Old Company Name in Catalogs and Other Documents

On April 1st, 2010, NEC Electronics Corporation merged with Renesas Technology Corporation, and Renesas Electronics Corporation took over all the business of both companies. Therefore, although the old company name remains in this document, it is a valid Renesas Electronics document. We appreciate your understanding.

Renesas Electronics website: http://www.renesas.com

April 1st, 2010 Renesas Electronics Corporation

Issued by: Renesas Electronics Corporation (http://www.renesas.com)

Send any inquiries to http://www.renesas.com/inquiry.

Notice

- 1. All information included in this document is current as of the date this document is issued. Such information, however, is subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.
- Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of third parties by or arising from the use of Renesas Electronics products or technical information described in this document. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.
- 3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.
- 4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the use of these circuits, software, or information.
- 5. When exporting the products or technology described in this document, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas Electronics products or the technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations.
- 6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein.
- 7. Renesas Electronics products are classified according to the following three quality grades: "Standard", "High Quality", and "Specific". The recommended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular application. You may not use any Renesas Electronics product for any application categorized as "Specific" without the prior written consent of Renesas Electronics. Further, you may not use any Renesas Electronics. Renesas Electronics shall not be in any way liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an application categorized as "Specific" or for which the product is not intended where you have failed to obtain the prior written consent of Renesas Electronics. The quality grade of each Renesas Electronics product is "Standard" unless otherwise expressly specified in a Renesas Electronics data sheets or data books, etc.
 - "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots.
 - "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anticrime systems; safety equipment; and medical equipment not specifically designed for life support.
 - "Specific": Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.
- 8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the use of Renesas Electronics products beyond such specified ranges.
- 9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system manufactured by you.
- 10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.
- 11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas Electronics.
- 12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries.
- (Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majorityowned subsidiaries.
- (Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

Renesas Starter Kit for SH7201

User's Manual

RENESAS SINGLE-CHIP MICROCOMPUTER SuperH™ RISC engine

Table of Contents

Chapter 1. Preface	1
Chapter 2. Purpose	2
Chapter 3. Power Supply	3
3.1. Requirements	3
3.2. Power – Up Behaviour	3
Chapter 4. Board Layout	4
4.1. Component Layout	4
4.2. Board Dimensions	5
Chapter 5. Block Diagram	6
Chapter 6. User Circuitry	7
6.1. Switches	7
6.2. LEDs	7
6.3. Potentiometer	7
6.4. Serial port	8
6.5. LCD Module	8
6.6. Option Links	9
6.7. Oscillator Sources	12
6.8. Reset Circuit	12
Chapter 7. Modes	13
7.1. FDT Settings	13
7.1.1. User program boot mode	14
7.1.2. User Mode	14
Chapter 8. Programming Methods	16
8.1. Programming with the E8	16
8.2. E10A Header	16
Chapter 9. Headers	17
9.1. Microcontroller Headers	17
9.2. Application Headers	21
Chapter 10. Code Development	25
10.1. Overview	25
10.2. Compiler Restrictions	25
10.3. Breakpoint Support	25
10.4. Code located in RAM	25
10.5. Code location	25
10.6. Memory Map	27
10.7. Baud Rate Setting	28
10.8. Interrupt mask sections	28
Chapter 11. Component Placement	29

Chapter 12. Additional Information

Chapter 1. Preface

Cautions

This document may be, wholly or partially, subject to change without notice.

All rights reserved. No one is permitted to reproduce or duplicate, in any form, a part or this entire document without the written permission of Renesas Technology Europe Limited.

Trademarks

All brand or product names used in this manual are trademarks or registered trademarks of their respective companies or organisations.

Copyright

 $^{\odot}$ Renesas Technology Europe Ltd. 2006. All rights reserved.

© Renesas Technology Corporation. 2006. All rights reserved.

© Renesas Solutions Corporation. 2006. All rights reserved.

Website: <u>http://www.renesas.com/</u>

Glossary

BRR	Baud Rate Register
ERR	Error Rate
HMON	Embedded Monitor
RTE	Renesas Technology Europe Ltd.
RSK	Renesas Starter Kit
RSO	Renesas Solutions Corp.
LCD	Liquid Crystal Display
0.011	O such as I Days a such as I had

- CPU Central Processing Unit
- LED Light Emitting Diode
- IVT Interrupt Vector Table

Chapter 2. Purpose

This RSK is an evaluation tool for Renesas microcontrollers.

Features include:

- Renesas Microcontroller Programming.
- User Code Debugging.
- User Circuitry such as switches, LEDs and potentiometer(s).
- Sample Application.
- Sample peripheral device initialisation code.

The CPU board contains all the circuitry required for microcontroller operation.

This manual describes the technical details of the RSK hardware. The Quick Start Guide and Tutorial Manual provide details of the software installation and debugging environment.

Chapter 3. Power Supply

3.1. Requirements

This CPU board operates from a 5V power supply.

A diode provides reverse polarity protection only if a current limiting power supply is used.

All CPU boards are supplied with an E8 debugger. This product is able to power the CPU board with up to 300mA. When the CPU board is connected to another system that system should supply power to the CPU board.

All CPU boards have an optional centre positive supply connector using a 2.0mm barrel power jack.

Warning

The CPU board is neither under not over voltage protected. Use a centre positive supply for this board.

3.2. Power - Up Behaviour

When the RSK is purchased the CPU board has the 'Release' or stand alone code from the example tutorial code pre-programmed into the Renesas microcontroller. On powering up the board the user LEDs will start to flash. Pressing any switch will cause the LEDs to flash at a rate controlled by the potentiometer.

Chapter 4. Board Layout

4.1. Component Layout

The following diagram shows top layer component layout of the board.

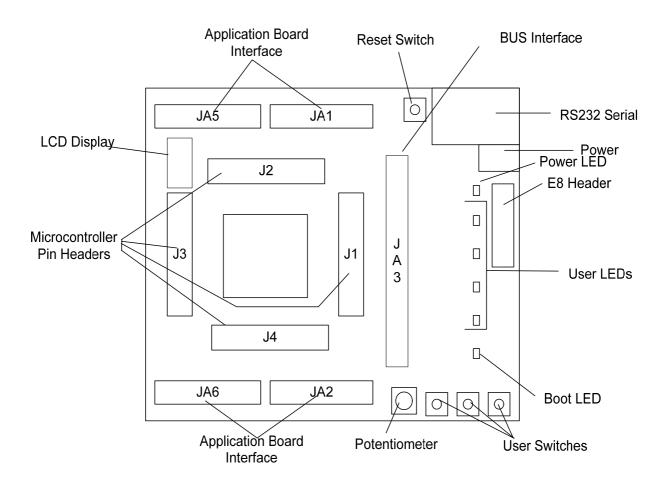


Figure 4-1: Board Layout

4.2.Board Dimensions

The following diagram gives the board dimensions and connector positions. All through hole connectors are on a common 0.1" grid for easy interfacing.

