LENESAS

(-
7
)
ﬁ—
7
<
Q
S
-
QL

R-IN32M3 Series

User’s Manual: Modbus stack

* R-IN32M3-EC
- R-IN32M3-CL

All information of mention is things at the time of this document publication, and Renesas
Electronics may change the product or specifications that are listed in this document without
a notice. Please confirm the latest information such as shown by website of Renesas

Document Number: R18UZ0030EJ0104
Issue date :Apr 19, 2019

arm

Renesas Electronics
www.renesas.com

Notice

Descriptions of circuits, software and other related information in this document are provided only to illustrate the
operation of semiconductor products and application examples. You are fully responsible for the incorporation of these
circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for
any losses incurred by you or third parties arising from the use of these circuits, software, or information.

2. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas
Electronics does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever
for any damages incurred by you resulting from errors in or omissions from the information included herein.

3. Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property
rights of third parties by or arising from the use of Renesas Electronics products or technical information described in
this document. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other
intellectual property rights of Renesas Electronics or others.

4. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or
in part. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from such
alteration, modification, copy or otherwise misappropriation of Renesas Electronics product.

5. Renesas Electronics products are classified according to the following two quality grades: "Standard" and "High

Quality". The recommended applications for each Renesas Electronics product depends on the product's quality grade,

as indicated below.

—_

"Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio
and visual equipment; home electronic appliances; machine tools; personal electronic equipment;
and industrial robots etc.

"High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster
systems; anti-crime systems; and safety equipment etc.

Renesas Electronics products are neither intended nor authorized for use in products or systems that may pose a
direct threat to human life or bodily injury (artificial life support devices or systems, surgical implantations etc.), or may
cause serious property damages (nuclear reactor control systems, military equipment etc.). You must check the quality
grade of each Renesas Electronics product before using it in a particular application. You may not use any Renesas
Electronics product for any application for which it is not intended. Renesas Electronics shall not be in any way liable
for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for
which the product is not intended by Renesas Electronics.

6. You should use the Renesas Electronics products described in this document within the range specified by Renesas
Electronics, especially with respect to the maximum rating, operating supply voltage range, movement power voltage
range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no
liability for malfunctions or damages arising out of the use of Renesas Electronics products beyond such specified
ranges.

7. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products
have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use
conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to
implement safety measures to guard them against the possibility of physical injury, and injury or damage caused by fire
in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including
but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or
any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult, please
evaluate the safety of the final products or systems manufactured by you.

8. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental
compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all
applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation,
the EU RoHS Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your
noncompliance with applicable laws and regulations.

9. Renesas Electronics products and technology may not be used for or incorporated into any products or systems
whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations. You should
not use Renesas Electronics products or technology described in this document for any purpose relating to military
applications or use by the military, including but not limited to the development of weapons of mass destruction. When
exporting the Renesas Electronics products or technology described in this document, you should comply with the
applicable export control laws and regulations and follow the procedures required by such laws and regulations.

10. It is the responsibility of the buyer or distributor of Renesas Electronics products, who distributes, disposes of, or
otherwise places the product with a third party, to notify such third party in advance of the contents and conditions set
forth in this document, Renesas Electronics assumes no responsibility for any losses incurred by you or third parties as
a result of unauthorized use of Renesas Electronics products.

11. This document may not be reproduced or duplicated in any form, in whole or in part, without prior written consent of
Renesas Electronics.

12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in
this document or Renesas Electronics products, or if you have any other inquiries.

(Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its
majority-owned subsidiaries.
(Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

Instructions for the use of product

In this section, the precautions are described for over whole of CMOS device.
Please refer to this manual about individual precaution.
When there is a mention unlike the text of this manual, a mention of the text takes first priority

1. Handling of Unused Pins
Handle unused pins in accord with the directions given under Handling of Unused Pins in the manual.

- The input pins of CMOS products are generally in the high-impedance state. In operation with an unused pin in
the open-circuit state, extra electromagnetic noise is induced in the vicinity of LSI, associated shoot-through
current flows internally, and malfunctions occur due to the false recognition of the pin state as an input signal
become possible. Unused pins should be handled as described under Handling of Unused Pins in the manual.

2. Processing at Power-on
The state of the product is undefined at the moment when power is supplied.

- The states of internal circuits in the LSI are indeterminate and the states of register settings and pins are
undefined at the moment when power is supplied.
In a finished product where the reset signal is applied to the external reset pin, the states of pins are not
guaranteed from the moment when power is supplied until the reset process is completed.
In a similar way, the states of pins in a product that is reset by an on-chip power-on reset function are not
guaranteed from the moment when power is supplied until the power reaches the level at which resetting has
been specified.

3. Prohibition of Access to Reserved Addresses
Access to reserved addresses is prohibited.
- The reserved addresses are provided for the possible future expansion of functions. Do not access these
addresses; the correct operation of LSl is not guaranteed if they are accessed.

4. Clock Signals
After applying a reset, only release the reset line after the operating clock signal has become stable. When switching
the clock signal during program execution, wait until the target clock signal has stabilized.

- When the clock signal is generated with an external resonator (or from an external oscillator) during a reset,
ensure that the reset line is only released after full stabilization of the clock signal. Moreover, when switching to a
clock signal produced with an external resonator (or by an external oscillator) while program execution is in
progress, wait until the target clock signal is stable.

- Arm® and Cortex® are registered trademarks of Arm Limited (or its subsidiaries) in the EU and/or elsewhere.
All rights reserved.
- Ethernet is a registered trademark of Fuji Xerox Co., Ltd.
- IEEE is a registered trademark of the Institute of Electrical and Electronics Engineers Inc.
- TRON is an acronym for "The Real-time Operation system Nucleus".
- ITRON is an acronym for "Industrial TRON".
- WITRON is an acronym for "Micro Industrial TRON".
- TRON, ITRON, and pITRON do not refer to any specific product or products.
- Additionally all product names and service names in this document are a trademark or a registered trademark which
belongs to the respective owners.

How to use this manual

Purpose and target readers

This manual is intended for users who wish to understand the functions of Industrial Ethernet network LSI “R-

IN32M3-EC/CL” for designing application of it.

It is assumed that the reader of this manual has general knowledge in the fields of electrical engineering, logic circuits,

and microcontrollers.

Particular attention should be paid to the precautionary notes when using the manual. These notes occur

within the body of the text, at the end of each section, and in the Usage Notes section.

The revision history summarizes the locations of revisions and additions. It does not list all revisions. Refer to

the text of the manual for details.

The mark “<R>" means the updated point in this revision. The mark “<R>" let users search for the updated

point in this document.

Related The related documents indicated in this publication may include preliminary versions. However,

Documents preliminary versions are not marked as such. Please be understanding of this beforehand. In addition,

because we make document at development, planning of each core, the related document may be the

document for individual customers. Last four digits of document number (described as ****) indicate

version information of each document. Please download the latest document from our web site and

refer to it.

The document related to R-IN32M3 Series

Document name

Document number

R-IN32M3 Series Datasheet R18DS0008EJ****
R-IN32M3-EC User’s Manual R18UZ0003EJ****
R-IN32M3-CL User’s Manual R18UZ0005EJ****
R-IN32M3 Series User’s Manual Peripheral function R18UZ0007EJ****
R-IN32M3 Series Programming Manual (Driver edition) R18UZ0009EJ****
R-IN32M3 Series Programming Manual (OS edition) R18UZ0011EJ****
R-IN32M3 Series User's Manual TCP/IP stack R18UZ0019EJ****
R-IN32M3 Series User's Manual Modbus stack This Manual

Notation of Numbers and Symbols

Data significance: Higher digits on the left and lower digits on the right
Active low representation:

xxxZ (capital letter Z after pin or signal name)

or xxx_N (capital letter N after pin or signal name)

or xxnx (pin or signal name contains small letter n)
Note:

Footnote for item marked with Note in the text
Caution:

Information requiring particular attention
Remark:

Supplementary information
Numeric representation:

Binary: xxxx, XxxxxB or n’bxxxx (n bits)

Decimal: xxxx

Hexadecimal: xxxxH or n’hxxxx (n bits)

Prefix indicating the power of 2 (address space, memory capacity):
K (kilo): 210=1024
M (mega): 220 = 10242
G (giga): 239=10243
Data type:
Word: 32 bits
Half word: 16 bits
Byte: 8 bits

Contents

(R O 1= o O T ST PSSP U PP PPP PP 1
1.1 FRALUIES ...t b bt e bttt et e s h e e s bt e s bt e bt ea et ea e e bt e e bt e bt et e en bt eateehteehee bt e et enteeae 1
1.2 DeVElOPMENt ENVITOMIMENLeeitiiiiiieitieeitieeeie ettt esteestteesteeestaeessteessseessseessseessseesseesssaessseessseensseessseenssessssesnsses 2

1.2.1 DEVEIOPIMENTE TOOLSiiuviieieiieiiieiie ettt ettt e et e et esbeestteessbeessbeessbeessseessseeasseesssaessseesnsaessseesnseennseens 2
1.2.2 EValUation DOAIAcoc.eoiiiiiiieee ettt ettt ettt sa ettt et ea et be e b naean 3
1.3 RESOUICE REQUITEIMENLSveiiiiiieiie ettt ettt ete ettt e et e et e etb e essaeetbe e saeessbeesssaesseessseensseenssaensseensseennss 4
1.4 INCTWOTKINE ASPECES...eeeuvveeiieetieetteetteeteeetteeteeeteesstessseessseeasseessseeasseessseeasseessseessseessseesssessssesssseesssesnsseessseensses 4
1.5 CONCUITENCY ISSUCS ..euuvieiiiieeiieiieeetee et e et ee et e ettt esbeeeibeesteeesseessseeesseessseaasseesssaeasseesnsaaanseesnseessseesnseensseesnsesansennn 4

2. Basic concepts of R-IN32M3 MOADUS STACK.........cccciiiiiiiiiiiie et e e e e e e e e e e eaaaes 5
2.1 Supported Protocol StANAAIASccevieriieiieiieie ettt ettt et e e stessaesseesseenseenseensenssensaensenn 5
2.2 DesiZN MEthOAOIOZYc..eoueriieiiiiiiitete ettt sttt ettt et b e bbbt b et sa e be bttt ebe e entens 6

3. System Architecture — Modbus Serial Protocol Stacksc.cooiiiiiiiiiiiii e 7
3.1 MOAUIE DECOMPOSIEION. ..e.uvveeeireeiieeiieeette ettt erte ettt estteestteesteeestseesseeesseessseeasseesssaessseesssaensseessseensseessseensseesssesnsses 8

3.1.1 APPLIcation INEETTACE LLAYEToocviiiiieiiieeiie ettt e e st e e et e ssteeesbeesabeeessaesnsaesnseesnseeenseens 8
3.1.2 Packet Framing and Parsing LaYercccuieiiiiiiieiieeciiecie ettt ste et ve e saeeesseesnaeennnas 14
3.1.3 Connection management, Frame Send and Receive Layer........ccccvvvvieiiiiiiieniieciiecieeeieeeeeeee e 15
3.14 Stack Configuration and Management ModUlecociiiiiiiiiiiiienieee e 16

4. System Architecture — Modbus TCP Protocol Stacksceiieiiiiiiiiiiiiee e 19

4.1 MOAUIE DECOMPOSIEION. ...ttt sttt ettt ettt ettt ettt e bt et et e e st e satesbeesbe e aeem bt eateeseeebeenbeebeenbeeneeemeesaeenae 21
4.1.1 ApPlication INEIrface LAYcc.eoiuiiiiiiiiiii ittt et s 21
4.1.2 Packet Framing and Parsing LaYercocoiiiiiiiiiiieieeee ettt 27
4.13 Connection management, Frame Send and Receive Layer........c..coocevviiiiiiiniiniiniiiinieeeceee e 28

5. Description of application programming iNtErfaceoeiiiiiiiiiiiiiii e 33

5.1 L 0TS 11 22T R 2N o RSP 33
5.1.1 IMOADUS TCP/IP ...ttt sttt ettt sa e bbbt et et ettt besbe bt et eneen 33
5.1.2 IMOADUS SETIAL....c..eiiiiieitititeete ettt ettt ettt b e st b ettt ettt besbe bt et ennen 45

5.2 INEETNAL APT ..ottt et b ettt et bt bbbt bt et e b bbbt ebe e eneen 69
5.2.1 Packet Framing and Parsing APL..........c.coci oottt ettt ees 69
52.2 Stack Configuration and Management APcooiiiiiiiieiiiieceeeee e 92
523 GateWay MOAC AP ..ottt ettt et e st e st e et et e e te st e enae st e nreenneen 101

Contents -1

LT [o] o1 1= 0 ¢ 1= 1 €= 11T} o P PPPPPRPPNt 110

6.1 IMOADUS TCP ...ttt ettt ettt etttk a et b et e en st enene 110
6.1.1 SEIVET TNOAEoniiiiieiteee ettt 110
6.1.2 GALEWAY IMOAE ...ttt ettt ettt et e st e s et e et et e esseesbeesaeaseeseesseenseensesssesseesseenseenseanseessenssenseensenn 113

6.2 MOADUS RTU/ASCIL......ccooiiieiiiieiiniiciieie ettt ettt ettt ettt 117
6.2.1 SIAVE TNOAE. ...ttt ettt 117
6.2.2 IMAASEET INOME ...ttt ettt ettt sttt st e n e s ene 121

7. Tutorial by sample appliCation a e e eaaeean 122

7.1 Modbus TCP SErver COMMUNICATIONc..cveuerueutererienteterieneetesteseereseeseereseeseeteseeseeseseeseesesaeseenesaeneeseseeneereneenene 122
7.1.1 OVErvIew Of SAMPLE PIOJECT.....eiuiiiiieeiiiiieie ettt ettt ettt e e e tesaaesseesseenseenseenseessesseenseensenn 122
7.1.2 Hardware CONNECTIONc.evuiieuiriiietirteeeie ettt ettt ettt st st s ene s eenesaeneenens 122
7.1.3 Board IP address SEHNGcccveeieriiesiieiieite ettt ettt ettt e st e bt et e e e saessaesseesseenseenseensesnsesseenseensenn 123
7.1.4 DEMONSIIATION. ...ttt ettt sttt ettt et ettt se e e b s e e e bt st et enesae e enesaennenens 126

7.2 Modbus RTU/ASCII slave COMMUNICALIONc.cc.erueuieiirieieiinieieieneeete ettt 131
7.2.1 OVErview Of SAMPLE PIOJECT.....eiuiiiiiiiiieiieie ettt ettt ettt e e e e tesaeeseeesseenseenseenseessenseenseensenn 131
7.2.2 Hardware CONNECTIONc..c.eruiiiiiriiieiirteietertee ettt ettt ettt st s e et et ene s eenesaesnenen 131
7.2.3 DEMONSIIATION.c.euetiieiietirtee ettt sttt ettt et ebe s e et s e et et s e eseenesaeseenesaennenens 133

7.3 Modbus RTU/ASCII master COMMUNICATIONeveueeuerueueereieneetenieatereseeseeteseeseeseseeseeneseeseeseseenesseseeneeneseenene 141
7.3.1 OVErview Of SAMPLE PIOJECT.....iiuieeiieiiieiieie ettt ettt et et e e beetesaeesseesseenseenseensesnsesseenseensens 141
7.3.2 Hardware CONNECTIONc..c.eruiiiiiriiieiirteietertee ettt ettt ettt st s e et et ene s eenesaesnenen 141
7.3.3 DEMONSIIATION.eutiieiietirteeete ettt ettt sttt ettt s e et eb e e e et s et eteseeseenesaeseenesaennenens 141

7.4 Modbus TCP server — RTU/ASCII master gateway COMMUNICALIONcvveeveerereerieerreereeeeesneseesseesseeeeans 145
7.4.1 OVErview Of SAMPLE PIOJECT.....iiuieeiieiiieiieie ettt ettt et et e e beetesaeesseesseenseenseensesnsesseenseensens 145
7.4.2 Hardware CONNECTIONc..c.evuiiiuiriiieiiricietestee ettt ettt ettt eb st s e et et ene s enesaennenen 145
7.4.3 DEMONSIIATION.eutiieiietirteeete ettt ettt sttt ettt s e et eb e e e et s et eteseeseenesaeseenesaennenens 146

8. Issue and LIMiItatioNS ... 148

Contents -2

LENESAS

R-IN32M3 Series R18UZ0030EJ0104
User’s Manual: Modbus stack Apr 19, 2019

1. Overview

This document explains Modbus protocol stacks for R-IN32M3 series. In here, Modbus protocol is meant as Modbus
TCP which is an Ethernet based protocol and Modbus RTU, and Modbus ASCII protocol, which is based on serial
communication like as RS-485, RS-232C, and RS-422.

This document is intended to be read by users who are developing a Modbus application using the R-IN32M3 Modbus
protocol stack. This document will thus serve as a guide in implementing a Modbus application using the R-IN32M3
Modbus protocol stack. So the function summary and Application Programming Interface (API) and application samples

of Modbus protocol stack are described in this document.

1.1 Features

R-IN32M3 Modbus protocol stack allows fast and easy development of the following applications.
e Modbus RTU slave

Modbus ASCII slave

Modbus RTU master

Modbus ASCII master

Modbus TCP server

Modbus TCP gateway

Supported classes and function codes are followings.
e Support of the Modbus conformance classes 0, 1 and part of class 2

e Supported function codes:
- Read Coils (FC 1)
- Read Discrete Inputs (FC 2)
- Read Holding Registers (FC 3)
- Read Input Registers (FC 4)
- Write Single Coil (FC 5)
- Write Single Register (FC 6)
- Write Multiple Coils (FC 15)
- Write Multiple Registers (FC 16)
- Read/Write Multiple Registers (FC 23)

R18UZ0030EJ0104
Apr 19, 2019

RENES Page 1 of 148

R-IN32M3 Series 1. Overview

1.2 Development environment

The development environment of Modbus protocol stack is described here.

1.2.1 Development tools

In the sample software, the operation is confirmed by the following tool chain.
This sample software adopts Arm® Cortex® Microcontroller Software Interface Standard (CMSIS) V2.10.

Regarding the detailed information, please refer to the documentation of CMSIS.

Table 1.1 List of Software Development Tools (Tool Chain)

Tool Chain IDE Compiler | Debugger ICE
IAR Embedded Workbench for ARM (Please use the latest version) i-Jet
(IAR Systems) JTAG;jet-Trace-CM
(IAR Systems)
R18UZ0030EJ0104 RENESAS Page 2 of 148

Apr 19, 2019

R-IN32M3 Series 1. Overview

1.2.2 Evaluation board

Modbus stack sample application can be worked on the following evaluation boards for R-IN32M3. Regarding a more
information for each evaluation boards, please look Renesas or IAR or TESSERA TECHNOLOGY INC.s’ web site.

[Supported evaluation board]

- Modbus TCP protocol
TS-R-IN32M3-EC : by TESSERA TECHNOLOGY INC.
TS-R-IN32M3-CL : by TESSERA TECHNOLOGY INC.
TS-R-IN32M3-CEC : by TESSERA TECHNOLOGY INC.

KSK-RIN32M3EC-LT-IL : by IAR KickStart kit by IAR AB.

- Modbus RTU/ASCII protocol

TS-R-IN32M3-EC : by TESSERA TECHNOLOGY INC.
TS-R-IN32M3-CL : by TESSERA TECHNOLOGY INC.
TS-R-IN32M3-CEC : by TESSERA TECHNOLOGY INC.

Caution For RS-485 communication with Modbus RTU/ASCII protocol, user should prepare the

RS485 transceiver IC or module, and connect related signal as follows.
P20 (RXDO0) : to TX, P21 (TXD0) :toRX, RP17(GPIO) : to DE(/RE)

For Modbus RTU/ASCII communication, the example of hardware connection is described in Chapter 7. Please refer

its chapter.

R18UZ0030EJ0104 RENESAS Page 3 of 148
Apr 19, 2019

R-IN32M3 Series 1. Overview

1.3 Resource Requirements

e The hardware RTOS must be available to run the stack.

e The code running along with the Modbus Serial Stacks must not use the one timer channel, as it is used by the stack
for packet timing. If user wants to assign some other timer channel for the stack it has to be done by the stack
initialization.

o The stack uses one channel the UART in the Modbus serial communications. If the user wants to change the UART

channel it has to be done by the stack initialization.

o The user has to assign a GPIO Pin for controlling the RS485 transceiver and it must be available to the stack. It has

to be done by the stack initialization.

1.4 Networking Aspects

e The Modbus Serial stack can communicate over standard RS485 networks.

e The Modbus TCP Stack is capable of communicating over standard Ethernet networks.

1.5 Concurrency Issues

o The stack uses a UART channel, a timer channel and a GPIO pin of the chip while running in serial mode. These

interfaces will not be available to other programs when the stack is running.
o The stack consumes some capabilities of the hardware RTOS.

o [f the stack is running in the Slave mode, the user has to ensure the proper handshaking of the stack and the task that
updates the Modbus application objects.

- In Slave mode, the user has to write the function for accessing the Modbus objects and map it to the Modbus

function codes by using the function ‘Modbus_slave map_init()’.

- While writing the function the user has to ensure that two or more tasks will not access the memory at a time.

R18UZ0030EJ0104 RENESAS Page 4 of 148
Apr 19, 2019

R-IN32M3 Series 2. Basic concepts of R-IN32M3 Modbus stack

2,

2.1

Basic concepts of R-IN32M3 Modbus stack

Supported Protocol standards

This stack has got the capability to address the requirements of both Modbus Master/Client and Modbus Slave/Server.
Along with these the stack has got the capability to communicate with Modbus RTU, Modbus ASCII and Modbus TCP
networks. But it doesn’t have the capability to function as a Modbus TCP Client stack.

Based on the different modes, the stack can be considered as the composition of the following six stacks,

Modbus RTU Master Stack.
Modbus RTU Slave Stack.

Modbus ASCII Master Stack.
Modbus ASCII Slave Stack.
Modbus TCP Server Stack.

Modbus TCP Server Gateway Stack

Provision is given to the user to select the stack mode in their project. Along with this, nine Modbus function codes are

also supported in these stacks. Following are the function codes supported in these stacks,

1(0x01) — Read coils

2(0x02) — Read discrete input

3(0x03) — Read holding registers
4(0x04) — Read input registers

5(0x05) — Write single coil

6(0x06) — Write single register

15(0x0F) — Write multiple coils
16(0x10) — Write multiple registers
23(0x17) — Read/Write multiple registers

R18UZ0030EJ0104 RENESAS Page 5 of 148
Apr 19, 2019

R-IN32M3 Series 2. Basic concepts of R-IN32M3 Modbus stack

2.2 Design Methodology

1. Choose a necessary in order to implement functions on network, a protocol stack is a prescribed hierarchy of

software layers. The following figure shows hiearachy in this stack.

2. This stack creates a task by using the capability of the hardware RTOS. The stack is to use in the multi threaded
projects using the RTOS.

3. This stack must not use more than one timer channel for Modbus frame timing.

User application

Modbus

Modbus Master/Client Modbus Server/Slave Application Objects

R-IN32M3 Modbus Protocol stack

Interface driver

and stack TCP/IP stack
Serial Inerface (RS485/RS232) Ethernet Interface
E Z
v L 2

Figure 2.1 Overview of R-IN32M3 Modbus stack <R>

R18UZ0030EJ0104 RENESAS Page 6 of 148
Apr 19, 2019

R-IN32M3 Series

3. System Architecture — Modbus Serial Protocol Stacks

3.

System Architecture — Modbus Serial Protocol Stacks

Figure 3.1 shows the overall architecture of the Modbus Protocol Stack. As shown in the diagram the stack is divided

in to four functional layers.

The stack is designed in such a way that it can be used to realize both server/slave and client/master applications by
setting the required configuration. The stack can be configured to support any one of Modbus RTU and Modbus ASCII
modes at a time. For selecting the desired stack mode and client / server functions, initialization API is provided which

the user can modify.

Modbus Master/Client Application

cation Interface APls

Modbus Senal Task

Modbus_serial
_send pkt()

rtu_frame
()

Modbus_serial_send()

Modbus_rtu_send()
Modbus

Modbus Server/Slave Application

Modbu: > map_init() and Function

" Pointers

Modbus
_pa
r validate

Modb
configuration

User Application
Interface driversand
TCR/IPStacks

ModbusStack
components

Configurable Part of
the Modbus Stack

Figure 3.1 Modbus Stack Architecture <R>

Subsequent sections contain the information of the layered architecture.

R18UZ0030EJ0104
Apr 19, 2019

RENESAS Page 7 of 148

R-IN32M3 Series 3. System Architecture — Modbus Serial Protocol Stacks

3.1 Module Decomposition

Based on the functionality, the stack is divided in to the following layers

Application Interface Layer as the top layer, which directly interacts with the user application in both master and slave
modes.

Packet Framing and Parsing Layer as the middle layer, this layer is responsible for framing, parsing and validating the
Modbus frames.

Connection management, Frame Send and Receive Layer as the bottom layer, which manages the logical connections
and sending and receiving of the Modbus frames.

Across these three layers lies the Configuration Layer, this is the layer which contains the necessary configuration
APIs. Below sections detail the different layers and design of these layers.

3.1.1 Application Interface Layer

Application interface layer contains the necessary functions to interact with the user application. It also contains a
thread that maintains the stack states. Based on the configured stack mode, either Master or Slave, the thread works in
different ways and makes it possible to provide, to the user, the functionalities required in that mode. This layer of the
stack is same for the communication modes RTU and ASCII.

The main ‘Application Interface Layer’ components, specific to the Modbus Server/Slave mode, are the Serial task and
the Modbus_serial slave map _init() function. Using the Modbus_serial slave map_init() API, the user application
registers the callback functions to be invoked when a valid Modbus request with a particular function code is received.

The parsing of the request message and framing the response are running in the context of the Serial task. When a
valid Modbus request is received, the task will invoke the appropriate call back handler function. The task is designed

such that the response is passed back to the master only on receiving the response from the callback handler.

Remark The call back handler is user application provided and care must be taken to ensure that the
function returns within a stipulated maximum interval. If the function does not return due to
some error, there are chances that Modbus server will no longer be able to accept new

commands.

The main ‘Application Interface Layer’ components, specific to the Modbus Master/Client mode are the Serial task
and the User Application Interface APIs. Serial task starts to run when the user initialized the stack, and the user
application calls the interface API for Modbus transactions.

The user application calls User Application Interface APIs to request the stack to send Modbus requests to the Modbus
slave devices. The Serial task receives the request and processes it.

Calls to these APIs can be blocking or non-blocking. If the user provided a call-back function in the arguments, the
function call will be non-blocking and the serial task calls the user provided function on reception of a response or
timeout occur. If the user didn’t provide a call-back function, these APIs block till receiving a replay from slave device or

timeout occur.

R18UZ0030EJ0104 RENESAS Page 8 of 148
Apr 19, 2019

R-IN32M3 Series 3. System Architecture — Modbus Serial Protocol Stacks

3111 Modbus Serial Task

A common task named serial task is used for both Modbus Master and Slave Stack irrespective of mode (RTU/ASCII).
Depending on the configured stack mode, the task functions as either Master or Slave task.

For example, if the stack mode is defined as Modbus RTU Master, then the serial task will function as master task.
This is done by switching between two states defined for Master and Slave.

The Figure 3.2 shows the state transition diagram of the Serial task functioning as slave. The function
Modbus_serial stack init() initializes the Serial Task, on successful initialization the task waits for a message using a
mailbox. Depending on the message type received in mailbox it functions either as Master or Slave. The task remains in
that state till receiving a Modbus request from the Modbus Master when it functions as a Slave task.

On receiving a request from the client, the task does the following activities,
¢ Parse and validate the received packet.

o If successful verification of the packet integrity, frames a response packet and sends it to the master device.

