
All information contained in these materials, including products and product specifications,

represents information on the product at the time of publication and is subject to change by

Renesas Electronics Corp. without notice. Please review the latest information published by

Renesas Electronics Corp. through various means, including the Renesas Technology Corp.

website (http://www.renesas.com).

www.renesas.com

Data Flash Access
Library

FDL - T06

Data Flash Access Library for
RC03F Flash based V850 devices

R01US0045ED, Rev. 1.01
Mar 15, 2013

U
s
e
r M

a
n

u
a
l

32

R01US0045ED Rev. 1.01 2
User Manual

Notice

1. All information included in this document is current as of the date this document is issued. Such
information, however, is subject to change without any prior notice. Before purchasing or using
any Renesas Electronics products listed herein, please confirm the latest product information with
a Renesas Electronics sales office. Also, please pay regular and careful attention to additional
and different information to be disclosed by Renesas Electronics such as that disclosed through
our website.

2. Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other
intellectual property rights of third parties by or arising from the use of Renesas Electronics
products or technical information described in this document. No license, express, implied or
otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of
Renesas Electronics or others.

3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product,
whether in whole or in part.

4. Descriptions of circuits, software and other related information in this document are provided only
to illustrate the operation of semiconductor products and application examples. You are fully
responsible for the incorporation of these circuits, software, and information in the design of your
equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or
third parties arising from the use of these circuits, software, or information.

5. When exporting the products or technology described in this document, you should comply with
the applicable export control laws and regulations and follow the procedures required by such
laws and regulations. You should not use Renesas Electronics products or the technology
described in this document for any purpose relating to military applications or use by the military,
including but not limited to the development of weapons of mass destruction. Renesas
Electronics products and technology may not be used for or incorporated into any products or
systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign
laws or regulations.

6. Renesas Electronics has used reasonable care in preparing the information included in this
document, but Renesas Electronics does not warrant that such information is error free. Renesas
Electronics assumes no liability whatsoever for any damages incurred by you resulting from
errors in or omissions from the information included herein.

7. Renesas Electronics products are classified according to the following three quality grades:
“Standard”, “High Quality”, and “Specific”. The recommended applications for each Renesas
Electronics product depends on the product’s quality grade, as indicated below. You must check
the quality grade of each Renesas Electronics product before using it in a particular application.
You may not use any Renesas Electronics product for any application categorized as “Specific”
without the prior written consent of Renesas Electronics. Further, you may not use any Renesas
Electronics product for any application for which it is not intended without the prior written consent
of Renesas Electronics. Renesas Electronics shall not be in any way liable for any damages or
losses incurred by you or third parties arising from the use of any Renesas Electronics product for
an application categorized as “Specific” or for which the product is not intended where you have
failed to obtain the prior written consent of Renesas Electronics.

R01US0045ED Rev. 1.01 3
User Manual

8. The quality grade of each Renesas Electronics product is “Standard” unless otherwise expressly
specified in a Renesas Electronics data sheets or data books, etc.

“Standard”: Computers; office equipment; communications equipment; test and measurement
 equipment; audio and visual equipment; home electronic appliances; machine
 tools; personal electronic equipment; and industrial robots.

“High Quality”: Transportation equipment (automobiles, trains, ships, etc.); traffic control
 systems; anti-disaster systems; anti- crime systems; safety equipment; and
 medical equipment not specifically designed for life support.

“Specific”: Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control
 systems;medical equipment or systems for life support (e.g. artificial life support
 devices or systems), surgical implantations, or healthcare intervention (e.g.
 excision, etc.), and any other applications or purposes that pose a direct threat to
 human life.

9. You should use the Renesas Electronics products described in this document within the range
specified by Renesas Electronics, especially with respect to the maximum rating, operating
supply voltage range, movement power voltage range, heat radiation characteristics, installation
and other product characteristics. Renesas Electronics shall have no liability for malfunctions or
damages arising out of the use of Renesas Electronics products beyond such specified ranges.

10. Although Renesas Electronics endeavors to improve the quality and reliability of its products,
semiconductor products have specific characteristics such as the occurrence of failure at a
certain rate and malfunctions under certain use conditions. Further, Renesas Electronics products
are not subject to radiation resistance design. Please be sure to implement safety measures to
guard them against the possibility of physical injury, and injury or damage caused by fire in the
event of the failure of a Renesas Electronics product, such as safety design for hardware and
software including but not limited to redundancy, fire control and malfunction prevention,
appropriate treatment for aging degradation or any other appropriate measures. Because the
evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final
products or system manufactured by you.

11. Please contact a Renesas Electronics sales office for details as to environmental matters such as
the environmental compatibility of each Renesas Electronics product. Please use Renesas
Electronics products in compliance with all applicable laws and regulations that regulate the
inclusion or use of controlled substances, including without limitation, the EU RoHS Directive.
Renesas Electronics assumes no liability for damages or losses occurring as a result of your
noncompliance with applicable laws and regulations.

12. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior
written consent of Renesas Electronics.

13. Please contact a Renesas Electronics sales office if you have any questions regarding the
information contained in this document or Renesas Electronics products, or if you have any other
inquiries.

(Note 1) “Renesas Electronics” as used in this document means Renesas Electronics
Corporation and also includes its majority- owned subsidiaries.

(Note 2) “Renesas Electronics product(s)” means any product developed or manufactured
by or for Renesas Electronics.

R01US0045ED Rev. 1.01 4
User Manual

 Regional Information

Some information contained in this document may vary from country to country. Before using any
Renesas Electronics product in your application, please contact the Renesas Electronics office in your
country to obtain a list of authorized representatives and distributors. They will verify:

 • Device availability

 • Ordering information

 • Product release schedule

 • Availability of related technical literature

 • Development environment specifications (for example, specifications for
third-party tools and components, host computers, power plugs, AC supply
voltages, and so forth)

 • Network requirements

In addition, trademarks, registered trademarks, export restrictions, and other legal issues may also vary
from country to country.

Visit

http://www.renesas.com

to get in contact with your regional representatives and distributors.

R01US0045ED Rev. 1.01 5
User Manual

Preface

This manual is intended for users who want to understand the functions of the
concerned libraries.

This manual presents the software manual for the concerned libraries.

This document describes the following sections:

 Architecture

 Implementation and Usage

 API

Additional remark or tip

Item deserving extra attention

Binary: xxxx or xxxB

Decimal: xxxx

Hexadecimal xxxxH or 0x xxxx

Representing powers of 2 (address space, memory capacity):

K (kilo): 2
10

 = 1024

M (mega): 2
20

 = 1024² = 1,048,576

G (giga): 2
30

 = 1024³ = 1,073,741,824

X, x = don’t care

Block diagrams do not necessarily show the exact software flow but the
functional structure. Timing diagrams are for functional explanation purposes only,
without any relevance to the real hardware implementation.

Readers

Purpose

Organisation

Note

Caution

Numeric notation

Numeric prefixes

Register contents

Diagrams

R01US0045ED Rev. 1.01 6
User Manual

How to Use This Manual

(1) Purpose and Target Readers

This manual is designed to provide the user with an understanding of the library
itself and the functionality provided by the library. It is intended for users
designing applications using libraries provided by Renesas. A basic knowledge of
software systems as well as Renesas microcontrollers is necessary in order to
use this manual. The manual comprises an overview of the library, its
functionality and its structure, how to use it and restrictions in using the library.

Particular attention should be paid to the precautionary notes when using the
manual. These notes occur within the body of the text, at the end of each section,
and in the Usage Notes section.

The revision history summarizes the locations of revisions and additions. It does
not list all revisions. Refer to the text of the manual for details.

(2) List of Abbreviations and Acronyms

Abbreviation Full Form

API Application Programming Interface

Code Flash
Embedded Flash where the application code or constant
data is stored.

Data Flash
Embedded Flash where mainly the data of the EEPROM
emulation are stored.

Data Set
Instance of data written to the Flash by the EEPROM
Emulation Library (EEL), identified by the Data Set ID

DS Short for Data Set

Dual Operation

Dual operation is the capability to access flash memory
during reprogramming another flash memory range.
Dual operation is available between Code Flash and Data
Flash.
Between different Code Flash macros dual operation
depends on the device implementation

ECC Error Correction Code

EEL EEPROM Emulation Library

EEPROM Electrically erasable programmable read-only memory

EEPROM emulation

In distinction to a real EEPROM the EEPROM emulation
uses some portion of the flash memory to emulate the
EEPROM behavior. To gain a similar behavior some side
parameters have to be taken in account.

