
	Interface	Interface SEG37 at JA4-36 53) from SEG37		
R105	Application Board	Connects MCU port pin P4_5 (pin 53) to	Disconnects MCU port pin P4_2 (pin	R104
	Interface	TRCIOB at JA5-15	53) from TRCIOB	
R106	Application Board	Connects MCU port pin P11_0 (pin 22)	Disconnects MCU port pin P11_0 (pin	R107, R108
	Interface	to CLK2 at JA2-10	22) from CLK2	
R107	Application Board	Connects MCU port pin P11_0 (pin 22) to	Disconnects MCU port pin P11_0	R106, R108
	Interface	SCL at JA1-26	(pin 22) from SCL	
R108	Application Board	Connects MCU port pin P11_0 (pin 22) to	Disconnects MCU port pin P11_0	R106, R107
	Interface	IVREF1 at JA2-25	(pin 22) from IVREF1	
R109	Application Board	Connects MCU port pin P11_1 (pin 21)	Disconnects MCU port pin P11_1 (pin	R110
	Interface	to RXD2 at JA2-8	21) from RXD2	
R110	Application Board	Connects MCU port pin P11_1 (pin 21) to	Disconnects MCU port pin P11_1	R109
	Interface	IVCMP1 at JA2-26	(pin 21) from IVCMP1	
R111	Application Board	Connects MCU port pin P11_2 (pin 20)	Disconnects MCU port pin P11_2 (pin	R53, R112
	Interface	to TXD2 at JA2-6	20) from TXD2	
R112	Application Board	Connects MCU port pin P11_2 (pin 20) to	Disconnects MCU port pin P11_2	R111
	Interface	SDA at JA1-25	(pin 20) from SDA	
R113	Application Board	Connects MCU port pin P11_4 (pin 18)	Disconnects MCU port pin P11_4 (pin	R114, R115
	Interface	to INT4n at JA2-9	18) from INT4n	
R114	Application Board	Connects MCU port pin P11_4 (pin 18) to	Disconnects MCU port pin P11_4	R113, R115
	Interface	TRAIO at JA2-22	(pin 18) from TRAIO	

R115	Application Board	Connects MCU port pin P11_4 (pin 18)	Disconnects MCU port pin P11_4 (pin	R113,R114
	Interface	to SW1	18) from SW1	
R116	Application Board	Connects MCU port pin P11_5 (pin 17)	Disconnects MCU port pin P11_5 (pin	R117
	Interface	to INT5n at JA2-23	17) from INT5n	
R117	Application Board	Connects MCU port pin P11_5 (pin 17)	Disconnects MCU port pin P11_5 (pin	R116
	Interface	to SW2	17) from SW2	
R118	Application Board	Connects MCU port pin P11_6 (pin 16)	Disconnects MCU port pin P11_6 (pin	R119
	Interface	to INT6n at JA2-23	16) from INT6n	
R119	Application Board	Connects MCU port pin P11_6 (pin 16)	Disconnects MCU port pin P11_6 (pin	R118
	Interface	to SW3	16) from SW3	
R120	Application Board	Connects MCU port pin P13_0 (pin 4) to	Disconnects MCU port pin P13_0	R121
	Interface	DA0 at JA1-13	(pin 4) from DA0	
R121	Application Board	Connects MCU port pin P13_0 (pin 4) to	Disconnects MCU port pin P13_0 (pin	R120
	Interface	ADPOT	4) from ADPOT	
R122	Application Board	Connects MCU port pin P13_1 (pin 3) to	Disconnects MCU port pin P13_1	R123, R124
	Interface	DA1 at JA1-14	(pin 3) from DA1	
R123	Application Board	Connects MCU port pin P13_1 (pin 3) to	Disconnects MCU port pin P13_1	R51, R122,
	Interface	TXD0 at JA6-8	(pin 3) from TXD0	R124
R124	Application Board	Connects MCU port pin P13_1 (pin 3) to	Disconnects MCU port pin P13_1 (pin	R122, R123
	Interface	LINTXD	3) from LINTXD	
R125	Application Board	Connects MCU port pin P13_2 (pin 2) to	Disconnects MCU port pin P13_2	R52, R126
	Interface	RXD0 at JA6-7	(pin 2) from RXD0	
R126	Application Board	Connects MCU port pin P13_2 (pin 2) to	Disconnects MCU port pin P13_2 (pin	R125
	Interface	LINRXD	2) from LINRXD	
R127	Application Board	Connects MCU port pin P13_3 (pin 1) to	Disconnects MCU port pin P13_3	R128
	Interface	CLK0 at JA6-10	(pin 2) from CLK0	
R128	Application Board	Connects MCU port pin P13_3 (pin 1) to	Disconnects MCU port pin P13_3 (pin	R127
	Interface	LINNSLP	2) from LINNSLP	

