

To our customers,

Old Company Name in Catalogs and Other Documents

On April 1st, 2010, NEC Electronics Corporation merged with Renesas Technology

Corporation, and Renesas Electronics Corporation took over all the business of both
companies. Therefore, although the old company name remains in this document, it is a valid
Renesas Electronics document. We appreciate your understanding.

Renesas Electronics website: http://www.renesas.com

April 1st, 2010
Renesas Electronics Corporation

Issued by: Renesas Electronics Corporation (http://www.renesas.com)

Send any inquiries to http://www.renesas.com/inquiry.

Notice
1. All information included in this document is current as of the date this document is issued. Such information, however, is

subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please
confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to
additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.

2. Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights
of third parties by or arising from the use of Renesas Electronics products or technical information described in this document.
No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights
of Renesas Electronics or others.

3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.
4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of

semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software,
and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by
you or third parties arising from the use of these circuits, software, or information.

5. When exporting the products or technology described in this document, you should comply with the applicable export control
laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas
Electronics products or the technology described in this document for any purpose relating to military applications or use by
the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and
technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited
under any applicable domestic or foreign laws or regulations.

6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics
does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages
incurred by you resulting from errors in or omissions from the information included herein.

7. Renesas Electronics products are classified according to the following three quality grades: “Standard”, “High Quality”, and
“Specific”. The recommended applications for each Renesas Electronics product depends on the product’s quality grade, as
indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular
application. You may not use any Renesas Electronics product for any application categorized as “Specific” without the prior
written consent of Renesas Electronics. Further, you may not use any Renesas Electronics product for any application for
which it is not intended without the prior written consent of Renesas Electronics. Renesas Electronics shall not be in any way
liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an
application categorized as “Specific” or for which the product is not intended where you have failed to obtain the prior written
consent of Renesas Electronics. The quality grade of each Renesas Electronics product is “Standard” unless otherwise
expressly specified in a Renesas Electronics data sheets or data books, etc.

“Standard”: Computers; office equipment; communications equipment; test and measurement equipment; audio and visual
equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots.

“High Quality”: Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-
crime systems; safety equipment; and medical equipment not specifically designed for life support.

“Specific”: Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or
systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare
intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.

8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics,
especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation
characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or
damages arising out of the use of Renesas Electronics products beyond such specified ranges.

9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have
specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further,
Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to
guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a
Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire
control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because
the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system
manufactured by you.

10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental
compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable
laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS
Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with
applicable laws and regulations.

11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas
Electronics.

12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this
document or Renesas Electronics products, or if you have any other inquiries.

(Note 1) “Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its majority-
owned subsidiaries.

(Note 2) “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.

User’s Manual

ID78K0S-LCE Integrated Debugger
Preliminary

Document No. 50888-1
1999, 2000 NEC Electronics Inc.
All rights reserved. Printed in U.S.A.

Global Document No. U18154EU1V0UM00 (1st edition)

No part of this document may be copied or reproduced in any form or by any means without the prior written consent of NEC Electronics
Inc. (NECEL). The information in this document is subject to change without notice. All devices sold by NECEL are covered by the
provisions appearing in NECEL's Terms and Conditions of Sales only, including the limitation of liability, warranty, and patent provisions.
NECEL makes no warranty, express, statutory, implied or by description, regarding information set forth herein or regarding the freedom
of the described devices from patent infringement. NECEL assumes no responsibility for any errors that may appear in this document.
NECEL makes no commitments to update or to keep current information contained in this document. The devices listed in this
document are not suitable for use in applications such as, but not limited to, aircraft control systems, aerospace equipment, submarine
cables, nuclear reactor control systems and life support systems. “Standard” quality grade devices are recommended for computers,
office equipment, communication equipment, test and measurement equipment, machine tools, industrial robots, audio and visual
equipment, and other consumer products. For automotive and transportation equipment, traffic control systems, anti-disaster and anti-
crime systems, it is recommended that the customer contact the responsible NECEL salesperson to determine the reliability
requirements for any such application and any cost adder. NECEL does not recommend or approve use of any of its products in life
support devices or systems or in any application where failure could result in injury or death. If customers wish to use NECEL devices in
applications not intended by NECEL, customers must contact the responsible NECEL salespeople to determine NECEL's willingness to
support a given application.

i

Contents

1. OVERVIEW.. 1

1.1 Debugger.. 1

1.2 Functions.. 1

1.2.1 Operands.. 1

1.2.2 Source-Level Debugging Function... 1

1.2.3 Instruction-Level Debugging Function... 1

1.2.4 Low-Cost Emulator ... 1

1.2.5 Watch Function (Automatic Display Update Function When the Execution Pauses).................................... 1

1.2.6 Saving and Restoring the Debugging Environment .. 1

1.2.7 Displaying the Source Text in a Function ... 2

1.3 Input Conventions... 2

1.3.1 Character Set... 2

1.3.2 File Specification... 3

1.3.3 Operands.. 4

2. TERMINOLOGY .. 9

2.1 Debugging Modes... 9

2.2 Files... 9

2.3 Current File ..11

2.4 Functions..11

2.5 Current Function..11

2.6 Structures ...11

2.7 Stack Frame Number ...11

2.8 Line..12

2.9 Real-Time RAM Sampling...12

Contents

ii

3. WINDOW FUNCTIONS ...13

3.1 Basic Operations...13

3.1.1 Mouse ...13

3.1.2 Push Button and Function Button ..13

3.1.5 Scroll Bar..14

3.1.6 Menu Bar..14

3.1.7 Menu Command and Options...14

3.1.9 Status Bar...15

3.1.10 Drop-Down List..15

3.2 Active State and Static State...15

3.3 Errors and Warnings...15

3.3.1 Errors and Warnings During GUI Operation...15

3.3.2 Errors and Warnings Output by the Debugger...15

4. OPERATION...17

4.1 Overview...17

4.1.1 Windows...17

4.1.2 Dialog Boxes..20

4.2 Functional Overview...21

4.3 Detailed Functional Descriptions..23

4.3.1 Main Window ...23

4.3.2 Menus ...26

4.3.3 Dialog Boxes..36

(1) Configuration Dialog Box...36

(2) Extended Option Dialog Box...39

(3) Open Dialog Box...40

(4) Save As Dialog Box..42

(5) Download Dialog Box...44

(6) Upload Dialog Box ..46

(7) Debugger Option Dialog Box ..48

(8) Open Dialog Box...51

(9) Source Text Window...52

(10) Source Search Dialog Box ..55

(11) Symbol to Address Dialog Box ...56

(12) Quick Watch Dialog Box ..57

(13) Watch Window...58

(14) Add Watch Dialog Box ...59

(15) Local Variables in Watch Window..60

(17) Assemble Window ..61

Contents

iii

(18) Memory Window..64

(19) Memory Fill Dialog Box ..66

(20) Memory Copy Dialog Box..67

(21) Memory Compare Dialog Box...68

(22) Memory Compare Result Dialog Box ..69

(23) Stack Trace Window...70

(25) Event Manager ..75

(26) Event Link Dialog Box ..80

(27) Break Dialog Box..85

(28) Trace Dialog Box..87

(29) Trace View Window...90

(30) Register Window ..94

(31) SFR Window ...97

(32) Open Dialog Box ..99

(33) Save As Dialog Box...101

(34) Exit Debugger Dialog Box...104

(35) Pass Count Dialog Box (not supported)...105

(36) Delay Count Dialog Box..106

(37) Timer Dialog Box..107

(38) Flash Programming Dialog Box...107

5. FUNCTIONAL OVERVIEW..109

5.1 Operating Modes...109

5.1.1 Break Mode..109

5.1.2 Emulation Mode ..109

5.1.3 Trace Mode..109

5.2 Basic Functions...111

5.2.1 Clock Selection Function ...111

5.2.2 Mapping function...111

5.2.3 Stack area ..111

5.2.4 Reset function..111

5.2.5 Load function ...111

5.2.5 Emulation function ..113

5.2.6 Break Function ..117

5.2.7 Trace functions..119

5.2.8 Event setting and detection function..122

5.2.9 Register manipulation functions..124

5.2.10 Memory manipulation functions ...124

5.2.11 Save function...125

5.2.12 Time measurement function...125

5.2.13 Source debugging..125

Appendix A. Error Messages ..125

Appendix B. Key Functions ...135

Contents

iv

1

1. OVERVIEW

1.1 Debugger

The LCE-K0S integrated debugger (known as the ID or the debugger) operates using a dedicated parallel board

connected to an IBM PC-compatible host running Microsoft Windows.

1.2 Functions

This section describes the functions and features of the ID.

1.2.1 Operands

Debugging takes place in the Windows environment using a mouse. Buttons and menus are arranged on each

window. Related information is easily viewed from the display.

1.2.2 Source-Level Debugging Function

Referencing and setting variables and structures, displaying programs, and setting breakpoints is efficiently

performed at the source text level of function names and line numbers.

1.2.3 Instruction-Level Debugging Function

Referencing and setting symbols and register values, displaying programs, and setting breakpoints is efficiently

performed at the instruction level of labels and addresses.

1.2.4 Low-Cost Emulator

The detailed event setting functions of the low-cost emulator are used to set breaks and to trace programs.

1.2.5 Watch Function (Automatic Display Update Function When the Execution Pauses)

When the user program pauses, the values in the display window and display/setting window are automatically

updated.

1.2.6 Saving and Restoring the Debugging Environment

The debugging state is saved, and the saved conditions are restored.

1.2.7 Displaying the Source Text in a Function

The source text in a function is displayed by selecting the function from a list.

1. Overview

2

1.3 Input Conventions

1.3.1 Character Set

This character set can be used in the integrated debugger.

Table 1-1. Character Set

A B C D E F G H I J K L MUppercase Letters

N O P Q R S T U V W X Y Z

a b c d e f g h i j k l m

English Letters

Lowercase Letters

n o p q r s t u v w x y z

Numbers 0 1 2 3 4 5 6 7 8 9

Equivalent English Characters @ ? _

. , : ; * / + − ' < > ()Special Characters

$ = ! # []

Table 1-2. Character Descriptions

Character Name Main Use

. Period Bit position specifier

, Comma Delimiter between operands

: Colon Label delimiter

; Semicolon Comment start symbol

* Asterisk Multiplication operator

/ Slash Division operator

+ Plus Addition operator

− Minus Negative sign or subtraction operator

' Apostrophe Character constant, character string start and end symbol

< Inequality symbol Comparison operator

> Inequality symbol Comparison operator

(Left parenthesis Change in the operator precedence

) Right parenthesis Change in the operator precedence

$ Dollar sign Start symbol for relative addressing

= Equal sign Comparison operator

! Exclamation mark Start symbol for absolute addressing

Sharp Symbol denoting an immediate value

[Left bracket Indirect display symbol

] Right bracket Indirect display symbol

↵ Carriage return Only one (↵) is allowed before a line feed LF (0DH).

1. Overview

3

1.3.2 File Specification

A file is specified in the format primary-name[.file-type]

A directory is specified in the format [drive-name:][[\directory-name]...]

Table 1-3. File/Directory Naming

String Description

Primary name Character string up to 8 characters

File type Character string up to 3 characters

Drive name Only one character

Directory name Same format as the file name

Figure 1-1. File Specification

1. Overview

4

Table 1-4. Wild Cards

Character Description

* and ? Can be used in a path name or file name as wild cards

* Denotes any character string

? Denotes any one character (blank is also considered one character)

Notes:

1. If a wild card is specified, then the corresponding directory names under the directory and all of the file

names are displayed.

2. If a file name is directly specified, an error occurs when a wild card is used. For example, if these eight files

are saved in a directory, then the file names corresponding to the wild cards would be:

AAAAA.HEX, ABC.C, ABC.HEX, ABC.SYM, ABCDEFGH.HEX, AXYZ, BCDEFG.HEX, XYZ

Table 1-5. File Name Corresponding to Wild Card

Examples of Wild Card Specifications Corresponding Files

A*.* AAAAA.HEX, ABC.C, ABC.HEX, ABC.SYM, ABCDEFGH.HEX, AXYZ

A* AXYZ

A*.HEX AAAAA.HEX, ABC.HEX, ABCDEFGH.HEX

*.HEX AAAAA.HEX, ABC.HEX, ABCDEFGH.HEX, BCDEFG.HEX

A??.HEX ABC.HEX

A??.* ABC.C ABC.HEX, ABC.SYM

??? XYZ

???. XYZ

ABC.? ABC.C

ABC.??? ABC.C ABC.HEX, ABC.SYM

1.3.3 Operands

There are five types of operands:

§ Numerical values

§ Addresses

§ Registers

§ Symbols

§ Expressions and operators

1. Overview

5

(1) Numerical Values

Table 1-6. Numerical Values

Number

Input

Format Example(s)

Binary NY (Note 1) n...nY(Note 1) (n = 0, 1)

Octal NO (Note 1) n...nO(Note 1) (n = 0, 1, 2, 3, 4, 5, 6, 7)

Decimal n n...n nT(Note 1) n...nT(Note 1) (n = 0, 1, 2, 3, 4, 5, 6, 7, 8, 9)

Hexadecimal nH (Notes 1, 2) n...nH(Notes 1, 2) 0xn(Note 1) 0xn...n(Note 1) (n = 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F(Note 1)

Notes:

1. The suffixes (Y, O, T, H, 0x) and the hexadecimal letters can be either uppercase or lowercase.

2. If the first character is A to F, a 0 must be added at the beginning (for example, FFH → 0FFH).

(2) Addresses

An address is specified by a numerical value, symbol, or expression. If an address is specified by a numerical

value, a hexadecimal, decimal, octal, or binary number can be used.

(3) Registers

A general-purpose register is specified by an absolute name or function name. The PSW register has a name

assigned to each bit.

Table 1-7. Registers

Type Name Type Name

Control

registers

PC PSW Z

SP AC

PSW IE

CY

Name
Type

Absolute Name Function Name

General-purpose

registers

R0 X

R1 A

R2 C

R3 B

R4 E

R5 D

R6 L

R7 H

RP0 AX

RP1 BC

RP2 DE

RP3 HL

1. Overview

6

(4) Symbols

A symbol is any of the characters A to Z, a to z, @, ?, _ (underline), and 0 to 9. A symbol name must begin with a

character other than 0 to 9 and be no longer than 31 characters (maximum). If a symbol longer than 31 characters is

defined, then only the first 31 characters are valid.

v Uppercase letters A to Z are distinguished from lowercase letters a to z (case-sensitive).

v A symbol is defined by loading a load module file. It can be described instead of an address or numerical value,

but its valid range is determined by the source debugging data when assembled or compiled.

v Each valid range has several types of symbols.

Ø Public symbols (assembler, structured assembler, C) described by a symbol name

Ø Local symbols described by a file name or module name

§ Local symbols in a module (assembler and structured assembler languages)

§ Local symbols in a file (C language)

§ Local symbols in a function (C language)

v For each language used, the following are available:

Ø Assembler language and structured assembler language: label names, constant names, bit symbol names

Ø C language

§ Variable names (including point variable names, enumeration variable names, array names, structure

names, union names)

§ Function names and label names (if a C function name duplicates a register name, flag name, SFR

name, or SFR bit name, an "_" must be added immediately before the symbol to explicitly distinguish it)

§ Array elements, structure elements, union elements, bit fields (when the symbol is an array, structure,

or union)

(5) Expressions and Operators

(a) Expressions

An expression uses operators to combine constants, register names, SFR names, and symbols. If an SFR

name, label name, function name, or variable name is described as a symbol, then the address is operated

on as a symbol value. Elements other than operators forming an expression are called terms (constant,

label) and are the first term, second term, and so on from the left in the description.

(b) Operators

The types of operators available are listed in Tables 1-8, 1-9, and 1-10.

 Table 1-8. Arithmetic Operators

Symbol Meaning Description

+ Addition Returns the sum of the first and second terms.

− Subtraction Returns the difference between the first and second terms.

* Multiplication Returns the product of the first and second terms.

/ Division Divides the first term by the second term; returns the integer part of the result.

MOD Modulus Divides the first term by the second term and returns the remainder of the

result.

− sign Unary operator (negative) Returns the two's complement of the value of the term.

+ sign Unary operator (positive) Returns the two's complement of the value of the term.

