To our customers,

Old Company Name in Catalogs and Other Documents

On April 1%, 2010, NEC Electronics Corporation merged with Renesas Technology
Corporation, and Renesas Electronics Corporation took over all the business of both
companies. Therefore, although the old company name remains in this document, it is a valid
Renesas Electronics document. We appreciate your understanding.

Renesas Electronics website: http://www.renesas.com

April 1%, 2010
Renesas Electronics Corporation

Issued by: Renesas Electronics Corporation (http://www.renesas.com)

Send any inquiries to http://www.renesas.com/inquiry.

LENESAS

10.

11

12.

Notice

All information included in this document is current as of the date this document isissued. Such information, however, is
subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please
confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful atention to
additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.

Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights
of third parties by or arising from the use of Renesas Electronics products or technical information described in this document.
No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights
of Renesas Electronics or others.

Y ou should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.

Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of
semiconductor products and application examples. Y ou are fully responsible for the incorporation of these circuits, software,
and information in the design of your equipment. Renesas Electronics assumes no responsibility for any lossesincurred by
you or third parties arising from the use of these circuits, software, or information.

When exporting the products or technology described in this document, you should comply with the applicable export control
laws and regulations and follow the procedures required by such laws and regulations. Y ou should not use Renesas
Electronics products or the technology described in this document for any purpose relating to military applications or use by
the military, including but not limited to the devel opment of weapons of mass destruction. Renesas Electronics products and
technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited
under any applicable domestic or foreign laws or regulations.

Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics
does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages
incurred by you resulting from errorsin or omissions from the information included herein.

Renesas Electronics products are classified according to the following three quality grades: “Standard”, “High Quality”, and
“Specific”. The recommended applications for each Renesas Electronics product depends on the product’ s quality grade, as
indicated below. Y ou must check the quality grade of each Renesas Electronics product before using it in aparticular
application. You may not use any Renesas Electronics product for any application categorized as “ Specific” without the prior
written consent of Renesas Electronics. Further, you may not use any Renesas Electronics product for any application for
which it is not intended without the prior written consent of Renesas Electronics. Renesas Electronics shall not bein any way
liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an
application categorized as “ Specific” or for which the product is not intended where you have failed to obtain the prior written
consent of Renesas Electronics. The quality grade of each Renesas Electronics product is “ Standard” unless otherwise
expressly specified in a Renesas Electronics data sheets or data books, etc.

“Standard”: Computers; office equipment; communications equipment; test and measurement equipment; audio and visual
equipment; home electronic appliances, machine tools; personal electronic equipment; and industrial robots.
“High Quality”: Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-
crime systems; safety equipment; and medical equipment not specifically designed for life support.
“Specific”: Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or
systems for life support (e.g. artificial life support devices or systems), surgical implantations, or heathcare
intervention (e.g. excision, etc.), and any other applications or purposes that pose adirect threat to human life.
Y ou should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics,
especialy with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation
characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or
damages arising out of the use of Renesas Electronics products beyond such specified ranges.
Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have
specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further,
Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to
guard them against the possibility of physica injury, and injury or damage caused by fire in the event of the failure of a
Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire
control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because
the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system
manufactured by you.

Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental
compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable
laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS
Directive. Renesas Electronics assumes no liability for damages or losses occurring as aresult of your noncompliance with
applicable laws and regulations.

This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas
Electronics.

Please contact a Renesas Electronics sdes office if you have any questions regarding the information contained in this
document or Renesas Electronics products, or if you have any other inquiries.

(Note 1) “Renesas Electronics’ as used in this document means Renesas Electronics Corporation and also includes its majority-

owned subsidiaries.

(Note 2) “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.

To all our customers

Regarding the change of names mentioned in the document, such as Hitachi
Electric and Hitachi XX, to Renesas Technology Corp.

The semiconductor operations of Mitsubishi Electric and Hitachi were transferred to Renesas
Technology Corporation on April 1st 2003. These operations include microcomputer, logic, analog
and discrete devices, and memory chips other than DRAMs (flash memory, SRAMSs etc.)
Accordingly, although Hitachi, Hitachi, Ltd., Hitachi Semiconductors, and other Hitachi brand

names are mentioned in the document, these names have in fact all been changed to Renesas
Technology Corp. Thank you for your understanding. Except for our corporate trademark, logo and
corporate statement, no changes whatsoever have been made to the contents of the document, anc
these changes do not constitute any alteration to the contents of the document itself.

Renesas Technology Home Page: http://www.renesas.com

Renesas Technology Corp.
Customer Support Dept.
April 1, 2003

1RENESAS

RenesasTechnology Corp.

Cautions

Keep safety first in your circuit designs!

1

Renesas Technology Corporation puts the maximum effort into making semiconductor products better
and morereliable, but there is always the possibility that trouble may occur with them. Trouble with
semiconductors may |lead to personal injury, fire or property damage.

Remember to give due consideration to safety when making your circuit designs, with appropriate
measures such as (i) placement of substitutive, auxiliary circuits, (ii) use of nonflammable material or
(iii) prevention against any malfunction or mishap.

Notes regarding these materials

1

These materials are intended as a reference to assist our customersin the selection of the Renesas
Technology Corporation product best suited to the customer's application; they do not convey any
license under any intellectual property rights, or any other rights, belonging to Renesas Technology
Corporation or athird party.

Renesas Technology Corporation assumes no responsibility for any damage, or infringement of any
third-party's rights, originating in the use of any product data, diagrams, charts, programs, agorithms, or
circuit application examples contained in these materials.

All information contained in these materials, including product data, diagrams, charts, programs and
algorithms represents information on products at the time of publication of these materials, and are
subject to change by Renesas Technology Corporation without notice due to product improvements or
other reasons. It istherefore recommended that customers contact Renesas Technology Corporation
or an authorized Renesas Technology Corporation product distributor for the latest product information
before purchasing a product listed herein.

The information described here may contain technical inaccuracies or typographical errors.

Renesas Technology Corporation assumes no responsibility for any damage, liability, or other loss
rising from these inaccuracies or errors.

Please also pay attention to information published by Renesas Technology Corporation by various
means, including the Renesas Technology Corporation Semiconductor home page
(http://www.renesas.com).

When using any or all of the information contained in these materials, including product data, diagrams,
charts, programs, and algorithms, please be sure to evaluate al information as a total system before
making afinal decision on the applicability of the information and products. Renesas Technology
Corporation assumes no responsibility for any damage, liability or other loss resulting from the
information contained herein.

Renesas Technology Corporation semiconductors are not designed or manufactured for use in adevice
or system that is used under circumstances in which human life is potentially at stake. Please contact
Renesas Technology Corporation or an authorized Renesas Technology Corporation product distributor
when considering the use of aproduct contained herein for any specific purposes, such as apparatus or
systems for transportation, vehicular, medical, aerospace, nuclear, or undersea repeater use.

The prior written approval of Renesas Technology Corporation is necessary to reprint or reproduce in
whole or in part these materials.

If these products or technologies are subject to the Japanese export control restrictions, they must be
exported under alicense from the Japanese government and cannot be imported into a country other
than the approved destination.

Any diversion or reexport contrary to the export control laws and regulations of Japan and/or the
country of destination is prohibited.

Please contact Renesas Technology Corporation for further details on these materials or the products
contained therein.

-
»
@
ﬁ\
»
<
)
>
-
o

LENESAS

HI7700/4 Renesas Industrial
Realtime Operating System
Configuration Guide

Renesas Microcomputer
Development Environment
System

Renesas Electronics Rev.1.0 2003.03

Cautions

1. Hitachi neither warrants nor grants licenses of any rights of Hitachi’s or any third party’s
patent, copyright, trademark, or other intellectual property rights for information contained in
this document. Hitachi bears no responsibility for problems that may arise with third party’s
rights, including intellectual property rights, in connection with use of the information
contained in this document.

2. Products and product specifications may be subject to change without notice. Confirm that you
have received the latest product standards or specifications before final design, purchase or
use.

3. Hitachi makes every attempt to ensure that its products are of high quality and reliability.
However, contact Hitachi’s sales office before using the product in an application that
demands especially high quality and reliability or where its failure or malfunction may directly
threaten human life or cause risk of bodily injury, such as aerospace, aeronautics, nuclear
power, combustion control, transportation, traffic, safety equipment or medical equipment for
life support.

4. Design your application so that the product is used within the ranges guaranteed by Hitachi
particularly for maximum rating, operating supply voltage range, heat radiation characteristics,
installation conditions and other characteristics. Hitachi bears no responsibility for failure or
damage when used beyond the guaranteed ranges. Even within the guaranteed ranges,
consider normally foreseeable failure rates or failure modes in semiconductor devices and
employ systemic measures such as fail-safes, so that the equipment incorporating Hitachi
product does not cause bodily injury, fire or other consequential damage due to operation of
the Hitachi product.

5. This product is not designed to be radiation resistant.

6. No one is permitted to reproduce or duplicate, in any form, the whole or part of this document
without written approval from Hitachi.

7. Contact Hitachi’s sales office for any questions regarding this document or Hitachi
semiconductor products.

Rev. 1.0, 03/03, page ii of vi
:{ENESAS

Preface

This guide describes how to configure systems using HI7700/4.

To execute application programs registered as tasks on HI7700/4, the Solution Engine®, the
product of Hitachi ULSI Systems Co., Ltd., shall be used as a target board and the HDI of the
E10A emulator as a debugger in the initial debug stage. For details about HI7700/4, see the
HI7000/4 Series (HI7000/4, HI7700/4, HI7750/4) User’s Manual (hereinafter referred to as the
HI7000/4 Series User’s Manual). To create application programs and link them with HI7700/4,
you should use the SuperH™ RISC engine C/C++ compiler package (hereinafter referred to as the
SHC/C++ compiler) and the Hitachi Embedded Workshop (HEW), which is an integrated
development tool, supplied with the SuperH™ RISC engine C/C++ compiler package.

This guide describes how to change, add and configure programs before executing the start task on
multitasking operating system using the above target board, emulator, and compiler.

Related manuals

e HI7000/4 Series (HI7000/4, HI7700/4, HI7750/4) Hitachi Industrial Realtime Operating
System User’s Manual

e SuperH RISC engine C/C++ Compiler SH-1, SH-2, SH-2E, SH-3, SH3E, SH-4 User’s Manual
e SuperH RISC engine C/C++ Compiler Assembler Optimizing Linkage Editor User’s Manual

e H Series Linkage Editor, Librarian, and Object Converter User’s Manual

e Hitachi Embedded Workshop 2 HEW Debugger User’s Manual

e SH7729 Solution Engine™ (MS7729SEO1) Overview

e The hardware manual and programming manual of the SuperH microcomputer used

Pentium is a trademark or registered trademark of Intel Corporation or its subsidiaries in the
United States and other countries.

