LENESAS

C
77
@D
ﬂ\l
7
<
Q
S
-
QL

CubeSuite Ver.1.40

Integrated Development Environment
User’'s Manual: Coding for CX Compiler

Target Device
V850 Microcontroller

All information contained in these materials, including products and product specifications,
represents information on the product at the time of publication and is subject to change by
Renesas Electronics Corp. without notice. Please review the latest information published by
Renesas Electronics Corp. through various means, including the Renesas Electronics Corp.
website (http://www.renesas.com).

Renesas Electronics
WWW.renesas.com Rev.1.00 Oct 2010

10.

11.

12.

Notice

All information included in this document is current as of the date this document is issued. Such information, however, is
subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please
confirm the latest product information with a Renesas Electronics sal es office. Also, please pay regular and careful attention to
additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.

Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights
of third parties by or arising from the use of Renesas Electronics products or technical information described in this document.
No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights
of Renesas Electronics or others.

Y ou should not ater, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.

Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of
semiconductor products and application examples. Y ou are fully responsible for the incorporation of these circuits, software,
and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by
you or third parties arising from the use of these circuits, software, or information.

When exporting the products or technology described in this document, you should comply with the applicable export control
laws and regulations and follow the procedures required by such laws and regulations. 'Y ou should not use Renesas
Electronics products or the technology described in this document for any purpose relating to military applications or use by
the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and
technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited
under any applicable domestic or foreign laws or regulations.

Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics
does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages
incurred by you resulting from errors in or omissions from the information included herein.

Renesas Electronics products are classified according to the following three quality grades: “Standard”, “High Quality”, and
“Specific’. The recommended applications for each Renesas Electronics product depends on the product’s quality grade, as
indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular
application. You may not use any Renesas Electronics product for any application categorized as “ Specific” without the prior
written consent of Renesas Electronics. Further, you may not use any Renesas Electronics product for any application for
which it is not intended without the prior written consent of Renesas Electronics. Renesas Electronics shall not be in any way
liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an
application categorized as“ Specific” or for which the product is not intended where you have failed to obtain the prior written
consent of Renesas Electronics. The quality grade of each Renesas Electronics product is“ Standard” unless otherwise
expressly specified in a Renesas Electronics data sheets or data books, etc.

“Standard”: Computers; office equipment; communications equipment; test and measurement equipment; audio and visual
equipment; home el ectronic appliances, machine tools; persona electronic equipment; and industria robots.

“High Quality”: Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-
crime systems; safety equipment; and medical equipment not specifically designed for life support.

“Specific™: Aircraft; agrospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or
systems for life support (e.g. artificial life support devices or systems), surgical implantations, or heathcare
intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.

Y ou should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics,
especialy with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation
characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or
damages arising out of the use of Renesas Electronics products beyond such specified ranges.

Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have
specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further,
Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to
guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a
Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire
control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because
the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system
manufactured by you.

Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental
compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable
laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS
Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with
applicable laws and regulations.

This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas
Electronics.

Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this
document or Renesas Electronics products, or if you have any other inquiries.

(Note 1) “Renesas Electronics’ as used in this document means Renesas Electronics Corporation and also includes its majority-

owned subsidiaries.

(Note2) “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.

How to Use This Manual

This manual describes the role of the CubeSuite integrated development environment for developing applications
and systems for V850 microcontrollers, and provides an outline of its features.
CubeSuite is an integrated development environment (IDE) for V850 microcontrollers, integrating the necessary

tools for the development phase of software (e.g. design, implementation, and debugging) into a single platform.

By providing an integrated environment, it is possible to perform all development using just this product, without
the need to use many different tools separately.

Readers

Purpose

Organization

How to Read This Manual

Conventions

This manual is intended for users who wish to understand the functions of the
CubeSuite and design software and hardware application systems.

This manual is intended to give users an understanding of the functions of the
Cubesuite to use for reference in developing the hardware or software of systems using
these devices.

This manual can be broadly divided into the following units.

CHAPTER 1 GENERAL

CHAPTER 2 FUNCTIONS

CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS
CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS
CHAPTER 5 LINK DIRECTIVE SPECIFICATIONS
CHAPTER 6 FUNCTIONAL SPECIFICATIONS
CHAPTER 7 STARTUP

CHAPTER 8 ROMIZATION

CHAPTER 9 REFERENCING COMPILER AND ASSEMBLER
CHAPTER 10 CAUTIONS

APPENDIX A INDEX

It is assumed that the readers of this manual have general knowledge of electricity, logic
circuits, and microcontrollers.

Data significance: Higher digits on the left and lower digits on the right
Active low representation: XXX (overscore over pin or signal name)

Note: Footnote for item marked with Note in the text
Caution: Information requiring particular attention

Remark: Supplementary information

Numeric representation: Decimal ... XXXX
Hexadecimal ... OxXXXX

Related Documents

The related documents indicated in this publication may include preliminary versions.

However, preliminary versions are not marked as such.

Document Name

Document No.

CubeSuite

Integrated Development Environment

User's Manual

Start R20UT0256E
Analysis R20UT0265E
Programming R20UT0266E
Message R20UT0267E
Coding for CX compiler This manual
Build for CX compiler R20UT0261E
78K0 Coding R20UT0004E
78K0 Build R20UTO0005E
78K0 Debug R20UT0262E
78K0 Design R20UT0006E
78KO0R Coding U19382E
78KOR Build U19385E
78KOR Debug R20UT0263E
78KOR Design R20UT0007E
V850 Coding U19383E
V850 Build U19386E
V850 Debug R20UT0264E
V850 Design R20UT0257E

Caution The related documents listed above are subject to change without

notice. Be sure to use the latest edition of each document when

designing.

All trademarks or registered trademarks in this document are the property of their respective

owners.

[MEMO]

[MEMO]

[MEMO]

TABLE OF CONTENTS

CHAPTER 1 GENERAL ... 14

1.1 Outline ... 14
1.2 Special Features ... 14
1.3 Limits ... 14

CHAPTER 2 FUNCTIONS ... 16

2.1 Variables (C Language) ... 16
2.1.1 Allocating to sections accessible with short instructions ... 16
2.1.2 Changing allocated section ... 17

2.1.3 Defining variables for use during standard and interrupt processing ...

2.1.4 Defining user port ... 20
2.1.5 Defining const constant pointer ... 21
2.2 Functions ... 22
2.2.1 Changing areato be allocated to ... 22
2.2.2 Calling away function ... 23
2.2.3 Embedding assembler instructions ... 24
2.2.4 Executing in RAM ... 24
2.3 Using Microcomputer Functions ... 25
2.3.1 Accessing peripheral I/O register with C language ... 25
2.3.2 Describing interrupt processing with C language ... 26
2.3.3 Using CPU instructions in C language ... 27
2.3.4 Creating self-programming boot area ... 29
2.3.5 Creating multi-core programs ... 30
2.4 Variables (Assembler) ... 42
2.4.1 Defining variables with no initial values ... 42
2.4.2 Defining const constants with initial values ... 43
2.4.3 Referencing section addresses ... 44
2.5 Startup Routine ... 45
2.5.1 Securing stack area ... 45
2.5.2 Securing stack area and specifying allocation ... 47
2.5.3 Initializing RAM ... 48
2.5.4 Preparing function and variable access ... 49
2.5.5 Preparing to use code size reduction function ... 52
2.5.6 Ending startup routine ... 53
2.6 Link Directives ... 54
2.6.1 Adding function section allocation ... 54
2.6.2 Adding section allocation for variables ... 54
2.6.3 Distributing section allocation ... 55
2.7 Reducing Code Size ... 57
2.7.1 Reducing code size (C language) ... 57
2.7.2 Reducing variable area with variable definition method ... 68

2.8 Accelerating Processing ... 71

2.8.1 Accelerating processing with description method ... 71
2.9 Compiler and Assembler Mutual References ... 73

2.9.1 Mutually referencing variables ... 73

2.9.2 Mutually referencing functions ... 75

CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS ... 76

3.1 Basic Language Specifications ... 76
3.1.1 Unspecified behavior ... 76
3.1.2 Undefined behavior ... 77
3.1.3 Processing system dependent items ... 80
3.1.4 C99 language function ... 90
3.1.5 ANSI option ... 91
3.1.6 Internal representation and value area of data ... 92
3.1.7 General-purpose registers ... 99
3.1.8 Referencing data ... 99
3.1.9 Software register bank ... 100
3.1.10 Device file ... 102
3.2 Extended Language Specifications ... 103
3.2.1 Macro name ... 103
3.2.2 Keyword ... 104
3.2.3 #pragmadirective ... 104
3.2.4 Using expanded specifications ... 106
3.2.5 Modification of C source ... 155
3.3 Function Call Interface ... 157
3.3.1 Calling between C functions ... 157
3.3.2 Prologue/Epilogue processing function ... 168
3.3.3 far jump function ... 170
3.4 Section Name List ... 175

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS ... 177

4.1 Description of Source ... 177
4.1.1 Description ... 177
4.1.2 Expressions and operators ... 187
4.1.3 Arithmetic operators ... 189
4.1.4 Logic operators ... 197
4.1.5 Relational operators ... 202
4.1.6 Shift operators ... 211
4.1.7 Byte separation operators ... 214
4.1.8 2-byte separation operators ... 217
4.1.9 Special operators ... 221
4.1.10 Other operator ... 224
4.1.11 Restrictions on operations ... 226
4.1.12 Identifiers ... 227
4.2 Directives ... 228
4.2.1 Outline ... 228
4.2.2 Section definition directives ... 229

4.2.3 Symbol definition directives ... 240
4.2.4 Data definition, area reservation directives ... 244
4.2.5 External definition, external reference directives ... 258
4.2.6 Macro directives ... 265
4.3 Control Instructions ... 276
4.3.1 Outline ... 276
4.3.2 Compile target type specification control instruction ... 277
4.3.3 Symbol control instructions ... 279
4.3.4 Assembler control instructions ... 282
4.3.5 File input control instructions ... 293
4.3.6 Smart correction control instruction ... 296
4.3.7 Conditional assembly control instructions ... 298
4.4 Macro ... 307
4.4.1 Outline ... 307
4.4.2 Usage of macro ... 307
4.4.3 Macro operator ... 308
4.5 Reserved Words ... 309
4.6 Assembler Generated Symbols ... 310
4.7 Instructions ... 310
4.7.1 Memory space ... 310
4.7.2 Register ... 311
4.7.3 Addressing ... 315
4.7.4 Instruction set ... 322
4.7.5 Description of instructions ... 335
4.7.6 Load/Store instructions ... 336
4.7.7 Arithmetic operation instructions ... 349
4.7.8 Saturated operation instructions ... 401
4.7.9 Logical instructions ... 412
4.7.10 Branch instructions ... 447
4.7.11 Bit manipulation instructions ... 464
4.7.12 Stack manipulation instructions ... 473
4.7.13 Special instructions ... 478
4.7.14 Floating-point operation instructions [V850E2V3] ... 498

CHAPTER 5 LINK DIRECTIVE SPECIFICATIONS ... 505

5.1 Specification Items ... 505
5.1.1 Segment directives and mapping directives ... 505
5.1.2 Symbol directive ... 505
5.2 Sections and Segments ... 506
5.2.1 Sections ... 506
5.2.2 Segments ... 506
5.2.3 Relationship between segments and sections ... 508
5.2.4 Types of sections ... 509
5.2.5 Relationship between types and attributes of sections ... 512
5.3 Symbols ... 513
5.3.1 Text pointer (tp) ... 513
5.3.2 Global pointer (gp) ... 514
5.3.3 Element pointer (ep) ... 517

5.4 Coding Method ... 518

5.4.1 Characters used in link directive file ... 519

5.4.2 Link directive file name ... 519
5.4.3 Segment directive ... 519
5.4.4 Mapping directive ... 525
5.4.5 Symbol directive ... 533

5.5 Reserved Words ... 537

CHAPTER 6 FUNCTIONAL SPECIFICATIONS ...

6.1 Supplied Libraries ... 538
6.1.1 Standard library ... 539
6.1.2 Mathematical library ... 543
6.1.3 Initialization library ... 545
6.1.4 ROMization library ... 546
6.1.5 Multi-core library ... 546
6.1.6 Runtime library ... 547
6.1.7 Libraries used in V850E2V3-FPU ... 553

6.2 Header Files ... 554

6.3 Re-entrant ... 555

6.4 Library Function ... 556

6.4.1 Functions with variable arguments ... 556

6.4.2 Character string functions ... 560
6.4.3 Memory management functions ... 578
6.4.4 Character conversion functions ... 586

6.4.5 Character classification functions ... 592

6.4.6 Standard I/O functions ... 605
6.4.7 Standard utility functions ... 639
6.4.8 Non-local jump functions ... 679
6.4.9 Mathematical functions ... 682

6.4.10 Initialization peripheral devices function ...

6.4.11 Copy functions ... 750

6.4.12 Pseudo "main" functions for multi-core ...

6.4.13 Operation runtime functions ... 753

6.4.14 Function pre/post processing runtime functions ...

6.5 Library Consumption Stack List ... 815
6.5.1 Standard library ... 815
6.5.2 Mathematical library ... 819
6.5.3 Initialization library ... 821
6.5.4 ROMization library ... 821
6.5.5 Multi-core library ... 821
6.5.6 Runtime library ... 822
6.5.7 Libraries used in V850E2V3-FPU ... 829

CHAPTER 7 STARTUP ... 831

7.1 Outline ... 831
7.2 File Contents ... 831
7.3 Startup Routine ... 831

538

748

751

814

7.3.1 Setting RESET handler when reset is input ... 832
7.3.2 Setting of register mode of startup routine ... 833
7.3.3 Securing stack area and setting stack pointer ... 833
7.3.4 Securing argument area for main function ... 834
7.3.5 Setting text pointer (tp) ... 834
7.3.6 Setting global pointer (gp) ... 835
7.3.7 Setting element pointer (ep) ... 835
7.3.8 Initializing peripheral 1/O registers that must be initialized before execution of main
function ... 836
7.3.9 Initializing user target that must be initialized before execution of main function ... 837
7.3.10 Clearing shss areato 0 ... 837
7.3.11 Clearing bss areato 0 ... 838
7.3.12 Clearing sebss areato 0 ... 838
7.3.13 Clearing tibss.byte areato 0 ... 839
7.3.14 Clearing tibss.word areato 0 ... 840
7.3.15 Clearing sibss areato 0 ... 840
7.3.16 Setting of CTBP value for function pre/post processing runtime function ... 841
7.3.17 Setting of programmable peripheral I/O register value ... 842
7.3.18 Setting r6 and r7 as argument of main function ... 842
7.3.19 Branching to main function (when not using real-time OS) ... 843
7.3.20 Branching to initialization routine of real-time OS (when using real-time OS) ... 843
7.3.21 V850E2V3 multi-core startup routine ... 844
7.4 Coding Example ... 845

CHAPTER 8 ROMIZATION ... 850

8.1 Outline ... 850
8.2 rompsec Section ... 852
8.2.1 Types of sections to be packed ... 852
8.2.2 Size of rompsec section ... 852
8.2.3 rompsec section and link directive ... 853
8.3 Creating ROMized Load Module File ... 854
8.3.1 Procedure for creating ROMized load module (default) ... 854
8.3.2 Procedure for creating ROMized load module (customize) ... 857
8.4 Copy Functions ... 860

CHAPTER 9 REFERENCING COMPILER AND ASSEMBLER ... 868

9.1 Method of Accessing Arguments and Automatic Variables ... 868
9.2 Method of Storing Return Value ... 868

9.3 Calling of Assembly Language Routine from C Language ... 869
9.4 Calling of C Language Routine from Assembly Language ... 870
9.5 Reference of Argument Defined by Other Language ... 871

CHAPTER 10 CAUTIONS ... 872

10.1 Delimiting Folder/Path ... 872
10.2 Mixing with K&R Format in Function Declaration/Definition ... 872
10.3 Output of Other Than Position-Independent Codes ... 873

10.4 Library File Search by Specifying Option ... 873
10.5 Volatile Qualifier ... 874
10.6 Extra Brackets in Function Declaration ... 876

APPENDIX A INDEX ... 877

CubeSuite Ver.1.40 CHAPTER 1 GENERAL

CHAPTER 1 GENERAL

This chapter provides a general outline of the V850 microcontroller's C compiler package (CX).

1.1 Outline

The V850 microcontroller's C compiler package (CX) is a program that converts programs described in C language or
assembly language into machine language.

1.2 Special Features
The V850 microcontroller's C compiler package (CX) is equipped with the following special features.
(1) Language specifications in accordance with ANSI standard
The C language specifications conform to the ANSI standard. Coexistence with prior C language specifications

(K&R specifications) is also provided.

(2) Advanced optimization
Code size and speed priority optimization for the C compiler are offered.

(3) Improvement to description ability
C language programming description ability has been improved due to enhanced language specifications.

(4) High portability
The single CX supports all microcontrollers. This makes it possible to use a uniform language specification, and
facilitates porting between microcontrollers.

In addition, the industry-standard DWARF2 format is used for debugging information.

(5) Multifunctional
Static analysis and other functionality is provided via linking between CubeSuite.

1.3 Limits

(1) Compiler limits
See "(9) Translation Limit" for the limits of the compiler.

(2) Assembler limits

Table 1-1. Assembler Limits

Description Limit

Symbol length (Token length) 4,294,967,294N0t
Label length (Token length) 4,294,967,294Note
Number of symbols 4,294,967,294N0t
Number of parameters in LOCAL directive 4,294,967,294N0t
Number of automatically generated LOCAL directive symbols 4,294,967,294Note
Nesting levels in INCLUDE directive 4,294,967,294 Note
Total size of TIDATA.BYTE and TIBSS.BYTE relocation attribute sections 128 bytes

R20UT0259EJ0100 Rev.1.00 RENESAS Page 14 of 890
Oct 01, 2010

CubeSuite Ver.1.40

CHAPTER 1 GENERAL

Description

Limit

Total size of TIDATA.WORD and TIBSS.WORD relocation attribute sections

256 bytes

ALIGN directive

Even number from 2 to less than 2e31

Number of arguments in IRP directive

4,294,967,294Note

Note Depends on memory of host machine on which it is running.

R20UT0259EJ0100 Rev.1.00
Oct 01, 2010

RENESAS

Page 15 of 890

CubeSuite Ver.1.40 CHAPTER 2 FUNCTIONS

CHAPTER 2 FUNCTIONS

This chapter explains the programming method and how to use the expansion functions for more efficient use of the
CX.

2.1 Variables (C Language)

This section explains variables (C language).

211 Allocating to sections accessible with short instructions

The V850 contains 2-byte instruction length load/store instructions. By allocating variables to sections accessible with
these instructions it is possible to reduce the code size.

When defining or referencing a variable use the #pragma section and specify “tidata” as the section type.

#pragna section section-type
vari abl e-decl arati on/ definition

#pragnma section defaul t

Example

#pragna section tidata
int a=1; /*allocated to tidata.word attribute section*/

int b; /*allocated to tibss.word attribute section*/

#pragnma section default

Remark See "#pragma section directive".

R20UT0259EJ0100 Rev.1.00 RENESAS Page 16 of 890
Oct 01, 2010

CubeSuite Ver.1.40 CHAPTER 2 FUNCTIONS

2.1.2 Changing allocated section

The default allocation sections are as follows:
- Variables with no initial value: .sbss section
- Variables with initial value: .sdata section
- const constants: .const section
To change the allocated section, specify the section type using #pragma section.

#pragna section section-type
vari abl e-decl arati on/ definition

#pragnma section defaul t

The relationship between section type and the section generated is as follows.

Section Type Initial Value Default Section Section Name Base Register Access Instruction
Name Change

data Yes .data Possible ap Id/st 2 instruction
No .bss Possible ap Id/st 2 instruction

sdata Yes .sdata Possible ap ld/st 1 instruction
No .sbss Possible ap ld/st 1 instruction

sedata Yes .sedata Impossible ep lld/st 1 instruction
No .sebss Impossible ep Id/st 1 instruction

sidata Yes .Sidata Impossible ep Id/st 1 instruction
No .sibss Impossible ep Id/st 1 instruction

tidata_byte Yes tidata.byte Impossible ep sld/sst 1 instruction
No tibss.byte Impossible ep sld/sst 1 instruction

tidata_byte Yes tidata.word Impossible ep sld/sst 1 instruction
No .tibss.word Impossible ep sld/sst 1 instruction

sconst Yes .sconst Impossible r0 Id/st 1 instruction

const Yes .const Possible ro Id/st 1 instruction

default After this statement, any previous #pragma section will be ignored, and the default allocation will be
used.

Example

#pragma section sdata "nysdata"
int a=1; /*all ocated to nysdata.sdata attribute section*/
int b; /*all ocated to nysdata.sbss attribute section*/

#pragnma section default

When referencing a variable using the #pragma section instruction from a function in another file (i.e. reference file), it
is necessary to also specify the #pragma section instruction in the reference file and to define the affected variable as
extern format.

R20UT0259EJ0100 Rev.1.00 RENESAS Page 17 of 890
Oct 01, 2010

CubeSuite Ver.1.40 CHAPTER 2 FUNCTIONS

Example File that defines a table

#pragna section sconst
const unsigned char table_data[9] = {1, 2, 3, 4, 5 6, 7, 8, 9};

#pragnma section default

Example File that references a table

#pragnma section sconst
extern const unsigned char table_data[];

#pragnma section default

Remark See "#pragma section directive".

R20UT0259EJ0100 Rev.1.00 RENESAS Page 18 of 890
Oct 01, 2010

CubeSuite Ver.1.40

CHAPTER 2 FUNCTIONS

2.1.3 Defining variables for use during standard and interrupt processing

Specify as volatile variables that are to be used during both standard and interrupt processing.

When a variable is defined with the volatile qualifier, the variable is not optimized and optimization for assigning the

variable to a register is no longer performed. When a variable specified as volatile is manipulated, a code that always

reads the value of the variable from memory and writes the value to memory after the variable is manipulated is output.

The access width of the variable with volatile specified is not changed. A variable for which volatile is not specified is

assigned to a register as a result of optimization and the code that loads the variable from the memory may be deleted.

When the same value is assigned to variables for which volatile is not specified, the instruction may be deleted as a result

of optimization because it is interpreted as a redundant instruction.

Example Source and output code when volatile has been specified

If volatile is specified for "variable a

variable b", and "variable c", a code that always reads the values of these

variables from memory and writes them to memory after the variables are manipulated is output. Even if an inter-

rupt occurs in the meantime and the values of the variables are changed by the interrupt, for example, the result in

which the change is reflected can be obtained. (In this case, interrupts may have to be disabled while the variables

are manipulated, depending on the timing of the interrupt.)

When volatile is specified, the code size increases compared with when volatile is not specified because the mem-

ory has to be read and written.

volatile int a; _func:
volatile int b; . BB. LABEL. 0:
volatile int c; callt 0
ld.w $ a, ri2
void func(void) { cnp ro, rl2
if(a <= 0) { bl e . BB. LABEL. 2
b++; . BB. LABEL. 1:
} else { ld.w $c, ri2
C++; add 1, ri2
} st.w r12, $_c
b++; br . BB. LABEL. 3
Cc++, . BB. LABEL. 2:
} Id w $_ b, ri2
add 1, ri2
st.w ri2, $_ b
. BB. LABEL. 3:
Id w $_ b, ri2
add 1, ri2
st.w ri2, $_ b
ld.w $ c, ri3
add 1, r13
st.w ri3, $_c
. BB. LABEL. 4:
callt 30
R20UT0259EJ0100 Rev.1.00 RENESAS Page 19 of 890

Oct 01, 2010

CubeSuite Ver.1.40 CHAPTER 2 FUNCTIONS

2.1.4 Defining user port

With regards to the user port, specify volatile as in the following example to avoid optimization.

Example Port description process

/*1.Port macro (format) definition*/

#defi ne DEFPORTB(addr) (*((volatile unsigned char *)addr)) /*8-bit port*/
#defi ne DEFPORTH(addr) (*((volatile unsigned short *)addr)) /*16-bit port*/
#defi ne DEFPORTW addr) (*((volatile unsigned int *)addr)) /*32-bit port*/

/*2.Port definition (Exanple: PORT1 0x00100000 8bit)*/
#defi ne PORT1 DEFPORTB(0x00100000) /*0x00100000 8-bit port*/

/*3. Port use*/

{
PORT1 = OxFF; /*Wite to PORT1*/

a = PORT1; / *Read from PORT1*/

/*4.C Conpil er output code*/

mov 1048576, r10
st.b r20, [r10]

mv 1048576, rl11
I d. bu [r11], r12

Remarks 1.

By declaring a structure and assigning that structure variable to a specific section, and then assigning it
to the corresponding port address in the link directive, bit access is possible in the same "X.X" format
used in the CX internal region 1/O register.

However, in the case of 1-bit or 8-bit access both the bit field and byte union are required, so the format
becomes "X.X.X".

Assigning variables to sections should be performed using #pragma section or the symbol information
file.

R20UT0259EJ0100 Rev.1.00 RENESAS Page 20 of 890

Oct 01, 2010

CubeSuite Ver.1.40 CHAPTER 2 FUNCTIONS

2.15 Defining const constant pointer

The pointer is interpreted differently depending on the "const" specified location.
To assign the const section to the sconst section, specify #pragma section sconst.

- const char *p;
This indicates that the object (*p) indicated by the pointer cannot be rewritten.
The pointer itself (p) can be rewritten.
Therefore the state becomes as follows and the pointer itself is allocated to RAM (.sdata/.data).

*p = 0; /[*Error*/
p =0; /*Correct*/

- char *const p;
This indicates that the pointer itself (p) cannot be rewritten.
The object (*p) indicated by the pointer can be rewritten.
Therefore the state becomes as follows and the pointer itself is allocated to ROM (.sconst/.const).

*p = 0; /*Correct*/
p =0; [*Error*/

- const char *const p;
This indicates that neither the pointer itself(p) nor the object (*p) indicated by the pointer can be rewritten.
Therefore the state becomes as follows and the pointer itself is allocated to ROM (.sconst/.const).

*p = 0; /| *Error*/
p = 0; [*Error*/
R20UT0259EJ0100 Rev.1.00 RENESAS Page 21 of 890

Oct 01, 2010

CubeSuite Ver.1.40 CHAPTER 2 FUNCTIONS

2.2 Functions

This section explains functions.

221 Changing area to be allocated to

When changing a function's section name, specify the function using the #pragma text directive as shown below.

#pragma text ["section nanme"] [function nane[, function nane]...]

For a text attribute section that has had its section name changed, specify the initial section name from the time the
input section was created in a link directive.

Example The link directive coding method for when [#pragma text "secl" funcl] has been coded in the C source,

allocating function "funcl" to the independently generated text-attribute section "secl" (segment name:
FUNC1):

FUNCL: !'LOAD ?RX {

secl.text = $PROGBI TS ?AX secl.text;
b

When allocating a specific function to an independently specified text-attribute section using the #pragma text directive,

the section name actually generated will be "(specified character string)+.text", and the section name must be entered in
the link directive.

In the above example it would be "secl.text section”.

Remark See "#pragma text directive".

R20UT0259EJ0100 Rev.1.00 RENESAS Page 22 of 890
Oct 01, 2010

CubeSuite Ver.1.40 CHAPTER 2 FUNCTIONS

2.2.2 Calling away function

The C compiler uses the jarl instruction to call functions.

However, depending on the program allocation the address may not be able to be resolved, resulting in an error when
linking because the jarl instruction is 22-bit displacement.

In such a case, it is possible to make the function call not depend on the displacement amount by using the C com-
piler's -Xfar_jump option.

This is called the far jump function.

When calling a function set as far jump, the jarl32 and jr32 instruction rather than the jarl instruction is output.

One function is described per line in the file where the -Xfar_jump option is specified. The names described should be
C language function names prefixed with *_" (an underscore).

Example

_func_led
_func_beep

_func_notor

_func_switch

If the following is described in place of "_function-name”, all functions will be called using far jump.

{all _function}

If the following is described, all interrupt functions will be called using far jump.

{all _interrupt}

Remark See "far jump function”.

R20UT0259EJ0100 Rev.1.00 RENESAS Page 23 of 890
Oct 01, 2010

CubeSuite Ver.1.40 CHAPTER 2 FUNCTIONS

2.2.3 Embedding assembler instructions

With the CX assembler instructions can be described in the following formats within C source programs.
- asm declaration

__asm(character string constant);

- #pragma directive

#pragma asm
Assenbl er instruction

#pragma endasm

To use registers with an inserted assembler, save or restore the contents of the registers in the program because they
are not saved or restored by the CX.

Example

__asm("nop");
_asm(".str \"string\\0\"");

#pragma asm
nmov ro, r10
st.w r1o, $_i

#pragma endasm

Assembler instructions written within asm declarations and between #pragma asm and #pragma endasm directives are
never expanded even if the assembler source contains material defined by C language #define.

Furthermore assembler instructions written within asm declarations and between #pragma asm and #pragma endasm
directives are not expanded even if the -P option is added in the C compiler because they are passed as is to the assem-
bler.

Remark See "Describing assembler instruction".

224 Executing in RAM

A program allocated to external ROM can be copied to internal RAM and executed in internal RAM while linking and
after copying if the relative value of each section and each symbol (TP, EP, GP) is not destroyed.

Use caution, as some programs can be copied while others cannot.

After resetting, it is copied to internal RAM, and if the program is not changed, then the ROMization function can be
used to easily pack the text section. The CX performs ROMization by default.

The text section can be packed with the CX.

R20UT0259EJ0100 Rev.1.00 RENESAS Page 24 of 890
Oct 01, 2010

CubeSuite Ver.1.40 CHAPTER 2 FUNCTIONS

2.3 Using Microcomputer Functions

This section explains using microcomputer functions.

231 Accessing peripheral 1/0O register with C language

When reading from and writing to the device's internal peripheral 1/O register in C language, adding a pragma directive
to the C source makes possible reading and writing using the peripheral 1/O register name and bit names.

The peripheral I/O register name can be treated as a standard unsigned external variable. The & operator can also be
used to obtain the address of the peripheral I/O register.

#pragna i oreg
register nane = ...
bit name = ...

= ®ister nanme

After describing the above pragma directive as above, the peripheral 1/0O register name becomes usable.

Example

#pragnma i oreg

voi d func(void) {
int i;

unsi gned | ong adr;

PO = 1; /*Wites 1 to PO*/
i = RXBO; / *Reads from RXB0O*/
adr = &P1; /*Obtain the address of P1*/

For peripheral I/O register bit names, the relevant bit names are limited to ones defined by the CX.
An error will therefore occur if the bit name is undefined.

Remark See "Peripheral I/O register".

R20UT0259EJ0100 Rev.1.00 RENESAS Page 25 of 890
Oct 01, 2010

CubeSuite Ver.1.40 CHAPTER 2 FUNCTIONS

2.3.2 Describing interrupt processing with C language

With the CX, the interrupt handler is specified using the "#pragma interrupt directive".
An example of the interrupt handler is shown below.

Example Non-maskable interrupt

#pragnma interrupt NM funcl /*non-nmaskabl e interrupt*/

void funcl(void) {

Example Multiple interrupt

#pragma i nterrupt INTPO func2 multi /*mul tiple-interrupt*/

voi d func2(void) {

Remark See "Interrupt/Exception processing handler".

R20UT0259EJ0100 Rev.1.00 RENESAS Page 26 of 890
Oct 01, 2010

CubeSuite Ver.1.40 CHAPTER 2 FUNCTIONS

2.3.3 Using CPU instructions in C language

Some assembler instructions can be described in C source as Embedded functions. However, they are not described
exactly as assembler instructions, but rather in the function format prepared by the CX.
Instructions that can be described as functions are shown below.

Assembler Function Embedded Function Description
Instruction
di Interrupt control _DQ);
ei _BQO;
nop No operation __nop();
hal t Stops the processor __halt();
sat add Saturated addition | ong a, b;
| ong __satadd(a, b);
sat sub Saturated subtraction | ong a, b;
| ong __satsub(a, b);
bsh Halfword data byte swap | ong a;
| ong __bsh(a);
bsw Word data byte swap | ong a;
| ong __bsw(a);
hsw Word data halfword swap | ong a;
| ong __hsw(a);
sxb Byte data sign extension char a;
| ong __sxb(a);
sxh Halfword data sign extension short a;
| ong __sxh(a);
mul Instruction that applies result of 32-bit x 32-bit | ong a, b;
signed multiplication to variable using mul instruction | | ong long __mul(a, b);
mul u Instruction that applies result of 32-bit x 32-bit unsi gned | ong a, b;
signed multiplication to variable using mulu instruc- Unsigned long long _ mulu(a, b):
tion
mul 32 Instruction that assigns higher 32 bits of | ong a, b;
multiplication result to variable using mul32 | ong _ mil32(a, b);
instruction
mul 32u Instruction that assigns higher 32 bits of unsigned unsigned long a, b;
multiplication result to variable using mul32u unsi gned long _ mul 32u(a, b):
instruction
sasf Flag condition setting with logical left shift | ong a;
unsi gned i nt b;
| ong __sasf(a, b);
schol Bit (0) search from MSB side [V850E2V3] | ong a;
| ong __schol (a);
schOr Bit (0) search from LSB side [V850E2V3] | ong a;
| ong __schOr(a);
R20UT0259EJ0100 Rev.1.00 RENESAS Page 27 of 890

Oct 01, 2010

CubeSuite Ver.1.40

CHAPTER 2 FUNCTIONS

Assembler Function Embedded Function Description
Instruction
schil Bit (1) search from MSB side [V850E2V3] | ong a;
| ong __schll(a);
schlr Bit (1) search from LSB side [V850E2V3] | ong a;
| ong __schilr(a);
| dsr Loads to system register [V850E2V3] | ong a;
void _ |dsr(regl DYte a);
stsr Stores contents of system register [V850E2V3] unsi gned | ong __stsr(regl phot),
| dgr Loads to general-purpose register [V850E2V3] | ong a;
void _ Idgr(reglD¥te a)
stgr Stores contents of general-purpose register unsi gned | ong __stgr(regl DVte);
[V850E2V3]
caxi Compare and Exchange [V850E2V3] | ong *a;
| ong b, c;
void __caxi(a, b, ¢);

Note Specified the system register number (0 to 31) in regID.

But, don't specify 0 as regID in Idsr.

Example

long a, b, c;

voi d func(void) {

c = __satsub(a, b); /*The result of the saturated operation of a and b is
stored inc (¢c =a - b)*/
__nhop();
}
R20UT0259EJ0100 Rev.1.00 RENESAS Page 28 of 890

Oct 01, 2010

CubeSuite Ver.1.40 CHAPTER 2 FUNCTIONS

2.3.4 Creating self-programming boot area

Variables and functions can be referenced between the flash area and boot area with the following operations.
- Boot area functions can be called directly from the flash area.
- Calling a function from the boot area to the flash area is performed via a branch table.
- External boot area variables can be referenced from the flash area.
- External flash area variables cannot be referenced from the boot area.
- Common external variables as well as global functions can be defined for use by both boot area programs and
flash area programs. In this case the variable or function on the same area side is referenced.

Figure 2-1. Image of Flash Area/Boot Area

Boot Area Side ROM Flash Area Side ROM

_boot func: _flashfunc:

A T A A

jarl

_bootfunc, Ip

jarl

jarl

_boot f unc,

_flashfunc,

I'p

I'p

jarl

_flashfunc, Ip

Branch Table

D1

jr

ID:0

jr

_flashfunc

Flash area functions called from the boot area are defined with the ext_func directive.

.ext_func function nane, |D nunber

Example Within a C language program

#pragma asm
.ext_func _func_flashO, 0
.ext_func _func_flashl, 1
.ext_func _func_flash2, 2

#pragma endasm

Additional specifications such as options must be made.

Remark See "Boot-flash re-link function" in the "CubeSuite Build for CX Compiler" for details.

R20UT0259EJ0100 Rev.1.00

RENESAS
Oct 01, 2010

Page 29 of 890

CubeSuite Ver.1.40 CHAPTER 2 FUNCTIONS

235 Creating multi-core programs

This section describes how to create multi-core programs using CX. Below is described the case when the target CPU
is the uPD70F3515 (two cores).

(1) Multi-core programs
Multi-core programs output by CX are programs that run on multiple cores, which are combined into a single load
module file. A multi-core program consists of programs (code/data) for each core, and a common module contain-
ing code and data that is referenced from each of the multiple cores (below, each of the core programs and the
common module are called "sub-programs"). The following figure shows a sample structure of a multi-core pro-

gram.
Figure 2-2. Sample Structure of a Multi-core Program
Core 1 local RAM Flash ROM Core 2 local RAM
G)re 1 program \ / Core 2 program \
Core 1 Core 2
code code
Core 1 Core 1 Core 2 Core 2
dataNotel constant data constant data dataNotel
ﬁommon part
Common
module data
Common Common
module Common module
data 1Notel 2 module data 2Notel, 2
K constant data
Notes 1. Core 1 data, core 2 data, and common module data can also be placed in external RAM.

2. The common module data can also be placed on the local RAM of core 1 or core 2, instead of splitting

it up.

A CX multi-core program has the following features.

- Although the program has a common execution start address (0), the program subsequently branches to each
of the core programs.

- Data for each core's program can be allocated to sections of all attributes in the same way as a single-core
program.

- All data in the common module (except for data with const and sconst attributes) is allocated to the data-
attribute section. Data and code in the common module are accessed via rO relative instructions, rather than
gp/epltp relative instructions.

- Data and code defined in a sub-program are accessed from other sub-programs via r0 relative instructions.

- Data and code defined in a sub-program can be accessed from that sub-program, as well as from other sub-
programs. We recommend, however, that you generally use core data and code only from the sub-program in
which they are defined, in consideration for the independence of core programs, and security of data access.

R20UT0259EJ0100 Rev.1.00 Page 30 of 890

Oct 01, 2010

RENESAS

CubeSuite Ver.1.40 CHAPTER 2 FUNCTIONS

Care is needed when programming data that can be accessed from multiple cores, in order to prevent data
from being overwritten by one core while another core is referencing it.

- Code and data are assigned to each sub-program at the source-file level (for example, it is not possible to
define data for core 1 and core 2 in a single source file).

(2) Important points for coding
Take care of the following points when coding a multi-core program.

(@) Csource program
Take care of the following points when coding a multi-core program in the C language.

- Itis not possible to define functions with the same name in different core programs. For this reason, if you
are using "main" as the name of your main functions, change the name (the default startup routine
assumes that the core 1 main function will be named "main", and the core 2 main function will be named
"main_pe2").

When referencing variables or functions defigned in a core program from another sub-program, include
the statement "#pragma nopic" before the extern declaration of that variable or function (in the common
module, it is assumed that "#pragma nopic" is included by default). Include a "#pragma pic" statement to

return to the default.

Care is needed, however, when surrounding an extern declaration with "#pragma nopic/#pragma pic" in
an include file that is used by all sub-programs. If you simply surround the extern declaration with a
"#pragma nopic/#pragma pic", you could get a compilation error in your common module, or an r0 relative
instruction could be generated for variable references in the same sub-program. In this case, use the pre-
processor macros automatically defined when "-Xmulti" is specified to switch the source coding.

It is not possible to specify relocation attributes other than data with "#pragma section" directives for vari-
ables defined in the common module.

Other attributes specified in the symbol file or via the "-Xsdata" option will be ignored.

(b) Assembler source program
Take care of the following points when coding a multi-core program in assembly language.
- All data in the common module (except for data with const and sconst attributes) is allocated to the data-
attribute section. Data and code in the common module must be accessed as r0 relative, rather than gp/
ep/tp relative.

R20UT0259EJ0100 Rev.1.00 RENESAS Page 31 of 890
Oct 01, 2010

CubeSuite Ver.1.40 CHAPTER 2 FUNCTIONS

(3) Procedures for building a multi-core-compatible program
This section provides an example of building when there are two cores. As shown here, when there are two cores,
then CX is launched four times. If there are N cores, then it will be launched N+2 times.

(a) Build the program for core 1
First, compile (assemble) and build the program for core 1. Although you do not need to perform linking at this
time, be sure to specify "-Xmulti=pel". At this stage, linking will resolve the references of symbols defined in
core 1, but the references of symbols defined in core 2 and the common module will remain unresolved.
If you have a dedicated library for core 1, then perform linking at this time. However, since the "-I" option is
ignored when the "-Xmulti" option is specified, you must specify the library file name directly.

> ¢cx -Cf3515 -Xlink_directive=multi.dir -Xmulti=pel file_pel_1.c file_pel_2.c -opel.Imf

(b) Build the program for core 2
Next, compile (assemble) and build the program for core 2. This procedure is the same as for the core 1 pro-
gram, but specify the option "-Xmulti=pe2".

> ¢cx -Cf3515 -Xlink_directive=multi.dir -Xmulti=pe2 file_pe2_1.c file_pe2_2.c -ope2.Imf

(c) Build the common module
Next, build the common module. As with the programs for core 1 and core 2, although you do not need to per-
form linking at this time, be sure to specify "-Xmulti=cmn".

> cx -Cf3515 -Xlink_directive=multi.dir -Xmulti=cmn file_cmn_1.c file_cmn_2.c -ocmn.Imf

(d) Build each sub-program (final linking)
Finally, link each sub-program to create a single load module file. Symbol references that were unresolved in
steps (a) to (c) will be resolved at this point. The startup routine and library will also be linked at this point. At
this time as well, ROMization will be performed, and the hex file will be generated.

> cx -Cf3515 -Xlink_directive=multi.dir -Xstartup=cstartM.obj -Xmulti_link pel.Imf pe2.Imf cmn.Imf -otarget.Imf -

Imulti_lib

Remark See "CubeSuite Build for CX Compiler" for details of this option.

R20UT0259EJ0100 Rev.1.00 RENESAS Page 32 of 890
Oct 01, 2010

CubeSuite Ver.1.40 CHAPTER 2 FUNCTIONS

(4) The development workflow of multi-core applications
This section describes the development workflow of multi-core applications.
The development sequence described here is an example with three components: a common module, core 1 mod-
ule, and core 2 module.

Remark A three-component architecture is not a requirement for linking. For example, it is possible to create
multiple load module files for the core 1 module, and it is possible to create an application by creating
the load module file for the common module or a core module only. Even in this case, however, it is not
possible to omit the final process of creating a load module file by specifying the "-Xmulti_link" option.

(&) Overall development workflow

reate common module Create core 1 Create core 2

0
0
0

C source C source C source

Compiler Compiler Compiler

-
-
e

Assembler source Assembler source Assembler source

Assembler Assembler Assembler

ot
o
o

o
k=)
)
Q
j=d
o
k=)
@
Q
j=d
o
Re)
@

ct

Li Li

]

Load module (cmn) Load module (pel) Load module (pe2)

| Xl
| Xl
[
<« | Z|e

i Link directive file

Load module (final version)

R20UT0259EJ0100 Rev.1.00 RENESAS Page 33 of 890
Oct 01, 2010

CubeSuite Ver.1.40

CHAPTER 2 FUNCTIONS

(b) Development workflow for creating a program for core n

simultaneously on the driver side.)

> cx -Cf3515 -Xlink_directive=multi.dir -Xmulti=pen file_pen_1.c file_pen_2.c -open.Imf

(A specification of "-Xmulti=pen" is interpreted as "-Xno_startup -Xno_romize -Xrelinkable_object" also being specified

C source

—_

\

\
\
ol !
EIL
al |

Assembler source

‘_

Assembler

Example of C source

extern void func();

voi d main()

{

func();

int varl = 0;

Example of assembler source

.extern _func

. dseg sdat a

.public _varl, 4
8 .align 4
Object _varl:
¢ . dw 0
.func _main, _main.end-_main, 4
¢ .public _main
| .
.align 2
| Link directive file _
| _mai n:
\ Load module (pen) callt 0
- - jarl _func, Ip
callt 30
_mai n. end:
R20UT0259EJ0100 Rev.1.00 RENESAS Page 34 of 890

Oct 01, 2010

CubeSuite Ver.1.40

CHAPTER 2 FUNCTIONS

(c) Development workflow for creating the common module program

simultaneously on the driver side.)

> cx -Cf3515 -Xlink_directive=multi.dir -Xmulti=cmn file_cmn_1.c file_cmn_2.c -ocmn.Imf

(A specification of "-Xmulti=cmn" is interpreted as "-Xno_startup -Xno_romize -Xrelinkable_object" also being specified

C source

0

—_—— =] — =

\

Compiler

-

Assembler source

ek

Object

|
|
|
|
|
|
|
|
|
|
|
|
|
v |

Example of C source

int var_cmm = 0;

voi d func()

{

/1 Processing func

Example of assembler source

. dseg dat a
.public _var_cmm, 4
.align 4
_var_cmm:
. dw 0
.cseg text
.func _func, _func.end-_func,

.public _func

0

¢ '\:\ _func:
| ; Processing func
| Link directive file jm [1p]
| _func. end:
\ Load module (pen))
~_ - — —
R20UT0259EJ0100 Rev.1.00 RENESAS Page 35 of 890

Oct 01, 2010

CubeSuite Ver.1.40

CHAPTER 2 FUNCTIONS

(d) Development workflow for creating the final load module file

otarget.Imf -Imulti_lib

> ¢x -Cf3515 -Xlink_directive=multi.dir -Xstartup=cstartM.obj -Xmulti_link pel.Imf ... pen.Imf cmn.Imf -

Load module (cmn) Load module (pel)

(e) Link directive file example

Load module (final version)

Load module (pe2)

Link directive file

—— ———_— —_— —_— —

SCONST_CWMN: ! LOAD ?R {
. sconst = $PROGBI TS ?A . sconst ;
.sconst.cm = $PROGBI TS ?A .sconst.cm;
b
SCONST_PE1: !LOAD ?R {
.sconst . pel = $PROGBI TS ?A .sconst. pel;
s
SCONST_PE2: ! LOAD ?R {
.sconst . pe2 = $PROGBI TS ?A .sconst . pe2;
b
CONST_CWN: ! LOAD ?R {
.const.cm = $PROGBI TS ?A .const.cm,;
. const = $PROGBI TS ?A .const ;
b
CONST_PE1: !'LOAD ?R {
.const. pel = $PROGBI TS ?A .const . pel;
s
CONST_PE2: ! LOAD ?R {
.const. pe2 = $PROGBI TS ?A .const. pez;
b
TEXT_CMN: ! LOAD ?RX {
. pro_epi _runtine = $PROGBI TS ?AX . pro_epi _runtine;
.text.cm = $PROGBI TS ?AX .text.cmm;
. text = $PROGBI TS ?AX .text;
s
TEXT_PE1: !LOAD ?RX {
R20UT0259EJ0100 Rev.1.00 RENESANAS Page 36 of 890

Oct 01, 2010

CubeSuite Ver.1.40

CHAPTER 2 FUNCTIONS

b

b

b

b

b

b

b

b

ROVPCRT:

.text. pel

TEXT_PE2: !'LOAD ?RX {

.text.pe2

I LOAD ?RX {
.ronpcrt

DATA PE2: ! LOAD ?RW {

. dat a. pe2
. sdat a. pe2
. sbss. pe2

. bss. pe2

SEDATA PE2: ! LOAD ?RW {

. sedat a. pe2

. sebss. pe2

S| DATA _PE2: ! LOAD ?RW {

.tidata. byte. pe2
.tibss. byte. pe2
.tidata.word. pe2
.tibss.word. pe2
.tidata. pe2
.tibss. pe2

. si data. pe2

. Si bss. pe2

DATA CWVN: ! LOAD ?RW {

.data.cm

. bss.cmm

DATA PE1: ! LOAD ?RW {

. dat a. pel
. sdat a. pel
. sbss. pel
. bss. pel
.data

. sdat a

. sbss

. bss

SEDATA PE1: ! LOAD ?RW {

. sedat a. pel

. sebss. pel

R20UT0259EJ0100 Rev.1.00

Oct 01, 2010

$PROGBI TS ?AX .text.pel
$PROGBI TS ?AX .text.pe2;
$PROGBI TS ?AX .text {ronpcrt.obj};
$PROGBI TS ?AW . dat a. pe2
$PROGBI TS ?AWG . sdat a. pe2;
$NOBI TS ?AWG . shss. pe2
$NOBITS ?AW . bss. pe2;
$PROGBI TS ?AW . sedat a. pe2
$NOBITS ?AW . sebss. pe2;
$PROGBI TS ?AW .tidata. byte. pe2;
$NOBITS ?AW .tibss. byte. pe2;
$PROGBI TS ?AW .tidata.word. pe2
$NOBITS ?AW .tibss.word. pe2;
$PROGBI TS ?AW .tidata. pe2
$NOBITS ?AW .tibss. pe2;
$PROGBI TS ?AW . si dat a. pe2
$NOBITS ?AW . si bss. pe2;
$PROGBI TS ?AW .data. cm;
$NOBITS ?AW . bss. cm;
$PROGBI TS ?AW . data. pel
$PROGBI TS ?AWG . sdat a. pel;
$NOBI TS ?AWG . shss. pel
$NOBITS ?AW . bss. pel;
$PROGBI TS ?AW .data;
$PROGBI TS ?AWG . sdat a;
$NOBI TS ?AWG . sbss;
$NOBITS ?AW . bss;
$PROGBI TS ?AW . sedat a. pel
$NOBITS ?AW . sebss. pel;
RENESAS

Page 37 of 890

CubeSuite Ver.1.40 CHAPTER 2 FUNCTIONS

b
S| DATA_PE1: ! LOAD ?RW{

.tidata. byte. pel = $PROGBI TS ?AW .tidata. byte. pel;
.tibss. byte. pel = SNOBI TS ?AW .ti bss. byte. pel;
.tidata.word. pel = $PROGBI TS ?AW .tidata.word. pel;
.tibss.word. pel = SNOBI TS ?AW .ti bss.word. pel;
.tidata.pel = $PROGBI TS ?AW .tidata. pel;
.tibss. pel = SNOBI TS ?AW .tibss. pel;

. sidata. pel = $PROGBI TS ?AW . si dat a. pel;

. Si bss. pel = SNOBI TS ?AW . Si bss. pel;

b

__tp_TEXT_PE1@dP_SYMBOL { TEXT_PE1};
__tp_TEXT_PE2@@P_SYMBOL { TEXT_PE2};
__gp_DATA_PE1@4P_SYMBOL & _tp_TEXT_PEL { DATA PEl};
__gp_DATA PE2@4P_SYMBOL & _tp_TEXT_PE2 { DATA PE2};
__ep_DATA_PE1@&P_SYMBOL;

__ep_DATA_PE2@&P_SYMBOL;

R20UT0259EJ0100 Rev.1.00 RENESAS Page 38 of 890
Oct 01, 2010

CubeSuite Ver.1.40

CHAPTER 2 FUNCTIONS

(f) Image of alignment of a multi-core program

Visualizes the alignment of (e) Link directive file example (this example is for the p PD70F3515).

Image of alignment of segment/section

Link directive information

SCONST_CWMN: ! LOAD ?R {
. sconst = $PROGBI TS ?A .sconst;
.sconst.cm = $PROGBI TS ?A .sconst.cm;
b
Low Address
SCONST_PE1: !LOAD ?R {
A [(i
(interrupt vector) .sconst . pel = $PROGBI TS ?A .sconst. pel;
SCONST_CMN . sconst }:
- sconst. cm SCONST_PE2: !LOAD 7R {
SCONST_PEL . sconst . pel .sconst . pe2 = $PROGBI TS ?A .sconst . pe2;
SCONST_PE2 . sconst . pe2 }:
CONST_CWMN . const.cm CONST_CMN: | LOAD 7R {

ROM -const .const.cm = $PROGBI TS ?A .const.cm,;
SONST_PEL . const_pel . const = $PROGBI TS ?A .const;
CONST_PE2 . const. pe2 }:

TEXT_CWN .pro_epi_runtinme CONST_PE1: ! LOAD 7R {
-text.cm .const. pel = $PROGBI TS ?A .const . pel;
.text .
b
TEXT_PEL . text.pel CONST PE2: ! LOAD 7R {
TEXT_PE2 -text. pe2 .const. pe2 = $PROGBI TS ?A .const. pez;
v ROVPCRT .ronpcrt }:
TEXT_CM\: | LOAD ?RX {
.pro_epi _runtine = $PROGBI TS ?AX .pro_epi_runting;
.text.cm = $PROGEBI TS ?AX .text.cmn;
.text = $PROGBI TS ?AX .text;
}s
TEXT_PE1: !LOAD ?RX {
.text.pel = $PROGBI TS ?AX .text.pel;
b
TEXT_PE2: !LOAD ?RX {
text. pe2 = $PROGBI TS ?AX .text.pe2;
}s
ROVPCRT: ! LOAD ?RX {
.ronpcrt = $PROGBI TS ?AX .text {ronpcrt.obj};
b
R20UT0259EJ0100 Rev.1.00 RENESANAS Page 39 of 890

Oct 01, 2010

CubeSuite Ver.1.40

CHAPTER 2 FUNCTIONS

RAM

DATA PE2

SEDATA_PE2

S| DATA_PE2
PE2

. dat a. pe2

. sdat a. pe2

. sbhss. pe2

. bss. pe2

. sedat a. pe2

. sebss. pe2
.tidata. byte. pe2
.tibss. byte. pe2
.tidata.word. pe2
.tibss.word. pe2
.tidata.pe2

.ti bss. pe2

. si dat a. pe2

. Si bss. pe2

DATA_PE1

PE]

SEDATA_PE1

S| DATA_PE1

.data.cm

| DATA_PE1 .data.pel |
. sdat a. pel

. Sbss. pel

. bss. pel

.data

.sdata

. sbss

. bss

. sedat a. pel

. sebss. pel
.tidata. byte. pel
.tibss. byte. pel
.tidata.word. pel
.tibss.word. pel
.tidata. pel
.tibss. pel
.sidata. pel

. Si bss. pel

(Peri phera

etc.)

High Address

. dat a. pe2;
. sdat a. pe2;
. sbss. pe2;

. bss. pe2;

. sedat a. pe2;

. sebss. pe2;

.tidata. byte. pe2

. si bss. pe2;

.data.cmm;

. bss.cm;

. dat a. pel;

. bss;

. sedat a. pel;

. sebss. pel;

.tidata. byte. pel

. si bss. pel;

DATA PE2: ! LOAD ?RW {
. dat a. pe2 = $PROGBI TS ?AW
. sdat a. pe2 = $PROGBI TS ?AVG
. sbss. pe2 = $NOBI TS ?AVNG
. bss. pe2 = $NOBI TS ?AW
b
SEDATA PE2: ! LOAD ?RW {
. sedat a. pe2 = $PROGBI TS ?AW
. sebss. pe2 = $NOBI TS ?AW
b
S| DATA_PE2: ! LOAD ?RW {
.tidata.byte. pe2 = $PROGBI TS ?AW
. Si bss. pe2 = $NOBI TS AW
b
DATA CWN: ! LOAD ?RW {
.data.cm = $PROGBI TS ?AW
.bss.cm = $NOBI TS ?AW
b
DATA PE1: !LOAD ?RW {
. dat a. pel = $PROGBI TS ?AW
. bss = $NOBI TS ?2AW
b
SEDATA PE1: ! LCAD ?RW {
. sedat a. pel = $PROGBI TS ?AW
. sebss. pel = $NOBITS ?AW
b
S| DATA_PE1: ! LOAD ?RW {
.tidata.byte.pel = $PROGBI TS ?AW
. si bss. pel = $NOBI TS ?AW
b
__tp_TEXT_PE1@@P_SYMBOL { TEXT_PE1};
__tp_TEXT_PE2@@P_SYMBCL { TEXT_PE2};
__gp_DATA PE1@@GP_SYMBOL & _tp TEXT_PE1l {DATA PE1};
__gp_DATA PE2@4P_SYMBOL & tp_ TEXT_PE2 {DATA PE2}:
__ep_DATA PE1@&P_SYMBOL;
__ep_DATA PE2@&P_SYMBOL;

R20UT0259EJ0100 Rev.1.00
Oct 01, 2010

RENESAS

Page 40 of 890

CubeSuite Ver.1.40 CHAPTER 2 FUNCTIONS

(5) Cautions
Care is needed with the following points when creating a CX multi-core program.
- Symbols with the same name cannot be defined in more than one of the load module files of the core pro-
grams or the common module. Defining symbols with the same name will cause an error during final linking.
- When creating an independent link directive file, we recommend using the same link directive file for all linking.
- If the default multi-core startup routine is used, then areas starting with the labels "__stack.pel" and
" stack.pe2" must be secured (defined) as the stack areas for core 1 and core 2.

