
 

To our customers, 
 

Old Company Name in Catalogs and Other Documents 
 

On April 1st, 2010, NEC Electronics Corporation merged with Renesas Technology 
Corporation, and Renesas Electronics Corporation took over all the business of both 
companies. Therefore, although the old company name remains in this document, it is a valid 
Renesas Electronics document. We appreciate your understanding. 
 

Renesas Electronics website: http://www.renesas.com 
 
 
 
 

April 1st, 2010 
Renesas Electronics Corporation 

 
 
 
 
 
Issued by: Renesas Electronics Corporation (http://www.renesas.com) 

Send any inquiries to http://www.renesas.com/inquiry. 

 



Notice 
1. All information included in this document is current as of the date this document is issued. Such information, however, is 

subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please 
confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to 
additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website. 

2. Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights 
of third parties by or arising from the use of Renesas Electronics products or technical information described in this document.  
No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights 
of Renesas Electronics or others. 

3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part. 
4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of 

semiconductor products and application examples.  You are fully responsible for the incorporation of these circuits, software, 
and information in the design of your equipment.  Renesas Electronics assumes no responsibility for any losses incurred by 
you or third parties arising from the use of these circuits, software, or information. 

5. When exporting the products or technology described in this document, you should comply with the applicable export control 
laws and regulations and follow the procedures required by such laws and regulations.  You should not use Renesas 
Electronics products or the technology described in this document for any purpose relating to military applications or use by 
the military, including but not limited to the development of weapons of mass destruction.  Renesas Electronics products and 
technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited 
under any applicable domestic or foreign laws or regulations. 

6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics 
does not warrant that such information is error free.  Renesas Electronics assumes no liability whatsoever for any damages 
incurred by you resulting from errors in or omissions from the information included herein. 

7. Renesas Electronics products are classified according to the following three quality grades:  “Standard”, “High Quality”, and 
“Specific”.  The recommended applications for each Renesas Electronics product depends on the product’s quality grade, as 
indicated below.  You must check the quality grade of each Renesas Electronics product before using it in a particular 
application.  You may not use any Renesas Electronics product for any application categorized as “Specific” without the prior 
written consent of Renesas Electronics.  Further, you may not use any Renesas Electronics product for any application for 
which it is not intended without the prior written consent of Renesas Electronics.  Renesas Electronics shall not be in any way 
liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an 
application categorized as “Specific” or for which the product is not intended where you have failed to obtain the prior written 
consent of Renesas Electronics.  The quality grade of each Renesas Electronics product is “Standard” unless otherwise 
expressly specified in a Renesas Electronics data sheets or data books, etc. 

“Standard”: Computers; office equipment; communications equipment; test and measurement equipment; audio and visual 
equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots. 

“High Quality”: Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-
crime systems; safety equipment; and medical equipment not specifically designed for life support. 

“Specific”:  Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or 
systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare 
intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life. 

8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, 
especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation 
characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or 
damages arising out of the use of Renesas Electronics products beyond such specified ranges. 

9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have 
specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further, 
Renesas Electronics products are not subject to radiation resistance design.  Please be sure to implement safety measures to 
guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a 
Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire 
control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures.  Because 
the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system 
manufactured by you. 

10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental 
compatibility of each Renesas Electronics product.  Please use Renesas Electronics products in compliance with all applicable 
laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS 
Directive.  Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with 
applicable laws and regulations. 

11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas 
Electronics. 

12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this 
document or Renesas Electronics products, or if you have any other inquiries. 

(Note 1) “Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its majority-
owned subsidiaries. 

(Note 2) “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics. 



PDxxSIM I/O DLL Kit
User’s Manual

U
ser’s M

anual

Rev.1.00   2003.05



Active X, Microsoft, MS-DOS, Visual Basic, Visual C++, Windows and Windows NT are either registered trademarks or trademarks of
Microsoft Corporation in the United States and other countries.
IBM and AT are registered trademarks of International Business Machines Corporation.
Intel and Pentium are registered trademarks of Intel Corporation.
Adobe, Acrobat, and Acrobat Reader are trademarks of Adobe Systems Incorporated.
All other brand and product names are trademarks, registered trademarks or service marks of their respective holders.

Keep safety first in your circuit designs!
 Renesas Technology Corporation and Renesas Solutions Corporation put the maximum effort into making semiconductor products
better and more reliable, but there is always the possibility that trouble may occur with them. Trouble with semiconductors may lead to
personal injury, fire or property damage. Remember to give due consideration to safety when making your circuit designs, with
appropriate measures such as (i) placement of substitutive, auxiliary circuits, (ii) use of nonflammable material or (iii) prevention against
any malfunction or mishap.