1. Overview

7

Table 1-9. Logical Operators

Symbol Meaning Description

NOT Negation Inverts each bit in the term and returns the value

AND Logical product Returns the logical product of each bit in the first term and the second term

OR Logical sum Returns the logical sum of each bit in the first term and the second term

XOR Logical exclusive OR Returns the exclusive OR of each bit in the first term and the second term

Table 1-10. Other Operators

Symbol Meaning Description

(Left parenthesis

) Right parenthesis

An operation enclosed by parentheses () has priority over those outside the

parentheses

Remarks:

1. The left parenthesis and the right parenthesis are always used in pairs.

2. A character string can be described in the term in a comparison operation.

3. Operations are performed according to the following conventions:

§ The order of the operations follows the precedence of the operators.

§ If operators have the same precedence, the operation is from left to right.

§ An operation enclosed by parentheses () has precedence over those outside of parentheses.

§ Each term in an operation is treated as unsigned 32-bit data.

§ Operation results are handled as unsigned 32-bit data.

§ If an overflow occurs, the low-order 32 bits are valid and the overflow is not detected.

4. The operator precedence is as follows.

High ↑ (,)

− sign, NOT

*, /, MOD

+, −

AND

Low ↓ OR, XOR

(6) Terms

When a constant is described in a term, the following numerical values can be described.

§ For binary numbers: 0Y ≤ numerical value ≤ 11111111111111111111111111111111Y (32 digits)

§ For octal numbers: 0O ≤ numerical value ≤ 37777777777O

§ For decimal numbers: −2147483648 ≤ numerical value ≤ 4294967295 (a negative decimal number is

converted internally into a two's complement)

§ For hexadecimal numbers: 0H ≤ numerical value ≤ 0FFFFFFFFH

1. Overview

8

2. Terminology

9

2. TERMINOLOGY

This chapter describes the terminology related to the ID.

(1) Debugging Modes

(2) Files

(3) Current File

(4) Functions

(5) Current Function

(6) Structures

(7) Stack Frame Number

(8) Line

(9) Real-Time RAM Sampling

2.1 Debugging Modes

Three debugging modes are available from the Main window.

§ In source mode, a program is executed in one-line units of the source text.

§ In instruction mode, step execution is performed at the instruction level.

§ In auto mode, the mode is automatically detected based on the active window.

2.2 Files

The ID handles the following types of files:

§ *.C, *.ASM, *.S source files

§ *.LNK, *.LMF load module files

§ *.HEX hexadecimal files

§ *.PRJ project files

§ *.* display files

2. Terminology

10

2.3 Current File

The current file is the source file containing the instructions pointed to by the program counter (PC). If a line or a

function in the current file is specified in a command, the file name can be omitted.

File Specification Format

a. path name/file name

b. file name

§ In case a (when the path is specified), the file is read from or written to the directory given by the path.

§ In case b (when no path is specified), the file is read from or written to the current directory.

2.4 Functions

These functions form a C source program.

Function Display and Specification Format

a. file#_func

b. _func

(file: file name; func: function name)

§ In case a (when the file is specified), func is interpreted as a valid static function in the specified file.

§ In case b (when no file is specified), search for the corresponding function name first among the valid

static functions and then among the global functions in the current file.

 Function Specification Example

test.c#_calc_data "calc_data" static function in the "test.c" file

_main "main" function that can be searched from the current file

2.5 Current Function

The current function is the function containing the instruction indicated by the program counter (PC). If local

variables are accessed in the current function, the function name specification can be omitted.

2.6 Structures

The word structure refers to both the structures and the unions of the C language. A structure is called by using a

variable in the structure or the union without explicitly specifying a member.

2.7 Stack Frame Number

A stack frame number is a decimal number starting from 1. The functions in the stack are specified by the depth

of the stack frame. The largest stack frame number is for the current function.

2. Terminology

11

2.8 Line

The line specifies a particular line in the source file. The line display and specification format is

file:line

(file: file name; line: line number)

This line is interpreted as the line at the line number in the specified file.

Line Specification Example

test.c:100 Line 100 in the “test.c” file

2.9 Real-Time RAM Sampling

Even while a user program is executed, if the variables are allocated to a space where the memory contents can

be read or the memory displayed, the ID reads the memory contents and updates the display in real time. This

function is called the real-time RAM sampling function. The memory address space is called the real-time RAM

space, which is anything other than the unmapped area and SFR area.

2. Terminology

12

13

3. WINDOW FUNCTIONS

3.1 Basic Operations

The window interface is used to perform debugging operations. In other words, after selecting the debugging

target (variable, line, task, and so forth), you can select a corresponding debugging function using a function button.

Some menus are functionally equivalent to the function buttons, and debugging can also be performed using

shortcut keys from the keyboard.

These objects are used to manipulate the ID78K0S-LCE.

3.1.1 Mouse

Operation of the integrated debugger uses the left mouse button, unless

otherwise specified. There are three basic mouse operations.

Click Press the mouse button once and release.

Double click Consecutively press the mouse button twice and release.

Drag and drop While continuing to press the button, move to drag, and then

release the button to drop the element in place.

3.1.2 Push Button and Function Button

A push button is a thick, rectangular button used to display a bit map or character

string. Click the rectangular shape to start the corresponding process.

A function button starts a debugging function.

3.1.3 Check Box

A check box is used to turn an option on or off. Click the box to clear or

select the option. Multiple selections are possible.

3.1.4 Option Button

An option button indicates choices in a dialog box. Click the button to clear or

select the option. If two or more option buttons are grouped together, only

one can be selected.

3. Window Functions

14

3.1.5 Scroll Bar

The vertical and horizontal scroll bars are used to move through the contents of

the display vertically and horizontally, respectively. The scroll box shows the

current location of the display in proportion to the entire contents. Clicking the

vertical scroll arrow moves the display one line in the vertical direction. Clicking

the horizontal scroll arrow moves the display one line in the horizontal direction.

Dragging and dropping the scroll box moves the display to that relative position.

3.1.6 Menu Bar

The menu bar appears at the top of each window. Click a menu name to display the corresponding commands.

Alternatively, you can press the Alt key and the underlined letter in each name to perform the same operation.

3.1.7 Menu Command and Options

Each menu contains a series of commands and/or options. Click a

name to invoke the corresponding command. The same command

can be invoked using shortcut keys: CTRL + letter (where

CTRL refers to the CONTROL key and letter refers to the letter

underlined in each command and/or option). An operation that

can be invoked using shortcut keys has “CTRL + letter” displayed

to its right. Menu operations are described by the following

terminology.

1. “Item”

Indicates a command and/or option that initiates when the

item is selected.

2. “Item...”

Indicates a command and/or option that displays a dialog

box requiring a response from the user.

3. “Item �”

Indicates a command and/or option that displays a

submenu with additional choices.

3.1.8 Toolbar

The toolbar contains buttons that invoke frequently used commands. Each button is identified by a symbol

depicting the operation. Click the button to initiate the operation.

Scroll arrow

Scroll box

3. Window Functions

15

3.1.9 Status Bar

The status bar at the bottom of the window shows several pieces of information about the debugger and

emulator:

Ø Source file name and line number indicated by the program counter (PC)

Ø Function name indicated by the PC

Ø PC value

Ø CPU (µPD789xxx) status

Ø Status of the low-cost emulator

Ø Break cause

3.1.10 Drop-Down List

A drop-down list is a closed version of a list box with an arrow

next to it. Clicking the arrow opens the list. Highlight and click

an item in the list to select it.

3.2 Active State and Static State

In the active state, execution of a user program or command automatically updates values displayed in the

window. The static state maintains the values regardless of user program or command execution. When displayed

contents sometimes change because of user program execution, the display window or display/setting window can

switch to the active or static state. An active window can only display one type of window, but a static window can

simultaneously display multiple windows of the same type. The following procedures explain how to change a

window from active to static state and vice versa.

Active State → Static State Static State → Active State

1. Click Window → Static. 1. Click Window → Active.

3.3 Errors and Warnings

The LCE-K0S handles errors and warnings differently. Errors are generated by the debugger.

3.3.1 Errors and Warnings During GUI Operation

An error in GUI operation is regarded as a warning. If a warning occurs, the warning tone sounds or the

error/warning dialog box appears.

3.3.2 Errors and Warnings Output by the Debugger

If an error occurs, the Error/Warning dialog box appears.

: Before clicking
the arrow

: After clicking
the arrow

3. Window Functions

16

17

4. OPERATION

4.1 Overview

The LCE-K0S is composed of windows and dialog boxes. A dialog box contains command buttons and options

that enable you to invoke a command or specify settings. Windows can be minimized; dialog boxes cannot.

4.1.1 Windows

Windows are broadly classified by function into the following types.

• Execute-type window

• Display-type window

• Display/setting-type window

• Management-type window

(1) Execute-Type Window

The Main window is an execute-type window used to control the other windows and program execution. It

consists of a menu bar, control buttons, window display area, and status display area (Figure 4-1).

Figure 4-1. Execute-Type Window

4. Operation

18

(2) Display-Type Window

A display-type window has a location area and data display area where the contents of the target are displayed

and values cannot be changed (Figure 4-2). The Source Text, Stack Trace, and Trace View windows are

display-type windows.

Figure 4-2. Display-Type Window

(3) Display/Setting-Type Window

A display/setting-type window is used to display the contents and change the values of the target. Usually, only

the contents are displayed, but the values can be changed in Modify mode. There are two types of

display/setting-type windows: those opened in the Main window and those opened outside the Main window.

(a) Opened in the Main Window

This type of display/setting window consists of function buttons, a location area, and a data display area.

The Local Variable, Memory, SFR, and Disassemble windows are display/setting-type windows opened

from the Main window.

Figure 4-3. Display/Setting-Type Window Opened in Main Window

Location area Data display area

Function buttons

Location area

Data display area

Location area

4. Operation

19

(b) Opened Outside the Main Window

This type of display/setting window can be located anywhere outside the Main window, but it is always

displayed in front of the Main window and cannot be minimized. The window has a menu bar, function

buttons, a location area, and a data display area. The Register and Variable windows are both

display/setting-type windows opened outside the Main window.

Figure 4-4. Display/Setting-Type Window Opened Outside Main Window

(4) Management-Type Window

A management-type window manages the debugging settings and has a menu bar and data display area. The

Event Manager window is a management-type window.

Figure 4-5. Management-Type Window

4. Operation

20

4.1.2 Dialog Boxes

Dialog boxes are classified into two types.

• Modal dialog boxes

• Modeless dialog boxes

(1) Modal Dialog Boxes

From a modal dialog box, you cannot access other windows or dialog boxes. To do so, you must first close

the dialog box, either by waiting for the operation to finish or by clicking the button to cancel it.

(2) Modeless Dialog Boxes

From the modeless dialog box, you can access other windows or dialog boxes, even if the current operation

is still in progress.

There are seven types of dialog boxes:

■ Selection-type dialog box

■ Specification-type dialog box

■ Setting-type dialog box

■ Confirmation-type dialog box

■ Auxiliary-type dialog box

■ Display-type dialog box

■ Display/setting-type dialog box

(a) Selection-type dialog box

A selection dialog box allows you to select conditions. The Configuration, Project File Load, Upload, View

File Save, Load Module Selection, Project File Save, View File Load, and Source File Selection dialog

boxes are selection-type dialog boxes.

(b) Specification-type dialog box

A specification-type dialog box allows you to specify the conditions, usually in a text area. The Address

Specification, Source Path Specification, and Trace Window dialog boxes are specification-type dialog

boxes.

(c) Setting-type dialog box

A setting-type dialog box allows you to set conditions. The Extended Option Setting, Event Link, Trace,

Event Set, and Break dialog boxes are setting-type dialog boxes.

(d) Confirmation-type dialog box

A confirmation-type dialog box prompts for confirmation of a selected action. The Reset Debugger,

Error/Warning, and Exit Debugger dialog boxes are confirmation-type dialog boxes.

4. Operation

21

(e) Auxiliary-type dialog box

An auxiliary-type dialog box is used for the auxiliary operations in each window. The Variable View,

Memory Copy, Memory Compare, Add Variable, Memory Fill, and Search dialog boxes are auxiliary-type

dialog boxes.

(f) Display-type dialog box

A display-type dialog box temporarily displays data. The Memory Comparison Result and About dialog

boxes are display-type dialog boxes.

(g) Display/setting-type dialog box

A display/setting-type box has an area for setting conditions and displaying data. The Timer dialog box is a

display/setting-type dialog box.

4.2 Functional Overview

The table below lists and briefly describes the various windows and dialog boxes.

Table 4-1. List of Windows and Dialog Boxes (1/2)

Name Description

Main window The first window displayed after the debugger starts

Configuration dialog box Sets the debugger operation environment

Extended Option Setting dialog box Sets various extended options

Project File Load dialog box Reads in the debugging environment

Project File Save dialog box Saves the debugging environment

Load Module selection dialog box Reads in an object file or a symbol file

Upload dialog box Uploads the memory contents to a file

Source Path Specification dialog box Specifies the source path

Source File Selection dialog box Selects the source file displayed in the Source Text window

Source Text window Displays the source text

Search dialog box Searches for a character string in the current window

Symbol to Address dialog box Displays the address allocated to the symbol

Variable View dialog box Temporarily displays the variable values

Variable window Displays and changes variables

Add Variable dialog box Adds the displayed variables to the Variable window

Local Variable window Displays and changes local variables in the current function

Address Specification dialog box Specifies the display starting address

Disassemble window Displays disassembly of the program and assembles on-

line

Memory window Displays and changes the memory contents

Memory Fill dialog box Initializes the memory

Memory Copy dialog box Copies the memory

4. Operation

22

Memory Compare dialog box Compares the memory

Memory Comparison Result dialog box Displays the result of the memory comparison

Stack Trace window Displays the contents of the function's stack

Event Set dialog box Registers the event conditions

Event manager Manages each registered event condition

Table 4-1. List of Windows and Dialog Boxes (2/2)

Name Description

Event Link dialog box Registers the event link conditions

 Break dialog box Registers and sets the break event conditions

Trace dialog box Registers and sets the trace event conditions

Timer dialog box Displays the result of run time measurements

Trace View window Displays the trace result

Trace Window dialog box Sets the trace display conditions

Register window Displays and changes the registers

SFR window Displays and changes the SFR

View File Load dialog box Opens the window for referencing the current window

View File Save dialog box Saves the display contents of the current window in a file

Error/Warning dialog box Displays errors and warnings

Reset Debugger dialog box Resets the debugger and target CPU

About dialog box Displays the debugger version

Exit Debugger dialog box Exits the debugger

Mask Option setting dialog box Sets the mask option

Pass Count setting dialog box Sets the pass count

Delay Count setting dialog box Sets the delay count

Flash Programming dialog box Displays the flash programmer graphical user interface

4. Operation

23

4.3 Detailed Functional Descriptions

This section provides an in-depth description of each window or dialog box.

4.3.1 Main Window

The Main window automatically opens after completion of the initialization sequence and remains open until the

program is exited. The Main window has three modes: source mode controls debugging at the source level;

instruction mode controls debugging at the instruction level; and auto mode automatically detects the mode based

on the active window (default mode after initialization).

Figure 4-6. Main Window

The Main window is composed of a toolbar, window display area, and status display area.

(1) Toolbar

The toolbar has buttons for popular commands to be executed in one action. Each button has an easy-to-

understand graphical image that makes it readily identifiable. Commands can be invoked from the tool bar

or the menu bar. To hide the toolbar, click Option -> Tool Bar -> Hide.

Stops or pauses execution of the user program

Performs the Reset and Go commands sequentially

Executes the user program; remains depressed until after completion of program execution

Executes a function in real time before returning to the CALL function

4. Operation

24

Executes a program in single steps. Pressing the button once executes one instruction. Successively

pressing the button executes the corresponding number of instructions. Debugging at the source

level is in line units. Debugging at the instruction level is in instruction units.

Executes the next step. Steps over a CALL instruction by executing the called function in real time.

If the debugging takes place at the source level, step execution is in line units. If debugging takes

place at the instruction level, step execution is in instruction units.