R20UT0259EJ0100 Rev.1.00 RENESAS Page 41 of 890
Oct 01, 2010

CubeSuite Ver.1.40

CHAPTER 2 FUNCTIONS

2.4 Variables (Assembler)

This section explains variables (Assembler).

24.1 Defining variables with no initial values

Use the .ds directive in a section with no initial value to allocate area for a variable with no initial value.

[1abel :]

.ds

(absol ut e- expr essi on)

In order that it may be referenced from other files as well, it is necessary to define the label with the .public directive.

[1abel :]

.public |abel name[, size]

Example

_val 0:

_val 1:

_val 2:

.align 4
.ds (4)
.ds (2)
.ds (1)

. dseg sbss
.public _valO
.public _val1l,

.public _val?2,

N

-- Sets _val0 as able to be referenced fromother files
-- Sets _vall as able to be referenced fromother files

-- Sets _val2 as able to be referenced fromother files

-- Allocates 4 bytes of area for valO0

-- Allocates 2 bytes of area for vall

-- Allocates 1 byte of area for val2

R20UT0259EJ0100 Rev.1.00

Oct 01, 2010

RENESAS Page 42 of 890

CubeSuite Ver.1.40 CHAPTER 2 FUNCTIONS

2.4.2 Defining const constants with initial values

To define a const with an initial value, use the .db directives/.db2/.dhw directives/.db4/.dw directives within the .const or
.sconst section.
- 1-byte values

[abel :] .db val ue

- 2-byte values

[abel :] .db2 val ue

[1abel :] . dhw val ue

- 4-byte values

[1abel :] .db4 val ue

[abel :] .dw val ue

Example Allocates 1 halfword and stores 100

.cseg const
.public _p, 2
.align 4
_p: .db2 100
R20UT0259EJ0100 Rev.1.00 RENESAS Page 43 of 890

Oct 01, 2010

CubeSuite Ver.1.40 CHAPTER 2 FUNCTIONS

2.4.3 Referencing section addresses

Symbols such as .data and .sdata (reserved symbols) which point to the beginnings and ends of sections are available.
Therefore, utilize the appropriate symbol name when using the address value of a specified section from the assembler
source.

Start symbol: __ssection-name
End symbol: __esection-name

For example, the start symbol for the .sbss section is __ssbss, and its end symbol is __esbss.

These symbols can be used to retrieve the section start address and end address, but these symbol names cannot be
used to make direct references with C language labels.

To retrieve these symbol values, create global variables to store these values then store the symbol values in the vari-
ables in assembler source such as that of the startup module.

By referencing these variables in the C source this can be realized.

The same applies to symbols such as __gp_DATA.

For example, the method for retrieving the start and end addresses of a .data section is as follows.

[In assembler source]

.extern __sdata, 4
.extern __edata, 4

. dseg sdat a
.public _data_top, 4
.public _data_end, 4

.align 4
_data_top:

.ds (4)
_data_end:

.ds (4)

.cseg text

nmv # sdata, ri2
st.w r12, $_data_top
nmv # edata, ri13

st.w r13, $_data_end

[In C source]

extern int data_top; /*extern defines data_top*/

extern int data_end; |/ *extern defines data_end*/

void funcl(void) {
int top, end,
top = data_top;

end = data_end;

Try using this method in cases where a C language label is used to initialize only a specified section.

R20UT0259EJ0100 Rev.1.00 RENESAS Page 44 of 890
Oct 01, 2010

CubeSuite Ver.1.40 CHAPTER 2 FUNCTIONS

2.5 Startup Routine

This section explains startup routine.

251 Securing stack area

When setting a value to the stack pointer (sp), it is necessary to pay attention to the following points.
- The stack frame is generated downwards starting from the sp set value.
- Be sure to set the sp to point at the of 4-byte boundary position.
When the compiler references memory relative to a stack, it generates code based on the assumption the stack
pointer points at the 4-byte boundary position.
Allocate it to a data section (bss attribute section) as far as possible from gp.
If it is near the gp, there is a chance that the program data area will be destroyed.

Example Setting sp

STACKSI ZE . set 0x3F0
. dseg bss
.align 4
__stack:
.ds (STACKSI ZE)
.cseg text
mv #__stack + STACKSI ZE, sp

In the above example, the size of the stack frame used by the application is set to 0x3F0 bytes and area is secured.
The label "__stack" points to the lowest position (start) of the stack frame.

Because __stack is not external variable defined (via .public declaration) in the default startup module, __stack cannot
be referenced from other files.

If a .public declaration is executed to __stack it becomes possible to be referenced by other files.

The stack area defines the __stack symbol to the lowest position address and sets the sum address and size of
__stack to the stack pointer.

Therefore there is no symbol for the end address.

By doing the following, it becomes possible to define the next address after the stack area end address.

Use caution, as it is not the last address in the stack area.

STACKSI ZE . set 0x3F0
. dseg bss
.public __stack -- Add
.public __stack_end -- Add
.align 4
__stack:
.ds (STACKSI ZE)
__stack_end:

With the above definition, it is possible to refer to _stack and _stack_end symbols in the C source.
The mapping image becomes as follows.

R20UT0259EJ0100 Rev.1.00 RENESAS Page 45 of 890
Oct 01, 2010

CubeSuite Ver.1.40 CHAPTER 2 FUNCTIONS

Figure 2-3. Mapping Image of Stack Area

__stack_end »

Stack area

__stack

\ 4

0x0

The size of the __stack symbol is specified in the startup module and should therefore be defined in C source in an
array as follows.
Use caution because it is not the last address in the stack area.

extern unsigned long _stack[];

Remark When using a label defined in the assembler in C language, one underscore is removed from the start of its
name.
Assembly language definition: __stack
Reference with C language: _stack

The stack usage tracer can be used to measure C source program stack area.

R20UT0259EJ0100 Rev.1.00 RENESAS Page 46 of 890
Oct 01, 2010

CubeSuite Ver.1.40 CHAPTER 2 FUNCTIONS

252 Securing stack area and specifying allocation

This section explains securing stack area and specifying allocation.

(1) Secure stack area
In the startup routine, secure a stack in a section of a variable with no initial value with a specified section name.

Example Securing area

STACKSI ZE . set 0x3F0
.stack .dseg bss
.align 4

__stack:
.ds (STACKSI ZE)

In the above example the section of the stack frame to be used by the application is set to .stack, the size is speci-
fied as 0x3FO0 bytes and the area is secured.
The label "__stack" points to the lowest position (start) of the stack frame.

(2) Specify stack area allocation
In the link directive file specify the allocation of the section created in (1).

Example Allocation specification

STACK: I LOAD ?RW VOx3FFEEQO {
.stack = $NOBI TS ?AW. st ack;

b

In the above example the stack segment is called STACK, and is allocated to the address 0x3FFEEQOQ.

R20UT0259EJ0100 Rev.1.00 RENESAS Page 47 of 890
Oct 01, 2010

CubeSuite Ver.1.40 CHAPTER 2 FUNCTIONS

253 Initializing RAM

This section explains initializing RAM.

(1) Variables with no initial value
Processing to clear the .sbss and .bss sections with 0 is embedded in the default startup routine.
When clearing sections other than those above is desired, add such processing to the startup routine. When clear-
ing, use the symbols that indicate the section start and end.

Example Clear the .tibss.byte section

.extern __stibss.byte, 4 -- .tibss.byte area start synbol
.extern __etibss.byte, 4 -- .tibss.byte area end synbol
nmov # stibss.byte, ri13
nmov #__etibss.byte, ri2
cnp r12, r13
jnl .L20
. L21:
st.w ro, [ri13]
add 4, r13
cnp ri2, r13
il .L21
. L20:

(2) RAM initialization
When a load module has been downloaded to the in-circuit emulator without performing ROMization, data with ini-
tialized values placed in regions such as the data and sdata areas are set to their values at the time of download.
When using the load module without performing ROMization to debug, it is necessary to remove the RAM area ini-
tialization routine.
In the case of a ROMization load module, it is necessary to use the _rcopy copy function to perform operations
such as copying data with initial values.
This processing is possible not in the startup routine but also before accessing a main function variable with an ini-
tial value, so perform it upon full completion of peripheral settings.

R20UT0259EJ0100 Rev.1.00 RENESAS Page 48 of 890
Oct 01, 2010

CubeSuite Ver.1.40 CHAPTER 2 FUNCTIONS

254 Preparing function and variable access

The text pointer is used when accessing a function, and either the global pointer or the element pointer is used when
accessing a variable.

(1) Preparations for accessing function
The text pointer (tp) is a pointer prepared to implement referencing (PIC: Position Independent Code) independent
of the position at which the text area of an application, i.e., program code is allocated when the program code is
referenced. For example, if it is necessary to reference a specific location in the code during program execution,
the CX outputs the code to be accessed in tp-relative mode.
Since the code is output on the assumption that tp is correctly set, tp must be correctly set in the startup routine.
The text pointer value is determined during linking, and is in a symbol defined by a symbol directive that is
described in the link directive file. For example, suppose that the symbol directive of the text pointer is described
as follows.

__tp_TEXT@@P_SYMBOL {TEXT};

The text pointer value is the beginning of the TEXT segment, and isin"__tp_TEXT".
Describe as follows to set tp in the startup routine.

.extern __tp_TEXT, 4

nmov #__tp_TEXT, tp

R20UT0259EJ0100 Rev.1.00 RENESAS Page 49 of 890
Oct 01, 2010

CubeSuite Ver.1.40 CHAPTER 2 FUNCTIONS

(2) Variable access preparations (Setting global pointer)
External variables or data defined in an application are allocated to the memory. The global pointer (gp) is a
pointer prepared to implement referencing independent of location position (PID: Position Independent Data) when
the variables or data allocated to the memory are referenced. The CX outputs a code for the section that is to be
accessed in gp-relative mode.
Since the code is output on the assumption that gp is correctly set, gp must be correctly set in the startup routine.
The global pointer value is determined during linking, and is in a symbol defined by a symbol directive that is
described in the link directive file. For example, suppose that the symbol directive of the global pointer is described
as follows.

__gp_DATA@EP_SYMBOL { DATA}:

The gp symbol value can be defined the beginning of "data segment" of the DATA segment as shown above, or off-
set from a text symbol. A gp symbol can be specified not only by specifying the start address of a data segment
(such as the DATA segment), but also by using an offset value from the text symbol as its address.

Using the second method, the gp symbol value is determined by adding value of tp and offset value from tp. In
other words, a code that is independent of location can be generated. To copy a program code and data used by
that code to the RAM area simultaneously and execute them, the value of gp can be acquired immediately if the
start address of the copy destination is known. In this case, the symbol directive is described as follows.

__tp_TEXT@@P_SYMBOL;
__gp_DATA@EP_SYMBOL & tp_TEXT {DATA};

The global pointer value is"__tp_ TEXT to which the value of __gp_DATA is added", and the value to be added,
i.e., offset value, is stored in "__gp_DATA". Therefore, describe as follows to set gp in the startup routine.

.extern __tp_TEXT, 4
.extern __gp_DATA, 4

nmov #_ tp_TEXT, tp
nmov #__gp_DATA, gp
add tp, gp

This sets the correct value of the global pointer to gp.

R20UT0259EJ0100 Rev.1.00 RENESAS Page 50 of 890
Oct 01, 2010

CubeSuite Ver.1.40 CHAPTER 2 FUNCTIONS

(3) Variable access preparations (Setting element pointer)

The element pointer (ep) is a pointer that is provided to realize faster access by allocating data (variables) that are
globally declared within an application to RAM area in V850 core device.
Of the external variables or data defined in an application, those that are allocated to the following sections are
accessed from the element pointer (ep) in relative mode.

- sedata/sebss attribute section

- sidata/sibss attribute section

- tidata/tibss attribute section

- tidata.byte/tibss.byte section

- tidata.word/tibss.word section
If these sections exist, the CX outputs a code to access these areas in ep-relative mode.
Since the code is output on the assumption that ep is correctly set, ep must be correctly set in the startup routine.
The element pointer value is determined during linking, and is in a symbol defined by a symbol directive that is
described in the link directive file. For example, suppose that the symbol directive of the element pointer is
described as follows.

__ep_DATA@EP_SYMBOL;

The element pointer value is the beginning of the SIDATA segment by default, and its value is in "_ep_DATA".
Therefore, describe as follows to set ep in the startup routine.

.extern __ep_DATA, 4

nmov #__ep_DATA, ep

Reference the absolute address of __ep_DATA and set that value to ep.

R20UT0259EJ0100 Rev.1.00 RENESAS Page 51 of 890
Oct 01, 2010

CubeSuite Ver.1.40 CHAPTER 2 FUNCTIONS

255 Preparing to use code size reduction function

This setting is necessary to reduce code size when the V850EXx core is used or when the prologue/epilogue runtime
library is used (i.e. When execution speed priority optimization (-Ospeed option) is not specified or when "-
Xpro_epi_runtime=on" is specified).

Since the CALLT instruction is used when the prologue/epilogue runtime library of functions is called by the V850Ex
core, the value of CTBP necessary for the CALLT instruction must be set at the beginning of the function table of the pro-
logue/epilogue runtime library of functions.

The prologue/epilogue runtime library is used in the following case.

- Compiler option "-Xpro_epi_runtime=on" is set.
If a compiler option except "-Ospeed" is specified for optimization, "-Xpro_epi_runtime=on" is automatically specified.
The start symbol for the function prologue/epilogue runtime library function table is as follows.

- __ PROLOG_TABLE
Describe the following code using this symbol.

nmv # PROLOG TABLE, r12
| dsr rl2, 20

Remark CTBP is system register 20. Set a value to it using the Idsr instruction.

R20UT0259EJ0100 Rev.1.00 RENESAS Page 52 of 890
Oct 01, 2010

CubeSuite Ver.1.40 CHAPTER 2 FUNCTIONS

25.6 Ending startup routine

The final process in the startup routine differs depending on whether or not a real-time OS is used.

(1) When not using real-time OS
When the processing necessary for the startup routine has been completed, execute an instruction that branches
to the main function.
Describe the following code to branch to the main function.

jarl _main, Ip

When the main function has been executed, execution returns to the 4 bytes subsequent to this branch instruction.
The following instruction can also be used if it is known that execution does not return.

jr _main
nmv # main, Ip
jnp [I'p]

The entire 32-bit space can be accessed using the jmp instruction. When the "jarl_main, Ip" instruction is used,
execution returns after the main function is executed. It is recommended to take appropriate action to prevent
deadlock from occurring when execution returns.

(2) When using real-time OS (RX850V4)
In an application using a real-time OS, execution branches to the initialization routine when the processing that
must be performed by the startup routine has been completed.

.extern __kernel _sit
.extern __kernel _start
nmv #__kernel _sit, r6
jarl __kernel _start, Ip
__boot _error:
j br __boot _error
R20UT0259EJ0100 Rev.1.00 RENESAS Page 53 of 890

Oct 01, 2010

CubeSuite Ver.1.40 CHAPTER 2 FUNCTIONS

2.6 Link Directives

This section explains link directives.
Link directive files can be generated automatically in CubeSuite.

Remark For information about how to automatically generate link directive files, see the "CubeSuite Build for CX
Compiler" user's Manual.

26.1 Adding function section allocation

To perform function section allocation, divert the .text section setting portion and change the segment name and
section name.

TEXT: ' LOAD ?RX {
.pro_epi _runtine = $PROGBI TS ?AX . pro_epi _runtime;
. text = $PROGBI TS ?AX .text;

b

Example Setting allocation for USRTEXT segment and usr.text section

USRTEXT: 1'LOAD ?RX {
usr. text = $PROGBI TS ?AX usr.text;

b

2.6.2 Adding section allocation for variables

To add allocation settings for a variable section, divert the specification part for a section with the same attributes and
change the segment name and section name.
The section attributes specify the section type when the section is set to a variable in #pragma section.

Section Type Section to Be Diverted
data .data/.bss
sdata .sdata/.sbss
sconst .sconst
const .const

Example Setting allocation for USRCONST segment and usr.const section

USRCONST: 1LOAD 7R {
usr. const = $PROGBI TS ?A usr.const;
b
R20UT0259EJ0100 Rev.1.00 RENESAS Page 54 of 890

Oct 01, 2010

CubeSuite Ver.1.40 CHAPTER 2 FUNCTIONS

2.6.3 Distributing section allocation

The following three methods for distributing section allocation are available.

(1) Distribute by section name
In the C source or assembler source, specify separate names for the sections to be allocated.

By specifying individual input section names within the link directive, the section of each name will be allocated to

its specified part.

Example
TEXT: 1'LOAD ?RX {
. text = $PROGBI TS ?AX .text;
<- The .text section is allocated.
b

FUNCL: !LOAD ?RX {
$PROGBI TS ?AX funcsecl. text;

funcsecl. t ext

<- The funcsecl.text section is allocated.

(2) Distribute by object module files

By specifying individual object names within the link directive, the section with the relevant attributes within each

object will be allocated to the specified part.

Example

TEXT1: ! LOAD ?RX {
.textl = $PROGBITS ?AX .text {filel.obj file2. obj};

TEXT2: LOAD ?RX {
.text2 = $PROGBI TS ?AX .text {file3.o0bj};

<- The .text section in file3.0obj is allocated.

<- The .text sections in filel.obj and file2.0obj are allocated.

When specifying the name an object module file in a library (.lib file), specify the .lib file name including its path

within parentheses.

Example

.text3 = $PROGBI TS ?AX .text {strcnp.obj(libc.lib)};

R20UT0259EJ0100 Rev.1.00 ENESAS
Oct 01, 2010

Page 55 of 890

CubeSuite Ver.1.40 CHAPTER 2 FUNCTIONS

(3) Distribute by section attributes
Specify allocation only by attributes without specifying the input section and input object. Because th

is setting has

a lower priority level than the part where settings such as section name and object name are made, it can be used

to specify allocation for all parts where section and object names are not already specified.

Example

TEXT4: 1 LOAD ?RX {
.text4 = $PROGBI TS ?AX {filel.obj file2. obj};

b

TEXT5: 'LOAD ?RX {
.text5 = $PROGBI TS ?AX;
<- The TEXT ATTRI BUTE sections in objects other than filel.obj and

file2.obj are allocated.

<- The TEXT ATTRI BUTE sections in filel.obj and file2.obj are allocated.

(4) Allocation specification priority level

There are priority levels depending on the presence or lack of input section and input object specifications. When

allocating sections, the linker allocates starting with the highest priority specification.

The relationship between priority level and specifications is shown below. (A lower the priority level number repre-

sents a higher priority.)

Priority Level Specified Names Output
1 Input section name The specified input section is extracted from the specified object and
+ object module file name is then output.

2 Input section name only The specified input section is extracted from all objects and is then
output.

3 Object module file name only Sections having the same attribute as the output section to be cre-
ated are extracted from the specified object and are then output.

4 No names specified Sections having the same attribute as the output section to be cre-
ated are extracted from all objects and are then ouput.

R20UT0259EJ0100 Rev.1.00 ENESAS
Oct 01, 2010

Page 56 of 890

CubeSuite Ver.1.40 CHAPTER 2 FUNCTIONS

2.7 Reducing Code Size

This section explains reducing code size.

2.7.1 Reducing code size (C language)

This section explains reducing cord size by C language.

(1) Access to variables
Because 4 bytes are needed each for external variable access loading and storing, even in nhon-assignment cases
it is possible to reduce code size by assigning the external variable into a temporary variable and using that tempo-
rary variable so as to change memory access to register access.
In the following example s is an external variable

Bef ore change: After change:
if(x !'=0) { unsigned int tnp = s;
i f((s & OXOOFOOF00) != MASK1) {
return; if(x !'=0) {
} i f((tnp & OXOOFOOF00) != MASK1) {
s >>= 12; return;
s &= OxFF; }
} else { tnp >>= 12;
i f((s & OXOOFF0000) != MASK2) { tnp & OXFF;
return; } else {
} i f((tnp & OXOOFF0000) != MASK2) {
s >>= 24; return;
} }
tnmp >>= 24,
}
s = tnp;
Remarks 1. The amount of reduction is specific to this example, and will vary case by case.

2. As aresult of changing the source, output instructions may be reduced and execution speed may
be increased.
3. Pay attention to the following points when changing the source.

- Changing the source causes the state of register usage to change. It is therefore possible that in
unintended places register transfers that had up until that point remained without being optimized
may be erased or, alternatively, that optimization may become ineffective causing redundant regis-
ter transfers to remain.

- By adding temporary variables, a new register for register variables may come to be used, resulting
in code for saving and restoring that register being added to the function entrance and exit.

R20UT0259EJ0100 Rev.1.00
Oct 01, 2010

RENESAS Page 57 of 890

CubeSuite Ver.1.40 CHAPTER 2 FUNCTIONS

(2) Number of loops in loop processing
As in the following example, expanding a function may make its size smaller if the number of times to execute is
few and body of each loop is small.
In this case, the execution speed also increases.

Bef ore change: After change:
for(i =0; i < 4; i++) { long *p;
array[i] = 0; p = array,;
} *p = 0;
“(p+1) =0
“(p+2) =0
“(p+3) =0

Remarks 1. The amount of reduction is specific to this example, and will vary case by case.
2. As aresult of changing the source, output instructions may be reduced and execution speed may
be increased.
3. Pay attention to the following points when changing the source.

- Changing the source causes the state of register usage to change. It is therefore possible that in
unintended places register transfers that had up until that point remained without being optimized
may be erased or, alternatively, that optimization may become ineffective causing redundant register
transfers to remain.

- By adding temporary variables, a new register for register variables may come to be used, resulting
in code for saving and restoring that register being added to the function entrance and exit.

R20UT0259EJ0100 Rev.1.00 RENESAS Page 58 of 890
Oct 01, 2010

CubeSuite Ver.1.40

CHAPTER 2 FUNCTIONS

(3) auto variable initialization

When an auto variable is used within a function without being initialized, because that variable is not allocated to a

register and remains in memory, the code size may increase.

In the following example if neither switch case applies then variable a is referenced in the return statement without

being initialized.

Even if in actuality it will certainly apply to one of the cases it may not to be initialized because when the C compiler
allocates to register it is not understood when the program is analyzed.

In a case such as this, it cannot be allocated with the CX register allocation.

By adding initialization it becomes able to be allocated to a register and the code size is reduced.

Bef ore change:

int func(int x) {

int a;
switch(x) {
case O:
a = VALO;
br eak;
case 1:
a = VALL,
}
return(a);

After change:

int func(int x) {

int a=0;
switch(x) {
case O:
a = VALO;
br eak;
case 1:
a = VALL,
}
return(a);

Remarks 1. The amount of reduction is specific to this example, and will vary case by case.

2. As aresult of changing the source, output instructions may be reduced and execution speed may

be increased.

3. Pay attention to the following points when changing the source.
- Changing the source causes the state of register usage to change. It is therefore possible that in
unintended places register transfers that had up until that point remained without being optimized

may be erased or, alternatively, that optimization may become ineffective causing redundant register

transfers to remain.

- By adding temporary variables, a new register for register variables may come to be used, resulting

in code for saving and restoring that register being added to the function entrance and exit.

R20UT0259EJ0100 Rev.1.00
Oct 01, 2010

RENESAS

Page 59 of 890

CubeSuite Ver.1.40

CHAPTER 2 FUNCTIONS

(4) switch statements

With respect to switch statements, if there are four or more case labels and the difference between each variable's
low limit and high limit is up to 3 times the number of cases, the CX generates code in table branch format.
In such an instance, if the number of cases is approximately 16 or less (this number varies depending on factors

such as the switch expression format and the label value distribution), changing them to equivalent if-else state-

ments and putting comparison and branch instructions in line will cause the code size to decrease.

In cases such as when the switch expression is an external variable reference or is a complex expression, it is nec-

essary to once substitute the value to a temporary variable and make the if expression refer to the temporary vari-

able.

In the following example x is an auto variable.

Bef ore change: After change:
switch(x) { i f(x == VALO)
case VALO: return(RETVALO) ;
ret ur n(RETVALO) ; el se if(x == VALL)
case VALL: return(RETVALL);
return(RETVALL); else if(x == VAL2)
case VAL2: return(RETVAL2) ;
return(RETVAL2) ; el se if(x == VAL3)
case VALS: return(RETVAL3) ;
return(RETVAL3) ; el se if(x == VAL4)
case VAL4: return(RETVAL4) ;
ret ur n(RETVAL4) ; el se if(x == VALD)
case VALS: return(RETVALS) ;
ret ur n(RETVALS) ;
}

Remarks 1. The amount of reduction is specific to this example, and will vary case by case.
2. As aresult of changing the source, output instructions may be reduced and execution speed may
be increased.
3. Pay attention to the following points when changing the source.

- Changing the source causes the state of register usage to change. It is therefore possible that in
unintended places register transfers that had up until that point remained without being optimized
may be erased or, alternatively, that optimization may become ineffective causing redundant register
transfers to remain.

- By adding temporary variables, a new register for register variables may come to be used, resulting
in code for saving and restoring that register being added to the function entrance and exit.

4. With the CX it is possible to specify the switch statement development code with the -Xswitch
option.

- -Xswitch=ifelse
Outputs the code in the same format as the if-else statement along a string of case statements.

- -Xswitch=binary
Outputs the code in the binary search format.

- -Xswitch=table
Outputs the code in a table jump format.

R20UT0259EJ0100 Rev.1.00
Oct 01, 2010

RENESAS Page 60 of 890

CubeSuite Ver.1.40

CHAPTER 2 FUNCTIONS

(5) if statements

When executing the same processing to multiple cases with an if-else combination, if using a separate set of con-

ditions would make the "multiple cases" combine into one case, then combine them.

This will delete redundant parts.

In the example below, if the conditions "the initial value of x is 0 and the values of s as well as t are either O or 1"

are set, the code can be changed as follows.

Bef ore change:
if(ls) {
if(t) {

X = 1;
}
} else {
if(re) {
X = 1;
}
}
if(x) {
if((++u) >=v) {
u = 0;
} else {
X = 0;
}
}

After change:
if((srt)) {

if((++u) >=v) {
u = 0;

x = 1;

Remarks 1. The amount of reduction is specific to this example, and will vary case by case.

2. As aresult of changing the source, output instructions may be reduced and execution speed may

be increased.

3. Pay attention to the following points when changing the source.

- Changing the source causes the state of register usage to change. It is therefore possible that in

unintended places register transfers that had up until that point remained without being optimized

may be erased or, alternatively, that optimization may become ineffective causing redundant register

transfers to remain.

- By adding temporary variables, a new register for register variables may come to be used, resulting

in code for saving and restoring that register being added to the function entrance and exit.

R20UT0259EJ0100 Rev.1.00
Oct 01, 2010

RENESAS Page 61 of 890

CubeSuite Ver.1.40

CHAPTER 2 FUNCTIONS

If an assigned value is referenced immediately following its assignment statement, the part referred to is substi-
tuted by the assignment statement and combined into one.

This makes possible deletion of excess register transferring and reduction in code size.

In most cases, however, redundant register transferring is deleted by the C compiler's optimization, so the code

size would not change.

Bef ore change:
- - s;

if(s == 0) {

After change:
if(--s ==0)) {

Remarks 1. The amount of reduction is specific to this example, and will vary case by case.

2. As aresult of changing the source, output instructions may be reduced and execution speed may

be increased.
3. Pay attention to the following points when changing the source.

- Changing the source causes the state of register usage to change. It is therefore possible that in
unintended places register transfers that had up until that point remained without being optimized
may be erased or, alternatively, that optimization may become ineffective causing redundant register

transfers to remain.

- By adding temporary variables, a new register for register variables may come to be used, resulting
in code for saving and restoring that register being added to the function entrance and exit.

R20UT0259EJ0100 Rev.1.00
Oct 01, 2010

RENESAS

Page 62 of 890

CubeSuite Ver.1.40

(6) if-else statements

As in the following example, if each branch destination of an if-else statement includes only statements that assign
differing values to the same variable, it is possible to reduce the code size by moving one of the branch
destinations ahead of the if statement, because the else block will be erased and the jump instruction from the if
the block to after the else block is eliminated.

Bef ore change: After change:
if(x == 10) { s = 0;
s = 1, if(x == 10) {
} else { s = 1,
s = 0; }
}
Remarks 1. The amount of reduction is specific to this example, and will vary case by case.
2. As aresult of changing the source, output instructions may be reduced and execution speed may
be increased.
3. Pay attention to the following points when changing the source.

- Changing the source causes the state of register usage to change. It is therefore possible that in

unintended places register transfers that had up until that point remained without being optimized

may be erased or, alternatively, that optimization may become ineffective causing redundant register
transfers to remain.

- By adding temporary variables, a new register for register variables may come to be used, resulting

in code for saving and restoring that register being added to the function entrance and exit.

As in the following example, if the branch destinations of if-else statements contain only return statements and
those return values are the results of the branch conditions themselves, change it to return the branch condition
expression and delete the if-else statement.

Bef ore change: After change:
if(sl ==5s2) { return(sl == s2);
return(l);
}
return(0);
Remarks 1. The amount of reduction is specific to this example, and will vary case by case.
2. As aresult of changing the source, output instructions may be reduced and execution speed may
be increased.

3. Pay attention to the following points when changing the source.

- Changing the source causes the state of register usage to change. It is therefore possible that in

unintended places register transfers that had up until that point remained without being optimized

may be erased or, alternatively, that optimization may become ineffective causing redundant register
transfers to remain.

- By adding temporary variables, a new register for register variables may come to be used, resulting

in code for saving and restoring that register being added to the function entrance and exit.

R20UT0259EJ0100 Rev.1.00

Oct 01, 2010

RENESAS

CHAPTER 2 FUNCTIONS

Page 63 of 890

CubeSuite Ver.1.40

CHAPTER 2 FUNCTIONS

If after each respective branch a function is called using differing arguments for the same function, move the func-

tion call to after the branches converge if possible.

To do this, assign the differing arguments of the original function calls to temporary variables and use these tempo-

rary variables as arguments when calling the function.

Bef ore change:

if(s) {

func(0, 1, 2);

} else {

func(0, 1, 3);

After change:

int tnp;
if(s) {
tmp = 2;
} else {
tmp = 3;
}

func(0, 1, tnp);

Remarks 1. The amount of reduction is specific to this example, and will vary case by case.

2. As aresult of changing the source, output instructions may be reduced and execution speed may

be increased.

3. Pay attention to the following points when changing the source.

- Changing the source causes the state of register usage to change. It is therefore possible that in

unintended places register transfers that had up until that point remained without being optimized

may be erased or, alternatively, that optimization may become ineffective causing redundant register

transfers to remain.

- By adding temporary variables, a new register for register variables may come to be used, resulting

in code for saving and restoring that register being added to the function entrance and exit.

R20UT0259EJ0100 Rev.1.00
Oct 01, 2010

RENESAS

Page 64 of 890

CubeSuite Ver.1.40

CHAPTER 2 FUNCTIONS

In the case that after respective branches an identical assignment statement or function call exists, move it to

before the branch if possible.

If that statement's evaluation result is referenced, assign it once to a temporary variable and reference the tempo-

rary variable.

The following example is a case of a function call.

Bef ore change: After change:
if(x >=0) { long tnp;
if(x > func(0, 1, 2)) { tnp = func(0, 1, 2);
if(x >= 0) {
} if(x >tnp) {
} else {
if(x < -func(0, 1, 2)) { }
} else {
} if(x <-tmp) {
}
}
}
Remarks 1. The amount of reduction is specific to this example, and will vary case by case.

2. As aresult of changing the source, output instructions may be reduced and execution speed may

be increased.

3. Pay attention to the following points when changing the source.

- Changing the source causes the state of register usage to change. It is therefore possible that in

unintended places register transfers that had up until that point remained without being optimized

may be erased or, alternatively, that optimization may become ineffective causing redundant register

transfers to remain.

- By adding temporary variables, a new register for register variables may come to be used, resulting

in code for saving and restoring that register being added to the function entrance and exit.

R20UT0259EJ0100 Rev.1.00
Oct 01, 2010

RENESAS

Page 65 of 890

CubeSuite Ver.1.40 CHAPTER 2 FUNCTIONS

In the case that after respective branches an identical assignment statement or function call exists, if it cannot be
moved to before the branch but can be moved to after the merge, move it to after the merge.
The following example is an assignment statement case.

Bef ore change: After change:
if(tmp & MASK) { if(tmp & MASK) {
j } else {
} else {
}
j ++; j++;
}

Remarks 1. The amount of reduction is specific to this example, and will vary case by case.
2. As aresult of changing the source, output instructions may be reduced and execution speed may
be increased.
3. Pay attention to the following points when changing the source.

- Changing the source causes the state of register usage to change. It is therefore possible that in
unintended places register transfers that had up until that point remained without being optimized
may be erased or, alternatively, that optimization may become ineffective causing redundant register
transfers to remain.

- By adding temporary variables, a new register for register variables may come to be used, resulting
in code for saving and restoring that register being added to the function entrance and exit.

R20UT0259EJ0100 Rev.1.00 RENESAS Page 66 of 890
Oct 01, 2010

CubeSuite Ver.1.40

CHAPTER 2 FUNCTIONS

(7) switch/if-else statements

As in the following example, in the case where differing values are assigned to the same external variable at the

respective branch destinations of a switch statement or an if-else statement, it is possible to reduce code size by
assigning the values to a temporary variable at each branch and then reassigning the temporary variable value
back to the original external variable after the branches merge.

This is because, assigning to an external variable requires a memory store instruction (4 bytes) because external
variables are rarely allocated to registers, while in most cases assigning to a temporary variable uses a register

transfer (2 bytes).
In the following example s is an external variable.

Bef ore change: After change:
switch(x) { int tnp;
case O: if(x ==0) {
s = 0; tmp = 0;
br eak; } elseif (x ==1) {
case 1: tnmp = 0x5555;
s = 0x5555; } elseif(x ==2) {
br eak; tnp = OXAAAA;
case 2: } elseif(x == 3) {
s = OXAAAA; tnmp = OXFFFF;
br eak; } else {
case 3: goto | abel;
s = OxFFFF; }
} s = tnp;
| abel :
Remarks 1. The amount of reduction is specific to this example, and will vary case by case.
2. As aresult of changing the source, output instructions may be reduced and execution speed may
be increased.
3. Pay attention to the following points when changing the source.

(8) Functions with no return values
Define functions with no return values as "void."

- Changing the source causes the state of register usage to change. It is therefore possible that in
unintended places register transfers that had up until that point remained without being optimized
may be erased or, alternatively, that optimization may become ineffective causing redundant register

transfers to remain.

- By adding temporary variables, a new register for register variables may come to be used, resulting
in code for saving and restoring that register being added to the function entrance and exit.

R20UT0259EJ0100 Rev.1.00

Oct 01, 2010

RENESAS

Page 67 of 890

CubeSuite Ver.1.40 CHAPTER 2 FUNCTIONS

2.7.2 Reducing variable area with variable definition method

This section explains reducing variable area with the variable definition method.

(1) Variable format
Because by ANSI-C specifications variables in short integer ((unsigned) short and (unsigned) char) formats are
expanded to int format or unsigned int format during operation, many format change instructions are generated
with respect to programs that use these variables (particularly in cases where these variables are allocated to reg-
isters).
Since making them (unsigned) int format makes this format change unnecessary, the code size is reduced.
Particularly with respect to stack intervals that are relatively easy to allocate to registers, it is recommended to use
(unsigned) int format as much as possible.

Bef ore change: After change:

unsi gned char i; int i;

for(i =0; i < 4; i++) {

for(i =0; i < 4; i++) { array[2 +i] = *(p +i);
array[2 +i] = *(p +1i); }

Remarks 1. The amount of reduction is specific to this example, and will vary case by case.
2. As aresult of changing the source, output instructions may be reduced and execution speed may
be increased.
3. Pay attention to the following points when changing the source.

- Changing the source causes the state of register usage to change. It is therefore possible that in
unintended places register transfers that had up until that point remained without being optimized
may be erased or, alternatively, that optimization may become ineffective causing redundant regis-
ter transfers to remain.

- By adding temporary variables, a new register for register variables may come to be used, resulting
in code for saving and restoring that register being added to the function entrance and exit.

In such a case, the code size will increase by the save/restore code amount (8 bytes).

R20UT0259EJ0100 Rev.1.00 RENESAS Page 68 of 890
Oct 01, 2010

CubeSuite Ver.1.40 CHAPTER 2 FUNCTIONS

(2) Allocating and referencing automatic variables

As in the following example, if there is a time interval between when a value is assigned to a stack variable and
when that value is actually referenced, during that interval a register is occupied and the chance for other variables
to be allocated to registers decreases.

In such a case, changing the value assignment to immediately before it is actually referenced increases the chance

for other variables to be allocated to registers increases, decreases memory access, and decreases the code size.

Bef ore change: After change:
int i =0, j =0, k=0 m=0Q0; int i, j, k, m
/*There is a function call in this i =0;
interval */ .
i =0
|/ *These vari abl es are not used*/ K=o
m = 0;
whi l e((k & OXFF) != OxFF) {
while((k & OxFF) != OxFF) {
k = s1;
k = s1;
if(k & MASK) {
if(k & MASK) {
if(mi=1) {
if(mi=1) {
s2 += 2;
s2 += 2;
m= 1;
m= 1;
array[15+i +j] = OxFF; o
array[15+i +j] = OxFF;
o+
j++;
}
) }
) }
}
Remarks 1. The amount of reduction is specific to this example, and will vary case by case.
2. As aresult of changing the source, output instructions may be reduced and execution speed may
be increased.
3. Pay attention to the following points when changing the source.

- Changing the source causes the state of register usage to change. It is therefore possible that in
unintended places register transfers that had up until that point remained without being optimized
may be erased or, alternatively, that optimization may become ineffective causing redundant regis-
ter transfers to remain.

- By adding temporary variables, a new register for register variables may come to be used, resulting
in code for saving and restoring that register being added to the function entrance and exit.

In such a case, the code size will increase by the save/restore code amount (8 bytes).
R20UT0259EJ0100 Rev.1.00 .zENESAS Page 69 of 890

Oct 01, 2010

CubeSuite Ver.1.40 CHAPTER 2 FUNCTIONS

(3) Variable types and order of definition
It is best to perform definitions in groups beginning with long data length values.
With the V850 microcontroller, word data in formats such as int format must be aligned to word boundaries, and
halfword data in formats such as short format must be aligned to halfword boundaries.
Due to this, source such as the following causes padding areas to be generated for alignment.

Hi gh position

I
o.

char ¢

short s = 0; j

int i =1] |d
char d ="'b"; :
i nt j =2

s | |c

Low position

In order to avoid the generation of such padding areas, define definitions of variables and structure members
grouped by format beginning with longer data lengths.

int i =1, Hi gh position
int j =2 d | ¢ | s
short s = 0; i
char ¢ ="'a' :
char d ="'b

Low position

R20UT0259EJ0100 Rev.1.00 RENESAS Page 70 of 890
Oct 01, 2010

CubeSuite Ver.1.40 CHAPTER 2 FUNCTIONS

2.8 Accelerating Processing

This section explains accelerating processing.

2.8.1 Accelerating processing with description method

This section explains accelerate processing with the description method

(1) Loop processing pointer
A variable that controls a loop as in the example below is called an induction variable.
"Deleting the induction variable" refers to optimization that deletes the induction variable by using a different vari-
able to control the loop.
The CX includes this optimization, but because applicable conditions are limited, not all cases are able to be opti-
mized.
By modifying the program in the following manner, this optimization can be performed "manually”.
In the lines below, induction variable i is deleted through the use of temporary variable (pointer) p.

Bef ore change: After change:
int i; const unsigned short *p;
for(i = 0; *(table + i) !'= NULL; ++i) { for(p = table; *p !'= NULL; ++p) {
if((*(table + i) & OxFF) == x) { if((*p & OxFF) == x) {
return(*(table + i) & OxFF0O0); return(*p & OxFFO00);
} }
} }

Remarks 1. The amount of reduction is specific to this example, and will vary case by case.
2. As aresult of changing the source, output instructions may be reduced and execution speed may
be increased.
3. Pay attention to the following points when changing the source.

- Changing the source causes the state of register usage to change. It is therefore possible that in
unintended places register transfers that had up until that point remained without being optimized
may be erased or, alternatively, that optimization may become ineffective causing redundant regis-
ter transfers to remain.

- By adding temporary variables, a new register for register variables may come to be used, resulting
in code for saving and restoring that register being added to the function entrance and exit.

In such a case, the code size will increase by the save/restore code amount (8 bytes).

(2) Auto variable declaration
Keep the number of auto variables to within ten; of preferably to six or seven.
Auto variables are assigned to registers.
The CX allows a total of 20 registers, 10 work registers and 10 register variable registers, to be used for variables
(in the 32-bit register mode).
It is recommended to use many auto variables if processing in one function takes time.
If the processing does not take much time, use only the 10 work registers whenever possible.
The register variable registers require overhead when they are saved or restored.
The C compiler automatically judges whether or not to use register variables.
Therefore, use six to seven registers for auto variables and leave three or four to be able to be used for work by the
C compiler.

R20UT0259EJ0100 Rev.1.00 RENESAS Page 71 of 890
Oct 01, 2010

CubeSuite Ver.1.40 CHAPTER 2 FUNCTIONS

(3) Function arguments
Four argument registers, r6 to r9, are available.
If the number of arguments is five or more, the stack is used for the fifth and subsequent arguments.
Therefore, keep the number of arguments to within four whenever possible.
If five or more arguments must be used, pass the arguments using the pointer of a structure.

R20UT0259EJ0100 Rev.1.00 RENESAS Page 72 of 890
Oct 01, 2010

CubeSuite Ver.1.40 CHAPTER 2 FUNCTIONS

2.9 Compiler and Assembler Mutual References

This section explains compiler and assembler mutual references.

29.1 Mutually referencing variables

This section explains mutually referencing variables.

(1) Reference variable defined in C language
Define extern when referencing an external variable defined in a C language program from an assembly language
routine.
Prefix "_" (an underscore) to a variable defined in an assembly language routine.

Example C source

extern void subf(void)
char c=0

int i =0

voi d mai n(void) {

subf ();

Example Assembler source

.public _subf
.extern _c, 1
.extern _i, 4
.cseg text
.align 4
_subf:
nmov 4, r10
st.b rlo, $_c
nmov 7, rl10
st.w r1o, $_i
jp [I'p]
R20UT0259EJ0100 Rev.1.00 RENESAS Page 73 of 890

Oct 01, 2010

CubeSuite Ver.1.40 CHAPTER 2 FUNCTIONS

(2) Reference variable defined in assembly language
Define extern when referencing in a C language routine an external variable defined in an assembly language pro-
gram.
Prefix "_" (an underscore) to a variable defined in an assembly language routine.

Example C source

extern char c

externint i;

voi d subf (void) {

Example Assembler source

.public _i, 4
.public _¢c, 1

. dseg sbss

.align 4
i
.ds (4)
_c:
.ds (1)
R20UT0259EJ0100 Rev.1.00 RENESAS Page 74 of 890

Oct 01, 2010

CubeSuite Ver.1.40 CHAPTER 2 FUNCTIONS

2.9.2 Mutually referencing functions

This section explains mutually referencing functions.

(1) Reference function defined in C language
Note the following points when calling a function described in C language from an assembly language routine.

- Stack frame
Code is generated on the assumption that the stack pointer (sp) always indicates the lowest address of the
stack frame. Therefore, set sp so that it indicates the higher address of an unused area of the stack area
when execution branches from an assembler function to a C function.

- Work register
Values of the register variable registers before and after a C function is called are retained, but the values of
the work registers are not. Therefore, do not leave a value that must be retained assigned to a work register.

- Return address to return to assembler function
Code is generated on the assumption that the return address of a function is stored in link pointer Ip (r31).
When execution branches to a C function, therefore, the return address of the function must be stored in Ip.

(2) Reference function defined in assembly language
Note the following points when calling an assembly language routine from a function described in C language.

- ldentifier
Prefix *_" to the name.

- Stack frame
Code is output based on the assumption that the stack pointer (sp) always indicates the lowest address of the
stack frame. Therefore, the address area lower than the address indicated by sp can be freely used in the
assembler function after branching from a C source to an assembler function. Conversely, if the contents of
the higher address area are changed, the area used by a C function may be lost and the subsequent operation
cannot be guaranteed. To avoid this, change sp at the beginning of the assembler function before using the
stack.
At this time, however, make sure that the value of sp is retained before and after calling.

- Register variable register
When using a register variable register in an assembler function, make sure that the register value is retained
before and after the assembler function is called. In other words, save the value of the register variable
register before calling the assembler function, and restore the value after calling.

- Return address to C language function
Code is generated on the assumption that the return address of a function is stored in link pointer Ip (r31).
When execution branches to an assembler function, the return address of the function is stored in Ip. Execute
the jmp [Ip] instruction to return to a C function.

R20UT0259EJ0100 Rev.1.00 RENESAS Page 75 of 890
Oct 01, 2010

CubeSuite Ver.1.40 CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

This chapter explains language specifications supported by the CX.

3.1 Basic Language Specifications

The CX supports the language specifications stipulated by the ANSI standards. These specifications include items that
are stipulated as processing definitions. This chapter explains the language specifications of the items dependent on the
processing system of the V850 microcontrollers.

The differences between when options strictly conforming to the ANSI standards are used and when those options are
not used are also explained.

See "3.2 Extended Language Specifications" for extended language specifications explicitly added by the CX.

3.1.1 Unspecified behavior

This section describes behavior that is not specified by the ANSI standard.

(1) Execution environment - initialization of static storage
Static data is output during compilation as a data section.

(2) Meanings of character displays - backspace (\b), horizontal tab (\t), vertical tab (\t)
This is dependent on the design of the display device.

(3) Types - floating point
IConforms to IEEE754N°t,

Note IEEE: Institute of Electrical and Electronics Engineers
IEEE754 is a system for handling floating-point calculations, providing a uniform standard for data formats,
numerical ranges, and the like handled.

(4) Expressions - evaluation order
In general, expressions are evaluated from left to right. The behavior when optimization has been applied, how-
ever, is undefined. Options or other settings could change the order of evaluation, so please do not code expres-
sions with side effects.

(5) Function calls - parameter evaluation order
In general, function arguments are evaluated from first to last. The behavior when optimization has been applied,
however, is undefined. Options or other settings could change the order of evaluation, so please do not code
expressions with side effects.

(6) Structure and union specifiers
These are adjusted so that they do no span bit field type alignment boundaries. If packing has been conducting
using options or a #pragma, then bit fields are packed, and not adjusted to alignment boundaries.

(7) Function definitions - storage of formal parameters
These are assigned to the stack and register. For the details, see "3.3.1 Calling between C functions".

(8) # operator
These are evaluated left to right.

R20UT0259EJ0100 Rev.1.00 RENESAS Page 76 of 890
Oct 01, 2010

CubeSuite Ver.1.40 CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

3.1.2

Undefined behavior

This section describes behavior that is not defined by the ANSI standard.

1)

)

@)

(4)

®)

(6)

(@)

(8)

©)

Character set
A message is output if a source file contains a character not specified by the character set.

Lexical elements
A message is output if there is a single or double quotation mark (‘/") in the last category (a delimiter or a single
non-whitespace character that does not lexically match another preprocessing lexical type).

Identifiers
Since all identifier characters have meaning, there are no meaningless characters.

Identifier binding
A message is output if both internal and external binding was performed on the same identifier within a translation
unit.

Compatible type and composite type
All declarations referencing the same object or function must be compatible. Otherwise, a message will be output.

Character constants

Specific non-graphical characters can be expressed by means of extended notation, consisting of a backslash (\)
followed by a lower-case letter. The following are available: \a, \b, \f, \n, \r, \t, and \v. There is no other extended
notation; other letters following a backslash (\) become that letter.

String literals - concatenation
When a simple string literal is adjacent to a wide string literal token, simple string concatenation is performed.

String literals - modification
Users modify string literals at their own risk. Although the string will be changed if it is allocated to RAM, it will not
be changed if it is allocated to ROM.

Header names

If the following characters appear in strings between the delimiter characters < and >, or between two double quo-
tation marks ("), then they are treated as part of the file name: characters, comma (,), double quote ("), two slashes
(/), or slash-asterisk (/*). The backslash (\) is treated as a folder separator.

(10)Floating point type and integral type

If a floating-point type is converted into an integral type, and the integer portion cannot be expressed as an integral
type, then the value is truncated until it can.

(12) Ivalues and function specifiers

A message is output if an incomplete type becomes an Ivalue.

(12) Function calls - number of arguments

If there are too few arguments, then the values of the formal parameters will be undefined. If there are too many
arguments, then the excess arguments will be ignored when the function is executed, and will have no effect.
A message will be output if there is a function declaration before the function call.

R20UT0259EJ0100 Rev.1.00 RENESAS Page 77 of 890
Oct 01, 2010

CubeSuite Ver.1.40 CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

(13)Function calls - types of extended parameters
If a function is defined without a function prototype, and the types of the extended arguments do not match the
types of the extended formal parameters, then the values of the formal parameters will be undefined.

(14)Function calls - incompatible types
If a function is defined with a type that is not compatible with the type specified by the expression indicating the
called function, then the return value of the function will be invalid.

(15)Function calls - incompatible types
If a function is defined in a form that includes a function prototype, and the type of an extended argument is not
compatible with that of a formal parameter, or if the function prototype ends with an ellipsis, then it will be inter-
preted as the type of the formal parameter.

(16)Addresses and indirection operators
If an incorrect value is assigned to a pointer, then the behavior of the unary * operator will either obtain an unde-
fined value or result in an illegal access, depending on the hardware design and the contents of the incorrect value.

(17)Cast operator - function pointer casts
If a typecast pointer is used to call a function with other than the original type, then it is possible to call the function.
If the parameters or return value are not compatible, then it will be invalid.

(18)Cast operator - integral type casts
If a pointer is cast into an integral type, and the amount of storage is too small, then the storage of the cast type will
be truncated.

(19)Multiplicative operators
A message will be output if a divide by zero is detected during compilation.
During execution, a divide by zero will raise an exception. If an error-handling routine has been coded, it will be
handled by this routine.

(20)Additive operators - non-array pointers
If addition or subtraction is performed on a pointer that does other than indicate elements in an array object, the
behavior will be as if the pointer indicates an array element.

(21) Additive operators - subtracting a pointer from another array
If subtraction is performed using two pointers that do not indicate elements in the same array object, the behavior
will be as if the pointers indicate array elements.

(22)Bitwise shift operators
If the value of the right operand is negative, or greater than the bit width of the extended left operand, then the
result will be the shifted value of the right operand, masked by the bit width of the left operand.

(23)Function operators - pointers
If the objects referring to by the pointers being compared are not members of the same structure or union object,
then the relationship operation will be performed for pointers referring to the same object.

R20UT0259EJ0100 Rev.1.00 RENESAS Page 78 of 890
Oct 01, 2010

CubeSuite Ver.1.40 CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

(24) Simple assignment
If a value stored in an object is accessed via another object that overlaps that object's storage area in some way,
then the overlapping portion must match exactly. Furthermore, the types of the two objects must have modified or
non-modified versions with compatible types. Assignment to non-matching overlapping storage could cause the
value of the assignment source to become corrupted.

(25) Structure and union specifiers
If the member declaration list does not include named members, then a message will be output warning that the list
has no effect. Note, however, that the same message will be output accompanied by an error if the -Xansi option is
specified.

(26) Type modifiers - const
A message will be output if an attempt is made to modify an object defined with a const modifier, using an Ivalue
that is the non-const modified version. Casting is also prohibited.

(27) Type modifiers - volatile
A message will be output if an attempt is made to modify an object defined with a volatile modifier, using an Ivalue
that is the non-volatile modified version.

(28)return statements
A message will be output if a return statement without an expression is executed, and the caller uses the return
value of the function, and there is a declaration. If there is no declaration, then the return value of the function will
be undefined.

(29) Function definitions
If a function taking a variable number of arguments is defined without a parameter type list that ends with an ellip-
sis, then the values of the formal parameters will be undefined.

(30) Conditional inclusion
If a replacement operation generates a "defined" token, or if the usage of the "defined" unary operator before
macro replacement does not match one of the two formats specified in the constraints, then it will be handled as an
ordinary "defined".

(31)Macro replacement - arguments not containing preprocessing tokens
A message is output if the arguments (before argument replacement) do not contain preprocessing tokens.

(32) Macro replacement - arguments with preprocessing directives
A message is output if an argument list contains a preprocessor token stream that would function as a processing
directive in another circumstance.

(33)# operator
A message is output if the results of replacement are not a correct simple string literal.

(34)## operator
A message is output if the results of replacement are not a correct simple string literal.

R20UT0259EJ0100 Rev.1.00 RENESAS Page 79 of 890
Oct 01, 2010

CubeSuite Ver.1.40 CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

3.1.3 Processing system dependent items

This section explains items dependent on processing system in the ANSI standards.

(1) Datatypes and sizes
The byte order in a word (4 bytes) is "from least significant to most significant byte" Signed integers are expressed
by 2's complements. The sign is added to the most significant bit (O for positive or 0, and 1 for negative).
- The number of bits of 1 byte is 8.
- The number of bytes, byte order, and encoding in an object module files are stipulated below.

Table 3-1. Data Types and Sizes

Data Types Sizes
char 1 byte
short 2 bytes
int, long, float 4 bytes
double, long double, long long 8 bytes
pointer Same as unsigned int

(2) Translation stages
The ANSI standards specify eight translation stages (known as "phases") of priorities among syntax rules for trans-
lation. The arrangement of "non-empty white space characters excluding line feed characters" which is defined as
processing system dependent in phase 3 "Decomposition of source file into preprocessing tokens and white space
characters" is maintained as it is without being replaced by single white space character.

(3) Diagnostic messages
When syntax rule violation or restriction violation occurs on a translation unit, the compiler outputs as error mes-
sage containing source file name and (when it can be determined) the number of line containing the error. These
error messages are classified: "Warning", "Abort error", "Fatal error" and "other" messages. For output formats of
messages, see the "CubeSuite Message" user's Manual.

(4) Free standing environment

(@) The name and type of a function that is called on starting program processing are not stipulted in a
free-standing environmentN°'€. Therefore, it is dependent on the user-own coding and target system.

