

To our customers,

Old Company Name in Catalogs and Other Documents

On April 1st, 2010, NEC Electronics Corporation merged with Renesas Technology

Corporation, and Renesas Electronics Corporation took over all the business of both
companies. Therefore, although the old company name remains in this document, it is a valid
Renesas Electronics document. We appreciate your understanding.

Renesas Electronics website: http://www.renesas.com

April 1st, 2010
Renesas Electronics Corporation

Issued by: Renesas Electronics Corporation (http://www.renesas.com)

Send any inquiries to http://www.renesas.com/inquiry.

Notice
1. All information included in this document is current as of the date this document is issued. Such information, however, is

subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please
confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to
additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.

2. Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights
of third parties by or arising from the use of Renesas Electronics products or technical information described in this document.
No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights
of Renesas Electronics or others.

3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.
4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of

semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software,
and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by
you or third parties arising from the use of these circuits, software, or information.

5. When exporting the products or technology described in this document, you should comply with the applicable export control
laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas
Electronics products or the technology described in this document for any purpose relating to military applications or use by
the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and
technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited
under any applicable domestic or foreign laws or regulations.

6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics
does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages
incurred by you resulting from errors in or omissions from the information included herein.

7. Renesas Electronics products are classified according to the following three quality grades: “Standard”, “High Quality”, and
“Specific”. The recommended applications for each Renesas Electronics product depends on the product’s quality grade, as
indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular
application. You may not use any Renesas Electronics product for any application categorized as “Specific” without the prior
written consent of Renesas Electronics. Further, you may not use any Renesas Electronics product for any application for
which it is not intended without the prior written consent of Renesas Electronics. Renesas Electronics shall not be in any way
liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an
application categorized as “Specific” or for which the product is not intended where you have failed to obtain the prior written
consent of Renesas Electronics. The quality grade of each Renesas Electronics product is “Standard” unless otherwise
expressly specified in a Renesas Electronics data sheets or data books, etc.

“Standard”: Computers; office equipment; communications equipment; test and measurement equipment; audio and visual
equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots.

“High Quality”: Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-
crime systems; safety equipment; and medical equipment not specifically designed for life support.

“Specific”: Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or
systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare
intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.

8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics,
especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation
characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or
damages arising out of the use of Renesas Electronics products beyond such specified ranges.

9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have
specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further,
Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to
guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a
Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire
control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because
the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system
manufactured by you.

10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental
compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable
laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS
Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with
applicable laws and regulations.

11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas
Electronics.

12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this
document or Renesas Electronics products, or if you have any other inquiries.

(Note 1) “Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its majority-
owned subsidiaries.

(Note 2) “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.

User’s Manual

CubeSuite Ver. 1.00

Integrated Development Environment

V850 Coding

Target Device
 V850 Microcontrollers

Document No. U19383EJ1V0UM00 (1st edition)

Date Published September 2008

 2008

Printed in Japan

User’s Manual U19383EJ1V0UM 2

[MEMO]

User’s Manual U19383EJ1V0UM00 3

SUMMARY OF CONTENTS

CHAPTER 1 GENERAL ... 22

CHAPTER 2 FUNCTIONS ... 23

CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS ... 73

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS ... 192

CHAPTER 5 LINK DIRECTIVE SPECIFICATION ... 699

CHAPTER 6 FUNCTIONAL SPECIFICATION ... 721

CHAPTER 7 STARTUP ... 900

CHAPTER 8 ROMIZATION ... 923

CHAPTER 9 CROSS REFERENCE OF COMPILER AND ASSEMBLER ... 938

CHAPTER 10 CAUTIONS ... 942

APPENDIX A INDEX ... 950

User’s Manual U19383EJ1V0UM 4

All trademarks or registered trademarks in this document are the property of their respective owners.

User’s Manual U19383EJ1V0UM 5

The information in this document is current as of September, 2008. The information is subject to
change without notice. For actual design-in, refer to the latest publications of NEC Electronics data
sheets or data books, etc., for the most up-to-date specifications of NEC Electronics products. Not
all products and/or types are available in every country. Please check with an NEC Electronics sales
representative for availability and additional information.
No part of this document may be copied or reproduced in any form or by any means without the prior
written consent of NEC Electronics. NEC Electronics assumes no responsibility for any errors that may
appear in this document.
NEC Electronics does not assume any liability for infringement of patents, copyrights or other intellectual
property rights of third parties by or arising from the use of NEC Electronics products listed in this document
or any other liability arising from the use of such products. No license, express, implied or otherwise, is
granted under any patents, copyrights or other intellectual property rights of NEC Electronics or others.
Descriptions of circuits, software and other related information in this document are provided for illustrative
purposes in semiconductor product operation and application examples. The incorporation of these
circuits, software and information in the design of a customer's equipment shall be done under the full
responsibility of the customer. NEC Electronics assumes no responsibility for any losses incurred by
customers or third parties arising from the use of these circuits, software and information.
While NEC Electronics endeavors to enhance the quality, reliability and safety of NEC Electronics products,
customers agree and acknowledge that the possibility of defects thereof cannot be eliminated entirely. To
minimize risks of damage to property or injury (including death) to persons arising from defects in NEC
Electronics products, customers must incorporate sufficient safety measures in their design, such as
redundancy, fire-containment and anti-failure features.
NEC Electronics products are classified into the following three quality grades: "Standard", "Special" and
"Specific".
The "Specific" quality grade applies only to NEC Electronics products developed based on a customer-
designated "quality assurance program" for a specific application. The recommended applications of an NEC
Electronics product depend on its quality grade, as indicated below. Customers must check the quality grade of
each NEC Electronics product before using it in a particular application.

The quality grade of NEC Electronics products is "Standard" unless otherwise expressly specified in NEC
Electronics data sheets or data books, etc. If customers wish to use NEC Electronics products in applications
not intended by NEC Electronics, they must contact an NEC Electronics sales representative in advance to
determine NEC Electronics' willingness to support a given application.

(Note)

•

•

•

•

•

•

M8E 02. 11-1

(1)

(2)

"NEC Electronics" as used in this statement means NEC Electronics Corporation and also includes its
majority-owned subsidiaries.
"NEC Electronics products" means any product developed or manufactured by or for NEC Electronics (as
defined above).

Computers, office equipment, communications equipment, test and measurement equipment, audio
and visual equipment, home electronic appliances, machine tools, personal electronic equipment
and industrial robots.
Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster
systems, anti-crime systems, safety equipment and medical equipment (not specifically designed
for life support).
Aircraft, aerospace equipment, submersible repeaters, nuclear reactor control systems, life
support systems and medical equipment for life support, etc.

"Standard":

"Special":

"Specific":

User’s Manual U19383EJ1V0UM 6

PREFACE

This manual describes the role of the CubeSuite integrated development environment for developing applications

and systems for V850 microcontrollers and provides an outline of its features.

CubeSuite is an integrated development environment (IDE) for V850 microcontrollers, integrating the necessary

tools for the development phase of software (e.g. design, implementation, and debugging) into a single platform.

By providing an integrated environment, it is possible to perform all development using just this product, without the

need to use many different tools separately.

Readers This manual is intended for users who wish to understand the functions of the CubeSuite

and design software and hardware application systems.

Purpose This manual is intended to give users an understanding of the functions of the Cubesuite

to use for reference in developing the hardware or software of systems using these

devices.

Organization This manual can be broadly divided into the following units.

CHAPTER 1 GENERAL

CHAPTER 2 FUNCTIONS

CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

CHAPTER 5 LINK DIRECTIVE SPECIFICATION

CHAPTER 6 FUNCTIONAL SPECIFICATION

CHAPTER 7 STARTUP

CHAPTER 8 ROMIZATION

CHAPTER 9 CROSS REFERENCE OF COMPILER AND ASSEMBLER

CHAPTER 10 CAUTIONS

APPENDIX A INDEX

How to Read This Manual It is assumed that the readers of this manual have general knowledge of electricity, logic

circuits, and microcontrollers.

Conventions Data significance: Higher digits on the left and lower digits on the right

 Active low representation: XXX
–––

 (overscore over pin or signal name)

 Note: Footnote for item marked with Note in the text

 Caution: Information requiring particular attention

 Remark: Supplementary information

 Numeric representation: Decimal … XXXX

 Hexadecimal … 0xXXXX

User’s Manual U19383EJ1V0UM 7

Related Documents The related documents indicated in this publication may include preliminary versions.

However, preliminary versions are not marked as such.

Document Name Document No.

Start U19377E

Programming U19390E

Message U19391E

V850 Coding This document

V850 Build U19386E

V850 Debug U19389E

CubeSuite Ver.1.00

Integrated Development Environment

User's Manual

V850 Design U19380E

Caution The related documents listed above are subject to change without notice.

Be sure to use the latest edition of each document when designing.

User’s Manual U19383EJ1V0UM 8

[MEMO

User’s Manual U19383EJ1V0UM00 9

TABLE OF CONTENTS

CHAPTER 1 GENERAL ... 22

1.1 Outline ... 22
1.2 Special Features ... 22

CHAPTER 2 FUNCTIONS ... 23

2.1 Variables (C language) ... 23
2.1.1 Allocating to sections accessible with short instructions ... 23
2.1.2 Changing allocated section ... 24
2.1.3 Defining variables for use during standard and interrupt processing ... 26
2.1.4 Defining user port ... 28
2.1.5 Defining const constant pointer ... 29

2.2 Functions ... 30
2.2.1 Changing area to be allocated to ... 30
2.2.2 Calling an away function ... 31
2.2.3 Embedding assembler instructions ... 32
2.2.4 Executing in RAM ... 32

2.3 Using Microcomputer Functions ... 33
2.3.1 Accessing peripheral I/O register with C language ... 33
2.3.2 Describing interrupt processing with C language ... 34
2.3.3 Using CPU instructions in C language ... 35
2.3.4 Creating a self-programming boot area ... 36

2.4 Variables (Assembler) ... 37
2.4.1 Defining variables with no initial values ... 37
2.4.2 Defining const constants with initial values ... 38
2.4.3 Referencing section addresses ... 39

2.5 Startup Routine ... 40
2.5.1 Secure stack area ... 40
2.5.2 Securing stack area and specifying allocation ... 42
2.5.3 Initializing RAM ... 43
2.5.4 Preparing function and variable access ... 44
2.5.5 Preparing to use code size reduction function ... 47
2.5.6 Ending startup routine ... 48

2.6 Link Directives ... 49
2.6.1 Adding function section allocation ... 49
2.6.2 Adding section allocation for variables ... 49
2.6.3 Distributing section allocation ... 50

2.7 Reducing Code size ... 52
2.7.1 Reducing code size (C language) ... 52
2.7.2 Reducing variable area with variable definition method ... 65

2.8 Accelerating Processing ... 68
2.8.1 Accelerate processing with description method ... 68

2.9 Compiler and Assembler Mutual References ... 70
2.9.1 Mutually referencing variables ... 70
2.9.2 Mutually referencing functions ... 72

10 User’s Manual U19383EJ1V0UM00

CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS ... 73

3.1 Basic Language Specifications ... 73
3.1.1 Processing system dependent Items ... 73
3.1.2 Ansi option ... 86

3.2 Environment During Compilation ... 87
3.2.1 Internal representation and value area of data ... 87
3.2.2 General-purpose registers ... 95
3.2.3 Referencing data ... 96
3.2.4 Software register bank ... 96
3.2.5 Mask register ... 98
3.2.6 Device file ... 101

3.3 Extended Language Specifications ... 103
3.3.1 Macro name ... 103
3.3.2 Keyword ... 104
3.3.3 #pragma directive ... 104
3.3.4 Using expanded specifications ... 106
3.3.5 Modification of C-source ... 162

3.4 Function Call Interface ... 163
3.4.1 Calling between C functions ... 163
3.4.2 Prologue/Epilogue processing function ... 176
3.4.3 far jump function ... 179

3.5 Expanded Function of CC78Kx ... 186
3.5.1 #pragma directive ... 186
3.5.2 Assembler control instructions ... 190
3.5.3 Specifying interrupt/exception handler ... 190
3.5.4 Expanded function not supported ... 190

3.6 Section Name List ... 191

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS ... 192

4.1 Description of Source ... 192
4.1.1 Description ... 192
4.1.2 Expression ... 202
4.1.3 Operators ... 205
4.1.4 Arithmetic operators ... 206
4.1.5 Shift operators ... 206
4.1.6 Bitwise logical operators ... 207
4.1.7 Comparison operators ... 207
4.1.8 Operation rules ... 209
4.1.9 Definition of absolute expression ... 210
4.1.10 Identifiers ... 212
4.1.11 Characteristics of an operand ... 212

4.2 Quasi Directives ... 227
4.2.1 Outline ... 227
4.2.2 Section definition quasi directives ... 228
4.2.3 Symbol control quasi directives ... 252
4.2.4 Location counter control quasi directives ... 259
4.2.5 Area allocation quasi directives ... 262
4.2.6 Program linkage quasi directives ... 271
4.2.7 Assembler control quasi directive ... 277
4.2.8 File input control quasi directives ... 282

User’s Manual U19383EJ1V0UM00 11

4.2.9 Repetitive assembly quasi directives ... 285
4.2.10 Conditional assembly quasi directives ... 288
4.2.11 Skip quasi directives ... 301
4.2.12 Macro quasi directives ... 306

4.3 Macro ... 311
4.3.1 Outline ... 311
4.3.2 Usage of macro ... 312
4.3.3 Symbols in macro ... 312
4.3.4 Macro operator ... 313

4.4 Reserved Words ... 314
4.5 Instructions ... 315

4.5.1 Memory space ... 315
4.5.2 Register ... 316
4.5.3 Addressing ... 353
4.5.4 Instruction set ... 361
4.5.5 Description of instructions ... 377
4.5.6 Load/Store instructions ... 378
4.5.7 Arithmetic operation instructions ... 387
4.5.8 Saturated operation instructions ... 450
4.5.9 Logical instructions ... 464
4.5.10 Branch instructions ... 510
4.5.11 Bit Manipulation instructions ... 527
4.5.12 Stack manipulation instructions ... 536
4.5.13 Special instructions ... 541
4.5.14 Pipeline (V850) ... 565
4.5.15 Pipeline (V850ES) ... 589
4.5.16 Pipeline (V850E1) ... 629
4.5.17 Pipeline (V850E2) ... 667

CHAPTER 5 LINK DIRECTIVE SPECIFICATION ... 699

5.1 Coding Method ... 699
5.1.1 Characters used in link directive file ... 700
5.1.2 Link directive file name ... 700
5.1.3 Segment directive ... 701
5.1.4 Mapping directive ... 707
5.1.5 Symbol directive ... 715

5.2 Reserved Words ... 720

CHAPTER 6 FUNCTIONAL SPECIFICATION ... 721

6.1 Supplied Libraries ... 721
6.1.1 Standard library ... 723
6.1.2 Mathematical library ... 729
6.1.3 ROMization library ... 731

6.2 Header Files ... 732
6.3 Re-entrant ... 732
6.4 Library Function ... 733

6.4.1 Functions with variable arguments ... 733
6.4.2 Character string functions ... 737
6.4.3 Memory management functions ... 755
6.4.4 Character conversion functions ... 763

12 User’s Manual U19383EJ1V0UM00

6.4.5 Character classification functions ... 769
6.4.6 Standard I/O functions ... 782
6.4.7 Standard utility functions ... 814
6.4.8 Non-local jump functions ... 841
6.4.9 Mathematical functions ... 844
6.4.10 Copy function ... 885

6.5 Runtime Library ... 886
6.6 Library Consumption Stack List ... 888

6.6.1 Standard library ... 888
6.6.2 Mathematical library ... 898
6.6.3 ROMization library ... 899

CHAPTER 7 STARTUP ... 900

7.1 Functional Outline ... 900
7.2 File Contents ... 900
7.3 Startup Routine ... 901

7.3.1 Setting RESET handler when reset is input ... 902
7.3.2 Setting of register mode of start up routine ... 902
7.3.3 Securing stack area and setting stack pointer ... 903
7.3.4 Securing argument area for main function ... 904
7.3.5 Setting text pointer (tp) ... 904
7.3.6 Setting global pointer (gp) ... 905
7.3.7 Setting element pointer (ep) ... 906
7.3.8 Setting mask value to mask registers (r20 and r21) ... 906
7.3.9 Initializing peripheral I/O registers that must be initialized before execution of main

function ... 907
7.3.10 Initializing user target that must be initialized before execution of main function ...

908
7.3.11 Clearing sbss area to 0 ... 908
7.3.12 Clearing bss area to 0 ... 909
7.3.13 Clearing sebss area to 0 ... 910
7.3.14 Clearing tibss.byte area to 0 ... 911
7.3.15 Clearing tibss.word area to 0 ... 912
7.3.16 Clearing sibss area to 0 ... 913
7.3.17 Setting of CTBP value for prologue/epilogue runtime library of functions [V850E] ...

913
7.3.18 Setting of programmable peripheral I/O register value [V850E] ... 914
7.3.19 Setting r6 and r7 as argument of main function ... 915
7.3.20 Branching to main function (when not using real-time OS) ... 915
7.3.21 Branching to initialization routine of real-time OS (when using real-time OS) ... 916

7.4 Coding Example ... 917

CHAPTER 8 ROMIZATION ... 923

8.1 Outline ... 923
8.2 rompsec Section ... 925

8.2.1 Types of sections to be packed ... 925
8.2.2 Size of rompsec section ... 925
8.2.3 rompsec section and link directive ... 926

8.3 Creation of Object for ROMization ... 928
8.3.1 Creation procedure (default) ... 928

User’s Manual U19383EJ1V0UM00 13

8.3.2 Creation procedure (customize) ... 930
8.4 Copy Function ... 933

CHAPTER 9 CROSS REFERENCE OF COMPILER AND ASSEMBLER ... 938

9.1 Method of Accessing Arguments and Automatic Variables ... 938
9.2 Method of Storing Return Value ... 938
9.3 Calling of Assembly Language Routine from C Language ... 939
9.4 Calling of C Language Routine from Assembly Language ... 940
9.5 Reference of Argument Defined by Other Language ... 941

CHAPTER 10 CAUTIONS ... 942

10.1 Delimiting Folder/Path ... 942
10.2 Option Specification Sequence ... 942
10.3 Mixing with K&R Format in Function Declaration/Definition ... 943
10.4 Output of Other Than Position-Independent Codes ... 944
10.5 Count of Derivative Type Qualification for Type Configuration ... 944
10.6 Length of Identifier and Valid Number of Characters ... 944
10.7 Number of Times of Block Nesting ... 945
10.8 Number of case Labels in switch Statement ... 945
10.9 Floating-Point Operation Exception in Operation of Constant Expression ... 945
10.10 Merging Vast/Large-Quantity File ... 945
10.11 Optimization of Vast File ... 945
10.12 Library File Search by Specifying Option ... 946
10.13 Volatile Qualifier ... 946
10.14 Extra Brackets in Function Declaration ... 949

APPENDIX A INDEX ... 950

14 User’s Manual U19383EJ1V0UM00

LIST OF FIGURES

Figure No. Title, Page

3-1 Internal Representation of Integer Type ... 87

3-2 Internal Representation of Floating-Point Type ... 88

3-3 Internal Representation of Pointer Type ... 88

3-4 Internal Representation of Enumerate Type ... 89

3-5 Internal Representation of Array Type ... 89

3-6 Internal Representation of Structure Type ... 90

3-7 Internal Representation of Union Type ... 91

3-8 Internal Representation of Bit Field ... 92

3-9 Register Modes and Usable Registers ... 97

3-10 sdata and sbss Attribute Sections ... 106

3-11 sidata and sibss Attribute Sections ... 108

3-12 sdata and sbss Attribute Sections ... 109

3-13 tidata and tibss Attribute Sections ... 109

3-14 tidata and tibss Attribute Sections ... 111

3-15 Image of Interrupt Handler Address ... 131

3-16 Stack Frame (When Argument Register Area Is Located at Center of Stack) ... 164

3-17 Stack Frame (When Argument Register Area Is Located at Beginning of Stack) ... 164

3-18 Generation/Disappearance of Stack Frame (When Argument Register Area Is Located at Center of

Stack) ... 166

3-19 Stack Growth Direction of Each Area of Stack Frame ... 167

3-20 Generation/Disappearance of Stack Frame (When Argument Register Area Is Located at Beginning of

Stack) ... 171

3-21 Stack Growth Direction of Each Area of Stack Frame ... 172

4-1 Organization of Assembly Language Statement ... 192

4-2 Mnemonic and Operands ... 196

4-3 Memory Location Image of Internal RAM ... 218

4-4 Memory Allocation Image for External RAM (.sedata, /.sebss section) ... 219

4-5 Memory Location Image of gp Offset Reference Section ... 221

4-6 Example of Allocation with Bit Width Specified ... 263

4-7 Memory Map of V850 Microcontroller ... 315

4-8 Program Register ... 316

4-9 System Register ... 317

4-10 Program Counter [V850] ... 319

4-11 Program Counter[V850ES, V850E1] ... 319

4-12 Program Counter[V850E2] ... 319

4-13 Interrupt Status Saving Registers [V850] ... 321

4-14 Interrupt Status Saving Registers [V850ES] ... 322

4-15 Interrupt Status Saving Registers [V850E1] ... 322

4-16 Interrupt Status Saving Registers [V850E2] ... 322

4-17 NMI Status Saving Registers [V850] ... 323

User’s Manual U19383EJ1V0UM00 15

4-18 NMI Status Saving Registers [V850ES] ... 323

4-19 NMI Status Saving Registers [V850E1] ... 324

4-20 NMI Status Saving Registers [V850E2] ... 324

4-21 Exception Cause Register [V850, V850ES, V850E1, V850E2] ... 324

4-22 Program Status Word [V850, V850ES] ... 325

4-23 Program Status Word [V850E1] ... 327

4-24 Program Status Word [V850E2] ... 329

4-25 CALLT Caller Status Saving Registers [V850ES] ... 331

4-26 CALLT Caller Status Saving Registers [V850E1] ... 331

4-27 CALLT Caller Status Saving Registers [V850ES] ... 332

4-28 Exception/Debug Trap Status Saving Registers [V850ES] ... 333

4-29 Exception/Debug Trap Status Saving Registers [V850E1] ... 334

4-30 Exception/Debug Trap Status Saving Registers [V850E2] ... 334

4-31 CALLT Base Pointer [V850ES, V850E1] ... 335

4-32 CALLT Base Pointer [V850E2] ... 335

4-33 Debug Interface Register [V850ES] ... 336

4-34 Debug Interface Register [V850E1] ... 337

4-35 Debug Interface Register [V850E2] ... 339

4-36 Breakpoint Control Registers [V850E1] ... 341

4-37 Breakpoint Control Register [V850E2] ... 343

4-38 Program ID Register [V850E1, V850E2] ... 345

4-39 Breakpoint Address Setting Register [V850E1] ... 346

4-40 Breakpoint Address Setting Register [V850E2] ... 347

4-41 Breakpoint Address Mask Register [V850E1] ... 348

4-42 Breakpoint Address Mask Register [V850E2] ... 348

4-43 Breakpoint Data Setting Register [V850E1] ... 349

4-44 Breakpoint Data Setting Register [V850E2] ... 350

4-45 Breakpoint Data Mask Register [V850E1] ... 351

4-46 Breakpoint Data Mask Registers [V850E2] ... 352

4-47 Relative Addressing (JR disp22/JARL disp22, reg2)[V850] ... 353

4-48 Relative Addressing (JR disp22/JARL disp22, reg2)[V850ES, V850E1] ... 354

4-49 Relative Addressing (JR disp22/JARL disp22, reg2)[V850E2] ... 354

4-50 Relative Addressing (JR disp32/JARL disp32, reg2)[V850E2] ... 355

4-51 Relative Addressing (Bcnd disp9)[V850] ... 355

4-52 Relative Addressing (Bcnd disp9)[V850ES, V850E1] ... 356

4-53 Relative Addressing (Bcnd disp9)[V850E2] ... 356

4-54 Relative Addressing (JMP [reg1])[V850] ... 357

4-55 Register Addressing (JMP [reg1] V850ES, V850E1] ... 357

4-56 Register Addressing (JMP [reg1])[V850E2] ... 358

4-57 Register Addressing (JMP disp32[reg1])[V850E2] ... 358

4-58 Based Addressing (Type1) [V850, V850ES, V850E1, V850E2] ... 359

4-59 Based Addressing (Type2) [V850, V850ES, V850E1, V850E2] ... 360

4-60 Bit Addressing [V850, V850ES, V850E1, V850E2] ... 360

16 User’s Manual U19383EJ1V0UM00

4-61 Memory Location Image of Internal RAM ... 369

4-62 Memory Allocation Image for External RAM (.sedata/.sebss Section) ... 369

4-63 Memory Location Image for gp Offset Reference Section ... 372

4-64 Example of Executing Nine Standard Instructions ... 565

4-65 Alignment Hazard Example ... 566

4-66 Example of Execution Result of Load Instruction ... 567

4-67 Example of Execution Result of Multiply Instruction ... 568

4-68 Example of Referencing Execution Result of LDSR Instruction for EIPC and FEPC ... 568

4-69 Example of Executing Nine Standard Instructions ... 589

4-70 Pipeline Configuration (V850ES) ... 590

4-71 Alignment Hazard Example ... 594

4-72 Example of Execution Result of Load Instruction ... 595

4-73 Example of Execution Result of Multiply Instruction (Half Word Multiply Instruction) ... 595

4-74 Example of Execution Result of Multiply Instruction (Word Multiply Instruction) ... 596

4-75 Example of Referencing Execution Result of LDSR Instruction for EIPC and FEPC ... 596

4-76 Example of Executing Nine Standard Instructions ... 629

4-77 Pipeline Configuration (V850E1) ... 630

4-78 Alignment Hazard Example ... 634

4-79 Example of Execution Result of Load Instruction ... 635

4-80 Example of Execution Result of Multiply Instruction ... 635

4-81 Example of Referencing Execution Result of LDSR Instruction for EIPC and FEPC ... 636

4-82 Example of Executing Twelve Standard Instructions ... 668

4-83 Pipeline Configuration (V850E2) ... 669

6-1 Image of Using Runtime Library ... 886

7-1 BPC Register ... 914

8-1 Creation of Object for ROMization ... 923

8-2 Image of Processing Before and After Copy Function Call ... 924

8-3 Link Directive Taking ROMization Processing into Consideration ... 926

8-4 Link Directive Taking ROMization Processing into Consideration (Size Considered) ... 927

8-5 Example of Using Copy Function 1 ... 928

8-6 ROMization Image 1 ... 929

8-7 Example of rompack.s ... 930

8-8 Example of Using Copy Function 2 ... 930

8-9 Link Directive Specification Example ... 931

8-10 ROMization Image 2 ... 932

User’s Manual U19383EJ1V0UM00 17

LIST OF TABLES

Table No. Title, Page

3-1 Data Types and Sizes ... 73

3-2 Expanded Notation and Meaning ... 74

3-3 Translation Limit Values ... 75

3-4 Limit Values of General Integer Type (limits.h File) ... 76

3-5 Definition of Limit Values of Floating-point Type (float.h File) ... 77

3-6 List of Supported Macros ... 84

3-7 Definition of NULL, size_t, ptrdiff_t (stddef.h File) ... 85

3-8 Processing When -ansi Option Strictly Conforming to Language Specifications is Specified ... 86

3-9 Value Area of Integer Type ... 87

3-10 Value Area of Floating-Point Type ... 88

3-11 Alignment Condition for Basic Type ... 93

3-12 Alignment Condition for Union Type ... 93

3-13 Alignment Condition of Structure Type ... 94

3-14 Using General-Purpose Registers ... 95

3-15 Referencing Data ... 96

3-16 Register Modes Supplied by CA850 ... 96

3-17 List of Supported Macros ... 103

3-18 Arithmetic Operation Instructions ... 113

3-19 Arithmetic Operation Instructions ... 120

3-20 Enabling or Disabling Maskable Interrupt ... 127

3-21 Load/Store Instructions ... 129

3-22 Interrupt/Exception Table (V850ES/SG2) ... 131

3-23 Registers for Register Variables ... 132

3-24 Stack Frame for Interrupt/Exception Handler ... 132

3-25 Stack Frame for Multiple Interrupt/Exception Handler ... 133

3-26 Usage of Registers ... 133

3-27 Processing for Saving/Restoring Registers During Interrupt ... 134

3-28 Trap Instructions and Software Exception Codes ... 137

3-29 Embedded Functions ... 145

3-30 Macros for Functions ... 165

3-31 Method of Accessing Stack Area ... 165

3-32 Prologue/Epilogue Runtime Functions ... 185

3-33 Reserved Sections ... 191

4-1 Character Set and Usage of Characters ... 193

4-2 Value and Meaning of Escape Sequence ... 199

4-3 Operators ... 205

4-4 Priority of Operators ... 205

4-5 peration Rules for Binary Operation ... 209

4-6 Label Reference ... 214

4-7 Memory Reference Instructions ... 216

18 User’s Manual U19383EJ1V0UM00

4-8 Operation Instructions ... 217

4-9 Branch Instructions ... 217

4-10 Area Allocation Quasi Directives ... 218

4-11 Area Allocation Quasi Directives ... 226

4-12 Section Definition Quasi Directives ... 228

4-13 Section Types ... 249

4-14 Section Types ... 250

4-15 Symbol Control Quasi Directives ... 252

4-16 Location Counter Control Quasi Directives ... 259

4-17 Area Allocation Quasi Directives ... 262

4-18 Program Linkage Quasi Directives ... 271

4-19 Assembler Control Quasi Directive ... 277

4-20 File Input Control Quasi Directives ... 282

4-21 Repetitive Assembly Quasi Directives ... 285

4-22 Conditional Assembly Quasi Directives ... 288

4-23 Skip Quasi Directives ... 301

4-24 Macro Quasi Directives ... 306

4-25 Program Registers ... 318

4-26 System Register No. ... 320

4-27 Exception Cause Register [V850, V850ES, V850E1, V850E2] ... 324

4-28 Program Status Word [V850, V850ES] ... 325

4-29 Program Status Word [V850E1] ... 327

4-30 Program Status Word [V850E2] ... 329

4-31 Contents to Be Saved to DBPC ... 333

4-32 Debug Interface Register [V850ES] ... 336

4-33 Debug Interface Register [V850E1] ... 337

4-34 Debug Interface Register [V850E2] ... 339

4-35 Breakpoint Control Registers [V850E1] ... 341

4-36 Breakpoint Control Register [V850E2] ... 343

4-37 Program ID Register [V850E1, V850E2] ... 345

4-38 Meaning of Symbols ... 361

4-39 Label Reference ... 364

4-40 Memory Reference Instruction ... 366

4-41 Operation Instructions ... 367

4-42 Branch Instructions ... 368

4-43 Area Allocation Pseudo-instruction ... 368

4-44 Area Allocation Pseudo-instruction ... 376

4-45 Load/Store Instructions ... 378

4-46 Arithmetic Operation Instructions ... 387

4-47 adfcond Instruction List ... 395

4-48 sbfcond Instruction List ... 403

4-49 cmovcnd Instruction List ... 442

4-50 setfcnd Instruction List ... 446

User’s Manual U19383EJ1V0UM00 19

4-51 sasfcnd Instruction List ... 448

4-52 Saturated Operation Instructions ... 450

4-53 Logical Instructions ... 464

4-54 Branch Instructions ... 510

4-55 jcnd Instruction List ... 519

4-56 Bit Manipulation Instructions ... 527

4-57 Stack Manipulation Instructions ... 536

4-58 Special Instructions ... 541

4-59 System Register Numbers (ldsr) ... 542

4-60 System Register Numbers [V850E/MA1] (ldsr) ... 542

4-61 System Register Numbers [V850E/ME2] (ldsr) ... 543

4-62 System Register Numbers (stsr) ... 545

4-63 System Register Numbers [V850E/MA1] (stsr) ... 545

4-64 System Register Numbers [V850E/ME2] (stsr) ... 546

4-65 Access Time (number of clocks) ... 571

5-1 Item Specified in Segment Directive ... 701

5-2 Default Values for Omitted Segment Directive Specification Items ... 702

5-3 Reserved Section Names with Fixed Segment Names ... 702

5-4 Segment Attributes and their Meanings ... 703

5-5 Segment Example ... 705

5-6 Item Specified in Segment Directive ... 707

5-7 Default Values/Conventions for Values That Can Be Omitted in Mapping Directive Specification Items

... 708

5-8 Reserved Section Names with Fixed Segment Names ... 708

5-9 Section Types and Their Meanings ... 709

5-10 Section Attributes and Their Meanings ... 709

5-11 Section Types and Default Values for Alignment Condition ... 710

5-12 Output Based on Combination of Input Section and Object File Specifications ... 711

5-13 Specific Examples of Combined Input Section and Object File Specifications ... 711

5-14 Mapping Directive Specification Example ... 714

5-15 Specifiable Items When Creating tp Symbol ... 715

5-16 Default Values for tp Symbols ... 715

5-17 Specifiable Items When Creating gp Symbol ... 716

5-18 Default Values for gp Symbols ... 716

5-19 Specifiable Items When Creating ep Symbol ... 717

5-20 Default Values for ep Symbols ... 717

5-21 Address Specification for tp Symbol, gp Symboland and ep Symbol ... 718

5-22 Segment Names Targeted for Reference by tp Symbol and gp Symbol ... 719

5-23 Symbol Directive Specification Example ... 719

6-1 Supplied Libraries ... 721

6-2 Function with Variable Arguments ... 723

6-3 Character String Functions ... 723

6-4 Memory Management Functions ... 723

20 User’s Manual U19383EJ1V0UM00

6-5 Character Conversion Functions ... 724

6-6 Character Classification Functions ... 724

6-7 Standard I/O Functions ... 724

6-8 Standard Utility Functions ... 725

6-9 Non-Local Jump Functions ... 726

6-10 Runtime Library ... 726

6-11 Prologue/Epilogue Runtime Library of Functions ... 727

6-12 Mathematical Functions ... 729

6-13 Copy Function ... 731

6-14 Header Files ... 732

6-15 Functions with Variable Arguments ... 733

6-16 Character String Functions ... 737

6-17 Memory Management Functions ... 755

6-18 Character Conversion Functions ... 763

6-19 Character Classification Functions ... 769

6-20 Standard I/O Functions ... 782

6-21 Standard Utility Functions ... 814

6-22 Non-Local Jump Functions ... 841

6-23 Mathematical Functions ... 844

6-24 Copy Function ... 885

6-25 Runtime Library ... 886

6-26 Functions with Variable Arguments ... 888

6-27 Character String Functions ... 888

6-28 Memory Management Functions ... 888

6-29 Character Conversion Functions ... 889

6-30 Character Classification Functions ... 889

6-31 Standard I/O Functions ... 890

6-32 Standard Utility Functions ... 891

6-33 Non-Local Jump Functions ... 891

6-34 Runtime Library ... 892

6-35 Prologue/Epilogue Runtime Library Functions ... 892

6-36 Mathematical Functions ... 898

6-37 Copy Function ... 899

7-1 Startup Routine Samples ... 900

7-2 Symbols of sbss Area ... 908

7-3 Symbols of bss Area ... 909

7-4 Symbols of sebss Area ... 910

7-5 Symbols of tibss.byte Area ... 911

7-6 Symbols of tibss.word Area ... 912

7-7 Symbols of sibss Area ... 913

7-8 BPC Register ... 914

7-9 Examples of Startup Routine ... 917

8-1 Copy Function ... 933

User’s Manual U19383EJ1V0UM00 21

9-1 Identifier ... 939

9-2 Registers for Register Variables ... 939

9-3 Registers for Register Variables ... 940

9-4 Work Register ... 940

CHAPTER 1 GENERAL

22 User’s Manual U19383EJ1V0UM00

CHAPTER 1 GENERAL

This chapter provides a general outline of the V850 microcontrollers C compiler package(CA850).

1.1 Outline

The V850 microcontrollers C compiler package (CA850) is a program that converts programs described in C
language or assembly language into machine language.

1.2 Special Features

The V850 microcontrollers C compiler package is equipped with the following special features.

(1) Language specifications in accordance with ANSI standard
The C language specifications conform to the ANSI standard. Coexistence with prior C language specifications
(K&R specifications) is also provided.

(2) Advanced optimization
Code size and speed priority optimization for the C compiler and assembler are offered.

(3) Built-in control functionality
Utilites to facilitate application system ROMization work are offered.

(4) Improvement to description ability
C language programming description ability has been improved due to enhanced language specifications.
ASSEMBLY LANGUAGE SPECIFICATIONS

CHAPTER 2 FUNCTIONS

User’s Manual U19383EJ1V0UM00 23

CHAPTER 2 FUNCTIONS

This chapter explains the programming method and how to use the expansion functions for more efficient use of the
CA850.

2.1 Variables (C language)

This section explains variables (C language).

2.1.1 Allocating to sections accessible with short instructions

The V850 contains 2-byte instruction length load/store instructions. By allocating variables to sections accessible
with these instructions it is possible to reduce the code size.

When defining or referencing a variable use the #pragma section and specify "tidata" as the section type.

Example

Remark See "#pragma section directive" .

#pragma section section-type begin

variable-declaration/definition

#pragma section section-type end

#pragma section tidata begin

int a = 1; /*allocated to tidata.word attribute section*/

int b; /*allocated to tibss.word attribute section*/

#pragma section tidata end

CHAPTER 2 FUNCTIONS

24 User’s Manual U19383EJ1V0UM00

2.1.2 Changing allocated section

The default allocation sections are as follows:
- Variables with no initial value: .sbss section
- Variables with initial value: .sdata section
- const constants: .const section

To change the allocated section specify the section type using #pragma section.

The relationship between section type and the section generated is as follows.

Example

When referencing a variable using the #pragma section instruction from a function in another file (i.e. reference file),
it is necessary to also specify the #pragma section instruction in the reference file and to define the affected variable as
extern format.

#pragma section section-type begin

variable-declaration/definition

#pragma section section-type end

Section Type Initial Value Default Section
Name

Section Name
Change

Base Register Access Instruction

data Yes .data Possible gp ld/st 2 instruction

No .bss Possible gp ld/st 2 instruction

sdata Yes .sdata Possible gp ld/st 1 instruction

No .sbss Possible gp ld/st 1 instruction

sedata Yes .sedata Not Possible ep lld/st 1 instruction

No .sebss Not Possible ep ld/st 1 instruction

sidata Yes .sidata Not Possible ep ld/st 1 instruction

No .sibss Not Possible ep ld/st 1 instruction

tidata.byte Yes .tidata.byte Not Possible ep sld/sst 1 instruction

No .tibss.byte Not Possible ep sld/sst 1 instruction

tidata.word Yes .tidata.word Not Possible ep sld/sst 1 instruction

No .tibss.word Not Possible ep sld/sst 1 instruction

sconst Yes .sconst Possible r0 ld/st 1 instruction

const Yes .const Possible r0 ld/st 1 instruction

#pragma section sdata "mysdata" begin

int a = 1; /*allocated to mysdata.sdata attribute section*/

int b; /*allocated to mysdata.sbss attribute section*/

#pragma section sdata "mysdata" end

CHAPTER 2 FUNCTIONS

User’s Manual U19383EJ1V0UM00 25

Example File that defines a table

Example File that references a table

Remark See "#pragma section directive" .

#pragma section sconst begin

const unsigned char table_data[9] = {1, 2, 3, 4, 5, 6, 7, 8, 9};

#pragma section sconst end

#pragma section sconst begin

extern const unsigned char table_data[];

#pragma section sconst end

CHAPTER 2 FUNCTIONS

26 User’s Manual U19383EJ1V0UM00

2.1.3 Defining variables for use during standard and interrupt processing

Specify as volatile variables that are to be used during both standard and interrupt processing.
When a variable is defined with the volatile qualifier, the variable is not optimized and optimization for assigning the

variable to a register is no longer performed. When a variable specified as volatile is manipulated, a code that always
reads the value of the variable from memory and writes the value to memory after the variable is manipulated is output.
The access width of the variable with volatile specified is not changed. A variable for which volatile is not specified is
assigned to a register as a result of optimization and the code that loads the variable from the memory may be deleted.
When the same value is assigned to variables for which volatile is not specified, the instruction may be deleted as a
result of optimization because it is interpreted as a redundant instruction.

[Example of source and output code when volatile has been specified]
If volatile is specified for "variable a", "variable b", and "variable c", a code that always reads the values of these vari-

ables from memory and writes them to memory after the variables are manipulated is output. Even if an interrupt
occurs in the meantime and the values of the variables are changed by the interrupt, for example, the result in which
the change is reflected can be obtained. (In this case, interrupts may have to be disabled while the variables are
manipulated, depending on the timing of the interrupt.)

When volatile is specified, the code size increases compared with when volatile is not specified because the mem-
ory has to be read and written.

volatile int a;

volatile int b;

volatile int c;

void func(void) {

if (a <= 0) {

 b++;

} else {

 c++;

}

b++;

c++;

}

_func:

 .option volatile

 ld.w $_a, r10

 .option novolatile

 cmp r0, r10

 jgt .L2

 .option volatile

 ld.w $_b, r11

 .option novolatile

 add 1, r11

 .option volatile

 st.w r11, $_b

 .option novolatile

 jbr .L3

.L2:

 .option volatile

 ld.w $_c, r12

 .option novolatile

 add 1, r12

 .option volatile

 st.w r12, $_c

 .option novolatile

.L3:

 .option volatile

 ld.w $_b, r13

 .option novolatile

 add 1, r13

 .option volatile

 st.w r13, $_b

 .option novolatile

CHAPTER 2 FUNCTIONS

User’s Manual U19383EJ1V0UM00 27

 .option volatile

 ld.w $_c, r14

 .option novolatile

 add 1, r14

 .option volatile

 st.w r14, $_c

 .option novolatile

 jmp [lp]

CHAPTER 2 FUNCTIONS

28 User’s Manual U19383EJ1V0UM00

2.1.4 Defining user port

With regards to the user port, specify volatile as in the following example to avoid optimization.

[Example of port description process]

Remarks 1. By declaring a structure and assigning that structure variable to a specific section, and then
assigning it to the corresponding port address in the link directive, bit access is possible in the same
"X.X" format used in the CA850 internal region I/O register.
However, in the case of 1-bit or 8-bit access both the bit field and byte union are required, so the
format becomes "X.X.X".

2. Assigning variables to sections should be performed using #pragma section or the section file.

/* 1.Port macro (format) definition*/

#define DEFPORTB(addr) (*((volatile unsigned char *)addr)) /* 8-bit port*/

#define DEFPORTH(addr) (*((volatile unsigned short *)addr)) /* 16-bit port*/

#define DEFPORTW(addr) (*((volatile unsigned int *)addr)) /* 32-bit port*/

/* 2.Port definition (Example: PORT1 0x00100000 8bit)*/

#define PORT1 DEFPORTB(0x00100000) /* 0x00100000 8-bit port*/

/* 3. Port use*/

{

 PORT1 = 0xFF; /* Write to PORT1*/

 a = PORT1; /* Read from PORT1*/

}

/* 4.C Compiler output code*/

 :

mov 1048576, r10

#@BEGIN_VOLATILE

st.b r20, [r10]

#@END_VOLATILE

mov 1048576, r11

#@BEGIN_VOLATILE

ld.b [r11], r12

#@END_VOLATILE

 :

CHAPTER 2 FUNCTIONS

User’s Manual U19383EJ1V0UM00 29

2.1.5 Defining const constant pointer

The pointer is interpreted differently depending on the "const" specified location.
To assign the const section to the sconst section, specify #pragma section sconst.

- const char *p；
This indicates that the object (*p) indicated by the pointer cannot be rewritten.
The pointer itself (p) can be rewritten.
Therefore the state becomes as follows and the pointer itself is allocated to RAM (.sdata/.data).

- char *const p；
This indicates that the pointer itself (p) cannot be rewritten.
The object (*p) indicated by the pointer can be rewritten.
Therefore the state becomes as follows and the pointer itself is allocated to ROM (.sconst/.const).

- const char *const p；
This indicates that neither the pointer itself(p) nor the object (*p) indicated by the pointer can be rewritten.
Therefore the state becomes as follows and the pointer itself is allocated to ROM (.sconst/.const).

*p = 0; /*Error*/

p = 0; /*Correct*/

*p = 0; /*Correct*/

p = 0; /*Error*/

*p = 0; /*Error*/

p = 0; /*Error*/

CHAPTER 2 FUNCTIONS

30 User’s Manual U19383EJ1V0UM00

2.2 Functions

This section explains functions.

2.2.1 Changing area to be allocated to

When changing a function's section name, specify the function using the #pragma text directive as shown below.

For a text attribute section that has had its section name changed, specify the initial section name from the time the
input section was created in a link directive.

Example The link directive coding method for when [#pragma text "sec1" func1] has been coded in the C source,
allocating function "func1" to the independently generated text-attribute section "sec1" (segment name:
FUNC1):

When allocating a specific function to an independently specified text-attribute section using the #pragma text direc-
tive, the section name actually generated will be "(specified character string)+.text", and the section name must be
entered in the link directive.

In the above example it would be "sec1.text section".

Remark See "#pragma text directive" .

#pragma text ["section name"] function name

#pragma text ["section name"]

FUNC1: !LOAD ?RX{

 sec1.text = $PROGBITS ?AX sec1.text;

 };

CHAPTER 2 FUNCTIONS

User’s Manual U19383EJ1V0UM00 31

2.2.2 Calling an away function

The C compiler uses the jarl instruction to call functions.
However, depending on the program allocation the address may not be able to be resolved, resulting in an error

when linking because the jarl instruction is 22-bit displacement.
In such a case, it is possible to make the function call not depend on the displacement amount by using the C com-

piler's -Xfar_jump option.
This is called the far jump function.
When calling a function set as far jump, the jmp instruction rather than the jarl/jal instruction is output.
One function is described per line in the file where the -Xfar_jump option is specified. The names described should

be C language function names prefixed with "_" (an underscore).

Example

If the following is described in place of "_function-name", all functions will be called using far jump.

Remark See "far jump function" .

_func_led

_func_beep

_func_motor

 :

 :

_func_switch

{all_function}

CHAPTER 2 FUNCTIONS

32 User’s Manual U19383EJ1V0UM00

2.2.3 Embedding assembler instructions

With the CA850 assembler instructions can be described in the following formats within C language source
programs.

- asm declaration

- #pragma directive

To use registers with an inserted assembler, save or restore the contents of the registers in the program because
they are not saved or restored by the CA850.

Example

Assembler instructions written within asm declarations and between #pragma asm and #pragma endasm directives
are never expanded even if the assembler source contains material defined by C language #define.

Furthermore assembler instructions written within asm declarations and between #pragma asm and #pragma
endasm directives are not expanded even if the -P option is added in the C compiler because they are passed as is to
the assembler.

Remark See "Describing assembler instruction" .

2.2.4 Executing in RAM

A program allocated to external ROM can be copied to internal RAM and executed in internal RAM while linking and
after copying if the relative value of each section and each symbol (TP, EP, GP) is not destroyed.

Use caution, as some programs can be copied while others cannot.
If a program is copied to internal RAM following reset and is not changed, this can be done more easily by using the

ROMization function.
The text section can be packed with romp850.

__asm(character string constant); or __asm(character string constant);

#pragma asm

 Assembler instruction

#pragma endasm

__asm("nop ");

__asm(".str \"string\\0\"");;

#pragma asm

mov r0, r10

st.w r10, $_i

#pragma endasm

CHAPTER 2 FUNCTIONS

User’s Manual U19383EJ1V0UM00 33

2.3 Using Microcomputer Functions

This section explains using microcomputer functions.

2.3.1 Accessing peripheral I/O register with C language

When reading from and writing to the device's internal peripheral I/O register in C language, adding a pragma direc-
tive to the C source makes possible reading and writing using the peripheral I/O register name and bit names.

The peripheral I/O register name can be treated as a standard unsigned external variable.

After describing the above pragma directive as above, the peripheral I/O register name becomes usable.

Example

For peripheral I/O register bit names, the relevant bit names are limited to ones defined by the CA850.
An error will therefore occur if the bit name is undefined.
To access an undefined bit, use "register name.bit number".

Remarks 1. To access the 4th bit of C port 3, use "P3.4".
2. See "Peripheral I/O register" .

#pragma ioreg

 register name = ...

 register name.bit number = ...

 bit name = ...

#pragma ioreg

main() {

 int i;

 P0 = 1; /* Writes 1 to P0*/

 i = RXB0; /* Reads from RXB0*/

}

void func(void) {

 P1 = 0; /* Writes 0 to P1*/

}

void func2(void) {

 P0.1 = 1; /* Sets bit 1 of PO to 1*/

 P2.3 = 0; /* Sets bit 3 of P2 to 0*/

 PS00 = 1; /* Sets the bit named PSOO to 1*/

}

CHAPTER 2 FUNCTIONS

34 User’s Manual U19383EJ1V0UM00

2.3.2 Describing interrupt processing with C language

With the CA850, the interrupt handler is specified using the "#pragma interrupt directive" and "__interrupt qualifier"
(for standard interrupt), or the "#pragma interrupt directive" and "__multi_interrupt qualifier" (for multiple interrupt).

An example of the interrupt handler is shown below.

Example Non-maskable interrupt

Example Multiple interrupt specification

Remark See "Interrupt/Exception processing handler" .

#pragma interrupt NMI func1 /*non-maskable interrupt*/

__interrupt

void func1(void) {

 :

}

#pragma interrupt INTP0 func2

__multi_interrupt /* multiple-interrupt function specified*/

void func2(void) {

 :

}

CHAPTER 2 FUNCTIONS

User’s Manual U19383EJ1V0UM00 35

2.3.3 Using CPU instructions in C language

Some assembler instructions can be described in C language source as embedded functions. However, they are
not described exactly as assembler instructions, but rather in the function format prepared by the CA850.

Instructions that can be described as functions are shown below.

Example

Remark See "Embedded functions" .

Assembler

Instruction

Function Embedded Function Description

di Interrupt control (ei) __DI()

ei Interrupt control (di) __EI()

nop nop __nop()

halt halt __halt()

satadd Saturated addition (satadd) long a, b;

long __satadd(a, b);

satsub Saturated subtraction (satsub) long a, b;

long __satsub(a, b);

bsh Halfword data byte swap (bsh) [V850E] long a;

long __bsh(a);

bsw Word data byte swap (bsw) [V850E] long a;

long __bsw(a);

hsw Word data halfword swap (hsw) [V850E] long a;

long __hsw(a);

sxb Byte data sign extension (sxb) [V850E] char a;

long __sxb(a);

sxh Halfword data sign extension (sxh) [V850E] short a;

long __sxh(a);

mul Instruction that assigns higher 32 bits of multiplication

result to variable using mul instruction [V850E]

long a; long b;

long __mul32(a, b);

mulu Instruction that assigns higher 32 bits of unsigned

multiplication result to variable using mulu instruction

[V850E]

unsigned long a, b;

unsigned long __mul32u(a, b);

sasf Flag condition setting with logical left shift (sasf)

[V850E]

long a;

unsigned int b;

long __sasf(a, b);

long a, b, c;

void func(void) {

 :

 c = __satsub(a, b); /* The result of the saturated operation of a and b is stored in c
(c = a - b) */

 :

 __nop();

 :

}

CHAPTER 2 FUNCTIONS

36 User’s Manual U19383EJ1V0UM00

2.3.4 Creating a self-programming boot area

Variables and functions can be referenced between the flash area and boot area with the following operations.
- Boot area functions can be called directly from the flash area.
- Calling a function from the boot area to the flash area is performed via a branch table.
- External boot area variables can be referenced from the flash area.
- External flash area variables cannot be referenced from the boot area.
- Common external variables as well as global functions can be defined for use by both boot area programs and

flash area programs. In this case the variable or function on the same area side is referenced.

Flash area functions called from the boot area are defined with the ext_func directive.

[Example (Within a C language program)]

Additional specifications such as options must be made. See "Flash relink function" in the "V850 Build" for details.

..ext_func function name, ID number

#pragma asm

.ext_func _func_flash0, 0

.ext_func _func_flash1, 1

.ext_func _func_flash2, 2

#pragma endasm

_bootfunc:

jarl _bootfunc, lp

jarl _flashfunc, lp

Boot Area Side ROM

_flashfunc:

jarl _bootfunc, lp

jarl _flashfunc, lp

Flash Area Side ROM

Branch Table

ID:1 jr ...

ID:0 jr _flashfunc

CHAPTER 2 FUNCTIONS

User’s Manual U19383EJ1V0UM00 37

2.4 Variables (Assembler)

This section explains variables (Assembler).

2.4.1 Defining variables with no initial values

Use the .lcomm directive in a section with no initial value to allocate area for a variable with no initial value.

In order that it may be referenced from other files as well, it is necessary to define the label with the .globl directive.

[Example]

Remark See ".lcomm", ".globl" .

.lcomm label name, size, alignment condition

.globl label name[, size]

.globl val0 -- Sets val0 as able to be referenced from other files

.globl val1 -- Sets val1 as able to be referenced from other files

.globl val2 -- Sets val2 as able to be referenced from other files

.sbss

.lcomm val0,4,4 -- Allocates 4 bytes of area for val0 and sets its alignment

 condition to 4

.lcomm val1,2,2 -- Allocates 2 bytes of area for val1 and sets its alignment

 condition to 2

.lcomm val2,1,1 -- Allocates 1 byte of area for val2 and sets its alignment

 condition to 1

CHAPTER 2 FUNCTIONS

38 User’s Manual U19383EJ1V0UM00

2.4.2 Defining const constants with initial values

To define a const with an initial value, use the following directives within the .const or .sconst section.
- 1-byte values

- 2-byte values

- 4-byte values

Example Allocates 1 halfword and stores 100

Remark See ".byte", ".hword", ".word" .

.byte value[, value, ...]

.hword value[, value, ...]

.word value[, value, ...]

 .const

 .align 4

 .globl _p, 2

_p:

 .hword 100

CHAPTER 2 FUNCTIONS

User’s Manual U19383EJ1V0UM00 39

2.4.3 Referencing section addresses

Symbols such as .data and .sdata (reserved symbols) which point to the beginnings and ends of sections are
available. Therefore, utilize the appropriate symbol name when using the address value of a specified section from the
assembler source.

Start symbol: __s[section name]
End symbol: __e[section name]

For example, the start symbol for the .sbss section is __ssbss, and its end symbol is __esbss.
These symbols can be used to retrieve the section start address and end address, but these symbol names cannot

be used to make direct references with C language labels.
To retrieve these symbol values, create global variables to store these values then store the symbol values in the

variables in assembler source such as that of the start up module.
By referencing these variables in the C source this can be realized.
The same applies to symbols such as __gp_DATA.
For example, the method for retrieving the start and end addresses of a .data section is as follows.

[In assembler source]

[In C source]

Try using this method in cases where a C language label is used to initialize only a specified section.

.comm _data_top, 4, 4

.comm _data_end, 4, 4

.extern __sdata, 4

.extern __edata, 4

mov #__sdata, r12

st.w r12, $_data_top

mov #__edata, r13

st.w r13, $_data_end

extern int data_top; /* extern defines data_top*/

extern int data_end; /* extern defines data_end*/

void func1(void){

 int top, end;

 top = data_top;

 end = data_end;

 :

}

CHAPTER 2 FUNCTIONS

40 User’s Manual U19383EJ1V0UM00

2.5 Startup Routine

This section explains startup routine.

2.5.1 Secure stack area

When setting a value to the stack pointer (sp), it is necessary to pay attention to the following points.
- The stack frame is generated downwards starting from the sp set value.
- Be sure to set the sp to point at the of 4-byte boundary position.

When the compiler references memory relative to a stack, it generates code based on the assumption the

stack pointer points at the 4-byte boundary position.

Allocate it to a data section (bss attribute section) as far as possible from gp.

If it is near the gp, there is a chance that the program data area will be destroyed.

[sp setting example]

In the above example, the size of the stack frame used by the application is set to 0x3f0 bytes and area is secured.
The label "__stack" points to the lowest position (start) of the stack frame.

Because __stack is not external variable defined (via .globl declaration) in the default startup module, __stack can-
not be referenced from other files.

If a .globl declaration is executed to __stack it becomes possible to be referenced by other files.
The stack area defines the __stack symbol to the lowest position address and sets the sum address and size of

__stack to the stack pointer.
Therefore there is no symbol for the end address.
By doing the following, it becomes possible to define the next address after the stack area end address.
Use caution, as it is not the last address in the stack area.

With the above definition, it is possible to refer to _stack and _stack_end symbols in the C source.
The mapping image becomes as follows.

.set STACKSIZE, 0x3f0

.bss

.lcomm __stack, STACKSIZE, 4

mov #__stack + STACKSIZE, sp

.set STACKSIZE, 0x200

.bss

.globl __stack --added

.globl __stack_end --added

.lcomm __stack, STACKSIZE, 4

.lcomm __stack_end, 0, 0 --added

__stack_end

__stack

Stack Area

0x0

CHAPTER 2 FUNCTIONS

User’s Manual U19383EJ1V0UM00 41

The size of the __stack symbol is specified in the startup module and should therefore be defined in C source in an
array as follows.

Use caution because it is not the last address in the stack area.

Remark When using a label defined in the assembler in C language, one underscore is removed from the start of
its name.

Assembly language definition:__stack
Reference with C language : stack

The stack usage tracer (slk850) can be used to measure C source program stack area.

extern unsigned long _stack[];

CHAPTER 2 FUNCTIONS

42 User’s Manual U19383EJ1V0UM00

2.5.2 Securing stack area and specifying allocation

This section explains securing stack area and specifying allocation.

(1) Secure stack area
In the startup routine, secure a stack in a section of a variable with no initial value with a specified section name.

[Example of setting sp]

In the above example the section of the stack frame to be used by the application is set to .stack, the size is
specified as 0x200 bytes and the area is secured.
The label "__stack" points to the lowest position (start) of the stack frame.

(2) Specify stack area allocation
In the link directive file specify the allocation of the section created in (1).

[Example of allocation specification]

In the above example the stack segment is called STACK, and is allocated to the address 0x3ffee00.

.set STACKSIZE, 0x200

.section ".stack", bss

.lcomm __stack, STACKSIZE, 4

STACK : !LOAD ?RW V0x3ffee00 {

 .stack = $NOBITS ?AW .stack;

};

CHAPTER 2 FUNCTIONS

User’s Manual U19383EJ1V0UM00 43

2.5.3 Initializing RAM

This section explains initializing RAM.

(1) Variables with no initial value
Processing to clear the .sbss and .bss sections with 0 is embedded in the default startup routine.
When clearing sections other than those above is desired, add such processing to the startup routine. When
clearing, use the symbols that indicate the section start and end.

Example Clear the .tibss.byte section

(2) RAM initialization
When a load module has been downloaded to the in-circuit emulator without performing ROMization, data with
initialized values placed in regions such as the data and sdata areas are set to their values at the time of down-
load.
When using the load module output by the linker to debug, it is necessary to remove the RAM area initialization
routine.
In the case of a ROMization load module, it is necessary to use the _rcopy copy function to perform operations
such as copying data with initial values.
This processing is possible not in the startup routine but also before accessing a main function variable with an
initial value, so perform it upon full completion of peripheral settings.

.extern __stibss.byte, 4 -- .tibss.byte area start symbol

.extern __etibss.byte, 4 -- .tibss.byte area end symbol

mov #__stibss.byte, r13

mov #__etibss.byte, r12

cmp r12, r13

jnl .L20

.L21:

st.w r0, [r13]

add 4, r13

cmp r12, r13

jl .L21

.L20:

CHAPTER 2 FUNCTIONS

44 User’s Manual U19383EJ1V0UM00

2.5.4 Preparing function and variable access

The text pointer is used when accessing a function, and either the global pointer or the element pointer is used when
accessing a variable

(1) Preparations for accessing a function
The text pointer (tp) is a pointer prepared to implement referencing (PIC: Position Independent Code) indepen-
dent of the position at which the text area of an application, i.e., program code is allocated when the program
code is referenced. For example, if it is necessary to reference a specific location in the code during program
execution, the CA850 outputs the code to be accessed in tp-relative mode.
Since the code is output on the assumption that tp is correctly set, tp must be correctly set in the startup routine.
The text pointer value is determined during linking, and is in a symbol defined by a symbol directive that is
described in the link directive file. For example, suppose that the symbol directive of the text pointer is
described as follows.

The text pointer value is the beginning of the TEXT segment, and is in "__tp_TEXT".
Describe as follows to set tp in the startup routine.

__tp_TEXT @ %TP_SYMBOL {TEXT};

.extern __tp_TEXT, 4

mov #__tp_TEXT, tp

CHAPTER 2 FUNCTIONS

User’s Manual U19383EJ1V0UM00 45

(2) Variable access preparations (Setting global pointer)
External variables or data defined in an application are allocated to the memory. The global pointer (gp) is a
pointer prepared to implement referencing independent of location position (PID: Position Independent Data)
when the variables or data allocated to the memory are referenced. The CA850 outputs a code for the section
that is to be accessed in gp-relative mode.
Since the code is output on the assumption that gp is correctly set, gp must be correctly set in the startup rou-
tine.
The global pointer value is determined during linking, and is in a symbol defined by a symbol directive that is
described in the link directive file. For example, suppose that the symbol directive of the global pointer is
described as follows.

The gp symbol value can be defined the beginning of "data segment" of the DATA segment as shown above, or
offset from a text symbol. A gp symbol can be specified not only by specifying the start address of a data seg-
ment (such as the DATA segment), but also by using an offset value from the text symbol as its address.
Using the second method, the gp symbol value is determined by adding an offset value from tp to tp. In other
words, a code that is independent of location can be generated. To copy a program code and data used by that
code to the RAM area simultaneously and execute them, the value of gp can be acquired immediately if the start
address of the copy destination is known. In this case, the symbol directive is described as follows.

The global pointer value is "__tp_TEXT to which the value of __gp_DATA is added", and the value to be added,
i.e., offset value, is stored in "__gp_DATA". Therefore, describe as follows to set gp in the startup routine.

This sets the correct value of the global pointer to gp.

__gp_DATA @ %GP_SYMBOL {DATA};

__tp_TEXT @ %TP_SYMBOL;

__gp_DATA @ %GP_SYMBOL &__tp_TEXT {DATA};

.extern __tp_TEXT, 4

.extern __gp_DATA, 4

mov #__tp_TEXT, tp

mov #__gp_DATA, gp

add tp, gp

CHAPTER 2 FUNCTIONS

46 User’s Manual U19383EJ1V0UM00

(3) Variable access preparations (Setting element pointer)
Of the external variables or data defined in an application, those that are allocated to the following sections are
accessed from the element pointer (ep) in relative mode.

- sedata/sebss attribute section
- sidata/sibss attribute section
- tidata/tibss attribute section
- tidata.byte/tibss.byte section
- tidata.word/tibss.word section

If these sections exist, the CA850 outputs a code to access these areas in ep-relative mode.
Since the code is output on the assumption that ep is correctly set, ep must be correctly set in the startup rou-
tine.
The element pointer value is determined during linking, and is in a symbol defined by a symbol directive that is
described in the link directive file. For example, suppose that the symbol directive of the element pointer is
described as follows.

The element pointer value is the beginning of the SIDATA segment by default, and its value is in "__ep_DATA".
Therefore, describe as follows to set ep in the startup routine.

Reference the absolute address of __ep_DATA and set that value to ep.

__ep_DATA @ %EP_SYMBOL;

.extern __ep_DATA, 4

mov #__ep_DATA, ep

CHAPTER 2 FUNCTIONS

User’s Manual U19383EJ1V0UM00 47

2.5.5 Preparing to use code size reduction function

This setting is necessary to reduce code size when the V850Ex core is used or when the prologue/epilogue runtime
library is used (i.e. When higher optimization (execution speed priority) is not specified or when "-
Xpro_epi_runtime=on" is specified).

Since the CALLT instruction is used when the prologue/epilogue runtime library of functions is called by the V850Ex
core, the value of CTBP necessary for the CALLT instruction must be set at the beginning of the function table of the
prologue/epilogue runtime library of functions.

The prologue/epilogue runtime library is used in the following case
- Compiler option "-Xpro_epi_runtime=on" is set

If a compiler option except "-Ot" is specified for optimization, "-Xpro_epi_runtime=on" is automatically specified.
The start symbol for the function prologue/epilogue runtime library function table is as follows.

- ___PROLOG_TABLE
Describe the following code using this symbol.

CTBP is system register 20. Set a value to it using the ldsr instruction.

mov #___PROLOG_TABLE, r12

ldsr r12, 20

CHAPTER 2 FUNCTIONS

48 User’s Manual U19383EJ1V0UM00

2.5.6 Ending startup routine

The final process in the startup routine differs depending on whether or not a real-time OS is used.

(1) When not using a real-time OS
When the processing necessary for the startup routine has been completed, execute an instruction that
branches to the main function.
Describe the following code to branch to the main function.

When the main function has been executed, execution returns to the 4 bytes subsequent to this branch instruc-
tion.
The following instruction can also be used if it is known that execution does not return.

The entire 32-bit space can be accessed using the jmp instruction. When the "jarl_main, lp" instruction is used,
execution returns after the main function is executed. It is recommended to take appropriate action to prevent
deadlock from occurring when execution returns.

(2) When using a real-time OS (RX850V4)
In an application using a real-time OS, execution branches to the initialization routine when the processing that
must be performed by the startup routine has been completed.

jarl _main, lp

jr _main

mov #_main, lp

jmp [lp]

 .extern __kernel_sit

 .extern __kernel_start

 mov #__kernel_sit, r6

 mov #__kernel_start, r11

 jarl __jump_kernel_start, lp

__boot_error:

 jbr __boot_error

__jump_kernel_start:

 jmp [r11]

CHAPTER 2 FUNCTIONS

User’s Manual U19383EJ1V0UM00 49

2.6 Link Directives

This section explains link directives.
Link directive files can be generated automatically in CubeSuite.

Remark For information about how to automatically generate link directive files, see the "CubeSuite V850 Build"
user's Manual.

2.6.1 Adding function section allocation

To perform function section allocation, divert the .text section setting portion and change the segment name and
section name.

Example Setting allocation for USRTEXT segment and usr.text section

2.6.2 Adding section allocation for variables

To add allocation settings for a variable section, divert the specification part for a section with the same attributes
and change the segment name and section name.

The section attributes specify the section type when the section is set to a variable in #pragma section.

Example Setting allocation for USRCONST segment and usr.const section

USRTEXT : !LOAD ?RX {

 usr.text = $PROGBITS ?AX usr.text;

};

Section Type Section to Be Diverted

data .data/.bss

sdata .sdata/.sbss

sconst .sconst

const .const

USRCONST : !LOAD ?R {

 usr.const = $PROGBITS ?A usr.const;

};

TEXT : !LOAD ?RX {

 .pro_epi_runtime = $PROGBITS ?AX .pro_epi_runtime; Divert

 .text = $PROGBITS ?AX .text;

};

CHAPTER 2 FUNCTIONS

50 User’s Manual U19383EJ1V0UM00

2.6.3 Distributing section allocation

The following three methods for distributing section allocation are available.

(1) Distribute by section name
In the C source or assembler source, specify separate names for the sections to be allocated.
By specifying individual input section names within the link directive, the section of each name will be allocated
to its specified part.

Example

(2) Distribute by object files
By specifying individual object names within the link directive, the section with the relevant attributes within each
object will be allocated to the specified part.

Example

When specifying the name an object file in a library (.a file), specify the .a file name including its path within
parentheses.

Example

TEXT : !LOAD ?RX{

.text = $PROGBITS ?AX .text ; <- the .text section is allocated

};

FUNC1 : !LOAD ?RX{

funcsec1.text = $PROGBITS ?AX funcsec1.text ; <- he funcsec.text section is allocated

};

TEXT1 : !LOAD ?RX {

.text1 = $PROGBITS ?AX { filel.o file2.o }; <- The TEXT ATTRIBUTE sections in file1.o and

 file2.o are allocated.

};

TEXT2 : !LOAD ?RX{

.text2 = $PROGBITS ?AX { file3.o }; <- The TEXT ATTRIBUTE section in file3.o is

 allocated.

};

.text2 = $PROGBITS ?AX .text {rcopy.o(c:\nectools\lib850\r32\libr.a)};

CHAPTER 2 FUNCTIONS

User’s Manual U19383EJ1V0UM00 51

(3) Distribute by section attributes
Specify allocation only by attributes without specifying the input section and input object. Because this setting
has a lower priority level than the part where settings such as section name and object name are made, it can
be used to specify allocation for all parts where section and object names are not already specified.

Example

(4) Allocation specification priority level
There are priority levels depending on the presence or lack of input section and input object specifications.
When allocating sections, the linker allocates starting with the highest priority specification.
The relationship between priority level and specifications is shown below. (A lower the priority level number rep-
resents a higher priority.)

TEXT1 : !LOAD ?RX V0x100000{

.text1 = $PROGBITS ?AX{file1.o file2.o}; <- The TEXT ATTRIBUTE sections in file1.o and
file2.o are allocated.

};

TEXT2 : !LOAD ?RX V0x120000{

.text2 = $PROGBITS ?AX ; <- The TEXT ATTRIBUTE sections in objects

 other than file1.o and file2.o are allocated.

};

Priority

Level

Specified Names Output

1 Input section name

+ object file name

The specified input section is extracted from the specified object and is

then output.

2 Input section name only The specified input section is extracted from all objects and is then

output.

3 Object file name only Sections having the same attribute as the output section to be created

are extracted from the specified object and are then output.

4 No names specified Sections having the same attribute as the output section to be created

are extracted from all objects and are then ouput.

CHAPTER 2 FUNCTIONS

52 User’s Manual U19383EJ1V0UM00

2.7 Reducing Code size

This section explains reducing code size.

2.7.1 Reducing code size (C language)

(1) Access to variables
Because 4 bytes are needed each for external variable access loading and storing, even in non-assignment
cases it is possible to reduce code size by assigning the external variable into a temporary variable and using
that temporary variable so as to change memory access to register access.
In the following example s is an external variable

Remarks 1. The amount of reduction is specific to this example, and will vary case by case.
2. As a result of changing the source, output instructions may be reduced and execution speed

may be increased.
3. Pay attention to the following points when changing the source.

- Changing the source causes the state of register usage to change. It is therefore possible that in
unintended places register transfers that had up until that point remained without being optimized
may be erased or, alternatively, that optimization may become ineffective causing redundant reg-
ister transfers to remain.

- By adding temporary variables, a new register for register variables may come to be used, result-
ing in code for saving and restoring that register being added to the function entrance and exit.

Before change:

if(x != 0){

 if((s & 0x00F00F00) != MASK1){

 return;

 }

 s >>= 12;

 s &= 0xFF;

}else{

 if((s & 0x00FF0000) != MASK2){

 return;

 }

 s >>= 24;

}

After change:

unsigned int tmp = s;

if(x != 0){

 if((tmp & 0x00F00F00) != MASK1){

 return;

 }

 tmp >>= 12;

 tmp &= 0xFF;

}else{

 if((tmp & 0x00FF0000) != MASK2){

 return;

 }

 tmp >>= 24;

}

s = tmp;

CHAPTER 2 FUNCTIONS

User’s Manual U19383EJ1V0UM00 53

(2) Number of loops in loop processing
As in the following example, expanding a function may make its size smaller if the number of times to execute is
few and body of each loop is small.
In this case, the execution speed also increases.

Remarks 1. The amount of reduction is specific to this example, and will vary case by case.
2. As a result of changing the source, output instructions may be reduced and execution speed

may be increased.
3. Pay attention to the following points when changing the source.

- Changing the source causes the state of register usage to change. It is therefore possible that in
unintended places register transfers that had up until that point remained without being optimized
may be erased or, alternatively, that optimization may become ineffective causing redundant reg-
ister transfers to remain.

- By adding temporary variables, a new register for register variables may come to be used, result-
ing in code for saving and restoring that register being added to the function entrance and exit.

Before change:

for(i = 0; i < 4; i++){

 array[i] = 0;

}

After change:

long *p;

 :

p = array;

*p = 0;

*(p + 1) = 0;

*(p + 2) = 0;

*(p + 3) = 0;

CHAPTER 2 FUNCTIONS

54 User’s Manual U19383EJ1V0UM00

(3) auto variable initialization
When an auto variable is used within a function without being initialized, because that variable is not allocated to
a register and remains in memory, the code size may increase.
In the following example if neither switch case applies then variable a is referenced in the return statement with-
out being initialized.
Even if in actuality it will certainly apply to one of the cases it may not to be initialized because when the C com-
piler allocates to register it is not understood when the program is analyzed.
In a case such as this, it cannot be allocated with CA850 register allocation.
By adding initialization it becomes able to be allocated to a register and the code size is reduced.

Remarks 1. The amount of reduction is specific to this example, and will vary case by case.
2. As a result of changing the source, output instructions may be reduced and execution speed

may be increased.
3. Pay attention to the following points when changing the source.

- Changing the source causes the state of register usage to change. It is therefore possible that in
unintended places register transfers that had up until that point remained without being optimized
may be erased or, alternatively, that optimization may become ineffective causing redundant reg-
ister transfers to remain.

- By adding temporary variables, a new register for register variables may come to be used, result-
ing in code for saving and restoring that register being added to the function entrance and exit.

Before change:

int func(int x) {

 int a;

 switch(x){

 case 0:

 a = VAL0;

 break;

 case 1:

 a = VAL1;

 }

 return(a);

}

After change:

int func(int x) {

 int a = 0;

 switch(x){

 case 0:

 a = VAL0;

 break;

 case 1:

 a = VAL1;

 }

 return(a);

}

CHAPTER 2 FUNCTIONS

User’s Manual U19383EJ1V0UM00 55

(4) switch statements
With respect to switch statements, if there are four or more case labels and the difference between each vari-
able's low limit and high limit is up to 3 times the number of cases, the CA850 generates code in table branch
format.
In such an instance, if the number of cases is approximately 16 or less (this number varies depending on factors
such as the switch expression format and the label value distribution), changing them to equivalent if-else state-
ments and putting comparison and branch instructions in line will cause the code size to decrease.
In cases such as when the switch expression is an external variable reference or is a complex expression, it is
necessary to once substitute the value to a temporary variable and make the if expression refer to the temporary
variable.
In the following example x is an auto variable.

Remarks 1. The amount of reduction is specific to this example, and will vary case by case.
2. As a result of changing the source, output instructions may be reduced and execution speed

may be increased.
3. Pay attention to the following points when changing the source.

- Changing the source causes the state of register usage to change. It is therefore possible that in
unintended places register transfers that had up until that point remained without being optimized
may be erased or, alternatively, that optimization may become ineffective causing redundant reg-
ister transfers to remain.

- By adding temporary variables, a new register for register variables may come to be used, result-
ing in code for saving and restoring that register being added to the function entrance and exit.

4. With the CA850 it is possible to specify the switch statement development code with the -Xcase
option.

- -Xcase=ifelse
Outputs the code in the same format as the if-else statement along a string of case statements.

- -Xcase=binary
Outputs the code in the binary search format.

- -Xcase=table
Outputs the code in a table jump format.

Before change:

switch(x){

 case VAL0:

 return(RETVAL0);

 case VAL1:

 return(RETVAL1);

 case VAL2:

 return(RETVAL2);

 case VAL3:

 return(RETVAL3);

 case VAL4:

 return(RETVAL4);

 case VAL5:

 return(RETVAL5);

}

After change:

if(x == VAL0)

 return(RETVAL0);

else if(x == VAL1)

 return(RETVAL1);

else if(x == VAL2)

 return(RETVAL2);

else if(x == VAL3)

 return(RETVAL3);

else if(x == VAL4)

 return(RETVAL4);

else if(x == VAL5)

 return(RETVAL5);

CHAPTER 2 FUNCTIONS

56 User’s Manual U19383EJ1V0UM00

(5) if statements
When executing the same processing to multiple cases with an if-else combination, if using a separate set of
conditions would make the "multiple cases" combine into one case, then combine them.
This will delete redundant parts.
In the example below, if the conditions "the initial value of x is 0 and the values of s as well as t are either 0 or
1" are set, the code can be changed as follows.

Remarks 1. The amount of reduction is specific to this example, and will vary case by case.
2. As a result of changing the source, output instructions may be reduced and execution speed

may be increased.
3. Pay attention to the following points when changing the source.

- Changing the source causes the state of register usage to change. It is therefore possible that in
unintended places register transfers that had up until that point remained without being optimized
may be erased or, alternatively, that optimization may become ineffective causing redundant reg-
ister transfers to remain.

- By adding temporary variables, a new register for register variables may come to be used, result-
ing in code for saving and restoring that register being added to the function entrance and exit.

Before change:

if(!s){

 if(t){

 x = 1;

 }

}else{

 if(!t){

 x = 1;

 }

}

if(x){

 if((++u) >= v){

 u = 0;

 }else{

 x = 0;

 }

}

After change:

if((s ^ t)){

 if((++u) >= v){

 u = 0;

 x = 1;

 }

}

CHAPTER 2 FUNCTIONS

User’s Manual U19383EJ1V0UM00 57

If an assigned value is referenced immediately following its assignment statement, the part referred to is substi-
tuted by the assignment statement and combined into one.
This makes possible deletion of excess register transferring and reduction in code size.
In most cases, however, redundant register transferring is deleted by the C compiler's optimization, so the code
size would not change.

Remarks 1. The amount of reduction is specific to this example, and will vary case by case.
2. As a result of changing the source, output instructions may be reduced and execution speed

may be increased.
3. Pay attention to the following points when changing the source.

- Changing the source causes the state of register usage to change. It is therefore possible that in
unintended places register transfers that had up until that point remained without being optimized
may be erased or, alternatively, that optimization may become ineffective causing redundant reg-
ister transfers to remain.

- By adding temporary variables, a new register for register variables may come to be used, result-
ing in code for saving and restoring that register being added to the function entrance and exit.

Before change:

--s;

if(s == 0){

 :

}

After change:

if(--s == 0)){

 :

}

CHAPTER 2 FUNCTIONS

58 User’s Manual U19383EJ1V0UM00

(6) if-else statements
As in the following example, if each branch destination of an if-else statement includes only statements that
assign differing values to the same variable, it is possible to reduce the code size by moving one of the branch
destinations ahead of the if statement, because the else block will be erased and the jump instruction from the if
the block to after the else block is eliminated.

Remarks 1. The amount of reduction is specific to this example, and will vary case by case.
2. As a result of changing the source, output instructions may be reduced and execution speed

may be increased.
3. Pay attention to the following points when changing the source.

- Changing the source causes the state of register usage to change. It is therefore possible that in
unintended places register transfers that had up until that point remained without being optimized
may be erased or, alternatively, that optimization may become ineffective causing redundant reg-
ister transfers to remain.

- By adding temporary variables, a new register for register variables may come to be used, result-
ing in code for saving and restoring that register being added to the function entrance and exit.

As in the following example, if the branch destinations of if-else statements contain only return statements and
those return values are the results of the branch conditions themselves, change it to return the branch condition
expression and delete the if-else statement.

Remarks 1. The amount of reduction is specific to this example, and will vary case by case.
2. As a result of changing the source, output instructions may be reduced and execution speed

may be increased.
3. Pay attention to the following points when changing the source.

- Changing the source causes the state of register usage to change. It is therefore possible that in
unintended places register transfers that had up until that point remained without being optimized
may be erased or, alternatively, that optimization may become ineffective causing redundant reg-
ister transfers to remain.

- By adding temporary variables, a new register for register variables may come to be used, result-
ing in code for saving and restoring that register being added to the function entrance and exit.

Before change:

if(x == 10){

 s = 1;

}else{

 s = 0;

}

After change:

s = 0;

if(x == 10){

 s = 1;

}

Before change:

if(s1 == s2){

 return(1);

}

return(0);

After change:

return(s1 == s2);

CHAPTER 2 FUNCTIONS

User’s Manual U19383EJ1V0UM00 59

If after each respective branch a function is called using differing arguments for the same function, move the
function call to after the branches converge if possible.
To do this assign the differing arguments of the original function calls to temporary variables and use these tem-
porary variables as arguments when calling the function.

Remarks 1. The amount of reduction is specific to this example, and will vary case by case.
2. As a result of changing the source, output instructions may be reduced and execution speed

may be increased.
3. Pay attention to the following points when changing the source.

- Changing the source causes the state of register usage to change. It is therefore possible that in
unintended places register transfers that had up until that point remained without being optimized
may be erased or, alternatively, that optimization may become ineffective causing redundant reg-
ister transfers to remain.

- By adding temporary variables, a new register for register variables may come to be used, result-
ing in code for saving and restoring that register being added to the function entrance and exit.

Before change:

if(s){

 :

 func(0, 1, 2);

}else{

 :

 func(0, 1, 3);

}

After change:

int tmp;

if(s){

 :

 tmp = 2;

}else{

 :

 tmp = 3;

}

func(0, 1, tmp);

CHAPTER 2 FUNCTIONS

60 User’s Manual U19383EJ1V0UM00

In the case that after respective branches an identical assignment statement or function call exists, move it to
before the branch if possible.
If that statement's evaluation result is referenced, assign it once to a temporary variable and reference the tem-
porary variable.
The following example is a case of a function call.

Remarks 1. The amount of reduction is specific to this example, and will vary case by case.
2. As a result of changing the source, output instructions may be reduced and execution speed

may be increased.
3. Pay attention to the following points when changing the source.

- Changing the source causes the state of register usage to change. It is therefore possible that in
unintended places register transfers that had up until that point remained without being optimized
may be erased or, alternatively, that optimization may become ineffective causing redundant reg-
ister transfers to remain.

- By adding temporary variables, a new register for register variables may come to be used, result-
ing in code for saving and restoring that register being added to the function entrance and exit.

Before change:

if(x >= 0){

 if(x > func(0, 1, 2)){

 :

 }

}else{

 if(x < -func(0, 1, 2)){

 :

 }

}

After change:

long tmp;

tmp = func(0, 1, 2);

if(x >= 0){

 if(x > tmp){

 :

 }

}else{

 if(x < -tmp){

 :

 }

}

CHAPTER 2 FUNCTIONS

User’s Manual U19383EJ1V0UM00 61

In the case that after respective branches an identical assignment statement or function call exists, if it cannot
be moved to before the branch but can be moved to after the merge, move it to after the merge.
The following example is an assignment statement case.

Remarks 1. The amount of reduction is specific to this example, and will vary case by case.
2. As a result of changing the source, output instructions may be reduced and execution speed

may be increased.
3. Pay attention to the following points when changing the source.

- Changing the source causes the state of register usage to change. It is therefore possible that in
unintended places register transfers that had up until that point remained without being optimized
may be erased or, alternatively, that optimization may become ineffective causing redundant reg-
ister transfers to remain.

- By adding temporary variables, a new register for register variables may come to be used, result-
ing in code for saving and restoring that register being added to the function entrance and exit.

Before change:

if(tmp & MASK){

 :

 j++;

}else{

 :

 j++;

}

After change:

if(tmp & MASK){

 :

}else{

 :

}

j++;

CHAPTER 2 FUNCTIONS

62 User’s Manual U19383EJ1V0UM00

(7) switch/if-else statements
As in the following example, in the case where differing values are assigned to the same external variable at the
respective branch destinations of a switch statement or an if-else statement, it is possible to reduce code size by
assigning the values to a temporary variable at each branch and then reassigning the temporary variable value
back to the original external variable after the branches merge.
This is because, assigning to an external variable requires a memory store instruction (4 bytes) because exter-
nal variables are rarely allocated to registers, while in most cases assigning to a temporary variable uses a reg-
ister transfer (2 bytes).
In the following example s is an external variable.

Remarks 1. The amount of reduction is specific to this example, and will vary case by case.
2. As a result of changing the source, output instructions may be reduced and execution speed

may be increased.
3. Pay attention to the following points when changing the source.

- Changing the source causes the state of register usage to change. It is therefore possible that in
unintended places register transfers that had up until that point remained without being optimized
may be erased or, alternatively, that optimization may become ineffective causing redundant reg-
ister transfers to remain.

- By adding temporary variables, a new register for register variables may come to be used, result-
ing in code for saving and restoring that register being added to the function entrance and exit.

Before change:

switch(x){

 case 0:

 s = 0;

 break;

 case 1:

 s = 0x5555;

 break;

 case 2:

 s = 0xAAAA;

 break;

 case 3:

 s = 0xFFFF;

}

After change:

int tmp;

 :

if(x == 0){

 tmp = 0;

}else if (x == 1){

 tmp = 0x5555;

}else if(x == 2){

 tmp = 0xAAAA;

}else if(x == 3) {

 tmp = 0xFFFF;

}else{

 goto label;

}

s = tmp;

label:

CHAPTER 2 FUNCTIONS

User’s Manual U19383EJ1V0UM00 63

(8) for/while statements
The CA850 generates condition judgment expressions twice for loops that begin with condition judgment
expressions such as for and while
This type of change to loop format is executed at the front end (parsing part), which is the C compiler's first
phase. This is because the first condition judgment is commonly deleted by subsequent optimization, and
changing the code in this way is advantageous with regards to increasing execution speed.
However, in cases where the first condition judgment is not deleted, changing the code in this way creates
redundancy with regards to code size.

[for loop]

[while loop]

Before change:

for(statement 1; expression 2; statement
3){

 loop body

}

After change:

statement 1;

 if(expression 2){

 do{

 loop body

 statement 3;

 }while(expression 2);

}

Before change:

while(expression 1){

 loop body

}

After change:

if(expression 1){

 do{

 loop body

 }while(expression 1);

}

CHAPTER 2 FUNCTIONS

64 User’s Manual U19383EJ1V0UM00

Therefore, when the first time condition judgment expression is not deleted by optimization it is possible to
reduce the number of condition judgments to one by changing the loop to one composed with goto as follows.

[for loop]

[while loop]

Remarks 1. The amount of reduction is specific to this example, and will vary case by case.
2. As a result of changing the source, output instructions may be reduced and execution speed

may be increased.
3. Pay attention to the following points when changing the source.

- Changing the source causes the state of register usage to change. It is therefore possible that in
unintended places register transfers that had up until that point remained without being optimized
may be erased or, alternatively, that optimization may become ineffective causing redundant reg-
ister transfers to remain.

- By adding temporary variables, a new register for register variables may come to be used, result-
ing in code for saving and restoring that register being added to the function entrance and exit.

(9) Functions with no return values
Define functions with no return values as "void."

 statement 1;

loop_bgn:

 if(! expression 2) goto loop_end;

 loop body

 statement 3;

 goto loop_bgn;

loop_end:

loop_bgn:

 if(! expression 1) goto loop_end;

 loop body

 goto loop_bgn;

loop_end:

Before change:

for(i = 0; i < s; ++i){

 array[i] = array[i+1];

}

After change:

 i = 0;

bgn_loop:

 if(i >= s) goto end_loop;

 array[i] = array[i+1];

 ++i;

 goto bgn_loop;

end_loop:

CHAPTER 2 FUNCTIONS

User’s Manual U19383EJ1V0UM00 65

2.7.2 Reducing variable area with variable definition method

This section explains reducing variable area with the variable definition method.

(1) Variable signs
With the V850 microcontrollers, byte data and halfword data are sign-extended to word length, depending on
the value of their most significant bit, when they are loaded from memory to registers.
Consequently, the mask code of the higher bits may be generated when an operation on unsigned char or
unsigned short type data is performed (but it will not be generated in an operation in the case that the data is
already in the register).
Please use word data whenever possible.
When using byte data and halfword data, please use them in signed format.

Remarks 1. The V850E supports unsigned load instructions.
Because of this, sign-extension will not occur, and mask code will not be generated.

2. In the case of a program where word data cannot be used and mask code ends up being
generated, it is possible to reduce code size by using the mask register function.

(2) Variable format
Because by ANSI-C specifications variables in short integer ((unsigned) short and (unsigned) char) formats are
expanded to int format or unsigned int format during operation, many format change instructions are generated
with respect to programs that use these variables (particularly in cases where these variables are allocated to
registers).
Since making them (unsigned) int format makes this format change unnecessary, the code size is reduced.
Particularly with respect to stack intervals that are relatively easy to allocate to registers, it is recommended to
use (unsigned) int format as much as possible.

Remarks 1. The amount of reduction is specific to this example, and will vary case by case.
2. As a result of changing the source, output instructions may be reduced and execution speed

may be increased.
3. Pay attention to the following points when changing the source.

- Changing the source causes the state of register usage to change. It is therefore possible that in
unintended places register transfers that had up until that point remained without being optimized
may be erased or, alternatively, that optimization may become ineffective causing redundant reg-
ister transfers to remain.

- By adding temporary variables, a new register for register variables may come to be used, result-
ing in code for saving and restoring that register being added to the function entrance and exit.
In such a case, the code size will increase by the save/restore code amount (8 bytes).

Before change:

unsigned char i;

 :

for(i = 0; i < 4; i++){

 array[2 + i] = *(p + i);

}

After change:

int i;

 :

for(i = 0; i < 4; i++){

 array[2 + i] = *(p + i);

}

CHAPTER 2 FUNCTIONS

66 User’s Manual U19383EJ1V0UM00

(3) Allocating and referencing automatic variables
As in the following example, if there is a time interval between when a value is assigned to a stack variable and
when that value is actually referenced, during that interval a register is occupied and the chance for other
variables to be allocated to registers decreases.
In such a case, changing the value assignment to immediately before it is actually referenced increases the
chance for other variables to be allocated to registers increases, decreases memory access, and decreases the
code size.

Remarks 1. The amount of reduction is specific to this example, and will vary case by case.
2. As a result of changing the source, output instructions may be reduced and execution speed

may be increased.
3. Pay attention to the following points when changing the source.

- Changing the source causes the state of register usage to change. It is therefore possible that in
unintended places register transfers that had up until that point remained without being optimized
may be erased or, alternatively, that optimization may become ineffective causing redundant reg-
ister transfers to remain.

- By adding temporary variables, a new register for register variables may come to be used, result-
ing in code for saving and restoring that register being added to the function entrance and exit.
In such a case, the code size will increase by the save/restore code amount (8 bytes).

Before change:

int i = 0, j = 0, k = 0, m = 0;

/*There is a function call in this
interval*/

/*These variables are not used*/

while((k & 0xFF) != 0xFF){

 k = s1;

 if(k & MASK){

 if(m != 1){

 s2 += 2;

 m = 1;

 array[15+i+j] = 0xFF;

 j++;

 }

 }

}

 :

After change:

int i, j, k, m;

 :

i = 0;

j = 0;

k = 0;

m = 0;

while((k & 0xFF) != 0xFF){

 k = s1;

 if(k & MASK){

 if(m != 1){

 s2 += 2;

 m = 1;

 array[15+i+j] = 0xFF;

 j++;

 }

 }

}

 :

CHAPTER 2 FUNCTIONS

User’s Manual U19383EJ1V0UM00 67

(4) Variable types and order of definition
It is best to perform definitions in groups beginning with long data length values.
With the V850 microcontroller, word data in formats such as int format must be aligned to word boundaries, and
halfword data in formats such as short format must be aligned to halfword boundaries.
Due to this, source such as the following causes padding areas to be generated for alignment.

In order to avoid the generation of such padding areas, define definitions of variables and structure members
grouped by format beginning with longer data lengths.

char c = 'c';

short s = 0;

int i = 1;

char d = 'b';

int j = 2;

j

- d

i

s - c

High position

Low position

int i = 1;

int j = 2;

short s = 0;

char c = 'a';

char d = 'b';

High position

j

d

i

sc

Low position

CHAPTER 2 FUNCTIONS

68 User’s Manual U19383EJ1V0UM00

2.8 Accelerating Processing

This section explains accelerating processing.

2.8.1 Accelerate processing with description method

This section explains accelerate processing with the description method

(1) Loop processing pointer
A variable that controls a loop as in the example below is called an induction variable.
"Deleting the induction variable" refers to optimization that deletes the induction variable by using a different
variable to control the loop.
The CA850 includes this optimization, but because applicable conditions are limited, not all cases are able to be
optimized.
By modifying the program in the following manner, this optimization can be performed "manually".
In the lines below, induction variable i is deleted through the use of temporary variable (pointer) p.

Remarks 1. The amount of reduction is specific to this example, and will vary case by case.
2. As a result of changing the source, output instructions may be reduced and execution speed

may be increased.
3. Pay attention to the following points when changing the source.

- Changing the source causes the state of register usage to change. It is therefore possible that in
unintended places register transfers that had up until that point remained without being optimized
may be erased or, alternatively, that optimization may become ineffective causing redundant reg-
ister transfers to remain.

- By adding temporary variables, a new register for register variables may come to be used, result-
ing in code for saving and restoring that register being added to the function entrance and exit.
In such a case, the code size will increase by the save/restore code amount (8 bytes).

(2) Auto variable declaration
Keep the number of auto variables to within ten; of preferably to six or seven.
Auto variables are assigned to registers.
The CA850 allows a total of 20 registers, 10 work registers and 10 register variable registers, to be used for vari-
ables (in the 32-bit register mode).
It is recommended to use many auto variables if processing in one function takes time.
If the processing does not take much time, use only the 10 work registers whenever possible.
The register variable registers require overhead when they are saved or restored.
The C compiler automatically judges whether or not to use register variables.
Therefore, use six to seven registers for auto variables and leave three or four to be able to be used for work by
the C compiler.

Before change:

int i;

for(i = 0; *(table + i) != NULL; ++i){

 if((*(table + i) & 0xFF) == x){

 return(*(table + i) & 0xFF00);

 }

}

After change:

const unsigned short *p;

for(p = table; *p != NULL; ++p){

 if((*p & 0xFF) == x){

 return(*p & 0xFF00);

 }

}

CHAPTER 2 FUNCTIONS

User’s Manual U19383EJ1V0UM00 69

(3) Function arguments
Four argument registers, r6 to r9, are available.
If the number of arguments is five or more, the stack is used for the fifth and subsequent arguments.
Therefore, keep the number of arguments to within four whenever possible.
If five or more arguments must be used, pass the arguments using the pointer of a structure.

CHAPTER 2 FUNCTIONS

70 User’s Manual U19383EJ1V0UM00

2.9 Compiler and Assembler Mutual References

This section explains compiler and assembler mutual references.

2.9.1 Mutually referencing variables

This section explains mutually referencing variables.

(1) Reference a variable defined in C language
Define extern when referencing an external variable defined in a C language program from an assembly lan-
guage routine.
Prefix "_" (an underscore) to a variable defined in an assembly language routine.

Example C source

Example Assembler source

extern void subf (void);

char c = 0 ;

int i = 0 ;

void main (void) {

 subf ();

}

 .globl _subf

 .extern _c

 .extern _i

 .text

 .align 4

_subf :

 mov 4, r10

 st.b r10, $_c

 mov 7, r10

 st.w r10, $_i

 jmp [lp]

CHAPTER 2 FUNCTIONS

User’s Manual U19383EJ1V0UM00 71

(2) Reference a variable defined in assembly language
Define extern when referencing in a C language routine an external variable defined in an assembly language
program.
Prefix "_" (an underscore) to a variable defined in an assembly language routine.

Example C source

Example Assembler source

extern char c ;

extern int i ;

void subf (void) {

 c = 'A' ;

 i = 4 ;

}

 .globl _c

 .globl _i

 .sbss

 .lcomm _i, 4, 4

 .lcomm _c, 1, 1

CHAPTER 2 FUNCTIONS

72 User’s Manual U19383EJ1V0UM00

2.9.2 Mutually referencing functions

This section explains mutually referencing functions.

(1) Reference a function defined in C language
Note the following points when calling a function described in C language from an assembly language routine.

- Stack frame
Code is generated on the assumption that the stack pointer (sp) always indicates the lowest address of the
stack frame. Therefore, set sp so that it indicates the higher address of an unused area of the stack area
when execution branches from an assembler function to a C function.

- Work register
Values of the register variable registers before and after a C function is called are retained, but the values
of the work registers are not. Therefore, do not leave a value that must be retained assigned to a work
register.

- Return address to return to assembler function
Code is generated on the assumption that the return address of a function is stored in link pointer lp (r31).
When execution branches to a C function, therefore, the return address of the function must be stored in lp.

(2) Reference a function defined in assembly language
Note the following points when calling an assembly language routine from a function described in C language.

- Identifier
Prefix "_" to the name.

- Stack frame
Code is output based on the assumption that the stack pointer (sp) always indicates the lowest address of
the stack frame. Therefore, the address area lower than the address indicated by sp can be freely used in
the assembler function after branching from a C language source to an assembler function. Conversely, if
the contents of the higher address area are changed, the area used by a C function may be lost and the
subsequent operation cannot be guaranteed. To avoid this, change sp at the beginning of the assembler
function before using the stack.
At this time, however, make sure that the value of sp is retained before and after calling.

- Register variable register
When using a register variable register in an assembler function, make sure that the register value is
retained before and after the assembler function is called. In other words, save the value of the register
variable register before calling the assembler function, and restore the value after calling.

- Return address to C language function
Code is generated on the assumption that the return address of a function is stored in link pointer lp (r31).
When execution branches to an assembler function, the return address of the function is stored in lp.
Execute the jmp [lp] instruction to return to a C function.

CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

User’s Manual U19383EJ1V0UM00 73

CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

This chapter explains language specifications supported by the CA850.

3.1 Basic Language Specifications

The CA850 supports the language specifications stipulated by the ANSI standards. These specifications include
items that are stipulated as processing definitions. This chapter explains the language specifications of the items
dependent on the processing system of the micro processors for V850 microcontrollers.

The differences between when options strictly conforming to the ANSI standards are used and when those options
are not used are also explained.

See "3.3 Extended Language Specifications" for extended language specifications explicitly added by CA850.

3.1.1 Processing system dependent Items

This section explains items dependent on processing system in the ANSI standards.

(1) Data types and sizes
The byte order in a word (4 bytes) is "from least significant to most significant byte" Signed integers are
expressed by 2's complements. The sign is added to the most significant bit (0 for positive or 0, and 1 for
negative).

- The number of bits of 1 byte is 8.
- The number of bytes, byte order, and encoding in an object files are stipulated below.

Table 3-1. Data Types and Sizes

(2) Translation stages
The ANSI standards specify eight translation stages (known as "phases") of priorities among syntax rules for
translation. The arrangement of "non-empty white space characters excluding line feed characters" which is
defined as processing system dependent in phase 3 "Decomposition of source file into preprocessing tokens
and white space characters" is maintained as it is without being replaced by single white space character.

(3) Diagnostic messages
When syntax rule violation or restriction violation occurs on a translation unit, the compiler outputs as error
message containing source file name and (when it can be determined) the number of line containing the error.
These error messages are classified into three types: "warning", "fatal error", and "other error" messages.

Data Types Sizes

char 1 byte

short 2 bytes

int, long, float, double 4 bytes

pointer Same as unsigned int

CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

74 User’s Manual U19383EJ1V0UM00

(4) Free standing environment

(a) The name and type of a function that is called on starting program processing are not stipulted in a
free-standing environmentNote. Therefore, it is dependent on the user-own coding and target sys-
tem.

Note Environment in which a C Language source program is executed without using the functions of the
operating system.
In the ANSI Standard two environments are stipulated for execution environment: a free-standing
environment and a host environment. The CA850 does not supply a host environment at present.

(b) The effect of terminating a program in a free-standing environment is not stipulated. Therefore, it is
dependent on the user-own coding and target system.

(5) Program execution
The configuration of the interactive unit is not stipulated.
Therefore, it is dependent on the user-own coding and target system.

(6) Character set
The values of elements of the execution environment character set are ASCII codes.

(7) Multi-byte characters
Multi-byte characters are not supported by character constants.
However, Japanese description in comments and character strings is supported.

(8) Significance of character display
The values of expanded notation are stipulated as follows.

Table 3-2. Expanded Notation and Meaning

Expanded Notation Value(ASCII) Meaning

\a 07 Alert (Warning tone)

\b 08 Backspace

\f 0C Form feed (New Page)

\n 0A New line (Line feed)

\r 0D Carriage return (Restore)

\t 09 Horizontal tab

\v 0B Vertical tab

CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

User’s Manual U19383EJ1V0UM00 75

(9) Translation Limit
The limit values of translation are explained below.
The values marked with * are guaranteed values. These values may be exceeded in some cases, but the
operation is not guaranteed.

Table 3-3. Translation Limit Values

Note The upper limit of the macro identifier can be changed by a C compiler option (-Xm).