R18UZ0030EJ0104 RENESAS Page 9 of 148
Apr 19, 2019

R-IN32M3 Series 3. System Architecture — Modbus Serial Protocol Stacks

Initialize

Wait for
Modbus
request

Request not received

Received a request Response sent

Send
Modbus
response

Parse and
validate
request

Processpd the
broadfast
request dy error Red

paiajdwod jou
s115anbau Buipuas

response packet

Process
request

Prepare
response

Processed the unicast
request or error

Request processingis
not completed

Figure 3.2 Functioning of Modbus Serial Task as Slave <R>

R18UZ0030EJ0104 RENESAS Page 10 of 148
Apr 19, 2019

R-IN32M3 Series 3. System Architecture — Modbus Serial Protocol Stacks

The Figure 3.3 Figure 3.2 shows the state transition diagram of the Serial task functioning as master. Modbus Serial
Task starts running when the user initializes the stack by calling the function named ‘Modbus_serial stack init ()’. After
initialization serial task will wait for the message. The user application calls the User Application Interface APIs, to
request the serial task for Modbus transactions with the slave devices. When the task received a request, it does the
following activities.

e Prepare a Modbus request packet and send it to the Modbus Slave device.

o [f the request sent was a broadcast request, the task waits up to the ‘Turnaround Delay’ and start to wait for another
request from the user.

o [f the request sent was a unicast request, the task waits for a response from the slave device until 'Response Timeout'
interval.

o If the task received a valid response from the slave device within the ‘Response timeout’ expires, it updates the

received data to the user application.
o [fthe task didn’t receive a response within ‘Response Timeout’ interval, the task retries the same request up to a
configured number of max retry counts.

o If the task didn’t receive a response to the retries also, then the task updates the user application with the timeout
information.

The user application can provide a callback handler along with the function call if it requires notification when the
command request processing is completed. In this case, the function call will not block and application developer can
perform other tasks while the request is completed. If a callback function is not provided, the function call will be a
blocking call.

R18UZ0030EJ0104 RENESAS Page 11 of 148
Apr 19, 2019

R-IN32M3 Series 3. System Architecture — Modbus Serial Protocol Stacks

Initialize

Wait for
User
request

Request not received

Received a request Updated user

Turnaroundtime expired

Send
Modbus
request

Wait for
Turnaround
timeout

Update
user

Sending requestis
not completed

Receive
Modbus
response

Response not
received

Figure 3.3 Functioning of Modbus Serial Task as Master <R>

R18UZ0030EJ0104 RENESAS
Apr 19, 2019

Page 12 of 148

R-IN32M3 Series 3. System Architecture — Modbus Serial Protocol Stacks

3.1.1.2 Error identification and reporting

(1) Modbus RTU/ASCII Slave

¢ For unicast requests, the Serial task will generate an exception response and send it back to the Master, when

received a request for a function code to which the user has not registered a callback function.

o The call-back function written by the user has to generate exceptions for the requests for registers or coils those are

not implemented.

o The initialization API performs a basic level validation on the initialization parameters and returns the status, while

initializing the stack.

o For broadcast requests, response will not be sent to client for all requests.

(2) Modbus RTU/ASCII Master

o The API functions will perform a basic level validation on the parameters given to it.
o The task returns timeout error if it doesn’t receive a response to the request after a number of retries.

e Memory is allocated dynamically for packet construction. Error is reported if the memory can not be ensured.

R18UZ0030EJ0104 RENESAS Page 13 of 148
Apr 19, 2019

R-IN32M3 Series 3. System Architecture — Modbus Serial Protocol Stacks

3.1.2 Packet Framing and Parsing Layer

This is the stack layer which does the required packet framing and parsing activities. It contains functions and data
structures for framing the Modbus packets, parsing the packet, sending packet, receiving packet, and validating the
received packets. The implementation of these functions is different for Modbus RTU and Modbus ASCII modes, but
functions of a particular communication mode are used in both Master and Slave modes. Also, since Modbus packet is
processed internally in RTU format, it will be processed is converted to RTU format even in the case of ASCII mode.

(1) Parsing receive packet

e In the case of ASCII mode, perform the packet conversion from ASCII format to RTU format.

o Iflength check, packet integrity and slave ID checks fail, discards the received packet.

o After successful verification of the packet integrity, slave ID and the request data, invokes the user registered
function to process the request.

e When received a unicast request, prepares an exception response and sends it to the master on failure of function
code and request data validation.

e When received a broadcast request, the received packet is accepted as a normal packet if the write function code, but
it does not send a response message to the master device. On the other, the received packet is if read function code,

and discards the request packet as invalid slave ID.

(2) Framing send packet

In the case of master mode, the request packet will be constructed based on the content generated by the API. In the
case of slave mode, the response packet will be constructed based on the content generated by the API. CRC/ LRC
will be added to constructed packet. In the case of ASCII mode, since the stack is processing internally in RTU format,
converted to ASCII is done from the RTU.

3.1.2.1 Error Identification and Reporting

o Packet length and specified data and slave ID in the Receive and Transmit packets are verified whether they comply

with the protocol based on the function code.
o Packet validation function verifies the integrity of the received packet using CRC/LRC filled in the packet.

e Memory is allocated dynamically for framing packet. Error is reported if the memory can not be ensured.

R18UZ0030EJ0104 RENESAS Page 14 of 148
Apr 19, 2019

R-IN32M3 Series 3. System Architecture — Modbus Serial Protocol Stacks

3.1.3 Connection management, Frame Send and Receive Layer

This is the layer which contains the functions and data structures for sending and receiving data through the

communication interface. Management of frame timing in the case of serial interface comes in this layer.

3.1.3.1 Serial Receive Task

The serial receive task starts running when the Modbus Serial Stack is initialized. An event is being registered in the
Hardware ISR table for UART and Timer interrupts. The serial receive task waits for the event flag to be set with the
pattern defined in the hardware ISR.

If the UART interrupt occurred, each byte is read using the driver function vart_read(). After the successful reception
of character, depending on the stack mode either Modbus_ascii_recv_char() or Modbus_rtu_recv_char() is invoked. The
characters are stored in a buffer within these functions.

If the timer interrupt occurred, Modbus_timer_handler() is invoked. Determining the frame timing is done in this
function.

3.1.3.2 Modbus Serial Interface Configuration

¢ In this mode, UART interface of the chip is configured to send and receive packets as per the configuration

parameters provided while initializing the stack.

e Ifan error occurs during the reception operation, and has caused the interrupt event status. Please refer to the "User's

Manual peripheral function edition" about reception error detail.
o A timer channel will be utilized to measure the inter character delay.

e The RS485 mode switching will be done by using a GPIO pin.

3.1.3.3 Error identification and reporting

If an error occurs during the reception, discard the received packet, and continues processing.

R18UZ0030EJ0104 RENESAS Page 15 of 148
Apr 19, 2019

R-IN32M3 Series 3. System Architecture — Modbus Serial Protocol Stacks

3.1.4 Stack Configuration and Management Module

This is the software module comes across the three layers of the stack. Macros and defines for stack and mode
selection, time out selection, global variables, data structures and configuration APIs come under this block.

Sections below details the different components in this layer,

3141 Error Codes

Along with the response, the error code is also mentioned to inform the user application about the command
processing status. For this different error codes are generated while processing the request/response. Following are the

different error codes used:

R18UZ0030EJ0104 RENESAS Page 16 of 148
Apr 19, 2019

R-IN32M3 Series

3. System Architecture — Modbus Serial Protocol Stacks

Table 3.1 Description for each error

ERR_OK

Specifies success code

ERR_ILLEGAL_FUNCTION

Specifies the function code received in the request is not an
allowable action for the server (or slave) or the function code is not
implemented. This value must be a constant, cannot change the
value from 0x01.

ERR_ILLEGAL_DATA_ADDRESS

Specifies the data address received in the request is not an
allowable address for the server (or slave) or the addressed register
is not implemented. This value must be a constant, cannot change
the value from 0x02

ERR_ILLEGAL_DATA_ VALUE

Specifies a value contained in the request data field is not an
allowable value for the server (or slave). This value must be a
constant, cannot change the value from 0x03.

ERR_SLAVE_DEVICE_FAILURE

Specifies an unrecoverable error occurred while the server (or
slave) was attempting to perform the requested action. This value
must be a constant, cannot change the value from 0x04.

ERR_STACK_INIT

In stack initialization failure

ERR_ILLEGAL_SERV_BSY

Specifies the maximum transaction reached. This value must be a
constant, cannot change the value from 0x06

ERR_CRC_CHECK

Specifies the CRC check has failed

ERR_LRC_CHECK

Specifies the LRC check has failed

ERR_INVALID_SLAVE_ID

Specifies the slave ID is invalid

ERR_TCP_SND_MBX_FULL

Specifies that the mailbox is full

ERR_STACK_TERM

In stack termination failure

ERR_TIME_OUT

Timeout error added

ERR_MEM_ALLOC

Memory allocation failure

ERR_SYSTEM_INTERNAL

Mailbox send or receive failure

ERR_ILLEGAL_NUM_OF_COILS

Specifies the number of coils provided is not within the specified
limit

ERR_ILLEGAL_NUM_OF_INPUTS

Specifies the number of inputs provided is not within the specified
limit

ERR_ILLEGAL_NUM_OF REG

Specifies the number of registers provided is not within the
specified limit

ERR_ILLEGAL_OUTPUT_VALUE

Specifies the value of the registers is invalid

ERR_ILLEGAL_NUM_OF OUTPUTS

Specifies the number of outputs is invalid

ERR_INVALID_STACK_INIT_PARAMS

Specifies invalid stack init information from user

ERR_INVALID_STACK_MODE

Stack mode specified is invalid

ERR_FUN_CODE_MISMATCH

Master receives a response for another function code(not for the
requested function code)

ERR_SLAVE_ID_MISMATCH

Master receives a response from another slave (not from the
requested slave)

ERR_OK_WITH_NO_RESPONSE

Return status for broadcast requests

R18UZ0030EJ0104
Apr 19, 2019

RENESAS Page 17 of 148

R-IN32M3 Series 3. System Architecture — Modbus Serial Protocol Stacks

3.14.2 Stack Selection

The development scope includes 6 Modbus stacks modes and one among the following is selected by the us
er. In case of TCP Server Gateway design, user shall select either MODBUS RTU MASTER MODE or MOD
BUS_ASCII MASTER MODE as the stack mode of the device connected serially to the TCP gateway device.

3143 Function code selection

Modbus Stack invokes user registered function when a request is received from client side.
If this function pointer is set to NULL means the corresponding function code is not implemented or supported by

application/device. So in this way, we can enable and disable function codes.

3.1.4.4 Error identification and reporting

Verification of configuration parameters is carried out within the API function that is referenced. If there is an error in

the specified, an error is reported from the API.

R18UZ0030EJ0104 RENESAS Page 18 of 148
Apr 19, 2019

R-IN32M3 Series 4. System Architecture — Modbus TCP Protocol Stacks

4. System Architecture — Modbus TCP Protocol Stacks

This section details the software design of Modbus TCP Server and Modbus TCP-Serial Gateway stacks. The Figure
4.1 shows the architecture of the stack. As shown in the diagram the stack can be used as a Modbus TCP Server Stack
and a Modbus TCP Server stack with Gateway functionality. It is possible for the user to use the stack only for gateway
functionality also.

In Modbus TCP — Serial Gateway mode the stack will be using the Modbus RTU/ASCII Master Stack as the gateway
to the serial network. Initialization of the Modbus RTU/ASCII Master Stack will be done inside the function which
initializes the Modbus Gateway Stack. The user can select either one of the Modbus RTU or Modbus ASCII gateway
stacks.

Pointers

Modbus Receive
Ta

Modbus _frame | Modbus

Modbus_fetch_ |[Modbus_pos
from_mailbo _mailb
Helper
functions and
configuration
Modbus_tcp_update
conn|

Modbus TCP
Connection Task

Drivers TCP/IP Stack

; ;I I;l "|;;I I;;; Eihernet Interface

RS485/RS232

Modbus RTU/ASCI Network TCP/IP Network

Interface drivers and
TCP/IP Stacks

Configurable Part of
the Modbus Stack

Figure 4.1 Modbus TCP and Gateway Stack Architecture <R>

R18UZ0030EJ0104 RENESAS Page 19 of 148
Apr 19, 2019

R-IN32M3 Series 4. System Architecture — Modbus TCP Protocol Stacks

As shown in the Figure 4.1 , the TCP Server and the Gateway stacks can be split into layers based on functionality.

The top layer Application Interface Layer consists of two tasks and callback function mapping API.

The middle layer Framing and Parsing Layer consist of functions and queues to frame packets, parse packets, read and
write mailbox and helper functions. All these functions run in the context of the tasks in the upper layer.

The bottom layer Connection Management, Frame Send and Receive layer contains functions and tasks to handle TCP
Connections and sending and receiving of TCP packets along with the helper functions. All functions in this layer, except
the one for sending the response TCP message, runs in the context of the tasks in this layer itself. The response TCP
packet will be send after processing the request received from server task in case of TCP packet and gateway task in case
of serial packet.

The Configuration layer is the one which comes across the three layers and contains the necessary functions along with

the configuration APIL.

R18UZ0030EJ0104 RENESAS Page 20 of 148
Apr 19, 2019

R-IN32M3 Series 4. System Architecture — Modbus TCP Protocol Stacks

4.1 Module Decomposition

4.1.1 Application Interface Layer

This layer contains two tasks and some functions, based on the selected mode the tasks and functions gets activated.

If the stack is used only as a server, then the Modbus Gateway task will not be running and the functions, called only
by the gateway task, will not be used. The server task will be running even if the stack is used only for implementing
gateway functionality.

4111 Modbus TCP Server Task

This is the task which handles activities as the Modbus server. The task waits for getting data from the mailbox in
which the ‘Modbus TCP Receive Data Task’ posts the received Modbus requests. When a packet arrived in the mailbox,
this task copies it and processes. There will be a slight change in the activities of this task when switching between the
modes of the stack with gateway functionality and without gateway functionality.

If the gateway functionality of the stack is disabled, this task will drop the Modbus packets with slave ID other than
‘OxFF’ and processes the packets with slave ID ‘OXFF’. Whereas, in the mode with the gateway functionality, this task
posts the requests with the slave ID other than ‘OxFF’ to the mailbox on which the ‘Modbus TCP-Serial gateway task’
waits for getting request packets.

Figure 4.2 and Figure 4.3 show the state machine of this task when the stack working without gateway functionality
and with gateway functionality, respectively.

R18UZ0030EJ0104 RENESAS Page 21 of 148
Apr 19, 2019

R-IN32M3 Series

4. System Architecture — Modbus TCP Protocol Stacks

validation
and node
1D check

Validation is not
completed

Read pqcket isvalid

Process

received
request

Processed the request

Initialize

Read from

No data in the queue

Response sent

Send
Modbus
response

paiajdwod you
s11sanbays Buipuas

response packet

Prepare

request

Request processing is
not completed

response

Response preparation
is not completed

Figure 4.2 Modbus TCP Server Task (without gateway) <R>

R18UZ0030EJ0104
Apr 19, 2019

RENESAS Page 22 of 148

R-IN32M3 Series 4. System Architecture — Modbus TCP Protocol Stacks

Initialize

Read from
received

No data in the queue
request

[=]
@ E Validate
S the Modbus
3 £ response
=0 request to
= the

gateway

Read packet] is valid queue

Queuing not
completed

Prepare
response

MNode 1D check is
not completed

Process
the
request

Request processing is
not completed

paja|jdwos jou
s13sanbaJ Buipuas

pa13jdwod jou S|
uone.ledaid asuodsay

Figure 4.3 Modbus TCP Server Task (with gateway) <R>

R18UZ0030EJ0104 RENESAS
Apr 19, 2019

Page 23 of 148

R-IN32M3 Series 4. System Architecture — Modbus TCP Protocol Stacks

R18UZ0030EJ0104 RENESAS Page 24 of 148
Apr 19, 2019

R-IN32M3 Series 4. System Architecture — Modbus TCP Protocol Stacks

41.1.2 Modbus TCP — Serial Gateway task

This is the task responsible for communicating with the Modbus Serial interface, for that, the Modbus RTU/ASCII
Master Stack will be available. The Figure 4.4 shows the state main chain of this task. As the figure shows the task waits
for data in the mailbox in which the ‘Modbus TCP Server task’ posts the requests when a request from client received
with slave ID other than ‘OXxFF’. When a request is received from the mailbox the task verifies it and sends it to the
Modbus RTU/ASCII Master Stack by invoking the Modbus Gateway functions. This task calls the gateway functions
based on the functions code in the received packet and sends a reply back to the Modbus TCP connection when a
response is received from the master task. Meantime, the Modbus RTU/ASCII Master Task communicates with the slave

devices in the serial networks and gets a response to give it to this task.

R18UZ0030EJ0104 RENESAS Page 25 of 148
Apr 19, 2019

R-IN32M3 Series 4. System Architecture — Modbus TCP Protocol Stacks

Read from

atewa .
8 ¥ No data in the queue

Response sent

&
o 2z
£ o Send S&
2 g)
< Validate Modbus 23
§ =
3 g the PDU response 25
= =2
= =

response packet

Process
the
request

Prepare
response

Request processing completed

Request processingis Response preparation
not completed is not completed

Figure 4.4 MODBUS TCP-Serial Gateway Task <R>

41.1.3 Error Identification and Reporting

e Memory is allocated dynamically for framing packet. Error is reported if the memory can not be ensured.

o Gateway task queues the message up to maximum number MAX GW_MBX SIZE. If the Gateway task can not be

queued, the TCP server task will reply the exception code 6(Server Busy) as a response packet for the request packet.

R18UZ0030EJ0104 RENESAS Page 26 of 148
Apr 19, 2019

R-IN32M3 Series 4. System Architecture — Modbus TCP Protocol Stacks

4.1.2 Packet Framing and Parsing Layer

This is the stack layer which does the required packet framing and parsing activities. It contains functions and data
structures for framing the Modbus packets, parsing the packet, sending packet, receiving packet, and validating the
received packets.

(1) Parsing receive packet

If length check and packet integrity checks fail, discards the received packet. If the received packet is normally, the
callback function that the user has registered is invoked in order to process the request.

(2) Framing send packet

Task sends back a response packet is built the based on execution result of the callback function. If the unsupported
function code is specified, it is necessary to return the Exception code, and sends it to build a response packet.

4122 Error Identification and Reporting

o Packet length and specified data in the receive packets are verified whether they comply with the protocol based on
the function code.

e Memory is allocated dynamically for framing packet. Error is reported if the memory can not be ensured.

R18UZ0030EJ0104 RENESAS Page 27 of 148
Apr 19, 2019

R-IN32M3 Series 4. System Architecture — Modbus TCP Protocol Stacks

41.3 Connection management, Frame Send and Receive Layer

This layer contains tasks and functions to accept connections from clients, receive data from clients and sent data back.

4.1.3.1 Modbus TCP Accept Connection Task

This task gets initialized when the user initialized the stack and starts waiting for the connection requests to the port
502 from clients and at a user configured port (if provided by user during stack initialization). When the task received a
connection request it checks the TP against allowed IP list and active connection list and accepts the connection. After
accepting the connection adds it to the active connection list. The Figure 4.5 shows the state diagram of this task. The
total number of connections allowed is restricted to MAXIMUM_ NUMBER OF CLIENTS.

R18UZ0030EJ0104 RENESAS Page 28 of 148
Apr 19, 2019

R-IN32M3 Series 4. System Architecture — Modbus TCP Protocol Stacks

pitialize
Request no

. Wait for
received

connectio
n requests

Accept
connectio
n

Close
connection

Verify if
multiple
connection
enabled or
disabled

1S1| UOI}IBUUOD

(=]
=]
Check Update o % -
allowed IP connection 8%
. . 3 o Q
list to accept list % 5=
- & =32
connection 5 ? S
2
Connection from this Closed the oldest -
client is allowed conngction
Check
numi).erof Maximum number of active _ Close the
ac we. connections reached " oldest.
connectio connection
ns
Checking of number of Closing of oldest connection
connection is not completed is not completed
Figure 4.5 Modbus TCP Accept Connection Task <R>
R18UZ0030EJ0104 RENESANAS Page 29 of 148

Apr 19, 2019

R-IN32M3 Series 4. System Architecture — Modbus TCP Protocol Stacks

41.3.2 Modbus TCP Receive Data Task

This task gets initialized when the user initialized the stack. The task waits for data from the clients connected and
posts it to a mailbox when a valid packet is received. The Figure 4.6 shows the state diagram of this task.

When received a request from a client the ‘Modbus TCP Receive Data Task’ calls the function
‘Modbus_post_to_mailbox()’ to post the request to a mailbox. This mail message is read by the ‘Modbus TCP Server
Task’ with the function ‘Modbus_fetch from mailbox()’.

R18UZ0030EJ0104 RENESAS Page 30 of 148
Apr 19, 2019

R-IN32M3 Series 4. System Architecture — Modbus TCP Protocol Stacks

Initialize

Wait for
Modbus
TCP

Packet not received

= 5
g .2
w T =1
= Close the ~ =
=3 Prepare Update the o R
=R socket that . =
= 2 the queue connection ER=R
T E returned =
z 3 element 23
2 o F
[N a

s

Postthe
element to
received
data queue

Posting to the queue
is not completed

Figure 4.6 Modbus TCP Receive Data task <R>

4.1.3.3 Error Identification and Reporting

e Memory is allocated dynamically for parsng packet. Error is reported if the memory can not be ensured.

o TCP server task queues the message up to maximum number MAX RCV_MBX SIZE. If the TCP server task can

R18UZ0030EJ0104 RENESAS Page 31 of 148
Apr 19, 2019

R-IN32M3 Series 4. System Architecture — Modbus TCP Protocol Stacks

not be queued, the TCP receive data task will reply the exception code 6(Server Busy) as a response packet for the

request packet.

R18UZ0030EJ0104 RENESAS Page 32 of 148
Apr 19, 2019

R-IN32M3 Series 5. Description of application programming interface

5. Description of application programming interface

This chapter explains the detailed specifications of the Application Programming Interface.

51 User Interface API

This chapter explains the APIs to be used in User Application.

5.1.1 Modbus TCP/IP

51.11 Initialization of protocol stack

The following API is used in initialization of protocol stack.

Modbus_tcp_init_stack Modbus TCP stack initialization API

[Format]
uint32_t Modbus_tcp_init_stack(uint8_t u8_stack_mode,
uint8_t u8_tcp_gw_slave,
uint8_t u8_tcp_multiple_client,
uint32_t u32_additional_port,
p_serial_stack_init_info_t pt_serial_stack_init_info,
p_serial_gpio_cfg_t pt_serial_gpio_cfg_t);

[Parameter]
uint8_t u8_stack_mode Variable to store the stack mode
uint8_t u8_tcp_gw_slave Status whether gateway enabled as TCP server
uint8_t u8_tcp_multiple_client Status whether multiple client is enabled
uint32_t u32_additional_port Additional port configured by user
p_serial_stack_init_info_t pt_serial_stack_init_info Structure pointer to serial stack initialization parameters
p_serial_gpio_cfg_t pt_serial_gpio_cfg_t Pointer to the structure with hardware configuration

parameters.

[Return value]
uint32_t Error code

[Error code]

ERR_OK On successful initialization
ERR_STACK_INIT On failure
[Explanation]

This API initialize Modbus stack based on the user provided information. If the serial stack information structure is
NULL, Modbus_tcp_server init_stack() is invoked. If the serial stack information structure is provided by user,

Modbus_tcp _init_gateway stack() is invoked with the required serial parameter configuration.

R18UZ0030EJ0104 RENESAS Page 33 of 148
Apr 19, 2019

R-IN32M3 Series

5. Description of application programming interface

For this few initializing parameters are provided in the APIs.

a. u8_stack mode of type uint8 t is an argument in
following macro in this parameter. If user wants

communicate with the serial device.

order to select the Modbus TCP stack type. The user specifies the

to use the gateway mode, please specify the mode to be used to

Stack mode parameter code

Meaning

MODBUS_RTU_MASTER_MODE Used to select Modbus Stack RTU master mode

MODBUS_RTU_SLAVE_MODE Used to select Modbus Stack RTU slave mode

MODBUS_ASCII_MASTER_MODE | Used to select Modbus Stack ASCIl master mode

MODBUS_ASCII_SLAVE_MODE Used to select Modbus Stack ASCII slave mode

MODBUS_TCP_SERVER_MODE Used to select Modbus Stack TCP server mode

b.u8 tcp gw slave of type uint8 t is an argument in order to select the Modbus gateway mode type. The user

specifies the following macro in this parameter.

Stack gateway parameter code

Meaning

MODBUS_TCP_GW_SLAVE_DISABLE | Modbu

s stack gateway slave disable

MODBUS_TCP_GW_SLAVE_ENABLE | Modbu

s stack gateway slave enable

c. u8 tcp multiple client of type uint8 t is an argument in order to select whether accept communication from

multiple clients. The user specifies the following macro in this parameter.

Multiple client connection parameter code

Meaning

DISABLE_MULTIPLE_CLIENT_CONNECTION | By setting this value, multiple client connection is disabled

ENABLE_MULTIPLE_CLIENT_CONNECTION

By setting this value, multiple client connection is enabled

d. Additional port (other Modbus default port 502) provided by user for MODBUS communication can also be used. If
user does not want to add the port, please specify 0.

e. Structure of type p serial stack init info t is an argument in order to provide information specific to serial

communication. If want to use in TCP server mode, please specify NULL to this argument.

+ Structure of serial stack initialization parameters (serial stack init_info_t)

typedef struct _stack_init_info{
uint32_t u32_baud_rate;
uint8_t u8_parity;
uint8_t u8_stop_bit;
uint8_t u8_uart_channel;

uint8_t u8_timer_channel;

uint32_t u32_response_timeout_ms;
uint32_t u32_turnaround_delay_ms;
uint32_t u32_interframe_timeout_us;
uint32_t u32_interchar_timeout_us;
uint8_t u8_retry_count;

[* Baud rate for serial port configuration */

[* Parity for serial port configuration */

[* Stop bit for serial port configuration */

/* The hardware UART channel to be used by the Modbus serial
stack */

[* The hardware timer channel to be used by the Modbus serial
stack */

[* Response shall be received within this time out */

/* Delay in between consecutive requests in broadcast mode */
[* Inter frame delay for the RTU packet */

[* Inter char delay for the ASCII packet */

/* Number of retries to be done in case of an error */

}serial_stack_init_info_t, *p_serial_stack_init_info_t;

R18UZ0030EJ0104 RENESAS Page 34 of 148

Apr 19, 2019

R-IN32M3 Series

5. Description of application programming interface

Use the following macro to the parameters of the structure.

Boud rate parameter code Meaning
UART_BAUD_9600 Use to select 9600bps
UART_BAUD_19200 Use to select 19200bps
UART_BAUD_31250 Use to select 31250bps
UART_BAUD_38400 Use to select 38400bps
UART_BAUD_76800 Use to select 76800bps
UART_BAUD_115200 Use to select 115200bps
UART_BAUD_153600 Use to select 153600bps

Parity parameter code Meaning
UART_PARITY_NONE No parity
UART_PARITY_ODD Odd parity
UART_PARITY_EVEN Even parity
Stop bit parameter code Meaning
UART_STOPBIT 1 One stop bit
UART_STOPBIT_2 Two stop bit
Uart channel parameter code Meaning
UART_CHANNEL 0 Use to select channel 0
UART_CHANNEL 1 Use to select channel 1
Timer channel parameter code Meaning

TIMER_CHANNEL_0

Use to select channel 0

TIMER_CHANNEL_1

Use to select channel 1

f. Structure of type p_serial gpio cfg t is an argument in order to provide function pointers to control the GPIO port

for RS485 communication. If want to use in TCP server mode, please specify NULL to this argument.