Note Environment in which a C source program is executed without using the functions of the operating
system.
In the ANSI Standard two environments are stipulated for execution environment: a free-standing
environment and a host environment. The CX does not supply a host environment at present.

(b) The effect of terminating a program in a free-standing environment is not stipulated. Therefore, it is
dependent on the user-own coding and target system.

(5) Program execution
The configuration of the interactive unit is not stipulated.
Therefore, it is dependent on the user-own coding and target system.

R20UT0259EJ0100 Rev.1.00 RENESAS Page 80 of 890
Oct 01, 2010

CubeSuite Ver.1.40

CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

(6) Character set

The values of elements of the execution environment character set are ASCII codes.

(7) Multi-byte characters

Supported multi-byte characters are ECU, SJIS and UTF-8.
Japanese description in comments and character strings is supported.

(8) Significance of character display
The values of expanded notation are stipulated as follows.

Table 3-2. Expanded Notation and Meaning

Expanded Notation Value (ASCII) Meaning
\a o7 Alert (Warning tone)
\b 08 Backspace
\f ocC Form feed (New Page)
\n 0A New line (Line feed)
\r 0D Carriage return (Restore)
\t 09 Horizontal tab
\v 0B Vertical tab

(9) Translation Limit

A maximum of 2,000 files can be linked. Specifying more than 2,000 files for linking will cause an E0511138 error.
There are no other limits on translation. The maximum translatable value depends on the memory of the host

machine on which the program is running.

(10)Quantitative limit

() The limit values of the general integer types (limits.h file)

The limits.h file specifies the limit values of the values that can be expressed as general integer types (char
type, signed/unsigned integer type, and enumerate type).
Because multi-byte characters are not supported, MB_LEN_MAX does not have a corresponding limit. Con-

sequently, it is only defined with MB_LEN_MAX as 1.

If the -Xchar=unsigned option of the CX is specified, CHAR_MIN is 0, and CHAR_MAX takes the same value

as UCHAR_MAX.

The limit values defined by the limits.h file are as follows.

Table 3-3. Limit Values of General Integer Type (limits.h File)

Name Value Meaning
CHAR_BIT +8 The number of bits (= 1 byte) of the minimum
object not in bit field
SCHAR_MIN -128 Minimum value of signed char
SCHAR_MAX +127 Maximum value of signed char
UCHAR_MAX +255 Maximum value of unsigned char
CHAR_MIN -128 Minimum value of char
R20UT0259EJ0100 Rev.1.00 RENESAS Page 81 of 890

Oct 01, 2010

CubeSuite Ver.1.40

CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

Name Value Meaning
CHAR_MAX +127 Maximum value of char
SHRT_MIN -32768 Minimum value of short int
SHRT_MAX +32767 Maximum value of short int
USHRT_MAX +65535 Maximum value of unsigned short int
INT_MIN -2147483648 Minimum value of int
INT_MAX +2147483647 Maximum value of int
UINT_MAX +4294967295 Maximum value of unsigned int
LONG_MIN -2147483648 Minimum value of long int
LONG_MAX +2147483647 Maximum value of long int
ULONG_MAX +4294967295 Maximum value of unsigned long int
LLONG_MIN -9223372036854775807 Minimum value of long long int
LLONG_MAX +9223372036854775807 Maximum value of long long int
ULLONG_MAX 18446744073709551615 Minimum value of unsigned long long int

(b) The limit values of the floating-point type (float.h file)

The limit values related to characteristics of the floating-point type are defined in float.h file.
The limit values defined by the float.h file are as follows.

Table 3-4. Definition of Limit Values of Floating-point Type (float.h File)
Name Value Meaning
FLT_ROUNDS +1 Rounding mode for floating-point addition.
1 for the V850 microcontrollers (rounding in
the nearest direction).
FLT_RADIX +2 Radix of exponent (b)
FLT_MANT_DIG +24 Number of numerals (p) with FLT_RADIX of
floating- point mantissa as base
DBL_MANT_DIG +53
LDBL_MANT_DIG +53
FLT_DIG +6 Number of digits of a decimal number (qg) that
can round a decimal number of q digits to a
DBL_DIG +15 . . - .

- floating-point number of p digits of the radix b
LDBL_DIG +15 and then restore the decimal number of q
FLT_MIN_EXP -125 Minimum negative integer (ep,;,) that is a nor-

malized floating-point number when
DBL_MIN_EXP -1021 . .

- - FLT_RADIX is raised to the power of the
LDBL_MIN_EXP -1021 value of FLT_RADIX minus 1.
FLT_MIN_10_EXP -37 Minimum negative integerlog,gb®mn: that falls

in the range of a normalized floating-point
DBL_MIN_10_EXP -307 . . .

- - - number when 10 is raised to the power of its
LDBL_MIN_10_EXP | -307 value.

FLT_MAX_EXP +128 Maximum integer (enay) that is a finite float-
ing-point number that can be expressed when
DBL_MAX_EXP +1024 . . .

- - FLT_RADIX is raised to the power of its value
LDBL_MAX_EXP +1024 minus 1.

R20UT0259EJ0100 Rev.1.00 RENESANAS Page 82 of 890

Oct 01, 2010

CubeSuite Ver.1.40

CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

Name Value Meaning
FLT_MAX_10_EXP +38 Maximum value of finite floating-point num-
bers that can be expressed
DBL_MAX_10_EXP +308
(1-bP) % psmax
LDBL_MAX_10_EXP | +308

FLT_MAX 3.40282347E + 38F Maximum value of finite floating-point num-
bers that can be expressed
DBL_MAX 1.7976931348623158E+308
(1-bP) * pSmax
LDBL_MAX 1.7976931348623158E+308
FLT_EPSILON 1.19209290E - O7F Difference between 1.0 that can be
expressed by specified floating-point number
DBL_EPSILON 2.2204460492503131E-016 .
type and the lowest value which is greater
LDBL_EPSILON 2.2204460492503131E-016 than 1.
bl-P
FLT_MIN 1.17549435E - 38F Minimum value of normalized positive float-
ing-point number
DBL_MIN 2.2250738585072014E-308 o
[pCmin -1
LDBL_MIN 2.2250738585072014E-308

(11) Identifier
All identifiers are considered to have meaning. There are no restrictions on identifier length.
Uppercase and lowercase characters are distinguished.

(22)char type
A char type with no type specifier (signed, unsigned) specified is treated as a signed integer as the default assump-
tion.
However, a simple char type can be treated as an unsigned integer by specifying the -Xchar=unsigned option of
the CX.
The types of those that are not included in the character set of the source program required by the ANSI standards
(escape sequence) is converted for storage, in the same manner as when types other than char type are substi-
tuted for a char type.

char c ="'"\777"; /*Value of ¢ is -1*/

(13)Floating-point constants
The floating-point constants conform to IEEE754NOte,

Note I|EEE: Institute of Electrical and Electronics Engineers
IEEE754 is a system for handling floating-point calculations, providing a uniform standard for data formats,
numerical ranges, and the like handled.

(14)Character constants

(a) Both the character set of the source program and the character set in the execution environment are
basically ASCII codes, and correspond to members having the same value.
However, for the character set of the source program, character codes in Japanese can be used (see
"(8) Significance of character display").

R20UT0259EJ0100 Rev.1.00
Oct 01, 2010

RENESAS Page 83 of 890

CubeSuite Ver.1.40 CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

(b) The last character of the value of an integer character constant including two or more characters is
valid.

(c) A character that cannot be expressed by the basic execution environment character set or escape
sequence is expressed as follows.

<1> An octal or hexadecimal escape sequence takes the value indicated by the octal or hexadecimal
notation

\777 511

<2> The simple escape sequence is expressed as follows.

\? ?

\\ \

<3> Values of \a, \b, \f, \n, \r, \t, \v are same as the values explained in " (8) Significance of character dis-
play".

(d) Character constants of multi byte characters are not supported.
(15)Character string

A character string can be described in Japanese.

The default character code is Shift JIS.

A character code in input source file can be selected by using the -Xcharacter_set option of the CX.

[Option specification]

-Xcharacter_set=[none | euc_jp | sjis | utf8]

(16)Header file name
The method to reflect the string in the two formats (< > and " ") of a header file name on the header file or an
external source file name is stipulated in "(33) Loading header file".

(17)Comment
A comment can be described in Japanese. The character code is the same as the character string in “(15) Char-
acter string".

(18)Signed constants and unsigned constants
If the value of a general integer type is converted into a signed integer of a smaller size, the higher bits are trun-
cated and a bit string image is copied.
If an unsigned integer is converted into the corresponding signed integer, the internal representation is not
changed.

R20UT0259EJ0100 Rev.1.00 RENESAS Page 84 of 890
Oct 01, 2010

CubeSuite Ver.1.40 CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

(19)Floating-points and general integers
If the value of a general integer type is converted into the value of a floating-point type, and if the value to be con-
verted is within a range that can be expressed but not accurately, the result is rounded to the closest expressible
value.
When the result is just a middle value, it can be rounded to the even number (with the least significant bit of the
mantissa being 0).

(20)double type and float type
In the CX, a double type is treated as 64-bit (double-precision) data and a float type is treated as 32-bit (single-
precision) data.

(21)Signed type in operator in bit units
The characteristics of the shift operator conform to the stipulation in "(27) Shift operator in bit units".
The other operators in bit units for signed type are calculated as unsigned values (as in the bit image).

(22) Members of structures and unions
If the value of a member of a union is stored in a different member, it is stored according to an alignment condition.
Therefore, the members of that union are accessed according to the alignment condition (see "(6) Structure type"
and "(7) Union type").
In the case of a union that includes a structure sharing the arrangement of the common first members as a mem-
ber, the internal representation is the same, and the result is the same even if the first member common to any
structure is referred.

(23)sizeof operator
The value resulting from the "sizeof" operator conforms to the stipulation related to the bytes in an object in "(1)
Data types and sizes".
For the number of bytes in a structure and union, it is byte including padding area.

(24) Cast operator
When a pointer is converted into a general integer type, the required size of the variable is the same as the size of
the unsigned long type. The bit string is saved as is as the conversion result.
Any integer can be converted by a pointer. However, the result of converting an integer smaller than an int type is
expanded according to the type.

(25)Division/remainder operator
The result of the division operator (/") when the operands are negative and do not divide perfectly with integer divi-
sion, is as follows: If either the divisor or the dividend is negative, the result is the smallest integer greater than the
algebraic quotient.
If both the divisor and the dividend are negative, the result is the largest integer less than the algebraic quotient.
If the operand is negative, the result of the "%" operator takes the sign of the first operand in the expression.

(26) Addition and subtraction operators
If two pointers indicating the elements of the same array are subtracted, the type of the result is unsigned long

type.

(27) Shift operator in bit units
If E1 of "E1 >> E2" is of signed type and takes a negative value, an arithmetic shift is executed.

R20UT0259EJ0100 Rev.1.00 RENESAS Page 85 of 890
Oct 01, 2010

CubeSuite Ver.1.40 CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

(28) Storage area class specifier
Optimize for the fastest possible access, regardless of whether there is a storage-class area specifier "register”

declaration.
(29) Structure and union specifier

(@) A simpleinttype bit field without signed or unsigned appended is treated as a signed field, and the
most significant bit is treated as the sign bit. However, the simple int type bit field can be treated as an
unsigned field by specifying the -Xbitfield option (Specifying sign of simple int type bit field) of the CX.

(b) To retain a bit field, a storage area unit to which any address with sufficient size can be assigned can
be allocated. If there is insufficient area, however, the bit field that does not match is packed into to
the next unit according to the alignment condition of the type of the field.

(c) The allocation sequence of the bit field in unit is from lower to higher.

(d) Each member of the non-bit field of one structure or union is aligned at a boundary as follows:

char, unsigned char type, and its array Byte boundary
short, unsigned short type, and its array 2-byte boundary
Others (including pointer) 4-byte boundary

(30)Enumerate type specifier
The type of an enumeration specifier is signed int.
However, when the -Xenum_type=auto option is specified, each enumerated type is treated as the smallest integer
type capable of expressing all the enumerators in that type.

(31) Type qualifier
The configuration of access to data having a type qualified to be "volatile" is dependent upon the address (I/O port,
etc.) to which the data is mapped.

(32)Condition embedding

(@) The value for the constant specified for condition embedding and the value of the character constant
appearing in the other expressions are equal.

(b) The character constant of a single character must not have a negative value.
(33)Loading header file

(a) A preprocessing directive in the form of "#include <character string>"
A preprocessing directive in the form of "#include <character string>" searches for a header file from the folder
specified by the -1 option if "character string" does not begin with "\"N°€ and then searches standard include
file folder (..\inc folder with a relative path from the bin folder where the cx is placed).
If a header file uniformly identified is searched with a character string specified between delimiters "<" and ">",
the whole contents of the header file are replaced.

Note "/"are regarded as the delimiters of a folder.

R20UT0259EJ0100 Rev.1.00 RENESAS Page 86 of 890
Oct 01, 2010

CubeSuite Ver.1.40 CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

(b)

()

(d)

#i ncl ude <header. h>

The search order is as follows.
- Folder specified by -I
- Standard include file folder

A preprocessing directive in the form of "#include "character string""

A preprocessing directive in the form of "#include "character string™ searches for a header file from the folder
where the source file exists, then searches specified folder (-1 option) and then searches standard include file
folder (..\inc folder with a relative path from the bin folder where the cx is placed).

If a header file uniformly identified is searched with a character string specified between delimiters " " " and " "
", the whole contents of the header file are replaced.

Example

#i ncl ude "header. h"

The search order is as follows.
- Folder where source file exists
- Folder specified by -I
- Standard include file folder

The format of "#include preprocessing character phrase string"

The format of "#include preprocessing character phrase string” is treated as the preprocessing character
phrase of single header file only if the preprocessing character phrase string is a macro that is replaced to the
form of <character string> or "character string".

A preprocessing directive in the form of "#include <character string>"
Between a string delimited (finally) and a header file name, the length of the alphabetic characters in the
strings is identified,

And the file name length valid in the compiler operating environment is valid.

The folder that searches a file conforms to the above stipulation.

(34)#pragma directive
The CX can specify the following #pragma directives.

(@)

Describing assembler instruction

#pragma asm

assenbl er instruction

#pragma endasm

Assembler directives can be described in a C source program.
For the details of description, see "(5) Describing assembler instruction”.

R20UT0259EJ0100 Rev.1.00 RENESAS Page 87 of 890
Oct 01, 2010

CubeSuite Ver.1.40 CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

(b) Inline expansion specification

#pragma inline function-nane[, function-name ...]

A function that is expanded inline can be specified.
For the details of expansion specification, see "(9) Inline expansion".

(c) Data or program memory allocation

#pragma section section-type ["section-nane"]

#pragma text ["section-nane"] [function-name[, function-nane]...]

<1> section
Allocates variables to an arbitrary section.
For details about the allocation method, see "(2) Allocation of data to section”.

<2> text
A function to be allocated in a text section with an arbitrary name can be specified.

For details about the allocation specification, see "(3) Allocating functions to sections".

(d) Peripheral I/0O register name validation specification

#pragma i oreg

The peripheral 1/O registers of a device are accessed by using peripheral function register names. When
programming using peripheral I/O registers names as it is, #pragma directives are needed to be specified.

(e) Interrupt/exception handler specification

#pragma i nterrupt interrupt-request-name function-nane [allocation-nethod] [Option
[Option]...]

Interrupt/Exception handlers are described in C language.
For the details of description, see "(c) Describing interrupt/exception handler".

(f) Interrupt disable function specification

#pragma bl ock_i nterrupt function-nanme

Interrupts are disabled for the entire function.

(g) Task specification

#pragma rtos_task function-nane

The task of operating on the realtime OS is described by C language.
For the details of description, see "(a) Description of task".

R20UT0259EJ0100 Rev.1.00 RENESAS Page 88 of 890
Oct 01, 2010

CubeSuite Ver.1.40

CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

(h) Structure type packing specification

0]

#pragma pack([1248])

Specifies the packing of a structure type. The packing value, which is an alignment value of the member, is

specified as the numeric value. A value of 1, 2, 4, or 8 can be specified. When the numeric value is not spec-
ified, it is by default (8)N°®,

Note Alignment values "4" and "8" are treated as the same in this Version.

Smart correction specification

#pragma smart _correct function-nane function-nane

Specifies the function of smart correction.

For the details of description, see "(13) Smart correction function®.

(35)Predefined macro names
All the following macro names are supported.
Macros not ending with "_ _" are supplied for the sake of former C language specifications (K&R specifications).
To perform processing strictly conforming to the ANSI standards, use macros with "_ _" before and after.

Table 3-5. List of Supported Macros

Macro name Definition

__LINE__ Line number of source line at that point (decimal).

__FILE__ Name of assumed source file (character string constant).

_ DATE__ Date of translating source file (character string constant in the form of "Mmm dd
yyyy"). Here, the name of the month is the same as that created by the asctime
function stipulated by ANSI standards (3 alphabetic characters with only the first
character is capital letter) (The first character of dd is blank if its value is less than
10).

__TIME__ Translation time of source file (character string constant having format "hh:mm:ss"
similar to the time created by the asctime function).

__STDC__ Decimal constant 1 (defined when the -Xansi option is specified)Note

__v850 Decimal constant 1.

_ v850__

__v850e Decimal constant 1 (defined by the CX, if VB50EX is specified as a target device).

__v850e__

__v850e2 Decimal constant 1 (defined by the CX, if VB50E2 is specified as a target device).

__v850e2__

__v850e2v3 Decimal constant 1 (defined by the CX, if device with an instruction set of V850E2V3

v850e2v3 is specified as a target device).

__KOR Decimal constant 1 (defined by the CX, if 78KOR is specified as a target device).

__KOR__

_CX Decimal constant 1.

CX

R20UT0259EJ0100 Rev.1.00
Oct 01, 2010

RENESAS Page 89 of 890

CubeSuite Ver.1.40

CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

Macro name

Definition

__CHAR_SIGNED__

Decimal constant 1 (defined if signed is specified by the -Xchar option and when the
-Xchar option is not specified).

__CHAR_UNSIGNED__

Decimal constant 1 (defined when unsigned is specified by the -Xchar option).

__DOUBLE_IS_64BITS__

Decimal constant 1.

__CPUmacro_

_ CPUmacro__

Decimal constant 1 of a macro indicating the target CPU. A character string indi-
cated by "product type specification" in the device file with *_ _" prefixed and "_" or
' "suffixed is defined.

Register mode macro

Decimal constant 1 of a macro indicating the target CPU.

Macro defined with register mode is as follows.

32 register mode: __reg32__
26 register mode: __reg26__
22 register mode: _reg22__

Universal register mode: __reg_common___

__MULTI_CORE___ Decimal constant 1 (defined when specified by the -Xmulti option).
__ MULTI_CMN___ Decimal constant 1 (defined when core specified by the -Xmulti option (n is the
__MULTI_PEn__ numerical value.)).

Note For the processing to be performed when the -Xansi option is specified, see "3.1.5 ANSI option™.

3.1.4 C99 language function

This section describes the C99 language functions supported by the CX.

(1) Macros with variable numbers of arguments
The compiler supports C preprocessor macros with variable numbers of arguments.

#define pr (fnt, ...) printf (fmt, __ VA ARGS)

The notation above can be used to describe an arbitrary number of arguments.

pr ("%%\n", "aa", 1) ->
pr ("%\n", 2) ->

printf ("%%\n", "aa", 1)
printf ("%\n", 2)

(2) _Bool type
_Bool type is supported.

(3) Comment by //

Text from two slashes (/) until a newline character is a comment. If there is a backslash character (\) immediately

before the newline, then the next line is treated as a continuation of the current comment.

(4) Inline keyword (inline function)
Inline function is supported.
This can also be specified using a pragma directive, via the following format.

#pragma inline function-nane[, function-nanme, ...]

For the details of expansion specification, see "(9) Inline expansion".

R20UT0259EJ0100 Rev.1.00
Oct 01, 2010

RENESAS

Page 90 of 890

CubeSuite Ver.1.40 CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

(5) long long int type
long long int type is supported. long long int type is 8-byte of integer type.
Appending "LL" to a constant value is also supported. It is also possible to specify this for bit field types.

(6) Comma permission behind the last enumeration child of a enum definition
When defining an enum type, it is permissible for the last enumerator in the enumeration to be followed by a
comma (,).

enum EE {a, b, c,};

3.15 ANSI option

When the -Xansi option is specified by the CX, process strictly conforming to ANSI standards is executed.
The differences between when the -Xansi option is specified and when not specified are as follows.

Table 3-6. Processing When -Xansi Option Strictly Conforming to Language Specifications is Specified

Item With -Xansi Specification Without -Xansi Specification

Bit field An errorNote 1 occurs if type other than int is Permits.
specified for bit field.

line number An error occurs. Treated in same manner as "#line line num-

ber".Nme 2

Character # in middle | An error occurs if character # appears in the Outputs warning message and permits.

of line middle of the line.

__STDC__ Defines value as macro with value 1. Does not define.

Binary Constants An error occurs if "Ob" or "0B" is followed by one | Treats "Ob" or "0B" followed by one or more
or more "0" or "1". "0" or "1" as a binary constant.

Notes 1. Normal error beginning with "E". The same applies hereafter.
2. See the ANSI standards.

R20UT0259EJ0100 Rev.1.00 RENESAS Page 91 of 890
Oct 01, 2010

CubeSuite Ver.1.40 CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

3.1.6 Internal representation and value area of data

This section explains the internal representation and value area of each type for the data handled by the CX.

(1) Integer type

(&) Internal representation

The leftmost bit in an area is a sign bit with a signed type (type declared without "unsigned”). The value of a
signed type is expressed as 2' s complement.
If the -Xchar=unsigned option is specified, however, a char type specified without "signed" or "unsigned" is

assumed to be unsigned.

Figure 3-1.

_Bool (C99)

signed char (no sign bit for unsigned)

short (no sign bit for unsigned)

15 0

int, long (no sign bit for unsigned)

Internal Representation of Integer Type

31

long long (no sign bit for unsigned)

63

(b) Value area

Table 3-7. Value Area of Integer Type

Type Value Area
charNote -128 to +127
short -32768 to +32767
int -2147483648 to +2147483647
long -2147483648 to +2147483647
long long -9223372036854775807 to +9223372036854775807

R20UT0259EJ0100 Rev.1.00
Oct 01, 2010

RENESAS

Page 92 of 890

CubeSuite Ver.1.40

CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

Type Value Area
unsigned char 0to 255
unsigned short 0 to 65535
unsigned int 0 to 4294967295
unsigned long 0 to 4294967295

unsigned long long

0 to 18446744073709551615

Note The value area is 0 to 255, if the -Xchar=unsigned option is specified by the CX.

(2) Floating-point type

(a) Internal representation

Internal Representation of floating-point data type conforms to IEEE754N°®. The leftmost bit in an area of a
sign bit. If the value of this sign bit is 0, the data is a positive value; if it is 1, the data is a negative value.

Note I|EEE: Institute of Electrical and Electronics Engineers
IEEE754 is a standard to unify specifications such as the data format and numeric range in systems
that handle floating-point operations.

Figure 3-2.

float

Internal Representation of Floating-Point Type

S| E

31 30 23 22

S: Sign bit of mantissa
E: Exponent (8 bits)
M: Mantissa (23 bits)

double

S E

63 62 52 51

S: Sign bit of mantissa
E: Exponent (11 bits)
M: Mantissa (51 bits)

R20UT0259EJ0100 Rev.1.00
Oct 01, 2010

RENESAS

Page 93 of 890

CubeSuite Ver.1.40 CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

(b) Value area

Table 3-8. Value Area of Floating-Point Type

Type Value Area
float 1.18 x 1038 t0 3.40 x 1038
double 2.23x1073%8 19 1.80 x 10308

(3) Pointer type

(a) Internal representation
The internal representation of a pointer type is the same as that of an unsigned int type.

Figure 3-3. Internal Representation of Pointer Type

31 0

(4) Enumerate type
(@) Internal representation
The internal representation of an enumerate type is the same as that of a signed int type. The leftmost bit in

an area of a sign bit.

Figure 3-4. Internal Representation of Enumerate Type

3130 0

When the -Xenum_type=string option is specified, see "(30) Enumerate type specifier".
(5) Array type
(a) Internal representation
The internal representation of an array type arranges the elements of an array in the form that satisfies the

alignment condition (alignment) of the elements

Example

char a[8] ={1, 2, 3, 4, 5 6, 7, 8};

The internal representation of the array shown above is as follows.

R20UT0259EJ0100 Rev.1.00 RENESAS Page 94 of 890
Oct 01, 2010

CubeSuite Ver.1.40 CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

Figure 3-5. Internal Representation of Array Type

(6) Structure type

(a) Internal representation
The internal representation of a structure type arranges the elements of a structure in a form that satisfies the
alignment condition of the elements.

Example

struct {
short s1;
int S2;
char s3;
| ong s4;

} tag;

The internal representation of the structure shown above is as follows.

Figure 3-6. Internal Representation of Structure Type

s4 s3 s2 sl

31 0 31 8 7 031 0 31 16 15 0

For the internal representation when the structure type packing function is used, see "(12) Structure type
packing"”.

(7) Union type

(&) Internal representation
A union is considered as a structure whose members all start with offset 0 and that has sufficient size to
accommodate any of its members. The internal representation of a union type is like each element of the
union is placed separately at the same address.

Example
uni on {
int ul;
short u2;
char u3;
| ong u4;
} tag;
R20UT0259EJ0100 Rev.1.00 RENESAS Page 95 of 890

Oct 01, 2010

CubeSuite Ver.1.40 CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

The internal representation of the union shown in the above example is as follows.

Figure 3-7. Internal Representation of Union Type

31 0

: :< >
1 + tag.u3 (1 byte) 1

tag.u2 (2 bytes) 1

u 1
A A

A
. A

tag.ul, tag.u4 (4 bytes)

(8) Bit field

() Internal representation
An area including the declared number of bits is reserved for a bit field. The most significant bit of the area for
a bit field declared to be of signed type is a sign bit.
The bit field declared first is allocated from the least significant bit of 4-byte area. If the alignment condition of
the type specified in the declaration of a bit field is exceeded as a result of allocating an area that immediately
follows the area of the preceding bit field to the bit field, the area is allocated starting from a boundary that sat-
isfies the alignment condition.
Note, however, that in the case of a bit field of type long long, then if the alignment conditions exceed the 64-
bit boundary of the long long type, rather than the 4-byte boundary, then it will be allocated from the next
boundary.

Example

struct {
unsi gned i nt f1: 30;
int f2:14;
unsi gned i nt f3:6;

} flag;

The internal representation for the bit field in the above example is as follows.

Figure 3-8. Internal Representation of Bit Field

3 f2 fl

31 2019 1413 0 30 0
31 29

The ANSI standards do not allow char and short types to be specified for a bit field, but the CX allows char,
short, long, long long and those unsigned types.

For the internal representation of bit field when the structure type packing function is used, see "(12) Structure
type packing".

R20UT0259EJ0100 Rev.1.00 RENESAS Page 96 of 890
Oct 01, 2010

CubeSuite Ver.1.40 CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

(9) Alignment condition
(@) Alignment condition for basic type
Alignment condition for basic type is as follows.

If the -Xinline_strcpy option of the CX is specified, however, all the arrey types are 4-byte boundaries.

Table 3-9. Alignment Condition for Basic Type

Basic Type Alignment Conditions
(unsigned) char and its array type Byte boundary
(unsigned) short and its array type 2-byte boundary
Other basic types (including pointer) 4-byte boundary

(b) Alignment condition for union type

The alignment condition for the union type varies as shown in Table 3-12, depending on the maximum
member size.

Table 3-10. Alignment Condition for Union Type

Maximum Member Size Alignment Conditions
2 bytes < size 4-byte boundary
Size <= 2 bytes Maximum member size boundary

Here are examples of the respective cases:

Examples 1.

union tugl {
unsi gned short i; /*2 bytes menber*/

unsi gned char «c¢; /*1 bytes nenber*/

}; [/*The union is aligned with 2-byte.*/

union tug2 {
unsigned int i; [/*4 bytes nenber*/
unsi gned char c¢; /*1 byte nmenber*/

}; /*The union is aligned with 4-byte.*/

(c) Alignment condition for structure type

The alignment conditions for a structure type are the same as those of the structure's member whose type has
the largest alignment condition.

If the -Xinline_strcpy option of the CX is specified, however, all the structure types are 4-byte boundaries.

Here are examples of the respective cases:

R20UT0259EJ0100 Rev.1.00 RENESAS Page 97 of 890
Oct 01, 2010

CubeSuite Ver.1.40 CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

Examples 1.

struct ST {
char C; /*1 byte menber*/
}; [/*Structure is aligned with 1-byte.*/

struct ST {
char C; /*1 byte menber*/
short S; /*2 bytes menber*/

}; [/*Structure is aligned with 2-byte.*/

struct ST {

char C; /*1 byte menber*/
short S; /*2 bytes nenber*/
short s2; /*2 bytes menber*/

}; [/*Structure is aligned with 2-byte.*/

struct ST {

char C; /*1 byte menber*/
short S; /*2 bytes nmenber*/
int i /*4 bytes menber*/

}; [/*Structure is aligned with 4-byte.*/

struct ST {

char C; /*1 byte menber*/
short S; /*2 bytes nenber*/
int i /*4 bytes menber*/
I ong | ong I /*4 bytes nmenber*/

}; [/*Structure is aligned with 4-byte.*/

(d) Alignment condition for function argument
The alignment condition for a function argument is a 4-byte boundary.

(e) Alignment condition for executable program
The alignment condition when an executable object module file is created by linking object module files is 2-

byte boundary.

R20UT0259EJ0100 Rev.1.00 RENESAS Page 98 of 890
Oct 01, 2010

CubeSuite Ver.1.40

CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

3.1.7 General-purpose registers

How the CX uses the general-purpose registers are as follows.

The general-purpose registers includes the following functions.

(1) Software register bank

The number of the work registers (r10 through r19) and register variable registers (r20 through r29) used can be

reduced by the -Xreg_mode option of the CX (see "3.1.9 Software register bank™).

Table 3-11. Using General-Purpose Registers

Register Usage

r0 Zero register Used for operation as value of 0.
Also used to reference data located at const section (read-
only section placed in ROM area)Note,

rl Assembler-reserved register Used for instruction expansion by assembler.

r2 (hp) Handler stack pointer Reserved for system.

r3 (sp) Stack pointer Used to indicate beginning of stack frame.

r4 (gp) Global pointer Used to reference external variable.

r5 (tp) Text pointer Used to indicate beginning of text section (.text section)

ré to r9 Argument registers Used to pass argument.

r10to r19 Work register Used as work area during operation (r10 is also used to pass
return value of function).

r20 to r29 Register variable registers Used as an area for register variables.

r30 (ep) Element pointer Used to reference external variable specified to be located in
internal RAM or external RAM sectionNot,

r31 (Ip) Link pointer Used to pass return address of function.

Note For the allocation of data to a section, see "(2) Allocation of data to section".

3.1.8 Referencing data

How the CX references data are as follows.

Table 3-12. Referencing Data

Type

Referencing Method

Numeric constant

Immediate

Character string constant

Offset from global pointer (gp)
Offset from element pointer (ep)
Offset from rO

Automatic variable, Argument

Offset from stack pointer (sp)

External variable, Static variable in function

Offset from global pointer (gp)
Offset from element pointer (ep)
Offset from rO

Function address

Operated during execution by using offset from text pointer (tp)

R20UT0259EJ0100 Rev.1.00
Oct 01, 2010

RENESAS

Page 99 of 890

CubeSuite Ver.1.40 CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

3.1.9 Software register bank

Because the CX implements a register bank function by software, three register modes are provided. By specifying
these register modes efficiently, the contents of some registers do not need to be saved or restored when an interrupt
occurs or the task is switched. As a result, the processing speed can be improved. The register modes are specified by
using the register mode specification option (-Xreg_mode) of the CX. This function reduces the number of registers
internally used by the CX on a step-by-step basis. As a result, the following effects can be expected:

- The registers not used can be used for the application program (that is, a source program in assembly language).
- The overhead required for saving and restoring registers can be reduced.

Caution In an application program that has many variables to be allocated to registers by the CX, the
variables so far allocated to a register are accessed from memory when a register mode has been

specified. As aresult, the processing speed may drop.

(1) Register mode
Next table and next Figure show the three register modes supplied by the CX.

Table 3-13. Register Modes Supplied by CX

Register modes Work Register Register Variable Registers
32-register mode (Default) r10to rl9 r20 to r29
26-register mode rl0torl6é r23 to r29
22-register mode rl0torl4 r25 to r29
R20UT0259EJ0100 Rev.1.00 RENESANAS Page 100 of 890

Oct 01, 2010

CubeSuite Ver.1.40

CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

Figure 3-9. Register Modes and Usable Registers

Other registers

Work register

Register Variable Registers

Other registers i

32-register mode

26-register mode

22 -register mode

31 0 31 31 0
ro r0 r0
rl0 - r10 rl0

rl4
rl5
rl6
7 rl7
/7
/
r19 /
r20 \
\
AY
\ r22
23
r24
r25
r29 r29 r29
r31 r31 r31

Specification example on command line

|:| Registers that can be used freely in application

> cx -Cf3507 -Xreg_node=26 file.c <- conpiled in 26-regi ster node

R20UT0259EJ0100 Rev.1.00
Oct 01, 2010

RENESAS

Page 101 of 890

CubeSuite Ver.1.40 CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

3.1.10 Devicefile

A device file is a binary file that contains information dependent upon the device type. One device file is available for
each device or group of target devices as a package. The compiler referred a device file to generate object codes corre-
sponding to the target system that is used in the application system. Therefore, place the device file to be used under the
standard folder for the device file. If the device is placed under any other folder, specify the folder using a compiler
option; otherwise an error occurs during compilation because the device file is not found.

(1) Specifying device file
A device file that is referenced by a program in C language can be specified in the following way.

(@)

Specifying device name using compiler option (-Cdevice-name)

Example

> cx -Cf3507 file.c

When building a program with CubeSuite, specifying a device has an effect equivalent to specifying this

option.

In this example, the device name is "f3507" (V850E2/PJ4). The character strings that can be specified as
"device name" dose not distinguish uppercase and lowercase characters.
For the character strings that can be specified as a device name, see the User's Manual of each device.

(2) Notes on specifying device file

(@)

(b)

If no device name is specified

If a device name is not specified by the -C option, and if neither the -Xcommon=v850e option, nor the -Xcom-
mon=v850e2 option, -Xcommon=v850e2v3N°e js specified, the compiler outputs the error message and stops
compiling. Note, however, that specifying the -V/-h/-P option will cause an error.

Note A device file is necessary during linking even if the -Xcommon=v850e, -Xcommon=v850e2 option or -
Xcommon=v850e2v3 option is specified.

Program described in assembler instructions
In this case also, a device must be specified by an assembler option or the PROCESSOR control instruction

when an object module file that can be linked is created.

R20UT0259EJ0100 Rev.1.00 RENESAS Page 102 of 890
Oct 01, 2010

CubeSuite Ver.1.40 CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

3.2 Extended Language Specifications

This section explains the extended language specifications supported by the CX.

The expanded specifications inclue how to specify section location of data and access the internal peripheral function
registers of the device, how to insert assembler code in a C source program, how to specify inline expansion for each
function, how to define a handler when an interrupt or exception occurs, how to disable interrupts at the C language level,
the valid RTOS functions when a real-time OS is used for the target environment, and how to embed instructions in a C
source program.

3.21 Macro name

All the following macro names are supported.

Macros not ending with *__" are supplied for the sake of former C language specifications (K&R specifications). To
perform processing strictly conforming to the ANSI standards, use macros with "__" before and after.

Table 3-14. List of Supported Macros

Oct 01, 2010

Macro Name Definition

__LINE__ Line number of source line at that point (decimal).

__FILE__ Name of assumed source file (character string constant).

_ DATE__ Date of translating source file (character string constant in the form of "Mmm dd yyyy".)
Here, the name of the month is the same as that created by the asctime function stipulated
by ANSI standards (3 alphabetic characters with only the first character is capital letter)
(The first character of dd is blank if its value is less than 10).

__TIME__ Translation time of source file (character string constant having format "hh:mm:ss" similar to
the time created by the asctime function).

__STDC__ Decimal constant 1 (defined when the -Xansi option is specifiedee)

_v850 Decimal constant 1.

_ v850__

__v850e Decimal constant 1 (defined by the CX, if V850EX is specified as a target device).

__v850e___

__v850e2 Decimal constant 1 (defined by the CX, if VB50E2 is specified as a target device).

__v850e2__

__v850e2v3 Decimal constant 1 (defined by the CX, if device with an instruction set of V850E2V3 is

_ v850e2v3__ specified as a target device).

__KOR Decimal constant 1 (defined by the CX, if 78KO0R is specified as a target device).

__KOR__

__CX Decimal constant 1.

_CX__

_ CHAR_SIGNED___ Decimal constant 1 (defined if signed is specified by the -Xchar option and when the -Xchar
option is not specified).

_ CHAR_UNSIGNED__ Decimal constant 1 (defined when unsigned is specified by the -Xchar option).

_ DOUBLE_IS_64BITS__ Decimal constant 1.

CPUmacro Decimal constant 1 of a macro indicating the target CPU. A character string indicated by
"product type specification" in the device file with "_ _" prefixed and suffixed is defined.

R20UT0259EJ0100 Rev.1.00 RENESANAS Page 103 of 890

CubeSuite Ver.1.40 CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

Macro Name Definition

Register mode macro Decimal constant 1 of a macro indicating the target CPU.

Macro defined with register mode is as follows.

32 register mode: _reg32__
26 register mode: __reg26__
22 register mode: _reg22__

Universal register mode: __reg_common___

_MULTI_CORE___ Decimal constant 1 (defined when the -Xmulti option is specified)
_ MULTI_CMN___ Decimal constant 1 (defined when the -Xmulti=cmn option is specified)
__ MULTI_PEn__ Decimal constant 1 (defined when the -Xmulti=pen option is specified)

Note For the processing to be performed when the -Xansi option is specified, see "3.1.5 ANSI option".

3.2.2 Keyword

The CX adds the following characters as a keyword to implement the expanded function. These words are similar to
the ANSI C keywords, and cannot be used as a label or variable name.
Keywords that are added by the CX are listed below.
_bsh, _bsw, __caxi, data, __DI, __El, _halt, _hsw, __Idgr, __Idsr, __mul, __mulu, _mul32, _mul32ut, _nop, _sasf,
_satadd, _satsub, __schOl, __schOr, __schil, __schlr, __set il, __stgr, __stsr, _sxb, sxh

3.23 #pragma directive

The CX can specify the following #pragma directives.

(1) Description with assembler instruction
Assembler directives can be described in a C source program.
For the details of description, see "(5) Describing assembler instruction”.

#pragma asm
assenbl er instruction

#pragma endasm

(2) Inline expansion specification
A function that is expanded inline can be specified.
For the details of expansion specification, see "(9) Inline expansion".

#pragma inline function-nane[, function-name ...]

(3) Data or program memory allocation

(@) section
Allocates variables to an arbitrary section.

For details about the allocation method, see "(2) Allocation of data to section".

R20UT0259EJ0100 Rev.1.00 RENESAS Page 104 of 890
Oct 01, 2010

CubeSuite Ver.1.40 CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

(b) text
A function to be allocated in a text section with an arbitrary name can be specified.
For details about the allocation specification, see "(3) Allocating functions to sections".

#pragma section section-type ["section-nane"]

#pragma text ["section-nane"] [Function-nanme[, Function-nane]...]

(4) Peripheral I/O register name validation specification
The peripheral 1/O registers of a device are accessed by using peripheral function register names. #pragma
directive should be specified, when the program is executed by using the Peripheral I/O register name as it is.

#pragma i oreg

(5) Interrupt/exception handler specification
Interrupt/Exception handlers are described in C language.
For details, see "(c) Describing interrupt/exception handler".

#pragma i nterrupt interrupt-request-name function-nanme [allocation-nmethod] [Option

[Option]...]

(6) Interrupt disable function specification
Interrupts are disabled for the entire function.

#pragma bl ock_i nterrupt function-nane

(7) Task specification
Task that runs on an RTOS is described in the C language.
For details, see "(a) Description of task".

#pragma rtos_task [Functi on- nane]

(8) Structure type packing specification
Specifies the packing of a structure type. The packing value, which is an alignment value of the member, is speci-
fied as the numeric value. A value of 1, 2, 4, or 8 can be specified. When the numeric value is not specified, the
setting is the default 8N°® assumption.

#pragma pack([1248])

Note Alignment values "4" and "8" are treated as the same in this version.

(9) Smart correction specification
Specifies the function of smart correction.
For the details of description, see "(13) Smart correction function”.

#pragma smart_correct Function-nane Function-nane

R20UT0259EJ0100 Rev.1.00 RENESAS Page 105 of 890
Oct 01, 2010

CubeSuite Ver.1.40 CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

(10)Position independent access
Specify position independent access. When this is specified, accesses subsequently declared and defined vari-
ables and functions will use relative addresses.
For the details of description, see "(14) Position independent operations".

#pragma pic

(11) Fixed address access
Specify fixed address access. When this is specified, accesses to subsequently declared and defined variables
and functions will use absolute addresses.
For the details of description, see "(14) Position independent operations".

#pragma nopi c

3.2.4 Using expanded specifications

This section explains using expanded specifications.
- Constant notation
- Allocation of data to section
- Allocating functions to sections
- Peripheral 1/O register
- Describing assembler instruction
- Controlling interrupt level
- Disabling interrupts
- Interrupt/Exception processing handler
- Inline expansion
- Real-time OS support function
- Embedded functions
- Structure type packing
- Smart correction function
- Position independent operations

(1) Constant notation
The CX allows constants to be written in binary or octal notation. Binary constants must consist of an "0b" or "0B",
followed by a string of "1"s and "0"s. Octal constants must consist of an "00", followed by a string of numbers
between "0" and "7".

Example

0b00010110111101010111111010010111
00001726354

If a binary or octal constant is used, specifying the -Xansi option will cause an error message to be output.

R20UT0259EJ0100 Rev.1.00 RENESAS Page 106 of 890
Oct 01, 2010

CubeSuite Ver.1.40 CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

(2) Allocation of data to section
When external variables and data are defined in a C source, the CX allocates them to memory. The memory loca-
tion to which the variables and data are allocated is, basically, an area that can be referenced by an offset from the
address pointed to by the global pointer (gp). If the variables or data are accessed in the program, therefore, the
CX attempts to output a code that accesses the area using gp, by default.
At this time, the CX attempts to output a code that allocates data to an area that can be referenced from gp by one
instruction, in order to enhance the object efficiency and execution efficiency as much as possible. Since the
range that can be referenced by one instruction from gp must be within +32 K bytes (a total of 64 K bytes) from gp
according to the V850 architecture, the CX has dedicated sections in the +32 K bytes area from gp. These sec-
tions are called the sdata and sbss attribute sections.

Figure 3-10. sdata and sbss Attribute Sections

High Address A

1

32K hytes (0x8000)

sdata attribute /

e

Y <
sbss attribute section ¥ 9p

32K hytes (0x8000)

I

Low Address A A

In many cases, however, variables exceed in this range when using an application that uses many variables. In
this case, the variables must be allocated to other sections. The CX has many sections to which variables and
data can be allocated, in addition to the sdata and sbss attribute sections. Each of these sections has its own fea-
ture and sections to which variables that must be accessed quickly can be allocated are also available, so that the
sections can be selected depending on the usage.

The sections that can be used in the CX including sdata and sbss attribute sections are explained below.

- sdata and sbss attribute sections
These sections can be referenced from gp with one instruction and must be allocated within + 32 K bytes from
gp. Data with initial values is allocated to the sdata attribute section, and data without initial values is allocated
to sbss attribute section.
The CX first attempts to generate a code that is to be allocated to these sections.
If the code exceeds the upper limit of the section of these attributes, the compiler generates a code that allo-
cates data to a data or bss attribute section.
To increase the amount of data to be allocated to the sdata or sbss attribute sections, the upper size limit for
the data to be allocated can be specified with the "-G" option of the CX so that data in excess of this upper limit
is not allocated to the sdata or sbss attribute sections (see "CubeSuite Build for CX Compiler" for details of this
option).
Use the #pragma section directive to specify a variable to be allocated to the sdata or sbhss attribute section in
the program (see "(a) #pragma section directive" for details).

R20UT0259EJ0100 Rev.1.00 RENESAS Page 107 of 890
Oct 01, 2010

CubeSuite Ver.1.40 CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

#pragma section sdata
int a=1; /*Allocated to sdata attribute section*/
int b; /*All ocated to sbss attribute section*/

#pragma section defaul t

- data and bss attribute sections
These sections can be referenced from gp with two instructions. Since access is performed after address
generation, the code becomes correspondingly longer and the execution speed also drops, but the entire 32-
bit space can be accessed.
In other words, these sections can be allocated anywhere as long as they are in RAM.
Use the #pragma section directive to specify a variable to be allocated to the data or bss attribute section in
the program (see "(a) #pragma section directive" for details).

#pragma section data
int a=1, /*Allocated to data attribute section*/

int b; /*All ocated to bss attribute section*/

#pragma section default

sconst-attribute section

This is a section that can be referenced from r0, in other words from address 0, with 1 instruction, and must be
allocated within +32K bytes from address 0. Basically, data that can be fixed to ROM is allocated to this sec-
tion. In the case of V850 devices with internal ROM, in many cases the internal ROM is assigned from
address 0, and data that should be referenced with 1 instruction and that can be fixed to ROM is allocated to
the sconst attribute section. Variables/data declared by adding the const qualifier are subject to allocation to
the sconst attribute section. If the data exceeds the upper limit of this attribute section, it is allocated to the
const attribute section.

To increase the amount of data to be allocated to the sconst attribute section, the upper size limit for the data
to be allocated can be specified with the -Xsconst option of the CX so that data in excess of this upper limit is
not allocated to the sconst attribute section (see "CubeSuite Build for CX Compiler" for details of this option).
Use the #pragma section directive to specify a variable to be allocated to the sconst attribute section in the

program (see "(a) #pragma section directive" for details).

#pragma section sconst
const int a =1, /*Allocated to sconst attribute section*/

#pragma section default

const-attribute section

This is a section that can be referenced from r0, in other words from address 0, with two instructions. Data
that can be fixed to ROM that exceeds the upper limit of the sconst attribute section, or data that should be
allocated to external ROM in the case of ROMless devices of the V850 microcontrollers, is allocated to the
const attribute section. Variables/data declared by adding the const qualifier are subject to allocation to the
const attribute section.

The variables declared by adding the const qualifier are allocated to the const attribute section, string literal
even if allocation to the .const section is not specified by the #pragma section directive. Since access is
performed after address generation, the code becomes correspondingly longer and the execution speed also
drops, but the entire 32-bit space can be accessed. In other words, these sections can be allocated anywhere
as long as they are in 32-bit space.

R20UT0259EJ0100 Rev.1.00 RENESAS Page 108 of 890
Oct 01, 2010

CubeSuite Ver.1.40

CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

Use the #pragma section directive to specify a variable to be allocated to the const attribute section in the

program (see "(a) #pragma section directive" for details).

#pragma section const

const int a = 1,

#pragma section defaul t

/*All ocated to const attribute section*/

- sidata and sibss attribute sections

These sections can be referenced from ep (element pointer) with 1 instruction toward higher addresses. In

other words, these sections are allocated in the 32 K bytes space toward higher addresses from ep.

Figure 3-11. sidata and sibss Attribute Sections

High Address

!

sidata and

sibss attribute section

Low Address

A

32K hytes (0x8000)

Y «— ep

Data with initial values is allocated to the sidata attribute section, and data without initial values is allocated to

sibss attribute section. If variables that exceed the upper limit of the sdata and sbss attribute sections that can

be accessed from gp with 1 instruction, but which need to be accessed with 1 instruction still exist, they canbe

allocated in the range that can be accessed with 1 instruction using ep.

Use the #pragma section directive to specify a variable to be allocated to the sidata or sibss attribute section in

the program (see "(a) #pragma section directive" for details).

#pragma section sidata
int a=1; /*Alocated to sidata section*/
int b; /*All ocated to sibss section*/

#pragma section defaul t

- sedata and sebss attribute sections

These sections can be referenced from ep (element pointer) with 1 instruction toward lower addresses from

ep. In other words, these sections are allocated in the 32 K bytes space toward lower addresses from ep.

Figure 3-12. sdata and sbhss Attribute Sections

High Address

!

sedata and sebss

attribute section

Low Address

& &—¢°p

32K bytes (0x8000)

R20UT0259EJ0100 Rev.1.00
Oct 01, 2010

RENESAS

Page 109 of 890

CubeSuite Ver.1.40

Data with initial values is allocated to the sedata attribute section, and data without initial values is allocated to
sebss attribute section. If variables that exceed the upper limit of the sdata and sbss attribute sections that
can be accessed from gp with 1 instruction, but which need to be accessed with 1 instruction still exist, they
can be allocated in the range that can be accessed with 1 instruction using ep.

Use the #pragma section directive to specify a variable to be allocated to the sedata or sebss attribute section
in the program (see "(a) #pragma section directive" for details).

#pragma section sedata
int a=1; /*Alocated to sedata section*/
int b; /*All ocated to sebss section*/

#pragma section default

tidata (tidata.byte, tidata.word) and tibss (tibss.byte, tibss.word) attribute sections

These sections can be referenced from ep (element pointer) with 1 instruction toward higher addresses.
These sections are accessed with 1 instruction in the same manner as the sidata and sibss attribute sections,
but differ in terms of the assembler instruction to be used.

The sidata and sibss attribute sections use the 4-byte st/ld instruction for store/reference, whereas the tidata
and tibss attribute sections use the 2-byte sst/sld instruction to perform access. In other words, the code effi-
ciency of the tidata and tibss attribute sections is better than that of the sidata and sibss attribute sections.
However, the range in which sst/sld instructions can be applied is small, so it is not possible to allocate a large
number of variables.

Figure 3-13. tidata and tibss Attribute Sections

High Address
tidata.byte attribute/
T tibss.byte attribute/
tidata.word attribute/ 256 bytes (0x100)
tibss.word attribute section
Low Address <— €p

Data with initial values is allocated to the tidata (tidata.byte, tidata.word) attribute section, and data without ini-
tial values is allocated to the tibss (tibss.byte, tibss.word) attribute section. Specify the tidata.byte/tibss.byte
attribute to allocate byte data, and specify the tidata.word/tibss.word attribute to allocate word data. To select
automatic byte/word judgment by the CX, specify the tidata/tibss attribute.

The tidata and tibss attribute sections are used to allocate data that must be accessed the fastest in the sys-
tem.

However, the data to be allocated to these sections must be carefully selected because the quantity of data
that can be allocated to these sections is limited. Use the #pragma section directive to specify variables to be
allocated to the tidata.byte/tibss.byte or tidata.word/tibss.word attribute section in the program (see "(a)
#pragma section directive" for details).

#pragma section tidata_byte
char a =1, /[/*Allocated to tidata.byte attribute section*/

unsi gned char b; /*All ocated to tibss.byte attribute section*/

#pragma section defaul t

CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

R20UT0259EJ0100 Rev.1.00
Oct 01, 2010

RENESAS Page 110 of 890

CubeSuite Ver.1.40 CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

#pragma section tidata_word
int a = 1; /*Allocated to tidata.word attribute section*/
short b; /*All ocated to tibss.word attribute section*/

#pragma section defaul t

#pragma section tidata
int a = 1; /*Allocated to tidata.word attribute section*/

char b; /*Allocated to tibss.byte attribute section*/

#pragma section defaul t

The efficiency can be enhanced in terms of execution speed if variables or data that are especially frequently
used in the system are selected and allocated to the tidata (tidata.byte, tidata.word) or tibss (tibss.byte or
tibss.word) attribute section. The CX has a function that investigates the frequency of reference. The code
that allocates data to the tidata (tidata.byte, tidata.word) or tibss (tibss.byte, tibss.word) attribute section is
output based on this information.

Following figure shows an example of memory allocation of each section

Figure 3-14. tidata and tibss Attribute Sections

I ro-relative access area
- ep-relative access area
|:| gp-relative access are

|:| tp-relative access area

- Others
<4“——9p

Generally, ep sets in the

.Within 32K bytes

.Within 256 bytes

Within 128 bytes

.Within 32K bytes
beginning in RAM.

.bss section

.sbss section <
.sbss and .sdata are allocated within 9p

. shows the address of first .sdata sectiol
64K bytes .sdata section 9p
32K bytes.
.data section
.text section
<4+—-1p

Within 32K bytes Generally tp sets the first .text section or

0 other than 0.

R20UTO0259EJ0100 Rev.1.00 RENESAS Page 111 of 890
Oct 01, 2010

CubeSuite Ver.1.40 CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

(a) #pragma section directive
How to allocate data to a section using the #pragma section directive is explained below.

<1>

<2>

By default, when the section name is used as it is
Describe the #pragma section directive in the following format when using the section name defined by
the CX.

#pragma section section-type
Vari abl e decl arati on/ definition

#pragma section default

The following can be specified as the section-type.
data, sdata, sedata, sidata, tidata, tidata_word, tidata_byte, sconst, const

The name of the bss attribute section must not be specified as the section type. The CX automatically
allocates declared or defined data with initial values to the data attribute section, and data without initial
values to the bss attribute section.

#pragnmae section sdata
int a =1, /*allocated to sdata attribute section*/
int b; /*allocated to shss attribute section*/

#pragma section default

In the above case, "variable a" is allocated to the data-attribute .sdata section because it has an initial

value, and "variable b" is allocated to the bss-attribute .sbss section because it does not have an initial
value.

Two or more variable declarations or definitions can be described between "#pragma section section-

type" and "#pragma section default”. Enumerate variables to be allocated for each section type.

Use (underscore) instead of "." (period) to specify tidata.word or tidata.byte as the section type, as

shown below.
tidata_word, tidata_byte

To assign original section name
The user can assign a specific name to the sections, and can allocate variables and data to those

sections.

In this case, describe the #pragma section directive in the following format.

#pragmae section section-type "creat ed-secti on- nane"
Variabl e declaration / Definition

#pragma section default

However, ".section-type" is appended to a section name actually generated by this method as follows.

creat ed- secti on- nane. secti on-type

R20UT0259EJ0100 Rev.1.00 RENESAS Page 112 of 890

Oct 01, 2010

CubeSuite Ver.1.40 CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

This is to prevent a section with another attribute and having the same name from being created
because the section attribute is classified into data or bss attribute depending on whether the data has
an initial value or not. Specify a generated section name when specifying a section in a link directive file.
See "(b) Specifying link directive of specific data section" for an example of specification in a link
directive file. The following table shows specific examples of section names specified by the user and
generated section names.

Table 3-15. Specified Section Names and Generated Section Names

Section Name Section Type Character String Generated Section Name
Specified by User Appended
mydata data attribute .data/.bss mydata.data/mydata.bss
mysdata sdata attribute .sdata/.sbss mysdata.sdata/mysdata.sbss
myconst const attribute .const myconst.const

If the name is specified as follows, "variable a" is allocated to the mysdata.sdata section because it has
an initial value, and "variable b" is allocated to the mysdata.sbss section because it does not have an
initial value.