Initializes the debugger, emulation CPU, and symbol data; opens the Reset Confirmation dialog box

Opens the source code to be displayed in the Source window

Downloads the load module file (LMF) to the debugger

Opens a previously saved project file

Displays the source text

Displays the assembly results

Displays the memory contents

Displays the selected variable

Displays the CPU registers and general-purpose registers and their contents

Displays the SFRs and their contents

Displays the local variables and values

Displays the stack contents

Displays the Trace windows

4. Operation

25

Opens the Event Manager

Opens the Event dialog box

Opens the Break dialog box

Opens the Trace dialog box

Displays the Timer dialog box

 Launches the flash programmer

(2) Window Display Area

This area displays the following program windows, all of which can be resized or minimized.

n Source Text window

n Disassemble window

n Local Variable window

n Trace View window

n Memory window

n SFR window

n Stack Trace window

(3) Status Display Area

Table 4-2. Program and LCE Status

Field Description
Source file name Displays the source file name and the source line number referenced by the program counter (PC)

value. If there is no file data, “---” is displayed.
Function name Displays the function name referenced by the PC value. If there is no file data, “---” is displayed.

PC value Displays the current PC value

CPU status Displays the CPU state (STOP, HALT modes, and so forth)

Status Displays the low-cost emulator state (RUN, BREAK modes, and so forth)

Source file name: line number

Function name

PC value

CPU Status

Status

4. Operation

26

4.3.2 Menus

(1) File Menu

Figure 4-7. File Commands

Table 4-3. File Command Descriptions

Command Description

Open If the Source Text window is active, opens the Source File Selection dialog box where you
can select a source file and click OK to open and view it. Otherwise, opens the View File
Save dialog box where you can click OK to view the current file.

Close Closes the current active window

Save As... Opens the File Save dialog box and allows you to save the current window in a new file

Download... Opens the Load Module Selection dialog box and allows you to select and download a LMF

Upload Uploads the current load module file to a hex file

Flash Program… Launches the flash programmer graphical user interface

Open… Opens the Project File Load dialog box where you can select and open a project file

Save Writes the current version to the project file opened previously

Project

Save As... Opens the Project File Save dialog box where you can click OK to save the current version

Debugger Reset… Opens the Reset Debugger dialog box where you can click OK to reset the debugger

Exit Opens the Exit Debugger dialog box where you can click OK to exit the debugger

4. Operation

27

(2) Edit Menu

Figure 4-8. Edit Commands

Table 4-4. Edit Command Descriptions

Command Description

Cut Cuts a selected string

Copy Copies the selected string to the clipboard

Paste Pastes the contents of the clipboard buffer to the position of the text cursor

Write in Latches the changes made in the window

Restore Cancels the changes to the window

Fill... Opens the Memory Fill dialog box where you can Initialize the memory

Copy... Opens the Memory Copy dialog box where you can copy the memory

Memory

Compare... Opens the Memory Compare dialog box where you can compare the memory

Edit Source Allows you to edit source code in the Source window, provided the debugger is invoked

from the Project Manager, available with the RA78K0S package

4. Operation

28

 (3) View Menu

Figure 4-9. View Commands

Table 4-5. View Command Descriptions

Command Description

Search... Opens the Search dialog box where you can search for strings or numerical values; same as

button.

Move... Moves cursor to specified address in the Memory or Assembly window or line number in Source Text window

Quick Watch... Views the highlighted variable from the source text in the Quick Watch window

Add Watch... Opens the Add Variable window where you can add a variable from the Source window to the Watch window

View Watch Displays the Watch window

Delete Watch Deletes the variable highlighted in the Watch window

Symbol... Displays the absolute address of a specific symbol

Event? Opens the Event Manager and displays event data

Mix Simultaneously displays C language and assembly language ode in the Source Text window

4. Operation

29

 (4) Option Menu

Figure 4-10. Option Commands

Table 4-6. Option Command Descriptions

Command Description

Tool Bar Selects to display or hide the toolbar

Status Bar Selects to display or hide the status bar

Button Selects to display or hide the buttons in each window

Source Mode Step executes at the source level

Instruction Mode Step executes at the instruction level

Auto Mode Automatically selects step execution mode

Configuration... Opens the Configuration dialog box, where you can set the environment

Mask Option... Opens the Mask Option Setting dialog box

Extended Option... Opens the Option Setting dialog box, where you can set the extended functions

Debugger Option… Opens the Debugger Option window, where you can set parameters for the debugger

Add I/O Port… Defines additional I/O ports

Coverage Not supported

4. Operation

30

(5) Run Menu

Figure 4-11. Run Commands

Table 4-7. Run Command Descriptions

Command Description

Restart Same as the button: restarts the debugger (Stop, Reset, Go)

Stop Same as the button: stops program execution

Go Same as the button: executes the program

Return Out Same as the button: executes the program in real time until returning to the CALL function

Step In Same as the button: executes the program in steps

Next Over Same as the button: executes the next step

Start From Here Sets the PC on the highlighted source line number or address

Come Here Executes the program in real time until the PC reaches the highlighted source line number or address

Go & Go Same as clicking the button when a break occurs: continues program execution or resumes

program execution if a break is generated by a break condition after the window is updated

Slowmotion Continues step execution

CPU Reset Same as the button: opens the Reset Debugger dialog box, where you can reset the target system

or the entire debugger

Change PC Sets the PC register to the address at the selected line

Break Point Sets the breakpoint in the selected line

Software Break Point Sets software breakpoint on the selected line

4. Operation

31

Table 4-7. Run Command Descriptions (continued)

Command Description

Delete All Software Break Deletes all defined software breakpoints

Uncond. Trace ON Enables the tracer and sets continuous tracing during program execution

Cond. Trace ON Enables the tracer and sets tracing that conforms to the trace conditions during program

execution

Timer Start Starts the timer function

Tracer Start Starts the trace function

Ignore Break Point Disables active breakpoints

(6) Event Menu

Figure 4-12. Event Menu Commands

Table 4-8. Event Command Descriptions

Command Description

Event Manager Opens the Event Manager window

Software Break Manager Opens the Software Break Manager window (Not supported)

Event… Opens the Event Set window, where you can define events in the Event Manager

Event Link… Creates complex sequential events

Break… Opens the Break dialog box, where you can set breakpoints

Trace.. Opens the Trace Set dialog box, where you can set conditions for the tracer

Snap Shot… Opens the Snap Shot window to capture contents of registers, memory fields, SFRs (not

supported)

Timer… Opens the Timer Setting window to set conditions for the timer

DMM… Not supported

Pass Count… Sets the number of occurrences of an event condition before the event is triggered (not supported)

Delay Count… Performs the number of traces specified by the delay count after the stop condition is satisfied

4. Operation

32

(7) Browse Menu

Figure 4-13. Browse Commands

Table 4-9. Browse Command Descriptions

Command Description
SourceText Same as the button: opens the Source Text window and displays the source text

Assemble Same as the button: opens the Assemble window and displays the assemble result

Memory Same as the button: opens the Memory window and displays the contents of memory

Watch
Same as the button: opens the Watch window and displays the values of the variables

Register Same as the button: opens the Register window and displays the register contents

Sfr Same as the button: opens the SFR window and displays the contents of the SFRs

Local Variable Opens the Local Variable window and displays the local variables

Stack Trace Same as the button: opens the Stack Trace window and displays the stack contents

Trace Same as the button: opens the Trace window

4. Operation

33

(8) Jump Menu

Figure 4-14. Jump Commands

Table 4-10. Jump Command Descriptions

Command Description
SourceText Displays the source text for the jump destination address specified by the data value in the current window. If

there is no line data in the jump destination address, jumping does not occur.
Assemble Displays the Assemble result for the jump destination address specified by the data value in the current window
Memory Displays the contents of memory, beginning at the jump destination address specified by the data value in the

current window

4. Operation

34

(9) Window Menu

Figure 4-15. Window Commands

Table 4-11. Window Command Descriptions

Command Description

New Window Opens a duplicate of the active window

Cascade Displays the windows in the Main window in a cascade

Tile Tiles the windows in the Main window on the display

Arrange Icons Rearranges the icons in the Main window

Close All Closes all of the windows except for the Main window

Refresh Refreshes the displayed windows

Active Allows displayed windows to refresh after execution

Static Preserves the values of the displayed windows during execution

4. Operation

35

(10) Help Menu

Figure 4-16. Help Commands

Table 4-12. Help Command Descriptions

Command Description

Help Topics Displays the Help window

Main Window Help Displays the Help window for the Main window

Current Window Help Displays the Help window for the current window

About... Displays information about the debugger

4. Operation

36

4.3.3 Dialog Boxes

(1) Configuration Dialog Box

The Configuration dialog box is used to display and set the operating environment of the low-cost emulator. The

dialog box opens automatically upon power-up. It can also be opened in the Main window. From the Option menu,

select Configuration….

During debugging, this dialog box can be used to modify and add pin mask settings, location settings, and

memory mapping settings as needed. The result of reading the project file is also reflected here.

Figure 4-17. Configuration Dialog Box

4. Operation

37

The Configuration dialog box has nine components.

(a) The Chip box allows you to select the emulation CPU upon initial startup.

(b) The Internal ROM/RAM box appears after the emulation CPU is selected and displays the CPU's internal ROM

and RAM sizes.

(c) The Clock box allows you to select the main and subclock settings

Main Clock Selections

Setting Description

5 MHz Built-in

10 MHz Built-in

Alternate User-installed crystal on the LCE

User Clock provided by user target

Subclock Selections

Setting Description

32 kHz Built-in

User Clock provided by user target

(d) The Voltage box is inactive. The LCE is driven by 3 volts or 5 volts, depending the jumper settings on the

motherboard (refer to document no. 50889, Getting Started, for more information.

4. Operation

38

(e) The Peripheral Break box is inactive.

(f) The Mask box masks the signal of the RESET pin from the target; used when the target is unstable during the

debugging phase.

(g) The Memory Mapping box is not supported.

(h) The Memory Attribute box is not supported.

(i) Command buttons

Button Description

Sets the current environment and closes the dialog box

Cancels the changes and closes the dialog box

Restores the previous environment

Opens a project file

Opens the Help window to explain the Configuration dialog box

4. Operation

39

 (2) Extended Option Dialog Box

The Extended Option dialog box allows you to display and set extended options for the debugger. From the

Option menu, select Extended Option… to open the dialog box.

Figure 4-18. Extended Option Dialog Box

(a) Trace Timetag Count Rate allows you to set the rate for the trace timetag; the Add Up Timetag check box

allows you to enable/disable the Add Up Timetag for display. (Not supported)

(b) Real-Time Internal Monitor Redraw allows you to set the rate (in 1 ms units) for real-time internal RAM

sampling.

(c) The break option On Mouse Click allows you to select mouse-driven software or hardware breaks (not

supported). The Break Sound check box allows you to enable/disable the break-triggered sound.

(d) Command buttons

Command Description

Accepts this change and closes the dialog box

Cancels this change and closes the dialog box

Restores the previous settings of the window

Opens the Help dialog box

4. Operation

40

(3) Open Dialog Box

From the Open dialog box, you can restore the debugging environment to its previous state. After a file is loaded,

the displayed window size and position revert to their previous states. (The analyzer relationship is not restored.)

To open the dialog box, select File -> Project -> Open....

Figure 4-19. Open Dialog Box

(a) Look in: Click the folder name to display the project files in that folder. The display formats are

[-x-]: Drive name

[xxx]: Directory name

(b) File name: Click the name of a .PRJ file to select it and then click Open. (You can also double-click the file

name to select and open it.)

(c) Command Buttons

Loads the selected project file and sets the environment

Closes the Project File Load dialog box

Opens the Help window

4. Operation

41

(d) Contents of load operation

The following items are set by loading the project file. However, the target device and the location data are

unchanged from when the debugger started.

Table 4-14. Load Contents

Window Setting Data

Configuration dialog box All of the items

Main window Display position; toolbar, status bar, and button display data; execution mode data;

trace on/off data

Load Module Selection dialog box Download file data

Extended Option Setting dialog box Setting data

Source Path Specification dialog box Source path data

Source Text window Window display data, font data

Disassemble window Window display data, display start address

Memory window Window display data, display start address

Stack Trace window Window display data

SFR window Window display data

Local Variable window Window display data

Trace View window Window display data

Event manager Window display data; all of the event data

Event Link dialog box Window display data

Break dialog box Window display data

Trace dialog box Window display data

Event Set dialog box Window display data

Register window Window display data; display bank

Variable window Window display data; displayed variable data

4. Operation

42

(4) Save As Dialog Box

The Save As dialog allows you to save the debugging environment, in other words, the active window. To open

this dialog box, select File -> Project -> Save As.

To save a previously loaded or saved project file with the same file name, select File -> Project -> Save. In this

case, the Save As dialog box does not open and the save is made to the existing file name.

Figure 4-20. Save As Dialog Box

(a) Save in: Click the folder name to display the project files in that folder. The display formats are

[-x-] : Drive name

[xxx]: Directory name

(b) File name: Click the name of a .PRJ file and then click Save. (You can also double-click the file name to save

it.)

(c) Command Buttons

Saves the environment in the selected file name

Cancels the selection

Opens the Help window

4. Operation

43

(d) Saved contents

The following items are saved in the project file.

Table 4-15. Contents for Saving

Window Setting Data

Configuration dialog box All of the items (target device, clock setting, pin mask setting, mapping data)

Main window Display position; tool bar, status bar, and button display data; execution mode

data, trace on/off data

Load Module Slection dialog box Download file data

Extended Option setting dialog box Setting data

Source Path Specification dialog box Source path data

Source Text window Window display data, font data

Disassemble window Window display data, display start address

Memory window Window display data, display start address

Stack Trace window Window display data

SFR window Window display data

Local Variable window Window display data

Trace View window Window display data

Event manager Window display data, all of the event data

Event Link dialog box Window display data

Break dialog box Window display data

Trace dialog box Window display data

Event Set dialog box Window display data

Register window Window display data, display bank

Variable window Window display data, displayed variable data

4. Operation

44

(5) Download Dialog Box

The Download dialog box allows you to download a file in one of the following formats to the LCE or target:

• Object file in the load module format (*.LNK)

• Intel extended hexadecimal format (*.HEX)

• Motorola hexadecimal S-type format (standard address) (*.HEX)

• Extended Tektronix hexadecimal format (*.HEX)

If a file other than an object file in load module format is loaded, source debugging is not possible.

To open the Download dialog box, select File -> Download....

Figure 4-21. Download Dialog Box

(a) Look in: Click the folder name to display the project files in that folder. The display formats are

[-x-]: Drive name

[xxx]: Directory name

(b) File name: Click the name of a file to select it and then click Open. (You can also double-click the file name to

select and open it.) The default extension is .LNK.

4. Operation

45

(c) Load and Reset allow you to set the load conditions, where

Symbol Specifies to read or not read symbol data

Object Specifies to read or not read object data

Reset Resets the symbol and CPU after downloading

Offset Address Specifies the offset address

(d) Command buttons

Opens the selected file

Cancels the changes and closes the dialog box

Opens the Help window

4. Operation

46

(6) Upload Dialog Box

The Upload dialog box allows you to specify the name and format of the memory contents to be uploaded. The

file format can be one of the following:

■ Intel extended hexadecimal format (*.HEX)

■ Motorola hexadecimal S-type format (standard address) (*.HEX)

■ Extended Tektronix hexadecimal format (*.HEX)

To open this dialog box, select File -> Upload....

Figure 4-24. Upload Dialog Box

(a) Save in: Click the folder name to display the project files in that folder. The display formats are

[-x-] : Drive name

[xxx]: Directory name

(b) File name: Click the name of a file to select it and then click Open. (You can also double-click the file name to

select and open it.) The default extension is .HEX.

4. Operation

47

(c) Save Address specifies the address range in memory to be uploaded.

(d) Save as type specifies the file format of the object to be uploaded.

Intel: Intel extended hexadecimal format

Motrola: Motorola hexadecimal format S-type format (standard address)

Tektro: Extended Tektronix hexadecimal format

Binary: Standard binary data format

(e) Command Buttons

Saves the memory contents in the address range to a file in the specified directory

Closes the dialog box

Opens the Help window

4. Operation

48

(7) Debugger Option Dialog Box

The Debugger Option dialog box allows you to specify the path for sources located in multiple directories. To

open the dialog box, select Option -> Debugger Option... from the Main window.

