

To our customers,

Old Company Name in Catalogs and Other Documents

On April 1st, 2010, NEC Electronics Corporation merged with Renesas Technology
Corporation, and Renesas Electronics Corporation took over all the business of both
companies. Therefore, although the old company name remains in this document, it is a valid
Renesas Electronics document. We appreciate your understanding.

Renesas Electronics website: http://www.renesas.com

April 1st, 2010
Renesas Electronics Corporation

Issued by: Renesas Electronics Corporation (http://www.renesas.com)

Send any inquiries to http://www.renesas.com/inquiry.

Notice
1. All information included in this document is current as of the date this document is issued. Such information, however, is

subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please
confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to
additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.

2. Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights
of third parties by or arising from the use of Renesas Electronics products or technical information described in this document.
No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights
of Renesas Electronics or others.

3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.
4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of

semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software,
and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by
you or third parties arising from the use of these circuits, software, or information.

5. When exporting the products or technology described in this document, you should comply with the applicable export control
laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas
Electronics products or the technology described in this document for any purpose relating to military applications or use by
the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and
technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited
under any applicable domestic or foreign laws or regulations.

6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics
does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages
incurred by you resulting from errors in or omissions from the information included herein.

7. Renesas Electronics products are classified according to the following three quality grades: “Standard”, “High Quality”, and
“Specific”. The recommended applications for each Renesas Electronics product depends on the product’s quality grade, as
indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular
application. You may not use any Renesas Electronics product for any application categorized as “Specific” without the prior
written consent of Renesas Electronics. Further, you may not use any Renesas Electronics product for any application for
which it is not intended without the prior written consent of Renesas Electronics. Renesas Electronics shall not be in any way
liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an
application categorized as “Specific” or for which the product is not intended where you have failed to obtain the prior written
consent of Renesas Electronics. The quality grade of each Renesas Electronics product is “Standard” unless otherwise
expressly specified in a Renesas Electronics data sheets or data books, etc.

“Standard”: Computers; office equipment; communications equipment; test and measurement equipment; audio and visual
equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots.

“High Quality”: Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-
crime systems; safety equipment; and medical equipment not specifically designed for life support.

“Specific”: Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or
systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare
intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.

8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics,
especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation
characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or
damages arising out of the use of Renesas Electronics products beyond such specified ranges.

9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have
specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further,
Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to
guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a
Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire
control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because
the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system
manufactured by you.

10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental
compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable
laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS
Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with
applicable laws and regulations.

11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas
Electronics.

12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this
document or Renesas Electronics products, or if you have any other inquiries.

(Note 1) “Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its majority-
owned subsidiaries.

(Note 2) “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.

Regarding the change of names mentioned in the document, such as Mitsubishi
Electric and Mitsubishi XX, to Renesas Technology Corp.

The semiconductor operations of Hitachi and Mitsubishi Electric were transferred to Renesas

Technology Corporation on April 1st 2003. These operations include microcomputer, logic, analog

and discrete devices, and memory chips other than DRAMs (flash memory, SRAMs etc.)

Accordingly, although Mitsubishi Electric, Mitsubishi Electric Corporation, Mitsubishi

Semiconductors, and other Mitsubishi brand names are mentioned in the document, these names

have in fact all been changed to Renesas Technology Corp. Thank you for your understanding.

Except for our corporate trademark, logo and corporate statement, no changes whatsoever have been

made to the contents of the document, and these changes do not constitute any alteration to the

contents of the document itself.

Note : Mitsubishi Electric will continue the business operations of high frequency & optical devices

 and power devices.

Renesas Technology Corp.

Customer Support Dept.

April 1, 2003

To all our customers

NOTICES
On April 1, 2003, Mitsubishi Electric Semiconductor Application Engineering Corporation, a member of the Mitsubishi Electric group, joined the new Renesas Technology group and changed its name to Renesas Solutions Corp. Please note the following changes:

User Registration

Changed from: regist@tool.mesc.co.jp (not available)
 regist@tool.maec.co.jp (not available)
 to: regist_tool@renesas.com

Tool Technical Support

Changed from: support@tool.msc.hoku.melco.co.jp (not available)
 support@tool.mesc.co.jp (not available)
 support@tool.maec.co.jp (not available)
 to: support_tool@renesas.com

Tool Homepage

Changed from: http://www.tool-spt.mesc.co.jp/ (not available)
 http://www.tool-spt.maec.co.jp/ (not available)
 to: http://www.renesas.com/en/tools

Company Name

Changed from: Mitsubishi Electric Semiconductor Software Corp.
 Mitsubishi Electric Semiconductor Systems Corp.
 Mitsubishi Electric Semiconductor Application Engineering Corp.
 to: Renesas Solutions Corp.

Tool news, "New Companies Established"
http://www.renesas.com/eng/products/mpumcu/toolhp/toolnews/n030401/tn1.htm

Product Name Changes of Tools

Regarding the products of software tools and some accessory tools, please note that product names have gradually been changed since April 2001. In some documents, the old product names may be used. We apologize to all of you for inconvenience that will be caused by this alteration. For the product name changes, please refer to this page.

http://www.renesas.com/eng/products/mpumcu/toolhp/henkou/index_e.htm

M3T-SRA74 V.4.10
User’s Manual

U
ser’s M

anual

Rev.1.00 2003.08

Relocatable Assembler for 740 Family

 Microsoft, MS-DOS, Windows, and Windows NT are registered trademarks of Microsoft Corporation in the U.S. and other countries.
 Sun, Java and all Java-based trademarks and logos are trademarks or registered trademarks of Sun Microsystems, Inc. in the U.S. or
other countries, and are used under license.
 Linux is a trademark of Linus Torvalds.
 Turbolinux and its logo are trademarks of Turbolinux, Inc.
 IBM and AT are registered trademarks of International Business Machines Corporation.
 Intel and Pentium are registered trademarks of Intel Corporation.
 Adobe, Acrobat, and Acrobat Reader are trademarks of Adobe Systems Incorporated.
 All other brand and product names are trademarks, registered trademarks or service marks of their respective holders.

Keep safety first in your circuit designs!
 Renesas Technology Corporation and Renesas Solutions Corporation put the maximum effort into making semiconductor products
better and more reliable, but there is always the possibility that trouble may occur with them. Trouble with semiconductors may lead to
personal injury, fire or property damage. Remember to give due consideration to safety when making your circuit designs, with
appropriate measures such as (i) placement of substitutive, auxiliary circuits, (ii) use of nonflammable material or (iii) prevention
against any malfunction or mishap.

Notes regarding these materials
 These materials are intended as a reference to assist our customers in the selection of the Renesas Technology product best suited to
the customer's application; they do not convey any license under any intellectual property rights, or any other rights, belonging to
Renesas Technology Corporation, Renesas Solutions Corporation or a third party.
 Renesas Technology Corporation and Renesas Solutions Corporation assume no responsibility for any damage, or infringement of any
third-party's rights, originating in the use of any product data, diagrams, charts, programs, algorithms, or circuit application examples
contained in these materials.
 All information contained in these materials, including product data, diagrams, charts, programs and algorithms represents information
on products at the time of publication of these materials, and are subject to change by Renesas Technology Corporation and Renesas
Solutions Corporation without notice due to product improvements or other reasons. It is therefore recommended that customers
contact Renesas Technology Corporation, Renesas Solutions Corporation or an authorized Renesas Technology product distributor
for the latest product information before purchasing a product listed herein. The information described here may contain technical
inaccuracies or typographical errors. Renesas Technology Corporation and Renesas Solutions Corporation assume no responsibility
for any damage, liability, or other loss rising from these inaccuracies or errors. Please also pay attention to information published by
Renesas Technology Corporation and Renesas Solutions Corporation by various means, including the Renesas home page
(http://www.renesas.com).
 When using any or all of the information contained in these materials, including product data, diagrams, charts, programs, and
algorithms, please be sure to evaluate all information as a total system before making a final decision on the applicability of the
information and products. Renesas Technology Corporation and Renesas Solutions Corporation assume no responsibility for any
damage, liability or other loss resulting from the information contained herein.
 Renesas Technology semiconductors are not designed or manufactured for use in a device or system that is used under
circumstances in which human life is potentially at stake. Please contact Renesas Technology Corporation, Renesas Solutions
Corporation or an authorized Renesas Technology product distributor when considering the use of a product contained herein for any
specific purposes, such as apparatus or systems for transportation, vehicular, medical, aerospace, nuclear, or undersea repeater use.
 The prior written approval of Renesas Technology Corporation and Renesas Solutions Corporation is necessary to reprint or reproduce
in whole or in part these materials.
 If these products or technologies are subject to the Japanese export control restrictions, they must be exported under a license from
the Japanese government and cannot be imported into a country other than the approved destination. Any diversion or reexport
contrary to the export control laws and regulations of Japan and/or the country of destination is prohibited.
 Please contact Renesas Technology Corporation or Renesas Solutions Corporation for further details on these materials or the
products contained therein.

For inquiries about the contents of this document or product, fill in the text file the installer generates in the following directory and email
to your local distributor.

¥SUPPORT¥Product-name¥SUPPORT.TXT

Renesas Tools Homepage http://www.renesas.com/en/tools

Introduction

SRA74 is a structured relocatable macro assembler for the 740 Family. SRA74 can produce 740

Family machine language files and debug data files from source programs containing 740 Family

structured language, assembly language, or a mixture of the two. This manual describes the

functions and use of the four programs included in the SRA74 package.

1. SRA74 structured relocatable macro assembler

2. LINK74 linkage editor

3. LIB74 library

4. CRF74 cross-referencer

5.CV74 M37280 converter

The format of the manual
This manual consists of four separate parts. Each part covers one of the programs in the SRA74

package. As far as possible, the same sequence has been followed in the description for each of

the programs. For instance, environmental variables are covered at the end of the chapter on

operating method for each program.

• Part 1: SRA74 operation manual

Describes how to use the SRA74 structured relocatable macro assembler, and how to enter

SRA74 source programs.

• Part 2: LINK74 operation manual

Describes how to use the LINK74 linker, and the part functions.

• Part 3: LIB74 operation manual

Describes how to use the LIB74 library.

• Part 4: CRF74 operation manual

Describes how to use the CRF74 cross-referencer.

• Part 5:CV74 operation manual

Describes how to use the CV74 M37280 converter.

PART 1PART 1
RELOCATABLE ASSEMBLER

FOR THE 740 FAMILY

SRA74 OPERATION MANUAL

Table of Contents

Chapter 1. The format of the manual 1

Chapter 2. Outline 3
2.1 Functions .. 3

2.2 Generating files .. 4
2.2.1 Configuration of the I file .. 6

2.2.2 Configuration of the PRN file .. 9

2.2.3 Configuration of the TAG file .. 18

Chapter 3. Entering the source program 19
3.1 Configuration of the source program .. 19

3.2 Configuration of a line ... 20
3.2.1 The assembly language command line .. 20

3.2.2 Structured language command line .. 20

3.2.3 Pseudo-command line .. 21

3.2.4 Macro command line .. 22

3.2.5 Comment line ... 22

3.3 Section entry method .. 23
3.3.1 Symbol / Bit symbol / Label sections .. 23

3.3.2 Comment section ... 24

Chapter 4. Assembly language 25
4.1 Addressing mode... 25

4.2 Operand data format.. 28

4.3 Operators .. 29

Chapter 5. Structured language 31
5.1 Function of the structured command .. 31

5.2 Types of statement .. 31

5.3 Notes concerning entry procedures .. 33

5.4 Structured operators ... 36

1-i

1-ii

Chapter 6. Pseudo-commands 39
6.1 Functions of pseudo-commands ... 39

6.2 Assembly controls ... 41

6.3 Address control ... 41

6.4 Link control .. 42

6.5 List control ... 43

6.6 Debug support ... 44

6.7 Reserved pseudo-commands ... 44

Chapter 7. Macro commands 45
7.1 Functions of macro commands.. 45

7.2 Types of macro command .. 45

7.3 Macro operators ... 46

Chapter 8. Operation method 50
8.1 Activation method.. 50

8.2 Input parameters .. 50
8.2.1 Source file name .. 50

8.2.2 Command parameters .. 50

8.3 Method of entry .. 53

8.4 Errors .. 55
8.4.1 Types of error ... 55

8.4.2 Values for return to operating system .. 57

8.5 Environment variables .. 58

Appendix A Error messages 59
A.1 System errors ... 59

A.2 List of assembly errors ... 60

A.3 List of warnings ... 65

Appendix B List of commands 66
B.1 List of symbols... 66

B.2 List of commands .. 66

Appendix C Commands listed by addressing mode 73
C.1 List of commands by addressing mode .. 73

1-iii

Appendix D The pseudo-commands 77
D.1 How to use the pseudo-command reference section..................... 77

D.2 Summary of the pseudo-commands .. 77

D.3 List of reserved pseudo-commands .. 99

Appendix E List of macro commands 105
E.1 How to use the macro command reference section 105

E.2 Summary of the macro commands .. 105

Appendix F List of structured commands 116
F.1 Using the structured command reference section 116

F.2 Summary of the structured commands ... 116

F.3 Generation example... 121
F.3.1 Assignment statement generation example ... 121

F.3.2 Conditional expression generation examples ... 128

F.4 Syntax maps of structured commands.. 135

List of Reserved Words 145

1-iv

List of Figures

2.1 Example of a source file .. 6

2.2 Example of an I file (First half of source file) 7

2.3 Example of an I file (Second half of source file) 8

2.4 Example of a PRN file

(First half of source file: No “-I” parameter) 10

2.5 Example of a PRN file

(Second half of source file: No “-I” parameter) 11

2.6 Example of a PRN file

(Symbol and label list: No “-I” parameter)....................................... 12

2.7 Example of a PRN file

(First part of source file: Uses “-I” parameter)................................ 13

2.8 Example of a PRN file

(Middle part of source file: Uses “-I” parameter) 14

2.9 Example of a PRN file

(Final part of source file: Uses “-I” parameter) 15

2.10 Example of a PRN file

(Symbol list: Uses “- I” parameter) .. 16

2.11 Example of a PRN file

(Label list: Uses “-I” parameter) ... 17

2.12 Example of a TAG file .. 18

8.1 Example of the input of activation commands 53

8.2 Help page for command error... 53

8.3 VDU display on normal termination ... 54

8.4 Example of error display ... 56

1-v

List of Tables

4.1 List of operators... 29

5.1 List of structured language operators ... 37

7.1 List of macro operators ... 46

8.1 List of command parameters .. 51

8.2 List of error levels .. 57

A.1 List of system errors ... 59

A.2 List of assembly errors ... 60

A.3 List of warnings ... 65

B.1 List of symbols... 66

B.2 List of commands .. 67

F.1 Symbols used in examples ... 121

F.2 Register and flag assignment statement generation examples 121

F.3 Memory assignment statement generation examples 123

F.4 Addressing mode assignment statement generation examples ... 123

F.5 Dual term operation assignment statement generation examples 126

F.6 Flag conditional expression generation example 129

F.7 Memory conditional expression generation example 130

F.8 Register conditional expression generation example 133

1–1

CHAPTER 1

The Format of the Manual

The SRA74 operation manual contains consists of the following chapters:

• Chapter 2 : Outline

The basic functions of SRA74 and the files which it generates.

• Chapter 3 : Method of entering the source program

How to enter the source program used by SRA74.

• Chapter 4 : Assembly language

The 740 Family assembly language used with SRA74.

• Chapter 5 : Structured entry language

The structured language used with SRA74.

• Chapter 6 : Pseudo-commands

Pseudo-commands used with SRA74.

• Chapter 7 : Macro instructions

Macro instructions used with SRA74.

• Chapter 8 : Operating method

Method of operating SRA74.

• Appendix A : Error messages

A list of the error messages used by SRA74 along with clarifications of the content of the

messages and appropriate user responses.

• Appendix B : Commands

All the commands in the 740 Family assembly language which can be used with SRA74.

• Appendix C : The commands listed by addressing mode

The 740 Family assembly language commands listed for each addressing mode.

• Appendix D : Pseudo-commands

A list of the contents of each pseudo-command used with SRA74.

SRA741–2

• Appendix E : Macro instructions

A list of the contents of each macro instruction used with SRA74.

• Appendix F : Structured commands

A list of the contents of each of the structured commands used with SRA74.

• Reserved words : List of reserved words used with SRA74.

Note:

Parts of the programming examples contained in this manual use the sign “\” in place of “¥” to refer

to the special page addressing mode. This is because the use of one or other of these signs

depends on which operating system is being used. Nevertheless, since the codes are the same

either sign can be used.

Chapter 1. The format of the manual

1–3

CHAPTER 2

Outline

SRA74 is the structured relocatable macro assembler for the 740 Family. The assembly language

and the structured language are used to convert the source program (to be called the source file

from now on) into relocatable files which can be processed by means of LINK741 and LIB742. From

now on this operation will be referred to as assembly. LINK74 can be used to convert the

relocatable files into machine language.

2.1 Functions

The development of large scale software has made necessary the parallel development of func-

tions which permit the sharing of programs for, for example, the exchange of data between groups

of engineers or the reuse of existing software.

SRA74 is provided with the following functions to permit the efficient handling of such operations:-

1. The pseudo-command .SECTION enables you to allocate the name of your choice (section

name) to each separate area. When linking, section names allocated in this way can be

used to specify an address.

2. The number of sections which can be defined within any given file is unlimited thus enabling

the setup to be matched to the user system’s various ROM, RAM areas.

3. The pseudo-commands .LIB and .OBJ can be used to specify the link target file name in the

source program (It will therefore be unnecessary to specify the link target file name during

linking).

4. Declaration of the version using the pseudo-command .VER enables the version in the

relocatable files to be confirmed during linking.

Other special features of SRA74 functions are outlined below:

1. It is possible to assemble a source file containing a mixture of assembly language and

structured language (For assembly the structured language commands are converted into

assembly language commands).

1 Linkage editor for use with 740 Family
2 Library for use with 740 Family

SRA741–4

2. Files can be generated where the structured language has been converted into assembly

language (Such files can be optimized by the user).

3. A tag file3 can be generated to store error details (Assembly errors can be efficiently recti-

fied).

4. The program can be used as an absolute assembler since both ROM and RAM areas can be

introduced into a single file (Linking must, however, be used).

5. The programming environment can be defined clearly using the macro function (commands).

6. The editor and cross referencer can be activated by specifying the command parameters

during assembly.

7. Source line debugging data can be output by specification of the command parameters

during assembly.

2.2 Generating files

SRA74 generates the following five files. Unless specified with a command parameter, these files

are placed in the same directory as the source file.

1. Relocatable file (Hereafter referred to as the R74 file)

• File containing machine language data with the data for relocation.

• Generates file regardless of contents of command parameters. It will not, however,

generate a file in cases where SRA74 has undergone an abnormal termination due, for

example, to an assembly error.

• Output is in the specified directory where the command parameter “-O” has been speci-

fied and in the current directory where “-O” has not been specified.

• Symbol data for symbolic debugging is included. However, with conventional values

local symbol data is not output.

• Local symbol data is output to an R74 file on specification of command parameter “-S”.

• Source line debug data is output to an R74 file on specification of command parameter

“-C” or pseudo instruction “.FUNC”.

• Use of LINK74 generates an Intel HEX format machine language file.

• The file attribute is .R74.

2. Assembly language file (Hereafter referred to as the I file)

• A file which contains the expanded source file macros and structured commands con-

verted to mnemonics.

3 The name “tag” derives from the use of the word “tag” to label the location of an error or warning.

Chapter 2. Outline

1–5

• File generated in the same directory as R74 files on specification of command parameter

“-I”. No file is generated, however, if command parameter “-A” is specified at the same

time.

• If the command parameter “-I” is not specified, this file is output as temporary file for

assembly to the same directory as the TMP file and deleted automatically at the end of

assembly.

• This is used as the input file (source file) for SRA74 pass 2 processing operations. The

macro definition area, macro calling area and structured commands are all output as

comment lines.

• In the source file a file read in by means of the pseudo-command .INCLUDE is also

output with a file name having the attribute .In (n = 0-99).

• The I file should be used to optimize the source file at the assembly language level.

• The file attribute is .I.

3. Print file (Hereafter referred to as the PRN file)

• This file shows the source file to be processed along with its location address and

generation data.

• The PRN file is generated on specification of command parameter “-L”.

• Output is in the specified directory where the command parameter “-O” has been simul-

taneously specified and in the current directory where “-O” has not been specified.

• When command parameter “-I” is simultaneously specified the structured command is

converted to a mnemonic and output underneath the source line.

• The PRN file should be used for operations such as print and debug.

• The file attribute is .PRN.

4. The tag file (Hereafter referred to as the TAG file)

• This file is used to store the error and warning messages generated in the course of an

assembly operation.

• The TAG file is output on specification of command parameter “-E”.

• The TAG file should be used for reference when correcting editor errors.

• The file attribute is .TAG.

5. The temporary file (Hereafter referred to as the TMP file)

• This is a temporary file for use during assembly operations.

• Output is in the set directory where the environment variable TMP has been set and in

the current directory where “TMP” has not been set.

• This file is automatically deleted when the assembly operation has been completed.

• The file attribute is .$$n (n = 1-5).

Note:

The R74 file has a binary format and there should therefore be no output to the printer and VDU.

2.2 Generating files

SRA741–6

2.2.1 Configuration of the I file

Fig 2.1 gives an illustration of a source file and Figs.2.2/2.3 give examples of I files generated

during its assembly. The I file is made up from the following data.

• The parts entered using structured language commands are converted to assembly language

commands which are shown beneath the structured language commands. The structured

language and macro commands are all output as comment lines. The I file can thus be

treated as the source file and the assembly operation carried out by means of SRA74.

 .INCLUDE ZERO.H ;section z
 .PAGE
 .SECTION AD_CONVERT
 .ORG $E000
 .SEXT GET_AD_DATA ;sub routine
 .PUB START
 .INCLUDE MACRO.A74
START:
 D = 0
 T = 0
 S = STACK
 RAM_CL "WORK0, WORK1" ;ram clear
 [fAD_INT_OK] = OFF
 X = 2 ;A/D convert 2 times
 do
 JSR \GET_AD_DATA
 [WORK0] = [WORK0] + [AD_RESULT]
 [WORK1] = [WORK1] + 0 with_c
 X = --X
 while X
 C = 0 ;A/D DATA average
 [WORK1] = [WORK1] >> 1
 [WORK0] = [WORK0] >>1 with_c
 [AD_DATA] = [WORK0]
 .END

Fig 2.1 : Example of a source file

Chapter 2. Outline

1–7

 .INCLUDE ZERO.I00 ;section z
↑ The INCLUDE command line has name changed to the I

file generated by SRA74
 .PAGE
 .SECTION AD_CONVERT
 .ORG $E000
 .SEXT GET_AD_DATA ;sub routine
 .PUB START
 .INCLUDE MACRO.I01
START:

; D = 0 ← Structured commands output as comments and converted to assembly language.
 CLD
; T = 0
 CLT
; S = STACK
 LDX #STACK
 TXS
; RAM_CL "WORK0, WORK1" ;ram clear
 LDA #0
; .REPEATI ram, WORK0, WORK1 ←Macro commands output as comments and

converted into assembly language.
; STA ram
; .ENDM
 STA WORK0
 STA WORK1
; .ENDM
; .ENDM
; [fAD_INT_OK] = OFF
 CLB fAD_INT_OK
; X = 2 ;A/D convert 2 times
 LDX #2

Fig 2.2 : Example of an I file (First half of source file)

2.2 Generating files

SRA741–8

; do
 .DO:
 JSR \GET_AD_DATA
; [WORK0] = [WORK0] + [AD_RESULT]
 LDA WORK0
 CLC
 ADC AD_RESULT
 STA WORK0
; [WORK1] = [WORK1] + 0 with_c
 LDA WORK1
 ADC #0
 STA WORK1
; X = --X
 DEX
; while X
 CPX #0
 BNE .D0
; C = 0 ;A/D DATA average
 CLC
; [WORK1] = [WORK1] >> 1
 LSR WORK1
; [WORK0] = [WORK0] >>1 with_c
 ROR WORK0
; [AD_DATA] = [WORK0]
 LDA WORK0
 STA AD_DATA
 .END

Fig 2.3 : Example of an I file (Second half of source file)

Chapter 2. Outline

1–9

2.2.2 Configuration of PRN file

Figs 2.4 - 2.11 show examples of output PRN files. The PRN file contains the following data:-

1. Contents of source file plus data pertaining to corresponding address and generated data

(first half of Figs 2.4 - 2.5 and 2.7 - 2.9).

• Lines referring to external labels4 show “E” beside the source.

• Lines referring to public labels5 show “P” beside the source.

• Lines referring to local labels6 show “L” beside the source.

• Lines referring to symbols7 show “S” beside the source.

• Lines referring to bit symbols8 show “B” beside the source.

2. Result of assembly operation (Second half of Fig 2.5 and Fig 2.9)

Shows the number of errors, number of warnings, total number of lines, number of comment

lines and memory capacity of each section.

3. List of symbols (First half of Fig 2.6 and whole of Fig 2.10)

The symbols used in the program are divided into the following five types. A print file

containing a symbol list can be generated by specifying the command parameter “-LS”.

• USED (-d OPTION)

Indicates symbol defined by command parameter “-D” from the command line and re-

ferred to in the program.

• USED (EQUATE)

Indicates symbol defined by pseudo-command .EQU and referred to in the program.

• USED (BIT EQUATE)

Indicates bit symbol defined by pseudo-command .EQU and referred to in the program.

• UNUSED (-d or EQUATE)

Indicates symbol defined in the above manner but not used in the program.

• UNUSED (BIT EQUATE)

Indicates bit symbol defined by pseudo-command .EQU but not referred to in the pro-

gram.

4 Indicates labels defined in other files. External labels and public labels are together referred to as global

labels.
5 Labels defined in this file which can be referred to from other files.
6 Labels defined in this file which can be referred to only from within this file.
7 Indicates symbols defined by the -D parameter and pseudo-command .EQU.
8 Indicates bit symbols defined by pseudo-command .EQU.

2.2 Generating files

SRA741–10

4. List of labels (Second half of Fig 2.6 and whole of Fig 2.11)

Lists the labels used in the program with their values divided into the following 3 groups:-

• USED (USER DEFINED)

Indicates labels at section level which are defined and referred to in the program.

• USED (SYSTEM DEFINED)

Indicates labels at section level which are defined by SRA74 and referred to in the

program (Output only when command parameter “-I” is specified).

• UNUSED (USER DEFINED)

Indicates labels at section level which are defined but which are not referred to in the

program.

5. When the column number specified by pseudo-command . COL exceeds 132 characters then

the time of assembly is shown in the list header section in the following manner.

Sat Jan 16 15:06:42 1993

* 740 Family SRA74 V.4.00.00 *

SEQ.. LOC. OBJ... S NM3....*....4....*....5....SOURCE STATEMENT....*....8

 1 0 .INCLUDE ZERO.H ;section z
 ↑Indicates include nest.

 2 1 .SECTION Z
 3 1 .ORG 0
 4 0000 (0001) 1 :WORK0: .BLKB 1
 5 0001 (0001) 1 :WORK1: .BLKB 1
 6 0002 (0001) 1 :AD_RESULT: .BLKB 1
 7 0003 (0001) 1 :AD_DATA: .BLKB 1

↑Indicates size of reserved area.
 8 1 .ORG $FE
 9 00FE (0001) 1 :ICON: .BLKB 1

 ↓Indicates reference to public label.
 10 4,00FE P 1 :fAD_INT_OK .EQU 4, ICON

 ↑Indicates bit number.
 11 1 .INCLUDE DEFINE.H
 12 00BF 2 :STACK .EQU $BF
 13 0000 2 :OFF .EQU 0
 14 0001 2 :ON .EQU 1

Fig 2.4 : Example of a PRN file (First half of source file : No “-I” parameter)

Chapter 2. Outline

1–11

* 740 Family SRA74 V.4.00.00 *

SEQ.. LOC. OBJ... S NM3....*....4....*....5....SOURCE STATEMENT....*....8

 15 0 .PAGE
 16 0 .SECTION AD_CONVERT
 17 0 .ORG $E000
 18 0 .SEXT GET_AD_DATA ;sub routine
 19 0 .PUB START
 20 0 .INCLUDE MACRO.A74
 21 1 RAM_CL: .MACRO RAMS
 22 1 LDA #0
 23 1 .REPEATI ram, RAMS
 24 1 STA ram
 25 1 .ENDM
 26 1 .ENDM
 27 E000 0 START:
 28 E000 0 D = 0
 29 E001 0 T = 0
 30 E002 0 S = STACK
 31 E005 0 RAM_CL "WORK0, WORK1" ;ram clear
 32 E00B 0 [fAD_INT_OK] = OFF
 33 E00D 0 X = 2 ;A/D convert 2 times
 34 E00F 0 do
 35 E00F 2200 E 0 JSR \GET_AD_DATA

 ↑Indicates reference to external label.
 36 E011 0 [WORK0] = [WORK0] + [AD_RESULT]
 37 E018 0 [WORK1] = [WORK1] + 0 with_c
 38 E01E 0 X = --X
 39 E01F 0 while X
 40 E023 0 C = 0 ;A/D DATA average
 41 E024 0 [WORK1] = [WORK1] >> 1
 42 E026 0 [WORK0] = [WORK0] >>1 with_c
 43 E028 0 [AD_DATA] = [WORK0]
 44 0 .END

ERROR COUNT 00000
WARNING COUNT 00000
STRUCTURED STATEMENT 00014 LINES
TOTAL LINE (SOURCE) 00044 LINES
TOTAL LINE (OBJECT) 00044 LINES
COMMENT LINE (SOURCE) 00000 LINES
COMMENT LINE (OBJECT) 00000 LINES
OBJECT SIZE (Z) 00005 (0005) BYTES

 ↑Indicates section name (up to 32 chars)
OBJECT SIZE (AD_CONVERT) 00044 (002C) BYTES

Fig 2.5 : Example of a PRN file (Second half of source file : No “-I” parameter)

2.2 Generating files

SRA741–12

* 740 Family SRA74 V.4.00.00 *

*** USED SYMBOLS (TYPE = -d OPTION) ***

*** USED SYMBOLS (TYPE = EQUATE) ***
↓Symbol name output up to 32 characters.

OFF 0000p STACK 00BFp
 ↑Indicates public label.

*** USED SYMBOLS (TYPE = BIT EQUATE) ***

fAD_INT_OK 4,00FEp
 ↑Indicates the relevant bit with value from 1-7.

*** UNUSED SYMBOLS (TYPE = -d or EQUATE) ***

ON 0001p

*** UNUSED SYMBOLS (TYPE = BIT EQUATE) ***

*** USED LABELS (TYPE = USER DEFINED) ***

EXTERNAL
↑Indicates external reference.

GET_AD_DATA 0000e
 ↑Indicates external label

SECTION : Z
 ↑Indicates section name (up to 122 characters).

AD_DATA 0003p AD_RESULT 0002p ICON 00FEp
WORK0 0000p WORK1 0001p

SECTION : AD_CONVERT

*** UNUSED LABELS (TYPE = USER DEFINED) ***

EXTERNAL

SECTION : Z

SECTION : AD_CONVERT

START E000p

Fig 2.6 : Example of a PRN file (Symbol and label list : No “-I” parameter).