#pragnme section sdata "mysdat a"
int a =1, /*allocated to nysdata.sdata attribute section*/
int b; /*allocated to nysdata.sbss attribute section*/

#pragma section default

(b) Specifying link directive of specific data section
Specifying link directive of specific data section when a specific section is created using the #pragma section
directive, describe that section in a link directive file as explained below.
If "variable a" and "variable b" are specified as follows in a C source, "variable a" is allocated to the
mysdata.sdata section because it has an initial value, and "variable b" is allocated to the mysdata.sbss section
because it does not have an initial value.

#pragma section sdata "mysdat a"
int a=1; /*allocated to nmysdata.sdata attribute section*/
int b; /*all ocated to nysdata.sbss attribute section*/

#pragma section default

At this time, the variable can be allocated to a specific section if the mapping directive in the link directive file is
described as follows.

.sdata = $PROGBI TS ?AWG . sdat a;

. sbhss = $NOBI TS ?AWG . sbss;
nysdata. sdata = $PROGBI TS ?AWG nysdat a. sdat a;
nmysdat a. sbss = $NOBI TS ?AVWG nysdat a. sbss;

Since the variables are allocated in the order in which they are described, change the description order to
change the allocation order. It is also possible to specify the start address of the section directly (generally, a
segment is created first and a mapping directive, which specifies the start address of a section in segment
units, is then described in that segment).

R20UT0259EJ0100 Rev.1.00 RENESAS Page 113 of 890
Oct 01, 2010

CubeSuite Ver.1.40 CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

It must be noted here that mysdata.sdata's "$PROGBITS ?AWG" attribute and input section, and mys-
data.sbss's "$NOBITS ?AWG" attribute and input section (above, "$PROGBITS ?AWG mysdata.sdata" and
"$NOBITS ?AWG mysdata.sbss" at the far right of the mapping directive) must not be omitted.

(c) Notes on section allocation
Notes below must be noted when sections are allocated by the #progma section directive, the const qualifier,
or the section file.

<1> If a section is specified for an automatic variable, the specification is ignored. Section specifica-
tion is a function for external variables, character string and static variable.

<2> A variable declaration that is not set with an initial value is usually treated as a tentative defini-
tion. When a section is specified, however, it is treated as a "definition". Do not allow variable
declarations, which do not have their initial values, set to get mixed in with definitions.

[Variable declaration not using
#pragma section |
int i; /*tentative definition*/

int i = 10; /*definition*/

[Error does not occur.]

[Vari abl e decl aration using #pragnma
section]

#pragma section sedata
int i; [*definition*/
int i = 10; /*definition*/

#pragma section default

[Duplicated definition error.]

Be sure to make extern declaration in files that reference an external variable. In the example below, a
duplicated definition error occurs if extern is missing in the tentative definition of the variable in filel.c.

[filel.c] [file2.c]

#pragnmae section sedata #pragma section sedata
extern int i; int i

#pragnme section default #pragma section default

[Duplicated definition error occurs if extern is not declared]

<3> When a variable specified by a section is referenced by another file, the section must be speci-
fied with the same section type for the extern declaration of that variable. An error occurs if a
type of section different from that of the section specified when a variable is defined is specified.
For example, if "#pragma section data begin - #pragma section default" is specified on the definition side
and "#pragma section data begin - #pragma section default" is not specified on the tentative definition
side (extern declaration), it is assumed on the tentative definition side that the variable is allocated to the
sdata section. This means that a code that accesses the variable from gp with two instructions is output
on the definition side and that a code that accesses the variable from gp with one instruction is output on
the tentative definition side. In other words, a contradiction occurs. Consequently, the error message is
output during linking.

R20UT0259EJ0100 Rev.1.00
Oct 01, 2010

RENESAS Page 114 of 890

CubeSuite Ver.1.40

CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

Example Correct specification

[filel.c] [file2.c]
#pragma section sedata #pragma section sedata
int i =1; extern int i;
#pragnme section default #pragma section default
Example Incorrect specification 1
[filel.c] [file2.c]
int i =1; #pragma section sedata
extern int i;
#pragma section default

"variable i" defined by filel.c is allocated to the sbhss or bss attribute section. However, file2.c outputs a
code that accesses the sebss attribute section for "variable i". As a result, the linker outputs the error
message.

Example Incorrect specification 2

[filel.c] [file2.c]

#pragma section sedata extern int i

int i =1,

#pragnme section default

"variable i" defined by filel.c is allocated to the sbss or bss attribute section. However, file2.c outputs a
code that accesses the sebss attribute section for "variable i". As a result, the linker outputs the error
message.

<4> Although a variable specified as const is allocated to the const section, if a #pragma section
directive specifies other than const/sconst, then it will be allocated to the specified section.

<56> When defining a variable with the sconst or const attribute using the #pragma section directive,
be sure to make a const specification for the variable. A const specification is also necessary at
the location of the tentative definition made by extern declaration.
If the const declaration is missing when a variable is declared, the variable is not allocated to the sconst
section or const section (the #pragma section directive is ignored) even if "#pragma section sconst" or
"#pragma section const" is specified, but to a gp-relative section such as the sdata section or data
section. In other words, allocation is not performed as intended.

[filel.c]
#pragnmae section sconst
const int i =1;

#pragnme section default

[file2.c]
#pragma secti on sconst
int i;

#pragma section default

R20UT0259EJ0100 Rev.1.00
Oct 01, 2010

RENESAS Page 115 of 890

CubeSuite Ver.1.40

<6>

<7>

A code that allocates "variable i" to the sconst section is output in filel.c. In file2.c, however, the
#pragma section specification is ignored because the const specification is missing from "variable i", and
therefore the variable is treated as a gp-relative variable. In other words, a code that allocates the vari-
able to the sdata or data section is output. Consequently, "variable i" is not allocated to the sconst sec-
tion during linking.

A const specification is also necessary at the location of the tentative definition with extern declaration,
as shown below.

CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

[filel.c]
#pragnae section sconst
const int i = 10;

#pragnme section default

[file2.c]
#pragma secti on sconst
extern const int i;

#pragma section default

In #pragma section, it is not possible specify variables with unknown sizes, arrays with unknown
numbers of elements, undefined structures, or structures including any of these.

If the -Xsdata and -Xsconst options are specified, and a #pragma section is specified, then the
specification of the #pragma section is effective. If there is no #pragma section, or if "default"
was specified in the relocation attribute, then the option specification is effective.

(d) Example of #pragma section directive

Here are some examples of using the #pragma section directive.

<1> Allocating "variable a" to tidata.word section and "variable b" to tibss.word section
#pragma section tidata_word
i nt a =1; /*allocated to tidata.word attribute section*/
short b; /*allocated to tibss.word attribute section*/
#pragnme section default
<2> Allocating "variable c" to tidata.byte section and "variable d" to tibss.byte section
#pragnme section tidata_byte
char ¢ = 0x10; /*allocated to tidata. byte section*/
char d; /*allocated to tibss.byte section*/
#pragma section default
In the tidata attribute section, word data or halfword data is allocated to the tidata_word or tibss_word
section, and byte data is allocated to the tidata_byte or tibss_byte section.
<3> Allocating "variable e" specified by const to the sconst section and character string constant

data indicated by pointer p to sconst section.

#pragma section sconst
const int e = 0x10;
const char *p = "Hello, World";
#pragma section default
R20UT0259EJ0100 Rev.1.00 RENESAS Page 116 of 890

Oct 01, 2010

CubeSuite Ver.1.40 CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

In the above description, "Hello World" indicated by pointer p is allocated to the sconst section, and
pointer variable "p" itself is allocated to the sdata section or data section. The allocation position of the
pointer variable and the contents indicated by the pointer vary depending on how const is specified.

Examples 1.

const char *p = "Hello, World";

If this declaration is made, the pointer variable and character sting constant indicated by the pointer are

Pointer variable "p" Can be rewritten ("p = 0" can be compiled).

Character string constant "Hello World" Cannot be rewritten ("p = 0" cannot be compiled).

Describe as shown below to allocate what the pointer variable indicates to a section with the const
attribute.

#pragma section sconst
const char *p = "Hello, World";

#pragma section default

The above definition allocates the pointer variable and constant to the following sections.

Pointer variable "p" sdata/data section
Character string constant "Hello World" sconst section
2.
char *const p;
Pointer variable "p" Cannot be rewritten ("p = 0" cannot be compiled).

Describe as shown below to allocate the pointer variable to a section with the const attribute.

char *const p = "Hello World";

The above description allocates both the pointer variable and character string constant "Hello World" to a
section with the const attribute.

#pragma section sconsts

char *const p = "Hello World";

#pragmae section default

The above definition allocates the pointer variable and constant to the following sections.

Pointer variable "p" sconst section

R20UT0259EJ0100 Rev.1.00 RENESAS Page 117 of 890

Oct 01, 2010

CubeSuite Ver.1.40

CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

Character string constant "Hello World"

sconst section

const char *const p;

Pointer variable "p"

Cannot be rewritten ("p = 0" cannot be compiled).

Describe as shown below to allocate what the pointer variable indicates to a section with the const

attribute. This description is used when the pointer itself is fixed to ROM.

const char *const p = "Hello World";

The above description allocates both the pointer variable and character string constant "Hello World" to a

section with the const attribute.

#pragma section sconst

#pragma section default

const char *const p = "Hello World";

The above definition allocates the pointer variable and constant to the following sections.

Pointer variable "p"

sconst section

Character string constant "Hello World"

sconst section

<4>

In addition to the #pragma section directive, the compiler option "-Xconst" can be used to allocate a vari-

able specified by const to the sconst section.

Make the extern declaration of the #pragma section directive in acommonly used header file and

include it in the C source.

[header . h]
#pragma section sidata
extern int k;

#pragma section default

[filel.c]

#i ncl ude "header. h"
#pragma section sidata
int k;

#pragma section default

R20UT0259EJ0100 Rev.1.00
Oct 01, 2010

RENESAS

Page 118 of 890

CubeSuite Ver.1.40 CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

[file2.c]
#i ncl ude "header. h"
void funcl(void) {
k = 0x10;
}

If the extern declaration of the #pragma section directive is made in a header file as shown above, the
errors decrease and the source is visually simplified.

(3) Allocating functions to sections
The CX allocates the functions of a C source program, i.e., program codes, to the .text section by default. When
the text section allocation address is specified in the link directive file, the program is allocated from that address.
However, it may be necessary to change the allocation address for each function or distribute the allocation
address because of the layout of the memory. To satisfy these necessities, the CX has the #pragma text directive.
Using this directive, any name can be given to a section with the text attribute, and the allocation address can be
changed in the link directive file.

(a) #pragma text directive
Using the #pragma text directive, any name can be given to a section with the text attribute. The #pragma text
directive can be used in the following two ways

<1> Specifying the function name to be allocated to a section to be created using the #pragma text
directive.

#pragma text "created section nanme" functi on-name[, unction-nane]...

Describe functions that are described in the C language. In the case of a function, "void funcl() {}", spec-
ify "funcl”. The created section name can be omitted. In this case, a function specified by "function
name" is allocated to the default .text section.

<2> Describing the #pragma text directive before the main body of a function (function defini-
tion) but not specifying a function name.

#pragma text "created section nanme"

The created section name can be omitted. In this case, specification of the name of section to be cre-
ated by "#pragma text" specified immediately before is canceled, and the subsequent functions are allo-
cated to the default .text section.

However, ".section-type" is appended to a section name actually generated by this method as follows.

section- nane. t ext

Specify a generated section name when specifying a section in a link directive file. See "(b) Specifying
link directive of specific data section" for an example of specification in a link directive file.

The following table shows specific examples of section names specified by the user and generated sec-
tion names.

R20UT0259EJ0100 Rev.1.00 RENESAS Page 119 of 890
Oct 01, 2010

CubeSuite Ver.1.40 CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

Table 3-16. Specified Section Names and Generated Section Names

Section Name Section Type Character String Generated Section Name
Specified by User Appended
mytext text attribute text mytext.text

If the name is specified as follows, "funcl” is allocated to the mytextl.text section, and "func2" is allo-
cated to the .text section by default, because the #pragma text directive is not used.

#pragnma text "nmytext 1" funcl
void funcl(void) {

voi d func2(void) {

If the name is specified as follows, "funcl" and "func2" are allocated to the mytext2.text section, "func3"
to the "mytext3.text section”, and "func4" to the default .text section because the #pragma text "mytext3"
immediately before is cancelled.

#pragma text "yt ext 2"
void funcl(void) {

voi d func2(void) {

#pragma text "nyt ext 3"
voi d func3(void) {

#pragma text

voi d func4(void) {

R20UT0259EJ0100 Rev.1.00 RENESAS Page 120 of 890
Oct 01, 2010

CubeSuite Ver.1.40

(b) Specifying link directive of specific data section

When a specific section is created using the #pragma section directive, describe that section in a link directive

file as explained below.

#pragma text "nytext2"
voi d funcl(void) {

voi d func2(void) {

#pragma text "myt ext 3"
voi d func3(void) {

#pragma text
voi d func4(void) {

If the name is specified as follows, "funcl" and "func2" are allocated to the mytext2.text section, "func3" to the
"mytext3.text section”, and "func4" to the default .text section because the #pragma text "mytext3" immediately

before is cancelled.

text = $PROGBI TS ?2AX . text;
nytext2 = $PROGBI TS ?AX nyt ext 2. t ext
nytext3 = $PROGBI TS ?AX nyt ext 3. t ext

Since the variables are allocated in the order in which they are described, change the description order to
change the allocation order. It is also possible to specify the start address of the section directly (generally, a
segment is created first and a mapping directive, which specifies the start address of a section in segment
units, is then described in that segment).

Because the attribute of mytext2.text and mytext3.text is "$PROGBITS ?AX", do not omit the input section
("text", "mytext2.text", and "mytext3.text" on the rightmost side of the mapping directive in the above example)
from mapping directives that have the same attribute as these.

Example If an input section is omitted from a mapping directive having the same "$PROGBITS?AX"
attribute, the linker links and locates all the sections having that attribute. Consequently, data is
not allocated to the specific section created by the user.

This means that the program that should be allocated to the mytext2.text or mytext3.text section is
allocated to the .text section.

.text = $PROGBI TS ?AX

R20UT0259EJ0100 Rev.1.00 RENESAS Page 121 of 890

Oct 01, 2010

CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

CubeSuite Ver.1.40 CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

(c) Notes on #pragma text directive.
Note the following points when using the #pragma text directive

- Describe the #pragma text directive before the function definition in the same file; otherwise a warning
message is output and the directive is ignored. However, the order of prototype declaration of a function
is not affected.

- After a #pragma text that specifies a function name, if a #pragma text is written that does not specify a
function, then the specified function is allocated to the specified section, and the non-specified function
will be allocated in accordance with a subsequent #pragma text.

- If a function specified by the #pragma text directive is an interrupt handler specified as direct allocation, a
warning message is output and the #pragma text directive is ignored. See "(8) Interrupt/Exception pro-
cessing handler" for details of direct allocation specification.

- If a function specified in a #pragma text becomes unnecessary due to a #pragma inline specification, or
inline expansion via optimization options, the function will still be output to the specified section.

- If the name of the section being created was omitted, this specification will be allocated to the default text
attribute section, so it will have not meaning, but if a named section had already been specified, then it will
revert to the default.

- When specifying a section name, keep the length of the name to within 256 characters.

(4) Peripheral I/O register
Peripheral I/O registers are used to control the internal peripheral functions of a device. By using the peripheral I/
O register name defined by the device, the internal I/O can be accessed at C language level. The peripheral I/O
register names can be treated in the C source program as if they were normal unsigned external variables.
For the register names and attributes that can be specified, see the Relevant Device 's Hardware User’ s Manual of
each device.

(&) Accessing
A peripheral function register name is validated by describing the following #pragma directive.

#pragma i oreg

In a C source file in which "#pragma ioreg" directive is described, the peripheral function register name
described after the #pragma directive can be used.

If this directive is not used or if a peripheral function register name is used without specifying an applicable
device name, an "undefined variable" error occurs.

An error also occurs if the access attribute peculiar to the specified register is violated.

Of the examples as follows, Example 1 is correct, but Examples 2 and 3 cause an error.

PO, P1, P2, RXBO0, and OVFO in the following examples indicate the peripheral I/O registers of the V850 micro-
controllers. In this way, symbols defined by the device file are specified as "register names".

R20UT0259EJ0100 Rev.1.00 RENESAS Page 122 of 890
Oct 01, 2010

CubeSuite Ver.1.40 CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

Examples 1.

#pragma i oreg
voi d funcl(void) {
int i
PO = 1, /*Wites to PO*/
i = RXBO; / *Reads from RXBO*/

voi d func2(void) {
P1 = 0; /*Wites to P1*/

voi d func(void) {

P1 = O; /*Undefined error*/

#pragma i oreg
voi d func(void) {

RXBO = 1; /*Error that occurs if attribute of RXBO is read-only*/

(5) Describing assembler instruction
With the CX, assembler instruction can be described in the functions of a C source program in the following format.
- asm declaration
- #pragma directives

To use registers with an inserted assembler, save or restore the contents of the registers in the program because
they are not saved or restored by the CX.

Insert assembler instruction code inside a function. If the instructions are described outside a function,an error
occurs. t

(a) asm declaration

__asn(character string constant);

<1> If the asm declaration is specified, the compiler suffixes a new-line character (\n) to the specified
character string constantN°t and passes it to the assembler.

Note The backslash ("\") is an escape character. (Example:\0->NULL, \r->Carriage return, \"->", \\->\)

R20UT0259EJ0100 Rev.1.00 RENESAS Page 123 of 890
Oct 01, 2010

CubeSuite Ver.1.40

CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

Example

__asm("nop");
__asm (".str \"string\o\"");

- __asmis a declaration and is not treated as a statement. Therefore, because of the syntax of the C

source, an error occurs in a structure that does not allow the use of a declaration only, as shown in Exam-

ple 1 below.

Therefor, enclose the statement in "{ }" as shown in Example 2 to make it a compound statement.

Examples 1.

if(i == 0)

__asm("nov rll1, r10"); [/*Error occurs because only declaration is made.*/
2.

if(i ==0) {
__asm("nov rl1, r10"); /*Can be used because this is conpound

statement . */
}

(b) #pragma directives

In the range enclosed by the above #pragma directives, assembler instructions can be described as is. This is

useful for using two or more assembler instructions.

#pragma asm
assenbl er instruction

#pragma endasm

A description of example 1 to show next is same to a description of example 2.

Examples 1.
int i;
void f() {

#pragma asm
nov ro, r10

st.w rio, $_i

#pragma endasm

}

R20UT0259EJ0100 Rev.1.00
Oct 01, 2010

RENESAS

Page 124 of 890

CubeSuite Ver.1.40

CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

int i;

void f() {
__asn("nov ro, r1o0");

__asn("st.w rio, $_i");

The description from "#pragma asm" to "#pragma endasm" is passed to the assembler as it is.

In other words, the CX internally creates an assembler instruction and starts the assembler.

Therefore, a directive of the assembler can be used after the #pragma asm declaration. A local variableina C

source must not be used with the assembler. Because the local variable is allocated to the stack or a register

by the CX, it cannot be used with an inline assembler.

A symbol defined using #define in the C source file cannot be used in the description from "#pragma asm" to
"#pragma endasm". Therefore expand a macro defined by #define in a file by an assembler instruction, as fol-

lows.

- Define the macro by using the .macro instruction in the #pragma asm - #pragma endasm directives.

- Call an assembler instruction from the C source program by means of a function call.

Another method is to write an assembler instruction without making a macro definition.

(6) Controlling interrupt level

(@) __set_il function

The CX can manipulate the interrupts of the V850 microcontrollers as follows in a C source.

- By controlling interrupt level

- By enabling or disabling acknowledgment of maskable interrupts (by masking interrupts)

In other words, the interrupt control register can be manipulated.

For this purpose, the "__set_il" function is used. Specify this function as follows to manipulate the interrupt

priority level.

_set_il(interrupt-priority-level, "interrupt-request-nane");

Integer values 1 to 16 can be specified as the interrupt priority level. With devices with V850E2V3 instruction
set architecture, sixteen steps, from 0 to 15, can be specified as the interrupt priority level. To set the interrupt

priority level to "5", therefore, specify the interrupt priority level as "6" by this function.

Example

__set_il(2, "INTPO");

This specification sets the interrupt priority level of interrupt INTPO to 1.

Specify the __ set_il function as follows to enable or disable acknowledgment of a maskable interrupt.

__set_il (enabl es/di sabl es maskabl e interrupt, "interrupt request name");

R20UT0259EJ0100 Rev.1.00
Oct 01, 2010

RENESAS

Page 125 of 890

CubeSuite Ver.1.40 CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

"-1" or "0" can be specified to enable or disable the maskable interrupt.

Table 3-17. Enabling or Disabling Maskable Interrupt

Set Value Operation
-1 Disables acknowledgment of maskable interrupt (masks interrupt).
0 Enables acknowledgement of maskable interrupt (unmasks interrupt).
Example

__set_il(-1, "INTPO");

If the function is specified as shown above, acknowledging maskable interrupt INTPO is disabled (INTPO is
masked).

Note that the __ set_il function does not manipulate the EP flag (that indicates that exception processing is in
progress) in the program status word (PSW).

(b) __set_il function and interrupt control register
If the __ set_il function is used, either "priority level" or "interrupt mask flag" is set. This means that the __
set_il function cannot set an interrupt request flag.

(7) Disabling interrupts
The CX can disable the maskable interrupts in a C source.
This can be done in the following two ways.
- Locally disabling interrupt in function
- Disabling interrupts in entire function

(a) Locally disabling interrupt in function
The "di instruction" and "ei instruction" of the assembler instruction can be used to disable an interrupt locally
in a function described in C language. However, the CX has functions that can control the interrupts in a
C.language source.

Table 3-18. Interrupt Control Function

Interrupt Control Function Operation Processing by CX
__ DI Disables the acceptance of all maskable Generates di instruction.
interrupts.
__El Enables the acceptance of all maskable inter- | Generates ei instruction.
rupts.
R20UT0259EJ0100 Rev.1.00 RENESANAS Page 126 of 890

Oct 01, 2010

CubeSuite Ver.1.40 CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

Example How to use the __ DI() and __ EI() functions and the codes to be output are shown below.

[C source]

voi d funcl(void) {

_Di();

/*descri be processing to be perforned with interrupt disabled*/

_EI(Q);

[Qut put codes]
_funcl:

-- prol ogue code

di

-- processing to be perfornmed with interrupt disabled
ei

-- epilogue code

jmp [1p]

(b) Disabling interrupts in entire function
The CX has a "#pragma block_interrupt" directive that disables the interrupts of an entire function.
This directive is described as follows.

#pragma bl ock_interrupt function-name

Describe functions that are described in the C language. In the case of a function, "void funcl() {}", specify
"funcl”.

The interrupt to the function specified by "function-name" above is disabled. As explained in "(a) Locally dis-
abling interrupt in function”, __ DI()" can be described at the beginning of a function and "_ EI()", at the end.
In this case, however, an interrupt to the prologue code and epilogue code output by the CX cannot be dis-
abled or enabled, and therefore, interrupts in the entire function cannot be disabled.

Using the #pragma block_interrupt directive, interrupts are disabled immediately before execution of the pro-
logue code, and enabled immediately after execution of the epilogue code. As a result, interrupts in the entire
function can be disabled.

Example How to use the #pragma block_interrupt directive and the code that is output are shown below.

[C source]
#pragma bl ock_interrupt funcl

voi d funcl(void) {

/ *descri be processing to be performed with interrupt disabled*/

R20UT0259EJ0100 Rev.1.00 RENESAS Page 127 of 890
Oct 01, 2010

CubeSuite Ver.1.40 CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

[Qut put codes]
_funcl:
di
-- prol ogue code
-- processing to be performed with interrupt disabled
-- epilogue code
ei
jmp [1p]

(c) Notes on disabling interrupts in entire function
Note the following points when disabling interrupts in an entire function.

- If an interrupt handler and a #pragma block_interrupt directive are specified for the same interrupt, the
interrupt handler takes precedence, and the setting of disabling interrupts is ignored.

- If the following functions are called in a function in which an interrupt is disabled, the interrupt is enabled
when execution has returned from the call.

- Function specified by #pragma block_interrupt.

- Function that disables interrupt at the beginning and enables interrupt at the end.

- Describe the #pragma block_interrupt directive before the function definition in the same file; otherwise an
error occurs during compilation.

- However, the order of prototype declaration of a function is not affected.

- Neither #pragma inline nor inline expansion can be specified by an optimization option for the function
specified by a #pragma block_interrupt directive. The inline expansion specification is ignored.

- A code that manipulates the ep flag (that indicates exception processing is in progress) in the program
status word (PSW) is not output even if #pragma block_interrupt is specified.

(8) Interrupt/Exception processing handler
The CX can describe an "Interrupt handler" or "Exception handler" that is called if an interrupt or exception occurs.
This section explains how to describe these handlers.

(&) Occurrence of interrupt/exception
If an interrupt or exception occurs in the V850 microcontrollers, the program jumps to a handler address corre-
sponding to the interrupt or exception. An interrupt source and a handler address correspond one by one. A
collection of handler addresses is called an interrupt/exception table.
For example, the interrupt/exception table of the VB50E2/MN4 is as shown below (only the part is shown).

Table 3-19. Interrupt/Exception Table (V850E2/MN4)

Address Interrupt Name Interrupt Trigger
0x0000 RESET RESET input
0x0010 FEINT External NMI input
0x0020 FENMI WDTOATNMI/WDT1ATNMI
0x0120 INTWDTAO WDTO Interval timer interrupt
0x0130 INTWDTA1 WDT1 Interval timer interrupt
R20UT0259EJ0100 Rev.1.00 RENESANAS Page 128 of 890

Oct 01, 2010

CubeSuite Ver.1.40 CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

Address Interrupt Name Interrupt Trigger
0x0140 INTOSTMO OS timer underflow interrupt
0x0150 INTOSTM1 OS timer underflow interrupt
0x0160 INTPO External Interrupt
0x0170 INTP1 External Interrupt
0x0180 INTP2 External Interrupt

The arrangement of the handler addresses and the available interrupts vary depending on the device of the
V850. See the Relevant Device s User’ s Manual of each device for details.

Each handler address has a 16-byte area. If an interrupt occurs, an instruction written in that 16-byte area is
executed. This means that, if the processing code does not exceed 16 bytes, it is performed only in the han-
dler address. If not, an instruction that branches to a function (interrupt handler) where the processing is writ-
ten is described.

Figure 3-15. Image of Interrupt Handler Address

Address

0x00000160

jr _func_intpO

Interrupt handler address of INTPO

0x00000170
jr _func_intpl

Interrupt handler address of INTP1

If the INTPO interrupt occurs in the VB50E2/MN4, the program jumps to address 0x160 and executes the code
written at that address. In this example, the program jumps to the func_intpO function because a code that
branches to that function is written. This means that func_intp0 is the interrupt handler of INTPO.

The above description is at an assembler source level. With the CX, users do not have to pay much attention
to this when describing interrupt servicing in C language source. How to describe interrupt servicing is
explained specifically in “(c) Describing interrupt/exception handler".

(b) Processing necessary in case of interrupt/exception
If an interrupt/exception occurs while a function or a task is being executed, interrupt/exception processing
must be immediately executed. When the interrupt/exception processing is completed, execution must return
to the function or task that was interrupted N°©,
Therefore, the register information at that time must be saved when an interrupt/exception occurs, and the reg-
ister information must be restored when interrupt/exception processing is complete.

Note When a real-time OS is used, execution may not return to a task that is interrupted if a system call is
issued during interrupt servicing. See the User's Manual of each real-time OS for details.

R20UT0259EJ0100 Rev.1.00 RENESAS Page 129 of 890
Oct 01, 2010

CubeSuite Ver.1.40 CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

The prologue and epilogue codes of an ordinary function save and restore the registers for register variables.
The registers for register variables are shown below. Those that must be saved and restored are saved and

restored.
Table 3-20. Registers for Register Variables
Register Modes Register Variable Registers
22-register mode r25, r26, r27, r28, r29
26 -register mode 23, r24, r25, r26, r27, r28, r29
32-register mode r20, r21, r22, r23, r24, r25, r26, r27, r28, r29

When execution shifts to an interrupt/exception handler, the following registers that must be saved, in addition
to the registers shown in the above table, are also saved as a stack frame for the interrupt/exception handler.

Table 3-21. Stack Frame for Interrupt/Exception Handler

Register Modes Registers Saved/Restored in Case of Interrupt/Exception

22-register mode rl, r6, r7,r8, r9, rl10, r11, r12, r13, r14, r31 (Ip), CTPC, CTPSW, BSEL
[V850E2V3], FPSR/FPEPC(with FPU) [VB50E2V3]

26-register mode rl, r6, r7,r8, r9, rl10, r1l, r12, r13, rl14, rl5, r16, r31 (Ip), CTPC, CTPSW, BSEL
[V850E2V3], FPSR/FPEPC(with FPU) [VB50E2V3]

32-register mode rl, r6, r7,r8, r9, r10, r11, r12, r13, r14, rl5, r16, r17, r18, r19, r31 (Ip), CTPC,
CTPSW, BSEL [V850E2V3], FPSR/FPEPC(with FPU) [V850E2V3]

When multiple interrupt/exception occurs, the following registers that must be saved, in addition to the regis-
ters for register variables, are also saved as a stack frame for the multiple interrupt/exception handler.

Table 3-22. Stack Frame for Multiple Interrupt/Exception Handler

Register Modes Registers Saved/Restored in Case of Multiple Interrupts/Exceptions

22-register mode rl, r6, r7,r8, 19, r10, r1l, r12, r13, r14, r31 (Ip), EIPC, EIPSW, CTPC, CTPSW,
BSEL [V850E2V3], EIIC [VB50E2V3], EIWR [V850E2V3], FPSR/FPEPC(with
FPU) [V850E2V3]

26-register mode rl, r6, r7,r8, 19, r10, r11, r12, r13, r14, rl5, r16, r31 (Ip), EIPC, EIPSW, CTPC,
CTPSW, BSEL [V850E2V3], EIIC [V850E2V3], EIWR [V850E2V3], FPSR/
FPEPC(with FPU) [VB50E2V3]

32-register mode rl, r6, r7,r8, 19, r10, r11, r12, r13, r14, rl5, r16, r17, r18, r19, r31 (Ip), EIPC,
EIPSW, CTPC, CTPSW, BSEL [V850E2V3], EIIC [V850E2V3], EIWR
[V850E2V3], FPSR/FPEPC(with FPU) [V850E2V3]

The usage of the above registers is as follows.

Table 3-23. Usage of Registers

Register Usage
rl Assembler-reserved register
r6-r9 Registers for arguments (registers to set arguments of function)
R20UT0259EJ0100 Rev.1.00 RENESAS Page 130 of 890

Oct 01, 2010

CubeSuite Ver.1.40 CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

Register Usage
r10-r19 Work registers (registers used by the CX to generate codes)
r31 Link pointer
CTPC Program counter (PC) when CALLT instruction is executed.
CTPSW Program status word (PSW) when CALLT instruction is executed.
EIPC Program counter (PC) during interrupt/exception processing
EIPSW Program status word (PSW) during EIPSW interrupt/exception processing.
BSEL [V850E2V3] Register bank selection register
EIIC [V850E2V3] Register that stores the El level exception cause
EIWR [V850E2V3] El level exception working register
FPSR [V850E2V3] Floating-point operation setting/status storage register
FPEPC [V850E2V3] Floating-point operation exception program counter

When interrupt/exception processing is completed, the code which restores saved registers is output, the eiret
instruction is output. This instruction notifies the V850 that the interrupt/exception servicing is completed.

If codes for saving/restoring registers or outputting the reti instruction are described as explained in "(c)
Describing interrupt/exception handler”, the CX automatically outputs the relevant code. The code for saving/
restoring registers is output as explained in "Table 3-24. Processing for Saving/Restoring Registers During
Interrupt”. The user therefore does not have to pay much attention to this and can concentrate on describing
the processing of the main body of the interrupt handler.

Table 3-24. Processing for Saving/Restoring Registers During Interrupt

Register Name Register Explanation
Assembler-reserved register rl Always saved/restored at interrupt.
Argument registers ré tor9 r6 is always saved/restored when the interrupt

source is TRAPO/ TRAP1.

Saved/restored when a function call (including
runtime functions) exists.

Saved/restored if a function call does not exist
but is used with an interrupt function.

Work Registers 22-register mode rl0 to r14 | Saved/restored when a function call exists.

Saved/restored if a function call does not exist
but is used with an interrupt function.

26-register mode rl0 to r16

32-register mode r10 to r19

Register Variable 22-register mode r25to r29 | Saved/restored as necessary, as with ordinary

Registers) functions.
26-register mode r23 to r29

32-register mode r20 to r29

Link pointer r31(lp) Saved/restored when a function call (including
runtime functions) exists

Does not save/restore if a function call does not

exist.
Interrupt-related system registers EIPC, Always saved/restored with functions using the
EIPSW multiple interrupt (The interrupt function with
multi option).

Not saved/restored without the multi option.

R20UT0259EJ0100 Rev.1.00 RENESAS Page 131 of 890
Oct 01, 2010

CubeSuite Ver.1.40 CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

Register Name Register Explanation

callt instruction-related system registers CTPC, Always saved/restored with interrupt functions
CTPSW without the nopush option.

Not saved/restored with the nopush option.

Register bank selection register BSEL Always saved/restored with interrupt functions

[V850E2V3] being compiled with a device with an instruction
set of V850E2V3 specified.

Register that stores the El level exception ElIC Always saved/restored with multiple interrupt

cause [VB50E2V3] functions being compiled with a device with an

instruction set of V850E2V3 specified.

El level exception working register EIWR Always saved/restored with multiple interrupt
[V850E2V3] functions being compiled with a device with an
instruction set of V850E2V3 specified.

Floating-point operation setting/status FPSR Always saved/restored with interrupt functions
storage register [V850E2V3] being compiled with a device with an instruction

set of V850E2V3 with FPU device specified.

Floating-point operation exception program | FPEPC Always saved/restored with interrupt functions
counter [V850E2V3]] being compiled with a device with an instruction

set of V850E2V3 with FPU device specified.

(c) Describing interrupt/exception handler
The format in which an interrupt/exception handler is described does not differ from ordinary C functions, but
the functions described in C must be recognized as an interrupt/exception handler by the CX. With the CX, an
interrupt/exception handler is specified using the #pragma interrupt directive.

#pragma i nterrupt Interrupt-request-nane Function-nane [Al l ocation-nethod] [Option

[Option]...]

Describe functions that are described in the C language. In the case of a function, "void funcl() {}", specify
"funcl”.

- Inerrupt request name
Interrupt request names registered in the device file can be specified. Refer to the interrupt request
names described in the Relevant Device 's Architecture User’ s Manual of each device; they are the inter-
rupt request names registered in the device file.
A non-maskable interrupt (NMI) can also be specified in this way, but a reset interrupt (RESET) cannot be
specified. Processing after reset must be described with assembler instructions. Processing after reset is
generally described in the startup routine, so see "CHAPTER 7 STARTUP" for details.
If the interrupt request name is set to "NO_VECT", then it will not be set in the interrupt handler address,
and the function will only be output as an interrupt function.

Function Name
Specify the names of functions that are used as an Interrupt/Exception handler. Describe the function
name in C source. When specifying the function "void func1(void)", specify the function name as "funcl".

R20UT0259EJ0100 Rev.1.00 RENESAS Page 132 of 890
Oct 01, 2010

CubeSuite Ver.1.40 CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

- Allocation method
Specify whether the main body of the function is directly allocated to the handler address, or only the
instruction that branches to the interrupt handler function is allocated. Specify "direct" when the main
body of the function is directly allocated; otherwise describe nothing as "allocation method". By specifying
"direct”, all functions are allocated from the handler address of the specified interrupt source. Note, how-
ever, that the areas for the subsequent handler address are also used.
When specifying "direct”, be sure to describe the #pragma interrupt directive before the function definition;
otherwise an error occurs during compilation.
If the interrupt request name is set to "NO_VECT", then "direct" cannot be specified (it will cause an error).

- Option
The following options can be specified.

multi Use a multi interrupt handler. Output EIPC/EIPSW save/restore code. Code to enable inter-
rupts is also output, so there is no need to enable interrupts via __EI().

This disables interrupts when terminating a function. Perform the synce instruction
immediately prior to disabling.

nopush Do not output CTPC/CTPSW save/restore code. This option can reduce the code size, if you
are using single interrupts and the function call doesn't exist in the interruption function.

push_ei Output EIPC/EIPSW save code.

nopush_fpu | Do not output FPSR/FPEPC save code.

The multi interrupt handler specification specifies a function that enables multiple interrupts. It does not
specify a function that makes multiple interrupts.

Next, the function type that can be specified as an interrupt handler is explained.
- Function type
The type of a handler that handles a maskable interrupt or NMl is as follows.
void func(void) type
The argument and return value of this function are void type.
The type of a software exception processing (trap) handler is as follows.
void func(unsigned int) type
The exception cause code for the El level exception cause register (EIIC) is set in the parameter. Unless
the function is specified by this type, an error occurs during compilation. Refer to the next paragraph for
the software exception processing function.

- Software exception processing (trap processing) handler
When software exception processing (trap processing) is used, two entry points, TRAPO (address 0x40)
and TRAP1 (address 0x50), are used according to the specifications of the V850 microcontrollers. When
the software exception "trap 0x00 to trap OXOF" occurs, execution branches to TRAPO (address 0x40); if
"trap 0x10 to trapOXx1F" occurs, it branches to TRAP1 (address 0x50). At this time, the value "0x40 to
Ox4F" is set to the interrupt source register (ECR) as a software exception code in the case of TRAPO. In
the case of TRAP1, the value "0x50 to Ox5F" is set to the EIIC.

Table 3-25. Trap Instructions and Software Exception Codes

Trap Instruction Software Exception Code
trap 0x00 0x40
trap 0x01 0x41
R20UT0259EJ0100 Rev.1.00 RENESAS Page 133 of 890

Oct 01, 2010

CubeSuite Ver.1.40

CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

Trap Instruction Software Exception Code
trap 0x02 0x42
trap 0x0A Ox4A
trap 0x0B 0x4B
trap 0x10 0x50
trap Ox11 0x51
trap 0x12 0x52
trap Ox1E Ox5E
trap Ox1F Ox5F

When software exception processing for TRAPO or TRAPL1 is described, that function has one argument and

the type of the variable is "unsigned int". The software exception code set to the El level exception cause
register (EIIC) is set as the argument. In the case of TRAPO, the value is "0x40 to Ox4F". In the case of
TRAP1, it is "0x50 to Ox5F". Processing must be described in the handler depending on these values.

#pragma i nterrupt TRAPO

trap0_func

voi d trapO_func(unsigned int codenum {

describe processing of each exception code

(d) Notes on describing interrupt/exception handler

- "Specifying multiple-interrupt handler" with the multi option means to "specify a function that can be interrupted

more than once" and does not mean "to specify a function that interrupts more than once".

- The reset interrupt cannot be specified by the #pragma interrupt directive.

#pragma i nterrupt RESET

reset_func /*error*/

If the above description is made, an error occurs during compilation. Processing after reset must be described

with assembler instructions.

Processing after reset is generally described in the startup routine, so see "CHAPTER 7 STARTUP" for

details.

- Specify multi option in the function specified as a handler that processes multiple interruptions. In such case,

code which saves, restores the EIPC and EIPSW is output. Interrupt handler where multi option is not speci-

fied, the code which saves, restores the EIPC and EIPSW is not output.

- The #pragma interrupt directive do not support multiple exceptions and multiple NMls. To use multiple excep-

tions or multiple NMI, add a code that saves or restores the necessary system registers (such as FEPC and

FEPSW). See the Relevant Device’s User’'s Manual of each device for the necessary system registers.

- The user is not required to additionally describe an interrupt handler address in the link directive file. It is out-

put internally by the CX.

- The same interrupt request name must not be specified for two or more functions.

R20UT0259EJ0100 Rev.1.00

Oct 01, 2010

RENESAS

Page 134 of 890

CubeSuite Ver.1.40 CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

(e)

A function specified as an interrupt/exception handler cannot be expanded inline. The #pragma inline direc-
tive is ignored even if specified.

An interrupt to a function specified as an interrupt/exception handler is disabled. Therefore, the #pragma
block_interrupt directive is ignored even if specified.

A function specified as an interrupt/exception handler cannot be called by an ordinary function call. Ifitis
called from another file, the compiler cannot check it.

When an assembler instruction is called from an interrupt/exception handler and the registers shown in "Table
3-20. Registers for Register Variables" and "Table 3-21. Stack Frame for Interrupt/Exception Handler" are
used, processing to save/restore the register contents must be described. Processing to save/restore the reg-
ister contents must also be described when sp (r3), gp (r4), tp (r5), and ep (r30) are rewritten.

The #pragma interrupt directive do not issue a processing end report (EOl command) to the external interrupt
controller. The user should therefore execute this directive, if necessary.

Disable interrupts at the end of multiple interrupts because a code that restores EIPC and EIPSW must be
described.

If "direct” is not specified, an instruction to branch to the interrupt/exception handler is allocated to the handler
address. In this case, the CX outputs the jr instruction to enhance the code efficiency. However, the range in
which the jr instruction can branch execution is limited to +21 bits from the jr instruction. If the main body of
the interrupt handler is not within the range in which the jr instruction can branch execution, an error occurs
during linking. In this case, specify the compilation option "-Xfar_jump" to replace the jr instruction with the
jmp instruction.

The FE level interrupt is not supported.

If the "multi" option is specified, then code to save EIPC/EIPSW will be output due to the device specifications,
regardless of whether there is a "push_ei". An error will not be output.

"nopush_fpu" has no meaning on devices without an FPU, and will be assumed to have been specified implic-
itly. Even if it is not specified, code to save FPSR/FPEPC will not be output (devices without an FPU do not
have FPSR/FPEPC).

Description example of interrupt/exception handler

Examples of describing interrupt/exception handlers are shown below.

Note that the interrupt request name differs depending on the device. See the Relevant Device 's User’ s Man-
ual of each device.

Examples 1. Non-maskable interrupt

#pragma i nterrupt NM funcl / *non- maskabl e i nterrupt*/

voi d funcl(void) {

2. Trap

#pragma i nterrupt TRAPO func2 [*Trap*/
voi d func2(unsigned int num {

switch(num { /*for every exception cod*/

R20UT0259EJ0100 Rev.1.00 RENESAS Page 135 of 890
Oct 01, 2010

CubeSuite Ver.1.40 CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

3. Multiple interrupts

#pragma i nterrupt | NTPO funcl /*mul tiple-interrupt*/
voi d funcl(void) {

(9) Inline expansion
The CX allows inline expansion of each function. This section explains how to specify inline expansion.

(&) Inline Expansion
Inline expansion is used to expand the main body of a function at a location where the function is called. This
decreases the overhead of function call and increases the possibility of optimization. As a result, the execution
speed can be increased.
If inline expansion is executed, however, the object size increases.
Specify the function to be expanded inline using the #pragma inline directive.

#pragnma inline function-nane[, function-nane, ...]

Describe functions that are described in the C language. In the case of a function, "void funcl() {}", specify
"funcl". Two or more function names can be specified with each delimited by "," (comma).

#pragma inline funcl, func2
voi d funcl() {...}
voi d func2() {...}
voi d func(void) {
funcl(); /*function subject to inline expansion*/

func2(); /*function subject to inline expansion*/

(b) Conditions of inline expansion
At least the following conditions must be satisfied for inline expansion of a function specified using the
#pragma inline directive.
Inline expansion may not be executed even if the following conditions are satisfied, because of the internal
processing of the CX.

<1> A function that expands inline and a function that is expanded inline are described in the same
file
A function that expands inline and a function that is expanded inline, i.e., a function call and a function
definition must be in the same file. This means that a function described in another C source cannot be
expanded inline. If it is specified that a function described in another C source is expanded inline, the CX
does not output a warning message and ignores the specification.

<2> The #pragmainline directive is described before function definition.
If the #pragma inline directive is described after function definition, the CX outputs a warning message
and ignores the specification. However, prototype declaration of the function may be described in any
order. Here is an example.

R20UT0259EJ0100 Rev.1.00 RENESAS Page 136 of 890
Oct 01, 2010

CubeSuite Ver.1.40 CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

Example

[Valid Inline Expansion Specification]

#pragmae inline funcl, func2

voi d funcl(); /*prototype declaration*/
voi d func2(); /*prototype declaration*/
voi d funcl() {...} /*function definition*/
voi d func2() {...} /*function definition*/

[I'nvalid Inline Expansi on Specification]

voi d funcl(); /*prototype declaration*/
voi d func2(); /*prototype declaration*/
voi d funcl() {...} /*function definition*/
voi d funcl() {...} /*function definition*/

#pragma inline funcl, func2

<3> The number of arguments is the same between "call" and "definition" of the function to be
expanded inline.
If the number of arguments is different between "call" and "definition" of the function to be expanded
inline, the CX ignores the specification.

<4> The types of return value and argument are the same between "call" and "definition" of the func-
tion to be expanded inline.
If the number of arguments is different between "call" and "definition" of the function to be expanded
inline, the CX ignores the specification. If the type of the argument is the integer type (including enum) or
pointer-type, and in the same size, however, inline expansion is executed.

<5> The number of arguments of the function to be expanded inline is not variable.
If inline expansion is specified for a function with a variable arguments, the CX outputs neither an error
nor warning message and ignores the specification.

<6> Recursive function is not specified to be expanded inline.
If a recursive function that calls itself is specified for inline expansion, the CX outputs neither an error nor
warning message and ignores the specification. If two or more function calls are nested and if a code
that calls itself exists, however, inline expansion may be executed.

<7> An interrupt handler is not specified to be expanded inline.
A function specified by the #pragma interrupt is recognized as an interrupt handler. If inline expansion is
specified for this function, the CX outputs a warning message and ignores the specification.

<8> A task of areal-time OS is not specified to be expanded inline.
A function specified by the #pragma rtos_task directive is recognized as a task of a real-time OS. If
inline expansion is specified for this function, the CX outputs a warning message and ignores the specifi-
cation.

<9> Interrupts are not disabled in a function by the #pragma block_interrupt directive.
#If inline expansion is specified for a function in which interrupts are declared by the #pragma
block_interrupt directive to be disabled, the CX outputs a warning message and ignores the specifica-
tion.

R20UT0259EJ0100 Rev.1.00 RENESAS Page 137 of 890
Oct 01, 2010

CubeSuite Ver.1.40 CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

()

(d)

Execution speed priority optimization and inline expansion

If the "execution speed priority optimization (-Ospeed)” option of the CX is specified, the CX uses inline expan-
sion as one of the means of optimization.

If the -Ospeed option is specified, the CX selects an appropriate function and expands it inline as long as the
inline expansion conditions in "(b) Conditions of inline expansion” are satisfied, even if the function is not
specified for inline expansion by the #pragma inline directive.

Examples of differences in inline expansion operation depending on option specification
Here are examples of differences in inline expansion operation depending on whether the #pragma inline

directive or an option is specified.

- When the -Osize (size priority optimization) option is specified (other than -Ospeed)

#pragma inline funcO

voi d funco() {...} /*expanded if inline expansion conditions are satisfied because,
#pragma inline is specified*/

voi d funcl() {...} /*Not expanded*/

voi d func2() {...} / *Not expanded*/

- When the -Ospeed (execution speed priority optimization) option is specified

#pragma inline funcO

voi d funco() {...} /*expanded if inline expansion conditions are satisfied
because - Gspeed is specified*/

voi d funcl() {...} /*expanded if inline expansion conditions are satisfied
because - Gspeed is specified*/

voi d func2() {...} /*expanded if inline expansion conditions are satisfied

because - Gspeed is specified*/

Remarks 1. The CX does not treat a function specified for inline expansion by the #pragma inline directive
as a static function. To use such a function as a static function, static must be explicitly speci-
fied.

2. When executing debugging, a breakpoint cannot be specified for a function specified for inline
expansion in the C source.

(10)Real-time OS support function
The CX has functions to improve programming description and to reduce the number of codes, making allowances

for

organizing a system using the V850 microcontrollers real-time OS RX850V4.

(a) Description of task

An application using a real-time OS performs processing in task units. The real-time OS schedules a task
using a system call issued in that task or interrupt servicing. Register contents are saved and restored by the
real-time OS when the task is switched (when the context is switched). Therefore, prologue and epilogue pro-
cessing are different from those of an ordinary function.

In other words, the prologue and epilogue processing generated by the CX when a function is called are not
executed by a task.

To use a function described as a task, the code can be reduced by deleting the prologue and epilogue pro-
cessing that are executed when a function is called. However, ordinary functions and tasks are not distin-

R20UT0259EJ0100 Rev.1.00 RENESAS Page 138 of 890
Oct 01, 2010

CubeSuite Ver.1.40 CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

guished according to the description method of C language Therefore, the CX has the following #pragma
directive so that a function can be recognized as a task of a real-time OS.

#pragma rtos_task [function-nane]

Consequently, the function specified by "function-name" can be recognized as a task of a real-time OS. A
function name described in C is specified as "function-name"”. The following description is made, for example,
to use the function "void funcl(int inicode){}" as a task.

Example

#pragma rtos_task funcl

Specifying the #pragma rtos_task directive has the following effect.

<1> The prologuel/epilogue processing output by an ordinary function is not performed. Specif-
ically, the following codes are not output.
- Saving/restoring of register contents for register variables
- Saving/restoring of link pointer (Ip)
- Jump to return address

<2> The system call "ext_tsk" can be used as a defined function.

This system call can be used even if a prototype declaration is hot made in the application. Functions
other than the one specified as a task can be called in the same manner as long as they are described
after the #pragma rtos_task directive.
When this system call is called, a code using the jr instruction is output to reduce the code size. If the
main body of system call "ext_tsk" is not in the range in which the jr instruction can branch execution, the
linker outputs an error. In this case, take the following actions

- Change the memory allocation by the link directive

- Replace the jr instruction with the jmp instruction in the assembler source

- Specify far jump

Note the following points when the #pragma rtos_task directive is specified.

- A task cannot be called in the same manner as calling a function. A task called from a separate file
is not checked. A task cannot be expanded inline because it cannot be called as a function. That s,
even if the #pragma inline directive is specified for a function specified by the #pragma rtos_task
directive, the #pragma inline specification is ignored.

- An error occurs if "#pragma rtos_task function-name" is described after the function definition in the
same file.

- If the function is not defined after "#pragma rtos_task function-name" is described in the file, the
#pragma directive for that function is ignored. Note, however that "#pragma rtos_task" code is valid,
and it is possible to use the ext_tsk() system call in functions called after that.

- A function specified by the #pragma rtos_task directive cannot be specified as an ordinary interrupt/
exception handler (see "(8) Interrupt/Exception processing handler").

See the User's Manual of each real-time OS for the real-time OS functions.

R20UT0259EJ0100 Rev.1.00 RENESAS Page 139 of 890
Oct 01, 2010

CubeSuite Ver.1.40

CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

(11) Embedded functions

In the CX, some of the assembler instructions can be described in C source as "Embedded Functions". However,

it is not described "as assembler instruction”, but as a function format set in the CX. When these functions are
used, output code outputs the compatible assembler instructions without calling the ordinary function.
If a parameter is specified whose type cannot be implicitly converted to that of the parameter of the embedded

function, then an warning is output, and it is treated as an ordinary function. A warning is also output if a register
number that does not exist in the hardware is specified for Idsr()/stsr()/Idgr()/stgr(), and it will be treated as an ordi-

nary function.

The instructions that can be described as functions are as follows.

Table 3-26. Embedded Functions

Assembler Function Embedded Function
Instruction
di Interrupt control _DQO);
ei __EI();
nop No operation __nop();
hal t Stops the processor __halt();
sat add Saturated addition | ong a, b;
| ong __satadd(a, b);
sat sub Saturated subtraction | ong a, b;
| ong __satsub(a, b);
bsh Halfword data byte swap | ong a;
| ong __bsh(a);
bsw Word data byte swap | ong a;
| ong __bsw(a);
hsw Word data halfword swap | ong a;
| ong __hsw(a);
sxb Byte data sign extension char a;
| ong __sxb(a);
sxh Halfword data sign extension short a;
| ong __sxh(a);
mul Instruction that applies result of 32-bit x 32-bit | ong a, b;
signed multiplication to variable using mul instruction | | ong | ong mil (a, b);
mul u Instruction that applies result of 32-bit x 32-bit unsi gned | ong a, b;
signed multiplication to variable using mulu instruc- Unsigned long | ong mul u(a, b):
tion -
mul 32 Instruction that assigns higher 32 bits of | ong a, b;
multiplication result to variable using mul32 | ong mul 32(a, b):
instruction -
mul 32u Instruction that assigns higher 32 bits of unsigned unsigned long a, b;
multiplication result to variable using mul32u unsi gned | ong mul 32u(a, b):
instruction -
sasf Flag condition setting with logical left shift | ong a;
unsi gned int b;
| ong __sasf(a, b);

R20UT0259EJ0100 Rev.1.00
Oct 01, 2010

RENESAS

Page 140 of 890

CubeSuite Ver.1.40

CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

Assembler Function Embedded Function
Instruction
schol Bit (0) search from MSB side [V850E2V3] | ong a;
| ong __schol (a);
schOr Bit (0) search from LSB side [V850E2V3] | ong a;
| ong __schoOr(a)
schil Bit (1) search from MSB side [V850E2V3] | ong a;
| ong __schll (a)
schlr Bit (1) search from LSB side [V850E2V3] | ong a;
| ong __schilr(a)
| dsr Loads to system register [V850E2V3] | ong a;
void _ |dsr(regl D¥te a)
stsr Stores contents of system register [V850E2V3] unsi gned | ong __stsr(regl DVte);
| dgr Loads to general-purpose register [V850E2V3] | ong a;
void _ |dgr(regl DYte a)
stgr Stores contents of general-purpose register unsi gned | ong __stgr(regl phot ©);
[V850E2V3]
caxi Compare and Exchange [V850E2V3] | ong *a;
| ong b, c;
void __caxi(a, b, c)

Note Specified the system register number (0 to 31) in regID.

But, don't specify 0 as regID in Idsr.

Caution

Even if a function is defined with the same name as an embedded function, it cannot be used.

If an att isempt made to call such afunction, processing for the embedded function provided by
the compiler takes precedence.

(12) Structure type packing
In the CX, the alignment of structure members can be specified at the C language level. This function is equivalent
to the -Xpack option, however, the structure type packing directive can be used to specify the alignment value in

any location in the C source.

Caution

the execution speed is degraded.

(a) Format of structure type packing

The data area can be reduced by packing a structure type, but the program size increases and

The structure type packing function is specified in the following format.

#pragma pack([1248])

#pragma pack changes to an alignment value of the structure member upon the occurrence of this directive.
The numeric value is called the packing value and the specifiable numeric values are 1, 2, 4, and 8.
Specification of the packing value cannot be omitted. If there is no packing value, the CX outputs the following

message.

R20UT0259EJ0100 Rev.1.00

Oct 01, 2010

RENESAS

Page 141 of 890

CubeSuite Ver.1.40

CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

E0521605: lllegal #pragma character string syntax.

Since this directive becomes valid upon occurrence, several directives can be described in the C source.

#pragma pack(1l) /*Structure menber aligned using 1-byte alignment*/

Example
struct TAG
char
int
shor
s

{
c;
i

t S;

(b) Rules of structure type packing
The structure members are aligned in a form that satisfies the condition whereby members are aligned accord-

ing to whichever is the smaller value: the structure type packing value or the member’s alignment value.

