To our customers,

Old Company Name in Catalogs and Other Documents

On April 1!, 2010, NEC Electronics Corporation merged with Renesas Technology
Corporation, and Renesas Electronics Corporation took over all the business of both
companies. Therefore, although the old company name remains in this document, it is a valid
Renesas Electronics document. We appreciate your understanding.

Renesas Electronics website: http://www.renesas.com

April 1%, 2010
Renesas Electronics Corporation

Issued by: Renesas Electronics Corporation (http://www.renesas.com)

Send any inquiries to http://www.renesas.com/inquiry.

LENESAS

8.

10.

11.

12.

Notice

All information included in this document is current as of the date this document is issued. Such information, however, is
subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please
confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to
additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.

Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights
of third parties by or arising from the use of Renesas Electronics products or technical information described in this document.
No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights
of Renesas Electronics or others.

You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.

Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of
semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software,
and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by
you or third parties arising from the use of these circuits, software, or information.

When exporting the products or technology described in this document, you should comply with the applicable export control
laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas
Electronics products or the technology described in this document for any purpose relating to military applications or use by
the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and
technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited
under any applicable domestic or foreign laws or regulations.

Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics
does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages
incurred by you resulting from errors in or omissions from the information included herein.

Renesas Electronics products are classified according to the following three quality grades: “Standard”, “High Quality”, and
“Specific”. The recommended applications for each Renesas Electronics product depends on the product’s quality grade, as
indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular
application. You may not use any Renesas Electronics product for any application categorized as “Specific” without the prior
written consent of Renesas Electronics. Further, you may not use any Renesas Electronics product for any application for
which it is not intended without the prior written consent of Renesas Electronics. Renesas Electronics shall not be in any way
liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an
application categorized as “Specific” or for which the product is not intended where you have failed to obtain the prior written
consent of Renesas Electronics. The quality grade of each Renesas Electronics product is “Standard” unless otherwise
expressly specified in a Renesas Electronics data sheets or data books, etc.

“Standard”: Computers; office equipment; communications equipment; test and measurement equipment; audio and visual
equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots.

“High Quality”: Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-
crime systems; safety equipment; and medical equipment not specifically designed for life support.

“Specific”: Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or
systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare
intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.

You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics,

especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation
characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or
damages arising out of the use of Renesas Electronics products beyond such specified ranges.

Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have
specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further,
Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to
guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a
Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire
control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because
the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system
manufactured by you.

Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental
compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable
laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS
Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with
applicable laws and regulations.

This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas
Electronics.

Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this
document or Renesas Electronics products, or if you have any other inquiries.

(Note 1) “Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its majority-

owned subsidiaries.

(Note 2) “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.

LENESANS
User’s Manual

RA78KO0OR Ver. 1.00

Assembler Package

Language

Target Devices
78K0OR Microcontrollers

Document No. U17835EJ1VOUMOO (1st edition)
Date Published July 2006 CP(K)

© NEC Electronics Corporation 2006
Printed in Japan

[MEMO]

2 User’s Manual U17835EJ1VOUM

Windows is either registered trademarks or trademarks of Microsoft Corporation in the United States
and/or other countries.

¢ The information in this document is current as of July, 2006. The information is subject to change
without notice. For actual design-in, refer to the latest publications of NEC Electronics data sheets or
data books, etc., for the most up-to-date specifications of NEC Electronics products. Not all
products and/or types are available in every country. Please check with an NEC Electronics sales
representative for availability and additional information.

e No part of this document may be copied or reproduced in any form or by any means without the prior
written consent of NEC Electronics. NEC Electronics assumes no responsibility for any errors that may
appear in this document.

e NEC Electronics does not assume any liability for infringement of patents, copyrights or other intellectual
property rights of third parties by or arising from the use of NEC Electronics products listed in this document
or any other liability arising from the use of such products. No license, express, implied or otherwise, is
granted under any patents, copyrights or other intellectual property rights of NEC Electronics or others.

e Descriptions of circuits, software and other related information in this document are provided for illustrative
purposes in semiconductor product operation and application examples. The incorporation of these
circuits, software and information in the design of a customer's equipment shall be done under the full
responsibility of the customer. NEC Electronics assumes no responsibility for any losses incurred by
customers or third parties arising from the use of these circuits, software and information.

e While NEC Electronics endeavors to enhance the quality, reliability and safety of NEC Electronics products,
customers agree and acknowledge that the possibility of defects thereof cannot be eliminated entirely. To
minimize risks of damage to property or injury (including death) to persons arising from defects in NEC
Electronics products, customers must incorporate sufficient safety measures in their design, such as
redundancy, fire-containment and anti-failure features.

e NEC Electronics products are classified into the following three quality grades: "Standard", "Special" and
"Specific".

The "Specific" quality grade applies only to NEC Electronics products developed based on a customer-
designated "quality assurance program" for a specific application. The recommended applications of an NEC

Electronics product depend on its quality grade, as indicated below. Customers must check the quality grade of

each NEC Electronics product before using it in a particular application.

"Standard": Computers, office equipment, communications equipment, test and measurement equipment, audio
and visual equipment, home electronic appliances, machine tools, personal electronic equipment
and industrial robots.

"Special": Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster
systems, anti-crime systems, safety equipment and medical equipment (not specifically designed
for life support).

"Specific": Aircraft, aerospace equipment, submersible repeaters, nuclear reactor control systems, life
support systems and medical equipment for life support, etc.

The quality grade of NEC Electronics products is "Standard" unless otherwise expressly specified in NEC
Electronics data sheets or data books, etc. If customers wish to use NEC Electronics products in applications
not intended by NEC Electronics, they must contact an NEC Electronics sales representative in advance to
determine NEC Electronics' willingness to support a given application.

(Note)

(1) "NEC Electronics" as used in this statement means NEC Electronics Corporation and also includes its
majority-owned subsidiaries.

(2) "NEC Electronics products" means any product developed or manufactured by or for NEC Electronics (as
defined above).

M8E 02.11-1

User’s Manual U17835EJ1VOUM 3

[MEMO]

4 User’s Manual U17835EJ1VOUM

INTRODUCTION

This manual is designed to facilitate correct understanding of the basic functions of each program in the
RA78KO0R Assembler Package (hereafter called RA78KO0R) and the methods of describing source programs.

This manual does not cover how to operate the respective programs of the RA78KOR. Therefore, after you
have comprehended the contents of this manual, read the RA78KOR Assembler Package Operation User’s
Manual (U17836E) (hereafter called Operation) to operate each program in the assembler package.

Descriptions related to the RA78KOR in this manual apply to Ver. 1.00 or later.

[Target Readers]

This manual is intended for user engineers who understand the functions and instructions of the microcontroller
(78KOR Microcontroller) subject to development.

[Organization]

This manual consists of the following six chapters and appendices:

CHAPTER 1

CHAPTER 2

CHAPTER 3

CHAPTER 4

CHAPTER 5

CHAPTER 6

APPENDIXES

GENERAL

Ouitlines all of the basic functions of the RA78KOR.

HOW TO DESCRIBE SOURCE PROGRAMS

Outlines how to describe source programs, and explains the operators of the assembler.
DIRECTIVES

Explains how to write and use directives, including application examples.

CONTROL INSTRUCTIONS

Explains how to write and use control instructions, including application examples.
MACROS

Explains all macro functions, including macro definition, macro reference, and macro
expansion.

Macro directives are explained in CHAPTER 3 DIRECTIVES.

PRODUCT UTILIZATION

Introduces some measures recommended for describing a source program.

These contain a list of reserved words, a list of directives, and an index.

The instruction sets are not detailed in this manual. For these instructions, refer to the user's manual of the
microcontroller for which software is being developed.

Also, for instructions on architecture, refer to the user's manual (hardware version) of each microcontroller for
which software is being developed.

User’s Manual U17835EJ1VOUM 5

[Macros]

Those using an assembler for the first time are encouraged to read from CHAPTER 1 GENERAL of this
manual. Those who have a general knowledge of assembler programs may skip CHAPTER 1 GENERAL of this
manual. However, be sure to read 1.2 Reminders Before Program Development and CHAPTER 2 HOW TO
DESCRIBE SOURCE PROGRAMS.

Those who wish to know the directives and control instructions of the assembler are encouraged to read
CHAPTERS 3 DIRECTIVES and 4 CONTROL INSTRUCTIONS, respectively. The format, function, use, and
application examples of each directive or control instruction are detailed in these chapters.

[Conventions]
The following symbols and abbreviations are used throughout this manual:

: Same format is repeated.

[1: Characters enclosed in these brackets can be omitted.

{¥ One of the items in { } is selected.

‘o Characters enclosed in “ ”(quotation marks) are a character string.
Characters enclosed in *’ (single quotation marks) are a character string.

(): Characters between parentheses are a character string.

<> Characters (mainly title) enclosed in these brackets are a character string.
An underline is used to indicate an important point or input character strings.
Indicates one or more blanks characters or tabs.

- B

Character delimiter
~ Continuity
Boldface: Characters in boldface are used to indicate an important point or reference point.

6 User’s Manual U17835EJ1VOUM

[Related Documents]
The documents (user's manuals) related to this manual are listed below.
The related documents indicated in this publication may include preliminary versions.
However, preliminary versions are not marked as such.

Document Name Document No.
RA78KOR Ver. 1.00 Assembler Package Operation U17836E
Language This manual
CC78KOR Ver. 1.00 C Compiler Operation U17838E
Language U17837E
SM+ System Simulator Operation U18010E
PM+ Ver. 6.20 U17990E
ID78KOR-QB Ver .3.20 Integrated Debugger Operation U17839E

Caution The related documents listed above are subject to change without notice. Be sure to use the
latest version of each document for designing.