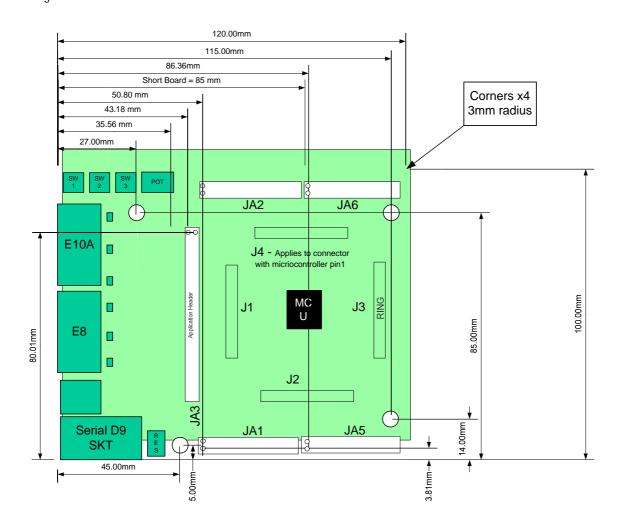


Figure 4-2 : Board Dimensions

Chapter 5. Block Diagram

Figure 5-1 shows the CPU board components and their connectivity.

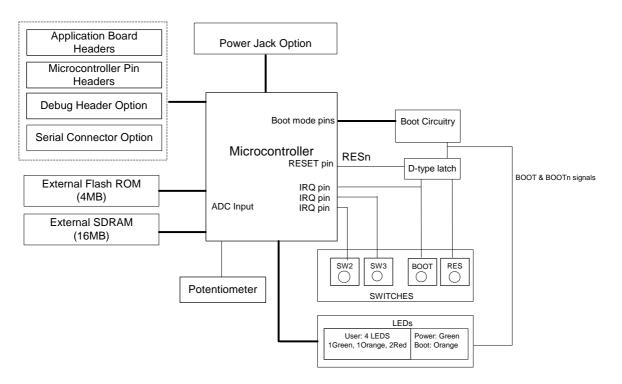


Figure 5-1: Block Diagram

Figure 5-2 shows the connections to the RSK.

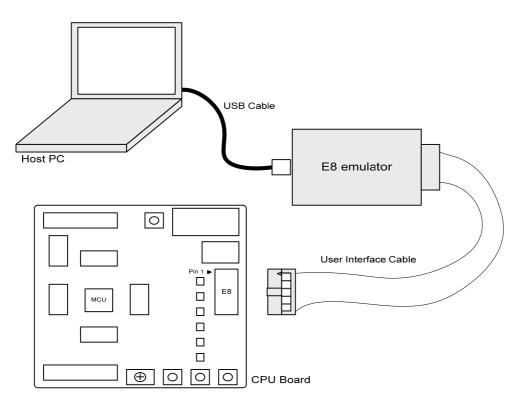


Figure 5-2 : RSK Connctions

Chapter 6. User Circuitry

6.1. Switches

There are four switches located on the CPU board. The function of each switch and its connection are shown in Table 6-1.

Switch	Function	Microcontroller
RES	When pressed; the CPU board microcontroller is reset. RESn, Pin 2	
SW1/BOOT*	Connects to an IRQ input for user controls.	IRQ0, Pin 59
	The switch is also used in conjunction with the RES switch to place	(Port C, bit 22)
	the device in BOOT mode when not using the E8 debugger.	
SW2*	Connects to an IRQ line for user controls. IRQ1 , Pin 58	
		(Port C, bit 23)
SW3*	Connects to an IRQ line for user controls. Also connects to the ADC	IRQ2, Pin 57
	trigger input. The option is a pair of 0R links. For more details on	(Port C, bit 24)
	option links, please refer to Sec 6.6.	

Table 6-1: Switch Functions

*Refer to schematic for detailed connectivity information.

6.2. LEDs

There are six LEDs on the CPU board. The green 'POWER' LED lights when the board is powered. The orange BOOT LED indicates the device is in HMON BOOT mode when lit. The four user LEDs are connected to an IO port and will light when their corresponding port pin is set low.

Table 6-2, below, shows the LED pin references and their corresponding microcontroller port pin connections.

LED Reference (As	Microcontroller Port Pin	Microcontroller Pin	Polarity
shown on silkscreen)	function	Number	
LED0	Port D bit 13	108	Active Low
LED1	Port C bit 13	68	Active Low
LED2	Port C bit 20	61	Active Low
LED3	Port C bit 21	60	Active Low

Table 6-2: LED Port

6.3. Potentiometer

A single turn potentiometer is connected to AN0 of the microcontroller. This may be used to vary the input analog voltage value to this pin between AVCC and Ground.

6.4. Serial port

The microcontroller programming serial port (SCIF5) is connected to the E8 connector. This serial port can optionally be connected to the RS232 transceiver by fitting option resistors and the D connector in position J7. The connections to be fitted are listed in the following table.

Description	Function	Fit for RS232	Remove for E8	Fit for Rs232	Remove for RS232
TxD5	Programming Serial Port	R90	R71	R71	R90
RxD5	Programming Serial Port	R92	R77	R77	R92

Table 6-3: Serial Options Links

The board is designed to accept a straight through RS232 cable.

6.5. LCD Module

The LCD module supplied with the RSK can be connected to the connector J6 for use with the tutorial code. Any module that conforms to the pin connections and has a KS0066u compatible controller can be used. The LCD module uses a 4bit interface to reduce the pin allocation. No contrast control is provided; this must be set on the display module.

Table 6-4 shows the pin allocation and signal names used on this connector.

The module supplied with the CPU board only supports 5V operation.

		J	13		
Pin	Circuit Net Name	Device	Pin	Circuit Net Name	Device
		Pin			Pin
1	Ground	-	2	5V Only	-
3	No Connection	-	4	DLCDRS	70
5	R/W (Wired to Write only)	-	6	DLCDE	69
7	No Connection	-	8	No connection	-
9	No Connection	-	10	No connection	-
11	DLCD4	121	12	DLCD5	120
13	DLCD6	119	14	DLCD7	118

Table 6-4 LCD Module Connections

6.6. Option Links

Table 6-5 below describes the function of the option links contained on this CPU board. The default configuration is indicated by **BOLD** text.