Table 6-9: Application Board Interface configuration links

Table 6-10 below describes the function of the option links associated with Clock configuration.

	Option Link Settings					
Reference	Function	Fitted	Alternative (Removed)	Related		
				То		
R1	Main clock	Parallel resistor for oscillator 'X1'	Not fitted	-		
R2	Main clock	On board clock X1 connected to the MCU as	External clock source can be connected to	R3, R4,		
		main clock	the MCU	R7, R1		
R3	Main clock	On board clock X1 connected to the MCU as	External clock source can be connected to	R2, R5,		
		main clock	the MCU	R1, R8		
R4	Main clock	Routes MCU clock input pin XIN to J1 header (at	MCU pin XIN is disconnected from J1	R2, R5,		
		J1-13)	header	R7		
R5	Main clock	Routes MCU clock output pin XOUT to J1 (at	MCU pin XOUT is disconnected from	R4, R3,		
		J1-11) (External clock source is used for XOUT)	J1 header	R8		
R6	Main clock	Parallel resistor for oscillator 'X2' Not fitted		-		
R7	Main clock	On board clock X2 can be connected to the	X2 is disconnected from MCU main	R2, R4,		
		MCU as main clock	clock input pins	R6, R8		
R8	Main clock	On board clock X2 can be connected to the	X2 is disconnected from MCU main	R3, R5,		
		MCU as main clock	clock input pins	R6, R7		
R9	Sub clock	Parallel resistor for on-board sub clock X3	Not fitted	-		
R10	Sub clock	On board clock X3 connected to the MCU as	X3 is disconnected for XCIN	R9, R11,		
		sub clock		R12		
R11	Sub clock	On board clock X3 connected to the MCU as	X3 is disconnected for XCOUT	R9, R10,		
		sub clock		R13		
R12	Sub clock	Routes MCU clock input pin XCIN to J1 header	MCU pin XCIN is disconnected from J1	R10, R13		
		(at J1-8)	header			
R13	Sub clock	Routes MCU clock input pin XCOUT to J1	MCU pin XCOUT is disconnected from	R11, R12		
		header (at J1-9)	J1 header			

Table 6-10: Clock configuration links

 Table 6-11 below describes miscellaneous options links.

	Option Link Settings					
Reference Function Fitted		Fitted	Alternative (Removed)	Related		
				То		
R14	LCD	Disconnect signal VL3 to capacitor C9	Connect signal VL3 from capacitor C9	R15		
R15	LCD	Connect signal VL3 to signal VL2 and C10	Disconnect signal VL3 from signal VL2 and	R14		
			C10			
R40	HW Reset	Connects the reset signal generated from	Disconnects the reset signal generated from	-		
	Circuit	on-board reset circuit to the MCU at reset	on-board reset circuit from the MCU reset pin			
		pin (pin 10)	(pin 10)			
R55	HW Reset	Connects the pin 14 of E8a to GROUND	Disconnect pin 14 of E8A connector from	-		
	Circuit		ground			
R135		Connect signal CL2 to RING_P12_3	Disconnect signal CL2 from RING_P12_3	R136		
			(J4-19)			
R136		Connect signal CL1 to RING_P12_2	Disconnect signal CL1 from RING_P12_2	R135		
			(J4-20)			
R140	LIN	Set LIN Master mode (with R142)	Set LIN Slave mode (with R142)	R142		
R142	LIN	Set LIN Master mode (with R140)	Set LIN Slave mode (with R140)	R140		
R143	LIN	Connects the Board_VCC to VBAT	Disconnects the Board_VCC from VBAT	-		