User’s Manual U17835EJ1VOUM 7

[MEMO]

8 User’s Manual U17835EJ1VOUM

CONTENTS

CHAPTER 1 GENERAL ... 14

1.1 Assembler Overview ... 14
1.1.1 What is an assembler? ... 15
1.1.2 Development of microcontroller-applied products and the role of RA78KOR ... 16
1.1.3 Relocatable assembiler ... 17

1.2 Reminders Before Program Development ... 19
1.2.1 Quantitative limits for RA78KOR ... 19

1.3 Features of RA78KOR ... 21

CHAPTER 2 HOW TO DESCRIBE SOURCE PROGRAMS ... 22
2.1 Basic Configuration ... 22
2.1.1 Module header ... 23
2.1.2 Module body ... 24
2.1.3 Module tail ... 24
2.1.4 Overall configuration of source program ... 25
2.1.5 Description example ... 26
2.2 Description Method ... 29
2.2.1 Configuration ... 29
2.2.2 Character set ... 30
2.2.3 Symbol field ... 32
2.2.4 Mnemonic field ... 36
2.2.5 Operand field ... 36
2.2.6 Comment field ... 40
2.3 Expressions and Operators ... 41
2.4 Arithmetic Operators ... 44
+...45
-...46
* .47
/.48
MOD ... 49
+sign ... 50
-sign ... 51
2.5 Logical Operators ... 52
NOT ... 53
AND ... 54
OR ... 55
XOR ... 56
2.6 Relational Operators ... 57
EQ (=) ... 58
NE (<>)...59
GT (>) ... 60
GE (>=) ...61
LT (<) ... 62
LE (<=) ... 63
2.7 Shift Operators ... 64
SHR ... 65
SHL ... 66
2.8 Byte-Separating Operators ... 67
HIGH ... 68
LOW ... 69
2.9 Word-Separating Operators ... 70
HIGHW ... 71
LOWW ... 72
2.10 Special Operators ... 73
DATAPOS ... 74

User's Manual U17835EJ1VOUM

BITPOS ... 75
MASK ... 76
2.11 Other Operator ... 77
()..78
2.12 Restrictions on Operations ... 79
2.12.1 Operators and relocation attributes ... 79
2.12.2 Operators and symbol attributes ... 82

2.12.3 How to check restrictions on the operation ...

2.13 Definition of Absolute Expression ... 85
2.14 Bit Position Specifier ... 86

... 87
2.15 Characteristics of Operands ... 89

84

2.15.1 Size and address range of operand value ... 89
2.15.2 Size of operands required for instructions ... 95

2.15.3 Symbol attributes and relocation attributes of operands ...

CHAPTER 3 DIRECTIVES ... 99

3.1 Overview ... 99

3.2 Segment Definition Directives ... 100
CSEG ... 102
DSEG ... 106
BSEG ... 110
ORG ... 114

3.3 Symbol Definition Directives ... 117
EQU ... 118
SET ... 122

3.4 Memory Initialization and Area Reservation Directives ... 124

DB ... 125
DW ... 127
DG ... 129
DS ... 131
DBIT ... 133
3.5 Linkage Directives ... 134
EXTRN ... 135
EXTBIT ... 137
PUBLIC ... 139
3.6 Object Module Name Declaration Directive ... 141
NAME ... 142

3.7 Automatic Branch Instruction Selection Directives ...

BR ... 144
CALL ... 146

3.8 Macro Directives ... 148
MACRO ... 149
LOCAL ... 151
REPT ... 154
IRP ... 156
EXITM ... 158
ENDM ... 161

3.9 Assembly Termination Directive ... 163
END ... 164

CHAPTER 4 CONTROL INSTRUCTIONS ... 165

10

4.1 Overview ... 165

143

4.2 Processor Type Specification Control Instruction ... 167

PROCESSOR ... 168

4.3 Debug Information Output Control Instructions ... 170

DEBUG/NODEBUG ... 171
DEBUGA/NODEBUGA ... 172

4.4 Cross-Reference List Output Specification Control Instructions ...

XREF/NOXREF ... 174
SYMLIST/NOSYMLIST ... 175

4.5 Inclusion Control Instruction ... 176
INCLUDE ... 177

User's Manual U17835EJ1VOUM

95

173

4.6 Assembly List Control Instructions ... 179
EJECT ... 180
LIST/NOLIST ... 182
GEN/NOGEN ... 184
COND/NOCOND ... 186
TITLE ... 187
SUBTITLE ... 189
FORMFEED/NOFORMFEED ... 192
WIDTH ... 193
LENGTH ... 194
TAB ... 195
4.7 Conditional Assembly Control Instructions ... 196
IF/_IF/ELSEIF/_ELSEIF/ELSE/ENDIF ... 197
SET/RESET ... 201
4.8 Kanji Code (2-byte code) Control Instruction ... 203
KANJICODE ... 204
4.9 Other Control Instructions ... 205

CHAPTER 5 MACROS ... 206

5.1 Overview ... 206

5.2 Utilization of Macros ... 207
5.2.1 Macro definition ... 207
5.2.2 Macro reference ... 208
5.2.3 Macro expansion ... 209
5.2.4 Application example ... 209

5.3 Symbols within Macros ... 210

5.4 Macro Operators ... 212

CHAPTER 6 PRODUCT UTILIZATION ... 214

6.1 Saving Time and Trouble in Starting Up the Assembler ... 214

6.2 How to Develop Programs with High Memory Utilization Efficiency ... 215
APPENDIX A LIST OF RESERVED WORDS ... 216
APPENDIX B LIST OF DIRECTIVES ... 218

INDEX ... 220

User's Manual U17835EJ1VOUM

11

LIST OF FIGURES

Figure No. Title ., Page

1-1 RA78KOR Assembler Package ... 14
1-2 Flow of Assembler ... 15

1-3 Development Process of Microcontroller-Applied Products ... 16
2-1 Configuration of Source Module ... 22

2-2 Overall Configuration of Source Module ... 25

2-3 Examples of Source Module Configurations ... 25

2-4 Configuration of Sample Program ... 26

2-5 Fields That Make Up a Statement ... 29

3-1 Memory Location of Segments ... 101

3-2 Relationship of Symbols Between Two Modules ... 134

12 User's Manual U17835EJ1VOUM

LIST OF TABLES

Table No. Title , Page

2-1
2-2
2-3
2-4
2-5
2-6
2-7
2-8
2-9
2-10
2-11
2-12
2-13
2-14
3-1
3-2
3-3
3-4
3-5
4-1
4-2
A-1
A-2
B-1

Instructions That Can Be Described in Module Header ... 23
Alphanumeric Characters ... 30

Special Characters ... 30

Types of Operators ... 41

Order of Precedence of Operators ... 42

Types of Relocation Attributes ... 79

Combinations of Terms and Operators by Relocation Attribute (Relocatable Terms) ... 80
Combinations of Terms and Operators by Relocation Attribute (External Reference Terms) ... 81
Types of Symbol Attributes in Operations ... 82

Combinations of Terms and Operators by Symbol Attribute ... 83
Ranges of Operand Values of Instructions ... 89

Ranges of Operand Values of Directives ... 94

Properties of Described Symbols as Operands ... 96

Properties of Described Symbols as Operands of Directives ... 97
List of Directives ... 99

Segment Definition Methods and Memory Address Location ... 100
Relocation Attributes of CSEG ... 103

Relocation Attributes of DSEG ... 107

Relocation Attributes of BSEG ... 111

List of Control Instructions ... 165

Control Instructions and Assembler Options ... 166

Types of Reserved Words ... 216

List of Reserved Words ... 216

List of Directives ... 218

User's Manual U17835EJ1VOUM

13

CHAPTER 1 GENERAL

This chapter describes the role of the RA78KO0R in microcontroller software development and the features of the
RA78KOR.

1.1 Assembler Overview

The RA78KOR Assembler Package (hereafter referred to as RA78KOR) is a generic term for a series of
programs designed to translate source programs coded in the assembly language for 78KOR Series
microcontrollers into machine language coding.

The RA78KOR contains 5 programs: Assembler, Linker, Object Converter, Librarian, and List Converter.

In addition, a PM+ that helps you perform a series of operations including editing, compiling/assembling, linking,

and debugging your program on Windows® is also supplied with the RA78KO0R.

Figure 1-1 RA78KOR Assembler Package

Assembler

Linker

Object Converter

RA78KOR Assembler Package

Librarian

List Converter

PM+

14 User's Manual U17835EJ1VOUM

CHAPTER 1 GENERAL

1.1.1 What is an assembler?

(1) Assembly language and machine language
An assembly language is the most fundamental programming language for a microcontroller.
Programs and data are required for the microprocessor in a microcontroller to do its job. These programs
and data must be written by users to the memory of the microcontroller.
The programs and data handled by the microcontroller are collections of binary numbers called machine
language.
For users, however, machine language code is difficult to remember, causing errors to occur frequently.
Fortunately, methods exist whereby English abbreviations or mnemonics are used to represent the
meanings of the original machine language codes in a way that is easy for user to comprehend. The basic
programming language system that uses this symbolic coding is called an assembly language.
Since machine language is the only programming language in which a microcontroller can handle programs,
however, another program is required that translates programs created in assembly language into machine

language. This program is called an assembler.

Figure 1-2 Flow of Assembler

Program written in Program written in machine
assembly language language (collections of
binary numbers)

(Source module file) (Assembler) (Object module file)

User's Manual U17835EJ1VOUM 15

CHAPTER 1 GENERAL

1.1.2 Development of microcontroller-applied products and the role of

RA78KOR

The following figure illustrates the position of "assemble in the product development process".

Figure 1-3 Development Process of Microcontroller-Applied Products

Hardware
development

Product planning

Y

System design

\

Logic design

Software
development

»
»

\

Software design

»
L
\

Manufacturing

Program coding in
assembly language

Inspection

Assemble

NO

16

OK?

YES

Position of
/ RA78KOR

NO

YES

Debugging

A\

System evaluation

Product marketing

User's Manual U17835EJ1VOUM

CHAPTER 1 GENERAL

1.1.3 Relocatable assembler

The machine language translated from a source language by the assembler is written to the memory of the
microcontroller before use. To do this, the location in memory where each machine language instruction is to be
written must already be determined.

Therefore, information is added to the machine language assembled by the assembler, stating where in memory
each machine language instruction is to be located.

Depending on the method of locating addresses to machine language instructions, assemblers can be broadly

divided into "absolute assemblers" and "relocatable assemblers".

- Absolute assembler
An absolute assembler locates machine language instructions assembled from the assembly language to
absolute addresses.

- Relocatable assembler
In a relocatable assembler, the addresses determined for the machine language instructions assembled from
the assembly language are tentative.

Absolute addresses are determined subsequently by the linker.

In the past, when a program was created with an absolute assembler, programmers had to, as a rule, complete
programming at the same time. However, if all the components of a large program are created as a single entity,
the program becomes complicated, making analysis and maintenance of the program difficult. To avoid this, such
large programs are developed by dividing them into several subprograms, called modules, for each functional unit.
This programming technique is called modular programming.

A relocatable assembler is an assembler suitable for modular programming, which has the following advantages:

(1) Increase in development efficiency
It is difficult to write a large program all at the same time. In such cases, dividing the program into modules
for individual functions enables two or more programmers to develop subprograms in parallel to increase
development efficiency.
Furthermore, if any bugs are found in the program, it is not necessary to assemble the entire program just to
correct one part of the program; just the module that must be corrected can be reassembled. This shortens

the debugging time.