Contents Limit values

Number of nesting levels of compound statements, repetitive control structures, and selec-
tive control structures

(However, dependent on the number of "case" labels)

127

Number of nesting levels of condition embedding 255

Number of pointers, arrays, and function declarators (in any combination) qualifying one
arithmetic type, structure type, union type, or incomplete type in one declaration

16

Number of nesting levels enclosed by parentheses in a complete declarator 255*

Number of nesting levels of an expression enclosed by parentheses in a complete expres-
sion

255*

Valid number of first characters in a macro name 1023

Valid number of first characters of an external identifier 1022

Valid number of first characters in an internal identifier 1023

Number of identifiers having an external identifier in one translation unit and the valid block
range declared in one basic block

4095*

Number of macro identifiersNote simultaneously defined in one translation unit 2047

Number of parameters in one function definition and number of actual arguments in one
function call

255

Number of parameters in one macro definition 127

Number of actual arguments in one macro call 127

Number of characters in one logical source line 32768

One character string constant after concatenation, or number of characters in a wide char-
acter string constant

32766

Number of nesting levels for include (#include) files 50

Number of "case" labels for one "switch" statement

(including those nested, if any)

1025

Number of members of a single structure or single union 1023*

Number of enumerate constants in a single enumerate type 1023*

Number of nesting levels of a structure or union definition in the arrangement of a single
structure declaration

63*

CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

76 User’s Manual U19383EJ1V0UM00

(10)Quantitative limit

(a) The limit values of the general integer types (limits.h file)
The limits.h file specifies the limit values of the values that can be expressed as general integer types (char
type, signed/unsigned integer type, and enumerate type).
Because multibyte characters are not supported, MB_LEN_MAX does not have a corresponding limit. Con-
sequently, it is only defined with MB_LEN_MAX as 1.
If a -Xchar=unsigned option of the CA850 is specified, CHAR_MIN is 0, and CHAR_MAX takes the same
value as UCHAR_MAX.
The limit values defined by the limits.h file are as follows.

Table 3-4. Limit Values of General Integer Type (limits.h File)

Name Value Meaning

CHAR_BIT +8 The number of bits (= 1 byte) of the

minimum object not in bit field

SCHAR_MIN -128 Minimum value of signed char

SCHAR_MAX +127 Maximum value of signed char

UCHAR_MAX +255 Maximum value of unsigned char

CHAR_MIN -128 Minimum value of char

CHAR_MAX +127 Maximum value of char

SHRT_MIN -32768 Minimum value of short int

SHRT_MAX +32767 Maximum value of short int

USHRT_MAX +65535 Maximum value of unsigned short int

INT_MIN -2147483648 Minimum value of int

INT_MAX +2147483647 Maximum value of int

UINT_MAX +4294967295 Maximum value of unsigned int

LONG_MIN -2147483648 Minimum value of long int

LONG_MAX +2147483647 Maximum value of long int

ULONG_MAX +4294967295 Maximum value of unsigned long int

CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

User’s Manual U19383EJ1V0UM00 77

(b) The limit values of the floating-point type (float.h file)
The limit values related to characteristics of the floating-point type are defined in float.h file.
The limit values defined by the float.h file are as follows.

Table 3-5. Definition of Limit Values of Floating-point Type (float.h File)

Notes 1. DBL_DIG and LDBL_DIG are 10 or more in the ANSI standards but are 6 in the V850
microcontrollers because both the double and long double types are 32 bits.

2. DBL_EPSILON and LDBL_EPSILON are 1E-9 or less in the ANSI standards, but 1.19209290E-
07F in the V850 microcontrollers.

Name Value Meaning

FLT_ROUNDS +1 Rounding mode for floating-point addition.

1 for the V850 microcontrollers (rounding in the near-
est direction).

FLT_RADIX +2 Radix of exponent (b)

FLT_MANT_DIG +24 Number of numerals (p) with FLT_RADIX of floating-
point mantissa as base

DBL_MANT_DIG

LDBL_MANT_DIG

FLT_DIG +6 Number of digits of a decimal numberNote 1 (q) that
can round a decimal number of q digits to a floating-
point number of p digits of the radix b and then
restore the decimal number of q

DBL_DIG

LDBL_DIG

FLT_MIN_EXP -125 Minimum negative integer (emin) that is a normalized
floating-point number when FLT_RADIX is raised to
the power of the value of FLT_RADIX minus 1.

DBL_MIN_EXP

LDBL_MIN_EXP

FLT_MIN_10_EXP -37 Minimum negative integerlog10bemin-1 that falls in the
range of a normalized floating-point number when 10
is raised to the power of its value.

DBL_MIN_10_EXP

LDBL_MIN_10_EXP

FLT_MAX_EXP +128 Maximum integer (emax) that is a finite floating-point
number that can be expressed when FLT_RADIX is
raised to the power of its value minus 1.

DBL_MAX_EXP

LDBL_MAX_EXP

FLT_MAX_10_EXP +38 Maximum value of finite floating-point numbers that
can be expressed

(1 - b-p) ＊ bemax

DBL_MAX_10_EXP

LDBL_MAX_10_EXP

FLT_MAX 3.40282347E + 38F Maximum value of finite floating-point numbers that
can be expressed

(1 - b-p) ＊ bemax

DBL_MAX

LDBL_MAX

FLT_EPSILON 1.19209290E - 07F DifferenceNote2 between 1.0 that can be expressed
by specified floating-point number type and the low-
est value which is greater than 1.

b1 - p

DBL_EPSILON

LDBL_EPSILON

FLT_MIN 1.17549435E - 38F Minimum value of normalized positive floating-point
number

bemin - 1
DBL_MIN

LDBL_MIN

CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

78 User’s Manual U19383EJ1V0UM00

(11) Identifier
An external name must consist of up to 1022 characters and must be able to be identified uniformly.
Uppercase and lowercase characters are distinguished.

(12)char type
A char type with no type specifier (signed, unsigned) specified is treated as a signed integer as the default
assumption.
However, a simple char type can be treated as an unsigned integer by specifying the - Xchar=unsigned option
of the CA850.
The types of those that are not included in the character set of the source program required by the ANSI
standards (escape sequence) is converted for storage, in the same manner as when types other than char type
are substituted for a char type.

(13)Floating-point constants
The floating-point constants conform to IEEE754Note.

Note IEEE:Institute of Electrical and Electronics Engineers
Moreover,IEEE754 is a standard to unify specifications such as the data format and numeric range in
systems that handle floating-point operations.

(14)Character constants

(a) Both the character set of the source program and the character set in the execution environment
are basically ASCII codes, and correspond to members having the same value.
However, for the character set of the source program, character codes in Japanese can be used
(see "(8) Significance of character display").

(b) The last character of the value of an integer character constant including two or more characters is
valid.

(c) A character that cannot be expressed by the basic execution environment character set or escape
sequence is expressed as follows.

<1> An octal or hexadecimal escape sequence takes the value indicated by the octal or hexadeci-
mal notation

<2> The simple escape sequence is expressed as follows.

<3> Values of \a, \b, \f, \n, \r, \t, \v are same as the values explained in "(8) Significance of charac-
ter display".

(d) Character constants of multi byte characters are not supported.

char c = '\777'; /* Value of c is -1 */

\777 511

\' '

\" "

\? ?

\\ \

CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

User’s Manual U19383EJ1V0UM00 79

(15)Character string
A character string can be described in Japanese.
The default character code is Shift JIS.
A character code in input source file can be selected by using the -Xk option of the CA850.
However, if n or none is specified, character code is not guaranteed.

[Option specification]

A character code in output source file can be changed by using the -Xkt option of the CA850. However, if n or
none is specified, character code cannot be changed.

[Option specification]

(16)Header file name
The method to reflect the string in the two formats (< > and " ") of a header file name on the header file or an
external source file name is stipulated in "(33) Loading header file".

(17)Comment
A comment can be described in Japanese. The character code is the same as the character string in "(15)
Character string".

(18)Signed constants and unsigned constants
If the value of a general integer type is converted into a signed integer of a smaller size, the higher bits are trun-
cated and a bit string image is copied.
If an unsigned integer is converted into the corresponding signed integer, the internal representation is not
changed.

(19)Floating-points and general integers
If the value of a general integer type is converted into the value of a floating-point type, and if the value to be
converted is within a range that can be expressed but not accurately, the result is rounded to the closest
expressible value.
When the result is just a middle value, it can be rounded to the even number (with the least significant bit of the
mantissa being 0).

(20)double type and float type
In the CA850, a double type is expressed as a floating-point number in the same manner as a float type, and is
treated as 32-bit (single-precision) data.

(21)Signed type in operator in bit units
The characteristics of the shift operator conform to the stipulation in"(27) Shift operator in bit units" .
The other operators in bit units for signed type are calculated as unsigned values (as in the bit imag.

-Xk=[e | euc | n | none | s | sjis]

-Xkt=[e | euc | n | none | s | sjis]

CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

80 User’s Manual U19383EJ1V0UM00

(22)Members of structures and unions
If the value of a member of a union is stored in a different member, it is stored according to an alignment condi-
tion. Therefore, the members of that union are accessed according to the alignment condition (see "(6) Struc-
ture type" and "(7) Union type").
In the case of a union that includes a structure sharing the arrangement of the common first members as a
member, the internal representation is the same, and the result is the same even if the first member common to
any structure is referred.

(23)sizeof operator
The value resulting from the "sizeof" operator conforms to the stipulation related to the bytes in an object in"(1)
Data types and sizes".
For the number of bytes in a structure and union, it is byte including padding area.

(24)Cast operator
When a pointer is converted into a general integer type, the required size of the variable is the same as the size
of the int type. The bit string is saved as is as the conversion result.
Any integer can be converted by a pointer. However, the result of converting an integer smaller than an int type
is expanded according to the type.

(25)Division/remainder operator
The result of the division operator ("/") when the operands are negative and do not divide perfectly with integer
division, is as follows: If either the divisor or the dividend is negative, the result is the smallest integer greater
than the algebraic quotient.
If both the divisor and the dividend are negative, the result is the largest integer less than the algebraic quotient.
If the operand is negative, the result of the "%" operator takes the sign of the first operand in the expression.

(26)Addition and subtraction operators
If two pointers indicating the elements of the same array are subtracted, the type of the result is int type, and the
size is 4 bytes.

(27)Shift operator in bit units
If E1 of "E1 >> E2" is of signed type and takes a negative value, an arithmetic shift is executed.

(28)Storage area class specifier
The storage area class specifier "register" is declared to increase the access speed as much as possible, but
this is not always effective.

(29)Structure and union specifier

(a) A simple int type bit field without signed or unsigned appended is treated as a signed field, and the
most significant bit is treated as the sign bit. However, the simple int type bit field can be treated as
an unsigned field by specifying the -Xbitfield option (Specifying sign of simple int type bit field) of
the CA850.

(b) To retain a bit field, a storage area unit to which any address with sufficient size can be assigned
can be allocated. If there is insufficient area, however, the bit field that does not match is packed
into to the next unit according to the alignment condition of the type of the field.

(c) The allocation sequence of the bit field in unit is from lower to higher.

CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

User’s Manual U19383EJ1V0UM00 81

(d) Each member of the non-bit field of one structure or union is aligned at a boundary as follows

(30)Enumerate type specifier
The type of an enumeration specifier is signed int.
However, when the -Xenum_type=string option is specified, it is as follows

(31)Type qualifier
The configuration of access to data having a type qualified to be "volatile" is dependent upon the address (I/O
port, etc.) to which the data is mapped.

(32)Condition embedding

(a) The value for the constant specified for condition embedding and the value of the character
constant appearing in the other expressions are equal.

(b) The character constant of a single character must not have a negative value.

(33)Loading header file

(a) A preprocessing directive in the form of "#include <character string>"
A preprocessing directive in the form of "#include <character string>" searches for a header file from the
folder specified by the -I option if "character string" does not begin with "\"Note, and then searches the
\inc850 folder with a relative path from the bin folder where the ca850 is placed.
If a header file uniformly identified is searched with a character string specified between delimiters "<" and
">", the whole contents of the header file are replaced.

Note "/" are regarded as the delimiters of a folder.

Example

The search order is as follows.
- Folder specified by -I
- Standard folder

char, unsigned char type, and its array Byte boundary

short, unsigned short type, and its array Halfword boundary

Others (including pointer) Word boundary

char Treated as char

uchar Treated as unsigned char

short Treated as short

ushort Treated as unsigned short

#include <header.h>

CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

82 User’s Manual U19383EJ1V0UM00

(b) A preprocessing directive in the form of "#include "character string""
A preprocessing directive in the form of "#include "character string"" searches for a header file from the
folder where the source file exists, then searches specified folder (-I option) and then searches the ..\inc850
folder via a relative path from the bin folder where the ca850 is placed.
If a header file uniformly identified is searched with a character string specified between delimiters " " "and "
" ", the whole contents of the header file are replaced.

Example

The search order is as follows.
- Folder where source file exists
- Folder specified by -I
- Standard folder

(c) The format of "#include preprocessing character phrase string"
The format of "#include preprocessing character phrase string" is treated as the preprocessing character
phrase of single header file only if the preprocessing character phrase string is a macro that is replaced to
the form of <character string> or "character string".

(d) A preprocessing directive in the form of "#include <character string>"
Between a string delimited (finally) and a header file name, the length of the alphabetic characters in the
strings is identified,

The folder that searches a file conforms to the above stipulation.

(34)#pragma directive
The CA850 can specify the following #pragma directives.

(a) Describing Assembler Instruction

Assembler directives can be described in a C language source program.
For the details of description, see "(4) Describing assembler instruction".

(b) Inline Expansion Specification

A function that is expanded inline can be specified.
For the details of expansion specification, see " (8) Inline expansion".

#include "header.h"

And the file name length valid in the compiler operating environment is valid.

#pragma asm

 assembler instruction

#pragma endasm

#pragma inline function-name [, function-name ...]

CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

User’s Manual U19383EJ1V0UM00 83

(c) Specifying device type

Specify so that a device file defining the machine-dependent information of the device used is referred.
This function is the same as the device specification option (-cpu) of the CA850. Used when defining
device in C language source.

(d) Data or program memory allocation

<1> section
Allocates variables to an arbitrary section.
For details about the allocation method, see "(1) Allocation of data to section".

<2> text
A function to be allocated in a text section with an arbitrary name can be specified.
For details about the allocation specification, see "(2) Allocating functions to sections" .

(e) Peripheral I/O register name validation specification

The peripheral I/O registers of a device are accessed by using peripheral function register names. When
programming using peripheral I/O registers names as it is, #pragma directives are needed to be specified.

(f) Interrupt/exception handler specification

Interrupt/Exception handlers are described in C language.
For the details of description, see "(c) Describing interrupt/exception handler".

(g) Interrupt disable function specification

Interrupts are disabled for the entire function.

(h) Task specification

The task of operating on the realtime OS is described by C language.
For the details of description, see "(a) Description of task".

#pragma cpu device-name

#pragma section section-type ["section-name"] [begin | end]

#pragma text ["section name"] [function name]

#pragma ioreg

#pragma interrupt interrupt-request-name function-name [allocation-method]

#pragma block_interrupt function-name

#pragma rtos_task function-name

CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

84 User’s Manual U19383EJ1V0UM00

(i) Structure type packing specification

Specifies the packing of a structure type. The packing value, which is an alignment value of the member, is
specified as the numeric value. A value of 1, 2, 4, or 8 can be specified. When the numeric value is not
specified, it is by default (8)Note.

Note Alignment values "4" and "8" are treated as the same in this Version.

(35)Predefined macro names
All the following macro names are supported.
Macros not ending with "_ _ " are supplied for the sake of former C language specifications (K&R specifica-
tions). To perform processing strictly conforming to the ANSI standards, use macros with "_ _ " before and
after.

Table 3-6. List of Supported Macros

#pragma pack([1248])

Macro name Definition

__LINE__ Line number of source line at that point (decimal).

__FILE__ Name of assumed source file (character string constant).

__DATE__ Date of translating source file (character string constant in the form of "Mmm dd
yyyy".) Here, the name of the month is the same as that created by the asctime
function stipulated by ANSI standards (3 alphabetic characters with only the first
character is capital letter) (The first character of dd is blank if its value is less than
10).

__TIME__ Translation time of source file (character string constant having format
"hh:mm:ss" similar to the time created by the asctime function).

__STDC__ Decimal constant 1 (defined when -ansi option is specified)Note

__v800

__v800__

Decimal constant 1.

__v850

__v850__

Decimal constant 1.

__v850e

__v850e__

Decimal constant 1 (defined by CA850, if V850Ex is specified as a target device).

__v850e2

__v850e2__

Decimal constant 1 (defined by CA850, if V850E2 is specified as a target device).

__CA850

__CA850__

Decimal constant 1.

__CHAR_SIGNED__ Decimal constant 1 (defined if signed is specified by -Xchar option and when -
Xchar option is not specified).

__CHAR_UNSIGNED__ Decimal constant 1 (defined when unsigned is specified by -Xchar option).

__DOUBLE_IS_32BITS__ Decimal constant 1.

_DOUBLE_IS_32BITS Decimal constant 1.

CPUmacro Decimal constant 1 of a macro indicating the target CPU. A character string indi-
cated by "product type specification" in the device file with "_ _ " prefixed and suf-
fixed is defined.

CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

User’s Manual U19383EJ1V0UM00 85

Note For the processing to be performed when the -ansi option is specified, see "3.1.2 Ansi option".

(36)Definition of special data type
NULL, size_t, and ptrdiff_t defined by stddef.h file are as follows.

Table 3-7. Definition of NULL, size_t, ptrdiff_t (stddef.h File)

Register mode macro Decimal constant 1 of a macro indicating the target CPU.

Macro defined with register mode is as follows.

32register mode:__reg32__

26 register mode: __reg26__

22 register mode: __reg22__

NULL/size_t/ptrdiff_t Definition

NULL ((void *) 0)

size_t unsigned int

ptrdiff_t int

Macro name Definition

CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

86 User’s Manual U19383EJ1V0UM00

3.1.2 Ansi option

When ansi option is specified by CA850, process strictly conforming to ANSI standards is executed.
The differences between when -ansi options are specified and when not specified are as follows.

Table 3-8. Processing When -ansi Option Strictly Conforming to Language Specifications is Specified

Notes 1. Normal error beginning with "E". The same applies hereafter.
2. char type, signed/unsigned integer type, and enumerate type.
3. See the ANSI standards.
4. See "(4) Describing assembler instruction".

Item With -ansi Specification Without -ansi Specification

Trigraph series Trigraph series is replaced. Not replaced.

Bit field ErrorNote 1 occurs if type other than int is speci-
fied for bit field.

Outputs warning message and permits.

Argument scope Multiple defined error occurs if automatic vari-
able having same name as argument of function
is declared.

Outputs warning message and validates
automatic variable.

Pointer substitution 1 Error occurs if the numeric value of pointer type
is substituted into general integer typeNote 2 vari-
able.

Outputs warning message, casts, and substi-
tutes.

Pointer substitution 2 Error occurs if pointers indicating different types
are substituted for each other.

Outputs warning message and permits.

Type conversion Error occurs if conversion into pointer of array
that is not left-member value is performed.

Outputs warning message and permits.

Comparison operator Error occurs if arithmatic type variable and
pointer are compared.

Outputs warning message and permits.

Conditional operator Error occurs if both second and third expres-
sions are not general integer type, same struc-
ture, same union, or numeric value of pointer
type to type same as substitution destination.

Outputs warning message, casts, and substi-
tutes.

line number Error occurs. Treated in same manner as "#line line num-
ber".Note 3

Character # in middle
of line

Error occurs if character # appears in the middle
of the line.

Outputs warning message and permits.

_asm Outputs warning message and handles as func-
tion call.

However, _ _ asm is valid.

Treated as assembler insertionNote 4.

__STDC__ Defines value as macro with value 1 . Does not define.

Binary Constants Error occurs if "0b" or "0B" is followed by one or
more "0" or "1".

Treats "0b" or "0B" followed by one or more
"0" or "1" as a binary constant.

CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

User’s Manual U19383EJ1V0UM00 87

3.2 Environment During Compilation

This section explains how the CA850 handles data, registers, device specifications and the environment during exe-
cution.

3.2.1 Internal representation and value area of data

This section explains the internal representation and value area of each type for the data handled by the CA850.

(1) Integer type

(a) Internal representation
The leftmost bit in an area is a sign bit with a signed type (type declared without "unsigned"). The value of
a signed type is expressed as 2' s complement.
If -Xchar=unsigned is specified, however, a char type specified without "signed" or "unsigned" is assumed
to be unsigned.

Figure 3-1. Internal Representation of Integer Type

(b) Value area

Table 3-9. Value Area of Integer Type

Note The value area is 0 to 255, if "-Xchar=unsigned" is specified by the CA850.

Caution 64-bit operation cannot be done by the CA850.

Type Value Area

charNote -128 to +127

short -32768 to +32767

int -2147483648 to +2147483647

long -2147483648 to +2147483647

unsigned char 0 to 255

unsigned short 0 to 65535

unsigned int 0 to 4294967295

unsigned long 0 to 4294967295

char(no sign bit for unsigned)

int, long (no sign bit for unsigned)

Short (no sign bit for unsigned)

7 0

15

031

0

CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

88 User’s Manual U19383EJ1V0UM00

(2) Floating-point type

(a) Internal representation
Internal Representation of floating-point data type conforms to IEEE754Note. The leftmost bit in an area of a
sign bit. If the value of this sign bit is 0, the data is a positive value; if it is 1, the data is a negative value.
A double type is a floating-point representation same as a float type, and is handled as 32-bit (single- preci-
sion) data.

Note IEEE: Institute of Electrical and Electronics Engineers
IEEE754 is a standard to unify specifications such as the data format and numeric range in systems
that handle floating-point operations.

Figure 3-2. Internal Representation of Floating-Point Type

(b) Value area

Table 3-10. Value Area of Floating-Point Type

(3) Pointer type

(a) Internal representation
The internal representation of a pointer type is the same as that of an unsigned int type.

Figure 3-3. Internal Representation of Pointer Type

Type Value Area

float, double 1.18 x 10-38 to 3.40 x 1038

float, double

ME

031

S

23 22

S: Sign bit of mantissa

E: Exponent (8 bits)

M: Mantissa (23 bits)

031

CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

User’s Manual U19383EJ1V0UM00 89

(4) Enumerate type

(a) Internal representation
The internal representation of an enumerate type is the same as that of a signed int type. The leftmost bit in
an area of a sign bit.

Figure 3-4. Internal Representation of Enumerate Type

When the -Xenum_type=string option is specified, see "(30) Enumerate type specifier".

(5) Array type

(a) Internal representation
The internal representation of an array type arranges the elements of an array in the form that satisfies the
alignment condition(alignment) of the elements

Example

The internal representation of the array shown above is as follows.

Figure 3-5. Internal Representation of Array Type

char a[8] = {1, 2, 3, 4, 5, 6, 7, 8};

031

07 07070707070707

CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

90 User’s Manual U19383EJ1V0UM00

(6) Structure type

(a) Internal representation
The internal representation of a structure type arranges the elements of a structure in a form that satisfies
the alignment condition of the elements.

Example

The internal representation of the structure shown above is as follows.

Figure 3-6. Internal Representation of Structure Type

For the internal representation when the structure type packing function is used, see "(11) Structure type
packing".

struct{

 short s1;

 int s2;

 char s3;

 long s4;

}tag;

15

s2

0

s1

16

s3

31731

s4

031 0 8 0 31

CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

User’s Manual U19383EJ1V0UM00 91

(7) Union type

(a) Internal representation
A union is considered as a structure whose members all start with offset 0 and that has sufficient size to
accommodate any of its members. The internal representation of a union type is like each element of the
union is placed separately at the same address.

Example

The internal representation of the union shown in the above example is as follows.

Figure 3-7. Internal Representation of Union Type

union{

 int u1;

 short u2;

 char u3;

 long u4;

}tag;

0

tag.u3 (1 byte)

tag.u1, tag.u4 (4 bytes)

31

tag.u2 (2 bytes)

CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

92 User’s Manual U19383EJ1V0UM00

(8) Bit field

(a) Internal representation
An area including the declared number of bits is reserved for a bit field. The most significant bit of the area
for a bit field declared to be of signed type is a sign bit.
The bit field declared first is allocated from the least significant bit of a word area. If the alignment condition
of the type specified in the declaration of a bit field is exceeded as a result of allocating an area that imme-
diately follows the area of the preceding bit field to the bit field, the area is allocated starting from a bound-
ary that satisfies the alignment condition.

Example

The internal representation for the bit field in the above example is as follows.

Figure 3-8. Internal Representation of Bit Field

The ANSI standards do not allow char and short types to be specified for a bit field, but CA850 allows this.
In this case, a warning message is output, and paddingNote is performed according to the alignment condi-
tion of the specified type.
For the internal representation of bit field when the structure type packing function is used, see "(11) Struc-
ture type packing".

Note An error occurs if -ansi is specified as an option of the CA850.

struct{

 unsigned int f1:30;

 int f2:14;

 unsigned int f3:6;

}flag;

f1f2

20

f3

1319 014 2931 031

CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

User’s Manual U19383EJ1V0UM00 93

(9) Alignment condition

(a) Alignment condition for basic type
Alignment condition for basic type is as follows.
If -Xi of the CA850 is specified, however, all the arrey types are word boundaries.

Table 3-11. Alignment Condition for Basic Type

(b) Alignment condition for union type
The alignment condition for the union type varies as shown in Table 3-12, depending on the maximum
member size.

Table 3-12. Alignment Condition for Union Type

Here are examples of the respective cases:

Examples 1.

2.

Basic Type Alignment conditions

(unsigned) char and its array type Byte boundary

(unsigned) short and its array type Halfword boundary

Other basic types (including pointer) Word boundary

Maximum Member Size Alignment conditions

2 bytes < size Word boundary

Size <= 2 bytes Maximum member size boundary

union tug1{

 unsigned short i; /*2 Bytes member*/

 unsigned char c; /*1 Bytes member */

}; /* The union is aligned with 2 bytes. */

union tug2{

 unsigned int i; /*4 Byte member*/

 unsigned char c; /*1 Bytes member */

}; /* The union is aligned with 4 bytes. */

CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

94 User’s Manual U19383EJ1V0UM00

(c) Alignment condition for structure type
The alignment condition for the structure type differs as shown in Table 3-13, depending on the size of the
structure (excluding the size of the integer).
If -Xi of the CA850 is specified, however, all the structure types are word boundaries.

Table 3-13. Alignment Condition of Structure Type

Here are examples of the respective cases:

Examples 1.

2.

3.

4.

(d) Alignment condition for function argument
The alignment condition for a function argument is a word boundary.

Structure size Alignment conditions

2 bytes < size Word boundary

Size <= 2 bytes It is either of the following depending on the size and member type.

- If member of type more than int type exists
--> Word boundary

- Other than above,if the member of the short type exists or the size is 2.
--> Halfword boundary

- If only member of char type, and the size is 1 byte.
--> Byte boundary

struct SS{

 int i; /*4 Byte member */

 char c; /*1 Byte member*/

}; /* Structure is aligned with 4 bytes. */

struct BIT_I{

 int i1:5; /*4 Byte member (Size is 1 byte or less)*/

}; /* Structure is aligned with 4 bytes because member type is int. */

struct BIT_C{

 char c1:5; /*1 Byte member */

}; /* Structure is aligned with 1 byte. */

struct BIT_CC{

 char c1:5; /*1 Byte member */

 char c2:5; /*1 Byte member*/

}; /* Structure is aligned with 2 bytes because size is 2 bytes. */

CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

User’s Manual U19383EJ1V0UM00 95

(e) Alignment condition for executable program
The alignment condition when an executable object file is created by linking object files is a halfword
boundary.

3.2.2 General-purpose registers

How the CA850 uses the general-purpose registers are as follows.
The general-purpose registers includes the following functions.

(1) Software register bank
The number of the work registers (r10 through r19) and register variable registers (r20 through r29) used can be
reduced by the -reg option of CA850 (see "3.2.4 Software register bank").

(2) Mask register function
In the 32-register mode and 22-register mode, registers r20 and r21 can be used to set a mask value (see "3.2.5
Mask register").

Table 3-14. Using General-Purpose Registers

Note For the allocation of data to a section, see "(1) Allocation of data to section".

Register Usage

r0 Zero register Used for operation as value of 0.

Also used to reference data located at const sec-
tion (read-only section placed in ROM area)Note.

r1 Assembler-reserved register Used for instruction expansion by assembler.

r2 (hp) Handler stack pointer Reserved for system.

r3 (sp) Stack pointer Used to indicate beginning of stack frame.

r4 (gp) Global pointer Used to reference external variable.

r5 (tp) Text pointer Used to indicate beginning of text section (.text sec-
tion)

r6-r9 Argument registers Used to pass argument.

r10 to r19 Work register Used as work area during operation (r10 is also
used to pass return value of function).

r20 to r29 Register variable registers Used as an area for register variables.

r30 (ep) Element pointer Used to reference external variable specified to be
located in internal RAM or external RAM section-
Note.

r31 (lp) Link pointer Used to pass return address of function.

CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

96 User’s Manual U19383EJ1V0UM00

3.2.3 Referencing data

How the CA850 references data are as follows.

Table 3-15. Referencing Data

3.2.4 Software register bank

Because the CA850 implements a register bank function by software, three register modes are provided. By
specifying these register modes efficiently, the contents of some registers do not need to be saved or restored when
an interrupt occurs or the task is switched. As a result, the processing speed can be improved. The register modes
are specified by using the register mode specification option (-reg) of CA850. This function reduces the number of
registers internally used by the CA850 on a step-by-step basis. As a result, the following effects can be expected:

- The registers not used can be used for the application program (that is, a source program in assembly
language).

- The overhead required for saving and restoring registers can be reduced.

Caution In an application program that has many variables to be allocated to registers by the CA850, the
variables so far allocated to a register are accessed from memory when a register mode has been
specified. As a result, the processing speed may drop.

(1) Register mode
Next table and next Figure show the three register modes supplied by the CA850.

Table 3-16. Register Modes Supplied by CA850

Type Referencing Method

Numeric constant Immediate

Character string constant Offset from global pointer (gp)

Offset from element pointer (ep)

Offset from r0

Automatic variable,Argument Offset from stack pointer (sp)

External variable,Static variable in function Offset from global pointer (gp)

Offset from element pointer (ep)

Offset from r0

Function address Operated during execution by using offset from text pointer (tp)

Register modes Work Register Register Variable Registers

32-register mode (Default) r10 to r19 r20 to r29

26-register mode r10 to r16 r23 to r29

22-register mode r10 to r14 r25 to r29

CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

User’s Manual U19383EJ1V0UM00 97

Figure 3-9. Register Modes and Usable Registers

Specification example on command line

(2) Register mode and library
A library supplied by the CA850 (see "CHAPTER 6 FUNCTIONAL SPECIFICATION") is provided for each reg-
ister mode. The standard folders that search a library are "Install Folder\lib850\r32" and "Install Folder\lib850"
as the default assumption. If the 22- or 26-register mode is specified by the CA850, however, "Install Folder
\lib850\r22" or "Install Folder\lib850\r26" is used as the standard folder for the library, in the place of
"Install Folder\lib850\r32".
If ld850 is not started from the CA850 but object files are linked by directly starting ld850 from the command line,
however, a library suitable for each register mode must be specified by specifying the -reg option of ld850.

> ca850 -cpu 3201 -reg26 file.c <- compiled in 26-register mode

22 -register mode26-register mode

r14

0

r0

r10

r29

32-register mode

r20

r15

Other registers

31 0 31 031

r24
r25

r31

r29

r31

r19

r10

r0

r29

r23

r31

r22

r17
r16

r10

r0

Other registers

Work register

Register Variable Registers

Registers that can be used freely in application

CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

98 User’s Manual U19383EJ1V0UM00

3.2.5 Mask register

When byte data or halfword data is loaded from the memory to a register, the V850 microcontrollers sign- extends
the data to a word length according to the value of the most significant bit of the data. Therefore, mask codes of the
higher bits may be generated during an unsigned char or unsigned short type data.

When storing the result of an operation to a register variable, mask codes are generated to clear the higher bits if the
result of the operation is unsigned byte data or unsigned halfword data. Generation of mask codes can be prevented
if word data is used. If word data cannot be used and the mask codes are generated, the code size can be reduced by
using the mask register function.

However, to decide whether the mask register function is to be used or not, the following points must be carefully
considered for the code where the mask register function may be used.

- Whether the program outputs many mask codes.
- Two register variable registers will not be able to be used because they will be used as mask registers.

The CA850 uses r20 and r21 as mask registers, as shown in the example below, when the mask register function is
used. Note that mask values must be set to the mask registers by program.

[Mask code generation example]

An instruction that executes "an operation on unsigned data" has been added to the V850Ex and the CA850 outputs
a code that uses this instruction. When the V850Ex is used, therefore, setting to use the mask register may not have
as much effect as expected.

unsigned char UC;

unsigned short US;

void f(void){
 register unsigned char ruc;

 register unsigned short rus;

 :

 UC *= UC;

 :

 ruc = UC;

 rus = US;

 :

}

(Normal code)

ld.b $UC, r11

andi 0xff, r11, r11

mulh r11, r11

st.b r11, $UC

 :

ld.b $UC, r29

andi 0xff, r29, r29

ld.h $US, r28

andi 0xffff, r28, r28

(Code when mask register is used)

ld.b $UC, r11

and r20, r11

mulh r11, r11

st.b r11, $UC

 :

ld.b $UC, r29

and r20, r29

ld.h $US, r28

and r21, r28

CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

User’s Manual U19383EJ1V0UM00 99

(1) Setting mask values
Mask values (0xff and 0xffff) must be set to r20 and r21, which are used as mask registers, via the program.
The CA850 generates mask codes using the mask registers, assuming that the mask values have been set.

[Example of setting of mask value]

If the program uses an real-time OS, however, the mask values are automatically set according to the real-time
OS type

(a) When RX850 V4 is used
The mask values must be set in advance by using the startup module.

(b) When real-time OS is not used
The mask values must be set in advance by using the startup module Note.

Note The startup module crtN.s (for 32-register mode) supplied with the package sets the mask values
(see "7.3 Startup Routine").

__start:

 mov #__tp_TEXT, tp

 mov #__gp_DATA, gp

 :

 mov 0xff, r20 --Sets mask value to r20

 mov 0xffff, r21 --Sets mask value to r21

 :

 jarl _main, lp

CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

100 User’s Manual U19383EJ1V0UM00

(2) Using mask register function and points to be noted
This section describes the specifications for using the mask register functions and points to be noted.

(a) To newly compile C language source file
By specifying the mask register function option (-Xmask_reg) of the CA850, an assembler instructions
including the mask codes that use the mask registers and information indicating that the mask register
function is used (".option mask_reg" directive) is output.

(b) Checking during linking
Once the linker has been started by specifying the mask register function option (-Xmask_reg) of the
compiler, the object file with the file name information (information specified by the ".file" directive) that
indicates that the object file has been created from the .c file is checked while the object file is linked. If an
object using the mask register function and an object that does not use the function exist together at this
time, an error occurs

Notes 1. Objects included in an archive file (.a file) are not checked. To use an .a file created by the user,
confirm that the mask registers are not used.

2. To start ld850 alone from the command line, an option that performs checking during linking (-
mc) must be specified.

(c) If the program is described in an assembly language
From the beginning, check that the contents of the mask registers are not lost. The mask registers are not
checked during linking because the file name information is not ".c".Whether or not the contents of the mask
registers are lost can be confirmed by a warning message that is output when the assembler is executed, if
the -m option that specifies the use of the mask registers is specified in the assembler.

(d) Supplied Libraries
Although the object files in the archive file are not checked during linking, almost all the libraries in the pack-
age do not destroy the contents of the mask registers Note.

Note The bsearch, and qsort function in the standard library, however, may destroy the contents of the
mask registers because it calls an application function. Therefore, do not use the bsearch, and qsort
function when the mask register function is used (The CA850 does not output an error even if the
bsearch, and qsort function is used).

CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

User’s Manual U19383EJ1V0UM00 101

3.2.6 Device file

A device file is a binary file that contains information dependent upon the device type. One device file is available for
each device or group of target devices as a package. The compiler referred a device file to generate object codes
corresponding to the target system that is used in the application system. Therefore, place the device file to be used
under the standard folder for the device file. If the device is placed under any other folder, specify the folder using a
compiler option; otherwise an error occurs during compilation because the device file is not found.

(1) Specifying device file
A device file that is referenced by a program in C language can be specified in the following two ways.

(a) Specifying device name using compiler option (-cpu device-name)

Example

When building a program with CubeSuite, specifying a device has an effect equivalent to specifying this
option.

(b) Specifying device name using #pragma directive (#pragma cpu device-name) in C language source
file

Example

In this example, the device name is "3201" (V850ES/SA2). The character strings that can be specified as
"device name" are common to option specification and the #pragma directive. Uppercase and lowercase
characters are not distinguished.
For the character strings that can be specified as a device name, see the User's Manual of each device.

Cautions 1. When specifying a device name using the #pragma directive, device specification
must be described in all source files.

2. Specify a device name at the beginning of a source file when using the #pragma
directive. Only preprocessing that has nothing to do with C language syntax and
comments can be described before specification of the device name. If a device
name is specified in C language syntax, the compiler outputs the following error
message and stops processin

[Example of incorrect specification]

> ca850 -cpu 3201 file.c

#pragma cpu 3201

F2625: illegal placement ' #pragma cpu '

#include <stdio.h>

int i;

#pragma cpu 3201

 :

CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

102 User’s Manual U19383EJ1V0UM00

(2) Notes on specifying device file

(a) If no device name is specified
If a device file is specified by neither the #pragma directive nor the -cpu option, and if neither the -cn option,
nor the -cnv850e option, -cnv850e2Note is specified, the compiler outputs the following error message and
stops compiling.

Note A device file is necessary during linking even if the -cn, -cnv850e option or -cnv850e2 option is spec-
ified

(b) If device is specified by both option and #pragma directive
The compiler outputs a warning message and continues processing, giving priority to the option.
If different device names are specified by two or more options or #pragma directives, the compiler outputs
the following message and stops processing.

(c) Program described in assembler instructions
In this case also, a device must be specified by an assembler option or the .option quasi directive when an
object file that can be linked is created.

F2620: unknown cpu type, cannot compile

F2622: duplicated cpu type

CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

User’s Manual U19383EJ1V0UM00 103

3.3 Extended Language Specifications

This section explains the extended language specifications supported by the CA850.
The expanded specifications inclue how to specify section location of data and access the internal peripheral func-

tion registers of the device, how to insert assembler code in a C language source program, how to specify inline
expansion for each function, how to define a handler when an interrupt or exception occurs, how to disable interrupts
at the C language level, the valid RTOS functions when a real-time OS is used for the target environment,
and how to embed instructions in a C language source program.

3.3.1 Macro name

All the following macro names are supported.
Macros not ending with "__ " are supplied for the sake of former C language specifications (K&R

specifications). To perform processing strictly conforming to the ANSI standards, use macros with "__ " before and
after.

Table 3-17. List of Supported Macros

Macro Name Definition

__LINE__ Line number of source line at that point (decimal).

__FILE__ Name of assumed source file (character string constant).

__DATE__ Date of translating source file (character string constant in the form of "Mmm dd
yyyy". The name of the month is the same as that created by the asctime function
stipulated by the ANSI standards (three alphabetic characters with only the first
character being uppercase) and the first character of dd is blank if its value is less
than 10).

__TIME__ Translation time of source file (character string constant having format "hh:mm:ss"
similar to the time created by the asctime function).

__STDC__ Decimal constant 1 (defined when -ansi option is specified). Note

__v800

__v800__

Decimal constant 1.

__v850

__v850__

Decimal constant 1.

__v850e

__v850e__

Decimal constant 1 (defined by CA850, if V850Ex is specified as a target device).

__v850e2

__v850e2__

Decimal constant 1 (defined by CA850, if V850E2 is specified as a target device).

__CA850

__CA850__

Decimal constant 1.

__CHAR_SIGNED__ Decimal constant 1 (defined if signed is specified by -Xchar option or when -Xchar
option is not specified).

__CHAR_UNSIGNED__ Decimal constant 1 (defined when unsigned is specified by -Xchar option).

__DOUBLE_IS_32BITS__ Decimal constant 1.

_DOUBLE_IS_32BITS Decimal constant 1.

CPU macro Decimal constant 1 of a macro indicating the target CPU. A character string indi-
cated by "product type specification" in the device file with "__" prefixed and suf-
fixed is defined.

CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

104 User’s Manual U19383EJ1V0UM00

Note For the processing to be performed when the -ansi option is specified, see "3.1.2 Ansi option".

3.3.2 Keyword

Thae CA850 adds the following characters as a keyword to implement the expanded function. These words are
similar to the ANSI C keywords, and cannot be used as a label or variable name.

Keywords that are added by the CA850 are listed below.

3.3.3 #pragma directive

The CA850 can specify the following #pragma directives.

(1) Description with assembler instruction
Assembler directives can be described in a C language source program.
For the details of description, see "(4) Describing assembler instruction".

(2) Inline expansion specification
A function that is expanded inline can be specified.
For the details of expansion specification, see "(8) Inline expansion".

(3) Device type specification
Specify so that a device file defining the machine-dependent information of the device used is referenced. This
function is the same as the device specification option (-cpu) of the CA850. It is used when the device is
specified in the C language source.

Register mode macro Decimal constant 1 of a macro indicating the target CPU..

Macros defined as a register mode are as follows.

32-register mode: __reg32__

26-register mode: __reg26__

22-register mode: __reg22__

_asm, _bsh, _bsw, data, __DI, __EI, _halt, _hsw, __interrupt, _mul32, _mul32u, __multi_interrupt, _nop, _sasf, _satadd,
_satsub, __set_il, _sxb, _sxh

#pragma asm

 assembler instruction

#pragma endasm

#pragma inline function-name [, function-name ...]

#pragma cpu device-name

Macro Name Definition

CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

User’s Manual U19383EJ1V0UM00 105

(4) Data or program memory allocation

(a) section
Allocates variables to an arbitrary section.
For details about the allocation method, see "(1) Allocation of data to section".

(b) text
A function to be allocated in a text section with an arbitrary name can be specified.
For details about the allocation specification, see "(2) Allocating functions to sections".

(5) Peripheral I/O register name validation specification
The peripheral I/O registers of a device are accessed by using peripheral function register names. #pragma
directive should be specified, when the program is executed by using the Peripheral I/O register name as it is.

(6) Interrupt/exception handler specification
Interrupt/Exception handlers are described in C language.
For details, see "(c) Describing interrupt/exception handler".

(7) Interrupt disable function specification
Interrupts are disabled for the entire function.

(8) Task specification
Task that runs on an RTOS is described in the C language.
For details, see "(a) Description of task".

(9) Structure type packing specification
Specifies the packing of a structure type. The packing value, which is an alignment value of the member, is
specified as the numeric value. A value of 1, 2, 4, or 8 can be specified. When the numeric value is not speci-
fied, the setting is the default 8Note assumption.

Note Alignment values "4" and "8" are treated as the same in this Version.

#pragma section section-type ["section-name"] [begin | end]

#pragma text ["section-name"] [Function name]

#pragma ioreg

#pragma interrupt interrupt-request-name function-name [allocation-method]

#pragma block_interrupt function-name

#pragma rtos_task Function name

#pragma pack([1248])

CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

106 User’s Manual U19383EJ1V0UM00

3.3.4 Using expanded specifications

This section explains using expanded specifications.
- Allocation of data to section
- Allocating functions to sections
- Peripheral I/O register
- Describing assembler instruction
- Controlling interrupt level
- Disabling interrupts
- Interrupt/Exception processing handler
- Inline expansion
- Real-time OS support function
- Embedded functions
- Structure type packing

(1) Allocation of data to section
When external variables and data are defined in a C language source, the CA850 allocates them to memory.
The memory location to which the variables and data are allocated is, basically, an area that can be referenced
by an offset from the address pointed to by the global pointer (gp). If the variables or data are accessed in the
program, therefore, the CA850 attempts to output a code that accesses the area using gp, by default.
At this time, the CA850 attempts to output a code that allocates data to an area that can be referenced from gp
by one instruction, in order to enhance the object efficiency and execution efficiency as much as possible.
Since the range that can be referenced by one instruction from gp must be within +32 K bytes (a total of 64 K
bytes) from gp according to the V850 architecture, the CA850 has dedicated sections in the +32 K bytes area
from gp. These sections are called the sdata and sbss attribute sections.

Figure 3-10. sdata and sbss Attribute Sections

In many cases, however, variables exceed in this range when using an application that uses many variables. In
this case, the variables must be allocated to other sections. The CA850 has many sections to which variables
and data can be allocated, in addition to the sdata and sbss attribute sections. Each of these sections has its
own feature and sections to which variables that must be accessed quickly can be allocated are also available,
so that the sections can be selected depending on the usage.
The sections that can be used in the CA850 including sdata and sbss attribute sections are explained below.

Sdata Attribute /

Sbss Attribute section

32K Bytes(0x8000)

32K Bytes(0x8000)

High Address

gp

CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

User’s Manual U19383EJ1V0UM00 107

- sdata and sbss attribute sections
These sections can be referenced from gp with one instruction and must be allocated within + 32 K bytes
from gp. Data with initial values is allocated to the sdata attribute section, and data without initial values is
allocated to sbss attribute section.
The CA850 first attempts to generate a code that is to be allocated to these sections.
If the code exceeds the upper limit of the section of these attributes, the compiler generates a code that
allocates data to a data or bss attribute section.
To increase the amount of data to be allocated to the sdata or sbss attribute sections, the upper size limit
for the data to be allocated can be specified with the "-G" option of the CA850 so that data in excess of this
upper limit is not allocated to the sdata or sbss attribute sections (see "V850 Build" for details of this
option).
Use the #pragma section directive to specify a variable to be allocated to the sdata or sbss attribute section
in the program (see "(a) #pragma section directive" for details).

- data and bss attribute sections
These sections can be referenced from gp with two instructions. Since access is performed after
address generation, the code becomes correspondingly longer and the execution speed also drops, but the
entire 32-bit space can be accessed.

In other words, these sections can be allocated anywhere as long as they are in RAM.

Use the #pragma section directive to specify a variable to be allocated to the data or bss attribute section in
the program (see "(a) #pragma section directive" for details).

- sconst-attribute section
This is a section that can be referenced from r0, in other words from address 0, with 1 instruction, and must
be allocated within +32K bytes from address 0. Basically, data that can be fixed to ROM is allocated to this
section. In the case of V850 devices with internal ROM, in many cases the internal ROM is assigned from
address 0, and data that should be referenced with 1 instruction and that can be fixed to ROM is allocated
to the sconst attribute section. Variables/data declared by adding the const qualifier are subject to
allocation to the sconst attribute section. If the data exceeds the upper limit of this attribute section, it is
allocated to the const attribute section.
To increase the amount of data to be allocated to the sconst attribute section, the upper size limit for the
data to be allocated can be specified with the "-Xsconst" option of the CA850 so that data in excess of this
upper limit is not allocated to the sconst attribute section (see "V850 Build" for details of this option).
Use the #pragma section directive to specify a variable to be allocated to the sconst attribute section in the
program (see "(a) #pragma section directive" for details).

#pragma section sdata begin

int a = 1; /*allocated to sdata attribute section*/

int b; /*allocated to sbss attribute section*/

#pragma section sdata end

#pragma section data begin

int a = 1; /*allocated to data attribute section*/

int b; /*allocated to bss attribute section*/

#pragma section data end

#pragma section sconst begin

const int a = 1; /*allocated to sconst attribute section*/

#pragma section sconst end

CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

108 User’s Manual U19383EJ1V0UM00

- const-attribute section
This is a section that can be referenced from r0, in other words from address 0, with two instructions. Data
that can be fixed to ROM that exceeds the upper limit of the sconst attribute section, or data that should be
allocated to external ROM in the case of ROMless devices of the V850 microcontrollers, is allocated to the
const attribute section. Variables/data declared by adding the const qualifier are subject to allocation
to the const attribute section.
The variables declared by adding the const qualifier are allocated to the const attribute section, string literal
even if allocation to the .const section is not specified by the #pragma section directive. Since access is
performed after address generation, the code becomes correspondingly longer and the execution speed
also drops, but the entire 32-bit space can be accessed. In other words, these sections can be allocated
anywhere as long as they are in 32-bit space.
Use the #pragma section directive to specify a variable to be allocated to the const attribute section in the
program (see "(a) #pragma section directive" for details

- sidata and sibss attribute sections
These sections can be referenced from ep (element pointer) with 1 instruction toward higher addresses. In
other words, these sections are allocated in the 32 K bytes space toward higher addresses from ep.

Figure 3-11. sidata and sibss Attribute Sections

Data with initial values is allocated to the sidata attribute section, and data without initial values is allocated
to sibss attribute section. If variables that exceed the upper limit of the sdata and sbss attribute sections
that can be accessed from gp with 1 instruction, but which need to be accessed with 1 instruction still exist,
they canbe allocated in the range that can be accessed with 1 instruction using ep.
Use the #pragma section directive to specify a variable to be allocated to the sidata or sibss attribute
section in the program (see "(a) #pragma section directive" for details).

#pragma section const begin

const int a = 1; /*allocated to const attribute section*/

#pragma section const end

#pragma section sidata begin

int a = 1; /*allocated to sidata section*/

int b; /*allocated to sibss section*/

#pragma section sidata end

Sidata and

Sibss attribute section 32K Bytes(0x8000)

High Address

ep

CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

User’s Manual U19383EJ1V0UM00 109

- sedata and sebss attribute sections
These sections can be referenced from ep (element pointer) with 1 instruction toward lower addresses from
ep. In other words, these sections are allocated in the 32 K bytes space toward lower addresses from ep.

Figure 3-12. sdata and sbss Attribute Sections

Data with initial values is allocated to the sedata attribute section, and data without initial values is allocated
to sebss attribute section. If variables that exceed the upper limit of the sdata and sbss attribute sections
that can be accessed from gp with 1 instruction, but which need to be accessed with 1 instruction still exist,
they can be allocated in the range that can be accessed with 1 instruction using ep.
Use the #pragma section directive to specify a variable to be allocated to the sedata or sebss attribute
section in the program (see "(a) #pragma section directive" for details).

- tidata (tidata.byte, tidata.word) and tibss (tibss.byte, tibss.word) attribute sections
These sections can be referenced from ep (element pointer) with 1 instruction toward higher addresses.
These sections are accessed with 1 instruction in the same manner as the sidata and sibss attribute
sections, but differ in terms of the assembler instruction to be used.
The sidata and sibss attribute sections use the 4-byte st/ld instruction for store/reference, whereas the
tidata and tibss attribute sections use the 2-byte sst/sld instruction to perform access. In other
words, the code efficiency of the tidata and tibss attribute sections is better than that of the sidata and sibss
attribute sections.
However, the range in which sst/sld instructions can be applied is small, so it is not possible to allocate a
large number of variables.

Figure 3-13. tidata and tibss Attribute Sections

Data with initial values is allocated to the tidata (tidata.byte, tidata.word) attribute section, and data without
initial values is allocated to the tibss (tibss.byte, tibss.word) attribute section. Specify the tidata.byte/
tibss.byte attribute to allocate byte data, and specify the tidata.word/tibss.word attribute to allocate word
data. To select automatic byte/word judgment by the CA850, specify the tidata/tibss attribute.
The tidata and tibss attribute sections are used to allocate data that must be accessed the fastest
in the system.
However, the data to be allocated to these sections must be carefully selected because the quantity of data
that can be allocated to these sections is limited. Use the #pragma section directive to specify variables to

#pragma section sedata begin

int a = 1; /*allocated to sedata section*/

int b; /*allocated to sebss section*/

#pragma section sedata end

Sedata and sebss

attribute section 32K Bytes(0x8000)

High Address ep

tidata.byte attribute/

tibss.byte attribute/

tidata.word attribute/

tibss.word attribute section

256 Bytes(0x100)

High Address

ep

CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

110 User’s Manual U19383EJ1V0UM00

be allocated to the tidata.byte/tibss.byte or tidata.word/tibss.word attribute section in the program (see "(a)
#pragma section directive" for details).

The efficiency can be enhanced in terms of execution speed if variables or data that are especially
frequently used in the system are selected and allocated to the tidata (tidata.byte, tidata.word) or
tibss (tibss.byte or tibss.word) attribute section. The CA850 has a section file generator that investigates
the frequency of reference. The frequency information obtained as a result of the investigation is output as
a frequency information file. The code that allocates data to the tidata (tidata.byte, tidata.word) or
tibss (tibss.byte, tibss.word) attribute section is output based on this information The user can edit the
frequency information file to select variables that should be allocated to the tidata (tidata.byte, tidata.word)
or tibss (tibss.byte, tibss.word) attribute section by priority. The variables can then be allocated to these
sections without qualifying the source.

#pragma section tidata_byte begin

char a = 1; /*allocated to tidata.byte attribute section*/

unsigned char b; /*allocated to tibss.byte attribute section*/

#pragma section tidata_byte end

#pragma section tidata_word begin

int a = 1; /*allocated to tidata.word attribute section*/

short b; /*allocated to tibss.word attribute section*/

#pragma section tidata_word end

#pragma section tidata begin

int a = 1; /*allocated to tidata.word attribute section*/

char b; /*allocated to tibss.byte attribute section*/

#pragma section tidata end

CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

User’s Manual U19383EJ1V0UM00 111

Following figure shows an example of memory allocation of each section

Figure 3-14. tidata and tibss Attribute Sections

Within 32 bytes

.sibss Section

Peripheral I/O register

.sidata Section

.tibss.word Section

.tidata.word Section

.tibss.byte Section

.tidata.byte Section

.sebss Section

.sedata Section

.bss Section

.const Section

.sbss Section

.sdata Section

.data Section

.text Section

.sconst Section

Interrupt/exception table

.sbss and .sdata are allocated within

64 bytes

.Within 32K bytes

.Within 256 bytes

Within 128 bytes

.Within 32K bytes

ep

Generally, ep sets in the

beginning in RAM.

gp

gp shows the address of first .sdata section +

32 bytes.

tp

Generally tp sets the first .text section or

other than 0.

r0-relative access area

ep-relative access area

gp-relative access are

tp-relative access area

Others

CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

112 User’s Manual U19383EJ1V0UM00

(a) #pragma section directive
How to allocate data to a section using the #pragma section directive is explained below.

<1> By default, when the section name is used as it is
Describe the #pragma section directive in the following format when using the section name defined
by the CA850.

The following can be specified as the section-type.
data, sdata, sedata, sidata, tidata, tidata.word, tidata.byte, sconst, const

The name of the bss attribute section must not be specified as the section type. The CA850
automatically allocates declared or defined data with initial values to the data attribute section, and
data without initial values to the bss attribute section.

In the above case, "variable a" is allocated to the data-attribute .sdata section because it has an initial
value, and "variable b" is allocated to the bss-attribute .sbss section because it does not have an initial
value.
Two or more variable declarations or definitions can be described between "#pragma section
section-type begin" and "#pragma section section-type end". Enumerate variables to be allocated for
each section type.
Use "_" (underscore) instead of "." (period) to specify tidata.word or tidata.byte as the section type, as
shown below.

tidata_word, tidata_byte

<2> To assign original section name
The user can assign a specific name to the sections with the following attributes, and can allocate
variables and data to those sections.

data, sdata, sconst, const

In this case, describe the #pragma section directive in the following format.

However, ".section-type" is appended to a section name actually generated by this method as follows.

This is to prevent a section with another attribute and having the same name from being created
because the section attribute is classified into data or bss attribute depending on whether the data has
an initial value or not. Specify a generated section name when specifying a section in a link directive

#pragma section section-type begin

Variable declaration/definition

#pragma section section-type end

#pragma section sdata begin

int a = 1; /*allocated to sdata attribute section*/

int b; /*allocated to sbss attribute section*/

#pragma section sdata end

#pragma section section-type "created-section-name" begin

Variable declaration / Definition

#pragma section section-type "created-section-name" end

created-section-name.section-type

CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

User’s Manual U19383EJ1V0UM00 113

file. See "(b) Specifying link directive of specific data section" for an example of specification in a link
directive file. The following table shows specific examples of section names specified by the user and
generated section names.

Table 3-18. Arithmetic Operation Instructions

If the name is specified as follows, "variable a" is allocated to the mysdata.sdata section because it
has an initial value, and "variable b" is allocated to the mysdata.sbss section because it does not have
an initial value.

(b) Specifying link directive of specific data section
Specifying link directive of specific data section When a specific section is created using the #pragma sec-
tion directive, describe that section in a link directive file as explained below.
If "variable a" and "variable b" are specified as follows in a C language source, "variable a" is allocated to
the mysdata.sdata section because it has an initial value, and "variable b" is allocated to the mysdata.sbss
section because it does not have an initial value.

At this time, the variable can be allocated to a specific section if the mapping directive in the link directive
file is described as follows.

Since the variables are allocated in the order in which they are described, change the description order to
change the allocation order. It is also possible to specify the start address of the section directly (generally,
a segment is created first and a mapping directive, which specifies the start address of a section in segment
units, is then described in that segment).
Because the attribute of mysdata.data is "$PROGBITS?AW" and that of mysdata.bss is "$NOBITS?AW",
do not omit the input section (".data", ".bss", "mysdata.data", and "mysdata.bss" on the rightmost
side of the mapping directive in the above example) from mapping directives that have the same attribute
as these.

Section Name Specified by User Section Type Character String Appended Generated Section Name

mydata data attribute data/.bss mydata.data/mydata.bss

mysdata sdata attribute sdata/.sbss mysdata.sdata/mysdata.sbss

myconst const attribute .const myconst.const

mysconst sconst attribute .sconst mysconst.sconst

#pragma section sdata "mysdata" begin

int a = 1; /*allocated to mysdata.sdata attribute section*/

int b; /*allocated to mysdata.sbss attribute section*/

#pragma section sdata "mysdata" end

#pragma section sdata "mysdata" begin

int a = 1; /*allocated to mysdata.sdata attribute section*/

int b; /*allocated to mysdata.sbss attribute section*/

#pragma section sdata "mysdata" end

.data = $PROGBITS ?AW .data;

.bss = $NOBITS ?AW .bss;

mysdata.data = $PROGBITS ?AW mysdata.data;

mysdata.bss = $NOBITS ?AW mysdata.bss;

CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

114 User’s Manual U19383EJ1V0UM00

(c) Notes on section allocation
Notes below must be noted when sections are allocated by the #progma section directive, the const
qualifier, or the section file.

<1> An error occurs during compilation if the #pragma section directive is specified as follows
- Section allocation is nested.
- begin and end of #pragma section cross.
- Either begin or end of #pragma section is missing.

[Example of incorrect specification: "Nesting of sections"]

[Example of incorrect specification: "Crossing sections"]

<2> If a section is specified for an automatic variable, the specification is ignored. Section specifi-
cation is a function for external variables.

<3> When specifying a specific section name, keep the length of the name to within 256 characters

<4> A variable declaration that is not set with an initial value is usually treated as a tentative defini-
tion. When a section is specified, however, it is treated as a "definition". Do not allow variable
declarations, which do not have their initial values, set to get mixed in with definitions.

Be sure to make extern declaration in files that reference an external variable. In the example below,
a duplicated definition error occurs if extern is missing in the tentative definition of the variable in
file1.c.

#pragma section data begin

int a = 1;

#pragma section sdata begin

short b;

char c = 0x10;

#pragma section sdata end

int d;

#pragma section data end

#pragma section data begin

int a = 1;

#pragma section sdata begin

short b;

char c = 0x10;

#pragma section data end

int d;

#pragma section sdata end

[Variable declaration not using #pragma section]

int i; /*tentative definition*/

int i = 10; /*definition*/

[Error does not occur.]

[Variable declaration using #pragma section]

#pragma section sedata begin

int i; /*definition*/

int i = 10; /*definition*/

#pragma section sedata end

[Duplicated definition error.]

CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

User’s Manual U19383EJ1V0UM00 115

<5> When a variable specified by a section is referenced by another file, the section must be spec-
ified with the same section type for the extern declaration of that variable. An error occurs if a
type of section different from that of the section specified when a variable is defined is speci-
fied.
For example, if "#pragma section data begin - #pragma section data end" is specified on the definition
side and "#pragma section data begin - #pragma section data end" is not specified on the
tentative definition side (extern declaration), it is assumed on the tentative definition side that
the variable is allocated to the sdata section. This means that a code that accesses the
variable from gp with two instructions is output on the definition side and that a code that accesses
the variable from gp with one instruction is output on the tentative definition side. In other words, a
contradiction occurs. Consequently, the following error message is output during linking.

[Example of correct specification]

[Example of incorrect specification 1]

"variable i" defined by file1.c is allocated to the sbss or bss attribute section. However, file2.c outputs
a code that accesses the sebss attribute section for "variable i". As a result, the linker outputs the
following error message.

[Example of incorrect specification 2]

[file1.c]

#pragma section sedata begin

extern int i;

#pragma section sedata end

[file2.c]

#pragma section sedata begin

int i;

#pragma section sedata end

[Duplicated definition error occurs if extern is not declared]

F4163: output section ".data" overflowed or illegal label reference forsymbol "symbol" in file "file" (value:
value, input section: section, offset: offset, type:R_V850_GPHWLO_1). "symbol" is allocated in section
".data" (file: file).

[file1.c]

#pragma section sedata begin

int i = 1;

#pragma section sedata end

[file2.c]

#pragma section sedata begin

extern int i;

#pragma section sedata end

[file1.c]

int i = 1;

[file2.c]

#pragma section sedata begin

extern int i;

#pragma section sedata end

F4163: output section ".data" overflowed or illegal label reference forsymbol "symbol" in file "file" (value:
value, input section: section, offset: offset, type:R_V850_GPHWLO_1). "symbol" is allocated in section
".data" (file: file).

[file1.c]

#pragma section sedata begin

int i = 1;

#pragma section sedata end

[file2.c]

extern int i;

CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

116 User’s Manual U19383EJ1V0UM00

"variable i" defined by file1.c is allocated to the sbss or bss attribute section. However, file2.c outputs
a code that accesses the sebss attribute section for "variable i". As a result, the linker outputs the
following error message.

<6> When defining a variable with the sconst or const attribute using the #pragma section direc-
tive, be sure to make a const specification for the variable. A const specification is also nec-
essary at the location of the tentative definition made by extern declaration.
If the const declaration is missing when a variable is declared, the variable is not allocated to the
sconst section or const section (the #pragma section directive is ignored) even if "#pragma section
sconst begin - #pragma section sconst end" or "#pragma section const begin - #pragma section const
end" is specified, but to a gp-relative section such as the sdata section or data section. In other
words, allocation is not performed as intended.

A code that allocates "variable i" to the sconst section is output in file1.c. In file2.c, however, the
#pragma section specification is ignored because the const specification is missing from "variable i",
and therefore the variable is treated as a gp-relative variable. In other words, a code that allocates
the variable to the sdata or data section is output. Consequently, "variable i" is not allocated to
the sconst section during linking.
A const specification is also necessary at the location of the tentative definition with extern
declaration, as shown below.

F4156: can not find GP-symbol in segment "*DUMMY*" or illegal labelreference for symbol "_i" in file
"file2.o" (section: section, offset: offset, type:R_V850_GPHWLO_1). "_i" is allocated in section ".sedata"
(file: file1.o).

[file1.c]

#pragma section sconst begin

const int i = 1;

#pragma section sconst end

[file2.c]

#pragma section sconst begin

int i;

#pragma section sconst end

[file1.c]

#pragma section sconst begin

const int i = 10;

#pragma section sconst end

[file2.c]

#pragma section sconst begin

extern const int i;

#pragma section sconst end

CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

User’s Manual U19383EJ1V0UM00 117

(d) Example of #pragma section directive
Here are some examples of using the #pragma section directive.

<1> Allocating "variable a" to tidata.word section and "variable b" to tibss.word section

<2> Allocating "variable c" to tidata.byte section and "variable d" to tibss.byte section

In the tidata attribute section, word data or halfword data is allocated to the tidata_word or tibss_word
section, and byte data is allocated to the tidata_byte or tibss_byte section.
If char-type arrays are declared in the C language source, however, they are allocated to the
tidata.word section. The tidata.word section can be used up to 256 bytes. Because the arrays are of
char type, a code using sld.b or sst.b is output.
However, the sld.b and sst.b instructions cannot access more than 128 bytes.
Therefore, if a char-type array is declared and if the array itself is of more than 128 bytes or is located
at a place exceeding 128 bytes relatively from ep, an error occurs during linking.
Take this point into consideration when allocating char-type arrays to the tidata section

<3> Allocating "variable e" specified by const to the sconst section and character string constant
data indicated by pointer p to sconst section.

In the above description, "Hello World" indicated by pointer p is allocated to the sconst section, and
pointer variable "p" itself is allocated to the sdata section or data section. The allocation position of
the pointer variable and the contents indicated by the pointer vary depending on how const is speci-
fied.

Examples 1.

If this declaration is made, the pointer variable and character sting constant indicated by the pointer
are

#pragma section tidata_word begin

int a = 1; /*allocated to tidata.word attribute section*/

short b; /*allocated to tibss.word attribute section*/

#pragma section tidata_word end

#pragma section tidata_byte begin

char c = 0x10; /*allocated to tidata.byte section*/

char d; /*allocated to tibss.byte section*/

#pragma section tidata_byte end

#pragma section sconst begin

const int e = 0x10;

const char *p = "Hello, World";

#pragma section sconst end

const char *p = "Hello, World";

Pointer variable "p" Can be rewritten ("p = 0" can be compiled).

Character string constant "Hello World" Cannot be rewritten ("p = 0" cannot be compiled).

CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

118 User’s Manual U19383EJ1V0UM00

Describe as shown below to allocate what the pointer variable indicates to a section with the
const attribute.

The above definition allocates the pointer variable and constant to the following sections.

2.

Describe as shown below to allocate the pointer variable to a section with the const attribute.

The above description allocates both the pointer variable and character string constant "Hello World"
to a section with the const attribute.

The above definition allocates the pointer variable and constant to the following sections.

3.

Describe as shown below to allocate what the pointer variable indicates to a section with the
const attribute. This description is used when the pointer itself is fixed to ROM.

The above description allocates both the pointer variable and character string constant "Hello World"
to a section with the const attribute.

#pragma section sconst begin

const char *p = "Hello, World";

#pragma section sconst end

Pointer variable "p" sdata/data section

Character string constant "Hello World" sconst section

char *const p;

Pointer variable "p" Cannot be rewritten ("p = 0" cannot be compiled).

char *const p = "Hello World";

#pragma section sconst begin

char *const p = "Hello World";

#pragma section sconst end

Pointer variable "p" sconst section

Character string constant "Hello World" sconst section

const char *const p;

Pointer variable "p" Cannot be rewritten ("p = 0" cannot be compiled).

const char *const p = "Hello World";

CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

User’s Manual U19383EJ1V0UM00 119

The above definition allocates the pointer variable and constant to the following sections.

In addition to the #pragma section directive, the compiler option "-Xconst" can be used to allo-
cate a variable specified by const to the sconst section.

<4> Make the extern declaration of the #pragma section directive in a commonly used header file
and include it in the C language source.

If the extern declaration of the #pragma section directive is made in a header file as shown above, the
errors decrease and the source is visually simplified.

#pragma section sconst begin

const char *const p = "Hello World";

#pragma section sconst end

Pointer variable "p" sconst section

Character string constant "Hello World" sconst section

[header.h]

#pragma section sidata begin

extern int k;

#pragma section sidata end

[file1.c]

#include "header.h"

#pragma section sidata begin

int k;

#pragma section sidata end

[file2.c]

#include "header.h"

void func1(void){

 k = 0x10;

}

CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

120 User’s Manual U19383EJ1V0UM00

(2) Allocating functions to sections
The CA850 allocates the functions of a C language source program, i.e., program codes, to the .text section by
default. When the text section allocation address is specified in the link directive file, the program is allocated
from that address.
However, it may be necessary to change the allocation address for each function or distribute the allocation
address because of the layout of the memory. To satisfy these necessities, the CA850 has the #pragma text
directive. Using this directive, any name can be given to a section with the text attribute, and the allocation
address can be changed in the link directive file.

(a) #pragma text directive
Using the #pragma text directive, any name can be given to a section with the text attribute. The #pragma
text directive can be used in the following two ways

<1> Specifying the function name to be allocated to a section to be created using the #pragma text
directive.

Describe functions that are described in the C language. In the case of a function, "void func1() {}",
specify "func1". The created section name can be omitted. In this case, a function specified by "func-
tion name" is allocated to the default .text section.

<2> Describing the #pragma text directive before the main body of a function (function defi-
nition) but not specifying a function name.

The created section name can be omitted. In this case, specification of the name of section to be cre-
ated by "#pragma text" specified immediately before is canceled, and the subsequent functions are
allocated to the default .text section.
However, ".section-type" is appended to a section name actually generated by this method as follows.

Specify a generated section name when specifying a section in a link directive file. See "(b) Specify-
ing link directive of specific data section" for an example of specification in a link directive file.
The following table shows specific examples of section names specified by the user and generated
section names.

Table 3-19. Arithmetic Operation Instructions

If the name is specified as follows, "func1" is allocated to the mytext1.text section, and "func2" is allo-
cated to the .text section by default, because the #pragma text directive is not used.

#pragma text "created section name" function-name

#pragma text "created section name"

section-name.text

Section Name Specified by User Section Type Character String Appended Generated Section Name

mytext text attribute .text mytext.text

CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

User’s Manual U19383EJ1V0UM00 121

If the name is specified as follows, "func1" and "func2" are allocated to the mytext2.text section,
"func3" to the "mytext3.text section", and "func4" to the default .text section because the
#pragma text "mytext3" immediately before is cancelled.

(b) Specifying link directive of specific data section
When a specific section is created using the #pragma section directive, describe that section in a link direc-
tive file as explained below.

#pragma text "mytext1" func1

void func1(void){

 :

}

void func2(void){

 :

}

#pragma text "mytext2"

void func1(void){

 :

}

void func2(void){

 :

}

#pragma text "mytext3"

void func3(void){

 :

}

#pragma text

void func4(void){

 :

}

#pragma text "mytext2"

void func1(void){

 :

}

void func2(void){

 :

}

#pragma text "mytext3"

void func3(void){

 :

}

#pragma text

void func4(void){

 :

}

CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

122 User’s Manual U19383EJ1V0UM00

If the name is specified as follows, "func1" and "func2" are allocated to the mytext2.text section, "func3" to
the "mytext3.text section", and "func4" to the default .text section because the #pragma text
"mytext3" immediately before is cancelled.

Since the variables are allocated in the order in which they are described, change the description order to
change the allocation order. It is also possible to specify the start address of the section directly (generally,
a segment is created first and a mapping directive, which specifies the start address of a section in segment
units, is then described in that segment).
Because the attribute of mytext2.text and mytext3.text is "$PROGBITS ?AX", do not omit the input section
(".text", "mytext2.text", and "mytext3.text" on the rightmost side of the mapping directive in the above exam-
ple) from mapping directives that have the same attribute as these.

Example If an input section is omitted from a mapping directive having the same "$PROGBITS?AX"
attribute, the linker links and locates all the sections having that attribute. Consequently, data is
not allocated to the specific section created by the user.
This means that the program that should be allocated to the mytext2.text or mytext3.text section
is allocated to the .text section.

(c) Notes on #pragma text directive.
Note the following points when using the #pragma text directive

<1> Describe the #pragma text directive before the function definition in the same file; otherwise a
warning message is output and the directive is ignored. However, the order of prototype dec-
laration of a function is not affected.

<2> If a function specified by the #pragma text directive is an interrupt handler specified as direct
allocation, a warning message is output and the #pragma text directive is ignored. See "(7)
Interrupt/Exception processing handler" for details of direct allocation specification.

<3> A function specified by #pragma text cannot be expanded inline by a #pragma inline specifica-
tion or an optimization option. Inline expansion specification is ignored.

<4> When specifying a section name, keep the length of the name to within 256 characters.

text = $PROGBITS ?AX .text;

mytext2 = $PROGBITS ?AX mytext2.text;

mytext3 = $PROGBITS ?AX mytext3.text;

.text = $PROGBITS ?AX;

CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

User’s Manual U19383EJ1V0UM00 123

(3) Peripheral I/O register
Peripheral I/O registers are used to control the internal peripheral functions of a device. By using the periph-
eral I/O register name defined by the device, the internal I/O can be accessed at C language level. The
peripheral I/O register names can be treated in the C language source program as if they were normal unsigned
external variables.
For the register names and attributes that can be specified, see the Relevant Device ’s Hardware User’ s Man-
ual of each device.

(a) Accessing
A peripheral function register name is validated by describing the following #pragma directive.

In a C language source file in which "#pragma ioreg" directive is described, the peripheral function register
name described after the #pragma directive can be used.
If this directive is not used or if a peripheral function register name is used without specifying an applicable
device name, an "undefined variable" error occurs.
An error also occurs if the access attribute peculiar to the specified register is violated.
Of the examples as follows, Example 1 is correct, but Examples 2 and 3 cause an error.
P0, P1, P2, RXB0, and OVF0 in the following examples indicate the peripheral I/O registers of the
V850 microcontrollers. In this way, symbols defined by the device file are specified as "register names".

Examples 1.

2.

3.

#pragma ioreg

#pragma ioreg

void func1(void){

 int i;

 P0 = 1; /*Writes to P0*/

 i = RXB0; /*Reads from RXB0*/

}

void func2(void){

 P1 = 0; /*Writes to P1*/

}

void func(void){

 P1 = 0; /*Undefined error*/

}

#pragma ioreg

void func(void){

 RXB0 = 1; /*Error that occurs if attribute of RXB0 is read-only*/

}

CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

124 User’s Manual U19383EJ1V0UM00

(b) Bit access
The CA850 can access each bit of a peripheral function register. "bit number" is specified as 0 to 31 in the
case of a 32-bit register.

<1> Cautions of case of bit access
- A value other than 0 or 1 is substituted in accessing a bit, the binary least significant value of that

value is set (In this case, no message is output.).

Example

- The bits of the flag of each register can be accessed by using a bit name. Specify a name
defined by the device file as the bit name.

Example

register name.bit number = ...

#pragma ioreg

void func(void){

 P0.1 = 1; /*Sets bit 1 of P0 to 1*/

 P2.3 = 0; /*Resets bit 3 of P2 to 0*/

}

#pragma ioreg

void func(void){

 OVF0 = 1; /*Sets bit name OVF0 to 1*/

}

CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

User’s Manual U19383EJ1V0UM00 125

(4) Describing assembler instruction
With the CA850, assembler instruction can be described in the functions of a C language source program in the
following format.

- asm declaration
- #pragma directives

To use registers with an inserted assembler, save or restore the contents of the registers in the pro-
gram because they are not saved or restored by the CA850.
It is advisable to insert assembler in a function. If the instructions are described outside a function, the following
restrictions apply and a warning message is output.

- The output sequence of the function and code is not guaranteed.
- The code is not output in a file where the function does not exist.

(a) asm declaration

<1> The _asm format is provided to maintain compatibility with the conventional language specifi-
cations. If the -ansi option is specified, the compiler outputs a warning message to the _asm
format and treats the option as a function call. When specifying the -ansi option, use the __
asm format.

<2> (b) If the asm declaration is specified, the compiler suffixes a new-line character (\n) to the
specified character string constantNote and passes it to the assembler.

Note　The specified character string constant is unlike the normal character string constant, "\" fol-
lowed by a character other than a new line indicates the following character itself ("\" fol-
lowed by a new line causes an error).

Example

- _ asm or _ asm is a declaration and is not treated as a statement. Therefore, because of the syntax of
the C language source, an error occurs in a structure that does not allow the use of a declaration only,
as shown in Example 1 below.
Therefor, enclose the statement in "{ }" as shown in Example 2 to make it a compound statement.

Examples 1.

__asm(character string constant);

, OR

_asm (character string constant);

__asm("nop");

__asm (".str \"string\\0\"");

if(i == 0)

__asm("mov r11, r10"); /*Error occurs because only declaration is made.*/

CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

126 User’s Manual U19383EJ1V0UM00

2.

(b) #pragma directives
In the range enclosed by the above #pragma directives, assembler instructions can be described as is.
This is useful for using two or more assembler instructions.

A description of example 1 to show next is same to a description of example 2.

Examples 1.

2.

The description from "#pragma asm" to "#pragma endasm" is passed to the assembler as it is.
In other words, the CA850 internally creates an assembler instruction and starts the assembler.
Therefore, a quasi directive of the assembler can be used after the #pragma asm declaration. A local vari-
able in a C language source must not be used with the assembler. Because the local variable is allocated
to the stack or a register by the CA850, it cannot be used with an inline assembler.
A symbol defined using #define in the C language source file cannot be used in the description from
"#pragma asm" to "#pragma endasm". Therefore expand a macro defined by #define in a file by an assem-
bler instruction, as follows.

- Define the macro by using the .macro instruction in the #pragma asm - #pragma endasm directives.
- Call an assembler instruction from the C language source program by means of a function call.

Another method is to write an assembler instruction without making a macro definition.

if(i == 0){

 __asm("mov r11, r10"); /* Can be used because this is compound

 statement.*/

}

#pragma asm

assembler instruction

#pragma endasm

int i;

void f(){

#pragma asm

mov r0, r10

st.w r10, $_i

 :

#pragma endasm

}

int i;

void f(){

 __asm("mov r0, r10");

 __asm("st.w r10, $_i");

 :

}

CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

User’s Manual U19383EJ1V0UM00 127

(5) Controlling interrupt level

(a) __set_il function
The CA850 can manipulate the interrupts of the V850 microcontrollers as follows in a C language source.

- By controlling interrupt level
- By enabling or disabling acknowledgment of maskable interrupts (by masking interrupts)

In other words, the interrupt control register can be manipulated.
For this purpose, the " __ set_il" function is used. Specify this function as follows to manipulate the interrupt
priority level.

The "interrupt request name" that can be specified is the "maskable interrupt request name" defined in the
device file. Because a request name defined in the device file is used, the #pragma ioreg directive must be
described in the C language source that uses this function.
Integer values 1 to 8 can be specified as the interrupt priority level. With the V850, eight steps, from 0 to 7,
can be specified as the interrupt priority level. To set the interrupt priority level to "5", therefore, specify the
interrupt priority level as "6" by this function.

Example

This specification sets the interrupt priority level of interrupt INTP0 to 1.
Specify the __ set_il function as follows to enable or disable acknowledgment of a maskable interrupt.

"-1" or "0" can be specified to enable or disable the maskable interrupt.

Table 3-20. Enabling or Disabling Maskable Interrupt

Example

If the function is specified as shown above, acknowledging maskable interrupt INTP0 is disabled (INTP0 is
masked).
Note that the __ set_il function does not manipulate the EP flag (that indicates that exception processing is
in progress) in the program status word (PSW).

__set_il(interrupt-priority-level, "interrupt-request-name");

__set_il(2, "INTP0");

__set_il(enables/disables maskable interrupt, "interrupt request name");

Set Value Operation

-1 Disables acknowledgment of maskable interrupt (masks interrupt).

0 Enables acknowledgement of maskable interrupt (unmasks interrupt).

__set_il(-1, "INTP0");

CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

128 User’s Manual U19383EJ1V0UM00

(b) __set_il function and interrupt control register
The interrupt control register of the V850 microcontrollers is configured as follows.

If the __ set_il function is used, either "priority level" or "interrupt mask flag" is set. This means that
the __ set_il function cannot set an interrupt request flag.
To set the interrupt priority level to 6 when the interrupt request name is "INTP000" and the interrupt control
register name is "P00IC0", for example, describe the function as follows.

Therefore, codes that change only the lower 3 bits (xxxPR02 to xxxPR00) of the setting of the priority level
are output.
Describe the __ set_il function as follows to enable a maskable interrupt when the interrupt request name is
"INTP000" and the interrupt control register name is "P00IC0".

A code that changes only the interrupt mask flag is output.

If a value is directly written to the interrupt control register, values are set to the priority level, interrupt mask
flag, and interrupt request flag.

Example When the interrupt control register name is "P00IC0"

The meanings of these codes are as follows.
- Sets the priority level to 6.
- Enables the maskable interrupt.
- Clears the interrupt request flag.

7 6 5 4 3 2 1 0

xxIFn xxMKn 0 0 0 xxPRn2 xxPRn1 xxPRn0

__set_il(7, "INTP000");

[Output codes]

ld.b P00IC0, r1

andi 0xf8, r1, r1

ori 0x6, r1, r1

st.b r1, P00IC0

__set_il(0, "INTP000");

[Output codes]

clr1 6, P00IC0

P00IC0 = 0x6;

[Output codes]

mov 0x6, r29

st.b r29, P00IC0

CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

User’s Manual U19383EJ1V0UM00 129

(6) Disabling interrupts
The CA850 can disable the maskable interrupts in a C language source.
This can be done in the following two ways.

- Locally disabling interrupt in function
- Disabling interrupts in entire function

(a) Locally disabling interrupt in function
The "di instruction" and "ei instruction" of the assembler instruction can be used to disable an interrupt
locally in a function described in C language. However, the CA850 has functions that can control the inter-
rupts in a C.language source.

Table 3-21. Load/Store Instructions

Example How to use the __ DI() and __ EI() functions and the codes to be output are shown below.

(b) Disabling interrupts in entire function
The CA850 has a "#pragma block_interrupt" directive that disables the interrupts of an entire function.
This directive is described as follows.

Describe functions that are described in the C language. In the case of a function, "void func1() {}", specify
"func1".
The interrupt to the function specified by "function-name" above is disabled. As explained in "(a) Locally
disabling interrupt in function", __ DI()" can be described at the beginning of a function and " __ EI()", at the

Interrupt Control Function Operation Processing by CA850

__DI Disables interrupt. Generates di instruction.

__EI Enables interrupt. Generates ei instruction.

[C language source]

void func1(void){

 :

 __DI();

 /*describe processing to be performed with interrupt disabled*/

 __EI();

 :

}

[Output codes]

_func1:

 -- prologue code

 :

 di

 -- processing to be performed with interrupt disabled

 ei

 :

 -- epilogue code

 jmp [lp]

#pragma block_interrupt function-name

CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

130 User’s Manual U19383EJ1V0UM00

end. In this case, however, an interrupt to the prologue code and epilogue code output by the CA850 can-
not be disabled or enabled, and therefore, interrupts in the entire function cannot be disabled.
Using the #pragma block_interrupt directive, interrupts are disabled immediately before execution of
the prologue code, and enabled immediately after execution of the epilogue code. As a result, interrupts in
the entire function can be disabled.

Example How to use the #pragma block_interrupt directive and the code that is output are shown below.

(c) Notes on disabling interrupts in entire function
Note the following points when disabling interrupts in an entire function.

<1> If an interrupt handler and a #pragma block_interrupt directive are specified for the same inter-
rupt, the interrupt handler takes precedence, and the setting of disabling interrupts is ignored.

<2> If the following functions are called in a function in which an interrupt is disabled, the interrupt
is enabled when execution has returned from the call.

- Function specified by #pragma block_interrupt
- Function that disables interrupt at the beginning and enables interrupt at the end

<3> Describe the #pragma block_interrupt directive before the function definition in the same file;
otherwise an error occurs during compilation.
However, the order of prototype declaration of a function is not affected.

<4> Neither #pragma inline nor inline expansion can be specified by an optimization option for the
function specified by a #pragma block_interrupt directive. The inline expansion specification
is ignored.

<5> A code that manipulates the ep flag (that indicates exception processing is in progress) in the
program status word (PSW) is not output even if #pragma block_interrupt is specified.

[C language source]

#pragma block_interrupt func1

void func1(void){

 :

 /*describe processing to be performed with interrupt disabled*/

 :

}

[Output codes]

_func1:

 di

 -- prologue code

 :

 -- processing to be performed with interrupt disabled

 :

 -- epilogue code

 ei

 jmp [lp]

CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

User’s Manual U19383EJ1V0UM00 131

(7) Interrupt/Exception processing handler
The CA850 can describe an "Interrupt handler" or "Exception handler" that is called if an interrupt or exception
occurs. This section explains how to describe these handlers.

(a) Occurrence of interrupt/exception
If an interrupt or exception occurs in the V850 microcontrollers, the program jumps to a handler address
corresponding to the interrupt or exception. An interrupt source and a handler address correspond one by
one. A collection of handler addresses is called an interrupt/exception table.
For example, the interrupt/exception table of the V850ES/SG2 is as shown below (only the top part is
shown).

Table 3-22. Interrupt/Exception Table (V850ES/SG2)

The arrangement of the handler addresses and the available interrupts vary depending on the device of the
V850. See the Relevant Device ’s User’ s Manual of each device for details.
Each handler address has a 16-byte area. If an interrupt occurs, an instruction written in that 16-byte area
is executed. This means that, if the processing code does not exceed 16 bytes, it is performed only in the
handler address. If not, an instruction that branches to a function (interrupt handler) where the processing
is written is described.

Figure 3-15. Image of Interrupt Handler Address

Address Interrupt Name Interrupt Trigger

0x00000000 RESET RESET pin input/reset by internal source

0x00000010 NMI Valid edge input to NMI pin

0x00000020 INTWDT2 Overflow of WDT2

0x00000040 TRAP0n TRAP instruction

0x00000050 TRAP1n TRAP instruction

0x00000060 LGOP/DBG0 Illegal instruction code/DBTRAP instruction

0x00000080 INTLVI Low voltage detection

0x00000090 INTP0 Detection of input edge of external interrupt pin (INTP0))

0x000000A0 INTP1 Detection of input edge of external interrupt pin (INTP1)

0x000000B0 INTP2 Detection of input edge of external interrupt pin (INTP2)

0x000000C0 INTP3 Detection of input edge of external interrupt pin (INTP3)

: : :

jr _func_intp0

jr _func_intp1

Address

0x00000090

0x000000A0

Interrupt handler address of INTP0

Interrupt handler address of INTP1

CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

132 User’s Manual U19383EJ1V0UM00

If the INTP0 interrupt occurs in the V850ES/SG2, the program jumps to address 0x90 and executes the
code written at that address. In this example, the program jumps to the func_intp0 function because a code
that branches to that function is written. This means that func_intp0 is the interrupt handler of INTP0.

The above description is at an assembly language source level. With the CA850, users do not have to pay
much attention to this when describing interrupt servicing in C language source. How to describe
interrupt servicing is explained specifically in "(c) Describing interrupt/exception handler".

(b) Processing necessary in case of interrupt/exception
If an interrupt/exception occurs while a function or a task is being executed, interrupt/exception processing
must be immediately executed. When the interrupt/exception processing is completed, execution must
return to the function or task that was interrupted Note.
Therefore, the register information at that time must be saved when an interrupt/exception occurs, and
the register information must be restored when interrupt/exception processing is complete.

Note When a real-time OS is used, execution may not return to a task that is interrupted if a system call is
issued during interrupt servicing. See the User's Manual of each real-time OS for details.

The prologue and epilogue codes of an ordinary function save and restore the registers for register vari-
ables.
The registers for register variables are shown below. Those that must be saved and restored are saved
and restored.

Table 3-23. Registers for Register Variables

When execution shifts to an interrupt/exception handler, the following registers that must be saved, in addi-
tion to the registers shown in the above table, are also saved as a stack frame for the interrupt/exception
handler.

Table 3-24. Stack Frame for Interrupt/Exception Handler

When multiple interrupt/exception occurs, the following registers that must be saved, in addition to the reg-
isters for register variables, are also saved as a stack frame for the multiple interrupt/exception handler.

Register modes Register Variable Registers

22-register mode r25, r26, r27, r28, r29

26 -register mode r23, r24, r25, r26, r27, r28, r29

32-register mode r20, r21, r22, r23, r24, r25, r26, r27, r28, r29

Register modes Registers Saved/Restored in Case of Interrupt/Exception

22-register mode r1, r6, r7, r8, r9, r10, r11, r12, r13, r14, r31 (lp) , CTPC[V850E],
CTPSW[V850E]

26-register mode r1, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r31 (lp) ,
CTPC[V850E], CTPSW[V850E]

32-register mode r1, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17, r18, r19, r31 (lp)
, CTPC[V850E], CTPSW[V850E]

CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

User’s Manual U19383EJ1V0UM00 133

Table 3-25. Stack Frame for Multiple Interrupt/Exception Handler

The usage of the above registers is as follows.

Table 3-26. Usage of Registers

When interrupt/exception processing is completed, the code which restores saved registers is output, the
reti instruction is output. This instruction notifies the V850 that the interrupt/exception servicing is com-
pleted.
If codes for saving/restoring registers or outputting the reti instruction are described as explained in "(c)
Describing interrupt/exception handler", the CA850 automatically outputs the relevant code. The code for
saving/ restoring registers is output as explained in "Table 3-27. Processing for Saving/Restoring Reg-
isters During Interrupt". The user therefore does not have to pay much attention to this and can con-
centrate on describing the processing of the main body of the interrupt handler.

Register modes Registers Saved/Restored in Case of Multiple Interrupts/Exceptions

22-register mode r1, r6, r7, r8, r9, r10, r11, r12, r13, r14, r31 (lp) , EIPC, EIPSW,
CTPC[V850E], CTPSW[V850E]

26-register mode r1, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r31 (lp) , EIPC,
EIPSW, CTPC[V850E], CTPSW[V850E]

32-register mode r1, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17, r18, r19, r31 (lp)
, EIPC, EIPSW, CTPC[V850E], CTPSW[V850E]

Register Usage

r1 Assembler-reserved register

r6-r9 Registers for arguments (registers to set arguments of function)

r10-r19 Work registers (registers used by CA850 to generate codes)

r31 Link pointer

CTPC[V850E] Program counter (PC) when CALLT instruction is executed.

CTPSW[V850E] Program status word (PSW) when CALLT instruction is executed.

EIPC Program counter (PC) during interrupt/exception processing

EIPSW Program status word (PSW) during EIPSW interrupt/exception pro-
cessing.

CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

134 User’s Manual U19383EJ1V0UM00

Table 3-27. Processing for Saving/Restoring Registers During Interrupt

(c) Describing interrupt/exception handler
The format in which an interrupt/exception handler is described does not differ from ordinary C functions,
but the functions described in C must be recognized as an interrupt/exception handler by the
CA850. With the CA850, an interrupt/exception handler is specified using the #pragma interrupt directive
and __ interrupt qualifier, or #pragma interrupt directive and __ multi_interrupt qualifier.

<1> When specifying interrupt/exception handler

<2> When specifying multiple-interrupt/exception handle

Describe functions that are described in the C language. In the case of a function, "void func1() {}",
specify "func1".
"Specifying multiple-interrupt handler" means to "specify a function that can be interrupted more than
once" It does not mean "to specify a function that interrupts more than once".

Register Name Register Explanation

Assembler-reserved register r1 Always saved/restored at interrupt.

Argument registers r6-r9 r6 is always saved/restored when the interrupt
source is TRAP0/ TRAP1.

Saved/restored when a function call (including
runtime functions) exists.

Saved/restored if a function call does not exist
but is used with an interrupt function.

Work Registers 22-register mode r10-r14 Saved/restored when a function call exists.

Saved/restored if a function call does not exist
but is used with an interrupt function.

26-register mode r10-r16

32-register mode r10-r19

Register Variable
Registers

22-register mode r25-r29 Saved/restored as necessary, as with ordinary
functions.

26-register mode r23-r29

32-register mode r20-r29

Link pointer r31(lp) Saved/restored when a function call (including
runtime functions) exists

Does not save/restore if a function call does not
exist.

Interrupt-related system registers EIPCE,
EIPSW

Saved/restored with functions using the multi-
ple interrupt qualifier__multi_interrupt.

Not saved/restored with the __interrupt qualifier.

callt instruction-related system registers
[V850E]

CTPC,
CTPSW

Always saved/restored with interrupt functions
being compiled with a V850E/V850ES/V850E2
core device specified.

#pragma interrupt Interrupt-request-name Function-name Allocation-method

__interrupt Function-definition, or Function-declaration

#pragma interrupt Interrupt-request-name Function-name Allocation-method

__multi_interrupt Function-definition, or Function-declaration

CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

User’s Manual U19383EJ1V0UM00 135

- Inerrupt request name
Interrupt request names registered in the device file can be specified. Refer to the inter-
rupt request names described in the Relevant Device ’s Architecture User’ s Manual of each
device; they are the interrupt request names registered in the device file.
A non-maskable interrupt (NMI) can also be specified in this way, but a reset interrupt (RESET)
cannot be specified. Processing after reset must be described with assembler instructions. Pro-
cessing after reset is generally described in the startup routine, so see "CHAPTER 7 STARTUP"
for details.

- Function Name
Specify the names of functions that are used as an Interrupt/Exception handler. Describe the
function name in C language source. When specifying the function "void func1(void)", specify the
function name as "func1".

- Allocation method
Specify whether the main body of the function is directly allocated to the handler address, or only
the instruction that branches to the interrupt handler function is allocated. Specify "direct" when
the main body of the function is directly allocated; otherwise describe nothing as "allocation
method". By specifying "direct", all functions are allocated from the handler address of the
specified interrupt source. Note, however, that the areas for the subsequent handler address are
also used.
When specifying "direct", be sure to describe the #pragma interrupt directive before the function
definition; otherwise an error occurs during compilation.

Next, the roles of the #pragma interrupt directive, __ interrupt qualifier, and __ multi_interrupt quali-
fier are explained.

- #pragma interrupt directive
Allocates an instruction (jr) that branches to the specified function to a handler address corresponding
to the interrupt request name specified by the #pragma interrupt directive. When the -Xj option
is specified, this directive allocates an instruction that saves the r1 register contents to the stack and
an instruction (jmp) that branches to the specified function.

- __ interrupt qualifier
Adds processing to save/restore the register contents by an interrupt/exception handler to a function
with the __ interrupt qualifier and adds the reti instruction at the end. When the -Xj option is specified,
processing to save the r1 register contents is output to the handler address, so only restore processing
is output for the function.

- __multi_interrupt qualifier
Adds processing to save/restore the register contents by an interrupt handler and processing to
save/ restore the contents of the EIPC and EIPSW registers to a function with the __multi_interrupt
qualifier. This directive also adds the reti instruction at the end. When the -Xj option is specified, pro-
cessing to save the r1 register contents is output to the handler address, so only restore processing is
output for the function.

CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

136 User’s Manual U19383EJ1V0UM00

When the #pragma interrupt directive, __ interrupt qualifier, and__ multi_interrupt qualifier are specified at
the same time, the following codes are output and the handler completes the interrupt/ exception servicing
routine.

- Allocation of an instruction branching to the specified interrupt/exception handler to the handler
address.

- Addition of processing to save/restore the register contents as an interrupt handler (and process-
ing to save/restore the contents of EIPC and EIPSW if the __ multi_interrupt qualifier is specified)

- Addition of the reti instruction at the end of the handler

In this case, function definition and the #pragma interrupt directive can be described in separate files in any
order. If "direct" is specified for the allocation method, however, they cannot be described in separate files.
The following codes are output if only the __ interrupt qualifier or __ multi_interrupt qualifier is specified.

- Addition of processing to save/restore the register contents by an interrupt handler (and pro-
cessing to save/restore the contents of EIPC and EIPSW if the __ multi_interrupt qualifier is specified)

- Addition of the reti instruction at the end of the interrupt/exception handler.

Therefore, the function can be started as an interrupt/exception handler but the processing to allocate "an
instruction to branch the interrupt handler to the handler address" output by the #pragma interrupt
directive is not performed.

Example The #pragma interrupt is specified as follows when the interrupt handler "void intp0_func(void)"
is used for the interrupt request name "INTP0" without "direct" being specified and multiple inter-
rupts being enabled.

Next, the function type that can be specified as an interrupt handler is explained.
- Function type

The type of a handler that handles a maskable interrupt or NMI is as follows.
void func(void) type

The argument and return value of this function are void type.
The type of a software exception processing (trap) handler is as follows.

void func(unsigned int) type
EICC (exception code) of the interrupt source register (ECR) is set as the argument. Unless the func-
tion is specified by this type, an error occurs during compilation. Refer to the next paragraph for
the software exception processing function.

- Software exception processing (trap processing) handler
When software exception processing (trap processing) is used, two entry points, TRAP0 (address
0x40) and TRAP1 (address 0x50), are used according to the specifications of the V850 microcontrol-
lers. When the software exception "trap 0x00 to trap 0x0f" occurs, execution branches to TRAP0
(address 0x40); if "trap 0x10 to trap0x1f" occurs, it branches to TRAP1 (address 0x50). At this time,
the value "0x40 to 0x4f" is set to the interrupt source register (ECR) as a software exception code in the
case of TRAP0. In the case of TRAP1, the value "0x50 to 0x5f" is set to the ECR.

#pragma interrupt INTP0 intp0_func

__interrupt

void intp0_func(void){

 :

 main body of interrupt servicing

 :

}

CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

User’s Manual U19383EJ1V0UM00 137

Table 3-28. Trap Instructions and Software Exception Codes

When software exception processing for TRAP0 or TRAP1 is described, that function has one argument
and the type of the variable is "unsigned int". The software exception code set to the interrupt source regis-
ter (ECR) is set as the argument. In the case of TRAP0, the value is "0x40 to 0x4f". In the case of TRAP1,
it is "0x50 to 0x5f". Processing must be described in the handler depending on these values.

(d) Notes on describing interrupt/exception handler
"Specifying multiple-interrupt handler" with the __ multi_interrupt qualifier means to "specify a function that
can be interrupted more than once" and does not mean "to specify a function that interrupts more than
once".
Even if a handler that enables multiple interrupts is specified by __ multi_interrupt, interrupts are not
enabled when the interrupt handler is activated. Therefore, be sure to issue an interrupt enabling
instruction (such as __ EI) in the interrupt handler, and issue an interrupt disabling instruction (such as __
DI) at the end of the handler. If the interrupt disabling instruction is not issued at the end of the handler, an
interrupt may be acknowledged while the contents of a register are being restored, which may cause a
hang-up.
The reset interrupt cannot be specified by the #pragma interrupt directive.

If the above description is made, an error occurs during compilation. Processing after reset must be
described with assembler instructions.
Processing after reset is generally described in the startup routine, so see "CHAPTER 7 STARTUP" for
details.

Trap Instruction Software Exception Code

trap 0x00 0x40

trap 0x01 0x41

trap 0x02 0x42

: :

trap 0x0a 0x4a

trap 0x0b 0x4b

: :

trap 0x10 0x50

trap 0x11 0x51

trap 0x12 0x52

: :

trap 0x1e 0x5e

trap 0x1f 0x5f

#pragma interrupt TRAP0 trap0_func

__interrupt

void trap0_func(unsigned int codenum){

 :

 describe processing of each exception code

 :

}

#pragma interrupt RESET reset_func /*error*/

CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

138 User’s Manual U19383EJ1V0UM00

- Specify __multi_interrupt qualifier in the function specified as a handler that processes multiple inter-
ruptions. In such case, code which saves,restores the EIPC and EIPSW is output. Interrupt handler
where __multi_interrupt qualifier is not specified, the code which saves, restores the EIPC and EIPSW
is not output.

- The #pragma interrupt directive and _ _ multi_interrupt qualifier do not support multiple excep-
tions and multiple NMIs. To use multiple exceptions or multiple NMI, add a code that saves or restores
the necessary system registers (such as FEPC and FEPSW). See the Relevant Device’s User’s Man-
ual of each device for the necessary system registers.

- The user is not required to additionally describe an interrupt handler address in the link directive file. It
is output internally by the CA850.

- The same interrupt request name must not be specified for two or more functions.
- Both the __ interrupt qualifier and __ multi_interrupt qualifier must not be specified for the same func-

tion.
- An error occurs during compilation if a function is declared with the __ interrupt qualifier or

__multi_interrupt qualifier after the function is defined without the __ interrupt qualifier or
__multi_interrupt qualifier being specified.

- A function specified as an interrupt/exception handler cannot be expanded inline. The #pragma
inline directive is ignored even if specified.

- An interrupt to a function specified as an interrupt/exception handler is disabled. Therefore, the
#pragma block_interrupt directive is ignored even if specified.

- A function specified as an interrupt/exception handler cannot be called by an ordinary function call. If it
is called from another file, the compiler cannot check it.

- When an assembler instruction is called from an interrupt/exception handler and the registers shown in
"Table 3-23. Registers for Register Variables" and "Table 3-24. Stack Frame for Interrupt/Exception
Handler" are used, processing to save/restore the register contents must be described. Processing
to save/restore the register contents must also be described when sp (r3), gp (r4), tp (r5), and ep
(r30) are rewritten.

- The #pragma interrupt directive, __ interrupt qualifier, and __ multi_interrupt qualifier do not issue
a processing end report (EOI command) to the external interrupt controller. The user should
therefore execute this directive, if necessary.

- Disable interrupts at the end of multiple interrupts because a code that restores EIPC and EIPSW must
be described.

- If "direct" is not specified, an instruction to branch to the interrupt/exception handler is allocated to the
handler address. In this case, the CA850 outputs the jr instruction to enhance the code effi-
ciency. However, the range in which the jr instruction can branch execution is limited to +21
bits from the jr instruction. If the main body of the interrupt handler is not within the range in which the
jr instruction can branch execution, an error occurs during linking. In this case, specify the compilation
option "-Xj " to replace the jr instruction with the jmp instruction.

CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

User’s Manual U19383EJ1V0UM00 139

(e) Description example of interrupt/exception handler
Examples of describing interrupt/exception handlers are shown below.
Note that the interrupt request name differs depending on the device. See the Relevant Device ’s User’ s
Manual of each device.

Examples 1. Non-maskable interrupt

2. Trap

3. #pragma interrupt and _ _ interrupt qualifier in separate files

4. Specification of multiple interrupts

#pragma interrupt NMI func1 /*non-maskable interrupt*/

__interrupt

void func1(void){

 :

}

#pragma interrupt TRAP0 func2 /*Trap 0*/

__interrupt

void func2(unsigned int num){

 switch(num){ /*for every exception cod*/

 :

 }

}

[a. c]

__interrupt /*__interrupt specification*/

void func1(void){

 :

}

[b. c]

#pragma interrupt NMI func1 /*can be described after definition or in separate
file*/

#pragma interrupt INTP0 func1

__multi_interrupt /*multiple-interrupt function specified*/

void func1(void){

 :

}

CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

140 User’s Manual U19383EJ1V0UM00

(8) Inline expansion
The CA850 allows inline expansion of each function. This section explains how to specify inline expansion.