Table 6-11: Miscellaneous Option Links

6.8. Oscillator Sources

Crystal oscillators are fitted on the board and used to supply the main/sub clock input to the Renesas microcontroller.

Table 6-12 details the oscillators that are fitted on this RSK:

Component					
Crystal (X1)	Fitted	20 MHz (HC49/4U package)			
Crystal (X2)	Not Fitted	For test purpose only			
Crystal (X3)	Fitted	32.768 KHz (SSP-T7-FL package)			

Table 6-12: Oscillators / Resonators

6.9. Reset Circuit

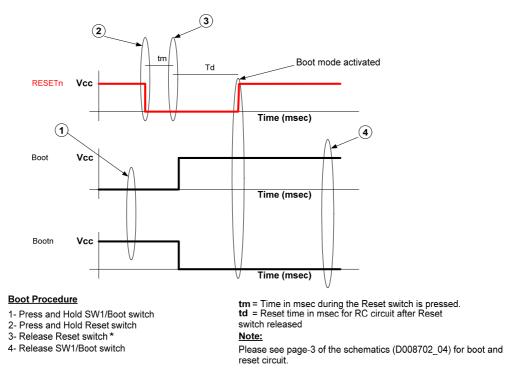
A dual D flip flop IC (i.e. MC74HC74ADR2G) has been used to generate the reset signal required for the R8C/L3AC CPU.

Please check the hardware manual for the detailed reset requirements to ensure the reset circuit on the user's board meets all the reset timing requirements.

6.10. LCD Application Board

LCD application board can be attached to connector JA4 (LCD application header).

Please refer to the 'LCD Application Board User's Manual.


Chapter 7. Modes

The Renesas Starter Kit supports Boot mode and Single chip mode.

Details of programming the FLASH memory is described in the R8C/L3AC Group Hardware Manual.

This circuit is not required on customer's boards as it is intended for providing easy evaluation of the operating modes of the device on the RSK.

To manually enter the Boot mode, press and hold the SW1/BOOT. The mode pins are held in their boot states while reset is pressed and released. Release the boot button. The BOOT LED will be illuminated to indicate that the microcontroller is in boot mode.

^{*} Boot mode activates after releasing reset switch in step-3

Figure 7-1: RSKR8CL3AC Boot Sequence

When neither the E8a is connected nor the board is placed in Boot mode, the MODE pin is pulled high by a 4.7k resistor.

When an E8a is used the MODE pin is controlled by the E8a.

More information on the operating modes and programming the flash memory can be found in the R8C/L3AC Group hardware manual.

7.1. Boot modes

The Boot mode settings for this Renesas Starter Kit are shown in Table 7-1 below:

Mode	LSI State after Reset End
Low	Boot Mode

Table 7-1: Boot Mode pin settings

7.2. Single chip mode

Because the MODE pin is pulled high, this Renesas Starter Kit will always boot in Single chip mode when the E8a is not connected and the boot switch is not depressed. Refer to R8C/L3AC Group Hardware Manual for details of Single chip mode.

Mode	LSI State after Reset End	
High	Single chip Mode	

Table 7-2: Single chip mode settings

Chapter 8. Programming Methods

The board is intended for use with HEW and the supplied E8a debugger. Refer to R8C/L3AC Group Hardware Manual for details of programming the microcontroller without using these tools.

