

To our customers,

Old Company Name in Catalogs and Other Documents

On April 1st, 2010, NEC Electronics Corporation merged with Renesas Technology
Corporation, and Renesas Electronics Corporation took over all the business of both
companies. Therefore, although the old company name remains in this document, it is a valid
Renesas Electronics document. We appreciate your understanding.

Renesas Electronics website: http://www.renesas.com

April 1st, 2010
Renesas Electronics Corporation

Issued by: Renesas Electronics Corporation (http://www.renesas.com)

Send any inquiries to http://www.renesas.com/inquiry.

Notice
1. All information included in this document is current as of the date this document is issued. Such information, however, is

subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please
confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to
additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.

2. Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights
of third parties by or arising from the use of Renesas Electronics products or technical information described in this document.
No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights
of Renesas Electronics or others.

3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.
4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of

semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software,
and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by
you or third parties arising from the use of these circuits, software, or information.

5. When exporting the products or technology described in this document, you should comply with the applicable export control
laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas
Electronics products or the technology described in this document for any purpose relating to military applications or use by
the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and
technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited
under any applicable domestic or foreign laws or regulations.

6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics
does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages
incurred by you resulting from errors in or omissions from the information included herein.

7. Renesas Electronics products are classified according to the following three quality grades: “Standard”, “High Quality”, and
“Specific”. The recommended applications for each Renesas Electronics product depends on the product’s quality grade, as
indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular
application. You may not use any Renesas Electronics product for any application categorized as “Specific” without the prior
written consent of Renesas Electronics. Further, you may not use any Renesas Electronics product for any application for
which it is not intended without the prior written consent of Renesas Electronics. Renesas Electronics shall not be in any way
liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an
application categorized as “Specific” or for which the product is not intended where you have failed to obtain the prior written
consent of Renesas Electronics. The quality grade of each Renesas Electronics product is “Standard” unless otherwise
expressly specified in a Renesas Electronics data sheets or data books, etc.

“Standard”: Computers; office equipment; communications equipment; test and measurement equipment; audio and visual
equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots.

“High Quality”: Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-
crime systems; safety equipment; and medical equipment not specifically designed for life support.

“Specific”: Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or
systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare
intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.

8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics,
especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation
characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or
damages arising out of the use of Renesas Electronics products beyond such specified ranges.

9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have
specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further,
Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to
guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a
Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire
control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because
the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system
manufactured by you.

10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental
compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable
laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS
Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with
applicable laws and regulations.

11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas
Electronics.

12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this
document or Renesas Electronics products, or if you have any other inquiries.

(Note 1) “Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its majority-
owned subsidiaries.

(Note 2) “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.

Regarding the change of names mentioned in the document, such as Hitachi
Electric and Hitachi XX, to Renesas Technology Corp.

The semiconductor operations of Mitsubishi Electric and Hitachi were transferred to Renesas

Technology Corporation on April 1st 2003. These operations include microcomputer, logic, analog

and discrete devices, and memory chips other than DRAMs (flash memory, SRAMs etc.)

Accordingly, although Hitachi, Hitachi, Ltd., Hitachi Semiconductors, and other Hitachi brand

names are mentioned in the document, these names have in fact all been changed to Renesas

Technology Corp. Thank you for your understanding. Except for our corporate trademark, logo and

corporate statement, no changes whatsoever have been made to the contents of the document, and

these changes do not constitute any alteration to the contents of the document itself.

Renesas Technology Home Page: http://www.renesas.com

Renesas Technology Corp.

Customer Support Dept.

April 1, 2003

To all our customers

Cautions

Keep safety first in your circuit designs!

1. Renesas Technology Corporation puts the maximum effort into making semiconductor products better
and more reliable, but there is always the possibility that trouble may occur with them. Trouble with
semiconductors may lead to personal injury, fire or property damage.
Remember to give due consideration to safety when making your circuit designs, with appropriate
measures such as (i) placement of substitutive, auxiliary circuits, (ii) use of nonflammable material or
(iii) prevention against any malfunction or mishap.

Notes regarding these materials

1. These materials are intended as a reference to assist our customers in the selection of the Renesas
Technology Corporation product best suited to the customer's application; they do not convey any
license under any intellectual property rights, or any other rights, belonging to Renesas Technology
Corporation or a third party.

2. Renesas Technology Corporation assumes no responsibility for any damage, or infringement of any
third-party's rights, originating in the use of any product data, diagrams, charts, programs, algorithms, or
circuit application examples contained in these materials.

3. All information contained in these materials, including product data, diagrams, charts, programs and
algorithms represents information on products at the time of publication of these materials, and are
subject to change by Renesas Technology Corporation without notice due to product improvements or
other reasons. It is therefore recommended that customers contact Renesas Technology Corporation
or an authorized Renesas Technology Corporation product distributor for the latest product information
before purchasing a product listed herein.
The information described here may contain technical inaccuracies or typographical errors.
Renesas Technology Corporation assumes no responsibility for any damage, liability, or other loss
rising from these inaccuracies or errors.
Please also pay attention to information published by Renesas Technology Corporation by various
means, including the Renesas Technology Corporation Semiconductor home page
(http://www.renesas.com).

4. When using any or all of the information contained in these materials, including product data, diagrams,
charts, programs, and algorithms, please be sure to evaluate all information as a total system before
making a final decision on the applicability of the information and products. Renesas Technology
Corporation assumes no responsibility for any damage, liability or other loss resulting from the
information contained herein.

5. Renesas Technology Corporation semiconductors are not designed or manufactured for use in a device
or system that is used under circumstances in which human life is potentially at stake. Please contact
Renesas Technology Corporation or an authorized Renesas Technology Corporation product distributor
when considering the use of a product contained herein for any specific purposes, such as apparatus or
systems for transportation, vehicular, medical, aerospace, nuclear, or undersea repeater use.

6. The prior written approval of Renesas Technology Corporation is necessary to reprint or reproduce in
whole or in part these materials.

7. If these products or technologies are subject to the Japanese export control restrictions, they must be
exported under a license from the Japanese government and cannot be imported into a country other
than the approved destination.
Any diversion or reexport contrary to the export control laws and regulations of Japan and/or the
country of destination is prohibited.

8. Please contact Renesas Technology Corporation for further details on these materials or the products
contained therein.

HI7750/4 Renesas Industrial
Realtime Operating System
Configuration Guide

U
ser’s M

anual

Rev.1.0 2003.03

Renesas Microcomputer
Development Environment
System

Rev. 1.0, 03/03, page ii of vi

Cautions

1. Hitachi neither warrants nor grants licenses of any rights of Hitachi’s or any third party’s
patent, copyright, trademark, or other intellectual property rights for information contained in
this document. Hitachi bears no responsibility for problems that may arise with third party’s
rights, including intellectual property rights, in connection with use of the information
contained in this document.

2. Products and product specifications may be subject to change without notice. Confirm that you
have received the latest product standards or specifications before final design, purchase or
use.