(a) Inline Expansion
Inline expansion is used to expand the main body of a function at a location where the function is called.
This decreases the overhead of function call and increases the possibility of optimization. As a result, the
execution speed can be increased.
If inline expansion is executed, however, the object size increases.
Specify the function to be expanded inline using the #pragma inline directive.

Describe functions that are described in the C language. In the case of a function, "void func1() {}", specify
"func1". Two or more function names can be specified with each delimited by "," (comma).

(b) Conditions of inline expansion
At least the following conditions must be satisfied for inline expansion of a function specified using
the #pragma inline directive.
If optimization other than "size priority optimization (-Os)" and "execution speed priority optimization (-Ot)" is
specified, however, inline expansion may not be executed even if the following conditions are satisfied,
because of the internal processing of the CA850.

<1> A function that expands inline and a function that is expanded inline are described in the same
file
A function that expands inline and a function that is expanded inline, i.e., a function call and a
function definition must be in the same file. This means that a function described in another C lan-
guage source cannot be expanded inline. If it is specified that a function described in another C lan-
guage source is expanded inline, the CA850 does not output a warning message and ignores the
specification.

<2> The #pragma inline directive is described before function definition.
If the #pragma inline directive is described after function definition, the CA850 outputs a warning mes-
sage and ignores the specification. However, prototype declaration of the function may be described
in any order. Here is an example.

Example

#pragma inline function-name [,function-name...]

#pragma inline func1, func2

void func1(){...}

void func2(){...}

void func(void){

 func1(); /*function subject to inline expansion*/

 func2(); /*function subject to inline expansion*/

}

CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

User’s Manual U19383EJ1V0UM00 141

<3> The number of arguments is the same between "call" and "definition" of the function to be
expanded inline.
If the number of arguments is different between "call" and "definition" of the function to be expanded
inline, the CA850 outputs a warning message and ignores the specification.

<4> The types of return value and argument are the same between "call" and "definition" of the
function to be expanded inline.
If the number of arguments is different between "call" and "definition" of the function to be expanded
inline, the CA850 outputs a warning message and ignores the specification. If the type can be con-
verted, however, it is converted as follows and the function is expanded inline.

- The return value type is the type of the "calling side".
- The argument type is the type of the "function definition"

If the "-ansi" option is specified, however, the type is not converted and an error is output.

<5> The size of the function to be expanded inline and the stack size are not too large.
If the size of the function to be expanded inline and the stack size are too large, neither an error nor
warning is output, and the inline expansion specification is ignored. This "size" means the size
in
the intermediate language and is different from the size of the actual object. The upper limit of the
size can be changed in the CA850.
The function size in the intermediate language can be changed by this option.

The stack size used by the function in the intermediate language can be changed by this option.

In addition, the size of each function and stack size used in the intermediate language can be checked
by using this option.

This option can be used to determine the size for specification.

<6> The number of arguments of the function to be expanded inline is not variable.
If inline expansion is specified for a function with a variable arguments, the CA850 outputs neither an
error nor warning message and ignores the specification.

<7> Recursive function is not specified to be expanded inline.

[Valid Inline Expansion Specification]

#pragma inline func1, func2

void func1(); /*prototype declaration*/

void func2(); /*prototype declaration*/

void func1(){...} /*function

 definition*/

void func2(){...} /*function

 definition*/

[Invalid Inline Expansion Specification]

void func1(); /*prototype declaration*/

void func2(); /*prototype declaration*/

void func1(){...} /*function

 definition*/

void func1(){...} /*function

 definition*/

#pragma inline func1, func2

-Wp,-Nnum

-Wp,-Gnum

-Wp,-l

CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

142 User’s Manual U19383EJ1V0UM00

If a recursive function that calls itself is specified for inline expansion, the CA850 outputs neither an
error nor warning message and ignores the specification. If two or more function calls are nested and
if a code that calls itself exists, however, inline expansion may be executed.

<8> An interrupt handler is not specified to be expanded inline.
A function specified by the #pragma interrupt, __ interrupt, or __ multi_interrupt directive is recognized
as an interrupt handler. If inline expansion is specified for this function, the CA850 outputs a warning
message and ignores the specification.

<9> A task of a real-time OS is not specified to be expanded inline.
A function specified by the #pragma rtos_task directive is recognized as a task of a real-time OS. If
inline expansion is specified for this function, the CA850 outputs a warning message and ignores the
specification.

<10> Interrupts are not disabled in a function by the #pragma block_interrupt directive.
#If inline expansion is specified for a function in which interrupts are declared by the #pragma
block_interrupt directive to be disabled, the CA850 outputs a warning message and ignores the spec-
ification.

(c) Controlling inline expansion via option
Inline expansion can be controlled using options when inline expansion by the compiler should be sup-
pressed. The cases in which inline expansion can be controlled and the options are as follows.
If execution speed priority optimization (-Ot) is specified, however, refer to "(d) Execution speed priority
optimization and inline expansion".

<1> To expand inline all static functions that are referenced only once
If this option is specified, a static function that is referenced only once is expanded inline, regardless
of optimization specification and the presence or absence of a #pragma inline specification.
If optimization other than the size priority optimization (-Os) is specified, however, inline expansion
may not be executed even if the -Wp,-S option is specified, because of the internal processing of the
CA850.

<2> To suppress inline expansion of all functions
In this case, inline expansion is suppressed even if the -Wp,-S option or the #pragma inline directive
is specified.

(d) Execution speed priority optimization and inline expansion
If the "execution speed priority optimization (-Ot)" option of the CA850 is specified, the CA850 uses inline
expansion as one of the means of optimization.
If the -Ot option is specified, the CA850 selects an appropriate function and expands it inline as long as the
inline expansion conditions in "(b) Conditions of inline expansion" are satisfied, even if the function is
not specified for inline expansion by the #pragma inline directive.
Inline expansion can be controlled using options when inline expansion by the compiler should be sup-
pressed. The cases in which inline expansion can be controlled and the options are as follows

<1> To suppress inline expansion of all functions even though the -Ot option is specified.
In this case, inline expansion is suppressed even if the -Wp,-S option or the #pragma inline directive
is specified.

-Wp,-S

-Wp,-no_inline

CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

User’s Manual U19383EJ1V0UM00 143

<2> To expand inline only the function specified by the #pragma inline directive even though the -
Ot option is specified.
In this case, the function for which inline expansion is specified must meet the conditions explained in
"(b) Conditions of inline expansion".

(e) Examples of differences in inline expansion operation depending on option specification
Here are examples of differences in inline expansion operation depending on whether the #pragma
inline directive or an option is specified.
When -Os (size priority optimization) is specified (other than -Ot)

When -Ot (execution speed priority optimization) is specified

When -Ot (execution speed priority optimization)+ -Wp,-inline (inline expansion of only function specified
by #pragma inline) are specified.

Remarks 1. The CA850 does not treat a function specified for inline expansion by the #pragma inline
directive as a static function. To use such a function as a static function, static must be
explicitly specified.

2. When executing debugging, a breakpoint cannot be specified for a function specified
for inline expansion in the C language source.

-Wp,-no_inline

-Wp,-inline

#pragma inline func0

void func0(){...} /*expanded if inline expansion conditions are satisfied because,

 #pragma inline is specified*/

void func1(){...} /*Not expanded*/

void func2(){...} /*Not expanded*/

#pragma inline func0

void func0(){...} /*expanded if inline expansion conditions are satisfied

 because -Ot is specified*/

void func1(){...} /*expanded if inline expansion conditions are satisfied

 because -Ot is specified*/

void func2(){...} /*expanded if inline expansion conditions are satisfied

 because -Ot is specified*/

#pragma inline func0

void func0(){...} /*expanded if inline expansion conditions are satisfied because

 #pragma inline is specified*/

void func1(){...} /*not expanded because -Wp,-inline is specified but

 #pragma inline is not specified*/

void func2(){...} /*not expanded because -Wp,-inline is specified but

 #pragma inline is not specified*/

CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

144 User’s Manual U19383EJ1V0UM00

(9) Real-time OS support function
The CA850 has functions to improve programming description and to reduce the number of codes, making
allowances for organizing a system using the V850 microcontrollers real-time OS RX850V4.

(a) Description of task
An application using a real-time OS performs processing in task units. The real-time OS schedules a task
using a system call issued in that task or interrupt servicing. Register contents are saved and restored by
the real-time OS when the task is switched (when the context is switched). Therefore, prologue and
epilogue processing are different from those of an ordinary function.
In other words, the prologue and epilogue processing generated by the CA850 when a function is called are
not executed by a task.
To use a function described as a task, the code can be reduced by deleting the prologue and epi-
logue processing that are executed when a function is called. However, ordinary functions and tasks
are not distinguished according to the description method of C language Therefore, the CA850 has the
following #pragma directive so that a function can be recognized as a task of a real-time OS.

Consequently, the function specified by "function-name" can be recognized as a task of a real-time OS. A
function name described in C is specified as "function-name". The following description is made, for exam-
ple, to use the function "void func1(int inicode){}" as a task.

Example

Specifying the #pragma rtos_task directive has the following effect.

<1> The prologue/epilogue processing output by an ordinary function is not performed. Spe-
cifically, the following codes are not output.

- Saving/restoring of register contents for register variables
- Saving/restoring of link pointer (lp)
- Jump to return address

<2> The system call "ext_tsk" can be used as a defined function.
This system call can be used even if a prototype declaration is not made in the application. Functions
other than the one specified as a task can be called in the same manner as long as they are described
after the #pragma rtos_task directive.
When this system call is called, a code using the jr instruction is output to reduce the code size. If the
main body of system call "ext_tsk" is not in the range in which the jr instruction can branch execution,
the linker (ld850) outputs an error. In this case, take the following actions

- Change the memory allocation by the link directive
- Replace the jr instruction with the jmp instruction in the assembly language source.
- Specify far jump

Note the following points when the #pragma rtos_task directive is specified.
- A task cannot be called in the same manner as calling a function. A task called from a separate

file is not checked. A task cannot be expanded inline because it cannot be called as a function.
That is, even if the #pragma inline directive is specified for a function specified by the
#pragma rtos_task directive, the #pragma inline specification is ignored.

#pragma rtos_task function-name

#pragma rtos_task func1

CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

User’s Manual U19383EJ1V0UM00 145

- An error occurs if "#pragma rtos_task function-name" is described after the function definition in
the same file. If the function is not defined after "#pragma rtos_task function-name" is
described in the file, the #pragma directive for that function is ignored.

- A function specified by the #pragma rtos_task directive cannot be specified as an ordi-
nary interrupt/exception handler (see "(7) Interrupt/Exception processing handler").

See the User's Manual of each real-time OS for the real-time OS functions.

(10)Embedded functions
In the CA850, some of the assembler instructions can be described in C language source as "Embedded Func-
tions". However, it is not described "as assembler instruction", but as a function format set in CA850. When
these functions are used, output code outputs the compatible assembler instructions without calling the ordinary
function.
The instructions that can be described as functions are as follows.

Table 3-29. Embedded Functions

Cautions 1. [V850E] mark indicates that only V850Ex core is available.

Assembler Instruction Function Embedded Function

di Interrupt control (DI/EI) __DI();

ei __EI();

nop nop __nop();

halt halt __halt();

satadd Saturated addition (satadd) long a, b;

long __satadd(a, b);

satsub Saturated subtraction (satsub) long a, b;

long __satsub(a, b);

bsh Halfword data byte swap (bsh)
[V850E]

long a;

long __bsh(a);

bsw Word data byte swap (bsw) [V850E] long a;

long __bsw(a);

hsw Word data halfword swap (hsw)
[V850E]

long a;

long __hsw(a);

sxb Byte data sign extension (sxb)
[V850E]

char a;

long __sxb(a);

sxh Halfword data sign extension (sxh)
[V850E]

short a;

long __sxh(a);

mul Instruction that assigns higher 32 bits
of multiplication result to variable using
mul instructions [V850E]

long a, b;

long __mul32(a, b);

mulu Instruction that assigns higher 32 bits
of multiplication result to variable using
mulu instruction [V850E]

unsigned long a, b;

unsigned long __mul32u(a, b);

sasf Flag condition setting with logical left
shift (sasf) [V850E]

long a;

unsigned int b;

long __sasf(a, b);

CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

146 User’s Manual U19383EJ1V0UM00

2. Even if a function is defined with the same name as an embedded function, it cannot be
used.
If an att isempt made to call such a function, processing for the embedded function pro-
vided by the compiler takes precedence.

(a) Interrupt control (DI/EI)
An example of describing the interrupt control (DI/EI) instruction is shown below.

Example

(b) nop
An example of describing the nop instruction is shown below.

Example

void func(void){

 :

 __DI();

 : /*Describe the processing to be executed while interrupts are disabled.*/

 __EI();

 :

}

[Output code]

_func:

 -- Prologue code

 :

 di

 : -- Describe the processing to be executed while interrupts are disabled

 ei

 :

 -- Epilogue code

 jmp [lp]

void func(void){

 :

 __nop();

 :

}

[Output code]

_func:

 :

 nop

 :

CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

User’s Manual U19383EJ1V0UM00 147

(c) halt
An example of describing the halt instruction is shown below.

Example

(d) Saturated addition (satadd)
An example of describing the saturated addition instruction is shown below.

Example

void func(void){

 :

 __halt();

}

[Output code]

_func:

 :

 halt

void func(void){

 long a, b, c;

 :

 c = __satadd(a, b); /*The result of the saturated operation of a and b is

 stored in c*/

 :

}

[Output code]

_func:

 :

 ld.w -4 + .A2[sp], r10 -- Load variable a

 ld.w -8 + .A2[sp], r11 -- Load variable b

 satadd r11, r10 -- Saturated subtraction (a + b)

 st.w r10, -12 + .A2[sp] -- The result of the saturated operation is stored

 in variable c

 :

CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

148 User’s Manual U19383EJ1V0UM00

(e) Saturated subtraction (satsub)
An example of describing the saturated subtraction instruction is shown below.

Example

(f) Halfword data byte swap (bsh) [V850E]
An example of describing the halfword data byte swap (bsh) instruction is shown below.

Example

void func(void){

 long a, b, c;

 :

 c = __satsub(a, b); /*The result of saturated operation of a and b is stored in

 c (c = a - b)*/

 :

}

[Output code]

_func:

 :

 ld.w -4 + .A2[sp], r10 -- Load variable a

 ld.w -8 + .A2[sp], r11 -- Load variable b

 satsub r11, r10 -- Saturated subtraction (a - b)

 st.w r10, -12 + .A2[sp] -- The result of the saturated operation is stored

 in variable c

 :

void func(void){

 long a, b;

 :

 b = __bsh(a); /*Halfword data of a is byte-swapped and the result is stored in b*/

 :

}

[Output code]
_func:

 :

 ld.w -4 + .A2[sp], r10 -- Load variable a

 bsh r10, r10 -- Halfword data byte swap

 st.w r10, -8 + .A2[sp] -- Halfword data byte swap

 -- Result is stored in variable b

 :

CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

User’s Manual U19383EJ1V0UM00 149

(g) Word data byte swap (bsw) [V850E]
An example of describing the word data byte swap (bsw) instruction is shown below.

Example

(h) Word data halfword swap (hsw) [V850E]
An example of describing the word data halfword swap (hsw) instruction is shown below.

Example

void func(void){

 long a, b;

 :

 b = __bsw(a); /*Word data of a is byte-swapped and the result is stored in b*/

 :

}

[Output code]

_func:

 :

 ld.w -8 + .A2[sp], r10 -- Load variable a

 bsw r10, r10 -- Word data byte swap

 st.w r10, -12 + .A2[sp] -- Stored in variable b

 :

void func(void){

 long a, b;

 :

 b = __hsw(a); /*Word data of a is halfword-swapped and the result is stored in b*/

 :

}

[Output code]

_func:

 :

 ld.w -8 + .A2[sp], r10 -- Load variable a

 hsw r10, r10 -- Word data halfword swap

 st.w r10, -12 + .A2[sp] -- Stored in variable b

 :

CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

150 User’s Manual U19383EJ1V0UM00

(i) Byte data sign extension (sxb) [V850E]
An example of describing the byte data sign extension (sxb) instruction is shown below.

Example

(j) Halfword data sign extension (sxh) [V850E]
An example of describing the halfword data sign extension (sxh) instruction is shown below.

Example

void func(void){

 char a;

 long b;

 :

 b = __sxb(a); /*Sign extension of the byte data of a is performed and the

 result is stored in b*/

 :

}

[Output code]

_func:

 :

 ld.b -8 + .A2[sp], r10 -- Load variable a

 sxb r10, r10 -- Sign extension of byte data

 st.w r10, -12 + .A2[sp] -- Stored in variable b

 :

void func(void){

 short a;

 long b;

 :

 b = __sxh(a); /*Sign extension of the halfword data of a is performed and the

 result is stored in b*/

 :

}

[Output code]

_func:

 :

 ld.h -8 + .A2[sp], r10 -- Load variable a

 sxh r10 -- Halfword data sign extension

 st.w r10, -12 + .A2[sp] -- Stored in variable b

 :

CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

User’s Manual U19383EJ1V0UM00 151

(k) Instruction that assigns higher 32 bits of multiplication result to variable using mul instructions
[V850E]
An example of describing the instruction that assigns the higher 32 bits of the unsigned multiplication result
to variable using mul instruction is shown below.

Example

(l) Instruction that assigns higher 32 bits of multiplication result to variable using mulu instruction
[V850E]
An example of describing the instruction that assigns the higher 32 bits of the unsigned multiplication result
to variable using mulu instruction is shown below.

Example

void func(void){

 long a, b, c;

 :

 c = __mul32(a, b); /*The higher 32 bits of the result of a * b are stored in c*/

 :

}

[Output code]

_func:

 :

 ld.w -4 + .A2[sp], r10 -- Load variable a

 ld.w -8 + .A2[sp], r11 -- Load variable b

 mul r11, r10, r12 -- a * b

 st.w r12, -12 + .A2[sp] -- Stored in variable c

 :

void func(void){

 unsigned long a, b, c;

 :

 c = __mul32u(a, b); /*The higher 32 bits of the result of a * b are stored in c*/

 :

}

[Output code]

_func:

 :

 ld.w -4 + .A2[sp], r10 -- Load variable a

 ld.w -8 + .A2[sp], r11 -- Load variable b

 mulu r11, r10, r12 -- a * b

 st.w r12, -12 + .A2[sp] -- Stored in variable c

 :

CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

152 User’s Manual U19383EJ1V0UM00

(m) Flag condition setting with logical left shift (sasf) [V850E]
An example of describing the flag condition setting instruction with logical left shift when a conditional
expression is written in the second argument is shown in Example 1.
An example of describing the flag condition setting instruction (sasf) with logical left shift when a variable is
written in the second argument is shown in Example 2.

Examples 1. When a conditional expression is written in the second argument

2. When a variable is written in the second argument

void func(void){

 unsigned long a, b, c;

 :

 c = __sasf(c, a == b); /*a == b is true, c is shifted left logically by 1 bit

 and 1 is added. If a == b is not true, c is shifted

 left logically by 1 bit.

 The result is stored in c*/

 :

}

[Output code]
_func:

 :

 ld.w -4 + .A2[sp], r10 -- Load variable a

 ld.w -8 + .A2[sp], r11 -- Load variable b

 cmp r11, r10 -- Compare variable a and b

 ld.w -12 + .A6[sp], r12 -- Load variable c

 sasf 0x2, r12 -- a == b is not true, c is shifted left logically by 1 bit

 -- c is shifted left logically by 1 bit and 1 is added

 st.w r12, -12 + .A2[sp] -- Stored in variable c

 :

void func(void){

 unsigned long a, b;

 :

 b = __sasf(b, a); /*If a is not 0, b is shifted left logically by 1 bit and 1

 is added.

 If a is other than 0, b is shifted left logically by 1 bit.

 The result is stored in b.*/

 :

}

CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

User’s Manual U19383EJ1V0UM00 153

(11) Structure type packing
In the CA850, the alignment of structure members can be specified at the C language level. This function is
equivalent to the -Xpack option, however, the structure type packing directive can be used to specify the align-
ment value in any location in the C language source.

Caution The data area can be reduced by packing a structure type, but the program size increases
and the execution speed is degraded.

(a) Format of structure type packing
The structure type packing function is specified in the following format.

#pragma pack changes to an alignment value of the structure member upon the occurrence of this directive.
The numeric value is called the packing value and the specifiable numeric values are 1, 2, 4, and 8. When
the packing value is not specified, the default alignment 8Note is specified. Since this directive becomes
valid upon occurrence, several directives can be described in the C language source.

Example

Note Alignment values "4" and "8" are treated as the same in this Version.

[Output code]

_func:

 :

 ld.w -4 + .A2[sp], r10 -- Load variable a

 cmp r0, r10 -- Compare variable a and 0

 ld.w -8 + .A2[sp], r11 -- Load variable b

 sasf 0xa, r11 -- If a is not 0, b is shifted left logically by 1 bit

 -- and 1 is added. If a is 0, b is shifted left

 -- logically by 1 bit

 st.w r11, -8 + .A2[sp] -- Stored in variable b

 :

#pragma pack([1248])

#pragma pack(1) /*Structure member aligned using 1-byte alignment*/

struct TAG{

 char c;

 int i;

 short s;

};

CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

154 User’s Manual U19383EJ1V0UM00

(b) Rules of structure type packing
The structure members are aligned in a form that satisfies the condition whereby members are aligned
according to whichever is the smaller value: the structure type packing value or the member’s alignment
value.
For example, if the structure type packing value is 2 and member type is int type, the structure members
are aligned in 2-byte alignment.

Example

struct S{

 char c; /*Satisfies 1-byte alignment condition*/

 int i; /*Satisfies 4-byte alignment condition*/

};

#pragma pack(1)

struct S1{

 char c; /*Satisfies 1-byte alignment condition*/

 int i; /*Satisfies 1-byte alignment condition*/

};

#pragma pack(2)

struct S2{

 char c; /*Satisfies 1-byte alignment condition*/

 int i; /*Satisfies 2-byte alignment condition*/

};

struct S sobj; /*Size of 8 bytes*/

struct S1 s1obj; /*Size of 5 bytes*/

struct S2 s2obj; /*Size of 6 bytes*/

0

0

0

7

7

7

8

8

1615

3132

39

47

63

s2obj

s1obj

sobj

8

i

i

c

c

c i

CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

User’s Manual U19383EJ1V0UM00 155

(c) Union
A union is treated as subject to packing and is handled in the same manner as structure type packing.

Examples 1.

2.

union U{

 struct S{

 char c;

 int i;

 }sobj;

};

#pragma pack(1)

union U1{

 struct S1{

 char c;

 int i;

 }s1obj;

};

#pragma pack(2)

union U2{

 struct S2{

 char c;

 int i;

 }s2obj;

};

union U uobj; /*Size of 8 bytes*/

union U1 u1obj; /*Size of 5 bytes*/

union U2 u2obj; /*Size of 6 bytes*/

union U{

 int i:7;

};

#pragma pack(1)

union U1{

 int i:7;

};

#pragma pack(2)

union U2{

 int i:7;

};

union U uobj; /*Size of 4 bytes*/

union U1 u1obj; /*Size of 1 byte*/

union U2 u2obj; /*Size of 2 bytesト */

CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

156 User’s Manual U19383EJ1V0UM00

(d) Bit field
Data is allocated to the area of the bit field element as follows.

<1> When the structure type packing value is equal to or larger than the alignment condition value
of the member type
Data is allocated in the same manner as when the structure type packing function is not used. That is,
if the data is allocated consecutively and the resulting area exceeds the boundary that satisfies the
alignment condition of the element type, data is allocated from the area satisfying the alignment con-
dition.

<2> When the structure type packing value is smaller than the alignment condition value of the ele-
ment type

- If data is allocated consecutively and results in the number of bytes including the area becoming
larger than the element type
The data is allocated in a form that satisfies the alignment condition of the structure type packing
value.

- Other conditions
The data is allocated consecutively.

Example

(e) Alignment condition of top structure object
The alignment condition of the top structure object is the same as when the structure packing function is not
used.

struct S{

 short a:7; /*0 to 6th bit*/

 short b:7; /*7 to 13th bit*/

 short c:7; /*16 to 22nd bit (aligned to 2-byte boundary)*/

 short d:15; /*32 to 46th bit (aligned to 2-byte boundary)*/

}sobj;

#pragma pack(1)

struct S1{

 short a:7; /*0 to 6th bit*/

 short b:7; /*7 to 13th bit*/

 short c:7; /*14 to 20th bit*/

 short d:15; /*24 to 38th bit (aligned to byte boundary)*/

}s1obj;

3122

0 386

46

7 2013

0

21
23

cba

d

14

s1obj

sobj

24

a b

39

c

d

13 16 23 32 634767

CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

User’s Manual U19383EJ1V0UM00 157

(f) Size of structure objects
Perform packing so that the size of structure objects becomes a multiple value of whichever is the smaller
value: the structure alignment condition value or the structure packing value. The alignment condition of the
top structure object is the same as when the structure packing function is not used.

Examples 1.

struct S{

 int i;

 char c;

};

#pragma pack(1)

struct S1{

 int i;

 char c;

};

#pragma pack(2)

struct S2{

 int i;

 char c;

};

struct S sobj; /*Size of 8 bytes*/

struct S1 s1obj; /*Size of 5 bytes*/

struct S2 s2obj; /*Size of 6 bytes*/

310

39

40

310

31

32

c

c

39

s1obj

sobj

32

i

i

39

40

i

c

32 63

47

s2obj

0

CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

158 User’s Manual U19383EJ1V0UM00

2.

struct S{

 int i;

 char c;

};

struct T{

 char c;

 struct S s;

};

#pragma pack(1)

struct S1{

 int i;

 char c;

};

struct T1{

 char c;

 struct S1 s1;

};

#pragma pack(2)

struct S2{

 int i;

 char c;

};

struct T2{

 char c;

 struct S2 s2;

};

struct T tobj; /*Size of 12 bytes*/

struct T1 t1obj; /*Size of 6 bytes*/

struct T2 t2obj; /*Size of 8 bytes*/

7

c

4740

c2

0

s1.i

7

s2.c

16

39

t1obj

tobj

s1.c

4748 558

s2.i

15

8

6356

t2obj

0

c1

31 7264 9532 63 71

s.i s.c

0 78

CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

User’s Manual U19383EJ1V0UM00 159

(g) Size of structure array
The size of the structure object array is a value that is the sum of the number of elements multiplied to the
size of structure object.

Example

struct S{

 int i;

 char c;

};

#pragma pack(1)

struct S1{

 int i;

 char c;

};

#pragma pack(2)

struct S2{

 int i;

 char c;

};

struct S sobj[2]; /*Size of 16 bytes*/

struct S1 s1obj[2]; /*Size of 10 bytes*/

struct S2 s2obj[2]; /*Size of 12 bytes*/

c

c

64

40

31

0

i

40

95

71

39

s1obj

sobj

i

47 7980

4039

7239

8887

s2obj

0

c

31

ci

9532

c

32 63

i

0

i i

48

79

104 12710396

32

31

c

CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

160 User’s Manual U19383EJ1V0UM00

(h) Area between objects
For example, sobj.c, sobj.i, and cobj may be allocated consecutively without a gap in the following source
program (the allocation order of sobj and cobj is not guaranteed).

Example

(i) Notes concerning structure packing function

<1> -Specification of -Xpack option and #pragma pack directive at the same time
If the -Xpack option is specified when structure packing is specified with the #pragma pack directive in
the C language source, the specified option value is applied to all the structures until the first #pragma
pack directive appears. After this, the value of the #pragma pack directive is applied.
Even after the #pragma pack directive appears, however, the specified option value is applied to the
area specified by default.

Example When -Xpack=2 is specified

#pragma pack(1)

struct S{

 char c;

 int i;

}sobj;

char cobj;

struct S2{...}; /*Packing value is specified as 2 in option

 Option -Xpack = 2 is valid: packing value is 2*/

#pragma pack(1) /*Packing is specified as 1 in #pragma directive

struct S1{...}; pragma pack(1) is valid: packing value is 1*/

#pragma pack() /*Packing value is specified by default in #pragma directive

struct S2_2{...}; Option -Xpack = 2 is valid: packing value is 2*/

0 7 39 4740

sobj, cobj

8

ic cobj

CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

User’s Manual U19383EJ1V0UM00 161

<2> Restrictions
When using the V850 microcontrollers and a CPU that is set to disable misalign access for V850Ex
products, the following restrictions apply.

- Access using the structure member address cannot be executed correctly.
As shown in the following example, the structure member address is acquired, and the
access to that address is then performed with the address masked in accordance with the data
alignment of the device. Therefore, some data may disappear or be rounded off.

Example

- In bit field access, an area with no data to be read using the member ’s type is also accessed.
If the width of the bit field is smaller than the member’ s type as shown in the following example,
access occurs outside the object because reading is performed using the member’ s type. Gen-
erally, there is no problem with the function, but if I/O are mapped, an illegal access may occur.

Example

struct test{

 char c; /*offset 0*/

 int i; /*offset 1-4*/

}test;

int *ip, i;

void func(void){

 i = *ip; /*Accessed with address masked*/

}

void func2(void){

 ip = &(test.i); /*Acquire structure member address*/

}

struct S{

 int x:21;

}sobj; /*3 bytes*/

sobj.x = 1;

CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

162 User’s Manual U19383EJ1V0UM00

3.3.5 Modification of C-source

By using expanded function object with high efficiency can be created. However, as expanded function is adapted
in V850, C-source needs to be modified so as to use in other than V850.

Here, 2 methods are described for shifting to CA850 from other C compiler and shifting to C compiler from CA850.

<From other C compiler to CA850>
- #pragmaNote

C source needs to be modified, when C compiler supports the #pragma. Modification methods are examined
according to the C compiler specifications.

- Expanded Specifications
It should be modified when other C compilers are expanding the specifications such as adding keywords etc.
Modified methods are examined according to the C compiler specifications.

Note #pragma is one of the pre-processing directives supported by ANSI. The character string next to
#pragma is made to be recognized as directives to C compiler. If that directive does not supported by the
compiler, #pragma directive is ignored and the compiler continues the process and ends normally.

<From C850 to other C compiler>
- CA850, either deletes key word or divides # fdef in order shift to other C compiler as key word has been added

as expanded function.

Examples 1. Disable the keywords

2. Change to other type

#ifndef __CA850__

#define interrupt /*Considered interrupt function as normal function*/

#endif

#ifdef __V850__

#define bit char /*Change bit type variable to char type variable*/

#endif

CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

User’s Manual U19383EJ1V0UM00 163

3.4 Function Call Interface

This section describes how to handle arguments when a program is called by the CA850.

3.4.1 Calling between C functions

- Normal function call
--> jarl instruction

- Function call using a pointer indicating a function (and returning from function call)
--> jmp instruction

When a C function is called from another C function, a 4-word argument is stored in the argument registers (r6 to r9).
An argument in excess of 4 words is stored in the stack frame of the calling function. Control is then transferred
(jumps) to the called function and the value in the argument registers stored when the function was called is stored in
the stack frame of the calling function.

The stack frame is generated when the prologue code of the function, i.e., the code that is executed before the code
of the main body of the function is called (processing (4) to (7) in "Figure 3-18. Generation/Disappearance of Stack
Frame (When Argument Register Area Is Located at Center of Stack))", "Figure 3-20. Generation/Disappearance of
Stack Frame (When Argument Register Area Is Located at Beginning of Stack)" is the prologue code), is executed
and the stack pointer (sp) is shifted by the necessary size. The stack frame disappears when the epilogue code of the
function, i.e., the code that is executed after the code of the main body of the function is executed and until control
returns to the calling function (processing (i) to (iv) in "Figure 3-18. Generation/Disappearance of Stack Frame (When
Argument Register Area Is Located at Center of Stack))", "Figure 3-20. Generation/Disappearance of Stack Frame
(When Argument Register Area Is Located at Beginning of Stack)" is the epilogue code), is executed and the stack
pointer (sp) is returned.

(1) Stack frame/Function call
This section explains the stack frame format and how the stack frame is generated and disappears when a func-
tion is called.

(a) Stack frame format
The CA850 allocates the argument register area to either the beginning of the stack or center of the stack in
the stack frame, according to the argument condition. The argument conditions are as follows.

<1> When the argument register area is allocated to the beginning of the stack
The argument register area is allocated to the beginning of the stack when the area is
accessed successively, exceeding the area for the 4-word argument, in the following two cases.

- If the number of arguments is variable
- If the argument is the entity of a structure and its area extends over a 4-word area

<2> When the argument register area is allocated to the center of the stack
In such case, it is other than the conditions mentioned above.
"Figure 3-16. Stack Frame (When Argument Register Area Is Located at Center of Stack)" shows
stack frame when the argument register area is at the center of the stack and "Figure 3-17. Stack
Frame (When Argument Register Area Is Located at Beginning of Stack)" shows stack frame when
the argument register area is at the beginning of the stack.

CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

164 User’s Manual U19383EJ1V0UM00

Figure 3-16. Stack Frame (When Argument Register Area Is Located at Center of Stack)

Figure 3-17. Stack Frame (When Argument Register Area Is Located at Beginning of Stack)

Argument area for argument more than 4 words.

lp

Argument register area

(4-word argument area)

Work register area

Automatic variable area

:

r28

r20

r21

r29

Old sp

New sp

Register area for register variables
.S = .F

.X

.R

.A

.T

Argument area for argument more than 4 words.

lp

(4-word argument area)

Work register area

Automatic variable area

:

r28

r20

r21

r29

Old sp

New sp

Register area for register variables

.S

.F

.R = .X

.A

.T

Argument register area

CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

User’s Manual U19383EJ1V0UM00 165

".S, .F, .X, .R, .A, and .T" in the figure are macros for functions output by the compiler internally.
macros are used for a specific purpose, as shown in the following table.

Table 3-30. Macros for Functions

Note .P is not shown in "Figure 3-16. Stack Frame (When Argument Register Area Is Located at Center
of Stack)" and "Figure 3-17. Stack Frame (When Argument Register Area Is Located at Beginning
of Stack)" because it is always 0.

These macros are used to access the stack area. The following table shows specific access methods
(access codes.

Table 3-31. Method of Accessing Stack Area

"offset" in this table is a positive integer and means the offset in each area. "xx" after a macro is a positive
integer and indicates the frame number of the function.

Macro name Meaning

.S Stack size

.F Stack size - Size of argument register area (if at the beginning of the stack)

.X Size of argument register area (if at the center of the stack) + .R

.R Size of work register area + .A

.A Size of automatic variable area + .T

.T Size of area for arguments of function to be called in excess of 4 words

.P Always 0 (macro for code generation)Note

Stack Area Access Method (Displacement [sp])

Register area for register variables (including lp) -offset + .Fxx[sp]

Work register area -offset + .Rxx[sp]

Automatic variable area -offset + .Axx[sp]

Area for arguments in excess of 4 words offset + .Pxx[sp]

Argument register area offset + .Fxx[sp]

Argument register area (if at the center of the stack) offset + .Rxx[sp]

CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

166 User’s Manual U19383EJ1V0UM00

(b) Generation/disappearance of stack frame when function is called (when argument register area is at
center of stack)

The following explains the generation and disappearance of the stack frame when a function is called if

the argument register area is at the center of the stack. This case applies to most function calls.

The following figure shows an example of the generation/disappearance of the stack frame when the

function "func2 " is called from the function "func1 " and then execution returns to "func1".

Figure 3-18. Generation/Disappearance of Stack Frame (When Argument Register Area Is Located at Center of Stack)

(2)

(6), (i)

(5), (ii)

(7)

Higher address

Stack frame

for func1

sp of func 1

 (iii)

Stack frame

for func2

sp of func2

(4)

Lower address

Area for automatic

variables

Area for saving
contents of registers
for register variables

lp saving area

Arguemnt register

area (4 words)

Area for automatic

variables

Area for arguments in

excess of 4 words

Area of saving
contents of register
for register variables
IP Saving Area

Argument register

area (4 Words)

Work register area

Area for automatic

variables

Area for argument in

excess of 4 words

Area for saving
contents of registers
for register variables

Area for arguments in

excess of 4 words

Work register area

[Processing on func1 side when func2 is called]

（1）The arguments are stored in the argument registers.

The arguments of func2 to be called are stored in r6 to r9.

（2）The arguments in excess of 4 words are stored in the stack.

The excess arguments that cannot be stored in r6 to r9 are

stored in the stack.

（3）Execution branches to func2() by the jarl instruction.

[Processing on func2() side when called by func1]

（4）sp is shifted.

The stack pointer moves to the stack to be used by

func2.

（5）lp is saved.

The return address of func1 is stored.

（6）Register variable registers are saved.

These registers are saved because the register values

used by func1 must be retained when func2 also uses the

register variable registers.

（7）Arguments in argument register area are stored.

The values of r6 to r9 are stored. The current argument

fvalues are stored in the stack because when another

function is called from func2, the arguments at that time are

stored in registers r6 to r9.

Since the V850Ex can perform processing (4) to (6) with the

prepare instruction, the CA850 outputs the prepare instruction.

[Processing on func2 side when execution returns from func2 to

func1]

（i）The contents of the registers for register variables are

restored.

The values of the register variable registers of func1() is

restored to registers.

（ii）lp is restored.

The return address of func1() is restored.

（iii）ssp is returned. The stack pointer moves back to the stack

to be used by func1().

（iv）Execution is returned by the jmp [lp] instruction.

Since the V850Ex can perform processing (i) to (iv) with the

dispose instruction, the CA850 outputs the dispose instruction.
Ip saving area

CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

User’s Manual U19383EJ1V0UM00 167

The items that are saved to the stack frame and the stack frame to be used are summarized below.

<1> Calling side - func1
- The values of the excess arguments are called if the arguments of func2 to be called exceed 4

words.

<2> Called side - func2
- The arguments which are entered in the argument registed are passed (To enter into the argu-

ment register means to call a function (Function (fun 1))
- Saving the link pointer (lp) (= return address of func1) of the calling side (func1) Saving the con-

tents of the register variable registers.
- "Saving the contents of the register variable registers"

The register variable registers are allocated as follows.
In 22-register mode: "r25, r26, r27, r28, r29"
In 26-register mode: "r23, r24, r25, r26, r27, r28, r29"
In 32-register mode: "r20, r21, r22, r23, r24, r25, r26, r27, r28, r29"
Of these registers, those that are used are saved.

- Area for automatic variables
- Allocating an area used for operation if a very complicated expression is used in a function

Although this area is not is allocated at the lower address of the area for automatic variables if it
is necessary.

If the function has a return value, that value is stored in r10.
The location of each area of the stack frame and the image of the stack growth direction of each area are
illustrated below (it is assumed that func2() to be called has five arguments).

Figure 3-19. Stack Growth Direction of Each Area of Stack Frame

Area for saving contents of registers

for register variables

Growth direction of each area

sp for func1

Area for saving link pointer (lp)

Stores 5th argument

Stores 4th argument

Stores 3rd argument

Stores 2nd argument

Stores 1st argument

Area for complicated operations

Area for automatic variables

Area for arguments of function to be

called from func2 in excess of 4 words
sp for func2

CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

168 User’s Manual U19383EJ1V0UM00

An example of a source calling a C function from a C function and an assembly source when that source is
compiled is shown below.

Example

void func1(void){

 int a, b, c, d, e;

 func2(a, b, c, d, e);

 :

}

int func2(int a, int b, int c, int d, int e){

 register int i;

 :

 return(i);

}

CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

User’s Manual U19383EJ1V0UM00 169

Assembler instructions generated when func2 is called in the above example.

[V850]

_func1:

 jbr .L3

.L4:

 ld.w -8 + .A3[sp], r6

 ld.w -12 + .A3[sp], r7

 ld.w -16 + .A3[sp], r8 -- (1)

 ld.w -20 + .A3[sp], r9

 ld.w -24 + .A3[sp], r10

 st.w r10, [sp] -- (2)

 jarl _func2, lp -- (3)

 :

 -- epilogue for funci

 -- Processing from(ii)to(iv)

.L3:

 -- prolog for func1

 -- processing (4) and (5)

 :

 jbr .L4

_func2:

 jbr .L5

.L6:

 st.w r6, .R2[sp]

 st.w r7, 4 + .R2[sp]

 st.w r8, 8 + .R2[sp] -- (7)

 st.w r9, 12 + .R2[sp]

 st.w r29, -4 + .A2[sp]

 :

 jbr .L2

.L2:

 ld.w -4 + .A2[sp], r10

 ld.w -4 + .F2[sp], r29 -- (i)

 ld.w -8 + .F2[sp], lp -- (ii)

 add .F2, sp -- (iii)

 jmp[lp] -- (iv)

.L5:

 add -.F2, sp -- (4)

 st.w lp, -8 + .F2[sp] -- (5)

 st.w r29, -4 + .F2[sp] -- (6)

 jbr .L6

CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

170 User’s Manual U19383EJ1V0UM00

[V850E]

_func1:

 jbr .L3

.L4:

 ld.w -8 + .A3[sp], r6

 ld.w -12 + .A3[sp], r7

 ld.w -16 + .A3[sp], r8 -- (1)

 ld.w -20 + .A3[sp], r9

 ld.w -24 + .A3[sp], r10

 st.w r10, [sp] -- (2)

 jarl _func2, lp -- (3)

 :

 -- epilogue for func1

 -- Processing from (ii) to (iv)

.L3:

 -- prolog for func1

 -- processing (4) and (5)

 :

 jbr .L4

_func2:

 jbr .L5

.L6:

 st.w r6, .R2[sp]

 st.w r7, 4 + .R2[sp]

 st.w r8, 8 + .R2[sp] -- (7)

 st.w r9, 12 + .R2[sp]

 st.w r29, -4 + .A2[sp]

 :

 jbr .L2

.L2:

 ld.w -4 + .A2[sp], r10

 dispose .X2, 0x3, [lp]

 -- (i) , (ii) , (iii) , (iv)

.L5:

 prepare 0x3, .X2

 -- (4) , (5) , (6)

 jbr .L6

CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

User’s Manual U19383EJ1V0UM00 171

(c) Generation/disappearance of stack frame when function is called (when argument register area is at
beginning of stack)
The following explains the generation and disappearance of the stack frame when a function is called if the
argument register area is at the beginning of the stack.
The following figure shows an example of the generation/disappearance of the stack frame when the func-
tion "func2 " is called from the function "func1 " and then execution returns to "func1".

Figure 3-20. Generation/Disappearance of Stack Frame (When Argument Register Area Is Located at
Beginning of Stack)

(2)

(6), (i)

(5), (ii)

(7)

Higher address

Stack frame

for func1

sp of fun 1

 (iii)

Stack frame

for func2

sp of func2

(4)

Lower address

Area for automatic

variables

lp saving area

Area for saving con-
tents of registers for
register variables

Area for automatic

variables

Area for arguments in

excess of 4 words

Argument register

area (4 Words)

IP Saving Area

Work register area

Area for automatic

variables

Area for argument in

excess of 4 words

Area for arguments in

excess of 4 words

Work register area

[Processing on func1 side when func2 is called]

(1) The arguments are stored in the argument registers.

The arguments of func2 to be called are stored in r6 to r9.

(2) The arguments in excess of 4 words are stored in the stack.

The excess arguments that cannot be stored in r6 to r9 are

stored in the stack. This processing is performed if the

number of arguments is five or more.

(3) Execution branches to func2 by the jarl instruction.

[Processing on func2 side when called by func1]

(4) sp is shifted.

The stack pointer moves to the stack to be used by

func2.

(5) lp is saved.

The return address of func1 is stored.

(6) Register variable registers are saved.

These registers are saved because the register values

used by func1 must be retained when func2 also uses the

register variable registers.

(7) Arguments in argument register area are stored.

The values of r6 to r9 are stored. The current argument

fvalues are stored in the stack because when another

function is called from func2, the arguments at that time are

stored in registers r6 to r9.

Since the V850Ex can perform processing (4) to (6) with the

prepare instruction, the CA850 outputs the prepare instruction.

[Processing on func2 side when execution returns from

func2 to func1]

（i）The contents of the registers for register variables are

restored.

The values of the register variable registers of func1 is

restored to registers.

（ii）lp is restored.

The return address of func1 is restored.

（iii）sp is returned. The stack pointer moves back to the stack

to be used by func1.

（iv）Execution is returned by the jmp [lp] instruction.

Since the V850Ex can perform processing (i) to (iv) with the

Lp saving area

Area of saving con-
tents of register for
register variables

Arguemnt register

area (4 words)

Area for saving con-
tents of registers for
register variables

CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

172 User’s Manual U19383EJ1V0UM00

The items that are saved to the stack frame and the stack frame to be used are summarized below.

<1> Calling side - func1
- The values of the excess arguments are called if the arguments of func2() to be called exceed 4

words.

<2> Called side - func2
- The arguments which are entered in the argument registed are passed (To enter into the argu-

ment register means to call a function (Function (fun 1))
- Saving the link pointer (lp) (= return address of func1) of the calling side (func1) Saving the con-

tents of the register variable registers.
- The register variable registers are allocated as follows.
- Area for automatic variables
- Allocating an area used for operation if a very complicated expression is used in a function

Although this area is not is allocated at the lower address of the area for automatic variables if it
is necessary.

If the function has a return value, that value is stored in r10.
The location of each area of the stack frame and the image of the stack growth direction of each area are
illustrated below (it is assumed that func2 to be called has five arguments).

Figure 3-21. Stack Growth Direction of Each Area of Stack Frame

Growth direction of each area

sp for func1
Stores 5th argument

Stores 4th argument

Stores 3rd argument

Stores 2nd argument

Stores 1st argument

Area for complicated operations

Area for automatic variables

Area for arguments of function to be

called from func2 in excess of 4 words
sp for func2

Area for saving contents of registers

for register variables

Area for saving link pointer (lp)

CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

User’s Manual U19383EJ1V0UM00 173

An example of a source calling a C function from a C function and an assembly source when that source is
compiled is shown below.

Example

void func1(void){

 int a, b, c, d, e;

 func2(a, b, c, d, e);

 :

}

int func2(int a, int b, int c, int d, int e){

 register int i;

 :

 return(i);

}

CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

174 User’s Manual U19383EJ1V0UM00

Assembler instructions generated when func2 is called in the above example.

[V850]
_func1:

 jbr .L3

.L4:

 ld.w -8 + .A3[sp], r6

 ld.w -12 + .A3[sp], r7

 ld.w -16 + .A3[sp], r8 -- (1)

 ld.w -20 + .A3[sp], r9

 ld.w -24 + .A3[sp], r10

 st.w r10, [sp] -- (2)

 jarl _func2, lp -- (3)

 :

 -- epilogue for func1

 -- Processing from (ii) to (iv)

.L3:

 -- prolog for func1

 -- processing (4) and (5)

 :

 jbr .L4

_func2:

 jbr .L5

.L6:

 st.w r6, .F2[sp]

 st.w r7, 4 + .F2[sp]

 st.w r8, 8 + .F2[sp] -- (7)

 st.w r9, 12 + .F2[sp]

 :

 st.w r29, -4 + .A2[sp]

 jbr .L2

.L2:

 ld.w -4 + .A2[sp], r10

 ld.w -4 + .F2[sp], r29 -- (i)

 ld.w -8 + .F2[sp], lp -- (ii)

 add .S2, sp -- (iii)

 jmp [lp] -- (iv)

.L5:

 sub -.S2, sp -- (4)

 st.w lp, -8 + .F2[sp] -- (5)

 st.w r29, -4 + .F2[sp] -- (6)

 jbr .L6

CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

User’s Manual U19383EJ1V0UM00 175

[V850E]

_func1:

 jbr .L3

.L4:

 ld.w -8 + .A3[sp], r6

 ld.w -12 + .A3[sp], r7

 ld.w -16 + .A3[sp], r8 -- (1)

 ld.w -20 + .A3[sp], r9

 ld.w -24 + .A3[sp], r10

 st.w r10, [sp] -- (2)

 jarl _func2, lp -- (3)

 :

 -- epilogue for func1

 -- Processing from (ii) to (iv)

.L3:

 -- prolog for func1

 -- processing (4) and (5)

 :

 jbr .L4

_func2:

 jbr .L5

.L6:

 st.w r6, .F2[sp]

 st.w r7, 4 + .F2[sp]

 st.w r8, 8 + .F2[sp] -- (7)

 st.w r9, 12 + .F2[sp]

 :

 st.w r29, -4 + .A2[sp]

 jbr .L2

.L2:

 ld.w -4 + .A2[sp], r10

 dispose .X2, 0x3

 -- (i) , (ii) , (iii)

 add .S2 - .F2, sp -- (iii)

 jmp [lp] -- (iv)

.L5:

 add .F2 - .S2, sp -- (4)

 prepare 0x3, .X2

 -- (4) , (5) , (6)

 jbr .L6

CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

176 User’s Manual U19383EJ1V0UM00

3.4.2 Prologue/Epilogue processing function

The CA850 can reduce the object size in part of the prologue/epilogue processing of a function by calling a runtime
library. It is called as "Prologue/Epilogue Runtime" process. Because the prologue/epilogue processing of a func-
tion is predetermined, it is prepared as runtime library functions and these functions are called when a func-
tion is called or execution returns to a function.

An example of the assembler code of the prologue/epilogue processing of a function is shown below.
Numbers in parentheses in this example correspond to those in "Figure 3-18. Generation/Disappearance of Stack

Frame (When Argument Register Area Is Located at Center of Stack)".

Example

Assembler instruction in prologue/epilogue processing of function "func" in above example

[Code when runtime library function is not used]

int func(int a, int b, int c, int d, int e){

 register int i;

 :

 return(i);

}

_func:

 jbr .L5

.L6:

 st.w r6, .R2[sp]

 st.w r7, 4 + .R2[sp]

 st.w r8, 8 + .R2[sp] -- (7)

 st.w r9, 12 + .R2[sp]

 :

 st.w r29, -4 + .A2[sp]

 jbr .L2

.L2:

 ld.w -4 + .A2[sp], r10

 ld.w -4 + .F2[sp], r29 -- (i)

 ld.w -8 + .F2[sp], lp -- (ii)

 add .F2, sp -- (iii)

 jmp [lp] -- (iv)

.L5:

 add -.F2, sp -- (4)

 st.w lp, -8 + .F2[sp] -- (5)

 st.w r29, -4 + .F2[sp] -- (6)

 jbr .L6

CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

User’s Manual U19383EJ1V0UM00 177

[Code when runtime library function is used]

(1) Specifying use of runtime library function for prologue/epilogue of function
Specify the compiler option "-Xpro_epi_runtime=on" to call the runtime library for prologue/epilogue. Specify "-
Xpro_epi_runtime=off" if the runtime library is not called.
When an optimization option other than "-Ot (execution speed priority optimization)" is specified, however,
the runtime library is automatically called for the prologue/epilogue of a function. That is, the compiler option "-
pro_epi_runtime=on" is automatically specified.
If an option other than "-Ot" is specified and if a runtime library should not be called, specify the "-
Xpro_epi_runtime=off" option.
The "-Xpro_epi_runtime" option can be specified in each source file, so a file for which the runtime library is
called and a file for which the runtime library is not called can be used together.
When a runtime library is called for the prologue/epilogue of a function by specifying the "-
Xpro_epi_runtime=on" option, a dedicated section ".pro_epi_runtime" is necessary.
Consequently, the following definition must be described by a link directive.

Table information of the prologue/epilogue runtime function is allocated to this section.

_func :

 jbr .L5

.L6:

 st.w r6, .R2[sp]

 st.w r7, 4 + .R2[sp]

 st.w r8, 8 + .R2[sp] -- (7)

 st.w r9, 12 + .R2[sp]

 :

 st.w r29, -4 + .A2[sp]

 jbr .L2

.L2:

 ld.w -4 + .A2[sp], r10

 add .R2, sp -- (iii)

 jarl ___pop2904, lp

 -- (i) , (ii) , (iii) , (iv)

.L5:

 jarl ___push2904, r10

 -- (4) , (5) , (6)

 add -.R2, sp -- (4)

 jbr .L6

.pro_epi_runtime = $PROGBITS ?AX .pro_epi_runtime;

CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

178 User’s Manual U19383EJ1V0UM00

(2) Calling runtime library for prologue/epilogue of function in V850Ex
When the V850Ex is used, the following instruction is used to call the prologue/epilogue runtime function of a
function.
The CALLT instruction is a 2-byte instruction. The code size can be reduced by using this instruction for calling
a function. The CALLT instruction requires a pointer that indicates that the table of the function subject to the
CALLT instruction is set to the CTBP (Callt Base Pointer) register. If processing of the setting is missing from
the program, the following error message is output during linking.

If processing of the setting is missing from the program, the following error message is output during linking.
Add the following instruction to the startup routine.

At this time, _ _ _ PROLOG_TABLE is the first symbol of the function table of the runtime function of
the prologue/epilogue of a function, and the function table itself is allocated to the ".pro_epi_runtime" section by
setting it to CTEB. The r12 register is used in the above example, but it is not always necessary to use r12.
If the CALLT instruction provided in the CA850 is used for any purpose other than calling a runtime library for
the prologue/epilogue of a function, the CTBP register contents must be saved/restored If the CALLT instruction
is used by another object, such as middleware or a user-created library, and if a code that saves/restores the
CTBP register contents is missing or cannot be inserted in that object, a runtime library for the prologue/epi-
logue of a function cannot be called In this case, suppress calling the runtime library by specifying the "-
Xpro_epi_runtime=off" option.
See the Relevant Device ’s Architecture User’ s Manual of each device for details of the CALLT instruction and
CTEB register.

(3) Notes on calling runtime library for prologue/epilogue of function
Note the following points when calling a runtime library for the prologue/epilogue of a function.

- Calling a runtime library for the prologue/epilogue of a function degrades the execution speed because a
function is called. Specify the "-Xpro_epi_runtime=off" option to avoid this. Specifying this option in file
units is effective.

- In the case of a program in which few functions are called, the code size may not be reduced even if a runt-
ime library is called for the prologue/epilogue. If no real effect can be expected, specify the
"-Xpro_epi_runtime=off" option.

- Note the following points when calling a runtime library for the prologue/epilogue of a function. Calling a
runtime library for the prologue/epilogue of a function degrades the execution speed because a function is
called.

F4414: CallTBasePointer(CTBP) is not set. CTBP must be set when compileroption "-Ot" (or "-Xpro_epi_runtime=off")
is not specified.

mov #___PROLOG_TABLE, r12 --three underscores "_" before "PROLOG"

ldsr r12, 20

CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

User’s Manual U19383EJ1V0UM00 179

3.4.3 far jump function

The CA850 outputs a code using the jarl instruction when a function is called.

The architecture allows only a sign-extended value of up to 22 bits (22-bit displacement) to be specified as the first
operand of the jarl instruction.

This means that, if the branch destination is not within + 2MB range from the branch point, branching cannot take
place and the linker outputs the following error message.

This can be solved easily by allocating as shown below, however, the branch destination may not be able to be
located within this range depending on target system. The "far jump" function solves this.

- The branch destination within + 2MB range from the branch point.

When the far jump function is used, a code that uses the jmp instruction is output when a function is called. As a
result, execution can branch to the entire 32-bit space of the V850. However, one of the general purpose register is
used.

Function call using far jump function is called "far jump calling".

(1) Specifying far jump
When calling a function using the far jump function, prepare a file in which functions to be called by the far jump
function are enumerated (file listing functions to be called by the far jump function), and use the compiler option
"-Xfar_jump".

The "-Xfar_jump" option can also be used with "=" as follows.

See the next section for the format of the file listing the functions to be called by the far jump function.

(2) File listing functions to be called by far jump function
This section explains the format of the file that enumerates the functions to be called by using the far jump func-
tion. Describe one function to which the far jump function is applied in one line. Describe a C function name
with "_" (underscore) prefixed.

[Sample of file listing functions to be called by far jump]

jarl _func1, lp

F4161:symbol " function name"(output section: section-name) is too far from output section " section-name".(value: disp
value, file: main.o, input section: .text, offset: offset value, type: R_V850_PC22).

-Xfar_jump file listing functions to be called by far jump function

-Xfar_jump=file listing functions to be called by far jump function

_func_led

_func_beep

_func_motor

 :

_func_switch

CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

180 User’s Manual U19383EJ1V0UM00

If the following description is made instead of "_function-name", all the functions are called using the far jump
function.

If {all_function} is specified, all the functions are called by the far jump function, even if "_function-name" is
specified.
The far jump function can also be applied to the following functions, as well as to user functions.

- Standard library functions
- Runtime library functions
- Prologue/epilogue runtime function of function
- System calls of real-time OS

Note the following points when describing the file listing the functions to be called by the far jump function.
- Only ASCII characters can be used.
- Comments must not be inserted.
- Describe only one function in one line.
- A blank and tab may be inserted before and after a function name.
- Up to 1,023 characters can be described in one line. A blank or tab is also counted as one character.
- Describe a C function name with "_" (underscore) prefixed to the function name.
- The far jump function cannot be used together with the re-link function of the flash memory/external ROM.

(3) Examples of using far jump function
Examples of using the far jump function are shown below.

(a) User function (same applies to standard functions)
[C language source file]

[File listing functions to be called by far jump]

[Normal calling code]

[Far jump calling code]

{all_function}

extern void func3(void);

void func(void)

{

 func3();

}

_func3

#@CALL_ARG

jarl _func3, lp

#@CALL_ARG

 movea _func3, tp, r10

 movea .L18, tp, lp

 jmp [r10]

.L18:

CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

User’s Manual U19383EJ1V0UM00 181

(b) Runtime function (when calling a macro)
[File listing functions to be called by far jump]

[Normal calling code]

[Far jump calling code]

___mul

.macro mul arg1, arg2

 add -8, sp

 st.w r6, [sp]

 st.w r7, 4[sp]

 mov arg1, r6

 mov arg2, r7

 jarl ___mul, lp

 ld.w 4[sp], r7

 mov r6, arg2

 ld.w [sp], r6

 add 8, sp

.endm

.macro mul arg1, arg2

 .local macro_ret

 add -8, sp

 st.w r6, [sp]

 st.w r7, 4[sp]

 mov arg1, r6

 mov arg2, r7

 movea macro_ret, tp, r31

 .option nowarning

 movea #___mul, tp, r1

 jmp [r1]

 .option warning

macro_ret:

 ld.w 4[sp], r7

 mov r6, arg2

 ld.w [sp], r6

 add 8, sp

.endm

CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

182 User’s Manual U19383EJ1V0UM00

(c) Runtime function (when calling a macro)
[File listing functions to be called by far jump]

[Normal calling code]

[Far jump calling code]

The compiler automatically selects whether a runtime macro is called or a runtime function is directly called
by judging the register efficiency in the process of optimization.

___mul

mov r12, r6

mov r13, r7

#@CALL_ARG r6, r7

#@CALL_USE r6, r7

jarl ___mul, lp

mov r6, r13

 mov r12, r6

 mov r13, r7

 #@CALL_ARG r6, r7

 #@CALL_USE r6, r7

 movea #___mul, tp, r14

 movea .L13, tp, lp

 jmp [r14]

.L13:

 mov r6, r13

CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

User’s Manual U19383EJ1V0UM00 183

(d) System calls of real-time OS
[File listing functions to be called by far jump]

[Normal calling code]

[Far jump calling code]

_ext_tsk

#@B_EPILOGUE

#@BEGIN_NO_OPT

add .S4, sp

jr _ext_tsk --C NR

#@END_NO_OPT

#@E_EPILOGUE

#@B_EPILOGUE

#@BEGIN_NO_OPT

add .S4, sp

movea #_ext_tsk, tp, r10

jmp [r10] --C NR

#@END_NO_OPT

#@E_EPILOGUE

CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

184 User’s Manual U19383EJ1V0UM00

(e) Prologue/epilogue runtime function
[File listing functions to be called by far jump]

[Normal calling code]

[Far jump calling code]

___pop2900

___push2900

#@B_EPILOGUE

 jarl ___pop2900, lp --1

#@E_EPILOGUE

.L3:

 jarl ___push2900, r10

#@E_PROLOGUE

#@B_EPILOGUE

 movea #___pop2900, tp, r11

 jmp [r11] --1

#@E_EPILOGUE

.L3:

 movea #___push2900, tp, r11

 movea .L5, tp, r10

 jmp [r11]

.L5:

#@E_PROLOGUE

CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

User’s Manual U19383EJ1V0UM00 185

Following table shows the prologue/epilogue function names that can be specified by the far jump function.
Before specifying a prologue/epilogue runtime function, confirm the functions used in the assembly source
output after compilation.

Table 3-32. Prologue/Epilogue Runtime Functions

See "3.4.2 Prologue/Epilogue processing function" for details of the prologue/epilogue runtime library of
functions.

Prologue/Epilogue Runtime Function names

___pop2000

___pop2100

___pop2200

___pop2300

___pop2400

___pop2500

___pop2600

___pop2700

___pop2800

___pop2900

___poplp00

___push2000

___push2100

___push2200

___push2300

___push2400

___push2500

___push2600

___push2700

___push2800

___push2900

___pushlp00

___pop2001

___pop2101

___pop2201

___pop2301

___pop2401

___pop2501

___pop2601

___pop2701

___pop2801

___pop2901

___poplp01

___push2001

___push2101

___push2201

___push2301

___push2401

___push2501

___push2601

___push2701

___push2801

___push2901

___pushlp01

___pop2002

___pop2102

___pop2202

___pop2302

___pop2402

___pop2502

___pop2602

___pop2702

___pop2802

___pop2902

___poplp02

___push2002

___push2102

___push2202

___push2302

___push2402

___push2502

___push2602

___push2702

___push2802

___push2902

___pushlp02

___pop2003

___pop2103

___pop2203

___pop2303

___pop2403

___pop2503

___pop2603

___pop2703

___pop2803

___pop2903

___poplp03

___push2003

___push2103

___push2203

___push2303

___push2403

___push2503

___push2603

___push2703

___push2803

___push2903

___pushlp03

___pop2004

___pop2104

___pop2204

___pop2304

___pop2404

___pop2504

___pop2604

___pop2704

___pop2804

___pop2904

___poplp04

___push2004

___push2104

___push2204

___push2304

___push2404

___push2504

___push2604

___push2704

___push2804

___push2904

___pushlp04

___pop2040

___pop2140

___pop2240

___pop2340

___pop2440

___pop2540

___pop2640

___pop2740

___pop2840

___pop2940

___poplp40

___push2040

___push2140

___push2240

___push2340

___push2440

___push2540

___push2640

___push2740

___push2840

___push2940

___pushlp40

CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

186 User’s Manual U19383EJ1V0UM00

3.5 Expanded Function of CC78Kx

This section explains the expanded functions of the CC78Kx.

3.5.1 #pragma directive

The following #pragma directive compatible with the CC78Kx can be specified in the CA850.
The [78K-compatible] mark indicates as follows:

(1) Specifying device type
[78K-compatible]

Specify so that a device file defining the machine-dependent information of the device used is referenced. This
directive functions in the same manner as the "#pragma cpu device-name" specification and the device specifi-
cation option (-cpu) of the CA850.

(2) Validating peripheral I/O register name
[78K-compatible]

The peripheral I/O registers of a device are accessed by using peripheral function register names. This direc-
tive functions in the same manner as the #pragma ioreg directive of the CA850.

(3) Specifying Disabling interrupts
[78K-compatible]

The function DI is treated as the embedded function __DI.

(4) Specifying enabling interrupts
[78K-compatible]

The function EI is treated as the embedded function __EI.

(5) Specifying CPU stop function
[78K-compatible]

The function HALT is treated as the embedded function __halt.

[78K-compatible] Invalid unless -cc78K option is specified.

Uppercase and lowercase characters of keywords following #pragma are not distinguished.

#pragma pc(device-name)

#pragma sfr

#pragma di

#pragma ei

#pragma halt

CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

User’s Manual U19383EJ1V0UM00 187

(6) Specifying no-operation function
[78K-compatible]

The function NOP is treated as the embedded function __ nop.

(7) #pragma directives of CC78Kx
The following directives are not compatible with the 78K. These directives are treated as the #pragma directive
in the CA850.

(a) Interrupt/exception handler specification
[78K-compatible]

"#pragma interrupt" and "#pragma vect" of the CC78Kx are treated as "#pragma interrupt interrupt-
request-name function-name [allocation-method]" in the CA850. The following message is output if
description is made after "[stack selection]" and if that description can- not be.

(b) Specifying section
[78K-compatible]

This directive is treated as "#pragma section section-type ["section-name"] [begin | end]" in the CA850. The
following message is output if it is not recognized by the CA850.

(c) Specification related to memory manipulation
[78K-compatible]

The CC78Kx expands memcpy, memset, memchr, and memcmp inline, but the CA850 attempts to
expand the specified function inline, so the following message is output.

#pragma nop

#pragma interrupt interrupt-request-name function-name [stack selection] ...

#pragma vect interrupt-request-name function-name [stack selection] ...

W2150: unexpected character(s) following directive 'directive'

#pragma section ...

W2162: unrecognized pragma directive '#pragma directive', ignored

#pragma inline

W2162: unrecognized pragma directive '#pragma inline', ignored

CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

188 User’s Manual U19383EJ1V0UM00

(d) Specifying module name
[78K-compatible]

The CA850 outputs the following message.

(e) Specifying data insertion function
[78K-compatible]

Corresponding embedded function

The CA850 outputs the following message and stops compiling.

(f) Specifying byte address insertion/generation function
[78K-compatible]

Corresponding embedded function

The CA850 outputs the following message and stops compiling.

#pragma name module-name

W2162: unrecognized pragma directive '#pragma name', ignored

#pragma opc

__OPC

W2162: unrecognized pragma directive '#pragma opc', ignored

E2752: cannot call opc function

#pragma addraccess

FP_SEG, FP_OFF, MK_FP

W2162: unrecognized pragma directive '#pragma addraccess', ignored

E2752: cannot call addraccess function

CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

User’s Manual U19383EJ1V0UM00 189

(g) Specifying function directly referencing register
[78K-compatible]

Corresponding embedded function

The CA850 outputs the following message and stops compiling.

(h) Specifying function directly calling self-writing subroutine of firmware
[78K-compatible]

Corresponding embedded function

The CA850 outputs the following message and stops compiling.

#pragma realregister

__absa, __ashra, __clr1cy, __coma, __deca, __geta, __getax, __getcy, __inca, __nega, __not1cy, __rola, __rolca,
__rora, __rorca, __set1cy, __seta, __setax, __setcy, __shla, __shra

W2162: unrecognized pragma directive '#pragma realregister', ignored

E2752: cannot call realregister function

#pragma hromcall

__FlashAreaBlankCheck, __FlashAreaErase, __FlashAreaIVerify, __FlashAreaPreWrite, __FlashAreaWriteBack,
__FlashBlockBlankCheck, __FlashBlockErase, __FlashBlockIVerify, __FlashBlockPreWrite,
__FlashBlockWriteBack, __FlashByteRead, __FlashByteWrite, __FlashEnv, __FlashGetInfo, __FlashSetEnv,
__FlashWordWrite, __hromcall, __hromcalla, __setsp

W2162: unrecognized pragma directive '#pragma hromcall', ignored

E2752: cannot call hromcall function

CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

190 User’s Manual U19383EJ1V0UM00

3.5.2 Assembler control instructions

[78K-compatible]

This instruction is treated as "#pragma asm" - "#pragma endasm" in the CA850.
The following message is output for each instruction.

3.5.3 Specifying interrupt/exception handler

An interrupt/exception handler is specified in a C-source program by the following #pragma directive and
qualifier.

[78K-compatible]

The function qualifier __ interrupt_brk is treated as specification of the __ interrupt function in the CA850.

3.5.4 Expanded function not supported

The CA850 outputs a message if an expanded specification of the CC78Kx that is not supported is specified.

[78K-compatible]

The CA850 outputs the following message.

#asm

 assembler instruction

#endasm

W2166: recognized pragma directive '#pragma asm'

W2166: recognized pragma directive '#pragma endasm'

#pragma interrupt interrupt-request-name function-name [allocation method]

__interrupt_brk function-definition, or function-declaration

__banked1, __banked2, __banked3, __banked4, __banked5, __banked6, __banked7, __banked8, __banked9,
__banked10, __banked11, __banked12, __banked13, __banked14, __banked15, callf, __callf, callt, __callt, noauto, norec,
__pascal, sreg, __sreg, __sreg1, __temp

W2761: unrecognized specifier 'specifier', ignored

CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

User’s Manual U19383EJ1V0UM00 191

3.6 Section Name List

The following table lists the names, section types, and section attributes of these reserved sections.

Table 3-33. Reserved Sections

Notes 1. The name part of .gptabname, .relname, and .relaname indicates the name of the section corresponding
to each respective section.

2. This is information that is used when processing the linker’ s -A option.

NameNote 1 Description Section Type Section Attribute

.bss .bss section NOBITS AW

.const .const section PROGBITS A

.data .data section PROGBITS AW

.ext_info

.ext_info_boot

Information section for flash/external ROM re-link function PROGBITS None

.ext_table Branch table section for flash/external ROM re-link function PROGBITS AX

.ext_tgsym Information section for flash/external ROM re-link function PROGBITS None

.gptabname Global pointer tableNote 2 GPTAB None

.pro_epi_runtime Prologue/epilogue run-time call section PROGBITS AX

.regmode Register mode information REGMODE None

.relname Relocation information REL None

.relaname Relocation information RELA None

.sbss .sbss section NOBITS AWG

.sconst .sconst section PROGBITS A

.sdata .sdata section PROGBITS AWG

.sebss .sebss section NOBITS AW

.sedata .sedata section PROGBITS AW

.shstrtab String table where the section name is saved STRTAB None

.sibss .sibss section NOBITS AW

.sidata .sidata section PROGBITS AW

.strtab String table STRTAB None

.symtab Symbol table SYMTAB None

.text .text section PROGBITS AX

.tibss .tibss section NOBITS AW

.tibss.byte .tibss.byte section NOBITS AW

.tibss.word .tibss.word section NOBITS AW

.tidata .tidata section PROGBITS AW

.tidata.byte .tidata.byte section PROGBITS AW

.tidata.word .tidata.word section PROGBITS AW

.vdbstrtab Symbol table for debug information STRTAB None

.vdebug Debug information PROGBITS None

.version Version information section PROGBITS None

.vline Line and column information PROGBITS None

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

192 User’s Manual U19383EJ1V0UM00

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

This chapter explains the assembly language specifications supported by the CA850 assembler (as850).

4.1 Description of Source

This section explains description of source, expressio, and operators.

4.1.1 Description

An assembly language statement consists of a "label", a "mnemonic", "operands", and a "comment".

It is irrelevant whether blanks are inserted in the following location.
- Between the label name and colon
- Between the colon and mnemonic
- Before the second and subsequent operands
- Before "- - " that indicates the beginning of a comment

One or more blank is necessary in the following location.
- Between the mnemonic and the operand

Figure 4-1. Organization of Assembly Language Statement

Basically, one assembly language statement is described on one line. There is a line feed (return) at the end of the
statement. Two or more assembly language statements can be described in one line by using "; (semicolon)" .

[label]: [mnemonic] [operand], [operand] -- [comment]

Label

Mnemonic

Operand Comment

Label1: add 0x10, r19 --For example

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

User’s Manual U19383EJ1V0UM00 193

(1) Character set
The characters that can be used in a source program (assembly language) supported by the as850 are as fol-
lows.

Table 4-1. Character Set and Usage of Characters

Character Usage

Lowercase letter (a-z) Constitutes a mnemonic, identifier, and constant

Uppercase letter (A-Z) Constitutes an identifier and constant

_ (underscore) Constitutes an identifier

.(period) Constitutes an identifier and constant

Numerals Constitutes an identifier and constant

: (colon) End of label

, (comma) Delimits an operand

- (hyphen) Negative sign, subtraction operator, and at the beginning of comment

Refers the absolute address of a label and indicates the beginning of a com-
ment

; (semicolon) End of statement

' (single quotation) Start and end of character constant

"(double quotation) Start and end of character string constant

$ gp offset reference of label

[] Specifies the base register

+ Addition operator

* Multiplication operator

/ Division operator

% Offset reference of label in section (without instruction expansion) and
remainder operator

<< Left shift operator

>> Right shift operator

! Absolute address reference of label (without instruction expansion) and
negation operator

& Logical product operator

| Logical sum operator

^ Exclusive OR operator

() Specifies an operation sequence

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

194 User’s Manual U19383EJ1V0UM00

(2) Label
A label is a "name plate" that can be described on any line of a program. A label can be used as the name of a
branch destination if a conditional branch is executed or if execution branches to a subroutine.
For example, when the "jr" instruction, one of the branch instructions, is used, describe a label as follows.

When this instruction is executed, execution branches to the location of Label1. When a label is described as
name Label1, describe as follows.

Different labels can be defined over several lines.

However, two or more labels must not be specified on one line.

It is irrelevant whether one or more blanks are inserted between the label name and colon.
Before using a label, a "definition" or "declaration" must be made.

(a) Definition of label
A label may be defined in two ways.

<1> Defined as local label when ":" is suffixed to a name at the beginning of a statement

This method is generally used to define a local label, and is hereafter referred to as "normal label def-
inition".

<2> Defined as local label by the .lcomm quasi directive

The above statement means 'allocates size of "0x100 bytes" from an address aligned to 4 bytes and
uses the first label of that area as"label 1".

jr Label1

Label1:

Label1:

Label2:

Label1: Label2: --Two or more labels must not be specified on one line.

label1:

.lcomm label1, 0x100, 4

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

User’s Manual U19383EJ1V0UM00 195

(b) Declaration of label
A label may be declared in four ways.

<1> Declared as an undefined external label by the .comm quasi directive

This statement means 'undefined external label "label1" of size "4 bytes" is declared in an alignment
condition of 4 bytes.

<2> Declared as an external label by the .extern quasi directive (label not having a definition in a
specified file)

<3> Declared as an external label by the .globl quasi directive (label having a definition in a speci-
fied file)

<4> Declared as an external label by not making a definition in a file.

If the definition of label1 is not in the same file, label1 is regarded as an external label.

(c) Characters that may be used in labels
The following characters shown in "(1) Character set" can be used in labels.

- Lowercase letters
- Uppercase letters
- _ (underscore)
- .(period)
- Numerals

However, a numeral must not be used at the beginning of a name. If a label that begins with a numeral is
specified, the as850 outputs the following message and stops assembling.
Also, reserved word may not be used as label.

Caution Note that a label starting with "_" (underscore) may match a symbol name output by the
compiler, and may therefore cause an unexpected operation. Also, avoid using symbols
that start with "."(period) as much as possible because such symbols may be reserved in
the future.

.comm label1, 4, 4

.extern label1

.globl label1

mov label1, r10

E3249: illegal syntax

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

196 User’s Manual U19383EJ1V0UM00

(d) Maximum number of characters of label and maximum number of labels
A label consists of up to 1,037 characters. If a label of 1,038 or more characters is specified, the as850 out-
puts the following message and stops assembling.
The maximum number of labels that can be defined depends on the size of the available memory area.

(e) Normal label definition in sbss/bss-attribute section
If a normal label definition is made in the sbss/bss-attribute section, the as850 outputs the following mes-
sage and stops assembling.
If this error is output, use the .lcomm quasi directive to define a label.

(3) Mnemonic and operands
A mnemonic is a character string assigned to each instruction (V850 machine code). Machine codes are hard
for human beings to understand as is. Therefore, a name assigned to each machine code is "Mnemonic". A
mnemonic means the instruction itself. A mnemonic is expressed in close to word notation (based on English)
so that the operation it stands for can be easily inferred.
For example, the mnemonic "add" means "addition", and "mul" means "multiplication". An operand is an
object to be manipulated by each instruction. If the mnemonic is "add" (addition), the operand is subject
to the operation of addition. An operand must be described next to (on the right of) a mnemonic.
One or more blank is necessary between the mnemonic and the first operand.

Figure 4-2. Mnemonic and Operands

An assembly instruction consists of a "mnemonic" and "operand(s)". Number of operand differs as per mne-
monics.
For the list of the assembly instructions provided in the V850 microcontrollers and their specifications, see "4.5.4
Instruction set".

E3260: token too long

E3246: illegal section

Mnemonic

Operand

add 0x10, r19

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

User’s Manual U19383EJ1V0UM00 197

(4) Comment
Comments can be described in an assembly language program. The as850 recognizes the description after the
following marks to the end of the line as a comment.

In the case of "#", however, the statement to the end of the line is recognized as a comment only if "#" is at the
beginning of the statementNote.
In the comment, "EUC" or "shift JIS code " for Japanese can be described.

Note The blank at the start of line is not included in the statement. Even if before "#" space is included, it can
be handled as the comment until the end of that line.

(5) Constant
The as850 can handle "Numerical constants", "Character constant", and "String constant" as constants.

(a) Numerical constants
Numerical constants are divided into "Integer constants" and "Floating-point constant".

<1> Integer constants
Integer constants has a width of 32 bits. A negative value is expressed as a 2's complement. If an
integer value that exceeds the range of the values that can be expressed by 32 bits is specified, the
as850 uses the value of the lower 32 bits of that integer value and continues processing (it does not
output any message).

[Binary Constants]
Binary constant constitutes of "0b" or "0B" followed by numeric string of one or more of "0" or "1" dig-
its.

Example

[Octal constant]
An octal constant consists of "0" followed by a numeric string of one or more "0" to "7" digits.

Example

--

#

comment

add 0x10, r19 --comment 1

sub r18, r19 --comment 2

0b00010110111101010111111010010111

02675277227

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

198 User’s Manual U19383EJ1V0UM00

[Decimal constant]
A decimal constant consists of one or more numeric stings starting with digits other than "0".

Example

[Hexadecimal constant]
A hexadecimal constant consists of "0x" or "0X" followed by a numeric string of one or more "0" to "9"
digits and a character string of lowercase letters from "a" to "f" or uppercase letters from "A" to "F".

Example

<2> Floating-point constant
Floating-point constant has 32 bits width. A floating-point constant consists of the following elements.

(i) Sign of mantissa ("+" can be omitted.)
(ii) Mantissa
(iii) "e" or "E" indicating exponent
(iv) Sign of exponent ("+" can be omitted.)
(v) Exponent

The exponent and mantissa are specified as decimal constants. If no exponent is used, however, (iii),
(iv), and (v) are not used.

Example

A floating-point constant can also bby placing "0f" or "0F" at the beginning of a mantissa. For exam-
ple, the as850 regards 10 as being an integer constant but "0f10" as being a floating-point constant.
A numeric string that starts with "0" and which has no decimal point, such as "060", must not be spec-
ified (only "0" can be specified).

385187479

0x16f57e97

123.4

-100.

10e-2

-100.2E+5

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

User’s Manual U19383EJ1V0UM00 199

(b) Character string constant
A character constant consists of a single character enclosed by a pair of single quotation marks ('
') and indicates the value of the enclosed characterNote.
If any of the escape sequences listed below is specified in "'"and "'", the as850 regards the sequence as
being a single character.

Example

Note If a character constant is specified, the as850 assumes that an integer having the value of
that character constant is specified.

Table 4-2. Value and Meaning of Escape Sequence

Note If a value exceeding "\377" is sp value of the escape sequence becomes the lower 1 byte. Cannot
be of value more than 0377. For example value of"\777"is 0377.

'a'

'\0'

'\012'

'\x0a'

Escape Sequence Value Meaning

\0 0x00 null character

\a 0x07 Alert

\b 0x08 Backspace

\f 0x0c Form feed

\n 0x0a Line feed

\r 0x0d Carriage return

\t 0x09 Horizontal tab

\v 0x0b Vertical tab

\\ 0x5c Back slash

\' 0x27 Single quotation marks

\" 0x22 Double quotation mark

\? 0x3f Question mark

\ddd 0 to 0377 Octal number of up to 3 digits (0 < d < 7) Note

\xhh 0 to 0xff Hexadecimal number of up to 2 digits

(0 < h < 9, a < h < f, or A < h < F)

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

200 User’s Manual U19383EJ1V0UM00

(6) Symbol
A symbol is a name having a value (integer value) which is defined by the user. The ".set quasi directive" is
used to define a symbol.

The as850 assumes a reference to a symbol appearing between the beginning of a file and the first .set quasi
directive as a "reference to a symbol undefined at that point", and distinguishes this symbol from a reference to
a defined symbol (also see "(1) Absolute expression" in "4.1.2 Expression").

(a) Characters that may be used in symbol
The following characters shown in "(1) Character set" can be used as symbols.

- Lowercase letters
- Uppercase letters
- _ (underscore)
- .(period)
- Numerals

However, a numeral can not be used at the beginning of a name. If a symbol that begins with a numeral is
specified, the as850 outputs the following message and stops assembling.
Also, reserved word can not be used as label.

Caution Note that a symbol starting with "_" (underscore) may match a symbol name output by
the compiler, and may therefore cause an unexpected operation. Also, avoid using sym-
bols that start with "."(period) as much as possible because such symbols may be
reserved in the future.

(b) Maximum number of characters of symbol and maximum number of symbols
A symbol consists of up to 1,037 characters. If a symbol of 1,038 or more characters is specified, the as850
outputs the following message and stops assembling.

The maximum number of symbols that can be defined depends on the size of the available memory area.

.set sym1, 0x10 --sym1 is the symbol having 0x10 value

mov sym1, r10 --Storing value (0x10) of sym1 in the register.

E3249: illegal syntax

E3260: token too long

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

User’s Manual U19383EJ1V0UM00 201

(7) Example of assembly language statement
Here is a simple example of an assembly language program.

sample program

 .extern __tp_TEXT, 4

 .extern __gp_DATA, 4

 .extern _main

 .section "RESET", text --Reset Handler address

 jr __boot --Jump to __boot

 .text --Text section

 .align 4 --Code alignment

 .globl __boot --Alignment

__boot:

 mov #__tp_TEXT, tp --Set tp

 mov #__gp_DATA, gp --Set gp

 .extern __ssbss, 4

 .extern __esbss, 4

 # start of bss initialize

 mov #__ssbss, r13

 mov #__esbss, r13

 cmp r12, r13

 jnl sbss_init_end

sbss_init_loop:

 st.w r0, 0[r13]

 add 4, r13

 cmp r12, r13

 jl sbss_init_loop

sbss_init_end:

 # end of bss initialize

 jarl _main, lp --Call main function

 .data

 .align 4

data_area:

 .word 0x00 --data1

 .hword 0x01 --data2

 .byte 0xff; .byte 0xfe --data3, data4

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

202 User’s Manual U19383EJ1V0UM00

4.1.2 Expression

An expression consists of a "constant", "symbol", "label reference", "operator", and "parentheses".It indicates a
value consisting of these elements. The as850 distinguishes between Absolute expression and Relative expressions.

(1) Absolute expression
An expression indicating a constant is called an "absolute expression". An absolute expression can be used
when an operand is specified for an instruction or when a value, size, alignment condition, filling value, or bit
width is specified for a quasi directive. An absolute expression usually consists of a constant or symbol. The
as850 treats expressions in the format described below as absolute expressions. However, an absolute
expression in a format other than "constant expression" must not be specified for quasi directives other than
the .byte, .hword, .shword [V850E], and .word quasi directives without a bit width specification and quasi
directives other than the .frame quasi directive (absolute expressions in all formats below can be specified for
the .byte, .hword, .shword [V850E], and .word quasi directives without a bit width specification to specify
a value, while absolute expressions in "symbol" format can be specified for the .frame quasi directive to specify
size, in addition to the "constant expression" format).

(a) Constant expression
If a reference to a previously defined symbol is specified, the as850 assumes that the constant of the value
defined for the symbol has been specified. Therefore, a defined symbol reference can be used in a con-
stant expression.

Example

(b) Symbol
The expressions related to symbols are the following (" + " is either "+" or "-").

- Symbol
- Symbol + constant expression
- Symbol - symbol
- Symbol - symbol + constant expression

A "symbol" here means an undefined symbol reference at that point. If a reference to a previously defined
symbol is specified, the as850 assumes that the "constant" of the value defined for the symbol has
been specified.

Example

.set sym1, 0x100 --Define symbol sym1

mov sym1, r10 --sym1, already defined, is treated as a constant expression.

add SYM1 + 0x100, r11 --SYM1 is an undefined symbol at this point

.set SYM1, 0x10 --Defines SYM1

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

User’s Manual U19383EJ1V0UM00 203

(c) Label reference
The following expressions are related to label reference (" + " is either "+" or "- ").

- Label reference - label reference
- Label reference - label reference + constant expression

Here is an example of an expression related to a label reference.

Example

A "reference to two labels" as shown in this example must be referenced as follows.
- The same section has a definition in the specified file.
- Same reference method (such as $label and $label, and #label and #label)
- If a reference to a label having no definition in the specified file is specified, the as850 outputs the fol-

lowing message and stops assembling.

If a reference to two labels having no definition in the same section is specified, the as850
outputs the following message and stops assembling.

If a reference to two labels by different reference methods is specified, the as850 outputs the
following message and stops assembling.

However, if a reference to the absolute address of a label not having a definition in the specified file is
specified as label reference on one side of "- label reference" in an "expression related to label refer-
ence", it is assumed that the same reference method as that of the label on the other side is used,
because of the current organization of the assembler. Note that an absolute expression in this for-
mat cannot be specified for a branch instruction. If such an expression is specified, the as850
outputs the following message and stops assembling.

mov $label1 - $label2, r11

E3209: illegal expression (labels must be defined)

E3208: illegal expression (labels in different sections)

E3207: illegal expression (labels have different reference types)

E3221: illegal operand (label-label)

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

204 User’s Manual U19383EJ1V0UM00

(2) Relative expressions
An expression indicating an offset from a specific addressNote 1 is called a "relative expression". A relative
expression is used to specify an operand by an instruction or to specify a value by the .byte, .hword, or .word
quasi directive that do not have bit width specification. A relative expression usually consists of a label refer-
ence The as850 regards expressions in the following formatsNote 2 as being relative expressions.

Examples 1. This address is determined when the linker (ld850) in the CA850 is executed. Therefore, the
value of this offset may also be determined when the linker is executed.

2. The as850 can regard an expression in the format of "-symbol + label reference", as being an
expression in the format of "label reference - symbol," but it cannot regard an expression in the
format of "label reference - (+symbol)" as being an expression in the format of "label reference -
symbol" (the same applies to an absolute expression). Therefore, use parentheses "()" only in
constant expressions.

(a) Label reference
The following expressions are related to label reference (" + " is either "+" or "- ").

- Label reference
- Label reference + constant expression
- Label reference - symbol
- Label reference - symbol + constant expression

Here is an example of an expression related to a label reference.

Example

add #labe11 + 0x10, r10

add #label2 - SIZE, r10

.set SIZE, 0x10

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

User’s Manual U19383EJ1V0UM00 205

4.1.3 Operators

An operator can be used to specify the operation to be performed by an expression.

(1) Types of operators
Operators are classified into four types: "Arithmetic operators", "Shift operators", "Bitwise logical operators", and
"Comparison operators". "-" can be used as either a unary or binary operator.

Table 4-3. Operators

(2) Priority of operators
Table below shows the priorities of the operators. If two operators having the same priority are specified, and if
either is enclosed in parentheses, the operator in parentheses is executed first. If neither operator is enclosed
in parentheses, or if both are enclosed in parentheses, the one on the left is executed first.
However, use parentheses only for constant expressions (see "4.1.2 Expression").

Table 4-4. Priority of Operators

Type Operator

Arithmetic opera-
tors

+ - * / %

Shift operators << >>

Bitwise logical oper-
ators

! | & ^

Comparison opera-
tors

== < <= != > >= && ||

Priority Operator

High - ! (unary operator)

* / << >> %

& | ^

+ -

== < <= != > >=

Low && ||

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

206 User’s Manual U19383EJ1V0UM00

4.1.4 Arithmetic operators

(1) +
Calculates the sum of the first and second operands.

(2) -
Calculates the difference between the first and second operands.
If this operator is used as a unary operator, it calculates the 2's complement of the operand.

(3) *
Calculates the product of the first and second operands.

(4) /
Calculates the quotient of the first and second operands.

(5) %
Calculates the remainder resulting from dividing the first operand by the second operand.

4.1.5 Shift operators

(1) <<
Shifts the first operand to the left by the number of bits specified by the second operand. As many 0s as the
specified numbers of bits are inserted on the right side (LSBNote) of the first operand.

Note LSB is an abbreviation of Least Significant Bit (bit corresponding to the lowest digit).

Example

(2) >>
Shifts the first operand to the right by the number of bits specified by the second operand. If the first operand is
positive (MSB is 0), as many 0s as the specified number of bits are inserted on the left side of the first operand
(MSBNote). If the first operand is negative (MSB is 1), as many 1s as the specified number of bits are inserted
on the left side of the first operand.

Note MSB is an abbreviation of Most Significant Bit (bit corresponding to the highest digit)

Example

0x12345678 << 4 0x23456780

0x12345678 >> 4 0x01234567

0x87654321 >> 4 0xF8765432

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

User’s Manual U19383EJ1V0UM00 207

4.1.6 Bitwise logical operators

(1) !
Logically negates each bit of the operand value.

Example

(2) |
Calculates the logical sum of the first and second operands.

Example

(3) &
Calculates the logical product of the first and second operands.

Example

(4) ^
Calculates the exclusive OR of the first and second operands.

Example

4.1.7 Comparison operators

(1) ==
Compares the first operand with the second operand. If the two operands are equal, returns 1. Otherwise,
returns 0.

Example

(2) <
Compares the first and second operands. Returns 1 if the first operand is less than the second operand, and
returns 0 if the first operand is greater than or equal to the second operand.

Example

!0x12345678 0xEDCBA987

0x1234 | 0x5678 0x567C

0x1234 & 0x5678 0x1230

0x1234 ^ 0x5678 0x444C

1 == 1 1

1 == 0 0

1 < 10 1

10 < 1 0

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

208 User’s Manual U19383EJ1V0UM00

(3) <=
Compares the first and second operands. Returns 1 if the first operand is less than or equal to the second oper-
and, and returns 0 if the first operand is greater than the second operand.

Example

(4) !=
Compares the first and second operands. Returns 0 if both the operands are equal, and returns 1 otherwise.

Example

(5) >
Compares the first and second operands. Returns 1 if the first operand is greater than the second operand, and
returns 0 if the first operand is less than or equal to the second operand.

Example

(6) >=
Compares the first and second operands. Returns 1 if the first operand is greater than or equal to the second
operand, and returns 0 if the first operand is less than the second operand.

Example

(7) &&
Calculates the logical product of the logical value of the first and second operands.

Example

1 <= 2 1

1 <= 1 1

1 <= 0 0

1 != 0 1

1 != 1 0

1 > 0 1

1 > 2 0

1 >= 0 1

1 >= 1 1

1 >= 2 0

1 != 3 && 1 <= 3 1

1 == 1 && 1 != 1 0

1 != 1 && 3 <= 1 0

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

User’s Manual U19383EJ1V0UM00 209

(8) ||
Calculates the logical sum of the logical value of the first and second operands

Example

4.1.8 Operation rules

The operation rules of the as850 are as follows.
However, the rule explained in "4.1.2 Expression" takes precedence for an expression including a reference to a

symbol or label that has not yet been defined at that point.

(1) Unary operation
Only an absolute expression can be specified as the operand of a unary operator. An expression that handles a
floating-point value cannot be specified as the operand of the unary operator !.

(2) Binary operation
Below is the list of the valid combinations of integer value expressions that can be specified as the operands of
binary operators. In this table, the following symbols are used in expressions consisting of operators and oper-
ands.

For floating-point values, however, the operation must be between floating-point values, and a floating-point
value must not exist together with a relative expression in the same expression.

Table 4-5. peration Rules for Binary Operation

Note For details, see "4.1.2 Expression".

1 != 3 || 1 <= 3 1

1 == 1 || 1 != 1 1

1 != 1 || 3 <= 1 0

abs Absolute expression

rel Relative expression "referencing a label with a definition in the specified file"

ext Relative expression "referencing a label with no definition in the specified file"

NG Indicates that the specified combination of the operator and operand is not supported by the as850

Operand Operator

+ - *, / Other

Second operand abs rel ext abs rel ext abs rel ext abs rel ext

First operand abs abs rel ext abs NG NG abs NG NG abs NG NG

rel rel NG NG rel abs
Note

NG NG NG NG NG NG NG

ext ext NG NG ext NG NG NG NG NG NG NG NG

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

210 User’s Manual U19383EJ1V0UM00

4.1.9 Definition of absolute expression

An expression indicating a constant is called an "absolute expression". An absolute expression can be used when
an operand is specified in an instruction or when a value, size, alignment condition, filling value, or bit width is specified
in a quasi directive.

An absolute expression usually consists of a constant or symbol.
The as850 treats expressions in the format described below as absolute expressions. However, an absolute

expression in a format other than "constant expression" must not be specified for quasi directives other than the
.byte, .hword, .shword [V850E], and .word quasi directives without a bit width specification and quasi directives
other than the .frame quasi directive (absolute expressions in all formats below can be specified for the .byte,
.hword, .shword [V850E], and .word quasi directives without a bit width specification to specify a value, while
absolute expressions in "symbol" format can be specified for the .frame quasi directive to specify size, in addition to
the "constant expression" format).

(1) Constant expression

Example

If a reference to a previously defined symbol is specified, the as850 assumes that the constant of the value
defined for the symbol has been specified. Therefore, a defined symbol reference can be used in a constant
expression.

(2) Symbol
The expressions related to symbols are the following (" + " is either "+" or "-").

- Symbol
- Symbol + constant expression
- Symbol - symbol
- Symbol - symbol + constant expression

A "symbol" here means an undefined symbol reference at that point. If a reference to a previously defined sym-
bol is specified, the as850 assumes that the "constant" of the value defined for the symbol has been
specified.

Example

.set sym1, 0x100 --Defines symbol sym1

mov sym1, r10 --sym1, already defined, is treated as a constant expression.

add SYM1 + 0x100, r11 --SYM1 is an undefined symbol at this point

mov sym1, r10 --sym1, already defined, is treated as a constant expression.

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

User’s Manual U19383EJ1V0UM00 211

(3) Label reference
The following expressions are used to reference a label (" + " is either "+" or "- ").

- Label reference - label reference
- Label reference - label reference + constant expression

Here is an example of an expression related to a label reference.

Example

A "reference to two labels" as shown in this example must be referenced as follows.
- The same section has a definition in the specified file.
- Same reference method (such as $label and $label, and #label and #label)
- If a reference to a label having no definition in the specified file is specified, the as850 outputs the following

message and stops assembling.

If a reference to two labels having no definition in the same section is specified, the as850 outputs
the following message and stops assembling.

If a reference to two labels by different reference methods is specified, the as850 outputs the fol-
lowing message and stops assembling.

However, if a reference to the absolute address of a label not having a definition in the specified file is spec-
ified as label reference on one side of "- label reference" in an "expression related to label reference", it is
assumed that the same reference method as that of the label on the other side is used, because of the cur-
rent organization of the assembler. Note that an absolute expression in this format cannot be speci-
fied for a branch instruction. If such an expression is specified, the as850 outputs the following
message and stops assembling.

mov $label1 - $label2, r11

E3209: illegal expression (labels must be defined)

E3208: illegal expression (labels in different sections)

E3207: illegal expression (labels have different reference types)

E3221: illegal operand (label-label)

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

212 User’s Manual U19383EJ1V0UM00

4.1.10 Identifiers

An identifier is a name used for a symbol, label, or macro. The following characters shown in "(1) Character set"
can be used in identifiers.

- Lowercase letters
- Uppercase letters
- _ (underscore)
- .(period)
- Numerals

However, a numeral must not be used at the beginning of a name. Also note that a identifier starting with "_" (under-
score) may match a label name output by the compiler, and may therefore cause an unexpected operation. Also,
avoid using identifiers that start with "." (period) as much as possible because such identifiers may be reserved in the
future.

4.1.11 Characteristics of an operand

With the as850, registers, constants, symbols, label reference, reference of constants, symbols, and labels, opera-
tors can be specified as the operands of instructions and quasi directives.

(1) Registers
The registers that can be specified with the as850 are listed belowNote.

Note For the ldsr and stsr instructions, the PSW and system registers are specified using numbers.
With the as850, PC cannot be specified as an operand
r0 and zero (zero register), r2 and hp (handler stack pointer), r3 and sp (stack pointer), r4 and gp (global
pointer), r5 and tp (text pointer), r30 and ep (element pointer), and r31 and lp (link pointer) are the same
registers, respectively.

(a) r0
r0 always has a value of 0. This register does not substitute the result of an operation even if used as a
destination register. If r0 is specified as a destination register, the as850 outputs the following mes-
sageNote, then continues assembling.

Note Output of this message can be suppressed by specifying the warning suppression (-w) option upon
starting the as850.

<1> If r0 is specified in any of the following instructions as a destination register when the V850Ex
is used as the target device, the as850 outputs an error message, not a warning message.

- Syntax (1) and (2) of the dispose, divh instruction
- Syntax (2) of the ld.bu, ld.hu, mov instruction
- movea, movhi, mulh, mulhi, satadd, satsub, satsubi, satsubr, sld.bu, sld.hu

r0, zero, r1, r2, hp, r3, sp, r4, gp, r5, tp, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17, r18, r19, r20, r21, r22, r23, r24,
r25, r26, r27, r28, r29, r30, ep, r31, lp

mov 0x10, r0

 |

W3013: register r0 used as destination register

divh r10, r0

 |

E3240: illegal operand (can not use r0 as destination in V850E mode)

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

User’s Manual U19383EJ1V0UM00 213

<2> If r0 is specified in any of the following instructions as a source register when the V850Ex is
used as the target device, the as850 outputs an error message, not a warning message.

- Syntaxes (1) in divh instruction
- switch

(b) r1
The assembler-reserved register (r1) is used as a temporary register when instruction expansion is per-

formed using the as850. If r1 is specified as a source or destination register, the as850 outputs the follow-

ing messageNotethen continues assembling.

Note Output of this message can be suppressed by specifying the warning suppression (-w) option upon
starting the as850.

(2) Constants
As the constituents of the absolute expressions or relative expressions that can be used to specify the operands

of the instructions and quasi directives in the as850, integer constants and character constants can be used.

For the ld/st and bit manipulation instructions," a peripheral I/O register name", defined in the device file, can

also be specified as an operand, thus enabling input/output of a port address. Moreover, floating-point con-

stants can be used to specify the operand of the .float quasi directive, and string constants can be used to spec-

ify the operand of the .str quasi directive.

(3) Symbol
The as850 supports the use of symbols as the constituents of the absolute expressions or relative expressions
that can be used to specify the operands of instructions and quasi directives.

divh r0, r10

 |

E3239: illegal operand (can not use r0 as source in V850E mode)

mov 0x10, r1

 |

W3013: register r1 used as destination register

mov r1, r10

 |

W3013: register r1 used as source register

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

214 User’s Manual U19383EJ1V0UM00

(4) Label reference
With the as850, label references can be used as the constituents of the relative expressions that can be used to
specify the operand of the following instructions/quasi directive:

- Memory reference instructions (load/store and bit manipulation instructions)
- Operation instructions (arithmetic instructions, saturation operation instructions, and logical instructions)
- Branch instructions
- Area allocation quasi directive (only .word/.hword/.byte quasi directive)

The meaning of a label reference varies with the reference method and the differences in the instructions/ quasi
directives. Detail is shown below.

Table 4-6. Label Reference

Referencing
Method

Instruction Used Meaning

#label Memory reference instruc-
tions, operation instruc-
tions, jmp instruction

The absolute address of the position at which the definition of the
label label exists (the offset from address 0Note 1).

This has a 32-bit address and must be expanded into two instruc-
tions except V850Ex.

Area allocation quasi direc-
tives (.word/.hword/.byte)

The absolute address of the position at which the definition of the
label label exists (the offset from address 0Note 1).

Note that the 32-bit address is a value masked in accordance with
the size of the area secured.

label Memory reference instruc-
tions, operation instructions

The offset in the section at the position at which the definition of the
label exists (the offset from the first address of the section where
the definition of the label label existsNote 2).

This has a 32-bit offset and must be expanded into two instruc-
tions.

Note that for a section allocated to a segment for which a tp symbol
is to be generated, the offset is referenced from the tp symbol

Branch instructions except
jmp instruction

The PC offset at the position at which the definition of the label
label exists (the offset from the first address of the instruction using
the reference of the label labelNote 2).

Area allocation quasi direc-
tives (.word/.hword/.byte)

The offset in the section at the position at which the definition of the
label exists (the offset from the first address of the section where
the definition of the label label existsNote 2).

Note that the 32-bit offset is a value masked in accordance with the
size of the area secured.

$label Memory reference instruc-
tions, operation instructions

The gp offset at the position at which the definition of the label label
exists (the offset from the address pointed to by the global
pointerNote 3).

!label Memory reference instruc-
tions, operation instructions

The absolute address of the position at which the definition of the
label exists (the offset from address 0Note 1).

This has a 16-bit address and cannot be instruction expanded if
instructions with 16-bit displacement or immediate data are speci-
fied.