For example, if the structure type packing value is 2 and member type is int type, the structure members are

aligned in 2-byte alignment.

Example

struct S {
char
int

}

#pragma

struct S1 {

pack(1)

/*Satisfies

/*Satisfies

1-byte alignnent
4-byte alignment

condition*/

condition*/

char c; [/*Satisfies 1l-byte alignnent condition*/
int i; [/*Satisfies 1-byte alignment condition*/

b

#pragma pack(2)

struct S2 {
char c; [/*Satisfies 1l-byte alignnent condition*/
int i; [/*Satisfies 2-byte alignment condition*/

b

struct S sobj; /*Si ze of 8 bytes*/

struct S1 slobj; /*Size of 5 bytes*/

struct S2 s2obj; /*Size of 6 bytes*/

R20UT0259EJ0100 Rev.1.00 RENESANS Page 142 of 890

Oct 01, 2010

CubeSuite Ver.1.40 CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

0 78 31 32 63

0 78 39

0 78 15 16 47

(c) Union
A union is treated as subject to packing and is handled in the same manner as structure type packing.

Examples 1.

uni on U {

struct S {
char c;
int i;
} sobj;

#pragma pack(1)

uni on Ul {
struct S1 {
char c;
int i;
} silobj;
s
#pragma pack(2)
uni on w2 {
struct S2 {
char c;
int i;
} s2obj;
s
uni on U uobj; /*Size of 8 bytes*/

uni on Ul wulobj; [/*Size of 5 bytes*/

uni on U2 u20bj; [/*Size of 6 bytes*/

R20UT0259EJ0100 Rev.1.00 RENESAS Page 143 of 890
Oct 01, 2010

CubeSuite Ver.1.40

CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

2.
uni on U {
int i:7;
s
#pragma pack(1)
uni on Ul {
int i:7;
b
#pragma pack(2)
uni on U2 {
int i:7;
s
uni on U uobj; /*Size of 4 bytes*/
uni on Ul wulobj; /*Size of 1 byte*/
uni on U2 u20bj; [/*Size of 2 bytes*/
(d) Bit field

Data is allocated to the area of the bit field element as follows.

<1> When the structure type packing value is equal to or larger than the alignment condition value of
the member type

Data is allocated in the same manner as when the structure type packing function is not used. That s, if
the data is allocated consecutively and the resulting area exceeds the boundary that satisfies the align-
ment condition of the element type, data is allocated from the area satisfying the alignment condition.

<2> When the structure type packing value is smaller than the alignment condition value of the ele-
ment type
- If data is allocated consecutively and results in the number of bytes including the area becoming

- Other conditions

Example

larger than the element type
The data is allocated in a form that satisfies the alignment condition of the structure type packing
value.

The data is allocated consecutively.

struct S {

short a:7;
short b: 7;
short c:7;
short d: 15;

} sobj;

/*0 to 6th bit*/
/*7 to 13th bit*/
/*16 to 22nd bit (aligned to 2-byte boundary)*/
/*32 to 46th bit (aligned to 2-byte boundary)*/

R20UT0259EJ0100 Rev.1.00

Oct 01, 2010

RENESAS

Page 144 of 890

CubeSuite Ver.1.40

CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

#pragma pack(1)
struct S1 {
short a7, /*0 to 6th bit*/
short b:7; /*7 to 13th bit*/
short c:7; /*14 to 20th bit*/
short d: 15; /*24 to 38th bit (aligned to byte boundary)*/
} slobj;
sobj
L=l [[< | | ¢]
0 6 7 13 16 22 23 31 32 46 47 63
slobj
el o[e[&
0 67 1314 20212324 3839

(e) Alignment condition of top structure object

The alignment condition of the top structure object is the same as when the structure packing function is not

used.

(f)

Size of structure objects

Perform packing so that the size of structure objects becomes a multiple value of whichever is the smaller

value: the structure alignment condition value or the structure packing value. The alignment condition of the

top structure object is the same as when the structure packing function is not used.

Examples 1.
struct S {
int i;
char C;
b

#pragma pack(1)

struct Sl {
i nt i;
char (o
}

#pragma pack(2)

struct S2 {
int i;
char C;
b
struct S sobj;

/*Si ze of 8 bytes*/

R20UT0259EJ0100 Rev.1.00
Oct 01, 2010

RENESAS

Page 145 of 890

CubeSuite Ver.1.40 CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

struct S1 slobj; /*Size of 5 bytes*/
struct S2 s2obj; /*Size of 6 bytes*/

sobj
| | [¢ |
0 31 32 39 40 63
slobj
| | | ©]
0 31 32 39
s20bj
| | [¢ | |
0 31 32 39 40 47
2.
struct S {
int i
char (o
}
struct T {
char c;
struct S s;
}

#pragma pack(1)
struct S1 {
int i
char (o
}
struct T1 {
char c;

struct S1 sl1;

#pragma pack(2)
struct S2 {
int i

char c;

struct T2 {
char C;
struct S2 s2;

R20UT0259EJ0100 Rev.1.00 RENESAS Page 146 of 890
Oct 01, 2010

CubeSuite Ver.1.

40 CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

struct
struct

struct

T tobj; /*Si ze of 12 bytes*/
Tl tilobj; /*Size of 6 bytes*/
T2 t2o0bj; [/*Size of 8 bytes*/

tobj
<] - I
0 78 31 32 63 64 7172 95
tlobj
‘ cl | sl.i |sl.c‘
0 78 39 40 47
t2obj
‘ c2 | | S2.i |52.c| ‘
0 78 1516 47 55 63
48 56

(g) Size of structure array
The size of the structure object array is a value that is the sum of the number of elements multiplied to the size
of structure object.

Example
struct S {
int i;
char C;
b
#pragma pack(1)
struct S1 {
int i;
char C;
b
#pragma pack(2)
struct S2 {
int i;
char C;
b
struct S sobj[2]; /*Si ze of 16 bytes*/
struct S1 slobj[2]; /*Size of 10 bytes*/
struct S2 s2obj[2]; /*Si ze of 12 bytes*/
R20UT0259EJ0100 Rev.1.00 RENESANS Page 147 of 890

Oct 01, 2010

CubeSuite Ver.1.40 CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

sobj
| | [© | | | [©]
0 31_. 39 63 64 95 103 127
32 a0 96 104
slobj
| | [© | | [|
0 31,_. 39 7179
32 40 72
s20bj
| | o] | | <] |
0 31_. 39 47 79 87 95
32 " 40 48 80 88

(h) Area between objects
For example, sobj.c, sobj.i, and cobj may be allocated consecutively without a gap in the following source pro-

gram (the allocation order of sobj and cobj is not guaranteed).

Example

#pragma pack(1)
struct S {

char c;
int i;

} sobj;

char cobj ;

sobj, cobj

| cobj ‘
39 40 47

B

0 78

(i) Notes concerning structure packing function

<1> Specification of the -Xpack option and #pragma pack directive at the same time
If the -Xpack option is specified when structure packing is specified with the #pragma pack directive in
the C source, the specified option value is applied to all the structures until the first #pragma pack direc-
tive appears. After this, the value of the #pragma pack directive is applied.
Even after the #pragma pack directive appears, however, the specified option value is applied to the
area specified by default.

Example When -Xpack=2 is specified
struct S2 {...}; /*Packing value is specified as 2 in option
Option -Xpack = 2 is valid: packing value is 2*/
#pragma pack(1) /*Packing is specified as 1 in #pragna directive
struct S1 {...}; pragma pack(1l) is valid: packing value is 1*/
#pragma pack() /*Packing value is specified by default in #pragma directive
struct S2_2 {...}; Option -Xpack = 2 is valid: packing value is 2*/

R20UT0259EJ0100 Rev.1.00

Oct 01, 2010

RENESAS Page 148 of 890

CubeSuite Ver.1.40

CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

<2> Restrictions

When using the V850 microcontrollers and a CPU that is set to disable misalign access for V850Ex prod-

ucts, the following restrictions apply.

- Access using the structure member address cannot be executed correctly.

As shown in the following example, the structure member address is acquired, and the access to

that address is then performed with the address masked in accordance with the data alignment of

the device. Therefore, some data may disappear or be rounded off.

Example

struct test {
char c;
i nt [
} test;

int *ip, i;

voi d func(void) {

io=ip;

voi d func2(void) {

ip = &test.i);

/| *of fset 0*/
/*of fset 1-4*/

| *Accessed with address masked*/

/*Acquire structure nenber address*/

- In bit field access, an area with no data to be read using the member ’s type is also accessed.
If the width of the bit field is smaller than the member’ s type as shown in the following example,
access occurs outside the object because reading is performed using the member’ s type. Gener-
ally, there is no problem with the function, but if I/O are mapped, an illegal access may occur.

Example

struct S {
int x:21;

sobj . x = 1;

} sobj; [/*3 bytes*/

(13)Smart correction function
The smart correction feature enables you to correct a specific function without changing the other functions at all

(code or addresses), by replacing the execution of that function only.

Specifically, the body of the function is replaced with a jump instruction (generated automatically via a "#pragma"

specification) to the corrected function, without changing the size of the function to be corrected.
The corrected function is allocated to a separate section that does not impact the original program.

Doing this keeps all parts of the program except for the corrected function identical to before correction.

R20UT0259EJ0100 Rev.1.00

Oct 01, 2010

RENESAS

Page 149 of 890

CubeSuite Ver.1.40 CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

Figure 3-16. Image of Smart Correction Memory

Uncorrected Corrected

Automatically gener-

ated via #pragma speci-

The smart correction feature is useful when a bug is found in a specific function after the program has been
written to the flash area.
This has the following benefits compared to recompiling the program after making the correction as normal.
- If a normal recompile is performed, then the contents (allocated addresses and branch addresses) of
functions other than the corrected function will change, making it necessary to evaluate the entire
program.
But if smart correction is used, locations other than the corrected function do not change, making it
possible to minimize the amount of reevaluation.
- Self overwriting is also possible, because it is sufficient to overwrite only the location to change, without

the need for completely overwriting the flash area.

(@) Smart correction format
The smart collection function is designated by the next format.

#pragma smart_correct uncorrect ed- f uncti on- nane corrected-function-nanme

The function to be corrected remains as-is; a new copy is created with a different name, and that function is
corrected. The CX outputs code to call the corrected function in the location of the uncorrected function.

(b) Smart correction procedure

- Upon first compilation, the compiler checks for the use of options requiring attention, such as function-
optimization options.

- Prepare a pre-correction link directive file.

- Copy the function to correct, and add it to the end of the C source file containing that function.
Correct the added function, and rename it.

- Add a #pragma smart_correct directive in front of the uncorrected function.
Do not make any changes to the C source file other than adding the #pragma directive, and adding the
corrected function to the end of the file.

R20UT0259EJ0100 Rev.1.00 RENESAS Page 150 of 890
Oct 01, 2010

CubeSuite Ver.1.40 CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

The #pragma smart_correct directive causes a jump instruction from the uncorrected function to the cor-
rected function to be generated automatically.
- Specify the allocation section name of the added function via a #pragma text directive.

#pragma text "section" corrected-function-name

If a static variable was added, also specify the allocation section of that variable using a #pragma section
directive. Specify a new name for this section, which does not depend on the original program.

- Specify the allocation address of the corrected function name in the link directive file.

- Specify the same compiler options as the first compilation, and rebuild. A jump instruction from the pre-
correction function to the corrected function is generated, with the same code as a function specifying a
far jump.

- Make sure that the difference between the pre-correction hex file and the post-correction hex file is the
corrected portion.

(c) Sample smart correction code
- Assume a program "prog" (prog.Imf/prog.hex) consists of three C source files: "filel.c", "file2.c", and
"file3.c". Of these, there was a bug in function "funcB", defined in "filel.c". First, copy "funcB" and add it
to the end of "filel.c", and change the function name to "funcBn". Next, correct "funcBn".
- Add a #pragma smart_correct directive (a) before the definition of function "funcB".
- Add a #pragma text directive (b) before the definition of corrected function "funcBn". This specifies that
"funcBn" is to be allocated to a section called "text.rc".

[Uncorrected filel.c] [Corrected filel.c]
voi d funcA() voi d funcA()
{ {
funcB(); funcB();
} }

#pragma smart _correct funcB funcBn <- (a)

voi d funcB() voi d funcB()
{ {
} }
void funcC() void funcC()
{ {
} }
#pragma text "text.rc" funcBn <- (b)

voi d funcBn()

{
}
R20UT0259EJ0100 Rev.1.00 RENESAS Page 151 of 890

Oct 01, 2010

CubeSuite Ver.1.40

CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

- Add a specification to allocate to the "text.rc” section to the link directives.

Example Allocate the "text.rc" section to address 0x2000000.

TEXT. RC: ! LOAD ?RX V0x2000000 {
text.rc = $PROGBI TS ?AX text.rc.text;

- Set the options absolutely identically to those of the original program compile/assemble/link, and re-com-

pile/assemble/link.

- Compare the original "prog.hex" file to the newly generated "prog.hex" file, and make sure that there are

no differences other than "funcB" and "funcBn".

_funcA:

_funcB:

_funcB. End:

_funcC

_funcBn:

_funcBn. end:

[Corrected filel.asn

jarl funcB

$smart _correct _funcB,

jm [1p]

_funcB. End, _funcBn

text.rc.text .cseg text

R20UT0259EJ0100 Rev.1.00
Oct 01, 2010

RENESAS

Page 152 of 890

CubeSuite Ver.1.40

CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

[Assenbl er i mage of corrected filel.obj]

_funcA:
jarl funcB
_funcB:
jr32 funcBn
nop he sane size as funcB which is originally
_funcB. End:
_funcC

text.rc.text .cseg text
_funcBn:
jm [1p]

_funcBn. end:

(d) Cautions for the smart correction function

- You can only make additions, deletions, and modifications inside the uncorrected function.

- You cannot delete or modify variables defined outside the function. Variables can be added by defining

them in a different section.

- To add a variable, explicitly specify a section and allocation location, taking care not to change already

existing data areas.

- Do not add variables with initial values, because it could change the ROMization copy size.

- When copying individual items, the function in question must also be taken into consideration as a correc-

tion target.

- Make the size of the pre-correction function at least as large as the code size necessary for the call of the

corrected function.
- Only optimizations closed within the function are applied to uncorrected functions.

- If a uncorrected function is a target for inline expansion (optimization), a message will be output asking

whether to make it a target for smart correction.

- The compiler automatically appends the string ".text" to section names specified via "#pragma".

If the target section name is specified in the input section of a link directive, then if there is nothing written
before the automatically added ".text", it will be determined to be an unnecessary section, because the

linker will not be able to identify the target section name.

(14)Position independent operations

Normally, when accessing variables and functions in CX, relative addressing is output, and position-independent

code is output. This feature can be used to change whether addressing for accessing variables and functions uses

position-independent output or fixed-address output.

For example, in multi-core programming the sections in each core are relative from the base register of that core,

but when they are accessed from other cores or the common module, then the absolute address must be speci-

fied, because the base registers are different. This feature can be used to control this.

R20UT0259EJ0100 Rev.1.00
Oct 01, 2010

RENESAS

Page 153 of 890

CubeSuite Ver.1.40 CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

(a) Position independent operation format
Use the following format to specify position-independent operations on variables and functions.

#pragma pic

#pragma nopi c

(b) Sample position independent operation code
When a "#pragma pic" directive is specified, then access to subsequently declared/defined variables and func-
tions will use relative addresses. When a "#pragma nopic" directive is specified, then access to subsequently
declared/defined variables and functions will use absolute addresses.

Example

#pr amga nopic

extern int i; /* "i" is accessed via the absolute address. */
#pragma pic
exteternint j; /* "j" is accessed via relative address. */

If the same specification is made repeatedly, then it will not cause an error:

#pragma nopi c
extern int i;
#pragma nopi c /* Not error */

extern int j;

But if different directives are specified for the same variable, then it will cause an error:

#pragma nopi c
extern int i;
#pragma pic /* Error */

int i

When performing multi-core programming, declare variables defined in another core module that you want to
access after a "#pragma nopic" directive. If the "-Xmult=cmn" option was specified, then it is not necessary to
specify "#pragma nopic", because it is the default.

Example
Each PE (Processing Element) program (-Xmulti=pen)

#pragma nopi c

/* Common nodul e declaration */
extern int cmm_var

extern int crm_func();

#pragma pic

/* PE | ocal nodul e declaration */

int pe_var;

int pe_func();

R20UT0259EJ0100 Rev.1.00 RENESAS Page 154 of 890
Oct 01, 2010

CubeSuite Ver.1.40 CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

Common module (-Xmulti=cmn)

#pranga nopic /* Does not matter whether it is included or not */
int com_var = 0;
int com_func(){

return 1;

(c) Important information for position independent operations

- If the "-Xmulti" option is not specified, or if the "-Xmulti=pen" option is specified, then it will be assumed
that "#pragma pic" is written at the beginning of the file. In this case, it will be the same as ordinary output
code.

- If the "-Xmulti=cmn" option is specified, then it will be assumed that "#pragma nopic" is written implicitly at
the beginning of the file. If the "-Xmulti=cmn" option is specified, then writing "#pragma pic" will cause an
error.

- If the "-Xmulti=cmn" option is specified, then specifying sdata/sidata/sedata/tidata/tidata_byte/tidata_word
in a "#pragma section” will cause an error.

- If "-Xmulti" is not specified, or the "-Xmulti=pen" option is specified, then when "#pragma nopic" is speci-
fied it is possible to use sdata/sidata/sedata/tidata/tidata_byte/tidata_word simultaneously in a "#pragma
section”, but it will hurt code efficiency.

- Making different specifications for multiple declarations will cause an error. Care is needed when coding
header files.

- Features relating to symbol files (-Xsfg*, -Xsymbol_file) cannot be specified simultaneously. The behavior
when they are so specified is undefined.

3.25 Modification of C source

By using expanded function object with high efficiency can be created. However, as expanded function is adapted in
V850 microcontrollers, C source needs to be modified so as to use in other than V850 microcontrollers.
Here, 2 methods are described for shifting to the CX from other C compiler and shifting to C compiler from the CX.

<From other C compiler to the CX>
- #pragma’\ote
C source needs to be modified, when C compiler supports the #pragma. Modification methods are examined
according to the C compiler specifications.
- Expanded Specifications
It should be modified when other C compilers are expanding the specifications such as adding keywords etc.

Modified methods are examined according to the C compiler specifications.

Note #pragma is one of the pre-processing directives supported by ANSI. The character string next to #pragma
is made to be recognized as directives to C compiler. If that directive does not supported by the compiler,
#pragma directive is ignored and the compiler continues the process and ends normally.

R20UT0259EJ0100 Rev.1.00 RENESAS Page 155 of 890
Oct 01, 2010

CubeSuite Ver.1.40 CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

<From the CX to other C compiler>
- The CX, either deletes key word or divides # fdef in order shift to other C compiler as key word has been added as
expanded function.

Examples 1. Disable the keywords

#i f ndef __CA850__
#define interrupt / *Consi dered interrupt function as normal function*/

#endi f

2. Change to other type

#ifdef _ V850

#define bit char /*Change bit type variable to char type variabl e*/
#endi f
R20UT0259EJ0100 Rev.1.00 RENESAS Page 156 of 890

Oct 01, 2010

CubeSuite Ver.1.40 CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

3.3 Function Call Interface

This section describes how to handle arguments when a program is called by the CX.

3.31 Calling between C functions

- Normal function call
--> jarl instruction

- Function call using a pointer indicating a function (and returning from function call)
--> jmp instruction

When a C function is called from another C function, a 4-word argument is stored in the argument registers (r6 to r9).
An argument in excess of 4 words is stored in the stack frame of the calling function. As with structs and parameters of
type double/long long, it is stored in r6, from the least significant byte. Control is then transferred (jumps) to the called
function and the value in the argument registers stored when the function was called is stored in the stack frame of the
calling function.

For a function that returns a structure, create memory for the return value in the calling function, and pass the address
of this memory area to the function as the first argument. In this case, the first, second, ... argument specified in the
source will be treated as the second, third, ... arguments.

The CX uses r10 for function return values. If the function is of type double or long long, it uses r10 and r11, storing the
lower 32 bits in r10, and the higher 32 bits in r11. For functions that return structures, the structure is stored in the
address passed via the first argument; there is no explicit return value.

The stack frame is generated when the prologue code of the function, i.e., the code that is executed before the code of
the main body of the function is called (processing (4) to (7) in "Figure 3-19. Generation/Disappearance of Stack Frame
(When Argument Register Area Is Located at Center of Stack))", "Figure 3-21. Generation/Disappearance of Stack
Frame (When Argument Register Area Is Located at Beginning of Stack)" is the prologue code), is executed and the stack
pointer (sp) is shifted by the necessary size. The stack frame disappears when the epilogue code of the function, i.e., the
code that is executed after the code of the main body of the function is executed and until control returns to the calling
function (processing (i) to (iv) in "Figure 3-19. Generation/Disappearance of Stack Frame (When Argument Register
Area Is Located at Center of Stack))", "Figure 3-21. Generation/Disappearance of Stack Frame (When Argument Regis-
ter Area Is Located at Beginning of Stack)" is the epilogue code), is executed and the stack pointer (sp) is returned.

(1) Stack frame/Function call
This section explains the stack frame format and how the stack frame is generated and disappears when a function
is called.

(a) Stack frame format
The CX allocates the argument register area to either the beginning of the stack or center of the stack in the
stack frame, according to the argument condition. The argument conditions are as follows.

<1> When the argument register area is allocated to the beginning of the stack
The argument register area is allocated to the beginning of the stack when the area is accessed succes-
sively, exceeding the area for the 4-word argument, in the following two cases.
- If the number of arguments is variable.
- If the argument is the entity of a structure and its area extends over a 4-word area.

R20UT0259EJ0100 Rev.1.00 RENESAS Page 157 of 890
Oct 01, 2010

CubeSuite Ver.1.40 CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

<2> When the argument register area is allocated to the center of the stack
In such case, it is other than the conditions mentioned above.
"Figure 3-17. Stack Frame (When Argument Register Area Is Located at Center of Stack)" shows stack
frame when the argument register area is at the center of the stack and "Figure 3-18. Stack Frame
(When Argument Register Area Is Located at Beginning of Stack)" shows stack frame when the argu-
ment register area is at the beginning of the stack.

Figure 3-17. Stack Frame (When Argument Register Area Is Located at Center of Stack)

Old sp = .

r21

Register area for register variables
S=F

r28

r29
Ip
Argument register area 3
(4-word argument area) *
Work register area .R
Automatic variable area —I.A

Argument area for argument more than 4 words —f.T
New sp Y v

Figure 3-18. Stack Frame (When Argument Register Area Is Located at Beginning of Stack)

Old sp - .
Argument register area
(4-word argument area) S
r20 3
r21
Register area for register variables
r28 g
r29
Ip
Work register area R=X
Automatic variable area T.A
Argument area for argument more than 4 words f.T
New sp > A

"S,.F X, .R,.A, and .T" in the figure are macros for functions output by the compiler internally.
macros are used for a specific purpose, as shown in the following table.

R20UT0259EJ0100 Rev.1.00 RENESAS Page 158 of 890
Oct 01, 2010

CubeSuite Ver.1.40 CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

Table 3-27. Macros for Functions

Macro Name Meaning
.S Stack size
.F Stack size - Size of argument register area (if at the beginning of the stack)
X Size of argument register area (if at the center of the stack) + .R
.R Size of work register area + .A
A Size of automatic variable area + .T
T Size of area for arguments of function to be called in excess of 4 words
P Always 0 (macro for code generation)Not

Note .Pis not shown in "Figure 3-17. Stack Frame (When Argument Register Area Is Located at Center of
Stack)" and "Figure 3-18. Stack Frame (When Argument Register Area Is Located at Beginning of

Stack)" because it is always 0.

These macros are used to access the stack area. The following table shows specific access methods (access

codes.
Table 3-28. Method of Accessing Stack Area
Stack Area Access Method (Displacement [sp])
Register area for register variables (including Ip) -offset + .Fxx[sp]

Work register area

-offset + .Rxx[sp]

Automatic variable area

-offset + .Axx[sp]

Area for arguments in excess of 4 words offset + .Pxx[sp]

Argument register area

offset + .Fxx[sp]

Argument register area (if at the center of the stack) offset + .Rxx[sp]

"offset" in this table is a positive integer and means the offset in each area. "xx" after a macro is a positive inte-

ger and indicates the frame number of the function.

R20UT0259EJ0100 Rev.1.00
Oct 01, 2010

RENESAS

Page 159 of 890

CubeSuite Ver.1.40 CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

(b) Generation/disappearance of stack frame when function is called (when argument register area is at
center of stack)
The following explains the generation and disappearance of the stack frame when a function is called if

the argument register area is at the center of the stack. This case applies to most function calls.
The following figure shows an example of the generation/disappearance of the stack frame when the

function "func2" is called from the function "funcl" and then execution returns to "funcil".

Figure 3-19. Generation/Disappearance of Stack Frame (When Argument Register Area Is Located at Center of Stack)

Higher address [Processing on funcl side when func2 is called]

) (1) The arguments are stored in the argument registers.
Area for automatic The arguments of func2 to be called are stored in r6 to r9.

variables (2) The arguments in excess of 4 words are stored in the stack.

Area for arguments in The excess arguments that cannot be stored in r6 to r9 are
stored in the stack.

excess of 4 words

(3) Execution branches to func2() by the jarl instruction.

[Processing on func2() side when called by func1]

(4) spis shifted.
The stack pointer moves to the stack to be used by
func2.

(5) Ipis saved.

Stack frame The return address of funcl is stored.

for funci (6) Register variable registers are saved.
These registers are saved because the register values
used by funcl must be retained when func2 also uses the

register variable registers.

(7) Arguments in argument register area are stored.
The values of r6 to r9 are stored. The current argument
@ fvalues are stored in the stack because when another
function is called from func2, the arguments at that time are

A 4
spoffuncl—p —- » stored in registers r6 to r9.
Area for saving con-

(iii) . (6), (i) Since the V850Ex can perform processing (4) to (6) with the

tents of registers for
prepare instruction, the CX outputs the prepare instruction.
[SEWIIE) EEEY (). i [Processing on func2 side when execution returns from func2 to
Arguemnt register funci]
(]
area (4 words) (iThe contents of the registers for register variables are
Stack frame
for func2 restored.
Work regi
ork register area The values of the register variable registers of funcl() is
) restored to registers.
Area for automatic
) (ii) Ip is restored.
variables
The return address of funcl() is restored.

Area for arguments in (iii)ssp is returned. The stack pointer moves back to the stack
excess of 4 words

sp of func2 A4 to be used by funcl().

4) (iv) Execution is returned by the jmp [Ip] instruction.

(v)Since the V850Ex can perform processing (i) to (iv) with
the dispose instruction, the CX outputs the dispose
Lower address instruction.
R20UT0259EJ0100 Rev.1.00 -IENESAS Page 160 of 890

Oct 01, 2010

CubeSuite Ver.1.40 CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

The items that are saved to the stack frame and the stack frame to be used are summarized below.

<1> Calling side - funcl
- The values of the excess arguments are called if the arguments of func2 to be called exceed 4
words.

<2> Called side - func2
- The arguments which are entered in the argument registed are passed (To enter into the argument
register means to call a function (Function (fun 1)).
- Saving the link pointer (Ip) (= return address of funcl) of the calling side (funcl) Saving the contents
of the register variable registers.
- Saving the contents of the register variable registers
The register variable registers are allocated as follows.

In 22-register mode: "r25, r26, r27, r28, r29"
In 26-register mode: "r23, r24, r25, r26, r27, r28, r29"
In 32-register mode: "r20, r21, 122, r23, r24, 125, r26, r27, r28, r29"

Of these registers, those that are used are saved.

- Area for automatic variables

- Allocating an area used for operation if a very complicated expression is used in a function Although
this area is not is allocated at the lower address of the area for automatic variables if it is necessary.

If the function has a return value, that value is stored in r10.
The location of each area of the stack frame and the image of the stack growth direction of each area are illus-

trated below (it is assumed that func2() to be called has five arguments).

Figure 3-20. Stack Growth Direction of Each Area of Stack Frame

Growth direction of each area

Stores 5th argument

€— sp for funcl
Area for saving contents of registers

for register variables

Area for saving link pointer (Ip)

Stores 4th argument

Stores 3rd argument

Stores 2nd argument

Stores 1st argument

Area for automatic variables

Area for complicated operations

Area for arguments of function to be

called from func2 in excess of 4 words

sp for func2

R20UT0259EJ0100 Rev.1.00 RENESAS Page 161 of 890
Oct 01, 2010

CubeSuite Ver.1.40

CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

An example of a source calling a C function from a C function and an assembly source when that source is

compiled is shown below.

Example
voi d funcl(void) {
int a, b, ¢, d, e;
func2(a, b, ¢, d, e);
}
int func2(int a, int b, int ¢, int d, int e) {
register int i
return(i);
}
R20UT0259EJ0100 Rev.1.00 RENESAS Page 162 of 890

Oct 01, 2010

CubeSuite Ver.1.40

CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

Assembler instructions generated when func2 is called in the above example.

_funcl:
j br .L3
. L4:
Id.w -8 + .A3[sp], r6
Id.w -12 + . A3[sp], r7
Id.w -16 + . A3[sp], r8 -- (D
Id.w -20 + . A3[sp], r9
Id.w -24 + . A3[sp], rlo
st.w r10, [sp] -- (2)
jarl _func2, Ip -- (3)
-- epilogue for funcl
-- Processing from(ii) to (iv)
.L3:
-- prolog for funcl
-- processing (4) and (5)
j br . L4
_func2:
j br . L5
. L6:
st.w ré, .R2[sp]
st.w r7, 4 + .R2[sp]
st.w r8, 8 + .R2[sp] -- (7
st.w r9, 12 + .R2[sp]
st.w r29, -4 + .A2[sp]
j br .L2
. L2:
Id.w -4 + . A2[sp], rlo
di spose . X2, 0x3, [Ip]
== (), (i), (i), (iv)
. L5:
prepare 0x3, .X2
-- (4, (5, (8)
j br .L6
R20UT0259EJ0100 Rev.1.00 RENESAS Page 163 of 890

Oct 01, 2010

CubeSuite Ver.1.40 CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

(c) Generation/disappearance of stack frame when function is called (when argument register area is at
beginning of stack)
The following explains the generation and disappearance of the stack frame when a function is called if the
argument register area is at the beginning of the stack.
The following figure shows an example of the generation/disappearance of the stack frame when the func-
tion"func2" is called from the function"funcl" and then execution returns to "funcl".

Figure 3-21. Generation/Disappearance of Stack Frame (When Argument Register Area Is Located at Beginning
of Stack)

Higher address [Processing on funcl side when func2 is called]

(1) The arguments are stored in the argument registers.
The arguments of func2 to be called are stored in r6 to r9.

Area for automatic

variables . :
(2) The arguments in excess of 4 words are stored in the stack.

Area for arguments in The excess arguments that cannot be stored in r6 to r9 are
stored in the stack. This processing is performed if the
number of arguments is five or more.

excess of 4 words

(3) Execution branches to func2 by the jarlinstruction.
[Processing on func2 side when called by func1]
(4) sp is shifted.
The stack pointer moves to the stack to be used by
func2.

(5) Ipis saved.
The return address of funcl is stored.

Stack frame
for funcl
(6) Register variable registers are saved.
These registers are saved because the register values
used by funcl must be retained when func2 also uses the
register variable registers.

(7) Arguments in argument register area are stored.
@ The values of r6 to r9 are stored. The current argument
— v fvalues are stored in the stack because when another
spoffunl —p X -)
A | Areafor saving con- function is called from func2, the arguments at that time are

(iii) : (6), (i) stored in registers 6 to r9.
tents of registers for

Since the V850EXx can perform processing (4) to (6) with the

Ip saving area (®), (i) prepare instruction, the CX outputs the prepare instruction.
Arguemnt register @ [Processing on func2 side when execution returns from
area (4 words) func2 to funcl]

Stack frame

(i) The contents of the registers for register variables are

for func2 ;
Work register area restored.

The values of the register variable registers of funcl is
Area for automatic
restored to registers.
variables
(ii) Ip is restored.

Area for arguments in The return address of funcl is restored.

excess of 4 words

(iii) spis returned. The stack pointer moves back to the stack

sp of func2 —p A A

to be used by funcl.
4

(iv) Execution is returned by the jmp [Ip] instruction.

Since the V850Ex can perform processing (i) to (iv) with the

dispose instruction, the CX outputs the dispose instruction.
Lower address

R20UT0259EJ0100 Rev.1.00 RENESAS Page 164 of 890
Oct 01, 2010

CubeSuite Ver.1.40 CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

The items that are saved to the stack frame and the stack frame to be used are summarized below.

<1> Calling side - funcl
- The values of the excess arguments are called if the arguments of func2() to be called exceed 4
words.

<2> Called side - func2

- The arguments which are entered in the argument registed are passed (To enter into the argument
register means to call a function (Function (fun 1)).

- Saving the link pointer (Ip) (= return address of funcl) of the calling side (funcl) Saving the contents
of the register variable registers.

- Saving the register variable registers.

- Area for automatic variables

- Allocating an area used for operation if a very complicated expression is used in a function
Although this area is not is allocated at the lower address of the area for automatic variables if it is
necessatry.

If the function has a return value, that value is stored in r10.
The location of each area of the stack frame and the image of the stack growth direction of each area are illus-

trated below (it is assumed that func2 to be called has five arguments).

Figure 3-22. Stack Growth Direction of Each Area of Stack Frame

Growth direction of each area

Stores 5th argument
sp for funcl

Stores 4th argument

Stores 3rd argument

Stores 2nd argument

Stores 1st argument

Area for saving contents of registers

for register variables

Area for saving link pointer (Ip)

Area for automatic variables

Area for complicated operations

Area for arguments of function to be

called from func2 in excess of 4 words
sp for func2

An example of a source calling a C function from a C function and an assembly source when that source is
compiled is shown below.

R20UT0259EJ0100 Rev.1.00 RENESAS Page 165 of 890
Oct 01, 2010

CubeSuite Ver.1.40 CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

Example

voi d funcl(void) {
int a, b, c, d, e

func2(a, b, c, d, e);
}
int func2(int a, int b, int ¢, int d, int e) {

register int i

return(i);

R20UT0259EJ0100 Rev.1.00 RENESAS Page 166 of 890
Oct 01, 2010

CubeSuite Ver.1.40

CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

Assembler instructions generated when func2 is called in the above example.

_funcl:
j br .L3
. L4:
Id.w -8 + .A3[sp], r6
Id.w -12 + . A3[sp], r7
Id.w -16 + . A3[sp], r8 - (1
Id.w -20 + . A3[sp], r9
Id.w -24 + . A3[sp], rlo
st.w r10, [sp] - (2)
jarl _func2, Ip - (3)
-- epilogue for funcl
-- Processing from(ii) to (iv)
.L3:
-- Prolog for funcl
-- Processing (4) and (5)
j br . L4
_func2:
j br . L5
. L6:
st.w r6, .F2[sp]
st.w r7, 4 + .F2[sp]
st.w r8, 8 + .F2[sp] - (7
st.w r9, 12 + .F2[sp]
st.w r29, -4 + .A2[sp]
j br .L2
. L2:
Id.w -4 + . A2[sp], rlo
di spose . X2, 0x3
- (), (i), (i)
add .82 - .F2, sp - (i)
jm [!p] - (iv)
. L5:
add .F2 - .82, sp - (4)
prepare 0x3, .X2
-- (4, (5, (8)
j br . L6
R20UT0259EJ0100 Rev.1.00 RENESAS Page 167 of 890

Oct 01, 2010

CubeSuite Ver.1.40

CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

3.3.2 Prologue/Epilogue processing function

The CX can reduce the object size in part of the prologue/epilogue processing of a function by calling a runtime library.

Itis called as "Prologue/Epilogue Runtime" process. Because the prologue/epilogue processing of a function is predeter-

mined, it is prepared as runtime library functions and these functions are called when a function is called or execution

returns to a function.

An example of the assembler code of the prologue/epilogue processing of a function is shown below.

Numbers in parentheses in this example correspond to those in "Figure 3-19. Generation/Disappearance of Stack

Frame (When Argument Register Area Is Located at Center of Stack)".

Example

int func(int a,

int b, int ¢, int d, int e) {

register int

return(i);

Assembler instruction in prologue/epilogue processing of function "func” in above example

[Code when runtime library function is not used]

_func:
. BB. LABEL. 0:
prepare 3, 16 --(4)(5)(6)
st.w r6, O[sp]
st.w r7, 4[sp]
st.w r8, 8[sp] --(7)
st.w r9, 12[sp]
nmov r29, rl1
. BB. LABEL. 1:
nmov rl1, r10
di spose 16, 3, [Ip] S-(i), (i), (i), (iv)
_func. end:

[Code when runtime library function is used]

_func:

. BB. LABEL. 0:
cal I't 9 --(4)(5)(6)
st.w r6, O[sp]
st.w r7, 4[sp]
st.w r8, 8[sp] --(7)
st.w r9, 12[sp]
nmov r29, ril

. BB. LABEL. 1:

R20UT0259EJ0100 Rev.1.00 RENESAS Page 168 of 890

Oct 01, 2010

CubeSuite Ver.1.40 CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

mov rll, r10
callt 39 --() (i), (iii), (iv)
_func. end:

@)

)

Specifying use of runtime library function for prologue/epilogue of function

Specify the compiler option "-Xpro_epi_runtime=on" to call the runtime library for prologue/epilogue. Specify the -
Xpro_epi_runtime=off option if the runtime library is not called.

When an optimization option other than "-Ospeed (execution speed priority optimization)" is specified, however,
the runtime library is automatically called for the prologue/epilogue of a function. That is, the compiler option "-
pro_epi_runtime=on" is automatically specified.

If an option other than "-Ospeed" is specified and if a runtime library should not be called, specify the
-Xpro_epi_runtime=off option.

The -Xpro_epi_runtime option can be specified in each source file, so a file for which the runtime library is called
and a file for which the runtime library is not called can be used together.

When a runtime library is called for the prologue/epilogue of a function by specifying the -Xpro_epi_runtime=on
option, a dedicated section ".pro_epi_runtime" is necessary.

Consequently, the following definition must be described by a link directive.

.pro_epi_runtinme = $PROGBI TS ?AX . pro_epi _runtime;

Table information of the prologue/epilogue runtime function is allocated to this section.

Calling runtime library for prologue/epilogue

The following instruction is used to call the prologue/epilogue runtime function of a function.

The CALLT instruction is a 2-byte instruction. The code size can be reduced by using this instruction for calling a
function. The CALLT instruction requires a pointer that indicates that the table of the function subject to the CALLT
instruction is set to the CTBP (Callt Base Pointer) register. If processing of the setting is missing from the program,
the error message is output during linking.

If processing of the setting is missing from the program, the following error message is output during linking.
Add the following instruction to the startup routine.

nmv # PROLOG TABLE, r12 --three underscores "_" before "PROLOG'
| dsr ri2, 20

At this time, _ _ _ PROLOG_TABLE is the first symbol of the function table of the runtime function of the prologue/
epilogue of a function, and the function table itself is allocated to the ".pro_epi_runtime" section by setting it to
CTEB. The r12 register is used in the above example, but it is not always necessary to use r12.

If the CALLT instruction provided in the CX is used for any purpose other than calling a runtime library for the pro-
logue/epilogue of a function, the CTBP register contents must be saved/restored If the CALLT instruction is used
by another object, such as middleware or a user-created library, and if a code that saves/restores the CTBP regis-
ter contents is missing or cannot be inserted in that object, a runtime library for the prologue/epilogue of a function
cannot be called In this case, suppress calling the runtime library by specifying the -Xpro_epi_runtime=off option.
See the Relevant Device s Architecture User’ s Manual of each device for details of the CALLT instruction and
CTEB register.

R20UT0259EJ0100 Rev.1.00 RENESAS Page 169 of 890
Oct 01, 2010

CubeSuite Ver.1.40 CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

(3) Notes on calling runtime library for prologue/epilogue of function
Note the following points when calling a runtime library for the prologue/epilogue of a function.

- Calling a runtime library for the prologue/epilogue of a function degrades the execution speed because a func-
tion is called. Specify the -Xpro_epi_runtime=off option to avoid this. Specifying this option in file units is
effective.

- In the case of a program in which few functions are called, the code size may not be reduced even if a runtime
library is called for the prologue/epilogue. If no real effect can be expected, specify the
-Xpro_epi_runtime=off option.

- Note the following points when calling a runtime library for the prologue/epilogue of a function. Calling a runt-
ime library for the prologue/epilogue of a function degrades the execution speed because a function is called.

3.3.3 far jump function

The CX outputs a code using the jarl instruction when a function is called.

jarl _funcl, Ip

The architecture allows only a sign-extended value of up to 22 bits (22-bit displacement) to be specified as the first
operand of the jarl instruction.

This means that, if the branch destination is not within + 2MB range from the branch point, branching cannot take place
and the linker outputs the error message.

This can be solved easily by allocating as shown below, however, the branch destination may not be able to be located
within this range depending on target system. The "far jump" function solves this.
- The branch destination within + 2MB range from the branch point.

When the far jump function is used, a code that uses the jmp instruction is output when a function is called. As a result,
execution can branch to the entire 32-bit space of the V850. However, one of the general purpose register is used.
Function call using far jump function is called “far jump calling”.

(1) Specifying far jump
When calling a function using the far jump function, prepare a file in which functions to be called by the far jump
function are enumerated (file listing functions to be called by the far jump function), and use the compiler option "-
Xfar_jump".

-Xfar_junp=file listing functions to be called by far junp function

See the next section for the format of the file listing the functions to be called by the far jump function.

(2) File listing functions to be called by far jump function
This section explains the format of the file that enumerates the functions to be called by using the far jump function.
Describe one function to which the far jump function is applied in one line. Describe a C function name with "_"
(underscore) prefixed.

R20UT0259EJ0100 Rev.1.00 RENESAS Page 170 of 890
Oct 01, 2010

CubeSuite Ver.1.40 CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

[Sample of file listing functions to be called by far jump]

_func_led
_func_beep

_func_not or

_func_switch

If the following description is made instead of "_function-name", all the functions are called using the far jump func-
tion.

{all _function}

If {all_function} is specified, all the functions are called by the far jump function, even if "_function-name" is speci-
fied.
The far jump function can also be applied to the following functions, as well as to user functions.

- Standard library functions

- Runtime library functions

- System calls of real-time OS

If the following is coded instead of "_function-name", then all interrupt functions will be called via far jump.

{all _interrupt}

Note the following points when describing the file listing the functions to be called by the far jump function.
- Only ASCII characters can be used.
- Comments must not be inserted.
- Describe only one function in one line.
- A blank and tab may be inserted before and after a function name.
- Up to 1,023 characters can be described in one line. A blank or tab is also counted as one character.
- Describe a C function name with "_" (underscore) prefixed to the function name.
- The far jump function cannot be used together with the re-link function of the flash memory/external ROM.

(3) Examples of using far jump function
Examples of using the far jump function are shown below.

(a) User function (same applies to standard functions)
[C source file]

extern void func3(void);

voi d func(void)

{
func3()
}
R20UT0259EJ0100 Rev.1.00 RENESAS Page 171 of 890

Oct 01, 2010

CubeSuite Ver.1.40 CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

[File listing functions to be called by far jump]

_func3

[Normal calling code]

#@ALL_ARG

jarl _func3, Ip

[Far jump calling code]

#@ALL_ARG
movea _func3, tp, ri10
novea .L18, tp, Ip
jp [r10]

.L18

(b) Runtime function (when calling a macro)
[File listing functions to be called by far jump]

mul

[Normal calling code]

.macro mul argl, arg2
add -8, sp
st.w ré, [sp]
st.w r7, 4[sp]

nmov argl, r6
nmov arg2, r7
jarl mul, Ip

Id w 4[sp], r7
nmov ré, arg2
Id.w [sp], r6
add 8, sp

.endm

R20UT0259EJ0100 Rev.1.00 RENESAS Page 172 of 890
Oct 01, 2010

CubeSuite Ver.1.40

CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

[Far jump calling code]

.macro mul
.l ocal
add
st.w
st.w
nov
nov
novea
.option
novea
jp
.option
macro_ret:
Id. w
nov
Id. w
add

.endm

argl, arg2
macro_ret

-8, sp

ré, [sp]

r7, 4[sp]

argl, r6

arg2, r7
macro_ret, tp, r31
nowar ni ng

mul, tp, rl
[ri]

war ni ng

4[sp], r7
ré, arg2
[sp], r6
8, sp

(c) Runtime function (when direct calling)
[File listing functions to be called by far jump]

nul

[Normal calling code]

nmov ri2, ré6

nov ri3, r7
#@CALL_ARG re, r7
#@CALL_USE rée, r7
jarl __ml, Ip

nov ré, ri3

[Far jump calling code]

nov ri2, r6

nmov ri3, r7
#@CALL_ARG ré, r7
#@CALL_USE ré, r7
nmovea #__ nmul, tp, rl4

novea .L13, tp, Ip

jmp [r14]
. L13:
mov ré, ril3
R20UT0259EJ0100 Rev.1.00 RENESAS Page 173 of 890

Oct 01, 2010

CubeSuite Ver.1.40 CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

The compiler automatically selects whether a runtime macro is called or a runtime function is directly called by
judging the register efficiency in the process of optimization.

(d) System calls of real-time OS
[File listing functions to be called by far jump]

_ext_tsk

[Normal calling code]

#@_EPI LOGUE

#@EG N_NO_OPT

add .S4, sp

jr _ext_tsk --C NR
#@ND_NO_OPT

#@E_EPI LOGUE

[Far jump calling code]

#@B_EPI LOGUE

#@BEG N_NO_OPT

add .S4, sp

novea #_ext_tsk, tp, ri10
i m [r10] --C N\R
#@ND_NO_OPT

#@E_EPI LOGUE

R20UT0259EJ0100 Rev.1.00 RENESAS Page 174 of 890
Oct 01, 2010

CubeSuite Ver.1.40

CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

3.4

Section Name List

The following table lists the names, section types, and section attributes of these reserved sections.

Table 3-29. Reserved Sections

Note 1

Name Description Section Type Section Attribute
.bss .bss section NOBITS AW
.const .const section PROGBITS A
.data .data section PROGBITS AW
.ext_info Information section for flash/external ROM re-link function PROGBITS None
.ext_info_boot
.ext_table Branch table section for flash/external ROM re-link function PROGBITS AX
.ext_tgsym Information section for flash/external ROM re-link function PROGBITS None
.gptabname Global pointer tableNote 2 GPTAB None
.pro_epi_runtime | Prologue/epilogue run-time call section PROGBITS AX
.regmode Register mode information REGMODE None
.relname Relocation information REL None
.relaname Relocation information RELA None
.sbss .sbss section NOBITS AWG
.sconst .sconst section PROGBITS A
.sdata .sdata section PROGBITS AWG
.sebss .sebss section NOBITS AW
.sedata .sedata section PROGBITS AW
.shstrtab String table where the section name is saved STRTAB None
.sibss .sibss section NOBITS AW
.sidata .sidata section PROGBITS AW
.strtab String table STRTAB None
.symtab Symbol table SYMTAB None
text .text section PROGBITS AX
tibss .tibss section NOBITS AW
tibss.byte tibss.byte section NOBITS AW
.tibss.word .tibss.word section NOBITS AW
tidata tidata section PROGBITS AW
tidata.byte tidata.byte section PROGBITS AW
tidata.word .tidata.word section PROGBITS AW
.debug_info Debug information PROGBITS None
.debug_line Line and column information PROGBITS None
.debug_loc Location list information PROGBITS None
.version Version information PROGBITS None
float_info Floating-point operation information FLOATINFO None

R20UT0259EJ0100 Rev.1.00

Oct 01, 2010

RENESAS

Page 175 of 890

CubeSuite Ver.1.40

CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

Name

Note 1

Description

Section Type

Section Attribute

.multi

Multi-core information

MULTI

None

Notes 1.

Remark

The name part of .gptabname, .relname, and .relaname indicates the name of the section corresponding to

each respective section.

This is information that is used when processing the linker’ s -Xsdata_info option.

".cmn/.pen (n=1...N)" is added to the ends of (default) section names reserved for multi-core.
" CMN/_PEn (n=1...N)" is added to the ends of (default) segment names reserved for multi-core.

The section names and segment names reserved for multi-core are shown below.

- Reserved section names

.sconst.cmn, .pro_epi_runtime, .const.cmn, .text.cmn, .data.cmn, .bss.cmn,
.sconst.pel, .const.pel, .text.pel, .data.pel, .sdata.pel, .sbss.pel, .bss.pel ,.sedata.pel, .sebss.pel,
tidata.byte.pel, .tibss.byte.pel, .tidata.word.pel, .tibss.word.pel, .sidata.pel, .sibss.pel

.sconst.pen, .const.pen, .text.pen, .data.pen, .sdata.pen, .sbss.pen, .bss.pen,.sedata.pen, .sebss.pen,
tidata.byte.pen, .tibss.byte.pen, .tidata.word.pen,.tibss.word.pen,.sidata.pen, .sibss.pen

- Reserved segment names

SCONST_CMN, CONST_CMN, TEXT_CMN, DATA_CMN,

SCONST_PE1, CONST_PE1, TEXT_PE1, DATA_PE1, SEDATA_PE1, SIDATA_PE1,

SCONST_PEn, CONST_PEn, TEXT_PEn, DATA_PEn, SEDATA_PEn, SIDATA_PEn

R20UT0259EJ0100 Rev.1.00
Oct 01, 2010

RENESAS

Page 176 of 890

CubeSuite Ver.1.40 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

This chapter explains the assembly language specifications supported by the CX assembler.

4.1 Description of Source

This section explains description of source, expressio, and operators.

41.1 Description

An assembly language statement consists of a "symbol”, a "mnemonic"”, "operands”, and a "comment"”.

[symbol] [: 4] [menoni c] [operand], [operand] ;[comrent]

Separate labels by colons or one or more whitespace characters. Whether colons or spaces are used, however,
depends on the instruction coded by the mnemonic.

It is irrelevant whether blanks are inserted in the following location.
- Between the symbol name and colon
- Between the colon and mnemonic
- Before the second and subsequent operands
- Before semicolon that indicates the beginning of a comment

One or more blank is necessary in the following location.
- Between the mnemonic and the operand

Figure 4-1. Organization of Assembly Language Statement

Synbol : add 0x10, r19 ; For exanpl e
| | | |
[| [|
Symbol Operand Comment
Mnemonic

One assembly language statement is described on one line. There is a line feed (return) at the end of the statement.

(1) Character set
The characters that can be used in a source program (assembly language) supported by the asembler are the
following 3 types of characters.

- Language characters
- Character data
- Comment characters

(a) Language characters
These characters are used to code instructions in the source.

R20UT0259EJ0100 Rev.1.00 RENESAS Page 177 of 890
Oct 01, 2010

CubeSuite Ver.1.40

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

Table 4-1. Language Characters and Usage of Characters

Character

Usage

Lowercase letter (a-z)

Constitutes a mnemonic, identifier, and constant

Uppercase letter (A-Z)

Constitutes an identifier and constant

_ (underscore) Constitutes an identifier

.(period) Constitutes an identifier and constant
@ Constitutes an identifier and constant
~ Constitutes an identifier and constant
Numerals Constitutes an identifier and constant
, (comma) Delimits an operand

: (colon) Delimits a label

; (semicolon) Beginning of comment

* Multiplication operator

/ Division operator

+ Positive sign and addition operator

- (hyphen) Negative sign and subtraction operator

' (single quotation)

Character constant and symbol indicating a complete macro parameter

< Relational operator
> Relational operator
O) Specifies an operation sequence
$ Symbol indicating the location counter
Symbol indicating the start of a control instruction equivalent to an
assembler option
Symbol specifying relative addressing
gp offset reference of label
= Relational operator
! Beginning immediate addressing and negation operator
A (blank) Field delimiter
~ Concatenation symbol (in macro body)
& Logical product operator
Beginning indicates and comment

(1

Indirect indication symbol

"(double quotation)

Start and end of character string constant

%

ep offset referring of a label and remainder operator

<<

Left shift operator

>>

Right shift operator

Logical sum operator

Exclusive OR operator

R20UT0259EJ0100 Rev.1.00
Oct 01, 2010

RENESAS

Page 178 of 890

CubeSuite Ver.1.40 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

(b) Character data
Character data refers to characters used to write character string constant, character constant, and the quote-
enclosed operands of some control instructions.

Caution Character data can use all characters except 0x00 (including multibyte kanji, although the
encoding depends on the OS). If 0x00 is encountered, an error occurs and all characters
from the 0x00 to the closing single quote (') are ignored.

(c) Comment characters
Comment characters are used to write comments.

Caution Comment characters and character data have the same character set.
(2) Symbol
The symbol field is for symbols, which are names given to addresses and data objects. Symbols make programs

easier to understand.

(&) Symbol types
Symbols can be classified as shown below, depending on their purpose and how they are defined.

Symbol Type Purpose Definition Method

Label Used as labels for addresses and data Write a symbol followed by a colon (:).
objects in source programs.

External Used to reference symbols defined by other | Write in the operand field of an .extern
reference name source modules. directive.
Section name Used at link time. Write in the symbol field of a .cseg, .dseg or

.org directive.

Macro name Use to nhame macros in source programs. Write in the symbol field of macro directive.

(b) Conventions of symbol description
Observe the following conventions when writing symbols.
- The characters which can be used in symbols are the alphanumeric characters and special characters (?,

@,).
The first character in a symbol cannot be a digit (0 to 9).

- The maximum number of characters for a symbol is 4,294,967,294 (=OxFFFFFFFE) (theoretical value).
The actual number that can be used depends on the amount of memory, however.
- Reserved words cannot be used as symbols.

See "4.5 Reserved Words" for a list of reserved words.
- The same symbol cannot be defined more than once.

However, a symbol defined with the .set directive can be redefined with the .set directive.
- The assembler distinguishes between lowercase and uppercase characters.

- When a label is written in a symbol field, the colon (:) must appear immediately after the label name.

R20UT0259EJ0100 Rev.1.00 RENESAS Page 179 of 890
Oct 01, 2010

CubeSuite Ver.1.40

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

Example Correct symbols

CODEO1 . cseg t ext "CODEO1" is a segnent nane.

VARO1 . set 0x10 ; "VARO1" is a synbol.

LABO1: .dw 0 "LABO1" is a |abel.

Example Incorrect symbols

1ABC . set 3 ; The first character is a digit.s

LAB nmv rio, ri11 "LAB"is a | abel and nust be separated fromthe menonic
; field by a colon (:).

FLAG . set 0x10 The colon (:) is not needed for synbols.

Example A statement composed of a symbol only

ABCD:

; ABCD is defined as a | abel.

(c) Points to note about symbols

The assembler generates a name automatically when a section definition directive does not specify a name.

These section names are listed below.

Duplicate section name definitions are errors.

