
www.renesas.com

All information contained in these materials, including products and product specifications, 
represents information on the product at the time of publication and is subject to change by 
Renesas Electronics Corp. without notice. Please review the latest information published by 
Renesas Electronics Corp. through various means, including the Renesas Technology Corp. 
website (http://www.renesas.com). 
 
 
 

 
 

  

  
 
 
 

 

EEPROM Emulation Library 
 
 
 
Type T01, European Release 
 
 
16 Bit Single-chip Microcontroller 
RL78 Family 
 
Installer: RENESAS_RL78_EEL-FDL_T01_PACK01_xVxx 

R01US0128ED0110 
September 9, 2019 

16 

U
ser M

anual 



Notice 
1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of 

semiconductor products and application examples. You are fully responsible for the incorporation or any other use of the circuits, 
software, and information in the design of your product or system. Renesas Electronics disclaims any and all liability for any losses and 
damages incurred by you or third parties arising from the use of these circuits, software, or information. 

2. Renesas Electronics hereby expressly disclaims any warranties against and liability for infringement or any other claims involving patents, 
copyrights, or other intellectual property rights of third parties, by or arising from the use of Renesas Electronics products or technical 
information described in this document, including but not limited to, the product data, drawings, charts, programs, algorithms, and 
application examples. 

3. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas 
Electronics or others. 

4. You shall not alter, modify, copy, or reverse engineer any Renesas Electronics product, whether in whole or in part. Renesas Electronics 
disclaims any and all liability for any losses or damages incurred by you or third parties arising from such alteration, modification, 
copying or reverse engineering. 

5. Renesas Electronics products are classified according to the following two quality grades: “Standard” and “High Quality”. The intended 
applications for each Renesas Electronics product depends on the product’s quality grade, as indicated below. 
“Standard”: Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; 

home electronic appliances; machine tools; personal electronic equipment; industrial robots; etc. 
“High Quality”: Transportation equipment (automobiles, trains, ships, etc.); traffic control (traffic lights); large-scale communication 

equipment; key financial terminal systems; safety control equipment; etc. 
Unless expressly designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other 
Renesas Electronics document, Renesas Electronics products are not intended or authorized for use in products or systems that may pose a 
direct threat to human life or bodily injury (artificial life support devices or systems; surgical implantations; etc.), or may cause serious 
property damage (space system; undersea repeaters; nuclear power control systems; aircraft control systems; key plant systems; military 
equipment; etc.). Renesas Electronics disclaims any and all liability for any damages or losses incurred by you or any third parties arising 
from the use of any Renesas Electronics product that is inconsistent with any Renesas Electronics data sheet, user’s manual or other 
Renesas Electronics document. 

6. When using Renesas Electronics products, refer to the latest product information (data sheets, user’s manuals, application notes, “General 
Notes for Handling and Using Semiconductor Devices” in the reliability handbook, etc.), and ensure that usage conditions are within the 
ranges specified by Renesas Electronics with respect to maximum ratings, operating power supply voltage range, heat dissipation 
characteristics, installation, etc. Renesas Electronics disclaims any and all liability for any malfunctions, failure or accident arising out of 
the use of Renesas Electronics products outside of such specified ranges. 

7. Although Renesas Electronics endeavors to improve the quality and reliability of Renesas Electronics products, semiconductor products 
have specific characteristics, such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Unless 
designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas 
Electronics document, Renesas Electronics products are not subject to radiation resistance design. You are responsible for implementing 
safety measures to guard against the possibility of bodily injury, injury or damage caused by fire, and/or danger to the public in the event 
of a failure or malfunction of Renesas Electronics products, such as safety design for hardware and software, including but not limited to 
redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. 
Because the evaluation of microcomputer software alone is very difficult and impractical, you are responsible for evaluating the safety of 
the final products or systems manufactured by you. 

8. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each 
Renesas Electronics product. You are responsible for carefully and sufficiently investigating applicable laws and regulations that regulate 
the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive, and using Renesas Electronics 
products in compliance with all these applicable laws and regulations. Renesas Electronics disclaims any and all liability for damages or 
losses occurring as a result of your noncompliance with applicable laws and regulations. 

9. Renesas Electronics products and technologies shall not be used for or incorporated into any products or systems whose manufacture, use, 
or sale is prohibited under any applicable domestic or foreign laws or regulations. You shall comply with any applicable export control 
laws and regulations promulgated and administered by the governments of any countries asserting jurisdiction over the parties or 
transactions. 

10. It is the responsibility of the buyer or distributor of Renesas Electronics products, or any other party who distributes, disposes of, or 
otherwise sells or transfers the product to a third party, to notify such third party in advance of the contents and conditions set forth in this 
document. 

11. This document shall not be reprinted, reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas 
Electronics. 

12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or 
Renesas Electronics products. 

(Note 1) “Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its directly or indirectly 
controlled subsidiaries. 

(Note 2) “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics. 

(Rev.4.0-1  November 2017) 



R01US0128ED0110     3 
User Manual  

Table of Contents 

Chapter 1 Introduction ......................................................................................................................... 6 
1.1 Naming convention ................................................................................................................... 7 
1.2 Related documents ................................................................................................................... 8 
1.3 MF3 Data Flash ......................................................................................................................... 8 

1.3.1 Dual operation.................................................................................................................... 8 
1.4 Functional elements within the EEPROM Emulation system ................................................... 9 
1.5 Pool structure .......................................................................................................................... 10 
1.6 Address virtualization .............................................................................................................. 11 

Chapter 2 EEL architecture ...............................................................................................................12 
2.1 EEL pool structure................................................................................................................... 12 
2.2 EEL block structure ................................................................................................................. 14 

2.2.1 EEL block header ............................................................................................................ 15 
2.2.2 Reference area ................................................................................................................ 16 
2.2.3 Data area ......................................................................................................................... 16 

2.3 EEL Instance structure ............................................................................................................ 17 
2.3.1 Data Reference Pointer, DRP .......................................................................................... 17 
2.3.2 Instance data ................................................................................................................... 17 
2.3.3 Data Checksum, DCS ...................................................................................................... 18 

2.4 Block management ................................................................................................................. 18 
2.4.1 EEL block circulation ....................................................................................................... 18 
2.4.2 EEL block status .............................................................................................................. 19 
2.4.3 Security aspects, block exclusion .................................................................................... 19 

2.5 Instance management ............................................................................................................ 20 
2.5.1 Write instance sequence ................................................................................................. 21 
2.5.2 Security aspects, checksums .......................................................................................... 21 

2.6 Processes ............................................................................................................................... 22 
2.7 Space treatment ...................................................................................................................... 23 
2.8 Request–Response oriented dialog ........................................................................................ 24 
2.9 Handler oriented command execution .................................................................................... 25 
2.10 Execution modes of the EEL ................................................................................................... 26 

2.10.1 Enforced execution mode ................................................................................................ 27 
2.10.2 Timeout execution mode ................................................................................................. 30 
2.10.3 Polling execution mode .................................................................................................... 33 

2.11 Supported command spectrum ............................................................................................... 36 
2.12 EEL execution planes ............................................................................................................. 37 

2.12.1 Foreground plane ............................................................................................................ 37 
2.12.2 Background plane ............................................................................................................ 38 

Chapter 3 Application Programming Interface...................................................................................39 



R01US0128ED0110     4 
User Manual  

3.1 Data types ............................................................................................................................... 39 
3.1.1 Library specific simple type definitions ............................................................................ 39 
3.1.2 Enumeration type “eel_command_t” ............................................................................... 39 
3.1.3 Enumeration type “eel_operation_status_t” ..................................................................... 40 
3.1.4 Enumeration type “eel_access_status_t” ........................................................................ 40 
3.1.5 Enumeration type “eel_status_t” ...................................................................................... 41 
3.1.6 Structured type “eel_request_t” ....................................................................................... 42 
3.1.7 Structured type “eel_driver_status_t” .............................................................................. 42 

3.2 Functions ................................................................................................................................. 43 
3.2.1 EEL_Init ........................................................................................................................... 43 
3.2.2 EEL_Open ....................................................................................................................... 44 
3.2.3 EEL_Close ....................................................................................................................... 45 
3.2.4 EEL_Execute ................................................................................................................... 46 
3.2.5 EEL_Handler.................................................................................................................... 48 
3.2.6 EEL_TimeOut_CountDown ............................................................................................. 50 
3.2.7 EEL_GetDriverStatus ...................................................................................................... 51 
3.2.8 EEL_GetSpace ................................................................................................................ 54 
3.2.9 EEL_GetVersionString ..................................................................................................... 56 

Chapter 4 Operation ..........................................................................................................................58 
4.1 Obtaining the Library ............................................................................................................... 58 
4.2 Installation ............................................................................................................................... 58 

4.2.1 File Structure.................................................................................................................... 58 
4.3 Basic workflow ........................................................................................................................ 60 
4.4 Configuration ........................................................................................................................... 61 

4.4.1 Pool configuration ............................................................................................................ 61 
4.4.2 Endurance Calculation ..................................................................................................... 62 
4.4.3 Variable configuration ...................................................................................................... 62 
4.4.4 EEL Variable Initialization ................................................................................................ 63 
4.4.5 Pool configuration hints and tips ...................................................................................... 64 

4.5 Initialization ............................................................................................................................. 68 
4.6 EEL activation and deactivation .............................................................................................. 68 
4.7 Foreground and background process ..................................................................................... 69 

4.7.1 Controlling background process ...................................................................................... 69 
4.8 Commands .............................................................................................................................. 72 

4.8.1 Pool oriented commands ................................................................................................. 72 
4.8.2 Variable oriented commands ........................................................................................... 85 

Chapter 5 Characteristics ..................................................................................................................96 
5.1 Resource consumption ........................................................................................................... 96 
5.2 Timing characteristics ............................................................................................................. 96 



R01US0128ED0110     5 
User Manual  

5.2.1 Reference command execution times ............................................................................. 96 
Chapter 6 Cautions ............................................................................................................................99 
Revision History ....................................................................................................................................101 
 

 



EEPROM Emulation Library 

R01US0128ED0110     6 
User Manual  

Chapter 1 Introduction 

This user’s manual describes the internal structure, the functionality and the 
software interface (API) of Renesas RL78 EEPROM Emulation Library (EEL) 
Type 01, designed for RL78 flash devices with so called Data Flash based on 
the MF3 flash technology. 
The EEL Type 01 provides APIs for the C and assembly language of the 
CA78K0R, IAR V1.xx and IAR V2.xx tool chains. (APIs for the assembly 
language are provided by the CA78K0R tool chain only.) 
The EEL Type 01 for IAR V2.xx tool chain (except linker sample file) can also 
be used with the IAR V3.xx and IAR V4.xx tool chains. 
The EEL is the highest layer of Renesas EEPROM Emulation System which 
aspires to mime at least the functionality of an non-volatile memory (internal  
EEPROM) under usage of the on-chip embedded flash memory.  Beyond that 
drivers service and administrative functionality is provided by the EEL to 
simplify the handling at application side. 
 
 
Elements of the EEPROM Emulation System 

 

User application

flash access layer

FAL-POOL (data flash macro)physical flash 

EEPROM layer

application layer

FDL

EEL-API

EEL

FDL-API

 
 
 

Note:  
This user’s manual describes the functional block marked in yellow 

 

Figure 1-1 



EEPROM Emulation Library 

R01US0128ED0110     7 
User Manual  

1.1 Naming convention 
Certain terms, required for the description of the Flash and EEPROM 
emulation are long and too complicated for good readability of the document. 
Therefore, special names and abbreviations will be used in the course of this 
document to improve the readability. 
 
 
Used abbreviations and acronyms 

 
Abbreviations / 
Acronyms Description 
Block Smallest erasable unit of a flash macro 

Code Flash 

Embedded Flash where the application code is stored. 
For devices without Data Flash EEPROM emulation 
might be implemented on that flash in the so called data 
area. 

Data Flash 
Embedded Flash where mainly the data of the EEPROM 
emulation are stored. Beside that also code operation 
might be possible. 

Dual Operation 

Dual operation is the capability to fetch code during 
reprogramming of the flash memory. Current limitation is 
that dual operation is only available between different 
flash macros. Within the same flash macro it is not 
possible! 

EEL EEPROM Emulation Library 

EEPROM 
emulation 

In distinction to a real EEPROM the EEPROM emulation 
uses some portion of the flash memory to emulate the 
EEPROM behavior. To gain a similar behavior some 
side parameters have to be taken in account. 

FAL Flash Access Library (Flash access layer) 
FCL Code Flash Library (Code Flash access layer) 
FDL Data Flash Library (Data Flash access layer) 

Flash 

“Flash EPROM” - Electrically erasable and 
programmable nonvolatile memory. The difference to 
ROM is, that this type of memory can be re-programmed 
several times. 

Flash Block A flash block is the smallest erasable unit of the flash 
memory. 

Flash Macro 
A flash comprises of the cell array, the sense amplifier 
and the charge pump (CP). For address decoding and 
access some additional logic is needed. 

NVM 
Non volatile memory. All memories that hold the value, 
even when the power is cut off. E.g. Flash memory, 
EEPROM, MRAM... 

RAM “Random access memory” - volatile memory with 
random access 

ROM “Read only memory” - nonvolatile memory. The content 
of that memory can not be changed. 

Serial programming The onboard programming mode is used to program the 
device with an external programmer tool. 

Single Voltage 

For the reprogramming of single voltage flashes the 
voltage needed for erasing and programming are 
generated onboard of the microcontroller. No external 
voltage needed like for dual- voltage flash types. 

 

Table 1-1 



EEPROM Emulation Library 

R01US0128ED0110     8 
User Manual  

 
 

1.2 Related documents 
 
List of related documents 

 
Document Number Description 
R01US0034EDxxxx Data Flash Access Library Type T01 

 
 

1.3 MF3 Data Flash 
Almost all devices of the RL78 microcontroller family are equipped with a 
separate flash area called Data Flash.  

1.3.1 Dual operation  
Common for all Flash implementations is, that during Flash modification 
operations (Erase/Write) a certain amount of Flash memory is not accessible 
for any read operation (e.g. program execution or data read).  
 
This does not only concern the modified Flash range, but a certain part of the 
complete Flash system. The amount of not accessible Flash depends on the 
device architecture.  
 
A standard architectural approach is the separation of the Flash into Code 
Flash and Data Flash. By that, it is possible to fetch instruction code from the 
Code Flash (to execute program) while data are read or written into Data Flash. 
This allows implementation of EEPROM emulation concepts running quasi 
parallel to the application software without significant on its execution timing. 
 
If not mentioned otherwise in the device user’s manuals, RL78 device with 
Data Flash are designed according to this standard approach. 
 
Note:  
It is not possible to modify Code Flash and Data Flash in parallel. 

Table 1-2 



EEPROM Emulation Library 

R01US0128ED0110     9 
User Manual  

1.4 Functional elements within the EEPROM Emulation system 
Even though this user’s manual describes the functional block “EEPROM 
Emulation Library” a short description of all concerned functional blocks and 
their relationship could be beneficial for the general understanding of the 
system. The following figure illustrates the basic idea behind and its involved 
functional blocks but the shown dependencies are not complete. 
 
Relationship between functional blocks inside the EEPROM emulation 
systems 

Data Flash Hardware

FAL

EEL

Application

INT Vector

code 
flash

data 
flash

address 
space

 
 
 

Application: 
The functional block “Application” contains the instruction code of user's 
software using the EEL. 

Figure 1-2 



EEPROM Emulation Library 

R01US0128ED0110     10 
User Manual  

 
EEPROM Emulation Library (EEL): 
The functional block “EEPROM Emulation library” is the subject of this user’s 
manual. It offers all functions and commands the “Application” can use in order 
to handle its EEPROM data. 

 
 
Data Flash Access Library (FAL): 
The “Data Flash Access Library” offers an interface to access any user-defined 
flash area, so called “FDL-pool” (described in next chapter). Beside the 
initialization function the FDL allows the execution of access-commands like 
write as well as a suspend-able erase command.  
 
Note:  
General requirement is to be able to deliver pre-compiled EEL libraries, which 
can be linked to either Data Flash Access Libraries (FDL) or Code Flash 
Access Libraries (FCL). To support this, a unique API towards the EEL must 
be provided by these libraries. Following that, the standard API prefix FDL_...  
which would usually be provided by the FDL library, will be replaced by a 
standard Flash Access Layer prefix FAL_...  All functions, type definitions, 
enumerations etc. will be prefixed by FAL_ or fal_. Independent from the API, 
the module names will be prefixed with FDL_ in order to distinguish the 
source/object modules for Code and Data Flash. 

 

1.5 Pool structure 
The EEL-pool is a part of the FDL-pool defined by the user in the file 
fdl_descriptor.h. in that file the user can divide the FDL-pool into two 
independent parts: the EEL-pool (used exclusively by the EEL only) and the 
USER-pool which can be freely used by the application to store any data.  
 
To protect the content of the EEL-pool against unwanted user accesses the 
EEL-driver is using only hidden subroutines reserved exclusively for the EEL.  
 
Pool details: 

• FDL-pool allocates the physical Data Flash memory that can be handled 
by the FDL. It is a kind of container reserving room for the EEL-pool and 
USER-pool. All characteristics (valid address information, partitioning 
information, ...) of the FDL-pool are defined in the FDL-pool descriptor. 
Based on that information the FDL protect all flash content against illegal 
access. 

• EEL-pool is a virtual pool inside the FDL-pool used exclusively by the 
EEL for storing data and control information.  

• User Pool is completely in the hands of the user application. It can be 
used to build up an own user EEPROM emulation or to simply store 
constants.  

 
Note:  
Please refer to the FDL user’s manual for further details. 



EEPROM Emulation Library 

R01US0128ED0110     11 
User Manual  

 

Pool access scheme, general scheme 

USER pool access

USER

EEL
EEL pool access

0-(
N-1)

0-(M-1)

EEL pool

M flash words

USER  pool

N flash words

0x0000

M-1

0x0000

N-1

FDL pool

FDL

 
 
 

1.6 Address virtualization 
To simplify the flash content handling as well the parameter passing between 
the FAL and the EEL the physical addresses used by the flash hardware were 
transformed into a linear 16-bit index addressing flash-words (32-bit units) 
inside the corresponding pool. By this measure each owner of the pool can 
use it as a simple array of words. To address the array elements (read/write 
access) word-index starting at 0x0000 can be used. The max. range of the 
word-index depends on the FAL-pool configuration and the number of flash 
blocks reserved for the particularly pool. This kind of address virtualization 
allows to access max 2 * 256kBytes Data Flash and offers an effective access 
rights management. 
 
Note: 
The user of the EEL is not touched by the above address virtualization. 

 

Figure 1-3 



EEPROM Emulation Library 

R01US0128ED0110     12 
User Manual  

Chapter 2  EEL architecture 

This chapter describes the internal architecture of the EEPROM Emulation 
Library. 
 

2.1 EEL pool structure  
The EEL pool is the virtual storage medium used by the EEL driver for storing 
data and block management information during its operation. From logical 
point of view the EEL-pool is organized as a single-linked ring of blocks.  
 
“Single-linked ring” means here:   
a) the next block to block N is block (N+1) 
b) the next block to the last one is the first one. 
 