If any other instructions are specified, expansion into appropriate
1-instruction units is possible.

If the address defined by the label label is not within a range
expressible by 16 bits, an error will be output at linking.

Area allocation quasi direc-
tives (.word/.hword/.byte)

The absolute address of the position at which the definition of the
label exists (the offset from address 0Note 1).

Note that the 32-bit address is a value masked in accordance with
the size of the area secured.

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

User’s Manual U19383EJ1V0UM00 215

Notes 1. Offset from address 0 in a linked object file.
2. The offset from the first address of the section (output section) to which the section in which

the definition of label label exists is allocated in the linked object file.
3. The offset from the address indicated by the value of the text pointer symbol + value of the global

pointer for the segment to which the above output section is allocated.

%label Memory reference instruc-
tions, operation instructions

The offset in the section at the position at which the definition of the
label exists (the offset from the first address of the section where
the definition of the label label existsNote 2).

This has a 16-bit address and cannot be instruction expanded if
instructions with 16-bit displacement or immediate data are speci-
fied.

If any other instructions are specified, expansion into appropriate
1-instruction units is possible.

If the address defined by the label label is not within a range
expressible by 16 bits, an error will be output at linking.

The ep offset at the position at which the definition of the label label
exists (the offset from the address pointed to by the element
pointer).

Area allocation quasi direc-
tives (.word/.hword/.byte)

The offset in the section at the position at which the definition of the
label exists (the offset from the first address of the section where
the definition of the label label existsNote 2).

Note that the 32-bit offset is a value masked in accordance with the
size of the area secured.

Referencing
Method

Instruction Used Meaning

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

216 User’s Manual U19383EJ1V0UM00

The meanings of label references for memory reference instructions, operation instructions, branch
instructions, and area allocation quasi directives are shown below.

Table 4-7. Memory Reference Instructions

Referencing Method Meaning

#label [reg] The absolute address of the label label is regarded as a displacement.

This has a 32-bit value and must be expanded into two instructions. By setting
#label[r0], referencing by an absolute address can be specified.

[reg] can be omitted. If omitted, the as850 assumes that [r0] has been specified.

label [reg] The offset in the section of the label label is regarded as a displacement. This has
a 32-bit value and must be expanded into two instructions. By specifying a regis-
ter indicating the first address of the section as reg and thereby setting label[reg],
general register relative referencing can be specified.

For a section allocated to a segment for which a tp symbol is to be generated,
however, the offset from the tp symbol is regarded as a displacement.

$label [reg] The gp offset of the label label is regarded as a displacement. This has either a
32-bit or 16-bit value, depending on the section defined by the label label, and its
instruction expansion pattern changes accordinglyNote . If an instruction with a 16-
bit value is expanded and the offset calculated by the address defined by the label
label is not within a range that can be expressed in 16 bits, an error is output at
linking. By setting $label[gp], relative referencing of the gp register (called a gp
offset reference) can be specified. [reg] can be omitted. If omitted, the as850
assumes that [gp] has been specified.

!label [reg] The absolute address of the label label is regarded as a displacement. This has a
16-bit value and is not instruction expanded. If the address defined by the label
label cannot be expressed in 16 bits, an error is output at linking. By setting
!label[r0], referencing by an absolute address can be specified.

[reg] can be omitted. If omitted, the as850 assumes that [r0] has been specified.

Unlike #label[reg] referencing, however, instruction expansion is not executed.

%label [reg] The offset in the section of the label label is regarded as a displacement. If the
label label is allocated to a section that is the ep symbol, the offset from the ep
symbol is regarded as a displacement. This has either a 16-bit value, or depend-
ing on the instruction a value lower than this, and if it is not a value that can be
expressed within this range, an error is output at linking.

[reg] can be omitted. If omitted, the as850 assumes that [ep] has been specified.

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

User’s Manual U19383EJ1V0UM00 217

Table 4-8. Operation Instructions

Note The instructions for which a 16-bit value can be specified as immediate are the addi, andi, movea, mulhi,
ori, satsubi, and xori instructions.

Table 4-9. Branch Instructions

Referencing Method Meaning

#label The absolute address of the label label is regarded as an immediate value.

This has a 32-bit value and must be expanded into two instructions.

label The offset in the section of the label label is regarded as an immediate value.

This has a 32-bit value and must be expanded into two instructions.

For a section allocated to a segment for which a tp symbol is to be generated,
however, the offset from the tp symbol is regarded as an immediate value.

$label The gp offset of the label label is regarded as an immediate value.

This has either a 32-bit or 16-bit value, depending on the section defined by the
label label, and its instruction expansion pattern changes accordingly . If an
instruction with a 16-bit value is expanded and the offset calculated by the
address defined by the label label is not within a range that can be expressed in
16 bits, an error is output at linking.

!label This has a 16-bit value, and if operation instructions of an architecture for which
a 16-bit value can be specifiedNote as immediate are specified, instruction
expansion is not executed. If the add, mov, and mulh instructions are specified,
expansion into appropriate 1-instruction units is possible. No other instructions
can be specified. If the value is not within a range that can be expressed in 16
bits, an error is output at linking.

%label The offset in the section of the label label is regarded as an immediate value.

If the label label is allocated to a section that is a target of the ep symbol, the off-
set from the ep symbol is regarded as a displacement.

This has a 16-bit value, and if operation instructions of an architecture for which
a 16-bit value can be specifiedNote as immediate are specified, instruction
expansion is not executed.

Unlike label referencing, however, instruction expansion is not executed. This
referencing method can be specified only for operation instructions of an archi-
tecture for which a 16-bit value can be specified as immediate, as well as the
add, mov, and mulh instructions. If the add, mov, and mulh instructions are
specified, expansion into appropriate 1-instruction units is possible. No other
instructions can be specified. If the value is not within a range that can be
expressed in 16 bits, an error is output at linking.

Referencing Method Meaning

#label The absolute address of the label label for the jmp instruction is regarded as the
jump destination address.

This has a 32-bit value and must be expanded into three instructions except
V850E. In case of V850E, this has a 32-bit value and must be expanded into
two instructions.

label The PC offset of the label label for branch instructions other than the jmp
instruction is regarded as being a displacement.

This is a 22-bit value, and if it is not within a range that can be expressed in 22
bits, an error is output at linking.

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

218 User’s Manual U19383EJ1V0UM00

Table 4-10. Area Allocation Quasi Directives

(5) ep offset reference
The CA850 assumes that data explicitly stored in internal RAM is shown below.

Data in the internal RAM is divided into the following two groups.
- .tidata/.tibss/.tidata.byte/.tibss.byte/.tidata.word/.tibss.word section

Data referenced by memory reference instructions (sld/sst) and having a small code size
- .sidata/.sibss section

Data referenced by memory reference instructions (ld/st) and having a large code size

Figure 4-3. Memory Location Image of Internal RAM

Referencing Method Meaning

#label

!label

The absolute address of the label label for the .word/.hword/.byte quasi instruc-
tions is regarded as a value.

This has a 32-bit value, but is masked in accordance with the bit width of the rel-
evant quasi directive.

label

%label

The offset in the section defined by the label label for the .word/.hword/.byte
quasi instructions is regarded as a value.

This has a 32-bit value, but is masked in accordance with the bit width of the rel-
evant quasi directive.

$label The gp offset of the label label for the .word/.hword/.byte quasi instructions is
regarded as a value.

This has a 32-bit value, but is masked in accordance with the bit width of the rel-
evant quasi directive.

Referenced by the offset from the address indicated by the element pointer (ep).

Higher address

.sibss section

.sidata section

.tibss section

.tidata section

.tibss.word section

.tidata.word section

.tibss.byte section

.tidata.byte section

Lower address
ep

InternalRAM

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

User’s Manual U19383EJ1V0UM00 219

(a) Data allocation
Data is allocated to the sections in internal RAM as follows:

<1> When developing a program in C
- Allocate data by specifying the "tidata", "tidata.byte", "tidata.word" or “sidata” section in the

#pragma section command.
- Allocate data by specifying the “tidata", "tidata.byte", "tidata.word", or "sidata" section in the sec-

tion file. Input the section file during compilation with a ca850 option.

<2> When developing a program in assembly language
Data is allocated to the .tidata, .tibss, .tidata.byte, .tibss.byte, .tidata.word, .tibss.word, .sidata, or
.sibss section by a section definition quasi directive. ep offset reference can also be executed
with respect to data in a specific range of external RAM by allocating the data to sections
.sedata or .sebss in the same manner as above.

Figure 4-4. Memory Allocation Image for External RAM (.sedata, /.sebss section)

(b) Data reference
Using the data allocation method explained "(a) Data allocation", the as850 generates a machine
instruction string that performs as follows:

- .Reference by ep offset for %label reference to data allocated to the .tidata, .tidata.byte, .tidata.word,
.tibss, .tibss.byte, .tibss.word, .sidata, .sibss, .sedata, or .sebss section

- Reference by inter-section offset for %label reference to data allocated to other than that above

Example

The as850 generates a machine instruction string for %label reference because: The as850 regards the
code in (1) as being a reference by ep offset because the defined data is allocated to the .sidata section -
The as850 regards the code in (2) as being a reference by in-section offset The as850 performs processing,
assuming that the data is allocated to the correct section. If the data is allocated to other than the correct
section, it cannot be detected by the as850.

 .sidata

sidata: .hword 0xfff0

 .data

data: .hword 0xfff0

 .text

 ld.h %sidata, r20 --(1)

 ld.h %data, r20 --(2)

Higher address

.tibss.byte section

.tidata.byte section

.sebss section

.sedata section

Lower address

ep

InternalRAM

ExternalRAM

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

220 User’s Manual U19383EJ1V0UM00

Example

Instructions are coded to allocate a label to the .sidata section and to perform reference by ep offset. Here,
however, label is allocated to the .data section because of the allocation error. In this case, the as850 loads
the data in the base register ep symbol value + offset value in the .data section of label.

Example

For (1),
reference by ep offset or by in-section offset is performed according to the section in which the defined data
is allocated (default).
For (2),
reference by ep offset is performed regardless of the section in which the defined data is allocated,
because label is within the range specified by the .option ep_label quasi directive.
For (3),
the operation is the same as (1) because label is within the range specified by the .option
no_ep_label quasi directive.

(6) gp offset reference
The CA850 assumes that data stored in external RAM (other than the .sedata or .sebss section explained on
the previous page) is basically shown below.

If r0-relative memory allocation for internal ROM or RAM is not done with the #pragma section command of C,
the section file to be input to the C compiler, or an assembly language section definition quasi directive, all data
is subject to gp offset reference.

(a) Data allocation
The memory reference instruction (ld/st) of the machine instruction of the V850 microcontrollers can
only accept 16-bit immediate as a displacement. Therefore, data is divided into the following two in CA850,
the former data is allocated to the sdata attribute section or the sbss attribute section, and latter data is allo-
cated to the data attribute section or the bss attribute section. Data having an initial value is allocated to
the sdata/data-attribute section, while data without an initial value is allocated to the sbss/bss-attribute
section. By default, the CA850 allocates data to the data-, sdata-, sbss-, then bss-attribute sections, start-
ing from the lowest address. Moreover, it is assumed that the global pointer (gp) is set by a start up mod-
ule to point to the address resulting from addition of 32 KB to the first address of the sdata-attribute section.

- Data allocated to a memory range that can be referenced by using the global pointer (gp) and a 16-bit
displacement

- Data allocated to a memory range that can be referenced by using the global pointer (gp) and a 32-bit
displacement (consisting of two or more instructions).

.text

ld.h %label[ep], r20

.text

ld.h %label1[r10], r20 -- (1)

.option ep_label

ld.h %label2[ep], r21 -- (2)

.option no_ep_label

ld.h %label3[r10], r22 -- (3)

Referenced by the offset from the address indicated by the global pointer (gp).

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

User’s Manual U19383EJ1V0UM00 221

Figure 4-5. Memory Location Image of gp Offset Reference Section

Remark The sum of sdata- and sbss-attribute sections is 64 KB. gp is 32 KB below the first byte of the
sdata-attribute section.

Data in the sdata- and sbss-attribute sections can be referenced by using a single instruction. To reference
data in the data- and bss-attribute sections, however, two or more instructions are necessary. Therefore,
the more data allocated to the sdata- and sbss-attribute sections, the higher the execution efficiency
and object efficiency of the generated machine instructions. However, the size of the memory range that
can be referenced with a 16-bit displacement is limited.
If all the data cannot be allocated to the sdata- and sbss-attribute sections, it becomes necessary to deter-
mine which data is to be allocated to the sdata- and sbss-attribute sections.
The CA850 "allocates as much data as possible to the sdata- and sbss-attribute sections." By default, all
data items are allocated to the sdata- and sbss-attribute sections. The data to be allocated can be selected
as follows:

<1> When the -Gnum option is specified
By specifying the -Gnum option upon starting the C compiler (ca850) or assembler (as850), data of
less than num bytes is allocated to the sdata- and sbss-attribute sections.

<2> When using a program to specify the section to which data will be allocated
Explicitly allocate data that will be frequently referenced to the sdata- and sbss-attribute sections. For
allocation, use a section definition quasi directive when using the assembly language, or the
#pragma section command when using C.

<3> Specifying with the section file
In C, allocate data by specifying the sdata section in the section file. Input the section file during com-
pilation with a ca850 option.

Higher Address

bss attribute section

sbss attribute section

sdata attribute section

data attribute section

Lower address

gp

data without an

initial value

data with an initial

value

32K Bytes

64K Bytes

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

222 User’s Manual U19383EJ1V0UM00

(b) Data reference
Using the data allocation method explained "(a) Data allocation", the as850 generates a machine
instruction string that performs as follows:

- Reference by using a 16-bit displacement for gp offset reference to data allocated to the sdata- and
sbss- attribute sections

- Reference by using a 32-bit displacement (consisting of two or more machine instructions) for gp offset
reference to data allocated to the data- and bss-attribute sections

Example

The as850 generates a machine instruction string, equivalent to the following instruction string for the ld.w
instruction in (2), that performs gp offset reference of the data defined in (1).

The as850 processes files on a one-by-one basis. Consequently, it can identify to which attribute section
data having a definition in a specified file has been allocated, but cannot identify the section to which data
not having a definition in a specified file has been allocated. Therefore, the as850 generates machine
instructions as followsNote, when the -Gnum option is specified at start-up, assuming that the alloca-
tion policy described above (i.e., data smaller than a specific size is allocated to the sdata- and sbss-
attribute sections) is observed.

Note The data, for which data or sdata is specified by the .option quasi directive, is assumed to
be allocated in the .data or .sdata section regardless of its size.

- Generates machine instructions that perform reference by using a 16-bit displacement for gp
offset reference to data not having a definition in a specified file and which consists of less than num
bytes.

- Generates a machine instruction string that performs reference by using a 32-bit displacement (con-
sisting of two or more machine instructions) for gp offset reference to data having no definition in a
specified file and which consists of more than num bytes.

To identify these conditions, however, the size of the data not having a definition in a specified file, and
which is referenced by a gp offset, must be identified. To develop a program in an assembly language,
therefore, specify the size of the data (actually, a label for which there is no definition in a specified file
and which is referenced by a gp offset) for which there is no definition in a specified file, by using the
.extern quasi directive.

Example

 .data

data: .word 0xfff00010 --(1)

 .text

 ld.w $data[gp], r20 --(2)

movhi hi1($data), gp, r1

ld.w lo($data)[r1], r20

.extern data, 4 --(1)

.text

ld.w $data[gp], r20 --(2)

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

User’s Manual U19383EJ1V0UM00 223

When -G2 is specified upon starting the as850, the as850 generates a machine instruction string, equiva-
lent to the following instruction string for the ld.w instruction in (2), that performs gp offset reference of the
data defined in (1).

To develop a program in C, the C compiler (ca850) of the CA850 automatically generates the .extern quasi
directive, thus outputting code which specifies the size of data not having a definition in the spec-
ified file (actually, a label for which there is no definition in a specified file and which is referenced by a gp
offset).

[Summary]
The handling of gp offset reference (specifically, memory reference instructions that use a relative expres-
sion having the gp offset of a label as their displacement) by the as850 is summarized below:

<1> If the data has a definition in a specified file
- If the data is to be allocated to the sdata- or sbss-attribute sectionNote.

Generates a machine instruction that performs reference by using a 16-bit displacement.
- If the data is not allocated to the sdata- or sbss-attribute section.

Generates a machine instruction string that performs reference by using a 32-bit displacement.

Note If the value of the constant expression of a relative expression in the form of "label +
constant expression" exceeds 16 bits, the as850 generates a machine instruction string
that performs reference using a 32-bit displacement.

<2> If the data does not have a definition in a specified file
- If the -Gnum option is specified upon starting the assembler

If a size of other than 0, but less than num bytes is specified for the data (label referenced by gp
offset) by the .comm, .extern, .globl, .lcomm, or .size quasi directive.
Assumes that the data is to be allocated to the sdata- or sbss-attribute section and generates a
machine instruction that performs reference by using a 16-bit displacement.
Other than above, assumes that the data is not allocated to the sdata- or sbss-attribute
section and generates a machine instruction string that performs reference using a 32-bit dis-
placement.

- If the -Gnum option is not specified upon starting the assembler
Assumes that the data is to be allocated to the sdata- or sbss-attribute section and generates a
machine instruction that performs reference by using a 16-bit displacement.

movhi hi1($data), gp, r1

ld.w lo($data)[r1], r20

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

224 User’s Manual U19383EJ1V0UM00

(7) hi ()/lo ()/hi1 ()

(a) To store 32-bit constant value in a register
The V850 microcontroller does not support a machine instruction that can store a 32-bit constant value in a
register with a single instruction. To store a 32-bit constant value in a register, therefore, the as850 per-
forms instruction expansion, and generates an instruction string, by using the movhi and movea instruc-
tions. These divide the 32-bit constant value into the higher 16 bits and lower 16 bits.

Example

At this time, the movea instruction, used to store the lower 16 bits in the register, sign-extends the specified
16-bit value to a 32-bit value. To adjust the sign-extended bits, the as850 does not merely store the higher
16 bits in a register when using the movhi instruction, instead it stores the value of "the higher 16 bits + the
most significant bit (i.e., bit 15) of the lower 16 bits" in the register.

mov 0x18000, r11 movhi hi1(0x18000), r0, r1

movea lo(0x18000), r1, r11

Higher 16 bits + Most significant bit of lower 16 bits (bit number 15)

00000000

Higher 16 bits

00000001 10000000 00000001

Lower 16 bits

00000000 00000001 00000000 00000000

11111111 11111111 10000000 00000000

00000000 00000000 10000000 00000000

00000000 00000010 00000000 00000000

11111111 11111111 10000000 00000000

00000000 00000001 10000000 00000000

=

=

+

+

000000000000001 + 1 = 0000000000000010

When not adjusting

When adjusting

movhi

movhi

hi1

Return to original value

Does not return to original value

Sign extension of lower 16 bit by movea

Sign extension of lower 16 bit by movea

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

User’s Manual U19383EJ1V0UM00 225

(b) To reference memory by using 32-bit displacement
The memory reference instruction (Load/store and bit manipulation instructions) of the machine instruc-
tion of the V850 microcontrollers can only take 16-bit immediate as a displacement. Consequently, the
as850 performs instruction expansion to reference the memory by using a 32-bit displacement, and
generates an instruction string that performs the reference, by using the movhi and memory reference
instructions and thereby constituting a 32-bit displacement from the higher 16 bits and lower 16 bits of the
32-bit displacement.

Example

At this time, the memory reference instruction that uses the lower 16 bits as a displacement, sign-extends
the specified 16-bit displacement to a 32-bit value. To adjust the sign-extended bits, the as850 does not
merely configure the displacement of the higher 16 bits by using the movhi instruction, instead it
configures the displacement of

ld.w 0x18000[r11], r12 movhi hi1(0x18000), r11, r1

ld.w lo(0x18000)[r1], r12

Higher 16 bits + Most significant bit of lower 16 bits (bit number 15)

00000000

Higher 16 bits

00000001 10000000 00000001

Lower 16 bits

00000000 00000001 00000000 00000000

11111111 11111111 10000000 00000000

00000000 00000000 10000000 00000000

00000000 00000010 00000000 00000000

11111111 11111111 10000000 00000000

00000000 00000001 10000000 00000000

=

=

+

+

000000000000001 + 1 = 0000000000000010

When not adjusting

When adjusting

movhi

movhi

hi1

Correct address

Not correct address

Sign extention of lower 16 bit by ld.w

Sign extention of lower 16 bit by ld.w

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

226 User’s Manual U19383EJ1V0UM00

(c) hi() /lo() /hi1()
In the next table, the as850 can specify the higher 16 bits of a 32-bit value, the lower 16 bits of a 32-bit
value, and the value of the higher 16 bits + bit 15 of a 32-bit value by using hi(), lo(), and hi1() Note .

Note If this information cannot be internally resolved by the assembler, it is reflected in the relo-
cation information and subsequently resolved by the linker (ld850).

Table 4-11. Area Allocation Quasi Directives

Example

hi () /lo () /hi1 () Meaning

hi (value) Higher 16 bits of value

lo (value) Lower 16 bits of value

hi1 (value) Higher 16 bits of value + value of bit 15 of value

 .data

L1:

 :

 .text

 movhi hi($L1), r0, r10 --Stores the higher 16 bits of the gp offset value of

 --L1 in the higher 16 bits of r10, and 0 in the

 --lower 16 bits.

 movea lo($L1), r0, r10 --Sign-extends and stores the lower 16 bits of gp

 --offset value of L1 in r10

 :

 movhi hi1($L1), r0, r1 --Stores the gp offset value of L1 in r10

 movea lo($L1), r1, r10

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

User’s Manual U19383EJ1V0UM00 227

4.2 Quasi Directives

This section describes the assembly language quasi directives supported by the CA850 assembler (as850).

4.2.1 Outline

A quasi directive performs the preprocessing necessary for the assembler to generate machine instructions. It
directs the assembler to define a section or input a file. It can also direct processing of output code and macro
replacement.

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

228 User’s Manual U19383EJ1V0UM00

4.2.2 Section definition quasi directives

Using a section definition quasi directive, the as850 can allocate a code, generated for a source program
(assembly language), to a specified sectionNote. Next table lists the section definition quasi directives described in this
section.

Note The CA850 handles machine instructions and data in units called sections.

Table 4-12. Section Definition Quasi Directives

If the assembler source program does not contain a section definition quasi directive, all sections generated by that
program will become .text sections.

Quasi directive Meanings

.tidata Allocation to .tidata section

.tidata.byte Allocation to .tidata.byte section

.tidata.word Allocation to .tidata.word section

.tibss Allocation to .tibss section

.tibss.byte Allocation to .tibss.byte section

.tibss.word Allocation to .tibss.word section

.data Allocation to .data section

.bss Allocation to .bss section

.sdata Allocation to .sdata section

.sbss Allocation to .sbss section

.sedata Allocation to .sedata section

.sebss Allocation to .sebss section

.sidata Allocation to .sidata section

.sibss Allocation to .sibss section

.sconst Allocation to .sconst section

.const Allocation to .const section

.text Allocation to .text section

.vdbstrtab Allocation to .vdbstrtab section

.vdebug Allocation to .vdebug section

.vline Allocation to .vline section

.section Allocation to section of specified type

.previous (Re-)definition of section definition quasi directive preceding the section definition quasi
directive that specifies the current section definition quasi directive

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

User’s Manual U19383EJ1V0UM00 229

Allocation to .tidata section.

[Syntax]

.tidata

[Function]

Allocates, to the .tidata sectionNote, a code generated for the assembly language source program, between this
quasi directive and the next section definition quasi directive. Or, if there is no subsequent section definition quasi
directive, allocates it between this quasi directive and the end of the assembler source file.

Note Reserved section having section name .tidata, section type PROGBITS, and section attribute AW.

[Description]

The .tidata section is located in internal RAM of the V850 microcontrollers and is assumed to be accessed by rela-
tive addressing, using ep and the sld/sst instruction. The as850 and ld850 position .tidata at the address indicated by
ep when none of .tidata.byte, .tibss.byte, .tidata.word, and .tibss.word sections are used. When any of these sections
is used, .tidata is positioned at the address obtained by adding the size of the .tidata.byte/.tibss.byte/.tidata.word/
.tibss.word section used to the address indicated by ep.

For the sld and sst instructions, the range to be accessed varies with the data size. To effectively use the sld and sst
instructions, therefore, it is recommended that byte data be allocated to the .tidata.byte/.tibss.byte section and that
halfword or larger data be allocated to the .tidata.word/.tibss.word section. If, however, the amount of data to be
stored in internal RAM is small, making such careful consideration for access areas unnecessary, this quasi directive
can be used to allocate data to the .tidata section, thus eliminating the necessity to classify data by size.

[Example]

Used as .tidata section until the next section definition quasi directive.

.tidata

 .tidata

 .align 4

 .globl _p, 4

_p:

 .word 10

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

230 User’s Manual U19383EJ1V0UM00

Allocation to .tidata.byte section.

[Syntax]

.tidata.byte

[Function]

Allocates, to the .tidata.byte sectionNote, a code generated for the assembly language source program, between this
quasi directive and the next section definition quasi directive. Or, if there is no subsequent section definition quasi
directive, allocates it between this quasi directive and the end of the assembler source file.

Note Reserved section having section name .tidata.byte, section type PROGBITS, and section attribute AW.

[Description]

The .tidata.byte section is located in internal RAM of the V850 microcontrollers and is assumed to be accessed by
relative addressing, using ep and the sld/sst instruction. The sld/sst instruction can access

- Area of up to 128 bytes when byte data is accessed.
- Area of up to 256 bytes when halfword or larger data is accessed.

The as850 and ld850 classify sections into either .tidata.byte/.tibss.byte or .tidata.word/.tibss.word, depending on
the size of the data, to position .tidata.byte to the address indicated by ep, enabling effective use of the area that can
be accessed by the sld/sst instruction.It is recommended, therefore, that byte data having an initial value to be stored
in internal RAM be allocated to the .tidata.byte section by using this quasi directiveNote.

Note Byte data having an initial value can be accessed even if allocated to the .tidata.word section.

[Example]

Used as .tidata.byte section until the next section definition quasi directive.

.tidata.byte

 .tidata.byte

 .globl _p, 1

_p:

 .byte 1

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

User’s Manual U19383EJ1V0UM00 231

Allocation to .tidata.word section.

[Syntax]

.tidata.word

[Function]

Allocates, to the .tidata.word sectionNote, a code generated for the assembly language source program, between
this quasi directive and the next section definition quasi directive. Or, if there is no subsequent section definition quasi
directive, allocates it between this quasi directive and the end of the assembler source file.

Note Reserved section having section name .tidata.word, section type PROGBITS, and section attribute AW.

[Description]

The .tidata.word section is located in internal RAM of the V850 microcontrollers and is assumed to be accessed by
relative addressing, using ep and the sld/sst instruction. The sld/sst instruction can access

- Area of up to 128 bytes when byte data is accessed.
- Area of up to 256 bytes when halfword or larger data is accessed.

The as850 and ld850 classify sections into either .tidata.byte/.tibss.byte or .tidata.word/.tibss.word, depending on
the size of the data, to position .tidata.word at the address obtained by adding the size of the .tidata.byte/.tibss.byte
section used to the address indicated by ep. This enables the area that can be accessed by the sld/sst instruction to
be used effectively.It is recommended, therefore, that halfword or larger data having an initial value to be stored in
internal RAM be allocated to the .tidata.word section by using this quasi directive.

[Example]

Used as .tidata.word section until the next section definition quasi directive.

.tidata.word

 .tidata.word

 .align 4

 .globl _p, 4

_p:

 .word 100000

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

232 User’s Manual U19383EJ1V0UM00

Allocation to .tibss section.

[Syntax]

.tibss

[Function]

Allocates, to the .tibss sectionNote, a code generated for the assembly language source program between this quasi
directive and the next section definition quasi directive. Or, if there is no subsequent section definition quasi directive,
allocates it between this quasi directive and the end of the assembler source file.

Note Reserved section having section name .tibss, section type NOBITS, and section attribute AW.

[Description]

The .tibss section is data without an initial value that is located in internal RAM of the V850 microcontrollers. Access
to it is assumed to be by relative addressing using ep and the sld/sst instruction. The as850 and ld850 position .tibss
at the address indicated by ep when none of .tidata.byte, .tibss.byte, .tidata.word, .tibss.word, and .tidata sections are
used. When any of these sections is used, .tibss is positioned at the address obtained by adding the size of the
.tidata.byte/.tibss.byte/.tidata.word/.tibss.word section used to the address indicated by ep.

The range to be accessed when the sld and sst instructions are used varies with the data size. To effectively use
the sld and sst instructions, therefore, it is recommended that byte data be allocated to the .tidata.byte/.tibss.byte sec-
tion and that halfword or larger data be allocated to the .tidata.word/.tibss.word section. If, however, the quantity of
data to be stored in internal RAM is small, making such careful preparations for access areas unnecessary, this quasi
directive can be used to allocate data to the .tibss section, thus eliminating the necessity to classify data by size.

[Example]

Used as .tibss section until the next section definition quasi directive.

.tibss

.tibss

.globl _1, 4

.lcomm _1, 4, 4

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

User’s Manual U19383EJ1V0UM00 233

Allocation to .tibss.byte section.

[Syntax]

.tibss.byte

[Function]

Allocates, to the .tibss.byte sectionNote, a code generated for the assembly language source program between this
quasi directive and the next section definition quasi directive. Or, if there is no subsequent section definition quasi
directive, allocates it between this quasi directive and the end of the assembler source file.

Note Reserved section having section name .tibss.byte, section type NOBITS, and section attribute AW.

[Description]

The .tibss.byte section is located in internal RAM of the V850 microcontrollers. Access to it is assumed to be by rel-
ative addressing using ep and the sld/sst instruction. The sld/sst instruction can access

- Area of up to 128 bytes when byte data is accessed
- Area of up to 256 bytes when halfword or larger data is accessed

The as850 and ld850 classify sections into either .tidata.byte/.tibss.byte or .tidata.word/.tibss.word, depending on
the size of the data, to position .tibss.byte at the address obtained by adding the size of the .tidata.byte section used to
the address indicated by ep. This enables the area that can be accessed by the sld/sst instruction to be used effec-
tively. It is recommended, therefore, that byte data without an initial value to be stored in internal RAM be allocated to
the .tibss.byte section with this quasi directiveNote.

Note Byte data can be accessed even if allocated to the .tibss.word section.

[Example]

Used as .tibss.byte section until the next section definition quasi directive.

.tibss.byte

.tibss.byte

.globl _1, 1

.lcomm _1, 1, 1

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

234 User’s Manual U19383EJ1V0UM00

Allocation to .tibss.word section.

[Syntax]

.tibss.word

[Function]

Allocates, to the .tibss.word sectionNote, a code generated for the assembly language source program between this
quasi directive and the next section definition quasi directive. Or, if there is no subsequent section definition quasi
directive, allocates it between this quasi directive and the end of the assembler source file.

Note Reserved section having section name .tibss.word, section type NOBITS, and section attribute AW.

[Description]

The .tibss.word section is located in internal RAM of the V850 microcontrollers. Access to it is assumed to be by rel-
ative addressing using ep and the sld/sst instruction. The sld/sst instruction can access

- Area of up to 128 bytes when byte data is accessed
- Area of up to 256 bytes when halfword or larger data is accessed

The as850 and ld850 classify sections into either .tidata.byte/.tibss.byte or .tidata.word/.tibss.word, depending on
the size of the data, to position .tibss.word at the address obtained by adding the size of the .tidata.byte/.tibss.byte/
.tidata.word section used to the address indicated by ep. This enables the area that can be accessed by the sld/sst
instruction to be used effectively. It is recommended, therefore, that halfword or larger data without an initial value to
be stored in internal RAM be allocated to the .tibss.word section with this quasi directive.

[Example]

Used as .tibss.word section until the next section definition quasi directive.

.tibss.word

.tibss.word

.globl _1, 4

.lcomm _1, 4, 4

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

User’s Manual U19383EJ1V0UM00 235

Allocation to .data section.

[Syntax]

.data

[Function]

Allocates, to the .data sectionNote, a code generated for the assembly language source program, between this quasi
directive and the next section definition quasi directive. Or, if there is no subsequent section definition quasi directive,
allocates it between this quasi directive and the end of the assembler source file.

Note Reserved section having section name .data, section type PROGBITS, and section attribute AW.

[Description]

The .data section is allocated to a memory range which can be referenced by using gp and a 32-bit displacement,
specified by two instructions. This section has an initial value

[Example]

Used as .data section until the next section definition quasi directive.

.data

 .data

 .align 4

 .globl _p, 4

_p:

 .word 10

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

236 User’s Manual U19383EJ1V0UM00

Allocation to .bss section.

[Syntax]

.bss

[Function]

Allocates, to the .bss sectionNote, a code generated for the assembly language source program, between this quasi
directive and the subsequent section definition quasi directive. Or, if there is no subsequent section definition quasi
directive, allocates it between this pquasi directive and the end of the assembler source file.

Note Reserved section having section name .bss, section type NOBITS, and section attribute AW.

[Description]

The .bss section is allocated to a memory range which can be referenced by using gp and a 32-bit displacement,
specified by two instructions. This section has no initial value.

[Example]

Used as .bss section until the next section definition quasi directive.

.bss

.bss

.lcomm _stack, 0x100, 4

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

User’s Manual U19383EJ1V0UM00 237

Allocation to .sdata section.

[Syntax]

.sdata

[Function]

Allocates, to the .sdata sectionNote, a code generated for the assembly language source program, between this
quasi directive and the next section definition quasi directive. Or, if there is no subsequent section definition quasi
directive, allocates it between this quasi directive and the end of the assembler source file.

Note Reserved section having section name .sdata, section type PROGBITS, and section attribute AWG.

[Description]

The .sdata section is allocated to a memory range which can be referenced with a single instruction by using gp and
a 16-bit displacement (up to 64 KB, including the size of the .sbss section). This section has an initial value.

[Example]

Used as .sdata section until the next section definition quasi directive.

.sdata

 .sdata

 .align 4

 .globl _p, 4

_p:

 .word 10

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

238 User’s Manual U19383EJ1V0UM00

Allocation to .sbss section.

[Syntax]

.sbss

[Function]

Allocates, to the .sbss sectionNote, a code generated for the assembly language source program, between this quasi
directive and the next section definition quasi directive. Or, if there is no subsequent section definition quasi directive,
allocates it between this quasi directive and the end of the assembler source file.

Note Reserved section having section name .sbss, section type NOBITS, and section attribute AWG.

[Description]

The .sbss section is allocated to a memory range which can be referenced with a single instruction by using gp and
a 16-bit displacement (up to 64 KB, including the size of the .sdata section). This section has no initial value.

[Example]

Used as .sbss section until the next section definition quasi directive.

.sbss

.sbss

.globl _1, 4

.lcomm _1, 4, 4

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

User’s Manual U19383EJ1V0UM00 239

Allocation to .sedata section.

[Syntax]

.sedata

[Function]

Allocates, to the .sedata sectionNote, a code generated for the assembly language source program, between this
quasi directive and the next section definition quasi directive. Or, if there is no subsequent section definition quasi
directive, allocates it between this quasi directive and the end of the assembler source file.

Note Reserved section having section name .sedata, section type PROGBITS, and section attribute AW.

[Description]

The .sedata section is allocated to a memory range which can be referenced with a single instruction by using ep
and a 16-bit displacement (up to 32 KB in the negative direction, relative to ep). It cannot be allocated, however, to the
higher addresses used for the .sebss section within that range. This section has an initial value.

[Example]

Used as .sedata section until the next section definition quasi directive.

.sedata

 .sedata

 .align 4

 .globl _p, 4

_p:

 .word 10

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

240 User’s Manual U19383EJ1V0UM00

Allocation to .sebss section.

[Syntax]

.sebss

[Function]

Allocates, to the .sebss sectionNote, a code generated for the assembly language source program, between this
quasi directive and the next section definition quasi directive. Or, if there is no subsequent section definition quasi
directive, allocates it between this quasi directive and the end of the assembler source file.

Note Reserved section having section name .sebss, section type NOBITS, and section attribute AW.

[Description]

The .sebss section is allocated to a memory range which can be referenced with a single instruction by using ep and
a 16-bit displacement (up to 32 KB in the negative direction, relative to ep). It cannot be allocated, however, to the
lower addresses used for the .sedata section within that range. This section has no initial value.

[Example]

Used as .sebss section until the next section definition quasi directive.

.sebss

.sebss

.globl _1, 4

.lcomm _1, 4, 4

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

User’s Manual U19383EJ1V0UM00 241

Allocation to .sidata section.

[Syntax]

.sidata

[Function]

Allocates, to the .sidata sectionNote, a code generated for the assembly language source program, between this
quasi directive and the next section definition quasi directive. Or, if there is no subsequent section definition quasi
directive, allocates it between this quasi directive and the end of the assembler source file.

Note Reserved section having section name .sidata, section type PROGBITS, and section attribute AW.

[Description]

The .sidata section is allocated to a memory range which can be referenced with a single instruction by using ep and
a 16-bit displacement (up to 32 KB in the positive direction, relative to ep). It is allocated at an address higher by the
size of the .tidata.byte, .tibss.byte, .tidata.word, .tibss.word, .tidata, or .tibss section within that range.

[Example]

Used as .sidata section until the next section definition quasi directive.

.sidata

 .sidata

 .align 4

 .globl _p, 4

_p:

 .word 10

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

242 User’s Manual U19383EJ1V0UM00

Allocation to .sibss section.

[Syntax]

.sibss

[Function]

Allocates, to the .sibss sectionNote, a code generated for the assembly language source program, between this
quasi directive and the next section definition quasi directive. Or, if there is no subsequent section definition quasi
directive, allocates it between this quasi directive and the end of the assembler source file.

Note Reserved section having section name .sibss, section type NOBITS, and section attribute AW.

[Description]

The .sibss section is allocated to a memory range that can be referenced with a single instruction by using ep and a
16-bit displacement (up to 32 KB in the positive direction from ep). It is allocated at an address higher by the size of
the .tidata.byte, .tibss.byte, .tidata.word, .tibss.word, .tidata, .tibss, or .sidata section within that range. This section
does not have an initial value .

[Example]

Used as .sibss section until the next section definition quasi directive.

.sibss

.sibss

.globl _1, 4

.lcomm _1, 4, 4

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

User’s Manual U19383EJ1V0UM00 243

Allocation to .sconst section.

[Syntax]

.sconst

[Function]

Allocates, to the .sconst sectionNote, a code generated for the assembly language source program, between this
quasi directive and the next section definition quasi directive. Or, if there is no subsequent section definition quasi
directive, allocates it between this quasi directive and the end of the assembler source file.

Note Reserved section having section name .sconst, section type PROGBITS, and section attribute A.

[Description]

The .sconst section is allocated to a memory range which can be referenced with a single instruction by using r0 and
a 16-bit displacement (up to 32 KB in the positive direction, relative to r0). This section is used for constant data (read-
only).

[Example]

Used as .sconst section until the next section definition quasi directive.

.sconst

 .sconst

 .align 4

 .globl _p, 4

_p:

 .word 10

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

244 User’s Manual U19383EJ1V0UM00

Allocation to .const section.

[Syntax]

.const

[Function]

Allocates, to the .const sectionNote, a code generated for the assembly language source program, between this
quasi directive and the next section definition quasi directive. Or, if there is no subsequent section definition quasi
directive, allocates it between this quasi directive and the end of the assembler source file.

Note Reserved section having section name .const, section type PROGBITS, and section attribute A.

[Description]

The .const section is allocated to a memory range which can be referenced by using r0 and a 32-bit displacement,
specified by two instructions. This section is used for constant data (read-only).

[Example]

Used as .const section until the next section definition quasi directive.

.const

 .const

 .align 4

 .globl _p, 4

_p:

 .word 10

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

User’s Manual U19383EJ1V0UM00 245

Allocation to .text section.

[Syntax]

.text

[Function]

Allocates, to the .text sectionNote 1, a code generated for the assembly language source program, between this
quasi directive and the next section definition quasi directive.

Or, if there is no subsequent section definition quasi directive, allocates it between this quasi directive and the end of
the assembler source fileNote 2.

Notes 1. Reserved section having section name .text, section type PROGBITS, and section attribute AX.
2. The as850 assumes .text to be specified two times before the assembly-language source program in a

single assembler source file (for example, if ".word 1" is specified prior to a section definition quasi direc-
tive, it is allocated to the .text section). If, however, the .text section is not explicitly specified, and if a
label definition, instruction, location counter control quasi directive, or area allocation quasi directive are
not specified for the .text section that is specified as being the default section, the as850 does not gener-
ate the .text section.

[Example]

Used as .text section until the next section definition quasi directive.

.text

 .text

 .align 4

 .globl _start

_start:

 mov #_tp_TEXT, tp

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

246 User’s Manual U19383EJ1V0UM00

Allocation to .vdbstrtab section.

[Syntax]

.vdbstrtab

[Function]

Allocates, to the .vdbstrtab sectionNote, a code generated for the assembly language source program, between this
quasi directive and the next section definition quasi directive. Or, if there is no subsequent section definition quasi
directive, allocates it between this quasi directive and the end of the assembler source file.

Note Reserved section having section name .vdbstrtab and section type STRTAB.

.vdbstrtab

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

User’s Manual U19383EJ1V0UM00 247

Allocation to .vdebug section.

[Syntax]

.vdebug

[Function]

Allocates, to the .vdebug sectionNote, a code generated for the assembly language source program, between this
quasi directive and the next section definition quasi directive. Or, if there is no subsequent section definition quasi
directive, allocates it between this quasi directive and the end of the assembler source file.

Note Reserved section having section name .vdebug and section type PROGBITS.

.vdebug

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

248 User’s Manual U19383EJ1V0UM00

Allocation to .vline section.

[Syntax]

.vline

[Function]

Allocates, to the .vline sectionNote, a code generated for the assembly language source program, between this quasi
directive and the next section definition quasi directive. Or, if there is no subsequent section definition quasi directive,
allocates it between this quasi directive and the end of the assembler source file.

Note Reserved section having section name .vline and section type PROGBITS.

.vline

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

User’s Manual U19383EJ1V0UM00 249

Allocation to section of specified type.

[Syntax]

.section "section-name"[, section-type]

[Function]

Allocates, to a section of the type specified by the second operand in the section name specified by the first oper-
and, a code generated for the assembly language source program, between this quasi directive and the next section
definition quasi directive. Or, if there is no subsequent section definition quasi directive, allocates it between this quasi
directive and the end of the assembler source file.

Note Uppercase characters can also be used to specify a section type (for example, TEXT can be specified
instead of text).

Table 4-13. Section Types

[Example]

Defines a data-attribute section named sec.

.section

Type Meaning

data data-attribute section

Section having section type PROGBITS and section attribute AW

bss bss-attribute section

Section having section type NOBITS and section attribute AW

sdata sdata-attribute section

Section having section type PROGBITS and section attribute AWG

sbss sbss-attribute section

Section having section type NOBITS and section attribute AWG

const const-attribute section

Section having section type PROGBITS and section attribute A

text text-attribute section

Section having section type PROGBITS and section attribute AX

comment comment-attribute section

Section with section type PROGBITS and without any section attribute

 .section "sec", data

 .align 4

 .globl _p, 4

_p:

 .word 10

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

250 User’s Manual U19383EJ1V0UM00

[Caution]

- Section names .pro_epi_runtime, .text, .data, .bss, .sdata, .sbss, .sconst, .const, .sidata, .sibss, .sedata, .sebss,
.tidata, .tibss, .tidata.byte, .tibss.byte, .tidata.word, .tibss.word, and .version are reserved for use by the CA850.
The correspondence between these reserved section names and the section types is detailed in the table
below.

Table 4-14. Section Types

If these section names are specified by the first operand, therefore, either the second operand must be omitted
or the section type corresponding to each reserved section must be specified. If a type other than the corre-
sponding type is specified, the as850 outputs the following message then stops assembling.

- If a name other than that of one of the above reserved sections is specified by the first operand, and if the sec-
ond operand is omitted, it is assumed that text is specified as the section type.

- If two or more different section types are specified for a single section having a specific name, the as850 out-
puts the following message then stops assembling

- If an interrupt request name defined in the device file is specified as the first operand, the linker automatically
allocates the section to the corresponding handler address. The allocation address, therefore, cannot be spec-
ified by using the linker for a section for which an interrupt request name has been specified. An interrupt
request name must not be specified for other than an interrupt handler section.
[Example of using interrupt request name]
Defines a section that jumps to __ start when a reset is input.

Section Type Reserved Section Name

data .tidata, .tidata.byte, .tidata.word, .data, .sedata, .sidata

bss .tibss, .tibss.byte, .tibss.word, .bss, .sebss, .sibss

sdata .sdata

sbss .sbss

const .sconst, .const

text .text, .pro_epi_runtime

comment .version

F3504: illegal section kind

F3504: illegal section kind

.section "RESET", text

jr _start

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

User’s Manual U19383EJ1V0UM00 251

(Re-)definition of section definition quasi directive preceding the section definition quasi directive that specifies the
current section definition quasi directive.

[Syntax]

.previous

[Function]

(Re-)specifies the section definition quasi directive preceding the section definition quasi directive specifying the cur-
rent section definition quasi directive.

For example, if quasi directives .data, .text, then .previous are specified, the specification of the .previous quasi
directive is equivalent to specifying the .data quasi directive.

[Example]

.previous is equivalent to .data.

.previous

 .data

 .align 4

 .globl _p, 4

_p:

 .word 10

 .text

lab:

 jbr LL

 .previous

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

252 User’s Manual U19383EJ1V0UM00

4.2.3 Symbol control quasi directives

Using the symbol control quasi directives, the as850 can generate a symbol table entry, define symbols, and specify
the size of the data indicated by a label. Next table lists the symbol control quasi directives described in this section.

Table 4-15. Symbol Control Quasi Directives

Maintain the value of sizeNote, as specified by the symbol control quasi directive, within 231. If a value of 231 or more
is specified, the as850 outputs the following message then stops assembling.

Quasi directive Meanings

.set Defines a symbol

.size Specifies the size of the data indicated by label

.frame Generates a symbol table entry (FUNC type)

.file Generates a symbol table entry (FILE type)

.ext_func Generates a flash table entry

.ext_ent_size Specifies a flash table entry size

E3247: illegal size value

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

User’s Manual U19383EJ1V0UM00 253

Defines a symbol.

[Syntax]

.set symbol-name, value

[Function]

Defines a symbol having a symbol name specified by the first operand and a value(Integer value) specified by the
second operand. If the .set quasi directive is specified for a given symbol more than once within a single assembler
source file, reference to that symbol will have the following value, depending on the position of that reference.

- If the reference appears between the beginning of the file and the first .set quasi directive for that symbol
Value specified with the last .set quasi directive for that symbol

- If the reference does not appear between a certain .set quasi directive and the next .set quasi directive, or if
there is no subsequent .set quasi directive, between the first .set quasi directive and the end of the assembler
source file
Value specified by that .set quasi directive

[Example]

Defines the value of symbol sym1 as 0x10

[Caution]

- Any label reference or undefined symbol reference must not be used to specify a value.
Otherwise, the as850 outputs the following message then stops assembling.

- If a label name, a macro name defined by the .macro quasi directive, or a symbol of the same name as a formal
parameter of a macro is specified, the as850 outputs the following message and stops assembling.

.set

.set sym1, 0x10

E3203: illegal expression (string)

E3212: symbol already define as string

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

254 User’s Manual U19383EJ1V0UM00

Specifies the size of the data indicated by label.

[Syntax]

.size label-name, size

[Function]

Specifies the size specified by the second operand as the size of the data indicated by the label specified by the first
operandNote.

Note If the size has already been set, the previously specified value is overwritten.

[Example]

Assumes size of label1 to be 15

[Caution]

If the -A option of the linker of the CA850 is used, set the size of the data to be allocated to the sdata-attribute sec-
tion (actually, the label subject to gp offset reference) by using this quasi directive or the .globl quasi directive when
defining the dataNote.

Note Otherwise, valid information cannot be obtained by specifying the -A option of the linker.

.size

.size label1, 15

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

User’s Manual U19383EJ1V0UM00 255

Generates a symbol table entry (FUNC type).

[Syntax]

.frame label-name, size

[Function]

Generates a symbol table entry of a size specified by the second operand and type FUNC when the symbol table
entry for the label specified by the first operand is generated upon the generation of the object fileNote.

Note This quasi directive is used for debugging at C language source level. Specify 0 in size to code for debugging
at assembler level

.frame

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

256 User’s Manual U19383EJ1V0UM00

Generates a symbol table entry (FILE type).

[Syntax]

.file "file-name"

[Function]

Generates a symbol table entryNote having a file name specified by the operand and type FILE when an object file is
generated. If this quasi directive does not exist in the input source file, it is assumed that ".file "input file name""has
been specified, and a symbol table entry with the input file name and type FILE is generated.

Note The binding class is LOCAL.

.file

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

User’s Manual U19383EJ1V0UM00 257

Generates a flash table entry.

[Syntax]

.ext_func label-name, ID-value

[Function]

Generates a flash table entry having a label name and ID value specified by the operands when an object file is gen-
erated. Specify this instruction to use the function for relinking a flash area or external ROM

[Description]

To specify a branch from an area that cannot be rewritten or replaced (boot area) to a rewritable or replaceable area
(flash area), a branch table is generated to a specified address in a flash area by specifying this quasi directive and
two-stage branch is performed via the table.

[Caution]

- This quasi directive must be written in a source file which contains a relevant branch instruction (in the boot
area) and a source file which contains a relevant label definition (in the flash area).

- If the same label name is specified with a different ID value, the as850 outputs the following message then
stops assembling.

- If the same ID value is specified with a different label name, the as850 outputs the following message then
stops assembling.

- It is recommended that all relevant label names be written in a single file and included into source files of the
boot area and flash area using the .include quasi directive. This prevents contradictions described above.

- The ID value must be a positive number. The size of a branch table to be allocated depends on the maximum
ID value. NEC Electronics recommends that the ID value be specified without spaces.

.ext_func

E3253: symbol "identifier" already defined as another id

E3252: id already defined as symbol "identifier"

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

258 User’s Manual U19383EJ1V0UM00

Specifies a flash table entry size.

[Syntax]

.ext_ent_size size

[Function]

Sets the value specified by the operand as the flash table entry size when an object file is generated. Specify this
instruction to use the function for relinking a flash area or external ROM.

[Description]

To specify a branch from an area that cannot be rewritten or replaced (boot area) to a rewritable or replaceable area
(flash area), a branch table is generated at a specified address in the flash area by specifying this quasi directive and
two-stage branch is performed via the table. The entry size of this table is 4 bytes by default. A jr instruction is gener-
ated and execution can branch in a range of 22 bits from the branch instruction. If it is necessary to branch to an
address exceeding the range of 22 bits from the branch instruction in this table, execution can branch over the entire
32-bit address space when 10 is specified by this instruction as the entry size in the case of the V850 core, and 8 is
specified in the case of the V850Ex core.

[Caution]

- This quasi directive must be described in a source file which contains a relevant branch instruction (in the boot
area) and a source file which contains a relevant label definition (in the flash area).

- The size specified by this quasi directive is the only value for the entire area, including the boot area and flash
area.

- If a different size is specified, the as850 outputs the following message and stops assembling.
If a different size is specified for two or more relocatable object files, an error occurs when linking is executed.

- It is recommended that all relevant label names be described in a single file and included in the source files of
the boot area and flash area using the .include quasi directive. This prevents the contradictions described
above.

- Specify 4 (default), 8 [V850E], or 10 [V850] as the size.
- When a common object is created (when the -cn option is specified), 8 [V850E] must not be specified because

the object must operate with both the V850 and V850Ex.

.ext_ent_size

W3021: .ext_ent_size already specified, ignored.

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

User’s Manual U19383EJ1V0UM00 259

4.2.4 Location counter control quasi directives

Using the location counter control quasi directive, the as850 can align or advance the value of the location counter-
Note. Next table lists the location counter control quasi directives described in this section.

Table 4-16. Location Counter Control Quasi Directives

If the location counter control quasi directive is specified in the sbss- or bss-attribute section, the as850 outputs the
following message then stops assembling.

Note A location counter exists in each section and is initialized to 0 when the first section definition quasi directive
for the corresponding section in that file appears.

Quasi directive Meanings

.align Aligns the value of the location counter

.org Advances the value of the location counter

E3246: illegal section

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

260 User’s Manual U19383EJ1V0UM00

Aligns the value of the location counter.

[Syntax]

.align alignment-condition[, fill-value]

[Function]

Aligns the value of the location counter for the current section, specified by the previously specified section definition
quasi directive under the alignment condition specified by the first operand. If a hole results from aligning the value of
the location counter, it is filled with the fill value specified by the second operand, or with the default value of 0.

For example, if .align 4 is specified while the current value of the location counter is 3, the value of the location
counter is aligned, according to the alignment condition of 4 (word boundary), to 4, and the 1-byte hole that results is
filled with the default value of 0.

[Example]

Aligns at 16 bytes.

[Caution]

- Specify an even number of 2 or more, but less than 231, as the alignment condition. Otherwise, the as850
outputs the following message then stops assembling.

- Specify a 1-byte value as the fill value. If a value of more than 1 byte is specified, the lowermost 1-byte is used.
- If this quasi directive is used with an alignment condition of 4 or more, as specified by the sdata-attribute sec-

tion, valid information may not be obtained when a guideline value for determining the size of the data to be allo-
cated to the sdata/sbss-attribute section is displayed (by using the -A option of the ld850).

- This quasi directive merely aligns the value of the location counter in a specified file for the section. It does not
align an absolute addressNote 1 or an offset in a sectionNote 2.

Notes 1. Offset from address 0 in linked object file.
2. Offset from the first address of the section (output section) to which that section is allocated in a linked

object file.

.align

.align 16

E3200: illegal alignment value

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

User’s Manual U19383EJ1V0UM00 261

Advances the value of the location counter.

[Syntax]

.org value

[Function]

Advances the value of the location counter for the current section, specified by the previously specified section
definition quasi directive, to the value(Less than 231) specified by the operand. If a hole results from advancing the
value of the location counter, it is filled with 0.

[Example]

Advances the location counter value 16 bytes.

[Caution]

- If a value that is smaller than the current value of the location counter is specified, the as850 outputs the
following message then stops assembling.

- If this quasi directive is used in the sdata-attribute section, valid information may not be obtained when a guide-
line value for determining the size of the data to be allocated to the sdata/sbss-attribute section is displayed (by
using the -A option of the ld850).

- This quasi directive merely advances the value of the location counter in a specified file for the section. It does
not specify either an absolute addressNote 1 or an offset in a sectionNote 2.

Notes 1. Offset from address 0 in a linked object file.
2. Offset from the first address of the section (output section) to which that section is allocated in a linked

object file.

.org

.org 16

E3244: illegal origin value value

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

262 User’s Manual U19383EJ1V0UM00

4.2.5 Area allocation quasi directives

Using area allocation quasi directives, the as850 can allocate an area and set a value for that area. Next table lists
the area allocation quasi directives described in this section.

Table 4-17. Area Allocation Quasi Directives

If an area allocation quasi directive other than the .lcomm quasi directive is specified in the sbss- or bss attribute
section, the as850 outputs the following message then stops assembling.

Maintain the values of size (Number of bytes) and alignment condition, specified with the area allocation quasi direc-
tive, within 231. If a value of 231 or more is specified, the as850 outputs the following message then stops assembling.

Quasi directive Meanings

.byte Allocates a 1-byte area

.hword Allocates a 1-halfword area

.shword Allocates a 1-halfword area [V850E]

.word Allocates a 1-word area

.float Sets a floating-point value

.space Allocates an area for size

.str Allocates an area for string

.lcomm Defines a label that allocates an area

E3246: illegal section

E3247: illegal size value

or

E3200: illegal alignment value

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

User’s Manual U19383EJ1V0UM00 263

Allocates a 1-byte area.

[Syntax]

- .byte value[, value, ...]
- .byte bit-width:value[, bit-width:value, ...]

[Function]

- The first part of this quasi directive instructs the allocation of a 1-byte area for each operand, and the storing of
the value of the lowermost byte of the specified value in the allocated area.

- The second part instructs the allocation of an area of the specified bit width and stores the specified value into
the allocated area.

- Specify the bit width as a value between 0 and 8.
- If the specified bit width exceeds the byte width, it is masked by the byte width.
- A value specified first and having the bit width is allocated starting from the least significant bit of the byte

area. If the area exceeds the byte boundary as a result of allocating an area immediately after the area to
which the value with the previous bit width has been allocated, the second value is allocated starting from
the byte boundary (see the figure below).

- If a hole results, it is filled with 0.

Figure 4-6. Example of Allocation with Bit Width Specified

- The above two specifications can be made together with one .byte quasi directive (see the above figure).

[Example]

Allocates 1 byte and stores 1.

.byte

 .tidata.byte

 .align 4

 .globl _p, 4

_p:

 .byte 1

0 01010000110000 000000100

.byte 4:2, 3:1, 5:6, 0x20

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

264 User’s Manual U19383EJ1V0UM00

Allocates a 1-halfword area.

[Syntax]

- .hword value[, value, ...]
- .hword bit-width:value[, bit-width:value, ...]

[Function]

- The first part of this quasi directive instructs the allocation of a 1-halfword area (2 bytes) for each operand, and
the storing of the value of the lower 1 halfword of the specified value into the allocated area.

- The second part of this instruction instructs the allocation of an area of the specified bit width, and the storing of
the specified value into the allocated area.

- Specify the bit width as a value between 0 and 16.
- If the specified value exceeds the halfword width, it is masked by the halfword width.
- A value declared first and having the bit width is allocated from the least significant bit position in the half-

word area. If the halfword boundary of the area is exceeded as a result of allocating an area immediately
after the area to which the value having the previous bit width has been allocated, the value having the bit
width is allocated starting from the halfword boundary.

- If a hole results, it is filled with 0.

- The above two specifications can be made together for each .hword quasi directive.

[Example]

Allocates 1 halfword and stores 100.

.hword

 .tidata

 .align 4

 .globl _p, 4

_p:

 .hword 100

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

User’s Manual U19383EJ1V0UM00 265

Allocates a 1-halfword area [V850E].

[Syntax]

- .shword value[, value, ...]
- .shword bit-width:value[, bit-width:value, ...]

[Function]

- The first part of the .shword quasi directive allocates an area of 1 halfword to each operand, shifts a specified
value 1 bit to the right, and stores it in the allocated area.

- The second part of the .shword quasi directive allocates an area of the specified bit width, shifts a specified
value 1 bit to the right, and stores it in the allocated area.

- Specify the bit width as a value between 0 and 16.
- If the specified value exceeds the halfword width, it is masked by the halfword width.
- A value that is declared first and has the bit width is allocated from the least significant bit position in the

halfword area. If the halfword boundary of the area is exceeded as a result of allocating an area immedi-
ately after the area to which the value with the previous bit width has been allocated, that value is allocated
starting at the halfword boundary.

- If a hole results, it is filled with 0.

- The above two specifications can be made together for each .shword quasi directive.
- This quasi directive is suitable for creating a table for the switch instruction.

[Example]

Allocates an area for a string constant and stores a value in it.

.shword

 .sdata

 .align 4

 .globl _p, 4

_p:

 .shword 10

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

266 User’s Manual U19383EJ1V0UM00

Allocates a 1-word area.

[Syntax]

- .word value[, value, ...]
- .word bit-width:value[, bit-width:value, ...]

[Function]

- The first part of this quasi directive instructs the allocation of a 1-word area for each operand, and the storing of
the specified value in the allocated area.

- The second part of this quasi directive instructs the allocation of an area of a specified bit width, and the storing
of the specified value in the allocated area.

- Specify the bit width as a value between 0 and 32.
- If the value exceeds the word width, it is masked by the word width.
- A value for which the bit width is declared first is allocated starting from the least significant bit position of

the word area. If the word boundary of the area is exceeded as a result of allocating an area immediately
after the area to which the value having a bit width has been allocated, the value having the bit width is allo-
cated starting from the word boundary.

- If a hole results, it is filled with 0.

- The above two specifications can be made together for each .word quasi directive.

[Example]

Allocates an area of 1 word and fills it with 0xa.

.word

 .sidata

 .align 4

 .globl _p, 4

_p:

 .word 0xa

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

User’s Manual U19383EJ1V0UM00 267

Sets a floating-point value.

[Syntax]

.float value[, value, ...]

[Function]

Allocates a 1-word area for each operand, and stores the specified floating-point value in the allocated areaNote.

Note If an integer constant is specified, a 1-word area is allocated, and the specified integer constant is stored in
the allocated area.

[Example]

Allocates 1 word and stores 1.2345.

.float

 .sidata

 .align 4

 .globl _p, 4

_p:

 .float 1.2345

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

268 User’s Manual U19383EJ1V0UM00

Allocates an area for size.

[Syntax]

.space size[, fill-value]

[Function]

- Allocates an area of the size specified by the first operand and fills the allocated area with the fill value specified
by the second operand (the default is 0).

- If a fill value is specified, specify a 1-byte fill value.
- If a larger value than a 1-byte is specified, the 1 byte corresponding to the lowermost digit is used.

[Example]

Fills 4 bytes with 0.

.space

 .sidata

 .globl _p, 4

_p:

 .space 4

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

User’s Manual U19383EJ1V0UM00 269

Allocates an area for string.

[Syntax]

.str "string-constant"[, "string-constant", ...]

[Function]

Allocates an area for the specified string constant for each operand and stores the specified string in the allocated
areaNote.

Note Unlike in the case of C, ’\0’ is not loaded as the default value at the end of a string.

[Example]

Allocates an area for a string constant and stores a value in it.

.str

.str "hello"

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

270 User’s Manual U19383EJ1V0UM00

Defines a label that allocates an area.

[Syntax]

.lcomm label-name, size, alignment-condition

[Function]

Aligns the value of the location counter for the current section, specified by the previously specified section definition
quasi directive, under the alignment condition specified by the third operand, allocates an area of the size specified by
the second operand, and defines a local labelNote, having a label name specified by the first operand, at the first
address of the allocated area.

Note Local symbol (symbol having binding class LOCAL).

[Example]

Assumes size of __stack label to be 0x100 for 4-byte alignment.

[Caution]

- The current section, specified by the previously specified section definition quasi directive, must be an sbss- or
bss-attribute section. If this quasi directive is specified for any other section, the as850 outputs the following
message then stops assembling.

- If this quasi directive is used by specifying an alignment condition of 4 or greater in the sbss-attribute section,
valid information may not be obtained when a guideline value for determining the size of the data to be allocated
to the sdata/sbss-attribute section is displayed (by using the -A option of the ld850).

.lcomm

.bss

.lcomm _stack, 0x100, 4

E3246: illegal section

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

User’s Manual U19383EJ1V0UM00 271

4.2.6 Program linkage quasi directives

Using the program linkage quasi directive, the as850 can declare an undefined external labelNote 1 or external
labelNote 2 of a specified size, together with an alignment condition. Next table lists the program linkage quasi direc-
tives described in this section.

Table 4-18. Program Linkage Quasi Directives

Maintain the values of the size (Number of bytes) and alignment condition, specified for a program linkage quasi
directive, within 231. If a value of 231 or more is specified, the as850 outputs the following message then stops assem-
bling.

Notes 1. Undefined external symbol (symbol having binding class GLOBAL and section header table index
GPCOMMON or COMMON).

2. External symbol (symbol having binding class GLOBAL).

Quasi directive Meanings

.globl Declares an external label

.extern Declares an external label

.comm Declares an undefined external label

E3247: illegal size value

or

E3200: illegal alignment value

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

272 User’s Manual U19383EJ1V0UM00

Declares an external label.

[Syntax]

.globl label-name[, size]

[Function]

Declares a label having the same name as that specified by the first operand as an external labelNote. If the second
operand is specified, a value is specified as the size of the data indicated by the label. This quasi directive is the same
as the .extern quasi directive in that both declare an external label. However, use this quasi directive to declare a label
having a definition in the specified file as an external label, and use the .extern quasi directive to declare a label that
does not have a definition in the specified file as an external label.

Note External symbol (symbol having binding class GLOBAL)

[Example]

Declares external label _func (_func is defined in file).

[Caution]

- If a label having the same name as that of the label specified by the first operand is defined by this declaration,
that label can be referenced from other assembler source files.

- When a guideline value for determining the size of the data to be allocated to the sdata/sbss-attribute section is
to be displayed (by using the -A option of the ld850), the size of the data to be allocated to the sdata-attribute
section (actually, the label subject to gp offset reference) must be specified by using either this or the .size quasi
directiveNote.

Note Otherwise, valid information may not be obtained.

.globl

.globl _func

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

User’s Manual U19383EJ1V0UM00 273

Declares an external label.

[Syntax]

.extern label-name[, size]

[Function]

Declares a label having the same name as that specified by the first operand as an external labelNote. If the second
operand is specified, specifies a value as the size indicated by the data of the label. This quasi directive is the same
as the .globl quasi directive in that both declare an external label. However, use this quasi directive to declare a label
that does not have a definition in the specified file as an external label, and use the .globl quasi directive to declare a
label having a definition in the specified file as an external labe

Note External symbol (symbol having binding class GLOBAL).

[Example]

Declares external label _main (_main is not defined in file).

[Caution]

- With the as850, by default, a label is declared as an external label if it does not have a definition in the specified
file. Consequently, if a label having the same name as the label specified by the first operand does not have a
definition in the specified file, this quasi directive specifies only the size of the data indicated by that label.

- Because the as850 judges whether to generate "a machine instruction that performs reference using 16-bit dis-
placement" or "a machine instruction string (consisting of two or more machine instructions) that performs refer-
ence using 32-bit displacement" when executing gp offset reference to data that does not have a definition in
the specified file, based on the size of the data, specify the size of the label that has no definition in the specified
file and which is subject to gp offset reference, using this quasi directive.

.extern

.extern _main

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

274 User’s Manual U19383EJ1V0UM00

Declares an undefined external label.

[Syntax]

.comm label-name, size, alignment-condition

[Function]

Declares an undefined external label having a label name specified by the first operand, a size specified by the sec-
ond operand, and an alignment condition specified by the third operand.

Undefined external symbol (symbol having binding class GLOBAL and section header table index GPCOMMON or
COMMON). If a definition for the undefined external symbol does not exist, the linker (ld) of the CA850 allocates an
area of the specified size, aligned under the specified alignment condition, to the .sbss section for an undefined exter-
nal symbol having section header table index GPCOMMON, or to the .bss section for an undefined external symbol
having section header table index COMMON. If two or more undefined external symbols of different sizes exist, the ld
uses the larger size. If a definition already exists, it takes precedence.

- If the -Gnum option is specified upon starting the as850
- If the specified size is 1 or more, but no more than num bytes

Generates a symbol table entry having section header table index GPCOMMON upon generating the sym-
bol table entry for the label when the object file is generated.

- If the specified size is 0 or more than num bytes
Generates a symbol table entry having section header table index COMMON upon generating the symbol
table entry for the label when the object file is generated.

- If the -Gnum option is not specified upon starting the as850
Generates a symbol table entry having section header table index GPCOMMON upon generating the symbol
table entry for the label when the object file is generated.

[Example]

Declares undefined external label of size 4 with alignment condition 4.

.comm

.sbss

.comm _p, 4, 4

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

User’s Manual U19383EJ1V0UM00 275

[Caution]

- If the same label name as that specified by the first operand is defined by means of normal label definition in the
same file as this quasi directive

- If the label is declared as having symbol table entry index GPCOMMON and is defined by means of normal
label definition in the data-attribute section, or if it is declared as having symbol table entry index COMMON
by this quasi directive and is defined by means of normal label definition in the sdata-attribute section.

The as850 outputs the following message then stops assembling.

- Else
The label defined by means of normal label definition is regarded as being an external label and the speci-
fication of this quasi directive is ignored. Generates a symbol table entry having binding class GLOBAL
upon generating the symbol table entry for the label when the object file is generated.

- If a label having the same name as that specified by the first operand is defined by the .lcomm quasi directive in
the same file as this quasi directive

- If the size or alignment condition specified by the .lcomm quasi directive differs from the size or alignment
condition specified by this quasi directive.

The as850 outputs the following message then stops assembling.

 .comm lab1, 4, 4 --GPCOMMON if assembly is executed without -G

 :

 .data

lab1: --Normal label definition in .data section

E3213: label identifier redefined

 .comm lab1, 4, 4 --GPCOMMON if assembly is executed without -G

 :

 .sdata

lab1: --Normal label definition in .sdata section

.comm lab1, 4, 4

 :

.sbss

.lcomm lab1, 4, 2 --Alignment condition differs

E3213: label identifier redefined

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

276 User’s Manual U19383EJ1V0UM00

- If the label is declared, by this quasi directive, as having section header table index GPCOMMON and is
defined in the bss-attribute section by the .lcomm quasi directive, or if it is declared by this quasi directive
as having section header table index COMMON and is defined in the sbss-attribute section by the .lcomm
quasi directive.

The as850 outputs the following message then stops assembling.

- Else
The as850 regards the label defined by .lcomm as being an external labelNote, ignoring the specification
made by this quasi directive. Generates a symbol table entry having binding class GLOBAL upon generat-
ing the symbol table entry for the label when the object file is generated.

- If a label having the same name as that specified by the first operand is (re-)defined by this quasi directive in the
same file as this quasi directive.

- If the size or boundary condition is differen

The as850 outputs the following message then stops assembling.

- When the size and boundary conditions are the same
The as850 assumes the .comm quasi directive to be specified once only.

.comm lab1, 4, 4 --GPCOMMON if assembly is executed without -G

 :

.bss

.lcomm lab1, 4, 4 --Definition in .bss section

E3213: label identifier redefined

.comm lab1, 4, 4 --GPCOMMON if assembly is executed without -G

 :

.sbss

.lcomm lab1, 4, 4 --Definition in .bss section

.comm lab1, 4, 4

 :

.comm lab1, 2, 4 --Size differs

E3213: label identifier redefined

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

User’s Manual U19383EJ1V0UM00 277

4.2.7 Assembler control quasi directive

The assembler control quasi directive can be used to control the processing performed by the as850. Next table
lists the assembler control quasi directives described in this section.

Table 4-19. Assembler Control Quasi Directive

Quasi directive Meanings

.option Controls the assembler according to specified options

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

278 User’s Manual U19383EJ1V0UM00

Controls the assembler according to specified options.

[Syntax]

.option option

[Function]

Controls the assembler according to the options specified with the operand.The following options can be specified-
Note:

Note Uppercase characters can also be used to specify the option (for example, NOMACRO can be specified
instead of nomacro).

- asm
This cancels c option specification for a syntax error that occurs after this quasi directive.

- az_info_j
The address of the instruction immediately after this quasi directive is output to the address information section
for AZ850 (The section name is az_info_j) . This option is specified to collect the address information for an
instruction that calls a function.

- az_info_r
The address of the instruction immediately after this quasi directive is output to the address information section
for AZ850 (The section name is az_info_r) . This option is specified to collect the address information for an
instruction which causes a return from a function.

- az_info_ri
The address of the instruction immediately after this quasi directive is output to the address information section
for AZ850 (The section name is az_info_ri) . This option is specified to collect the address information for an
instruction which causes a return from an interrupt function.

- c linenum ["filename"]
The line number of the error message and the file name for the syntax error subsequent to this quasi directive
are overwritten by the specified items and output. Second and subsequent "filename" specifications in the
assembler source file can be omitted. If omitted, the file name is processed as the one specified for the preced-
ing quasi directive. In this case, the presence of the asm option between this quasi directive and the preceding
one is not checked.
If the first "filename" is omitted in the assembler source file, as850 outputs the following message then stops
assembling.

- callt
A quasi directive which is reserved for the compiler.

Caution Do not delete a callt instruction when it exists in the assembler source file output by the com-
piler. If it is deleted, the prologue epilogue runtime linking cannot be checked.

.option

E3249: illegal syntax

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

User’s Manual U19383EJ1V0UM00 279

- cpu devicename
Reads the device file on the target device specified by devicename. To specify a device name to read the
device file, the -cpu option can also be specified when starting the as850. If a device name is not specified with
the -cpu, -cnxxx option, or with this quasi directive, the as850 outputs the following message then stops pro-
cessing.

If a device name is specified by both the -cpu option and quasi directive, the as850 outputs a warning message.
In this case, the specification made with the option takes precedence over that made with the quasi directive. If
two or more devices are specified by the option or quasi directive, the as850 outputs the following error mes-
sage stops processing.

Example Specifies V850ES/SA2 as device to be used.

The device file to be used must be stored in directory-containing-as850\..\..\..\dev (that is, C-compiler-pack-
age-install-directory\dev). Alternatively, the directory containing the device file must be specified by using
the -F option of the as850.
If there is a blank in the file name of the device file specified by devicename, the following message is out-
put and assembly is stopped.

- data extern_symbol
Assumes that external data having symbol name extern_symbol has been allocated to the data or bss attribute
section, regardless of the size specified with the -G option of the ca850 or as850, and expands the instructions
which reference that data. This format is used when a variable for which "data" is specified in #pragma section
or section file is externally referenced by an assembler source file

Example _d is used as the .data section regardless of the option and is expanded into instructions when refer-
enced.

- ep_label
Performs a label reference by %label as a reference by ep offset for the subsequent instructions.

- macro
Cancels the specification made with the nomacro option for the subsequent instructions.

F3522: unknown cpu type

F3523: duplicated cpu type

.option cpu 3201

E3250: illegal syntax string

.option data _d

.text

mov $_d, r11

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

280 User’s Manual U19383EJ1V0UM00

- mask_reg
Embeds information, which indicates the mask register function is used, in the relocatable object file generated
by the as850. This option is effective when, for example, an assembler source file output by an earlier C com-
piler that does not support the mask register function is used to specify the mask register function. Since use of
this option assumes that the mask register function is used, no error occurs when an object compiled with the
mask register function specified is linked.

Caution When the mask register function is used, the C compiler uses r20 and r21 as mask registers.
Do not allow the assembler source program to change the mask values set in these registers.

- new_fcall
Embeds information, which indicates the new function call formatNote is used, in the relocatable object file gen-
erated by the as850. This option is effective when, for example, an assembler source file output by an earlier C
compiler with different calling specifications is used with an object created by the current version of the C com-
piler. Specifying this option assumes that the new call format is met, resulting in no error during a link with an
object created in the default new call format of the C compiler.

- no_ep_label
Cancels the specification made with the ep_label option for the subsequent instructions.

- nomacro
Does not expand the subsequent instructions, other than the setfcnd/ sasfcnd [V850E]/ cmovcnd [V850E]/
adfcnd [V850E2]/ sbfcnd [V850E2]/ jcnd/ jmp/ jarl/jr instructions.

- nooptimize
Does not optimize instruction rearrangement for the subsequent instructions.

- novolatile
Cancels the specification made with the nooptimize/volatile option for the subsequent instructions.

- nowarning
Does not output warning messages for the subsequent instructions.

- optimize
Has the same function as the novolatile option.

- reg_mode tnum pnum
Embeds a register mode information section in the relocatable object file generated by the as850. The register
mode information section contains information relating to the number of work registers, and registers for register
variables, used by the compiler. This instruction sets the number of work registers, and registers for register
variables, as tnum, pnum. When 22-register mode is used, tnum and pnum indicate five registers each. In 26-
register mode, they indicate seven registers each.

Example 22-register mode is used.

- sdata extern_symbol
Assumes that external data having symbol name extern_symbol has been allocated to the sdata or sbss
attribute section, regardless of the size specified with the -G option of the ca850 or as850, and does not expand
the instructions which reference that data. This format is used when a variable for which "sdata" is specified in
the #pragma section or section file is externally referenced by an assembler source file.

Example The _d is used as the .sdata section regardless of the option and is not expanded into instructions
when referenced.

.option reg_mode 5 5

.option sdata _d

.text

mov $_d, r11

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

User’s Manual U19383EJ1V0UM00 281

- volatile
Has the same function as the nooptimize option.

- warning
Outputs warning messages for the subsequent instructions.

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

282 User’s Manual U19383EJ1V0UM00

4.2.8 File input control quasi directives

Using the file input control quasi directive, the as850 can input an assembler source file or binary file to a speci-

fied position. Next table lists the file input control quasi directives described in this section.

Table 4-20. File Input Control Quasi Directives

Quasi directive Meanings

.include Inputs an assembler source file

.binclude Inputs a binary file

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

User’s Manual U19383EJ1V0UM00 283

Inputs an assembler source file.

[Syntax]

.include "file-name"

[Function]

ssumes that the contents of the file specified by the operand to be at the position of this quasi directive. The speci-
fied file is searched in the folder in which the source file including this quasi directive is placed. "file-name" can also be
described with the relative path from the folder including the source file. When a folder is specified by the assembler
option -I, the folder is searched first. When there is no file in the folder in which the source file is placed, the folder in
which C language source file is placed (specified by the .file quasi directive and the current folder are searched).

[Example]

Includes aa.s file.

[Caution]

- Enclose the file name to be specified with ".
- If a non-existent file is specified, the as850 outputs the following message then stops assembling.

- If the .include statement is nested 9 or more levels deep, the as850 outputs the following message then stops
assembling

.include

.include "aa.s"

F3503: can not open file file

F3517: include nest over

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

284 User’s Manual U19383EJ1V0UM00

Inputs a binary file.

[Syntax]

.binclude "file-name"

[Function]

Assumes the contents of the binary file specified by the operand to be the result of assembling the source file at the
position of this quasi directive. The specified file is searched in the folder in which the source file including this quasi
directive is placed. "file-name" can also be described with the relative path from the folder including the source file.
When a folder is specified by the assembler option -I, the folder is searched first. When there is no file in the folder in
which the source file is placed, the folder in which C language source file is placed (specified by the .file quasi direc-
tive) and the current folder are searched

[Example]

Includes aa.bin file.

[Caution]

- This quasi directive handles the entire contents of the binary files. When a relocatable file is specified, this
quasi directive handles files configured in ELF format. Note that it is not just the contents of the .text selection,
etc. that are handled.

- Enclose the file name to be specified with ".
- If a non-existent file is specified, the as850 outputs the following message then stops assembling.

.binclude

.binclude "aa.bin"

F3503: can not open file file

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

User’s Manual U19383EJ1V0UM00 285

4.2.9 Repetitive assembly quasi directives

The as850 can repeatedly assemble an arrangement of statements (block) enclosed within a repetitive
assembly quasi directive and corresponding .endm quasi directive, at the position of the repetitive assembly quasi
directive. Next table lists the repetitive assembly quasi directives described in this section.

Table 4-21. Repetitive Assembly Quasi Directives

Quasi directive Meanings

.repeat Repetition by the specified number of times

.irepeat Repetition according to the parameter specification

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

286 User’s Manual U19383EJ1V0UM00

Repetition by the specified number of times.

[Syntax]

.repeat absolute-value-expression

[Function]

Repeatedly assembles the arrangement of statements (block) enclosed within this quasi directive and the corre-
sponding .endm quasi directive by the number of times specified by the absolute expression of the first operand.

[Example]

The expansion result is shown below:
[Before expansion]

[After expansion]

[Caution]

- Always specify .repeat and .endm as a pair. If .endm is omitted, the as850 outputs the following message then
stops assembling.

- The value is evaluated as a 32-bit signed integer.
- If there is no arrangement of statements (block), nothing is executed.
- If the result of evaluating the expression is negative, the as850 outputs the following message then stops

assembling.

.repeat

.repeat 2

 nop

.endm

nop

nop

F3513: unexpected EOF in .repeat/.irepeat

E3225: illegal operand (must be evaluated positive or zero)

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

User’s Manual U19383EJ1V0UM00 287

Repetition according to the parameter specification.

[Syntax]

.irepeat formal-parameter actual-parameter[, actual-parameter, ...]

[Function]

Repeatedly assembles the arrangement of statements (block) enclosed within this quasi directive and the .endm
quasi directive corresponding to this quasi directive, replacing the formal parameter specified by the first operand
appearing in that block with the actual parameters specified by the second operands and those that follow. If the for-
mal parameter is replaced by all the actual parameters specified by the second operand and those that follow, repeti-
tion is stopped.

[Example]

The expansion result is shown below:
[Before expansion]

[After expansion]

[Caution]

- Always specify .irepeat and .endm as a pair. If .endm is omitted, the as850 outputs the following message then
stops assembling.

- If 33 or more actual parameters are specified, the as850 outputs the following message then stops assembling.

- If the same parameter name is specified for a formal parameter and an actual parameter, the as850 outputs the
following message and stops assembling.

- If a parameter defined by a label or other quasi directive is specified for a formal parameter and an actual
parameter, the as850 outputs the following message and stops assembling.

.irepeat

.irepeat x a, b, c, d

 .word x

.endm

.word a

.word b

.word c

.word d

F3513: unexpected EOF in .repeat/.irepeat

F3514: paramater table overflowt

F3238: illegal operand (.irepeat parameter)

F3238: illegal operand (.irepeat parameter)

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

288 User’s Manual U19383EJ1V0UM00

4.2.10 Conditional assembly quasi directives

Using conditional assembly quasi directives, the as850 can control the range of assembly according to the result of
evaluating a conditional expression. Next table lists the conditional assembly quasi directives described in this sec-
tion.

Table 4-22. Conditional Assembly Quasi Directives

If a conditional assembly quasi directive is nested 17 or more levels deep, the as850 outputs the following message
then stops assembling.

Quasi directive Meanings

.if Control based on absolute expression (assembly performed when the value is true)

.ifn Control based on absolute expression (assembly performed when the value is false)

.ifdef Control based on symbol (assembly performed when the symbol is defined)

.ifndef Control based on symbol (assembly performed when the symbol is not defined)

.else Control based on absolute expression/symbol

.elseif Control based on absolute expression (assembly performed when the value is true)

.elseifn Control based on absolute expression (assembly performed when the value is false)

.endif End of control range

F3512: .if, .ifn, etc. too deeply nested

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

User’s Manual U19383EJ1V0UM00 289

Control based on absolute expression (assembly performed when the value is true).

[Syntax]

.if absolute-value-expression

[Function]

- If the absolute expression specified by the operand is evaluated as being true (≠ 0)

(a) If this quasi directive and a corresponding .else, .elseif, or .elseifn quasi directive exist, assembles
the block enclosed within this quasi directive and the corresponding quasi directive.

(b) If none of the corresponding quasi directives detailed above exist, assembles the block enclosed
within this quasi directive and the corresponding .endif quasi directive.

- If the absolute expression is evaluated as being false (= 0)
Skips to the .else, .elseif, .elseifn, or .endif quasi directive corresponding to this quasi directive.

[Example]

The expansion result is shown below:
[Before expansion]

[After expansion]

.if

.if 10

 .word 10

.endif

.if 10 < 20

 .word 20

.endif

.set expr, 30

.if expr

 .word expr

.endif

.word 10

.word 20

.word 30

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

290 User’s Manual U19383EJ1V0UM00

[Caution]

- If an undefined symbol is specified by the operand, the as850 outputs the following message then stops assem-
bling.

- If a corresponding quasi directive does not exist, the as850 outputs the following message then stops assem-
bling.

E3202: illegal expression

F3511: .endif unmatched

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

User’s Manual U19383EJ1V0UM00 291

Control based on absolute expression (assembly performed when the value is false).

[Syntax]

.ifn absolute-value-expression

[Function]

- If the absolute expression specified by the operand is evaluated as being true (≠ 0)
Skips to the .else, .elseif, .elseifn, or .endif quasi directive corresponding to this quasi directive.

- If the absolute expression is evaluated as being false (= 0)

(a) If this quasi directive and the corresponding .else, .elseif, or .elseifn quasi directive exist, assem-
bles the block enclosed within this quasi directive and the corresponding quasi directive.

(b) If none of the corresponding quasi directives detailed above exist, assembles the block enclosed
within this quasi directive and the corresponding .endif quasi directive.

[Example]

The expansion result is shown below:
[Before expansion]

[After expansion]

[Caution]

- If the corresponding quasi directive does not exist, the as850 outputs the following message then stops assem-
bling.

.ifn

.ifn 0

 .word 10

.endif

.ifn 10 > 20

 .word 20

.endif

.set expr, 0

.ifn expr

 .word expr

.endif

.word 10

.word 20

.word 0

F3511: .endif unmatched

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

292 User’s Manual U19383EJ1V0UM00

Control based on symbol (assembly performed when the symbol is defined).

[Syntax]

.ifdef name

[Function]

- If the name specified by the operand is defined

(a) If this quasi directive and the corresponding .else, .elseif, or .elseifn quasi directive exist, assem-
bles the block enclosed within this quasi directive and the corresponding quasi directive.

(b) If none of the corresponding quasi directives detailed above exist, assembles the block enclosed
within this quasi directive and the corresponding .endif quasi directive.

- If the specified name is not defined
Skips to the .else, .elseif, .elseifn, or .endif quasi directive corresponding to this quasi directive.

[Example]

The expansion result is shown below:
[Before expansion]

[After expansion]

.ifdef

define_symbol:

 .ifdef define_symbol

 .word 10

 .endif

 .ifdef undef_symbol

 .word 20

 .else

 .ifdef define_symbol

 .str "x"

 .endif

 .endif

 .set expr, 20

 .ifdef expr

 .word expr

 .endif

.word 10

.str "x"

.word 20

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

User’s Manual U19383EJ1V0UM00 293

[Caution]

- A symbol, label, or macro name can be specified as the name, but a reserved word must not be specified. If a
reserved word is specified, the as850 outputs the following message then stops assemblin

- If the corresponding quasi directive does not exist, the as850 outputs the following message then stops assem-
bling.

- The local symbol name that the assembler generated by .local quasi directive is an undefined symbol.

E3220: illegal operand (identifier is reserved word)

F3511: .endif unmatched

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

294 User’s Manual U19383EJ1V0UM00

Control based on symbol (assembly performed when the symbol is not defined).

[Syntax]

.ifndef name

[Function]

- If the name specified by the operand is defined
Skips to the .else, .elseif, .elseifn, or .endif quasi directive corresponding to this quasi directive.

- If the specified name is not defined

(a) If this quasi directive and the corresponding .else, .elseif, or .elseifn quasi directive exist, assem-
bles the block enclosed within this quasi directive and the corresponding quasi directive.

(b) If none of the corresponding quasi directives detailed above exist, assembles the block enclosed
within this quasi directive and the corresponding .endif quasi directiv

[Example]

The expansion result is shown below:
[Before expansion]

[After expansion]

.ifndef

define_symbol:

 .ifndef define_symbol

 .word 10

 .else

 .str "a"

 .endif

 .ifndef undef_symbol

 .word 20

 .else

 .ifndef define_symbol

 .str "x"

 .endif

 .endif

 .set expr, 20

 .ifndef expr

 .word expr

 .endif

.str "a"

.word 20

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

User’s Manual U19383EJ1V0UM00 295

[Caution]

- A symbol, label, or macro name can be specified as the name, but a reserved word must not be specified. If a
reserved word is specified, the as850 outputs the following message then stops assembling.

- If the corresponding quasi directive does not exist, the as850 outputs the following message then stops assem-
bling.

- The local symbol name that the assembler generated by .local quasi directive is an undefined symbol.

E3220: illegal operand (identifier is reserved word)

F3511: .endif unmatched

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

296 User’s Manual U19383EJ1V0UM00

Control based on absolute expression/symbol.

[Syntax]

.else

[Function]

If the absolute expression of the .if, .elseif, or .ifdef quasi directive is evaluated as being false (= 0), or if the absolute
expression of the .ifn, .elseifn, or .ifndef quasi directive corresponding to this quasi directive is evaluated as being true
(≠ 0), assembles the arrangement of statements (block) enclosed within this quasi directive and the corresponding
.endif quasi directive.

[Example]

The expansion result is shown below:
[Before expansion]

[After expansion]

[Caution]

- If the .if, .ifn, .elseif, .elseifn, .ifdef, or .ifndef quasi directive corresponding to this quasi directive does not exist,
the as850 outputs the following message then stops assembling.

.else

.if 0

 .word 10

.else

 .str "a"

.endif

.if 10 > 20

 .word 20

.else

 .str "b"

.endif

.set expr, 0

.if expr

 .word expr

.else

 .str "c"

.endif

.str "a"

.str "b"

.str "c"

F3510: .else unexpected

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

User’s Manual U19383EJ1V0UM00 297

Control based on absolute expression (assembly performed when the value is true).

[Syntax]

.elseif absolute-value-expression

[Function]

- If the absolute expression specified by the operand is evaluated as being true (≠ 0)

(a) If this quasi directive and the corresponding .else, .elseif, or .elseifn quasi directive exist, assem-
bles the block enclosed within this quasi directive and the corresponding quasi directive.

(b) If none of the corresponding quasi directives detailed above exist, assembles the block enclosed
within this quasi directive and the corresponding .endif quasi directive.

- If the absolute expression is evaluated as being false (= 0)
Skips to the .else, .elseif, .elseifn, or .endif quasi directive corresponding to this quasi directive.

[Example]

The expansion result is shown below:
[Before expansion]

[After expansion]

[Caution]

- If a corresponding quasi directive does not exist, the as850 outputs the following message then stops assem-
bling.

.elseif

.if 0

 .word 10

.elseif 10

 .str "a"

.endif

.if 10 > 20

 .word 20

.elseif 10 == 20

 .str "b"

.endif

.set expr, 0

.if expr

 .word expr

.elseifn expr - 10

 .str "c"

.endif

.str "a"

F3511: .endif unmatched

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

298 User’s Manual U19383EJ1V0UM00

Control based on absolute expression (assembly performed when the value is false).

[Syntax]

.elseifn absolute-value-expression

[Function]

- If the absolute expression specified by the operand is evaluated as being true (≠ 0)
Skips to the .else, .elseif, .elseifn, or .endif quasi directive corresponding to this quasi directive.

- If the absolute expression is evaluated as being false (= 0)

(a) If this quasi directive and the corresponding .else, .elseif, or .elseifn quasi directive exist, assem-
bles the block enclosed within this quasi directive and the corresponding quasi directive.

(b) If none of the corresponding quasi directives detailed above exist, assembles the block enclosed
within this quasi directive and the corresponding .endif quasi directive.

[Example]

The expansion result is shown below:
[Before expansion]

[After expansion]

.elseifn

.if 0

 .word 10

.elseifn 10

 .str "a"

.endif

.if 10 > 20

 .word 20

.elseifn 10 >= 20

 .str "b"

.endif

.set expr, 0

.if expr

 .word expr

.elseif expr - 10

 .str "c"

.endif

.str "b"

.str "c"

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

User’s Manual U19383EJ1V0UM00 299

[Caution]

- If the corresponding quasi directive does not exist, the as850 outputs the following message then stops assem-
bling.

F3511: .endif unmatched

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

300 User’s Manual U19383EJ1V0UM00

End of control range.

[Syntax]

.endif

[Function]

Indicates the end of the control range of a conditional assembly quasi directive.

[Caution]

- If the .if, .ifn, .elseif, .elseifn, .ifdef, or .ifndef quasi directive corresponding to this quasi directive does not exist,
the as850 outputs the following message then stops assembling.

.endif

F3510: .endif unexpected

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

User’s Manual U19383EJ1V0UM00 301

4.2.11 Skip quasi directives

Using the skip quasi directives, the as850 can skip the remaining repetitions of a repetitive assembly quasi directive.
Next table lists the skip quasi directives described in this section.

Table 4-23. Skip Quasi Directives

Quasi directive Meanings

.exitm Skips outwards by one

.exitma Skips to the outmost repetition

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

302 User’s Manual U19383EJ1V0UM00

Skips outwards by one.

[Syntax]

.exitm

[Function]

This quasi directive skips the repetitive assembly of the repetitive assembly quasi directives enclosing this quasi
directive at the innermost position.

[Example]

The expansion result is shown below:
[Before expansion]

.exitm

.repeat 2

 .set expr, 1

 .word 10

 .repeat 10

 .if expr < 5

 .byte expr

 .set expr, expr + 1

 .else

 .ifdef undefine_symbol

 .byte expr

 .set expr, expr + 1

 .else

 .exitm

 .endif

 .endif

 .endm

 .hword 20

 .hword 30

.endm

.word expr

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

User’s Manual U19383EJ1V0UM00 303

[After expansion]

[Caution]

- If this quasi directive is not enclosed by repetitive assembly quasi directives, the as850 outputs the following
message then stops assembling.

.word 10

.byte 1

.byte 2

.byte 3

.byte 4

.hword 20

.hword 30

.word 10

.byte 1

.byte 2

.byte 3

.byte 4

.hword 20

.hword 30

.word 5

F3513: unexpected EOF in .repeat/.irepeat

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

304 User’s Manual U19383EJ1V0UM00

Skips to the outmost repetition.

[Syntax]

.exitma

[Function]

This quasi directive skips the repetitive assembly of the repetitive assembly quasi directives enclosing this quasi
directive at the outermost position.

[Example]

The expansion result is shown below:
[Before expansion]

.exitma

.repeat 2

 .set expr, 1

 .word 10

 .repeat 10

 .if expr < 5

 .byte expr

 .set expr, expr + 1

 .else

 .ifdef undefine_symbol

 .byte expr

 .set expr, expr + 1

 .else

 .exitma

 .endif

 .endif

 .endm

 .hword 20

 .hword 30

.endm

.word expr

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

User’s Manual U19383EJ1V0UM00 305

[After expansion]

[Caution]

- If this quasi directive is not enclosed by repetitive assembly quasi directives, the as850 outputs the following
message then stops assembling.

.word 10

.byte 1

.byte 2

.byte 3

.byte 4

.word 5

F3515: .exitma not in .repeat/.irepeat

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

306 User’s Manual U19383EJ1V0UM00

4.2.12 Macro quasi directives

Using a macro quasi directive, the as850 can define any arrangement of statements as a macro body cor-
responding to a specified macro name. By referencing this macro name in the source program, it can be assumed that
the arrangement of statements corresponding to the macro name is described at the position of reference. Next table
lists the skip quasi directives described in this section.

Table 4-24. Macro Quasi Directives

Quasi directive Meanings

.macro Beginning of macro definition

.endm End of repetitive zone or end of macro definition

.local Definition of local symbol

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

User’s Manual U19383EJ1V0UM00 307

Beginning of macro definition.

[Syntax]

.macro macro-name [formal-parameter, ...]

[Function]

Defines the arrangement of the statements, enclosed within this quasi directive and the .endm quasi directive, as the
macro body for the macro name specified by the first operand. If this macro name is referenced (a process referred to
as "macro call"), it is assumed that the macro body corresponding to the macro name is described at the position of the
macro call.

[Example]

The expansion result is shown below:
[Before expansion]

[After expansion]

.macro

.macro PUSH REG

 add -4, sp

 st.w REG, 0x0[sp]

.endm

.macro POP REG

 ld.w 0x0[sp], REG

 add 0x4, sp

.endm

 PUSH r10

 mov 10, r10

 add r10, r20

 POP r10

add -4, sp

st.w r10, 0x0[sp]

mov 10, r10

add r10, r20

ld.w 0x0[sp], r10

add 0x4, sp

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

308 User’s Manual U19383EJ1V0UM00

[Caution]

- If the .endm quasi directive corresponding to this quasi directive does not exist, the as850 outputs the following
message then stops assembling.

- If a macro name is re-defined, and if this macro is subsequently called, the re-defined macro body becomes the
macro body of the macro name.

- If 33 or more formal parameters are specified, the as850 outputs the following message then stops assembling.

- Any excess formal parameters that are not referenced in the macro body are ignored. Note that, in this case,
the as850 outputs no message.

- If a shortage of actual parameters for macro call occurs, the as850 outputs the following message then stops
assembling.

- If an undefined macro is called in a macro body, the as850 outputs the following message then stops assem-
bling.

- If a currently defined macro is called in a macro body, the as850 outputs the following message then stops
assembling.

- If a parameter defined by a label or quasi directive is specified for a formal parameter, the as850 outputs the fol-
lowing message and stops assembling.

- When calling a macro, only a label name, symbol name, numeric value, register, and instruction mnemonic can
be specified for an actual parameter.
If a label expression (LABEL-1), reference method specification label (#LABEL), or base register specification
([gp]) is specified, the as850 outputs a message dependent on the specified actual parameter and stops assem-
bling.

- A line of a sentence can be designated in the macro-body. Such as operand can't designate the part of the sen-
tence. If operand has a macro call, performs a label reference is undefined macro name, or the as850 outputs
the following message then stops assembling.

F3513: unexpected EOF in .macro

F3514: paramater table overflow

F3519: argument mismatch

E3249: illegal syntax

F3518: unreasonable macro_call nesting

E3212: symbol already defined as string

E3249: illegal syntax

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

User’s Manual U19383EJ1V0UM00 309

End of repetitive zone or end of macro definition.

[Syntax]

.endm

[Function]

Indicates the end of a repetitive zone or a macro body.

[Caution]

- If the .repeat, .irepeat, or .macro quasi directive corresponding to this quasi directive does not exist, the as850
outputs the following message then stops assembling.

.endm

F3510: .endm unexpected

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

310 User’s Manual U19383EJ1V0UM00

Definition of local symbol.

[Syntax]

.local local-symbol[, local-symbol, ...]

[Function]

Declares a specified string as a local symbol that is replaced by a specific identifier.

[Example]

The expansion result is shown below:
[Before expansion]

[After expansion]

[Caution]

- If 33 or more local symbols are specified for the formal parameter of this quasi directive, the as850 outputs the
following message then stops assembling.

- The local symbol name is generated by the assembler in the range between .??0000 and ??FFFF.
- The local symbol name is generated by the assembler, is an undefined by conditional assembly quasi direc-

tives.

.local

.macro m1 x

 .local a, b

 a: .word a

 b: .word x

.endm

m1 10

m1 20

.??0000: .word .??0000

.??0001: .word 10

.??0002: .word .??0002

.??0003: .word 20

F3514: paramater table overflow

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

User’s Manual U19383EJ1V0UM00 311

4.3 Macro

This section lainshe hthe cro function .
This is very convenient function to describe serial instruction group for number of times in the program

4.3.1 Outline

This macro function is very convenient function to describe serial instruction group for number of times in the pro-
gram.

Macro function is the function that is deployed at the location where serial instruction group defined as macro body is
referred by macros as per .macro, .endm quasi directives.

Macro differs from subroutine as it is used to improve description of the source.
Macro and subroutine has features respectively as follows. Use them effectively according to the respective pur-

poses.

- Subroutine
Process required many times in program is described as one subroutine. Subroutine is converted in machine
language only once by assembler.
Subroutine/call instruction (generally instruction for argument setting is required before and after it) is described
only in subroutine reference. Consequently, memory of program can be used effectively by using subroutine.
It is possible to draw structure of program by executing subroutine for process collected serially in program
(Because program is structured, entire program structure can be easily understood as well setting of the pro-
gram also becomes easy.).

- Macro
Basic function of macro is to replace instruction group.
Serial instruction group defined as macro body by .macro, .endm quasi directives are deployed in that location
at the time of referring macro. Assembler deploys macro/body that detects macro reference and converts the
instruction group to machine language while replacing temporary parameter of macro/body to actual parameter
at the time of reference.
Macro can describe a parameter.
For example, when process sequence is the same but data described in operand is different, macro is defined
by assigning temporary parameter in that data. When referring the macro, by describing macro name and
actual parameter, handling of various instruction groups whose dercription is different in some parts only is pos-
sible.

Subroutine technique is used to improve efficiency of coding for macro to use to draw structure of program and
reducing memory size.

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

312 User’s Manual U19383EJ1V0UM00

4.3.2 Usage of macro

A macro is described by registering a pattern with a set sequence and by using this pattern. A macro is defined by
the user. A macro is defined as follows. The macro body is enclosed by ".macro" and ".endm".

If the following description is made after the above definition has been made, the macro is replaced by a code that
"stores r19 in the stack".

In other words, the macro is expanded into the following codes.

4.3.3 Symbols in macro

There are two types of symbols defined in macro such as global symbol and local symbol.

- Global symbol
It is possible to refer from all the statements in source.
Consequently, macro in which that symbol is defined is referred for more than 2 times and if serial statement is
deployed, symbol gives double definition error.
Symbol that is not defined in .local quasi directive is global symbol.

- Local symbol
Local symbol is defined by .local quasi directive (see "4.2.12 Macro quasi directives").
Local symbol can be referred only in the macro declared by .local quasi directive.
Local symbol cannot be referred without macro.

Example of usage is shown below.

.macro PUSH REG --The following two statements constitute the macro body.

add -4, sp

st.w REG, 0x0[sp]

.endm

PUSH r19

add -4, sp

st.w r19, 0x0[sp]

.macro m1 x

 .local a, b

 a: .word a

 b: .word x

.endm

m1 10

m1 20

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

User’s Manual U19383EJ1V0UM00 313

4.3.4 Macro operator

This section describes a tilde (~), used as a zero-length delimiter in a macro body, and a dollar ($), used to specify a
symbol value as an argument in a macro call.

(1) Tilde symbol
The as850 handles a tilde (~) in a macro body as a zero-length delimiter. If, however, the tilde appears in a
string constant or comment, it is not regarded as being a delimiter, but as a normal tilde (~).

Examples 1.

2.

3.

