To our customers,

Old Company Name in Catalogs and Other Documents

On April 1%, 2010, NEC Electronics Corporation merged with Renesas Technology
Corporation, and Renesas Electronics Corporation took over all the business of both
companies. Therefore, although the old company name remains in this document, it is a valid
Renesas Electronics document. We appreciate your understanding.

Renesas Electronics website: http://www.renesas.com

April 1%, 2010
Renesas Electronics Corporation

Issued by: Renesas Electronics Corporation (http://www.renesas.com)

Send any inquiries to http://www.renesas.com/inquiry.

LENESANS

10.

11.

12.

Notice

All information included in this document is current as of the date this document is issued. Such information, however, is
subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please
confirm the latest product information with a Renesas Electronics sal es office. Also, please pay regular and careful attention to
additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.

Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights
of third parties by or arising from the use of Renesas Electronics products or technical information described in this document.
No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights
of Renesas Electronics or others.

Y ou should not ater, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.

Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of
semiconductor products and application examples. Y ou are fully responsible for the incorporation of these circuits, software,
and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by
you or third parties arising from the use of these circuits, software, or information.

When exporting the products or technology described in this document, you should comply with the applicable export control
laws and regulations and follow the procedures required by such laws and regulations. 'Y ou should not use Renesas
Electronics products or the technology described in this document for any purpose relating to military applications or use by
the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and
technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited
under any applicable domestic or foreign laws or regulations.

Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics
does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages
incurred by you resulting from errors in or omissions from the information included herein.

Renesas Electronics products are classified according to the following three quality grades: “Standard”, “High Quality”, and
“Specific’. The recommended applications for each Renesas Electronics product depends on the product’s quality grade, as
indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular
application. You may not use any Renesas Electronics product for any application categorized as “ Specific” without the prior
written consent of Renesas Electronics. Further, you may not use any Renesas Electronics product for any application for
which it is not intended without the prior written consent of Renesas Electronics. Renesas Electronics shall not be in any way
liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an
application categorized as“ Specific” or for which the product is not intended where you have failed to obtain the prior written
consent of Renesas Electronics. The quality grade of each Renesas Electronics product is“ Standard” unless otherwise
expressly specified in a Renesas Electronics data sheets or data books, etc.

“Standard”: Computers; office equipment; communications equipment; test and measurement equipment; audio and visual
equipment; home el ectronic appliances, machine tools; persona electronic equipment; and industria robots.

“High Quality”: Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-
crime systems; safety equipment; and medical equipment not specifically designed for life support.

“Specific™: Aircraft; agrospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or
systems for life support (e.g. artificial life support devices or systems), surgical implantations, or heathcare
intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.

Y ou should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics,
especialy with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation
characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or
damages arising out of the use of Renesas Electronics products beyond such specified ranges.

Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have
specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further,
Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to
guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a
Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire
control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because
the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system
manufactured by you.

Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental
compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable
laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS
Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with
applicable laws and regulations.

This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas
Electronics.

Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this
document or Renesas Electronics products, or if you have any other inquiries.

(Note 1) “Renesas Electronics’ as used in this document means Renesas Electronics Corporation and also includes its majority-

owned subsidiaries.

(Note2) “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.

LENESAS

-
»
)
ﬁ\
»
<
)
>
-
o

M3T-MR32R V.3.50

Reference Manual
Real-time OS for M32R Family

Renesas Electronics
WWW.renesas .com ReV. 1.00 2003.06

* Microsoft, MS-DOS, Windows, and Windows NT are registered trademarks of Microsoft Corporation in the U.S. and other countries.
* IBM and AT are registered trademarks of International Business Machines Corporation.

* Intel and Pentium are registered trademarks of Intel Corporation.

» Adobe, Acrobat, and Acrobat Reader are trademarks of Adobe Systems Incorporated.

+ All other brand and product names are trademarks, registered trademarks or service marks of their respective holders.

Keep safety first in your circuit designs!
® Renesas Technology Corporation and Renesas Solutions Corporation put the maximum effort into making semiconductor products
better and more reliable, but there is always the possibility that trouble may occur with them. Trouble with semiconductors may lead to
personal injury, fire or property damage. Remember to give due consideration to safety when making your circuit designs, with
appropriate measures such as (i) placement of substitutive, auxiliary circuits, (ii) use of nonflammable material or (iii) prevention
against any malfunction or mishap.

Notes regarding these materials

® These materials are intended as a reference to assist our customers in the selection of the Renesas Technology product best suited
to the customer's application; they do not convey any license under any intellectual property rights, or any other rights, belonging to
Renesas Technology Corporation, Renesas Solutions Corporation or a third party.

® Renesas Technology Corporation and Renesas Solutions Corporation assume no responsibility for any damage, or infringement of
any third-party's rights, originating in the use of any product data, diagrams, charts, programs, algorithms, or circuit application
examples contained in these materials.

® All information contained in these materials, including product data, diagrams, charts, programs and algorithms represents information
on products at the time of publication of these materials, and are subject to change by Renesas Technology Corporation and
Renesas Solutions Corporation without notice due to product improvements or other reasons. It is therefore recommended that
customers contact Renesas Technology Corporation, Renesas Solutions Corporation or an authorized Renesas Technology product
distributor for the latest product information before purchasing a product listed herein. The information described here may contain
technical inaccuracies or typographical errors. Renesas Technology Corporation and Renesas Solutions Corporation assume no
responsibility for any damage, liability, or other loss rising from these inaccuracies or errors. Please also pay attention to information
published by Renesas Technology Corporation and Renesas Solutions Corporation by various means, including the Renesas home
page (http://www.renesas.com).

® When using any or all of the information contained in these materials, including product data, diagrams, charts, programs, and
algorithms, please be sure to evaluate all information as a total system before making a final decision on the applicability of the
information and products. Renesas Technology Corporation and Renesas Solutions Corporation assume no responsibility for any
damage, liability or other loss resulting from the information contained herein.

® Renesas Technology semiconductors are not designed or manufactured for use in a device or system that is used under
circumstances in which human life is potentially at stake. Please contact Renesas Technology Corporation, Renesas Solutions
Corporation or an authorized Renesas Technology product distributor when considering the use of a product contained herein for any
specific purposes, such as apparatus or systems for transportation, vehicular, medical, aerospace, nuclear, or undersea repeater use.

® The prior written approval of Renesas Technology Corporation and Renesas Solutions Corporation is necessary to reprint or
reproduce in whole or in part these materials.

® |f these products or technologies are subject to the Japanese export control restrictions, they must be exported under a license from
the Japanese government and cannot be imported into a country other than the approved destination. Any diversion or reexport
contrary to the export control laws and regulations of Japan and/or the country of destination is prohibited.

® Please contact Renesas Technology Corporation or Renesas Solutions Corporation for further details on these materials or the
products contained therein.

For inquiries about the contents of this document or product, fill in the text file the installer generates in the following directory and email
to your local distributor.
\SUPPORT\Product-name\SUPPORT.TXT

Renesas Tools Homepage http://www.renesas.com/en/tools

Conte

Chapter

nts

1 Interpreting the System Call Reference

1.1. Interpreting the System Call Reference

12. N

ecessary Stack Size

1.3. Stack Size Calculation Method

1.3.1.
1.3.2.

User Stack Calculation Method
System Stack Calculation Method

Chapter 2 System Call Reference

2.1. Task Management Functions

N N U\ U\ g\ QU U I I

N RONRNPNNOONNRRNRPNNNNNND
~NoO o bhhWN—-O

N

2.2.1.
222
2.2.3.
2.24.
2.2.5.
2.2.6.
2.2.7.
2.2.8.
2.2.9.

. cre_tsk (Create Task)

. del_tsk(Delete Task)

. sta_tsk(Start Task)

. ista_tsk(Start Task)

. ext_tsk(Exit Task)

. exd_tsk(Exit and Delete Task)
. ter_tsk(Terminate Task)

. dis_dsp(Disable Dispatch)

. ena_dsp(Enable Dispatch)

. chg_pri(Change Task Priority)
. ichg_pri(Change Task Priority)
. rot_rdq(Rotate Ready Queue)
. irot_rdq(Rotate Ready Queue)
. rel_wai(Release Task Wait)

. irel_wai(Release Task Wait)

. get_tid(Get Self Task ID)

. ref_tsk(Refer Task Status)

Synchronization Functions Attached to Task

sus_tsk(Suspend Task)
isus_tsk(Suspend Task)
rsm_tsk(Resume Task)
irsm_tsk(Resume Task)
slp_tsk(Sleep Task)
tslp_tsk(Sleep Task with Timeout)
wup_tsk(Wakeup Task)
iwup_tsk(Wakeup Task)
can_wup(Cancel Wakeup Task)

2.3. Eventflags

2.3.1.
2.3.2.
2.3.38.
2.3.4.
2.3.5.
2.3.6.
2.3.7.
2.3.8.
2.3.9.

cre_flg(Create EventFlag)
del_flg(Delete EventFlag)

set_flg(Set EventFlag)

iset_flg(Set EventFlag)

clr_flg(Clear EventFlag)

wai_flg(Wait EventFlag)

twai_flg(Wait EventFlag with Timeout)
pol_flg(Poll EventFlag)

ref_flg(Refer EventFlag Status)

2.4. Semaphore

Contents

241.
242
243.
244
2.45.
24.6.
24.7.
24.8.

cre_sem(Create Semaphore)
del_sem(Delete Semaphore)
sig_sem(Signal Semaphore)
isig_sem(Signal Semaphore)

wai_sem(Wait on Semaphore)
twai_sem(Wait on Semaphore with Timeout)
preq_sem(Poll and Request Semaphore)
ref_sem(Refer Semaphore Status)

2.5. Mailbox

2.5.1.
2.5.2.
2.5.3.
2.54.
2.55.
2.5.6.
2.5.7.
2.5.8.

cre_mbx(Create Mailbox)

del_mbx(Delete Mailbox)

snd_msg(Send Message to Mailbox)
isnd_msg(Send Message to Mailbox)
rcv_msg(Receive Message from Mailbox)
trcv_msg(Receive Message with Timeout)
prcv_msg(Poll and Receive Message)
ref_mbx(Refer Mailbox Status)

2.6. Messagebuffer

2.6.1.
2.6.2.
2.6.3.
2.6.4.
2.6.5.
2.6.6.
2.6.7.
2.6.8.
2.6.9.

cre_mbf(Create Messagebuffer)

del_mbf(Delete Massagebuffer)

snd_mbf(Send Message to Messagbuffer)
tsnd_mbf(Send Message to Messagbuffer with Timeout)
psnd_mbf(Poll and Send Messagebuffer)
rcv_mbf(Receive Messagebuffer)

trcv_mbf(Receive Messagebuffer with Timeout)
prcv_mbf(Poll and Receive Messagebuffer)
ref_mbf(Refer Messagebuffer Status)

2.7. Rendezvous

2.71.
2.7.2.
2.7.3.
2.74.
2.7.5.
2.7.6.
2.7.7.
2.7.8.
2.7.9.

cre_por(Create Port for Rendezvous)
del_por(Delete Port for Rendezvous)

cal_por(Call Port for Rendezvous)

tcal_por(Call Port for Rendezvous with Timeout)
pcal_por(Poll and Call Port for Rendezvous)
acp_por(Accept Port for Rendezvous)
tacp_por(Accept Port for Rendezvous with Timeout)
pacp_por(Poll and Accept Port for Rendezvous)
fwd_por(Forward Rendezvous to Other Port)

2.7.10. rpl_rdv(Reply Rendezvous)
2.7.11. ref_por(Refer Port Status)

2.8. Interrupt Management Function

2.8.1.
2.8.2.
2.8.3.
2.84.

def_int(Define Interrupt Handler)
ret_int(Return from Interrupt Handler)
loc_cpu(Lock CPU)

unl_cpu(Unlock CPU)

2.9. Memorypool Management Function

2.91.
2.9.2.
2.93.
2.94.
2.9.5.
2.9.6.
29.7.
2.9.38.
2.9.09.

cre_mpf(Create Fixed-size Memorypool)
del_mpf(Delete Fixed-size Memorypool)
get_blf(Get Fixed-size Memory Block)

tget_blf(Get Fixed-size Memory Block with Timeout)
pget_blf(Poll and Get Fixed-size Memory Block)
rel_blf(Release Fixed-size Memory Block)
irel_blf(Release Fixed-size Memory Block)
ref_mpf(Refer Fixed-size Memorypool Status)
cre_mpl(Create Variable-size Memorypool)

101
103
106
108
111
114
116

118

118
121
123
126
129
131
133
136
138

141

141
144
146
149
152
155
158
161
164
167
169

171

171
173
174
176

178

178
181
183
186
189
191
193
195
197

2.9.10. del_mpl(Delete Variable-size Memorypool)

2.9.11. get_blk(Get Variable-size Memory Block)

2.9.12. tget_blk(Get Variable-size Memory Block with Timeout)
2.9.13. pget_blk(Poll and Get Variable-size Memory Block)
2.9.14. rel_blk(Release Variable-size Memory Block)

2.9.15. ref_mpl(Refer Variable-size Memorypool Status)

2.10. Time Management Function

2.10.1. set_tim(Set Time)

2.10.2. get_tim(Get Time)

2.10.3. dly_tsk(Delay Task)

2.10.4. def_cyc(Define Cyclic Handler)

2.10.5. act_cyc (Activate Cyclic Handler)

2.10.6. ref_cyc(Refer Cyclic Handler Status)

2.10.7. ref_alm(Refer Alarm Handler Status)
2.11. System Management Function

2.11.1. get_ver(Get Version Information)

2.11.2. ref_sys(Refer System Status)

2.11.3. def_exc(Define Exception Handler)
2.12. Implementation-Dependent System Call

2.12.1. vclr_ems(Clear Exception Mask)

2.12.2. vset_ems(Set Exception Mask)

2.12.3. vras_fex(Raise Forcibly Exception)

2.12.4. vret_exc(Return Exception Handler)

2.12.5. vrst_msg(Reset Message)

2.12.6. vrst_blf (Reset Fixed-Memory Block)

2.12.7. vrst_blk(Reset Variable-Memory Block)

2.12.8. vrst_mbf (Reset Message Buffer)

2.13. Implementation-Dependent System Call(Mailbox)

2.13.1. vcre_mbx(Create Mailbox)

2.13.2. vdel_mbx(Delete Mailbox)

2.13.3. vsnd_mbx(Send Message to Mailbox)
2.13.4. visnd_mbx(Send Message to Mailbox)
2.13.5. vrcv_mbx(Receive Message from Mailbox)
2.13.6. vircv_mbx(Receive Message with Timeout)
2.13.7. vprcv_mbx(Poll and Receive Message)
2.13.8. vref_mbx(Refer Mailbox Status)

2.13.9. vrst._ mbx(Reset Message)

Chapter 3 Appendix
3.1. List of System calls
3.2. List of Error code
3.3. Assembly Language Interface
3.4. CLanguage Interface
3.5. Data Type

3.6. Common Constants and Packet Format of Structure

Index 295

200
202
205
208
210
212

214

214
216
218
220
223
225
227

229

229
232
235

239

239
241
243
245
247
249
251
253

255

255
258
260
262
264
266
269
271
273

275
276
280
281
285
289
290

Chapter 1 Interpreting the System Call
Reference

2 1.1 Interpreting the System Call Reference

1.1. Interpreting the System Call Reference

The system call reference is written in the following format:
[(System call name)]
System callname — the function of the system call

[(Calling by the assembly language)]

-include “mr32r.inc”
Calling by the assembly language

<< Argument >>

Explanation of system call parameters
Parameters are written as macro arguments.

Argument Size Explanation
name

The size is indicated by the following symbols:
[=«] 1-byte data
[=«] 2-byte data
[#*++] 4—byte data

<< Register setting >>

A value is shown that is set the register after issuing a system call macro.

Register name | Contents after system call issuance
*1 *2

*1 Register name. Written in this column are R0,R1,R2,R3.R4.R5.R6

*2 Indicates the content that is set in each register. Description '--' means that

the content is saved if the register is set to be used, and that the content is

indeterminate if the register is not set to be used.

PSW is such that the values of SM, IE, and C before a system call are saved; BSM,

BIC and BC are indeterminate.

The registers used by each (return) parameter are approximately predetermined as

follows:
RO register (32 bits) Function code and Error code
R1 register (32 bits) ID number of object
R2 register (32 bits) Packet address, other parameters
R3 register (32 bits) None of the above (wfmode, blksz, etc.)
R4 register (32 bits) Time out value
R5 register (32 bits) The start address of message
R6 register (32 bits) Rendezvous bits pattern

[(Calling by the C language)]
Calling an MR32R function from the C language
<< Argument >>
Declaration of argument type
<< Return value >>

Description of the return value resulted from a call
Note that the types used in the system call reference are defined in the include

1.1 Interpreting the System Call Reference

file "mr32r.h"The definitions are as Appendix.

[(Error codes)]

Error code name Error code value The meaning of Error code

Error code character strings such as E_OK are defined in "mr32r.h" by using
"#define" and in "mr32r.inc" by using ".EQU" To determine errors, use these
defined character strings.1

[(Function description)]
Detail functional description

[(Usage example)]
Usage example

' If an error code value is directly written, the compatibility with the future versions is not assured.

4 1.2 Necessary Stack Size

1.2. Necessary Stack Size
Table 1.1 lists the stack sizes (system stack) used by system calls that can be issued from
tasks. If the system call issued from task, system uses user stack. If the system call issued
from handler, system uses system stack.

() means the stack size when using DCC/M32R. * means it uses user stack.

Table 1.1 Stack Sizes Used by System Calls Issued from Tasks (in bytes)

System call System call processing C language I/F
CC32R TW32R CC32R TW32R
DCC/M32R DCC/M32R
cre_tsk 60 76(64) 4 4
del_tsk 28 44(44) 4 4
sta_tsk 0 0 4 4
ext_tsk 0 0 0 0
exd_tsk 28 44(44) 0 0
ter tsk 0 0 4 4
dis_dsp 0 0 4 4
ena_dsp 0 0 4 4
chg_pri 0 0 4 4
rot_rdq 0 0 4 4
rel wai 0 0 4 4
sus_tsk 0 0 4 4
rsm_tsk 0 0 4 4
slp_tsk 0 0 4 4
tslp_tsk 0 0 4 4
wup_tsk 0 0 4 4
cre_flg 0 0 4 4
del flg 0 0 4 4
set_flg 0 0 4 4
wai_flg 0 0 8 8
twai_flg 0 0 8 8
cre_sem 0 0 4 4
del_sem 0 0 4 4
sig_sem 0 0 4 4
wai_sem 0 0 4 4
twai_sem 0 0 4 4
cre_mbx 60 76(64) 4 4
del_mbx 28 44(44) 4 4
snd_msg 0 0 4 4
rcv_msg 0 0 4 4
trcv_msg 0 0 4 4
cre_mbf 60 76(64) 4 4
del_mbf 28 44(44) 4 4
snd_mbf 0 0 4 4
tsnd_mbf 0 0 4 4
psnd_mbf 0 0 4 4
rcv_mbf 0 0 4 4
trcv_mbf 0 0 4 4
prcv_mbf 0 0 4 4

1.2 Necessary Stack Size

System call System call processing C language I/F
CC32R TW32R CC32R TW32R
DCC/M32R DCC/M32R
cre_por 0 0 4 4
del_por 0 0 4 4
cal_por 0 0 4 4
tcal_por 0 0 4 4
pcal por 0 0 4 4
acp_por 0 0 8 8
tacp_por 0 0 8 8
pacp_por 0 0 8 8
fwd _por 0 0 4 4
rpl_rdv 0 0 4 4
def int 0 0 4 4
loc_cpu 0 0 4 4
unl_cpu 0 0 4 4
cre_mpf 60 76(64) 4 4
del_mpf 28 44(44) 4 4
get blf 0 0 4 4
tget_blf 0 0 4 4
rel_blf 0 0 4 4
cre_mpl 68 84(72) 4 4
del_mpl 28 44(44) 4 4
get blk 68 88(72) 4 4
tget_blk 68 88(72) 4 4
pget_blk 68 88(72) 4 4
rel_blk 20 20(32) 4 4
dly tsk 0 0 4 4
def cyc 0 0 4 4
def_exc 60 76(64) 4 4
vclr_ems 0 0 4 4
vset ems 0 0 4 4
vras_fex 0 0 4 4
vrst_blf 0 0 4 4
vrst_blk 40 20(32) 4 4
vrst_mbf 0 0 4 4
vrst_msg 0 0 4 4
vcre_mbx 0 0 4 4
vdel_mbx 0 0 4 4
vsnd_mbx 0 0 4 4
vrcv_mbx 0 0 4 4
vircv._mbx 0 0 4 4
vrst_mbx *16 *16 4 4
vret_exc 0 0 4 4

Table 1.2 lists the stack sizes (system stack) used by system calls that can be issued from
handlers.

1.2 Necessary Stack Size

Table 1.2 Stack Sizes Used by System Calls Issued from Handlers (in bytes)

System call System call processing C language I/F
CC32R TW32R CC32R TW32R
DCC/M32R DCC/M32R

ista_tsk 24 24 4 4
ichg_pri 28 28 4 4
irot_rdq 32 32 4 4
irel_wai 32 32 4 4
isus_tsk 28 28 4 4
irsm_tsk 24 24 4 4
iwup_tsk 32 32 4 4
iset_flg 44 44 4 4
isig_sem 36 36 4 4
isnd_msg 36 36 4 4
ret_int 0 0 0 0
irel_blf 32 32 4 4
visnd_mbx 0 0 4 4

Table 1.3 lists the stack sizes (system stack) used by system calls that can be issued from
both tasks and handlers.

Table 1.3 Stack Sizes Used by System Calls Issued from Tasks and Handlers (in bytes)

System call System call processing C language I/F
CC32R TW32R CC32R TW32R
DCC/M32R DCC/M32R
get tid 16 16 4 4
ref_tsk 16 16 4 4
can_wup 20 20 4 4
clr_flg 16 16 4 4
pol_flg 20 20 4 4
ref flg 16 16 4 4
preq_sem 16 16 4 4
ref sem 20 20 4 4
prcv_msg 28 28 4 4
ref_mbx 20 20 4 4
ref_mbf 20 20 4 4
ref _por 16 16 4 4
pget_blf 24 24 4 4
ref mpf 28 28 4 4
ref_mpl 16 16 4 4
set_tim 16 16 4 4
get_tim 16 16 4 4
act_cyc 20 20 4 4
ref cyc 20 20 4 4
ref_alm 28 28 4 4
get_ver 28 28 4 4
ref_sys 16 16 4 4
vrst_msg 16 16 4 4
vprcv._mbx 24 24 4 4
vref _mbx 28 28 4 4

1.3 Stack Size Calculation Method

1.3. Stack Size Calculation Method

The MR32R provides two kinds of stacks: the system stack and the user stack. The stack
size calculation method differ between the stacks.
® User stack
This stack is provided for each task. Therefore, writing an application by using the
MR32R requires to allocate the stack area for each stack.
® System stack
This stack is used inside the MR32R or during the execution of the handler.

When a task issues an system call, the MR32R switches the user stack to the system
stack. The system stack uses interrupt stack.

Task MR32R system call processing portion

User Stack

Register save
Stack switching

System call
processing

XXX XXX() System Stack

Task Selection

Stack switching
Register return

User Stack

Figure 1.1 System Stack and User Stack

1.3 Stack Size Calculation Method

The system stack and the user stack for each task are allocated by the stack section in

memory.

EIT

System Stack

User stack of
Task ID No.1

User stack of
Task ID No.2

User stack of
Task ID No.n

Stack Section

Figure 1.2

Layout of Stacks

1.3 Stack Size Calculation Method 9

1.3.1. User Stack Calculation Method

User stacks must be calculated for each task. The following shows an example for
calculating user stacks in cases when an application is written in the C language and when
an application is written in the assembly language.

® \When an application is written in the C language

For an application written in C, you can obtain user stack size in line with the way given
below.

1. The stack size that tasks use

2. The stack size that the interface routines of C use

3. The stack size consumed by issuing system calls
In using MR32R, secure 80 bytes if you issue the only system calls that can be issued
by tasks.

If you issue system calls that can be issued by both tasks and handlers, secure a stack
size by reference to the stack sizes shown in Table 1.3.

With two or more system calls issued, calculate that the maximum of the stack sizes
consumed by these system calls amounts to the size the MR32R uses.

The sum of the three sizes - 1, 2, and 3 above - becomes the user stack size.

® \When an application is written in the assembly language

1. The stack size that the user program uses
Obtain a size used to save registers in the stack

2. The stack size consumed by issuing system calls
In using MR32R, secure 80 bytes if you issue the only system calls that can be issued
by tasks.

If you issue system calls that can be issued by both tasks and handlers, secure a stack
size by reference to the stack sizes shown in Table 1.3 .

With two or more system calls issued, calculate that the maximum of the stack sizes
consumed by these system calls amounts to the size the MR32R uses.

The sum of the two sizes - 1 and 2 above - becomes the user stack size.

Figure 1.3 shows an example of calculating a user stack.

10 1.3 Stack Size Calculation Method

Stack growing direction

v

Stack size to be used for
calling funcl.

4bytes
<>

funcl() 16bytesd+8bytes (Clanguage I/F)

get_tid

80bytesd(context size)+4bytes

(Clanguage I/F)
T~

sta_tsk

A
A 4

88hytes

Figure 1.3 Example of User Stack Size Calculation

1.3 Stack Size Calculation Method 1

1.3.2. System Stack Calculation Method
The system stack is most often consumed when an interrupt occurs during system call
processing followed by the occurrence of multiple interrupts.2 The necessary size (the
maximum size) of the system stack can be obtained from the following relation:

Necessary size of the system stack = a. + 2Bi(+7)

The maximum system stack size among the system calls to be used.’?

When sta_tsk, ext_tsk, slp_tsk, and cre_tsk are used for example, according to
theTable 1.1 ,each of system stack size is the following.

System call System Stack Size
cre_tsk 60 bytes

sta_tsk 0 bytes

ext_tsk 0 bytes

slp_tsk 0 bytes

Therefore,the maximum system stack size among the system calls to be used is the 60
bytes of cre_tsk.

® i
The stack size to be used by the interrupt handler. The details will be described later.
oy

Stack size used by the system clock interrupt handler. This is detailed later.

2 After switchover from user stack to system stack

® Refer Section 1.2 for the system stack size used for each individual system call.

12 1.3 Stack Size Calculation Method

o:The maximum system stack size among the system calls to be used.

BuThe system stack size to be used by the interrupt handler.

p1

AV

Interrupt

B2

AV

Interrupt

_______ Bn

The necessary system stack size

N

Figure 1.4 System Stack Calculation Method

1.3 Stack Size Calculation Method 13

[(Stack size Bi used by interrupt handlers)]
The stack size used by an interrupt handler that is invoked during a system call is the sum of
the following 3 sizes.

O The context save area
O The maximum stack extent the subroutines use when called by the
interrupthandling routine®.
O the extent user programs use.
You can calculate the extent of used stack in line with the manner given above regardless of
whether you write your programs in C or in assembly language.

\/\ Context (80 bytes)
<—>
I nterrupt 12 bytes

Interrupt control processing
(Calculation of interrupt vector,
save interrupt level registers, etc.) 40 bytes

iset_flg

ret_int

|
|
[
|
|

N

132 bytes

Table 1.5 Stack size to be used by Interrupt Handler

* The stack size used to save registers' contents by use of _ RESTORE_IPL_from_STACK, or
__SAVE_IPL_to_STACK. For details of these interrupt control programs, see How to Prepare Interrupt Control
Programs given in User's Manual.

14 1.3 Stack Size Calculation Method

[

(System stack size y used by system clock interrupt handler)]

When you do not use a system timer, there is no need to add a system stack used by the
system clock interrupt handler.

The system stack size y used by the system clock interrupt handler is whichever larger of the
two cases below:

92+ either the stack size the cyclic hander uses or the stack size the alarm
handler uses, whichever is greater

If neither cyclic handler nor alarm handler is used, then

vy = 84 bytes

When using the interrupt handler and system clock interrupt handler in combination, add the
stack sizes used by both.

Chapter 2 System Call Reference

2.1. Task Management Functions

2.1.1. cre_tsk (Create Task)

[(System call name)]

cre_tsk - Create Task

[(Calling by the assembly language)]

.include “mr32r.inc”
cre_tsk tskid

<< Argument >>

tskid [] The ID No. of a task to be created

pk_ctsk [sesesese] The start address in which the task generation
information is stored
(Set the address in the R2 register.)

<< Register setting >>

Register name | Contents after system call issuance

RO Error code

R1 The ID No. of a task to be created

R2 The start address in which the task
generation information is stored

R3 --

Specify the following information in the structure indicased by pk_ctsk.

Offset Size

+0 4 exinf Extended information

+4 4 tskatr Task attribute

+8 4 task Task startup address

+12 2 itskpri Priority in task startup

+16 4 stksz Stack size

[(Calling by the C language)]

#include <mr32r.h>
ER cre_tsk (tskid, pk _ctsk);

<< Argument >>

ID tskid; The ID No. of a task to be created
T CTSK *pk_ctsk; The start address in which the task generation
information is stored

Specify the following information in the structure indicased by pk_ctsk.
typedef struct t_ctsk {

VP exinf; /* Extended information */
ATR tskatr; /* Task attribute */
FP task; /* Task startup address */
PRI itskpri; /* Priority in task startup */
INT stksz; /> Stack size */
} T_CTSK;

<< Return value >>
An error code is returned as the return value of a function.

[(Error codes)]

E OK 00000000H(-H>00000000) : Normal End
E_NOMEM OFFFFFFF6H(-H”0000000a) : Not enough of memory
E OBJ OFFFFFFC1H(-H”0000003f): Invalid object state

2 2.1.1 cre_tsk (Create Task)

[(Function description)]
Creates a task tskid indicates.
That is, cre_tsk moves a task from the NON-EXISTENT state to the DORMANT state.

After having set the information as to the task to be generated, issues this system call to
generate a task.

Here follows explanation of the information as to a task to be generated pk_ctsk.

® exinf (extended information)
Exinf is an area you can freely use to store information as to a task to be generated.
MR32R has nothing to do with the exinf's contents.

® tskatr (task attribute)

Specify the location of the task stack area to be created. Specifically this means
specifying whether you want the stack to be located in the internal RAM or in external
RAM.

¢To locate the stack area in internal RAM
Specify __MR_INT(0).

¢ To locate the stack area in external RAM
Specify __ MR_EXT(0x10000).

¢ To locate the stack area user specified
Specify __MR_USER(0x20000).
® task (task start address)

Task is an area to specify the start address of a task to be generated, so you have to
invariably specify this.

In writing a program in C, you have to make a prototype declaration on a task (function)
to be generated.

® itskpri (priority in task start)
itskpri is an area to specify a priority when a task to be generated is started up, so you
have to invariably specify this.

® stksz (stack size)

stksz is an area to specify a stack size a task to be generated uses, so you have to
invariably specify this.

The system call cre_tsk is effective only when the specified task is in the NON-EXISTENT
state. Issuing this system call toward a task in a different state causes MR32R to return the
error code E_OBJ.

ID numbers to be generated are brought under your management. The numbers to be
specified by this system call can range from 1 up to the maximum number of tasks used in
the user system laid down in the system definition.

If the extent of memory as specified by stksz under pk_ctsk is not available, MR32R returns
the error code E_NOMEM to the task that issued this system call.

You can issue this system call exclusively from a task. This system call, if issued either from
the interrupt handler, the cyclic handler or the alarm handler, doesn't work properly.

2.1.1 cre_tsk (Create Task) 3

[(Usage example)]

<< Usage example of the C language >>

#include <mr32r._h>
#include “id.h”
#define ID_task2 2
#define ID_task3 3
void task2(void);
void task3(void);
void taskl(void)

{

T_CTSK ctsk2;
T _CTSK ctsk3

ctsk2.task = task2;
ctsk2_itskpri = 2;
ctsk2.stksz = 100;

}
void task2(void)

{

ext;tsk();

void task3(void)

{

ext_tskQ);

/* To

= {0, __MR_INT,task3,2,200};
ctsk2._tskatr = _ MR_EXT;

locate the stack area in external

/* Task startup address */

/* Priority in task startup */
/* Stack size */
cre_tsk(ID_task2, &ctsk2);

<< Usage example of the assembly

ID_task2: .equ 2
ID_task3: -equ 3
ctsk2:
_DATA.W
.DATA.W __MR_INT
_DATA.W task2
.DATA.H 2
-RES.B 2
-WORD 100

.include “mr32r.inc”

.global taskl,task?2
taskl:
cre_tsk ID_task2, ctsk2
ext_tsk
task2:
exf;tsk

language(CC32R) >>

Extended
Task attribute

information

Task startup address
Priority in task startup

Stack size

2.1.1 cre_tsk (Create Task)

RAM */

<< Usage example of the assembly

.equ ID_task2,2
.equ ID_task3,3

ctsk2:
.LONG 0
.LONG __ MR_INT
.LONG task2
. SHORT 2
.space 2
.LONG 100

.include “mr32r.inc”
-global taskl,task2
taskl:

cre_tsk ID_task2, ctsk2

ext_tsk
task2:

ext_tsk

language (TW32R:DCC/M32R) >>

2.1.1 cre_tsk (Create Task)

2.1.2. del_tsk(Delete Task)

[(System call name)]
del_tsk - Del ete Task

[(Calling by the assembly language)]

.include “mr32r.inc”
del_tsk tskid

<< Argument >>

tskid [s] The ID No. of a task to be deleted
<< Register setting >>
Register name | Contents after system call issuance
RO Error code
R1 The ID No. of a task to be deleted
R2 -
R3 -

[(Calling by the C language)]

#include <mr32r.h>
ER del_tsk (tskid);

<< Argument >>
ID tskid; The ID No. of a task to be deleted
<< Return value >>
An error code is returned as the return value of a function.

[(Error codes)]

E_OK 00000000H(-H>00000000) : Normal End
E_OBJ OFFFFFFC1H(-H>0000003f): Invalid object state
E_NOEXS OFFFFFFCCH(-H”00000034): Object does not exist

[(Function description)]
del_tsk deletes the task tskid indicates.
This system call cannot specify the task itself.

Issuing this system call causes the state of the task under consideration to switch from the
DORMANT state to the NON-EXISTENT state.

The system call del_tsk is effective only when the specified task is in the DORMANT state.
Issuing this system call toward a task in a different state causes MR32R to return the error
code E_OBJ.

Error E_NOEXS is returned if this system call is issued for a NON-EXISTENT state task.

Make sure this system call is issued for only the task that has been created by the cre_tsk
system call. If this system call is issued for the task that has been defined by the
configuration file, it does not function normally.

You can issue this system call exclusively from a task. This system call, if issued either from
the interrupt handler, the cyclic handler or the alarm handler, doesn't work properly.

6 2.1.2 del_tsk(Delete Task)

[(Usage example)]

<< Usage example of the C language >>
#include <mr32r._h>

#include “id.h”

#define ID_task2 2

#define ID_task3 3
void task1i()

{
del_tsk(ID_task2):

¥
void task2()
{

ext_tskQ);

<< Usage example of the assembly language(CC32R) >>

.include “mr32r.inc”
.global taskl,task2

ID_task2: -equ 2
ID_task3: .equ 3
taskl:

del_tsk ID_task2

ext_tsk
task2:

ext_tsk
<< Usage example of the assembly language(TW32R:DCC/M32R) >>
-include “mr32r.inc”
-global taskl,task2
.equ ID_task2,2
-equ ID_task3,3
taskl:
del_tsk ID_task2

ext_tsk
task2:

ext_tsk

2.1.2 del_tsk(Delete Task)

2.1.3. sta_tsk(Start Task)

[(System call name)]

sta_tsk - Starts the Task

[(Calling by the assembly language)]

.include “mr32r.inc”

sta_tsk tskid, stacd

<< Argument >>
tskid [] The ID No. of the task to be started
stacd [] Task start code

<< Register setting >>

Register name | Contents after system call issuance
RO Error code
R1 The ID No. of the task to be started
R2 Task start code
R3 -

[(Calling by the C language)]

#include <mr32r.h>
ER sta_tsk (tskid, stacd);

<< Argument >>

ID tskid; The ID No. of the task to be started
INT stacd; Task start code

<< Return value >>
An error code is returned as the return value of a function.

[(Error codes)]

E_OK 00000000H(-H>00000000) : Normal End
E_NOEXS OFFFFFFCCH(-H>00000034): Object does not exist
E_OBJ OFFFFFFC1H(-H?0000003f): Invalid object state

[(Function description)]

This system call starts the task indicated by tskid. That is, the specified task is put from the
DORMANT state to the READY state or the RUN state.

The startup code stacd is 32 bits.In a C language program, stacd is passed to the startup
task as an argument. In an assembly language program, stacd is stored in the startup task's
R2 register.

This system call is valid only when the specified task is idle (DORMANT). Therefore, if a
request is issued when the task is not idle (DORMANT)®, an error E_OBJ is returned to the
system call issued task.

Error E_NOEXS is returned if this system call is issued for a NON-EXISTENT state task.

If a task is reactivated after being terminated by ter_tsk or ext_tsk, it starts under the
following conditions:®

® The task starts from the start address set in the configuration file or when cre_tsk system

° except NON-EXISTENT state.
6 Namely,the task totally starts from the reset state.

8 2.1.3 sta_tsk(Start Task)

call is issued.
® The wakeup request count is cleared to 0.

® The priority is the initial priority specified in the configuration file or when cre_tsk system
call is issued.
® The initial register values except PC, PSW and following registers are indeterminate.

O For M32R Family Cross Tool CC32R
A start code is stored R2 and R4 register.

O For M32R Family GNU Cross Tool TW32R:DCC/M32R
A start code is stored RO and R2 register.

If the task restarts,its exception handler defined before is not reset.
This system call can be issued from only tasks. If you want it to be issued from the interrupt
handler, cyclic handler, or alarm handler, you must use a ista_tsk system call.

[(Usage example)]
<< Usage example of the C language >>

#include <mr32r.h>
#include “id.h”
void task(Q)

sta_tsk(ID_task2, stacd);

}
void task2(int msg)
if(msg == 0)

}

<< Usage example of the assembly language(CC32R) >>

.include “mr32r.inc”
.global task,task2

task:
sta_tsk ID_task2, msg
task2:)

cmpi R2,#0

<< Usage example of the assembly language(TW32R:DCC/M32R) >>

-include “mr32r.inc”

.global task,task2
task:

sta_tsk ID_task2, msg

task2:
cmpi R2,#0

2.1.3 sta_tsk(Start Task)

2.1.4. ista_tsk(Start Task)

[(System call name)]
ista_tsk - Starts the Task. (for the handler only)

[(Calling by the assembly language)]
-include “mr32r.inc”

ista_tsk tskid, stacd

<< Argument >>
tskid [] The ID No. of the task to be started
stacd [Task start code

<< Register setting >>

Register name | Contents after system call issuance
RO Error code
R1 The ID No. of the task to be started
R2 Task start code
R3 -

[(Calling by the C language)]

#include <mr32r.h>
ER ista_tsk (tskid, stacd);

<< Argument >>

ID tskid; The ID No. of the task to be started
INT stacd; Task start code

<< Return value >>
An error code is returned as the return value of a function.

[(Error codes)]

E_OK 00000000H(-H>00000000) : Normal End
E_NOEXS OFFFFFFCCH(-H>00000034): Object does not exist
E_OBJ OFFFFFFC1H(-H?0000003f): Invalid object state

[(Function description)]

Use this system call when you want to use the same function as that of the sta_tsk system
call from the interrupt handler, cyclic handler, or alarm handler.

10 2.1.4 ista_tsk(Start Task)

[(Usage example)]
<< Usage example of the C language >>

#include <mr32r.h>
#include “id.h”
void inthand()

{
ista_tsk(ID_task2, stacd);

}
void task2(int msg)
if(msg == 0)

}

<< Usage example of the assembly language(CC32R) >>

-include “mr32r.inc”
.global intr

intr:
ista_tsk ID_task2, msg

ret_int

<< Usage example of the assembly language(TW32R:DCC/M32R) >>
-include “mr32r.inc”
.global intr

intr:

ista_tsk ID_task2, msg

ret_int

2.1.4 ista_tsk(Start Task)

11

2.1.5. ext_tsk(Exit Task)

[(System call name)]
ext_tsk - Ends the own task.

[(Calling by the assembly language)]

.include “mr32r.inc”
ext_tsk

<< Argument >>
None
<< Register setting >>
Control is not returned to the task which issued this system call
[(Calling by the C language)]

#include <mr32r.h>
void ext _tsk);

<< Argument >>
None
<< Return value >>
Control is not returned to the task which issued this system call.
[(Error codes)]

Control is not returned to the task which issued this system call

[(Function description)]

This system call ends the own task; that is, it puts the own task from the RUN state to the
DORMANT state. Once a task has been terminated, it does not operate until activated again
by the sta_tsk or ista_tsk system call. When a task is activated again in this way, it can be
started only from the start address defined in the configuration file.

That is, a task terminated by ext_tsk and then activated by sta_tsk operates as if it was reset.
When this system call is issued, the semaphore obtained by the own task is not freed.

If this system call issued from exception handler,the task for it is normaly ended.

This system call can be issued only from tasks. It cannot be issued from the interrupt handler,
the cyclic handler, and the alarm handler.

12 2.1.5 ext_tsk(Exit Task)

[(Usage example)]
<< Usage example of the C language >>

#include <mr32r.h>
void task(void)

{

exf;tsk();
}

<< Usage example of the assembly language(CC32R) >>
-include “mr32r.inc”
-global task
task:
ext_tsk
<< Usage example of the assembly language(TW32R:DCC/M32R) >>
-include “mr32r.inc”
-global task
task:

ext_tsk

2.1.5 ext_tsk(Exit Task)

13

2.1.6. exd_tsk(Exit and Delete Task)

[(System call name)]

exd_tsk - Exit and delete Task.

[(Calling by the assembly language)]

.include “mr32r.inc”
exd_tsk

<< Argument >>
None
<< Register setting >>
Control is not returned to the task which issued this system call.
[(Calling by the C language)]

#include <mr32r.h>
void exd _tsk);

<< Argument >>
None
<< Return value >>
Control is not returned to the task which issued this system call.
[(Error codes)]

Control is not returned to the task which issued this system call.

[(Function description)]

This system call ends the own task and deletes it; that is, it puts the own task from the RUN
state to the NON-EXISTENT state. Once a task has been deleted, it does not operate until
activated again by the cre_tsk, sta_tsk or ista_tsk system call.

When this system call is issued, the semaphore, memorypool etc. obtained by the own task
is not freed, but the the stack area of the own task is freed.

This system call can only be issued from the task created by cre_tsk system call.
If exd_tsk is issued from the task defined in the configuration file,it does not work well..

This system call can be issued only from tasks. It cannot be issued from the interrupt handler,
the cyclic handler, and the alarm handler.

14 2.1.6 exd_tsk(Exit and Delete Task)

[(Usage example)]
<< Usage example of the C language >>
#include <mr32r._h>

#include “id.h”
void taskl1i()

{
cre_tsk(1D_task2, &ctsk2);
sta_tsk(ID_task2, 0);

¥
void task2()
{

exd_tskQ);

<< Usage example of the assembly language(CC32R) >>
-include “mr32r.inc”
.global taskl,task2
taskl:
cre_tsk 2 ,settask?2
sta_tsk 2,0
ext_tsk
task?2:
exd_tsk
<< Usage example of the assembly language(TW32R:DCC/M32R) >>
-include “mr32r.inc”
-global taskl,task2
taskl:
cre_tsk 2,settask2
sta_tsk 2,0
ext_tsk
task2:

exd_tsk

2.1.6 exd_tsk(Exit and Delete Task)

15

2.1.7. ter_tsk(Terminate Task)

[(System call name)]

ter_tsk — Terminates a task forcibly.

[(Calling by the assembly language)]

.include “mr32r.inc”
ter_tsk tskid

<< Argument >>

tskid [] The ID No. of the task to be forcibly terminated
<< Register setting >>
Register name | Contents after system call issuance
RO Error code
R1 The ID No. of the task to be forcibly terminated
R2 -
R3 -

[(Calling by the C language)]

#include <mr32r.h>
ER ter_tsk (tskid);

<< Argument >>
ID tskid; The ID No. of the task to be forcibly terminated
<< Return value >>
An error code is returned as the return value of a function.

[(Error codes)]

E_OK 00000000H(-H~00000000) : Normal End
E_NOEXS OFFFFFFCCH(-H”00000034): Object does not exist
E_OBJ OFFFFFFC1H(-H>0000003f): Invalid object state

[(Function description)]
The task indicated by tskid is forcibly terminated.

This system call cannot specify the own task. To terminate the own task, use the ext_tsk
system call.

If a specified task is in WAIT state being linked to some waiting queue’ the task is removed
from the queue by execution of this system call. However, the semaphores, etc. that have
been acquired by the specified task before that are not relinquished.

If the task indicated by tskid is in NON-EXISTENT state, the system returns an error E_OBJ
for the system call.

If the task indicated by tskid is in DORMANT state, the system returns an error E_NOEXS for
the system call.

This system call can be issued only from tasks. It cannot be issued from the interrupt handler,
the cyclic handler, and the alarm handler.

" Timeout wait queue, eventflag wait queue, semaphore wait queue, or mail box wait queue is possible.

16 2.1.7 ter_tsk(Terminate Task)

[(Usage example)]

<< Usage example of the C language >>
#include <mr32r._h>
#include “id.h”
void task(Q)
ter_tsk(ID_main);

ext_tsk();
}

<< Usage example of the assembly language(CC32R) >>
-include “mr32r.inc”
.global task
task:
ter_tsk ID_task2
.global task2
task2:
<< Usage example of the assembly language(TW32R:DCC/M32R) >>
-include “mr32r.inc”
-global task
task:
ter_tsk ID_task2

.global task2
task2:

2.1.7 ter_tsk(Terminate Task)

17

2.1.8. dis_dsp(Disable Dispatch)

[(System call name)]

dis_dsp - Disable dispatch of the task.

[(Calling by the assembly language)]

.include “mr32r.inc”
dis_dsp

<< Argument >>
None

<< Register setting >>

Register name | Contents after system call issuance
RO Error code
R1 --
R2 --
R3 --

[(Calling by the C language)]

#include <mr32r.h>
ER dis _dsp O;

<< Argument >>
None
<< Return value >>
An error code is returned as the return value of a function.
[(Error codes)]
E_OK 00000000H(-H~00000000): Normal End
[(Function description)]
Disables task dispatch.

After executing this system call, task dispatch is disabled until the ena_dsp system call is
executed. Therefore, even when a task with higher priority than the task that executed
dis_dsp by a system call issued from an interrupt handler or a task that executed dis_dsp is
placed in READY state, no time is dispatched to that task. Namely, dispatching to tasks with
higher priority is delayed until the dispatch disabled condition is terminated.

However, since external interrupts are not disabled, an interrupt handler is activated even
while dispatch is disabled. If a task already in a dispatch disabled state issues dis_dsp, no
error is assumed; the result is only that the dispatch disabled state continues. However, a
dispatch disabled state is cleared by issuing only one ena_dsp no matter how many times
dis_dsp may have been issued.

This system call can only be issued from tasks, and cannot be issued from the interrupt
handler, cyclic handler, or alarm handler.

18 2.1.8 dis_dsp(Disable Dispatch)

[(Usage example)]
<< Usage example of the C language >>
#include <mr32r._h>

#include “id.h”
void task(Q)

{
dis_dspQ):
}
<< Usage example of the assembly language(CC32R) >>
-include “mr32r.inc”
-global task
task:

dis;dsp

<< Usage example of the assembly language(TW32R:DCC/M32R) >>
-include “mr32r.inc”
.global task

task:

dié;dsp

2.1.8 dis_dsp(Disable Dispatch)

19

2.1.9. ena_dsp(Enable Dispatch)

[(System call name)]

ena_dsp - Permits dispatch of the task.

[(Calling by the assembly language)]

.include “mr32r.inc”
ena_dsp

<< Argument >>
None

<< Register setting >>

Register name | Contents after system call issuance
RO Error code
R1 --
R2 --
R3 --

[(Calling by the C language)]

#include <mr32r.h>
ER ena dsp();

<< Argument >>
None
<< Return value >>
An error code is returned as the return value of a function.
[(Error codes)]
E_OK 00000000H(-H~00000000): Normal End
[(Function description)]
Enables task dispatch.

Namely, it clears a dispatch disabled state set by dis_dsp, thereby activating the scheduler. If
a task not in a dispatch disabled state issues ena_dsp, no error assumed; the result is only
that the dispatch enabled state continues.

This system call can only be issued from tasks, and cannot be issued from the interrupt
handler, cyclic handler, or alarm handler.

20 2.1.9 ena_dsp(Enable Dispatch)

[(Usage example)]
<< Usage example of the C language >>
#include <mr32r._h>

#include “id.h”
void task(Q)

{
ena_asp();

}

<< Usage example of the assembly language(CC32R) >>
-include “mr32r.inc”
.global task

task:

ena_asp

<< Usage example of the assembly language(TW32R:DCC/M32R) >>
-include “mr32r.inc”
.global task

task:

ena_asp

2.1.9 ena_dsp(Enable Dispatch)

21

2.1.10. chg_pri(Change Task Priority)

[(System call name)]
chg_pri - Changes the priority of a task.

[(Calling by the assembly language)]

.include “mr32r.inc”
chg_pri tskid, tskpri

<< Argument >>

tskid [] The ID No. of the task whose priority is changed
tskpri [e] The priority to be changed

<< Register setting >>

Register name | Contents after system call issuance
RO Error code
R1 The ID No. of the task whose priority is changed
R2 The priority to be changed
R3 -

[(Calling by the C language)]

#include <mr32r.h>
ER chg_pri (tskid,tskpri);

<< Argument >>

ID tskid; The ID No. of the task whose priority is changed
PRI tskpri; The priority to be changed

<< Return value >>
An error code is returned as the return value of a function.

[(Error codes)]

E_OK 00000000H(-H>00000000) : Normal End
E_NOEXS OFFFFFFCCH(-H>00000034): Object does not exist
E_OBJ OFFFFFFC1H(-H?0000003f): Invalid object state

22 2.1.10 chg_pri(Change Task Priority)

[(Function description)]

Changes the priority of the task indicated by tskid to a value indicated by tskpri. Furthermore,
the task is rescheduled according to the result of this modification. Task priority is higher
when its number is lower. Priority 1 is the highest. The minimum value that can be specified
for a priority is 1. The maximum value is the one specified in the configuration file. The range

of the specifiable priority is 1 to 255.