Figure 4-23. Debugger Option Dialog Box

(a) The Source Path box allows you to specify a path for the source file. For example, if the source were in

directories (1) a:\78k\c, (2) b:\src, and (3) c:\asm, then the source path would be a:\78k\c b:\src c:\asm.

(b) The Default Extension box allows you to specify the default extensions for the source file and the load module

file.

4. Operation

49

(c) The Open File History box displays the number of recently opened files under the File menu and allows for

easy loading of a file or project in the LCE.

(d) The Project File box allows you to enable or disable the auto save and auto load functions.

(e) The Tool Bar Pictures box sets the appearance of the icons on the Main window.

(f) The Tab Size box sets the tabs for the display format of the Source window, Assemble window, and so forth.

(g) The Startup Routine box indicates the start and end labels of the startup routine.

(h) The DisAssemble box specifies the display format for the Assemble window.

4. Operation

50

(i) The Watch Default box specifies the display format for the Watch window.

(j) Command Buttons

Accepts the source path setting and closes the dialog box

Cancels the source path setting and closes the dialog box

Restores the previous settings

Opens the Help window

Browses for the file

4. Operation

51

(8) Open Dialog Box

To display text in the Source Text window, select File -> Open... or press CTRL+O. The Source Text window must

be open to perform this operation.

Figure 4-24. Open Dialog Box

(a) Look in: Click the folder name to display the project files in that folder. The display formats are

[-x-] : Drive name

[xxx]: Directory name

(b) File name: Double-click the name of the source file to select and open it. In the Files of type line, select the

appropriate file extension: .C for C language, .S for structured assembly language, or .ASM for assembly

language.

(c) Command Buttons

Opens and displays the selected source file or function in the Source Text window

Closes the Source File Selection dialog box

Opens the Help window

4. Operation

52

(9) Source Text Window

To display source text, select Browse -> Source Text or click the command button. To display source text

from another window, use the jump function. Choose a pointer location and then select Jump -> Source Text or

press CTRL+U.

Table 4-16. Jump Function (Source Text Window)

Operating Method

Window Pointer (1) (2) (3)

Disassemble window Address display area

Memory window Address display area

Trace View window Trace result display area

Stack Trace window Stack frame number display area

Event Manager Event −

Register window Register −

Figure 4-25. Source Text Window

(a) Point mark area

The point mark area is the first column in the Source window. It is used to set and delete breakpoints at the

asterisk locations, and to display the event setting state.

4. Operation

53

i. Breakpoint set and delete functions

Clicking in this area allows you to set and delete breakpoints, as explained in the following table.

Table 4-17. Cursor Position for Breakpoint Set/Delete

Location Color Mouse Operation Operation

‘B’ mark is displayed. Red, black Click Delete the breakpoint

− Click Set the breakpoint‘B’ mark is not displayed or something else

is displayed. − Right-click Set the software breakpoint

ii. Event display function

This function displays the event settings. If an execution event or access fetch event is set in the

corresponding source line, the mark corresponding to that event type is displayed.

Table 4-18. Event Mark Display

Mark Mark Meaning

E Event condition is set

L Last phase in the event link is set

B Break event is set

T Trace event is set

A Multiple events are set

(b) Current PC position

The ‘>’ symbol points to the current PC value and highlights the line in yellow. Pressing the mouse at this

position displays the PC register value in a pop-up window.

(c) Line number area

The line numbers of the source text are displayed in this area. Highlighting and then right-clicking a line

displays a window where you can perform the following functions.

i. Come function

This function executes the user program until reaching the selected line. In this mode, currently set break

events are not generated. This function is executed by selecting the line numbers where the breaks should

occur, and then selecting Run -> Come Here from the Main window.

ii. Break event setting function

The break event is set at the first address corresponding to the selected line numbers. To set a breakpoint

using execution events, highlight the line number where the break event is set and then select Run -> Break

Point from the Main window.

iii. Jump function (Assemble or Memory)

This function jump to the first address corresponding to the selected line numbers in the Assemble window or

Memory window. The jump destination window is displayed from the jump pointer.

4. Operation

54

(d) Source display area

Source text can be displayed in the source display area. C and assembly text may be displayed simultaneously

in this window. Right-click in any part of the source display area and select Mix from the pop-up window.

(e) Command buttons

Search for a string in Source window

Search back for selected text in the Source window

Search forward for selected text in the Source window

Opens the watch dialog box and displays the highlighted variable from the Source window

Opens the Quick Watch window and displays the variables

Refreshes the Source Text window

Closes the Source window

4. Operation

55

(10) Source Search Dialog Box

This operation performs a data or string search and displays the search result in the active window. To open the

Source Search dialog box, click Search

from the Source Text, Assemble or Memory window.

Figure 4-26. Source Search Dialog Box

(a) Find What: allows you to specify the search data. By default, the string highlighted in the active window is

displayed, but when needed, changes can be typed from the keyboard.

(b) Match Case: allows you to specify whether to distinguish between upper- and lower-case letters. The default is

to match case.

(c) Direction: specifies whether to conduct a forward search (Up) or a backward search (Down).

(d) Command buttons

Searches for the specified search data in accordance with the conditions

Sets the data search

Exits the Search dialog box

Opens the Help window

4. Operation

56

(11) Symbol to Address Dialog Box

To display the address of a specified variable, select View -> Symbol... from the Main window.

Figure 4-27. Symbol to Address Dialog Box

(a) Variable specification area

The variable name and line number for the address conversion are specified as shown in the following

table. After the data is input, press the RETURN key from the keyboard to display the address value in the

variable address display area.

Function and variable <symbol name>

SFR Sfrname (SFT name)

To specify a function or variable name, use an underline character (_) at the beginning and the sharp (#)

character as the separator between a file name and a function or variable name.

(b) Variable address display area

This area displays the address of the variable specified in the variable specification area. The format can be

changed by

(c) Command buttons

Accepts settings and closes the dialog box

Closes window

Restores previous data

Opens the Help window

4. Operation

57

(12) Quick Watch Dialog Box

This dialog box allows you to temporarily display the value of the variable specified in the Source Text window.

To perform this operation, select the variable in the Source window and then select View -> Quick Watch

Figure 4-30. Quick Watch Dialog Box

(a) Name: allows you enter a variable name to be displayed in the Source Text window.

(b) Variable value: displays the specified variable value.

(c) Command buttons

Displays the number variable

Displays the format of the data

Closes the dialog box

4. Operation

58

(13) Watch Window

This window allows you to display (View mode) and change (Modify mode) the value of the variable specified in

the Source Text window. The variable display is added for each display requirement. If the same variable is added,

the addition is not displayed.

In the Main window, select View -> View Watch or highlight the variable in the Source window and then click the

Watch button in the source window.

Figure 4-31. Watch Window

(a) The variable name display area displays the variable names. The variables displayed with a “+” at the

beginning are pointer variables. By double-clicking a pointer variable, the data value indicated by the pointer is

displayed in the variable value display/setting area. The “+” display switches to a “–” display.

(b) The variable value display/setting area displays the variable values. When the variable is a pointer variable,

the address value or data value is displayed. The notation of the display may be changed by right-clicking the

value and selecting the desired notation from the pop-up window.

(c) Command buttons

Adds variable to the Watch window

Deletes selected variable from the Watch window

Scrolls up in the window

Scrolls down in the window

Refreshes values of the variables

Closes the window

4. Operation

59

(14) Add Watch Dialog Box

The variable displayed in the Watch window is added and registered. To open this dialog box, select View ->

Add Watch.

Figure 4-30. Add Watch Dialog Box

(a) Name: specifies the variable name to be added.

To specify a variable, use an underline character (_) at the beginning of the name. Use the sharp (#)

character as a separator between the file name and variable name.

Variables _fnc: function, variable name (for example, _int1)

file#_fnc: file = file name (for example, main.x#_int1)

SFR Sfrname: SFR name (for example, PCC)

(b) Radix: allows you to select the notation of the value of the specified variable.

Proper Automatically selects the proper format

Hex Hex format

Dec Decimal format

Oct Octal format

Bin Binary format

String String format (ASCII)

(c) Size and Number: allow you to specify the size and number of the added variable. Selecting C language in the

Type area cannot be specified.

i. Size: specifies the variable size: adaptive (automatically selects the format), byte, word, or double

word

ii. Number: specifies the number of variables

4. Operation

60

(d) Command buttons

The variable is added and registered to the Variable window

Closes the dialog box

Restores previous data

Opens the Help window

(15) Local Variables in Watch Window

This window allows you to display and change the local variables in the current function. The boundary line

between the local variable name display area and the local variable value display/setting area can be moved by

dragging and dropping the cursor once it changes from to ó.

To open the window, select Browse -> Local Variable... from the Main window.

Figure 4-31. Local Variables in Watch Window

(a) Display area displays the local variable names. A variable displayed with “+” at the beginning indicates a

pointer variable. Double-clicking a pointer variable displays that data value in the variable value display/setting

area. The “+” display switches to the “-” display.

(b) Local variable value display/setting area displays local variable values. When the variable is a pointer

variable, the address value or data value is displayed

4. Operation

61

(17) Assemble Window

This window allows you to assemble online and display the disassemble result. To open the Assemble window,
select Browse -> Assemble from the Main window or click .

To display the corresponding assemble line from another window, move the program cursor to the selected

position, right click and select Assemble.

Figure 4-33. Assemble Window

(a) Point mark area: breakpoints are set and deleted and events displayed in this area.

i. Breakpoint set/delete function

Clicking the mouse in this area sets and deletes breakpoints.

Table 4-20. Cursor Position for Breakpoint Set/Delete

Location Color Mouse Operation Operation

‘B’ mark is displayed. Red, black Click Delete breakpoint

− Click Set breakpoint‘B’ mark is not displayed or
something else is displayed. −

4. Operation

62

ii. Event display function

The setting states of various events are displayed. If an execution event or an access fetch event is set at

the corresponding assemble line, the mark corresponding to the event type is displayed.

Table 4-21. Event Mark Display

Mark Description

E Event condition is set

L Last phase in the event link is set

B Break event is set

T Trace event is set

A Multiple events are set

(b) Current PC location: Holding down the mouse at the current PC location displays the corresponding PC

register value in a pop-up window.

(c) Address display: The assemble starting address is displayed in this area. Highlighting a line and right-clicking

displays a pop-up window where you can perform the following functions.

i. Come function

This function executes the user program until reaching the selected address. In the Main window, select

Execute -> Come.

ii. Break event setting function

A breakpoint can be set at a selected address using an execution event. Select the address where you

want to set the breakpoint and select Run -> Break Point from the Main window.

iii. Jump function (Assemble or Memory)

With the selected address as the jump pointer, you can jump to the Source Text or Memory window. The

jump destination window is displayed from the jump pointer. Highlight the address destination in the

Source Text window and then select Jump -> Source Text... or press CTRL+U.

4. Operation

63

(d) Label display area displays the labels.

(e) Data display area displays the mnemonic data.

(f) The Mnemonic display/modify area displays the disassembly result and can be modified directly.

(g) Command Buttons

Searches for the highlighted string

Searches backward

Searches forward

Opens the Watch window with variable

Opens the Quick Watch window

Refreshes data from the window

Closes the window

4. Operation

64

(18) Memory Window

The Memory window allows you to display and change its contents. To open the window, select Browse ->
Memory... or click . Right-clicking any part of the window displays a pop-up window where you can change

the display format.

Figure 4-34. Memory Window

No ASCII Display

ASCII Display

(a) Address display area: displays the memory addresses using two functions.

4. Operation

65

(b) Memory display area displays the contents of memory, which can be modified directly.

(c) ASCII display area displays the contents of memory in ASCII format. The contents can be changed directly

from the window.

(d) Command buttons

Searches for the highlighted string

Searches backward

Searches forward

Refreshes data from the window

Closes the window

4. Operation

66

(19) Memory Fill Dialog Box

In this dialog box, the memory contents are initialized to the specified code. This dialog box is in the active

window state and can be opened from the Main window by selecting Edit → Memory → Fill....

Figure 4-41. Memory Fill Dialog Box

(a) Address range specification area specifies the address range for the memory contents to be initialized. The

input is from initialization-start-address to initialization-end-address.

(b) Data specification area specifies the initialization data, up to 16 bytes of string data.

(c) Command buttons

Initializes the memory

Restores the input data to the original value

Closes the Memory Fill dialog box

Opens the Help window

4. Operation

67

(20) Memory Copy Dialog Box

This dialog box is in the active window state and copies memory from one location to another. The dialog box

can be opened from the Main window by selecting Edit -> Memory -> Copy....

Figure 4-36. Memory Copy Dialog Box

(a) Address range specification area specifies the beginning and ending addresses of the copy source and the

beginning address of the copy destination.

(b) Command buttons

Copies the memory

Restores the input data to its original values

Closes the Memory Copy dialog box

Opens the Help window

4. Operation

68

(21) Memory Compare Dialog Box

This dialog box allows you to compare memory contents. This dialog box is in the active window state and

can be opened from the Main window by selecting Edit -> Memory -> Compare....

Figure 4-37. Memory Compare Dialog Box

(a) Comparison range specification area specifies the source and destination address of the memory contents.

Mem1: compare-source-starting-address − compare-source-ending-address .

Mem2: Input the address of the compare destination.

Click OK to start. If there are no differences, the Confirmation dialog box appears. Otherwise, the differences

are displayed in the Memory Comparison Result dialog box. To end the compare, click OK.

Figure 4-44. Confirmation Dialog Box

(b) Command Buttons

Restores the input data to its original values

Closes the Memory Compare dialog box

Opens the Help window

4. Operation

69

(22) Memory Compare Result Dialog Box

This dialog box displays the result of a memory comparison when the compare operation shows differences in

the memory contents.

Figure 4-39. Memory Compare Dialog Box

(a) Comparison result display area displays the memory comparison result.

Source Addr or Mem1 Addr displays the compare source address

where there was a comparison error.

Memory displays the data where there was a discrepancy.

Comparison source data is displayed on the left and comparison

destination data on the right.

Destination Addr or Mem2 Addr displays the destination address

where there was a comparison error.

(b) Command buttons

Closes the Memory Compare dialog box and highlights the searched address in the Memory

window

Opens the Help window

4. Operation

70

(23) Stack Trace Window

The stack contents of the current user program are displayed. To open the window, select Browse →
Stack Trace from the Main window or click the command button.

Figure 4-40. Stack Trace Window

(a) Stack frame number display area displays the number assigned to the stack contents. This number starts at 1

and becomes larger as the nesting of the stack becomes shallower. In other words, a function with a stack

number one less than the stack number for another function becomes the calling number of that function. This

area also has a jump feature that allows you to jump to the starting address of the function pointed to by the

selected stack frame number in the Source Text, Assemble, or Memory windows. To execute, select the stack

frame number, right-click and select either Source, Assemble, or Memory.

(b) Stack contents display area displays the stack contents in the format [file-name#function-name(parameters)].

The sharp (#) character is used as a separator between a file name and a function name.

(c) Command buttons

Refreshes the data in the window

Closes the Stack Trace window.

Caution: When functions such as noauto or norec do not move the frame pointer when the stack or -qf options in

the compiler are included for optimization, the stack trace display function is not properly displayed.

4. Operation

71

(24) Event Set Dialog Box

This dialog box allows you to register and display event conditions in the Event Manager. To open the dialog

box, select Event -> Event... in the Main window.

Figure 4-41. Event Dialog Box

A maximum of 64 KB fetch events and 256 data values can be registered as event conditions, where the data

value can be qualified as address, read, write or read/write values. However, the number of events that can actually

be used in a break and tracer is 3 points. The events that can be simultaneously used have 12 points and can be

set in multiple event conditions, such as breaks, tracers, and event links.

(a) Event name setting area selects the event name. “**NEW**” is displayed by default. Press to display

the list of event names. Event names can have a maximum of eight characters.

(b) Address setting area specifies address conditions in the format range 0 ≤ address value ≤ 0xffff. There are two

types of address conditions: those that set the address value and those that input the mask value.

4. Operation

72

i. Address

Input in the order of low-order-address − high-order-address .

The address condition has two possible settings.