FAL Flash Access Library (Flash access layer)

FCL Code Flash Library (Code Flash access layer)

FDL Data Flash Library (Data Flash access layer)

Firmware
Firmware is a piece of software that is located in a hidden
area of the device, handling the interfacing to the flash.

Flash
Electrically erasable and programmable nonvolatile
memory. The difference to ROM is, that this type of memory
can be re-programmed several times.

Flash Area Area of Flash consists of several coherent Flash Blocks

R01US0045ED Rev. 1.01 7
User Manual

Flash Block
A flash block is the smallest erasable unit of the flash
memory.

Flash Macro
A certain number of Flash blocks is grouped together in a
Flash macro.

FW Firmware

HWd Half Word (16bit) data

ID
Identifier of a Data Set instance in the Renesas EEPROM
Emulation

NVM
Non volatile memory. All memories that hold the value,
even when the power is cut off. E.g. Flash memory,
EEPROM, MRAM...

RAM
“Random access memory” - volatile memory with random
access

REE Renesas Electronics Europe GmbH

REL Renesas Electronics Japan

ROM
“Read only memory” - nonvolatile memory. The content of
that memory can not be changed.

Segment / Section
Segment of Flash is a part of the flash that might consist of
several blocks. Important is, that this segment can be
protected against manipulation.

Self-Programming
Capability to reprogram the embedded flash without
external programming tool only via control code running on
the microcontroller.

Serial programming
The onboard programming mode is used to program the
device with an external programmer tool.

All trademarks and registered trademarks are the property of their respective
owners.

R01US0045ED Rev. 1.01 8
User Manual

Table of Contents

Chapter 1 Introduction ... 10

Chapter 2 FDL Architecture ... 11

2.1 Flash Infrastructure ... 11

2.1.1 Complementary Read Flash ... 11

2.1.2 Dual operation .. 11

2.1.3 Flash granularity .. 12

2.2 Layered software architecture .. 12

2.3 Data Flash Pools .. 13

2.4 Safety Considerations ... 14

2.5 Bit error checks ... 14

Chapter 3 FDL Implementation .. 15

3.1 File structure .. 15

3.1.1 Overview ... 15

3.1.2 Delivery package directory structure and files .. 16

3.2 FDL Linker sections .. 18

3.3 MISRA Compliance .. 18

Chapter 4 User Interface (API) ... 19

4.1 Pre-compile configuration .. 19

4.2 Run-time configuration ... 19

4.3 Data Types ... 21

4.3.1 User operation request structure... 21

4.3.2 Status and Error Codes .. 23

4.3.3 FAL_CMD_ERASE ... 23

4.3.4 FAL_CMD_BLANKCHECK .. 24

4.3.5 FAL_CMD_BITCHECK ... 26

4.3.6 FAL_CMD_WRITE .. 27

4.4 Library Functions .. 29

4.4.1 Initialization .. 29

4.4.2 Suspend / Resume .. 30

4.4.3 Standby / Wakeup .. 32

4.4.4 Operational functions ... 35

4.4.5 Administrative functions .. 39

Chapter 5 Integration into the user application 41

5.1 First steps .. 41

5.2 Application sample .. 41

5.3 Special considerations ... 41

5.3.1 Function reentrancy .. 41

5.3.2 Task switch, context change and synchronization between functions 41

5.3.3 Concurrent Data Flash accesses ... 41

R01US0045ED Rev. 1.01 9
User Manual

5.3.4 User Data Flash access during active EEPROM emulation .. 42

5.3.5 Direct access to the Data Flash by the user application by DMA 42

5.3.6 Entering power safe mode .. 42

Data Flash Access Library (FDL - T06) Introduction

R01US0045ED Rev. 1.01 10
User Manual

Chapter 1 Introduction

This user’s manual describes the internal structure, the functionality and software
interfaces (API) of the Renesas V850 Data Flash Access Library (FDL) type T06.
The library type T06 is suitable for all Renesas V850 Flash based on the RC03F
Flash technology.

Do not use this library for devices based on other Flash technologies than RC03F,
as this might lead to unwanted behaviour or demolition of the device.

The device features differ depending on the used Flash implementation and
basic technology node. Therefore, pre-compile and run-time configuration options
allow adaptation of the library to the device features and to the application needs.

The libraries are delivered in source code. However it has to be considered
carefully to do any changes, as not intended behaviour and programming faults
might be the result.

The development environments of the companies Green Hills (GHS), IAR and
Renesas are supported. Due to the different compiler and assembler features,
especially the assembler files differ between the environments. So, the library
and application programs are distributed using an installer tool allowing selecting
the appropriate environment.

For support of other development environments, additional development effort
may be necessary. Especially, but maybe not only, the calling conventions to the
assembler code and compiler dependent section defines differ significantly.

The libraries are delivered together with device dependent application programs,
showing the implementation of the libraries and the usage of the library functions.

The different options of setup and usage of the libraries are explained in detail in
this document.

Please read all chapters of the application note carefully.
Much attention has been put to proper conditions and limitations description.
Anyhow, it can never be ensured completely that all not allowed concepts of
library implementation into the user application are explicitly forbidden. So,
please follow exactly the given sequences and recommendations in this
document in order to make full use of the libraries functionality and features and
in order to avoid any possible problems caused by libraries misuse.

The Data Flash Access Libraries together with the EEPROM emulation libraries,
application samples, this manual and other device dependent information can be
downloaded from the following URL:

http://www.renesas.eu/update

Caution

Caution:

http://www.renesas.eu/update

Data Flash Access Library (FDL - T06) FDL Architecture

R01US0045ED Rev. 1.01 11
User Manual

Chapter 2 FDL Architecture

2.1 Flash Infrastructure

2.1.1 Complementary Read Flash

Based on the different application needs, the Flash implementation used for Data
Flash differs from the Code Flash implementation. In order to achieve the
required high endurance (erase cycles), Renesas decided for a Complementary
Read (CR) Flash implementation on Data Flash. Each data bit is realized by two
Flash cells, which are programmed to the opposite direction data bit. The cell
value difference is read to judge the data value:

Data bit level of Flash cell 1 level of Flash cell 2

0 high low
1 low high

Resulting from the implementation, erased Flash (both Flash cells with
same/similar level) has a very small differential level. The resulting data bit
judgement has an undefined result, but with a tendency to formerly written data.
This need to be considered on interpretation of the read values:

 The lower level library FDL provides a blank check to distinguish
between erased and written Flash on read level.

 When inspecting the Data Flash contents (e.g. using a debugger), the
debugger need to provide the information on the Flash status
(erased/written).

2.1.2 Dual operation

Common for all Flash implementations is, that during Flash modification
operations (Erase/Write) a certain amount of Flash memory is not accessible for
any read operation (e.g. program execution or data read).

This does not only concern the modified Flash range, but a certain part of the
complete Flash system. The amount of not accessible Flash depends on the
device architecture.

A standard architectural approach is the separation of the Flash into Code Flash
and Data Flash. By that, it is possible to read from the Code Flash (to execute
program code or read data) while Data Flash is modified, and vice versa. This
allows implementation of EEPROM emulation concepts with Data storage on
Data Flash while all program code is executed from Code Flash.

If not mentioned otherwise in the device users manuals, the devices with Data
Flash are designed according to this standard approach.

It is not possible to modify Code Flash and Data Flash in parallel!

Note

Data Flash Access Library (FDL - T06) FDL Architecture

R01US0045ED Rev. 1.01 12
User Manual

2.1.3 Flash granularity

The Data Flash can be erased in 32 Byte units.

The Data Flash can be written and read in 2 Byte units. As the CPU is able to
handle 4 Byte units as one “Word”, this document often refers to the “Half Word”
(HWd) as 2 Byte units.

2.2 Layered software architecture

This chapter describes the function of all blocks belonging to the EEPROM
Emulation and the Data Flash Access System.

Even though this manual describes the functional block FDL, a short description
of all concerned functional blocks and their relationship can be beneficial for the
general understanding.