Notes regarding these materials
 These materials are intended as a reference to assist our customers in the selection of the Renesas Technology product best suited to
the customer's application; they do not convey any license under any intellectual property rights, or any other rights, belonging to
Renesas Technology Corporation, Renesas Solutions Corporation or a third party.
 Renesas Technology Corporation and Renesas Solutions Corporation assume no responsibility for any damage, or infringement of any
third-party's rights, originating in the use of any product data, diagrams, charts, programs, algorithms, or circuit application examples
contained in these materials.
 All information contained in these materials, including product data, diagrams, charts, programs and algorithms represents information
on products at the time of publication of these materials, and are subject to change by Renesas Technology Corporation and Renesas
Solutions Corporation without notice due to product improvements or other reasons. It is therefore recommended that customers
contact Renesas Technology Corporation, Renesas Solutions Corporation or an authorized Renesas Technology product distributor for
the latest product information before purchasing a product listed herein. The information described here may contain technical
inaccuracies or typographical errors. Renesas Technology Corporation and Renesas Solutions Corporation assume no responsibility
for any damage, liability, or other loss rising from these inaccuracies or errors. Please also pay attention to information published by
Renesas Technology Corporation and Renesas Solutions Corporation by various means, including the Renesas home page
(http://www.renesas.com).
 When using any or all of the information contained in these materials, including product data, diagrams, charts, programs, and
algorithms, please be sure to evaluate all information as a total system before making a final decision on the applicability of the
information and products. Renesas Technology Corporation and Renesas Solutions Corporation assume no responsibility for any
damage, liability or other loss resulting from the information contained herein.
 Renesas Technology semiconductors are not designed or manufactured for use in a device or system that is used under
circumstances in which human life is potentially at stake. Please contact Renesas Technology Corporation, Renesas Solutions
Corporation or an authorized Renesas Technology product distributor when considering the use of a product contained herein for any
specific purposes, such as apparatus or systems for transportation, vehicular, medical, aerospace, nuclear, or undersea repeater use.
 The prior written approval of Renesas Technology Corporation and Renesas Solutions Corporation is necessary to reprint or reproduce
in whole or in part these materials.
 If these products or technologies are subject to the Japanese export control restrictions, they must be exported under a license from
the Japanese government and cannot be imported into a country other than the approved destination. Any diversion or reexport
contrary to the export control laws and regulations of Japan and/or the country of destination is prohibited.
 Please contact Renesas Technology Corporation or Renesas Solutions Corporation for further details on these materials or the
products contained therein.

For inquiries about the contents of this document or product, fill in the text file the installer generates in the following directory and email
to your local distributor.

¥SUPPORT¥Product-name¥SUPPORT.TXT

Renesas Tools Homepage  http://www.renesas.com/en/tools



Preface
The PDxxSIM I/O DLL kit is provided for the purpose of extending the functions of the M3T-PDxxSIM
simulator debuggers. Microsoft Visual C++, a Windows application development environment available on the
market, is needed to create I/O DLLs.
This user’s manual shows the basic information necessary to use the PDxxSIM I/O DLL kit. For details about
the language specifications of and the method for using Visual C++, refer to the user's manual included with
your product or online help.

Supported simulator debuggers
The PDxxSIM I/O DLL kit cannot be used in all of the M3T-PDxxSIM simulator debuggers. For the simulator
debuggers and their versions which can be run in conjunction with the PDxxSIM I/O DLL kit, refer to the
release notes for the PDxxSIM I/O DLL kit in which they are detailed.

Rights to use
The rights to use the PDxxSIM I/O DLL kit come under the provisions of the Software License Agreement for
the M3T-PDxxSIM simulator debuggers used. Please also be aware that the PDxxSIM I/O DLL kit can only be
used in developing your product, and cannot be used for any other purpose.

Technical support
Please note that technical support for the PDxxSIM I/O DLL kit can be obtained by visiting our homepage
(URL: http://www.renesas.com/ en/tools /) at which latest information is available.



[MEMO]



Contents

i

Contents
1.1.1.1. ABSTRACTABSTRACTABSTRACTABSTRACT................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................ 1111

2.2.2.2. CONFIGURATIONCONFIGURATIONCONFIGURATIONCONFIGURATION ............................................................................................................................................................................................................................................................................................................................................................................................................................................................................ 1111

3.3.3.3. METHOD FOR CREATINGMETHOD FOR CREATINGMETHOD FOR CREATINGMETHOD FOR CREATING THE I/O DLL THE I/O DLL THE I/O DLL THE I/O DLL............................................................................................................................................................................................................................................................................................................................ 2222

3.1. METHOD FOR USING THE IODLLTEMPLATE PROJECT ........................................................................ 2

3.2. METHOD FOR CREATING THE NEW I/O DLL.................................................................................... 3

4.4.4.4. METHOD FOR USING THMETHOD FOR USING THMETHOD FOR USING THMETHOD FOR USING THE I/O DLLE I/O DLLE I/O DLLE I/O DLL ........................................................................................................................................................................................................................................................................................................................................................ 5555

5.5.5.5. METHOD FOR DEBUGGINMETHOD FOR DEBUGGINMETHOD FOR DEBUGGINMETHOD FOR DEBUGGING THE I/O DLLG THE I/O DLLG THE I/O DLLG THE I/O DLL ............................................................................................................................................................................................................................................................................................................ 6666

6.6.6.6. FUNCTIONS THAT SENDFUNCTIONS THAT SENDFUNCTIONS THAT SENDFUNCTIONS THAT SEND INFORMATION TO THE I/O DLL INFORMATION TO THE I/O DLL INFORMATION TO THE I/O DLL INFORMATION TO THE I/O DLL........................................................................................................................................................................................ 7777