3. Hitachi makes every attempt to ensure that its products are of high quality and reliability.
However, contact Hitachi’s sales office before using the product in an application that
demands especially high quality and reliability or where its failure or malfunction may directly
threaten human life or cause risk of bodily injury, such as aerospace, aeronautics, nuclear
power, combustion control, transportation, traffic, safety equipment or medical equipment for
life support.

4. Design your application so that the product is used within the ranges guaranteed by Hitachi
particularly for maximum rating, operating supply voltage range, heat radiation characteristics,
installation conditions and other characteristics. Hitachi bears no responsibility for failure or
damage when used beyond the guaranteed ranges. Even within the guaranteed ranges,
consider normally foreseeable failure rates or failure modes in semiconductor devices and
employ systemic measures such as fail-safes, so that the equipment incorporating Hitachi
product does not cause bodily injury, fire or other consequential damage due to operation of
the Hitachi product.

5. This product is not designed to be radiation resistant.
6. No one is permitted to reproduce or duplicate, in any form, the whole or part of this document

without written approval from Hitachi.
7. Contact Hitachi’s sales office for any questions regarding this document or Hitachi

semiconductor products.

Rev. 1.0, 03/03, page iii of vi

Preface

This guide describes how to configure systems using HI7750/4.

To execute application programs registered as tasks on HI7750/4, the Solution Engine, the
product of Hitachi ULSI Systems Co., Ltd., shall be used as a target board and the HDI of the
E10A emulator as a debugger in the initial debug stage. For details about HI7750/4, see the
HI7000/4 Series (HI7000/4, HI7700/4, HI7750/4) User’s Manual (hereinafter referred to as the
HI7000/4 Series User’s Manual). To create application programs and link them with HI7750/4,
you should use the SuperH RISC engine C/C++ compiler package (hereinafter referred to as the
SHC/C++ compiler) and the Hitachi Embedded Workshop (HEW), which is an integrated
development tool, supplied with the SuperH RISC engine C/C++ compiler package.

This guide describes how to change, add and configure programs before executing the start task on
multitasking operating system using the above target board, emulator, and compiler.

Related manuals

• HI7000/4 Series (HI7000/4, HI7700/4, HI7750/4) Hitachi Industrial Realtime Operating
System User’s Manual

• SuperH RISC engine C/C++ Compiler SH-1, SH-2, SH-2E, SH-3, SH3E, SH-4 User’s Manual

• SuperH RISC engine C/C++ Compiler Assembler Optimizing Linkage Editor User’s Manual

• H Series Linkage Editor, Librarian, and Object Converter User’s Manual

• Hitachi Embedded Workshop 2 HEW Debugger User’s Manual

• SH7750 Solution Engine (MS7750SE01) Overview

• The hardware manual and programming manual of the SuperH microcomputer used

Pentium is a trademark or registered trademark of Intel Corporation or its subsidiaries in the
United States and other countries.

Microsoft Windows 95 operating system, Microsoft Windows NT operating system and
the Windows logo are either registered trademarks or trademarks of Microsoft Corporation in the
United States and/or other countries.

The abbreviation µITRON stands for "Micro Industrial TRON". TRON, in turn, stands for "The
Real-time Operating system Nucleus."

Solution Engine is a registered trademark of Hitachi ULSI Systems Co., Ltd. in Japan.

Other mentioned company and product names are trademarks or registered trademarks of their
respective companies.

Rev. 1.0, 03/03, page iv of vi

Rev. 1.0, 03/03, page v of vi

Contents

Section 1 Introduction... 1
1.1 Overview...1
1.2 System Configuration ...1
1.3 Prerequisites ..2

Section 2 Creating Application Programs... 5
2.1 Creating CPU Initialization Routine ...6
2.2 Creating Tasks...11

2.2.1 Main Task ..12
2.2.2 LED Task...14

2.3 Creating an Interrupt Handler ...14
2.3.1 Creating Initialization Module ...17
2.3.2 Creating Interrupt Handler ...19

Section 3 Configuration .. 21
3.1 Starting Configurator ..22
3.2 Interrupt Mask Level...22
3.3 Registering Task ...23
3.4 Registering Interrupt Handler ...25
3.5 Registering Initialization Routine ...28
3.6 Registering Event Flag Information..31
3.7 Creating Configuration Files...33
3.8 Building the Executable File by HEW..33

3.8.1 Starting HEW...34
3.8.2 Defining Configuration File...35
3.8.3 Changing a Linkage Address ...37
3.8.4 Build...41

3.9 Disabling Parameter Check Function..42

Section 4 Downloading and Executing Application Programs......................... 43
4.1 Initializing Solution Engine ..43
4.2 Downloading Application Program ..45
4.3 Executing Application Program..46

Rev. 1.0, 03/03, page vi of vi

Rev. 1.0, 03/03, page 1 of 48

Section 1 Introduction

1.1 Overview

Follow the procedure below to run application programs on HI7750/4:

1. Create application programs.

2. Use the configurator to register the application programs to HI7750/4.

3. Build the executable file using HEW.

4. Install the application programs to the target board, and download and execute them.

This guide describes the above procedure to run the programs on the target board by using a
sample program.

1.2 System Configuration

This guide describes how to create sample programs of tasks and an interrupt handler and how to
run the programs on the target board.

Figure 1.1 shows an example of a hardware configuration.

E10A

Windows PC

To the PCMCIA slot

SuperHTM Solution Engine

(MS7750SE01)

Figure 1.1 Hardware Configuration Example

Table 1.1 lists software configuration.

Rev. 1.0, 03/03, page 2 of 48

Table 1.1 Software Configuration

Program Description Type Remarks

CPU initialization routine Sets the bus controller. Non-task

Initializes the hardware.

Main task Initializes the environment. Task

Waits for an event after initialization by setting
the wai_flg flag.

Cancels the wait status by setting the event flag
of the timer interrupt handler and starts the LED
task (sta_tsk).

LED task Started by the main task to turn the LED on
when it is off or turn it off when it is on, and then
terminates.

Task

Timer interrupt handler Started by the timer interrupt every one second
and sets the main task event flag (set_flg).

Non-task

1.3 Prerequisites

Table 1.2 lists hardware and software required to run the application programs on HI7750/4.

Table 1.2 Required Hardware and Software

Product Name Product Type Manufacturer

Windows personal computer Any manufacturer*1

SuperH Solution Engine MS7750SE01 Hitachi ULSI Systems Co., Ltd.

E10A emulator HS7750KCM01H Hitachi, Ltd.

SuperH RISC engine C/C++ compiler P0700CAS6-MWR Hitachi, Ltd. *2

HI7750/4 HS0700ITI41SRE Hitachi, Ltd. *3

Notes: 1. Hardware environment: PC/AT compatible machine with 486DX2/66 MHz or more
(Pentium or later recommended)
Operating system: Windows2000, WindowNT4.0, Windows98, Windows95
CD-ROM drive

PCMCIA card slot
Memory: 32 Mbytes or more (For Windows2000 and WindowNT4.0, memory with 64
Mbytes or more is recommended.)
Free space required on the hard disk: 8 Mbytes or more

2. Version. 6.0 AR2 of the compiler shall be used. You may also use the compilers from
Hitachi ULSI Systems Co., Ltd. or Hitachi Software Engineering Co., Ltd.
HI7750/4 with evaluation license (object) shall be used. You may also use HI7750/4
with mass-production license.