		Option Link Set	lings	
Reference	Function	Fitted	Alternative (Removed)	Related To
R7	FLASH memory	Write protects Flash Memory	Does not write protect Flash Memory	
R8	A-D/D-A	Connects microcontroller pin 92 to	Disconnects microcontroller pin 92	R9
		AN6	from AN6	
R9	A-D/D-A	Connects microcontroller pin	Disconnects microcontroller pin 92 from	R8
		92 to DA0	DA0	
R10	A-D/D-A	Connects microcontroller pin	Disconnects microcontroller pin 93 from	R11
		93 to DA1	DA1	
R11	A-D/D-A	Connects microcontroller pin 93 to	Disconnects microcontroller pin 93	R10
		AN7	from AN7	
R16	Operating mode	Connects MD1 = 0	Does not connect MD1 = 0	R15
R17	Operating mode	Connects MD0 = 1	Does not connect MD0 = 1	R18
R18	Operating mode	Connects MD0 = 0	Does not connect MD0 = 0	R17
R19	Potentiometer	Connects potentiometer to	Disconnects potentiometer from	R21
		microcontroller pin 86	microcontroller pin 86	
R20	SDRAM chip	Enables SDRAM Chip Select	Disables SDRAM Chip Select	
	select			
R21	Analog Input	Connects microcontroller pin 86 to	Disconnects microcontroller pin 86	R19
		ANO	from AN0	
R23	Chip Select	Connects microcontroller pin 81 to	Disconnects microcontroller pin 81	R25
		CS2n	from CS2n	
R24	FLASH chip	Enables FLASH Chip Select	Disables FLASH Chip Select	
	select			
R25	ADTRGn	Connects microcontroller pin	Disconnects microcontroller pin 81 from	R23, R59
		81 to ADTRGn	ADTRGn	
R26	Transceiver	Enables read from Expansion	Disables read from Expansion Connector	
		Connector		
R28	Motor Control	Connects microcontroller pin 80 to	Disconnects microcontroller pin 80	R29
		TRISTn	from TRISTn	
R29	Chip Select	Connects microcontroller pin	Disconnects microcontroller pin 80 from	R28
		80 to CS3n	CS3n	
R30	Write Signal	Connects microcontroller pin 72 to	Disconnects microcontroller pin 72	R33
		WRn	from WRn	
R31	CAN	Connects microcontroller pin	Disconnects microcontroller pin 170 from	R32, R127
		170 to CAN1_STBn	CAN1_STBn	

R32	Motor	Connects microcontroller pin 170	Disconnects microcontroller pin 170	R31
		to UD	from UD	
R33	Write Signal	Connects microcontroller pin 72 to	Disconnects microcontroller pin 72	R30
		WR0n	from WR0n	
R34	Operating mode	Connects MD_CLK1 = 1	Does not connect MD_CLK1 = 1	R36
R35	Operating mode	Connects MD_CLK0 = 1	Does not connect MD_CLK0 = 1	R37
R36	Operating mode	Connects MD_CLK1= 0	Does not connect MD_CLK1 = 0	R34
R37	Operating mode	Connects MD_CLK0= 0	Does not connect MD_CLK0 = 0	R35
R39	Power supply	Connects AVREF to CON_VREF	Disconnects AVREF from CON_VREF	R72
R44	Oscillator X1	Connects external clock source to	Disconnects external clock source	R47
		microcontroller via CON_EXTAL	from microcontroller	
R45	Oscillator X1	Feedback resistor across X1	No feedback	-
R46	Oscillator X1	Connects X1 to microcontroller	Disconnects X1 from microcontroller	-
R47	Oscillator X1	Connects external clock source to	Disconnects external clock source	R44
		microcontroller via CON_XTAL	from microcontroller	
R48	Oscillator X2	Connects external clock source to	Disconnects external clock source	R50
		microcontroller via CON_RTC_X1	from microcontroller	
R49	Oscillator X2	Connects X2 to microcontroller	Disconnects X2 from microcontroller	R51
R50	Oscillator X2	Connects external clock source to	Disconnects external clock source	R48
		microcontroller via CON_RTC_X2	from microcontroller	
R51	Oscillator X2	Connects X2 to microcontroller	Disconnects X2 from microcontroller	R49
R52	Oscillator X2	Feedback resistor across X2	No feedback	-
R54	Serial port	Connects RXD1 to J10	Disconnects RXD1 from J10	R55
R55	Serial port	Connects TXD1 to J10	Disconnects TXD1 from J10	R54
R56	Power supply	Connects AVCC to Board_VCC	Disconnects AVCC from Board_VCC	R57, R72
R57	Power supply	Connects AVCC to CON_AVCC	Disconnects AVCC from CON_AVCC	R56
R59	Switches	Connects SW3 to ADTRGn	Disconnects SW3 from ADTRGn	R25, R63
R60	Serial port	Connects RS323TX to U9	Disconnects RS232TX from U9	R66, R71,
R62	Power supply	Connects GROUND to AVSS	Disconnects GROUND from AVSS	-
R63	Switches	Connects SW3 to IRQ2n	Disconnects SW3 from IRQ2n	R59
R64	Serial port	Connects TxD1 to U9	Disconnects TxD1 from U9	R81
R66	Serial port	Connects TxD0 to U9	Disconnects TxD0 from U9	R60, R71
				R90, R92
R68	Power supply	ply Connects UC_VCC to Disconnects UC_VCC from		R80, R83
		Board_VCC		
R69	Power Supply	Connects CON_5V to Supply	Disconnects CON_5V from Supply	R102
		regulator input	regulator input	
R70	Serial port	Connects RS232RX to U9	Disconnects RS323RX from U9	R73, R77,
				R92