7.7.7.7. FUNCTIONS THAT GET FUNCTIONS THAT GET FUNCTIONS THAT GET FUNCTIONS THAT GET INFORMATION FROM SIMXX.EXEINFORMATION FROM SIMXX.EXEINFORMATION FROM SIMXX.EXEINFORMATION FROM SIMXX.EXE............................................................................................................................................................................ 11111111

8.8.8.8. SPECIFYING TARGET PSPECIFYING TARGET PSPECIFYING TARGET PSPECIFYING TARGET PROGRAM SYMBOLS IN THE I/O DLLROGRAM SYMBOLS IN THE I/O DLLROGRAM SYMBOLS IN THE I/O DLLROGRAM SYMBOLS IN THE I/O DLL ................................................................................................................................................................ 18181818

9.9.9.9. NOTESNOTESNOTESNOTES ................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................ 24242424



Contents

ii

[MEMO]



PDxxSIM I/O DLL Kit

1

1. Abstract
I/O DLL means a Dynamic Link Library (DLL) that operates in conjunction with the simulator engine of the

Simulator Debugger PDxxSIM (xx denotes the model name such as 308 or 30).

The Simulator Debugger when properly set up can load an I/O DLL, and can operate it synchronously with the

timing at which the program executes one instruction, read/writes to memory or generates an interrupt.

This allows to debug the target program by simulating the operation of the microcomputer’s input/output ports

or internal peripheral functions. This also makes data input/output and other linked operations with external

tools possible.

Any desired I/O DLL can be created using C/C++ languages. Microsoft Visual C++, a Windows application

development environment available on the market, is needed to create I/O DLLs.

2. Configuration
The I/O DLL accesses the simulator engine simxx.exe (xx denotes the model name such as 308 or 30) to

obtain information on memory or register values, etc.

In turn, simxx.exe notifies the I/O DLL of various information including memory read/write information and

the number of cycles in which the program executed each instruction.

The simulator debugger and the I/O DLL are configured in the manner shown below.

PDxxSIM Notifies the information to I/O DLL
from simxx.exe.
•  The number of cycles of the

executed instruction
•  The timing of resetting
•  R/W information of memory.

etc.

pdxxsim.exe
   (Simulator debugger)

simxx.exe
    (Simulator engine)

I/O DLL
(Create)

Puts/gets the information to simxx.exe
from I/O DLL.
•  Puts/gets the memory value, the register value.
•  The Interrupt generation, The verification of

the interrupt generation conditions.
•  The stopping of execution of the target program.

etc.



PDxxSIM I/O DLL Kit

2

3.  Method for Creating the I/O DLL
This chapter describes how to create I/O DLLs using Microsoft Visual C++ 6.0 (hereafter abbreviated VC++).

For details on how to use VC++, see the VC++ user’s manual or help.

An I/O DLL may be created by making use of the I/O DLL sample project “IodllTemplate” which is included

with the I/O DLL kit or newly from scratch. The IodllTemplate project is a VC++ template project provided

for creating I/O DLLs.

3.1. Method for Using the IodllTemplate project
The following explains how to create I/O DLLs from the IodllTemplate project by using an I/O DLL for

PD308SIM as an example. To create I/O DLLs for other simulator models, change the model name “308”

described here with any desired model name (e.g., “30” or “32R”).

1. Choose “Open Workspace…” from the File menu of VC++. Open the project file “IodllTemplate.dsp”

for the IodllTemplate project which is stored in a directory under the directory in which the I/O DLL

package is installed (hereafter referred to as C:¥MTOOL¥Iodll).

”Samples¥Pdxxsim¥IodllTemplate"

2. Choose “Setting…” from the Project menu of VC++. Check path settings for the I/O DLL library files

sim308.lib and IodllExpLib(d).lib which are specified in the “Object/library modules:” column of the

category “General” on the Link tab. (The file locations must be specified using absolute or relative

paths.) These library files are stored in the “Library” directory of C:¥MTOOL¥Iodll.

•  If settings are made for Win32 Debug, specify IodllExpLibd.lib.

•  If settings are made for Win32 Release, specify IodllExpLib.lib.

3. Choose “Setting…” from the Project menu of VC++. Change the I/O DLL filename

“IodllTemplate.dll” which is specified in the “Output file name:” column of the category “General” on

the Link tab to another filename you want (extension “.dll”) so that the I/O DLL output destination is

the directory in which you installed PD308SIM (hereafter referred to as C:¥MTOOL¥PD308SIM).

4. Open infunc¥iofunc.cpp, then write the code for simulation. The infunc¥iofunc.cpp has implemented

in it the functions called from sim308.exe. Use a function that accesses sim308.exe in the desired

function as you write the code for simulation.

5. When you build, an I/O DLL (sample.dll) is created under the directory C:¥MTOOL¥PD308SIM.



PDxxSIM I/O DLL Kit

3

3.2. Method for Creating the new I/O DLL
To create a new I/O DLL without using the IodllTemplate project, follow the procedure described below.

1. Choose “New…” from the File menu of VC++. Then create a new project with settings shown below.

•  Select MFC AppWizard (dll) on the Projects tab.

•  Set any project name and location. (Example: “sample” project)

•  Choose “Create new workspace”.

•  Check Win32 in the “Platforms:”.

•  Click the [OK]->[Close].