User Application

EEL

FDL

Data Flash Hardware

Code Flash

User Application

FDL

Data Flash Hardware

Code Flash

OR

Rough relationship between functional system blocks of the system

The functional block “Application” should not use the functions offered by the FDL
directly, in fact it is recommended to access the EEL API only.

Nevertheless, if the user intends to implement a proprietary EEPROM emulation,
he may use the FDL functions for direct Data Flash accesses. Even combinations
of both are possible.

The functional block “EEPROM Emulation library” offers all functions and
commands the “Application” can use in order to handle its own EEPROM data.

The “Data Flash Library” offers an access interface to any user-defined Data
Flash area, so called “FDL-pool” (described in next chapter). Beside the
initialization function the FDL allows the execution of access-commands like write
as well as a suspend-able erase command.

General requirement is to be able to deliver pre-compiled EEL libraries, which
can be linked to either Data Flash libraries (FDL) or Code Flash libraries (FCL).
To support this, a unique API towards the EEL must be provided by these

Figure 2-1

Application

EEPROM Emulation
Library (EEL)

Data Flash Library
(FDL)

Note:

Data Flash Access Library (FDL - T06) FDL Architecture

R01US0045ED Rev. 1.01 13
User Manual

libraries. Following that, the standard API prefix FDL_... which would usually be
provided by the FDL library, is replaced by a standard Flash Access Layer prefix
FAL_...
All functions, type definitions, enumerations etc. will be prefixed by FAL_ or fal_.
Independent from the API, the module names will be prefixed with FDL_ in order
to distinguish the source/object modules for Code and Data Flash.

2.3 Data Flash Pools

The FDL pool defines the Flash blocks, which may be accessed by any FDL
operation (e.g. write, erase). The limits of the FDL pool are taken into
consideration by any of the FDL flash access commands. The user can define
the size of the FDL-pool freely at project run-time (function FAL_Init) while usually
the complete Data Flash is selected.

The FDL pool provides the space for the EEL pool which is allocated by the EEL
inside the FDL-pool. The EEL pool provides the Flash space for the EEL to store
the emulation data and management information.

All FDL pool space not allocated by the EEL pool is freely usable by the user
application, so is called the “User pool”.

User Pool

EEL Pool

User Pool

User Application

EEL

Data Flash / FDL Pool

The FDL-pool is just a place holder for the EEL-pool. It does not allocate any
flash memory. The FDL-pool descriptor defines the valid address space for FDL
access to protect all flash outside the FDL-pool against destructive access
(write/erase) by a simple address check in the library.

To simplify function parameter passing between FDL and the higher layer the
device depending physical Flash addresses (e.g. 0x02000000….0x0200FFFF or
0xFE000000….0xFE00FFFF) are transformed into a linear address room
0x0000….0xFFFF used by the FDL.

The EEL-pool allocates and formats (virgin initialization) all flash blocks belonging
to the EEL-pool. The header data are generated in proper way to be directly
usable by the application.

Figure 2-2

FDL-pool

EEL-pool

Data Flash Access Library (FDL - T06) FDL Architecture

R01US0045ED Rev. 1.01 14
User Manual

The User Pool is completely in the hands of the user application. It can be used
to build up an own user EEPROM emulation or to simply store constants.

2.4 Safety Considerations

EEPROM emulation in the automotive market is not only operated under normal
conditions, where stable function execution can be guaranteed. In fact, several
failure scenarios should be considered.

Most important issue to be considered is the interruption of a function e.g. by
power fail or Reset.

Differing from a normal digital system, where the operation is re-started from a
defined entry point (e.g. Reset vector), the EEPROM emulation modifies Flash
cells, which is an analogue process with permanent impact on the cells. Such an
interruption may lead to instable electrical cell conditions of affected cells. This
might be visible by undefined read values (read value != write value), but also to
defined read values (blank or read value = write value). In each case the read
margin of these cells is not given. The value may change by time into any
direction.

This needs to be considered in any proprietary EEPROM emulation or simple
data storage concept.

2.5 Bit error checks

Independent from the Flash manufacturer or Flash technology, Bit errors in the
Flash might be caused by different conditions. Different measures are
implemented or provided in order to handle such problems.

While device dependant causes like hardware defects or weak Flash cells are
completely covered by the Renesas qualification and production quality and by
Flash ECC (Error correction code), one major issue need to be considered
additionally.

Interruption of Flash erase or write operations e.g. by power fails or Resets result
in not completely charged or discharged Flash cells which results in Flash data
without sufficient data retention. This need to be prevented by the operation
conditions of the device or need to be detected by the software in order to ensure
stable data storage conditions.

While prevention is often not possible, detection can be done by different
mechanisms like checksums or special write sequences where one written word
ensures that previous data write was completed successfully.

After having considered the mechanisms above, one method to additionally
increase the system robustness is the check for bit errors in written data. This
method assumes that multiple bit errors (by not completely charged/discharged
Flash cells) don’t occur at once but by time. By special correction bits, the
Renesas Data Flash hardware can correct single/double bit errors in a 16bit data
word (+correction bits) during run-time. Furthermore, it can signal this error to the
application. By that, the user application can set-up a mechanism to refresh the
data with the single bit error right on time before a multi bit error can occur that
destroys the data.

For that purpose, the FDL provides a function to check a certain Flash address
for bit errors on the data word.

It is recommended to cyclically execute the bit error check over the complete data
range.

User-pool

Note

Data Flash Access Library (FDL - T06) FDL Implementation

R01US0045ED Rev. 1.01 15
User Manual

Chapter 3 FDL Implementation

3.1 File structure

The library is delivered as a complete compilable sample project which contains
the EEL and FDL libraries and in addition to an application sample to show the
library implementation and usage in the target application.

The application sample initializes the EEL and does some dummy dataset Write
and Read operations.

Differing from former EEPROM emulation libraries, this one is realized not as a
graphical IDE related specific sample project, but as a standard sample project
which is controlled by makefiles.

Following that, the sample project can be built in a command line interface and
the resulting elf file can be run in the debugger.

The FDL and EEL files are strictly separated, so that the FDL can be used
without the EEL. However, using EEL without FDL is not possible.

The delivery package contains dedicated directories for both libraries containing
the source and the header files.

3.1.1 Overview

The following picture contains the library and application related files:

Libray

FDL.a

FAL_...c

FAL_...c

FDL_...c

Precompiled

Library

Source Code

Library

User

FDL_Descriptor.c

FAL_...c

FAL_...c

App....c

Describtors

Passed to the

library

Source Code

Application

FDL.h

FDL_Cfg.h

Library Files – Fix, may not be touched by the user

Library pre-compile configuration (Only on souce code delivery) – File name fix, File content user configurable

Application (User) Code – Completely in the hand of the user

Library

Configuration

API declaration

FDL_Descriptor.h

Library and application file structure

The library code consists of different source files, starting with FDL/EEL_...The
files shall not be touched by the user, independently, if the library is distributed as
source code or pre-compiled.

The file FDL/EEL.h is the library interface functions header file. The interface
parameters and types are defined in the file FDL/EEL_Types.h.

Figure 3-1

Data Flash Access Library (FDL - T06) FDL Implementation

R01US0045ED Rev. 1.01 16
User Manual

In case of source code delivery, the library must be configured for compilation.
The file FDL/EEL_Cfg.h contains defines for that. As it is included by the library
source files, the file contents may be modified by the user, but the file name may
not.

Wrong configuration of the EEL/FDL might lead to undefined results.

FDL/EEL_Descriptor.c and FDL/EEL_Descriptor.h do not belong to the libraries
themselves, but to the user application. These files reflect an example, how the
library descriptor ROM variables can be built up which need to be passed with
the functions FDL/EEL_Init to the FDL/EEL for run-time configuration (see
chapter 4.2, “Run-time configuration” and 4.4.1.1, “FAL_Init”).

The structure of the descriptor is passed to the user application by
FDL/EEL_Types.h, while the value definition should be done in the file
FDL/EEL_Descriptor.h. The constant variable definition and value assignment
should be done in the file FDL/EEL_Descriptor.c.

If overtaking the files FDL/EEL_Descriptor.c/h into the user application, only the
file FDL/EEL_Descriptor.h need to be adapted by the user, while
FDL/EEL_Descriptor.c may remain unchanged.