R71	Serial port	Connects serial port PTTX to	Disconnects serial port PTTX from	R60, R66,
		RS232 Serial	RS232 Serial	R90
R72	Power supply	Connects VREF to Board_VCC	Disconnects VREF from Board_VCC	R56, R39
R73	Serial port	Connects RS232 Serial to RxD0	Disconnects RS232 Serial from RxD0	R70, R77,
				R92
R76	Power supply	Connects LCD power to internal	Disconnects LCD power from internal 5V	R102
		5V		
R77	Serial port	Connects serial port PTRX to	Disconnects serial port PTRX from	R70, R73,
		RS232 Serial	RS232 Serial	R92
R78	Serial port	Shuts down RS232 transceiver	Enables RS232 transceiver	R82
R80	Power supply	Connects Board_VCC to	Disconnects Board_VCC from CON_3V3	R68, R83
		CON_3V3		
R81	Serial port	Connects RxD1 to U9	Disconnects RxD1 from U9	R64
R82	Serial port	Enables RS232 transceiver	Shuts down RS232 transceiver	R78
R83	Power supply	Connects 3.3V supply from U8	Disconnects 3.3V supply from U8	R68, R80
		to Board_VCC		
R90	E8 connector	Connects PTTX to E8_TXD on	Disconnects PTTX from E8_TXD	R60, R71
		E8 connector		
R92	E8 connector	Connects PTRX to E8_RXD on	Disconnects PTRX from E8_RXD	R70, R77
		E8 connector		
R102	Power Supply	Connects J11 to Board_VCC	J11 disconnected from Board_VCC	-
R104	CAN transceiver	Connects CAN0_EN to CAN	Disconnects CAN0_EN from CAN	R105
	0	transceiver 0	transceiver	
R106	CAN transceiver	Connects CRx0 to CAN	Disconnects CRx0 from CAN transceiver	-
	0	transceiver 0		
R107	CAN transceiver	Connects 5V to CAN	Disconnects 5V from CAN transceiver	-
	0	transceiver 0 VBAT		
R108	CAN transceiver	Connects CTx0 to CAN	Disconnects CTx0 from CAN transceiver	-
	0	transceiver 0		
R109	CAN transceiver	Connects CAN1_EN to CAN	Disconnects CAN1_EN from CAN	R110
	1	transceiver 1	transceiver	
R111	CAN transceiver	Connects CRx1 to CAN	Disconnects CRx1 from CAN transceiver	-
	1	transceiver 1		
R112	CAN transceiver	Connects CTx1 to CAN	Disconnects CTx1 from CAN transceiver	-
	1	transceiver 1		
R118	CAN transceiver	Connects 5V to CAN	Disconnects 5V from CAN transceiver	-
	1	transceiver 1 VBAT		
R120	CAN transceiver	Connects CAN0_ERRn to	Disconnects CAN0_ERRn from	-
	1	microcontroller pin 173	microcontroller pin 173	

R123	CAN transceiver	Connects CAN0_STBn to	Disconnects CAN0_STBn from	-
	0	microcontroller pin 166	microcontroller pin 166	
R124	CAN transceiver	Connects CAN1_ERRn to	Disconnects CAN1_ERRn from	-
	0	microcontroller pin 174	microcontroller pin 174	
R127	CAN transceiver	Connects CAN1_STBn to R31	Disconnects CAN0_STBn from R31	R31
	0			
R130	Power supply	Connects E8_VCC to the	Disconnects E8_VCC from the regulator	R102
		regulator input	input	
R134	Interrupt	Connects BUSYn from FLASH	Disconnects BUSYn from FLASH	-
		memory chip U3 to microcontroller	memory chip U3 from microcontroller	
		IRQ3n	IRQ3n	

Table 6-5 Option Links

6.7. Oscillator Sources

A crystal oscillator is fitted on the CPU board and used to supply the main clock input to the Renesas microcontroller. Table 6- details the oscillators that are fitted and alternative footprints provided on this CPU board:

Component				
Crystal (X1) Fitted 10MHz (HC49/4H package)				
Crystal (X2) Fitted 32.768kHz (90SMX package)				

Warning: When replacing the default oscillator with that of another frequency, the debugging monitor will not function unless the following are corrected:

- FDT programming kernels supplied are rebuilt for the new frequency
- The supplied HMON debugging monitor is updated for baud rate register settings.

The user is responsible for code written to support operating speeds other than the default. See the HMON User Manual for details of making the appropriate modifications in the code to accommodate different operating frequencies.

6.8. Reset Circuit

The CPU Board includes a simple latch circuit that links the mode selection and reset circuit. This provides an easy method for swapping the device between HMON Boot Mode and User mode. This circuit is not required on customers' boards as it is intended for providing easy evaluation of the operating modes of the device on the RSK. Please refer to the hardware manual for more information on the requirements of the reset circuit.

The reset circuit operates by latching the state of the boot switch (SW1) on pressing the reset button. This control is subsequently used to modify a port pin state to select which code is executed.

The reset is held in the active state for a fixed period by a pair of resistors and a capacitor. Please check the reset requirements carefully to ensure the reset circuit on the user's board meets all the reset timing requirements.

Chapter 7.Modes

The CPU board supports three operating modes in addition to the SH7201 operating modes. These are, firstly a User mode in which the user's application code programmed into FLASH memory executes. Secondly a User Program boot mode which allows FDT to re-program the FLASH memory. Thirdly a HMON boot mode which is used to run and debug user code. Since this device does not have on chip FLASH the user Program boot mode allows programming of FLASH memory all bar the first erase block (this block contains the boot code).

When using the E8 debugger supplied with the RSK the mode transitions between User Program boot mode and User mode or HMON boot mode are executed automatically. The CPU board provides the capability of changing between User mode and HMON Boot modes using a latch circuit. This is only to provide a simple boot control on this board when the E8 is in use with HMON.

To manually enter HMON boot mode, press and hold the SW1/BOOT. The mode pins are held in their boot states while reset is pressed and released. Release the boot button. The BOOT LED will be illuminated to indicate that the microcontroller is in HMON boot mode. In this mode the E8 can be used to make an HMON connection in HEW.

Boot mode selection				
Port pins used to change boot function		Boot function		
Port C Bit 6 (Pin 77)	Port D Bit 14 (Pin 107)			
0	0	User program boot mode		
0	1	(SCIF5 9600 N,8,1 J12 for E8 connection)		
1	0	HMON boot mode		
		(SCIF5 250,000 N,8,1 J12 for E8 connection)		
1	1	User mode		

Table 7.1-1: Boot Mode Selection

7.1. FDT Settings

In the following sections the tables identify the FDT settings required to connect to the board using the E8Direct debugger interface. The E8 Debugger contains the following 'pull' resistors.

E8 Pin	Resistor
D	Pull Up (100k)

Table 7-2: E8 Mode Pin Drives

7.1.1.User program boot mode

The boot mode settings for this CPU board are shown in Table 7-3 below:

LSI State after Reset	FDT Settings
End	D
User program boot Mode	0

Table 7-3: Mode pin settings

The following picture shows these settings made in the E8Direct configuration dialog from HEW.