For example, when the following is specified in the configuration file, the range of the
specifiable priorities is 1 to 13 8

system{
stack_size = 0x100;
priority = 13;

}:

If you specify tskid = TSK_SELF = 0, it specifies the task itself. This system call cannot be
used to change the priority of a task in DORMANT state. There fore, if the task indicated by
tskid is in DORMANT state, the system returns an error E_OBJ for the system call. If it is in
NON-EXISYENT state, the system returns an error E_NOEXS for the system call.

If this system call is executed for a task linked to the ready queue (including a task in RUN
state) or a task being queued in order of priorities, the task is moved to the tail of the queue
of the relevant priority. Similarly, if the same priority as the previous one is specified, the task
is moved to the tail of the queue of that priority.9

This system can be issued from only tasks. If you want it to be issued from the interrupt
handler, cyclic handler, or alarm handler, you must use a ichg_pri system call.

[(Usage example)]
<< Usage example of the C language >>
#include <mr32r.h>

#include “id.h”
void task(Q)

chg_pri(ID_task2, 2);

}

<< Usage example of the assembly language(CC32R) >>

.include “mr32r.inc”
.global task
task:

chg_pri- ID_task2,2

<< Usage example of the assembly language(TW32R:DCC/M32R) >>

.include “mr32r.inc”
.global task
task:

chg_pri ID_task2,2

8 Switchover to a task with lower priority calls for greater processing time and greater interrupt disabled time. Therefore,
the narrower the priority range, the better. So reduce the priority range to a possible minimum.

o Therefore, by issuing this system call to set the same priority as the current one for the task itself, you can in effect
relinquish control of execution of the task.

2.1.10 chg_pri(Change Task Priority) 23

2.1.11. ichg_pri(Change Task Priority)

[(System call name)]

ichg_pri - Changes the priority of a task (for the handler only).

[(Calling by the assembly language)]

.include “mr32r.inc”

ichg_pri tskid, tskpri
<< Argument >>
tskid [] The ID No. of the task whose priority is changed
tskpri [e] The priority to be changed
<< Register setting >>
Register name | Contents after system call issuance
RO Error code
R1 The ID No. of the task whose priority is changed
R2 The priority to be changed
R3 -

[(Calling by the C language)]

#include <mr32r.h>
ER ichg_pri (tskid,tskpri);

<< Argument >>

ID tskid; The ID No. of the task whose priority is changed
PRI tskpri; The priority to be changed

<< Return value >>
An error code is returned as the return value of a function.

[(Error codes)]

E_OK 00000000H(-H>00000000) : Normal End
E_NOEXS OFFFFFFCCH(-H>00000034): Object does not exist
E_OBJ OFFFFFFC1H(-H?0000003f): Invalid object state

[(Function description)]

This system call is issued from the interrupt handler, the cyclic handler, or the alarm handler
to provide the same functions as the chg_pri system call.

In this system call, you cannot use tskid = TSK_SELF = 0 to specify the own task.

24 2.1.11 ichg_pri(Change Task Priority)

[(Usage example)]
<< Usage example of the C language >>
#include <mr32r._h>

#include “id.h”
void inthand()

{
ichg_pri(ID_main, 2);
}
<< Usage example of the assembly language(CC32R) >>
-include “mr32r.inc”
-global intr
intr:
ichg_pri ID_task2, 2
ret_int-
<< Usage example of the assembly language(TW32R:DCC/M32R) >>
-include “mr32r.inc”
-global intr
intr:

ichg_pri ID_task2, 2

ret_int

2.1.11 ichg_pri(Change Task Priority)

25

2.1.12. rot_rdg(Rotate Ready Queue)

[(System call name)]
rot_rdq - Rotates the ready queue of a task.

[(Calling by the assembly language)]

.include “mr32r.inc”
rot_rdq tskpri

<< Argument >>
tskpri [] The priority of the ready queue to be rotated

<< Register setting >>

Register name | Contents after system call issuance
RO Error code
R1 -
R2 The priority of the ready queue to be rotated
R3 -

[(Calling by the C language)]

#include <mr32r.h>
ER rot_rdq (tskpri);

<< Argument >>
PRI tskpri; The priority of the ready queue to be rotated
<< Return value >>
E_OK s always returned as the return value of a function.
[(Error codes)]
E_OK 00000000H(-H”00000000): Normal End

26 2.1.12 rot_rdq(Rotate Ready Queue)

[(Function description)]

This system call rotates the ready queue having the priority specified by tskpri. That is, this
system call reconnects the task linked to the head of the ready queue having the specified
priority to the end of it in order to switch between the tasks having the same priority. See
Figure 2.1.

Priority 1 ® TCB
Priority 2 L TCB TCB
Priority n . TCB TCB TCB [~ :
Reconnect to the end
Figure 2.1 Ready Queue Operation by rot_rdqg System Call

Issuing this system call at a certain interval allows round robin scheduling.

Specification tskpri = TPRI_RUN = 0 causes the ready queue with the priority of the own task
to be rotated.

If this system call is used to specify the priority of the own task, the task is moved to the tail
of that ready queue. If there is no task on the queue specified by this system call, the system
do nothing.

This system call can be issued only from tasks. The system call which be issued from the
interrupt handler, the cyclic handler, or the alarm handler is the irot_rdq.

2.1.12 rot_rdqg(Rotate Ready Queue) 27

[(Usage example)]
<< Usage example of the C language >>

#include <mr32r.h>
void task(Q)

rot_rdq(2):

}

<< Usage example of the assembly language(CC32R) >>

.include “mr32r.inc”
-global task
task:

rot_rdd 2

<< Usage example of the assembly language(TW32R:DCC/M32R) >>

.include “mr32r.inc”
.global task
task:

rot_rdd 2

28

2.1.12 rot_rdq(Rotate Ready Queue)

2.1.13. irot_rdg(Rotate Ready Queue)

[(System call name)]

irot_rdq - Rotates the ready queue of a task (for the handler
only).

[(Calling by the assembly language)]
-include “mr32r.inc”

irot_rdq tskpri
<< Argument >>
tskpri [] The priority of the ready queue to be rotated
<< Register setting >>
Register name | Contents after system call issuance
RO Error code
R1 --
R2 The priority of the ready queue to be rotated
R3 --

[(Calling by the C language)]

#include <mr32r.h>
ER irot_rdqgq (tskpri);

<< Argument >>
PRI tskpri; The priority of the ready queue to be rotated
<< Return value >>
E_OK is always returned as the return value of a function.
[(Error codes)]
E_OK 00000000H(-H~00000000): Normal End
[(Function description)]

This system call is issued from the interrupt handler, the cyclic handler, or the alarm handler
to provide the same functions as the rot_rdq system call. If irot_rdq (tskpri = TPRI_RUN) is
issued, the ready queue of the priority equal to that the task that was executing when the
interrupt handler was invoked is rotated.

Issuing this system call allows round robin scheduling.

2.1.13 irot_rdqg(Rotate Ready Queue) 29

[(Usage example)]

In this example, round robin scheduling is implemented by rotating the ready queue having
priority 2 at a certain intervals by the cyclic handler.

<< Usage example of the C language >>

#include <mr32r.h>

#include “id.h”

void cyc()

{
irof_rdq(2);

}

<< Usage example of the assembly language(CC32R) >>
-include “mr32r.inc”
-global cyc

cyc:

irof_rdq 2

<< Usage example of the assembly language(TW32R:DCC/M32R) >>
-include “mr32r.inc”

-global cyc
cyc:

i rof_rdq 2

30 2.1.13 irot_rdq(Rotate Ready Queue)

2.1.14. rel_wai(Release Task Wait)

[(System call name)]
rel_wai - Releases the task WAIT state forcibly.

[(Calling by the assembly language)]

.include “mr32r.inc”
rel_wai tskid

<< Argument >>

tskid [] The ID No. of the task to be forcibly released from the
WAIT state

<< Register setting >>

Register name | Contents after system call issuance

RO Error code

R1 The ID No. of the task to be forcibly released
from the WAIT state

R2 -

R3 -

[(Calling by the C language)]

#include <mr32r.h>
ER rel _wai (tskid);

<< Argument >>

ID tskid; The ID No. of the task to be forcibly released from the
WAIT state

<< Return value >>
An error code is returned as the return value of a function.

[(Error codes)]

E_OK 00000000H(-H>00000000) : Normal End
E_NOEXS OFFFFFFCCH(-H”00000034): Object does not exist
E_OBJ OFFFFFFC1H(-H?0000003f): Invalid object state

[(Function description)]

This system call unconditionally releases the task specified by tskid from the WAIT
state(Except SUSPEND state). Error E_RLWAI is returned to the released task. If the task is
linked to some waiting queue, the task is removed from the queue 10 by execution of this
system call.

If the task is not in WAIT state, the system returns an error E_OBJ to the system call issued
task. If the task is in NON-EXISTENT state, the system returns an error E_NOEXS to the
system call issued task.

This system call cannot specify the own task.

This system call can be issued only from tasks. The system call which be issued from the
interrupt handler, the cyclic handler, or the alarm handler is the irel_wai.

'° Timeout wait queue, eventflag wait queue, semaphore wait queue, or mail box wait queue is possible.

2.1.14 rel_wai(Release Task Wait) 31

[(Usage example)]

<< Usage example of the C language >>

#include <mr32r.h>
#include “id.h”
void task(Q)

{

if(rel_wai(ID_main) 1= E_OK)
error(*Can’t rel_wai mainQQ\n”);

¥

<< Usage example of the assembly language(CC32R) >>
-include “mr32r.inc”
.global task

task:

rel_wai ID_main

<< Usage example of the assembly language(TW32R:DCC/M32R) >>
-include “mr32r.inc”
.global task

task:

rel_wai ID_main

32 2.1.14 rel_wai(Release Task Wait)

2.1.15. irel_wai(Release Task Walit)

[(System call name)]

irel_wai - Releases the task WAIT state forcibly (for the handler
only).
[(Calling by the assembly language)]

.include “mr32r.inc”
irel_wai tskid

<< Argument >>

tskid [] The ID No. of the task to be forcibly released from the
WAIT state

<< Register setting >>

Register name | Contents after system call issuance

RO Error code

R1 The ID No. of the task to be forcibly released
from the WAIT state

R2 --

R3 --

[(Calling by the C language)]

#include <mr32r.h>
ER irel_wai (tskid);

<< Argument >>

ID tskid; The ID No. of the task to be forcibly released from the
WAIT state

<< Return value >>
An error code is returned as the return value of a function.

[(Error codes)]

E_OK 00000000H(-H>00000000) : Normal End
E_NOEXS OFFFFFFCCH(-H”00000034): Object does not exist
E OBJ OFFFFFFC1H(-H”0000003f): Invalid object state

[(Function description)]

This system call is issued from the interrupt handler, the cyclic handler, or the alarm handler
to provide the same functions as the rel_wai system call.

2.1.15 irel_wai(Release Task Wait) 33

[(Usage example)]
<< Usage example of the C language >>
#include <mr32r._h>

#include “id.h”
void inthand()

{

if(irel_wai(1D_main) 1= E_OK)
error(*Can’t irel_wai task(2)\n”);

¥
<< Usage example of the assembly language(CC32R) >>
-include “mr32r.inc”
.global intr
intr:
irei_wai ID_main
ret_int
<< Usage example of the assembly language(TW32R:DCC/M32R) >>
-include “mr32r.inc”
.global intr
intr:
irei_wai ID_main

ret_int

34 2.1.15 irel_wai(Release Task Wait)

2.1.16. get_tid(Get Self Task ID)

[(System call name)]

get_tid - Gets the ID of the self task

[(Calling by the assembly language)]

.include “mr32r.inc”
get_tid

<< Argument >>
None

<< Register setting >>

Register name | Contents after system call issuance
RO Error code
R1 The ID of the self task
R2 -
R3 -

[(Calling by the C language)]

#include <mr32r.h>
ER get tid (p_tskid);

<< Argument >>
ID *p_tskid; The variable in which the task ID is stored.
<< Return value >>

The returned function value is always E_OK.
The ID No. of the own task is set in the area indicated by p_tskid.

[(Error codes)]
E_OK 00000000H(-H”00000000): Normal End
[(Function description)]
Gets the ID No. of the own task.

FALSE = 0 is returned if the system call is issued from the interrupt handler, cyclic handler, or
alarm handler.

2.1.16 get_tid(Get Self Task ID) 35

[(Usage example)]

<< Usage example of the C language >>

#include <mr32r.h>
void task(Q)

ID tskid;
get_tid(&tskid);
ks
<< Usage example of the assembly language(CC32R) >>
.include “mr32r.inc”
.global task
task:

gef;tid

<< Usage example of the assembly language(TW32R:DCC/M32R) >>
-include “mr32r.inc”
.global task

task:

get;tid

36 2.1.16 get_tid(Get Self Task ID)

2.1.17. ref_tsk(Refer Task Status)

[(System call name)]
ref_tsk - Reference Task Status

[(Calling by the assembly language)]

.include “mr32r.inc”
ref_tsk tskid

<< Argument >>

taskid [] The ID No. of the task to Reference Task
pk_rtsk [xxx] Packet address to Reference Task
(Set the address in the R2 register.)

<< Register setting >>

Register name | Contents after system call issuance
RO Error code
R1 The ID No. of the task to Reference Task
R2 Packet address to Reference Task
R3 --
The area indicated by pk_rtsk returns the following information.
Offset Size
+0 4 exinf Extended information
+4 2 tskpri Current task priority level
+8 4(U) tskstat Task status
+12 4(U) tskwait Reason for wait
+16 2 wid Wait object ID
+20 4 wupcnt Number of queued wakeup requests
+24 4 tskatr Task attributes
+28 4 task Task starting address
+32 2 tskpri Initial task priority
+36 4 stksz Stack size

+40 4U) epndptn Pending exception class pattern
U: unsigned data.

[(Calling by the C language)]

#include <mr32r.h>
ER ref _tsk (pk _rtsk,tskid);

<< Argument >>

ID tskid; The ID No. of the task to Reference Task
T_RTSK =pk_rtsk; Packet address to Reference Task

<< Return value >>

An error code is returned as the return value of a function.
The structure indicated by pk_rtsk returns the following data.
typedef struct t_rtsk {

VP exinf; /* Extended information */

PR tskpri; /* Current task priority level */

UH tskstat; /* Task status */

UINT tskwait; /* Reason for wait */

1D wid; /* Wait object ID */

INT wupcnt; /* Number of queued wakeup requests */
ATR tskatr; /* Task attributes */

FP task; /* Task starting address */

PRI itskpri; /* Initial task priority */

2.1.17 ref_tsk(Refer Task Status) 37

INT stksz; /* Stack size */

uw epndptn; /* Pending exception class pattern */
} T_RTSK;
[(Error codes)]
E _OK 00000000H(-H~00000000): Normal End
E_NOEXS OFFFFFFCCH(-H”00000034): Object does not exist

[(Function description)]

Refers to the status of the task indicated by tskid then returns the following task information
as return values.

® exinf

Returns extended task information in exinf

® tskpri

Returns the task priority level in tskpri

® tskstat
Returns a value corresponding to the status of the specified task in tskstat

TTS_RUN (00000001H) RUN state
TTS_RDY (00000002H) READY state
TTS_WAI (00000004H) WAIT state

TTS_SUS (00000008H) SUSPEND state
TTS_WAS (0000000CH) WAIT-SUSPEND state
TTS_DMT (00000010H) DORMANT state

® tskwait

If the target task is in the wait state, the cause of the wait is returned in tskwait. The
following shows the values of the respective causes.

TTW_SLP (00000001H) Waiting with slp_tsk or tslp_tsk
TTW_DLY (00000002H) Waiting with dly_tsk

TTW_FLG (00000010H) Waiting with wai_flg or twai_flg
TTW_SEM (00000020H) Waiting with wai_sem or twai_sem
TTW_MBX (00000040H) Waiting with rcv_msg or trcv_msg
TTW_SMBF (00000080H) Waiting with snd_mbf or tsnd_mbf
TTW_MBF (00000100H) Waiting with rcv_mbf or trcv_mbf
TTW_CAL (00000200H) Waiting with cal_pol or tcal_pol
TTW_ACP (00000400H) Waiting with acp_pol or tacp_pol
TTW_RDV (00000800H) Waiting with Rendezvous
TTW_MPL (00001000H) Waiting with get_blk or tget_blk
TTW_MPF (00002000H) Waiting with get_blf or tget_blf
TTW_VMBX (00004000H) Waiting with vrcv_mbx or vtrcv_mbx

o wid

If the target task is in the wait state, its object ID No. is returned in wid.

® wupcnt

@ tskatr

Returns the attribute of the task.Ilt means whther the stack area of the task is internal
RAM(__MR_INT=0) or external RAM(MR_EXT=0x10000).

38 2.1.17 ref_tsk(Refer Task Status)

@ task

Returns the entry address of the task.

@ itskpri

Returns the priority of the task.

® stksz

Returns the stack size of the task.

® epndptn

Returns the pending pattern. It means the information of exception mask and the

information of exception pending.11

epndptn mean

EXM_SET 00000001H exception mask is set

EXP_TER 00000002H forced end request is pending

EXP_FEX 00000004H forced exception request is pending

A task may specify itself by specifying tskid = TSK_SELF = 0. Note, however, an interrupt

handler cannot specify itself by specifying tskid = TSK_SELF.

If ref_tsk is issued by the interrupt handler targeting the interrupted task the RUN status

(TTS_RUN) is returned in tskstat. If the task is in NON-EXISTENT state, the system returns

an error E_NOEXS to the system call issued task.

This system call can be issued from both tasks and handlers.

[(Usage example)]

<< Usage example of the C language >>

#include <mr32r.h>
#include “id.h”
void task(Q)

T_RTSK rtsk;
ref_tsk(&rtsk, ID_main);

}
<< Usage example of the assembly language(CC32R) >>

.include “mr32r.inc”
.global task

task:
1d24 R2,#rtsk
ref _tsk ID_task2

<< Usage example of the assembly language(TW32R:DCC/M32R) >>

.include “mr32r.inc”
-global task

task:
1d24 R2 ,#rtsk
ref_tsk ID_task2

i you specify “YES” as exc_handler in configuration file, indeterminate value is returned.

2.1.17 ref_tsk(Refer Task Status)

39

2.2. Synchronization Functions Attached to Task

2.2.1. sus_tsk(Suspend Task)

[(System call name)]
sus_tsk - Puts a task in the SUSPEND state.

[(Calling by the assembly language)]

.include “mr32r.inc”
sus_tsk tskid

<< Argument >>

tskid [#] The ID No. of the task to be put in the SUSPEND
state

<< Register setting >>

Register name | Contents after system call issuance
RO Error code
R1 The ID No. of the task to be put in the
SUSPEND state
R2 --
R3 --

[(Calling by the C language)]

#include <mr32r.h>
ER sus_tsk (tskid);

<< Argument >>

ID tskid; The ID No. of the task to be put in the SUSPEND
state

<< Return value >>
An error code is returned as the return value of a function.
[(Error codes)]

E_OK 00000000H(-H>00000000) : Normal End

E _QOVR OFFFFFFB7H(-H”00000049): Queuing or nest overflow
E_NOEXS OFFFFFFCCH(-H?00000034): Object does not exist
E_OBJ OFFFFFFC1H(-H>0000003f): Invalid object state

[(Function description)]

This system call discontinues the execution of the task specified by tskid and puts it in the
SUSPEND state.

The SUSPEND state is cleared by issuing the rsm_tsk system call. When the task specified
by tskid is in the DORMANT state, error E_OBJ is returned as the system call return value. If
the task is in NON-EXISTENT state, the system returns an error E_NOEXS to the system
call issued task.

The SUSPEND request nesting by this system call is not performed. Therefore, when the
task specified by tskid is in the SUSPEND state, error E_QOVR is returned as the system
call return value.

This system call cannot specify the own task.

This system call can be issued only from tasks. The system call which be issued from the
interrupt handler, the cyclic handler, or the alarm handler is the isus_tsk.

40 2.2.1 sus_tsk(Suspend Task)

[(Usage example)]

<< Usage example of the C language >>

#include <mr32r.h>
#include “id.h”
void task(Q)

{

if(sus_tsk(ID_main) 1= E_OK)
printf(“Can’t suspend task main(Q\n”);

¥

<< Usage example of the assembly language(CC32R) >>
-include “mr32r.inc”
.global task

task:

sus_fsk ID_task2

<< Usage example of the assembly language(TW32R:DCC/M32R) >>
-include “mr32r.inc”
.global task

task:

sus_isk ID_task2

2.2.1 sus_tsk(Suspend Task)

41

2.2.2. isus_tsk(Suspend Task)

[(System call name)]

isus_tsk - Puts a task in the SUSPEND state (for the handler
only)
[(Calling by the assembly language)]

-include “mr32r.inc”
isus_tsk tskid

<< Argument >>

tskid [] The ID No. of the task to be put in the SUSPEND
state

<< Register setting >>

Register name | Contents after system call issuance
RO Error code
R1 The ID No. of the task to be put in the
SUSPEND state
R2 --
R3 -

[(Calling by the C language)]

#include <mr32r.h>
ER isus_tsk (tskid);

<< Argument >>

ID tskid; The ID No. of the task to be put in the SUSPEND
state

<< Return value >>
An error code is returned as the return value of a function.

[(Error codes)]

E_OK 00000000H(-H~00000000) : Normal End

E_QOVR OFFFFFFB7H(-H”00000049): Queuing or nest overflow
E_NOEXS OFFFFFFCCH(-H”00000034): Object does not exist
E_OBJ OFFFFFFC1H(-H?0000003f): Invalid object state

[(Function description)]

This system call is issued from the interrupt handler, the cyclic handler, or the alarm handler
to provide the same functions as the sus_tsk system call.

Since this is a system call from a handler, it allows you to specify any task ID. Therefore, this
system call be used to suspend an interrupted task.

42 2.2.2 isus_tsk(Suspend Task)

[(Usage example)]
<< Usage example of the C language >>
#include <mr32r._h>

#include “id.h”
void inthand()

{

if(isus_tsk(I1D_main) 1= E_OK)
printf(“Can’t suspend main(Q\n);

}

<< Usage example of the assembly language(CC32R) >>
-include “mr32r.inc”
.global intr

intr:
isus;tsk ID_main
ret_}nt

<< Usage example of the assembly language(TW32R:DCC/M32R) >>
-include “mr32r.inc”
.global intr

intr:

isus_tsk ID main

ret_int

2.2.2 isus_tsk(Suspend Task)

43

2.2.3. rsm_tsk(Resume Task)

[(System call name)]

rsm_tsk - Resumes the task in the SUSPEND state.

[(Calling by the assembly language)]
-include “mr32r.inc”

rsm_tsk tskid
<< Argument >>
tskid [] The ID No. of the task to be taken from the
SUSPEND state
<< Register setting >>
Register name | Contents after system call issuance
RO Error code
R1 The ID No. of the task to be taken from the
SUSPEND state
R2 -
R3 -

[(Calling by the C language)]

#include <mr32r.h>
ER rsm_tsk (tskid);

<< Argument >>

ID tskid; The ID No. of the task to be taken from the
SUSPEND state

<< Return value >>
An error code is returned as the return value of a function.

[(Error codes)]

E_OK 00000000H(-H>00000000) : Normal End
E_NOEXS OFFFFFFCCH(-H”00000034): Object does not exist
E_OBJ OFFFFFFC1H(-H?0000003f): Invalid object state

[(Function description)]

If the task indicated by tskid has been suspended by sus_tsk system call, this system call
clears its forced wait state and restarts execution of the task. In this case, the task is linked
at the tail of the ready queue.

For the request issued when the task is not in forced waiting (SUSPEND) or the DORMANT
state, error code E_OBJ is returned to the task which issued the system call. If the task is in
NON-EXISTENT state, the system returns an error E_NOEXS to the system call issued task.

Since this system call is intended for tasks in forced waiting (SUSPEND) or double waiting
(WAIT-SUSPEND) states, it cannot be used to specify the own task.

This system call can be issued only from tasks. The system call which be issued from the
interrupt handler, the cyclic handler, or the alarm handler is the irsm_tsk.

44 2.2.3 rsm_tsk(Resume Task)

[(Usage example)]

<< Usage example of the C language >>

#include <mr32r.h>
#include “id.h”
void task(Q)

{

if(rsm_tsk(ID_main) 1= E_OK)
printf(“Can’t resume main(QQ\n”);

¥

<< Usage example of the assembly language(CC32R) >>
-include “mr32r.inc”
.global task

task:

rsm_fsk ID_task2

<< Usage example of the assembly language(TW32R:DCC/M32R) >>
-include “mr32r.inc”
.global task

task:

rsm_isk ID_task2

2.2.3 rsm_tsk(Resume Task)

45

2.2.4. irsm_tsk(Resume Task)

[(System call name)]

irsm_tsk - Resumes the task in the SUSPEND state (for the
handler only).
[(Calling by the assembly language)]

.include “mr32r.inc”
irsm_tsk tskid

<< Argument >>

tskid [] The ID No. of the task to be taken from the
SUSPEND state
<< Register setting >>

Register name | Contents after system call issuance
RO Error code
R1 The ID No. of the task to be taken from the SUSPEND

state

R2 -
R3 -

[(Calling by the C language)]

#include <mr32r.h>
ER irsm_tsk (tskid);

<< Argument >>

ID tskid; The ID No. of the task to be taken from the
SUSPEND state

<< Return value >>
An error code is returned as the return value of a function.

[(Error codes)]

E_OK 00000000H(-H>00000000) : Normal End
E_NOEXS OFFFFFFCCH(-H~00000034): Object does not exist
E OBJ OFFFFFFC1H(-H”0000003f): Invalid object state

[(Function description)]

This system call is issued from the interrupt handler, the cyclic handler, or the alarm handler
to provide the same functions as the rsm_tsk system call.

46 2.2.4 irsm_tsk(Resume Task)

[(Usage example)]

<< Usage example of the C language >>
#include <mr32r._h>
#include “id.h”

void inthand()
{

irsm;tsk(ID_main);

}

<< Usage example of the assembly language(CC32R) >>
-include “mr32r.inc”
.global intr

intr:

irsm_tsk ID_main

<< Usage example of the assembly language(TW32R:DCC/M32R) >>
-include “mr32r.inc”
.global intr

intr:

irsm _tsk ID _main

2.2.4 irsm_tsk(Resume Task)

47

2.2.5. slp_tsk(Sleep Task)

[(System call name)]

slp_tsk - Puts the task in the WAIT state.

[(Calling by the assembly language)]

.include “mr32r.inc”
slp_tsk

<< Argument >>
None

<< Register setting >>

Register name | Contents after system call issuance
RO Error code
R1 --
R2 --
R3 --

[(Calling by the C language)]

#include <mr32r.h>
ER slp_tsk O;

<< Argument >>
None
<< Return value >>
An error code is returned as the return value of a function.

[(Error codes)]

E OK 00000000H(-H”00000000): Normal End
E_RLWAI OFFFFFFAAH(-H”00000056): Wait state forcibly
cleared

[(Function description)]

This system call puts the self task from the RUN state to the WAIT state. The WAIT state is
cleared by the system call of the task wakeup issued for this task'? or the system call which
forcibly clears the WAIT state. '3 In the former, error code E_OKiis returned; in the latter,
error code E_RLWAI is returned.

When a task put in the WAIT state by slp_tsk is suspended (sus_tsk) by another task, that
task is put in the WAIT-SUSPEND state. In this case, the task is still in the SUSPEND state
even if the WAIT state is cleared by the system call of task wakeup and the execution of the
task is not resumed until the rsm_tsk system call is issued.

This system call can only be issued from tasks, and cannot be issued from the interrupt
handler, cyclic handler, or alarm handler.

12

- wup_tsk,iwup_tsk System call

rel_wai,irel_wai System call

48 2.2.5 slp_tsk(Sleep Task)

[(Usage example)]
<< Usage example of the C language >>
#include <mr32r._h>

#include “id.h”
void task(Q)

if(slp_tsk() 1= E OK)
error(““Forced wakeup\n);

}

<< Usage example of the assembly language(CC32R) >>
- INCLUDE “mr32r.inc”
-GLOBAL task

task:

slp_fsk

<< Usage example of the assembly language(TW32R:DCC/M32R) >>
- INCLUDE “mr32r.inc”
.GLOBAL task

task:

slp_isk

2.2.5 slp_tsk(Sleep Task)

49

2.2.6. tslp_tsk(Sleep Task with Timeout)

[(System call name)]

tslp_tsk — Switches the task to the fixed-time wait state

[(Calling by the assembly language)]

.include “mr32r.inc”
tslp_tsk tmout

<< Argument >>
tmout [Timeout value

<< Register setting >>

Register name | Contents after system call issuance
RO Error code
R1 -
R2 -
R3 -
R4 Timeout value

[(Calling by the C language)]

#include <mr32r.h>
ER tslp_tsk (tmout);

<< Argument >>
TMO tmout; Timeout value

<< Return value >>

An error code is returned as the return value of a function.

[(Error codes)]

E_OK 00000000H(-H?00000000) : Normal
E_TMOUT OFFFFFFABH(-H”00000055) - Polling failed or timeout
E_RLWAI OFFFFFFAAH(-H’00000056) : Wait state forcibly

cleared

50 2.2.6 tslp_tsk(Sleep Task with Timeout)

[(Function description)]

Switches the task from the (RUN) status in which it runs for the specified time only to the
WAIT state.

A wait state invoked by this system call is cancelled in the following cases:

®\Vhen a system call" to start a task is invoked from another task or interrupt.
Error code E_OK is returned.
®\Vhen a system call”® to forcibly cancel the wait state is invoked from another task or
interrupt.
Error code E_RLWAI is returned.

® \When the tmout time elapses without the wait cancellation condition being satisfied
Error code E_TMOUT is returned.

The unit of time specified in tmout is the unit of time of the system clock, specified in the
configuration file.

tslp_tsk(10);

For example, if it is 10ms and the following is written in the program the own task is placed
from the execution (RUN) state into a wait (WAIT) state and held in that state for 100 ms.

You can specify a timeout (tmout) of -1 to 0x7FFFFFF. Specifying TMO_FEVR = -1 can be
used to set the timeout period to forever (no timeout). In this case, tslp_tsk will function
exactly the same as slp_tsk causing the issuing task to wait forever for wup_tsk to be issued.

This system call can only be issued from tasks, and cannot be issued from the interrupt
handler, cyclic handler, or alarm handler.

" wup_tsk, iwup_tsk System call
' rel_wai, irel_wai System call

2.2.6 tslp_tsk(Sleep Task with Timeout) 51

[(Usage example)]
<< Usage example of the C language >>
#include <mr32r._h>

#include “id.h”
void task(Q)

if(tslp_tsk(10) 1= E_TMOUT)
printf(*Forced wakeup\n™);
}
<< Usage example of the assembly language(CC32R) >>
-include “mr32r.inc”
.global task

task:

tslp;tsk 200

<< Usage example of the assembly language(TW32R:DCC/M32R) >>
-include “mr32r.inc”
-global task

task:

tslp;tsk 200

52 2.2.6 tslp_tsk(Sleep Task with Timeout)

2.2.7. wup_tsk(Wakeup Task)

[(System call name)]

wup_tsk — Wakes up the task in the wait state.

[(Calling by the assembly language)]

.include “mr32r.inc”
wup_tsk tskid

<< Argument >>

tskid [] The ID No. of the task to be waked up
<< Register setting >>

Register name | Contents after system call issuance
RO Error code
R1 The ID No. of the task to be waked up
R2 --
R3 --

[(Calling by the C language)]

#include <mr32r.h>
ER wup_tsk (tskid);

<< Argument >>

ID tskid; The ID No. of the task to be waked up
<< Return value >>

An error code is returned as the return value of a function.
[(Error codes)]

E_OK 00000000H(-H>00000000) : Normal End

E_QOVR OFFFFFFB7H(-H>00000049) : Queuing or nest overflow
E_NOEXS OFFFFFFCCH(-H”00000034): Object does not exist
E_OBJ OFFFFFFC1H(-H>0000003f): Invalid object state

2.2.7 wup_tsk(Wakeup Task)

53

[(Function description)]

If the task specified by tskid is in a wait (WAIT) state entered by execution of slp_tsk,tslp_tsk
this system call clears the task's wait state to place it in an executable (READY) or execution
(RUN) state. Also, if the task specified by tskid is in a double-wait (WAIT-SUSPEND) state,
the system call only clears the wait state and places the task in a forced wait (SUSPEND)
state.

For a request issued when the task is in an idle (DORMANT) state, an error E_OBJ is
returned to the system call issued task. If the task is in NON-EXISTENT state, the system
returns an error E_NOEXS to the system call issued task.

Note also that this system call cannot specify the own task.

If this system call is issued for tasks that are not in a wait (WAIT) state entered by execution
of slp_tsk, tslp_tsk or a double-wait (WAIT-SUSPEND) state, wakeup requests are
accumulated. More specifically, the wakeup request count in the TCB™ of the task is
incremented by 1"

The maximum value of the wakeup request count is 0x7FFFFFFF. If a wakeup request is
issued beyond 0x7FFFFFFF, the count remains Ox7FFFFFFF and error code E_QOVR is
returned to the task which issued this system call.

This system call can be issued only from tasks. The system call cannot be issued from the
interrupt handler, the cyclic handler, or the alarm handler is the iwup_tsk.

[(Usage example)]

<< Usage example of the C language >>
#include <mr32r.h>
#include “id.h”

void task(Q)
{

if(wup_tsk(ID_main) 1= E OK)
printf(“Can’t wakeup main(QQ\n”);

}

<< Usage example of the assembly language(CC32R) >>
-include “mr32r.inc”
.global task

task:

wu p_-ts k ID_task2

<< Usage example of the assembly language(TW32R:DCC/M32R) >>
-include “mr32r.inc”
.global task

task:

wup_fsk ID_task2

'® Task Control Block.

' This wakeup request count stores the counts of wakeup requests that have not been serviced because the
intended task was not in a wait (WAIT) or a double-wait (WAIT-SUSPEND) state when the wup_tsk or iwup_tsk
system call was issued to wake it up. If the task is being placed in a wait state by a slp_tsk system call when the
wakeup request count is more than 1, the wakeup request count is decremented by 1. In this case, the task does
not actually enter the wait (WAIT) state. Tasks can only be placed in a wait (WAIT) state by a slp_tsk system call
when the wakeup request count is 0.

54 2.2.7 wup_tsk(Wakeup Task)

2.2.8. iwup_tsk(Wakeup Task)

[(System call name)]

iwup_tsk — Wakes up the task in the wait state (for the handler
only).
[(Calling by the assembly language)]

.include “mr32r.inc”
iwup_tsk tskid

<< Argument >>

tskid [] The ID No. of the task to be waked up
<< Register setting >>

Register name | Contents after system call issuance
RO Error code
R1 The ID No. of the task to be waked up
R2 -
R3 -

[(Calling by the C language)]

#include <mr32r.h>
ER iwup_tsk (tskid);

<< Argument >>

ID tskid; The ID No. of the task to be waked up
<< Return value >>

An error code is returned as the return value of a function.
[(Error codes)]

E_OK 00000000H(-H>00000000) : Normal End

E _QOVR OFFFFFFB7H(-H”00000049) : Queuing or nest overflow
E_NOEXS OFFFFFFCCH(-H>00000034): Object does not exist
E_OBJ OFFFFFFC1H(-H>0000003f): Invalid object state

[(Function description)]

This system call is issued from the interrupt handler, the cyclic handler, or the alarm handler
to provide the same functions as the wup_tsk system call.

2.2.8 iwup_tsk(Wakeup Task) 55

[(Usage example)]
<< Usage example of the C language >>
#include <mr32r._h>

#include “id.h”
void inthand()

{
if(fwup_tsk(ID_main) != E_OK)
printf(**Can”t wakeup main(QQ\n”);
}
<< Usage example of the assembly language(CC32R) >>
-include “mr32r.inc”
.global intr
intr:
iwup;tsk ID_main
ret_}nt
<< Usage example of the assembly language(TW32R:DCC/M32R) >>
-include “mr32r.inc”
.global intr
intr:

iwup_tsk ID_main

ret_int

56 2.2.8 iwup_tsk(Wakeup Task)

2.2.9. can_wup(Cancel Wakeup Task)

[(System call name)]
can_wup - Cancels a task wakeup request.

[(Calling by the assembly language)]

.include “mr32r.inc”
can_wup tskid

<< Argument >>

tskid [] The ID No. of the task whose wakeup request is to be
canceled

<< Register setting >>

Register name | Contents after system call issuance
RO Error code
R1 The ID No. of the task whose wakeup request is to
be canceled
R2 The variable to store the count of canceled wakeup
R3 --

[(Calling by the C language)]

#include <mr32r.h>
ER can_wup (p_wupcnt,tskid);

<< Argument >>

INT *p_wupcnt; The variable to store the count of canceled wakeup
ID tskid; The ID No. of the task whose wakeup request is to be
canceled

<< Return value >>

An error code is returned as the return value of a function.
The count of canceled wakeup requests is set to variable wupcnt.

[(Error codes)]

E_OK 00000000H(-H>00000000) : Normal End
E_NOEXS OFFFFFFCCH(-H”00000034): Object does not exist
E OBJ OFFFFFFC1H(-H”0000003f): Invalid object state

[(Function description)]

This system call clears the wakeup request count for the task specified by tskid to zero. In
other words, because the task to be waked up by the wup_tsk, or iwup_tsk system call
before issuing the can_wup system call was not in the WAIT or WAIT-SUSPEND state, the
can_wup system call clears all the accu- mulated wakeup requests. For the return value of
this system call, the wakeup request count before being cleared to zero, namely the
canceled wakeup request count, is returned.

For the request issued when the task whose wakeup request is to be canceled is in the
DORMANT state, error code E_OBJ is returned to the task which issued this system call. If
the task is in NON-EXISTENT state, the system returns an error E_NOEXS to the system
call issued task.

When issued from only the task, this system call can tskid=TSK_SELF=0 as the own task.

This system call can be issued from either tasks or handlers.

2.2.9 can_wup(Cancel Wakeup Task) 57

[(Usage example)]
<< Usage example of the C language >>

#include <mr32r.h>
void task(Q)

INT wupcnt;

if(can_wup(&wupcnt,lD_main) I= E_OK)
printf(*“Can’t cancle wakeup main() \n”);

¥

<< Usage example of the assembly language(CC32R) >>
-include “mr32r.inc”
.global task

task:

can_wup ID_task2

<< Usage example of the assembly language(TW32R:DCC/M32R) >>
-include “mr32r.inc”
.global task

task:

can_wup ID_task2

58 2.2.9 can_wup(Cancel Wakeup Task)

2.3. Eventflags

2.3.1. cre_flg(Create EventFlag)

[(System call name)]
cre_tsk - Create Eventflag

[(Calling by the assembly language)]

.include “mr32r.inc”

cre_Flg flgid
<< Argument >>
flgid [#] The ID No. of an eventflag to be created
pk_cflg [sesesese] The start address in which the eventflag generation

information is stored
(Set the address in the R2 register.)

<< Register setting >>

Register name | Contents after system call issuance

RO Error code
R1 The ID No. of an eventflag to be created
R2 The start address in which the eventflag
generation information is stored
R3 --
Specify the following information in the structure indicased by pk_cflg.
Offset Size
+0 4 exinf Extended information
+4 4 flgatr Eventflag attribute
+8 4(U) iflgptn Initial eventflag pattern

U: unsigned data.
[(Calling by the C language)]

#include <mr32r.h>
ER cre_flg (flgid, pk _cflg);

<< Argument >>

ID flgid; The ID No. of an eventflag to be created
T CFLG *pk_cflg; The start address in which the eventflag generation
information is stored

Specify the following information in the structure indicased by pk_cflg.
typedef struct t_cflg {

VP exinf; /* Extended information */

ATR flgatr; /* Task attribute */

UINT iflgptn; /* Initial eventflag pattern */
} T_CFLG;

<< Return value >>
An error code is returned as the return value of a function.
[(Error codes)]

E_OK 00000000H(-H”00000000) : Normal End
E_OBJ OFFFFFFC1H(-H’0000003F): Invalid object state

2.3.1 cre_flg(Create EventFlag) 59

[(Function description)]
Creates an eventflag flgid indicates.
The created eventflag consists of 32bits bit-pattern and is initialized as the value of iflgptn.

Here follows explanation of the information as to an eventflag to be generated pk_cflg.

® exinf (extended information)

Exinf is an area you can freely use to store information as to an eventflag to be
generated. MR32R has nothing to do with the exinf's contents.

o flgatr (eventflag attribute)
MR32R has nothing to do with this contents.

o iflgptn
Set the initial bit-pattern of in this area when eventflag is created.
Error E_OBJ is returned if this system call is issued for a created eventflag.
The range of the specifiable ID number is 1 to the maximum value specified in the
configuration file.

You can issue this system call exclusively from a task. This system call, if issued either from
the interrupt handler, the cyclic handler or the alarm handler, doesn't work properly.

60 2.3.1 cre_flg(Create EventFlag)

[(Usage example)]
<< Usage example of the C language >>

#include <mr32r._h>
#include “id.h”
#define ID_flgl 1
#define 1D_flg2 2
void task1i()

T_CFLG cflgl;
T_CFLG cflg2=-0,0,0xfff’;

cflgl.iflgpth = OxFf;
cre_flg(ID_flgl, &cflgl);

}

<< Usage example of the assembly language(CC32R) >>

cflgl: _RES.B 12

cflg2: .RES.B 12

ID_flgl: -equ 1

ID_flg2: .equ 2
-include “mr32r.inc”
.global taskl

taskl:

1d24 R2,#cflgl
1d24 R1,#H”FF
st R1,8(8.R2)
cre_flg ID_flgl

1d24 R2,#cflg2
1d24 R1,#H”FFF
st R1,@(8,R2)
cre_flg 1D_fIlg2

ext_tsk

<< Usage example of the assembly language(TW32R:DCC/M32R)

cflgl: _space 12

cflg2: .space 12
.equ ID_flgl,1
.equ ID_fl1g2,2
-include “mr32r.inc”
.global taskl

taskl:

1d24 R2,#cflgl
1d24 R1,#0xFF
st R1,@(8,R2)
cre_flg ID_flgl

1d24 R2,#cflg2
1d24 R1,#O0XFFF
st R1,@(8,R2)
cre_flg 1D_flg2

ext_tsk

>>

2.3.1 cre_flg(Create EventFlag)

61

2.3.2. del_flg(Delete EventFlag)

[(System call name)]
del_flg - Delete Eventflag

[(Calling by the assembly language)]

.include “mr32r.inc”
del _flg flgid

<< Argument >>

flgid [] The ID No. of an eventflag to be deleted
<< Register setting >>
Register name | Contents after system call issuance
RO Error code
R1 The ID No. of an eventflag to be deleted
R2 -
R3 -

[(Calling by the C language)]

#include <mr32r.h>
ER del_flg (flgid);

<< Argument >>
ID flgid; The ID No. of an eventflag to be deleted
<< Return value >>
An error code is returned as the return value of a function.

[(Error codes)]

E_OK 00000000H(-H>00000000) : Normal End
E_NOEXS OFFFFFFCCH(-H?00000034): Object does not exist

[(Function description)]
del_flg deletes the eventflag flgid indicates.

You can create the eventflag deleted as the same ID again.If the task is linked to the
eventflag wait queue and del_flg is issued for the eventflag,this system call normally end.In
this case,del_flg moves the task WAIT state to READY state.And an error E_DLT is returned.

An error E_NOEXS is returned if this system call is issued for a nonexistent eventflag.

Make sure this system call is issued for only the eventflag that has been created by the
cre_flg system call. If this system call is issued for the eventflag that has defined by the
configuration file, it does not function normally.

You can issue this system call exclusively from a task. This system call, if issued either from
the interrupt handler, the cyclic handler or the alarm handler, doesn't work properly.

62 2.3.2 del_flg(Delete EventFlag)

[(Usage example)]

<< Usage example of the C language >>
#include <mr32r._h>
#include “id.h”

#define ID_flg2 2
void task1i()

{ -
del_flg(1D_flg2);

ext_isk();

<< Usage example of the assembly language(CC32R) >>
ID_flg2: .equ 2
-include “mr32r.inc”
.global taskl
taskl:
del flg 1D _flg2
ext_fsk
<< Usage example of the assembly language(TW32R:DCC/M32R) >>
.equ ID_flIg2,2
-include “mr32r.inc”
.global taskl
taskl:
del flg 1D _flg2

ext_tsk

2.3.2 del_flg(Delete EventFlag)

63

2.3.3. set_flg(Set EventFlag)

[(System call name)]
set flg - Sets an eventflag.

[(Calling by the assembly language)]

.include “mr32r.inc”
set_flg flgid, setptn

<< Argument >>

flgid [] The ID No. of the eventflag to be set
setptn [] The bit pattern to be set

<< Register setting >>

Register name | Contents after system call issuance
RO Error code
R1 The ID No. of the eventflag to be set
R2 The bit pattern to be set
R3 -

[(Calling by the C language)]

#include <mr32r.h>
ER set_flg (flgid, setptn);

<< Argument >>

ID flgid; The ID No. of the eventflag to be set
UINT setptn; The bit pattern to be set

<< Return value >>
E_OK is always returned as the return value of a function.
[(Error codes)]

E_OK 00000000H(-H>00000000) : Normal End
E_NOEXS OFFFFFFCCH(-H>00000034): Object does not exist

[(Function description)]

Among the 32-bit eventflags indicated by flgid, this system call sets the bit that is indicated
by setptn. Namely, it logical OR's the value of the eventflags indicated by flgid with
setptn.After the eventflag value is changed,set_flg system call moves the task WAIT state to
READY or RUN state if it’s wait condition is matched.'®

Multiple tasks can be kept waiting for the same eventflag. In this case, the multiple tasks can
be simultaneously freed from a wait state by one issuance of a set_flg system call. However,
if a task in a waiting queue was waiting for the eventflag to be set by a clear specification, all
tasks up to that task are freed from the wait state.

If all bits in setptn are set to 0, no operation will be performed on the eventflag concerned;
but this does not result in an error.

An error E_NOEXS is returned if this system call is issued for a nonexistent eventflag.

This system call can be issued only from tasks. The system call which be issued from the
interrupt handler, the cyclic handler, or the alarm handler is the iset_flg system call.

'8 Whether the task is moved to READY state or RUN state depends on the state of the ready queue.

64 2.3.3 set_flg(Set EventFlag)

[(Usage example)]

If the eventflag pattern before issuing this system call was 0xff, the pattern after this system call

becomes Oxffff.
<< Usage example of the C language >>
#include <mr32r.h>

#include “id.h”
void task(void)

{
set_Flg(1D_flg, (UINT)OXFFOO):

ext_tsk(Q);

<< Usage example of the assembly language(CC32R) >>
-include “mr32r.inc”
-global task

task:
set_flg ID_flg,0x0Ff00

ext_tsk

<< Usage example of the assembly language(TW32R:DCC/M32R) >>

.include “mr32r.inc”
-global task

task:
set_flg ID_flg,O0x0FF00

ext_tsk

2.3.3 set_flg(Set EventFlag)

65

2.3.4. iset_flg(Set EventFlag)

[(System call name)]

iset_flg — Sets an eventflag (for the handler only).

[(Calling by the assembly language)]
-include “mr32r.inc”

iset flg flgid, setptn

<< Argument >>
flgid [] The ID No. of the eventflag to be set
setptn [The bit pattern to be set

<< Register setting >>

Register name | Contents after system call issuance
RO Error code
R1 The ID No. of the eventflag to be set
R2 The bit pattern to be set
R3 -

[(Calling by the C language)]

#include <mr32r.h>
ER iset_flg (flgid, setptn);

<< Argument >>

ID flgid; The ID No. of the eventflag to be set
UINT setptn; The bit pattern to be set

<< Return value >>
E_OK is always returned as the return value of a function.

[(Error codes)]
E_OK 00000000H(-H>00000000) : Normal End

E_NOEXS OFFFFFFCCH(-H>00000034): Object does not exist

[(Function description)]

This system call is issued from the interrupt handler, the cyclic handler, or the alarm handler

to provide the same functions as the set_flg system call.

66 2.3.4 iset_flg(Set EventFlag)

[(Usage example)]

If the eventflag pattern before issuing this system call was 0xff, the pattern after this system call

becomes 0xffff.
<< Usage example of the C language >>
#include <mr32r.h>

#include “id.h”
void inthand(void)

{
iset_flg(1D_flg, (UINT)OXFFOO);
}
<< Usage example of the assembly language(CC32R) >>
-include “mr32r.inc”
.global intr
intr:
iset flg 1D_flg,H FFOO
ret_}nt
<< Usage example of the assembly language(TW32R:DCC/M32R) >>
-include “mr32r.inc”
-global intr
intr:

iset flg 1D_flg,0x0FFO0

ret_int

2.3.4 iset_flg(Set EventFlag)

67

2.3.5. clr_flg(Clear EventFlag)

[(System call name)]
clr_flg - Clears an eventflag.

[(Calling by the assembly language)]

.include “mr32r.inc”

clr_flg flgid, clrptn

<< Argument >>
flgid [] The ID No. of the eventflag to be cleared
clrptn [The bit pattern to be cleared

<< Register setting >>

Register name | Contents after system call issuance
RO Error code
R1 The ID No. of the eventflag to be cleared
R2 The bit pattern to be cleared
R3 -

[(Calling by the C language)]

#include <mr32r.h>
ER clr_flg (Fflgid, clrptn);

<< Argument >>

ID flgid; The ID No. of the eventflag to be cleared
UINT clrptn; The bit pattern to be cleared

<< Return value >>
E_OK is always returned as the return value of a function.
[(Error codes)]

E_OK 00000000H(-H>00000000) : Normal End
E_NOEXS OFFFFFFCCH(-H>00000034): Object does not exist

[(Function description)]

Among the 32-bit eventflags indicated by flgid, this system call clears the bit whose
corresponding clrptn is zero. Namely, it logical AND's the value of the eventflags indicated by
flgid with the value of clrptn. If all bits in clrptn are set to 1, no operation will be performed on
the eventflag concerned; but this does not result in an error.

An error E_NOEXS is returned if this system call is issued for a nonexistent eventflag.

This system call can be issued from both tasks and handlers.

68 2.3.5 cIr_flg(Clear EventFlag)

[(Usage example)]

If the eventflag pattern issuing this system call was 0xffff, the pattern after this system call
becomes 0xff00.