 
Structure of an empty EEL pool (no data inside) 

First block
0

P

1k

A
I
X

EC
RWPprev

P

1k

A
I
X

EC
RWPprev

P

1k

A
I
X

EC
RWPprev

P

1k

A
I
X

EC
RWPprev

P

1k

A
I
X

EC
RWPprev

P

1k

A
I
X

EC
RWPprev

P

1k

A
I
X

EC
RWPprev

P

1k

A
I
X

EC
RWPprev

Last block
7

Block header data used for block management

Red marked - writing area for data and references

1 2 3 4 5 6

 
 

 
Each block of the EEL-pool contains a block-header for storing block 
management information. Because the block indexing within the EEL-pool is 
based on the homogenous and fixed virtual block numbers 0x0000.... 
(EEL_POOL_SIZE - 1) it is not necessary to store the neighbors inside the 
block header.  
 
All flash-blocks of the EEL pool are grouped in three consecutive “regions” 
indicated by the “block status” in the block header. 
 
“active region”   - consists of blocks containing active data 
“invalid region”   - consists of blocks without active data 
“prepared region”  - consists only of blocks ready to receive new data  

Figure 2-1 



EEPROM Emulation Library 

R01US0128ED0110     13 
User Manual  

 
 
When contemplate EEL-pool blocks clockwise the regions are always in the 
same fixed chronological order: 
 
“prepared region” is before “active region”  
“active region” is before “invalid region” 
“invalid region” is before “prepared region” 
 
 
 
EEL pool regions during normal operation 

erased

1k

P
A
I
X

EC
RWPprev

P

References

A
I
X

EC
RWPprev

P
A
I
X

EC
RWPprev

P
A
I
X

EC
RWPprev

P

1k

A
I
X

EC
RWPprev

P

1k

A
I
X

EC

P

1k

A
I
X

EC

preparedinvalid invalid active active active prepared

active region

RWP

References

Data

DWP

  

RWP=DWP

prepared regioninvalid region

1k

Data

References

RWP=DWP

1k

Data

References

RWP=DWP

1k

Data

References

RWP=DWP

1k

Data

 
 
Block organization scheme based illustrated above offers following 
advantages: 
 
a) two symmetrical sections (where always 50% of Data Flash does not 
contain valid data) are not needed anymore 
b) the “active region” can grow and be adapted to the momentary need 
c) the reference area is separated from the data inside the same EEL block 
d) copy-processes are mostly much faster because reduced to the only last 
active block has to be released from valid instances. 
e) exclude functionality does not reduce performance of the driver  
 
 

Figure 2-2 



EEPROM Emulation Library 

R01US0128ED0110     14 
User Manual  

2.2 EEL block structure  
Each EEL block belonging to the EEL-pool is basically divided into three 
areas: the block header, reference area and the data area. The block-header 
contains information about the actual status of the block which is needed for 
the block-management within the pool. The reference area contains reference 
entities off all instances written into this block during its live-cycle. It is 
necessary for actual data localization after power-on. The data area contains 
the pure data belonging to the corresponding references in reference area. 
 
EEL block, general structure 

 

 Figure 2-3 



EEPROM Emulation Library 

R01US0128ED0110     15 
User Manual  

2.2.1 EEL block header  
The block header is a small area on the top of each flash block belonging to 
the EEL pool. It contains all information necessary for block management 
during EEL operation. The structure of the block header is the same in all 
blocks of the EEL-pool. 
 
 
EEL block header structure 

P_flag
A_flag

EC(H,M,L)
CS(RWP)RWP(prev)

Block 
status 
flags

„this“ 
header 

data

X_flag
I_flag

CS(EC)
00H

XEC(H,M,L)
FIP flag

CS(XEC)

0 Byte1 2 3

 
 

2.2.1.1 EEL block status flags  

Each flag within the block header consists of one flash word (4 bytes).  
  
There are two types of block status flags: 
- “constructive status flag” used in processes like “activation” and “preparation” 
- “destructive status flags” used in processes like “invalidation” and “exclusion” 
 
When reading the exact pattern 0x55555555 a “constructive” flag is TRUE 
When reading a pattern other than 0xFFFFFFFF a “destructive” flag is TRUE 
 
When setting “constructive” flag:  0x55555555 is written into the flag-word. 
When setting “destructive” flag:    0x00000000 is written into the flag-word. 

 
P_flag: = 0x55555555 marks a “prepared” block that waits for data. 
A_flag: = 0x55555555 marks an “active” block that may contain data 
I_flag: ≠ 0xFFFFFFFF marks an “invalid” block (without valid data) 
X_flag: ≠ 0xFFFFFFFF marks a block “excluded” from block management. 
 

 Figure 2-4 



EEPROM Emulation Library 

R01US0128ED0110     16 
User Manual  

2.2.1.2 EEL block erase counter  

The block header word four contains the block erase counter. Its consistency 
is protected by an 8 bit checksum which is used by the EEL internally only.  
 

2.2.1.3 EEL previous reference write pointer 

Its points the last RWP position of the previous block within the EEL pool.  
It is used by the EEL internally only. 
 

2.2.1.4 EEL exclusion erase counter 

Stores the EC value at exclusion time.  
It is used by the EEL internally only. 
 

2.2.1.5 EEL Format In Progress (FIP) indicator 

FIP<>0xFFFFFFFF indicates an FORMAT command discontinued by RESET. 
It marks the completely EEL pool as inconsistent and enforces the user to re-
start the FORMAT command.  
 

2.2.2 Reference area 
The “reference area” is located in each EEL block directly behind the block 
header. It consists of so called reference entries that are used for instance 
identification, localization and for safeguarding during the read/write process. 
When writing new data into the EEL a corresponding reference entry is 
stacked in the reference area. 
 
The reference area is growing upstairs from lower widx to higher. 
 

2.2.3 Data area 
The “data area” consists of data-records and is located on the bottom of each 
EEL pool block. Each data record within the data area consists of pure data 
information without any data- frame. The data-frame information exists 
completely in the corresponding reference-entry in the reference-area. 
 
When writing new data into the EEL the data area is growing downstairs from 
higher widx to lower. 

 
 



EEPROM Emulation Library 

R01US0128ED0110     17 
User Manual  

2.3 EEL Instance structure 
EEL instance is a complete data-set consisting of three components: 
- 32-bit data reference pointer DRP in the reference area 
- the data in the data area 
- 32-bit checksum in reference area (directly behind the corresponding DRP) 
 
Whenever the application writes a new value into the EEL pool a new EEL 
instance is generated. 

 

2.3.1 Data Reference Pointer, DRP 
The main purpose of the DRP is referencing the data belonging to the given 
instance inside the data-area. The consistency of the DRP is safeguarded by 
an own 8-bit checksum. A DRP is always written to an even flash word index 
inside the reference area. 
 
The structure of each DRP consists of: 
ID:  8-bit EEL-variable identifier registered in the EEL descriptor. 
widx:  16-bit virtual index inside EEL pool pointing to the data  
RCS:  Reference Check Sum, 8-bit checksum across the DRP. 

 
 
Structure of the DRP 

RCS ID
DCS(data)

DRP
DCS

Referen-
ce entry

widx(L) widx(H)

0 Byte no1 2 3

 
 
 

2.3.2 Instance data 
The pure instance data without any frame-information stored directly in the 
data area at the bottom of the corresponding block. 
 
 
Example of 6-byte data entry 

0xFF
6 byte of data

Data 3Data 2
Data 5Data 4

Data 0 Data 1
0xFF

0 Byte no1 2 3

 
 
 
Note: 
Not used bytes remain 0xFF. 

Figure 2-5 

Figure 2-6 



EEPROM Emulation Library 

R01US0128ED0110     18 
User Manual  

2.3.3 Data Checksum, DCS 
The DCS is written behind the DRP in the reference area behind the 
corresponding DRP after the instance data were written correctly. It ensures 
the plausibility of the data and the corresponding DRP. 
 
 
Data Checksum of an instance 

widx(data) RCS ID
DCS(data)

DRP
DCS

Referen-
ce entry

 
 

 
 

2.4 Block management 
 
This chapter describes how the block management organizes the blocks inside 
the EEL pool during its operation. 

 

2.4.1 EEL block circulation 
The block management is leaned on the concept of single linked ring. It is 
build based on the unique virtual block numbers inside the EEL pool. It is an 
easy scheme for “creation” and “consumption” of writeable space inside the 
EEL-pool. As already mentioned the whole EEL pool is divided into three 
regions organized in a fixed order.  
 
Active region:  always in front of the invalid region 
Prepared region:  always in front of the active region 
Invalid region :  always in front of the prepared region 
 
From the operation point of view the block management works like a caterpillar. 
The following figure should illustrate the idea behind the block management: 

Figure 2-7 



EEPROM Emulation Library 

R01US0128ED0110     19 
User Manual  

 
Circulatory block management inside the EEL pool 

prepared

active

prepared

invalid

Under 
erasing

active

invalid

E
E

L 
po

ol

1'st 
physical 

block

last 
physical 

block

Physical Flash

active active R

prepared

Under 
erasinginvalid

invalid

act.

DWP
active region prepared region

invalid region

prepared

Logical ring
RWP

D prepared
R act. D

prepared

 
 

2.4.2 EEL block status 
During the operation of the EEPROM driver the participating flash blocks 
change their internal status cyclically. To mark and to recognize the status 
of each block 32-bit block-status flags are used. The block status-flags are 
read and analyzed after power-on RESET to reconstruct the current EEL 
pool configuration. The block management based on that information is 
fundamental for correct operation of the EEL driver. 

 

2.4.3 Security aspects, block exclusion 
When erasing a flash block in the “preparation” process an erase-error 
could happen theoretically. The probability is very low but if happens, it is 
not allowed to write data into such a block. To fulfill this condition the 
“exclusion” mechanism was added to the block management 
 
Basically during block preparation write-error can be generated when 
writing block header information. In that case the effected block will be 
excluded from block management too. 
 
An asynchronous device RESET during operation of the EEL may cause 
various problems like inconsistent pool or inconsistent data. The 
STARTUP command detects such problems and performs fitting 
countermeasure to recover pool and data consistency 

Figure 2-8 



EEPROM Emulation Library 

R01US0128ED0110     20 
User Manual  

 
As already mentioned, there are two different types of block status flags: 
 
1)  Constructive block status flags are the P-Flag and the A-Flag. 
     Coding: writing pattern 0x55555555 into the flag flash-word. 
     Decoding:  TRUE when read pattern is 0x55555555 otherwise FALSE. 
 
2)  Destructive block status flags are the I-Flag and the X-Flag. 
     Coding: writing pattern 0x00000000 into the flag flash-word. 
     Decoding:  FALSE when pattern inside is 0xFFFFFFFF otherwise TRUE. 
 
Analyzing the block header flags the EEL is in the position to recognize the 
status of each block of the EEL pool. Following scenarios are possible: 
 
 
Block status code 

 
  
Note: 
Invalid block status can be produced by RESET during block activation (red 
marked here) is repaired in the STARTUP command sequence. 

 

2.5 Instance management 
Whenever a new instance of an EEL variable is written into the EEL-pool, the 
following sequence is executed by the EEL-driver internally: 
 
Step 1) 
Data-Reference-Pointer (DRP) is calculated and written into the flash word 
referenced by RWP. After that the space for instance data is allocated in the 
data area of the active region.  
 
Step 2) 
Write the complete instance data word by word into the reserved in step 1) 
 
Step 3) 
Calculate and write the checksum DCS into the word next to DRP from step 1) 

Figure 2-9 



EEPROM Emulation Library 

R01US0128ED0110     21 
User Manual  

2.5.1 Write instance sequence 
Whenever a new instance of an EEL variable is written into the EEPROM the 
following sequence is executed by the EEL-driver: 
 
Writing a new instance of an EEPROM variable consists of three successive 
phases. 
 
Write instance sequence 

 

Write DRP Write data Write DCS
1 step 2 step 3 step

 

 
The structure and the handling of the instance references should manage 
possible destructive effects caused by asynchronous power-on RESET as well 
as by potential flash problems. 
 

2.5.2 Security aspects, checksums 
When writing a new value of EEPROM variable into EEL the reference and the 
data are written flash-word wise into the EEL-pool. During this process an 
asynchronous RESET may happen at any time and produce rubbish data. To 
ensure a reliable detection of any data inconsistency within a written instance 
two stage checksum protection has been implemented. The first checksum (8 
bit) ensures the consistency of the DRP written in phase 1). This checksum is 
a part of the 32-bit DRP. The second checksum is calculated and written in 
phase 3. It is a 32-bit checksum calculated across all data written in phase 1) 
and 2) (over DRP and all data words). 
 
The consistency of the instance is checked in the STARTUP and in the READ 
command. 
 
- when STARTUP command detects checksum error during instance 
searching (RAM reference fill process) the corresponding instance will be 
ignored. 
 
- when READ command detects a checksum error the instance search will be 
restarted (same criteria as for STARTUP), the RAM reference table refilled 
and the newest instance with correct checksum will be read finally. 
 

Figure 2-10 



EEPROM Emulation Library 

R01US0128ED0110     22 
User Manual  

2.6 Processes 
All things happening in the EEL (data access, CPU processing, administrative 
activities….) take time. Sequences of actions, measures and countermeasures 
to achieve any targeted effect/result are called processes here. 
 
There are two groups of EEL processes: 
 
Foreground process: 
Initiated by the user, when requesting commands at the EEL. 
 
Background process: 
Initiated by the EEL themselves, when it recognizes the necessity internally. 
 
In exceptional cases foreground processes can initiate background processes. 
 
From block management point of view each block is sorted into one of the 
three regions within the EEL pool (active, prepared, invalid) or it can be 
excluded. A block can change from one region to another one when being 
treated by dedicated “processes”.  
 
Also the instance management influences the position of the instances within 
the EEL pool using background and/or foreground processes. 
 
Overview of the main processes inside the EEL driver 

 

prepared

1k

P
A
I
X

EC
RWPprev

P

References

A
I
X

EC
RWPprev

P
A
I
X

EC
RWPprev

P
A
I
X

EC
RWPprev

P

1k

A
I
X

EC
RWPprev

P

1k

A
I
X

EC

P

1k

A
I
X

EC

preparedinvalid invalid active tail active active active head

RWP

References

Data

DWP

RWP=DWP

1k

Data

References

RWP=DWP

1k

Data

References

RWP=DWP

1k

Data

References

RWP=DWP

1k

Data

prepare
invalidate

read process

activate

P
A
I
X

EC
RWPprev

write process

exclude

supervision process

Expansion process

activation process
invalidation process

refresh/copy process

 
 

Figure 2-11 



EEPROM Emulation Library 

R01US0128ED0110     23 
User Manual  

2.7 Space treatment 
Space within the EEL pool is the sum of all flash words prepared for the 
accommodation of data and references (exclusive block header area).  
 
Internally the EEL driver differentiates between pool-space and active-space.  
 
Pool-space is the space available in all prepared blocks plus the remaining 
space available in the active heading block. 
 
Active-space is the space available in active heading block only. 
 
Both can be effected by background and foreground processes as follows: 
 
Pool-space is produced in the background PREPARATION process only.  
 
Pool-space is consumed by foreground WRITE command or background 
REFRESH process. 
 
Active-space is consumed by foreground WRITE command or background 
REFRESH process. 
 
Active-space is enlarged by foreground or background ACTIVATION process. 
 
The user does not need to take care for the space management during EEL 
operation. Depending on the configuration and used operation mode the EEL 
takes care internally for adequate space conditions. 
 
 



EEPROM Emulation Library 

R01US0128ED0110     24 
User Manual  

2.8 Request–Response oriented dialog  
Like the FAL, the EEL is also using the Request-Response architecture to 
place and process the commands. This means the “requester” (normally users 
Application) has to fill-up a kind of “request form sheet” (the request variable) 
and pass it to the EEL using the reference (pointer) of the request variable for 
further processing. The EEL is interpreting the request variable, check its 
plausibility and process it for the time slice defined in the request variable. 
After time-out period or after finishing the execution with positive/negative 
command execution the EEL is updating the status code in the request 
variable. 
 
The biggest advantage of the request-response architecture is the constant 
and narrow parameter interface. It allows constant parameter passing 
independent used compiler and its memory models. 
Another advantage is the possibility to isolate the dialog in multi-tasking 
systems. 
 
 
Schematic usage of the request variable 

 

RAM address

identifier

timeout

status

EEL

Requester

command

 

 

Figure 2-12 



EEPROM Emulation Library 

R01US0128ED0110     25 
User Manual  

2.9 Handler oriented command execution 
To satisfy operation in concurrent or distributed systems the command 
execution is divided generally into two phases:  
 
1) Initiation of command execution using EEL_Execute(&my_eel_request)  
2) processing of the command that is performed piece-wise (state-wise or 
time-slice-wise depending on the used execution mode) 
 
The main advantage of such architecture is that maintenance and command 
processing can be done centrally on one place in the target system (normally 
the idle-loop or the scheduler loop). 
 
The other advantage is that commands can be requested in several places in 
the system. Using separate request variables the EEL feedback can be 
directed correctly in spite of the fact, that the processing is done centrally. 
 
The EEL is using the function EEL_Execute(&my_eel_request) for command 
initiation and EEL_Handler(my_eel_timeslice) for command processing.  
 



EEPROM Emulation Library 

R01US0128ED0110     26 
User Manual  

2.10 Execution modes of the EEL 
One claim of this EEPROM driver is to satisfy all the various systems and SW 
architectures exit in the market. Some target systems does not care about 
execution time and use EEL-commands like function call. Some other systems 
use complex operating systems to manage task execution quasi 
simultaneously (time sharing). Another use even driven asynchronous 
mechanisms only. 
 
To fulfill the above requirements, the EEL offers several operation modes that 
can deal with the parameter “time” in different way. 
 
There are two places where the “time” parameter can be treated : 
 
a) in the request-variable passed by the EEL_Execute(&my_eel_request) 
 
    This timeout value determines the operation mode of the EEL command. 
 
            my_eel_request.timeout_u08 = 0x00   -> execution in polling mode 
0x00 < my_eel_request.timeout_u08 < 0xFF   -> execution in timeout mode 
            my_eel_request.timeout_u08 = 0xFF   -> execution in enforced mode 
 
b) by the timeout parameter of the EEL_Handler(my_eel_timeslice_u08) 
 
            my_eel_timeslice_u08 = 0x00   -> execute the actual EEL state only 
            my_eel_timeslice_u08 > 0x00   -> execute the time-slice EEL 
 
Overview of time parameter meaning 

 

 
 

Depending on the target system architecture one of the operation modes can 
be used for command execution and background maintenance purpose. 
 
Note: 
The timeout used in the request variable is completely independent on the 
timeout used in the EEL_Handler(t) mixing of the operation modes in one 
target system is possible. 