Pin Settings		
Workspace 40 ph F7 55 Workspace 1 40 ph F7 55 Workspace Industrial Co Display 70 bibles 00 ph F1 Device Imager 00 ph F1 Device Imager 00 ph F1 Device Imager 00 ph F1 Device Imager 1 CD.mob F	Please select the pin settings BOOT Mode using Clock Mode Operating Mode: Boot:	V
1 33 Comms. mot 2 1 Device Image 2 1 2 3 1 Device Image 2 1 2 2 1 2 2 1 2 4 2 1 5 1 Device Image 6 7 1 7 1 2 8 2 1 9 1 2 9 1 2 9 1 2 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 2 1 2 2 1	C D B BOOT Mode T T T Outputs BOOT Mode T T T Setting T T	A ☐ = 0×20 ☐ = 0×00
	< <u>B</u> ack <u>N</u> ext >	Cancel

Figure 7-1: Boot Mode FDT configuration

7.1.2. User Mode

For the device to enter User Mode, reset must be held active while the microcontroller mode pins are held in states specified for User Mode operation. 100K pull up and pull down resistors are used to set the pin states during reset.

LSI State after Reset	FDT Settings	
End	D	
User Mode	1	

	Table	7-1:	Mode	pin	settings
--	-------	------	------	-----	----------

Pin Settings		
Workspace 48 DA FF 58	Please select the pin settings	
	USER Mode using Clock Mode	0 🔻
Workspace' Industrial Cr Display: 10 0 FEI Display: 10 0 FEI Display: 10 0 FEI Target files on 0 0 FEI Target files on 0 0 Construction of the Construction 0 Construction of the Construc	Operating Mode: User:	•
A 7E E8 B1 TSBKeyboardimi 1 5E 8A 33 4S Comms.mot	C D B	Α
6 Device Image	USER Mode USER Mode	A □ = 0x20
3 B 2 IA 20 S Drive mot	USER Mode 🗖 🔽 🗖	☐ = 0x20
6 F0 58 FD 512 Algorithm.ms E 5D 9A DE A3 C5 64 85 97 8 24 D4 4D 75 54 AD 2D F6	USER Program Mode Setting	☐ = 0x20
8 4F EF-84 B0 83 6F-85 1E 5		
	< <u>B</u> ack <u>N</u> ex	t> Cancel

Figure 7-2: User mode FDT configuration

Chapter 8. Programming Methods

All but the first erase block of the Flash device can be programmed when the device is in User program boot mode. Once in this mode, the boot-loader program attempts an FDT connection with a host (for example a PC) through SCIF5 (J12) at 9600 N,8,1 with no flow control. On establishing a connection with the microcontroller, the host may then transmit program data to the microcontroller via the appropriate programming port.

Table 8-1 below shows the programming port for this Renesas Microcontroller and its associated pins

Programming Port Table – Programming port pins and their CPU board signal names				
SCIF5	TXD5, Pin 79	RXD5, Pin 78		
CPU board Signal Name	PTTX	PTRX		

Table 8-1: Serial Port Boot Channel

8.1.Programming with the E8

The Flash Development Toolkit (FDT) is supplied to allow programs to be loaded directly on to the board using the E8. The E8 holds pin D low (connected to SCK5, Pin 78) and resets the CPU invoking the User program boot mode described above. This starts the FDT User boot mode programming kernel. For further information see the User Boot sample code and the FDT kernel code.

8.2.E10A Header

This device supports an optional E10A debugging interface. The E10A provides additional debugging features including hardware breakpoints and hardware trace capability. (Check with the website at <u>www.renesas.com</u> or your distributor for a full feature list).

Modifications to support E10A Debugger			
J13	Fit		

Table 8-2: E10A connections

Chapter 9. Headers

9.1. Microcontroller Headers

Table 9-1 to Table 9-4 show the microcontroller pin headers and their corresponding microcontroller connections. The header pins connect directly to the microcontroller pin unless otherwise stated.

J1					
Pin	Circuit Net Name	Device Pin	Pin	Circuit Net Name	Device Pin
1	GND	-	23	A(5)	23
2	RESn	2	24	A(6)	24
3	UC_VCC	-	25	A(7)	25
4	NMI	4	26	A(8)	26
5	GND	-	27	A(9)	27
6	CON_RTC_X1*	7	28	A(10)	28
7	CON_RTC_X2*	6	29	A(11)	29
8	GND	-	30	A(12)	30
9	CON_XTAL*	9	31	A(13)	31
10	COM_EXTAL*	10	32	A(14)	32
11	GND	-	33	A(15)	33
12	CKIO*	12	34	A(16)	34
13	UC_VCC	-	35	A(17)	35
14	MD_CLK0	14	36	A(18)	36
15	MD_CLK1	15	37	A(19)	37
16	GND	-	38	GND	-
17	A(0)	17	39	A(20)	39
18	UC_VCC	-	40	UC_VCC	-
19	A(1)	19	41	A(21)	41
20	A(2)	20	42	A(22)	42
21	A(3)	21	43	A(23)	43
22	A(4)	22	44	Not connected	-

* marks pins where a the link to the microcontroller pin is open circuit due to unfitted link (link ID in brackets)

Table 9-1: J1 microcontroller header

	J2						
Pin	Circuit Net Name	Device Pin	Pin	Circuit Net Name	Device Pin		
1	GND	-	23	SDCKE	67		
2	DREQ3	46	24	LED1	68		
3	DACK3	47	25	DLCDE	69		
4	DACT3	48	26	DLCDRS	70		
5	DTEND3	49	27	WR1n	71		
6	CTx0	50	28	WR0n_WRn	72		
7	CRx0	51	29	RDn	73		
8	CTx1	52	30	GND	-		
9	UC_VCC	-	31	SDCS0n	75		
10	CRx1	54	32	UC_VCC	-		
11	GND	-	33	РТСК	77		
12	IRQ3n	56	34	PTRX	78		
13	IRQ2n	57	35	PTTX	79		
14	IRQ1n	58	36	CS3n_TRISTn	80		
15	IRQ0n	59	37	CS2n_ADTRGn	81		
16	LED3	60	38	CS1n	82		
17	LED2	61	39	CS0n	83		
18	DQM1	62	40	AVCC	-		
19	DQM0	63	41	VREF	-		
20	SDWEn	64	42	ADPOT_AN0	86		
21	SDCASn	65	43	AN1	87		
22	SDRASn	66	44	AN2	88		

