RRENESANS IDT ARM® Cortex™-MO User Guide

Note: The following document is primarily comprised of information extracted with permission from the ARM,
Ltd. document Cortex™-MO User Guide Reference Material, copyright © 2009 ARM Limited. The material is
shortened and adapted for instruction in the use of the ARM® Cortex™-MO0 core used in the MCU implemented
by IDT in its products. All material is subject to the 2009 copyright belonging to ARM Limited.

Contents
1 DTS ARM® COT@...ooeoeeeeceeeeeee ettt s e s s e s e s e s et ee s et n s st s s s sansar s 6
2 ARM® COMEX™-MO USEE GUIAEeoveeveorereeeeieeiese e tesees s sse s s st s st en s s erenaas 7
P22 R [011 o To [1 Tox 1T IS PSPPI 7
2.1.1 Scope Of thiS DOCUMENTueiiiiiiie ettt e e e e e et e et e e e e e e e snb bbb e e e e e e e sanbbbeeeaaaeeaanns 7
2.1.1.1 TypographiCal CONVENTIONS.ciiiiiiiiiiiiee e e e sttt e e e e st e e e e e s et e et e e e s aatbereeeaeesaassebaetaaessasssbeeeaeessannnraes 7
2.1.2 About the Cortex™-MO Processor and Core PeripheralS ... 8
2.1.2.1 SYStEM-LEVEI INTEITACE ..ottt e et e e e e e e b ta e e e e e e s easbebaeeaaessesssbaeeaeeseannnraes 9
2.1.2.2 INtegrated DEDUG LOGICttt ettt e e e oottt e e e e e e e tbee e e e e e e e eannaeeeeeeaeseannnbeeeaaeeeannnrens 9
2.1.2.3 Cortex™-MO Processor FEAtUrES SUMIMAIYcciiiiiiiiiiiiiiiiiiiiiieiei ettt ettt ettt ettt ettt ettt a e e e e e e eaeaees 9
2.1.2.4 CorteXx™-MO COre PeIPNEIAISccuiiiiiei ettt e et e e e e e e e e e e s e s b b e et aeessessbtbeeeeaeseannnrees 9
2.2 COMEX™-IMO PIOCESSOLeeiitieeiiiiitteetetee e e ettt e e e e e s st et e e e e s e aa b e b et et e e e e e s b bebe e e e e e e ae s b bereeeaeeeaasnnnrnneeeeens 10
A R = o To | = 2 1Y AT 1Y/ To =SSP 10
P N R o {0 Tot =T~ | g 1Y o To [PO P PP PRI 10
N A | - Tod G TSRS UPRTR 10
N T OFo] (=3 = L=) (=] £SO UPRTRN 11
P O S o (ot=T o] (o] 3T o To I [0 (=] £ (U o € P UPURRTP 18
A T DT L - W Y] o[- S PP PUPPPPPPPPPPPPPNE 18
2.2.1.6 The Cortex™ Microcontroller Software Interface Standard (CMSIS)oooiuiiiiiiiiiiiiii e 18
2.2.2 MEMOPY MO ... ettt oottt e e e e e s ab bt e e e e e e e e e s abbebe e e e e e e e e aanbbnaeeaaeas 19
2221 Memory Regions, Types, and ALHDULESoooi e e e e e e 20
2.2.2.2 Memory System Ordering Of MEMOIY ACCESSESuuiiiiiiiiiiiiiiieeeeiieiiireeeeeeseaareeeaassaasatraetaaessasstrarreaeeeains 21
2.2.2.3 BehaVior Of MEMOIY ACCESSES. ...cii i it iiitiieeiie e ettt e e e e ettt e e e e e e e et bt e e eeee e s aataaaeeeaaeeaaannsbeeeaaesaaanntrnneaaaaaann 22
2.2.2.4 Software Ordering Of MEMOIY ACCESSESiuiiiiiiiiiiieeeeeeiiitre e e e e et seb e eea e e s sa bt e etaaesaasatraetaaeesasstrareaaeeaains 23
2.2.2.5 MEMOIY ENGIANNESSceiiiiiiiiiiiiit ettt ettt e e e e e ettt e e e e e e e aa b bt e e eeeaesaansneeeeeeaesaannsbeeeeaeeeaanntbneeaaaaaannn 24
AR B = oY oo o 1Y Fo o [= HO TP 24
P R (ot =] o] (0] g IS = L= SRS URRTR 24
W B A = (ot =Y o] 1 o] N Y/ - T OSSR UPRTRN 25
P e R = (ot=T o] (o] g T o F= g Lo | L= £ PSRRI 27
P B Y=ot (o] g 1= o] L= PSSR PP SO P PPN 27
A BT = (ot=T o] (o] o o o] 1 =2 USRS 28
2.2.3.6 EXCePtion ENtry @Nd RETUMuuiiiii ittt e ettt e e e e s et e e e e e s et e e e e e s easatbeeeeaeeeassstbaneaaeeeans 29
2.2.4 FAUIL HANAING ...ttt e e oottt e e e e e sk bbb e et e e e e e e s nbbbbeeeaaeeeeaanbbeaeaaaens 32
S R o Tox (U o SO UOPUPRTRN 32
A S T =0 1Y =T g 1Y/ = g Vo L= o 1= o 32
2.2.5.1 ENEriNG SIEEP MOUE.....cciei ittt e e e e e e e e e st e et e e e s e e tbab e et aeesaasatbaetaaeeeasntranaaaeeaaas 33
2.2.5.2 WakKeup from SIEEP IMOAE.........eeiiieeiiiiee ettt e ettt e e e e s ettt e e e e e e aanntbeeeeaeeeaanntbeeeaaaaaannn 33
2.2.5.3 Power Management Programming HiNScooiuiiiieiiiiiiiiii e ee e e s s e e e s e sntra e s e e e s e s sntraneaaeeeans 33
2.3 COrteX™-MO INSIFUCLION Seiiiiiiie ittt ettt s st e ettt e s et e e e sttt e e e abbe e e s anbaeeeenneee 34

© 2019 Renesas Electronics Corporation 1 April 19, 2016

RRENESANS

2.3.1 INSLIUCHION SO SUMMIAIY ...c.iiietiieeeie e e i e eeiteee e e e e et s st ee e e e e e s s aaa e e e eaeessassnteereeeesssnnssaeneeaeesssannrnnnneees 34
2.3.2 INIANSIC FUNCHIONS .. .etiiieitee ettt ettt e sttt e e s sh b et e e e sbbe e e e s sabe e e e s sbbeeeesabbeeeesnbbeeeeans 37
2.3.3 About the INStrUCtION DESCHPLIONooiiiiiiiiiieie ettt e et e e e e e e b e e e e e e e e sanbeeeeeaeas 39
P T 0 R @ o1 - o o L SRR UPRTR 39
2.3.3.2 Restrictions When USING PC OF SPttt e et e e e s e st e e e e e e e e et anaaaeeeans 39

P T R T S 011 A @] o 1= =1 1o L PR UUPRTRN 39

P TG B0 S Yo [o | =YX AN 1o T 0= o OSSP UPRPP 42
2.3.3.5 PC-Rel@tiVE EXPIrESSIONSceeiiiiiieiiiiieiie it e et e ettt e e e e s ettt e e e e e s e e sbaeeeeaaeeaannebeeeeaeeeaantbeneaaeaaann 42
2.3.3.6 CONAItIONAI EXECULION ...ceiiiiiietiiit e ettt e ettt e e e oottt e e e e e e ettt eee e e e aansaeeeeeaaeeaamntbeeeeaeeeaanntbnneaaaaaannn 42
2.3.4 MemOry ACCESS INSITUCHIONSueiiiiiiiiiiiitie ettt ettt e e e e e e bbbt e e e e e e e s bbb be e e e e e e e e snnbaneeeaens 45
2.3.4. 1 ADR oo oottt e ettt e e a4 e e ettt e e e e b et e e e e n et e e e e e e e 46
2.3.4.2 LDR and STR, IMMEMIAE OffSBE.....ccuuniiiiii ittt e e e e et e e e e e e e st e s e st e e ssba s e s saaaesesaneersnnnes 47
2.3.4.3 LDR and STR, ReQISIEI OffSEL....cciiiiiiiiiiiiiiie ittt e e e e st e e e s e st e et e e e e easatbaneaaeeeaaas 48
R R N S N B] = B = O (= = | 1LY/ TR 49

P B o SR B B 1Y/ 1= o (o RS 1Y SRR URRTR 50
2.3.4.8 PUSH @N0 POP......eiiiiiiiiieie ettt e e e a bt e e bt e e ekt e e aat bt e e eabb et e e kb et e e anbb e e e nnnne e e e ntreeeean 52
2.3.5 General Data Processing INSIIUCHIONSuciiiiiiiiiiiiieie e e s e e e e e e s e e e e e e e s snrnaeeeees 53
2.3.5.1 ADC, ADD, RSB, SBC QN0 SUB...........uuiiiiiiiiiiiiiiiii ettt e ettt e e e e e e e e taea e e e e e e e e e nntaeeeaaeeeaanntreeeaaaaaannn 55
2.35.2 AND, ORR, EOR NG BICciiiiiiiiiiiiiie ittt ettt ettt ek e e aat et e sbb e e e bb e e e e anbb e e e nnbaeeesnbbeeeaas 58
2.3.5.3 ASR, LSL, LSR AN ROR ..ottt ettt ettt et e ekt e e aat e sabb e e s bb e e e anbb e e e sanaeeesnbbeeeaas 59

PR BN S O |V | = T To [1 Y|\ SRR URRTR 60
RS S T 1Y (@ AV 1o o 1Y AV N PO P PSP PRI 61
2.3.5.8 MULS ... 62
2.35.7 REV,REV16 @Nd REVSHcoiiiiiiiiiiiiie itttk bttt sbt e et e e e st e e e nbte e e nbbeeeeas 63

PR BT S) I 0 To [6) PSP UURTR 64

P NS T N T TP PO P TP U PP PR PRSP 65
2.3.6 Branch and Control INSIIUCTIONSeii ittt sttt e e st e e st e e e s snbeeeessnbeeeeans 66
P N T R = R = I = Q= o To I = 0 SRS URRTRN 67
2.3.7 MiSCEllan@OUS INSITUCTIONScivviieiiitiiie ettt ettt et e e e sttt e e e st b et e e s sabe e e e s snbeeeesssbeeeesssbeeeeans 69
2.3.7. 1 BRI T 70
2.3.7.2 O P S 71
2.3.7.3 DM .ttt e ettt e e ettt e e e e e et e e e e e e et e e e e n et r e e e e e as 72
2374 DSBu.. 72

P B S T 1] = ST PP PP O PP PPPPPPPPPPN 73
2.3.7.8 MRS 74
2.3.7.7 MR i e e e ettt e e e e e e ettt e e e a e et e e e e n e r e e e e e 75
2.3.7.8 NOP 76
2.3.7.9 SV C i bbb h e E LR R R R bt ee bbbt e e 77
23700 W 78
2.4 CorteX™-MO PErIPREIAISccoiiiiitiiiiii ettt e e e e e bbb e e e e e e e s s b b e re e e e e e e e e enrreaeeaaens 79
2.4.1 About the Cortex™-MO PErPNEIalSuuuiiiieiiiiiiiie e e e e e e e e e snrraeeeee s 79
2.4.2 Nested Vectored Interrupt Controller (NVIC)ooceiiiiiiiee e a e e e e e ee e 80
2.4.2.1 Accessing the Cortex™-MO NVIC registers USiNg CMSISooooiiiiiiiiiiii e 81
2.4.2.2 Interrupt Set-Enable RegiSter (ISERY)coii ittt et e e e et e e e e e e e e sntbeeeaaeeeanan 82
2.4.2.3 Interrupt Clear-Enable ReQISIEr (ICER).........cciiiiuiiiiiiee ittt ettt et e e e e e et e e e e e e e e s satbaneaaeeeaans 83
2424 Interrupt Set-Pending REGISLEr (ISPRY)coiii ittt e e e e et e e e e e e e e e nteeeeaaaaeaaas 84
2.4.2.5 Interrupt Clear-Pending REGISEr (ICPR)........ccciiuiiiiiee ittt te e sttt e e e s e s et e e e s eea e e e e e e s easntbaeaaaeeeans 85

© 2019 Renesas Electronics Corporation 2 April 19, 2016

RRENESANS

2.4.2.6 Interrupt Priority Registers (IPRO — IRP2) ... ittt e e e e e e e e 86
2.4.2.7 Level-Sensitive and PUISE INTEITUPLSuuiiiie ittt ie ettt e e e e s e s e e e e s e st aeeeaeeeassntbanaaaeeeans 87
2.4.2.8 NVIC USAQE HINS @GN TIPS -.utttiiitiaeiiiitiiiii e e ettt e e e e ettt et e e e e s ettt e e e e e s aannnaeeeeeaeeaasntbeeeaaeeaaanntrnneaaaaaann 88
2.4.3 System CoNtrol BIOCK (SCB)uuiiiiaiiiiiiiiiiieee ettt ettt e e e et e e e e e e e s bbab e e e e e e e e e annbsaeeaaens 89
2.43.1 The CMSIS Mapping of the Cortex™-M0O SCB REQISLEISccceiiiiiuiiiiieaeiaeiiieee e et ee e e e eeeeeaae e 90
P A ©F = B || B I = (= To £ =] SO UOPUPRTR 90
2.4.3.3 Interrupt Control and State RegiSter (ICSR)..........uiiiiiiiiiiiei et e e e e e e nteeeeaae e e as 91
2.4.3.4 Application Interrupt and Reset Control Register (AIRCR).........cciiiiiiiiiiie e e e e e e 94
2.4.35 System Control REGISTEI (SCR)cciiiiiuiiiiiie ettt e e e e ettt e e e e e s s s taae e e e e e e e aaanneaeeeaaeeaaanntreeeaaaaaann 95
2.4.3.6 Configuration and Control REGISIEr (CCR)cciuiiiiiiee ettt e e e e e e e s e s e e e e e e e e satbaeaaaeeeaans 96
2.4.3.7 System Handler Priority RegiSters (SHPR2-3)ciiiiiiiiiiiiiie ettt a e straea e e e 97
2.4.3.8 SCB USAQE HINtS AN TIPS ..uueetiietiaeiiiiiiieeteaee et eet e e e e e e e tttee e e e e e e s s aatseeeeaaaasaasnaseeeaaesaaannsaeeeaaeeaaannsreneaaaaaann 99
2.4.4 SyStem TIMEIr (SYSTICK) .ooeeiiiiiiiiiii ettt e e et e e e e e e e s bbb be e e e e e e e e sanbareeaaans 99
2.4.4.1 SysTick Control and Status Register (SYST_CSR) ...ccoiiiiiiiiie ittt e 100
2.4.42 SysTick Reload Value Register (SYST_RVR) ...ttt et a e e aae e 101
2.4.4.3 SysTick Current Value RegiSter (SYST_CVR) ...uuuiiiiiiiiiiiiiiii ettt e et a e e e s sntbaeaaaa e e 102
2.4.4.4 SysTick Calibration Value Register (SYST_CALIB)c.ooiuiiiiii ettt e e e e 103
2445 SySTICK USAQE HINtS AN TIPS ..eieiieiiiiiiiiieiee ettt ettt e e e e e ettt e e e e e e e st b e eeeaeeeaannsbeeeeaeeeaannsneeeaaaeaanns 104

A T €1 (o 11T o PSPPI 104
3 DOCUMENT REVISION HISTORY .. asabsbnsnsnnnee 108

List of Figures

Figure 2.1
Figure 2.2
Figure 2.3
Figure 2.4
Figure 2.5
Figure 2.6
Figure 2.7
Figure 2.8
Figure 2.9
Figure 2.10
Figure 2.11
Figure 2.12
Figure 2.13
Figure 2.14
Figure 2.15
Figure 2.16
Figure 2.17
Figure 2.18
Figure 2.19
Figure 2.20
Figure 2.21
Figure 2.22
Figure 2.23

CorteX™-MO IMPIEMENTALION ... eieeeieee e s e e e s e e e e e e s s et e e e e e e e e s snntnreeeeeeesesnnnrnnereees 8
LO00 (= R LT 11 (T ST @ A=Y V=SSP 11
PSR Register; Combination of APSR, IPSR, and EPSR............ciiiiiiiiii e 13
PRIMASK REQISTETttiiiiiieeiiiiiieie e e e ettt e e e s e st e e e e e e s s s ta e e e e e e e s s steteeeeeeesaasssteaeeeaeessansnnnnnneeeeesanns 16
(1@]\ = L@ I = LT 11 (=] S 17
General ARM® [T g1V, = o IO PP PRPTPP 19
Memory Access Ordering if Memory Access Instruction A1 Occurs Before Instruction A2 21
Example of Little-ENdian FOIMALcccviiiiiieeie e s e e e e s s e e e e e e s e st ae e e e e e e s s nnnnrnneeeeeenanns 24
[V /= Tex (o] G 1= o] [T RUPTPO 27
EXception ENtry StACK CONTENTSciiiiiiiiiiiie e et e e s st e e e e e e e st e e e e e e s e sanbeaeeeaeeesennnnneneeeeeesanns 30
F] 2 PSPPSRI 40
IS = 2 S PSP 40
S I PSPPSR 41
O 3 T PSPPSR 41
1S = PRSP 82
L3 = TSR 83
1S o = PRSPPI 84
1 PSRRI 85
1 2 {0 PSPPI 86
L1 U =T 1 = SR 90
18 PRSPPI 91
Y L = PP OURR 94
I O = RSP SRPPP 95

© 2019 Renesas Electronics Corporation 3 April 19, 2016

RRENESANS

Figure 2.24
Figure 2.25
Figure 2.26
Figure 2.27
Figure 2.28

Figure 2.29:
Figure 2.30:

CCOR ettt e e e ettt et e ettt 96
SHPRZ oottt ee e e e et e e ettt ettt sttt e st 97
SHPRB oo e et e e e e s s et e e e sttt ettt et e et r ettt e st 08
SYST_CSR oot e e e ee e eeee e e e e e e e s e e s s ee s s s eee e e e st e s e e s es et ee st eee e 100
SYST_RVR oot eeeeeeeeeeeeeeeeeeeeeese e e e s es e ee s e s e e e s e st e s e st s e e e e s e e st e s ee s e s ee et ees e ee e eereenens 101

SY ST _CVR ettt e e e e e 102
SY ST _CALIB ...ttt 103

List of Tables

Table 2.1

Table 2.2

Table 2.3

Table 2.4

Table 2.5

Table 2.6

Table 2.7

Table 2.8

Table 2.9

Table 2.10
Table 2.11
Table 2.12
Table 2.13
Table 2.14
Table 2.15
Table 2.16
Table 2.17
Table 2.18
Table 2.19
Table 2.20
Table 2.21
Table 2.22
Table 2.23
Table 2.24
Table 2.25
Table 2.26
Table 2.27
Table 2.28
Table 2.29
Table 2.30
Table 2.31
Table 2.32
Table 2.33
Table 2.34
Table 2.35