<< Usage example of the C language >>
#include <mr32r.h>
#include “id.h”

void task(void)
{

clr_flg(1D_flg, (UINT)OXFFOO):

}

<< Usage example of the assembly language(CC32R) >>
-include “mr32r.inc”
.global task

task:

clr_flg 1D_flg,H FFOO0

<< Usage example of the assembly language(TW32R:DCC/M32R) >>
-include “mr32r.inc”
-global task

task:

clr_flg 1D_flg,0xFFO0

2.3.5 cIr_flg(Clear EventFlag)

69

2.3.6. wai_flg(Wait EventFlag)

[(System call name)]
wai_flg - Waits for an eventflag.

[(Calling by the assembly language)]

-include “mr32r.inc”
wai_flg flgid, waiptn, wfmode

<< Argument >>

flgid [] The ID No. of the eventflag to waited for
waiptn [The bit pattern to be waited for
wimode [##xx] Wait mode

<< Register setting >>

Register name | Contents after system call issuance
RO Error code
R1 The ID No. of the eventflag to waited for
R2 The bit pattern when wait state is cleared
R3 Wait mode

[(Calling by the C language)]

#include <mr32r.h>
ER wai_Fflg (p_flgptn, flgid, waiptn, wfmode);

<< Argument >>

UINT *p_flgptn; Start address of area to which bit pattern is returned
when wait state is cleared

ID flgid; The ID No. of the eventflag to waited for

UINT waiptn; The bit pattern to be waited for

UINT wfmode; Wait mode

<< Return value >>

An error code is returned as the return value of a function.
The bit pattern when the wait cleared to the area specified by p_flgptn.

[(Error codes)]

E_OK 00000000H(-H>00000000) : Normal End

E_RLWAI OFFFFFFAAH(-H”00000056): Wait state forcibly
cleared

E DLT OFFFFFFAFH(-H>00000051) : The object being waited for
was deleted

E_NOEXS OFFFFFFCCH(-H”00000034): Object does not exist

70 2.3.6 wai_flg(Wait EventFlag)

[(Function description)]

In eventflags indicated by flgid, this system call waits until the bit specified by waiptn is set
according to wait clear conditions indicated by wfmode.

Specify the wait bit pattern in waiptn. Note that you cannot specify 0 (zero) in waiptn. If you
specify 0, this system call does not perform any processing and no value is returned.
However, in the uITRON specifications, an error E_PAR is returned, and compatibility with
other realtime OS would therefore be compromised.

Following specifications are made with wfmode:

wfmode := (TWF_ANDW || TWF_ORW) | [TWF_CLR]

TWF_ANDW AND wait
TWF_ORW OR wait
TWF_CLR Clear specification
Namely, these specifications have the following effects:

wfmode(wait mode) Effects

TWF_ANDW Waits until all bits specified by waiptn are set. (AND wait)
TWF_ANDW+TWF_CLR | Clears the eventflag value to 0 when AND wait clear
conditions are met for the bit specified by waiptn and the
task is freed from a wait state.

TWF_ORW Waits until any bit specified by waiptn is set. (OR wait)
TWF_ORW+TWF_CLR | Clears the eventflag value to 0 when OR wait clear
conditions are met for the bit specified by waiptn and the
task is freed from a wait state.

flgptn is a return parameter that indicates the eventflag value before a wait state is cleared
by this system call (in the case of a clear specification, the value of the eventflag before it is
cleared). The value returned by flgptn is a value that satisfies wait clear conditions. Multiple
tasks can be kept waiting for the same eventflag.

In this case, the multiple tasks can be simultaneously freed from a wait state by one
issuance of a set_flg system call. However, if it was a task whose wait clear conditions are
met in a waiting queue that requested a clear specification, all tasks up to that task are freed
from the wait state.

The eventflag forms the queue of the tasks which perform the following operations:
® The order of queuing is FIFO (First In, First Out).

® |f the queue has the task having clear specification, the flag is cleared when that task is
cleared of the wait.

® \Whether the tasks that follow the task having clear specification are cleared of wait or not
depends on the eventflag already cleared. So, these tasks are not cleared of wait.

If the wait state is forcibly cleared by the rel_wai system call issued by another task, error
code E_RLWAI is returned.

If the task is linked to the eventflag wait queue and del_flg is issued for the eventflag, del_flg
system call moves the task WAIT state to READY state.And error E_DLT is returned.

An error E_NOEXS is returned if this system call is issued for a nonexistent eventflag.

This system call can be issued only from tasks. The system call which be issued from the
interrupt handler, the cyclic handler, or the alarm handler is the iwup_tsk.

2.3.6 wai_flg(Wait EventFlag) 71

[(Usage example)]

In this example, the system call waits until the bit specified by an eventflag whose flag name is
flg2 is set. The task for which the specified bit is set is freed from a wait state.

Since the wait mode specified here is a clear specification, the eventflag flg2 is cleared to 0
simultaneously when the task is freed from a wait state.

<< Usage example of the C language >>
#include <mr32r.h>
#include “id.h”
void task(Q)
UINT Fflgptn;

if(wai_flg(&flgptn,ID_fIgZ,(UINT)OXOffO,TWF_ANDW+TWF_CLR)!:E_OK)
error(“Wait Released\n™);

}

<< Usage example of the assembly language(CC32R) >>
-include “mr32r.inc”
-global task

task:

Wai_%lg ID_flg2,H” O, (TWF_ANDW+TWF_CLR)

<< Usage example of the assembly language(TW32R:DCC/M32R) >>
-include “mr32r.inc”
.global task

task:

wai_flg ID_flg2,0x0Ff0, (TWF_ANDW+TWFE_CLR)

72 2.3.6 wai_flg(Wait EventFlag)

2.3.7. twai_flg(Wait EventFlag with Timeout)

[(System call name)]

twai_flg N

Waits for an eventflag. (With Timeout)

[(Calling by the assembly language)]

-include “mr32r.inc”
flgid, waiptn, wfmode, tmout

twai_flg
<< Argument >>

flgid [
waiptn [
wfmode [
tmout [EEEE

The ID No. of the eventflag to be waited for
The bit pattern to be waited for

Wait mode

Timeout value

<< Register setting >>

Register name | Contents after system call issuance
RO Error code
R1 The ID No. of the eventflag to be waited for
R2 The bit pattern when wait state is cleared
R3 Wait mode
R4 Timeout value

[(Calling by the C language)]

#include <mr32r.h>
ER twai_flg (p_flgptn, flgid, waiptn, wfmode, tmout);

<< Argument >>

UINT *p_flptn; Start address of area to which bit pattern is returned

when wait state is cleared

ID flgid; The ID No. of the eventflag to be waited for
UINT waiptn; The bit pattern to be waited for

UINT wfmode; Wait mode

TMO tmout; Timeout value

<< Return value >>

An error code is returned as the return value of a function.
The bit pattern when the wait cleared to the area specified by p_flgptn.

[(Error codes)]

E_OK 00000000H(-H”00000000) :
E_RLWAI

Normal End
OFFFFFFAAH(-H”00000056): Wait state forcibly
cleared

E_TMOUT OFFFFFFABH(-H>00000055): Polling failed or timeout

E DLT OFFFFFFAFH(-H~00000051): The object being waited for
was deleted

E_NOEXS OFFFFFFCCH(-H”00000034): Object does not exist

2.3.7 twai_flg(Wait EventFlag with Timeout) 73

[(Function description)]

In eventflags indicated by flgid, this system call waits until the bit specified by waiptn is set
according to wait clear condition indicated by wfmode.

The task that invoked this system call is queued in two wait queues: the eventflag wait queue
and timeout wait queue.

When this system call is invoked, the wait state is cancelled in the cases shown below.
When the wait state is cancelled, the task that invoked this system call exits from the two
wait queues (eventflag wait queue and timeout wait queue) and is connected to the ready
queue.

® \When the wait cancellation condition occurs before the tmout time has elapsed.

Error code E_OK is returned.

® \When the tmout time elapses without the wait cancellation condition being satisfied
Error code E_TMOUT is returned.
® \When the wait state is forcibly cancelled by rel_wai or irel_wai system calls being invoked
from another task or handler.
Error code E_RLWAI is returned.
® \When the eventflag for which a task has been kept waiting is deleted by the del_flg
system call issued by another task
Error code E_DLT is returned.

You can specify a timeout (tmout) of -1 to Ox7FFFFFFF. Specifying TMO_FEVR = -1 to
twai_flg for tmout indicates that an infinite timeout value be used, resulting in exactly the
same processing as wai_flg. If you specify tmout as TMO_POL(=0), it works like pol_flg.

See wai_flg system call for details of wfmode.

This system call can be issued only from tasks. It cannot be issued from the interrupt handler,
the cyclic handler, or the alarm handler.

74 2.3.7 twai_flg(Wait EventFlag with Timeout)

[(Usage example)]
In this example, that task waits for the bit specified in the flg2 eventflag to
be set or wait time tmout to elapse. The wait state is cancelled when the specified
bit is set or the wait time has elapsed.
<< Usage example of the C language >>
#include <mr32r._h>
#include “id.h”
void task(Q)
UINT flgptn;

if(twai_flg(&Fflgptn, 1D_flg2, (UINT)OXOFFO, TWF_ANDW, 5) != E_OK)
error(“Wait Released\n™);

}

<< Usage example of the assembly language(CC32R) >>
-include “mr32r.inc”
-global task

task:

twai_flg I1D_flg2,H*FF0, (TWF_ANDW+TWFE_CLR),5

<< Usage example of the assembly language(TW32R:DCC/M32R) >>
-include “mr32r.inc”
.global task

task:

twai_flg ID_flg2,0x0Ff0, (TWF_ANDW+TWE_CLR),5

2.3.7 twai_flg(Wait EventFlag with Timeout) 75

2.3.8. pol_flg(Poll EventFlag)

[(System call name)]

pol_flg — Gets an eventflag . (no wait state).

[(Calling by the assembly language)]

-include “mr32r.inc”
pol_Flg flgid, waiptn, wfmode

<< Argument >>

flgid [] The ID No. of the eventflag to check
waiptn [Wait bit pattern
wimode [##xx] Wait mode

<< Register setting >>

Register name | Contents after system call issuance
RO Error code
R1 The ID No. of the eventflag to check
R2 The bit pattern when wait state is cleared
R3 Wait mode

[(Calling by the C language)]

#include <mr32r.h>
ER pol_flg (p_flgptn, flgid, waiptn, wfmode);

<< Argument >>

UINT *p_flgptn; Start address of area to which bit pattern is returned
when wait state is cleared

ID flgid; The ID No. of the eventflag to check

UINT waiptn; Wait bit pattern

UINT wfmode; Wait mode

<< Return value >>

Error code is returned as a return value for a numeral.
The bit pattern when a wait state is cleared is set in an area indicated by p_flgptn.

[(Error codes)]

E_OK 00000000H(-H>00000000) : Normal End
E_TMOUT OFFFFFFABH(-H”00000055): Polling failed or timeout
E_NOEXS OFFFFFFCCH(-H?00000034): Object does not exist

[(Function description)]

In eventflags indicated by flgid, this system call checks to see if the wait clear bit pattern
indicated by waiptn is set according to wfmode.

If the eventflag concerned already satisfies the wait clear conditions indicated by wfmode,
the system call performs the same processing as in wai_flg (by clearing the eventflag if a
clear specification is requested) and terminates the session normally.

If the eventflag concerned does not satisfy the wait clear conditions indicated by wfmode, the
system call returns an error E_TMOUT. In this case, the task is not placed in a wait state.
Nor is the eventflag cleared even if a clear specification is requested.

An error E_NOEXS is returned if this system call is issued for a nonexistent eventflag.

This system call can be issued from both tasks and handlers.

76 2.3.8 pol_flg(Poll EventFlag)

[(Usage example)]

In this example, the system call examines whether the bit specified by
an eventflag whose flag name is flg2 is set. Since a clear specification
is requested, the eventflag is cleared to O if conditions are met.

<< Usage example of the C language >>

#include <mr32r.h>
#include “id.h”
void task(Q)

UINT Fflgptn;

if(po I_flg(&-fl gptn, ID_flg2, (UINT)OxOFFO, TWF_ORW+TWF_CLR) I=E_OK)
printf(“Not set EventFlag\n™);

}

<< Usage example of the assembly language(CC32R) >>

.include “mr32r.inc”
-global task
task:
pol_flg ID_flg2,H*ffO (TWF_ORW+TWF_CLR)

<< Usage example of the assembly language(TW32R:DCC/M32R) >>

.include “mr32r.inc”
.global task
task:
pol_flg ID_flg2,0xfFfO (TWF_ORW+TWF_CLR)

2.3.8 pol_flg(Poll EventFlag) 77

2.3.9. ref_flg(Refer EventFlag Status)

[(System call name)]
ref_flg - Reference Eventflag Status.

[(Calling by the assembly language)]

.include “mr32r.inc”
ref flg Flgid ,pk rflg

<< Argument >>

flgid [] The ID No. of the eventflag to Reference Eventflag
pk_rflg [eskokx] Packet address to Reference Eventflag

<< Register setting >>

Register name | Contents after system call issuance

RO Error code
R1 The ID No. of the eventflag to Reference Eventflag
R2 Packet address to Reference Eventflag
R3 -

The area indicated by pk_rflg returns the following information.
Offset Size
+0 4 exinf Extended information
+4 2 wisk Waiting task information
+8 4(U) flgptn Bit pattern of Eventflag

U: unsigned data.
[(Calling by the C language)]

#include <mr32r.h>
ER ref flg (pk _rflg, flgid);

<< Argument >>

T_RFLG *pk_rflg; Packet address to Reference Eventflag
ID flgid; The ID No. of the eventflag to Reference Eventflag

<< Return value >>

An error code is returned as the return value of a function.
The structure indicated by pk_rflg returns the following data.
typedef struct t_rflg {
VP exinf; /* Extended information */
BOOL_ID wtsk; /* Waiting task information */
UINT flgptn; /* Bit pattern of Eventflag */

}
[(Error codes)]
E_OK 00000000H(-H>00000000) : Normal End
E_NOEXS OFFFFFFCCH(-H>00000034): Object does not exist

78 2.3.9 ref_flg(Refer EventFlag Status)

[(Function description)]
Refers to the state of the eventflag specified by flgid, and returns returns the following
information as return values.
® exinf

Returns extended task information in exinf

® wtskid
wtsk returns the ID No. of the first task (the first task to enter the wait state) in the wait
queue. wtsk returns FALSE(O) if there are no tasks waiting in the queue.
o flgptn
flgptn returns the current value of the eventflag.
An error E_NOEXS is returned if this system call is issued for a nonexistent eventflag.

This system call can be issued from both tasks and handlers.

[(Usage example)]
<< Usage example of the C language >>

#include <mr32r.h>
#include “id.h”
void task(Q)

T_RFLG rflg;
ref_flg(&rflg, 1D_Fflg);

}
<< Usage example of the assembly language(TW32R:DCC/M32R) >>

.include “mr32r.inc”
-global task

task:
1d24 R2,#pk_rflg
ref_flg ID_flg

<< Usage example of the assembly language(TW32R:DCC/M32R) >>

.include “mr32r.inc”
.global task

task:
1d24 R2,#pk_rflg
ref_flg 1D _flg

2.3.9 ref_flg(Refer EventFlag Status) 79

2.4. Semaphore

2.4.1. cre_sem(Create Semaphore)

[(System call name)]
cre_sem — Create Semaphore

[(Calling by the assembly language)]

.include “mr32r.inc”
cre_sem semid

<< Argument >>

semid [] The ID No. of a semaphore to be created

pk_csem [#snx] The start address in which the semaphore generation
information is stored
(Set the address in the R2 register.)

<< Register setting >>

Register name | Contents after system call issuance

RO Error code
R1 The ID No. of a semaphore to be created
R2 The start address in which the semaphore
generation information is stored
R3 --
Specify the following information in the structure indicased by pk_csem.
Offset Size
+0 4 exinf Extended information
+4 4 sematr Semaphore attribute
+8 4 isemcnt Initial semaphore count
+12 4 maxsem Maximun semaphore count

[(Calling by the C language)]

#include <mr32r.h>
ER cre_sem (semid, pk_csem);

<< Argument >>

ID semid; The ID No. of a semaphore to be created
T_CSEM *pk_csem; The start address in which the semaphore
generation information is stored

Specify the following information in the structure indicased by pk_csem.
typedef struct t_csem {

VP exinf; /* Extended information */
ATR sematr; /* Semaphore attribute */
INT isemcnt; /* Initial semaphore count */
INT maxsem; /* Maximun semaphore count */
} T_CSEM;

<< Return value >>
An error code is returned as the return value of a function.
[(Error codes)]

E_OK 00000000H(-H”00000000) - Normal End
E_OBJ OFFFFFFC1H(-H’0000003F): Invalid object state

80 2.4.1 cre_sem(Create Semaphore)

[(Function description)]
Creates a semaphore semid indicates.

Here follows explanation of the information as to a semaphore to be generated pk_csem.

® exinf (extended information)
Exinf is an area you can freely use to store information as to a semaphore to be
generated. MR32R has nothing to do with the exinf's contents.

@ sematr (semaphore attribute)
MR32R has nothing to do with this contents.

®isemcnt
Set the initial semaphore counter value in this area when a semaphore created. The
range of the specifiable value is 0 to 7FFFFFFFH.

® maxsem

Set the maximam semaphore counter value in this area. The range of the specifiable
value is 0 to 7TFFFFFFFH.

An error E_OBJ is returned if cre_sem system call is issued for the semaphore which is
existent. The range of the specifiable ID number is 1 to the maximum value specified in the
configuration file.

You can issue this system call exclusively from a task. This system call, if issued either from
the interrupt handler, the cyclic handler or the alarm handler, doesn't work properly.

2.4.1 cre_sem(Create Semaphore) 81

[(Usage example)]
<< Usage example of the C language >>

#include <mr32r.h>
#include “id.h”
#define ID_seml 1
void task1i()

{
T _CSEM csem;
csem.isemcnt = Oxff; /* Initial semaphore count */
csem.maxsem = Ox7FFFFF; /* Maximun semaphore count */
cre_sem(ID_seml, &setsem);

}

<< Usage example of the assembly language(CC32R) >>

csem: _RES.B 16

ID_seml: -equ 1
.include “mr32r.inc”
.global taskl

taskl:

1d24 R2,#setsem
1d24 R1,#H’FF

st R1,@(8,R2) /* Initial semaphore count */
seth R1,#H”7F

or3 R1,R1,#H’FFFF /* Maximun semaphore count */
st R1,@(12,R2)

cre_sem ID_seml

ext_tsk

<< Usage example of the assembly language(TW32R:DCC/M32R) >>

csem: .space 16
.equ ID_seml,1
.include “mr32r.inc”
.global taskl
taskl:
1d24 R2 ,#setsem
1d24 R1,#0xFF

st R1,@(8,R2) ; /* Initial semaphore count */
seth R1,#0x7F

or3 R1,R1,#0xFFFF ; /* Maximun semaphore count */
st R1,8(12,R2)

cre_sem ID_seml

ext _tsk

82 2.4.1 cre_sem(Create Semaphore)

2.4.2. del_sem(Delete Semaphore)

[(System call name)]
del_sem - Delete Semaphore

[(Calling by the assembly language)]

.include “mr32r.inc”
del_sem semid

<< Argument >>
semid [s] The ID No. of a semaphore to be deleted

<< Register setting >>

Register name | Contents after system call issuance
RO Error code
R1 The ID No. of a semaphore to be deleted
R2 --
R3 --

[(Calling by the C language)]

#include <mr32r.h>
ER del_sem (semid);

<< Argument >>
ID semid; The ID No. of a semaphore to be deleted
<< Return value >>
An error code is returned as the return value of a function.

[(Error codes)]

E_OK 00000000H(-H>00000000) : Normal End
E_NOEXS OFFFFFFCCH(-H?00000034): Object does not exist

[(Function description)]
del_sem deletes the semaphore semid indicates.

You can create the semaphore deleted as the same ID again.If the task is linked to the
semaphore wait queue and del_sem is issued for the semaphore,this system call normally
end.In this case,del_sem moves the task WAIT state to READY state.And an error E_DLT is
returned.

An error E_NOEXS is returned if this system call is issued for a nonexistent semaphore.

Make sure this system call is issued for only the semaphore that has been created by the
cre_sem system call. If this system call is issued for the semaphore that has been defined by
the configuration file, it does not function normally.

You can issue this system call exclusively from a task. This system call, if issued either from
the interrupt handler, the cyclic handler or the alarm handler, doesn't work properly.

2.4.2 del_sem(Delete Semaphore) 83

[(Usage example)]

<< Usage example of the C language >>
#include <mr32r._h>
#include “id.h”

#define ID_sem2 2
void task1i()

{
del_éem(ID_sem2);
¥
<< Usage example of the assembly language(CC32R) >>
.equ ID_sem2,2
-include “mr32r.inc”
.global taskl
taskl:
del_éem ID_sem2
ext_isk
<< Usage example of the assembly language(TW32R:DCC/M32R) >>
.equ ID_sem2,2
-include “mr32r.inc”
.global taskl
taskl:

del_éem ID_sem2

ext _tsk

84 2.4.2 del_sem(Delete Semaphore)

2.4.3. sig_sem(Signal Semaphore)

[(System call name)]

sig_sem - Returns resource to the semaphore

[(Calling by the assembly language)]

.include “mr32r.inc”
sig_sem semid

<< Argument >>
semid [] The ID No. of the semaphore

<< Register setting >>

Register name | Contents after system call issuance
RO Error code
R1 The ID No. of the semaphore
R2 --
R3 --

[(Calling by the C language)]

#include <mr32r.h>
ER sig_sem (semid);

<< Argument >>
ID semid; The ID No. of the semaphore
<< Return value >>
An error code is returned as the return value of a function.

[(Error codes)]

E_OK 00000000H(-H>00000000) : Normal End
E_QOVR OFFFFFFB7H(-H>00000049) : Queuing or nest overflow
E_NOEXS OFFFFFFCCH(-H”00000034): Object does not exist

[(Function description)]
This system call returns 1 resource to the semaphore specified by semid.

When tasks are linked to the queue of that semaphore, the task at the head of the queue is
put in the ready state. If no task is linked, the count of that semaphore is incremented by 1.9

If it returns resource (sig_sem or isig_sem system call) is executed beyond the semaphore
count value specified by cre_sem system call or the maximum value setting(maxsem) in the
configuration file , error code E_QOVR is returned to the task which issued the system call
with the semaphore count value left unchanged.

An error E_NOEXS is returned if this system call is issued for a nonexistent semaphore.

This system call can be issued only from tasks. The system call which be issued from the
interrupt handler, the cyclic handler, or the alarm handler is the isig_sem.

9 |f this system call causes the count value to exceeds the semaphore initial value defined in the configuration file, no
error will occur.

2.4.3 sig_sem(Signal Semaphore) 85

[(Usage example)]

<< Usage example of the C language >>
#include <mr32r._h>
#include “id.h”

void task(Q)
{

if(sig_sem(ID_sem) = E OK)
error(“Overflow\n™);

}

<< Usage example of the assembly language(CC32R) >>

-include “mr32r.inc”
.global task

task:
sig_sem ID_sem

<< Usage example of the assembly language(TW32R:DCC/M32R) >>

-include “mr32r.inc”
.global task

task:
sig_sem ID_sem

86

2.4.3 sig_sem(Signal Semaphore)

2.4.4. isig_sem(Signal Semaphore)

[(System call name)]

isig_sem - Returns resource to the semaphore (For the handler
only)
[(Calling by the assembly language)]

-include “mr32r.inc”
isig_sem semid

<< Argument >>
semid [] The ID No. of the semaphore

<< Register setting >>

Register name | Contents after system call issuance
RO Error code
R1 The ID No. of the semaphore
R2 -
R3 -

[(Calling by the C language)]

#include <mr32r.h>
ER isig_sem (semid);

<< Argument >>
ID semid; The ID No. of the semaphore
<< Return value >>
An error code is returned as the return value of a function.

[(Error codes)]

E_OK 00000000H(-H>00000000) : Normal End
E _QOVR OFFFFFFB7H(-H”00000049) : Queuing or nest overflow
E_NOEXS OFFFFFFCCH(-H>00000034): Object does not exist

[(Function description)]

This system call is issued from the interrupt handler, the cyclic handler, or the alarm handler
to provide the same functions as the sig_sem system call.

[(Usage example)]
<< Usage example of the C language >>

#include <mr32r.h>
#include “id.h”
void inthand()

{

if(isig_sem-(ID_sem) I= E OK)
error(“Overflow\n™);

2.4 .4 isig_sem(Signal Semaphore) 87

<< Usage example of the assembly language(CC32R) >>

-include mr32r.inc

-global intr
intr:

isig_sem ID_sem

ret_int

<< Usage example of the assembly language(TW32R:DCC/M32R) >>

-include mr32r.inc

-global intr
intr:

isig_sem ID_sem

ret_int

88

2.4 .4 isig_sem(Signal Semaphore)

2.4.5. wai_sem(Wait on Semaphore)

[(System call name)]

wai_sem — Obtains one resource from the semaphore.

[(Calling by the assembly language)]

.include “mr32r.inc”
wail_sem semid

<< Argument >>

semid [] The ID No. of the semaphore from which the
resource is obtained

<< Register setting >>

Register name | Contents after system call issuance

RO Error code

R1 The ID No. of the semaphore from which the
resource is obtained

R2 -

R3 -

[(Calling by the C language)]

#include <mr32r.h>
ER wai_sem (semid);

<< Argument >>

ID semid; The ID No. of the semaphore from which the
resource is obtained

<< Return value >>
An error code is returned as the return value of a function.

[(Error codes)]

E_OK 00000000H(-H”00000000): Normal End

E_RLWAI OFFFFFFAAH(-H”00000056): Wait state forcibly
cleared

E DLT OFFFFFFAFH(-H>00000051) : The object being waited for
was deleted

E_NOEXS OFFFFFFCCH(-H”00000034): Object does not exist

2.4.5 wai_sem(Wait on Semaphore) 89

[(Function description)]
This system call obtains 1 resource from the semaphore specified by semid.

If the count value of that semaphore is one or more, the count is decremented by 1 and the
task which issued the system call continues executing. Conversely, if the semaphore count
value is 0, the count value is not modified and the system call issued task is linked to the
semaphore queue in order of FIFO.%

If the wait state has been cleared by the rel_wai system call issued by another task, error
code E_RLWAI is returned.

If the task waits for semaphore and del_sem is issued for it, del_sem system call moves the
task WAIT state to READY state.And error E_DLT is returned.

Error E_NOEXS is returned if this system call is issued for a nonexistent semaphore.

You can issue this system call exclusively from a task. This system call, if issued either from
the interrupt handler, the cyclic handler or the alarm handler, doesn't work properly.

[(Usage example)]

<< Usage example of the C language >>

#include <mr32r.h>
#include “id.h”
void task(Q)

{

if(wai_sem(- ID_sem) = E OK)
printf(*Forced wakeup\n™);

}

<< Usage example of the assembly language(CC32R) >>
-include “mr32r.inc”
.global task

task:
wai_sem ID_sem

<< Usage example of the assembly language(TW32R:DCC/M32R) >>
-include “mr32r.inc”
.global task

task:
wai_sem ID_sem

% First-in, first-out. Namely, tasks are freed from a wait state by sig_sem or isig_sem system calls in the order they
were placed in a wait state by the wai_sem system call.

90 2.4.5 wai_sem(Wait on Semaphore)

2.4.6. twai_sem(Wait on Semaphore with Timeout)

[(System call name)]

twai_sem - Obtains one resource from the semaphore. (With
Timeout)
[(Calling by the assembly language)]

-include “mr32r.inc”
twai_sem semid, tmout

<< Argument >>

semid [] The ID No. of the semaphore from which the
resource
tmout [tk] Timeout value

<< Register setting >>

Register name | Contents after system call issuance
RO Error code
R1 The ID No. of the semaphore from which the
resource
R2 --
R3 -
R4 Timeout value

[(Calling by the C language)]

#include <mr32r.h>
ER twai_sem (semid,tmout);

<< Argument >>

ID semid; The ID No. of the semaphore from which the
resource
TMO tmout; Timeout value

<< Return value >>
An error code is returned as the return value of a function.

[(Error codes)]

E OK 00000000H(-H>00000000) : Normal End

E_TMOUT OFFFFFFABH(-H>00000055): Polling failed or timeout

E_RLWAI OFFFFFFAAH(-H”00000056): Wait state forcibly
cleared

E DLT OFFFFFFAFH(-H>00000051) : The object being waited for

was deleted

E_NOEXS OFFFFFFCCH(-H”00000034): Object does not exist

2.4.6 twai_sem(Wait on Semaphore with Timeout)

[(Function description)]

This system call obtains 1 resource from the semaphore specified by semid.

If the count value of that semaphore is one or more, the count is decremented by 1 and the
task which issued the system call continues executing.

Conversely, if the semaphore count value is 0, the count value is not modified and the
system call issued task is linked to the semaphore queue and timeout wait queue.

When this system call is invoked, the wait state is cancelled in the cases shown below.
When the wait state is cancelled, the task that invoked this system call exits from the two
wait queues (semaphore wait queue and timeout wait queue) and is connected to the ready
queue.

® \When the wait cancellation condition occurs before the tmout time has elapsed.

Error code E_OK is returned.

® \When tmout time has elapsed without any message being received
Error code E_ TMOUT is returned.

® When the wait state is forcibly cancelled by rel_wai or irel_wai system calls being invoked
from another task or handler

Error code E_RLWAI is returned.

® \When the semaphore for which a task has been kept waiting is deleted by the del_sem
system call issued by another task

Error code E_DLT is returned.
Error E_NOEXS is returned if this system call is issued for a nonexistent semaphore.

You can specify a timeout (tmout) of -1 to Ox7FFFFFFF. Specifying TMO_FEVR = -1 to
twai_sem for tmout indicates that an infinite timeout value be used, resulting in exactly the
same processing as wai_sem. If you specify tmout as TMO_POL(=0), it works like
preq_sem.

You can issue this system call exclusively from a task. This system call, if issued either from
the interrupt handler, the cyclic handler or the alarm handler, doesn't work properly.

92

2.4.6 twai_sem(Wait on Semaphore with Timeout)

[(Usage example)]

<< Usage example of the C language >>

#include <mr32r.h>
#include “id.h”
void task(Q)

{

if(twai_semk ID_sem, 10) = E_ OK)
printf(“Forced wakeup\n™);

}

<< Usage example of the assembly language(CC32R) >>

.include “mr32r.inc”
.GLOBAL task
task:

twai_sem ID_sem, 10

<< Usage example of the assembly language(TW32R:DCC/M32R) >>

.include “mr32r.inc”
.GLOBAL task
task:

twai_sem ID_sem, 10

2.4.6 twai_sem(Wait on Semaphore with Timeout)

93

2.4.7. preq_sem(Poll and Request Semaphore)

[(System call name)]
preq_sem - Obtains one resource from the semaphore. (no wait)

[(Calling by the assembly language)]

-include “mr32r.inc”
preq_sem semid

<< Argument >>

semid [] The ID No. of the semaphore from which the
resource is obtained

<< Register setting >>

Register name | Contents after system call issuance

RO Error code

R1 The ID No. of the semaphore from which the
resource is obtained

R2 -

R3 -

[(Calling by the C language)]

#include <mr32r.h>
ER preq_sem (semid);

<< Argument >>

ID semid; The ID No. of the semaphore from which the
resource is obtained

<< Return value >>
An error code is returned as the return value of a function.

[(Error codes)]

E_OK 00000000H(-H>00000000) : Normal End
E_TMOUT OFFFFFFABH(-H”00000055): Polling failed or timeout
E_NOEXS OFFFFFFCCH(-H?00000034): Object does not exist

[(Function description)]
Obtains 1 resource (without a wait state) from the semaphore indicated by semid.

If the count value of the semaphore concerned is 1 or more, the count value is decremented
by 1 and the system call issued task continues executing.

Conversely, if the semaphore count value is 0, the count value is not modified and an error
E_TMOUT is returned to the system call issued task.

Error E_NOEXS is returned if this system call is issued for a nonexistent semaphore.

This system call can be issued from both tasks and handlers.

94 2.4.7 preq_sem(Poll and Request Semaphore)

[(Usage example)]

<< Usage example of the C language >>
#include <mr32r._h>
#include “id.h”

void task(Q)
{

if(preq_semk ID_sem) I= E OK)
printf(““No more resource\n™);

¥
<< Usage example of the assembly language(CC32R) >>
-include mr32r.inc
.global task
task:
preq;sem ID_sem
<< Usage example of the assembly language(TW32R:DCC/M32R) >>
-include mr32r.inc
.global task
task:

preq_sem ID_sem

2.4.7 preq_sem(Poll and Request Semaphore)

95

2.4.8. ref_sem(Refer Semaphore Status)

[(System call name)]
ref_sem - Reference Semaphore Status

[(Calling by the assembly language)]

.include “mr32r.inc”
ref_sem semid

<< Argument >>

semid [] The ID No. of the semaphore to Reference
Semaphore
pk_rsem [susx] Packet address to Reference Semaphore

<< Register setting >>

Register name | Contents after system call issuance

RO Error code
R1 The ID No. of the semaphore to Reference Semaphore
R2 Packet address to Reference Semaphore
R3 --

The area indicated by pk_rsem returns the following information.
Offset Size
+0 4 exinf Extended information
+4 2 wisk Waiting task information
+8 4 semcnt Current semaphore count

[(Calling by the C language)]

#include <mr32r.h>
ER ref_sem(pk_rsem,semid);

<< Argument >>

T RSEM *pk rsem; Packet address to Reference Semaphore
ID semid; The ID No. of the semaphore to Reference
Semaphore

<< Return value >>

An error code is returned as the return value of a function.

The structure indicated by pk_rsem returns the following data.
typedef struct t_rsem {

VP exinf; /* Extended information */
BOOL_ID wtsk; /* Waiting task information */
INT semcnt; /* Current semaphore count */
b
[(Error codes)]
E_OK 00000000H(-H>00000000) : Normal End
E_NOEXS OFFFFFFCCH(-H”00000034): Object does not exist

96 2.4.8 ref_sem(Refer Semaphore Status)

[(Function description)]
Refers to the state of the semaphore specified by semid, and returns the following
information as return values.
® exinf

Returns extended task information in exinf.

©® wisk
wtsk returns the ID No. of the first task (the first task to enter the wait state) in the wait
queue. wtsk returns FALSE(O) if there are no tasks waiting in the queue.
® semcnt
semcnt returns the current semaphore count.
An error E_NOEXS is returned if this system call is issued for a nonexistent semaphore.

This system call can be issued from both tasks and handlers.

[(Usage example)]

<< Usage example of the C language >>

#include <mr32r.h>
#include “id.h”
void task(Q)

T_RSEM rsem;
ref_sem(&rsem, ID_sem);

}
<< Usage example of the assembly language(CC32R) >>

rsem: .RES.B 12
.include “mr32r.inc”
-global task

task:

Id24- R2,#rsem
ref_sem ID_seml

<< Usage example of the assembly language(TW32R:DCC/M32R) >>

rsem: .Space 12
-include “mr32r.inc”
.global task

task:

1d24 R2,#rsem
ref_sem ID_seml

2.4.8 ref_sem(Refer Semaphore Status) 97

2.5. Mailbox

2.5.1. cre_mbx(Create Mailbox)

[(System call name)]
cre_mbx - Create Mailbox

[(Calling by the assembly language)]

.include “mr32r.inc”
cre_mbx mbxid

<< Argument >>

mbxid [] The ID No. of a mailbox to be created

pk_cmbx [##xx] The start address in which the mailbox generation
information is stored
(Set the address in the R2 register.)

<< Register setting >>

Register name | Contents after system call issuance

RO Error code
R1 The ID No. of a mailbox to be created
R2 The start address in which the mailbox generation
information is stored
R3 --
Specify the following information in the structure indicased by pk_cmbx.
Offset Size
+0 4 exinf Extended information
+4 4 mbxatr Mailbox attribute
+8 4 bufcnt Ringbuffer size

[(Calling by the C language)]

#include <mr32r.h>
ER cre_mbx (mbxid, pk_cmbx);

<< Argument >>

ID mbxid; The ID No. of a mailbox to be created
T CMBX *pk_cmbx; The start address in which the mailbox generation
information is stored

Specify the following information in the structure indicased by pk_cmbx.
typedef struct t_cmbx {

VP exinf; /* Extended information */
ATR mbxatr; /* Mailbox attribute */
INT bufcnt; /* Ringbuffer size */

} T_CMBX;

<< Return value >>
An error code is returned as the return value of a function.

[(Error codes)]

E_OK 00000000H(-H>00000000) : Normal End
E OBJ OFFFFFFC1H(-H”0000003f): Invalid object state
E_NOMEM OFFFFFFF6H(-H”0000000a) : Not enough of memory

98 2.5.1 cre_mbx(Create Mailbox)

[(Function description)]
Creates a mailbox mbxid indicates.

Here follows explanation of the information as to a mailbox to be generated pk_cmbx.

® exinf (extended information)
Exinf is an area you can freely use to store information as to a mailbox to be generated.
MR32R has nothing to do with the exinf's contents.

@ mbxatr (mailbox attribute)

Specify the location of the mailbox area to be created. Specifically this means
specifying whether you want the mailbox to be located in the internal RAM or in external
RAM.

¢ To locate the mailbox area in internal RAM
Specify _ MR_INT(0).

¢ To locate the mailbox area in external RAM
Specify _ MR_EXT(0x10000).

¢ To locate the mailbox area user specified
Specify _ MR_USER(0x20000).
® bufcnt

Specify the buffer size stored with messages of the mailbox.The unit is not bytes
number,but message number.

An error E_OBJ is returned if cre_mbx system call is issued for the mailbox which is existent.

The range of the specifiable ID number is 1 to the maximum value specified in the
configuration file.

You can issue this system call exclusively from a task. This system call, if issued either from
the interrupt handler, the cyclic handler or the alarm handler, doesn't work properly.

2.5.1 cre_mbx(Create Mailbox) 99

[(Usage example)]
<< Usage example of the C language >>

#include <mr32r.h>
#include “id.h”
#define ID_mbx1 1
void task1i()

{
T_CMBX setmbx;
setmbx-mbxat} = _ MR_EXT;
setmbx.bufcnt = 10; /* Ringbuffer size */
cre_mbx(ID_mbx1, &setmbx);
ext_tsk(Q);
}

<< Usage example of the assembly language(CC32R) >>

-equ ID_mbx1,1

setmbx: .RES.B 12

.include “mr32r.inc”

.global taskl
taskl:

Id24 R2,#setmbx
1d24 R1.# MR EXT

st R1,0(4,R2)
1d24 R1,#10
st R1,@(8,R2)

cre_mbx ID_mbx1
ext_tsk

<< Usage example of the assembly language(TW32R:DCC/M32R) >>

.equ ID_mbx1,1

setmbx: .space 12

-include “mr32r.inc”

.global taskl
taskl:

Id24 R2,#setmbx
1d24 R1.# MR EXT

st R1,@(4,R2)
1d24 R1,#10
st R1,@(8,R2)

cre_mbx ID_mbx1

ext_tsk

100 2.5.1 cre_mbx(Create Mailbox)

2.5.2. del_mbx(Delete Mailbox)

[(System call name)]
del_mbx - Delete Mailbox

[(Calling by the assembly language)]

.include “mr32r.inc”
del_mbx mbxid

<< Argument >>

mbxid [s] The ID No. of a mailbox to be deleted
<< Register setting >>
Register name | Contents after system call issuance
RO Error code
R1 The ID No. of a mailbox to be deleted
R2 -
R3 -

[(Calling by the C language)]

#include <mr32r.h>
ER del_mbx (mbxid);

<< Argument >>
ID mbxid; The ID No. of a mailbox to be deleted
<< Return value >>
An error code is returned as the return value of a function.

[(Error codes)]

E_OK 00000000H(-H>00000000) : Normal End
E_NOEXS OFFFFFFCCH(-H?00000034): Object does not exist

[(Function description)]
del_mbx deletes the mailbox mbxid indicates.

You can create the mailbox deleted as the same ID again.If the task is linked to the message
wait queue and del_mbx is issued for the mailbox,this system call normally end.In this
case,del_mbx moves the task WAIT state to READY state.And error E_DLT is returned.If
some messages are in the mailbox,these are deleted.

An error E_NOEXS is returned if this system call is issued for a nonexistent mailbox.

Make sure this system call is issued for only the mailbox that has been created by the
cre_mbx system call. If this system call is issued for the mailbox that has been defined by
the configuration file, it does not function normally.

You can issue this system call exclusively from a task. This system call, if issued either from
the interrupt handler, the cyclic handler or the alarm handler, doesn't work properly.

2.5.2 del_mbx(Delete Mailbox) 101

[(Usage example)]

<< Usage example of the C language >>
#include <mr32r._h>
#include “id.h”

#define ID_mbx2 2
void taskl(void)

{
del_ﬁbx(ID_mbx2);

ext_isk();

<< Usage example of the assembly language(CC32R) >>
ID_mbx2: .equ 2
-include “mr32r.inc”
.global taskl
taskl:
del_ﬁbx 1D_mbx2
ext_fsk
<< Usage example of the assembly language(TW32R:DCC/M32R) >>
.equ ID_mbx2,2
-include “mr32r.inc”
.global taskl
taskl:
del_mbx 1D_mbx2

ext_tsk

102 2.5.2 del_mbx(Delete Mailbox)

2.5.3. snd_msg(Send Message to Mailbox)

[(System call name)]

snd_msg - Sends a message.

[(Calling by the assembly language)]

.include “mr32r.inc”
snd_msg mbxid

<< Argument >>

mbxid [] The ID No. of the mailbox to which a message is sent
pk_msg [#nx] The start address of message packet
(Set the address in the R2 register.)

<< Register setting >>

Register name | Contents after system call issuance
RO Error code
R1 The ID No. of the mailbox to which a message is sent
R2 The start address of message packet
R3 --

[(Calling by the C language)]

#include <mr32r.h>
ER snd_msg (mbxid, pk msg);

<< Argument >>

ID mbxid; The ID No. of the mailbox to which a message is sent
T_MSG “*pk_msg; The start address of message packet

<< Return value >>
An error code is returned as the return value of a function.

[(Error codes)]

E_OK 00000000H(-H>00000000) : Normal End
E _QOVR OFFFFFFB7H(-H”00000049) : Queuing or nest overflow
E_NOEXS OFFFFFFCCH(-H>00000034): Object does not exist

2.5.3 snd_msg(Send Message to Mailbox) 103

[(Function description)]
This system call sends a message to the mailbox specified by mbxid.

If there are no tasks waiting for a message, the message is stored in the message queue in
order of FIFO.*" Therefore, messages are taken out of the queue in the order they were sent
to the mail box by issuing this system call. If there is any task waiting for a message, the
message is passed to that task and the task has its wait state removed.

The size of the message queue is defined in the configuration file or when cre_mbx system
call is issued.

If this system call is issued for a mail box whose message queue is full, an error E_QOVR is
returned to the system call issued task.

An error E_NOEXS is returned if this system call is issued for a nonexistent mailbox.

A message is 32bits wide data.?In standard uITRON specifications, this data is interpreted
as indicating the start address of a message packet (a structure including the message), i.e.,
address transfer. In MR32R, however, messages can be handled in two ways to perform
data communication as described below.

1. Using a message as the start address (32 bits) of a message packet
Since no specific types of message packets (T_MSG) are stipulated in MR32R, ang
desired message type can be defined by the user. It can be an array, for example. 3

Example:
typedef char * T_MSG;
Define the start address pk_msg of the message packet as follows:

T MSG *pk _msg;
2. Using a message simply as 32-bits data
In this case, cast the second argument of the snd_msg and isnd_msg system calls
(message data pk_msg to be sent) with (PT_MSG) and the first argument of rcv_msg
and prcv_msg (address ppk_msg of the area in which to store the message data) with
(PT_MSG *), respectively.
To send variable i of int type, for example, write your statement as follows:
inti, j;
snd_msg(ID_mbx, (PT_MSG)i);
rcv_msg((PT_MSG *)&j, ID_mbx);
This allows you to send 32-bit data directly.

This system call can be issued only from tasks. The system call which be issued from the
interrupt handler, the cyclic handler, or the alarm handler is the isnd_msg.

2! First In First Out
2 You choose which to use - 16-bit data width or 32-bit data width - in the configuration file.
% |t is standard to send the start address of message packet in [Calling by the C language] of this manual.

104 2.5.3 snd_msg(Send Message to Mailbox)

[(Usage example)]
<< Usage example of the C language >>

In this example, the message is used to send the start address of a message packet.

#include <mr32r.h>
#include “id.h”
typedef char T_MSG;
T_MSG msg[10];

void task(void)

{

if(snd_msg(ID_msg, msg) = E_OK){
error(“overflow\n™);
}

¥
<< Usage example of the assembly language(CC32R) >>

-include “mr32r.inc”
.global task
msg: .SDATA “message”
-DATA.B O
task:
snd_msg ID_msg, msg

<< Usage example of the assembly language(TW32R:DCC/M32R) >>

-include “mr32r.inc”
-global task
msg: .byte “message”
-byte 0
task:
snd_msg ID_msg, msg

2.5.3 snd_msg(Send Message to Mailbox)

105

2.5.4. isnd_msg(Send Message to Mailbox)

[(System call name)]

isnd_msg — Sends a message. (for the handler only).

[(Calling by the assembly language)]

-include “mr32r.inc”
isnd_msg mbxid

<< Argument >>

mbxid [] The ID No. of the mailbox to which a message is sent
pk_msg [#nx] The start address of message packet
(Set the address in the R2 register.)

<< Register setting >>

Register name | Contents after system call issuance
RO Error code
R1 The ID No. of the mailbox to which a message is sent
R2 The start address of message packet
R3 --

[(Calling by the C language)]

#include <mr32r.h>
ER isnd msg (mbxid, pk msg);

<< Argument >>

ID mbxid; The ID No. of the mailbox to which a message is sent
T_MSG “*pk_msg; The start address of message packet

<< Return value >>
An error code is returned as the return value of a function.

[(Error codes)]

E_OK 00000000H(-H>00000000) : Normal End
E _QOVR OFFFFFFB7H(-H”00000049) : Queuing or nest overflow
E_NOEXS OFFFFFFCCH(-H>00000034): Object does not exist

[(Function description)]

This system call is used when using the function of the snd_msg system call from an
task-independent section (e.g., interrupt handler, cyclic handler, or alarm handler).

106 2.5.4 isnd_msg(Send Message to Mailbox)

[(Usage example)]
<< Usage example of the C language >>

#include <mr32r._h>
#include “id.h”
typedef char T_MSG;
T_MSG msg[10];

void inthand()

{

if(isnd_msgk ID_msg, msg) = E_OK){
error(“overflow\n™);

}

<< Usage example of the assembly language(CC32R) >>
-include “mr32r.inc”
.global intr

intr:
isnd;msg ID_msg, H’1234
ret_int

<< Usage example of the assembly language(TW32R:DCC/M32R) >>
-include “mr32r.inc”
.global intr

intr:

isnd;msg ID_msg, 0x1234

ret_int

2.5.4 isnd_msg(Send Message to Mailbox)

107

2.5.5. rcv_msg(Receive Message from Mailbox)

[(System call name)]
rcv_msg — Waits for receiving a message.

[(Calling by the assembly language)]

.include “mr32r.inc”
rcv_msg mbxid

<< Argument >>

mbxid [] The ID No. of the mailbox from which a message is
received

<< Register setting >>

Register name | Contents after system call issuance
RO Error code
R1 The ID No. of the mailbox to which a message is
received
R2 The start address of message packet
R3 --

[(Calling by the C language)]

#include <mr32r.h>
ER rcv_msg (ppk_msg, mbxid);

<< Argument >>

ID mbxid; The ID No. of the mailbox from which a message is
received

T MSG **ppk_msg; The pointer variable to indicate the start address of
message packet

<< Return value >>

An error code is returned as the return value of a function.
The start address of the received message packet is set to variable ppk_msg.

[(Error codes)]

E_OK 00000000H(-H”00000000): Normal End

E_RLWAI OFFFFFFAAH(-H?00000056): Wait state forcibly
cleared

E DLT OFFFFFFAFH(-H”00000051): The object being waited for
was deleted

E_NOEXS OFFFFFFCCH(-H~00000034): Object does not exist

108 2.5.5 rcv_msg(Receive Message from Mailbox)

[(Function description)]
This system call receives a message from the mailbox specified by mbxid.

If messages have arrived at the mail box concerned, this system call gets 1 message from
the top of the message queue and returns it as a return parameter pk_msg.

Conversely, if no message has reached the mailbox, the task that has issued this system call
is placed in a wait state and linked in a waiting queue in order of FIFO.

If the task is freed from a wait state by a rel_wai system call issued by some other task, an
error E_RLWAI is returned.

Also, if the mailbox for a task waiting for conditions to be met is deleted by the del_mbx
system call issued by another task, the waiting task is released from the transmit mailbox
wait state and error E_DLT is returned to that task and changes to executable (READY)
state.

An error E_NOEXS is returned if this system call is issued for a nonexistent mailbox.
This system call can only be issued from tasks.
Following precautions should observed when receiving a message:

1. When using a message as the start address of a message packet
The message width comprises 32 bits, so you have to declare the pointer variable
(ppk_msg) toward the area in which the foremost address of the message packet is
stored as given below.

T_MSG **ppk_msg;

2. When using a message simply as data
You have to declare the pointer variable (ppk_msg) toward the area in which 32-bit data
is stored as given below.

T_MSG * ppk_msg;

Also, cast the first argument of rcv_msg and prcv_msg (address ppk_msg of the area in
which to store the message data) with (PT_MSG *). id

To send variable | of int type, for example:
inti, j;
snd_msg(ID_mbx, (PT_MSG)i);
rcv_msg((PT_MSG *)&j, ID_mbx);

You can issue this system call exclusively from a task. This system call, if issued either from
the interrupt handler, the cyclic handler or the alarm handler, doesn't work properly.

2.5.5 rcv_msg(Receive Message from Mailbox) 109

[(Usage example)]
<< Usage example of the C language >>
In this example, the message is used to send the start address of a message packet.
#include <mr32r.h>
#include “id.h”
typedef T_MSG char;
void task(Q)
T_MSG *msg;

if(rcv_msg(&msg, ID_mbx) = E_OK)
error(““forced wakeup\n);

}

<< Usage example of the assembly language(CC32R) >>
-include “mr32r.inc”
.global task

task:

rcv_msg ID_mbx

<< Usage example of the assembly language(TW32R:DCC/M32R) >>
-include “mr32r.inc”
-global task

task:

rcv_msg ID_mbx

110 2.5.5 rcv_msg(Receive Message from Mailbox)

2.5.6. trcv_msg(Receive Message with Timeout)

[(System call name)]
trcv_msg - Waits for receiving a message. (With Timeout)

[(Calling by the assembly language)]

-include “mr32r.inc”
trcv_msg mbxid, tmout

<< Argument >>

mbxid [] The ID No. of the mailbox from which a message is
received
tmout [Timeout value

<< Register setting >>

Register name | Contents after system call issuance
RO Error code
R1 The ID No. of the mailbox from which a message is
received
R2 The start address of message packet
R3 --
R4 Timeout value

[(Calling by the C language)]

#include <mr32r.h>
ER trcv_msg (ppk_msg, mbxid, tmout);

<< Argument >>

ID mbxid; The ID No. of the mailbox from which a message is
received

T_MSG **ppk_msg; The pointer variable to indicate the start address of
message packet

TMO tmout Timeout value

<< Return value >>

The start address of the received message packet is set to variable ppk_msg.
An error code is returned as the return value of a function.