PDxxSIM I/O DLL Kit

4

2. Choose “Setting…” from the Project menu of VC++ and enter the settings described below.

•  Select the C/C++ tab and add a definition “IODLL_EXPORTS” to the “Preprocessor definitions:”

column of the category “General.”

•  Select the Link tab and specify the I/O DLL library files sim308.lib and IodllExpLib(d).lib using

absolute or relative paths in the “Object/library modules:” column of the category “General.” These

library files are stored in the “Library” directory of C:¥MTOOL¥Iodll.

- If settings are made for Win32 Debug, specify IodllExpLibd.lib.

- If settings are made for Win32 Release, specify IodllExpLib.lib.

3. Choose “Setting…” from the Project menu of VC++. Set the “Output file name:” column of the

category “General” on the Link tab so that the I/O DLL output destination is the directory

C:¥MTOOL¥PD308SIM.

4. Copy iofunc.cpp and iofunc.h from the “iofunc” directory of the IodllTemplate project into any

directory of the new project you’ve created, and add them to the project following the procedure

described below.

•  Choose “Add To Project” – “Files…” from the Project menu of VC++, select iofunc.cpp from the

ensuing list, and click OK.

5. Open infunc.h and change the main header file specification for the application included in it to the

new main header filename you’ve created.

  Example:  #include "..¥IodllTemplate.h" -> “#include "..¥sample.h"

6. Open iofunc.cpp, then write the code for simulation.

7. When you build, an I/O DLL (sample.dll) is created under the directory C:¥MTOOL¥PD308SIM.



PDxxSIM I/O DLL Kit

5

4. Method for Using the I/O DLL
This chapter describes how to use an I/O DLL in the PDxxSIM after loading it.

Before you can use an I/O DLL, you must first register it to simxx.exe.

If simxx.exe has an I/O DLL registered in it when you start, it loads the registered I/O DLL before starting

simulation.

The following explains how to use an I/O DLL after registering it to the PDxxSIM by using PD308SIM as an

example. To use I/O DLLs for other simulator models, change the model name “308” described here with any

desired model name (e.g., “30” or “32R”).

1. Copy the I/O DLL file (.dll file) you want to use into C:¥MTOOL¥PD308SIM.

2. Register the I/O DLL to simxx.exe. To do this, write the I/O DLL filename in sim308.exe’s environment

setup file “sim308.ini.”

The sim308.ini file exists in C:¥MTOOL¥PD308SIM. However, this file is nonexistent if you have never

started PD308SIM since you installed it. In that case, this file needs to be newly created using an editor.

3. In the sim308.ini file, create a [DLLNAME] section and write an I/O DLL filename after “IODLL=,” with

the extension “.dll” removed as shown below.

Example : When an I/O DLL file name is "Sample.dll".

[DLLNAME]

IODLL=Sample

4. When you start PD308SIM, the I/O DLL is loaded.

If you do not use the I/O DLL, delete the description of the [DLLNAME] section that you created in the

sim308.ini file before starting PD308SIM.

[DLLNAME] <- Delete

IODLL=Sample <- Delete



PDxxSIM I/O DLL Kit

6

5. Method for Debugging the I/O DLL
This chapter describes how to debug the I/O DLL you’ve created.

To debug the I/O DLL in VC++, you need to change settings of the I/O DLL project. The following shows the

contents of changes you need to make by using the case of debugging an I/O DLL for PD3008SIM as an

example. To debug I/O DLLs for other simulator models, change the model name “308” described here with

any desired model name (e.g., “30” or “32R”).

1. Following the procedure described in the preceding section, register the I/O DLL to make it usable.

2. Choose “Setting…” from the Project menu of VC++. Set the “Output file name:” column of the

category “General” on the Link tab so that the I/O DLL output destination is the directory

C:¥MTOOL¥PD308SIM.

3. Choose “Setting…” from the Project menu of VC++. Set up the “Executable for debug session:”

column on the Debug tab so that the simulator engine executable file “sim308.exe” stored in

C:¥MTOOL¥PD308SIM becomes the debug-time executable file.

4. After you finished setting up, choose “Start Debug” -- “Go” from the Build menu of VC++ to start

debugging. The dialog box shown below will appear.

Because the I/O DLL can be debugged, click OK to continue.

5. To debug the I/O DLL, start PD308SIM after the simulator engine sim308.exe has started up. (After

sim308.exe started up, it is registered (displayed) in the Windows system tray. So you can see that

sim308.exe is up and running before you start PD308SIM.)

For details the debugging function of VC++, see the VC++ user’s manual or help.



PDxxSIM I/O DLL Kit

7

6. Functions that Send Information to the I/O DLL
This chapter describes specifications of the functions that send information on the simulator engine side to the

I/O DLL.

These functions are implemented in the I/O DLL project’s source file “iofunc¥iofunc.cpp.” The simulator

engine simxx.exe calls these functions as it sends information to the I/O DLL. Make sure codes for simulation

are written in these functions.