Table 9-2: J2 microcontroller header

	J3								
Pin	Circuit Net Name	Device Pin	Pin	Circuit Net Name	Device Pin				
1	AN3	89	23	TxD1	111				
2	AN4	90	24	SCK0	112				
3	AN5	91	25	RxD0	113				
4	AN6_DA0	92	26	TxD0	114				
5	AN7_DA1	93	27	SCK4	115				
6	AVSS	-	28	RxD4	116				
7	100	95	29	TxD4	117				
8	101	96	30	DLCD7	118				
9	102	97	31	DLCD6	119				
10	103	98	32	DLCD5	120				
11	IO4	99	33	DLCD4	121				
12	IO5	100	34	GND	-				
13	UC_VCC	-	35	PIN123	123				
14	106	102	36	PIN124	124				
15	GND	-	37	GND	-				
16	107	104	38	UDTRSTn	126				
17	SCL2	105	39	UC_VCC	-				
18	SDA2	106	40	UDTMS	128				
19	LED0	108	41	UDTDO	129				
20	BOOTn	107	42	UDTDI	130				
21	SCK1	109	43	UDTCK	131				
22	RxD1	110	44	ASEBRKn	132				

Table 9-3: J3 microcontroller header

J4							
Pin	Circuit Net Name	Device Pin	Pin	Circuit Net Name	Device Pin		
1	ASEMDn	133	23	GND	-		
2	MD1	134	24	TIOC3A	154		
3	MD0	135	25	UC_VCC	-		
4	WDT_OVFn	136	26	Up	158		
5	GND	-	27	TIOC3C	159		
6	D(0)	138	28	Un	160		
7	UC_VCC	-	29	Vp	161		
8	D(1	140	30	Wp	162		
9	D(2)	141	31	Vn	163		
10	D(3)	142	32	Wn	164		
11	D(4)	143	33	CAN0_EN	165		
12	D(5)	144	34	CAN0_STBn	166		
13	D(6)	145	35	UC_VCC	-		
14	D(7)	146	36	CAN1_EN	168		
15	D(8)	147	37	GND	-		
16	D(9)	148	38	UD_CAN1_STBn	170		
17	D(10)	149	39	TMO0	171		
18	D(11)	150	40	TMRI0	172		
19	D(12)	151	41	CAN1_ERRn*	174		
20	D(13)	152	42	CAN0_ERRn*	173		
21	D(14)	153	43	UC_VCC	-		
22	D(15)	154	44	MRESn	176		

Table 9-4: J4 microcontroller header

9.2. Application Headers

1

Table 9-5 and Table 9-6 below show the standard application header connections.

Note: Asterisk indications apply to all tables in this section

* marks pins where a the link to the microcontroller pin is via a 100R resistor and to BOARD VCC via a 4k7 resistor (100R ID & 4k7 ID)

** marks pins where a the link to the microcontroller pin is open circuit due to unfitted link (link ID in brackets)

*** marks pins where a the link to the microcontroller pin is via a fitted OR link (link ID in brackets)

	JA1								
Pin	Header Name	CPU board	Device Pin	Pin	Header Name	CPU board	Device Pin		
		Signal Name				Signal Name			
1	5V	CON_5V	-	14	DAC1	DA1	93*** (R10)		
2	0V(5V)	GROUND	-	15	IO_0	IO0	95		
3	3V3	CON_3V3	-	16	IO_1	I01	96		
4	0V(3V3)	GROUND	-	17	IO_2	IO2	97		
5	AVcc	CON_AVCC	84** (R57)	18	IO_3	103	98		
6	AVss	AVSS	94	19	IO_4	IO4	99		
7	AVref	CON_VREF	85** (R39)	20	IO_5	IO5	100		
8	ADTRG	ADTRGn	57** (R59)	21	IO_6	106	101		
9	AD0	AN0	86** (R21)	22	IO_7	107	102		
10	AD1	AN1	87	23	IRQ3	IRQ3n	56		
11	AD2	AN2	88	24	IIC_EX	-	-		
12	AD3	AN3	89	25	IIC_SDA	SDA2	106* (R13 & R4)		
13	DAC0	DA0	92*** (R9)	26	IIC_SCL	SCL2	105* (R12 & R3)		

Table 9-5: JA1 Standard Generic Header

	JA2								
Pin	Header Name	CPU board	Device Pin	Pin	Header Name	CPU board	Device Pin		
		Signal Name				Signal Name			
1	RESn	RESn	2	14	Un	Un	160		
2	EXTAL	CON_EXTAL	10** (R44)	15	Vp	Vp	161		
3	NMIn	NMI	4	16	Vn	Vn	163		
4	Vss1	GROUND	-	17	Wp	Wp	162		
5	WDT_OVF	WDT_OVFn	136	18	Wn	Wn	164		
6	SCIaTX	TxD0	114	19	TMR0	TMO0	171		
7	IRQ0	IRQ0n	59	20	TMR1	TIOC3A	156		
8	SCIaRX	RXD0	113	21	TRIGa	TMRI0	172		
9	IRQ1	IRQ1n	58	22	TRIGb	TIOC3C	159		
10	SCIaCK	SCK0	112	23	IRQ2	IRQ2n	57		
11	UD	UD	170** (R32)	24	TRISTn	TRISTn	80** (R28)		
12	CTSRTS	-	-	25	Reserved				
13	Up	Up	158	26	Reserved				

Table 9-6: JA2 Standard Generic Header

	JA3							
Pin	Header Name	CPU board	Device Pin	Pin	Header Name	CPU board	Device Pin	
		Signal Name				Signal Name		
1	BA(0)	BA(0)	-	26	BWRn	BWRn	-	
2	BA(1)	BA(1)	-	27	BCS1n	BCS1n	-	
3	BA(2)	BA(2)	-	28	BCS2n	BCS2n	-	
4	BA(3)	BA(3)	-	29	BD(8)	BD(8)	-	
5	BA(4)	BA(4)	-	30	BD(9)	BD(9)	-	
6	BA(5)	BA(5)	-	31	BD(10)	BD(10)	-	
7	BA(6)	BA(6)	-	32	BD(11)	BD(11)	-	
8	BA(7)	BA(7)	-	33	BD(12)	BD(12)	-	
9	BA(8)	BA(8)	-	34	BD(13)	BD(13)	-	
10	BA(9)	BA(9)	-	35	BD(14)	BD(14)	-	
11	BA(10)	BA(10)	-	36	BD(15)	BD(15)	-	
12	BA(11)	BA(11)	-	37	BD(16)	BD(16)	-	
13	BA(12)	BA(12)	-	38	BD(17)	BD(17)	-	
14	BA(13)	BA(13)	-	39	BD(18)	BD(18)	-	
15	BA(14)	BA(14)	-	40	BD(19)	BD(19)	-	
16	BA(15)	BA(15)	-	41	BD(20)	BD(20)	-	
17	BD(0)	BD(0)	-	42	BD(21)	BD(21)	-	
18	BD(1)	BD(1)	-	43	BD(22)	BD(22)	-	
19	BD(2)	BD(2)	-	44	BSDCLK	BSDCLK	-	
20	BD(3)	BD(3)	-	45	BCS3n	BCS3n	-	
21	BD(4)	BD(4)	-	46	Bus Control		-	
22	BD(5)	BD(5)	-	47	BWR1n	BWR1n	-	
23	BD(6)	BD(6)	-	48	BWR0n	BWR0n	-	
24	BD(7)	BD(7)	-	49	Data Bus Strobe		-	
25	BRDn	BRDn	-	50	Reserved		-	