[(Error codes)]

E_OK 00000000H(-H”00000000): Normal End

E_TMOUT OFFFFFFABH(-H>00000055): Polling failed or timeout

E_RLWAI OFFFFFFAAH(-H”00000056): Wait state forcibly
cleared

E DLT OFFFFFFAFH(-H?00000051) : The object being waited for
was deleted

E_NOEXS OFFFFFFCCH(-H”00000034): Object does not exist

2.5.6 trcv_msg(Receive Message with Timeout) 111

[(Function description)]

This system call receives a message from the mailbox specified by mbxid. If messages have
arrived at the mail box concerned, this system call gets 1 mess age from the top of the
message queue and returns it as a return parameter ppk_msg.

Conversely, if no message has reached the mail box, the task that has issued this system
call is placed in a wait state and linked in a waiting queue and timeout wait queue.

When this system call is invoked, the wait state is cancelled in the cases shown below.
When the wait state is cancelled, the task that invoked this system call exits from the two
wait queues (message queue and timeout wait queue) and is connected to the ready queue.

® \When the wait cancellation condition occurs by a message being received before the
tmout time has elapsed.

Error code E_OK is returned.

® \When tmout time has elapsed without any message being received
Error code E_ TMOUT is returned.
® \When the wait state is forcibly cancelled by rel_wai or irel_wai system calls being invoked
from another task or handler.
Error code E_RLWAI is returned.
® \When the mailbox for which a task has been kept waiting is deleted by the del_mbx
system call issued by another task
Error code E_DLT is returned.

You can specify a timeout (tmout) of -1 to Ox7FFFFFFF. Specifying TMO_FEVR = -1 to
trcv_msg for tmout indicates that an infinite timeout value be used, resulting in exactly the
same processing as rcv_msg. If you specify tmout as TMO_POL(=0), it works like prcv_msg.

See rcv_msg system call page for precautions should observed when receiving a message.

This system call can be issued only from tasks. It cannot be issued from the in terrupt
handler, the cyclic handler, or the alarm handler.

112 2.5.6 trcv_msg(Receive Message with Timeout)

[(Usage example)]

<< Usage example of the C language >>
#include <mr32r._h>
#include “id.h”

typedef char T_MSG;
void task(Q)

T_MSG *msg;

if(trcv_msgk &msg, ID_mbx, 10) !
error(“Can’t Get Message\n™);

E_OK){

}

<< Usage example of the assembly language(CC32R) >>
-include “mr32r.inc”
-global task

task:

trcv_msg 1D_mbx,10

<< Usage example of the assembly language(TW32R:DCC/M32R) >>
-include “mr32r.inc”
-global task

task:

trcv_msg 1D_mbx,10

2.5.6 trcv_msg(Receive Message with Timeout) 113

2.5.7. prcv_msg(Poll and Receive Message)

[(System call name)]
prcv_msg - Receiving a message. (no wait)

[(Calling by the assembly language)]

.include “mr32r.inc”
prcv_msg mbxid

<< Argument >>

mbxid [] The ID No. of the mailbox from which a message is
received

<< Register setting >>

Register name | Contents after system call issuance
RO Error code
R1 The ID No. of the mailbox from which a message is
received
R2 The start address of message packet
R3 --

[(Calling by the C language)]

#include <mr32r.h>
ER prcv_msg (ppk_msg, mbxid);

<< Argument >>

ID mbxid; The ID No. of the mailbox from which a message is
received
T MSG **ppk_msg; The start address of message packet

<< Return value >>

The start address of the received message packet is set to variable ppk_msg.
An error code is returned as the return value of a function.

[(Error codes)]

E_OK 00000000H(-H>00000000) : Normal End
E_TMOUT OFFFFFFABH(-H”00000055): Polling failed or timeout
E_NOEXS OFFFFFFCCH(-H”00000034): Object does not exist

[(Function description)]

If any message is found in the mail box indicated by mbxid, this system call receives it
(without a wait state). If the mail box contains messages, the system call gets 1 message
from the top of the message queue and returns it as a return parameter ppk_msg.

Conversely, if no message has been sent to the mailbox, an error E_ TMOUT is returned to
the system call issued task.

An error E_NOEXS is returned if this system call is issued for a nonexistent mailbox.
Refer to rcv_msg for precautions to be observed when receiving a message.

This system call can be issued from both a task and a task-independent section (e.g.,
interrupt handler, cyclic handler, or alarm handler).

114 2.5.7 prcv_msg(Poll and Receive Message)

[(Usage example)]

<< Usage example of the C language >>

#include <mr32r.h>
#include “id.h”
typedef char T_MSG;
void task(Q)

T_MSG * msg;

if(prcv_msgk &msg, ID_mbx) 1= E_OK){
error(“Can’t Get Message\n™);

}

<< Usage example of the assembly language(CC32R) >>
-include “mr32r.inc”
.global task

task:
prcv_msg ID_mbx1

<< Usage example of the assembly language(TW32R:DCC/M32R) >>
-include “mr32r.inc”
.global task

task:
prcv_msg ID_mbx1

2.5.7 prcv_msg(Poll and Receive Message) 115

2.5.8. ref_mbx(Refer Mailbox Status)

[(System call name)]
ref_mbx - Reference Mailbox Status

[(Calling by the assembly language)]

.include “mr32r.inc”
ref_mbx mbxid

<< Argument >>

mbxid [] The ID No. of the mailbox to Reference Mailbox
pk_rmbx [sx] Packet address to Reference Mailbox
(Set the address in the R2 register.)

<< Register setting >>

Register name | Contents after system call issuance

RO Error code
R1 The ID No. of the mailbox to Reference Mailbox
R2 Packet address to Reference Mailbox
R3 --

The structure indicated by pk_rmbx returns the following data.
Offset Size
+0 4 exinf Extended information
+4 2 wisk Waiting task information
+8 4(U) pk_msg Starting address of next received

message packet

12 4 msgcnt The number of messages

U: unsigned data.
[(Calling by the C language)]

#include <mr32r.h>
ER ref _mbx (pk_rmbx, mbxid);

<< Argument >>

T_RMBX *rmbx; Packet address to Reference Mailbox
ID mbxid; The ID No. of the mailbox to Reference Maibox

<< Return value >>

An error code is returned as the return value of a function.
The structure indicated by pk_rmbx returns the following data.
typedef struct t_rmbx {
VP exinf; /* Extended informatio */
BOOL_ID wtsk; /* Waiting task information */
T_MSG *pk_msg; /* Starting address of next received message

packet*/
INT msgcnt; /* The number of messages */
} T_RMBX;
[(Error codes)]
E _OK 00000000H(-H>00000000) :Normal End
E_NOEXS OFFFFFFCCH(-H”00000034): Object does not exist

116 2.5.8 ref_mbx(Refer Mailbox Status)

[(Function description)]
Refers to the state of the mailbox specified by mbxid, and returns the following information
as return values.
® exinf

Returns extended task information in exinf.

® wisk

wtsk returns the ID No. of the first task waiting for the specified mailbox message (the
first task to start waiting). wtsk returns FALSE (0) if there are no tasks waiting for
messages.
®pk msg
pk_msg returns the message received (the first message in the queue) when rcv_msg
or trcv_msg is executed next. pk_msg returns NADR=FFFFFFFFH=(-1). if there is no
message.
® msgcnt
Returns the number of messages currently in the target mailbox.
An error E_NOEXS is returned if this system call is issued for a nonexistent mailbox.
This system call can be issued from both tasks and handlers.
[(Usage example)]
<< Usage example of the C language >>
#include <mr32r.h>
#include “id.h”
void task(Q)
T _RMBX rmbx;
ref_ﬁbx(lD_mbx, &rmbx) ;

}
<< Usage example of the assembly language(CC32R) >>

rmbx: .RES.B 12
.include “mr32r.inc”
-global task

task:

1d24 R2, #rmbx
ref_mbx I1D_mbx

<< Usage example of the assembly language(TW32R:DCC/M32R) >>

rmbx: -space 12
-include “mr32r.inc”
-global task

task:

1d24 R2, #rmbx
ref_mbx ID_mbx

2.5.8 ref_mbx(Refer Mailbox Status) 117

2.6. Messagebuffer

2.6.1. cre_mbf(Create Messagebuffer)

[(System call name)]
cre_mbf - Create Messagebuffer

[(Calling by the assembly language)]

.include “mr32r.inc”
cre_mbf mbfid

<< Argument >>

mbfid [#] The ID No. of a messagebuffer to be created
pk_cmbf [ss#xx] The start address in which the messagebuffer
generation information is stored
(Set the address in the R2 register.)

<< Register setting >>

Register name | Contents after system call issuance

RO Error code
R1 The ID No. of a messagebuffer to be created
R2 The start address in which the messagebuffer
generation information is stored
R3 --
Specify the following information in the structure indicased by pk_ctsk.
Offset Size
+0 4 exinf Extended information
+4 4 mbfatr Messagebuffer attribute
+8 4 bufsz Messagebuffer size
+12 4 maxmsz Maximum size of messages

[(Calling by the C language)]

#include <mr32r.h>
ER cre_mbf (mbfid, pk_cmbf);

<< Argument >>

ID mbfid; The ID No. of a messagebuffer to be created
T CTSK *pk_ctsk; The start address in which the messagebuffer
generation information is stored

Specify the following information in the structure indicased by pk_cmbf.
typedef struct t_cmbf {

VP exinf; /* Extended information */

ATR mbfatr; /* Messagebuffer attribute */

INT bufsz; /* Messagebuffer size */

INT maxmsz; /* Maximum size of message */
} T_CMBF;

<< Return value >>
An error code is returned as the return value of a function.

[(Error codes)]

E_OK 00000000H(-H>00000000) : Normal End
E_NOMEM OFFFFFFF6H(-H”0000000a) : Not enough of memory
E_OBJ OFFFFFFC1H(-H>0000003f): Invalid object state

118 2.6.1 cre_mbf(Create Messagebuffer)

[(Function description)]
Creates a messagebuffer mbfid indicates.
The message buffer consists of the ring buffer whose size is specified as bufsz. Here follows
explanation of the information as to a messagebuffer to be generated pk_cmbf.
® exinf (extended information)
Exinf is an area you can freely use to store information as to a messagebuffer to be
generated. MR32R has nothing to do with the exinf's contents.
® mbfatr (messagebuffer attribute)

Specify the location of the messagebuffer area to be created. Specifically this means
specifying whether you want the messagebuffer to be located in the internal RAM or in
external RAM.

¢To locate the messagebuffer area in internal RAM
Specify _ MR_INT(0).

+ To locate the messagebuffer area in external RAM
Specify _ MR_EXT(0x10000).

¢ To locate the messagebuffer area user specified
Specify _ MR_USER(0x30000).
® bufsz (Specify multiple of four)
Specify the size of message bufferto be created.lt must be multiple of four.
You can specify the bufsz=0.In this case,the message buffer communication is
completely synchronized.
® maxmsz

Specify the maximum length of message in the message buffer to be created. MR32R
does not refer maxmsz,so you need not set this item.If you want to have a compatibility
between MR32R and other Realtime OS,set this item.

An error E_OBJ is returned if cre_mbf system call is issued for the message buffer which is
existent.

The range of the specifiable ID number is 1 to the maximum value specified in the
configuration file.

You can issue this system call exclusively from a task. This system call, if issued either from
the interrupt handler, the cyclic handler or the alarm handler, doesn't work properly.

2.6.1 cre_mbf(Create Messagebuffer) 119

[(Usage example)]
<< Usage example of the C language >>

#include <mr32r.h>
#include “id.h”
#define ID_mpll 1
void taskl(void)

{
T_CMBX setmbf;
setmbf_.mbfatr = _ MR_INT;
setmbf.bufsz = 200;
setmbf.maxmsz = 30;
cre_mbf(ID_mpll, &setmbf);
}

<< Usage example of the assembly language(CC32R) >>

setmbf: .RES.B 16
ID_mbfl: -equ 1
.include “mr32r.inc”
.global taskl
taskl:

Id24 R2,#setmbf
1d24 RL1.#_MR_INT

st R1,0(4,R2)
1d24 R1,#200

st R1,@(8,R2)
1d24 R1,#30

st R1,@(12,R2)

cre_mbf ID_mbfl
ext_isk

<< Usage example of the assembly language(TW32R:DCC/M32R) >>

setmbf: .space 16
-equ ID_mbf1,1
-include “mr32r.inc”
.global taskl
taskl:

Id24 R2,#setmbf
1d24 R1.# MR_INT

st R1,@(4.R2)
1d24 R1,#200

st R1,@(8,R2)
1d24 R1,#30

st R1,@(12,R2)

cre_mbf ID_mbfl

ext _tsk

120 2.6.1 cre_mbf(Create Messagebuffer)

2.6.2. del_mbf(Delete Massagebuffer)

[(System call name)]
del_tsk - Delete Messagebuffer

[(Calling by the assembly language)]

.include “mr32r.inc”
del_mbf mbFfid

<< Argument >>

mbfid [] The ID No. of a messagebuffer to be deleted
<< Register setting >>
Register name | Contents after system call issuance
RO Error code
R1 The ID No. of a messagebuffer to be deleted
R2 -
R3 -

[(Calling by the C language)]

include <mr32r.h>
ER del_mbf (mbfid);

<< Argument >>
ID tskid; The ID No. of a task to be deleted
<< Return value >>
An error code is returned as the return value of a function.
[(Error codes)]

E_OK 00000000H(-H>00000000) : Normal End
E_NOEXS OFFFFFFCCH(-H?00000034): Object does not exist

[(Function description)]
del_mbf deletes the messagebuffer mbfid indicates.

Once this messagebuffer is deleted, you can create a new messagebuffer with the same ID
number. Even when there is any task waiting for a messagebuffer to be deleted, this system
call is terminated normally. In this case, the said task is freed from the messagebuffer wait
state and returns error E_DLT.The messages in the message buffer are deleted by del_mbf
system call because the message buffer area is released.

An error E_NOEXS is returned if this system call is issued for a nonexistent messagebuffer.

Make sure this system call is issued for only the messagebuffer that has been created by the
cre_mbf system call. If this system call is issued for the messagebuffer that has been defined
by the configuration file, it does not function normally.

You can issue this system call exclusively from a task. This system call, if issued either from
the interrupt handler, the cyclic handler or the alarm handler, doesn't work properly.

2.6.2 del_mbf(Delete Massagebuffer) 121

[(Usage example)]

<< Usage example of the C language >>
#include <mr32r._h>
#include “id.h”

#define ID_mbf2 2
void task1i()

{
del_mbF(I1D_mbf2);

ext_isk();

<< Usage example of the assembly language(CC32R) >>
ID_mbf2: .equ 2
-include “mr32r.inc”
.global taskl
taskl:
del_mbf 1D_mbf2
ext_fsk
<< Usage example of the assembly language(TW32R:DCC/M32R) >>
.equ ID_mb¥2,2
-include “mr32r.inc”
.global taskl
taskl:
del_mbf 1D_mbf2

ext_tsk

122 2.6.2 del_mbf(Delete Massagebuffer)

2.6.3. snd_mbf(Send Message to Messagbuffer)

[(System call name)]
snd_msf — Sends a message.

[(Calling by the assembly language)]

.include “mr32r.inc”

snd_mb¥F mbfid, msgsz
<< Argument >>
mbfid [] The ID No. of the messagebuffer to which a message
is sent
msg [The start address of a message packet
(Set the address in the R2 register.)
msgsz [kt] The size of message

<< Register setting >>

Register name | Contents after system call issuance
RO Error code
R1 The ID No. of the messagebuffer to which a message is
sent
R2 The start address of a message packet
R3 The size of a message

[(Calling by the C language)]

#include <mr32r.h>
ER snd_mbf (mbfid, msg, msgsz);

<< Argument >>

ID mbxid; The ID No. of the messagebuffer to which a message
is sent

VP msg; The start address of a message packet

INT msgsz; The size of a message

<< Return value >>
An error code is returned as the return value of a function.

[(Error codes)]

E_OK 00000000H(-H”00000000): Normal End

E_RLWAI OFFFFFFAAH(-H?00000056): Wait state forcibly
cleared

E DLT OFFFFFFAFH(-H”00000051): The object being waited for
was deleted

E_NOEXS OFFFFFFCCH(-H?00000034): Object does not exist

2.6.3 snd_mbf(Send Message to Messagbuffer) 123

[(Function description)]

snd_mbf system call sends the message in the address of msg to the message buffer
specified with mbfid.Specify message size in msgsz.snd_mbf copys the msgsz bytes letters
after msg to the queue of the message buffer specified as mbfid. The message buffer
consists of the ring buffer.

If msgsz is larger than the value specified by cre_mbf,no error is returned.?*

If the buffer's available space is so small that the msg message cannot fit into the message
queue, the task that issued this system call is placed in send wait state. Accordingly, the task
is queued up in two queues: the send wait queue. The sequence of wait queues is FIFO.

If the task is forcibly released from the wait state by the rel_wai or irel_wai system call, error
E_RLWAI is returned.

Also, if the messagebuffer for a task waiting for conditions to be met is deleted by the
del_mbf system call issued by another task, the waiting task is released from the transmit
send messagebuffer wait state and error E_DLT is returned to that task.

If the message buffer for a task waiting for conditions to be met is reset by the vrst_mbf
system call issed by another task,the waiting task is released from send messagebuffer wait
state and error EV_RST is returned to that task.

An error E_NOEXS is returned if this system call is issued for a nonexistent messagebuffer.

You can issue this system call exclusively from a task. This system call, if issued either from
the interrupt handler, the cyclic handler or the alarm handler, doesn't work properly.

[(Usage example)]

<< Usage example of the C language >>
#include <mr32r.h>

#include “id.h”

void task(Q)

char *msg=""abcdef”;

tsnd_mbf(ID;mbf, msg, 6);

* Please check yourself whether msgsz is smaller than maxmsz specified by cre_mbf or not.

124 2.6.3 snd_mbf(Send Message to Messagbuffer)

<< Usage example of the assembly language(CC32R) >>

mb¥: _.SDATA “abcdef”
.DATA.B O
.include “mr32r.inc”
.GLOBAL task
task:

1d24 R2,#mbf
snd_mbf ID_mbf,6

<< Usage example of the assembly language(TW32R:DCC/M32R) >>

mbf: _byte “abcdef”
.byte 0O
.include “mr32r.inc”
.GLOBAL task

task:

1d24 R2, #mbf
snd_mbf ID_mbf,6

2.6.3 snd_mbf(Send Message to Messagbuffer) 125

2.6.4. tsnd_mbf(Send Message to Messagbuffer with Timeout)

[(System call name)]
tsnd_msg — Sends a message (With Timeout).

[(Calling by the assembly language)]
-include “mr32r.inc”

tsnd_mbf mbfid, msgsz,tmout
<< Argument >>
mbfid [] The ID No. of the messagebuffer to which a message
is sent
msg [The start address of a message packet
(Set the address in the R2 register.)
msgsz [kt] The size of a message
tmout [kt] Timeout value

<< Register setting >>

Register name | Contents after system call issuance
RO Error code
R1 The ID No. of the messagebuffer to which a message is
sent
R2 The start address of a message packet
R3 The size of a message

[(Calling by the C language)]

#include <mr32r.h>
ER tsnd_mbf (mbfid, msg, msgsz, tmout);

<< Argument >>

ID mbxid; The ID No. of the messagebuffer to which a message
is sent

VP msg; The start address of a message packet

INT msgsz; The size of a message

TMO tmout; Timeout value

<< Return value >>
An error code is returned as the return value of a function.

[(Error codes)]

E OK 00000000H(-H>00000000) : Normal End

E_RLWAI OFFFFFFAAH(-H?00000056): Wait state forcibly
cleared

E DLT OFFFFFFAFH(-H”00000051): The object being waited for
was deleted

E_TMOUT OFFFFFFABH(-H>00000055): Polling failed or timeout

E_NOEXS OFFFFFFCCH(-H”00000034): Object does not exist

126 2.6.4 tsnd_mbf(Send Message to Messagbuffer with Timeout)

[(Function description)]

snd_mbf system call sends the message in the address of msg to the message buffer
specified with mbfid.Specify message size in msgsz.snd_mbf copys the msgsz bytes letters
after msg to the queue of the message buffer specified as mbfid. The message buffer
consists of the ring buffer.

If msgsz is larger than the value specified by cre_mbf,no error is returned®.

If the buffer's available space is so small that the msg message cannot fit into the message
queue, the task that issued this system call is placed in send wait state. Accordingly, the task
is queued up in two queues: the send wait queue and the timeout wait queue. The sequence
of wait queues is FIFO.

The wait state committed by issuing this system call is released in the cases described
below. Note that when released from the wait state, the task that issued this system call is
removed from both of the send wait and timeout wait queues and is connected to the ready
queue.

@ \When the release-from-wait condition is met before the tmout time expires

Error code E_OK is returned.

® \When the tmout time expires before the release-from-wait condition is met
Error code E_ TMOUT is returned.
® \When the rel_wai or irel_wai system call is issued before the send messagebuffer wait
condition is met
Error code E_RLWAI is returned.

® \When the messagebuffer for which a task has been kept waiting is deleted by the
del_mbf system call issued by another task

Error code E_DLT is returned.
® \When the messagebuffer for which a task has been kept waiting is reset by the vrst_mbf
system call issued by another task
Error code EV_RST is returned.

Any value from -1 to 7FFFFFFFH can be specified for tmout. If you specify TMO_POL = 0 for
tmout, the effect is the same as 0 is specified for the timeout value, in which case tmout
functions the same way as psnd_mbf. Also, if you specify tmout = TMO_FEVR(-1), the effect
is the same as endless wait is specified, in which case tmout functions the same way as
snd_mbf.

An error E_NOEXS is returned if this system call is issued for a nonexistent messagebuffer.

You can issue this system call exclusively from a task. This system call, if issued either from
the interrupt handler, the cyclic handler or the alarm handler, doesn't work properly.

% Pplease check yourself whether msgsz is smaller than maxmsz specified by cre_mbf or not.

2.6.4 tsnd_mbf(Send Message to Messagbuffer with Timeout) 127

[(Usage example)]

<< Usage example of the C language >>

#include <mr32r.h>
#include “id.h”
void task(Q)

{

char *msg=""abcdef”;

tsnd;mbf(ID_mbf, msg, 6, 100);

}

<< Usage example of the assembly language(CC32R) >>

mbf: .SDATA “abcdef”
.DATA.B O
.include “mr32r.inc”
.global task
task:

1d24 R2, #mbF

tsnd_mbf ID_mb¥,6,100

<< Usage example of the assembly language(TW32R:DCC/M32R) >>

mbf: .byte “abcdef”
-byte 0O
-include “mr32r.inc”
.global task

task:

ld24 R2, #mbF

tsnd_mbf 1D_mbf,6,100

128

2.6.4 tsnd_mbf(Send Message to Messagbuffer with Timeout)

2.6.5. psnd_mbf(Poll and Send Messagebuffer)

[(System call name)]

psnd_msg - Sends a message (no wait).

[(Calling by the assembly language)]
-include “mr32r.inc”

psnd_mb¥ mbfid, msgsz
<< Argument >>
mbfid [] The ID No. of the messagebuffer to which a message
is sent
msg [The start address of a message packet
(Set the address in the R2 register.)
msgsz [kt] The size of a message
<< Register setting >>
Register name | Contents after system call issuance
RO Error code
R1 The ID No. of the messagebuffer to which a message is
sent
R2 The start address of message packet
R3 The size of message

[(Calling by the C language)]

#include <mr32r.h>
ER psnd_mbf (mbfid, msg, msgsz);

<< Argument >>

ID mbxid; The ID No. of the messagebuffer to which a message
is sent

VP msg; The start address of a message packet

INT msgsz; The size of a message

<< Return value >>
An error code is returned as the return value of a function.

[(Error codes)]

E OK 00000000H(-H>00000000) : Normal End
E_TMOUT OFFFFFFABH(-H>00000055): Polling failed or timeout
E_NOEXS OFFFFFFCCH(-H”00000034): Object does not exist

[(Function description)]

psnd_mbf system call sends the message in the address of msg to the message buffer
specified with mbfid.Specify message size in msgsz.psnd_mbf copys the msgsz bytes letters
after msg to the queue of the message buffer specified as mbfid. The message buffer
consists of the ring buffer.

If msgsz is larger than the value specified by cre_mbf,no error is returned®.
If there is no space in message buffer area,error E_TMOUT is returned.
The task is not moved to WAIT state by psnd_mbf.

An error E_NOEXS is returned if this system call is issued for a nonexistent messagebuffer.

% please check yourself whether msgsz is smaller than maxmsz specified by cre_mbf or not.

2.6.5 psnd_mbf(Poll and Send Messagebuffer) 129

You can issue this system call exclusively from a task. This system call, if issued either from
the interrupt handler, the cyclic handler or the alarm handler, doesn't work properly.

[(Usage example)]
<< Usage example of the C language >>
#include <mr32r.h>

#include “id.h”
void inthand()

{
char *msg=""abcdef”;
if(psnd_mbf(1D_mbf, msg, 6) 1= E OK){
error(“overflow\n™);
}

<< Usage example of the assembly language(CC32R) >>

mbf: .SDATA “abcdef”
.DATA.B O
.include “mr32r.inc”
.global intr
intr:

1d24 R2, #mbf
psnd_mbf ID_mbf, 6

ret_int
<< Usage example of the assembly language(TW32R:DCC/M32R) >>

mbf: _byte “abcdef”
.byte 0O
-include “mr32r.inc”
-global intr

intr:

124 R2,#mbf
psnd_mbf 1D_mbf, 6

ret_int

130 2.6.5 psnd_mbf(Poll and Send Messagebuffer)

2.6.6. rcv_mbf(Receive Messagebuffer)

[(System call name)]
rcv_mbf - Waits for receiving a message from Messagebuffer.

[(Calling by the assembly language)]

.include “mr32r.inc”

rcv_mbf mbfid, msg
<< Argument >>
mbfid [] The ID No. of the messagebuffer from which a
message pakect is received
msg [The start address in which a receive message packet
is stored.

(Set the address in the R2 register.)
<< Register setting >>

Register name | Contents after system call issuance
RO Error code
R1 The ID No. of the messagebuffer from which a message
packet is received
R2 The start address in which a receive message packet is
stored.
R3 The size of a receive message packet

[(Calling by the C language)]

#include <mr32r.h>
ER rcv_mbf (msg, p_msgsz, mbfid);

<< Argument >>

ID mbfid; The ID No. of the messagebuffer from which a
message packet is received

INT *p_msgsz; The start address in which a receive message
packet is stored.

VP msg; The size of a receive message packet

<< Return value >>

An error code is returned as the return value of a function.
The size of a receive message packet is stored in p_msgsz.

[(Error codes)]

E_OK 00000000H(-H”00000000) : Normal End

E_RLWAI OFFFFFFAAH(-H?00000056): Wait state forcibly
cleared

E DLT OFFFFFFAFH(-H~00000051): The object being waited for
was deleted

E_NOEXS OFFFFFFCCH(-H?00000034): Object does not exist

[(Function description)]

rcv_mbf recieves the message in the message buffer specified as mbfid,and store to the
area specified as msg.If there is a send WAIT state task,rcv_mbf compare the size of
message to be sent with the size of received message.

1. Recieve message size is larger than send message size.

2.6.6 rcv_mbf(Receive Messagebuffer) 131

The message is sent to messagebuffer and the task is moved WAIT state to READY
state.

2. Receive message size is smaller than send message size.
rcv_mbf does not send the message to message buffer,leave the task WAIT state, and
end.

After the process of 1,rcv_mbf does as the sam if there is the send WAIT state task.If the
message is not sent to the message buffer speified as mbfid,the task is moved to WAIT state
FIFO ordered.

If the task is forcibly released from the wait state by the rel_wai or irel_wai system call, error
E_RLWAI is returned.

If the messagebuffer for a task waiting for conditions to be met is deleted by the del_mbf
system call issued by another task, the waiting task is released from the receive wait state
and error E_DLT is returned to that task.

If the messagebuffer for a task waiting for conditions to be met is reset by the vrst_mbf
system call issued by another task, the waiting task is released from the receive wait state
and error EV_RST is returned to that task.

An error E_NOEXS is returned if this system call is issued for a nonexistent messagebuffer.

You can issue this system call exclusively from a task. This system call, if issued either from
the interrupt handler, the cyclic handler or the alarm handler, doesn't work properly.

[(Usage example)]

<< Usage example of the C language >>

#include <mr32r.h>
#include “id.h”
void task(Q)

char msg[128];
INT msgsz;
if(rcv_mbf((VP)msg, &msgsz, ID_mbf) I= E OK)

}

<< Usage example of the assembly language(CC32R) >>

msg: .RES.B 32
.include “mr32r.inc”
.global task

task:

1d24 R2,#msg
rcv_mbf 1D_mbf

<< Usage example of the assembly language(TW32R:DCC/M32R) >>

msg: .space 32
-include “mr32r.inc”
-global task

task:

1d24 R2,#msg
rcv_mbf 1D_mbf

132 2.6.6 rcv_mbf(Receive Messagebuffer)

2.6.7. trcv_mbf(Receive Messagebuffer with Timeout)

[(System call name)]

trcv_mbf - Waits for receiving a message from Messagebuffer.
(With Timeout)

[(Calling by the assembly language)]
-include “mr32r.inc”

trcv_mbf mbfid, tmout
<< Argument >>
mbfid [] The ID No. of the messagebuffer from which a
message pakect is received
msg [kt] The start address in which a receive message packet
is stored.
(Set the address in the R2 register.)
tmout [tk Timeout value

<< Register setting >>

Register name | Contents after system call issuance

RO Error code

R1 The ID No. of the messagebuffer from which a message
packet is received

R2 The start address in which a receive message packet is
stored.

R3 The size of a receive message packet

R4 Timeout value

[(Calling by the C language)]

#include <mr32r.h>
ER trcv_mbf (msg, p_msgsz, mbfid, tmout);

<< Argument >>

ID mbfid; The ID No. of the messagebuffer from which a
message packet is received

INT *p_msgsz; The start address in which a receive message
packet is stored.

VP msg; The size of a receive message packet

TMO\ tmout; Timeout value

<< Return value >>

An error code is returned as the return value of a function.
The size of a receive message packet is stored in p_msgsz.

[(Error codes)]

E_OK 00000000H(-H”00000000) : Normal End

E_RLWAI OFFFFFFAAH(-H?00000056): Wait state forcibly
cleared

E DLT OFFFFFFAFH(-H~00000051): The object being waited for
was deleted

E_TMOUT OFFFFFFABH(-H”00000055): Polling failed or timeout

E_NOEXS OFFFFFFCCH(-H?00000034): Object does not exist

2.6.7 trcv_mbf(Receive Messagebuffer with Timeout) 133

[(Function description)]

trcv_mbf recieves the message in the message buffer specified as mbfid,and store to the
area specified as msg.If there is a send WAIT state task,trcv_mbf compare the size of
message to be sent with the size of received message.

1. Recieve message size is larger than send message size.
The message is sent to messagebuffer and the task is moved WAIT state to READY
state.

2. Receive message size is smaller than send message size.
rcv_mbf does not send the message to message buffer,leave the task WAIT state, and
end.

After the process of 1,trcv_mbf does as the sam if there is the send WAIT state task.If the
message is not sent to the message buffer speified as mbfid,the task is moved to WAIT state
and linked to the timeout queue and the receive wait queue.

The wait state committed by issuing this system call is released in the cases described
below. Note that when released from the wait state, the task that issued this system call is
removed from both of the recieve wait and timeout wait queues and is connected to the
ready queue.

® \When the wait cancellation condition occurs by a message being received before the
tmout time has elapsed.

Error code E_OK is returned.

® \When tmout time has elapsed without any message being received
Error code E_TMOUT is returned.
® \When the rel_wai or irel_wai system call is issued before the recieve messagebuffer wait
condition is met
Error code E_RLWAI is returned.

® When the message buffer for which a task has been kept waiting is deleted by the
del_mbf system call issued by another task

Error code E_DLT is returned.

® \When the message buffer for which a task has been kept waiting is reset by the vrst_mbf
system call issued by another task

Error code EV_RST is returned.

Any value from -1 to 7FFFFFFFH can be specified for tmout. If you specify TMO_POL = 0 for
tmout, the effect is the same as 0 is specified for the timeout value, in which case tmout
functions the same way as prcv_mbf. Also, if you specify tmout = TMO_FEVR(-1), the effect
is the same as endless wait is specified, in which case tmout functions the same way as
rcv_mbf.

An error E_NOEXS is returned if this system call is issued for a nonexistent messagebuffer.

You can issue this system call exclusively from a task. This system call, if issued either from
the interrupt handler, the cyclic handler or the alarm handler, doesn't work properly.

134 2.6.7 trcv_mbf(Receive Messagebuffer with Timeout)

[(Usage example)]
<< Usage example of the C language >>
#include <mr32r._h>

#include “id.h”
void task(Q)

{
char msg[128];
INT msgsz;
if(trev_mbf((VP)msg, &msgsz, ID_mbf, 200) = E_OK)
error(““forced wakeup\n);
¥
¥

<< Usage example of the assembly language(CC32R) >>

msg: .RES.B 30
.include “mr32r.inc”
.global task

task:

1d24 R2,#msg
trcv_mbf 1D_mbf, 200

<< Usage example of the assembly language(TW32R:DCC/M32R) >>

msg: .space 30
-include “mr32r.inc”
.global task

task:

Id24- R2,#msg
trcv_mbf 1D_mbf, 200

2.6.7 trcv_mbf(Receive Messagebuffer with Timeout) 135

2.6.8. prcv_mbf(Poll and Receive Messagebuffer)

[(System call name)]

prcv_mbf - Waits for receiving a message from Messagebuffer.
(no wait)
[(Calling by the assembly language)]

.include “mr32r.inc”
prcv_mbf mbFid

<< Argument >>

mbfid [] The ID No. of the messagebuffer from which a
message pakect is received

msg [kt] The start address in which a receive message packet
is stored.

(Set the address in the R2 register.)

<< Register setting >>

Register name | Contents after system call issuance

RO Error code

R1 The ID No. of the messagebuffer from which a message
packet is received

R2 The start address in which a receive message packet is
stored.

R3 The size of a receive message packet

R4 Timeout value

[(Calling by the C language)]

#include <mr32r.h>
ER prcv_mbf (msg, p_msgsz, mbfid);

<< Argument >>

ID mbfid; The ID No. of the messagebuffer from which a
message packet is received

INT *p_msgsz; The start address in which a receive message
packet is stored.

VP msg; The size of a receive message packet

<< Return value >>

An error code is returned as the return value of a function.
The size of a receive message packet is stored in p_msgsz.

[(Error codes)]

E_OK 00000000H(-H?00000000) : Normal End
E_TMOUT OFFFFFFABH(-H>00000055) : Polling failed or timeout
E_NOEXS OFFFFFFCCH(-H”00000034) : Object does not exist

[(Function description)]

prcv_mbf recieves the message in the message buffer specified as mbfid,and store to the
area specified as msg.If there is a send WAIT state task,prcv_mbf compare the size of
message to be sent with the size of received message.

1. Recieve message size is larger than send message size.

136 2.6.8 prcv_mbf(Poll and Receive Messagebuffer)

The message is sent to messagebuffer and the task is moved WAIT state to READY
state.

2. Receive message size is smaller than send message size.
rcv_mbf does not send the message to message buffer,leave the task WAIT state, and
end.

After the process of 1,prcv_mbf does as the sam if there is the send WAIT state task.If the
message is not sent to the message buffer speified as mbfid,error E_ TMOUT is returned..

The task is not moved to WAIT state by prcv_mbf.

An error E_NOEXS is returned if this system call is issued for a nonexistent messagebuffer.
You can issue this system call exclusively from a task. This system call, if issued either from
the interrupt handler, the cyclic handler or the alarm handler, doesn't work properly.

[(Usage example)]
<< Usage example of the C language >>
#include <mr32r._h>

#include “id.h”
void task(void)

{

char msg[128];

INT msgsz;

if(prev_mbf((VP)msg, &msgsz, ID_mbf, 200) = E OK)
}

<< Usage example of the assembly language(CC32R) >>

msg: .space 32
.include “mr32r.inc”
-global task

task:
1d24 R2,#msg
prcv_mbf ID_mbf

<< Usage example of the assembly language(TW32R:DCC/M32R) >>

msg: .space 32
-include “mr32r.inc”
.global task

task:
1d24 R2,#msg
prcv_mbf ID_mbf

2.6.8 prcv_mbf(Poll and Receive Messagebuffer) 137

2.6.9. ref_mbf(Refer Messagebuffer Status)

[(System call name)]
ref_mbf - Reference Messagebuffer Status

[(Calling by the assembly language)]

.include “mr32r.inc”
ref_mbf mbfid

<< Argument >>

mbfid [] The ID No. of the messagebuffer to Reference
Messagebuffer
pk_rmbf [sesess] Packet address to Reference Messagebuffer

(Set the address in the R2 register.)
<< Register setting >>

Register name | Contents after system call issuance
RO Error code
R1 The ID No. of the messagebuffer to Reference
Messagebuffer

R2 Packet address to Reference Messagebuffer
R3 --

The structure indicated by pk_rmbx returns the following data.
Offset Size
+0 4 exinf Extended information
+4 2 wtsk Waiting Task Information
+6 2 stsk Sending Task Information
+8 4 pk_msg Message Size (in bytes)
12 4 frbufsz Free Buffer Size (in bytes)

[(Calling by the C language)]

#include <mr32r.h>
ER ref_mbf (pk_rmbf, mbfid);

<< Argument >>

T _RMBF *pk _rmbf, Packet address to Reference Messagebuffer
ID mbfid; The ID No. of the messagebuffer to Reference
Messagebuffer

<< Return value >>

An error code is returned as the return value of a function.
The structure indicated by pk_rmbf returns the following data.
typedef struct t_rmbx {
VP exinf; /* Extended informatio */
BOOL_ID wtsk; /* Waiting Task Information */
BOOL_ID stsk; /* Sending Task Information */

INT msgsz; /* Message Size (in bytes) */
INT frbufsz; /* Free Buffer Size (in bytes) */
} T_RMBF;
[(Error codes)]
E_OK 00000000H(-H”00000000) : Normal End
E_NOEXS OFFFFFFCCH(-H”00000034): Object does not exist

138 2.6.9 ref_mbf(Refer Messagebuffer Status)

[(Function description)]
Refers to the state of the messagebuffer specified by mbfid, and returns returns the following
information as return values.
® exinf

Returns extended task information in exinf.

® wisk

wisk returns the ID No. of the first task waiting for the specified messagebuffer to
receive message (the first task to start waiting). wtsk returns FALSE (0) if there are no
tasks waiting to receive a messages.

® stsk
stsk returns the ID No. of the first task waiting for the specified messagebuffer to send
message (the first task to start waiting). wtsk returns FALSE (0) if there are no tasks
waiting to send a messages.

® msgsz
The top message size in the message buffer specified as mbfid is stored.If there is no
message in the message buffer, FALSE(O) is returned.

® frbufsz
The free buffer size specified is returned.

An error E_NOEXS is returned if this system call is issued for a nonexistent messagebuffer.

This system call can be issued from both tasks and handlers.

2.6.9 ref_mbf(Refer Messagebuffer Status) 139

[(Usage example)]
<< Usage example of the C language >>

#include <mr32r.h>
#include “id.h”
void task(Q)

T_RMBF rmbf;
ref_mbF(ID_mbf, &rmbF);
¥
<< Usage example of the assembly language(CC32R) >>
rmbf: -RES.B 16
-include mr32r.inc
-global task
task:

1d24 R2,#rmbf
ref_mbf ID_mbf

<< Usage example of the assembly language(TW32R:DCC/M32R) >>

rmbf: .space 16
.include mr32r.inc
.global task

task:

1d24 R2,#rmbf
ref_mbf ID_mbf

140 2.6.9 ref_mbf(Refer Messagebuffer Status)

2.7. Rendezvous

2.7.1. cre_por(Create Port for Rendezvous)

[(System call name)]

cre_por - Create Port for Rendezvous

[(Calling by the assembly language)]

.include “mr32r.inc”
cre_por porid

<< Argument >>

porid [] The ID No. of a port for redenzvous to be created
pk_cpor [sesesese] The start address in which the port for redenzvous
generation information is stored
(Set the address in the R2 register.)

<< Register setting >>

Register name | Contents after system call issuance

RO Error code
R1 The ID No. of a port for redenzvous to be created
R2 The start address in which the port for redenzvous
generation information is stored
R3 --
Specify the following information in the structure indicased by pk_cpor.
Offset Size
+0 4 exinf Extended information
+4 4 poratr Port for rendezvous attribute
+8 4 maxcmsz Maximum call message size
+12 2 maxrmsz ~ Maximum reply message size

[(Calling by the C language)]

#include <mr32r.h>
ER cre_por (porid, pk cpor);

<< Argument >>

ID porid; The ID No. of a port for redenzvous to be created
T CPOR *pk _cpor; The start address in which the port for redenzvous
generation information is stored

Specify the following information in the structure indicased by pk_ctsk.
typedef struct t_cpor {

VP exinf; /* Extended information */

ATR poratr; /* Port for redenzvous attribute */

INT maxcmsz; /* Maximum call message size */

INT maxrmsz; /* Maximum reply message size */
} T_CPOR;

<< Return value >>
An error code is returned as the return value of a function.
[(Error codes)]

E_OK 00000000H(-H”00000000) - Normal End
E_OBJ OFFFFFFC1H(-H’0000003F): Invalid object state

2.7.1 cre_por(Create Port for Rendezvous) 141

[(Function description)]
Creates a port for rendezvous porid indicates.
Here follows explanation of the information as to a port for rendezvous to be generated
pk_cpor.
® exinf (extended information)
Exinf is an area you can freely use to store information as to a port for rendezvous to be
generated. MR32R has nothing to do with the exinf's contents.
® poratr (port attribute)
MR32R has nothing to do with this contents.

® maxcmsz
Specify the maximum length of message in calling.
MR32R does not refer maxcmsz,so you need not set this item.If you want to have a
compatibility between MR32R and other Realtime OS,set this item.
® maxrmsz
Specify the maximum length of message in replying.

MR32R does not refer maxrmsz,so you need not set this item.If you want to have a
compatibility between MR32R and other Realtime OS,set this item.

An error E_OBJ is returned if cre_por system call is issued for the port which is existent.

The range of the specifiable ID number is 1 to the maximum value specified in the
configuration file.

You can issue this system call exclusively from a task. This system call, if issued either from
the interrupt handler, the cyclic handler or the alarm handler, doesn't work properly.

142 2.7.1 cre_por(Create Port for Rendezvous)

[(Usage example)]
<< Usage example of the C language >>
#include <mr32r._h>

#include “id.h”
void taskl1i()

{
T_CPOR setpor;
setmbf-maxcmsz = 300;
setmbf.maxrmsz = 200;
cre_por(1, &setpor);
s

<< Usage example of the assembly language(CC32R) >>

-equ ID_porl,1
setpor: .space 16

-include “mr32r.inc”

.global taskl
taskl:

Id24- R2,#setpor
1d24 R1,#300

st R1,@(8,R2)
1d24 R1,#200
st R1,@(12,R2)

cre_por 1D_porl

ext_tsk

<< Usage example of the assembly language(TW32R:DCC/M32R) >>

.equ ID_porl,1
setpor: .space 16

.include “mr32r.inc”

.global taskl
taskl:

Id24- R2,#setpor
1d24 R1,#300

st R1.,@(8.R2)
1d24 R1,#200
st R1,@(12,R2)

cre_por 1D_porl

ext_tsk

2.7.1 cre_por(Create Port for Rendezvous) 143

2.7.2. del_por(Delete Port for Rendezvous)

[(System call name)]

del_por - Delete Port for Rendezous

[(Calling by the assembly language)]

.include “mr32r.inc”
del_por porid

<< Argument >>
porid [] The ID No. of a port for rendezvous to be deleted

<< Register setting >>

Register name | Contents after system call issuance
RO Error code
R1 The ID No. of a port for rendezvous to be deleted
R2 --
R3 --

[(Calling by the C language)]

#include <mr32r.h>
ER del_por (porid);

<< Argument >>
ID porid; The ID No. of a port for rendezvous to be deleted
<< Return value >>
An error code is returned as the return value of a function.
[(Error codes)]

E_OK 00000000H(-H>00000000) : Normal End
E_NOEXS OFFFFFFCCH(-H?00000034): Object does not exist

[(Function description)]
del_por deletes the port for rendezvous porid indicates.

You can create the port deleted as the same ID again.If the task is linked to the port wait
queue and del_por is issued for the port,this system call normally end.In this case,del_por
moves the task WAIT state to READY state.And error E_DLT is returned.

An error E_NOEXS is returned if this system call is issued for a nonexistent port for
rendezvous.

Make sure this system call is issued for only the port for rendezvous that has been created
by the cre_por system call. If this system call is issued for the port for rendezvous that has
been defined by the configuration file, it does not function normally.

You can issue this system call exclusively from a task. This system call, if issued either from
the interrupt handler, the cyclic handler or the alarm handler, doesn't work properly.

144 2.7.2 del_por(Delete Port for Rendezvous)

[(Usage example)]

<< Usage example of the C language >>
#include <mr32r._h>
#include “id.h”

#define ID_por2 2
void task1i()

{
del_bor(ID_por2);

ext_isk();

<< Usage example of the assembly language(TW32R:DCC/M32R) >>
-include “mr32r.inc”
.global taskl
taskl:
del_bor I1D_por2
ext_isk
<< Usage example of the assembly language(TW32R:DCC/M32R) >>
-include “mr32r.inc”
.global taskl
taskl:
del_bor I1D_por2

ext_tsk

2.7.2 del_por(Delete Port for Rendezvous) 145

2.7.3. cal_por(Call Port for Rendezvous)

[(System call name)]
cal_por - Call Port for Rendezous

[(Calling by the assembly language)]

-include “mr32r.inc”
cal_por porid, calptn, cmsgsz

<< Argument >>

porid [] The ID No. of a port for rendezvous
msg [] The start address of a call message packet
(Set the address in the R5 register.)
calptn [Call bit pattern representing Rendezvous condition
cmsgsz [The size of a call message packet

<< Register setting >>

Register name | Contents after system call issuance
RO Error code
R1 The ID No. of a port for rendezvous
R2 The size of a message to reply
R3 The size of a message to call
R4 --
R5 The start address of a call message packet
R6 Call bit pattern representing Rendezvous condition

[(Calling by the C language)]

#include <mr32r.h>
ER cal _por (msg, p_rmsgsz, porid, calptn, cmsgsz);

<< Argument >>

VP msg; The start address of a call message packet

INT *p_rmsgsz; The start address in which the size of a message
to reply is stored

ID porid; The ID No. of a port for redenzvous

UINT calptn; Call bit pattern representing Rendezvous condition

INT cmsgsz; The size of a call message packet

<< Return value >>
An error code is returned as the return value of a function.

[(Error codes)]

E_OK 00000000H(-H”00000000): Normal End

E_RLWAI OFFFFFFAAH(-H”00000056): Wait state forcibly
cleared

E_NOEXS OFFFFFFCCH(-H>00000034): Object does not exist

E DLT OFFFFFFAFH(-H>00000051) : The object being waited for

was deleted

146 2.7.3 cal_por(Call Port for Rendezvous)

[(Function description)]
This system call executes the port rendezvous call.

In the port specified with porid,there is a task in the rendezvous receive wait state.When
conditions for establishing a rendezvous between the task in the receive wait state and the
task issuing this system call are satisfied, then the rendezvous is established.Whether a
rendezvous is established or not is determined by the logical AND of the call task calptn and
the receive task acpptn. The rendezvous is established when the logical AND is anything
other than 0.

When the rendezvous is established, the task in the rendezvous receive wait state changes
from the WAIT state to the READY state, while the task issued with this system call changes
to the rendezvous end wait state. The wait state of this former task is canceled when the
rendezvous receive task executes rpl_rdv. At the same time, the cal_pol system call ends.

When the rendezvous is established, the call task can send a message to the receive task.
The receive task copies the message stored in the msg address into the message storage
area specified with acp_por (only the bytes specified in cmsgsz are copied). Also, a reply
message can be sent from the receive task to the call task when the rendezvous ends. The
content of the reply message specified by the receive task with rpl_rdv is copied into the
message storage area indicated by the msg which the call task specifies with cal_por.

The rendezvous call and rendezvous receive tasks copy each other's message. For this
reason, previous messages are lost.When a receive wait task does not exist in the port
specified with porid or when the rendezvous establish conditions are not established even
though the port has a receive wait task, the task issued with this system call sets the port to
the call wait state and connects it to the call wait queue.

In the following cases, the task is freed from a wait state.

® Arel_wai system call issued by some other task
Error E_RLWAI is returned.

® Adel_por system call issued by some other task for this port
Error E_DLT is returned.

0 cannot be specified for the calptn index of this system call.However, an error is not
generated when 0 is specified.

If the port does not exist, an error E_NOEXS is returned.

This system call can be issued only from tasks.The system call which be issued from the
interrupt handler,the cyclic handler, or the alarm handler.