Summary of Processor Mode and Stack USE OPLIONScvveciiiiciiiiieiee e e e e e e sssieieeee e e e e s snnenaeeee s 10
COre REQISIEr SEE SUIMIMAIY ..ttt ettt e e e e b e e e e e e s s ab b b e et e e e e e e s nsbbbeeeeaeeesannbnneeaaens 11
PSR Register COMDBINALIONSuvviiiiiiiiiiieee et e e e e e s e e e e e e s e st ae e e e e e e sennnnreneeeeeeaanns 13
APSR Bit ASSIONMIENES ..eiiiiiiiiieie e e e st e e e e e e st r e e e e et s st eeeeeeesasa s baeeeeaeesaaassateeeeeaeeeaannnranereeeeaaanns 14
PSR Bit ASSIGNIMENTS ...ttt e ettt e ettt et e e e s e s et e et e ea e e s e aab b be et eaaeeeaabbbbeeeeaaeeeaanbbnbeeeaaaeeaann 14
EPSR Bit ASSIGNMENES .eeiiiiiiiiiiieiie e e e e settte e e e e s s st e e e e e e s e sta e eeeaeessasaeteeeeeesssansntnaneeeeeesnasssnnneeeeeesanns 15
PRIMASK Register Bit ASSIGNIMENTSuuuiiiieiiiiiiiiiiiee e se s er e e e e s sssere e e e e e e s s snntereeeeeeesessnreneeeaeesans 16
CONTROL Register Bit ASSIGNMIENTScoiieiiieiiiie ettt e e e e e e st e et e e e e e e s e sbebeeeeeaeessannbeaeeeeaas 17
MEMOIY ACCESS BENAVIONeeeiieiiie e ettt e e et e e e e e e e e e e e e e e s s sanb e e e e aeeesansnnbeneeeeeeeanns 22
Properties of the Different EXCEPION TYPES ..occciiiicriiieiiie i iiiiiieieee e e e sssteree e e e e e s s snntnaereeeeesssnnnnneeeaeesans 26
EXCePLioN RELUIN BERNAVIOueiiiiiiii ittt e e e e e et e e e e e e e e s e annbbeeeaaaeeaanns 31
Set of Instructions Supported by the CorteX™-MO PrOCESSOruuuiieeeeiiiiriierreeeseiiitniereeeeessannsnneees 34
CMSIS Intrinsic Functions to Generate some Cortex™-MO INSFUCLIONSooveeeriiiieeeiiiiee e 37
CMSIS Intrinsic Functions to Access the Special REgISters..........uuiiiiiiiiiiiiiiee e 38
(7] oo 1 1Te] g W @00 [SIST U 11 11 TP PT TR 44
MEMOIY ACCESS INSITUCHIONS. ... uuiieiiiie e e it e e e e e s st e e e e e s s s e e e e e s e et e e e e e e s s snnteneeeaeeesaasnnrnneeeaeesanns 45
Data ProCesSiNg INSIIUCHIONSeeiiiiiiiiiiiii it e ettt e ettt e e e e e e s sabb e e e e e e e e e s e anbbbeeeeaaeeaanas 53
ADC, ADD, RSB, SBC and SUB Operand ReSIICLONSuuiiiiiiiiiiiiiiieeeeeeeiiieiee e e e e siiieeee e e 56
Branch and Control INSIIUCHIONSeiiiiiiiieiiiiie ettt st bbb e s bbe e e e eneee 66
2Tz Lol oI =T g Lo =T TP PT TR UPPPPRPP 67
MiISCEIANEOUS INSTIUCTIONS eeieeiiei ettt ettt e e e e e sttt e e e e e e e e snbb e e e e e e e e e sannbbeeeaaaeeaanns 69
Core Peripheral REQISIEr REQIONScviiiiiiiiiiiiiiee e e e e et e e e e s s st eee e e e e e s s s e e e e e e s s nsan e e e e e e e s snnnrraeeeees 79
NVIC REGISIEI SUMIM@IY ...ttt e e ettt e e ettt e e e e e e e aba et et e ae e e aasbebeeeeaaeaaansbsaeeaaaessaasnbbeeeaaaeeaanns 80
CMSIS ACCESS NVIC FUNCLIONSeeeiiiiie ittt ettt e e e e e s et e e e e e e e e s asbbbe e e e e e e e e snnbnneeeaeas 81
ISER Bit ASSIGNMENTS ...iiiiiiiiiiieiee e e e s st ee e e e et s s e e e e e e s s aa et eeeeeeesasasteeeeeeeesasnssstnnneeeeesanssnnneneeeessnnns 82
ICER Bit ASSIGNIMENTS. ... iiittiiite e ettt e e e e ettt e e e e e s e sttt e et e e e e e s e aan b be et e e aeaesanbbbeeeeeaeeesannbbbeeeaaaeeaanns 83
ISPR Bit ASSIGNIMENTS ...ttt ettt e oottt et e e e s e e b be et e ee e e s e aabbbe et e e e e e e aabbebeeeeaaeeeaannbnbeeeaaaeeaann 84
(O =T 1T [41T £SO 85
PR Bit ASSIGNIMENTS ...coiiiiiiiitiiiit e ettt e e e ettt e e e e s e s e e be et e e ea e e s e s b b beeeeaeeaesaabbbeeeeaaeeesasbsbeeeaaaesaanns 86
Properties of the Different EXCEPION TYPES ..cccoiiiiuiiiiiiiee ettt e et e e e e e sinbe e e e e e e e e 88
SUMMArY Of the SCB REQISTEISuuiiiiiie it i e e s s e e e e e s e e eeeaeesansreterreeeeessnnnreaeeeees 89
PUID RegiSter Bit ASSIGNMENTSoiiiiiiiiiiiiiiee ettt e e e e e et b bt e e e e e e e s sanbeaeeeaaeesaannbbeeeeaaeeeanns 20
ICSR Bit ASSIGNIMENTS. ...ttt e ettt e e ettt e e e e e s e st abe e et e e e e e s e aanbbe s e e e eeaesannbbeeeeaaeeeaanbnbeeeaaaeeaanns 92
AIRCR Bit ASSIONMIENES ... ieitieiee e e e et e e e e s s st e e e e e e s s st eeeaeeessas e beeeeeaeessanssateneeeeeesannssranneeaesssanns 94
SCR Bt ASSIGNMIENTS.eeeiiiie ittt e ettt e e e e et e bt e e e e e e s e s s bbb et e e ea e e s aaabbbe et e aaeeeaanbbbbeeeaaeeeaanbrnaeaaaans 95

© 2019 Renesas Electronics Corporation 4 April 19, 2016

RRENESANS

Table 2.36
Table 2.37
Table 2.38
Table 2.39
Table 2.40
Table 2.41
Table 2.42
Table 2.43
Table 2.44

L1 @) = T =T To |] 0=) USSP 96
System Fault Handler Priority FIlIAScocuiuiiiiee et s s e e e e e e e e e e e e s snrnaeeeee s 97
SHPR2 Bit ASSIGNMIENTSeiiiiiiiiiiiit ettt ettt e e e e s et ab et e eeea e e s e aabbbe et e aaeeesansbbbeeeaeaeesannreneeaaens 97
SHPR3 Bit ASSIGNMIENES ...eeiiieiiiiiiiieii e e e s et e e e e e e s st e e e e e e s s st eeaeeesaas e baeeeeaeessasseaneeeeeeessnnsrnneeeees 98
System Timer REJISIErS SUMIMAIYcciiiiiiiiiiiiieie e e e et e e e e s s s seeee e e e e e s s s ee e e e e e e snssataereeeeessnnnreaeeeees 99
SYST_CSR Bit ASSIGNIMENTS ...ttt et e e e e e e et e e e e e s e aabbeeeeaae e e s e aanbbeaeeaaeesaannnnnens 100
SYST_RVR Bit ASSIGNIMENTScciiiiiieiiee e e e ittt ee e e e e e s e e e e e e s s st reaeeessasntaaeeeaeeessansrnaneeeeesannsnnrens 101
P SYST_CVR Bit ASSIGNMENESuuiiiiiiiieeieiiiiete e e e e e s s st e e e ee e e sesta e eeeeesssssstarereeeeessanssareereeeeesansrnneeeees 102
SYST_CALIB Bit ASSIGNMIENTSeiiiiiiiiaii ittt et e e e e e e b et e e e e e s s aabbeseeaae e e s e sanbbeeeeaaaesaannnneens 103

© 2019 Renesas Electronics Corporation 5 April 19, 2016

RRENESANS

1 IDT's ARM® Core

The IDT’s MCU contains an ARM® core comprised of the following components:
e a Cortex™-MO processor
e adebug controller including
0 aJTAG interface
0 4 hardware breakpoint comparators
0 2 hardware watchpoint comparators
e an interrupt controller (NVIC) providing the NMI and 9 interrupt lines

0o interruptline O flash controller interrupt level-sensitive
0 interruptline 1 external interrupt (from SBC) level-sensitive
O interrupt line 2 SW-LIN interrupt (from ZSYSTEM) level-sensitive
0 interruptline 3 SPI interrupt (from ZSYSTEM) level-sensitive
O interruptline 4 32 bit timer interrupt pulse

o0 interruptline 5 GPIO interrupt level-sensitive
0 interruptline 6 SPI interrupt (from ZSYSTEM2) level-sensitive
o0 interruptline 7 USART interrupt (from ZSYSTEM2) level-sensitive
o interruptline 8 I’C™* interrupt (from ZSYSTEM?2) level-sensitive

e asystem timer (SysTick)
e afast single-cycle multiplier

* 12C is a trademark of NXP.

© 2019 Renesas Electronics Corporation 6 April 19, 2016

RRENESANS

2 ARM® Cortex™-MO User Guide

The following sub-sections contain information extracted with permission from the ARM, Ltd. document Cortex™-MO
User Guide Reference Material. These subsections are shortened to the implementation of the MCU implemented by

IDT.

2.1 Introduction

2.1.1 Scope of this Document

This document provides the information required for application and system-level software development. It does not
provide information on debug components, features, or operation.

This material is for microcontroller software and hardware engineers, including those who have no experience with

ARM® products.

2.1.1.1 Typographical Conventions

The typographical conventions used in this document are

italic

bold

monospace

monospace

monospace 1italic

monospace bold

<and >

Highlights important notes, introduces special terminology, denotes internal cross-references, and
citations.

Highlights interface elements, such as menu names. Denotes signal names. Used for terms in
descriptive lists, where appropriate.

Denotes text that can be entered at the keyboard, such as commands, file and program names,
and source code.

Denotes a permitted abbreviation for a command or option. The underlined text can be entered
instead of the full command or option name.

Denotes arguments to monospace text where the argument is to be replaced by a specific value.

Denotes language keywords when used outside the example code.

Enclose replaceable terms for assembler syntax where they appear in code or code fragments.
For example:

CMP Rn, <Rm|#imm>

© 2019 Renesas Electronics Corporation 7 April 19, 2016

RRENESANS

2.1.2 About the Cortex™-MO Processor and Core Peripherals

The Cortex " -MO processor is an entry-level 32-bit ARM® Cortex™ processor designed for a broad range of
embedded applications. It offers significant benefits to developers, including

a simple architecture that is easy to learn and program

ultra-low power, energy-efficient operation

excellent code density

deterministic, high-performance interrupt handling

upward compatibility with the Cortex™-M processor family.

Figure 2.1 Cortex™-MO0 Implementation

Cortex™-M0 Components
Cortex™-MO Processor
Debug
Nested -
Interrupts » Vectored Cortex™-MO0 Bre:ﬁzomt
Interrupt @ Processor | Watchpoint
Controller Core Unﬁ
(NVIC)
A
v
Debug
Bus Matrix |« g ?r?tzl;fg?:zr <= Access Port
(DAP)
! {
v v
AHB-Lite interface to system JTAG debug-port

The Cortex™-MO processor is built on a 32-bit processor core that is highly optimized for area and power and has a
3-stage pipeline von Neumann architecture. The processor delivers exceptional energy efficiency through a small but
powerful instruction set and extensively optimized design, providing high-end processing hardware including a single-
cycle multiplier.

The Cortex™-MO processor implements the ARMv6-M architecture, which is based on the 16-bit Thumb® "instruction
set and includes Thumb®-2 technology. This provides the exceptional performance expected of a modern 32-bit
architecture, with a higher code density than other 8-bit and 16-bit microcontrollers.

The Cortex™-MO processor closely integrates a configurable Nested Vectored Interrupt Controller (NVIC), to deliver
industry-leading interrupt performance.

The NVIC
e includes a non-maskable interrupt (NMI)
e provides zero jitter interrupt option
e provides four interrupt priority levels

T Thumb® is a trademark of Arm, Ltd.

© 2019 Renesas Electronics Corporation 8 April 19, 2016

RRENESANS

The tight integration of the processor core and the NVIC provides fast execution of interrupt service routines (ISRs),
dramatically reducing the interrupt latency. This is achieved through the hardware stacking of registers, and the ability
to abandon and restart load-multiple and store-multiple operations. Interrupt handlers do not require any assembler
wrapper code, removing any code overhead from the ISRs. Tail-chaining optimization also significantly reduces the
overhead when switching from one ISR to another.

To optimize low-power designs, the NVIC integrates with the sleep modes including a deep sleep function that
provides support of the power down modes controlled by the connected SBC.

2.1.2.1 System-Level Interface

The Cortex™-MO processor provides a single system-level interface using AMBA® : technology to provide high
speed, low latency memory accesses.

2.1.2.2 Integrated Debug Logic

The Cortex™-MO processor implements a complete hardware debug solution, with extensive hardware breakpoint
and watchpoint options. This provides high system visibility of the processor, memory and peripherals through a
JTAG port that is ideal for microcontrollers and other small package devices. The debug logic includes 4 hardware
breakpoint and 2 hardware watchpoint comparators.

2.1.2.3 Cortex™-MO Processor Features Summary

high code density with 32-bit performance

tools and binary upwards compatible with Cortex™-M processor family

integrated ultra-low-power sleep modes

efficient code execution permits slower processor clock or increases sleep mode time
single-cycle 32-bit hardware multiplier

zero jitter interrupt handling

extensive debug capabilities

2.1.2.4 Cortex™-MO Core Peripherals
These are

NVIC
The NVIC is an embedded interrupt controller that supports low latency interrupt processing.

System Control Block

The System Control Block (SCB) is the programmer’s model interface to the processor. It provides
system implementation information and system control, including configuration, control, and reporting of
system exceptions.

System timer

The system timer, SysTick, is a 24-bit count-down timer. Use this as a Real Time Operating System
(RTOS) tick timer or as a simple counter.

1 AMBA® is a trademark of ARM, Ltd.

© 2019 Renesas Electronics Corporation 9 April 19, 2016

RRENESANS

2.2 Cortex™-MO Processor

2.2.1 Programmer’s Model

This section describes the Cortex™-MO0 programmer’s model. In addition to the individual core register descriptions, it
contains information about the processor modes and stacks.

2.2.1.1 Processor Modes

The processor modes are
e Thread Mode: Used to execute application software. The processor enters Thread Mode when it comes out
of reset.
e Handler Mode: Used to handle exceptions. The processor returns to Thread Mode when it has finished all
exception processing.

2.2.1.2 Stacks

The processor uses a full descending stack. This means the stack pointer indicates the last stacked item on the stack
memory. When the processor pushes a new item onto the stack, it decrements the stack pointer and then writes the
item to the new memory location. The processor implements two stacks, the main stack and the process stack, with
independent copies of the stack pointer; see section “Stack Pointer (PS).”

In Thread Mode, the CONTROL register controls whether the processor uses the main stack or the process stack;
see section “Control Register (CONTROL).” In Handler Mode, the processor always uses the main stack. The options
for processor operations are

Table 2.1 Summary of Processor Mode and Stack Use Options

Processor Mode | Used to Execute Stack Used
Thread Applications Main stack or process stack (see Control Register (CONTROL))
Handler Exception handlers | Main stack

© 2019 Renesas Electronics Corporation 10 April 19, 2016

RRENESANS

2.2.1.3 Core Registers
The processor core registers are shown in Figure 2.2.

Figure 2.2 Core Register Set Overview

(RO

Low registers

General purpose

registers

High registers R10

R12

Stack Pointer SP (R13)

[PSP | | MSP

Link Register LR (R14)

PC (R15)

Program Counter

PSR

Special

PRIMASK

Interrupt mask register

CONTROL

Program Status Register}

) registers
Control Register 9

Table 2.2 Core Register Set Summary
Name Type Reset Value Description
R0O-R12 RW Unknown General Purpose Registers (R0-R12)
MSP RW See description Stack Pointer (PS)
PSP RW Unknown Stack Pointer (PS)
LR RW Unknown Link Register (LR)
PC RW See description Program Counter (PC)
PSR RW Unknown Program Status Register (PSR)
APSR RW Unknown Table 2.4
IPSR RO 0x00000000 Table 2.5
EPSR RO Unknown Table 2.6
PRIMASK RW 0x00000000 Table 2.7
CONTROL RW 0x00000000 Table 2.8

© 2019 Renesas Electronics Corporation 11 April 19, 2016

RRENESANS

2.2.1.3.1 General Purpose Registers (R0-R12)
R0O-R12 are 32-hit general-purpose registers for data operations.

2.2.1.3.2 Stack Pointer (PS)

The Stack Pointer (SP) is register R13. In Thread Mode, bit[1] of the CONTROL register indicates the stack pointer to
use:

¢ 0= Main Stack Pointer (MSP). This is the reset value.

e 1 =Process Stack Pointer (PSP).

On reset, the processor loads the MSP with the value from address 0x00000000.

Note: Depending on the setting of memSwap bit (see corresponding data sheet), address 0x00000000 is located in
flash or RAM.

2.2.1.3.3 Link Register (LR)

The Link Register (LR) is register R14. It stores the return information for subroutines, function calls, and exceptions.
On reset, the LR value is Unknown.

2.2.1.3.4 Program Counter (PC)

The Program Counter (PC) is register R15. It contains the current program address. On reset, the processor loads the
PC with the value of the reset vector, which is at address 0x00000004. Bit[0] of the value is loaded into the EPSR T-bit
at reset and must be 1.

© 2019 Renesas Electronics Corporation 12 April 19, 2016

RRENESANS

2.2.1.3.5 Program Status Register (PSR)

The Program Status Register (PSR) combines
e Application Program Status Register (APSR)
e Interrupt Program Status Register (IPSR)
e Execution Program Status Register (EPSR).

These registers are mutually exclusive bitfields in the 32-bit PSR. The PSR bit assignments are shown in Figure 2.3.

Figure 2.3 PSR Register; Combination of APSR, IPSR, and EPSR

3130292827 252423 6 5 0
APSR [N|Z|C|V Reserved
IPSR Reserved Exception
number
EPSR Reserved T Reserved

Access these registers individually or as a combination of any two or all three registers, using the register name as an
argument to the MSR or MRS instructions. For example,

o read all of the registers using PSR with the MRS instruction

e write to the APSR using APSR with the MSR instruction

The PSR combinations and attributes are given in Table 2.3.

Table 2.3 PSR Register Combinations

Register | Type Combination

PSR RW APSR, EPSR, and IPSR
IEPSR RO EPSR and IPSR

IAPSR RW APSR and IPSR
EAPSR RW APSR and EPSR

Note: The processor ignores writes to the ISPR bits.
Note: Reads of the ESPR bits return zero, and the processor ignores writes to these bits.

See the instruction descriptions “MRS” and “MSR” for more information about how to access the program status
registers.

© 2019 Renesas Electronics Corporation 13 April 19, 2016

RRENESANS

Application Program Status Register (APSR)
The APSR contains the current state of the condition flags, from previous instruction executions. See the register
summary in Table 2.2 for its attributes. The bit assignments are given in Table 2.4.

Table 2.4 APSR Bit Assignments

Bits Name Function

[31] N Negative flag

[30] z Zero flag

[29] C Carry or borrow flag
[28] Y Overflow flag

[27:0] - Reserved

See section “Conditional Execution” for more information about the APSR negative, zero, carry or borrow, and
overflow flags.

Interrupt Program Status Register (IPSR)
The IPSR contains the exception number of the current Interrupt Service Routine (ISR). See the register summary in
Table 2.2 for its attributes. The bit assignments are given in Table 2.5.