Chapter 9. Headers

9.1. Microcontroller Ring Headers

The microcontroller pin headers and their corresponding microcontroller connections are detailed in Table 9-1 to Table 9-4.

Header	Circuit Net Name	Device pin	Header	Circuit Net Name	Device pin
Pin			Pin		
1	CLK0_ LINNSLP	1	2	RXD0_LINRXD	2
3	DA1_TXD0_LINTXD	3	4	DA0_ADPOT	4
5	WKUP0n	5	6	VREF	6
7	MODE	7	8	CON_XCIN	8
9	CON_XCOUT	9	10	RESETn	10
11	CON_XOUT	11	12	GROUND	12
13	CON_XIN	13	14	UC_VCC	14
15	TREO	15	16	INT6n_SW3	16
17	INT5n_SW2	17	18	INT4n_TRAIO_SW1	18
19	CTS2RTS2	19	20	TXD2_SDA	20
21	RXD2_IVCMP1	21	22	CLK2_SCL_IVREF1	22
23	Wn	23	24	Vn	24
25	Wp	25	26	-	-

Table 9-1: J1 microcontroller header

Header	Circuit Net Name	Device pin	Header	Circuit Net Name	Device pin
Pin			Pin		
1	Vp	26	2	Un	27
3	TRDIOC0	28	4	Up	29
5	TRDIOA0	30	6	COM0	31
7	COM1	32	8	COM2	33
9	COM3	34	10	SEG55	35
11	SEG54	36	12	SEG53	37
13	SEG52	38	14	SEG51	39
15	SEG50	40	16	SEG49	41
17	SEG48	42	18	SEG47	43
19	SEG46	44	20	SEG45	45
21	SEG44	46	22	P5_3	47
23	P5_2	48	24	TRISTn	49
25	UD	50	26	-	-

Table 9-2: J2 microcontroller header

Header	Circuit Net Name	Device pin	Header	Circuit Net Name	Device pin
Pin			Pin		
1	SEG39	51	2	SEG38	52
3	SEG37_TRCIOB	53	4	SEG36	54
5	SEG35	55	6	SEG34_CLK1	56
7	SEG33_RXD1	57	8	SEG32_TXD1	58
9	SEG31_ADTRGn_SW3	59	10	SEG30	60
11	SEG29_DLCDRS	61	12	SEG28_DLCDE	62
13	SEG27_DLCDD7	63	14	SEG26_DLCDD6	64
15	SEG25_DLCDD5	65	16	SEG24_DLCDD4	66
17	SEG23_LED3	67	18	SEG22_LED2	68
19	SEG21_LED1	69	20	SEG20_LED0	70
21	103	71	22	102	72
23	IO1	73	24	100	74
25	107	75	26	-	-

Table 9-3: J3 microcontroller header

Header	Circuit Net Name	Device pin	Header	Circuit Net Name	Device pin
Pin			Pin		
1	106	76	2	IO5	77
3	104	78	4	AN15	79
5	AN14	80	6	AN13	81
7	AN12	82	8	SEG7_AN11	83
9	SEG6_AN10	84	10	SEG5_AN9	85
11	SEG4_AN8	86	12	SEG3_AN7	87
13	SEG2_AN6	88	14	SEG1_AN5	89
15	SEG0_AN4	90	16	VL1	91
17	VL2	92	18	VL3	93
19	RING_P12_3	94	20	RING_P12_2	95
21	VL4	96	22	TRGCLKB	97
23	TRGIOB	98	24	TRGCLKA	99
25	TRGIOA	100	26	-	-

Table 9-4: J4 microcontroller header

9.2. Application Headers

Standard application header connections are detailed in Table 9-5 to Table 9-9.