Rev. 1.0, 03/03, page 3 of 48

The HDI of the E10A emulator, SuperH RISC engine C/C++ compiler package, and HI7750/4
(for SHCV6) must have been installed in the Windows personal computer beforehand. The
SH7750 is a target CPU assumed in this manual.

Figure 1.2 shows the folder structure of HI7750/4 that you have just installed.

Figure 1.2 Folder Structure of HI7750/4

The install drive is “D” in this guide, but you may use a desired drive for installing HI7750/4. An
install folder is represented as the install folder “folder name” in this manual.

Rev. 1.0, 03/03, page 4 of 48

Rev. 1.0, 03/03, page 5 of 48

Section 2 Creating Application Programs

This section describes how to create application programs that run on HI7750/4. Figure 2.1 shows
the relationship among application programs. (The programs in the heavy-outline boxes are
created in this guide.)

Reset start
HI7750/4 kernel

CPU initialization routine

CPU initialization Kernel
initialization routine

Initialization
routine call

Task execution

Timer
initialization routine

TMU1 initialization

return

Interrupt handler

Started by an interrupt

iset_flg

return

LED task

LED control
(turning the LED on

when it is off or
turning it off when

it is on)

ext_tsk

Main task

Event flag creation
LED task creation

wai_flg

sta_tsk

Figure 2.1 Relationship among Application Programs

Figure 2.2 shows the programs to be created in this guide.

Create a CPU initialization routine

Create tasks

Create an interrupt initialization module

Create an interrupt handler

Figure 2.2 Programs to be Created

Rev. 1.0, 03/03, page 6 of 48

2.1 Creating CPU Initialization Routine

After the CPU reset, the CPU initialization routine is executed for setting a bus state controller and
initializing the hardware.

The ROM monitor supplied with the Solution Engine has already set the bus state controller and
initialized the hardware. Thus, this guide omits the description of them.

Figure 2.3 shows the procedure to create the CPU initialization routine.

Set BSC by _hi_cpuasm (7750_cpuasm.src).
Use the assembler language to write a
program before the stack area is reserved by
setting BSC.

Start a kernel by _hi_cpuini (7750_cpuini.c).
The stack pointer has been set. Use the C
language to write a program.

Set BSC

Set stack pointer

Set cache

Start a kernel

Figure 2.3 Creating a CPU Initialization Routine

In the CPU initialization routine, the stack pointer must be reserved completely before you attempt
to execute any program written in the C language. Because the program created by the compiler
may locate the stack frame or work area in a stack, you cannot execute it until the stack area is
completely reserved.

Figures 2.4 to 2.6 show the parts to be changed in of _hi_cpuasm (7750_cpuasm.src).

Rev. 1.0, 03/03, page 7 of 48

;**;
;* HI7000/4 CPU initialize routine ;*;
;* Copyright (c) Hitachi, Ltd. 2000. ;*;
;* Licensed Material of Hitachi, Ltd. ;*;
;* HI7000/4(HS0700ITI41SR) V1.0 ;*;
;**;
;**;
;* FILE = 7612_cpuasm.src ; ;*;
;* CPU type = SH7612 ;*;
;**;
 .program _hi_cpuasm
 .heading "hi_cpuasm : CPU initialize routine"
 .export _hi_cpuasm
 .import _hi_cpuini
 .section P_hicpuasm,code,align=4
;
;**;
;* BSC address ;*;
;**;
BSC_BASE .assign h'ffffffc0 ; BSC base address (WCR2)
BCR1 .assign h'ffffffe0-BSC_BASE ; BCR1 address offset
CR2 .assign h'ffffffe4-BSC_BASE ; BCR2 address offset
BCR3 .assign h'fffffffc-BSC_BASE ; BCR3 address offset
WCR1 .assign h'ffffffe8-BSC_BASE ; WCR1 address offset
WCR2 .assign h'ffffffc0-BSC_BASE ; WCR2 address offset
WCR3 .assign h'ffffffc4-BSC_BASE ; WCR3 address offset
MCR .assign h'ffffffec-BSC_BASE ; MCR address offset
RTCSR .assign h'fffffff0-BSC_BASE ; RTCSR address offset
RTCNT .assign h'fffffff4-BSC_BASE ; RTCNT address offset
RTCOR .assign h'fffffff8-BSC_BASE ; RTCOR address offset
;
MD_REG_BASE .assign h'ffff8000 ; mode register base address of SDRAM
;
CMF_BIT .assign h'0080 ; CMF bit in RTCSR
;

Figure 2.4 Parts to be Changed in _hi_cpuasm (7750_cpuasm.src)

Rev. 1.0, 03/03, page 8 of 48

;**;
;* BSC address ;*;
;**;
BSC_BASE .assign h'ff800000 ; BSC base address
BCR1 .assign h'ff800000-BSC_BASE ; BCR1 address offset
BCR2 .assign h'ff800004-BSC_BASE ; BCR2 address offset
WCR1 .assign h'ff800008-BSC_BASE ; WCR1 address offset
WCR2 .assign h'ff80000c-BSC_BASE ; WCR2 address offset
WCR3 .assign h'ff800010-BSC_BASE ; WCR3 address offset
MCR .assign h'ff800014-BSC_BASE ; MCR address offset
PCR .assign h'ff800018-BSC_BASE ; PCR address offset
RTCSR .assign h'ff80001c-BSC_BASE ; RTCSR address offset
RTCNT .assign h'ff800020-BSC_BASE ; RTCNT address offset
RTCOR .assign h'ff800024-BSC_BASE ; RTCOR address offset
RFCR .assign h'ff800028-BSC_BASE ; RFCR address offset
;
SDMR2 .assign h'ff900000 ; SDMR2 address
SDMR3 .assign h'ff940000 ; SDMR3 address
;
CMF_BIT .assign h'0080 ; CMF bit in RTCSR
;
;**;
;* BSC initial data ;*;
;* After reset, you must initialize BSC for memory(stack) access at first.;*;
;* Please modify these definition in order to your hardware. ;*;
;**;
BCR1_DATA .assign h'00000000 ; BCR1 initial data
BCR2_DATA .assign h'3ffc ; BCR2 initial data
WCR1_DATA .assign h'77777777 ; WCR1 initial data
WCR2_DATA .assign h'fffeefff ; WCR2 initial data
WCR3_DATA .assign h'07777777 ; WCR3 initial data
MCR_DATA .assign h'00000000 ; MCR initial data
PCR_DATA .assign h'0000 ; PCR initial data
RTCSR_DATA .assign h'a500 + h'00 ; RTCSR initial data
RTCNT_DATA .assign h'a500 + h'00 ; RTCNT initial data
RTCOR_DATA .assign h'a500 + h'00 ; RTCOR initial data
RFCR_DATA .assign h'a400 + h'000 ; RFCR initial data
;
STP_REFRESH .assign h'a500 ; RTCSR initial data(stop count-up)
;
SDMR2_DATA .assign h'0230 ; SDMR2 initial data
SDMR3_DATA .assign h'0230 ; SDMR3 initial data
;
IDLE_TIME .assign h'1000 ; loop counter for idle-time
REFRESH_CNT .assign h'8 ; counter for dummy refresh
;
;**;
;*NAME = _hi_cpuasm ;*;
;*FUNCTION = CPU initialize routine ; ;*;
;**;
_hi_cpuasm:
;***** Initialize BSC
; mov.l #BSC_BASE,r0 ; set BSC base address to gbr
; ldc r0,gbr
;
; mov.l #BCR1_DATA,r0 ; Initialize BCR1
; mov.l r0,@(BCR1,gbr)
;
; mov.w #BCR2_DATA,r0 ; Initialize BCR2
; mov.w r0,@(BCR2,gbr)
;
; mov.l #WCR1_DATA,r0 ; Initialize WCR1
; mov.l r0,@(WCR1,gbr)
;
; mov.l #WCR2_DATA,r0 ; Initialize WCR2
; mov.l r0,@(WCR2,gbr)
;
; mov.l #WCR3_DATA,r0 ; Initialize WCR3
; mov.l r0,@(WCR3,gbr)
;