3.1.2 Delivery package directory structure and files

The following table contains all files installed by the library installer:

 Files in red belong to the build environment, controlling the compile, link
and target build process

 Files in blue belong to the sample application

 Files in green are description files only

 Files in black belong to the FDL and EEL (in the separate directories for
EEL and FDL)

root

Release.txt Installer package release notes

root\make

GNUPublicLicense.txt Make utility license file

libiconv2.dll DLL-File required by make.exe

libintl3.dll DLL-File required by make.exe

make.exe Make utility

root\<device name>\compiler

Build.bat Batch file to build the application sample

Clean.bat Batch file to clean the application sample

Makefile
Makefile that controls the build and clean
process

root\<device name>\<compiler>\sample

EELApp_Main.c Main source code

EELApp_Control.c EEPROM emulation sample code

target.h
target device and application related
definitions

Caution

Data Flash Access Library (FDL - T06) FDL Implementation

R01US0045ED Rev. 1.01 17
User Manual

root\<device name>\<compiler>\sample

device header files

GHS

df<device number>.h

df<device number>_irq.h

io_macros_v2.h

IAR

io_70f< device number>.h

io_macros.h

lxx.h

cfi.h

startup file

GHS DF<dev. num.>_startup.850

IAR
l07.s85

cstartup.s85

REC cstart.asm

linker directive file

GHS df<dev. num.>.ld

IAR lnk70f<dev. num.>.xcl

REC df<dev. num.>.dir

root\<device name>\<compiler>\sample\FDL

FDL.h
Header file containing function prototypes of
the library user interface.

FDL_Types.h
Header file containing calling structures and
error enumerations of the library user
interface.

FDL_Descriptor.h
Descriptor file header with the run-time FDL
configuration. To be edited by the user.

FDL_Descriptor.c

Descriptor file with the run-time FDL
configuration.
Using the defines of FDL_Descriptor.h.
Should not be edited by the user.

FDL_User.c
Library related functions, which may be
edited by the user

FDL_Cfg.h
Header file with definitions for library setup at
compile time.

root\<device name>\<compiler>\sample\FDL\lib

FDL_Env.h
Library internal defines for accessing the
Flash programming hardware and Data Flash
related definitions.

FDL_Global.h
Library internal defines, function prototypes
and variables.

FDL_HWAccess.c Source code for the library HW interface.

FDL_UserIF.c
Source code for the library user interface and
service functions.

Data Flash Access Library (FDL - T06) FDL Implementation

R01US0045ED Rev. 1.01 18
User Manual

root\<device name>\<compiler>\sample\EEL

EEL.h
Header file containing all function prototypes
of the library user interface.

EEL_Types.h
Header file containing calling structures and
error enumerations of the library user
interface.

EEL_Cfg.h
Header file with definitions for library setup at
compile time.

EEL_Descriptor.c

Descriptor file with the run-time EEL
configuration.
Using the defines of EEL_Descriptor.h and
should not be edited by the user.

EEL_Descriptor.h
Descriptor file header with the run-time EEL
configuration. To be edited by the user.

root\<device name>\<compiler>\sample\EEL\lib

EEL_Global.h
Library internal defines, function prototypes
and variables

EEL_BasicFct.c EEL internal functions & state machine

EEL_UserIF.c EEL user interface functions

3.2 FDL Linker sections

The following sections are Data Flash Access Library related.

Data sections

 FAL_DATA

This section contains the variables required for FDL.

Code sections

 FAL_Text

This section contains the hardware und user interface.

 FAL_Const

This section contains all FDL library internal constant data.

3.3 MISRA Compliance

The EEL and FDL have been tested regarding MISRA compliance.

The used tool is the QAC Source Code Analyzer which tests against the MISRA
2004 standard rules.

All MISRA related rules have been enabled. Remaining findings are commented
in the code while the QAC checker machine is set to silent mode in the
concerning code lines.

Data Flash Access Library (FDL - T06) User Interface (API)

R01US0045ED Rev. 1.01 19
User Manual

Chapter 4 User Interface (API)

4.1 Pre-compile configuration

The pre-compile configuration of the FDL may be located in the FDL_cfg.h. The
user has to configure all parameters and attributes by adapting the related
constant definition in that header-file.

Take care to follow the configurations done in the sample application in order to
ensure correct FDL operation.

During initialization, the library needs to activate the device internal firmware for a
short time in order to have access to certain data. This results in disabling the
Code Flash. During that time, the Code Flash as well as Data Flash access is
disabled. So, only Code from RAM can be executed, interrupts, NMIs and
exceptions need to be relocated to RAM or to be disabled.
The critical code part with disabled Flash access is called critical section. The
library provides the possibility to execute callback routines to disable, enable or
relocate interrupts and exceptions at begin and end of the critical section.

Call back routine at critical section start (disable interrupts and exceptions):

#define FDL_CRITICAL_SECTION_BEGIN

Call back routine at critical section end (disable interrupts and exceptions):

#define FDL_CRITICAL_SECTION_END

4.2 Run-time configuration

The overall EEL run-time configuration is defined by an EEL specific part (EEL
run-time configuration) and by the FDL run-time configuration. Background of the
splitting is that the FDL requires either common, by EEL and FDL used
information (e.g. block size) or EEL related information (e.g. about the EEL pool
size). So, this information is part of the FDL run-time configuration.

Both configurations of FDL and EEL are stored in descriptor structures which are
declared in FDL_Types.h / EEL_Types.h and defined in FDL_Descriptor.c /
EEL_Descriptor.c with header files FDL_Descriptor.h / EEL_Descriptor.h. The
descriptor files (.c and .h) are considered as part of the user application.

In fact, the file FDL_Descriptor.h might be modified according to the user
applications needs and might be added to the user application project together
with the FDL_Descriptor.c

The defined descriptor structures are passed to the libraries as reference by the
functions FDL_Init and EEL_Init.

FAL_CPU_FREQUENCY_MHZ

This configuration element is set to the CPU frequency. A frequency fractional
part need to be rounded up, e.g.: 25.3MHz need to be rounded up to 26MHz.

Caution

Data Flash Access Library (FDL - T06) User Interface (API)

R01US0045ED Rev. 1.01 20
User Manual

CPU frequency setting condition:
The Flash programming hardware is provided with a clock, derived from the CPU
frequency. The frequency divider of this derived clock is device family dependent.
The resulting fFlash hardware must be in the range of 8 to 50MHz.

E.g.: Fx4-L, Px4-L:
fFlash hardware = fCpu / 2

 16MHz <= fCpu <= mimimum of <100MHz> or <maximum device frequency>

The CPU frequency must be set correctly. If not, malfunction may occur such as
unstable Flash data without data retention, programming failure, operation
blocking.

#define FAL_CPU_FREQUENCY_MHZ 48

FAL_EEL_VIRTUALBLOCKSIZE

The physical erase unit of the Data Flash is 32Byte. However, based on the
compatibility to former Data Flash implementations, the EEL groups together
each 64 erasable Blocks to a 2kB virtual block, which are then handled by the
EEL. So, EEL-Pool start and size must be aligned to the 2kB boundary. For FAL-
Pool size this is not necessary and may be changed accordingly, but in this
sample configuration also FAL-Pool size is aligned to 2kB.

#define FAL_EEL_VIRTUALBLOCKSIZE 64

FAL_FAL_POOL_SIZE

Defines the number of physical Flash blocks used for the FAL pool, which means
the User Pool + EEL Pool. Usually, the FAL pool size equals the total number of
Flash blocks.

E.g.:
Data Flash size = 32kb, block size = 32Bytes → FAL_FAL_POOL_SIZE 1024

#define FAL_FAL_POOL_SIZE 16*FAL_EEL_VIRTUALBLOCKSIZE

Value range:

 Min: EEL pool size
 Max: Physical number of Data Flash blocks

FAL_EEL_POOL_START

Define to set the number of the first physical Data Flash block used as EEL-Pool.
The value should be set to zero if the FAL is used only.

The block number must be aligned to the virtual block size (2kB) used by the
EEL! Following that, the block number must be a multiple of 64 (2kB = 64 *
32Byte)!