Table 2-1 



EEPROM Emulation Library 

R01US0128ED0110     27 
User Manual  

 
Overview over the EEL operation modes 

 

command 
execution

EEL_Execute(request)

status

ENFORCED mode

FDL_Execute

FDL_Handler

FDL_Handler

FDL_Execute

FDL_Handler

FDL_Handler

FDLEEL

ISR

ISR

User

request.timeout=0xFF

TIMEOUT mode

command 
execution

EEL_Execute(request)

busy

command 
execution

EEL_Handler(timeout)

OK

maintenance

EEL_Handler(timeout)

idle

Timeout
Counter

FDL_Execute

FDL_Handler

FDL_Handler

FDL_Execute

FDL_Handler

FDL_Handler

FDLEEL

ISR

ISR

ISR

User

request.timeout=N

POLLING mode

one state

EEL_Execute(request)

busy

FDL_Execute

FDL_Handler

FDL_Handler

SEQ

one state

EEL_Handler(0)

busy

one state

EEL_Handler(0)

busy

one state

EEL_Handler(0)

busy

one state

EEL_Handler(0)

busy

one state

EEL_Handler(0)

OK

FDLEEL

ISR

ISR

ISR

User

request.timeout=0

 
 
 

2.10.1 Enforced execution mode 
This mode can be used in simple systems in that EEPROM access have to be 
processed like a simple function CALL. The requested command is directly 
and completely executed with positive or negative result. The handling is very 
easy, the background process that takes care for maintenance is not visible to 
the user. 
 
Command execution in enforced mode is determined by timeout =0xFF in the 
request variable. When using enforced mode for command execution, the 
target system can use the EEL_Handler(t) for background maintenance (space 
generation) but it is not mandatory. 
 
Schematic illustration of the enforced operation mode 

status

 rq.address =  my_addr;
 rq.timeout =  0xFF;
 rq.identifier =  „a“;
 rq.command =  write;

EEL_Execute(&rq)

State 0TO=sto
pped

State 1

State 2

status=OK

User application EEL

FDL

FAL command

check

Status
command 
completed

 

Figure 2-13 

Figure 2-14 



EEPROM Emulation Library 

R01US0128ED0110     28 
User Manual  

2.10.1.1   Enforced operation mode without usage of EEL_Handler(t) 

The available space (inside the active and prepared regions) for 
accommodation of variable instances is limited. When executing commands in 
enforced mode without EEL_Handler(t) the available space decreases 
continuously during writing as long as the space becomes consumed. In that 
case new space must be generated internally inside the EEL before starting 
the command execution. This means that the execution time of “space 
consuming” commands (the WRITE command) cannot be constant. On the 
other hand the user does not need to take care for background maintenance. 
When pure enforced mode is used in the target system the 
EEL_TimeOut_CountDown() function as well the EEL_Handler(t) are 
mandatory. 
 
Timing example of enforced command execution without EEL_Handler(t) 

 

enforcing
write

user

enforcing
write

user user

background space expansion

tuser

enforcing
write

enforcing
write

no space for the 
instance detected

application

EEL foreground

EEL background

EEL_Execute(&rq)

EEL_Execute(&rq)

EEL_Execute(&rq)

EEL_Execute(&rq)

 

 
Example conditions: 
rq.address_pu08  - no meaning for the timing 
rq.identifier_u08  - always same identifier used 
rq.timeout_u08  - always 0xFF used 
rq.command_enu - always EEL_CMD_WRITE command used 
 

2.10.1.2   Enforced mode with background maintenance 

To enjoy the simplicity of the enforced execution mode without the 
disadvantage of not pre-determinable execution time the application can use 
EEL_Handler(t) to prepare space in advance in convenient phases. 
 
Calling EEL_Handler(t) cyclically at idle time (no EEL command under 
execution) the application activates the EEL background supervision and 
maintenance process. The background supervision checks if the momentary 
EEL-pool status does still correspond with the EEL-pool configuration. If not 
enough space detected by the background supervision, the background 
maintenance starts space production process autonomous. This is the 
instrument the application can use to produce enough space in advance and 
to guaranty fast and constant write execution time at any time. 
 
Note: 
The foreground writing and background maintenance are dynamical processes 
that influence each other. To ensure constant execution time of the WRITE 
command the application must provide enough CPU time to the background 
process. The relationship between “production of space” in the background 
and “consumption of space” by foreground writing must match. 

Figure 2-15 



EEPROM Emulation Library 

R01US0128ED0110     29 
User Manual  

 
The degree of “space production” is only determined by the CPU time offered 
to the background process via EEL_Handler(t). 
 
The degree of “space consumption” is determined by the frequency and size of 
variables written into the EEL-pool, as well by the space needed for refreshing 
variables in background maintenance. 
 
Timing example of enforced command execution using EEL_Handler(t) 

 

enforcing
write

tuserapplication

EEL foreground

EEL background BG

enforcing
write

userH

EEL_Handler(t)

EEL_Execute(&rq) EEL_Execute(&rq)

BG

enforcing
write

userH

EEL_Handler(t)

EEL_Execute(&rq)

BG

enforcing
write

userH

EEL_Handler(t)

 

 
Example conditions: 
rq.address_pu08  - no meaning for the timing 
rq.identifier_u08  - always same identifier used 
rq.timeout_u08  - always 0xFF used 
rq.command_enu - always EEL_CMD_WRITE command used 
time   - used by EEL_Handler(t) for time-slice definition  

 
 
 

Figure 2-16 



EEPROM Emulation Library 

R01US0128ED0110     30 
User Manual  

2.10.2 Timeout execution mode 
In the timeout execution mode the requester can determine the CPU time for 
the command execution in advance. The resolution of the time period is 
defined freely by the user when choosing the counting interrupt source. The 
timeout period is defined in counting ticks. If the timeout period is longer than 
the real command execution time, the command is executed in the same wise 
as in enforced mode. If the timeout period is shorter than the command 
execution time the EEL_Execute(&my_eel_request) function will return with 
request-status “busy”. The remaining command will be continued time-slice-
wise by the EEL_Handler(t). The timeout mode is intended to be used in 
synchronous time-slice based systems where each task allocates a fix interval 
of CPU time for its activity. 
 
Schematic illustration of the timeout operation mode  

 

 rq.address =  my_addr;
 rq.timeout =  0x20;
 rq.identifier =  „a“;
 rq.command =  write;

EEL_Execute(&rq)

State 0TO sta
rt

State 1

status = busy

EEL_Handler(0x20)

State 2

TO=0
AND
busy

TO start

status = OK

EEL_Handler(0x20) Idle state

TO start

User application
EEL

FDL

FAL command

status

State 2 cont.

OK

TO decrement

status

User_Timer_ISR:
EEL_TimeOut_CountDown()

TO
 IN

T
check

check

command not 
completed

command 
completed

background 
supervision and 

maintenance

status

 
 
 
 

Figure 2-17 



EEPROM Emulation Library 

R01US0128ED0110     31 
User Manual  

2.10.2.1   Command execution finished before timeout 

When the timeout period specified in the request variable is longer than the 
real time needed by the EEL for command execution, the 
EEL_Execute(&my_eel_request) is left immediately after command completion. 
The EEL does not consume the remaining time during command execution. 
The reason is, that application normally writes variables asynchronously and 
wants to write as fast as possible. 
 
Example conditions: 
rq.address_pu08  - no meaning for the timing 
rq.identifier_u08  - small EEL variable (i.e.  5 bytes) 
rq.timeout_u08  - long timeout (16 timer ticks) 
rq.command_enu - always EEL_CMD_WRITE command used 
timeslice   - 0x02 used here by EEL_Handler(t) for time-slice  
 
 
Command execution completed before timeout  

 

executing
write

tuserapplication

EEL foreground

EEL background BG

useruser

EEL_Handler(2)

EEL_Execute(&rq)

BG

user

EEL_Handler(2)

user

EEL_Handler(2)

timer tick

BG

2 ticks time-slice
for background

2 ticks time-slice
for background16 ticks time-slice but

only 4 were used for 
command execution

command 
finished 
before
 timeout

2 ticks time-slice
for background

 
 
 
Note: 
Black arrows symbolizes non-counting timer ticks (timeout counter is counted 
down to 0x00). 
 

 

Figure 2-18 



EEPROM Emulation Library 

R01US0128ED0110     32 
User Manual  

2.10.2.2   Timeout before command execution finished  

When the timeout period specified in the request variable is shorter than the 
real time needed by the EEL for command execution, the 
EEL_Execute(&my_eel_request) is suspended with status=BUSY. The 
uncompleted command must be continued by using the EEL_Handler(t) 
function. When the remaining command is completed before time-slice is 
passed, the EEL_Handler(t) will be terminated immediately. The status inside 
the request variable changes from busy to finished. EEL does not consume 
the remaining time of the time-slice when command is finished. The reason is, 
that application normally writes asynchronously and want to write as fast as 
possible. 
 
Example conditions: 
rq.address_pu08  - no meaning for the timing 
rq.identifier_u08  - larger EEL variable (i.e.  125 bytes) 
rq.timeout_u08  - execution timeout (5 timer ticks) 
rq.command_enu - always EEL_CMD_WRITE command used 
timeslice   - 6 ticks, used here by EEL_Handler(t) for time-slice  
 
Command execution completed in EEL_Handler(t) 
 

executing
write

userapplication

EEL foreground

EEL background

user

EEL_Handler(6)

EEL_Execute(&rq)

BG

user

EEL_Handler(6)

user

EEL_Handler(6)

timer tick

BG

only 4  ticks of the 6 tick time-slice 
used for command completion

6 ticks time-slice
for background5 ticks time-slice 

used for partially 
command execution

command 
suspended by 
timeout

6 ticks time-slice
for background

continue
write

user

 
 
 
Note: 
The 1’st EEL_Handler(t) call continues the command execution. If the 
command is finished in that time-slice, the EEL_Handler(t) will return 
immediately before timeout is elapsed. 
 
The next EEL_Handler(t) calls are managing the BG processes according to 
the internal status of the EEL-pool: 
 
- when no maintenance *) is necessary, supervision is running for full 6 ticks 
- when any background process (REFRESH/PREPARATION) was interrupted  
  by a write command, it will be continued in EEL_Handler(t) after write  
  completion 
 
*) maintenance means refresh or space expansion  
 

Figure 2-19 



EEPROM Emulation Library 

R01US0128ED0110     33 
User Manual  

2.10.3 Polling execution mode 
In the polling execution mode the function EEL_Execute(&my_eel_request) is 
just initiating the command execution and returns with the request-status 
“busy” after execution of the first internal state. The further command 
execution is performed in the EEL_Handler(t) that can operate with its own 
timeout period. If calling of EEL_Handler(0), the command execution or 
background maintenance will be executed state by state. In this operation 
mode the interaction frequency between the application and the EEL is the 
highest (fastest reaction). It is intended to be used in asynchronous systems 
where blocking of the CPU by any process must be minimized. 
 
Note: 
When pure polling mode is used in the system EEL_TimeOut_CountDown() 
function becomes mandatory. 
 
Schematic illustration of the polling operation mode 

 rq.address =  my_addr;
 rq.timeout =  0x00;
 rq.identifier =  „a“;
 rq.command =  write;

EEL_Execute(&rq) State 0

EEL_Handler(0x00)

status=busy

State 1status=busy

EEL_Handler(0x00) State 2status=busy

EEL_Handler(0x00) Idle statestatus = OK

User application

EEL

FDL

FDL command

check

status

status

 
 
 
 

Figure 2-20 



EEPROM Emulation Library 

R01US0128ED0110     34 
User Manual  

2.10.3.1   Full polling execution mode 

The timeout parameter in the request variable as well the handler time-slice 
value are 0x00. The EEL commands, the supervision and maintenance 
process are executed very smooth, state by state. 
 
Example conditions: 
rq.address_pu08  - no meaning for the timing 
rq.identifier_u08  - EEL variable 
rq.timeout_u08  - 0x00, polling mode 
rq.command_enu - always EEL_CMD_WRITE command used 
time-slice  - 0x00, no time-slice for the handler 
 
Timing example of pure polling operation 

application

EEL foreground

EEL background

EEL_Handler(0)

EEL_Execute(&rq)

maintenance 
starts refresh

command is executed 
state by state

threshold condition 
detected by supervision

supervision 
runnung maintenance 

starts preparation
supervision

EEL_Handler(0)

t

 
 

2.10.3.2   Mixed execution mode (timeout execution and polling maintenance) 

The timeout parameter in the request variable as well the handler time-slice 
value are 0x00. The EEL commands, the supervision and maintenance 
process are executed very smooth, state by state. 
 
Example conditions: 
rq.address_pu08  - no meaning for the timing 
rq.identifier_u08  - EEL variable 
rq.timeout_u08  - 0x04, timeout execution 
rq.command_enu - always EEL_CMD_WRITE command used 
time-slice  - 0x00, no time-slice for the handler (maintenance) 

Figure 2-21 



EEPROM Emulation Library 

R01US0128ED0110     35 
User Manual  

 
Timing in mixed operation mode (timeout and polling) 

t

executing
write

application

EEL foreground

EEL background

timer tick

5 ticks time-slice 
used for partially 
command execution

EEL_Handler(0)

EEL_Execute(&rq)

supervision 
runnung

EEL_Handler(0)

command 
completion 
in polling mode maintenance 

starts refresh 
and prepare

supervision 
running again

 

Figure 2-22 



EEPROM Emulation Library 

R01US0128ED0110     36 
User Manual  

2.11 Supported command spectrum 
There are two groups of commands supported by the EEL: 
a) pool related commands influencing the whole pool status and structure. 
b) variable related commands that control the access to the EEL data 
 
Command groups of the EEL 

 
 
Note: 
Refer to chapter “Operation” for command execution details 
 

Table 2-2 



EEPROM Emulation Library 

R01US0128ED0110     37 
User Manual  

2.12 EEL execution planes 
The EEL operates in so called two planes: background plane and foreground 
plane that dedicated to different purposes. The background plane is intended 
to perform maintenance and supervision work. The foreground plane is used 
exclusively to perform asynchronous commands requested by the user. Some 
of the commands require processes already implemented in the background 
plane. In such cases the foreground is able to activate background processes 
by swapping the activity focus into the background to perform necessary 
maintenance measures. 

2.12.1 Foreground plane 
The foreground plane is receiving and executing user commands only. Any 
foreground command can always suspend the maintenance process running 
in the background. On the other hand a foreground command has to be 
finished before next command can be executed. 
 
Variable oriented commands (read and write) are executed directly and 
completely in the foreground and are normally isolated from the maintenance 
running in background. Only when space-alert or checksum-error happens in 
the foreground the process focus is swapped temporary to the background. 
  
Pool oriented commands (startup, shutdown, cleanup and format) are just 
passing the command-request to the background and waits for its completion. 
This allows re-usage of common FSM’s used for background maintenance and 
foreground command execution. 
 
In exceptional cases it can happen that due to very heavy write traffic the 
maintenance process running in background gets no chance to prepare 
enough space in time. In such a case the foreground write process can 
request “space expansion” at the background process before being able to 
continue writing. For that purpose the activity focus is swapped. 
 
Swap mechanism scheme 

Background Foreground

Inspection
(cyclic)

User
commands

(asynchronous)
executemaintain

SwapBack()

Swap() no space !!!

continue

expansion

 

 

Figure 2-23 



EEPROM Emulation Library 

R01US0128ED0110     38 
User Manual  

This approach allows collision-free operation even the user do not use the 
EEL_Handler(t) and all commands are executed in “enforced” mode. It 
simplifies the handling at user side without loosing any flexibility in the 
operability. Swapping of execution focus plane does not change the command 
handling at user side. It is not visible at user side, just the command execution 
time increases for the time needed for the background processing. 
 
As mentioned above, pool-oriented commands use the background processes 
for its execution. That means that all error-codes generated in the background 
must be transferred to the foreground (request variable). There could be errors 
like FAL_ERR_PROTECTION that never happens during normal operation. To 
simplify the error handling at user side unexpected error codes are 
transformed to one common error code EEL_ERR_INTERNAL. The original 
error code remains stored in the background and can be read by the function 
EEL_GetDriverStatus(&my_eel_driver_status). 
 

2.12.2 Background plane 
The background plane is dealing with background processes, normally 
executed when calling the function EEL_Handler(t) periodically. After EEL 
initialization the background process is passive (EEL-Handler does not have 
any effect and consumes, just few CPU cycles). After successful STARTUP 
the handler becomes active and starts the execution of the background 
process. There are several task the background process does manage, like: 
 
a) background execution of pool related commands initiated by the foreground 
plane 
 
b) background execution of exceptional handling initiated by the foreground: 
 
    - when less than 2 prepared blocks detected 
    - when checksum error during READ command 
 
c) supervision of the refresh threshold and size of the invalid region 
 
d) maintenance to eliminate problems detected by c)  
 
 
 



EEPROM Emulation Library 

R01US0128ED0110     39 
User Manual  

Chapter 3 Application Programming Interface 

The following chapters describe formally the user interface of the EEPROM 
Emulation Library. 
 