Change the BSC
value according to
the hardware

Omit the comment to
set BSC

Figure 2.5 Parts to be Changed in _hi_cpuasm (7750_cpuasm.src)

Rev. 1.0, 03/03, page 9 of 48

Omit the comment
to set BSC.

Jump to hi_cpuini

; mov.l #MCR_DATA,r0 ; Initialize MCR
; mov.l r0,@(MCR,gbr)
;
; mov.w #PCR_DATA,r0 ; Initialize PCR
; mov.w r0,@(PCR,gbr)
;
; mov.w #STP_REFRESH,r0 ; stop refresh
; mov.w r0,@(RTCSR,gbr)
;
; mov.w #RTCNT_DATA,r0 ; Initialize RTCNT
; mov.w r0,@(RTCNT,gbr)
;
; mov.w #RTCOR_DATA,r0 ; Initialize RTCOR
; mov.w r0,@(RTCOR,gbr)
;
; mov.w #RFCR_DATA,r0 ; Initialize RFCR
; mov.w r0,@(RFCR,gbr)
;
;*** Initialize SDRAM
;
; mov.l #IDLE_TIME,r0 ; loop for idle-time
;hicpuasm010:
; add #-1,r0
; cmp/eq #0,r0
; bf hicpuasm010
;
; mov.l #SDMR2,r0 ; Initialize SDMR(CS2)
; mov.l #SDMR2_DATA*4,r2
; mov.b r1,@(r0,r2) ; write dummy data(r1)
;
; mov.l #SDMR3,r0 ; Initialize SDMR(CS3)
; mov.l #SDMR3_DATA*4,r2
; mov.b r1,@(r0,r2) ; write dummy data(r1)
;
; mov.w #RTCSR_DATA,r0 ; Initialize RTCSR
; mov.w r0,@(RTCSR,gbr)
;
; mov.w #REFRESH_CNT,r2
;hi_cpuasm020:
; mov.w @(RFCR,gbr),r0 ; read RFCR
; cmp/ge r2,r0 ; if end dummy refresh
; bf hi_cpuasm020 ; else goto hi_cpuasm020
;
;hi_cpuasm030:
;
;***** Initialize sp and jump to hi_cpuini() written by C-language
 mov.l #CCN_BASE,r2 ; get CCN base address
 mov.l #PON_CODE,r3 ; get exception code to power-on
 mov.l @(EXPEVT,r2),r0 ; get exception code
 cmp/eq r3,r0 ; if exception != power-on
 bf hi_cpuasm050 ; then hi_cpuasm050
;
 mov.l #__kernel_pon_sp,r2 ; get stack address
;
hi_cpuasm040:
 mov r2,r15 ; set SP
;
 mov.l #_hi_cpuini,r0 ; get hi_cpuini address
 jmp @r0 ; jump to hi_cpuini()
 nop ; never return to this point
;
hi_cpuasm050:
 mov.l #__kernel_man_sp,r2 ; get stack address
 bra hi_cpuasm040
 nop
;
 .pool
;
 .end

Set stack pointer

Set stack pointer

Figure 2.6 Parts to be Changed in _hi_cpuasm (7750_cpuasm.src)

Rev. 1.0, 03/03, page 10 of 48

Figure 2.7 shows the part to be changed in _hi_cpuini (7750_cpuini.c).

/**/
/* HI7750/4 CPU initialize routine */
/* Copyright (c) Hitachi, Ltd. 2001. */
/* Licensed Material of Hitachi, Ltd. */
/* HI7750/4(HS0775ITI41SR) V1.0A */
/**/
/**/
/* FILE = 7750_cpuini.c ; */
/* CPU type = SH7750 */
/**/
#include <machine.h>
#include "itron.h"
#include "kernel.h"

#define CCR_DATA 0x0000090d /* CACHE enable data */

/* extern void _INITSCT(void); */ /* section-initialize routine */

#pragma section _hicpuini
#pragma noregsave(hi_cpuini)

void hi_cpuini(void)
{

/*** Initialize Hardware Environment ***/
/* vini_cac((UW)CCR_DATA); */ /* CACHE enable */

/*** Initialize Software Environment ***/

/* _INITSCT(); */ /* Call section-initialize routine */

 vsta_knl(); /* Start kernel */
}

Start a kernel
vini_cac((UW)CCR_DATA);

Change from cache
enable to cache
disable

Figure 2.7 Part to be Changed in _hi_cpuini (7750_cpuini.c)

Set a bus state controller and create a hardware initialization routine for the specific hardware.

Rev. 1.0, 03/03, page 11 of 48

2.2 Creating Tasks

A task is the main processing of an application program.

Figure 2.8 shows the procedure to create and register a task.

Create a task

Notes: 1. The cre_tsk service call must be enabled to register the task.
 For details, see the HI7000/4 Series User's Manual.
 2. This procedure is described in section 3, Configurator.

Yes

No

Start the configurator and
register the task*2

Register the task with the
cre_tsk service call*1

Do you want to use
a configurator to register

the task?

Figure 2.8 Creating and Registering Task

Create a task by changing the sample (task.c) supplied with HI7750/4. The sample is in the install
folder “tutorial”.

In this guide, the main task (MainTask) is registered by the configurator and the LED task by the
cre_tsk service call.

Rev. 1.0, 03/03, page 12 of 48

2.2.1 Main Task

This section describes how to change MainTask contained in the sample program (task.c) supplied
with HI7750/4. Figure 2.9 shows the overview of changes made in MainTask. Starting task7
periodically turns the LED on and off.