Section Name Directive Relocation Attribute
text .cseg directive TEXT
.const CONST
.sconst SCONST
.bss .dseg directive BSS
.data DATA
.sbss SBSS
.sdata SDATA
.sebss SEBSS
.sedata SEDATA
.sibss SIBSS
.sidata SIDATA
.tibss TIBSS
.tibss.byte TIBSS.BYTE
.tibss.word TIBSS.WORD
tidata TIDATA
tidata.byte TIDATA.BYTE
.tidata.word TIDATA.WORD
SECUR_ID .cseg directive SECUR_ID

R20UT0259EJ0100 Rev.1.00
Oct 01, 2010

RENESAS Page 180 of 890

CubeSuite Ver.1.40 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

Section Name Directive Relocation Attribute

OPT_BYTE .dseg directive OPT_BYTE

(d) Symbol attributes
Every symbol and label has both a value and an attribute.
The value is the value of the defined data object, for example a numerical value, or the value of the address
itself.
Section names, module names, and macro hames do not have values.
The following table lists symbol attributes.

Attribute Type Classification Value
BIT - Symbols defined as bit values Decimal notation:
- Symbols defined with the EXTBIT directive -2147483648 to 2147483647
Hexadecimal notation:
0x80000000 to 0X7FFFFFFF (signed)
CSEG Section names defined with the .cseg directive These attribute types have no values.
DSEG Section names defined with the .dseg directive
MACRO Macro names defined with the Macro directive These attribute types have no values.
FNUMBER Symbols defined with the FLOAT directive 1.40129846e-45 to 3.40282347e+38
(Single precision floating point)
DFNUMBER Symbols defined with theDFLOAT directive 4.9406564584124654e-324 to
(Double-precision floating point) 1.7976931348623157e+308
Example
Bl T1 . set OxFFE20.0 ; The synbol BIT1 has the BIT attribute and a val ue of OxFFE20. 0.

(3) Mnemonic field
Write instruction mnemonics, directives, and macro references in the mnemonic field.
If the instruction or directive or macro reference requires an operand or operands, the mnemonic field must be
separated from the operand field with one or more blanks or tabs.
However, if the first operand begins with "#", "$","1", or "[", the statement will be assembled properly even if nothing
exists between the mnemonic field and the first operand field.

Example Correct mnemonics

add ril, r12

reti

di

Example Incorrect mnemonics

addr 11, r12 ; There is no blank between the menoni c and operand fi el ds.

r oeti The mmenonic field contains a bl ank.

HLT ; This is an instruction that cannot be coded in the menonic field.

R20UT0259EJ0100 Rev.1.00
Oct 01, 2010

RENESAS Page 181 of 890

CubeSuite Ver.1.40 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

(4) Operand field
In the operand field, write operands (data) for the instructions, directives, or macro references that require them.
Some instructions and directives require no operands, while others require two or more.
When you provide two or more operands, delimit them with a comma (,).
The following types of data can appear in the operand field:
- Constants (numeric constants, character constants, character string constants)
- Register names
- Relocation attributes of section definition directives
- Symbols
- Expressions

See the user's manual of the target device for the format and notational conventions of instruction set operands.
The following sections explain the types of data that can appear in the operand field.

(a) Constants
A constant is a fixed value or data item and is also referred to as immediate data.
There are numeric constants, character constants and character string constants.

- Numeric constants
Integer constants can be written in binary, octal, decimal, or hexadecimal notation.
Integer constants has a width of 32 bits. A negative value is expressed as a 2's complement. If an integer
value that exceeds the range of the values that can be expressed by 32 bits is specified, the assembler
uses the value of the lower 32 bits of that integer value and continues processing (it does not output any

message).
Type Notation Example

Binary Append a "B" or "Y" suffix to the number. 1101B

Append an "0Ob" suffix to the number. 1101Y
0b1101

Octal Append an "0" suffix to the number. 074

Decimal Simply write the number. 128

Hexadecimal Append an "0x" suffix to the number. 0xA6

Floating constants consist of the following elements. Specify the exponent and mantissa as decimal
constants. Do not use (3), (4), or (5) if an exponent expression cannot be used.

(1) sign of mantissa part ("+" is optional)

(2) mantissa part

(3) 'e' or 'E' indicating the exponent part

(4) sign of exponent part ("+" is optional)

(5) exponent part

Example

123. 4
-100.
10e-2
-100. 2E+5

R20UT0259EJ0100 Rev.1.00 RENESAS Page 182 of 890
Oct 01, 2010

CubeSuite Ver.1.40

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

You can indicate that the number is a floating constant by appending "0f" or "OF" to the front of the

mantissa.

Example

of 10

- Character constants

A character constant consists of a single character enclosed by a pair of single quotation marks (* *) and
indicates the value of the enclosed characterN°®,
If any of the escape sequences listed below is specified in "' "and "' ", the assembler regards the
sequence as being a single character.

Example
"ab" 0x6162
"A ; 0x41
AT 0x4122

0x20 (1 bl ank)

Note If a character constant is specified, the assembler assumes that an integer having the value of
that character constant is specified.

Table 4-2. Value and Meaning of Escape Sequence

Escape Sequence Value Meaning
\0 0x00 null character
\a 0x07 Alert
\b 0x08 Backspace
\f 0x0C Form feed
\n 0X0A Line feed
\r 0x0D Carriage return
\t 0x09 Horizontal tab
\v 0x0B Vertical tab
\\ 0x5C Back slash
\' 0x27 Single quotation marks
\" 0x22 Double quotation mark
\? 0x3F Question mark
\ddd 0to 0377 Octal number of up to 3 digits (0 < d < 7) Not©
\xhh 0 to OxFF Hexadecimal number of up to 2 digits
(0O<h<9,a<h<f,orA<h<F)

Note If a value exceeding "\377" is sp value of the escape sequence becomes the lower 1 byte. Cannot
be of value more than 0377. For example value of"\777"is 0377.

R20UT0259EJ0100 Rev.1.00
Oct 01, 2010

RENESAS

Page 183 of 890

CubeSuite Ver.1.40 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

- Character string constants
A character-string constant is expressed by enclosing a string of characters from those shown in "(1)
Character set", in a pair of single quotation marks (").
The string constant is assembled with the character-code values specified via the -Xcharacter_set option.
A "\0" is appended to the end of the result.
To include the single quote character in the string, write it twice in succession.

Example
" ab” ; 0x616200
" p ; 0x4100
" p) e ;. 0x412200
o ; 0x2000 (1 bl ank)
; 0x00

(b) Register names

The following registers can be named in the operand field:

- General registers

- General register pairs

- Special function registers

- Others (PSW, CY, RBn, [BC], [DE], [HL], [DE+byte], [HL+byte], [HL+B], [HL+C])
General registers and general register pairs can be described with their absolute names, as well as with their
function names.
The register names that can be described in the operand field may differ depending on the type of instruction.
For details of the method of describing each register name, see the user's manual of each device for which
software is being developed.

(c) Relocation attributes of section definition directives
Relocation attributes can appear in the operand field.
See "4.2.2 Section definition directives" for more information about relocation attributes.

(d) Symbols
When a symbol appears in the operand field, the address (or value) assigned to that symbol becomes the
operand value.

Example
HERE: j mp32 #THEREE ; THERE indicates the address of |abel THERE.
THERE: add ri1, ri12

VALUE . set 0x100
novea VALUE, r11, rl12 ; VALUE indicates the value of nane VALUE.

R20UT0259EJ0100 Rev.1.00 RENESAS Page 184 of 890
Oct 01, 2010

CubeSuite Ver.1.40 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

(e) Expressions
An expression is a combination of constants, location counter (indicated by $) and symbols, by an operator.
Expressions can be specified as instruction operands wherever a numeric value can be specified.
See "4.1.2 Expressions and operators" for more information about expressions.

Example

TEN . set 0x10
nmov TEN - 0x05, r12

In this example, "TEN - 0x05" is an expression.
In this expression, a symbol and a numeric value are connected by the - (minus) operator. The value of the
expression is 0x0B, so this expression could be rewritten as "mov 0x0B, r12".

R20UT0259EJ0100 Rev.1.00 RENESAS Page 185 of 890
Oct 01, 2010

CubeSuite Ver.1.40 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

(5) Comment
Describe comments in the comment field, after a semicolon (;).
The comment field continues from the semicolon to the new line code at the end of the line, or to the EOF code of
the file.
Comments make it easier to understand and maintain programs.
Comments are not processed by the assembler, and are output verbatim to assembly lists.
Characters that can be described in the comment field are those shown in "(1) Character set".

<Comment example>

; sanple program
.extern __tp_TEXT, 4

] Lines with comment fields only

.extern __gp_DATA, 4

.extern _main

RESET .cseg text ; Reset Handl er address]
jr __boot ; Junp to __boot Lines with
.text .cseg t ext ; Text section comments in
.align 4 ; Code alignnment comment
.public __boot ; Alignment fields
__boot:
nmov #_ tp_TEXT, tp ; Set tp
nov #__gp_DATA, gp ; Set gp]

.extern __ssbss, 4

.extern __esbss, 4

: start of bss initialize] Lines with comment fields only
nmv # ssbss, ri3
nmov #_ _esbss, ri3
cnp ri2, r13
jnl sbss_init_end

sbss_init_I oop:
st.w r0, 0O[r13]
add 4, r13
cnp r12, r13
jl sbss_init_I oop

sbhss_init_end:

end of bss initialize] Lines with comment fields only
jarl _main, Ip ; Call main function Bl
.data .dseg data . .
Lines with
.align 4 .
comments in
dat a_area:
- comment
. dw 0x00 ; datal .
fields
. dhw 0x01 ; data2
.db OxFF ; data3
.db OXFE ; data4d]
R20UT0259EJ0100 Rev.1.00 RENESANAS Page 186 of 890

Oct 01, 2010

CubeSuite Ver.1.40 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

41.2 Expressions and operators

An expression is a symbol, constant or location counter (indicated by $), an operator combined with one of the above,
or a combination of operators.

Elements of an expression other than the operators are called terms, and are referred to as the 1st term, 2nd term, and
so forth from left to right, in the order that they occur in the expression.

The assembler supports the operators shown in "Table 4-3. Operator Types". Operators have priority levels, which
determine when they are applied in the calculation. The priority order is shown in "Table 4-4. Operator Precedence
Levels".

The order of calculation can be changed by enclosing terms and operators in parentheses "()".

Example

mv32 5 * (SYM+ 1), ri12

In the above example, "5 * (SYM+1)" is an expression. "5" is the 1st term, "SYM" is the 2nd term, and "1" is the 3rd
term. The operators are ", "+", and "()".

Table 4-3. Operator Types

Operator Type Operators
Arithmetic operators +, -, *, /, MOD(%), +sign, -sign
Logic operators L& "
Relational operators ==, 1=, >, >=, <, <=, &&, ||
Shift operators >> <<
Byte separation operators HIGH, LOW
2-byte separation operators HIGHW, LOWW, HIGHW1
Special operators DATAPQOS, BITPOS
Other operator ()

The above operators can also be divided into unary operators, special unary operators and binary operators.

Unary operators +sign, -sign, NOT(!), HIGH, LOW, HIGHW, LOWW, HIGHW1
Special unary operators DATAPOS, BITPOS
Binary operators +, -, %, [, MOD(%), &, |, ®, ==, =, >, >=, <, <=, >>, <<, &&, ||

Table 4-4. Operator Precedence Levels

Priority Level Operators

Higher 1 +sign, -sign, NOT(!)
2 * [, MOD(%), >>, <<
3 & |, "
4 +, -
5 ==, 1=, >, >=, <, <=
6 && ||

Lower

R20UT0259EJ0100 Rev.1.00 RENESAS Page 187 of 890

Oct 01, 2010

CubeSuite Ver.1.40

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

Expressions are operated according to the following rules.

- The order of operation is determined by the priority level of the operators.

When two operators have the same priority level, operation proceeds from left to right, except in the case of unary

operators, where it proceeds from right to left.

- Sub-expressions in parentheses "()" are operated before sub-expressions outside parentheses.

- Expressions are operated using unsigned 32-bit values.

If intermediate values overflow 32 bits, the overflow value is ignored.
- If the value of a constant exceeds 32 bits, an error occurs, and its value is calculated as 0.

- In division, the decimal fraction part is discarded.

If the divisor is 0, an error occurs and the result is O.

- Negative values are represented as two's complement.
- External reference symbols are evaluated as 0 at the time when the source is assembled (the evaluation value is

determined at link time).

(1) Evaluation examples

Expression Evaluation
2+4*5 22
2+3)*4 20
10/4 2
0-1 OXFFFFFFFF
-1>1 0x0 (False)
EXTNO® + 1 1
Note EXT: External reference symbols
R20UT0259EJ0100 Rev.1.00 RENESAS Page 188 of 890

Oct 01, 2010

CubeSuite Ver.1.40

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

4.1.3 Arithmetic operators

The following arithmetic operators are available.

Operator

Overview

Addition of values of first and second terms.

Subtraction of value of first and second terms.

Multiplacation of value of first and second terms.

Divides the value of the 1st term of an expression by the value of its 2nd term
and returns the integer part of the result.

MOD(%)

Obtains the remainder in the result of dividing the value of the 1st term of an
expression by the value of its 2nd term.

+sign

Returns the value of the term as it is.

-sign

The term value 2 complement is sought.

R20UT0259EJ0100 Rev.1.00

Oct 01, 2010

RENESAS Page 189 of 890

CubeSuite Ver.1.40

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

+

Addition of values of first and second terms.

[Function]

Returns the sum of the values of the 1st and 2nd terms of an expression.

[Application example]

START:

.org

jmp

0x100
#START + 6

; (1)

(1) Thejmp instruction causes a jump to "address of the START label plus 6", namely, to address "0x100 +
0x6 = 0x106" when START label is 0x100.

Therefore, (1) in the above example can also be described as: START: jmp #0x106.

R20UT0259EJ0100 Rev.1.00

Oct 01, 2010

RENESAS

Page 190 of 890

CubeSuite Ver.1.40 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

Subtraction of value of first and second terms.

[Function]

Returns the result of subtraction of the 2nd-term value from the 1st-term value.

[Application example]

.org 0x100
BACK: jnp I BACK - 6 ;o (1)

(1) Thejmp instruction causes a jump to "address assigned to BACK minus 6", namely, to address "0x100 -
0x6 = OxFA" when BACK label is 0x100.
Therefore, (1) in the above example can also be described as: BACK: jmp !0xFA.

R20UT0259EJ0100 Rev.1.00 RENESAS Page 191 of 890
Oct 01, 2010

CubeSuite Ver.1.40 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

Multiplacation of value of first and second terms.

[Function]

Returns the result of multiplication (product) between the values of the 1st and 2nd terms of an expression.

[Application example]

TEN . set 0x10
nmv TEN * 3, rl12 ;o (1)

(1) With the .set directive, the value "0x10" is defined in the symbol "TEN".
The expression "TEN * 3" is the same as "0x10 * 3" and returns the value "0x30".
Therefore, (1) in the above expression can also be described as: mov 0x30, r12.

R20UT0259EJ0100 Rev.1.00 RENESAS Page 192 of 890
Oct 01, 2010

CubeSuite Ver.1.40 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

Divides the value of the 1st term of an expression by the value of its 2nd term and returns the integer part of the result.

[Function]

Divides the value of the 1st term of an expression by the value of its 2nd term and returns the integer part of the result.
The decimal fraction part of the result will be truncated. If the divisor (2nd term) of a division operation is 0, an error
occurs

[Application example]

mv A, #256 / 50 7 (1)

(1) The result of the division "256 / 50" is 5 with remainder 6.
The operator returns the value "5" that is the integer part of the result of the division.
Therefore, (1) in the above expression can also be described as: mov A, #5

R20UT0259EJ0100 Rev.1.00 RENESAS Page 193 of 890
Oct 01, 2010

CubeSuite Ver.1.40 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

MOD (%)

Obtains the remainder in the result of dividing the value of the 1st term of an expression by the value of its 2nd term.

[Function]

Obtains the remainder in the result of dividing the value of the 1st term of an expression by the value of its 2nd term.
An error occurs if the divisor (2nd term) is 0.
A blank is required before and after the MOD operator.

[Application example]

mv 256 % 50, r12 7 (1)

(1) The result of the division "256 / 50" is 5 with remainder 6.
The MOD operator returns the remainder 6.
Therefore, (1) in the above expression can also be described as: mov 6, r12.

R20UT0259EJ0100 Rev.1.00 RENESAS Page 194 of 890
Oct 01, 2010

CubeSuite Ver.1.40 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

+sign

Returns the value of the term as it is.

[Function]

Returns the value of the term of an expression without change.

[Application example]

Fl VE . set +5 7 (1)

(1) Thevalue "5" of the term is returned without change.
The value "5" is defined in symbol "FIVE" with the .set directive.

R20UT0259EJ0100 Rev.1.00 RENESAS Page 195 of 890
Oct 01, 2010

CubeSuite Ver.1.40 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

-sign

The term value 2 complement is sought.

[Function]

Returns the value of the term of an expression by the two's complement.

[Application example]

NO . set -1 7 (1)

(1) -1 becomes the two's complement of 1.
0000 0000 0000 0000 0000 0000 0000 0001 becomes:
1111 1111 21121 12111 1217 2121 1211 1111
Therefore, with the .set directive, the value "OxFFFFFFFF" is defined in the symbol "NO".

R20UT0259EJ0100 Rev.1.00 RENESAS Page 196 of 890
Oct 01, 2010

CubeSuite Ver.1.40

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

41.4 Logic operators

The following logic operators are available.

Operator

Overview

Obtains the logical negation (NOT) by each bit.

Obtains the logical AND operation for each bit of the first and second term

values.

Obtains the logical OR operation for each bit of the first and second term values.

Obtains the exclusive OR operation for each bit of the first and second term

values.

R20UT0259EJ0100 Rev.1.00

Oct 01, 2010

RENESAS

Page 197 of 890

CubeSuite Ver.1.40 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

Obtains the logical negation (NOT) by each bit.

[Function]

Negates the value of the term of an expression on a bit-by-bit basis and returns the result.
A blank is required between the ! operator and the term.

[Application example]

nmov 32 10x3, ri2 ;o (1)

(1) Logical negation is performed on "0x3" as follows:
OXFFFFFFFC is returned.
Therefore, (1) can also be described as: mov32 OxFFFFFFFC, r12.

NOT) 0000 0000 0000 0000 0000 0000 0000 0011
1111 1111 1111 1111 1111 1111 1111 1100
R20UT0259EJ0100 Rev.1.00 RENESAS Page 198 of 890

Oct 01, 2010

CubeSuite Ver.1.40 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

&

Obtains the logical AND operation for each bit of the first and second term values.

[Function]

Performs an AND (logical product) operation between the value of the 1st term of an expression and the value of its
2nd term on a bit-by-bit basis and returns the result.
A blank is required before and after the & operator.

[Application example]

mov32 OX6FA & OxF, r12 7 (1)

(1) AND operation is performed between the two values "Ox6FA" and "OxF" as follows:
The result "OxA" is returned. Therefore, (1) in the above expression can also be described as:
mov32 OxA, r12.

0000 0000 0000 0000 0000 0110 1111 1010
&) 0000 0000 0000 0000 0000 0000 0000 1111
0000 0000 0000 0000 0000 0000 0000 1010
R20UT0259EJ0100 Rev.1.00 RENESAS Page 199 of 890

Oct 01, 2010

CubeSuite Ver.1.40 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

Obtains the logical OR operation for each bit of the first and second term values.

[Function]

Performs an OR (Logical sum) operation between the value of the 1st term of an expression and the value of its 2nd

term on a bit-by-bit basis and returns the result.
A blank is required before and after the | operator.

[Application example]

mov32 OxA | 0b1101, r12 ; (1)

(1) OR operation is performed between the two values "0OxA" and "0b1101" as follows:
The result "OxF" is returned.
Therefore, (1) in the above expression can also be described as: mov32 OxF, r12.

0000 0000 0000 0000 0000 0000 0000 1010
|) 0000 0000 0000 0000 0000 0000 0000 1101
0000 0000 0000 0000 0000 0000 0000 1111
R20UT0259EJ0100 Rev.1.00 RENESAS Page 200 of 890

Oct 01, 2010

CubeSuite Ver.1.40 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

Obtains the exclusive OR operation for each bit of the first and second term values.

[Function]

Performs an Exclusive-OR operation between the value of the 1st term of an expression and the value of its 2nd term

on a bit-by-bit basis and returns the result. A blank is required before and after the ~ operator.

[Application example]

nmov 32 Ox9A N 0x9D, r12 ;o (1)

(1) XOR operation is performed between the two values "0x9A" and "0x9D" as follows:
The result "0x7" is returned.
Therefore, (1) in the above expression can also be described as: mov32 0x7, r12.

0000 0000 0000 0000 0000 0000 1001 1010
N 0000 0000 0000 0000 0000 0000 1001 1101
0000 0000 0000 0000 0000 0000 0000 0111
R20UT0259EJ0100 Rev.1.00 RENESAS Page 201 of 890

Oct 01, 2010

CubeSuite Ver.1.40 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

415 Relational operators

The following relational operators are available.

Operator Overview

== Compares whether value s of first term and second term are equivalent.

= Compares whether values of first term and second term are not equivalent.

> Compares whether value of first term is greater than value of the second.

>= Compares whether value of first term is greater than or equivalent to the value of
the second term.

< Compares whether value of first term is smaller than value of the second.

<= Compares whether value of first term is smaller than or equivalent to the value of
the second term.

&& Calculates the logical product of the logical value of the first and second
operands.

I Calculates the logical sum of the logical value of the first and second operands.

R20UT0259EJ0100 Rev.1.00 RENESAS Page 202 of 890
Oct 01, 2010

CubeSuite Ver.1.40 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

Compares whether value s of first term and second term are equivalent.

[Function]

Returns [D (True) if the value of the 1st term of an expression is equal to the value of its 2nd term, and 0 (False) if both
values are not equal.
A blank is required before and after the == operator.

R20UT0259EJ0100 Rev.1.00 RENESAS Page 203 of 890
Oct 01, 2010

CubeSuite Ver.1.40 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

Compares whether values of first term and second term are not equivalent.

[Function]

Returns [D (True) if the value of the 1st term of an expression is not equal to the value of its 2nd term, and 0 (False) if
both values are equal.
A blank is required before and after the != operator.

R20UT0259EJ0100 Rev.1.00 RENESAS Page 204 of 890
Oct 01, 2010

CubeSuite Ver.1.40 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

>

Compares whether value of first term is greater than value of the second.

[Function]

Returns [D(True) if the value of the 1st term of an expression is greater than the value of its 2nd term, and 0 (False) if
the value of the 1st term is equal to or less than the value of the 2nd term.
A blank is required before and after the > operator.

R20UT0259EJ0100 Rev.1.00 RENESAS Page 205 of 890
Oct 01, 2010

CubeSuite Ver.1.40 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

>=

Compares whether value of first term is greater than or equivalent to the value of the second term.

[Function]

Returns [D (True) if the value of the 1st term of an expression is greater than or equal to the value of its 2nd term, and
0 (False) if the value of the 1st term is less than the value of the 2nd term.
A blank is required before and after the >= operator.

R20UT0259EJ0100 Rev.1.00 RENESAS Page 206 of 890
Oct 01, 2010

CubeSuite Ver.1.40 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

<

Compares whether value of first term is smaller than value of the second.

[Function]

Returns [D (True) if the value of the 1st term of an expression is less than the value of its 2nd term, and 0 (False) if the
value of the 1st term is equal to or greater than the value of the 2nd term.
A blank is required before and after the < operator

R20UT0259EJ0100 Rev.1.00 RENESAS Page 207 of 890
Oct 01, 2010

CubeSuite Ver.1.40 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

<=

Compares whether value of first term is smaller than or equivalent to the value of the second term.

[Function]

Returns [D (True) if the value of the 1st term of an expression is less than or equal to the value of its 2nd term, and 0
(False) if the value of the 1st term is greater than the value of the 2nd term.
A blank is required before and after the <= operator.

R20UT0259EJ0100 Rev.1.00 RENESAS Page 208 of 890
Oct 01, 2010

CubeSuite Ver.1.40 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

&&

Calculates the logical product of the logical value of the first and second operands.

[Function]

Calculates the logical product of the logical value of the first and second operands.

R20UT0259EJ0100 Rev.1.00 RENESAS Page 209 of 890
Oct 01, 2010

CubeSuite Ver.1.40 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

Calculates the logical sum of the logical value of the first and second operands.

[Function]

Calculates the logical sum of the logical value of the first and second operands.

R20UT0259EJ0100 Rev.1.00 RENESAS Page 210 of 890
Oct 01, 2010

CubeSuite Ver.1.40

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

4.1.6Shift operators

The following shift operators are available.

Operator

Overview

>>

Obtains only the right-shifted value of the first term which appears in the second

term.

<<

Obtains only the left-shifted value of the first term which appears in the second

term.

R20UT0259EJ0100 Rev.1.00

Oct 01, 2010

RENESAS

Page 211 of 890

CubeSuite Ver.1.40 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

>>

Obtains only the right-shifted value of the first term which appears in the second term.

[Function]

Returns a value obtained by shifting the value of the 1st term of an expression to the right the number of bits specified
by the value of the 2nd term.

The sign bit is not shifted.

The sign bit is inserted in the high-order bits, the same number of times as the number of bits that were shifted.

If the number of shifted bits is 0, the value of the first term is returned as is. If the number of shifted bits exceeds 31, 0
is returned.

[Application example]

mov32 O0x800001AF >> 5, r20 7 (1)

(1) Thevalue "Ox800001AF" is shifted 5 bits to the right, leaving the sign bit.
"OxFC00000D" is forwarded to r20.
Therefore, (1) in the above example can also be described as: mov32 0xFC00000D, r20

1000 0000 0000 0000 0000 0001 1010 1111

N\ T

1111 1100 0000 0000 0000 0000 0000 1101 0111 1
<4“—> 4“—>
1’s of a sign bit are inserted. For 5 bits, the right shift
R20UT0259EJ0100 Rev.1.00 RENESAS Page 212 of 890

Oct 01, 2010

CubeSuite Ver.1.40 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

<<

Obtains only the left-shifted value of the first term which appears in the second term.

[Function]

Returns a value obtained by shifting the value of the 1st term of an expression to the left the number of bits specified by
the value of the 2nd term.

Zeros equivalent to the specified number of bits shifted move into the low-order bits.

If the number of shifted bits is 0, the value of the first term is returned as is. If the number of shifted bits exceeds 31, 0
is returned.

[Application example]

nmov 32 0x21 << 2, r20 ;o (1)

(1) This operator shifts the value "0x21" to the left by 2 bits.
"0x84" is forwarded to r20.
Therefore, (1) in the above example can also be described as: mov32 0x84, r20

0000 0000 0000 0000 0000 0000 0010 0001

v N

00 0000 0000 0000 0000 0000 0000 1000 0100

<> <>
For 2 bits, the left shift 0's are inserted.
nmov32 Ox3BF >> 2 << 2, r20 7 (2)

(2) This operator shifts the value "0x3B" to the right by 2 bits, and shifts to the left by 2 bits.
"0x3BC" is forwarded to r20.
Therefore, (2) in the above example can also be described as: mov32 0x3BC, r20

0000 0000 0000 0000 0000 0011 1011 1111

N ~.

0000 0000 0000 0000 0000 0000 1110 1111 11
0's are inserted. For 2 bits, the right shift

g

00 0000 0000 0000 0000 0000 0011 1011 1100

<> <>
For 2 bits, the left shift 0's are inserted.
R20UT0259EJ0100 Rev.1.00 RENESAS Page 213 of 890

Oct 01, 2010

CubeSuite Ver.1.40

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

4.1.7 Byte separation operators

The following byte separation operators are available.

Operator Overview
HIGH Returns the high-order 8-bit value of a term.
LOW Returns the low-order 8-bit value of a term.

R20UT0259EJ0100 Rev.1.00

Oct 01, 2010

RENESAS

Page 214 of 890

CubeSuite Ver.1.40 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

HIGH

Returns the high-order 8-bit value of a term.

[Function]

Returns the high-order 8-bit value of a term.
A blank is required between the HIGH operator and the term.

[Application example]

nmov 32 Hl GH 0x1234, r12 ;o (1)

(1) By executing a mov32 instruction, this operator returns the high-order 8-bit value "0x12" of the expression
"0x1234".
Therefore, (1) in the above example can also be described as: mov A, #0x12

nmov32 H GH PO, r12 7 (2)

(2) By executing amov32instruction, this operator returns the high-order 8-bit value "OxFF" of the expression
PO.
Therefore, (2) in the above example can also be described as: mov OxFF, r12.

R20UT0259EJ0100 Rev.1.00 RENESAS Page 215 of 890
Oct 01, 2010

CubeSuite Ver.1.40 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

LOW

Returns the low-order 8-bit value of a term.

[Function]

Returns the low-order 8-bit value of a term.
A blank is required between the LOW operator and the term.

[Application example]

nmov 32 LOW 0x1234, r12 ;o (1)

(1) By executing a mov32 instruction, this operator returns the low-order 8-bit value "0x34" of the expression
"0x1234".
Therefore, (1) in the above example can also be described as: mov32 0x34, r12.

R20UT0259EJ0100 Rev.1.00 RENESAS Page 216 of 890
Oct 01, 2010

CubeSuite Ver.1.40

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

4.1.8 2-byte separation operators

The following 2-byte separation operators are available.

Operator Overview
HIGHW Returns the high-order 16-bit value of a term.
LOWW Returns the low-order 16-bit value of a term.
HIGHW1 The value calculated by adding the value at the 15th bit to the uppermost 16 bits
of the term.
R20UT0259EJ0100 Rev.1.00 RENESAS Page 217 of 890

Oct 01, 2010

CubeSuite Ver.1.40 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

HIGHW

Returns the high-order 16-bit value of a term.

[Function]

Returns the high-order 16-bit value of a term.
A blank is required between the HIGHW operator and the term.

[Application example]

nmov 32 HI GHW 0x12345678), r12 (1)

(1) By executing a mov32 instruction, this operator returns the high-order 16-bit value "0x1234" of the
expression "0x12345678".
Therefore, (1) in the above example can also be described as: mov32 0x1234, r12.

R20UT0259EJ0100 Rev.1.00 RENESAS Page 218 of 890
Oct 01, 2010

CubeSuite Ver.1.40 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

LOWW

Returns the low-order 16-bit value of a term.

[Function]

Returns the low-order 16-bit value of a term.
A blank is required between the LOWW operator and the term.

[Application example]

nmov 32 LOWN 0x12345678), rl12 (1)

(1) By executing a mov32 instruction, this operator returns the low-order 16-bit value "0x5678" of the
expression "0x12345678".
Therefore, (1) in the above example can also be described as: mov32 0x5678, r12.

R20UT0259EJ0100 Rev.1.00 RENESAS Page 219 of 890
Oct 01, 2010

CubeSuite Ver.1.40 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

HIGHW1

The value calculated by adding the value at the 15th bit to the uppermost 16 bits of the term.

[Function]

The value calculated by adding the value at the 15th bit to the uppermost 16 bits of the term.
A blank is required between the HIGHW1 operator and the term.

[Application example]

nmov 32 Hl GHWL(0x12345678), r12 ;o (1)

(1) Given the value 0x12345678, a mov32 instruction adds the value at the 15th bit (1) to the top 16 bits
(0x1234), returning the value 0x1235.
Therefore, (1) in the above example can also be described as: mov32 0x1235, r12.

R20UT0259EJ0100 Rev.1.00 RENESAS Page 220 of 890
Oct 01, 2010

CubeSuite Ver.1.40

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

4.1.9 Special operators

The following special operators are available.

Operator

Overview

DATAPOS

Obtains the address part of a bit symbol.

BITPOS

Obtains the bit part of a bit symbol.

R20UT0259EJ0100 Rev.1.00

Oct 01, 2010

RENESAS

Page 221 of 890

CubeSuite Ver.1.40 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

DATAPOS

Obtains the address part of a bit symbol.

[Function]

Returns the address portion of a bit symbol.

[Application example]

nov32 DATAPOS(DNFA2NFEN2), r10 ;o (1)
nov32 Bl TPOS(DNFA2NFEN2), ri12
clrl r12, [r10]

(1) "DATAPOS DNFA2NFEN2" represents "DATAPOS 0xFF41020C.2", and "0xFF41020C" is returned.
Therefore, in the above example can also be described as: mov32 0xFF41020C, r10.

R20UT0259EJ0100 Rev.1.00 RENESAS Page 222 of 890
Oct 01, 2010

CubeSuite Ver.1.40 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

BITPOS

Obtains the bit part of a bit symbol.

[Function]

Returns the bit portion (bit position) of a bit symbol.

[Application example]

nov32 DATAPOS(DNFA2NFEN2), r10
nov32 Bl TPOS(DNFA2NFEN2), ri12 ;o (1)
clrl r12, [r10]

(1) "BITPOS DNFA2NFEN2" represents "BITPOS O0xFF41020C.2", and "2" is returned.
Therefore, in the above example can also be described as: mov32 2, r12.

R20UT0259EJ0100 Rev.1.00 RENESAS Page 223 of 890
Oct 01, 2010

CubeSuite Ver.1.40

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

4.1.10 Other operator

The following operators is also available.

Operator

Overview

Prioritizes the calculation within ().

R20UT0259EJ0100 Rev.1.00

Oct 01, 2010

RENESAS

Page 224 of 890

CubeSuite Ver.1.40 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

()

Prioritizes the calculation within ().

[Function]

Causes an operation in parentheses to be performed prior to operations outside the parentheses.
This operator is used to change the order of precedence of other operators.
If parentheses are nested at multiple levels, the expression in the innermost parentheses will be calculated first.

[Application example]

mv A #(4 + 3) * 2

4+3)*2

Calculations are performed in the order of expressions (1), (2) and the value "14" is returned as a result.
If parentheses are not used,

4+3*2

LI
L

@

Calculations are performed in the order (1), (2) shown above, and the value "10" is returned as a result.
See "Table 4-4. Operator Precedence Levels", for the order of precedence of operators.

R20UT0259EJ0100 Rev.1.00 RENESAS Page 225 of 890
Oct 01, 2010

CubeSuite Ver.1.40 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

4.1.11 Restrictions on operations

An expression consists of a "constant”, "symbol", "label reference", "operator”, and "parentheses".It indicates a value
consisting of these elements. The expression distinguishes between Absolute expression and Relative expressions.

(1) Absolute expression
An expression indicating a constant is called an "absolute expression”. An absolute expression can be used when
an operand is specified for an instruction or when a value etc. is specified for a directive. An absolute expression
usually consists of a constant or symbol. The following format is treated as an absolute expression.

(a) Constant expression
If a reference to a previously defined symbol is specified, assumes that the constant of the value defined for
the symbol has been specified. Therefore, a defined symbol reference can be used in a constant expression.

Example
syni . set 0x10 --Define symbol syml
nmov synml, rl --syml, already defined, is treated as a constant expression
(b) Symbol
The expressions related to symbols are the following ("+" is either "+" or "-").
- Symbol

- Symbol + constant expression
- Symbol - symbol
- Symbol - symbol + constant expression

A "symbol" here means an undefined symbol reference at that point. If a reference to a previously defined
symbol is specified, assumes that the "constant” of the value defined for the symbol has been specified.

Example
add SYML + 0x100, r11 --SYML is an undefined synmbol at this point
SYML .set 0x10 --Defines SYML

(c) Label reference
The following expressions are related to label reference ("+" is either "+" or "-").
- Label reference - label reference
- Label reference - label reference + constant expression

Here is an example of an expression related to a label reference.

Example

nov $l abel 1 - $label 2, ri1

A "reference to two labels" as shown in this example must be referenced as follows.
- The same section has a definition in the specified file.
- Same reference method (such as $label and $label, and #label and #label)
When not meeting these conditions, a message is output, and assembly is canceled.

R20UT0259EJ0100 Rev.1.00 RENESAS Page 226 of 890
Oct 01, 2010

CubeSuite Ver.1.40

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

However, if a reference to the absolute address of a label not having a definition in the specified file is specified

as label reference on one side of "- label reference" in an "expression related to label reference", it is assumed

that the same reference method as that of the label on the other side is used, because of the current

organization of the assembler. Note that an absolute expression in this format cannot be specified for a

branch instruction. If such an expression is specified, a message is output, and assembly is canceled.

(2) Relative expressions
An expression indicating an offset from a specific address

Note 1 is called a "relative expression”. A relative

expression is used to specify an operand by an instruction or to specify a value by data definition directive. A

relative expression usually consists of a label reference. The following format

expression.

tNO 2 s treated as an relative

Notes 1. This address is determined when the linker is executed. Therefore, the value of this offset may also be

determined when the linker is executed.

2. The absolute value system and the relative value system can regard an expression in the format of "-

symbol + label reference”, as being an expression in the format of "label reference - symbol," but it

cannot regard an expression in the format of "label reference - (+symbol)" as being an expression in the

format of "label reference - symbol". Therefore, use parentheses "()" only in constant expressions.

(a) Label reference

The following expressions are related to label reference ("+" is either "+" or "-").

- Label reference

- Label reference + constant expression

- Label reference - symbol

- Label reference - symbol + constant expression

Here is an example of an expression related to a label reference.

Example

add #| abell + 0x10, r10
add #l abel 2 - SIZE, r10
S| ZE .set 0x10

4.1.12 Identifiers

An identifier is a name used for symbols, labels, macros etc.
Identifiers are described according to the following basic rules.
- ldentifiers consist of alphanumeric characters and symbols that are used as characters (?,@,_)

However, the first character cannot be a number (0 to 9).

- Reserved words cannot be used as identifiers.

With regard to reserved words, see "4.5 Reserved Words".

- The assembler distinguishes between uppercase and lowercase.

R20UT0259EJ0100 Rev.1.00

Oct 01, 2010

RENESAS Page 227 of 890

CubeSuite Ver.1.40 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

4.2 Directives

This chapter explains the directives.
Directives are instructions that direct all types of instructions necessary for the assembler.

4.2.1 Outline

Instructions are translated into object codes (machine language) as a result of assembling, but directives are not con-
verted into object codes in principle.
Directives contain the following functions mainly:
- To facilitate description of source programs
- To initialize memory and reserve memory areas
- To provide the information required for assemblers and linkers to perform their intended processing

The following table shows the types of directives.

Table 4-5. List of Directives

Type Directives
Section definition directives .cseg, .dseg, .org, .vseg
Symbol definition directives .set, .file, .func
Data definition, area reservation directives .db, .db2/.dhw, .dshw, .db4/.dw, .db8/.ddw, .float, .double, .ds, .align
External definition, external reference directives .public, .extern, .comm
Macro directives .macro, .local, .rept, .irp, .exitm, .exitma, .endm

The following sections explain the details of each directive.
In the description format of each directive, "[]" indicates that the parameter in square brackets may be omitted from

specification, and "..." indicates the repetition of description in the same format.
R20UT0259EJ0100 Rev.1.00 RENESAS Page 228 of 890

Oct 01, 2010

CubeSuite Ver.1.40 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

422 Section definition directives

A section is a block of routines or data of the same type. A "section definition directive" is a directive that declares the
start or end of a section.
Sections are the unit of allocation in the linker.

Example

.cseg

.dseg

Two sections with the same section name must have the same relocation attribute. Consequently, multiple sections
with differing relocation attributes cannot be given the same section name. If two sections with the same section name
have different relocation attributes, an error will occur, and the directive will be ignored.

Sections in a single source program file with the same relocation attribute and section name will be processed as a sin-
gle continuous section in the assembler.

If the sections are broken into separate source program files, then they will be processed by the linker.

Section names cannot be referenced as symbols.

The following section definition directives are available.

Table 4-6. Section Definition Directives

Directive Overview
.cseg Indicates to the assembler the starting of a code section (located in ROM area)
.dseg Indicates to the assembler the start of a data section (located in RAM area)
.org Advances the value of the location counter
.vseg Indicates to the assembler the start of a section for debug information
R20UT0259EJ0100 Rev.1.00 RENESAS Page 229 of 890

Oct 01, 2010

CubeSuite Ver.1.40 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

.cseg

Indicate to the assembler the start of a code section (located in ROM area).

[Syntax]
Synmbol field Mhernonic field Operand field Comment field
[section- nane] .cseg [relocation-attri bute] [; comment]
[Function]

- The .cseg directive indicates to the assembler the start of a code section.

- All instructions described following the .cseg directive belong to the code section until it comes across a section
definition directives (.cseg, .dseg or .org), and finally those instructions are located within a ROM address after
being converted into machine language.

<Source module> <Memory>
. dseg
ROM
.cseg
Code section
RAM

[Use]

- The .cseg directive is used to describe instructions, .db, .dw directives, etc. in the code section defined by the
.cseg directive.
- Description of one functional unit such as a subroutine should be defined as a single code section.

[Description]

- A relocation attribute defines a range of location addresses for a code section.

R20UT0259EJ0100 Rev.1.00 RENESAS Page 230 of 890
Oct 01, 2010

CubeSuite Ver.1.40 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

Table 4-7. Relocation Attributes of .cseg

Relocation Description Format Explanation
Attribute
OPT_BYTE OPT_BYTE It is a user option byte and on-chip debugging specific attribute. Not

specify except user option byte and on-chip debugging.

Tells the assembler to locate the specified section within the address
range 0x7A to Ox7F (V850EL1, V850E2 core).

In the device with an instruction set of V850E2V3, it can't be speci-
fied.

SECUR_ID SECUR_ID It is a security ID specific attribute. Not specify except security ID.
Tells the assembler to locate the specified section within the address
range 0x70 to 0x79 (V850E1, VB50E2 core).

In the device with an instruction set of V850E2V3, it can't be speci-
fied.

TEXT TEXT Allocates the program.

This is a reserved section with section name ".text", section type
"PROGBITS", and section attribute "AX".

It is assumed that two TEXT sections are specified before an
assembly language source program in an assembly language
source file (for example, if ".dw1" is specified before a section
definition directive, this will be allocated to a ".text" section). Note,
however, that if the ".text" section is not explicitly specified, and the
label definition, instruction, location counter control directive, or
secure-area directive of the TEXT section specified by default is not

specified, then no ".text" section will be generated.

CONST CONST This section is for constant (read-only) data. It allocates a memory
range consisting of r0 and 2 instructions, and referenced using 32-bit
displacement.

This is a reserved section with section name ".const", section type
"PROGBITS", and section attribute "A".

SCONST SCONST This section is for constant (read-only) data. It allocates a memory

range (up to 32 Kbytes, in the positive direction from r0), referenced
with 1 instructions using r0 and 16-bit displacement.

This is a reserved section with section name ".sconst", section type
"PROGBITS", and section attribute "A".

- If no relocation attribute is specified for the code segment, the assembler will assume that "TEXT" has been spec-
ified.

- If the size of a section exceeds the size of its area, an error will occur. If this happens, the location counter will be
advanced, and assembly will continue.

R20UT0259EJ0100 Rev.1.00 RENESAS Page 231 of 890
Oct 01, 2010

CubeSuite Ver.1.40

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

- By describing a section name in the symbol field of the .cseg directive, the code section can be named. If no sec-
tion name is specified for a code section, the assembler will automatically give a default section name to the code

section.

The default section names of the code sections are shown below.

Relocation Attribute

Default Section Name

OPT_BYTENC®

OPTION_BYTES

SECUR_|DNete SECURITY_ID
TEXT text

CONST .const
SCONSTNote .sconst

Note A specification possible section name is only a default section name in these relocation attributes.

- If two or more code sections have the same relocation attribute, these code sections may have the same section

name.

These same-named code sections are processed as a single code section within the assembler.

An error occurs if the same-named sections differ in their relocation attributes. Therefore, the number of the same-
named sections for each relocation attribute is one.
- Description of a code section can be divided into units. The same relocation attribute and the samenamed code

section described in one module are handled by the assembler as a series of sections.
- The same-named data sections in two or more different modules can be specified only when their relocation
attributes are SECUR_ID, and are combined into a single data section at linkage.

- No section name can be referenced as a symbol.

- Specify user option byte and on-chip debugging by using OPT_BYTE.
When the user option byte is not specified for the chip having the user option byte feature, define a default section
of "OPT_BYTE" to each address and set the initial value by reading from a device file.

- In the case of multi-core, the assembler will automatically assign default section names for each relocation
attribute in code sections without section names specified.

The default section names are shown below.
- CSEG default section names (for "-Xmulti=pen")

Relocation Attribute

Default Section Name

TEXT text.pen
CONST .const.pen
SCONST .const.pen

- CSEG default section names (for "-Xmulti=cmn")

Relocation Attribute Default Section Name
TEXT text.cmn
CONST .const.cmn
SCONST .const.cmn
R20UT0259EJ0100 Rev.1.00 :{ENESAS Page 232 of 890

Oct 01, 2010

CubeSuite Ver.1.40 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

.dseg

Indicate to the assembler the start of a data section (located in RAM area).

[Syntax]
Synmbol field Mhernonic field Operand field Comment field
[section- nane] . dseg [relocation-attri bute] [; conment]
[Function]

- The .dseg directive indicates to the assembler the start of a data section.
- A memory following the .dseg directive belongs to the data section until it comes across a section definition direc-
tives (.cseg, .dseg or .org), and finally it is reserved within the RAM address.

<Source module> <Memory>
. dseg
. ROM
Data section
. cseg
RAM

[Use]
- The .ds directive is mainly described in the data section defined by the .dseg directive.
Data sections are located within the RAM area. Therefore, no instructions can be described in any data section.
- In a data section, a RAM work area used in a program is reserved by the .ds directive and a label is attached to

each work area. Use this label when describing a source program.
Each area reserved as a data section is located by the linker so that it does not overlap with any other work areas

on the RAM (stack area, and work areas defined by other modules).

[Description]

- A relocation attribute defines a range of location addresses for a data section.
The relocation attributes available for data sections are shown below.

R20UT0259EJ0100 Rev.1.00 RENESAS Page 233 of 890
Oct 01, 2010

CubeSuite Ver.1.40 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

Table 4-8. Relocation Attributes of DSEG

Relocation Description Format Explanation
Attribute
BSS BSS Allocates a memory range consisting of gp and 2 instructions without

an initial value, and referenced using 32-bit displacement.

DATA DATA Allocates a memory range consisting of gp and 2 instructions with an
initial value, and referenced using 32-bit displacement.

SBSS SBSS Allocates a memory range (up to 64 Kbytes, combined with SDATA
section), referenced with 1 instructions using gp and 16-bit displace-
ment, not having an initial value.

SDATA SDATA Allocates a memory range (up to 64 Kbytes, combined with SDATA
section), referenced with 1 instructions using gp and 16-bit displace-
ment, having an initial value.

SEBSS SEBSS Allocates the high-level address portion of the memory range (up to
32 Kbytes in the negative direction from ep) (the size of the SEDATA
section) referenced with 1 instructions using ep and 16-bit displace-
ment, not having an initial value.

SEDATA SEDATA Allocates the high-level address portion of the memory range (up to
32 Kbytes in the negative direction from ep) (the size of the SEDATA
section) referenced with 1 instructions using ep and 16-bit displace-
ment, having an initial value.

SIBSS SIBSS Allocates the high-level address portion of the memory range (up to
32 Kbytes in the positive direction from ep) (the size of the SIBSS
and TI* sections) referenced with 1 instructions using ep and 16-bit
displacement, not having an initial value.

SIDATA SIDATA Allocates the high-level address portion of the memory range (up to
32 Kbytes in the positive direction from ep) (the size of the SIBSS
and TI* sections) referenced with 1 instructions using ep and 16-bit
displacement, having an initial value.

TIBSS TIBSS This assumes allocation in internal RAM without initial values, and
ep relative access using sld/sst instructions.

If TIDATA.BYTE, TIBSS.BYTE, TIDATA.WORD, TIBSS.WORD, and
TIDATA are not used, then TIBSS is allocated to the address indi-
cated by ep.

If TIDATA.BYTE, TIBSS.BYTE, TIDATA.WORD, TIBSS.WORD, or
TIDATA is used, then TIBSS is allocated to the address indicated by
ep, with the size of TIDATA.BYTE/TIBSS.BYTE/TIDATA.WORD/
TIBSS.WORD/TIDATA added.

The scope accessed by sld/sst instructions differs depending on the
size of the data. For this reason, we recommend placing byte data in
a TIBSS.BYTE section, and data larger than byte data in a
TIBSS.WORD section. Use a TIBSS section if you do not need to
consider the access area in fine detail like this.

TIBSS.BYTE TIBSS.BYTE This assumes allocation in internal RAM, and ep relative access
using sld/sst instructions.
When accessing byte data, an sld/sst instruction can access areas

up to 128 bytes. For this reason, we recommend placing byte data
with no initial value in a TIBSS.BYTE section.

R20UT0259EJ0100 Rev.1.00 RENESAS Page 234 of 890
Oct 01, 2010

CubeSuite Ver.1.40 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

Relocation Description Format Explanation
Attribute
TIBSS.WORD | TIBSS.WORD This assumes allocation in internal RAM, and ep relative access

using sld/sst instructions.

When accessing data larger than byte data, an sld/sst instruction can
access areas up to 256 bytes. For this reason, we recommend plac-
ing data with no initial value that is larger than byte data in a
TIBSS.WORD section.

TIDATA TIDATA This assumes allocation in internal RAM with initial values, and ep
relative access using sld/sst instructions.

If TIDATA.BYTE and TIDATA.WORD are not used, then TIDATA is
allocated to the address indicated by ep.

If TIDATA.BYTE or TIDATA.WORD is used, then TIDATA is allo-
cated to the address indicated by ep, with the size of TIDATA.BYTE/
TIDATA.WORD added.

The scope accessed by sld/sst instructions differs depending on the
size of the data. For this reason, we recommend placing byte data in
a TIDATA.BYTE section, and data larger than byte data in a
TIDATA.WORD section. Use a TIDATA section if you do not need to
consider the access area in fine detail like this.

TIDATA.BYTE | TIDATA.BYTE This assumes allocation in internal RAM, and ep relative access
using sld/sst instructions.

When accessing byte data, an sld/sst instruction can access areas
up to 128 bytes. For this reason, we recommend placing byte data
with initial value in a TIDATA.BYTE section.

TIDATA.WOR | TIDATA.WORD This assumes allocation in internal RAM, and ep relative access
D using sld/sst instructions.

When accessing data larger than byte data, an sld/sst instruction can
access areas up to 256 bytes. For this reason, we recommend plac-
ing data with no initial value that is larger than byte data in a
TIDATA.WORD section.

- If no relocation attribute is specified for the code segment, the assembler will assume that "DATA" has been spec-
ified.

- If the size of a section exceeds the size of its area, an error will occur. If this happens, the location counter will be
advanced, and assembly will continue.

- Machine language instructions cannot be described in a data section. If described, an error is output and the line
is ignored.

- By describing a section hame in the symbol field of the .dseg directive, the data section can be named. If no sec-
tion name is specified for a data section, the assembler automatically gives a default section name.
The default section names of the data sections are shown below.

Relocation Atribute Default Section Name

BSS .bss

DATA .data

SBSS .sbss

SDATA .sdata

SEBssNo® .sebss
SEDATANOt® sedata

R20UT0259EJ0100 Rev.1.00 ;{ENESAS Page 235 of 890

Oct 01, 2010

CubeSuite Ver.1.40

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

Relocation Atribute Default Section Name
sipsshote sibss
SIDATANote .Sidata
TIBSSNOte tibss
TIBSS.BYTENC® .tibss.byte
TIBSS.WORDN°t® tibss.word
TIDATANOE tidata
TIDATA.BYTENOt tidata.byte
TIDATA.WORDNot® tidata.word

Note A specification possible section name is only a default section name in these relocation attributes.

- If two or more data sections have the same relocation attribute, these data sections may have the same section

name.

These sections are processed as a single data section within the assembler.

- Description of a data section can be divided into units. The same relocation attribute and the same-named code

section described in one module are handled by the assembler as a series of sections.

- An error occurs if the same-named sections differ in their relocation attributes. Therefore, the number of the same-

named sections for each relocation attribute is one.

- No section name can be referenced as a symbol.

- They are as follows for multi-core. [V850E2V3]

- If the "-Xmulti=pen" option is specified

For each core's program, they can be allocated to data sections of all relocation attributes in the same way as

a single-core program.

- If the "-Xmulti=cmn" option is specified

Only a relocation attribute DATA/BSS section can be allocated to the common module's data section. Specify-

ing other than a relocation attribute DATA/BSS section will cause an error.

In the case of multi-core, the assembler will automatically assign default section names for each relocation

attribute in data sections without section names specified.

The default section names are shown below.
- DSEG default section names (for "-Xmulti=pen")

Relocation Attribute Default Section Name
BSS .bss.pen
DATA .data.pen
SBSS .sbss.pen
SDATA .sdata.pen
SEBSS .sebss.pen
SEDATA .sedata.pen
SIBSS .sibss.pen
SIDATA .Sidata.pen
TIBSS tibss.pen
TIBSS.BYTE tibss.byte.pen
TIBSS.WORD tibss.word.pen

R20UT0259EJ0100 Rev.1.00
Oct 01, 2010

RENESAS

Page 236 of 890

CubeSuite Ver.1.40 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

Relocation Attribute Default Section Name
TIDATA tidata.pen
TIDATA.BYTE tidata.byte.pen
TIDATA.WORD tidata.word.pen

- DSEG default section names (for "-Xmulti=cmn")

Relocation Attribute Default Section Name
BSS .bss.cmn
DATA .data.cmn
R20UT0259EJ0100 Rev.1.00 RENESAS Page 237 of 890

Oct 01, 2010

CubeSuite Ver.1.40 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

.org

Advances the value of the location counter.

[Syntax]
Synmbol field Mhernonic field Operand field Comment field
.org val ue
[Function]

Advances the value of the location counter for the current section, to the value specified by the operand.

[Description]

Advances the value of the location counter for the current section, specified by the previously specified section
definition directive, to the value(Less than 231) specified by the operand. If a hole results from advancing the value of the
location counter, it is filled with 0.

[Example]

Advances the location counter value 16 bytes.

.org 16

[Caution]

- If a value that is smaller than the current value of the location counter is specified, the assembler outputs the
message then stops assembling.

- If this directive is used in the sdata-attribute section, valid information may not be obtained when a guideline value
for determining the size of the data to be allocated to the sdata/sbhss-attribute section is displayed (by using the -
Xsdata_info option).

- This directive merely advances the value of the location counter in a specified file for the section. It does not spec-
ify either an absolute addressN°€ 1 or an offset in a sectionN°®€ 2,

Notes 1. Offset from address 0 in a linked object module file.

2. Offset from the first address of the section (output section) to which that section is allocated in a linked
object module file.

R20UT0259EJ0100 Rev.1.00 RENESAS Page 238 of 890
Oct 01, 2010

CubeSuite Ver.1.40 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

.vseg

Indicate to the assembler the start of a section for debug information.

[Syntax]

Synmbol field Mhenonic field Operand field Comment field

[section- nane] .vseg [coment] [; conment]

[Function]

- The ".vseg" directive tells the assembler to start a section for debugging information.
Do not change this section, because it is for debugging information.

R20UT0259EJ0100 Rev.1.00 RENESAS Page 239 of 890
Oct 01, 2010

CubeSuite Ver.1.40

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

42.3 Symbol definition directives

Symbol definition directives specify symbols for the data that is used when writing to source modules. With these, the

data value specifications are made clear and the details of the source module are easier to understand.

Symbol definition directives indicate the symbols of values used in the source module to the assembler.

The following symbol definition directives are available.

Table 4-9. Symbol Definition Directives

Directive Overview
.set Defines a symbol
file Generates a symbol table entry
func Generates a symbol table entry

R20UT0259EJ0100 Rev.1.00
Oct 01, 2010

RENESAS

Page 240 of 890

CubeSuite Ver.1.40 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

.set

Defines a symbol.