Function name Abstract
NotifyStepCycle Notifies the number of execution cycles each time an instruction is executed.
NotifyPreExecutionPC Notifies the current PC value immediately before executing an instruction.
NotifyReset Notifies that the target program was reset.
NotifyStart Notifies that the simulator engine was started.
NotifyEnd Notifies that the simulator engine was terminated.
NotifyInterrupt Notifies the vector number (vector address) for an interrupt when that

interrupt was generated.
NotifyPreReadMemory Notifies the read address and data length immediately before reading from

memory when a memory read from the target program occurred.
NotifyPostWriteMemory Notifies the write address, data length and data value after data was written

from the target program to memory.

Below shows a specification of the function.

 Notifies the number of execution cycles an instruction is executed

Function name: void NotifyStepCycle(int cycle)

Parameter: int cycle The number of the executed cycles.

Return value: None

Functions: Notifies the number of execution cycles each time an instruction is executed.

 Notifies the current PC value before executing an instruction

Function name: void NotifyPreExecutionPC(unsigned long address)

Parameter: unsigned long address PC value before executing

Return value: None

Functions: Notifies the current PC value immediately before executing an instruction.

 Notifies the reset

Function name: void NotifyReset(void)

Parameter: None

Return value: None

Functions: Notifies that the target program was reset.



PDxxSIM I/O DLL Kit

8

 Notifies the start of simulator engine

Function name: void NotifyStart(void)

Parameter: None

Return value: None

Functions: Notifies that the simulator engine was started.

 Notifies the terminate of simulator engine

Function name: void NotifyEnd(void)

Parameter: None

Return value: None

Functions: Notifies that the simulator engine was terminated.

 Notifies the generate of interrupt

Function name: void NotifyInterrupt(unsigned long vec)

Parameter: unsigned long vec Vector number. (Vector address)

PD308SIM, PD30SIM --- Vector number.

PD32RSIM --- EIT vector entry. (Only 0x00000080)

Return value: None

Functions: Notifies the vector number (vector address) for an interrupt when that interrupt was

generated.

 Notifies immediately before reading from memory

Function name: void NotifyPreReadMemory(unsigned long address, int length)

Parameter: unsigned long address Memory address.

 int length Data length of memory data.

1 1 byte

2 2 byte

3 3 byte

4 4 byte

Return value: None

Functions: Notifies the read address and data length immediately before reading from memory when a

memory read from the target program occurred.



PDxxSIM I/O DLL Kit

9

 Notifies after data was written from memory

Function name: void NotifyPostWriteMemory(unsigned long address, int length, unsigned long data)

Parameter: unsigned long address Memory address.

int length Data length of memory data.

1 1 byte

2 2 byte

3 3 byte

4 4 byte

unsigned long data Memory data value.

Return value: None

Functions: Notifies the write address, data length and data value after data was written from the target

program to memory.



PDxxSIM I/O DLL Kit

The following shows an example of how to write the above functions. The shaded sections in this example are

the template part of the above functions that are implemented in the iofunc.cpp file.
void NotifyStepCycle(int cycle)
{
    unsigned longtabsrData, ta0Data, ta0icData;

    if (sCountFlag == FALSE) { // Check on count beginning flag.
        return;
    }
    RequestGetMemory(TABSR, 1, &tabsrData);
    if ((tabsrData & 0x01) == 0x01) { // Check on count beginning flag.
        sCountCycle += cycle;
            RequestGetMemory(TA0, 2, &ta0Data);
            if (sCountCycle >= ta0Data + 1) { // Count down of counter.
                RequestGetMemory(TA0IC, 1, &ta0icData);
                RequestInterrupt(TA0INT, ta0icData & 0x7);

// Generation of timer A0 interrupt.
                sCountCycle = 0;
            }
        }
    return;
}

void NotifyPreExecutionPC(unsigned long address)
{
    return;
}

:
:
:

void NotifyPostWriteMemory(unsigned long address, int length)
{
    if (address == TABSR) {
        if ((data & 0x01) == 0x01) { // Check on count beginning flag.
            sCountFlag = TRUE;
        }
    }
    return;
}

10



PDxxSIM I/O DLL Kit

11

7. Functions that Get Information from simxx.exe
This chapter describes specifications of the functions that get information on the simulator engine side from

the I/O DLL.

These functions are implemented on the simxx.exe side. The I/O DLL calls these functions to get information

from the simulator engine. Use these functions to write codes for simulation within the functions implemented

in the I/O DLL project’s source file “iofunc¥iofunc.cpp.”

Function name Abstract
RequestGetMemory Gets memory data from the specified address.
RequestPutMemory Sets memory data at the specified address.
RequestGetRegister Gets a value from the specified register.
RequestPutRegister Sets a value in the specified register.
RequestInterrupt Generates a specified interrupt.
RequestInterruptStatus Gets the status of generated interrupts.
RequestTotalCycle Inspects a total number of current execution cycles.
RequestInstructionNum Inspects a total number of currently executed instructions.
RequestStop Causes the target program to stop running.
RequestErrorNum Gets an error number when an error occurred in the immediately preceding

function that was executed.

Below shows a specification of the function.

 Gets memory data

Function name: int RequestGetMemory(unsigend long address, int length, unsigend long * data)

Parameter: unsigned long address Memory address.

 int length Data length of memory data.

1 1 byte

2 2 byte

3 3 byte

4 4 byte

 unsigned long * data Memory data storage area.

Return value: int status

TRUE Succeeded.

FALSE Error.

Functions: Gets memory data from the specified address.