Table 9-7: JA3 Standard Generic Header

	JA5								
Pin	Header Name	CPU board	Device Pin	Pin	Header Name	CPU board	Device Pin		
		Signal Name				Signal Name			
1	AD4	AN4	90	13	Reserved				
2	AD5	AN5	91	14	Reserved				
3	AD6	AN6	92** (R8)	15	Reserved				
4	AD7	AN7	93** (R11)	16	Reserved				
5	CAN1TX	CTx0	50	17	Reserved				
6	CAN1RX	CRx0	51	18	Reserved				
7	CAN2TX	CTx1	52	19	Reserved				
8	CAN2TX	CTx1	54	20	Reserved				
9	Reserved			21	Reserved				
10	Reserved			22	Reserved				
11	Reserved			23	Reserved				
12	Reserved			24	Reserved				

	JA6								
Pin	Header Name	CPU board	Device Pin	Pin	Header Name	CPU board	Device Pin		
		Signal Name				Signal Name			
1	DREQ	DREQ3	46	13	Reserved				
2	DACK	DACK3	47	14	Reserved				
3	TEND	DTEND3	49	15	Reserved				
4	STBYn	DACT3	48	16	Reserved				
5	RS232TX	RS232TX	(R60)****	17	Reserved				
6	RS232RX	RS232RX	(R70)****	18	Reserved				
7	SCIbRX	RxD1	110	19	Reserved				
8	SCIbTX	TxD1	111	20	Reserved				
9	SCIcTX	TxD4	117	21	Reserved				
10	SCIbCX	SCK1	109	22	Reserved				
11	SCIcCK	SCK4	115	23	Reserved				
12	SCIcRX	RxD4	116	24	Reserved				

Table 9-9: JA6 Standard Generic Header

**** This signal is only connected to the named link, which is not fitted to the board. For details refer to the RSKSH7201 circuit schematics

page 5

Chapter 10. Code Development

10.1. Overview

Note: For all code debugging using Renesas software tools, the CPU board must be connected to a PC USB port via an E8. An E8 is supplied with the RSK product.

The HMON embedded monitor code is modified for each specific Renesas microcontroller. HMON enables the High-performance Embedded Workshop (HEW) development environment to establish a connection to the microcontroller and control code execution. Breakpoints may be set in memory to halt code execution at a specific point.

Unlike other embedded monitors, HMON is designed to be integrated with the user code. HMON is supplied as a library file and several configuration files. When debugging is no longer required, removing the monitor files and library from the code will leave the user's code operational. However, because the first block of FLASH memory is used to connect to HMON or FDT (depending on the boot sequence used) the final user code needs to be located specifically for the RSK. See section 10.6 for more detail on the RSK's memory map.

The HMON embedded monitor code must be compiled with user software and downloaded to the CPU board, allowing the users' code to be debugged within HEW.

Due to the continuous process of improvements undertaken by Renesas the user is recommended to review the information provided on the Renesas website at <u>www.renesas.com</u> to check for the latest updates to the Compiler and Debugger manuals.

10.2. Compiler Restrictions

The compiler supplied with this RSK is fully functional for a period of 60 days from first use. After the first 60 days of use have expired, the compiler will default to a maximum of 256k code and data. To use the compiler with programs greater than this size you will need to purchase the full tools from your distributor.

Warning: The protection software for the compiler will detect changes to the system clock. Changes to the system clock back in time may cause the trial period to expire prematurely.

10.3. Breakpoint Support

Limited breakpoints can be located in ROM code. However, code located in RAM may have unlimited breakpoints. To debug with less intrusion you need to purchase the E10A-USB on-chip debugger at additional cost.

10.4. Code located in RAM

Double clicking in the breakpoint column in the HEW code window sets the breakpoint. Breakpoints will remain unless they are double clicked to remove them. (See the Tutorial Manual for more information on debugging with the HEW environment.)

10.5. Code location

The CPU starts execution from reset vectors located in the first FLASH erase block and runs the boot code. The boot code checks the state of pin 77 (Port C bit 6) for entry to FDT boot programming mode and the state of pin 107 (Port D bit 14) for entry to HMON for debugging. If neither of the pins are asserted LOW the boot code emulates the reset action of the CPU from the addresses shown in the following table. For more information, refer to the tutorial linker section map.

Section	Description	Start Location	Size (H'bytes)
CRSTVECT	Reset Vectors (Power on reset and Manual reset)	H' 0001 0000	0x0010

Table 10-1: User Reset Vector Table location

10.6. Memory Map

The memory map shown in this section visually describes the locations of program code sections related to HMON, the FDT kernels and the supporting code within the ROM/RAM memory areas of the microcontroller.

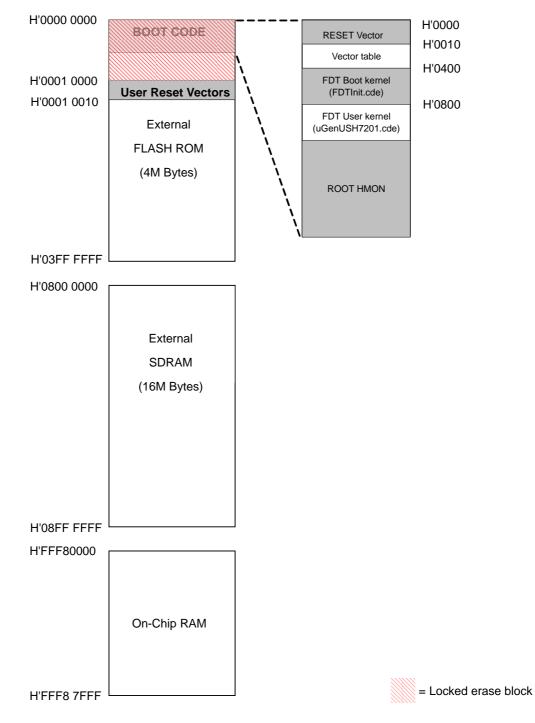


Figure 10-1: Memory Map

10.7. Baud Rate Setting

HMON is initially set to connect at 250000Baud. The value set in the baud rate register for the microcontroller must be altered if the user wishes to change either the serial communication baud rate of the serial port or the operating frequency of the microcontroller. This value is defined in the hmonserialconfiguser.h file, as SCI_CFG_BRR (see the Serial Port section for baud rate register setting values). The project must be re-built and the resulting code downloaded to the microcontroller once the BRR value is changed. Please refer to the HMON User Manual for further information.