Create an event flag

Before change

Create and start task7

Wait for an event

Delete event flag 6

Terminate and delete MainTask

Create an event flag

After change

Create and start task7

Delete event flag 6

Terminate and delete task7

Wait for an event

Change stacd

Start task7

Figure 2.9 Overview of Changes Made in MainTask

Figure 2.10 shows the parts to be changed in MainTask.

Rev. 1.0, 03/03, page 13 of 48

#include <machine.h>

#include "itron.h"
#include "kernel.h"
#include "kernel_id.h"

#define LED_ADR (UH *)0xb0c00000

void MainTask(VP_INT exinf);
void task7(VP_INT exinf);

#pragma noregsave(MainTask, task7)

/***
 * MainTask()
 * This task is created and activated by Configurator.
 * tskid : "ID_MainTask" (defined in kernel_id.h as this task's ID.)
 * itskpri : 6
 ***/
void MainTask(VP_INT exinf)
{
 union CrePacket{
 T_CTSK t_ctsk; /* Creation info. for task */
 T_CFLG t_cflg; /* Creation info. for event flag */
 } packet;

 ER ercd;
 FLGPTN waiptn, flgptn;

 /*** Create eventflag-6 ***/
 packet.t_cflg.flgatr = TA_TFIFO|TA_WSGL|TA_CLR;
 packet.t_cflg.iflgptn = 0;

 ercd = cre_flg(6, (T_CFLG *)&packet);

 /*** Create task-7 ***/
 packet.t_ctsk.tskatr = TA_HLNG|TA_ACT;
 packet.t_ctsk.exinf = 0;
 packet.t_ctsk.task = (FP)task7;
 packet.t_ctsk.itskpri = 7;
 packet.t_ctsk.stksz = 0x200;
 packet.t_ctsk.stk = (VP)NULL;

 ercd = cre_tsk(7, (T_CTSK *)&packet);

 /*** Wait for eventflag-6 ***/
 waiptn = 0x11111111;
 ercd = wai_flg(6, waiptn, TWF_ANDW, &flgptn);

 /*** Delete eventflag-6 ***/
 ercd = del_flg(6);

 ext_tsk();
}

for(;;) {
/*** Wait for eventflag-6 ***/
waiptn = 0x11111111;
ercd = wai_flg(6, waiptn, TWF_ANDW, &flgptn);
if(exinf == 0x00000000L) {
 exinf = 0x0000ff00L;
} else {
 exinf = 0x00000000L;
}
ercd = sta_tsk(7,exinf);
}

MainTask and task7 are the main functions for each task.
Another function never calls them. #pragma noregsave is
valid to suppress the stack area.

Define the task attribute.
If task7 uses the DSP, use the OR operator to define
TA_COP0.
(packet.t_ctsk.tskatr = TA_HLNG TA_ACT TA_COP0)
This allows the DSP register to be saved (to guarantee
a kernel) when changing a task.

Register the task and start it.

Wait for the event flag to set by the interrupt
handler. Change the exinf value and start
task7. At this time, exinf is passed to task7
as a start code.

Define the include file supplied with the C compiler.

Required when using the HI7750/4 service call.

Define the LED output port address. For details, see the
Solution Engine Overview Manual.

Figure 2.10 Changing MainTask

Rev. 1.0, 03/03, page 14 of 48

2.2.2 LED Task

This section describes how to change task7 of the sample program (task.c) supplied with
HI7750/4. Figure 2.11 shows the part to be changed in task7.

Turn the LED on or off according
to the exinf value, and then
terminate itself (task7)

/***
 * task7()
 * This task is created and activated by MainTask.
 * tskid : 7
 * itskpri : 7
 ***/
void task7(VP_INT exinf)
{
 ER ercd;

 ercd = set_flg(6, 0xffffffff);

 while(1);
}

*LED_ADR = (UH)exinf;
ext_tsk();

Figure 2.11 Changing task7

2.3 Creating an Interrupt Handler

The interrupt handler is started by an external interrupt that suspends another processing.

Figure 2.12 shows the procedure to create and register the initialization module and the interrupt
handler.

Rev. 1.0, 03/03, page 15 of 48

Create the initialization module

Create an interrupt handler

Yes

No

Start the configurator and
register the initialization module*2

Call the subroutine
(initialization module)*1

Yes

No

Start the configurator and
register the interrupt handler*2

Notes: 1. The def_inf service call must be enabled to register the interrupt handler.
 For details, see the HI7000/4 Series User's Manual.
 2. This procedure is described in section 3, Configurator.

Register the interrupt handler
by the def_inf service call*1

Do you want to
use a configurator to register

the initialization
module?

Yes

NoDo you need an
initialization module?

Do you want to
use the configurator to register

the interrupt
handler?

Figure 2.12 Creating and Registering Initialization Module and Interrupt Handler

This guide describes how to use the on-chip TMU1 in the SH7750 to create the interrupt handler
and how to use a configurator to register it.

Create the tmu1.c file for the initialization module and the interrupt handler and store the file in
the install folder “tutorial”.

Table 2.1 lists the interrupt conditions.

Rev. 1.0, 03/03, page 16 of 48

Table 2.1 Interrupt Conditions

Item Description Function File Name

Initialization module Required. Use the configurator to register the
module.

TMU1_ini tmu1.c

Interrupt handler Use the configurator to register the handler. TMU1_int tmu1.c

Interrupt cycle An interrupt occurs every one second.

Interrupt level 1

Rev. 1.0, 03/03, page 17 of 48

2.3.1 Creating Initialization Module

This section describes how to create an initialization module for the on-chip TMU1 in the
SH7750. The initialization module initializes the TMU1 and sets the interrupt cycle and level.
Figure 2.13 shows the procedure to create the initialization module.

Save GBR

Set the TPU base address in GBR

Stop TCNT of the TMU1

Set the INTC base address in GBR

Read IPRA

Clear the IPRA-TMU1 level

Set the IPRA-TMU1 level to 1

Set the BL bit to mask the interrupt

Set IPRA

Dummy-read IPRA

Set the TMU base address in GBR

Set TCR

Dummy-read TCR

Set TCOR

Set TCNT

Start TCNT of the TMU1

Clear the BL bit to enable the interrupt

Restore GBR to the original state

Start

End

Figure 2.13 Creating Initialization Module

Figures 2.14 and 2.15 show the contents of TMU1_ini (tmu1.c).