1. Point setting: Set the point setting to only the low-order address, or set the same values in the low-

order address and the high-order address. The Mask setting can also be made at this time.

2. Range setting: Set the address range in the low-order address and the high-order address. The Mask

setting cannot be made at this time.

An address condition can also be specified by a symbol, as follows.

Function and variable _fnc (function or variable name)

file#_fnc (for static functions and variables)

SFR Sfrname (SFR name)

Line number in the source text file:no (file name and line number)

Function or variable names are specified with an underline character (_) at the beginning of the symbol

name. The sharp (#) character is used as a separator between a file name and a function or variable name.

The colon (:) is used as a separator between a file name and a line number.

ii. Mask

A mask can be set as an address condition. The default is 0x0000, which is the setting for no mask.

The mask is set by an OR condition.

Example: When the settings are Address 0x4000 − 0x4000 Mask 0xFF ,

the condition is matched for addresses 0x4000 to 0x40FF.

When the settings are Address 0x4000 − 0x4000 Mask 0x101 ,

the condition is matched for addresses 0x4000, 0x4001, 0x4100, and 0x4101.

(c) The Event Status area specifies the status condition for execution and access events, which can be

simultaneously determined.

Table 4-23. Contents of Status Condition

Status Event Type Meaning

Run Execution event Program execution

R Access event Data read

W Data write

R/W Data read/write

4. Operation

73

(d) Data setting area: specifies the data condition in the format 0 ≤ Data ≤ 0xff.

There are two types of data conditions: those that set the data value and those that input the data mask value.

i. Data specifies the data value, as follows.

Function and variable _fnc (function or variable name)

file#_fnc (for static functions and variables)

SFR Sfrname (SFR name)

Line number in the source text file:no (file name and line number)

Function or variable names are specified with the underline character (_) at the beginning and with the

sharp (#) character as a separator between a file name and a function or variable name. The colon (:) is

used as a separator between a file name and a line number.

ii. The Mask option sets a mask for the data value by means of an OR condition. The default is 0xff. The

data condition becomes invalid (matches the condition for any data).

Example: When the settings are Data Mask ,

the condition is matched when the data value is 0x7F.

When the settings are Data Mask ,

the condition is matched for the data values from 0x80 to 0x8F.

When the settings are Data Mask ,

the condition is matched when bit 1 is 1.

When the settings are Data Mask ,

the condition is matched when bit 1 is 0.

(e) The External Probe box is not supported.

(f) Event Manager

0x7F

0x80

0x02

0x00

0x00

0x0f

0xfd

0xfd

4. Operation

74

(g) Command Buttons

Accepts the settings and closes the window

Creates a new event

Enables the event (Event icon turns red)

Restores the event condition

Cancels the Event setting and closes the window

Opens the Help window

Opens the Event Link Setting window

Opens the Break Setting window

Opens the Trace Setting window

Not supported

Not supported

Not supported

Opens the Event Manager window

Displays the Event Manager in the Event Setting window

Opens a previously saved event setting

Removes the highlighted event

Displays detailed information regarding the event

4. Operation

75

(25) Event Manager

The Event Manager allows you to display and delete various events. In other words, an event condition

registered in the Event Set dialog box or Event Link dialog box can be assigned to a break or a trace. To open,

select Event → Event Manager... from the Main window.

Figure 4-42. Event Manager

Normal Display

Detailed display

i. Event display area displays icons of registered events.

Figure 4-43. Event Display Area

Normal View Detailed View

An icon is a mark indicating the event type and event name.

Table 4-24. Mark List

Mark Event name

4. Operation

76

Mark Description

Indicates an event condition

Indicates an event link condition

Indicates a break event

Indicates a trace event

The color of the letter displayed in the mark indicates the setting state and type of the event.

Table 4-25. Letter Color in Mark List

Letter Color Applicable Marks Description

Red
,

Indicates that events and event link conditions are registered

,
Indicates that an event is set. Satisfying a condition generates various

events.

Black
,

Indicates that an event is registered. Even if the condition is satisfied, an

event is not generated.

This area also has two functions.

i. Jump function

This function jumps to the Source Text window, Assemble window, or Memory window when the address

condition of the selected icon is used as the jump pointer. The Jump Destination window is displayed from

the jump pointer. To execute, select the icon. Right-click on the icon and select either Source, Assemble, or

Memory to jump to the respective window.

ii. Delete function

This function deletes the event registration and setting of the selected icon. If event condition E and event

link condition L are deleted, they cannot be used in events B and T. To use them in other events, first

delete the events being used. Select the icon → Delete.

iii. Event display

Figure 4-44. Event Display

4. Operation

77

The details for each event are displayed in Detailed View mode by right-clicking and selecting detail from the

pop-up window. The contents are displayed in order of status condition, address condition, address mask

condition, and data condition using the various keys as separators.

Table 4-26. Key Data Correspondence

For Event Conditions

Key Data Description

[S] Status condition

[A] Address condition

[M] Address mask condition

[d] Data condition

For Event Link Conditions

Key data Description

[P1] − [P4] nth event link condition

For Break and Trace Conditions

Key data Description

[B] Break condition

[Q] Qualify trace condition

Figure 4-45. Event Manager Event Info Window

4. Operation

78

iv. Command buttons

Opens the Event Setting window to create a new event

Opens the Setting File Selection dialog box and loads the event setting file (the event

register/setting contents before loading are lost)

Disables the highlighted event or event-based function

Deletes the highlighted event or event-based function from the Event Manager

Deletes all the events and event-based functions from the Event Manager

Displays the Event Info window

Closes the Event Manager

Sorts events by name

Sorts events by type (E=events, B=breaks, and so forth)

Unsorts registered events in the Event Manager

Displays the detailed information of the events

Hides the details of the events

Cancels the settings

v. Event Setting

i. Select Event -> Event… to open the Event Set dialog box.

ii. Set the conditions for Event01 and Event02.

iii. Select Event -> EventManager.… to see the events registered in the Event Manager.

Figure 4-46. Event Manager

iv. Open the Trace, Break, or Event Link dialog box.

v. In the Event Manager, drag your cursor from the E icon and drop it into the corresponding event box.
The cursor changes from to – , as follows: Event01– .

vi. Drag the cursor from the event box and drop it into the dialog box (Trace, Break, Timer, or Event Link)
to copy the icon. The cursor changes from – to OK .

vii. Enter the break event name and click the Set button to register the event.

4. Operation

79

Figure 4-57. Event Setting Example

(h) Events Managed by the Event Manager

Figure 4-48. Event-Related Images

4. Operation

80

(26) Event Link Dialog Box

Event link conditions are registered in this dialog box and then automatically displayed in the Event Manager.

From the Main window, select Event -> EventLink... to open the Event Link dialog box.

Figure 4-59. Event Link Dialog Box

(a) Functions

Event link conditions are set with only the execution event conditions registered in the Event Manager. An event

link condition can have up to four phases, but only one can be used at a time. When the event link condition is used,

break and trace events are ignored.

Events are generated during program execution in the order specified. However, if the conditions specified in the

last phase are satisfied before the conditions specified in phases 1 to 3, then the satisfied event conditions are

initialized and the first event condition becomes the detection target.

(b) Event Link

The Event Link box allows you to select and set an event link. Press the down scroll arrow to display the list of

event link names (maximum eight characters). **NEW** is the default.

(c) Link Conditions

The settings are made in the order of the event condition and the event detection. The order is set to Phase

1 → Phase 2 → Phase 3 → Phase 4. The setting does not have to include Phase 4. If the setting does not

include Phase 4, when an event condition set in the final phase is selected, the event is generated.

4. Operation

81

(d) Setting Event Link Conditions

i. Select Event -> EventSet... to open the Event Set dialog box.

ii. Create the event conditions for E_INIT, E_SUB0, E_SUB1, E_SUB2, and E_SUB4.

iii. Select Event -> EventManager... to open the Event Manager.

iv. Select Event -> EventLinkSet... to open the Event Set dialog box.

v. In the Event Manager, drag your cursor from the E icon and drop it into the corresponding event box.

The cursor changes from to – , as follows: Event01– .

vi. Drag the cursor from the event box and drop it into the Event Link dialog box. The cursor changes from
– to OK .

vii. Repeat steps vi and vii to register the settings listed in Table 4-27.

Table 4-27. Settings in Event Link Dialog Box

Setting Position Set Event

Phase 1 E_INIT

Phase 2 E_SUB0

Phase 3 E_SUB1

Phase 4 E_SUB4

viii. Enter the name of the event link (E_LINK).

ix. Click Set to register the condition for E_LINK in the Event Manager.

4. Operation

82

Figure 4-50. Setting Event Link Conditions

(e) Example

This example shows how to set event link conditions for the program shown in Figure 4-49, which has the

following structure.

Main processing

1. Initialization process (INIT)

2. Subprogram 0 (SUB0)

3. Condition decision

(a) Subprogram 1 (SUB1)

(b) Subprogram 2 (SUB2)

4. Subprogram 4 (SUB4)

The execution route of this program follows routes (1) and (2) shown in Figure 4-52. When an event is generated,

the event condition shown in Table 4-28 is set. Setting the event link condition shown in Figure 4-51 causes the

desired events to be generated.

Table 4-17. Setting in Event Link Dialog Box

Setting Position Set Event

Phase 1 E_INIT

Phase 2 E_SUB0

Phase 3 E_SUB1, E_SUB2

Phase 4 E_SUB4

4. Operation

83

Figure 4-51. Event Link Dialog Box

4. Operation

84

Figure 4-52. Example Using Event Link Conditions

Condition

(2)(1)

END

SUB4

SUB2SUB1

SUB0

Initializatio

START

Main Process

4. Operation

85

(27) Break Dialog Box

Break event conditions are set, registered, and displayed from this dialog box. In the Main window, select

Event -> Break… or in the Event Manager, select New -> Break....

Break event conditions are registered using the event and event link conditions registered in the Event

Manager. A maximum of 64K break event conditions can be registered, but only ten can be used simultaneously.

Figure 4-53. Break Dialog Box

(a) The Break Name box allows you to select a break event name using a maximum of eight characters (“NEW” is

the default). Press the down arrow to select from the list.

(b) The break condition box is where you set a break event condition by dragging the event icon and dropping it

into an event name. A maximum of 12 conditions can be set.

4. Operation

86

(c) Command buttons

Registers the break condition in the Event Manager

Creates a new break condition

Enables the break condition, whereby break events are generated

Restores the break condition

Disables the break condition, whereby break events are not generated

Opens the Help window

Opens the Event window to define new events

Opens the Add Link window to link events

Opens the setting window for the highlighted event icon

Removes the highlighted event

Displays the contents of the Event Manager window at the bottom of the Break window

(d) Example

i. Open the Event Set dialog box. Select Event -> Event....

ii. Create event conditions for Evt00001 and Evt00002.

iii. Open the Break dialog box. Select Event -> Break....

iv. Drag the event icon from the Event Manager to the Break window (the cursor changes from to –).

v. Drag the cursor and drop it into Break dialog box to copy the event (the cursor changes from – to OK).

vi. Enter the break event name: Brk00001.

vii. Click Set to register the break in the Event Manager. (The Set button becomes the Enable button.).

viii. Click Enable to enable the break event condition (the B marker changes from black to red).

Figure 4-54. Setting Break Event Conditions

4. Operation

87

(28) Trace Dialog Box

Trace event conditions are registered, set, and displayed in this dialog box and then automatically registered in

the Event Manager. A maximum of 64K trace event conditions can be registered, but only one is enabled.

From the Main window, select Event -> Trace... or click or from the Event Manager, select New -> Trace….

To operate the tracer in accordance with the trace event conditions, always select Run -> Cond. Trace ON from the

Main window.

Figure 4-55. Trace Dialog Box

(a) The Trace Name box allows you to select a break event name using a maximum of eight characters (“NEW” is

the default). Press the down arrow to select from the list.

There are three trace modes: All Trace, Qualify Trace, and Sectional Trace.

Table 4-29. Trace Modes

Mode Description

All Trace Traces all of the causes

Qualify Trace Traces only the locations with matched event conditions

Sectional Trace Traces between specified event conditions

4. Operation

88

When setting the trace mode, setting the menu bar in the main window and setting in this area are required. The

trace modes and each setting are shown below.

Table 4-30. Trace Mode Settings

Mode Execute Setting in Main Window Trace Mode Setting Delay Conditions

All Trace Uncond. Trace ON − None

Qualify Trace Cond. Trace ON Qualify Yes

Sectional Trace Cond. Trace ON Start and End Sections Yes

(b) The Qualify box sets event conditions for a qualify trace. To set an event condition, drag and drop the event

icons in the Event Manager. Only access events can be set in the Qualify box.

(c) Command buttons

Registers the trace to the Event Manager

Creates new trace

Enables the trace conditions (the T marker changes to red)

Restores the trace condition

Disables the trace condition (the T marker changes to black)

Opens the Help window

Opens the Event window to define new events

Opens the Add Link window to link events

Opens the setting window for the highlighted event icon

Removes the highlighted event

Displays the contents of the Event Manager at the bottom of the Break window

(d) Example

i. Select the Run -> Cond. Trace ON in the menu bar in the main window.

ii. Open the event set dialog box. Select Event -> Event....

iii. Enter event condition in the Event Set dialog box for two events named Evt00001 and Evt00002.

iv. Open the trace dialog box. Select Event -> Trace….

v. Drag the event icon from the Event Manager to the Trace window.

vi. Enter trace event name, for example TRACE.

vii. Press Set to register it in the Event Manager. (The Set button becomes the Enable button.)

viii. Press Enable to enable it.

4. Operation

89

Figure 4-56. Trace Window

4. Operation

90

(29) Trace View Window

The Trace View window displays the trace result. From the Main window, select Browse -> Trace or click .

Figure 4-57. Trace View Window

The tracer has a capacity of 65,535 frames and a ring structure. If more than 65,535 frames of data are written,

the oldest is overwritten. The oldest data is frame 0, and the frame numbers are displayed in order. During pauses

in program execution, the block data is written to the tracer and displayed as one horizontal line in each display

area.

Table 4-20. Block Data Write

Previous Execution Mode Next Execution Mode

In real-time execution During real-time execution; during step execution

In step execution During real-time execution; when the execution address was changed and

the execution was in steps

Table 4-21. Block Data

Normal Break

Step Break Step break

Event Break Event break

Fail-Safe Break

Fetch Guard Fetch guard break

Write Protect Write protect break

SFR Illegal SFR illegal access break

Stack Overflow Stack guard break; stack overflow break

Unspecified Illegal Other breaks

4. Operation

91

(a) The Point Mark box displays the event settings. If the execution or access fetch event is set at the

corresponding trace address, this box displays the mark corresponding to the event type.

Table 4-16. Event Mark Display

Mark Description

E Event condition is set

L Last phase of an event link is set

B Break event is set

T Trace event is set

(b) The Trace Mode box displays the type of trace mode, where A=All Trace, Q=Qualify Trace, and S=Step

Execution Trace.

(c) The Trace View window displays the trace results and is used for the jump and window synchronize functions.

Figure 4-58. Trace View Window

4. Operation

92

i. The Trace window can be synchronized with the Source, Assembly, or Memory windows so that the code

displayed in each window coincides with the Trace window. To initiate the window synchronize function

from the Trace window, right-click and select Window Synchronize <any window> on the pop-up window.

Table 4-17. Connection Window

Items in Window Connect Connect Window

SourceText SourceText window

Assemble Disassemble window

Memory Memory window

ii. Highlight the trace result display area of the Trace View window.

iii. With the address of the trace result selected in step ii as the pointer, highlight the display areas of each

window selected in step i.

The window synchronize function differs from the jump function, because the area selected in the Trace View

window moves and the result is reflected in each window of the connection target.

(d) Trace frame number display (Frame)

Range: 0 ≤ Trace frame number ≤ 65,535

(e) Fetch access display (Address Data Status)

Addr Fetch address display

Data Fetch data display

The fetch access display can be selected from the Trace Data Select dialog box. From the Main

window with the Trace window active, select the View -> Select….

Figure 4-59. Trace Data Select Dialog Box

4. Operation

93

(f) Data access result display can be selected from the Trace Data Select dialog box (Figure 4-59).