Chapter 2. Outline

1–13

* 740 Family SRA74 V.4.00.00 *

SEQ.. LOC. OBJ... S NM3....*....4....*....5....SOURCE STATEMENT....*....8

 1 0 .INCLUDE ZERO.H ;section z
 2 1 .SECTION Z
 3 1 .ORG 0
 4 0000 (0001) 1 :WORK0: .BLKB 1
 5 0001 (0001) 1 :WORK1: .BLKB 1
 6 0002 (0001) 1 :AD_RESULT: .BLKB 1
 7 0003 (0001) 1 :AD_DATA: .BLKB 1
 8 1 .ORG $FE
 9 00FE (0001) 1 :ICON: .BLKB 1
 10 4,00FE P 1 :fAD_INT_OK .EQU 4, ICON
 11 1 .INCLUDE DEFINE.H
 12 00BF 2 :STACK .EQU $BF
 13 0000 2 :OFF .EQU 0
 14 0001 2 :ON .EQU 1

Fig 2.7 : Example of a PRN file (First part of source file : Uses “-I” parameter)

2.2 Generating files

SRA741–14

* 740 Family SRA74 V.4.00.00 *

SEQ.. LOC. OBJ... S NM3....*....4....*....5....SOURCE STATEMENT....*....8

 15 0 .PAGE
 16 0 .SECTION AD_CONVERT
 17 0 .ORG $E000
 18 0 .SEXT GET_AD_DATA ;sub routine
 19 0 .PUB START
 20 0 .INCLUDE MACRO.A74
 21 1 RAM_CL: .MACRO RAMS
 22 1 LDA #0
 23 1 .REPEATI ram, RAMS
 24 1 STA ram
 25 1 .ENDM
 26 1 .ENDM
 27 E000 0 START:
 28 0 ; D = 0 ←Structured command becomes comment.
 29 E000 D8 0 CLD ←Structured inst. converted to assembly language
 30 0 ; T = 0
 31 E001 12 0 CLT
 32 0 ; S = STACK
 33 E002 A2BF S 0 LDX #STACK

 ↑Indicates symbol reference.
 34 E004 9A 0 TXS
 35 E005 0 RAM_CL "WORK0, WORK1" ;ram clear
 36 E005 A900 0+ LDA #0

 ↑Indicates macro expansion.
 37 0+ .REPEATI ram, WORK0, WORK1
 38 0+ STA ram
 39 0+ .ENDM
 40 E007 8500 P 0+ STA WORK0
 41 E009 8501 P 0+ STA WORK1
 42 0+ .ENDM
 43 0 ; [fAD_INT_OK] = OFF
 44 E00B 9FFE B 0 CLB fAD_INT_OK

 ↑Indicates reference to bit symbol.
 45 0 ; X = 2 ;A/D convert 2 times
 46 E00D A202 0 LDX #2

Fig 2.8 : Example of a PRN file (Middle part of source file : Uses “-I” parameter)

Chapter 2. Outline

1–15

 47 0 ; do
 48 E00F 0 .D0:
 49 E00F 2200 E 0 JSR \GET_AD_DATA
 50 0 ; [WORK0] = [WORK0] + [AD_RESULT]
 51 E011 A500 P 0 LDA WORK0
 52 E013 18 0 CLC
 53 E014 6502 P 0 ADC AD_RESULT
 54 E016 8500 P 0 STA WORK0
 55 0 ; [WORK1] = [WORK1] + 0 with_c
 56 E018 A501 P 0 LDA WORK1
 57 E01A 6900 0 ADC #0
 58 E01C 8501 P 0 STA WORK1
 59 0 ; X = --X
 60 E01E CA 0 DEX
 61 0 ; while X
 62 E01F E000 0 CPX #0
 63 E021 D0EC L 0 BNE .D0

* 740 Family SRA74 V.4.00.00 *

SEQ.. LOC. OBJ... S NM3....*....4....*....5....SOURCE STATEMENT....*....8

 64 0 ; C = 0 ;A/D DATA average
 65 E023 18 0 CLC
 66 0 ; [WORK1] = [WORK1] >> 1
 67 E024 4601 P 0 LSR WORK1
 68 0 ; [WORK0] = [WORK0] >>1 with_c
 69 E026 6600 P 0 ROR WORK0
 70 0 ; [AD_DATA] = [WORK0]
 71 E028 A500 P 0 LDA WORK0
 72 E02A 8503 P 0 STA AD_DATA
 73 0 .END

ERROR COUNT 00000
WARNING COUNT 00000
STRUCTURED STATEMENT 00014 LINES
TOTAL LINE (SOURCE) 00043 LINES
TOTAL LINE (OBJECT) 00073 LINES
COMMENT LINE (SOURCE) 00000 LINES
COMMENT LINE (OBJECT) 00014 LINES
OBJECT SIZE (Z) 00005 (0005) BYTES
OBJECT SIZE (AD_CONVERT) 00044 (002C) BYTES

Fig 2.9 : Example of a PRN file (Final part of source file : Uses “-I” parameter)

2.2 Generating files

SRA741–16

* 740 Family SRA74 V.4.00.00 *

*** USED SYMBOLS (TYPE = -d OPTION) ***

*** USED SYMBOLS (TYPE = EQUATE) ***

OFF 0000p STACK 00BFp

*** USED SYMBOLS (TYPE = BIT EQUATE) ***

fAD_INT_OK 4,00FEp

*** UNUSED SYMBOLS (TYPE = -d or EQUATE) ***

ON 0001p

*** UNUSED SYMBOLS (TYPE = BIT EQUATE) ***

Fig 2.10 : Example of a PRN file (Symbol list : Uses “- I” parameter)

Chapter 2. Outline

1–17

*** USED LABELS (TYPE = USER DEFINED) ***

EXTERNAL

GET_AD_DATA 0000e

SECTION : Z

AD_DATA 0003p AD_RESULT 0002p ICON 00FEp
WORK0 0000p WORK1 0001p

SECTION : AD_CONVERT

*** USED LABELS (TYPE = SYSTEM DEFINED) ***

SECTION : Z

SECTION : AD_CONVERT

.D0 E00F'

*** UNUSED LABELS (TYPE = USER DEFINED) ***

EXTERNAL

SECTION : Z

SECTION : AD_CONVERT

START E000p

Fig 2.11 : Example of a PRN file (Label list : Uses “-I” parameter)

2.2 Generating files

SRA741–18

2.2.3 Configuration of TAG file

Fig 2.12 gives an example of TAG file output. A TAG file contains the following data.

• Indicates name of file where error or warning has occurred, line number within the file,

consecutive line number, error number and error message.

The TAG file should be printed out for use as a reference when correcting editor errors.

TEST.A74 115 (TOTAL LINE 115) Error 18: Relative jump is out of range
TEST.A74 127 (TOTAL LINE 127) Error 22: Value is out of range “data”
TEST.A74 593 (TOTAL LINE 593) Error 23: “()” format error “;”

Fig 2.12 : Example of a TAG file

Chapter 2. Outline

1–19

CHAPTER 3

Entering the Source Program

3.1 Configuration of the source program
The configuration of the source program takes the line as its basic unit. The rules for line entry are

outlined below.

1. Each line is complete in itself. More than 1 line cannot therefore be used to enter a single

command.

2. Each line contains a maximum of 256 characters including the line feed code. SRA74

ignores areas which exceed the 256 character limit.

3. Lines are divided into the following 5 groups in accordance with their content:-

• Assembly language command line

This line contains a 740 Family assembly language command.

It also generates the corresponding machine language data.

• Structured language command line

This line contains a 740 Family structured language command.

It also generates the corresponding machine language data.

• Pseudo-command line

This line contains a 740 Family pseudo-command.

• Macro command line

This line contains a 740 Family macro command.

• Comment line

This line is not processed by SRA74 and is therefore free for use as the user requires.

SRA741–20

3.2 Configuration of a line
This section explains the configuration of each of the lines. An explanation and rules concerning

the use of symbols for notation is also included.

1. ▲▲, ▲ indicates a space or tab code.

The ▲▲ part is required but the ▲ part may be left out.

2. When entering a label a “:” (colon) is not an absolute requirement but if it is left out then a

space or tab code must be inserted between each command. During assembly the -U

parameter must be specified. You are therefore recommended to use the “:” as a matter of

course.

3.2.1 The assembly language command line

The configuration of the assembly language command line is shown below. For further details

concerning this line please refer to Chapter 4, Appendices B and C.

▲ Label :▲ Op-code ▲▲ Operand ▲; Comment <RET>

1. Label section

Enter the label to enable reference to the line from another location.

2. Operation code section

Enter the 740 Family assembly language mnemonic (Hereafter referred to as the op-code).

The op-code makes no distinction between upper case and lower case alphabetic characters.

NOP, nop or Nop would therefore all be valid.

SRA74 recognizes the op-code as a reserved word so that when a label is not entered entry

can be made from the head of the line.

3. Operand section

Enter the op-code’s target.

• When the operand contains more than one item of data then the items should be

separated from each other by a “,” (comma).

• A space or tab code can be entered on either side of a comma.

4. Comment section

This section is not subject to processing by SRA74 and may therefore be utilized in whatever

way the user wishes.

3.2.2 Structured language command line

The configuration of a structured language command (hereafter referred to as structured command)

line is as shown below. For further details concerning this line please refer to Chapter 5 and

Appendix F.

▲ Label :▲ Structured command ▲ ▲ Conditional expression ▲; Comment <RET>

Chapter 3. Entering the source program

1–21

1. Label section

Enter a label to enable reference to be made to the line from another location.

2. Structured command section

Enter a 740 Family structured command. Structured commands make no distinction between

upper and lower case alphabetic characters. Either IF, if or If would therefore be equally

valid.

SRA74 recognizes the op-code as a reserved word so that when a label is not entered entry

can be made from the head of the line.

3. Conditional expression section

Enter the 740 Family structured command’s target.

4. Comment section

This section is not subject to processing by SRA74 and may therefore be utilized in whatever

way the user wishes.

3.2.3 Pseudo-command line

The configuration of the pseudo-command line is shown below. For further details concerning this

line please refer to Chapter 6 and Appendix D.

▲ Symbol / Bit symbol ▲▲ .EQU ▲▲ Operand ▲; Comment <RET>

▲ Label:▲ Pseudo-command ▲▲ Operand ▲; Comment <RET>

1. Symbol / Bit symbol section

Enter a symbol or bit symbol with a value given by the pseudo-command .EQU.

2. Label section

Enter the label to enable reference to the line from another location.

3. Pseudo-command section

Enter a 740 Family pseudo-command. The pseudo-command makes no distinction between

upper case and lower case alphabetic characters. Either .END, .end or .End would therefore

be equally valid. SRA74 recognizes the pseudo-command as a reserved word so that when a

label is not entered entry can be made from the head of the line.

4. Operand section

Enter the pseudo-command’s target.

• When the operand contains more than one item of data then the items should be

separated from each other by a “,” (comma).

• A space or tab code can be entered on either side of a comma.

5. Comment section

This section is not subject to processing by SRA74 and may therefore be utilized in whatever

way the user wishes.

3.2 Configuration of a line

SRA741–22

3.2.4 Macro command line

The configuration of the macro command line is shown below. For further details concerning this

line please refer to Chapter 7 and Appendix E.

▲ Label:▲ .MACRO ▲▲ Operand ▲; Comment <RET>

▲ Label:▲ Macro command ▲▲ Operand ▲; Comment <RET>

1. Macro name section

Name for accessing the macro definition.

2. Label section

Enter the label (name) to enable reference to the line from another location.

3. Macro command section

Enter a 740 Family macro command. The macro command makes no distinction between

upper case and lower case alphabetic characters. Either .REPEATI, .repeati or .RepeatI

would therefore all be equally valid. SRA74 recognizes the op-code as a reserved word so

that when a label is not entered entry can be made from the head of the line.

4. Operand section

Enter the macro command’s operand.

• When the operand contains more than one item of data then the items should be

separated from each other by a “,” (comma).

• A space or tab code can be entered on either side of a comma.

5. Comment section

This section is not subject to processing by SRA74 and may therefore be utilized in whatever

way the user wishes.

3.2.5 Comment line

The first character on a comment line (with the exception of ▲) should always be a “;” (semi-colon).

The configuration of a comment line is shown below.

▲; Comment <RET>

Note:

If the first character on a comment line is anything other than a “;” then SRA74 will not recognize

the line as a comment and will include it in the assembly operation. Care must therefore be taken

since this will result in a variety of problems such as assembly error or even the generation of false

codes.

Chapter 3. Entering the source program

1–23

3.3 Section entry method
This section deals only with those sections where the entry format is the same for each command

line. For further details of those sections requiring more than one entry format please refer to

Chapters 4, 5, 6 and 7.

3.3.1 Symbol / Bit symbol / Label sections

These sections require the same entry format for each command line. SRA74 distinguishes

symbols, bit symbols and labels1 from each other and processes them accordingly. The rules of

entry are given below:-

1. The name can be entered using either alphanumeric characters or the special characters “_”

(underline), “.” (period) and “?” (question mark). The first character must, however, be either

an alphabetic or special character. The maximum number of permissible characters, includ-

ing “:”, is 255.

2. A distinction is made between upper and lower case characters. BIG and Big would there-

fore be discriminated as different names.

3. Reserved words may not be used as names. SRA74 processes all register names, flag

names, op-codes, structured commands, pseudo-commands and macro commands as re-

served words.

4. The following labels starting with the special character “.” (period) should not be used as they

are reserved by SRA74:-

• .D0 - .D65535

• .F0 - .F65535

• .I0 - .I65535

• .S0 - .S65535

5. The following labels starting with the special character “..” (double period) should not be used

since they are reserved by SRA74. Also avoid labels beginning with ‘..’ because they are

reserved for SRA74 function enhancement.

• ..0 - ..65535

6. Labels starting with the special character “??” (double question mark) are treated local labels

valid only within that section. It is thus possible to use the same label name again in a

different section. In case of reference only labels within that section will be referred to.

1 SRA74 treats anything defined by the pseudo-command .EQU or parameter “-D” as a symbol or bit symbol

and anything defined in any other way as a label.

3.3 Section entry method

SRA741–24

Chapter 3. Entering the source program

Example:
.SECTION PROG1

??MAIN: NOP
 :
BRA ??MAIN This will result in a jump to "??MAIN"

 within the section named "PROG1".

.SECTION PROG2

??MAIN: NOP
 :
BRA ??MAIN This will result in a jump to "??MAIN'

 within the section named "PROG2".

7. The .PUB declaration can be omitted if a “:” is inserted immediately before a symbol, bit

symbol or label.

Example:
:SYMBOL .EQU 10

:
.SECTION PROG2

:LABEL: NOP
:

When entering a label a “:” (colon) can be inserted immediately prior to the name. We recommend

that a “:” should be inserted before entry in order to make it easy to distinguish between a label and

a symbol and to enable label access to be carried out effectively by the editor. Take care,

however, since it is an error to insert a “:” when entering a symbol or bit symbol.

3.3.2 Comment section

The user is free to enter whatever data he wishes here. The entry format is as follows:-

1. A “;” (semi-colon) must be inserted at the head of the comment before entry.

2. Any kind of character can be entered in the comment section.

1–25

CHAPTER 4

Assembly Language

4.1 Addressing mode
The addressing mode is the basic means (mode) by which a command specifies the data which it

processes. The 740 Family has 19 addressing modes each with its own specific operand format.

The addressing modes with related operand entry are outlined below:-

1. Implied

This is an op-code command only. There is no operand specification.

Example: BRK

2. Accumulator

Method by which the contents of the accumulator are specified as the target data.

Example: ASL A

3. Immediate

Method by which the operand is specified directly as the target data. The value entered in

the operand should be preceded by “#”.

Example: ADC #IMMDATA

4. Zero page

Method by which the zero page area (0016 - FF16) is specified as the target data.

Example: ADC ZWORK

5. Zero page X

Method by which the zero page address is qualified by register X as the target data. The

register name X should be entered after a “,” (comma).

Example: ADC ZWORK,X

6. Zero page Y

Method by which the zero page address is qualified by register Y as the target data. The

register name Y should be entered after a “,” (comma).

Example: LDX ZWORK,Y

SRA741–26

7. Zero page indirect

Method by which the target data is indicated to be in indirect memory. The zero page

address which holds the target address is entered into the operand and the 2 byte target

address is stored in the memory. The operand value should be enclosed by ().

Example: JMP (ZWORK)

8. Zero page indirect X

Method by which target data is indicated to be in indirect memory and qualified by register X.

The zero page address which holds the target address is entered into the operand and the 2

byte target address is stored in the memory. The register name “X” is entered after a “,”

(comma) and the operand value should be enclosed by ().

Example: ADC (ZWORK,X)

9. Zero page indirect Y

Method by which target data is indicated to be in indirect memory and qualified by register Y.

The zero page address which holds the target address is entered into the operand and the 2

byte target address is stored in the memory. The register name “Y” is entered after a “,”

(comma) and the operand value should be enclosed by ().

Example: ADC (ZWORK),Y

10. Absolute

Method by which a general page area (010016 - FFFF16) is specified as the target data.

Example: ADC WORK

11. Absolute X

Method by which a general page address is qualified by register X as the target data. The

register name “X” should be entered after a “,” (comma).

Example: ADC WORK,X

12. Absolute Y

Method by which a general page address is qualified by register Y as the target data. The

register name “Y” should be entered after a “,” (comma).

Example: ADC WORK,Y

13. Absolute indirect

Method by which target data is indicated to be in indirect memory. The general page

address which holds the target address is entered into the operand and the 2 byte target

address is stored in the memory. The operand value should be enclosed by ().

Example: JMP (WORK)

14. Special page

Method by which a special page area (FF0016 - FFFF16) is specified as the target data. The

operand value should be indicated by “¥” or “\”.

Example: JSR \WORK

Chapter 4. Assembly language

1–27

15. Zero page bit

Method by which a special page area (0016 - FF16) specific bit is specified as the target

data. When a bit symbol in entered into the operand the value and address of that bit symbol

will be referred to .

Example: CLB 0,ZWORK ⇒ Specifies bit 0 of “ZWORK”.

Example: CLB BITSYMBOL

16. Accumulator bit

Method by which a specific accumulator bit is specified as the target data. If the bit symbol is

entered into the first operand then the value of that bit symbol only will be referred to.

Example: CLB 1,A ⇒ Specifies bit 1 of the accumulator.

Example: CLB BITSYMBOL,A

17. Relative

Causes a jump to an address located relative to the head of the main command at a position

measured in terms of the content of the operand. The relative value itself cannot be entered

into the operand. If a label or target address is entered into the operand SRA74 will calculate

the relative value.

Example: BRA *-12

Example: BRA NEXT

18. Zero page bit relative

Specifies a zero page area (0016 - FF16) specific bit as the target data. It is a method

whereby if a bit symbol is entered into the first operand then the bit value and address of that

bit symbol will be referred to and, in accordance with the status of that bit, a jump will be

made to an address located relative to the head address of the main command at a distance

measured in terms of the content of the final operand. The relative value itself cannot be

entered into the final operand. If the label or target address is entered then SRA74 will

calculate the relative value.

Example: BBC 2,ZWORK,NEXT ⇒ Specifies bit 2 of “ZWORK”.

Example: BBC BITSYMBOL,NEXT

19. Accumulator bit relative

Specifies a specific accumulator bit as the target data. It is a method whereby if a bit symbol

is entered into the first operand then only the bit value of that bit symbol will be referred to

and, in accordance with the status of that bit, a jump will be made to an address located

relative to the head address of the main command at a distance measured in terms of the

content of the final operand. The relative value itself cannot be entered into the final

operand. If the label or target address is entered then SRA74 will calculate the relative

value.

Example: BBC 3,A,NEXT ⇒ Specifies bit 3 of the accumulator.

Example: BBC BITSYMBOL,A,NEXT

The entry formats for each command in each addressing mode are given for reference in Appendix

C.

4.1 Addressing mode

SRA741–28

4.2 Operand data format
The 4 types of data format shown below may be entered into the operand.

1. Numerical constant

• Positive and negative values are shown by inserting the operators “+” or “-” before the

numerical constant. Where neither operator is inserted then the value will be processed

as if positive.

• A space or tab cannot be inserted between the sign which indicates the type of number

and the number itself.

Example: .BYTE $ 64 ⇒ This is an error.

• Either binary, octal, decimal or hexadecimal numbers may be used as numerical con-

stants.

• Binary numbers ⇒ Should be composed of binary figures with either a “%” at the head

or a “B” or “b” at the end.

Example: .BYTE %100110

Example: .BYTE 100110B

• Octal numbers ⇒ Should be composed of octal figures with either a “@” at the head or

“O”, “o”, “Q” or “q” at the end.

Example: .BYTE @70

Example: .BYTE 70O

Example: .BYTE 70Q

• Decimal numbers ⇒ Should be composed of decimal figures without a further special

identification. Only integers such as 23 or 256 may be entered.

Example: .BYTE 100

• Hexadecimal numbers ⇒ Should be composed of hexadecimal figures with either a “$”

at the head or “H” or “h” at the end. Where the head starts with the alphabetic charac-

ters A-F please insert 0 at the beginning.

Example: .BYTE $64

Example: .BYTE 64H

Example: .BYTE 0ABH

2. Character constants

• Characters defined by the ASCII code may be used.

• Character constants should be enclosed within either ‘ (single quotes) or “ (double

quotes). Each character corresponds to 7 bit ASCII code (most significant bit 0).

Example: .BYTE ‘A’ ⇒ To set 4116.

3. Symbolic constant

• There are 4 types of “*” symbol which are used to indicate a symbol, bit symbol, label or

the head of the current statement. Bit symbols have the value allocated to the bit and

the address to which that bit belongs. Symbols have an absolute value whereas labels

and “*” have either relative or absolute values.

Chapter 4. Assembly language

1–29

Example: .WORD SUB ⇒ Sets the address of the label SUB.

Example: BRA *+2 ⇒Causes a jump to an address located by adding 2 to the

 current address.

4. Expressions

• Expressions are composed of a mixture of numerical constants, character constants,

symbolic constants and operators. A space or tab may be inserted as required between

any operator and the related item.

Example: TBL + 1

• Expressions are processed from left to right (Operators do not have priority).

Example: 2*3 ⇒ The result is 6.

Example: 2+6/2 ⇒ The result is 4.

4.3 Operators

Table 4.1 lists all the operators which can be used for operand data entry.

Table 4.1 : List of operators

Type Operator 1 Description

Single term operator + Indicates positive number

- Indicates negative number

! Takes ones complement

< Extracts 8 high order bits of label or symbol

> Extracts 8 low order bits of label or symbol

SIZEOF2 Finds size of section

BK3 Obtains the bank value of label

BL3 Obtains the extra area value 4 of label

Dual term operator + Addition

- Subtraction

* Multiplication

/ Division

& AND of each bit

| OR of each bit

4.3 Operators

SRA741–30

Notes:

1. With SRA74 V.4.00.00 and later, format checks are processed as integers attached with a

32-bit code. However, results are handled as such only in the following two cases.

• Operands of the .ORG command

• Labels when the -BANK option is specified

With the following written format, operation results can differ from that obtained with V.2.00.10

and earlier.

Example 2223h + 0FFFFh / 2

• Results for V.2.00.10 and earlier: 1111H

• Results for V.4.00.00 and later: 9111H

2. The SIZEOF value is determined at the time of the link operation without regard to the

reference section or whether it is relocatable or absolute. The SIZEOF operator can only be

used with a section name. When using the SIZEOF operator a space must be left between

the operator and the section name.

Example: .WORD SIZEOF DATA

3. For the operands of operators BK and BL, specify labels whose values are defined in

assembly execution.

4. The extra area value is obtained by adding 1000H to the low-order 12 bits of the operand

(label).

5. Operations are carried out from left to right (operators have no order of priority).

Example: 2+6/2 ⇒ The result is 4.

6. Bit symbol operations and operations between labels which refer by means of .ZEXT and

.SEXT are not possible.

Chapter 4. Assembly language

1–31

CHAPTER 5

Structured Language

5.1 Function of the structured command

The readability of a program is severly affected by the frequent use of branch instructions and

labels. The structured language allows coding of conditional branch structures and repeat struc-

tures without the use of labels; thus improving program readability. In addition, instructions that

directly operate on registers and flags are available to enable generation of efficient codes.

5.2 Types of statement

The structured language statements can be classified into seven types as shown below. When the

character l is prefixed to each instruction, a long branch using the “JMP” instruction is generated.

The following examples show the coding example on the left with equivalent assembler program on

the right. Refer to Appendix F for the details of each statement.

1. Assignment statement

Assigns the right to the left.

 [MEM] = 10 ; LDM #10,MEM
 [MEM] = [MEM1] ; LDA MEM1
 ; STA MEM

2. (l)if - (l)else - endif statement

The “if” statement is an instruction to change the control stream into two directions with the

branch direction being determined by means of a conditional expression.

 if [MEM] ; LDA MEM
 [WORK] = 1 ; BEQ ELSE
 else ; LDM #1,WORK
 [WORK] = 2 ; BRA ENDIF
 endif ; ELSE:
 ; LDM #2,WORK
 ; ENDIF:

SRA741–32

3. (l)for - next statement

The “for” statement is an instruction for the control of repetition whereby a statement is

executed repeatedly for as long as the specified conditional expression holds true.

 for [MEM] ; FOR:
 jsr output ; LDA MEM
 next ; BEQ NEXT
 ; JSR OUTPUT
 ; BRA FOR
 ; NEXT:

4. (l)do - while statement

The “do” statement is executed repeatedly for as long as a specified conditional expression

holds true.

 do ; DO:
 jsr output ; JSR OUTPUT
 while [MEM] ; LDA MEM
 ; BNE DO

5. (l)switch - case - ends statement

The “switch” statement switches control to some another statement in accordance with the

value of a conditional expression.

 switch [MEM] ; LDA MEM
 case 1 ; CMP #1
 jsr output1 ; BNE CASE2
 break ; JSR OUTPUT1
 case 2 ; BRA ENDS
 jsr output2 ; CASE2:
 break ; CMP #2
 case 3 ; BNE CASE3
 jsr output3 ; JSR OUTPUT2
 break ; BRA ENDS
 default ; CASE3:
 jsr output4 ; CMP #3
 ends ; BNE DEFAULT
 ; JSR OUTPUT3
 ; BRA ENDS
 ; DEFAULT:
 ; JSR OUTPUT4
 ; ENDS:

Chapter 5. Structured language

1–33

6. (l)break statement

The “break” statement terminates the execution of a given “for”, “do” or “switch” statement

and passes control to the subsequent statement.

 for [MEM1] ; FOR:
 if [MEM2] ; LDA MEM1
 break ; BEQ NEXT
 endif ; LDA MEM2
 jsr output ; BEQ ENDIF
 next ; BRA NEXT
 ; ENDIF:
 ; JSR OUTPUT
 ; BRA FOR
 ; NEXT:

7. (l)continue statement

The “continue” statement inserts a dummy statement to which it passes control after the final

statement of the minimum “for” or “do” statement which contains it.

 for [MEM1] ; FOR:
 if [MEM2] ; LDA MEM1
 continue ; BEQ NEXT
 endif ; LDA MEM2
 jsr output ; BEQ ENDIF
 next ; BRA FOR
 ; ENDIF:
 ; JSR OUTPUT
 ; BRA FOR
 ; NEXT:

5.3 Notes concerning entry procedures

The following pages contain explanations of some of the points which should be borne in mind

when carrying out programming using structured language.

1. Memory areas to be referred to via any one of the 740 Family addressing modes should be

enclosed within “[]” or “{}” when entering them in the conditional expression section of an

assignment statement or any of the control statements (the “if” statement, for example).

Refer to the assignment statement generation example in Appendix F.3.1 for details.

2. Selected bits which may be referred to by bit symbols should be enclosed within “[]” or “{}”

when entering them in the conditional expression section of an assignment statement or any

of the control statements (for example, “if”). The reserved words shown below must, how-

ever, be used when referring to a selected accumulator bit. In this case there is no need to

use the “[]” or “{}” enclosure procedure. Since no distinction is made between upper and

lower case characters either BIT_A0 or bit_a0 would be equally valid.

5.3 Notes concerning entry procedures

SRA741–34

BIT_A0 Accumulator bit 0 BIT_A1 Accumulator bit 1

BIT_A2 Accumulator bit 2 BIT_A3 Accumulator bit 3

BIT_A4 Accumulator bit 4 BIT_A5 Accumulator bit 5

BIT_A6 Accumulator bit 6 BIT_A7 Accumulator bit 7

Refer to the register and flag assignment statement generation example in Appendix F.3.1 A)

for details.

3. All the 740 Family registers should be entered without specific enclosure in the conditional

expression section of an assignment statement or any of the control statements (for example,

“if”). This is because SRA74 uses the following types of names as reserved words. Since no

distinction is made between upper and lower case characters either A or a would be equally

valid.

A Accumulator X Index register X

Y Index register Y S Stack pointer

P Processor status register

Refer to the register and flag assignment statement generation example in Appendix F.3.1 A)

for details.

4. The 740 Family status register flags should be entered without specific enclosure into the

conditional expression section of an assignment statement or any control statement (for

example, “if”). This is because SRA74 uses the following types of names as reserved words.

Since no distinction is made between upper and lower case characters either C or c would be

equally valid.

C Carry flag Z Zero flag

I Interrupt inhibit flag D Decimal mode flag

T X qualified operation mode flag V Overflow flag

N Negative flag

Refer to the register and flag assignment statement generation example in Appendix F.3.1 A)

and flag condition generation expansion example in Appendis F.3.2 for details.

5. SRA74 processes (using, for example, LDA commands to generate the codes) the following

types of entry (front reference) as labels. If, therefore, “BITSYM” is only defined afterwards

as a bit symbol then the generation code will not match (and SRA74 will register an error).

The program should be rewritten such that when entering a bit symbol (BITSYM) reference

should be made to it only after it has been defined.

Example: ;if [BITSYM]

LDA BITSYM Generation code

BEQ .I0 Generation code

:

;endif

.I0:

 :

BITSYM .equ 1,80h Definition of bit symbol

For further details please refer to the syntax map in Appendix F.

Chapter 5. Structured language

1–35

6. Coding to reduce generated code size.

• For IF and FOR statements, >= is more efficient than > and < is more efficient than <=.

For DO statement, < is more efficient than >= and <= is more efficient than <.

Refer to the memory conditional expression generation example in Appendix F3.2 for

details.

• DO statement is more efficient than FOR statement if the operation is to be performed

more than once.

• For SWITCH statement, it is more efficient to use the lbreak statement where necessary

than to use the lswitch statement.

LSWITCH statement
lswitch [MEM]

case 1
NOP
break

case 2
:

case 16
NOP
break

default
NOP

ends

Assembly language
CMP # 1
BEQ .Z0
JMP .S2

.Z0:
NOP
JMP .S0

.S2:
:

.S16:
CMP # 2
BEQ .Z15
JMP .S17

.Z15:
NOP
JMP .S0

.S17:
NOP

.S0:

LBREAK statement
switch [MEM]

case 1
NOP
lbreak

case 2
:

case 16
NOP
break

default
NOP

ends

Assembly language
CMP # 1
BNE .S2
NOP
JMP .S0

.S2:
:

.S16:
CMP # 2
BNE .S17
NOP
BRA .S0

.S17:
NOP

.S0:

5.3 Notes concerning entry procedures

SRA741–36

7. Accumulator value

Most structured language operations use the accumulator. Therefore, note that the value in

the accumulator will change after executing the following type of structured language state-

ment.

;[WORK] = [DATA1] + [DATA2]
LDA DATA1
CLC
ADC DATA2
STA WORK

;IF [WORK] & 0FH > 4
LDA WORK
AND #0FH
CMP #4
BEQ .I0
BCC .I0

; X = ++X
INX

;ENDIF
.I0:

However, transfer to and comparison of registers are generated into efficient assembly lan-

guage without the use of accumulators.