Table 2.5 IPSR Bit Assignments

Bits Name Function
[31:6] - Reserved
[5:0] Exception number This is the number of the current exception:

0 = Thread Mode
1 = Reserved

2 =NMI

3 = HardFault

4-10 = Reserved

11 = Svcall

12, 13 = Reserved

14 = PendSV

15 = SysTick | Reserved
16 = IRQO

24 = IRQS8

25-63 = Reserved.
See section “Exception Types” for more information.

© 2019 Renesas Electronics Corporation 14 April 19, 2016

RRENESANS

Execution Program Status Register (EPSR)
The EPSR contains the Thumb® state bit. See the register summary in Table 2.2 for the EPSR attributes. The bit
assignments are given in Table 2.6.

Table 2.6 EPSR Bit Assignments

Bits Name Function
[31:25] - Reserved
[24] T Thumb® state bit
[23:0] - Reserved

Attempts by application software to read the EPSR directly using the MRS instruction always return zero. Attempts to
write the EPSR using the MSR instruction are ignored. Fault handlers can examine the EPSR value in the stacked PSR
to determine the cause of the fault. See section “Exception Entry and Return.” The following can clear the T bit to O:

e instructions BLX, BX and POP{PC}

e restoration from the stacked xPSR value on an exception return

o bit[0] of the vector value on an exception entry

Attempting to execute instructions when the T bit is 0 results in a HardFault or a lockup. See section “Lockup” for
more information.

Interruptible-Restartable Instructions
The interruptible-restartable instructions are LDM and STM. When an interrupt occurs during the execution of one of
these instructions, the processor abandons execution of the instruction.

After servicing the interrupt, the processor restarts execution of the instruction from the beginning.

© 2019 Renesas Electronics Corporation 15 April 19, 2016

RRENESANS

2.2.1.3.6 Exception Mask Register (PRIMASK)

The exception mask register disables the handling of exceptions by the processor. Disable exceptions where they
might impact on timing critical tasks or code sequences requiring atomicity.

To disable or re-enable exceptions, use the MSR and MRS instructions, or the CPS instruction, to change the value of
PRIMASK. See “MRS,” “MSR,” and “CPS” for more information.

The PRIMASK register prevents activation of all exceptions with configurable priority. See the register summary in
Table 2.2 for its attributes.

Figure 2.4 PRIMASK Register

31 10

Reserved

PRIMASK —

The bit assignments are given in Table 2.7.

Table 2.7 PRIMASK Register Bit Assignments

Bits Name Function
[31:1] - Reserved
[0] PRIMASK 0 = no effect

1 = prevents the activation of all exceptions with
configurable priority.

© 2019 Renesas Electronics Corporation 16 April 19, 2016

RRENESANS

2.2.1.3.7 Control Register (CONTROL)

The CONTROL register controls the stack used when the processor is in Thread Mode. See the register summary in
Table 2.2 for its attributes.

Figure 2.5 CONTROL Register

31

210

Reserved

Active stack pointer—'

Reserved

The bit assignments are given in Table 2.8.

Table 2.8 CONTROL Register Bit Assignments
Bits Name Function
[31:2] - Reserved

(1]

Active stack pointer

Defines the current stack:

0 = MSP is the current stack pointer

1 = PSP is the current stack pointer.

In Handler Mode this bit reads as zero and ignores writes.

0]

Reserved.

Handler Mode always uses the MSP, so the processor ignores explicit writes to the active stack pointer bit of the
CONTROL register when in Handler Mode. The exception entry and return mechanisms update the CONTROL

register.

In an OS environment, it is recommended that threads running in Thread Mode use the process stack and the kernel
and exception handlers use the main stack.

By default, Thread Mode uses the MSP. To switch the stack pointer used in Thread Mode to the PSP, use the MSR
instruction to set the Active stack pointer bit to 1, see “MRS.”

Note: When changing the stack pointer, software must use an ISB instruction immediately after the MSR instruction.
This ensures that instructions after the ISB execute using the new stack pointer. See “ISB.”

© 2019 Renesas Electronics Corporation

17 April 19, 2016

RRENESANS

2.2.1.4 Exceptions and Interrupts

The Cortex™-MO processor supports interrupts and system exceptions. The processor and the Nested Vectored
Interrupt Controller (NVIC) prioritize and handle all exceptions. An interrupt or exception changes the normal flow of
software control. The processor uses Handler Mode to handle all exceptions except for reset. See section “Exception
Entry and Return” for more information.

The NVIC registers control interrupt handling. See section “Nested Vectored Interrupt Controller (NVIC)” for more
information.

2.2.1.5 Data T Types

The processor
e supports the following data types:
0 32-bit words
o0 16-bit halfwords
0 8-bit bytes
and manages all data memory accesses as little-endian. Instruction memory and Private Peripheral Bus (PPB)
accesses are always little-endian. See section “Memory Regions, Types, and Attributes” for more information.

2.2.1.6 The Cortex™ Microcontroller Software Interface Standard (CMSIS)

ARM, Ltd. provides the Cortex™ Microcontroller Software Interface Standard (CMSIS) for programming Cortex™-MO
microcontrollers. The CMSIS is an integrated part of the device driver library. For a Cortex™-MO microcontroller
system, CMSIS defines:
e acommon way to
0 access peripheral registers
o0 define exception vectors
e the names of
0 the registers of the core peripherals
0 the core exception vectors
o adevice-independent interface for RTOS kernels.

The CMSIS includes address definitions and data structures for the core peripherals in the Cortex™-MO0 processor. It
also includes optional interfaces for middleware components comprising a TCP/IP stack and a Flash file system.

The CMSIS simplifies software development by enabling the reuse of template code and the combination of CMSIS-
compliant software components from various middleware vendors. Software vendors can expand the CMSIS to
include their peripheral definitions and access functions for those peripherals.

This document includes the register names defined by the CMSIS and gives short descriptions of the CMSIS
functions that address the processor core and the core peripherals.

Note: This document uses the register short names defined by the CMSIS. In a few cases, these differ from the
architectural short names that might be used in other documents.

The following sections give more information about the CMSIS:
e section “Power Management Programming Hints”
e section “Intrinsic Functions”
e section “Accessing the Cortex™-MO NVIC registers using CMSIS”
e section “NVIC Usage Hints and Tips”

© 2019 Renesas Electronics Corporation 18 April 19, 2016

RRENESANS

2.2.2 Memory Model

This section describes the processor memory map and the behavior of memory accesses. The processor has a fixed
memory map that provides up to 4GB of addressable memory. The memory map is shown in Figure 2.6.

Figure 2.6 General ARM® Memory Map

OxFFFFFFFF

Device 511MB
BrEBapeene

Privat ipheral b imB| 9X

rivate peripheral bus OxE0000000
Ox DFFFFFFF

External device 1.0GB
0xA0000000
Ox9FFFFFFF

External RAM 1.0GB
0x60000000
Ox5FFFFFFF

Peripheral 0.5GB
0x40000000
Ox3FFFFFFF

SRAM 0.5GB
0x20000000
Ox 1FFFFFFF

Code 0.5GB
0x00000000

The processor reserves regions of the Private Peripheral Bus (PPB) address range for core peripheral registers; see
section “About the Cortex™-MO0 Processor and Core Peripherals.”

© 2019 Renesas Electronics Corporation 19 April 19, 2016

RRENESANS

2.2.2.1 Memory Regions, Types, and Attributes

The memory map is split into regions. Each region has a defined memory type, and some regions have additional
memory attributes. The memory type and attributes determine the behavior of accesses to the region.

The memory types are
Normal The processor can re-order transactions for efficiency, or perform speculative reads.

Device The processor preserves transaction order relative to other transactions to Device or Strongly-
ordered memory.

Strongly-ordered The processor preserves transaction order relative to all other transactions.

The different ordering requirements for Device and Strongly-ordered memory mean that the memory system can
buffer a write to Device memory, but must not buffer a write to Strongly-ordered memory.

The additional memory attributes include

Execute Never (XN) Means the processor prevents instruction accesses. A HardFault exception is generated on
executing an instruction fetched from an XN region of memory.

© 2019 Renesas Electronics Corporation 20 April 19, 2016

RRENESANS

2.2.2.2 Memory System Ordering of Memory Accesses
For most memory accesses caused by explicit memory access instructions, the memory system does not guarantee

that the order in which the accesses complete matches the program order of the instructions, providing any re-

ordering does not affect the behavior of the instruction sequence. Normally, if correct program execution depends on

two memory accesses completing in program order, software must insert a memory barrier instruction between the
memory access instructions; see section “Software Ordering of Memory Accesses.”

However, the memory system does guarantee some ordering of accesses to Device and Strongly-ordered memory.
For two memory access instructions Al and A2, if A1 occurs before A2 in program order, the ordering of the memory

accesses caused by two instructions is as shown in Figure 2.7.

Figure 2.7 Memory Access Ordering if Memory Access Instruction A1 Occurs Before Instruction A2

A2 | Normal Device access Strongly-
Al access - I o I ordered
Non-shareable | Shareable | 5ccess
Normal access - - - -
Device access, non-shareable - < - <
Device access, shareable - - < <
Strongly-ordered access - < < <

Where:

- Means that the memory system does not guarantee the ordering of the accesses.

< Means that accesses are observed in program order, that is, Al is always observed before A2.

© 2019 Renesas Electronics Corporation

21

April 19, 2016

RRENESANS

2.2.2.3 Behavior of Memory Accesses
The behavior of accesses to each region in the memory map is given in Table 2.9.

Table 2.9 Memory Access Behavior
Address Memory Memory o
Range Region Type XN | Description
0x00000000 - Code Normal - Executable region for program code. Data can also be
Ox1FFFFFFF put here.
0x20000000 - SRAM Normal - Executable region for data. Code can also be put here.
OX3FFFFFFF
0x40000000 - Peripheral Device XN | External device memory.
OXSFFFFFFF
0x60000000 - External Normal - Executable region for data.
OXOFFFFFFF RAM
0xA0000000 - External Device XN | External device memory.
OXDFFFFFFF device
0xE0000000 - Private Strongly- | XN | This region includes the NVIC, System timer, and
OXEQOFFFFF Peripheral ordered System Control Block. Only word accesses can be used
Bus in this region.
0xE0100000- Device Device XN | Vendor specific.
OXFFFFFFFF

The Code, SRAM, and external RAM regions can hold programs.

© 2019 Renesas Electronics Corporation

22 April 19, 2016

RRENESANS

2.2.2.4 Software Ordering of Memory Accesses

The order of instructions in the program flow does not always guarantee the order of the corresponding memory
transactions. This is because
e the processor can reorder some memory accesses to improve efficiency, providing this does not affect the
behavior of the instruction sequence
e memory or devices in the memory map might have different wait states
e some memory accesses are buffered or speculative.

Section “Memory System Ordering of Memory Accesses” describes the cases where the memory system guarantees
the order of memory accesses. Otherwise, if the order of memory accesses is critical, software must include memory
barrier instructions to force that ordering. The processor provides the following memory barrier instructions:

DMB The Data Memory Barrier (DMB) instruction ensures that outstanding memory transactions
complete before subsequent memory transactions. See “DMB.”

DSB The Data Synchronization Barrier (DSB) instruction ensures that outstanding memory transactions
complete before subsequent instructions execute. See “DSB.”

ISB The Instruction Synchronization Barrier (ISB) ensures that the effect of all completed memory
transactions is recognizable by subsequent instructions. See “ISB.”

The following are examples of using memory barrier instructions:

Vector table If the program changes an entry in the vector table and then enables the corresponding
exception, use a DMB instruction between the operations. This ensures that if the exception
is taken immediately after being enabled, the processor uses the new exception vector.

Self-modifying code If a program contains self-modifying code, use an ISB instruction immediately after the code
modification in the program. This ensures subsequent instruction execution uses the updated
program.

Memory map switching If the system contains a memory map switching mechanism, use a DSB instruction after
switching the memory map. This ensures subsequent instruction execution uses the updated
memory map.

Memory accesses to Strongly-ordered memory, such as the System Control Block, do not require the use of DMB
instructions.

© 2019 Renesas Electronics Corporation 23 April 19, 2016

RRENESANS

2.2.2.5 Memory Endianness

The processor views memory as a linear collection of bytes numbered in ascending order from zero. For example,
bytes 0-3 hold the first stored word, and bytes 4-7 hold the second stored word. The words are stored in little-endian
format into memory. In little-endian format, the processor stores the least significant byte (Isbyte) of a word at the
lowest-numbered byte, and the most significant byte (msbyte) at the highest-numbered byte.

Figure 2.8 Example of Little-Endian Format

Memory Register
7 0
31 2423 1615 87 0
Address Al BO |isbyte | B3 | B2 | BL | BO
A+1| B1
A+2| B2

A+3| B3 |msbyte

2.2.3 Exception Model
This section describes the exception model.

2.2.3.1 Exception States
Each exception is in one of the following states:

Inactive The exception is not active and not pending.

Pending The exception is waiting to be serviced by the processor. An interrupt request from a
peripheral or from software can change the state of the corresponding interrupt to pending.

Active An exception that is being serviced by the processor but has not completed.

Note: An exception handler can interrupt the execution of another exception handler. In this case, both exceptions
are in the active state.

Active and pending The exception is being serviced by the processor and there is a pending exception from the
same source.

© 2019 Renesas Electronics Corporation 24 April 19, 2016

RRENESANS

2.2.3.2 Exception Types
The exception types are

Reset

NMI

HardFault

SvCall

PendSV

SysTick

Interrupt (IRQ)

Reset is invoked on power up or a warm reset. The exception model treats reset as a special form
of exception. When reset is asserted, the operation of the processor stops, potentially at any point
in an instruction. When reset is deasserted, execution restarts from the address provided by the
reset entry in the vector table. Execution restarts in Thread Mode.

A NonMaskable Interrupt (NMI) can be signaled by a peripheral or triggered by software. This is
the highest priority exception other than reset. It is permanently enabled and has a fixed priority of
-2,
NMIls cannot be

o masked or prevented from activation by any other exception

. preempted by any exception other than Reset.

A HardFault is an exception that occurs because of an error during normal or exception
processing. HardFaults have a fixed priority of -1, meaning they have higher priority than any
exception with configurable priority.

A supervisor call (SVC) is an exception that is triggered by the svC instruction. In an OS
environment, applications can use svC instructions to access OS kernel functions and device
drivers.

PendSV is an interrupt-driven request for system-level service. In an OS environment, use
PendSV for context switching when no other exception is active.

A SysTick exception is an exception the system timer generates when it reaches zero. Software
can also generate a SysTick exception. In an OS environment, the processor can use this
exception as system tick.

An interrupt, or IRQ, is an exception signaled by a peripheral or generated by a software request.
All interrupts are asynchronous to instruction execution. In the system, peripherals use interrupts
to communicate with the processor.

© 2019 Renesas Electronics Corporation 25 April 19, 2016

RRENESANS

Table 2.10 Properties of the Different Exception Types

SHEIE IXG) SHEEIE Priority Vector Address Activation
Number Number Type

1 - Reset -3, the highest 0x00000004 Asynchronous
2 -14 NMI -2 0x00000008 Asynchronous
3 -13 HardFault -1 0x0000000C Synchronous
4-10 - Reserved - - -

11 -5 SvCall Configurable 0x0000002C Synchronous
12-13 - Reserved - - -

14 -2 PendSV Configurable 0x00000038 Asynchronous
15 -1 SysTick Configurable 0x0000003C Asynchronous
16 0 Flash Configurable 0x00000040 Asynchronous
17 1 External Configurable 0x00000044 Asynchronous
18 2 SW-LIN Configurable 0x00000048 Asynchronous
19 3 SPI 1 Configurable 0x0000004C Asynchronous
20 4 Timer32 Configurable 0x00000050 Asynchronous
21 5 GPIO Configurable 0x00000054 Asynchronous
22 6 SPI_2 Configurable 0x00000058 Asynchronous
23 7 USART Configurable 0x0000005C Asynchronous
24 8 12C Configurable 0x00000060 Asynchronous

For an asynchronous exception, other than reset, the processor can execute additional instructions between when the

exception is triggered and when the processor enters the exception handler.

Privileged software can disable the exceptions that Table 2.10 shows as having configurable priority; see Table 2.26.

For more information about HardFaults, see section “Fault Handling.”

© 2019 Renesas Electronics Corporation

26

April 19, 2016

RRENESANS

2.2.3.3 Exception Handlers
The processor handles exceptions using

Interrupt Service Routines (ISRs) Interrupts IRQO (Flash) to IRQ8 (12C) are the exceptions handled by ISRs.
Fault handler HardFault is the only exception handled by the fault handler.

System handlers NMI, PendSV, SVCall SysTick, and HardFault are all system exceptions
handled by system handlers.

2.2.3.4 Vector Table

The vector table contains the reset value of the stack pointer and the start addresses, also called exception vectors,
for all exception handlers. Figure 2.9 shows the order of the exception vectors in the vector table. The least-significant
bit of each vector must be 1, indicating that the exception handler is written in Thumb® code.

Figure 2.9 Vector Table

roonr imperVecor_ Ofe
24 8 IRQ8 (I*C) 0x60
18 2 IRQ2 (SW-LIN) 0x48
17 1 IRQ1 (External) 0x44
16 0 IRQO (Flash) 0x40
15 -1 SysTick 0x3C
14 -2 PendSV 0x38
12 Reserved
11 -5 SVCall 0x2C
10
9
8
7 Reserved
6
5
4 0x10
3 -13 HardFault 0x0C
2 -14 NMI 0x08
1 Reset 0x04
Initial SP value 0x00

The vector table is fixed at address 0x00000000.

© 2019 Renesas Electronics Corporation 27 April 19, 2016

RRENESANS

2.2.3.5 Exception Priorities

As Table 2.10 shows, all exceptions have an associated priority, with
e alower priority value indicating a higher priority
e configurable priorities for all exceptions except Reset, HardFault, and NMI

If software does not configure any priorities, then all exceptions with a configurable priority have a priority of 0. For
information about configuring exception priorities, see

e section “System Handler Priority Registers (SHPR2-3)”

e section “Interrupt Priority Registers (IPRO — IRP2)”

Note: Configurable priority values are in the range of 0-192, in steps of 64. The Reset, HardFault, and NMI
exceptions, with fixed negative priority values, always have higher priority than any other exception.

Assigning a higher priority value to IRQ[0] and a lower priority value to IRQ[1] means that IRQ[1] has higher priority
than IRQJO]. If both IRQ[1] and IRQ[O] are asserted, IRQ[1] is processed before IRQ[O].

If multiple pending exceptions have the same priority, the pending exception with the lowest exception number takes
precedence. For example, if both IRQ[0] and IRQ[1] are pending and have the same priority, then IRQ[0] is processed
before IRQ[1].

When the processor is executing an exception handler, the exception handler is preempted if a higher priority
exception occurs. If an exception occurs with the same priority as the exception being handled, the handler is not
preempted, irrespective of the exception number. However, the status of the new interrupt changes to pending.

© 2019 Renesas Electronics Corporation 28 April 19, 2016

RRENESANS

2.2.3.6 Exception Entry and Return
Descriptions of exception handling use the following terms:

Preemption When the processor is executing an exception handler, an exception can preempt the exception
handler if its priority is higher than the priority of the exception being handled.
When one exception preempts another, the exceptions are called nested exceptions. See
exception entry below for more information.

Return This occurs when the exception handler is completed, and
e there is no pending exception with sufficient priority to be serviced
e the completed exception handler was not handling a late-arriving exception.
The processor pops the stack and restores the processor state to the state it had before the
interrupt occurred. See “Exception Return” below for more information.

Tail-chaining This mechanism speeds up exception servicing. On completion of an exception handler, if there is
a pending exception that meets the requirements for exception entry, the stack pop is skipped and
control transfers to the new exception handler.