2.7.3 cal_por(Call Port for Rendezvous) 147

[(Usage example)]

<< Usage example of the C language >>

#include <mr32r.h>
#include “id.h”
void task(void)

char msg[128];
INT rmsgsz;

cal_bor((VP)msg, &rmsgsz, I1D_porl, 0x3, 10);
}

<< Usage example of the assembly language(CC32R) >>

.include “mr32r.inc”
.global task

msg: .RES.B 128

task:
1d24 R5,#msg
cal_por ID_porl,0x3,10

<< Usage example of the assembly language(TW32R:DCC/M32R) >>

.include “mr32r.inc”
.global task

msg: .Sspace 128

task:
1d24 R5,#msg
cal_por 1D_porl,0x3,10

148 2.7.3 cal_por(Call Port for Rendezvous)

2.7.4. tcal_por(Call Port for Rendezvous with Timeout)

[(System call name)]

tcal_por - Call Port for Rendezous (With Timeout)

[(Calling by the assembly language)]

-include “mr32r.inc”
tcal_por porid, msg, calptn, cmsgsz, tmout

<< Argument >>

porid [] The ID No. of a port for rendezvous
msg [] The start address of a call message packet
(Set the address in the R5 register.)
calptn [Call bit pattern representing Rendezvous condition
cmsgsz [The size of a call message packet
tmout [Timeout value

<< Register setting >>

Register name | Contents after system call issuance
RO Error code
R1 The ID No. of a port for rendezvous
R2 The size of a message to reply
R3 The size of a call message packet
R4 Timeout value
R5 The start address of a call message packet
R6 Call bit pattern representing Rendezvous condition

[(Calling by the C language)]

#include <mr32r.h>
ER tcal_por (msg, p_rmsgsz, porid, calptn, cmsgsz, tmout);

<< Argument >>

VP msg; The start address of a call message packet

INT *p_rmsgsz; The start address in which the size of a message
to reply is stored

ID porid; The ID No. of a port for redenzvous

UINT calptn; Call bit pattern representing Rendezvous condition

INT cmsgsz; The size of a call message packet

TMO timeout Timeout value

<< Return value >>
An error code is returned as the return value of a function.

[(Error codes)]

E_OK 00000000H(-H>00000000) : Normal End

E_RLWAI OFFFFFFAAH(-H”00000056): Wait state forcibly
cleared

E_TMOUT OFFFFFFABH(-H?00000055): Polling failed or timeout

E_NOEXS OFFFFFFCCH(-H>00000034): Object does not exist

E DLT OFFFFFFAFH(-H~00000051): The object being waited for

was deleted

2.7 4 tcal_por(Call Port for Rendezvous with Timeout) 149

[(Function description)]
This system call executes the port rendezvous call.

In the port specified with porid,there is a task in the rendezvous receive wait state.When
conditions for establishing a rendezvous between the task in the receive wait state and the
task issuing this system call are satisfied, then the rendezvous is established.Whether a
rendezvous is established or not is determined by the logical AND of the call task calptn and
the receive task acpptn. The rendezvous is established when the logical AND is anything
other than 0.

When the rendezvous is established, the task in the rendezvous receive wait state changes
from the WAIT state to the READY state, while the task issued with this system call changes
to the rendezvous end wait state. The wait state of this former task is canceled when the
rendezvous receive task executes rpl_rdv. At the same time, the tcal_pol system call ends.

When the rendezvous is established, the call task can send a message to the receive task.
The receive task copies the message stored in the msg address into the message storage
area specified with acp_por (only the bytes specified in cmsgsz are copied). Also, a reply
message can be sent from the receive task to the call task when the rendezvous ends. The
content of the reply message specified by the receive task with rpl_rdv is copied into the
message storage area indicated by the msg which the call task specifies with tcal_por.

The rendezvous call and rendezvous receive tasks copy each other's message. For this
reason, previous messages are lost.

If there is no task waiting for acceptance at the port specified by porid, or although there is a
task waiting for acceptance the rendezvous establishment condition is not met (i.e., AND
result = 0), the task that issued this system call is kept waiting on the calling side of this port,
so it is queued up in two queues: the call wait queue and the timeout wait queue. The
sequence of wait queues is FIFO.

In the following cases, the WAIT state by tcal_por system call issue is canceled.The task
canceled WAIT state exits from the two wait queues (rendezvous call wait queue and timeout
wait queue) and is connected to the ready queue.

® \When the wait cancellation condition occurs before the tmout time has elapsed

Error E_OK is returned.

® \When tmout time has elapsed without any message being received
Error E_TMOUT is returned.

® \When the wait state is forcibly cancelled by rel_wai or irel_wai system calls being invoked
from another task or handler

Error E_RLWAI is returned.

® \When the port for which a task has been kept waiting is deleted by the del_por system
call issued by another task

Error E_DLT is returned.

Any value from -1 to 7FFFFFFFH can be specified for tmout. If you specify TMO_POL = 0 for
tmout, the effect is the same as 0 is specified for the timeout value, in which case tmout
functions the same way as pcal_por. Also, if you specify tmout = TMO_FEVR(-1), the effect
is the same as endless wait is specified, in which case tmout functions the same way as
cal_por.

An error E_NOEXS is returned if this system call is issued for a nonexistent port for
rendezvous.

150 2.7.4 tcal_por(Call Port for Rendezvous with Timeout)

0 cannot be specified for the calptn index of this system call.However, an error is not
generated when 0 is specified.

You can issue this system call exclusively from a task. This system call, if issued either from
the interrupt handler, the cyclic handler or the alarm handler, doesn't work properly.

[(Usage example)]

<< Usage example of the C language >>

#include <mr32r.h>
#include “id.h”
#define 1D_porl 1
void task(void)

{

char msg[128];

INT rmsgsz;

tcal_por((VP)msg, &rmsgsz, 1D_porl, 0x3, 10, 300);
}

<< Usage example of the assembly language(CC32R) >>

msg: -RES.B 128
-equ 1D_poril,1
-include “mr32r.inc”
-global task

task:

1d24 RS, #msg
tcal_por 1D_porl,0x3,10,300

<< Usage example of the assembly language(TW32R:DCC/M32R) >>

msg: .Space 128
-equ ID_porl,1
-include “mr32r.inc”
.global task

task:

1d24 RS, #msg
tcal_por 1D_porl,0x3,10,300

2.7 4 tcal_por(Call Port for Rendezvous with Timeout) 151

2.7.5. pcal_por(Poll and Call Port for Rendezvous)

[(System call name)]

pcal_por - Call Port for Rendezous (no wait)

[(Calling by the assembly language)]

-include “mr32r.inc”
pcal_por porid, calptn, cmsgsz, tmout

<< Argument >>

porid [] The ID No. of a port for rendezvous
msg [] The start address of a call message packet
(Set the address in the R5 register.)
calptn [Call bit pattern representing Rendezvous condition
cmsgsz [The size of a call message packet

<< Register setting >>

Register name | Contents after system call issuance
RO Error code
R1 The ID No. of a port for rendezvous
R2 The size of a message to reply
R3 The size of a call message packet
R4 --
R5 The start address of a call message packet
R6 Call bit pattern representing Rendezvous condition

[(Calling by the C language)]

#include <mr32r.h>
ER pcal _por (msg, p_rmsgsz, porid, calptn, cmsgsz);

<< Argument >>

VP msg; The start address of a call message packet

INT *p_rmsgsz; The start address in which the size of a message
to reply is stored

ID porid; The ID No. of a port for redenzvous

UINT calptn; Call bit pattern representing Rendezvous condition

INT cmsgsz; The size of a call message packet

<< Return value >>
An error code is returned as the return value of a function.

[(Error codes)]

E_OK 00000000H(-H>00000000) : Normal End
E_TMOUT OFFFFFFABH(-H”00000055): Polling failed or timeout
E_NOEXS OFFFFFFCCH(-H>00000034): Object does not exist

152 2.7.5 pcal_por(Poll and Call Port for Rendezvous)

[(Function description)]
This system call executes the port rendezvous call.

In the port specified with porid,there is a task in the rendezvous receive wait state.When
conditions for establishing a rendezvous between the task in the receive wait state and the
task issuing this system call are satisfied, then the rendezvous is established.Whether a
rendezvous is established or not is determined by the logical AND of the call task calptn and
the receive task acpptn. The rendezvous is established when the logical AND is anything
other than 0.

When the rendezvous is established, the task in the rendezvous receive wait state changes
from the WAIT state to the READY state, while the task issued with this system call changes
to the rendezvous end wait state. The wait state of this former task is canceled when the
rendezvous receive task executes rpl_rdv. At the same time, the pcal_por system call ends.

When the rendezvous is established, the call task can send a message to the receive task.
The receive task copies the message stored in the msg address into the message storage
area specified with acp_por (only the bytes specified in cmsgsz are copied). Also, a reply
message can be sent from the receive task to the call task when the rendezvous ends. The
content of the reply message specified by the receive task with rpl_rdv is copied into the
message storage area indicated by the msg which the call task specifies with pcal_por.

The rendezvous call and rendezvous receive tasks copy each other's message. For this
reason, previous messages are lost.

When there is no receive wait task linked to the port specified by porid or rendezvous
condition does not match, error E_TMOUT is returned to the task that issued this system call
and the system call.

The task which issued pcal_por system call is not moved to WAIT state unlike cal_por and
tcal_po.

Error E_NOEXS is returned if this system call is issued for a nonexistent port for rendezvous.

0 cannot be specified for the calptn index of this system call. However, an error is not
generated when 0 is specified.

You can issue this system call exclusively from a task. This system call, if issued either from
the interrupt handler, the cyclic handler or the alarm handler, doesn't work properly.

[(Usage example)]

<< Usage example of the C language >>
#include <mr32r.h>
#include “id.h”

#define 1D_porl 1
void task(Q)

char msg[128];
INT rmsgsz;

pcal;por((VP)msg, &rmsgsz, 1D_porl, 0x3, 10);

2.7.5 pcal_por(Poll and Call Port for Rendezvous) 153

<< Usage example of the assembly language(CC32R) >>

msg: -RES.B 128
-equ ID_porl,1
.include “mr32r.inc”
-global task

task:

Id24. R5,#msg
pcal_por ID_porl,0x3,10

<< Usage example of the assembly language(TW32R:DCC/M32R) >>

msg: .Space 128
-equ ID_porl,1
-include “mr32r.inc”
-global task

task:

1d24 R5,#msg
pcal_por ID_porl,0x3,10

154

2.7.5 pcal_por(Poll and Call Port for Rendezvous)

2.7.6. acp_por(Accept Port for Rendezvous)

[(System call name)]
acp_por - Accept Port for Rendezous

[(Calling by the assembly language)]

-include “mr32r.inc”
acp_por porid, acpptn

<< Argument >>

porid [] The ID No. of a port for rendezvous

acpptn [] Accept bit pattern representing Rendezvous condition

msg [seseses] The start address in which a call message packet is
stored.

(Set the address in the R5 register.)

<< Register setting >>

Register name | Contents after system call issuance
RO Error code
R1 The ID No. of a port for rendezvous
R2 The size of a call message packet
R3 Rendezvous number
R4 --
R5 The start address in which a call message packet is
stored.
R6 Accept bit pattern representing Rendezvous condition

[(Calling by the C language)]

#include <mr32r.h>
ER acp_por (p_rdvno, msg, p_cmsgsz, porid, acpptn);

<< Argument >>

RNO *p_rdvno; Rendezvous number

VP msg; The start address in which a call message packet
is stored.

INT *p_cmsgsz; The start address in which the size of a call
message packet is stored

ID porid; The ID No. of a port for redenzvous

UINT acpptn; Accept bit pattern representing Rendezvous
condition

<< Return value >>
An error code is returned as the return value of a function.

[(Error codes)]

E_OK 00000000H(-H?00000000) : Normal End

E_RLWAI OFFFFFFAAH(-H>00000056): Wait state forcibly
cleared

E_NOEXS OFFFFFFCCH(-H”00000034): Object does not exist

E DLT OFFFFFFAFH(-H”00000051): The object being waited for

was deleted

2.7.6 acp_por(Accept Port for Rendezvous) 155

[(Function description)]
This system call executes the port rendezvous reception.

In the port specified with porid, there is a task in the rendezvous call wait state. When
conditions for establishing a rendezvous between the task in that call wait string and the task
issuing this system call are satisfied, then the rendezvous is established.

Whether a rendezvous is established or not is determined by the logical AND of the call task
calptn and the receive task acpptn. The rendezvous is established when the logical AND is
anything other than 0. When the rendezvous is established, the task in the rendezvous call
wait string is detached from the wait string and is changed from the rendezvous call wait
state to the rendezvous end wait state.

When a call wait task does not exist in the port specified with porid or when the rendezvous
establish conditions are not established even though the port has a call wait task, the task
issued with this system call is set the port to the recieve wait state and connects it to the
recieve wait queue.

In the following cases, the task is freed from a wait state.

® Arel_wai system call issued by some other task
Error E_RLWAI is returned.

® Adel_por system call issued by some other task for this port
Error E_DLT is returned.

This system call can be issued again before the rendezvous reply (before the rpl_rdv that
indicates that the rendezvous has been established is issued).As such, multiple rendezvous
can be executed at the same time. It does not matter in this case whether the port is the
same port or a different port from before.

When the rendezvous is established, the call task can send a message to the receive task.
The receive task copies the message stored in the msg address into the message storage
area specified with acp_por (only the bytes specified in cmsgsz are copied). acp_por is
returned as the cmsgsz message size.

Also, a reply message can be sent from the receive task to the call task when the
rendezvous ends. The content of the reply message specified by the receive task with
rpl_rdv is copied into the message storage area indicated by the msg which the call task
specifies with cal_por.

rdvno is information for discriminating between rendezvous established at the same time. It
is used for the rpl_rdv parameter or fwd_rdv parameter (for forwarding the rendezvous) at
rendezvous end.

0 cannot be specified for the calptn index of this system call.However, an error is not
generated when 0 is specified. If the port does not exist, an error E_NOEXS is returned.

You can issue this system call exclusively from a task. This system call, if issued either from
the interrupt handler, the cyclic handler or the alarm handler, doesn't work properly.

156 2.7.6 acp_por(Accept Port for Rendezvous)

[(Usage example)]
<< Usage example of the C language >>

#include <mr32r.h>
#include “id.h”
void task(Q)

{

char msg[128];
RNO rdvno;

INT cmsgsz;

acp_por(&rdvno, msg, &cmsgsz, ID_porl, 0x3);

}

<< Usage example of the assembly language(CC32R) >>

msg: -RES.B 128
.include “mr32r.inc”
.global task

task:

Id24- R5,#msg
acp_por ID_porl, 0x3

<< Usage example of the assembly language(TW32R:DCC/M32R) >>

msg: .Space 128
-include “mr32r.inc”
.global task

task:

1d24 RS, #msg
acp_por ID_porl, 0x3

2.7.6 acp_por(Accept Port for Rendezvous) 157

2.7.7. tacp_por(Accept Port for Rendezvous with Timeout)

[(System call name)]

tacp_por - Accept Port for Rendezous (With Timeout)

[(Calling by the assembly language)]

.include “mr32r.inc”

tacp_por porid, acpptn, tmout
<< Argument >>
porid [] The ID No. of a port for rendezvous
acpptn [] Accept bit pattern representing Rendezvous condition
msg [seseses] The start address in which a call message packet is
stored.
(Set the address in the R5 register.)
tmout [Timeout value

<< Register setting >>

Register name | Contents after system call issuance
RO Error code
R1 The ID No. of a port for rendezvous
R2 The size of a call message packet
R3 Rendezvous number
R4 Timeout value
R5 The start address in which a call message packet is
stored.
R6 Accept bit pattern representing Rendezvous condition

[(Calling by the C language)]

#include <mr32r.h>
ER tacp_por (p_rdvno, msg, p_cmsgsz, porid, acpptn, tmout);

<< Argument >>

RNO *p_rdvno; Rendezvous number

VP msg; The start address in which a call message packet
is stored.

INT *p_cmsgsz; The start address in which the size of a call
message packet is stored

ID porid; The ID No. of a port for redenzvous

UINT acpptn; Accept bit pattern representing Rendezvous
condition

TMO timeout; Timeout value

<< Return value >>
An error code is returned as the return value of a function.

[(Error codes)]

E_OK 00000000H(-H?00000000) : Normal End

E_RLWAI OFFFFFFAAH(-H>00000056): Wait state forcibly
cleared

E_TMOUT OFFFFFFABH(-H”00000055): Polling failed or timeout

E_NOEXS OFFFFFFCCH(-H>00000034): Object does not exist

E DLT OFFFFFFAFH(-H”00000051): The object being waited for

was deleted

158 2.7.7 tacp_por(Accept Port for Rendezvous with Timeout)

[(Function description)]
This system call executes the port rendezvous reception.

In the port specified with porid, there is a task in the rendezvous call wait state. When
conditions for establishing a rendezvous between the task in that call wait queue and the
task issuing this system call are satisfied, then the rendezvous is established.

Whether a rendezvous is established or not is determined by the logical AND of the call task
calptn and the receive task acpptn. The rendezvous is established when the logical AND is
anything other than 0. When the rendezvous is established, the task in the rendezvous call
wait queue is detached from the wait string and is changed from the rendezvous call wait
state to the rendezvous end wait state.

When a call wait task does not exist in the port specified with porid or when the rendezvous
establish conditions are not established even though the port has a call wait task, the task
issued with this system call is set the port to the recieve wait state and connects it to the
recieve wait queue and to the time out queue.

In the following cases, the task is freed from a wait state. The task canceled WAIT state exits
from the two wait queues (rendezvous call wait queue and timeout wait queue) and is
connected to the ready queue.

® \When the wait cancellation condition occurs before the tmout time has elapsed

Error E_OK is returned.

® \When tmout time has elapsed without any message being received
Error E_TMOUT is returned.

® \When the wait state is forcibly cancelled by rel_wai or irel_wai system calls being invoked
from another task or handler

Error E_RLWAI is returned.

® \When the port for which a task has been kept waiting is deleted by the del_por system
call issued by another task

Error E_DLT is returned.

This system call can be issued again before the rendezvous reply (before the rpl_rdv that
indicates that the rendezvous has been established is issued).As such, multiple rendezvous
can be executed at the same time. It does not matter in this case whether the port is the
same port or a different port from before.

When the rendezvous is established, the call task can send a message to the receive task.
The receive task copies the message stored in the msg address into the message storage
area specified with tacp_por (only the bytes specified in cmsgsz are copied). tacp_por is
returned as the cmsgsz message size.

Also, a reply message can be sent from the receive task to the call task when the
rendezvous ends. The content of the reply message specified by the receive task with
rpl_rdv is copied into the message storage area indicated by the msg which the call task
specifies with cal_por.

rdvno is information for discriminating between rendezvous established at the same time. It
is used for the rpl_rdv parameter or fwd_por parameter (for forwarding the rendezvous) at
rendezvous end.

Any value from -1 to 7FFFFFFFH can be specified for tmout. If you specify TMO_POL = 0 for
tmout, the effect is the same as 0 is specified for the timeout value, in which case tmout
functions the same way as pacp_por. Also, if you specify tmout = TMO_FEVR(-1), the effect
is the same as endless wait is specified, in which case tmout functions the same way as

2.7.7 tacp_por(Accept Port for Rendezvous with Timeout) 159

acp_por.

0 cannot be specified for the calptn index of this system call. However, an error is not
generated when 0 is specified. If the port does not exist, an error E_NOEXS is returned.

You can issue this system call exclusively from a task. This system call, if issued either from
the interrupt handler, the cyclic handler or the alarm handler, doesn't work properly.

[(Usage example)]
<< Usage example of the C language >>
#include <mr32r.h>

#include “id.h”
void task(void)

{

char msg[128];

RNO rdvno;

INT cmsgsz;

tacp_por(&rdvno, msg, &cmsgsz, ID_porl, 0x3, 300);
}

<< Usage example of the assembly language(CC32R) >>

msg: -RES.B 128
.include “mr32r.inc”
-global task

task:

1d24 RS, #msg
tacp_por ID_porl, 0x3, 300

<< Usage example of the assembly language(TW32R:DCC/M32R) >>

msg: .Space 128
-include “mr32r.inc”
.global task

task:

1d24 R5,#msg
tacp_por ID_porl, 0x3, 300

160 2.7.7 tacp_por(Accept Port for Rendezvous with Timeout)

2.7.8. pacp_por(Poll and Accept Port for Rendezvous)

[(System call name)]
pacp_por - Accept Port for Rendezous (no wait)

[(Calling by the assembly language)]

.include “mr32r.inc”

pacp_por porid, acpptn
<< Argument >>
porid [] The ID No. of a port for rendezvous
acpptn [] Accept bit pattern representing Rendezvous condition
msg [seseses] The start address in which a call message packet is
stored.

(Set the address in the R5 register.)

<< Register setting >>

Register name | Contents after system call issuance
RO Error code
R1 The ID No. of a port for rendezvous
R2 The size of a call message packet
R3 Rendezvous number
R4 --
R5 The start address in which a call message packet is
stored.
R6 Accept bit pattern representing Rendezvous condition

[(Calling by the C language)]

#include <mr32r.h>
ER pacp_por (p_rdvno, msg, p_cmsgsz, porid, acpptn);

<< Argument >>

RNO *p_rdvno; Rendezvous number

VP msg; The start address in which a call message packet
is stored.

INT *p_cmsgsz; The start address in which the size of a call
message packet is stored

ID porid; The ID No. of a port for redenzvous

UINT acpptn; Accept bit pattern representing Rendezvous
condition

<< Return value >>
An error code is returned as the return value of a function.

[(Error codes)]

E_OK 00000000H(-H?00000000) : Normal End
E_TMOUT OFFFFFFABH(-H>00000055): Polling failed or timeout
E_NOEXS OFFFFFFCCH(-H”00000034): Object does not exist

2.7.8 pacp_por(Poll and Accept Port for Rendezvous) 161

[(Function description)]

This system call executes the port rendezvous reception.

In the port specified with porid, there is a task in the rendezvous call wait state. When
conditions for establishing a rendezvous between the task in that call wait string and the task
issuing this system call are satisfied, then the rendezvous is established.

Whether a rendezvous is established or not is determined by the logical AND of the call task
calptn and the receive task acpptn. The rendezvous is established when the logical AND is
anything other than 0. When the rendezvous is established, the task in the rendezvous call
wait string is detached from the wait string and is changed from the rendezvous call wait
state to the rendezvous end wait state.

When a call wait task does not exist in the port specified with porid or when the rendezvous
establish conditions are not established even though the port has a call wait task,error
E_TMOUT is returned. The task which issues pcal_por system call is not moved to WAIT
state unlike acp_por and tacp_por.

This system call can be issued again before the rendezvous reply (before the rpl_rdv that
indicates that the rendezvous has been established is issued).As such, multiple rendezvous
can be executed at the same time. It does not matter in this case whether the port is the
same port or a different port from before.

When the rendezvous is established, the call task can send a message to the receive task.
The receive task copies the message stored in the msg address into the message storage
area specified with pacp_por (only the bytes specified in cmsgsz are copied). pacp_por is
returned as the cmsgsz message size.

Also, a reply message can be sent from the receive task to the call task when the
rendezvous ends. The content of the reply message specified by the receive task with
rpl_rdv is copied into the message storage area indicated by the msg which the call task
specifies with cal_por.

rdvno is information for discriminating between rendezvous established at the same time. It
is used for the rpl_rdv parameter or fwd_rdv parameter (for forwarding the rendezvous) at
rendezvous end.

0 cannot be specified for the calptn index of this system call.However, an error is not
generated when 0 is specified. If the port does not exist, an error E_NOEXS is returned.

You can issue this system call exclusively from a task. This system call, if issued either from
the interrupt handler, the cyclic handler or the alarm handler, doesn't work properly.

[(Usage example)]

<< Usage example of the C language >>

#include <mr32r.h>
#include “id.h”
void task(Q)

{

char msg[128];
RNO rdvno;
INT cmsgsz;

pacp-_por(&rdvno, msg, &cmsgsz, ID_porl, 0x3);

162 2.7.8 pacp_por(Poll and Accept Port for Rendezvous)

<< Usage example of the assembly language(CC32R) >>

msg: -RES.B 128
-include “mr32r.inc”
.global task

task:

1d24 RS, #msg
pacp_por 1D_porl, 0x3

<< Usage example of the assembly language(TW32R:DCC/M32R) >>

msg: .Space 128
.include “mr32r.inc”
-global task

task:

Id24. R5,#msg
pacp_por 1D_porl, 0x3

2.7.8 pacp_por(Poll and Accept Port for Rendezvous) 163

2.7.9. fwd_por(Forward Rendezvous to Other Port)

[(System call name)]

fwd_por - Forward Rendezous to Other Port.

[(Calling by the assembly language)]

.include “mr32r.inc”

fwd_por porid, calptn, cmsgsz
<< Argument >>
porid [] The ID No. of a port for rendezvous to be forward to
calptn [] Call bit pattern representing Rendezvous condition
rdvno [] Rendezvous Number
(Set the rdvno in the R2 register.)
msg [t The start address in which a call message packet is
stored
(Set the address in the R5 register.)
cmsgsz [sesesese] The size of a call message packet

<< Register setting >>

Register name | Contents after system call issuance
RO Error code
R1 The ID No. of a port for rendezvous to be forward to
R2 Rendezvous Number
R3 The size of a call message packet
R4 --
R5 The start address in which a call message packet is
stored
R6 Call bit pattern representing Rendezvous condition

[(Calling by the C language)]

#include <mr32r.h>
ER fwd_por (porid, calptn, rdvno, msg, cmsgsz);

<< Argument >>

ID porid; The ID No. of a port for rendezvous to be forward
to

UINT calptn; Call bit pattern representing Rendezvous condition

RNO rdvno; Rendezvous Number

VP msg; The start address of a call message packet

INT cmsgsz; The size of a call message packet

<< Return value >>
An error code is returned as the return value of a function.

[(Error codes)]

E _OK 00000000H(-H>00000000) : Normal End

E_RLWAI OFFFFFFAAH(-H>00000056): Wait state forcibly
cleared

E_NOEXS OFFFFFFCCH(-H”00000034): Object does not exist

E_OBJ OFFFFFFC1H(-H?0000003f): Invalid object state

164 2.7.9 fwd_por(Forward Rendezvous to Other Port)

[(Function description)]

This system call forwards the rendezvous assigned with the rdvno rendezvous No. to the
port specified with porid.fwd_por system call can be issued from the rendezvous state task
only.

The rendezvous established state of the call task specified with rdvno is canceled and the
call task of the porid port is returned to the rendezvous wait state. In other words, the call
task changes from the rendezvous end wait state to the rendezvous call state.

With a receive wait task, the rendezvous is established as long as the logical AND of calptn
specified with this system call and acpptn of the receive task is not 0. When the rendezvous
is established, the message stored in the msg address specified in this system call is copied
into the receive task (only cmsgsz portion is copied) and the task assumes the rendezvous
end state.

If there is not a receive wait task or if the rendezvous is not established with the destination
port, the call task assumes the call wait state.

The task that issues this system call is continuously executed without changing to the wait
state, regardless of the call task rendezvous state of the forwarding port.

An error is not generated even when the index of this system call is as follows.

® \When cmsgsz exceeds the maxcmsz maximum send size of the port after the
message is forwarded

® \When cmsgsz exceeds the maxrmsz maximum receive size of the port before the
message is forwarded

When 0 is specified for cmsgsz
When 0 is specified for calptn

An error E_OBJ is returned when maxrmsz of the port after the message is forwarded is
larger than the port's maxrmsz before the message is forwarded.

If the task is freed from a wait state by a rel_wai system call issued by some other task, an
error E_RLWAI is returned.

If the port does not exist, an error E_ NOEXS is returned.

This system call can be issued only from a task. It does not function properly when issued
from the interrupt handler,cyclic handler or alarm handler.

[(Usage example)]

<< Usage example of the C language >>

#include <mr32r.h>
#include “id.h”
void task(Q)

}

char *msg=""abcdef”;
RNO rdvno;
INT cmsgsz;

fwd_por(lD_pbrid, 0x3, rdvno, (VP)msg, 6);

<< Usage example of the assembly language(CC32R) >>

msg: .SDATA “abcdef”
rdvno: .RES.B 4

.include “mr32r.inc”
.global task

2.7.9 fwd_por(Forward Rendezvous to Other Port) 165

task:

Id24- R4 ,#rdvno

id R2,0R4
1d24 R5,#msg

fwd_por ID_porid, 0x3, 6

<< Usage example of the assembly language(TW32R:DCC/M32R) >>

msg: .byte “abcdef”
rdvno: .space 4
-include “mr32r.inc”
-global task

task:
Id24- R4 ,#rdvno
Id R2,0@R4
1d24 R5,#msg

fwd_por ID_porid, 0x3, 6

166 2.7.9 fwd_por(Forward Rendezvous to Other Port)

2.7.10. rpl_rdv(Reply Rendezvous)

[(System call name)]
rpl_rdv - Reply Rendezous

[(Calling by the assembly language)]

-include “mr32r.inc”
rpl_rdv rdvno, msg, rmsgsz

<< Argument >>

porid [Rendevzous Number
(Set the address in the R1 register.)
msg [The start address in which a reply message packet is
stored
(Set the address in the R5 register.)
rmsgsz [aekokx] The size of a reply message packet
<< Register setting >>
Register name | Contents after system call issuance
RO Error code
R1 Rendevzous Number
R2 The start address in which a reply message packet is
stored
R3 The size of a reply message packet

[(Calling by the C language)]

#include <mr32r.h>
ER rpl_rdv (rdvno, msg, rmsgsz);

<< Argument >>

RNO rdvno; Rendevzous Number
VP msg; The start address of a reply message packet
INT rmsgsz; The size of a reply message packet

<< Return value >>
An error code is returned as the return value of a function.

[(Error codes)]

E_OK 00000000H(-H~00000000): Normal End
E_OBJ OFFFFFFC1H(-H>0000003f): Invalid object state

2.7.10 rpl_rdv(Reply Rendezvous) 167

[(Function description)]

This system call returns a reply to the call task and ends the rendezvous. rpl_rdv system call
can be issued from the rendezvous state task only.

The call task wait state is canceled and the message (only rmsgsz portion is copied) stored
in the msg address is copied into the msg address specified by cal_por of the call task. The
call task changes from the end wait state to the ready state.

An error is not returned even when the index of this system call is as follows. Checks must
be made from the user's side.

® When a value other than 0 is specified for rmsgsz
® When rmsgsz exceeds the relay maximum message size maxrmsz

If an established rendezvous fails for some reason before ending (before rpl_rdv is
executed), it is not possible to know directly the rendezvous receive task. In such case, the
rendezvous receive task results as an error E_OBJ when this system call is executed.

You can issue this system call exclusively from a task. This system call, if issued either from
the interrupt handler, the cyclic handler or the alarm handler, doesn't work properly.

[(Usage example)]
<< Usage example of the C language >>
#include <mr32r.h>

#include “id.h”
void task(Q)

char *msg="abcdef”;
RNO rdvno;
INT rmsgsz;

rpl_}dv(rdvno, (VP)msg, 6);
3 :
<< Usage example of the assembly language(CC32R) >>
msg: -SDATA “abcdef”
rdvno: .RES.B 4

.include “mr32r.inc”
-global task

task:
Id24- R5,#rdvno
Id R1,@R5
1d24 R5,#msg

rpl_rdv 6

<< Usage example of the assembly language(TW32R:DCC/M32R) >>

msg: .byte “abcdef”
rdvno: .space 4
-include “mr32r.inc”
-global task

task:
Id24- R5,#rdvno
Id R1,@R5
1d24 R5,#msg

rpl_rdv 6

168 2.7.10 rpl_rdv(Reply Rendezvous)

2.7.11. ref_por(Refer Port Status)

[(System call name)]

ref_por - Reference Port Status

[(Calling by the assembly language)]

.include “mr32r.inc”
ref_por porid

<< Argument >>

porid [] The ID No. of the messagebuffer to Reference Port
pk_rpor [x] Packet address to Reference Port
(Set the address in the R2 register.)

<< Register setting >>

Register name | Contents after system call issuance

RO Error code
R1 The ID No. of the port to Reference Port for Rendevzous
R2 Packet address to Reference Port
R3 --

The structure indicated by pk_rmbx returns the following data.
Offset Size
+0 4 exinf Extended information
+4 2 wisk Waiting Task Information
+6 2 atsk Accepting Task Information

[(Calling by the C language)]

#include <mr32r.h>
ER ref _por (pk _rpor, porid);

<< Argument >>

T RPOR *pk rpor; Packet address to Reference Port

ID porid; The ID No. of the port to Reference Port for
Rendevzous

<< Return value >>

An error code is returned as the return value of a function.

The structure indicated by pk_rpor returns the following data.

typedef struct t_rpor {
VP exinf; /* Extended informatio */
BOOL_ID wtsk; /* Waiting Task Information */
BOOL_ID atsk; /* Accepting Task Information */

} T_RPOR;
[(Error codes)]
E_OK 00000000H(-H>00000000) : Normal End
E_NOEXS OFFFFFFCCH(-H”00000034): Object does not exist

[(Function description)]

Refers to the state of the port specified by porid, and returns returns the following information
as return values.

® exinf

Returns extended task information in exinf.

2.7.11 ref_por(Refer Port Status) 169

o wisk

wtsk returns the ID No. of the first task connected to the rendezvous call wait queue.
wisk returns FALSE (0) if there are no tasks connected to the rendezvous call wait
queue.

® atsk

atsk returns the ID No. of the first task connected to the rendezvous recieve wait queue.
atsk returns FALSE (0) if there are no tasks connected to the rendezvous recieve wait
queue.

An error E_NOEXS is returned if this system call is issued for a nonexistent port for
rendezvous.

This system call can be issued from both tasks and handlers.

[(Usage example)]
<< Usage example of the C language >>

#include <mr32r.h>
#include “id.h”
void task(void)

T_RPOR rpor;

ref_bor(&rpor , 1D_por);
X :
<< Usage example of the assembly language(CC32R) >>
rpor: -RES.B 8

-include mr32r.inc

-global task
task:

1d24 R2,#rpor
ref_por ID_por

<< Usage example of the assembly language(TW32R:DCC/M32R) >>

rpor: .space 8
-include mr32r.inc
.global task

task:

1d24 R2,#rpor
ref_por ID_por

170 2.7.11 ref_por(Refer Port Status)

2.8. Interrupt Management Function

2.8.1. def_int(Define Interrupt Handler)

[(System call name)]
def_int - Define Interrupt Handler.

[(Calling by the assembly language)]

.include “mr32r.inc”
def_int dintno

<< Argument >>

dintno [] The vectore No. of an interrupt handler

pk_dint [] The start address in which the interrupt hundler
defined information is stored
(Set the address in the R2 register.)

<< Register setting >>

Register name | Contents after system call issuance

RO Error code
R1 The vectore No. of an interrupt handler
R2 The start address in which the interrupt hundler defined
information is stored
R3 --
Specify the following information in the structure indicased by pk_cmpf.
Offset Size
+0 4 intatr Interrupt handler attribute
+4 4 inthdr Interrupt handler startup address

[(Calling by the C language)]

#include <mr32r.h>
ER def_int (dintno, pk_dint);

<< Argument >>

ID dintno; The vectore No. of an interrupt handler
T _DINT *pk_dint; The start address in which the interrupt hundler
defined information is stored
Specify the following information in the structure indicased by pk_dint.
typedef struct t_dint {

ATR intatr; /* Interrupt handler attribute */
FP inthdr; /* Interrupt handler startup address */
} T_DINT;

<< Return value >>
An error code is returned as the return value of a function.

[(Error codes)]
E_OK 00000000H(-H>00000000) : Normal End

2.8.1 def_int(Define Interrupt Handler) 171

[(Function description)]

This system call defines the interrupt handler with the interrupt No. specified with dintno and
enables the interrupt handler.In other words, it sets the interrupt entry area in the interrupt
vector area specified with dintno.

® intatr (interrupt handler attribute)
The MR32R has nothing to do with this setting.

® inthdr
The entry address of the interrupt handler to be defined is set in this area. pk_dint.inthdr
= NADR (--1) cancels the previously defined interrupt handler.

An interrupt handler can be specified for an interrupt No. that has already been defined;
before redefining an interrupt handler, it is not necessary to cancel the definition. An error is
not generated when a new handler is defined for a defined interrupt handler No.

This system call cannot be issued if the interrupt vector table is allocated in RAM.

This system call can be issued only from a task. It does not function properly when issued
from an interrupt handler, cyclic handler or alarm handler.

[(Usage example)]

<< Usage example of the C language >>

#include <mr32r.h>
#include “id.h”
void intr(void);
void taskl1i()

T_DINT setint;

setint.inthdr = _intr; /* Interrupt handler startup address */
def_int(15, &setint);

}

<< Usage example of the assembly language(CC32R) >>

setint: .RES.B 12
.include “mr32r.inc”
.global taskl

taskl:

1d24 R2,#setint
1d24 R1,# intr

st R1,@(4,R2)
def_int 15

ext_-tsk
<< Usage example of the assembly language(TW32R:DCC/M32R) >>

setint: .RES.B 12
.include “mr32r.inc”
.global taskl

taskl:

1d24 R2,#setint
1d24 R1,# intr

st R1,@(4,R2)
def_int 15

ext_tsk

172 2.8.1 def_int(Define Interrupt Handler)

2.8.2. ret_int(Return from Interrupt Handler)

[(System call name)]
ret_int - Returns from the interrupt handler.

[(Calling by the assembly language)]

.include “mr32r.inc”
ret_int

<< Argument >>
None
<< Register setting >>
Not to return to the task which issued this system call.

[(Calling by the C language)]
Cannot describe this system call in C language.
[(Error codes)]
Not to return to the interrupt handler which issues a system call.

[(Function description)]

The system call ret_int leads to the definition of a macro named "jmp r14" so as to ensure
compatibility with an OS that uses nITRON or with future updates. If you include the interrupt
handler in a program written in assembly language, put ret_int at the end of the interrupt
handler.

2.8.2 ret_int(Return from Interrupt Handler) 173

2.8.3. loc_cpu(Lock CPU)

[(System call name)]

loc_cpu - Disables interrupts and task dispatch.

[(Calling by the assembly language)]

.include “mr32r.inc”
loc_cpu

<< Argument >>
None

<< Register setting >>

Register name | Contents after system call issuance
RO Error code
R1 --
R2 --
R3 --

[(Calling by the C language)]

#include <mr32r.h>
ER loc cpu O;

<< Argument >>
None
<< Return value >>
An error code is returned as the return value of a function.
[(Error codes)]
E_OK 00000000H(-H~00000000): Normal End
[(Function description)]
loc_cpu disables external interrupts and task dispatches.

After this system call is executed, interrupts and dispatches are disabled until unl_cpu is
executed. And there can be no chances that the task that executed loc_cpu is preempted
(the CPU's execution right is intercepted by something higher in priority) by the interrupt
handler or by another task. That is, interrupt requests after the execution of loc_cpu or
dispatches generated by a system call issued by a task that executed loc_cpu are made to
wait until unl_cpu releases the interrupts and dispatches from the disabled condition.

If a task already in the state that has disabled interrupts and dispatches issues loc_cpu, the
same state is kept and no error occurs. Issuing unl_cpu once after having issued loc_cpu
twice or more releases the condition in which interrupts and dispatches are disabled.

You cannot issue this system call from a section independent of tasks (the interrupt handler,
the cyclic handler, the alarm handler).

174 2.8.3 loc_cpu(Lock CPU)

[(Usage example)]

<< Usage example of the C language >>
#include <mr32r._h>
#include “id.h”

void task(Q)
{

loc_cpuQ);
}
<< Usage example of the assembly language(CC32R) >>
-include “mr32r.inc”
-global task
task:

loc_cpu

<< Usage example of the assembly language(TW32R:DCC/M32R) >>
-include “mr32r.inc”

.global task

task:

loc_cpu

2.8.3 loc_cpu(Lock CPU) 175

2.8.4. unl_cpu(Unlock CPU)

[(System call name)]

unl_cpu - Enables interrupts and task dispatch.

[(Calling by the assembly language)]

.include “mr32r.inc”
unl_cpu

<< Argument >>
None

<< Register setting >>

Register name | Contents after system call issuance
RO Error code
R1 --
R2 --
R3 --

[(Calling by the C language)]

#include <mr32r.h>
ER unl _cpu QO;

<< Argument >>
None
<< Return value >>
E_OK is always returned as the return value of a function.
[(Error codes)]
E_OK 00000000H(-H~00000000): Normal End
[(Function description)]
This system call enables external interrupts and task dispatch.

Therefore, the interrupts and task dispatch that have been disabled by loc_cpu are freed
from the disabled condition. If unl_cpu is issued while no interrupt and task dispatch are
disabled, the system does not assume an error and only continues the same condition.

This system call cannot be issued from a task-independent section (e.g., interrupt handler,
cyclic handler, or alarm handler).

[(Usage example)]

<< Usage example of the C language >>
#include <mr32r.h>
#include “id.h”

void task(Q)
{

unl_cpuQ);

176 2.8.4 unl_cpu(Unlock CPU)

<< Usage example of the assembly language(CC32R) >>
-include “mr32r.inc”
-global task

task:

unl_cpu

<< Usage example of the assembly language(TW32R:DCC/M32R) >>
-include “mr32r.inc”
-global task

task:

unl_cpu

2.8.4 unl_cpu(Unlock CPU) 177

2.9. Memorypool Management Function

2.9.1. cre_mpf(Create Fixed-size Memorypool)

[(System call name)]

cre_mpf - Create Fixed-size Memorypool

[(Calling by the assembly language)]

.include “mr32r.inc”

cre_mpfF mpFid

<< Argument >>
mpfid [#] The ID No. of a fixed-size memorypool to be created
pk_cmpf [sesesese] The start address in which the fixed-size memorypool

generation information is stored
(Set the address in the R2 register.)

<< Register setting >>

Register name | Contents after system call issuance

RO Error code
R1 The ID No. of a fixed-size memorypool to be created
R2 The start address in which the fixed-size memorypool
generation information is stored

R3 --

Specify the following information in the structure indicased by pk_cmpf.
Offset Size
+0 4 exinf Extended information
+4 4 mpfatr Fixed-size memorypool attribute
+8 4 mpfcnt Memory block count
+12 4 blfsz Fixed-size memorypool size

[(Calling by the C language)]

#include <mr32r.h>
ER cre_mpf (mpfid, pk_cmpf);

<< Argument >>

ID mpfid; The ID No. of a fixed-size memorypool to be
created

T_CMPF *pk_cmpf; The start address in which the fixed-size
memorypool generation information is stored

Specify the following information in the structure indicased by pk_cmpf.
typedef struct t_cmpf {

VP exinf; /* Extended information */

ATR mpfatr; /* Fixed-size memorypool attribute */

INT mpfcnt; /* Memory block count */

INT maxblksz; /* Fixed-size memorypool size */
} T_CMPF;

<< Return value >>
An error code is returned as the return value of a function.

[(Error codes)]

E_OK 00000000H(-H>00000000) : Normal End
E_NOMEM OFFFFFFF6H(-H”0000000a) : Not enough of memory
E_OBJ OFFFFFFC1H(-H>0000003f): Invalid object state

178 2.9.1 cre_mpf(Create Fixed-size Memorypool)

[(Function description)]

This system call creates a fixed-length memory pool that bears the ID number specified by
mpfid. It allocates a memory area to be used as the memory pool and initializes the created
memory pool's management block data.

Here follows explanation of the information as to a fixed-size memorypool to be generated
pk_cmpf.
® exinf (extended information)
Exinf is an area you can freely use to store information as to a fixed-size memorypool to
be generated. MR32R has nothing to do with the exinf's contents.
® mpfatr (fixed-size memorypool attribute)

Specify the location of the fixed-size memorypool area to be created. Specifically this
means specifying whether you want fixed-size memorypool to be located in the internal
RAM or in external RAM.

¢ To locate the fixed-size memorypool area in internal RAM
Specify __MR_INT(0).

¢ To locate the fixed-size memorypool area in external RAM
Specify __ MR_EXT(0x10000).

¢ To locate the fixed-size memorypool area user specified
Specify _ MR_USER(0x30000).
@ mpfcnt
Specify the number of blocks in the memory pool to be created. Any value from 1 to 32
can be specified here.
® blfsz
Specify the block size of one block in the memory pool to be created.

The ID numbers that can be specified in this system call range from 1 to the maximum
number of fixed-length memory pools in the user system that you set when defining the
maximum number of items.

An error E_NOMEM is returned if the memory pool does not have a sufficient memory space
to accommodate mpfcnt x blfsz.

An error E_OBJ is returned if cre_mpf system call is issued for the fixed-size memorypool
which is existent.

You can issue this system call exclusively from a task. This system call, if issued either from
the interrupt handler, the cyclic handler or the alarm handler, doesn't work properly.

2.9.1 cre_mpf(Create Fixed-size Memorypool) 179

[(Usage example)]
<< Usage example of the C language >>

#include <mr32r.h>
#include “id.h”
#define ID_mpfl 1
void task(void)

{
T_CMPF setmpf;
setmbf-mpfatr = _ MR_INT;
setmpf.mpfcnt = 20;
setmpf.blfsz = 400;
cre_mpF(ID_mpfl,&setmpf);
}

<< Usage example of the assembly language(CC32R) >>

setmpf: _RES.B 16

ID_mpfl: .equ 1
-include “mr32r.inc”
.global task

task:
1d24 R2,#setmpf
1d24 R1,#_ MR_INT
st R1,@(4,R2)
1d24 R1,#20
st R1,@(8,R2)
1d24 R1,#400
st R1,@(12,R2)

cre_mpf 1D_mpfl
ext_fsk

<< Usage example of the assembly language(TW32R:DCC/M32R) >>

setmpf: .space 16
.equ ID_mpfl1,1
-include “mr32r.inc”
-global task

task:
1d24 R2,#setmpf
1d24 R1,# MR_INT
st R1,0(4,R2)
1d24 R1,#20
st R1,0(8.R2)
1d24 R1,#400
st R1,@(12,R2)

cre_mpf 1D_mpfl

ext_tsk

180 2.9.1 cre_mpf(Create Fixed-size Memorypool)

2.9.2. del_mpf(Delete Fixed-size Memorypool)

[(System call name)]
del_mpf - Delete Fixed-size Memorypool

[(Calling by the assembly language)]

.include “mr32r.inc”
del_mpfF mpFid

<< Argument >>

mpfid [] The ID No. of a fixed-size memorypool to be deleted
<< Register setting >>
Register name | Contents after system call issuance
RO Error code
R1 The ID No. of a fixed-size memorypool to be deleted
R2 -
R3 -

[(Calling by the C language)]

#include <mr32r.h>
ER del_mpf (mpFfid);
<< Argument >>

ID mpfid; The ID No. of a fixed-size memorypool to be
deleted

<< Return value >>
An error code is returned as the return value of a function.

[(Error codes)]

E_OK 00000000H(-H>00000000) : Normal End
E_NOEXS OFFFFFFCCH(-H>00000034): Object does not exist

[(Function description)]

This system call deletes the fixed-length memory pool that bears the ID number specified by
mpfid. Once this memorypool is deleted, you can create a new memorypool with the same
ID number. Even when there is any task waiting for a memory block in the memorypool to be
deleted, this system call is terminated normally. In this case, the said task is freed from the
memory block wait state and returns error E_DLT before entering an RUN or READY state.

An error E_NOEXS is returned if this system call is issued for a nonexistent fixed-size
memorypool.

Make sure this system call is issued for only the fixed-size memorypool that has been
created by the cre_mpf system call. If this system call is issued for the fixed-size
memorypool that has been defined by the configuration file, it does not function normally.

You can issue this system call exclusively from a task. This system call, if issued either from
the interrupt handler, the cyclic handler or the alarm handler, doesn't work properly.

2.9.2 del_mpf(Delete Fixed-size Memorypool) 181

[(Usage example)]

<< Usage example of the C language >>
#include <mr32r._h>
#include “id.h”

void task(void)
{

del_mpF(ID_mpfL);
}
<< Usage example of the assembly language(CC32R) >>
-include “mr32r.inc”
-global task
task:
del_hpf ID_mpfl
ext_isk
<< Usage example of the assembly language(TW32R:DCC/M32R) >>
-include “mr32r.inc”
-global task
task:
del_hpf ID_mpfl

ext_tsk

182 2.9.2 del_mpf(Delete Fixed-size Memorypool)

2.9.3. get_blf(Get Fixed-size Memory Block)

[(System call name)]
get blf - Gets a fixed-size memory block

[(Calling by the assembly language)]

.include “mr32r.inc”
get blIFf mpFid

<< Argument >>
mpfid [] The ID No. of the memory pool to be obtained

<< Register setting >>

Register name | Contents after system call issuance
RO Error code
R1 The ID No. of the memorypool to be obtained
R2 The start address of memory block to be obtained
R3 -

[(Calling by the C language)]

#include <mr32r.h>
ER get blf (p_blf,mpfid);

<< Argument >>

ID mplid; The ID No. of the memorypool to be obtained
VP *p_blf; The start address of memory block to be obtained

<< Return value >>

The start address of the obtained memory block is set to variable p_blf.
An error code is returned as the return value of a function.

[(Error codes)]

E_OK 00000000H(-H”00000000) : Normal End

E_RLWAI OFFFFFFAAH(-H?00000056): Wait state forcibly
cleared

E DLT OFFFFFFAFH(-H”00000051): The object being waited for
was deleted

E_NOEXS OFFFFFFCCH(-H”00000034): Object does not exist

2.9.3 get_blf(Get Fixed-size Memory Block) 183

[(Function description)]

This system call acquires a memory block from the memorypool indicated by mpfid and
stores the start address of the acquired memory block in the variable p_blf. The content of
the acquired memory block is indeterminate.

If no memory block exists in the specified memorypool, the task that issued this system call
goes to a memory block wait state,it is connected to the memory block wait queue in FIFO
order.

When the rel_wai or irel_wai system call is issued before the send fixed-size memorypool
wait condition is met, error code E_RLWAI is returned.

When the fixed-size memorypool for which a task has been kept waiting is deleted by the
del_mpf system call issued by another task, error code E_DLT is returned and it is moved to
READY state.

When the fixed-size memorypool for which a task has been kept waiting is reset by the
vrst_mpf system call issued by another task, error code EV_RST is returned and it is moved
to READY state.

Memory blocks are fixed in length. Use the configuration file or cre_mpf system call to set
the size of each memory block and the number of memory blocks.

An error E_NOEXS is returned if this system call is issued for a nonexistent fixed-size
memorypool.

You can issue this system call exclusively from a task. This system call, if issued either from
the interrupt handler, the cyclic handler or the alarm handler, doesn't work properly.