;X = [WORK]
LDX WORK

;IF X > [WORK]
CPX WORK
BEQ .I0
BCC .I0

; Y = ++Y
INY

;ENDIF
.I0:

Refer to the dual term operation assignment statement generation example in Appendix

F.3.1 for details.

5.4 Structured operators

Table 5.1 lists the operators which may be used with the structured language.

Chapter 5. Structured language

1–37

Table 5.1 : List of structured language operators

Type Operator 1 Description

Single term operator + Indicates positive number

- Indicates negative number

~ Takes ones complement

++ Increment

-- Decrement

Dual term operator +1 Addition

-1 Subtraction

*1 Multiplication

/2 Division

%2 Division surplus

& Each bit AND

| Each bit OR

^ Each bit exclusive OR

&&3 Logic AND

||3 Logic OR

<< Left shift

>> Right shift

Comparative operator < Smaller

> Larger

== Equivalent

!= Non-equivalent

<= Smaller or equivalent

>= Larger or equivalent

Notes:

1. All operations are carried out as 8 bit unsigned numbers. When the results of operations (+,-

only) are compared for size, for example, then the overflow and borrow may be used (In the

following example, if the “work” contents are assumed to be FF16 then the result of the

operation will be 0116 and the condition will be fulfilled).

Example:
if [work] + 2 > 10

 :
else

 :
endif

2. When using *, / or % in a dual term operator the related subroutine library (SRA74.A74)

should be linked after assembly as follows:

a. Assemble SRA74.A74 and generate the relocatable file SRA74.R74.

b. Define the labels corresponding to the operators as external reference.

The labels corresponding to the operators in the following table must be defined as

external label because SRA74 generates machine codes to call the subroutine in

SRA74.R74 from operators *, /, and %.

5.4 Structured operators

SRA741–38

Chapter 5. Structured language

Operator Label

* .mult_8 Multiply routine

/ .div_8 Divide routine

% .mod_8 Modulo routine

Coding example
.ext .mult_8, .div_8

c. Link the user program with SRA74.R74.

This can be used on system using one page (beyond address 010016) for stack area, but in

this case the following definition and work area reservation must be made.

• Set the stack page (.SPPAGE label definition). The setting 0 secures page 0 and the setting

1 secures page 1. (Take care since this procedure simply provides the required indication to

the assembler and it does not mean that the stack is now set).

Example: .SPPAGE .EQU 1

• Secure 3 bytes in page 0 in the RAM as the operation work area (.syswk). The operation

result will be set in the case of a multiplication from low order to high order in .syswk and

.syswk+1. (The user himself should carry out the reference if he wishes to refer to the high

order of the operation result).

Example: .syswk .blkb 3

• Care should be taken when using the operation work area (.syswk) for an interrupt process-

ing routine. In such cases there are a number of other operations which will need to be

carried out such as the modification of the related library source (SRA74.A74) by the user or

the saving of the operation work area to the stack.

3. Up to six structured commands (if, for while) can be coded using dual term operators && and

||.

These logical operators are have no priority and are generated from left to right as follows:

;IF BIT_A1 == 1 || BIT_A2 == 1 && BIT_A3 == 1 || BIT_A4 == 1
BBS BIT_A1,A,.I0
BBC BIT_A2,A,.I1
BBS BIT_A3,A,.I0
BBC BIT_A4,A,.I1

.I0:
; X = ++X

INX
;ENDIF
.I1:

1–39

CHAPTER 6

Pseudo-Commands

6.1 Functions of pseudo-commands

A pseudo-command makes a specification1 to SRA74 such that it will generate the machine lan-

guage data which is the objective of the command. SRA74 uses 48 different pseudo- commands

but these can be classified in terms of 6 main groups in accordance with their functions.

1. Assembly control

• The pseudo-commands themselves do not generate data but control the assembly pro-

cessing stream.

• They do not affect address updating.

• This group consists of the following seven pseudo-commands:

.ASSERT Assemble assertion declaration

.END Program termination declaration

.ERROR Assembly error declaration

.IF (.ELSE) .ENDIF Conditional assembly

.INCLUDE Read file in

2. Address control

• Data set pseudo-commands which generate constant data.

• They carry out address updates.

• This group consists of the following seven pseudo-commands:

.EQU (=) Synonymous definitions

.ORG (*=) Address specification

.BLKB Secures RAM area

.BYTE .WORD Set data

1 The pseudo-command names are referred to as “declarative” where they make a specification with regard to

SRA74 and “specific” where they have an effect on an output file.

SRA741–40

3. Link control

• Carries out the controls associated with link processing operations.

• This group consists of the 18 following pseudo-commands:-

.BEXT .ZBEXT External reference specification (bit symbol)

.EXT .SEXT .ZEXT External reference specification (symbol, label)

.PUB Public specification (bit, symbol, label)

.SECTION ROM and Ram area specification

.SECTION P(.PMOD) ROM area specification (general page)

.SECTION R(.RMOD) RAM area specification (general page)

.SECTION S(.SMOD) ROM area specification (special page)

.SECTION Z(.ZMOD) RAM area specification (zero page)

.OBJ .LIB Link file name specification

.VER Version specification

4. List control

• Carries out controls related to PRN file output.

• This group contains the 7 following pseudo-commands:-

.COL .LINE List format (numbers of columns and lines) specification

.LIST .NLIST List output/inhibit specification

.LISTM .NLISTM Macro generation section list output/inhibit specification

.PAGE Page feed and title specification

5. Debug support

• Carries out the controls relating to the source line debugger.

• This group consists of the 2 following pseudo-commands:-

.FUNC .ENDFUNC Function specification

6. Reserved pseudo-commands

• These are pseudo-commands which have been reserved for future expansion. These

pseudo-commands have no effect on the assembly processing operations.

• This group consists of the 9 following pseudo-commands:-

.PROGNAME Program name declaration

.IO .ENDIO .RAM .ENDRAM Area name declarations

.PROCMAIN .PROCSUB .PROCINT Module name declarations

.ENDPROC Module termination declaration

The following pages describe the functions of the pseudo- commands group by group.

Chapter 6. Pseudo-commands

1–41

6.2 Assembly controls

1. Assebly assertion declaration

.ASSERT

Displays the character string specified as operand on the screen during assembly.

2. Assembly termination declaration

.END

Declares the termination of the source program. SRA74 will not process any data on

subsequent lines.

3. Assembly error declaration

.ERROR

This pseudo-command causes the character string in the operand to be displayed on the

VDU and the assembly operation to be terminated.

4. Conditional assembly

.IF (.ELSE) .ENDIF

Specifies the assembly location in accordance with the contents of the symbol value.

These pseudo-commands can be used for various operations such as the handling of

programs with varying specifications by means of a single source program or the control

of test routine assembly.

5. Read file in

.INCLUDE

The contents of another file are read in to the location in which this command is entered.

It can be used for splitting up and editing large source programs.

6.3 Address control

1. Synonymous definition

.EQU or =

Ascribes an absolute value to a symbol. It also defines the values of bits from 0-7 and

000016 - FFFF16 values.

2. Address declaration

.ORG or *=

Declares the addressing of the following lines. The section in which this pseudo-com-

mand is entered becomes an absolute attribute and cannot be addressed during link

operations. It can be used for interrupt vectors and other areas with fixed addresses.

6.2 Assembly controls

SRA741–42

3. Securing an area

.BLKB

The amount of memory area specified in the operand is secured as RAM area.

4. Data setting

.BYTE .WORD

The data specified in the operand is generated in the ROM area.

6.4 Link control

1. Global label specification

.BEXT .ZBEXT

Specifies a bit symbol name for external reference. Any bit symbol name which is

specified here must not have public specification in another file.

.EXT .SEXT .ZEXT

Specifies a label or symbol name for external reference. Any label which is specified

here must not have public specification in another file.

.PUB

Labels, symbols or bit symbols which are defined in this file may be referred to from any

other file.

2. Area specification

.SECTION

This pseudo-command specifies that the area from this line onwards shall have the

name specified by the operand. The area attribute will be determined automatically by

SRA74 in accordance with the subsequent command. This specification remains valid

until a further area specification command is received.

.SECTION P or .PMOD

Specifies that the area from this line onwards is a general page ROM area. This

specification remains valid until a further area specification command is received.

.SECTION R or .RMOD

Specifies that the area from this line onwards is a general page RAM area. This

specification remains valid until a further area specification command is received.

.SECTION S or .SMOD

Specifies that the area from this line onwards is a special page ROM area. This

specification remains valid until a further area specification command is received.

Chapter 6. Pseudo-commands

1–43

.SECTION Z or .ZMOD

Specifies that the area from this line onwards is a zero page RAM area. This specifica-

tion remains valid until a further area specification command is received.

3. Link file name specification

.OBJ .LIB

Specifies the names of the link target R74 files and library files. Mnemonic command

input of files named here is enabled during link operations to facilitate LINK74 (linker)

automatic reference.

4. Version specification

.VER

Specifies the R74 file version. If the LINK74 “-V” command parameter is specified then

the correspondence between R74 files can be verified.

6.5 List control

1. Page feed and title specification

.PAGE

Specifies the page feed and title for a list.

2. List format specification

.COL .LINE

Specifies the number of columns and lines in a list. These pseudo-commands may only be

entered once into the source file.

3. List output/inhibit specification

.LIST .NLIST

Controls list output to the print file. These pseudo- commands should be used at times when

only parts of lists are required such as during the debugging of part of a program.

4. Macro generation section list output/inhibit specification

.LISTM .NLISTM

Controls the output of lists of macro generation sections to the PRN file.

6.5 List controlChapter

SRA741–44

6.6 Debug support

SRA74 generates a source level debug data when the command parameter “-C” is specified.

However, it is also possible to generate source line debug data only for statements enclosed

between the .FUNC and .ENDFUNC statements. Memory usage on the host machine can be

reduced by limiting the generation of debug data to the necessary statements. The command

parameter “-C” can still be used for source file containing the .FUNC pseudo command to generate

the source line debug data for the entire file.

1. Function start specification

.FUNC

Specifies the start of the “function”.

2. Function end specification

.ENDFUNC

Specifies the end of the “function”.

Note:

1. When specifying -C for assembly with SRA74, the .FUNC and .ENDFUNC pseudo-command

lines cannot be checked. Accordingly, errors related to these pseudo-command lines cannot

be detected.

6.7 Reserved pseudo-commands

Reserved pseudo-commands are pseudo-commands which are being reserved to enable the later

expansion of SRA74. These pseudo-commands can be entered in the source file without resulting

in error. They do not affect the outcome of the assembly operation in any way. Generally speaking

they can be used in combination with any of the character string retrieval programs on general sale

in order, for example, to confirm the contents of the source file.

If the pseudo-command .PROCMAIN is entered into the source file as shown below then retrieval

of the main program can be carried out by using a character string retrieval program to retrieve

“.PROCMAIN”.

Example: .PROCMAIN KEY-SCAN ; Key scan program section entry

Chapter 6. Pseudo-commands

1–45

CHAPTER 7

Macro Commands

7.1 Functions of macro commands

The definition of the 740 Family programs, which use assembly language and structured language,

in terms of macro commands enables the user to enter the assigned names (macro names) into the

source program operand sections in just the same way as he enters op-codes or structured

commands. It is possible, therefore, by preparing a variety of macro definitions, to use the MELPS

740 as a new, extended CPU for use when programming. In this way the macro command

functions provide the user with a way of fine tuning his own programming environment.

7.2 Types of macro command

Macro commands are divided into 2 broad areas, those which come with SRA74 and those which

are defined by the user himself.

1. System macro commands

• .REPEATI - .ENDM

Repeats the processing operation in accordance with the number of arguments con-

tained in the operand.

• .REPEATC - .ENDM

Repeats the processing operation in accordance with the number of characters pre-

sented by the operand as arguments.

• .REPEAT - .ENDM

Repeats the processing operation a specific number of times.

2. User macro commands

• .MACRO - .ENDM

Defines the macro commands.

• .EXITM

Forces the termination of macro generation.

• .LOCAL

Changes the labels used in the macro definitions into intra- macro local labels.

For further details please refer to Appendix E.

SRA741–46

Notes:

1. User macro commands must be defined prior to use. Macro commands should normally

therefore be defined at the beginning of a program or alternatively a macro definition file

should be inserted at the head by means of the pseudo- command .INCLUDE. User macro

definitions may be nested up to 20 levels (however, this depends on the available host

machine memory).

2. If the macro definition file is treated as a separate file (macro library) then the macro can be

used simply by “including” it in the beginning of a program and it ceases to be necessary to

enter the macro definition into each program.

3. Macro generated sections are indicated by a + at the side of the source in the print file.

4. LOCAL labels are assembled in order by allocation of the label ..n (where n is a decimal

number between ..0 - ..65535). Care should be taken by the user since he may not use the

label ..n.

5. When a pair of square brachets [] or curry braces { } indicating memory reference in

structured description are used for the macro argument in each macro call, enclose [] or { }

in double quotation marks.

Example:

mac: .macro para1, para2

 para1 = para2

 .endm

mac "[work]",10h

7.3 Macro operators

Table 7.1 lists the operators which can be used with macro commands.

Table 7.1 : List of macro operators

Operator Description

\1 Causes recognition as argument of the character following the “\” which is placed in

front of a special character which cannot be used as a macro argument.

[format] \ character

;;2 Defines the comment which is not generated in a macro definition.

[format] ;;comment

”3 Used when calling a macro where there is, for example, a space, tab, comma (,) or

reserved word included in the argument.

[format] ”character string”

$4 Used when there is concatenation of character strings either before or after the

argument.

[format] (1) argument $ character string (2) character string $ argument

Chapter 7. Macro commands

1–47

Notes:

1. By acting as escape characters they negate the special meanings of the following charac-

ters:-

Example:

[Macro definition]

DATA: .MACRO VAL
.BYTE VAL
.ENDM

[Call example]

DATA ”\ ”HELLO!\ ””

[Macro generation]

.BYTE ”HELLO ! ”

.ENDM

2. When outputting the result of a macro generation to the print file, comments preceded by a

single semi-colon (“;”) will be output on the occasion of each macro generation whereas

those preceded by a double semi-colon (“;;”) will not.

Example:

[Macro definition]

LOOP: .MACRO
.LOCAL LOOP1
LDA #20 ; comment

LOOP1: DEC A ;; comment
BNE LOOP1 ;; comment
.ENDM

[Call example]

LOOP

[Macro generation]

LDA #20 ; comment
..0: DEC A

BNE ..0
.ENDM

7.3 Macro operators

SRA741–48

3. When the argument supplied by the operand contains, for example, a space, tab, comma (,)

or reserved word then everything should be enclosed within double quotes (”).

Example:

[Source entry]

SUB: .REPEATI INST,”NOP”,”LDA #1”,”JSR SUB1”,”RTS”
 INST

 .ENDM

[Macro generation]

SUB:
 NOP
 LDA #1
 JSR SUB1
 RTS
 .ENDM

4. Used when there is character string concatenation either before or after an argument and the

name given by the argument is changed. There must be no space or tab inserted between

the “$” and the character string.

Example:

[Source entry]

ADDWI: .MACRO MEM,IMM
CLC
LDA MEM$_2
ADC #>IMM
STA MEM$_1
LDA #<IMM
ADC MEM$_2+1
STA MEM$_1+1
.ENDM

[Call example]

ADDWI RAM,1000H

[Macro generation]

CLC
LDA RAM_2
ADC #>1000H
STA RAM_1
LDA #<1000H
ADC RAM_2+1
STA RAM_1+1

Chapter 7. Macro commands

1–49

5. The strings enclosed in parentheses are treated as single argument.

Example:

[Macro definition]
ADDI: .MACRO MEM,IMM

LDA MEM
CLC
ADC #IMM
STA MEM
.ENDM

[Call example]
ADDI (RAM,X),5

[Macro generation]
LDA (RAM,X)
CLC
ADC #5
STA (RAM,X)

7.3 Macro operators

SRA741–50

CHAPTER 8

Operation Method

8.1 Activation method

Before using SRA74 the following data (input parameters) must be entered:-

1. Source file name (required item)

2. Command parameters

With SRA74, these data can specified from the operating system command line or defined with the

environment variable SRA74.

Section 8.2 describes the input parameters, section 8.3 describes how to enter the command with

examples, and section 8.5 describes how to define the environment variable SRA74.

8.2 Input parameters

8.2.1 Source file name

1. Specifies the name of the source file which forms the object of the assembly operation. Only

one source file may be specified.

2. When the file attribute (.A74) is omitted then the attribute .A74 is selected as the default

value.

3. By specifying the full name of a file, files with attributes other than .A74 (eg. .ASM) may also

be assembled.

4. The directory path can also be specified within the file name. If only the file name is

specified then the processing operation will be carried out on a file contained within the

current directory in the current drive.

Example: A>SRA74 C:\WORK\TEST<RET>

8.2.2 Command parameters

1. A command parameter consists of a minus sign followed by one or two characters.

2. Both upper case and lower case characters are remain valid for command parameters.

Chapter 8. Operation method

1–51

3. Each parameter is capable of multiple specification at the same time. In such cases each

parameter should be separated from the next by a space prior to entry.

4. Two consecutive minus signs can be used to disable a command parameter. For example,

--L suppresses the generation of PRN file.

5. Command parameters specified with the environment variable SRA74 are processed first.

Table 8.1 describes the contents of the command parameters.

Table 8.1 : List of command parameters

Command parameter Description

-. Inhibits the output of messages other than error messages to the VDU.

This parameter should be used when using SRA74 with batch files, for

example, and only error messages are required to be shown on the

screen.

-!8 Makes the calculation result the lower 8 bits of the value after carrying

out a ! operation.

-A Specifies that the program is entered only in assembly language1.

-BANK Expands the address area upper limit from FFFFH to 1FFFFH. Opera-

tors BK and BL can be used. Section E information is not output to

relocatable files or list files.

-C Outputs source line debug data for all lines in the file.

-D Sets a symbol’s numerical value. The function of the command is

equivalent to that of the pseudo-command .EQU. The specification

format is as follows (When defining more than one symbol at a time

each symbol and value entry should be separated from the next by a

“:”):

-Dsymbol=numerical value [:symbol=numerical value....:

symbol=numerical value]

Example: A>SRA74 SRCFILE -DS1=10:S2=20<RET>

-E Generates the TAG file and activates the editor. The format for specifi-

cation of the editor’s program name is as follows2:

-E[editor name]

Example: A>SRA74 SRCFILE -EMI<RET>

The part contained within the brackets [] may be omitted. If omitted,

however, only a TAG file will be generated. In cases where the editor

name has been specified the editor will be activated with the TAG file

as argument after completion of the assembly operation. If, however,

no error occurs then the editor will not be activated even though its

name has been specified.

-I Generates the source file (.I) in which the structured language com-

mands are expanded into assembly language commands. When this

parameter is specified at the same time as -L then the expanded sec-

tions will also be output to the print file which has been generated.

8.2 Input parameters

SRA741–52

Command parameter Description

-K Suppresses the output of label information (such as “.IO”) generated by

SRA74 to the R74 file. This causes only user defined local labels to be

output when the -S option is specified.

-L Generates a PRN file. A PRN file will not be generated without this

specification.

-LS Generates a PRN file with symbol list.

-M Outputs the result of macro generation to the PRN file. Without this

specification the result of the macro generation will not be output into

the list.

-O Specifies the output destination path for the generated file. Both the

directory and the drive name can be specified in the path. In the

absence of such specification output will use the same path as the

source file. The specification format is as follows:

-O path name

Example: A>SRA74 SRCFILE -OB:\USR<RET>

-S Outputs local bit symbols, symbols and labels to the R74 file.

-U Ignores the label entry “:” (colon). Without such specification and in

cases where the label was entered by the program then the absence of

the “:” will be treated as an error.

-X Activates the cross-referencer after the assembly operation has been

completed3.

Example: A>SRA74 SRCFILE -X<RET>

Notes:

1. When this specification is made then SRA74 will not create temporary files during the assem-

bly operation. The duration of the assembly operation will therefore be reduced.

This command parameter should also be specified when an I file is input as the source file.

2. If there is no CRF74 in the current directory or in the command path then this will register as

a system error.

Chapter 8. Operation method

1–53

8.3 Method of entry

SRA74 is activated by the input of command lines at the operating system prompt. Fig 8.1 shows

an example of the input of activation command lines.

If a mistake is detected during the input of the command lines then a help page is displayed as

shown in Fig 8.2 and the assembly operation is halted. If, on the other hand, the command lines

have been input correctly then the assembly operation will be initiated. On completion of the

assembly operation the number of errors, the number of warnings, the total number of lines, the

number of comment lines and the section level memory capacity will all be displayed on the screen.

An example of the appearance of the VDU screen following the successful completion of an

assembly operation is shown in Fig 8.3.

A>SRA74 FILENAME -L -E <RET>

 ↓ ↓
 Name of source file Command parameter

 to be assembled

Fig 8.1 : Example of the input of activation commands

A>SRA74<RET>
740 Family SRA74 V.4.00.00
Copyright 1989-1998, MITSUBISHI ELECTRIC CORPORATION
AND MITSUBISHI ELECTRIC SEMICONDUCTOR SYSTEMS CORPORATION
All Rights Reserved.

Usage: sra74 <filename> [options]
 -. : all message suppressed
 -a : assmble assembly language source file
 -c : source line data output to .R74 file
 -d : define symbols (syntax -ds1=1:s2=2)
 -e : make tag file and start editor (syntax -e or -eeditor name)
 -i : make assembler source file
 -k : suppress system label information to R74 file
 -l[s]: make list file or symbol list file
 -m : macro listing
 -o : select drive and directory for output (syntax -otmp)
 -s : local symbol data output to .R74 file
 -u : don't care ':' at end of label
 -x : execute crf74
A>

Fig 8.2 : Help page for command error

8.3 Method of entry

SRA741–54

A>SRA74 TEST<RET>
740 Family SRA74 V.4.00.00
Copyright 1989-1998, MITSUBISHI ELECTRIC CORPORATION
AND MITSUBISHI ELECTRIC SEMICONDUCTOR SYSTEMS CORPORATION
All Rights Reserved.

now processing pass 1 (TEST.A74)
----*----
now processing pass 2 (TEST.A74)
----*----

ERROR COUNT 00000
WARNING COUNT 00000
STRUCTURED STATEMENT 00702 LINES
TOTAL LINE (SOURCE) 00994 LINES
TOTAL LINE (OBJECT) 00994 LINES
COMMENT LINE (SOURCE) 00247 LINES
COMMENT LINE (OBJECT) 00147 LINES
OBJECT SIZE (Z) 00010 (000A) BYTES
OBJECT SIZE (R) 00053 (0035) BYTES
OBJECT SIZE (P) 01938 (0792) BYTES

A>

Fig 8.3 : VDU display on normal termination

Chapter 8. Operation method

1–55

8.4 Errors

8.4.1 Types of error

The types of errors which occur during the operation of SRA74 have the following causes:-

1. Errors relating to the operating system

These are errors such as insufficient disc or memory capacity which relate to SRA74’s

operating system. Please refer to the list of error messages in Appendix A and proceed

according to the operating system commands.

2. Errors relating to the input of SRA74 command lines

These are errors relating to the input of the command lines to activate SRA74. Please study

the contents of this chapter and then reinput the relevant commands.

3. Errors relating to the contents of the source file constituting the object of the assembly

operation

These are errors relating to the source file such as the dual definition of a label or reference

to a symbol which has not been defined. Please correct the relevant contents of the source

file and carry out the assembly operation again. When an assembly error is detected the

R74 file will not be generated.

Whenever an error or warning is detected SRA74 outputs the contents (file name, line number in

file, consecutive line number, error number and error message) of the error onto the VDU screen

and the print file in the format shown in Fig 8.4. Please study the list of errors in error number

order in Appendix A and take action accordingly.

8.4 Errors

SRA741–56

A>SRA74 TEST<RET>
740 Family SRA74 V.4.00.00
Copyright 1989-1998, MITSUBISHI ELECTRIC CORPORATION
AND MITSUBISHI ELECTRIC SEMICONDUCTOR SYSTEMS CORPORATION
All Rights Reserved.

now processing pass 1 (TEST.A74)
----*----
now processing pass 2 (TEST.A74)
-
 115 E025 EAEA BCC LOOP2
TEST.A74 115 (TOTAL LINE 115) Error 18: Relative jump is out of range
 127 E031 EAEA LDA #data
TEST.A74 127 (TOTAL LINE 127) Error 22: Value is out of range "data"
---*
 551 E42B EAEA BRA TEST2
TEST.A74 551 (TOTAL LINE 551) Error 18: Relative jump is out of range
 593 E4FC EAEAEA LDA (work,x ; data set
TEST.A74 593 (TOTAL LINE 593) Error 23: "()" format error ";"

ERROR COUNT 00004
WARNING COUNT 00000
STRUCTURED STATEMENT 00702 LINES
TOTAL LINE (SOURCE) 00994 LINES
TOTAL LINE (OBJECT) 00994 LINES
COMMENT LINE (SOURCE) 00247 LINES
COMMENT LINE (OBJECT) 00147 LINES
OBJECT SIZE (Z) 00010 (000A) BYTES
OBJECT SIZE (R) 00053 (0035) BYTES
OBJECT SIZE (P) 01938 (0792) BYTES

A>

Fig 8.4 : Example of error display

Chapter 8. Operation method

1–57

8.4.2 Value for return to operating system

When entering an execution command into an operating system batch file, for example, there are

times when you may wish to change the contents of the processing operation in accordance with

the outcome of the execution. In SRA74 the execution results are divided into 4 error levels as

shown in Table 8.2 and returned to the operating system.

Table 8.2 : List of error levels

Error level Description of execution results

0 Normal termination

1 Error relating to content of source file which constitutes the object of the

assembly operation

2 Error relating to input of SRA74 commands

3 Error relating to the operating system

4 Forced termination caused by ^C (cntl-C).

8.4 Errors

SRA741–58

8.5 Environment variables

SRA74 makes use of the following environment variables:-

• TMP

Specifies the name of the directory for creation of the temporary files generated during the

assembly operation. In cases where this environment variable has not been set the tempo-

rary files will be generated in the same directory as the source file. An example of the setting

of an environment variable is shown below:

Example: set TMP=A:\TMP

• INC

Specifies the name of the directory holding the files to be included during the assembly

operation. In cases where this environment variable is not specified, files to be read in by

means of the pseudo-command .INCLUDE are retrieved from the current directory. An

example of the setting of this environment variable is shown below:

Example: set INC=A:\INC74

• SRA74

This environment variable can be used to specify the command name and command param-

eters normally entered from the command line. An example of this command variable is

shown below:

Example: SET SRA74=-L -I

This environment variable can be used to define frequently used command paraemters thus

eliminating the need to enter them from the command line each time. The command param-

eter defined with this environment varialbe can be disabled from the command line if it is

unnecessary.

The specifications made with the environment variable SRA74 are processed before those

on the command line. For example, the following specifications (PC):

SET SRA74=-L -I

SRA74 FILE --L -S

are equivalent to the following specification from the command line:

SRA74 -L -I FILE --L -S

In other words, the command parameter “-L” is disabled with the specification from the

command line and no PRN file is generated.

Chapter 8. Operation method

1–59

APPENDIX A

Error Messages

A.1 System errors
When a system error is detected during the assembly operation an error message is displayed on

the VDU and assembly is suspended. Table A.1 lists all the system errors.

Table A.1 : List of system errors

Error Message Description and User Action

Usage: sra74 <filename> [options] The command has been input wrongly.

⇒ Refer to the help page and input the command again.

Can’t open xxx1 File not found.

⇒ Check the source file name and input again.

Can’t create xxx This file cannot be generated.

⇒ Check the specification of the -O parameter and input

again.

Out of disk space There is not enough space left on the disk selected for

output.

⇒ Create more space on the disk.

Out of heap space The memory space required for the operation of the

assembler is insufficient2.

⇒ Reduce the number of symbols or labels.

Can’t find crf74.exe The CRF74 cannot be found.

⇒ Copy the CRF74 into the current directory or else into

a directory in the command path of the operating system.

Can’t find command.com for execute xxx The COMMAND.COM file which is required to activate

the editor specified by the -E option cannot be found.

⇒ Check the specification of the operating system

command path.

SRA741–60

Notes:

1. The total number of symbols and labels handled by SRA74 is dependent on the memory

capacity of the SRA74 operating system.

A.2 List of assembly errors

When an assembly error is detected an error message is output to both the VDU and the PRN file.

Table A.2 contains a list of assembly errors with descriptions of their contents.

Table A.2 : List of assembly errors

Error number Error Message Description and User Action

1 Already had same statement A pseudo-command which should only be used

once in the source file has been used more than

once.

Example: .LINE 60

:

.LINE 80

⇒ Reduce the number of times the declaration is

used to one.

2 Reference to forward label or symbol A pseudo-command refers to a forward label or

symbol.

Example: .ORG TOP

TOP:

⇒ Carry out the definition of the label or symbol

prior to the reference.

3 Division by 0 A numerical expression contains a division by 0.

⇒ Check the entry of the numerical expression.

Appendix A. Error messages

1–61

Error number Error Message Description and User Action

4 Illegal operand The operand contains a character which should not

have been used.

Example: LDA #&10

⇒ Check the entry of the operand.

5 Improper operand type The combination of mnemonic and operand is at

fault.

Example: ASL work,Y

⇒ Check the entry format of the command.

6 Invalid label definition The definition of the label has been entered into an

improper area.

Example 1: LABEL1: .LINE 60

⇒ Delete the label.

Example 2: LABEL2: .EQU 100

⇒ Change the label to a symbol.

7 Invalid symbol definition The definition of the symbol has been entered into

an improper area.

Example: SYMBOL .LINE 60

⇒ Delete the symbol.

8 Out of maximum program size The address is outside 0FFFF16

.

Example: .ORG 0FFF0H

.WORD 1,2,3,4,5,6,7,8,9

⇒ Modify the program such that the address falls

within the permissible boundaries.

9 Label or symbol is multiple defined The same label or symbol is defined more than

once.

Example: MAIN: NOP

MAIN: NOP

⇒ Check the label or symbol name.

10 Nesting error The maximum nesting level has been exceeded.

⇒ Reduce the number of nests to within the

allowed maximum.

A.2 List of assembly errors

SRA741–62

Error number Error Message Description and User Action

11 No .END statement There is no .END statement in the source file.

⇒ Enter an .END statement at the end of the

program.

12 No symbol definition The symbol has not been entered.

Example: .EQU 60

⇒ Enter the symbol.

13 No ‘;’ at the top of comment There is no ‘;’ at the head of the comment section.

Example: LDA #CNT counter set

⇒ Add a ‘;’ at the head of the comment section.

14 Not in conditional block ~.ELSE or .ENDIF has been entered regardless of

the absence of a corresponding

~.IF statement.

(This error will also occur when the corresponding

.IF statement is in error.)

Example: .IF DATA1

:

.ENDIF

:

.ELSE

:

.ENDIF

⇒ Check the .IF statement.

15 Operand is expected The operand required by the command is insuffi-

cient.

Example: .BYTE

⇒ Check the entry of the operand.

16 Questionable syntax The mnemonic is spelled incorrectly.

Example: ADD #DATA

⇒ Check the spelling of the mnemonic.

17 Reference to multi defined label or Reference has been made to a label or symbol

symbol which has been defined more than once.

Example: MAIN: NOP

MAIN: NOP

BRA MAIN

⇒ Check the name of the label or symbol.

Appendix A. Error messages

1–63

Error number Error Message Description and User Action

18 Relative jump is out of range The jump destination address of the relative jump

command is outside the permissible boundaries.