User's Manual U17835EJ1VOUM 17

CHAPTER 1 GENERAL

Program consisting of a single Program consisting of two or
module more modules
Module
Module
Entire program
XXX Module must be XXX Only this module
assembled needs to be
again. Module assembled
again.
Module

(2) Utilization of resources
Highly reliable, highly versatile modules that have been previously created can be reused for the creation of
another program. If you accumulate such high-versatility modules as software resources, you can save time

and labor in developing a new program.

Module A | | Module B | | Module C | | Module D
New module
P Module A

New module

Module D g

New program

18 User's Manual U17835EJ1VOUM

CHAPTER 1 GENERAL

1.2

Reminders Before Program Development

Refer to the following before beginning program development.

1.2.1 Quantitative limits for RA78K0R

(1) Quantitative limits for assembler

Iltem

Maximum Performance
Characteristics

Number of symbols (local + public)

65,535 symbols

Number of symbols for which cross-reference list can be output

65,534 symbolsNote 1

Maximum size of macro body for one macro reference

1 M bytes

Total size of all macro bodies

10 M bytes

Number of segments in one file

256 segments

Macro and include specifications in one file 10,000
Macro and include specifications in one include file 10,000
Relocation dataNote 2 65,535 items
Line number data 65,535 items

Number of BR/CALL directives in one file

32,767 directives

Number of characters per line

2,048 charactersNote 3

Symbol length

256 characters

Number of definitions of switch nameN°e 4

1,000

Character length of switch nameN°t 4

31 characters

Character length of segment name

8 characters

Character length of module name (NAME quasi directive)

256 characters

Number of virtual parameters in MACRO quasi directive

16 parameters

Number of actual parameters in macro reference

16 parameters

Number of actual parameters in IRP quasi directive

16 parameters

Number of local symbols in macro body

64 symbols

Total number of local symbols in expanded macro

65,535 symbols

Nesting levels in macro (macro reference, REPT quasi directive, IRP

quasi directive)

8 levels

Number of characters specifiable by TITLE control instruction, the -lh

option

60 characters’NOt€ 5

Number of characters specifiable by SUBTITLE control instruction

72 characters

Include file nesting levels in 1 file 8 levels
Conditional assembly nesting levels 8 levels
Number of include file paths specifiable by the -i option 64 paths

User's Manual U17835EJ1VOUM

19

CHAPTER 1 GENERAL

ltem Maximum Penfor.mance
Characteristics
Number of symbols definable by the -d option 30 symbols
Note 1 Excluding the number of module names and section names.
Memory is used. If there is no memory, a file is used.

Note 2 Information to be passed to the linker if the symbol value cannot be resolved by the assembler.
For example, if an externally referenced symbol is to be referenced by the MOV instruction, two
pieces of relocation information are generated in a .rel file.

Note 3 Including CR and LF codes. If more than 2048 characters are written on one line, a warning
message is output and the 2049th character and those that follow are ignored.

Note 4 The switch name is set as true/false by the SET/RESET quasi directive and is used by $IF, etc.

Note 5 If the maximum number of characters that can be specified in one line of the assemble list file

("X") is 119, this figure will be "X - 60" or less.

(2) Quantitative limits for linker

20

ltem Maximum Perfor_mance

Characteristics

Number of symbols (local + public) 65,535 symbols

Line number data of same segment 65,535 items

Number of segments 65,535 segmentsN°®

Number of input modules 1,024 modules

Character length of memory area name 256 characters

Number of memory areas 100 areas'N°t®

Number of library files specifiable by the -b option 64 files

Number of include file paths specifiable by the -i option 64 paths

Note Including those defined by default.

User's Manual U17835EJ1VOUM

CHAPTER 1 GENERAL

1.3

Features of RA78K0OR

The RA78KOR has the following features:

@)

)

@)

Macro function

When the same group of instructions must be described in a source program over and over again, a macro
can be defined by giving a single macro name to the group of instructions.

By using this macro function, coding efficiency and readability of the program can be increased.

Optimize function of branch instructions

"BR" and "CALL" are available as Automatic Branch Instruction Selection Directives.

To create a program with high memory efficiency, a byte branch instruction must be described according to
the branch destination range of the branch instruction. However, it is troublesome for the programmer to
describe a branch instruction by paying attention to the branch destination range for each branching. By
describing the BR directive or the CALL directive, the assembler generates the appropriate branch
instruction according to the branch destination range. This is called the optimize function of branch
instructions.

Conditional assembly function

With this function, a part of a source program can be specified for assembly or non-assembly according to a
predetermined condition.

If a debug statement is described in a source program, whether or not the debug statement should be
translated into machine language can be selected by setting a switch for conditional assembly. When the
debug statement is no longer required, the source program can be assembled without major modifications

to the program.

User's Manual U17835EJ1VOUM 21

CHAPTER 2 HOW TO DESCRIBE SOURCE
PROGRAMS

This chapter describes the description methods, expressions and operators of the source program.

2.1 Basic Configuration

When a source program is described by dividing it into several modules, each module that becomes the unit of
input to the assembler is called a source module (if a source program consists of a single module, "source
program” means the same as "source module").

Each source module that becomes the unit of input to the assembler consists mainly of the following three parts:

- Module header
- Module body

- Module tail

Figure 2-1 Configuration of Source Module

Module header

Module body

Module tail

22 User's Manual U17835EJ1VOUM

CHAPTER 2 HOW TO DESCRIBE SOURCE PROGRAMS

2.1.1 Module header

In the module header, the control instructions shown below can be described. Note that these control instructions

can only be described in the module header.

Also, the module header can be omitted.

Table 2-1 Instructions That Can Be Described in Module Header

Item That Can Be Described

Explanation

Chapter/Section
in This Manual

Control instructions that have the same
functions as assembler options

PROCESSOR
XREF/NOXREF
DEBUG/NODEBUG,
DEBUGA/NODEBUGA
TITLE
SYMLIST/NOSYMLIST
FORMFEED/NOFORMFEED
WIDTH

LENGTH

TAB

KANJICODE

Special control instructions output by
high-level programs such as C compiler

TOL_INF
DGS
DGL

CHAPTER 4 CONTROL
INSTRUCTIONS

User's Manual U17835EJ1VOUM

23

CHAPTER 2 HOW TO DESCRIBE SOURCE PROGRAMS

2.1.2 Module body

In the module body, the following instructions cannot be described:
- Control instructions that have the same functions as assembler options

All other directives, control instructions, and instructions can be described in the module body.
The module body must be described by dividing it into units, called "segments".

The user may define the following four segments with a directive corresponding to each segment:

- Code segment

Must be defined with the CSEG directive.

- Data segment

Must be defined with the DSEG directive.

- Bit segment

Must be defined with the BSEG directive.

- Absolute segment
Must be defined by specifying a location address for the relocation attribute (AT location address) with the
CSEG, DSEG, or BSEG directive. This segment may also be defined with the ORG directive.

The module body may be configured with any combination of segments.

However, a data segment and a bit segment should be defined before a code segment.

2.1.3 Module tail

The module tail indicates the end of the source module. The END directive must be described in this part.
If anything other than a comment, a blank, a tab, or a line feed code is described following the END directive, the

assembler will output a warning message and ignore the characters described after the END directive.

24 User's Manual U17835EJ1VOUM

CHAPTER 2 HOW TO DESCRIBE SOURCE PROGRAMS

2.1.4 Overall configuration of source program

The overall configuration of a source module (source program) is as shown below.

Figure 2-2 Overall Configuration of Source Module

Control instruction(s) that have the
same function(s) as assembler op-
tion(s)

Module header
Special control instruction(s)
output by high-level programs such
as C compiler

Directive(s)

Control instruction(s) Module body
Instruction(s)
END directive } Module tail

Examples of simple source module configurations are shown below.

Figure 2-3 Examples of Source Module Configurations

$ PROCESSOR (f1166a0) $ PROCESSOR (f1166a0) } Module header
VECT CSEG AT OH FLAG BSEG
MAIN CSEG WORK DSEG
Module body
SUB CSEG
END END Module tail

User's Manual U17835EJ1VOUM 25

26

CHAPTER 2 HOW TO DESCRIBE SOURCE PROGRAMS

2.1.5 Description example

In this subsection, a description example of a source module (source program) is shown as a sample program.

The configuration of the sample program can be illustrated simply as follows.

Figure 2-4 Configuration of Sample Program

<Main routine>

<Subroutine>
NAME SAMPM NAME SAMPS
DATA DSEG saddr
Variable definition
CSEG
CODE CSEG AT OH /7“ _CSEG SASC -
MAIN : DW START CONVAH = :
CSEG :
START : :
' CALL 1SASC
CALL 1CONVAH
RET
RET
END
END

User's Manual U17835EJ1VOUM

CHAPTER 2 HOW TO DESCRIBE SOURCE PROGRAMS

<Main routine>

NAME SAMPM B EH)

HEX -> ASCI1 Conversion Program
main-routine

PUBLIC MAIN , START
EXTRN CONVAH
EXTRN _@STBEG

DATA DSEG AT OFFE20H : (5)
HDTSA : DS 1
STASC : DS 2
CODE CSEG AT OH : (6)
MAIN : DW START

CSEG ; (D
START :

* *hXhkhx *hhhkkhk

@
()
(4) <-- Error

; chip initialize
MOVW SP , # @STBEG

MOV HDTSA , #1AH

MOVW HL , #LOWW (HDTSA) ; set hex 2-code data in HL registor
CALL I1CONVAH convert ASCII <- HEX

output BC-register <- ASCII code
MOVW DE , #LOWW (STASC) ; set DE <- store ASCII code table

MOV A, B

MOV [DE] . A

INCW DE

MOV A,C

MOV [DE] ., A

BR 3

END ; (8)

@)
)
®)
(4)

()
(6)
()
©)

Declaration of module name

Declaration of symbol referenced from another module as an external reference symbol

Declaration of symbol defined in another module as an external reference symbol

Declaration of stack solution symbol generated from the -s option of linker as an external reference symbol
(an error occurs if the -s option is not specified when linking)

Declaration of the start of a data segment (to be located in saddr)

Declaration of the start of a code segment (to be located as an absolute segment starting from address OH)
Declaration of the start of a code segment (meaning the end of the absolute segment)

Declaration of the end of the module

User's Manual U17835EJ1VOUM 27

CHAPTER 2 HOW TO DESCRIBE SOURCE PROGRAMS

28

<Subroutine>
NAME SAMPS N ¢))

HEX -> ASCI1 Conversion Program
sub-routine

input condition (HL) <- hex 2 code
output condition BC-register <- ASCII 2 code

* B e e S

PUBLIC CONVAH N @)
CSEG ; (3
CONVAH :
XOR A, A
ROL4 [HL 1] ; hex upper code load (4)
CALL 1SASC
MoV B, A ; store result
XOR A, A
ROL4 [HL] ; hex lower code load
CALL 1SASC
MoV cC,A ; store result
RET

EAAEEAAEXEAXEAAXAKAAXAAXAAAXAXALAAXAXAAAXAAXAAAXAAXAAAXAXAAXAAAAAAAAXAAAAXAAAA LA Ax*X

subroutine convert ASCII code

input Acc (lower 4bits) <- hex code
output Acc <- ASCI1 code

EAAEEAEXEAIEAAAEAAXAAAXAAXAXALAAXAXAAXAAAXAXAAXAAXAXAAXAXAAXAAAAAAAAXAAAAXAAAAAAAx*X

SASC :

CMP A , #0AH ; check hex code > 9

BC $SASC1

ADD A , #07H ; bias (+7H)
SASC1 :

ADD A , #30H ; bias (+30H)

RET

END ; (5)

(1) Declaration of module name
(2) Declaration of symbol referenced from another module as an external definition symbol
(3) Declaration of the start of the code segment

(4) Since the ROL4 instruction is an instruction for the 78K0 Series, but not supported by the 78KOR Series,
specification of an assembler option (-compati) is required.
For the assembler option (-compati), refer to the RA78KOR Series Assembler Package Operation User's

Manual.