[Syntax]
Synmbol field Mhernonic field Operand field Comment field
synbol . set val ue
[Function]

Defines a symbol having a symbol name specified by the symbol field and a value (Integer value) specified by the oper-
and field.

[Description]

Defines a symbol having a symbol hame specified by the symbol field and a value (Integer value) specified by the oper-
and field. If the .set directive is specified for a given symbol more than once within a single assembler source file, refer-
ence to that symbol will have the following value, depending on the position of that reference.

- If the reference appears between the beginning of the file and the first .set directive for that symbol
Value specified with the last .set directive for that symbol.

- If the reference does not appear between a certain .set directive and the next .set directive, or if there is no subse-
quent .set directive, between the first .set directive and the end of the assembler source file
Value specified by that .set directive.

[Example]

Defines the value of symbol sym1 as 0x10.

. set synl, 0x10

[Caution]

- Any label reference or undefined symbol reference must not be used to specify a value.
Otherwise, the assembler outputs the following message then stops assembling.

E0550203: illegal expression (string)

- If a label name, a macro name defined by the .macro directive, or a symbol of the same name as a formal param-
eter of a macro is specified, the assembler outputs the following message and stops assembling.

E0550212: symbol already define as string

R20UT0259EJ0100 Rev.1.00 RENESAS Page 241 of 890
Oct 01, 2010

CubeSuite Ver.1.40

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

file

Generates a symbol table entry (FILE type).

[Syntax]
Synmbol field Mhernonic field Operand field Comment field
.file "file-nanme" [; conmment]
[Function]

- Generates a symbol table entryNOte having a file name specified by the operand and type FILE when an object

module file is generated. If this directive does not exist in the input source file, it is assumed that ".file"input file
name" has been specified, and a symbol table entry with the input file name and type FILE is generated.

Note The binding class is LOCAL.

[Use]

- The " file" directive is compiler debugging information.

[Description]

- The file name is written with the specified image.

- This is the name of the C source program file that the compiler outputs.

R20UT0259EJ0100 Rev.1.00

Oct 01, 2010

RENESAS

Page 242 of 890

CubeSuite Ver.1.40 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

func

Generates a symbol table entry (FUNC type).

[Syntax]
Synmbol field Mhernonic field Operand field Comment field
.func function-name, function-size, stack-size [; coment]
[Function]

- Generates a symbol table entry of type FUNC when an object module file is generated.

[Use]

- The ".func"” directive is compiler debugging information.

[Description]

- The first operand is the C-language function name output by the compiler; the second operand is an expression
indicating that function; and the third operand is a number indicating the stack size of the function.
- This is the function information of the C source program that the compiler outputs.

R20UT0259EJ0100 Rev.1.00 RENESAS Page 243 of 890
Oct 01, 2010

CubeSuite Ver.1.40

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

424 Data definition, area reservation directives

The data definition directive defines the constant data used by the program.

The defined data value is generated as object code.

The area reservation directive secures the area for memory used by the program.

The following data definition and partitioning directives are available.

Table 4-10. Data Definition, Area Reservation Directives

Directive Overview
.db Initialization of byte area
.db2/.dhw Initialization of 2-byte area
.dshw Initializes a 2-byte area with the specified value, right-shifted one bit
.db4/.dw Initialization of 4-byte area
.db8/.ddw Initialization of 8-byte area
float Initialization of 4-byte area
.double Initialization of 8-byte area
.ds Secures the memory area of the number of bytes specified by operand
.align Aligns the value of the location counter
R20UT0259EJ0100 Rev.1.00 RENESAS Page 244 of 890

Oct 01, 2010

CubeSuite Ver.1.40 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

.db

Initialization of byte area.

[Syntax]
Synmbol field Mhernonic field Operand field Comment field
[1abel :] .db (absol ut e- expressi on) [; conment]
or
[1abel :] .db expression[, ...] [; conment]
or
[1abel :] .db "Character string constants” [; conment]
[Function]

- The .db directive tells the assembler to initialize a byte area.
The number of bytes to be initialized can be specified as "size".

- The .db directive also tells the assembler to initialize a memory area in byte units with the initial value(s) specified
in the operand field.

[Use]

- Use the .db directive when defining an expression or character string used in the program.

[Description]

- If a value in the operand field is parenthesized, the assembler assumes that a size is specified. Otherwise, an ini-
tial value is assumed.

(1) With size specification:

(@) If asizeis specified in the operand field, the assembler initializes an area equivalent to the specified
number of bytes with the value "0".

(b) An absolute expression can be described as a size. If the size description is illegal, the CX outputs an
error message and will not execute initialization.

(2) With initial value specification:

(a) Expression
The value of an expression must be 1-byte data. Therefore, the value of the operand must be in the range of
0x0 to OxFF. If the value exceeds 1 byte, the assembler will use only lower 1 byte of the value as valid data.

(b) Character string constants
If the first operand is surrounded by corresponding double quotes ("), then it is assumed to be a string con-

stant.
If a character string constants is described as the operand, an 8-bit ASCII code will be reserved for each char-

acter in the string.

R20UT0259EJ0100 Rev.1.00 RENESAS Page 245 of 890
Oct 01, 2010

CubeSuite Ver.1.40 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

- The .db directive cannot be described in a bit section.

- Two or more initial values may be specified within a statement line of the .db directive.

- As an initial value, an expression that includes a relocatable symbol or external reference symbol may be
described.

- If the relocation attribute of the section containing the .db directive is BSS or SBSS, then an error is output,
because initial values cannot be specified.

[Example]
.cseg text
WORK1.: .db (1) ;v (1)
VORK2: .db (2) ; (1)
.cseg t ext
MASSAG .db " ABCDEF" ; (2)
DATAL: .db OxA, 0xB, 0xC 7 (3)
DATA2: .db (3 +1) ;o (4)
DATA3: .db "AB" + 1 7 (5) <- FError

(1) Because the size is specified, the assembler will initialize each byte area with the value "0".

(2) A 6-byte area is initialized with character string '"ABCDEF'

(3) A 3-byte areais initialized with "0xA, 0xB, 0xC".

(4) A 4-byte areais initialized with "0x0".

(5) This description occurs in an error.

R20UT0259EJ0100 Rev.1.00 RENESAS Page 246 of 890
Oct 01, 2010

CubeSuite Ver.1.40 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

.db2/.dhw

Initialization of 2-byte area.

[Syntax]
Synmbol field Mhernonic field Operand field Comment field
[1abel :] .db2 (absol ut e- expressi on) [; conment]
or
[1abel :] .db2 expression[, ...] [; conment]
or
[1abel :] . dhw (absol ut e- expressi on) [; conment]
or
[1abel :] . dhw expression[, ...] [; conment]
[Function]

- The .db2 and .dhw directive tells the assembler to initialize 2-byte area.
The number of 2-byte data to be initialized can be specified as "size".

- The .db2 and .dhw directive also tells the assembler to initialize a memory area in 2-byte units with the initial
value(s) specified in the operand field.

[Use]
- Use the .db2 and .dhw directive when defining a 2-byte numeric constant such as an address or data used in the

program.

[Description]

- If a value in the operand field is parenthesized, the assembler assumes that a size is specified. Otherwise, an ini-
tial value is assumed.

(1) With size specification:

(a) If asizeis specified in the operand field, the assembler initializes an area equivalent to the specified
number of 2-byte with the value "0".

(b) An absolute expression can be described as a size. If the size description is illegal, the CX outputs an
error message and will not execute initialization.

(2) With initial value specification:
(a) Expression
The value of an expression must be 2-byte data. Therefore, the value of the operand must be in the range of
0x0 to OXFFFF. If the value exceeds 2-byte, the assembler will use only lower 2-byte of the value as valid data.

No character string constants can be described as an initial value.

- The .db2 and .dhw directive cannot be described in a bit section.

R20UT0259EJ0100 Rev.1.00 RENESAS Page 247 of 890
Oct 01, 2010

CubeSuite Ver.1.40 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

- If the relocation attribute of the section containing the .db2 and .dhw directive is BSS or SBSS, then an error is out-
put, because initial values cannot be specified.

- Two or more initial values may be specified within a statement line of the .db2 and .dhw directive.

- As an initial value, an expression that includes a relocatable symbol or external reference symbol may be
described.

R20UT0259EJ0100 Rev.1.00 RENESAS Page 248 of 890
Oct 01, 2010

CubeSuite Ver.1.40

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

.dshw

Initializes a 2-byte area with the specified value, right-shifted one bit.

[Syntax]

Synmbol field Mhernonic field Operand field Comment field

[1abel :] . dshw expression[, ...] [; conment]

[Function]

- Initializes a 2-byte area with the specified value, right-shifted one bit.

[Description]

- The value is secured as 2-byte data, as the value of the expression right-shifted 1 bit.
- The .dshw directive cannot be described in a bit section.

- If the relocation attribute of the section is BSS or SBSS, then an error is output, because the .dshw directive can-

not be described.
- Itis possible to code an absolute expression in the operand expression.

- The value of the expression, right-shifted one bit, must be in the range 0x0 to OxFFF. In other cases, the data from

the lower two bytes will be secured.

- Any number of expressions may be specified on a single line, by separating them with commas.

- It is not possible to code string constants in the operand.

R20UT0259EJ0100 Rev.1.00
Oct 01, 2010

RENESAS

Page 249 of 890

CubeSuite Ver.1.40 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

.db4/.dw

Initialization of 4-byte area.

[Syntax]
Synmbol field Mhenonic field Operand field Commrent field
[1abel :] .db4 (absol ut e- expressi on) [; conment]
or
[1abel :] .db4 expression[, ...] [; conment]
or
[1abel :] . dw (absol ut e- expressi on) [; conment]
or
[abel :] . dw expression[, ...] [; comment]
[Function]

- The .db4 and .dw directive tells the assembler to initialize 4-byte area.
The number of 4-byte data to be initialized can be specified as "size".

- The .db4 and .dw directive also tells the assembler to initialize a memory area in 4-byte units with the initial
value(s) specified in the operand field.

[Use]

- Use the .db4 and .dw directive when defining a 4-byte numeric constant such as an address or data used in the

program.

[Description]

- If a value in the operand field is parenthesized, the assembler assumes that a size is specified. Otherwise, an ini-
tial value is assumed.

(1) With size specification:

(@) If asizeis specified in the operand field, the assembler initializes an area equivalent to the specified
number of 4-byte with the value "0".

(b) An absolute expression can be described as a size. If the size description is illegal, the CX outputs an
error message and will not execute initialization.

(2) With initial value specification:

(a) Expression
The value of an expression must be 4-byte data. Therefore, the value of the operand must be in the range of
0x0 to OXFFFFFFFF. If the value exceeds 4-byte, the assembler will use only lower 2-byte of the value as valid
data.
No character string constants can be described as an initial value.

- The .db4 and .dw directive cannot be described in a bit section.

R20UT0259EJ0100 Rev.1.00 RENESAS Page 250 of 890
Oct 01, 2010

CubeSuite Ver.1.40 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

- Two or more initial values may be specified within a statement line of the .db4 and .dw directive.

- As an initial value, an expression that includes a relocatable symbol or external reference symbol may be
described.

- If the relocation attribute of the section containing the .db4 and .dw directive is BSS or SBSS, then an error is out-
put, because initial values cannot be specified.

R20UT0259EJ0100 Rev.1.00 RENESAS Page 251 of 890
Oct 01, 2010

CubeSuite Ver.1.40 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

.db8/.ddw

Initialization of 8-byte area.

[Syntax]
Synmbol field Mhenonic field Operand field Commrent field
[1abel :] .db8 (absol ut e- expressi on) [; conment]
or
[1abel :] .db8 absol ute-expression[, ...] [; conment]
or
[1abel :] . ddw (absol ut e- expressi on) [; conment]
or
[1abel :] . ddw absol ute-expression[, ...] [; conment]
[Function]

- The .db8 and .ddw directive tells the assembler to initialize 8-byte area.
The number of 8-byte data to be initialized can be specified as "size".

- The .db8 and .ddw directive also tells the assembler to initialize a memory area in 8-byte units with the initial
value(s) specified in the operand field.

[Use]
- Use the .db8 and .ddw directive when defining a 8-byte numeric constant such as an address or data used in the

program.

[Description]
- If a value in the operand field is parenthesized, the assembler assumes that a size is specified. Otherwise, an ini-

tial value is assumed.
(1) With size specification:

() If asizeis specified in the operand field, the assembler initializes an area equivalent to the specified
number of 8-byte with the value "0".

(b) An absolute expression can be described as a size. If the size description is illegal, the CX outputs an
error message and will not execute initialization.

(2) With initial value specification:

(a) Expression
The value of an expression must be 8-byte data. Therefore, the value of the operand must be in the range of
0x0 to OXFFFFFFFFFFFFFFFF. If the value exceeds 8-byte, the assembler will use only lower 8-byte of the
value as valid data.
No character string constants can be described as an initial value.

- The .db8 and .ddw directive cannot be described in a bit section.

R20UT0259EJ0100 Rev.1.00 RENESAS Page 252 of 890
Oct 01, 2010

CubeSuite Ver.1.40 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

- If the relocation attribute of the section is BSS or SBSS, then an error is output, because the .db8 and .ddw direc-
tive cannot be described.
- Two or more initial values may be specified within a statement line of the .db8 and .ddw directive.

R20UT0259EJ0100 Rev.1.00 RENESAS Page 253 of 890
Oct 01, 2010

CubeSuite Ver.1.40 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

float

Initialization of 4-byte area.

[Syntax]
Synmbol field Mhernonic field Operand field Comment field
[1abel :] .float absol ute-expression[, ...] [; conment]
[Function]

- The .float directive tells the assembler to initialize 4-byte area.
- The .float directive also tells the assembler to initialize a memory area in 4-byte units with the absolute-expression
specified in the operand field.

[Description]

- The value of the absolute expression is secured as a single-precision floating-point number. Consequently, the
value of the expression must be between 1.40129846e-45 and 3.40282347e+3. In other cases, the data from the
lower four bytes will be secured as a single-precision floating-point number.

- The .float directive cannot be described in a bit section.

- If the relocation attribute of the section is BSS or SBSS, then an error is output, because the .float directive cannot
be described.

- Two or more absolute-expression may be specified within a statement line of the .float directive.

R20UT0259EJ0100 Rev.1.00 RENESAS Page 254 of 890
Oct 01, 2010

CubeSuite Ver.1.40 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

.double

Initialization of 8-byte area.

[Syntax]
Synmbol field Mhernonic field Operand field Comment field
[1abel :] .doubl e absol ute-expression[, ...] [; conment]
[Function]

- The .double directive tells the assembler to initialize 8-byte area.
- The .double directive also tells the assembler to initialize a memory area in 8-byte units with the initial value(s)
specified in the operand field.

[Description]

- The value of the absolute expression is secured as a double-precision floating-point number. Consequently, the
value of the expression must be between 4.9406564584124654e-324 and 1.7976931348623157e+308. In other
cases, the data from the lower eight bytes will be secured as a double-precision floating-point number.

- The .double directive cannot be described in a bit section.

- If the relocation attribute of the section is BSS or SBSS, then an error is output, because the .double directive can-
not be described.

- Two or more absolute-expression may be specified within a statement line of the .double directive.

R20UT0259EJ0100 Rev.1.00 RENESAS Page 255 of 890
Oct 01, 2010

CubeSuite Ver.1.40 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

.ds

Secures the memory area of the number of bytes specified by operand.

[Syntax]
Synmbol field Mhernonic field Operand field Comment field
[1abel :] .ds (absol ute-expression)[, ...] [; conment]
or
[1abel :] .ds absol ut e- expr essi on [; conment]
[Function]

- The .ds directive tells the assembler to reserve a memory area for the number of bytes specified in the operand
field.

[Use]

- The .ds directive is mainly used to reserve a memory (RAM) area to be used in the program.
If a label is specified, the value of the first address of the reserved memory area is assigned to the label. In the
source module, this label is used for description to manipulate the memory.

[Description]

- If a value in the first operand is parenthesized, the assembler assumes that a size is specified. Otherwise, an ini-
tial value is assumed.

- The first operand is a size specification. If a second operand is also specified, then it will be treated as the initial
value for that value.

(1) With size specification:

(a) If asizeis specified in the operand, then if an initial value is specified, the compiler will fill the speci-
fied number of bytes with the specified value; otherwise, it will fill that number of bytes with zeroes
("0"). Note, however, that no area will be secured if the specified number of bytes is 0.

(b) An absolute expression can be described as a size. If the size description is illegal, the CX outputs an
error message and will not execute initialization.

(2) With initial value specification:

(a) Expression
The value of an expression must be byte data. Therefore, the value of the operand must be in the range of
0x0 to OxFF. If the value exceeds byte, the assembler will use only lower 1-byte of the value as valid data.

- The .ds directive cannot be described in a bit section.

- As an initial value, an expression that includes a relocatable symbol or external reference symbol may be
described.

- If the relocation attribute of the section containing this directive is BSS or SBSS, then an error is output and this
directive is ignored, because initial values cannot be specified.

R20UT0259EJ0100 Rev.1.00 RENESAS Page 256 of 890
Oct 01, 2010

CubeSuite Ver.1.40 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

.align

Aligns the value of the location counter.

[Syntax]
Synmbol field Mhernonic field Operand field Comment field
[1abel :] .align line-condition[, absol ute-expression] [; commrent]
[Function]

- Aligns the value of the location counter.

[Description]

- Aligns the value of the location counter for the current section, specified by the previously specified section defini-
tion directive under the alignment condition specified by the first operand. If a hole results from aligning the value
of the location counter, it is filled with the value of the absolute expression specified by the second operand, or with
the default value of 0.

- The .align directive cannot be described in a bit section.

- Specify an even number of 2 or more, but less than 231, as the alignment condition. Otherwise, the CX outputs the
error message then stops assembling.

- The value of the second operand’s absolute-expression must be in the range of 0x0 to OxFF. If the value exceeds
range of 0x0 to OxFF, the assembler will use only lower 1-byte of the value as valid data.

- This directive merely aligns the value of the location counter in a specified file for the section. It does not align an
address after arrangement.

R20UT0259EJ0100 Rev.1.00 RENESAS Page 257 of 890
Oct 01, 2010

CubeSuite Ver.1.40 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

425 External definition, external reference directives

External definition, external reference directives clarify associations when referring to symbols defined by other mod-
ules.

This is thought to be in cases when one program is written that divides module 1 and module 2. In cases when you
want to refer to a symbol defined in module 2 in module 1, there is nothing declared in either module and and so the sym-
bol cannot be used. Due to this, there is a need to display "I want to use" or "I don't want to use" in respective modules.

An "l want to refer to a symbol defined in another module" external reference declaration is made in module 1. At the
same time, a "This symbol may be referred to by other symbols" external definition declaration is made in module 2.

This symbol can only begin to be referred to after both external reference and external definition declarations in effect.

External definition, external reference directives are used to to form this relationship and the following instructions are

available.
Table 4-11. External Definition, External Reference Directives
Directive Overview

.public Declares to the linker that the symbol described in the operand field is a symbol
to be referenced from another module

.extern Declares to the linker that a symbol (other than bit symbols) in another module is
to be referenced in this module

.comm Declares an undefined external symbol

R20UT0259EJ0100 Rev.1.00 RENESANAS Page 258 of 890

Oct 01, 2010

CubeSuite Ver.1.40 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

.public

Declares to the linker that the symbol described in the operand field is a symbol to be referenced from another module.

[Syntax]
Synmbol field Mhernonic field Operand field Comment field
[1abel :] .public | abel - name[, size] [; conment]
[Function]

- The PUBLIC directive declares to the linker that the symbol described in the operand field is a symbol to be refer-
enced from another module.

[Use]

- When defining a symbol to be referenced from another module, the .public directive must be used to declare the
symbol as an external definition.

[Description]

- A label with the same name as the one specified by the first operand is declared as an external labelN°t.
Note that if a second operand was specified, this specifies the size of the data indicated by that label.

Note This is an external symbol (symbol with a GLOBAL binding class).

- Although this directive does not function any differently than an ".extern" directive in that it declares an external
label, if this directive is used to declare a label with a definition in the specified file as an external label, use the
".extern" directive to declare labels without definitions in the specified file as external labels.

- The .public directive may be described anywhere in a source program.

- The ".public" directive can only define one symbol per line.

- Symbol(s) to be described in the operand field must be defined within the same module. If it is not defined, an
error will be output, and the symbol's “.public" declaration will be ignored.

The symbol name for which the error occurs will be included in the error message.

- The following symbols cannot be used as the operand of the .public directive:

(1) Symbol defined with the .set directive

(2) Section name

R20UT0259EJ0100 Rev.1.00 RENESAS Page 259 of 890
Oct 01, 2010

CubeSuite Ver.1.40 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

[Example]
- Module 1
.public Al ; (1)
.extern Bl
Al . set 0x10
. cseg t ext
jr B1
- Module 2
.public Bl i (2)
.extern Al
. cseg t ext
B1:
nov Al, ri12

(1) This .public directive declares that symbol "A1" is to be referenced from other modules.

(2) This .public directive declares that symbol "B1" is to be referenced from another module.

R20UT0259EJ0100 Rev.1.00 RENESAS Page 260 of 890
Oct 01, 2010

CubeSuite Ver.1.40 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

.extern

Declares to the linker that a symbol (other than bit symbols) in another module is to be referenced in this module.

[Syntax]
Synmbol field Mhernonic field Operand field Comment field
[1abel :] .extern | abel -nanme[, size] [; conmment]
[Function]

- The .extern directive declares to the linker that a symbol in another module is to be referenced in this module.

[Use]

- When referencing a symbol defined in another module, the .extern directive must be used to declare the symbol as
an external reference.

[Description]

- A label with the same name as the one specified by the first operand is declared as an external labelNO©,
Note that if a second operand was specified, this specifies the size of the data indicated by that label.

Note This is an external symbol (symbol with a GLOBAL binding class).

- Although this directive does not function any differently than an ".public” directive in that it declares an external
label, if this directive is used to declare a label without a definition in the specified file as an external label, use the
".public" directive to declare labels with definitions in the specified file as external labels.

- The .extern directive may be described anywhere in a source program.

- The ".extern" directive can only define one symbol per line.

- No error is output even if a symbol declared with the .extern directive is not referenced in the module.

- A symbol that has been declared cannot be described as the operand of the .extern directive. Conversely, a sym-
bol that has been declared as .extern cannot be redefined or declared with any other directive.

R20UT0259EJ0100 Rev.1.00 RENESAS Page 261 of 890
Oct 01, 2010

CubeSuite Ver.1.40 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

.comm

Declares an undefined external symbol.

[Syntax]
Synmbol field Mhernonic field Operand field Comment field
[1abel :] .comm synbol - nane, size, alignnment-condition [; commrent]
[Function]

- Declares an undefined external symbol having a symbol name specified by the first operand, a size specified by
the second operand, and an alignment condition specified by the third operand.

[Description]

(1) If the -Xsdata option is specified upon starting the CX

(a) If the specified by the second operand size is 1 or more, but no more than num bytes
Generates a symbol having value of section header table index GPCOMMON upon generating the sym-
bol table entry for the label when the object module file is generated.

(b) If the specified by the second operand size is 0 or more than num bytes
Generates a symbol having value of section header table index COMMON upon generating the symbol
table entry for the label when the object module file is generated.

(2) If the -Xsdata option is not specified upon starting the CX

(a) Generates a symbol having value of section header table index GPCOMMON upon generating the sym-
bol table entry for the label when the object module file is generated.

- If the same label name as that specified by the first operand is defined by means of normal label definition in the
same file as this directive.

- If the label is declared as having symbol table entry index GPCOMMON and is defined by means of normal
label definition in the data-attribute section, or if it is declared as having symbol table entry index COMMON by
this directive and is defined by means of normal label definition in the sdata-attribute section.

.comm labl, 4, 4 --GPCOWON if assenbly is executed without -G

.data . dseg dat a

| abl: --Normal |abel definition in .data section

The assembler outputs the following message then stops assembling.

E0550213: | abel identifier redefined

R20UT0259EJ0100 Rev.1.00 RENESAS Page 262 of 890
Oct 01, 2010

CubeSuite Ver.1.40 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

- Else
The label defined by means of normal label definition is regarded as being an external label and the specifica-
tion of this directive is ignored. Generates a symbol table entry having binding class GLOBAL upon generat-
ing the symbol table entry for the label when the object module file is generated.

.comm labl, 4, 4 --GPCOWON if assenbly is executed w thout -G

.sdata .dseg sdat a

| abl: --Normal |abel definition in .sdata section

- If a label having the same name as that specified by the first operand is defined by the .Icomm directive in the
same file as this directive.

- If the size or alignment condition specified by the .Icomm directive differs from the size or alignment condition
specified by this directive.

.comm labl, 4, 4
. Sbss . dseg sbss
.lcomm labl, 4, 2 --Alignment condition differs

The assembler outputs the following message then stops assembling.

E0550213: | abel identifier redefined

- If the label is declared, by this directive, as having section header table index GPCOMMON and is defined in
the bss-attribute section by the .lcomm directive, or if it is declared by this directive as having section header
table index COMMON and is defined in the sbhss-attribute section by the .lcomm directive.

.comm labl, 4, 4 --GPCOMMON i f assenmbly is executed without -G
. bss . dseg bss
.lcomm labl, 4, 4 --Definition in .bss section

The assembler outputs the following message then stops assembling.

E0550213: | abel identifier redefined

- Else
The assembler regards the label defined by .Icomm as being an external label, ignoring the specification made
by this directive. Generates a symbol table entry having binding class GLOBAL upon generating the symbol
table entry for the label when the object module file is generated.

.comm labl, 4, 4 --GPCOMMON i f assenmbly is executed without -G
. Sbss . dseg sbss
.lcomm labl, 4, 4 --Definition in .bss section

R20UT0259EJ0100 Rev.1.00

Oct 01, 2010

RENESAS Page 263 of 890

CubeSuite Ver.1.40 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

- If a label having the same name as that specified by the first operand is (re-)defined by this directive in the same
file as this directive.
- If the size or boundary condition is differen.

.conmm labl, 4, 4

.conmm labl, 2, 4 --Size differs

The assembler outputs the following message then stops assembling.

E0550213: | abel identifier redefined

- When the size and boundary conditions are the same.
The assembler assumes the .comm directive to be specified once only.

[Example]

Declares undefined external label of size 4 with alignment condition 4.

. sbss . dseg shss

.comm _p, 4, 4

R20UT0259EJ0100 Rev.1.00 RENESAS Page 264 of 890
Oct 01, 2010

CubeSuite Ver.1.40 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

4.2.6 Macro directives

When describing a source it is inefficient to have to describe for each series of high usage frequency instruction groups.
This is also the source of increased errors.

Via macro directives, using macro functions it becomes unnecessary to describe many times to the same kind of
instruction group series, and coding efficiency can be improved.

Macro basic functions are in substitution of a series of statements.

The following macro directives are available.

Table 4-12. Macro Directives

Directive Overview

.macro Executes a macro definition by assigning the macro name specified in the sym-
bol field to a series of statements described between .macro directive and the
.endm directive.

local The specified string is declared as a local symbol that will be replaced as a spe-
cific identifier.

.rept Tells the assembler to repeatedly expand a series of statements described
between .rept directive and the .endm directive the number of times equivalent to
the value of the expression specified in the operand field.

.irp Tells the assembler to repeatedly expand a series of statements described
between .irp directive and the .endm directive the number of times equivalent to
the number of actual parameters while replacing the formal parameter with the
actual parameters (from the left, the order) specified in the operand field.

.exitm This directive skips the repetitive assembly of the .irp and .rept directives enclos-
ing this directive at the innermost position.

.exitma This directive skips the repetitive assembly of the irp and .rept directives enclos-
ing this directive at the outermost position.

.endm Instructs the assembler to terminate the execution of a series of statements
defined as the functions of the macro.

R20UT0259EJ0100 Rev.1.00 RENESAS Page 265 of 890
Oct 01, 2010

CubeSuite Ver.1.40 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

.macro

Executes a macro definition by assigning the macro name specified in the symbol field to a series of statements
described between .macro directive and the .endm directive.

[Syntax]
Synmbol field Mhenonic field Operand field Comment field
macr o- name . macro [formal -paranmeter[, ... 1] [; conment]
Macr o body
.endm [; conment]
[Function]

- The .macro directive executes a macro definition by assigning the macro name specified in the symbol field to a
series of statements (called a macro body) described between this directive and the .endm directive.

[Use]

- Define a series of frequently used statements in the source program with a macro name. After its definition only
describe the defined macro name, and the macro body corresponding to the macro name is expanded.

[Description]

- If the .endm directive corresponding to .macro directive does not exist, the CX outputs the message.

- For the macro name to be described in the symbol field, see the conventions of symbol description in *(2) Sym-
bol".

- To reference a macro, describe the defined macro name in the mnemonic field.

- For the formal parameter(s) to be described in the operand field, the same rules as the conventions of symbol
description will apply.

- Formal parameters are valid only within the macro body.

- An error occurs if any reserved word is described as a formal parameter. However, if a user-defined symbol is
described, its recognition as a formal parameter will take precedence.

- The number of formal parameters must be the same as the number of actual parameters. If a shortage of actual
parameters, the CX outputs the error message.

- A name or label defined within the macro body if declared with the .local directive becomes effective with respect
to one-time macro expansion.

- The number of macros that can be defined within a single source module is not specifically limited. In other words,
macros may be defined as long as there is memory space available.

- Formal parameter definition lines, reference lines, and symbol names are not output to a cross-reference list.

- Two or more sections must not be defined in a macro body. If defined, an error will be output.

- An error will be output if there are extra formal parameters that are not referenced in the macro body.

- If an undefined macro is called in a macro body, the CX outputs the message then stops assembling.

- If a currently defined macro is called in a macro body, the CX outputs the message then stops assembling.

- If a parameter defined by a label or directive is specified for a formal parameter, the CX outputs the message and
stops assembling.

R20UT0259EJ0100 Rev.1.00 RENESAS Page 266 of 890
Oct 01, 2010

CubeSuite Ver.1.40 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

- The only actual parameters that can be specified in the macro call are label names, symbol nhames, numbers,
registers, and instruction mnemonics.
If a label expression (LABEL-1), addressing-method specification label (#LABEL), or base register specification
([gp]) or the like is specified, then a message will be output depending on the actual parameter specified, and

assembly will halt.

- Alline of a sentence can be designated in the macro-body. Such as operand can't designate the part of the sen-
tence. If operand has a macro call, performs a label reference is undefined macro name, or the CX outputs the
message then stops assembling.

- An error will be output if a macro is defined in the macro body of a macro definition, but processing will continue
(the content up to the corresponding ".endm" directive is ignored). Referencing a macro name will cause a defini-

tion error.
[Example]
ADMAC .macro PARAL, PARA2 (1)
nmov PARAL, r12
add PARA2, 112
.endm 7 (2)
ADMAC 0x10, 0x20 ; (3)

(1) A macro is defined by specifying macro name "ADMAC" and two formal parameters "PARA1" and
"PARA2".

(2) This directive indicates the end of the macro definition.

(3) Macro "ADMAC" is referenced.

R20UT0259EJ0100 Rev.1.00 RENESAS Page 267 of 890
Oct 01, 2010

CubeSuite Ver.1.40

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

Jocal

The specified string is declared as a local symbol that will be replaced as a specific identifier.

[Syntax]
Synmbol field Mhernonic field Operand field Comment field
.1 ocal synbol - nane[, [; conment]
[Function]

- The specified string is declared as a local symbol that will be replaced as a specific identifier.

[Use]

- If a macro that defines a symbol within the macro body is referenced more than once, the assembler will output a

double definition error for the symbol.

By using the .local directive, you can reference (or call) a macro, which defines symbol(s) within the macro body,

more than once.

[Description]

- Specifying 4,294,967,294 or more local symbols as formal parameters to ".local" quasi directives will cause the fol-

lowing error message to be output, and the assembly will halt.

F0550514: Paramater table overflow.

- Local symbol names generated by the assembler are generated in the range of .??00000000 to .??FFFFFFFF.

[Example]
mL .macro X
.local a, b
a dw a
. dw X
.endm
mL 10
mL 20

The expansion is as follows.

. ?2?00000000: . dw . ??00000000
. ??00000001: . dw 10
. ??00000002: . dw . ??00000002
. ??00000003: . dw 20

R20UT0259EJ0100 Rev.1.00

Oct 01, 2010

RENESAS

Page 268 of 890

CubeSuite Ver.1.40 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

rept

Tells the assembler to repeatedly expand a series of statements described between this directive and the .endm direc-
tive the number of times equivalent to the value of the expression specified in the operand field.

[Syntax]
Synmbol field Mhenonic field Operand field Comment field
[1abel :] .rept absol ut e- expr essi on [; conment]
.endm [; conment]
[Function]

- The .rept directive tells the assembler to repeatedly expand a series of statements described between this direc-
tive and the .endm directive (called the REPT-ENDM block) the number of times equivalent to the value of the
expression specified in the operand field.

[Use]

- Use the .rept and .endm directives to describe a series of statements repeatedly in a source program.

[Description]

- An error occurs if the .rept directive is not paired with the .endm directive.

- If the .exitm directive appears in the REPT-ENDM block, subsequent expansion of the REPT-ENDM block by the
assembler is terminated.

- Assembly control instructions may be described in the REPT-ENDM block.

- Macro definitions cannot be described in the REPT-ENDM block.

- The value is evaluated as a 32-bit signed integer.

- If there is no arrangement of statements (block), nothing is executed.

- If the result of evaluating the expression is negative, the CX outputs the message then stops assembling.

- An error will be output if a macro is defined in the macro body of a macro definition, and processing will continue,
without performing expansion.

[Example]

.cseg text
REPT- ENDM bl ock
. rept 3 (1)
nop
; Source text

.endm 7 (2)

(1) This .rept directive tells the assembler to expand the REPT-ENDM block three consecutive times.

(2) This directive indicates the end of the REPT-ENDM block.

R20UT0259EJ0100 Rev.1.00 RENESAS Page 269 of 890
Oct 01, 2010

CubeSuite Ver.1.40 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

Jdrp

Tells the assembler to repeatedly expand a series of statements described between .irp directive and the .endm direc-
tive the number of times equivalent to the number of actual parameters while replacing the formal parameter with the
actual parameters (from the left, the order) specified in the operand field.

[Syntax]
Synbol field WMenonic field Qperand field Comment field
[1abel :] .irp formal - paraneter[actual -parameter[, ...]] [; coment]
.endm [; coment]
[Function]

- The .irp directive tells the assembler to repeatedly expand a series of statements described between this directive
and the .endm directive (called the IRP-ENDM block) the number of times equivalent to the number of actual
parameters while replacing the formal parameter with the actual parameters (from the left, the order) specified in
the operand field.

[Use]

- Use the .irp and .endm directives to describe a series of statements, only some of which become variables, repeat-
edly in a source program.

[Description]

- If the .endm directive corresponding to .irp directive does not exist, the CX outputs the message.

- If the .exitm directive appears in the IRP-ENDM block, subsequent expansion of the IRP-ENDM block by the
assembler is terminated.

- Macro definitions cannot be described in the IRP-ENDM block.

- Assembly control instructions may be described in the IRP-ENDM block.

- If the same parameter name is specified for a formal parameter and an actual parameter, the CX outputs the mes-
sage and stops assembling.

- If a parameter defined by a label or other directive is specified for a formal parameter and an actual parameter, the
CX outputs the message and stops assembling.

- An error will be output if a macro is defined in the macro body of a macro definition, and processing will continue,
without performing expansion.

[Example]

.cseg text

Lirp PARA OxA, 0xB, 0xC 7 (1)
;| RP- ENDM bl ock
add PARA, r12
nmov ri1, ri12
.endm 7 (2)

; Source text

R20UT0259EJ0100 Rev.1.00 RENESAS Page 270 of 890
Oct 01, 2010

CubeSuite Ver.1.40 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

(1) The formal parameter is "PARA" and the actual parameters are the following three: "OxA", "0xB", and
"OxC".
This .irp directive tells the assembler to expand the IRP-ENDM block three times (i.e., the number of actual
parameters) while replacing the formal parameter "PARA" with the actual parameters "0xA", "0xB", and
"oxC"

(2) This directive indicates the end of the IRP-ENDM block.

R20UT0259EJ0100 Rev.1.00 RENESAS Page 271 of 890
Oct 01, 2010

CubeSuite Ver.1.40 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

.exitm

This directive skips the repetitive assembly of the .irp and .rept directives enclosing this directive at the innermost posi-

tion.
[Syntax]
Synmbol field Mhenonic field Operand field Comment field
[1abel :] .exitm [; conment]
[Function]

- This directive skips the repetitive assembly of the .irp and .rept directives enclosing this directive at the innermost
position.

[Description]

- If this directive is not enclosed by .irp and .rept directives, the CX outputs the message then stops assembling.

R20UT0259EJ0100 Rev.1.00 RENESAS Page 272 of 890
Oct 01, 2010

CubeSuite Ver.1.40 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

.exitma

This directive skips the repetitive assembly of the irp and .rept directives enclosing this directive at the outermost posi-

tion.
[Syntax]
Synmbol field Mhenonic field Operand field Comment field
[1abel :] .exitm [; conment]
[Function]

- This directive skips the repetitive assembly of the irp and .rept directives enclosing this directive at the outermost
position.

[Description]

- If this directive is not enclosed by .irp and .rept directives, the CX outputs the message then stops assembling.

R20UT0259EJ0100 Rev.1.00 RENESAS Page 273 of 890
Oct 01, 2010

CubeSuite Ver.1.40 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

.endm

Instructs the assembler to terminate the execution of a series of statements defined as the functions of the macro.

[Syntax]

Synmbol field Mhenonic field Operand field Comment field

.endm [; conment]

[Function]

- The .endm directive instructs the assembler to terminate the execution of a series of statements defined as the
functions of the macro.

[Use]

- The .endm directive must always be described at the end of a series of statements following the .macro, .rept, and/
or the .irp directives.

[Description]

- A series of statements described between the .macro directive and .endm directive becomes a macro body.

- A series of statements described between the .rept directive and .endm directive becomes a REPT-ENDM block.

- A series of statements described between the .irp directive and .endm directive becomes an IRP-ENDM block.

- If the .macro, .rept, or .irp directive corresponding to this directive does not exist, the CX outputs the message then
stops assembling.

[Example]

(1) MACRO-ENDM

ADVAC .macro PARAL, PARA2
nmov A, #PARAL
add A, #PARA2
.endm
(2) REPT-ENDM
. cseg t ext
.rept 3
inc B
DEC C
.endm
R20UT0259EJ0100 Rev.1.00 RENESAS Page 274 of 890

Oct 01, 2010

CubeSuite Ver.1.40 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

(3) IRP-ENDM

.cseg text

dirp PARA, <1, 2, 3>

add A, #PARA
nmv [DE], A
.endm
R20UT0259EJ0100 Rev.1.00 RENESAS Page 275 of 890

Oct 01, 2010

CubeSuite Ver.1.40 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

4.3 Control Instructions

This chapter describes control instructions.
Control Instructions provide detailed instructions for assembler operation.

4.3.1 Outline

Control instructions provide detailed instructions for assembler operation and so are written in the source.
Control instructions do not become the target of object code generation.
Control instruction categories are displayed below.

Table 4-13. Control Instruction List

Control Instruction Type Control Instruction
Compile target type specification control instruc- PROCESSOR
tion
Symbol control instructions EXT_ENT_SIZE, EXT_FUNC
Assembler control instructions CALLT, REG_MODE, EP_LABEL, NO_EP_LABEL, NO_MACRO,
MACRO, DATA, SDATA, NOWARNING, WARNING
File input control instructions INCLUDE, BINCLUDE
Smart correction control instruction SMART_CORRECT
Conditional assembly control instructions IFDEF, IFNDEF, IF, IFN, ELSEIF, ELSEIFN, ELSE, ENDIF

As with directives, control instructions are specified in the source.
Also, among the control instructions displayed in "Table 4-13. Control Instruction List", the following can be written as
an cx option even in the command line when the CX is activated.

Table 4-14. Control Instructions and Assembler Option

Control Instruction Option
PROCESSOR -C
R20UT0259EJ0100 Rev.1.00 RENESAS Page 276 of 890

Oct 01, 2010

CubeSuite Ver.1.40 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

4.3.2 Compile target type specification control instruction

Compile target type specification control instructions specify the Compile target type in the source module file.
The following compile target type specification control instructions are available.

Table 4-15. Compile Target Type Specification Control Instructions

Control Instruction Overview
PROCESSOR Specifies in a source module file the compile target type
R20UT0259EJ0100 Rev.1.00 RENESAS Page 277 of 890

Oct 01, 2010

CubeSuite Ver.1.40 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

PROCESSOR

Specifies in a source module file the compile target type.

[Syntax]

[A] $[A] PROCESSOR][A] ([A] processor-type[A]) [A] [; comment]

[Function]

- The PROCESSOR control instruction specifies in a source module file the processor type of the target device sub-
ject to compile.

[Use]

- The processor type of the target device subject to compile must always be specified in the source module file or in
the startup command line of the compiler.

- If you omit the processor type specification for the target device subject to compile in each source module file, you
must specify the processor type at each compile operation. Therefore, by specifying the target device subject to
compile in each source module file, you can save time and trouble when starting up the compiler.

[Description]
- For the specifiable processor name, see the user's manual of the device used or "Device Files Operating Precau-
tions".
- If the specified processor type differs between the source module file and the option, the compiler will output a
warning message and give precedence to the processor type specification in the option.

[Example]

$ PROCESSOR (f 3507)

R20UT0259EJ0100 Rev.1.00 RENESAS Page 278 of 890
Oct 01, 2010

CubeSuite Ver.1.40

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

4.3.3 Symbol control instructions

Using the symbol control instruction, can generate a symbol table entry, define symbols, and specify the size of the

data indicated by a label.

The following symbol control instructions are available.

Table 4-16. Symbol Control Instructions

Control Instruction

Overview

EXT_ENT_SIZE

Specifies a flash table entry sizes

EXT_FUNC

Generates a flash table entry

R20UT0259EJ0100 Rev.1.00
Oct 01, 2010

RENESAS

Page 279 of 890

CubeSuite Ver.1.40 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

EXT_ENT_SIZE

Specifies a flash table entry size.

[Syntax]

[A] $[A] EXT_ENT_SI ZE[A] si ze[A] [; comment]

[Function]

- Sets the value specified by the operand as the flash table entry size.

[Use]

- Sets the value specified by the operand as the flash table entry size when an object module file is generated.
Specify this instruction to use the function for relinking a flash area or external ROM.

[Description]

- To specify a branch from an area that cannot be rewritten or replaced (boot area) to a rewritable or replaceable
area (flash area), a branch table is generated at a specified address in the flash area by specifying this control
instruction and two-stage branch is performed via the table.

- The entry size of this table is 4 bytes by default. A jr instruction is generated and execution can branch in a range
of 22 bits from the branch instruction.

- If it is necessary to branch to an address exceeding the range of 22 bits from the branch instruction in this table,
execution can branch over the entire 32-bit address space when 8 is specified in the case of the V850EXx core.

- This control instruction must be described in a source file which contains a relevant branch instruction (in the boot
area) and a source file which contains a relevant label definition (in the flash area).

- The size specified by this control instruction is the only value for the entire area, including the boot area and flash
area.

If a different size is specified, the CX outputs the message and stops assembling.

- Specify 4 (default) or 8 as the size.

R20UT0259EJ0100 Rev.1.00 RENESAS Page 280 of 890
Oct 01, 2010

CubeSuite Ver.1.40 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

EXT_FUNC

Generates a flash table entry.

[Syntax]

[A] $[A] EXT_FUNC[A] | abel - nane, | D-val ue[A] [; conmrent]

[Function]

- Generates a flash table entry having a label name and ID value specified by the operands.

[Use]

- Generates a flash table entry having a label name and ID value specified by the operands when an object module
file is generated. Specify this instruction to use the function for relinking a flash area or external ROM.

[Description]

- To specify a branch from an area that cannot be rewritten or replaced (boot area) to a rewritable or replaceable
area (flash area), a branch table is generated to a specified address in a flash area by specifying this control
instruction and two-stage branch is performed via the table.

- This control instruction must be written in a source file which contains a relevant branch instruction (in the boot
area) and a source file which contains a relevant label definition (in the flash area).

- If the same label name is specified with a different ID value, the CX outputs the message then stops assembling.

- If the same ID value is specified with a different label name, the CX outputs the message then stops assembling.

- It is recommended that all relevant label names be written in a single file and included into source files of the boot
area and flash area using the INCLUDE control instruction. This prevents contradictions described above.

- The ID value must be a positive number. The size of a branch table to be allocated depends on the maximum ID
value. Renesas Electronics recommends that the ID value be specified without spaces.

R20UT0259EJ0100 Rev.1.00 RENESAS Page 281 of 890
Oct 01, 2010

CubeSuite Ver.1.40 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

43.4 Assembler control instructions

The assembler control instruction can be used to control the processing performed by the assembler.
The following assembler control instructions are available.

Table 4-17. Assembler Control Instructions

Control Instruction Overview
CALLT A control instruction which is reserved for the compiler
REG_MODE Outputs a register mode information section
EP_LABEL Performs a label reference by %label as a reference by ep offset
NO_EP_LABEL Cancels the specification made with the EP_LABEL directive
NO_MACRO Does not expand the subsequent instructions
MACRO Cancels the specification made with the NO_MACRO directive
DATA Assumes that external data having symbol name extern_symbol has been allo-

cated to the data or bss attribute section, and expands the instructions which ref-
erence that data

SDATA Assumes that external data having symbol name extern_symbol has been allo-
cated to the sdata or sbss attribute section, and dose not expand the instructions
which reference that data

NOWARNING Does not output warning messages
WARNING Output warning messages
R20UT0259EJ0100 Rev.1.00 -’{ENESAS Page 282 of 890

Oct 01, 2010

CubeSuite Ver.1.40 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

CALLT

A control instruction which is reserved for the compiler.

[Syntax]

[A] $[A] CALLT[A] [; comment]

[Function]

- A control instruction which is reserved for the compiler.

[Description]

- Do not delete a callt instruction when it exists in the assembler source file output by the compiler. If it is deleted,
the prologue epilogue runtime linking cannot be checked.

R20UT0259EJ0100 Rev.1.00 RENESAS Page 283 of 890
Oct 01, 2010

CubeSuite Ver.1.40 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

REG_MODE

A register mode information section is output.

[Syntax]

[A] $[A] REG_MODE[A] speci fy-regi ster-node[A] [; comment]

[Function]

- A register mode information section is output into the object module file generated by the assembler.

[Description]

- Specify the register mode as "22" (indicating register mode 22); "26" (indicating register mode 26); "32" (indicating
register mode 32); or "common" (indicating universal register mode).

- A register mode information section stores information about the number of working registers and register-variable
registers used by the compiler. It is set in the object module file via this control instruction.

- If register mode 22 is used, then there are 5 working registers and 5 register-variable registers; if register mode 26
is used, then there are 7 of each; and if register mode 32 is used, then there are 10 of each.

- If register mode 32 is used, a register mode information section is not output into the object module file generated
by the assembler.

R20UT0259EJ0100 Rev.1.00 RENESAS Page 284 of 890
Oct 01, 2010

CubeSuite Ver.1.40 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

EP_LABEL

Performs a label reference by %label as a reference by ep offset.

[Syntax]

[A] $[A] EP_LABEL[A] [; corment |

[Function]

- Performs a label reference by %label as a reference by ep offset for the subsequent instructions.
- If $EP_LABEL is omitted, then the assembler will assume that $EP_LABEL was specified.

R20UT0259EJ0100 Rev.1.00 RENESAS Page 285 of 890
Oct 01, 2010

CubeSuite Ver.1.40 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

NO_EP_LABEL

Cancels the specification made with the EP_LABEL directive.

[Syntax]

[A] $[A] NO_EP_LABEL[A] [; comment |

[Function]

- Cancels the specification made with the EP_LABEL directive for the subsequent instructions.
- If SNO_EP_LABEL is omitted, then the assembler will assume that $EP_LABEL was specified.

R20UT0259EJ0100 Rev.1.00 RENESAS Page 286 of 890
Oct 01, 2010

CubeSuite Ver.1.40 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

NO_MACRO

Does not expand the subsequent instructions.

[Syntax]

[A] $[A] NO_MACR(A] [; conment]

[Function]

- Does not expand the subsequent instructions, other than the setfcond/jcond/jmp/cmovcond/sasfcond instructions.

R20UT0259EJ0100 Rev.1.00 RENESAS Page 287 of 890
Oct 01, 2010

CubeSuite Ver.1.40 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

MACRO

Cancels the specification made with the NO_MACRO directive.

[Syntax]

[A] $[A] MACRO A] [; commrent]

[Function]

- Cancels the specification made with the NO_MACRO directive for the subsequent instructions.

R20UT0259EJ0100 Rev.1.00 RENESAS Page 288 of 890
Oct 01, 2010

CubeSuite Ver.1.40 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

DATA

Assumes that external data having symbol nhame extern_symbol has been allocated to the data or bss attribute section,
and expands the instructions which reference that data.

[Syntax]

[A] $[A] DATA[A] synbol - nanme[A] [; conmrent]

[Function]

- Assumes that external data having symbol name extern_symbol has been allocated to the data or bss attribute
section, regardless of the size specified with the -Xsdata option, and expands the instructions which reference that
data.

- This format is used when a variable for which "data" is specified in #pragma section or section file is externally ref-
erenced by an assembler source file.

R20UT0259EJ0100 Rev.1.00 RENESAS Page 289 of 890
Oct 01, 2010

CubeSuite Ver.1.40 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

SDATA

Assumes that external data having symbol name extern_symbol has been allocated to the sdata or sbss attribute sec-
tion, and dose not expand the instructions which reference that data.

[Syntax]

[A] $[A] SDATA[A] synbol - nane[A] [; conmrent]

[Function]

- Assumes that external data having symbol name extern_symbol has been allocated to the sdata or sbss attribute
section, regardless of the size specified with the -Xsdata option, and does not expand the instructions which refer-
ence that data.

- This format is used when a variable for which "sdata" is specified in #pragma section or section file is externally
referenced by an assembler source file.

R20UT0259EJ0100 Rev.1.00 RENESAS Page 290 of 890
Oct 01, 2010

CubeSuite Ver.1.40 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

NOWARNING

Does not output warning messages.

[Syntax]

[A] $[A] NOMRNI NG A] [; comment |

[Function]

- Does not output warning messages for the subsequent instructions.

R20UT0259EJ0100 Rev.1.00 RENESAS Page 291 of 890
Oct 01, 2010

CubeSuite Ver.1.40 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

WARNING

Output warning messages.

[Syntax]

[A] $[A] WARNI NG A] [; commrent]

[Function]

- Output warning messages for the subsequent instructions.

R20UT0259EJ0100 Rev.1.00 RENESAS Page 292 of 890
Oct 01, 2010

CubeSuite Ver.1.40

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

4.3.5 File input control instructions

Using the file input control instruction, the CX can input an assembler source file or binary file to a specified position.

The following file input control instructions are available.

Table 4-18. File Input Control Instructions

Control Instruction

Overview

INCLUDE

Quotes a series of statements from another source module file

BINCLUDE

Inputs a binary file

R20UT0259EJ0100 Rev.1.00

Oct 01, 2010

RENESAS

Page 293 of 890

CubeSuite Ver.1.40 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

INCLUDE

Quote a series of statements from another source module file.

[Syntax]

[A] $[A] | NCLUDE[A] ([A] il e- name[A])[A] [; conment]

[Function]

- The INCLUDE control instruction tells the assembler to insert and expand the contents of a specified file beginning
on a specified line in the source program for assembly.

[Use]

- Arelatively large group of statements that may be shared by two or more source modules should be combined into
a single file as an INCLUDE file.
If the group of statements must be used in each source module, specify the flename of the required INCLUDE file
with the INCLUDE control instruction.
With this control instruction, you can greatly reduce time and labor in describing source modules.

[Description]

- The INCLUDE control instruction can only be described in ordinary source programs.
- The search pass of an INCLUDE file can be specified with the option (-1).
- The assembler searches INCLUDE file read paths in the following sequence:

(1) Folder specified by the option (-I)

(2) Folder in which the source file exists

(3) Folder containing the (original) C source file
(4) Currently folder

- The INCLUDE file can do nesting (the term "nesting" here refers to the specification of one or more other
INCLUDE files in an INCLUDE file).

- The maximum nesting level for include files is 4,294,967,294 (=0xFFFFFFFE) (theoretical value). The actual num-
ber that can be used depends on the amount of memory, however.

- If the specified INCLUDE file cannot be opened, the CX outputs the message and stops assembling.

- If an include file contains a block from start to finish, such as a section definition directive, macro definition direc-
tive, or conditional assembly control instruction, then it must be closed with the corresponding code. If it is not so
closed, then an error will be output, and assembly will continue assuming the include file is closed.

- Section definition directive, macro definition directives, and conditional assembly control instructions that are not
targets for assembly are not checked.

R20UT0259EJ0100 Rev.1.00 RENESAS Page 294 of 890
Oct 01, 2010

CubeSuite Ver.1.40 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

BINCLUDE

Inputs a binary file.

[Syntax]

[A] $[A] BI NCLUDE[A] ([A] fi | e-name[A])[A] [; comment]

[Function]

- Assumes the contents of the binary file specified by the operand to be the result of assembling the source file at
the position of this control instruction.

[Description]

- The search pass of an INCLUDE file can be specified with the option (-1).
- The assembler searches INCLUDE file read paths in the following sequence:

(1) Folder specified by the option (-I)
(2) Folder in which the source file exists
(3) Folder containing the (original) C source file
(4) Currently folder
- This control instruction handles the entire contents of the binary files. When a relocatable file is specified, this con-
trol instruction handles files configured in ELF format. Note that it is not just the contents of the .text selection, etc.

that are handled.
- If a non-existent file is specified, the CX outputs the message then stops assembling.

R20UT0259EJ0100 Rev.1.00 RENESAS Page 295 of 890
Oct 01, 2010

CubeSuite Ver.1.40 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

4.3.6 Smart correction control instruction

You can use the smart correction control instruction to instruct that an uncorrected function be changed to a corrected
function in an object module file.
The following smart correction control instructions are available.

Table 4-19. Smart Correction Control Instruction

Control Instruction Overview
SMART_CORRECT Changes an uncorrected function to a corrected function
R20UT0259EJ0100 Rev.1.00 RENESAS Page 296 of 890

Oct 01, 2010

CubeSuite Ver.1.40 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

SMART_CORRECT

Instruct that the uncorrected function be changed to the corrected function in an object module file.

[Syntax]

[A] $[A] SMART_CORRECTAct art - | abel - uncorrect ed-functi on, end- | abel - uncorrect ed-functi on,

start-1| abel -corrected-functi onA[; comment]

[Function]

- Instruct that the uncorrected function be changed to the corrected function in an object module file.

[Description]

- Instruct that the uncorrected function be changed to the corrected function in an object module file.

- The assembler outputs a branch instruction to branch from the start of the uncorrected function to the corrected
function.

- The branch instruction to branch to the corrected function (_func) is as follows.

jr32 _func

- If the code size of the uncorrected function is smaller than the size of the code needed to call the corrected func-
tion, then an error message is output, and assembly halts.