⇒ Either remap the program or modify the com-

mand.

19 Label or symbol is reserved word A name which is identical to a reserved word has

been used in the label or symbol.

Example: A .EQU 1FFH

⇒ Modify the name of the label or symbol.

20 Reference to undefined label or symbol Reference is being made to a label or symbol

which has not been defined.

⇒ Check the label or symbol.

21 Value error The data entry format is incorrect

Example : ADC #’A

⇒ Check the data entry format

22 Value is out of range The data boundaries are outside the permissible

range.

Example: ADC #100H

⇒ Check the operand entry format.

23 “()” format error The number of left brackets ‘(‘ and right brackets ‘)’

does not match.

Example: ADC (WORK

⇒ Check the operand entry format.

24 Relocatable error The pseudo-command .ORG has been entered

into a relocatable section.

Example: .SECTION PROG

LDA WORK

:

.ORG 1000H

:

⇒ Separate the sections.

25 No .SECTION statement The pseudo-command .SECTION has not been

entered.

⇒ Enter the pseudo-command .SECTION prior to

program entry.

A.2 List of assembly errors

SRA741–64

Error number Error Message Description and User Action

26 Reference to undefined section Reference is being made to a section name which

has not been defined.

Example: LDA #SIZEOF UNDEF

⇒ Check the relevant section.

27 Section type mismatch A command or data set pseudo-command (.BYTE,

etc.) has been mixed up with an area secure

command (.BLKB, etc.).

Example : LDA #WORK

.BLKB 1

⇒ Separate the sections.

28 Constant value is required Relative attribute label or external reference

symbol cannot be used.

⇒ Use an absolute value.

30 else not associated with if There is no “if” to correspond with “else”.

⇒ Check the program.

31 endif not associated with if There is no “if” to correspond with “endif”.

⇒ Check the program.

32 next not associated with for There is no “for” to correspond with “next”.

⇒ Check the program.

33 while not associated with do There is no “do” to correspond with “while”.

⇒ Check the program.

34 break not inside for, do or switch “break” has been used in an improper location.

⇒ Check the program.

35 case not inside switch “case” has been entered outside the “switch”

range.

⇒ Check the program.

36 duplicate case value The “case” value has been used more than once.

⇒ Check the program.

37 more than one default There is more than one “default” in the same

“switch” statement.

⇒ Check the program.

38 default not inside switch “default” has been entered outside the “switch”

statement range.

⇒ Check the program.

39 ends not associated with switch There is no “switch” to correspond with “ends”.

⇒ Check the program.

40 continue not inside for or do “continue” has been entered into an improper

location.

⇒ Check the program.

Appendix A. Error messages

1–65

A.3 List of warnings

When a warning is detected a warning message is output to the VDU and the PRN file. Table A.3

lists all the warning messages along with a description of their contents.

Table A.3 : List of warnings

Warning number Warning message Description and user action

1 Phase warning 1) The address specified by pseudo-command .ORG

precedes an address prior to that one.

Example: .ORG 0E000H

 MAIN: LDA WORK

:

.ORG 0C000H

2) The command is referring to a label or symbol

which is defined after this line.

Example: LDA WK,X

 :

WK .EQU 80H

⇒ Define the label or symbol prior to the line which

refers to it.

2 .END statement in include file The pseudo-command .END has been entered into

the include file.

⇒ Enter .END into the source file.

3 statement has no effect The statement has no meaning as a statement.

⇒ Check the program.

4 not case values for switch The “switch” statement does not contain any “case”

statement values.

⇒ Check the program.

5 statement not preceded by case or The statement comes before “case” or “default” in a

default “switch” statement.

⇒ Check the program.

6 .EQU symbol is multiple defined Pseudo-command .EQU is defined more than once

with the same symbol.

7 '.SECTION E' requires command Programs section E. Specify the -BANK command

option '-BANK' option to assemble programs.

A.3 List of warnings

SRA741–66

APPENDIX B

List of Commands

B.1 List of symbols

Table B.1 indicates the significance of the symbols used in the list of commands.

Table B.1 : List of symbols

Symbol Description Symbol Description

A Accumulator X Index register X

Y Index register Y imm Immediate data

zz Zero page address hhll General page address

i Bit value (0-7) bitsym Bit symbol

Immediate mode \ Special page mode

B.2 List of commands
Table B.2 lists all the commands which can be used in SRA74. Its addressing mode name and

entry format is given alongside each command.

Appendix B. List of commands

1–67

Table B.2 : List of commands

Command Addressing mode Entry format

ADC Immediate ADC #imm

Zero page ADC zz

Zero page X ADC zz,X

Zero page indirect X ADC (zz,X)

Zero page indirect Y ADC (zz),Y

Absolute ADC hhll

Absolute X ADC hhll,X

Absolute Y ADC hhll,Y

AND Immediate AND #imm

Zero page AND zz

Zero page X AND zz,X

Zero page indirect X AND (zz,X)

Zero page indirect Y AND (zz),Y

Absolute AND hhll

Absolute X AND hhll,X

Absolute Y AND hhll,Y

ASL Accumulator ASL A

Zero page ASL zz

Zero page X ASL zz,X

Absolute ASL hhll

Absolute X ASL hhll,X

BBC Accumulator bit relative BBC i,A,hhll

BBC bitsym,A,hhll

Zero page bit relative BBC i,zz,hhll

BBC bitsym,hhll

BBS Accumulator bit relative BBS i,A,hhll

BBS bitsym,A,hhll

Zero page bit relative BBS i,zz,hhll

BBS bitsym,hhll

B.2 List of commands

SRA741–68

Command Addressing mode Entry format

BCC Relative BCC hhll

BCS Relative BCS hhll

BEQ Relative BEQ hhll

BIT Zero page BIT zz

Absolute BIT hhll

BMI Relative BMI hhll

BNE Relative BNE hhll

BPL Relative BPL hhll

BRA Relative BRA hhll

BRK Implied BRK

BVC Relative BVC hhll

BVS Relative BVS hhll

CLB Accumulator bit CLB i,A

CLB bitsym,A

CLB Zero page bit CLB i,zz

CLB bitsym

CLC Implied CLC

CLD Implied CLD

CLI Implied CLI

CLT Implied CLT

CLV Implied CLV

CMP Immediate CMP #imm

Zero page CMP zz

Zero page X CMP zz,X

Zero page indirect X CMP (zz,X)

Zero page indirect Y CMP (zz),Y

Absolute CMP hhll

Absolute X CMP hhll,X

Absolute Y CMP hhll,Y

COM Zero page COM zz

Appendix B. List of commands

1–69

Command Addressing mode Entry format

CPX Immediate CPX #imm

Zero page CPX zz

Absolute CPX hhll

CPY Immediate CPY #imm

Zero page CPY zz

Absolute CPY hhll

DEC Accumulator DEC A

Zero page DEC zz

Zero page X DEC zz,X

Absolute DEC hhll

Absolute X DEC hhll,X

DEX Implied DEX

DEY Implied DEY

DIV Zero page X DIV zz,X

EOR Immediate EOR #imm

Zero page EOR zz

Zero page X EOR zz,X

Zero page indirect X EOR (zz,X)

Zero page indirect Y EOR (zz),Y

Absolute EOR hhll

Absolute X EOR hhll,X

Absolute Y EOR hhll,Y

FST Implied FST

INC Accumulator INC A

Zero page INC zz

Zero page X INC zz,X

Absolute INC hhll

Absolute X INC hhll,X

INX Implied INX

INY Implied INY

JMP Absolute JMP hhll

Zero page indirect JMP (zz)

Absolute indirect JMP (hhll)

B.2 List of commands

SRA741–70

Command Addressing mode Entry format

JSR Absolute JSR hhll

Special page JSR \hhll

Zero page indirect JSR (zz)

LDA1 Immediate LDA #imm

Zero page LDA zz

LDA bitsym

Zero page X LDA zz,X

Zero page indirect X LDA (zz,X)

Zero page indirect Y LDA (zz),Y

Absolute LDA hhll

LDA bitsym

Absolute X LDA hhll,X

Absolute Y LDA hhll,Y

LDM Zero page LDM #imm,zz

LDX Immediate LDX #imm

Zero page LDX zz

Zero page Y LDX zz,Y

Absolute LDX hhll

Absolute Y LDX hhll,Y

LDY Immediate LDY #imm

Zero page LDY zz

Zero page X LDY zz,X

Absolute LDY hhll

Absolute X LDY hhll,X

LSR Accumulator LSR A

Zero page LSR zz

Zero page X LSR zz,X

Absolute LSR hhll

Absolute X LSR hhll,X

MUL Zero page X MUL zz,X

NOP Implied NOP

Note:

1. When a bit symbol is entered into the operand of an LDA command only the address of the bit

symbol is valid.

Appendix B. List of commands

1–71

Command Addressing mode Entry format

ORA Immediate ORA #imm

Zero page ORA zz

Zero page X ORA zz,X

Zero page indirect X ORA (zz,X)

Zero page indirect Y ORA (zz),Y

Absolute ORA hhll

Absolute X ORA hhll,X

Absolute Y ORA hhll,Y

PHA Implied PHA

PHP Implied PHP

PLA Implied PLA

PLP Implied PLP

ROL Accumulator ROL A

Zero page ROL zz

Zero page X ROL zz,X

Absolute ROL hhll

Absolute X ROL hhll,X

ROR Accumulator ROR A

Zero page ROR zz

Zero page X ROR zz,X

Absolute ROR hhll

Absolute X ROR hhll,X

RRF Zero page RRF zz

RTI Implied RTI

RTS Implied RTS

SBC Immediate SBC #imm

Zero page SBC zz

Zero page X SBC zz,X

Zero page indirect X SBC (zz,X)

Zero page indirect Y SBC (zz),Y

Absolute SBC hhll

Absolute X SBC hhll,X

Absolute Y SBC hhll,Y

SEB Accumulator bit SEB i,A

SEB bitsym,A

B.2 List of commands

SRA741–72

Command Addressing mode Entry format

SEB Zero page bit SEB i,zz

SEB bitsym

SEC Implied SEC

SED Implied SED

SEI Implied SEI

SET Implied SET

SLW Implied SLW

STA1 Zero page STA zz

STA bitsym

Zero page X STA zz,X

Zero page indirect X STA (zz,X)

Zero page indirect Y STA (zz),Y

Absolute STA hhll

STA bitsym

Absolute X STA hhll,X

Absolute Y STA hhll,Y

STP Implied STP

STX Zero page STX zz

Zero page Y STX zz,Y

Absolute STX hhll

STY Zero page STY zz

Zero page X STY zz,X

Absolute STY hhll

TAX Implied TAX

TAY Implied TAY

TST Zero page TST zz

TSX Implied TSX

TXA Implied TXA

TXS Implied TXS

TYA Implied TYA

WIT Implied WIT

Note:

1. When a bit symbol is entered into the operand of the STA command only the address of the bit

symbol is valid.

Appendix B. List of commands

1–73

APPENDIX C

Commands Listed by Addressing Mode

C.1 List of commands by addressing mode

Listed below are command coding formats by addressing mode. The symbols used in the descrip-

tion are listed in the symbol table in Appendix B.1.

1. Implied

Commands Coding Format

BRK, CLC, CLD, CLI, CLT, CLV, DEX, BRK

DEY, INX, INY, NOP, PHA, PHP, PLA,

PLP, RTI, RTS, SEC, SED, SEI, SET,

SLW, STP, TAX, TAY, TSX, TXA, TXS,

TYA, WIT

2. Immediate

Commands Coding Format

ADC, AND, CMP, CPX, CPY, EOR, ADC #imm

LDA, LDX, LDY, ORA, SBC

3. Accumulator

Commands Coding Format

ASL, DEC, INC, LSR, ROL, ROR ASL A

4. Zero page

Commands Coding Format

ADC, AND, ASL, BIT, CMP, COM, CPX, ADC zz

CPY, DEC, EOR, INC, LDA, LDX, LDY,

LSR, ORA, ROL, ROR, RRF, SBC, STA,

STX, STY, TST

LDM LDM #imm,zz

SRA741–74

5. Zero page index X

Commands Coding Format

ADC, AND, ASL, CMP, DEC, DIV, EOR, ADC zz,X

INC, LDA, LDY, LSR, MUL, ORA, ROL,

ROR, SBC, STA, STY

6. Zero page index Y

Commands Coding Format

LDX, STX LDX zz,Y

7. Zero page indirect

Commands Coding Format

JMP, JSR JMP (zz)

8. Zero page indirect index X

Commands Coding Format

ADC, AND, CMP, EOR, LDA, ORA, ADC (zz,X)

SBC, STA

9. Zero page indirect index Y

Commands Coding Format

ADC, AND, CMP, EOR, LDA, ORA, ADC (zz),Y

SBC, STA

10. Absolute

Commands Coding Format

ADC, AND, ASL, BIT, CMP, CPX, CPY, ADC hhll

DEC, EOR, INC, JMP, JSR, LDA, LDX,

LDY, LSR, ORA, ROL, ROR, SBC, STA,

STX, STY

11. Absolute index X

Commands Coding Format

ADC, AND, ASL, CMP, DEC, EOR, INC, ADC hhll,X

LDA, LDY, LSR, ORA, ROL, ROR, SBC,

STA

Appendix C. Commands listed by addressing mode

1–75

12. Absolute index Y

Commands Coding Format

ADC, AND, CMP, EOR, LDA, LDX, ORA, ADC hhll,Y

SBC, STA

13. Absolute indirect

Commands Coding Format

JMP JMP (hhll)

14. Special page

Commands Coding Format

JSR JSR \hhhll

15. Zero page bit

Commands Coding Format

CLB, SEB CLB i,zz

CLB bitsym

16. Accumulator bit

Commands Coding Format

CLB, SEB CLB i,A

CLB bitsym,A

17. Relative

Commands Coding Format

BCC, BCS, BEQ, BMI, BNE, BPL, BRA, BCC hhll

BVC, BVS

18. Zero page bit relative

Commands Coding Format

BCC, BBS BBC i,zz,hhll

BBC bitsym,hhll

C.1 List of commands by addressing mode

SRA741–76

Appendix C. Commands listed by addressing mode

19. Accumulator bit relative

Commands Coding Format

BBC, BBS BBC i,A,hhll

BBC bitsym,hhll

1–77

APPENDIX D

The Pseudo-Commands

D.1 How to use the pseudo-command reference section

All the pseudo-commands which can be used in SRA74 are described in alphbetical order. Points

which should be noted with regard to the notation style in this section are outlined below:-

1. The use of square brackets [] indicates that the section may be omitted as required.

2. ▲▲ , ▲ are used to indicate the use of a space or a tab code. The ▲▲ represents a required

section whereas the ▲ section may be omitted if necessary.

3. In the following descriptions the space between a label and a pseudo-command is indicated

by a ▲. When entering a label a “:” (colon) is not absolutely necessary but if it is omitted

then a space or tab code must be inserted between the label and a pseudo-command.

D.2 Summary of the pseudo-commands

SRA741–78

.ASSERT Assemble assertion directive

Format

▲.ASSERT ▲▲ ’character string’

Description

• Displays the character string to be entered into an operand on the VDU during the course of

the assembly operation.

Example

.IF MODE
 :
.ELSE
.ASSERT 'MODE is FALSE'
.ENDIF

.BEXT External reference setting (General page bit symbol)

Format

▲.BEXT ▲▲bit symbol[,bit symbol,..,bit symbol]

Description

• Specifies that the bit symbol specified in the operand may be subject to external reference.

• A bit symbol specified by this pseudo-command is understood to be located on a general

page.

• This pseudo-command should be entered before the line which refers to the label.

Example

.BEXT BIT0,BIT1,BIT2

 :

Appendix D. The pseudo-commands

1–79

.BLKB RAM area secure (unit : byte)

Format

▲[label:] ▲.BLKB ▲▲numerical expression

Description

• Secures an area of a size specified by a numerical expression (unit : 1 byte).

• Any labels or symbols used in the numerical expression should be defined prior to the line in

question.

• Labels with relocatable values cannot be entered into the operand.

Example

label: .BLKB 10 ; Secures a 10 byte area.
:

.BYTE Byte data setting

Format

▲[label:] ▲.BYTE ▲▲numerical expression

Description

• Sets 1 byte of constant data.

• If more than 1 byte of data is to be set then each item of data must be separated by a “,”. Up

to 255 items of data may be specified.

• Global labels may be entered into the operand.

Example

label1: .BYTE 10 ; Sets 0AH.
label2: .BYTE 'A','B' ; Sets 41H and 42H.

 :

D.2 Summary of the pseudo-commands

SRA741–80

.COL Column number setting (Default setting : 512)

Format

▲.COL ▲▲numerical expression

Description

• Sets the number of columns (from 80 to 512) on one line of a list.

• A setting of 79 columns or less will be registered as 80 and a setting of 513 or more will be

registered as 512.

• This pseudo-command can be used only once during a program.

Example

 .COL 80 ; Sets the number of columns to 80.
 :

.END Program termination directive

Format

▲.END

Description

• Specifies the end of the source program.

• Lines following this pseudo-command will not form part of the assembly operation.

Example

 :
.END ; Directs the termination of the program.

Appendix D. The pseudo-commands

1–81

.ENDFUNC Function termination specification

Format

▲.ENDFUNC ▲▲ label

Description

• Specifies the end of the function (subroutine).

• The use of this command enables a source line debug in the SDB74.

Example

.FUNC SUB
SUB: LDA #1

 :
 :
RTS
.ENDFUNC SUB ; Specifies the end of the function.

D.2 Summary of the pseudo-commands

SRA741–82

.EQU (or else ‘=’) Synonymous definition

Format 1

symbol ▲▲.EQU(or’=’)▲▲numerical expression

Format 2

bit symbol ▲▲.EQU▲▲(or’=’)▲▲numerical expression,numerical expression

Description

• Allocates a numerical value to the left hand symbol.

• Format 1 is used to allocate a 16 bit integer value to the symbol. Format 2 is used to allocate

0-7 bit values and a 16 bit integer value (address) to the symbol.

• Any labels or symbols used in the numerical expression should be defined prior to the line in

question.

• Labels with relocatable values may not be entered into the operand.

• Symbols may be redefined.

• If the command parameter “-Q’” is specified, a warning is issued when a symbol is redefined.

Example

symbol .EQU 1 ; 1 is assigned to symbol
 :
symbol .EQU 2 ; 2 is assigned to symbol
 :
symbol .EQU 3 ; 3 is assigned to symbol
 :
bitsym .EQU 1,23H ; bit 1 at 23H is assigned to bitsym

Appendix D. The pseudo-commands

1–83

.ERROR Assembly error directive

Format

▲.ERROR ▲’character string’

Description

• Used in combination with the conditional assembly command (.IF).

• If something is specified which cannot exist as a condition then the character string entered

in the operand is displayed on the VDU and the assembly operation is terminated.

Example

.IF MODE
:

.ELSE

.ERROR "undefined assemble mode’

.ENDIF

.EXT External reference specification (General page)

Format

▲.EXT ▲▲ label or symbol[,label or symbol,..,label or symbol]

Description

• Specifies that the label specified in the operand may make external reference in the absolute

addressing mode. If you wish to carry out the assembly operation in the zero page address-

ing mode or in the special page addressing mode then the specification should be modified

to .ZEXT or .SEXT respectively.

• This pseudo-command should be entered prior to the line in which reference is made to the

label.

Example

 .EXT WORK1,WORK2,WORK3
 :

D.2 Summary of the pseudo-commands

SRA741–84

.FUNC Function start specification

Format

▲.FUNC ▲▲ label

Description

• Specifies the start of the function (subroutine)

• The use of this command enables a source line debugging.

• The label used with the pseudo-command “.FUNC” cannot be used on another “.FUNC”.

Example

.FUNC SUB ; Specifies the start of the function.
SUB: LDA #1

:
:
RTS
.ENDFUNC SUB

Appendix D. The pseudo-commands

1–85

D.2 Summary of the pseudo-commands

.IF (.ELSE) .ENDIF Conditional assembly

Format

▲.IF▲▲expression

<statement 1>

▲.ELSE

<statement 2>

▲.ENDIF

Description

• Numeric or string expression may be used as operand.

• When the operand is a numeric expression, assembles statement 1 if the result is true (not 0)

or statement 2 if the result is false (0).

• When the operand is a string expression, assembles statement 1 if the string is true (string

data) or statement 2 if the string is false (no string data).

• This command may be nested up to 20 levels. (Depending on the available host system

memory.)

• Multiple lines may be specified for statements 1 and 2.

• Label with relocatable value may not be specified in the operand field.

• The operand may contain the following logical operators.

< Less than

> Greater than

== Equal

!= Not equal

<= Less than or equal

>= Greater than or equal

• If an undefined symbol is used in a numeric expression, it is treated as a symbol with value

0. If an undefined symbol is used in a string expression, it is treated as a character string.

• Up to six conditional expressions can be combined as operand using logical operators (‘||’,

‘&&’). However, the expressions have no priority and are evaluated from left to right.

SRA741–86

Example

(1)

.IF FLAG ; Assembles lines through .ELSE if FLAG is true.
 :
 :
.ELSE ; Assembles lines through .ENDIF if FLAG is false.
 :
 :
.ENDIF

(2)
ADD: .MACRO OP1,OP2,OP3

.IF "OP3" ; Assemble through .ELSE if argument
; OP3 exists

ADC OP1,OP2,OP3
.ELSE
ADC OP1,OP2
.ENDIF

(3)
.IF FLAG1 && FLAG2 || FLAG3 && FLAG4
: Whether to assemble this section depends on the
: truth table shown below.
.ENDIF

FLAG1 FLAG2 FLAG3 FLAG4 Result

TRUE TRUE - - TRUE

TRUE FALSE TRUE TRUE TRUE

TRUE FALSE TRUE FALSE FALSE

TRUE FALSE FALSE - FALSE

FALSE - - - FALSE

"-’ may be either.

Appendix D. The pseudo-commands

1–87

.INCLUDE File read in

Format

▲.INCLUDE ▲▲file name

Description

• The contents of the file specified in the operand will be read into the location in which this

pseudo-command is entered.

• The name of the file should always be specified in full.

• This pseudo-command can be nested up to 4 levels.

• The nesting level is output to the print file.

Example

.INCLUDE TEST.INC ; Reads in the contents of TEST.INC

 :

.LIB Library file name specification

Format

▲.LIB ▲▲file name[,file name,..,file name]

Description

• Specifies the name of a library file forming the target of a link operation.

• Only files with the attribute .LIB may be specified. The specification of any other file will

result in an error being registered during the link operation.

• This pseudo-command cannot be nested.

• The directory path and file attribute (.LIB) may not be entered in the file name.

Example

 .LIB LIB1,LIB2,LIB3

 :

D.2 Summary of the pseudo-commands

SRA741–88

.LINE Specification of number of lines per page (Default value : 54)

Format

▲.LINE ▲▲numerical expression

Description

• Specifies the number of lines (5-255) per page of a list.

• This pseudo-command may be used only once in a program.

Example

 .LINE 60 ; Sets the number of lines to 60.
 :

.LIST Initiate list output (Preset value)

Format

▲.LIST

Description

• Performs the output of a list to the PRN file.

• This is used to restart the output of a list following suspension of output to the PRN file by

means of the pseudo- command .NLIST.

Example

 .NLIST ; Inhibits the output of the list.
 : ; There will be no output to the PRN file until ".LIST".
 :
 .LIST ; Initiates the output of the list.
 : ; Output is to the PRN files which follow this pseudo-command.
 :

Appendix D. The pseudo-commands

1–89

.LISTM Initiation of list output of macro generation section (Preset value)

Format

▲.LISTM

Description

• Outputs the macro command generation section to the PRN file.

• Used to restart list output following suspension of the macro generation section output by

means of the pseudo- command .NLIST.

• In cases where the pseudo-command .NLIST has been used to inhibit total list output then

the .LISTM command is invalid.

Example

 .NLISTM ; Inhibits output of the macro generation section list.
 : ; The macro generation section up to ".LISTM" will not be output.
 :
 .LISTM ; Initiates the output of a macro generation section list.
 : ; The macro generation section from this pseudo-command
 : ; onwards will be output.
 :

.NLIST List output inhibition

Format

▲.NLIST

Description

• Inhibits output to the PRN file.

• This condition can be reversed by means of the pseudo- command .LIST.

Example

 .NLIST ; Inhibits list output.
 : ; There will be no output to the PRN file until ".LIST".
 :
 .LIST ; Initiates list output.
 : ; Output will be made to the PRN file from this pseudo-command

 : ; onwards.
 :

D.2 Summary of the pseudo-commands

SRA741–90

.NLISTM Inhibition of macro generation section list output

Format

▲.NLISTM

Description

• The macro command generation section will not be output to the PRN file.

• This condition can be reversed by means of the pseudo- command .LISTM

Example

 .NLISTM ; Inhibits output of the macro generation section list.
 : ; The macro generation section will not be output until ".LISTM".
 :
 .LISTM ; Initiates the output of the macro generation section list.
 : ; The macro generation section from this pseudo-command
 : ; onwards will be output.
 :

.OBJ Relocatable file name specification

Format

▲.OBJ ▲▲file name[,file name,..,file name]

Description

• Specifies the name of a relocatable file which forms the target of a link operation.

• Only files with the attribute .R74 may be specified. The specification of any other file will

result in the registration of an error during the link operation.

• This pseudo-command may not be nested.

• The directory path and file attribute (.R74) may not be entered in the file name.

Example

 .OBJ OBJ1,OBJ2,OBJ3
 :

Appendix D. The pseudo-commands

1–91

.ORG (or else “*=”) Address directive (Preset value : 0000H)

Format

▲.ORG(or”*=”)▲▲numerical expression

Description

• Directs the initiation address from this line onwards.

• In the absence of any specification the initiation address will be 0000H.

• The section in which this pseudo-command is entered will become an absolute attribute. Any

section not containing this pseudo-command will become a relative attribute.

• Any labels or symbols used in the numerical expression should be defined prior to the line in

question.

• Labels with relocatable values may not be entered into the operand.

Example

 .ORG 0C000H ; Sets the location to C000H.
 :
 *= 0E000H ; Sets the location to E000H.

.PAGE List page feed and title setting

Format

▲.PAGE ▲▲[‘title’]

Description

• A list page feed is carried out immediately prior to this command and the title specified in the

operand is output to the header section of the list. The title should be enclosed within ’

(single quotes) or ” (double quotes) for entry.

• The maximum number of characters permitted in title is 20 if column specification is 80, 45 if

column specification is from 105 to 512, or 60 subtracted from the number of columns if

column specification is 81 to 104. If title is not specified, only skip to new page is performed.

Example

.PAGE ’PROG1’; PROG1 will be output to the header section of the PRN file.
 :

D.2 Summary of the pseudo-commands

SRA741–92

.PMOD ROM area specification (General page)

Format

▲.PMOD

Description

• Specifies that the area from this command onwards is a general page ROM area.

• This command is equivalent to the insertion of ‘P’ into the operand of the pseudo-command

.SECTION.

• This specification will remain valid until another area specification command is received.

• In the absence of an area specification command at the head of a file then .PMOD will be

selected as the standard value. Area specification commands may therefore be omitted in

respect of the first ROM area of a file.

Example

.PMOD

.EXT MAIN,SUB

.PUB ENZAN
ENZAN:

CLT
:

Appendix D. The pseudo-commands

1–93

.PUB Public specification

Format

▲.PUB ▲▲bit symbol or symbol or label,....

Description

• Enables the bit symbol, symbol or label specified in the operand to be referred from any

other source file.

• In a RAM area only file consisting only of Z section and R section, all labels are treated as

global. Therefore, .PUB specification for these labels may be omitted.

• This pseudo-command should be entered prior to the line in which the label or symbol is

defined.

Example

.RMOD

.PUB WORK1,WORK2,WORK3
WORK1: .BLKB 1
WORK2: .BLKB 1
WORK3: .BLKB 1

 :

D.2 Summary of the pseudo-commands

SRA741–94

.RMOD RAM area specification (General page)

Format

▲.RMOD

Description

• Specifies that the area from this command onwards is a general page RAM area.

• This command is equivalent to the insertion of ‘R’ into the operand of the pseudo-command

.SECTION.

• This specification will remain valid until another area specification command is received.

• In a RAM area only file consisting only of Z section and R section, all labels are treated as

global. Therefore, .PUB specification for these labels may be omitted.

Example

.RMOD
WORK1: .BLKB 1
WORK2: .BLKB 1
WORK3: .BLKB 1

:

Appendix D. The pseudo-commands

1–95

.SECTION Area specification

Format

▲.SECTION ▲▲section name

Description

• Specifies that the area from this line onwards will be the area with the name specified in the

operand.

• When reserved section names (P, R, S, Z) have been entered in the operand SRA74 will

recognize each as its own area attribute from this pseudo-command onwards and process

them accordingly but where another optional section name has been entered then the area

attribute will be determined in accordance with a later command. In such cases, however,

the areas will only be recognized as general page ROM or RAM areas.

• This specification will remain valid until another area specification command is received.

• It is no problem to have more than one section with the same name in any file.

• In the absence of an area specification command at the head of a file, .SECTION P will be

selected as the standard value. Area specification commands may therefore be omitted in

respect of the first ROM area of a file.

Example

.SECTION DATA ; Marks the start of the DATA section.
datatop:
nulldt: .BLKB 8

:
.SECTION STACK ; Marks the start of the STACK section.
.BLKB 16

stacktop:
:
.SECTION PROG ; Marks the start of the PROG section.

_init:
LDX #stacktop
TXS
LDA #SIZEOF DATA
LDX #datatop
:

D.2 Summary of the pseudo-commands

SRA741–96

.SEXT External reference specification (Special page)

Format

▲.SEXT▲▲ label or symbol[,label or symbol,..,label or symbol]

Description

• Specifies that the label specified in the operand may be subject to external reference in the

special page addressing mode (JSR \ only) or in the absolute addressing mode. If you wish

to carry out the assembly operation in the zero page addressing mode then the specification

should be made with .ZEXT.

• This pseudo-command should be entered prior to the line in which reference is made to the

label.

Example

.SECTION P

.EXT WORK1,WORK2

.SEXT SUB
START:

LDA WORK1
JSR \SUB
:

.SMOD ROM area specification (special page)

Format

▲.SMOD

Description

• Specifies that the area from this command onwards is a special page ROM area.

• This command is equivalent to the insertion of ‘S’ into the operand of the pseudo-command

.SECTION.

• This specification will remain valid until another area specification command is received.

Example

.SMOD

.EXT MAIN,SUB

.PUB ENZAN
ENZAN:

CLT
:

Appendix D. The pseudo-commands

1–97

.VER Program version specification

Format

▲.VER ▲▲ ’character string’

Description

• Specifies the version of a relocatable.

• If the parameter “-V” is specified then the LINK74 will check that there is correspondence

between the version specifications in each relocatable file. It is thereby possible to check the

version coordination between different relocatable files. For further information concerning

the “-V” parameter please refer to the LINK74 operation manual.

• The correspondence between versions is checked by means of a comparison of character

strings. Care should be taken when entering since a distinction is made between upper case

and lower case characters.

• This pseudo-command may only be entered once during a program.

Example

.VER 'V.1.0’ ; Specifies version ''V.1.0''.
:

.WORD Word data specification

Format

▲[label:] ▲.WORD ▲▲numerical expression

Description

• Sets values using numerical expressions (unit : word).

• If more than one item of data is set then each item should be separated by a “,”. A maximum

of 16 items may be specified on a single line.

• The data is set from the low order byte.

• Global labels may be entered into the operand.