#define FAL_EEL_POOL_START 1*FAL_EEL_VIRTUALBLOCKSIZE

Value range:

Min: FAL Pool start block
Max: sum of FAL_EEL_POOL_START and FAL_EEL_POOL_SIZE
 is less or equal than FAL_FAL_POOL_SIZE

Caution:

Caution

Data Flash Access Library (FDL - T06) User Interface (API)

R01US0045ED Rev. 1.01 21
User Manual

FAL_EEL_POOL_SIZE

Defines the number of blocks used for the EEL-Pool.

The block number must be aligned to the virtual block size (2kB) used by the
EEL! Following that, the block number must be a multiple of 64 (2kB = 64 *
32Byte)!

#define FAL_EEL_POOL_SIZE 6*FAL_EEL_VIRTUALBLOCKSIZE

Value range:

Min: 64 * 4 blocks (required for proper EEL operation)
Max: FAL pool size, while the sum of FAL_EEL_POOL_START and
 FAL_EEL_POOL_SIZE is less or equal than
 FAL_FAL_POOL_SIZE

4.3 Data Types

4.3.1 User operation request structure

All user operations are initiated by a central initiation function (see chapter
4.4.4.1, “FAL_Execute”). All information required for the execution is passed to
the FAL by a central request structure. Also the error is returned by the same
structure:

Application

cnt_u16

idx_u32

*data_pu32

command_enu

myRequest

Write access

Read access

status_enu

FDL

access_type_enu

Request structure handling

/* FDL operations request structure, required for FAL_Execute */

typedef volatile struct FAL_REQUEST_T {

 fal_command_t command_enu;

 fal_u32 dataAdd_u32;

 fal_u32 idx_u32;

 fal_u16 cnt_u16;

 fal_access_type_t accessType_enu;

 fal_status_t status_enu;

} fal_request_t;

command_enu

 User command to execute

Caution

Figure 4-1

Data Flash Access Library (FDL - T06) User Interface (API)

R01US0045ED Rev. 1.01 22
User Manual

/* FDL operation initiation command */

typedef enum FAL_COMMAND_T {

 FAL_CMD_ERASE, /* Flash erase (Multiple blocks) */

 FAL_CMD_WRITE, /* Flash write (Multiple words) */

 FAL_CMD_BLANKCHECK, /* Flash blank check (Multiple words) */

 FAL_CMD_BITCHECK /* Flash bit check (Multiple words) */

} fal_command_t;

All commands can be requested by using the FAL_Execute function.

All commands operate on virtual addresses (relative address that start from block
0 of the data Flash memory as address 0) and block numbers.

E.g.:

1st HWd of the Data Flash: 0x00000000

3rd HWd of the Data Flash: 0x00000004

dataAdd_u32

Address of the write buffer of the application (parameter only necessary
during write commands)

idx_u32

Write Destination byte index (address), relative to
 the DF start address

 Erase Block index of the 1st block to erase

Blank Check Check start byte index (address), relative to the
DF start address

Bit Error Check Check start byte index (address), relative to the
DF start address

cnt_u16

 Write Number of HWds to write

 Erase Number of blocks to erase

Blank Check Number of HWds to check

Bit Error Check Number of HWds to check

status_enu

Library return codes (see 4.3.2, “Status and Error Codes”)

accessType_enu

 Access right definition

/* FDL operations originator defines */

typedef enum FAL_ACCESS_TYPE_T {

 FAL_ACCESS_NONE, /* FDL internal value. Not used. */

 FAL_ACCESS_USER, /* FDL operation by user application */

 FAL_ACCESS_EEL /* FDL operation by EEL */

} fal_access_type_t;

In order to initiate a Flash operation, the access right to the Flash must be set.
The user application may only access the complete configured Data Flash range
except the one configured for the EEL. The EEL may only access its range. The
ranges are defined in the FAL descriptor, passed to the FAL_Init function. The
access right is reset after each Flash operation. If not set again on calling
FAL_Execute, this function will return a protection error.

Note

Note

Data Flash Access Library (FDL - T06) User Interface (API)

R01US0045ED Rev. 1.01 23
User Manual

4.3.2 Status and Error Codes

/* FDL status return values */

typedef enum FAL_STATUS_T {

 FAL_OK, /* Operation terminated successfully */

 FAL_BUSY, /* Operation is still ongoing */

 FAL_SUSPENDED, /* Operation is suspended */

 FAL_ERR_PARAMETER, /* Wrong parameter in FDL function call */

 FAL_ERR_PROTECTION, /* Operation blocked (wrong parameters) */

 FAL_ERR_REJECTED, /* Flow error – other operation ongoing */

 FAL_ERR_WRITE, /* Flash write error */

 FAL_ERR_ERASE, /* Flash erase error */

 FAL_ERR_COMMAND, /* Unknown command */

 FAL_ERR_BITCHECK, /* Bit check error */

 FAL_ERR_INTERNAL /* Library internal error */

} fal_status_t;

All status and error codes depend on the called command. The Library offers a
set of commands that all can be requested by using the FAL_Execute function.

4.3.3 FAL_CMD_ERASE

The erase command can be used to erase a number of Flash blocks defined by a
start block and the number of blocks.

The command is initiated by FAL_Execute and is executed by the sequencer to
perform the physical erase. After the erase command has been initiated
FAL_Handler must be called to complete it and to update the library status.

Status Class Background and Handling

FAL_BUSY normal

meaning operation started successfully

reason no problems during execution

remedy

call FAL_Handler until the
Flash operation is finished,
reported by the request
structure status return value

FAL_OK normal

meaning operation finished successfully

reason no problems during execution

remedy nothing

FAL_SUSPENDED normal

meaning
an ongoing Flash operation is
suspended by user application
request

reason
FAL_SuspendRequest called
and successfully finished

remedy

start another operation or
resume the suspended
operation using
FAL_ResumeRequest
command

FAL_ERR_PARAMETER heavy

meaning current command is rejected

reason

wrong parameters have been
passed to the FAL:

the range (start block) to (Start
block + Number of blocks - 1)
must be in the EEL/User-Pool

Data Flash Access Library (FDL - T06) User Interface (API)

R01US0045ED Rev. 1.01 24
User Manual

Status Class Background and Handling

remedy
refrain from further Flash
operations and investigate in
the root cause

FAL_ERR_PROTECTION heavy

meaning current command is rejected

reason

to gain robustness, the
parameter check is repeated
right before Flash modification
and returns the protection
error in case of a violation
(e.g. due to an unwanted
variable modification)

remedy
refrain from further Flash
operations and investigate in
the root cause

FAL_ERR_REJECTED heavy

meaning current command is rejected

reason any other operation is ongoing

remedy
repeat the command when the
preceding operation has
finished

FAL_ERR_ERASE heavy

meaning
at least one bit within the
specified blocks is not erased

reason
one or more Flash bits could
not be erased completely

remedy
a Flash block respectively the
complete Data Flash should
be considered as defect

FAL_ERR_INTERNAL heavy

meaning

a library internal error
occurred, which could not
happen in case of normal
application execution

reason
application bug (e.g. program
run-away, destroyed program
counter) or hardware problem

remedy
refrain from further Flash
operations and investigate in
the root cause

4.3.4 FAL_CMD_BLANKCHECK

The blank-check command can be used by the requester to check if all cells in
the specified target flash area are possibly blank, e.g. before writing data into it or
reading data. The user can use the blank-check command freely as it is a non-
destructive flash access.

Different from an Erase operation, which checks if the cells to be erased have
really reached the erase level, the blank check does not check on this level but
on a standard read level. It cannot ensure any electrical margin required for data
retention but just give an indication if cells are possibly erased or possibly written.
Therefore the blank check results need to be interpreted correctly:

On blank check fail, the cells are surely not blank. This might result from
successfully written cells, but also from interrupted erase or write
operations. On blank check pass it is ensured that the cells are not
completely written. This might result from successfully erased Flash blocks,
but also from interrupted erase or write operations

Note

Data Flash Access Library (FDL - T06) User Interface (API)

R01US0045ED Rev. 1.01 25
User Manual

The check command is initiated by FAL_Execute and is executed by the
sequencer. After that, FAL_Handler must be called frequently to complete the
command and check the status.