+ Structure of I/O port configuration information (serial gpio cfg t)

typedef struct _serial_gpio_cfg_t{
fp_gpio_callback_t

fp_gpio_callback_t

fp_gpio_callback_t

}serial_gpio_cfg_t, *p_serial_gpio_cfg_t;

fp_gpio_init_ptr;

fp_gpio_set_ptr;

fp_gpio_reset_ptr;

/* Callback function pointer to invoke the initialize the GP1O used

for RS485 direction control */

/* Callback function pointer to set the GPIO used for RS485
direction control */

[* Callback function pointer to reset the GPIO used for RS485
direction control */

R18UZ0030EJ0104
Apr 19, 2019

RENESAS

Page 35 of 148

R-IN32M3 Series 5. Description of application programming interface

Modbus_slave_map_init Modbus function code mapping API
[Format]
uint32_t Modbus_slave_map_init(p_slave_map_init_t p_serial_slave_map_init_t);
[Parameter]
p_slave_map_init_t p_serial_slave_map_init_t structure pointer to function code mapping table

[Return value]
uint32_t Error code

[Error code]

ERR_OK On success

ERR_INVALID_STACK_INIT_PARAMS If parameter is null

ERR_MEM_ALLOC If memory allocation failed
[Explanation]

This API does the mapping of user defined functions for processing requests from clients depending on function code.
When the Modbus Slave stack receives a request, it invokes the corresponding handler function registered.

This API is only valid when the Modbus stack is configured as Slave mode.

+ Structure of function code mapping table (slave _map init t)
typedef struct _slave_map_init{

fp_function_code1_t fp_function_code1; /* Call back function pointer for Modbus function code 1
(Read Coils) operation */

fp_function_code2_t fp_function_code2; /* Call back function pointer for Modbus function code 2
(Read Discrete Inputs) operation */

fp_function_code3 _t fp_function_code3; /* Call back function pointer for Modbus function code 3
(Read Holding Registers) operation */

fp_function_code4 _t fp_function_code4; /* Call back function pointer for Modbus function code 4
(Read Input Registers) operation */

fp_function_codeb_t fp_function_code5; /* Call back function pointer for Modbus function code 5
(Write Single Coil) operation */

fp_function_code6_t fp_function_code6; /* Call back function pointer for Modbus function code 6
(Write Single Register) operation */

fp_function_code15 t fp_function_code15; /* Call back function pointer for Modbus function code 15
(Write Multiple Coils) operation */

fp_function_code16_t fp_function_code16; /* Call back function pointer for Modbus function code 16
(Write Multiple Registers) operation */

fp_function_code23_t fp_function_code23; /* Call back function pointer for Modbus function code 23
(Read/Write Multiple Registers) operation */

}slave_map_init_t, *p_slave_map_init_t;

R18UZ0030EJ0104 RENESAS Page 36 of 148
Apr 19, 2019

R-IN32M3 Series 5. Description of application programming interface

Callback function corresponding to each function code, to the definition in the following format. For more
information on the structure to be used in the callback function, please refer to each API of Chapter 5.1.2.2.

fp_function_code1_t Call back function pointer for Modbus function code 1(Read Coils) processing

[Format]
uint32_t (*fp_function_code1_t)(p_req_read_coils_t pt_req_read_cails,
p_resp_read_coils_t pt_resp_read_coils);

[Parameter]
p_req_read_coils_t pt_req_read_coils structure pointer from stack to user with read coils request
information
p_resp_read_coils_t pt_resp_read_coils structure pointer to stack from user with read coils response data
[Return value]

uint32_t 0 : success ,1 : failure
T
fp_function_code2_t Call back function pointer for Modbus function code 2(Read Discrete Inputs) processing
_P_TUIRTON_LOUe~s @ all DALl RAIRUOTE POTTECT 1O VIOUDUS THNILTON LOUS AiRedU LISLICIE TIPLUES) PIOCESSTY
[Format]

uint32_t (*fp_function_code2_t)(p_req_read_inputs_t pt_req_read_inputs,
p_resp_read_inputs_t pt_resp_read_inputs);

[Parameter]
p_req_read_inputs_t pt_req_read_inputs structure pointer from stack to user with read discrete inputs
request information
p_resp_read_inputs_t pt_resp_read_inputs structure pointer to stack from user with read discrete inputs
response data

[Return value]

uint32_t 0 : success ,1 : failure
fp_function_code3 t Call back function pointer for Modbus function code 3(Read Holding Registers) processing
[Format]

uint32_t (*fp_function_code3_t)(p_req_read_holding_reg_t pt_req_read_holding_reg,
p_resp_read_holding_reg_t pt_resp_read_holding_reg);

[Parameter]
p_req_read_holding_reg_t pt_req_read_holding_reg structure pointer from stack to user with read holding
registers request information
p_resp_read_holding_reg t pt_resp_read_holding_reg structure pointer to stack from user with read holding
registers response data

[Return value]
uint32_t 0 : success ,1 : failure

R18UZ0030EJ0104 RENESAS Page 37 of 148
Apr 19, 2019

R-IN32M3 Series 5. Description of application programming interface

fp_function_code4_t Call back function pointer for Modbus function code 4(Read Input Registers) processing

[Format]
uint32_t (*fp_function_code4_t)(p_req_read_input_reg_t pt_req_read_input_reg,
p_resp_read_input_reg_t pt_resp_read_input_reg);

[Parameter]
p_req_read_input_reg_t pt_req_read_input_reg structure pointer from stack to user with read input registers
request information
p_resp_read_input_reg_t pt_resp_read_input_reg structure pointer to stack from user with read input registers
response data

[Return value]

uint32_t 0 : success ,1 : failure
fp_function_code5 _t Call back function pointer for Modbus function code 5(Write Single Coil) processing
[Format]

uint32_t (*fp_function_codeb_t)(p_req_write_single_coil_t pt_req_write_single_coil,
p_resp_write_single_coil_t pt_resp_write_single_caoil);

[Parameter]
p_req_write_single_coil_t pt_req_write_single_coil structure pointer from stack to user with write single coil
request information
p_resp_write_single_coil_t pt_resp_write_single_coil structure pointer to stack from user with write single coil

response
[Return value]
uint32_t 0 : success ,1 : failure
fp_function_code6_t Call back function pointer for Modbus function code 6(Write Single Register) processing
[Format]

uint32_t (*fp_function_code6_t)(p_req_write_single_reg_t pt_req_write_single_reg,
p_resp_write_single_reg_t pt_resp_write_single_reg);

[Parameter]
p_req_write_single_reg_t pt_req_write_single_reg structure pointer from stack to user with write single
register request information
p_resp_write_single_reg_t pt_resp_write_single reg structure pointer to stack from user with write single
register response

[Return value]

uint32_t 0 : success ,1 : failure
R18UZ0030EJ0104 RENESAS Page 38 of 148

Apr 19, 2019

R-IN32M3 Series 5. Description of application programming interface

fp_function_code15_t Call back function pointer for Modbus function code 15(Write Multiple Coils) processing

[Format]
uint32_t (*fp_function_code15_t) (p_req_write_multiple_coils_t pt_req_write_multiple_cails,
p_resp_write_multiple_coils_t pt_resp_write_multiple_coils);

[Parameter]
p_req_write_multiple_coils_t pt_req_write_multiple_coils structure pointer from stack to user with write
multiple coils request information
p_resp_write_multiple_coils_t pt_resp_write_multiple_coils structure pointer to stack from user with write
multiple coils response

[Return value]

uint32_t 0 : success ,1 : failure
fp_function_code16_t Call back function pointer for Modbus function code 16(Write Multiple Registers) processing
[Format]

uint32_t (*fp_function_code16_t) (p_req_write_multiple_reg_t pt_req_write_multiple_reg,
p_resp_write_multiple_reg_t pt_resp_write_multiple_reg);

[Parameter]
p_req_write_multiple_reg_t pt_req_write_multiple_reg structure pointer from stack to user with write
multiple registers request information
p_resp_write_multiple_reg t pt_resp_write_multiple_reg structure pointer to stack from user with write
multiple registers response

[Return value]

uint32_t 0 : success ,1 : failure
fp_function_code23_t Call back function pointer for Modbus function code 23(Read/Write Multiple Registers)
processing
[Format]

uint32_t (*fp_function_code23_t) (p_req_read_write_multiple_reg_t pt_req_read_write_multiple_reg,
p_resp_read_write_multiple_reg_t pt_resp_read_write_multiple_reg);

[Parameter]
p_req_read_write_multiple_reg_t pt_req_read_write_multiple_reg structure pointer from stack to user with
read/write multiple registers request
information
p_resp_read_write_multiple_reg_t pt_resp_read_write_multiple_reg structure pointer to stack from user with
read/write multiple registers response

[Return value]

uint32_t 0 : success ,1 : failure
R18UZ0030EJ0104 RENESAS Page 39 of 148

Apr 19, 2019

R-IN32M3 Series 5. Description of application programming interface

51.1.2 IP management

The following API is used in IP management.

Modbus_tcp_init_ip_table Modbus set host IP list properties

[Format]
void_t Modbus_tcp_init_ip_table(ENABLE_FLAG e_flag,
TABLE_MODE e_mode);

[Parameter]
ENABLE_FLAG e_flag Status is whether the connection table enabled or disabled
enabled: ENABLE, disabled: DISABLE
TABLE_MODE e_mode Status indicating the list contain IP to be accepted or rejected

accepted: ACCEPT, rejected: REJECT

[Return value]
void_t

[Error code]

[Explanation]
This function is used for specifying mode (accept/reject) and to Enable or Disable the list of IP address by the user. By
default the host IP list is disabled.

Modbus_tcp_add_ip_addr Modbus add an IP to host IP list
[Format]
uint32_t Modbus_tcp_add_ip_addr(pchar_t pu8_add_ip);
[Parameter]
pchar_t pu8_add_ip Host IP address in numbers and dots notation

ex. 192.168.1.100

[Return value]
uint32_t Error code

[Error code]

ERR_OK On successful addition.
ERR_IP_ALREADY_PRESENT If address already present in list.
ERR_MAX_CLIENT If maximum connections reached.
TABLE_DISABLED If list is disabled.

[Explanation]

This function is used for adding a IP to the host IP list.

R18UZ0030EJ0104 RENESAS Page 40 of 148
Apr 19, 2019

R-IN32M3 Series 5. Description of application programming interface

Modbus_tcp_delete_ip_addr remove an IP from host IP list
[Format]
uint32_t Modbus_tcp_delete_ip_addr(pchar_t pu8_del_ip);
[Parameter]
pchar_t pu8_del_ip Host IP address in numbers and dots notation

[Return value)
uint32_t Error code

[Error code]

ERR_OK On successful search.

ERR_IP_NOT_FOUND If IP is not in the list

ERR_TABLE_EMPTY If the list is empty

ERR_TABLE_DISABLED If the table is disabled, i.e., server accepts connection request from any host
[Explanation]

This function is used for removing a host IP from the list.

R18UZ0030EJ0104 RENESAS Page 41 of 148
Apr 19, 2019

R-IN32M3 Series 5. Description of application programming interface

5113 Task

The following function is the main processing task operates in the protocol stack.

Modbus_tcp_recv_data_task TCP Receive data Task
[Format]
void_t Modbus_tcp_recv_data_task(void_t);
[Parameter]
void_t

[Return value]
void_t

[Error code]

[Explanation]
This task waits for a request received in the selected socket ID. It verifies the packet is for Modbus protocol. If so,

write the request to the receive mailbox. If the mailbox is found full, send an error server busy to the client.

Modbus_tcp_req_process_task TCP server task
[Format]
void_t Modbus_tcp_req_process_task(void_t);
[Parameter]
void_t

[Return value]
void_t

[Error code]

[Explanation]
This task wait for a request in the queue. Verify the slave ID in the request packet to determine the packet is for the
TCP server or the device connected to it serially. If the packet is for the TCP server process the request read from the
queue, prepare the response packet and send it to the TCP client. If the packet is for the serial device connected, write the

request to the gateway mailbox.

R18UZ0030EJ0104 RENESAS Page 42 of 148
Apr 19, 2019

R-IN32M3 Series 5. Description of application programming interface

Modbus_gateway_task TCP — Serial Gateway task
[Format]
void_t Modbus_gateway_task(void_t);
[Parameter]
void_t

[Return value]
void_t

[Error code]

[Explanation]
This task wait for a request in the gateway queue for processing the data in the serial device connected to the TCP

server. It process the request read from the queue, prepare the response packet and send it to the TCP client.

Modbus_tcp_soc_wait_task TCP accept connection task

[Format]
void_t Modbus_tcp_soc_wait_task(void_t);

[Parameter]
void_t

[Return value]
void_t

[Error code]

[Explanation]
This task waits for a connection from a client in the default Modbus port (502) and an additional port if configured by
user. Verify whether the IP table is enabled or not. If enabled, verify the list contains the IP list to accepted or rejected.

Accordingly save the socket descriptor to the connection list.

R18UZ0030EJ0104 RENESAS Page 43 of 148
Apr 19, 2019

R-IN32M3 Series 5. Description of application programming interface

Modbus_tcp_terminate_stack Modbus terminate TCP stack API
[Format]
uint32_t Modbus_tcp_terminate_stack(void_t);
[Parameter]
void_t

[Return value]
uint32_t Error code

[Error code]

ERR_OK On successful termination
ERR_STACK_TERM If termination failed
[Explanation]

This API terminate Modbus stack. Depending upon the stack mode, corresponding APIs are invoked. If the stack mode
is MODBUS TCP_SERVER MODE, Modbus tcp terminate stack() is invoked. If stack mode is gateway,

Modbus_tcp terminate gateway stack() is invoked.

R18UZ0030EJ0104 RENESAS Page 44 of 148
Apr 19, 2019

R-IN32M3 Series 5. Description of application programming interface

51.2 Modbus Serial

5.1.21 Initialization of protocol stack

The following API is used in initialization of protocol stack.

Modbus_serial_stack_init Modbus Serial Stack initialization API

[Format]
uint32_t Modbus_serial_stack_init(p_serial_stack_init_info_t pt_serial_stack_init_info,
p_serial_gpio_cfg_t pt_serial_gpio_cfg_t,
uint8_t u8_stack_mode,
uint8_t u8_slave_id);

[Paramter]
p_serial_stack_init_info_t pt_serial_stack_init_info Pointer to the structure with serial configuration
parameters.
p_serial_gpio_cfg_t pt_serial_gpio_cfg_t Pointer to the structure with GPIO configuration
parameters.
uint8_t u8_stack_mode Mode in which the stack should be
initialized(RTU/ASCII master/slave)
uint8_t u8_slave_id Slave ID of device; valid only for slave mode
[Return value]
uint32_t Error code
[Error code]
ERR_OK On successful initialization of serial stack
ERR_INVALID_STACK_MODE If stack mode specified is invalid
ERR_INVALID_SLAVE_ID If slave id specified is invalid
ERR_INVALID_STACK_INIT_PARAMS If invalid stack init information from user
ERR_STACK_INIT If stack activation or clear flag fails

[Explanation]
This API is to initialize the serial stack as per the user provided configuration parameters. By providing different

configurations, stack could function in the way user requires.

R18UZ0030EJ0104 RENESAS Page 45 of 148
Apr 19, 2019

R-IN32M3 Series 5. Description of application programming interface

For this few initializing parameters are provided in the APIs.
a. Structure of type p serial stack init info t is an argument in order to provide information specific to serial

communication.
b. Structure of type p_serial gpio cfg tis an argument in order to provide function pointers to control the GPIO port

for RS485 communication.
c. u8 stack mode of type uint8 t is an argument in order to select the Modbus serial stack type. According to the

value assigned for this parameter, stack works in either of the following mode:

Stack mode parameter code Meaning
MODBUS_RTU_MASTER_MODE Used to select Modbus Stack RTU master mode
MODBUS_RTU_SLAVE_MODE Used to select Modbus Stack RTU slave mode

MODBUS_ASCII_MASTER_MODE | Used to select Modbus Stack ASCIl master mode
MODBUS_ASCII_SLAVE_MODE Used to select Modbus Stack ASCII slave mode

d. u8 slave id of type uint8_t is an argument in order to set the device ID in slave mode. This parameter is used when
the stack is in either ASCII/RTU Slave mode. This parameter can hold any value within the range 1 to 247.

Please refer to Chapter 5.1.1.1 for detail of the parameters.

R18UZ0030EJ0104 RENESAS Page 46 of 148
Apr 19, 2019

R-IN32M3 Series 5. Description of application programming interface

Modbus_slave_map_init Modbus function code mapping API
[Format]
uint32_t Modbus_slave_map_init (p_slave_map_init_t p_tcp_slave_map_init_t);
[Parameter]
p_slave_map_init_t p_tcp_slave_map_init_t Structure pointer to function code mapping table

[Return value]
uint32_t Error code

[Error code]

ERR_OK On success

ERR_INVALID_STACK_INIT_PARAMS If parameter is null

ERR_MEM_ALLOC If memory allocation failed
[Explanation]

This API is the same function as when the Modbus TCP. Please refer to Chapter 5.1.1.1 for detail of the function.

R18UZ0030EJ0104 RENESAS Page 47 of 148
Apr 19, 2019

R-IN32M3 Series

5. Description of application programming interface

5.1.2.2

Master Mode API

Modbus_read_coils

[Format]

The following API is used in master mode.

Modbus read coils

uint32_t Modbus_read_coils(p_req_read_coils_t pt_req_read_caoils,

p_resp_read_coils_t pt_resp_read_caoils,

fp_callback_notify_t fp_callback_notify);

[Parameter]

p_req_read_coils_t
p_resp_read_coils_t
fp_callback_notify_t

pt_req_read_coils
pt_resp_read_coils
fp_callback_notify

Structure pointer to read coil request

Structure pointer to read coil response

Function pointer argument for the call back natification in non
blocking API mode. If this argument is set to NULL APl become
blocking.

[Return value]

uint32_t

Error code

[Error code]

ERR_OK
ERR_SYSTEM_INTERNAL
ERR_ILLEGAL_NUM_OF _COILS
ERR_INVALID_SLAVE_ID
ERR_MEM_ALLOC
ERR_SLAVE_ID_MISMATCH

ERR_CRC_CHECK
ERR_LRC_CHECK
ERR_FUN_CODE_MISMATCH

ERR_ILLEGAL_FUNCTION
ERR_ILLEGAL_DATA_VALUE

If coil read successful

For mailbox send or receive failure

If the number of coils provided is not within the specified limit

If the slave ID is not valid

If the memory allocation fail

If master receives a response from another slave (not from the requested
slave)

If CRC validation fails for RTU stack mode

If LRC validation fails for ASCII stack mode

If master receives a response for another function code(not for the
requested function code)

If the function code is invalid or if function code is disabled in the stack
If data value given is invalid

[Explanation]
This API is used to read data from coils when requested.If this API returns an error, the data field in the response
structure will be invalid.

R18UZ0030EJ0104
Apr 19, 2019

RENESAS Page 48 of 148

R-IN32M3 Series 5. Description of application programming interface

+ Structure of read coils request (req_read coils_t)
typedef struct _req_read_coils{

uint16_t u16_transaction_id; I* Specifies the transaction ID */

uint16_t u16_protocol_id,; I* Specifies the protocol ID */

uint8_t u8_slave _id; [* Identification of a remote slave connected */
uint16_t u16_start_addr; I* Specifies address of the first coil */

uint16_t u16_num_of_coils; I* Specifies the number of coils to be read */

Yreq_read_coils_t, *p_req_read_coils_t;

+ Structure of read coils response (resp_read coils_t)
struct _resp_read_coils{

uint16_t u16_transaction_id; I* Specifies the transaction ID */

uint16_t u16_protocol_id; [* Specifies the protocol ID */

uint8_t u8_slave_id; /* Identification of a remote slave connected(Own ID) */
uint8_t u8_exception_code; [* Error detected during processing the request. On

success the exception code should be zero, if the
exception code is non zero the aru8_data will be null */
uint8_t u8_num_of_bytes; I* Specifies the number of bytes of data */
uint8_t aru8_data[MAX_DISCRETE_DATA]; /* Data to be read */
Yresp_read_coils_t, *p_resp_read_coils_t;

R18UZ0030EJ0104 RENESAS Page 49 of 148
Apr 19, 2019

R-IN32M3 Series 5. Description of application programming interface

Modbus read discrete inputs Modbus read discrete inputs

[Format]
uint32_t Modbus_read_discrete_inputs(p_req_read_inputs_t pt_req_read_inputs,
p_resp_read_inputs_t pt_resp_read_inputs,
fp_callback_notify_t fp_callback_notify);

[Parameter]

p_req_read_inputs_t pt_req_read_inputs Structure pointer to read input request

p_resp_read_inputs_t pt_resp_read_inputs Structure pointer to read input response

fp_callback_notify_t fp_callback_notify Function pointer argument for the call back notification in non
blocking API mode. If this argument is set to NULL API

become blocking.

[Return value]

uint32_t Error code
[Error code]
ERR_OK If input read successful

ERR_SYSTEM_INTERNAL
ERR_ILLEGAL_NUM_OF_INPUTS
ERR_INVALID_SLAVE_ID
ERR_MEM_ALLOC
ERR_SLAVE_ID_MISMATCH

ERR_CRC_CHECK
ERR_LRC_CHECK
ERR_FUN_CODE_MISMATCH

ERR_ILLEGAL_FUNCTION
ERR_ILLEGAL_DATA_VALUE

For mailbox send or receive failure

If the number of inputs provided is not within the specified limit

If the slave ID is not valid

If the memory allocation fail

If master receives a response from another slave (not from the
requested slave)

If CRC validation fails for RTU stack mode

If LRC validation fails for ASCII stack mode

If master receives a response for another function code(not for the
requested function code)

If the function code is invalid or if function code is disabled in the stack
If data value given is invalid

[Explanation]
This API is used to read data from discrete input when requested. If this API returns an error, the data field in the
response structure will be invalid.

R18UZ0030EJ0104
Apr 19, 2019

RENESAS Page 50 of 148

R-IN32M3 Series 5. Description of application programming interface

« Structure of read inputs request (req_read_inputs_t)
typedef struct _req_read_inputs{

uint16_t u16_transaction_id; I* Specifies the transaction ID */

uint16_t u16_protocol_id,; I* Specifies the protocol ID */

uint8_t u8_slave _id; [* Identification of a remote slave connected */
uint16_t u16_start_addr; I* Specifies address of the first discrete input */
uint16_t u16_num_of_inputs; I* Specifies the number of discrete inputs to be read */

Yreq_read_inputs_t, *p_req_read_inputs_t;

+ Structure of read inputs response (resp_read_inputs_t)
typedef struct _resp_read_inputs{

uint16_t u16_transaction_id; I* Specifies the transaction ID */

uint16_t u16_protocol_id; [* Specifies the protocol ID */

uint8_t u8_slave_id; /* Identification of a remote slave connected */
uint8_t u8_exception_code; [* Error detected during processing the request. On

success the exception code should be zero, if the
exception code is non zero the aru8_data will be null */
uint8_t u8_num_of_bytes; I* Specifies the number of bytes of data */
uint8_t aru8_data[MAX_DISCRETE_DATA]; /* Buffer to store the read data */
Yresp_read_inputs_t, *p_resp_read_inputs_t;

R18UZ0030EJ0104 RENESAS Page 51 of 148
Apr 19, 2019

R-IN32M3 Series

5. Description of application programming interface

Modbus_read_holding_registers =~ Modbus read holding registers.

[Format]

uint32_t Modbus_read_holding_registers(p_req_read_holding_reg_t pt_req_read_holding_reg,

p_resp_read_holding_reg_t pt_resp_read_holding_reg,
fp_callback_notify_t fp_callback_notify);

[Parameter]

p_req_read_holding_reg_t pt_req_read_holding_reg Structure pointer to read holding reg. request

p_resp_read_holding_reg t pt_resp_read_holding_reg Structure pointer to read holding reg. response

fp_callback_notify_t fp_callback_notify Function pointer argument for the call back

notification in non blocking API mode. If this
argument is set to NULL API become blocking.

[Return value]

uint32_t Error code
[Error code]
ERR_OK If holding register read successful

ERR_SYSTEM_INTERNAL
ERR_ILLEGAL_NUM_OF REG
ERR_INVALID_SLAVE_ID
ERR_MEM_ALLOC
ERR_SLAVE_ID_MISMATCH

ERR_CRC_CHECK
ERR_LRC_CHECK
ERR_FUN_CODE_MISMATCH

ERR_ILLEGAL_FUNCTION
ERR_ILLEGAL_DATA_VALUE

For mailbox send or receive failure

If the number of registers provided is not within the specified limit

If the slave ID is not valid

If the memory allocation fail

If master receives a response from another slave (not from the requested
slave)

If CRC validation fails for RTU stack mode

If LRC validation fails for ASCII stack mode

If master receives a response for another function code(not for the requested
function code)

If the function code is invalid or if function code is disabled in the stack

If data value given is invalid

[Explanation]

This API is used to read data from holding registers when requested. If this API returns an error, the data field in the

response structure will be invalid.

R18UZ0030EJ0104
Apr 19, 2019

RENESAS Page 52 of 148

R-IN32M3 Series 5. Description of application programming interface

« Structure of read holding registers request (req_read_holding_reg_t)
typedef struct _req_read_holding_reg{

uint16_t u16_transaction_id; I* Specifies the transaction ID */

uint16_t u16_protocol_id,; I* Specifies the protocol ID */

uint8_t u8_slave _id; [* Identification of a remote slave connected */
uint16_t u16_start_addr; I* Specifies address of the first holding register */
uint16_t u16_num_of_regs; I* Specifies the number of registers to be read */

Yreq_read_holding_reg_t, *p_req_read_holding_reg_t;

+ Structure of read holding registers response (resp_read_holding_reg_t)
typedef struct _resp_read_holding_reg{

uint16_t u16_transaction_id; I* Specifies the transaction ID */

uint16_t u16_protocol_id; [* Specifies the protocol ID */

uint8_t u8_slave_id; /* Identification of a remote slave connected */

uint8_t u8_exception_code; I* error detected during processing the request. On success

the exception code should be zero, if the exception code is
non zero the aru16_data will be null */
uint8_t u8_num_of_bytes; I* specifies the number of bytes of data */
uint16_t aru16_data[MAX_REG_DATA]; /* buffer to store the read data */
}resp_read_holding_reg_t, p_resp_read_holding_reg_t;

R18UZ0030EJ0104 RENESAS Page 53 of 148
Apr 19, 2019

R-IN32M3 Series

5. Description of application programming interface

Modbus_read_input_registers

Modbus read input registers.

[Format]

uint32_t Modbus_read_input_registers(p_req_read_input_reg_t pt_req_read_input_reg,

p_resp_read_input_reg_t pt_resp_read_input_reg,
fp_callback_notify_t fp_callback_notify);

[Parameter]

p_req_read_input_reg_t pt_req_read_input_reg Structure pointer to read input reg. request

p_resp_read_input_reg t pt_resp_read_input_reg Structure pointer to read input reg. response

fp_callback_notify_t fp_callback_notify Function pointer argument for the call back notification

in non blocking APl mode. If this argument is set to
NULL API become blocking.

[Return value]

uint32_t Error code
[Error code]
ERR_OK If input register read successful

ERR_SYSTEM_INTERNAL
ERR_ILLEGAL_NUM_OF REG
ERR_INVALID_SLAVE_ID
ERR_MEM_ALLOC
ERR_SLAVE_ID_MISMATCH

ERR_CRC_CHECK
ERR_LRC_CHECK
ERR_FUN_CODE_MISMATCH

ERR_ILLEGAL_FUNCTION
ERR_ILLEGAL_DATA_VALUE

For mailbox send or receive failure

If the number of registers provided is not within the specified limit

If the slave ID is not valid

If the memory allocation fail

If master receives a response from another slave (not from the requested
slave)

If CRC validation fails for RTU stack mode

If LRC validation fails for ASCII stack mode

If master receives a response for another function code(not for the
requested function code)

If the function code is invalid or if function code is disabled in the stack
If data value given is invalid

[Explanation]

This API is used to read data from input registers when requested. If this API returns an error, the data field in the

response structure will be invalid.