Late-arriving This mechanism speeds up preemption. If a higher priority exception occurs during state saving
for a previous exception, the processor switches to handle the higher priority exception and
initiates the vector fetch for that exception. State saving is not affected by late arrival because the
state saved would be the same for both exceptions. On return from the exception handler of the
late-arriving exception, the normal tail-chaining rules apply.

Exception Entry
Exception entry occurs when there is a pending exception with sufficient priority and either
e the processor is in Thread Mode
o the new exception is of higher priority than the exception being handled, in which case, the new exception
preempts the exception being handled.

When one exception preempts another, the exceptions are nested.

Sufficient priority means the exception has greater priority than any limit set by the mask register, see “Exception
Mask Register (PRIMASK).” An exception with less priority than this is pending but is not handled by the processor.

When the processor takes an exception, unless the exception is a tail-chained or a late-arriving exception, the
processor pushes information onto the current stack. This operation is referred to as stacking and the structure of
eight data words is referred as a stack frame. The stack frame contains the information given in Figure 2.10.

© 2019 Renesas Electronics Corporation 29 April 19, 2016

RRENESANS

Figure 2.10 Exception Entry Stack Contents

<previous> [«—SP points here before interrupt

SP + 0x1C XPSR

SP + 0x18 PC

Decreasing| SP + 0x14 LR
memory | SP + 0x10 R12
address SP + 0x0C R3
SP + 0x08 R2

SP + 0x04 R1

v SP + 0x00 RO «—SP points here after interrupt

Immediately after stacking, the stack pointer indicates the lowest address in the stack frame. The stack frame is
aligned to a double-word address.

The stack frame includes the return address. This is the address of the next instruction in the interrupted program.
This value is restored to the PC at exception return so that the interrupted program resumes.

The processor performs a vector fetch that reads the exception handler start address from the vector table. When
stacking is complete, the processor starts executing the exception handler. At the same time, the processor writes an
EXC_RETURN value to the LR. This indicates which stack pointer corresponds to the stack frame and what operation
mode the processor was in before the entry occurred.

If no higher priority exception occurs during exception entry, the processor starts executing the exception handler and
automatically changes the status of the corresponding pending interrupt to active.

If another higher priority exception occurs during exception entry, the processor starts executing the exception
handler for this exception and does not change the pending status of the earlier exception. This is the late arrival
case.

Exception Return
Exception return occurs when the processor is in Handler Mode and execution of one of the following instructions
attempts to set the PC to an EXC_RETURN value:

e aPOP instruction that loads the PC

e aBXinstruction using any register.
The processor saves an EXC_RETURN value to the LR on exception entry. The exception mechanism relies on this
value to detect when the processor has completed an exception handler. Bits[31:4] of an EXC_RETURN value are
OXFFFFFFF. When the processor loads a value matching this pattern to the PC, it detects that the operation is a not a
normal branch operation and, instead, that the exception is complete. Therefore, it starts the exception return
sequence. Bits[3:0] of the EXC_RETURN value indicate the required return stack and processor mode, as Table 2.11
shows.

© 2019 Renesas Electronics Corporation 30 April 19, 2016

RRENESANS

Table 2.11 Exception Return Behavior

EXC_RETURN Description
OXFFFFFFF1 Return to Handler Mode.
Exception return gets state from the main stack.
Execution uses MSP after return.
OXFFFFFFF9 Return to Thread Mode.
Exception return gets state from MSP.
Execution uses MSP after return.
OXFFFFFFFD Return to Thread Mode.
Exception return gets state from PSP.
Execution uses PSP after return.
All other values Reserved.

© 2019 Renesas Electronics Corporation

31

April 19, 2016

RRENESANS

2.2.4 Fault Handling

Faults are a subset of exceptions; see section “Exceptions and Interrupts.” All faults result in the HardFault exception
being taken or cause lockup if they occur in the NMI or HardFault handler.

The faults are
e execution of an SVC instruction at a priority equal or higher than SVCall
execution of a BKPT instruction without a debugger attached
a system-generated bus error on a load or store
execution of an instruction from an XN memory address
execution of an instruction from a location for which the system generates a bus fault
a system-generated bus error on a vector fetch
execution of an Undefined instruction
execution of an instruction when not in Thumb®-State as a result of the T-bit being previously cleared to 0
an attempted load or store to an unaligned address.

Note: Only Reset and NMI can preempt the fixed priority HardFault handler. A HardFault can preempt any exception
other than Reset, NMI, or another hard fault.

2.2.4.1 Lockup

The processor enters a lockup state if a fault occurs when executing the NMI or HardFault handlers, or if the system
generates a bus error when unstacking the PSR on an exception return using the MSP. When the processor is in
lockup state, it does not execute any instructions. The processor remains in lockup state until one of the following
occurs:

e itisreset

e adebugger halts it

e an NMI occurs and the current lockup is in the HardFault handler

Note: If lockup state occurs in the NMI handler, a subsequent NMI does not cause the processor to leave lockup
state.

2.2.5 Power Management

The Cortex™-MO0 processor sleep modes reduce power consumption:
o asleep mode, which stops the processor clock
e adeep sleep mode, which stops the system clock and flash memory. This mode is mainly controlled by SBC.

The SLEEPDEEP bit of the SCR selects which sleep mode is used, see Table 2.35. For more information about the
behavior of the sleep modes, see corresponding data sheet.

The next section describes the mechanisms for entering sleep mode and the conditions for waking up from sleep
mode.

© 2019 Renesas Electronics Corporation 32 April 19, 2016

RRENESANS

2.2.5.1 Entering Sleep Mode
This section describes the mechanisms software can use to put the processor into sleep mode.

The system can generate spurious wakeup events; for example, a debug operation wakes up the processor.
Therefore software must be able to put the processor back into sleep mode after such an event. A program might
have an idle loop to put the processor back in to sleep mode.

Wait for interrupt The Wait For Interrupt instruction, WFI, causes immediate entry to sleep mode. When the
processor executes a WFI instruction, it stops executing instructions and enters sleep mode.
See “WFI” for more information.

Wait for event Not supported by MCU!

Sleep-on-exit If the SLEEPONEXIT bit of the SCR is set to 1, when the processor completes the execution of
an exception handler and returns to Thread Mode, it immediately enters sleep mode. Use this
mechanism in applications that only require the processor to run when an interrupt occurs.

2.25.2 Wakeup from Sleep Mode
The conditions for the processor to wakeup depend on the mechanism that caused it to enter sleep mode.

Wakeup from WFI or sleep-on-exit
Normally, the processor wakes up only when it detects an exception with sufficient priority to cause exception entry.

Some embedded systems might have to execute system restore tasks after the processor wakes up and before it
executes an interrupt handler. To achieve this, set the PRIMASK bit to 1. If an interrupt arrives that is enabled and
has a higher priority than current exception priority, the processor wakes up but does not execute the interrupt
handler until the processor sets PRIMASK to zero. For more information about PRIMASK, see “Exception Mask
Register (PRIMASK).”

Wakeup from WFE Not supported by MCU!

2.2.5.3 Power Management Programming Hints

ISO/IEC C cannot directly generate the WFI instructions. The CMSIS provides the following intrinsic function for this
instruction:

void _ WFI(void) // Wait for Interrupt

Note: WFE and SEV instructions are not supported and must not be used!

© 2019 Renesas Electronics Corporation 33 April 19, 2016

RRENESANS

2.3 Cortex™-MO Instruction Set

2.3.1 Instruction Set Summary

The processor implements a version of the Thumb® instruction set. The following tables list the supported
instructions.

Note: Inside this table,
e angle brackets, <>, enclose alternative forms of the operand
e braces, {}, enclose optional operands and mnemonic parts
e the Operands column is not exhaustive

Note: For more information on the instructions and operands, see the instruction descriptions.

Table 2.12 Set of Instructions Supported by the Cortex™-MO Processor

Mnemonic | Operands Brief Description Flags Section
ADCS {Rd, } Rn, Rm Add with Carry N,ZC\V | 235.1
ADD{S} {Rd,} Rn, <Rm[#imm> Add N,Z,C\V | 2.35.1
ADR Rd, Label PC-relative Address to Register - 2.3.4.1
ANDS {Rd,} Rn, Rm Bitwise AND N,Z 2.35.2
ASRS {Rd, } Rm, <Rs|[#imm> Arithmetic Shift Right N,z,C 2.35.3
B{cc} Label Branch {conditionally} - 2.3.6.1
BICS {Rd,} Rn, Rm Bit Clear N,Z 2.3.5.2
BKPT #imm Breakpoint - 23.7.1
BL Label Branch with Link - 2.36.1
BLX Rm Branch indirect with Link - 2.3.6.1
BX Rm Branch indirect - 2.3.6.1
CMN Rn, Rm Compare Negative N,Z,CV | 2354
CMP Rn, <Rm[#imm> Compare N,ZCV | 2354
CPSID 1 Change Processor State, Disable Interrupts | - 2.3.7.2
CPSIE 1 Change Processor State, Enable Interrupts - 2.3.7.2
DMB - Data Memory Barrier - 2.3.7.3

© 2019 Renesas Electronics Corporation 34 April 19, 2016

RRENESANS

Mnemonic | Operands Brief Description Flags Section
DSB - Data Synchronization Barrier - 23.7.4
EORS {Rd,} Rn, Rm Exclusive OR N,Z 2.35.2
ISB - Instruction Synchronization Barrier - 23.75
LDM Rn{!}, reglist Load Multiple registers, increment after - 2345
LDR Rt, Label Load Register from PC-relative address - 2.34
LDR Rt, [Rn, <Rm|#imm>] Load Register with word - 2.3.4
LDRB Rt, [Rn, <Rm|#imm>] Load Register with byte - 2.3.4
LDRH Rt, [Rn, <Rm|#imm>] Load Register with halfword - 2.3.4
LDRSB Rt, [Rn, <Rm|#imm>] Load Register with signed byte - 234
LDRSH Rt, [Rn, <Rm|#imm>] Load Register with signed halfword - 234
LSLS {Rd, } Rn, <Rs|[#imm> Logical Shift Left N,zZ,C 2.35.3
LSRS {Rd, } Rn, <Rs|[#imm> Logical Shift Right N,z,C 2.35.3
MOV{S} Rd, Rm Move N,Z 2.355
MRS Rd, spec_reg Moye to general register from special - 2.3.7.6
register
MSR spec_reg, Rm MO_/e to special register from general N,Z,CV | 2.3.7.7
register

MULS Rd, Rn, Rm Multiply, 32-bit result N,Z 2.3.5.6
MVNS Rd, Rm Bitwise NOT N,Z 2355
NOP - No Operation - 2.3.7.8
ORRS {Rd,} Rn, Rm Logical OR N,Z 2352
POP reglist Pop registers from stack - 2.3.4.6
PUSH reglist Push registers onto stack - 2.3.4.6
REV Rd, Rm Byte-Reverse word - 2.3.5.7
REV16 Rd, Rm Byte-Reverse packed halfwords - 2.3.5.7

© 2019 Renesas Electronics Corporation 35 April 19, 2016

RRENESANS

Mnemonic | Operands Brief Description Flags Section
REVSH Rd, Rm Byte-Reverse signed halfword - 2357
RORS {Rd,} Rn, Rs Rotate Right N,Z,C 2353
RSBS {Rd,} Rn, #0 Reverse Subtract N,Z,CV | 2.35.1
SBCS {Rd,} Rn, Rm Subtract with Carry N,Z,C\V | 2.35.1
STM Rn!, reglist Store Multiple registers, increment after - 2.3.45
STR Rt, [Rn, <Rm|#imm>] Store Register as word - 234
STRB Rt, [Rn, <Rm|#imm>] Store Register as byte - 2.3.4
STRH Rt, [Rn, <Rm|#imm>] Store Register as halfword - 234
SUB{S} {Rd, } Rn, <Rm[#imm> Subtract N,Z,C,V | 2.35.1
SvC #imm Supervisor Call - 2.3.7.9
SXTB Rd, Rm Sign extend byte - 2.35.8
SXTH Rd, Rm Sign extend halfword - 2.3.5.8
TST Rn, Rm Logical AND based test N,Z 2359
UXTB Rd, Rm Zero extend a byte - 2.35.8
UXTH Rd, Rm Zero extend a halfword - 2.3.5.8
WFI - Wait For Interrupt - 2.3.7.10

© 2019 Renesas Electronics Corporation

36

April 19, 2016

RRENESANS

2.3.2 Intrinsic Functions

ISO/IEC C code cannot directly access some Cortex™-MO instructions. This section describes intrinsic functions that
can generate these instructions, provided by the CMSIS and that might be provided by a C compiler. If a C compiler
does not support an appropriate intrinsic function, it might be necessary to use inline assembler to access the
relevant instruction.

The CMSIS provides the following intrinsic functions to generate instructions that ISO/IEC C code cannot directly
access:

Table 2.13 CMSIS Intrinsic Functions to Generate some Cortex™-MO Instructions

Instruction CMSIS Intrinsic Function

CPSIE i void _ enable_irq(void)

CPSID i void _ disable_irq(void)

ISB void _ ISB(void)

DSB void _ DSB(void)

DMB void _ DMB(void)

NOP void _ NOP(void)

REV uint32_t _ REV(uint32_t int value)
REV16 uint32_t _ REV16(uint32_t int value)
REVSH uint32_t _ REVSH(uint32_t int value)
WFI void _ WFI(void)

© 2019 Renesas Electronics Corporation 37 April 19, 2016

RRENESANS

The CMSIS also provides a number of functions for accessing the special registers using MRS and MSR instructions:

Table 2.14 CMSIS Intrinsic Functions to Access the Special Registers

Special Register | Access CMSIS Function
PRIMASK Read uint32_t _ get PRIMASK (void)

Write void _ set PRIMASK (uint32_t value)
CONTROL Read uint32_t _ get CONTROL (void)

Write void _ set CONTROL (uint32_t value)
MSP Read uint32_t _ get MSP (void)

Write void __set MSP (uint32_t TopOfMainStack)
PSP Read uint32_t _ get PSP (void)

Write void __set PSP (uint32_t TopOfProcStack)

© 2019 Renesas Electronics Corporation 38 April 19, 2016

RRENESANS

2.3.3 About the Instruction Description

2.3.3.1 Operands

An instruction operand can be an ARM® register, a constant, or another instruction-specific parameter. Instructions
act on the operands and often store the result in a destination register. When there is a destination register in the
instruction, it is usually specified before the other operands.

2.3.3.2 Restrictions when Using PC or SP

Many instructions are unable to use or have restrictions on use of the Program Counter (PC) or Stack Pointer (SP) for
the operands or destination register. See instruction descriptions for more information.

Note: When the PC is updated with a BX, BLX, or POP instruction, bit[0] of any address must be 1 for correct execution.
This is because this bit indicates the destination instruction set, and the Cortex™-MO0 processor only supports
Thumb® instructions. When a BL or BLX instruction writes the value of bit[0] into the LR, it is automatically assigned the
value 1.

2.3.3.3 Shift Operations

Register shift operations move the bits in a register left or right by a specified number of bits, the shift length. Register
shift can be performed directly by the instructions ASR, LSR, LSL and ROR, and the result is written to a destination
register.

The permitted shift lengths depend on the shift type and the instruction; see the individual instruction description. If
the shift length is 0, no shift occurs. Register shift operations update the carry flag except when the specified shift
length is 0. The following sub-sections describe the various shift operations and how they affect the carry flag. In
these descriptions, Rm is the register containing the value to be shifted, and n is the shift length.

© 2019 Renesas Electronics Corporation 39 April 19, 2016

RRENESANS

ASR

Arithmetic shift right by n bits moves the left-hand 32-n bits of the register Rm to the right by n places, into the right-hand
32-n bits of the result, and it copies the original bit[31] of the register into the left-hand n bits of the result.

Figure 2.11 ASR #3

Carry

31 5(413(2|1]|0

A A T | A: A T
|
|
|

The ASR operation can be used to divide the signed value in the register Rm by 2", with the result being rounded
towards negative-infinity.

When the instruction is ASRS, the carry flag is updated to the last bit shifted out, bit[n-1], of the register Rm.
Note: If nis 32 or more, then all the bits in the result are set to the value of bit[31] of Rm.
Note: If nis 32 or more and the carry flag is updated, it is updated to the value of bit[31] of Rm.

LSR

Logical shift right by n bits moves the left-hand 32-n bits of the register Rm to the right by n places, into the right-hand 32-
n bits of the result, and it sets the left-hand n bits of the result to 0.

Figure 2.12 LSR #3

«O—
«o—
«o—

Carry
Fla

0

y Y T | Ai 7Y T
|
T

The LSR operation can be used to divide the value in the register Rm by 2", if the value is regarded as an unsigned
integer.

When the instruction is LSRS, the carry flag is updated to the last bit shifted out, bit[n-1], of the register Rm.
Note: If nis 32 or more, then all the bits in the result are cleared to 0.

Note: If nis 33 or more and the carry flag is updated, it is updated to O.

© 2019 Renesas Electronics Corporation 40 April 19, 2016

RRENESANS

LSL
Logical shift left by n bits moves the right-hand 32-n bits of the register Rm, to the left by n places, into the left-hand 32-n

bits of the result, and it sets the right-hand n bits of the result to 0.

Figure 2.13 LSL #3

————————— | I
i | 000
. vV ¥
31 5(4(3|2|1|0
Carry A A A A
Flag ! | !

The LSL operation can be used to multiply the value in the register Rm by 2", if the value is regarded as an unsigned
integer or a two’s complement signed integer. Overflow can occur without warning.

When the instruction is LSLS the carry flag is updated to the last bit shifted out, bit[32-n], of the register Rm. These
instructions do not affect the carry flag when used with LSL #o.

Note: If n is 32 or more, then all the bits in the result are cleared to 0.
Note: If n is 33 or more and the carry flag is updated, it is updated to 0.

ROR
Rotate right by n bits moves the left-hand 32-n bits of the register Rm to the right by n places, into the right-hand 32-n

bits of the result, and it moves the right-hand n bits of the register into the left-hand n bits of the result.

Figure 2.14 ROR #3

C
I | | | ey

31 5(4|13(2|1]|0

|A1T

When the instruction is RORS, the carry flag is updated to the last bit rotation, bit[n-1], of the register Rm.

Note: If nis 32, then the value of the result is same as the value in Rm, and if the carry flag is updated, it is updated to
bit[31] of Rm.

Note: ROR with shift length n, greater than 32 is the same as ROR with shift length n-32.

© 2019 Renesas Electronics Corporation 41 April 19, 2016

RRENESANS

2.3.3.4 Address Alignment

An aligned access is an operation where a word-aligned address is used for a word, or multiple word access, or
where a halfword-aligned address is used for a halfword access. Byte accesses are always aligned.

There is no support for unaligned accesses on the Cortex™-MO processor. Any attempt to perform an unaligned
memory access operation results in a HardFault exception.

2.3.3.5 PC-Relative Expressions

A PC-relative expression or label is a symbol that represents the address of an instruction or literal data. It is
represented in the instruction as the PC value plus or minus a numeric offset. The assembler calculates the required
offset from the label and the address of the current instruction. If the offset is too big, the assembler produces an
error.

Note: For most instructions, the value of the PC is the address of the current instruction plus 4 bytes.

Note: The user’'s assembler might permit other syntaxes for PC-relative expressions, such as a label plus or minus a
number, or an expression of the form [PC, #imm].

2.3.3.6 Conditional Execution

Most data processing instructions update the condition flags in the Application Program Status Register (APSR)
according to the result of the operation; see Application Program Status Register on page 14. Some instructions
update all flags, and some only update a subset. If a flag is not updated, the original value is preserved. See the
instruction descriptions for the flags they affect.