Status Class Background and Handling

FAL_BUSY normal

meaning operation started successfully

reason no problems during execution

remedy

call FAL_Handler until the
Flash operation is finished,
reported by the request
structure status return value

FAL_OK normal

meaning
operation finished
successfully

reason no problems during execution

remedy nothing

FAL_ERR_PARAMETER heavy

meaning current command is rejected

reason

wrong parameters have been
passed to the FAL:

the range (start HWd) to (Start
HWd + Number of HWds - 1)
must be in the EEL/User-Pool

remedy
refrain from further Flash
operations and investigate in
the root cause

FAL_ERR_PROTECTION heavy

meaning current command is rejected

reason

to gain robustness, the
parameter check is repeated
right before Flash modification
and returns the protection
error in case of a violation
(e.g. due to an unwanted
variable modification)

remedy
refrain from further Flash
operations and investigate in
the root cause

FAL_ERR_REJECTED heavy

meaning current command is rejected

reason any other operation is ongoing

remedy
repeat the command when
the preceding operation has
finished

FAL_ERR_BLANKCHECK heavy

meaning
at least one bit within the
specified range is not blank

reason

for any bit in the addressed
flash range, the voltage level
is below specification for an
blank cell

remedy
depending on the Blank
Check usage concept.

FAL_ERR_INTERNAL heavy meaning

a library internal error
occurred, which could not
happen in case of normal
application execution

Data Flash Access Library (FDL - T06) User Interface (API)

R01US0045ED Rev. 1.01 26
User Manual

Status Class Background and Handling

reason
application bug (e.g. program
run-away, destroyed program
counter) or hardware problem

remedy
refrain from further Flash
operations and investigate in
the root cause

4.3.5 FAL_CMD_BITCHECK

A Flash cell, especially a not completely written or erased one (e.g. operation
interrupted due to a power fail), might drift over time. Cyclic bit-checks on the
data may detect possible data retention problems and the user can refresh the
data if the correctness of the data is ensured.

The bit-check command bases on the Flash internal ECC. The ECC circuit is able
to detect and correct a single bit error. Multiple bit errors will be detected only
with a high confidence level but cannot be corrected. The bit-check command
signalizes any detected and eventually corrected bit failure.

The user can use the bit-check command freely as it is a non-destructive flash
access.

Status Class Background and Handling

FAL_OK normal

meaning operation finished successfully

reason no problems during execution

remedy nothing

FAL_ERR_PARAMETER heavy

meaning current command is rejected

reason

wrong parameters have been
passed to the FAL:

the range (start HWd) to (Start
HWd + Number of HWds - 1)
must be in the EEL/User-Pool

remedy
refrain from further Flash
operations and investigate in
the root cause

FAL_ERR_PROTECTION heavy

meaning current command is rejected

reason

to gain robustness, the
parameter check is repeated
right before Flash modification
and returns the protection
error in case of a violation
(e.g. due to an unwanted
variable modification)

remedy
refrain from further Flash
operations and investigate in
the root cause

FAL_ERR_REJECTED heavy

meaning current command is rejected

reason any other operation is ongoing

remedy
repeat the command when the
preceding operation has
finished

FAL_ERR_BITCHECK normal meaning
a bit error is found in at least
one data word within the
specified range

Data Flash Access Library (FDL - T06) User Interface (API)

R01US0045ED Rev. 1.01 27
User Manual

Status Class Background and Handling

reason

possible causes:

1) erased Flash cells normally
have bit errors

2) not completely written
Flash, e.g. caused by a power
fail during a Flash operation

3) long time frame between
erase or write and bit error
check

remedy

depending on the error
reason:

1) do not execute bit error
check on erased cells

2) refresh the data

3) refresh the data

FAL_ERR_INTERNAL heavy

meaning

a library internal error
occurred, which could not
happen in case of normal
application execution

reason
application bug (e.g. program
run-away, destroyed program
counter) or hardware problem

remedy
refrain from further Flash
operations and investigate in
the root cause

4.3.6 FAL_CMD_WRITE

The write command can be used to write a number of HWds located in the RAM
into the Data Flash at the location specified by the virtual target address.

The write command is initiated by FAL_Execute and is executed by the
sequencer to perform the physical write. After the write command has been
initiated FAL_Handler must be called to complete it and to update the library
status.

Status Class Background and Handling

FAL_BUSY normal

meaning operation started successfully

reason no problems during execution

remedy

call FAL_Handler until the
Flash operation is finished,
reported by the request
structure status return value

FAL_OK normal

meaning operation finished successfully

reason no problems during execution

remedy nothing

FAL_SUSPENDED normal

meaning
an ongoing Flash operation is
suspended by user application
request

reason
FAL_SuspendRequest called
and successfully finished

Data Flash Access Library (FDL - T06) User Interface (API)

R01US0045ED Rev. 1.01 28
User Manual

Status Class Background and Handling

remedy

start another operation or
resume the suspended
operation using
FAL_ResumeRequest
command

FAL_ERR_PARAMETER heavy

meaning current command is rejected

reason

wrong parameters have been
passed to the FAL:

the range (start HWd) to (Start
HWd + Number of HWds - 1)
must be in the EEL/User-Pool

remedy
refrain from further Flash
operations and investigate in
the root cause

FAL_ERR_PROTECTION heavy

meaning current command is rejected

reason

to gain robustness, the
parameter check is repeated
right before Flash modification
and returns the protection
error in case of a violation
(e.g. due to an unwanted
variable modification)

remedy
refrain from further Flash
operations and investigate in
the root cause

FAL_ERR_REJECTED heavy

meaning current command is rejected

reason any other operation is ongoing

remedy
repeat the command when the
preceding operation has
finished

FAL_ERR_WRITE heavy

meaning
at least one HWd could not be
written correctly

reason

1) for any bit of the written
area, the voltage levels are
below specification for a
written cell

2) a Flash write operation on a
not blank cell failed

remedy
a Flash block respectively the
complete Data Flash should
be considered as defect

FAL_ERR_INTERNAL heavy

meaning

a library internal error
occurred, which could not
happen in case of normal
application execution

reason
application bug (e.g. program
run-away, destroyed program
counter) or hardware problem

remedy
refrain from further Flash
operations and investigate in
the root cause

Data Flash Access Library (FDL - T06) User Interface (API)

R01US0045ED Rev. 1.01 29
User Manual

4.4 Library Functions

4.4.1 Initialization

4.4.1.1 FAL_Init

Description

Function is executed before any execution of other FDL Flash operations.

The main functionality of the FAL_Init is:

 Initialization of the Flash programming hardware

 Set internal frequency

 Initialization of internal FDL variables

FAL_Init need to access the device internal firmware in order to initialize
the Flash programming hardware. During that time, the Code Flash is not
accessible and so, no interrupts or exceptions can be served. The library
can execute code to disable interrupts and/or exceptions during that time
as user callback functions. The user must configure these by the library
pre-compile configuration (see 4.1 “Pre-compile configuration”).

Interface

fal_status_t FAL_Init(const fal_descriptor_t* descriptor_pstr)

Arguments

Type Argument Description

fal_descriptor_t descriptor_pstr Pointer to the FDL run-time
configuration descriptor in ROM

Return types / values

Type Argument Description

fal_status_t Operation status when returned from
function call:

 FAL_OK

 FAL_ERR_PARAMETER

 FAL_ERR_INTERNAL

Pre-conditions

None

Post-conditions

None

Note

Data Flash Access Library (FDL - T06) User Interface (API)

R01US0045ED Rev. 1.01 30
User Manual

Example

fal_status_t ret;

/* Initialze FDL */

ret = FAL_Init(&fal_RTCONFIG_enu);

if(ret != FAL_OK)

{

 /* Error handler */

}

4.4.2 Suspend / Resume

The library provides the functionality to suspend and resume the library operation
in order to provide the possibility to synchronize the EEL Flash operations with
possible user application Flash operations, e.g. write/erase by using the FDL
library directly or read by direct Data Flash read access.

When FAL_SuspendRequest has already suspended a Flash Erase, another
Flash erase is not possible. If FAL_SuspendRequest has already
suspended a Flash Write, another Flash Erase or Write is not possible.

The suspend / resume mechanism can not be nested. Therefore, the
following sequence is not allowed:

Any Flash operation → suspend → any Flash operation → suspend

4.4.2.1 FAL_SuspendRequest

Description

This function requests suspending a Flash operation in order to be able to do
other Flash operations or Flash read.