Rev. 1.0, 03/03, page 18 of 48

#include <machine.h>
#include "itron.h"
#include "kernel.h"

#define BL_BIT 0x10000000 /* BL bit pattern */

/* Peripheral Clock (FRQCR set value = H'0E13 (CPU:Bus:P = 200:33:33 MHz)) */
#define PCLK 33333400

/* TSTR set value */
#define TCNT1_STA 0x02 /* Start TCNT of the TMU1 */
#define TCNT1_STP 0xfd /* Stop TCNT of the TMU1 */

/* TCR set value */
#define DIV 4 /* Division ratio = 4 */
#define DIV64 0x0000 /* Division ratio = 1/4 */
#define UNIE 0x0020 /* Interrupt generated by an underflow of the TCR1 */

/* TCNT set value */
#define INTERVAL 1000000 /* 1 second: 1000ms: 1000000us */
#define TCNT1_DAT (UW) (((double)INTERVAL/(((double)1000000/(double)PCLK)*(double)DIV))-(double)1)
 /* (1 second/ ((1second/33.3334 MHz)*4))-1 */

/* IPRA set value */
#define IPRA_CLR_TPU1 0xf0ff /* IPR bit8-11 clear data */
#define TMU1_LVL 1 /* TMU1 interrupt level = 1 */

/* TMU,IPRA I/O address */
#define TMU_BASE 0xffd80000 /* TMU base address */
#define TSTR (0xffd80004 - TMU_BASE) /* TMU TSTR */
#define TCOR1 (0xffd80014 - TMU_BASE) /* TMU TCOR(ch1) */
#define TCNT1 (0xffd80018 - TMU_BASE) /* TMU TCNT(ch1) */
#define TCR1 (0xffd8001C - TMU_BASE) /* TMU TCR (ch1) */
#define INTC_BASE 0xffd00000 /* INTC base address */
#define IPRA (0xffd00004 - INTC_BASE) /* INTC IPR(IPRA:TMU-ch0) */

/**/
/* NAME = TMU1_ini */
/* FUNCTION = initialize the TMU1 */
/**/
void TMU1_ini (void)
{
 VP gbrsave; /* GBR save area */
 UH ipra; /* IPRA retention area */

 gbrsave = get_gbr (); /* Save GBR */
 set_gbr((VP)TMU_BASE); /* Set the TPU base address in GBR */

 gbr_and_byte(TSTR,TCNT1_STP); /* Stop the TCNT of the TMU1 */

 set_gbr((VP)INTC_BASE); /* Set the INTC base address in GBR */
 ipra = gbr_read_word (IPRA); /* Read IPRA */
 ipra &= IPRA_CLR_TPU1; /* Clear the IPRA-TMU1 level */
 ipra |= TMU1_LVL << 8; /* IPRA-TMU1 level = 1 */

 set_cr (BL_BIT | get_cr ()); /* Set the BL bit to mask an interrupt */
 gbr_write_word (IPRA,ipra); /* Set IPRA */
 gbr_read_word (IPRA); /* Dummy-read IPRA */

 set_gbr((VP)TMU_BASE); /* Set the TPU base address in GBR */
 gbr_write_word(TCR1,UNIE|DIV4); /* Set TCR */
 gbr_read_word(TCR1); /* Dummy-read TCR */

 gbr_write_long(TCOR1,TCNT1_DAT); /* Set TCOR */
 gbr_write_long(TCNT1,TCNT1_DAT); /* Set TCNT */
 gbr_or_byte(TSTR, TCNT1_STA); /* Start the TCNT of the TMU1 */

 set_cr(~BL_BIT & get_cr()); /* Clear the BL bit to enable an interrupt */
 set_gbr(gbrsave); /* Restore GBR to the original state */
}

Figure 2.14 Contents of TMU1_ini (tmu1.c)

Rev. 1.0, 03/03, page 19 of 48

2.3.2 Creating Interrupt Handler

This section describes how to create an interrupt handler for the on-chip TMU1 in the SH7750.
The interrupt handler clears an interrupt source of the TMU1 and issues an event flag to task7.
Figure 2.15 shows the procedure to create the interrupt handler.

Save GBR

Set the TPU base address in GBR

Dummy-read TCR

Issue iset_flg

Clear the BL bit to enable an interrupt

Restore GBR to the original state

Set the BL bit to mask an interrupt

Clear TCR (Clear an interrupt source)

Figure 2.15 Creating Interrupt Handler

Figure 2.17 shows the contents of TMU1_int (tmu1.c).

/**/
/* NAME = TMU1_int */
/* FUNCTION = TMU1 interrupt handler */
/**/
void TMU1_int(void)
{
 VP gbrsave; /* GBR save area */

 gbrsave = get_gbr(); /* Save GBR */
 set_gbr((VP)TMU_BASE); /* Set the TPU base address in GBR */
 set_cr(BL_BIT | get_cr()); /* Set the BL bit to mask an interrupt */

 gbr_write_word(TCR1,UNIE|DIV4); /* Clear UNF */
 gbr_read_word(TCR1); /* Dummy-read TCR */

 iset_flg(6, 0xffffffff); /* Set an event flag for task7 */

 set_cr(~BL_BIT & get_cr()); /* Clear the BL bit to enable an interrupt */
 set_gbr(gbrsave); /* Restore GBR to the original state */
} /* ret_int */

Figure 2.17 Contents of TMU1_int (tmu1.c)

Rev. 1.0, 03/03, page 20 of 48

Rev. 1.0, 03/03, page 21 of 48

Section 3 Configuration

Configuration means to register the programs created in section 2 to HI7750/4. HI7750/4 provides
a tool that allows easy configuration using GUI and a configurator.

This section describes how to use the configurator to register the application programs.

Figure 3.1 shows the programs to be registered in this guide.

Register the task

Register the interrupt initialization routine

Register the interrupt handler

Figure 3.1 Programs to be Registered

The defaults are used for programs other than those above.

For details of each program set by the configurator, see the Configurator Help.

Rev. 1.0, 03/03, page 22 of 48

3.1 Starting Configurator

Double-click the configurator set file (7750.hcf) to start the configurator. The 7750.hcf file is in
the install folder “sh7750”.

Figure 3.2 shows the Configurator Startup screen.

Figure 3.2 Configurator Startup Screen

3.2 Interrupt Mask Level

Table 3.1 lists the interrupt mask levels for the application programs in this guide.

Table 3.1 Interrupt Mask Levels

Type Mask Level Remarks

Task 0

Interrupt handler 1

Kernel 14 Default

Rev. 1.0, 03/03, page 23 of 48

Click kernel operational conditions in the HI7750/4 Configuration Information area on the
Configuration Startup screen to view the screen in figure 3.2. In this screen, the mask level for a
kernel interrupt can be set. Since the default value (14) is used for the mask level of a kernel
interrupt in this guide, you do not need to change the interrupt level.

3.3 Registering Task

Click Task in the HI7750/4 Configuration Information area on the Configuration Startup screen to
view the Task Information screen in figure 3.3.

Figure 3.3 Task Information Screen

Click the Change button in the Task Information area in figure 3.3 to view the Modification of
Task Information screen in figure 3.4.

Rev. 1.0, 03/03, page 24 of 48

Figure 3.4 Modification of Task Information Screen

On this screen, you can change the maximum task ID, the maximum task ID using static stacks,
maximum task priority, and the total size of the dynamic stack area. For details about differences
between static stacks and dynamic stacks, see section 2.6.6, Task Stack, in the HI7000/4 Series
User’s Manual.

For details about how to calculate the task stack size, see Appendix C, Calculation of Work Area
Size, in the HI7000/4 Series User’s Manual.

In this guide, the defaults are used for registering the task. You do not need to change the task
information.