The read access information performed by this function is not reflected in the virtual port

input and I/O script facilities.



PDxxSIM I/O DLL Kit

12

 Sets memory data

Function name: int RequestPutMemory(unsigend long address, int length, unsigend long data)

Parameter: unsigned long address Memory address.

 int length Data length of memory data.

1 1 byte

2 2 byte

3 3 byte

4 4 byte

 unsigned long data Memory data.

Return value: int status

TRUE Succeeded.

FALSE Error.

Functions: Sets memory data at the specified address.

The write access information performed by this function is not reflected in the GUI output,

virtual port output and I/O script facilities.



PDxxSIM I/O DLL Kit

13

 Gets register value

Function name: int RequestGetRegister(int regNo, unsigned long * regValue)

Parameter: int regNo Register number.

For register numbers, see the header file “iofunc¥iofunc.h” that is included in the

I/O DLL sample program. Register numbers are defined in this file.

Example: Definition for PD308SIM.
regNo Register
REG_Rx_F Bank0 Rx registers. (x = 0 to 3)
REG_RxH_F High-order 8 bits of the Bank0 Rx register. (x = 0 to 1)
REG_RxL_F Low-order 8 bits of the Bank0 Rx register. (x = 0 to 1)
REG_Ax_F Bank0 Ax registers. (x = 0 to 1)
REG_FB_F Bank0 FB register.
REG_SB_F Bank0 SB register.
REG_Rx_R Bank1 Rx registers. (x = 0 to 3)
REG_RxH_R High-order 8 bits of the Bank1 Rx register. (x = 0 to 1)
REG_RxL_R Low-order 8 bits of the Bank1 Rx register. (x = 0 to 1)
REG_Ax_R Bank1 Ax register. (x = 0 to 1)
REG_FB_R Bank1 FB register.
REG_SB_R Bank1 SB register.
REG_Rx Rx register indicated by the B flag. (x = 0 to 3)
REG_RxH High-order 8 bits of the Rx register indicated by the B flag.

(x = 0 to 1)
REG_RxL Low-order 8 bits of the Rx register indicated by the B flag.

(x = 0 to 1)
REG_Ax Ax register indicated by the B flag. (x = 0 to 1)
REG_FB FB register indicated by the B flag.
REG_SB SB register indicated by the B flag.
REG_USP USP register.
REG_ISP ISP register.
REG_FLG FLG register.
REG_PC Program counter.
REG_INTB INTB register.
REG_SVF SVF register.
REG_SVP SVP register.
REG_VCT VCT register.
REG_DMDx DMDx registers. (x = 0 to 1)
REG_DCTx DCTx registers. (x = 0 to 1)
REG_DRCx DRCx registers. (x = 0 to 1)
REG_DMAx DMAx registers. (x = 0 to 1)
REG_DSAx DSAx registers. (x = 0 to 1)
REG_DRAx DRAx registers. (x = 0 to 1)

Description example: To get the R0 register value in bank 0

RequestGetRegister( REG_R0_F, &regValue );

 unsigned long * regValue Register value storage area.



PDxxSIM I/O DLL Kit

14

Return value: int status

TRUE Succeeded.

FALSE Error.

Functions: Gets a value from the specified register.

 Sets a register value

Function name: int RequestPutRegister(int regNo, unsigned long regValue)

Parameter: int regNo Register number.

unsigned long regValue Register value.

Return value: int status

TRUE Succeeded.

FALSE Error.

Functions: Sets a value in the specified register.

 Generates a interrupt

Function name: int RequestInterrupt(unsigned long vec, int ipl)

Parameter: unsigned long vec Vector number. (Vector address)

PD308SIM, PD30SIM --- Vector number.

PD32RSIM --- EIT vector entry. (Only 0x00000080)

   int ipl Priority.

For PD32RSIM, specify 0 because there is no interrupt priority.

Return value: int status

TRUE Succeeded.

FALSE Error.

Functions: Generates a specified interrupt.

 Gets the status of generated interrupts

Function name: int RequestInterruptStatus(unsigned long * vec)

Parameter: unsigned long * vec Vector number. (Vector address)

PD308SIM, PD30SIM --- Vector number.

PD32RSIM --- EIT vector entry. (Only 0x00000080)

Return value: int happen Generation status of interrupt.

TRUE Generated. Vector number are stored in vec.

FALSE Un-generated. Vec is indeterminate.

Functions: Gets the status of generated interrupts.



PDxxSIM I/O DLL Kit

15

 Inspects a total number of execution cycles

Function name: void RequestTotalCycle(unsigned long * cycle)

Parameter: unsigned long * cycle A total number of execution cycles.

Return value: None

Functions: Inspects a total number of current execution cycles.

 Inspects a total number of executed instructions.

Function name: void RequestInstructionNum(unsigned long * inst)

Parameter: unsigned long * inst A total number of currently executed instructions.

Return value: None

Functions: Inspects a total number of currently executed instructions.

 Causes the target program to stop running

Function name: void RequestStop(void)

Parameter: None

Return value: None

Functions: Causes the target program to stop running.