If the function returned successfully, no further error check of the suspend
procedure is necessary, as a potential error is saved and restored on
FAL_ResumeRequest.

In case of any violation of the correct function usage, the function will return
FAL_ERR_REJECTED.

Interface

fal_status_t FAL_SuspendRequest(void)

Arguments

None

Return types / values

Type Argument Description

fal_status_t Operation status when returned from
function call:

 FAL_OK

 FAL_ERR_REJECTED

Pre-conditions

 A Flash operation must have been started.

Note 1

Note 2

Data Flash Access Library (FDL - T06) User Interface (API)

R01US0045ED Rev. 1.01 31
User Manual

 The started operation may not have been finished (request structure
status value is FAL_BUSY).

 The library may not already be suspended.

Post-conditions

Call FAL_Handler until the library is suspended

Example

fal_status_t srRes_enu;

fal_request_t myReq_str;

fal_u32 i;

/* Start Erase operation */

myReq_str.command_enu = FAL_CMD_ERASE;

myReq_str.idx_u32 = 0;

myReq_str.cnt_u16 = 4;

myReq_str.accessType_enu = FAL_ACCESS_USER;

FAL_Execute(&myReq_str);

/* Now call the handler some times */

i = 0;

while((myReq_str.status_enu == FAL_BUSY) &&(i<10))

{

 FAL_Handler();

 i++;

}

/* Suspend request and wait until suspended */

srRes_enu = FAL_SuspendRequest();

if(FAL_OK != srRes_enu)

{

 /* error handler */

}

while(FAL_SUSPENDED != myReq_str.status_enu)

{

 FAL_Handler();

}

/* FAL is suspended. Handle other operations or read the Flash */

/* ... */

/* Erase resume */

srRes_enu = FAL_Resumerequest();

if(FAL_OK != srRes_enu)

{

 /* Error handler */

}

/* Finish the erase */

while(myReq_str.status_enu == FAL_SUSPENDED)

{

 FAL_Handler();

}

while(myReq_str.status_enu == FAL_BUSY)

{

 FAL_Handler();

}

if(FAL_OK != myReq_str.status_enu)

{

Data Flash Access Library (FDL - T06) User Interface (API)

R01US0045ED Rev. 1.01 32
User Manual

 /* Error handler */

}

4.4.2.2 FAL_ResumeRequest

Description

This function requests to resume the FAL operation after suspending. The
resume is just requested by this function. Resume handling is done by the
FAL_Handler function.

In case of any violation of the correct function usage, the function will return
FAL_ERR_REJECTED.

Interface

fal_status_t FAL_ResumeRequest(void)

Arguments

None

Return types / values

Type Argument Description

fal_status_t Operation status when returned from
function call:

 FAL_OK

 FAL_ERR_REJECTED

Pre-conditions

The library must be suspended. Call FAL_SuspendRequest before and wait
until the suspend process finished.

Post-conditions

Call FAL_Handler until the library is resumed

Example

See FAL_SuspendRequest

4.4.3 Standby / Wakeup

The stand-by functionality shall suspend ongoing Flash operations
asynchronously to the normal FDL handling flow, e.g. by using a high priority
interrupt function.

It does not necessarily immediately suspend any Flash operation, as suspend
might be delayed by the device internal hardware or might not be supported at all
(only Erase and Write are suspend-able). So, the function FAL_StandBy tries to
suspend the Flash operation and returns FAL_BUSY as long as a Flash
operation is ongoing. If suspend was not possible (e.g. blank check operation),
FAL_BUSY is returned until the operation is finished normally.
So, in order to be sure to have no Flash operation ongoing, the function must be
called continuously until the function does no longer return FAL_BUSY or until a
timeout occurred.

Data Flash Access Library (FDL - T06) User Interface (API)

R01US0045ED Rev. 1.01 33
User Manual

After stand-by, it is mandatory to call FAL_WakeUp before entering normal FAL
operation again. The prescribed sequence in case of using
FAL_StandBy/WakeUp is:

1. any FAL operation

2. FAL_StandBy

3. FAL_Handler until operation in standby

4. device power safe

5. device wake-up

6. FAL_WakeUp

7. continue FAL operations

Please consider not to enter a power safe mode which resets the Flash
hardware (e.g. Deep Stop mode), because a resume of the previous
operation is not possible afterwards. The library is not able to detect this
failure.

4.4.3.1 FAL_StandBy

Description

This function suspends a possibly ongoing Flash Erase or Write. Any other Flash
operation is untouched.

In case of any violation of the correct function usage, the function will return
FAL_ERR_REJECTED.

Interface

fal_status_t FAL_StandBy(void)

Arguments

None

Return types / values

Type Argument Description

fal_status_t Operation status when returned from
function call:

 FAL_OK

 FAL_BUSY

 FAL_ERR_REJECTED

Pre-conditions

 The library must be initialized

 The following sequence is not allowed:

Flash Erase → FAL suspend → Flash Write → FAL standby

 The FAL is not in standby mode

Post-conditions

 Continue calling FAL_StandBy until it no longer returns FAL_BUSY

 Execute FAL_WakeUp as next FAL function

Caution

Data Flash Access Library (FDL - T06) User Interface (API)

R01US0045ED Rev. 1.01 34
User Manual

Example

fal_status_t fdlRet_enu;

fal_request_t myReq_str;

/* Start Erase operation */

myReq_str.command_enu = FAL_CMD_ERASE;

myReq_str.idx_u32 = 0;

myReq_str.cnt_u16 = 4;

myReq_str.accessType_enu = FAL_ACCESS_USER;

FAL_Execute(&myReq_str);

...

do

{

 fdlRet = FAL_StandBy();

}

while(FAL_BUSY == fdlRet);

if(FAL_OK != fdlRet)

{

 /* error handler */

}

...

/* device enters power safe mode */

...

/* device recovers from power safe mode */

...

fdlRet = FAL_WakeUp();

if(FAL_OK != fdlRet)

{

 /* error handler */

}

/* Finish the erase */

while(myReq_str.status_enu == FAL_BUSY)

{

 FAL_Handler();

}

if(FAL_OK != myReq_str.status_enu)

{

 /* Error handler */

}

4.4.3.2 FAL_WakeUp

Description

This function wakes-up the library from the former entered Standby.

In case of any violation of the correct function usage, the function will return
FAL_ERR_REJECTED.

 Interface

fal_status_t FAL_WakeUp(void)

Data Flash Access Library (FDL - T06) User Interface (API)

R01US0045ED Rev. 1.01 35
User Manual

Arguments

None

Return types / values

Type Argument Description

fal_status_t Operation status when returned from
function call:

 FAL_OK

 FAL_ERR_REJECTED

Pre-conditions

 The library must be initialized

 The FAL is in standby mode

Post-conditions

None

Example

See FAL_StandBy

4.4.4 Operational functions

4.4.4.1 FAL_Execute

Description

The execute function initiates all Flash modification operations. The operation
type and operation parameters are passed to the FAL by a request structure, the
status and the result of the operation are returned to the user application also by
the same structure. The required parameters as well as the possible return
values depend on the operation to be started.

This function only starts a hardware operation according to the command to be
executed. The command processing must be controlled and stepped forward by
the handler function FAL_Handler.

Depending on the used command, different combinations of operation and
parameter are possible.

Command Description

FAL_CMD_ERASE Performs erase for each block of the specified
range.

The following arguments must be set for execution:

 idx_u32: Start block index (block number)

 cnt_u16: Numbers of blocks to erase

 accessType_enu: Access rights (see 4.3.1)

FAL_CMD_WRITE Write the data placed in the write input buffer to the
Data Flash at the specified relative starting address
for the specified number of HWds.

The following arguments must be set for execution:

 idx_u32: Start byte index (relative address)

 cnt_u16: Number of HWds to check

 accessType_enu: Access rights (see 4.3.1)

Data Flash Access Library (FDL - T06) User Interface (API)

R01US0045ED Rev. 1.01 36
User Manual

Command Description

FAL_CMD_BLANKCHECK Performs internal checks starting from the specified
beginning address of the Data Flash for the area in
the execution range.