Header	Generic	RSK board Signal	Device Pin	Header	Generic	RSK board Signal	Device pin
Pin	Header Name	Name		Pin	Header	Name	
					Name		
1	5V	CON_5V		2	0V(5V)	GROUND	
3	3V3	CON_3V3		4	0V(3V3)	GROUND	
5	AVcc			6	AVss		
7	AVref	CON_VREF		8	ADTRG	ADTRGn	59*
9	AD0	AN4	90*	10	AD1	AN5	89*
11	AD2	AN6	88*	12	AD3	AN7	87*
13	DAC0	DA0	4*	14	DAC1	DA1	3*
15	10_0	IO0	74	16	IO_1	IO1	73
17	10_2	IO2	72	18	IO_3	IO3	71
19	IO_4	IO4	78	20	IO_5	IO5	77
21	IO_6	IO6	76	22	IO_7	107	75
23	IRQ3	INT6n	16	24	IIC_EX		
25	IIC_SDA	SDA	20*	26	IIC_SCL	SCL	22*

Table 9-5: JA1 Standard Generic Header

Header	Generic Header	RSK board Signal	Device Pin	Header	Generic Header	RSK board	Device Pin
Pin	Name	Name		Pin	Name	Signal Name	
1	RES	RESETn	10	2	EXTAL	CON_XIN	
3	NMI			4	Vss1	GROUND	
5	WDT_OVF			6	SCIaTX	TXD2	20*
7	IRQ0/WKUP	WKUP0n	5	8	SCIaRX	RXD2	21*
9	IRQ1	INT4n	18*	10	SCIaCK	CLK2	22*
11	MO_up/down	UD	50	12	CTSRTS	CTS2RTS2	19
13	MO_Up	Up	29	14	MO_Un	Un	27
15	MO_Vp	Vp	26	16	MO_Vn	Vn	24
17	MO_Wp	Wp	25	18	MO_Wn	Wn	23
19	TMR0	TRDIOC0	28	20	TMR1	TREO	15
21	TRIGa	TRDIOA0	30	22	TRIGb	TRAIO	18*
23	IRQ2	INT5n	17	24	TRISTn	TRISTn	49
25	Spare	IVREF1	22*	26	Spare	IVCMP1	21*

Table 9-6: JA2 Standard Generic Header

Header	Generic Header	RSK board Signal	Device Pin	Header	Generic	RSK board Signal	Device Pin
Pin	Name	Name		Pin	Header Name	Name	
1	V1	VL4	96	2	V2	VL3	93
3	V3	VL2	92	4	V4	VL1	91
5	GROUND	VSS		6	GROUND	VSS	
7	COM1	СОМО	31	8	COM2	COM1	32
9	COM3	COM2	33	10	COM4	COM3	34
11	SEG1	SEG0	90*	12	SEG2	SEG1	89*
13	SEG3	SEG2	88*	14	SEG4	SEG3	87*
15	SEG5	SEG4	86*	16	SEG6	SEG5	85*
17	SEG7	SEG6	84*	18	SEG8	SEG7	83*
19	SEG9	SEG20	70*	20	SEG10	SEG21	69*
21	SEG11	SEG22	68*	22	SEG12	SEG23	67*
23	SEG13	SEG24	66*	24	SEG14	SEG25	65*
25	SEG15	SEG26	64*	26	SEG16	SEG27	63*
27	SEG17	SEG28	62*	28	SEG18	SEG29	61*
29	SEG19	SEG30	60	30	SEG20	SEG31	59*
31	SEG21	SEG32	58*	32	SEG22	SEG33	57*
33	SEG23	SEG34	56*	34	SEG24	SEG35	55
35	SEG25	SEG36	54	36	SEG26	SEG37	53*
37	SEG27	SEG38	52	38	SEG28	SEG39	51
39	SEG29	SEG52	38	40	SEG30	SEG53	37
41	SEG31	SEG54	36	42	SEG32	SEG55	35
43	SEG33	SEG44	46	44	SEG34	SEG45	45
45	SEG35	SEG46	44	46	SEG36	SEG47	43
47	SEG37	SEG48	42	48	SEG38	SEG49	41
49	SEG39	SEG50	40	50	SEG40	SEG51	39