R18UZ0030EJ0104
Apr 19, 2019

RENESAS Page 54 of 148

R-IN32M3 Series

5. Description of application programming interface

+ Structure of read input registers request (req_read_input_reg_t)

typedef struct _req_read_input_reg{

uint16_t u16_transaction_id;

uint16_t u16_protocol_id,;

uint8_t u8_slave_id;

uint16_t u16_start_addr;

uint16_t u16_num_of_regs;
Yreq_read_input_reg_t, *p_req_read_input_reg_t;

I* Specifies the transaction ID */

I* Specifies the protocol ID */

/* Identification of a remote slave connected */
I* Specifies address of the first input register */
I* Specifies the number of registers to be read */

+ Structure of read input registers response (resp_read_input_reg_t)

typedef struct _resp_read_input_reg{
uint16_t u16_transaction_id;
uint16_t u16_protocol_id;

uint8_t u8_slave_id;
uint8_t u8_exception_code;
uint8_t u8_num_of_bytes;

uint16_t aru16_data[MAX_REG_DATA];
Yresp_read_input_reg_t, p_resp_read_input_reg_t;

I* Specifies the transaction ID */

[* Specifies the protocol ID */

[* Identification of a remote slave connected */

[* Error detected during processing the request. On success
the exception code should be zero, if the exception code is
non zero the aru16_data will be null */

I* Specifies the number of bytes of data */

[* Buffer to store the read data */

R18UZ0030EJ0104 RENESAS Page 55 of 148

Apr 19, 2019

R-IN32M3 Series 5. Description of application programming interface

Modbus_write_single_caoill Modbus write single coil

[Format]
uint32_t Modbus_write_single_coil(p_req_write_single_coil_t pt_req_write_single_coil,
p_resp_write_single_coil_t pt_resp_write_single_caoll,
fp_callback_notify_t fp_callback_notify);

[Parameter]
p_req_write_single_coil_t pt_req_write_single_coll Structure pointer to write single coil request
p_resp_write_single_coil_t pt_resp_write_single_coil Structure pointer to write single coil response
fp_callback_notify_t fp_callback_notify Function pointer argument for the call back

notification in non blocking API mode. If this
argument is set to NULL API become blocking.

[Return value]
uint32_t Error code

[Error code]

ERR_OK If single coil write is successful

ERR_SYSTEM_INTERNAL For mailbox send or receive failure

ERR_ILLEGAL_OUTPUT_VALUE If the value of the registers is invalid

ERR_INVALID_SLAVE_ID If the slave ID is not valid

ERR_MEM_ALLOC If the memory allocation fail

ERR_SLAVE_ID_MISMATCH If master receives a response from another slave (not from the requested
slave)

ERR_CRC_CHECK If CRC validation fails for RTU stack mode

ERR_LRC_CHECK If LRC validation fails for ASCII stack mode

ERR_FUN_CODE_MISMATCH If master receives a response for another function code(not for the
requested function code)

ERR_ILLEGAL_FUNCTION If the function code is invalid or if function code is disabled in the stack

ERR_ILLEGAL_DATA_VALUE If data value given is invalid

[Explanation]

This API is used to write data to single coil when requested.

R18UZ0030EJ0104 RENESAS Page 56 of 148
Apr 19, 2019

R-IN32M3 Series 5. Description of application programming interface

+ Structure of write single coil request (req_write single coil t)
typedef struct _req_write_single_caoil

uint16_t u16_transaction_id; I* Specifies the transaction ID */

uint16_t u16_protocol_id; I* Specifies the protocol ID */

uint8_t u8_slave_id; [* Identification of a remote slave connected */
uint16_t u16_output_addr; I* Specifies address of the coil */

uint16_t u16_output_value; /* Data to be written */

Yreq_write_single_coil_t, *p_req_write_single_coil_t;

+ Structure of write single coil response (resp_write_single coil t)
typedef struct _resp_write_single_coil{

uint16_t u16_transaction_id; I* Specifies the transaction ID */

uint16_t u16_protocol_id; [* Specifies the protocol ID */

uint8_t u8_slave_id; /* Identification of a remote slave connected */

uint8_t u8_exception_code; /* Error detected during processing the request. On success the
exception code should be zero */

uint16_t u16_output_addr; I* Specifies address of the coil */

uint16_t u16_output_value; /* Data to be written */

Yresp_write_single_coil_t, *p_resp_write_single_coil_t;

R18UZ0030EJ0104 RENESAS Page 57 of 148
Apr 19, 2019

R-IN32M3 Series 5. Description of application programming interface

Modbus_write_single_reg Modbus write single register

[Format]
uint32_t Modbus_write_single_reg(p_req_write_single_reg_t pt_req_write_single_reg,
p_resp_write_single_reg_t pt_resp_write_single_reg,
fp_callback_notify t fp_callback_notify);

[Parameter]
p_req_write_single_reg_t pt_req_write_single_reg Structure pointer to write single reg. request
p_resp_write_single_reg_t pt_resp_write_single_reg Structure pointer to write single reg. response
fp_callback_notify_t fp_callback_notify Function pointer argument for the call back

notification in non blocking API mode. If this
argument is set to NULL API become blocking.

[Return value]
uint32_t Error code

[Error code]

ERR_OK If single register write is successful

ERR_SYSTEM_INTERNAL For mailbox send or receive failure

ERR_INVALID_SLAVE_ID If the slave ID is not valid

ERR_MEM_ALLOC If the memory allocation fail

ERR_SLAVE_ID_MISMATCH If master receives a response from another slave (not from the requested
slave)

ERR_CRC_CHECK If CRC validation fails for RTU stack mode

ERR_LRC_CHECK If LRC validation fails for ASCII stack mode

ERR_FUN_CODE_MISMATCH If master receives a response for another function code(not for the requested
function code)

ERR_ILLEGAL_FUNCTION If the function code is invalid or if function code is disabled in the stack

ERR_ILLEGAL_DATA_VALUE If data value given is invalid

[Explanation]
This API is used to write data to single register when requested.

R18UZ0030EJ0104 RENESAS Page 58 of 148
Apr 19, 2019

R-IN32M3 Series 5. Description of application programming interface

+ Structure of write single register request (req_write single reg t)
typedef struct _req_write_single_reg{

uint16_t u16_transaction_id; I* Specifies the transaction ID */

uint16_t u16_protocol_id; I* Specifies the protocol ID */

uint8_t u8_slave_id; [* Identification of a remote slave connected */
uint16_t u16_register_addr; I* Specifies address of the register */

uint16_t u16_register_value; /* Data to be written */

Yreq_write_single_reg_t, *p_req_write_single_reg_t;

+ Structure of write single register response (resp_write_single reg t)
typedef struct _resp_write_single_reg{

uint16_t u16_transaction_id; I* Specifies the transaction ID */

uint16_t u16_protocol_id; [* Specifies the protocol ID */

uint8_t u8_slave_id; /* Identification of a remote slave connected */

uint8_t u8_exception_code; /* Error detected during processing the request. On success the
exception code should be zero */

uint16_t u16_register_addr,; I* Specifies address of the register */

uint16_t u16_register_value; /* Data to be written */

Yresp_write_single_reg_t, *p_resp_write_single_reg_t;

R18UZ0030EJ0104 RENESAS Page 59 of 148
Apr 19, 2019

R-IN32M3 Series 5. Description of application programming interface

Modbus_write_multiple_coils Modbus write multiple coils

[Format]
uint32_t Modbus_write_multiple_coils(p_req_write_multiple_coils_t pt_req_write_multiple_coils,
p_resp_write_multiple_coils_t pt_resp_write_multiple_coils,
fp_callback_notify_t fp_callback_notify);

[Parameter]
p_req_write_multiple_coils_t pt_req_write_multiple_coils Structure pointer to write multiple coils request
p_resp_write_multiple_coils_t pt_resp_write_multiple_coils Structure pointer to write multiple coils response
fp_callback_notify_t fp_callback_notify Function pointer argument for the call back
notification in non blocking API mode. If this
argument is set to NULL API become blocking.

[Return value]
uint32_t Error code

[Error code]

ERR_OK If write multiple coil write successful

ERR_SYSTEM_INTERNAL For mailbox send or receive failure

ERR_ILLEGAL_NUM_OF_OUTPUTS If the number of outputs is invalid

ERR_INVALID_SLAVE_ID If the slave ID is not valid

ERR_MEM_ALLOC If the memory allocation fail

ERR_SLAVE_ID_MISMATCH If master receives a response from another slave (not from the
requested slave)

ERR_CRC_CHECK If CRC validation fails for RTU stack mode

ERR_LRC_CHECK If LRC validation fails for ASCII stack mode

ERR_FUN_CODE_MISMATCH If master receives a response for another function code(not for the
requested function code)

ERR_ILLEGAL_FUNCTION If the function code is invalid or if function code is disabled in the stack

ERR_ILLEGAL_DATA_VALUE If data value given is invalid

[Explanation]

This API is used to write data to multiple coils when requested.

R18UZ0030EJ0104 RENESAS Page 60 of 148
Apr 19, 2019

R-IN32M3 Series 5. Description of application programming interface

+ Structure of write multiple coils request (req_write multiple coils_t)
typedef struct _req_write_single_reg{

uint16_t u16_transaction_id; I* Specifies the transaction ID */

uint16_t u16_protocol_id,; I* Specifies the protocol ID */

uint8_t u8_slave _id; [* Identification of a remote slave connected */
uint16_t u16_start_addr; I* Specifies address of the first coil */

uint16_t u16_num_of_outputs; I* Specifies the number of coils to be written */
uint8_t u8_num_of_bytes; [* Specifies the number of bytes of data */

uint8_t aru8_data[MAX_DISCRETE_DATA]; /* Data to be written */
Yreq_write_single_reg_t, *p_req_write_single_reg_t;

* Structure of write multiple coils response (resp_write_multiple coils t)
typedef struct _resp_write_multiple_coils{

uint16_t u16_transaction_id; I* Specifies the transaction ID */

uint16_t u16_protocol_id,; I* Specifies the protocol ID */

uint8_t u8_slave _id; [* Identification of a remote slave connected */

uint8_t u8_exception_code; [* Error detected during processing the request. On
success the exception code should be zero */

uint16_t u16_start_addr; [* Specifies address of the coils */

uint16_t u16_num_of_outputs; I* Specifies the number of coils to be written */

Yresp_write_multiple_coils_t, *p_resp_write_multiple_coils_t;

R18UZ0030EJ0104 RENESAS Page 61 of 148
Apr 19, 2019

R-IN32M3 Series 5. Description of application programming interface

Modbus_write_multiple_reg Modbus write multiple registers

[Format]
uint32_t Modbus_write_multiple_reg(p_req_write_multiple_reg_t pt_req_write_multiple_reg,
p_resp_write_multiple_reg_t pt_resp_write_multiple_reg,
fp_callback_notify_t fp_callback_notify);

[Parameter]
p_req_write_multiple_reg_t pt_req_write_multiple_reg Structure pointer to write multiple reg. request
p_resp_write_multiple_reg_t pt_resp_write_multiple_reg Structure pointer to write multiple reg. response
fp_callback_notify_t fp_callback_notify Function pointer argument for the call back

notification in non blocking API mode. If this
argument is set to NULL API become blocking.

[Return value]
uint32_t Error code

[Error code]

ERR_OK If write multiple register write successful

ERR_SYSTEM_INTERNAL For mailbox send or receive failure

ERR_ILLEGAL_NUM_OF_REG If the number of registers is invalid

ERR_INVALID_SLAVE_ID If the slave ID is not valid

ERR_MEM_ALLOC If the memory allocation fail

ERR_SLAVE_ID_MISMATCH If master receives a response from another slave (not from the requested
slave)

ERR_CRC_CHECK If CRC validation fails for RTU stack mode

ERR_LRC_CHECK If LRC validation fails for ASCII stack mode

ERR_FUN_CODE_MISMATCH If master receives a response for another function code(not for the requested
function code)

ERR_ILLEGAL_FUNCTION If the function code is invalid or if function code is disabled in the stack

ERR_ILLEGAL_DATA_VALUE If data value given is invalid

[Explanation]
This API is used to write data to multiple registers when requested.

R18UZ0030EJ0104 RENESAS Page 62 of 148
Apr 19, 2019

R-IN32M3 Series

5. Description of application programming interface

+ Structure of write multiple registers request (req_write multiple reg t)

typedef struct _req_write_multiple_reg{
u16_transaction_id;

uint16_t
uint16_t
uint8_t

uint16_t
uint16_t
uint8_t

uint16_t

u16_protocol_id,;
u8_slave_id;

u16_start_addr;
u16_num_of_reg;
u8_num_of_bytes;

aru16_data[MAX_REG_DATA];

/* Specifies the transaction ID */

/* Specifies the protocol ID */

/* Identification of a remote slave connected */

/* Specifies address of the first register */

/* Specifies the number of registers to be written */
/* Specifies the number of bytes of data */

/* Data to be written */

Yreq_write_multiple_reg_t, *p_req_write_multiple_reg_t;

+ Structure of write multiple registers response (resp_write multiple reg t)

typedef struct _resp_write_multiple_reg{

uint16_t
uint16_t
uint8_t
uint8_t

uint16_t
uint16_t

u16_transaction_id;
u16_protocol_id,;
u8_slave_id;
u8_exception_code;

u16_start_addr;
u16_num_of_reg;

/* Specifies the transaction ID */

/* Specifies the protocol ID */

[* Identification of a remote slave connected */

/* Error detected during processing the request. On success the
exception code should be zero */

/* Specifies address of the first register */

/* Specifies the number of registers to be written */

Yresp_write_multiple_reg_t, *p_resp_write_multiple_reg_t;

R18UZ0030EJ0104
Apr 19, 2019

RENESAS Page 63 of 148

R-IN32M3 Series 5. Description of application programming interface

Modbus_read_write_multiple_reg Modbus read and write multiple registers

[Format]
uint32_t Modbus_read_write_multiple_reg(p_req_read_write_multiple_reg_t pt_req_read_write_multiple_reg,
p_resp_read_write_multiple_reg_t pt_resp_read_write_multiple_reg,
fp_callback_notify_t fp_callback_notify);

[Parameter]

p_req_read_write_multiple_reg_t pt_req_read_write_multiple_reg Structure pointer to read and write
multiple reg request

p_resp_read_write_multiple_reg_t pt_resp_read_write_multiple_reg Structure pointer to read and write
multiple reg response

fp_callback_notify_t fp_callback_notify Function pointer argument for the call
back notification in non blocking API
mode. If this argument is set to NULL API
become blocking.

[Return value]
uint32_t Error code

[Error code]

ERR_OK If read/write multiple register is successful

ERR_SYSTEM_INTERNAL For mailbox send or receive failure

ERR_ILLEGAL_OUTPUT_VALUE If the value of the registers is invalid

ERR_INVALID_SLAVE_ID If the slave ID is not valid

ERR_MEM_ALLOC If the memory allocation fail

ERR_SLAVE_ID_MISMATCH If master receives a response from another slave (not from the requested
slave)

ERR_CRC_CHECK If CRC validation fails for RTU stack mode

ERR_LRC_CHECK If LRC validation fails for ASCII stack mode

ERR_FUN_CODE_MISMATCH If master receives a response for another function code(not for the requested
function code)

ERR_ILLEGAL_FUNCTION If the function code is invalid or if function code is disabled in the stack

ERR_ILLEGAL_DATA_VALUE If data value given is invalid

[Explanation]
This API is used to read and write data to multiple registers when requested. If this API returns an error, the data field
in the response structure will be invalid.

R18UZ0030EJ0104 RENESAS Page 64 of 148
Apr 19, 2019

R-IN32M3 Series 5. Description of application programming interface

+ Structure of read and write multiple registers request (req_read write multiple reg t)
typedef struct _req_read_write_multiple_reg{

uint16_t u16_transaction_id; I* Specifies the transaction ID */

uint16_t u16_protocol_id,; I* Specifies the protocol ID */

uint8_t u8_slave _id; [* Identification of a remote slave connected */

uint16_t u16_read_start_addr; I* Specifies address of the first register to be read from */
uint16_t u16_num_to_read,; I* Specifies the number of registers to be read */
uint16_t u16_write_start_addr; [* Specifies address of the first register to be written */
uint16_t u16_num_to_write; I* Specifies the number of registers to be written */
uint8_t u8_write_num_of_bytes; I* Specifies the number of bytes of data */

uint16_t aru16_data[MAX_REG_DATA]; [* Data to be written */

Yreq_read_write_multiple_reg_t, *p_req_read_write_multiple_reg_t;

* Structure of read and write multiple registers response (resp_read write multiple reg t)
typedef struct _resp_read_write_multiple_reg{

uint16_t u16_transaction_id; /* Specifies the transaction ID */

uint16_t u16_protocol_id,; /* Specifies the protocol ID */

uint8_t u8_slave_id; /* Identification of a remote slave connected */
uint8_t u8_exception_code; /* Error detected during processing the request. On

success the exception code should be zero, if the
exception code is non zero the aru16_read_data will be
null */
uint16_t u8_num_of_bytes; /* Specifies the number of complete bytes of data */
uint16_t aru16_read_data[MAX_REG_DATA]; /* Data to be read */
Yresp_read_write_multiple_reg_t, *p_resp_read_write_multiple_reg_t;

R18UZ0030EJ0104 RENESAS Page 65 of 148
Apr 19, 2019

R-IN32M3 Series 5. Description of application programming interface

Modbus_callback_notify Call back function for notification

[Format]
void Modbus_callback_notify(uint32_t u32_resp_code);

[Parameter]
uint32_t u32_resp_code Response code

[Return value]
void_t

[Error code]

[Explanation]
This is the default call back function invoked by the master stack if the caller has not registered their own call back
handler. It is only applicable in master mode configuration of Modbus stack.

Stack invokes the registered call back function when read/write request get response from slave side.

R18UZ0030EJ0104 RENESAS Page 66 of 148
Apr 19, 2019

R-IN32M3 Series 5. Description of application programming interface

51.2.3 Task

The following function is the main processing of task.

Modbus_serial_task Modbus serial task
[Format]
void_t Modbus_serial_task(void_t);
[Parameter]
void_t

[Return value]
void_t

[Error code]

[Explanation]

This task runs either as slave task or as master task depending on the stack mode when the stack is in master mode, this
task waits for a request from the user. Validate the information provided by the user. If validation is successful, frame the
packet and send the packet to the slave device. It waits for the response from the slave. If the callback is provided by the
user, task invokes the callback when the response data is received.

When the stack is in slave mode, this task waits for a request. If so process the packet and send the response.

Modbus_serial_recv_task Modbus serial receive task
[Format]
void_t Modbus_serial_recv_task(void_t);
[Parameter]
void_t

[Return value]
void_t

[Error code]

[Explanation]
This task is used for receiving character from UART. Watching each interrupt event that was registered in hardware
ISR, invoke the process according to the event that occurred.
When the UART receive interrupt is detected, read the received data from the UART, and invoke buffering process
corresponding to the RTU / ASCII each mode.
When the UART status interrupt is detected, invoke driver function for UART status interrupt. Please refer to “User’s
manual (Peripheral function edition)” for UART status interrupt details.

When the Timer interrupt is detected, invoke the buffering stop process.

R18UZ0030EJ0104 RENESAS Page 67 of 148
Apr 19, 2019

R-IN32M3 Series 5. Description of application programming interface

Modbus_serial_stack_terminate Modbus terminate serial stack API
[Format]
uint32_t Modbus_serial_stack_terminate(void_t);
[Parameter]
void_t

[Return value]
uint32_t Error code

[Error code]
ERR_OK On successful
ERR_STACK_TERM if termination failed

[Explanation]
This API terminate MODBUS serial stack.

R18UZ0030EJ0104 RENESAS Page 68 of 148
Apr 19, 2019

R-IN32M3 Series 5. Description of application programming interface

9.2 Internal API
This chapter explains the interface of the API that is used internally.
5.2.1 Packet Framing and Parsing API

5.2.1.1 Serial Connection Management

The following API has been used in the packet processing of serial communication.

Modbus_serial_frame_pkt Modbus serial frame packet

[Format]
void_t Modbus_serial_frame_pkt(puint8_t pu8_mb_snd_pkt,
puint32_t pu32_snd_pkt_len,
p_mbserial_queue_elmnt_t pt_mbserial_queue_elmnt);

[Parameter]
puint8_t pu8_mb_snd_pkt Pointer to the array storing packet to be send
puint32_t pu32_snd_pkt_len Length of the packet framed

pt_mbserial_queue_elmnt pt_mbserial_queue_elmnt Structure pointer containing user information

[Return value]
void_t

[Error code]

[Explanation]
This function frames a packet with the information provided by the user application. Depending on the mode of the

stack, structure is passed to corresponding functions.
For master mode, Modbus master frame request() is invoked. Similarly for slave mode, Modbus_slave frame

response() is invoked, and then collect the necessary information.
For RTU mode, Modbus_rtu_frame pkt() is invoked. Similarly for ASCII mode, ,Modbus_ascii frame pkt() is

invoked, and generate a packet.

R18UZ0030EJ0104 RENESAS Page 69 of 148
Apr 19, 2019

R-IN32M3 Series 5. Description of application programming interface

* Structure of serial packet queue (mbserial queue elmnt t)
typedef struct _mbserial_queue_elmnt{
fp_callback_notify_t fpt_callback_notify; /* Function pointer for the call back
notification in non blocking APl mode.lf this
argument is set to NULL then it is in blocking

mode. */

void* pu8_output_response; [* Pointer to the response structure from the
API ¥/

void* pu8_input_request; /* Pointer to the request structure from the
APL */

uint32_t u32_num_of_bytes; [* Specifies the number of bytes in the data
packet field */

uint8_t aru8_data_packet[MAX_DATA_SIZE]; /* Contains the data provided by the user

application */
uint8_t u8_cmd_mode; /* Contains whether the stack is in unicast or
broadcast mode */
uint8_t u8_slave _id; [* Contains slave id in the request */
uint8_t u8_func_code; /* Contains function code in the request */
tmbserial_queue_elmnt_t, *p_mbserial_queue_elmnt_t;

This structure is the following macro is used.

Packet processing mode Meaning
UNICAST_MODE This packet is processed as a Unicast packet
BROADCAST_MODE This packet is processed as a Broadcast packet
R18UZ0030EJ0104 RENESAS Page 70 of 148

Apr 19, 2019

R-IN32M3 Series 5. Description of application programming interface

Modbus_rtu_frame_pkt Modbus RTU frame packet

[Format]
void_t Modbus_rtu_frame_pkt(puint8_t pu8 mb_snd_pkt,
puint32_t pu32_snd_pkt_len,
p_mbserial_queue_elmnt_t pt_mbserial_queue_elmnt);

[Paramter]
puint8_t pu8_mb_snd_pkt Pointer to the array storing packet to be send
puint32_t pu32_snd_pkt_len Length of the packet framed

pt_mbserial_queue_elmnt pt_mbserial_queue_elmnt Structure pointer containing user information
[Return value]

void_t

[Error code]

[Explanation]

This function frames a packet for RTU device with the information provided by the user application. For calculating
CRC, calculate _crc() is used.

Modbus_ascii_frame_pkt Modbus ASCII frame packet

[Format]
void_t Modbus_ascii_frame_pkt(puint8_t pu8_mb_snd_pkt,
puint32_t pu32_snd_pkt_len,
p_mbserial_queue_elmnt_t pt_mbserial_queue_elmnt);

[Parameter]
puint8_t pu8_mb_snd_pkt Pointer to the array storing packet to be send
puint32_t pu32_snd_pkt_len Length of the packet framed

pt_mbserial_queue_elmnt pt_mbserial_queue_elmnt Structure pointer containing user information
[Return value]

void_t

[Error code]

[Explanation]

This function frames a packet for ASCII device with the information provided by the user application. For calculating
LRC, calculate lrc() is used.

R18UZ0030EJ0104

RENESAS Page 71 of 148
Apr 19, 2019

R-IN32M3 Series 5. Description of application programming interface

Modbus_serial_send_pkt Modbus serial send packet

[Format]
void_t Modbus_serial_send_pkt(puint8_t pu8_mb_snd_pkt,
uint32_t u32_snd_pkt_len);

[Parameter]
puint8_t pu8_mb_snd_pkt Pointer to the MODBUS send packet array
uint32_t u32_snd_pkt_len Length of the MODBUS send packet

[Return value]
void_t

[Error code]

[Explanation]
This function is the wrapper function of Modbus_serial _send ().

Modbus_serial_send Modbus serial send packet

[Format]
void_t Modbus_serial_send(puint8_t u8_mb_snd_pkt,
uint32_t u32_snd_pkt_len);

[Parameter]
puint8_t pu8_mb_snd_pkt Pointer to the MODBUS send packet array
uint32_t u32_snd_pkt_len Length of the MODBUS send packet

[Return value]
void_t

[Error code]

[Explanation]
This function sends the prepared packet through UART. During transmission, by RS485 control function that has been

registered in the stack initialization function, communication direction is switched to the sender.

R18UZ0030EJ0104 RENESAS Page 72 of 148
Apr 19, 2019

R-IN32M3 Series 5. Description of application programming interface

Modbus_serial_parse_pkt MODBUS serial parse packet

[Format]
uint32_t Modbus_serial_parse_pkt(puint8_t pu8_mb_recv_pkt,
puint32_t pu32_recv_pkt_len,
p_mbserial_queue_elmnt_t pt _mbserial_queue_elmnt);

[Parameter]
puint8_t pu8_mb_recv_pkt Pointer to the Modbus receive packet array.
uint32_t u32_recv_pkt_len Length of the Modbus receive packet

p_mbserial_queue_elmnt_t pt_mbserial_queue_elmnt Structure pointer that contains information to be
provided to the user

[Return value)
uint32_t Error code

[Error code]

ERR_OK On parsing of packet received is successful

ERR_MEM_ALLOC If memory allocation fails

ERR_SLAVE_ID_MISMATCH If master receives a response from another slave (not from the requested
slave)

ERR_CRC_CHECK If CRC validation fails for RTU stack mode

ERR_LRC_CHECK If LRC validation fails for ASCII stack mode

ERR_FUN_CODE_MISMATCH If master receives a response for another function code(not for the
requested function code)

ERR_ILLEGAL_FUNCTION If the function code is invalid or if function code is disabled in the stack

ERR_INVALID_SLAVE_ID If the slave ID is invalid

ERR_ILLEGAL_DATA_VALUE If data value given is invalid

ERR_OK WITH_NO_RESPONSE Return status for broadcast requests

[Explanation]
This function parses the received packet and updates the structure that contains information to be provided to the user.
Depending on the mode of the stack, the corresponding functions are invoked. For RTU, Modbus_rtu parse pkt() is
invoked. Similarly for ASCII, Modbus_ascii_parse_pkt() is invoked.

R18UZ0030EJ0104 RENESAS Page 73 of 148
Apr 19, 2019

R-IN32M3 Series 5. Description of application programming interface

Modbus_rtu_parse_pkt Modbus RTU parse packet

[Format]
uint32_t Modbus_rtu_parse_pkt(puint8_t pu8_mb_recv_pkt,
puint32_t pu32_recv_pkt_len,
p_mbserial_queue_elmnt_t pt _mbserial_queue_elmnt);

[Parameter]
puint8_t pu8_mb_recv_pkt Pointer to the Modbus receive packet array
uint32_t pu32_recv_pkt_len Length of the Modbus receive packet
p_mbserial_queue_elmnt_t pt_mbserial_queue_elmnt Structure pointer that contains information to

be provided to the user

[Return value)
uint32_t Error code

[Error code]

ERR_OK On parsing of packet received is successful

ERR_MEM_ALLOC If memory allocation fails

ERR_SLAVE_ID_MISMATCH If master receives a response from another slave (not from the requested
slave)

ERR_FUN_CODE_MISMATCH If master receives a response for another function code(not for the
requested function code)

ERR_CRC_CHECK Validation fails for RTU stack mode

ERR_ILLEGAL_FUNCTION If the function code is invalid or if function code is disabled in the stack

ERR_INVALID_SLAVE_ID If the slave ID is invalid

ERR_ILLEGAL_DATA_VALUE If data value given is invalid

ERR_OK WITH_NO_RESPONSE Return status for broadcast requests

[Explanation]
This API parses the packet received from UART. Depending on the mode of the stack, Modbus_master parse pkt() is

invoked for master mode, Modbus_slave parse pkt() is invoked for slave mode.