[(Usage example)]

<< Usage example of the C language >>
#include <mr32.h>
#include “id.h”

VP p_blf;
void task(Q)

if(get_bIf(&p_blf,ID_mpF) = E_OK){
error(“Not enough memory\n);
}

}

<< Usage example of the assembly language(CC32R) >>

p_blf: _RES.B 4
.include “mr32.inc”
-global task

task:
get_blf ID_mpf
1d24 R5,#p_blf
st R2,@R5
ext_isk

184 2.9.3 get_blf(Get Fixed-size Memory Block)

<< Usage example of the assembly language(TW32R:DCC/M32R) >>

p_blf: _space 4
-include “mr32.inc”
-global task

task:
get_blf ID_mpf
1d24 R5,#p_blT
st R2,@R5
ext_isk

2.9.3 get_blf(Get Fixed-size Memory Block) 185

2.9.4. tget_blf(Get Fixed-size Memory Block with Timeout)

[(System call name)]
tget_blf - Gets a fixed-size memory block(With Timeout)

[(Calling by the assembly language)]

.include “mr32r.inc”

tget blf mpfid, tmout

<< Argument >>
mpfid [] The ID No. of the memory pool to be obtained
tmout [Timeout value

<< Register setting >>

Register name | Contents after system call issuance
RO Error code
R1 The ID No. of the memorypool to be obtained
R2 The start address of memory block to be obtained
R3 -
R4 Timeout value

[(Calling by the C language)]

#include <mr32r.h>
ER tget bIf (p_blf,mpfid,tmout);

<< Argument >>

ID mplid; The ID No. of the memorypool to be obtained
VP *p_blf; The start address of memory block to be obtained
TMO tmout; Timeout value

<< Return value >>

The start address of the obtained memory block is set to variable p_blf.
An error code is returned as the return value of a function.

[(Error codes)]

E_OK 00000000H(-H”00000000) : Normal End

E_RLWAI OFFFFFFAAH(-H?00000056): Wait state forcibly
cleared

E DLT OFFFFFFAFH(-H”00000051): The object being waited for
was deleted

E_NOEXS OFFFFFFCCH(-H”00000034): Object does not exist

186 2.9.4 tget_blf(Get Fixed-size Memory Block with Timeout)

[(Function description)]

This system call acquires a memory block from the memorypool indicated by mpfid and
stores the start address of the acquired memory block in the variable p_blf. The content of
the acquired memory block is indeterminate.

If no memory block exists in the specified memorypool, the task that issued this system call
goes to a memory block wait state, so it is queued up in two queues: the memory block wait
queue and the timeout wait queue.

The wait state committed by issuing this system call is released in the cases described
below. Note that when released from the wait state, the task that issued this system call is
removed from both of the transmit wait and timeout wait queues and is connected to the
ready queue.

® \When the release-from-wait condition is met before the tmout time expires

Error code E_OK is returned.

@ \When the tmout time expires before the release-from-wait condition is met
Error code E_ TMOUT is returned.

® \When the rel_wai or irel_wai system call is issued before the send fixed-size memorypool
wait condition is met

Error code E_RLWAI is returned.

® \When the fixed-size memorypool for which a task has been kept waiting is deleted by the
del_mpf system call issued by another task

Error code E_DLT is returned.

® When the fixed-size memorypool for which a task has been kept waiting is reset by the
vrst_mpf system call issued by another task

Error code EV_RST is returned.

Any value from -1 to 7FFFFFFFH can be specified for tmout. If you specify TMO_POL = 0O for
tmout, the effect is the same as 0 is specified for the timeout value, in which case tmout
functions the same way as pget_blf. Also, if you specify tmout = TMO_FEVR(-1), the effect is
the same as endless wait is specified, in which case tmout functions the same way as
get_bilf.

Memory blocks are fixed in length. Use the configuration file or cre_mpf system call to set
the size of each memory block and the number of memory blocks.

An error E_NOEXS is returned if this system call is issued for a nonexistent fixed-size
memorypool.

You can issue this system call exclusively from a task. This system call, if issued either from
the interrupt handler, the cyclic handler or the alarm handler, doesn't work properly.

2.9.4 tget_blf(Get Fixed-size Memory Block with Timeout) 187

[(Usage example)]
<< Usage example of the C language >>

#include <mr32.h>
#include “id.h”

VP p_blf;
void task(Q)
{

if(tget_bIf(&p_blf,1D_mpf,50) = E OK){
error(“Not enough memory\n’);
}

}
<< Usage example of the assembly language(CC32R) >>
p_blf: _RES.B 4

-include mr32.inc

-global task
task:

tget;blf ID_mpf,50

1d24 R5,#p_blf
st R2,0R5
ext_isk

<< Usage example of the assembly language(TW32R:DCC/M32R) >>

p_blf: _space 4
.include mr32.inc
.global task

task:

tget;blf ID_mpf,50

1d24 R5,#p_blf
st R2,@R5
ext_isk

188 2.9.4 tget_blf(Get Fixed-size Memory Block with Timeout)

2.9.5. pget_blf(Poll and Get Fixed-size Memory Block)

[(System call name)]
pget_blf - Gets a fixed-size memory block(no wait)

[(Calling by the assembly language)]

.include “mr32r.inc”

pget blf mpFid
<< Argument >>
mpfid [] The ID No. of the memory pool to be obtained
<< Register setting >>
Register name | Contents after system call issuance
RO Error code
R1 The ID No. of the memorypool to be obtained
R2 The start address of memory block to be obtained
R3 -

[(Calling by the C language)]

#include <mr32r.h>
ER pget bIT (p_blIf,mplid);

<< Argument >>

ID mplid; The ID No. of the memorypool to be obtained
VP *p_blf; The start address of memory block to be obtained

<< Return value >>

The start address of the obtained memory block is set to variable p_blf.
An error code is returned as the return value of a function.

[(Error codes)]

E_OK 00000000H(-H?00000000) : Normal End
E_TMOUT OFFFFFFABH(-H”00000055) : Polling failed or timeout
E_NOEXS OFFFFFFCCH(-H”00000034) : Object does not exist

[(Function description)]

This system call gets a memory block from the memory pool specified by mplid and returns
the start address of that memory block to p_bilf.

If the memory block cannot be obtained because there is no memory block in the specified
memory pool, error code E_TMOUT is returned to the task which issued the system call.

The task is not moved to WAIT state by pget_bilf.

An error E_NOEXS is returned if this system call is issued for a nonexistent fixed-size
memorypool.

Each memory block is fixed in size. The size of each memory block is defined in the
configuration file or when cre_mpf system call is issued.

This system call can be issued from either tasks or handlers.

2.9.5 pget_blf(Poll and Get Fixed-size Memory Block) 189

[(Usage example)]
<< Usage example of the C language >>

#include <mr32.h>
#include “id.h”

VP p_blf;
void task(Q)
{

iT(pget_blIf(&p_blIf,ID_mpf) I= E_OK){
error(“Not enough memory\n’);
}

}
<< Usage example of the assembly language(CC32R) >>
p_blf: _RES.B 4

.include mr32.inc
-global task

task:
pget;blf ID_mpF
1d24 R5,#p_blf
st R2,@R5
ext_isk

<< Usage example of the assembly language(TW32R:DCC/M32R) >>

p_blf: _space 4
.include mr32.inc
.global task

task:

pget;blf ID_mpf

1d24 R5,#p_blf
st R2,@R5
ext_isk

190 2.9.5 pget_blf(Poll and Get Fixed-size Memory Block)

2.9.6. rel_blf(Release Fixed-size Memory Block)

[(System call name)]

rel_blf - Release a fixed-size memory block

[(Calling by the assembly language)]

.include “mr32r.inc”
rel _blf mpFid

<< Argument >>

mpfid [] The ID No. of the memorypool to be released
You are to set the address of the memory block to be released.Set the address in
the R2 reg For the details,see Usage example of the assembly language on the
next page.

<< Register setting >>

Register name | Contents after system call issuance
RO Error code
R1 The ID No. of the memory pool to be released
R2 The start address of memory block to be release
R3 -

[(Calling by the C language)]

#include <mr32r.h>
ER rel blf (mpfid, p_blf);

<< Argument >>

ID mpfid; The ID No. of the memory pool to be released
VP p_bilf; The start address of memory block to be released

<< Return value >>
An error code is returned as the return value of a function.
[(Error codes)]

E_OK 00000000H(-H>00000000) : Normal End
E_NOEXS OFFFFFFCCH(-H”00000034): Object does not exist

[(Function description)]

This system call returns the memory block whose start address is specified by p_blf to the
memory pool.

For the start address of the memory block to be freed (returned), always use the value
obtained by get_blf, tget_blf or pget_blf.

Also, if the wait queue of the target memory pool has tasks queued up in it, this system call
removes a task from the wait queue that has been placed at the beginning of the wait queue,
reconnects it to the ready queue, and assigns it a memory block. In this case, the task status
changes from the memory block wait state to an execution (RUN) or executable (READY)
state.

This system call does not especially check whether p_blf is pointing at the start address of
the correct memory block.

This system call can be issued from either tasks or handlers.

2.9.6 rel_blf(Release Fixed-size Memory Block) 191

[(Usage example)]
<< Usage example of the C language >>

#include <mr32r.h>
#include “id.h”
#define ID_mpfl 1
void task(Q)

{
VP p_blf;
if(pget_blf(&p_blf, ID_mpfl) = E_OK)
error(““Not enough memory \n’’);
rel_bIf(I1D_mpfl,p blf):
}

<< Usage example of the assembly language(CC32R) >>

p_blf: -RES.B 4

ID_mpfl: .equ 1
-include “mr32r.inc”
.global _task

_task:

pget;blf ID_mpfl

1d24 R5,#p_blf

st R2,@R5

1d24 R5,#p_bIF

Id R2,@R5 ; The start address of memory block to be released

rel_blf ID_mpfl

ext_isk
<< Usage example of the assembly language(TW32R:DCC/M32R) >>
p_blf: .Space 4

.equ ID_mpfl,1

.include “mr32r.inc”
-global _task

_task:
pget;blf ID_mpfl
1d24 R5,#p_blf
st R2,@R5
1d24 RS, #p_bIf
Id R2,@R5 ; The start address of memory block to be released

rel_blf ID_mpfl

ext_tsk

192 2.9.6 rel_blf(Release Fixed-size Memory Block)

2.9.7. irel_blf(Release Fixed-size Memory Block)

[(System call name)]

irel_blf - Release a fixed-size memory block.(for the handler
only).

[(Calling by the assembly language)]

.include “mr32r.inc”
irel_blf mpFid

<< Argument >>

mpfid [] The ID No. of the memorypool to be released
You are to set the address of the memory block to be released.Set the address in
the R2 reg For the details,see Usage example of the assembly language on the

next page.
<< Register setting >>
Register name | Contents after system call issuance
RO Error code
R1 The ID No. of the memory pool to be released
R2 The start address of memory block to be release
R3 --

[(Calling by the C language)]

#include <mr32r.h>
ER irel _blf (mpfid, p_blf);

<< Argument >>

ID mpfid; The ID No. of the memory pool to be released
VP p_bilf; The start address of memory block to be released

<< Return value >>
An error code is returned as the return value of a function.

[(Error codes)]

E_OK 00000000H(-H>00000000) : Normal End
E_NOEXS OFFFFFFCCH(-H”00000034): Object does not exist

[(Function description)]

This system call is used when using the function of the snd_msg system call from an
task-independent section (e.g., interrupt handler, cyclic handler, or alarm handler).

[(Usage example)]

<< Usage example of the C language >>

#include <mr32r.h>
#include “id.h”
#define 1D_mpfl 1
void task(Q)

VP p_blf;
iT(pget_blf(&p_blf, ID_mpfl) = E OK)
error(“Not enough memory \n’”);

irel_bIf(ID_mpfl,p blf);

2.9.7 irel_blf(Release Fixed-size Memory Block) 193

<< Usage example of the assembly language(CC32R) >>

p_blf: -RES.B 4

ID_mpfl: -equ 1
-include “mr32r.inc”
.global _task

_task:
pget;blf ID_mpfl
1d24 R5,#p_blf
st R2,@R5
1d24 R5,#p_bIf
Id R2,@R5 ; The start address of memory block to be released
irel bIf ID_mpfl

ext_isk
<< Usage example of the assembly language(TW32R:DCC/M32R) >>

p_blf: -space 4
.equ ID_mpfl,1
-include “mr32r.inc”
.global _task

_task:

pget;blf ID_mpfl

1d24 R5,#p_blf

st R2,@R5

1d24 R5,#p_bIF

Id R2,@R5 ; The start address of memory block to be released

irel bIf 1D mpfl

ext_tsk

194 2.9.7 irel_blf(Release Fixed-size Memory Block)

2.9.8. ref_mpf(Refer Fixed-size Memorypool Status)

[(System call name)]

ref_mpf - Reference Fixed-size Memorypool Status

[(Calling by the assembly language)]

.include “mr32r.inc”
ref_mpf mpFid

<< Argument >>

mpfid [] The ID No. of the memorypool to Reference
fixed-size memorypool
pk_rmpf [sesess] Packet address to Reference fixed-size memorypool

(Set the address in the R2 register.)

<< Register setting >>

Register name | Contents after system call issuance
RO Error code
R1 The ID No. of the memorypool to Reference fixed-size
memorypool
R2 Packet address to Reference fixed-size memorypool
R3 --
The structure indicated by pk_rmpf returns the following data
Offset Size
+0 4 exinf Extended information
+4 4 wtsk Waiting task information
+8 4 frbent The number of free blocks
+12 4 blksz The size of blocks

[(Calling by the C language)]

#include <mr32r.h>
ER ref_mpf (pk_rmpf, mpfid);

<< Argument >>

T RMPF *pk_rmpf; Packet address to Reference fixed-size
memorypool

ID mpfid; The ID No. of the memorypool to Reference
fixed-size memorypool

<< Return value >>

An error code is returned as the return value of a function.
The structure indicated by pk_rmpf returns the following data.
typedef struct t_rmpf {

VP exinf; /* Extended information */
BOOL_ID wtsk; /* Waiting task information */
INT frbcent; /7* The number of free blocks */
INT blksz; /* The size of blocks */
} T_RMPF;
[(Error codes)]
E_OK 00000000H(-H”00000000): Normal End
E_NOEXS OFFFFFFCCH(-H”00000034): Object does not exist

2.9.8 ref_mpf(Refer Fixed-size Memorypool Status) 195

[(Function description)]
Refers to the state of the fixed-size memorypool specified by mpfid, and returns returns the
following information as return values.
® exinf

Returns extended task information in exinf.

® wisk
wtsk returns the ID No. of the first task waiting for the specified memorypool. wisk
returns FALSE (0) if there are no tasks waiting to obtain memoy block.

® frbent

Returns the number of free blocks in the specified fixed-size memorypool.

® blksz
Returns the size of blocks in the specified fixed-size memorypool.

An error E_NOEXS is returned if this system call is issued for a nonexistent fixed-size
memorypool.

This system call can be issued from both tasks and handlers.

[(Usage example)]
<< Usage example of the C language >>
#include <mr32r.h>

#include “id.h”
void task(Q)

T_RMPF rmpf;
ref_ﬁpf(lD_mpf, &rmpF);

ext_fsk();
¥

<< Usage example of the assembly language(CC32R) >>

rmpf: -RES.B 16
.include “mr32r.inc”
-global task

task:

Id24- R2,#rmpf
ref_mpf ID_mpf

<< Usage example of the assembly language(TW32R:DCC/M32R) >>

rmpf: .space 16
.include “mr32r.inc”
-global task

task:

1d24 R2,#rmpf
ref_mpf ID_mpT

196 2.9.8 ref_mpf(Refer Fixed-size Memorypool Status)

2.9.9. cre_mpl(Create Variable-size Memorypool)

[(System call name)]
cre_mpl - Create Variable-size Memorypool

[(Calling by the assembly language)]

.include “mr32r.inc”
cre_mpl mplid

<< Argument >>

mplid [s] The ID No. of a variable-size memorypool to be
created
pk_cmpl [The start address in which the variable-size

memorypool generation information is stored
(Set the address in the R2 register.)

<< Register setting >>

Register name | Contents after system call issuance

RO Error code
R1 The ID No. of a variable-size memorypool to be created
R2 The start address in which the variable-size memorypool
generation information is stored
R3 --
Specify the following information in the structure indicased by pk_cmpl.
Offset Size
+0 4 exinf Extended information
+4 4 mplatr Variable-size memorypool attribute
+8 4 mplsz Variable-size memorypool size
+12 4 maxblksz ~ Maximum memory block size to be
allocated

[(Calling by the C language)]

#include <mr32r.h>
ER cre_mpl (mplid, pk _cmpl);

<< Argument >>

ID mplid; The ID No. of a variable-size memorypool to be
created

T CMPL *pk_cmpl; The start address in which the variable-size
memorypool generation information is stored

Specify the following information in the structure indicased by pk_cmpl.
typedef struct t_cmpl {

VP exinf; /* Extended information */

ATR mplatr; /* Variable-size memorypool attribute */

INT mplsz; /* Variable-size memorypool size */

INT maxblksz; /* Maximum memory block size to be allocated */
} T_CMPL;

<< Return value >>
An error code is returned as the return value of a function.

[(Error codes)]

E_OK 00000000H(-H>00000000) : Normal End
E_NOMEM OFFFFFFF6H(-H”0000000a) : Not enough of memory
E OBJ OFFFFFFC1H(-H”0000003f): Invalid object state

2.9.9 cre_mpl(Create Variable-size Memorypool) 197

[(Function description)]
This system call generates the variable size memorypool of the ID No. specified with mplid.

It secures the memory area used for the memorypool and initializes management block data
of the generated memorypool.

The information pk_cmpl of the generated memorypool is as follows.Creates a variable-size
memorypool mplid indicates.

Here follows explanation of the information as to a variable-size memorypool to be
generated pk_cmpl.

® exinf (extended information)

Exinf is an area you can freely use to store information as to a variable-size
memorypool to be generated. MR32R has nothing to do with the exinf's contents.

® mplatr (variable-size memorypool attribute)

Specify the location of the variable-size memorypool area to be created. Specifically this
means specifying whether you want variable-size memorypool to be located in the
internal RAM or in the external RAM.

¢ To locate the variable-size memorypool area in internal RAM
Specify __MR_INT(0).

¢ To locate the variable-size memorypool area in external RAM
Specify _ MR_EXT(0x10000).

¢ To locate the variable-size memorypool area user specified
Specify _ MR_USER(0x30000).

® mplsz

Secures the memory area specified with this setting and utilizes it as the memory pool.
The E_NOMEM error is returned if the specified memory does not exist.

® maxblksz

The variable size memory pool of the MR32R is divided into 4 memory blocks of fixed
sizes. The memory block whose size best matches the size specified by the user is
selected from these 4 and assigned as the memory. The sizes are specified by the user
with maxblksz. Here, an error is not generated even if the specified size is smaller than
mplsz. Checks must be made from the user's side.

The range of ID Nos. which can be specified with this system call is from 1 to the maximum
number of variable size memory pools set in the user system by the maximum item number
definition.

If this system call is issued for an already existing variable-size memorypool, an error E_OBJ
is returned.

You can issue this system call exclusively from a task. This system call, if issued either from
the interrupt handler, the cyclic handler or the alarm handler, doesn't work properly.

198 2.9.9 cre_mpl(Create Variable-size Memorypool)

[(Usage example)]
<< Usage example of the C language >>
#include <mr32r._h>

#include “id.h”
void task(void)

{
T_CMPL setmpl;
setmbl.mplatr = _ MR_INT;
setmpl _mplsz = 5000;
setmpl _.maxblksz = 400;
cre_mpl(1D_mpl1,&setmpl);
}

<< Usage example of the assembly language(TW32R:DCC/M32R) >>

setmpl: .RES.B 16
.include “mr32r.inc”
.global task

task:
1d24 R2,#setmpl
1d24 R1,#_ MR_INT
st R1,@(4,R2)
1d24 R1,#5000
st R1,@(8,R2)
1d24 R1,#400
st R1,@(12,R2)

cre_mpl ID_mpll
ext _tsk

<< Usage example of the assembly language(TW32R:DCC/M32R) >>

setmpl: _space 16
.include “mr32r.inc”
-global task

task:
1d24 RO, #setmpl
1d24 R1,# MR_INT
st R1,@(4,R2)
1d24 R1,#5000
st R1,@(8,R2)
1d24 R1,#400
st R1,0(12,R2)

cre_mpl ID_mpll

ext_tsk

2.9.9 cre_mpl(Create Variable-size Memorypool) 199

2.9.10. del_mpl(Delete Variable-size Memorypool)

[(System call name)]
del_mpl - Delete Variable-size Memorypool

[(Calling by the assembly language)]

.include “mr32r.inc”

del_mpl mplid
<< Argument >>
mplid [s] The ID No. of a variable-size memorypool to be
deleted

<< Register setting >>

Register name | Contents after system call issuance
RO Error code
R1 The ID No. of a variable-size memorypool to be deleted
R2 -
R3 -

[(Calling by the C language)]

#include <mr32r.h>
ER del_mpl (mplid);
<< Argument >>

ID mplid; The ID No. of a variable-size memorypool to be
deleted

<< Return value >>
An error code is returned as the return value of a function.

[(Error codes)]

E_OK 00000000H(-H?00000000) : Normal End
E_NOEXS OFFFFFFCCH(-H”00000034) : Object does not exist

[(Function description)]

This system call deletes the memorypool indicated with mplid. The deleted memorypool can
be generated as a new memorypool with the same ID No. If a task is in the WAIT state, the
memorypool wait state is canceled ,and the state changes to READY state.And an error
E_DLT is returned for that task.

This system call ends successfully even if there is a task which procures the memory blocks
of the memory pool specified with this system call. In such case, no notification as to the task
acquiring memory blocks is made.

Also, if this system call is issued for a non--existent memorypool, an error E_NOEXS is
returned.

Make sure this system call is issued for only the variable-size memorypool that has been
created by the cre_mpl system call. If this system call is issued for the variable-size
memorypool that has been defined by the configuration file, it does not function normally.

This system call can be issued only from a task. It does not function properly when issued
from the interrupt handler, cyclic handler or alarm handler.

200 2.9.10 del_mpl(Delete Variable-size Memorypool)

[(Usage example)]

<< Usage example of the C language >>
#include <mr32r._h>
#include “id.h”

void task(void)
{

del_mpl(1D_mpl1);
}
<< Usage example of the assembly language(CC32R) >>
-include “mr32r.inc”
-global task
task:
del_hpl ID_mpl1l
ext_isk
<< Usage example of the assembly language(TW32R:DCC/M32R) >>
-include “mr32r.inc”
-global task
task:
del_hpl ID_mpl1l

ext_tsk

2.9.10 del_mpl(Delete Variable-size Memorypool) 201

2.9.11. get_blk(Get Variable-size Memory Block)

[(System call name)]
get_blk - Gets a variable-size memory block

[(Calling by the assembly language)]

.include “mr32r.inc”

get_blk mplid, blksz
<< Argument >>
mplid [] The ID No. of the variable-size memorypool to be
obtained
blksz [Memory block size to be obtained

<< Register setting >>

Register name | Contents after system call issuance
RO Error code
R1 The ID No. of the variable-size memorypool to be
obtained
R2 The start address of memory block to be obtained
R3 --

[(Calling by the C language)]

#include <mr32r.h>
ER get blk (p_blk,mplid,blksz);

<< Argument >>

ID mplid; The ID No. of the variable-size memorypool to be
obtained

VP *p_blk; The start address of memory block to be obtained

INT blksz; Memory block size to be obtained

<< Return value >>

The start address of the obtained memory block is set to variable p_blk.
An error code is returned as the return value of a function.

[(Error codes)]

E_OK 00000000H(-H”00000000): Normal End

E_RLWAI OFFFFFFAAH(-H?00000056): Wait state forcibly
cleared

E DLT OFFFFFFAFH(-H”00000051): The object being waited for
was deleted

E_NOEXS OFFFFFFCCH(-H”00000034): Object does not exist

202 2.9.11 get_blk(Get Variable-size Memory Block)

[(Function description)]

This system call gets a variable-size memory block from the memory pool specified by mplid
and returns the start address of that memory block to p_blk.The content of the obtained
memory block is not fixed.

If the memory block cannot be obtained, the task that has issued this system call is placed in
a wait state and linked in a variable-size memory block wait queue in order of FIFO.

If the task is freed from a wait state by a rel_wai system call issued by some other task, an
error E_RLWAI is returned.

Also, if the variable-size memorypool whose vliable-size memory block wait queue has a
task is deleted by the del_mpl system call of another task, the variable-size memory block
wait state of the task in the wait state is canceled and an error E_DLT is returned for that
task.

When the variable-size memorypool for which a task has been kept waiting is reset by the
vrst_mpl system call issued by another task, error code EV_RST is returned and it is moved
to READY state.

If the memorypool does not exist, an error E_NOEXS is returned.

You can issue this system call exclusively from a task. This system call, if issued either from
the interrupt handler, the cyclic handler or the alarm handler, doesn't work properly.

2.9.11 get_blk(Get Variable-size Memory Block) 203

[(Usage example)]

<< Usage example of the C language >>

#include <mr32r.h>
#include “id.h”
#define ID_mpll 1
VP p_blk;
void task(void)

/* Get 70 bytes memory block */

if(get_blk(&p_blk,ID_mpll,70) = E_OK){
error(“Not enough memory\n’);

}

}

<< Usage example of the assembly language(CC32R) >>

p_blk: _RES.B 4
.include “mr32r.inc”
-global task

task:
get_blk ID_mpl1,50 ; Get 50 bytes memory block
1d24 R5,#p_blk
st R2,0R5 ; send the start address of memory block to be obtaine
ext_isk

<< Usage example of the assembly language(TW32R:DCC/M32R) >>

p_blk: _.space 4
-include “mr32r.inc”
.global task

task:
get_blk ID_mpl1,50 ; Get 50 bytes memory block
1d24 R5,#p_blk
st R2,0R5 ; send the start address of memory block to be obtained
ext_isk

204 2.9.11 get_blk(Get Variable-size Memory Block)

2.9.12. tget_blk(Get Variable-size Memory Block with Timeout)

[(System call name)]

tget_blk - Gets a variable-size memory block(With Timeout)

[(Calling by the assembly language)]

.include “mr32r.inc”

tget blk mplid,blksz,tmout
<< Argument >>
mplid [] The ID No. of the variable-size memorypool to be
obtained
blksz [Memory block size to be obtained
tmout [Timeout value

<< Register setting >>

Register name | Contents after system call issuance
RO Error code
R1 The ID No. of the variable-size memorypool to be
obtained
R2 The start address of memory block to be obtained
R3 --
R4 Timeout value

[(Calling by the C language)]

#include <mr32r.h>
ER tget blk (p_blk,mplid,blksz,tmout);

<< Argument >>

ID mplid; The ID No. of the variable-size memorypool to be
obtained

VP *p_blk; The start address of memory block to be obtained

INT blksz; Memory block size to be obtained

TMO tmout; Timeout value

<< Return value >>

The start address of the obtained memory block is set to variable p_blk.
An error code is returned as the return value of a function.

[(Error codes)]

E_OK 00000000H(-H”00000000): Normal End

E_RLWAI OFFFFFFAAH(-H?00000056): Wait state forcibly
cleared

E DLT OFFFFFFAFH(-H”00000051): The object being waited for
was deleted

E_NOEXS OFFFFFFCCH(-H”00000034): Object does not exist

2.9.12 tget_blk(Get Variable-size Memory Block with Timeout) 205

[(Function description)]

This system call gets a variable-size memory block from the memory pool specified by mplid
and returns the start address of that memory block to p_blk.

If no memory block exists in the specified memorypool, the task that issued this system call
goes to a memory block wait state, so it is queued up in two queues: the memory block wait
queue and the timeout wait queue.

The wait state committed by issuing this system call is released in the cases described
below. Note that when released from the wait state, the task that issued this system call is
removed from both of the transmit wait and timeout wait queues and is connected to the
ready queue.

® \When the release-from-wait condition is met before the tmout time expires

Error code E_OK is returned.

® \When the tmout time expires before the release-from-wait condition is met
Error code E_ TMOUT is returned.

® \When the rel_wai or irel_wai system call is issued before the send variable-size
memorypool wait condition is met

Error code E_RLWAI is returned.

® \When the variable-size memorypool for which a task has been kept waiting is deleted by
the del_mpl system call issued by another task

Error code E_DLT is returned.

® \When the variable-size memorypool for which a task has been kept waiting is reset by the
vrst_mpf system call issued by another task

Error code EV_RST is returned.

Any value from -1 to 7FFFFFFFH can be specified for tmout. If you specify TMO_POL = 0 for
tmout, the effect is the same as 0 is specified for the timeout value, in which case tmout
functions the same way as pget_blk. Also, if you specify tmout = TMO_FEVR(-1), the effect
is the same as endless wait is specified, in which case tmout functions the same way as
get_blk.

An error E_NOEXS is returned if this system call is issued for a nonexistent variable-size
memorypool.

You can issue this system call exclusively from a task. This system call, if issued either from
the interrupt handler, the cyclic handler or the alarm handler, doesn't work properly.

206 2.9.12 tget_blk(Get Variable-size Memory Block with Timeout)

[(Usage example)]

<< Usage example of the C language >>

#include <mr32.h>
#include “id.h”

VP p_blk;
void task(Q)
{

if(tget_blk(&p_blk,1D_mpl1,50,100) != E_OK){
error(“Not enough memory\n’);
}

}

<< Usage example of the assembly language(CC32R) >>

p_blf: _space 4
.include “mr32.inc”
.global task

task:

tget blk 1D_mpl,50,100

1d24 R5,#p_blf
st R2,@R5
ext_fsk

<< Usage example of the assembly language(TW32R:DCC/M32R) >>

p_blf: _space 4
-include “mr32.inc”
-global task

task:
tget;blk ID_mpl,50,100
1d24 R5,#p_blf
st R2,@R5
ext_isk

2.9.12 tget_blk(Get Variable-size Memory Block with Timeout) 207

2.9.13. pget_blk(Poll and Get Variable-size Memory Block)

[(System call name)]

pget_blk - Gets a variable-size memory block(no wait)

[(Calling by the assembly language)]
-include “mr32r.inc”

pget_blk mplid, blksz
<< Argument >>
mplid [] The ID No. of the variable-size memorypool to be
obtained
blksz [Memory block size to be obtained

<< Register setting >>

Register name | Contents after system call issuance
RO Error code
R1 The ID No. of the variable-size memorypool to be
obtained
R2 The start address of memory block to be obtained
R3 --

[(Calling by the C language)]

#include <mr32r.h>
ER pget blk (p_blk,mplid,blksz);

<< Argument >>

ID mplid; The ID No. of the variable-size memorypool to be
obtained

VP *p_blk; The start address of memory block to be obtained

INT blksz; Memory block size to be obtained

<< Return value >>

The start address of the obtained memory block is set to variable p_blk.
An error code is returned as the return value of a function.

[(Error codes)]

E_OK 00000000H(-H>00000000) : Normal End
E_TMOUT OFFFFFFABH(-H>00000055): Polling failed or timeout
E_NOEXS OFFFFFFCCH(-H”00000034): Object does not exist

208 2.9.13 pget_blk(Poll and Get Variable-size Memory Block)

[(Function description)]

This system call gets a variable-size memory block from the memory pool specified by mplid
and returns the start address of that memory block to p_blk. The content of the acquired
memory block is indeterminate.

If the memory block cannot be obtained because there is no memory block in the specified
memory pool, an error E_TMOUT is returned to the task which issued the system call.

The task is not moved to WAIT state by pget_blk.

The size of each memory block is defined in the configuration file or or when cre_mpf system
call is issued.

An error E_NOEXS is returned if this system call is issued for a nonexistent variable-size
memorypool.

You can issue this system call exclusively from a task. This system call, if issued either from
the interrupt handler, the cyclic handler or the alarm handler, doesn't work properly.

[(Usage example)]

<< Usage example of the C language >>

#include <mr32r.h>
#include “id.h”
#define 1D_mpll 1
VP p_blk;
void task(Q)

/* Get 70 bytes memory block */
ifT(pget_blk(&p_blk,ID_mpl1,70) = E_OK)-
error(““Not enough memory\n’);

}

<< Usage example of the assembly language(CC32R) >>

p_blk: _RES.B 4
.equ ID_mpl1,1
-include “mr32r.inc”
-global task

task:
pget;blk ID_mpl1,50 ; Get 50 bytes memory block
1d24 R5,#p_blk
st R2,@R5 ; send the start address of memory block to be obtaine
ext_isk

<< Usage example of the assembly language(TW32R:DCC/M32R) >>

p_blk: _space 4
.equ ID_mpl1,1
-include “mr32r.inc”
-global task

task:
pget;blk ID_mpl1,50 ; Get 50 bytes memory block
1d24 R5,#p_blk
st R2,@R5 ; send the start address of memory block to be obtained
ext_isk

2.9.13 pget_blk(Poll and Get Variable-size Memory Block) 209

2.9.14. rel_blk(Release Variable-size Memory Block)

[(System call name)]
rel_blk - Release a variable-size memory block

[(Calling by the assembly language)]

.include “mr32r.inc”
rel_blk mplid

<< Argument >>

mplid [] The ID No. of the variable-size memorypool to be
released
p_blk [****] the address of the memory block to be released.

Set the address in the R2 register.

<< Register setting >>

Register name | Contents after system call issuance
RO Error code
R1 The ID No. of the variable-size memorypool to be
released
R2 The start address of memory block to be released
R3 --

[(Calling by the C language)]

#include <mr32r.h>
ER rel _blk (mplid,p_blk);

<< Argument >>

ID mplid; The ID No. of the variable-size memorypool to be
released
VP p_blk; The start address of memory block to be release

<< Return value >>
An error code is returned as the return value of a function.
[(Error codes)]

E OK 00000000H(-H>00000000) : Normal End
E_NOEXS OFFFFFFCCH(-H”00000034): Object does not exist

[(Function description)]

This system call returns the memory block whose start address is specified by p_blk to the
memory pool.

For the start address of the memory block to be freed (returned), always use the value
obtained by get_blk, tget blk or pget_blk.

This system call does not especially check whether p_blk is pointing at the start address of
the correct memory block.

If a task is waiting to release memory blocks, the request size is checked from the head task
in the memory wait queue. If conditions are satisfied, the memory wait state is changed to
the ready state.

In assigning memory, if conditions are satisfied, request size is checked with all
subsequently connected tasks. However, the moment a task does not satisfy the request
size, memory block assignment ends.

210 2.9.14 rel_blk(Release Variable-size Memory Block)

An error E_NOEXS is returned if this system call is issued for a nonexistent variable-size
memorypool.

You can issue this system call exclusively from a task. This system call, if issued either from
the interrupt handler, the cyclic handler or the alarm handler, doesn't work properly.

[(Usage example)]

<< Usage example of the C language >>

#include <mr32r._.h>
#include “id.h”
#define 1D_mpll 1
void task(Q)

{
VP p_blk;
/* Get 60 bytes memory block */
iT(pget_blk(&p_blk,ID_mpl1,60) = E_OK)
error(“*Not enough memory \n’);
rel_blk(ID_mpll,p_blk); /* Release memory block */
}

<< Usage example of the assembly language(CC32R) >>

p_blk: -RES.B 4

ID_mpl1l: -equ 1
-include “mr32r.inc”
.global _task

_task:
pget;blk ID_mpl1,60 ; Get 60 bytes memory block
1d24 R5,#p_blk

st R2,@R5

; You must set the start address of the memory block to be released
1d24 R5,#p_blk

1d R2,@R5 ; start address of the memory block

rel_blk ; Release memory block

<< Usage example of the assembly language(TW32R:DCC/M32R) >>

p_blk: .space 4
.equ ID_mpl1,1
-include “mr32r.inc”
-global _task

_task:
pget;blk ID_mpl1,60 ; Get 60 bytes memory block
1d24 R5,#p_blk
st R2,@R5

; You must set the start address of the memory block to be released
1d24 R5,#p_blk

Id R2,@R5 ; start address of the memory block

rel_blk ; Release memory block

2.9.14 rel_blk(Release Variable-size Memory Block) 21

2.9.15. ref_mpl(Refer Variable-size Memorypool Status)

[(System call name)]
ref_mpl - Reference Variable-size Memorypool Status

[(Calling by the assembly language)]

-include “mr32r.inc”
ref_mpl mplid, pk_rmpl

<< Argument >>

mplid [] The ID No. of the variable-size memorypool to be
referenced

pk_rmpl [ssx] Packet address to Reference variable-size
memorypool

(Set the address in the R2 register.)
<< Register setting >>

Register name | Contents after system call issuance
RO Error code
R1 The ID No. of the memory block to Reference variable-size
memorypool
R2 Packet address to Reference variable-size memorypool
R3 --
The structure indicated by pk_rmpl returns the following data
Offset Size
+0 4 exinf Extended information
+4 4 wisk Waiting task information
+6 4 frsz The total size of the free area
+10 4 maxsz The size of the maximum free area

[(Calling by the C language)]

#include <mr32r.h>
ER ref _mpl (pk_rmpl, mplid);

<< Argument >>

T RM *pk_rmpl; Packet address to Reference variable-size
PL memorypool
ID mplid; The ID No. of the memory block to Reference

variable-size memorypool
<< Return value >>

An error code is returned as the return value of a function.

The structure indicated by pk_rmpl returns the following data.
typedef struct t_rmpl {

VP exinf; /* Extended information */
BOOL_ID wtsk; /* Waiting task information */
INT frsz; /* The total size of the free area */
INT maxsz; /* The size of the maximum free area */
} T_RMPL;
[(Error codes)]
E_OK 00000000H(-H”00000000): Normal End
E_NOEXS OFFFFFFCCH(-H”00000034): Object does not exist

212 2.9.15 ref_mpl(Refer Variable-size Memorypool Status)

[(Function description)]
Refers to the state of the variable-size memory pool specified by mplid, and returns the
following information as return values.
® exinf

Returns extended task information in exinf

® wisk

Returns the ID No. of the first task waiting for the specified variable-size memory pool.
In the MR32R, however, wtsk always returns FALSE (0), because tasks cannot enter
the wait state for the memory pool.

o frsz

Returns the total size of the free area.

® maxsz
Returns the size of the maximum free area that can immediately be obtained.

An error E_NOEXS is returned if this system call is issued for a nonexistent variable-size
memorypool.

This system call can be issued from both tasks and handlers (the interrupt handler, the cyclic
handler, or the alarm handler).

[(Usage example)]

<< Usage example of the C language >>

#include <mr32r.h>
#include “id.h”
void task(Q)

T_RMPL rmpl;
ref_mpl(&rmpl,I1D_mpl1);
}

<< Usage example of the assembly language(CC32R) >>

rmpl: _space 10
.equ ID”mpl1,1
-include mr32r.inc
-global task

task:

Id24- R2,#rmpl
ref_mpl ID_mpll

<< Usage example of the assembly language(TW32R:DCC/M32R) >>

rmpl: -space 10
.equ ID”mpl1,1
-include mr32r.inc
.global task

task:

1d24 R2, #rmpl
ref_mpl ID_mpll

2.9.15 ref_mpl(Refer Variable-size Memorypool Status) 213

2.10. Time Management Function

2.10.1. set_tim(Set Time)

[(System call name)]

set_tim

- Sets the system clock.

[(Calling by the assembly language)]

.include “mr32r.inc”

set_tim

<< Argument >>

pk_tim [The start address of packet specifying the system

clock to be set
(Set the address in the R2 register.)

<< Register setting >>

Register name | Contents after system call issuance
RO Error code
R1 --
R2 The start address of packet specifying the system clock to be
set
R3 --

[(Calling by the C language)]

#include <mr32r.h>
ER set_tim (pk_tim);

<< Argument >>

SYSTIME *pk_tim; The start address of packet specifying the system

<< Return value >>

clock to be set

E_OK s always returned as the return value of a function.

[(Error codes)]
E OK 0
[(Function description)]

This system call sets the val

0000000H(-H~00000000) : Normal End

ue of the system clock to a value indicated by pk_tim. z

The 48-bit system clock is handled separately in ltime(32-bits) and utime(16-bits).

The timer interrupt interval used in MR32R kernel is treated as a unit of system clock.

This system call can be issu

ed from both tasks and handlers.

% The system time is 0 when the syste
48-bit data.

m is reset, and the number of system clock interrupts generated is indicated by

214

2.10.1 set_tim(Set Time)

[(Usage example)]
<< Usage example of the C language >>
#include <mr32r._h>

#include “id.h”
void task(Q)

{
SYSTITIME time; /* Time data storing variable */
time.utime = O; /* Sets upper time data */
time.ltime = O; /* Sets lower time data */
set_tim(&time); /* modify the system time */

}

<< Usage example of the assembly language(CC32R) >>

time: .RES.B 6
. INCLUDE “mr32r.inc”
.GLOBAL task
task:
set_tim time

<< Usage example of the assembly language(TW32R:DCC/M32R) >>

time: -space 6
- INCLUDE “mr32r.inc”
-GLOBAL task
task:
set_tim time

2.10.1 set_tim(Set Time) 215

2.10.2. get_tim(Get Time)

[(System call name)]

get _tim - Reads the system clock value.

[(Calling by the assembly language)]

.include “mr32r.inc”
get_tim

<< Argument >>

pk_tim [The start address of packet in which the read system
clock is stored

<< Register setting >>

Register name | Contents after system call issuance
RO Error code
R1 --
R2 The start address of packet in which the read system clock is
stored
R3 --

[(Calling by the C language)]

#include <mr32r.h>
ER get tim (pk_tim);

<< Argument >>

SYSTIME “*pk_tim; The start address of packet in which the read system
clock is stored
(Set the address in the R2 register.)

<< Return value >>

E_OK s always returned as the return value of a function.
The current time data is returned to the structure which pk_tim is specifying.

[(Error codes)]
E_OK 00000000H(-H>00000000) : Normal End
[(Function description)]

This system call reads out the current value of the system clock and returns it to return
parameter pk_tim. 28

The 48-bit system clock time is handled separately in Itime(32-bits) and utime(16-bits).

This system call can be issued from both tasks and handlers.

% The system time is 0 at reset. The number of times the system clock interrupt occurred is represented in 48-bit data.

216 2.10.2 get_tim(Get Time)

[(Usage example)]
<< Usage example of the C language >>

#include <mr32r.h>
#include “id.h”
void task(Q)

SYSTIME time; /* Time data storing variable */
get_tim(&time); /* Reads system time */
printf(“system_clock.utime = %X\n”,time.utime);
printf(“system_clock. Itime = %X\n”,time.ltime);

<< Usage example of the assembly language(CC32R) >>

time: .RES.B 6
.include “mr32r.inc”
.global task

task:
1d24 R2,#time
get_tim

<< Usage example of the assembly language(TW32R:DCC/M32R) >>

time: .space 6
-include “mr32r.inc”
.global task

task:
1d24 R2,#time
get_tim

2.10.2 get_tim(Get Time) 217

2.10.3. dly_tsk(Delay Task)

[(System call name)]

dly tsk - Delays task execution.

[(Calling by the assembly language)]
-include “mr32r.inc”

dly tsk dlytim
<< Argument >>
dlytim [Delay time
<< Register setting >>
Register name | Contents after system call issuance
RO Error code
R1 -
R2 Delay time
R3 -

[(Calling by the C language)]

#include <mr32r.h>
ER dly_tsk (dlytim);

<< Argument >>
DLYTIME dlytim; Delay time
<< Return value >>
An error code is returned as the return value of a function.

[(Error codes)]

E_OK 00000000H(-H”00000000): Normal End
E_RLWAI OFFFFFFAAH(-H>00000056): Wait state forcibly
cleared

218 2.10.3 dly_tsk(Delay Task)

[(Function description)]

This system call temporarily stops execution of the own task for a duration specified by
dlytim, with the task placed from the execution (RUN) state into a wait (WAIT) state.

A wait state invoked by this system call is cancelled in the following cases:
When the wait state is cancelled, the task that invoked this system call exits from the timeout
wait queues and is connected to the ready queue.
® \When the time specified in dlytim has elapsed.
Error code E_OK is returned.
® \When the wait state is forcibly cancelled by rel_wai or irel_wai system calls before the
dlytim time has elapsed.
Error code E_RLWAI is returned.
However, the wait state is not cleared by executing wup_tsk during a delay.

The unit of time sgecified in dlytim is the unit of time of the system clock, specified in the
configuration file.*

The maximum value of dlytim is Ox7FFFFFFF.

dly_tsk(5);
For example, if it is 10ms and the following is written in the program the own task is placed
from the execution (RUN) state into a wait (WAIT) state and held in that state for 50 ms.

This system call can be issued only from tasks. It cannot be issued from the in terrupt
handler, the cyclic handler, or the alarm handler.

[(Usage example)]

<< Usage example of the C language >>

#include <mr32r.h>
#include “id.h”
void task(Q)

if(dly_tsk(10) = E_OK)
printf(**Forced wakeup\n™);

}

<< Usage example of the assembly language(CC32R) >>

.include “mr32r.inc”
-global task

task:
dly_tsk 200

<< Usage example of the assembly language(TW32R:DCC/M32R) >>

.include “mr32r.inc”
-global task

task:
dly_tsk 200

% Refer Users Manual how to specify the unit of time of the system clock in the configuration file.

2.10.3 dly_tsk(Delay Task) 219

2.10.4. def_cyc(Define Cyclic Handler)

[(System call name)]
def cyc - Define Cyclic Handler

[(Calling by the assembly language)]

.include “mr32r.inc”

def _cyc cycno,pk _dcyc
<< Argument >>
cycno [ID No. of cyclic handler
pk_dcyc [xxx] The start address in which the cyclic handler

definition information is stored
(Set the address in the R2 register.)

<< Register setting >>

Register name | Contents after system call issuance

RO Error code
R1 ID No. of cyclic handler
R2 The start address in which the cyclic handler definition
information is stored
R3 --
Specify the following information in the structure indicased by pk_dexc.
Offset Size
+0 4 exinf Extended information
+4 4 cycatr Cyclic handler attribute
+8 4 cychdr Cyclic handler startup address
+12 4 cycact The cyclic handler activation status
+16 4 cyctim Interval count

[(Calling by the C language)]

#include <mr32r.h>
ER def _cyc(cycno, pk_dcyc);

<< Argument >>

HNO cycno ID No. of cyclic handler
T DCYC *pk_dcyc The start address in which the cyclic handler
definition information is stored
Specify the following information in the structure indicased by pk_dcyc.
typedef struct t_dcyc {

VP exinf; /* Extended information */
ATR cycatr; /* Cyclic handler attribute */
FP cychdr; /* Cyclic handler startup address */
UINT cycact; /* The cyclic handler activation status */
CYCTIME cyctim; /* Interval count */

} T_DCYC;

<< Return value >>

An error code is returned as the return value of a function.

220 2.10.4 def_cyc(Define Cyclic Handler)

[(Error codes)]
E_OK 00000000H(-H>00000000) : Normal End

[(Function description)]

@ exinf

Exinf is an area you can freely use to store information as to a cyclic handler to be
generated. MR32R has nothing to do with the exinf's contents.

® cycatr

cycatr is an area you can freely use to store information as to a cyclic handler to be
generated. MR32R has nothing to do with the cycatr's contents.

@ cychdr
Specifies the start address of the defined cyclic handler.

® cycact
The following two specifications can be made by cycact:

Table 2.1Specifications of Cyclic Handler Activation Status

C language Meaning
TCY_OFF Disables the cyclic handler
TCY_ON Enables the cyclic handler

® cyctim
Specifies the interval count for cyclic handler.

It is also possible to re-define a cyclic handler to the cyclic handler already defined. In a
re-definition, it is not necessary to cancel a definition beforehand. It does not become an
error even if it re-defines a new a cyclic handler to the cyclic handler already defined.

You can issue this system call exclusively from a task. This system call, if issued either from
the interrupt handler, the cyclic handler or the alarm handler, doesn't work properly.

2.10.4 def_cyc(Define Cyclic Handler) 221

[(Usage example)]
<< Usage example of the C language >>

#include <mr32r.h>
#include “id.h”
void task(Q)

{
T_DCYC dcycl;

dcycl.cychdr =
dcycl.cycact = TCY_ON;
dcycl.cyctim = ;
def_cyc (ID_cyc, &dcyc);

}
void cycl(void)

¥
<< Usage example of the assembly language(CC32R) >>

.include “mr32r.inc”
-global task
dcycl: _RES.B 20
task:
1d24 R2,#dcycl
1d24 R1,#cycl

st R1,@(8,R2)
Idi R1,#TCY_ON
st R1,@(12,R2)
Idi R1,#200
st R1,@(16,R2)
def_cyc ID_CYC
ext_tsk

cycl:

<< Usage example of the assembly language(TW32R:DCC/M32R) >>
-include “mr32r.inc”
-global task
dcycl:
.space 20
task:
1d24 R2,#dcycl
1d24 R1,#cycl

st R1,@(8,R2)
Idi R1,#TCY_ON
st R1,0(12,R2)
Idi R1,#200

st R1,@(16,R2)

def_cyc ID_CYC

ext_tsk
cycl:

222 2.10.4 def_cyc(Define Cyclic Handler)

2.10.5. act_cyc (Activate Cyclic Handler)

[(System call name)]

act_cyc - Controls the activation of the cyclic handler.

[(Calling by the assembly language)]

.include “mr32r.inc”
act_cyc cycno, cycact

<< Argument >>

cycno [] The cyclic handler specification number
cycact [The cyclic handler activation status

<< Register setting >>

Register name | Contents after system call issuance
RO Error code
R1 The cyclic handler specification number
R2 The cyclic handler activation status
R3 -

[(Calling by the C language)]

#include <mr32r.h>
ER act_cyc (cycno, cycact);

<< Argument >>

HNO cycno; The cyclic handler specification number
UINT cycact; The cyclic handler activation status

<< Return value >>
E_OK is always returned as the return value of a function.
[(Error codes)]
E_OK 00000000H(-H~00000000): Normal End
[(Function description)]
This system call changes the activation status of the cyclic handler specified by cyhno.
That is, it enables or disables the cyclic handler.

The following three specifications can be made by cyhact:

Table 2.2Specifications of Cyclic Handler Activation Status

C language Assembly language Meaning
TCY_OFF TCY_OFF Disables the cyclic handler
TCY_ON TCY_ON Enables the cyclic handler
TCY_ON|TCY_INI | TCY_INI_ON Enables the cyclic handler and|clears the
cyclic counter at the sameltime.

The cyclic handler is executed as a part of the system clock interrupt handler.®

This system call can be issued from both tasks and handlers.

%0 Namely, the cyclic handler is called from the system clock handler by a subroutine call.

2.10.5 act_cyc (Activate Cyclic Handler) 223

[(Usage example)]

<< Usage example of the C language >>

#include <mr32r.h>
#include “id.h”
void task(Q)

{ -
act_éyc (ID_cyc, TCY_ON);

) :

<< Usage example of the assembly language(CC32R) >>
-include “mr32r.inc”
-global task

task:
act_cyc ID_cyc, TCY_INI_ON

<< Usage example of the assembly language(TW32R:DCC/M32R) >>

-include “mr32r.inc”
-global task
task:
act_cyc ID_cyc, TCY_INI_ON

224 2.10.5 act_cyc (Activate Cyclic Handler)

2.10.6. ref_cyc(Refer Cyclic Handler Status)

[(System call name)]

ref_cyc - Reference Cyclic handler Status

[(Calling by the assembly language)]

-include “mr32r.inc”
ref _cyc cycno

<< Argument >>

cycno [] The cyclic handler specification number
PK_rcyc [x] Packet address to Reference cyclic handler
(Set the address in the R2 register.)