10.8. Interrupt mask sections

HMON has an interrupt priority of 14. Modules using interrupts should be set to lower than this value (13 or below), so that serial communications and debugging capability is maintained.

Chapter 11. Component Placement

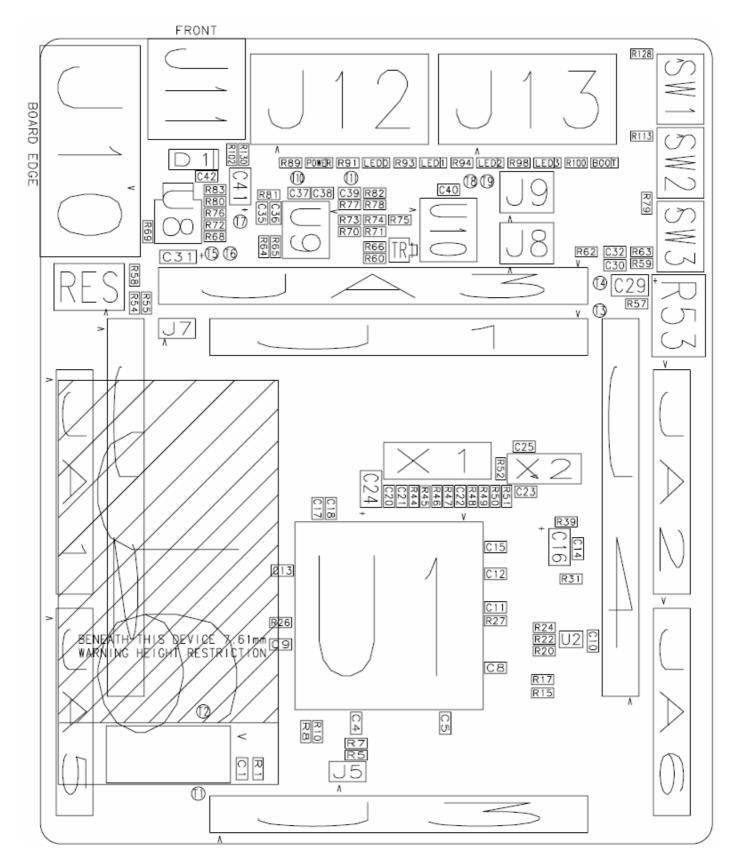


Figure 11-1: Component Placement (Top Layer)

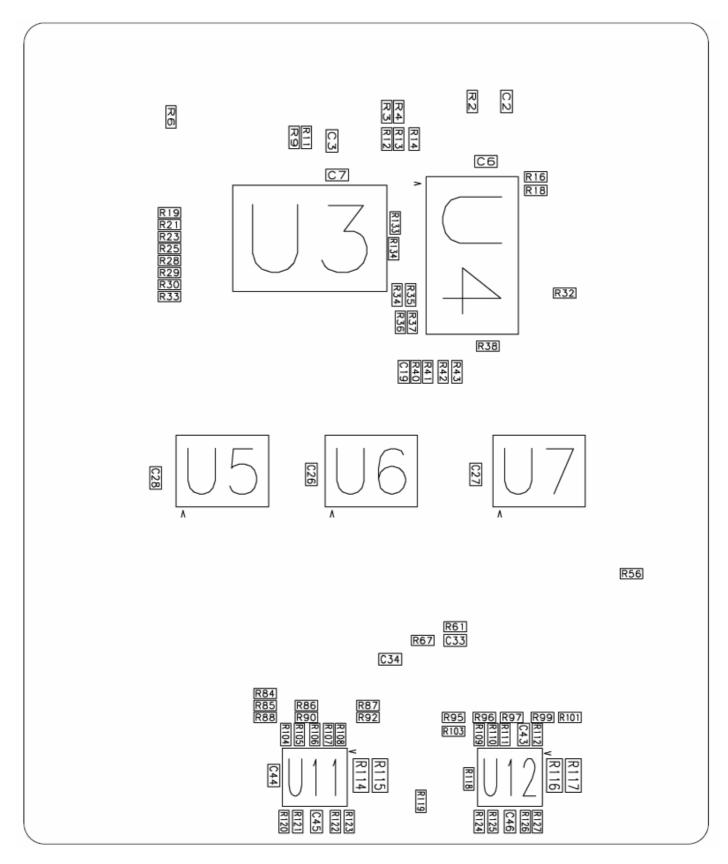


Figure 11-2: Component Placement (Bottom Layer)

Chapter 12. Additional Information

For details on how to use High-performance Embedded Workshop (HEW), refer to the HEW manual available on the CD or installed in the Manual Navigator.

For information about the SH7201 microcontrollers refer to the SH7201 Group Hardware Manual

For information about the SH7201 assembly language, refer to the SH Series Programming Manual

Online technical support and information is available at: http://www.renesas.com/renesas_starter_kits

Technical Contact Details

- America: techsupport.rta@renesas.com
- Europe: <u>tools.support.eu@renesas.com</u>
- Japan: <u>csc@renesas.com</u>

General information on Renesas Microcontrollers can be found on the Renesas website at: <u>http://www.renesas.com/</u>

 Renesas Starter Kit for SH7201

 User's Manual

 Publication Date
 Rev.1.00 31 August 2006

 Published by:
 Renesas Technology Europe Ltd.

 Duke's Meadow, Millboard Road, Bourne End

 Buckinghamshire SL8 5FH, United Kingdom

©2006 Renesas Technology Europe and Renesas Solutions Corp., All Rights Reserved.

Renesas Starter Kit for SH7201 User's Manual

Renesas Electronics Corporation 1753, Shimonumabe, Nakahara-ku, Kawasaki-shi, Kanagawa 211-8668 Japan