Rev. 1.0, 03/03, page 25 of 48

3.4 Registering Interrupt Handler

Click Interrupt and CPU Exception Handler in the HI7750/4 Configuration Information area on
the Configuration Startup screen to view the List of Interrupt/CPU/Trap Exception Handlers
screen in figure 3.5.

Figure 3.5 List of Interrupt/CPU/Trap Exception Handlers Screen

Register the timer interrupt handler in this guide. Use the mouse on the scroll bar on the right of
the List of Interrupt/CPU/Trap Exception Handlers to view the exception code around 0x0420.
Double click exception code 0x0420 to view the Definition of Interrupt/CPU/Trap Exception
Handler screen in figure 3.6.

The exception code, 0x0420, is used for the TMU1 interrupt exception code in this guide. For
details of the exception code, see the SH7750 Hardware Manual.

Double click exception code 0x0420 to view the screen shown in figure 3.6.

Rev. 1.0, 03/03, page 26 of 48

Figure 3.6 List of Interrupt/CPU/Trap Exception Handlers Screen

Set TMU1_int in the Address box. The mask level of the interrupt handler in this guide is 1. So
change the SR register setting to 0x4000010.

This SR register setting is used as a SR register setting when control is passed to the TMU1_init
interrupt handler. The level should be set to higher than hardware interrupt levels. However, if a
service call is issued from the interrupt handler, the level must be set to less than the level of a
kernel.

Figures 3.7 and 3.8 show the Definition of Interrupt/CPU/Trap Exception Handler screens after
you made definitions.

Rev. 1.0, 03/03, page 27 of 48

Figure 3.7 Definition of Interrupt/CPU/Trap Exception Handler Screen

Figure 3.8 Definition of Interrupt/CPU/Trap Exception Handler Screen
(after Making Definitions)

Rev. 1.0, 03/03, page 28 of 48

3.5 Registering Initialization Routine

Click Initialization Routine in the HI7750/4 Configuration Information area on the Configurator
Startup screen to view the Initialization Routine List screen in figure 3.9.

The initialization routine that is registered on this screen is called immediately after the kernel
startup (setup) completes and executed with the kernel mask level (the value set for the kernel
operational conditions in the configuration information). This routine differs from the CPU
initialization routine that is executed immediately after a reset.

In the initialization routine, the service call of a kernel can be issued.

The issuable service call is the one that can be called from non-task context (system state: N)
described in section 3, Service Calls, in the HI7000/4 Series User’s Manual.

The initialization routine is used for the following purposes:

1. Interrupt initialization

2. Initialization routine for task setup

3. Event flag, mailbox, or memory pool of which initial setting is to be completed before passing
the control to a task or an interrupt handler

Figure 3.9 List of Initialization Routines Screen

Rev. 1.0, 03/03, page 29 of 48

Right click on the blank area of the List of Initialization Routines to view the menu. Then, select
Register to view the Registration Initial Routine screen in figure 3.10.

The following explains how to register the initial routine.

Figure 3.10 Registration of Initialization Routine Screen

Rev. 1.0, 03/03, page 30 of 48

Set TMU1_ini in the Address box and click the Register button, and then the Close button. Use the
expression below to obtain the stack size.

• TMU1_ini stack frame size: 8 bytes

• Required size for the initialization routine: 192 + 24 bytes

Total: 224 bytes

For details about how to calculate the stack size, see Appendix C, Calculation of Work Area Size,
in the HI7000/4 Series User’s Manual. Use the default since the calculated stack size is smaller
than it.

Figure 3.11 shows the Registration of Initialization Routine screen after registration. Figure 3.12
shows the List of Initialization Routines screen after registration.

Figure 3.11 Registration of Initialization Routine Screen (after Registration)

Rev. 1.0, 03/03, page 31 of 48

Figure 3.12 List of Initialization Routines Screen (after Registration)

3.6 Registering Event Flag Information

Click Event Flag in the HI7750/4 Configuration Information area on the Configuration Startup
screen to view the Event Flag Information screen in figure 3.13.

Click the Change button in the Event Flag Information area to change the maximum event flag ID.
Right click on the blank area of the Event Flag List and select Create to view the Creation of
Event Flag screen in figure 3.14. For initial creation of an event flag, set the information about the
event flag on this screen.

The application implemented in this guide dynamically creates one event flag in the task. Use the
default event flag information.

Rev. 1.0, 03/03, page 32 of 48

Figure 3.13 Event Flag Information Screen

Figure 3.14 Creation of Event Flag Screen

Rev. 1.0, 03/03, page 33 of 48

3.7 Creating Configuration Files

Click the Create button on the Configurator Startup screen to create the configuration files
required for configuring HI7750/4. For details about the configuration files, see section 5.1.2,
Configurator Output File, in the HI7000/4 Series User’s manual.

Now, the definition and registration by the configurator are complete. To close 7750.hcf, choose
Overwrite or Save As from the File menu to save all the information.

3.8 Building the Executable File by HEW

Compile and link the files created by the configurator using HEW supplied with SHC/C++
compiler to create the executable file to be downloaded. This section describes how to build the
executable file by HEW.

There are two methods to configure HI7750/4. Table 3.2 lists the type of links.

Table 3.2 Type of Links

Type Description

Whole linkage Links the kernel and all configuration files into a single load module (called a
whole load module).

Separate linkage Links the kernel code portion (called a kernel load module) and the kernel
data portion (called a kernel environment load module) into separate load
modules.

Application files can be included in a kernel load module, a kernel
environment load module, or in an independent application load module.

For details, see section 5, Configuration, in the HI7000/4 Series User’s Manual.

This guide describes how to use the whole link method to configure the program in big endian
format.

Rev. 1.0, 03/03, page 34 of 48

3.8.1 Starting HEW

Double click hios.hws in the install folder “hios” to start HEW to build HI7750/4. Figure 3.15
shows the HEW Startup screen.

Figure 3.15 HEW Startup Screen

The standard project file hios.hws contains three sub-projects to configure the program for the
target CPU. Table 3.3 lists the type of project files.

Table 3.3 Project Files

7750_mix Project file for creating the whole load module for the whole link method

7750_cfg Project file for creating the kernel load module for the separate link method

7750_def Project file for creating the kernel environment load module for the separate
link method

Select the project file 7750_mix for creating the whole load module.

Rev. 1.0, 03/03, page 35 of 48

3.8.2 Defining Configuration File

Define each application program created in section 2 as a project file. Use the default project file
configuration and define only the timer driver to implement the sample program operation in this
guide.

On the Current Project Set screen, select Add Files... from the Project menu to add tmu1.c as a
project file. Figures 3.16 and 3.17 show the screen for adding a file.

Figure 3.16 Adding a File

Rev. 1.0, 03/03, page 36 of 48

Figure 3.17 Adding a File

Now, defining the configuration files completes.

Rev. 1.0, 03/03, page 37 of 48

3.8.3 Changing a Linkage Address

Change the linkage addresses to run the programs on the Solution Engine address map.

The Solution Engine is supplied with 32-Mbyte SDRAM from 0x0C00000 to 0x0FFFFFFF. In
this guide, 16 Mbytes from 0x0C00000 to 0x0CFFFFFF are used.