Microsoft® Windows® 95 operating system, Microsoft® Windows NT® operating system and
the Windows logo are either registered trademarks or trademarks of Microsoft Corporation in the
United States and/or other countries.

The abbreviation LITRON stands for "Micro Industrial TRON". TRON, in turn, stands for "The
Real-time Operating system Nucleus."

Solution Engine® is a registered trademark of Hitachi ULSI Systems Co., Ltd. in Japan.

Other mentioned company and product names are trademarks or registered trademarks of their
respective companies.

Rev. 1.0, 03/03, page iii of vi
:{ENESAS

Rev. 1.0, 03/03, page iv of vi
RRENESAS

Contents

Section 1 INtroduCHiON........cccuiiiiiiiiiiiiiiiiiiiiice e 1
Lol OVEIVIBW .ottt ettt ettt st st et a et sae e 1
1.2 System COnfiguIationc..ccoeeouieiiieiiniiniieeee ettt et ene e saee e 1
1.3 PrEIEQUISIIES ...ouveiuiieniieiiiiiieeieeitete ettt st ettt et e e s sae e 2
Section 2 Creating Application Programs............ccoeceeeviiiiiniiiennieennieenieeeeenn 5
2.1 Creating CPU Initialization ROULINEc.cccoveiiiiiiiiniiniiniiiniceecteeeceeee e 6
2.2 Creating TasKs......ooieriiiieiieieeteet ettt ettt sttt et ettt st 12
2.2, 1 MaIN TASK .eeeiiiiiiieeiee ettt st 13
2.2.2 LED TaSK ...ccoiiiiiiiiriieiieeceenest ettt s 15
2.3 Creating an Interrupt Handlercoocooiiiiiiiiiiiiceeeeeeeee e 16
2.3.1 Creating Initialization Module...........c..coocerviiiiiniiniiniiiieeeeeeee e 18
2.3.2 Creating Interrupt Handler............cocooviiiiiniiniiniiiiiieeeceeeeeeeseeeee 20
Section 3 CONfIUIALIONccecuvieeiiieeiiieeiee et eeiee et e e e e eareeeareeenneees 21
3.1 Starting CONFIGUIALOToccuiiiiiiieiieieeie ettt et 22
3.2 Interrupt Mask Level. ..ot 22
3.3 ReZISErING TaSK ..eooviiiiiiiiiiiiieteetee ettt st 23
3.4 Registering Interrupt Handlercc.ooiiiiiiiiiiiiniiiceeeeee e 25
3.5 Registering Initialization ROULINEccceevuiiiiiriiniiniiiiiienicieeececee et 28
3.6 Registering Event Flag Information............ccccoociiiiniiiiiiiiiiiiiicececcccneeeeeeee 32
3.7 Creating Configuration FIles..........ccocceiiiiiiiniiiiiiiiiecceceere e 33
3.8 Building the Executable File by HEW ..ot 34
3.8.1 Starting HEW ..ottt 35
3.8.2 Defining Configuration File.........c.cccoceiiiiiniiniiniiiiiiieiceeseeieeeeeeresiens 36
3.8.3 Changing a Linkage Addressc..coveerieniriiniinieniienieeceee et 38
384 BUIIde ittt sttt 42
3.9 Disabling Parameter Check FUNCHON........c..cocooiiiiiiiiiiiiiiiiiciceccceeeeee e 43
Section 4 Downloading and Executing Application Programs......................... 45
4.1 Initializing SOIUtiON ENGINEcocuiiiiiiiiiiiiiiiiic ittt 45
4.2 Downloading Application Programc..ccccccoceeriiniiniiiiiniiinienieceneee et 47
4.3 Executing Application Program............cccccocenieiiiiiiiiniiniieeeeee e 49

Rev. 1.0, 03/03, page v of vi
:{ENESAS

Rev. 1.0, 03/03, page vi of vi
RRENESAS

Section 1 Introduction

11 Overview
Follow the procedure below to run application programs on HI7700/4:

1. Create application programs.

2. Use the configurator to register the application programs to HI7700/4.

3. Build the executable file using HEW.

4. Install the application programs to the target board, and download and execute them.

This guide describes the above procedure to run the programs on the target board by using a
sample program.

12 System Configuration

This guide describes how to create sample programs of tasks and an interrupt handler and how to
run the programs on the target board.

Figure 1.1 shows an example of a hardware configuration.

/. \ -])

/ . Z N ‘\ To the PCMCIA slot
|

L

SuperH™ Solution Engine®
(MS7729SE01)

Figure 1.1 Hardware Configuration Example

Table 1.1 lists software configuration.

Rev. 1.0, 03/03, page 1 of 50
:{ENESAS

Tablel.l Software Configuration

Program Description Type Remarks

CPU initialization routine Sets the bus controller. Non-task
Initializes the hardware.

Main task Initializes the environment. Task

Waits for an event after initialization by setting
the wai_flg flag.

Cancels the wait status by setting the event flag
of the timer interrupt handler and starts the LED
task (sta_tsk).

LED task Started by the main task to turn the LED on Task
when it is off or turn it off when it is on, and then
terminates.

Timer interrupt handler ~ Started by the timer interrupt every one second Non-task
and sets the main task event flag (set_flg).

13 Prerequisites
Table 1.2 lists hardware and software required to run the application programs on HI7700/4.

Table1.2 Required Hardware and Software

Product Name Product Type Manufacturer

Windows® personal computer — Any manufacturer*’

SuperH™ Solution Engine® MS7729RSEO01 Hitachi ULSI Systems Co., Ltd.
E10A emulator HS7729RKCMO01H Hitachi, Ltd.

SuperH™ RISC engine C/C++ compiler ~ P0700CAS6-MWR Hitachi, Ltd. **

HI7700/4 HS0700ITI41SRE Hitachi, Ltd. *°

Notes: 1. Hardware environment: PC/AT compatible machine with 486DX2/66 MHz or more
(Pentium® or later recommended)

Operating system: Windows®2000, WindowNT®4.0, Windows®98, Windows®95
CD-ROM drive
PCMCIA card slot

Memory: 32 Mbytes or more (For Windows®2000 and WindowNT®4.0, memory with 64
Mbytes or more is recommended.)

Free space required on the hard disk: 8 Mbytes or more

2. Version. 6.0 AR2 of the compiler shall be used. You may also use the compilers from
Hitachi ULSI Systems Co., Ltd. or Hitachi Software Engineering Co., Ltd.
HI7700/4 with evaluation license (object) shall be used. You may also use HI7700/4
with mass-production license.

Rev. 1.0, 03/03, page 2 of 50
:{ENESAS

The HDI of the E10A emulator, SuperH™ RISC engine C/C++ compiler package, and HI7700/4
(for SHCV6) must have been installed in the Windows personal computer beforehand. The
SH7729 is a target CPU assumed in this manual.

Figure 1.2 shows the folder structure of HI7700/4 that you have just installed.

N Exploring - Hi?700-4

JEI|E Edit ¥iew Go Favarites Tools Help |

j@-»-@‘é&@‘@‘%-
Back [SEnare Up Cut Copy Paste Undo Delete Properties Wiews
| Address |1 DiHI7700-4 [|
Al Folders x | |2 config
B i/ 7004 x| [infa
& L3 config |_] kernel
(7 english =1 Manuals
=0 info
{:I english
i | japanese
IZ—ZI{:I kemel
=0 for_shcé
21 hios
-1 hihead
-1 hilia
-0 hisys
=1 hiuser
-1 ohj_hig
21 abj_litle
-0 sh7707
.1 sh7708
[sh7700
-0 5h7709a
-1 sh7729
7 tutorial
B2 Manuals
-1 english -

Figurel1.2 Folder Structure of HI7700/4

The install drive is “D” in this guide, but you may use a desired drive for installing HI7700/4. An
install folder is represented as the install folder “folder name” in this manual.

Rev. 1.0, 03/03, page 3 of 50
:{ENESAS

Rev. 1.0, 03/03, page 4 of 50
RRENESAS

Section 2 Creating Application Programs

This section describes how to create application programs that run on HI7700/4. Figure 2.1 shows
the relationship among application programs. (The programs in the heavy-outline boxes are
created in this guide.)

CPU initialization routine
Reset start ---»

1 HI7700/4 kernel

v
CPU initialization Kernel ¥ Timer
Initialization .- 1" |

routine call <. _ TMU1 initialization

Task execution | ~~~_ [

'
'
'
'
!
' L 8 . AT I X
' ! initialization routine -~ linitialization routind
'
'
'
'
'
'
'

Started by an interrupt - - > return
\\ V3
\ Main task LED task
Interrupt handler | S
Event flag creation| ,
LED task creation S
S LED control
—>| / turning the LED on|
. ! . when it is off or
iset_flg ----f----- -1+ wai_flg K turning it off when
| J it is on)
sta_tsk
-
return _, T~ ext_tsk

Figure2.1 Relationship among Application Programs

Figure 2.2 shows the programs to be created in this guide.

| Create a CPU initialization routine |

| Create tasks |

|Create an interrupt initialization modulel

| Create an interrupt handler |

Figure2.2 Programsto be Created

Rev. 1.0, 03/03, page 5 of 50
RENESAS

21 Creating CPU Initialization Routine

After the CPU reset, the CPU initialization routine is executed for setting a bus state controller and
initializing the hardware.

The ROM monitor supplied with the Solution Engine has already set the bus state controller and
initialized the hardware. Thus, this guide omits the description of them.

Figure 2.3 shows the procedure to create the CPU initialization routine.

| Set BSC | Set BSC by _hi_cpuasm (7729_cpuasm.src).
| Use the assembler language to write a
program before the stack area is reserved by

| Set stack pointer | setting BSC.

Setcach | - -

| ot cache Start a kernel by _hi_cpuini (7729_cpuini.c).
| The stack pointer has been set. Use the C

| language to write a program.

| Start a kernel

Figure2.3 Creating a CPU Initialization Routine

In the CPU initialization routine, the stack pointer must be reserved completely before you attempt
to execute any program written in the C language. Because the program created by the compiler
may locate the stack frame or work area in a stack, you cannot execute it until the stack area is
completely reserved.

Figures 2.4 to 2.7 show the parts to be changed in of _hi_cpuasm (7729_cpuasm.src).