Example

label: .WORD 0E000H ; Sets 00H and E0H.
.WORD symbol ; Sets the value of a symbol from the low order byte.

:

D.2 Summary of the pseudo-commands

SRA741–98

.ZBEXT External reference specification (Zero page bit symbol)

Format

▲.ZBEXT ▲▲bit symbol[,bit symbol,..,bit symbol]

Description

• Specifies that the bit symbol specified in the operand may be subject to external reference.

• A bit symbol specified by this pseudo-command is understood to be located on a zero page.

• This pseudo-command should be entered before the line which refers to the label.

Example

 .ZBEXT BIT0,BIT1,BIT2
 :

.ZEXT External reference specification (Zero page)

Format

▲.ZEXT ▲▲ label or symbol[,label or symbol,..,label or symbol]

Description

• Specifies that the label specified in the operand may be the subject of external reference in

the zero page addressing mode. If you wish to carry out the assembly operation in the

absolute addressing mode or in the special page addressing mode then the specification

should be modified to .EXT or .SEXT respectively.

• This pseudo-command should be entered prior to the line in which reference is made to the

label.

Example

.SECTION Z

.ZEXT WORK1,WORK2

.SEXT SUB
START:

LDA WORK1
JSR \SUB
:

Appendix D. The pseudo-commands

1–99

.ZMOD RAM area specification (Zero page)

Format

▲.ZMOD

Description

• Specifies that the area from this command onwards is a zero page RAM area.

• This command is equivalent to the insertion of ‘Z’ into the operand of the pseudo-command

.SECTION.

• This specification will remain valid until another area specification command is received.

• In a RAM area only file consisting only of Z section and R section, all labels are treated as

global. Therefore, .PUB specification for these labels may be omitted.

Example

.ZMOD
WORK1: .BLKB 1
WORK2: .BLKB 1
WORK3: .BLKB 1

:

D.3 List of reserved pseudo-commands

The pseudo-commands listed below have been reserved to facilitate expansion in the future. Even

if these pseudo-commands are entered there will be no effect on the assembly operation.

D.3 List of reserved pseudo-commands

SRA741–100

.ENDIO I/O area termination directive (Reserved)

Format

▲.ENDIO

Description

• Directs the termination of an I/O area.

• All labels and symbols entered between .IO and .ENDIO will be deemed to fall within the I/O

area.

Example

.IO
port0 .EQU 00H
port1 .EQU 01H

.ENDIO

.ENDPROC Program module termination directive (Reserved)

Format

▲.ENDPROC

Description

• Directs the termination of all modules of a main program, subprogram or interrupt program.

• The area enclosed by either .PROCINT, .PROCMAIN or .PROCSUB and .ENDPROC is

deemed to be a single program module.

Example

.PROCMAIN
MAIN:

:
JMP MAIN
.ENDPROC

Appendix D. The pseudo-commands

1–101

.ENDRAM RAM area termination directive (Reserved)

Format

▲.ENDRAM

Description

• Directs the termination of the RAM area.

• Any labels and symbols entered between .RAM and .ENDRAM are deemed to belong to the

RAM area.

Example

.RAM
work0: .BLKB 1
work1: .BLKB 1

.ENDRAM

.IO I/O area start directive (Reserved)

Format

▲.IO

Description

• Directs the start of an I/O area.

• Any labels or symbols entered between .IO and .ENDIO are deemed to belong to the I/O

area.

Example

.IO
port0 .EQU 00H
port1 .EQU 01H

.ENDIO

D.3 List of reserved pseudo-commands

SRA741–102

.PROCINT Interrupt program start directive (Reserved)

Format

▲.PROCINT ▲▲[label]

Description

• Directs the start of an interrupt program.

• The area between .PROCINT and .ENDPROC is deemed to be an interrupt program.

• SRA74 will process any label entered in the operand as the label for this line.

Example

 .PROCINT INT
 :
 :
 .ENDPROC

.PROCMAIN Main program start directive (Reserved)

Format

▲.PROCMAIN ▲▲[label]

Description

• Directs the start of the main program.

• The area between .PROCMAIN and .ENDPROC is deemed to be the main program.

• SRA74 will process any label entered in the operand as the label for this line.

Example

 .PROCMAIN MAIN
 :
 .ENDPROC

Appendix D. The pseudo-commands

1–103

.PROCSUB Subprogram start directive (Reserved)

Format

▲.PROCSUB ▲▲[label]

Description

• Directs the start of a subprogram.

• The area between .PROCSUB and .ENDPROC is deemed to be a subprogram.

• SRA74 will process any label entered in the operand as the label for this line.

Example

 .PROCSUB SUB
 :
 :
 .ENDPROC

.PROGNAME Program name directive (Reserved)

Format

▲.PROGNAME ▲▲program name

Description

• Directs the naming of a program.

• The contents of the operand will be deemed to be the title of the program.

Example

.PROGNAME printer control program

D.3 List of reserved pseudo-commands

SRA741–104

.RAM RAM area start directive (Reserved)

Format

▲.RAM

Description

• Directs the start of the RAM area.

• Any labels and symbols entered between .RAM and .ENDRAM are deemed to be part of the

RAM area.

Example

.RAM
work0: .BLKB 1
work1: .BLKB 1

.ENDRAM

Appendix D. The pseudo-commands

1–105

APPENDIX E

List of Macro Commands

E.1 How to use the macro command reference section

All the macro commands which can be used in SRA74 are described in alphbetical order. Points

which should be noted with regard to the notation style in this section are outlined below:-

1. The use of square brackets [] indicates that the section may be omitted as required.

2. ▲▲ , ▲ are used to indicate the use of a space or a tab code. The ▲▲ represents a required

section whereas the ▲ section may be omitted if necessary.

3. n the following descriptions the space between a label and a macro command is indicated by

a ▲. When entering a label a “:” (colon) is not absolutely necessary but if it is omitted then a

space or tab code must be inserted between the label and a macro command.

E.2 Summary of the macro commands

SRA741–106

.ENDM ENDM macro command

Format

▲.ENDM

Description

• This command indicates the end of all macro definitions.

Example

[Macro definition]
ADD: .MACRO VAL

CLC
ADC VAL
.ENDM

[Call example]
ADC #10

[Macro generation]
CLC
ADC #10
.ENDM

Appendix E. List of macro commands

1–107

.EXITM EXITM macro command

Format

▲.EXITM

Description

• This command suspends macro generation and transfers control to the nearest .ENDM.

Example

[Macro definition]
 DATA1: .MACRO VAL
 .IF LABEL
 .BYTE VAL
 .EXITM
 .ENDIF
 .WORD VAL
 .ENDM

[Call example]
 LABEL .EQU 1
 DATA1 10

[Macro generation]
 .IF LABEL
 .BYTE 10
 .EXITM
 .ENDIF
 .ENDM

E.2 Summary of the macro commands

SRA741–108

.LOCAL LOCAL macro command

Format

▲.LOCAL ▲▲ label,[label,..,label]

Description

• This command makes a label which is defined among the macro definitions into an intra-

macro local label.

• Labels which are made LOCAL are assembled in order by allocating them the label ..n

(where n is a decimal number between ..0 - ..65535). Care should be taken by the user

since use of the ..n label is not permitted.

Example

[Macro definition]
 LOOP: .MACRO
 .LOCAL LOOP1
 LDA #20
 LOOP1: DEC A
 BNE LOOP1
 .ENDM

[Call example]
 LOOP

[Macro generation]
 LDA #20
 ..0: DEC A
 BNE ..0
 .ENDM

Appendix E. List of macro commands

1–109

.MACRO - .ENDM MACRO macro command

Format

▲[label:] ▲.MACRO ▲▲[argument1,argument2,..,argumentn]

Description

• A macro definition starts from the line entered as .MACRO and ends on the line in which

.ENDM is entered.

• The label allotted to the .MACRO command line becomes the name of this macro definition.

• A macro definition may or may not have arguments attached but where a macro with argu-

ments is used then the necessary arguments must be transferred by the macro call state-

ment.

• When a macro call is made and the arguments are generated then they will be transferred in

the order in which the dummy arguments have been entered into the macro definition.

• Either assembly language commands, structured language commands, system macro com-

mands or pseudo-commands can be entered between .MACRO and .ENDM. However,

macro definition must not be nested for more than 20 levels.

• Providing a macro call follows a macro definition then it may be located anywhere in the

program. If, however, a macro definition appears only after the macro call then this will be

registered as an error.

• The arguments which are specified in the operand by the macro call are substituted in order

from the left for the corresponding dummy arguments in the macro definition. It does not

matter if the number of actual arguments and the number of dummy arguments entered at

the original definition stage do not agree but if the number of actual arguments exceeds the

number of dummy arguments then the surplus is ignored and if the number falls short then

the shortfall is treated as null characters (a character string with zero length).

• Any number of actual arguments may be specified regardless of the number of dummy

arguments used in the macro definition but they must all be fitted within the compass of a

single line. Since arguments are divided by a ‘,’ it is necessary when using a comma or a

space as an argument to enclose it within ‘“‘. However, commas inside parentheses are not

treated as argument separators.

• A macro generated area is marked in the PRN file by a “+”.

* Multiple macro definitions may be made using the same macro name. When such macro is

called, the most recent definition is used.

E.2 Summary of the macro commands

SRA741–110

Example

Example 1: Macro definition without operand

[Macro definition]
 ADDa: .MACRO
 LDA ABC
 LDX #DEF
 CLC
 ADC TABLE,X
 STA GHI
 .ENDM

[Call example]
 ADDa

[Macro generation]
 LDA ABC
 LDX #DEF
 CLC
 ADC TABLE,X
 STA GHI
 .ENDM

Example 2: Macro definition with operand

[Macro definition]
 ADDb: .MACRO V1,IMM,V2; Dummy arguments (V1,IMM,V2)
 LDA V1
 LDX #IMM
 CLC
 ADC TABLE,X
 STA V2
 .ENDM

[Call example]
 ADDb WORK1,10,WORK2

[Macro generation]
 LDA WORK1
 LDX #10
 CLC
 ADC TABLE,X
 STA WORK2
 .ENDM

Appendix E. List of macro commands

1–111

Example 3: Macro nesting

[Macro definition]
ADD: .MACRO SRC

CLC
ADC SRC
.ENDM

[Call example]
ADDW: .MACRO SRC

ADD SRC ; Macro call within a macro
ADC SRC+1
.ENDM

Examplee 4: Recursive macro call

[Macro defnition]
MAC: .MACRO ; First definition
DATA: .BLKB 1
MAC: .MACRO VALUE ; Second definition

LDM #VALUE,DATA
.ENDM
.ENDM

[Call example]
MAC ; Area reservation and new macro definition
 :
MAC 10H ; Newly defined macro call

E.2 Summary of the macro commands

SRA741–112

.REPEAT - .ENDM REPEAT macro command

Format

▲[label:] ▲.REPEAT ▲▲number of times

Description

• A given 740 Family command is repeatedly assembled between .REPEAT and .ENDM in

accordance with the number of times specified by the operand.

• The label given to the .REPEAT command line becomes the first label of the generated line.

• Assembly language commands, structured language commands, macro commands, and

pseudo commands other than .INCLUDE may be coded between .REPEAT and .ENDM.

However, macros must not be nested for more than 20 levels.

• Numeric and symbolic constants (labels) may be entered in the operand but labels with

relocatable values may not.

Example

[Source entry example]
 TIME5: .REPEAT 5
 NOP
 .ENDM

[After macro generation]
 TIME5: .REPEAT 5
 NOP
 .ENDM
 TIME5:
 NOP
 NOP
 NOP
 NOP
 NOP

Appendix E. List of macro commands

1–113

.REPEATC - .ENDM REPEATC macro command

Format

▲[label:] ▲.REPEATC ▲▲dummy argument,real argument

Description

• Characters are repeatedly assembled by the operand in accordance with the number of times

they are given by the real argument until .ENDM is reached.

• One character is withdrawn from the real argument and transferred to the dummy argument

each time the operation is repeated.

• The label given to the .REPEATC command line becomes the first label of the generated

line.

• Assembly language commands, structured language commands, macro commands, and

pseudo commands other than .INCLUDE may be coded between .REPEATC and .ENDM.

However, macros must not be nested for more than 20 levels.

• If special characters such as a space, tab or comma (,) are included in a character string

then the whole string must be specified within ‘“‘. In such cases the whole of the character

string is used with the exception of the ‘“‘.

Example

Example 1:

[Source entry example]
 DATA: .REPEATC VAL,ABCDE

 ↑ ↑
 Dummy argument Real argument

 .BYTE 'VAL'
 .ENDM

[After macro generation]
 DATA:
 .BYTE 'A'
 .BYTE 'B'
 .BYTE 'C'
 .BYTE 'D'
 .BYTE 'E'

E.2 Summary of the macro commands

SRA741–114

Example 2:

[Source entry example]
 DATA: .REPEATC VAL,"ABC,;"

 ↑ ↑
 Dummy argument Real argument

 .BYTE 'VAL'
 .ENDM

[After macro generation]
 DATA:
 .BYTE 'A'
 .BYTE 'B'
 .BYTE 'C'
 .BYTE ','
 .BYTE ';'

.REPEATI - .ENDM REPEATI macro command

Format

▲[label:] ▲.REPEATI ▲▲dummy argument,real argument[,real argument,..,real argument]

Description

• Assembly is repeated until .ENDM is reached in accordance with the number of arguments

entered in the operand.

• One argument is withdrawn from the arguments entered in the operand and transferred to

the dummy argument each time the operation is repeated.

• The label given to the .REPEATI command line becomes the first label of the generated line.

• Assembly language commands, structured language commands, macro commands, and

pseudo commands other than .INCLUDE may be coded between .REPEATC and .ENDM.

However, macros must not be nested for more than 20 levels.

• Numerical constants, character constants, symbolic constants (labels) and character string

constants may be entered as real arguments. Other macro commands may not be entered.

• If spaces, tabs or commas (,) are included in a real argument then the whole argument must

be enclosed within ‘ “ ’.

Appendix E. List of macro commands

1–115

Example

Example 1:

[Source entry example]
 SUB: .REPEATI INST,"NOP","LDA #1","JSR SUB1","RTS"

 ↑ ↑
 Dummy argument Real argument

 INST
 .ENDM

[After macro generation]
 SUB:
 NOP
 LDA #1
 JSR SUB1
 RTS
 .ENDM

Example 2:

[Source entry example]
 DATA: .REPEATI VAL,0,1,2,"'HELLO !!'"

 ↑ ↑
 Dummy argument Real argument

 .BYTE VAL
 .ENDM

[After macro generation]
 DATA:
 .BYTE 0
 .BYTE 1
 .BYTE 2
 .BYTE 'HELLO !!'
 .ENDM

E.2 Summary of the macro commands

SRA741–116

APPENDIX F

List of Structured Commands

F.1 Using the structured command reference section

All the structured commands which can be used in SRA74 are described in alphbetical order.

Points which should be noted with regard to the notation style in this section are outlined below:-

1. ▲▲, ▲ are used to indicate the use of a space or a tab code.

The ▲▲ represents a required section whereas the ▲ section may be omitted if necessary.

2. The items in brackets [] may be omitted.

3. When entering a label a “:” (colon) is not absolutely necessary but if it is omitted then a space

or tab code must be inserted between the label and a structured command. As a general

rule you are recommended to use a “:” at all times.

F.2 Summary of the structured commands

Appendix F. List of structured commands

1–117

BREAK BREAK statement

Format

▲[label:] ▲(L)BREAK

Description

• A “break” statement suspends the execution of the corresponding “for”, “do” or “switch”

statement and passes control to the next statement to be executed.

• The “break” statement may only be used within a “for”, “do” or “switch” statement.

CONTINUE CONTINUE statement

Format

▲[label:] ▲(L)CONTINUE

Description

• The “continue” statement uses a dummy statement to replace the final statement of the

smallest repeat statement, “for” or “do”, which contains it and passes control to that dummy

statement.

• It may only be used within a “for” or “do” statement.

F.2 Summary of the structured commands

SRA741–118

DO - WHILE DO statement

Format

▲[label:] ▲(L)DO

<statement>

▲[label:] ▲WHILE ▲▲conditional expression

Description

• The “do” statement continues to be executed so long as the conditional expression is fulfilled

(so long as it remains true). The decision to repeat is made only after execution of the

statement. For this reason the “do” statement is most useful when you wish to repeat an

operation once more before terminating the repetition.

• If “ever” is inserted into a conditional expression it will form an endless loop.

• For further details concerning conditional expressions please refer to the syntax maps.

FOR - NEXT FOR statement

Format

▲[label:] ▲(L)FOR ▲▲conditional expression

<statement>

▲[label:] ▲NEXT

Description

• The “for” statement is a command used for the control of the repetition of an operation which

it will continue to repeat for so long as the specified conditional expression holds true.

• If “ever” is inserted into a conditional expression it will form an endless loop.

• For further details concerning conditional expressions please refer to the syntax maps.

Appendix F. List of structured commands

1–119

IF - (ELSE) - ENDIF IF statement

Format

▲[label:] ▲(L)IF ▲▲conditional expression

<statement>

▲[[label:] ▲(L)ELSE]

<statement>

▲[label:] ▲ENDIF

Description

• The “if” statement is a command which switches the control stream in one of two different

directions where the selected direction for branching is determined in accordance with a

conditional expression. The branch decision itself is based on whether the result of applying

the condition is zero (false) or not (true). If the condition holds true then control is passed to

the subsequent command but if it is found to be false then control is passed to the command

immediately following “else” where there is an “else” and to the command following “endif” if

there is no “else”.

• The “else” section can be omitted.

• There is no limit to the number of times the “if” statement can be nested.

• Where the “if” statement is nested in a complex manner then the relationship between “if”

and “else” is determined such that the “if” and “else” pair which is closest together forms a

sequential pair.

• For further details concerning conditional expressions please refer to the syntax maps.

F.2 Summary of the structured commands

SRA741–120

SWITCH - CASE - ENDS SWITCH statement

Format

▲[label:] ▲(L)SWITCH ▲▲conditional expression

▲[label:] ▲CASE ▲▲constant

<statement>

▲[label:] ▲CASE ▲▲constant

<statement>

:

▲[label:] ▲DEFAULT

<statement>

▲[label:] ▲ENDS

Description

• The “switch” statement passes control to another statement which is determined in accor-

dance with the value of a conditional expression. The value of the expression is compared

with a “case” prefix constant attached to the beginning of the statement and where there is a

match then control is passed to the statement. Where there is no match between the value

of the expression and the value specified by the “case” then control is passed to the state-

ment which has a “default” prefix. Where there is no “default” none of the statements is

executed and the “switch” statement is left.

• The “default” section may be omitted.

• When control has been passed to a matching “case” statement then all subsequent “case”

statements will be executed in turn. If you do not wish to pass on to the next “case”

statement but instead to leave the “switch” statement then this can be effected by the use of

a “break” statement.

• For further details of conditional expressions and constants please refer to the syntax maps.

ASSIGNMENT ASSIGNMENT statement

Format

▲[label:] ▲left side ▲=▲right side

Description

• Assigns the right side to the left. For assignment to memory bit variables, register bit

variables or flag variables only numerical or symbolic constants with values of 0 or 1 can be

used.

• For further details concerning left and right sides please refer to the syntax maps.

Appendix F. List of structured commands

1–121

F.3 Generation example

The assembly language statements generated from structured language commands are described

with examples.

F.3.1 Assignment statement generation example

The relationship between assembly language and structured language commands other than condi-

tional branch commands are shown below. Conditional branch commands are described in F.3.2.

The following table describes the symbols used in the assignment statement generation example.

Table F.1 Symbols used in examples

Symbol Description Symbol Description

A Accumulator X Index register X

Y Index register Y S Stack pointer

P Processor status register C Carry flag

Z Zero flag I Interrupt disable flag

D Decimal mode flag T X modifier operation mode flag

V Overflow flag N Negative flag

imm Immediate data zz Zero page address

hhll General page address # Immediate mode

MEM Memory FLAG Memory bit

A) Register and flag assignment statement generation examples

Table F.2 Register and flag assignment statement generation examples

 Type Structured command Assembly command

 Bit BIT_A0 = 0 CLB BIT_A0

 Operation BIT_A0 = 1 SEB BIT_A0

C = 0 CLC

C = 1 SEC

 Flags D = 0 CLD

D = 1 SED

I = 0 CLI

I = 1 SEI

T = 0 CLT

T = 1 SET

V = 0 CLV

F.3 Generation example

SRA741–122

 Type Structured command Assembly command

A = imm LDA # imm

X = imm LDX # imm

Y = imm LDY # imm

Data X = A TAX

A = X TXA

transfer Y = A TAY

A = Y TYA

commands X = S TSX

S = X TXS

[S] = A PHA

[S] = P PHP

A = [S] PLA

P = [S] PLP

A = A + imm WITH_C ADC # imm

A = A - imm WITH_C SBC # imm

A = ++ A INC A

A = -- A DEC A

X = ++ X INX

Arithmetic X = -- X DEX

Y = ++ Y INY

commands Y = -- Y DEY

A = A & imm AND # imm

A = A | imm ORA # imm

A = A ^ imm EOR # imm

A = A << imm ASL A

A = A >> imm LSR A

A = A << imm WITH_C ROL A

A = A >> imm WITH_C ROR A

Appendix F. List of structured commands

1–123

B) Memory assignment statement generation examples

Table F.3 Memory assignment statement generation examples

 Type Structured command Assembly command

A = [zz] LDA zz

Data X = [zz] LDX zz

Y = [zz] LDY zz

transfer [zz] = imm LDM # imm, zz

[zz] = A STA zz

commands [zz] = X STX zz

[zz] = Y STY zz

A = A + [zz] WITH_C ADC zz

A = A - [zz] WITH_C SBC zz

[zz] = ++ [zz] INC zz

[zz] = -- [zz] DEC zz

Arithmetic A = A & [zz] AND zz

A = A | [zz] ORA zz

commands A = A ^ [zz] EOR zz

[zz] = [zz] << imm ASL zz

[zz] = [zz] >> imm LSR zz

[zz] = [zz] << imm WITH_C ROL zz

[zz] = [zz] >> imm WITH_C ROR zz

Bit [FLAG] = 0 CLB FLAG

operation [FLAG] = 1 SEB FLAG

C) Addressing mode assignment statement generation examples

Table F.4 Addressing mode assignment statement generation examples

 Type Structured command Assembly command

A = [zz,X] LDA zz,X

A = [hhll] LDA hhll

Load A = [hhll,X] LDA hhll,X

A = [hhll,Y] LDA hhll,Y

commands A = [(zz,X)] LDA (zz,X)

F.3 Generation example

SRA741–124

 Type Structured command Assembly command

A = [(zz),Y] LDA (zz),Y

X = [zz,Y] LDX zz,Y

Load X = [hhll] LDX hhll

X = [hhll,Y] LDX hhll,Y

commands Y = [zz,X] LDY zz,X

Y = [hhll] LDY hhll

Y = [hhll,X] LDY hhll,X

[zz,X] = A STA zz,X

[hhll] = A STA hhll

Store [hhll,X] = A STA hhll,X

[hhll,Y] = A STA hhll,Y

commands [(zz,X)] = A STA (zz,X)

[(zz),Y] = A STA (zz),Y

[zz,Y] = X STX zz,Y

[hhll] = X STX hhll

[zz,X] = Y STY zz,X

[hhll] = Y STY hhll

A = A + [zz,X] WITH_C ADC zz,X

A = A + [hhll] WITH_C ADC hhll

A = A + [hhll,X] WITH_C ADC hhll,X

A = A + [hhll,Y] WITH_C ADC hhll,Y

A = A + [(zz,X)] WITH_C ADC (zz,X)

A = A + [(zz),Y] WITH_C ADC (zz),Y

Add A = A - [zz,X] WITH_C SBC zz,X

A = A - [hhll] WITH_C SBC hhll

subtract A = A - [hhll,X] WITH_C SBC hhll,X

A = A - [hhll,Y] WITH_C SBC hhll,Y

commands A = A - [(zz,X)] WITH_C SBC (zz,X)

A = A - [(zz),Y] WITH_C SBC (zz),Y

[zz,X] = ++ [zz,X] INC zz,X

[hhll] = ++ [hhll] INC hhll

[hhll,X] = ++ [hhll,X] INC hhll,X

[zz,X] = -- [zz,X] DEC zz,X

[hhll] = -- [hhll] DEC hhll

[hhll,Y] = -- [hhll,Y] DEC hhll,X

Appendix F. List of structured commands

1–125

 Type Structured command Assembly command

A = A & [zz,X] AND zz,X

A = A & [hhll] AND hhll

A = A & [hhll,X] AND hhll,X

Logical A = A & [hhll,Y] AND hhll,Y

A = A & [(zz,X)] AND (zz,X)

operation A = A & [(zz),Y] AND (zz),Y

A = A | [zz,X] ORA zz,X

commands A = A | [hhll] ORA hhll

A = A | [hhll,X] ORA hhll,X

A = A | [hhll,Y] ORA hhll,Y

A = A | [(zz,X)] ORA (zz,X)

A = A | [(zz),Y] ORA (zz),Y

A = A ^ [zz,X] EOR zz,X

Logical A = A ^ [hhll] EOR hhll

A = A ^ [hhll,X] EOR hhll,X

operation A = A ^ [hhll,Y] EOR hhll,Y

A = A ^ [(zz,X)] EOR (zz,X)

commands A = A ^ [(zz),Y] EOR (zz),Y

[zz,X] = [zz,X] << imm ASL zz,X

[hhll] = [hhll] << imm ASL hhll

Rotate [hhll,X] = [hhll,X] << imm ASL hhll,X

[zz,X] = [zz,X] >> imm LSR zz,X

shift [hhll] = [hhll] >> imm LSR hhll

[hhll,X] = [hhll,X] >> imm LSR hhll,X

[zz,X] = [zz,X] << imm WITH_C ROL zz,X

commands [hhll] = [hhll] << imm WITH_C ROL hhll

[hhll,X] = [hhll,X] << imm WITH_C ROL hhll,X

[zz,X] = [zz,X] >> imm WITH_C ROR zz,X

[hhll] = [hhll] >> imm WITH_C ROR hhll

[hhll,X] = [hhll,X] >> imm WITH_C ROR hhll,X

F.3 Generation example

SRA741–126

* Commands with no corresponding structured language command.

MUL, DIV, COM, BIT, TST, RRF, JSR, RTI, RTS, NOP, FST, SLW, WIT, STP, BRA, JMP

D) Dual term operation assignment statement generation examples

Table F.5 Dual term operation assignment statement generation examples

 Type Structured command Assembly command

[zz] = [zz] << 2 ASL zz

Rotate ASL zz

[zz] = [zz] << 2 WITH_C ROL zz

shift ROL zz

commands [zz] = [zz] >> 2 LSR zz

LSR zz

[zz] = [zz] >> 2 WITH_C ROR zz

ROR zz

[zz] = [zz] + 4 LDA zz

CLC

ADC # 4

STA zz

[zz] = [zz] + 4 WITH_C LDA zz

ADC # 4

STA zz

Add [zz] = [zz] + [zz] LDA zz

CLC

subtract ADC zz

STA zz

commands [zz] = [zz] - 4 LDA zz

SEC

SBC # 4

STA zz

[zz] = [zz] - 4 WITH_C LDA zz

SBC # 4

STA zz

Appendix F. List of structured commands

1–127

 Type Structured command Assembly command

Subtract [zz] = [zz] - [zz] LDA zz

SEC

commands SBC zz

STA zz

[zz] = [zz] * 4 LDA zz

JSR .mult_8

.BYTE 4

Multiply STA zz

[zz] = [zz] / 4 LDA zz

divide JSR .div_8

.BYTE 4

commands STA zz

[zz] = [zz] % 4 LDA zz

JSR .mod_8

.BYTE 4

STA zz

[zz] = [zz] & 4 LDA zz

Logical AND # 4

STA zz

operation [zz] = [zz] | 4 LDA zz

ORA # 4

commands STA zz

[zz] = [zz] ^ 4 LDA zz

EOR # 4

STA zz

* Refer to Note 2 in section 5.4 for .mult_8, .div_8, and .mod_8.

F.3 Generation example

SRA741–128

F.3.2 Conditional expression generation examples

The conditional expression generation examples for IF, DO, and FOR statements are shown below.

The labels corespond to the following generation example.