Select OptLinker from the Options menu to view the OptLinker Options screen (figure 3.18).

Figure 3.18 Selecting OptLinker

Rev. 1.0, 03/03, page 38 of 48

• Changing a kernel stack pointer

Double click _kernel_pon_sp and _kernel_man_sp in the Input tab and set the value so that the
values point to the end address of the RAM mounted on each hardware + 1 (0xAD000000 in P2
space) as shown in figures 3.19 to 3.21.

Figure 3.19 OptLinker options Screen

Figure 3.20 OptLinker options Screen (_kernel_pon_sp)

Rev. 1.0, 03/03, page 39 of 48

Figure 3.21 OptLinker options Screen (_kernel_man_sp)

• Changing a section address

Click the Section tab to view the Define Section screen (figure 3.22).

Figure 3.22 Define Section Screen

Click Address for each section to enable the Modify... button. Change the section addresses as
listed in table 3.4.

Rev. 1.0, 03/03, page 40 of 48

Table 3.4 Section Addresses

Section
Name

Before
Change

After
Change

Section
Name

Before
Change

After
Change

P_hiexpent 80000100 8C000100 B_hiwrk 8C000000 8C010000

C_hibase 80001000 8C001000 B_himpl

P_hireset B_hidystk

C_hivct B_histstk

C_hitrp B_hiirqstk

P_hiknl B_hitrcbuf

C_hidef B_hitrceml

C_hisysmt B

C_hicfg R

P_hisysdwn P_hicpuasm A0000000 AC000000

P_hiintdwn P_hicpuini

P_hitmrdrv

P

C

D

Rev. 1.0, 03/03, page 41 of 48

3.8.4 Build

Execute HEW to build an executable file that can be downloaded to the Solution Engine by the
E10A emulator. Select Build from the Build menu. Figure 3.23 shows the screen for selecting
Build.

Figure 3.23 Selecting Build

The executable file is created by selecting Build. The result of compilation and linkage is shown at
the bottom of the window. If a compile error occurs, correct the applicable source and build the
file again. The executable file (with the file extension .abs) is created in the install folder
“obj_big”.

Now you can download the file to the Solution Engine by the E10A emulator and execute it. For
details about how to download and execute the file, see section 4, Downloading and Executing
Application Programs.

Rev. 1.0, 03/03, page 42 of 48

3.9 Disabling Parameter Check Function

When debugging the application programs completes and they are ready to be installed into the
product, you can disable the parameter check function. This check function is an unnecessary
routine performed in the beginning of the service call, in the HI series operating system.

You can use the configurator to disable the parameter check function. Figure 3.24 shows the
screen for disabling the parameter check function.

Figure 3.24 Disabling Parameter Check Function

Click Kernel Extended Function on the Configurator Startup screen to view the screen in figure
3.24. Uncheck the Install the Parameter Check Function checkbox and create and build the
configuration files. The executable file with the parameter check function disabled is created.

Rev. 1.0, 03/03, page 43 of 48

Section 4 Downloading and Executing
Application Programs

This section describes how to use the E10A to download the executable file created in section 3,
Configuration, and run it on the Solution Engine.

4.1 Initializing Solution Engine

The ROM monitor supplied with the Solution Engine initializes the CPU. In this guide, this
monitor is used for the CPU initialization. (When using another board, you must use a specific
CPU initialization routine. For details of CPU initialization, see section 2.1, Creating CPU
Initialization Routine.)

Configure the system as shown in figure1.1 in section 1, Overview. Start the host computer, turn
the Solution Engine on, select HDI for E10A SH7750 from the Windows Start menu to start the
HDI. Figure 4.1 shows the HDI Startup screen.

Figure 4.1 HDI Startup Screen

Then, choose Go from the Run menu (figure 4.2).

Rev. 1.0, 03/03, page 44 of 48

Figure 4.2 Go menu

After one or two seconds, click the STOP button (red) on the menu bar. Now, initializing the
Solution Engine completes and this allows reading from or writing to the SDRAM supplied with
the Solution Engine.

Rev. 1.0, 03/03, page 45 of 48

4.2 Downloading Application Program

Download the executable file created in section 3, Configuration, to the E10A.

Figure 4.3 shows the screen for downloading the executable file.

Figure 4.3 Downloading Executable File

Select Load Program... from the File menu on the HDI Startup screen. On the Load Program
screen in figure 4.3, enter the name of the executable file to download in the File Name box and
click the Open button to download it. The executable file is 7750_mix.abs in the install folder
“obj_big”.

After downloading succeeds, the Complete Download screen in figure 4.4 appears.

Rev. 1.0, 03/03, page 46 of 48

Figure 4.4 Complete Download Screen

Click the OK button on the Complete Download screen.

4.3 Executing Application Program

To execute the program, choose Registers from the View menu on the HDI Startup screen to view
the register information (figure 4.5).

Figure 4.5 Register Information

Then, change the PC value. Double click the PC value on the Register Information screen to view
the Change PC Value screen (figure 4.6).

Rev. 1.0, 03/03, page 47 of 48

Figure 4.6 Change PC Value Screen

Change the PC value to AC000000 as shown in figure 4.6 and click the OK button. This value is
the start address of the CPU initialization routine.

Now, you can execute the program. Select Go from the Run menu to execute the program (figure
4.7).

Figure 4.7 Execute Program Screen

Rev. 1.0, 03/03, page 48 of 48

HI7750/4 Hitachi Industrial Realtime Operating System
Configuration Guide

Publication Date: 1st Edition, March 2003
Published by: Business Operation Division

Semiconductor & Integrated Circuits
Hitachi, Ltd.

Edited by: Technical Documentation Group
Hitachi Kodaira Semiconductor Co., Ltd.

Copyright © Hitachi, Ltd., 2003. All rights reserved. Printed in Japan.

	Cover
	Cautions
	Preface
	Contents
	Section 1 Introduction
	1.1	Overview
	1.2	System Configuration
	1.3	Prerequisites

	Section 2 Creating Application Programs
	2.1	Creating CPU Initialization Routine
	2.2	Creating Tasks
	2.2.1	Main Task
	2.2.2	LED Task

	2.3	Creating an Interrupt Handler
	2.3.1	Creating Initialization Module
	2.3.2	Creating Interrupt Handler

	Section 3 Configuration
	3.1	Starting Configurator
	3.2	Interrupt Mask Level
	3.3	Registering Task
	3.4	Registering Interrupt Handler
	3.5	Registering Initialization Routine
	3.6	Registering Event Flag Information
	3.7	Creating Configuration Files
	3.8	Building the Executable File by HEW
	3.8.1	Starting HEW
	3.8.2	Defining Configuration File
	3.8.3	Changing a Linkage Address
	3.8.4	Build

	3.9	Disabling Parameter Check Function

	Section 4 Downloading and Executing �Application Programs
	4.1	Initializing Solution Engine
	4.2	Downloading Application Program
	4.3	Executing Application Program

	Colophon