.macro abc x

 abc~x: mov r10, r20

 sub def~x, r20

.endm

abc NECEL

[Development result]

abcNECEL: mov r10, r20

 sub defNECEL, r20

.macro abc x, xy

 a_~xy: mov r10, r20

 a_~x~y: mov r20, r10

.endm

abc necel, NECEL

[Development result]

a_NECEL: mov r10, r20

a_necely: mov r20, r10

.macro abc x, xy

 ~ab: mov r10, r20

.endm

abc necel, NECEL

[Development result]

ab: mov r10, r20

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

314 User’s Manual U19383EJ1V0UM00

(2) Dollar symbol
If a symbol prefixed with a dollar symbol ($) is specified as an actual argument for a macro call, the as850
assumes the symbol to be specified as an actual argument. If, however, an identifier other than a symbol or an
undefined symbol name is specified immediately after the dollar symbol ($), the as850 outputs the following
message then stops assembling.

Example

4.4 Reserved Words

The as850 has reserved words. Reserve word cannot be used in symbol, label, section name. If a reserved word is
specified, the as850 outputs the following message and stops assembling.

The reserved words are as follows.
- Instructions (such as add, sub, and mov)
- QUASI DIRECTIVES (such as .section, .lcomm, and .globl)
- hi, lo, hi1 (because they are used as hi(), lo(), and hi1())
- Register names

F3520: $ must be followed by defined symbol

.macro mac1 x

 mov x, r10

.endm

.macro mac2

 .set value, 10

 mac1 value

 mac1 $value

.endm

mac2

[Development result]

.set value, 10

mov value, r10

mov 10, r10

E3245: identifier is reserved word

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

User’s Manual U19383EJ1V0UM00 315

4.5 Instructions

This section describes various instruction functions of V850 microcontroller products.

4.5.1 Memory space

V850 microcontroller has architecture of 32 bit and supports linear address space (data space) of maximum 4G byte
in operand addressing.

On other hand, linear address space (program space) of maximum 16M byte is supported in address of instruction
address.

Memory map of V850 microcontroller is shown below.
However, see user's manual of each product for details as contents of internal ROM, internal RAM etc are different

for each product.

Figure 4-7. Memory Map of V850 Microcontroller

Peripheral I/O

4G byte linear

Internal RAM

Internal ROM/
PROM/
Flash memory

FFFFFFFFH

FFFFEFFFH

00000000H

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

316 User’s Manual U19383EJ1V0UM00

4.5.2 Register

Register can be divided broadly in 2 types of registers such as program register used for general program and sys-
tem register used for controlling of executing environment. Register has width of 32 bits. System register is different
depending on architecture. See "(2) System register" for details.

Figure 4-8. Program Register

r0:Zero register

r1:Assembler reserve register

r2

r3:Stack pointer(SP)

r4:Global pointer(GP)

r5:Text pointer(TP)

r30:Element pointer(EP)

r31:Link pointer(LP)

PC:Program counter

031

r6

r7

r8

r9

r10

r11

r12

r13

r14

r15

r16

r17

r18

r19

r20

r21

r22

r23

r24

r25

r26

r27

r28

r29

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

User’s Manual U19383EJ1V0UM00 317

Figure 4-9. System Register

EIPC:Status save register at the time of interruption

EIPSW:Status save register at the time of interruption

CTPC:Status save register at the time of CALLT execution

CTPSW:Status save register at the time of CALLT execution

ECR:Interruption cause register

PSW:Program status word

31

FEPC:Status save register at the time of NMI

FEPSW:Status save register at the time of NMI

DBPC:Status save register upon exception/debug trap

DBPSW:Status save register upon exception/debug trap

BPC0:Breakpoint control register

BPC1:Breakpoint control register

CTBP:CALLT base pointer

DIR:Debug interface register

BPAV0:Breakpoint address setting register

BPAV1:Breakpoint address setting register

ASID:Program ID register

BPAM0:Breakpoint address mask register

BPAM1:Breakpoint address mask register

BPDV0:Breakpoint data setting register

BPDV1:Breakpoint data setting register

BPDM0:Breakpoint data mask register

BPDM1:Breakpoint data mask register

BPC2:Breakpoint control register

BPC3:Breakpoint control register

BPAV2:Breakpoint address setting register

BPAV3:Breakpoint address setting register

BPAM2:Breakpoint address mask register

BPAM3:Breakpoint address mask register

BPDV2:Breakpoint data setting register

BPDV3:Breakpoint data setting register

BPDM2:Breakpoint data mask register

BPDM3:Breakpoint data mask register

0

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

318 User’s Manual U19383EJ1V0UM00

(1) Program register
The program registers include general-purpose registers (r0 to r31) and a program counter (PC).

Table 4-25. Program Registers

(a) General purpose registerr0-r31
Thirty-two general-purpose registers, r0 to r31, are provided. These registers can be used for address vari-
ables or data variables.
However, care must be exercised as follows in using the r0 to r5, r30, and r31 registers.

<1> r0, r30
r0 and r30 are implicitly used by instructions.
r0 is a register that always holds 0, and is used for operations using 0 and offset 0 addressing.
r30 is used as base pointer by SLD instruction or SST instruction when accessing memory .

<2> r1, r3-r5, r31
r1, r3 to r5, and r31 are implicitly used by the assembler and C compiler.
Before using these registers, therefore, their contents must be saved so that they are not lost.. The
contents must be restored to the registers after the registers have been used.

<3> r2
r2 is sometimes used by a real-time OS.
When the real-time OS is not using r2, r2 can be used as an address variable register or a data vari-
able register.

Name Purpose Operation

r0 Zero register Always holds 0.

r1 Assembler reserved registe Working register when generating the address

r2 Address/data variable register (when the real-time OS to be used is not using r2)

r3 Stack pointer Used for stack frame generation when function is called.

r4 Global pointer Used to access global variable in data area.

r5 Text pointer Used as register for pointing to start address of text area
(area where program code is placed)

r6-r29 Address/data variable registers

r30 Element pointer Used as base pointer when generating address at the time of
accessing the memory

r31 Link pointer Used when compiler calls function.

PC Program counter Saves instruction address in program execution

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

User’s Manual U19383EJ1V0UM00 319

(b) Program counter: PC
This register holds an instruction address during program execution.
Further, meaning of each bit of PC differs according to the types (V850, V850ES, V850E1, V850E2) of
CPU.

<1> V850
Bit 23-0 are valid and bits 31-24 are reserved for future function expansion (fixed to 0).
Carry from bit 23 to bit 24 is ignored even if it occurs. Bit 0 is always fixed to 0 so that execution can-
not branch to an odd address.

Figure 4-10. Program Counter [V850]

<2> V850ES, V850E1
Bits 25-0 are valid and bits 31-26 are reserved for future function expansion (fixed to 0).
If a carry occurs from bit 25 to bit 26, it is ignored. Bit Bit 0 is always fixed to 0 so that execution can-
not branch to an odd address.

Figure 4-11. Program Counter[V850ES, V850E1]

<3> V850E2
Bits 28-0 are valid and bits 31-29 are reserved for future function expansion (fixed to 0).
If a carry occurs from bit 28 to bit 29, it is ignored. Bit 0 is always fixed to 0 so that execution cannot
branch to an odd address.

Figure 4-12. Program Counter[V850E2]

031 24 23 1

PC 0(Executing command address)

031 26 25 1

PC 0(Executing command address)

031 1

PC 0(Executing command address)

29 28

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

320 User’s Manual U19383EJ1V0UM00

(2) System register
he system registers control the CPU status and hold information on interrupts.
System registers can be read or written by specifying the register number from the following list using a system
register load/store instruction (LDSR or STSR instruction).

Table 4-26. System Register No.

Notes 1. These registers can be accessed only in the debug mode of type A and B of V850E products.
Accessing these registers in other products is prohibited.

2. The actual register to be accessed is specified by the DIR.CS flag.

Register No. Register Name Operand Specifiability

LDSR
Instruction

STSR
Instruction

0 Interrupt status saving register EIPC OK OK

1 Interrupt status saving register EIPSW OK OK

2 NMI status saving register FEPC OK OK

3 NMI status saving register FEPSW OK OK

4 Exception cause register ECR - OK

5 Program status word PSW OK OK

6-15 Reserved Numbers. - -

16 [V850ES, V850E1, V850E2]

CALLT caller status saving register CTPC

OK OK

17 [V850ES, V850E1, V850E2]

CALLT caller status saving register CTPSW

OK OK

18 [V850ES, V850E1, V850E2]

Exception/debug trap status saving register DBPC

OK OKNote 1

19 [V850ES, V850E1, V850E2]

Exception/debug trap status saving register DBPSW

OK OKNote 1

20 [V850ES, V850E1, V850E2]

CALLT base pointer CTBP

OK OK

21 [V850ES, V850E1, V850E2]

Debug interface register DIR

OKNote 1 OK

22 [V850E1, V850E2]

Breakpoint control registers BPCnNote 2

OKNote 1 OKNote 1

23 [V850E1, V850E2]

Program ID register ASIDz

OK OK

24 [V850E1, V850E2]

Breakpoint address setting register BPAVnNote 2

OKNote 1 OKNote 1

25 [V850E1, V850E2]

Breakpoint address mask registers BPAMNote 2

OKNote 1 OKNote 1

26 [V850E1, V850E2]

Breakpoint data setting registers BPDVnNote 2

OKNote 1 OKNote 1

27 [V850E1, V850E2]

Breakpoint data mask registers BPDMnNote 2

OKNote 1 OKNote 1

28-31 [V850E1, V850E2]

Reserved Numbers

- -

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

User’s Manual U19383EJ1V0UM00 321

Remark n = 0-3
- :Inaccessible
OK :Accessible

Caution When returning using the RETI instruction after setting bit 0 of EIPC, FEPC, CTPC, or DBPC
to 1 using the LDSR instruction and servicing an interrupt, the bit 0 is ignored (because bit 0
of the PC is fixed to 0). Therefore, be sure to set an even number (bit 0 = 0) when setting a
value to EIPC, FEPC, or CTPC.

(a) Interrupt status saving registers EIPC, EIPSW [V850V850ES, V850E, V850E2]
Two interrupt status saving registers are provided EIPC and EIPSW.
If a software exception or maskable interrupt occurs, the contents of the program counter (PC) are saved to
EIPC, and the contents of the program status word (PSW) are saved to EIPSW (if a non-maskable interrupt
(NMI) or runtime error occurs, the contents are saved to the NMI status saving registers).

<1> EIPC
Except for some instructions, the address of the instruction next to the one being executed when the
software exception or maskable interrupt occurs is saved.

<2> EIPSW
If a software exception or maskable interrupt occurs, contents of the program status word (PSW) are
saved.

Because only one pair of Interrupt Status Saving Registers is provided, the contents of these registers must
be saved by program when multiple interrupt servicing is enabled.
Meaning of each bit of EIPC and EIPSW differs according to types (V850, V850ES, V850E1, V850E2) of
CPU.

<3> V850
For EIPC, Bits 23-0 are valid and bits 31-24 are reserved for future function expansion (fixed to 0).
For EIPSW, Bits 7-0 are valid and bits 31-8 are reserved for future function expansion (fixed to 0).

Figure 4-13. Interrupt Status Saving Registers [V850]

031

(PC contents)

031

(PSW contents)

EIPC

EIPSW

8 7

2324

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

322 User’s Manual U19383EJ1V0UM00

<4> V850ES
For EIPC, Bits 25-0 are valid and bits 31-26 are reserved for future function expansion (fixed to 0).
For EIPSW, Bits 7-0 are valid and bits 31-8 are reserved for future function expansion (fixed to 0)

Figure 4-14. Interrupt Status Saving Registers [V850ES]

<5> V850E1
For EIPC, Bits 25-0 are valid and bits 31-26 are reserved for future function expansion (fixed to 0).
For EIPSW, Bits 11, 7-0 are valid and bits 31-12 are reserved for future function expansion (fixed to
0).
Further SS flag of PSW is saved in bit 11 of EIPSW.

Figure 4-15. Interrupt Status Saving Registers [V850E1]

<6> V850E2
For EIPC, Bits 28-0 are valid and bits 31-29 are reserved for future function expansion (fixed to 0)
For EIPSW, Bits 11-10, 7-0 are valid and bits 31-12, 9-8 are reserved for future function expansion
(fixed to 0).
SS flag of PSW is saved in bit 11 of EIPSW and SB flag of PSW is saved in bit 10 of EIPSW.

Figure 4-16. Interrupt Status Saving Registers [V850E2]

031

(PSW contents)EIPSW

8 7

031

(PC contents)EIPC

2526

031

(PC contents))

031

(PSW contents)

EIPC

EIPSW

8 7

S

2526

101112

S

031

(PC contents)

031

(PSW contents)

EIPC

EIPSW

8 7

S

2829

101112

S

2829

B
S

9

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

User’s Manual U19383EJ1V0UM00 323

(b) NMI status saving registersFEPC, FEPSW [V850, V850ES, V850E1, V850E2]
Two NMI status saving registers are provided: FEPC and FEPSW.
In these registers, contents of PC are saved in FEPC and contents of PSW are saved in FEPSWI when
non-maskable interrupt (NMI) and run time error occurs. (They are saved in (Interrupt status saving register
when software exception or maskable interrupt occurred).

<1> FEPC
Except for some instructions, the address of the instruction next to the instruction that was being exe-
cuted when the NMI or runtime error occurs, is saved

<2> FEPSW
Contents of PSW that is saved when non-maskable interrupt and run time error occurs are saved.

Because only one pair of NMI status saving registers is provided, the contents of these registers must be
saved by program when multiple interrupt servicing is enabled.
Further, meaning of each bit of FEPC and PEPSW differs according to types (V850, V850ES, V850E1,
V850E2) of CPU.

<3> V850
For FEPC, Bits 23-0 are valid and bits 31-24 are reserved for future function expansion (fixed to 0)
For FEPSWI, Bits 7-0 are valid and bits 31-8 are reserved for future function expansion (fixed to 0).

Figure 4-17. NMI Status Saving Registers [V850]

<4> V850ES
For FEPC, Bits 25-0 are valid and bits 31-26 are reserved for future function expansion (fixed to 0).
For FEPSWI, bits 7-0 are valid and bits31-8 are reserved for future function expansion (fixed to 0).

Figure 4-18. NMI Status Saving Registers [V850ES]

031

(PC contents)

031

(PSW contents)

FEPC

FEPSW

8 7

2324

031

(PSW contents)FEPSW

8 7

031

(PC contents)FEPC

2526

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

324 User’s Manual U19383EJ1V0UM00

<5> V850E1
For FEPC, Bits 25-0 are valid and bits 31-26 are reserved for future function expansion (fixed to 0).
For FEPSWI, Bits 11, 7-0 are valid and bits 31-12, 10-8 are reserved for future function expansion
(fixed to 0).
Further SS flag of PSW is saved in bit 11 of FEPSW.

Figure 4-19. NMI Status Saving Registers [V850E1]

<6> V850E2
For FEPC, Bits 28-0 are valid and bits 31-29 are reserved for future function expansion (fixed to 0).
For FEPSWI, Bits 11-10, 7-0 are valid and bits 31-12, 9-8 are reserved for future function expansion
(fixed to 0).
Further, SS flag of PSW is saved in bit 11 of FEPSW and SB flag of PSW is saved in bit 10 of
FEPSW.

Figure 4-20. NMI Status Saving Registers [V850E2]

(c) Exception cause registeECR [V850, V850ES, V850E1, V850E2]
When software exception, maskable interrupt, non maskable interrupt occurs, ECR holds the cause infor-
mation (value which identifies each interrupt source)
This is a read-only register, and therefore no value can be written to it by using the LDSR instruction.

Figure 4-21. Exception Cause Register [V850, V850ES, V850E1, V850E2]

Table 4-27. Exception Cause Register [V850, V850ES, V850E1, V850E2]

Bit Position Flag Name Meaning

31-16 FECC Exception code of non-maskable interrupt (NMI)

031

(PC contents)

031

(PSW contents)

FEPC

FEPSW

8 7

S

2526

101112

S

031

(PC contents)

031

(PSW contents)

FEPC

FEPSW

8 7

S

101112

S

2829

B
S

9

031

EICCFECC

1516

ECR

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

User’s Manual U19383EJ1V0UM00 325

(d) Program status wordPSW [V850, V850ES, V850E1, V850E2]
It is a collection of flags that indicate the status of the program (result of instruction execution) and the sta-
tus of the CPU.
If the contents of the bits in this register are modified by the LDSR instruction, the PSW will assume the new
value immediately after the LDSR instruction has been executed. Setting the ID flag to 1, however, will dis-
able interrupt requests even while the LDSR instruction is being executed.
Meaning of each bit of PSW differs according to types (V850, V850ES, V850E1, V850E2) of CPU.

<1> V850, V850ES
Bits 7-0 are valid and bits 31-8 are reserved for future function expansion (fixed to 0).

Figure 4-22. Program Status Word [V850, V850ES]

Table 4-28. Program Status Word [V850, V850ES]

15-0 EICC Exception code of software exception/maskable interrupt

Bit Position Flag Name Meaning

7 NP Indicates whether non maskable interrupt (NMI) servicing is in
progress or not. This flag is set to 1 when an NMI request is
acknowledged, and multiple interrupt servicing is disabled.

0: NMI servicing is not in progress

1:NMI servicing is in progress

6 EP Indicates weather software exception servicing is in progress or
not This flag is set to (1) if software when exception occurrs.

Even when this bit is set, maskable interrupt requests can be
acknowledged.

0:Software exception servicing is not in progress.

1:Software exception servicing is in progress.

5 ID Indicates whether a maskable interrupt request can be acknowl-
edged.

0:Interrupts enabled (EI)

1:Interrupts disabled (DI)

4 SATNote Indicates that an overflow has occurred in a saturated operation
and the result is saturated. This is a cumulative flag. When the
result is saturated, the flag is set to 1 and is not cleared to 0
even if the next result is not saturated. To clear this flag to 0,
use the LDSR instruction to load data in PSW.

This flag is neither set to 1 nor cleared to 0 by execution of an
arithmetic operation instruction.

0:Not saturated.

1:Saturated.

3 CY Indicates whether a carry or borrow occurred as a result of the
operation.

0:Carry or borrow did not occur

1:Carry or borrow occurred

Bit Position Flag Name Meaning

PSW

31 8 7 6 45 3 2 01

ZE SV
N

Y
OCS

ADP T

I
P

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

326 User’s Manual U19383EJ1V0UM00

Note In the case of saturate instructions, the SAT, S, and OV flags will be set according to the result
of the operation as shown in the table below. Note that the SAT flag is set to 1 only when the
OV flag has been set to 1 during a saturated operation.

2 OVNote Indicates whether overflow occurred as a result of the operation.

0:Overflow did not occur

1:Overflow occurred.

1 SNote Indicates whether the result of the operation is negative.

0:Result is positive or zero

1:Result is negative

0 Z Indicates whether the result of the operation is zero.

0:Result is not zero

1:Result is 0.

Status of Operation
Result

Status of Flag Operation Result of
Saturation Processing

SAT OV S

Maximum positive value
is exceeded

1 1 0 7FFFFFFFH

Maximum negative value
is exceeded

1 1 1 80000000H

Positive (Not exceeding
maximum value)

Holds the value
before operation

0 0 Operation result

Negative (Not exceed-
ing maximum value)

Holds the value
before operation

0 1 Operation result

Bit Position Flag Name Meaning

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

User’s Manual U19383EJ1V0UM00 327

<2> V850E1
Bit 11, 7 to 0 are valid and bit 31 to 12, and 10 to 8 are reserved for future function expansion (fixed to
0).

Figure 4-23. Program Status Word [V850E1]

Table 4-29. Program Status Word [V850E1]

Bit Position Flag Name Function

11 SSNote 1 Operates with single-step execution when this flag is set to 1
(debug trap occurs each time instruction is executed).

This flag is cleared to 0 when branching to the interrupt servicing
routine.

When the SE flag of the DIR register is 0, this flag is not set
(fixed to 0).

7 NP Indicates that non-maskable interrupt (NMI) servicing is in
progress. This flag is set to 1 when an NMI request is acknowl-
edged, and multiple interrupt servicing is disabled.

0:Exception processing is not in progress

1:Exception processing is in progress

6 EP Indicates that software exception processing is in progress.
This flag is set to (1) when software exception occurs.

Even when this bit is set, maskable interrupt requests can be
acknowledged.

0:Exception processing is not in progress

1:Exception processing is in progress

5 ID Indicates whether a maskable interrupt request can be acknowl-
edged.

0:Interrupts enabled (EI)

1:Interrupts disabled (DI)

4 SATNote 2 Indicates that an overflow has occurred in a saturated operation
and the result is saturated. This is a cumulative flag. When the
result is saturated, the flag is set to 1 and is not cleared to 0
even if the next result is not saturated. To clear this flag to 0,
load data in PSW using LDSR instruction.

This flag is neither set to 1 nor cleared to 0 by execution of an
arithmetic operation instruction.

0:Not saturated.

1:Saturated.

3 CY Indicates whether a carry or borrow occurred as a result of the
operation.

0:Carry or borrow did not occurr

1:Carry or borrow occurred

2 OVNote 2 Indicates whether overflow occurred as a result of the operation.

0:Overflow did not occur

1:Overflow occurred

PSW

31 8 7 6 45 3 2 01

Z
E

SV
N

Y
OCS

ADP T

I
PS

101112

S

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

328 User’s Manual U19383EJ1V0UM00

Notes 1. Can only be used in type A ot B of V850E1. Cannot be used in other product types.
2. In the case of saturate instructions, the S, and OV flags will be set according to the result

of the operation as shown in the table below. Note that the SAT flag is set to 1 only when
the OV flag has been set to 1 during a saturated operation.

1 SNote 2 Indicates whether the result of operation is negative.

0:Result is positive or zero.

1:Result is negative

0 Z Indicates whether the result of the operation is 0.

0:Result is not zero.

1:Result is zero.

Status of operator result Status of Flag Operation result of
saturation processing

SAT OV S

Maximum positive value
is exceeded

1 1 0 7FFFFFFFH

Maximum negative value
is exceeded

1 1 1 80000000H

Positive (Not exceeding
maximum value)

Holds the value
before operation

0 0 Operation result

Negative (Not exceed-
ing maximum value)

Holds the value
before operation

0 1 Operation result

Bit Position Flag Name Function

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

User’s Manual U19383EJ1V0UM00 329

<3> V850E2
Bit 11 to 10 and 7 to 0 are valid and bit 31 to 12 and 9 and 8 are reserved for future function expansion
(fixed to 0).

Figure 4-24. Program Status Word [V850E2]

Table 4-30. Program Status Word [V850E2]

Bit Position Flag Name Function

11 SS Operates with single-step execution when this flag is set to 1
(debug trap occurs each time instruction is executed).

However, contents of SB flag are transferred when branching to
the interrupt servicing routine. Therefore, if SB flag is cleared
(0), single step operation of interrupt servicing routine is not exe-
cuted.

When the SSE flag of the DIR register is 0, this flag is not set
(fixed to 0).

10 SB Contents of this flag (Initial value: 0) are transferred to SS flag
when branching to the interrupt servicing routine.

Therefore, single step operation of interrupt servicing routine is
enabled by setting this flag to 1.

7 NP Indicates that non-maskable interrupt (NMI) servicing is in
progress. This flag is set to 1 when an NMI request is acknowl-
edged, and multiple interrupt servicing is disabled.

0:Exception processing is not in progress

1:Exception processing is in progress

6 EP Indicates that software exception processing is in progress.
This flag is set to (1) when software exception occurs.

Even when this bit is set, maskable interrupt requests can be
acknowledged.

0:Exception processing is not in progress

1:Exception processing is in progress

5 ID Indicates whether a maskable interrupt request can be acknowl-
edged.

0:Interrupts enabled (EI)

1:Interrupts disabled (DI)

4 SATNote Indicates that an overflow has occurred in a saturated operation
and the result is saturated. This is a cumulative flag. When the
result is saturated, the flag is set to 1 and is not cleared to 0
even if the next result is not saturated. To clear this flag to 0,
load data in PSW using LDSR instruction.

This flag is neither set to 1 nor cleared to 0 by execution of an
arithmetic operation instruction.

0:Not saturated.

1:Saturated.

PSW

31 8 7 6 45 3 2 01

Z
E

SV
N

Y
OCS

ADP T

I
PS

101112

S
B
S

9

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

330 User’s Manual U19383EJ1V0UM00

Note In the case of saturate instructions, the S, and OV flags will be set according to the result of the
operation as shown in the table below. Note that the SAT flag is set to 1 only when the OV flag
has been set to 1 during a saturated operation.

3 CY Indicates whether a carry or borrow occurred as a result of the
operation.

0:Carry or borrow did not occurr

1:Carry or borrow occurred

2 OVNote Indicates whether overflow occurred as a result of the operation.

0:Overflow did not occur

1:Overflow occurred

1 SNote Indicates whether the result of operation is negative.

0:Result is positive or zero.

1:Result is negative

0 Z Indicates whether the result of the operation is 0.

0:Result is not zero.

1:Result is zero.

Status of Operation
Result

Status of Flag Operation Result of
Saturation Processing

SAT OV S

Maximum positive value
is exceeded

1 1 0 7FFFFFFFH

Maximum negative value
is exceeded

1 1 1 80000000H

Positive (Not exceeding
maximum value)

Holds the value
before operation

0 0 Operation result

Negative (Not exceed-
ing maximum value)

Holds the value
before operation

0 1 Operation result

Bit Position Flag Name Function

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

User’s Manual U19383EJ1V0UM00 331

(e) CALLT caller status saving registers: CTPC, CTPSW [V850ES, V850E1, V850E2]
Two CALLT caller status saving registers are provided: CTPC and CTPSW.
In these registers, if a CALLT instruction is executed, the contents of the PC are saved to CTPC, and the
contents of the PSW are saved to CTPSW.

<1> CTPC
Address of instruction next to CALLT instruction is saved.

<2> CTPSW
Value of PSW is saved at the time of CALLT instruction is executed.

Functions of each bit of CTPC and CTPSW differs depending on types (V850ES, V850E1, V850E2) of
CPU.

<3> V850ES
For CTPC, Bit 25 to 0 are valid and bit 31 to 26 are reserved for future function expansion (fixed to 0).
For CTPSWI, Bit 7 to 0 are valid and bit 31 to 8 are reserved for future function expansion (fixed to 0).

Figure 4-25. CALLT Caller Status Saving Registers [V850ES]

<4> V850E1
For CTPC, Bit 25 to 0 are valid and bit 31 to 26 are reserved for future function expansion (fixed to 0).
For CTPSW, bit 11, 7 to 0 are valid and bit 31 to 12, and 10 to 8 are reserved for future function
expansion (fixed to 0).
Further SS flag of PSW is saved in bit 11 of CTPSW.

Figure 4-26. CALLT Caller Status Saving Registers [V850E1]

031

(PC contents)

031

(PSW contents)

CTPC

CTPSW

8 7

2526

031

(PC contents)

031

(PSW contents)

CTPC

CTPSW

8 7

S

2526

101112

S

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

332 User’s Manual U19383EJ1V0UM00

<5> V850E2
For CTPC, Bit 25 to 0 are valid and bit 31 to 29 are reserved for future function expansion (fixed to 0).
For CTPSW, bit 11 to 10, 7 to 0 are valid and bit 31 to 12, and 10 to 8 are reserved for future function
expansion (fixed to 0).
SS flag of PSW is saved in bit 11 of CTPSW and SB flag of PSW is saved in bit 10 of CTPSW.

Figure 4-27. CALLT Caller Status Saving Registers [V850ES]

031

(PC contents)

031

(PSW contents)

CTPC

CTPSW

8 7

S

101112

S

2829

B
S

9

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

User’s Manual U19383EJ1V0UM00 333

(f) Exception/debug trap status saving registers: DBPC, DBPSW [V850ES, V850E1, V850E2]
Two exception/debug trap status saving registers are provided: DBPC and DBPSW.
In these registers, when an exception trap, debug trap, or debug break occurs or during a single-step oper-
ation, the contents of the PC are saved to DBPC, and the contents of the PSW are saved to DBPSW.
At the time of user mode (DIR.DM flag =0), this register is an undefined value.

<1> DBPC
Contents shown below are saved in DBPC.

Table 4-31. Contents to Be Saved to DBPC

Notes 1. Type C of V850E1 do not support a "Debug trap".
2. V850ES do not support "Occurrence of debug break", "Execution of single step operation".

<2> DBPSW
In DBPSW, when an exception trap, debug trap, or debug break occurs or during a single-step opera-
tion, the contents of the PSW are saved to DBPSW.

Functions of each bit of DBPC and DBPSW differs depending on types (V850ES, V850E1, V850E2) of
CPU.

<3> V850ES
For DBPC, bit 25 to 0 are valid and bit 31 to 26 are reserved for future function expansion (fixed to 0).
For DBPSW, bit 7 to 0 are valid and bit 31 to 8 are reserved for future function expansion (fixed to 0).

Figure 4-28. Exception/Debug Trap Status Saving Registers [V850ES]

Cause for Saving Contents Saved to DBPC

Occurrence of exception trap Address of the instruction next to the instruction that
caused an exception trap

Occurrence of debug trapNote 1 Address of the instruction next to the instruction that
caused a debug trap

Occurrence of debug breakNote 2

- Execution trap

- Misalign access exception

- Alignment error exception

Address of the instruction next to the instruction that
caused a break

Occurrence of debug breakNote 2

- Access trap

Address of the instruction next to the instruction that
caused a break

Single-step operation executionNote 2 Address of the instruction to be executed next (instruction
executed when restoring from the debug monitor routine)

031

(PC contents)

031

(PSW contents)

DBPC

DBPSW

8 7

2526

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

334 User’s Manual U19383EJ1V0UM00

<4> V850E1
For DBPC, bit 25 to 0 are valid and bit 31 to 26 are reserved for future function expansion (fixed to 0).
For DBPSWI, bit 11, 7 to 0 are valid and bit 31 to 12, and 10 to 8 are reserved for future function
expansion (fixed to 0).
Further SS flag of PSW is saved in bit 11 of DBPSW.

Figure 4-29. Exception/Debug Trap Status Saving Registers [V850E1]

<5> V850E2
For DBPC, bit 25 to 0 are valid and bit 31 to 26 are reserved for future function expansion (fixed to 0)
For DBPSWI, bit 11 to 10, 7 to 0 are valid and bit 31 to 12, and 10 to 8 are reserved for future function
expansion (fixed to 0).
SS flag of PSW is saved in bit 11 of DBPSW and SB flag of PSW is saved in bit 10 of DBPSW.

Figure 4-30. Exception/Debug Trap Status Saving Registers [V850E2]

031

(PC contents)

031

(PSW contents)

DBPC

DBPSW

8 7

S

2526

101112

S

031

(PC contents)

031

(PSW contents)

DBPC

DBPSW

8 7

S

101112

S

2829

B
S

9

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

User’s Manual U19383EJ1V0UM00 335

(g) CALLT base pointer: CTBP [V850ES, V850E1, V850E2]
The CALLT base pointer (CTBP) is used to specify a table address and to generate a target address (bit 0
is fixed to 0).
Functions of each bit of CTBP differs depending on types (V850ES, V850E1, V850E2) of CPU.

<1> V850ESV850E1
Bit 25 to 0 are valid and bit 31 to 26 are reserved for future function expansion (fixed to 0).

Figure 4-31. CALLT Base Pointer [V850ES, V850E1]

<2> V850E2
Bit 25 to 0 are valid and bit 31 to 29 are reserved for future function expansion (fixed to 0).

Figure 4-32. CALLT Base Pointer [V850E2]

031

(Base address)CTBP

2526

0

031

(Base address)CTBP

2829

0

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

336 User’s Manual U19383EJ1V0UM00

(h) Debug interface register: DIR [V850ES, V850E1, V850E2]
It controls the debug function and indicates the debug function status.
Functions of each bit of DIR differs depending on types (V850ES, V850E1, V850E2) of CPU.

<1> V850ES
Bit 0 is valid and bit 31 to 1 are reserved for future function expansion (fixed to 0).
Contents of this register can be read by saving the contents of this register in general purpose register
using STSR instruction. Writing to this register is disabled.

Figure 4-33. Debug Interface Register [V850ES]

Table 4-32. Debug Interface Register [V850ES]

Bit Position Flag Name Function

0 DM It is set to 1 and cleared 0 by DBRET instruction at the time of
exception trap and DBRAP instruction.

0:Normal mode

1:Debug mode

DIR

31 01

M
D

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

User’s Manual U19383EJ1V0UM00 337

<2> V850E1
Bit 14 to 8 and 6 to 0 are valid and bit 31 to 15 and 7 are reserved for future function expansion (fixed
to 0).
If the contents of the bits in this register are modified by the LDSR instruction, the PSW will assume
the new value immediately after the LDSR instruction has been executed.
This register can only be written (except for bits 3 and 1) in the debug mode (DM bit = 1) but can
always be read.
Reading of this register is normally enabled but Bits 14 to 8, 6 to 4, and 2 to 1 are undefined in the
user mode (DM flag=0).

Caution Can only be used in type A ot B of V850E1. Cannot be used in other product types.

Figure 4-34. Debug Interface Register [V850E1]

Table 4-33. Debug Interface Register [V850E1]

Bit Position Flag Name Function

14 SQNote 1, 2 Sets sequential break mode (sets a break if a break occurs for
channel 0 and channel 1in that order).

0:Normal break mode

1:Sequential break mode

13 RENote 1, 2 Sets range break mode (sets a break only when a break occurs
for channels 0 and 1 simultaneously).

0:Normal break mode

1:Range break mode

12 CSNote 2 Sets break register bank.

0:Select bank 0 register (channel 0 control register)

1:Select bank 1 register (channel 1 control register)

11 CE Enables/disables COMBO interrupt.

0:COMB0 interrupt disabled

1:COMB0 interrupt enabled

10 MA Enables/disables misalign access exception detection.

0:Misalign access exception detection disabled

1:Misalign access exception detection enabled

9 AE Enables/disables alignment error exception detection.

0:Alignment error exception detection disabled

1:Alignment error exception detection enabled

8 SE Enables/disables writing to SS flag of PSW.

0:Writing to SS flag disabled (SS flag is fixed to 0)

1:Writing to SS flag enabled

6 INNote 3 Set to 1 by debug function reset.

Be sure to clear this bit to 0 after reset While this bit is set to 1,
writing to SQ, RE, and CS bits is disabled. And T1 and T0 bits
do not operate.

5 T1Note 3, 4 Set to 1 by channel 1 break generation.

Cleared to 0 by setting 0. Note 4

DIR

31 8 7 6 45 3 2 01

T
T

I
T

AMC
M0N

T
1 M

101112

DS
A

S
E

MCC
SE E

R
Q E

A

9131415

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

338 User’s Manual U19383EJ1V0UM00

Notes 1. Always set either the SQ or RE flag to 1 or clear both flag to 0. If both flags are set to 1,
the operation cannot be guaranteed.

2. While the IN bit is set to 1, writing to the SQ, RE, and CS bits is disabled. When the IN bit
is set to 1, each bit is automatically cleared to 0

3. The IN, T1, T0, MT, and AT bits are not automatically cleared to 0 after being set to 1 (they
are cleared to 0 by using LDSR instruction).

4. While the IN bit is set to 1, the T1 and T0 bits do not operate (even if a break occurs, these
bits are not set to 1), And, automatically cleared to 0.

5. The DM and CM bits change as follows.

6. The T1, T0, MT, and AT bits cannot be arbitrarily set to 1 by a user program

4 T0Note 3, 4 Set to 1 by channel 1 break generation.

Cleared to 0 by setting 0. Note 4

3 CMNote 5 Set to 1 by shift to COMBO interrupt routine or debug monitor
routine 2.

Writing to this bit is disabled.

2 MTNote 3 Set to 1 by detection of misalign access exception.

Cleared to 0 by setting 0.Note 6

1 ATNote 3 Set to 1 by detection of alignment error exception.

Cleared to 0 by setting 0.Note 6

0 DMNote 5 Set to 1 when debug mode is entered. Cleared to 0 when user
mode is entered.

Writing to this bit is disabled.

Bit Position Flag Name Function

User mode

Debug mode

User mode

Debug mode

User mode

Debug mode

User mode0

1

0

1

0

1

0

0

1

0

1

0

1

0

DM flag CM flagMain routine

Debug monitor routine 1

COMBO interruption routine

Debug monitor routine 2

Maskable interrupt,
Non maskable interruption

Debug trap,
Debug break

Debug trap,,
Debug break

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

User’s Manual U19383EJ1V0UM00 339

<3> V850E2
Bit 30 to 28, 22 to 20, 16, 14 to 12, 10 to 4 and 2 to 0 are valid and bit 31, 27 to 23, 19 to 17, 15, 11
and 3 are reserved for future function expansion (fixed to 0)..
If the contents of the bits in this register are modified by the LDSR instruction, the PSW will assume
the new value immediately after the LDSR instruction has been executed.Writing to this register is
enabled for bit 22 at the time of user mode for bit 31, 27-23, 19-17, 15 and of writing disabled at the
time of debug mode and bit excluding 3, 0 of read only.
Reading of this register is normally enabled but bits 22 exception is undefined in the user mode (DM
flag=0).

Figure 4-35. Debug Interface Register [V850E2]

Table 4-34. Debug Interface Register [V850E2]

Bit Position Flag Name Function

30 SQ1Note 1 Sets sequential break mode for channel 2 and 3 (sets a break if
a break occurs for channel 2 and channel 3 in that order).

0:Normal break mode

1:Sequential break mode

29 RE1Note 1 Sets range break mode for channel 2 and 3 (sets a break only
when a break occurs for channels 2 and 3 simultaneously).

0:Normal break mode

1:Range break mode

28 CS1Note 1 Enables control register (BPCn, BPAVn, BPAMn, BPDVn,
BPDMn) of channel 2 and 3.

0: チ Enables control register (BPC2, BPxx2) of channel 2.
1:Enables control register (BPC3, BPxx3) of channel 3.

22 CSL Enables control register of each channel.

0:Channel 0, 11

1:Channel 2, 3

21 BT3Note 2 Set to 1 by channel 1 break generation.

20 BT2Note 2 Set to 1 by channel 1 break generation.

16 STT Set to 1 at the time of debug trap execution.

This bit is automatically not cleared 0. Cleared to 0 only by the
LDSR instruction

14 SQ0Note 3 Sets sequential break mode for channel 0 to 1 (sets a break if a
break occurs for channel 0 and channel 1 in that order).

0:Normal break mode

1:Sequential break mode

13 RE0Note 3 Sets range break mode for channel 2 and 3 (sets a break only
when a break occurs for channels 2 and 3 simultaneously).

0:Normal break mode

1:Range break mode

DIR

31 8 7 6 45 3 2 01

TT
AM

M

101112

D

9131415

B
T
０

B
T
1

I
N
I

E
X
T

S
S
E

C
S
０

M
A
E

S
T
T

S
Q
1

R
E
０

S
Q
０

A
E
E

16171923 22 21 20

B
T
3

B
T
2

C
S
L

30 28 27

R
E
1

C
S
１

29

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

340 User’s Manual U19383EJ1V0UM00

Notes 1. While the INI flag is set to 1, writing to the SQ1, RE1 and CS1 bits is disabled. When the
INI bit is set to 1, SQ1, RE1 and CS1 bit is automatically cleared to 0.

2. While the BT2 and BT3 INI flag is set to 1, it does not operate (even if a break occurs,
these bits are not set to 1). When the INI bit is set to 1, it is not cleared (0) till 0 is set by
LDSR command or INI flag is set to 1.

3. While the INI is set to 1, writing to the SQ0, RE0, and CS0 bits is disabled. When the INI
bit is set to 1, SQ0, RE0 and CS0 bit is automatically cleared to 0.

4. INI, MT, AT flags are automatically not cleared 0. Cleared to 0 only by the LDSR instruc-
tion

5. While the BT0 and BT1 flag is set to 1 by INI flag, it does not operate (even if a break
occurs, these bits are not set to 1). When the INI bit is set to 1, it is not cleared (0) till 0 is
set by LDSR command or INI flag is set to 1.

6. The DM flag change as follows.

12 CS0Note 3 Enables control register (BPCn, BPAVn, BPAMn, BPDVn,
BPDMn) of channel 0 and 1.

0:Enables control register (BPC0, BPxx0) of channel 0.

1:Enables control register (BPC1, BPxx1) of channel 1.

10 MAE Enables/disables misalign access exception detection.

0:Misalign access exception detection disabled

1:Misalign access exception detection enabled

9 AEE Enables/disables alignment error exception detection.

0:Alignment error exception detection disabled

1:Alignment error exception detection enabled

8 SSE Enables/disables writing to SS flag of PSW.

0:Writing to SS flag disabled

1:Writing to SS flag enabled

7 EXT Validates/invalidates of extension debug function.

0:invalid

1:Valid

6 INNote 4 Set to 1 by debug function reset.

Be sure to clear this bit to 0 after reset While this bit is set to 1,
writing to SQn, REn and CSn bits is disabled. And bit 3 to 0 do
not operate.

5 BT1Note 5 Set to 1 by channel 1 break generation.

4 BT0Note 5 Set to 1 by channel 1 break generation.

2 MTNote 4 Set to 1 by detection of misalign access exception.

1 ATNote 4 Set to 1 by detection of alignment error exception.

0 DMNote 6 Set to 1 when debug mode is entered.

Bit Position Flag Name Function

User mode

Debug mode

User mode

0

0

1

DM flagMain routine

Debug monitor routine 1
Debug trap,
Debug break

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

User’s Manual U19383EJ1V0UM00 341

(i) Breakpoint control registers: BPCn [V850E1, V850E2]
It controls the debug function and indicates the debug function status.
Functions of each bit of BPCn differs depending on types (V850E1, V850E2) of CPU.

<1> V850E1
BPC0 and BPC1 exist in breakpoint control register of V850E1 and one or other of these registers is
enabled by setting of DIR.CS flag.
For BPCn, bit 23 to 15, 11 to 7 and 4 to 0 are valid and bit 31 to 24, 14 to 12 and 6 to 5 are reserved
for future function extension (fixed to 0).
The values of the bits in these registers can be changed by using the LDSR instruction. Changed val-
ues become valid immediately after execution of this instruction. (If the FE flag is set to 1, the timing
at which the changed values become valid is delayed, but the changes are definitely reflected after
the DBRET instruction is executed.)
This register can only be written in the debug mode (DIR.DM flag = 1) but can always be read.
Reading of this register is normally enabled but bits 0 is 0, bit 23 to 15, 11 to 7 and 4 to 1 have unde-
cided value at the time of user mode (DIR.DM flag=0).

Caution Can only be used in type A ot B of V850E1. Cannot be used in other product types.

Figure 4-36. Breakpoint Control Registers [V850E1]

Table 4-35. Breakpoint Control Registers [V850E1]

Bit Position Flag Name Function

23-16 BP ASID Sets the program ID that generates a break (valid only when IE
bit = 1).

15 IE Sets the comparison of the BP ASID bit and the program ID set
in the ASID register.

- 0:Not compared

- 1:Compared

11-10 TY Sets the type of access for which a break is detected.

Note that the contents set in this register are ignored in the case
of an execution trap.

0,0: Access by all data types

0,1:Byte access (including bit manipulation)

1,0:Halfword access

1,1: Word access

9 VD Sets the match condition of the data comparator.

0: Break on match

1: Break on mismatch

BPC0

8 7 4 3 2 01

EE
WFB

EE
T

E

101115

RV
Y
TI

E AD

V

9 6 5

M
D

1214

31 8 7 4 3 2 01

EE
WFB

EE
T

E

101115

RV
Y
TI

E AD

V

9 6 5

M
D

1214

BPC1

162324

BP ASID

31 2324

BP ASID

16

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

342 User’s Manual U19383EJ1V0UM00

Notes 1. The TE and BE flags can be set only in type B of V850E1. In other product types, the TE
and BE bits are fixed to 0 (however, even when the BE bit is fixed to 0, it reports a break to
the CPU).

2. If the FE flag is set to 1, always clear the WE, RE flags to 0.
3. If the WE flag is set to 1, always clear the FE flags to 0.

8 VA Sets the match condition of address comparator.

0: Break on match

1: Break on mismatch

7 MD Sets the operation of the data comparator.

0: Break on match of data and condition

1: Whether data matches (data comparator) is ignored regard-
less of the setting of the VD bit or BPDVx and BPDMx regis-
ters

4 TENote 1 Enables/disables trigger output.

0: Trigger output disabled

1: Trigger output enabled (output corresponding trigger before
break occurs in channel 0 or 1)

3 BENote 1 Sets whether or not a break in channel 0 or 1 is reported to the
CPU.

0: Not reported.

1: Reported (break)

2 FE Enables/disables break/trigger due to instruction execution
address match.

0: Break/trigger disabled

1: Break/trigger enabledNote 2

1 WE Enables/disables break/trigger on data write.

0: Break/trigger disabled

1: Break/trigger enabledNote 3

0 RE Enables/disables break/trigger on data read.

0: Break/trigger disabled

1: Break/trigger enabled Note 3

Bit Position Flag Name Function

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

User’s Manual U19383EJ1V0UM00 343

<2> V850E2
BPC0, BPC1, BPC2 and BPC3 exist in breakpoint control register of V850E2 and one or other of

these registers is enabled by setting of DIR.CSL, CS1 and CS0 flag.

For BPCn, bit 26 to 15, 11 to 7 and 4 to 0 are valid and bit 31 to 27, 14 to 12 and 6 to 5 are reserved

for future function extension (fixed to 0).

The values of the bits in these registers can be changed by using the LDSR instruction. Changed val-

ues become valid immediately after execution of this instruction. (If the FE bit is set to 1, the timing at

which the changed values become valid is delayed, but the changes are definitely reflected after the

DBRET instruction is executed.)

Bit 31 to 27, 14 to 12 and 6 to 5 always clear the 0. Operation cannot be guaranteed when any bit is

set to 1.

Writing to FB2 to FB0 flag is enabled only upon clear 0. If values of these bits are updated, all the bits

cleared 0. Operation cannot be guaranteed when any bit is set to 1.

Figure 4-37. Breakpoint Control Register [V850E2]

Table 4-36. Breakpoint Control Register [V850E2]

Bit Position Flag Name Function

26-24 FBn Indicates life of break occurred by instruction fetch event.

0,0,0:Break by execution discontinuation of break target
instruction

0,1,0:Break by execution discontinuation of break target
instruction and instruction before it

1,0,0:Break by execution discontinuation of break target
instruction and instruction before it and 2 instructions before it

0,0,1:Break by execution termination of break target instruc-
tion

Other: reservation for future function expansion

23-16 BP ASID Sets the program ID that generates a break (valid only when IE
bit = 1).

BPC0

8 7 4 3 2 01

EE
WFB

EE
T

E

101115

RV
Y
TI

E AD

V

9 6 5

M
D

1214

8 7 4 3 2 01

EE
WFB

EE
T

E

101115

RV
Y
TI

E AD

V

9 6 5

M
D

1214

BPC1

16

BP ASID

BP ASID

16

8 7 4 3 2 01

EE
WFB

EE
T

E

101115

RV
Y
TI

E AD

V

9 6 5

M
D

1214

BPC2

16

BP ASID

31 8 7 4 3 2 01

EE
WFB

EE
T

E

101115

RV
Y
TI

E AD

V

9 6 5

M
D

1214

BPC3

162324

BP ASID

27

F
B
１

F
B
0

2526

F
B
2

31 232427

F
B
１

F
B
0

2526

F
B
2

31 232427

F
B
１

F
B
0

2526

F
B
2

31 232427

F
B
１

F
B
0

2526

F
B
2

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

344 User’s Manual U19383EJ1V0UM00

Notes 1. If the FE flag is set to 1, always clear the WE, RE flags to 0.
2. If WE flag or RE flag is set to 1, always clear the FE flag to 0.

15 IE Sets the comparison of the BP ASID bit and the program ID set
in the ASID register.

0:Not compared

1:Compared

11-10 TY Sets the type of access for which a break is detected.

Note that the contents in this register are ignored in the case of
an execution trap.

0,0: Access by all data types

0,1: Byte access (including bit manipulation)

1,0: Half word access

1,1: Word access

9 VD Sets the match condition of the data comparator.

0: Break on a match

1: Break on a mismatch

8 VA Sets the match condition of the address comparator.

0: Break on a match

1: Break on a mismatch

7 MD Sets the operation of the data comparator.

0: Break on match of data and condition.

1: Whether data matches (data comparator) is ignored regard-
less of the setting of the VD bit or BPDVx and BPDMx regis-
ters.

4 TE Enables/disables trigger output at the time of event of channel 3
occurs.

0: Trigger output disabled

1: Trigger output enabled (output corresponding trigger)

3 BE Sets whether or not a break when event occurs in channel 0 or 3
is reported to the CPU.

0: Not reported.

1: Reported (break)

2 FE Set the event operation at the time of instruction fetch.

0: Event mask

1: Event occurrenceNote 1

1 WE Sets the event operation at the time of data write.

0:Event mask

1:Event occurrenceNote 2

0 RE Sets the event operation at the time of data read.

0:Event mask

1:Event occurrenceNote 2

Bit Position Flag Name Function

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

User’s Manual U19383EJ1V0UM00 345

(j) Program ID registerASID[V850E1, V850E2]
This register sets the ID of the program currently under execution.
For ASID, bit 7 to 0 are valid and bit 31 to 8 are reserved for future function expansion (fixed to 0).
The program ID is used when a shift to the debug mode is necessary only in cases such as
when a specific program is being executed to download different programs to the RAM of the same
address area While the BPCn.IE flag is set to bit 1, the system does not shift to the debug mode if the pro-
gram IDs set to the BPCn.BP ASID bit. and the ASID register do not match; even if the break conditions
match.

Caution Access is enabled only at the time of type A, B of V850E1 and V850E2. Access in other
product types is prohibited

Figure 4-38. Program ID Register [V850E1, V850E2]

Table 4-37. Program ID Register [V850E1, V850E2]

Bit Position Flag Name Function

7-0 ASID ID of program currently under execution

31 8 7 0

ASID ASID

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

346 User’s Manual U19383EJ1V0UM00

(k) Breakpoint address setting registerBPAVn[V850E1, V850E2]
These registers set the breakpoint addresses to be used by the address comparator.
Functions of each bit of BPAVn differs depending on types (V850E1, V850E2) of CPU.

<1> V850E1
BPAV0 and BPAV1 exist in breakpoint address setting register of V850E1 and one or other of these
registers is enabled by setting of DIR.CS flag.
For BPAVn, Bit 7-0 is valid and bit 31-8 is reserved for future function extension (fixed to 0).
Writing to/reading from these registers is enabled only in the debug mode (DIR.DM bit = 1).
Reading of this register is normally enabled but it is undefined in the user mode (DIR.DM flag=0).
When these registers are not used, be sure to set each bit to 1.

Caution Access is enabled only at the time of type A, B of V850E1. Access in other product
types is prohibited.

Figure 4-39. Breakpoint Address Setting Register [V850E1]

<2> V850E2
BPC0, BPC1, BPC2, BPC3 exist in breakpoint address setting register of V850E2 and one or other of
these registers is enabled by setting of DIR.CSL, CS1 and CS0 flag.
For BPAVn, bit 25 to 0 are valid and bit 31 to 29 are reserved for future function expansion (fixed to 0).
When these registers are not used, be sure to set each bit to (1).

BPAV0

31 0

BPAV1

27

(Breakpoint address)

28

31 027

(Breakpoint address)

28

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

User’s Manual U19383EJ1V0UM00 347

Figure 4-40. Breakpoint Address Setting Register [V850E2]

BPAV0

31 0

BPAV1 (Breakpoint address)

28

0

(Breakpoint address)

29

31 2829

31 0

BPAV2 (Breakpoint address)

2829

31 0

BPAV3 (Breakpoint address)

2829

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

348 User’s Manual U19383EJ1V0UM00

(l) Breakpoint address mask registerBPAMn [V850E1, V850E2]
These registers set the bit mask for address comparison (masked by 1).
Functions of each bit of BPAMn differs depending on types (V850E1, V850E2) of CPU.

<1> V850E1
BPAM0 and BPAM1 exist in breakpoint address setting register of V850E1 and one or other of these
registers is enabled by setting of DIR.CS flag.
For BPAMn, bit 28 to 0 are valid and bit 31 to 28 are reserved for future function expansion (fixed to
0).
This register can only be written/read in the debug mode (DIR.DM flag = 1) but can always be read.
Reading of this register is normally enabled but it is undefined in the user mode (DIR.DM flag=0).
When these registers are not used, be sure to set each bit to (1).

Figure 4-41. Breakpoint Address Mask Register [V850E1]

<2> V850E2
BPAM0, BPAM1, BPAM2, BPAM3 exist in breakpoint address setting register of V850E2 and one or
other of these registers is enabled by setting of DIR.CSL, CS1 and CS0 flag.
For BPAMn, bit 28 to 0 are valid and bit 31 to 29 are reserved for future function expansion (fixed to
0).
When these registers are not used, be sure to set each bit to (1).

Figure 4-42. Breakpoint Address Mask Register [V850E2]

BPAM0

31 0

BPAM1

27

(Breakpoint address mask)

28

31 027

(Breakpoint address mask)

28

BPAM0

31 0

BPAM1 (Breakpoint address mask)

31 0

(Breakpoint address mask)

31 0

BPAM2 (Breakpoint address mask)

31 0

BPAM3 (Breakpoint address mask)

2829

2829

2829

2829

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

User’s Manual U19383EJ1V0UM00 349

(m) Breakpoint data setting register BPDVn[V850E1, V850E2]
These registers set the breakpoint data to be used by the data comparator.
Functions of each bit of BPDVn differs depending on types (V850E1, V850E2) of CPU.

<1> V850E1
BPDV0 and BPDV1 exist in breakpoint data setting register of V850E1 and one or other of these reg-
isters is enabled by setting of DIR.CS flag.
Writing to/reading from these registers is enabled only in the debug mode (DIR.DM bit = 1).
Reading of this register is normally enabled but it is undefined in the user mode (DIR.DM flag=0).
When these registers are not used, be sure to set each bit to (1).

Caution Access is enabled only to type A, B of V850E1. Access in other product types is
prohibited.

Remark Set the instruction code for 16-bit instructions aligned to the LSB. Set the instruction
codes for 32-bit instructions in little endian format.

Figure 4-43. Breakpoint Data Setting Register [V850E1]

BPDV0

31 0

BPDV1 (Breakpoint data)

31 0

(Breakpoint data)

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

350 User’s Manual U19383EJ1V0UM00

<2> V850E2
BPDV0, BPDV1, BPDV2, BPDV3 exist in breakpoint data setting register of V850E2 and one or other
of these registers is enabled by setting of DIR.CSL, CS1 and CS0 flag.
When these registers are not used, be sure to set each bit to (1).

Remark Set the instruction code for 16-bit instructions aligned to the LSB. Set the instruction
codes for 32-bit instructions in little endian format.

Figure 4-44. Breakpoint Data Setting Register [V850E2]

BPDV0

31 0

BPDV1 (Breakpoint data)

31 0

(Breakpoint data)

31 0

BPDV2 (Breakpoint data)

31 0

BPDV3 (Breakpoint data)

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

User’s Manual U19383EJ1V0UM00 351

(n) Breakpoint data mask registerBPDMn[V850E1, V850E2]
These registers set the bit mask for data comparison (masked by 1).
Functions of each bit of BPDMn differs depending on types (V850E1, V850E2) of CPU.

<1> V850E1
BPDM0 and BPDM1exist in breakpoint data mask register of V850E1 and one or other of these regis-
ters is enabled by setting of DIR.CS flag.
This register can only be written/read in the debug mode (DIR.DM flag = 1) but can always be read.
Reading of this register is normally enabled but it is undefined in the user mode (DIR.DM flag=0).
When these registers are not used, be sure to set each bit to (1).
When the data access type that detects breaks is set to the byte access (BPCn.TY flag = 0, 1), set bits
31 to 8 to 1, and if halfword access (BPCn.TY flag = 1,0), set bits 31 to 16 to 1.

Caution Access is enabled only at the time of type A, B of V850E1. Access in other product
types is prohibited.

Figure 4-45. Breakpoint Data Mask Register [V850E1]

<2> V850E2
BPDM0, BPDM1, BPDM2, BPDM3 exist in breakpoint data mask register of V850E2 and one or other
of these registers is enabled by setting of DIR.CSL, CS1 and CS0 flag.
When these registers are not used, be sure to set each bit to (1).

BPDM0

31 0

BPDM1 (Breakpoint data mask)

31 0

(Breakpoint data mask)

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

352 User’s Manual U19383EJ1V0UM00

Figure 4-46. Breakpoint Data Mask Registers [V850E2]

BPDM0

31 0

BPDM1 (Breakpoint data mask)

31 0

(Breakpoint data mask)

31 0

BPDM2 (Breakpoint data mask)

31 0

BPDM3 (Breakpoint data mask)

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

User’s Manual U19383EJ1V0UM00 353

4.5.3 Addressing

The CPU generates two types of addresses: instruction addresses used for instruction fetch and branch oper-
ations; and operand addresses used for data access.

(1) Instruction address
An instruction address is determined by the contents of the program counter (PC), and is automatically
incremented (+2) according to the number of bytes of an instruction to be fetched each time an instruction is
executed. When a branch instruction is executed, the branch destination address is loaded into the PC using
one of the following two addressing modes.

(a) Relative addressing (PC relative)
The signed 9- or 22-bit data of an instruction code (displacement: disp x) is added to the value of the pro-
gram counter (PC). At this time, the displacement is treated as 2's complement data with bits 8 and 21
serving as sign bits (S).
JR disp22 instruction, JARL disp22, reg2 instruction, JR disap32 instruction, JARL disp32, reg1 instruction,
Bcnd disp9 instruction is the target of this addressing.

Figure 4-47. Relative Addressing (JR disp22/JARL disp22, reg2)[V850]

31 0

PC0 0 0 0 0 0 0 0

24 23

0

+

Operation target memory

31 0

disp22Sign extension 0

22 21

S

31 0

PC0 0 0 0 0 0 0 0

24 23

0

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

354 User’s Manual U19383EJ1V0UM00

Figure 4-48. Relative Addressing (JR disp22/JARL disp22, reg2)[V850ES, V850E1]

Figure 4-49. Relative Addressing (JR disp22/JARL disp22, reg2)[V850E2]

31 0

PC0 0 0 0 0 0 0

+

31 0

disp22Sign extension 0

22 221

S

31 0

PC0 0 0 0 0 0

26 25

0

26 25

Operation target memory

31 0

PC0 0 0 0

+

31 0

disp22 0

22 21

S

31 0

PC0 0 0 0

29 28

29 28

Sign extension

Operation target memory

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

User’s Manual U19383EJ1V0UM00 355

Figure 4-50. Relative Addressing (JR disp32/JARL disp32, reg2)[V850E2]

Figure 4-51. Relative Addressing (Bcnd disp9)[V850]

31 0

PC0 0 0 0

+

31 0

disp32 0S

31 0

PC0 0 0 0

29 28

29 28

Operation target memory

31 0

disp9 0

9 8

S

31 0

PC0 0 0 0 0 0 0 0

24 23

0

+

31 0

PC0 0 0 0 0 0 0 0

24 23

0

Sign extension

Operation target memory

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

356 User’s Manual U19383EJ1V0UM00

Figure 4-52. Relative Addressing (Bcnd disp9)[V850ES, V850E1]

Figure 4-53. Relative Addressing (Bcnd disp9)[V850E2]

31 0

disp9 0

9 8

S

31 0

PC0 0 0 0 0 0

26 25

0

+

31 0

PC0 0 0 0 0 0 0

26 25

Sign extension

Operation target memory

31 0

disp9 0

9 8

S

31 0

PC0 0 0

29 28

0

+

31 0

PC0 0 0 0

29 28

Sign extension

Operation target memory

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

User’s Manual U19383EJ1V0UM00 357

(b) Register addressing (Register indirect)
The contents of a general-purpose register (reg1) specified by an instruction are transferred to the
program counter (PC).
This addressing is used for the JMP [reg1] instruction.

Figure 4-54. Relative Addressing (JMP [reg1])[V850]

Figure 4-55. Register Addressing (JMP [reg1] V850ES, V850E1]

31 0

31 0

PC0 0 0 0 0 0 0 0

24 23

0

reg1

Operation target memory

31 0

31 0

PC0 0 0 0 0 0 0

reg1

26 25

Operation target memory

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

358 User’s Manual U19383EJ1V0UM00

Figure 4-56. Register Addressing (JMP [reg1])[V850E2]

(c) Based addressing
Contents of general purpose register (reg1) specified by command, in which 32 bit data (displacement:
disp) is added, are forwarded in program counter (PC).
This addressing is used for the JMP disp32 [reg1] instruction.

Figure 4-57. Register Addressing (JMP disp32[reg1])[V850E2]

31 0

31 0

PC0 0 0 0

reg1

29 28

Operation target memory

31 0

disp32 0S

31 0

reg1

+

Operation target memory

31 0

PC0 0 0 0

29 28

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

User’s Manual U19383EJ1V0UM00 359

(2) Operand address
When an instruction is executed, the register or memory area to be accessed is specified in one of the following
four addressing modes.

(a) Register addressing
The general-purpose register or system register specified in the general-purpose register specifica-
tion field is accessed as operand.
This addressing mode applies to instructions using the operand format reg1, reg2, reg3, or regID.

(b) Immediate addressing
The 5-bit or 16-bit data for manipulation is contained in the instruction code
This addressing mode applies to instructions using the operand format imm5, imm16, vector, or cccc.

<1> vector
Operand that is 5-bit immediate data for specifying a trap vector (00H to 1FH), and is used in the
TRAP instruction.

<2> cccc
Operand consisting of 4-bit data used in the CMOV, SASF, and SETF instructions to specify a condi-
tion code. Assigned as part of the instruction code as 5-bit immediate data by appending 1-bit
0 above the highest bit.

(c) Based addressing
The following two types of based addressing are supported.

<1> Type 1
The address of the data memory location to be accessed is determined by adding the value in the
specified general-purpose register (reg1) to the 16-bit displacement value (disp16) contained in the
instruction code.
This addressing mode applies to instructions using the operand format disp16 [reg1]

Figure 4-58. Based Addressing (Type1) [V850, V850ES, V850E1, V850E2]

Sign extension

reg1

31 0

31 0

disp16

16 15

+

Operation target memory

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

360 User’s Manual U19383EJ1V0UM00

<2> Type 2
The address of the data memory location to be accessed is determined by adding the value in the ele-
ment pointer (r30) to the 7- or 8-bit displacement value (disp7, disp8).
This addressing mode applies to SLD and SST instructions.

Figure 4-59. Based Addressing (Type2) [V850, V850ES, V850E1, V850E2]

Remark Byte access = disp7
Halfword access and word access: disp8

(d) Bit addressing
This addressing is used to access 1 bit (specified with bit#3 of 3-bit data) among 1 byte of the memory
space to be manipulated by using an operand address which is the sum of the contents of a gen-
eral-purpose register. (reg1) and a 16-bit displacement (disp16) sign-extended to a word length.
This addressing mode applies only to bit manipulation instructions.

Figure 4-60. Bit Addressing [V850, V850ES, V850E1, V850E2]

Remark n: Bit position specified with 3-bit data (bit#3) (n = 0 to 7)

8 7

Zero corresponding extension

r30(element pointer)

31 0

31 0

disp8 or disp7

+

Operation target memory

n

reg1

31 0

31 0

disp16

16 15

+

Operation target memory

Sign extension

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

User’s Manual U19383EJ1V0UM00 361

4.5.4 Instruction set

This section explains the instruction set supported by the CA850 assembler (as850).

(1) Description of symbols
Next table lists the meanings of the symbols used further.

Table 4-38. Meaning of Symbols

Note The bit number 0 is LSB (Least Significant Bit).

Symbols Meaning

CMD Instruction

CMDi Instruction(andi, ori, or xori)

reg, reg1, reg2,
reg3, reg4

Register

r0 Zero register

r1 Assembler-reserved register

gp Global pointer (r4)

ep Element pointer (r30)

[reg] Base register

disp Displacement (Displacement from the address)

32 bits unless otherwise stated.

imm Immediate

32 bits unless otherwise stated.

bit#3 3-bit data for bit number specification

#label Absolute address reference of label

label Offset reference of label in section or PC offset reference

However, for a section allocated to a segment for which a tp symbol is to be gener-
ated, offset reference from the tp symbol is referred instead of offset in section

$label gp offset reference of label

!label Absolute address reference of label (without instruction expansion)

%label Offset reference of label in section (without instruction expansion)

hi(value) Higher 16 bits of value

lo(value) Lower 16 bits of value

hi1(value) Higher 16 bits of value + bit valueNote of bit number 15 of value

addr Address

PC Program counter

PSW Program status word

regID System register number (0 to 31)

vector Trap vector (0 to 31)

BITIO Peripheral I/O register (for 1-bit manipulation only)

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

362 User’s Manual U19383EJ1V0UM00

(2) Operand
This section describes the description format of operand in as850. In as850, register, constant, symbol, label
reference, and constant, symbol, label reference, operator can be specified as the operands for instruction, and
pseudo-instruction.

(a) Register
The registers that can be specified with the as850 are listed below.Note

Note For the ldsr and stsr instructions, the PSW, and system registers are specified by using the numbers.
Further, in as850, PC cannot be specified as an operand.

r0 and zero (Zero register), r2 and hp (Handler stack pointer), r3 and sp (Stack pointer), r4 and gp (Global
pointer), r5 and tp (Text pointer), r30 and ep (Element pointer), r31 and lp (Link pointer) shows the same
register.

(b) r0
r0 is the register which normally contains 0 value. This register does not substitute the result of an opera-
tion even if used as a destination register. When r0 is specified as a destination register, the as850 outputs
the following messageNote, and then continues assembling.

Note Output of this message can be suppressed by specifying the warning message suppression option (-
w) upon starting the as850.

<1> When V850Ex is used in target device, and when r0 is specified as a destination register in the
following instruction, then it outputs error message instead of warning message.
Format (1), and (2) of dispose, divh instruction, Format (2) of ld.bu, ld.hu, mov instruction, movea,
movhi, mulh, mulhi, satadd, satsub, satsubi, satsubr, sld.bu, sld.hu

<2> If r0 is specified in any of the following instructions as a source register when the V850Ex is
used as the target device, the as850 outputs an error message, not a warning message.
Format (1) of divh instruction, switch

r0, zero, r1, r2, hp, r3, sp, r4, gp, r5, tp, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17, r18, r19, r20, r21, r22, r23,
r24, r25, r26, r27, r28, r29, r30, ep, r31, lp

mov 0x10, r0

 |

W3013: register r0 used as destination register

divh r10, r0

 |

E3240: illegal operand (can not use r0 as destination in V850E mode)

divh r0, r10

 |

E3239: illegal operand (can not use r0 as source in V850E mode)

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

User’s Manual U19383EJ1V0UM00 363

(c) r1
The assembler-reserved register (r1) is used as a temporary register when instruction expansion is per-
formed using the as850. If r1 is specified as a source or destination register, the as850 outputs the follow-
ing messageNote, then continues assembling.

Note Output of this message can be suppressed by specifying the warning message suppression option (-
w) upon starting the as850.

(d) Constants
As the constituents of the absolute expressions or relative expressions that can be used to specify the oper-
ands of the instructions and pseudo-instruction in the as850, integer constants and character constants can
be used. For the ld/st and bit manipulation instructions, a "peripheral I/O register name", defined in the
device file, can also be specified as an operand. Thus enabling input/output of a port address. Moreover,
floating-point constants can be used to specify the operand of the .float pseudo-instruction, and string con-
stants can be used to specify the operand of the .str pseudo-instruction.

(e) Symbols
The as850 supports the use of symbols as the constituents of the absolute expressions or relative expres-
sions that can be used to specify the operands of instructions and pseudo-instruction.

mov 0x10, r1

 |

W3013: register r1 used as destination register

mov r1, r10

 |

W3013: register r1 used as source register

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

364 User’s Manual U19383EJ1V0UM00

(f) Label Reference

In as850, label reference can be used as a component of available relative value as shown in operand des-

ignation of instruction/pseudo-instruction.

- Memory Reference Instruction (Load/store instruction, and bit manipulation instruction)

- Operation Instruction (Arithmetic operation instruction, saturated operation instruction, logical operation

instruction)

- Branch Instruction

- Area Allocation Pseudo-instruction (However, .word/.hword/.byte pseudo-instruction only)

In as850, the meaning of a label reference varies with the reference method and the differences used in the

instructions/pseudo-instruction. Details are shown below.

Table 4-39. Label Reference

Referenc
e Method

Instructions Used Meaning

#label Memory reference instruc-
tion, operation instruction
and jmp instruction

The absolute address of the position at which the definition of
label (label) exists (Offset from address 0Note 1).

This has a 32-bit address and must be expanded into two
instructions except V850Ex.

Area Allocation Pseudo-
instruction

(.word/.hword/.byte)

The absolute address of the position at which the definition of
label (label) exists (Offset from address 0Note 1).

Note that the 32-bit address is a value masked in accordance
with the size of the area secured.

label Memory reference instruc-
tion, operation instruction

The offset in the section of the position where definition of the
label (label) exists (offset from the initial address of the sec-
tion where the definition of label (label) existsNote 2).

This has a 32-bit offset and must be expanded into two
instructions.

Note that for a section allocated to a segment for which a tp
symbol is to be generated, the offset is referred from the tp
symbol.

Branch instruction except
jmp instruction

The PC offset at the position where definition of label (label)
exists (offset from the initial address of the instruction using
the reference of label (label)Note 2).

Area Allocation Pseudo-
instruction

(.word/.hword/.byte)

The offset in the section of the position where definition of the
label (label) exists (offset from the initial address of the sec-
tion where the definition of label (label) existsNote 2).

Note that the 32-bit offset is a value masked in accordance
with the size of the area secured.

$label Memory reference instruc-
tion, operation instruction

The gp offset at the position where definition of the label
(label) exists (offset from the address showing the global
pointerNote 3).

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

User’s Manual U19383EJ1V0UM00 365

Notes 1. The offset from address 0 in object file after link.
2. The offset from the first address of the section (output section) in which the definition of label

(label) exists is allocated in the linked object file.
3. The offset from the address indicated by the value of text pointer symbol + value of the global

pointer symbol for the segment to which the above output section is allocated.

!label Memory reference instruc-
tion, operation instruction

The absolute address of the position at which the definition of
label (label) exists (Offset from address 0 Note 1).

This has a 16-bit address and cannot expand instructions if
instructions with 16-bit displacement or immediate are speci-
fied.

If any other instructions are specified, expansion into appro-
priate one instruction is possible.

If the address defined by label (label) is not within a range
expressible by 16 bits, an error will be occur at the time of
link.

Area Allocation Pseudo-
instruction

(.word/.hword/.byte)

The absolute address of the position at which the definition of
label (label) exists (Offset from address 0 Note 1).

Note that the 32-bit address is a value masked in accordance
with the size of the area secured.

%label Memory reference instruc-
tion, operation instruction

The offset in the section of the position where definition of the
label (label) exists (offset from the initial address of the sec-
tion where the definition of label (label) exists Note 2).

This has a 16-bit offset and cannot expand instructions if
instructions with 16-bit displacement or immediate are speci-
fied.

If any other instructions are specified, expansion into appro-
priate one instruction is possible.

If the address defined by label (label) is not within a range
expressible by 16 bits, an error will be occurred at the time of
link.

The ep offset at the position where definition of the label
(label) exists (offset from the address showing the element
pointer).

Area Allocation Pseudo-
instruction

(.word/.hword/.byte)

The offset in the section of the position where definition of the
label (label) exists (offset from the initial address of the sec-
tion where the definition of label (label) existsNote 2).

Note that the 32-bit offset is a value masked in accordance
with the size of the area secured.

Referenc
e Method

Instructions Used Meaning

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

366 User’s Manual U19383EJ1V0UM00

The meanings of label references for memory reference instructions, operation instructions, branch instruc-
tions, and area allocation pseudo-instruction are shown below.

Table 4-40. Memory Reference Instruction

Note See "(h) gp Offset Reference".

Reference Method Meaning

#label[reg] The absolute address of label (label) is treated as a displace-
ment.

This has a 32-bit value and must be expanded into two
instructions. By setting #label[r0], reference by an absolute
address can be specified.

Part of [reg] can be omitted. If omitted, the as850 assumes
that [r0] has been specified.

label[reg] The offset in the section of label (label) is treated as a dis-
placement. This has a 32-bit value and must be expanded
into two instructions. By specifying a register indicating the
first address of section as reg and thereby setting label[reg],
general register relative reference can be specified.

For a section allocated to a segment for which a tp symbol is
to be generated, however, the offset from tp symbol is
treated as a displacement.

$label[reg] The gp offset of label (label) is treated as a displacement.
This has either a 32-bit or 16-bit value, from the section
defined by label (label), and pattern of instruction expansion
changes accordingly Note. If an instruction with a 16-bit value
is expanded and the offset calculated from the address
defined by label (label) is not within a range that can be
expressed in 16 bits, an error is output at the time of link. By
setting $label [gp], relative reference of the gp register (called
a gp offset reference) can be specified. Part of [reg] can be
omitted. If omitted, the as850 assumes that [gp] has been
specified.

!label[reg] The absolute address of label (label) is treated as a displace-
ment. This has a 16-bit value and instruction is not
expanded. If the address defined by label (label) cannot be
expressed in 16 bits, an error is output at the time of link. By
setting !lable[r0], reference by an absolute address can be
specified.

Part of [reg] can be omitted. If omitted, the as850 assumes
that [r0] has been specified.

However, unlike #label[reg] reference, instruction expansion
is not executed.

%label[reg] The offset in the section of label (label) is treated as a dis-
placement. If the label (label) is allocated to a section that is
the ep symbol, the offset from the ep symbol is treated as a
displacement. This either has a 16-bit value, or depending
on the instruction a value lower than this, and if it is not a
value that can be expressed within this range, an error is out-
put at the time of link.

Part of [reg] can be omitted. If omitted, the as850 assumes
that [ep] has been specified.

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

User’s Manual U19383EJ1V0UM00 367

Table 4-41. Operation Instructions

Notes 1. See "(h) gp Offset Reference".
2. The instructions for which a 16-bit value can be specified as an immediate are the addi, andi,

movea, mulhi, ori, satsubi, and xori instructions.

Reference Method Significance

#label The absolute address of label (label) is treated as an immedi-
ate.

This has a 32-bit value and must be expanded into two
instructions.

label The offset in the section of label (label) is treated as an
immediate.

This has a 32-bit value and must be expanded into two
instructions.

However, for a section allocated to a segment for which a tp
symbol is to be generated, the offset from the tp symbol is
treated as an immediate value.

$label The gp offset of label (label) is treated as an immediate.

This either has a 32-bit or 16-bit value, from the section
defined by label (label), and pattern of instruction changes
accordingly Note 1. If an instruction with a 16-bit value is
expanded and the offset calculated from the address defined
by label (label) is not within a range that can be expressed in
16 bits, an error is output at the time of link.

!label The absolute address of label (label) is treated as an immedi-
ate.

This has a 16-bit value. If operation instruction of an archi-
tecture for which a 16-bit value can be specify Note 2 as an
immediate are specified, and instruction is not expanded. If
the add, mov, and mulh instructions are specified, expansion
into appropriate 1-instruction is possible. No other instruc-
tions can be specified. If the value is not within a range that
can be expressed in 16 bits, an error is output at the time of
link.

%label The offset in the section of label (label) is treated as an
immediate.

If the label (label) is allocated to a section that is a target of
the ep symbol, the offset from the ep symbol is treated as an
displacement.

This has a 16-bit value. If operation instruction of an archi-
tecture for which a 16-bit value can be specify Note 2 as an
immediate are specified, and instruction is not expanded.

However, unlike label reference, instruction is not expanded.
This reference method can be specified only for operation
instructions of an architecture for which a 16-bit value can be
specified as an immediate, and add, mov, and mulh instruc-
tions. If the add, mov, and mulh instructions are specified,
expansion into appropriate 1-instruction is possible. No
other instructions can be specified. If the value is not within a
range that can be expressed in 16 bits, an error is output at
the time of link.

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

368 User’s Manual U19383EJ1V0UM00

Table 4-42. Branch Instructions

Table 4-43. Area Allocation Pseudo-instruction

Reference Method Meaning

#label In jmp instruction, the absolute address of label (label) is
treated as a jump destination address.

This has a 32-bit value and must be expanded into three
instructions.

label In branch instructions other than the jmp instruction, PC off-
set of the label (label) is treated as a displacement.

This has a 22-bit value, and if it is not within a range that can
be expressed in 22 bits, an error is output at the time of link.

Reference Method Meaning

#label

!label

In .word/.hword/.byte pseudo-instruction, the absolute
address of the label (label) is treated as a value.

This has a 32-bit value, but is masked in accordance with the
bit width of each pseudo-instruction.

label

%label

In .word/.hword/.byte pseudo-instruction, the offset in the
section defined by label (label) is treated as a value.

This has a 32-bit value, but is masked in accordance with the
bit width of each pseudo-instruction.

$label In .word/.hword/.byte pseudo-instruction, the gp offset of
label (label) is treated as a value.

This has a 32-bit value, but is masked in accordance with the
bit width of each pseudo-instruction.

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

User’s Manual U19383EJ1V0UM00 369

(g) ep Offset Reference
This section describes the ep offset reference. The CA850 assumes that data explicitly stored in internal
RAM is shown below.

Data in the internal RAM is divided into the following two groups.
- tidata/.tibss/.tidata.byte/.tibss.byte/.tidata.word/.tibss.word section (Data is referred by memory refer-

ence instructions (sld/sst) in a small code size)
- sidata/.sibss section (Data is referred by memory reference instructions (ld/st) in a large code size)

Figure 4-61. Memory Location Image of Internal RAM

<1> Data Allocation
In internal RAM, data is allocated to the sections as follows:

- When developing a program in C
Allocate data by specifying the "tidata", "tidata.byte", "tidata.word", or "sidata" section type in the
"#pragma section" instruction.
Allocate data by specifying the "tidata", "tidata.byte", "tidata.word", or "sidata" section type in the
section file. Input the section file during compilation using a ca850 option.

- When developing a program in assembly language
Data is allocated to the section of .tidata.byte, .tibss.byte, .tidata.word, .tibss.word, .sidata, or
.sibss section type by the section definition pseudo-instruction. ep offset reference can also be
executed with respect to data in a specific range of external RAM by allocating the data to .sedata
or .sebss sections in the same manner as above.

Figure 4-62. Memory Allocation Image for External RAM (.sedata/.sebss Section)

Reference through the offset from address indicated by the element pointer (ep).

Higher address

Internal RAM

Lower address

.sibss section

.sidata section

.tibss section

.tidata section

.tibss.word section

.tidata.word section

ep

.tibss.byte section

.tidata.byte section

Higher address

Internal RAM

Lower address

.sedata section

.tidata.byte section
ep

.sebss section

.tibss.byte section

External RAM

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

370 User’s Manual U19383EJ1V0UM00

<2> Data Reference
As per the "Data Allocation" method explained above, the as850 generates a machine instruction
string as follows.

- Generates a machine instruction by referring ep offset for %label reference to data allocated to
the .tidata, .tibss, .tidata.byte, .tibss.byte, .tidata.word, .tibss.word, .sidata, .sibss, .sedata, or
.sebss section

- Generates a machine instruction string by referring offset in the section for %label reference to
data allocated to other than that above

Example

The as850 generates a machine instruction string for %label reference because: The as850 regards
the code in (1) as being a reference by ep offset because the defined data is allocated to the .sidata
section. The as850 regards the code in (2) as being a reference by in-section offset. The as850 per-
forms processing, assuming that the data is allocated to the correct section. If the data is allocated to
other than the correct section, it cannot be detected by the as850.

Example

Instructions are coded to allocate a label to the .sidata section and to perform reference by ep offset.
However, label is allocated to the .data section because of the allocation error. In this case, the as850
loads the data in the base register ep symbol value + offset value in the .data section of label.

 .sidata

sidata: .hword 0xfff0

 .data

data: .hword 0xfff0

 .text

 ld.h %sidata, r20 -- (1)

 ld.h %data, r20 -- (2)

.text

ld.h %label[ep], r20

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

User’s Manual U19383EJ1V0UM00 371

Example

(1):
Reference by ep offset or by offset in section offset is performed according to the section in which the
defined data is allocated (default).
(2):
Reference by ep offset is performed regardless of the section in which the defined data is allocated,
because label is within the range specified by the .option ep_label pseudo-instruction.
(3):
Operation is the same as (1) because label is within the range specified by the .option no_ep_label
pseudo-instruction.

.text

ld.h %label1[r10], r20 -- (1)

.option ep_label

ld.h %label2[ep], r21 -- (2)

.option no_ep_label

ld.h %label3[r10], r22 -- (3)

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

372 User’s Manual U19383EJ1V0UM00

(h) gp Offset Reference
This section describes the gp offset reference. The CA850 assumes that data stored in external RAM
(other than .sedata/.sebss section explained on the previous page) is basically shown below.

If r0-relative memory allocation for internal ROM or RAM is not done with the "#pragma section" command
of C, the section file to be input to the C compiler, or an assembly language section definition pseudo-
instruction, all data is subject to gp offset reference.

<1> Data Allocation
The memory reference instruction (ld/st) of the machine instruction of the V850 microcontrollers can
only accept 16-bit immediate as a displacement. For this reason, the CA850 classifies data into the
following two types. Data of the former type is allocated to the sdata- or sbss-attribute section, while
that of the latter type is allocated to the data- or bss-attribute section. Data having an initial value is
allocated to the sdata/data-attribute section, while data without an initial value is allocated to the sbss/
bss-attribute section. By default, the CA850 allocates data to the data/sdata/ sbss/bss-attribute sec-
tions, starting from the lowest address. Moreover, it is assumed that the global pointer (gp) is set by a
start up module to point to the address resulting from addition of 32 KB to the first address of the
sdata-attribute section.

- Data allocated to a memory range that can be referred by using the global pointer (gp) and a 16-
bit displacement

-Data allocated to a memory range that can be referred by using the global pointer (gp) and (con-
structed by many instructions) a 32-bit displacement

Figure 4-63. Memory Location Image for gp Offset Reference Section

Remark The sum of sdata- and sbss-attribute sections is 64 KB. gp is 32 KB below the first byte of
the sdata- attribute section.

Data in the sdata- and sbss-attribute sections can be referred by using a single instruction. To refer-
ence data in the data- and bss-attribute sections, however, two or more instructions are necessary.
Therefore, the more data allocated to the sdata- and sbss-attribute sections, the higher the execution
efficiency and object efficiency of the generated machine instructions. However, the size of the mem-
ory range that can be referred with a 16-bit displacement is limited.
 If all the data cannot be allocated to the sdata- and sbss-attribute sections, it becomes necessary to
determine which data is to be allocated to the sdata- and sbss-attribute sections.
The CA850 "allocates as much data as possible to the sdata- and sbss-attribute sections". By default,
all data items are allocated to the sdata- and sbss-attribute sections. The data to be allocated can be
selected as follows:

- When the -Gnum option is specified
By specifying the -Gnum option upon starting the C compiler (ca850) or assembler (as850), data
of less than num bytes is allocated to the sdata- and sbss-attribute sections.

Referred by the offset from the address indicated by global pointer (gp).

Higher address

data without an initial value

Lower address

bss attribute section

sbss attribute section 64KB
gp

sdata attribute section

data attribute section
Data having an initial value

32KB

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

User’s Manual U19383EJ1V0UM00 373

- When using a program to specify the section to which data will be allocated
Explicitly allocate data that will be frequently referred to the sdata- and sbss-attribute sections.
For allocation, use a section definition pseudo-instruction when using the assembly language, or
the #pragma section command when using C.

- When specifying with the section file
In C, allocate data by specifying the sdata section in the section file. Input the section file during
compilation using a ca850 option.

<2> Data Reference
Using the data allocation method explained above, the as850 generates a machine instruction string
that performs:

- Reference by using a 16-bit displacement for gp offset reference to data allocated to the sdata-
and sbss- attribute sections.

- Reference by using a 32-bit displacement (consisting of two or more machine instructions) for gp
offset reference to data allocated to the data- and bss-attribute sections.

Example

The as850 generates a machine instruction string, equivalent to the following instruction string for the
ld.w instruction in (2), that performs gp offset reference of the data defined in (1) .Note

Note See "(i) About hi /lo /hi1", for details of hi1/lo.

The as850 processes files on a one-by-one basis. Consequently, it can identify to which attribute sec-
tion data having a definition in a specified file has been allocated, but cannot identify the section to
which data not having a definition in a specified file has been allocated. Therefore, the as850 gener-
ates machine instructions as follows Note, when the -Gnum option is specified at start-up, assuming
that the allocation policy described above (i.e., data smaller than a specific size is allocated to the
sdata- and sbss-attribute sections) is observed.

Note The data, for which data or sdata is specified by the .option pseudo-instruction, is assumed to
be allocated in the .data or .sdata section regardless of its size.

- Generates machine instructions that perform reference by using a 16-bit displacement for gp off-
set reference to data not having a definition in a specified file and which consists of less than num
bytes.

- Generates a machine instruction string that performs reference by using a 32-bit displacement
(consisting of two or more machine instructions) for gp offset reference to data having no defini-
tion in a specified file and which consists of more than num bytes.

To identify these conditions, however, the size of the data not having a definition in a specified file,
and which is referred by a gp offset, must be identified. To develop a program in an assembly lan-
guage, therefore, specify the size of the data (actually, a label for which there is no definition in a

 .data

data: .word 0xfff00010 -- (1)

 .text

 ld.w $data[gp], r20 -- (2)

movhi hi1($data), gp, r1

ld.w lo($data)[r1], r20

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

374 User’s Manual U19383EJ1V0UM00

specified file and which is referred by a gp offset) for which there is no definition in a specified file, by
using the .extern pseudo-instruction.

When -G2 is specified upon starting the as850, the as850 generates a machine instruction string,
equivalent to the following instruction string, for the ld.w instruction in (2) that performs gp offset refer-
ence to the data declared in (1).Note

Note See "(i) About hi /lo /hi1", for details of hi1/lo.

To develop a program in C, the C compiler (ca850) of the CA850 automatically generates the .extern
pseudo-instruction, thus output the code which specifies the size of data not having a definition in the
specified file (actually, a label for which there is no definition in a specified file and which is referred by
a gp offset).

Remark The handling of gp offset reference (specifically, memory reference instructions that use a
relative expression having the gp offset of a label as their displacement) by the as850 is
summarized below.

- If the data has a definition in a specified file
- If the data is to be allocated to the sdata- or sbss-attribute sectionNote

Generates a machine instruction that performs reference by using a16-bit displacement.
- If the data is not allocated to the sdata- or sbss-attribute section

Generates a machine instruction string that performs reference by using a 32-bit displacement.

Note If the value of the constant expression of a relative expression in the form of "label + constant
expression" exceeds 16 bits, the as850 generates a machine instruction string that performs
reference using a 32-bit displacement.

- If the data does not have a definition in a specified file
- If the -Gnum option is specified upon starting the assembler

If a size of other than 0, but less than num bytes is specified for the data (label referred by gp off-
set) by the .comm/.extern/.globl/.lcomm/.size pseudo-instruction.
Assumes that the data is to be allocated to the sdata- or sbss-attribute section and generates a
machine instruction that performs reference by using a 16-bit displacement.
Other than above, assumes that the data is not allocated to the sdata- or sbss-attribute section
and generates a machine instruction string that performs reference using a 32-bit displacement

- If the -Gnum option is not specified upon starting the assembler
Assumes that the data is to be allocated to the sdata- or sbss-attribute section and generates a
machine instruction that performs reference by using a 16-bit displacement.

.extern data, 4 -- (1)

.text

ld.w $data[gp], r20 -- (2)

movhi hi1($data), gp, r1

ld.w lo($data)[r1], r20

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

User’s Manual U19383EJ1V0UM00 375

(i) About hi /lo /hi1

<1> To store 32-bit constant value in a register
The V850 core of V850 microcontrollers does not support a machine instruction that can store a 32-bit
constant value in a register with a single instruction. To store a 32-bit constant value in a register,
therefore, the as850 performs instruction expansion, and generates an instruction string, by using the
movhi and movea instructions. These divide the 32-bit constant value into the higher 16 bits and
lower 16 bits.

Example

At this time, the movea instruction, used to store the lower 16 bits in the register, sign-extends the
specified 16-bit value to a 32-bit value. To adjust the sign-extended bits, the as850 does not merely
store the higher 16 bits in a register when using the movhi instruction, instead it stores the following
value in the register.

<2> To refer memory by using 32-bit displacement
The memory reference instruction (Load/store and bit manipulation instructions) of the machine
instructions of the V850 microcontrollers can take only a 16-bit immediate from displacement. Conse-
quently, the as850 performs instruction expansion to refer the memory by using a 32-bit displace-
ment, and generates an instruction string that performs the reference, by using the movhi and
memory reference instructions and thereby constituting a 32-bit displacement from the higher 16 bits
and lower 16 bits of the 32-bit displacement.

Example

At this time, the memory reference instruction of machine instructions that uses the lower 16 bits as a
displacement sign-extends the specified 16-bit displacement to a 32-bit value. To adjust the sign-
extended bits, the as850 does not merely configure the displacement of the higher 16 bits by using
the movhi instruction, instead it configures the following displacement.

mov 0x18000, r11 movhi hi1(0x18000), r0, r1

movea lo(0x18000), r1, r11

Higher 16 bits + the most significant bit (bit of bit number 15) of the lower 16 bits

ld.w 0x18000[r11], r12 movhi hi1(0x18000), r11, r1

ld.w lo(0x18000)[r1], r12

Higher 16 bits + the most significant bit (bit of bit number 15) of the lower 16 bits

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

376 User’s Manual U19383EJ1V0UM00

<3> hi/lo/hi1
In the next table, the as850 can specify the higher 16 bits of a 32-bit value, the lower 16 bits of a 32-bit
value, and the value of the higher 16 bits + bit 15 of a 32-bit value by using hi(), lo(), and hi1().Note

Note If this information cannot be internally resolved by the assembler, it is reflected in the relocation
information and subsequently resolved by the linker (ld850).

Table 4-44. Area Allocation Pseudo-instruction

Example

hi/lo/hi1 Meaning

hi (value) Higher 16 bits of value

lo (value) Lower 16 bits of value

hi1 (value) Higher 16 bits of value + bit value of bit number 15 of value

 .data

L1:

 :

 .text

 movhi hi($L1), r0, r10 --Stores the higher 16 bits of the gp offset

 --value of L1 in the higher 16 bits of r10,

 --and the lower 16 bits to 0

 movea lo($L1), r0, r10 --Sign-extends the lower 16 bits of the gp offset of

 --L1 and stores to r10

 :

 movhi hi1($L1), r0, r1 --Stores the gp offset value of L1 in r10

 movea lo($L1), r1, r10

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

User’s Manual U19383EJ1V0UM00 377

4.5.5 Description of instructions

This section describes the instructions of the assembly language supported by the as850.
For details of the machine instructions generated by the as850, see the "Each Device User Manual".

Indicates the meaning of instruction.

[Syntax]

Indicates the syntax of instruction.

[Function]

Indicates the function of instruction.

[Description]

Indicates the operating method of instruction.

[Flag]

Indicates the operation of flag (PSW) by the execution of instruction.
However, in (set1, clr1, not1) bit operation instruction, indicates the flag value before execution.
"---" of table indicates that the flag value is not changed.

[Caution]

Indicates the caution in instruction.

Instruction

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

378 User’s Manual U19383EJ1V0UM00

4.5.6 Load/Store instructions

This section describes the load/store instructions. Next table lists the instructions described in this section.

Table 4-45. Load/Store Instructions

Instruction Meaning

ld ld.b Byte data load

ld.h Halfword data load

ld.w Word data load

ld.bu Unsigned byte data load [V850E]

ld.hu Unsigned halfword data load [V850E]

sld sld.b Byte data load (short format)

sld.h Halfword data load (short format)

sld.w Word data load (short format)

sld.bu Unsigned byte data load (short format) [V850E]

sld.hu Unsigned halfword data load (short format) [V850E]

st st.b Byte data store

st.h Halfword data store

st.w Word data store

sst sst.b Byte data store (short format)

sst.h Halfword data store (short format)

sst.w Word data store (short format)

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

User’s Manual U19383EJ1V0UM00 379

Data load

[Syntax]

- ld.b disp[reg1], reg2
- ld.h disp[reg1], reg2
- ld.w disp[reg1], reg2
- ld.bu disp[reg1], reg2 [V850E]
- ld.hu disp[reg1], reg2 [V850E]

The following can be specified for displacement (disp):
- Absolute expression having a value of up to 32 bits
- Relative expression
- Either of the above expressions with hi() , lo() , or hi1() applied

[Function]

The ld.b, ld.bu, ld.h, ld.hu, and ld.w instructions load data of 1 byte, 1 halfword, and 1 word, from the address speci-
fied by the first operand, int the register specified by the second operand.

[Description]

- If any of the following is specified for disp, the as850 generates one ld machine instructionNote. In the following
explanations, ld denotes the ld.b/ld.h/ld.w/ld.bu/ld.hu instructions.

(a) Absolute expression having a value in the range of -32,768 to +32,767

(b) Relative expression having $label for a label having a definition in the sdata/sbss-attribute section

(c) Relative expression having !label or %label

(d) Expression with hi(), lo(), or hi1()

Note The ld machine instruction takes an immediate value in the range of -32,768 to +32,767 (0xffff8000 to 0x7fff)
as the displacement.

ld

ld disp16[reg1], reg2 ld disp16[reg1], reg2

ld $label[reg1], reg2 ld $label[reg1], reg2

ld !label[reg1], reg2 ld !label[reg1], reg2

ld %label[reg1], reg2 ld %label[reg1], reg2

ld disp16[reg1], reg2 ld disp16[reg1], reg2

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

380 User’s Manual U19383EJ1V0UM00

- If any of the following is specified for disp, the as850 performs instruction expansion to generate multiple
machine instructions.

(a) Absolute expression having a value exceeding the range of -32,768 to +32,767

(b) Relative expression having #label or label, or that having $label for a label having no definition in
the sdata/sbss-attribute section

- If disp is omitted, the as850 assumes 0.
- If a relative expression having #label, or a relative expression having #label and with hi() , lo() , or hi1() applied

is specified as disp, [reg1] can be omitted. If omitted, the as850 assumes that [r0] is specified.
- If a relative expression having $label, or a relative expression having $label and with hi() , lo() , or hi1() applied,

is specified as disp, [reg1] can be omitted. If omitted, the as850 assumes that [gp] is specified.
- If a peripheral I/O register name defined in the device file is specified as disp, [reg1] can be omitted. If omitted,

the as850 assumes that [r0] is specified.

[Flag]

ld disp[reg1], reg2 movhi hi1(disp), reg1, r1

ld lo(disp)[r1], reg2

ld #label[reg1], reg2 movhi hi1(#label), reg1, r1

ld lo(#label)[r1], reg2

ld label[reg1], reg2 movhi hi1(label), reg1, r1

ld lo(label)[r1], reg2

ld $label[reg1], reg2 movhi hi1($label), reg1, r1

ld lo($label)[r1], reg2

CY ---

OV ---

S ---

Z ---

SAT ---

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

User’s Manual U19383EJ1V0UM00 381

[Caution]

- ld.b and ld.h sign-extend the data of 1 byte and 1 halfword, respectively, and load the data into a register as 1
word.

- ld.bu and ld.hu zero-extend the data of 1 byte and 1 halfword, respectively, and load the data into a register as
1 word.

- If a value that is not a multiple of 2 is specified as disp of ld.h, ld.w, or ld.hu, the as850 aligns disp with 2 and
generates a code.

- If r0 is specified as the second operand of ld.bu and ld.hu, the as850 outputs the following message and stops
assembling

W3010: illegal displacement in ld instruction.

W4659: relocated value (value) of relocation entry (symbol: symbol, file: file, section:

section, offset: offset, type: relocation type) for load/store command become odd value.

E3240: illegal operand (can not use r0 as destination in V850E mode)

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

382 User’s Manual U19383EJ1V0UM00

Short format Load

[Syntax]

- sld.b disp7[ep], reg2
- sld.h disp8[ep], reg2
- sld.w disp8[ep], reg2
- sld.bu disp4[ep], reg2 [V850E]
- sld.hu disp5[ep], reg2 [V850E]

The following can be specified for displacement (disp4/5/7/8):
- Absolute expression having a value of up to 7 bits for sld.b, 8 bits for sld.h and sld.w, 4 bits for sld.bu, and 5 bits

for sld.hu.
- Relative expression

[Function]

The sld.b, sld.bu, sld.h, sld.hu, and sld.w instructions load the data of 1 byte, 1 halfword, and 1 word, from the
address obtained by adding the displacement specified by the first operand to the contents of register ep, to the regis-
ter specified by the second operand.

[Description]

The as850 generates one sld machine instruction. Base register specification "[ep]" can be omitted.

[Flag]

[Caution]

- sld.b and sld.h sign-extend and store data of 1 byte and 1 halfword, respectively, in the register as 1 word.
- sld.bu and sld.hu zero-extend and store data of 1 byte and 1 halfword, respectively, in the register as 1 word.
- If a value that is not a multiple of 2 is specified as disp8 of sld.h or disp5 of sld.hu, and if a value that is not a

multiple of 4 is specified as disp8 of sld.w, the as850 aligns disp8 or disp5 with multiples of 2 and 4, respec-
tively, and generates a code.

sld

CY ---

OV ---

S ---

Z ---

SAT ---

W3010: illegal displacement in sld instruction.

W4659: relocated value (value) of relocation entry (symbol: symbol, file: file, section: section, offset: offset, type: reloca-
tion type) for load/store command become odd value.

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

User’s Manual U19383EJ1V0UM00 383

- If a value exceeding 127 is specified for disp7 of sld.b, a value exceeding 255 is specified for disp8 of sld.h and
sld.w, a value exceeding 16 is specified for disp4 of sld.bu, and a value exceeding 32 is specified for disp5 of
sld.hu, the as850 outputs the following message, and generates code in which disp7, disp8, disp4, and disp5
are masked with 0x7f, 0xff, 0xf, and 0x1f, respectively.

- If r0 is specified as the second operand of the sld.bu and sld.hu, the as850 outputs the following message and
stops assembling

W3011: illegal operand (range error in immediate)

E3240: illegal operand (can not use r0 as destination in V850E mode)

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

384 User’s Manual U19383EJ1V0UM00

Store

[Syntax]

- st.b reg2, disp[reg1]
- st.h reg2, disp[reg1]
- st.w reg2, disp[reg1]

The following can be specified as a displacement (disp):
- Absolute expression having a value of up to 32 bits
- Relative expression
- Either of the above expressions with hi(), lo(), or hi1() applied

[Function]

The st.b, st.h, and st.w instructions store the data of the lower 1 byte, lower 1 halfword, and 1 word, respectively, of
the register specified by the first operand to the address specified by the second operand.

[Description]

- If any of the following is specified as disp, the as850 generates one st machine instructionNote. In the following
explanations, st denotes the st.b/st.h instructions.

(a) Absolute expression having a value in the range of -32,768 to +32,767

(b) Relative expression having $label for a label having a definition in the sdata/sbss-attribute section

(c) Relative expression having !label or %label

(d) Expression with hi(), lo(), or hi1()

Note The st machine instruction takes an immediate value in the range of -32,768 to +32,767 (0xffff8000 to 0x7fff)
as the displacement.

- If any of the following is specified as disp, the as850 executes instruction expansion to generate two or more
machine instructions.

(a) Absolute expression having a value exceeding the range of -32,768 to +32,767

st

st reg2, disp16[reg1] st reg2, disp16[reg1]

st reg2, $label[reg1] st reg2, $label[reg1]

st reg2, !label[reg1] st reg2, !label[reg1]

st reg2, %label[reg1] st reg2, %label[reg1]

st reg2, disp16[reg1] st reg2, disp16[reg1]

st reg2, disp[reg1], reg2 movhi hi1(disp), reg1, r1

st reg2, lo(disp)[r1], reg2

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

User’s Manual U19383EJ1V0UM00 385

(b) Relative expression having #label or label, or that having $label for a label having no definition in
the sdata/sbss-attribute section

- If disp is omitted, the as850 assumes 0.
- If a relative expression with #label, or a relative expression with #label and with hi(), lo(), or hi1() applied is spec-

ified as disp, [reg1] can be omitted. If omitted, the as850 assumes that [r0] is specified.
- If a relative expression with $label, or a relative expression with $label and with hi(), lo(), or hi1() applied is spec-

ified as disp, [reg1] can be omitted. If omitted, the as850 assumes that [gp] is specified.
- If a peripheral I/O register name defined in the device file is specified as disp, [reg1] can be omitted. If omitted,

the as850 assumes that [r0] is specified.

[Flag]

[Caution]

- If a value that is not a multiple of 2 is specified as the disp of st.h or st.w, the as850 aligns disp with 2 and gen-
erates a code.

st reg2, #label[reg1] movhi hi1(#label), reg1, r1

st reg2, lo(#label)[r1]

st reg2, label[reg1] movhi hi1(label), reg1, r1

st reg2, lo(label)[r1]

st reg2, $label[reg1] movhi hi1($label), reg1, r1

st reg2, lo($label)[r1]

CY ---

OV ---

S ---

Z ---

SAT ---

W3010: illegal displacement in st instruction.