The following arguments must be set for execution:

 idx_u32: Start byte index (relative address)

 cnt_u16: Number of HWds to check

 accessType_enu: Access rights (see 4.3.1)

FAL_CMD_BITCHECK Performs internal checks starting from the specified
beginning address of the Data Flash for the area in
the execution range.

The following arguments must be set for execution:

 idx_u32: Start byte index (relative address)

 cnt_u16: Number of HWds to check

 accessType_enu: Access rights (see 4.3.1)

Interface

void FAL_Execute(fal_request_t *request_pstr)

Arguments

Type Argument Description

fal_request_t request_pstr Address of the structure specifying the
command to be executed.

Return types / values

Type Argument Description

fal_request_t request_pstr.status_enu Operation status when returned from
function call:

 FAL_BUSY

 FAL_ERR_PARAMETER

 FAL_ERR_REJECTED

 FAL_ERR_COMMAND

 FAL_OK

 FAL_ERR_BITCHECK

Pre-conditions

The library must be initialized

Post-conditions

Call FAL_Handler until the Flash operation is finished. This is reported by the
request structure status return value.

Data Flash Access Library (FDL - T06) User Interface (API)

R01US0045ED Rev. 1.01 37
User Manual

Example

 Erase blocks 0 to 3:

myRequest.command_enu = FAL_ERASE

myRequest.idx_u32 = 0

myRequest.cnt_u16 = 4

myRequest.accessType_enu = FDL_ACCESS_USER;

FAL_Execute(&myRequest);

while(myRequest.status_enu == FAL_BUSY)

{

 FAL_Handler();

}

if(myRequest.status_enu != FAL_OK)

{

 /* Error handler */

}

 Write Data to addresses 0x100 to 0x107:

fal_u32 data[] = { 0x12345678, 0x23456789 };

myRequest.command_enu = FAL_WRITE

myRequest.idx_u32 = 0x100

myRequest.cnt_u16 = 4

myRequest.dataAdd_u32 = &data[0];

myRequest. accessType_enu = FDL_ACCESS_USER;

FAL_Execute(&myRequest);

while(myRequest.status_enu == FAL_BUSY)

{

 FAL_Handler();

}

if(myRequest.status_enu != FAL_OK)

{

 /* Error handler */

}

 Blank check on the address range 0x100 to 0x107:

myRequest.command_enu = FAL_CMD_BLANKCHECK

myRequest.idx_u32 = 0x100

myRequest.cnt_u16 = 4

myRequest. accessType_enu = FDL_ACCESS_USER;

FAL_Execute(&myRequest);

while(myRequest.status_enu == FAL_BUSY)

{

 FAL_Handler();

}

if(myRequest.status_enu != FAL_OK)

{

 /* Error handler */

}

Data Flash Access Library (FDL - T06) User Interface (API)

R01US0045ED Rev. 1.01 38
User Manual

 Bit check on the address range 0x100 to 0x107:

myRequest.command_enu = FAL_CMD_BITCHECK

myRequest.idx_u32 = 0x100

myRequest.cnt_u16 = 4

myRequest. accessType_enu = FDL_ACCESS_USER;

FAL_Execute(&myRequest);

while(myRequest.status_enu == FAL_BUSY)

{

 FAL_Handler();

}

if(myRequest.status_enu != FAL_OK)

{

 /* Error handler */

}

4.4.4.2 FAL_Handler

Description

This function handles the command processing for the FAL Flash operations.
After initiation by FAL_Execute, this function needs to be called frequently.

The function checks the operation status and updates the request structure
status_enu variable when the operation has finished. By that, the operations end
can be polled.

FAL_Handler must be called until the Flash operation has finished in order
to deinitialize the Flash hardware. Only after deinitialization further
operations can be started or Data Flash can be read.

Interface

void FAL_Handler(void)

Arguments

None

Return types / values

Type Argument Description

fal_status_t Operation status when returned from
function call:

 FAL_OK

 FAL_BUSY

 FAL_SUSPENDED

 FAL_ERR_PROTECTION

 FAL_ERR_WRITE

 FAL_ERR_ERASE

 FAL_ERR_BLANKCHECK

 FAL_ERR_BITCHECK

 FAL_ERR_INTERNAL

Note

Data Flash Access Library (FDL - T06) User Interface (API)

R01US0045ED Rev. 1.01 39
User Manual

Pre-conditions

 The library must be initialized

 FAL_Execute must be executed

Post-conditions

None

Example

See FAL_Execute

4.4.5 Administrative functions

4.4.5.1 FAL_GetVersionString

Description

This function returns the pointer to the library version string. The version string is
a zero terminated string identifying the library.

Interface

const fal_u08* FAL_GetVersionString(void)

Arguments

None

Return types / values

Type Argument Description

fal_u08 Pointer to version string

Version string format:

“DV850T06xxxxxYZabcD”

xxxxx

Coded information about the
supported compiler. If no
information is coded, the library is a
generic library valid for different
compiler.

Y

Coded information about the used
memory/register model. If no
information is coded, the library is a
generic library valid for all
memory/register models.

Z
“E” for engineering version

“V” for normal version

abc Library version number a.bc

optional:

D
optional character, identifying
different engineering versions

Pre-conditions

None

Data Flash Access Library (FDL - T06) User Interface (API)

R01US0045ED Rev. 1.01 40
User Manual

Post-conditions

None

Example

/* Read library version */

fal_u08 *version_pu08;

version_pu08 = FAL_GetVersionString();

Data Flash Access Library (FDL - T06) Integration into the user application

R01US0045ED Rev. 1.01 41
User Manual

Chapter 5 Integration into the user application

5.1 First steps

It is very important to have theoretic background about the Data Flash and the
EEL and FDL in order to successfully implement the library into the user
application. Therefore it is important to read this user manual in advance. The
best way after initial reading of the user manual will be testing the application
sample.

5.2 Application sample

After a first compile run, it will be worth playing around with the library in the
debugger. By that you will get feeling for the source code files and the working
mechanism of the library.

Before the first compile run, the compiler path must be configured in the
application sample file “makefile”:

Set the variable COMPILER_INSTALL_DIR to the correct compiler directory

5.3 Special considerations

5.3.1 Function reentrancy

All functions are not reentrant. So, reentrant calls of any EEL or FDL functions
must be avoided.

5.3.2 Task switch, context change and synchronization between
functions

Each function depends on global FDL available information and is able to modify
this information. In order to avoid synchronization problems, it is necessary that
at any time only one FDL function is executed. So, it is not allowed to start an
FDL function, then switch to another task context and execute another FDL
function while the last one has not finished.

5.3.3 Concurrent Data Flash accesses

Depending on the user application scenario, the Data Flash might be used for
different purposes, e.g. one part is reserved for direct access by the user
application and one part is reserved for EEPROM emulation by the Renesas EEL.
The FDL is prepared to split the Data Flash into an EEL Pool and a User Pool.

On partitioned Data Flash, the EEL is the only master on the EEL pool, accesses
to this pool shall be done via the EEL API only.

Access to the user pool is done by using the FDL API functions for all accesses
except read (e.g. FDL_Erase, FDL_Write, ...), while Data Flash read is directly
done by the CPU.

The configuration of FDL pool and EEL pool (and resulting user pool) is done in
the FDL descriptor.

Note:

Caution

Data Flash Access Library (FDL - T06) Integration into the user application

R01US0045ED Rev. 1.01 42
User Manual

5.3.4 User Data Flash access during active EEPROM emulation

Please refer to the EEL user manual regarding more detailed description of
synchronization between EEPROM emulation and user accesses.

5.3.5 Direct access to the Data Flash by the user application by DMA

Basically, DMA transfers from Data Flash are permitted, but need to be
synchronized with the EEL. Same considerations apply as mentioned in the last
sub-chapter for accesses by the user application.

5.3.6 Entering power safe mode

Entering power safe mode is not allowed at all during ongoing Data Flash
operations. Use FAL_StandBy or wait until operations are no longer busy.

Data Flash Access Library (FDL - T06) Integration into the user application

R01US0045ED Rev. 1.01 43
User Manual

Revision History

Chapter Page Description

Rev. 1.00

 Initial version

Rev. 1.01

4.2 20 Updated frequency setting description

R01US0045ED

Data Flash Access Library