Table 4-25. Data Access Result Display

Status Display Contents

RW Data read/write by user program

RD Data read by user program

WD Data write by user program

Addr Address display

Data Data display

(g) Mnemonic display (DisAsm) displays the disassemble result and the status for BRM1 and M1.

4. Operation

94

(30) Register Window

General-purpose and control register values are displayed and changed in the Register window, which can be
opened from the Main window by selecting Browse -> Register or by clicking .

Figure 4-60. Register Window

(a) The control register box displays the control register values. To change a value, highlight and type over it.

Press ENTER to execute the change. Double-clicking on the register with a “t” expands the register display.

(2) The general-purpose register box displays and changes general-purpose register values. To change a value,

highlight and type over it. Press to execute the change. Right-click the display area and select between

Absolute name display and Function name display and the notation for display.

4. Operation

95

Figure 4-60. General-Purpose Register Display

Function Name and Register Pair Function Name and Register

Absolute Name and Register Pair Absolute Name and Register

4. Operation

96

Figure 4-61. View Menu (Register Window)

Absolute Name Displays the register names as absolute names

Functional Name Displays the register names as functional names

Bin Displays values in binary format

Oct Displays values in octal format

Dec Displays values in decimal format

Hex Displays values in hexadecimal format

4. Operation

97

(31) SFR Window

SFR values are displayed and changed in the SFR window, which can be opened from the Main window by
selecting Browse → Sfr or by clicking .

Figure 4-78. SFR Window

A read-only SFR is displayed in gray, and ones that cannot be changed are highlighted. The display format and

reading method of the SFR display can specified in View menu.

(b) The Name box displays the SFR names.

(c) The Attribute box displays the SFR read/write attributes, access type, and address. The attribute display can

be selected from the View menu.

Table 4-32. SFR Attributes

Attribute Description

R Read-only (displayed in gray)

W Write-only

R/W Read/write

4. Operation

98

Table 4-33. SFR Access Types

Access Type Description

1 Bit-accessible

8 Byte-accessible

16 Word-accessible

(d) The SFR contents box displays the SFT values based on the SFR attribute: write-only is displayed as “—“. An

SFR whose value changes when read in real time is displayed as “**”. To change a value, highlight and type

over it. The change is displayed in red. Press Enter to execute the change, which will then appear in black.

(e) Command buttons

Refreshes the displayed window

Closes the SFR Window

4. Operation

99

(32) Open Dialog Box

The view file corresponding to the current window when this dialog box was opened is read and the reference

window is opened. The Open dialog box can be opened in two ways. When the window to be referenced is a Local

Variable, Disassemble, Memory, Stack Trace, SFR, or Trace View window,

(a) The window you want to reference becomes the current window.

(b) Select File → Open.

Figure 4-63. Open Dialog Box

(a) The File name box is where you specify the file to be loaded. Click the file name to select it. Double-click the

file name or click OPEN to open the file.

Window Default Extension

Variable window VAR

Local variable window LOC

Disassemble window DIS

Memory window MEM

Register window REG

Stack trace window STK

SFR window SFR

Trace View window TVW

Event Manager EVN

4. Operation

100

(b) The Look in box specifies the folder containing the file to be loaded. Click the down arrow to view the list.

Double-click a folder name to display its contents.

(c) Command buttons

Opens the file selected

Closes the dialog box

Opens the Help window

4. Operation

101

(33) Save As Dialog Box

The Save As dialog box is used to save the contents of the current window. When the window to be saved is a

Local Variable, Disassemble, Memory, Stack Trace, SFR, or Trace View window,

1. The window to be saved becomes the current window.

2. Select File -> Save As... in the Main window.

Figure 4-81. Save As Dialog Box

When the window to be saved is a Local Variable, Disassemble, Variable,

Stack Trace, SFR or Register window, or a window in the hold state:

4. Operation

102

Figure 4-81. Save As Dialog Box (continued)

When the window to be saved is a Memory window in the active state:

 When the window to be saved is a Trace View window in the active state:

4. Operation

103

(a) The File name: box is where you specify the file name to be saved. Select and highlight a file name. Double-

click the file name or click SAVE to save the file. The default extensions are listed in the following table.

Window Default Extension

Variable window VAR

Local variable window LOC

Disassemble window DIS

Memory window MEM

Register window REG

Stack trace window STK

SFR window SFR

Trace view window TVW

Event manager EVN

(b) The Save in: box specifies the folder in which to save the file. Double-click the folder to display its contents.

(c) The Save range box is displayed when the window to be saved is a Memory or a Trace View window.

i. When the current window is a Memory window, this box specifies an address range.

ii. When the current window is a Trace View window, this box specifies the range to be saved, where the

specification range is 0 ≤ frame number ≤ 65,535.

The Save Message box appears if a range above 100 frames is specified. To abort the save, click STOP.

Figure 4-82. Save Message

(d) Command buttons

Saves the selected window to the specified name

Closes the dialog box

Opens the Help window

4. Operation

104

(34) Exit Debugger Dialog Box

The Exit Debugger dialog box allows you to save the debugging environment in a project file and exit the

debugger. From the Main window, select File -> Exit.

Figure 4-66. Exit Debugger Dialog Box

Clicking OK in this dialog box when the Save Project file option is enabled opens the Save dialog box where you

can save the current debugging environment in a project file. After the save operation, the project windows closed

and exits the program.

If the Save Project file is not selected (default), clicking OK closes the windows and exits the program.

Command buttons

If the Save Project file option is selected, OK opens the Save dialog box, closes the windows and exits the

program

If the Save Project file is not selected, OK closes the windows and exits the program

Cancels the operation

Opens the Help Window

4. Operation

105

(35) Pass Count Dialog Box (not supported)
The Pass Count dialog box is not supported at this time.

Figure 4-88. Pass Count Dialog Box

4. Operation

106

(36) Delay Count Dialog Box

The Delay Count dialog box is where you set delay count conditions. From the Main window, select Event ->

Delay Count….

Figure 4-89. Delay Count Dialog Box

After the stop condition is satisfied, the number of traces specified in the delay count condition is performed.

(a) The Delay Count box allows you to specify FIRST, MIDDLE, or LAST.

Table 4-40. Delay Count Condition

Condition Meaning

FIRST Stops tracing after approx. 8,000 frames

MIDDLE Stops tracing after approx. 4,000 frames

LAST Stops tracer immediately

When Run -> Cond. Trace ON is set, conditions are effective for delay counts and all trace/qualify traces.

Command buttons

Accepts the change and closes the dialog box

Restores the default value

Closes the Delay Count dialog box

Opens the Help window

4. Operation

107

(37) Timer Dialog Box

The timer function measures run time from the beginning of execution until a break. The Timer dialog box is

invoked by selecting Event -> Timer… from the Main window. The Timer dialog box only supports the Run-Break

(Run until Break) function. Event-based timing is not possible.

Figure 4-69. Timer Dialog Box

(38) Flash Programming Dialog Box

The K0S-LCE emulator system incorporates a fully functional flash programmer within the motherboard unit.

The programmer’s graphical user interface (GUI) may be invoked from the Main window by selecting File -> Flash

Program or clicking .

Figure 4-70. Flash Programming Dialog Box

108

(a) The Filename box allows you to specify the name of a .BIN or .HEX file to be programmed.

(b) The Device box displays the device detected after you click .

(c) The Status box displays the status of each programming operation.

Table 4-41. Programming Status

Button While Wxecuting Successful Not Successful

SSig Chk SSig checking… Device name displayed in Device box Unrecognized Device

Blank Chk Blank checking… Blank Not Blank

Erase Erasing… Erased Failed

Write Writing… Done Failed

Verify Verifying… Verified Failed

(d) Programming functions

Performs silicon signature to check for the device

Checks whether the device is blank

Erases the device completely

Programs the device with the name specified in the Filename box

Verifies the content of the device

Performs Silicon Signature Check, Blank Check, Erase (if necessary), Write, and Verify in sequence.

(e) Command buttons

Closes the dialog box

Opens the Help window

109

5. FUNCTIONAL OVERVIEW

This chapter describes the ID’s functional operation.

5.1 Operating Modes

The ID has three modes that control system operation and the emulation and analyzer functions (Table 5-1). The
operating mode is shown on the status bar in the Main window.

Table 5-1. Operating Modes

Mode CPU Tracer

Break mode Disabled Disabled

Emulation mode Enabled Disabled

Trace mode Enabled Enabled

5.1.1 Break Mode

In Break mode, the emulation and analyzer functions are disabled.

5.1.2 Emulation Mode

In Emulation mode, the emulation function is enabled and the trace function is disabled. The user program is
executed and the analyzer functions are performed.

5.1.3 Trace Mode

In Trace mode, the emulation and analyzer functions are enabled.

Figure 5-1. Example of System Operation

���Stop ��Stop

Generated event
(command)

Emulation function

���Stop Run Run��Stop ���StopAnalyzer function

Start
execution

Event
condition

match
Event
delay

Restart
tracer

Stop
tracer

Forced
stop

Delay period

Real-time execution

110

5.2 Basic Functions

This section describes the ID’s debugging functions.

5.2.1 Clock Selection Function

This function specifies the clock source to be supplied to the target device and is set at the time of power up or by
means of the Configuration dialog box. There are two methods for supplying the clock.

5.2.2 Mapping function

This function enables you to map address regions, except those for internal ROM and the SFRs. Mapping is set at
power up or by means of the Configuration dialog box.

5.2.3 Stack area

Creating a stack area prevents stacking outside the stack area. If the target device attempts to perform stacking
outside the stack area, the system generates a stack overflow break condition.

5.2.4 Reset function

This function resets the LCE or the target device and is specified in the Reset Debugger dialog box.

5.2.5 Load function

This function separately loads the debugging environment, object files, load module files, and symbol files. Two
types of files are loaded: a view file for screen reference and a data file that updates the data in the ID. A view file
records screen data.

Table 5-2. View Files
File Window Description

Variable view file
(File name: XXXXXXXX.VAR)

Variable window Stores the variable data

Disassemble view file
(File name: XXXXXXXX.DIS)

Disassemble window Stores the disassemble data

Memory view file
(File name: XXXXXXXX.MEM)

Memory window Stores the memory data

Register view file
(File name: XXXXXXXX.REG)

Register window Stores the register data

Stack trace view file
(File name: XXXXXXXX.STK)

Stack trace window Stores the stack trace data

SFR view file
(File name: XXXXXXXX.SFR)

SFR window Stores the SFR data

Local variable view file
(File name: XXXXXXXX.LOC)

Local variable window Stores the local variable data

Trace view file
(File name: XXXXXXXX.TVW)

Trace view window Stores the trace data

111

Table 5-3. Data Files
File Window Description

Object file
(File name: XXXXXXXX.HEX)

Load Module Selection dialog box Stores the object code (Motorola , Intel) of the user
program

Symbol table file
(File name: XXXXXXXX.SYM)

Load Module Selection dialog box Stores the symbols defined in the source by the user
for the user program

Load module file
(File name: XXXXXXXX.LMF or

XXXXXXXX.LNK)

Load Module Selection dialog box Stores the object code and symbols of the user
program and the source data

Project file
(File name: XXXXXXXX.PRJ)

Project File Load dialog box Stores the debugging environment and sets the data in
the:

• Configuration dialog box

• Extended Option Setting dialog box

• Load Module Selection dialog box

• Source Text window

• Source Path Specification dialog box

• Disassemble window

• Memory window

• Stack Trace window

• SFR window

• Local Variable window

• Trace View window

• Event manager

• Event Link dialog box

• Break dialog box

• Trace dialog box

• Timer dialog box

• Register window

• Variable window

Event setting file
(File name: XXXXXXXX.EVN)

Event Manager Stores the event setting data

112

5.2.5 Emulation function
The emulation function starts user program execution by the target device and the analyzer.

Table 5-4. Real-Time Execution

Command Function

GO () Executes the program starting from a specified address and continuing until a break event is encountered;

each analyzer executes the program, entering the stop state based on each event

RETURN () Executes the program in real time until returning to the CALL function; no action without a CALL function

GO & GO After a break event, repeats program execution in real time and updates window

COME Executes the program in real time until reaching the target address or source line; does not generate
break events during execution

CPU RESET & GO Executes the program in real time after the emulation CPU is reset

(a) GO Command

Real-time execution by the GO command executes the user program from the specified address and stops
execution of the user program when a break event is generated (Figure 5-2). Each analyzer enables program
operation, and executes or enters the stop state based on each event.

Figure 5-2. GO Command Example
BRKGo

Go: Go command issued, BRK: Break event

Tracer

CPU

Time

: Stopped : Executing

Timer

113

(b) RETURN Command
Real-time execution by the RETURN command executes in real time until returning to the CALL function
(Figure 5-3).

Figure 5-3. Conceptual Diagram of RETURN Command

CALL: Call instruction (CALL, CALLF, CALLT, BRK, BRKCS)

RET: Return instruction to the calling function

Start of program

Return command
stops executing.

Return command issued.

CALL CALL

CALL

RET

RET
RET

RET

CALL

: Move between functions

: Program execution by the Return command

: Program execution by a command other than
 the Return command

The RETURN command sets an execution break at the return address of the function and executes in real time
(Figure 5-4).

Figure 5-4. Example of RETURN Command

BRK BRK BRK Return addressReturn

Return: Return command issued, BRK: Break event, Return address: Return address of the function

Analyzer

CPU

Time

: Stopped : Executing

(c) GO & GO Command

The GO & GO command executes the program from the specified address. When a break event is generated,
the program stops execution and updates the screen of each window. Execution begins again starting from the
address where the program stopped. The process repeats until the STOP command is issued.

114

Each analyzer enables program operation, executing the program according to each event and stopping upon
command (Figure 6-5).

Figure 5-5. Example of GO & GO Command

��
��

�� ��
��

��
��

��
��

��

BRK BRK BRK StopGo&Go

Go&Go: Go & Go command issued, BRK: Break event, Stop: Stop command issued

Analyzer

CPU

Time

: Stopped : Executing : Updating the screen

(d) COME command
To execute a COME command, move the cursor to the location in the Source Text or Disassemble window

where you want to stop program execution. Issue the COME command to execute the program starting from the
address in the PC register continuing until reaching the specified stop address. A break event does not cause a
break during program execution (Figure 6-6).

Figure 5-6. Example of COME Command

BRK BRK BRK CursorCome

Come: Come command issued, BRK: Break event; Cursor: Executes the cursor setting address

Analyzer

CPU

Time

: Stopped : Executing

(e) CPU RESET & GO command
The CPU RESET & GO command resets the emulation CPU and executes the program by the reset vector

(Figure 5-7). The operation before a program is executed and after the emulation CPU is reset is identical to a GO
command.

Figure 5-7. Example of CPU RESET & GO Command

��

CPU Reset&Go BRK

CPU Reset&Go: CPU Reset & Go command issued, BRK: Break event

Tracer

CPU

Time

: Stopped : Executing

��
��

: Resetting

115

Table 5-5. Non-Real-Time Execution

Command Function

Step executes at the source level in Source mode Step ()

Step executes at the instruction level in Instruction mode

Next step executes at the source level in Source mode Next ()

Next step executes at the instruction level in Instruction mode

Slowmotion Continuously step executes

Non-real-time execution functions are broadly classified into functions that execute in steps.

(d) STEP command

The STEP command step executes the program in one-line segments starting from a specified source line in
Source mode or instruction line in Instruction mode (Figure 5-8). After execution, each window is updated.

Figure 5-8. Example of STEP Command

� ���� �

Step 1 line ends

Analyzer

CPU

Time

Step

Analyzer

CPU

Time

: Stopped : Executing 1 instruction��: End of step execution confirmed

Step: Step command issued, 1 line ends: End of instruction execution of one line

In the source mode

In the instruction mode

(e) NEXT command

The NEXT command varies depending on whether a CALL statement is executed or a statement other than a
CALL statement is executed (Figure 5-9). The CALL statement becomes one of the following instructions, depending
on the debugging mode.

• In Source mode, CALL becomes the line calling the function
• In Instruction mode, CALL becomes the CALL, CALLF, CALLT, BRK, and BRKCS instructions

When executing the CALL statement, the NEXT command sets the break in the line or instruction following the CALL
statement and then executes it in real time. When executing a statement other than the call statement, the NEXT
command is identical to a STEP command.