3.1 Data types 
This chapter describes all data definitions used and offered by the EEL. 
 

3.1.1 Library specific simple type definitions 
 
Simple numerical type used by the library: 

typedef unsigned char                       eel_u08; 
typedef unsigned int                        eel_u16; 
typedef unsigned long int                   eel_u32; 

 
Note: types are defined in eel_types.h 
 

3.1.2 Enumeration type “eel_command_t” 
 
This type defines all codes of available commands: 

/* EEL command set  */ 
typedef enum  { 
                EEL_CMD_UNDEFINED         = (0x00), 
                EEL_CMD_STARTUP           = (0x00 | 0x01), 
                EEL_CMD_WRITE             = (0x00 | 0x02), 
                EEL_CMD_READ              = (0x00 | 0x03), 
                EEL_CMD_CLEANUP           = (0x00 | 0x04), 
                EEL_CMD_FORMAT            = (0x00 | 0x05), 
                EEL_CMD_SHUTDOWN          = (0x00 | 0x06) 
              } eel_command_t; 

 
Note: type is defined in eel_types.h 
 
Code value description: 
EEL_CMD_UNDEFINED   - undefined command (initial value) 
EEL_CMD_STARTUP       - plausibility check of the EEL data and driver 
EEL_CMD_WRITE             - creates new instance of specified EEL variable 
EEL_CMD_READ              - reads last instance of the specified EEL variable 
EEL_CMD_CLEANUP       - refresh of all variables (minimize active region) 
EEL_CMD_FORMAT         - format the EEL pool, all instances (data) are lost 
EEL_CMD_SHUTDOWN   - deactivates the EEL 

 
 



EEPROM Emulation Library 

R01US0128ED0110     40 
User Manual  

 

3.1.3 Enumeration type “eel_operation_status_t” 
 
This type defines all codes of available driver operation status: 

/* type of the EEL driver operation status */ 
typedef enum  { 
                EEL_OPERATION_PASSIVE     = (0x00), 
                EEL_OPERATION_IDLE        = (0x30 | 0x01), 
                EEL_OPERATION_BUSY        = (0x30 | 0x02) 
              } eel_operation_status_t; 

 
Note: type is defined in eel_types.h 
 
Code value description: 
EEL_OPERATION_PASSIVE  - when library is not yet started 
EEL_OPERATION_IDLE         - only background supervision process is active 
EEL_OPERATION_BUSY       - foreground or background process is active 

 
 

3.1.4 Enumeration type “eel_access_status_t” 
 
This type defines all codes of available driver access status: 

/* type of the access status */ 
typedef enum  { 
                EEL_ACCESS_LOCKED         = (0x00), 
                EEL_ACCESS_UNLOCKED       = (0x40 | 0x01) 
              } eel_access_status_t; 

 
Note: type is defined in eel_types.h 
 
Code value description: 
EEL_ACCESS_LOCKED          - neither read nor write access possible 
EEL_ACCESS_UNLOCKED        - full access to the EEL is possible 

 
 



EEPROM Emulation Library 

R01US0128ED0110     41 
User Manual  

3.1.5 Enumeration type “eel_status_t” 
 
This type defines all codes of available request status and errors: 

/* EEL status set  */ 
typedef enum  { 
                EEL_OK                    = (0x00), 
                EEL_BUSY                  = (0x00 | 0x01), 
                EEL_ERR_CONFIGURATION     = (0x80 | 0x02), 
                EEL_ERR_INITIALIZATION    = (0x80 | 0x03), 
                EEL_ERR_ACCESS_LOCKED     = (0x80 | 0x04), 
                EEL_ERR_COMMAND           = (0x80 | 0x05), 
                EEL_ERR_PARAMETER         = (0x80 | 0x06), 
                EEL_ERR_REJECTED          = (0x80 | 0x07), 
                EEL_ERR_NO_INSTANCE       = (0x80 | 0x08), 
                EEL_ERR_POOL_FULL         = (0x80 | 0x09), 
                EEL_ERR_POOL_INCONSISTENT = (0x80 | 0x0A), 
                EEL_ERR_POOL_EXHAUSTED    = (0x80 | 0x0B), 
                EEL_ERR_INTERNAL          = (0x80 | 0x0C) 
              } eel_status_t; 

 
Note: type is defined in eel_types.h 
 
Code value description: 
EEL_OK                           - no error occurred 
EEL_BUSY                         - request is under processing 
EEL_ERR_CONFIGURATION         - bad FAL or EEL configuration 
EEL_ERR_INITIALIZATION          - EEL_Init(), EEL_Open missed 
EEL_ERR_ACCESS_LOCKED        - STARTUP missing or fatal operation error 
EEL_ERR_COMMAND                 - wrong command code 
EEL_ERR_PARAMETER               - wrong parameter 
EEL_ERR_REJECTED                - another request under processing 
EEL_ERR_NO_INSTANCE             - no instance found (variable never written) 
EEL_ERR_POOL_FULL               - no space for writing data 
EEL_ERR_POOL_INCONSISTENT - no active block found within EEL-pool 
EEL_ERR_POOL_EXHAUSTED      - EEL pool to small for correct operation 
EEL_ERR_INTERNAL                - internal error 

 
 



EEPROM Emulation Library 

R01US0128ED0110     42 
User Manual  

3.1.6 Structured type “eel_request_t” 
 
This type defines structure of the EEL request variables: 

/* EEL request type */ 
typedef __near struct { 
                  __near eel_u08*       address_pu08; 
                  __near eel_u08        identifier_u08; 
                  __near eel_u08        timeout_u08; 
                  __near eel_command_t  command_enu; 
                  __near eel_status_t   status_enu; 
                } eel_request_t; 

 
Note: type is defined in eel_types.h 
 
Structure member description: 
address_pu08       - source/destination RAM-address 
identifier_u08      - variable identifier 
timeout_u08;        - number of timeout ticks for execution 
command_enu;       - command has to be processed 
status_enu;         - error code after command execution 

 
 

3.1.7 Structured type “eel_driver_status_t” 
 
This type defines structure of the EEL request variables: 

/* type of the internal EEL driver status */ 
typedef struct { 
                 eel_operation_status_t operationStatus_enu; 
                 eel_access_status_t    accessStatus_enu; 
                 eel_status_t           backgroundStatus_enu; 
               } eel_driver_status_t; 

 
Note: type defined in eel_types.h 
 
Structure member description: 
operationStatus_enu     - operation status of the foreground process 
accessStatus_enu        - access rights indicator 
backgroundStatus_enu    - error status of the background process 

 



EEPROM Emulation Library 

R01US0128ED0110     43 
User Manual  

3.2 Functions 
Due to the request (data) oriented interface of the EEL the functional interface 
is very narrow. Beside the initialization function and some administrative 
function the whole EEPROM access is concentrated to two functions only:  
EEL_Execute(&my_eel_request) and EEL_Handler(t). 
 
The interface functions create the functional software interface of the library. 
They are prototyped in the header file eel.h 

3.2.1 EEL_Init 
Initialization of all internal data and variables. 

 
C interface for CA78K0R compiler 

eel_status_t __far EEL_Init(void); 

 
C interface for IAR V1.xx compiler 

__far_func  eel_status_t EEL_Init(void); 

 
C interface for IAR V2.xx compiler 

__far_func  eel_status_t EEL_Init(void); 

 
Pre-condition 
The FDL must be initialized already 

 
Post-condition 
None 

 
Argument 
Argument Type Description 
none   

 
Return types/values 
Value Type Description 
EEL_OK eel_status_t when EEL pool and 

descriptor OK 

EEL_ERR_CONFIGURATION eel_status_t when EEL pool or EEL 
descriptor wrong 

 
Code example: 

eel_status_t    my_eel_status; 
 
my_eel_status = EEL_Init(); 
if(my_eel_status != EEL_OK) MyErrorHandler(); 

 



EEPROM Emulation Library 

R01US0128ED0110     44 
User Manual  

 

3.2.2 EEL_Open 
This function can be used by the application to open the access to the EEL 
pool.  

 
C interface for CA78K0R compiler 

void  __far EEL_Open(void); 

 
C interface for IAR V1.xx compiler 

__far_func  void  EEL_Open(void); 

 
C interface for IAR V2.xx compiler 

__far_func  void  EEL_Open(void); 

 
Pre-condition 
The FDL must be initialized already 
 
Post-condition 
none 

 
Argument 
Argument Type Description 
none   

 
Return types/values 
Value Type Description 
none   

 
 

Code example: 

EEL_Open(); 

 
 
 



EEPROM Emulation Library 

R01US0128ED0110     45 
User Manual  

3.2.3 EEL_Close 
This function can be used by the application to close the access to the EEL 
pool. 

 
C interface for CA78K0R compiler 

void  __far EEL_Close(void); 

 
C interface for IAR V1.xx compiler 

__far_func  void  EEL_Close(void); 

 
C interface for IAR V2.xx compiler 

__far_func  void  EEL_Close(void); 

 
Pre-condition 
None 
 
Post-condition 
In case that the USER part of the FDL-pool also “opened” too at that time, the 
Data Flash hardware remains active. To switch the Data Flash passive, both 
parts of the FAL-pool (EEL-part and USER-part) has to be closed. 

 
Argument 
Argument Type Description 
none   

 
Return types/values 
Value Type Description 
none   

 
Code example: 

EEL_Close(); 

 
 



EEPROM Emulation Library 

R01US0128ED0110     46 
User Manual  

3.2.4 EEL_Execute 
This is one of the main function of the EEL the application can use to initiate 
execution of any command. Depending on the defined operation mode (time 
out value) this function returns: 
 
a) immediately after execution of the first command state (timeout = 0) 
b) after execution of the defined time-slice (0<timeout<255) 
c) after execution of the complete command (timeout = 255) 

 
C interface for CA78K0R compiler 

void  __far  EEL_Execute(eel_request_t* request_pstr); 

 
C interface for IAR V1.xx compiler 

__far_func  void  EEL_Execute(__near eel_request_t __near*  
          request_pstr); 

 
C interface for IAR V2.xx compiler 

__far_func  void  EEL_Execute(eel_request_t __near *   
          request_pstr); 

 
Pre-condition 
EEL_Init() executed successfully 
EEL_Open() must be executed before. 

 
Post-condition 
none 

 
Argument 
Argument Type Description 

request_pstr eel_request_t* 

This argument defines user’s 
request should be processed 
by the EEL. It is passing the 
request variable to the driver 
that is used for bi-directional 
information exchange before 
and during command 
execution between EEL and 
the application. 

 



EEPROM Emulation Library 

R01US0128ED0110     47 
User Manual  

 
Return types/values 
Value Type Description 
none   

 
 

Code example: 

eel_request_t    my_eel_request_str; 
eel_status_t     my_eel_status; 
 
my_eel_status = EEL_Init(); 
EEL_Open(); 
 
/* enfoced mode  ------------------------------------------- */ 
my_eel_request_str.timeout_u08      = 0xFF; 
my_eel_request_str.command_enu      = EEL_CMD_STARTUP; 
 
EEL_Execute(&my_eel_request_str); 
if(my_eel_request_str.status_enu != EEL_OK) MyErrorHandler(); 
 
 
/* timeout mode ------------------------------------------- */ 
my_eel_request_str.timeout_u08      = 5; 
my_eel_request_str.command_enu      = EEL_CMD_FORMAT; 
 
 
do { 
     EEL_Execute(&my_eel_request_str); 
     EEL_Handler(0); 
}while(my_eel_request_str.status_enu == EEL_ERR_REJECTED); 
 
do { 
  EEL_Handler(5); 
while(my_eel_request_str.status_enu == EEL_ERR_BUSY); 
 
if(my_eel_request_str.status_enu != EEL_OK) MyErrorHandler(); 
 
/* STARTUP after FORMAT mandatory (enfoced mode)----------- */ 
my_eel_request_str.timeout_u08      = 0xFF; 
my_eel_request_str.command_enu      = EEL_CMD_STARTUP; 
 
EEL_Execute(&my_eel_request_str); 
if(my_eel_request_str.status_enu != EEL_OK) MyErrorHandler(); 
 
 
/* polling mode ------------------------------------------- */ 
my_eel_request_str.address_pu08     = (eel_u08)&A[0]; 
my_eel_request_str.identifier_u08   = 'A'; 
my_eel_request_str.timeout_u08      = 0; 
my_eel_request_str.command_enu      = EEL_CMD_WRITE; 
 
do { 
     EEL_Execute(&my_eel_request_str); 
     EEL_Handler(0); 
}while(my_eel_request_str.status_enu == EEL_ERR_REJECTED); 
 
do { 
  EEL_Handler(0); 
while(my_eel_request_str.status_enu == EEL_ERR_BUSY); 
 
if(my_eel_status != EEL_OK) MyErrorHandler(); 
 



EEPROM Emulation Library 

R01US0128ED0110     48 
User Manual  

 

3.2.5 EEL_Handler 
Depending on internal status of the EEL this function is managing different 
processes as follows: 
 
a)  
When no user command is processed in the foreground, the EEL_Handler(t) is 
executing the internal maintenance process. It is monitoring permanently the 
size of the “active region” to trigger the “refresh process” when exceeded the 
defined EEL_REFRESH_BLOCK_THRESHOLD. On the other side 
“preparation process” is triggered in the background whenever an invalid block 
is found in the EEL pool. Finally it checks if any requests from the foreground 
are pending in the meantime. 
 
b)  
If a foreground command is not finished in “timeout” or “polling” mode the 
EEL_Handler(t) takes care for continuation of the execution of not-finished 
commands in the next time-slices. 

 
C interface for CA78K0R compiler 

void  __far  EEL_Handler(eel_u08 timeout_u08);  

 
C interface for IAR V1.xx compiler 

__far_func  void  EEL_Handler(eel_u08 timeout_u08); 

 
C interface for IAR V2.xx compiler 

__far_func  void  EEL_Handler(eel_u08 timeout_u08); 

 
Pre-condition 
EEL initialized and opened 

 
Post-condition 
None 



EEPROM Emulation Library 

R01US0128ED0110     49 
User Manual  

 
Argument 
Argument Type Description 

timeout_u08 eel_u08 

Timeout value expressed in 
ticks. 
 
If timeout_u08=0 only one 
state of the internal FSM will 
be executed. 
 
If timeout_u08<>0 internal 
states are executed as long 
the timeout counter>0. 

 
Return types/values 
Value Type Description 
none   

 
 
 

Code example: 

/* The best place for EEL_Handler is the scheduler loop */ 
 
eel_u08   my_time_slice; 
 
my_time_slice = 0x00; 
do { 
      EEL_Handler(my_time_slice); 
      User_Task_A(); 
      User_Task_B(); 
      User_Task_C(); 
      User_Task_D(); 
} while(true); 

 



EEPROM Emulation Library 

R01US0128ED0110     50 
User Manual  

3.2.6 EEL_TimeOut_CountDown 
This function counts the internal 8-bit timeout counter down to zero. When 
executing a command, the program counter remains inside the 
EEL_Execute(&my_eel_request) or EEL_Handler(t) as long this counter>0. 
The EEL_TimeOut_CountDown() function can be called at any place in the 
application. The preferable place is any periodical interrupt service routine, for 
example the timer ISR of the operating system. When the internal 8-bit timer 
achieve the value 0x00 the EEL_TimeOut_CountDown() function stops the 
counting. The counter starts counting again when a new “timeout” request was 
placed via EEL_Execute(&my_eel_request) or when EEL_Handler(t) was 
called with t>0. 

 
C interface for CA78K0R compiler 

void      __far  EEL_TimeOut_CountDown(void); 

 
C interface for IAR V1.xx compiler 

__far_func  void  EEL_TimeOut_CountDown(void); 

 
C interface for IAR V2.xx compiler 

__far_func  void  EEL_TimeOut_CountDown(void); 

 
Pre-condition 
none 

 
Post-condition 
Timeout counter decremented in case it was running. 

 
Argument 
Argument Type Description 
none   

 
Return types/values 
Value Type Description 
none   

 
Code example: 

#pragma interrupt INTTM00 isr_OS_timer 
 
void isr_OS_timer(void) 
{ 
  EEL_TimeOut_CountDown(); 
} 

 



EEPROM Emulation Library 

R01US0128ED0110     51 
User Manual  

3.2.7 EEL_GetDriverStatus 
This function opens a way to check the internal status of the EEL driver in 
advance, before placing a request. 
 
 
C interface for CA78K0R compiler 

void  __far  EEL_GetDriverStatus(__near eel_driver_status_t* 
           driverStatus_pstr); 

 
C interface for IAR V1.xx compiler 

__far_func  void  EEL_GetDriverStatus(__near eel_driver_status_t 
         __near* driverStatus_pstr); 

 
C interface for IAR V2.xx compiler 

__far_func  void  EEL_GetDriverStatus(eel_driver_status_t  
        __near * driverStatus_pstr); 

 
Pre-condition 
EEL initialized and opened 

 
 

Post-condition 
none 



EEPROM Emulation Library 

R01US0128ED0110     52 
User Manual  

 
Argument 

Argument Type Description 

driverStatus_pstr eel_driver_status_t* 

This argument is a 
placeholder for capturing the 
internal status of the driver. It 
indicates the operation status, 
the access status and the 
status of the background 
process of the EEL. 

EEL_OPERATION
_PASSIVE 

driverStatus_pstr-> 
operationStatus_enu 

EEL not initialized or not 
opened or not started-up 
successfully. Operation and 
access to the data is not 
possible. 

EEL_OPERATION
_IDLE 

After successful STARTUP 
when neither foreground 
command nor background 
maintenance is active. 

EEL_OPERATION
_BUSY 

EEL is processing an user 
command or when main-
tenance process is active in 
background. Other commands 
are not possible at that time. 

EEL_ACCESS_LO
CKED 

driverStatus_pstr-> 
accessStatus_enu 

STARTUP not 
executed/successful or access 
to data-flash was locked by 
the EEL due to any internal 
problems. 

EEL_ACCESS_U
NLOCKED 

STARTUP executed 
successfully, read/write 
access to the EEL-pool is 
possible 

any driverStatus_pstr-> 
backgroundStatus_enu 

Any value of the eel_status_t 
related to background 
processes are possible. It will 
be actualized/overwritten by 
the background process only. 
The usage of it is quite limited. 

 
Return types/values 

Value Type Description 
none   

 
 



EEPROM Emulation Library 

R01US0128ED0110     53 
User Manual  

 
Code example: 

 
eel_request_t           my_eel_request_str; 
eel_status_t            my_eel_status_enu; 
eel_driver_status_t     my_eel_driver_status_str; 
 
my_eel_status_enu = EEL_Init(); 
EEL_Open(); 
 
/* execute STARTUP if not already done */ 
EEL_GetDriverStatus(&my_eel_driver_status_str); 
if(my_eel_driver_status_str.operationStatus_enu==EEL_OPERATION_P
ASSIVE) 
{ 
  my_eel_request_str.timeout_u08      = 0xFF; 
  my_eel_request_str.command_enu      = EEL_CMD_STARTUP; 
 
  EEL_Execute(&my_eel_request_str); 
  if(my_eel_request_str.status_enu != EEL_OK) MyErrorHandler(); 
} 
 
/* write data when access already possible */ 
EEL_GetDriverStatus(&my_eel_driver_status_str); 
if(my_eel_driver_status_str.accessStatus_enu==EEL_ACCESS_UNLOCKE
D) 
{ 
  my_eel_request_str.address_pu08     = (eel_u08)&A[0]; 
  my_eel_request_str.identifier_u08   = 'A'; 
  my_eel_request_str.timeout_u08      = 0; 
  my_eel_request_str.command_enu      = EEL_CMD_WRITE; 
 
  do { 
    EEL_Execute(&my_eel_request_str); 
    EEL_Handler(0); 
  }while(my_eel_request_str.status_enu==EEL_ERR_REJECTED); 
 
  do { 
    EEL_Handler(0); 
  while(my_eel_request_str.status_enu==EEL_ERR_BUSY); 
 
  if(my_eel_request_str.status_enu != EEL_OK) MyErrorHandler(); 
} 

 



EEPROM Emulation Library 

R01US0128ED0110     54 
User Manual  

3.2.8 EEL_GetSpace 
This function provides the number of flash words inside the active-head and 
the prepared region that can still absorb new references and data. 

 
C interface for CA78K0R compiler 

eel_status_t  __far  EEL_GetSpace(__near eel_u16* space_pu16); 

 
C interface for IAR V1.xx compiler 

__far_func  eel_status_t  EEL_GetSpace(__near eel_u16 __near* 
           space_pu16); 

 
C interface for IAR V2.xx compiler 

__far_func  eel_status_t  EEL_GetSpace(eel_u16 __near *  
           space_pu16); 

 
Pre-condition 
EEL must be initialized, opened and STARTUP must be executed before 
space can be calculated 

 
Post-condition 
none 

 
Argument 
Argument Type Description 
space_pu16 eel_u16* Address of the space 

information variable 
 
 

Return types/values 
Value Type Description 
EEL_OK eel_status_t When space value is 

correct 

EEL_ERR_INITIALIZATION eel_status_t When EEL_Init() or 
EEL_Open() is missing 

EEL_ERR_ACCESS_LOCKED eel_status_t when STARTUP 
command missing 

EEL_ERR_REJECTED eel_status_t when space not stable, 
just being modified. 