PDxxSIM I/O DLL Kit

16

 Gets error information

Function name: int RequestErrorNum(void)

Parameter: None

Return value: int errNum Error number.
errNom Contents
000 No error.
001 Address value is out of range.
002 Can't read/write, because there are no memory at that area.
003 Can't get enough memory.
004 Data size is out of range.
005 Can't access a specified address.
100 Description of register is illegal.
101 Data value is illegal.
200 Specified vector out of range.
201 Specified level of priority out of range.
202 Can't get enough memory.

Functions: Gets an error number when an error occurred in the immediately preceding function that

was executed.

This function allows to get information on what error occurred when one of the following

functions was called and its returned value was false.

•  RequestGetMemory function

•  RequestPutMemory function

•  RequestGetRegister function

•  RequestPutRegister function

•  RequestInterrupt function

Use example:

unsigned long data;

char str[5];

if ( RequestGetMemory( 0x800, 4, data ) == FALSE ) {

sprintf( str, "%d", RequestErrorNum() );

MessageBox( NULL, str, "Error number", MB_OK );

// Display error number to message box.

}



PDxxSIM I/O DLL Kit

The following shows an example of how to write the above functions. The shaded sections in this example are

the template part of the above functions that are implemented in the iofunc.cpp file.
void NotifyPostWriteMemory(unsigned long address, int length, unsigned long data)
{
    if (address == 0x3e0) {

RequestGetRegister(REG_PC, &val); // Get PC Value.
RequestPutMemory(0x800, 4, val); // Store PC value in 0x800 address.

    } else if (address == 0x3e1) {
        RequestPutRegister(REG_R0_F, data); // Store value in bank0 R0 register.

RequestInterrupt(21, 7); // Generation of timer A0 interrupt.
    }

    return;
}

17



PDxxSIM I/O DLL Kit

18

8. Specifying Target Program Symbols in the I/O DLL
This chapter describes how to specify target program symbols in the I/O DLL.

For the symbols defined in the target program to be specified in the I/O DLL, it is necessary that the symbol

information be loaded into the I/O DLL using a symbol window which is an extension window of PDxxSIM.

The following explains the procedure for specifying target program symbols in the I/O DLL by using

PD308SIM as an example. To use I/O DLLs for other simulator models, change the model name “308”

described here with any desired model name (e.g., “30” or “32R”).

1. Register a symbol window to PD308SIM.

2. In the symbol window, output symbol information to a file.

3. Load the output file into the I/O DLL to register the symbol information.

4. Specify a symbol in the I/O DLL.

Each step is detailed below.

1. Register a symbol window to PD308SIM.

Follow the procedure described below to register a symbol window to PD308SIM.

(1) Copy the symbol window DLL file “SymbolWindow.dll” from the SymbolWindow¥Pd308sim

directory of C:¥MTOOL¥Iodll into C:¥MTOOL¥PD308SIM.

(2) Open the PD308SIMDLL.DEF file existing in C:¥MTOOL¥PD308SIM by using an editor and

increment the “WindowCount” counts for the [GENERAL] section.

(3) Append the following contents to PD308SIMDLL.DEF.

Contents:

Make sure the number for the section name of the added section “[Window9]” that you set follows

those of other windows.

To remove the registered symbol window, restore the contents of PD308SIMDLL.DEF that you

modified.

[Window9]
Title=Symbol Window
ID=50000
Module=SymbolWindow
Initialize=InitializeMDIChildFrame
Create=CreateMDIChildFrame
IsEnableToOpen=IsEnableToOpenMDIChildFrame
GetOptionMenuID=GetOptionMenuID
Append=1

[GENERAL]
ProductName=PD308SIM
WindowCount=9  ->  WindowCount=10



PDxxSIM I/O DLL Kit

19

2. In the symbol window, output symbol information to a file.

Below shows a process.

(1) Start PD308SIM and when it has started up, choose [Add-In Windows] -> [Symbol Window] from the

Optional Windows menu to open the symbol window.

(2) Download the target program into PD308SIM. After downloading, click the “Create Symbol List”

button in the toolbar of the symbol window and select the file to which to output the symbol

information.

Note:

Of the output symbol information, the information on local symbols is that of module files

whose scopes are set in PD308SIM. (The term “scope” refers to the effective range of local

symbols/ local labels.) To output information on the local symbols/ local labels included in other

module files, change scope settings in PD308SIM. For details, see the description of the scope

command in “PD308SIM Help,” the online help for PD308SIM.



PDxxSIM I/O DLL Kit

20

(3) When symbol information is output to a file, the symbol information is displayed in the symbol

window.

•  The following are displayed in the contents.

Symbol type Symbol name = Symbol address

Symbol types are displayed in order of G_SYMBOL (global symbols), L_SYMBOL (local

symbols), G_LABEL (global labels) and L_LABEL (local labels). No symbol types are

displayed unless they exist in the target program.

•  To search for symbols, click the “Search Symbol” button in the toolbar and enter the symbol

name you want to search.

•  If the target program is downloaded again, the symbol information being displayed in the symbol

window is updated. In this case, symbol information is written over the file to which symbol

information was previously output. To change symbol information output files, click the “Create

Symbol List” button and specify a symbol file again.

Note:

Once a symbol information output file is selected (i.e., symbol information is displayed in

the symbol window), the symbol information is automatically updated the next time you

download the target program.

If you download the target program while no symbol information is being displayed in the

symbol window, no symbol information is updated. Therefore, click the “Create Symbol

List” button to output symbol information.