- if (else) ~ endif

 if [MEM] == 2 ; LDA MEM
 JSR out ; CMP #2
 endif ; BNE hhll
 ; JSR out
 ; hhll:

- do ~ while

 do ; hhll:
 JSR out ; JSR out
 while [MEM] == 2 ; LDA MEM
 ; CMP #2
 ; BEQ hhll

- for ~ next

 for [MEM] == 2 ; hhll1:
 JSR out ; LDA MEM
 next ; CMP #2
 ; BNE hhll2
 ; JSR out
 ; BRA hhll1
 ; hhll2:

Appendix F. List of structured commands

1–129

Table F.6 Flag conditional expression generation example

Structured command Assembly command Long branch

• if [FLAG]== 1 BBC FLAG,hhll BBS FLAG, .Z0

• while [FLAG]== 0 JMP hhll

• for [FLAG]== 1 .Z0:

• if [FLAG] == 0 BBS FLAG,hhll BBC FLAG, .Z0

• while [FLAG]== 1 JMP hhll

• for [FLAG]== 0 .Z0:

• if C == 1 BCC hhll BCS .Z0

• while C == 0 JMP hhll

• for C == 1 .Z0:

• if C == 0 BCS hhll BCC .Z0

• while C == 1 JMP hhll

• for C == 0 .Z0:

• if Z == 1 BNE hhll BEQ .Z0

• while Z == 0 JMP hhll

• for Z == 1 .Z0:

• if Z == 0 BEQ hhll BNE .Z0

• while Z == 1 JMP hhll

• for Z == 0 .Z0:

• if N == 1 BPL hhll BMI .Z0

• while N == 0 JMP hhll

• for N == 1 .Z0:

• if N == 0 BMI hhll BPL .Z0

• while N == 1 JMP hhll

• for N == 0 .Z0:

• if V == 1 BVC hhll BVS .Z0

• while V == 0 JMP hhll

• for V == 1 .Z0:

• if V == 0 BVS hhll BVC .Z0

• while V == 1 JMP hhll

• for V == 0 .Z0:

F.3 Generation example

SRA741–130

Table F.7 Memory conditional expression generation example

Type Structured command Assembly command Long branch

if [MEM] == 2 LDA MEM LDA MEM

CMP # 2 CMP # 2

BNE hhll BEQ .Z0

JMP hhll

.Z0:

if [MEM] != 2 LDA MEM LDA MEM

CMP # 2 CMP # 2

BEQ hhll BNE .Z0

JMP hhll

.Z0:

 if [MEM] > 2 LDA MEM LDA MEM

CMP # 2 CMP # 2

BEQ hhll BEQ .Z0

BCC hhll BCS .Z1

.Z0:

IF JMP hhll

statement .Z1

if [MEM] >= 2 LDA MEM LDA MEM

CMP # 2 CMP # 2

BCC hhll BCS .Z0

JMP hhll

.Z0:

 if [MEM] < 2 LDA MEM LDA MEM

CMP # 2 CMP # 2

BCS hhll BCC .Z0

JMP hhll

.Z0:

 if [MEM] <= 2 LDA MEM LDA MEM

CMP # 2 CMP # 2

BEQ .Z0 BEQ .Z0

BCS hhll BCC .Z0

.Z0: JMP hhll

.Z0:

Appendix F. List of structured commands

1–131

Type Structured command Assembly command Long branch

while [MEM]== 2 LDA MEM LDA MEM

CMP # 2 CMP # 2

BEQ hhll BNE .Z0

JMP hhll

.Z0:

while [MEM]!= 2 LDA MEM LDA MEM

CMP # 2 CMP # 2

BNE hhll BEQ .Z0

JMP hhll

.Z0:

while [MEM]> 2 LDA MEM LDA MEM

CMP # 2 CMP # 2

BEQ .Z0 BEQ .Z0

BCS hhll BCC .Z0

DO .Z0: JMP hhll

statement .Z0:

while [MEM]>= 2 LDA MEM LDA MEM

CMP # 2 CMP # 2

BCS hhll BCC .Z0

JMP hhll

.Z0:

while [MEM]< 2 LDA MEM LDA MEM

CMP # 2 CMP # 2

BCC hhll BCS .Z0

JMP hhll

.Z0:

while [MEM]<= 2 LDA MEM LDA MEM

CMP # 2 CMP # 2

BEQ hhll BEQ .Z0

BCC hhll BCS .Z1

.Z0:

JMP hhll

.Z1:

F.3 Generation example

SRA741–132

Type Structured command Assembly command Long branch

for [MEM] == 2 LDA MEM LDA MEM

CMP # 2 CMP # 2

BNE hhll2 BEQ .Z0

JMP hhll2

.Z0:

for [MEM] != 2 LDA MEM LDA MEM

CMP # 2 CMP # 2

BEQ hhll2 BNE .Z0

JMP hhll2

.Z0:

for [MEM] > 2 LDA MEM LDA MEM

CMP # 2 CMP # 2

BEQ hhll2 BEQ .Z0

BCC hhll2 BCS .Z1

.Z0:

FOR JMP hhll2

statement .Z1:

for [MEM] >= 2 LDA MEM LDA MEM

CMP # 2 CMP # 2

BCC hhll2 BCS .Z0

JMP hhll2

.Z0:

for [MEM] < 2 LDA MEM LDA MEM

CMP # 2 CMP # 2

BCS hhll2 BCC .Z0

JMP hhll2

.Z0:

for [MEM] <= 2 LDA MEM LDA MEM

CMP # 2 CMP # 2

BEQ .Z0 BEQ .Z0

BCS hhll2 BCC .Z1

.Z0: .Z0:

JMP hhll2

.Z1:

Appendix F. List of structured commands

1–133

Table F.8 Register conditional expression generation example

Type Structured command Assembly command Long branch

if A == [MEM] CMP MEM CMP MEM

BNE hhll BEQ .Z0

JMP hhll

.Z0:

if A != [MEM] CMP MEM CMP MEM

BEQ hhll BNE .Z0

JMP hhll

.Z0:

if A > [MEM] CMP MEM CMP MEM

BEQ hhll BEQ .Z0

A BCC hhll BCS .Z1

register .Z0:

JMP hhll

.Z1:

if A >= [MEM] CMP MEM CMP MEM

BCC hhll BCS .Z0

JMP hhll

.Z0:

if A < [MEM] CMP MEM CMP MEM

BCS hhll BCC .Z0

JMP hhll

.Z0:

if A <= [MEM] CMP MEM CMP MEM

BEQ .Z0 BEQ .Z0

BCS hhll BCC .Z0

.Z0: JMP hhll

.Z0:

if X == [MEM] CPX MEM CPX MEM

BNE hhll BEQ .Z0

JMP hhll

.Z0:

X if X != [MEM] CPX MEM CPX MEM

register BEQ hhll BNE .Z0

JMP hhll

.Z0:

if X > [MEM] CPX MEM CPX MEM

BEQ hhll BEQ .Z0

BCC hhll BCS .Z1

.Z0:

JMP hhll

.Z1:

F.3 Generation example

SRA741–134

Type Structured command Assembly command Long branch

if X >= [MEM] CPX MEM CPX MEM

BCC hhll BCS .Z0

JMP hhll

.Z0:

X if X < [MEM] CPX MEM CPX MEM

regisrer BCS hhll BCC .Z0

JMP hhll

.Z0:

if X <= [MEM] CPX MEM CPX MEM

BEQ .Z0 BEQ .Z0

BCS hhll BCC .Z0

.Z0: JMP hhll

.Z0:

if Y == [MEM] CPY MEM CPY MEM

BNE hhll BEQ .Z0

JMP hhll

.Z0:

if Y != [MEM] CPY MEM CPY MEM

BEQ hhll BNE .Z0

JMP hhll

.Z0:

if Y > [MEM] CPY MEM CPY MEM

BEQ hhll BEQ .Z0

BCC hhll BCS .Z1

Y .Z0:

register JMP hhll

.Z1:

if Y >= [MEM] CPY MEM CPY MEM

BCC hhll BCS .Z0

JMP hhll

.Z0:

if Y < [MEM] CPY MEM CPY MEM

BCS hhll BCC .Z0

JMP hhll

.Z0:

if Y <= [MEM] CPY MEM CPY MEM

BEQ .Z0 BEQ .Z0

BCS hhll BCC .Z0

.Z0: JMP hhll

.Z0:

Appendix F. List of structured commands

1–135

F.4 Syntax maps of structured commands

Syntax maps are used to illustrate the grammar of the structured commands which can be used by

SRA74.

The meanings of the most important words are illustrated below:

• Variable

Variable is used as a general term covering memory variables, memory bit variables, register

variables, register bit variables and flag variables.

• Memory variable

This refers to any selected memory or stack location which is referred to in any of the

addressing modes of the 740 Family. Memory variables should always be enclosed for entry

in [] or { }.

[ZZ] Zero page [ZZ,X] Zero page X

[ZZ,Y] Zero page Y [HHLL] Absolute

[HHLL,X] Absolute X [HHLL,Y] Absolute Y

[(ZZ,X)] Zero page indirect X [(ZZ),Y] Zero page indirect Y

[S] Stack

• Memory bit variable

This refers to any selected bit which is referred to in any of the bit addressing modes of the

740 Family. Memory bit variables should always be enclosed for entry in [] or { }. These

variables must always be defined in the following way by the pseudo-command .EQU prior to

reference.

Example:
 BITSYM .EQU 1,1000H Bit symbol definition
 if [BITSYM] Bit symbol reference
 :
 else
 :
 endif

• Register variable

This refers to the various registers of the 740 Family. There is no need for enclosure in [] or

{} for entry. They should be entered as they are. SRA74 uses the following names as

reserved words for the registers. Since no distinction is made between upper and lower case

characters either A or a is equally valid.

A Accumulator X Index register X

Y Index register Y S Stack pointer

P Program counter

• Register bit variable

This refers to any selected accumulator bit referred to in the 740 Family accumulator bit

addressing mode. SRA74 uses the following names as reserved words for the register bits.

Since no distinction is made between upper and lower case characters either BIT_A0 or

bit_a0 is equally valid.

F.4 Syntax maps of structured commands

SRA741–136

BIT_A0 Accumulator bit 0 BIT_A1 Accumulator bit 1

BIT_A2 Accumulator bit 2 BIT_A3 Accumulator bit 3

BIT_A4 Accumulator bit 4 BIT_A5 Accumulator bit 5

BIT_A6 Accumulator bit 6 BIT_A7 Accumulator bit 7

• Flag variable

This refers to the flags in the 740 Family status registers. SRA74 uses the following names

as reserved words for the flags. Since no distinction is made between upper and lower case

characters either C or c is equally valid.

C Carry flag Z Zero flag

I Interrupt inhibit flag D Decimal mode flag

T X qualified operation mode flag V Overflow flag

N Negative flag

• WITH_C

This refers to the specification of an operation with carry. This is prepared as a reserved

word in SRA74. Since no distinction is made between upper and lower case characters

either WITH_C or with_c is equally valid.

Example:
 [work] = [work] << 2 with_c The contents of work including the carry is shifted 2

places to the left.

• EVER

This refers to the specification of an endless loop. This is prepared as a reserved word in

SRA74. Since no distinction is made between upper and lower case characters either EVER

or ever is equally valid.

Example:
 for ever Specifies an endless loop
 :
 next

• Constant

This is a general term referring to numerical constants, character constants, symbolic con-

stants or combinations of these with operators.

Appendix F. List of structured commands

1–137

F.4 Syntax maps of structured commands

• Assignment statement

Memory variable = Expression 1

Register variable assignment statement

Register variable A = Expression 1

Register variable X

Register variable Y

Register variable X=

Constant

Register variable S

Register variable X = Register variable S

Register variable A = [S]

Register variable P

Memory bit variable = 1

0

~ Memory bit variable that is the same as left term

Memory variable assignment statement

Memory bit variable assignment statement

SRA741–138

Appendix F. List of structured commands

Register bit variable assignment statement

Register bit variable = 1

0

~ Memory bit variable that is the same as left term

V = 0

C

D

I

T

= 1/0

Register variable A=[S]

Register variable P

Flag variable assignment statement

Stack frame variable assignment statement

1–139

F.4 Syntax maps of structured commands

• if statement

if Condition Statement

else

endif

Statement

• for statement

for Condition Statement next

ever

• do statement

do Statement while Condition

ever

break

• switch statement

switch Expression 3 Statement

default

ends

Statement

case Constant

• break statement

• continue statement

continue

SRA741–140

Appendix F. List of structured commands

• Expression 1

Constant

Expression 3

• Expression 2

&&

Expression 2

||

Expression 2 can be concatenated up to six times

Memory bit variable

Register bit variable

Flag variable C

= = ! =

0/1

Flag variable N

Flag variable V

Flag variable Z

Expression 3

> < = = ! = > = < =

Constant

Memory variable

• Condition expression

1–141

F.4 Syntax maps of structured commands

• Expression 3

~ – + + – –

Memory variable

Register variable

~ –

Memory variable

Register variable

*

/

Constant

%

~ –

Memory variable

Register variable

&

|

Constant

Memory variable

^

~ –

Memory variable

Register variable

<<

>>

Constant with_c

~ –

Memory variable

Register variable

+ Constant with_c

–

SRA741–142

Appendix F. List of structured commands

• Variable

Memory variable

Memory bit variable

Register variable

{ Variable name

'[X

Y

}

]

(Variable name)

,X)

),Y

{ Variable name

[

}

]

BIT_A0 BIT_A1 BIT_A2 BIT_A3 BIT_A4 BIT_A5 BIT_A6 BIT_A7

C D I N T V Z

A X Y S P

Register bit variable

Flag variable

1–143

F.4 Syntax maps of structured commands

Constant

Numeric constant

Character constant

' Character '

" Character "

+

–

~

!

<

>

Numeric constant

Character constant

Symbol constant

+ – * / & |

Binary

Binary

Symbol constantOctal

Octal@

Q

Q

%

B
Decimal

Decimal

Symbol constantHexadecimal

Hexadecimal$

H

H

0

SRA741–144

Appendix F. List of structured commands

Symbol constant

*

_ ? . Alphabet _ ? . Alphabet Alphabet

Variable name

+

–

~

sizeof

BANK

OFFSET

Numeric constant

Character constant

Symbol constant

+ – / & |*

1–145

List of Reserved Words

Symbol
..0~..65535 label

.ASSERT pseudo command

.BEXT pseudo command

.BLKB pseudo command

.BYTE pseudo command

.COL pseudo command

.D0~.D65535 label

.ELSE pseudo command

.END pseudo command

.ENDFUNC pseudo command

.ENDIF pseudo command

.ENDIO reserved pseudo command

.ENDM macro command

.ENDPROC reserved pseudo command

.ENDRAM reserved pseudo command

.EQU pseudo command

.ERROR pseudo command

.EXITM macro command

.EXT pseudo command

.F0~.F65535 label

.FUNC pseudo command

.I0~.I65535 label

.IF pseudo command

.INCLUDE pseudo command

.IO reserved pseudo command

.LIB pseudo command

.LINE pseudo command

.LIST pseudo command

.LISTM pseudo command

.LOCAL macro command

.MACRO macro command

.NLIST pseudo command

.NLISTM pseudo command

.OBJ pseudo command

.ORG pseudo command

.PAGE pseudo command

.PMOD pseudo command

.PROCINT reserved pseudo command

.PROCMAIN reserved pseudo command

.PROCSUB reserved pseudo command

.PROGNAME reserved pseudo command

.PUB pseudo command

.RAM reserved pseudo command

.REPEAT macro command

.REPEATC macro command

.REPEATI macro command

.RMOD pseudo command

.S0~.S65535 label

.SECTION pseudo command

.SEXT pseudo command

.SMOD pseudo command

.VER pseudo command

.WORD pseudo command

.ZBEXT pseudo command

.ZEXT pseudo command

.ZMOD pseudo command

??0~??65535 label

A
A accumulator

ADC mnemonic

AND mnemonic

ASL mnemonic

B
BBC mnemonic

BBS mnemonic

BCC mnemonic

BCS mnemonic

BEQ mnemonic

BIT mnemonic

BIT_A0 symbol

BIT_A1 symbol

BIT_A2 symbol

BIT_A3 symbol

BIT_A4 symbol

BIT_A5 symbol

BIT_A6 symbol

BIT_A7 symbol

BMI mnemonic

BNE mnemonic

BPL mnemonic

BRA mnemonic

BREAK structured command

BRK mnemonic

List of Reserved Words

SRA741–146

BVC mnemonic

BVS mnemonic

C
C carry flag

CASE structured command

CLB mnemonic

CLC mnemonic

CLD mnemonic

CLI mnemonic

CLT mnemonic

CLV mnemonic

CMP mnemonic

COM mnemonic

CONTINUE structured command

CPX mnemonic

CPY mnemonic

D
D decimal mode flag

DEC mnemonic

DEX mnemonic

DEY mnemonic

DIV mnemonic

DO structured command

E
ELSE structured command

ENDIF structured command

ENDS structured command

EOR mnemonic

EVER structured command

F
FOR structured command

FST mnemonic

I
I interrupt diable flag

IF structured command

INC mnemonic

INX mnemonic

INY mnemonic

J
JMP mnemonic

JSR mnemonic

L
LDA mnemonic

LDM mnemonic

LDX mnemonic

LDY mnemonic

LSR mnemonic

M
MUL mnemonic

N
N negative flag

NEXT structured command

NOP mnemonic

O
ORA mnemonic

P
P program counter

PHA mnemonic

PHP mnemonic

PLA mnemonic

PLP mnemonic

R
ROL mnemonic

ROR mnemonic

RRF mnemonic

RTI mnemonic

RTS mnemonic

S
S stack pointer

SBC mnemonic

SEB mnemonic

SEC mnemonic

SED mnemonic

SEI mnemonic

SET mnemonic

List of Reserved Words

1–147

STA mnemonic

STP mnemonic

STX mnemonic

STY mnemonic

SWITCH structured command

T
T X modifier flag

TAX mnemonic

TAY mnemonic

TST mnemonic

TSX mnemonic

TXA mnemonic

TXS mnemonic

TYA mnemonic

V
V overflow flag

W
WHILE structured command

WIT mnemonic

WITH_C structured command

X
X index register X

Y
Y index register Y

Z
Z zero flag

List of Reserved Words

PART 2PART 2
LINKAGE EDITOR

FOR THE 740 FAMILY

LINK74 OPERATION MANUAL

2-i

Table of Contents

Chapter 1. The format of the manual 1

Chapter 2. Outline 2
2.1 Functions .. 2

2.2 Generating files .. 3

2.3 Configuration of the MAP file ... 4

Chapter 3. Section functions 6
3.1 The role of sections ... 6

3.2 Section attributes... 8
3.2.1 Address attributes .. 8

3.2.2 Physical attribute .. 8

3.2.3 Reserved sections .. 9

3.3 Basic function of sections .. 10

Chapter 4. Operation method 11
4.1 Activation method.. 11

4.2 Input parameters .. 12
4.2.1 Relocatable file name ... 12

4.2.2 Library file name ... 12

4.2.3 Section control .. 12

4.2.4 Command parameters .. 13

4.3 Methods of entry .. 14
4.3.1 Interactive input .. 14

4.3.2 Command line input ... 16

4.3.3 Command file input .. 17

4.4 Errors .. 18
4.4.1 Types of error ... 18

4.4.2 Value for return to operating system .. 19

4.5 Environment variables ... 19

Appendix A Error messages 20

2-ii

List of Figures

2.1 Example of a MAP file output ... 5

3.1 Relocatable file structure .. 6

3.2 System memory map ... 7

4.1 LINK74 initial display ... 14

4.2 Display during interactive input ... 15

4.3 Command line input - Example 1 ... 16

4.4 Command line input - Example 2 (No library file) 16

4.5 Command line input - Example 3 (No command parameters) 16

4.6 Specifying a command file.. 17

4.7 Command file layout - Example.. 17

4.8 Example of error display ... 18

2-iii

List of Tables

4.1 List of command parameters .. 13

4.2 List of error levels .. 19

A.1 List of system errors ... 20

2–1

CHAPTER 1

The Format of the Manual

The LINK74 operation manual contains the following chapters:-

• Chapter 2: Outline

The basic functions of LINK74 and the files which it generates.

• Chapter 3: Section functions

The sections, the basic operational units of LINK74.

• Chapter 4: Operating method

How to enter the commands used by LINK74.

• Appendix A: Error messages

A list of the error messages used by LINK74 along with clarifications of the content of the

messages and appropriate user responses.

SRA742–2

CHAPTER 2

Outline

LINK74 links the relocatable files produced by SRA74 with library files to produce machine lan-

guage data files for the 740 Family.

2.1 Functions

LINK74 can be used in conjunction with debugger for 740 family. The following functions are

provided to ensure that the RTT74 and LIB74 functions can be used to the full.

1. LINK74 joins together in series all areas from separate relocatable files which have the same

section1 name.

2. The section sequence and start address for individual section units can be specified.

3. Library files created by LIB74 can be used.

4. LINK74 produces the map files required for debugging.

5. LINK74 produces the symbol files required for symbolic debugging.

1 Element differing physically from other elements, such as the ROM area and RAM area making up a

program.

Chapter 2. Outline

2–3

2.2 Generating files

LINK74 generates 3 file types as outlined below:-

1. Machine language file (Hereafter referred to as the HEX file)

• Intel HEX format machine language file.

• The file attribute is .HEX.

2. Map file (Hereafter referred to as the MAP file)

• Contains address data for the eventual locations of each section

• This file can be output to the printer and used for debugging or understanding the

memory requirements of each section.

• MAP file generated on specification of command parameter “-M”.

• The file attribute is .MAP.

3. Symbol file (Hereafter referred to as the SYM file)

• File containing the information required for symbolic debugging.

• This file is not in a format designed for listing, so it should not be printed out.

• File generated on specification of command parameter “-S”.

• The file attribute is .SYM.

2.2 Generating files

SRA742–4

2.3 Configuration of the MAP file

Fig 2.1 shows an example of an output MAP file. The MAP file contains the following data:-

1. Information in section units, pertaining to how much data has been linked, and from which

relocatable files. The following types of information are output.

• ATR: Indicates relative or absolute attribute2. REL indicates relative, and ABS indicates

absolute.

• TYPE: Indicates whether RAM area or ROM area.

• START: Indicates the start address.

• LENGTH: Indicates the size of the area in bytes.

• If a library file is linked, both the name of the library file and the name of the relocatable

file are indicated. The name of the relocatable file is indicated within brackets ().

2. Global label list

Indicates global labels3 in the program, together with their absolute addresses. This is only

output when the command parameter “-MS” has been specified.

3. Global symbol list

Indicates global symbols4 in the program, together with their absolute addresses. This is

only output when the command parameter “-MS” has been specified.

4. Global bit symbol list

Indicates global bit symbols5 in the program, together with their bit values and absolute

addresses. This is only output when the command parameter “-MS” has been specified.

2 In the assembly language source code, start addresses specified by the pseudo-command .ORG (or =)

become absolute attributes.
3 Indicates labels declared by the pseudo-command .PUB.
4 Indicates symbols declared by the pseudo-command .PUB.
5 Indicates bit symbols declared by the pseudo-command .PUB.

Chapter 2. Outline

*

2–5

740 Family LINKER V.4.00.00 MAP FILE Thu Dec 10 18:30:58 1992

SECTION FILENAME ATR. TYPE START LENGTH

WORKRAM MAIN.R74 ABS RAM 0000 0080
SUB.R74 REL RAM 0800 0100
UTIL.LIB REL RAM 0180 0008
(CALC.R74)

PROM MAIN.R74 REL ROM C000 1080
SUB.R74 REL ROM D800 1500
UTIL.LIB REL ROM ED00 0820
(CALC.R74)

DROM MAIN.R74 REL ROM F520 0023
SUB.R74 REL ROM F544 0030

GLOBAL LABEL INFORMATION

ADCNT 0030 COUNT 009C DATA0 00A4
DATA1 00A6 MAIN C000 TIME 00C6

GLOBAL SYMBOL INFORMATION

GLOBAL BIT SYMBOL INFORMATION

Fig 2.1: Example of a MAP file output

2.3 Cofiguration of the MAP file

SRA742–6

CHAPTER 3

Section Functions

3.1 The role of sections

Programs written in assembly language are generally structured with a RAM area, program area

and fixed data area. A relocatable file is generated when an SRA74 source program is assembled,

and a relocatable file contains at least one of these areas. Each area is called a section. Some

examples are given below to show the contents of sections and the way that they are used.

Two of the most straightforward examples are the relocatable files MAIN.R74 and SUB.R74. As

can be seen from fig 3.1, each of these relocatable files consists of a RAM area, program area and

fixed data area.

Relocatable file Relocatable file

MAIN.R74 SUB.R74

RAM area RAM area

Section name: WORKRAM Section name: WORKRAM

Program area Program area

Section name: PROM Section name: PROM

Fixed data area Fixed data area

Section name: DROM Section name: DROM

Fig 3.1: Relocatable file structure

Chapter 3. Section functions

2–7

To arrange these relocatable files in the sort of memory space shown in fig 3.2, the sections to be

linked should be given the same name using the assembler pseudo-command .SECTION. Doing

this ensures that the sections are assigned to continuous areas when linked. LINK74 allows the

start address for each section to be specified at the time of linking.

Section control command: WORKRAM=100, PROM=C000 DROM

Output file (hex file) name:

Address MAIN.HEX

010016 Section name: WORKRAM

WORKRAM for MAIN.R74

WORKRAM for SUB.R74

020016

Unused area

C00016

Section name: PROM

PROM for MAIN.R74

PROM for SUB.R74

Section name: DROM

DROM for MAIN.R74

DROM for SUB.R74

Fig 3.2 System memory map

As can be seen, LINK74 can be used to create machine language data corresponding to the final

address in the customer’s system.

3.1 The role of sections

SRA742–8

3.2 Section attributes

Each section contains two different types of information, information about address assignment

(relocatable or fixed) and information about the physical arrangement (ROM or RAM). The former

is called the address attribute, and the latter is called the physical attribute. Details of each these

attributes are given below.

3.2.1 Address attributes

There are two address attributes, relative attribute and absolute attribute. They are determined by

the presence or absence of the pseudo-command .ORG (or *=) in the appropriate section of the

source program. Details are given below.

1. Relative attribute

• If there is no pseudo-command .ORG in a section, it becomes a relative attribute section.

Relative attribute sections can be relocated, and their start addresses can be specified

at the time of linking.

2. Absolute attribute

• If there is a pseudo-command .ORG in a section, it becomes an absolute attribute

section. Absolute attribute sections are located at the address specified by the pseudo-

command .ORG.

• The start address of an absolute attribute section cannot be specified at the time of

linking.

Sections with the same name in different relocatable files can have different address attributes.

3.2.2 Physical attribute

There are two physical attributes, ROM attribute and RAM attribute. They indicate the physical

characteristics of the area where the section will be located. Details are given below.

1. ROM attribute

• Sections including code-generating statements in the assembly language source pro-

gram are ROM attribute sections.

• ROM attribute sections generate HEX files as the result of linking.

• To avoid confusion with address attributes, sections with ROM attributes are called ROM

type.

2. RAM attribute

• RAM attribute sections do not generate HEX files as the result of linking.

• Sections including the area securing pseudo-command .BLKB in the assembly language

source program are RAM attribute sections.

• To avoid confusion with address attributes, sections with RAM attributes are called RAM

type.

Sections with the same name must all have the same physical attribute.

Chapter 3. Section functions

2–9

3.2.3 Reserved sections

LINK74 treats sections Z, S, P and R as reserved sections. These reserved sections are described

below.

1. Z section

The Z section is the RAM attribute section located in the 740 Family zero page (from address

0016 to FF16). If a section name is declared as ‘Z’ (or ‘z’) by the SRA74 pseudo-command

.SECTION or if the pseudo-command .ZMOD is declared, the section becomes the Z section.

If the Z section is a relative attribute section, the start address can be specified by LINK74

command input. If the start address specification command is omitted, 0016 is selected as

the start address.

2. S section

The S section is the ROM attribute section located in the 740 Family special page (from

address FF0016 to FFFF16). If a section name is declared as ‘S’ (or ‘s’) by the SRA74

pseudo-command .SECTION or if the pseudo-command .SMOD is declared, the section

becomes the S section.

If the S section is a relative attribute section, the start address can be specified by LINK74

command input. If the start address specification command is omitted, FF0016 is selected as

the start address.

3. P section

The P section is a ROM attribute section with program or fixed data. It can be located

anywhere within the program area (from address 0016 to FFFF16). If a section name is

declared as ‘P’ (or ‘p’) by the SRA74 pseudo-command .SECTION or if the pseudo-command

.PMOD is declared, the section becomes the P section.

If the P section is a relative attribute section, 0016 is selected as the start address if the start

address specification command is omitted.

4. R section

The R section is a RAM attribute section. It can be located anywhere within the program

area (from address 0016 to FFFF16). If a section name is declared as ‘R’ (or ‘r’) by the

SRA74 pseudo-command .SECTION or if the pseudo-command .RMOD is declared, the

section becomes the R section.

If the R section is a relative attribute section, 0016 is selected as the start address if the start

address specification command is omitted.

3.2 Section attributes

SRA742–10

5. E section

Defined symbols in section E and source line debug information in the section are not output

to relocatable files. When section E (small case letters accepted) is declared using the

.SECTION pseudo-command of SRA74, that section becomes section E. Always specify the

section address in advance with the .ORG pseudo-command. And, always specify the -BANK

option to assemble programs when running SRA74. Unless these command options are

specified, warning is output for the defined lines in section E.

3.3 Basic function of sections

1. During linking, sections with the same names are given locations next to each other. Other

sections cannot be located between sections with the same name.

2. The sequence of sections with the same name is determined by the sequence in which the

relocatable file names are specified in the link command.

Chapter 3. Section functions

2–11

CHAPTER 4

Operation Method

4.1 Activation method

Before using LINK74 the following data (input parameters) must be entered:-

1. Relocatable file name (required item)

2. Library file name

3. Section control data

4. Command parameters

In LINK74, this data can be input in any of three different ways according to the operating environ-

ment.

1. Interactive input

2. Command line input

3. Command file input

These different input methods are used for the same parameters. Section 4.2 below contains

explanations of the input parameters and Section 4.3 outlines with the help of examples the

different methods of entering the parameters.

4.1 Activation method

SRA742–12

4.2 Input parameters

4.2.1 Relocatable file name

1. Always enter the name of the relocatable file.

2. The relocatable file must have the file attribute .R74, but the attribute part of the filename

may be omitted when the command is input.

3. The directory path can also be specified within the file name. If only the file name is

specified then the processing operation will be carried out on a file contained within the

current directory in the current drive.

4. The name for the output file is taken from the name of the first relocatable file specified. If an

output file name is specified using the command parameter -F, this takes precedence.

5. The directory where the output file is output is taken from the directory for the first relocatable

file specified. If a directory is specified using the command parameter -O, this takes prece-

dence.

4.2.2 Library file name

1. The name of the library file may be omitted.

2. The library file must have the file attribute .LIB, but the attribute part of the filename may be

omitted when the command is input.

3. The directory path can also be specified within the file name. If only the file name is

specified then the processing operation will be carried out on a file contained within the

current directory.

4. The library file is only accessed when there are global labels or global symbols which cannot

be resolved within the relocatable file.

4.2.3 Section control

1. Section data may be omitted. If omitted, the sections are arranged in the order they are

encountered in the relocatable file read in.

2. Specify section data for relative attribute files. Absolute attribute files are located at fixed

addresses specified by the pseudo-command .ORG regardless of whether or not a section is

specified.

3. Section locations should be specified in order starting with the lowest address. Separate

each of the section names with spaces.

Chapter 4. Operation method

2–13

4. The start address for each section is specified by following the section name with “=” (equals

sign), then by the address. Specify the address in hexadecimal. The initial “0” and final “H”

are not required.

5. Section names can be specified with either upper case or lower case characters.

6. If the start address for a relative attribute file is omitted, the start address becomes 000016.

Reserved section S starts from FF0016.

7. Overlapping section address results in error. However, if the command parameter “-A” is

specified, absolute addresses may overlap. This enables absolute address labels such as

SFR area to be included in several program files with the pseudo-command .INCLUDE

without defining it as external reference.

4.2.4 Command parameters

Command parameters control the output file from linking, presence or absence of a version check

and similar items. Table 4.1 gives details of the command parameters.

Table 4.1: List of command parameters

Command parameter Description

-A Allows overlapping of absolute attribute sections with the same name.

Useful when sharing global memory area.

-BANK Expands the address area upper limit from FFFFH to 1FFFFH.

-F Specifies the output file name. The specification format is as follows:

-Fsample

-M Outputs a MAP file. (section data only)

-MS Outputs a MAP file with global labels, global bit symbols and a global

symbol list.

-N Causes references to the .R74 and .LIB files specified by means of

pseudo-commands .OBJ and .LIB in the source file to be disregarded.

-O Specifies the directory for the output file. The specification format is as

follows:

-OC:\USR\WORK

This specifies the output directory as directory \USR\WORK on drive C.

-S Outputs a SYM file.

-V Checks that the versions of different relocatable files are consistent. In

order for this check to be performed, the version must be specified in

the assembly language source file using the pseudo-command .VER.

4.2 Input parameters

SRA742–14

4.3 Methods of entry

4.3.1 Interactive input

Interactive input has the following features.

1. The relocatable file, library file, section control commands and command parameters are

entered interactively in this sequence.

2. This method of entry is convenient when there are only a few relocatable files or sections, or

when using trial and error to determine the best address.

3. If essential commands are not present during command line input or command file input, the

system automatically switches to interactive input.

Interactive input is activated by entering LINK74<RET> at the operating system prompt. When

activated, LINK74 outputs a display like the one below.

A>LINK74<RET>
740 Family LINKER V.4.00.00
Copyright 1989-1998, MITSUBISHI ELECTRIC CORPORATION
AND MITSUBISHI ELECTRIC SEMICONDUCTOR SYSTEMS CORPORATION
All Rights Reserved.

Relocatable files (.R74) >>

Fig 4.1: LINK74 initial display

The last line in fig 4.1 indicates that LINK74 is waiting for a relocatable file to be entered. Enter the

relocatable file to be linked after “>>”. With interactive input, then LINK74 waits for the library file,

section controls and command parameters to be entered in the same way. Enter all these as

shown in fig 4.2. (To enter more than one file, separate individual file names with spaces. The

same applies for the library file name input, section control and command parameters.)

Chapter 4. Operation method

2–15

A>LINK74<RET>
740 Family LINKER V.4.00.00
Copyright 1989-1998, MITSUBISHI ELECTRIC CORPORATION
AND MITSUBISHI ELECTRIC SEMICONDUCTOR SYSTEMS CORPORATION
All Rights Reserved.