A conditional branch instruction can be executed, based on the condition flags set in another instruction, either
e immediately after the instruction that updated the flags
e after any number of intervening instructions that have not updated the flags.

On the Cortex™-MO0 processor, conditional execution is available by using conditional branches.

© 2019 Renesas Electronics Corporation 42 April 19, 2016

RRENESANS

The Condition Flags
The APSR contains the following condition flags:

N Set to 1 when the result of the operation was negative, cleared to 0 otherwise.
Z Set to 1 when the result of the operation was zero, cleared to 0 otherwise.

C Set to 1 when the operation resulted in a carry, cleared to 0 otherwise.

Y Set to 1 when the operation caused overflow, cleared to O otherwise.

For more information about the APSR see section “Program Status Register (PSR).”

A carry occurs
o if the result of an addition is greater than or equal to 2%
o if the result of a subtraction is positive or zero
e as the result of a shift or rotate instruction

Overflow occurs when the sign of the result, in bit[31], does not match the sign of the result had the operation been
performed at infinite precision; for example,

o if adding two negative values results in a positive value

e if adding two positive values results in a negative value

e if subtracting a positive value from a negative value generates a positive value

o if subtracting a negative value from a positive value generates a negative value

The Compare operations are identical to subtracting, for CMP, or adding, for CMN, except that the result is discarded.
See the instruction descriptions for more information.

© 2019 Renesas Electronics Corporation 43 April 19, 2016

RRENESANS

Condition Code Suffixes

Conditional branch is shown in syntax descriptions as B{cond}. A branch instruction with a condition code is only taken
if the condition code flags in the APSR meet the specified condition; otherwise the branch instruction is ignored. Table
2.15 shows the condition codes to use. It also shows the relationship between condition code suffixes and the N, Z,
C, and V flags.

Table 2.15 Condition Code Suffixes

Suffix Flags Meaning

EQ zZ=1 Equal, last flag setting result was zero

NE Z=0 Not equal, last flag setting result was non-zero

CS or HS c=1 Higher or same, unsigned

CC or LO C=0 Lower, unsigned

MI N=1 Negative

PL N=0 Positive or zero

VS V=1 Overflow

VC V=0 No overflow

HI C=1landZ=0 Higher, unsigned

LS C=0o0rz=1 Lower or same, unsigned

GE N=V Greater than or equal, signed

LT N!=V Less than, signed

GT Z=0and N =V Greater than, signed

LE Z=landN!=V Less than or equal, signed

AL Can have any value Always. This is the default when no suffix is specified.
© 2019 Renesas Electronics Corporation 44 April 19, 2016

RRENESANS

2.3.4

Memory Access Instructions

The following table shows the memory access instructions:

Table 2.16 Memory access instructions

Mnemonic Brief description See

ADR Generate PC-relative address ADR

LDM Load Multiple registers LDM and STM

LDR{type} Load Register using immediate offset LDR and STR, Immediate Offset

LDR{type} Load Register using register offset LDR and STR, Register Offset

LDR Load Register from PC-relative address LDR, PC-relative

POP Pop registers from stack PUSH and POP

PUSH Push registers onto stack PUSH and POP

STM Store Multiple registers LDM and STM

STR{type} Store Register using immediate offset LDR and STR, Immediate Offset

STR{type} Store Register using register offset LDR and STR, Register Offset
© 2019 Renesas Electronics Corporation 45 April 19, 2016

RRENESANS

2.3.4.1 ADR
Generates a PC-relative address.

Syntax

ADR Rd, Label

where:

Rd is the destination register.

Label is a PC-relative expression. See section “PC-Relative Expressions.”
Operation

ADR generates an address by adding an immediate value to the PC and writes the result to the destination register.
ADR facilitates the generation of position-independent code because the address is PC-relative.
If ADR is used to generate a target address for a BX or BLX instruction, the user must ensure that bit[0] of the address

generated is set to 1 for correct execution.

Restrictions
In this instruction Rd must specify RO-R7. The data-value addressed must be word aligned and within 1020 bytes of
the current PC.

Condition flags
This instruction does not change the flags.

Examples
ADR R1, TextMessage ; Write address value of a location labelled as TextMessage to R1
ADR R3, [PC,#996] ; Set R3 to value of PC + 996.

© 2019 Renesas Electronics Corporation 46 April 19, 2016

RRENESANS

2.3.4.2 LDR and STR, Immediate Offset
Load and Store with immediate offset.

Syntax

LDR Rt, [<Rn | SP> {, #imm}]

LDR<B |H> Rt, [Rn {, #imm}]

STR Rt, [<Rn | SP>, {,#imm}]

STR<B|H> Rt, [Rn {,#imm}]

where:

Rt is the register to load or store.

Rn is the register on which the memory address is based.

imm is an offset from Rn. If imm is omitted, it is assumed to be zero.
Operation

LDR, LDRB and LDRH instructions load the register specified by Rt with either a word, byte, or halfword data value from
memory. Sizes less than word are zero extended to 32-bits before being written to the register specified by Rt.

STR, STRB and STRH instructions store the word, least-significant byte or lower halfword contained in the single register
specified by Rt in to memory. The memory address to load from or store to is the sum of the value in the register
specified by either Rn or SP and the immediate value imm.

Restrictions
In these instructions:
e Rt and Rn must only specify RO-R7.

e imm must be between
0 0and 1020 and an integer multiple of four for LDR and STR using SP as the base register
0 0and 124 and an integer multiple of four for LDR and STR using RO-R7 as the base register
0 0and 62 and an integer multiple of two for LDRH and STRH
0 0and 31 for LDRB and STRB.

e The computed address must be divisible by the number of bytes in the transaction; see section “Address
Alignment.”

Condition flags
These instructions do not change the flags.

Examples
LDR R4, [R7] ; Loads R4 from the address in R7.
STR R2, [R@,#const-struc] ; const-struc is an expression evaluating;

; to a constant in the range 0-1020.

© 2019 Renesas Electronics Corporation 47 April 19, 2016

RRENESANS

2.3.4.3 LDR and STR, Register Offset
Load and Store with register offset.

Syntax

LDR Rt, [Rn, Rm]

LDR<B |H> Rt, [Rn, Rm]

LDR<SB| SH> Rt, [Rn, Rm]

STR Rt, [Rn, Rm]

STR<B|H> Rt, [Rn, Rm]

where:

Rt is the register to load or store.

Rn is the register on which the memory address is based.
Rm is a register containing a value to be used as the offset.
Operation

LDR, LDRB, LDRH, LDRSB and LDRSH load the register specified by Rt with either a word, zero extended byte, zero extended
halfword, sign extended byte or sign extended halfword value from memory.

STR, STRB and STRH store the word, least-significant byte or lower halfword contained in the single register specified by
Rt into memory.

The memory address to load from or store to is the sum of the values in the registers specified by Rn and Rm.
Restrictions
In these instructions:

e Rt, Rn and Rm must only specify RO-R7.

e the computed memory address must be divisible by the number of bytes in the load or store; see section

“Address Alignment.”

Condition flags
These instructions do not change the flags.

Examples
STR RO, [R5, R1] ; Store value of RO into an address equal to sum of R5 and R1
LDRSH R1, [R2, R3] ; Load a halfword from the memory address specified by (R2 + R3)

; sign extend to 32-bits and write to R1.

© 2019 Renesas Electronics Corporation 48 April 19, 2016

RRENESANS

2.3.4.4 LDR, PC-relative
Load register (literal) from memory.

Syntax

LDR Rt, Label

where:

Rt is the register to load.

Label is a PC-relative expression. See section “PC-Relative Expressions.”
Operation

Loads the register specified by Rt from the word in memory specified by label.

Restrictions
In these instructions, label must be within 1020 bytes of the current PC and word aligned.

Condition flags
These instructions do not change the flags.
Examples
LDR RO, LookUpTable ; Load RO with a word of data from an address labeled as LookUpTable.

LDR R3, [PC, #100] ; Load R3 with memory word at (PC + 100).

© 2019 Renesas Electronics Corporation 49 April 19, 2016

RRENESANS

2345 LDMand STM
Load and Store Multiple registers.

Syntax

LDM Rn{!}, reglist
STM Rn!, reglist

where

Rn is the register on which the memory addresses are based.

! writeback suffix.

reglist is a list of one or more registers to be loaded or stored, enclosed in braces. It can contain register ranges.

It must be comma separated if it contains more than one register or register range; see example below.

LDMIA and LDMFD are synonyms for LDM. LDMIA refers to the base register being Incremented After each access. LDMFD
refers to its use for popping data from Full Descending stacks.

STMIA and STMEA are synonyms for STM. STMIA refers to the base register being Incremented After each access. STMEA
refers to its use for pushing data onto Empty Ascending stacks.

Operation
LDM instructions load the registers in reglist with word values from memory addresses based on Rn.

STM instructions store the word values in the registers in reglist to memory addresses based on Rn.

The memory addresses used for the accesses are at 4-byte intervals ranging from the value in the register specified
by Rn to the value in the register specified by Rn + 4 * (n-1), where n is the number of registers in reglist. The
accesses happens in order of increasing register numbers, with the lowest numbered register using the lowest
memory address and the highest number register using the highest memory address. If the writeback suffix is
specified, the value in the register specified by Rn + 4 *n is written back to the register specified by Rn.

© 2019 Renesas Electronics Corporation 50 April 19, 2016

RRENESANS

Restrictions
In these instructions,
e reglist and Rn are limited to RO-R7.
e the writeback suffix must always be used unless the instruction is an LDM where reglist also contains Rn, in
which case the writeback suffix must not be used.
e the value in the register specified by Rn must be word aligned. See section *“” for more information.
o for STM, if Rn appears in reglist, then it must be the first register in the list.

Condition flags
These instructions do not change the flags.
Correct examples
LDM RO, {RO,R3,R4} ; LDMIA is a synonym for LDM
STMIA R1!,{R2-R4,R6}
Incorrect examples
STM R5!,{R4,R5,R6} ; Value stored for R5 is unpredictable

LDM R2,{} ; There must be at least one register in the list

© 2019 Renesas Electronics Corporation 51 April 19, 2016

RRENESANS

2.3.4.6 PUSH and POP
Push registers onto, and pop registers off a full-descending stack.

Syntax

PUSH reglist
POP reglist

where:

reglist is a non-empty list of registers, enclosed in braces. It can contain register ranges. It must be comma
separated if it contains more than one register or register range.

Operation

PUSH stores registers on the stack, with the lowest numbered register using the lowest memory address and the
highest numbered register using the highest memory address.

POP loads registers from the stack, with the lowest numbered register using the lowest memory address and the
highest numbered register using the highest memory address.

PUSH uses the value in the SP register minus four as the highest memory address; POP uses the value in the SP
register as the lowest memory address, implementing a full-descending stack. On completion, PUSH updates the SP
register to point to the location of the lowest store value; POP updates the SP register to point to the location above the
highest location loaded.

If a POP instruction includes PC in its reglist, a branch to this location is performed when the POP instruction has
completed. Bit[0] of the value read for the PC is used to update the APSR T-bit. This bit must be 1 to ensure correct
operation.

Restrictions
In these instructions:
e reglist must use only RO-R7.
e The exception is LR for a PUSH and PC for a POP.

Condition flags
These instructions do not change the flags.

Examples
PUSH {R@,R4-R7} ; Push RO, R4, R5, R6 and R7 onto the stack
PUSH {R2,LR} ; Push R2 and the link-register onto the stack
POP {R@,R6,PC} ; Pop RO, R6 and PC from the stack, then branch to the new PC.

© 2019 Renesas Electronics Corporation 52 April 19, 2016

RRENESANS

2.3.5 General Data Processing Instructions
The following table shows the data processing instructions:

Table 2.17 Data Processing Instructions

Mnemonic | Brief Description See

ADCS Add with Carry ADC, ADD, RSB, SBC and SUB

ADD{S} Add ADC, ADD, RSB, SBC and SUB

ANDS Logical AND AND, ORR, EOR and BIC

ASRS Arithmetic Shift Right ASR, LSL, LSR and ROR

BICS Bit Clear AND, ORR, EOR and BIC

CMN Compare Negative CMP and CMN

CMP Compare CMP and CMN

EORS Exclusive OR AND, ORR, EOR and BIC

LSLS Logical Shift Left ASR, LSL, LSR and ROR

LSRS Logical Shift Right ASR, LSL, LSR and ROR

MOV{S} Move MOV and MVN

MULS Multiply MULS

MVNS Move NOT MOV and MVN

ORRS Logical OR AND, ORR, EOR and BIC

REV Reverse byte order in a word REV, REV16 and REVSH

REV16 Reverse byte order in each halfword REV, REV16 and REVSH

REVSH Reverse byte order in bottom halfword and sign extend | REV, REV16 and REVSH

RORS Rotate Right ASR, LSL, LSR and ROR

RSBS Reverse Subtract ADC, ADD, RSB, SBC and SUB

SBCS Subtract with Carry ADC, ADD, RSB, SBC and SUB

SUBS Subtract ADC, ADD, RSB, SBC and SUB
© 2019 Renesas Electronics Corporation 53 April 19, 2016

RRENESANS

Mnemonic | Brief Description See
SXTB Sign extend a byte SXT and UXT
SXTH Sign extend a halfword SXT and UXT
UXTB Zero extend a byte SXT and UXT
UXTH Zero extend a halfword SXT and UXT
TST Test TST

© 2019 Renesas Electronics Corporation

54

April 19, 2016

RRENESANS

2.35.1 ADC, ADD, RSB, SBC and SUB
Add with carry, Add, Reverse Subtract, Subtract with carry, and Subtract.

Syntax

ADCS {Rd,} Rn, Rm

ADD{S} {Rd,} Rn, <Rm[#imm>

RSBS {Rd,} Rn, Rm, #0

SBCS {Rd,} Rn, Rm

SUB{S} {Rd,} Rn, <Rm|#imm>

where:

S causes an ADD or SUB instruction to update flags
Rd specifies the result register

Rn specifies the first source register

Rm specifies the second source register
imm specifies a constant immediate value

When the optional Rd register specifier is omitted, it is assumed to take the same value as Rn; for example, ADDS R1, R2
is identical to ADDS R1, R1, R2.

Operation
The ADCS instruction adds the value in Rn to the value in Rm, adding a further one if the carry flag is set, places the
result in the register specified by Rd, and updates the N, Z, C, and V flags.

The ADD instruction adds the value in Rn to the value in Rm or an immediate value specified by imm and places the result
in the register specified by Rd.

The ADDS instruction performs the same operation as ADD and also updates the N, Z, C and V flags.

The RSBS instruction subtracts the value in Rn from zero, producing the arithmetic negative of the value, and places the
result in the register specified by Rd and updates the N, Z, C and V flags.

The SBCS instruction subtracts the value of Rm from the value in Rn, deducts a further one if the carry flag is set. It
places the result in the register specified by Rd and updates the N, Z, C and V flags.

The SUB instruction subtracts the value in Rm or the immediate specified by imm. It places the result in the register
specified by Rd.

The SUBS instruction performs the same operation as SUB and also updates the N, Z, C and V flags.
Use ADC and SBC to synthesize multiword arithmetic, see example on next page.

See also section “ADR.”

© 2019 Renesas Electronics Corporation 55 April 19, 2016

RRENESANS

Restrictions
The following table lists the legal combinations of register specifiers and immediate values that can be used with each
instruction.

Table 2.18 ADC, ADD, RSB, SBC and SUB Operand Restrictions

Instruction | Rd Rn Rm imm Restrictions
ADCS RO-R7 RO-R7 RO-R7 | - Rd and Rn must specify the same register.
ADD R0O-R15 | RO-R15 RO-PC | - Rd and Rn must specify the same register.

Rn and Rm must not both specify PC.

RO-R7 SPorPC | - 0-1020 | Immediate value must be an integer multiple of
four.
SP SP - 0-508 Immediate value must be an integer multiple of
four.
ADDS RO-R7 RO-R7 - 0-7 -
RO-R7 RO-R7 - 0-255 Rd and Rn must specify the same register.

RO-R7 RO-R7 RO-R7 | - -

RSBS RO-R7 RO-R7 - - -
SBCS RO-R7 RO-R7 RO-R7 | - Rd and Rn must specify the same register.
SuB SP SP - 0-508 Immediate value must be an integer multiple of
four.
SUBS RO-R7 RO-R7 - 0-7 -
RO-R7 RO-R7 - 0-255 Rd and Rn must specify the same register.

RO-R7 RO-R7 RO-R7 | - -

© 2019 Renesas Electronics Corporation 56 April 19, 2016

RRENESANS

Examples
The following two instructions add one 64-bit integer contained in RO and R1 to another 64-bit integer contained in R2
and R3 and place the result in RO and Ri:

ADDS RO, RO, R2 ; add the least significant words
ADCS R1, R1, R3 ; add the most significant words with carry

The following three instructions subtract one 96-bit integer contained in R1, R2, and R3 from another contained in R4,
R5, and R6 and place the result in R4, R5, and R6.

SUBS R4, R4, R1 ; subtract the least significant words
SBCS R5, R5, R2 ; subtract the middle words with carry
SBCS R6, R6, R3 ; subtract the most significant words with carry

Note: Multiword values do not have to use consecutive registers.
The following instruction shows the RSBS instruction used to perform a 1's complement of a single register.

RSBS R7, R7, #0 ; subtract R7 from zero

© 2019 Renesas Electronics Corporation 57 April 19, 2016

RRENESANS

2.3.5.2 AND, ORR, EOR and BIC
Logical AND, OR, Exclusive OR, and Bit Clear.

Syntax

ANDS {Rd,} Rn, Rm
ORRS {Rd,} Rn, Rm
EORS {Rd,} Rn, Rm
BICS {Rd,} Rn, Rm

where:

Rd is the destination register

Rn is the register holding the first operand and is the same as the destination register
Rm second register

Operation

The AND, EOR, and ORR instructions perform bitwise AND, exclusive OR, and inclusive OR operations on the values in Rn
and Rm.

The BIC instruction performs an AND operation on the bits in Rn with the logical negation of the corresponding bits in
the value of Rm.

The condition code flags are updated on the result of the operation, see condition flags section “Conditional
Execution.”

Restrictions
In these instructions, Rd, Rn and Rm must only specify RO-R7.

Condition flags

These instructions
e update the N and Z flags according to the result
e do not affect the C or V flag

Examples

ANDS R2, R2, Rl
ORRS R2, R2, RS
ANDS RS, RS, RS
EORS R7, R7, R6
BICS Re, RO, R1

© 2019 Renesas Electronics Corporation 58 April 19, 2016

RRENESANS

2353 ASR,LSL,LSR and ROR
Arithmetic Shift Right, Logical Shift Left, Logical Shift Right, and Rotate Right.

Syntax

ASRS {Rd,} Rm, Rs
ASRS {Rd,} Rm, #imm
LSLS {Rd,} Rm, Rs
LSLS {Rd,} Rm, #imm
LSRS {Rd,} Rm, Rs
LSRS {Rd,} Rm, #imm
RORS {Rd,} Rm, Rs

where:

Rd is the destination register. If Rd is omitted, it is assumed to take the same value as Rm.
Rm is the register holding the value to be shifted.

Rs is the register holding the shift length to apply to the value in Rm.

imm is the shift length. The range of shift length depends on the instruction:

e ASR shift length from 1 to 32
e ISL shift length from 0 to 31
e LSR shift length from 1 to 32.

Note: MOVS Rd, Rm is a pseudonym for LSLS Rd, Rm, #0.

Operation

ASR, LSL, LSR, and ROR perform an arithmetic-shift-left, logical-shift-left, logical-shift-right or a right-rotation of the bits in
the register Rm by the number of places specified by the immediate imm or the value in the least-significant byte of the
register specified by Rs.