Table 9-7: JA4 Standard Generic Header

Header	Generic Header	RSK board Signal	Device Pin	Header	Generic	RSK board Signal	Device Pin
Pin	Name	Name		Pin	Header Name	Name	
1	AD4	AN8	86*	2	AD5	AN9	85*
3	AD6	AN10	84*	4	AD7	AN11	83*
5	CAN1TX			6	CAN1RX		
7	CAN2TX			8	CAN2RX		
9	AD8	AN12	82	10	AD9	AN13	81
11	AD10	AN14	80	12	AD11	AN15	79
13	TIOCoA	TRGIOA	100	14	TIOCoB	TRGIOB	98
15	TIOCoC	TRCIOB	53	16	M2_TRISTn		
17	TCLKC	TRGCLKA	99	18	TCLKD	TRGCLKB	97
19	M2_Up			20	M2_Un		
21	M2_Vp			22	M2_Vn		
23	M2_Wp			24	M2_Wn		

Table 9-8: JA5 Standard Generic Header

Header	Generic Header	RSK board	Device Pin	Header	Generic	RSK board Signal	Device Pin
Pin	Name	Signal Name		Pin	Header Name	Name	
1	DREQ			2	DACK	NC	
3	TEND			4	STBYn	NC	
5	RS232TX	RS232TX		6	RS232RX	RS232RX	
7	SCIbRX	RXD0	2*	8	SCIbTX	TXD0	3*
9	SCIcTX	TXD1	58	10	SCIbCK	CLK0	1*
11	SCIcCK	CLK1	56	12	SCIcRX	RXD1	57
13	Reserved			14	Reserved		
15	Reserved			16	Reserved		
17	Reserved			18	Reserved		
19	Reserved			20	Reserved		
21	Reserved			22	Reserved		
23	Unregulated_Vcc			24	Vss		

Table 9-9: JA6 Standard Generic Header

Note: Pins marked with '*' are connected via option links.

Header	Generic Header	RSK board	Device Pin	Header	Generic	RSK board Signal	Device Pin
Pin	Name	Signal Name		Pin	Header Name	Name	
1	VBAT	VBAT		2	GROUND	GROUND	

Table 9-10: J10 BATTERY Header

.

Header	Generic Header	RSK board	Device Pin	Header	Generic	RSK board Signal	Device Pin
Pin	Name	Signal Name		Pin	Header Name	Name	
1	VBAT	VBAT		2	LIN	LIN	
3	GROUND	GROUND					

Table 9-11: LIN Header

Chapter 10. Code Development

10.1. Overview

Note: For all code debugging using Renesas software tools, the RSK board must be connected to a PC USB port via an E8a.

Due to the continuous process of improvements undertaken by Renesas the user is recommended to review the information provided on the Renesas website at www.renesas.com to check for the latest updates to the Compiler and Debugger manuals.

10.2. Compiler Restrictions

The compiler supplied with this RSK is fully functional for a period of 60 days from first use. After the first 60 days of use have expired, the linker will limit the object size to a maximum of 64k code and data. To use the compiler with programs greater than this size you will need to purchase the full tools from your distributor.

Warning: The protection software for the compiler will detect changes to the system clock. Changes to the system clock back in time may cause the trial period to expire prematurely.

10.3. Mode Support

High-performance Embedded Workspace connects to the Microcontroller and programs it via the E8a. Mode support is handled transparently to the user.

10.4. Breakpoint Support

This RSK is supplied with an E8a emulator which supports breakpoints in ROM and RAM. Double clicking in the breakpoint column in the code sets the breakpoint. Breakpoints will be retained unless they are double clicked to remove them. For more details on breakpoints & E8a functions please refer to the 'E8A-USB Emulator User's Manual'.

10.5. Memory Map

The memory map shown below gives the locations of each memory area.