 
 



EEPROM Emulation Library 

R01US0128ED0110     55 
User Manual  

 
 

Code example: 

eel_request_t           my_eel_request_str; 
eel_status_t            my_eel_status_enu; 
eel_u16                 my_eel_space_u16; 
 
my_eel_status = EEL_Init(); 
EEL_Open(); 
 
/* execute STARTUP if not already done */ 
EEL_GetDriverStatus(&my_eel_driver_status_str); 
if(my_eel_driver_status_str.operationStatus_enu==EEL_OPERATION_P
ASSIVE) 
{ 
  my_eel_request_str.timeout_u08      = 0xFF; 
  my_eel_request_str.command_enu      = EEL_CMD_STARTUP; 
 
  EEL_Execute(&my_eel_request_str); 
  if(my_eel_request_str.status_enu != EEL_OK) MyErrorHandler(); 
} 
 
/* read current space value */ 
my_eel_status_enu = EEL_GetSpace(&my_eel_space_u16); 
 
if(my_eel_status_enu==EEL_OK) 
{ 
  if(my_eel_space_u16<MY_SPACE_ALERT_THRESHOLD) 
  { 
    my_eel_request_str.timeout_u08      = 0xFF; 
    my_eel_request_str.command_enu      = EEL_CMD_CLEANUP; 
 
    EEL_Execute(&my_eel_request_str); 
    if(my_eel_request_str.status_enu!=EEL_OK) MyErrorHandler(); 
  } 
} 
else 
{ 
  MyErrorHandler(); 
} 



EEPROM Emulation Library 

R01US0128ED0110     56 
User Manual  

3.2.9 EEL_GetVersionString 
This function can be used by the application to check and control the library 
version information at runtime.  
 
 
C interface for CA78K0R compiler 

__far  eel_u08*  __far  EEL_GetVersionString(void); 

 
C interface for IAR V1.xx compiler 

__far_func  eel_u08 __far*  EEL_GetVersionString(void); 

 
C interface for IAR V2.xx compiler 

__far_func  eel_u08 __far * EEL_GetVersionString(void); 

 
Pre-condition 
none 

 
Post-condition 
none 

 
Argument 
Argument Type Description 
none   

 
Return types/values 
Value Type Description 

 __far eel_u08* 
pointer to the first character of 
the zero-terminated library 
version string. 

 
Code example: 

__far  eel_u08*   my_version_string_pu08; 
 
my_version_string_pu08 = EEL_GetVersionString(); 
 
PrintMyVersion(&my_version_string_pu08); 

 



EEPROM Emulation Library 

R01US0128ED0110     57 
User Manual  

 
Description of the version string 

For version control at runtime the developer can use this function to find the 
starting character of the library version string (ASCII format). 
The version string is a zero-terminated string constant that covers library-specific 
information and is based on the following structure: NMMMMTTTCCCCCGVVV..V, 
where: 

• N   : library type specifier (here ‘E’ for EEL) 
• MMMM  : series name of microcontroller (here ‘RL78’) 
• TTT  : type number (here ‘T01’) 
• CCCCC  : compiler information (4 or 5 characters) 
• ‘Rxyy’ for CA78K0R compiler 
• ‘Ixyy’ for IAR V1.xx compiler 
• ‘Lxyyz’ for IAR V2.xx compiler 

• G  : all memory models (here ‘G’ for general) 
• VVV..V : library version 
• ‘Vxyy’  for release version x.yy 
• ‘Exyyy’ for engineering version x.yyy 

 
Examples: 
The version string of the EEL V1.15 for the CA78K0R compiler is: 
"ERL78T01R110GV115" 
The version string of the EEL V1.15 for the IAR V1.xx compiler is: 
"ERL78T01I120GV115" 
The version string of the EEL V1.15 for the IAR V2.xx compiler is: 
"ERL78T01L1000GV115" 



EEPROM Emulation Library 

R01US0128ED0110     58 
User Manual  

Chapter 4 Operation 

This chapter describes the installation, integration, configuration and of the 
EEPROM Emulation library. 

4.1 Obtaining the Library 
The EEL T01 is provided by means of an installer via the Renesas homepage 
at http://www.renesas.eu/updates?oc=EEPROM_EMULATION_RL78. Please 
follow the instructions of the installer carefully and read this user manual which 
is also available there. For operation, the EEL T01 requires the corresponding 
FDL (RL78 FDL Type T01). Please ensure to always work on the latest 
version of both libraries. 

4.2 Installation 
All components of the EEPROM Library package are extracted by the self 
extracting installer file RENESAS_RL78_EEL-FDL_T01_PACK01_xVxx.exe 
 
After acceptation of the license the library for the required tool chain can be 
selected. 

4.2.1 File Structure 
The main file of the installed library package is the pre-compiled EEL. The 
header and include files defining the API as well the descriptor files are 
available in source form. 
 

Table 4-1: Common files of the EEL T01 

File Description 

<installation folder> 

Release.txt contains release-specific information about the installed library 

support.txt library support information 
 
Table 4-2: File structure of the EEL T01 for CA78K0R tool chain 

<installation folder>/CA78K0R_xxx/EEL/lib 

eel.h EEL header file, EEL interface definition 

eel_types.h EEL header file, EEL types definition 

eel.inc EEL assembler include file with interface definition 

eel_types.inc EEL assembler include file with EEL types definition 

eel.lib precompiled library file 

<installation folder>/CA78K0R_xxx/EEL/Sample/C 

eel_descriptor.c user defined EEL-variable descriptor 

eel_descriptor.h EEL configuration part 

eel_user_types.h sample user types for EEL variables 

eel_sample_linker_file.dr linker sample file 

http://www.renesas.eu/updates?oc=EEPROM_EMULATION_RL78


EEPROM Emulation Library 

R01US0128ED0110     59 
User Manual  

<installation folder>/CA78K0R_xxx/EEL/Sample/asm 

eel_descriptor.asm user defined EEL-variable descriptor and sample user 
types 

eel_descriptor.inc EEL configuration part 

eel_sample_linker_file.dr linker sample file 
 
 

Table 4-3: File structure of the EEL T01 for IAR V1.xx tool chain 

<installation folder>/IAR_1xx/EEL/lib 

eel.h EEL header file, EEL interface definition 

eel_types.h EEL header file, EEL types definition 

eel.r87 precompiled library file 

<installation folder>/IAR_1xx/EEL/Sample/C 

eel_descriptor.c user defined EEL-variable descriptor 

eel_descriptor.h EEL configuration part 

eel_user_types.h sample user types for EEL variables 

eel_sample_linker_file.xcl linker sample file 
 
 

Table 4-4: File structure of the EEL T01 for IAR V2.xx tool chain 

<installation folder>/IAR_2xx/EEL/lib 

eel.h EEL header file, EEL interface definition 

eel_types.h EEL header file, EEL types definition 

eel.a precompiled library file 

<installation folder>/IAR_2xx/EEL/Sample/C 

eel_descriptor.c user defined EEL-variable descriptor 

eel_descriptor.h EEL configuration part 

eel_user_types.h sample user types for EEL variables 

eel_sample_linker_file.icf linker sample file 
 



EEPROM Emulation Library 

R01US0128ED0110     60 
User Manual  

4.3 Basic workflow 
To be able to use the EEL (execute commands) in a proper way the user has 
to follow a specific startup and shutdown procedure. 
 
Basic workflow of the EEL 

 

ON
EEL_Init()

Power OFF

closed

opened

starting-up
busy

executing
busy

shutting-down
busy

 EEL_Open()  EEL_Close()

 CMD:startup

 CMD:shutdown

 CMD:
Write
Read

Cleanup

STS: 
OK, 
error

STS:error
STS: error

 OFF

STS: OK

STS: OK

 CMD:format

executing
busy

STS:OK
STS:error

executing
busy

 CMD:startup

STS: error

STS: OK

started

 

 
Notes: 
 
1 - The FORMAT command can be executed without successful STARTUP  
 
2 - After execution of the FORMAT command the EEL goes into state  
      “opened”, so STARTUP command must be executed again . 

Figure 4-1 



EEPROM Emulation Library 

R01US0128ED0110     61 
User Manual  

 

4.4 Configuration 
The EEL configuration can be divided into two stages:  
- configuration of the EEL pool in the FAL-descriptor  
- configuration of the EEL variables in EEL-descriptor 
 

4.4.1 Pool configuration 
The size of the EEL pool is configured in the FAL_descriptor files. The 
minimum size of the EEL-pool is 4 blocks (1 active, 1 prepared, 1 being erased 
and one potentially excluded). This is the virgin condition. At runtime the EEL 
must be able to work with at least 1 excluded block. 

 
File fdl_descriptor.h 
EEL_POOL_SIZE 6 /* specify number of EEL blocks, min 4 */ 

 
Note: 
EEL_POOL_SIZE should not exceed the FAL_POOL_SIZE 
 

 
File eel_descriptor.h 
EEL_STORAGE_TYPE  ‘D’    /* determines flash medium */ 

 
‘D’   - Data Flash and FDL in use 
other values  - invalid 

 
 

EEL_REFRESH_BLOCK_THRESHOLD  3 /* determines refresh threshold */ 

 
 
Note: 
It is not easy to develop a precise and certain formula for the refresh-threshold 
because the order of written/refreshed instances in the active-region is a 
random process decided at runtime. Good results can be achieved when 
defining the threshold to (N + 1) where N is the number of blocks needed for 
coverage of all initial instances of all variables declared in EEL descriptor. 
Generally the bigger the prepared region the smoother is the run-time 
operation of the EEL Therefore the threshold should be minimized in 
relationship to the amount of data. 
 
It is strongly recommend to check the runtime behavior of the EEL at a 
given configuration in the target system under worst case conditions 
(variable size, variable number, threshold, pool-size, block exclusion, 
writing speed...) before establishing and releasing the configuration. 



EEPROM Emulation Library 

R01US0128ED0110     62 
User Manual  

4.4.2 Endurance Calculation 
Every write operation of a new EEL variable instance occupies space in the 
Data Flash. Whenever the active block is full, the current variable set needs to 
be copied to a new block by means of the refresh operation during which the 
target block is erased (see also Section 2.4). 
This process is repeated many times over the device lifetime. However, the 
endurance of the Data Flash blocks regarding the number of erase cycles is 
limited. Hence, it is necessary to calculate the application-specific number of 
erase cycles required over the device lifetime and to ensure that the specified 
Data Flash endurance is not exceeded. 
Renesas provides an endurance calculation sheet which can be filled with the 
different data sets sizes and the required write cycles. The sheet can estimate 
the expected number of Flash erase cycles and indicate an exceedance of the 
Data Flash specification. Thereby, the number of available EEL blocks has a 
major impact the overall endurance of the pool. By using varying numbers of 
EEL blocks for the calculation, the required number of EEL blocks can be 
derived for the target application scenario. 
Note: 
The endurance calculation sheet is a very helpful tool. However, please note 
that the result is only an estimate and the sheet cannot produce absolutely 
accurate numbers. The exact endurance depends on additional constraints—
like for instance the write sequence of the variables—which are not captured 
by the sheet. Therefore, any result of the endurance calculation sheet must be 
confirmed in the actual user application. 
The calculation sheet can be obtained from the Renesas Flash support, which 
can be contacted via Email at the following address: application_support.flash-
eu@lm.renesas.com. 

4.4.3 Variable configuration 
The number and size of variable managed by the EEL are configured in the 
eel_descriptor files. The EEL driver/library can only read/write variable-ID’s 
registered in the EEL-descriptor. 

 
    File eel_descriptor.h 

EEL_VAR_NO   8   /* number of variables handled by EEL, min 1 */ 

 
 
File eel_descriptor.c 
 
/* EEL variable size expressed in bytes */ 
#define   bsize_A   (sizeof(type_A)) 
#define   bsize_B   (sizeof(type_B)) 
#define   bsize_C   (sizeof(type_C)) 
#define   bsize_D   (sizeof(type_D)) 
#define   bsize_E   (sizeof(type_E)) 
#define   bsize_F   (sizeof(type_F)) 
#define   bsize_X   (sizeof(type_X)) 
#define   bsize_Z   (sizeof(type_Z)) 
 
/* EEL variable size expressed in words */ 
#define   wsize_A   (bsize_A+3)/4) 
#define   wsize_B   (bsize_B+3)/4) 
#define   wsize_C   (bsize_C+3)/4) 
#define   wsize_D   (bsize_D+3)/4) 
#define   wsize_E   (bsize_E+3)/4) 
#define   wsize_F   (bsize_F+3)/4) 
#define   wsize_X   (bsize_X+3)/4) 
#define   wsize_Z   (bsize_Z+3)/4) 
 

mailto:application_support.flash-eu@lm.renesas.com
mailto:application_support.flash-eu@lm.renesas.com


EEPROM Emulation Library 

R01US0128ED0110     63 
User Manual  

 
__far const eel_u08 eel_descriptor[EEL_VAR_NO+1][4] = 
{ 
/*identifier     word-size (1...64)  byte-size (1..255)  RAM-Ref.  */ 
/*------------------------------------------------------------------*/ 
  (eel_u08)'a',  (eel_u08)(wsize_A), (eel_u08)(bsize_A),  0x01, \ 
  (eel_u08)'b',  (eel_u08)(wsize_B), (eel_u08)(bsize_B),  0x01, \ 
  (eel_u08)'c',  (eel_u08)(wsize_C), (eel_u08)(bsize_C),  0x01, \ 
  (eel_u08)'d',  (eel_u08)(wsize_D), (eel_u08)(bsize_D),  0x01, \ 
  (eel_u08)'e',  (eel_u08)(wsize_E), (eel_u08)(bsize_E),  0x01, \ 
  (eel_u08)'f',  (eel_u08)(wsize_F), (eel_u08)(bsize_F),  0x01, \ 
  (eel_u08)'x',  (eel_u08)(wsize_X), (eel_u08)(bsize_X),  0x01, \ 
  (eel_u08)'z',  (eel_u08)(wsize_Z), (eel_u08)(bsize_Z),  0x01, \ 
   0x00,          0x00,               0x00,               0x00, \ 
}; 

 
The EEL descriptor is a [N+1] vector containing descriptor information of each 
EEL variable (N is the total number of EEL variables registered). 
 
Each variable descriptor is an array of 4 bytes. 
The EEL descriptor must be terminated by a descriptor terminator (4 bytes 
0x00). This pattern is used internally by the EEL as descriptor-end-criteria in 
the variable searching process. 
 
Identifier: 
The 1’st byte of the variable descriptor is the “identifier” field that must be 
unique within the whole EEL-descriptor. Variables can be identified, read and 
written by using this identifier. 
 
Word-size: 
The 2’nd byte of the variable descriptor specifies the size of the variable 
expressed in words. 
 
Byte-size: 
The 3’rd byte of the variable descriptor specifies the size of the variable 
expressed in bytes. 
 
RAM-ref: 
The 4’th byte of the variable descriptor is the “RAM-reference” which should 
indicate EEL variables referenced by RAM-reference. This field is only relevant 
when EEL is using the FCL for flash access. When FDL is accessing the flash, 
the “RAM-reference” files doesn’t have any meaning (in that case each 
variable is referenced by RAM automatically). 

4.4.4 EEL Variable Initialization 
Before being able to regularly use the Data Flash for EEPROM emulation, the 
EEL pool must be formatted and—depending on the application—be filled with 
initial values for the EEL variables. This can be done using different 
approaches. Two very common ways are presented in the following: 

• The application itself executes the format operation and then writes 
initial instances of the variables. As the format operation deletes all 
data, it needs to be carefully considered in this scenario how to 
prevent accidental pool formatting by the application. 

• A serial programming tool (e.g. PG-FP5) or debugger is used to 
program the Data Flash in the same flow that also programs the Code 
Flash. 



EEPROM Emulation Library 

R01US0128ED0110     64 
User Manual  

For the later approach (using a programming tool or a debugger), a hex file is 
required which contains the Data Flash content (i.e. the complete EEL pool in 
raw format). This content can be gained by 

• dumping the content of the Data Flash with an already formatted EEL 
pool into a hex file using a serial programming tool or the debugger, or 
by 

• using a tool chain of Data Flash Converter and/or Data Flash Editor to 
convert EEL variable values into a hex file. 

Data Flash Converter and Data Flash Editor can be obtained from the 
following URLs (including dedicated user manuals): 

• http://www.renesas.eu/updates?oc=DATAFLASHCONVERTER 
• http://www.renesas.eu/updates?oc=DATAFLASHEDITOR  

4.4.5 Pool configuration hints and tips 
During operation the situation in the EEL-pool changes whenever data are 
written into it. This is a high dynamic, unpredictable random process. On the 
other hand each application has different timing requirements when writing 
data. Some application need so called burst write (writing many data in 
relatively short time e.g. crash data in airbag applications). Other applications 
have to write data permanently in equidistant intervals like odometer in 
automotive applications. Moreover the size of variables and its individual write 
cycles and writing frequency may influence the real write-time. 
 
When writing data into the EEL-pool three different cases are possible: 
1) enough space for the instance and its reference exists in active head 
2) not enough space in active head but more than 2 prepared blocks exist. 
3) not enough space in active head but less than 3 prepared blocks exist.  
 
In case 1) the execution time of the WRITE command consists of the pure 
writing-time only:  
T1(WRITE) = t(write). 
 
In case 2) the execution time of the WRITE command consists of two 
components: the activation-time and writing-time:  
T2(WRITE) = t(activation) + t(write). 
 
In case 3) the execution time of the WRITE command consists of three 
components: the expansion-time, activation-time and writing-time:  
T3(WRITE) = t(expand) + t(activation) +  t(write). 
 
Where:  T1(WRITE)   <  T2(WRITE)  <<<  T3(WRITE) 
 
The difference between T1(WRITE)   and  T2(WRITE)  is very small and 
cannot/mustn’t be avoided by the user (system architecture related behavior). 
 
The T3(WRITE)  is much longer than T1/T2 (WRITE) because it incorporates 
block erase time. Consequently to keep writing-time constant during EEL 
operation the user should avoid situation described in case 3)  by keeping the 
background maintenance alive. When calling the EEL_Handler(t) permanently 
in the application idle loop the EEL will automatically remove conditions 
described in case 3) according to the EEL-pool configuration. 
 
 

http://www.renesas.eu/updates?oc=DATAFLASHCONVERTER
http://www.renesas.eu/updates?oc=DATAFLASHEDITOR


EEPROM Emulation Library 

R01US0128ED0110     65 
User Manual  

 
There are some general dependencies that should be taken into account when 
configuring the EEL and its pool. 
 
1) the bigger the prepared area B(P) the better the real time performance 
2) the bigger the S(F) the better (more efficient) the usage of erase cycles 
3) the refresh threshold should be max. 1 block bigger than S(D) 
 
In below examples following abbreviations were used: 
B(P)  – number of prepared blocks in initially programmed EEL-pool 
B(D)  – number of blocks containing initial data 
S(H)  – size of block header expressed in flash words 
S(R)  – size of the initial reference area in the active heading block in words 
S(F)  – size of the free space in active heading block in words (active space) 
S(D)  – size of the initial data area in the active head expressed in word 
S(B)  – size of the block expressed in words 
SEP  – size of the min. separator between reference and data area in words 
N       – number of variables registered in the eel_descriptor. 
wsize - size of the given variable expressed in words (see eel_descriptor). 
TH    - refresh threshold defined in eel_descriptor.h 
 
Where: 
S(B) = 256,  S(H) = 8, SEP = 3,  S(R) = 2*N + SEP 
 

S(D) = ∑
=

N

i
idatawsize

1
)(  

 
After initial programming following situation in EEL pool is assumed: 
 
1) the active region of the EEL-pool contains only one instance (the initial one) 
of each variable registered in EEL descriptor. 
 
2) the remaining EEL (none-excluded and data-less) blocks are prepared. 
 