R20UT0259EJ0100 Rev.1.00 RENESAS Page 297 of 890
Oct 01, 2010

CubeSuite Ver.1.40 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

4.3.7 Conditional assembly control instructions

Using conditional assembly control instruction, the CX can control the range of assembly according to the result of
evaluating a conditional expression.
The following conditional assembly control instructions are available.

Table 4-20. Conditional Assembly Control Instructions

Control Instruction Overview

IFDEF Control based on symbol (assembly performed when the symbol is defined)

IFNDEF Control based on symbol (assembly performed when the symbol is not defined)

IF Control based on absolute expression (assembly performed when the value is
true)

IFN Control based on absolute expression (assembly performed when the value is
false)

ELSEIF Control based on absolute expression (assembly performed when the value is
true)

ELSEIFN Control based on absolute expression (assembly performed when the value is
false)

ELSE Control based on absolute expression/symbol

ENDIF End of control range

The maximum number of nest level of the conditional assembly control instruction is 4,294,967,294 (=OxFFFFFFFE)
(theoretical value). The actual number that can be used depends on the amount of memory, however.

R20UT0259EJ0100 Rev.1.00 RENESAS Page 298 of 890
Oct 01, 2010

CubeSuite Ver.1.40 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

IFDEF

Control based on symbol (assembly performed when the symbol is defined).

[Syntax]

[A] $[A] | FDEF[A] swi t ch- nanme[A] [; coment]

[Function]

- If the switch name specified by the operand is defined.

(@) If this control instruction and the corresponding ELSEIF, ELSEIFN, or ELSE control instruction exist,
assembles the block enclosed within this control instruction and the corresponding control instruc-
tion.

(b) If none of the corresponding control instruction detailed above exist, assembles the block enclosed
within this control instruction and the corresponding ENDIF control instruction.

- If the specified switch name is not defined.
Skips to the ELSEIF, ELSEIFN, ENSE, or ENDIF control instruction corresponding to this control instruction.

[Use]

- With these conditional assembly control instructions, source statements subject to assembly can be changed with-
out major modifications to the source program.

- If a statement for debugging that becomes necessary only during the program development is described in a
source program, whether or not the debugging statement should be assembled (translated into machine language)
can be specified by setting switches for conditional assembly.

[Description]

- This control instruction can be placed in an ordinary source program.

- The rules of describing switch names are the same as the conventions of symbol description (for details, see "(2)
Symbol").

- Switch names can overlap with user-defined symbols other than reserved words. Note, however, that overlapping
between switch names is checked.

- Switch names are not output to the assembly list file's symbol-list information or cross-reference information.

R20UT0259EJ0100 Rev.1.00 RENESAS Page 299 of 890
Oct 01, 2010

CubeSuite Ver.1.40 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

IFNDEF

Control based on symbol (assembly performed when the symbol is not defined).

[Syntax]

[A] $[A] | FNDEF[A] swi t ch- nanme[A] [; commrent]

[Function]

- If the switch name specified by the operand is defined.
Skips to the ELSEIF, ELSEIFN, ENSE, or ENDIF control instruction corresponding to this control instruction.

- If the specified switch name is not defined.

(a) If this control instruction and the corresponding ELSEIF, ELSEIFN, or ELSE control instruction exist,
assembles the block enclosed within this control instruction and the corresponding control instruc-
tion.

(b) If none of the corresponding control instruction detailed above exist, assembles the block enclosed
within this control instruction and the corresponding ENDIF control instruction.

[Use]

- With these conditional assembly control instructions, source statements subject to assembly can be changed with-
out major modifications to the source program.

- If a statement for debugging that becomes necessary only during the program development is described in a
source program, whether or not the debugging statement should be assembled (translated into machine language)
can be specified by setting switches for conditional assembly.

[Description]

- This control instruction can be placed in an ordinary source program.

- The rules of describing switch names are the same as the conventions of symbol description (for details, see "(2)
Symbol").

- Switch names can overlap with user-defined symbols other than reserved words. Note, however, that overlapping
between switch names is checked.

- Switch names are not output to the assembly list file's symbol-list information or cross-reference information.

R20UT0259EJ0100 Rev.1.00 RENESAS Page 300 of 890
Oct 01, 2010

CubeSuite Ver.1.40 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

IF

Control based on absolute expression (assembly performed when the value is true).

[Syntax]

[A] $[A] | F[A] absol ut e- expressi on[A] [; conmrent]

[Function]

- If the absolute expression specified by the operand is evaluated as being true (# 0).

(@) If this control instruction and the corresponding ELSEIF, ELSEIFN, or ELSE control instruction exist,
assembles the block enclosed within this control instruction and the corresponding control instruc-
tion.

(b) If none of the corresponding control instruction detailed above exist, assembles the block enclosed
within this control instruction and the corresponding ENDIF control instruction.

- If the absolute expression is evaluated as being false (= 0).
Skips to the ELSEIF, ELSEIFN, ENSE, or ENDIF control instruction corresponding to this control instruction.

[Use]

- With these conditional assembly control instructions, source statements subject to assembly can be changed with-
out major modifications to the source program.

- If a statement for debugging that becomes necessary only during the program development is described in a
source program, whether or not the debugging statement should be assembled (translated into machine language)
can be specified by setting switches for conditional assembly.

[Description]

- This control instruction can be placed in an ordinary source program.
- Absolute expressions are evaluated as 32-bit signed integers.

R20UT0259EJ0100 Rev.1.00 RENESAS Page 301 of 890
Oct 01, 2010

CubeSuite Ver.1.40 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

IFN

Control based on absolute expression (assembly performed when the value is false).

[Syntax]

[A] $[A] | FN[A] absol ut e- expressi on[A] [; conmrent]

[Function]

- If the absolute expression specified by the operand is evaluated as being true (# 0).
Skips to the ELSEIF, ELSEIFN, ENSE, or ENDIF control instruction corresponding to this control instruction.

- If the absolute expression is evaluated as being false (= 0).

(@) If this control instruction and the corresponding ELSEIF, ELSEIFN, or ELSE control instruction exist,
assembles the block enclosed within this control instruction and the corresponding control instruc-
tion.

(b) If none of the corresponding control instruction detailed above exist, assembles the block enclosed
within this control instruction and the corresponding ENDIF control instruction.

[Use]

- With these conditional assembly control instructions, source statements subject to assembly can be changed with-
out major modifications to the source program.

- If a statement for debugging that becomes necessary only during the program development is described in a
source program, whether or not the debugging statement should be assembled (translated into machine language)
can be specified by setting switches for conditional assembly.

[Description]

- This control instruction can be placed in an ordinary source program.
- Absolute expressions are evaluated as 32-bit signed integers.

R20UT0259EJ0100 Rev.1.00 RENESAS Page 302 of 890
Oct 01, 2010

CubeSuite Ver.1.40 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

ELSEIF

Control based on absolute expression (assembly performed when the value is true).

[Syntax]

[A] $[A] ELSEI F[A] absol ut e- expressi on[A] [; comment]

[Function]

- If the absolute expression specified by the operand is evaluated as being true (# 0).

(@) If this control instruction and the corresponding ELSEIF, ELSEIFN, or ELSE control instruction exist,
assembles the block enclosed within this control instruction and the corresponding control instruc-
tion.

(b) If none of the corresponding control instruction detailed above exist, assembles the block enclosed
within this control instruction and the corresponding ENDIF control instruction.

- If the absolute expression is evaluated as being false (= 0).
Skips to the ELSEIF, ELSEIFN, ENSE, or ENDIF control instruction corresponding to this control instruction.

[Use]

- With these conditional assembly control instructions, source statements subject to assembly can be changed with-
out major modifications to the source program.

- If a statement for debugging that becomes necessary only during the program development is described in a
source program, whether or not the debugging statement should be assembled (translated into machine language)
can be specified by setting switches for conditional assembly.

[Description]

- This control instruction can be placed in an ordinary source program.
- Absolute expressions are evaluated as 32-bit signed integers.

R20UT0259EJ0100 Rev.1.00 RENESAS Page 303 of 890
Oct 01, 2010

CubeSuite Ver.1.40 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

ELSEIFN

Control based on absolute expression (assembly performed when the value is false).

[Syntax]

[A] $[A] ELSEI FN[A] absol ut e- expressi on[A] [; conment]

[Function]

- If the absolute expression specified by the operand is evaluated as being true (# 0).
Skips to the ELSEIF, ELSEIFN, ENSE, or ENDIF control instruction corresponding to this control instruction.

- If the absolute expression is evaluated as being false (= 0).

(@) If this control instruction and the corresponding ELSEIF, ELSEIFN, or ELSE control instruction exist,
assembles the block enclosed within this control instruction and the corresponding control instruc-
tion.

(b) If none of the corresponding control instruction detailed above exist, assembles the block enclosed
within this control instruction and the corresponding ENDIF control instruction.

[Use]

- With these conditional assembly control instructions, source statements subject to assembly can be changed with-
out major modifications to the source program.

- If a statement for debugging that becomes necessary only during the program development is described in a
source program, whether or not the debugging statement should be assembled (translated into machine language)
can be specified by setting switches for conditional assembly.

[Description]

- This control instruction can be placed in an ordinary source program.
- Absolute expressions are evaluated as 32-bit signed integers.

R20UT0259EJ0100 Rev.1.00 RENESAS Page 304 of 890
Oct 01, 2010

CubeSuite Ver.1.40 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

ELSE

Control based on absolute expression/symbol.

[Syntax]

[A] $[A] ELSE[A] absol ut e- expressi on[A] [; coment]

[Function]

- If the specified switch name is not defined by the IFDEF control instruction, if the absolute expression of the IF, or
ELSEIF control instruction is evaluated as being false (= 0), or if the absolute expression of the IFN, or ELSEIFN
control instruction is evaluated as being true (% 0), assembles the arrangement of statements (block) enclosed
within this control instruction and the corresponding ENDIFcontrol instruction.

[Use]

- With these conditional assembly control instructions, source statements subject to assembly can be changed with-
out major modifications to the source program.

- If a statement for debugging that becomes necessary only during the program development is described in a
source program, whether or not the debugging statement should be assembled (translated into machine language)
can be specified by setting switches for conditional assembly.

[Description]

- This control instruction can be placed in an ordinary source program.

R20UT0259EJ0100 Rev.1.00 RENESAS Page 305 of 890
Oct 01, 2010

CubeSuite Ver.1.40 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

ENDIF

End of control range.

[Syntax]

[A] $[A] ENDI F[A] absol ut e- expressi on[A] [; comment]

[Function]

Indicates the end of the control range of a conditional assembly control instruction.

[Use]

- With these conditional assembly control instructions, source statements subject to assembly can be changed with-
out major modifications to the source program.

- If a statement for debugging that becomes necessary only during the program development is described in a
source program, whether or not the debugging statement should be assembled (translated into machine language)
can be specified by setting switches for conditional assembly.

[Description]

- This control instruction can be placed in an ordinary source program.

R20UT0259EJ0100 Rev.1.00 RENESAS Page 306 of 890
Oct 01, 2010

CubeSuite Ver.1.40 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

4.4 Macro

This section lainshe hthe cro function.
This is very convenient function to describe serial instruction group for number of times in the program.

4.4.1 Outline

This macro function is very convenient function to describe serial instruction group for number of times in the program.

Macro function is the function that is deployed at the location where serial instruction group defined as macro body is
referred by macros as per .macro, .endm directives.

Macro differs from subroutine as it is used to improve description of the source.

Macro and subroutine has features respectively as follows. Use them effectively according to the respective purposes.

- Subroutine
Process required many times in program is described as one subroutine. Subroutine is converted in machine lan-
guage only once by assembler.
Subroutine/call instruction (generally instruction for argument setting is required before and after it) is described
only in subroutine reference. Consequently, memory of program can be used effectively by using subroutine.
It is possible to draw structure of program by executing subroutine for process collected serially in program
(Because program is structured, entire program structure can be easily understood as well setting of the program
also becomes easy.).

Macro

Basic function of macro is to replace instruction group.

Serial instruction group defined as macro body by .macro, .endm directives are deployed in that location at the
time of referring macro. Assembler deploys macro/body that detects macro reference and converts the instruction
group to machine language while replacing temporary parameter of macro/body to actual parameter at the time of
reference.

Macro can describe a parameter.

For example, when process sequence is the same but data described in operand is different, macro is defined by
assigning temporary parameter in that data. When referring the macro, by describing macro name and actual
parameter, handling of various instruction groups whose dercription is different in some parts only is possible.

Subroutine technique is used to improve efficiency of coding for macro to use to draw structure of program and reduc-
ing memory size.

442 Usage of macro

A macro is described by registering a pattern with a set sequence and by using this pattern. A macro is defined by the
user. A macro is defined as follows. The macro body is enclosed by ".macro" and ".endm".

PUSHVAC . macro REG --The following two statenments constitute the macro body.
add -4, sp
st.w REG, 0xO0[sp]

.endm

If the following description is made after the above definition has been made, the macro is replaced by a code that
"stores r19 in the stack".

PUSHVAC r 19

R20UT0259EJ0100 Rev.1.00 RENESAS Page 307 of 890
Oct 01, 2010

CubeSuite Ver.1.40

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

In other words, the macro is expanded into the following codes.

add -4, sp
st.w r19, O0xO[sp]
4.4.3 Macro operator

This section describes the combination symbols

(1) O(Concatenation)

and "$", which are used to link strings in macros.

- The concatenation "[I' concatenates one character or one character string to another within a macro body.

At macro expansion time, the character or character string on the left of the concatenation is concatenated to
the character or character string on the right of the sign. The "[I' itself disappears after concatenating the

strings.

- The symbols before and after the combination symbol "~" in the symbols of a macro definition can be recog-
nized as formal parameters or local symbols, and combination symbols can also be used as delimiter symbols.
At macro expansion time, strings before and after the "[in the symbol are evaluated as the local symbols and

formal parameters, and concatenated into single symbols.
- The character "~" can only be used as a combination symbol in a macro definition.
- The "' in a character string and comment is simply handled as data.

- Two "[I' signs in succession are handled as a single "[1' sign.

Examples 1.
abc .macro X
abc~x: nov r10, r20
sub def~x, r20
.endm
abc NECEL
[Devel oprment resul t]
abcNECEL: nov r10, r20
sub def NECEL, r20
2.
abc .macro X, Xxy
a_~Xxy: nov r10, r20
a_~X~y: nov r20, rl1o0
.endm
abc necel, NECEL
[Devel oprment resul t]
a_NECEL: mov r10, r20
a_necel y: nmv r20, rl10
R20UT0259EJ0100 Rev.1.00 RENESANAS Page 308 of 890

Oct 01, 2010

CubeSuite Ver.1.40

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

3.
abc .macro X, Xxy
~ab nov r10, r20

.endm

abc necel, NECEL

[Devel oprment resul t]

ab: nov r10, r20

(2) $ (Dollar symbol)

If a symbol prefixed with a dollar symbol ($) is specified as an actual argument for a macro call, the assembler
assumes the symbol to be specified as an actual argument. If, however, an identifier other than a symbol or an
undefined symbol name is specified immediately after the dollar symbol ($), the as850 outputs the message then

stops assembling.

Example
macl .macro X

mov X, rlo
.endm

.macro nac2

. set val ue, 10
macl val ue
macl $val ue
.endm
mac2

[Devel oprment resul t]

. set val ue, 10
mv val ue, r10
nmv 10, r10

45 Reserved Words

The assembler has reserved words. Reserve word cannot be used in symbol, label, section name, macro name. If a
reserved word is specified, the CX outputs the message and stops assembling. Reserve word doesn't distinguish

between uppercase and lowercase.

The reserved words are as follows.

- Instructions (such as add, sub, and mov)

- Directives
- Control instructions

- Register names, Internal register name

R20UT0259EJ0100 Rev.1.00
Oct 01, 2010

RENESAS Page 309 of 890

CubeSuite Ver.1.40 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

4.6 Assembler Generated Symbols

The following is a list of symbols generated by the assembler for use in internal processing.

This excludes, however, reserved section names. Symbols with the same names as the symbols below cannot be

used.
Table 4-21. Assembler Generated Symbols
Symbol Name Explanation
.__multi_N Multi-core information symbols
.__multi_N.end

(N : 0to 4294967294))

.??00000000 to .??FFFFFFFF .local directive generation local symbols
__s_PPPP_SSSS0000 Symbols for assembler debugging information
(PPPP : Primary file names) Example : __s_src_sub_sample0000

(SSSS : text section name)

4.7 Instructions

This section describes various instruction functions of V850 microcontroller products.
See the device with an instruction set of VB50E2V3 product user's manual and architecture edition for details about the
device with an instruction set of V850E2V3.

4.7.1 Memory space

V850 microcontroller has architecture of 32 bit and supports linear address space (data space) of maximum 4G byte in
operand addressing.

On other hand, linear address space (program space) of maximum 16M byte is supported in address of instruction
address.

Memory map of V850 microcontroller is shown below.

However, see user's manual of each product for details as contents of internal ROM, internal RAM etc are different for
each product.

Figure 4-2. Memory Map of V850 Microcontroller

FFFFFFFFH =
Peripheral I/O
FFFFEFFFH
Internal RAM
4G bytes linear
Internal ROM/
PROM/
Flash memory
00000000H A
R20UT0259EJ0100 Rev.1.00 RENESAS Page 310 of 890

Oct 01, 2010

CubeSuite Ver.1.40 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

4.7.2 Register

Register can be divided broadly in 2 types of registers such as program register used for general program and system
register used for controlling of executing environment. Register has width of 32 bits.

Figure 4-3. Program Register

31 0

r0: Zero register

rl: Assembler reserve register

r2

r3: Stack pointer(SP)

r4: Global pointer(GP)

=

5: Text pointer(TP)

r6

r7

8

r9

r10

ri1

rl2

rl3

rl4

r15

rl6

rl7

rl8

rl9

r20

r21

r22

23

124

r25

r26

r27

r28

r29

r30: Element pointer(EP)

r31: Link pointer(LP)

PC: Program counter

R20UT0259EJ0100 Rev.1.00 RENESAS Page 311 of 890
Oct 01, 2010

CubeSuite Ver.1.40 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

Figure 4-4. System Register

FPU function group system registers

PMU function group system registers

Processor protection function group system registers

CPU function group system registers
31 0

EIPC: status save register when acknowledging an El level exception

EIPSW: status save register when acknowledging an El level exception

FEPC: status save register when acknowledging an FE level exception

FEPSW: status save register when acknowledging an FE level exception

ECR: exception cause l

PSW: program status word ‘

SCCFG: SYSCALL operation setting

SCBP: SYSCALL base pointer

EIIC: El level exception cause

FEIC: FE level exception cause

DBIC: DB level exception cause

CTPC: status save register when executing CALLT

CTPSW: status save register when executing CALLT

DBPC: status save register when acknowledging a DB level exception

DBPSW: status save register when acknowledging a DB level exception

CTBP: CALLT base pointer

Debug function registers

EIWR: El level exception working register

FEWR: FE level exception working register

DBWR: DB level execution working register

BSEL: register bank selection

See the device with an instruction set of V850E2V3 product user's manual and architecture edition for details.

R20UT0259EJ0100 Rev.1.00 RENESAS Page 312 of 890
Oct 01, 2010

CubeSuite Ver.1.40 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

(1) Program register
The program registers include general-purpose registers (r0 to r31) and a program counter (PC).

Table 4-22. Program Registers

Name Purpose Operation
r0 Zero register Always holds 0.
rl Assembler reserved registe | Working register when generating the address.
r2 Address/data variable register (when the real-time OS to be used is not using r2).
r3 Stack pointer Used for stack frame generation when function is called.
r4 Global pointer Used to access global variable in data area.
r5 Text pointer Used as register for pointing to start address of text area

(area where program code is placed).

ré to r29 Address/data variable registers.

r30 Element pointer Used as base pointer when generating address at the time of
accessing the memory.

r3l Link pointer Used when compiler calls function.

PC Program counter Saves instruction address in program execution.

(a) General purpose registerrOto r31
Thirty-two general-purpose registers, r0 to r31, are provided. These registers can be used for address vari-
ables or data variables.
However, care must be exercised as follows in using the r0 to r5, r30, and r31 registers.

<1> r0,r30
r0 and r30 are implicitly used by instructions.
r0 is a register that always holds 0, and is used for operations using 0 and offset 0 addressing.
r30 is used as base pointer by SLD instruction or SST instruction when accessing memory.

<2> rl1,r3tor5,r31
rl, r3 to r5, and r31 are implicitly used by the assembler and C compiler.
Before using these registers, therefore, their contents must be saved so that they are not lost. The con-
tents must be restored to the registers after the registers have been used.

<3> r2
r2 is sometimes used by a real-time OS.
When the real-time OS is not using r2, r2 can be used as an address variable register or a data variable
register.

R20UT0259EJ0100 Rev.1.00 RENESAS Page 313 of 890
Oct 01, 2010

CubeSuite Ver.1.40 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

(b) Program counter: PC
This register holds an instruction address during program execution.

Further, meaning of each bit of PC differs according to the types (V850ES, V850E1, V850E2) of CPU.

<1> VB850ES, V850E1

Bits 25-0 are valid and bits 31-26 are reserved for future function expansion (fixed to 0).

If a carry occurs from bit 25 to bit 26, it is ignored. Bit Bit O is always fixed to 0 so that execution cannot
branch to an odd address.

Figure 4-5. Program Counter [V850ES, V850E1]

31 26 25 10
N I rr1r 111 1rrr 111 11 1T 1T 1T 11T T 71T 17
PC (Executing command address) ! 0
<2> VB850E2
Bits 28-0 are valid and bits 31-29 are reserved for future function expansion (fixed to 0).
If a carry occurs from bit 28 to bit 29, it is ignored. Bit O is always fixed to 0 so that execution cannot
branch to an odd address.
Figure 4-6. Program Counter [V850E2]
31 29 28 10
T 11T 1T 1T 17 17 17T 17 17 17T 17T 17T 17T 17T 17T 17T 7T T T 17T T T T T T T
PC (Executing command address) ! 0
R20UT0259EJ0100 Rev.1.00 .ZENESAS Page 314 of 890
Oct 01, 2010

CubeSuite Ver.1.40 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

4.7.3 Addressing

The CPU generates two types of addresses: instruction addresses used for instruction fetch and branch operations;

and operand addresses used for data access.

(1) Instruction address
An instruction address is determined by the contents of the program counter (PC), and is automatically incre-
mented (+2) according to the number of bytes of an instruction to be fetched each time an instruction is executed.
When a branch instruction is executed, the branch destination address is loaded into the PC using one of the fol-

lowing two addressing modes.

(a) Relative addressing (PC relative)
The signed 9- or 22-bit data of an instruction code (displacement: disp x) is added to the value of the program
counter (PC). At this time, the displacement is treated as 2's complement data with bits 8 and 21 serving as
sign bits (S).
JR disp22 instruction, JARL disp22, reg2 instruction, JR disap32 instruction, JARL disp32, regl instruction,
Bcend disp9 instruction is the target of this addressing.

Figure 4-7. Relative Addressing (JR disp22/JARL disp22, reg2) [V850ES, V850E1]

31 26 25 0
T T T 11T 1T T 1T T 1T T 1T T 17T T 1T T T T 7T T T T T T
00O0O0O0O PC 0
+
31 22221 0
T T T T T 17 1771 T T 1T T 1T T 1T T T T T T 7T T 7T T 17T 1771

Sign extension S disp22 0

31 26 25 0
T T 171 rrrr Tt 1rr 1t 1t 1T 1 17 17 T 17 7T 17T 17T 17T T T T T

00O0OODO PC 0

Operation target memory

v

R20UT0259EJ0100 Rev.1.00 RENESAS Page 315 of 890

Oct 01, 2010

CubeSuite Ver.1.40 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

Figure 4-8. Relative Addressing (JR disp22/JARL disp22, reg2) [V850E2]

31 29 28 0
[T rrrrrrr1t 171t 1t17 11 17 1 17 17 17T 17T 1T 17T 17T T T T T T
00O PC 0
+
31 2221 0
T T 7T 17T 17T T T 1T 117 1717 17 17T 17T 17T 17T 17T 17T T 7T T T T T T

Sign extension S disp22 0

31 29 28 0
T rr1rr 71T 1717171 1T 17T 17T 17T 17T 7T 7T 17T 17T 17T 17T 17T T T T T T

00O PC 0

Operation target memory

v

Figure 4-9. Relative Addressing (JR disp32/JARL disp32, reg2) [V850E2]

31 2928 0
1 T 1 1T 11 11T 17T 17T 17T T T T T 7T T T T T 1T T 71
000 PC 0
+
31 0
FrT 171
S disp32 0
31 29 28 0
[T 1T 1T 11T T 17T T T T T T T T T T T T T T T T T T
000 PC 0

Operation target memory

v

R20UT0259EJ0100 Rev.1.00 RENESAS Page 316 of 890
Oct 01, 2010

CubeSuite Ver.1.40 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

Figure 4-10. Relative Addressing (Bcnd disp9) [VB50ES, V850E1]

31 26 25 0
T 1T T1 rrrrrr1rrrrrr 111 17 7T 17T 7T 17T 17T 17T 17T T T 11
00O0O0O0O PC 0
+
31 9 8 0
FTr T T T T T T T T T T 1T T T T T T 1T T T T T T T T T

Sign extension S disp9 0

31 26 25 0
T T T 1T 11T 1 T 1T T 1T T 1T T T T T T T T T 171
00O0O0O0O PC 0

Operation target memory

v

Figure 4-11. Relative Addressing (Bcnd disp9) [V8B50E2]

31 2928 0
T 1T 11T T 1T T T 1T T T T T T 1T T T T T
00O PC 0
+
31 9 8 0
[O I I N N Y O B B T T T T 17 71

Sign extension S disp9 0

31 2928 0
T Y A B
00O PC 0

Operation target memory

v

R20UT0259EJ0100 Rev.1.00 RENESAS Page 317 of 890
Oct 01, 2010

CubeSuite Ver.1.40 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

(b) Register addressing (Register indirect)
The contents of a general-purpose register (regl) specified by an instruction are transferred to the program
counter (PC).
This addressing is used for the JMP [regl] instruction.

Figure 4-12. Register Addressing (JMP [reg1]) [V850ES, V850E1]

31 0
rrrrrrrr1r1r1r1r1rr17 1717 1T 17 17T 17 17T T 17T T 17T T 7T T 17T T T T
regl
31 26 25 0
T T T T 117117 1r 1 17 17T 17 1T 17T 17T T 17T T 17T T 17T T T T
00O0OODO PC 0

Operation target memory

v

Figure 4-13. Register Addressing (JMP [regl]) [V850E2]

31 0
rrrrrrrr1r1r1r1r1rr17 1717 1T 17 17T 17 17T T 17T T 17T T 7T T 17T T T T
regl
31 2928 0
[rr 11111 1r 1 17 17 17 17 17T 17 17T 17 7T 17T 7T 17T 1T 17T T T T T
00O PC 0

Operation target memory

v

R20UT0259EJ0100 Rev.1.00 RENESAS Page 318 of 890
Oct 01, 2010

CubeSuite Ver.1.40 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

(c) Based addressing
Contents of general purpose register (regl) specified by command, in which 32 bit data (displacement: disp) is
added, are forwarded in program counter (PC).
This addressing is used for the JMP disp32 [reg1l] instruction.

Figure 4-14. Register Addressing (JMP disp32[reg1]) [V850E2]

31 0
rrrrrrrr1r1r1r1r1rr17 1717 1T 17 17T 17 17T T 17T T 17T T 7T T 17T T T T
regl
+
31 0
rrrr 11T 1711t 1rr 1117 1T 11T 17 17T T 17T T 17T T 7T T T T T T
S disp32 0
31 2928 0
[rr 111 1r 1 1r 1 17 171717 17 17T 17 17 7T 17T 7T 17T 7T 17T T T T T
000 PC 0

Operation target memory

v

(2) Operand address
When an instruction is executed, the register or memory area to be accessed is specified in one of the following
four addressing modes.

(a) Register addressing
The general-purpose register or system register specified in the general-purpose register specification field is
accessed as operand.
This addressing mode applies to instructions using the operand format regl, reg2, reg3, or regID.

(b) Immediate addressing
The 5-bit or 16-bit data for manipulation is contained in the instruction code
This addressing mode applies to instructions using the operand format imm5, imm16, vector, or cccc.

<1> vector
Operand that is 5-bit immediate data for specifying a trap vector (O0H to 1FH), and is used in the TRAP
instruction.

<2> cccc
Operand consisting of 4-bit data used in the CMOV, SASF, and SETF instructions to specify a condition
code. Assigned as part of the instruction code as 5-bit immediate data by appending 1-bit 0 above the
highest bit.

R20UT0259EJ0100 Rev.1.00 RENESAS Page 319 of 890
Oct 01, 2010

CubeSuite Ver.1.40 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

(c) Based addressing
The following two types of based addressing are supported.

<1> Typel
The address of the data memory location to be accessed is determined by adding the value in the speci-
fied general-purpose register (regl) to the 16-bit displacement value (disp16) contained in the instruction
code.
This addressing mode applies to instructions using the operand format disp16 [regl].

Figure 4-15. Based Addressing (Typel) [V850ES, V850E1, V850E2]

rrrrrrrrrrrrttr -t rp Tttt T 1T T 1T T T 1T 1T 1T 1T
Sign extension disp16

Operation target memory

v

<2> Type?2
The address of the data memory location to be accessed is determined by adding the value in the ele-
ment pointer (r30) to the 7- or 8-bit displacement value (disp7, disp8).
This addressing mode applies to SLD and SST instructions.

Figure 4-16. Based Addressing (Type2) [V850ES, V850E1, V850E2]

31 0

rr 711001 1T 1T 1T 1T T T 1T T T T T T T T T T T T T T°71
r30(element pointer)

+

31 8 7 0

-t rrrrrrrrrtrrr -ttt Tttt T T T 1P T 1T 1T 1T 1T/
Zero corresponding extension disp8 or disp7

Operation target memory

v

Remark Byte access = disp7
Halfword access and word access: disp8

R20UT0259EJ0100 Rev.1.00 RENESAS Page 320 of 890
Oct 01, 2010

CubeSuite Ver.1.40 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

(d) Bit addressing
This addressing is used to access 1 bit (specified with bit#3 of 3-bit data) among 1 byte of the memory space
to be manipulated by using an operand address which is the sum of the contents of a general-purpose regis-
ter. (regl) and a 16-bit displacement (disp16) sign-extended to a word length.
This addressing mode applies only to bit manipulation instructions.

Figure 4-17. Bit Addressing [V850ES, V850E1, V850E2]

- rrrrrrrrrrrrprrrrr T
Sign extension disp16

Operation target memory

n

v

Remark n: Bit position specified with 3-bit data (bit#3) (n = 0 to 7)

R20UT0259EJ0100 Rev.1.00 RENESAS Page 321 of 890
Oct 01, 2010

CubeSuite Ver.1.40

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

4.7.4

Instruction set

This section explains the instruction set supported by the CX.

(1) Description of symbols

Next table lists the meanings of the symbols used further.

Table 4-23. Meaning of Symbols

Symbols

Meaning

CMD

Instruction

CMDi

Instruction(andi, ori, or xori)

reg, regl, reg2

Register

r0, RO Zero register
R1 Assembler-reserved register
ap Global pointer (r4)
ep Element pointer (r30)
[req] Base register
disp Displacement (Displacement from the address)
32 bits unless otherwise stated.
dispn n-bit displacement
imm Immediate
32 bits unless otherwise stated.
immn n-bit immediate
bit#3 3-bit data for bit number specification
cc#3 3-bit data for specifying CCO to CC7 (bits 24 to 31) of the FPSR floating-point system register
#label Absolute address reference of label
label Offset reference of label in section or PC offset reference
However, for a section allocated to a segment for which a tp symbol is to be generated, offset
reference from the tp symbol is referred instead of offset in section
$label gp offset reference of label
llabel Absolute address reference of label (without instruction expansion)
%label Offset reference of ep

HIGHW(value)

Higher 16 bits of value

LOWW(value)

Lower 16 bits of value

HIGHW1(value)

Note

Higher 16 bits of value + bit value of bit number 15 of value

HIGH(value) Upper 8 bits of the lower 16 bits of value
LOW(value) Lower 8 bits of value

addr Address

PC Program counter

PSW Program status word

reglD System register number (0 to 31)

vector Trap vector (0 to 31)

R20UT0259EJ0100 Rev.1.00

Oct 01, 2010

RENESAS

Page 322 of 890

CubeSuite Ver.1.40 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

Symbols Meaning

BITIO Peripheral I/0 register (for 1-bit manipulation only)

Note The bit number O is LSB (Least Significant Bit).

(2) Operand
This section describes the description format of operand in assembler. In assembler, register, constant, symbol,

label reference, and expression that composes of constant, symbol, label reference, operator and parentheses can

be specified as the operands for instruction, and directives.

(@)

(b)

()

Register
The registers that can be specified with the assembler are listed below.N°t
ro, zero, r1, r2, hp, r3, sp, r4, gp, 15, tp, 16, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17, r18, r19, r20, r21,

r22,r23, r24, r25, r26, r27, r28, r29, r30, ep, r31, Ip

Note For the Idsr and stsr instructions, the PSW, and system registers are specified by using the numbers.
Further, in assembler, PC cannot be specified as an operand.

rO and zero (Zero register), r2 and hp (Handler stack pointer), r3 and sp (Stack pointer), r4 and gp (Global
pointer), r5 and tp (Text pointer), r30 and ep (Element pointer), r31 and Ip (Link pointer) shows the same regis-
ter.

ro

r0 is the register which normally contains 0 value. This register does not substitute the result of an operation
even if used as a destination register. When r0 is specified as a destination register, the assembler outputs the
following messageN°®, and then continues assembling.

Note Output of this message can be suppressed by specifying the warning message suppression option (-
Xwarning_level) upon starting the assembler.

nmv 0x10, rO
1

WO0550013: r0 used as destination register

rl

The assembler-reserved register (rl) is used as a temporary register when instruction expansion is performed
using the assembiler. If rl is specified as a source or destination register, the assembler outputs the following
messageN€, then continues assembling.

Note Output of this message can be suppressed by specifying the warning message suppression option (-
Xwarning_level) upon starting the assembler.

nmov 0x10, r1

|

WO0550013: r1 used as destination register

R20UT0259EJ0100 Rev.1.00 RENESAS Page 323 of 890
Oct 01, 2010

CubeSuite Ver.1.40 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

nmv rl, rlo0
1

WO0550013: r1 used as source register

(d) Constants
As the constituents of the absolute expressions or relative expressions that can be used to specify the oper-
ands of the instructions and pseudo-instruction in the assembler, integer constants and character constants
can be used. For the Id/st and bit manipulation instructions, a "peripheral 1/O register name", defined in the
device file, can also be specified as an operand. Thus enabling input/output of a port address. Moreover,
floating-point constants can be used to specify the operand of the .float pseudo-instruction, and string con-
stants can be used to specify the operand of the .set pseudo-instruction.

(e) Symbols
The assembler supports the use of symbols as the constituents of the absolute expressions or relative expres-
sions that can be used to specify the operands of instructions and directives.

(f) Label Reference
In assembler, label reference can be used as a component of available relative value as shown in operand

designation of instruction/directive.
- Memory reference instruction (Load/store instruction, and bit manipulation instruction)
- Operation instruction (arithmetic operation instruction, saturated operation instruction, logical operation
instruction)
- Branch instruction

- Area reservation directive

In assembler, the meaning of a label reference varies with the reference method and the differences used in

the instructions/directives Details are shown below.

Table 4-24. Label Reference

Reference Instructions Used Meaning
Method
#label Memory reference instruc- The absolute address of the position at which the definition of
tion, operation instruction label (label) exists (Offset from address gNote l).
and jmp instruction This has a 32-bit address and must be expanded into two

instructions except mov instruction.

Area reservation directive The absolute address of the position at which the definition of
label (label) exists (Offset from address oNote 1y,

Note that the 32-bit address is a value masked in accordance
with the size of the area secured.

R20UT0259EJ0100 Rev.1.00 RENESAS Page 324 of 890
Oct 01, 2010

CubeSuite Ver.1.40

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

Reference
Method

Instructions Used

Meaning

llabel

Memory reference instruc-
tion, operation instruction

The absolute address of the position at which the definition of
label (label) exists (Offset from address 0 Not€ 1),

This has a 16-bit address and cannot expand instructions if
instructions with 16-bit displacement or immediate are speci-
fied.

If any other instructions are specified, expansion into appro-
priate one instruction is possible.
If the address defined by label (label) is not within a range

expressible by 16 bits, an error will be occur at the time of
link.

Area reservation directive

The absolute address of the position at which the definition of
label (label) exists (Offset from address 0 Not€ 1),

Note that the 32-bit address is a value masked in accordance
with the size of the area secured.

label

Memory reference instruc-
tion, operation instruction

The offset in the section of the position where definition of the
label (label) exists (offset from the initial address of the sec-
tion where the definition of label (label) existsNot 2).

This has a 32-bit offset and must be expanded into two
instructions.

Note that for a section allocated to a segment for which a tp
symbol is to be generated, the offset is referred from the tp
symbol.

Branch instruction except
jmp instruction

The PC offset at the position where definition of label (label)
exists (offset from the initial address of the instruction using
the reference of label (label)N°t 2),

Area reservation directive

The offset in the section of the position where definition of the
label (label) exists (offset from the initial address of the sec-
tion where the definition of label (label) existsNot 2).

Note that the 32-bit offset is a value masked in accordance
with the size of the area secured.

%label

Memory reference instruc-
tion, operation instruction

The ep offset at the position where definition of the label
(label) exists (offset from the address showing the element
pointer).

This has a 16-bit offset and cannot expand instructions if
instructions with 16-bit displacement or immediate are speci-
fied.

If any other instructions are specified, expansion into appro-
priate one instruction is possible.

If the address defined by label (label) is not within a range

expressible by 16 bits, an error will be occurred at the time of
link.

Area reservation directive

The ep offset at the position where definition of the label
(label) exists (offset from the address showing the element
pointer).

Note that the 32-bit offset is a value masked in accordance
with the size of the area secured.

$label

Memory reference instruc-
tion, operation instruction

The gp offset at the position where definition of the label
(label) exists (offset from the address showing the global
pointerNote 3).

R20UT0259EJ0100 Rev.1.00
Oct 01, 2010

RENESAS Page 325 of 890

CubeSuite Ver.1.40 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

Notes 1. The offset from address 0 in object module file after link.
2. The offset from the first address of the section (output section) in which the definition of label (label)
exists is allocated in the linked object module file.
3. The offset from the address indicated by the value of text pointer symbol + value of the global
pointer symbol for the segment to which the above output section is allocated.

The meanings of label references for memory reference instructions, operation instructions, branch instruc-
tions, and area allocation pseudo-instruction are shown below.

Table 4-25. Memory Reference Instruction

Reference Method Meaning

#label[reg] The absolute address of label (label) is treated as a displacement.

This has a 32-bit value and must be expanded into two instructions. By set-
ting #label[r0], reference by an absolute address can be specified.

Part of [reg] can be omitted. If omitted, the assembler assumes that [rO] has
been specified.

label[req] The offset in the section of label (label) is treated as a displacement.

This has a 32-bit value and must be expanded into two instructions. By
specifying a register indicating the first address of section as reg and thereby
setting label[reg], general register relative reference can be specified.

For a section allocated to a segment for which a tp symbol is to be gener-
ated, however, the offset from tp symbol is treated as a displacement.

$label[reg] The gp offset of label (label) is treated as a displacement.

This has either a 32-bit or 16-bit value, from the section defined by label
(label), and pattern of instruction expansion changes accordingly Note |f an
instruction with a 16-bit value is expanded and the offset calculated from the
address defined by label (label) is not within a range that can be expressed
in 16 bits, an error is output at the time of link. By setting $label [gp], relative
reference of the gp register (called a gp offset reference) can be specified.
Part of [reg] can be omitted. If omitted, the assembler assumes that [gp] has
been specified.

llabel[req] The absolute address of label (label) is treated as a displacement.

This has a 16-bit value and instruction is not expanded. If the address
defined by label (label) cannot be expressed in 16 bits, an error is output at
the time of link. By setting !lable[r0], reference by an absolute address can
be specified.

Part of [reg] can be omitted. If omitted, the assembler assumes that [rO] has
been specified.

However, unlike #label[reg] reference, instruction expansion is not executed.

%label[reg] The offset from the ep symbol in the position where definition of the label
(label) exists is treated as a displacement.

This either has a 16-bit value, or depending on the instruction a value lower
than this, and if it is not a value that can be expressed within this range, an
error is output at the time of link.

Part of [reg] can be omitted. If omitted, the assembler assumes that [ep] has
been specified.

Note See "(h) gp Offset Reference".

R20UT0259EJ0100 Rev.1.00 RENESAS Page 326 of 890
Oct 01, 2010

CubeSuite Ver.1.40 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

Table 4-26. Operation Instructions

Reference Method Significance

#label The absolute address of label (label) is treated as an immediate.

This has a 32-bit value and must be expanded into two instructions.

label The offset in the section of label (label) is treated as an immediate.
This has a 32-bit value and must be expanded into two instructions.

However, for a section allocated to a segment for which a tp symbol is to be
generated, the offset from the tp symbol is treated as an immediate value.

$label The gp offset of label (label) is treated as an immediate.

This either has a 32-bit or 16-bit value, from the section defined by label
(label), and pattern of instruction changes accordingly N°® 1, If an instruction
with a 16-bit value is expanded and the offset calculated from the address
defined by label (label) is not within a range that can be expressed in 16 bits,
an error is output at the time of link.

llabel The absolute address of label (label) is treated as an immediate.

This has a 16-bit value. If operation instruction of an architecture for which a
16-bit value can be specify Note 2 35 an immediate are specified, and instruc-
tion is not expanded. If the add, mov, and mulh instructions are specified,
expansion into appropriate 1-instruction is possible. No other instructions
can be specified. If the value is not within a range that can be expressed in
16 bits, an error is output at the time of link.

%label The offset from the ep symbol in the position where definition of the label
(label) exists is treated as an immediate.

This has a 16-bit value. If operation instruction of an architecture for which a
16-bit value can be specify Nt 2 as an immediate are specified, and instruc-
tion is not expanded. This reference method can be specified only for oper-
ation instructions of an architecture for which a 16-bit value can be specified
as an immediate, and add, mov, and mulh instructions. If the add, mov, and
mulh instructions are specified, expansion into appropriate 1-instruction is
possible. No other instructions can be specified. If the value is not within a
range that can be expressed in 16 bits, an error is output at the time of link.

Notes 1. See "(h) gp Offset Reference".
2. Theinstructions for which a 16-bit value can be specified as an immediate are the addi, andi,
movea, mulhi, ori, satsubi, and xori instructions.

Table 4-27. Branch Instructions

Reference Method Meaning

#label In jmp instruction, the absolute address of label (label) is treated as a jump
destination address.

This has a 32-bit value and must be expanded into two instructions.

label In branch instructions other than the jmp instruction, PC offset of the label
(label) is treated as a displacement.

This has a 22-bit value, and if it is not within a range that can be expressed
in 22 bits, an error is output at the time of link.

R20UT0259EJ0100 Rev.1.00 RENESAS Page 327 of 890
Oct 01, 2010

CubeSuite Ver.1.40 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

Table 4-28. Area Reservation Directives

Reference Method Meaning
#label In .db4/.db2/.db directive, the absolute address of the label (label) is treated
llabel as a value.

This has a 32-bit value, but is masked in accordance with the bit width of
each directives

label In .db4/.db2/.db directive, the offset in the section defined by label (label) is
%label treated as a value.

This has a 32-bit value, but is masked in accordance with the bit width of
each directives

$label In .db4/.db2/.db directive, the offset from the ep symbol in the position where
definition of the label (label) exists is treated as an immediate.

This has a 32-bit value, but is masked in accordance with the bit width of
each directives

(g) ep Offset Reference
This section describes the ep offset reference. The CX assumes that data explicitly stored in internal RAM is
shown below.

Reference through the offset from address indicated by the element pointer (ep).

Data in the internal RAM is divided into the following two groups.
- tidata/.tibss/.tidata.byte/.tibss.byte/.tidata.word/.tibss.word section (Data is referred by memory reference
instructions (sld/sst) in a small code size)
- sidata/.sibss section (Data is referred by memory reference instructions (Id/st) in a large code size)

Figure 4-18. Memory Location Image of Internal RAM

. Higher address

N|

.sibss section

.Sidata section

.tibss section

tidata section

.tibss.word section Internal RAM

tidata.word section

tibss.byte section

tidata.byte section
ep > Y | ower address

<1> Data Allocation
In internal RAM, data is allocated to the sections as follows:

- When developing a program in C
Allocate data by specifying the "tidata", "tidata.byte", "tidata.word", or "sidata" section type in the
"#pragma section" instruction.

R20UT0259EJ0100 Rev.1.00 RENESAS Page 328 of 890
Oct 01, 2010

CubeSuite Ver.1.40 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

- When developing a program in assembly language
Data is allocated to the section of .tidata, .tibss, .tidata.byte, .tibss.byte, .tidata.word, .tibss.word,
.Sidata, or .sibss section type by the section definition directives ep offset reference can also be exe-
cuted with respect to data in a specific range of external RAM by allocating the data to .sedata or
.sebss sections in the same manner as above.

Figure 4-19. Memory Allocation Image for External RAM (.sedata/.sebss Section)

Higher address

.tibss.byte section Internal RAM

tidata.byte section
ep >

LIA

.sebss section

.sedata section External RAM

Lower address

<2> Data Reference
As per the "Data Allocation" method explained above, the assembler generates a machine instruction
string as follows.

- Generates a machine instruction by referring ep offset for %label reference to data allocated to the
tidata, .tibss, .tidata.byte, .tibss.byte, .tidata.word, .tibss.word, .sidata, .sibss, .sedata, or .sebss
section.

- Generates a machine instruction string by referring offset in the section for %label reference to data
allocated to other than that above.

Example

. dseg S| DATA

sidata: .db2 OxFFFO
. dseg DATA

dat a: .db2 OxFFFO
. cseg TEXT
Id. h %i data, r20 7 (1)
Id.h %lata, r20 7 (2)

The assembler generates a machine instruction string for %label reference because: The assembler
regards the code in (1) as being a reference by ep offset because the defined data is allocated to the
.Sidata section. The assembler regards the code in (2) as being a reference by in-section offset. The
assembler performs processing, assuming that the data is allocated to the correct section. If the data is
allocated to other than the correct section, it cannot be detected by the assembler.

Example

. dseg TEXT
Id.h 9% abel [ep], r20

R20UT0259EJ0100 Rev.1.00 RENESAS Page 329 of 890
Oct 01, 2010

CubeSuite Ver.1.40 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

Instructions are coded to allocate a label to the .sidata section and to perform reference by ep offset.
However, label is allocated to the .data section because of the allocation error. In this case, the assem-
bler loads the data in the base register ep symbol value + offset value in the .data section of label.

(h) gp Offset Reference
This section describes the gp offset reference. The CX assumes that data stored in external RAM (other than

.sedata/.sebss section explained on the previous page) is basically shown below.

Referred by the offset from the address indicated by global pointer (gp).

If rO-relative memory allocation for internal ROM or RAM is not done with the "#pragma section" command of
C, or an assembly language section definition directive, all data is subject to gp offset reference.

<1> Data Allocation
The memory reference instruction (Id/st) of the machine instruction of the V850 microcontrollers can only
accept 16-bitimmediate as a displacement. For this reason, the CX classifies data into the following two
types. Data of the former type is allocated to the sdata- or sbss-attribute section, while that of the latter
type is allocated to the data- or bss-attribute section. Data having an initial value is allocated to the
sdata/data-attribute section, while data without an initial value is allocated to the sbss/bss-attribute sec-
tion. By default, the CX allocates data to the data/sdata/ shss/bss-attribute sections, starting from the
lowest address. Moreover, it is assumed that the global pointer (gp) is set by a startup module to point to
the address resulting from addition of 32 KB to the first address of the sdata-attribute section.
- Data allocated to a memory range that can be referred by using the global pointer (gp) and a 16-bit
displacement.
- Data allocated to a memory range that can be referred by using the global pointer (gp) and (con-
structed by many instructions) a 32-bit displacement.

Figure 4-20. Memory Location Image for gp Offset Reference Section

Higher address

bss attribute section

data without an initial value
sbss attribute section 64KB

ap —b
I 32KB

sdata attribute section

Data having an initial value

data attribute section
Lower address

Remark The sum of sdata- and sbss-attribute sections is 64 KB. gp is 32 KB below the first byte of
the sdata- attribute section.

Data in the sdata- and sbss-attribute sections can be referred by using a single instruction. To reference
data in the data- and bss-attribute sections, however, two or more instructions are necessary. Therefore,
the more data allocated to the sdata- and sbhss-attribute sections, the higher the execution efficiency and
object efficiency of the generated machine instructions. However, the size of the memory range that can
be referred with a 16-bit displacement is limited.

If all the data cannot be allocated to the sdata- and sbss-attribute sections, it becomes necessary to
determine which data is to be allocated to the sdata- and sbss-attribute sections.

R20UT0259EJ0100 Rev.1.00 RENESAS Page 330 of 890
Oct 01, 2010

CubeSuite Ver.1.40 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

The CX "allocates as much data as possible to the sdata- and sbss-attribute sections". By default, all
data items are allocated to the sdata- and sbss-attribute sections. The data to be allocated can be
selected as follows:
- When the -Xsdata option is specified.
By specifying the -Xsdata=num option upon starting the C compiler or assembler, data of less than
num bytes is allocated to the sdata- and sbss-attribute sections.
- When using a program to specify the section to which data will be allocated.
Explicitly allocate data that will be frequently referred to the sdata- and sbss-attribute sections. For
allocation, use a section definition directive when using the assembly language, or the #pragma sec-
tion command when using C.

<2> Data Reference
Using the data allocation method explained above, the assembler generates a machine instruction string
that performs:
- Reference by using a 16-bit displacement for gp offset reference to data allocated to the sdata- and
sbhss- attribute sections.
- Reference by using a 32-bit displacement (consisting of two or more machine instructions) for gp off-
set reference to data allocated to the data- and bss-attribute sections.

Example
. dseg DATA
dat a: .db4 OxFFF00010 7 (1)
. cseg TEXT
ld.w $data[gp], r20 ; (2)

The assembler generates a machine instruction string, equivalent to the following instruction string for
the Id.w instruction in (2), that performs gp offset reference of the data defined in (1).NOte

novhi H GHWL($data), gp, rl
ld.w LONN $data)[r1], r20

Note See "(j) About HIGH/LOW/HIGHW/LOWW/HIGHW1", for details of HIGHW1/LOWW.

The assembler processes files on a one-by-one basis. Consequently, it can identify to which attribute
section data having a definition in a specified file has been allocated, but cannot identify the section to
which data not having a definition in a specified file has been allocated. Therefore, the assembler gener-
ates machine instructions as follows, when the -Xsdata=num option is specified at start-up, assuming
that the allocation policy described above (i.e., data smaller than a specific size is allocated to the sdata-
and sbss-attribute sections) is observed.

- Generates machine instructions that perform reference by using a 16-bit displacement for gp offset
reference to data not having a definition in a specified file and which consists of less than num bytes.

- Generates a machine instruction string that performs reference by using a 32-bit displacement (con-
sisting of two or more machine instructions) for gp offset reference to data having no definition in a
specified file and which consists of more than num bytes.

R20UT0259EJ0100 Rev.1.00 RENESAS Page 331 of 890
Oct 01, 2010

CubeSuite Ver.1.40 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

To identify these conditions, however, the size of the data not having a definition in a specified file, and
which is referred by a gp offset, must be identified. To develop a program in an assembly language,
therefore, specify the size of the data (actually, a label for which there is no definition in a specified file
and which is referred by a gp offset) for which there is no definition in a specified file, by using the .extern
directives

.extern data, 4 ;v (1)
. cseg TEXT
ld. w $dataf[gp], r20 ; (2)

When the -Xsdata=2 option is specified upon starting the assembler, the assembler generates a machine
instruction string, equivalent to the following instruction string, for the Id.w instruction in (2) that performs
gp offset reference to the data declared in (1).Not

novhi H GHWL($data), gp, rl

ld.w LONN $data)[r1], r20

Note See "(j) About HIGH/LOW/HIGHW/LOWW/HIGHW1", for details of HIGHW1/LOWW.

To develop a program in C, the C compiler of the CX automatically generates the .extern directive, thus
output the code which specifies the size of data not having a definition in the specified file (actually, a
label for which there is no definition in a specified file and which is referred by a gp offset).

Remark The handling of gp offset reference (specifically, memory reference instructions that use a rel-
ative expression having the gp offset of a label as their displacement) by the assembler is
summarized below.

- If the data has a definition in a specified file.

- I the data is to be allocated to the sdata- or shss-attribute sectionN°te.

Generates a machine instruction that performs reference by using al16-bit displacement.
- If the data is not allocated to the sdata- or sbss-attribute section.
Generates a machine instruction string that performs reference by using a 32-bit displacement.

Note If the value of the constant expression of a relative expression in the form of "label + constant
expression” exceeds 16 bits, the assembler generates a machine instruction string that performs
reference using a 32-bit displacement.

- If the data does not have a definition in a specified file.

- If the -Xsdata=num option is specified upon starting the assembiler.
If a size of other than 0, but less than num bytes is specified for the data (label referred by gp offset)
by the .comm/.extern/.globl/.public directives.
Assumes that the data is to be allocated to the sdata- or shss-attribute section and generates a
machine instruction that performs reference by using a 16-bit displacement.
Other than above, assumes that the data is not allocated to the sdata- or sbss-attribute section and
generates a machine instruction string that performs reference using a 32-bit displacement

R20UT0259EJ0100 Rev.1.00 RENESAS Page 332 of 890

Oct 01, 2010

CubeSuite Ver.1.40 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

- If the -Xsdata option is not specified upon starting the assembiler.
Assumes that the data is to be allocated to the sdata- or sbss-attribute section and generates a
machine instruction that performs reference by using a 16-bit displacement.

(i) Label references in multi-core
Below are described the differences between label references for multi-core and for single-core.

<1> If the "-Xmulti=pen" (n: PE number) option is specified
- Data and code can be accessed using the same references as for single-core.

<2> |If the "-Xmulti=cmn" option is specified
- Data and code are accessed using absolute addresses (offset from address 0), rather than referenc-
ing offset from the gp/ep/tp symbol.
- References offset from the gp/ep/tp symbol will cause an error.

() About HIGH/LOW/HIGHW/LOWW/HIGHW1

<1> To refer memory by using 32-bit displacement
The memory reference instruction (Load/store instructions) of the machine instructions of the V850
microcontrollers can take only a 16-bit immediate from displacement. Consequently, the assembler per-
forms instruction expansion to refer the memory by using a 32-bit displacement, and generates an
instruction string that performs the reference, by using the movhi and memory reference instructions and
thereby constituting a 32-bit displacement from the higher 16 bits and lower 16 bits of the 32-bit displace-
ment.

Example

Id. w 0x18000[r11], r12 nmov hi Hl GHWL(0x18000), r11, r1
ld.w LOWA 0x18000) [r1], ri12

At this time, the memory reference instruction of machine instructions that uses the lower 16 bits as a
displacement sign-extends the specified 16-bit displacement to a 32-bit value. To adjust the sign-
extended bits, the assembler does not merely configure the displacement of the higher 16 bits by using
the movhi instruction, instead