W4659: relocated value (value) of relocation entry (symbol: symbol, file: file, section: section, offset: offset, type: reloca-
tion type) for load/store command become odd value.

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

386 User’s Manual U19383EJ1V0UM00

Short format Store

[Syntax]

- sst.b reg2, disp7[ep]
- sst.h reg2, disp8[ep]
- sst.w reg2, disp8[ep]

The following can be specified for displacement (disp7/8):
- Absolute expression having a value of up to 7 bits for sst.b or 8 bits for sst.h and sst.w
- Relative expression

[Function]

The sst.b, sst.h, and sst.w instructions store the data of the lower 1 byte, lower 1 halfword, and 1 word, respectively,
of the register specified by the first operand to the address obtained by adding the displacement specified by the sec-
ond operand to the contents of register ep.

[Description]

The as850 generates one sst machine instruction. Base register specification "[ep]" can be omitted.

[Flag]

[Caution]

- If a value that is not a multiple of 2 is specified as disp8 of sst.h, and if a value that is not a multiple of 4 is spec-
ified as disp8 of sst.w, the as850 aligns disp8 with multiples of 2 and 4, respectively, and generates a code.

- If a value exceeding 127 is specified as disp7 of sst.b, and if a value exceeding 255 is specified as disp8 of sst.h
and sst.w, the as850 outputs the following message, and generates codes disp7 and disp8, masked with 0x7f
and 0xff, respectively.

sst

CY ---

OV ---

S ---

Z ---

SAT ---

W3010: illegal displacement in sst instruction.

W4659: relocated value (value) of relocation entry (symbol: symbol, file: file, section: section, offset: offset, type: reloca-
tion type) for load/store command become odd value.

W3011: illegal operand (range error in immediate)

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

User’s Manual U19383EJ1V0UM00 387

4.5.7 Arithmetic operation instructions

This section describes the arithmetic operation instructions. Next table lists the instructions described in this sec-
tion.

Table 4-46. Arithmetic Operation Instructions

Instruction Meaning

add Addition

addi Addition (immediate)

adf Add with condition [V850E2]

sub Subtraction

subr Reverse subtraction

sbf Subtract with condition [V850E2]

mulh Signed multiplication (halfword)

mulhi Signed multiplication (halfword immediate)

mul Signed multiplication (word) [V850E]

mac Signed word data multiply and add [V850E2]

mulu Unsigned multiplication [V850E]

macu Unsigned word data multiply and add [V850E2]

divh Signed division (halfword)

div Signed division (word)) [V850E]

divhu Unsigned division (halfword) [V850E]

divu Unsigned division (word) [V850E]

cmp Comparison

mov Moves data

movea Moves execution address

movhi Moves higher halfword

mov32 Moves 32-bit data [V850E]

cmov Moves data depending on the flag condition [V850E]

setf Sets flag condition

sasf Sets the flag condition after a logical left shift [V850E]

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

388 User’s Manual U19383EJ1V0UM00

Add

[Syntax]

- add reg1, reg2
- add imm, reg2

The following can be specified for imm:
- Absolute expression having a value of up to 32 bits
- Relative expression

[Function]

- Syntax "add reg1, reg2"
Adds the value of the register specified by the first operand to the value of the register specified by the second
operand, and stores the result into the register specified by the second operand.

- Syntax "add imm, reg2"
Adds the value of the absolute expression or relative expression specified by the first operand to the value of the
register specified by the second operand, and stores the result in the register specified by the second operand.

[Description]

- If this instruction is executed in syntax "add reg1, reg2", the as850 generates one add machine instruction.
- If the following is specified as imm in syntax "add imm, reg2", the as850 generates one add machine instruction-

Note.

(a) Absolute expression having a value in the range of -16 to +15

Note The add machine instruction takes a register or immediate value in the range of -16 to +15 (0xfffffff0 to 0xf) as
the first operand

- If the following is specified for imm in syntax "add imm, reg2", the as850 executes instruction expansion to gen-
erate one or more machine instructions

(a) Absolute expression exceeding the range of -16 to +15, but within the range of -32,768 to +32,767

(b) Absolute expression having a value exceeding the range of -32,768 to +32,767
If all the lower 16 bits of the value of imm are 0

Else

add

add imm5, reg add imm5, reg

add imm16, reg addi imm16, reg, reg

add imm, reg movhi hi(imm), r0, r1

add r1, reg

add imm, reg movhi hi1(imm), r0, r1

movea lo(imm), r1, r1

add r1, reg

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

User’s Manual U19383EJ1V0UM00 389

(c) Absolute expression having a value exceeding the range of -32,768 to +32,767 [V850E]
If all the lower 16 bits of the value of imm are 0

Else

(d) Relative expression having !label or %label, or that having $label for a label with a definition in the
sdata/sbss-attribute section

(e) Relative expression having #label or label, or that having $label for a label having no definition in
the sdata/sbss-attribute section

(f) Relative expression having #label or label, or that having $label for a label having no definition in
the sdata/sbss-attribute section [V850E]

add imm, reg movhi hi(imm), r0, r1

add r1, reg

add imm, reg mov imm, r1

add r1, reg

add !label, reg addi !label, reg, reg

add %label, reg addi %label, reg, reg

add $label, reg addi $label, reg, reg

add #label, reg movhi hi1(#label), r0, r1

movea lo(#label), r1, r1

add r1, reg

add label, reg movhi hi1(label), r0, r1

movea lo(label), r1, r1

add r1, reg

add $label, reg movhi hi1($label), r0, r1

movea lo($label), r1, r1

add r1, reg

add #label, reg mov #label, r1

add r1, reg

add label, reg mov label, r1

add r1, reg

add $label, reg mov $label, r1

add r1, reg

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

390 User’s Manual U19383EJ1V0UM00

[Flag]

CY 1 if a carry occurs from MSB (Most Significant Bit), 0 if not

OV 1 if Integer-Overflow occurs, 0 if not

S 1 if the result is negative, 0 if not

Z 1 if the result is 0, 0 if not

SAT ---

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

User’s Manual U19383EJ1V0UM00 391

Add Immediate

[Syntax]

- addi imm, reg1, reg2

The following can be specified for imm:
- Absolute expression having a value of up to 32 bits
- Relative expression
- Either of the above expressions with hi(), lo(), or hi1() applied

[Function]

Adds the value of the absolute expression, relative expression, or expression with hi() , lo() , or hi1() applied, spec-
ified by the first operand, to the value of the register specified by the second operand, and stores the result into the
register specified by the third operand.

[Description]

- If the following is specified for imm, the as850 generates one addi machine instructionNote.

(a) Absolute expression having a value in the range of -32,768 to +32,767

(b) Relative expression having $label for a label having a definition in the sdata/sbss-attribute section

(c) Relative expression having !label or %label

(d) Expression with hi(), lo(), or hi1()

Note The addi machine instruction takes an immediate value in the range of -32,768 to +32,767 (0xffff8000 to
0x7fff)as the first operand.

addi

addi imm16, reg1, reg2 addi imm16, reg1, reg2

addi $label, reg1, reg2 addi $label, reg1, reg2

addi !label, reg1, reg2 addi !label, reg1, reg2

addi %label, reg1, reg2 addi %label, reg1, reg2

addi imm16, reg1, reg2 addi imm16, reg1, reg2

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

392 User’s Manual U19383EJ1V0UM00

- If the following is specified for imm, the as850 executes instruction expansion to generate two or more machine
instructions.

(a) Absolute expression having a value exceeding the range of -32,768 to +32,767
If all the lower 16 bits of the value of imm are 0

If all the lower 16 bits of the value of imm are 0 and when reg2 is r0

Else

Other than above and when reg2 is r0

(b) Absolute expression having a value exceeding the range of -32,768 to +32,767 [V850E]
If all the lower 16 bits of the value of imm are 0

If all the lower 16 bits of the value of imm are 0 and when reg2 is r0

Else

Other than above and when reg2 is r0

addi imm, reg1, reg2 movhi hi(imm), r0, reg2

add reg1, reg2

addi imm, reg1, r0 movhi hi(imm), r0, r1

add reg1, r1

addi imm, reg1, reg2 movhi hi1(imm), r0, r1

movea lo(imm), r1, reg2

add reg1, reg2

addi imm, reg1, r0 movhi hi1(imm), r0, r1

movea lo(imm), r1, r1

add reg1, r1

addi imm, reg1, reg2 movhi hi(imm), r0, reg2

add reg1, reg2

addi imm, reg1, r0 movhi hi(imm), r0, r1

add reg1, r1

addi imm, reg1, reg2 mov imm, reg2

add reg1, reg2

addi imm, reg1, r0 mov imm, r1

add reg1, r1

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

User’s Manual U19383EJ1V0UM00 393

(c) Relative expression having #label or label, or that having $label for a label having no definition in
the sdata/sbss-attribute section
If reg2 is r0

Else

(d) Relative expression having #label or label, or that having $label for a label having no definition in
the sdata/sbss-attribute section [V850E]
If reg2 is r0

Else

addi #label, reg1, r0 movhi hi1(#label), r0, r1

movea lo(#label), r1, r1

add reg1, reg2

addi label, reg1, r0 movhi hi1(label), r0, r1

movea lo(label), r1, r1

add reg1, r1

addi $label, reg1 r0 movhi hi1($label), r0, r1

movea lo($label), r1, r1

add reg1, r1

addi #label, reg1, reg2 movhi hi1(#label), r0, r1

movea lo(#label), r1, reg2

add reg1, reg2

addi label, reg1, reg2 movhi hi1(label), r0, r1

movea lo(label), r1, reg2

add reg1, reg2

addi $label, reg1 reg2 movhi hi1($label), r0, r1

movea lo($label), r1, reg2

add reg1, reg2

addi #label, reg1, r0 mov #label, r1

addi reg1, r1

addi label, reg1, r0 mov label, r1

add reg1, r1

addi $label, reg1, r0 mov $label, r1

add reg1, r1

addi #label, reg1, reg2 mov #label, reg2

addi reg1, reg2

addi label, reg1, reg2 mov label, reg2

add reg1, reg2

addi $label, reg1, reg2 mov $label, reg2

add reg1, reg2

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

394 User’s Manual U19383EJ1V0UM00

[Flag]

CY 1 if a carry occurs from MSB (Most Significant Bit), 0 if not

OV 1 if Integer-Overflow occurs, 0 if not

S 1 if the result is negative, 0 if not

Z 1 if the result is 0, 0 if not

SAT ---

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

User’s Manual U19383EJ1V0UM00 395

Add with Condition Flag (Add on Condition Flag) [V850E2]

[Syntax]

- adf imm4, reg1, reg2, reg3
- adfcnd reg1, reg2, reg3

The following can be specified for imm4:
- Absolute expression having a value up to 4 bits (0xd cannot be specified)

[Function]

- Syntax "adf imm4, reg1, reg2, reg3"
It compares the current flag condition with the flag condition indicated by the value of the lower 4 bits of the
absolute expression (see Table 4-47. adfcond Instruction List) specified by the first operand.
If the values match, adds the word data of the register specified by the second operand to the word data of the
register specified by the third operand. And 1 is added to the addition result and that result is stored in the reg-
ister specified by the fourth operand.
If the values not match, adds the word data of the register specified by the second operand to the word data of
the register specified by the third operand. And that result is stored in the register specified by the fourth oper-
and.

- Syntax "adfcnd reg1, reg2, reg3"
It compares the current flag condition with the flag condition indicated by the string in the cnd"part.
If the values match, adds the word data of the register specified by the first operand to the word data of the reg-
ister specified by the second operand. And 1 is added to the addition result and that result is stored in the reg-
ister specified by the third operand.
If the values not match, adds the word data of the register specified by the first operand to the word data of the
register specified by the second operand. And that result is stored in the register specified by the third operand.

[Description]

- For the adf instruction, the as850 generates one adf machine instruction.
- For the adcond instruction, the as850 generates the corresponding adf instruction (see Table 4-47. adfcond

Instruction List) and expands it to syntax "adf imm4, reg1, reg2, reg3".

Table 4-47. adfcond Instruction List

adf

Instruction Flag Condition Meaning of Flag Condition Instruction
Expansion

adfgt ((S xor OV) or Z) = 0 Greater than (signed) adf 0xf

adfge (S xor OV) = 0 Greater than or equal (signed) adf 0xe

adflt (S xor OV) = 1 Less than (signed) adf 0x6

adfle ((S xor OV) or Z) = 1 Less than or equal (signed) adf 0x7

adfh (CY or Z) = 0 Higher (Greater than) adf 0xb

adfnl CY = 0 Not lower (Greater than or equal) adf 0x9

adfl CY = 1 Lower (Less than) adf 0x1

adfnh (CY or Z) = 1 Not higher (Less than or equal) adf 0x3

adfe Z = 1 Equal adf 0x2

adfne Z = 0 Not equal adf 0xa

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

396 User’s Manual U19383EJ1V0UM00

[Flag]

[Caution]

- If an absolute expression having a value exceeding 4 bits is specified as imm4 of the adf instruction, the follow-
ing message is output, and assembly continues using the lower 4 bits of the specified value.

- If 0xd is specified as imm4 of the adf instruction, the following message is output, and assembly is stopped

adfv OV = 1 Overflow adf 0x0

adfnv OV = 0 No overflow adf 0x8

adfn S = 1 Negative adf 0x4

adfp S = 0 Positive adf 0xc

adfc CY = 1 Carry adf 0x1

adfnc CY = 0 No carry adf 0x9

adfz Z = 1 Zero adf 0x2

adfnz Z = 0 Not zero adf 0xa

adft always 1 Always 1 adf 0x5

CY 1 if there is carry from MSB, 0 if not

OV 1 if overflow occurred, 0 if not

S 1 if the result is negative, 0 if not

Z 1 if the result is 0, 0 if not

SAT ---

W3011: illegal operand (range error in immediate).

E3261: illegal condition code.

Instruction Flag Condition Meaning of Flag Condition Instruction
Expansion

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

User’s Manual U19383EJ1V0UM00 397

Subtract

[Syntax]

- sub reg1, reg2
- sub imm, reg2

The following can be specified for imm:
- Absolute expression having a value of up to 32 bits
- Relative expression

[Function]

- Syntax "sub reg1, reg2"
Subtracts the value of the register specified by the first operand from the value of the register specified by the
second operand, and stores the result in the register specified by the second operand.

- Syntax "sub imm, reg2"
Subtracts the value of the absolute expression or relative expression specified by the first operand from the
value of the register specified by the second operand, and stores the result into the register specified by the sec-
ond operand.

[Description]

- If the instruction is executed in syntax "sub reg1, reg2", the as850 generates one sub machine instruction.
- If the instruction is executed in syntax "sub imm, reg2", the as850 executes instruction expansion and gener-

ates one or more machine instructionsNote .

(a) 0

(b) Absolute expression having a value of other than 0 within the range of -16 to +15

(c) Absolute expression exceeding the range of -16 to +15, but within the range of -32,768 to +32,767

sub

sub 0, reg sub r0, reg

sub imm5, reg mov imm5, r1

sub r1, reg

sub imm16, reg movea imm16, r0, r1

sub r1, reg

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

398 User’s Manual U19383EJ1V0UM00

(d) Absolute expression having a value exceeding the range of -32,768 to +32,767
If all the lower 16 bits of the value of imm are 0

Else

(e) Absolute expression having a value exceeding the range of -32,768 to +32,767 [V850E]
If all the lower 16 bits of the value of imm are 0

Else

(f) Relative expression having $label for a label having a definition in the sdata/sbss-attribute section

(g) Relative expression having #label or label, or that having $label for a label having no definition in
the sdata/sbss-attribute section

sub imm, reg movhi hi(imm), r0, r1

sub r1, reg

sub imm, reg movhi hi1(imm), r0, r1

movea lo(imm), r1, r1

sub r1, reg

sub imm, reg movhi hi(imm), r0, r1

sub r1, reg

sub imm, reg mov imm, r1

sub r1, reg

sub $label, reg movea $label, r0, r1

sub r1, reg

sub #label, reg movhi hi1(#label), r0, r1

movea lo(#label), r1, r1

sub r1, reg

sub label, reg movhi hi1(label), r0, r1

movea lo(label), r1, r1

sub r1, reg

sub $label, reg movhi hi1($label), r0, r1

movea lo($label), r1, r1

sub r1, reg

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

User’s Manual U19383EJ1V0UM00 399

(h) Relative expression having #label or label, or that having $label for a label having no definition in
the sdata/sbss-attribute section [V850E]

Note The sub machine instruction does not take an immediate value as an operand.

[Flag]

sub #label, reg mov #label, r1

sub r1, reg

sub label, reg mov label, r1

sub r1, reg

sub $label, reg mov $label, r1

sub r1, reg

CY 1 if a borrow occurs from MSB (Most Significant Bit),0 if not

OV 1 if Integer-Overflow occurs, 0 if not

S 1 if the result is negative, 0 if not

Z 1 if the result is 0, 0 if not

SAT ---

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

400 User’s Manual U19383EJ1V0UM00

Subtract Reverse

[Syntax]

- subr reg1, reg2
- subr imm, reg2

The following can be specified for imm:
- Absolute expression having a value of up to 32 bits
- Relative expression

[Function]

- Syntax "subr reg1, reg2"
Subtracts the value of the register specified by the first operand from the value of the register specified by the
second operand, and stores the result in the register specified by the second operand.

- Syntax "subr imm, reg2"
Subtracts the value of the absolute expression or relative expression specified by the first operand from the
value of the register specified by the second operand, and stores the result into the register specified by the sec-
ond operand.

[Description]

- If the instruction is executed in syntax "subr reg1, reg2", the as850 generates one subr machine instruction.
- If the instruction is executed in syntax "subr imm, reg2", the as850 executes instruction expansion and gener-

ates one or more machine instructionsNote .

(a) 0

(b) Absolute expression having a value of other than 0 within the range of -16 to +15

(c) Absolute expression exceeding the range of -16 to +15, but within the range of -32,768 to +32,767

subr

subr 0, reg subr r0, reg

subr imm5, reg mov imm5, r1

subr r1, reg

subr imm16, reg movea imm16, r0, r1

subr r1, reg

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

User’s Manual U19383EJ1V0UM00 401

(d) Absolute expression having a value exceeding the range of -32,768 to +32,767
If all the lower 16 bits of the value of imm are 0

Else

(e) Absolute expression having a value exceeding the range of -32,768 to +32,767 [V850E]
If all the lower 16 bits of the value of imm are 0

Else

(f) Relative expression having $label for a label having a definition in the sdata/sbss-attribute section

(g) Relative expression having #label or label, or that having $label for a label having no definition in
the sdata/sbss-attribute section

subr imm, reg movhi hi(imm), r0, r1

subr r1, reg

subr imm, reg movhi hi1(imm), r0, r1

movea lo(imm), r1, r1

subr r1, reg

subr imm, reg movhi hi(imm), r0, r1

subr r1, reg

subr imm, reg mov imm, r1

subr r1, reg

subr $label, reg movea $label, r0, r1

subr r1, reg

subr #label, reg movhi hi1(#label), r0, r1

movea lo(#label), r1, r1

subr r1, reg

subr label, reg movhi hi1(label), r0, r1

movea lo(label), r1, r1

subr r1, reg

subr $label, reg movhi hi1($label), r0, r1

movea lo($label), r1, r1

subr r1, reg

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

402 User’s Manual U19383EJ1V0UM00

(h) Relative expression having #label or label, or that having $label for a label having no definition in
the sdata/sbss-attribute section [V850E]

Note The subr machine instruction does not take an immediate value as an operand.

[Flag]

subr #label, reg mov #label, r1

subr r1, reg

subr label, reg mov label, r1

subr r1, reg

subr $label, reg mov $label, r1

subr r1, reg

CY 1 if a borrow occurs from MSB (Most Significant Bit),0 if not

OV 1 if Integer-Overflow occurs, 0 if not

S 1 if the result is negative, 0 if not

Z 1 if the result is 0, 0 if not

SAT ---

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

User’s Manual U19383EJ1V0UM00 403

Subtract with Condition Flag (Subtract on Condition Flag) [V850E2]

[Syntax]

- sbf imm4, reg1, reg2, reg3
- sbfcnd reg1, reg2, reg3

The following can be specified for imm4:
- Absolute expression having a value up to 4 bits (0xd cannot be specified)

[Function]

- Syntax "sbf imm4, reg1, reg2, reg3"
It compares the current flag condition with the flag condition indicated by the value of the lower 4 bits of the
absolute expression (see Table 4-48. sbfcond Instruction List) specified by the first operand.
If the values match, subtracts the word data of the register specified by the second operand from the word data
of the register specified by the third operand. And 1 is subtracted from the subtraction result and that result is
stored in the register specified by the fourth operand.
If the values not match, subtracts the word data of the register specified by the second operand from the word
data of the register specified by the third operand. And that result is stored in the register specified by the fourth
operand.

- Syntax "sbfcnd reg1, reg2, reg3"
It compares the current flag condition with the flag condition indicated by the string in the "cnd" part.
If the values match, subtracts the word data of the register specified by the first operand from the word data of
the register specified by the second operand. And 1 is subtracted from the subtraction result and that result is
stored in the register specified by the third operand.
If the values not match, subtracts the word data of the register specified by the first operand from the word data
of the register specified by the second operand. And that result is stored in the register specified by the third
operand.

[Description]

- For the sbf instruction, the as850 generates one sbf machine instruction.
- For the adcond instruction, the as850 generates the corresponding sbf instruction (see Table 4-48. sbfcond

Instruction List) and expands it to syntax "subr reg1, reg2".

Table 4-48. sbfcond Instruction List

sbf

Instruction Flag Condition Meaning of Flag Condition Instruction
Expansion

sbfgt ((S xor OV) or Z) = 0 Greater than (signed) sbf 0xf

sbfge (S xor OV) = 0 Greater than or equal (signed) sbf 0xe

sbflt (S xor OV) = 1 Less than (signed) sbf 0x6

sbfle ((S xor OV) or Z) = 1 Less than or equal (signed) sbf 0x7

sbfh (CY or Z) = 0 Higher (Greater than) sbf 0xb

sbfnl CY = 0 Not lower (Greater than or equal) sbf 0x9

sbfl CY = 1 Lower (Less than) sbf 0x1

sbfnh (CY or Z) = 1 Not higher (Less than or equal) sbf 0x3

sbfe Z = 1 Equal sbf 0x2

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

404 User’s Manual U19383EJ1V0UM00

[Flag]

[Caution]

- If an absolute expression having a value exceeding 4 bits is specified as imm4 of the sbf instruction, the follow-
ing message is output, and assembly continues using the lower 4 bits of the specified value.

- If 0xd is specified as imm4 of the sbf instruction, the following message is output, and assembly is stopped.

sbfne Z = 0 Not equal sbf 0xa

sbfv OV = 1 Overflow sbf 0x0

sbfnv OV = 0 No overflow sbf 0x8

sbfn S = 1 Negative sbf 0x4

sbfp S = 0 Positive sbf 0xc

sbfc CY = 1 Carry sbf 0x1

sbfnc CY = 0 No carry sbf 0x9

sbfz Z = 1 Zero sbf 0x2

sbfnz Z = 0 Not zero sbf 0xa

sbft always 1 Always 1 sbf 0x5

CY 1 if a borrow occurs from MSB (Most Significant Bit),0 if not

OV 1 if overflow occurred, 0 if not

S 1 if the result is negative, 0 if not

Z 1 if the result is 0, 0 if not

SAT ---

W3011: illegal operand (range error in immediate).

E3261: illegal condition code.

Instruction Flag Condition Meaning of Flag Condition Instruction
Expansion

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

User’s Manual U19383EJ1V0UM00 405

Multiply Half-word

[Syntax]

- mulh reg1, reg2
- mulh imm, reg2

The following can be specified for imm:
- Absolute expression having a value of up to 16 bitsNote

- Relative expression

Note The as850 does not check whether the value of the expression exceeds 16 bits. The generated mulh instruc-
tion performs the operation by using the lower 16 bits.

[Function]

- Syntax "mulh reg1, reg2"
Multiplies the value of the lower halfword data of the register specified by the first operand by the value of the
lower halfword data of the register specified by the second operand as a signed value, and stores the result in
the register specified by the second operand.

- Syntax "mulh imm, reg2"
Multiplies the value of the lower halfword data of the absolute expression or relative expression specified by the
first operand by the value of the lower halfword data of the register specified by the second operand as a signed
value, and stores the result in the register specified by the second operand.

[Description]

- If the instruction is executed in syntax "mulh reg1, reg2", the as850 generates one mulh machine instruction.
- If the following is specified as imm in syntax "mulh imm, reg2", the as850 generates one mulh machine instruc-

tionNote.

(a) Absolute expression having a value in the range of -16 to +15

Note The mulh machine instruction takes a register or immediate value in the range of -16 to +15 (0xfffffff0 to 0xf)
as the first operand.

mulh

mulh imm5, reg mulh imm5, reg

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

406 User’s Manual U19383EJ1V0UM00

- If the following is specified for imm in syntax "mulh imm, reg2", the as850 executes instruction expansion to
generate one or more machine instructions.

(a) Absolute expression having a value exceeding the range of -16 to +15

(b) Absolute expression having a value exceeding the range of -32,768 to +32,767
If all the lower 16 bits of the value of imm are 0

Else

(c) Absolute expression having a value exceeding the range of -32,768 to +32,767 [V850E]
If all the lower 16 bits of the value of imm are 0

Else

(d) Relative expression having !label or %label, or that having $label for a label with a definition in the
sdata/sbss-attribute section

(e) Relative expression having #label or label, or that having $label for a label having no definition in
the sdata/sbss-attribute section

mulh imm16, reg mulhi imm16, reg, reg

mulh imm, reg movhi hi(imm), r0, r1

mulh r1, reg

mulh imm, reg movhi hi1(imm), r0, r1

movea lo(imm), r1, r1

mulh r1, reg

mulh imm, reg movhi hi(imm), r0, r1

mulh r1, reg

mulh imm, reg mov imm, r1

mulh r1, reg

mulh !label, reg mulhi !label, reg, reg

mulh %label, reg mulhi %label, reg, reg

mulh $label, reg mulhi $label, reg, reg

mulh #label, reg movhi hi1(#label), r0, r1

movea lo(#label), r1, r1

mulh r1, reg

mulh label, reg movhi hi1(label), r0, r1

movea lo(label), r1, r1

mulh r1, reg

mulh $label, reg movhi hi1($label), r0, r1

movea lo($label), r1, r1

mulh r1, reg

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

User’s Manual U19383EJ1V0UM00 407

(f) Relative expression having #label or label, or that having $label for a label having no definition in
the sdata/sbss-attribute section [V850E]

[Flag]

[Caution]

- If r0 is specified by the second operand when the V850Ex is used as the target device, the as850 outputs the
following message and stops assembling.

With a device other than the V850Ex, the as850 outputs the following message and continues assembling.

mulh #label, reg mov #label, r1

mulh r1, reg

mulh label, reg mov label, r1

mulh r1, reg

mulh $label, reg mov $label, r1

mulh r1, reg

CY ---

OV ---

S ---

Z ---

SAT ---

E3240: illegal operand (can not use r0 as destination in V850E mode)

W3013: register r0 used as destination register

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

408 User’s Manual U19383EJ1V0UM00

Multiply Half-word Immediate

[Syntax]

- mulhi imm, reg1, reg2

The following can be specified for imm:
- Absolute expression having a value of up to 16 bitsNote

- Relative expression
- Either of the above expressions with hi(), lo(), or hi1() applied

Note The as850 does not check whether the value of the expression exceeds 16 bits. The generated mulhi
machine instruction performs the operation by using the lower 16 bits.

[Function]

Multiplies the value of the absolute expression, relative expression, or expression with hi() , lo() , or hi1() applied
specified by the first operand by the value of the register specified by the second operand, and stores the result in the
register specified by the third operand.

[Description]

- If the following is specified for imm, the as850 generates one mulhi machine instructionNot

(a) Absolute expression having a value in the range of -32,768 to +32,767

(b) Relative expression having $label for a label having a definition in the sdata/sbss-attribute section

(c) Relative expression having !label or %label

(d) Expression with hi(), lo(), or hi1()

Note The mulhi machine instruction takes an immediate value in the range of -32,768 to +32,767 (0xffff8000 to
0x7fff) as the first operand.

mulhi

mulhi imm16, reg1, reg2 mulhi imm16, reg1, reg2

mulhi $label, reg1, reg2 mulhi $label, reg1, reg2

mulhi !label, reg1, reg2 mulhi !label, reg1, reg2

mulhi %label, reg1, reg2 mulhi %label, reg1, reg2

mulhi imm16, reg1, reg2 mulhi imm16, reg1, reg2

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

User’s Manual U19383EJ1V0UM00 409

- If the following is specified for imm, the as850 executes instruction expansion to generate two or more machine
instructions.

(a) Absolute expression having a value exceeding the range of -32,768 to +32,767
If all the lower 16 bits of the value of imm are 0

If all the lower 16 bits of the value of imm are 0 and when reg2 is r0

Else

Other than above and when reg2 is r0

(b) Absolute expression having a value exceeding the range of -32,768 to +32,767 [V850E]
If all the lower 16 bits of the value of imm are 0

Else

mulhi imm, reg1, reg2 movhi hi(imm), r0, reg2

mulh reg1, reg2

mulhi imm, reg1, r0 movhi hi(imm), r0, r1

mulh reg1, r1

mulhi imm, reg1, reg2 movhi hi1(imm), r0, r1

movea lo(imm), r1, reg2

mulh reg1, reg2

mulhi imm, reg1, reg2 movhi hi1(imm), r0, r1

movea lo(imm), r1, r1

mulh reg1,r1

mulhi imm, reg1, reg2 movhi hi(imm), r0, reg2

mulh reg1, reg2

mulhi imm, reg1, reg2 mov imm, reg2

mulh reg1, reg2

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

410 User’s Manual U19383EJ1V0UM00

(c) Relative expression having #label or label, or that having $label for a label having no definition in
the sdata/sbss-attribute section
If reg2 is r0

Else

(d) Relative expression having #label or label, or that having $label for a label having no definition in
the sdata/sbss-attribute section [V850E]

[Flag]

mulhi #label, reg1, r0 movhi hi1(#label), r0, r1

movea lo(#label), r1, r1

mulh reg1, r1

mulhi label, reg1, r0 movhi hi1(label), r0, r1

movea lo(label), r1, r1

mulh reg1, r1

mulhi $label, reg1 r0 movhi hi1($label), r0, r1

movea lo($label), r1, r1

mulh reg1, r1

mulhi #label, reg1, reg2 movhi hi1(#label), r0, r1

movea lo(#label), r1, reg2

mulh reg1, reg2

mulhi label, reg1, reg2 movhi hi1(label), r0, r1

movea lo(label), r1, reg2

mulh reg1, reg2

mulhi $label, reg1 reg2 movhi hi1($label), r0, r1

movea lo($label), r1, reg2

mulh reg1, reg2

mulhi #label, reg1, reg2 mov #label, reg2

mulhi reg1, reg2

mulhi label, reg1, reg2 mov label, reg2

mulh reg1, reg2

mulhi $label, reg1, reg2 mov $label, reg2

mulh reg1, reg2

CY ---

OV ---

S ---

Z ---

SAT ---

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

User’s Manual U19383EJ1V0UM00 411

[Caution]

- If r0 is specified by the second operand when the V850Ex is used as the target device, the as850 outputs the
following message and stops assembling.

With a device other than the V850Ex, the as850 outputs the following message and continues assembling.

E3240: illegal operand (can not use r0 as destination in V850E mode)

W3013: register r0 used as destination register

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

412 User’s Manual U19383EJ1V0UM00

Multiply Word [V850E]

[Syntax]

- mul reg1, reg2, reg3
- mul imm, reg2, reg3

The following can be specified for imm:
- Absolute expression having a value of up to 32 bits
- Relative expression

[Function]

- Syntax "mul reg1, reg2, reg3"
Multiplies the register value specified by the first operand by the register value specified by the second operand
as a signed value and stores the lower 32 bits of the result in the register specified by the second operand, and
the higher 32 bits in the register specified by the third operand. If the same register is specified by the second
and third operands, the higher 32 bits of the multiplication result are stored in that register.

- Syntax "mul imm, reg2, reg3"
Multiplies the value of the absolute or relative expression specified by the first operand by the register value
specified by the second operand as a signed value and stores the lower 32 bits of the result in the register spec-
ified by the second operand, and the higher 32 bits in the register specified by the third operand. If the same
register is specified by the second and third operands, the higher 32 bits of the multiplication result are stored in
that register.

[Description]

- If the instruction is executed in syntax "mul reg1, reg2, reg3", the as850 generates one mul machine instruction.
- If the instruction is executed in syntax "mul imm, reg2, reg3", the as850 executes instruction expansion to gen-

erate one or more machine instructions.

(a) 0

(b) Absolute expression having a value of other than 0 whithin the range of -256 to +255

(c) Absolute expression exceeding the range of -256 to +255, but within the range of -32,768 to +32,767

mul

mul 0, reg2, reg3 mul r0, reg2, reg3

mul imm9, reg2, reg3 mul imm9, reg2, reg3

mul imm16, reg2, reg3 movea imm16, r0, r1

mul r1, reg2, reg3

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

User’s Manual U19383EJ1V0UM00 413

(d) Absolute expression having a value exceeding the range of -32,768 to +32,767
If all the lower 16 bits of the value of imm are 0

Else

(e) Relative expression having $label for a label having a definition in the sdata/sbss-attribute section

(f) Relative expression having #label or label, or that having $label for a label having no definition in
the sdata/sbss-attribute section

[Flag]

mul imm, reg2, reg3 movhi hi(imm), r0, r1

mul r1, reg2, reg3

mul imm, reg2, reg3 mov imm, r1

mul r1, reg2, reg3

mul $label, reg2, reg3 movea $label, r0, r1

mul r1, reg2, reg3

mul #label, reg2, reg3 mov #label, r1

mul r1, reg2, reg3

mul label, reg2, reg3 mov label, r1

mul r1, reg2, reg3

mul $label, reg2, reg3 mov $label, r1

mul r1, reg2, reg3

CY ---

OV ---

S ---

Z ---

SAT ---

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

414 User’s Manual U19383EJ1V0UM00

[Caution]

- If these three conditions for the instructions in syntax "mul reg1, reg2, reg3" are met: reg1 and reg3 are the
same register, reg2 is a different register from reg1 and reg3, and reg1 and reg3 are neither r0 nor r1, the as850
performs instruction expansion and generates multiple machine-language instructions.

- If these three conditions for the instructions in syntax "mul reg1, reg2, reg3" are met: reg1 and reg3 are the
same register, reg2 is a different register from reg1 and reg3, and reg1 and reg3 are r1, the as850 outputs the
following messages and stops assembling.

- If these two conditions for the instructions in syntax "mul imm, reg2, reg3" are met: reg2 and reg3 are the same
register, and reg3 is r1, the as850 outputs the following message and stops assembling.

- If the warning message suppressing option -wr1- is specified, the as850 outputs the following message and
stops assembling.

mov reg1, r1

mul r1, reg2, reg3

W3013: register r1 used as source register

W3013: register r1 used as destination register

E3259: can not use r1 as destination in mul/mulu

W3013: register r1 used as source register

W3013: register r1 used as destination register

E3259: can not use r1 as destination in mul/mulu

E3259: can not use r1 as destination in mul/mulu

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

User’s Manual U19383EJ1V0UM00 415

Signed Word Data Multiply and Add (Multiply Word and Add) [V850E2]

[Syntax]

- mac reg1, reg2, reg3, reg4

[Function]

Adds the multiplication result of the general-purpose register reg2 word data and the general-purpose register reg1
word data with the 64-bit data made up of general-purpose register reg3 as the lower 32 bits and general-purpose reg-
ister reg3+1 (for example, if reg3 were r6, "reg3+1" would be r7) as the upper 32 bits, and stores the upper 32 bits of
that result (64-bit data) in general-purpose register reg4+1 and the lower 32 bits in general-purpose register reg4.

The contents of general-purpose registers reg1 and reg2 are treated as 32-bit signed integers.
General-purpose registers reg1, reg2, reg3, and reg3+1 are unaffected.

[Description]

The as850 generates one mac machine instruction.

[Flag]

[Caution]

- The general-purpose registers that can be specified to reg3 or reg4 are limited to even numbered registers (r0,
r2, r4, ..., r30). When specifying an odd numbered register, the following message is output, and assembly con-
tinues, specifying the register as an even numbered register (r0, r2, r4, ..., r30).

mac

CY ---

OV ---

S ---

Z ---

SAT ---

W3026: illegal register number, aligned odd register(rXX) to be even register(rYY).

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

416 User’s Manual U19383EJ1V0UM00

Multiply Word Unsigned [V850E]

[Syntax]

- mulu reg1, reg2, reg3
- mulu imm, reg2, reg3

The following can be specified for imm:
- Absolute expression having a value of up to 32 bits
- Relative expression

[Function]

- Syntax "mulu reg1, reg2, reg3"
Multiplies the register value specified by the first operand by the register value specified by the second operand
as an unsigned value and stores the lower 32 bits of the result in the register specified by the second operand,
and the higher 32 bits in the register specified by the third operand. If the same register is specified by the sec-
ond and third operands, the higher 32 bits of the multiplication result are stored in that register.

- Syntax "mulu imm, reg2, reg3"
Multiplies the value of the absolute or relative expression specified by the first operand by the register value
specified by the second operand as an unsigned value and stores the lower 32 bits of the result in the register
specified by the second operand, and the higher 32 bits in the register specified by the third operand. If the
same register is specified by the second and third operands, the higher 32 bits of the multiplication result are
stored in that register.

[Description]

- If the instruction is executed in syntax "mulu reg1, reg2, reg3", the as850 generates one mulu machine instruc-
tion.

- If the instruction is executed in syntax "mulu imm, reg2, reg3", the as850 executes instruction expansion to gen-
erate one or more machine instructions.

(a) 0

(b) Absolute expression having a value in the range of 1 to +511

(c) Absolute expression exceeding the range of 0 to +511, but within the range of 0 to +65,535

mulu

mulu 0, reg2, reg3 mulu r0, reg2, reg3

mulu imm9, reg2, reg3 mulu imm9, reg2, reg3

mulu imm16, reg2, reg3 movea imm16, r0, r1

mulu r1, reg2, reg3

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

User’s Manual U19383EJ1V0UM00 417

(d) Absolute expression having a value exceeding the range of 0 to +65,535
If all the lower 16 bits of the value of imm are 0

Else

(e) Relative expression having $label for a label having a definition in the sdata/sbss-attribute section

(f) Relative expression having #label or label, or that having $label for a label having no definition in
the sdata/sbss-attribute section

[Flag]

mulu imm, reg2, reg3 movhi hi(imm), r0, r1

mulu r1, reg2, reg3

mulu imm, reg2, reg3 mov imm, r1

mulu r1, reg2, reg3

mulu $label, reg2, reg3 movea $label, r0, r1

mulu r1, reg2, reg3

mulu #label, reg2, reg3 mov #label, r1

mulu r1, reg2, reg3

mulu label, reg2, reg3 mov label, r1

mulu r1, reg2, reg3

mulu $label, reg2, reg3 mov $label, r1

mulu r1, reg2, reg3

CY ---

OV ---

S ---

Z ---

SAT ---

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

418 User’s Manual U19383EJ1V0UM00

[Caution]

- If these three conditions for the instructions in syntax "mulu reg1, reg2, reg3" are met: reg1 and reg3 are the
same register, reg2 is a different register from reg1 and reg3, and reg1 and reg3 are neither r0 nor r1, the as850
performs instruction expansion and generates multiple machine-language instructions.

- If these three conditions for the instructions in syntax "mulu reg1, reg2, reg3" are met: reg1 and reg3 are the
same register, reg2 is a different register from reg1 and reg3, and reg1 and reg3 are r1, the as850 outputs the
following messages and stops assembling.

- If these two conditions for the instructions in syntax "mulu imm, reg2, reg3" are met: reg2 and reg3 are the same
register, and reg3 is r1, the as850 outputs the following message and stops assembling.

- If the warning message suppressing option -wr1- is specified, the as850 outputs the following message and
stops assembling.

mov reg1, r1

mulu r1, reg2, reg3

W3013: register r1 used as source register

W3013: register r1 used as destination register

E3259: can not use r1 as destination in mul/mulu

W3013: register r1 used as destination register

E3259: can not use r1 as destination in mul/mulu

E3259: can not use r1 as destination in mul/mulu

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

User’s Manual U19383EJ1V0UM00 419

Unsigned Word Data Multiply and Add (Multiply Word Unsigned and Add) [V850E2]

[Syntax]

- macu reg1, reg2, reg3, reg4

[Function]

Adds the multiplication result of the general-purpose register reg2 word data and the general-purpose register reg1
word data with the 64-bit data made up of general-purpose register reg3 as the lower 32 bits and general-purpose reg-
ister reg3+1 (for example, if reg3 were r6, "reg3+1" would be r7) as the upper 32 bits, and stores the upper 32 bits of
that result (64-bit data) in general-purpose register reg4+1 and the lower 32 bits in general-purpose register reg4.

The contents of general-purpose registers reg1 and reg2 are treated as 32-bit unsigned integers.
General-purpose registers reg1, reg2, reg3, and reg3+1 are unaffected.

[Description]

The as850 generates one macu machine instruction.

[Flag]

[Caution]

- The general-purpose registers that can be specified to reg3 or reg4 are limited to even numbered registers (r0,
r2, r4, ..., r30). When specifying an odd numbered register, the following message is output, and assembly con-
tinues, specifying the register as an even numbered register (r0, r2, r4, ..., r30).

macu

CY ---

OV ---

S ---

Z ---

SAT ---

W3026: illegal register number, aligned odd register(rXX) to be even register(rYY).

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

420 User’s Manual U19383EJ1V0UM00

Divide Half-word

[Syntax]

- divh reg1, reg2
- divh imm, reg2
- divh reg1, reg2, reg3 [V850E]
- divh imm, reg2, reg3 [V850E]

The following can be specified for imm:
- Absolute expression having a value of up to 16 bitsNote

- Relative expression

Note The as850 does not check whether the value of the expression exceeds 16 bits. The generated machine
instruction performs execution using the lower 16 bits.

[Function]

- Syntax "divh reg1, reg2"
Divides the register value specified by the second operand by the value of the lower halfword data of the regis-
ter specified by the first operand as a signed value, and stores the quotient in the register specified by the sec-
ond operand.

- Syntax "divh imm, reg2"
Divides the register value specified by the second operand by the value of the lower halfword data of the abso-
lute or relative expression specified by the first operand as a signed value and stores the quotient in the register
specified by the second operand.

- Syntax "divh reg1, reg2, reg3"
Divides the register value specified by the second operand by the value of the lower halfword data of the regis-
ter specified by the first operand as a signed value and stores the quotient in the register specified by the sec-
ond operand, and the remainder in the register specified by the third operand. If the same register is specified
by the second and third operands, the remainder is stored in that register.

- Syntax "divh imm, reg2, reg3"
Divides the register value specified by the second operand by the value of the lower halfword data of the abso-
lute or relative expression specified by the first operand as a signed value and stores the quotient in the register
specified by the second operand, and the remainder in the register specified by the third operand. If the same
register is specified by the second and third operands, the remainder is stored in that register.

divh

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

User’s Manual U19383EJ1V0UM00 421

[Description]

- If the instruction is executed in syntaxes "divh reg1, reg2" and "divh reg1, reg2, reg3", the as850 generates one
divh machine instruction.

- If the instruction is executed in syntax "divh imm, reg2, reg3", the as850 executes instruction expansion to gen-
erate one or more machine instructionsNote.

(a) 0

(b) Absolute expression having a value of other than 0 within the range of -16 to +15

(c) Absolute expression exceeding the range of -16 to +15, but within the range of -32,768 to +32,767

(d) Absolute expression having a value exceeding the range of -32,768 to +32,767
If all the lower 16 bits of the value of imm are 0

Else

(e) Absolute expression having a value exceeding the range of -32,768 to +32,767 [V850E]
If all the lower 16 bits of the value of imm are 0

Else

(f) Relative expression having $label for a label having a definition in the sdata/sbss-attribute section

divh 0, reg divh r0, reg

divh imm5, reg mov imm5, r1

divh r1, reg

divh imm16, reg movea imm16, r0, r1

divh r1, reg

divh imm, reg movhi hi(imm), r0, r1

divh r1, reg

divh imm, reg movhi hi1(imm), r0, r1

movea lo(imm), r1, r1

divh r1, reg

divh imm, reg movhi hi(imm), r0, r1

divh r1, reg

divh imm, reg mov imm, r1

divh r1, reg

divh $label, reg movea $label, r0, r1

divh r1, reg

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

422 User’s Manual U19383EJ1V0UM00

(g) Relative expression having #label or label, or that having $label for a label having no definition in
the sdata/sbss-attribute section

(h) Relative expression having #label or label, or that having $label for a label having no definition in
the sdata/sbss-attribute section [V850E]

Note The divh machine instruction does not take an immediate value as an operand.

divh #label, reg movhi hi1(#label), r0, r1

movea lo(#label), r1, r1

divh r1, reg

divh label, reg movhi hi1(label), r0, r1

movea lo(label), r1, r1

divh r1, reg

divh $label, reg movhi hi1($label), r0, r1

movea lo($label), r1, r1

divh r1, reg

divh #label, reg mov #label, r1

divh r1, reg

divh label, reg mov label, r1

divh r1, reg

divh $label, reg mov $label, r1

divh r1, reg

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

User’s Manual U19383EJ1V0UM00 423

- If the instruction is executed in syntax "divh imm, reg2, reg3", the as850 executes instruction expansion to gen-
erate one or more machine instructions. [V850E]

(a) 0

(b) Absolute expression having a value of other than 0 within the range of -16 to +15

(c) Absolute expression exceeding the range of -16 to +15, but within the range of -32,768 to +32,767

(d) Absolute expression having a value exceeding the range of -32,768 to +32,767
If all the lower 16 bits of the value of imm are 0

Else

(e) Relative expression having $label for a label having a definition in the sdata/sbss-attribute section

(f) Relative expression having #label or label, or that having $label for a label having no definition in
the sdata/sbss-attribute section

divh 0, reg2, reg3 divh r0, reg2, reg3

divh imm5, reg2, reg3 mov imm5, r1

divh r1, reg2, reg3

divh imm16, reg2, reg3 movea imm16, r0, r1

divh r1, reg2, reg3

divh imm, reg2, reg3 movhi hi(imm), r0, r1

divh r1, reg2, reg3

divh imm, reg2, reg3 mov imm, r1

divh r1, reg2, reg3

divh $label, reg2, reg3 movea $label, r0, r1

divh r1, reg2, reg3

divh #label, reg2, reg3 mov #label, r1

divh r1, reg2, reg3

divh label, reg2, reg3 mov label, r1

divh r1, reg2, reg3

divh $label, reg2, reg3 mov $label, r1

divh r1, reg2, reg3

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

424 User’s Manual U19383EJ1V0UM00

[Flag]

[Caution]

- If r0 is specified by the first operand in syntax "divh reg1, reg2" when the V850Ex is used as the target device,
the as850 outputs the following message and stops assembling.

With a device other than the V850Ex, the as850 outputs the following message and continues assembling.

- If r0 is specified by the second operand in syntaxes "divh reg1, reg2" and "divh imm, reg2, reg3" when the
V850Ex is used as the target device, the as850 outputs the following message and stops assembling.

With a device other than the V850Ex, the as850 outputs the following message and continues assembling.

CY ---

OV 1 if Integer-Overflow occurs, 0 if not

S 1 if the result is negative, 0 if not

Z 1 if the result is 0, 0 if not

SAT ---

E3239: illegal operand (can not use r0 as source in V850E mode)

W3013: register r0 used as source register

E3240: illegal operand (can not use r0 as destination in V850E mode)

W3013: register r0 used as destination register

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

User’s Manual U19383EJ1V0UM00 425

Divide Word [V850E]

[Syntax]

- div reg1, reg2, reg3
- div imm, reg2, reg3

The following can be specified for imm:
- Absolute expression having a value of up to 32 bits
- Relative expression

[Function]

- Syntax "div reg1, reg2, reg3"
Divides the register value specified by the second operand by the register value specified by the first operand as
a signed value and stores the quotient in the register specified by the second operand, and the remainder in the
register specified by the third operand. If the same register is specified by the second and third operands, the
remainder is stored in that register.

- Syntax "div imm, reg2, reg3"
Divides the register value specified by the second operand by the value of the absolute or relative expression
specified by the first operand as a signed value and stores the quotient in the register specified by the second
operand, and the remainder in the register specified by the third operand. If the same register is specified by the
second and third operands, the remainder is stored in that register.

[Description]

- If the instruction is executed in syntax "div reg1, reg2, reg3", the as850 generates one div machine instruction.
- If the instruction is executed in syntax "div imm, reg2, reg3", the as850 executes instruction expansion to gener-

ate two or more machine instructionsNote.

(a) 0

(b) Absolute expression having a value of other than 0 whithin the range of -16 to +15

(c) Absolute expression exceeding the range of -16 to +15, but within the range of -32,768 to +32,767

div

div 0, reg2, reg3 div r0, reg2, reg3

div imm5, reg2, reg3 mov imm5, r1

div r1, reg2, reg3

div imm16, reg2, reg3 movea imm16, r0, r1

div r1, reg2, reg3

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

426 User’s Manual U19383EJ1V0UM00

(d) Absolute expression having a value exceeding the range of -32,768 to +32,767
If all the lower 16 bits of the value of imm are 0

Else

(e) Relative expression having $label for a label having a definition in the sdata/sbss-attribute section

(f) Relative expression having #label or label, or that having $label for a label having no definition in
the sdata/sbss-attribute section

Note The div machine instruction does not take an immediate value as an operand.

[Flag]

div imm, reg2, reg3 movhi hi(imm), r0, r1

div r1, reg2, reg3

div imm, reg2, reg3 mov imm, r1

div r1, reg2, reg3

div $label, reg2, reg3 movea $label, r0, r1

div r1, reg2, reg3

div #label, reg2, reg3 mov #label, r1

div r1, reg2, reg3

div label, reg2, reg3 mov label, r1

div r1, reg2, reg3

div $label, reg2, reg3 mov $label, r1

div r1, reg2, reg3

CY ---

OV 1 if Integer-Overflow occurs, 0 if not

S 1 if the result is negative, 0 if not

Z 1 if the result is 0, 0 if not

SAT ---

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

User’s Manual U19383EJ1V0UM00 427

Divide Half-word Unsigned [V850E]

[Syntax]

- divhu reg1, reg2, reg3
- divhu imm, reg2, reg3

The following can be specified for imm:
- Absolute expression having a value of up to 16 bitsNote

- Relative expression

Note The as850 does not check whether the value of the expression exceeds 16 bits. The generated machine
instruction uses only the lower 16 bits for execution.

[Function]

- Syntax "divhu reg1, reg2, reg3"
Divides the register value specified by the second operand by the value of the lower halfword data of the regis-
ter value specified by the first operand as an unsigned value and stores the quotient in the register specified by
the second operand, and the remainder in the register specified by the third operand. If the same register is
specified by the second and third operands, the remainder is stored in that register.

- Syntax "divhu imm, reg2, reg3"
Divides the register value specified by the second operand by the value of the lower halfword data of the abso-
lute or relative expression specified by the first operand as an unsigned value and stores the quotient in the reg-
ister specified by the second operand, and the remainder in the register specified by the third operand. If the
same register is specified by the second and third operands, the remainder is stored in that register.

[Description]

- If the instruction is executed in syntax "divhu reg1, reg2, reg3", the as850 generates one divhu machine instruc-
tion.

- If the instruction is executed in syntax "divhu imm, reg2, reg3", the as850 executes instruction expansion to
generate one or more machine instructionsNote.

(a) 0

(b) Absolute expression having a value of other than 0 whithin the range of 0 to +31

(c) Absolute expression exceeding the range of 0 to +31, but within the range of 0 to +65,535

divhu

divhu 0, reg2, reg3 divhu r0, reg2, reg3

divhu imm5, reg2, reg3 mov imm5, r1

divhu r1, reg2, reg3

divhu imm16, reg2, reg3 movea imm16, r0, r1

divhu r1, reg2, reg3

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

428 User’s Manual U19383EJ1V0UM00

(d) Absolute expression having a value exceeding the range of 0 to +65,535
If all the lower 16 bits of the value of imm are 0

Else

(e) Relative expression having $label for a label having a definition in the sdata/sbss-attribute section

(f) Relative expression having #label or label, or that having $label for a label having no definition in
the sdata/sbss-attribute section

Note The divhu machine instruction does not take an immediate value as an operand.

[Flag]

divhu imm, reg2, reg3 movhi hi(imm), r0, r1

divhu r1, reg2, reg3

divhu imm, reg2, reg3 mov imm, r1

divhu r1, reg2, reg3

divhu $label, reg2, reg3 movea $label, r0, r1

divhu r1, reg2, reg3

divhu #label, reg2, reg3 mov #label, r1

divhu r1, reg2, reg3

divhu label, reg2, reg3 mov label, r1

divhu r1, reg2, reg3

divhu $label, reg2, reg3 mov $label, r1

divhu r1, reg2, reg3

CY ---

OV 1 if Integer-Overflow occurs, 0 if not

S 1 if the word data MSB of the result is 1, 0 if not

Z 1 if the result is 0, 0 if not

SAT ---

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

User’s Manual U19383EJ1V0UM00 429

Divide Word Unsigned [V850E]

[Syntax]

- divu reg1, reg2, reg3
- divu imm, reg2, reg3

The following can be specified for imm:
- Absolute expression having a value of up to 32 bits
- Relative expression

[Function]

- Syntax "divu reg1, reg2, reg3"
Divides the register value specified by the second operand by the register value specified by the first operand as
an unsigned value and stores the quotient in the register specified by the second operand, and the remainder in
the register specified by the third operand. If the same register is specified by the second and third operands,
the remainder is stored in that register.

- Syntax "divu imm, reg2, reg3"
Divides the register value specified by the second operand by the value of the absolute or relative expression
specified by the first operand as an unsigned value and stores the quotient in the register specified by the sec-
ond operand, and the remainder in the register specified by the third operand. If the same register is specified
by the second and third operands, the remainder is stored in that register.

[Description]

- If the instruction is executed in syntax "divu reg1, reg2, reg3", the as850 generates one divu machine instruc-
tion.

- If the instruction is executed in syntax "divu imm, reg2, reg3", the as850 executes instruction expansion to gen-
erate one or more machine instructionsNote .

(a) 0

(b) Absolute expression having a value of other than 0 whithin the range of -16 to +15

(c) Absolute expression exceeding the range of 0 to +31, but within the range of -32,768to +32,767

divu

divu 0, reg2, reg3 divu r0, reg2, reg3

divu imm5, reg2, reg3 mov imm5, r1

divu r1, reg2, reg3

divu imm16, reg2, reg3 movea imm16, r0, r1

divu r1, reg2, reg3

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

430 User’s Manual U19383EJ1V0UM00

(d) Absolute expression having a value exceeding the range of 0 to +65,535
If all the lower 16 bits of the value of imm are 0

Else

(e) Relative expression having $label for a label having a definition in the sdata/sbss-attribute section

(f) Relative expression having #label or label, or that having $label for a label having no definition in
the sdata/sbss-attribute section

Note The divu machine instruction does not take an immediate value as an operand.

[Flag]

divu imm, reg2, reg3 movhi hi(imm), r0, r1

divu r1, reg2, reg3

divu imm, reg2, reg3 mov imm, r1

divu r1, reg2, reg3

divu $label, reg2, reg3 movea $label, r0, r1

divu r1, reg2, reg3

divu #label, reg2, reg3 mov #label, r1

divu r1, reg2, reg3

divu label, reg2, reg3 mov label, r1

divu r1, reg2, reg3

divu $label, reg2, reg3 mov $label, r1

divu r1, reg2, reg3

CY ---

OV 1 if Integer-Overflow occurs, 0 if not

S 1 if the word data MSB of the result is 1, 0 if not

Z 1 if the result is 0, 0 if not

SAT ---

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

User’s Manual U19383EJ1V0UM00 431

Compare

[Syntax]

- cmp reg1, reg2
- cmp imm, reg2

The following can be specified for imm:
- Absolute expression having a value of up to 32 bits
- Relative expression

[Function]

- Syntax "cmp reg1, reg2"
Compares the value of the register specified by the first operand with the value of the register specified by the
second operand, and indicates the result using a flag. Comparison is performed by subtracting the value of the
register specified by the first operand from the value of the register specified by the second operand.

- Syntax "cmp imm, reg2"
Compares the value of the absolute expression or relative expression specified by the first operand with the
value of the register specified by the second operand, and indicates the result using a flag. Comparison is per-
formed by subtracting the value of the register specified by the first operand from the value of the register spec-
ified by the second operand.

[Description]

- If the instruction is executed in syntax "cmp reg1, reg2", the as850 generates one cmp machine instruction.
- If the following is specified as imm in syntax "cmp imm, reg2", the as850 generates one cmp machine instruc-

tionNote.

(a) Absolute expression having a value in the range of -16 to +15

Note The cmp machine instruction takes a register or immediate value in the range of -16 to +15 (0xfffffff0 to 0xf)
as the first operand.

- If the following is specified as imm in syntax "cmp imm, reg2", the as850 executes instruction expansion to gen-
erate one or more machine instructions.

(a) Absolute expression exceeding the range of -16 to +15, but within the range of -32,768 to +32,767

cmp

cmp imm5, reg cmp imm5, reg

cmp imm16, reg movea imm16, r0, r1

cmp r1, reg

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

432 User’s Manual U19383EJ1V0UM00

(b) Absolute expression having a value exceeding the range of -32,768 to +32,767
If all the lower 16 bits of the value of imm are 0

Else

(c) Absolute expression having a value exceeding the range of -32,768 to +32,767 [V850E]
If all the lower 16 bits of the value of imm are 0

Else

(d) Relative expression having $label for a label having a definition in the sdata/sbss-attribute section

(e) Relative expression having #label or label, or that having $label for a label having no definition in
the sdata/sbss-attribute section

cmp imm, reg movhi hi(imm), r0, r1

cmp r1, reg

cmp imm, reg movhi hi1(imm), r0, r1

movea lo(imm), r1, r1

cmp r1, reg

cmp imm, reg movhi hi(imm), r0, r1

cmp r1, reg

cmp imm, reg mov imm, r1

cmp r1, reg

cmp $label, reg movea $label, r0, r1

cmp r1, reg

cmp #label, reg movhi hi1(#label), r0, r1

movea lo(#label), r1, r1

cmp r1, reg

cmp label, reg movhi hi1(label), r0, r1

movea lo(label), r1, r1

cmp r1, reg

cmp $label, reg movhi hi1($label), r0, r1

movea lo($label), r1, r1

cmp r1, reg

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

User’s Manual U19383EJ1V0UM00 433

(f) Relative expression having #label or label, or that having $label for a label having no definition in
the sdata/sbss-attribute section [V850E]

[Flag]

cmp #label, reg mov #label, r1

cmp r1, reg

cmp label, reg mov label, r1

cmp r1, reg

cmp $label, reg mov $label, r1

cmp r1, reg

CY 1 if a borrow occurs from MSB (Most Significant Bit),0 if not

OV 1 if Integer-Overflow occurs, 0 if not

S 1 if the result is negative, 0 if not

Z 1 if the result is 0, 0 if not

SAT ---

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

434 User’s Manual U19383EJ1V0UM00

Move

[Syntax]

- mov reg1, reg2
- mov imm, reg2

The following can be specified for imm:
- Absolute expression having a value of up to 32 bits
- Relative expression

[Function]

- Syntax "mov reg1, reg2"
Stores the value of the register specified by the first operand in the register specified by the second operand.

- Syntax "mov imm, reg2"
Stores the value of the absolute expression or relative expression specified by the first operand in the register
specified by the second operand.

[Description]

- If the instruction is executed in syntax "mov reg1, reg2", the as850 generates one mov machine instruction.
- If the following is specified as imm in syntax "mov imm, reg2", the as850 generates one mov machine instruc-

tionNote.

(a) Absolute expression having a value in the range of -16 to +15

Note The mov machine instruction for the V850 is in 16-bit format. A 48-bit format is supported with the V850Ex.
For the V850, therefore, this instruction takes a register or immediate value in the range of -16 to +15
(0xfffffff0 to 0xf) as the first operand. For the V850Ex, in addition to these register and immediate values,
mov takes an immediate value in the range of -2,147,483,648 to -2,147,483,647 (0x80000000 to 0x7fffffff).

- If the following is specified as imm in syntax "mov imm, reg2", the as850 executes instruction expansion to gen-
erate one or more machine instructions.

(a) Absolute expression exceeding the range of -16 to +15, but within the range of -32,768 to +32,767

(b) Absolute expression having a value exceeding the range of -32,768 to +32,767
If all the lower 16 bits of the value of imm are 0

Else

mov

mov imm5, reg mov imm5, reg

mov imm16, reg movea imm16, r0, reg

mov imm, reg movhi hi(imm), r0, reg

mov imm, reg movhi hi1(imm), r0, r1

movea lo(imm), r1, reg

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

User’s Manual U19383EJ1V0UM00 435

(c) Absolute expression having a value exceeding the range of -32,768 to +32,767 [V850E]
If all the lower 16 bits of the value of imm are 0

ElseNote

Note A 16-bit mov instruction is replaced by a 48-bit mov instruction.

(d) Relative expression having !label or %label, or that having $label for a label with a definition in the
sdata/sbss-attribute section

(e) Relative expression having #label or label, or that having $label for a label having no definition in
the sdata/sbss-attribute section

(f) Relative expression having #label or label, or that having $label for a label having no definition in
the sdata/sbss-attribute sectionNote [V850E]

Note A 16-bit mov instruction is replaced by a 48-bit mov instruction.

[Flag]

mov imm, reg movhi hi(imm), r0, reg

mov imm, reg mov imm, reg

mov !label, reg movea !label, r0, reg

mov %label, reg movea %label, r0, reg

mov $label, reg movea $label, r0, reg

mov #label, reg movhi hi1(#label), r0, r1

movea lo(#label), r1, reg

mov label, reg movhi hi1(label), r0, r1

movea lo(label), r1, reg

mov $label, reg movhi hi1($label), r0, r1

movea lo($label), r1, reg

mov #label, reg mov #label, reg

mov label, reg mov label, reg

mov $label, reg mov $label, reg

CY ---

OV ---

S ---

Z ---

SAT ---

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

436 User’s Manual U19383EJ1V0UM00

[Caution]

- If r0 is specified by both the first and the second operand of syntax "mov reg1, reg2", the result of assembly
becomes a nop instruction code.

- When the V850Ex is used as the target device, if an absolute expression having a value in the range between -
6 and 15 is specified by the first operand and r0 is specified by the second operand of syntax "mov imm, reg2",
the as850 outputs the following message and stops assembling.

- If an absolute expression having a value exceeding the range of -32,768 to +32,767, #label, or a relative
expression having label, and a relative expression having $label without a definition in the sdata/sbss attribute
section are specified as the first operand of an instruction in syntax "mov imm, reg2", and if instruction expan-
sion is suppressed with quasi directive .option nomacro specified, when the target device is the V850Ex, the
as850 outputs the following message and stops assembling.
In this case, use the mov32 instruction.

E3240: illegal operand (can not use r0 as destination in V850E mode)

E3249: illegal syntax

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

User’s Manual U19383EJ1V0UM00 437

Move Effective Address

[Syntax]

- movea imm, reg1, reg2

The following can be specified for imm:
- Absolute expression having a value of up to 32 bits
- Relative expression
- Either of the above expressions with hi(), lo(), or hi1() applied

[Function]

Adds the value of the absolute expression, relative expression, or expression with hi() , lo() , or hi1() applied, spec-
ified by the first operand, to the value of the register specified by the second operand, and stores the result in the reg-
ister specified by the third operand.

[Description]

- If the following is specified for imm, the as850 generates one movea machine instructionNote.
- If r0 is specified by reg1, the as850 recognizes specified syntax "mov imm, reg2".

(a) Absolute expression having a value in the range of -32,768 to +32,767

(b) Relative expression having $label for a label having a definition in the sdata/sbss-attribute section

(c) Relative expression having !label or %label

(d) Expression with hi(), lo(), or hi1()

Note The movea machine instruction takes an immediate value in a range of -32,768 to +32,767 (0xffff8000 to
0x7fff) as the first operand.

movea

movea imm16, reg1, reg2 movea imm16, reg1, reg2

movea $label, reg1, reg2 movea $label, reg1, reg2

movea !label, reg1, reg2 movea !label, reg1, reg2

movea %label, reg1, reg2 movea %label, reg1, reg2

movea imm16, reg1, reg2 movea imm16, reg1, reg2

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

438 User’s Manual U19383EJ1V0UM00

- If the following is specified for imm, the as850 executes instruction expansion to generate one or more machine
instructions.

(a) Absolute expression having a value exceeding the range of -32,768 to +32,767
If all the lower 16 bits of the value of imm are 0

Else

(b) Relative expression having #label or label, or that having $label for a label having no definition in
the sdata/sbss-attribute section

[Flag]

[Caution]

- If r0 is specified by the third operand when the V850Ex is used as the target device, the as850 outputs the fol-
lowing message and stops assembling.

With a device other than the V850Ex, the as850 outputs the following message and continues assembling.

movea imm, reg1, reg2 movhi hi(imm), reg1, reg2

movea imm, reg1, reg2 movhi hi1(imm), reg1, r1

movea lo(imm), r1, reg2

movea #label, reg1, reg2 movhi hi1(#label), reg1, r1

movea lo(#label), r1, reg2

movea label, reg1, reg2 movhi hi1(label), reg1, r1

movea lo(label), r1, reg2

movea $label, reg1, reg2 movhi hi1($label), reg1, r1

movea lo($label), r1, reg2

CY ---

OV ---

S ---

Z ---

SAT ---

E3240: illegal operand (can not use r0 as destination in V850E mode)

W3013: register r0 used as destination register

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

User’s Manual U19383EJ1V0UM00 439

Move High half-word

[Syntax]

- movhi imm16, reg1, reg2

The following can be specified for imm16:
- Absolute expression having a value of up to 16 bits
- Relative expression
- Either of the above expressions with hi(), lo(), or hi1() applied

[Function]

Adds word data for which the higher 16 bits are specified by the first operand and the lower 16 bits are 0, to the
value of the register specified by the second operand, and stores the result in the register specified by the third oper-
and

[Description]

The as850 generates one movhi machine instruction.

[Flag]

[Caution]

- If an absolute expression having a value exceeding the range of 0 to 65,535 is specified as imm16, the as850
outputs the following message and stops assembling.

- If r0 is specified by the third operand when the V850Ex is used as the target device, the as850 outputs the fol-
lowing message and stops assembling.

With a device other than the V850Ex, the as850 outputs the following message and continues assembling.

movhi

CY ---

OV ---

S ---

Z ---

SAT ---

E3231: illegal operand (range error in immediate)

E3240: illegal operand (can not use r0 as destination in V850E mode)

W3013: register r0 used as destination register

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

440 User’s Manual U19383EJ1V0UM00

32 bit Move [V850E]

[Syntax]

- mov32 imm, reg2

The following can be specified for imm:
- Absolute expression having a value of up to 32 bits
- Relative expression

[Function]

Stores the value of the absolute or relative expression specified as the first operand in the register specified as the
second operand.

[Description]

The as850 generates one 48-bit machine language mov instruction.

[Flag]

mov32

CY ---

OV ---

S ---

Z ---

SAT ---

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

User’s Manual U19383EJ1V0UM00 441

Conditional Move [V850E]

[Syntax]

- cmov imm4, reg1, reg2, reg3
- cmov imm4, imm, reg2, reg3
- cmovcnd reg1, ret2, reg3
- cmovcnd imm, reg2, reg3

The following can be specified for imm4:
- Constant expression having a value of up to 4 bitsNote

Note The cmov machine instruction takes an immediate value in the range of 0 to 15 (0x0 to 0xf) as the first oper-
and.

The following can be specified for imm:
- Absolute expression having a value of up to 32 bits

[Function]

- Syntax "cmov imm4, reg1, reg2, reg3"
Compares the flag condition indicated by the value of the lower 4 bits of the value of the constant expression
specified by the first operand with the current flag condition. If a match is found, the register value specified by
the second operand is stored in the register specified by the fourth operand; otherwise, the register value speci-
fied by the third operand is stored in the register specified by the fourth operand.

- Syntax "cmov imm4, imm, reg2, reg3"
Compares the flag condition indicated by the value of the lower 4 bits of the constant expression specified by
the first operand with the current flag condition. If a match is found, the value of the absolute expression speci-
fied by the second operand is stored in the register specified by the fourth operand; otherwise, the register value
specified by the third operand is stored in the register specified by the fourth operand.

- Syntax "cmovcnd reg1, ret2, reg3"
Compares the flag condition indicated by string cnd with the current flag condition. If a match is found, the reg-
ister value specified by the first operand is stored in the register specified by the third operand; otherwise, the
register value specified by the second operand is stored in the register specified by the third operand.

- Syntax "cmovcnd imm, reg2, reg3"
Compares the flag condition indicated by string cnd with the current flag condition. If a match is found, the value
of the absolute expression specified by the first operand is stored in the register specified by the third operand;
otherwise, the register value specified by the second operand is stored in the register specified by the third oper-
and.

cmov

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

442 User’s Manual U19383EJ1V0UM00

Table 4-49. cmovcnd Instruction List

[Description]

- If the instruction is executed in syntax "cmov imm4, reg1, reg2, reg3", the as850 generates one cmov machine
instructionNote.

Note The cmov machine instruction takes an immediate value in the range of -16 to +15 (0xfffffff0 to 0xf) as the
second operand.

- If the following is specified as imm in syntax "cmov imm4, imm, reg2, reg3", the as850 generates one cmov
machine instruction.

(a) Absolute expression having a value in the range of -16 to +15
If all the lower 16 bits of the value of imm are 0

Instruction Flag Condition Meaning of Flag Condition Instruction
Expansion

cmovgt ((S xor OV) or Z) = 0 Greater than (signed) cmov 0xf

cmovge (S xor OV) = 0 Greater than or equal (signed) cmov 0xe

cmovlt (S xor OV) = 1 Less than (signed) cmov 0x6

cmovle ((S xor OV) or Z) = 1 Less than or equal (signed) cmov 0x7

cmovh (CY or Z) = 0 Higher (Greater than) cmov 0xb

cmovnl CY = 0 Not lower (Greater than or equal) cmov 0x9

cmovl CY = 1 Lower (Less than) cmov 0x1

cmovnh (CY or Z) = 1 Not higher (Less than or equal) cmov 0x3

cmove Z = 1 Equal cmov 0x2

cmovne Z = 0 Not equal cmov 0xa

cmovv OV = 1 Overflow cmov 0x0

cmovnv OV = 0 No overflow cmov 0x8

cmovn S = 1 Negative cmov 0x4

cmovp S = 0 Positive cmov 0xc

cmovc CY = 1 Carry cmov 0x1

cmovnc CY = 0 No carry cmov 0x9

cmovz Z = 1 Zero cmov 0x2

cmovnz Z = 0 Not zero cmov 0xa

cmovt always 1 Always 1 cmov 0x5

cmovsa SAT = 1 Saturated cmov 0xd

cmov imm4, imm5, reg2, reg3 cmov imm4, imm5, reg2, reg3

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

User’s Manual U19383EJ1V0UM00 443

- If the following is specified as imm in syntax "cmov imm4, imm, reg2, reg3", the as850 executes instruction
expansion to generate two or more machine instructions.

(a) Absolute expression exceeding the range of -16 to +15, but within the range of -32,768 to +32,767

(b) Absolute expression having a value exceeding the range of -32,768 to +32,767
If all the lower 16 bits of the value of imm are 0

Else

(c) Relative expression having #label or label, or that having $label for a label having no definition in
the sdata/sbss-attribute section

(d) Relative expression having !label or %label, or that having $label for a label with a definition in the
sdata/sbss-attribute section

- If the instruction is executed in syntax "cmovcnd reg1, ret2, reg3", the as850 generates the corresponding cmov
instruction (see Table 4-49. cmovcnd Instruction List) and expands it to syntax "cmov imm4, reg1, reg2, reg3".

- If the following is specified as imm in syntax "cmovcnd imm, reg2, reg3", the as850 generates the correspond-
ing cmov instruction (see Table 4-49. cmovcnd Instruction List) and expands it to syntax "cmov imm4, imm,
reg2, reg3".

(a) Absolute expression having a value in the range of -16 to +15

cmov imm4, imm16, reg2, reg3 movea imm16, r0, r1

cmov imm4, r1, reg2, reg3

cmov imm4, imm, reg2, reg3 movhi hi(imm), r0, r1

cmov imm4, r1, reg2, reg3

cmov imm4, imm, reg2, reg3 mov imm, r1

cmov imm4, r1, reg2, reg3

cmov imm4, #label, reg2, reg3 mov #label, r1

cmov imm4, r1, reg2, reg3

cmov imm4, label, reg2, reg3 mov label, r1

cmov imm4, r1, reg2, reg3

cmov imm4, $label, reg2, reg3 mov $label, r1

cmov imm4, r1, reg2, reg3

cmov imm4, !label, reg2, reg3 movea !label, r0, r1

cmov imm4, r1, reg2, reg3

cmov imm4, %label, reg2, reg3 movea %label, r0, r1

cmov imm4, r1, reg2, reg3

cmov imm4, $label, reg2, reg3 movea $label, r0, r1

cmov imm4, r1, reg2, reg3

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

444 User’s Manual U19383EJ1V0UM00

- If the following is specified as imm in syntax "cmovcnd imm, reg2, reg3", the as850 executes instruction expan-
sion to generate two or more machine instructions.

(a) Absolute expression exceeding the range of -16 to +15, but within the range of -32,768 to +32,767

(b) Absolute expression having a value exceeding the range of -32,768 to +32,767
If all the lower 16 bits of the value of imm are 0

Else

(c) Relative expression having #label or label, or that having $label for a label having no definition in
the sdata/sbss-attribute section

(d) Relative expression having !label or %label, or that having $label for a label with a definition in the
sdata/sbss-attribute section

[Flag]

cmovcnd imm16, reg2, reg3 movea imm16, r0, r1

cmovcnd r1, reg2, reg3

cmovcnd imm, reg2, reg3 movhi hi(imm), r0, r1

cmovcnd r1, reg2, reg3

cmovcnd imm, reg2, reg3 mov imm, r1

cmovcnd r1, reg2, reg3

cmovcnd #label, reg2, reg3 mov #label, r1

cmovcnd r1, reg2, reg3

cmovcnd label, reg2, reg3 mov label, r1

cmovcnd r1, reg2, reg3

cmovcnd $label, reg2, reg3 mov $label, r1

cmovcnd r1, reg2, reg3

cmovcnd !label, reg2, reg3 movea !label, r0, r1

cmovcnd r1, reg2, reg3

cmovcnd imm4, %label, reg2, reg3 movea %label, r0, r1

cmovcnd r1, reg2, reg3

cmovcnd imm4, $label, reg2, reg3 movea $label, r0, r1

cmovcnd r1, reg2, reg3

CY ---

OV ---

S ---

Z ---

SAT ---

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

User’s Manual U19383EJ1V0UM00 445

[Caution]

- If a constant expression having a value exceeding 4 bits is specified as imm4 of the cmov instruction, the as850
outputs the following message.
If the value exceeds 4 bits, the as850 masks the value with 0xf and continues assembling.

- If anything other than a constant expression (undefined symbol and label reference) is specified as imm4 of the
cmov instruction, the as850 outputs the following message and stops assembling.

W3011: illegal operand (range error in immediate)

E3249: illegal syntax

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

446 User’s Manual U19383EJ1V0UM00

Set Flag Condition

[Syntax]

- setf imm4, reg
- setfcnd reg

The following can be specified for imm4:
- Absolute expression having a value of up to 4 bits

[Function]

- Syntax "setf imm4, reg"
Compares the status of the flag specified by the value of the lower 4 bits of the absolute expression specified by
the first operand with the current flag condition. If they are found to match, 1 is stored in the register specified by
the second operand; otherwise, 0 is stored in the register specified by the second operand.

- Syntax "setfcnd reg"
Compares the status of the flag indicated by string cnd with the current flag condition. If they are found to
match, 1 is stored in the register specified by the second operand; otherwise, 0 is stored in the register specified
by the second operand.

[Description]

- If the instruction is executed in syntax"setf imm4, reg",the as850 generates one satf machine instruction.
- If the instruction is executed in syntax "setfcnd reg", the as850 generates the corresponding setf instruction (see

Table 4-50. setfcnd Instruction List) and expands it to syntax "setf imm4, reg".

Table 4-50. setfcnd Instruction List

setf

Instruction Flag Condition Meaning of Flag Condition Instruction
Expansion

setfgt ((S xor OV) or Z) = 0 Greater than (signed) setf 0xf

setfge (S xor OV) = 0 Greater than or equal (signed) setf 0xe

setflt (S xor OV) = 1 Less than (signed) setf 0x6

setfle ((S xor OV) or Z) = 1 Less than or equal (signed) setf 0x7

setfh (CY or Z) = 0 Higher (Greater than) setf 0xb

setfnl CY = 0 Not lower (Greater than or equal) setf 0x9

setfl CY = 1 Lower (Less than) setf 0x1

setfnh (CY or Z) = 1 Not higher (Less than or equal) setf 0x3

setfe Z = 1 Equal setf 0x2

setfne Z = 0 Not equal setf 0xa

setfv OV = 1 Overflow setf 0x0

setfnv OV = 0 No overflow setf 0x8

setfn S = 1 Negative setf 0x4

setfp S = 0 Positive setf 0xc

setfc CY = 1 Carry setf 0x1

setfnc CY = 0 No carry setf 0x9

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

User’s Manual U19383EJ1V0UM00 447

[Flag]

[Caution]

- If an absolute expression having a value exceeding 4 bits is specified as imm4 of the setf instruction, the as850
outputs the following message and continues assembling using four low-order bits of a specified value.

setfz Z = 1 Zero setf 0x2

setfnz Z = 0 Not zero setf 0xa

setft always 1 Always 1 setf 0x5

setfsa SAT = 1 Saturated setf 0xd

CY ---

OV ---

S ---

Z ---

SAT ---

W3011: illegal operand (range error in immediate).

Instruction Flag Condition Meaning of Flag Condition Instruction
Expansion

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

448 User’s Manual U19383EJ1V0UM00

Shift And Set Flag Condition [V850E]

[Syntax]

- sasf imm4, reg
- sasfcnd reg

The following can be specified for imm4:
- Absolute expression having a value of up to 4 bits

[Function]

- Syntax "sasf imm4, reg"
Compares the flag condition indicated by the value of the lower 4 bits of the absolute expression specified by
the first operand (see Table 4-51. sasfcnd Instruction List) with the current flag condition. If a match is found,
the contents of the register specified by the second operand are shifted logically 1 bit to the left and ORed with
1, and the result stored in the register specified by the second operand; otherwise, the contents of the register
specified by the second operand are logically shifted 1 bit to the left and the result stored in the register specified
by the second operand.

- Syntax "sasfcnd reg"
Compares the flag condition indicated by string cnd with the current flag condition. If a match is found, the con-
tents of the register specified by the second operand are shifted logically 1 bit to the left and ORed with 1, and
the result stored in the register specified by the second operand; otherwise, the contents of the register speci-
fied by the second operand are shifted logically 1 bit to the left and the result stored in the register specified by
the second operand.

[Description]

- If the instruction is executed in syntax "sasf imm4, reg", the as850 generates one sasf machine instruction.
- If the instruction is executed in syntax "sasfcnd reg", the as850 generates the corresponding sasf instruction

(see Table 4-51. sasfcnd Instruction List) and expands it to syntax "sasf imm4, reg".

Table 4-51. sasfcnd Instruction List

sasf

Instruction Flag Condition Meaning of Flag Condition Instruction
Expansion

sasfgt ((S xor OV) or Z) = 0 Greater than (signed) sasf 0xf

sasfge (S xor OV) = 0 Greater than or equal (signed) sasf 0xe

sasflt (S xor OV) = 1 Less than (signed) sasf 0x6

sasfle ((S xor OV) or Z) = 1 Less than or equal (signed) sasf 0x7

sasfh (CY or Z) = 0 Higher (Greater than) sasf 0xb

sasfnl CY = 0 Not lower (Greater than or equal) sasf 0x9

sasfl CY = 1 Lower (Less than) sasf 0x1

sasfnh (CY or Z) = 1 Not higher (Less than or equal) sasf 0x3

sasfe Z = 1 Equal sasf 0x2

sasfne Z = 0 Not equal sasf 0xa

sasfv OV = 1 Overflow sasf 0x0

sasfnv OV = 0 No overflow sasf 0x8

sasfn S = 1 Negative sasf 0x4

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

User’s Manual U19383EJ1V0UM00 449

[Flag]

[Caution]

- If an absolute expression having a value exceeding 4 bits is specified as imm4 of the sasf instruction, the as850
outputs the following message and continues assembling using four low-order bits of a specified value.

sasfp S = 0 Positive sasf 0xc

sasfc CY = 1 Carry sasf 0x1

sasfnc CY = 0 No carry sasf 0x9

sasfz Z = 1 Zero sasf 0x2

sasfnz Z = 0 Not zero sasf 0xa

sasft always 1 Always 1 sasf 0x5

sasfsa SAT = 1 Saturated sasf 0xd

CY ---

OV ---

S ---

Z ---

SAT ---

W3011: illegal operand (range error in immediate).

Instruction Flag Condition Meaning of Flag Condition Instruction
Expansion

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

450 User’s Manual U19383EJ1V0UM00

4.5.8 Saturated operation instructions

This section describes the saturated operation instructions. Next table lists the instructions described in this section.

Table 4-52. Saturated Operation Instructions

Instruction Meaning

satadd Saturated addition

satsub Saturated subtraction

satsubi Saturated subtraction (immediate)

satsubr Saturated reverse subtraction

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

User’s Manual U19383EJ1V0UM00 451

Saturated Add

[Syntax]

- satadd reg1, reg2
- satadd imm, reg2
- satadd reg1, reg2, reg3 [V850E2]

The following can be specified for imm:
- Absolute expression having a value of up to 32 bits
- Relative expression

[Function]

- Syntax "satadd reg1, reg2"
Adds the value of the register specified by the first operand to the value of the register specified by the second
operand, and stores the result in the register specified by the second operand. If the result exceeds the maxi-
mum positive value of 0x7fffffff, however, 0x7fffffff is stored in the register specified by the second operand.
Likewise, if the result exceeds the maximum negative value of 0x80000000, 0x80000000 is stored in the regis-
ter specified by the second operand. In both cases, the SAT flag is set to 1.

- Syntax "satadd imm, reg2"
Adds the value of the absolute expression or relative expression specified by the first operand to the value of the
register specified by the second operand, and stores the result in the register specified by the second operand.
If the result exceeds the maximum positive value of 0x7fffffff, however, 0x7fffffff is stored in the register specified
by the second operand. Likewise, if the result exceeds the maximum negative value of 0x80000000,
0x80000000 is stored in the register specified by the second operand. In both cases, the SAT flag is set to 1.

- Syntax "satadd reg1, reg2, reg3"
Adds the value of the register specified by the first operand to the value of the register specified by the second
operand, and stores the result in the register specified by the third operand. If the result exceeds the maximum
positive value of 0x7fffffff, however, 0x7fffffff is stored in the register specified by the second operand. Likewise,
if the result exceeds the maximum negative value of 0x80000000, 0x80000000 is stored in the register specified
by the third operand. In both cases, the SAT flag is set to 1.

[Description]

- If the instruction is executed in syntax "satadd reg1, reg2" or "satadd reg1, reg2, reg3", the as850 generates
one satadd machine instruction.

- If the following is specified for imm in syntax "satadd imm, reg2", the as850 generates one satadd machine
instructionNote.

(a) Absolute expression having a value in the range of -16 to +15

Note The satadd machine instruction takes a register or immediate value in the range of -16 to +15 (0xfffffff0 to 0xf)
as the first operand.

satadd

satadd imm5, reg satadd imm5, reg

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

452 User’s Manual U19383EJ1V0UM00

- If the following is specified for imm in syntax "satadd imm, reg2", the as850 executes instruction expansion to
generate one or more machine instructions.

(a) Absolute expression exceeding the range of -16 to +15, but within the range of -32,768 to +32,767

(b) Absolute expression having a value exceeding the range of -32,768 to +32,767
If all the lower 16 bits of the value of imm are 0

Else

(c) Absolute expression having a value exceeding the range of -32,768 to +32,767 [V850E]
If all the lower 16 bits of the value of imm are 0

Else

(d) Relative expression having $label for a label having a definition in the sdata/sbss-attribute section

(e) Relative expression having #label or label, or that having $label for a label having no definition in
the sdata/sbss-attribute section

satadd imm16, reg movea imm16, r0, r1

satadd r1, reg

satadd imm, reg movhi hi(imm), r0, r1

satadd r1, reg

satadd imm, reg movhi hi1(imm), r0, r1

movea lo(imm), r1, r1

satadd r1, reg

satadd imm, reg movhi hi(imm), r0, r1

satadd r1, reg

satadd imm, reg mov imm, r1

satadd r1, reg

satadd $label, reg movea $label, r0, r1

satadd r1, reg

satadd #label, reg movhi hi1(#label), r0, r1

movea lo(#label), r1, r1

satadd r1, reg

satadd label, reg movhi hi1(label), r0, r1

movea lo(label), r1, r1

satadd r1, reg

satadd $label, reg movhi hi1($label), r0, r1

movea lo($label), r1, r1

satadd r1, reg

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

User’s Manual U19383EJ1V0UM00 453

(f) Relative expression having #label or label, or that having $label for a label having no definition in
the sdata/sbss-attribute section [V850E]

[Flag]

[Caution]

- If the instruction is executed in syntax "satadd reg1, reg2" or "satadd imm, reg2", if the target device is V850Ex
and r0 is specified as the second operand, the following message is output and assembly is stopped.

With a device other than the V850Ex, the as850 outputs the following message and continues assembling.

satadd #label, reg mov #label, r1

satadd r1, reg

satadd label, reg mov label, r1

satadd r1, reg

satadd $label, reg mov $label, r1

satadd r1, reg

CY 1 if a carry occurs from MSB (Most Significant Bit), 0 if not

OV 1 if Integer-Overflow occurs, 0 if not

S 1 if the result is negative, 0 if not

Z 1 if the result is 0, 0 if not

SAT 1 if OV = 1, - if not

E3240: illegal operand (can not use r0 as destination in V850E mode)

W3013: register r0 used as destination register

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

454 User’s Manual U19383EJ1V0UM00

Saturated Subtract

[Syntax]

- satsub reg1, reg2
- satsub imm, reg2
- satsub reg1, reg2, reg3 [V850E2]

The following can be specified for imm:
- Absolute expression having a value of up to 32 bits
- Relative expression

[Function]

- Syntax "satsub reg1, reg2"
Subtracts the value of the register specified by the first operand from the value of the register specified by the
second operand, and stores the result in the register specified by the third operand. If the result exceeds the
maximum positive value of 0x7fffffff, however, 0x7fffffff is stored in the register specified by the second operand.
Likewise, if the result exceeds the maximum negative value of 0x80000000, 0x80000000 is stored in the regis-
ter specified by the second operand. In both cases, the SAT flag is set to 1

- Syntax "satsub imm, reg2"
Subtracts the value of the absolute expression or relative expression specified by the first operand from the
value of the register specified by the second operand, and stores the result in the register specified by the sec-
ond operand. If the result exceeds the maximum positive value of 0x7fffffff, however, 0x7fffffff is stored in the
register specified by the second operand. Likewise, if the result exceeds the maximum negative value of
0x80000000, 0x80000000 is stored in the register specified by the second operand. In both cases, the SAT flag
is set to 1.

- Syntax "satsub reg1, reg2, reg3"
Subtracts the value of the register specified by the first operand from the value of the register specified by the
second operand, and stores the result in the register specified by the second operand. If the result exceeds the
maximum positive value of 0x7fffffff, however, 0x7fffffff is stored in the register specified by the second operand.
Likewise, if the result exceeds the maximum negative value of 0x80000000, 0x80000000 is stored in the regis-
ter specified by the third operand. In both cases, the SAT flag is set to 1.

[Description]

- If the instruction is executed in syntax "satsub reg1, reg2" or "satsub reg1, reg2, reg3", the as850 generates one
satsub machine instruction.

- If the instruction is executed in syntax "satsub imm, reg2", the as850 executes instruction expansion to gener-
ate one or more machine instructionsNote.

(a) 0

(b) Absolute expression having a value in the range of -32,768 to +32,767

satsub

satsub 0, reg satsub r0, reg

satsub imm16, reg satsubi imm16, reg, reg

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

User’s Manual U19383EJ1V0UM00 455

(c) Absolute expression having a value exceeding the range of -32,768 to +32,767
If all the lower 16 bits of the value of imm are 0

Else

(d) Absolute expression having a value exceeding the range of -32,768 to +32,767 [V850E]
If all the lower 16 bits of the value of imm are 0

Else

(e) Relative expression having $label for a label having a definition in the sdata/sbss-attribute section

(f) Relative expression having #label or label, or that having $label for a label having no definition in
the sdata/sbss-attribute section

satsub imm, reg movhi hi(imm), r0, r1

satsub r1, reg

satsub imm, reg movhi hi1(imm), r0, r1

movea lo(imm), r1, r1

satsub r1, reg

satsub imm, reg movhi hi(imm), r0, r1

satsub r1, reg

satsub imm, reg mov imm, r1

satsub r1, reg

satsub $label, reg satsubi $label, reg, reg

satsub #label, reg movhi hi1(#label), r0, r1

movea lo(#label), r1, r1

satsub r1, reg

satsub label, reg movhi hi1(label), r0, r1

movea lo(label), r1, r1

satsub r1, reg

satsub $label, reg movhi hi1($label), r0, r1

movea lo($label), r1, r1

satsub r1, reg

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

456 User’s Manual U19383EJ1V0UM00

(g) Relative expression having #label or label, or that having $label for a label having no definition in
the sdata/sbss-attribute section [V850E]

Note The satsub machine instruction does not take an immediate value as an operand.

[Flag]

[Caution]

- If the instruction is executed in syntax "satsub reg1, reg2" or "satsub imm, reg2", if the target device is V850Ex
and r0 is specified as the second operand, the following message is output and assembly is stopped.

With a device other than the V850Ex, the as850 outputs the following message and continues assembling.

satsub #label, reg mov #label, r1

satsub r1, reg

satsub label, reg mov label, r1

satsub r1, reg

satsub $label, reg mov $label, r1

satsub r1, reg

CY 1 if a borrow occurs from MSB (Most Significant Bit),0 if not

OV 1 if Integer-Overflow occurs, 0 if not

S 1 if the result is negative, 0 if not

Z 1 if the result is 0, 0 if not

SAT 1 if OV = 1, - if not

E3240: illegal operand (can not use r0 as destination in V850E mode)

W3013: register r0 used as destination register

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

User’s Manual U19383EJ1V0UM00 457

Saturated Subtract Immediate

[Syntax]

- satsubi imm, reg1, reg2

The following can be specified for imm:
- Absolute expression having a value of up to 32 bits
- Relative expression
- Either of the above expressions with hi(), lo(), or hi1() applied

[Function]

Subtracts the value of the absolute expression, relative expression, or expression with hi() , lo() , or hi1() applied
specified by the first operand from the value of the register specified by the second operand, and stores the result in
the register specified by the third operand. If the result exceeds the maximum positive value of 0x7fffffff, however,
0x7fffffff is stored in the register specified by the third operand. Likewise, if the result exceeds the maximum negative
value of 0x80000000, 0x80000000 is stored in the register specified by the third operand. In both cases, the SAT flag
is set to 1.

[Description]

- If the following is specified for imm, the as850 generates one satsubi machine instructionNote.

(a) Absolute expression having a value in the range of -32,768 to +32,767

(b) Relative expression having $label for a label having a definition in the sdata/sbss-attribute section

(c) Relative expression having !label or %label

(d) Expression with hi(), lo(), or hi1()

Note The satsubi machine instruction takes an immediate value, in the range of -32,768 to +32,767 (0xffff8000 to
0x7fff), as the first operand.

satsubi

satsubi imm16, reg1, reg2 satsubi imm16, reg1, reg2

satsubi $label, reg1, reg2 satsubi $label, reg1, reg2

satsubi !label, reg1, reg2 satsubi !label, reg1, reg2

satsubi %label, reg1, reg2 satsubi %label, reg1, reg2

satsubi imm16, reg1, reg2 satsubi imm16, reg1, reg2

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

458 User’s Manual U19383EJ1V0UM00

- If the following is specified for imm, the as850 executes instruction expansion to generate one or more machine
instructions

(a) Absolute expression having a value exceeding the range of -32,768 to +32,767
If all the lower 16 bits of the value of imm are 0

If all the lower 16 bits of the value of imm are 0 and when reg2 is r0

Else

Other than above and when reg2 is r0

(b) Absolute expression having a value exceeding the range of -32,768 to +32,767 [V850E]
If all the lower 16 bits of the value of imm are 0

Else

satsubi imm, reg1, reg2 movhi hi(imm), r0, reg2

satsubr reg1, reg2

satsubi imm, reg1, r0 movhi hi(imm), r0, r1

satsubr reg1, r1

satsubi imm, reg1, reg2 movhi hi1(imm), r0, r1

movea lo(imm), r1, reg2

satsubr reg1, reg2

satsubi imm, reg1, reg2 movhi hi1(imm), r0, r1

movea lo(imm), r1, r1

satsubr reg1, r1

satsubi imm, reg1, reg2 movhi hi(imm), r0, reg2

satsubr reg1, reg2

satsubi imm, reg1, reg2 mov imm, reg2

satsubr reg1, reg2

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

User’s Manual U19383EJ1V0UM00 459

(c) Relative expression having #label or label, or that having $label for a label having no definition in
the sdata/sbss-attribute section
If reg2 is r0

Else

(d) Relative expression having #label or label, or that having $label for a label having no definition in
the sdata/sbss-attribute section [V850E]

[Flag]

satsubi #label, reg1, r0 movhi hi1(#label), r0, r1

movea lo(#label), r1, r1

satsubr reg1, r1

satsubi label, reg1, r0 movhi hi1(label), r0, r1

movea lo(label), r1, r1

satsubr reg1, r1

satsubi $label, reg1, r0 movhi hi1($label), r0, r1

movea lo($label), r1, r1

satsubr reg1, r1

satsubi #label, reg1, reg2 movhi hi1(#label), r0, r1

movea lo(#label), r1, reg2

satsubr reg1, reg2

satsubi label, reg1, reg2 movhi hi1(label), r0, r1

movea lo(label), r1, reg2

satsubr reg1, reg2

satsubi $label, reg1, reg2 movhi hi1($label), r0, r1

movea lo($label), r1, reg2

satsubr reg1, reg2

satsubi #label, reg1, reg2 movhi #label, reg2

satsubr reg1, reg2

satsubi label, reg1, reg2 mov label, reg2

satsubr reg1, reg2

satsubi $label, reg1, reg2 mov $label, reg2

satsubr reg1, reg2

CY 1 if a borrow occurs from MSB (Most Significant Bit),0 if not

OV 1 if Integer-Overflow occurs, 0 if not

S 1 if the result is negative, 0 if not

Z 1 if the result is 0, 0 if not

SAT 1 if OV = 1, - if not

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

460 User’s Manual U19383EJ1V0UM00

[Caution]

- If r0 is specified by the second operand when the V850Ex is used as the target device, the as850 outputs the
following message and stops assembling.

With a device other than the V850Ex, the as850 outputs the following message and continues assembling.

E3240: illegal operand (can not use r0 as destination in V850E mode)

W3013: register r0 used as destination register

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

User’s Manual U19383EJ1V0UM00 461

Saturated Subtract Reverse

[Syntax]

- satsubr reg1, reg2
- satsubr imm, reg2

The following can be specified for imm:
- Absolute expression having a value of up to 32 bits
- Relative expression

[Function]

- Syntax "satsubr reg1, reg2"
Subtracts the value of the register specified by the second operand from the value of the register specified by
the first operand, and stores the result in the register specified by the second operand. If the result exceeds the
maximum positive value of 0x7fffffff, however, 0x7fffffff is stored in the register specified by the second operand.
Likewise, if the result exceeds the maximum negative value of 0x80000000, 0x80000000 is stored in the regis-
ter specified by the second operand. In both cases, the SAT flag is set to 1.

- Syntax "satsubr imm, reg2"
Subtracts the value of the register specified by the second operand from the value of the absolute expression or
relative expression specified by the first operand, and stores the result in the register specified by the second
operand. If the result exceeds the maximum positive value of 0x7fffffff, however, 0x7fffffff is stored in the regis-
ter specified by the second operand. Likewise, if the result exceeds the maximum negative value of
0x80000000, 0x80000000 is stored in the register specified by the second operand. In both cases, the SAT flag
is set to 1.

[Description]

- If the instruction is executed in syntax "satsubr reg1, reg2", the as850 generates one satsubr machine instruc-
tion.

- If the instruction is executed in syntax "satsubr imm, reg2", the as850 executes instruction expansion to gener-
ate one or more machine instructionsNote.

(a) 0

(b) Absolute expression having a value of other than 0 within the range of -16 to +15

(c) Absolute expression exceeding the range of -16 to +15, but within the range of -32,768 to +32,767

satsubr

satsubr 0, reg satsubr r0, reg

satsubr imm5, reg mov imm5, r1

satsubr r1, reg

satsubr imm16, reg movea imm16, r0, r1

satsubr r1, reg

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

462 User’s Manual U19383EJ1V0UM00

(d) Absolute expression having a value exceeding the range of -32,768 to +32,767
If all the lower 16 bits of the value of imm are 0

Else

(e) Absolute expression having a value exceeding the range of -32,768 to +32,767 [V850E]
If all the lower 16 bits of the value of imm are 0

Else

(f) Relative expression having $label for a label having a definition in the sdata/sbss-attribute section

(g) Relative expression having #label or label, or that having $label for a label having no definition in
the sdata/sbss-attribute section

satsubr imm, reg movhi hi(imm), r0, r1

satsubr r1, reg

satsubr imm, reg movhi hi1(imm), r0, r1

movea lo(imm), r1, r1

satsubr r1, reg

satsubr imm, reg movhi hi(imm), r0, r1

satsubr r1, reg

satsubr imm, reg mov imm, r1

satsubr r1, reg

satsubr $label, reg movea $label, r0, r1

satsubr r1, reg

satsubr #label, reg movhi hi1(#label), r0, r1

movea lo(#label), r1, r1

satsubr r1, reg

satsubr label, reg movhi hi1(label), r0, r1

movea lo(label), r1, r1

satsubr r1, reg

satsubr $label, reg movhi hi1($label), r0, r1

movea lo($label), r1, r1

satsubr r1, reg

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

User’s Manual U19383EJ1V0UM00 463

(h) Relative expression having #label or label, or that having $label for a label having no definition in
the sdata/sbss-attribute section [V850E]

Note The satsubr machine instruction does not take an immediate value as an operand.

[Flag]

[Caution]

- If r0 is specified by the second operand when the V850Ex is used as the target device, the as850 outputs the
following message and stops assembling.

With a device other than the V850Ex, the as850 outputs the following message and continues assembling.

satsubr #label, reg mov #label, r1

satsubr r1, reg

satsubr label, reg mov label, r1

satsubr r1, reg

satsubr $label, reg mov $label, r1

satsubr r1, reg

CY 1 if a borrow occurs from MSB (Most Significant Bit),0 if not

OV 1 if Integer-Overflow occurs, 0 if not

S 1 if the result is negative, 0 if not

Z 1 if the result is 0, 0 if not

SAT 1 if OV = 1, - if not

E3240: illegal operand (can not use r0 as destination in V850E mode)

W3013: register r0 used as destination register

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

464 User’s Manual U19383EJ1V0UM00

4.5.9 Logical instructions

This section describes the logical instructions. Next table lists the instructions described in this section.

Table 4-53. Logical Instructions

Instruction Meanings

or Logical sum

ori Logical sum (immediate)

xor Exclusive OR

xori Exclusive OR (immediate)

and Logical product

andi Logical product (immediate)

not Logical negation (takes 1’s complement)

shr Logical right shift

sar Arithmetic right shift

shl Logical left shift

sxb Sign extension of byte data [V850E]

sxh Sign extension of halfword data [V850E]

zxb Zero extension of byte data [V850E]

zxh Zero extension of halfword data [V850E]

bsh Byte swap of halfword data [V850E]

bsw Byte swap of word data [V850E]

hsh Half-word data half-word swap [V850E2]

hsw Halfword swap of word data [V850E]

tst Test

sch0l Bit (0) search from MSB side [V850E2]

sch0r Bit (0) search from LSB side [V850E2]

sch1l Bit (1) search from MSB side [V850E2]

sch1r Bit (1) search from LSB side [V850E2]

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

User’s Manual U19383EJ1V0UM00 465

Or

[Syntax]

- or reg1, reg2
- or imm, reg2

The following can be specified for imm:
- Absolute expression having a value of up to 32 bits
- Relative expression

[Function]

- Syntax "or reg1, reg2"
ORs the value of the register specified by the first operand with the value of the register specified by the second
operand, and stores the result in the register specified by the second operand.