<< Register setting >>

Register name | Contents after system call issuance
RO Error code
R1 The cyclic handler specification number
R2 Packet address to Reference cyclic handler
R3 --
The structure indicated by pk_rcyc returns the following data.
Offset Size
+0 4 exinf Extended information
+4 4 Iftim The time remaining until the next cycle
start handler starts
+8 4 cycact The active state of the cycle start handler
[(Calling by the C language)]
#include <mr32r.h>
ER ref _cyc (pk_rcyc, cycno);
<< Argument >>
HNO cycno; The cyclic handler specification number

T_RCYC *pk_rcyc Packetaddress to Reference cyclic handler

<< Return value >>

An error code is returned as the return value of a function.
The structure indicated by pk_rcyc returns the following data.
typedef struct t_rcyc {
VP exinf; /* Extended information */
CYCTIME Ifttim; /* The time remaining until the next cycle start
handler starts */
UINT cycact; /* The active state of the cycle start handler */
}T_RCYC;

[(Error codes)]
E_OK 00000000H(-H>00000000) : Normal End
[(Function description)]
Refers to the state of the cyclic handler specified by almno, and returns the following
information as return values.
® exinf

Returns extended task information in exinf.

2.10.6 ref_cyc(Refer Cyclic Handler Status) 225

® cycact
cycact returns the active state of the cyclic handler. That is, cycact returns TCY_ON
(=1) when the cyclic handler is ON, and TCY_OFF (=0) when it is OFF.

o |fttime

Iftim returns the time remaining until the next cyclic handler starts. The time remaining
until the next cyclic handler starts is expressed as the number of system clock counts.

This system call can be issued from both tasks and handlers.

[(Usage example)]

<< Usage example of the C language >>

#include <mr32r.h>
#include “id.h”
void task(Q)

T_RCYC rcyc;
ref_cyc(&rcyc, 1D_cyc);
<< Usage example of the assembly language(CC32R) >>
-include “mr32r.inc”
-global task
task:
Id24- R2,#pk_rcyc
ref_cyc 1D_cyc
<< Usage example of the assembly language(TW32R:DCC/M32R) >>
-include “mr32r.inc”
-global task
task:

Id24- R2,#pk_rcyc
ref_cyc [ID_cyc

226 2.10.6 ref_cyc(Refer Cyclic Handler Status)

2.10.7. ref_alm(Refer Alarm Handler Status)

[(System call name)]

ref_alm - Reference Alarm handler Status

[(Calling by the assembly language)]

.include “mr32r.inc”
ref_alm almno

<< Argument >>

almno [] The alarm handler specification number
pk_ralm [xxx] Packet address to Reference alarm handler
(Set the address in the R2 register.)

<< Register setting >>

Register name | Contents after system call issuance

RO Error code
R1 The alarm handler specification number
R2 Packet address to Reference alarm handler
R3 --

The structure indicated by pk_ralm returns the following data.
Offset Size
+0 4 exinf Extended information
+4 4 [ftim The time remaining until the next alarm

start handler starts

[(Calling by the C language)]

#include <mr32r.h>
ER ref_alm (pk_ralm, almno);

<< Argument >>

HNO almno; The alarm handler specification number
T RALM *pk _ralm; Packet address to Reference alarm handler

<< Return value >>

An error code is returned as the return value of a function.
The structure indicated by pk_ralm returns the following data.
typedef struct t_ralm {
VP exinf; /* Extended information */
ALMTIME Ifttim; /* The time remaining until the next alarm start
handler starts */
}T_RALM;

[(Error codes)]
E_OK 00000000H(-H>00000000) : Normal End

2.10.7 ref_alm(Refer Alarm Handler Status) 227

[(Function description)]
Refers to the state of the alarm handler specified by almno, and returns returns the following
information as return values.
® exinf

Returns extended task information in exinf.

@ [fttim

Ifttim returns the time remaining until the specified alarm handler is started. The time
remaining until the alarm handler starts is expressed as 48-bit data showing the number
of times the system clock interrupt remains to be invoked.

The 48-bit system time is divided into Itime and utime.

This system call can be issued from both tasks and handlers.

[(Usage example)]
<< Usage example of the C language >>

#include <mr32r.h>
#include “id.h”
void func(Q)

T_RALM ralm;
ref_alm(&ralm, I1D_alarm);

}

<< Usage example of the assembly language(CC32R) >>

.include “mr32r.inc”
-global task

task:
1d24 R2,#pk_ralm
ref_alm ID_alm

<< Usage example of the assembly language(TW32R:DCC/M32R) >>

-include “mr32r.inc”

.global task
task:

1d24 R2,#pk_ralm

ref_alm ID_alm

228 2.10.7 ref_alm(Refer Alarm Handler Status)

2.11. System Management Function

2.11.1. get_ver(Get Version Information)

[(System call name)]
get_ver - Gets the version number of the MR32R.

[(Calling by the assembly language)]

.include “mr32r.inc”
get_ver

<< Argument >>

pk_ver [The start address of the structure in which version
information is stored
(Set the address in the R2 register.)

<< Register setting >>

Register name | Contents after system call issuance
RO Error code
R1 -
R2 The start address of the structure in which version information
is stored
R3 -

[(Calling by the C language)]

#include <mr32r.h>
ER get ver (pk ver);

<< Argument >>

T VER *pk_ver; The start address of the structure in which version
information is stored

<< Return value >>

E_OK s always returned as the return value of a function.
The version information is set to structure pk_ver.

[(Error codes)]
E OK 00000000H(-H”00000000): Normal End

2.11.1 get_ver(Get Version Information) 229

[(Function description)]
This system call gets the version number and other information on the MR32R.
The version number is obtained in the format standardized by the TRON specifications.

Therefore, the version number can be obtained in the format common to different types of
microcomputers or the operating systems of different TRON specifications.

The version information can be obtained is as follows:

UH maker /* Maker */
UH id /* Format number */
UH spver /* Specification version */
UH prver /* Product version */
UH prno[4] /* Product control information */
UH cpu /* CPU information */
UH var /* Variation descriptor*/

The version No. formats are as follows:

1. Maker

H'0C indicating Mitsubishi Electric Corporation is returned.

2. Format number
Internal identification ID H’2210f the MR32R is returned.

3. Specification version
H'5302 indicating the WITRONspecifications Ver.3.02 is returned.

4. Product version
H'320 indicating the version of the MR32R is returned.

5. Product control information
©® prno[0]
The product release number is obtained
prno[0] < ‘071’

® prno[1]
A two digit of the product release year and month are obtained
prno[1] € 0x0007

©® prno|[2]
Reserved for Mitsubishi use.
prno[2] € 0x???7?

@ prno[3]
Reserved for Mitsubishi use.
prno[3] & 0x?7?7?7?

6. CPU information
H'C31 indicating the M32R Micro computeris returned.

7. Variation descriptor
H'8000 indicating the variation of the MR32R is returned.

230 2.11.1 get_ver(Get Version Information)

[(Usage example)]
<< Usage example of the C language >>

#include <mr32r.h>
#include “id.h”
void task(Q)

T_VER pk_ver;
get_ver(&pk_ver);

<< Usage example of the assembly language(CC32R) >>

ver: .RES.B 10
.include “mr32r.inc”
.global task

task:
1d24 R2,#ver
get_ver

<< Usage example of the assembly language(TW32R:DCC/M32R) >>

ver: -Space 10
-include “mr32r.inc”
.global task

task:
1d24 R2,#ver
get_ver ver

2.11.1 get_ver(Get Version Information) 231

2.11.2. ref_sys(Refer System Status)

[(System call name)]
ref_sys - Reference Status of CPU and OS.

[(Calling by the assembly language)]

.include “mr32r.inc”
ref_sys

<< Argument >>

PK_rsys [xx] The start address of the structure in which system
status information is stored
(Set the address in the R2 register.)

<< Register setting >>

Register name | Contents after system call issuance

RO Error code
R1 --
R2 The start address of the structure in which system
status information is stored
R3 --
The structure indicated by pk_sys returns the following data.
Offset Size
+0 4 exinf Extended information
+4 2 runtskid The ID No. of RUN state task
+6 2 runtskpri The priority of RUN state task
+8 4 psw PSW

[(Calling by the C language)]

#include <mr32r.h>
ER ref_sys (pk_rsys);

<< Argument >>
T RSYS *pk _rsys; Packet address to Reference system status
<< Return value >>

An error code is returned as the return value of a function.

The structure indicated by pk_sys returns the following data.
typdef strcut t_rsys {

INT sysstat; /* System status */
ID runtskid; /* The ID No. of RUN state task */
PRI runtskpri; /* The priority of RUN state task */
UINT psw; /* PSW */
} T_RSYS;
[(Error codes)]
E_OK 00000000H(-H”00000000) : Normal End

232 2.11.2 ref_sys(Refer System Status)

[(Function description)]
This system call check execution state of the CPU and OS, and returns results to the
pk_rsys area.
® sysstat
Indicates system status. The following values are returned.
sysstat:=(TSS_TSK||TSS_DDSP||TSS_LOC||TSS_INDP)

sysstat Value Status Dispatch Interrupt
TSS TSK 0 task enable enable
TSS _DDSP 1 task disable enable
TSS LOC 2 task disable disable
TSS_INDP 4 task independent | disable disable

® runtskid

Returns the ID No. of the task currently being run.

® runtskpri

Returns the priority level of the task currently being run.

® psw

Returns the value of the processor status word of the running task or task--independent
portions.

This system call can be issued from both tasks and handlers.

[(Usage example)]

<< Usage example of the C language >>

#include <mr32r.h>
#include “id.h”
void task(Q)

T_RSYS rsys;
ref_sys(&rsys);
}

<< Usage example of the assembly language(CC32R) >>

pk_rsys: _RES.B 12
.include mr32r.inc
-global task

task:

Id24. R2,#pk_rsys
ref_sys

2.11.2 ref_sys(Refer System Status) 233

<< Usage example of the assembly language(TW32R:DCC/M32R) >>

pk_rsys: _.space 12
-include mr32r.inc
-global task

task:

Id24- R2,#pk_rsys
ref_sys

234

2.11.2 ref_sys(Refer System Status)

2.11.3. def_exc(Define Exception Handler)

[(System call name)]
def_exc - Define Exception Handler

[(Calling by the assembly language)]

.include “mr32r.inc”
def_exc exckind

<< Argument >>

exckind — [##xx] Kind of exception handler

pk_dexc [xxx] The start address in which the exception handler
generation information is stored
(Set the address in the R2 register.)

<< Register setting >>

Register name | Contents after system call issuance

RO Error code

R1 Kind of exception handler

R2 The start address in which the exception handler
generation information is stored

R3 --

Specify the following information in the structure indicased by pk_dexc.

Offset Size

+0 4 excatr Exception handler attribute

+4 4 exchdr Exception handler startup address

+8 2 tskid The ID No. of task

+12 4 excstksz Stack size

[(Calling by the C language)]

#include <mr32r.h>
ER def_exc(exckind, pk_dexc);

<< Argument >>

INT execkind; Kind of exception handler
T_DEXC *pk_dexec; The startaddress in which the exception handler
generation information is stored

Specify the following information in the structure indicased by pk_dexc.
typedef struct t_dexc {

ATR excatr; /* Exception handler attribute */
FP exchdr; /* Exception handler startup address */
1D taskid; /* The ID No. of task */
W excstksz; /* Stack size */
} T_DEXC;

<< Return value >>

An error code is returned as the return value of a function.
[(Error codes)]

E_OK 00000000H(-H>00000000) : Normal End

E_NOMEM OFFFFFFF6H(-H”0000000a) : Not enough of memory
E_NOEXS OFFFFFFCCH(-H>00000034): Object does not exist
E_OBJ OFFFFFFC1H(-H>0000003f): Invalid object state

2.11.3 def_exc(Define Exception Handler) 235

[(Function description)]
This system call defines the exception handler corresponding to exckind exception.

exckind defines the kind of exception handler. With the MR32R, only the forced exception
(EXK_FEX = 2) can be specified. However, an error is not returned when other exception
handlers (CPU exception or forced end) are specified.

tskid = TSK_SELF (=0) specifies the self task. An error E_OBJ is returned if this system call
is issued for a task in the dormant state.

The information pk_dexc of the generated exception handler is as follows.

® excatr

Specify the location of the excption handler stack area to be created. Specifically this
means specifying whether you want the stack to be located in the internal RAM or in
external RAM.

¢ To locate the stack areain internal RAM
Specify __ MR_INT(0).

¢ To locate the stack area in external RAM
Specify _ MR_EXT(0x10000).

¢ To locate the stack area in user specified
Specify __ MR_USER(0x30000).

® exchdr
Specifies the start address of the defined exception handler.

pk_decx.exchdr = NADR (= --1) cancels the defined exception handler. When canceled,
the exception handler changes to the predefined default. Also, an exception handler
can be redefined before it is canceled.

@ tskid

Defines an exception handler for the task specified here. tskid=TSK_SELF=0 means
specifying own task.tskid=TSK_SELF can’t be specified when this system call is issued
from the forced exception handler.

® excstksz

Specifies the stack size of the defined exception handler. Memory for the exception
handler stack is secured by the OS when the exception handler starts up. When
exchdr=NADR is specified,the memory for it's stack is released.If the memoy size for
stack is not enough,an error E_NOMEM is returned.

The stack of forced exception handler is obtained from the stack area for task creating.So,
int_memstk or ext_memstk must be specified in configuration file when this system call is
issued.

You can issue this system call exclusively from a task. This system call, if issued either from
the interrupt handler, the cyclic handler or the alarm handler, doesn't work properly.

236 2.11.3 def_exc(Define Exception Handler)

[(Usage example)]
<< Usage example of the C language >>

#include <mr32r.h>
#include “id.h”
void excr(void);
void task1i()
{
ER ercd;
T_DEXC pk_dexc;
void fexhdr(T_EXC *pk_exc, T_REGS *pk_regs, T_EIT *pk_eit);

pk_dexc.exchdr = (FP)fexhdr;
pk_dexc.tskid = TSK_SELF;
pk_dexc.excstksz = 100;

ercd = def_exc(EXK_FEX, &pk_dexc);

}
void fexhdr(T_EXC *pk_exc, T_REGS *pk_regs, T_EIT *pk_eit)
{

/* E%ception handler processing */

}

<< Usage example of the assembly language(CC32R) >>

pk_exc: _RES.B 14
.include “mr32r.inc”
.global taskl

taskl:

Id24- R2,#pk_exc
1d24 R1,# fexhdr

st R1,0(4,R2)
1d24 R1,#I1D_tskid
sth R1,@(8,R2)
1d24 R1,#100

st R1,@(12,R2)
def_exc EXK _FEX
ext_tsk

_TFexhdr:
; Exception handler processing

ext_tsk

2.11.3 def_exc(Define Exception Handler)

237

<< Usage example of the assembly language(TW32R:DCC/M32R) >>

pk_exc: .space 14
-include “mr32r.inc”
.global taskl

taskl:

Id24- R2,#pk_exc
1d24 R1,# fexhdr

st R1,@(4,R2)
1d24 R1,#1D_tskid
sth R1,@(8,R2)
1d24 R1,#100

st R1,@(12,R2)
def_exc EXK _FEX
ext_tsk

_Fexhdr:
; Exception handler processing

ext _tsk

238

2.11.3 def_exc(Define Exception Handler)

2.12. Implementation-Dependent System Call

2.12.1. vclr_ems(Clear Exception Mask)

[(System call name)]
vclr_ems - Clear Exception Mask.

[(Calling by the assembly language)]

-.include “mr32r.inc”
vclr_ems tskid

<< Argument >>
tskid [] The ID No. of a task to be cleared exception mask.

<< Register setting >>

Register name | Contents after system call issuance
RO Error code
R1 The ID No. of a task to be cleared exception
mask.
R2 --
R3 --

[(Calling by the C language)]

#include <mr32r.h>
ER vclr_ems (tskid);

<< Argument >>
ID tskid; The ID No. of a task to be cleared exception mask.
<< Return value >>
An error code is returned as the return value of a function.

[(Error codes)]

E_OK 00000000H(-H~00000000): Normal End
E_NOEXS OFFFFFFCCH(-H”00000034): Object does not exist
E_OBJ OFFFFFFC1H(-H>0000003f): Invalid object state

[(Function description)]
This system call clears the exception mask of the task specified with tskid.

When this system call is issued, the exception mask of tasks for which a forced exception is
pending is cleared and the respective exception handler is started up.

While an exception mask is set, an exception handler can be started up only 1 time even if
the forced exception start request is sent multiple times.

The self task can be specified. tskid = TSK_SELF (=0) specifies the self task.

If the task is in DORMANT state,an error E_OBJ is returned for the system call. Also, if the
task described with tskid is the NON--EXISTENT state,an error E_ NOEXS is returned.

This system can be issued from only tasks.This system call, if issued either from the interrupt
handler, the cyclic, or the alarm handler, doesn't work properly.

2.12.1 vclr_ems(Clear Exception Mask) 239

[(Usage example)]
<< Usage example of the C language >>
#include <mr32r._h>

#include “id.h”
void taskl(void)

{
vclr_ems(ID_task2);
}
<< Usage example of the assembly language(CC32R) >>
-include “mr32r.inc”
.global taskl
taskl:
vclr_ems ID_task2
ext_isk
<< Usage example of the assembly language(TW32R:DCC/M32R) >>
-include “mr32r.inc”
.global taskl
taskl:

vclr_ems ID_task2

ext_tsk

240 2.12.1 vclr_ems(Clear Exception Mask)

2.12.2. vset_ems(Set Exception Mask)

[(System call name)]
vset_ems - Set Exception Mask.

[(Calling by the assembly language)]

.include “mr32r.inc”
vset_ems tskid

<< Argument >>
tskid [s] The ID No. of a task to be set exception mask.

<< Register setting >>

Register name | Contents after system call issuance
RO Error code
R1 The ID No. of a task to be set exception
mask.
R2 --
R3 --

[(Calling by the C language)]

#include <mr32r.h>
ER vset_ems (tskid);

<< Argument >>
ID tskid; The ID No. of a task to be set exception mask.
<< Return value >>
An error code is returned as the return value of a function.

[(Error codes)]

E_OK 00000000H(-H?00000000) : Normal End
E_NOEXS OFFFFFFCCH(-H”00000034) : Object does not exist
E_OBJ OFFFFFFC1H(-H~00

00003f): Invalid object state
[(Function description)]
This system call sets the exception mask of the task specified with tskid.

This system call puts in the pending state the forced exception of a task with an exception
mask and delays the start of the exception handler until the exception mask is cleared.

While an exception mask is set, an exception handler can be started up only 1 time even if
the forced exception start request is sent multiple times.

If you specify tskid = TSK_SELF (=0), it specifies the task itself.If the task is in the
DORMANT state, an error E_OBJ is returned.If the task does not exist, an error E_NOEXS is
returned

This system can be issued from only tasks.

This system call, if issued either from the interrupt handler, the cyclic, or the alarm handler,
doesn't work properly.

2.12.2 vset_ems(Set Exception Mask) 241

[(Usage example)]
<< Usage example of the C language >>
#include <mr32r._h>

#include “id.h”
void taskl(void)

{
vset_ems(ID_task2);
}
<< Usage example of the assembly language(CC32R) >>
-include “mr32r.inc”
.global taskl
taskl:
vset;ems ID_task2
ext_tsk
<< Usage example of the assembly language(TW32R:DCC/M32R) >>
-include “mr32r.inc”
.global taskl
taskl:

vset_ems ID_task2

ext_tsk

242 2.12.2 vset_ems(Set Exception Mask)

2.12.3. vras_fex(Raise Forcibly Exception)

[(System call name)]
vras_fex — Raise forcibly exception.

[(Calling by the assembly language)]

-include “mr32r.inc”
vras_fex tskid,exccd

<< Argument >>

tskid [] The ID No. of a task
exccd [] Forcibly exception code

<< Register setting >>

Register name | Contents after system call issuance
RO Error code
R1 The ID No. of a task
R2 Forcibly exception code
R3 -

[(Calling by the C language)]

#include <mr32r.h>
ER vras_fex (tskid,exccd);

<< Argument >>

ID tskid; The ID No. of a task
uw exccd; Forcibly exception code

<< Return value >>
An error code is returned as the return value of a function.

[(Error codes)]

E_OK 00000000H(-H>00000000) : Normal End
E_NOEXS OFFFFFFCCH(-H>00000034): Object does not exist
E_OBJ OFFFFFFC1H(-H?0000003f): Invalid object state

[(Function description)]

This system call starts the forcible exception of the task specified with tskid.If the task
specified with tskid does not exist,the E_NOEXS error is returned.The self task cannot be
specified. The E_OBJ error is returned if it is.Also, TSK_SELF cannot be specified.

Queuing is not possible even if this system call is issued multiple times.

An exception handler can be started up only 1 time even if the forced exception start request
is sent more than 2 times up until the interrupt handler starts up.

The exception code 'exccd’ is transferred to the exception handler as the pk_exc exception
parameter. If multiple forcible exception start requests are sent, the exccd logical OR is
taken.

The forcible exception does not cancel the task wait or suspend state.The forced exception
hander startup is delayed until the task changes to the RUN state,even if this system call is
issued.

This system can be issued from only tasks.This system call, if issued either from the interrupt
handler, the cyclic, or the alarm handler, doesn't work properly

2.12.3 vras_fex(Raise Forcibly Exception) 243

[(Usage example)]
<< Usage example of the C language >>
#include <mr32r._h>

#include “id.h”
void taskl1i()

{

vras_fex(I1D_task2,0x3)
}
<< Usage example of the assembly language(CC32R) >>
setpor: .space 16
-include “mr32r.inc”
.global taskl
taskl:
vras;fex ID_task2,0x3
ext_isk
<< Usage example of the assembly language(TW32R:DCC/M32R) >>
setpor: .space 16
-include “mr32r.inc”
.global taskl
taskl:

vras;fex ID_task2,0x3

ext_tsk

244 2.12.3 vras_fex(Raise Forcibly Exception)

2.12.4. vret_exc(Return Exception Handler)

[(System call name)]
vret_exc - Return Exception Handler

[(Calling by the assembly language)]

.include “mr32r.inc”
vret_exc

<< Argument >>
None
<< Register setting >>
Control is not returned to the exception handler which issued this system call.
[(Calling by the C language)]

#include <mr32r.h>
ER vret _exc();

<< Argument >>
None
<< Return value >>
Control is not returned to the exception handler which issued this system call.
[(Error codes)]
None
[(Function description)]

This system call returns control from a forced exception handler to the task in which the
exception occurred. At this time, control returns to the task context in which state the
exception had occurred.

To restart the exception handler, issue the vras_fex system call. It restarts the exception
handler.

This system call can be issued only from exception handler.

[(Usage example)]
<< Usage example of the C language >>
#include <mr32r._h>

#include “id.h”
void taskl1()

{

void exc_hdr(void)

{

vret_exc();

2.12.4 vret_exc(Return Exception Handler)

245

<< Usage example of the assembly language(CC32R) >>
-include “mr32r.inc”
-global exc_hdr
exc_hdr:
ret_exc
<< Usage example of the assembly language(TW32R:DCC/M32R) >>
-include “mr32r.inc”

-global exc_hdr
exc_hdr:

ret_exc

246 2.12.4 vret_exc(Return Exception Handler)

2.12.5. vrst_msg(Reset Message)

[(System call name)]
vrst_ msg — Clear all messages in the specified mailbox.

[(Calling by the assembly language)]

.include “mr32r.inc”
vrst_msg mbxid

<< Argument >>
mbxid [**] The ID No. to be cleared

<< Register setting >>

Register name | Contents after system call issuance
RO Error code
R1 The ID No. of a mailbox
R2 -
R3 -

[(Calling by the C language)]

#include <mr32r.h>
ER vrst_msg (mbxid);

<< Argument >>
ID mbxid; The ID No. of a mailbox
<< Register setting >>
An error code is returned as the return value of a function.

[(Error codes)]

E_OK 00000000H(-H>00000000) : Normal End
E_NOEXS OFFFFFFCCH(-H?00000034): Object does not exist

[(Function description)]

Clear all messages in the specified mailbox.If there is no message in the mailbox, this
system call does nothing.

An error E_NOEXS is returned if this system call is issued for a nonexistent mailbox.

This system call can be issued from both tasks and handlers (the interrupt handler, the cyclic
handler, or the alarm handler).

2.12.5 vrst_msg(Reset Message) 247

[(Usage example)]
<< Usage example of the C language >>
#include <mr32r._h>

#include “id.h”
void taskl(void)

{
vrst;msg(ID_mbx1);
}
<< Usage example of the assembly language(CC32R) >>
-include “mr32r.inc”
.global taskl
taskl:
vrst;msg I1D_mbx1
ext_tsk
<< Usage example of the assembly language(TW32R:DCC/M32R) >>
-include “mr32r.inc”
.global taskl
taskl:

vrst_msg I1D_mbx1l

ext_tsk

248 2.12.5 vrst_msg(Reset Message)

2.12.6. vrst_blf (Reset Fixed-Memory Block)

[(System call name)]
vrst blI¥f — All memory blocks specified as blfid are released.

[(Calling by the assembly language)]

.include “mr32r.inc”
vrst_blf bIfid

<< Argument >>

blfid [**] The ID No. of the memory pool to be released
<< Register setting >>

Register name | Contents after system call issuance
RO Error code
R1 The ID No. of the memory pool to be released
R2 -
R3 -

[(Calling by the C language)]

#include <mr32r.h>
ER vrst _blf (blIfid);

<< Argument >>
ID blfid; The ID No. of the memory pool to be released
<< Register setting >>
An error code is returned as the return value of a function.
[(Error codes)]

E OK 00000000H(-H>00000000) : Normal End
E_NOEXS OFFFFFFCCH(-H”00000034): Object does not exist

[(Function description)]
All memory blocks specified as blfid are released.

An error E_NOEXS is returned if this system call is issued for a nonexistent fixed-size
memorypool.

Even when there is any task waiting for a memory block in the memorypool to be reset, this
system call is terminated normally. In this case, the said task is freed from the memory block
wait state and returns error EV_RST before entering an execution (RUN) or executable
READY) state.

Notice ,the memorypool released by vrst_blf is not allocated for the wait tasks.

You can issue this system call exclusively from a task. This system call, if issued either from
the interrupt handler, the cyclic handler or the alarm handler, doesn't work properly.

2.12.6 vrst_blf (Reset Fixed-Memory Block) 249

[(Usage example)]
<< Usage example of the C language >>
#include <mr32r._h>

#include “id.h”
void taskl1i()

{
vrst_bIf(1D_mpfl)
}
<< Usage example of the assembly language(CC32R) >>
setpor: _.RES.B 16
-include “mr32r.inc”
.global taskl
taskl:
vrst;blf ID_mpfl
ext_isk
<< Usage example of the assembly language(TW32R:DCC/M32R) >>
setpor: .space 16
-include “mr32r.inc”
.global taskl
taskl:
vrst_blf ID_mpfl

ext_tsk

250 2.12.6 vrst_blf (Reset Fixed-Memory Block)

2.12.7. vrst_blk(Reset Variable-Memory Block)

[(System call name)]

vrst blk — All memory blocks specified as blkid are released.
[(Calling by the assembly language)]

.include “mr32r.inc”
vrst_blk blkid

<< Argument >>

blkid [*] The ID No. of the memory pool to be released

<< Register setting >>

Register name | Contents after system call issuance
RO Error code
R1 The ID No. of the memory pool to be
released
R2 -
R3 -

[(Calling by the C language)]

#include <mr32r.h>
ER vrst_blk (blkid);

<< Argument >>
ID blkid; The ID No. of the memory pool to be released
<< Register setting >>
An error code is returned as the return value of a function.
[(Error codes)]

E_OK 00000000H(-H>00000000) : Normal End
E_NOEXS OFFFFFFCCH(-H?00000034): Object does not exist

[(Function description)]
All variable-size memory blocks specified as blfid are released.

An error E_NOEXS is returned if this system call is issued for a nonexistent variable-size
memorypool.

Even when there is any task waiting for a memory block in the memorypool to be reset, this
system call is terminated normally. In this case, the said task is freed from the memory block
wait state and returns error EV_RST before entering an execution (RUN) or executable
READY) state.

Notice ,the memorypool released by vrst_blk is not allocated for the wait tasks.

You can issue this system call exclusively from a task. This system call, if issued either from
the interrupt handler, the cyclic handler or the alarm handler, doesn't work properly.

2.12.7 vrst_blk(Reset Variable-Memory Block) 251

[(Usage example)]
<< Usage example of the C language >>
#include <mr32r._h>

#include “id.h”
void taskl1i()

{
vrst_blk(1D_mpl1l)
}
<< Usage example of the assembly language(CC32R) >>
setpor: _.RES.B 16
-include “mr32r.inc”
.global taskl
taskl:
vrst;blk ID_mpll
ext_isk
<< Usage example of the assembly language(TW32R:DCC/M32R) >>
setpor: .space 16
-include “mr32r.inc”
.global taskl
taskl:
vrst_blk ID_mpll

ext_tsk

252 2.12.7 vrst_blk(Reset Variable-Memory Block)

2.12.8. vrst_mbf (Reset Message Buffer)

[(System call name)]
vrst_ mbf — All message buffer specified as mbfid are cleared.

[(Calling by the assembly language)]

.include “mr32r.inc”
vrst_mbf mbfid

<< Argument >>
mbfid [**] The ID No. of the message buffer to be cleared

<< Register setting >>

Register name | Contents after system call issuance
RO Error code
R1 The ID No. of the message buffer to be cleared
R2 --
R3 --

[(Calling by the C language)]

#include <mr32r.h>
ER vrst_mbf (mbfid);

<< Argument >>

ID mbfid; The ID No. of the message buffer to be cleared
<< Register setting >>

An error code is returned as the return value of a function.

[(Error codes)]

E OK 00000000H(-H>00000000) : Normal End
E_NOEXS OFFFFFFCCH(-H”00000034): Object does not exist

[(Function description)]
The message buffer specified as blfid are cleared.
An error E_NOEXS is returned if this system call is issued for a nonexistent message buffer.

Even when there is any task waiting for a message in the message buffer to be reset, this
system call is terminated normally. In this case, the said task is freed from the send message
wait state or the receive message wait and returns error EV_RST before entering an
execution (RUN) or executable READY) state.

Notice ,the send message wait task is moved to READY state without sending message by
vrst_mbf.

You can issue this system call exclusively from a task. This system call, if issued either from
the interrupt handler, the cyclic handler or the alarm handler, doesn't work properly.

2.12.8 vrst_mbf (Reset Message Buffer) 253

[(Usage example)]
<< Usage example of the C language >>
#include <mr32r._h>

#include “id.h”
void taskl1i()

{
vrst_mbf(1D_mb¥fl)
}
<< Usage example of the assembly language(CC32R) >>
setpor: .space 16
-include “mr32r.inc”
.global taskl
taskl:
vrst;mbf ID_mbfl
ext_isk
<< Usage example of the assembly language(TW32R:DCC/M32R) >>
setpor: .space 16
-include “mr32r.inc”
.global taskl
taskl:
vrst;mbf ID_mbfl

ext_tsk

254 2.12.8 vrst_mbf (Reset Message Buffer)

2.13. Implementation-Dependent System Call(Mailbox)

2.13.1. vcre_mbx(Create Mailbox)

[(System call name)]

vcre_mbx - Create Mailbox with priority value

[(Calling by the assembly language)]

.include “mr32r.inc”
vcre_mbx vmbxid

<< Argument >>

vmbxid [] The ID No. of a mailbox to be created

pk_cvmbx [ssx] The start address in which the mailbox generation
information is stored
(Set the address in the R2 register.)

<< Register setting >>

Register name | Contents after system call issuance

RO Error code
R1 The ID No. of a mailbox to be created
R2 The start address in which the mailbox generation
information is stored
R3 --
Specify the following information in the structure indicased by pk_cmbx.
Offset Size
+0 4 mbxatr Mailbox attribute
+4 4 maxpri Max priority value of the message
+8 4 mprihd The start address of the message queue

header area
[(Calling by the C language)]

#include <mr32r.h>
ER vcre_mbx (vmbxid, pk_cvmbx);

<< Argument >>

ID vmbxid; The ID No. of a mailbox to be created
T _CVMBX *pk_cvmbx; The start address in which the mailbox generation
information is stored

Specify the following information in the structure indicased by pk_cmbx.
typedef struct t_cmbx {

ATR mbxatr; /* Mailbox attribute */
PRI maxpri; /* Max priority value of the message */
VP mprihd; /* The start address of the message queue header area
*/
} T_CVMBX;

<< Return value >>
An error code is returned as the return value of a function.
[(Error codes)]

E_OK 00000000H(-H>00000000) : Normal End
E_OBJ OFFFFFFC1H(-H?0000003f): Invalid object state

2.13.1 vcre_mbx(Create Mailbox) 255

[(Function description)]
Creates a mailbox with priority value mbxid indicates.

Here follows explanation of the information as to a mailbox to be generated pk_cvmbx.

® mbxatr (mailbox attribute)
Specify the mailbox attribute as below.

¢ How to wait a message
® TA_ TFIFO(=0x00) connect the task as FIFO order

® TA TPRI(=0x01) connect the task as priority order

+ How to send a message
® TA_ MFIFO(=0x00) connect the message as FIFO order

® TA_ MPRI(=0x01) connect the message as priority order

® maxpri

Specify the max priority value of the message.

®mprihd
Specify NULL(=0) in this item.

An error E_OBJ is returned if vcre_mbx system call is issued for the mailbox which is
existent.

The range of the specifiable ID number is 1 to the maximum value specified in the
configuration file.

You can issue this system call exclusively from a task. This system call, if issued either from
the interrupt handler, the cyclic handler or the alarm handler, doesn't work properly.

256 2.13.1 vcre_mbx(Create Mailbox)

[(Usage example)]

<< Usage example of

#include <mr32r.h>
#include “id.h”
#define ID_vmbxl 1

void task1i()

{
T_CVMBX

setmbx.mbxatr
setmbx.maxpri

setmbx;

0x02;
10;

setmbx.mprihd = NULL;

vcre_mbx(ID_mbx1l, &setmbx);

ext_tsk(Q);

}

<< Usage example of the assembly language(CC32R) >>

.equ ID_mbx1,1

setmbx: .RES.B 12

.include “mr32r.inc”

.global taskl
taskl:

1d24 R2,#setmbx

1d24 R1,#H~02

st R1,0(4,R2)

1d24 R1,#10

st R1,0(8,R2)

Idi R1,#0

st R1,@(12,R2)

vcre_mbx 1D_mbx1

ext_tsk

<< Usage example of the assembly language(TW32R:DCC/M32R)

.equ ID
setmbx:
.includ
-global
taskl:

1d24
1d24
st
1d24
st
Idi
st

 mbx1,1
.space 12
e “mr32r.inc”
taskl

R2,#setmbx
R1,#0x02
R1,0(4,R2)
R1,#10
R1,0(8,R2)
R1,#0
R1,0(12,R2)

vcre_mbx 1D_mbx1

ext_tsk

the C language >>

>>

2.13.1 vcre_mbx(Create Mailbox)

257

2.13.2. vdel_mbx(Delete Mailbox)

[(System call name)]
vdel_mbx - Delete Mailbox

[(Calling by the assembly language)]

.include “mr32r.inc”
vdel _mbx vmbxid

<< Argument >>
vmbxid [s] The ID No. of a mailbox to be deleted

<< Register setting >>

Register name | Contents after system call issuance
RO Error code
R1 The ID No. of a mailbox to be deleted
R2 -
R3 -

[(Calling by the C language)]

#include <mr32r.h>
ER vdel_mbx (vmbxid);

<< Argument >>
ID vmbxid; The ID No. of a mailbox to be deleted
<< Return value >>
An error code is returned as the return value of a function.
[(Error codes)]

E_OK 00000000H(-H>00000000) : Normal End
E_NOEXS OFFFFFFCCH(-H?00000034): Object does not exist

[(Function description)]
vdel_mbx deletes the mailbox vmbxid indicates.

You can create the mailbox deleted as the same ID again.If the task is linked to the message
wait queue and vdel_mbx is issued for the mailbox,this system call normally end.In this
case,vdel_mbx moves the task WAIT state to READY state.And error E_DLT is returned.If
some messages are in the mailbox,these are deleted.

An error E_NOEXS is returned if this system call is issued for a nonexistent mailbox.

Make sure this system call is issued for only the mailbox that has been created by the
vcre_mbx system call. If this system call is issued for the mailbox that has been defined by
the configuration file, it does not function normally.

You can issue this system call exclusively from a task. This system call, if issued either from
the interrupt handler, the cyclic handler or the alarm handler, doesn't work properly.

258 2.13.2 vdel_mbx(Delete Mailbox)

[(Usage example)]
<< Usage example of the C language >>

#include <mr32r.h>
#include “id.h”
#define ID_vmbx2 2
void taskl(void)

{
vdel;mbx(ID_vmbx2);

ext_isk();

<< Usage example of the assembly language(CC32R) >>

ID_vmbx2: .equ 2
.include “mr32r.inc”
.global taskl

taskl:

vdel _mbx 1D_vmbx2

ext_fsk
<< Usage example of the assembly language(TW32R:DCC/M32R) >>

-equ ID_vmbx2,2

.include “mr32r.inc”

.global taskl
taskl:

vdel_mbx 1D_vmbx2

ext_tsk

2.13.2 vdel_mbx(Delete Mailbox) 259

2.13.3. vsnd_mbx(Send Message to Mailbox)

[(System call name)]
vsnd_mbx — Sends a message.

[(Calling by the assembly language)]

-include “mr32r.inc”
vsnd_mbx vmbxid, pk msg

<< Argument >>

mbxid [] The ID No. of the mailbox to which a message is sent
pk_msg [#nx] The start address of message packet
(Set the address in the R2 register.)

<< Register setting >>

Register name | Contents after system call issuance
RO Error code
R1 The ID No. of the mailbox to which a message is sent
R2 The start address of message packet
R3 --

[(Calling by the C language)]

#include <mr32r.h>
ER vsnd mbx (vmbxid, pk _msg);

<< Argument >>

ID vmbxid,; The ID No. of the mailbox to which a message is sent
T_MSG “*pk_msg; The start address of message packet

<< Return value >>
An error code is returned as the return value of a function.
[(Error codes)]

E_OK 00000000H(-H?00000000) : Normal End
E_NOEXS OFFFFFFCCH(-H”00000034) : Object does not exist

[(Function description)]
This system call sends a message to the mailbox specified by mbxid.

If there are no tasks waiting for a message, the message is stored in the message queue. If
there is any task waiting for a message, the message is passed to that task and the task has
its wait state removed. In this case, the task removed its wait state recieves error code E_ OK
and pk_msg as the start address of the message packet.

If there is no task waiting fo amessage, the start address of the message packet is
connected to message queue.If the attribute of the mailbox is specified TA_MPRI(0x02), the
massage is connected to the message queue in priority order. If the same value of the
priority, the newer message is connected to the end of the message queue. The Operating
system supposes that the head of the message packet has a T_MSG_PRI type message
header, and get the priority of the message from its msgpri field.

If the attribute of the mailbox is specified TA_MFIFO(0x00), the massage is connected to the
message queue in FIFO order. Therefore, the newest message is connected to the end of
the massage queue.

This system call can be issued only from tasks. The system call which be issued from the
interrupt handler, the cyclic handler, or the alarm handler is the visnd_mbx.

260 2.13.3 vsnd_mbx(Send Message to Mailbox)

[(Usage example)]
<< Usage example of the C language >>
#include <mr32r._h>

#include “id.h”
typedef pri_message

T_MSG_PRI msgheader;
char body[12];

} PRI_MSG;
void task(void)
{
PR1_MSG msg;
msg.-msgpri = 5;
iT(vsnd_mbx(ID_msg, (T_MSG)&msg) != E_OK){
error(“error\n™);
}
¥

<< Usage example of the assembly language(CC32R) >>

.include “mr32r.inc”
.global task

msg:
.res.w 3
.SDATA “message”
-DATA.B O

task:
Idi R1,#5
1d24 R2,#msg
st R1,@0(4,R2)

vsnd_mbx 1D_msg

<< Usage example of the assembly language(TW32R:DCC/M32R) >>

.include “mr32r.inc”
-global task

msg:
.space 4*3
-byte “message”
-byte 0O

task:

vsnd_mbx 1D_msg

2.13.3 vsnd_mbx(Send Message to Mailbox) 261

2.13.4. visnd_mbx(Send Message to Mailbox)

[(System call name)]

visnd_mbx - Sends a message. (for the handler only).

[(Calling by the assembly language)]

-include “mr32r.inc”
visnd_mbx mbxid, pk _msg

<< Argument >>

vmbxid [s] The ID No. of the mailbox to which a message is sent
pk_msg [#nx] The start address of message packet

<< Register setting >>

Register name | Contents after system call issuance
RO Error code
R1 The ID No. of the mailbox to which a message is sent
R2 The start address of message packet
R3 -

[(Calling by the C language)]

#include <mr32r.h>
ER visnd_mbx (vmbxid, pk msg);

<< Argument >>

ID vmbxid; The ID No. of the mailbox to which a message is sent
T MSG “*pk_msg; The start address of message packet

<< Return value >>
An error code is returned as the return value of a function.

[(Error codes)]

E_OK 00000000H(-H>00000000) : Normal End
E_NOEXS OFFFFFFCCH(-H>00000034): Object does not exist

[(Function description)]

This system call is used when using the function of the vsnd_msg system call from an
task-independent section (e.g., interrupt handler, cyclic handler, or alarm handler).

262 2.13.4 visnd_mbx(Send Message to Mailbox)

[(Usage example)]
<< Usage example of the C language >>
#include <mr32r._h>

#include “id.h”
typedef struct pri_message

T_MSG_PRI msgheader ;
char body[12];
} PRI_MSG;

void inthand()
PRI_MSG msg;

if(visnd_mbx(ID_msg, (T_MSG)&mnsg) != E_OK)
error(“overflow\n™);

¥
<< Usage example of the assembly language(CC32R) >>

.include “mr32r.inc”
.global intr

msg:
.res.w 3
.SDATA *“message”
-DATA.B O
intr:
1d24 R1,#msg
id R2,@R1

visnd_mbx ID_msg
ret_}nt
<< Usage example of the assembly language(TW32R:DCC/M32R) >>

.include “mr32r.inc”
-global intr

msg:
.space 4*3
-byte “message”
-byte 0O
intr:
1d24 R1,#msg
id R2,@R1

visnd_mbx 1D_msg, msg

ret_int

2.13.4 visnd_mbx(Send Message to Mailbox) 263

2.13.5. vrcv_mbx(Receive Message from Mailbox)

[(System call name)]
vrcv_mbx - Waits for receiving a message.

[(Calling by the assembly language)]

.include “mr32r.inc”
vrcv_mbx vmbxid

<< Argument >>

vmbxid [#x] The ID No. of the mailbox from which a message is
received

<< Register setting >>

Register name | Contents after system call issuance
RO Error code
R1 The ID No. of the mailbox to which a message is
received
R2 The start address of message packet
R3 --

[(Calling by the C language)]

#include <mr32r.h>
ER vrcv_mbx (ppk_msg, vmbxid);

<< Argument >>

ID vmbxid; The ID No. of the mailbox from which a message is
received

T MSG **ppk_msg; The pointer variable to indicate the start address of
message packet

<< Return value >>

An error code is returned as the return value of a function.
The start address of the received message packet is set to variable ppk_msg.

[(Error codes)]

E_OK 00000000H(-H”00000000): Normal End

E_RLWAI OFFFFFFAAH(-H?00000056): Wait state forcibly
cleared

E DLT OFFFFFFAFH(-H”00000051): The object being waited for
was deleted

E_NOEXS OFFFFFFCCH(-H~00000034): Object does not exist

264 2.13.5 vrcv_mbx(Receive Message from Mailbox)

[(Function description)]
This system call receives a message from the mailbox specified by vmbxid.

If messages have arrived at the mail box concerned, this system call gets 1 message from
the top of the message queue and returns it as a return parameter pk_msg.

Conversely, if no message has reached the mailbox, the task that has issued this system call
is placed in a wait state and linked in a waiting queue. If the attribute of the mailbox specifies
as TA_TPRI(=0x01), the task is connected to the message wait queue in priority order. If in
the same priority, the task is connected to the end of the message wait queue.

If the task is freed from a wait state by a rel_wai system call issued by some other task, an
error E_RLWAI is returned.

Also, if the mailbox for a task waiting for conditions to be met is deleted by the vdel_mbx
system call issued by another task, the waiting task is released from the transmit mailbox
wait state and error E_DLT is returned to that task and changes to executable (READY)
state.

An error E_NOEXS is returned if this system call is issued for a nonexistent mailbox.
You can issue this system call exclusively from a task. This system call, if issued either from
the interrupt handler, the cyclic handler or the alarm handler, doesn't work properly.

[(Usage example)]

<< Usage example of the C language >>

#include <mr32r.h>
#include “id.h”

typedef struct fifo_message

T_MSG head;
char body[12];
} FIFO_MSG;

void task(Q)
FIFO_MSG *msg;

if(vrcv_mbxk ID_vmbx ,(T_MSG *)&msg) '= E_OK)
error(“forced wakeup\n™);

}

<< Usage example of the assembly language(CC32R) >>
-include “mr32r.inc”
.global task

task:

vrcv_mbx 1D_vmbx

<< Usage example of the assembly language(TW32R:DCC/M32R) >>
-include “mr32r.inc”
.global task

task:

vrcv_mbx 1D_vmbx

2.13.5 vrcv_mbx(Receive Message from Mailbox) 265

2.13.6. vtrcv_mbx(Receive Message with Timeout)

[(System call name)]
vircv_mbx - Waits for receiving a message. (With Timeout)

[(Calling by the assembly language)]

-include “mr32r.inc”
vtrcv_mbx vmbxid,tmout

<< Argument >>

vmbxid [#x] The ID No. of the mailbox from which a message is
received
tmout [Timeout value

<< Register setting >>

Register name | Contents after system call issuance
RO Error code
R1 The ID No. of the mailbox from which a message is
received
R2 The start address of message packet
R3 --
R4 Timeout value

[(Calling by the C language)]

#include <mr32r.h>
ER vtrcv_mbx (ppk _msg, vmbxid, tmout);

<< Argument >>

ID vmbxid; The ID No. of the mailbox from which a message is
received

T_MSG **ppk_msg; The pointer variable to indicate the start address of
message packet

TMO tmout Timeout value

<< Return value >>

The start address of the received message packet is set to variable ppk_msg.
An error code is returned as the return value of a function.

[(Error codes)]

E_OK 00000000H(-H”00000000): Normal End

E_TMOUT OFFFFFFABH(-H>00000055): Polling failed or timeout

E_RLWAI OFFFFFFAAH(-H”00000056): Wait state forcibly
cleared

E DLT OFFFFFFAFH(-H?00000051) : The object being waited for
was deleted

E_NOEXS OFFFFFFCCH(-H”00000034): Object does not exist

266 2.13.6 vtrcv_mbx(Receive Message with Timeout)

[(Function description)]

This system call receives a message from the mailbox specified by vmbxid. If messages
have arrived at the mail box concerned, this system call gets 1 mess age from the top of the
message queue and returns it as a return parameter ppk_msg.

Conversely, if no message has reached the mail box, the task that has issued this system
call is placed in a wait state and linked in a waiting queue and timeout wait queue. If the
attribute of the mailbox specifies as TA_TFIFO(=0x00), the task is connected to the
message wait queue in FIFO order. If the attribute of the mailbox specifies as
TA_TPRI(=0x01), the task is connected to the message wait queue in priority order. If in the
same priority, the task is connected to the end of the message wait queue.

When this system call is invoked, the wait state is cancelled in the cases shown below.
When the wait state is cancelled, the task that invoked this system call exits from the two
wait queues (message queue and timeout wait queue) and is connected to the ready queue.

® When the wait cancellation condition occurs by a message being received before the
tmout time has elapsed.

Error code E_OK is returned.

® \When tmout time has elapsed without any message being received
Error code E_ TMOUT is returned.

® \When the wait state is forcibly cancelled by rel_wai or irel_wai system calls being invoked
from another task or handler.

Error code E_RLWAI is returned.

® \When the mailbox for which a task has been kept waiting is deleted by the del_mbx
system call issued by another task

Error code E_DLT is returned.

You can specify a timeout (tmout) of -1 to Ox7FFFFFFF. Specifying TMO_FEVR = -1 to
vtrcv_mbx for tmout indicates that an infinite timeout value be used, resulting in exactly the
same processing as vrcv_mbx. If you specify tmout as TMO_POL(=0), it works like
vprcv_mbx.

See vrcv_mbx system call page for precautions should observed when receiving a message.

This system call can be issued only from tasks. It cannot be issued from the in terrupt
handler, the cyclic handler, or the alarm handler.

2.13.6 vtrcv_mbx(Receive Message with Timeout) 267

[(Usage example)]
<< Usage example of the C language >>
#include <mr32r._h>

#include “id.h”
typedef struct fifo_message

T_MSG head;
char body[12];
} FIFO_MSG;

void task(Q)
FIFO_MSG *msg;

iT(vtrev_mbx(ID_mbx,(T_MSG *)&msg , 10) 1= E_OK){
error(“Can’t Get Message\n™);

}

<< Usage example of the assembly language(CC32R) >>
-include “mr32r.inc”
-global task

task:

vtrcb_mbx ID_mbx, 10

<< Usage example of the assembly language(TW32R:DCC/M32R) >>
-include “mr32r.inc”
-global task

task:

vtrcb_mbx I1D_mbx, 10

268 2.13.6 vtrcv_mbx(Receive Message with Timeout)

2.13.7. vprcv_mbx(Poll and Receive Message)

[(System call name)]

vprcv_mbx - Receiving a message. (no wait)

[(Calling by the assembly language)]

-include “mr32r.inc”
vprcv_mbx vmbxid

<< Argument >>

vmbxid [#x] The ID No. of the mailbox from which a message is
received

<< Register setting >>

Register name | Contents after system call issuance
RO Error code
R1 The ID No. of the mailbox from which a message is
received
R2 The start address of message packet
R3 --

[(Calling by the C language)]

#include <mr32r.h>
ER vprcv_mbx (ppk _msg, vmbxid);

<< Argument >>

ID vmbxid; The ID No. of the mailbox from which a message is
received
T MSG **ppk_msg; The start address of message packet

<< Return value >>

The start address of the received message packet is set to variable ppk_msg.
An error code is returned as the return value of a function.