116

Figure 5-9. Conceptual Diagram of NEXT Command

Instruction returning to the calling function

Next command
issued

Executing program

Call statement

Next instruction

Subroutine (function)

(Step execution)
 •Window update
 •Added trace
 •Execute only one step

(Step execution)

Next real-time execution
 •No window update
 •Real-time execution
 •No trace added
 •Interrupt: Enabled

(f) SLOWMOTION command

The SLOWMOTION command executes the program beginning from the specified address in steps of one-line
units in Source mode or one-instruction units in Instruction mode. The window is updated after each step. Execution
in this manner continues until the STOP command is issued.

5.2.6 Break Function

The break function stops execution of the user program by the emulation CPU and stops the analyzer (Table 5-6).
The four types of break functions are broadly divided into the following:

♦ Event detected break
♦ Break caused by satisfying a condition during step execution
♦ Forced break
♦ Fail-safe break

117

Table 5-6. Break and Emulation Functions

Event-Detected Break
Break Caused by

Satisfying a
Condition During
Step Execution

Forced Break

Fail-Safe Break

Real-time execution by the
Go command

 ×

Real-time execution by the
Go & Go command

 ×

Real-time execution by the
Come command

× ×

Real-time execution by the
CPU Reset & Go command

 ×

Non-real-time execution by
the Step command

×

Non-real-time execution by
the Return command

×

Non-real-time execution by
the Next command

×

Non-real-time execution by
the Slowmotion command

× ×

(1) Event-detected break

An event-detected break stops user program execution after detecting a specified event condition. This type
of break is valid for the GO, GO & GO, and CPU RESET & GO commands. However, after an event-detected
break in the GO & GO command, each window is redrawn and the program is executed again. The event
detected conditions must set the break events in the Event Set dialog box, Event Manager, and Break dialog box.

(2) Break caused by satisfying a condition during step execution

A break caused by satisfying a condition during step execution stops program execution by satisfying the
stop condition of each command (STEP, NEXT, SLOWMOTION). In order to repeat the execution, stopping, and
condition confirmation for each instruction, the processing time is delayed compared to real-time execution.

(3) Forced break

A forced break forcibly stops the execution of a user program and is valid for all of the commands executed
in the program. There are two types of forced breaks: those resulting from a STOP command and those
resulting from a RESET command. The STOP command is used to temporarily stop a program; the RESET
command is used to execute a program starting from the beginning.

(4) Fail-safe break
The fail-safe break stops execution when the user program is prohibited from using the memory and the

registers. There are three types of fail-safe breaks: a nonmapping break generated when a nonmapping region
is accessed; a write-protected break generated when writing to memory that cannot be written (such as ROM),
and an illegal SFR access break generated after illegal access to an SFR region. A fail-safe break occurs if
there is a problem in the user program or a mistake in the environment settings of the debugger.

5.2.7 Trace functions

A trace function accesses the memory during user program execution and writes in real time data such as external
sense clip values to the trace memory. With the data written in the trace memory, the execution process of the target

118

program can be examined by opening the Trace View window. The trace conditions can be set in the Trace dialog
box. The settings for the trace data display can be specified in the Trace Data Select dialog box. The main functions
related to trace execution and trace display are summarized below.

Trace operation

• Operation during real-time execution
• Operation during step execution
• Operation during next step execution

Trace condition setting function (trace dialog box)

• Trace mode specification
• Qualify trace setting

Trace data display, format, and search condition settings

• Trace data display specification
• Trace data search condition setting

(1) Relationship between trace execution and trace memory

The trace is divided into trace blocks according to the periods shown below.
♦ Block from real-time execution to a break by an event
♦ Block from emulation execution until the generation of a fail-safe break
♦ Block from emulation execution until a forced break
♦ Step execution block
The trace memory is a 64K frame ring buffer. Therefore, if 64K frames are exceeded during a trace, the latest
trace data is overwritten in the oldest frame.

119

Figure 5-10. Trace Memory Concept

 a. When less than 64K frames b. When above 64K frames

(2) Trace operation

Tracer operation depends on the execution state.

(a) Operation during real-time execution
The tracer starts the trace at the specification of the real-time execution. When the event conditions,
including delay conditions, specified in the break conditions of the Trace dialog box are set up, the trace
operation ends.

(b) Operation during step execution

The tracer runs for each step execution. The trace data in one step is added to the tracer for each
subsequent step execution.

(c) Operation during next step execution

When executing an instruction other than a call instruction (CALL, CALLF, CALLT, BRK, BRKCS), operation
is identical to the operation during step execution. When executing a call instruction (CALL, CALLF, CALLT,
BRK, BRKCS), operation is identical to the operation during real-time execution. Real-time execution stops
by returning to the call function.

(3) Trace condition setting function (Trace dialog box)

The following specifications can specify the trace conditions. If these specifications are not made, “All trace” is
performed. In other words, trace data is recorded for each instruction in the user program. A complete trace or
the type of conditional trace is specified. There are two types of conditional trace: qualify trace and section trace.
The trace mode specified becomes valid.

120

(a) Qualify trace setting

This specifies a trace only when the specified address was executed or the specified address was accessed.
The specified conditions are created in the Event Setting window.

(b) Sectional trace setting
Tracing is controlled by the specified start and end events.

(4) Trace data display, format, and search condition settings

The data can be displayed or hidden in the trace view window, and the display conditions can be set.

(a) Trace data display specification
The display screen can be effectively used by specifying the display of the trace data. Trace data display
can specify displaying or hiding the following data by clicking View →→→→ Trace View.

Table 5-7. Trace Data Display

Menu Trace View Window Description

Frame number (F) Frame Temporal order written to the trace memory by the frame number in
the trace memory (range from 0000 to 8192)

Instruction fetch address (A) Addr Fetch address

Instruction fetch data (D) Data Fetch data

Memory access address (R) Addr Access address

Memory access data (M) Data Access data

Memory access status (S) Statu Access status

RW: data read or write by a user program

RD: data read by a user program

WD: data write by a user program

Disassemble (I) DisAsm Disassemble result

(b) Trace data search condition setting (Not supported)

The search conditions for trace data can be selected and specified by any or all of the items in Table 5-8 in
the trace window dialog box.

Table 5-8. Trace Search Items

Specification Item Description Specified Range Default

Address Search address 0 to 0FFFFH 0XXXXH

Data Search data 0 to 0FFH 0XXH

Kind of frame ? Search data type

All Frame: all of the frames

 Step: step execution frames

Next: frames other than step execution frames

Same as on left All frames

121

5.2.8 Event setting and detection function

The event setting and detection functions set the conditions for stopping user program execution by the emulation
CPU and for starting and stopping the trace operation by the analyzer. There are four types of event condition setting
and detection functions:

♦ Bus event condition setting function
♦ Execution event condition setting function
♦ Event condition link setting function
♦ Integrated function of event detection function (break event setting and trace event setting)

(1) Event condition setting function

This function sets the Event Condition register to stop user program execution and to start or stop a trace by the
analyzer. The event-detected condition specified in Event Set dialog box or Event Link dialog box is not valid
unless it is set in the Event Mode register by the Event Manager, Break dialog box, or Trace dialog box. There
are three types of functions set by the event-detected condition.

(a) Bus event condition setting function

The user program accessing the specified memory or inputting data to an external sense clip can be set in
the Bus Event Condition register as the event-detected condition.

i. Bus event condition register

A maximum of four conditions can be set in the Bus Event Condition register (BRA) in the Event Set
dialog box.

ii. Event condition
Table 5-9 lists the items that can be set in the event-detected condition.

Table 5-9. Path Event Detection Condition

Item Status Description

Address Address Address (address range)

 Mask Address mask

Status R Read by a program

 W Write by a program

 R/W Read or write by a program

Data Data Data value

 Mask Data mask value

Data Size Byte Byte data size

 Word Word data size

 All (no condition) Byte or word data size

122

(b) Execution event condition setting function
The user program executing the instruction at the specified address and inputting the data for the external
sense clip at that time can be set in the Execution Event Condition register as the event-detected condition.

i. Execution event condition register

A maximum of eight conditions can be set in the Execution Event Detection register (BRS) in the Event
Set dialog box.

ii. Event condition

Table 5-10 lists the items that can be set in the event-detected condition.

Table 5-10. Execution Event Detection Condition
Item Status Description

Address Address Address (address range)

 Mask Address mask

Status Run Program execution

Data Data Data value

 Mask Data mask value

(c) Event condition link setting function

The execution event conditions registered in the Event Set dialog box can register the event connect
conditions in the event link dialog box. However, when the event link is used, a normal execution event
cannot be used.

(2) Event detection

The steps for setting and detecting event conditions are illustrated in Figure 5-11.

123

Figure 5-11. Event Detection

Event cause

Event integration

Event detected
condition setting
function

Memory access Memory fetch address

Emulation function and analyzer function

Emulation chip Tracer

External trigger input

Cause of access

Event match signal

BRA1 BRA2 BRA3

PASBreak
condition setting

BRA4 BRS1 Execution event of 7 points or
link condition up to 4 phases

BRS2
Event set
dialog box

Event manager

Break
dialog box

Event link
dialog box

Pass count
dialog box

DRYTrace
condition setting

Trace
dialog box

Delay count
dialog box

: Appropriate window BRAx : Bus event detector BRSx : Execution event detector PAS : Pass counter

Various control signals

5.2.9 Register manipulation functions

The register manipulation functions display and change the contents of the general-purpose registers and SFR.

(1) General-purpose register manipulation function (Register window)

This function displays and changes the contents of the control registers (PC, SP, PSW) and general-purpose
registers (RP0, RP1, RP2, RP3, AX, BC, DE, HL). The PSW flag names (Z, AC, CY) are displayed or changed
for PSW.

(2) Special register manipulation function (SFR window)

This function displays and changes the contents of the special functionregister (SFR), which can be manipulated
by bits.

5.2.10 Memory manipulation functions

These functions, available in the Assemble window and the Memory window, use mnemonic codes, hexadecimal
codes, and ASCII characters to change the memory contents.

124

5.2.11 Save function

The save function stores the object codes in the low-cost emulator and the debugging environment in a file on a
disk drive connected to the host machine.

5.2.12 Time measurement function

This function measures the entire run time, until a break after execution begins The time measurement measures
the accumulated run time.

Table 5-11. Timer Specifications
Item Contents

Accumulated run time 203.45 ns resolution
Maximum 14 minutes, 33 seconds

Time measurement count Maximum 65,535 times

5.2.13 Source debugging

In debugging mode, object programs and source programs can be debugged. Debugging of the source program is
called source debugging. Compared to debugging of object programs, source-level debugging has several
advantages:

♦ Debugging is possible while examining the C language or structured assembler source.
♦ Breakpoints can be set in the source and step execution can be performed.

Generally, if a breakpoint is set, the real address of the breakpoint is specified. However, in source-level

debugging, the position where a breakpoint is set is specified in the source program using the cursor. In step
execution, the line currently being executed in the source program is indicated by the “>” mark. Therefore, program
operation can be understood more accurately.

(1) If assembling or compiling using NEC software, the options must be specified to include the source debugging

data in the object.

Table 5-12. Source Debugging and Option Specification
Type of Source for Source Debugging Required Action

C program Specify the -G option when compiling

Structured assembler program Specify the -GS option in structured assembler

Assembler program Specify the -GA option when assembling

Link Specify the -G option when linking

(2) Specify the path data for storing source program in the source path specification dialog box.

(3) In source-level debugging, always load the load module file created by the linker. Even if the object file created

by the object converter is loaded, source debugging will not be possible.

125

Appendix A. Error Messages

This appendix explains error and warning messages. As shown in Figure A-1, an error message has the following

format: Error number + Type + Message .

Figure A-1. Error Message

Table A-1. “Type” Codes

Type Description

A Fatal error (Abort error); processing stops and debugging terminates

F Syntax error (Fatal error); processing stops and open windows and dialog boxes close

W Warning (Warning); processing stops and open windows and dialog boxes remain open

Table A-2. “Message” Codes

Message Description

xxx Inputs 3 digits in the device name

yyy File name

zzz Function name

Type

MessageError number

Appendix A. Error Messages

126

Table A-3. Error Number Descriptions (1/9)

Error Number Type Message Description

− − Can’t open this file. Please make sure,

now Active Window.

Illegal format of the project file or corrupted file contents;

loading of the project file stops

− − Cannot find “string” Cannot find search string; search stops or file open

stops (if the specified file did not contain data)

− − Event Name is not set. No event name; event name not registered

− − Even number already exists. An event with the same number cannot be registered

twice. Change the number of the event to be

registered, or change the number of the event that was

already registered with the same number.

− − Not enough memory. There is insufficient memory to display or change the

window or to save the changes. After freeing more

memory, execute again.

− − Other view mode window exists. Two or more active windows having the same type

cannot be opened simultaneously. Other active

windows were closed.

− − Sorry, too large view file. (Max is 1000

frames)

The contents of the specified view file

(.MEM, .TVW, .DIS) are longer than 1,000 lines. The

display was stopped.

− − “Event name” already exists. An event with the same name cannot be registered.

Change the name of the event to be registered or

change the name of the event already registered with

the same name.

0103 A Send timed out Data cannot be sent to the in-circuit emulator (IE).

Check for possible causes such as the setting of the

interface board, or no power being applied to the IE.

After rechecking, restart the debugger.

0104 A Receive timed out No response from the IE. The error may be in the IE.

After checking the IE, restart the debugger.

0105 A Invalid D4xxx.78K The device file (D4xxx.78K) cannot be properly read.

The device file is not in the specified directory, or the

device file is corrupted. Reinstall the device file and

start again.

01a0 A Monitor timed out Data communication with the IE is not possible. The

clock is not supplied to the target CPU or the power is

not applied. After checking, restart the debugger.

01a3 A Unconnected emulation board The emulation board is not properly connected.

Correctly connect the emulation board to the IE.

01a4 A Contradictory board set The board configuration in the IE has conflicts. Correct

the board configuration and restart.

01a5 A Unconnected I/O emulation board Emulation board 1 is not connected correctly. Correctly

connect emulation board 1 to the IE.

Appendix A. Error Messages

127

Table A-3. Error Message List (2/9)

Error Number Type Message Description

01a8 A Invalid EXPC.INI The initialization file (EXPC.INI) cannot be properly read.

The initialization file does not exist or may be corrupted.

After reinstalling the initialization file, restart.

01ad F No match device file of version ID number of the emulation board does not match the

number in the device definition file. Check that the

specified device (device file) is correct.

02a0 F Bus hold error Bus hold. The user program cannot execute.

0300 F User program is running. The user program is running. This command cannot be

executed.

0301 F User program is stopped. The user program had a break. This command cannot be

executed.

0302 F User program is tracing. The tracer is running. This command cannot be executed.

0303 F No tracing There are no trace measurements.

0304 F Now trace memory is off. The tracer is off.

0305 F Cannot move over trace block The trace block is exceeded and cannot move.

0306 F There is no trace block. There is no trace block.

0307 F There is no event. There is no event condition.

0308 F Not doing Timer measurement The timer measurement is not made.

0309 F There is no trigger frame. There is no trigger frame.

030a F Trace is off. The tracer stopped.

030e F Illegal memory range The memory copy range overlapped.

030f F Already specified mode Tracer is already in the on state.

0310 F Illegal event number The event condition is not set.

0313 F Mapping range over The mapping setting is incorrect. A mapping that cannot

be set is specified.

0316 F This event number cannot be used An event that cannot be used is used. Specify an event

that can be used.

03a0 W Target power off The power to the target is off.

03a1 F Now stepping This command cannot be used while stepping.

03a2 F Tracer is running. The tracer is running. This command cannot be used.

0400 F Illegal parameter The parameter is illegal.

0401 F Result of timer measurement is over. The timer measurement overflowed.

0402 F Pass count conditions overflow The event condition setting the pass count cannot be

simultaneously used.

0403 F Specified address range is over. Tried to set more than the maximum number of settings for

the address range specification condition.

0404 F Event conditions overflow Tried to set more than the number of event conditions that

can be simultaneously used. A maximum of four bus

event conditions and a maximum of four execution event

conditions can be used simultaneously.