Rev. 1.0, 03/03, page 6 of 50
RENESAS

R R R R

D Hl 7750/ 4 CPU initialize routine N
A Copyright (c) Hitachi, Ltd. 2000. N
J* Li censed Material of Hitachi, Ltd. -
0 HI 7750/ 4(HS07751 TI 41SR) V1.0 s

T B P

Ckk k% ok ok ok Kok ok ok ok ok -

;* FILE = 7750_cpuasm src ; D
;¥ CPU type = SH7750 e
;*H*HHHHH*HH*k*“**“”**HH*HH*HHHHHHHHH*HH**HH*HH

. program _hi _cpuasm

. headi ng "hi _cpuasm: CPU initialize routine"

. export _hi _cpuasm

.inport _hi _cpuini

.inport __kernel _pon_sp

.inport __kernel _man_sp

.section P_hi cpuasm code, al i gn=4

kkkkkkkkkkkkkkkkkkkkkkkkkkkkkkk sk ok kokkkkkkkkkkkkk ok ok k ok ok ok ok ok ok ok k ko ko ko ok o ok ok ok ok ok ok -

;* EXPEVT address, data i
R R R R P P ST T
CCN_BASE .assign h'ff000020 ; CCN base address

EXPEVT .assign h'ff000024- CCN_BASE ; EXPEVT addr ess of f set
PON_CODE .assign h' 000 ; power-on reset exception code

Figure2.4 PartstobeChanged in _hi_cpuasm (7729 cpuasm.src)

Rev. 1.0, 03/03, page 7 of 50
RENESAS

ok k kR AR KKKk kkkk ok ko h ok k kA kR AR KAk kk ok kk ok hkhkkk kAR KAk kkkkkkkkkkkk kA kAR Kk k k ko k ok ok kk*

x BSC addr ess ' *;
BSC_BASE .assign h' ffffff60 ; BSC base address
BCR1 .assign h'ffffff60-BSC_BASE ; BCR1 address of f set
BCR2 .assign h' ffffff62-BSC_BASE ; BCR2 addr ess of f set
WCR1 .assign h'ffffff64-BSC_ BASE ; WCR1 address of f set
WCR2 .assign h' ffffff66-BSC_BASE ; WCR2 address of f set
MCR .assign h'ffffff68-BSC_ BASE ; MCR address of fset
DCR .assign h'ffffff6a-BSC_BASE ; DCR address of fset
PCR .assign h'ffffff6c-BSC_BASE ; PCR address of fset
RTCSR .assign h'ffffff6e-BSC_ BASE ; RTCSR address of fset
RTCNT .assign h' ffffff70-BSC_BASE ; RTCNT address of fset
RTCOR .assign h' ffffff72-BSC_BASE ; RTCOR address of f set
RFCR .assign h'ffffff74-BSC_BASE ; RFCR addr ess of f set
BCR3 .assign h'ffffff7E- BSC_BASE ; BCR3 address of f set
MCSCR_REG BASE .assign h'ffffff50 ; MCSCR register base address
MCSCRO .assign h'ffffff50-MCSCR_ REG BASE ; MCSCRO address of fset
MCSCR1 .assign h'ffffff52- MCSCR_REG BASE ; MCSCR1 address of fset
MCSCR2 .assign h'ffffff54- MCSCR_REG BASE ; MCSCR2 address of fset
MCSCR3 .assign h'ffffff56- MCSCR_REG BASE ; MCSCR3 address of fset
MCSCR4 .assign h'ffffff58-MCSCR_REG BASE ; MCSCR4 address of fset
MCSCR5 .assign h'ffffffb5a-MCSCR_REG BASE ; MCSCR5 address of fset
MCSCR6 .assign h'ffffff5c-MCSCR_REG BASE ; MCSCR6 address of fset
MCSCR7 .assign h'ffffff5e-MCSCR_REG BASE ; MCSCR7 address of f set
SDVR_CS2 .assign h'ffffdooo ; SDVR (CS2) base address
SDVR_CS3 .assign h'ffffe000 ; SDWVR (CS3) base address
CMF_BIT .assign h'0080 ; CMF bit in RTCSR

e T

* BSC initial data L

R R

* After reset, you nust initialize BSC for nenory (stack) access at first.;*;

* Please nodify these definition in order to your hardware. '*;
R XK R R KR KR KKK XK KRR KR AR KA XK AR AR KRR KA XK AR KR KA AKX R A
BCR1_DATA .assign h'0000 ; BCRL initial data Change the BSC
BCR2_DATA .assign h'3ffc ; BCR2 initial data value according to
WCR1_DATA .assign h'3fff ;. WCRL initial data the hardware
WCR2_DATA .assign h'ffff ;. WCR2 initial data
MCR_DATA .assign h' 0000 ;. MCR initial data
DCR_DATA .assign h'0000 ; DCR initial data
PCR_DATA .assign h' 0000 ; PCR initial data
RTCSR_DATA .assign h'a500 + h'00 ; RTCSR initial data
RTCNT_DATA .assign h'a500 + h'00 ; RTCNT initial data
RTCOR_DATA .assign h'a500 + h'00 ; RTCOR initial data
RFCR_DATA .assign h'a400 + h' 000 ;. RFCR initial data
BCR3_DATA .assign h' 0000 ; BCR3 initial data
éTP_REFRESH .assign h'a500 ; RTCSR initial data (stop count-up)
SDMR2_DATA .assign h'0230 ; SDVR_CS2 initial data
SDVR3_DATA .assign h'0230 ; SDVR_CS3 initial data
i\/CSCR_DATA .assign h'0000 ; MCSCR initial data
i DLE_TI ME .assign h'566 ; loop counter for idle-tine
REFRESH CNT .assign h'8 ; counter for dummy refresh

Figure2.5 PartstobeChanged in _hi_cpuasm (7729 _cpuasm.src)

Rev. 1.0, 03/03, page 8 of 50
RENESAS

B R

;% NAME = _hi _cpuasm x
;* FUNCTION = CPU initialize routine BN
’_hi_cpuasm ’
CFFFFE Tnitralt ze BSC

; nmov. | #BSC_BASE, r 0 ; Set BCR base address to gbr

; I dc r0, gbr

: mov.w #BCRL_DATA, 10 . Initialize BORL

; nov.w r0, @(BCR1, gbr)

: nmov.w #BCR2_DATA, r 0 ; Initialize BCR2

; mv.w 10, @ (BCR2, gbr)

: mov.w #WCRL_DATA r0 S Initialize WCRL

; nmov.w 0, @(WCRL, gbr)

: nmov.w #WCR2_DATA, r 0 ; Initialize WoR2

; nov.w r0, @(WCR2, gbr)

: mov.w #MCR DATA, rO . Initialize MR

; nmov.w 0, @ (MR, gbr)

: mov.w #DCR_DATA, r 0 - Initialize DOR

; nov.w r0, @(DCR, gbr)

: mov.w #PCR_DATA, r0 ; Initialize PCR ::();ggttgesgomment
; mv.w 10, @ (PCR, gbr) .
: nov.w #STP_REFRESH, r 0 ; Stop refresh

; nmov.w r0, @(RTCSR, gbr)

: nmov.w #RTCNT_DATA, r 0 ; Initialize RTCNT

; mov.w r0, @ (RTCNT, gbr)

: mov.w #RTCOR DATA, 10 . Initialize RTCOR

; nov.w 0, @(RTCOR, gbr)

: nmov.w #RFCR_DATA, r0 ; Initialize RFCR

; nov.w r0, @(RFCR gbr)

: mov.w #BCR3_DATA, r0 . Initialize BCR3

; nmov.w 10, @(BCR3, gbr)

: nov. | #MCSCR_REG BASE, r 0 ; Set MCSCR base address to gbr

; I dc r0, gbr

: mov.w #MCSCR_DATA, r 0 ; Set Initialize MCSCR_DATA

: nmov.w r0, @ (MCSCRO, gbr) ; Initialize MCSCRO

: mov.w 10, @(MCSCRL, gbr) . Initialize MCSCRL

; mov.w 10, @(MCSCR2, gbr) ; Initialize MCSCR2

: nov.w r0, @(MCSCR3, gbr) ; Initialize MCSCR3

: mov.w 10, @(MCSCR4, ghr) . Initialize MCSCR4

: mov.w 10, @ (MCSCR5, gbr) ; Initialize MCSCRS

: nov.w r0, @(MCSCR6, gbr) ; Initialize MCSCR6

; mov.w 10, @(MCSCR?, gbr) ; Initialize MCSCR7

Figure2.6 PartstobeChanged in _hi_cpuasm (7729 cpuasm.src)

Rev. 1.0, 03/03, page 9 of 50
RENESAS

’

loop for idle-tine

Initialize S (=2 Omit the comment

to set BSC

wite dummy data (r1l)
Initialize SDVMR (CS3)
wite dummy data (r1l)

Initialize RTCSR

read RFCR
if end dummy refresh
el se goto hi_cpuasnD20

;*** Initialize SDRAM

: mov.| #I DLE_TIME, 10

; hi cpuasnD10:

; add #-1,10

; cnp/eq #0,1r0

; bf hi cpuasn010

; nov. | #SDVMR_CS2,r 0

; nov. | #SDVR2_DATA* 4, r 2
; nov. b rl,@(r0,r2)

: mov.| #SDMR_CS3, r0

; nmov. | #SDVR3_DATA* 4, r 2
; nmov. b rl, @(r0,r2)

: mov.w #RTCSR_DATA, r0

; mov.w r0, @(RTCSR, gbr)
mov.w #REFRESH_ONT, r2
; hi _cpuasnD20:

; nov. w @ (RFCR, gbr),r0
; cnp/ge r2,r0

; bf hi _cpuasn020

;hi _cpuasnD30:

* ok k k k

Initialize sp and junmp to hi

_cpui ni

() witten by C|anguage

Set stack pointer

Jump to hi_cpuini

nov. | #CCN_BASE, r 2 ; get CCN base address
nov. | #PON_CCDE, r 3 ; get exception code to power-on
nov. | @ (EXPEVT, r2),r0 ; get exception code
cnp/eq r3,r0 ; if exception !'= power-on
bf hi _cpuasnD50 ; then hi _cpuasnD50
nov. | #__kernel _pon_sp,r2 ; get stack address
hi _cpuasnD40:
nov r2,r15 , set SP
’ nov. | #_hi _cpuini,ro0 ; get hi_cpuini address
jnp @0 ; junp to hi_cpuini ()
nop ; never return to this point

i*ni _cpuasnD50:

Set stack pointer

nmov. T #__kernel _man_sp, rZ ; get stack address
bra hi _cpuasn040
nop
. pool
.end

Figure2.7 Part to be Changed in _hi_cpuini (7729 _cpuini.