[(Error codes)]

E_OK 00000000H(-H>00000000) : Normal End
E_TMOUT OFFFFFFABH(-H”00000055): Polling failed or timeout
E_NOEXS OFFFFFFCCH(-H”00000034): Object does not exist

[(Function description)]

If any message is found in the mail box indicated by mbxid, this system call receives it
(without a wait state). If the mail box contains messages, the system call gets 1 message
from the top of the message queue and returns it as a return parameter ppk_msg.

Conversely, if no message has been sent to the mailbox, an error E_ TMOUT is returned to
the system call issued task and the task is not moved to WAIT state.

An error E_NOEXS is returned if this system call is issued for a nonexistent mailbox.
Refer to vrcv_mbx for precautions to be observed when receiving a message.

This system call can be issued from both a task and a task-independent section (e.g.,
interrupt handler, cyclic handler, or alarm handler).

2.13.7 vprcv_mbx(Poll and Receive Message) 269

[(Usage example)]
<< Usage example of the C language >>
#include <mr32r._h>

#include “id.h”
typedef struct fifo_message

T_MSG head;
char body[12];
} FIFO_MSG;

void task(Q)
FIFO_MSG * msg;

if(vprcv_mb%(ID_mbx ,(T_MSG *)&msg) = E_OK){
error(“Can’t Get Message\n™);

}

<< Usage example of the assembly language(CC32R) >>
-include “mr32r.inc”
.global task

task:
vprcv_mbx 1D_mbx1

<< Usage example of the assembly language(TW32R:DCC/M32R) >>
-include “mr32r.inc”
.global task

task:
vprcv_mbx I1D_mbx1

270 2.13.7 vprcv_mbx(Poll and Receive Message)

2.13.8. vref_mbx(Refer Mailbox Status)

[(System call name)]
vref_mbx - Reference Mailbox Status

[(Calling by the assembly language)]

.include “mr32r.inc”
vref _mbx vmbxid

<< Argument >>

vmbxid [#x] The ID No. of the mailbox to Reference Mailbox
pk_rmbx [sx] Packet address to Reference Mailbox
(Set the address in the R2 register.)

<< Register setting >>

Register name | Contents after system call issuance

RO Error code
R1 The ID No. of the mailbox to Reference Mailbox
R2 Packet address to Reference Mailbox
R3 --

The structure indicated by pk_rmbx returns the following data.
Offset Size
+0 2 wisk Waiting task information
+4 4(U) pk_msg Starting address of next received

message packet
U: unsigned data.

[(Calling by the C language)]

#include <mr32r.h>
ER vref_mbx (pk_rmbx, vmbxid);

<< Argument >>

T RMBX *rmbx; Packet address to Reference Mailbox
ID vmbxid; The ID No. of the mailbox to Reference Maibox

<< Return value >>
An error code is returned as the return value of a function.

The structure indicated by pk_rmbx returns the following data.
typedef struct t_rmbx {

BOOL_ID wtsk; /* Waiting task information */
T_MSG *pk_msg; /* Starting address of next received message
packet */
} T_RVMBX;
[(Error codes)]
E_OK 00000000H(-H>00000000) :Normal End
E_NOEXS OFFFFFFCCH(-H>00000034): Object does not exist

2.13.8 vref_mbx(Refer Mailbox Status) 271

[(Function description)]
Refers to the state of the mailbox specified by mbxid, and returns the following information
as return values.
® wisk

wtsk returns the ID No. of the first task waiting for the specified mailbox message (the
first task to start waiting). wtsk returns TSK_NON(=0) if there are no tasks waiting for
messages.

®pk msg

pk_msg returns the message received (the first message in the queue) when vrcv_mbx
or vtrcv_mbx is executed next. pk_msg returns NULL(=0). if there is no message.

An error E_NOEXS is returned if this system call is issued for a nonexistent mailbox.

This system call can be issued from both tasks and handlers.
[(Usage example)]
<< Usage example of the C language >>

#include <mr32r.h>
#include “id.h”
void task(Q)

T_RMBX rmbx;
ref_hbx(&vmbx, I1D_mbx);
}
<< Usage example of the assembly language(CC32R) >>
rmbx: -RES.B 12
-include “mr32r.inc”
-global task
task:

1d24 R2, #rmbx
ref_mbx ID_mbx

<< Usage example of the assembly language(TW32R:DCC/M32R) >>

rmbx: .space 12
.include “mr32r.inc”
.global task

task:

1d24 R2 , #rmbx
ref_mbx 1D_mbx

272 2.13.8 vref_mbx(Refer Mailbox Status)

2.13.9. vrst_mbx(Reset Message)

[(System call name)]
vrst_ mbx — Clear all messages in the specified mailbox.

[(Calling by the assembly language)]

.include “mr32r.inc”
vrst_mbx vmbxid

<< Argument >>
vmbxid [**] The ID No. to be cleared

<< Register setting >>

Register name | Contents after system call issuance
RO Error code
R1 The ID No. of a mailbox
R2 -
R3 -

[(Calling by the C language)]

#include <mr32r.h>
ER vrst_mbx (vmbxid);

<< Argument >>
ID vmbxid; The ID No. of a mailbox
<< Register setting >>
An error code is returned as the return value of a function.

[(Error codes)]

E_OK 00000000H(-H>00000000) : Normal End
E_NOEXS OFFFFFFCCH(-H?00000034): Object does not exist

[(Function description)]

Clear all messages in the specified mailbox.If there is no message in the mailbox, this
system call does nothing.

An error E_NOEXS is returned if this system call is issued for a nonexistent mailbox.

This system call can be issued only from tasks. It cannot be issued from the in terrupt
handler, the cyclic handler, or the alarm handler.

2.13.9 vrst_mbx(Reset Message) 273

[(Usage example)]
<< Usage example of the C language >>
#include <mr32r._h>

#include “id.h”
void taskl(void)

{
vrst;mbx(ID_vmbx1);
}
<< Usage example of the assembly language(CC32R) >>
-include “mr32r.inc”
.global taskl
taskl:
vrst_mbx I1D_vmxbx1l
ext_tsk
<< Usage example of the assembly language(TW32R:DCC/M32R) >>
-include “mr32r.inc”
.global taskl
taskl:

vrst_mbx ID_vmbxl

ext_tsk

274 2.13.9 vrst_mbx(Reset Message)

Chapter 3 Appendix

276 Index

3.1. List of System calls

Task Manegement Functions

System call Function Scheduler
cre_tsk [E] | Create Task call
del_tsk [E] | Delete Task call
sta_tsk [S] | Starts a task. call
ista_tsk [S] | Starts a task.(handler only) -
ext_tsk [S] | Normally ends the self task. call
exd_tsk [E] | Exit and delete Task. call
ter_tsk [S] | Forcibly ends other task. call
chg_pri [S] | Changes the task priority. call
ichg_pri [S] | Changes the task priority.(handler only) -
dis_dsp [S] | Disables task dispatch. -
ena_dsp [S] | Enables task dispatch. call
rot_rdq [S] | Rotates the task ready queue. call
irot_rdq [S] | Rotates the task ready queue.(handler only) -
rel_wai [SI | Forcibly clears the task wait state. call
irel_wai [S] | Forcibly clears the task wait state.(handler only) -
get_tid [S] | Gets the ID of self task. -
ref_tsk [E] | Reference Task Status. -

Synchronization Functions Attached to Task

System call Function Scheduler
sus_tsk [S] | Puts a task into the suspend state. call
isus_tsk [S] | Puts a task into the suspend state.(handler only) -
rsm_tsk [S] | Resumes the suspended task. call
irsm_tsk [S] | Resumes the suspended task.(handler only) -
slp_tsk [R] | Puts a task into the wait state. call
tslp_tsk [E] | Puts a task into the wait state.(With Timeout) call
wup_tsk [R] | Wakes up the waiting task. call
iwup_tsk [R] | Wakes up the waiting task.(handler only) --
can_wup [S] | Cancels the request for waking up a task -

3.1 List of System calls

277

Synchronization and Communication Functions

System call Function Scheduler
cre_flg [E] | Create Eventflag call
del_flg [E] Delete Eventflag call
set_flg [S] | Sets an event flag. call
iset_flg [S] | Sets an event flag.(handler only) -
clr_fig [S] | Clears an event flag. -
wai_flg [S] | Waits for an event flag. call
twai_flg [E] | Waits for an event flag. (With Timeout) call
pol_fig [S] | Gets an event flag. (no wait) -
ref_flg [E] | Reference Eventflag Status. -
cre_sem [E] | Create Semaphore call
del_sem [E] Delete Semaphore call
sig_sem [R] | Signal operation for a semaphore call
isig_sem [R] | Signal operation for a semaphore. --
(handler|only)
wai_sem [R] | Wait operation for a semaphore. call
twai_sem [E] | Wait operation for a semaphore. (With|Timeout) call
preg_sem [R] | Gets the semaphore resource. (no wait) -
ref_sem [E] | Reference Semaphore Status. -
cre_mbx [E] | Create Mailbox call
del_mbx [E] Delete Mailbox call
snd_msg [S] | Sends a message. call
isnd_msg [S] | Sends a message (handler only). -
rcv_msg [S] | Waits for message reception. call
trcv_msg [E] | Waits for message reception. (With Timeout) call
prcv_msg [S] | Receives a message.(no wait) -
ref_mbx [E] | Reference Mailbox Status. -
Rendezvous
System call Function Scheduler
cre_mbf [E] | Create Messagebuffer call
del_mbf [E] Delete Messagebuffer call
snd_mbf [E] | Sends a message call
tsnd_mbf [E] | Sends a message (With Timeout) call
psnd_mbf [E] | Sends a message (no wait) -
rcv_mbf [E] | Waits for receiving a message from Messagebuffer call
trcv_mbf [E] | Waits for receiving a message from Messagebuffer call
(With Timeout)
prcv_mbf [E] | Waits for receiving a message from Messagebuffer (no call
wait
ref_mbf [E] Reerrence Messagebuffer Status --
cre_por [E] | Create Port for Rendezvous call
del_por [E] Delete Port for Rendezous call
cal_por [E] | Call Port for Rendezous call
tcal_por [E] | Call Port for Rendezous (With Timeout) call
pcal_por [E] Call Port for Rendezous (no wait) call
acp_por [E] Accept Port for Rendezous call
tacp_por [E] | Accept Port for Rendezous (With Timeout) call
pacp_por [E] | Accept Port for Rendezous (no wait) call
fwd_por [E] Forward Rendezous to Other Port call
rpl_rdv [E] Reply Rendezous call
ref_por [E] Reference Port Status call

278

Index

Interrupt Management Functions

System call Function Scheduler
def int [C] | Define Interrupt Handler call
ret_int [R] Returns from the interrupt handler. call
loc_cpu [R] Disables OS-dependent interrupt and task dispatch. --
unl_cpu [R] Enables OS -dependent interrupt and task dispatch. call
Memorypool Management Functions

System call Function Scheduler
cre_mpf [E] | Create Fixed-size Memorypool call
del_mpf [E] Delete Fixed-size Memorypool call
get_blf [E] Gets a fixed-size memory block call
tget_blf [E] | Gets a fixed-size memory block (With Timeout) call
pget_blf [E] Gets fixed-size memory block (no wait) -
rel_blf [E] Release fixed-size memory block. call
ref_mpf [E] Reference fixed-size Memorypool status. -
cre_mpl [E] Create Variable-size Memorypool call
del_mpl [E] Delete Variable-size Memorypool call
get_blk [E] Gets a variable-size memory block call
tget_blk [E] Gets a variable-size memory block (With Timeout) call
pget_blk [E] Gets variable-size memory|block. (no wait) call
rel_blk [E] Release variable-size memory|block. call
ref_mpl [E] | Reference variable-size Memorypool status. --
Time Management Functions

System call Function Scheduler
set_tim [S] Sets the system clock. -
get_tim [S] Reads the system clock value. -
dly_tsk [S] Delays the task. call
def_cyc [E] Define cyclic handler. call
act_cyc [E] Controls activation of the cyclic handler. --
ref_cyc [E] Reference Cyclic handler Status. --
ref_alm [E] Reference Alarm Handler Status. --
System Management Function

System call Function Scheduler
get_ver [R] | Gets the OS version number. -
ref_sys [E] Reference Status of CPU and OS. -
def_exc [C] | Define Exception Handler call
Implementation-Dependent System Call

System call Function Scheduler
vrst_msg [-] | Cears messages in mailbox -
vrst_blf [-] Releases all specified fixed-size memory blocks call
vrst_blk [-] Releases all specified valiable-size memory blocks call
vrst_mbf [-] Clears message in message buffer call
vclr_ems [-] Clear Exception Mask call
vset_ems [-] Set Exception Mask call
vras_fex [--] Raise forcibly exception call

3.1 List of System calls

279

Implementation-Dependent System Call (Mailbox)

System call Function Scheduler

vcre_mbx [-] Create mailbox with priority call

vdel_mbx [-] Delete mailbox with prioity call

vsnd_mbx [-] Sends a message with priority to the mailbox call

visnd_mbx [--] | Sends a message with priority to the mailbox -
(Handler only)

vrcv_mbx [-] Recieves a message with priority to the mailbox call
(without timeout)

vtrcv_mbx [-] Recieves a message with priority to the mailbox call
(with)

vprcv_mbx [--] Recieves a message with priortimeoutity to the --
mailbox (without waiting)

vrst_mbx [] Resets the mailbox with priority -

vref _mbx [--] Refers the status of the mailbox with priority --

280 Index

3.2. List of Error code

Error code Value Description

E_OK 00000000H(-H’00000000) Normal End

E_OBJ OFFFFFFC1H(-H’'0000003F) | Invalid object state

E_QOVR OFFFFFFB7H(-H’00000049) | Queuing or nest overflow

E_ TMOUT OFFFFFFABH(-H’00000055) | Polling failed or timeout

E_RLWAI OFFFFFFAAH(-H'00000056) | Wait state forcibly cleared

E_NOEXS OFFFFFFCCH(-H’00000034) | Object does not exist

E_DLT OFFFFFFAFH(-H’00000051) | The object being waited for was deleted
E_NOMEM OFFFFFFF6H(-H'0000000A) | Not enough of memory

3.3 Assembly Language Interface

281

3.3. Assembly Language Interface
When issuing a system call in the assembly language, you need to use macros prepared for

invoking system calls.

Processing in a system call invocation macro involves setting each parameter to registers

and starting execution of a system call routine by a software interrupt.

If you issue system calls directly without using a system call invocation macro, your program
may not be guaranteed of compatibility with future versions of MR32R. The table below lists
the assembly language interface parameters. The values set forth in WITRON specifications
are not used for the function code.

Task Manegement Functions

Systemcall | INT No. Parameter Return
Parameter

RO R1 R2 RO R1
(Function
code)

cre_tsk #7 H00 tskid pk_ctsk | ercd

del_tsk #7 H'04 tskid ercd

sta_tsk #7 H'08 tskid stacd ercd

ista_tsk #8 H'60 tskid stacd ercd

ext_tsk #8 Hbc

exd_tsk #8 H’cO

ter_tsk #7 H0c tskid ercd

dis_dsp #8 H'b4 ercd

ena_dsp #7 H1c ercd

chg_pri #7 H10 tskid tskpri ercd

ichg_pri #8 H'64 tskid tskpri ercd

rot_rdq #7 H14 tskpri ercd

irot_rdq #8 H'68 tskpri ercd

rel_wai #7 H18 tskid ercd

irel_wai #8 H'24 tskid ercd

get_tid #8 H'70 ercd tskid

ref_tsk #8 H'd4 tskid pk_rtsk | ercd

Synchronization Functions Attached to Task
Systemcall | INT No. Parameter Return
Parameter

RO R1 R2 RO R2
(Function
code)

sus_tsk #7 H'20 tskid ercd

isus_tsk #8 H'74 tskid ercd

rsm_tsk #7 H'24 tskid ercd

irsm_tsk #8 H'78 tskid ercd

slp_tsk #7 H'28 ercd

tslp_tsk #7 H'28 tmout ercd

wup_tsk #7 H2¢c tskid ercd

iwup_tsk #8 H7c tskid ercd

can_wup #8 H’'80 tskid ercd wupcnt

282

Index

Synchronization and Communication Functions

Systemcall | INT No. Parameter Return Parameter
RO R1 R2 R3 R4 RO R2 R3
(Function
code)
cre_flg #7 Hf4 flgid pk_cflg ercd
del_flg #7 H’f8 flgid ercd
set_flg #7 H’30 flgid setptn ercd
iset_flg #8 H'84 flgid setptn ercd
clr_flg #8 H’'88 flgid clrptn ercd
wai_flg #7 H'34 flgid waiptn wfmode ercd flgptn
twai_flg #7 H'34 flgid waiptn wfmode | tmout ercd flgptn
pol_flg #8 H'8c flgid waiptn wfmode ercd flgptn
ref flg #8 H'd8 flgid pk_rflg ercd
cre_sem #7 H10c semid pk_csem ercd
del_sem #7 H110 semid ercd
sig_sem #7 H’38 semid ercd
isig_sem #8 H’90 semid ercd
wai_sem #7 H'3c semid ercd
twai_sem #7 H'3c semid tmout ercd
preq_sem #8 H'94 semid ercd
ref sem #8 H'dc semid pk_rsem ercd
cre_mbx #7 Hfc mbxid pk_cmbx ercd
del_mbx #7 H100 mbxid ercd
snd_msg #7 H40 mbxid pk_msg ercd
isnd_msg #8 H'98 mbxid pk_msg ercd
rcv_msg #7 H'44 mbxid ercd pk_msg
trcv_msg #7 H44 mbxid tmout ercd pk_msg
prcv_msg #8 H'9¢c mbxid ercd pk_msg
ref_mbx #8 H'20 mbxid pk_rmbx ercd
Rendezvous
System | INT Parameter Return Parameter
call No. | RO R1 R2 R3 R4 R5 | R6 RO | R2 R3
(Functio
n code)
cre_mbf #7 H118 mbfid pk_cmbf ercd
del_mbf #7 H11c mbfid ercd
snd_mbf #7 H’c8 mbfid msg msgsz ercd
tsnd_mbf | #7 H'c8 mbfid msg msgsz tmout ercd
psnd_mbf || #7 H'c8 mbfid msg msgsz ercd
rcv_mbf #7 H124 mbfid msg ercd
trcv_mbf #7 H124 mbfid msg tmout ercd msgsz
prcv_mbf || #7 H124 mbfid msg ercd msgsz
ref_mbf #8 H114 mbfid pk_rmbf ercd msgsz
cre_por #7 H144 porid pk_cpor ercd
del_por #7 H148 porid ercd
cal_por #7 H'14c porid cmsgsz msg | calptn | ercd | rmsgsz
tcal_por #7 H14c porid cmsgsz msg | calptn ercd | rmsgsz
pcal_por #7 H14c porid cmsgsz msg | calptn ercd | rmsgsz
acp_por #7 H150 porid tmout msg | acpptn | ercd | cmsgsz rdvno
tacp_por #7 H150 porid msg | acpptn | ercd | cmsgsz rdvno
pacp_por | #7 H150 porid msg | acpptn | ercd | cmsgsz rdvno
fwd_por #7 H158 porid rdvno cmsgsz msg | calptn | ercd
rpl_rdv #7 H'154 rdvno msg rmsgsz ercd
ref _por #8 H'd0 porid pk_rpor ercd

3.3 Assembly Language Interface

283

Interrupt Management Functions

Systemcall | INT No. Parameter Return
Parameter
RO R1 R2 RO R2
(Function
code)
def_int #7 H128 dintno pk_dint | ercd
ret_int
loc_cpu #8 H'b8 ercd blf
unl_cpu #7 H'58 ercd blf
Memorypool Management Functions
Systemcall | INT No. Parameter Return
Parameter
RO R1 R2 R3 R4 RO R2
(Function
code)
cre_mpf #7 H160 mpfid pk_cmpf ercd
del_mpf #7 H'164 mpfid ercd
get_blf #7 H'c4 mpfid ercd blf
tget_blf #7 H'c4 mpfid tmout ercd blf
pget_blf #8 H'48 mpfid ercd blf
rel_blf #7 H4c mpfid blf ercd
ref_mpf #8 He8 mpfid pk_rmpf ercd
cre_mpl #7 H104 mplid pk_cmpl ercd
del_mpl #7 H108 mplid ercd
get_blk #7 H'50 mplid blksz ercd blk
tget_blk #7 H'50 mplid blksz | tmout ercd blk
pget_blk #7 H’50 mplid blksz ercd blk
rel_blk #7 H’'54 mplid blk ercd
ref_mpl #8 He4 mplid pk_rmpl ercd
Tlme Management Functions
Systemcall | INT No. Parameter Return
Parameter
RO R1 R2 RO
(Function
code)
set_tim #8 H'a0 pk_tim ercd
get_tim #8 H'a4 pk_tim ercd
dly_tsk #7 H'5¢ dlytim ercd
def_cyc #7 H1a0 pk_dcyc ercd
act_cyc #8 H'a8 cycno cycact ercd
ref_cyc #8 Hec cycno pk_rcyc ercd
ref_alm #8 H'f0 almno pk_ralm ercd
System Management Function
Systemcall | INT No. Parameter Return
Parameter
RO R1 R2 RO
(Function
code)
get_ver #8 Hac pk_ver ercd
ref_sys #8 H15¢c pk_rsys ercd
def _exc #7 H12c exckind | pk_dexc ercd

284 Index

Implementation-Dependent System Call

Systemcall | INT No. Parameter Return
Parameter
RO R1 R2 RO
(Function
code)
vclr_ems #7 H'130 tskid ercd
vset_ems #7 H'134 tskid ercd
vret_exc #7 H'168
vras_fex #7 H138 tskid exccd ercd
vrst_blf #7 H170 mpfid ercd
vrst_blk #7 H16¢c mplid ercd
vrst_msg #8 H178 mbxid ercd
vrst_mbf #7 H174 mbfid

Implementation-Dependent System Call (Mailbox)

Systemcall | INT No. Parameter Return
Parameter
RO R1 R2 R3 R4 RO R2
(Function
code)
vcre_mbx #7 H180 vmbxid | pk_cvmb ercd
X
vdel_mbx #7 H184 vmbxid ercd
vsnd_mbx #7 H188 vmbxid | pk_vmbx ercd
visnd_mbx #8 H18c vmbxid | pk_vmbx ercd
vrcv_mbx #7 H190 vmbxid ercd
vircv_mbx #8 H190 vmbxid tmout ercd pk_msg
vprcv_mbx #8 H'194 vmbxid ercd pk_msg
vref_mbx #7 H'198 vmbxid | pk_vrmb ercd pk_msg
X
vrst_mbx #8 H19¢c vmbxid ercd

3.4 C Language Interface 285

3.4. C Language Interface

Task Manegement Functions

ER ercd = cre_tsk (ID tskid,T_CTSK *pk_ctsk);
ER ercd = del_tsk (ID tskid);
ER ercd = sta_tsk (ID tskid, INT stacd);
ER ercd = ista_tsk (ID tskid, INT stacd);
void ext_tsk 0;
void exd_tsk (;
ER ercd = ter_tsk (ID tskid);
ER ercd = dis_dsp 0;
ER ercd = ena_dsp 0;
ER ercd = chg_pri (ID tskid, PRI tskpri);
ER ercd = ichg_pri (ID tskid, PRI tskpri);
ER ercd = rot_rdq (PRI tskpri);
ER ercd = irot_rdq (PRI tskpri);
ER ercd = rel_wai (ID tskid);
ER ercd = irel_wai (ID tskid);
ER ercd = get_tid (ID *p_tskid);
ER ercd = ref_tsk (T_RTSK *pk_rtsk, ID tskid);

Synchronization Functions Attached to Task

ER ercd = sus_tsk (ID tskid);

ER ercd = isus_tsk (ID tskid);

ER ercd = rsm_tsk (ID tskid);

ER ercd = irsm_tsk (ID tskid);

ER ercd = slp_tsk (;

ER ercd = tslp_tsk (TMO tmout);

ER ercd = wup_tsk (ID tskid);

ER ercd = iwup_tsk (ID tskid);

ER ercd = can_wup (INT *p_wupcnt, ID tskid)

286

Index

Synchronization and Communication Functions

ER ercd= cre_flg (ID flgid, T_CFLG *pk_cflg);

ER ercd= del flg (ID flgid);

ER ercd= set flg (ID flgid, UINT setptn);

ER ercd= iset flg (ID flgid, UINT setptn);

ER ercd= cIr_flg (ID flgid, UINT clrptn);

ER ercd= wai_flg (UINT *p_flgptn, ID flgid, UINT waiptn, UINT wfmode);

ER ercd= twai_flg (UINT *p_flgptn, ID flgid, UINT waiptn, UINT wfmode, TMO tmout);
ER ercd= pol_flg (UINT *p_flgptn, ID flgid, UINT waiptn, UINT wfmode);

ER ercd = ref flg (T_RFLG *pk_rflg, ID flgid);

ER ercd= cre_sem (ID semid, T_CSEM *pk_csem);

ER ercd= del_sem (ID semid);

ER ercd= sig_sem (ID semid);

ER ercd= isig_sem (ID semid);

ER ercd= wai_sem (ID semid);

ER ercd= twai_sem (ID semid, TMO tmout);

ER ercd= preq_sem (ID semid);

ER ercd= ref sem (T_RSEM *pk_rsem, ID semid);

ER ercd= cre_mbx (ID mbxid, T_CMBX *pk_cmbx);

ER ercd= del_mbx (ID mbxid);

ER ercd= snd_msg (ID mbxid, T_MSG *pk_msg);

ER ercd= isnd_msg (ID mbxid, T_MSG *pk_msg);

ER ercd= rcv_msg (T_MSG **ppk_msg, ID mbxid);

ER ercd= trcv_msg (T_MSG **ppk_msg, ID mbxid, TMO tmout);

ER ercd= prcv_msg (T_MSG **ppk_msg, ID mbxid);

ER ercd= ref mbx (T_RMBX *pk_rmbx, ID mbxid);

ER ercd= cre_mbf (ID mbfid, T_CMBF *pk_rmbf);

ER ercd= del_mbf (ID mbfid);

ER ercd= snd_mbf (ID mbfid, VP msg, INT msgsz);

ER ercd= tsnd_mbf (ID mbfid, VP msg, INT msgsz, TMO tmout);

ER ercd= psnd_mbf (ID mbfid, VP msg, INT msgsz);

ER ercd= rcv_mbf (VP msg, INT *p_msgsz, ID mbfid);

ER ercd= trcv_mbf (VP msg, INT *p_msgsz, ID mbfid, TMO tmout);

ER ercd= prcv_mbf (VP msg, INT *p_msgsz, ID mbfid);

ER ercd= ref mbf (T_RMBF *pk_rmbf, ID mbfid);

Rendezvous

ER ercd= cre por (ID porid,T_CPOR *pk_cpor);

ER ercd= del_por (ID porid);

ER ercd= cal_por (VP msg, INT *p_rmsgsz, ID porid, UINT calptn, INT cmsgsz);

ER ercd= tcal_por (VP msg, INT *p_rmsgsz, ID porid, UINT calptn, INT cmsgsz, TMO tmout);
ER ercd= pcal_por (VP msg, INT *p_rmsgsz, ID porid, UINT calptn, INT cmsgsz);

ER ercd= acp_por (RNO *p_rdvno, VP msg, INT *p_cmsgsz, ID porid, UINT acpptn);
ER ercd= tacp_por (RNO *p_rdvno, VP msg, INT *p_cmsgsz, ID porid, UINT acpptn, TMO tmout);
ER ercd= pacp_por (RNO *p_rdvno, VP msg, INT *p_cmsgsz, ID porid, UINT acpptn);
ER ercd= fwd_por (ID porid, UINT calptn, RNO rdvno, VP msg, INT cmsgsz);

ER ercd= rpl_rdv (RNO rdvno, VP msg, INT rmsgsz);

ER ercd = ref por (T_RPOR *pk_rpor, ID porid);

Interrupt Management Functions

ER ercd =
void

ER ercd =

ER ercd =

def _int
ret_int
loc_cpu
unl_cpu

(UINT dintno, T_DINT *pk_dint);
0;

0;
0;

3.4 C Language Interface 287

Memorypool Management Functions

ER ercd= cre_mpf
ER ercd= del_mpf
ER ercd= get blf
ER ercd = tget blf
ER ercd= pget_ blf
ER ercd = rel_blf
ER ercd= ref mpf
ER ercd= cre_mpl
ER ercd= del_mpl
ER ercd= get blk
ER ercd = tget blk
ER ercd= pget blk
ER ercd= rel_blk
ER ercd= ref mpl

ID mpfid, T_CMPF *pk_cmpf);

ID mpfid);

VP *p_blf, ID mpfid);

VP *p_blf, ID mpfid, TMO tmout);
VP *p_blf, ID mpfid);

ID mpfid, VP blf);

T_RMPF *pk_rmpf, ID mpfid);

ID mplid, T_CMPL *pk_cmpl);

ID mplid);

VP *p_blk, ID mplid, INT blksz);
VP *p_blk, ID mplid, INT blksz, TMO tmout);
VP *p_blk, ID mplid, INT blksz);
ID mplid, VP blk);

T _RMPL *pk_rmpl, ID mplid);

L o s o

Time Management Functions

ER ercd= set_tim (SYSTIME *pk_tim);
ER ercd= get_tim (SYSTIME *pk_tim);

ER ercd= dly_tsk (DLYTIMe dlytim);

ER ercd= act cyc (HNO cycno, UINT cycact);

ER ercd= ref _cyc (T_RCYC *pk_rcyc, HNO cycno);
ER ercd= ref alm (T_RALM *pk_ralm, HNO almno);

System Management Function

ER ercd= get ver (T_VER *pk_ver);
ER ercd= ref_sys (T_RSYS *pk_rsys);
ER ercd= def exc (UINT exckind, T_DEXC *pk_dexc);

Implementation-Dependent System Call

ER ercd= vclr_ems (ID tskid);
ER ercd= vset_ ems (ID tskid);
ER ercd= vras_fex (ID tskid, UW exccd);
ER ercd = vrst_blf (ID mpfid);

ER ercd = wvrst blk (ID mplid);
ER ercd= wvrst msg (ID mbxid);
ER ercd= vrst mbf (ID mbfid);

288

Index

Implementation-Dependent System Call (Mailbox)

ER ercd= vcre_mbx (ID vmbxid, T_CVMBX *pk_rmbf);
ER ercd= vdel_mbx (ID vmbxid);
ER ercd= vsnd_mbx (ID vmbxid, T_MSG *pk_msg);
ER ercd= visnd_mb (ID vmbxid, T_MSG *pk_msg);
X
ER ercd= vrcv_mbx (**ppk_msg, ID vmbxid);
ER ercd= vtrcv_mbx (**ppk_msg, ID vmbxid, TMO tmout);
ER ercd= vprcv_mb (**ppk_msg, ID vmbxid);
X
ER ercd= vref mbx (T_RVMBF *pk_rvmbf,ID vmbxid);

ER ercd= wvrst_ mbx (ID vmbxid);

3.5 Data Type

289

3.5. Data Type

typedef char

typedef short

typedef long

typedef unsigned char
typedef unsigned short
typedef unsigned long
typedef char

typedef short

typedef long

typedef void

typedef void

typedef w
typedef uw
typedef w
typedef H
typedef H
typedef H
typedef H
typedef INT
typedef INT
typedef INT
typedef INT
typedef H

typedef UINT
typedef void

B;

H;

W,

UB;

UH;

uw;

VB

VH;

VW,

*VP;
(*FP)();
INT

UINT;
RNO

ID;

PRI;

TMO;
HNO;

ER;

ATR;
DLYTIME;
CYCTIME;
BOOL_ID;
PSW;
*PT_MSG;

/* Signed 8-bit integer */

/* Signed 16-bit integer */

/* Signed 32-bit integer */

/* Unsigned 8-bit integer */

/* Unsigned 16-bit integer */

/* Unsigned 32-bit integer */

/* Unpredicatable data, signed (8-bit size) */
/* Unpredicatable data, signed (16-bit size) */
/* Unpredicatable data, signed (32-bit size) */
/* Pointer to Unpredicatable data */

/* Start address of program general */

/* Signed 32-bit integer */

/* Unsigned 32-bit integer */

/* Rendezvous number */

/* ID number of object */

[* Task priority */

/* Timeout */

/* ID number of handler */

[* Error code */

/* Object attribute(unsigned) */

[* Delay time */

/* Interval of cyclic handler starts*/

/* Boolean value or ID number */

/* PSW value */

[* message data for mail box */

290 Index

3.6. Common Constants and Packet Format of Structure

---- Common ----

NADR -1 /* Invalid address and pointer value */
TRUE 1 /* True */

FALSE 0 /* False */

--—-- Related to Task management ----
typedef struct t_ctsk {

VP exinf; /* Extended information */
ATR tskatr; /* Task attribute */
FP task; /* Task startup address */
PRI itskpri; /* Priority in task startup */
INT stksz; /* Stack size */
} T_CTSK;
TSK_SELF 0 /* Own task specification */
TPRI_RUN 0 /* Specifies the highest priority then under execution */
typedef struct t_rtsk {
VP exinf; /* Extended information */
PRI tskpri; /* Current task priority level */
UINT tskstat; /* Task status */
UINT tskwait; /* Reason for wait */
1D wid; /* Wait object 1D */
INT wupcnt; /* Number of queued wakeup requests */
ATR tskatr; /* Task attributes */
FP task; /* Task starting address */
PRI itskpri; /* Initial task priority */
INT stksz; /* Stack size */
uw epndptn; /* Pending exception class pattern */

¥

---- Related to Semaphore ----
typedef struct t_csem {

VP exinf; /* Extended information */
ATR sematr; /* Semaphore attribute */
INT isemcnt; /* Initial semaphore count */
INT maxsem; /* Maximun semaphore count */
} T_CSEM;
typedef struct t_rsem {
VP exinf; /* Extended information */
BOOL_ID wtsk; /* Waiting task information */
INT semcnt; /* Current semaphore count */

3} T_RSEM;

3.6 Common Constants and Packet Format of Structure 291

---- Related to Eventflag —----
typedef struct t_cflg {

VP exinf; /* Extended information */

ATR flgatr; /* Task attribute */

UINT iflgptn; /* Initial eventflag pattern */
} T_CFLG;
wfmod:

TWF_ANDW H~0000 /* AND wait */

TWF_ORW H~0002 /* OR wait */

TWF_CLR H?0001 /* Clear specification */
typedef struct t_rflg {

VP exinf; /* Extended information */

BOOL_ID wtsk; /* Waiting task information */

UINT flgptn; /* Bit pattern of EventFlag */
} T_RFLG;

-—-- Related to Mailbox ----
typedef struct t_cmbx {

VP exinf; /* Extended information */
ATR mbxatr ; /* Mailbox attribute */
INT bufcnt; /* Ringbuffer size */
} T_CMBX;
typedef struct t_rmbx {
VP exinf; /* Extended information */
BOOL_ID wtsk; /* Waiting task information */
T_MSG pk_msg; /* Starting address of next received message packet */
INT msgcnt; /* The number of messages */
} T_RMBX;

---- Related to Messagebuffer ----
typedef struct t_cmbf {

VP exinf; /* Extended information */
ATR mbfatr; /* Messagebuffer attribute */
INT bufsz; /* Messagebuffer size */
INT maxmsz ; /* Maximum size of message */
} T_CMBF;
typedef struct t_rmbf {
VP exinf; /* Extended information */
BOOL_ID wtsk; /* Waiting Task Information */
BOOL_ID stsk; /* Sending Task Information */
INT msgsz /* Message Size (in bytes) */
INT frbufsz; /* Free Buffer Size (in bytes) */
} T_RMBF;

-——- Related to Rendezvous ----
typedef struct t_cpor {

VP exinf; /* Extended information */
ATR poratr; /* Port for redenzvous attribute */
INT maxcmsz; /* Maximum call message size */
INT maxrmsz; /* Maximum reply message size */
} T_CPOR;
typedef struct t_rpor {
VP exinf; /* Extended information */
BOOL_ID wtsk; /* Waiting Task Information */
BOOL_ID atsk; /* Accepting Task Information */

} T_RPOR;

292 Index

---- Related to Interrupt ----
typedef struct t_dint {

ATR intatr; /* Interrupt handler attribute */
FP inthdr; /* Interrupt handler startup address */
} T_DINT;

---- Related to Fixed-size Memorypool ----
typedef struct t_cmpf {

VP exinf; /* Extended information */
ATR mpfatr; /* Fixed-size memorypool attribute */
INT mpfcnt; /* Memory block count */
INT blfsz; /* Fixed-size memorypool size */
} T_CMPF;
typedef struct t_rmpf {
VP exinf; /* Extended information */
BOOL_ID wtsk; /* Waiting task information */
INT frbcnt; /* The number of free blocks */
INT blksz; /* The size of blocks */
} T_RMPF;

-—--- Related to Variable-size Memorypool ----
typedef struct t_cmpl {

VP exinf; /* Extended information */
ATR mplatr; /* Variable-size memorypool attribute */
INT mplsz; /* Variable-size memorypool size */
INT maxblksz; /* Maximum memory block size to be allocated */
3} T_CMPL;
typedef struct t_rmpl {
VP exinf; /* Extended information */
BOOL_ID wtsk; /* indicates whether or not there is a task waiting */
INT frsz; /* total size of free memory */
INT maxsz; /* size of largest contiguous memory */
} T_RMPL;

-—-—-- Related to Time management ----
typedef struct t_systime{

H utime; /* 16 high-order bits */
uw Itime; /* 32 high-order bits */
} SYSTIME, ALMTIME;
cycact:
TCY_OFF H?0000 /* Cyclic handler is not active */
TCY_ON H>0001 /* Cyclic handler is activated */

TCY_INI H?0002 /* Cyclic counter is initialized */

3.6 Common Constants and Packet Format of Structure 293

-—--- Related to System manegement —----
typedef struct t_ver {

UH maker ; /* Maker */
UH id; /* Type number */
UH spver; /* Specification version */
UH prver; /* Product version */
UH prno[4]; /* Product management information */
UH cpu; /* CPU information */
UH var; /* Variation discriptor */
} T_VER;
typedefstruct t_rsys {
INT sysstat; /* System status */
1D runtskid; /* The ID No. of RUN state task */
PRI runtskpri; /* The priority of RUN state task */
UINT psw; /* PSW */
} T_RSYS;
typedef struct t_dexc {
ATR excatr; /* Exception handler attribute */
FP exchdr; /* Exception handler startup address */
1D tskid; /* The 1D No. of task */
w excstksz; /* Stack size */
T_DEXC;
typedef struct t_regs {
VW ro;
VW ril;
VW r2;
VW r3;
VW r4;
VW r5;
VW r6;
VW r7;
VW r8;
VW ro;
VW rio;
VW rii;
VW ri2;
W ri3;
VW ri4;
VW sp;
VW accl;
VW acch;
};
typedefstruct t_reit {
PSW psw;
FP pc;
};
typedefstruct t_exc {
W exckind;
uw exccd;
1D tskid;
uw exeenv;
};

/* Related to Implementation-Dependent System Call (Mailbox) */
typedef struct t_cvmbx {
ATR mbxatr; /* Mailbox attribute */
PRI maxpri; /* Max priority value of the message */
VP mprihd; /* The start address of the message queue header area

294 Index

*/
} T _CVMBX;
typedef struct t vmbx {
BOOL_ID wtsk; /* Waiting task information */
T_MSG pk_msg; /* Starting address of next received message packet
*/
} T_RVMBX;

Index

acp_por, 155
act_cyc, 223
alarm handler, 14
reference, 227
AND wait, 71
bit pattern to be waited for, 70
cal_por, 146
can_wup, 57
chg_pri, 22
Clear specification, 71
clr_flg, 68
CPU information, 230
cre_flg, 59
cre_mbf, 118
cre_mbx, 98
cre_mpf, 178
cre_mpl, 197
cre_por, 141
cre_sem, 80
cre_tsk, 2
cyclic handler
activation status, 223
cyclic handler, 14
cyclic handler
reference, 225
cyclic handler
active state, 225
def_exc, 220, 235
def_int, 171
del_flg, 62
del_mbf, 121
del_mbx, 101
del_mpf, 181
del_mpl, 200
del_por, 144
del_sem, 83
del_tsk, 6
Delay time, 218
dis_dsp, 18
dispatch, 18, 20

dly_tsk, 218
ena_dsp, 20
eventflag
clear, 68
get, 76
set, 64, 66
wait, 70, 73
eventflag status
reference, 78
exd_tsk, 14
ext_tsk, 12
external RAM, 3, 99, 119, 179, 198, 236
fixed-size memory block
get, 183, 186, 189
release, 191
fixed-size memorypool
reference, 195
Format number, 230
fwd_por, 164
get_blf, 183
get_blk, 202
get_tid, 35
get_tim, 216
get_ver, 229
ichg_pri, 24
internal RAM, 3, 99, 119, 179, 198, 236
interrupt handler, 14
irel_blf, 193
irel_wai, 33
irot_rdq, 29
irsm_tsk, 46
iset_flg, 66
isig_sem, 87
isnd_msg, 106
ista_tsk, 10
isus_tsk, 42
iwup_tsk, 55
loc_cpu, 174
mailbox
reference, 116, 271

296

Index

message

receiving, 108, 111, 114, 131, 133, 136, 264,

266, 269

send, 103, 106, 123, 126, 129, 260, 262
message queue, 104, 109, 112, 114, 260, 265,

267, 269
messagebuffer
reference, 138
OR wait, 71
pacp_por, 161
pcal_por, 152
pget_blf, 189
pget_blk, 208
prcv_mbf, 136
prcv_msg, 114
preq_sem, 94
priority, 22
Product control information, 230
Product version, 230
psnd_mbf, 129
rcv_mbf, 131
rcv_msg, 108
ready queue, 26
ref_alm, 227
ref_cyc, 225
ref flg, 78
ref_mbf, 138
ref_mbx, 116
ref_por, 169
ref_sem, 96
ref_sys, 232
ref_tsk, 37
rel_blf, 191
rel_blk, 210
rel_wai, 31
ret_int, 173
rot_rdq, 26
round robin scheduling, 29
rpl_rdv, 167
rsm_tsk, 44
scheduler, 20
semaphore
Obtains one resource, 89, 91, 94
reference, 96
semaphore
Returns resource, 85, 87
set_flg, 64
set_tim, 214
sig_sem, 85
slp_tsk, 48
snd_mbf, 123
snd_msg, 103
Specification version, 230
sta_tsk, 8
Stack Size, 4
sus_tsk, 40
SUSPEND, 40

system clock, 214, 216

system stack, 4, 7

System Stack, 11

tacp_por, 158

tcal_por, 149

ter_tsk, 16

tget_blf, 186

tget_blk, 205

Timeout value, 50

TMO_FEVR, 51, 74, 92, 112, 267

TMO_POL, 74

TMO_POL(, 92, 112, 267

TPRI_RUN, 27

trcv_mbf, 133

trcv_msg, 111

TSK_SELF, 23

tskid, 23

tslp_tsk, 50

tsnd_mbf, 126

twai_flg, 73

twai_sem, 91

TWF_ANDW, 71

TWF_CLR, 71

TWF_ORW, 71

user stack, 4, 7

User Stack, 9

variable-size memory block
get, 202, 205, 208
release, 210

variable-size memorypool
reference, 212

Variation descriptor, 230

vclr_ems, 239

vcre_mbx, 255

vdel_mbx, 258

version number, 229

visnd_mbx, 262

vprcv_mbx, 269

vras_fex, 243

vrcv_mbx, 264

vref_mbx, 271

vrst_blf, 249

vrst_blk, 251

vrst_mbf, 253

vrst_mbx, 273

vrst_msg, 247

vsnd_mbx, 260

vtrcv_mbx, 266

wai_flg, 70

wai_sem, 89

WAIT, 48, 57

Wait mode, 70, 76

Wait object 1D, 37

WAIT-SUSPEND, 44, 48, 57

wakeup request count, 54

wup_tsk, 53

M3T-MR32R V.3.50 Reference Manual

Rev. 1.00
June 1, 2003
REJ10J0085-0100Z

COPYRIGHT ©2003 RENESAS TECHNOLOGY CORPORATION
AND RENESAS SOLUTIONS CORPORATION ALL RIGHTS RESERVED

M3T-MR32R V.3.50
Reference Manual

RENESAS

Renesas Electronics Corporation
1753, Shimonumabe, Nakahara-ku, Kawasaki-shi, Kanagawa 211-8668 Japan REJ10J0085-0100Z

	Interpreting the System Call Reference
	Interpreting the System Call Reference
	Necessary Stack Size
	Stack Size Calculation Method
	User Stack Calculation Method
	System Stack Calculation Method

	System Call Reference
	Task Management Functions
	cre_tsk (Create Task)
	del_tsk(Delete Task)
	sta_tsk(Start Task)
	ista_tsk(Start Task)
	ext_tsk(Exit Task)
	exd_tsk(Exit and Delete Task)
	ter_tsk(Terminate Task)
	dis_dsp(Disable Dispatch)
	ena_dsp(Enable Dispatch)
	chg_pri(Change Task Priority)
	ichg_pri(Change Task Priority)
	rot_rdq(Rotate Ready Queue)
	irot_rdq(Rotate Ready Queue)
	rel_wai(Release Task Wait)
	irel_wai(Release Task Wait)
	get_tid(Get Self Task ID)
	ref_tsk(Refer Task Status)

	Synchronization Functions Attached to Task
	sus_tsk(Suspend Task)
	isus_tsk(Suspend Task)
	rsm_tsk(Resume Task)
	irsm_tsk(Resume Task)
	slp_tsk(Sleep Task)
	tslp_tsk(Sleep Task with Timeout)
	wup_tsk(Wakeup Task)
	iwup_tsk(Wakeup Task)
	can_wup(Cancel Wakeup Task)

	Eventflags
	cre_flg(Create EventFlag)
	del_flg(Delete EventFlag)
	set_flg(Set EventFlag)
	iset_flg(Set EventFlag)
	clr_flg(Clear EventFlag)
	wai_flg(Wait EventFlag)
	twai_flg(Wait EventFlag with Timeout)
	pol_flg(Poll EventFlag)
	ref_flg(Refer EventFlag Status)

	Semaphore
	cre_sem(Create Semaphore)
	del_sem(Delete Semaphore)
	sig_sem(Signal Semaphore)
	isig_sem(Signal Semaphore)
	wai_sem(Wait on Semaphore)
	twai_sem(Wait on Semaphore with Timeout)
	preq_sem(Poll and Request Semaphore)
	ref_sem(Refer Semaphore Status)

	Mailbox
	cre_mbx(Create Mailbox)
	del_mbx(Delete Mailbox)
	snd_msg(Send Message to Mailbox)
	isnd_msg(Send Message to Mailbox)
	rcv_msg(Receive Message from Mailbox)
	trcv_msg(Receive Message with Timeout)
	prcv_msg(Poll and Receive Message)
	ref_mbx(Refer Mailbox Status)

	Messagebuffer
	cre_mbf(Create Messagebuffer)
	del_mbf(Delete Massagebuffer)
	snd_mbf(Send Message to Messagbuffer)
	tsnd_mbf(Send Message to Messagbuffer with Timeout)
	psnd_mbf(Poll and Send Messagebuffer)
	rcv_mbf(Receive Messagebuffer)
	trcv_mbf(Receive Messagebuffer with Timeout)
	prcv_mbf(Poll and Receive Messagebuffer)
	ref_mbf(Refer Messagebuffer Status)

	Rendezvous
	cre_por(Create Port for Rendezvous)
	del_por(Delete Port for Rendezvous)
	cal_por(Call Port for Rendezvous)
	tcal_por(Call Port for Rendezvous with Timeout)
	pcal_por(Poll and Call Port for Rendezvous)
	acp_por(Accept Port for Rendezvous)
	tacp_por(Accept Port for Rendezvous with Timeout)
	pacp_por(Poll and Accept Port for Rendezvous)
	fwd_por(Forward Rendezvous to Other Port)
	rpl_rdv(Reply Rendezvous)
	ref_por(Refer Port Status)

	Interrupt Management Function
	def_int(Define Interrupt Handler)
	ret_int(Return from Interrupt Handler)
	loc_cpu(Lock CPU)
	unl_cpu(Unlock CPU)

	Memorypool Management Function
	cre_mpf(Create Fixed-size Memorypool)
	del_mpf(Delete Fixed-size Memorypool)
	get_blf(Get Fixed-size Memory Block)
	tget_blf(Get Fixed-size Memory Block with Timeout)
	pget_blf(Poll and Get Fixed-size Memory Block)
	rel_blf(Release Fixed-size Memory Block)
	irel_blf(Release Fixed-size Memory Block)
	ref_mpf(Refer Fixed-size Memorypool Status)
	cre_mpl(Create Variable-size Memorypool)
	del_mpl(Delete Variable-size Memorypool)
	get_blk(Get Variable-size Memory Block)
	tget_blk(Get Variable-size Memory Block with Timeout)
	pget_blk(Poll and Get Variable-size Memory Block)
	rel_blk(Release Variable-size Memory Block)
	ref_mpl(Refer Variable-size Memorypool Status)

	Time Management Function
	set_tim(Set Time)
	get_tim(Get Time)
	dly_tsk(Delay Task)
	def_cyc(Define Cyclic Handler)
	act_cyc (Activate Cyclic Handler)
	ref_cyc(Refer Cyclic Handler Status)
	ref_alm(Refer Alarm Handler Status)

	System Management Function
	get_ver(Get Version Information)
	ref_sys(Refer System Status)
	def_exc(Define Exception Handler)

	Implementation-Dependent System Call
	vclr_ems(Clear Exception Mask)
	vset_ems(Set Exception Mask)
	vras_fex(Raise Forcibly Exception)
	vret_exc(Return Exception Handler)
	vrst_msg(Reset Message)
	vrst_blf (Reset Fixed-Memory Block)
	vrst_blk(Reset Variable-Memory Block)
	vrst_mbf (Reset Message Buffer)

	Implementation-Dependent System Call(Mailbox)
	vcre_mbx(Create Mailbox)
	vdel_mbx(Delete Mailbox)
	vsnd_mbx(Send Message to Mailbox)
	visnd_mbx(Send Message to Mailbox)
	vrcv_mbx(Receive Message from Mailbox)
	vtrcv_mbx(Receive Message with Timeout)
	vprcv_mbx(Poll and Receive Message)
	vref_mbx(Refer Mailbox Status)
	vrst_mbx(Reset Message)

	Appendix
	List of System calls
	List of Error code
	Assembly Language Interface
	C Language Interface
	Data Type
	Common Constants and Packet Format of Structure

	Index