For details on what result is generated by the different instructions, see section “Shift Operations.”

Restrictions
In these instructions, Rd, Rm, and Rs must only specify RO-R7. For non-immediate instructions, Rd and fRm must specify
the same register.

Condition flags

These instructions update the N and Z flags according to the result.

The C flag is updated to the last bit shifted out, except when the shift length is 0; see section “Shift Operations.” The V
flag is left unmodified.

Examples
ASRS R7,R5,#9 ; Arithmetic shift right by 9 bits
LSLS R1,R2,#3 ; Logical shift left by 3 bits with flag update
LSRS R4,R5,#6 ; Logical shift right by 6 bits
RORS R4, R4,R6 ; Rotate right by the value in the bottom byte of R6.

© 2019 Renesas Electronics Corporation 59 April 19, 2016

RRENESANS

2354 CMP and CMN
Compare and Compare Negative.

Syntax

CMN Rn, Rm

CMP Rn, #imm

CMP Rn, Rm

where:

Rn is the register holding the first operand.
Rm is the register to compare with.

imm is the immediate value to compare with.
Operation

These instructions compare the value in a register with either the value in another register or an immediate value.
They update the condition flags on the result, but do not write the result to a register.

The CMP instruction subtracts either the value in the register specified by Rm, or the immediate imm from the value in Rn
and updates the flags. This is the same as a SUBS instruction, except that the result is discarded.

The CMN instruction adds the value of Rm to the value in Rn and updates the flags. This is the same as an ADDS
instruction, except that the result is discarded.

Restrictions
For the:
e (MN instruction Rn, and Rm must only specify RO-R7.
e CMP instruction:
O Rnand Rm can specify R0O-R14
0 immediate must be in the range 0-255.

Condition flags
These instructions update the N, Z, C and V flags according to the result.

Examples
CMP R2, R9
CMN RO, R2

© 2019 Renesas Electronics Corporation 60 April 19, 2016

RRENESANS

2.3.5.5 MOV and MVN
Move and Move NOT.

Syntax

MOV{S} Rd, Rm

MOVS Rd, #imm

MVNS Rd, Rm

where:

S is an optional suffix. If S is specified, the condition code flags are updated on the result of the operation; see

section “Conditional Execution.”

Rd is the destination register.

Rm is a register.

imm is any value in the range 0-255.
Operation

The MoV instruction copies the value of Rm into Rd.
The MOVS instruction performs the same operation as the MOV instruction, but also updates the N and Z flags.

The MVNS instruction takes the value of Rm, performs a bitwise logical negate operation on the value, and places the
result into Rd.

Restrictions
In these instructions, Rd and Rm must only specify RO-R7.

When Rd is the PC in a MOV instruction,
e Bit[0] of the result is discarded.
e A branch occurs to the address created by forcing bit[0] of the result to 0. The T-bit remains unmodified.

Note: Though it is possible to use MOV as a branch instruction, ARM strongly recommends the use of a BX or BLX
instruction to branch for software portability.

Condition flags

If S is specified, these instructions
e update the N and Z flags according to the result
e do not affect the C or V flags.

Example
MovS RO, #0x000B ; Write value of Ox000B to RO, flags get updated
MoVS R1, #0x0 ; Write value of zero to R1, flags are updated
Mov R10, R12 ; Write value in R12 to R10, flags are not updated
MOvVS R3, #23 ; Write value of 23 to R3
Mov R8, SP ; Write value of stack pointer to R8
MVNS R2, RO ; Write inverse of RO to the R2 and update flags

© 2019 Renesas Electronics Corporation 61 April 19, 2016

RRENESANS

2356 MULS
Multiply using 32-bit operands, and producing a 32-bit result.

Syntax

MULS Rd, Rn, Rm

where:

Rd is the destination register.

Rn,Rm are registers holding the values to be multiplied.

Operation

The MUL instruction multiplies the values in the registers specified by Rn and Rm, and places the least significant 32 bits
of the result in Rd. The condition code flags are updated on the result of the operation; see section “Conditional
Execution.”

The result of this instruction does not depend on whether the operands are signed or unsigned.

Restrictions

In this instruction,

Rd, Rn, and Rm must only specify RO-R7
Rd must be the same as Rm.

Condition flags

This instruction
e updates the N and Z flags according to the result
e does not affect the C or V flags.

Examples
MULS RO, R2, RO ; Multiply with flag update, RO = RO x R2

© 2019 Renesas Electronics Corporation 62 April 19, 2016

RRENESANS

2.35.7 REV, REV16 and REVSH
Reverse bytes.

Syntax

REV Rd, Rn

REV16 Rd, Rn

REVSH Rd, Rn

where:

Rd is the destination register.
Rn is the source register.
Operation

Use these instructions to change endianness of data:
REV converts 32-bit big-endian data into little-endian data or 32-bit little-endian data into big-endian data.

REV16 converts two packed 16-bit big-endian data into little-endian data or two packed 16-bit little-endian data
into big-endian data.

REVSH converts 16-bit signed big-endian data into 32-bit signed little-endian data or 16-bit signed little-endian
data into 32-bit signed big-endian data.

Restrictions
In these instructions, Rd and Rn must only specify RO-R7.

Condition flags
These instructions do not change the flags.

Examples
REV R3, R7 ; Reverse byte order of value in R7 and write it to R3
REV16 R@, RO ; Reverse byte order of each 16-bit halfword in RO
REVSH R@, R5 ; Reverse signed halfword

© 2019 Renesas Electronics Corporation 63 April 19, 2016

RRENESANS

2.3.5.8 SXT and UXT
Sign extend and Zero extend.

Syntax
SXTB Rd,
SXTH Rd,
UXTB Rd,
UXTH Rd,
where:
Rd

Rm
Operation

Rm
Rm
Rm
Rm

is the destination register.

is the register holding the value to be extended.

These instructions extract bits from the resulting value:
SXTB extracts bits[7:0] and sign extends to 32 bits
UXTB extracts bits[7:0] and zero extends to 32 hits
SXTH extracts bits[15:0] and sign extends to 32 bits
UXTH extracts bits[15:0] and zero extends to 32 bits.

Restrictions
In these instructions, Rd and Rm must only specify RO-R7.

Condition flags

These instructions do not affect the flags.

Examples
SXTH R4, R6 ; Obtain the lower halfword of the value in R6 and
; then sign extend to 32 bits and write the result to R4.
UXTB R3, R1 ; Extract lowest byte of the value in R10 and
; zero extend it and write the result to R3
© 2019 Renesas Electronics Corporation 64 April 19, 2016

RRENESANS

2359 TST

Test bits.

Syntax

TST Rn, Rm

where:

Rn is the register holding the first operand.
Rm the register to test against.

Operation

This instruction tests the value in a register against another register. It updates the condition flags based on the result,
but does not write the result to a register.

The TST instruction performs a bitwise AND operation on the value in Rn and the value in Rm. This is the same as the
ANDS instruction, except that it discards the result.

To test whether a bit of Rn is 0 or 1, use the TST instruction with a register that has that bit set to 1 and all other bits
cleared to O.

Restrictions
In these instructions, Rn and Rm must only specify RO-R7.

Condition flags

This instruction
e updates the N and Z flags according to the result
e does not affect the C or V flags.

Examples
TST RO, R1 ; Perform bitwise AND of RO value and R1 value
; condition code flags are updated but result is discarded

© 2019 Renesas Electronics Corporation 65 April 19, 2016

RRENESANS

2.3.6 Branch and Control Instructions

The following table shows the branch and control instructions:

Table 2.19 Branch and Control Instructions

Mnemonic | Brief Description See

B{cc} Branch {conditionally} B, BL, BX and BLX
BL Branch with Link B, BL, BX and BLX
BLX Branch indirect with Link B, BL, BX and BLX
BX Branch indirect B, BL, BX and BLX

© 2019 Renesas Electronics Corporation

66

April 19, 2016

RRENESANS

2.3.6.1 B,BL,BXandBLX
Branch instructions.

Syntax

B{cond} Label

BL Label

BX Rm

BLX Rm

where:

cond is an optional condition code, see section “Conditional Execution.”
Label is a PC-relative expression. See section “PC-Relative Expressions.”
Rm is a register providing the address to branch to.

Operation

All these instructions cause a branch to the address indicated by label or contained in the register specified by Rm. In
addition,

e The BL and BLX instructions write the address of the next instruction to LR, the link register R14.

e The BX and BLX instructions result in a HardFault exception if bit[0] of Rm is O.

BL and BLX instructions also set bit[0] of the LR to 1. This ensures that the value is suitable for use by a subsequent
POP {PC} or BX instruction to perform a successful return branch.

The following table shows the ranges for the various branch instructions.

Table 2.20 Branch Ranges

Instruction Branch Range

B Label -2KBto +2 KB

Bcond Label -256 bytes to +254 bytes
BL Label -16 MB to +16 MB

BX Rm Any value in register

BLX Rm Any value in register

© 2019 Renesas Electronics Corporation 67 April 19, 2016

RRENESANS

Restrictions
In these instructions:
e Do not use SP or PC in the BX or BLX instruction.
e For BX and BLX, hit[0] of Rm must be 1 for correct execution. Bit[0] is used to update the EPSR T-bit and is
discarded from the target address.

Note: Bcond is the only conditional instruction on the Cortex™-MO0 processor.

Condition flags
These instructions do not change the flags.

Examples
B loopA ; Branch to loopA
BL func ; Branch with link (Call) to function funC, return address stored in LR
BX LR ; Return from function call
BLX RO ; Branch with link and exchange (Call) to an address stored in RO
BEQ labelD ; Conditionally branch to labelD if last flag setting

; instruction set the Z flag, else do not branch.

© 2019 Renesas Electronics Corporation 68 April 19, 2016

RRENESANS

2.3.7 Miscellaneous Instructions

The following table shows the remaining Cortex™-MO instructions:

Table 2.21 Miscellaneous Instructions

Mnemonic | Brief description See
BKPT Breakpoint BKPT
CPSID Change Processor State, Disable Interrupts CPS
CPSIE Change Processor State, Enable Interrupts CPS
DMB Data Memory Barrier DMB
DSB Data Synchronization Barrier DSB
ISB Instruction Synchronization Barrier ISB
MRS Move from special register to register MRS
MSR Move from register to special register MSR
NOP No Operation NOP
SvC Supervisor Call SvC
WFI Wait For Interrupt WEFI
© 2019 Renesas Electronics Corporation 69 April 19, 2016

RRENESANS

23.7.1 BKPT
Breakpoint.

Syntax

BKPT #imm

where:

imm is an integer in the range 0-255.

Operation

The BKPT instruction causes the processor to enter Debug state. Debug tools can use this to investigate system state
when the instruction at a particular address is reached.

imm is ignored by the processor. If required, a debugger can use it to store additional information about the breakpoint.
The processor might also produce a HardFault or go in to lockup if a debugger is not attached when a BKPT instruction

is executed. See section “Lockup” for more information.

Restrictions
There are no restrictions.

Condition flags
This instruction does not change the flags.

Examples

BKPT #0 ; Breakpoint with immediate value set to Ox0.

© 2019 Renesas Electronics Corporation 70 April 19, 2016

RRENESANS

23.7.2 CPS
Change Processor State.

Syntax

CPSID i
CPSIE i

Operation

CPS changes the PRIMASK special register values. CPSID causes interrupts to be disabled by setting PRIMASK. CPSIE
cause interrupts to be enabled by clearing PRIMASK. See section “Exception Mask Register (PRIMASK)” for more
information about these registers.

Restrictions
There are no restrictions.

Condition flags
This instruction does not change the condition flags.

Examples
CPSID i ; Disable all interrupts except NMI (set PRIMASK)
CPSIE i ; Enable interrupts (clear PRIMASK)

© 2019 Renesas Electronics Corporation 71 April 19, 2016

RRENESANS

2373 DMB
Data Memory Barrier.

Syntax

DMB

Operation

DMB acts as a data memory barrier. It ensures that all explicit memory accesses that appear in program order before

the DMB instruction are observed before any explicit memory accesses that appear in program order after the DMB
instruction. DMB does not affect the ordering of instructions that do not access memory.

Restrictions
There are no restrictions.

Condition flags
This instruction does not change the flags.
Examples

DMB ; Data Memory Barrier

2374 DSB
Data Synchronization Barrier.

Syntax

DSB

Operation

DSB acts as a special data synchronization memory barrier. Instructions that come after the DSB, in program order, do

not execute until the DSB instruction completes. The DSB instruction completes when all explicit memory accesses
before it complete.

Restrictions
There are no restrictions.

Condition flags
This instruction does not change the flags.

Examples

DSB ; Data Synchronization Barrier

© 2019 Renesas Electronics Corporation 72 April 19, 2016

RRENESANS

2375 ISB
Instruction Synchronization Barrier.

Syntax
ISB
Operation

ISB acts as an instruction synchronization barrier. It flushes the pipeline of the processor, so that all instructions
following the ISB are fetched from cache or memory again, after the ISB instruction has been completed.

Restrictions
There are no restrictions.

Condition flags
This instruction does not change the flags.

Examples

ISB ; Instruction Synchronization Barrier

© 2019 Renesas Electronics Corporation 73 April 19, 2016

RRENESANS

2376 MRS
Move the contents of a special register to a general-purpose register.

Syntax

MRS Rd, spec_reg

where:

Rd is the general-purpose destination register.

spec_reg is one of the special-purpose registers: APSR, IPSR, EPSR, IEPSR, IAPSR, EAPSR, PSR, MSP, PSP, PRIMASK or

CONTROL.

Operation

MRS stores the contents of a special-purpose register to a general-purpose register. The MRS instruction can be
combined with the MSR instruction to produce read-modify-write sequences, which are suitable for modifying a specific
flag in the PSR.

See section “MSR.”

Restrictions
In this instruction, Rd must not be SP or PC.

Condition flags
This instruction does not change the flags.

Examples

MRS RO, PRIMASK ; Read PRIMASK value and write it to RO

© 2019 Renesas Electronics Corporation 74 April 19, 2016

RRENESANS

23.7.7 MSR
Move the contents of a general-purpose register into the specified special register.

Syntax

MSR spec_reg, Rn

where:

Rn is the general-purpose source register.

spec_reg is the special-purpose destination register: APSR, IPSR, EPSR, IEPSR, IAPSR, EAPSR, PSR, MSP, PSP, PRIMASK or

CONTROL.

Operation
MSR updates one of the special registers with the value from the register specified by Rn.
See section “MRS.”

Restrictions
In this instruction, Rn must not be SP and must not be PC.

Condition flags
This instruction updates the flags explicitly based on the value in Rn.

Examples

MSR CONTROL, R1 ; Read R1 value and write it to the CONTROL register

© 2019 Renesas Electronics Corporation 75 April 19, 2016

RRENESANS

2.3.7.8 NOP
No Operation.

Syntax

NOP

Operation

NOP performs no operation and is not guaranteed to be time consuming. The processor might remove it from the
pipeline before it reaches the execution stage.

Use NOP for padding, for example to place the subsequent instructions on a 64-bit boundary.

Restrictions
There are no restrictions.

Condition flags
This instruction does not change the flags.

Examples

NOP ; No operation

© 2019 Renesas Electronics Corporation 76 April 19, 2016

RRENESANS

2379 SVC
Supervisor Call.

Syntax

SVC #imm

where:

imm is an integer in the range 0-255.

Operation

The SVC instruction causes the SVC exception.

imm is ignored by the processor. If required, it can be retrieved by the exception handler to determine what service is

being requested.

Restrictions
There are no restrictions.

Condition flags
This instruction does not change the flags.
Examples

SvC #0x32 ; Supervisor Call (SVC handler can extract the immediate value
; by locating it via the stacked PC)

© 2019 Renesas Electronics Corporation 77 April 19, 2016

RRENESANS

2.3.7.10 WFI
Wait for Interrupt.

Syntax

WFI

Operation

WFI suspends execution until one of the following events occurs:
e an exception

e an interrupt becomes pending which would preempt if PRIMASK was clear
e a Debug Entry request, regardless of whether debug is enabled.

Note: WFI is intended for power saving only. When writing software assume that WFI might behave as a NOP operation.

Restrictions
There are no restrictions.

Condition flags
This instruction does not change the flags.

Examples

WFI ; Wait for interrupt

© 2019 Renesas Electronics Corporation 78 April 19, 2016

RRENESANS

2.4 Cortex™-MO Peripherals

2.4.1 About the Cortex™-MO Peripherals
The address map of the Private Peripheral Bus (PPB) is given in Table 2.22.

Table 2.22 Core Peripheral Register Regions

Address Core Peripheral Description
OXE0OOE00S - 0XEQOOEQQF System Control Block Table 2.31
OXEOOOEQ10-0OXEQQOEQLF System Timer

OxEQOOE100-OXEQOOEAEF Nested Vectored Interrupt Controller Table 2.23
OxEQOOEDOO - OXEQOOED3F System Control Block Table 2.31
OXEQOOEF00-0XEQQOEFO3 Nested Vectored Interrupt Controller Table 2.23

In register descriptions, the register type is described as follows:
RW Read and write.
RO Read-only.
WO Write-only.

© 2019 Renesas Electronics Corporation 79 April 19, 2016

RRENESANS

2.4.2 Nested Vectored Interrupt Controller (NVIC)

This section describes the Nested Vectored Interrupt Controller (NVIC) and the registers it uses. The NVIC supports:
e Qinterrupts.
e A programmable priority level of 0-192 in steps of 64 for each interrupt. A higher level corresponds to a lower
priority, so level O is the highest interrupt priority.
Level and pulse detection of interrupt signals.
Interrupt tail-chaining.
An external Non-maskable interrupt (NMI).

The processor automatically stacks its state on exception entry and unstacks this state on exception exit, with no
instruction overhead. This provides low latency exception handling. The hardware implementation of the NVIC
registers is given in Table 2.23.

Table 2.23 NVIC Register Summary

Address Name Type Reset Value Description
0OxE0QOE100 ISER RW 0x00000000 Table 2.25
OXxEOQOE180 ICER RW 0x00000000 Table 2.26
OxE0QOE200 ISPR RW 0x00000000 Table 2.27
OXxEOOOE280 ICPR RW 0x00000000 Table 2.28
OXEOOOE400-0XEOQQOE408 IPRO-2 RW 0x00000000 Table 2.29

© 2019 Renesas Electronics Corporation 80 April 19, 2016

RRENESANS

2.4.2.1 Accessing the Cortex™-MO NVIC registers using CMSIS
CMSIS functions enable software portability between different Cortex™-M profile processors.

To access the NVIC registers when using CMSIS, use the following functions.

Table 2.24 CMSIS Access NVIC Functions

CMSIS function Description

void NVIC_EnableIRQ(IRQn Type IRQn) Enables an interrupt or exception.

void NVIC_DisableIRQ(IRQn Type IRQn) Disables an interrupt or exception.

void NVIC SetPendingIRQ(IRQn Type IRQn) Sets the pending status of interrupt or exception to 1.

void NVIC_ClearPendingIRQ(IRQn Type IRQn) Clears the pending status of interrupt or exception to 0.

uint32_t NVIC_GetPendingIRQ(IRQn_Type IRQn) Reads the pending status of interrupt or exception. This
function returns non-zero value if the pending status is
setto 1.

void NVIC_SetPriority(IRQn_Type IRQn, uint32_t Sets the priority of an interrupt or exception with

priority) configurable priority level to 1.

uint32_t NVIC_GetPriority(IRQn_ Type IRQn) Reads the priority of an interrupt or exception with
configurable priority level. This function returns the
current priority level.

© 2019 Renesas Electronics Corporation 81 April 19, 2016

RRENESANS

2.4.2.2 Interrupt Set-Enable Register (ISER)

The ISER enables interrupts and shows which interrupts are enabled. See the register summary in Table 2.23 for the
register attributes.