- Syntax "or imm, reg2"
ORs the value of the absolute expression or relative expression specified by the first operand with the value of
the register specified by the second operand, and stores the result in the register specified by the second oper-
and.

[Description]

- When this instruction is executed in syntax "or reg1, reg2", the as850 generates one or machine instruction.
- When this instruction is executed in syntax "or imm, reg2", the as850 executes instruction expansion to gener-

ate one or more machine instructionsNote.

(a) 0

(b) Absolute expression having a value in the range of 1 to 65,535

(c) Absolute expression having a value in the range of -16 to -1

(d) Absolute expression having a value in the range of -32,768 to -17

or

or 0, reg or r0, reg

or imm5, reg ori imm16, reg, reg

or imm16, reg mov imm5, r1

or r1, reg

or imm16, reg movea imm16, r0, r1

or r1, reg

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

466 User’s Manual U19383EJ1V0UM00

(e) Absolute expression exceeding the above ranges
If all the lower 16 bits of the value of imm are 0

Else

(f) Absolute expression exceeding the above ranges [V850E]
If all the lower 16 bits of the value of imm are 0

Else

(g) Relative expression having $label for a label having a definition in the sdata/sbss-attribute section

(h) Relative expression having #label or label, or that having $label for a label having no definition in
the sdata/sbss-attribute section

or imm, reg movhi hi(imm), r0, r1

or r1, reg

or imm, reg movhi hi1(imm), r0, r1

movea lo(imm), r1, r1

or r1, reg

or imm, reg movhi hi(imm), r0, r1

or r1, reg

or imm, reg mov imm, r1

or r1, reg

or $label, reg movea $label, r0, r1

or r1, reg

or #label, reg movhi hi1(#label), r0, r1

movea lo(#label), r1, r1

or r1, reg

or label, reg movhi hi1(label), r0, r1

movea lo(label), r1, r1

or r1, reg

or $label, reg movhi hi1($label), r0, r1

movea lo($label), r1, r1

or r1, reg

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

User’s Manual U19383EJ1V0UM00 467

(i) Relative expression having #label or label, or that having $label for a label having no definition in
the sdata/sbss-attribute section [V850E]

Note The or machine instruction does not take an immediate value as an operand.

[Flag]

or #label, reg mov #label, r1

or r1, reg

or label, reg mov label, r1

or r1, reg

or $label, reg mov $label, r1

or r1, reg

CY ---

OV 0

S 1 if the word data MSB of the result is 1, 0 if not

Z 1 if the result is 0, 0 if not

SAT ---

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

468 User’s Manual U19383EJ1V0UM00

Or Immediate

[Syntax]

- ori imm, reg1, reg2

The following can be specified for imm:
- Absolute expression having a value of up to 32 bits
- Relative expression
- Either of the above expressions with hi(), lo(), or hi1() applied

[Function]

ORs the value of the absolute expression, relative expression, or expression with hi() , lo() , or hi1() applied speci-
fied by the first operand with the value of the register specified by the second operand, and stores the result in the reg-
ister specified by the third operand.

[Description]

- If the following is specified for imm, the as850 generates one ori machine instructionNote.

(a) Absolute expression having a value in the range of 0 to 65,535

(b) Relative expression having !label or %label

(c) Expression with hi(), lo(), or hi1()

Note The ori machine instruction takes an immediate value of 0 to 65,535 (0 to 0xffff) as the first operand.

ori

ori imm16, reg1, reg2 ori imm16, reg1, reg2

ori !label, reg1, reg2 ori !label, reg1, reg2

ori %label, reg1, reg2 ori %label, reg1, reg2

ori imm16, reg1, reg2 ori imm16, reg1, reg2

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

User’s Manual U19383EJ1V0UM00 469

- If the following is specified for imm, the as850 executes instruction expansion to generate one or more machine
instructions.

(a) Absolute expression having a value in the range of -16 to -1

(b) Absolute expression having a value in the range of -32,768 to -17
If reg2 is r0

Else

(c) Absolute expression exceeding the above ranges
If all the lower 16 bits of the value of imm are 0

If all the lower 16 bits of the value of imm are 0 and when reg2 is r0

Else

Other than above and when reg2 is r0

ori imm5, reg1, reg2 mov imm5, reg2

or reg1, reg2

ori imm16, reg1, r0 movea imm16, r0, r1

or reg1, r1

ori imm16, reg1, reg2 movea imm16, r0, reg2

or reg1, reg2

ori imm, reg1, reg2 movhi hi(imm), r0, reg2

or reg1, reg2

ori imm, reg1, r0 movhi hi(imm), r0, r1

or reg1, r1

ori imm, reg1, reg2 movhi hi1(imm), r0, r1

movea lo(imm), r1, reg2

or reg1, reg2

ori imm, reg1, r0 movhi hi1(imm), r0, r1

movea lo(imm), r1, r1

or reg1, r1

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

470 User’s Manual U19383EJ1V0UM00

(d) Absolute expression exceeding the above ranges [V850E]
If all the lower 16 bits of the value of imm are 0

If all the lower 16 bits of the value of imm are 0 and when reg2 is r0

Else

Other than above and when reg2 is r0

(e) Relative expression having $label for a label having a definition in the sdata/sbss-attribute section
If reg2 is r0

Else

ori imm, reg1, reg2 movhi hi(imm), r0, reg2

or reg1, reg2

ori imm, reg1, r0 movhi hi(imm), r0, r1

or reg1, r1

ori imm, reg1, reg2 mov imm, reg2

or reg1, reg2

ori imm, reg1, r0 mov imm, r1

or reg1, r1

ori $label, reg1, r0 movea $label, r0, r1

or reg1, r1

ori $label, reg1, reg2 movea $label, r0, reg2

or reg1, reg2

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

User’s Manual U19383EJ1V0UM00 471

(f) Relative expression having #label or label, or that having $label for a label having no definition in
the sdata/sbss-attribute section
If reg2 is r0

Else

(g) Relative expression having #label or label, or that having $label for a label having no definition in
the sdata/sbss-attribute section [V850E]
If reg2 is r0

Else

ori #label, reg1, r0 movhi hi1(#label), r0, r1

movea lo(#label), r1, r1

or reg1, r1

ori label, reg1, r0 movhi hi1(label), r0, r1

movea lo(label), r1, r1

or reg1, r1

ori $label, reg1, r0 movhi hi1($label), r0, r1

movea lo($label), r1, r1

or reg1, r1

ori #label, reg1, reg2 movhi hi1(#label), r0, r1

movea lo(#label), r1, reg2

or reg1, reg2

ori label, reg1, reg2 movhi hi1(label), r0, r1

movea lo(label), r1, reg2

or reg1, reg2

ori $label, reg1, reg2 movhi hi1($label), r0, r1

movea lo($label), r1, reg2

or reg1, reg2

ori #label, reg1, r0 mov #label, r1

or reg1, r1

ori label, reg1, r0 mov label, r1

or reg1, r1

ori $label, reg1, r0 mov $label, r1

or reg1, r1

ori #label, reg1, reg2 mov #label, reg2

or reg1, reg2

ori label, reg1, reg2 mov label, reg2

or reg1, reg2

ori $label, reg1, reg2 mov $label, reg2

or reg1, reg2

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

472 User’s Manual U19383EJ1V0UM00

[Flag]

CY ---

OV 0

S 1 if the word data MSB of the result is 1, 0 if not

Z 1 if the result is 0, 0 if not

SAT ---

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

User’s Manual U19383EJ1V0UM00 473

Exclusive Or

[Syntax]

- xor reg1, reg2
- xor imm, reg2

The following can be specified for imm:
- Absolute expression having a value of up to 32 bits
- Relative expression

[Function]

- Syntax "xor reg1, reg2"
Exclusive-ORs the value of the register specified by the first operand with the value of the register specified by
the second operand, and stores the result in the register specified by the second operand.

- Syntax "xor imm, reg2"
Exclusive-ORs the value of the absolute expression or relative expression specified by the first operand with the
value of the register specified by the second operand, and stores the result in the register specified by the sec-
ond operan

[Description]

- When this instruction is executed in syntax "xor reg1, reg2", the as850 generates one xor machine instruction.
- When this instruction is executed in syntax "xor imm, reg2", the as850 executes instruction expansion to gener-

ate two or more machine instructionsNote.

(a) 0

(b) Absolute expression having a value in the range of 1 to 65,535

(c) Absolute expression having a value in the range of -16 to -1

(d) Absolute expression having a value in the range of -32,768 to -17

xor

xor 0, reg xor r0, reg

xor imm16, reg xori imm16, reg, reg

xor imm5, reg mov imm5, r1

xor r1, reg

xor imm16, reg movea imm16, r0, r1

xor r1, reg

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

474 User’s Manual U19383EJ1V0UM00

(e) Absolute expression exceeding the above ranges
If all the lower 16 bits of the value of imm are 0

Else

(f) Absolute expression exceeding the above ranges [V850E]
If all the lower 16 bits of the value of imm are 0

Else

(g) Relative expression having $label for a label having a definition in the sdata/sbss-attribute section

(h) Relative expression having #label or label, or that having $label for a label having no definition in
the sdata/sbss-attribute section

xor imm, reg movhi hi(imm), r0, r1

xor r1, reg

xor imm, reg movhi hi1(imm), r0, r1

movea lo(imm), r1, r1

xor r1, reg

xor imm, reg movhi hi(imm), r0, r1

xor r1, reg

xor imm, reg mov imm, r1

xor r1, reg

xor $label, reg movea $label, r0, r1

xor r1, reg

xor #label, reg movhi hi1(#label), r0, r1

movea lo(#label), r1, r1

xor r1, reg

xor label, reg movhi hi1(label), r0, r1

movea lo(label), r1, r1

xor r1, reg

xor $label, reg movhi hi1($label), r0, r1

movea lo($label), r1, r1

xor r1, reg

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

User’s Manual U19383EJ1V0UM00 475

(i) Relative expression having #label or label, or that having $label for a label having no definition in
the sdata/sbss-attribute section [V850E]

Note The xor machine instruction does not take an immediate value as an operand.

[Flag]

xor #label, reg mov #label, r1

xor r1, reg

xor label, reg mov label, r1

xor r1, reg

xor $label, reg mov $label, r1

xor r1, reg

CY ---

OV 0

S 1 if the word data MSB of the result is 1, 0 if not

Z 1 if the result is 0, 0 if not

SAT ---

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

476 User’s Manual U19383EJ1V0UM00

Exclusive Or Immediate

[Syntax]

- xori imm, reg1, reg2

The following can be specified for imm:
- Absolute expression having a value of up to 32 bits
- Relative expression
- Either of the above expressions with hi(), lo(), or hi1() applied

[Function]

Exclusive-ORs the value of the absolute expression, relative expression, or expression with hi() , lo() , or hi1()
applied specified by the first operand with the value of the register specified by the second operand, and stores the
result in the register specified by the third operand.

[Description]

- If the following is specified for imm, the as850 generates one xori machine instructionNote.

(a) Absolute expression having a value in the range of 0 to 65,535

(b) Relative expression having !label or %label

(c) Expression with hi(), lo(), or hi1()

Note The xori machine instruction takes an immediate value of 0 to 65,535 (0 to 0xffff) as the first operand.

xori

xori imm16, reg1, reg2 xori imm16, reg1, reg2

xori !label, reg1, reg2 xori !label, reg1, reg2

xori %label, reg1, reg2 xori %label, reg1, reg2

xori imm16, reg1, reg2 xori imm16, reg1, reg2

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

User’s Manual U19383EJ1V0UM00 477

- If the following is specified for imm, the as850 executes instruction expansion to generate one or more machine
instructions

(a) Absolute expression having a value in the range of -16 to -1

(b) Absolute expression having a value in the range of -32,768 to -17
If reg2 is r0

Else

(c) Absolute expression exceeding the above ranges
If all the lower 16 bits of the value of imm are 0

If all the lower 16 bits of the value of imm are 0 and when reg2 is r0

Else

Other than above and when reg2 is r0

xori imm5, reg1, reg2 mov imm5, reg2

xor reg1, reg2

xori imm16, reg1, r0 movea imm16, r0, r1

xor reg1, r1

xori imm16, reg1, reg2 movea imm16, r0, reg2

xor reg1, reg2

xori imm, reg1, reg2 movhi hi(imm), r0, reg2

xor reg1, reg2

xori imm, reg1, r0 movhi hi(imm), r0, r1

xor reg1, r1

xori imm, reg1, reg2 movhi hi1(imm), r0, r1

movea lo(imm), r1, reg2

xor reg1, reg2

xori imm, reg1, r0 movhi hi1(imm), r0, r1

movea lo(imm), r1, r1

xor reg1, r1

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

478 User’s Manual U19383EJ1V0UM00

(d) Absolute expression exceeding the above ranges [V850E]
If all the lower 16 bits of the value of imm are 0

If all the lower 16 bits of the value of imm are 0 and when reg2 is r0

Else

Other than above and when reg2 is r0

(e) Relative expression having $label for a label having a definition in the sdata/sbss-attribute section
If reg2 is r0

Else

xori imm, reg1, reg2 movhi hi(imm), r0, reg2

xor reg1, reg2

xori imm, reg1, r0 movhi hi(imm), r0, r1

xor reg1, r1

xori imm, reg1, reg2 mov imm, reg2

xor reg1, reg2

xori imm, reg1, r0 mov imm, r1

xor reg1, r1

xori $label, reg1, r0 movea $label, r0, r1

xor reg1, r1

xori $label, reg1, reg2 movea $label, r0, reg2

xor reg1, reg2

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

User’s Manual U19383EJ1V0UM00 479

(f) Relative expression having #label or label, or that having $label for a label having no definition in
the sdata/sbss-attribute section
If reg2 is r0

Else

(g) Relative expression having #label or label, or that having $label for a label having no definition in
the sdata/sbss-attribute section [V850E]
If reg2 is r0

Else

xori #label, reg1, r0 movhi hi1(#label), r0, r1

movea lo(#label), r1, r1

xor reg1, r1

xori label, reg1, r0 movhi hi1(label), r0, r1

movea lo(label), r1, r1

xor reg1, r1

xori $label, reg1, r0 movhi hi1($label), r0, r1

movea lo($label), r1, r1

xor reg1, r1

xori #label, reg1, reg2 movhi hi1(#label), r0, r1

movea lo(#label), r1, reg2

xor reg1, reg2

xori label, reg1, reg2 movhi hi1(label), r0, r1

movea lo(label), r1, reg2

xor reg1, reg2

xori $label, reg1, reg2 movhi hi1($label), r0, r1

movea lo($label), r1, reg2

xor reg1, reg2

xori #label, reg1, r0 mov #label, r1

xor reg1, r1

xori label, reg1, r0 mov label, r1

xor reg1, r1

xori $label, reg1, r0 mov $label, r1

xor reg1, r1

xori #label, reg1, reg2 mov #label, reg2

xor reg1, reg2

xori label, reg1, reg2 mov label, reg2

xor reg1, reg2

xori $label, reg1, reg2 mov $label, reg2

xor reg1, reg2

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

480 User’s Manual U19383EJ1V0UM00

[Flag]

CY ---

OV 0

S 1 if the word data MSB of the result is 1, 0 if not

Z 1 if the result is 0, 0 if not

SAT ---

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

User’s Manual U19383EJ1V0UM00 481

And

[Syntax]

- and reg1, reg2
- and imm, reg2

The following can be specified for imm:
- Absolute expression having a value of up to 32 bits
- Relative expression

[Function]

- Syntax "and reg1, reg2"
ANDs the value of the register specified by the first operand with the value of the register specified by the sec-
ond operand, and stores the result in the register specified by the second operand.

- Syntax "and imm, reg2"
ANDs the value of the absolute expression or relative expression specified by the first operand with the value of
the register specified by the second operand, and stores the result in the register specified by the second oper-
and.

[Description]

- When this instruction is executed in syntax "and reg1, reg2", the as850 generates one and machine instruction.
- When this instruction is executed in syntax "and imm, reg2", the as850 executes instruction expansion to gener-

ate one or more machine instructionNote.

(a) 0

(b) Absolute expression having a value in the range of +1 to +65,535

(c) Absolute expression having a value in the range of -16 to -1

(d) Absolute expression having a value in the range of -32,768 to -17

and

and 0, reg and r0, reg

and imm16, reg andi imm16, reg, reg

and imm5, reg mov imm5, r1

and r1, reg

and imm16, reg movea imm16, r0, r1

and r1, reg

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

482 User’s Manual U19383EJ1V0UM00

(e) Absolute expression exceeding the above ranges
If all the lower 16 bits of the value of imm are 0

Else

(f) Absolute expression exceeding the above ranges [V850E]
If all the lower 16 bits of the value of imm are 0

Else

(g) Relative expression having $label for a label having a definition in the sdata/sbss-attribute section

(h) Relative expression having #label or label, or that having $label for a label having no definition in
the sdata/sbss-attribute section

and imm, reg movhi hi(imm), r0, r1

and r1, reg

and imm, reg movhi hi1(imm), r0, r1

movea lo(imm), r1, r1

and r1, reg

and imm, reg movhi hi(imm), r0, r1

and r1, reg

and imm, reg mov imm, r1

and r1, reg

and $label, reg movea $label, r0, r1

and r1, reg

and #label, reg movhi hi1(#label), r0, r1

movea lo(#label), r1, r1

and r1, reg

and label, reg movhi hi1(label), r0, r1

movea lo(label), r1, r1

and r1, reg

and $label, reg movhi hi1($label), r0, r1

movea lo($label), r1, r1

and r1, reg

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

User’s Manual U19383EJ1V0UM00 483

(i) Relative expression having #label or label, or that having $label for a label having no definition in
the sdata/sbss-attribute section [V850E]

Note The and machine instruction does not take an immediate value as an operand.

[Flag]

and #label, reg mov #label, r1

and r1, reg

and label, reg mov label, r1

and r1, reg

and $label, reg mov $label, r1

and r1, reg

CY ---

OV 0

S 1 if the word data MSB of the result is 1, 0 if not

Z 1 if the result is 0, 0 if not

SAT ---

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

484 User’s Manual U19383EJ1V0UM00

And Immediate

[Syntax]

- andi imm, reg1, reg2

The following can be specified for imm:
- Absolute expression having a value of up to 32 bits
- Relative expression
- Either of the above expressions with hi(), lo(), or hi1() applied

[Function]

ANDs the value of the absolute expression, relative expression, or expression with hi() , lo() , or hi1() applied spec-
ified by the first operand with the value of the register specified by the second operand, and stores the result into the
register specified by the third operand.

[Description]

- If the following is specified as imm, the as850 generates one andi machine instructionNote.

(a) Absolute expression having a value in the range of 0 to 65,535

(b) Relative expression having !label or %label

(c) Expression with hi(), lo(), or hi1()

Note The andi machine instruction takes an immediate value of 0 to 65,535 (0 to 0xffff) as the first operand.

andi

andi imm16, reg1, reg2 andi imm16, reg1, reg2

andi !label, reg1, reg2 andi !label, reg1, reg2

andi %label, reg1, reg2 andi %label, reg1, reg2

andi imm16, reg1, reg2 andi imm16, reg1, reg2

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

User’s Manual U19383EJ1V0UM00 485

- If the following is specified for imm, the as850 executes instruction expansion to generate one or more machine
instructions.

(a) Absolute expression having a value in the range of -16 to -1

(b) Absolute expression having a value in the range of -32,768 to -17
If reg2 is r0

Else

(c) Absolute expression exceeding the above ranges
If all the lower 16 bits of the value of imm are 0

If all the lower 16 bits of the value of imm are 0 and when reg2 is r0

Else

Other than above and when reg2 is r0

andi imm5, reg1, reg2 mov imm5, reg2

and reg1, reg2

andi imm16, reg1, r0 movea imm16, r0, r1

and reg1, r1

andi imm16, reg1, reg2 movea imm16, r0, reg2

and reg1, reg2

andi imm, reg1, reg2 movhi hi(imm), r0, reg2

and reg1, reg2

andi imm, reg1, r0 movhi hi(imm), r0, r1

and reg1, r1

andi imm, reg1, reg2 movhi hi1(imm), r0, r1

movea lo(imm), r1, reg2

and reg1, reg2

andi imm, reg1, r0 movhi hi1(imm), r0, r1

movea lo(imm), r1, r1

and reg1, r1

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

486 User’s Manual U19383EJ1V0UM00

(d) Absolute expression exceeding the above ranges [V850E]
If all the lower 16 bits of the value of imm are 0

If all the lower 16 bits of the value of imm are 0 and when reg2 is r0

Else

Other than above and when reg2 is r0

(e) Relative expression having $label for a label having a definition in the sdata/sbss-attribute section
If reg2 is r0

Else

andi imm, reg1, reg2 movhi hi(imm), r0, reg2

and reg1, reg2

andi imm, reg1, r0 movhi hi(imm), r0, r1

and reg1, r1

andi imm, reg1, reg2 mov imm, reg2

and reg1, reg2

andi imm, reg1, reg2 mov imm, r1

and reg1, r1

andi $label, reg1, r0 movea $label, r0, r1

and reg1, r1

andi $label, reg1, reg2 movea $label, r0, reg2

and reg1, reg2

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

User’s Manual U19383EJ1V0UM00 487

(f) Relative expression having #label or label, or that having $label for a label having no definition in
the sdata/sbss-attribute section
If reg2 is r0

Else

(g) Relative expression having #label or label, or that having $label for a label having no definition in
the sdata/sbss-attribute section [V850E]
If reg2 is r0

Else

andi #label, reg1, r0 movhi hi1(#label), r0, r1

movea lo(#label), r1, r1

and reg1, r1

andi label, reg1, r0 movhi hi1(label), r0, r1

movea lo(label), r1, r1

and reg1, r1

andi $label, reg1, r0 movhi hi1($label), r0, r1

movea lo($label), r1, r1

and reg1, r1

andi #label, reg1, reg2 movhi hi1(#label), r0, r1

movea lo(#label), r1, reg2

and reg1, reg2

andi label, reg1, reg2 movhi hi1(label), r0, r1

movea lo(label), r1, reg2

and reg1, reg2

andi $label, reg1, reg2 movhi hi1($label), r0, r1

movea lo($label), r1, reg2

and reg1, reg2

andi #label, reg1, r0 mov #label, r1

and reg1, r1

andi label, reg1, r0 mov label, r1

and reg1, r1

andi $label, reg1, r0 mov $label, r1

and reg1, r1

andi #label, reg1, reg2 mov #label, reg2

and reg1, reg2

andi label, reg1, reg2 mov label, reg2

and reg1, reg2

andi $label, reg1, reg2 mov $label, reg2

and reg1, reg2

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

488 User’s Manual U19383EJ1V0UM00

[Flag]

CY ---

OV 0

S 1 if the word data MSB of the result is 1, 0 if not

Z 1 if the result is 0, 0 if not

SAT ---

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

User’s Manual U19383EJ1V0UM00 489

Not

[Syntax]

- not reg1, reg2
- not imm, reg2

The following can be specified for imm:
- Absolute expression having a value of up to 32 bits
- Relative expression

[Function]

- Syntax "not reg1, reg2"
NOTs (1's complement) the value of the register specified by the first operand, and stores the result in the regis-
ter specified by the second operand.

- Syntax "not imm, reg2"
NOTs (1's complement) the value of the absolute expression or relative expression specified by the first oper-
and, and stores the result in the register specified by the second operand.

[Description]

- When this instruction is executed in syntax "not reg1, reg2", the as850 generates one not machine instruction.
- When this instruction is executed in syntax "not imm, reg2", the as850 executes instruction expansion to gener-

ate one or more machine instructionsNote.

(a) 0

(b) Absolute expression having a value of other than 0 within the range of -16 to +15

(c) Absolute expression exceeding the range of -16 to +15, but within the range of -32,768 to +32,767

not

not 0, reg not r0, reg

not imm5, reg mov imm5, r1

not r1, reg

not imm16, reg movea imm16, r0, r1

not r1, reg

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

490 User’s Manual U19383EJ1V0UM00

(d) Absolute expression having a value exceeding the range of -32,768 to +32,767
If all the lower 16 bits of the value of imm are 0

Else

(e) Absolute expression having a value exceeding the range of -32,768 to +32,767 [V850E]
If all the lower 16 bits of the value of imm are 0

Else

(f) Relative expression having $label for a label having a definition in the sdata/sbss-attribute section

(g) Relative expression having #label or label, or that having $label for a label having no definition in
the sdata/sbss-attribute section

not imm, reg movhi hi(imm), r0, r1

not r1, reg

not imm, reg movhi hi1(imm), r0, r1

movea lo(imm), r1, r1

not r1, reg

not imm, reg movhi hi(imm), r0, r1

not r1, reg

not imm, reg mov imm, r1

not r1, reg

not $label, reg movea $label, r0, r1

not r1, reg

not #label, reg movhi hi1(#label), r0, r1

movea lo(#label), r1, r1

not r1, reg

not label, reg movhi hi1(label), r0, r1

movea lo(label), r1, r1

not r1, reg

not $label, reg movhi hi1($label), r0, r1

movea lo($label), r1, r1

not r1, reg

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

User’s Manual U19383EJ1V0UM00 491

(h) Relative expression having #label or label, or that having $label for a label having no definition in
the sdata/sbss-attribute section [V850E]

Note The not machine instruction does not take an immediate value as an operand.

[Flag]

not #label, reg mov #label, r1

not r1, reg

not label, reg mov label, r1

not r1, reg

not $label, reg mov $label, r1

not r1, reg

CY ---

OV 0

S 1 if the word data MSB of the result is 1, 0 if not

Z 1 if the result is 0, 0 if not

SAT ---

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

492 User’s Manual U19383EJ1V0UM00

Shift Logical Right

[Syntax]

- shr reg1, reg2
- shr imm5, reg2
- shr reg1, reg2, reg3 [V850E2]

The following can be specified for imm5:
- Absolute expression having a value of up to 5 bits

[Function]

- Syntax "shr reg1, reg2"
Logically shifts to the right the value of the register specified by the second operand by the number of bits indi-
cated by the lower 5 bits of the register value specified by the first operand, then stores the result in the register
specified by the second operand.

- Syntax "shr imm5, reg2"
Logically shifts to the right the value of the register specified by the second operand by the number of bits spec-
ified by the value of the absolute expression specified by the first operand, then stores the result in the register
specified by the second operand.

- Syntax "shr reg1, reg2, reg3"
Logically shifts to the right the value of the register specified by the second operand by the number of bits indi-
cated by the lower 5 bits of the register value specified by the first operand, then stores the result in the register
specified by the third operand.

[Description]

The as850 generates one shr machine instruction

[Flag]

[Caution]

- If an absolute expression having a value exceeding the range of 0 to 31 is specified as imm5 in syntax "shr
imm5, reg2", the as850 outputs the following message, and continues assembling by using the lower 5 bitsNote
of the specified value.

Note The shr machine instruction takes an immediate value of 0 to 31 (0x0 to 0x1f) as the first operand.

shr

CY 1 if the value of the bit shifted out last is 1, 0 if not

(0 if the specified number of bits is 0)

OV 0

S 1 if the result is negative, 0 if not

Z 1 if the result is 0, 0 if not

SAT ---

W3011: illegal operand (range error in immediate).

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

User’s Manual U19383EJ1V0UM00 493

Shift Arithmetic Right

[Syntax]

- sar reg1, reg2
- sar imm5, reg2
- sar reg1, reg2, reg3 [V850E2]

The following can be specified for imm5:
- Absolute expression having a value of up to 5 bits

[Function]

- Syntax "sar reg1, reg2"
Arithmetically shifts to the right the value of the register specified by the second operand by the number of bits
indicated by the lower 5 bits of the register value specified by the first operand, then stores the result in the reg-
ister specified by the second operand.

- Syntax "sar imm5, reg2"
Arithmetically shifts to the right the value of the register specified by the second operand by the number of bits
specified by the value of the absolute expression specified by the first operand, then stores the result in the reg-
ister specified by the second operand.

- Syntax "sar reg1, reg2, reg3"
Arithmetically shifts to the right the value of the register specified by the second operand by the number of bits
indicated by the lower 5 bits of the register value specified by the first operand, then stores the result in the reg-
ister specified by the third operand.

[Description]

The as850 generates one sar machine instruction.

[Flag]

[Caution]

- If an absolute expression having a value exceeding the range of 0 to 31 is specified for imm5 in syntax "sar
imm5, reg2", the as850 outputs the following message, and continues assembling using the lower 5 bitsNote of
the specified value.

Note The sar machine instruction takes an immediate value of 0 to 31 (0x0 to 0x1f) as the first operand.

sar

CY 1 if the value of the bit shifted out last is 1, 0 if not

(0 if the specified number of bits is 0)

OV 0

S 1 if the result is negative, 0 if not

Z 1 if the result is 0, 0 if not

SAT ---

W3011: illegal operand (range error in immediate).

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

494 User’s Manual U19383EJ1V0UM00

Shift Logical Left

[Syntax]

- shl reg1, reg2
- shl imm5, reg2
- shl reg1, reg2, reg3 [V850E2]

The following can be specified for imm5:
- Absolute expression having a value of up to 5 bits

[Function]

- Syntax "shl reg1, reg2"
Logically shifts to the left the value of the register specified by the second operand by the number of bits indi-
cated by the lower 5 bits of the register value specified by the first operand, then stores the result in the register
specified by the second operand.

- Syntax "shl imm5, reg2"
Logically shifts to the left the value of the register specified by the second operand by the number of bits speci-
fied by the value of the absolute expression specified by the first operand, then stores the result in the register
specified by the second operand.

- Syntax "shl reg1, reg2, reg3"
Logically shifts to the left the value of the register specified by the second operand by the number of bits indi-
cated by the lower 5 bits of the register value specified by the first operand, then stores the result in the register
specified by the third operand.

[Description]

The as850 generates one shl machine instruction.

[Flag]

[Caution]

- If an absolute expression having a value exceeding the range of 0 to 31 is specified for imm5 in syntax "shl
imm5, reg2", the as850 outputs the following message, and continues assembling by using the lower 5 bitsNote
of the specified value.

Note The shl machine instruction takes an immediate value of 0 to 31 (0x0 to 0x1f) as the first operand.

shl

CY 1 if the value of the bit shifted out last is 1, 0 if not

(0 if the specified number of bits is 0)

OV 0

S 1 if the result is negative, 0 if not

Z 1 if the result is 0, 0 if not

SAT ---

W3011: illegal operand (range error in immediate).

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

User’s Manual U19383EJ1V0UM00 495

Sign Extend Byte [V850E]

[Syntax]

- sxb reg

[Function]

Sign-extends the data of the lowermost byte of the register specified by the first operand to word length.

[Description]

The as850 generates one sxb machine instruction.

[Flag]

sxb

CY ---

OV ---

S ---

Z ---

SAT ---

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

496 User’s Manual U19383EJ1V0UM00

Sign Extend Half-word [V850E]

[Syntax]

- sxh reg

[Function]

Sign-extends the data of the lower 2 bytes of the register specified by the first operand to word length.

[Description]

The as850 generates one sxh machine instruction.

[Flag]

sxh

CY ---

OV ---

S ---

Z ---

SAT ---

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

User’s Manual U19383EJ1V0UM00 497

Zero Extend Byte [V850E]

[Syntax]

- zxb reg

[Function]

Zero-extends the data of the lowermost byte of the register specified by the first operand to word length.

[Description]

The as850 generates one zxb machine instruction.

[Flag]

zxb

CY ---

OV ---

S ---

Z ---

SAT ---

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

498 User’s Manual U19383EJ1V0UM00

Zero Extend Half-word [V850E]

[Syntax]

- zxh reg

[Function]

Zero-extends the data of the lower halfword of the register specified by the first operand to word length.

[Description]

The as850 generates one zxh machine instruction.

[Flag]

zxh

CY ---

OV ---

S ---

Z ---

SAT ---

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

User’s Manual U19383EJ1V0UM00 499

Byte Swap Half-word [V850E]

[Syntax]

- bsh reg1, reg2

[Function]

Byte-swaps the register value specified by the first operand in halfword units and stores the result in the register
specified by the second operand.

[Description]

The as850 generates one bsh machine instruction.

[Flag]

bsh

CY 1 if either or both of the bytes in the lower halfword of the register is 0, 0 if not

OV 0

S 1 if the word data MSB of the result is 1, 0 if not

Z 1 if the lower half-word data of the result is 0, 0 if not

SAT ---

bit 23-16 bit 7-0 bit 15-8bit 31-24

reg2

Byte-swap of reg1 in halfword units

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

500 User’s Manual U19383EJ1V0UM00

Byte Swap Word [V850E]

[Syntax]

- bsw reg1, reg2

[Function]

Byte-swaps the register value specified by the first operand and stores the result in the register specified by the sec-
ond operand.

[Description]

The as850 generates one bsw machine instruction.

[Flag]

bsw

CY 1 if one or more bytes of the word in the register is 0, 0 if not

OV 0

S 1 if the word data MSB of the result is 1, 0 if not

Z 1 if the word data of the result is 1, 0 if not

SAT ---

bit 7-0 bit 23-16 bit 31-24bit 15-8

reg2

Byte-swap of reg1 for entire word

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

User’s Manual U19383EJ1V0UM00 501

Half-word Swap Half-word [V850E2]

[Syntax]

- hsh reg2, reg3

[Function]

Stores the register value specified by the first operand in the register specified by the second operand, and stores
the flag assessment result in the PSW register.

[Description]

The as850 generates one hsh machine instruction.

[Flag]

hsh

CY 1 if the lower half-word data of the result is 0, 0 if not

OV 0

S 1 if the word data MSB of the result is 1, 0 if not

Z 1 if the lower half-word data of the result is 0, 0 if not

SAT ---

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

502 User’s Manual U19383EJ1V0UM00

Half-word Swap Word [V850E]

[Syntax]

- hsw reg1, reg2

[Function]

Halfword-swaps the register value specified by the first operand and stores the result in the register specified by the
second operand.

[Description]

The as850 generates one hsw machine instruction.

[Flag]

hsw

CY 1 if one or more halfwords in the word of the register is 0, 0 if not

OV 0

S 1 if the word data MSB of the result is 1, 0 if not

Z 1 if the word data of the result is 1, 0 if not

SAT ---

bit 15-0 bit 31-16

reg2

Halfword swap of reg1

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

User’s Manual U19383EJ1V0UM00 503

Test

[Syntax]

- tst reg1, reg2
- tst imm, reg2

The following can be specified for imm:
- Absolute expression having a value of up to 32 bits
- Relative expression

[Function]

- Syntax "tst reg1, reg2"
ANDs the value of the register specified by the second operand with the value of the register specified by the
first operand, and sets only the flags without storing the result.

- Syntax "tst imm, reg2"
ANDs the value of the register specified by the second operand with the value of the absolute expression or rel-
ative expression specified by the first operand, and sets only the flags without storing the result.

[Description]

- When this instruction is executed in syntax "tst reg1, reg2", the as850 generates one tst machine instruction.
- When this instruction is executed in syntax "tst imm, reg2", the as850 executes instruction expansion to gener-

ate two or more machine instructionsNote.

(a) 0

(b) Absolute expression having a value of other than 0 within the range of -16 to +15

(c) Absolute expression exceeding the range of -16 to +15, but within the range of -32,768 to +32,767

tst

tst 0, reg tst r0, reg

tst imm5, reg mov imm5, r1

tst r1, reg

tst imm16, reg movea imm16, r0, r1

tst r1, reg

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

504 User’s Manual U19383EJ1V0UM00

(d) Absolute expression having a value exceeding the range of -32,768 to +32,767
If all the lower 16 bits of the value of imm are 0

Else

(e) Absolute expression having a value exceeding the range of -32,768 to +32,767 [V850E]
If all the lower 16 bits of the value of imm are 0

Else

(f) Relative expression having $label for a label having a definition in the sdata/sbss-attribute section

(g) Relative expression having #label or label, or that having $label for a label having no definition in
the sdata/sbss-attribute section

tst imm, reg movhi hi(imm), r0, r1

tst r1, reg

tst imm, reg movhi hi1(imm), r0, r1

movea lo(imm), r1, r1

tst r1, reg

tst imm, reg movhi hi(imm), r0, r1

tst r1, reg

tst imm, reg mov imm, r1

tst r1, reg

tst $label, reg movea $label, r0, r1

tst r1, reg

tst #label, reg movhi hi1(#label), r0, r1

movea lo(#label), r1, r1

tst r1, reg

tst label, reg movhi hi1(label), r0, r1

movea lo(label), r1, r1

tst r1, reg

tst $label, reg movhi hi1($label), r0, r1

movea lo($label), r1, r1

tst r1, reg

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

User’s Manual U19383EJ1V0UM00 505

(h) Relative expression having #label or label, or that having $label for a label having no definition in
the sdata/sbss-attribute section [V850E]

[Flag]

tst #label, reg mov #label, r1

tst r1, reg

tst label, reg mov label, r1

tst r1, reg

tst $label, reg mov $label, r1

tst r1, reg

CY ---

OV 0

S 1 if the word data MSB of the result is 1, 0 if not

Z 1 if the result is 0, 0 if not

SAT ---

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

506 User’s Manual U19383EJ1V0UM00

Bit (0) Search from MSB Side (Search zero from left) [V850E2]

[Syntax]

- sch0l reg2, reg3

[Function]

Searches the word data of the register specified by the first operand, from the left (MSB side), and stores the posi-
tion of the first bit (0) found in the register specified by the second operand in hexadecimal. (For example, if bit 31 of
the register specified by the first operand is 0, 01H is stored in the register specified by the second operand.)

If no bit (0) is found, 0 is written into the register specified by the second operand, and the Z flag is simultaneously
set (1). If a bit (0) is found at the end, the CY flag is set (1).

[Description]

The as850 generates one sch0l machine instruction.

[Flag]

sch0l

CY 1 if a bit (0) is found at the end, 0 if not

OV 0

S 0

Z 1 if a bit (0) is not found, 0 if not

SAT ---

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

User’s Manual U19383EJ1V0UM00 507

Bit (0) Search from LSB Side (Search zero from right) [V850E2]

[Syntax]

- sch0r reg2, reg3

[Function]

Searches the word data of the register specified by the first operand, from the right (LSB side), and stores the posi-
tion of the first bit (0) found in the register specified by the second operand in hexadecimal. (For example, if bit 0 of the
register specified by the first operand is 0, 01H is stored in the register specified by the second operand.)

If no bit (0) is found, 0 is written into the register specified by the second operand, and the Z flag is simultaneously
set (1). If a bit (0) is found at the end, the CY flag is set (1).

[Description]

The as850 generates one sch0r machine instruction.

[Flag]

sch0r

CY 1 if a bit (0) is found at the end, 0 if not

OV 0

S 0

Z 1 if a bit (0) is not found, 0 if not

SAT ---

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

508 User’s Manual U19383EJ1V0UM00

Bit (1) Search from MSB Side (Search one from left) [V850E2]

[Syntax]

- sch1l reg2, reg3

[Function]

Searches the word data of the register specified by the first operand, from the left (MSB side), and stores the posi-
tion of the first bit (1) found in the register specified by the second operand in hexadecimal. (For example, if bit 31 of
the register specified by the first operand is 1, 01H is stored in the register specified by the second operand.)

If no bit (1) is found, 0 is written into the register specified by the second operand, and the Z flag is simultaneously
set (1). If a bit (0) is found at the end, the CY flag is set (1).

[Description]

The as850 generates one sch1l machine instruction.

[Flag]

sch1l

CY 1 if a bit (1) is found at the end, 0 if not

OV 0

S 0

Z 1 if a bit (1) is not found, 0 if not

SAT ---

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

User’s Manual U19383EJ1V0UM00 509

Bit (1) Search from LSB Side (Search zero from right) [V850E2]

[Syntax]

- sch1r reg2, reg3

[Function]

Searches the word data of the register specified by the first operand, from the right (LSB side), and stores the posi-
tion of the first bit (1) found in the register specified by the second operand in hexadecimal. (For example, if bit 0 of the
register specified by the first operand is 1, 01H is stored in the register specified by the second operand.)

If no bit (1) is found, 0 is written into the register specified by the second operand, and the Z flag is simultaneously
set (1). If a bit (1) is found at the end, the CY flag is set (1).

[Description]

The as850 generates one sch1r machine instruction.

[Flag]

sch1r

CY 1 if a bit (1) is found at the end, 0 if not

OV 0

S 0

Z 1 if a bit (1) is not found, 0 if not

SAT ---

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

510 User’s Manual U19383EJ1V0UM00

4.5.10 Branch instructions

This section describes the branch instructions. Next table lists the instructions described in this section.

Table 4-54. Branch Instructions

Instruction Meanings

jmp Unconditional branch

jmp32 Unconditional branch (jump) [V850E2]

jr Unconditional branch (PC relative)

jr22 Unconditional branch (PC relative) [V850E2]

jr32 Unconditional branch (PC relative) [V850E2]

jcnd Conditional branch

jarl Jump and register link

jarl22 Jump and register link [V850E2]

jarl32 Jump and register link [V850E2]

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

User’s Manual U19383EJ1V0UM00 511

Jump

[Syntax]

- jmp [reg]
- jmp disp32[reg] [V850E2]
- jmp addr

The following can be specified for addr:
- Relative expression having the absolute address reference of a label

The following can be specified for disp32:
- Absolute expression having a value of up to 32 bits

[Function]

- Syntax "jmp [reg]"
Transfers control to the address indicated by the value of the register specified by the operand.

- Syntax "jmp disp32[reg]"
Transfers control to the address attained by adding the displacement specified by the operand and the register
content.

- Syntax "jmp addr"
Transfers control to the address indicated by the value of the relative expression specified by the operand.

[Description]

- When this instruction is executed in syntax "jmp [reg]", the as850 generates one jmp machine instruction.
- When this instruction is executed in syntax "jmp disp32[reg]", the as850 generates one jmp (6-byte long instruc-

tion) machine instructions
- When this instruction is executed in syntax "jmp addr", the as850 executes instruction expansion and generates

two or more machine instruction

[V850]

[V850E]

- If the instruction is executed in syntax "jmp addr", when the V850E2 operate, the as850 generates one jmp
machine instruction (6-byte long instruction).

jmp

jmp #label movhi hi1(#label), r0, r1

movea lo(#label), r1, r1

jmp [r1]

jmp #label mov #label, r1

jmp [r1]

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

512 User’s Manual U19383EJ1V0UM00

[Flag]

[Caution]

- If an expression other than a relative expression having the absolute address reference of a label is specified as
addr in syntax "jmp addr", the as850 outputs the following message and stops assembling.

CY ---

OV ---

S ---

Z ---

SAT ---

E3224: illegal operand (label reference for jmp must be #label)

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

User’s Manual U19383EJ1V0UM00 513

Unconditional Branch [V850E2]

[Syntax]

- jmp32 disp32[reg]
- jmp32 addr

The following can be specified for addr:
- Relative expression having the absolute address reference of a label

The following can be specified for disp32:
- Absolute expression having a value of up to 22 bits

[Function]

- Syntax "jmp32 disp32[reg]"
Transfers control to the address attained by adding the displacement specified by the operand and the register
content.

- Syntax "jmp32 addr"
Transfers control to the address indicated by the value of the relative expression specified by the operand.

[Description]

The as850 generates one jmp machine instruction (6-byte long instruction).

[Flag]

[Caution]

- If an expression other than a relative expression having the absolute address reference of a label is specified as
addr in syntax "jmp32 addr", the as850 outputs the following message and stops assembling.

jmp32

CY ---

OV ---

S ---

Z ---

SAT ---

E3224: illegal operand (label reference for jmp must be #label)

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

514 User’s Manual U19383EJ1V0UM00

Jump Relative

[Syntax]

- jr disp22
- jr disp32 [V850E2]

The following can be specified for disp22:
- Absolute expression having a value of up to 22 bits
- Relative expression having a PC offset reference of label

The following can be specified for disp32:
- Absolute expression having a value of up to 32 bits
- Relative expression having a PC offset reference of label

[Function]

- Syntax "jr disp22"
Transfers control to the address attained by adding the current program counter (PC) value and the relative or
absolute expression value specified by the first operand.

- Syntax "jr disp32"
Transfers control to the address attained by adding the current program counter (PC) value and the relative or
absolute expression value specified by the first operand.

[Description]

- If the instruction is executed in syntax "jr disp22", the as850 generates one jr machine instructionNote if any of
the following expressions are specified for disp22.

(a) Absolute expression having a value in the range of -2,097,152 to +2,097,151

(b) Relative expression that has a PC offset reference of label having a definition in the same section of
the same file as this instruction, and having a value in the range of -2,097,152 to +2,097,151

(c) Relative expression having a PC offset reference of a label with no definition in the same file or sec-
tion as this instruction

Note The jr machine instruction takes an immediate value in the range of -2,097,152 to +2,097,151 (0xfe00000 to
0x1fffff) as the displacement.

- If the instruction is executed in syntax "jr disp32", the as850 generates one jr machine instruction (6-byte long
instruction).

[Flag]

jr

CY ---

OV ---

S ---

Z ---

SAT ---

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

User’s Manual U19383EJ1V0UM00 515

[Caution]

- If an absolute expression having a value exceeding the range of -2,097,152 to +2,097,151, or a relative expres-
sion having a PC offset reference of a label with a definition in the same section and the same file as this
instruction, and having a value exceeding the range of -2,097,152 to +2,097,151, is specified as disp22, the
as850 outputs the following message and stops assembling.

- If an absolute expression having an odd-numbered value or a relative expression having a PC offset reference
of a label with a definition in the same section and the same file as this instruction, and having an odd-num-
bered value, is specified as disp22, the as850 outputs the following message and stops assembling.

- When the assembler option -Xfar_jump is not specified, and an absolute expression outside of the range -
2,097,152 to +2,097,151 or a relative expression outside of the range -2,097,152 to +2,097,151, having a label
PC offset reference with a definition in the same file and same section as this instruction, is specified as disp32,
the following message is output and assembly is stopped

E3230: illegal operand (range error in displacement)

E3226: illegal operand (must be even displacement)

E3230: illegal operand (range error in displacement)

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

516 User’s Manual U19383EJ1V0UM00

Unconditional Branch (PC Relative) (Jump Relative) [V850E2]

[Syntax]

- jr22 disp22

The following can be specified for disp22:
- Absolute expression having a value of up to 22 bits
- Relative expression having a PC offset reference of label

[Function]

Transfers control to the address attained by adding the current program counter (PC) value and the relative or abso-
lute expression value specified by the operand.

[Description]

- If the following is specified for disp22, the as850 generates one jr machine instructionNote.

(a) Absolute value in the range of -2,097,152 to +2,097,151

(b) Relative expression that has a PC offset reference of label having a definition in the same section
and the same file as this instruction, and which has a value in the range of -2,097,152 to +2,097,151

(c) Relative expression having a PC offset reference of a label having no definition in the same file or
section as this instruction

Note The jr machine instruction takes an immediate value in the range of -2,097,152 to +2,097,151 (0xfe00000 to
0x1fffff) as the displacement.

[Flag]

jr22

CY ---

OV ---

S ---

Z ---

SAT ---

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

User’s Manual U19383EJ1V0UM00 517

[Caution]

- If an absolute expression that exceeds the range of -2,097,152 to +2,097,151, or a relative expression having a
PC offset reference of label with a definition in the same section and the same file as this instruction and having
a value that falls outside the range of -2,097,152 to +2,097,151 is specified as disp22, the as850 outputs the fol-
lowing message and stops assembling.

- If an absolute expression having an odd-numbered value, or a relative expression having a PC offset reference
of a label with a definition in the same section and the same file as this instruction and having an odd-numbered
value, is specified as disp22, the as850 outputs the following message and stops assembling.

E3230: illegal operand (range error in displacement)

E3226: illegal operand (must be even displacement)

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

518 User’s Manual U19383EJ1V0UM00

Unconditional Branch (PC relative) (Jump Relative) [V850E2]

[Syntax]

- jr32 disp32

The following can be specified for disp32:
- Absolute expression having a value of up to 32 bits
- Relative expression having a PC offset reference of label

[Function]

Transfers control to the address attained by adding the current program counter (PC) value and the relative or abso-
lute expression value specified by the first operand.

[Description]

The as850 generates one jr machine instruction (6-byte long instruction).

[Flag]

[Caution]

- If an absolute expression having an odd-numbered value, or a relative expression having a PC offset reference
of a label with a definition in the same section and the same file as this instruction and having an odd-numbered
value, is specified as disp32, the as850 outputs the following message and stops assembling.

jr32

CY ---

OV ---

S ---

Z ---

SAT ---

E3226: illegal operand (must be even displacement)

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

User’s Manual U19383EJ1V0UM00 519

Jump on Condition

[Syntax]

- jcnd disp22

The following can be specified for disp22:
- Absolute expression having a value of up to 22 bits
- Relative expression having a PC offset reference of label

[Function]

Compares the flag condition indicated by string cnd (see Table 4-55. jcnd Instruction List) with the current flag con-
dition. If they are found to be the same, transfers control to the address obtained by adding the value of the absolute
expression or relative expression specified by the operand to the current value of the program counter (PC)Note.

Note The jr machine instruction takes an immediate value in the range of -2,097,152 to +2,097,151 (0xfe00000 to
0x1fffff) as the displacement.

Table 4-55. jcnd Instruction List

jcnd

Instruction Flag Condition Meaning of Flag Condition

jgt ((S xor OV) or Z) = 0 Greater than (signed)

jge (S xor OV) = 0 Greater than or equal (signed)

jlt (S xor OV) = 1 Less than (signed)

jle ((S xor OV) or Z) = 1 Less than or equal (signed)

jh (CY or Z) = 0 Higher (Greater than)

jnl CY = 0 Not lower (Greater than or equal)

jl CY = 1 Lower (Less than)

jnh (CY or Z) = 1 Not higher (Less than or equal)

je Z = 1 Equal

jne Z = 0 Not equal

jv OV = 1 Overflow

jnv OV = 0 No overflow

jn S = 1 Negative

jp S = 0 Positive

jc CY = 1 Carry

jnc CY = 0 No carry

jz Z = 1 Zero

jnz Z = 0 Not zero

jbr --- Always (Unconditional)

jsa SAT = 1 Saturated

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

520 User’s Manual U19383EJ1V0UM00

[Description]

- If the following is specified for disp22, the as850 generates one bcond machine instructionNote.

(a) Absolute expression having a value in the range of -256 to +255

(b) Relative expression having a PC offset reference for a label with a definition in the same section and
the same file as this instruction and having a value in the range of -256 to +255

Note The bcnd machine instruction takes an immediate value in the range of -256 to +255 (0xffffff00 to 0xff) as the
displacement.

- If the following is specified as disp22, the as850 executes instruction expansion and generates two or more
machine instructions.

(a) Absolute expression having a value exceeding the range of -256 to +255 but within the range of -
2,097,150 to +2,097,153Note 1

(b) Relative expression having a PC offset reference of label with a definition in the same section of the
same file as this instruction and having a value exceeding the range of -256 to +255 but within the
range of -2,097,150 to +2,097,153

(c) Relative expression having a PC offset reference of label without a definition in the same file or sec-
tion as this instruction

Notes 1. The range of -2,097,150 to +2,097,153 applies to instructions other than jbr and jsa. The range for the
jbr instruction is from -2,097,152 to +2,097,151, and that for the jsa instruction is from -2,097,148 to
+2,097,155.

2. bncnd denotes an instruction that effects control branches under opposite conditions, for example, bnz
for bz or ble for bgt.

[Flag]

jcnd disp9 bcnd disp9

jbr disp22 jr disp22

jsa disp22 bsa Label1

 br Label2

Label1:

 jr disp22 - 4

Label2:

jcnd disp22 bncnd LabelNote 2

 jr disp22 - 2

Label:

CY ---

OV ---

S ---

Z ---

SAT ---

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

User’s Manual U19383EJ1V0UM00 521

[Caution]

- If an absolute expression having a value exceeding the range of -2,097,150 to +2,097,153, or a relative expres-
sion having a PC offset reference of a label with a definition in the same section and the same file as this
instruction, and having a value exceeding the range of -2,097,150 to +2,097,153, is specified as disp22, the
as850 outputs the following message and stops assembling.

- If an absolute expression having an odd-numbered value, or a relative expression having a PC offset reference
of a label with a definition in the same section and the same file as this instruction, and having an odd-num-
bered value, is specified as disp22, the as850 outputs the following message and stops assembling.

- When disp22 indicates a relative expression comprising a PC offset reference to a label defined in the same
section of the same file as this instruction, then as850 determines whether to expand the instruction on the
basis of the value of that relative expression. But the value of the relative expression can itself vary because
generally it is affected by instruction expansion. as850 is designed to be able to handle this variation, but in
cases in which there is an .align directive or an .org directive between this instruction and the label referenced
by the PC offset, as850 outputs the following message and stops assembling. If this occurs, try deleting the
.align or.org directive, if possible.

E3230: illegal operand (range error in displacement)

E3226: illegal operand (must be even displacement)

F3507: overflow error(9bit)

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

522 User’s Manual U19383EJ1V0UM00

Jump and Register Link

[Syntax]

- jarl disp22, reg2
- jarl disp32, reg1 [V850E2]

The following can be specified for disp22:
- Absolute expression having a value of up to 22 bits
- Relative expression having a PC offset reference of label

The following can be specified for disp32:
- Absolute expression having a value of up to 32 bits
- Relative expression having a PC offset reference of label

[Function]

- Syntax "jarl disp22, reg2"
Transfers control to the address attained by adding the current program counter (PC) value and the relative or
absolute expression value specified by the first operand. The return address is stored in the register specified
by the second operand.

- Syntax "jarl disp32, reg1"
Transfers control to the address attained by adding the current program counter (PC) value and the relative or
absolute expression value specified by the first operand. The return address is stored in the register specified
by the second operand.

[Description]

- If the instruction is executed in syntax "jarl disp22, reg2", the as850 generates one jarl machine instructionNote if
any of the following expressions are specified for disp22.

(a) Absolute value in the range of -2,097,152 to +2,097,151

(b) Relative expression that has a PC offset reference of label having a definition in the same section
and the same file as this instruction, and which has a value in the range of -2,097,152 to +2,097,151

(c) Relative expression having a PC offset reference of a label having no definition in the same file or
section as this instruction

Note The jarl machine instruction takes an immediate value in the range of -2,097,152 to +2,097,151 (0xfe00000 to
0x1fffff) as the displacement.

- If the instruction is executed in syntax "jarl disp32, reg1", the as850 generates one jarl machine instruction (6-
byte long instruction).

jarl

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

User’s Manual U19383EJ1V0UM00 523

[Flag]

[Caution]

- If an absolute expression that exceeds the range of -2,097,152 to +2,097,151, or a relative expression having a
PC offset reference of label with a definition in the same section and the same file as this instruction and having
a value that falls outside the range of -2,097,152 to +2,097,151 is specified as disp22, the as850 outputs the fol-
lowing message and stops assembling.

- If an absolute expression having an odd-numbered value, or a relative expression having a PC offset reference
of a label with a definition in the same section and the same file as this instruction and having an odd-numbered
value, is specified as disp22/disp32, the as850 outputs the following message and stops assembling.

- When the assembler option -Xfar_jump is not specified, and an absolute expression outside of the range -
2,097,152 to +2,097,151 or a relative expression outside of the range -2,097,152 to +2,097,151, having a label
PC offset reference with a definition in the same file and same section as this instruction, is specified as disp32,
the following message is output and assembly is stopped.

CY ---

OV ---

S ---

Z ---

SAT ---

E3230: illegal operand (range error in displacement)

E3226: illegal operand (must be even displacement)

E3230: illegal operand (range error in displacement)

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

524 User’s Manual U19383EJ1V0UM00

Jump and Register Link [V850E2]

[Syntax]

- jarl22 disp22, reg1

The following can be specified for disp22:
- Absolute expression having a value of up to 22 bits
- Relative expression having a PC offset reference of label

[Function]

Transfers control to the address attained by adding the current program counter (PC) value and the relative or abso-
lute expression value specified by the first operand. The return address is stored in the register specified by the sec-
ond operand.

[Description]

- If the following is specified for disp22, the as850 generates one jarl machine instructionNote

(a) Absolute value in the range of -2,097,152 to +2,097,15

(b) Relative expression that has a PC offset reference of label having a definition in the same section
and the same file as this instruction, and which has a value in the range of -2,097,152 to +2,097,151

(c) Relative expression having a PC offset reference of a label having no definition in the same file or
section as this instruction

Note The jarl machine instruction takes an immediate value in the range of -2,097,152 to +2,097,151 (0xfe00000 to
0x1fffff) as the displacement.

[Flag]

jarl22

CY ---

OV ---

S ---

Z ---

SAT ---

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

User’s Manual U19383EJ1V0UM00 525

[Caution]

- If an absolute expression that exceeds the range of -2,097,152 to +2,097,151, or a relative expression having a
PC offset reference of label with a definition in the same section and the same file as this instruction and having
a value that falls outside the range of -2,097,152 to +2,097,151 is specified as disp22, the as850 outputs the fol-
lowing message and stops assembling.

- If an absolute expression having an odd-numbered value, or a relative expression having a PC offset reference
of a label with a definition in the same section and the same file as this instruction and having an odd-numbered
value, is specified as disp22, the as850 outputs the following message and stops assembling.

E3230: illegal operand (range error in displacement)

E3226: illegal operand (must be even displacement)

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

526 User’s Manual U19383EJ1V0UM00

Jump and Register Link [V850E2]

[Syntax]

- jarl32 disp32, reg1

The following can be specified for disp32:
- Absolute expression having a value of up to 32 bits
- Relative expression having a PC offset reference of label

[Function]

Transfers control to the address attained by adding the current program counter (PC) value and the relative or abso-
lute expression value specified by the first operand. The return address is stored in the register specified by the sec-
ond operand.

[Description]

The as850 generates one jarl machine instruction (6-byte long instruction).

[Flag]

[Caution]

- If an absolute expression having an odd-numbered value, or a relative expression having a PC offset reference
of a label with a definition in the same section and the same file as this instruction, and having an odd-num-
bered value, is specified as disp32, the as850 outputs the following message and stops assembling.

jarl32

CY ---

OV ---

S ---

Z ---

SAT ---

E3226: illegal operand (must be even displacement)

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

User’s Manual U19383EJ1V0UM00 527

4.5.11 Bit Manipulation instructions

This section describes the bit manipulation instructions. Next table lists the instructions described in this section.

Table 4-56. Bit Manipulation Instructions

Instruction Meanings

set1 Bit set

clr1 Bit clear

not1 Bit negation

tst1 Bit test

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

528 User’s Manual U19383EJ1V0UM00

Set Bit

[Syntax]

- set1 bit#3, disp[reg1]
- set1 reg2, [reg1] [V850E]
- set1 BITIO

The following can be specified for disp:
- Absolute expression having a value of up to 32 bits
- Relative expression
- Either of the above expressions with hi(), lo(), or hi1() applied

Caution The disp cannot be specified in syntax "set1 reg2, [reg1]".

[Function]

- Syntax "set1 bit#3, disp[reg1]"
Sets the bit specified by the first operand of the data indicated by the address specified by the second operand.
The bits other than the one specified are not affected.

- Syntax "set1 reg2, [reg1]"
Sets the bit specified by the lower 3 bits of the register value specified by the first operand of the data indicated
by the address specified by the register value of the second operand. The bits other than the one specified are
not affected.

- Syntax "set1 BITIO"
Sets the bit specified by the peripheral I/O register bit name (only reserved words defined in the device file) in
the data indicated by the address specified by the first operand

[Description]

- If the following is specified for disp, the as850 generates one set1 machine instructionNote

(a) Absolute expression having a value in the range of -32,768 to +32,767

(b) Relative expression having $label for a label having a definition in the sdata/sbss-attribute section

(c) Relative expression having !label or %label

(d) Expression with hi(), lo(), or hi1()

set1

set1 #bit3, disp16[reg1] set1 #bit3, disp16[reg1]

set1 #bit3, $label[reg1] set1 #bit3, $label[reg1]

set1 #bit3, !label[reg1] set1 #bit3, !label[reg1]

set1 #bit3, %label[reg1] set1 #bit3, %label[reg1]

set1 #bit3, disp16[reg1] set1 #bit3, disp16[reg1]

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

User’s Manual U19383EJ1V0UM00 529

Note The set1 machine instruction takes an immediate value in the range of -32,768 to +32,767 (0xffff8000 to
0x7fff) as the displacement.

- If the following is specified for disp, the as850 executes instruction expansion, then generates two or more
machine instructions.

(a) Absolute expression having a value exceeding the range of -32,768 to +32,767

(b) Relative expression having #label or label, or that having $label for a label having no definition in
the sdata/sbss-attribute section

- If disp is omitted, the as850 assumes 0.
- If a relative expression with #label, or a relative expression with #label and with hi(), lo(), or hi1() applied is spec-

ified as disp, [reg1] can be omitted. If omitted, the as850 assumes that [r0] is specified.
- If a relative expression with $label, or a relative expression with $label and with hi(), lo(), or hi1() applied is spec-

ified as disp, [reg1] can be omitted. If omitted, the as850 assumes that [gp] is specified.
- If a peripheral I/O register name defined in the device file is specified as disp, [reg1] can be omitted. If omitted,

the as850 assumes that [r0] is specified.

[Flag]

Note The flag values shown here are those existing prior to the execution of this instruction, not those after the
execution.

set1 #bit3, disp[reg1] movhi hi1(disp), reg1, r1

set1 #bit3, lo(disp)[r1]

set1 #bit3, #label[reg1] movhi hi1(#label), reg1, r1

set1 #bit3, lo(#label)[r1]

set1 #bit3, label[reg1] movhi hi1(label), reg1, r1

set1 #bit3, lo(label)[r1]

set1 #bit3, $label[reg1] movhi hi1($label), reg1, r1

set1 #bit3, lo($label)[r1]

CY ---

OV ---

S ---

Z 1 if the specified bit is 0, 0 if notNote

SAT ---

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

530 User’s Manual U19383EJ1V0UM00

Clear Bit

[Syntax]

- clr1 bit#3, disp[reg1]
- clr1 reg2, [reg1] [V850E]
- clr1 BITIO

The following can be specified for disp:
- Absolute expression having a value of up to 32 bits
- Relative expression
- Either of the above expressions with hi(), lo(), or hi1() applied

Caution The disp cannot be specified in syntax "clr1 reg2, [reg1]".

[Function]

- Syntax "clr1 bit#3, disp[reg1]"
Clears the bit specified by the first operand of the data indicated by the address specified by the second oper-
and. The bits other than the one specified are not affected.

- Syntax "clr1 reg2, [reg1]"
Clears the bit specified by the lower 3 bits of the register value specified by the first operand of the data indi-
cated by the address specified by the register value of the second operand. The bits other than the one speci-
fied are not affected.

- Syntax "clr1 BITIO"
Clears the bit specified by the peripheral I/O register bit name (only reserved words defined in the device file) in
the data indicated by the address specified by the first operand.

[Description]

- If the following is specified as disp, the as850 generates one clr1 machine instructionNote.

(a) Absolute expression having a value in the range of -32,768 to +32,767

(b) Relative expression having $label for a label having a definition in the sdata/sbss-attribute section

(c) Relative expression having !label or %label

(d) Expression with hi(), lo(), or hi1()

clr1

clr1 #bit3, disp16[reg1] clr1 #bit3, disp16[reg1]

clr1 #bit3, $label[reg1] clr1 #bit3, $label[reg1]

clr1 #bit3, !label[reg1] clr1 #bit3, !label[reg1]

clr1 #bit3, %label[reg1] clr1 #bit3, %label[reg1]

clr1 #bit3, disp16[reg1] clr1 #bit3, disp16[reg1]

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

User’s Manual U19383EJ1V0UM00 531

Note The clr1 machine instruction takes an immediate value in the range of -32,768 to +32,767 (0xffff8000 to
0x7fff) as the displacement.

- If the following is specified as disp, the as850 executes instruction expansion and generates two or more
machine instructions.

(a) Absolute expression having a value exceeding the range of -32,768 to +32,767

(b) Relative expression having #label or label, or that having $label for a label having no definition in
the sdata/sbss-attribute section

- If disp is omitted, the as850 assumes 0.
- If a relative expression with #label or a relative expression with #label and with hi() , lo() , or hi1() applied is

specified as disp, [reg1] that follows the expression can be omitted. If omitted, the as850 assumes [r0] to be
specified.

- If a relative expression with $label, or a relative expression with $label and with hi(), lo(), or hi1() applied is spec-
ified as disp, [reg1] can be omitted. If omitted, the as850 assumes that [gp] is specified.

- If a peripheral I/O register name defined in the device file is specified as disp, [reg1] can be omitted. If omitted,
the as850 assumes that [r0] is specified.

[Flag]

Note The flag values shown here are those existing prior to the execution of this instruction, not those after the
execution.

clr1 #bit3, disp[reg1] movhi hi1(disp), reg1, r1

clr1 #bit3, lo(disp)[r1]

clr1 #bit3, #label[reg1] movhi hi1(#label), reg1, r1

clr1 #bit3, lo(#label)[r1]

clr1 #bit3, label[reg1] movhi hi1(label), reg1, r1

clr1 #bit3, lo(label)[r1]

clr1 #bit3, $label[reg1] movhi hi1($label), reg1, r1

clr1 #bit3, lo($label)[r1]

CY ---

OV ---

S ---

Z 1 if the specified bit is 0, 0 if notNote

SAT ---

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

532 User’s Manual U19383EJ1V0UM00

Not Bit

[Syntax]

- not1 bit#3, disp[reg1]
- not1 reg2, [reg1] [V850E]
- not1 BITIO

The following can be specified for disp:
- Absolute expression having a value of up to 32 bits
- Relative expression
- Either of the above expressions with hi(), lo(), or hi1() applied

Caution The disp cannot be specified in syntax "not1 reg2, [reg1]".

[Function]

- Syntax "not1 bit#3, disp[reg1]"
Inverts the bit specified by the first operand (0 to 1 or 1 to 0) of the data indicated by the address specified by the
second operand. The bits other than the one specified are not affected.

- Syntax "not1 reg2, [reg1]"
Inverts the bit specified by the lower 3 bits of the register value specified by the first operand (0 to 1 or 1 to 0) of
the data indicated by the address specified by the register value of the second operand. The bits other than the
one specified are not affected.

- Syntax "not1 BITIO"
Inverts (from 0 to 1 or 1 to 0) the bit specified by the peripheral I/O register bit name (only reserved words
defined in the device file) in the data indicated by the address specified by the first operand.

[Description]

- If the following is specified for disp, the as850 generates one not1 machine instructionNote.

(a) Absolute expression having a value in the range of -32,768 to +32,767

(b) Relative expression having $label for a label having a definition in the sdata/sbss-attribute section

(c) Relative expression having !label or %label

(d) Expression with hi(), lo(), or hi1()

not1

not1 #bit3, disp16[reg1] not1 #bit3, disp16[reg1]

not1 #bit3, $label[reg1] not1 #bit3, $label[reg1]

not1 #bit3, !label[reg1] not1 #bit3, !label[reg1]

not1 #bit3, %label[reg1] not1 #bit3, %label[reg1]

not1 #bit3, disp16[reg1] not1 #bit3, disp16[reg1]

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

User’s Manual U19383EJ1V0UM00 533

Note The not1 machine instruction takes an immediate value in the range of -32,768 to +32,767 (0xffff8000 to
0x7fff) as the displacement.

- If the following is specified as disp, the as850 executes instruction expansion and generates two or more
machine instructions.

(a) Absolute expression having a value exceeding the range of -32,768 to +32,767

(b) Relative expression having #label or label, or that having $label for a label having no definition in
the sdata/sbss-attribute section

- If disp is omitted, the as850 assumes 0.
- If a relative expression with #label, or a relative expression with #label and with hi(), lo(), or hi1() applied is spec-

ified as disp, [reg1] can be omitted. If omitted, the as850 assumes that [r0] is specified.
- If a relative expression with $label, or a relative expression with $label and with hi(), lo(), or hi1() applied is spec-

ified as disp, [reg1] can be omitted. If omitted, the as850 assumes that [gp] is specified.
- If a peripheral I/O register name defined in the device file is specified as disp, [reg1] can be omitted. If omitted,

the as850 assumes that [r0] is specified.

[Flag]

Note The flag values shown here are those existing prior to the execution of this instruction, not those after the
execution.

not1 #bit3, disp[reg1] movhi hi1(disp), reg1, r1

not1 #bit3, lo(disp)[r1]

not1 #bit3, #label[reg1] movhi hi1(#label), reg1, r1

not1 #bit3, lo(#label)[r1]

not1 #bit3, label[reg1] movhi hi1(label), reg1, r1

not1 #bit3, lo(label)[r1]

not1 #bit3, $label[reg1] movhi hi1($label), reg1, r1

not1 #bit3, lo($label)[r1]

CY ---

OV ---

S ---

Z 1 if the specified bit is 0, 0 if notNote

SAT ---

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

534 User’s Manual U19383EJ1V0UM00

Test Bit

[Syntax]

- tst1 bit#3, disp[reg1]
- tst1 reg2, [reg1] [V850E]
- tst1 BITIO

The following can be specified for disp:
- Absolute expression having a value of up to 32 bits
- Relative expression
- Either of the above expressions with hi(), lo(), or hi1() applied

Caution The disp cannot be specified in syntax "tst1 bit#3, disp[reg1]".

[Function]

- Syntax "tst1 bit#3, disp[reg1]"
Sets only a flag according to the value of the bit specified by the first operand of the data indicated by the
address specified by the second operand. The value of the second operand and the specified bit are not
changed.

- Syntax "tst1 reg2, [reg1]"
Sets only a flag according to the value of the bit of the lower 3 bits of the register value specified by the first
operand of the data indicated by the address specified by the second operand. The value of the second oper-
and and the specified bit are not changed.

- Syntax "tst1 BITIO"
Sets only the flag in accordance with the value of the bit specified by the peripheral I/O register bit name (only
reserved words defined in the device file) in the data indicated by the address specified by the first operand.
The value of the peripheral I/O register bit is not affected.

[Description]

- If the following is specified for disp, the as850 generates one tst1 machine instructionNote.

(a) Absolute expression having a value in the range of -32,768 to +32,767

(b) Relative expression having $label for a label having a definition in the sdata/sbss-attribute section

(c) Relative expression having !label or %label

(d) Expression with hi(), lo(), or hi1()

tst1

tst1 #bit3, disp16[reg1] tst1 #bit3, disp16[reg1]

tst1 #bit3, $label[reg1] tst1 #bit3, $label[reg1]

tst1 #bit3, !label[reg1] tst1 #bit3, !label[reg1]

tst1 #bit3, %label[reg1] tst1 #bit3, %label[reg1]

tst1 #bit3, disp16[reg1] tst1 #bit3, disp16[reg1]

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

User’s Manual U19383EJ1V0UM00 535

Note The tst1 machine instruction takes an immediate value in the range of -32,768 to +32,767 (0xffff8000 to
0x7fff) as the displacement.

- If the following is specified for disp, the as850 executes instruction expansion, then generates two or more
machine instructions.

(a) Absolute expression having a value exceeding the range of -32,768 to +32,767

(b) Relative expression having #label or label, or that having $label for a label having no definition in
the sdata/sbss-attribute section

- If disp is omitted, the as850 assumes 0.
- If a relative expression with #label, or a relative expression with #label and with hi(), lo(), or hi1() applied is spec-

ified as disp, [reg1] can be omitted. If omitted, the as850 assumes that [r0] is specified.
- If a relative expression with $label, or a relative expression with $label and with hi(), lo(), or hi1() applied is spec-

ified as disp, [reg1] can be omitted. If omitted, the as850 assumes that [gp] is specified.
- If a peripheral I/O register name defined in the device file is specified as disp, [reg1] can be omitted. If omitted,

the as850 assumes that [r0] is specified.

[Flag]

tst1 #bit3, disp[reg1] movhi hi1(disp), reg1, r1

tst1 #bit3, lo(disp)[r1]

tst1 #bit3, #label[reg1] movhi hi1(#label), reg1, r1

tst1 #bit3, lo(#label)[r1]

tst1 #bit3, label[reg1] movhi hi1(label), reg1, r1

tst1 #bit3, lo(label)[r1]

tst1 #bit3, $label[reg1] movhi hi1($label), reg1, r1

tst1 #bit3, lo($label)[r1]

CY ---

OV ---

S ---

Z 1 if the specified bit is 0, 0 if not

SAT ---

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

536 User’s Manual U19383EJ1V0UM00

4.5.12 Stack manipulation instructions

This section describes the stack manipulation instructions. Next table lists the instructions described in this section.

Table 4-57. Stack Manipulation Instructions

Instruction Meanings

push Push to stack area (single register)

pushm Push to stack area (multiple registers)

pop Pop from stack area (single register)

popm Pop from stack area (multiple registers)

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

User’s Manual U19383EJ1V0UM00 537

Push

[Syntax]

push reg

[Function]

Pushes the value of the register specified by the operand to the stack area.

[Description]

- When the push instruction is executed, the as850 executes instruction expansion to generate two or more
machine instructions.

[Flag]

Caution Set by the add instruction.

push

push reg add -4, sp

st.w reg, [sp]

CY 1 if a carry occurs from MSB (Most Significant Bit), 0 if not

OV 1 if Integer-Overflow occurs, 0 if not

S 1 if the result is negative, 0 if not

Z 1 if the result is 0, 0 if not

SAT ---

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

538 User’s Manual U19383EJ1V0UM00

Push Multiple

[Syntax]

pushm reg1, reg2, ..., regN

[Function]

Pushes the values of the registers specified by the operand to the stack area. Up to 32 registers can be specified by
the operand

[Description]

- When the pushm instruction is executed, the as850 executes instruction expansion to generate two or more
machine instructions.

When there are four or fewer registers

When there are five or more registers

[Flag]

Caution Set by the add/addi instruction.

pushm

pushm reg1, reg2, ..., regN add -4 * N, sp

st.w regN, 4 * (N - 1)[sp]

 :

st.w reg2, 4 * 1[sp]

st.w reg1, 4 * 0[sp]

pushm reg1, reg2, ..., regN addi -4 * N, sp, sp

st.w regN, 4 * (N - 1)[sp]

 :

st.w reg2, 4 * 1[sp]

st.w reg1, 4 * 0[sp]

CY 1 if a carry occurs from MSB (Most Significant Bit), 0 if not

OV 1 if Integer-Overflow occurs, 0 if not

S 1 if the result is negative, 0 if not

Z 1 if the result is 0, 0 if not

SAT ---

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

User’s Manual U19383EJ1V0UM00 539

Pop

[Syntax]

pop reg

[Function]

Pops the value of the register specified by the operand from the stack area.

[Description]

- When the pop instruction is executed, the as850 executes instruction expansion to generate two or more
machine instructions.

[Flag]

Caution Set by the add instruction.

pop

pop reg ld.w [sp], reg

add 4, sp

CY 1 if a carry occurs from MSB (Most Significant Bit), 0 if not

OV 1 if Integer-Overflow occurs, 0 if not

S 1 if the result is negative, 0 if not

Z 1 if the result is 0, 0 if not

SAT ---

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

540 User’s Manual U19383EJ1V0UM00

Pop Multiple

[Syntax]

popm reg1, reg2, ..., regN

[Function]

Pops the values of the registers specified by the operand from the stack area in the sequence in which the registers
are specified. Up to 32 registers can be specified by the operand.

[Description]

- When the popm instruction is executed, the as850 executes instruction expansion to generate two or more
machine instructions.

When there are three or fewer registers

When there are four or more registers

[Flag]

Caution Set by the add/addi instruction.

popm

popm reg1, ..., regN ld.w 4 * 0[sp], reg1

 :

ld.w 4 * (N - 1)[sp], regN

add 4 * N, sp

popm reg1, reg2, ..., regN ld.w 4 * 0[sp], reg1

ld.w 4 * 1[sp], reg2

 :

ld.w 4 * (N - 1)[sp], regN

addi 4 * N, sp, sp

CY 1 if a carry occurs from MSB (Most Significant Bit), 0 if not

OV 1 if Integer-Overflow occurs, 0 if not

S 1 if the result is negative, 0 if not

Z 1 if the result is 0, 0 if not

SAT ---

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

User’s Manual U19383EJ1V0UM00 541

4.5.13 Special instructions

This section describes the special instructions. Next table lists the instructions described in this section.

Table 4-58. Special Instructions

Instruction Meanings

ldsr Loads to system register

stsr Stores contents of system register

di Disables maskable interrupt

ei Enables maskable interrupt

reti Returns from trap or interrupt routine

halt Stops the processor

trap Software trap

nop No operation

switch Table reference branch [V850E]

callt Table reference call [V850E]

ctret Returns from callt [V850E]

dbtrap Debug trap [V850E]

dbret Returns from debug trap [V850E]

prepare Generates stack frame (preprocessing of function) [V850E]

dispose Deletes stack frame (post processing of function) [V850E]

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

542 User’s Manual U19383EJ1V0UM00

Load System Register

[Syntax]

- ldsr reg, regID

The following can be specified as regID:
- Absolute expression having a value of up to 5 bits

[Function]

Stores the value of the register specified by the first operand in the system registerNote indicated by the system reg-
ister number specified by the second operand.

Note For details of the system registers, see the Relevant Device’s Hardware User’s Manual provided with the
each device and the table below.

Table 4-59. System Register Numbers (ldsr)

Note The interrupt source register cannot be specified by an operand and accessing it is prohibited.

Table 4-60. System Register Numbers [V850E/MA1] (ldsr)

ldsr

Number System Register

0 Status saving register for interrupt EIPC

1 Status saving register for interrupt EIPSW

2 Status saving register for NMI FEPC

3 Status saving register for NMI FEPSW

4 Interrupt source registerNote ECR

5 Program status word PSW

6-31 Reserved ---

Number System Register

0 Status saving register for interrupt EIPC

1 Status saving register for interrupt EIPSW

2 Status saving register for NMI FEPC

3 Status saving register for NMI FEPSW

4 Interrupt source registerNote ECR

5 Program status word PSW

6-15 Reserved ---

16 Status saving register for CALLT execution CTPC

17 Status saving register for CALLT execution CTPSW

18 Status saving register for exception/debug trap DBPC

19 Status saving register for exception/debug trap DBPSW

20 CALLT base pointer CTBP

21-31 Reserved ---

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

User’s Manual U19383EJ1V0UM00 543

Note The interrupt source register cannot be specified by an operand and accessing it is prohibited.

Table 4-61. System Register Numbers [V850E/ME2] (ldsr)

Notes 1. The interrupt source register cannot be specified by an operand and accessing it is prohibited.
2. Access is enabled only in the debug mode.
3. The register actually accessed is specified by the CS bit of the DIR register.

[Flag]

Caution If the program status word (PSW) is specified as the system register, the value of the correspond-
ing bit of reg is set as each flag.

Number System Register

0 Status saving register for interrupt EIPC

1 Status saving register for interrupt EIPSW

2 Status saving register for NMI FEPC

3 Status saving register for NMI FEPSW

4 Interrupt source registerNote 1 ECR

5 Program status word PSW

6-15 Reserved ---

16 Status saving register for CALLT execution CTPC

17 Status saving register for CALLT execution CTPSW

18 Status saving register for exception/debug trap DBPC

19 Status saving register for exception/debug trap DBPSW

20 CALLT base pointer CTBP

21 Debug interface registerNote 2 DIR

22 Breakpoint control registers 0, 1Note 2, 3 BPC0, BPC1

23 Program ID register ASID

24 Breakpoint address set registers 0, 1Note 2, 3 BPAV0, BPAV1

25 Breakpoint address mask registers 0, 1Note 2, 3 BPAM0, BPAM1

26 Breakpoint data set registers 0, 1Note 2, 3 BPDV0, BPDV1

27 Breakpoint data mask registers 0, 1Note 2, 3 BPDM0, BPDM1

28-31 Reserved ---

CY ---

OV ---

S ---

Z ---

SAT ---

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

544 User’s Manual U19383EJ1V0UM00

[Caution]

- When returning by the reti, ctret, or dbret instruction after setting (1) bit 0 of EIPC, FEPC, DBPC, or CTPC to 0
by the ldsr instruction, the value of bit 0 is ignored (because bit 0 of PC is fixed to 0). When setting a value to
EIPC, FEPC, DBPC or CTPC, set an even value (bit 0 = 0).

- If an absolute expression having a value exceeding the range of 0 to 31 is specified as regID, the as850 outputs
the following message, then continues assembling using the lower 5 bitsNote of the specified value.

Note The ldsr machine instruction takes an immediate value in the range of 0 to 31 (0x0 to 0x1f) as the second
operand.

- If a reserved register number, the number of a register which cannot be accessed (such as ECR) or the number
of a register which can be accessed only in the debug mode is specified as regID, the as850 outputs the follow-
ing message and continues assembling as is

W3011: illegal operand (range error in immediate)

W3018: illegal regID for ldsr

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

User’s Manual U19383EJ1V0UM00 545

Store System Register

[Syntax]

- stsr regID, reg

The following can be specified as regID:
- Absolute expression having a value of up to 5 bits

[Function]

Stores the value of the system registerNote indicated by the system register number specified by the first operand, to
the register specified by the second operand.

Note For details of the system registers, see the Relevant Device’s Hardware User’s Manual provided with the
each device and the table below.

Table 4-62. System Register Numbers (stsr)

Table 4-63. System Register Numbers [V850E/MA1] (stsr)

stsr

Number System Register

0 Status saving register for interrupt EIPC

1 Status saving register for interrupt EIPSW

2 Status saving register for NMI FEPC

3 Status saving register for NMI FEPSW

4 Interrupt source registerNote ECR

5 Program status word PSW

6-31 Reserved ---

Number System Register

0 Status saving register for interrupt EIPC

1 Status saving register for interrupt EIPSW

2 Status saving register for NMI FEPC

3 Status saving register for NMI FEPSW

4 Interrupt source register ECR

5 Program status word PSW

6-15 Reserved ---

16 Status saving register for CALLT execution CTPC

17 Status saving register for CALLT execution CTPSW

18 Status saving register for exception/debug trap DBPC

19 Status saving register for exception/debug trap DBPSW

20 CALLT base pointer CTBP

21-31 Reserved ---

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

546 User’s Manual U19383EJ1V0UM00

Table 4-64. System Register Numbers [V850E/ME2] (stsr)

Notes 1. Access is enabled only in the debug mode.
2. The register actually accessed is specified by the CS bit of the DIR register.

[Flag]

Number System Register

0 Status saving register for interrupt EIPC

1 Status saving register for interrupt EIPSW

2 Status saving register for NMI FEPC

3 Status saving register for NMI FEPSW

4 Interrupt source register ECR

5 Program status word PSW

6-15 Reserved ---

16 Status saving register for CALLT execution CTPC

17 Status saving register for CALLT execution CTPSW

18 Status saving register for exception/debug trap DBPC

19 Status saving register for exception/debug trap DBPSW

20 CALLT base pointer CTBP

21 Debug interface registerNote 1 DIR

22 Breakpoint control registers 0, 1Note 1,2 BPC0, BPC1

23 Program ID register ASID

24 Breakpoint address set registers 0, 1Note 1,2 BPAV0, BPAV1

25 Breakpoint address mask registers 0, 1Note 1,2 BPAM0, BPAM1

26 Breakpoint data set registers 0, 1Note 1,2 BPDV0, BPDV1

27 Breakpoint data mask registers 0, 1Note 1,2 BPDM0, BPDM1

28-31 Reserved ---

CY ---

OV ---

S ---

Z ---

SAT ---

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

User’s Manual U19383EJ1V0UM00 547

[Caution]

- If an absolute expression having a value exceeding the range of 0 to 31 is specified as regID, the as850 outputs
the following message, then continues assembling using the lower 5 bitsNote of the specified value.

Note The stsr machine instruction takes an immediate value in the range of 0 to 31 (0x0 to 0x1f) as the first oper-
and.

- If a reserved register number or the number of a register which can be accessed only in the debug mode is
specified as regID, the as850 outputs the following message and continues assembling as is.

W3011: illegal operand (range error in immediate)

W3018: illegal regID for ldsr

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

548 User’s Manual U19383EJ1V0UM00

Disable Interrupt

[Syntax]

di

[Function]

Sets the ID bit of the PSW to 1 and disables acknowledgement of maskable interrupts since this instruction has
already been executed.

[Flag]

di

CY ---

OV ---

S ---

Z ---

SAT ---

ID 1

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

User’s Manual U19383EJ1V0UM00 549

Enable Interrupt

[Syntax]

ei

[Function]

Sets the ID bit of the PSW to 0, and enables acknowledgment of maskable interrupt from the next instruction.

[Flag]

ei

CY ---

OV ---

S ---

Z ---

SAT ---

ID 0

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

550 User’s Manual U19383EJ1V0UM00

Return from Trap or Interrupt

[Syntax]

reti

[Function]

Returns from a trap or interrupt routineNote.

Note For details of the function, see the Relevant Device’s Architecture User’s Manual of each devic

[Flag]

reti

CY Extracted value

OV Extracted value

S Extracted value

Z Extracted value

SAT Extracted value

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

User’s Manual U19383EJ1V0UM00 551

Halt

[Syntax]

halt

[Function]

Stops the processor and sets it in the HALT status. The HALT status can be released by a maskable interrupt, NMI,
or reset.

[Flag]

halt

CY ---

OV ---

S ---

Z ---

SAT ---

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

552 User’s Manual U19383EJ1V0UM00

Trap

[Syntax]

- trap vector

The following can be specified for vector:
- Absolute expression having a value of up to 5 bits

[Function]

Causes a software trapNote.

Note For details of the function, see the Relevant Device’s Architecture User’s Manual of each device.

[Flag]

[Caution]

- If an absolute expression having a value falling outside the range of 0 to 31 is specified as vector, the as850
outputs the following message, continuing assembling using the lower 5 bitsNote of the specified value.

Note The trap machine instruction takes an immediate value in the range of 0 to 31 (0x0 to 0x1f) as an operand.

trap

CY ---

OV ---

S ---

Z ---

SAT ---

W3011: illegal operand (range error in immediate)

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

User’s Manual U19383EJ1V0UM00 553

No Operation

[Syntax]

nop

[Function]

Nothing is executed. This instruction can be used to allocate an area during an instruction sequence or to insert a
delay cycle during instruction execution.

[Flag]

nop

CY ---

OV ---

S ---

Z ---

SAT ---

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

554 User’s Manual U19383EJ1V0UM00

Jump With Table Look Up [V850E]

[Syntax]

switch reg

[Function]

Performs processing in the following sequence.

(1) Adds the value resulting from logically shifting the value specified by the operand 1 bit to the left to the
first address of the table (address following the switch instruction) to generate a table entry address.

(2) Loads signed halfword data from the generated table entry address.

(3) Logically shifts the loaded value 1 bit to the left and sign-extends it to word length. Then adds the first
address of the table to it to generate an address

(4) Branches to the generated address.

[Flag]

[Caution]

- If r0 is specified by reg, the as850 outputs the following message and stops assembling.

switch

CY ---

OV ---

S ---

Z ---

SAT ---

E3240: illegal operand (can not use r0 as source in V850E mode)

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

User’s Manual U19383EJ1V0UM00 555

Call With Table Look Up [V850E]

[Syntax]

- callt imm6

The following can be specified as imm6:
- Absolute expression having a value of up to 6 bits

[Function]

Performs processing in the following sequenceNote

(1) Saves the values of the return PC and PSW to CTPC and CTPSW.

(2) Generates a table entry address by shifting the value specified by the operand 1 bit to the left as an off-
set value from CTBP(CALLT Base Pointer) and by adding it to the CTBP value.

(3) Loads unsigned halfword data from the generated table entry address.

(4) Adds the loaded value to the CTBP value to generate an address.

(5) Branches to the generated address.

Note For details of the system registers, see the Relevant Device’s Architecture User’s Manual of each device.

[Flag]

callt

CY ---

OV ---

S ---

Z ---

SAT ---

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

556 User’s Manual U19383EJ1V0UM00

Return From Callt [V850E]

[Syntax]

ctret

[Function]

Returns from the processing by callt. Performs the processing in the following sequenceNote:

(1) Extracts the return PC and PSW from CTPC and CTPSW.

(2) Sets the extracted values in the PC and PSW and transfers control.

Note For details of the system registers, see the Relevant Device’s Architecture User’s Manual of each device.

[Flag]

ctret

CY Extracted value

OV Extracted value

S Extracted value

Z Extracted value

SAT Extracted value

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

User’s Manual U19383EJ1V0UM00 557

Debug Trap [V850E]

[Syntax]

dbtrap

[Function]

Causes debug trapNote.

Note For details of the function, see the Relevant Device’s Architecture User’s Manual of each device.

[Flag]

dbtrap

CY ---

OV ---

S ---

Z ---

SAT ---

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

558 User’s Manual U19383EJ1V0UM00

Return From Debug Trap [V850E]

[Syntax]

dbret

[Function]

Returns from debug trapNote.

Note For details of the function, see the Relevant Device’s Architecture User’s Manual of each device.

[Flag]

dbret

CY Extracted value

OV Extracted value

S Extracted value

Z Extracted value

SAT Extracted value

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

User’s Manual U19383EJ1V0UM00 559

Function Prepare [V850E]

[Syntax]

- prepare list, imm1
- prepare list, imm1, imm2
- prepare list, imm1, sp

The following can be specified as imm1/imm2:
- Absolute expression having a value of up to 32 bits

list specifies the 12 registers that can be pushed by the prepare instruction.The following can be specified as list.
- Register

Specify the registers (r20 to r31) to be pushed, delimiting each with a comma.
- 1Constant expression having a value of up to 12 bits

The 12 bits and 12 registers correspond as follows:

The following two specifications are equivalent.

[Function]

The prepare instruction performs the preprocessing of a function.

- Syntax "prepare list, imm1"

(a) Pushes one of the registers specified by the first operand and subtracts 4 from the stack pointer
(sp).

(b) Repeatedly performs (a) until all the registers specified by the first operand have been pushed.

(c) Subtracts the value of the absolute expression specified by the second operand from spNote and
sets sp in the register saving area.

- Syntax "prepare list, imm1, imm2"

(a) Pushes one of the registers specified by the first operand and subtracts 4 from sp.

(b) Repeatedly performs (a) until all the registers specified by the first operand have been pushed.

(c) Subtracts the value of the absolute expression specified by the second operand from spNote and
sets sp to the register saving area.

(d) Sets the value of the absolute expression specified by the third operand in ep.

prepare

prepare r26, r29, r31, 0x10 prepare 0x103, 0x10

bit 11 bit 0

r31r27 r20 r21 r22 r29r28r23r26r25r24r30

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

560 User’s Manual U19383EJ1V0UM00

- Syntax "prepare list, imm1, sp"

(a) Pushes one of the registers specified by the first operand and subtracts 4 from sp.

(b) Repeatedly performs (a) until all the registers specified by the first operand have been pushed.

(c) Subtracts the value of the absolute expression specified by the second operand from spNote and
sets sp in the register saving area.

(d) Sets the value of sp specified by the third operand in ep.

Note Since the value actually subtracted from sp by the machine instruction is imm1 shifted 2 bits to the left, the
assembler shifts the specified imm1 2 bits to the right in advance and reflects it in the code.

[Description]

- If the following is specified for imm1, the as850 generates one prepare machine instruction.

(a) Absolute expression having a value in the range of 0 to 127

- If anything other than a constant expressionNote is specified as list, the as850 outputs the following message
and stops assembling.

Note Undefined symbol and label reference.

- When the following is specified as imm1, the as850 executes instruction expansion to generate two or more
machine instructions.

(a) Absolute expression exceeding the range of 0 to 127, but within the range of 0 to 32,767

prepare list, imm1 prepare list, imm1

prepare list, imm1, imm2 prepare list, imm1, imm2

prepare list, imm1, sp prepare list, imm1, sp

E3249: illegal syntax

prepare list, imm1 prepare list, 0

movea -imm1, sp, sp

prepare list, imm1, imm2 prepare list, 0, imm2

movea -imm1, sp, sp

prepare list, imm1, sp prepare list, 0, sp

movea -imm1, sp, sp

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

User’s Manual U19383EJ1V0UM00 561

(b) Absolute expression having a value exceeding the range of 0 to 32,767

[Flag]

Caution If a sub instruction is generated as a result of instruction expansion, the flag value may be
affected.

[Caution]

- An address consisting of the two lower bits specified by sp is masked to 0 even though misalign access is
enabled. In sp, set a value which is aligned with a four-byte boundary.

prepare list, imm1 prepare list, 0

mov imm1, r1

sub r1, sp

prepare list, imm1, imm2 prepare list, 0, imm2

mov imm1, r1

sub r1, sp

prepare list, imm1, sp prepare list, 0, sp

mov imm1, r1

sub r1, sp

CY ---

OV ---

S ---

Z ---

SAT ---

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

562 User’s Manual U19383EJ1V0UM00

Function Dispose [V850E]

[Syntax]

- dispose imm, list
- dispose imm, list, [reg]

The following can be specified for imm:
- Absolute expression having a value of up to 32 bits

The following can be specified as list. list specifies the 12 registers that can be popped by the dispose instruction.
- Register

Specify the registers (r20 to r31) to be popped, delimiting each with a comma.
- Constant expression having a value of up to 12 bits

The 12 bits and 12 registers correspond as follows:

The following two specifications are equivalent.

[Function]

The dispose instruction performs the postprocessing of a function.

- Syntax "dispose imm, list"

(a) Adds the value of the absolute expression specified by the first operand to the stack pointer (sp)Note
and sets sp in the register saving area.

(b) Pops one of the registers specified by the second operand and adds 4 to sp.

(c) Repeatedly executes (b) until all the registers specified by the second operand have been popped.

Note Since the value actually added to sp by the machine instruction is imm shifted 2 bits to the left, the assembler
shifts the specified imm 2 bits to the right in advance and reflects it in the code.

- Syntax "dispose imm, list, [reg]"

(a) Adds the value of the absolute expression specified by the first operand to the stack pointer (sp)Note
and sets sp in the register saving area.

(b) Pops one of the registers specified by the second operand and adds 4 to sp.

(c) Repeatedly executes (b) until all the registers specified by the second operand have been popped.

(d) Sets the register value specified by the third operand in the program counter (PC).

dispose

dispose 0x10, r26, r29, r31 dispose 0x10, 0x103

bit 11 bit 0

r31r27 r20 r21 r22 r29r28r23r26r25r24r30

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

User’s Manual U19383EJ1V0UM00 563

Note Undefined symbol and label reference.

[Description]

- If the following is specified for imm, the as850 generates one dispose machine instruction.

(a) Absolute expression having a value in the range of 0 to 127

- If anything other than a constant expression is specified as list, the as850 outputs the following message and
stops assembling.

- If the following is specified for imm, the as850 executes instruction expansion to generate two or more machine
instructions.

(a) Absolute expression exceeding the range of 0 to 127, but within the range of 0 to 32,767

(b) Absolute expression having a value exceeding the range of 0 to 32,767

[Flag]

Caution If the add instruction is generated as a result of instruction expansion, the flag value may be
affected.

dispose imm, list dispose imm, list

dispose imm, list, [reg] dispose imm, list, [reg]

E3249: illegal syntax

dispose imm, list mov imm, r1

add r1, sp

dispose 0, list

dispose imm, list, [reg] movea imm, sp, sp

dispose 0, list, [reg]

dispose imm, list mov imm, r1

add r1, sp

dispose 0, list

dispose imm, list, [reg] mov imm, r1

add r1, sp

dispose 0, list, [reg]

CY ---

OV ---

S ---

Z ---

SAT ---

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

564 User’s Manual U19383EJ1V0UM00

[Caution]

- An address consisting of the two lower bits specified by sp is masked to 0 even though misalign access is
enabled. In sp, set a value which is aligned with a four-byte boundary.

- If r0 is specified by the [reg] in syntax "dispose imm, list, [reg]", the as850 outputs the following message and
stops assembling.

E3240: illegal operand (can not use r0 as destination in V850E mode)

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

User’s Manual U19383EJ1V0UM00 565

4.5.14 Pipeline (V850)

V850 on RISC architecture and executes almost all instructions in one clock cycle under control of a 5-stage
pipeline. The instruction execution sequence usually consists of five stages from fetch IF (Instruction fetch) to WB
(writeback).

The execution time of each stage differs depending on the type of the instruction and the type of the memory to be
accessed.

As an example of pipeline operation, following figure shows the processing of the CPU when 9 standard instructions
are executed in succession

Figure 4-64. Example of Executing Nine Standard Instructions

<1> through <13> in the figure above indicate the CPU state. In each state, WB (writeback) of instruction n,MEM
(memory access) of instruction n+1, EX (execution) of instruction n+2, ID (instruction decode) of instruction n+3, and
IF (instruction fetch) of instruction n+4 are simultaneously performed. It takes five clock cycles to process a standard
instruction, from the IF stage to the WB stage. Because five instructions can be processed at the same time, however,
a standard instruction can be executed in 1 clock on average.

IF (Instruction fetch) Instruction is fetched and fetch pointer is incremented.

ID (Instruction decode) Instruction is decoded and creation of immediate data and reading of register is performed.

EX (Execution) Decoded instruction is executed.

MEM (Memory access) Memory of target address is accessed.

WB (writeback) The execution result is written to register.

IF ID EX MEM WBInstruction 1

System Clock

(State)

End of

Instruc-

tion 1

End of

Instruct

ion 3

End of

Instruct

ion 4

End of

Instruct

ion 5

End of

Instruct

ion 6

End of

Instruct

ion 8

End of

Instruct

ion 9

Instruction executed every 1 clock cycle

Time Flow

Processing CPU per-

forms simultaneously <5> <6><4><1> <2> <3> <13><12><11><9> <10><8><7>

IF ID EX MEM WB

IF ID EX MEM WB

IF ID EX MEM WB

IF ID EX MEM WB

Instruction 2

Instruction 4

Instruction 3

Instruction 5

Instruction 6

Instruction 7

Instruction 8

Instruction 9

IF ID EX MEM WB

IF ID EX MEM WB

IF ID EX MEM WB

IF ID EX MEM WB

End of

Instruct

ion 7

End of

Instruct

ion 2

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

566 User’s Manual U19383EJ1V0UM00

(1) Pipeline disorder
The pipeline consists of 5 stages from IF (Instruction Fetch) to WB (Write Back). Each stage requires 1 clock for
processing, but the pipeline may become disordered, causing the number of execution clocks to increase. This
section describes the main causes of pipeline disorder.

(a) Alignment hazard
If the branch destination instruction address is not word aligned (A1 = 1, A0 = 0) and is 4 bytes in length,
it is necessary to repeat IF twice in order to align instructions in word units. This is called an alignment haz-
ard.
For example, assume that the instructions a to e are placed from address X0H,and that instruction b con-
sists of 4 bytes, and the other instructions each consist of 2 bytes. In this case, instruction b is placed at
X2H (A1 = 1, A0 = 0), and is not word aligned (A1 = 0, A0 = 0). Therefore, when this instruction b
becomes the branch destination instruction, an alignment hazard occurs. When an alignment hazard
occurs, the number of execution clocks of the branch instruction becomes 4.

Figure 4-65. Alignment Hazard Example

Remark (IF) : Instruction fetch that is not executed
--- : idle inserted for wait
IF1 : Instruction fetch occurs once in case of alignment hazard. It is a 2-byte fetch that fetches
the 2 bytes of the lower address of instruction b.
IF2 : Second instruction fetch that occurs during alignment hazard. It is normally a 4-byte fetch
that fetches the 2 bytes of the upper address of instruction b in addition to instruction c (2-byte
length).

Alignment hazards can be prevented via the following handling in order to obtain faster instruction execu-
tion.

- Use 2-byte branch destination instructions.

- Use 4-byte instructions placed at word boundaries (A1 = 0, A0 = 0) for branch destination instructions.

Address of branch destination Instruction (instruction b

Instruction d

Instruction b

Instruction a

Instruction e

Instruction c

Instruction b
x4H

X0H

32bit

x8H

<2><1> <3> <4> <5> <6>

IFBranch Instruction

Next Instruction

(IF)Instruction after that

ID

<7> <8> <9>

EX MEM WB

IF1 IF2 ID EX MEM WB

IF ID EX MEM WB

<10>

Branch destination Instruction (Instruction b)

Branch destination Instruction (Instruction c)

(IF)

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

User’s Manual U19383EJ1V0UM00 567

(b) Referencing execution result of load instruction
For load instructions (LD, SLD), data read in the MEM stage is saved during the WB stage. Therefore, if the

contents of the same register are used by the instruction immediately after the load instruction, it is neces-

sary to delay the use of the register by this later instruction until the load instruction has finished using that

register. This is called a hazard. The V850 microcontrollers has an interlock function to automatically han-

dle this hazard by delaying the ID stage of the next instruction.

The V850 microcontrollers also has a short path that allows the data read during the MEM stage to be used

in the ID stage of the next instruction. This short path allows data to be read by the load instruction during

the MEM stage and used in the ID stage of the next instruction at the same timing.

As a result of the above, when using the execution result in the instruction following immediately after, the
number of execution clocks of the load instruction is 2.