In such situation the remaining active space S(F) in the active heading block 
and the number of prepared blocks S(P) could be one criteria for proper 
configuration of the refresh threshold. 
 
S(F) = S(B) – S(H) – S(R) – S(D) 
 
CAUTION: 
Before releasing the EEL configuration have to be ensured by tests 
under worst case conditions (write frequency, write duration, block 
exclusion and so on) required by the application. 
 
The following practical examples of EEL pool configuration should illustrate the 
dependencies. 



EEPROM Emulation Library 

R01US0128ED0110     66 
User Manual  

 
Configuration for small data amount where S(F) is sufficient 

 

free free free

S(H)

S(R)

S(D)

S(F) S(B)

B(D) = 1

Block
Header

prepared

Block
Header

prepared
1

2

Data

Block
Header

active

free

Block
Header

prepared

free

Block
Header

prepared

 

N

free

Block
Header

prepared

References

SEP

TH = 1

active space S(F) 
quite big in 
relationship to 
the data amount

B(P) = 5

 
 

In the above scenario the active space S(F) is quite big, so that many 
instances of relatively small variables can be written into it before activation of 
the next block becomes necessary. When setting TH=1 the B(P) will be 
maximized automatically by the background process (EEL_Handler(t)). The 
relatively big buffer of prepared blocks allows intensive, continuous writing 
process for a long time before “space expansion” will be enforced by a pool-full 
situation. 

 
 
Configuration for larger data amount where S(F) is sufficient 

 

1

2

Block
Header

active

References

Data

free
free

free free

S(H)

S(R)

S(D)

S(F)
S(B)

B(D) = 2 

Block
Header

prepared

Block
Header

prepared

N-2

Data

Block
Header

active

free

Block
Header

prepared

free

Block
Header

prepared
N-1

N

SEP

SEP

TH = 2

active space S(F) 
quite big in 
relationship to 
the data amount

B(P) = 4

 
 
This example is similar to the previous one, but the total amount of initial data 
excides the space in one block. The active space is big enough, consequently 
the refresh threshold TH can be set to 2 to keep B(P) at maximal possible level. 

 

Figure 4-2 

Figure 4-3 



EEPROM Emulation Library 

R01US0128ED0110     67 
User Manual  

 
Configuration for larger data amount where S(F) is not sufficient 

 

1

2

Block
Header

active

N-6

References

Data

free free
free free

S(H)

S(R)

S(D)

S(F)
S(B)

TH = 3

Block
Header

prepared

Block
Header

prepared

N-5

N-4

N-3

Data

Block
Header

active

free

Block
Header

prepared

free

Block
Header

prepared

N-2

N-1

N

SEP

SEP

active space S(F) 
quite small in 
relationship to 
the data amount

B(D) = 2 B(P) = 4

 
 
In that example like in the previous one, the initial data occupies 2 blocks 
(B(D)=2), but in that case the remaining space S(F) in the active head is very 
small. To avoid that each write access would immediately cause a refresh and 
afterwards an erase cycle, the refresh threshold TH must be set to TH = B(D) 
+ 1 = 3 in that case. 
 
 

Figure 4-4 



EEPROM Emulation Library 

R01US0128ED0110     68 
User Manual  

4.5 Initialization 
After power-on RESET the EEL has to be initialized by using the EEL_Init 
function. After this the plausibility of the configuration is checked and all 
internal variables are initialized. The driver remains passive and access to the 
flash medium is disabled. 

 
  my_eel_status_u08 = EEL_Init(); 
 
  if (my_eel_status_u08 == EEL_OK) 
  { 
     /* EEL is initialized */ 
  } 
else  My_ErrorHandler(); 

 
 

4.6 EEL activation and deactivation 
After power-ON reset the Data Flash hardware is passive. Before using the 
EEL commands the access to the Data Flash has to be opened and the clock 
of the Data Flash hardware has to be switched on. 
 
The physical resource data-flash is divided in the FAL into two virtual parts: the 
EEL-pool and the USER-pool. Both of them can be opened and closed 
independently. To open access to the EEL-pool the EEL_Open() function has 
to be called. To avoid unexpected side-effects the FAL is managing the Data 
Flash clock status (ON/OFF) internally. 
 
The sequencer clock: 

• is OFF after FAL_Init(...) 

• goes ON when any part of the FAL-pool is beeing opened. 

• remains ON when any part of the FAL-pool is still open 

• goes OFF when both parts of the FAL-pool were closed. 
 
The EEL-pool can be opened and closed by using the interface function 
EEL_Open()/EEL_Close(). 



EEPROM Emulation Library 

R01US0128ED0110     69 
User Manual  

 
  .... 
  <POWER-ON RESET>               /* sequencer clock is OFF */ 
  .... 
  my_fal_status = FAL_Init(&my_fal_descriptor); 
  if (my_fal_status <> FAL_OK) My_ErrorHandler(); 
  .... 
  .... 
  my_eel_status = EEL_Init(); 
  if (my_eel_status <> EEL_OK) My_ErrorHandler(); 
  .... 
  .... 
  EEL_Open(); /* data flash clock starts here controlled */ 
  .... 
  .... 
  EEL-commands can be executed here 
  .... 
  .... 
  .... 
  FAL_Open();          /* data flash clock remains ON here  */ 
  .... 
  .... 
  FAL commands can be used for access to the USER-pool 
  .... 
  .... 
  EEL_Close();    /* data flash clock remains ON because   */ 
  ....            /* FAL is still accessing the USER-pool  */ 
  .... 
  EEL-commands cannot be executed anymore 
  FAL-commands can be used for access to the USER-pool 
 
  .... 
  .... 
  FAL_Close();    /* data flash clock is switched OFF here  */ 
  .... 
  .... 
 

 
 

4.7 Foreground and background process 
The background process is not visible directly to the user. It should take care 
for keeping conditions defined by the user in the configuration. Especially 
minimation of the invalid region and maximation of the space (according to the 
predefined refresh threshold). 

 

4.7.1 Controlling background process 
When automatical maintenance is required, the EEL_Handler(t) has to be 
called periodically in any loop (for example in the idle-loop or in the scheduler-
loop). 
 
When the application want to know if background maintenance is surely 
finished the operation status provided by EEL_GetDriverStatus(...) must be 
stable EEL_OPERATION_IDLE for at least 4 EEL_Handler(0) calls. 
 
In other words, min. 4 internal states of the EEL must be executed in 
EEL_OPERATION_IDLE operation-status to be sure that the background 
maintenance is definitively finished. 



EEPROM Emulation Library 

R01US0128ED0110     70 
User Manual  

 
Example flow to ensure background passivity (enforced mode only) 

 

FAL_OK

error

START

my_fal_status = FAL_Init(...)

my_eel_status = EEL_Init(...)

my_fal_status ?

EEL_OK

error
my_eell_status ?

EEL_Open()

EEL_Execute(STARTUP, 0xFF)

my_eel_request.status ?

EEL_OK

EEL_ERR_POOL_INCONSISTENT

EEL_Execute(FORMAT, 0xFF)

Error

Error

my_eel_request.status ? EEL_OK

error

Error

EEL_Execute(WRITE, 0xFF)

my_eel_request.status ?

EEL_OK

error

Error
EEL_Execute(READ, 0xFF)

my_eel_request.status ?

EEL_OK

error

Error

EEL_Handler(0)
EEL_GetDriverStatus()

counter ++

status ?

EEL_OPERATION_IDLE

other

counter = 0

counter ?
< 4

>=4

continue

Background 
can become 
active here 

 

 

Figure 4-5 



EEPROM Emulation Library 

R01US0128ED0110     71 
User Manual  

 
Example flow to ensure background passivity (cont.) 
 

EEL Error Handler

Error

continue

EEL_OK

EEL_Execute(READ, 0xFF)

my_eel_request.status ?

EEL_OK

END

error

Error

Background remains 
passive here as long 
no WRITE command 

will be initiated
EEL_Execute(SHUTDOWN, 0xFF)

my_eel_request.status ?

EEL_OK

error

Error
EEL_Close()

 
 
 

 
 

Figure 4-6 



EEPROM Emulation Library 

R01US0128ED0110     72 
User Manual  

4.8 Commands 
EEL commands has to be initiated by passing completed EEL-request using 
the function EEL_Execute(&my_eel_request). To simplify the handling of the 
EEL the command spectrum was reduced to the essential only. Depending on 
the affected object there are two groups of commands supported by the EEL. 
Some of them influences the operation and status of the whole EEL-pool and 
some other the instance data only. 
 
All EEL commands are executed/handled in the same wise and can be 
executed in individual execution mode. 
 
 
General command execution flow 
 

status=busy

EEL_Execute(COMMAND) 

END

status=other

COMMAND
process

EEL_Handler(t)

in timeout and 
polling execution 
mode only

 
 
 

4.8.1 Pool oriented commands 
EEL pool oriented command influences the blocks or data in the whole EEL 
pool. 

 

4.8.1.1 Command STARTUP 

The startup command interprets the actual status of the EEL-pool, especially 
the region parameters, block status flags and instance references. Successful 
STARTUP command opens the access to the EEL data for the variable 
oriented commands. 

Figure 4-7 



EEPROM Emulation Library 

R01US0128ED0110     73 
User Manual  

 
 

Status of EEL_CMD_STARTUP command 
 

Status Class Background and Handling 

EEL_ERR_INITIALIZATION heavy 

meaning EEL not initialized or 
not opened 

reason wrong handling on 
user side 

remedy Initialize and open 
EEL before using it 

EEL_ERR_COMMAND light 

meaning invalid command 
code 

reason unknown code used 
in request 

remedy use eel_command_t 
type only 

EEL_ERR_POOL_INCONSISTENT heavy 

meaning pool structure not 
usable 

reason inconsistent EEL pool 
detected  *) 

remedy FORMAT the EEL 
pool 

EEL_ERR_POOL_EXHAUSTED fatal 

meaning EEL pool size smaller 
< 3 blocks 

reason to much blocks 
excluded 

remedy no remedy, EEL dead 

EEL_ERR_REJECTED normal 

meaning EEL cannot accept 
the request 

reason EEL busy with any 
other request 

remedy 

wait until status 
changes or call 
EEL_Handler() until 
request accepted. 

EEL_BUSY normal 

meaning request is being 
processed 

reason request checked and 
accepted 

remedy 

wait until status 
changes call 
EEL_Handler() until 
request accepted. 

EEL_OK normal 

meaning request was finished 
regular 

reason no problems during 
command execution 

remedy nothing 
 
 

Supported execution modes: 
enforcing, timeout, polling 
 
Note 1):  
EEL pool inconsistency can be caused by various reasons, for example: 
- FIP flag is <> 0xFFFFFFFF 
- RWP or DWP not found 
- no active region detected or active-head missing 
- active region not homogenous (discontinued by invalid block)  
- all blocks excluded 

Table 4-5 



EEPROM Emulation Library 

R01US0128ED0110     74 
User Manual  

 
 

Code example (enforced mode): 

/* declaration of the request variable */ 
eel_request_t my_eel_request; 
......... 
......... 
......... 
/* specification of a time limited STARTUP request */ 
my_eel_request.command_enu  = EEL_CMD_STARTUP; 
my_eel_request.timeout_u08  = 255; 
EEL_Execute(&my_eel_request); 
 
if (my_eel_request.status_enu != EEL_OK)  My_Error_Handler(); 
 
......... 
......... 
......... 

 
 
 

Code example (timeout mode): 

/* declaration of the request variable */ 
eel_request_t my_eel_request; 
......... 
......... 
......... 
/* specification of a time limited STARTUP request */ 
my_eel_request.command_enu  = EEL_CMD_STARTUP; 
my_eel_request.timeout_u08  = 20; 
EEL_Execute(&my_eel_request); 
......... 
......... 
......... 
 
/* execute a state as long not finished */ 
do{ 
  EEL_Handler(20);  
} while (my_eel_request.status_enu == EEL_BUSY) 
 
if (my_eel_request.status_enu != EEL_OK)  My_Error_Handler(); 
 
......... 
......... 
......... 
 
/* periodical counting timeout tick */ 
void isr_tm01(void) 
{ 
  EEL_TimeOut_CountDown(); 
} 

 
 
 



EEPROM Emulation Library 

R01US0128ED0110     75 
User Manual  

 
Code example (polling mode): 

/* declaration of the request variable */ 
eel_request_t my_eel_request; 
 
......... 
......... 
......... 
 
/* specification of a time limited STARTUP request */ 
my_eel_request.command_enu  = EEL_CMD_STARTUP; 
my_eel_request.timeout_u08  = 0; 
EEL_Execute(&my_eel_request); 
 
......... 
......... 
......... 
 
/* execute a state as long not finished */ 
do{ 
  EEL_Handler(0); 
} while (my_eel_request.status_enu == EEL_BUSY) 
 
if (my_eel_request.status_enu != EEL_OK)  My_Error_Handler(); 
 
......... 
......... 
......... 

 
 



EEPROM Emulation Library 

R01US0128ED0110     76 
User Manual  

4.8.1.2 Command SHUTDOWN 

There is no real functionality behind the SHUTDOWN command. It is just used 
for synchronization between the background processes and the application. 
Practically it is just waiting until all running background processes (REFRESH, 
EXPANSION,...) are finished correctly. The access to the EEL pool is closed 
and the access status provided by EEL_GetDriverStatus(&my_driver_status) 
is EEL_ERR_ACCESS_LOCKED. Also the EEL_Handler(t) becomes passive 
and does not consume CPU time anymore (just few clocks). 
 
Status of EEL_CMD_SHUTDOWN command 

 
Status Class Background and Handling 

EEL_ERR_INITIALIZATION heavy 

meaning EEL not initialized 

reason wrong handling on user 
side 

remedy Initialize EEL before 
using it 

EEL_ERR_COMMAND light 

meaning invalid command code 

reason unknown code used in 
request 

remedy use eel_command_t 
type only 

EEL_ERR_INTERNAL heavy 

meaning 
unexpected/unknown 
error code generated in 
background 

reason SW bug, EMI, 
unexpected problems 

remedy 

no standard remedy 
possible. Next 
STARTUP should 
manage the problem 

EEL_ERR_REJECTED normal 

meaning EEL cannot accept the 
request 

reason EEL busy with other 
request 

remedy Call EEL_Handler() and 
retry later 

EEL_BUSY normal 

meaning request is being 
processed 

reason request checked and 
accepted 

remedy Call EEL_Handler() until 
status have changed. 

EEL_OK normal 

meaning request was finished 
regular 

reason 
no problems did happen 
during command 
execution  

remedy nothing 
 
 

Supported execution modes: 
enforcing, timeout, polling 

 

Table 4-6 



EEPROM Emulation Library 

R01US0128ED0110     77 
User Manual  

Code example (enforced mode): 

/* declaration of the request variable */ 
eel_request_t my_eel_request; 
......... 
......... 
/* specification of a time limited SHUTDOWN request */ 
my_eel_request.command_enu  = EEL_CMD_SHUTDOWN; 
my_eel_request.timeout_u08  = 255; 
EEL_Execute(&my_eel_request); 
 
if (my_eel_request.status_enu != EEL_OK)  My_Error_Handler(); 
......... 
......... 

 
Code example (timeout mode): 

/* declaration of the request variable */ 
eel_request_t my_eel_request; 
......... 
......... 
/* specification of a time limited SHUTDOWN request */ 
my_eel_request.command_enu  = EEL_CMD_SHUTDOWN; 
my_eel_request.timeout_u08  = 20;  
EEL_Execute(&my_eel_request); 
......... 
......... 
/* execute a state as long not finished */ 
do{ 
  EEL_Handler(20);  
} while (my_eel_request.status_enu == EEL_BUSY) 
 
if (my_eel_request.status_enu != EEL_OK)  My_Error_Handler(); 
......... 
......... 
......... 
/* periodical timeout count tick */ 
void isr_tm01(void) 
{ 
  EEL_TimeOut_CountDown(); 
} 

 
Code example (polling mode): 

/* declaration of the request variable */ 
eel_request_t my_eel_request; 
......... 
......... 
/* specification of a time limited SHUTDOWN request */ 
my_eel_request.command_enu  = EEL_CMD_SHUTDOWN; 
my_eel_request.timeout_u08  = 0; 
EEL_Execute(&my_eel_request); 
......... 
......... 
/* execute a state as long not finished */ 
do{ 
  EEL_Handler(0); 
} while (my_eel_request.status_enu == EEL_BUSY) 
 
if (my_eel_request.status_enu != EEL_OK)  My_Error_Handler(); 
......... 
......... 

 



EEPROM Emulation Library 

R01US0128ED0110     78 
User Manual  

4.8.1.3 Command FORMAT 

The format command destroys all data and creates an “empty” EEL pool 
consists of one active block. All remaining “not excluded” blocks are 
“prepared” by this command. After format the STARTUP command must be 
executed after FORMAT to identify the new EEL-pool status. 
 
Status of EEL_CMD_FORMAT command 

 
Status Class Background and Handling 

EEL_ERR_INITIALIZATION heavy 

meaning EEL not initialized 

reason wrong handling on 
user side 

remedy Initialize EEL before 
using it 

EEL_ERR_COMMAND light 

meaning invalid command code 

reason unknown code used in 
request 

remedy use eel_command_t 
type only 

EEL_ERR_POOL_EXHAUSTED fatal 

meaning EEL pool size smaller 
< 3 blocks 

reason to much blocks 
excluded 

remedy no remedy, EEL dead 

EEL_ERR_INTERNAL heavy 

meaning 
unexpected/unknown 
error code generated 
in background 

reason SW bug, EMI, 
unexpected problems 

remedy 

No standard remedy 
possible, analyze 
background status for 
details. 

EEL_ERR_REJECTED normal 

meaning EEL cannot accept 
the request 

reason EEL busy with other 
request 

remedy Call EEL_Handler or 
retry later 

EEL_BUSY normal 

meaning request is being 
processed 

reason request checked and 
accepted 

remedy Call EEL_Handler 

EEL_OK normal 

meaning request was finished 
regular 

reason 
no problems during 
command execution 
happens 

remedy nothing 
 

 
Supported execution modes: 
enforcing, timeout, polling 

Table 4-7 



EEPROM Emulation Library 

R01US0128ED0110     79 
User Manual  

CAUTION: 
Once started, the FORMAT command must be completed successfully. 
When RESET discontinues a running FORMAT, the following STARTUP 
command will fail with status EEL_ERR_POOL_INCONSISTENT. This 
should enforce the user to re-start the broken FORMAT just to create a 
consistent and empty EEL-pool in any case. 
 
 
Code example (enforced mode): 

/* declaration of the request variable */ 
eel_request_t my_eel_request; 
......... 
......... 
......... 
/* specification of a time limited FORMAT request */ 
my_eel_request.command_enu  = EEL_CMD_FORMAT;  
my_eel_request.timeout_u08  = 0xFF;  
EEL_Execute(&my_eel_request);  
 
if (my_eel_request.status_enu != EEL_OK)  My_Error_Handler(); 
 
......... 
......... 
......... 

 
 

Code example (timeout mode): 

/* declaration of the request variable */ 
eel_request_t my_eel_request; 
......... 
......... 
......... 
/* specification of a time limited FORMAT request */ 
my_eel_request.command_enu  = EEL_CMD_FORMAT; 
my_eel_request.timeout_u08  = 20; 
EEL_Execute(&my_eel_request); 
......... 
......... 
......... 
 