Relocatable files (.R74) >> MAIN SUB<RET>
Libraries (.LIB) >> UTIL1 UTIL2<RET>
Section information >> WORKRAM=100 PROM=C000 DROM<RET>
Command parameter >> -O\WORK -M -S<RET>

Fig 4.2: Display during interactive input

4.3 Method s of entry

SRA742–16

4.3.2 Command line input

Command line input has the following features.

1. With command line input, the whole command is entered on the operating system command

line.

2. MS-DOS restricts the length of a command to 127 characters, so command line input should

be used when the number of relocatable files or sections is small.

3. Command line input may also be used inside batch files and make files.

4. The four different types of data in the input parameters should be separated by commas. Fig

4.3 shows the same command as fig 4.2, but this time entered on the command line.

5. Even if the library name and subsequent parameters are not required, the commas must still

be entered. For instance, fig 4.4 shows the command line input for the command in fig 4.3 if

the library is not required.

6. In the special case where command parameters are not required, two commas are required

to show clearly that there are no command parameters. The example from fig 4.4 is shown

with the command parameters omitted in fig 4.5.

7. If the command parameters entered are insufficient, the system automatically switches to

interactive input mode.

A>LINK74 MAIN SUB, UTIL1 UTIL2, WORKRAM=100 PROM=C000 DROM, -0\WORK -M -S<RET>

Fig 4.3: Command line input - Example 1

A>LINK74 MAIN SUB,, WORKRAM=100 PROM=C000 DROM, -0\WORK -M -S<RET>

Fig 4.4: Command line input - Example 2 (No library file)

A>LINK74 MAIN SUB,, WORKRAM=100 PROM=C000 DROM,,<RET>

Fig 4.5: Command line input - Example 3 (No command parameters)

Chapter 4. Operation method

2–17

4.3.3 Command file input

Command file input has the following features.

1. With command file input, a command file is created in advance and specified when LINK74 is

activated.

2. Command file input is convenient when there are too many characters to use command line

input.

3. The command file name is specified as shown in fig 4.6 when activating LINK74 by entering

“@” in front of the file name. In fig 4.6, the contents of CMD.DAT are executed as the

command.

4. The contents of the command file are the same as for command line input (the “LINK74” can

be omitted, however). The <RET> is disregarded, so long commands can be entered on

several lines. The example in fig 4.5 can be written as the command file shown in fig 4.7.

5. If the command parameters entered are insufficient, the system automatically switches to

interactive input mode. For example, if the last two commas are omitted from fig 4.7, LINK74

outputs an interactive input display to request the command parameters.

A>LINK74 @CMD.DAT<RET>

Fig 4.6: Specifying a command file

MAIN SUB
,
,WORKRAM=100 PROM=C000 DROM
,,

Fig 4.7: Command file layout - Example

4.3 Method s of entry

SRA742–18

4.4 Errors

4.4.1 Types of error

The types of errors which occur during the operation of LINK74 have the following causes:-

1. Errors relating to the operating system

These are errors such as insufficient disc or memory capacity which relate to LINK74’s

operating system. Please refer to the list of error messages in Appendix A and proceed

according to the operating system commands.

2. Errors relating to the input of LINK74 command lines

These are errors relating to the input of the command lines to activate LINK74. Please study

the contents of this chapter and then enter the relevant commands again.

3. Errors relating to the contents of the relocatable files constituting the object of the linking

operation

These are errors relating to the relocatable files such as the dual definition of a global label

or reference to an external label which has not been defined. Please correct the relevant

contents of the source file and carry out the assembly operation again where required.

4. Error relating to LINK74 functions

This error occurs if the SRA74 and LINK74 versions do not match. Please ask your supplier

if you require a more detailed explanation.

LINK74 outputs the details of an error onto the VDU screen in the format shown in Fig 4.8. Please

study the list of errors in error number order in Appendix A and take action accordingly.

A>LINK74 MAIN SUB,,WORKRAM=100 PROM=C000 DROM,,
MELPS 740 LINKER V.1.00.00C
Copyright 1989, 1990, MITSUBISHI ELECTRIC CORPORATION
AND MITSUBISHI ELECTRIC SEMICONDUCTOR SOFTWARE CORPORATION
All Rights Reserved.

now processing pass 1
processing “MAIN.R74”
ERROR NO.2: Out of heap space

A>

Fig 4.8: Example of error display

Chapter 4. Operation method

2–19

4.4.2 Value for return to operating system

When entering an execution command into an operating system batch file, for example, there are

times when you may wish to change the contents of the processing operation in accordance with

the outcome of the execution. In LINK74 the execution results are divided into 5 error levels as

shown in Table 4.2 and returned to the operating system.

Table 4.2: List of error levels

Error level Description of execution results

0 Normal termination

1 Error relating to content of relocatable file which constitutes the object of linking

2 Error relating to input of LINK74 commands

3 Error relating to the operating system

4 Error relating to LINK74 functions

4.5 Environment variables

LIB74

LINK74 refers to the environment variables in LINK74 at the point when it reads in the library file. If

the directory path for the library file is specified by setting the environment variable LIB74, the

directory path does not need to be specified when the command is entered.

Details are given in ordinary OS manuals.

4.5 Enfironment variables

SRA742–20

Appendix A. Error messages

APPENDIX A

Error Messages

Table A.1: List of system errors

Error number Error message Description and user action

0 xxx file not found The file specified in the input cannot be found. This

error message can also appear for files specified by

the pseudo- commands .OBJ or .LIB.

⇒ Enter the correct filename

1 Invalid command input The command input has more than four parameters,

or the total number of characters used for the pa-

rameters is 2048 or more.

⇒ Input the command again within the limits im-

posed by these restrictions.

2 Out of heap space The memory space required for the operation of the

linker is insufficient.

⇒ Reduce the number of public symbols.

3 Invalid section information Section information is incorrect.

⇒ Input the command again in the format “Section

name=address”

4 Invalid parameter input “xxx” Command parameter specification is incorrect.

⇒ Input the command again correctly.

5 Non relocatable file name No relocatable file name has been input.

⇒ Input the file name

6 Internal error An internal error has occurred in LINK74.

⇒ Please notify your supplier.

2–21

Error number Error message Description and user action

7 xxx relocatable format is mismatch The .R74 relocatable file format versions do not

match.

⇒ This error occurs when there is a mismatch be-

tween the assembler or library and the linker being

used. The .R74 file and .LIB file processed must be

created by SRA74 and LIB74 having the same ver-

sion number as LINK74.

8 Program version is different Mismatch with the program version declared by

pseudo-command .VER.

⇒ Either make the version specified in the relocat-

able file by pseudo-command .VER match, or use

the -V parameter to cancel the parameter specifica-

tion.

9 Unresolved label “xxx” in xxx A symbol or label declared for external reference in

the section is not defined.

⇒ Link a program with the label or symbol declared

as public.

10 “xxx” is multiple defined in xxx. Label or symbol is defined more than once.

 others in xxx ⇒ Modify the label or symbol name.

11 Location overlap. The section address space overlaps.

SECTION=xxx ADDRESS=xxx ⇒ Check the section address location, and ensure

in xxx that an address overlap does not occur. (For abso-

lute attribute sections, modify the pseudo-command

.ORG in the source file.)

12 SECTION xxx is an absolute A start address is specified for an absolute attribute

section using a section control command.

⇒ Either stop specifying the address with the com-

mand input, or change the section to a relative at-

tribute section.

SRA742–22

Error number Error message Description and user action

14 Can’t find SECTION xxx The section cannot be found.

⇒ Specify the section information correctly. (Take

care with upper and lower case letters - section

names make a distinction between upper and lower

case.)

15 Can’t create xxx This file cannot be generated.

⇒ Check the specification of the -O parameter and

input again.

16 File seek error xxx Seek failure.

⇒ This error involves the operating system. It most

frequently occurs when there is a hardware problem

with a disk drive.

17 Expression value is out of range. The value resulting from calculation of an expression

SECTION=xxx ADDRESS=xxx is out of range. (The section name, absolute

 OFFSET=xxx address and offset from the start of the section are

given to indicate the location of the error.)

⇒ Modify the program to ensure that the expression

value does not go out of range.

18 Out of disk space There is not enough space left on the disk selected

for output.

⇒ Create more space on the disk.

19 Relative jump is out of range. The jump destination address of the relative jump

SECTION=xxx ADDRESS=xxx command cannot be accessed.

OFFSET=xxx ⇒ Modify the program so that the jump destination

label is within range. (The section name, absolute

address and offset from the start of the section are

given to indicate the location of the error.)

Appendix A. Error messages

2–23

Error number Error message Description and user action

22 Out of maximum program size The program area exceeds the 64KB (FFFF16) maxi-

mum area.

⇒ Reduce the size of the program.

23 Section type mismatch in Section with ROM type and RAM type mixed.

SECTION xxx ⇒ Ensure that ROM and RAM type are not mixed in

the same section.

25 Expression is out of ZERO page. The result of the formula processed for zero page

SECTION=xxx ADDRESS=xxx addressing exceeds the range from 0016 to FF16.

OFFSET=xxx ⇒ Modify to ensure that the result is within the zero

page range.

26 Expression is out of SPECIAL page. The result of the formula processed for special page

SECTION=xxx ADDRESS=xxx addressing is outside the range from FF0016 to

OFFSET=xxx FFFF16.

⇒ Modify to ensure that the result is within the spe-

cial page range.

27 label “xxx” type is mismatch The type (label or bit symbol) of an externally refer-

enced label differs from the declaration.

⇒ Correctly declare the pseudo-command for exter-

nal reference.

28 Section “xxx” information is The section start address specified by command

 out of range input is out of range.

⇒ Specify the start address correctly.

29 Bit value is out of range. The result of calculating a bit value is outside the

SECTION=xxx ADDRESS=xxx range from 0 to 7.

OFFSET=xxx ⇒ Modify to ensure that the result is within the range.

30 Extend area requires command The expansion area is not defined.

option '-BANK' ⇒ Link it by specifying the -BANK command option.

PART 3PART 3
LIBRARIAN

FOR THE 740 FAMILY

LIB74 OPERATION MANUAL

3-i

Table of Contents

Chapter 1. The format of the manual 1

Chapter 2. Outline 2
2.1 Functions .. 2

2.2 Advantages...2

2.3 Generating files .. 3

2.4 Configuration of the LST file... 4

Chapter 3. Operation method 7
3.1 Activation method.. 7

3.2 Input parameters ..8
3.2.1 Library file name ... 8

3.2.2 Relocatable file name ... 8

3.2.3 Command parameters .. 8

3.2.4 Details of command parameters .. 10

3.3 Methods of entry .. 12
3.3.1 Command line input ... 12

3.3.2 Command file input .. 12

3.4 Errors .. 14
3.4.1 Types of error ... 14

3.4.2 Value for return to operating system .. 15

3.5 Environment variables .. 15

Appendix A Error messages 16
A.1 System errors ... 16

A.2 Library manager errors ... 16

3-ii

List of Figures

2.1 LST file output - example 1 (list of modules) 4

2.2 LST file output - example 2 (list of global labels and symbols) 5

2.3 LST file output - example 3

(list of global labels and symbols for each module) 6

3.1 Command line input - Example 1 (deleting a module) 12

3.2 Command line input - Example 2 (Adding relocatable files) 12

3.3 Specifying a command file.. 13

3.4 Command file layout - Example.. 13

3.5 Example of display when LIB74 terminates normally 13

3.6 Help screen for command line errors .. 14

3-iii

List of Tables

3.1 List of command parameters .. 9

3.2 List of error levels .. 15

A.1 List of system errors ... 17

A.2 List of library manager errors ... 18

3–1

CHAPTER 1

The Format of the Manual

The LIB74 operation manual contains the following chapters:-

• Chapter 2: Outline

The basic functions of LIB74 and the files which it generates.

• Chapter 3: Operating method

How to enter the commands used by LIB74.

• Appendix A: Error messages

A list of the error messages used by LIB74 along with clarifications of the content of the

messages and appropriate user responses.

SRA743–2

CHAPTER 2

Outline

LIB74 is a program for managing the structured relocatable files produced by SRA74 in the form of

a library. Frequently used subroutines can be included in a library to reduce assembly time and

promote the reuse of programs.

2.1 Functions

LIB74 processes the relocatable files created by SRA74. Files created by LIB74 can be accessed

by LINK741. The following functions are provided to ensure that their functions can be used to the

full.

1. LIB74 creates and modifies library files that can be accessed by LINK74.

2. Relocatable files can be stored in library files.

3. Unrequired relocatable files can be deleted from library files.

4. Old relocatable files in a library file can be updated to create new relocatable files.

5. Relocatable files stored in a library file can be extracted.

6. Information of relocatable files in a library file can be displayed.

2.2 Advantages

1. Linking can be made faster

Storing relocatable files in a library enables the fast access to the information required in

linking, and accelerates the LINK74 linking operation.

2. When relocatable files in a library file are updated, the update dates can be compared,

making it possible to cut down processing work by only processing new versions of relocat-

able files. (When the -U command parameter is specified.)

1 A linkage editor for use with the 740 Family.

Chapter 2. Outline

3–3

2.3 Generating files

LIB74 generates 4 file types as outlined below:-

1. Library file

• File containing edited relocatable files with an index to labels and symbols.

• In the library file, relocatable files are handled as individual modules. (Here, the relocat-

able files in a library file are referred to as modules.)

• A module name is the same as the relocatable file name including the file attribute.

• The file attribute of a library file is .LIB.

2. Program list file (Hereafter referred to as the LST file)

• File generated on specification of command parameter “-L”.

• Contains an index with relocatable file names, global labels and symbols.

• The file attribute is .LST.

• The structure of this file is described in the next section.

3. Relocatable file

• File generated on specification of command parameter “-X”.

• File regenerated from a relocatable file stored in a library file

• A regenerated relocatable file is identical to the relocatable file created by SRA74 before

it was stored in the library file.

• The file attribute is .R74.

4. Backup file

• Backup files are generated regardless of command parameter specifications, unless

LIB74 terminates abnormally.

• Whenever a library file is modified, the library file before modification is retained as a

backup.

• The file attribute is .BAK.

Note:

Library files, relocatable files, and backup files are in binary format, so they should not be output to

the screen or printer.

2.3 Generating files

SRA743–4

2.4 Configuration of the LST file

Fig 2.1, fig 2.2 and fig 2.3 show examples of an output LST file. The LST file contains the following

data:-

1. List of modules

The following information stored in the library file is output.

• Module_name: Names of modules stored in the library file The output sequence is the

same sequence that the files were stored in the library file.

• Offset: The number of bytes from the start of the module to start of the module (hexa-

decimal)

• Module_size: Module memory capacity (hexadecimal)

LIB74 librarian V.1.00.10 date 1998-Dec-10 15:30 page 1

Library file name : CALC8.LIB
Relocatable format: VER.A
Last update time : 1998-Dec-10 15:30
Number of modules : 3
Number of global symbols: 10

Module_name:
key_scan Offset: 00000000H Module size: 00000100H
multiply Offset: 00000180H Module size: 00000080H
division Offset: 00000200H Module size: 000000A5H

Fig 2.1: LST file output - example 1 (list of modules)

2. Global label and symbol list (alphabetic order)

Two separate tables are output

• PUBLIC symbol table

Symbol_name: Indicates public labels, public symbols and public bit symbols. Public

symbols declared with the pseudo-command .EQU are marked with “(e)”. Public bit

symbols are marked with “(b)”.

Module_name: Indicates the modules containing the public labels, public symbols and

public bit symbols.

Chapter 2. Outline

3–5

• EXTERN symbol table

Symbol_name: Indicates external labels and external symbols.

Module_name: Indicates the modules containing external reference specifications.

LIB74 librarian V.1.00.10 date 1998-Dec-10 15:30 page 2

PUBLIC symbol table (symbol count = 0010)

 Symbol_name Module_name Symbol_name Module_name

 _dividel........ division _division....... division
 _key_flg1(b).... key_scan _key_flg2(b).... key_scan
 _key_scan....... key_scan _key_scn1....... key_scan
 _multi1......... multiply _multiply....... multiply
 _one(e)......... key_scan _two(e)......... key_scan

LIB74 librarian V.1.00.10 date 1998-Dec-10 15:30 page 3

EXTERN symbol table (symbol count = 0010)

Symbol_name Module_name Symbol_name Module_name

 _div_ansl....... division _div_ansh....... division
 _key_buff1...... key_scan _key_buff2...... key_scan
 _key_buff3...... key_scan _key_buff4...... key_scan
 _mul_ansl....... multiply _mul_ansh....... multiply

Fig 2.2: LST file output - example 2 (list of global labels and symbols)

2.4 Configuration of the LST file

SRA743–6

3. List of global labels and symbols for each module

Two tables are output, a PUBLIC symbol table and an EXTERN symbol table. Both show the

module names, followed by the global labels and global symbols for each module.

LIB74 librarian V.1.00.10 date 1998-Dec-10 15:30 page 4

PUBLIC symbol table

Module name: key_scan (symbol count = 0006)

_key_flg1(b) _key_flg2(b) _key_scan _key_scn1
_one(e) _two(e)

Module name: multiply (symbol count = 0002)

_multi1 _multiply

Module name: division (symbol count = 0002)

_dividel _division

LIB74 librarian V.1.00.10 date 1998-Dec-10 15:30 page 5

EXTERN symbol table

Module name: key_scan (symbol count = 0006)

_key_buff1 _key_buff2 _key_buff3 _key_buff4
_linecnty _linecntx

Module name: multiply (symbol count = 0002)

_mul_ansl _mul_ansh

Module name: division (symbol count = 0002)

_div_ansl _div_ansh

Fig 2.3: LST file output - example 3 (list of global labels and symbols for each module)

Chapter 2. Outline

3–7

CHAPTER 3

Operation Method

3.1 Activation method

Before using LIB74 the following data must be entered:-

1. Library file name (required item)

2. Relocatable file name

3. Command parameters

In LIB74, this data can be input in any of two different ways according to the operating environ-

ment.

1. Command line input

2. Command file input

These different input methods are used for the same parameters. The following sections contain

explanations of the input parameters and outline with the help of examples the different methods of

entering the parameters.

SRA743–8

3.2 Input parameters

3.2.1 Library file name

1. Always enter the name of the library file.

2. The name for a library file to be edited should be entered after command parameter -O, and

separated from the command parameter by a space or tab character.

3. The directory path can also be specified within the file name. If only the file name is

specified then the system will search for the library file in the directory specified by the

environmental variable LIB74. If the environmental variable has not been set, processing will

be carried out on a file contained within the current directory.

4. The file attribute .LIB may be omitted.

3.2.2 Relocatable file name

1. Several relocatable files may be specified, separated by space or tab characters.

2. The names of the relocatable files to be processed should be entered after command param-

eter -F, and separated from the command parameter by a space or tab character.

3. The directory path can also be specified within the file name. If only the file name is

specified then the processing operation will be carried out on a file contained within the

current directory on the current drive.

4. The .R74 attribute part of the filename may be omitted when the command is input.

3.2.3 Command parameters

Command parameters control output file specification, specification of details of library file opera-

tion and similar items. Table 3.1 gives details of the command parameters.

Chapter 3. Operation method

3–9

Table 3.1: List of command parameters

Number 1 Command parameter 2 Description

1 -O (Output) Specifies the library file to be edited.

2 -F (Files) Specifies a relocatable file to be added to the library file,

updated or extracted, or specifies a module to be deleted

from the library file.

3 -A (Append) Adds a relocatable file to the library file.

-R (Replace) Updates a module in the relocatable file.

-D (Delete) Deletes a specified module from the library file.

-L (List) Outputs a list of the modules stored in a library file.

-X (Extract) Extracts a specified module from the library file. A relocatable

file that can be processed by LINK74 is created in the current

directory from the extracted module.

4 -V (Verbose) Displays the names of individual files on the screen as they

are being processed.

-U (Update) When updating modules in the library file, only the module

corresponding to the newest relocatable file is updated.

Notes:

1. The numbers indicate the following details.

1. Essential parameter. Always enter the name of the library file to be edited.

2. When one of the -A, -R and -X parameters is specified to append, replace or extract a

relocatable file, the name of the relocatable file must be specified. To deleting a module,

the name of the module must be specified.

3. One of these five parameters must be specified.

4. Specify as required.

2. No distinction is made between upper case and lower case letters for command parameters .

Either -A or -a is acceptable.

3.2 Input parameter

SRA743–10

3.2.4 Details of command parameters

The individual command parameters are described in detail below.

1. -O

• Specifies the library file to be edited.

• The library file name can be specified with a directory path name.

Example: A>LIB74 -LO B:\USR\TEST<RET>

• If the directory path specification is omitted, the system first searches in the directory

specified by the environmental variable LIB74, then in the current directory. If the envi-

ronmental variable is set as shown in the example shown below, a file in the \USR\LIB

directory on drive B: will be processed.

Example: A>SET LIB74=B:\USR\LIB

• If the directory path specification is omitted and no environmental variable has been set,

a file in the current directory on the current drive will be processed.

• If the attribute part of the filename is omitted, the attribute LIB is selected as the default.

• If the full filename is specified, it is possibly to specify files with attributes other than LIB.

2. -F

• Specifies a relocatable file to be added to the library file, updated or extracted, or speci-

fies a module to be deleted from the library file.

• Several files can be specified, separated by space or tab characters.

• The file name can be specified with a directory path name.

Example: A>LIB74 -AO TEST.LIB -F B:\WORK\SUB1 C:SUB2<RET>

• If the directory path specification is omitted, a file in the current directory on the current

drive will be processed.

• If the attribute part of the filename is omitted, the attribute R74 is selected as the default.

• If the full filename is specified, it is possibly to specify files with attributes other than R74.

3. -A

• Creates a new library file or adds a relocatable file to an existing library file.

• When creating a new library file, the relocatable files specified using the -F parameter

are added to the start of the new library in order of specification.

• When adding relocatable files to an existing library file, the relocatable files specified

using the -F parameter are added to the end of the library file in order of specification.

Chapter 3. Operation method

3–11

• No check is made to see if a specified relocatable file has the same name as a module

already stored in the library.

• If two identical module names are specified at the same time, the multiple definition of

labels and symbols is regarded as an error and processing stops.

4. -R

• Updates a module in the library file.

• Used together with -U, only modules in the relocatable file with the latest update date are

updated.

5. -D

• Deletes a specified module from the library file.

6. -L

• Outputs a list (LST file) of the modules stored in a library file.

• When a file is specified with the -F parameter, information concerning the specified

relocatable file is output to the LST file.

• When no file is specified with the -F parameter, information concerning all modules in the

library is output to the LST file.

• The file attribute is LST.

7. -X

• Extracts a specified module from the library file, creating a relocatable file identical to the

relocatable file before storage in the library.

• The date of extraction becomes the update date for the relocatable file.

• The extracted relocatable file can be processed by LINK74.

• The extracted relocatable file is created in the current directory.

• When no relocatable file is specified with the -F parameter, all modules in the library file

are extracted.

• The contents of the library file are not modified.

• The file attribute is R74.

8. -V

• Displays details of files on the screen to show how they are being processed.

3.2 Input parameter

SRA743–12

9. -U

• When updating modules in the library file, the update date for the relocatable file speci-

fied with the -F option is compared with the update date of the module stored in the

library file. The update is only performed if the update date of the relocatable file is the

newest files.

• The update date for the relocatable file is taken form the operating system file manage-

ment data.

3.3 Methods of entry

3.3.1 Command line input

Command line input has the following features.

1. With command line input, the whole command is entered on the operating system command

line.

2. Command line input should be used when the number of relocatable files or parameters is

small.

3. Command line input may also be used inside batch files and make files.

Fig 3.1 shows the example of deleting module FILE1.R74 from the library file TEST.LIB.

A>LIB74 -D -O TEST.LIB -F FILE1<RET>

Fig 3.1: Command line input - Example 1 (deleting a module)

Fig 3.2 shows the example of adding relocatable files FILE2.R74 and FILE3.R74 to the library file

TEST.LIB.

A>LIB74 -AO TEST.LIB -F FILE2 FILE3<RET>

Fig 3.2: Command line input - Example 2 (Adding relocatable files)

3.3.2 Command file input

Command file input has the following features.

1. With command file input, a command file is created in advance using an editor and specified

when LIB74 is activated.

Chapter 3. Operation method

3–13

2. Command file input is convenient when there are too many files or too many characters to

use command line input.

3. The command file name is specified as shown in fig 3.3 when activating LIB74 by entering

“@” in front of the file name. In fig 3.3, the contents of CMD.DAT are executed as the

command.

4. The contents of the command file are the same as for command line input (the “LIB74” can

be omitted, however). The <RET> is disregarded, so long commands can be entered on

several lines. The example in fig 3.2 can be written as the command file shown in fig 3.4.

If the command has been entered correctly, LIB74 starts processing. As soon as the processing of

each LIB74 command terminates, a termination message is shown on the screen and processing

finishes. Fig 3.5 shows an example of the display when LIB74 processing has terminated nor-

mally.

A>LIB74 @CMD.DAT<RET>

Fig 3.3: Specifying a command file

-AO
TEST.LIB
-F
FILE2
FILE3

Fig 3.4: Command file layout - Example

A LIB74 -AVO TEST.LIB -F SUB_1 SUB_100<RET>
740 Family LIBRARY MANAGER V.1.00.10
Copyright 1989-1998, MITSUBISHI ELECTRIC CORPORATION
AND MITSUBISHI ELECTRIC SEMICONDUCTOR SYSTEMS CORPORATION
All Rights Reserved.
<test.lib > Create
APPEND FILE = sub_1,sub_100
MODULE COUNT 000002
GLOBAL SYMBOL COUNT 000019
A>

Fig 3.5: Example of display when LIB74 terminates normally

3.3 Methods of entry

SRA743–14

3.4 Errors

3.4.1 Types of error

The types of errors which occur during the operation of LIB74 have the following causes:-

1. Errors relating to the operating system

These are errors such as insufficient disc or memory capacity which relate to LIB74’s operat-

ing system. Please refer to the list of error messages in Appendix A and proceed according

to the operating system commands.

2. Errors relating to the input of LIB74 command lines

These are errors relating to the input of the command lines to activate LIB74. If the input is

incorrect, a label screen such as the one shown in fig 3.6 is displayed. Please study the

contents of this chapter and then re-enter the relevant commands.

3. Errors relating to the contents of the relocatable files being processed

These are errors relating to the relocatable files such as dual definition of a public label.

Refer to the LST file to make the necessary corrections.

A>LIB74<RET>
740 Family LIBRARY MANAGER V.1.00.10
Copyright 1989-1998, MITSUBISHI ELECTRIC CORPORATION
AND MITSUBISHI ELECTRIC SEMICONDUCTOR SYSTEMS CORPORATION
All Rights Reserved.

Usage: A>LIB74 -[ardxluv]o <filename> [-f <filename> ...]

-o : library file name
-f : relocatable file name
-a : append command
-r : replace command
-d : delete command
-x : extract command
-l : listout command
-u : update check (option)
-v : verbose (option)

Fig 3.6: Help screen for command line errors

LIB74 outputs the details of an error onto the VDU screen. Please study the list of errors in error

number order in Appendix A and take action accordingly.

Chapter 3. Operation method

3–15

3.4.2 Value for return to operating system

When entering an execution command into an Operating system batch file, for example, there are

times when you may wish to change the contents of the processing operation in accordance with

the outcome of the execution. In LIB74 the execution results are divided into 4 error levels as

shown in Table 3.2 and returned to the operating system.

Table 3.2: List of error levels

Error level Description of execution results

0 Normal termination

1 Error relating to the library file or relocatable file to be processed

2 Error relating to input of LIB74 commands

3 Error relating to the operating system

3.5 Environment variables

LIB74 always processes the library file in the current directory first. If there is no library file in the

current directory and a directory path is specified with the environment variable “LIB74,” then the

library file in the directory specified with the environment variable is processed.

Example: A>SET LIB74=B:\USR\LIB<RET>

3.5 Environment variables

SRA743–16

APPENDIX A

Error Messages

A.1 System errors

When a system error is detected during LIB74 operation, an error message is displayed on the

VDU and processing is suspended. Table A.1 lists all the system errors.

A.2 Library manager errors

When a processing error is detected during LIB74 operation, an error message is displayed on the

VDU and processing is suspended. Table A.2 lists all the library manager errors.

Appendix A. Error messages

3–17

Table A.1: List of system errors

Error message Description and user action

Usage: A>LIB74 -[adluvxz]o The command has been input wrongly.

<filename> [-f<filename> ...] ⇒ Refer to the help screen and input the command again.

Can’t open xxx File not found.

⇒ Check that the file specified with -O or -F parameter

exists in the specified directory

Can’t create xxx This file cannot be generated.

⇒ Check the specification of the -O parameter and input

again.

Out of disk space1 There is not enough space left on the disk selected for

output.

⇒ Create more space on the disk.

Input file read error xxx Error occurred during file read process

⇒ This error involves the operating system. It most fre-

quently occurs when there is a hardware problem with a

disk drive.

Internal error An internal error has occurred in LIB74.

⇒ Please notify your supplier.

File seek error xxx Seek failure.

⇒ This error involves the operating system. It most fre-

quently occurs when there is a hardware problem with a

disk drive.

Note:

1. LIB74 creates intermediate files when it is running. Disk space equivalent to approximately

two or three times the size of the library file is required.

A.2 Library manager errors

SRA743–18

Table A.2: List of library manager errors

Error message Description and user action

xxx is multiple defined in xxx. Public label or public symbol is defined more than once.

others in xxx ⇒ Use a LST file to check the public labels and symbols in

the library file

xxx module is not in the library The module specified cannot be found.

⇒ Use a LST file to check the modules in the library file

Invalid module or library The module in the library file is in a different format from

the relocatable file.

⇒ The library file to be edited and the relocatable file must

be created with the same version of SRA74.

xxx command file not found The command file specified cannot be found.

⇒ Check the command file specification

Out of heap space The memory space required for the operation of the library

manager is insufficient.

⇒ Reduce the number of global labels

Too many object modules There are too many modules in the library file.

⇒ Split up the library file into two or more files. Each

library file can hold up to 500 modules.

CPU number error The specified library file or relocatable file has not been

created by SRA74.

⇒ Check the library file or relocatable file specification

Appendix A. Error messages

PART 4PART 4
CROSS REFERENCER

FOR THE 740 FAMILY

CRF74 OPERATION MANUAL

4-i

Table of Contents

Chapter 1. The format of the manual 1

Chapter 2. Outline 2
2.1 Functions .. 2

2.2 Generating files .. 2

2.3 Configuration of the CRF file .. 3

Chapter 3. Operation method 4
3.1 Activation method.. 4

3.2 Input parameters .. 4
3.2.1 Source file name .. 4

3.2.2 Command parameters .. 4

3.3 Methods of entry .. 5
3.3.1 Command line input ... 5

3.4 Errors .. 6
3.4.1 Types of error ... 6

3.4.2 Value for return to operating system .. 7

3.5 Environment variables .. 7

Appendix A Error messages 8
A.1 System errors ... 8

A.2 Cross reference errors .. 9

4-ii

List of Figures

2.1 CRF file output ... 3

3.1 Command line input - Example .. 5

3.2 Help screen for command line errors .. 5

3.3 Error display ... 6

4-iii

List of Tables

3.1 List of command parameters .. 5

3.2 List of error levels .. 7

A.1 List of system errors ... 8

A.2 List of cross reference errors ... 9

4–1

CHAPTER 1
The format of the Manual

The CRF74 operation manual contains the following chapters:-

• Chapter 2: Outline

The basic functions of CRF74 and the files which it generates.

• Chapter 3: Operating method

How to enter the commands used by CRF74.