Figure 2.15 ISER

31 0

SETENA bits

The bit assignments are given in Table 2.25.

Table 2.25 ISER Bit Assignments

Bits Name Function

[31:0] SETENA Interrupt set-enable bits.
Write:

0 = no effect

1 = enable interrupt.
Read:

0 = interrupt disabled

1 = interrupt enabled.

If a pending interrupt is enabled, the NVIC activates the interrupt based on its priority. If an interrupt is not enabled,
asserting its interrupt signal changes the interrupt state to pending, but the NVIC never activates the interrupt,
regardless of its priority.

© 2019 Renesas Electronics Corporation 82 April 19, 2016

RRENESANS

2.4.2.3 Interrupt Clear-Enable Register (ICER)

The ICER disables interrupts and shows which interrupts are enabled. See the register summary in Table 2.23 for the
register attributes.

Figure 2.16 CER

31 0

CLRENA bits

The bit assignments are given in Table 2.26.

Table 2.26 ICER Bit Assignments

Bits Name Function

[31:0] CLRENA Interrupt clear-enable bits.
Write:

0 = no effect

1 = disable interrupt.
Read:

0 = interrupt disabled

1 = interrupt enabled.

© 2019 Renesas Electronics Corporation 83 April 19, 2016

RRENESANS

2.4.2.4 Interrupt Set-Pending Register (ISPR)

The ISPR forces interrupts into the pending state and shows which interrupts are pending. See the register summary
in Table 2.23 for the register attributes.

Figure 2.17 ISPR

31 0

SETPEND bits

The bit assignments are given in Table 2.27.

Table 2.27 ISPR Bit Assignments

Bits Name Function

[31:0] SETPEND Interrupt set-pending bits.
Write:

0 = no effect

1 = changes interrupt state to pending.
Read:

0 = interrupt is not pending

1 = interrupt is pending.

Note: Writing 1 to the ISPR bit corresponding to
e an interrupt that is pending has no effect
e adisabled interrupt sets the state of that interrupt to pending.

© 2019 Renesas Electronics Corporation 84 April 19, 2016

RRENESANS

2.4.2.5

Interrupt Clear-Pending Register (ICPR)

The ICPR removes the pending state from interrupts and shows which interrupts are pending. See the register
summary in Table 2.23 for the register attributes.

Figure 2.18 ICPR

31

CLRPEND bits

The bit assignments are given in Table 2.28.

Table 2.28 CPR Bit Assignments

Bits

Name

Function

[31:0]

CLRPEND

Interrupt clear-pending bits.
Write:

0 = no effect

1 = removes pending state an interrupt.
Read:

0 = interrupt is not pending

1 = interrupt is pending.

Note: Writing 1 to an ICPR bit does not affect the active state of the corresponding interrupt.

© 2019 Renesas Electronics Corporation 85

April 19, 2016

RRENESANS

2.4.2.6 Interrupt Priority Registers (IPRO — IRP2)

The IPRO-IPR2 registers provide an 8-bit priority field for each interrupt. These registers are only word-accessible.
See the register summary in Table 2.23 for their attributes.

Figure 2.19 IPRO-2

31 2423 1615 8 7 0
IPR2 (PRI _11) (PRI _10) (PRI _9) PR 8
IPR1 PRI 7 PR _6 PR 5 PR 4
IPRO PR _3 PRI 2 PRI 1 PRI _0

Each register holds four priority fields as shown in Table 2.29.

Table 2.29 IPR Bit Assignments

Bits Name Function

[31:24] Priority, byte offset 3 Each priority field holds a priority value, 0-192. The lower
the value, the greater the priority of the corresponding
interrupt. The processor implements only bits[7:6] of
each field; bits [5:0] read as zero and ignore writes. This
means writing 255 to a priority register saves value 192

[15:8] Priority, byte offset 1 to the register.

[23:16] Priority, byte offset 2

[7:0] Priority, byte offset O

See “Accessing the Cortex™-MO NVIC registers using CMSIS” for more information about the access to the interrupt
priority array, which provides the software view of the interrupt priorities.

Find the IPR number and byte offset for interrupt M as follows:
¢ the corresponding IPR number, N, is given by N =N DIV 4
o the byte offset of the required Priority field in this register is M MOD 4, where
0 byte offset O refers to register bits[7:0]
0 byte offset 1 refers to register bits[15:8]
0 byte offset 2 refers to register bits[23:16]
0 byte offset 3 refers to register bits[31:24].

© 2019 Renesas Electronics Corporation 86 April 19, 2016

RRENESANS

2.4.2.7 Level-Sensitive and Pulse Interrupts

The processor supports both level-sensitive and pulse interrupts. Pulse interrupts are also described as edge-
triggered interrupts.

A level-sensitive interrupt is held asserted until the peripheral deasserts the interrupt signal. Typically this happens
because the ISR accesses the peripheral, causing it to clear the interrupt request. A pulse interrupt is an interrupt
signal sampled synchronously on the rising edge of the processor clock. To ensure the NVIC detects the interrupt, the
peripheral must assert the interrupt signal for at least one clock cycle, during which the NVIC detects the pulse and
latches the interrupt.

When the processor enters the ISR, it automatically removes the pending state from the interrupt. For a level-
sensitive interrupt, if the signal is not deasserted before the processor returns from the ISR, the interrupt becomes
pending again, and the processor must execute its ISR again. This means that the peripheral can hold the interrupt
signal asserted until it no longer needs servicing.

See corresponding data sheet for details of which interrupts are level-sensitive and which are pulsed.

Hardware and Software Control of Interrupts

The Cortex™-MO latches all interrupts. A peripheral interrupt becomes pending for one of the following reasons:
¢ the NVIC detects that the interrupt signal is active and the corresponding interrupt is not active
e the NVIC detects a rising edge on the interrupt signal
o software writes to the corresponding interrupt set-pending register bit; see Table 2.27

A pending interrupt remains pending until one of the following:
e The processor enters the ISR for the interrupt. This changes the state of the interrupt from pending to active.
Then

o] For a level-sensitive interrupt, when the processor returns from the ISR, the NVIC samples the
interrupt signal. If the signal is asserted, the state of the interrupt changes to pending, which might
cause the processor to immediately re-enter the ISR. Otherwise, the state of the interrupt changes
to inactive.

o] For a pulse interrupt, the NVIC continues to monitor the interrupt signal, and if this is pulsed, the
state of the interrupt changes to pending and active. In this case, when the processor returns from
the ISR, the state of the interrupt changes to pending, which might cause the processor to
immediately re-enter the ISR.

If the interrupt signal is not pulsed while the processor is in the ISR, when the processor returns
from the ISR, the state of the interrupt changes to inactive.
e Software writes to the corresponding interrupt clear-pending register bit.
For a level-sensitive interrupt, if the interrupt signal is still asserted, the state of the interrupt does not
change. Otherwise, the state of the interrupt changes to inactive.
For a pulse interrupt, state of the interrupt changes to
0 inactive, if the state was pending
0 active, if the state was active and pending

© 2019 Renesas Electronics Corporation 87 April 19, 2016

RRENESANS

2.4.2.8 NVIC Usage Hints and Tips

Ensure software uses correctly aligned register accesses. The processor does not support unaligned accesses to
NVIC registers.

An interrupt can enter the pending state even if it is disabled. Disabling an interrupt only prevents the processor from
taking that interrupt.

NVIC Programming Hints
Software uses the CPSIE i and CPSID i instructions to enable and disable interrupts. The CMSIS provides the
following intrinsic functions for these instructions:

void _ disable_irq(void) // Disable Interrupts
void _ enable_irq(void) // Enable Interrupts

In addition, the CMSIS provides a number of functions for NVIC control, including the functions shown in Table 2.30.

Table 2.30 Properties of the Different Exception Types

CMSIS Interrupt Control Function Description

void NVIC_EnableIRQ(IRQn_t IRQn) Enable IRQnN

void NVIC_DisableIRQ(IRQn_t IRQn) Disable IRQn

uint32_t NVIC_GetPendingIRQ (IRQn t IRQn) Return true (1) if IRQn is
pending

void NVIC_SetPendingIRQ (IRQn_t IRQn) Set IRQn pending

void NVIC_ClearPendingIRQ (IRQn_t IRQn) Clear IRQn pending status

void NVIC SetPriority (IRQn_t IRQn, uint32_t priority) Set priority for IRQn

uint32_t NVIC GetPriority (IRQn_t IRQn) Read priority of IRQn

void NVIC_SystemReset (void) Reset the system

The input parameter IRQn is the IRQ number; see Table 2.10 for more information. For more information about these
functions, see the CMSIS documentation.

© 2019 Renesas Electronics Corporation 88 April 19, 2016

RRENESANS

2.4.3 System Control Block (SCB)

The System Control Block (SCB) provides system implementation information and system control. This includes
configuration, control, and reporting of the system exceptions. The SCB registers are given in Table 2.31.

Table 2.31 Summary of the SCB Registers

Address Name Type Reset value Description
0OxE0QOEDOO CPUID RO 0x410CC200 Table 2.32
OxEQOOEDO4 ICSR RW 0x00000000 Table 2.33
0OxEQOOEDOC AIRCR RW 0xFA050000 Table 2.34
OxEQQOED10 SCR RW 0x00000000 Table 2.35
OxEGBOED14 CCR RO 0x00000204 Table 2.36
0OxEQQBED1C SHPR2 RW 0x00000000 Table 2.38
OxEOQOED20 SHPR3 RW 0x00000000 Table 2.39

© 2019 Renesas Electronics Corporation

89

April 19, 2016

RRENESANS

2.4.3.1 The CMSIS Mapping of the Cortex™-M0 SCB Registers

To improve software efficiency, the CMSIS simplifies the SCB register presentation. In the CMSIS, the array SHP[1]
corresponds to the registers SHPR2-SHPR3.

2.4.3.2 CPUID Register

The CPUID register contains the processor part number, version, and implementation information. See the register
summary in Table 2.31 for its attributes.

Figure 2.20 CPUID register

31 2423 2019 1615 4 3 0

Implementer Variant | Constant Partno Revision

The bit assignments are given in Table 2.32.

Table 2.32 PUID Register Bit Assignments

Bits Name Function
[31:24] | Implementer Implementer code:
ox41 = ARM
[23:20] | Variant Variant number, the r value in the rnpn product revision identifier:

0x0 = Revision 0

[19:16] | Constant Constant that defines the architecture of the processor; reads as
0xC = ARMv6-M architecture

[15:4] Partno Part number of the processor:
0xC20 = Cortex™-MO

[3:0] Revision Revision number, the p value in the rnpn product revision identifier:
0x0 = Patch O

© 2019 Renesas Electronics Corporation 90 April 19, 2016

RRENESANS

2.4.3.3 Interrupt Control and State Register (ICSR)
The ICSR provides:

e a set-pending bit for the Non-Maskable Interrupt (NMI) exception

e set-pending and clear-pending bits for the PendSV and SysTick exceptions

The ICSR indicates:
e the exception number of the exception being processed
o whether there are preempted active exceptions
e the exception number of the highest priority pending exception
o whether any interrupts are pending.

See the register summary in Table 2.31 for the ICSR attributes.

Figure 2.21 ICSR

313029 28

2726 2524232221 18 17 12

11

6

5

Reserved | VECTPENDING

Reserved

VECTACTIVE

|— ISRPENDING
Reserved
PENDSTCLR

PENDSTSET
PENDSVCLR

PENDSVSET
Reserved

NMIPENDSET

© 2019 Renesas Electronics Corporation 91

April 19, 2016

RRENESANS

The bit assignments are given in Table 2.33.

Note: When the ICSR is written to, the effect is Unpredictable if there is a

Table 2.33

ICSR Bit Assignments

write 1 to the PENDSVSET bit and write 1 to the PENDSVCLR bit
write 1 to the PENDSTSET bit and write 1 to the PENDSTCLR bit.

Bits

Name

Type

Function

(31]

NMIPENDSET

RW

NMI set-pending bit.
Write:

0 = no effect

1 = changes NMI exception state to pending.
Read:

0 = NMI exception is not pending

1 = NMI exception is pending.
Because NMl is the highest-priority exception, normally the processor
enters the NMI exception handler as soon as it detects a write of 1 to
this bit. Entering the handler then clears this bit to 0. This means a

read of this bit by the NMI exception handler returns 1 only if the NMI
signal is reasserted while the processor is executing that handler.

[30:29]

Reserved.

(28]

PENDSVSET

RwW

PendSV set-pending bit.
Write:

0 = no effect

1 = changes PendSV exception state to pending.
Read:

0 = PendSV exception is not pending

1 = PendSV exception is pending.

Writing 1 to this bit is the only way to set the PendSV exception state
to pending.

(27]

PENDSVCLR

WO

PendSV clear-pending bit.

Write:

0 = no effect

1 = removes the pending state from the PendSV exception.

(26]

PENDSTSET

RW

SysTick exception set-pending bit.

Write:

0 = no effect

1 = changes SysTick exception state to pending.
Read:

0 = SysTick exception is not pending

1 = SysTick exception is pending.

© 2019 Renesas Electronics Corporation

92 April 19, 2016

RRENESANS

Bits Name Type | Function
[25] PENDSTCLR e SysTick exception clear-pending bit.
Write:
0 = no effect
1 = removes the pending state from the SysTick exception.
This bit is WO. On a register read its value is Unknown.
[24:23] | - - Reserved.
[22] ISRPENDING RO Interrupt pending flag, excluding NMI and Faults:
0 = interrupt not pending
1 = interrupt pending.
[21:18] | - - Reserved.
[17:12] | VECTPENDING | RO Indicates the exception number of the highest priority pending
enabled exception:
0 = no pending exceptions
Nonzero = the exception number of the highest priority pending
enabled exception.
[11:6] - - Reserved.
[5:0] VECTACTIVE RO Contains the active exception number:
0 = Thread Mode
Nonzero = The exception number of the currently active exception.
Note: Subtract 16 from this value to obtain the CMSIS IRQ number
that identifies the corresponding bit in the Interrupt Clear-Enable, Set-
Enable, Clear-Pending, Set-pending, and Priority Register, see Table
25

© 2019 Renesas Electronics Corporation

93 April 19, 2016

RRENESANS

2.4.3.4 Application Interrupt and Reset Control Register (AIRCR)

The AIRCR provides endian status for data accesses and reset control of the system. See the register summary in
Table 2.31 and Table 2.34 for its attributes.

Figure 2.22 AIRCR

31 161514 3210

On read: Reserved
On write: VECTKEY

ENDIANESS _ SYSRESETREQ _
VECTCLRACTIVE, reserved for debug use

Reserved

Reserved

Note: To write to this register, 0xX05FA must be written to the VECTKEY field, otherwise the processor ignores the
write.

The bit assignments are given in Table 2.34.

Table 2.34 AIRCR Bit Assignments

Bits Name Type | Function

[31:16] | Read: Reserved RW Register key:
Write: VECTKEY Reads as Unknown
On writes, write 0x05FA to VECTKEY, otherwise the write is ignored.

[15] ENDIANESS RO Data endianness implemented:
0 = Little-endian

[14:3] - - Reserved
[2] SYSRESETREQ WO System reset request:
0 = no effect

1 = requests a system level reset.
This bit reads as O.

[1] VECTCLRACTIVE | WO Reserved for debug use. This bit reads as 0. When writing to the
register, the user must write O to this bit; otherwise behavior is
Unpredictable.

[0] - - Reserved.

© 2019 Renesas Electronics Corporation 94 April 19, 2016

RRENESANS

2.4.3.5 System Control Register (SCR)

The SCR controls features of entry to and exit from low power state. See the register summary in Table 2.31 for its
attributes.

Figure 2.23 SCR

31 543210

SEVONPENDJ
Reserved
SLEEPDEEP

SLEEPONEXIT
Reserved

Reserved

The bit assignments are given in Table 2.35.

Table 2.35 SCR Bit Assignments

Bits Name Function
[31:5] - Reserved.
[4] SEVONPEND Send Event on Pending bit:

0 = only enabled interrupts or events can wakeup the processor, disabled
interrupts are excluded

1 = enabled events and all interrupts, including disabled interrupts, can
wakeup the processor.

When an event or interrupt enters pending state, the event signal wakes up
the processor from WFE. If the processor is not waiting for an event, the
event is registered and affects the next WFE.

The processor also wakes up on execution of an SEV instruction or an
external event.

[3] - Reserved.

[2] SLEEPDEEP Controls whether the processor uses sleep or deep sleep as its low power
mode:
0 =sleep

1 = deep sleep.

[1] SLEEPONEXIT Indicates sleep-on-exit when returning from Handler Mode to Thread Mode:
0 = do not sleep when returning to Thread Mode.
1 = enter sleep, or deep sleep, on return from an ISR to Thread Mode.

Setting this bit to 1 enables an interrupt driven application to avoid returning
to an empty main application.

[0] - Reserved.

© 2019 Renesas Electronics Corporation 95 April 19, 2016

RRENESANS

2.4.3.6 Configuration and Control Register (CCR)

The CCR is a read-only register and indicates some aspects of the behavior of the Cortex™-MO0 processor. See the
register summary in Table 2.31 for the CCR attributes.

Figure 2.24 CCR

31 109 8 4 32 0
Reserved Reserved
STKALIGNJ ‘
UNALIGN_TRP
Reserved

The bit assignments are given in Table 2.36.

Table 2.36 CCR Bit Assignments

Bits Name Function
[31:10] | - Reserved.
[9] STKALIGN Always reads as one, indicates 8-byte stack alignment on exception entry.

On exception entry, the processor uses hit[9] of the stacked PSR to indicate
the stack alignment. On return from the exception, it uses this stacked bit to
restore the correct stack alignment.

[8:4] - Reserved.

[3] UNALIGN_TRP Always reads as one, indicates that all unaligned accesses generate a
HardFault.

[2:0] - Reserved.

© 2019 Renesas Electronics Corporation 96 April 19, 2016

RRENESANS

2.4.3.7 System Handler Priority Registers (SHPR2-3)

The SHPR2-SHPR3 registers set the priority level, 0 to 192, of the exception handlers that have configurable priority.
SHPR2-SHPRS3 are word accessible. See the register summary in for their attributes.

To access to the system exception priority level using CMSIS, use the following CMSIS functions:
® uint32_t NVIC_GetPriority(IRQn_Type IRQn)
® void NVIC_SetPriority(IRQn_Type IRQn, uint32_t priority)

The input parameter 1rgn is the IRQ number; see Table 2.10 for more information.

The system fault handlers and the priority field and register for each handler are given in Table 2.37.

Table 2.37 System Fault Handler Priority Fields

Handler Field Register Description
SvcCall PRI_11 See SHPR2 below
PendSVv PRI_14 See SHPR3 below
SysTick PRI_15

Each PRI_N field is 8 bits wide, but the processor implements only bits[7:6] of each field, and bits[5:0] read as zero
and ignore writes.

Figure 2.25 SHPR2

System Handler Priority Register 2

31 2423 0

PRI 11 Reserved

The bit assignments are given in Table 2.38.

Table 2.38 SHPR2 Bit Assignments

Bits Name Function

[31:24] | PRI_11 Priority of system handler 11, SVCall

[23:0] - Reserved

© 2019 Renesas Electronics Corporation 97 April 19, 2016

RRENESANS

Figure 2.26 SHPR3

31

System Handler Priority Register 3

2423 1615

PRI_15

PRI 14 Reserved

The bit assignments are given in Table 2.39.

Table 2.39 SHPR3 Bit Assignments

Bits Name Function

[31:24] | PRI_15 Priority of system handler 15, SysTick exception
[23:16] | PRI_14 Priority of system handler 14, PendSV

[15:0] - Reserved

© 2019 Renesas Electronics Corporation

98

April 19, 2016

RRENESANS

2.4.3.8 SCB Usage Hints and Tips

Ensure software uses aligned 32-bit word size transactions to access all the SCB registers.