R18UZ0030EJ0104 RENESAS Page 74 of 148
Apr 19, 2019

R-IN32M3 Series 5. Description of application programming interface

Modbus_ascii_parse_pkt Modbus ASCII parse packet

[Format]
uint32_t Modbus_ascii_parse_pkt (puint8_t pu8_mb_recv_pkt,
puint32_t pu32_recv_pkt_len,
p_mbserial_queue_elmnt_t pt_mbserial_queue_elmnt);

[Parameter]
puint8_t pu8_mb_recv_pkt Pointer to the Modbus receive packet array
uint32_t pu32_recv_pkt_len Length of the Modbus receive packet
p_mbserial_queue_elmnt_t pt_mbserial_queue_elmnt Structure pointer that contains information to

be provided to the user

[Return value)
uint32_t Error code

[Error code]

ERR_OK On parsing of packet received is successful

ERR_MEM_ALLOC If memory allocation fails

ERR_SLAVE_ID_MISMATCH If master receives a response from another slave (not from the requested
slave)

ERR_FUN_CODE_MISMATCH If master receives a response for another function code(not for the
requested function code)

ERR_CRC_CHECK Validation fails for RTU stack mode

ERR_ILLEGAL_FUNCTION If the function code is invalid or if function code is disabled in the stack

ERR_INVALID_SLAVE_ID If the slave ID is invalid

ERR_ILLEGAL_DATA_VALUE If data value given is invalid

ERR_OK WITH_NO_RESPONSE Return status for broadcast requests

[Explanation]
This API parses the packet received from UART. In this function, after converting the specified ASCII packet to RTU

packet, call each packet analysis APIs corresponding to the stack mode.

R18UZ0030EJ0104 RENESAS Page 75 of 148
Apr 19, 2019

R-IN32M3 Series

5. Description of application programming interface

Modbus_master_parse_pkt

Modbus Master parse packet

[Format]

uint32_t Modbus_master_parse_pkt(puint8_t pu8_mb_recv_pkt,

puint32_t pu32_recv_pkt_len,
p_mbserial_queue_elmnt_t pt_mbserial_queue_elmnt);

[Parameter]
puint8_t pu8_mb_recv_pkt Pointer to the Modbus receive packet array
uint32_t pu32_recv_pkt_len Length of the Modbus receive packet

p_mbserial_queue_elmnt_t pt_mbserial_queue_elmnt Structure pointer that contains information to be

provided to the user

[Return value]

uint32_t Error code
[Error code]
ERR_OK On parsing of packet received is successful

ERR_SLAVE_ID_MISMATCH

ERR_FUN_CODE_MISMATCH

ERR_LRC_CHECK
ERR_CRC_CHECK
ERR_ILLEGAL_FUNCTION
ERR_INVALID_SLAVE_ID
ERR_ILLEGAL_DATA_VALUE

If master receives a response from another slave (not from the requested
slave)

If master receives a response for another function code(not for the
requested function code)

If LRC validation fails for ASCII master stack mode

If CRC validation fails for RTU master stack mode

If the function code is invalid or if function code is disabled in the stack

If the slave ID is invalid

If data value given is invalid

[Explanation]

This API parses the packet received from UART. The structure that contains information to be provided to the user is

updated.

R18UZ0030EJ0104
Apr 19, 2019

RENESAS Page 76 of 148

R-IN32M3 Series 5. Description of application programming interface

Modbus_slave_parse_pkt Modbus Slave parse packet

[Format]
uint32_t Modbus_slave_parse_pkt(puint8_t pu8_mb_recv_pkt,
puint32_t pu32_recv_pkt_len,
p_mbserial_queue_elmnt_t pt _mbserial_queue_elmnt);

[Parameter]
puint8_t pu8_mb_recv_pkt Pointer to the Modbus receive packet array
uint32_t pu32_recv_pkt_len Length of the Modbus receive packet

p_mbserial_queue_elmnt_t pt_mbserial_queue_elmnt Structure pointer that contains information to be
provided to the user

[Return value)
uint32_t Error code

[Error code]

ERR_OK On parsing of packet received is successful

ERR_LRC_CHECK If LRC validation fails for ASCII slave stack mode

ERR_CRC_CHECK If CRC validation fails for RTU slave stack mode
ERR_ILLEGAL_FUNCTION If the function code is invalid or if function code is disabled in the stack
ERR_INVALID_SLAVE_ID If the slave ID is invalid

ERR_MEM_ALLOC If memory allocation fails

ERR_ILLEGAL_DATA_VALUE If data value given is invalid

ERR_OK WITH_NO_RESPONSE Return status for broadcast requests

[Explanation]

This API parse the specified packet, perform the callback function corresponding to each function code that the user
has registered. After callback perform, API updates the structure of serial queue(pt _mbserial queue elmnt) based on the
execution results. In this function, dynamically allocate memory request and response table for each callback perform.
Request table will be released within this function, but response table will be released at the stage of generating a

response packet.

R18UZ0030EJ0104 RENESAS Page 77 of 148
Apr 19, 2019

R-IN32M3 Series

5. Description of application programming interface

Modbus_master_validate_pkt

Modbus master validate packet

[Format]

uint32_t Modbus_master_validate_pkt(p_mbserial_queue_elmnt_t pt_mbserial_queue_elmnt);

[Paramter]

p_mbserial_queue_elmnt_t pt_mbserial_queue_elmnt Structure pointer that contains information to be

provided to the user

[Return value]

uint32_t Error code
[Error code]
ERR_OK On parsing of packet received is successful

ERR_SLAVE_ID_MISMATCH

ERR_FUN_CODE_MISMATCH

ERR_LRC_CHECK
ERR_CRC_CHECK
ERR_ILLEGAL_FUNCTION
ERR_INVALID_SLAVE_ID
ERR_ILLEGAL_DATA_VALUE

If master receives a response from another slave (not from the requested
slave)

If master receives a response for another function code(not for the requested
function code)

If LRC validation fails for ASCII slave stack mode

If CRC validation fails for RTU slave stack mode

If the function code is invalid or if function code is disabled in the stack

If the slave ID is invalid

If data value given is invalid

[Explanation]

This function validates the packet received from UART and returns error if validation fails. Slave ID and function code

in the packet is verified in this function.

R18UZ0030EJ0104
Apr 19, 2019

RENESAS Page 78 of 148

R-IN32M3 Series 5. Description of application programming interface

Modbus_slave_validate_pkt Modbus slave validate packet

[Format]
uint32_t Modbus_slave_validate_pkt(p_mbserial_queue_elmnt_t pt_mbserial_queue_elmnt);

[Parameter]
p_mbserial_queue_elmnt_t pt_mbserial_queue_elmnt Structure pointer that contains information to be
provided to the user

[Return value]
uint32_t Error code

[Error code]

ERR_OK On validation of packet received is successful

ERR_LRC_CHECK If LRC validation fails for ASCII slave stack mode

ERR_CRC_CHECK If CRC validation fails for RTU slave stack mode
ERR_ILLEGAL_FUNCTION If the function code is invalid or if function code is disabled in the stack
ERR_INVALID_SLAVE_ID If the slave ID is invalid

ERR_SLAVE_ID_MISMATCH If the slave id in the request is not its own slave id or broadcast id
ERR_ILLEGAL_DATA_VALUE If data value given is invalid

ERR_OK WITH_NO_RESPONSE Return status for broadcast requests

[Explanation]
This function validates the packet received from UART and returns error if validation fails. Slave ID in the packet is
verified in this function.

Modbus_master_frame_request Modbus Master frame response

[Format]
void_t Modbus_master_frame_request(p_mbserial_queue_elmnt_t pt_mbserial_queue_elmnt);

[Parameter]
p_mbserial_queue_elmnt_t pt_mbserial_queue_elmnt Structure pointer that contains information to be
provided to the user

[Return value]
void_t

[Error code]

[Explanation]
This function is invoked when the stack is in master mode. The mb_serial structure is updated using the information

from response structure provided by the user Application.

R18UZ0030EJ0104 RENESAS Page 79 of 148
Apr 19, 2019

R-IN32M3 Series 5. Description of application programming interface

Modbus_slave_frame_response Modbus Slave frame response

[Format]
void_t Modbus_slave_frame_response(p_mbserial_queue_elmnt_t pt_mbserial_queue_elmnt);

[Parameter]
p_mbserial_queue_elmnt_t pt_mbserial_queue_elmnt Structure pointer containing user information

[Return value]
void_t

[Error code]

[Explanation]
This function is invoked when the stack is in slave mode. The mb_serial structure is updated using the information

from response structure provided by the user Application.

R18UZ0030EJ0104 RENESAS Page 80 of 148
Apr 19, 2019

R-IN32M3 Series 5. Description of application programming interface

Modbus_uart_write Modbus uart write

[Format]
void_t Modbus_uart_write(puint8_t pu8_mb_snd_data,
uint32_t u32_data_size);

[Parameter]
puint8_t pu8_mb_snd_data Starting address of the data to be send
uint32_t u32_data_size Length of data to send in bytes

[Return value]
void_t

[Error code]

[Explanation]

This function writes the specified number of characters to the configured UART channel. It uses Renesas driver
function - vart_write using the channel number defined by MB_UART CHANNEL.

Modbus_uart_read Modbus uart read
[Format]
uint32_t Modbus_uart_read(puint8_tpu8_mb_read_char);
[Parameter]
puint8_t pu8_mb_read_char Pointer to the location to read the 8bit character
[Return value]
uint32_t Error code
[Error code]
ERR_OK On successful.

ERR_UART_RECV_OPERATION Read operation failed

[Explanation]
This function reads a single character from UART channel specified. It is a wrapper function to Renesas driver
function - vart_read using the channel number defined by MB_UART CHANNEL.

R18UZ0030EJ0104 RENESAS Page 81 of 148
Apr 19, 2019

R-IN32M3 Series 5. Description of application programming interface

Modbus_rtu_crc_calculate = Modbus serial cyclic Redundancy check calculation

[Format]
uint32_t Modbus_rtu_crc_calculate(puint8_t pu8_mb_pkt,
uint32_t u32_pkt_len);

[Parameter]
puint8_t pu8_mb_pkt Pointer to the Modbus packet array
uint32_t u32_pkt_len Length of the Modbus packet

[Return value]
uint32_t Calculated CRC value

[Error code]

[Explanation]
This function calculates the CRC of the packet.

Modbus_rtu_crc_validate Modbus serial cyclic Redundancy check validation

[Format]
uint32_t Modbus_rtu_crc_validate(puint8_t pu8_mb_pkt,
uint32_t u32_pkt_len);

[Parameter]
puint8_t pu8_mb_pkt Pointer to the Modbus packet array
uint32_t u32_pkt_len Length of the Modbus packet

[Return value]
uint32_t Error code

[Error code]
ERR_OK If validation of CRC is successful
ERR_CRC_CHECK If validation fails

[Explanation]
This function validates the CRC of the received packet. The CRC of the received packet is calculated and compared

with the value present in the packet. If both values are same, CRC validation is successful.

R18UZ0030EJ0104 RENESAS Page 82 of 148
Apr 19, 2019

R-IN32M3 Series 5. Description of application programming interface

Modbus_ascii_Irc_calculate Modbus serial longitudinal Redundancy check calculation

[Format]
uint8_t Modbus_ascii_Irc_calculate(puint8_t pu8_mb_pkt,
uint32_t u32_pkt_len);

[Parameter]
puint8_t pu8_mb_pkt Pointer to the Modbus packet array
uint32_t u32_pkt_len Length of the Modbus packet
[Return value]
uint32_t Calculated LRC value

[Error code]

[Explanation]
This function calculates the LRC of the packet.

Modbus_ascii_Irc_validate = Modbus serial longitudinal Redundancy check validation

[Format]
uint32_t Modbus_ascii_Irc_validate(puint8_t pu8_mb_pkt,
uint32_t u32_pkt_len);

[Parameter]
puint8_t pu8_mb_pkt Pointer to the Modbus packet array
uint32_t u32_pkt_len Length of the Modbus packet
[Return value]
uint32_t Error code
[Error code]
ERR_OK On validation of LRC is successful

ERR_LRC_CHECK If LRC validation fails for ASCII stack mode

[Explanation]
This function validates the LRC of the received packet. The LRC of the received packet is calculated and compared
with the value present in the packet. If both values are same, LRC validation is successful.

R18UZ0030EJ0104 RENESAS Page 83 of 148
Apr 19, 2019

R-IN32M3 Series

5. Description of application programming interface

Modbus_rtu_to_ascii

Modbus RTU to ASCII Conversion

[Format]

void_t Modbus_rtu_to_ascii(puint8_t pu8_rtu_pkt,

uint32_t u32_rtu_pkt_size,
puint8_t pu8_ascii_pkt,
puint32_t pu32_ascii_pkt_size);

[Parameter]
puint8_t pu8_rtu_pkt Pointer to the input RTU array
uint32_t u32_rtu_pkt_size Number of bytes in the in the input RTU array
puint8_t pu8_ascii_pkt Pointer to the output ASCII array
puint32_t pu32_ascii_pkt_size Pointer to return number of bytes in the in the output ASCII array

[Return value]
void_t

[Error code]

[Explanation]

This function converts the modbus PDU in hex form to its ASCII values.

Modbus_ascii_to_rtu

Modbus ASCII to RTU Conversion

[Format]

void_t Modbus_ascii_to_rtu(puint8_t pu8_ascii_pkt,
uint32_t u32_ascii_pkt_size,
puint8_t pu8_rtu_pkt,
puint32_t pu32_rtu_pkt_size);

[Parameter]
puint8_t pu8_ascii_pkt Pointer to the input ASCII array
uint32_t u32_ascii_pkt_size Number of bytes in the input ASCII array
puint8_t pu8_rtu_pkt Pointer to return the output RTU array
puint32_t pu32_rtu_pkt_size Pointer to return the number of bytes in the in the output RTU array

[Return value]
void_t

[Error code]

[Explanation]

This function converts the array of ASCII values to its equivalent hex values.

R18UZ0030EJ0104

Apr 19, 2019

RENESAS

Page 84 of 148

R-IN32M3 Series 5. Description of application programming interface

Modbus_RS485_TX_enable RS485 Transmit enable

[Format]
void_t Modbus_RS485 TX_ enable(void_t);

[Parameter]

void_t

[Return value]
void_t

[Error code]

[Explanation]
This function switches RS485 transceiver to transmission mode.

Modbus_RS485 TX disable RS485 Transmit disable

[Format]
void_t Modbus_RS485_TX_enable(void_t);

[Parameter]

void_t

[Return value]
void_t

[Error code]

[Explanation]

This function switches RS485 transceiver to reception mode.

R18UZ0030EJ0104 RENESAS Page 85 of 148
Apr 19, 2019

R-IN32M3 Series 5. Description of application programming interface

Modbus_ascii_recv_char Receive character for Modbus ASCII
[Format]
void_t Modbus_ascii_recv_char(uint8_t u8_read_char);
[Parameter]
uint8_t u8_read_char received character

[Return value]
void_t

[Error code]

[Explanation]

This function is responsible for buffering of the received data to Modbus ASCII mode. Buffering is done until process
detects termination character or process gets the maximum number of characters (MAX ASCII PACKET LEN). Upon
detecting the termination character, the packet to each task depending on the stack mode will report to the effect that
could be received.

When this function is invoked, the timer is started by specified Inter frame delay at stack initialization in order to

measure non-communicate time.

Modbus_rtu_recv_char Receive character for Modbus RTU
[Format]
void_t Modbus_rtu_recv_char(uint8_t u8_recv_char)
[Parameter]
uint8_t u8_recv_char received character

[Return value]
void_t

[Error code]

[Explanation]

This function is responsible for buffering of the received data to Modbus RTU mode. Buffering is done until process
gets the maximum number of characters (MAX RTU PACKET_LEN). Termination decision of packets is done in the
timer handler to detect the non-communication time.

When this function is invoked, the timer is started by specified Inter frame delay at stack initialization in order to

measure non-communicate time.

R18UZ0030EJ0104 RENESAS Page 86 of 148
Apr 19, 2019

R-IN32M3 Series 5. Description of application programming interface

Modbus_timer_handler Timer handler
[Format]
void Modbus_timer_handler(void);
[Parameter]
void_t

[Return value]
void_t

[Error code]

[Explanation]
This function is invoked when the timer interrupt event has occurred in the serial data receive task.
For ASCII mode, reset the buffering process of the receiving data. If this function is invoked before the end character
is detected, packet will be discarded.
For RTU mode, Stop buffering of the received data, according to the stack mode, it reports that the packet reception
has been completed to each task.

R18UZ0030EJ0104 RENESAS Page 87 of 148
Apr 19, 2019

R-IN32M3 Series 5. Description of application programming interface

5.21.2 TCP/IP Connection Management
The following API has been used in the TCP/IP packet processing.

Modbus_tcp_send_pkt Modbus TCP send packet

[Format]
uint32_t Modbus_tcp_send_pkt(puint8_t pu8_mb_snd_pkt,
uint32_t u32_snd_pkt_len,
uint8_t u8_soc_id);

[Parameter]
puint8_t pu8_mb_snd_pkt Pointer to the Modbus send packet array
uint32_t u32_snd_pkt_len Length of the Modbus send packet
uint8_t u8_soc_id Socket ID to which the data is to be transmitted

[Return value]
uint32_t Error code

[Error code]
ERR_OK On successfully send the packet
ERR_SEND_FAIL If packet sending failed

[Explanation]
This API writes the specified packet to a connected socket. TCP / IP stack API is used for writing.

Modbus_tcp_frame_pkt Modbus TCP frame packet

[Format]
void_t Modbus_tcp_frame_pkt(puint8_t pu8_mb_snd_pkt,
puint32_t pu32_snd_pkt_len,
p_mb_tcp_pkt_info_t pt_ mb_tcp_pkt_info);

[Parameter]
puint8_t pu8_mb_snd_pkt Pointer to the array storing packet to be send
puint32_t pu32_snd_pkt_len Length of the packet framed
p_mb_tcp_pkt_info_t pt_mb_tcp_pkt_info Structure pointer containing response information

[Return value]
void_t

[Error code]

[Explanation]
This function is used to update TCP packet information structure from response structure provided by the user
application.
R18UZ0030EJ0104 RENESAS Page 88 of 148

Apr 19, 2019

R-IN32M3 Series 5. Description of application programming interface

Modbus_tcp_parse_pkt Modbus TCP parse packet

[Format]
uint32_t Modbus_tcp_parse_pkt(puint8_t pu8_mb_rcv_pkt,
uint32_t u32_recv_pkt_len,
p_mb_tcp_pkt_info_t pt mb_tcp_pkt_info);

[Parameter]
puint8_t pu8_mb_rcv_pkt Pointer to the array storing the received packet
puint32_t u32_recv_pkt_len Length of the Modbus receive packet
p_mb_tcp_pkt_info_t pt_mb_tcp_pkt_info Structure pointer containing response information

[Return value]
uint32_t Error code

[Error code]

ERR_OK On successful parsing the packet
EXP_ILLEGAL_DATA_VALUE If data value is not in the valid range
ERR_ILLEGAL_FUNCTION If function code is not supported or enabled
ERR_MEM_ALLOC If memory allocation fails

[Explanation]

This API parse the specified packet, perform the callback function corresponding to each function code that the user
has registered. After callback perform, API updates the structure of TCP packet information (pt_mb_tcp pck info) based
on the execution results. In this function, dynamically allocate memory request and response table for each callback
perform. Request table will be released within this function, but response table will be released at the stage of generating
a response packet.

R18UZ0030EJ0104 RENESAS Page 89 of 148
Apr 19, 2019

R-IN32M3 Series 5. Description of application programming interface

Modbus_tcp_validate_pkt Modbus TCP validate packet

[Format]
uint32_t Modbus_tcp_validate_pkt(p_mb_tcp_pkt_info_t pt_ mb_tcp_pkt_info,
uint32_t u32_pdu_len);

[Parameter]
p_mb_tcp_pkt_info_t pt_mb_tcp_pkt_info Structure pointer containing request information
uint32_t u32_pdu_len Length of the PDU received

[Return value)
uint32_t Error code

[Error code]
ERR_OK On successful validation
EXP_ILLEGAL_DATA_VALUE If data value is not in the valid range
ERR_ILLEGAL_FUNCTION If function code is not supported or enabled

[Explanation]
This function validates a packet recevived by the TCP device.

Modbus_tcp_init_socket function for creating server socket

[Format]
int8_t Modbus_tcp_init_socket(uint16_t u16_port,
pint32_t ps32_listen_fd);

[Parameter]
uint16_t u16_port Port number to which socket is to be bound
pint32_t ps32_listen_fd Socket descriptor bound

[Return value)
int8_t Error code

[Error code]

ERR_OK On successful completion
ERR_SOCK_ERROR If socket creation fails
ERR_BIND_ERROR If binding fails

ERR_LISTEN_ERROR If listening fails

[Explanation]
This function is used for creating the server socket and turns the server to accept mode for monitoring client
connections.
R18UZ0030EJ0104 RENESAS Page 90 of 148

Apr 19, 2019

R-IN32M3 Series

5. Description of application programming interface

Modbus_tcp_frame_response

Modbus TCP frame response

[Format]

uint32_t Modbus_tcp_frame_response(uint8_t u8_fn_code,

p_mb_tcp_pkt_info_t pt mb_tcp_pkt_info);

[Parameter]
uint8_t u8_fn_code Variable storing the function code
p_mb_tcp_pkt_info_t pt_mb_tcp_pkt_info Structure pointer containing user information
[Return value]
uint32_t Error code
[Error code]
ERR_OK On framing packet is successful
[Explanation]
This function is used to update TCP packet information structure from response structure provided by the user
application.
R18UZ0030EJ0104

Apr 19, 2019

RENESAS Page 91 of 148

R-IN32M3 Series 5. Description of application programming interface

522 Stack Configuration and Management API

5221 Initialization of Protocol Stack

The following API has been used in the initialization process of the stack.

Modbus_tcp_server_init_stack Modbus TCP server (without gateway)stack initialization

[Format]
uint32_t Modbus_tcp_server_init_stack(uint32_t u32_additional_port,
uint8_t u8_tcp_multiple_client);

[Parameter]
uint32_t u32_additional_port Additional port value configured by user
uint8_t u8_tcp_multiple_client Status whether multiple client is enabled

[Return value)
uint32_t Error code

[Error code]
ERR_OK On successful initialization of the task or mailbox
ERR_STACK_INIT If initialization of the task or mailbox failed

[Explanation]
This API is used to initialize the TCP stack. Specifically, this function to start the three tasks of the following required
for the operation of the stack.
+ The task of monitoring the connection from the client using the port number(default 502) that is specified by the user.
+ The task of receiving the data sent from the client side.
* The task of analyzes the received data and performs an operation corresponding to each function code provided by the

user.

R18UZ0030EJ0104 RENESAS Page 92 of 148
Apr 19, 2019

R-IN32M3 Series 5. Description of application programming interface

Modbus_tcp_init_gateway_stack Modbus TCP gateway initialization

[Format]
uint32_t Modbus_tcp_init_gateway_stack(uint8_t u8_stack_mode,
uint8_t u8_tcp_gw_slave,
p_serial_stack_init_info_t pt_serial_stack_init_info,
p_serial_gpio_cfg_t pt_serial_gpio_cfg_t);

[Parameter]
uint8_t u8_stack_mode Variable to store the stack mode RTU/ASCII
uint8_t u8_tcp_gw_slave Status whether gateway enabled as TCP server
p_serial_stack_init_info_t pt_serial_stack_init_info Structure pointer to serial stack initialization parameters
p_serial_gpio_cfg_t pt_serial_gpio_cfg_t Pointer to the structure with hardware configuration

parameters

[Return value)
uint32_t Error code

[Error code]
ERR_OK On successful initialization of the task or mailbox
ERR_STACK_INIT If initialization of the task or mailbox failed

[Explanation]

This API is used to initialize the stack with gateway functionality. Initialize Modbus TCP stack along with the serial

stack. Activate a gateway task to process the request for serial devices connected to the TCP device. Create a mailbox to
communicate with this task.

R18UZ0030EJ0104 RENESAS Page 93 of 148
Apr 19, 2019

R-IN32M3 Series 5. Description of application programming interface

5222 IP management

The following API has been used in the [P management.

Modbus_tcp_search_ip_addr Modbus search a host IP

[Format]
uint32_t Modbus_tcp_search_ip_addr(pchar_t pu8_search_IP,
puint8_t pu8_ip_idx);

[Parameter]
pchar_t pu8_search_IP IP address to be searched
puint8_t pu8_ip_idx Index at which IP address is placed

[Return value]
uint32_t Error code

[Error code]

ERR_OK On successful search
ERR_IP_NOT_FOUND If IP is not in the list
ERR_TABLE_EMPTY If the list is empty

ERR_TABLE_DISABLED If the table is disabled, i.e., server accepts connection request from any host

[Explanation]

This function is used for search an IP from the host IP list given.

Modbus_tcp_shift_conn_list Modbus shift TCP connection list

[Format]
void_t Modbus_tcp_shift_conn_list(puint8_t pu8_conn_list,
puint8_t pu8_conn_idx);

[Parameter]
puint8_t pu8_conn_list Pointer to array containing the connection list
puint8_t pu8_conn_idx Index from which the socket ID is to be shifted

[Return value]
void_t

[Error code]

[Explanation]

This API is used to shift the connection list according to the latest active connection.

R18UZ0030EJ0104 RENESAS Page 94 of 148
Apr 19, 2019

R-IN32M3 Series 5. Description of application programming interface

Modbus_tcp_remove_from_conn_list Modbus TCP remove from connection list

[Format]
void_t Modbus_tcp_remove_from_conn_list(puint8_t pu8_soc _id,
puint8_t pu8_conn_list);

[Parameter]
puint8_t pu8_soc_id Variable storing the socket ID.
puint8_t pu8_conn_list Pointer to array containing the connection list.

[Return value]
void_t

[Error code]

[Explanation]
This API is used to remove a connection established, from the connection list kept by the server. Verify the location at

which the socket ID is specified and shift the all connection by one.

Modbus_tcp_add_to_conn_list Modbus add a connection to Modbus TCP connection list

[Format]
void_t Modbus_tcp_add_to_conn_list(puint8_t pu8_soc_id,
puint8_t pu8_conn_list);

[Parameter]
puint8_t pu8_soc _id Variable storing the socket ID
puint8_t pu8_conn_list Pointer to array containing the connection list

[Return value]
void_t

[Error code]

[Explanation]
This API is used to add a new connection received by the TCP server to the connection list kept by the server. Append

the new connection to the array one by one.

R18UZ0030EJ0104 RENESAS Page 95 of 148
Apr 19, 2019

R-IN32M3 Series 5. Description of application programming interface

Modbus_tcp_get loc_from_list Modbus get location of a connection

[Format]
uint32_t Modbus_tcp_get_loc_from_list(puint8_t pu8_soc _id,
puint8_t pu8_conn_list,
puint8_t pu8_soc_loc);

[Parameter]
puint8_t pu8_soc_id Variable storing the socket ID
puint8_t pu8_conn_list Pointer to array containing the connection list
puint8_t pu8_soc_loc Pointer variable storing the socket location referenced in the connection
list
[Return value]
uint32_t Error code
[Error code]
ERR_OK If the location of the socket ID obtained

ERR_SOC_NOT_FOUND If referenced socket not present in the connection array list

[Explanation]

This API is used to obtain the location of a socket ID referenced from the MODBUS TCP connection list.

Modbus_tcp_update_conn_list Modbus update TCP connection list

[Format]
void_t Modbus_tcp_update_conn_list(uint8_t u8_soc_id,
puint8_t pu8_conn_list,
uint8_t u8_add_remove);

[Parameter]
uint8_t u8_soc_id Variable storing the socket ID
puint8_t pu8_conn_list Pointer to array containing the connection list
uint8_t u8_add_remove Update type
[Return value]
void_t

[Error code]

[Explanation]

This API is used to update the connection list with the latest connection. The latest connection should be placed at the

last of the array and the oldest connection is placed initially. In this function, the following macro is used as an argument.