/* execute a state as long not finished */ 
do{ 
  EEL_Handler(20); 
} while (my_eel_request.status_enu == EEL_BUSY) 
 
if (my_eel_request.status_enu != EEL_OK)  My_Error_Handler(); 
 
......... 
......... 
......... 
 
/* periodical timeout count tick */ 
void isr_tm01(void) 
{ 
  EEL_TimeOut_CountDown(); 
} 

 



EEPROM Emulation Library 

R01US0128ED0110     80 
User Manual  

 
Code example (polling mode): 

/* declaration of the request variable */ 
eel_request_t my_eel_request; 
......... 
......... 
......... 
/* specification of a time limited FORMAT request */ 
my_eel_request.command_enu  = EEL_CMD_FORMAT; 
my_eel_request.timeout_u08  = 0; 
EEL_Execute(&my_eel_request); 
......... 
......... 
......... 
 
/* execute a state as long command not finished */ 
do{ 
  EEL_Handler(0); 
  CheckCommunicationInterface(); 
  DoSomethingElse(); 
} while (my_eel_request.status_enu == EEL_BUSY) 
 
if (my_eel_request.status_enu != EEL_OK)  My_Error_Handler(); 
 
......... 
......... 
......... 

 
 
 

EEL pool after FORMAT (pool complete) 

P=55555555

A=55555555

I=FFFFFFFF

X=FFFFFFFF

EC=abcdefgh

active

FFFFFFFF

prepared

FFFFFFFF

P=55555555

A=FFFFFFFF

I=FFFFFFFF

X=FFFFFFFF

EC=abcdefgh

P=55555555

A=FFFFFFFF

I=FFFFFFFF

X=FFFFFFFF

EC=abcdefgh

prepared

FFFFFFFF

P=55555555

A=FFFFFFFF

I=FFFFFFFF

X=FFFFFFFF

EC=abcdefgh

prepared

FFFFFFFF

FFFFFFFF

FFFFFFFF

FFFFFFFF

FFFFFFFF

FFFFFFFF

FFFFFFFF

FFFFFFFF

FFFFFFFF

FFFFFFFF

FFFFFFFF

FFFFFFFF

FFFFFFFF

 

Figure 4-8 



EEPROM Emulation Library 

R01US0128ED0110     81 
User Manual  

EEL pool after FORMAT (1 block excluded) 

P=55555555

A=55555555

I=FFFFFFFF

X=FFFFFFFF

EC=abcdefgh

active

FFFFFFFF

excluded

????????

P=????????

A=????????

I=????????

X=00000000

????????

P=55555555

A=FFFFFFFF

I=FFFFFFFF

X=FFFFFFFF

EC=abcdefgh

prepared

FFFFFFFF

P=55555555

A=FFFFFFFF

I=FFFFFFFF

X=FFFFFFFF

EC=abcdefgh

prepared

FFFFFFFF

FFFFFFFF

FFFFFFFF

FFFFFFFF

????????

XEC=abcdefgh

FFFFFFFF

FFFFFFFF

FFFFFFFF

FFFFFFFF

FFFFFFFF

FFFFFFFF

FFFFFFFF

 
 
 

Note: 
If the third block was already excluded before starting formatting its status 
remains untouched by the FORMAT command. 

Figure 4-9 



EEPROM Emulation Library 

R01US0128ED0110     82 
User Manual  

4.8.1.4 Command CLEANUP 

The cleanup command compresses the active region occupied by data to 
minimum. The “prepared” region is maximized. Data are not lost in that case. 
STARTUP is not necessary after CLEANUP for further operation. 

 
Status of EEL_CMD_CLEANUP command 

Status Class Background and Handling 

EEL_ERR_INITIALIZATION heavy 

meaning EEL not initialized 

reason wrong handling on 
user side 

remedy Initialize EEL before 
using it 

EEL_ERR_COMMAND light 

meaning invalid command code 

reason unknown code used in 
request 

remedy use eel_command_t 
type only 

EEL_ERR_ACCESS_LOCKED light 
meaning no access to EEL pool 
reason STARTUP missing 
remedy Execute STARTUP 

EEL_ERR_POOL_EXHAUSTED fatal 

meaning EEL pool size smaller 
< 3 blocks 

reason to much blocks 
excluded 

remedy no remedy, EEL dead 

EEL_ERR_INTERNAL heavy 

meaning 
unexpected/unknown 
error code generated 
in background 

reason SW bug, EMI, 
unexpected problems 

remedy 

Execute STARTUP. 
Background status 
can be analyzed for 
details. 

EEL_ERR_REJECTED normal 

meaning EEL cannot accept 
the request 

reason EEL busy with other 
request 

remedy Call EEL_Handler or 
retry later 

EEL_BUSY normal 

meaning request is being 
processed 

reason request checked and 
accepted 

remedy Call EEL_Handler 

EEL_OK normal 

meaning request was finished 
regular 

reason 
no problems during 
command execution 
happens 

remedy nothing 
 
 

Supported execution modes: 
enforcing, timeout, polling 

Table 4-8 



EEPROM Emulation Library 

R01US0128ED0110     83 
User Manual  

 
Code example (enforced mode): 

/* declaration of the request variable */ 
eel_request_t my_eel_request; 
......... 
......... 
/* specification of a time limited CLEANUP request */ 
my_eel_request.command_enu  = EEL_CMD_ CLEANUP; 
my_eel_request.timeout_u08  = 255; 
EEL_Execute(&my_eel_request); 
 
if (my_eel_request.status_enu != EEL_OK)  My_Error_Handler(); 
......... 
......... 

 
 
 
Code example (timeout mode): 

/* declaration of the request variable */ 
eel_request_t my_eel_request; 
......... 
......... 
......... 
/* specification of a time limited CLEANUP request */ 
my_eel_request.command_enu  = EEL_CMD_ CLEANUP; 
my_eel_request.timeout_u08  = 20; 
EEL_Execute(&my_eel_request); 
......... 
......... 
......... 
 
/* execute a state as long not finished */ 
do{ 
  EEL_Handler(20); 
} while (my_eel_request.status_enu == EEL_BUSY) 
 
if (my_eel_request.status_enu! = EEL_OK)  My_Error_Handler(); 
 
......... 
......... 
......... 
 
/* periodical timeout count tick */ 
void isr_tm01(void) 
{ 
  EEL_TimeOut_CountDown(); 
} 

 



EEPROM Emulation Library 

R01US0128ED0110     84 
User Manual  

 
Code example (polling mode): 

/* declaration of the request variable */ 
eel_request_t my_eel_request; 
......... 
......... 
......... 
/* specification of a time limited CLEANUP request */ 
my_eel_request.command_enu  = EEL_CMD_CLEANUP; 
my_eel_request.timeout_u08  = 0;  
EEL_Execute(&my_eel_request); 
......... 
......... 
......... 
 
/* execute a state as long not finished */ 
do{ 
  EEL_Handler(0); 
} while (my_eel_request.status_enu == EEL_BUSY) 
 
if (my_eel_request.status_enu != EEL_OK)  My_Error_Handler(); 
 
......... 
......... 
......... 

 
 

 
EEL pool before CLEANUP command (example) 

invalid

FFFFFFFF

55555555

55555555

FFFFFFFF

FFFFFFFF

XXXXXXXX

active

FFFFFFFF

Ref_A(2)

Data_A(2)

Ref_A(3)

Data_A(3)

Ref_B(2)

Ref_C(1)

Ref_D(3)

Data_C(1)

Data_B(2)

Data_D(3)

55555555

55555555

FFFFFFFF

FFFFFFFF

XXXXXXXX

active

FFFFFFFF

Ref_A(4)

Data_A(4)

Ref_B(4)

Ref_B(3)

Data_B(3)

Data_B(4)

55555555

FFFFFFFF

FFFFFFFF

FFFFFFFF

XXXXXXXX

prepared

FFFFFFFF

FFFFFFFF

FFFFFFFF

FFFFFFFF

FFFFFFFF

FFFFFFFF

Block 0 Block 1 Block 2 Block 3  

Figure 4-10 



EEPROM Emulation Library 

R01US0128ED0110     85 
User Manual  

 
EEL pool after CLEANUP command (example) 

prepared

FFFFFFFF

55555555

55555555

FFFFFFFF

FFFFFFFF

XXXXXXXX

active(new)

FFFFFFFF

55555555

FFFFFFFF

FFFFFFFF

FFFFFFFF

XXXXXXXX

Ref_C(2)

Data_C(2)

Ref_D(3)

Data_D(3)

prepared

FFFFFFFF

55555555

FFFFFFFF

FFFFFFFF

FFFFFFFF

XXXXXXXX

Ref_A(5)

Ref_B(5)

Data_A(5)

Data_B(5)

prepared

FFFFFFFF

55555555

FFFFFFFF

FFFFFFFF

FFFFFFFF

XXXXXXXX

 
 

Note: 
Header word marked as XXXXXXXX contain EC, RWPprev, XEC... 

 
 

4.8.2 Variable oriented commands 
EEL variable oriented command can be used by the application to read/write 
new instances (values) of the variables registered in the EEL-descriptor. 

 

4.8.2.1 Command WRITE 

The write command writes new value of the EEL-variable specified by the 
identifier. 

Figure 4-11 



EEPROM Emulation Library 

R01US0128ED0110     86 
User Manual  

 
Status of EEL_CMD_WRITE command 

 
Status Class Background and Handling 

EEL_ERR_INITIALIZATION heavy 

meaning EEL not initialized 

reason wrong handling on 
user side 

remedy Initialize EEL before 
using it 

EEL_ERR_ACCESS_LOCKED light 
meaning no access to EEL pool 
reason STARTUP missing 
remedy Execute STARTUP 

EEL_ERR_PARAMETER heavy 

meaning Unknown variable 
identifier 

reason Not registered 
variable ID used 

remedy 
Correct or register the 
variable in the EEL 
descriptor 

EEL_ERR_POOL_EXHAUSTED fatal 

meaning EEL pool size smaller 
< 3 blocks 

reason to much blocks 
excluded 

remedy no remedy, EEL dead 

EEL_ERR_POOL_FULL heavy 

meaning no space in pool  

reason 

Due to block 
exclusion not enough 
space is to cover all 
variables 

remedy Execute CLEANUP 

EEL_ERR_REJECTED normal 

meaning EEL cannot accept 
the request 

reason EEL busy with other 
request 

remedy Call EEL_Handler or 
retry later 

EEL_BUSY normal 

meaning request is being 
processed 

reason request checked and 
accepted 

remedy Call EEL_Handler 

EEL_OK normal 

meaning request was finished 
regular 

reason 
no problems during 
command execution 
happens 

remedy none 
 
 

Supported execution modes: 
enforcing, timeout, polling 

 
 

Table 4-9 



EEPROM Emulation Library 

R01US0128ED0110     87 
User Manual  

 
Code example (enforced mode): 

/* declaration of the request variable */ 
eel_request_t my_eel_request; 
......... 
......... 
......... 
/* specification of a time limited WRITE request */ 
my_eel_request.address_pu08   = (eel_u08*)&my_A_mirror; 
my_eel_request.identifier_u08 = ‘A’; 
my_eel_request.command_enu    = EEL_CMD_WRITE; 
my_eel_request.timeout_u08    = 255; 
EEL_Execute(&my_eel_request); 
 
if (my_eel_request.status_enu != EEL_OK)  My_Error_Handler(); 
 
......... 
......... 
......... 

 
 
 

Code example (timeout mode): 

/* declaration of the request variable */ 
eel_request_t my_eel_request; 
......... 
......... 
......... 
/* specification of a time limited WRITE request */ 
my_eel_request.address_pu08   = (eel_u08*)&my_A_mirror; 
my_eel_request.identifier_u08 = ‘A’; 
my_eel_request.command_enu    = EEL_CMD_WRITE; 
my_eel_request.timeout_u08    = 20; 
EEL_Execute(&my_eel_request); 
......... 
......... 
......... 
 
/* execute a state as long not finished */ 
do{ 
  EEL_Handler(20); 
} while (my_eel_request.status_enu == EEL_BUSY) 
 
if (my_eel_request.status_enu != EEL_OK)  My_Error_Handler(); 
 
......... 
......... 
......... 
 
/* periodical timeout count tick */ 
void isr_tm01(void) 
{ 
  EEL_TimeOut_CountDown(); 
} 

 



EEPROM Emulation Library 

R01US0128ED0110     88 
User Manual  

 
Code example (polling mode): 

/* declaration of the request variable */ 
eel_request_t my_eel_request; 
......... 
......... 
......... 
/* specification of a time limited WRITE request */ 
my_eel_request.address_pu08   = (eel_u08*)&my_A_mirror; 
my_eel_request.identifier_u08 = ‘A’; 
my_eel_request.command_enu    = EEL_CMD_WRITE; 
my_eel_request.timeout_u08    = 0; 
EEL_Execute(&my_eel_request); 
......... 
......... 
......... 
 
/* execute a state as long not finished */ 
do { 
  EEL_Handler(0); 
} while (my_eel_request.status_enu == EEL_BUSY) 
 
if (my_eel_request.status_enu != EEL_OK) My_Error_Handler(); 
 
......... 
......... 
......... 

 
 

Note: 
Whenever the application writes data into the EEL-pool the space available in 
active head may not be sufficient to cover the reference and data of the new 
instance. To guaranty proper operation in any situation the EEL takes care for 
sufficient space conditions before writing the instance. This may cause 
different execution time for writing same portion of data. The user can avoid 
that situation by offering enough CPU time for the background process that 
can prepare space in advance. 
 
Depending on space precondition in different behavior is possible when writing 
new instance into the EEL pool. Please have a look to the below examples. 



EEPROM Emulation Library 

R01US0128ED0110     89 
User Manual  

 
Example 1:   
Best case conditions. 
 
Conditions: 
a) Enough space available in heading active block to cover the complete  
    instance (reference and data) 
b) EEL_REFRESH_BLOCK_THRESHOLD > 1 
 
Sequence: 
1) DRP_A(6) is written into flash word addressed by RWP 
    (allocates space for the new instance in reference- and data-area) 
2) Data_A(6) are written word by word into the allocated space in data area. 
3) DCS_A(6) is written into the flash word addressed by (RWP+1) 
4) RWP, DWP, RAM-reference, and region parameter are updated 
 

 
EEL pool after WRITE command (normal example). 

 

prepared

FFFFFFFF

55555555

55555555

FFFFFFFF

FFFFFFFF

XXXXXXXX

active

FFFFFFFF

55555555

FFFFFFFF

FFFFFFFF

FFFFFFFF

XXXXXXXX

Ref_C(2)

Data_C(2)

Ref_D(3)

Data_D(3)

prepared

FFFFFFFF

55555555

FFFFFFFF

FFFFFFFF

FFFFFFFF

XXXXXXXX

Ref_A(5)

Ref_B(5)

Data_A(5)

Data_B(5)

prepared

FFFFFFFF

55555555

FFFFFFFF

FFFFFFFF

FFFFFFFF

XXXXXXXX

DRP_A(6)

Data_A(6)

DCS_A(6)
Ref_A(6)

Data_A(6)

OK

 
 
Note: 
Data_A(6) means 6’ts instance of the variable “A”

Figure 4-12 



EEPROM Emulation Library 

R01US0128ED0110     90 
User Manual  

Example 2: 
Best case conditions. 
 
Conditions: 
a) Not enough space available in heading active block to cover the complete  
    instance (reference and data). 
b) more than two blocks are prepared and ready for activation 
c) EEL_REFRESH_BLOCK_THRESHOLD > 2 
 
Sequence: 
1) After negative space check next block will be activated before write 
2) DRP_D(4) is written into flash word addressed by RWP 
    (allocates space for the new instance in reference- and data-area) 
3) Data_D(4) are written word by word into the allocated space in data area. 
4) DCS_D(4) is written into the flash word addressed by (RWP+1) 
5) RWP, DWP, RAM-reference, and region parameter are updated 
 

 
EEL pool after WRITE command (activation example) 

 

Data_D(4)

prepared

FFFFFFFF

55555555

55555555

FFFFFFFF

FFFFFFFF

XXXXXXXX

active

FFFFFFFF

55555555

FFFFFFFF

FFFFFFFF

FFFFFFFF

XXXXXXXX

Ref_C(2)

Data_C(2)

Ref_D(3)

Data_D(3)

active

FFFFFFFF

55555555

55555555

FFFFFFFF

FFFFFFFF

XXXXXXXX

Ref_A(5)

Ref_B(5)

Data_A(5)

Data_B(5)

prepared

FFFFFFFF

55555555

FFFFFFFF

FFFFFFFF

FFFFFFFF

XXXXXXXX

Ref_A(6)

Data_A(6)

DRP_D(4)
DCS_D(4)

Ref_D(4)

no
 sp

ac
e 

in 

ac
tiv

e 
he

ad

Data_D(4)

 

Figure 4-13 



EEPROM Emulation Library 

R01US0128ED0110     91 
User Manual  

Example 3: 
Best case conditions. 
 
Conditions: 
a) Not enough space available in heading active block to cover the complete  
    instance (reference and data). 
b) Not enough prepared for activation 
c) EEL_REFRESH_BLOCK_THRESHOLD > 2 
 
Sequence: 
1) After negative space check next block should be activated before write 
2) Activation not possible (prepared region to small) 
3) Execution focus swapped to background for space expansion 
4) The background refreshes the last active block C(2) -> C(3) 
5) After refresh completion of block 0 will be invalidated and prepared 
6) Completed space expansion swaps the execution focus back to foreground 
7) DRP_D(5) is written into flash word addressed by RWP 
    (allocates space for the new instance in reference- and data-area) 
8) Data_D(5) are written word by word into the allocated space in data-area. 
9) DCS_D(5) is written into the flash word addressed by (RWP+1) 
10) RWP, DWP, RAM-reference, and region parameter are updated 

 
EEL pool before WRITE command (expansion example) 

 

prepared

FFFFFFFF

55555555

55555555

FFFFFFFF

FFFFFFFF

XXXXXXXX

active

FFFFFFFF

55555555

FFFFFFFF

FFFFFFFF

FFFFFFFF

XXXXXXXX

Ref_C(2)

Data_C(2)

Ref_D(3)

Data_D(3)

Ref_A(5)

Ref_B(5)

Data_A(5)

Data_B(5)

prepared

FFFFFFFF

55555555

FFFFFFFF

FFFFFFFF

FFFFFFFF

XXXXXXXX

Data_D(5)

WRITE data

55555555

55555555

FFFFFFFF

FFFFFFFF

XXXXXXXX

active

FFFFFFFF

Ref_D(4)

Data_D(4)

Ref_A(6)

Ref_B(6)

Data_B(7)

Data_B(6)

Ref_B(7)

Data_A(6)

not enougth prepared 
blocks for FG activation

no space in 

active head

 

Figure 4-14 



EEPROM Emulation Library 

R01US0128ED0110     92 
User Manual  

 
EEL pool after WRITE command (expansion example) 

prepared

FFFFFFFF

55555555

FFFFFFFF

FFFFFFFF

FFFFFFFF

XXXXXXXX

active

FFFFFFFF

55555555

55555555

FFFFFFFF

FFFFFFFF

XXXXXXXX

55555555

55555555

FFFFFFFF

FFFFFFFF

XXXXXXXX

active

FFFFFFFF

Ref_D(4)

Data_D(4)

Ref_B(6)

Data_B(7)

Data_B(6)

Ref_B(7)

Ref_A(7)

Data_A(7)

Ref_C(3)

Data_C(3)

prepared

FFFFFFFF

55555555

FFFFFFFF

FFFFFFFF

FFFFFFFF

YYYYYYYY

DRP_D(5)

Data_D(5)

DCS_D(5)
Ref_D(5)

 
 

 
The final scenario after completion WRITE(D) is: 
- block 0 is prepared after refreshing instance C(2) -> C(3) 
- the newest (5’th)  instance of D is written into block 2 

Figure 4-15 



EEPROM Emulation Library 

R01US0128ED0110     93 
User Manual  

 

4.8.2.2 Command READ 

The read command copies the actual value of the EEL-variable specified by 
the identifier into its RAM mirror variable. 
 