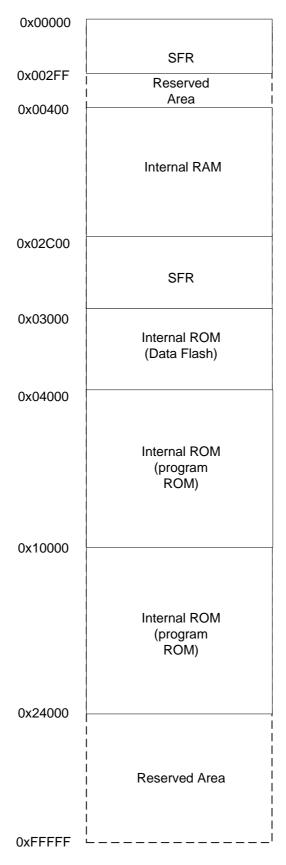


Figure 10-1: CPU memory map (Part Number - R5F2L3ACCNFP)

Chapter 11. Component Placement

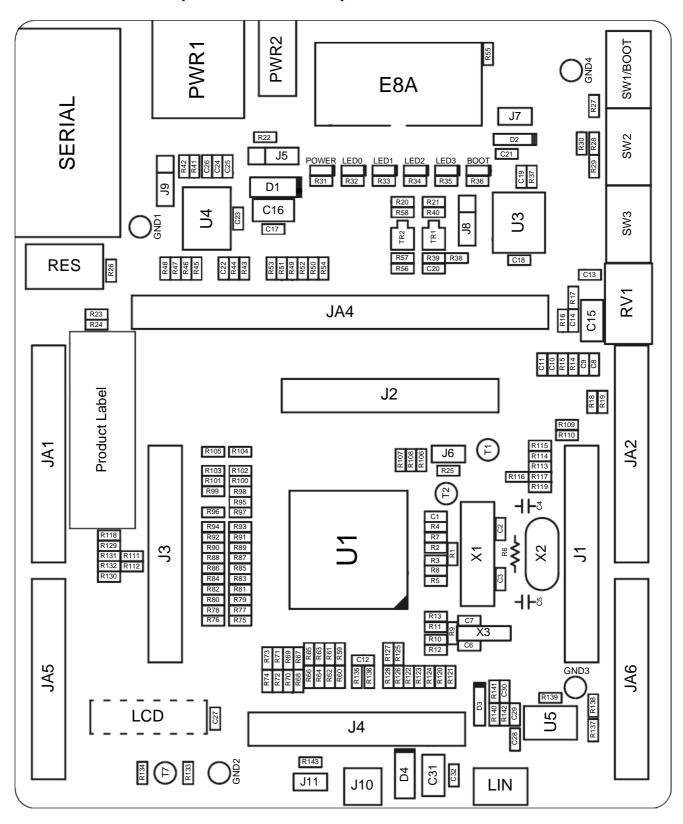


Figure 11-1: Component Placement (Top Layer)

Chapter 12. Additional Information

For details on how to use High-performance Embedded Workshop (HEW), refer to the HEW manual available on the CD or installed in the Manual Navigator.

For information about the R8C/L3AC microcontrollers refer to the R8C/L3AC Group Hardware Manual

For information about the R8C/L3AC assembly language, refer to the R8C Family Software Programming Manual

For information about the E8a Emulator, please refer to the E8A-USB Emulator User's Manual

Online technical support and information is available at: www.renesas.com/renesas_starter_kits

Technical Contact Details

America: <u>techsupport.rta@renesas.com</u>
Europe: <u>tools.support.eu@renesas.com</u>

Japan: <u>csc@renesas.com</u>

General information on Renesas Microcontrollers can be found on the Renesas website at: www.renesas.com

Renesas Starter Kit for R8C/L3AC

User's Manual

Publication Date Rev.1.00 09.FEB.2010

Published by: Renesas Technology Europe Ltd.

Duke's Meadow, Millboard Road, Bourne End Buckinghamshire SL8 5FH, United Kingdom

Renesas Starter Kit for R8C/L3AC User's Manual