Update type Meaning
ADD_TO_CONN_LIST Add socket ID to the connection list
REMOVE_FROM_CONN_LIST Remove socket ID from the connection list
R18UZ0030EJ0104 RENESAS Page 96 of 148

Apr 19, 2019

R-IN32M3 Series 5. Description of application programming interface

5223 Task terminate

The following API has been used in the task termination processing.

Modbus_tcp_server_terminate_stack Modbus terminate TCP Server stack API

[Format]
uint32_t Modbus_tcp_server_terminate_stack(void_t)

[Parameter]
void_t

[Return value)
uint32_t Error code

[Error code]

ERR_OK On successful termination
ERR_STACK_TERM If termination failed
[Explanation]

This API terminate Modbus TCP stack related task and the mailbox used for the TCP task.

Modbus_tcp_gateway_terminate_stack Modbus terminate TCP gateway stack API

[Format]
uint32_t Modbus_tcp_gateway_terminate_stack(void_t)

[Parameter]
void_t

[Return value]
uint32_t Error code

[Error code]

ERR_OK On successful termination
ERR_STACK_TERM If termination failed
[Explanation]

This API terminate Modbus TCP gateway stack related task and the mailbox used for the TCP gateway task.

R18UZ0030EJ0104 RENESAS Page 97 of 148
Apr 19, 2019

R-IN32M3 Series 5. Description of application programming interface

5224 Mailbox

The following API has been used in the mailbox management.

Modbus_create_mailbox Modbus create a mailbox
[Format]
uint32_t Modbus_create_mailbox(uint16_t u16_mbx_id);
[Parameter]
uint16_t u16_mbx_id Variable storing the mailbox ID

[Return value)
uint32_t Error code

[Error code]

ERR_OK On successful creation of mailbox
ERR_MAILBOX If creation of mailbox failed
[Explanation]

This API is used to create a mailbox for passing message between different tasks.

Modbus_post_to_mailbox Modbus post a request to the mailbox

[Format]
uint32_t Modbus_post_to_mailbox(uint16_t u16_mbx _id,
p_mb_req_mbx_t pt_req_recvd);

[Parameter]
uint16_t u16_mbx_id Variable containing the mailbox ID to which request is to be posted
p_mb_req_mbx_t pt_req_recvd Pointer to the structure containing request information

[Return value)
uint32_t Error code

[Error code]
ERR_OK On successful write to mailbox
ERR_MAILBOX If write of mailbox failed
ERR_TCP_SND_MBX_FULL If mailbox is full

[Explanation]
This API is used to send the request received from the client to the receive mailbox or gateway mailbox. Increment the
number of elements in mailbox if the request sent successfully.

+ Structure of mailbox queue (mb_req mbx t)
typedef struct _req_mbx{

uint32_t u32_soc _id; /* Socket ID at which the request arrived */
puint8_t pu8_req_pkt; /* Pointer to the requested packet */
uint32_t u32_pkt_len; /* Packet length */

¥mb_req_mbx_t, *p_mb_req_mbx_t;

R18UZ0030EJ0104 RENESAS Page 98 of 148
Apr 19, 2019

R-IN32M3 Series 5. Description of application programming interface

Modbus_fetch_from_mailbox Modbus read a request from the mailbox.

[Format]
uint32_t Modbus_fetch_from_mailbox(uint16_t u16_mbx _id,
p_mb_req_mbx_t* pt_req_recvd);

[Parameter]
uint16_t u16_mbx_id Variable containing the mailbox ID to which request is read
p_mb_req_mbx_t pt_req_recvd Pointer to the structure containing request information

[Return value)
uint32_t Error code

[Error code]

ERR_OK On successful read from mailbox
ERR_MAILBOX If read from mailbox failed
[Explanation]

This API is used to read the request posted to the receive mailbox or gateway mailbox depending upon the mailbox ID

specified. Decrement the number of elements in mailbox if the request read successfully.

Modbus_check_mailbox Modbus verify the number of elements in mailbox.
[Format]
uint32_t Modbus_check_mailbox(uint16_t u16_mbx_id);
[Parameter]
uint16_t u16_mbx _id Variable containing the mailbox ID to which request is read.

[Return value]
uint32_t Number of mailbox used or error code

[Error code]
ERR_TCP_SND_MBX_FULL If mailbox is full

[Explanation]
This API is used to verify the number of elements in mailbox. The maximum number that can be processed by each
mailbox is defined by the following macros. If the number of messages being processed has reached the maximum value,

it is determined that the message full.

Macro name Meaning
MAX_RCV_MBX_SIZE Maximum number of receive mailbox
MAX_GW_MBX_SIZE Maximum number of gateway mailbox
R18UZ0030EJ0104 RENESAS Page 99 of 148

Apr 19, 2019

R-IN32M3 Series 5. Description of application programming interface

Modbus_delete_mailbox Modbus Delete mailbox
[Format]
uint32_t Modbus_delete_mailbox(uint16_t u16_mbx_id);
[Parameter]
uint16_t u16_mbx_id Variable storing the mailbox ID.

[Return value]
uint32_t Error code

[Error code]

ERR_OK On successful deletion of mailbox
ERR_MAILBOX If deletion of mailbox failed
[Explanation]

This API is used to delete a mailbox specified by the mailbox ID.

R18UZ0030EJ0104 RENESAS Page 100 of 148
Apr 19, 2019

R-IN32M3 Series 5. Description of application programming interface

5.2.3 Gateway mode API

This chapter describes the function that will be called from the gateway task.

Modbus_gw_read_coils Modbus gateway function to read the coil

[Format]
uint32_t Modbus_gw_read_coils(puint8_t pu8_recvd_pkt,
uint32_t u32_recv_pkt_len,
p_mb_tcp_pkt_info_t pt_gw_tcp_pkt_info);

[Parameter]
puint8_t pu8_recvd_pkt Pointer to the array storing the received packet.
uint32_t u32_recv_pkt_len Length of received packet
p_mb_tcp_pkt_info_t pt_gw_tcp_pkt_info Structure to fill with the response information

[Return value]
uint32_t Error code

[Error code]

ERR_OK On read coil successful
ERR_SYSTEM_INTERNAL For mailbox send or receive failure
ERR_ILLEGAL_NUM_OF_COILS If the number of coils provided is not within the specified limit
ERR_INVALID_SLAVE_ID If the slave ID is not valid
ERR_MEM_ALLOC If memory allocation fails
ERR_SLAVE_ID_MISMATCH If the slave id in the request is not its own slave id or broadcast id
ERR_CRC_CHECK If CRC validation fails for RTU slave stack mode
ERR_LRC_CHECK If LRC validation fails for ASCII slave stack mode
ERR_FUN_CODE_MISMATCH If the function code is not supported by the stack
ERR_ILLEGAL_FUNCTION If function code is not supported or enabled
ERR_ILLEGAL_DATA_VALUE If data value given is invalid
ERR_INSUFFICIENT_DATA If receive packet length is invalid

[Explanation]

This API invokes the function provided in the master to read the data of the coil. In this function, memory is allocated
for both request and response structure dynamically and fill the request structure with the information in the received
packet. Invoke the serial master API, frame a packet with the response information obtained and send the response packet

to the client. After that, the memory allocated for both response and request structures to be freed.

* Structure of response information (mb_tcp pkt info t)
typedef struct _mb_tcp_pkt_info{

puint8_t pu8_output_response; I* pointer to the response structure from the API */

uint16_t u16_transaction_id; I* specifies the transaction identifier */

uint16_t u16_protocol_id; I* specifies the protocol ID */

uint8_t u8_slave_id; I* specifies the slave ID of the device */

uint16_t u16_num_of_bytes; I* specifies the number of bytes in the data packet
PDU field */

uint8_t aru8_data_packet[MAX_DATA_SIZE]; /[* contains the function and data */
¥mb_tcp_pkt_info_t, *p_mb_tcp_pkt_info_t;

R18UZ0030EJ0104 RENESAS Page 101 of 148
Apr 19, 2019

R-IN32M3 Series 5. Description of application programming interface

Modbus_gw_read_discrete_inputs Modbus gateway function to read the discrete input

[Format]
uint32_t Modbus_gw_read_discrete_inputs(puint8_t pu8_recvd_pkt,
uint32_t u32_recv_pkt_len,
p_mb_tcp_pkt_info_t pt gw_tcp_pkt_info);

[Parameter]
puint8_t pu8_recvd_pkt Pointer to the array storing the received packet
uint32_t u32_recv_pkt_len Length of received packet
p_mb_tcp_pkt_info_t pt_gw_tcp_pkt_info Structure to fill with the response information

[Return value]
uint32_t Error code

[Error code]

ERR_OK On discrete input read successful
ERR_SYSTEM_INTERNAL For mailbox send or receive failure
ERR_ILLEGAL_NUM_OF_INPUTS If the number of inputs provided is not within the specified limit
ERR_INVALID_SLAVE_ID If the slave ID is not valid
ERR_MEM_ALLOC If memory allocation fails
ERR_SLAVE_ID_MISMATCH If the slave id in the request is not its own slave id or broadcast id
ERR_CRC_CHECK If CRC validation fails for RTU slave stack mode
ERR_LRC_CHECK If LRC validation fails for ASCII slave stack mode
ERR_FUN_CODE_MISMATCH If the function code is not supported by the stack
ERR_ILLEGAL_FUNCTION If function code is not supported or enabled
ERR_ILLEGAL_DATA_VALUE If data value given is invalid
ERR_INSUFFICIENT_DATA If receive packet length is invalid

[Explanation]

This API invokes the function provided in the master to read the data of the discrete input. In this function, memory is
allocated for both request and response structure dynamically and fill the request structure with the information in the

received packet. After that, the memory allocated for both response and request structures to be freed.

R18UZ0030EJ0104 RENESAS Page 102 of 148
Apr 19, 2019

R-IN32M3 Series 5. Description of application programming interface

Modbus_gw_read_holding_regs Modbus gateway function to read the holding register

[Format]
uint32_t Modbus_gw_read_holding_regs(puint8_t pu8_recvd_pkt,
uint32_t u32_recv_pkt_len,
p_mb_tcp_pkt_info_t pt_gw_tcp_pkt_info);

[Parameter]
puint8_t pu8_recvd_pkt Pointer to the array storing the received packet.
uint32_t u32_recv_pkt_len Length of received packet
p_mb_tcp_pkt_info_t pt_gw_tcp_pkt_info Structure to fill with the response information

[Return value]
uint32_t Error code

[Error code]

ERR_OK If holding register read successful
ERR_SYSTEM_INTERNAL For mailbox send or receive failure
ERR_ILLEGAL_NUM_OF_REG If the number of registers provided is not within the specified limit
ERR_INVALID_SLAVE_ID If the slave ID is not valid
ERR_MEM_ALLOC If memory allocation fails
ERR_SLAVE_ID_MISMATCH If the slave id in the request is not its own slave id or broadcast id
ERR_CRC_CHECK If CRC validation fails for RTU slave stack mode
ERR_LRC_CHECK If LRC validation fails for ASCII slave stack mode
ERR_FUN_CODE_MISMATCH If the function code is not supported by the stack
ERR_ILLEGAL_FUNCTION If function code is not supported or enabled
ERR_ILLEGAL_DATA_VALUE If data value given is invalid
ERR_INSUFFICIENT_DATA If receive packet length is invalid

[Explanation]

This API invokes the function provided in the master to read the data of the holding register. In this function, memory
is allocated for both request and response structure dynamically and fill the request structure with the information in the

received packet. After that, the memory allocated for both response and request structures to be freed.

R18UZ0030EJ0104 RENESAS Page 103 of 148
Apr 19, 2019

R-IN32M3 Series 5. Description of application programming interface

Modbus_gw_read_input_regs Modbus gateway function to read the input register

[Format]
uint32_t Modbus_gw_read_input_regs(puint8_t pu8 recvd_pkt,

uint32_t u32_recv_pkt_len,
p_mb_tcp_pkt_info_t pt gw_tcp_pkt_info);

[Parameter]
puint8_t pu8_recvd_pkt Pointer to the array storing the received packet
uint32_t u32_recv_pkt_len Length of received packet

p_mb_tcp_pkt_info_t pt_gw_tcp_pkt_info Structure to fill with the response information

[Return value]

uint32_t

Error code

[Error code]

ERR_OK
ERR_SYSTEM_INTERNAL
ERR_ILLEGAL_NUM_OF_REG
ERR_INVALID_SLAVE_ID
ERR_MEM_ALLOC
ERR_SLAVE_ID_MISMATCH
ERR_CRC_CHECK
ERR_LRC_CHECK
ERR_FUN_CODE_MISMATCH
ERR_ILLEGAL_FUNCTION
ERR_ILLEGAL_DATA_VALUE
ERR_INSUFFICIENT_DATA

If input register read successful

For mailbox send or receive failure

If the number of registers provided is not within the specified limit
If the slave ID is not valid

If memory allocation fails

If the slave id in the request is not its own slave id or broadcast id
If CRC validation fails for RTU slave stack mode

If LRC validation fails for ASCII slave stack mode

If the function code is not supported by the stack

If function code is not supported or enabled

If data value given is invalid

If receive packet length is invalid

[Explanation]
This API invokes the function provided in the master to read the data of the input register. In this function, memory is
allocated for both request and response structure dynamically and fill the request structure with the information in the

received packet. After that, the memory allocated for both response and request structures to be freed.

R18UZ0030EJ0104
Apr 19, 2019

RENESAS Page 104 of 148

R-IN32M3 Series 5. Description of application programming interface

Modbus_gw_write_single_coill Modbus gateway function to write a single coil

[Format]
uint32_t Modbus_gw_write_single_coil(puint8_t pu8_recvd_pkt,
uint32_t u32_recv_pkt_len,
p_mb_tcp_pkt_info_t pt gw_tcp_pkt_info);

[Parameter]
puint8_t pu8_recvd_pkt Pointer to the array storing the received packet
uint32_t u32_recv_pkt_len Length of received packet
p_mb_tcp_pkt_info_t pt_gw_tcp_pkt_info Structure to fill with the response information

[Return value]
uint32_t Error code

[Error code]

ERR_OK If single coil write is successful
ERR_SYSTEM_INTERNAL For mailbox send or receive failure
ERR_ILLEGAL_OUTPUT_VALUE If the value of the registers is invalid
ERR_INVALID_SLAVE_ID If the slave ID is not valid
ERR_MEM_ALLOC If memory allocation fails
ERR_SLAVE_ID_MISMATCH If the slave id in the request is not its own slave id or broadcast id
ERR_CRC_CHECK If CRC validation fails for RTU slave stack mode
ERR_LRC_CHECK If LRC validation fails for ASCII slave stack mode
ERR_FUN_CODE_MISMATCH If the function code is not supported by the stack
ERR_ILLEGAL_FUNCTION If function code is not supported or enabled
ERR_ILLEGAL_DATA_VALUE If data value given is invalid
ERR_INSUFFICIENT_DATA If receive packet length is invalid

[Explanation]

This API invokes the function provided in the master to write a single coil. In this function, memory is allocated for
both request and response structure dynamically and fill the request structure with the information in the received packet.
After that, the memory allocated for both response and request structures to be freed.

R18UZ0030EJ0104 RENESAS Page 105 of 148
Apr 19, 2019

R-IN32M3 Series

5. Description of application programming interface

Modbus_gw_write_single_reg

[Format]

Modbus gateway function to write a single register

uint32_t Modbus_gw_write_single_reg(puint8_t pu8_recvd_pkt,

uint32_t u32_recv_pkt_len,
p_mb_tcp_pkt_info_t pt gw_tcp_pkt_info);

[Parameter]

in] puint8_ pu8_recvd_p ointer to the array storing the received packe
i int8_t 8 d_pkt Pointer to th toring th ived ket
[in] uint32_t u32_recv_pkt_len Length of received packet

[out] p_mb_tcp_pkt_info_t pt_gw_tcp_pkt_info

[Return value]

uint32_t Error code
[Error code]
ERR_OK If single register write is successful

ERR_SYSTEM_INTERNAL
ERR_INVALID_SLAVE_ID
ERR_MEM_ALLOC
ERR_SLAVE_ID_MISMATCH
ERR_CRC_CHECK
ERR_LRC_CHECK
ERR_FUN_CODE_MISMATCH
ERR_ILLEGAL_FUNCTION
ERR_ILLEGAL_DATA_VALUE
ERR_INSUFFICIENT _DATA

For mailbox send or receive failure

If the slave ID is not valid

If memory allocation fails

If the slave id in the request is not its own slave id or broadcast id
If CRC validation fails for RTU slave stack mode

If LRC validation fails for ASCII slave stack mode

If the function code is not supported by the stack

If function code is not supported or enabled

If data value given is invalid

If receive packet length is invalid

[Explanation]

This API invokes the function provided in the master to write a single register. In this function, memory is allocated

for both request and response structure dynamically and fill the request structure with the information in the received

packet. After that, the memory allocated for both response and request structures to be freed.

R18UZ0030EJ0104
Apr 19, 2019

RENESAS Page 106 of 148

Structure to fill with the response information

R-IN32M3 Series 5. Description of application programming interface

Modbus_gw_write_multiple_coils Modbus gateway function to write multiple coils

[Format]
uint32_t Modbus_gw_write_multiple_coils(puint8_t pu8_recvd_pkt,
uint32_t u32_recv_pkt_len,
p_mb_tcp_pkt_info_t pt gw_tcp_pkt_info);

[Parameter]
puint8_t pu8_recvd_pkt Pointer to the array storing the received packet
uint32_t u32_recv_pkt_len Length of received packet
p_mb_tcp_pkt_info_t pt_gw_tcp_pkt_info Structure to fill with the response information

[Return value]
uint32_t Error code

[Error code]

ERR_OK If multiple coils write is successful
ERR_SYSTEM_INTERNAL For mailbox send or receive failure
ERR_ILLEGAL_NUM_OF_OUTPUTS If the number of outputs is invalid
ERR_INVALID_SLAVE_ID If the slave ID is not valid
ERR_MEM_ALLOC If memory allocation fails
ERR_SLAVE_ID_MISMATCH If the slave id in the request is not its own slave id or broadcast id
ERR_CRC_CHECK If CRC validation fails for RTU slave stack mode
ERR_LRC_CHECK If LRC validation fails for ASCII slave stack mode
ERR_FUN_CODE_MISMATCH If the function code is not supported by the stack
ERR_ILLEGAL_FUNCTION If function code is not supported or enabled
ERR_ILLEGAL_DATA_VALUE If data value given is invalid
ERR_INSUFFICIENT_DATA If receive packet length is invalid

[Explanation]

This API invokes the function provided in the master to write a data to multiple coils. In this function, memory is
allocated for both request and response structure dynamically and fill the request structure with the information in the

received packet. After that, the memory allocated for both response and request structures to be freed.

R18UZ0030EJ0104 RENESAS Page 107 of 148
Apr 19, 2019

R-IN32M3 Series 5. Description of application programming interface

Modbus_gw_write_multiple_reg Modbus gateway function to write multiple registers

[Format]
uint32_t Modbus_gw_write_multiple_reg(puint8_t pu8_recvd_pkt,
uint32_t u32_recv_pkt_len,
p_mb_tcp_pkt_info_t pt_gw_tcp_pkt_info);

[Parameter]
puint8_t pu8_recvd_pkt Pointer to the array storing the received packet
uint32_t u32_recv_pkt_len Length of received packet
p_mb_tcp_pkt_info_t pt_gw_tcp_pkt_info Structure to fill with the response information

[Return value]
uint32_t Error code

[Error code]

ERR_OK If single register write is successful
ERR_SYSTEM_INTERNAL For mailbox send or receive failure
ERR_ILLEGAL_NUM_OF_REG If the number of registers is invalid
ERR_INVALID_SLAVE_ID If the slave ID is not valid
ERR_MEM_ALLOC If memory allocation fails
ERR_SLAVE_ID_MISMATCH If the slave id in the request is not its own slave id or broadcast id
ERR_CRC_CHECK If CRC validation fails for RTU slave stack mode
ERR_LRC_CHECK If LRC validation fails for ASCII slave stack mode
ERR_FUN_CODE_MISMATCH If the function code is not supported by the stack
ERR_ILLEGAL_FUNCTION If function code is not supported or enabled
ERR_ILLEGAL_DATA_VALUE If data value given is invalid
ERR_INSUFFICIENT_DATA If receive packet length is invalid

[Explanation]

This API invokes the function provided in the master to write a data to multiple registers. In this function, memory is
allocated for both request and response structure dynamically and fill the request structure with the information in the

received packet. After that, the memory allocated for both response and request structures to be freed.

R18UZ0030EJ0104 RENESAS Page 108 of 148
Apr 19, 2019

R-IN32M3 Series 5. Description of application programming interface

Modbus_gw_read_write_multiple_reg Modbus gateway function to read/write multiple registers

[Format]
uint32_t Modbus_gw_read_write_multiple_reg(puint8_t pu8 recvd_pkt,
uint32_t u32_recv_pkt_len,
p_mb_tcp_pkt_info_t pt gw_tcp_pkt_info);

[Parameter]
puint8_t pu8_recvd_pkt Pointer to the array storing the received packet
uint32_t u32_recv_pkt_len Length of received packet
p_mb_tcp_pkt_info_t pt_gw_tcp_pkt_info Structure to fill with the response information

[Return value]
uint32_t Error code

[Error code]

ERR_OK If read/write multiple register is successful
ERR_SYSTEM_INTERNAL For mailbox send or receive failure
ERR_ILLEGAL_OUTPUT_VALUE If the value of the registers is invalid
ERR_INVALID_SLAVE_ID If the slave ID is not valid
ERR_MEM_ALLOC If memory allocation fails
ERR_SLAVE_ID_MISMATCH If the slave id in the request is not its own slave id or broadcast id
ERR_CRC_CHECK If CRC validation fails for RTU slave stack mode
ERR_LRC_CHECK If LRC validation fails for ASCII slave stack mode
ERR_FUN_CODE_MISMATCH If the function code is not supported by the stack
ERR_ILLEGAL_FUNCTION If function code is not supported or enabled
ERR_ILLEGAL_DATA_VALUE If data value given is invalid
ERR_INSUFFICIENT_DATA If receive packet length is invalid

[Explanation]

This API invokes the function provided in the master to read/write a data from/to multiple registers. In this function,
memory is allocated for both request and response structure dynamically and fill the request structure with the

information in the received packet. After that, the memory allocated for both response and request structures to be freed.

R18UZ0030EJ0104 RENESAS Page 109 of 148
Apr 19, 2019

R-IN32M3 Series 6. Implementation

6. Implementation

This chapter explains the software implementation procedure.

6.1 Modbus TCP
It's explained to Modbus TCP stack in this chapter. In carrying out the implementation of Modbus TCP, TCP / IP

protocol stack also must be implement.
Please refer to “programming manual (TCP/IP edition)” for implementation of TCP/IP protocol stack.

6.1.1 Server mode

The following are the items required when using the slave mode.

(1) Task ID definition

To use the following API as a task, and a Task ID defined in any value.

Task API Function
Modbus_tcp_soc_wait_task Wait for TCP connection task
Modbus_tcp_recv_data_task TCP receive data Task
Modbus_tcp_req_process_task TCP request processing task

(2) Mailbox ID definition
The following Mailbox ID is required.

Mailbox ID Meaning

ID_MB_TCP_RECV_MBX TCP receive mailbox

(3) Task generation

It generates a Task to be used in the Modbus stack. Please refer to “programming manual (OS edition)” for description

method. Description example is shown in following figure.

const TSK_TBL static_task_table[] = {

/I CRE_TSK(tskid, {tskatr, exinf, task, itskpri, stksz, stk});
{ID_CONN_TASK, {TA_HLNG, 0, (FP)Modbus_tcp_soc_wait_task, 8, 0x400, NULL}},
{ID_RECV_SOC, {TA_HLNG, 0, (FP)Modbus_tcp_recv_data_task, 8, 0x400, NULL}},
{ID_SERV_TSK, {TA_HLNG, 0, (FP)Modbus_tcp_req_process_task, 8, 0x400, NULL}},
I
R18UZ0030EJ0104 RENESAS Page 110 of 148

Apr 19, 2019

R-IN32M3 Series 6. Implementation

(4) Mailbox generation
It generates a Mailbox to be used in the Modbus stack. Please refer to “programming manual (OS edition)” for

description method. Description example is shown in following figure.

const MBX_TBL static_mailbox_table[] = {
/I CRE_MBX(mbxid, {mbxatr, maxmpri, mprihd});

{ID_MB_TCP_RECV_MBX, {TA_TFIFO, 0, NULL}},

R18UZ0030EJ0104 RENESAS Page 111 of 148

Apr 19, 2019

R-IN32M3 Series 6. Implementation

(5) Initialization of Modbus stack

It performs various initialization, and then start the Modbus stack. This initialization needs to execute after the
initialization of the TCP / IP protocol stack.
TCP server mode must perform the following by each APIs.

e Regisger IP address
e Register callback functions corresponding to each the function code
o Initialize Modbus routine and start up related task

Please refer to Chapter 5.1.1.1 and 5.1.1.2 for description method of each APIs.

Basically initialization is as follows:

/* Enable IP table */
Modbus_tcp_init_ip_table(ENABLE, REJECT);

/* register IP address */
ercd = Modbus_tcp_add_ip_addr("192.168.1.100");
if (ercd = ERR_OK)

return ercd;

/* register callback functions */
st_slave_map.fp_function_code1 =cb_func_code01;
st_slave_map.fp_function_code2 =cb_func_code02;
st_slave_map.fp_function_code3 =cb_func_code03;
st_slave_map.fp_function_code4 =cb_func_code04;
st_slave_map.fp_function_code5 =cb_func_code05;
st_slave_map.fp_function_code6 = cb_func_code06;
st_slave_map.fp_function_code15 = cb_func_code15;
st_slave_map.fp_function_code16 = cb_func_code16;
st_slave_map.fp_function_code23 = cb_func_code23;
Modbus_slave_map_init (&st_slave_map);

/* Initialize MODBUS stack by TCP server mode */

ercd = Modbus_tcp_init_stack(MODBUS_TCP_SERVER_MODE,
MODBUS_TCP_GW_SLAVE_ENABLE,
ENABLE_MULTIPLE_CLIENT_CONNECTION,
0,
NULL,
NULL);

if (ercd = ERR_OK){

return ERR_OK;

(6) Implement call back functions

If the function code is instructed to implements the callback function for performing.
Please refer to the item of Section 5.1.1.1 of the Modbus_slave map init API. Interface specification of the callback

function has been described.

R18UZ0030EJ0104 RENESAS Page 112 of 148
Apr 19, 2019

R-IN32M3 Series

6. Implementation

6.1.2 Gateway mode

Gateway mode is the structure that connects Modbus Serial and Modbus TCP by gateway task. The following are the

items required when using the gateway mode.

(1) Task ID definition

To use the following API as a task, and a Task ID defined in any value.

Task API

function

Modbus_gateway_task

TCP server< Serial device Gateway task

Modbus_tcp_soc_wait_task

Wait for connection task

Modbus_tcp_recv_data_task

TCP receive data Task

Modbus_tcp_req_process_task

TCP request processing task

Modbus_serial_recv_task

Serial receive data task

Modbus_serial_task

Serial request processing task

(2) Eventflag ID definition

The following Event flag ID is required.