When checksum error (DCS) is detected internally during READ execution, the 
EEL will enforce re-filling the reference table and before reading the next older 
instance of the specified variable automatically. When no older instance exists, 
the READ command signalizes EEL_ERR_NO_INSTANCE. 
 
Status of EEL_CMD_READ command 

Status Class Background and Handling 

EEL_ERR_INITIALIZATION heavy 

meaning EEL not initialized 

reason wrong handling on 
user side 

remedy Initialize EEL before 
using it 

EEL_ERR_ACCESS_LOCKED light 
meaning no access to EEL pool 
reason STARTUP missing 
remedy Execute STARTUP 

EEL_ERR_PARAMETER heavy 

meaning Unknown variable 
identifier 

reason Not registered 
variable ID used 

remedy 
Correct or register the 
variable in the EEL 
descriptor 

EEL_ERR_NO_INSTANCE light 

meaning no instance of the 
identifier found 

reason no initial value written 

remedy write initial value of 
the variable 

EEL_ERR_REJECTED normal 

meaning EEL cannot accept 
the request 

reason EEL busy with other 
request 

remedy Call EEL_Handler or 
retry later 

EEL_BUSY normal 

meaning request is being 
processed 

reason request checked and 
accepted 

remedy Call EEL_Handler 

EEL_OK normal 

meaning request was finished 
regular 

reason 
no problems during 
command execution 
happens 

remedy none 
 
 

Supported execution modes: 
enforcing, timeout, polling

Table 4-10 



EEPROM Emulation Library 

R01US0128ED0110     94 
User Manual  

 
Code example (enforced mode): 

/* declaration of the request variable */ 
eel_request_t my_eel_request; 
......... 
......... 
......... 
/* specification of a time limited READ request */ 
my_eel_request.address_pu08   = (eel_u08*)&my_A_mirror; 
my_eel_request.identifier_u08 = ‘A’; 
my_eel_request.command_enu    = EEL_CMD_READ; 
my_eel_request.timeout_u08    = 255; 
EEL_Execute(&my_eel_request); 
 
if (my_eel_request.status_enu != EEL_OK)  My_Error_Handler(); 
 
......... 
......... 
......... 

 
Code example (timeout mode): 

/* declaration of the request variable */ 
eel_request_t my_eel_request; 
......... 
......... 
......... 
/* specification of a time limited READ request */ 
my_eel_request.address_pu08   = (eel_u08*)&my_A_mirror; 
my_eel_request.identifier_u08 = ‘A’; 
my_eel_request.command_enu    = EEL_CMD_READ; 
my_eel_request.timeout_u08    = 20; 
EEL_Execute(&my_eel_request); 
......... 
......... 
......... 
 
/* execute a state as long not finished */ 
do{ 
  EEL_Handler(20); 
} while (my_eel_request.status_enu == EEL_BUSY) 
 
if (my_eel_request.status_enu != EEL_OK)  My_Error_Handler(); 
 
......... 
......... 
......... 
 
/* periodical timeout count tick */ 
void isr_tm01(void) 
{ 
  EEL_TimeOut_CountDown(); 
} 

 



EEPROM Emulation Library 

R01US0128ED0110     95 
User Manual  

 
Code example (polling mode): 

/* declaration of the request variable */ 
eel_request_t my_eel_request; 
......... 
......... 
......... 
/* initiation of a READ request */ 
my_eel_request.address_pu08   = (eel_u08*)&my_A_mirror; 
my_eel_request.identifier_u08 = ‘A’; 
my_eel_request.command_enu    = EEL_CMD_READ; 
my_eel_request.timeout_u08    = 0; 
EEL_Execute(&my_eel_request); 
......... 
......... 
......... 
 
/* execute a state as long not finished */ 
do{ 
  EEL_Handler(0); 
} while (my_eel_request.status_enu == EEL_BUSY) 
 
if (my_eel_request.status_enu != EEL_OK)  My_Error_Handler(); 
 
......... 
......... 
......... 

 



EEPROM Emulation Library 

R01US0128ED0110     96 
User Manual  

Chapter 5 Characteristics 

5.1 Resource consumption 
All values are based on the RL78 EEL T01 V1.15 and FDL T01 V1.12. 
RAM consumption at user side: 
High speed RAM:  2 bytes 
Short address RAM:  9 bytes 
 
ROM consumption: 
EEL code size:   6.6 kByte 
EEL constant size:  4+(N+1)*4, N = number of EEL variables 
 
Final stack consumption: 
FDL and EEL stack:  < 120  bytes 
 

5.2 Timing characteristics 
The timing measurements presented in the following are based on the RL78 
EEL T01 V1.15 and RL78 FDL T01 V1.12. 

5.2.1 Reference command execution times 
The reference command execution times listed in Table 5-1 have been 
measured for the following scenario: 

• There are 4 EEL blocks defined 
• No excluded block exists 
• Refresh threshold = 1 
• There are 8 variables defined by EEL descriptor:  

a - 2 bytes, b - 3 bytes, c - 4 bytes, d - 5 bytes, e - 6 bytes, f - 10 bytes, 
x - 20 bytes, z - 255 bytes 

• Each variable has been successfully written at least once into EEL 
pool 

• The system clock frequency is 20 MHz 
• Timeout time parameters for request structure and handler call 

T = t = 4 
• Timeout count-down tick for timing mode dt = 256us 

Furthermore, the WRITE command is measured for two preconditions: 
• Without activation: There is enough space in current active block to 

write any variable once more without the need of a new block 
activation. 

• With activation: There is not enough space in current active block to 
write any variable once more without the need of a new block 
activation. A foreground activation was necessary before being able to 
write the instance. 

Please note that presented values are no specification but rather a 
measurement of execution times under the above mentioned conditions and 
should therefore only be treated as reference. 
 
 
 



EEPROM Emulation Library 

R01US0128ED0110     97 
User Manual  

Reference command execution times (example) 

Command 
reference command execution time [μs] @ fx = 20 MHz 

condition polling timeout enforcing 

READ(n) 

a = 2 bytes 115 90 89 

b = 3 bytes 117 92 91 

c = 4 bytes 119 93 93 

d = 5 bytes 143 113 113 

e = 6 bytes 144 115 115 

f = 10 bytes 171 138 137 

x = 20 bytes 224 183 182 

z = 255 bytes 1714 1494 1452 

WRITE(n) 
 

without 
activation 

a = 2 bytes 1332 1280 1263 

b = 3 bytes 1333 1282 1264 

c = 4 bytes 1335 1283 1266 

d = 5 bytes 1764 1702 1679 

e = 6 bytes 1766 1703 1680 

f = 10 bytes 2198 2138 2095 

x = 20 bytes 3061 2976 2926 

z = 255 bytes 28468 27679 27365 

WRITE(n) 
 

with activation 

a = 2 bytes 2271 2177 2158 

b = 3 bytes 2273 2178 2159 

c = 4 bytes 2275 2180 2161 

d = 5 bytes 2704 2595 2581 

e = 6 bytes 2706 2597 2575 

f = 10 bytes 3137 2994 2990 

x = 20 bytes 4001 3858 3820 

z = 255 bytes 29408 28559 28267 

STARTUP 
4 blocks, empty pool 4251 3989 3865 

4 blocks, a...z in pool 6460 5478 5314 

FORMAT 4 blocks 28283 28148 28066 

CLEANUP a...z 50063 48694 48288 

SHUTDOWN 
background idle 

already 55 34 33 

 
 

Note 1: 
The command execution time depends on the situation inside the EEL pool. 
The number of variables, its size, the position of the instance inside the EEL-
pool, as well the momentary size of the regions inside the EEL-pool can 
influence the execution time of a command. The user can neutralize such 
effects for the WRITE command in a wide range by proper configuration of the 
EEL pool and by offering enough CPU time to the background process (calling 
EEL_Handler(t) in the idle-loop of the application). 

Table 5-1 



EEPROM Emulation Library 

R01US0128ED0110     98 
User Manual  

 
Note 2: 
When writing continuously big amount of data the “space consumption” in the 
foreground process (WRITE) can become faster than the “space production” in 
the background process (MAINTENANCE). This could cause a deviation of the 
WRITE-command execution time. To avoid such effects the user should 
reserve adequate CPU time for the background process in relationship to the 
required data throughput. This can be done by calling EEL_Handler(0) multiple 
or by increasing the time-slice “t” in EEL_Handler(t). 
 
Note 3: 
After block exclusion the timing characteristics of the commands may change. 
This effect becomes more relevant when the data amount is quite big in 
relationship to the EEL pool size. 



EEPROM Emulation Library 

R01US0128ED0110     99 
User Manual  

Chapter 6 Cautions 

• Library code and its constants must be located completely in the same 64k flash 
page. 
• For CA78K0R compiler, the library takes care in the code to define these 

sections with UNIT64KP relocation attribute. 
• For IAR V1.xx and IAR V2.xx compiler, the user has to ensure that the linker 

file specifies the Flash page size equal to 64KB when defining FAL_CODE, 
FAL_CNST, EEL_CODE and EEL_CNST sections. 

• The FDL library initialization by means of FAL_Init must be performed before 
calling EEL_Init. 

• The EEL library initialization by means of EEL_Init must be performed before the 
execution of EEL_Open, EEL_Close, EEL_Handler, EEL_Execute, 
EEL_TimeOut_CountDown, EEL_GetDriverStatus and EEL_GetSpace. 

• It is not allowed to read the data flash directly (meaning without FDL) during a 
command execution of the FDL/EEL. 

• Do not execute the STOP or HALT instruction during the execution of the 
FDL/EEL. Please shutdown and close both libraries properly first. 

• The watchdog timer does not stop during the execution of the FDL/EEL. 
• Each request variable must be located at an even address. 
• Before executing any command, all members of the request variable must be 

initialized. If there are any unused members in the request variable, please set 
arbitrary values to these members. Otherwise, a RAM parity error may cause a 
reset of the device. For details, please refer to the document “User's Manual: 
Hardware” of your RL78 product. 

• The EEL is not designed as a re-entrant software. For this reason each EEL 
function has to be finished before a next one can be called. Consequently EEL 
functions should not be called in interrupt service routines. If this cannot be 
achieved due to interrupt processing, task switching or other mechanism, the 
application has to take care for the synchronization and protection against re-
entrancy. 

• After execution of FAL_Init, EEL_Init or EEL_Close function all requested/running 
EEL commands will be aborted and cannot be resumed. Please take care that all 
running EEL commands are finished before calling this functions. This can be 
achieved by SHUTDOWN command as illustrated in Figure 4-1. 

• It is not possible to modify the Data Flash parallel to modification of the Code 
Flash. This means Self-programming (FSL) and EEPROM emulation cannot work 
at the same time. 

• The internal high-speed oscillator must be started before using of the FDL/EEL. 
• It is not allowed to locate any arguments and stack memory to address of 

0xFFE20 and above. 
• In case the Data Transfer Controller (DTC) is used in parallel to the FDL/EEL, do 

not locate the RAM area for DTC to address 0xFFE20 and above. 
• Please check the restrictions of your target device described in the device user’s 

manual in case of accessing the data flash via the FDL/EEL. 
• Do not use the RAM area used by the FDL/EEL (including the prohibited RAM 

area) before both libraries have been closed. Please see also “Self RAM list of 
Flash Self-Programming Library for RL78 Family” (R20UT2944EJxxxx). 



EEPROM Emulation Library 

R01US0128ED0110     100 
User Manual  

• In case of an accidental write to the EEL pool (e.g. due to stack runaway, misuse 
of FDL etc.), the following scenarios may occur: 
• In case of damaged block flags the whole eel pool could become inconsistent. 

As a result, all valid instances could be lost. 
• In case of damaged instance entry, the affected instance could become 

invalid rendering an old instance (and therefore outdated value) valid. 
• It is not allowed to continue the execution of the EEL in case the FDL or EEL 

descriptor has been changed. In such a situation, the initialization of the FDL and 
EEL shall be performed as well as the EEL pool format via the FORMAT 
command. 

• Do not operate the DFLCTL(Data Flash Control register) during the execution of 
the EEL. 

• Additional cautions for using the EEL for IAR V2.xx. 
• Library code and constants must be located completely in the same 32KB 

memory range. 
• Each segment (EEL_SDAT, EEL_CNST(including constant 

eel_descriptor),EEL_UDAT) must be located from an even address. 
• Do not align the members of any structure (by padding between them) that is 

to be used in the argument of an EEL library function. Refer to the 
eel_types.h file for more information about the size of each structure. 

• If you wish to use a linker configuration file included of the IAR V2.2x compiler 
(instead of a sample linker configuration file in the flash library package), 
specify flash libraries sections with special names for Renesas objects 
(R_TEXTF_UNIT64KP, R_SBSS) in the linker configuration file. 
 
e.g.) 
ro section FAL_CODE -> ro code R_TEXTF_UNIT64KP section FAL_CODE 
ro section EEL_CODE -> ro code R_TEXTF_UNIT64KP section EEL_CODE 
rw section FAL_DATA -> rw data R_SBSS section FAL_DATA 
rw section EEL_SDAT -> rw data R_SBSS section EEL_SDAT 
 
Note: 
Sections FAL_CNST and EEL_CNST do not require special names for 
Renesas objects since these sections are defined in the sample source files. 
(eel_descriptor.c, fdl_descriptor.c). 
 
Simply declare these flash libraries sections in a linker configuration file as if 
they are normal sections. 
e.g.) 
ro section FAL_CNST 
ro section EEL_CNST 



EEPROM Emulation Library 

R01US0128ED0110     101 
User Manual  

Revision History 

 

Chapter Page Description 

 
All 

 
Rev. 1.00: 
Initial document 

 
All 
 
4.1 
4.4.2 
4.4.4 
4.4.5 
5.1 
5.2 
6 

 
 
 
59 
63 
64 
66 
97 
97 
100 

Rev. 1.01: 
Switching document style to 'User Manual', previous document 
number: R01AN0707ED0100. 
Adding section describing how to obtain the library. 
Adding section about endurance calculation. 
Adding section about variable initialization. 
Correcting block size S(B) =256. 
Correcting high speed RAM consumption (2byte). 
Adding reference command execution times 
Adding general cautions. 

 
All 
 
All 
6 
 

 
All 
 
All 
99 
 

Rev. 1.10: 
“Renesas version”, “Renesas compiler” and “REN compiler” unified 
to “CA78K0R compiler” 
IAR V2.xx Compiler support extended 
Adding general cautions. 
 

   

 



EEPROM Emulation Library 

R01US0128ED0110     102 
User Manual  

 

 
 
 
 
 
 
 
 
 
 
 
 

EEPROM Emulation Library 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 


	Notice
	Table of Contents
	Chapter 1 Introduction
	1.1 Naming convention
	1.2 Related documents
	1.3 MF3 Data Flash
	1.3.1 Dual operation

	1.4 Functional elements within the EEPROM Emulation system
	1.5 Pool structure
	1.6 Address virtualization

	Chapter 2 EEL architecture
	2.1 EEL pool structure
	2.2 EEL block structure
	2.2.1 EEL block header
	2.2.1.1 EEL block status flags
	2.2.1.2 EEL block erase counter
	2.2.1.3 EEL previous reference write pointer
	2.2.1.4 EEL exclusion erase counter
	2.2.1.5 EEL Format In Progress (FIP) indicator

	2.2.2 Reference area
	2.2.3 Data area

	2.3 EEL Instance structure
	2.3.1 Data Reference Pointer, DRP
	2.3.2 Instance data
	2.3.3 Data Checksum, DCS

	2.4 Block management
	2.4.1 EEL block circulation
	2.4.2 EEL block status
	2.4.3 Security aspects, block exclusion

	2.5 Instance management
	2.5.1 Write instance sequence
	2.5.2 Security aspects, checksums

	2.6 Processes
	2.7 Space treatment
	2.8 Request–Response oriented dialog
	2.9 Handler oriented command execution
	2.10 Execution modes of the EEL
	2.10.1 Enforced execution mode
	2.10.1.1  Enforced operation mode without usage of EEL_Handler(t)
	2.10.1.2 Enforced mode with background maintenance

	2.10.2 Timeout execution mode
	2.10.2.1 Command execution finished before timeout
	2.10.2.2 Timeout before command execution finished

	2.10.3 Polling execution mode
	2.10.3.1 Full polling execution mode
	2.10.3.2 Mixed execution mode (timeout execution and polling maintenance)


	2.11 Supported command spectrum
	2.12 EEL execution planes
	2.12.1 Foreground plane
	2.12.2 Background plane


	Chapter 3 Application Programming Interface
	3.1 Data types
	3.1.1 Library specific simple type definitions
	3.1.2 Enumeration type “eel_command_t”
	3.1.3 Enumeration type “eel_operation_status_t”
	3.1.4 Enumeration type “eel_access_status_t”
	3.1.5 Enumeration type “eel_status_t”
	3.1.6 Structured type “eel_request_t”
	3.1.7 Structured type “eel_driver_status_t”

	3.2 Functions
	3.2.1 EEL_Init
	3.2.2 EEL_Open
	3.2.3 EEL_Close
	3.2.4 EEL_Execute
	3.2.5 EEL_Handler
	3.2.6  EEL_TimeOut_CountDown
	3.2.7 EEL_GetDriverStatus
	3.2.8 EEL_GetSpace
	3.2.9 EEL_GetVersionString


	Chapter 4 Operation
	4.1 Obtaining the Library
	4.2 Installation
	4.2.1 File Structure

	4.3 Basic workflow
	4.4 Configuration
	4.4.1 Pool configuration
	4.4.2  Endurance Calculation
	4.4.3 Variable configuration
	4.4.4 EEL Variable Initialization
	4.4.5 Pool configuration hints and tips

	4.5 Initialization
	4.6 EEL activation and deactivation
	4.7 Foreground and background process
	4.7.1 Controlling background process

	4.8 Commands
	4.8.1 Pool oriented commands
	4.8.1.1 Command STARTUP
	4.8.1.2 Command SHUTDOWN
	4.8.1.3 Command FORMAT
	4.8.1.4 Command CLEANUP

	4.8.2 Variable oriented commands
	4.8.2.1 Command WRITE
	4.8.2.2 Command READ



	Chapter 5 Characteristics
	5.1 Resource consumption
	5.2 Timing characteristics
	5.2.1 Reference command execution times


	Chapter 6 Cautions
	Revision History