(5) Declaration of the end of the module

User's Manual U17835EJ1VOUM

CHAPTER 2 HOW TO DESCRIBE SOURCE PROGRAMS

2.2 Description Method

2.2.1 Configuration

A source program consists of statements.

Each statement consists of the four fields shown below.

Figure 2-5 Fields That Make Up a Statement

Statement |:> Symbol field Mnemonic field Operand field Comment field [CR] LF

1 (2 (3) (4)

(1) The symbol field and the mnemonic field must be separated from each other with a colon (:) or one or more
blanks or tabs (Whether colons or blanks are used depends on an instruction described in the mnemonic
field).

(2) The mnemonic field and the operand field must be separated from each other with one or more blanks or
tabs. Depending on the instruction described in the mnemonic field, the operand field may not be required.

(3) The comment field if used must be preceded with a semicolon (;).

(4) Each line must be delimited with an LF code (one CR code may exist immediately before the LF code).

- A statement must be described within a line. A maximum of 2,048 characters (including CR and LF) can be
described per line.
Each TAB or independent CR is counted as a single character. If 2,049 or more characters are described, a
warning message is output and any characters at or over 2,049 are ignored. However, 2,049 or more

characters will be output to the assembly list.
- Anindependent CR will not be output to the assembily list.
- The following lines may also be described:

(1) Dummy line (line without statement description)

(2) Line consisting of the symbol field alone

(3) Line consisting of the comment field alone

User's Manual U17835EJ1VOUM 29

CHAPTER 2 HOW TO DESCRIBE SOURCE PROGRAMS

2.2.2 Character set

Characters that can be described in a source file are classified into the following three types:

- Language characters

- Character data

- Comment characters

(1) Language characters

Language characters are characters used to describe instructions in a source program.

The language character set includes alphabetic, numeric, and special characters.

Table 2-2 Alphanumeric Characters

Name

Characters

Numeric characters

0123456789

Uppercase letters

ABCDEFGHIJKLMNOPQRSTUVWXYZ

Alphabetic
characters Lowercase letters abcdefghijklmnopgrstuvwxyz
Table 2-3 Special Characters
Character Name Main Use
? Question mark Symbol equivalent to alphabetic characters
@ Circa Symbol equivalent to alphabetic characters
_ Underscore Symbol equivalent to alphabetic characters
Blank Delimiter of each field
HT (09H) Tab code Character equivalent to blank
, Comma Delimiter of operands
Colon Delimiter of labels .
Delimiter
, . Symbol indicating the start of the Comment | Symbols
; Semicolon !
field
CR (ODH) Carriage return code _Symbol indicating the end of a line (ignored
in the assembler)
LF (OAH) Line-feed code Symbol indicating the end of a line

30

User's Manual U17835EJ1VOUM

CHAPTER 2 HOW TO DESCRIBE SOURCE PROGRAMS

(2) Character data

®)

Table 2-3 Special Characters

Character Name Main Use
+ Plus sign ADD operator or positive sign
- Minus sign SUBTRACT operator or negative sign
* Asterisk MULTIPLY operator
/ Slash DIVIDE operator
Assembler
Period Bit position specifier operators
0) Left and right Symbols specifying the order of arithmetic
’ parentheses operations to be performed
<, > Not Equal sign Relational operators
= Equal sign Relational operator
- Symbol indicating the start or end of a character
' Single quotation mark constant
- Symbol indicating a complete macro parameter
- Symbol indicating the location counter
$ Dollar sign - Symbol indicating the start pf a control instruction
equivalent to an assembler option
- Symbol specifying relative addressing
& Ampersand Concatenating symbol (used in macro body)
Sharp sign Symbol specifying immediate addressing

Exclamation point

Symbol specifying absolute addressing

[]

Brackets

Symbol specifying indirect addressing

"Character data" refers to characters used to describe string constants, character strings, and control

instructions (TITLE, SUBTITLE, INCLUDE).

Caution 1

Caution 2

Caution 3

for output to the assembly list (an independent CR (ODH) code will not be output to the

assembly list).

Comment characters

All characters except "00H" can be used (including kanji (2-byte characters); codes may be
different depending on the operating system). If "OOH" has been described, an error occurs

and subsequent characters before the closing single quotation mark (') will be ignored.

If any illegal character has been described, the assembler will replace the illegal character with

With Windows, the assembler interprets code "1AH" as the end of the file (EOF) and thus the

code cannot be a part of the input data.

"Comment characters" refers to characters used to describe a comment statement.

Caution Characters that can be used in a comment statement are the same as those in the character set for

character data. However, no error occurs even if code "OOH" has been described. Instead, the

assembler will output the illegal character to the assembly list by replacing it with "I".

User's Manual U17835EJ1VOUM

CHAPTER 2 HOW TO DESCRIBE SOURCE PROGRAMS

2.2.3 Symbol field

A symbol is described in the symbol field. The term "symbol" refers to a name given to numerical data or an
address.

By using symbols, the contents of a source program can be understood more easily.

(1) Symbol types

Symbols are classified into the types shown below, depending on their use and method of definition.

Symbol Type Use Method of Definition
Name Used as numerical data or an This type is described in the symbol
address in a source program. field of the EQU, SET, or DBIT directive.
Label Used as address data in a source This type is defined by suffixing a colon
program. (:)to asymbol.
External Used to reference symbol defined by | This type is described in the operand
reference name a module by another module. field of the EXTRN or EXTBIT directive.

This type is defined in the symbol field
Segment name Symbol used during linker operation of the CSEG, DSEG, BSEG or ORG
directive.

This type is described in the operand

Module name Used during symbolic debugging field of the NAME directive

Used for macro reference in a source | This type is described in the symbol

Macro name program. field of the MACRO directive.

Caution The four types of symbol, name, label, segment hame, and macro name, can be described in the

symbol field.

32 User's Manual U17835EJ1VOUM

CHAPTER 2 HOW TO DESCRIBE SOURCE PROGRAMS

@)

Conventions of symbol description

All symbols must be described according to the following rules:

- A symbol must be made up of alphanumeric characters and special characters (?, @, and _) that can be

used as characters equivalent to alphabetic characters.

None of the numeric characters 0 to 9 can be used as the first character of a symbol.

- A symbol must be made up of not more than 256 characters. Characters in excess of the maximum

symbol length will be ignored.
- No reserved word can be used as a symbol.
Reserved words are indicated in Table A-2.
- The same symbol cannot be defined more than once.
However, a name defined with the SET directive can be redefined with the SET directive.

- The assembler distinguishes between lowercase and uppercase characters.

- When describing a label in the Symbol field, ":" (colon) must be described immediately after the label.

<Examples of correct symbol descriptions>

CODEO1 CSEG ; ""CODEO1"™ is a segment name.
VARO1 EQU 10H ; "VARO1" is a name.
LABO1 : DW 0 ; "LABO1" is a label.

NAME SAMPLE ; "SAMPLE" is a module name.
MAC1 MACRO ; ""MAC1" iIs a macro name.

<Examples of incorrect symbol descriptions>

1ABC EQU 3 ; No numeric character can be used as the 1st
; character of a symbol.

LAB MoV A , RO ; "LAB" is a label and must be separated from
; the Mnemonic field with a colon (:).

FLAG : EQU 10H A colon (:) is not necessary in a name.

<Example of a symbol that is too long>

A123456789B12 to Y1234567897123456 EQU 70H
257 ; Character "6" in excess of the maximum symbol
; length (256 characters) are ignored.
; The symbol will be defined as
; "A123456789B12 to Y123456789712345".

<Example of a statement composed of a symbol only>

ABCD : ; "ABCD"™ will be defined as a label.

User's Manual U17835EJ1VOUM

33

CHAPTER 2 HOW TO DESCRIBE SOURCE PROGRAMS

34

(3) Some cautions about symbols
The symbol "??RAnnnn (n = 0000 to FFFF)" is a symbol that is automatically replaced by the assembler
every time a local symbol is developed inside a macro body. Be careful not to define this symbol twice.
When a segment name is not specified by a segment definition directive, the assembler generates a

segment name automatically. These segments are shown below.

Duplicate segment name definition causes an error.

Segment Name Directive Relocation Attribute
?A0nnnnn (nnnnn = 00000 - FFFFF) | ORG directive (none)
?CSEG UNIT
?CSEGUP UNITP
?CSEGTO CALLTO
?CSEGFX FIXED
?CSEGSI SECUR_ID

CSEG directive

?CSEGB BASE
?CSEGP64 PAGEG64KP
?CSEGU64 UNIT64KP
?CSEGMIP MIRRORP
?CSEGOBO OPT_BYTE
?DSEG UNIT
?DSEGUP UNITP
?DSEGS SADDR
?DSEGSP DSEG directive SADDRP
?DSEGBP BASEP
?DSEGP64 PAGEG4KP
?DSEGU6G4 UNIT64KP
?BSEG BSEG directive UNIT

User's Manual U17835EJ1VOUM

CHAPTER 2 HOW TO DESCRIBE SOURCE PROGRAMS

(4) Symbol attributes

All names and labels have both a value and an attribute.

A value refers to the value of defined numerical data or address data itself.

Segment names, module names, and macro names do not have a value.