Rev. 1.0, 03/03, page 10 of 50

RENESAS

[Kk kK kK K kK K Kk K K Kk K Kk ok ok k ok k ok kK K K kK

/* H 7700/ 4 CPU initialize routine */
/* Copyright (c) Hitachi, Ltd. 2001. */
/* Li censed Material of Htachi, Ltd. */
I* HI 7700/ 4 (HSO7701 TI 41SR) V1. 0A */

[K kK kK kK K K K K KK Kk K K Kk Kk ok Sk ok kK K K K K K K K

[Kk Kk kK K Kk Kk Kk Kk K K K Kk kK ok K K K kK

/* FILE = 7729 _cpuini.c ; */
/* CPU type = SH7729 */
/**/
#i ncl ude <machi ne. h>

#i ncl ude "itron.h"

#i ncl ude "kernel . h"

[kKK Kk kk k ok ok kk ok ok ok k ok k ko Kk ok ok ok k k ok ok k kKK kk ok kR Rk ok kkk ok ok k ok k ok ok kkk ok kk ok kkkkk ok kkkkk ok k kK [

/* envi ronment data */
/*x**********x**********************************x**********x*****************/
#define | OBASE Oxfffffe80 /* 1/0O base address = Oxfffffe80 */
#define CCR (oxffffffec - 1OBASE) /* CCN CCR address of fset */
#defi ne CACHE_ON 0x00000001 /* CACHE enable data */
#def i ne CACHE_OFF 0x00000000 /* CACHE di sabl e data */
/* extern void _INITSCT (void); */ /* section-initialize routine */

#pragnma section _hicpui ni
I**/

/* NAMVE = hi _cpui ni */
/* FUNCTION = CPU initialize routine */
/*x**********x***********************x**********x**********x*****************/
#pragma nor egsave (hi_cpuini) 4 N\

void hi _cpui ni (voi d) Enable cache

{
/*** |nitialize Hardware Environnent ***/
set gbr ((VP)I OBASE); /* set I/ 0O base address to GBR
| gbr _write_long (CCR, CACHE_O:F);l | gbr_wite long (CCR, CACHE ON); 1 (" N

Start a kernel

/*** |nitialize Software Environnent ***/

/* _INITSCT (); */ /* Call section-initialize routine */

l] vsta_knl (); /* Start kernel =/

Figure2.8 Part to be Changed in _hi_cpuini (7729_cpuini.c)

Set the bus state controller and create a hardware initialization routine for the specific hardware.

Rev. 1.0, 03/03, page 11 of 50
RENESAS

2.2 Creating Tasks
A task is the main processing of an application program.

Figure 2.9 shows the procedure to create and register a task.

Create a task

Do you want to use No
a configurator to registe

the task?

Start the configurator and Register the task with the
register the task*? cre_tsk service call*'

Notes: 1.The cre_tsk service call must be enabled to register the task.
For details, see the HI7000/4 Series User's Manual.
2. This procedure is described in section 3, Configurator.

Figure2.9 Creating and Registering Task

Create a task by changing the sample (task.c) supplied with HI7700/4. The sample is in the install
folder “tutorial”.

In this guide, the main task (MainTask) is registered by the configurator and the LED task by the
cre_tsk service call.

Rev. 1.0, 03/03, page 12 of 50
RENESAS

221 Main Task

This section describes how to change MainTask contained in the sample program (task.c) supplied
with HI7700/4. Figure 2.10 shows the overview of changes made in MainTask. Starting task7
periodically turns the LED on and off.

Before change After change
| Create an event flag | | Create an event flag |
| Create and start task7 | | Create and start task7 |

Wait for an event

' N
| Delete event flag 6 | |

| < | Change stacd |

| Terminate and delete MainTask | |
| Start task7 |

~
| Wait for an event | | |

| Delete event flag 6 |

| Terminate and delete MainTask |

Figure2.10 Overview of ChangesMadein MainTask

Figure 2.11 shows the parts to be changed in MainTask.

Rev. 1.0, 03/03, page 13 of 50
RENESAS

- - Define the include file supplied with the C compiler.
#i ncl ude <machi ne. h> |
#include "itron.h" : : : .
#inol ude “kernel . h" Required when using the HI7700/4 service call.
#i ncl ude "kernel _id. h"
- Define the LED output port address. For details, see the
#define LED_ ADR (UH *)0xb0c00000 | Solution Engine Overview Manual.

voi d MainTask (VP_INT exinf);
void task7 (VP_INT exinf); MainTask and task7 are the main functions for each task.
Another function never calls them. #pragma noregsave is
valid to suppress the stack area.

—

#pragma nor egsave (MinTask, task7) |

[Kk Kk Kk kKK kK k ok k ok K K K K K K K K K K K Kk

* Mai nTask ()
* This task is created and activated by Configurator.
* tskid : "ID_MinTask" (defined in kernel_id.h as this task's ID.)
* itskpri : 6
*******************k**it*t***9(*k**ir*t*****k***********************k****t****/
void Mai nTask (VP_INT exinf)
{
uni on CrePacket {
T CTSK t_ctsk; /* Creation info. for task */
T_CFLG t_cflg; [/* Creation info. for event flag */
} packet;

ER ercd;

FLGPTN wai ptn, flgptn; . i
Define the task attribute. If task7 uses the DSP, use the

/*** Create eventflag-6 ***/ OR operator to define TA_COPO.
packet.t_cflg.flgatr = TA TFI FQ TA WG| TA_CLR, (packet.t_ctsk.tskatr = TA_HLNG | TA_ACT | TA_COPO)
packet.t cflg.iflgptn = 0; - - This allows the DSP register to be saved (to guarantee

a kernel) when changing a task.
ercd = cre_flg (6, (T_CFLG *)&packet);

[*** Create task-7 ***/
packet .t _ctsk.tskatr = TA HLNG TA_ACT;
packet.t_ctsk.exinf = 0;
packet.t_ctsk.task = (FP)task7;)

packet.t_ctsk.itskpri = 7; Register the task and start it
packet .t _ctsk.stksz = 0x200;
packet.t_ctsk.stk = (VP)NULL;

ercd = cre_tsk (7, (T_CTSK *)&packet);

waiptn = 0x11111111; /*** Wit for eventflag-6 ***/
ercd = wai _flg (6, waiptn, TWF_ANDW &flgptn); wai ptn = 0x11111111;
ercd = wai _fl 6, waiptn, TWF_AN & | gptn);
/*** Delete eventflag-6 ***/ if (exinf == ng)OOOOOO(F;L) I o aptn)
ercd = del _flg (6); exinf = 0x0000f f 0OL;
} else {
exi nf = 0x00000000L;
}

ercd = sta_tsk (7,exinf);

/*** Wit for eventflag-6 ***/ |:> or (i) {

ext _tsk ();

Wait for the event flag to set by the interrupt

handler. Change the exinf value and start
task?. At this time, exinf is passed to task7
as a start code.

Figure2.11 Changing MainTask

Rev. 1.0, 03/03, page 14 of 50
RENESAS

222 LED Task

This section describes how to change task7 of the sample program (task.c) supplied with
HI7700/4. Figure 2.12 shows the part to be changed in task7.

[KKk K kK kK Kk Kk Kk Kk Kk Kk ok ko kK K K K K K K K K

* task7()

* This task is created and activated by MinTask.

* tskid: 7

* qtskpri o 7
*i***i***************************/

voi d task7(VP_I NT exinf)

ER ercd;

ercd = set_flg(6, Oxffffffff); *LED_ADR = (UH) exi nf; Turn the LED on or off according
) |:> ext _tsk(); to the exinf value, and then

while(1); terminate itself (task7)

Figure2.12 Changing task?

Rev. 1.0, 03/03, page 15 of 50
RENESAS

2.3 Creating an Interrupt Handler
The interrupt handler is started by an external interrupt that suspends another processing.

Figure 2.13 shows the procedure to create and register the initialization module and the interrupt
handler.

Do you need an No

initialization module?

Create the initialization module

Do you want to
use a configurator to register
the initialization

No

module?
Yes
Start the configurator and Call the subroutine
register the initialization module*? (initialization module)*!

Create an interrupt handler

Do you want to
Use the configurator to registe
the interrupt
andler?

No

Yes
Start the configurator and Register the interrupt handler
register the interrupt handler? by the def_inf service call*!

Notes: 1. The def_inf service call must be enabled to register the interrupt handler.
For details, see the HI7000/4 Series User's Manual.
2. This procedure is described in section 3, Configurator.

Figure2.13 Creating and Registering Initialization Module and Interrupt Handler

This guide describes how to use the on-chip TPU1 in the SH7729 to create the interrupt handler
and how to use a configurator to register it.

Create the tmul.c file for the initialization module and the interrupt handler and store the file in
the install folder “tutorial”. Note that the interrupts used in this guide has no relation with the
timer used for time management by a kernel.

Table 2.1 lists the interrupt conditions.

Rev. 1.0, 03/03, page 16 of 50
RENESAS

Table2.1 Interrupt Conditions

Item

Description

Function File Name

Initialization module

Required. Use the configurator to register the
module.

TMU2_ini tmu2.c

Interrupt handler

Use the configurator to register the handler.

TMU2_int tmu2.c

Interrupt cycle

An interrupt occurs every one second.

Interrupt level

1

RENESAS

Rev. 1.0, 03/03, page 17 of 50

231 Creating Initialization Module

This section describes how to create an initialization module for the on-chip TPU2 in the SH7729.
The initialization module initializes the TPU1 and sets the interrupt cycle and level. Figure 2.14
shows the procedure to create the initialization module.

| Save GBR |
|

| Set the I/O base address in GBR |
|

| stopTONTof the TMUI |
|

| Read IPRA |
|

| Clear the IPRA-TMU1 level |
|

| Set the IPRA-TMUT level to 1 |
|

| Set the BL bit to mask the interrupt |
|

| Set IPRA |
|

Dummy-read IPRA
|
Set TCR
|
Dummy-read TCR

Set TCOR
|
Set TCNT
|
Start TCNT of the TMU1
|
|Clear the BL bit to enable the interruptl
|
| Restore GBR to the original state |

Figure2.14 Creating Initialization Module

Rev. 1.0, 03/03, page 18 of 50
RENESAS

Figure 2.15 show the contents of TMU1 _ini (tmul.c).