Event flag Meaning
ID_FLG_SERIAL Timer and UART interrupt event
ID_FLG_RESP_RDY Response event in Blocking mode
ID_SERIAL_RESP Recveive response event
(3) Mailbox ID definition

The following Mailbox ID is required.
Mailbox ID Meaning

ID_MB_GATEWAY_MBX

Receive gateway process mailbox

ID_MB_TCP_RECV_MBX

TCP receive mailbox

ID_MB_SERIAL_MBX

Serial event mailbox

R18UZ0030EJ0104
Apr 19, 2019

RENESAS

Page 113 of 148

R-IN32M3 Series 6. Implementation

(4) Task generation

It generates a Task to be used in the Modbus stack. Please refer to “programming manual (OS edition)” for description

method. Description example is shown in following figure.

const TSK_TBL static_task_table[] = {

/I CRE_TSK(tskid, {tskatr, exinf, task, itskpri, stksz, stk});
{ID_CONN_TASK, {TA_HLNG, 0, (FP)Modbus_tcp_soc_wait_task, 8, 0x400, NULL}},
{ID_RECV_SOC, {TA_HLNG, 0, (FP)Modbus_tcp_recv_data_task, 8, 0x400, NULL}},
{ID_SERV_TSK, {TA_HLNG, 0, (FP)Modbus_tcp_req_process_task, 8, 0x400, NULL}},
{ID_GATEWAY_TSK, {TA_HLNG, 0, (FP)Modbus_gateway_task, 8, 0x400, NULL}},
{ID_MB_SERIAL_RECV_TSK, {TA_HLNG, 0, (FP)Modbus_serial_recv_task, 8, 0x400, NULL}},
{ID_MB_SERIAL_TSK, {TA_HLNG, 0, (FP)Modbus_serial_task, 8, 0x400, NULL}},

(5) Event flag generation

It generates a Event flag to be used in the Modbus stack. Please refer to “programming manual (OS edition)” for

description method. Description example is shown in following figure.

const FLG_TBL static_eventflag_table[] = {
/I CRE_FLG(flgid, {flgatr, iflgptn});

{ID_FLG_SERIAL, {TA_TFIFO, O}},
{ID_FLG_RESP_RDY, {TA TFIFO, O},
{ID_SERIAL_RESP, {TA_TFIFO, O},

(6) Mailbox generation

It generates a Mailbox to be used in the Modbus stack. Please refer to “programming manual (OS edition)” for

description method. Description example is shown in following figure.

const MBX_TBL static_mailbox_table[] = {
/I CRE_MBX(mbxid, {mbxatr, maxmpri, mprihd});

{ID_MB_SERIAL_MBX, {TA_TFIFO, 0, NULL}},
{ID_MB_GATEWAY_MBX, {TA_TFIFO, 0, NULL}},
{ID_MB_TCP_RECV_MBX, {TA_TFIFO, 0, NULL}},

R18UZ0030EJ0104 RENESAS Page 114 of 148
Apr 19, 2019

R-IN32M3 Series 6. Implementation

(7) Hardware ISR entries

It entries a Hardware ISR to be used in the Modbus stack. Please refer to “programming manual (OS edition)” for

description method. Description example is shown in following figure.

const HWISR_TBL static_hwisr_table[] = {
/linhno, hwisr_syscall, id, setptn

{UAJOTIR_IRQn, HWISR_SET_FLG,ID_FLG_SERIAL, RECV_FLG},
{TAUJ2I1_IRQn, HWISR_SET_FLG,ID_FLG_SERIAL, TIMER_FLG},
{UAJOTIS_IRQn, HWISR_SET_FLG,ID_FLG_SERIAL, UART_STS_FLG},

The above ISR table entry shows the configuration for UART channel 0 and Timer channel 1. If a separate channel is

used, necessary modifications will have to be made.

R18UZ0030EJ0104 RENESAS Page 115 of 148

Apr 19, 2019

R-IN32M3 Series 6. Implementation

(8) Initialzation of Modbus stack

This is the initialization as well as the TCP server mode, but with the following exceptions.

e No registration by Modbus_slave map_init().(But, in order to ensure the internal memory, that needs to be
executed.)

o [Initialize in gateway mode the Modbus_tcp init stack, to add a set of serial communication.

Please refer to Chapter 5.1.1.1 and 5.1.1.2 for description method of each APIs.

Basically initialization is as follows:

/* Enable IP table */
Modbus_tcp_init_ip_table(ENABLE, REJECT);

/* register IP address */
ercd = Modbus_tcp_add_ip_addr("192.168.1.100");
if (ercd = ERR_OK)

return ercd;

}

/* serial connection setting */

st_init_info.u32_baud_rate = BAUD_38400;
st_init_info.u8_parity = PARITY_NONE;
st_init_info.u8_stop_bit = STOP_BIT_ONE;
st_init_info.u8_uart_channel = UART_CHANNEL_ZERO;
st_init_info.u8_timer_channel = TIMER_CHANNEL_ONE;
st_init_info.u32_response_timeout_ ms = 1000;
st_init_info.u32_turnaround_delay_ms = 200;

st_init_info.u32_interframe_timeout_us = 1750;
st_init_info.u32_interchar_timeout_us = 750;
st_init_info.u8_retry_count =3;

/* register functions that performs RS485 direction control */
st_gpio_cfg.fp_gpio_init_ptr = gpio_init;
st_gpio_cfg.fp_gpio_set_ptr = gpio_set;
st_gpio_cfg.fp_gpio_reset_ptr = gpio_reset;

/* register callback functions(only memory allocation) */
Modbus_slave_map_init (&st_slave_map);

/* Initialize Modbus stack by TCP gateway mode */

ercd = Modbus_tcp_init_stack(MODBUS_RTU_MASTER_MODE,
MODBUS_TCP_GW_SLAVE_ENABLE,
ENABLE_MULTIPLE_CLIENT_CONNECTION,
0,
&st_init_info,
&st_gpio_cfg);

if (ercd = ERR_OK)

return ERR_OK;

R18UZ0030EJ0104 RENESAS Page 116 of 148
Apr 19, 2019

R-IN32M3 Series 6. Implementation

6.2 Modbus RTU/ASCII
It's explained to Modbus RTU/ASCII stack in this chapter.

6.2.1 Slave mode

The following are the items required when using the slave mode.

(1) Task ID definition

To use the following API as a task, and a Task ID defined in any value.

Task API Function
Modbus_serial_recv_task Serial receive data task
Modbus_serial_task Serial request processing task

(2) Event flag ID definition

The following Event flag ID is required.

Event flag Meaning
ID_FLG_SERIAL Timer and UART interrupt event
ID_FLG_RESP_RDY Response event in Blocking mode
ID_SERIAL_RESP Recveive response event

(3) Mailbox ID definition
The following Mailbox ID is required.

Mailbox ID Meaning

ID_MB_SERIAL_MBX Serial event mailbox

(4) Task generation

It generates the Task to be used in the Modbus stack. Please refer to “programming manual (OS edition)” for

description method. Description example is shown in following figure.

const TSK_TBL static_task_table[] = {
/I CRE_TSK(tskid, {tskatr, exinf, task, itskpri, stksz, stk});

{ID_MB_SERIAL_RECV_TSK, {TA HLNG, 0, (FP)Modbus_serial_recv _task, 8, 0x400, NULL}},

{ID_MB_SERIAL_TSK, {TA_HLNG, 0, (FP)Modbus_serial_task, 8, 0x400, NULL}},
)
R18UZ0030EJ0104 RENESAS Page 117 of 148

Apr 19, 2019

R-IN32M3 Series 6. Implementation

(5) Event flag generation

It generates the Event flag to be used in the Modbus stack. Please refer to “programming manual (OS edition)” for

description method. Description example is shown in following figure.

const FLG_TBL static_eventflag_table[] = {
/I CRE_FLG(flgid, {flgatr, iflgptn});

{ID_FLG_SERIAL, {TA_TFIFO, 0O},
{ID_FLG_RESP_RDY, {TA_TFIFO, O},
{ID_SERIAL_RESP, {TA_TFIFO, O},

(6) Mailbox generation

It generates the Mailbox to be used in the Modbus stack. Please refer to “programming manual (OS edition)” for

description method. Description example is shown in following figure.

const MBX_TBL static_mailbox_table[] = {
/I CRE_MBX(mbxid, {mbxatr, maxmpri, mprihd});

{ID_MB_SERIAL_MBX, {TA_TFIFO, 0, NULL}},

(7) Hardware ISR entries

It entries the Hardware ISR to be used in the Modbus stack. Please refer to “programming manual (OS edition)” for

description method. Description example is shown in following figure.

const HWISR_TBL static_hwisr_table[] = {
/linhno, hwisr_syscall, id, setptn

{UAJOTIR_IRQn, HWISR_SET_FLG, ID_FLG_SERIAL, RECV_FLG},
{TAUJ2I1_IRQn, HWISR_SET_FLG, ID_FLG_SERIAL, TIMER_FLG},
{UAJOTIS_IRQn, HWISR_SET_FLG, ID_FLG_SERIAL, UART_STS_FLG},

The above ISR table entry shows the configuration for UART channel 0 and Timer channel 1. If a separate channel is

used, necessary modifications will have to be made.

R18UZ0030EJ0104 RENESAS Page 118 of 148
Apr 19, 2019

R-IN32M3 Series 6. Implementation

(8) Initialization of Modbus stack

It performs various initialization, and then start the Modbus stack. Serial slave mode must perform the following by
each APIs.
o Register callback functions corresponding to each the function code.
e Initialize MODBUS routine and start up related task. Since it also performs this initialization in the serial
communication related settings, it set to match the master side.
Please refer to Chapter 5.1.2.1 for description method of each APIs.

Basically initialization is as follows:

/* register callback functions */
st_slave_map.fp_function_code1 =cb_func_code01;
st_slave_map.fp_function_code2 =cb_func_code02;
st_slave_map.fp_function_code3 = cb_func_code03;
st_slave_map.fp_function_code4 = cb_func_code04;
st_slave_map.fp_function_code5 = cb_func_code05;
st_slave_map.fp_function_code6 = cb_func_code06;
st_slave_map.fp_function_code15 = cb_func_code15;
st_slave_map.fp_function_code16 = cb_func_code16;
st_slave_map.fp_function_code23 = cb_func_code23;
Modbus_slave_map_init (&st_slave_map);

/* serial connection setting */

st_init_info.u32_baud_rate = BAUD_38400;
st_init_info.u8_parity = PARITY_NONE;
st_init_info.u8_stop_bit = STOP_BIT_ONE;
st_init_info.u8_uart_channel = UART_CHANNEL_ZERO;
st_init_info.u8_timer_channel = TIMER_CHANNEL_ONE;
st_init_info.u32_response_timeout_ ms = 1000;
st_init_info.u32_turnaround_delay_ms = 200;

st_init_info.u32_interframe_timeout_us = 1750;
st_init_info.u32_interchar_timeout_us = 750;
st_init_info.u8_retry_count =3;

/* register function that performs RS485 direction control */
st_gpio_cfg.fp_gpio_init_ptr = gpio_init;
st_gpio_cfg.fp_gpio_set_ptr = gpio_set;
st_gpio_cfg.fp_gpio_reset_ptr = gpio_reset;

/* Initialize Modbus stack by RTU slave mode */
ercd = Modbus_serial_stack_init(&st_init_info,
&st_gpio_cfg,
MODBUS_RTU_SLAVE_MODE,
1); /* Slave ID */

If ASCII mode is used, API argument will have to change from MODBUS_RTU_SLAVE_MODE to
MODBUS_ASCII_ SLAVE_MODE.

R18UZ0030EJ0104 RENESAS Page 119 of 148
Apr 19, 2019

R-IN32M3 Series 6. Implementation

(9) Implement call back functions

If the function code is instructed to implements the callback function for performing.
Please refer to the item of Section 5.1.1.1 of the Modbus_slave map init API. Interface specification of the callback
function has been described.

R18UZ0030EJ0104 RENESAS Page 120 of 148
Apr 19, 2019

R-IN32M3 Series

6. Implementation

6.2.2 Master mode

Master mode uses the OS resources the same as Slave mode, please refer to (1) ~ (7) in the previous section.The

following are the items required when using the Master mode.

(1) Initialzation of Modbus stack

Initialized in master mode will be the only Modbus_serial stack init.
Please refer to Chapter 5.1.2.1 for a description method of the API.

Basically initialization is as follows:

/* serial connection setting */

st_init_info.u32_baud_rate = BAUD_38400;
st_init_info.u8_parity = PARITY_NONE;
st_init_info.u8_stop_bit = STOP_BIT_ONE;
st_init_info.u8_uart_channel = UART_CHANNEL_ZERO;
st_init_info.u8_timer_channel = TIMER_CHANNEL_ONE;
st_init_info.u32_response_timeout_ ms = 1000;
st_init_info.u32_turnaround_delay_ms = 200;

st_init_info.u32_interframe_timeout_us = 1750;
st_init_info.u32_interchar_timeout_us = 750;
st_init_info.u8_retry_count =3;

/* register function that performs RS485 direction control */
st_gpio_cfg.fp_gpio_init_ptr = gpio_init;
st_gpio_cfg.fp_gpio_set_ptr = gpio_set;
st_gpio_cfg.fp_gpio_reset_ptr = gpio_reset;

/* Modbus stack be initilized in RTU master mode */
ercd = Modbus_serial_stack_init(&st_init_info,
&st_gpio_cfg,
MODBUS_RTU_MASTER_MODE,
0);

If ASCII mode is used, API argument will have to change from MODBUS_RTU_MASTER_MODE to

MODBUS_ASCII MASTER_MODE.

R18UZ0030EJ0104 RENESAS
Apr 19, 2019

Page 121 of 148

R-IN32M3 Series 7. Tutorial by sample application

7. Tutorial by sample application

In this chapter, the way to run the Modbus stack sample application is shown, and the behavior of it is confirmed.

7.1 Modbus TCP server communication

7.1.1 Overview of sample project

In here, the setup procedure to see the Modbus TCP server communication with PC is described. And by using a
simple application on Windows PC, the user can see a demonstration that LED blinking pattern is changed by using Read

coil and write coil command.

71.2 Hardware connection

Regarding the evaluation board for setup demonstration, user can use EC, CL, CEC board by TESSERA technology
Inc., or IAR KickStart Kit by IAR. Through RJ45 port, user can see connection to PC or PLC.
The following figure is the hardware setup image for Modbus TCP communication with CEC board.

Windows PC

Special USB cable
enclosed inl-jet package

' ! Ethernet port

R-IN32M3-CEC Board

IAR ARM-I-jet
In-Circuit Emulator(ICE) &

AC-DC adapter
!:_j Input AC 100 - 240V
‘e Output DC 8V - 3A

DC jackfrom PL0O3B

Figure 7.1 Hardware connection for development infrastructure to Modbus TCP with CEC board

R18UZ0030EJ0104 RENESAS Page 122 of 148
Apr 19, 2019

R-IN32M3 Series 7. Tutorial by sample application

7.1.3 Board IP address setting

Please set the IP address in the following procedure.

(1) Set desired server network address setting in net cfg.c. An example is shown in Figure 7.2

Define Local IP Address

T_NET_ADR gNET_ADR]] = {

{
0x0, /* Reserved */
0x0, /* Reserved */
0xCOA80164, /* 1P address (192.168. 1.100) */
0xCOA80101, [* Gateway (192.168. 1. 1)*/
OxFFFFFFOO, [* Subnet mask (255.255.255. 0) */
}

L

Figure 7.2 The example setting of IP address (in case IP address is 192.168.1.100)

(2) Your PC’s IP-address need to be in the same domain as the R-IN32M3 board. (Please also refer next page as
detail procedure.)
In this example, we will use:
Subnet mask :255.255.255.0
PC IP-address : 192.168.1.101

This is so that server and client are in the same domain.

R18UZ0030EJ0104 RENESAS Page 123 of 148
Apr 19, 2019

R-IN32M3 Series

7. Tutorial by sample application

cf. How to set the PC IP-address

Open the network connections list.

In Windows7: Control panel->Network and Sharing Center->Change adapter settings.

Orgunize = Depale the repfeecrk Spve W
] Loca dren Connecien = Local dren Comnectman i
" Bt | e
WS TwanCAT:lntel PCIEthemet Bdap =
;E Wiehess Networh Confbtion
Likery selected

Double-click (or right-click) on the Local Area Connection, then select "Properties".

Rkl]

Conrection
vk Corractivty
Py Commctnty

Flocks Fatn Enabled
e i]
Spmect OO Mg

Aty

Bytes o, 2 o, 18

i Bropertan. S mabin nagrEe

R18UZ0030EJ0104
Apr 19, 2019

RENESAS

Page 124 of 148

R-IN32M3 Series 7. Tutorial by sample application

Select TCP/IPv4, and push the Properties button.

& TenCAT-Intel POI Ethernet dudaptes [Gigatsl]

This cpnnechion uses Hees followang bema:

o R Clend bt Microsoli Nstwoeks: -
Dretessmrastic Hetwork, Erhances |
Qo5 Packat Schedue

h Filey el Prirshr 5 hoarieg Boe Mlicrocolt Nstbwork s

) i TwanCAT Ethesnet Frotoool

W & Inberrest Probocsd Veesion & [TCRAPE)

Crescription
Temnarrazaon Contiol ProtocolAndemet Protozel The deflsl

wide aled network peolocol that provides commurication
scioas diverse inbercornechsd networks

Set IP-address to 192.168.1.101, and sub net mask to 255.255.255.0

D T —

Ganeral |

You can get [P settings assigned sutomatically if your network supports
this capability. Otherwise, vou need to ask your network admirestr stor
for the appropriste IP seatings.

) Dbtain an 1P address automaticaly
@ [Usge the Following 1P address:

1P address:

Sagbnst mash:

Default gateway:

Obtain DS server address aubomatic by
@) sz the Following DNG server addresses:
Preferred DHS server;

flternate DNS server:

[wsbdate sattings upon axit

R18UZ0030EJ0104 RENESAS Page 125 of 148
Apr 19, 2019

R-IN32M3 Series 7. Tutorial by sample application

714 Demonstration

User can see the simple demonstration with using the sample project included this stack.

7.1.41 Specification of demonstration

By communicating with PC through the Modbus TCP protocol, LED blinking pattern is controlled dynamically. For
this control, Read Coil and Write Coil command is used.

As detail, the following sequence is executed.
(1) PC application is checked input switchN°t¢ by using Modbus “Read coil” command,
(2) According input switch setting value, output port status, which is connected to LED, is updated periodically.
Updating span = ([SW setting value] + 1) x 10 [msec] : when SW value is less than 0x7F
Fixed 10msec : when SW value is 0x7F or more

Note -For TS-R-IN32M3-“CEC” board,

The input switch is not prepared. Since the setting value will be set to fixed 0xFF, then LED
blinking would be updated by 10msec.

- For TS-R-IN32M3-“EC” board,
The input switch is “sw6”. Port input of 8 bits that are connected to the switch are treated
as input data.

- For TS-R-IN32M3-EC board “Lite” included IAR KickStart kit,
The input switch is “sw3”. Port input of 8 bits that are connected to the switch are treated
as input data.

- For TS-R-IN32M3-“CL” board,
The input switch is “sw19”. Port input of 4 bits that are connected to the switch are treated

as input data.

R18UZ0030EJ0104 RENESAS Page 126 of 148
Apr 19, 2019

R-IN32M3 Series 7. Tutorial by sample application

7.1.4.2 How to set up the demonstration

The used workbench file is in the following path.

[TIAR project file]
\r-in32m3_samplesoft\Device\Renesas\RIN32M3\Source\Project\modbus TCP\IAR\main.eww

Organiz: 38 Open ~ m Mew folder ~ [l @&
& CMSIS “ Name .
& Devi B
é;. ::;;as i RAM Debug
1 Serial Flash Boot
© RIN32M3 B
H | settings
%, Include o :
& tin & | boot_norflash.ict
i S' o &1 it serialflachiict
S 2 e
x | iram.icf
& Middleware 2l m"?"
& Broject @ | main.dep
| main.ewd
@ modbus_ n" maf"ew
2 ARM # | main.ewp
& e %) main.eww ‘
. SR "

Figure 7.3 demonstration workbench

Next, user need to change the active project from the tab on the left-upper side from RAM Debug, Serial Flash Boot,
or NOR boot, according to the hardware Switch setting of the evaluation board.

File Edit View Project Ijet/JTAGjet Tools Window Help

Ded@ & iR o Ay emEreoerdh
Workspace =

MHOR Boot

@ 03 drivers
@[3 Metwork

| £ startup
kemel_cfg.c
— Dllibos.a
main.c

L@ (3 Output

I mair

Figure 7.4 selection of project

R18UZ0030EJ0104 RENESAS Page 127 of 148
Apr 19, 2019

R-IN32M3 Series

7. Tutorial by sample application

Please set according to following procedure.

(1) Compile. Download, and run application.

Remark If TS-R-IN32M3-CL board is used, please add “RIN32M3_CL” definition into Defined symbol

in the preprocessor tab of C/C++ compiler as option setting.

e e
T e

o lph] = g Desissetly .

ol siin sasiiivet)
i

o Bl #* Indvialive BORLP Stack o
- [auboss IR epsds
et 0ot
©523 - saE SaEplal]
A teeed e 2SN |
-------- x5 wakihr
[on * i

= Gokg *:
Txd0E6es: w3
Exige6en: Oud
Salniibo Gud
TG0 Dk
Bxdlihd bl Doed

S TR R

nnis tash

Lig

Wi Ot 8, 2074 1654925 Exscufing ensclisedesed) ncion

Ty Ot 2 BN 164905 s, sy)

Tish CHLER, 014 164325 Canndistig Cotkrh i 10 - 241011 an AP ol

1

1

i Tow Gt £ 2014 150826 rabug tms cuscos. b instomion compati, 4 dan

§ Toe Ot P 2004 154976 CPUSIata ~INRESET
Tiee Ot 2 SR 154006 CPU slater OF.

T Car i 2014 1665t Pacogrined CPUD e ledd St dh Comuedd) riph srch ARdT-W
LR

g’%& T Ot £, 004 164356 Tharw wass | wirmioey chatig o infiiieton of o debupging seasion. 7
i Loy T %
Rasdy Lo 12 Colt Lt L
Figure 7.5 AR IDE capture after downloading to Serial Flash.
(2) Open “ModbusDemoApplication.exe” which is included in Modbus stack package.
RI=TEY

FilelF} Help

—Conhection

Connect |

—Serial setting

|ESIE =
| FEIITS ~
RT0 <

INONE Parity >
Il stop bit -

—L0

Coils 0o
Dezcrete Input |00

—PRemote Modbus Server

Part
[502

IP Adress
[1az168.1100

—Slave ID

255

—Connection Timeout

Feady

a000

Figure 7.6 Demo Application capture after open.

R18UZ0030EJ0104
Apr 19, 2019

RENESAS

Page 128 of 148

R-IN32M3 Series

7.T

utorial by sample application

(3) “Connection” is selected to TCP server, and set server IP address (e.g. “192.168.1.100") and Port No(e.g. “502”).

Modbus Demo

File(F) Help

Connection

Serial setting

Connect |

| EEIH =l
RTU -

—L0
Coils 0o
Dezcrete Input |00

—Slave ID

255

—Connection Timeout

"Remote Modbus Server

'192.158.1.100 I 02

a000

Ready

=10l x|

Figure 7.7 After set IP address and Port No.

(4) When “Connect” button is pressed, LED blinking has started with Modbus communication.

Modbus Demo

File(F} Help

—Connection

ITCF‘ Server LI

—Serial setting

Dizconnect I

=1o1x]

“Write Coil” data is displayed

/ |
10 /

|COM3 LI
ISS&DDbps vl
RTU -
INONE Parity vl
|1 ztop bit vl
—Remote Modbus Server
IP Adress Port
192.168.1.100 a0z

WRITE MULTIPLE GOIL ...

caits
Dezcrete Input IIDQ I

—Slave ID

Read Input” result is displayed

|255

—Gonnection Timeout

|5DEID

Figure 7.8 After starting demonstration

R18UZ0030EJ0104
Apr 19, 2019

RENESAS

Page 129 of 148

R-IN32M3 Series 7. Tutorial by sample application

ERAEEREn

Figure 7.9 LED blinking demo image

Destination Brotocel Length - Infs -
61 2015045000 192, 168.1.108 192, 168.1. 181 TCP 60 SRI-62917 [ACK] Seq-241 Ack=-281 Win=1024 Len=0
B2 2.019948000 192,.168.1.108 192, 168.1. 181 Modbus/TCP 66 Response: Trans: 1; Undr: 2550 Func: 157 Wril
63 2.030301000 192.168.1.181 192, 168.1.100 Modbus fTCP B8 Query: Trans: 1: Undt: 255, Funcy 153 Wel.
120033000 192.168.1.106 192.168.1. 181 TCP BE 502+53917 [ACK] Seq=253 Ack=295 Win=1824 Len=8
J139036000 192.168.1.180 192.168.1.101 Modbus/TCP BE Responsie: Tran<: 1: Unit: 255, Func: 153 Wri.
171348600 197 168.1.101 192 168.1. 100 Medbus/TCP 63 Query: Trans: 1: Unit: 255 Fune: 15: Wei
S221929000 192 168.1.100 192 1681 1ol TCP 68 582462917 [ACK] Seqel65 Ack=309 Win=1024 Len=@
L221984000 192 168.1.180 1925681, 101 Modbus [TCP 66 Response: Trans: I; Unit: 255 Func: 15; Wris
L222371000. 192.168.1.181 192 168.1. 108 Modbus/TCP BB Query: Trans: 1 Nelt: 295, Func: 15: Wrei.
L322931000 192.168.1.100 192, 9648.1.101 TCP B8 SE+E2917 [ACK] Seq=277 Ack=323 Win=1824 Len=2
L322934000 192.168.1.100 192, 168.1. 101 Modbus/TCP 66 Response: Trans: 1; Unlt: 255, Fune: 151 Wril
.323357800 192.168.1.181 192, 168.1. 160 Modbus /TCF 68 Query: Trans: 1; Undt: 255, Func: 15: Wri.
CAZIATI000 192, 168.1.100 192, 5648.1. 101 TCP 68 SRa-53917 [ACK] Seq=285 Ack=137 Win=1024 Len-8
LAZIATHE0E 192.168.1.100 192, 168.1. 101 Modbus/TCF 66 Response: Trans: I; Undit: 2550 Func: 152 Neic
LAZAG21P0R 192.168.1.101 192, 168.1. 10 Modbus/TCF 68 Query: Trans: I; Undt: 2550 Fumc: 157 Weil
L524930800 192.168.1.108 192, 168.1. 181 T(P 68 Se2+62917 [ACK] Seq=381 Ack=351 Win=10824 Len=8
.524034000 193.168.1.108 192 168. 1. 101 Modbus/TCR b6 Responie: Trane: 1; Unit: 255, Func: 153 Well
A EISARANGO. A0 AR 1 A6 100 ISR 5 B0k Ml ITED -1 s X, Ao Almbe AR E AR e

¢ ¢ Frame 69: 68 bytes on wire (584 bits), 68 bytes captured (544 bits) on interface @

;b Ethernet 1L, Sre: Micro-S5t_8d:75:db (Bc:89:a5:8d:75:db), Det: Tesseral B2:77 (00:50:cd:dc:22:77)

{ o Internet Protocol Version 4, Src: 192.168.1.181 (192.168.1.181), Dst: 192.168.1.169 (192.168.1.160)

: » Transmission Control Protocel, Src Port: 62017 (B2917), Dst Port: 582 (582), Seq: 389, Ack: 277, Len: 14
§ = Modbus/TCR

;& Modbus

Fenction Code: Weite Multiple Codls (15)

Reference Husber: 8 ud

BoRd 08 5B c2 de 22 77 Bc B a5 Bd 7S db BE 00 45 82 P,
o189 36 1o TE 40 OO 80 06 00 00 0 a8 91 65 <@ a8 6.
8928 91 64 F5 ¢5 @1 F6 ea BF 50 BF @5 F5 8 83 S0 1B .4,
Q030 Fa B4 B4 47 00 DD 00 01 00 0D 00 BE FF OF @0 0D |

eaLe 82 9B 91 18

Figure 7.10 Communication log in Wireshark application

R18UZ0030EJ0104 RENESAS Page 130 of 148
Apr 19, 2019

R-IN32M3 Series

7. Tutorial by sample application

7.2 Modbus RTU/ASCII slave communication

7.2.1

Overview of sample project

In here, the setup procedure to see the Modbus RTU/ASCII slave communication with PC is described. And by using a

simple application on Windows PC, the user can see a demonstration that LED blinking pattern is changed by using Read

coil and write coil command.

7.2.2

Hardware connection

Regarding the evaluation board for setup demonstration, user can use EC, CL, CEC board by TESSERA Technology

Inc.. User can see connection to PC or PLC through RS-485 communication.