The attribute of a symbol is called a symbol attribute and must be one of the eight types indicated in the fol-

lowing table.
Attribute Classification Value
Type
- Names to which numeric constants are | Decimal representation: O to
NUMBER assigned 1,048,575 _
- Symbols defined with the EXTRN directive Hexadecimal representation:
- Numeric constants 00000H to FFFFFH (unsigned)
- Symbols defined as labels Decimal representation: 0 to
ADDRESS | - Names defined as labels with EQU and SET | 1,048,575
directives Hexadecimal representation:
00000H to FFFFFH
- Names defined as bit values
BIT - Names within BSEG OH to FFFFFH
- Symbols defined with the EXTBIT directive
SFR Names defined as SFRs with the EQU directive
SFR area
SFRP Names defined as SFRs with the EQU directive
CSEG Segment names defined with the CSEG directive
DSEG Segment names defined with the DSEG directive
BSEG Segment names defined with the BSEG directive These attribute types have no
Module names defined with the NAME directive value.
MODULE (A module name if not defined is created from the
primary name of the input source filename)
MACRO Macro names defined with the MACRO directive
<Examples>
TEN EQU 10H ; Name "TEN" has attribute "NUMBER"
; and value "10H".
ORG 80H
START : MOV A , #10OH ; Label "START" has attribute "ADDRESS"
; and value "80H".
BIT1 EQU OFFE20H.0 ; Name "BIT1" has attribute "BIT"
; and value "OFFE20H.0".

User's Manual U17835EJ1VOUM

35

CHAPTER 2 HOW TO DESCRIBE SOURCE PROGRAMS

2.2.4 Mnemonic field

In the mnemonic field, a mnemonic instruction, a directive, or a macro reference is described.
With an instruction or directive requiring an operand or operands, the mnemonic field must be separated from
the operand field with one or more blanks or tabs.
" g

However, with the first operand of an instruction that begins with "#", "$","!", or "[", the assembly will be executed

properly even if nothing exists between the mnemonic field and the first operand field.

<Examples of correct descriptions>

MoV A , #OH
CALL TCONVAH
RET

<Examples of incorrect descriptions>

MOVA #0OH ; No blank exists between the mnemonic and operand fields.
CALL ICONVAH ; A blank exists within the mnemonic field.
2727 ; The 78KOR Series has no such instruction as ''Z7Z7".

2.2.5 Operand field

In the operand field, the data (operands) required for executing the instruction, directive, or macro reference is
described.

Depending on the instruction or directive, no operand is required in the operand field or two or more operands
must be described in the operand field.

When describing two or more operands, delimit each operand with a comma (,).

The following types of data can be described in the operand field:

- Constants (numeric constants and string constants)
- Character strings

- Register names

- Special characters ($, #, !, and [])

- Relocation attributes of segment definition directives
- Symbols

- Expressions

- Bitterms

The size and attribute of the required operand may be different depending on the instruction or directive. Refer to
"2.15 Characteristics of Operands" for the sizes and attributes of operands.

For the operand representation formats and description methods in the instruction set, see the user's manual of
the microcontroller for which software is being developed.

Each of the data types that can be described in the operand field is detailed below.

36 User's Manual U17835EJ1VOUM

CHAPTER 2 HOW TO DESCRIBE SOURCE PROGRAMS

(1) Constants

A constant is a fixed value or data item and is also referred to as immediate data.

Constants are divided into numeric constants and character-string constants.

(@) Numeric constants

A binary, octal, decimal, or hexadecimal number can be described as a numeric constant.

The method of representing each humeric constant type is shown below.

A numeric constant will be processed as unsigned 32-bit data.

Value range: 0 < n < OFFFFFFFFH

When describing a negative value, use the minus sign of the operator.

or "F", "0" must be prefixed to the constant.

Constant Method of Representation Example
; W A g " . 1101B
Binary constant Character "B" or "Y" is suffixed to a numerical value. 1101Y
wA Ay - : 740
Octal constant Character "O" or "Q" is suffixed to a numerical value. 740
. 128
. A numerical value is described as is, or character "D" or
Decimal constant - ; . 128D
T" is suffixed to a numerical value.
128T
- Character "H" is suffixed to a numerical value. 8CH
Hexadecimal constant - If the first character begins with "A", "B", "C", "D", "E", | jagH

(b) Character-string constants

A character-string constant is expressed by enclosing a string of characters from those shown in "2.2.2

Character set", in a pair of single quotation marks ().

As a result of an assembly process, the character-string constant is converted into 7-bit ASCII code with

the parity bit (MSB) set as "0".

The length of a string constant is O to 2 characters.

To use the single quotation mark itself as a string constant, the single quotation mark must be input

twice in succession.

<Examples of character-string constant descriptions>

-ab-
-A-
-A---

Represents ""6162H"
Represents '"0041H"
Represents ''4127H"
Represents "0020H™ (one blank)

(2) Character strings

A character string is expressed by enclosing a string of characters from those shown in "2.2.2 Character

set", in a pair of single quotation marks ('). Character strings are mainly used for operands in the DB, CALL

directive and TITLE or SUBTITLE control instruction.

<Application examples of character strings>

CSEG
MAS1 : DB
MAS2 : DB

"YES*
“NO*"

Initializes with character string "YES".
Initializes with character string "NO™.

User's Manual U17835EJ1VOUM

37

CHAPTER 2 HOW TO DESCRIBE SOURCE PROGRAMS

®)

(4)

®)

38

Register names

The following registers can be described in the Operand field:

- General registers
- General register pairs

- Special function registers

General registers and general register pairs can be described with their absolute names (RO to R7 and RPO
to RP3), as well as with their function names (X, A, B, C, D, E, H, L, AX, BC, DE, HL).

The register names that can be described in the operand field may differ depending on the type of
instruction. For details of the method of describing each register name, see the user's manual of each

device for which software is being developed.

Special characters

Special characters that can be described in the operand field are shown below.

Special Character Function
- Indicates the location address of the instruction having this operand (or the
$ 1st byte of this address, in the case of addresses with a multiple-byte
instruction).
- Indicates a relative addressing mode for a branch instruction.
- Indicates an absolute addressing mode for a branch instruction.
! - Indicates the specification of addrl6 that allows all memory space to be
specified with an MOV instruction.
- Indicates immediate data.
[] - Indicates indirect addressing mode.

<Application examples of special characters>

Address Source program

100 ADD A , #10H

102 LOOP : INC A

103 BR $$ - 1 : (D
105 BR 1$ + 100H ; (2)

(1) The second $ in the operand indicates address 103H. Describing "BR $ - 1" results in the same
operation.
(2) The second $ in the operand indicates address 105H. Describing "BR $ + 100H" results in the same

operation.

Relocation attributes of segment definition directives
Relocation attributes can be described in the operand field.

For details of relocation attributes, refer to "3.2 Segment Definition Directives".

User's Manual U17835EJ1VOUM

CHAPTER 2 HOW TO DESCRIBE SOURCE PROGRAMS

(6)

()

(8)

Symbols
If a symbol is described in the operand field, an address (or value) allocated to that symbol becomes the
operand value.

<Application examples of symbols>

VALUE EQU 1234H
MOV A , #VALUE

This description can be written as
MOV A, #1234H™.

Expressions

An expression is constants, $ (which indicates a location address), names, or labels connected with
operators.

The expression can be described where numeric values can be expressed as instruction operands.

For the expressions and operators, refer to "2.3 Expressions and Operators".

<Examples of expressions>

TEN EQU 10H

MOV A , #TEN - 5H

In this example, "TEN - 5H" is an expression.
In this expression, the name and numeric constant are connected with a - (minus) operator. The value of the
expression is "BH".

Therefore, this description can be rewritten as "MOV A , #0BH".
Bit terms

A bit term can be obtained by the bit position specifier.

For details of bit terms, refer to 2.14 Bit Position Specifier.

<Examples of bit terms>

CLR1 A.5
SET1 1 + OFFE30H.3 ; The operand value is OFFE31H.3.
CLR1 OFFE40H.4 + 2 ; The operand value is OFFE40H.6.

User's Manual U17835EJ1VOUM 39

CHAPTER 2 HOW TO DESCRIBE SOURCE PROGRAMS

2.2.6 Comment field

In the comment field, comments or remarks may be described following the input of a semicolon (;).

The comment field is from a semicolon to the line-feed code of that line or EOF.

By describing a comment statement in the comment field, an easy-to-understand source program can be
created.

The comment statement in the comment field is not subject to assembler operation (i.e., conversion into machine
language) but will be output without change on an assembly list.

Characters that can be described in the comment field are those shown in "2.2.2 Character set".

<Examples of comments>
NAME SAMPM

AEXEAXEAAXKXALAAAXAAXAXAAXAAAXAAXAAAXAAALAAAAAAAAAXkAdX

HEX -> ASCI1 Conversion Program Lines consisting of comment field only
main-routine

PUBLIC MAIN , START
EXTRN CONVAH
EXTRN @STBEG

DATA DSEG saddr
HDTSA: DS 1
STASC: DS 2

CODE CSEG AT OH
MAIN - DW START

CSEG

START : Li -~ f field
- chip initialize :| ines consisting of comment fie

onl
MOVW SP , # @STBEG y

MOV HDTSA , #1AH

MOVW HL , #HDTSA ; set hex 2-code data in HL register Liﬁ_eshin
whic

CALL TCONVAH ; convert ASCII <- HEX g(rJénments

; output BC-register <- ASCII code described

in com-

MOVW DE , #STASC ; set DE <- store ASCII code table ment field

MOV A, B

MOV [DE] ., A

INCW DE

MOV A, C

MOV [DE] ., A

BR $$

END

40 User's Manual U17835EJ1VOUM

CHAPTER 2 HOW TO DESCRIBE SOURCE PROGRAMS

2.3 Expressions and Operators

An expression is a symbol, constant, location address (indicated by $) or bit term, an operator combined with one
of the above, or a combination of operators.

Elements of an expression other than the operators are called terms, and are referred to as the 1st term, 2nd
term, and so forth from left to right, in the order of their description.

Operators are available in the types shown in Table 2-4, and the order of their precedence in calculation has
been predetermined as shown in Table 2-5.

Parentheses "()" are used to change the order in which calculations are performed.

<Example>
MOV A, # * (SYM + 1) ; (D

In (1) above, "5 * (SYM + 1)" is an expression. "5" is the 1st term of the expression and "SYM" and "1" are the

2nd and 3rd terms respectively. "*", "+", and "()" are operators.

Table 2-4 Types of Operators

Type of Operator Operators
Arithmetic Operators +, -, *, 1, MOD, + sign, - sign
Logical Operators NOT, AND, OR, XOR
Relational Operators EQ (=), NE (< >), GT (), GE (>=), LT (<), LE (<=)
Shift Operators SHR, SHL

Byte-Separating Operators HIGH, LOW

Word-Separating Operators HIGHW, LOWW

Special Operators DATAPQOS, BITPOS, MASK

Other Operator)

The above operators can also be divided into unary operators, special unary operators, binary operators, N-ary

operators, and other operators.