• Appendix A: Error messages

A list of the error messages used by CRF74 along with clarifications of the content of the

messages and appropriate user responses.

SRA744–2

CHAPTER 2
Outline

CRF74 is a program for creating a cross reference list of labels and symbols in a source file. This

list is very useful in helping you to understand the interrelationships between different parts of a

source file when you are modifying a program.

2.1 Functions

CRF74 is used in conjunction with SRA741. The following functions are provided to make the

process of understanding a source file more efficient.

1. Line numbers are displayed for commands accessing labels.

2. File read can be executed by means of the pseudo-command .INCLUDE.

3. Headers can be output using the pseudo-command .PAGE.

2.2 Generating files

CRF74 generates a cross reference lists (CRF files)

• A label and symbol cross reference list is displayed.

• Format is fixed. Each page has 57 lines of 80 characters each.

• This file should be output to the printer and used in case of debugging or editing.

• The file attribute is .CRF.

1 A relocatable assembler for use with the 740 Family.

Chapter 2. Outline

4–3

2.3 Configuration of the CRF file

Fig 2.1 shows an example of an output CRF file. The CRF file contains the following data:-

1. Labels and symbols, together with the line numbers where they are defined and accessed.

The definition line is marked with “#”, and any access lines involving subroutine calls are

marked with “&”.

2. The first 32 characters of label and symbol names are shown. The page format is deter-

mined by the longest name in the CRF file.

3. The list header shows any title specified using the pseudo-command .PAGE. (Only the first

30 characters are used. Any further characters are disregarded.)

4. CRF74 performs no evaluation of values of labels and symbols in the source program. This

means that it cannot make evaluations of condition assembler.

740 Family CROSS REFERENCE V.1.00.10 P. 001

A0 3926 4285 8549 9079 9100
AA 3884 5545 5668
ABEND 9396& 9465& 9587#
ABEND10 9588 9593#
ABENDRT 9590# 9605
ACCHK 1201# 1408
ACCHK5 1213 1237#
ACCHKE 1235 1239 1241 1249#
ADDING 4994 5006#
ADDING0 5013 5014 5016#
ADDING1 5015 5019#
ADDRESS 300 318 1025
ADR_CHK 9154#
ADR_OUT 8302 8336 9145#
ADR_PNT 8157#
ADR_PNT2 8149#

Fig 2.1: CRF file output

2.3 Configuration of the CRF file

SRA744–4

CHAPTER 3
Operation Method

3.1 Activation method

Before using CRF74 the following data (input parameters) must be entered:-

1. Source file name (required item)

2. Command parameters

3.2 Input parameters

3.2.1 Source file name

1. Always enter the name of the library file.

2. If the .A74 attribute part of the filename is omitted, the attribute .A74 will be selected as the

default.

3. If the full filename is specified, files with attributes other than .A74 may be processed (Ex-

ample: .ASM).

4. The drive name can also be specified within the file name. If only the file name is specified

then the system will search for the library file on the current drive.

5. Up to 16 source file names can be specified.

3.2.2 Command parameters

Command parameters are used to specify whether or not to search for the pseudo-command

.INCLUDE in the source file and to specify the drive name for the output file. Table 3.1 gives

details of the command parameters.

Chapter 3. Operation method

4–5

Table 3.1: List of command parameters

Command parameter Description

-O Specifies the drive name and directory path for the CRF file to be output.

They should be specified in the following format.

Example: A>CRF74 SRCFILE -OC:\TMP <RET>

(The ‘¥’ symbol and ‘\’ symbol are interchangeable. This is because the

use of one or other of these signs depends on which operating system is

being used. Since the codes are the same, either sign can be used.)

The CRF file is output to the TMP directory on drive C.

-I Disregard the pseudo-command .INCLUDE.

3.3 Methods of entry

3.3.1 Command line input

Command line input has the following features.

With command line input, the whole command is entered on the operating system command

line to activate CRF74.

A>CRF74 SRCFILE1 SRCFILE2 SRCFILE3<RET>

Fig 3.1: Command line input - Example

If an error is detected in the command line, a help screen like the one shown in fig 3.2 is displayed

and processing stops.

A>CRF74<RET>
740 Family CROSS REFERENCE V.1.00.10
Copyright 1989-1998, MITSUBISHI ELECTRIC CORPORATION
AND MITSUBISHI ELECTRIC SEMICONDUCTOR SYSTEMS CORPORATION
All Rights Reserved.

Usage: crf74 <filename> [-ifilename,..] [-opath]
 -i : not include specified files (use -ifilename,....)
 -o : select drive and directory for output (use -otmp)

Fig 3.2: Help screen for command line errors

3.3 Methods of entry

SRA744–6

3.4 Errors

3.4.1 Types of error

The types of errors which occur during the operation of CRF74 have the following causes:-

1. Errors relating to the operating system

These are errors such as insufficient disc or memory capacity which relate to CRF74’s

operating system. Please refer to the list of error messages in Appendix A and proceed

according to the operating system commands.

2. Errors relating to the input of CRF74 command lines

These are errors relating to the input of the command lines to activate CRF74. Please study

the contents of this chapter and then re-enter the relevant commands.

3. Errors relating to the contents of the source files being processed

This error occurs when a source file specified by the pseudo-command .INCLUDE cannot be

found.

When CRF74 detects an error, a message is displayed in the format shown in Fig. 3.3. Refer to the

list of error messages in Appendix A and take the appropriate action.

A>CRF74 SRCFILE1<RET>
740 Family CROSS REFERENCE V.1.00.10
Copyright 1989-1998, MITSUBISHI ELECTRIC CORPORATION
AND MITSUBISHI ELECTRIC SEMICONDUCTOR SYSTEMS CORPORATION
All Rights Reserved.

now processing pass 1
now making cross reference (SRCFILE1.A74)
----*
Out of heap space

A>

Fig 3.3: Error display

Chapter 3. Operation method

4–7

3.4.2 Value for return to operating system

When entering an execution command into an operating system DOS batch file, for example, there

are times when you may wish to change the contents of the processing operation in accordance

with the outcome of the execution. In CRF74 the execution results are divided into 3 error levels as

shown in Table 3.2 and returned to the operating system. For an explanation of how to make best

use of these error levels please refer to a commercially available MS-DOS handbook.

Table 3.2: List of error levels

Error level Description of execution results

0 Normal termination

1 Error due to not being able to find source file specified by pseudo-command

.INCLUDE

2 Error relating to input of CRF74 commands

3 Error relating to the operating system

3.5 Environment variables

CRF74 does not use operating system environment variables.

3.4 Errors

SRA744–8

APPENDIX A
Error Messages

A.1 System errors

When a system error is detected during CRF74 operation, an error message is displayed on the

VDU and processing is suspended. Table A.1 lists all the system errors.

Table A.1: List of system errors

Error message Description and user action

Usage: crf74 <filename> [-ifilename] The command has been input wrongly.

 [-opath] ⇒ Refer to the help screen and input the command again.

Can’t open xxx File not found.

⇒ Check the source file name and input the command

again.

Can’t create xxx This file cannot be generated.

⇒ Create more space on the disk.

Out of disk space There is not enough space left on the disk for output.

⇒ Create more space on the disk.

Out of heap space There is not enough available memory for the cross refer-

encer to work properly.1

⇒ Reduce the number of symbols or labels.

Note:

1. The total number of symbols and labels which can be handled by CRF74 depends on the

available memory capacity.

Appendix A. Error messages

4–9

A.2 Cross reference errors

A.2 Cross reference errors

If an error is detected during cross reference creation, an error message is displayed on the VDU,

but processing still continues. Table A.2 lists all the cross reference errors.

Table A.2: List of cross reference errors

Error message Description and user action

Can’t open include file xxx The source file specified by pseudo-command .INCLUDE

cannot be found.

⇒ Check the contents of the directory.

PART 5PART 5
M37280 CONVERTER

FOR THE 740 FAMILY

CV74 OPERATION MANUAL

Table of Contents

CHAPTER 1. The format of the Manual 1

CHAPTER 2. Outline 2
2.1 Functions ... 2

2.2 Generating files .. 3

CHAPTER 3. Operation Method 4
3.1 Activation method ... 4

3.2 Input parameters ...4
3.2.1 Name of file to convert .. 4

3.2.2 Command parameters .. 4

3.3 Methods of entry ...5

3.4 Errors ..5
3.4.1 Types of error ... 5

3.4.2 Value for return to operating system .. 6

3.5 Environment variables ... 6

APPENDIX A. Error Messages 7
A.1 List of errors .. 7

A.2 List of warning .. 8

5-i

List of figures
Fig 3.1: Help screen for command line errors .. 5

Fig 3.2: Error display ...6

5-ii

List of Tables
Table 3.1: List of command parameters .. 4

Table 3.2: List of error levels .. 6

Table A.1: List of errors .. 7

Table A.2: List of warning ... 8

5-iii

5–1

CHAPTER 1
The format of the Manual

The CV74 operation manual contains the following chapters:-

• Chapter 2: Outline

The basic functions of CV74 and the files which it generates.

• Chapter 3: Operating method

How to enter the commands used by CV74.

• Appendix A: Error messages

A list of the error messages used by CV74 along with clarifications of the content of the

messages and appropriate user responses.

SRA745–2

CHAPTER 2
Outline

CV74 converts HEX files and symbol files generated with the assembler system (SRA74 V.3.00

and later) for the M37280 into a data format usable with a debugger. Use it together with a

debugger to debug programs with address area data exceeding the 64 Kbytes of the M37280.

Before using CV74, generate a HEX file and symbol file with LINK74.

2.1 Functions

CV74 can convert HEX files and symbol files generated with the assembler system (SRA74 V.3.00

and later) for the M37280 into a data format usable with a debugger.

1. HEX files are divided into those whose address area data exceeds 64 Kbytes and that which

is 64 Kbytes or less.

2. Symbol files are converted into a usable format for debuggers.

Note:

Proper debugging is not possible if the HEX files and symbol files are used before conversion with

CV74.

Chapter 2. Outline

5–3

2.2 Generating files

CV74 generates 3 file types as outlined below:-

1. HEX files storing address area data of 64 Kbytes or less

• HEX files which can be debugged with a debugger

• Files storing address area data of 64 Kbytes or less, sampled from HEX files generated

by LINK74

• The extension is .HEX.

2. HEX files storing address area data over 64 Kbytes

• Files storing address area data over 64 Kbytes, sampled from HEX files generated by

LINK74

• The extension is .HXH.

3. Symbol files debuggable with a debugger

• The extension is .SYM.

2.2 Generating files

SRA745–4

CHAPTER 3
Operation Method

3.1 Activation method

To start up CV74, it is necessary to input the following information (input parameters).

1. Name of file to convert

2. Command parameters

3.2 Input parameters

3.2.1 Name of file to convert

1. Be sure to input the name of the file to convert.

2. Prepare the target HEX files and symbol files in the same directory.

3. It is not possible to specify multiple file names.

4. File names cannot be specified with "." (period). The same goes for relative directories.

3.2.2 Command parameters

The command parameters specify the output file name or file to convert. They are described in

Table 3.1.

Both HEX and symbol files are converted as long as either -H or -S is not specified.

Table 3.1: List of command parameters

Command parameter Description

-O Specifies the name of the output file. Be sure to input this option.

-H Converts only HEX files. This command parameter cannot be specified at

the same time as the -S option.

-S Converts only symbol files. This command parameter cannot be specified

at the same time as the -H option.

Note

To debug with a debugger, download the HEX and symbol files generated with CV74.

Chapter 3. Operation method

5–5

3.3 Methods of entry

With command line input, the whole command is entered on the operating system command line to

activate CV74.

Figure 3.1 gives an example wherein a HEX file (master.hex) and symbol file (master.sym) gener-

ated with LINK74 are converted into a HEX file (change.hex) and symbol file (change.sym) of a

format usable with a debugger.

A>CV74 master –Ochange <RET>
HEX, SYM file converter for 7200 Series V.1.00.00
Copyright 1998, MITSUBISHI ELECTRIC CORPORATION
AND MITSUBISHI ELECTRIC SEMICONDUCTOR SYSTEMS CORPORATION
All Rights Reserved.

== HEX file convert now == (master.hex --> change.hex)
== SYM file convert now == (master.sym --> change.sym)

Fig 3.1: Help screen for command line errors

3.4 Errors

3.4.1 Types of error

The types of errors which occur during the operation of CV74 have the following causes:-

1. Errors relating to the operating system

These are errors such as insufficient disc or memory capacity which relate to CV74’s operat-

ing system. Please refer to the list of error messages in Appendix A and proceed according

to the operating system commands.

2. Errors relating to the input of CV74 command lines

These are errors relating to the input of the command lines to activate CV74. Please study

the contents of this chapter and then re-enter the relevant commands.

3. Errors relating to the contents of the source files being processed

An error has occurred with the contents of the HEX and symbol files to be converted. Check

the contents and reinput as necessary.

3.3 Methods of entry

SRA745–6

A> CV74 <RET>
HEX, SYM file converter for 7200 Series V.1.00.00
Copyright 1998, MITSUBISHI ELECTRIC CORPORATION
AND MITSUBISHI ELECTRIC SEMICONDUCTOR SYSTEMS CORPORATION
All Rights Reserved.

Error : No input files specified

Usage: cv74 Input-filename -Ooutput-filename [-S or -H]<cr>

Fig 3.2: Error display

If an error occurs while CV74 is running, an error message is displayed on the monitor. Remedy

the error as explained in "Appendix A Error Messages".

3.4.2 Value for return to operating system

When entering an execution command into an operating system DOS batch file, for example, there

are times when you may wish to change the contents of the processing operation in accordance

with the outcome of the execution. In CV74 the execution results are divided into 5 error levels as

shown in Table 3.2 and returned to the operating system. For an explanation of how to make best

use of these error levels please refer to a commercially available OS handbook.

Table 3.2: List of error levels

Error level Description of execution results

0 Normal termination

1 Forced termination caused by ^C (cntl-C).

2 Error relating to the operating system

3 Error relating to content of source file the which constitutes the object of the

operation.

4 Error relating to input of CV74 commands

3.5 Environment variables

CV74 does not use operating system environment variables.

Chapter 3. Operation method

5–7

APPENDIX A
Error Messages

A.1 List of errors

Table A.1: List of errors

Error message Description and user action

‘-H’ and ‘-S’ are used Both the -H and -S options were specified at the same

time.

⇒ Specify one or the other.

. is specified in the filename The specified file name contains a period (.).

⇒ Check the file name.

Can't create ‘xx’ file The "xx" file cannot be generated.

⇒ Check directory capacity.

Can't create temporary file A temporary file could not be generated.

⇒ Specify a directory in the environment variable TMP, so

as to create a temporary file in a directory other than the

current one.

Can't open 'xx' file The "xx" file cannot be opened.

⇒ Check the file name.

Command line is too long There are too many characters in the command line.

⇒ Reinput the command line.

File format error The input file format is illegal.

⇒ Check the file format.

Hex files number exceed 1 Multiple target files have been specified.

⇒ Specify only 1 target file.

Invalid option 'xx' is used Invalid command option "xx" was used.

⇒ The specified option does not exist. Reinput the com-

mand.

No input files specified An input file was not specified.

⇒ Specify an input file.

No output files specified An output file was not specified.

⇒ Specify an output file.

Not enough memory There is not enough memory.

⇒ Divide up the file and reexecute the command, or in-

crease memory.

Option 'xx' is multiple defined Command option xx is defined twice.

⇒ Reinput the command.

Option 'xx' is not appropriate The xx command option is not properly written.

⇒ Respecify the command option.

A.1 List of errors

SRA745–8

Appendix A. Error messages

A.2 List of warning

Table A.2: List of warning

Error message Description and user action

Output data to the 'xx' file doesn't exitst The "xx" file cannot be generated because the speci-

fied data area is empty.

⇒ Check the contents of the input file.

Branch Instruction Optimization Tool LOOP74

 Operation Guide

1. Function

This program converts branch instructions that generate errors because the addresses

are out of range into enabled branch instructions.

If you will write all branch instructions with the shortest branch instructions and use

loop74, you will be able to generate programs written with optimized branch

instructions.

2. Generated files

n When the –ASM command parameter is specified

LOOP74 outputs conversion results to the xxx.i file generated by SRA74. The

xxx.i file is output to the same directory as the input file.

n When the –ASM command parameter is not specified

LOOP74 outputs conversion results to the structured source file specified by

LOOP74.

Note:) Source level debugging using a debugger is not possible with files converted with

–ASM command.

3. Startup

3.1 Input parameters

To run LOOP74, it is necessary to input the below information (input parameters).

l Source file name

This name specifies the source file to be converted. Only one file can be specified. Input

the extension with the file name. The only applicable extension is .A74. The directory

path can be specified in the file name. When only the file name is specified, the file in

the current directory of the current drive is processed.

LOOP74 command options

Option Description

-. Prevents the state of execution from being output to the

monitor. (Not applied to error messages)

-ASM Converts branch instructions developed from structured

commands to the assembly commands.

(When using this option, it becomes not possible to do

source level debugging.)

-V Outputs LOOP74 version and ends processing.

-COUNTn Ends conversion after reaching a specified number n

(decimal number) of conversion cycles. Specify n between 1

and 100. The default is 100.

-COMMENT Attaches a comment indicating LOOP74 conversion has

been performed to the converted line.

Capital and small case letters are distinguished in the above options, therefore

commands must be specified exactly as indicated above in capital letters.

l SRA74 command options

These command options are specified when LOOP74 starts up SRA74. All command

options which LOOP74 does not support itself are interpreted to be SRA74 command

options and handed over to SRA74.

3.2 Startup

LOOP74 starts up with the below line.

A> LOOP74 SAMPLE.A74 –COMMENT -S -C -L<RET>

The above line specifies SAMPLE.A74 as the assembler source file to convert, specifies

that LOOP74 shall attach a comment to the converted line and specifies -S, -C and -L

as command options to be handed over to SRA74.

The same processing is achieved with the following line.

A> LOOP74 -L SAMPLE.A74 -S -COMMENT -C <RET>

In other words, there is not set sequence for specifying command parameters with

LOOP74.

Note:) LOOP74 automatically generates tag files, therefore it is not necessary to write

the -E command option of SRA74. In any case, problems are not created if the command

option is written.

4. Input source file format

LOOP74 processes source files of the same format as the input source files of SRA74.

Hence, source files which cannot be processed by SRA74 cannot be processed by

LOOP74 either. LOOP74 also has the following restrictions.

l LOOP74 does not support labels with .EXT declarators, etc.

l LOOP74 does not support sources without a ":" in the label.

l LOOP74 does not support elements unprocessible by SRA74 such as the "FALSE"

condition of if pseudo-commands.

l A warning is generated if the below relative addresses are written in the branch

instruction operand. LOOP74 determines an address is relative if * is written in

the branch instruction operand.

Example

 BRA * + 5

 BRA * + label

5. Output file format

LOOP74 outputs the branch instruction lines to be converted in the below format.

Normally, LOOP74 deletes the instruction line prior to conversion, but the original

instruction line can be kept as a comment by specifying the -COMMENT command

option.

l When the -COMMENT command parameter is not specified (Default)

 Line to convert [1]

BEQ L1

 LOOP74 conversion results

BNE ..lop1 ; This is the line which loop74 generated

JMP L1 ; This is the line which loop74 generated

..lop1:

 Line to convert [2]

BEQ L1 ;goto L1

 LOOP74 conversion results

BNE ..lop1 ; This is the line which loop74 generated

JMP L1 ;goto L1

..lop1:

With the above line format, a comment indicating that LOOP74 generated the line is

attached to the branch instruction line that was converted. If a comment is written in

the target line, LOOP74 outputs the comment written for the line of the last branch

instruction output.

l When the -COMMENT command parameter is specified

 Line to convert [1]

 BEQ L1

 LOOP74 conversion results

; BEQ L1

 BNE ..lop1 ; This is the line which loop74 generated

 JMP L1 ; This is the line which loop74 generated

..lop1:

 Line to convert [2]

 BEQ L1 ;goto L1

 LOOP74 conversion results

; BEQ L1 ;goto L1

 BNE ..lop1 ; This is the line which loop74 generated

 JMP L1 ; This is the line which loop74 generated

..lop1:

With the above line format, the converted line is output as a comment because the -

COMMENT command option was specified. If a comment is written in the target line,

LOOP74 does not output the comment written for the line of the last branch instruction

output.

6. Conversion rules

LOOP74 converts branch instructions according to the below rules.
input line output line

 BEQ L1
 BNE ..lop1
 JMP L1
..lop1:

 BNE L1
 BEQ ..lop1

 JMP L1

..lop1:

 BCC L1

 BCS ..lop1

 JMP L1

..lop1:

 BCS L1

 BCC ..lop1

 JMP L1

..lop1:

 BMI L1

 BPL ..lop1

 JMP L1

..lop1:

 BPL L1

 BMI ..lop1

 JMP L1

..lop1:

 BVC L1

 BVS ..lop1

 JMP L1

..lop1:

 BVS L1

 BVC ..lop1

 JMP L1

..lop1:

 BBC BIT,MEM,L1
 BBS BIT,MEM,..lop1

 JMP L1
..lop1:

 BBS BIT,MEM,L1

 BBC BIT,MEM,..lop1

 JMP L1

..lop1:

 BRA L1 JMP L1

Labels generated by LOOP74 are output with a format from ..lop1 to ..lop65535.

Also, if multiple conditional branch instructions which branch to the same jump

destination are written consecutively, conversion takes place as follows.
input line output line

 Bcnd_1 L1

 Bcnd_2 L1

 :

 :

 Bcnd_n L1

 Bcnd_1 ..lop1

 Bcnd_2 ..lop1

 :

 :

 BcndR_n ..lop2

..lop1:

 JMP L1

..lop2:

Bcnd_1, Bcnd_2 and Bcnd_n represent the below conditional branch instructions.

BEQ, BNE, BCC, BCS, BMI, BPL, BVC, BVS

BcndR_n represents the conditional branch instruction which returns to the Bcnd_n

branch instruction.

If multiple conditional branch instructions which branch to the same jump destination

are written consecutively, only the last instruction written is returned and developed.

A specific example is given below.
input line output line

 BEQ L1

 BCS L1

 BEQ ..lop1

 BCC ..lop2

..lop1:

 JMP L1

..lop2:

7. Errors

If an error occurs while LOOP74 is running, an error message is displayed on the

monitor and LOOP74 stops. An error list is given below.

Error message Description/Remedial action

Can’t create file ‘filename’ The "file name" file cannot be generated.

Check disk capacity.

Can’t create Temporary file A temporary file cannot be generated.

Check if writing is disabled for the directory.

Can’t open file ‘filename’ The "file name" file cannot be opened.

Check the specified file name.

Can’t translate The address of even the biggest branch

instruction cannot be received.

Check the content of the source program.

Command line is too long There are too many characters in the

command line.

LOOP74 can take command lines up to a

maximum 255 bytes. Reduce the number of

characters.

Error occurred in executing ‘sra74’ An error occurred while running SRA74.

Reexecute SRA74.

Illegal source file LOOP74 cannot analyze the source file

format.

Specify a source file of the correct format.

Illegal TAG file LOOP74 cannot analyze the tag file format.

Specify a tag file of the correct format.

No input files specified An input file was not specified.

Specify an input file.

Not enough memory There is not enough memory.

Divide up the input file or increase memory.

Option ‘xx’ is not appropriate The xx command option is not properly

written.

Respecify the command option.

Source files number exceed 1 Multiple source files have been specified.

Specify only 1 source file.

Too many branch error There are too many branch instructions to

convert.

Divide up the source file and reduce the

number of branch instructions (for LOOP74)

to process per file.

8. Warning

If warning is detected while LOOP74 is running, a warning message will be displayed

on the monitor. LOOP74 processing will continue. Warning messages are given below.

Warning message Description/Remedial action

Relative address is specified A relative address is written in the branch

instruction operand.

This line is not converted.

9. Values returned to the OS

When processing ends, LOOP74 returns the below values to the OS.

Returned value Meaning

0 Ended successfully

1 Error in source file or tag file read by LOOP74

2 Error in command line input

3 Operating system error

4 Ended by ^C (control C) input

10. Environmental variables

LOOP74 does not use environmental variables.

MEMO

M3T-SRA74 V.4.10 User’s Manual

Rev. 1.00
August 01, 2003
REJ10J0155-0100Z

COPYRIGHT ©2003 RENESAS TECHNOLOGY CORPORATION
AND RENESAS SOLUTIONS CORPORATION ALL RIGHTS RESERVED

1753, Shimonumabe, Nakahara-ku, Kawasaki-shi, Kanagawa 211-8668 Japan

M3T-SRA74 V.4.10

REJ10J0155-0100Z

User’s Manual

	Precautions to be taken when using this manual
	Introduction
	SRA74 OPERATION MANUAL
	Table of Contents
	CHAPTER 1 The format of the Manual
The Format of the Manual
	CHAPTER 2 Outline
	2.1 Functions
	2.2 Generating files
	2.2.1 Configuration of the I file
	2.2.2 Configuration of PRN file
	2.2.3 Configuration of TAG file

	CHAPTER 3 Entering the Source Program
	3.1 Configuration of the source program
	3.2 Configuration of a line
	3.2.1 The assembly language command line
	3.2.2 Structured language command line
	3.2.3 Pseudo-command line
	3.2.4 Macro command line
	3.2.5 Comment line

	3.3 Section entry method
	3.3.1 Symbol / Bit symbol / Label sections
	3.3.2 Comment section

	CHAPTER 4 Assembly Language
	4.1 Addressing mode
	4.2 Operand data format
	4.3 Operators

	CHAPTER 5 Structured Language
	5.1 Function of the structured command
	5.2 Types of statement
	5.3 Notes concerning entry procedures
	5.4 Structured operators

	CHAPTER 6 Pseudo-Commands
	6.1 Functions of pseudo-commands
	6.2 Assembly controls
	6.3 Address control
	6.4 Link control
	6.5 List control
	6.6 Debug support
	6.7 Reserved pseudo-commands

	CHAPTER 7 Macro Commands
	7.1 Functions of macro commands
	7.2 Types of macro command
	7.3 Macro operators

	CHAPTER 8 Operation Method
	8.1 Activation method
	8.2 Input parameters
	8.2.1 Source file name
	8.2.2 Command parameters

	8.3 Method of entry
	8.4 Errors
	8.4.1 Types of error
	8.4.2 Value for return to operating system

	8.5 Environment variables

	APPENDIX A Error Messages
	A.1 System errors
	A.2 List of assembly errors
	A.3 List of warnings

	APPENDIX B List of Commands
	B.1 List of symbols
	B.2 List of commands

	APPENDIX C Commands Listed by Addressing Mode
	C.1 List of commands by addressing mode

	APPENDIX D The Pseudo-Commands
	D.1 How to use the pseudo-command reference section
	D.2 Summary of the pseudo-commands
	.ASSERT
	.BEXT
	.BLKB
	.BYTE
	.COL
	.END
	.ENDFUNC
	.EQU
	.ERROR
	.EXT
	.FUNC
	.IF (.ELSE) .ENDIF
	.INCLUDE
	.LIB
	.LINE
	.LIST
	.LISTM
	.NLIST
	.NLISTM
	.OBJ
	.ORG
	.PAGE
	.PMOD
	.PUB
	.RMOD
	.SECTION
	.SEXT
	.SMOD
	.VER
	.WORD
	.ZBEXT
	.ZEXT
	.ZMOD

	D.3 List of reserved pseudo-commands
	.ENDIO
	.ENDPROC
	.ENDRAM
	.IO
	.PROCINT
	.PROCMAIN
	.PROCSUB
	.PROGNAME
	.RAM

	APPENDIX E List of Macro Commands
	E.1 How to use the macro command reference section
	E.2 Summary of the macro commands
	.ENDM
	.EXITM
	.LOCAL
	.MACRO - .ENDM
	.REPEAT - .ENDM
	.REPEATC - .ENDM
	.REPEATI - .ENDM

	APPENDIX F List of Structured Commands
	F.1 Using the structured command reference section
	F.2 Summary of the structured commands
	BREAK
	CONTINUE
	DO - WHILE
	FOR - NEXT
	IF - (ELSE) - ENDIF
	SWITCH - CASE - ENDS
	ASSIGNMENT

	F.3 Generation example
	F.3.1 Assignment statement generation example
	F.3.2 Conditional expression generation examples

	F.4 Syntax maps of structured commands

	List of Reserved Words

	LINK74 OPERATION MANUAL
	Table of Contents
	CHAPTER 1 The Format of the Manual
	CHAPTER 2 Outline
	2.1 Functions
	2.2 Generating files
	2.3 Configuration of the MAP file

	CHAPTER 3 Section Functions
	3.1 The role of sections
	3.2 Section attributes
	3.2.1 Address attributes
	3.2.2 Physical attribute
	3.2.3 Reserved sections

	3.3 Basic function of sections

	CHAPTER 4 Operation Method
	4.1 Activation method
	4.2 Input parameters
	4.2.1 Relocatable file name
	4.2.2 Library file name
	4.2.3 Section control
	4.2.4 Command parameters

	4.3 Methods of entry
	4.3.1 Interactive input
	4.3.2 Command line input
	4.3.3 Command file input

	4.4 Errors
	4.4.1 Types of error
	4.4.2 Value for return to operating system

	4.5 Environment variables

	APPENDIX A Error Messages

	LIB74 OPERATION MANUAL
	Table of Contents
	CHAPTER 1 The Format of the Manual
	CHAPTER 2 Outline
	2.1 Functions
	2.2 Advantages
	2.3 Generating files
	2.4 Configuration of the LST file

	CHAPTER 3 Operation Method
	3.1 Activation method
	3.2 Input parameters
	3.2.1 Library file name
	3.2.2 Relocatable file name
	3.2.3 Command parameters
	3.2.4 Details of command parameters

	3.3 Methods of entry
	3.3.1 Command line input
	3.3.2 Command file input

	3.4 Errors
	3.4.1 Types of error
	3.4.2 Value for return to operating system

	3.5 Environment variables

	APPENDIX A Error Messages
	A.1 System errors
	A.2 Library manager errors

	CRF74 OPERATION MANUAL
	Table of Contents
	CHAPTER 1 The format of the Manual
	CHAPTER 2 Outline
	2.1 Functions
	2.2 Generating files
	2.3 Configuration of the CRF file

	CHAPTER 3 Operation Method
	3.1 Activation method
	3.2 Input parameters
	3.2.1 Source file name
	3.2.2 Command parameters

	3.3 Methods of entry
	3.3.1 Command line input

	3.4 Errors
	3.4.1 Types of error
	3.4.2 Value for return to operating system

	3.5 Environment variables

	APPENDIX A Error Messages
	A.1 System errors
	A.2 Cross reference errors

	CV74 OPERATION MANUAL
	Table of Contents
	CHAPTER 1 The format of the Manual
	CHAPTER 2 Outline
	2.1 Functions
	2.2 Generating files

	CHAPTER 3 Operation Method
	3.1 Activation method
	3.2 Input parameters
	3.2.1 Name of file to convert
	3.2.2 Command parameters

	3.3 Methods of entry
	3.4 Errors
	3.4.1 Types of error
	3.4.2 Value for return to operating system

	3.5 Environment variables

	APPENDIX A Error Messages
	A.1 List of errors
	A.2 List of warning

	LOOP74 OPERATION MANUAL
	1. Function
	2. Generated files
	3. Startup
	3.1 Input parameters
	3.2 Startup

	4. Input source file format
	5. Output file format
	6. Conversion rules
	7. Errors
	8. Warning
	9. Values returned to the OS
	10. Environmental variables