Remark IAR Kickstart kit cannot support.

(because board spec is specially for Ethernet)

Please note that the user needs to prepare RS485 transceiver module™°t for RS-485 communication for RS-485

communication with every board. The Table 7.1 is shown that the expected connection pins to RS-485 transceiver.

The Figure 7.11 is the hardware setup image for Modbus RTU/ASCII communication with CEC board. And Figure

7.12 is the detail to connect pins for RS-485 interface.

Table 7.1 Connection pins for RS-485 I/F for Modbus RTU/ASCII

Connected pin | Port resource | R-IN32M3-EC R-IN32M3-CL R-IN32M3-EC R-IN32M3-EC
for RS-485 for R-IN32M3 | Evaluation board Evaluation board Evaluation board KickStart Kit
transceiver (TS-R-IN32M3-EC) (TS-R-IN32M3-CL) (TS-R-IN32M3-CEC) (KSK-RIN32M3EC-LT-IL)
TX P20 (RXDO0) | After removing J22 : 1 pin CN5 : 44 pin RTU/ASCI! is not
R125, connect to (After removing supported.
opposite pin Jumper)
connected LED.
RX P21 (TXDO) After removing J27 : 3 pin CN5 : 46 pin
R126, connect to (After removing
opposite pin Jumper)
connected LED.
DE(/RE) P27 CN14 : 13 pin CN4 : 1 pin CN5 : 52 pin
VCC 3.3V +3.3V +3.3V V3.3_1
GND GND GND GND GND2
Note We have confirmed RS485 communication with following module:
[UART-RS485 transration]
- “RS485 breakout” module from Sparkfun
https://www.sparkfun.com/products/10124
[RS485-USB transration]
- USB to RS-485 Converter from Sparkfun
https://www.sparkfun.com/products/9822
R18UZ0030EJ0104 Page 131 of 148

Apr 19, 2019

RENESAS

https://www.sparkfun.com/products/10124
https://www.sparkfun.com/products/9822

R-IN32M3 Series 7. Tutorial by sample application

Windows PC
Special USB cable - USB port
enclosed inl-jet package

RS485-USB

R-IN32M3-CEC Board

IAR ARM-I-jet
In-Circuit Emulator(ICE) &

AC-DC adapter
Input AC 100 - 240V
Qutput DC 5V - 3A

DC jack from PLO3B

Figure 7.11 Hardware connection for development infrastructure for Modbus RTU/ASCII with CEC board

2225]
,_7

csl/gc. ON1 sw2
Pin MODE Switoh ICE Connector Reset Switch EtherOA'
1 it L LLLLLL LN
- e B
&5 N
2|89
A | ONA/ONS
7| | Extended connector
q:
\ e
I-JET
connector

Figure 7.12 The detail for RS-485 related connection pins

R18UZ0030EJ0104 RENESAS Page 132 of 148
Apr 19, 2019

R-IN32M3 Series 7. Tutorial by sample application

723 Demonstration

User can see the simple demonstration with using the sample project included this stack.

7.2.3.1 Specification of demonstration

By communicating with PC through Modbus RTU/ASCII protocol, LED blinking pattern is controlled dynamically.
For this control, Read Coil and Write Coil command is used.

As detail, the following sequence is executed.
(1) PC application is checked input switch®™°® by using Modbus “Read coil” command,
(2) According input switch setting value, output port status, which is connected to LED, is updated periodically.
Updating span = ([SW setting value] + 1) x 10+200 [msec] : when SW value is less than 0x7F
Fixed 200msec : when SW value is 0x7F or more

Note -For TS-R-IN32M3-“CEC” board,

The input switch is not prepared. Since the setting value will be set to fixed 0xFF, then LED
blinking would be updated by 200msec.

- For TS-R-IN32M3-“EC” board,
The input switch is “sw6”. Port input of 4 bits that are connected to the switch are treated
as input data.

- For TS-R-IN32M3-EC board “Lite” included IAR KickStart kit,
The input switch is “sw3”. Port input of 4 bits that are connected to the switch are treated
as input data.

- For TS-R-IN32M3-“CL” board,
The input switch is “sw19”. Port input of 4 bits that are connected to the switch are treated

as input data.

R18UZ0030EJ0104 RENESAS Page 133 of 148
Apr 19, 2019

R-IN32M3 Series 7. Tutorial by sample application

7.2.3.2 How to set up the demonstration

The used workbench file is in the following path.
[IAR project file]

\r-in32m3_samplesoft\Device\Renesas\RIN32M3\Source\Project\modbus_Serial\[AR\main.eww

mv|h « Project » modbus_Serial » IAR » - |‘f| ‘ Search IAR ,O|

Organize + x Open ~ Burn New folder =~ 0
O Device g Name -
Renesas
Q@ T | RAM Debug
| Serial Flash Boot
% Include
@ e j settings
ibral
dl . W boot_norflash.icf
& Dl:r_[E boot_serialflash.icf
river e
E| init.mac
% Middleware —
& \
Project
0! Proje a main.dep
@ modbus_Serial) "
& | main.ew
ARM
: - main.ewp
[main.eww
o IAR
m modbus TCP | lil b
main.eww Date modified: 2014/10/31 10:30
IARIDE Workspace Size: 600 bytes

Figure 7.13 Demonstration workbench

Next, user need to change the active project from the tab on the left-upper side from RAM Debug, Serial Flash Boot,
or NOR boot, according to the hardware Switch setting of the evaluation board.

File Edit View Project Ijet/JTAGjet Tools Window Help

DF @ & 4 BB o YR EE R PP @
Workspace x
RiM Debug

Serial Flash Boat
MOR Boaot

@ (3 drivers

}-m C3 Metwork
@ 03 startup

[kernel_cfg.c
— Dlibos.a

[main.c

L@ 07 Output

I main

Figure 7.14 Selection of project

R18UZ0030EJ0104 RENESAS Page 134 of 148
Apr 19, 2019

R-IN32M3 Series

7. Tutorial by sample application

And then, for selecting Modbus serial mode from 4 kinds of protocols that is RTU master, RTU slave, ASCII master,
and ASCII slave, user needs to select by compile option.

If you are using IAR workbench, please open the IAR workspace and open “option” setting of active project.

T —

File Edit View Project Ijet/ITAGjet Tools Window Help

DwHd &4

Serial Flash Boat

-

B|o o
x

&

Efa[main - Seri...|
|-@ Ca drivers

|-m Cametwark
|-m L3 startup
kernel_cfy.c
— Dilibosa
main.c

L@ 3 Output

Files i

I mair

Log
Fri Oct 31, 2014 11

Options...

Make
Compile
Rebuild All

Clean
Stop Build
Add

Remove

Rename...
Version Centrol System

Open Containing Folder...
File Properties...

Set as Active

Figure 7.15 Open option setting in IAR EWARM

R18UZ0030EJ0104

Apr 19, 2019

RENESAS

Page 135 of 148

R-IN32M3 Series

7. Tutorial by sample application

Select “C/C++ Compiler” as the category, and select “Preprocessor” tab.

Options for node "main” @
iz Factory Settings
General Options = [Multi-file: Compilation
Runtime Checking Dizcard Unuzed Publics
| Langusge @ | Code | Optimizations | Output [List | Preprocessor || «[r

Assembler

Cutput Convert D lenore standard include directories
Custom Build Additional include dire ctaries: (one per linel

i : §PROJDIRYS .
Buld Actions $PROJDIRY S ¢ /. Finclude - &
Linker $PROJDIRS A 7.7/ F f F JOMSIS Anclude [
{PROJDIRES A 4 S Source /Middlieware fuMet3 finc

Debugger - JPROJDIRE S A S S Source Middleware Subets /Me tApp -
Simulator Preinclude file:

Angel E]
CMSIS DAP Defined symbals: (ane per line)

GDEB Server POSIX AP SUP I || Preprocessor output to file

IAR ROM-moni Preseruve cc.vmme.nts)
Let/TTAGIet il Generate #line directives
Jdink/J-Trace

TI Stellaris

Macraigor B

PE micro

RDI 0K] [Cancel

Figure 7.16 Capture of preprocessor setting

According to the following, please add in “Defined symbols”.

[Compile option setting]
- For Modbus RTU slave : (no need to add)
- For Modbus RTU master : add “MODBUS_MASTER”
- For Modbus ASCII slave : add “MODBUS_ASCII”
- For Modbus ASCII master : add “MODBUS_MASTER” , and “MODBUS_ASCII”

R18UZ0030EJ0104
Apr 19, 2019

RENESAS

Page 136 of 148

R-IN32M3 Series

7. Tutorial by sample application

Next, please set according to following procedure.

(1) Compile. Download, and run application.

Remark If TS-R-IN32M3-CL board is used, please add “RIN32M3_CL”

in preprocessor tab of C/C++ compiler as option setting.

definition into Defined symbol

e e Beaiect Divisnamniy | et et Tools ' fiiwwioss | fiekp
DEPH S i = e O e R T R b oD
Lriaieg :
i B = 3 DRty '
= Gokg *:
ExA06eh: Dnl
I Exige6en: Oud
2 Salniibo Gud
v TG0 Dk
o Bl #* Indvialive BORLP Stack o Al beds fed
F— Lhona Ly e T Eh
8 Pmana i
et 0ot main_taak
[o il

Lig

Vo Oct 7 1074 154325 Evscuing eesclUisedieset) uncion

Ty Ot 2 BN 164905 s, sy)

Tish CHLER, 014 164325 Canndistig Cotkrh i 10 - 241011 an AP ol

T it i 20004 166l Placogrised SPURDe I et Comuetdl il ench AR

Tiow Chct 25, 2014 150826 Crabug s ouces. § istnorioss comparsing - detn waichpoins
sk Ot P 084 154506 Lot ~INFESET

Tt Dt T 04 1RA0TE CPU wlater O

Tar Cict 24 04 164328 Tt wars § wismiaey chatg oy infiniirndon of for dabupgng seasion

iFy

S o i
enty

o1 Call

Sy

Figure 7.17 1AR IDE capture after downloading to Serial Flash.

(2) Set COM setting (baud-rate, data bits, parity, stop bits, flow control) in device
value which is same as setting in in modbus_init() function.

manager on Windows PC to the

[> -4 Mice and cther pointing devices

b u:__] Modems

» B Monitors

b -F Network adapters

b 7] PCMCIA adapters

475" Ports (COM & LPT)

? Intel(R) Active Management Technelogy - SOL (COM3)
-[757 USB Serial Port (COM40} |

o} Processors

b B SD host adapters

b -4 Security Devices

b -% Sound, video and game controllers

[

i
[

M System devices

- i Universal Serial Bus controllers

Figure 7.18 Device manager of Windows PC

R18UZ0030EJ0104
Apr 19, 2019

RENESAS

Page 137 of 148

R-IN32M3 Series

7. Tutorial by sample application

s =

USE Serial Port (COM40) Properties (5]

Fart Settings | Driver | Details

Eits per second: [;33400 v]
Data bits: [a |
Parity. [Nane |
Stop bits: [1 |
Flow contral: Hardware |

[Advanced.. | [Restore Defaults |

[QK] [Canceal]

The setting should be same as following setting in modbus_init() function

Modhus_sTave_nap_init (st _slave_map)3t
ffendif
4

/% serial connection setting #/4
B st_init_info.u32_baud_rate
= st_init_info.ul_parity
st_init_info.ul_stop_hit

BAUD_384005- -
PARITY NONE;- -
STOP_BIT ONE;- -

/% Baud rate far ser
/% Parity for serial
/% Blop hit for seri

B st _init _info.ud_uart _channel = IART_CHAMMEL _FERO;=+ /% The hardware UAR1
= st_init_info.ul_timer_channel = TIMER_CHAMNEL_ONE;-- /% The hardware time

st_init_info.u3d2_response_timeout_ms = 1000;- - - - = /% Response shall be
B st_init_info.u32_turnaround_delay_ms = 200;- - - B = % Delay in between

st_init _info.ud2_interframe_t ineout _us = 17605 - - S Inter frame ¢
= st_init_info.ud2_interchar_timeout _us = 780;- - A% Inter char delay far
= gt_init_info.ul_retry_count =3 - - B = % Number of retries

M register functions that performs RE485 direction contral #/1

= st_gpio_cfg.fp_gpio_init _ptr = geio_init;- - = =+ = /% Gallback functior
- st_gpio_cfz.fp_gpio_set _ptr = gpio_set;- - - -+« /% Gallback functior
st_gpio_cfg.fp_gpio_reset ptr = gpio_reset;-- - - = = /% Callback functior

Figure 7.19 Serial port setting in device manager of Windows PC

R18UZ0030EJ0104
Apr 19, 2019

RENESAS

Page 138 of 148

R-IN32M3 Series 7. Tutorial by sample application

(3) Open “ModbusDemoApplication.exe” which is included in Modbus stack package.

(4) “Connection” is selected to Serial Slave, and select COM port and serial communication parameters.

Modbus Demo - |E||ﬂ
File(F} Help
Connection Connect |
Serial Slave -
Serial zetting —L0

COMD - Coils o
38400bp= - Dezcrete Input IEID

RTU -

—Slave ID

INONE Parity vl D

—Connection Timeout

Remote Modbus Server IEDDIJ
IP Adress Port
192.168.1.100 02

Ready

Figure 7.20 After set COM port and serial paramters

(5) When “Connect” button is pressed, LED blinking has started with Modbus communication.

Modbus Demo o] 4
FilelF} Help
—Caonnection e I
[erial Slave I /— | “Write Coil” data is displayed
—Serial setting LD
|OOM40 ;I Goils iD-i
Igg.mgbpg ,l Descrete Input IDQ
- = —Slave 1D I “Read Input” result is |
INONE Parity vl |1 ‘
Il stop bit vl
—Conhnection Timeout
—Remote Modbus Server |5DEIEI
IP Adress Part
192.168.1.100 502

WRITE MULTIFLE COIL ..

Figure 7.21 After starting demonstration

R18UZ0030EJ0104 RENESAS Page 139 of 148
Apr 19, 2019

R-IN32M3 Series 7. Tutorial by sample application

Figure 7.22 LED blinking demo image

R18UZ0030EJ0104 :{ENESAS Page 140 of 148
Apr 19, 2019

R-IN32M3 Series 7. Tutorial by sample application

7.3 Modbus RTU/ASCII master communication

7.3.1 Overview of sample project

In here, the setup procedure to see the Modbus RTU/ASCII master communication with PC is described. And by using
a simple application on Windows PC, the user can see a demonstration that LED blinking pattern is changed by using

Read coil and write coil command.

7.3.2 Hardware connection
It is same as for Modbus RTU/ASCII slave. Please refer the section 7.2.2 Hardware connection
7.3.3 Demonstration

7.3.3.1 Specification of demonstration

It is almost same as for Modbus RTU/ASCII slave. Please refer the section 7.2.3.1 Specification of demonstration. The

difference is only following.

[LED updating span is fixed to 1 Sec, independent to hardware switch setting.

R18UZ0030EJ0104 RENESAS Page 141 of 148
Apr 19, 2019

R-IN32M3 Series

7. Tutorial by sample application

7.3.3.2

How to set up the demonstration

It is almost same as for Modbus RTU/ASCII slave. Please refer the section 7.2.3.2 How to set up the demonstration the

difference is only following.

(1 For the compiler, please add in “Defined symbols”.

[Compile option setting]

- For Modbus RTU master : add “MODBUS_MASTER”

- For Modbus ASCII master :add “MODBUS_MASTER” , and “MODBUS_ASCII”

Options for node "main”

(=5

Categony:

General Options =
Runtime Checking
Aszsembler
Output Convert|
Custom Build
Build Actions
Linker
Debugger
Simulator
Angel
CMSIS DAP
GDB Server
IAR ROM-moni
T4et/TTAGjet
Jdink/J-Trace
TI Stellaris

m

[Multi-file Compilation
Discard Unused Publics

| Langusge 2 I Ciode I Optimizations IDutput IList | Freprocessar || 4|k

Macraigor

D lenore standard include dire ctories

Additional include dire ctaries: (one per linel

$PROJDIRS S . i E]
$PROJDIRS A A7 Anclude

$PROJDIRS S # .7/ / f 7 FOMSIS Anclude [
JPROJDIRY S F . 4 FSource /Middleware fulet finc

JPROJDIRS S A F . S Source Middleware Subet? /Me tApp -

Preinclude file:

(]

Defined symbals: (ane per line)
POSIX AR SUP

& =l Pre processor output to file
Freseruve comments
Generate #line directives

Factory Settings

PE micro
RDI

ok] [Cancel

Figure 7.23 Capture of preprocessor setting

R18UZ0030EJ0104
Apr 19, 2019

RENESAS

Page 142 of 148

R-IN32M3 Series 7. Tutorial by sample application

(1) Compile. Download, and run application.

(2) Open “ModbusDemoApplication.exe” which is included in Modbus stack package.

(3) “Connection” is selected to Serial Master, and select COM port and serial communication parameters

Modbus Demo 101 x|
Filz(F) Help
—Connection e — |
rSer ial Master 4| |
—Serial getting —L0
COMAD - Coils |D1
33400bps = Descrete nput IDD
RTU -
—Slave ID
1 ztap bit -
—CGonnection Timeout
—Remote Modbus Server IEDEID
IP Adress Port
192.168.1.100 502
Ready

Figure 7.24 After setting port using.

R18UZ0030EJ0104 RENESAS Page 143 of 148
Apr 19, 2019

R-IN32M3 Series 7. Tutorial by sample application

(4) When “Connect” button is pressed, Demo application is ready for Modbus communication.

Modbus Demo o]
FilelFy Help
—Cionnectian Disconnect |
SR = /— | Users can be dynamic changed
—Serial setting o /
[Fomen = Goils e |
|33.mm3|39 ,l Lescrete Input IUU
RETU -
—Slave ID
INONE Parity vl II—
Il =top bit vl
—Gonkection Timeout
—PRemote Modbus Server |5IJDD
IP Adress Part
192.168.1.100 |502
conhect ok

Figure 7.25 After starting demonstration
(5) Once the board is reset, LED blinking will started. <R>

Caution For this demo application, slave device should run before the master program starts to run.

R18UZ0030EJ0104 RENESAS Page 144 of 148
Apr 19, 2019

R-IN32M3 Series 7. Tutorial by sample application

7.4 Modbus TCP server — RTU/ASCII master gateway communication

7.4.1 Overview of sample project

In here, the setup procedure to see the Modbus TCP server — RTU/ASCII master gateway communication with the PC
is described. And by using simple application on Windows PC, the user can see a demonstration that LED blinking

pattern on RTU/ASCII slave module is changed by using Read coil and write coil command through the gateway module.

742 Hardware connection

Regarding the evaluation board for setup demonstration, 2 evaluation boards are needed. One is for gateway module,
and the other is RTU/ASCII slave device.
The following figure is the hardware setup image for Modbus gateway communication with CEC board.

Windows PC
Special USB cable

enclosed inl-jet package

' ! Ethernet port

IAR ARM-I-jet
In-Circuit Emulator(ICE) |

OC®

| AC-DC adapter
U Input AC 100 - 240V
S Output DC &V -3A

DC jack from PLO3EB

Figure 7.26 Hardware connection for development infrastructure for Modbus gateway with CEC board

R18UZ0030EJ0104 RENESAS Page 145 of 148
Apr 19, 2019

R-IN32M3 Series 7. Tutorial by sample application

743 Demonstration

User can see the simple demonstration with using the sample project included this stack.

7.4.3.1 Specification of demonstration

Specification is same as for Modbus TCP written in section 7.1.2. By communicating with PC through Modbus TCP
protocol, LED blinking pattern is controlled dynamically. For this control, Read Coil and Write Coil command is used.

7.4.3.2 How to set up the demonstration
(1) For Modbus RTU/ASCII slave module

It is same as for Modbus RTU/ASCII slave. Please refer to section 7.2.3.2 How to set up the demonstration.

(2) For Modbus gateway module
It is almost same as for Modbus TCP server. Please refer the section 7.1.4.2 How to set up the demonstration. The

difference is only following.
e For the compiler, please add in “Defined symbols”.
[Compile option setting]

- For Modbus gateway :add “MODBUS_GATEWAY”

(3) Open “ModbusDemoApplication.exe” which is included in Modbus stack package.

R18UZ0030EJ0104 RENESAS Page 146 of 148
Apr 19, 2019

R-IN32M3 Series 7. Tutorial by sample application

(4) “Connection” is selected to TCP gateway, and set server IP (e.g. “192.168.1.100”), Port No(e.g. “502”) and Slave
ID(e.g. “17).

Modbus Demo 10l x|
File(F) Help

—Connection Connect |
ITCF‘ Gateway LI I

—Serial getting —L0
ooms = Cails [
324 00bps = Descrete hput IEID
RTU -
—Slave ID
1 ztap bit -
—Connection Timeout
—Remote Modbus Server IEDDIJ

Port
|192.IEB.I.IDD |} HE |

Ready

Figure 7.27 After set parameters

(5) When “Connect” button is pressed, LED blinking has started with Modbus communication.

Modbus Demo ;Iglﬂ
FilelF} Help
—Gaonnection e — I
TGP Gateway =l /— “Write Coil" data is displayed
—Serial setting —Lo /
o - Gols
|33400bp9 ,l Diezcrete hput
r
RTU X7 Slave ID —\—| “Read Input” result is displayed
|NONE Parity .[[‘
Il =top bit vl
—Connection Timeout
—Remote Modbus Server |5IJDEI
IF Adress FPart
|192.183.I.IDD 502

WRITE MULTIFLE COIL ..

Figure 7.28 After starting demonstration

R18UZ0030EJ0104

RENESAS Page 147 of 148
Apr 19, 2019

R-IN32M3 Series 8. Issue and Limitations

8. Issue and Limitations

o The gateway functionality uses the MODBUS serial master code. Thus the gateway only allows Modbus
transactions with supported function codes by the master.

e There is no priority provided for TCP connections. Upon receiving a new connection request, the oldest connection
will be closed.

R18UZ0030EJ0104 RENESAS Page 148 of 148
Apr 19, 2019

| REVISION HISTORY |

R-IN32M3 Series User's Manual: Modbus stack

Rev. Date Description
Page Summary
1.00 Apr 08, 2015 - First edition issued
1.01 Aug 31, 2015 36 Fixed errors in the macro name.
124 | Deleted explanation because the DHCP function can not be used.
125
1.02 Dec 25, 2015 3 Updated the corresponding version of the development tool.
127 | Modify description related to input switch on each evaluation board.
134
134 | Fix update span time by PC application.
1.03 Feb 28, 2017 1 1.2 Sample soft’s varieties deleted.
2 Table 1.2 Development tools update.
1.04 Apr 19, 2019 2 1.2.1 Development tools update.

C- 149

[Memo]

R-IN32M3 Series User’'s Manual: Modbus stack

Publication Date: Rev.1.00 Apr 08.2015
Rev.1.04 Apr 19.2019

Published by: Renesas Electronics Corporation

R-IN32M3 Series User’s Manual
Modbus stack

LENESAS

Renesas Electronics Corporation R18UZ0030EJ0104

LENESANS

SALES OFFICES Renesas Electronics Corporation http://www.renesas.com

Refer to "http://www.renesas.com/" for the latest and detailed information.

Renesas Electronics Corporation
TOYOSU FORESIA, 3-2-24 Toyosu, Koto-ku, Tokyo 135-0061, Japan

Renesas Electronics America Inc.
1001 Murphy Ranch Road, Milpitas, CA 95035, U.S.A.
Tel: +1-408-432-8888, Fax: +1-408-434-5351

Renesas Electronics Canada Limited
9251 Yonge Street, Suite 8309 Richmond Hill, Ontario Canada L4C 9T3
Tel: +1-905-237-2004

Renesas Electronics Europe GmbH
Arcadiastrasse 10, 40472 Dusseldorf, Germany
Tel: +49-211-6503-0, Fax: +49-211-6503-1327

Renesas Electronics (China) Co., Ltd.
Room 101-T01, Floor 1, Building 7, Yard No. 7, 8th Street, Shangdi, Haidian District, Beijing 100085, China
Tel: +86-10-8235-1155, Fax: +86-10-8235-7679

Renesas Electronics (Shanghai) Co., Ltd.
Unit 301, Tower A, Central Towers, 555 Langao Road, Putuo District, Shanghai 200333, China
Tel: +86-21-2226-0888, Fax: +86-21-2226-0999

Renesas Electronics Hong Kong Limited
Unit 1601-1611, 16/F., Tower 2, Grand Century Place, 193 Prince Edward Road West, Mongkok, Kowloon, Hong Kong
Tel: +852-2265-6688, Fax: +852 2886-9022

Renesas Electronics Taiwan Co., Ltd.
13F, No. 363, Fu Shing North Road, Taipei 10543, Taiwan
Tel: +886-2-8175-9600, Fax: +886 2-8175-9670

Renesas Electronics Singapore Pte. Ltd.
80 Bendemeer Road, Unit #06-02 Hyflux Innovation Centre, Singapore 339949
Tel: +65-6213-0200, Fax: +65-6213-0300

Renesas Electronics Malaysia Sdn.Bhd.
Unit No 3A-1 Level 3A Tower 8 UOA Business Park, No 1 Jalan Pengaturcara U1/51A, Seksyen U1, 40150 Shah Alam, Selangor, Malaysia
Tel: +60-3-5022-1288, Fax: +60-3-5022-1290

Renesas Electronics India Pvt. Ltd.

No.777C, 100 Feet Road, HAL 2nd Stage, Indiranagar, Bangalore 560 038, India

Tel: +91-80-67208700

Renesas Electronics Korea Co., Ltd.

17F, KAMCO Yangjae Tower, 262, Gangnam-daero, Gangnam-gu, Seoul, 06265 Korea
Tel: +82-2-558-3737, Fax: +82-2-558-5338

© 2019 Renesas Electronics Corporation. All rights reserved.
Colophon 6.0

http://www.renesas.com
http://www.renesas.com/

	Overview
	1.1 Features
	1.2 Development environment
	1.2.1 Development tools
	1.2.2 Evaluation board

	1.3 Resource Requirements
	1.4 Networking Aspects
	1.5 Concurrency Issues

	2. Basic concepts of R-IN32M3 Modbus stack
	2.1 Supported Protocol standards
	2.2 Design Methodology

	3. System Architecture – Modbus Serial Protocol Stacks
	3.1 Module Decomposition
	3.1.1 Application Interface Layer
	3.1.2 Packet Framing and Parsing Layer
	3.1.3 Connection management, Frame Send and Receive Layer
	3.1.4 Stack Configuration and Management Module

	4. System Architecture – Modbus TCP Protocol Stacks
	4.1 Module Decomposition
	4.1.1 Application Interface Layer
	4.1.2 Packet Framing and Parsing Layer
	4.1.3 Connection management, Frame Send and Receive Layer

	5. Description of application programming interface
	5.1 User Interface API
	5.1.1 Modbus TCP/IP
	5.1.2 Modbus Serial

	5.2 Internal API
	5.2.1 Packet Framing and Parsing API
	5.2.2 Stack Configuration and Management API
	5.2.3 Gateway mode API

	6. Implementation
	6.1 Modbus TCP
	6.1.1 Server mode
	6.1.2 Gateway mode

	6.2 Modbus RTU/ASCII
	6.2.1 Slave mode
	6.2.2 Master mode

	7. Tutorial by sample application
	7.1 Modbus TCP server communication
	7.1.1 Overview of sample project
	7.1.2 Hardware connection
	7.1.3 Board IP address setting
	7.1.4 Demonstration

	7.2 Modbus RTU/ASCII slave communication
	7.2.1 Overview of sample project
	7.2.2 Hardware connection
	7.2.3 Demonstration

	7.3 Modbus RTU/ASCII master communication
	7.3.1 Overview of sample project
	7.3.2 Hardware connection
	7.3.3 Demonstration

	7.4 Modbus TCP server – RTU/ASCII master gateway communication
	7.4.1 Overview of sample project
	7.4.2 Hardware connection
	7.4.3 Demonstration

	8. Issue and Limitations