Unary operators + sign, - sign, NOT, HIGH, LOW, HIGHW, LOWW

Special unary operators DATAPOS, BITPOS

+, -, *, /, MOD, AND, OR, XOR, EQ (or =), NE (or < >), GT (or >), GE (or

Binary operators >=), LT (or <), LE (or <=), SHR, SHL

N-ary operators MASK

Other operators)

User's Manual U17835EJ1VOUM 41

CHAPTER 2 HOW TO DESCRIBE SOURCE PROGRAMS

42

Table 2-5 Order of Precedence of Operators

Priority | Priority Level Operators
Higher 1 + sign, - sign, NOT, HIGH, LOW, HIGHW, LOWW, DATAPOS, BITPOS, MASK
2 * [/, MOD, SHR, SHL
3 +, -
4 AND
5 OR, XOR
Lower 6 EQ (or =), NE (or <), GT (or >), GE (or >=), LT (or <), LE (or <=)

Operations on expressions are performed according to the following rules:

- Operations are performed according to the order of precedence given to each operator.
If two or more operators of the same order of precedence exist in an expression, the operation designated
by the leftmost operator will be carried out. In the case of unary operators, the operation will be performed
from right to left.

- An expression in parentheses is carried out before expressions outside the parentheses.

- Operations between two or more unary operators are allowed.
Examples: 1=--1==

l=-+41=-1

- Expressions are calculated within 32 bits, without signs.
If an overflow occurs in operation due to an expression exceeding 32 bits, the overflowed value is ignored.

- If a constant exceeds 32 bits, an error occurs and the value of the result will be regarded as 0 for calculation.

- In division, the decimal fraction part of the result will be truncated.
If the divisor is 0, an error occurs, and the result will be 0.

- Two's compliments are used to represent negative values.

- The evaluated values for external reference symbols are zero during assemby (the evaluation value is
determined during linking).

- The result obtained from the expression described in the operand field must satisfy the instruction's
requirement.
If a relocatable expression or expression that uses an external reference is described for an instruction that
requests 8-bit operands, the object is generated from the lower 8-bit values, and required relocation
information is output in 16-bit units. The linker then checks whether the determined value is within the 8-bit
range. If overflows, an error occurs at linking.
If an absolute expression is described, the assembler determines the value and checks whether the value is
within the requested range is checked.

For example, the MOV instruction requests 8-bit operands, so it must fit within the range of OH to OFFH.

User's Manual U17835EJ1VOUM

CHAPTER 2 HOW TO DESCRIBE SOURCE PROGRAMS

<Examples of correct descriptions>

MoV A, #%2*" AND OFH
MoV A, #4 *8 *8 -1

<Examples of incorrect descriptions>

MoV A, #72*%.
MOV A, # * 8 * 8

<Examples of evaluation>

Expression Evaluation Value
2+4*5 22
(2+3)*4 20
10/4 2
0-1 OFFFFFFFFH
-1>1 OO0H (False)
EXTNO® + 1 1

Note EXT : External reference symbols

User's Manual U17835EJ1VOUM

43

CHAPTER 2 HOW TO DESCRIBE SOURCE PROGRAMS

2.4

Arithmetic Operators

The following arithmetic operators are available.

44

+

MOD
+ sign

- sign

User's Manual U17835EJ1VOUM

CHAPTER 2 HOW TO DESCRIBE SOURCE PROGRAMS

[Function]

- Returns the sum of the values of the 1st and 2nd terms of an expression.

[Application Example]

ORG 100H
START : BR 1$ + 6 ;@)

- The BR instruction causes a jump to "current location address plus 6", namely, to address "100H + 6H =
106H".

Therefore, (a) in the above example can also be described as: START : BR !106H

User's Manual U17835EJ1VOUM 45

CHAPTER 2 HOW TO DESCRIBE SOURCE PROGRAMS

[Function]

- Returns the result of subtraction of the 2nd-term value from the 1st-term value.

[Application Example]

ORG 100H
BACK : BR BACK - 6H : (@)

- The BR instruction causes a jump to "address assigned to BACK minus 6", namely, to address "100H - 6H =
OFAH".

Therefore, (a) in the above example can also be described as: BACK : BR |0FAH

User's Manual U17835EJ1VOUM

CHAPTER 2 HOW TO DESCRIBE SOURCE PROGRAMS

[Function]

- Returns the result of multiplication (product) between the values of the 1st and 2nd terms of an expression.

[Application Example]

TEN EQU 10H
MoV A , #TEN * 3 ; (@

- With the EQU directive, the value "10H" is defined in the name "TEN".
"#" indicates immediate data. The expression "TEN * 3" is the same as "10H * 3" and returns the value
"30H".

Therefore, (a) in the above expression can also be described as: MOV A , #30H

User's Manual U17835EJ1VOUM 47

CHAPTER 2 HOW TO DESCRIBE SOURCE PROGRAMS

48

[Function]
- Divides the value of the 1st term of an expression by the value of its 2nd term and returns the integer part of

the result.

The decimal fraction part of the result will be truncated. If the divisor (2nd term) of a division operation is 0O,

an error occurs.

[Application Example]

MOV A , #256 / 50 ; (@)

- The result of the division "256 / 50" is 5 with remainder 6.
The operator returns the value "5" that is the integer part of the result of the division.

Therefore, (a) in the above expression can also be described as: MOV A | #5

User's Manual U17835EJ1VOUM

CHAPTER 2 HOW TO DESCRIBE SOURCE PROGRAMS

MOD

[Function]

- Obtains the remainder in the result of dividing the value of the 1st term of an expression by the value of its

2nd term.
An error occurs if the divisor (2nd term) is 0.

A blank is required before and after the MOD operator.

[Application Example]

MoV A , #256 MOD 50 ; (@)

- The result of the division "256 / 50" is 5 with remainder 6.
The MOD operator returns the remainder 6.

Therefore, (a) in the above expression can also be described as: MOV A , #6.

User's Manual U17835EJ1VOUM

49

CHAPTER 2 HOW TO DESCRIBE SOURCE PROGRAMS

+ sign

[Function]

- Returns the value of the term of an expression without change.

[Application Example]

FIVE EQU +5

- The value "5" of the term is returned without change.

The value "5" is defined in name "FIVE" with the EQU directive.

50 User's Manual U17835EJ1VOUM

CHAPTER 2 HOW TO DESCRIBE SOURCE PROGRAMS

- sign

[Function]

- Returns the value of the term of an expression by the two's complement.

[Application Example]

NO EQU -1

- -1 becomes the two's complement of 1.

The two's complement of binary 0000 0000 0000 0000 0000 0000 0000 0001 becomes:

1111 1121 1211 1111 1111 212121 1111 1111
Therefore, with the EQU directive, the value "OFFFFFFFFH" is defined in the name "NO".

User's Manual U17835EJ1VOUM

51

CHAPTER 2 HOW TO DESCRIBE SOURCE PROGRAMS

2.5 Logical Operators

The following logical operators are available.

- NOT
- AND
- OR

- XOR

52 User's Manual U17835EJ1VOUM

CHAPTER 2 HOW TO DESCRIBE SOURCE PROGRAMS

NOT

[Function]
- Negates the value of the term of an expression on a bit-by-bit basis and returns the result.

A blank is required between the NOT operator and the term.

[Application Example]

MOWW AX , #LOWW (NOT 3H) ; ()

- Logical negation is performed on "3H" as follows:

NOT) 0000 0000 0000 0000 0000 0000 0000 0011

1111 1111 1111 1111 1111 1111 1111 1100

OFFFFFFFCH is returned.
Therefore, (a) can also be described as: MOVW AX , #.OWW #0FFFFFFFCH

User's Manual U17835EJ1VOUM

53

CHAPTER 2 HOW TO DESCRIBE SOURCE PROGRAMS

AND

[Function]
- Performs an AND (logical product) operation between the value of the 1st term of an expression and the
value of its 2nd term on a bit-by-bit basis and returns the result.

A blank is required before and after the AND operator.

[Application Example]

MoV A , #6FAH AND OFH ; (@)

- AND operation is performed between the two values "6FAH" and "OFH" as follows:

0000 0000 0000 0000 0000 0110 1111 1010
AND) 0000 0000 0000 0000 0000 0000 0000 1111

0000 0000 0000 0000 0000 0000 0000 1010

The result "OAH" is returned. Therefore, (a) in the above expression can also be described as: MOV A ,
#0AH

54 User's Manual U17835EJ1VOUM

CHAPTER 2 HOW TO DESCRIBE SOURCE PROGRAMS

OR

[Function]

- Performs an OR (Logical sum) operation between the value of the 1st term of an expression and the value

of its 2nd term on a bit-by-bit basis and returns the result.

A blank is required before and after the OR operator.

[Application Example]

MoV A , #0AH OR 1101B ; (@)

- OR operation is performed between the two values "0AH" and "1101B" as follows:

0000 0000 0000 0000 0000 0000 0000 1010
OR) 0000 0000 0000 0000 0000 0000 0000 1101
0000 0000 0000 0000 0000 0000 0000 1111

The result "OFH" is returned.

Therefore, (a) in the above expression can also be described as: MOV A , #0FH

User's Manual U17835EJ1VOUM

55

CHAPTER 2 HOW TO DESCRIBE SOURCE PROGRAMS

XOR

[Function]
- Performs an Exclusive-OR operation between the value of the 1st term of an expression and the value of its

2nd term on a bit-by-bit basis and returns the result. A blank is required before and after the XOR operator.

[Application Example]

MoV A , #9AH XOR 9DH ; (@

- XOR operation is performed between the two values "9AH" and "9DH" as follows:

0000 0000 0000 0000 0000 0000 1001 1010
XOR) 0000 0000 0000 0000 0000 0000 1001 1101

0000 0000 0000 0000 0000 0000 0000 0111

The result "7H" is returned.

Therefore, (a) in the above expression can also be described as: MOV A , #7H

56 User's Manual U17835EJ1VOUM

CHAPTER 2 HOW TO DESCRIBE SOURCE PROGRAMS

2.6 Relational Operators

The following relational operators are available.

- EQ()
- NE (<>)
- GT ()

- GE (>=)
- LT (<)

- LE (<=5)

User's Manual U17835EJ1VOUM

57

CHAPTER 2 HOW TO DESCRIBE SOURCE PROGRAMS

EQ (5)

[Function]
- Returns OFFH (True) if the value of the 1st term of an expression is equal to the value of its 2nd term, and
O0H (False) if both values are not equal.