#i ncl ude <machi ne. h>
#include "itron. h"
#i ncl ude "kernel.h"

#define BL_BI T 0x10000000

/* Peripheral Cock (CPG set value =

/* BL bit pattern */

H 0102 (CPU: Bus: P = 133:33:33 Mz)) */

#defi ne PCLK 33333400

/* TSTR set val ue */

#define TCNT1_STA 0x02 /* Start TCNT of the TMJL */

#defi ne TCNT1_STP oxfd /* Stop TCNT of the TMUl1 */

/* TCR set value */

/* TCNT operated at a maxi mum frequency of 2 Mz */

#define DIV 64 /* Division ratio = 64 */
#define Dl V64 0x0002 /* Division ratio = 1/64 */
#define UNIE 0x0020 /* Interrupt generated by an underflow of the TCR1L */
/* TCNT set value */

#def i ne | NTERVAL 1000000 /* 1 second: 1000ms: 1000000us */
#defi ne TCNT1_DAT (UW (((doubl e) | NTERVAL/ (((doubl e) 1/ (doubl e) PCLK) *(doubl e) DI V)) - (doubl e) 1)

/* | PRA set value */
#define | PRA_CLR TPU1 OxfOf f
#define TMJU1_LVL 1

/* TMJ, I PRA 1/ O address */

#define | OBASE Oxfffffe80

#define TSTR (Oxfffffe92 - | OBASE)
#defi ne TCORL (Oxfffffeal - | OBASE)
#define TCNT1 (Oxfffffead - | OBASE)
#define TCR1 (Oxfffffea8 - | OBASE)
#define | PRA (Oxfffffee2 - | OBASE)

/* (1 second/ ((1second/33.3334 MHz)*64))-1 */
/* IPR bit8-11 clear data */
/* TMUL interrupt level =1 */
/* 1/0 base address = Oxfffffe80 */

address of fset */
address of fset */

/* TMJ TSTR

/* TMJ TCOR (chl)
/* TMJ TCNT (chl) address of fset */
/* TMJ TCR (chl) address of fset */
/* | PRA (TMJO: TMUL: TMJ2: RTC) address */

[Rk ok ok ok ok k ok kk k k ok ok kK kK Kk ok ok kk ok ok ko k ko kR kK Kk k ok ok ok ok kk ok ok ko kkkkk kR kK kkkkkkkkkkkkkk [

/* NAME =
/* FUNCTION =

TMUL_i ni
initialize the TMJL

*/
*/

[k ok ok k ok ok ok ok ok ok ok ok ok ok ok ok Kk ok ok ok ok ok ok k ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok o ok ok ok ok ok ok kR ok kK kR Rk ok k k[

void TMJL_i ni
{

(voi d)

VP gbrsave;
UH ipra;

gbrsave = get_gbr ();
set_gbr ((VP)I OBASE);

gbr_and_byte (TSTR, TCNT1_STP);
ipra = gbr_read_word (I|PRA);
ipra & | PRA_CLR TPUL;

ipra |= TMJL_LVL << 8;

set_cr (BL_BIT | get_cr ());
gbr_wite_word (IPRAipra);
gbr_read_word (IPRA);

gbr_write_word (TCR1, UNI E| DI V64) ;
gbr_read_word (TCR1);

gbr_wite_long (TCORL, TCNT1_DAT);
gbr _write_long (TCNT1, TCNT1_DAT);

gbr_or_byte (TSTR, TCNT1_STA);

set_cr
set _gbr

(~BL_BIT & get_cr ());
(gbrsave);

/* CBR save area */
/* IPRA retention area */
/* GBR save area */
/* Set the |/O base address in GBR */
/* Stop TCNT of the TMJUL */
/* Read | PRA */
/* Cear the | PRA-TMJL | evel */

/* IPRA-TMJL1 level =1 */

/* Set the BL bit to mask an interrupt */

/* Set |PRA */
/* Dummy-read | PRA */
/* Set TCR */
/* Dummy-read TCR */
/* Set TCOR */
/* Set TCNT */

/* Start TCNT of the TMJL */

/* Clear the BL bit to enable an interrupt */
/* Restore GBRto the original state */

Figure2.15

Contentsof TMUL ini (tmul.c)

Rev. 1.0, 03/03, page 19 of 50
RENESAS

232 Creating Interrupt Handler

This section describes how to create an interrupt handler for the on-chip TPU1 in the SH7729R.
The interrupt handler clears an interrupt source of the TPU1 and issues an event flag to task7.
Figure 2.16 shows the procedure to create the interrupt handler.

| Save GBR |
|

| Set the I/O base address in GBR |
|

| Set the BL bit to mask an interrupt |
|

| Set TCR to clear an interrupt source(s) |
|

| Dummy-read TCR |
|

| Issue iset_flg |
|

| Clear the BL bit to enable GBR |
|

| Restore GBR to the original state |

Figure2.16 Creating Interrupt Handler

Figure 2.17 shows the contents of TMU?2_int (tmul.c).

/**/
/* NAME = TMJL_i nt */
/* FUNCTION = TMJUL Interrupt Handler */

[%%k Kk ok Kk

voi d TMJUL_int (void)

{
VP gbrsave; /* GBR save area */
gbrsave = get_gbr (); /* Save GBR */
set_gbr ((VP)IOBASE); /* Set the I/0O base address in GBR */
set_cr (BL_BIT | get_cr ()); /* Set the BL bit to mask an interrupt */
gbr_write_word (TCR1, TCNT1_DAT); /* O ear UNF */
gbr_read_word (TCR1); /* Dummy-read TCR */
iset_flg (6, Oxffffffff); /* Set an event flag for task7 */
set_cr (~BL_BIT & get_cr ()); /* Clear the BL bit to enable an interrupt */
set _gbr (gbrsave); /* Restore GBRto the original state */

} /* ret_int */

Figure2.17 Contentsof TPU2_int (tpu2.c)

Rev. 1.0, 03/03, page 20 of 50
RENESAS

Section 3 Configuration

Configuration means to register the programs created in section 2 to HI7700/4. HI7700/4 provides
a tool that allows easy configuration using GUI and a configurator.

This section describes how to use the configurator to register the application programs.

Figure 3.1 shows the programs to be registered in this guide.

| Register the task |

| Register the interrupt initialization routine |

| Register the interrupt handler |

Figure3.1 Programsto be Registered
The defaults are used for programs other than those above.

For details of each program set by the configurator, see the Configurator Help.

Rev. 1.0, 03/03, page 21 of 50
RENESAS

31

Starting Configurator

Double-click the configurator set file (7729.hcf) to start the configurator. The 7729.hcf file is in

the install folder “sh7729”.

Figure 3.2 shows the Configurator Startup screen.

File “iew Qenerate Help

O = =

2 (74

Generate Help

Kernel Execution Condit
Kernel Extention Functio
Time Management Fur
Debugging Function
Service Calls Selection
Interrupt/CPL Exception
Trap Exception Handle
Frefetch Function
Initialization Routine
Task

Semaphore

Ewent Flag

Data Queus

taillbox

Mutex

Message Buffer
Fixed-size Memary Poo
Yariable-size Memaory F
Cyclic Handler

Alarm Handler

Orverrun Handler
Extended Service Call

N

FaorHelp, press F1

Kernel Interrupt Mask Level
Specify a lewel when interrupt inside the kernel is masked.

Userinterrupts above the selected level are accepted without delay, however service
calls must not be issued in these interrupt handlers.

Timer interrupt level(CFG_TIMLYL) set in time management function vieww must be
specified below kernel interrupt mask level.

Kermel Interrupt Mask Level [CFG_KMNLMSKLYL] 14 =

UM

|»

3.2

Table 3.1 lists the interrupt

Figure3.2 Configurator Startup Screen

Interrupt Mask Level

mask levels for the application programs in this guide.

Table3.1 Interrupt Mask Levels

Type Mask Level Remarks
Task 0

Interrupt handler 1

Kernel 14 Default

Rev. 1.0, 03/03, page 22 of

50
RENESAS

Click kernel operational conditions in the HI7700/4 Configuration Information area on the
Configuration Startup screen to view the screen in figure 3.2. In this screen, the mask level for a
kernel interrupt can be set. Since the default value (14) is used for the mask level of a kernel
interrupt in this guide, you do not need to change the interrupt level.

3.3 Registering Task

Click Task in the HI7700/4 Configuration Information area on the Configuration Startup screen to
view the Task Information screen in figure 3.3.

onfiguratar - HI7
File “iew Generate Help
O = = El K2
TN ey Open Save Generate Help
=- HIF700/4Configuration infor 1=
- Kernel Execution Condit —Task Information
-~ Kemel Extention Functio Max. Task ID [CFG_MAXTSKID] 10
- Time Management Funi
. Debugging Function Mapx. Static Stack Task D [CFG_STSTKID] .
- Service Calls Selection Max, Task Priarity [CF G_MAKTSKPRI] 10
- InterruptfCPU Exception
- Trap Exception Handler Dynamic Stack Area Size [CFG_TSKSTKSZ) 000004000 Modify |
- Prefetch Function

- Initialization Routine . .
List of Static Stacks

- Semaphore Stack Mame Stack Size Task IDs which use this stack
- Event Flag _kernel_ststko0oo1 0x00000400 1

- Data Queue _kernel_ststkoooz 0x00000400 2

- hdailbox _kernel_ststko003 0x00000400 3

o hutex _kernel_ststkono4 0x00000400 4-5

- Message Buffer

- Fixed-gize Memory Pog (st i el
- ariable-size Memory F ki | IDiName Status after creation Address | Priority | Stack Siz
- Cyclic Handler 6 Reary State MainTask B 0x00000.
- Alarm Handler
- Crverrun Handler
- Extended Service Call

1] | |

When cre_tskyscr_tskdef_tex arent selected in Service Call Selection,creation of Static
Stack,definition of Exception Processing are ignared here those arent outputted to build
Fl | | j file.Present setting conditions are cre_tsk==USE vscr_tsk==LISE def_tex==LISE.

hd|
For Help, press F1 lil—l—lm’— ~
Figure3.3 Task Information Screen

Click the Change button in the Task Information area in figure 3.3 to view the Modification of
Task Information screen in figure 3.4.

Rev. 1.0, 03/03, page 23 of 50
RENESAS

Modification of Task Infarmation

—Mlax Task D [CFG_MAXTEKID]
™ Automatically sets the Max. 1D of Task
Cancel |

Wawx. 1D 10 -

—Max. Static Stack Task ID [CFG_STSTKID]

]

Wa. 1D

—Max, Task Priority [CFG_MAXTSKPRI]
= | sutomatically sets the Maw Eriarily afiliask and it

as. Priority 10 -

— Total Size of Dynamic Stack Area [CFG_TSKSTKSZ]

™ autamatically sets the Regquired Size of Task

Total Size Ox00004000

Ox0000042c

b

Figure3.4 Maodification of Task Information Screen

On this screen, you can change the maximum task ID, the maximum task ID using static stacks,
maximum task priority, and the total size of the dynamic stack area. For details about differences
between static stacks and dynamic stacks, see section 2.6.6, Task Stack, in the HI7000/4 Series
User’s Manual.

For details about how to calculate the task stack size, see Appendix C, Calculation of Work Area
Size, in the HI7000/4 Series User’s Manual.