PDxxSIM I/O DLL Kit

21

3. Load the output file into the I/O DLL to register the symbol information.

Below shows a process.

•  To register the symbol information to the I/O DLL, use the RegistrationSymbolList and

FreeSymbolList functions. Below shows a specification of the function.

[Registration of symbol information]
Function name: BOOL RegistrationSymbolList(const char * pszFile)

Parameter: const char * pszFile Symbol file name.

Specify the file with absolute path.

Can’t use a network pathname.

Return value: BOOL status

TRUE Succeeded.

FALSE Error.

An error dialog is displayed if an error occurs.

Below show the contents of the error.
Error message Contents
A symbol file can't open. The symbol file cannot be opened. Check

whether the specified symbol file is correct
and whether it exists.

Not enough memory to
open a symbol file.

The symbol file cannot be opened for lack of
memory. Check whether sufficient memory is
available.

The format of the symbol
file is wrong.

The symbol file has an invalid format. Create
a symbol file correctly again.

Functions: This function loads the created symbol file into the symbol window to register

the symbol information. The symbol information registered by this function is

retained in memory. Therefore, whenever the symbol information becomes

unnecessary, call the FreeSymbolList function to delete the symbol information

(to free up memory space).

[Delete of symbol information]
Function name: void FreeSymbolList(void)

Parameter: None

Return value: None

Functions: Delete the symbol information (to free up memory space).



PDxxSIM I/O DLL Kit

22

Below shows a use example.

Note:

The RegistrationSymbolList function registers only the symbol information included in one

symbol file. If this function is called twice or more, it deletes the previous symbol information

(to free up memory space) before registering new symbol information. If the same symbol file is

specified, the function inspects the file’s timestamp and only when it has been updated, re-

registers the symbol information.

void NotifyReset(void)
{
    // When reset, load symbol information to register.
    RegistrationSymbolList( "d:¥¥sample¥¥test.sym" );

    return;
}
void NotifyEnd(void)
{
    // Delete the symbol information loaded into the I/O DLL when exiting PDxxSIM.
    FreeSymbolList( );

    return;
}



PDxxSIM I/O DLL Kit

23

4. Specify a symbol in the I/O DLL.

Below shows a process.

•  To convert the symbol to a value in the I/O DLL, use the ChangeSymtToVal function. Below shows a

specification of the function.

[Convert value of the symbol]
Function name: BOOL ConvertSymToVal(const char * pszSym, unsigned long * ulAddr,

int nType)

Parameter: const char * pszSym Symbol name.

unsigned long * ulAddr Pointer in which the converted symbol value is

stored.

int nType Symbol types which are given priority when

searched.

TYPE_SYMBOL Symbol.

TYPE_LABEL Label.

Return value: BOOL status

TRUE Succeeded.

FALSE A symbol isn’t found.

Functions: This function searches for the corresponding value for the symbol and stores the

found value in ulAddr. The table below shows what search priority will be

assigned to each symbol type when specified by nType.
priority level TYPE_SYMBOL TYPE_LABEL

level 1 Local symbol Local label
level 2 Global symbol Global label
level 3 Local label Local symbol
level 4 Global label Global symbol

Attention:

For the symbol name to be specified for the pszSym parameter of the ConvertSymToVal

function, be sure to use one that is displayed in the symbol window. For example, if the symbol

name displayed in the symbol window is prefixed by an underbar as in the case of “_strl,” the

symbol name specified for the pszSym parameter must also be prefixed by an underbar.



PDxxSIM I/O DLL Kit

Below shows a use example.

9. Notes
1. Change

output, 

2. Only on
void NotifyPreReadMemory(unsigned long address, int length)
{
    unsigned long s_addr;
    unsigned long data;

    // When the address 0x3e0 is read, store the value of the symbol “strl” in 0x3e0
    if ( address != 0x3e0 ) {
        return;
    }
    if ( ConvertSymToVal("_str1", &s_addr, TYPE_LABEL ) == FALSE ) {
        return;
    }
    RequestGetMemory(s_addr, length, &data);
    RequestPutMemory(address, length, data);
}

24

s of values input/output to or from memory using the I/O DLL cannot be referenced using the GUI

virtual port input/output or I/O script facilities of PDxxSIM.

e I/O DLL can be specified in PDxxSIM. You cannot specify multiple I/O DLLs.



PDxxSIM I/O DLL Kit User's Manual

Rev. 1.00
May 1, 2003
REJ10J0063-0100Z

COPYRIGHT ©2003 RENESAS TECHNOLOGY CORPORATION
AND RENESAS SOLUTIONS CORPORATION ALL RIGHTS RESERVED



1753, Shimonumabe, Nakahara-ku, Kawasaki-shi,  Kanagawa 211-8668 Japan

PDxxSIM I/O DLL Kit

REJ10J0063-0100Z

User’s Manual


	Abstract
	Configuration
	Method for Creating the I/O DLL
	Method for Using the IodllTemplate project
	Method for Creating the new I/O DLL

	Method for Using the I/O DLL
	Method for Debugging the I/O DLL
	Functions that Send Information to the I/O DLL
	Functions that Get Information from simxx.exe
	Specifying Target Program Symbols in the I/O DLL
	Notes