A blank is required before and after the EQ operator.

[Application Example]

Al EQU 12C4H
A2 EQU 12COH
MOV A, #A1 EQ (A2 + 4H) ; (@)
MOV X , #A1l EQ A2 ; (D)

- In (a) above, the expression "A1 EQ (A2 + 4H)" becomes "12C4H EQ (12COH + 4H)".
The operator returns OFFH because the value of the 1st term is equal to the value of the 2nd term.
- In (b) above, the expression "A1 EQ A2" becomes "12C4H EQ 12COH".

The operator returns O0H because the value of the 1st term is not equal to the value of the 2nd term.

58 User's Manual U17835EJ1VOUM

CHAPTER 2 HOW TO DESCRIBE SOURCE PROGRAMS

NE (< >)

[Function]
- Returns OFFH (True) if the value of the 1st term of an expression is not equal to the value of its 2nd term,
and OOH (False) if both values are equal.

A blank is required before and after the NE operator.

[Application Example]

Al EQU 5678H
A2 EQU 5670H
MOV A, #A1 NE A2 ; (@)
MOV A, #A1 NE (A2 + 8H) ; (D)

- In (a) above, the expression "A1 NE A2" becomes "5678H NE 5670H".
The operator returns OFFH because the value of the 1st term is not equal to the value of the 2nd term.
- In (b) above, the expression "Al NE (A2 + 8H)" becomes "5678H NE (5670H + 8H)".

The operator returns O0H because the value of the 1st term is equal to the value of the 2nd term.

User's Manual U17835EJ1VOUM 59

CHAPTER 2 HOW TO DESCRIBE SOURCE PROGRAMS

GT (»)

[Function]
- Returns OFFH (True) if the value of the 1st term of an expression is greater than the value of its 2nd term,
and OOH (False) if the value of the 1st term is equal to or less than the value of the 2nd term.

A blank is required before and after the GT operator.

[Application Example]

Al EQU 1023H
A2 EQU 1013H
MOV A, #A1 GT A2 ; (@)
MOV X , #A1 GT (A2 + 10H) ; (D)

- In (a) above, the expression "Al GT A2" becomes "1023H GT 1013H".
The operator returns OFFH because the value of the 1st term is greater than the value of the 2nd term.
- In (b) above, the expression "Al GT (A2 + 10H)" becomes "1023H GT (1013H + 10H)".

The operator returns O0H because the value of the 1st term is equal to the value of the 2nd term.

60 User's Manual U17835EJ1VOUM

CHAPTER 2 HOW TO DESCRIBE SOURCE PROGRAMS

GE (>=)

[Function]

- Returns OFFH (True) if the value of the 1st term of an expression is greater than or equal to the value of its

2nd term, and O0H (False) if the value of the 1st term is less than the value of the 2nd term.

A blank is required before and after the GE operator.

[Application Example]

Al EQU
A2 EQU
MOV
MOV

2037H
2015H

A, #A1 GE A2
X , #A1 GE (A2 + 23H)

@
(b)

- In (a) above, the expression "Al GE A2" becomes "2037H GE 2015H".

The operator returns OFFH because the value of the 1st term is greater than the value of the 2nd term.

- In (b) above, the expression "Al GE (A2 + 23H)" becomes "2037H GE (2015H + 23H)".

The operator returns O0H because the value of the 1st term is less than the value of the 2nd term.

User's Manual U17835EJ1VOUM

61

CHAPTER 2 HOW TO DESCRIBE SOURCE PROGRAMS

LT (<)

[Function]
- Returns OFFH (True) if the value of the 1st term of an expression is less than the value of its 2nd term, and
OO0H (False) if the value of the 1st term is equal to or greater than the value of the 2nd term.

A blank is required before and after the LT operator.

[Application Example]

Al EQU 1000H
A2 EQU 1020H
MOV A, #A1 LT A2 ; (@)
MOV X , # (AL + 20H) LT A2 ; (D)

- In (a) above, the expression "Al LT A2" becomes "1000H LT 1020H".
The operator returns OFFH because the value of the 1st term is less than the value of the 2nd term.
- In (b) above, the expression "(A1 + 20H) LT A2" becomes "(1000H + 20H) LT 1020H".

The operator returns O0H because the value of the 1st term is equal to the value of the 2nd term.

62 User's Manual U17835EJ1VOUM

CHAPTER 2 HOW TO DESCRIBE SOURCE PROGRAMS

LE (<=)

[Function]

- Returns OFFH (True) if the value of the 1st term of an expression is less than or equal to the value of its 2nd

term, and OOH (False) if the value of the 1st term is greater than the value of the 2nd term.

A blank is required before and after the LE operator.

[Application Example]

Al EQU
A2 EQU
MOV
MOV

103AH
1040H

A, #A1 LE A2
X, # (AL + 7H) LE A2

@
(b)

- In (a) above, the expression "Al LE A2" becomes "103AH LE 1040H".

The operator returns OFFH because the value of the 1st term is less than the value of the 2nd term.

- In (b) above, the expression "(A1 + 7H) LE A2" becomes "(103AH + 7H) LE 1040H".

The operator returns O0H because the value of the 1st term is greater than the value of the 2nd term.

User's Manual U17835EJ1VOUM

63

CHAPTER 2 HOW TO DESCRIBE SOURCE PROGRAMS

2.7 Shift Operators

The following shift operators are available.

- SHR
- SHL

64 User's Manual U17835EJ1VOUM

CHAPTER 2 HOW TO DESCRIBE SOURCE PROGRAMS

SHR

[Function]

- Returns a value obtained by shifting the value of the 1st term of an expression to the right the number of bits
specified by the value of the 2nd term. Zeros equivalent to the specified number of bits shifted move into the
high-order bits.

A blank is required before and after the SHR operator.
If the number of shifted bits is 0, the value of the first term is returned as is. If the number of shifted bits

exceeds 32, the space is automatically filled with zeros.

[Application Example]

MOV A , #01AFH SHR 5 ; (@)

- This operator shifts the value "01AFH" to the right by 5 bits.

0000 0000 0000 0000 0000 0001 1010 1111

N\ T

0000 0000 0000 0000 0000 0000 0000 1101 0111 1

<“—> “—>

0's are inserted. Right-shifted by 5 bits.

The value "000DH" is returned.

Therefore, (a) in the above example can also be described as: MOV A , #0DH

User's Manual U17835EJ1VOUM 65

CHAPTER 2 HOW TO DESCRIBE SOURCE PROGRAMS

SHL

[Function]

- Returns a value obtained by shifting the value of the 1st term of an expression to the left the number of bits
specified by the value of the 2nd term. Zeros equivalent to the specified number of bits shifted move into the
low-order bits.

A blank is required before and after the SHL operator.
If the number of shifted bits is 0, the value of the first term is returned as is. If the number of shifted bits

exceeds 32, the space is automatically filled with zeros.

[Application Example]

MOV A , #21H SHL 2 ; (@)

- This operator shifts the value "21H" to the left by 2 bits.

0000 0000 0000 0000 0000 0000 0010 0001

/. /

00 0000 0000 0000 0000 0000 0000 1000 0100

<+> <+—>
Left-shifted by 2 bits. 0's are inserted.

The value "84H" is returned.

Therefore, (a) in the above example can also be described as: MOV A , #84H

66 User's Manual U17835EJ1VOUM

CHAPTER 2 HOW TO DESCRIBE SOURCE PROGRAMS

2.8 Byte-Separating Operators

The following byte-separating operators are available.

- HIGH
- LOW

User's Manual U17835EJ1VOUM

67

CHAPTER 2 HOW TO DESCRIBE SOURCE PROGRAMS

HIGH

[Function]
- Returns the high-order 8-bit value of a term.

A blank is required between the HIGH operator and the term.

[Application Example]

MoV A , #HIGH 1234H ; ()

- By executing a MOV instruction, this operator returns the high-order 8-bit value "12H" of the expression
"1234H".

Therefore, (a) in the above example can also be described as: MOV A , #12H

[Remark]

- A HIGH operation for an SFR name is performed, using either of the following description methods.

HI1GHASFR-name

Or,

HIGH[A] ([A]SFR-name[A])

The result obtained from the operation is an operand of the absolute NUMBER attribute.

No other operations can be performed for the SFR name.

<Example>
Symbol field Mnemonic field Operand field
MoV RO , #HIGH PMO
MOV R1 , #HIGH PM1 + 1H ; Equivalent to
; #C HIGH PM1) + 1
MoV R1 , #HIGH (PM1 + 1H) ; An error is returned

; because operands other
; than HIGH, LOW, HIGHW,
; and LOWW are specified
; as the SFR name

68 User's Manual U17835EJ1VOUM

CHAPTER 2 HOW TO DESCRIBE SOURCE PROGRAMS

LOW

[Function]
- Returns the low-order 8-bit value of a term.

A blank is required between the LOW operator and the term.

[Application Example]

MoV A , #LOW 1234H ; ()

- By executing a MOV instruction, this operator returns the low-order 8-bit value "34H" of the expression

"1234H".

Therefore, (b) in the above example can also be described as: MOV A , #34H

[Remark]

- A LOW operation for an SFR name is performed, using either of the following description methods.

LOWASFR-name

Or,

LOW[A] ([A]SFR-name[A])

The result obtained from the operation is an operand of the absolute NUMBER attribute.

No other operations can be performed for the SFR name.

<Example>
Symbol field Mnemonic field Operand field
MoV RO , #LOW PMO
MOV R1 , #LOW PM1 + 1H ; Equivalent to
; #C LOW PM1) + 1
MoV R1 , #L.OW (PM1 + 1H) ; An error is returned

; because operands other
; than HIGH, LOW, HIGHW,
; and LOWW are specified
as the SFR name

User's Manual U17835EJ1VOUM

69

CHAPTER 2 HOW TO DESCRIBE SOURCE PROGRAMS

2.9 Word-Separating Operators

The following word-separating operators are available.

- HIGHW
- LOWW

70 User's Manual U17835EJ1VOUM

CHAPTER 2 HOW TO DESCRIBE SOURCE PROGRAMS

HIGHW

[Function]
- Returns the high-order 8-bit value of a term.

A blank is required between the HIGHW operator and the term.

[Application Example]

MOVW AX , #HIGHW 12345678H ; (@

MoV ES , #HIGHW LAB ; (b
MOVW AX , ES:ILAB

- By executing a MOVW instruction, this operator returns the high-order 16-bit value "1234H" of the
expression "12345678H".
Therefore, (a) in the above example can also be described as: MOVW AX , #1234H

- By executing the MOV instruction on line (b), the higher address of label LAB is set to the ES register.