In this guide, the defaults are used for registering the task. You do not need to change the task
information.

Rev. 1.0, 03/03, page 24 of 50
RENESAS

34 Registering Interrupt Handler

Click Interrupt and CPU Exception Handler in the HI7700/4 Configuration Information area on
the Configuration Startup screen to view the List of Interrupt/CPU/Trap Exception Handlers
screen in figure 3.5.

File “iew Generate Help
O = (=] =l L 74
INew Open Save Generate Help
b- HI7700/4Configuration information =
- Kernel Execution Condition Interrupt Infarmation
- Kerel Extention Function Max. Exception Code [CFG_MARVCTMO] 0x0980
- Time Management Function
. Debugging Function Interrupt Handler Stack Size [CF G_IRGSTKSZ] 000001000 Modify |
- Service Calls Selection
- InterruptCPLI Exception Handl
- Trap Exception Handler List of InterruptiCPL) Exception Handlers
~ Prefeteh Function ¥ | Exception Code | Address SR Register value | Description Langu_=~|
- Initialization Routine 0330
- Task Dx13c0
- Semaphore 0x0320
- EventFlag 0x0400 SYSTEM TIMER
- Data Queue 00420
- Mailbox Ox0440
- huten 00460
- Message Buffer 0x0480
- Fixed-gsize Memary Pool 0x04a0
- ariahle-size Memory Pool 0x04c0
- CyclicHandler Ox04e0
- Alarm Handler 0x0500
- Owvarrun Handlar 0x0520
- Extended Service Call Dx15340 =
«| | »
When def_inh,def_exc isn't selected in Service Call Selection, the definition of InterruptiCPU
Exception Handler is ignored here, itisn't outputted to the build file. Present setting conditions
are def_inh == USE, def_exc == LISE.
B | »f -l
FarHelp, press F1 LKA i

Figure3.5 List of Interrupt/CPU/Trap Exception Handlers Screen

On-chip TPUI in the SH7729 is used for an interrupt source in this guide. Use the mouse on the
scroll bar on the right of the List of Interrupt/CPU/Trap Exception Handlers to view the exception
code around 0x0420. Double click exception code 0x0420 to view the Definition of
Interrupt/CPU/Trap Exception Handler screen in figure 3.6.

The exception code, 0x0420, is used for the TMU1 interrupt exception code in this guide. For
details of the exception code, see the SH7729R Hardware Manual.

Double click exception code 0x0420 to view the screen shown in figure 3.6.

Rev. 1.0, 03/03, page 25 of 50
RENESAS

Definition of InterruptCPU Exception Handler

— Exception Code
Exception Code IUKU’-‘?U v iLink with Kernel Librany

— Description Language

&+ High-Level Language(TA_ HLMG) " Assembly Language(TA_ASW)

— SR Registervalue————— Address

Setting value IUH4UUUUU1’U Address I

Specify an interruption level in the
hit 4 - ¥ ofthe SR register setup

walue in case of interrupt handler
. oK I Cancel |

Figure3.6 List of Interrupt/CPU/Trap Exception Handlers Screen

Set TMU1 _int in the Address box. The mask level of the interrupt handler in this guide is 1. So
change the SR register setting to 0x4000010 (bits 4 to 7 in SR are the mask bits).

This SR register setting is used as a SR register setting when control is passed to the TMU1_init
interrupt handler. The level should be set to higher than hardware interrupt levels. However, if a
service call is issued from the interrupt handler, the level must be set to less than the level of a
kernel.

Figures 3.7 and 3.8 show the Definition of Interrupt/CPU/Trap Exception Handler screens after
you made definitions.

Rev. 1.0, 03/03, page 26 of 50
RENESAS

tion of Interrug

Exception Cade
Exception Code |0x0420 W Link with Kernel Library

Cescription Language

& High-Level Language(TA_HLMNG) " Assembly Language(TaA_ASM

SR Register Walue Address

Setting Yalue Ox40000010 Address T _int

Specify an interruption level in the
hit 4 - ¥ ofthe SR register setup

walue in case of interrupt handler
. oK | Cancel |

Figure3.7 Definition of Interrupt/CPU/Trap Exception Handler Screen

nfiguratar - HI
File ¥iew Generate Help
O = = = L4
N ew Open Save Generate Help
HI??00/4Configuration information =
Kemel Execution Condition Interrupt Infarmation
Kemel Extention Function hax. Exception Code [CFG_MAMMCTNO] 0x0980
Time Management Function
Debugging Function Interrupt Handler Stack Size [CFG_IRQSTKSZ] 000001000 Modify

Senvice Calls Selection
IntermuptCPL Exception Handl
Trap Exception Handler List of InterruptiCPL Exception Handlers

Frefetch Punction ¥ | Exception Code | Address SR Reglstervalus | Description Langu |

Initialization Routine 0x03a0

Task 0¥03e0

Semaphore 0x03e0

EventFlag 0x0400 SYSTEM TIMER

Data Queue T 0420 ThUA _int Dx40000010 High-Level Langus

hailbox Ox0440

hutex 0x0460

hessage Buffer 0x0480

Fixed-size Memary Pool 0x04a0

Yariahle-size Memory Pool 0x04e0

Cyclic Handler Ox04el

Alarm Handler 0x0&00

Overrun Handler 0x0520

Extended Service Call - _|
| | 3

When def_inh,def_exc isnt selected in Service Call Selectian, the definition of InterruptCPLU
Exception Handler is ignored here, itisn't outputted to the build file. Present setting canditions

are def_inh == USE, def_exc == USE.

Sl —— E =]

ForHelp. press F1 MUK

Figure 3.8 Definition of Interrupt/CPU/Trap Exception Handler Screen
(after Making Definitions)

Rev. 1.0, 03/03, page 27 of 50
RENESAS

For details about how to calculate the handler stack size, see Appendix C, Calculation of Work
Area Size, in the HI7000/4 Series User’s Manual.

35 Registering Initialization Routine

Click Initialization Routine in the HI7700/4 Configuration Information area on the Configurator
Startup screen to view the Initialization Routine List screen in figure 3.9.

The initialization routine that is registered on this screen is called immediately after the kernel
startup (setup) completes and executed with the kernel mask level (the value set for the kernel
operational conditions in the configuration information). This routine differs from the CPU
initialization routine that is executed immediately after a reset.

In the initialization routine, the service call of a kernel can be issued.

The issuable service call is the one that can be called from non-task context (system state: N)
described in section 3, Service Calls, in the HI7000/4 Series User’s Manual.

The initialization routine is used for the following purposes:

Rev. 1.0, 03/03, page 28 of 50
RENESAS

Interrupt initialization

2. Initialization routine for task setup

3. Event flag, mailbox, or memory pool of which initial setting is to be completed before passing
the control to a task or an interrupt handler

nfiguratar - HI?

File ¥iew Generate Help
O = = £ K2

N ew Open Save Generate Help
b- HI7700/4Configuration information | =

- Kemel Execution Condition List of Initialization Routines

- Kemel Extention Function

- Time Management Function ¥ | Address Stack Size Description Language Extended Informatic

-- Debugging Function

- Senvice Calls Selection

- Interruptf CPU Exception Handl|

- Trap Exception Handler

- Prefetch Function

=i an Foutine

.. Task

- 3emaphare

- Ewent Flag

--Data Queue

- Mailbox

- hdutee

- Message Buffer

- Fixed-size hdemary Poal < Bl

- “ariable-size Memaory Pool

- Cyelic Handler

- Alarm Handler

- Overrun Handler

Extended Service Call =

Sl —— E =]
ForHelp. press F1 [[I_IW| i

Figure3.9 List of Initialization Routines Screen

Right click on the blank area of the List of Initialization Routines to view the menu. Then, select
Register to view the Registration of Initial Routine screen in figure 3.10.

The following explains how to register the initial routine.

Rev. 1.0, 03/03, page 29 of 50
RENESAS

ration of Initialization Routing

—address Stack Size

Address || gize |uxuuuuu1uu

—Description Language

¢ High-Level Language(TA_HLMNG) € Assembly Language(TA_ASK)

— Extended Information

Infarmation I

™ Link with lKernel Library

Eegister I Cancel

Figure3.10 Registration of Initialization Routine Screen

Set TMU| _ini in the Address box and click the Register button, and then the Close button. Use the
expression below to obtain the stack size.

e TMUI _ini stack frame size: 8 bytes
e Required size for the initialization routine: 184 + 24 bytes
Total: 216 bytes

For details about how to calculate the stack size, see Appendix C, Calculation of Work Area Size,
in the HI7000/4 Series User’s Manual. Use the default since the calculated stack size is smaller
than it.

Figure 3.11 shows the Registration of Initialization Routine screen after registration. Figure 3.12
shows the List of Initialization Routines screen after registration.

Rev. 1.0, 03/03, page 30 of 50
RENESAS

tion of Initialization Routine

Address Stack Size
Address TMLM _ini Size 0x00000100

Diescription Language

* High-Level Language(Ta HLNG) ¢ Assembly Language(TA_ASKM)

Extended Information

Infarmation

[T Link with Kernel Library

Eegister | Cancel |

Figure3.11 Registration of Initialization Routine Screen (after Registration)

Yiew Generate Help
O = (=] &l x?
INew Open Save Generate Help
= HI7 700/ Configuration informatic =
Kernel Execution Condition List of Initialization Routines
Kernel Extention Function
Time Management Function
Debugging Function
Service Calls Selection
Interrupt!CPU Exception Han
Trap Exception Handler
Prefetch Function
Initia Foutine:

¥ | Address Stack Size Cescription Language Extended Informatic
TWUA _ini Ox00000100 High-Level Language

Semaphore
EwventFlag
Data Cueue
Mailbox

hutex
IMessage Buffer
Fixed-size Memory Pool 4 | Hl
“ariahle-size Memory Fool
Cyclic Handler

Alarm Handler

Cwerrun Handler

Extended Service Call

| | Bl =

FarHelp, press F1 UK

Figure3.12 List of Initialization Routines Screen (after Registration)

Rev. 1.0, 03/03, page 31 of 50
RENESAS

3.6

Registering Event Flag Information

Click Event Flag in the HI7700/4 Configuration Information area on the Configuration Startup
screen to view the Event Flag Information screen in figure 3.13.

Click the Change button in the Event Flag Information area to change the maximum event flag ID.

Right click on the blank area of the Event Flag List and select Create to view the Creation of

Event Flag screen in figure 3.14. For initial creation of an event flag, set the information about the

event flag on this screen.

The application implemented in this guide dynamically creates one event flag in the task. Use the
default event flag information.