2.4.4 System Timer (SysTick)

When enabled, the timer counts down from the reload value to zero, reloads (wraps to) the value in the SYST_RVR
on the next clock cycle, then decrements on subsequent clock cycles. Writing a value of zero to the SYST_RVR
disables the counter on the next wrap. When the counter transitions to zero, the COUNTFLAG status bit is set to 1.
Reading SYST_CSR clears the COUNTFLAG bit to 0.

Writing to the SYST_CVR clears the register and the COUNTFLAG status bit to 0. The write does not trigger the

SysTick exception logic. Reading the register returns its value at the time it is accessed.

Note: When the processor is halted for debugging the counter does not decrement.

The system timer registers are given in Table 2.40.

Table 2.40 System Timer Registers Summary

Address Name Type | Reset Value Description
OXEQQOEQ10 SYST_CSR RW 0x00000000 Table 2.41
OXE00QEQ14 SYST_RVR RW Unknown Table 2.42
OXE00REQ18 SYST_CVR RW Unknown Table 2.43
0XE0QBEQLC SYST_CALIB | RO 0x80030D3F Table 2.44
© 2019 Renesas Electronics Corporation 99 April 19, 2016

RRENESANS

2.4.4.1 SysTick Control and Status Register (SYST_CSR)
The SYST_CSR enables the SysTick features. See the register summary in Table 2.40 for its attributes.

Figure 2.27 SYST_CSR

31 171615 3210
Reserved Reserved 0(0]|0
COUNTFLAG CLKSOURCE —
TICKINT
ENABLE

The bit assignments are given in Table 2.41.

Table 2.41 SYST_CSR Bit Assignments

Bits Name Function
[31:17] | - Reserved.
[16] COUNTFLAG Returns 1 if timer counted to 0 since the last read of this register.
[15:3] - Reserved.
[2] CLKSOURCE | Selects the SysTick timer clock source:
0 = external reference clock
1 = processor clock.
[1] TICKINT Enables SysTick exception request:
0 = counting down to zero does not assert the SysTick exception request
1 = counting down to zero to asserts the SysTick exception request.
[0] ENABLE Enables the counter:

0 = counter disabled
1 = counter enabled.

© 2019 Renesas Electronics Corporation 100 April 19, 2016

RRENESANS

2.4.4.2 SysTick Reload Value Register (SYST_RVR)

The SYST_RVR specifies the start value to load into the SYST_CVR. See the register summary in Table 2.40 for its
attributes.

Figure 2.28 SYST_RVR

31 24 23 0

Reserved RELOAD

The bit assignments are given in Table 2.42.

Table 2.42 SYST_RVR Bit Assignments

Bits Name Function

[31:24] | - Reserved.

[23:0] RELOAD Value to load into the SYST_CVR when the counter is enabled and when it
reaches 0; see “Calculating the RELOAD value” below.

Calculating the RELOAD value

The RELOAD value can be any value in the range 0x00000001-0x00FFFFFF. A value of O can be programmed, but this
has no effect because the SysTick exception request and COUNTFLAG are activated when counting from 1 to 0.

To generate a multi-shot timer with a period of N processor clock cycles, use a RELOAD value of N-1. For example, if
the SysTick interrupt is required every 100 clock pulses, set RELOAD to 99.

© 2019 Renesas Electronics Corporation 101 April 19, 2016

RRENESANS

2.4.4.3 SysTick Current Value Register (SYST_CVR)
The SYST_CVR contains the current value of the SysTick counter. See the register summary in Table 2.40 for its

attributes.

Figure 2.29: SYST_CVR

31 24 23

Reserved CURRENT

The bit assignments are given in Table 2.43.

Table 2.43: SYST_CVR Bit Assignments

Bits Name Function
[31:24] | - Reserved.
[23:0] CURRENT Reads return the current value of the SysTick counter.
A write of any value clears the field to 0, and also clears the
SYST_CSR.COUNTFLAG bit to 0.
© 2019 Renesas Electronics Corporation 102 April 19, 2016

RRENESANS

2.4.4.4 SysTick Calibration Value Register (SYST_CALIB)

The SYST_CALIB register indicates the SysTick calibration properties. See the register summary in Table 2.40 for its
attributes.

Figure 2.30: SYST_CALIB

313029 2423 0

Reserved TENMS
L skEw
NOREF

The bit assignments are given in Table 2.44.

Table 2.44 SYST_CALIB Bit Assignments

Bits Name Function
[31] NOREF Reads as one. Indicates that no separate reference clock is provided.
[30] SKEW Reads as zero.
[29:24] | - Reserved.
[23:0] TENMS The value read depends on the chosen clock divider value clkDiv (see corresponding
data sheet.
clkDiv==0: ©x30D3F
clkDiv==1: ©x1869F
clkDiv ==2: ©x0C34F
clkDiv==3: 0x061A7

© 2019 Renesas Electronics Corporation 103 April 19, 2016

RRENESANS

2.4.45 SysTick Usage Hints and Tips

The interrupt controller clock updates the SysTick counter. If this clock signal is stopped for low power mode, the
SysTick counter stops.

Ensure software uses word accesses to access the SysTick registers.

If the SysTick counter reload and current value are undefined at reset, the correct initialization sequence for the
SysTick counter is

1. Program reload value.

2. Clear current value.

3. Program Control and Status register.

2.5 Glossary
This glossary describes some of the terms used in technical documents from ARM, Ltd.

Aligned A data item stored at an address that is divisible by the number of bytes that defines the
data size is said to be aligned. Aligned words and halfwords have addresses that are
divisible by four and two respectively. The terms word-aligned and halfword-aligned
therefore stipulate addresses that are divisible by four and two respectively.

Base register In instruction descriptions, a register specified by a load or store instruction that is used to
hold the base value for the instruction’s address calculation. Depending on the instruction
and its addressing mode, an offset can be added to or subtracted from the base register
value to form the address that is sent to memory.

See also Index register.

Big-endian (BE) Byte ordering scheme in which bytes of decreasing significance in a data word are stored at
increasing addresses in memory.

See also Byte-invariant, Endianness, Little-endian.
Big-endian memory Memory in which

. a byte or halfword at a word-aligned address is the most significant byte or halfword
within the word at that address

. a byte at a halfword-aligned address is the most significant byte within the halfword at
that address.

See also Little-endian memory.

Breakpoint A breakpoint is a mechanism provided by debuggers to identify an instruction at which
program execution is to be halted. Breakpoints are inserted by the programmer to enable
inspection of register contents, memory locations, and variable values at fixed points in the
program execution to test that the program is operating correctly. Breakpoints are removed
after the program is successfully tested.

© 2019 Renesas Electronics Corporation 104 April 19, 2016

RRENESANS

Byte-invariant

Cache

Condition field

Conditional execution

Context

Debugger

In a byte-invariant system, the address of each byte of memory remains unchanged when
switching between little-endian and big-endian operation. When a data item larger than a
byte is loaded from or stored to memory, the bytes making up that data item are arranged
into the correct order depending on the endianness of the memory access.

An ARM® byte-invariant implementation also supports unaligned halfword and word
memory accesses. It expects multi-word accesses to be word-aligned.

A block of on-chip or off-chip fast access memory locations, situated between the processor
and main memory, used for storing and retrieving copies of often used instructions, data, or
instructions and data. This is done to greatly increase the average speed of memory
accesses and so improve processor performance.

A four-bit field in an instruction that specifies a condition under which the instruction can
execute.

If the condition code flags indicate that the corresponding condition is true when the
instruction starts executing, it executes normally. Otherwise, the instruction does nothing.

The environment that each process operates in for a multitasking operating system. In
ARM® processors, this is limited to mean the physical address range that it can access in
memory and the associated memory access permissions.

A debugging system that includes a program used to detect, locate, and correct software
faults, together with custom hardware that supports software debugging.

Direct Memory Access (DMA)

Endianness

Exception

Exception vector

Halfword

Implementation-defined

An operation that accesses main memory directly, without the processor performing any
accesses to the data concerned.

Byte ordering. The scheme that determines the order that successive bytes of a data word
are stored in memory. An aspect of the system’s memory mapping.

See also Little-endian and Big-endian

An event that interrupts program execution. When an exception occurs, the processor
suspends the normal program flow and starts execution at the address indicated by the
corresponding exception vector. The indicated address contains the first instruction of the
handler for the exception.

An exception can be an interrupt request, a fault, or a software-generated system
exception. Faults include attempting an invalid memory access, attempting to execute an
instruction in an invalid processor state, and attempting to execute an undefined instruction.

See Interrupt vector.

A 16-bit data item.

The behavior is not architecturally defined but is defined and documented by individual
implementations.

© 2019 Renesas Electronics Corporation 105 April 19, 2016

RRENESANS

Implementation-specific

Index register

Interrupt handler

Interrupt vector

Little-endian (LE)

Little-endian memory

Read

Region

Reserved

Thumb® instruction

Unaligned

Undefined

Unpredictable

The behavior is not architecturally defined and does not have to be documented by
individual implementations. Used when there are a number of implementation options
available and the option chosen does not affect software compatibility.

In some load and store instruction descriptions, the value of this register is used as an
offset to be added to or subtracted from the base register value to form the address that is
sent to memory. Some addressing modes optionally enable the index register value to be
shifted prior to the addition or subtraction. See also Base register.

A program that control of the processor is passed to when an interrupt occurs.

One of a number of fixed addresses in low memory or in high memory if high vectors are
configured that contains the first instruction of the corresponding interrupt handler.

Byte ordering scheme in which bytes of increasing significance in a data word are stored at
increasing addresses in memory.

See also Big-endian, Byte-invariant, Endianness.
Memory in which

. a byte or halfword at a word-aligned address is the least significant byte or halfword
within the word at that address

. a byte at a halfword-aligned address is the least significant byte within the halfword at
that address.

See also Big-endian memory.

Reads are defined as memory operations that have the semantics of a load. Reads include
the Thumb® instructions LDM, LDR, LDRSH, LDRH, LDRSB, LDRB, and POP.

A partition of memory space.

A field in a control register or instruction format is reserved if the field is to be defined by the
implementation or produces Unpredictable results if the contents of the field are not zero.
These fields are reserved for use in future extensions of the architecture or are
implementation-specific. All reserved bits not used by the implementation must be written
as 0 and read as 0.

One or two halfwords that specify an operation for a processor to perform. Thumb®
instructions must be halfword-aligned.

A data item stored at an address that is not divisible by the number of bytes that defines the
data size is said to be unaligned. For example, a word stored at an address that is not
divisible by four.

Indicates an instruction that generates an Undefined instruction exception.

Cannot rely on the behavior. Unpredictable behavior must not represent security holes.
Unpredictable behavior must not halt or hang the processor or any parts of the system.

Warm reset Also known as a core reset. Initializes the majority of the processor excluding the debug
controller and debug logic. This type of reset is useful when using the debugging features of
a processor.
WA See Write-allocate.
© 2019 Renesas Electronics Corporation 106 April 19, 2016

RRENESANS

WB
Word
Write

Write-allocate (WA)

Write-back (WB)

Write buffer

Write-through (WT)

WT

See Write-back.
A 32-bit data item.

Writes are defined as operations that have the semantics of a store. Writes include the
Thumb® instructions STM, STR, STRH, STRB, and PUSH.

In a write-allocate cache, a cache miss on storing data causes a cache line to be allocated
into the cache.

In a write-back cache, data is only written to main memory when it is forced out of the cache
on line replacement following a cache miss. Otherwise, writes by the processor only update
the cache. This is also known as copyback.

A block of high-speed memory, arranged as a FIFO buffer, between the data cache and
main memory, whose purpose is to optimize stores to main memory.

In a write-through cache, data is written to main memory at the same time as the cache is
updated.

See Write-through.

© 2019 Renesas Electronics Corporation 107 April 19, 2016

RRENESANS

3 DOCUMENT REVISION HISTORY

Revision Date Description
1.00 April 24, 2012 First release
1.01 May 9, 2012 Revision of copyright notices.
1.10 July 26, 2912 Further revision of copyright notices.
April 19, 2016 Changed to IDT branding.

http://www.idt.com/
http://www.idt.com/go/sales
http://www.idt.com/go/support
http://www.idt.com/go/glossary

IMPORTANT NOTICE AND DISCLAIMER

RENESAS ELECTRONICS CORPORATION AND ITS SUBSIDIARIES (‘RENESAS”) PROVIDES TECHNICAL
SPECIFICATIONS AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING
REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND
OTHER RESOURCES “AS IS” AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED,
INCLUDING, WITHOUT LIMITATION, ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
PARTICULAR PURPOSE, OR NON-INFRINGEMENT OF THIRD-PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for developers who are designing with Renesas products. You are solely responsible for (1)
selecting the appropriate products for your application, (2) designing, validating, and testing your application, and (3)
ensuring your application meets applicable standards, and any other safety, security, or other requirements. These
resources are subject to change without notice. Renesas grants you permission to use these resources only to develop an
application that uses Renesas products. Other reproduction or use of these resources is strictly prohibited. No license is
granted to any other Renesas intellectual property or to any third-party intellectual property. Renesas disclaims
responsibility for, and you will fully indemnify Renesas and its representatives against, any claims, damages, costs, losses,
or liabilities arising from your use of these resources. Renesas' products are provided only subject to Renesas' Terms and
Conditions of Sale or other applicable terms agreed to in writing. No use of any Renesas resources expands or otherwise
alters any applicable warranties or warranty disclaimers for these products.

(Disclaimer Rev.1.01)

Corporate Headquarters Contact Information

TOYOSU FORESIA, 3-2-24 Toyosu, For further information on a product, technology, the most
Koto-ku, Tokyo 135-0061, Japan up-to-date version of a document, or your nearest sales
www.renesas.com office, please visit www.renesas.com/contact-us/.
Trademarks

Renesas and the Renesas logo are trademarks of Renesas
Electronics Corporation. All trademarks and registered
trademarks are the property of their respective owners.

© 2026 Renesas Electronics Corporation. All rights reserved.

https://www.renesas.com/contact-us
https://www.renesas.com

	1 IDT’s ARM® Core
	2 ARM® Cortex™-M0 User Guide
	2.1 Introduction
	2.1.1 Scope of this Document
	2.1.1.1 Typographical Conventions

	2.1.2 About the Cortex™-M0 Processor and Core Peripherals
	2.1.2.1 System-Level Interface
	2.1.2.2 Integrated Debug Logic
	2.1.2.3 Cortex™-M0 Processor Features Summary
	2.1.2.4 Cortex™-M0 Core Peripherals

	2.2 Cortex™-M0 Processor
	2.2.1 Programmer’s Model
	2.2.1.1 Processor Modes
	2.2.1.2 Stacks
	2.2.1.3 Core Registers
	2.2.1.3.1 General Purpose Registers (R0-R12)
	2.2.1.3.2 Stack Pointer (PS)
	2.2.1.3.3 Link Register (LR)
	2.2.1.3.4 Program Counter (PC)
	2.2.1.3.5 Program Status Register (PSR)
	2.2.1.3.6 Exception Mask Register (PRIMASK)
	2.2.1.3.7 Control Register (CONTROL)

	2.2.1.4 Exceptions and Interrupts
	2.2.1.5 Data Types
	2.2.1.6 The Cortex™ Microcontroller Software Interface Standard (CMSIS)

	2.2.2 Memory Model
	2.2.2.1 Memory Regions, Types, and Attributes
	2.2.2.2 Memory System Ordering of Memory Accesses
	2.2.2.3 Behavior of Memory Accesses
	2.2.2.4 Software Ordering of Memory Accesses
	2.2.2.5 Memory Endianness

	2.2.3 Exception Model
	2.2.3.1 Exception States
	2.2.3.2 Exception Types
	2.2.3.3 Exception Handlers
	2.2.3.4 Vector Table
	2.2.3.5 Exception Priorities
	2.2.3.6 Exception Entry and Return

	2.2.4 Fault Handling
	2.2.4.1 Lockup

	2.2.5 Power Management
	2.2.5.1 Entering Sleep Mode
	2.2.5.2 Wakeup from Sleep Mode
	2.2.5.3 Power Management Programming Hints

	2.3 Cortex™-M0 Instruction Set
	2.3.1 Instruction Set Summary
	2.3.2 Intrinsic Functions
	2.3.3 About the Instruction Description
	2.3.3.1 Operands
	2.3.3.2 Restrictions when Using PC or SP
	2.3.3.3 Shift Operations
	2.3.3.4 Address Alignment
	2.3.3.5 PC-Relative Expressions
	2.3.3.6 Conditional Execution

	2.3.4 Memory Access Instructions
	2.3.4.1 ADR
	2.3.4.2 LDR and STR, Immediate Offset
	2.3.4.3 LDR and STR, Register Offset
	2.3.4.4 LDR, PC-relative
	2.3.4.5 LDM and STM
	2.3.4.6 PUSH and POP

	2.3.5 General Data Processing Instructions
	2.3.5.1 ADC, ADD, RSB, SBC and SUB
	2.3.5.2 AND, ORR, EOR and BIC
	2.3.5.3 ASR, LSL, LSR and ROR
	2.3.5.4 CMP and CMN
	2.3.5.5 MOV and MVN
	2.3.5.6 MULS
	2.3.5.7 REV, REV16 and REVSH
	2.3.5.8 SXT and UXT
	2.3.5.9 TST

	2.3.6 Branch and Control Instructions
	2.3.6.1 B, BL, BX and BLX

	2.3.7 Miscellaneous Instructions
	2.3.7.1 BKPT
	2.3.7.2 CPS
	2.3.7.3 DMB
	2.3.7.4 DSB
	2.3.7.5 ISB
	2.3.7.6 MRS
	2.3.7.7 MSR
	2.3.7.8 NOP
	2.3.7.9 SVC
	2.3.7.10 WFI

	2.4 Cortex™-M0 Peripherals
	2.4.1 About the Cortex™-M0 Peripherals
	2.4.2 Nested Vectored Interrupt Controller (NVIC)
	2.4.2.1 Accessing the Cortex™-M0 NVIC registers using CMSIS
	2.4.2.2 Interrupt Set-Enable Register (ISER)
	2.4.2.3 Interrupt Clear-Enable Register (ICER)
	2.4.2.4 Interrupt Set-Pending Register (ISPR)
	2.4.2.5 Interrupt Clear-Pending Register (ICPR)
	2.4.2.6 Interrupt Priority Registers (IPR0 – IRP2)
	2.4.2.7 Level-Sensitive and Pulse Interrupts
	2.4.2.8 NVIC Usage Hints and Tips

	2.4.3 System Control Block (SCB)
	2.4.3.1 The CMSIS Mapping of the Cortex™-M0 SCB Registers
	2.4.3.2 CPUID Register
	2.4.3.3 Interrupt Control and State Register (ICSR)
	2.4.3.4 Application Interrupt and Reset Control Register (AIRCR)
	2.4.3.5 System Control Register (SCR)
	2.4.3.6 Configuration and Control Register (CCR)
	2.4.3.7 System Handler Priority Registers (SHPR2-3)
	2.4.3.8 SCB Usage Hints and Tips

	2.4.4 System Timer (SysTick)
	2.4.4.1 SysTick Control and Status Register (SYST_CSR)
	2.4.4.2 SysTick Reload Value Register (SYST_RVR)
	2.4.4.3 SysTick Current Value Register (SYST_CVR)
	2.4.4.4 SysTick Calibration Value Register (SYST_CALIB)
	2.4.4.5 SysTick Usage Hints and Tips

	2.5 Glossary

	3 Document Revision History