[Remark]

- A HIGHW operation for an SFR name is performed, using either of the following description methods.

H1GHWASFR-name

Or,

HIGHW[A] ([A]SFR-name[A])

The result obtained from the operation is an operand of the absolute NUMBER attribute.

No other operations can be performed for the SFR name.

<Example>
Symbol field Mnemonic field Operand field
MOVW RPO , #HIGHW PMO
MOVW RP1 , #HIGHW PM1 + 1H Equivalent to
#(HIGHW PM1) + 1
MOVW RP1 , #HIGHW (PM1 + 1H) An error is

returned because
operands other than
HIGH, LOW, HIGHW,
and LOWW are
specified as the SFR
name

User's Manual U17835EJ1VOUM 71

CHAPTER 2 HOW TO DESCRIBE SOURCE PROGRAMS

LOWW

[Function]
- Returns the low-order 8-bit value of a term.

A blank is required between the LOW operator and the term.

[Application Example]

MOVW A, #LOWW 12345678H ; (@)

- By executing a MOV instruction, this operator returns the low-order 16-bit value "5678H" of the expression
"12345678H".
Therefore, (a) in the above example can also be described as: MOVW AX , #5678H

[Remark]

- A LOWW operation for an SFR name is performed, using either of the following description methods.

LOWWASFR-name

Or,

LOWW[A] ([A]SFR-name[A])

The result obtained from the operation is an operand of the absolute NUMBER attribute.

No other operations can be performed for the SFR name.

<Example>
Symbol field Mnemonic field Operand field
MOVW RPO , #LOWW PMO
MOVW RP1 , #LOWW PM1 + 1H ; Equivalent to
; #C LOWW PM1) + 1
MOVW RP1 , #LOWW (PM1 + 1H) ; An error is

; returned because

; operands other than
; HIGH, LOW, HIGHW,

; and LOWW are

; specified as the SFR
; hame

72 User's Manual U17835EJ1VOUM

CHAPTER 2 HOW TO DESCRIBE SOURCE PROGRAMS

2.10 Special Operators

The following special operators are available.

- DATAPOS
- BITPOS
- MASK

User's Manual U17835EJ1VOUM

73

CHAPTER 2 HOW TO DESCRIBE SOURCE PROGRAMS

DATAPOS

[Function]

- Returns the address portion (byte address) of a bit symbol.

[Application Example]

SYM EQU OFE68H.6

MoV A , IDATAPOS SYM ; ()

- An EQU directive defines the name "SYM" with a value of OFE68H.6.
"DATAPOS SYM" represents "DATAPOS OFE68H.6", and "OFE68H" is returned.

Therefore, (a) in the above example can also be described as: MOV A , |OFE68H

74 User's Manual U17835EJ1VOUM

CHAPTER 2 HOW TO DESCRIBE SOURCE PROGRAMS

BITPOS

[Function]

- Returns the bit portion (bit position) of a bit symbol.

[Application Example]

SYM EQU OFEG8H.6

CLR1 [HL J-BITPOS SYM

- An EQU directive defines the name "SYM" with a value of OFE68H.6.
"BITPOS.SYM" represents "BITPOS OFE68H.6", and "6" is returned.
A CLR1 instruction clears [HL].6 to O.

User's Manual U17835EJ1VOUM

75

CHAPTER 2 HOW TO DESCRIBE SOURCE PROGRAMS

MASK

[Function]

- Returns a 16-bit value in which the specified bit position is 1 and all others are set to 0.

[Application Example]

MOVW AX , #MASK (0 , 3 , OFEOOH.7 , 15)

- A MOVW instruction returns the value "8089H".

F E DCBA9 8 7 6 5 4 3 2 1 0

1,0/0|0jO0}jO0O|JO]JO|1|0|O|O0O|2]|0]|O0]12

MASK (0, 3, 0FEOQOH.7 , 15)

76 User's Manual U17835EJ1VOUM

CHAPTER 2 HOW TO DESCRIBE SOURCE PROGRAMS

2.11 Other Operator

The following other operator is available.

-0

User's Manual U17835EJ1VOUM

7

CHAPTER 2 HOW TO DESCRIBE SOURCE PROGRAMS

O

[Function]

Causes an operation in parentheses to be performed prior to operations outside the parentheses.
This operator is used to change the order of precedence of other operators.

If parentheses are nested at multiple levels, the expression in the innermost parentheses will be calculated

first.

[Application Example]

MOV A,#(4+3)*2

(4+3)*2
L
@

@

Calculations are performed in the order of expressions (1), (2) and the value "14" is returned as a result.

If parentheses are not used,

4+3%2
L
@

@)

78

Calculations are performed in the order (1), (2) shown above, and the value "10" is returned as a result.

See Table 2-5, for the order of precedence of operators.

User's Manual U17835EJ1VOUM

CHAPTER 2 HOW TO DESCRIBE SOURCE PROGRAMS

2.12 Restrictions on Operations

The operation of an expression is performed by connecting terms with operator(s). Elements that can be
described as terms include constants, $, names, and labels. Each term has a relocation attribute and a symbol
attribute.

Depending on the types of relocation attribute and symbol attribute inherent in each term, operators that can
work on the term are limited. Therefore, when describing an expression, it is important to pay attention to the

relocation attribute and symbol attribute of each of the terms constituting the expression.

2.12.1 Operators and relocation attributes

As previously mentioned, each of the terms that constitute an expression has a relocation attribute and symbol
attribute.

Terms can be divided into three types when classified by their relocation attributes: Absolute terms, relocatable
terms, and external reference terms.

Types of relocation attributes in operations, the nature of each attribute, and terms applicable to each attribute

are shown below.

Table 2-6 Types of Relocation Attributes

Type Nature Applicable Terms

- Constants

- Labels defined within an absolute segment

- $indicating the location address defined within
an absolute segment

- Names defined with constants, the above
labels, the above $, or absolute values

Term whose value and
Absolute term constant are determined at
assembly time

- Labels defined within a relocatable segment

Term whose value is not - $ indicating the location address defined within
determined at assembly time a relocatable segment

- Names defined with a relocatable symbol

Relocatable term

External reference Term that externally references | - Labels defined with the EXTRN directive
termNote the symbol of another module | - Names defined with the EXTBIT directive
Note The following 6 operators can work on external reference terms: "+", "-", "HIGH", "LOW", "HIGHW",

"LOWW?",. Only one external reference symbol can be described in an expression. In this case, the

external reference symbol must be connected with a "+" operator.

Combinations of the type of operator and terms on which each operator can work are shown below.

User's Manual U17835EJ1VOUM 79

CHAPTER 2 HOW TO DESCRIBE SOURCE PROGRAMS

Table 2-7 Combinations of Terms and Operators by Relocation Attribute (Relocatable Terms)

Relocation Attribute of Term
Type of Operator X: ABS X: ABS X: REL X:REL
Y: ABS Y: REL Y: ABS Y: REL
X+Y A R R -
X-Y A - R ANote 1
X*Y A - - -
XY A - - -
XMODY A - - -
XSHLY A - - -
XSHRY A - - -
XEQY A - - ANote 1
XLTY A - - ANote 1
XLEY A - - ANote 1
XGTY A - - ANote 1
XGEY A - - ANote 1
XNEY A - - ANote 1
X AND Y A - - -
XORY A - - -
XXORY A - - -
NOT X A A - -
+ X A A R R
-X A A - -
HIGH X A A RNote 2 RNote 2
LOW X A A RNote 2 RNote 2
HIGHW X A A RNote 2 RNote 2
LOWW X A A RNote 2 RNote 2
MASK (X) A A - -
DATAPOS X.Y A - - -
BITPOS X.Y A - - -
MASK (X.Y) A - - -
DATAPOS X A
BITPOS X A A A

80

User's Manual U17835EJ1VOUM

CHAPTER 2 HOW TO DESCRIBE SOURCE PROGRAMS

ABS: Absolute term
REL: Relocatable term
The result of the operation becomes an absolute term.

R: The result of the operation becomes a relocatable term.

- The operation cannot be performed.

Note 1 The operation can only be performed if X and Y are defined within the same segment, and not
relocatable terms on which HIGH, LOW, HIGHW, LOWW, DATAPOS are operated.

Note 2 The operation can only be performed if X and Y are not relocatable terms on which HIGH, LOW,
HIGHW, LOWW, DATAPOS are operated.

The following 6 operators can work on external reference terms: "+", "-", "HIGH", "LOW", "HIGHW", and

"LOWW" (however, note that only one external reference term can be described in an expression).

Combinations of the types of operators and external reference terms on which each operator can work

areclassified according to relocation attributes in the following table.

Table 2-8 Combinations of Terms and Operators by Relocation Attribute (External Reference Terms)

Relocation Attribute of Term
Type of Operator X: ABS X: EXT X: REL X: EXT X: EXT
Y: EXT Y: ABS Y: EXT Y: REL Y: EXT
X+Y E E - - -
X-Y - E - - -
+ X A E R E E
HIGH X A ENote 1 RNote 2 ENote 1 ENote 1
LOW X A ENote 1 RNote 2 ENote 1 ENote 1
HIGHW X A ENote 1 RNote 2 ENote 1 ENote 1
LOWW X A ENote 1 RNote 2 ENote 1 ENote 1
MASK (X) A - - - -
DATAPOS X.Y - - - - -
BITPOS X.Y - - - - -
MASK (X.Y) - - - - -
DATAPOS X A E R E E
BITPOS X A E A E E

User's Manual U17835EJ1VOUM 81

CHAPTER 2 HOW TO DESCRIBE SOURCE PROGRAMS

ABS:
EXT:
REL:

Note 1

Note 2

Absolute term

External reference terms

Relocatable term

The result of the operation becomes an absolute term.

The result of the operation becomes an external reference term.
The result of the operation becomes a relocatable term.

The operation cannot be performed.

The operation can only be performed if X and Y are not external reference terms on which HIGH,
LOW, HIGHW, LOWW, DATAPOS, BITPOS are operated.

The operation can only be performed if X and Y are not relocatable terms on which HIGH, LOW,

HIGHW, LOWW, DATAPOS are operated.

2.12.2 Operators and symbol attributes

As previously mentioned, each of the terms that constitute an expression has a symbol attribute in addition to a

relocation attribute. Terms can be divided into two types when classified by their symbol attributes: NUMBER terms
and ADDRESS terms.

Types of symbol attributes in operations and terms applicable to each attribute are shown below.

Table 2-9 Types of Symbol Attributes in Operations

Type of Symbol Attribute Applicable Terms
NUMBER term - Symbols that have NUMBER attribute
- Constants
ADDRESS term - Symbols that have ADDRESS attribute

- “$”