File

YWiew Generate Hel
O = = & L4
INew Open Save Generate Help

= HI??00/4Corfiguration inforrmatic
-~ Kermel Execution Candition

4]

-~ Kernel Extartion Function

- Time Management Function

- Debugging Function
Service Calls Selection
Interrupt!CPU Exception Han
Trap Exception Handler
Prefetch Function

- Initialization Routine

- Task

- Semaphore

- Data Queus

- Mailbox

- Mutex

- Message Buffer

- Fixed-size Memory Fool
-“ariable-size Memory Pool
- Zyclic Handler

- Alarm Handler

- Overrun Handler

- Extended Service Call

i B

FarHelp, press F1

— Ewvent Flag Information
Was. Event Flag ID [CFG_MAXFLGID]

|»

List of Event Flags

% | IDName

Initial Bit Pattern

Waiting Gueue | Multiple Tasks in Wait State

| b

‘When cre_flg isnt selected in Service Call Selection, the creation of objects is ignored here, it
isn't outputted to the build file. Present setting conditions are cre_fly == USE.

=
[T 7 NoM[4

Figure3.13 Event Flag Information Screen

Rev. 1.0, 03/03, page 32 of 50

RENESAS

Creation of Event Flag

—Ewent Flag 1D

1D Mumber g ID Mame I

1D Mame can be specified when Auto is selected in

the 1D MURbEr = | Winkewith Kermel Likrany
—Attribute Waiting Queue

[~ Enahles Multiple Tasks to YWaittTA_WWhUL) & FIFO Order (TA_TFIFO)

[T Clears Bits when Eeleased fram Yyait StateTA_CLR) & Priatity Order (TA_TPRD

—Initial Bit Pattern

Bit Pattern IU}{UUUUUUUU Create I Cancel

Figure3.14 Creation of Event Flag Screen

3.7 Creating Configuration Files

Click the Create button on the Configurator Startup screen to create the configuration files
required for configuring HI7700/4. For details about the configuration files, see section 5.1.2,
Configurator Output File, in the HI7000/4 Series User’s manual.

Now, the definition and registration by the configurator are complete. To close 7729.hcf, choose
Overwrite or Save As from the File menu to save all the information.

Rev. 1.0, 03/03, page 33 of 50
RENESAS

3.8 Building the Executable File by HEW

Compile and link the files created by the configurator using HEW supplied with SHC/C++
compiler to create the executable file to be downloaded. This section describes how to build the
executable file by HEW.

There are two methods to configure HI7700/4. Table 3.2 lists the type of links.

Table3.2 TypeofLinks

Type Description

Whole linkage Links the kernel and all configuration files into a single load module (called a
whole load module).

Separate linkage Links the kernel code portion (called a kernel load module) and the kernel
data portion (called a kernel environment load module) into separate load
modules.

Application files can be included in a kernel load module, a kernel
environment load module, or in an independent application load module.

For details, see section 5, Configuration, in the HI7000/4 Series User’s Manual.

This guide describes how to use the whole link method to configure the program in big endian
format.

Rev. 1.0, 03/03, page 34 of 50
RENESAS

381 Starting HEW

Double click hios.hws in the install folder “hios” to start HEW to build HI7700/4. Figure 3.15
shows the HEW Startup screen.

File Edit Project Options Build Took Window Help

00 o P [e = 31 il =

RN EE R EY
_— |

£ hios

EX=1

i =-E3

7707 ofe
TI07 et
TI0T mix
7908 ofg
< 7708 def
- S
Praject Files
: 7708 _cpuasmst
i ew[5] 7708 cpuinic —
i 5] 7708 expentsr
TI08_intdwn sre
: 7708 _sysdwnc
i[5 7708 tmrdrve
-5 kernelcfec
kernel def o

taske

Dependencies | -
»

(projects | < mavigaton

x|

Build £ Find in Files

Version Garral

For Help, press F1

[[LT B

Figure3.15 HEW Startup Screen

The standard project file hios.hws contains three sub-projects to configure the program for the
target CPU. Table 3.3 lists the type of project files.

Table3.3 Project Files

7729_mix Project file for creating the whole load module for the whole link method

7729_cfg Project file for creating the kernel load module for the separate link method

7729_def Project file for creating the kernel environment load module for the separate
link method

Select the project file 7729_mix for creating the whole load module.

Figure 3.16 shows the Set Current Project screen.

Rev. 1.0, 03/03, page 35 of 50
RENESAS

findow Help
DS L e 70 | [¢ 1 8 % s IR
IEAEEE

07 sfe
TIO7 et
TI07 mix
T8 cfe
7708 et
7709 cfe
7700 def
7709 mix
709 cfe
7709 def

7729 cfe
7729 et

" projects [navigaton

0T Buita £ Findin Fies A Version Gorbal

Activate 7726 mix T = |— ms [

Figure3.16 Set Current Project Screen

3.8.2 Defining Configuration File

Define each application program created in section 2 as a project file. Use the default project file
configuration and define only the timer driver to implement the sample program operation in this
guide.

On the Current Project Set screen, select Add Files... from the Project menu to add tmul.c as a
project file. Figures 3.17 and 3.18 show the screen for adding a file.

Rev. 1.0, 03/03, page 36 of 50
RENESAS

Eile Edit |Project Options Build Tools w Help

o e i [FE e El=)
A E— [a&]s s ala]

Edit Rraject Confieuration.

- i
Tnsert Project.
Dependent Projects.
TECTE
7708 e
& @ 7702 mix
7709 cte
7709 e
7709 i
T709acle
7708 def
7709 mix
7729 cle
15 7729 det
g
13 Project Files
- [E] 7729 cpussmsrc
7729 cpuinic
TT29 expent st
7729_intdwn.sre
- [2] 7729 sysdwnc
- E] 7729 tmrdrvc
kernel cfec
kernel defe
5] taske
=3 Dependencies
-] itronh
(5 kemnelh
5 kemelapik

2 kemelidh |
i ' Projects | < navigation

=

Wersian Cortrol

Find n Fies

Add filefs) to project [= |— ws

Figure3.17 AddingaFile

.tmu1 C

File name: | Add
Files of type: IF'roiect Files ﬂ Cancel |
4

Figure3.18 AddingaFile

Now, defining the configuration files completes.

Rev. 1.0, 03/03, page 37 of 50
RENESAS

3.8.3 Changing a Linkage Address
Change the linkage addresses to run the programs on the Solution Engine address map.

The Solution Engine is supplied with 32-Mbyte SDRAM from 0x0C00000 to OxOFFFFFFF. In
this guide, 16 Mbytes from 0x0C00000 to OxOCFFFFFF are used.

Select OptLinker from the Options menu to view the OptLinker Options screen (figure 3.19).

Edit Project [Options Build Tools Window Help

D)2 L (A& SO/ Library Generator [g4 K [obibi CEm
4 SH O/G++ Compiler.

[S eserber lesa|a|

EE=] i |
7 o B Enses.

707 e
707,
TI08 cfe
TI08 e
TI08_mix
7109 cte
7709 e
7709 mix

Build Configurations..

Ti09a cfe
79095 def

G 7709a_mix

-3 Project Files

i 7109 cpuasmsre

TT09a cpuinic

TT09a expent sro

TT09a_intdwnsrc

100 sysdane

TI00a trvdrve

kemel cfec

kemel defc

taske

i THU e

143 Dependencies

7094 trrdefh

7094 trrdrvh

clk ratioine

] kemel apiinc

kel ofe_defaulth

kel ofe_inc.def

kel ofe_inidata def

kel ofe_mainh

kerne| cfe_thlh =

(3Projects | <) navigation

x|

Version Gortrol /.

Edit options for phase OptLinker [= = J.J AR SR T
Figure3.19 Selecting OptLinker

Rev. 1.0, 03/03, page 38 of 50
RENESAS

e Changing a kernel stack pointer

Double click _kernel_pon_sp and _kernel_man_sp in the Input tab and set the value so that the
values point to the end address of the RAM mounted on each hardware + 1 (0OxAD000000 in P2
space) as shown in figures 3.20 to 3.22.

=E=1

Di¥PROJECTEHITION 4 _contie_suidsih “ﬁ;”l
. [E] D¥PROJECTEHITINN A confie_suide¥ WEET |
De¥PROJEGTEHITIO0 4 _config_suide¥l o ——

P | S | _;I_I Remave |

Defines
Define | Tvpe [Value | fidd..
_kernel_pon_zp Addre.. 0ACT00000

_kernel_man_zp Addre.. 0&CT00000 REmEyE |

¥ Use entry point : Prelinker contral
| hi_cpuasm At =l
[~ Use external subcommand file OF | Cancel |

Figure3.20 OptLinker options Screen

Symbol ;| kernel pon_sp
Walue

* Mumber/Address : I H'& 0000000 E

{Hexadecimal)

" Symbol : |

Cancel |

Figure3.21 OptLinker options Screen (_kernel_pon_sp)

Rev. 1.0, 03/03, page 39 of 50
RENESAS

Madify define

Symbol: | kernel_man_sp
Walue :

% Mumber/Address : | H & 0000000 Eﬁ

{Hexadecimal)

" Symhbal : I

Cancel |

Figure3.22 OptLinker options Screen (_kernel_man_sp)

e Changing a section address

Click the Section tab to view the Define Section screen (figure 3.23).

OptLinker optionz{

Thput | Cutput | Optimize Section |‘-.-‘erif;-.r' | Other |

Relocatable zection start address :

Address Section - Add.
HB0000700 | P_hiexpent

HB0O0T000 | < hibase Ed s |

F hirezet
Z hivct — [dEm; Ever|ay |
Z hitrp

F_hiknl Bemave |

Z _hidef

Z hizvamt |

G _hicfe * *
P higyzdwn] [

P hiintdwn LI = o

Generate external symbaol file :

[T Use external subcommand file Ok I Cancel I

Figure3.23 Define Section Screen

Rev. 1.0, 03/03, page 40 of 50
RENESAS

Click Address for each section to enable the Modify... button. Change the section addresses as
listed in table 3.4.

Table3.4 Section Addresses

Section Before After Section Before After
Name Change Change Name Change Change
P_hiexpent 80000100 8C000100 B_hiwrk 8C000000 8C010000
C_hibase 80001000 8C001000 B_himpl
P_hireset B_hidystk
C_hivct B_histstk
C_hitrp B_hiirgstk
P_hiknl B_ hitrcbuf
C_hidef B_hitrceml
C_hisysmt B
C_hicfg R
P_hisysdwn P_hicpouasm A0000000 AC000000
P_hiintdwn P_hicpuini
P_hitmrdrv
T
C
D

RENESAS

Rev. 1.0, 03/03, page 41 of 50

384 Build

Execute HEW to build an executable file that can be downloaded to the Solution Engine by the
E10A emulator. Select Build from the Build menu. Figure 3.24 shows the screen for selecting
Build.