APPENDIX A ERROR MESSAGES

128

Table A-3. Error Message List (3/9)

Error Number Type Message Description

0407 F Initialized data overflow The amount of initialized data exceeds the initialization range.

0408 F Search data number over The search data becomes string data that exceeds 16

bytes. The maximum size of search data is 16 bytes.

0409 F Search range over The size of the search data exceeds the size of the search

range.

04a0 F Number of Trigger condition overflow The number of software break settings exceeds 100.

04a1 F Emulation memory is not enough Tried to map the substitute memory to a region larger than 1

MB.

04a2 F Bus size conditions overflow The divisions of the bus size exceeded 8. Sometimes

events cannot be properly set.

04a3 F BRS event conditions overflow More than 5 execution event conditions are set. (The

maximum number of execution event conditions is 4.)

04a4 F BRA event conditions overflow More than 5 bus event conditions are set. (The maximum

number of bus event conditions is 4.)

04a6 F External Trigger event conditions

overflow

More than 2 external trigger conditions are set. The

maximum number of external trigger conditions is 1.

05a0 A Evade runaway hardware The IE is unstable. Reset the IE and forcibly break the user

program.

0600 A Communication buffer error The region of the buffer for the communication data with the

IE cannot be guaranteed. Exit other Windows applications,

or change the setting of the swap file used by Windows to

increase the main memory of the host machine.

1000 A Failure in initialization The IE initialization failed. Make sure the IE is functioning

properly.

1003 F Illegal relocation address Cannot locate to the specified address.

1004 F Illegal parameter The parameter is illegal.

1006 F Illegal address The address is illegal.

1007 A Not enough substitute memory Tried to map the substitute memory to a region larger than 1

MB.

100b F Program Is running. This command cannot be used while a user program is

running.

100c F Different Bus Size A setting duplicated a region with a different bus size.

100d F Total Maximum Over Tried to register above the maximum number (8) of bus size

divisions.

100e F Enable Maximum Over The divisions of the bus size exceeded 8.

100f W Wrong Target Status (Power Off) The target state is unstable.

10ff A Communication Error Cannot communicate with the IE. Check that the IE is

functioning properly.

2000 F Illegal SFR name The SFR name is illegal.

2002 F User program is running The user program is running. This command cannot be

executed.

Appendix A. Error Messages

129

Table A-3. Error Message List (4/9)

Error Number Type Message Description

2003 F Illegal SFR number Tried to access a nonexistent SFR.

2004 F Illegal bit number The bit SFR is not at the specified bit position.

2005 W Redraw SFR name A redraw-protected SFR was specified.

2006 F This SFR is hidden The SFR is not usually open. The data cannot be

displayed and changed.

2007 F Can’t Read/Write Tried to write to a write-protected SFR. Or tried to read a

read-protected SFR.

2008 F Too big number The specified SFR does not exist.

200a F Illegal Bit Pattern Tried to set an illegal value in the SFR.

20ff A Communication Error Cannot communicate with the IE. Check that the IE is

functioning properly.

3000 F Illegal address The address is illegal.

3001 F Different data The memory contents do not match.

3002 F Illegal source address The source address specification range exceeds the

mapping range (in a memory search, memory compare,

memory copy).

3003 F Illegal destination address The destination address specification range exceeds the

mapping range (in a memory search, memory compare,

memory copy).

3004 F Illegal address (source and destination) The address specification range exceeds the mapping

range (in a memory search, memory compare, memory

copy).

3005 F Illegal parameter The parameter is illegal.

3006 F User program is running The user program is running. This command cannot be

executed.

3008 F No Parameter There are no parameters.

3009 F Parameter Size Alignment Error The parameter size is illegal. Change the parameter to

conform to the access size of the memory.

300a F Memory Alignment Error The address is illegal. Change the address to conform to

the access size of the memory.

300b F Source Start Address Alignment Error The source address is illegal. Change the source address

to conform to the access size of the memory.

300c F Destination Start Address Alignment

Error

A memory range with a different access size was specified

in the destination address range.

300d F End Address Alignment Error The end address is illegal. Change the end address to

conform to the access size of the memory.

300e F Different Access Size in This Area A memory range with a different access size was specified

in the address range.

300f F Different Access Size in Source Area A memory range with a different access size was specified

in the source address range.

3010 F Different Access Size in Destination

Area

A memory range with a different access size was specified

in the destination address range.

APPENDIX A ERROR MESSAGES

130

Table A-3. Error Message List (5/9)

Error Number Type Message Description

3011 F Different Access Size, Source and

Destination

The access sizes differ in the source address range and the

destination address range.

30ff A Communication Error Cannot communicate with the IE. Check that the IE is

functioning properly.

4000 F Number is referenced now The specified event condition cannot be deleted.

4001 F Illegal table number The specified table number is illegal.

4002 F Illegal start address The start address is illegal.

4003 F Illegal end address The end address is illegal.

4004 F Illegal status The status is illegal.

4005 F Illegal data The data is illegal.

4006 F Can’t access number Tried to use an event number that was already used.

4007 F Can’t empty number Tried to register more than 32,767 events of the same type.

4008 F Table not found The specified event is not registered.

4009 F Illegal data size The data size is illegal.

400a F Illegal type mode The mode is illegal.

400b F Illegal parameter The parameter is illegal.

400c F Illegal type number The type is illegal.

400d F Table overflow Tried to register the same event more than 32,767 times.

400e F No entry event number The specified event condition does not exist.

400f F Illegal Elink data The event conditions setting the range condition and path

condition were used in an event link condition. Or only one

event condition is set.

4010 F Function not found The specified function is not found.

4011 A No free memory The memory is insufficient. Exit unused applications, or

close the debugger window.

4013 W Data access size mismatch at the bus

size

The mapped bus size and the access size of the event

condition differ.

4014 F Can’t use software break The current software break cannot be used. Set a software

break in the extended option setting dialog box.

4015 F Not point address In an address condition, the event condition setting the range

cannot be used.

4016 F Not renew event condition This event condition is used in another event. The address

range condition and the pass count condition cannot be

changed.

4017 F Specified odd address by word

access.

The data value cannot be detected in the word data that

starts at an odd address. Delete the data specification and

set.

5000 A Illegal type number The type is illegal.

5002 A Illegal file name The device file cannot be opened.

5003 A Cannot file seek The file seek failed.

Appendix A. Error Messages

131

Table A-3. Error Message List (6/9)

Error Number Type Message Description

5004 A Cannot close file The file close failed.

5005 A Illegal device format The format of the device file differs.

5006 A Cannot initialize device The IE initialization failed.

5007 A Illegal device information The device information does not exist.

5008 F Cannot open device file The specified device file cannot be opened.

500a F No match device file of version The version of the device file is illegal.

500b W Device has no relocatable IRAM. There is no function to move the internal RAM in the

currently selected device.

6001 F Illegal entry symbol name The symbol name is illegal.

6002 F Illegal parameter The parameter is illegal.

6003 F Illegal entry function name The function name is illegal.

6004 F Out of buffer flow The function display in the Stack Trace window is

incomplete. One line has a maximum of 512 characters.

6005 F Illegal expression The expression is illegal.

7001 F User program is running The user program is running. This command cannot be

executed.

7002 F User program is stopped The user program had a break. This command cannot be

executed.

7003 F Trace function is active The tracer is running. This command cannot be executed.

7004 F Trace memory is OFF The tracer is off.

7005 F No Return Address, Can’t Execute The return address of the current function cannot be

found. Stepping by the Return command is not executed.

7010 W Warning, No Source Line Information Since there is no source information, instruction level

stepping was executed.

7012 A Not enough memory The memory is insufficient. Exit unused applications, or

close the debugger window.

70fe A Bus Hold Error There is a bus hold. The user program cannot be

executed.

70ff A Communication Error Cannot communicate with the IE. Check that the IE is

functioning properly.

7801 F Step wait canceled The step execution was stopped. Since the step

execution is not finished, communication with the IE may

no longer be possible.

7802 F Step aborted An illegal access break was generated during stepping.

Check the user program.

7f00 F Interrupted step The step execution process was forcibly ended.

7f02 F Suspended step The stepping was suspended.

7f03 A Run/Step cancel failed. CPU reset The user program break failed. The CPU was reset and

the IE is unstable. Check that the IE is okay and restart.

7f04 F Illegal address Tried to execute from an unmapped region.

APPENDIX A ERROR MESSAGES

132

Table A-3. Error Message List (7/9)

Error Number Type Message Description

8000 F File not found This file is not found.

8001 F Illegal line number The line number is illegal.

8002 F Current data is not set The current data is not set.

8003 F Illegal address The address is illegal.

9002 F Illegal set value The specified value cannot be set in the register. Input a

value that can be set.

a001 F Illegal expression The expression is illegal.

a002 F Start address bigger than end address The start address is larger than the end address (start

address > end address). Check the addresses.

a003 F Source path not found The specified source path data is illegal. Set valid

source path data.

a004 F Expression is too big The expression exceeded 127 characters.

a005 A Not enough memory The memory is insufficient. Exit unused applications, or

close the debugger window.

a006 F Illegal argument The argument is illegal.

a008 F Source path not set The source path is not set.

a009 F File not found The file is not found.

a00a F File not open This file cannot be opened.

a00b A File not closed The file close failed.

a00c A File not read The file read failed. The file may be corrupted.

a00d F Not source file of LM The specified source file is not registered in the load

module file. A file not registered in the load module file

cannot be displayed in the Source Display window.

a00e F Illegal line number The line number is illegal.

a00f F Illegal variable The variable does not exist.

a010 A Communication failed Cannot communicate with the IE. Check that the IE is

functioning properly.

a011 F Can’t access register The register cannot be accessed. Check the IE.

a012 F Can’t access memory The specified memory (variable) cannot be accessed.

Check the IE or the mapping setting.

b000 F Command line error The parameter is illegal.

b001 F Task type not found The program data is not in the load module file.

b002 F File not found The file is not found.

b003 F Function not found The specified function is not found.

b004 F Illegal magic number The magic number of the load module file is illegal.

b005 F Symbol not found The symbol is not found.

b008 F Illegal value The expression is illegal.

b009 A Not enough memory The memory is insufficient. Exit unused applications, or

close the debugger window.

Appendix A. Error Messages

133

Table A-3. Error Message List (8/9)

Error Number Type Message Description

b00a F Illegal symbol entry An illegal symbol is in the load module file. This may be a

language-related bug.

b00b F Current type nothing There is no debugging information. Load the load module file.

b00c F Current file nothing The current source file is not found. Or, since the load module

file is not loaded, the source cannot be opened.

b012 F Line number too large The line number is illegal.

b015 A Read error The file read failed. The file may be corrupted.

b016 A Open error The file cannot be opened.

b017 A Write error The file cannot be written.

b019 A Seek error The file seek failed.

b01a A Close error The file close failed.

b01d F Address not found The source line corresponding to the current PC does not exist.

b01e F No line information (not compile

with -g)

There is no information in the source line in the load module file.

Add the debugging option, and then recompile, assemble, and

link.

b01f F Cannot find member The member of the specified structure is not found.

b020 F Cannot find value The specified enumeration constant is illegal.

b021 F Striped LM There is no symbol information in the load module file.

b022 F Null statement line The line number is illegal.

b026 F Max dimension array over An array with more than four dimensions cannot be displayed.

b027 F End of file The file is not at the end.

b029 F Illegal address The address is illegal.

b02a A Communication failed Cannot communicate with the IE. Check that the IE is

functioning properly.

b02b F No stack frame point A stack trace is not possible for the current PC.

b02c F Max block overflow The maximum number of blocks in one function is exceeded.

The function cannot be displayed. (Maximum number of blocks

per function: 256 blocks)

b02d F Illegal argument The argument is illegal.

c001 F Cannot open file The file cannot be opened.

c002 A Cannot close file The file close failed.

c003 A Cannot read file The file read failed. The file may be corrupted.

c004 A Cannot seek file The file seek failed.

c005 F Illegal file type The file format is different. This file is not handled.

c006 F Illegal magic number The magic number of the load module file is illegal.

c007 F This file is not load module file The specified file is not the load module file.

c008 F Old coff version The version of the load module file is different.

APPENDIX A ERROR MESSAGES

134

Table A-3. Error Message List (9/9)

Error Number Type Message Description

c009 A Not enough memory The memory is insufficient. Exit unused applications, or

close the debugger window.

c00a F Illegal address The address is illegal.

c00b F LM not load The load module file is not loaded.

c00c F Illegal argument Internal error

c00d F User program is emulating The user program is running. This command cannot be

executed.

c00e F User program is tracing The tracer is operating. This command cannot be

executed.

c010 A Communication failed Cannot communicate with the IE. Check that the IE is

functioning properly.

c011 F Illegal file format The file format in the load module file (LNK) is illegal.

c012 F Check sum error A checksum error occurred while reading the load module

file. Check the load module file.

c013 F Too large size The address range to be uploaded exceeds 1 MB.

c014 F Cannot write file Cannot write to the file.

c100 F Not supported The Tektronix format is not supported.

d001 F Not enough memory The memory is insufficient. Exit unused applications, or

close the debugger window.

e000 F Illegal argument Internal error

e001 F Illegal start address The start address is illegal.

e002 F Illegal end address The end address is illegal.

e003 F Size too long The address is illegal.

e004 F Can’t open file The specified file cannot be opened.

e005 F Can’t read file The file read failed. The file may be corrupted.

e006 F Can’t seek file The file seek failed.

e007 F Can’t write file The file write failed.

e008 F Not enough memory The memory is insufficient. Exit unused applications, or

close the debugger window.

e009 F Illegal file format The file format is illegal.

135

Appendix B. Key Functions

Special function keys can be used to debug effectively with ID operations. In the descriptions, because the key

expression differs with the type of keyboard used, common generic key characters are adopted.

Table B-1. Special Function Key Function List

Key

PC-9801, 9821 Series IBM PC/AT Series

BS BackSpace Deletes the character before the cursor. The cursor moves to

the position of the deleted character. The string after the

cursor is moved forward.

COPY PrintScreen The entire display screen is written to the clipboard as a bit

image (Windows function).

ESC Esc (1) Closes the pull-down menu.

(2) Closes the modal dialog.

GRPH Alt Moves the cursor to the menu bar.

HELP End The last line is displayed. The cursor simultaneously moves to

the last line.

HOME CLR Home The first line is displayed. The cursor simultaneously moves to

the first line.

ROLL UP PageUp The screen scrolls up one screen. The cursor simultaneously

moves to the top of the screen.

ROLL DOWN PageDown The screen scrolls down one screen. The cursor

simultaneously moves to the top of the screen.

SPACE Space Inserts one space.

TAB Tab The cursor moves to the next item.

↑ ↑ The cursor moves up.

If the cursor is at the top of the screen, the screen scrolls

down by one line each time.

↓ ↓ The cursor moves down.

If the cursor is at the bottom of the screen, the screen scrolls

up by one line each time.

← ← The cursor moves left.

If the cursor is at the left of the screen, the screen scrolls to

one item to the right.

→ → The cursor moves right.

If the cursor is at the right of the screen, the screen scrolls to

one item to the left.

↵ ↵ Confirms the input data.

Function

Appendix B. Key Functions

136

Table B-2. Special Function Key Function List (CTRL + Key)

Key

(Common to the PC-9801, 9821 Series

and the IBM PC/AT Series)

Function

A The data value selected in the current window is the jump destination address. The

disassemble is displayed from that address. The Assemble window opens.

B Sets a breakpoint at the selected line.

C Copies the selected string to the clipboard buffer.

F The window switches to Modify mode; same as

G Runs the program; same as

H Switches the window to the hold state.

I Switches the window to the active state.

M The data value selected in the current window is the jump destination address. The

memory contents are displayed from that address. The Memory window opens.

O When the Source Text window is current:

The source view file is selected.

The Source File Selection dialog box is opened.

Otherwise:

The appropriate view file for the current window is displayed.

The View File Save dialog box opens.

P Program execution pauses; same as

R Step executes until returning to the calling function; same as

S The displayed contents of the current window are saved in the view file.

T Executes in steps; same as

U The data value selected in the current window is the jump destination address. The

appropriate source text and source lines are displayed. The Source Text window

opens.

V The contents of the clipboard buffer are pasted at the text cursor position.

W The window switches to View mode; same as

X Executes the next step; same as

Z The previous editing operation is undone.