0@ ﬂ Gl S) e Bl C"'* 5 5 (2] obi_big ~|] &

£ Build All v 4 ‘@ ‘

Update All Dependencies

=2 @ hios
7 cte Generate Maksfis

T det "
et 25 Stop Build GirltEraak
TMEcfe
7708 def
- 7708_mix
M9 cfe
709 def
7709 mic
T709a cle
77092 det
T70%a_mix
I 7128
(3] 7729 det
@ 7729_mix
=13 Project Files
- [B] 7728 cpuasmsrc
7729 cpuinic

Terminiete Garret 1o

7729 expentarc
T729_intdwrisre
7729 sysdwnc

(] 7728 tmrdrvc
ceuide_tmrdrve

- |2 kemel cfec
kemel defc

5] taskc

43 Dependencies

- [7728 tmrdefh
7729 tmrdreh
cguide_tmrdefh Sl

] Projects | =] Havigation

X|[Fhace OptLinker starting d
L1100 G Gannot find “6" specified in option star(

L1100t Gannot find “0" specified in option “sta

L1700 0} Gannot find 7B hitrceml” specified in ODtlon start”

L1100 8 Gannot find "B specified in option " start®

L1100 & Gannot find "R specified in option *start”

Phase OptLinker finished

Build Finished
Errors, 5 Warnings

Fined in Files: Wersion Cordrol

Build out of date active project and out of date dependant projects [— |— ms [

Figure3.24 Selecting Build

The executable file is created by selecting Build. The result of compilation and linkage is shown at
the bottom of the window. If a compile error occurs, correct the applicable source and build the
file again. The executable file (with the file extension .abs) is created in the install folder
“obj_big”.

Now you can download the file to the Solution Engine by the E10A emulator and execute it. For
details about how to download and execute the file, see section 4, Downloading and Executing
Application Programs.

Rev. 1.0, 03/03, page 42 of 50
RENESAS

3.9 Disabling Parameter Check Function

When debugging the application programs completes and they are ready to be installed into the
product, you can disable the parameter check function. This check function is an unnecessary
routine performed in the beginning of the service call, in the HI series operating system.

You can use the configurator to disable the parameter check function. Figure 3.25 shows the
screen for disabling the parameter check function.

guratar - HI
File “iew Generate Help
O = (=] &l L4
INew Open Save Generate Help
= HI?700/4Corfiguration infor =

on Functio

- Time Management Fur

- Debugging Function
Service Calls Selection ¥ Install the Parameter Check Function [CFG_PARCHK]
InterruptfCPU Exception
Trap Exception Handlel
Prefetch Function

- Kermel Execution Candit —Parameter Check Function

If a parameter check function is installed, parameters will be
checked when service calls issued.

- Initialization Routine — D8P Function

~Task Ifyou use the processor(SHT 729 etc) which has DSF bitin SR, you must select the

-~ Semaphore check box

- Event Flag

- Data Queus ¥ Uses DSP Function [CFG_DSF]

- Mailbox

- Mutex

- Message Buffer

- Fixed-size Memaory Foo —Cache Lock Function

-“ariable-size Memory R

- Zyclic Handler Ifyou use the processor(SHTT08A etc) which has CL{Cache Lock) bit in SR,

-~ Alarm Handler you must select the check box

- Overrun Handler

- Extended Senvice Call [T Uses Cache Lock Function [CFG_CACLOC] _
< [zl =l
FarHelp, press F1 [[UM | 4

Figure3.25 Disabling Parameter Check Function

Click Kernel Extended Function on the Configurator Startup screen to view the screen in figure
3.25. Uncheck the Install the Parameter Check Function checkbox and create and build the
configuration files. The executable file with the parameter check function disabled is created.

Rev. 1.0, 03/03, page 43 of 50
RENESAS

Rev. 1.0, 03/03, page 44 of 50
RENESAS

Section 4 Downloading and Executing
Application Programs

This section describes how to use the E10A to download the executable file created in section 3,
Configuration, and run it on the Solution Engine.

4.1 Initializing Solution Engine

The ROM monitor supplied with the Solution Engine initializes the CPU. In this guide, this
monitor is used for the CPU initialization. (When using another board, you must use a specific
CPU initialization routine. For details of CPU initialization, see section 2.1, Creating CPU
Initialization Routine.)

Configure the system as shown in figurel.1 in section 1, Overview. Start the host computer, turn
the Solution Engine on, select HDI for EI0A SH7729 from the Windows Start menu to start the
HDI. Figure 4.1 shows the HDI Startup screen.

SHT7094 E104 Emulator little endian

File Edit Yi=w Pun Memory Setup Window Help
1 gmEE [P 2eh | HanE artas |9

FEn A QREIEE. WERE||[Mcos z#a n

BRE9 2008

Figure4.1 HDI Startup Screen

Then, choose Go from the Run menu (figure 4.2).

Rev. 1.0, 03/03, page 45 of 50

RENESAS

E104 Emulator little endian

Eile Edit ¥iew | Bun Memory Setup Window Help
0 g Fe e Hads . nertas |2 |
e WER [Me0sz@an

) EIC T Grzcr
Bun...

Step In
Step Over
Step Ot
Step..

Halt

|Run pregram fr

Figure4.2 Reset Go menu

After one or two seconds, click the STOP button (red) on the menu bar. Now, initializing the
Solution Engine completes and this allows reading from or writing to the SDRAM supplied with
the Solution Engine.

Rev. 1.0, 03/03, page 46 of 50
RENESAS

4.2 Downloading Application Program
Download the executable file created in section 3, Configuration, to the E10A.

Figure 4.3 shows the screen for downloading the executable file.

94 E104 Emulator little endian

JJ“EI'E Edit Wiew Bun Memory Setup Window Help

|l Mew Session... Ctrl+h _.'5 0 7. HJT WL BTG m D HJ 9 |

Load Session.. Cr+0

SweSesin Ovbs JEEL WEE |[MELD2 @A N

Save Session fis..

Initislize

Exit BlttFd

e sl =l=

| S

Load Program

Oft=at:

Clpen
8[H0 i
I Verify Cancel |
Filz name:

I D:¥HI_.l".l'l:ll:l—4¥kerne|¥f|:ur_shcﬁ¥hins¥hiuser¥u:-|:u_i_|itt|e¥'.l".l‘29_;| Browszea... |

[~ Load only debugging information
[Load stack information fil=(SHI filed

Figure4.3 Downloading Executable File

Select Load Program... from the File menu on the HDI Startup screen. On the Load Program
screen in figure 4.3, enter the name of the executable file to download in the File Name box and

Rev. 1.0, 03/03, page 47 of 50
RENESAS

click the Open button to download it. The executable file is 7729_mix.abs in the install folder
“obj_big”.

After downloading succeeds, the Complete Download screen in figure 4.4 appears.

HO!

Areas loaded:
BC000100 - SC00021F
BC001000 - SC00140DE
BCO0014ED - SCO0DSSE
ACO00000 - ACO0004E

Q Maodule name: De¥HITIO0-4%¥kerne¥for_shob¥hios¥hiuser¥ob)_|ittle¥ 7729 _mix.abs

Figure4.4 Complete Download Screen

Click the OK button on the Complete Download screen.

Rev. 1.0, 03/03, page 48 of 50
RENESAS

4.3 Executing Application Program

To execute the program, choose Registers from the View menu on the HDI Startup screen to view
the register information (figure 4.5).

E10& Emulator little endian
Eile Edit | Wiew Bun Memory Setup Window Help
Breakpoint ClbB
0mg Dok Wl Ll ks
Commard Lins Cull
[l BT % Dissssembly.. Ctrl+D = JJ&: L0882 @A
[— VO fres Ctrl+] g

Labels Ctrl+d,
Locals
Memary..

Performance Anslyeiz

Figure4.5 Register Information

Then, change the PC value. Double click the PC value on the Register Information screen to view
the Change PC Value screen (figure 4.6).

Register — PC

Vale :
|ac000000 oF I
Set A=

Cancel |
I".'"."hu:u le Register ;I il

Figure4.6 Change PC Value Screen

Change the PC value to AC000000 as shown in figure 4.6 and click the OK button. This value is
the start address of the CPU initialization routine.

Rev. 1.0, 03/03, page 49 of 50
RENESAS

Now, you can execute the program. Select Go from the Run menu to execute the program (figure
4.7).

Eile Edit ¥iew | Bun Memory Setup Window Help

REE T ki Firsd i aefao ¢
5 B e :

u ~ Ress

o) T Bursor

Set PO To Cuirscr

Bun..

Step In _ |
Step Over Register Yalue -
000001 6C
D B000CTDA
e : 26454E48
o 00000000
H 00000007
04000000
11111111
26454E48
BCO10EER
= 80032230
bt BCO01000
5 BCO0SEDG
BC010CED
BCOOGAEDD
40001000
8C010CED
Acoooobo
T
FFFFFESD
80000000
00000000

P a atatatatel

{Run fram surrent

Figure4.7 Execute Program Screen

Rev. 1.0, 03/03, page 50 of 50
RENESAS

H17700/4 Hitachi Industrial Realtime Operating System
Configuration Guide

Publication Date: 1st Edition, March 2003
Published by: Business Operation Division
Semiconductor & Integrated Circuits
Hitachi, Ltd.
Edited by: Technical Documentation Group
Hitachi Kodaira Semiconductor Co., Ltd.
Copyright © Hitachi, Ltd., 2003. All rights reserved. Printed in Japan.

	Cover
	Cautions
	Preface
	Contents
	Section 1 Introduction
	1.1	Overview
	1.2	System Configuration
	1.3	Prerequisites

	Section 2 Creating Application Programs
	2.1	Creating CPU Initialization Routine
	2.2	Creating Tasks
	2.2.1	Main Task
	2.2.2	LED Task

	2.3	Creating an Interrupt Handler
	2.3.1	Creating Initialization Module
	2.3.2	Creating Interrupt Handler

	Section 3 Configuration
	3.1	Starting Configurator
	3.2	Interrupt Mask Level
	3.3	Registering Task
	3.4	Registering Interrupt Handler
	3.5	Registering Initialization Routine
	3.6	Registering Event Flag Information
	3.7	Creating Configuration Files
	3.8	Building the Executable File by HEW
	3.8.1	Starting HEW
	3.8.2	Defining Configuration File
	3.8.3	Changing a Linkage Address
	3.8.4	Build

	3.9	Disabling Parameter Check Function

	Section 4 Downloading and Executing �Application Programs
	4.1	Initializing Solution Engine
	4.2	Downloading Application Program
	4.3	Executing Application Program

	Colophon