Figure 4-66. Example of Execution Result of Load Instruction

Remark IL : Idle inserted for data wait by interlock function
--- : Idle inserted for wait
↓ : Short Path

As shown in above figure, when an instruction placed immediately after a load instruction uses the execu-
tion result of the load instruction, a data wait time occurs due to the interlock function, and the execution
speed is lowered. This drop in execution speed can be avoided by placing instructions that use the execu-
tion result of a load instruction at least 2 instructions after the load instruction.

(c) Referencing execution result of multiply instruction
For multiply instructions (MULH, MULHI), the operation result is saved to the register in the WB stage.

Therefore, if the contents of the same register are used by the instruction immediately after the multiply

instruction, it is necessary to delay the use of the register by this later instruction until the multiply instruction

has finished using that register (occurrence of hazard).

The V850 microcontrollers interlock function delays the ID stage of the instruction following immediately
after. A short path is also provided that allows the EX2 stage of the multiply instruction and the multiply
instruction’s operation result to be used in the ID stage of the instruction following immediately after at the
same timing.

Load instruction 1 (LD [R4], R6)

Instruction 2 (ADD 2, R6)

Instruction 3

Instruction 4

<2><1> <3> <4> <5> <6>

IF

ID EX MEM WB

<7> <8> <9>

ID EX MEM WB

ID EX MEM WB

IF

IF ID EX MEM WB

IL

IF

↓

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

568 User’s Manual U19383EJ1V0UM00

Figure 4-67. Example of Execution Result of Multiply Instruction

Remark IL : Idle inserted for data wait by interlock function
--- : Idle inserted for wait
↓ : Short Path

As shown in above figure, when an instruction placed immediately after a multiply instruction uses the exe-

cution result of the multiply instruction, a data wait time occurs due to the interlock function, and the execu-

tion speed is lowered. This drop in execution speed can be avoided by placing instructions that use the

execution result of a multiply instruction at least 2 instructions after the multiply instruction.

(d) Referencing execution result of LDSR instruction for EIPC and FEPC
When using the LDSR instruction to set the data of the EIPC and FEPC system registers, and immediately

after referencing the same system registers with the STSR instruction, the use of the system registers for

the STSR instruction is delayed until the setting of the system registers with the LDSR instruction is com-

pleted (occurrence of hazard).

The V850 microcontrollers interlock function delays the ID stage of the STSR instruction immediately after.

As a result of the above, when using the execution result of the LDSR instruction for EIPC and FEPC for an
STSR instruction following immediately after, the number of execution clocks of the LDSR instruction
becomes 3.

Figure 4-68. Example of Referencing Execution Result of LDSR Instruction for EIPC and FEPC

Note System register 0 used for the LDSR and STSR instructions indicates EIPC.

Remark IL : Idle inserted for data wait by interlock function
--- : Idle inserted for wait

As shown in above figure, when an STSR instruction is placed immediately after an LDSR instruction that
uses the operand EIPC or FEPC, and that STSR instruction uses the LDSR instruction execution result, the
interlock function causes a data wait time to occur, and the execution speed is lowered. This drop in execu-

Multiply Instruction 1 (MULH 3, R6)

Instruction 2 (ADD 2, R6)

Instruction 3

<2><1> <3> <4> <5> <6>

IF

ID EX MEM WB

<7> <8> <9>

ID EX1 EX2 WB

ID EX MEM WB

IF

IF ID EX MEM WB

IL

IF

↓

Instruction 4

LDSR Instruction (LDSR R6, 0)Note

STSR Instruction (STSR 0, R7)Note

Next Instruction

<2><1> <3> <4> <5> <6>

IF

ID EX MEM WB

<7> <8> <9>

ID

ID EX MEM WB

IF

IF ID EX MEM WB

IL

IF

IL

EX MEM WB

<10>

Instruction after that

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

User’s Manual U19383EJ1V0UM00 569

tion speed can be avoided by placing STSR instructions that reference the execution result of the preceding
LDSR instruction at least 3 instructions after the LDSR instruction.

(e) Cautions when creating programs
When creating programs, pipeline disorder can be avoided and instruction execution speed can be raised
by observing the following cautions.

- Place instructions that use the execution result of load instructions (LD, SLD) at least 2 instructions
after the load instruction.

- Place instructions that use the execution result of multiply instructions (MULH, MULHI) at least 2
instructions after the multiply instruction.

- If using the STSR instruction to read the setting results written to the EIPC or FEPC registers with the
LDSR instruction, place the STSR instruction at least 3 instructions after the LDSR instruction.

- For the first branch destination instruction, use a 2-byte instruction, or a 4-byte instruction placed at a
word boundary.

(2) Additional Items Related to Pipeline

(a) Harvard architecture
The V850 microcontrollers uses Harvard architecture to operate an instruction fetch path from internal ROM
and a memory access path to internal RAM independently. This eliminates path arbitration conflicts
between the IF and MEM stages and allows orderly pipeline operation.

<1> V850 microcontrollers (Harvard architecture)
The MEM stage of instruction 1 and the IF stage of instruction 4, as well as the MEM stage of instruc-
tion 2 and the IF stage of instruction 5 can be executed simultaneously with an orderly pipeline opera-
tion.

Instruction 1

Instruction 2

Instruction 3

<2><1> <3> <4> <5> <6>

IF

ID EX MEM WB

<7> <8> <9>

ID

ID EX MEM WB

IF

IF ID EX MEM WB

EX MEM WB

Instruction 4

IF

IF ID EX MEM WBInstruction 5

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

570 User’s Manual U19383EJ1V0UM00

<2> Not Harvard architecture
The MEM stage of instruction 1 and the IF stage of instruction 4, in addition to the MEM stage of
instruction 2 and the IF stage of instruction 5 are in conflict, causing path waiting to occur and slower
execution time due to disorderly pipeline operation.

Remark --- : Idle inserted for wait

(b) Short path
The V850 microcontrollers provides on chip a short path that allows the use of the execution result of the
preceding instruction by the following instruction before writeback (WB) is completed for the previous
instruction.

Examples 1. Execution result of arithmetic operation instruction and logical operation used by instruction
following immediately after:V850 microcontrollers (on-chip short path)
The execution result of the preceding instruction can be used for the ID stage of the instruc-
tion following immediately after as soon as the result is out (EX stage), without having to
wait for writeback to be completed.

2. Execution result of arithmetic operation instruction and logical operation used by instruction
following immediately after:No short path
The ID stage of the instruction following immediately after is delayed until writeback of the
previous instruction is completed.

Instruction 5

Instruction 2

Instruction 3

<2><1> <3> <4> <5> <6>

IF

ID EX MEM WB

<7> <8> <9>

ID

ID EX MEM WB

IF

IF ID EX MEM WB

EX MEM WB

Instruction 4

IF ---

--- ---

Instruction 1 IF ID EX MEM WB

<10> <11>

↓
MOV R6, R7

<2><1> <3> <4> <5> <6>

ID EX MEM WBIF

ADD 2, R6 IF ID EX MEM WB

ADD 2, R6

MOV R6, R7

<2><1> <3> <4> <5> <6> <7> <8>

EX MEM WBIF ---

IF ID EX MEM WB

--- ID

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

User’s Manual U19383EJ1V0UM00 571

3. Data read from memory by the load instruction used by instruction following immediately
after:V850 microcontrollers (on-chip short path)
The execution result of the preceding instruction can be used for the ID stage of the instruc-
tion following immediately after as soon as the result is out (MEM stage), without having to
wait for writeback to be completed

4. Data read from memory by the load instruction used by instruction following immediately
after:No short path
The ID stage of the instruction following immediately after is delayed until writeback of the
previous instruction is completed.

(3) Pipeline Flow During Execution of Instructions
This section explains the pipeline flow during the execution of instructions.
Instruction fetch (IF stage) is subjected to internal ROM/PROM and Memory access (MEM stage) is subjected
to internal RAM. In this case, IF stage and MEM stage requires 1 clock for processing. In other cases, it takes
fixed access time and pass wait time. Access time is as follows.

Table 4-65. Access Time (number of clocks)

Remark n : Wait number

Stage Internal ROM/PROM

(32 bits)

Internal RAM

(32 bits)

Internal Peripheral I/O

(8/16 bits)

External Memory

(16 bits)

Instrcution Fetch

(IF)

1 3 Can not specified 3 + n

Memory Access

(MEM)

3 1 3 + n 3 + n

LD [R4], R6

ADD 2, R6

Next Instruction

Instruction after that

↓

<2><1> <3> <4> <5> <6>

ID EX MEM WB

<7> <8> <9>

IL EX MEM WB

IF

IF ID EX MEM WB

IF

IF ID EX MEM WB

ID

LD [R4], R6

ADD 2, R6

Next Instruction

Instruction after that

<2><1> <3> <4> <5> <6>

IF

<7> <8> <9>

ID

ID EX MEM WB

EX MEM WB

IF ---

IF ID EX MEM WB

<10>

IF ID EX MEM WB

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

572 User’s Manual U19383EJ1V0UM00

[Instructions]

LD, SLD

[Pipeline]

[Description]

The pipeline consists of 5 stages, IF, ID, EX, MEM, and WB.
If an instruction using the execution result is placed immediately after the load instruction, data wait time occurs.

Load instructions

<2><1> <3> <4> <5> <6>

IF ID EX MEM WBLoad instruction

Next instruction IF ID EX MEM WB

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

User’s Manual U19383EJ1V0UM00 573

[Instructions]

SST, ST

[Pipeline]

[Description]

The pipeline consists of 5 stages, IF, ID, EX, MEM and WB. However, no operation is performed in the WB stage,
because no data is written to registers.

Store instructions

<2><1> <3> <4> <5> <6>

IF ID EX MEM WBStore instruction

Next instruction IF ID EX MEM WB

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

574 User’s Manual U19383EJ1V0UM00

[Instructions]

ADD, ADDI, CMP, MOV, MOVEA, MOVHI, SETF, SUB, SUBR

[Pipeline]

[Description]

The pipeline consists of 5 stages, IF, ID, EX, MEM and WB. However, no operation is performed.

Arithmetic operation instructions (Excluding multiply and divide instructions)

<2><1> <3> <4> <5> <6>

IF ID EX MEM WBArithmetic operation instruction

Next instruction IF ID EX MEM WB

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

User’s Manual U19383EJ1V0UM00 575

[Instructions]

MULH, MULHI

[Pipeline]

(1) When the next instruction is not a multiply instruction

(2) When the next instruction is a multiply instruction

[Description]

The pipeline consists of 5 stages, IF, ID, EX1, EX2, and WB.
There is no MEM stage. The EX stage requires 2 clocks, but the EX1 and EX2 stages can operate independently.

Therefore, the number of clocks for instruction execution is always 1, even if several multiply instructions are executed
in a row. However, if an instruction using the execution result is placed immediately after a multiply instruction, data
wait time occurs.

Arithmetic operation instructions (Multiply instructions)

EX1 EX2 WB

<2><1> <3> <4> <5> <6>

IF ID
Arithmetic operation instruction

Next instruction IF EX MEM WBID

EX1 EX2 WB

<2><1> <3> <4> <5> <6>

IF ID
Arithmetic operation instruction

Next instruction IF WBID EX1 EX2

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

576 User’s Manual U19383EJ1V0UM00

[Instructions]

DIVH

[Pipeline]

Remark --- : Idle inserted for wait

[Description]

The pipeline consists of 40 stages, IF, ID, EX1 to EX36, MEM, and WB. No operation is performed in the MEM
stage, because memory is not accessed.

The EX stage requires 36 clocks.

Arithmetic operation instructions (Divide instructions)

<2><1> <3> <4>

IF ID EX1 EX2Divide instruction

IF

EX35 EX36 MEM WB

<37> <38> <39> <40> <41> <42>

ID EX MEM WB--- ---

IF ID EX MEM WBInstruction after that

...

...

Next instruction

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

User’s Manual U19383EJ1V0UM00 577

[Instructions]

AND, ANDI, NOT, OR, ORI, SAR, SHL, SHR, TST, XOR, XORI

[Pipeline]

[Description]

The pipeline consists of 5 stages, IF, ID, EX, MEM and WB. No operation is performed in the MEM stage, because
memory is not accessed.

Logical operation instructions

<2><1> <3> <4> <5> <6>

IF ID EX MEM WB
Logical operation instruction

Next instruction IF ID EX MEM WB

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

578 User’s Manual U19383EJ1V0UM00

[Instructions]

SATADD, SATSUB, SATSUBI, SATSUBR

[Pipeline]

[Description]

The pipeline consists of 5 stages, IF, ID, EX, MEM and WB. No operation is performed in the MEM stage, because
memory is not accessed.

Saturation operation instructions

<2><1> <3> <4> <5> <6>

IF ID EX MEM WB
Saturation operation instruction

Next instruction IF ID EX MEM WB

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

User’s Manual U19383EJ1V0UM00 579

[Instructions]

Bcnd instructions

[Pipeline]

(1) When the condition is not satisfied

(2) When the condition is satisfied

Remark (IF): Instruction fetch that is not executed
(ID): Instruction decode that is not executed

[Description]

The pipeline consists of 5 stages, IF, ID, EX, MEM, and WB. However, no operation is performed in the MEM and
WB stages, because memory is not accessed and no data is written to registers.

(1) When the condition is not satisfied
The number of execution clocks for the branch instruction is 1.

(2) When the condition is satisfied
The number of execution clocks for the branch instruction is 3. The IF stage of the next instruction and next to next

instruction of the branch instruction is not executed.

Branch instructions (Conditional branch instructions: Except BR instruction)

<2><1> <3> <4> <5> <6>

IF ID EX MEM WBBranch instruction

Next instruction IF ID EX MEM WB

<2><1> <3> <4> <5> <6>

IF ID EX MEM WB

(IF) (ID)

IF ID EX MEM WB

(IF)

<7> <8><2><1> <3> <4> <5> <6>

IF ID EX MEM WBBranch instruction

Next instruction

Instruction after that

Branch destination instruction IF ID EX MEM WB

<7> <8>

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

580 User’s Manual U19383EJ1V0UM00

[Instructions]

BR, JARL, JMP, JR

[Pipeline]

Remark (IF) : Instruction fetch that is not executed
WB * : No operation is performed in the case of the JMP instruction, JR instruction, and BR instruction,
but in the case of the JARL instruction, data is written to the restore PC.

[Description]

The pipeline consists of 5 stages, IF, ID, EX, MEM, and WB. However, no operation is performed in the MEM and
WB stages, because memory is not accessed and no data is written to registers. However, in the case of the JARL
instruction, data is written to the restore PC in the WB stage. Also, the IF stage of the next instruction of the branch
instruction is not executed.

Branch instructions (BR instruction,unconditional branch instructions)

<2><1> <3> <4> <5> <6>

IF ID EX MEM WB *Branch instruction

Next instruction (IF)

Branch destination instruction IF ID EX MEM WB

<7> <8>

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

User’s Manual U19383EJ1V0UM00 581

[Instructions]

CLR1, NOT1, SET1

[Pipeline]

Remark ---: Idle inserted for wait

[Description]

The pipeline consists of 8 stages, IF, ID, EX1, MEM, EX2, EX3, MEM, and WB. However, no operation is performed
in the WB stage, because no data is written to registers.

In the case of these instructions, the memory access is read modify write, and the EX and MEM stages require 3
and 2 clocks, respectively.

Bit manipulation instructions (CLR1, NOT1, SET1 instructions)

<2><1> <3> <4> <5> <6>

IF ID EX1 MEM EX2Bit manipulation instruction

Next instruction IF

Instruction after that IF ID EX MEM WB

<7> <8>

EX3 MEM WB

--- --- --- ID EX MEM WB

<9> <10>

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

582 User’s Manual U19383EJ1V0UM00

[Instructions]

TST1

[Pipeline]

Remark ---: Idle inserted for wait

[Description]

The pipeline consists of 8 stages, IF, ID, EX1, MEM, EX2, EX3, MEM, and WB. However, no operation is performed
in the second MEM and WB stages, because there is no second memory access nor data write to registers.

In the case of this instruction, the memory access is read modify write, and the EX and MEM stage require 3 and 2
clocks, respectively.

Bit manipulation instructions (TST1 instructions)

<2><1> <3> <4> <5> <6>

IF ID EX1 MEM EX2Bit manipulation instruction

Next instruction IF

Instruction after that IF ID EX MEM WB

<7> <8>

EX3 MEM WB

--- --- --- ID EX MEM WB

<9> <10>

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

User’s Manual U19383EJ1V0UM00 583

[Instructions]

DI, EI

[Pipeline]

[Description]

The pipeline consists of 5 stages, IF, ID, EX, MEM, and WB. However, no operation is performed in the MEM and
WB stages, because memory is not accessed and data is not written to registers.

Special instructions (DI, EI instructions)

<2><1> <3> <4> <5> <6>

IF ID EX MEM WBSpecial instruction

Next instruction IF ID EX MEM WB

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

584 User’s Manual U19383EJ1V0UM00

[Instructions]

HALT

[Pipeline]

Remark ---: Idle inserted for wait

[Description]

The pipeline consists of 5 stages, IF, ID, EX, MEM and WB. No operation is performed in the MEM and WB stages,
because memory is not accessed and no data is written to registers. Also, for the next instruction, the ID stage is
delayed until the HALT mode is released.

Special instructions (HALT instructions)

HALT mode release

<2><1> <3> <4>

IF IDSpecial instruction

IF ID EX MEM WB...--- ---

Instruction after that

EX MEM WB

IF ID EX MEM WB

<5> <6>

Next instruction

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

User’s Manual U19383EJ1V0UM00 585

[Instructions]

LDSR, STSR

[Pipeline]

[Description]

The pipeline consists of 5 stages, IF, ID, EX, MEM and WB. However, no operation is performedin the MEM stage,
because memory is not accessed. Also, if the STSR instruction using the EIPC and FEPC system registers is placed
immediately after the LDSR instruction setting these registers, data wait time occurs.

Special instructions (LDSR, STSR instructions)

<2><1> <3> <4> <5> <6>

IF ID EX MEM WBSpecial instruction

Next instruction IF ID EX MEM WB

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

586 User’s Manual U19383EJ1V0UM00

[Instructions]

NOP

[Pipeline]

[Description]

The pipeline consists of 5 stages, IF, ID, EX, MEM, and WB. However, no operation is performed in the EX, MEM
and WB stages, because no operation and no memory access is executed, and no data is written to registers.

Special instructions (NOP instructions)

<2><1> <3> <4> <5> <6>

IF ID EX MEM WBSpecial instruction

Next instruction IF ID EX MEM WB

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

User’s Manual U19383EJ1V0UM00 587

[Instructions]

RETI

[Pipeline]

Remark (IF) : Instruction fetch that is not executed
ID1 : Register select
ID2 : Read EIPC/FEPC

[Description]

The pipeline consists of 6 stages, IF, ID1, ID2, EX, MEM, and WB. However, no operation is performed in the MEM
and WB stages, because memory is not accessed and no data is written to registers.

The ID stage requires 2 clocks. Also, the IF stage of the next instruction and next to next instruction is not executed.

Special instructions (RETI instructions)

<2><1> <3> <4> <5> <6>

IF ID1 ID2Special instruction

Next instruction (IF)

Branch destination instruction IF ID EX MEM WB

<7> <8> <9>

EX MEM WB

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

588 User’s Manual U19383EJ1V0UM00

[Instructions]

TRAP

[Pipeline]

Remark (IF) : Instruction fetch that is not executed
ID1 : Trap code detect
ID2 : Address generate

[Description]

The pipeline consists of 6 stages, IF, ID1, ID2, EX, MEM, and WB. However, no operation is performed in the MEM
stage, because memory is not accessed.

The ID stage requires 2 clocks. Also, the IF stage of the next instruction and next to next instruction is not executed.

Special instructions (TRAP instructions)

<2><1> <3> <4> <5> <6>

IF ID1 ID2Special instruction

Next instruction (IF)

Jump destination instruction IF ID EX MEM WB

<7> <8> <9>

EX MEM WB

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

User’s Manual U19383EJ1V0UM00 589

4.5.15 Pipeline (V850ES)

V850ES is based on RISC architecture and executes almost all instructions in one clock cycle under control of
a 5-stage pipeline. The instruction execution sequence usually consists of five stages from fetch IF (Instruction fetch)
to WB (writeback).

The execution time of each stage differs depending on the type of the instruction and the type of the memory to be
accessed.

As an example of pipeline operation, following figure shows the processing of the CPU when 9 standard instructions
are executed in succession.

Figure 4-69. Example of Executing Nine Standard Instructions

<1> through <13> in the figure above indicate the CPU state. In each state, WB (writeback) of instruction n,MEM
(memory access) of instruction n+1, EX (execution) of instruction n+2, ID (instruction decode) of instruction n+3, and
IF (instruction fetch) of instruction n+4 are simultaneously performed. It takes five clock cycles to process a standard
instruction, from the IF stage to the WB stage. Because five instructions can be processed at the same time, however,
a standard instruction can be executed in 1 clock on average.

I F(Instruction fetch) Instruction is fetched and fetch pointer is incremented.

ID (Instruction decode) Instruction is decoded and creation of immediate data and reading of register is performed.

EX (Execution) Decoded instruction is executed.

MEM (Memory access) Memory of target address is accessed.

WB (writeback) The execution result is written to register.

IF ID EX MEM WBInstruction 1

System Clock

(State)

End of

Instruct

ion 1

End of

Instruct

ion 3

End of

Instruct

ion 4

End of

Instruct

ion 5

End of

Instruct

ion 6

End of

Instruct

ion 8

End of

Instruct

ion 9

Instruction executed every 1 clock cycle

Time Flow

Processing CPU per-

forms simultaneously <5> <6><4><1> <2> <3> <13><12><11><9> <10><8><7>

IF ID EX MEM WB

IF ID EX MEM WB

IF ID EX MEM WB

IF ID EX MEM WB

Instruction 2

Instruction 4

Instruction 3

Instruction 5

Instruction 6

Instruction 7

Instruction 8

Instruction 9

IF ID EX MEM WB

IF ID EX MEM WB

IF ID EX MEM WB

IF ID EX MEM WB

End of

Instruct

ion 7

End of

Instruct

ion 2

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

590 User’s Manual U19383EJ1V0UM00

V850ES is much improved than previous version of V850 Series for CPI (Cycle per instruction) by performing the
optimization of pipeline. Pipeline configuration of V850ES is shown below.

Figure 4-70. Pipeline Configuration (V850ES)

Remark DF (Data fetch): Execution data is transferred to WB stage

(1) Non-blocking load/store
As the pipeline does not stop during external memory access, efficient processing is possible.
For example, following shows a comparison of pipeline operations between the V850 microcontrollers and
V850ES when an ADD instruction is executed after the execution of a load instruction for external memory.

(a) V850 microcontrollers
The EX stage of the ADD instruction is usually executed in 1 clock. However, a wait time is generated in
the EX stage of the ADD instruction during execution of the MEM stage of the previous load instruction.
This is because the same stage of the 5 instructions on the pipeline cannot be executed in the same inter-
nal clock interval. This also causes a wait time to be generated in the ID stage of the next instruction after
the ADD instruction.

Note The basic bus cycle for the external memory is 3 clocks.

IF
Asynchronus WB pipeline

Address calculation stage

EX

Pipeline ID

ID

MEM

Mater pipeline (V850 Series compatible)

Bcnd/SLD WB

DF

Load, store buffer (1 stage each)

WB

IF ID EX
T1

WB

IF ID EX WB

Load instruction

ADD instruction (MEM)

Next instruction

T3T2

MEMNote

IF ID WBMEMEX

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

User’s Manual U19383EJ1V0UM00 591

(b) V850ES
An asynchronous WB pipeline for the instructions that are necessary for the MEM stage is provided in addi-
tion to the master pipeline. The MEM stage of the load instruction is therefore processed by this asynchro-
nous WB pipeline. Because the ADD instruction is processed by the master pipeline, a wait time is not
generated, making it possible to execute instructions efficiently as shown in following figure.

Note The basic bus cycle for the external memory is 2 clocks.

(2) 2-clock branch
When executing a branch instruction, the branch destination is decided in the ID stage.
In the case of V850 microcontrollers, the branch destination of when the branch instruction is executed was
decided after execution of the EX stage, but in the case of V850ES, due to the addition of an address calcula-
tion stage for branch/SLD instruction, the branch destination is decided in the ID stage. Therefore, it is possible
to fetch the branch destination instruction 1 clock faster than in the conventional V850 microcontrollers for
V850ES.
Following figure shows a comparison between the V850 microcontrollers and V850ES for pipeline operations
with branch instructions.

(a) V850 microcontrollers

(b) V850ES

Remark Products of V850ES type B execute interleave access to internal flash memory or internal mask
ROM. Therefore, it takes two clocks to fetch an instruction immediately after an interrupt has

IF ID EX
T1

WB

IF ID WB

Load instruction

ADD instruction DF

Next instruction

T2

MEMNote

IF WBMEMEX

EX

ID

IF ID EX MEM WB

Branch instruction

Branch destination instruction

3 Clocks

Branch destination decided in EX stage

IF ID EX MEM WB

IF ID EX MEM WB

Branch instruction

Branch destination instruction

2 Clocks

Branch destination decided in ID Stage

IF ID EX MEM WB

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

592 User’s Manual U19383EJ1V0UM00

occurred or after a branch destination instruction has been executed. Consequently, it takes three
clocks to execute the ID stage of the branch destination instruction.

Example

(3) Efficient pipeline processing
Because the V850ES has an ID stage for branch/SLD instructions in addition to the ID stage on the master pipe-
line, it is possible to perform efficient pipeline processing.
Following figure shows an example of a pipeline operation where the next branch instruction was fetched in the
IF stage of the ADD instruction (instruction fetch from the ROM directly connected to the dedicated bus is per-
formed in 32-bit units. Both ADD instructions and branch instructions in following figure use a 16-bit format
instruction).

(a) V850 microcontrollers
Although the instruction codes up to the next branch instruction are fetched in the IF stage of the ADD
instruction, the ID stage of the ADD instruction and the ID stage of the branch instruction cannot be exe-
cuted together within the same clock. Therefore, it takes 5 clocks from the branch instruction fetch to the
branch destination instruction fetch.

 instruction 1

 instruction 2

 instruction 3

Branch instruction

3 clocks

Interleave access

IF

IF ID EX MEM WBBranch destination instruction

IF ID EX MEM WB

IF IF ID EX MEM WB

IF IF ID EX MEM WB

IF IF ID

IF

ADD instruction

Branch instruction

5 clocks

IF ID EX MEMBranch destination instruction

IF ID EX MEM WB

IF ID EX (MEM) WB

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

User’s Manual U19383EJ1V0UM00 593

(b) V850ES
Because V850ES has an ID stage for branch/SLD instructions in addition to the ID stage on the master
pipeline, parallel execution of the ID stage of the ADD instruction and the ID stage of the branch instruction
within the same clock is possible. Therefore, it takes only 3 clocks from branch instruction fetch start to
branch destination instruction completion.

Remark Be aware that the SLD and Bcnd instructions are sometimes executed at the same time as other 16-
bit format instructions. For example, if the SLD and NOP instructions are executed simultaneously,
the NOP instruction may keep the delay time from being generated.

(4) Pipeline Disorder
The pipeline consists of 5 stages from IF (Instruction Fetch) to WB (Write Back). Each stage requires 1 clock for
processing, but the pipeline may become disordered, causing the number of execution clocks to increase. This
section describes the main causes of pipeline disorder.

(a) Alignment hazard
If the branch destination instruction address is not word aligned (A1 = 1, A0 = 0) and is 4 bytes in length, it
is necessary to repeat IF twice in order to align instructions in word units. This is called an alignment haz-
ard.
For example, assume that the instructions a to e are placed from address X0H,and that instruction b con-
sists of 4 bytes, and the other instructions each consist of 2 bytes. In this case, instruction b is placed at
X2H (A1 = 1 A0 = 0), and is not word aligned (A1 = 0, A0 = 0). Therefore, when this instruction b
becomes the branch destination instruction, an alignment hazard occurs. When an alignment hazard
occurs, the number of execution clocks of the branch instruction becomes 4.

ADD instruction

Branch instruction

3 clocks

IF ID EX MEMBranch destination instruction

IF ID EX MEM WB

IF ID EX DF WB

WB

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

594 User’s Manual U19383EJ1V0UM00

Figure 4-71. Alignment Hazard Example

Remark (IF) : Instruction fetch that is not executed
IF1 : First instruction fetch that occurs during alignment hazard. It is a 2-byte fetch that fetches
the 2 bytes of the lower address of instruction b.
IF2 : Second instruction fetch that occurs during alignment hazard. It is normally a 4-byte fetch
that fetches the 2 bytes of the upper address of instruction b in addition to instruction c (2-byte
length).

Alignment hazards can be prevented via the following handling in order to obtain faster instruction execu-
tion.

- Use 2-byte branch destination instructions.
- Use 4-byte instructions placed at word boundaries (A1 = 0, A0 = 0) for branch destination instructions.

(b) Referencing execution result of load instruction
For load instructions (LD, SLD), data read in the MEM stage is saved during the WB stage. Therefore, if the
contents of the same register are used by the instruction immediately after the load instruction, it is neces-
sary to delay the use of the register by this later instruction until the load instruction has finished using that
register. This is called a hazard. The V850ES has an interlock function to automatically handle this hazard
by delaying the ID stage of the next instruction.
The V850ES also has a short path that allows the data read during the MEM stage to be used in the ID
stage of the next instruction. This short path allows data to be read by the load instruction during the MEM
stage and used in the ID stage of the next instruction at the same timing.
As a result of the above, when using the execution result in the instruction following immediately after, the

number of execution clocks of the load instruction is 2.

Address of branch destination instruction (instruction b)

 instruction d

 instruction b

 instruction a

 instruction e

 instruction c

 instruction b
x4H

X0H

32bit

x8H

<2><1> <3> <4> <5> <6>

IFBranch instruction

Next instruction

ID

<7> <8> <9>

EX MEM WB

IF1 IF2 ID EX MEM WB

IF ID EX MEM WB

Branch destination instruction (instruction b)

Branch destination’s next instruction (instruction c)

(IF)

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

User’s Manual U19383EJ1V0UM00 595

Figure 4-72. Example of Execution Result of Load Instruction

Remark IL : Idle inserted for data wait by interlock function
--- : Idle inserted for wait
↓ : Short Path

As shown in above figure, when an instruction placed immediately after a load instruction uses the execu-

tion result of the load instruction, a data wait time occurs due to the interlock function, and the execution

speed is lowered. This drop in execution speed can be avoided by placing instructions that use the execu-

tion result of a load instruction at least 2 instructions after the load instruction.

(c) Referencing execution result of multiply instruction

For multiply instructions, the operation result is saved to the register in the WB stage. Therefore, if the con-

tents of the same register are used by the instruction immediately after the multiply instruction, it is neces-

sary to delay the use of the register by this later instruction until the multiply instruction has finished using

that register (occurrence of hazard).

The V850ES interlock function delays the ID stage of the instruction following immediately after. A short

path is also provided that allows the EX2 stage of the multiply instruction and the multiply instruction’s oper-

ation result to be used in the ID stage of the instruction following immediately after at the same timing.

Figure 4-73. Example of Execution Result of Multiply Instruction (Half Word Multiply Instruction)

Remark IL : Idle inserted for data wait by interlock function
--- : Idle inserted for wait
↓ : Short Path

Load instruction1 (LD [R4], R6)

 instruction 2 (ADD 2, R6)

 instruction 3

 instruction 4

<2><1> <3> <4> <5> <6>

IF

ID EX MEM WB

<7> <8> <9>

ID EX MEM WB

ID EX MEM WB

IF

IF ID EX MEM WB

IL

IF

↓

Multiply instruction 1 (MULH 3, R6)

 instruction 2 (ADD 2, R6)

 instruction 3

<2><1> <3> <4> <5> <6>

IF

ID EX MEM WB

<7> <8> <9>

ID EX1 EX2 WB

ID EX MEM WB

IF

IF ID EX MEM WB

IL

IF

↓

 instruction 4

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

596 User’s Manual U19383EJ1V0UM00

Figure 4-74. Example of Execution Result of Multiply Instruction (Word Multiply Instruction)

Remark IL : Idle inserted for data wait by interlock function
--- : Idle inserted for wait
↓ : Short Path

As shown in above figure, when an instruction placed immediately after a multiply instruction uses the exe-
cution result of the multiply instruction, a data wait time occurs due to the interlock function, and the execu-
tion speed is lowered. This drop in execution speed can be avoided by placing instructions that use the
execution result of a multiply instruction at least 2 instructions after the multiply instruction. However, in
case of word data multiply instruction (MUL, MULU), IL stage of 1-4 are inserted without placing instruction
that uses result of multiply instructions at least 5 instructions after the multiply instruction.

(d) Referencing execution result of LDSR instruction for EIPC and FEPC
When using the LDSR instruction to set the data of the EIPC and FEPC system registers, and immediately

after referencing the same system registers with the STSR instruction, the use of the system registers for

the STSR instruction is delayed until the setting of the system registers with the LDSR instruction is com-

pleted (occurrence of hazard).

The V850ES interlock function delays the ID stage of the STSR instruction immediately after.

As a result of the above, when using the execution result of the LDSR instruction for EIPC and FEPC for an

STSR instruction following immediately after, the number of execution clocks of the LDSR instruction

becomes 3.

Figure 4-75. Example of Referencing Execution Result of LDSR Instruction for EIPC and FEPC

Note System register 0 used for the LDSR and STSR instructions indicates EIPC.

Remark IL : Idle inserted for data wait by interlock function
--- : Idle inserted for wait

Multiply instruction 1 (MULU 3, R6)

 instruction 2 (ADD 2, R6)

 instruction 3

<2><1> <3> <4> <5> <6>

IF

ID EX MEM WB

<7> <8> <9>

ID EX1 EX2 WB

ID EX MEM WB

IF

IF ID EX MEM WB

IL

IF

↓

 instruction 4

EX1 EX1 EX1

IL IL IL

--- --- ---

<10> <11> <12>

LDSR instruction (LDSR R6, 0)Note

STSR instruction (STSR 0, R7)Note

Next instruction

<2><1> <3> <4> <5> <6>

IF

ID EX MEM WB

<7> <8> <9>

ID

ID EX MEM WB

IF

IF ID EX MEM WB

IL

IF

IL

EX MEM WB

<10>

Instruction after that

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

User’s Manual U19383EJ1V0UM00 597

As shown in above figure, when an STSR instruction is placed immediately after an LDSR instruction that
uses the operand EIPC or FEPC, and that STSR instruction uses the LDSR instruction execution result, the
interlock function causes a data wait time to occur, and the execution speed is lowered. This drop in execu-
tion speed can be avoided by placing STSR instructions that reference the execution result of the preceding
LDSR instruction at least 3 instructions after the LDSR instruction.

(e) Cautions when creating programs
When creating programs, pipeline disorder can be avoided and instruction execution speed can be raised
by observing the following cautions.

- Place instructions that use the execution result of load instructions (LD, SLD) at least 2 instructions
after the load instruction.

- Place instructions that use the execution result of multiply instructions (MULH, MULHI) at least 2
instructions after the multiply instruction.

- If using the STSR instruction to read the setting results written to the EIPC or FEPC registers with the
LDSR instruction, place the STSR instruction at least 3 instructions after the LDSR instruction.

- For the first branch destination instruction, use a 2-byte instruction, or a 4-byte instruction placed at a
word boundary.

(5) Additional Items Related to Pipeline

(a) Harvard architecture
The V850ES uses Harvard architecture to operate an instruction fetch path from internal ROM and a mem-
ory access path to internal RAM independently. This eliminates path arbitration conflicts between the IF
and MEM stages and allows orderly pipeline operation.

<1> V850ES (Harvard architecture)
The MEM stage of instruction 1 and the IF stage of instruction 4, as well as the MEM stage of instruc-
tion 2 and the IF stage of instruction 5 can be executed simultaneously with an orderly pipeline opera-
tion.

 instruction 1

 instruction 2

 instruction 3

<2><1> <3> <4> <5> <6>

IF

ID EX MEM WB

<7> <8> <9>

ID

ID EX MEM WB

IF

IF ID EX MEM WB

EX MEM WB

 instruction 4

IF

IF ID EX MEM WB instruction 5

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

598 User’s Manual U19383EJ1V0UM00

<2> Not Harvard architecture
The MEM stage of instruction 1 and the IF stage of instruction 4, in addition to the MEM stage of
instruction 2 and the IF stage of instruction 5 are in conflict, causing path waiting to occur and slower
execution time due to disorderly pipeline operation.

Remark ---: Idle inserted for wait

(b) Short path
The V850ES provides on chip a short path that allows the use of the execution result of the preceding
instruction by the following instruction before writeback (WB) is completed for the previous instruction.

Examples 1. Execution result of arithmetic operation instruction and logical operation used by instruction
following immediately after: V850ES (on-chip short path)
The execution result of the preceding instruction can be used for the ID stage of the instruc-
tion following immediately after as soon as the result is out (EX stage), without having to
wait for writeback to be completed.

2. Execution result of arithmetic operation instruction and logical operation used by instruction
following immediately after: No short path
The ID stage of the instruction following immediately after is delayed until writeback of the
previous instruction is completed.

 instruction 5

 instruction 2

 instruction 3

<2><1> <3> <4> <5> <6>

IF

ID EX MEM WB

<7> <8> <9>

ID

ID EX MEM WB

IF

IF ID EX MEM WB

EX MEM WB

 instructio 4

IF ---

--- ---

 instruction 1 IF ID EX MEM WB

<10> <11>

↓
MOV R6, R7

<2><1> <3> <4> <5> <6>

ID EX MEM WBIF

ADD 2, R6 IF ID EX MEM WB

ADD 2, R6

MOV R6, R7

<2><1> <3> <4> <5> <6> <7> <8>

EX MEM WBIF ---

IF ID EX MEM WB

--- ID

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

User’s Manual U19383EJ1V0UM00 599

3. Data read from memory by the load instruction used by instruction following immediately
after: V850ES (on-chip short path)
The execution result of the preceding instruction can be used for the ID stage of the instruc-
tion following immediately after as soon as the result is out (MEM stage), without having to
wait for writeback to be completed

4. Data read from memory by the load instruction used by instruction following immediately
after: No short path
The ID stage of the instruction following immediately after is delayed until writeback of the
previous instruction is completed.

(6) Pipeline Flow During Execution of Instructions
This section explains the pipeline flow during the execution of instructions.
In pipeline processing, the CPU is already processing the next instruction when the memory or I/O write cycle is
generated. As a result, I/O manipulations and interrupt request masking will be reflected later than next instruc-
tion is issued (ID stage).
When interrupt mask manipulation is performed, mask able interrupt acknowledgment is disabled from
the next instruction because the CPU detects access to the internal INTC (ID stage) and performs inter-
rupt request mask processing.

LD [R4], R6

ADD 2, R6

Next instruction

Instruction after that

↓

<2><1> <3> <4> <5> <6>

ID EX MEM WB

<7> <8> <9>

IL EX MEM WB

IF

IF ID EX MEM WB

IF

IF ID EX MEM WB

ID

LD [R4], R6

ADD 2, R6

Next instruction

Instruction after that

<2><1> <3> <4> <5> <6>

IF

<7> <8> <9>

ID

ID EX MEM WB

EX MEM WB

IF ---

IF ID EX MEM WB

<10>

IF ID EX MEM WB

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

600 User’s Manual U19383EJ1V0UM00

[Instructions]

LD.B, LD.BU, LD.H, LD.HU, LD.W

[Pipeline]

[Description]

The pipeline consists of 5 stages, IF, ID, EX, MEM, and WB.
If an instruction using the execution result is placed immediately after the LD instruction, data wait time occurs.

Remark Due to non-blocking control, there is no guarantee that the bus cycle is complete between the MEM
stages. However, when accessing the peripheral I/O area, blocking control is effected, making it possi-
ble to wait for the end of the bus cycle at the MEM stage.

Load instructions (LD instructions)

<2><1> <3> <4> <5> <6>

IF ID EX MEM WBLoad instruction

Next instruction IF ID EX MEM WB

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

User’s Manual U19383EJ1V0UM00 601

[Instructions]

SLD.B, SLD.BU, SLD.H, SLD.HU, SLD.W

[Pipeline]

[Description]

The pipeline consists of 4 stages, IF, ID, MEM, and WB.
If an instruction using the execution result is placed immediately after the SLD instruction, data wait time occurs.

Remark Due to non-blocking control, there is no guarantee that the bus cycle is complete between the MEM
stages. However, when accessing the peripheral I/O area, blocking control is effected, making it possi-
ble to wait for the end of the bus cycle at the MEM stage.

Load instructions (SLD instructions)

<2><1> <3> <4> <5> <6>

IF ID MEM WBLoad instruction

Next instruction IF ID EX MEM WB

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

602 User’s Manual U19383EJ1V0UM00

[Instructions]

SST.B, SST.H, SST.W, ST.B, ST.H, ST.W

[Pipeline]

[Description]

The pipeline consists of 5 stages, IF, ID, EX, MEM, and WB. However, no operation is performed in the WB stage,
because no data is written to registers.

Remark Due to non-blocking control, there is no guarantee that the bus cycle is complete between the MEM
stages. However, when accessing the peripheral I/O area, blocking control is effected, making it possi-
ble to wait for the end of the bus cycle at the MEM stage.

Store instructions

<2><1> <3> <4> <5> <6>

IF ID EX MEM WBStore instruction

Next instruction IF ID EX MEM WB

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

User’s Manual U19383EJ1V0UM00 603

[Instructions]

MULH, MULHI

[Pipeline]

(1) When next instruction is not multiply instruction

(2) When next instruction is multiply instruction

[Description]

The pipeline consists of 5 stages, IF, ID, EX1, EX2, and WB.
The EX stage takes 2 clocks because it is executed by a multiplier. EX1 and EX2 stages (different from the normal

EX stage) can operate independently. Therefore, the number of clocks for instruction execution is always 1 clock,
even if several multiply instructions are executed in a row. However, if an instruction using the execution result is
placed immediately after a multiply instruction, data wait time occurs.

Multiply instructions (Half word data multiply instructions)

EX1 EX2 WB

<2><1> <3> <4> <5> <6>

IF IDMultiply instruction

Next instruction IF EX MEM WBID

EX1 EX2 WB

<2><1> <3> <4> <5> <6>

IF IDMultiply instruction1

Multiply instruction2 IF WBID EX1 EX2

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

604 User’s Manual U19383EJ1V0UM00

[Instructions]

MUL, MULU

[Pipeline]

(1) When the next three instructions are not multiply instructions

(2) When the next instruction is a multiply instruction

Remark ---: Idle inserted for wait

(3) When the instruction following the next two instructions is a multiply instruction

Remark ---: Idle inserted for wait

Multiply instructions (Word data multiply instructions)

<2><1> <3> <4> <5> <6>

IF ID EX1 EX2 WBMultiply instruction

 instruction 1 IF ID WB

 instruction 2

 instruction 3

EX1 EX1 EX1

EX MEM

IF ID WBEX MEM

IF ID WBEX MEM

<7> <8>

Multiply instruction

 instruction 2

<2><1> <3> <4> <5> <6>

IF ID EX1 EX2 WBMultiply instruction1

Multiply instruction2
IF ID WBEX1 EX2

EX1 EX1 EX1

---------(halfword)

<7> <8> <9>

Multiply instruction 1

<2><1> <3> <4> <5> <6>

IF ID EX1 EX2 WBMultiply instruction 1

IF

EX1 EX1 EX1

<7> <8> <9>

IF

Multiply instruction 2
IF ID WBEX1 EX2---(halfword)

 instruction 2

 instruction 1 ID WBEX MEM

ID WBEX MEM

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

User’s Manual U19383EJ1V0UM00 605

[Description]

The pipeline consists of 8 stages, IF, ID, EX1 (4 stages), EX2, and WB.
The EX stage takes 5 clocks because it is executed by a multiplier. EX1 and EX2 stages (different from the normal

EX stage) can operate independently. Therefore, the number of clocks for instruction execution is always 4 clocks,
even if several multiply instructions are executed in a row. However, if an instruction using the execution result is
placed immediately after a multiply instruction, data wait time occurs.

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

606 User’s Manual U19383EJ1V0UM00

[Instructions]

ADD, ADDI, CMOV, CMP, MOV, MOVEA, MOVHI, SASF, SETF, SUB, SUBR

[Pipeline]

[Description]

The pipeline consists of 5 stages, IF, ID, EX, DF, and WB.

Arithmetic operation instructions (Excluding divide and move word instructions)

<2><1> <3> <4> <5> <6>

IF ID EX DF WBArithmetic operation instruction

Next instruction IF ID EX MEM WB

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

User’s Manual U19383EJ1V0UM00 607

[Instructions]

DIV, DIVH, DIVHU, DIVU

[Pipeline]

(1) When DIV or DIVH

Remark ---: Idle inserted for wait

(2) When DIVHU or DIVU

Remark ---: Idle inserted for wait

[Description]

The pipeline consists of 39 stages, IF, ID, EX1 to EX35 (normal EX stage), DF, and WB for DIV and DIVH instruc-
tions. The pipeline consists of 38 stages, IF, ID, EX1 to EX34 (normal EX stage), DF, and WB for DIVHU and DIVU
instructions.

[Remark]

If an interrupt occurs while a division instruction is executed, execution of the instruction is stopped, and the interrupt
is processed, assuming that the return address is the first address of that instruction. After interrupt servicing has
been completed, the division instruction is executed again. In this case, general-purpose registers reg1 and reg2 hold
the value before the instruction is executed.

Arithmetic operation instructions (Divide instructions)

<2><1> <3> <4>

IF ID EX1 EX2Divide instruction

Next instruction IF

EX33 EX34 DF

<35> <36> <37> <38> <39> <40>

ID EX MEM WB--- ---

IF ID EX MEM WBInstruction after that

...

...

<41>

WBEX35

<2><1> <3> <4>

IF ID EX1 EX2Divide instruction

Next instruction IF

EX33 EX34 DF

<35> <36> <37> <38> <39> <40>

ID EX MEM WB--- ---

IF ID EX MEM WBInstruction after that

...

... WB

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

608 User’s Manual U19383EJ1V0UM00

[Instructions]

MOV imm32

[Pipeline]

Remark ---: Idle inserted for wait

[Description]

The pipeline consists of 6 stages, IF, ID, EX1, EX2 (normal EX stage), DF, and WB.

Arithmetic operation instructions (Move word instructions)

<7>

EX1 EX2 WB

<2><1> <3> <4> <5> <6>

IF ID DFArithmetic operation instruction

Next instruction IF ID EX MEM WB

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

User’s Manual U19383EJ1V0UM00 609

[Instructions]

SATADD, SATSUB, SATSUBI, SATSUBR

[Pipeline]

[Description]

The pipeline consists of 5 stages, IF, ID, EX, DF, and WB.

Saturation operation instructions

<2><1> <3> <4> <5> <6>

IF ID EX DF WBSaturation operation instruction

Next instruction IF ID EX MEM WB

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

610 User’s Manual U19383EJ1V0UM00

[Instructions]

AND, ANDI, BSH, BSW, HSW, NOT, OR, ORI, SAR, SHL, SHR, SXB, SXH, TST, XOR, XORI, ZXB, ZXH

[Pipeline]

[Description]

The pipeline consists of 5 stages, IF, ID, EX, DF, and WB.

Logical operation instructions

<2><1> <3> <4> <5> <6>

IF ID EX DF WBLogical operation instruction

Next instruction IF ID EX MEM WB

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

User’s Manual U19383EJ1V0UM00 611

[Instructions]

Bcnd instructions

[Pipeline]

(1) When the condition is not satisfied

(2) When the condition is satisfied

Remark (IF): Instruction fetch that is not executed

[Description]

The pipeline consists of 5 stages, IF, ID, EX, MEM, and WB. However, no operation is performed in the EX, MEM,
and WB stages, because the branch destination is decided in the ID stage.

(1) When the condition is not satisfied
The number of execution clocks for the branch instruction is 1.

(2) When the condition is satisfied
The number of execution clocks for the branch instruction is 2. IF stage of the next instruction of the branch
instruction is not executed.
If an instruction overwriting the contents of PSW occurs immediately before, the number of execution clocks is 3
because of flag hazard occurrence.

Branch instructions (Conditional branch instructions: Except BR instruction)

<2><1> <3> <4> <5> <6>

IF ID EX MEM WBBranch instruction

Next instruction IF ID EX MEM WB

<2><1> <3> <4> <5> <6>

IF ID EX MEM WBBranch instruction

Next instruction (IF)

Branch destination instruction IF ID EX MEM WB

<7>

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

612 User’s Manual U19383EJ1V0UM00

[Instructions]

BR, JARL, JR

[Pipeline]

Remark (IF) : Instruction fetch that is not executed
WB * : No operation is performed in the case of the JR and BR instructions but in the case of the JARL
instruction, data is written to the restore PC.

[Description]

The pipeline consists of 5 stages, IF, ID, EX, MEM, and WB. However, no operation is performed in the EX, MEM,
and WB stages, because the branch destination is decided in the ID stage. However, in the case of the JARL instruc-
tion, data is written to the restore PC in the WB stage. Also, the IF stage of the next instruction of the branch instruc-
tion is not executed.

Branch instructions (BR instruction, unconditional branch instructions: Except JMP instruction)

<2><1> <3> <4> <5> <6>

IF ID EX MEM WB *Branch instruction

Next instruction (IF)

Branch destination instruction IF ID EX MEM WB

<7>

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

User’s Manual U19383EJ1V0UM00 613

[Instructions]

JMP

[Pipeline]

Remark (IF): Instruction fetch that is not executed

[Description]

The pipeline consists of 5 stages, IF, ID, EX, MEM, and WB. However, no operation is performed in the EX, MEM,
and WB stages, because the branch destination is decided in the ID stage.

Branch instructions (JMP instructions)

<2><1> <3> <4> <5> <6>

IF ID EX MEM WBBranch instruction

Next instruction (IF)

Branch destination instruction IF ID EX MEM WB

<7>

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

614 User’s Manual U19383EJ1V0UM00

[Instructions]

CLR1, NOT1, SET1

[Pipeline]

Remark ---: Idle inserted for wait

[Description]

The pipeline consists of 7 stages, IF, ID, EX1, MEM, EX2 (normal stage), MEM, and WB. However, no operation is
performed in the WB stage, because no data is written to registers.

In the case of these instructions, the memory access is read modify write, the EX stage requires a total of 2 clocks,
and the MEM stage requires a total of 2 cycles.

Bit manipulation instructions (CLR1, NOT1, SET1 instructions)

<2><1> <3> <4> <5> <6>

IF ID EX1 MEM EX2Bit manipulation instruction

Next instruction IF

Instruction after that IF ID EX MEM WB

<7> <8>

MEM WB

--- --- ID EX MEM WB

<9>

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

User’s Manual U19383EJ1V0UM00 615

[Instructions]

TST1

[Pipeline]

Remark ---: Idle inserted for wait

[Description]

The pipeline consists of 7 stages, IF, ID, EX1, MEM, EX2 (normal stage), MEM, and WB. However, no operation is
performed in the second MEM and WB stages, because there is no second memory access nor data write to registers.

In all, this instruction requires 2 clocks.

Bit manipulation instructions (TST1 instructions)

<2><1> <3> <4> <5> <6>

IF ID EX1 MEM EX2Bit manipulation instruction

Next instruction IF

Instruction after that IF ID EX MEM WB

<7> <8>

MEM WB

--- --- ID EX MEM WB

<9>

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

616 User’s Manual U19383EJ1V0UM00

[Instructions]

CALLT

[Pipeline]

Remark (IF): Instruction fetch that is not executed

[Description]

The pipeline consists of 6 stages, IF, ID, MEM, EX, MEM, and WB. However, no operation is performed in the sec-
ond MEM and WB stages, because there is no memory access and no data is written to registers.

Special instructions (CALLT instructions)

<2><1> <3> <4> <5> <6>

IF ID MEM EXSpecial instruction

Next instruction (IF)

Instruction after that IF ID EX MEM WB

<7> <8>

MEM WB

<9>

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

User’s Manual U19383EJ1V0UM00 617

[Instructions]

CTRET

[Pipeline]

Remark (IF): Instruction fetch that is not executed

[Description]

The pipeline consists of 5 stages, IF, ID, EX, MEM, and WB. However, no operation is performed in the EX, MEM,
and WB stages, because the branch destination is decided in the ID stage.

Special instructions (CTRET instructions)

<2><1> <3> <4> <5> <6>

IF ID EXSpecial instruction

Next instruction (IF)

Instruction after that IF ID EX MEM WB

<7>

MEM WB

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

618 User’s Manual U19383EJ1V0UM00

[Instructions]

DI, EI

[Pipeline]

[Description]

The pipeline consists of 5 stages, IF, ID, EX, MEM, and WB. However, no operation is performed in the MEM and
WB stages, because memory is not accessed and data is not written to registers.

[Remark]

Both the DI and EI instructions do not sample an interrupt request. An interrupt is sampled as follows while these
instructions are executed.

Special instructions (DI, EI instructions)

<2><1> <3> <4> <5> <6>

IF ID EX MEM WBSpecial instruction

Next instruction IF ID EX MEM WB

IF ID EX MEM WBInstruction immediately before

DI, EI instruction IF ID EX MEM WB

IF ID EX MEM WBInstruction immediately after

First sampling of interrupt after execution of EI or DI instruction
Last sampling of interrupt before execution of EI or DI instruction

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

User’s Manual U19383EJ1V0UM00 619

[Instructions]

DISPOSE

[Pipeline]

(1) When branch is not executed

Remark --- : Idle inserted for wait
n : Number of registers specified in the register list (list12)

(2) When branch is executed

Remark (IF) : Instruction fetch that is not executed
--- : Idle inserted for wait
n : Number of registers specified in the register list (list12)

[Description]

The pipeline consists of n + 5 stages (n: register list number), IF, ID, EX, n + 1 times MEM, and WB.
The MEM stage requires n + 1 cycles.

Special instructions (DISPOSE instructions)

<2><1> <3> <4>

IF IDSpecial instruction

Next instruction IF

<n+2> <n+3> <n+4> <n+5> <n+6> <n+7>

ID EX MEM WB--- ---

IF ID EX MEM WBInstruction after that

...

... WBEX MEM MEM MEM MEM

<2><1> <3> <4>

IF IDSpecial instruction

Next instruction (IF)

<n+2> <n+3> <n+4> <n+5> <n+6> <n+7>

IF ID EXBranch destination instruction

... WBEX MEM MEM MEM MEM

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

620 User’s Manual U19383EJ1V0UM00

[Instructions]

HALT

[Pipeline]

Remark ---: Idle inserted for wait

[Description]

The pipeline consists of 5 stages, IF, ID, EX, MEM and WB. No operation is performed in the MEM and WB stages,
because memory is not accessed and no data is written to registers. Also, for the next instruction, the ID stage is
delayed until the HALT mode is released.

Special instructions (HALT instructions)

HALT mode release

<2><1> <3> <4>

IF IDSpecial instruction

IF ID EX MEM WB...--- ---

Instruction after that

EX MEM WB

IF ID EX MEM WB

<5> <6>

Next instruction

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

User’s Manual U19383EJ1V0UM00 621

[Instructions]

LDSR, STSR

[Pipeline]

[Description]

The pipeline consists of 5 stages, IF, ID, EX, DF, and WB.
If the STSR instruction using the EIPC and FEPC system registers is placed immediately after the LDSR instruction

setting these registers, data wait time occurs.

Special instructions (LDSR, STSR instructions)

<2><1> <3> <4> <5> <6>

IF ID EX DF WBSpecial instruction

Next instruction IF ID EX MEM WB

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

622 User’s Manual U19383EJ1V0UM00

[Instructions]

NOP

[Pipeline]

[Description]

The pipeline consists of 5 stages, IF, ID, EX, MEM, and WB. However, no operation is performed in the EX, MEM,
and WB stages, because no operation and no memory access is executed, and no data is written to registers.

[Caution]

Be aware that the SLD and Bcond instructions are sometimes executed at the same time as other 16-bit format
instructions. For example, if the SLD and NOP instructions are executed simultaneously, the NOP instruction may
keep the delay time from being generated.

Special instructions (NOP instructions)

<2><1> <3> <4> <5> <6>

IF ID EX MEM WBSpecial instruction

Next instruction IF ID EX MEM WB

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

User’s Manual U19383EJ1V0UM00 623

[Instructions]

PREPARE

[Pipeline]

Remark --- : Idle inserted for wait
n : Number of registers specified in the register list (list12)

[Description]

The pipeline consists of n + 5 stages (n: register list number), IF, ID, EX, n + 1 times MEM, and WB.
The MEM stage requires n + 1 cycles.

Special instructions (PREPARE instructions)

<2><1> <3> <4>

IF IDSpecial instruction

Next instruction IF

<n+2> <n+3> <n+4> <n+5> <n+6> <n+7>

ID EX MEM WB--- ---

IF ID EX MEM WBInstruction after that

...

... WBEX MEM MEM MEM MEM

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

624 User’s Manual U19383EJ1V0UM00

[Instructions]

RETI

[Pipeline]

Remark (IF) : Instruction fetch that is not executed
ID1 : Register select
ID2 : Read EIPC/FEPC

[Description]

The pipeline consists of 6 stages, IF, ID1, ID2, EX, MEM, and WB. However, no operation is performed in the MEM
and WB stages, because memory is not accessed and no data is written to registers.

The ID stage requires 2 clocks. Also, the IF stage of the next instruction and next to next instruction is not executed.

Special instructions (RETI instructions)

<2><1> <3> <4> <5> <6>

IF ID1 ID2Special instruction

Next instruction (IF)

Branch destination instruction IF ID EX MEM WB

<7> <8>

EX MEM WB

Instruction after that (IF)

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

User’s Manual U19383EJ1V0UM00 625

[Instructions]

SWITCH

[Pipeline]

Remark (IF): Instruction fetch that is not executed

[Description]

The pipeline consists of 7 stages, IF, ID, EX1 (normal EX stage), MEM, EX2, MEM, and WB. However, no operation
is performed in the second MEM and WB stages, because there is no memory access and no data is written to regis-
ters.

Special instructions (SWITCH instructions)

<2><1> <3> <4> <5> <6>

IF EX1Special instruction

Next instruction (IF)

Branch destination instruction IF ID EX MEM WB

<7> <8>

MEM WBID EX2 MEM

<9> <10>

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

626 User’s Manual U19383EJ1V0UM00

[Instructions]

TRAP

[Pipeline]

Remark (IF) : Instruction fetch that is not executed
ID1 : Exception code (004nH, 005nH) detection (n = 0 to FH)
ID2 : Address generate

[Description]

The pipeline consists of 6 stages, IF, ID1, ID2, EX, DF, and WB.
The ID stage requires 2 clocks. Also, the IF stage of the next instruction and next to next instruction is not executed.

Special instructions (TRAP instructions)

<2><1> <3> <4> <5> <6>

IF ID1 ID2Special instruction

Next instruction (IF)

Jump destination instruction IF ID EX MEM WB

<7> <8>

EX DF WB

Instruction after that (IF)

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

User’s Manual U19383EJ1V0UM00 627

[Instructions]

DBRET

[Pipeline]

Remark (IF) : Instruction fetch that is not executed
ID1 : Register select
ID2 : Read DBPC

[Description]

The pipeline consists of 6 stages, IF, ID1, ID2, EX, MEM, and WB. However, no operation is performed in the MEM
and WB stages, because memory is not accessed and no data is written to registers.

The ID stage requires 2 clocks. Also, the IF stage of the next instruction and next to next instruction is not executed.

Debug function instructions (DBRET instructions)

<2><1> <3> <4> <5> <6>

IF ID1 ID2Debug function instruction

Next instruction (IF)

IF ID EX MEM WB

<7> <8>

EX WB

Instruction after that (IF)

MEM

Branch destination instruction

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

628 User’s Manual U19383EJ1V0UM00

[Instructions]

DBTRAP

[Pipeline]

Remark (IF) : Instruction fetch that is not executed
ID1 : Exception code (0060H) detection
ID2 : Address generate

[Description]

The pipeline consists of 6 stages, IF, ID1, ID2, EX, DF, and WB.
The ID stage requires 2 clocks. Also, the IF stage of the next instruction and next to next instruction is not executed.

Debug function instructions (DBTRAP instructions)

<2><1> <3> <4> <5> <6>

IF ID1 ID2Debug function instruction

Next instruction (IF)

Branch destination instruction IF ID EX MEM WB

<7> <8>

EX WB

Instruction after that (IF)

DF

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

User’s Manual U19383EJ1V0UM00 629

4.5.16 Pipeline (V850E1)

V850E1 is based on RISC architecture and executes almost all instructions in one clock cycle under control of
a 5-stage pipeline. The instruction execution sequence usually consists of five stages from fetch IF (Instruction fetch)
to WB (writeback).

The execution time of each stage differs depending on the type of the instruction and the type of the memory to be

accessed.

As an example of pipeline operation, following figure shows the processing of the CPU when 9 standard instructions

are executed in succession.

Figure 4-76. Example of Executing Nine Standard Instructions

<1> through <13> in the figure above indicates the CPU state. In each state, WB (writeback) of instruction n, MEM
(memory access) of instruction n+1, EX (execution) of instruction n+2, ID (instruction decode) of instruction n+3, and
IF (instruction fetch) of instruction n+4 are simultaneously performed. It takes five clock cycles to process a standard
instruction, from the IF stage to the WB stage. Because five instructions can be processed at the same time, however,
a standard instruction can be executed in 1 clock on average.

IF(Instruction fetch) Instruction is fetched and fetch pointer is incremented.

ID (Instruction decode) Instruction is decoded and creation of immediate data and reading of register is performed.

EX (Execution) Decoded instruction is executed.

MEM (Memory access) Memory of target address is accessed.

WB (writeback) The execution result is written to register.

IF ID EX MEM WB instruction 1

System clock

(State)

 End of

instruct

ion 1

 End of

instruct

ion3

 End of

instruct

ion 4

 End of

instruct

ion 5

 End of

instruct

ion 6

 End of

instruct

ion 8

 End of

instruct

ion 9

Instruction executed every 1

Time Flow

Processing CPU per-

forms simultaneously <5> <6><4><1> <2> <3> <13><12><11><9> <10><8><7>

IF ID EX MEM WB

IF ID EX MEM WB

IF ID EX MEM WB

IF ID EX MEM WB

 instruction 2

 instruction 4

 instruction 3

 instruction 5

 instruction 6

 instruction 7

 instruction 8

 instruction 9

IF ID EX MEM WB

IF ID EX MEM WB

IF ID EX MEM WB

IF ID EX MEM WB

 End of

instruct

ion 7

 End of

instruct

ion 2

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

630 User’s Manual U19383EJ1V0UM00

V850E1 is much improved than previous version of V850 microcontrollers for CPI (Cycle per instruction) by perform-
ing the optimization of pipeline. Pipeline configuration of V850E1 is shown below.

Figure 4-77. Pipeline Configuration (V850E1)

Remark DF (Data fetch): Execution data is transferred to WB stage

(1) Non-blocking load/store
As the pipeline does not stop during external memory access, efficient processing is possible.
For example, following shows a comparison of pipeline operations between the V850 microcontrollers and
V850E1 when an ADD instruction is executed after the execution of a load instruction for external memory.

(a) V850 microcontrollers
The EX stage of the ADD instruction is usually executed in 1 clock. However, a wait time is generated in
the EX stage of the ADD instruction during execution of the MEM stage of the previous load instruction.
This is because the same stage of the 5 instructions on the pipeline cannot be executed in the same inter-
nal clock interval. This also causes a wait time to be generated in the ID stage of the next instruction after
the ADD instruction.

Note The basic bus cycle for the external memory is 3 clocks.

IF
Asynchronus WB pipeline

Address calculation stage

EX

Pipeline ID

ID

MEM

Master pipeline (V850 microcontrollers compatible)

Bcnd/SLD WB

DF

Load, store buffer (1 stage each)

WB

IF ID EX
T1

WB

IF ID EX WB

Load instruction

ADD instruction (MEM)

Next instruction

T3T2

MEMNote

IF ID WBMEMEX

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

User’s Manual U19383EJ1V0UM00 631

(b) V850E1
An asynchronous WB pipeline for the instructions that are necessary for the MEM stage is provided in addi-
tion to the master pipeline. The MEM stage of the load instruction is therefore processed by this asynchro-
nous WB pipeline. Because the ADD instruction is processed by the master pipeline, a wait time is not
generated, making it possible to execute instructions efficiently as shown in following figure.

Note The basic bus cycle for the external memory is 2 clocks.

(2) 2-clock branch
When executing a branch instruction, the branch destination is decided in the ID stage.
In the case of V850 microcontrollers, the branch destination of when the branch instruction is executed was
decided after execution of the EX stage, but in the case of V850E1, due to the addition of an address calculation
stage for branch/SLD instruction, the branch destination is decided in the ID stage. Therefore, it is possible to
fetch the branch destination instruction 1 clock faster than in the conventional V850 microcontrollers for
V850E1.
Following figure shows a comparison between the V850 microcontrollers and V850E1 for pipeline operations
with branch instructions.

(a) V850 microcontrollers

(b) V850E1

Remark Products of V850E1 type D execute interleave access to internal flash memory or internal mask
ROM. Therefore, it takes two clocks (three clocks for V850E1 type E) to fetch an instruction immedi-

IF ID EX
T1

WB

IF ID WB

Load instruction

ADD instruction DF

Next instruction

T2

MEMNote

IF WBMEMEX

EX

ID

IF ID EX MEM WB

Branch instruction

Branch destination instruction

3 clocks

Branch destination decided in EX stage

IF ID EX MEM WB

IF ID EX MEM WB

Branch instruction

Branch destination instruction

2 clocks

Branch instruction decided in ID stage

IF ID EX MEM WB

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

632 User’s Manual U19383EJ1V0UM00

ately after an interrupt has occurred or after a branch destination instruction has been executed.
Consequently, it takes three clocks (four clocks for V850E1 type E) to execute the ID stage of the
branch destination instruction.

Example

(3) Efficient pipeline processing
Because the V850E1 has an ID stage for branch/SLD instructions in addition to the ID stage on the master pipe-
line, it is possible to perform efficient pipeline processing.
Following figure shows an example of a pipeline operation where the next branch instruction was fetched in the
IF stage of the ADD instruction (instruction fetch from the ROM directly connected to the dedicated bus is per-
formed in 32-bit units. Both ADD instructions and branch instructions in following figure use a 16-bit format
instruction).

(a) V850 microcontrollers
Although the instruction codes up to the next branch instruction are fetched in the IF stage of the ADD
instruction, the ID stage of the ADD instruction and the ID stage of the branch instruction cannot be exe-
cuted together within the same clock. Therefore, it takes 5 clocks from the branch instruction fetch to the
branch destination instruction fetch.

instruction 1

instruction 2

instruction 3

Branch instruction

3 clocks

Interleave access

IF

IF ID EX MEM WBBranch destination instruction

IF ID EX MEM WB

IF IF ID EX MEM WB

IF IF ID EX MEM WB

IF IF ID

IF

ADD instruction

Branch instruction

5 clocks

IF ID EX MEMBranch destination instruction

IF ID EX MEM WB

IF ID EX (MEM) WB

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

User’s Manual U19383EJ1V0UM00 633

(b) V850E1
Because it has an ID stage for branch/SLD instructions in addition to the ID stage on the master pipeline,
parallel execution of the ID stage of the ADD instruction and the ID stage of the branch instruction within the
same clock is possible. Therefore, it takes only 3 clocks from branch instruction fetch start to branch desti-
nation instruction completion.

Remark Be aware that the SLD and Bcnd instructions are sometimes executed at the same time as other 16-
bit format instructions. For example, if the SLD and NOP instructions are executed simultaneously,
the NOP instruction may keep the delay time from being generated.

(4) Pipeline Disorder
The pipeline consists of 5 stages from IF (Instruction Fetch) to WB (Write Back). Each stage requires 1 clock for
processing, but the pipeline may become disordered, causing the number of execution clocks to increase. This
section describes the main causes of pipeline disorder.

(a) Alignment hazard
If the branch destination instruction address is not word aligned (A1 = 1, A0 = 0) and is 4 bytes in length, it
is necessary to repeat IF twice in order to align instructions in word units. This is called an alignment haz-
ard.
For example, assume that the instructions a to e are placed from address X0H,and that instruction b con-
sists of 4 bytes, and the other instructions each consist of 2 bytes. In this case, instruction b is placed at
X2H (A1 = 1, A0 = 0), and is not word aligned (A1 = 0, A0 = 0). Therefore, when this instruction b
becomes the branch destination instruction, an alignment hazard occurs. When an alignment hazard
occurs, the number of execution clocks of the branch instruction becomes 4.

ADD instruction

Branch instruction

3 clocks

IF ID EX MEMBranch destination instruction

IF ID EX MEM WB

IF ID EX DF WB

WB

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

634 User’s Manual U19383EJ1V0UM00

Figure 4-78. Alignment Hazard Example

Remark (IF) : Instruction fetch that is not executed
IF1 : First instruction fetch that occurs during alignment hazard. It is a 2-byte fetch that fetches
the 2 bytes of the lower address of instruction b.
IIF2 : Second instruction fetch that occurs during alignment hazard. It is normally a 4-byte fetch
that fetches the 2 bytes of the upper address of instruction b in addition to instruction c (2-byte
length).

Alignment hazards can be prevented via the following handling in order to obtain faster instruction execu-
tion.

- Use 2-byte branch destination instructions.
- Use 4-byte instructions placed at word boundaries (A1 = 0, A0 = 0) for branch destination instructions.

(b) Referencing execution result of load instruction
For load instructions (LD, SLD), data read in the MEM stage is saved during the WB stage. Therefore, if the
contents of the same register are used by the instruction immediately after the load instruction, it is neces-
sary to delay the use of the register by this later instruction until the load instruction has finished using that
register. This is called a hazard. The V850E1 has an interlock function to automatically handle this hazard
by delaying the ID stage of the next instruction.
The V850E1 also has a short path that allows the data read during the MEM stage to be used in the ID
stage of the next instruction. This short path allows data to be read by the load instruction during the MEM
stage and used in the ID stage of the next instruction at the same timing.
As a result of the above, when using the execution result in the instruction following immediately after, the
number of execution clocks of the load instruction is 2.

Branch destination instruction (instruction b)

 instruction d

 instruction b

 instruction a

 instruction e

 instruction c

 instruction b
x4H

X0H

32bit

x8H

<2><1> <3> <4> <5> <6>

IFBranch instruction

Next instruction

ID

<7> <8> <9>

EX MEM WB

IF1 IF2 ID EX MEM WB

IF ID EX MEM WB

Branch destination instruction (instruction b)

Branch destination’s next instruction (instruction c)

(IF)

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

User’s Manual U19383EJ1V0UM00 635

Figure 4-79. Example of Execution Result of Load Instruction

Remark IL : Idle inserted for data wait by interlock function
--- : Idle inserted for wait
↓ : Short Path

As shown in above figure, when an instruction placed immediately after a load instruction uses the execu-
tion result of the load instruction, a data wait time occurs due to the interlock function, and the execution
speed is lowered. This drop in execution speed can be avoided by placing instructions that use the execu-
tion result of a load instruction at least 2 instructions after the load instruction.

(c) Referencing execution result of multiply instruction
For multiply instructions, the operation result is saved to the register in the WB stage. Therefore, if the con-
tents of the same register are used by the instruction immediately after the multiply instruction, it is neces-
sary to delay the use of the register by this later instruction until the multiply instruction has finished using
that register (occurrence of hazard).
The V850E1 interlock function delays the ID stage of the instruction following immediately after. A short
path is also provided that allows the EX2 stage of the multiply instruction and the multiply instruction’s oper-
ation result to be used in the ID stage of the instruction following immediately after at the same timing.

Figure 4-80. Example of Execution Result of Multiply Instruction

Remark IL : Idle inserted for data wait by interlock function
--- : Idle inserted for wait
↓ : Short Path

As shown in above figure, when an instruction placed immediately after a multiply instruction uses the exe-
cution result of the multiply instruction, a data wait time occurs due to the interlock function, and the execu-
tion speed is lowered. This drop in execution speed can be avoided by placing instructions that use the
execution result of a multiply instruction at least 2 instructions after the multiply instruction

Load instruction1 (LD [R4], R6)

 instruction2 (ADD 2, R6)

 instruction 3

 instruction 4

<2><1> <3> <4> <5> <6>

IF

ID EX MEM WB

<7> <8> <9>

ID EX MEM WB

ID EX MEM WB

IF

IF ID EX MEM WB

IL

IF

↓

Multiply instruction1 (MULH 3, R6)

 instruction2 (ADD 2, R6)

 instruction 3

<2><1> <3> <4> <5> <6>

IF

ID EX MEM WB

<7> <8> <9>

ID EX1 EX2 WB

ID EX MEM WB

IF

IF ID EX MEM WB

IL

IF

↓

 instruction 4

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

636 User’s Manual U19383EJ1V0UM00

(d) Referencing execution result of LDSR instruction for EIPC and FEPC
When using the LDSR instruction to set the data of the EIPC and FEPC system registers, and immediately

after referencing the same system registers with the STSR instruction, the use of the system registers for

the STSR instruction is delayed until the setting of the system registers with the LDSR instruction is com-

pleted (occurrence of hazard).

The V850E1 interlock function delays the ID stage of the STSR instruction immediately after.

As a result of the above, when using the execution result of the LDSR instruction for EIPC and FEPC for an

STSR instruction following immediately after, the number of execution clocks of the LDSR instruction

becomes 3.

Figure 4-81. Example of Referencing Execution Result of LDSR Instruction for EIPC and FEPC

Note System register 0 used for the LDSR and STSR instructions indicates EIPC.

Remark IL : Idle inserted for data wait by interlock function
--- : Idle inserted for wait

As shown in above figure, when an STSR instruction is placed immediately after an LDSR instruction that
uses the operand EIPC or FEPC, and that STSR instruction uses the LDSR instruction execution result, the
interlock function causes a data wait time to occur, and the execution speed is lowered. This drop in execu-
tion speed can be avoided by placing STSR instructions that reference the execution result of the preceding
LDSR instruction at least 3 instructions after the LDSR instruction.

(e) Cautions when creating programs
When creating programs, pipeline disorder can be avoided and instruction execution speed can be raised

by observing the following cautions.

- Place instructions that use the execution result of load instructions (LD, SLD) at least 2 instructions

after the load instruction.

- Place instructions that use the execution result of multiply instructions (MULH, MULHI) at least 2

instructions after the multiply instruction.

- If using the STSR instruction to read the setting results written to the EIPC or FEPC registers with the

LDSR instruction, place the STSR instruction at least 3 instructions after the LDSR instruction.

- For the first branch destination instruction, use a 2-byte instruction, or a 4-byte instruction placed at a
word boundary.

LDSR instruction (LDSR R6, 0)Note

STSR instruction (STSR 0, R7)Note

Next instruction

<2><1> <3> <4> <5> <6>

IF

ID EX MEM WB

<7> <8> <9>

ID

ID EX MEM WB

IF

IF ID EX MEM WB

IL

IF

IL

EX MEM WB

<10>

Instruction after that

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

User’s Manual U19383EJ1V0UM00 637

(5) Additional Items Related to Pipeline

(a) Harvard architecture
The V850E1 uses Harvard architecture to operate an instruction fetch path from internal ROM and a mem-

ory access path to internal RAM independently. This eliminates path arbitration conflicts between the IF

and MEM stages and allows orderly pipeline operation.

<1> V850E1 (Harvard architecture)
The MEM stage of instruction 1 and the IF stage of instruction 4, as well as the MEM stage of instruc-

tion 2 and the IF stage of instruction 5 can be executed simultaneously with an orderly pipeline opera-

tion.

<2> Not Harvard architecture
The MEM stage of instruction 1 and the IF stage of instruction 4, in addition to the MEM stage of

instruction 2 and the IF stage of instruction 5 are in conflict, causing path waiting to occur and slower

execution time due to disorderly pipeline operation.

Remark ---: Idle inserted for wait

 instruction 1

 instruction 2

 instruction 3

<2><1> <3> <4> <5> <6>

IF

ID EX MEM WB

<7> <8> <9>

ID

ID EX MEM WB

IF

IF ID EX MEM WB

EX MEM WB

 instruction 4

IF

IF ID EX MEM WB instruction 5

 instruction 5

 instruction 2

 instruction 3

<2><1> <3> <4> <5> <6>

IF

ID EX MEM WB

<7> <8> <9>

ID

ID EX MEM WB

IF

IF ID EX MEM WB

EX MEM WB

 instruction 4

IF ---

--- ---

 instruction 1 IF ID EX MEM WB

<10> <11>

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

638 User’s Manual U19383EJ1V0UM00

(b) Short path
The V850E1 provides on chip a short path that allows the use of the execution result of the preceding
instruction by the following instruction before writeback (WB) is completed for the previous instruction.

Examples 1. Execution result of arithmetic operation instruction and logical operation used by instruction
following immediately after: V850E1 (on-chip short path)
The execution result of the preceding instruction can be used for the ID stage of the instruc-
tion following immediately after as soon as the result is out (EX stage), without having to
wait for writeback to be completed.

2. Execution result of arithmetic operation instruction and logical operation used by instruction
following immediately after: No short path
The ID stage of the instruction following immediately after is delayed until writeback of the
previous instruction is completed.

3. Data read from memory by the load instruction used by instruction following immediately
after: V850E1 (on-chip short path)
The execution result of the preceding instruction can be used for the ID stage of the instruc-
tion following immediately after as soon as the result is out (MEM stage), without having to
wait for writeback to be completed.

↓
MOV R6, R7

<2><1> <3> <4> <5> <6>

ID EX MEM WBIF

ADD 2, R6 IF ID EX MEM WB

ADD 2, R6

MOV R6, R7

<2><1> <3> <4> <5> <6> <7> <8>

EX MEM WBIF ---

IF ID EX MEM WB

--- ID

LD [R4], R6

ADD 2, R6

Next instruction

Instruction after that

↓

<2><1> <3> <4> <5> <6>

ID EX MEM WB

<7> <8> <9>

IL EX MEM WB

IF

IF ID EX MEM WB

IF

IF ID EX MEM WB

ID

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

User’s Manual U19383EJ1V0UM00 639

4. Data read from memory by the load instruction used by instruction following immediately
after: No short path
The ID stage of the instruction following immediately after is delayed until writeback of the
previous instruction is completed.

(6) Pipeline Flow During Execution of Instructions
This section explains the pipeline flow during the execution of instructions.
In pipeline processing, the CPU is already processing the next instruction when the memory or I/O write cycle is
generated. As a result, I/O manipulations and interrupt request masking will be reflected later than next instruc-
tion is issued (ID stage).

(a) Type A, B, C
When a dedicated interrupt controller (INTC) is connected to the NPB (NEC peripheral bus), maskable
interrupt acknowledgment is disabled from the next instruction because the CPU detects access to the
INTC and performs interrupt request mask processing.

(b) Type D, E, F
When interrupt mask manipulation is performed,mask able interrupt acknow ledg ment is disabled from the
next instruction because the CPU detects access to the internal INTC (ID stage) and performs interrupt
request mask processing.

LD [R4], R6

ADD 2, R6

Next instruction

Instruction after that

<2><1> <3> <4> <5> <6>

IF

<7> <8> <9>

ID

ID EX MEM WB

EX MEM WB

IF ---

IF ID EX MEM WB

<10>

IF ID EX MEM WB

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

640 User’s Manual U19383EJ1V0UM00

[Instructions]

LD.B, LD.BU, LD.H, LD.HU, LD.W

[Pipeline]

[Description]

The pipeline consists of 5 stages, IF, ID, EX, MEM, and WB.
If an instruction using the execution result is placed immediately after the LD instruction, data wait time occurs.

Remark Due to non-blocking control, there is no guarantee that the bus cycle is complete between the MEM
stages. However, when accessing the peripheral I/O area, blocking control is effected, making it possi-
ble to wait for the end of the bus cycle at the MEM stage.
For type A, B, and C products, non-blocking control is used for access to the programmable peripheral I/
O area.

Load instructions (LD instructions)

<2><1> <3> <4> <5> <6>

IF ID EX MEM WBLoad instruction

Next instruction IF ID EX MEM WB

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

User’s Manual U19383EJ1V0UM00 641

[Instructions]

SLD.B, SLD.BU, SLD.H, SLD.HU, SLD.W

[Pipeline]

[Description]

The pipeline consists of 4 stages, IF, ID, MEM, and WB.
If an instruction using the execution result is placed immediately after the SLD instruction, data wait time occurs.

Remark Due to non-blocking control, there is no guarantee that the bus cycle is complete between the MEM
stages. However, when accessing the peripheral I/O area, blocking control is effected, making it possi-
ble to wait for the end of the bus cycle at the MEM stage.
For type A, B, and C products, non-blocking control is used for access to the programmable peripheral I/
O area.

Load instructions (SLD instructions)

<2><1> <3> <4> <5> <6>

IF ID MEM WBLoad instruction

Next instruction IF ID EX MEM WB

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

642 User’s Manual U19383EJ1V0UM00

[Instructions]

SST.B, SST.H, SST.W, ST.B, ST.H, ST.W

[Pipeline]

[Description]

The pipeline consists of 5 stages, IF, ID, EX, MEM and WB. However, no operation is performed in the WB stage,
because no data is written to registers.

Remark Due to non-blocking control, there is no guarantee that the bus cycle is complete between the MEM
stages. However, when accessing the peripheral I/O area, blocking control is effected, making it possi-
ble to wait for the end of the bus cycle at the MEM stage.
For type A, B, and C products, non-blocking control is used for access to the programmable peripheral I/
O area.

Store instructions

<2><1> <3> <4> <5> <6>

IF ID EX MEM WBStore instruction

Next instruction IF ID EX MEM WB

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

User’s Manual U19383EJ1V0UM00 643

[Instructions]

MUL, MULH, MULHI, MULU

[Pipeline]

(1) When next instruction is not multiply instruction

(2) When next instruction is multiply instruction

[Description]

The pipeline consists of 5 stages, IF, ID, EX1, EX2, and WB.
The EX stage requires 2 clocks, but the EX1 and EX2 stages can operate independently. Therefore, the number of

clocks for instruction execution is always 1, even if several multiply instructions are executed in a row. However, if an
instruction using the execution result is placed immediately after a multiply instruction, data wait time occurs.

Arithmetic operation instructions (Multiply instructions)

EX1 EX2 WB

<2><1> <3> <4> <5> <6>

IF IDMultiply instruction

Next instruction IF EX MEM WBID

EX1 EX2 WB

<2><1> <3> <4> <5> <6>

IF IDMultiply instruction1

Multiply instruction2 IF WBID EX1 EX2

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

644 User’s Manual U19383EJ1V0UM00

[Instructions]

ADD, ADDI, CMOV, CMP, MOV, MOVEA, MOVHI, SASF, SETF, SUB, SUBR

[Pipeline]

[Description]

The pipeline consists of 5 stages, IF, ID, EX, DF, and WB.

Arithmetic operation instructions (Excluding multiply and divide instructions)

<2><1> <3> <4> <5> <6>

IF ID EX DF WBArithmetic operation instruction

Next instruction IF ID EX MEM WB

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

User’s Manual U19383EJ1V0UM00 645

[Instructions]

DIV, DIVH, DIVHU, DIVU

[Pipeline]

(1) When DIV or DIVH

Remark ---: Idle inserted for wait

(2) When DIVHU or DIVU

Remark ---: Idle inserted for wait

[Description]

When a DIVH or DIV instruction is executed, the pipeline consists of 39 stages of IF, ID, EX1 to EX35, DF, and WB.
When a DIVU or DIVHU instruction is executed, the pipeline consists of 38 stages of IF, ID, EX1 to EX34, DF, and WB.

[Remark]

If an interrupt occurs while a divide instruction is being executed, execution of the instruction is stopped, and the
interrupt is serviced, assuming that the return address is the first address of that instruction. After interrupt servicing
has been completed, the divide instruction is executed again. In this case, general-purpose registers reg1 and reg2
hold the value before the instruction was executed.

Arithmetic operation instructions (Divide instructions)

<2><1> <3> <4>

IF ID EX1 EX2Divide instruction

Next instruction IF

EX33 EX34 DF

<35> <36> <37> <38> <39> <40>

ID EX MEM WB--- ---

IF ID EX MEM WBInstruction after that

...

...

<41>

WBEX35

<2><1> <3> <4>

IF ID EX1 EX2Divide instruction

Next instruction IF

EX33 EX34 DF

<35> <36> <37> <38> <39> <40>

ID EX MEM WB--- ---

IF ID EX MEM WBInstruction after that

...

... WB

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

646 User’s Manual U19383EJ1V0UM00

[Instructions]

MOV imm32

[Pipeline]

Remark ---: Idle inserted for wait

[Description]

The pipeline consists of 6 stages, IF, ID, EX1, EX2, DF and WB.

Arithmetic operation instructions (Move word instructions)

<7>

EX1 EX2 WB

<2><1> <3> <4> <5> <6>

IF ID DFArithmetic operation instruction

Next instruction IF ID EX MEM WB

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

User’s Manual U19383EJ1V0UM00 647

[Instructions]

SATADD, SATSUB, SATSUBI, SATSUBR

[Pipeline]

[Description]

The pipeline consists of 5 stages, IF, ID, EX, DF, and WB.

Saturation operation instructions

<2><1> <3> <4> <5> <6>

IF ID EX DF WBSaturation operation instruction

Next instruction IF ID EX MEM WB

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

648 User’s Manual U19383EJ1V0UM00

[Instructions]

AND, ANDI, BSH, BSW, HSW, NOT, OR, ORI, SAR, SHL, SHR, SXB, SXH, TST, XOR, XORI, ZXB, ZXH

[Pipeline]

[Description]

The pipeline consists of 5 stages, IF, ID, EX, DF, and WB.

Logical operation instructions

<2><1> <3> <4> <5> <6>

IF ID EX DF WBLogical operation instruction

Next instruction IF ID EX MEM WB

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

User’s Manual U19383EJ1V0UM00 649

[Instructions]

Bcnd instructions

[Pipeline]

(1) When the condition is not satisfied

(2) When the condition is satisfied

Remark (IF): Instruction fetch that is not executed

[Description]

The pipeline consists of 5 stages, IF, ID, EX, MEM, and WB. However, no operation is performed in the EX, MEM,
and WB stages, because the branch destination is decided in the ID stage.

(1) When the condition is not satisfied
The number of execution clocks for the branch instruction is 1.

(2) When the condition is satisfied
The number of execution clocks for the branch instruction is 2. IF stage of the next instruction of the branch
instruction is not executed.
If an instruction overwriting the contents of the PSW occurs immediately before, the number of execution clocks
is 3 because of flag hazard occurrence.

Branch instructions (Conditional branch instructions: Except BR instruction)

<2><1> <3> <4> <5> <6>

IF ID EX MEM WBBranch instruction

Next instruction IF ID EX MEM WB

<2><1> <3> <4> <5> <6>

IF ID EX MEM WBBranch instruction

Next instruction (IF)

Branch destination instruction IF ID EX MEM WB

<7>

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

650 User’s Manual U19383EJ1V0UM00

[Instructions]

BR, JARL, JR

[Pipeline]

Remark (IF) : Instruction fetch that is not executed
WB * : No operation is performed in the case of the JR instruction, and BR instruction but in the case of
the JARL instruction, data is written to the restore PC.

[Description]

The pipeline consists of 5 stages, IF, ID, EX, MEM, and WB. However, no operation is performed in the EX, MEM,
and WB stages, because the branch destination is decided in the ID stage.However, in the case of the JARL instruc-
tion, data is written to the restored PC in the WB stage. Also, the IF stage of the next instruction of the branch instruc-
tion is not executed.

Branch instructions (BR instruction, unconditional branch instructions: Except JMP instruction)

<2><1> <3> <4> <5> <6>

IF ID EX MEM WB *Branch instruction

Next instruction (IF)

Branch destination instruction IF ID EX MEM WB

<7>

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

User’s Manual U19383EJ1V0UM00 651

[Instructions]

JMP

[Pipeline]

Remark (IF): Instruction fetch that is not executed

[Description]

The pipeline consists of 5 stages, IF, ID, EX, MEM, and WB. However, no operation is performed in the EX, MEM,
and WB stages, because the branch destination is decided in the ID stage.

Branch instructions (JMP instructions)

<2><1> <3> <4> <5> <6>

IF ID EX MEM WBBranch instruction

Next instruction (IF)

Branch destination instruction IF ID EX MEM WB

<7>

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

652 User’s Manual U19383EJ1V0UM00

[Instructions]

CLR1, NOT1, SET1

[Pipeline]

Remark ---: Idle inserted for wait

[Description]

The pipeline consists of 7 stages, IF, ID, EX1, MEM, EX2, MEM, and WB. However, no operation is performed in
the WB stage, because no data is written to registers.

In the case of these instructions, the memory access is read modify write, and the EX and MEM stages require 2
and 2 clocks, respectively.

Bit manipulation instructions (CLR1, NOT1, SET1 instructions)

<2><1> <3> <4> <5> <6>

IF ID EX1 MEM EX2Bit manipulation instruction

Next instruction IF

Instruction after that IF ID EX MEM WB

<7> <8>

MEM WB

--- --- ID EX MEM WB

<9>

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

User’s Manual U19383EJ1V0UM00 653

[Instructions]

TST1

[Pipeline]

Remark ---: Idle inserted for wait

[Description]

The pipeline consists of 7 stages, IF, ID, EX1, MEM, EX2 (normal stage), MEM, and WB. However, no operation is
performed in the second MEM and WB stages, because there is no second memory access and no data is written to
registers.

In all, this instruction requires 2 clocks.

Bit manipulation instructions (TST1 instructions)

<2><1> <3> <4> <5> <6>

IF ID EX1 MEM EX2Bit manipulation instruction

Next instruction IF

Instruction after that IF ID EX MEM WB

<7> <8>

MEM WB

--- --- ID EX MEM WB

<9>

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

654 User’s Manual U19383EJ1V0UM00

[Instructions]

CALLT

[Pipeline]

Remark (IF): Instruction fetch that is not executed

[Description]

The pipeline consists of 6 stages, IF, ID, MEM, EX, MEM, and WB. However, no operation is performed in the sec-
ond MEM and WB stages, because there is no second memory access and no data is written to registers.

Special instructions (CALLT instructions)

<2><1> <3> <4> <5> <6>

IF ID MEM EXSpecial instruction

Next instruction (IF)

Instruction after that IF ID EX MEM WB

<7> <8>

MEM WB

<9>

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

User’s Manual U19383EJ1V0UM00 655

[Instructions]

CTRET

[Pipeline]

Remark (IF): Instruction fetch that is not executed

[Description]

The pipeline consists of 5 stages, IF, ID, EX, MEM, and WB. However, no operation is performed in the EX, MEM,
and WB stages, because the branch destination is decided in the ID stage.

Special instructions (CTRET instructions)

<2><1> <3> <4> <5> <6>

IF ID EXSpecial instruction

Next instruction (IF)

Instruction after that IF ID EX MEM WB

<7>

MEM WB

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

656 User’s Manual U19383EJ1V0UM00

[Instructions]

DI, EI

[Pipeline]

[Description]

The pipeline consists of 5 stages, IF, ID, EX, MEM, and WB. However, no operation is performed in the MEM and
WB stages, because memory is not accessed and data is not written to registers.

[Remark]

Both the DI and EI instructions do not sample an interrupt request. An interrupt is sampled as follows while these
instructions are being executed.

Special instructions (DI, EI instructions)

<2><1> <3> <4> <5> <6>

IF ID EX MEM WBSpecial instruction

Next instruction IF ID EX MEM WB

IF ID EX MEM WBInstruction immediately before

DI, EI instruction IF ID EX MEM WB

IF ID EX MEM WB

First sampling of interrupt after execution of EI or DI instruction
Last sampling of interrupt before execution of EI or DI instruction

Instruction immediately after

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

User’s Manual U19383EJ1V0UM00 657

[Instructions]

DISPOSE

[Pipeline]

(1) When branch is not executed

Remark --- : Idle inserted for wait
n : Number of registers specified by register list (list12)

(2) When branch is executed

Remark (IF) : Instruction fetch that is not executed
--- : Idle inserted for wait
n : Number of registers specified by register list (list12)

[Description]

The pipeline consists of n + 5 stages (n: register list number), IF, ID, EX, n + 1 times MEM, and WB.
The MEM stage requires n + 1 cycles.

Special instructions (DISPOSE instructions)

<2><1> <3> <4>

IF IDSpecial instruction

Next instruction IF

<n+2> <n+3> <n+4> <n+5> <n+6> <n+7>

ID EX MEM WB--- ---

IF ID EX MEM WBInstruction after that

...

... WBEX MEM MEM MEM MEM

<2><1> <3> <4>

IF IDSpecial instruction

Next instruction (IF)

<n+2> <n+3> <n+4> <n+5> <n+6> <n+7>

IF ID EXBranch destination instruction

... WBEX MEM MEM MEM MEM

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

658 User’s Manual U19383EJ1V0UM00

[Instructions]

HALT

[Pipeline]

Remark ---: Idle inserted for wait

[Description]

The pipeline consists of 5 stages, IF, ID, EX, MEM and WB. No operation is performed in the MEM and WB stages,
because memory is not accessed and no data is written to registers. Also, for the next instruction, the ID stage is
delayed until the HALT mode is released.

Special instructions (HALT instructions)

HALT mode release

<2><1> <3> <4>

IF IDSpecial instruction

IF ID EX MEM WB...--- ---

Instruction after that

EX MEM WB

IF ID EX MEM WB

<5> <6>

Next instruction

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

User’s Manual U19383EJ1V0UM00 659

[Instructions]

LDSR, STSR

[Pipeline]

[Description]

The pipeline consists of 5 stages, IF, ID, EX, DF, and WB.
If the STSR instruction using the EIPC and FEPC system registers is placed immediately after the LDSR instruction

setting these registers, data wait time occurs.

Special instructions (LDSR, STSR instructions)

<2><1> <3> <4> <5> <6>

IF ID EX DF WBSpecial instruction

Next instruction IF ID EX MEM WB

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

660 User’s Manual U19383EJ1V0UM00

[Instructions]

NOP

[Pipeline]

[Description]

The pipeline consists of 5 stages, IF, ID, EX, MEM, and WB. However, no operation is performed in the EX, MEM
and WB stages, because no operation and no memory access is executed, and no data is written to registers.

[Caution]

Be aware that the SLD and Bcond instructions are sometimes executed at the same time as other 16-bit format
instructions. For example, if the SLD and NOP instructions are executed simultaneously, the NOP instruction may
keep the delay time from being generated.

Special instructions (NOP instructions)

<2><1> <3> <4> <5> <6>

IF ID EX MEM WBSpecial instruction

Next instruction IF ID EX MEM WB

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

User’s Manual U19383EJ1V0UM00 661

[Instructions]

PREPARE

[Pipeline]

Remark --- : Idle inserted for wait
n : Number of registers specified by register list (list12)

[Description]

The pipeline consists of n + 5 stages (n: register list number), IF, ID, EX, n + 1 times MEM, and WB.
The MEM stage requires n + 1 cycles.

Special instructions (PREPARE instructions)

<2><1> <3> <4>

IF IDSpecial instruction

Next instruction IF

<n+2> <n+3> <n+4> <n+5> <n+6> <n+7>

ID EX MEM WB--- ---

IF ID EX MEM WBInstruction after that

...

... WBEX MEM MEM MEM MEM

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

662 User’s Manual U19383EJ1V0UM00

[Instructions]

RETI

[Pipeline]

Remark (IF) : Instruction fetch that is not executed
ID1 : Register select
ID2 : Read EIPC/FEPC

[Description]

The pipeline consists of 6 stages, IF, ID1, ID2, EX, MEM, and WB. However, no operation is performed in the MEM
and WB stages, because memory is not accessed and no data is written to registers.

The ID stage requires 2 clocks. Also, the IF stage of the next instruction and next to next instruction is not executed.

Special instructions (RETI instructions)

<2><1> <3> <4> <5> <6>

IF ID1 ID2Special instruction

Next instruction (IF)

Branch destination instruction IF ID EX MEM WB

<7> <8>

EX MEM WB

Instruction after that (IF)

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

User’s Manual U19383EJ1V0UM00 663

[Instructions]

SWITCH

[Pipeline]

Remark (IF): Instruction fetch that is not executed

[Description]

The pipeline consists of 7 stages, IF, ID, EX1 (normal EX stage), MEM, EX2, MEM, and WB. However, no operation
is performed in the second MEM and WB stages, because there is no memory access and no data is written to regis-
ters.

Special instructions (SWITCH instructions)

<2><1> <3> <4> <5> <6>

IF EX1

Next instruction (IF)

Branch destination instruction IF ID EX MEM WB

<7> <8>

MEM WBID EX2 MEM

<9> <10>

Special instruction

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

664 User’s Manual U19383EJ1V0UM00

[Instructions]

TRAP

[Pipeline]

Remark (IF) : Instruction fetch that is not executed
ID1 : Exception code (004nH, 005nH) detection (n = 0 to FH)
ID2 : Address generate

[Description]

The pipeline consists of 6 stages, IF, ID1, ID2, EX, DF, and WB.
The ID stage requires 2 clocks. Also, the IF stage of the next instruction and next to next instruction is not executed.

Special instructions (TRAP instructions)

<2><1> <3> <4> <5> <6>

IF ID1 ID2Special instruction

Next instruction (IF)

Branch destination instruction IF ID EX MEM WB

<7> <8>

EX DF WB

Instruction after that (IF)

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

User’s Manual U19383EJ1V0UM00 665

[Instructions]

DBRET

[Pipeline]

Remark (IF): Instruction fetch that is not executed
ID1: Register select
ID2: Read DBPC

[Description]

The pipeline consists of 6 stages, IF, ID1, ID2, EX, MEM, and WB. However, no operation is performed in the MEM
and WB stages, because memory is not accessed and no data is written to registers.

The ID stage requires 2 clocks. Also, the IF stage of the next instruction and next to next instruction is not executed.

Debug function instructions (DBRET instructions)

<2><1> <3> <4> <5> <6>

IF ID1 ID2Debug function instruction

Next instruction (IF)

Branch destination instruction IF ID EX MEM WB

<7> <8>

EX WB

Instruction after that (IF)

MEM

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

666 User’s Manual U19383EJ1V0UM00

[Instructions]

DBTRAP

[Pipeline]

Remark (IF): Instruction fetch that is not executed
ID1: Exception code (0060H) detection
ID2: Address generate

[Description]

The pipeline consists of 6 stages, IF, ID1, ID2, EX, DF, and WB.
The ID stage requires 2 clocks. Also, the IF stage of the next instruction and next to next instruction is not executed.

Debug function instructions (DBTRAP instructions)

<2><1> <3> <4> <5> <6>

IF ID1 ID2Debug function instruction

Next instruction (IF)

Branch destination instruction IF ID EX MEM WB

<7> <8>

EX WB

Instruction after that (IF)

DF

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

User’s Manual U19383EJ1V0UM00 667

4.5.17 Pipeline (V850E2)

V850E2 is based on RISC architecture and executes almost all instructions in one clock cycle under control of
a 7-stage pipeline. The instruction execution sequence usually consists of seven stages from fetch IF (Instruction
fetch) to WB (writeback).

The execution time of each stage differs depending on the type of the instruction and the type of the memory to be
accessed.

As an example of pipeline operation, following figure shows the processing of the CPU when 12 standard instruc-
tions are executed in succession.

IF(Instruction fetch) Instruction is fetched and fetch pointer is incremented.

DP(Dispatch) Type of instruction is issued to corresponding pipeline by searching the dependancy relation
ship.

ID (Instruction decode) Instruction is decoded and creation of immediate data and reading of register is performed.

EX (Execution) Decoded instruction is executed.

AT(Address transfer) Address is trnsferred to corresponding memory.

DF (Data fetch) Data from corresponding memory is read.

WB (writeback) The execution result is written to register.

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

668 User’s Manual U19383EJ1V0UM00

Figure 4-82. Example of Executing Twelve Standard Instructions

<1> through <12> in the figure above indicate the CPU state. In the standard instructions, execution (EX) of 2 spe-
cific instructions in 1 clock are performed in parallel.

V850E2 is configured by 3 independent pipelines mentioned below.
- Fpipe (Instruction fetch pipeline)
- Lpipe (Instruction execution pipeline left)
- Rpipe (Instruction execution pipeline right)

V850E2 allows configuration of maximum of 2 instructions at a time that can be issued by searching the dependancy
relationship of instructions. Pipeline configuration of V850E2 is shown below.

IF DP
ID EX AT instruction 1

System Clock

(State)

End of

instruct

ion 2

End of

instruct

ion 1

End of

instruct

ion 3

End of

instruct

ion 5

End of

instruct

ion 7

End of

nstruct

ion 11

Instruction executed every 1 clock cycle

Time Flow

Processing CPU per- <5> <6><4><1> <2> <3> <12><11><9> <10><8><7>

ID EX

WB

ID EX

ID EX

 instruction 2

 instruction 4

 instruction 3

 instruction 5

 instruction 6

 instruction7

 instruction 8

 instruction 9

End of

instruct

ion 9

End of

instruct

ion 4

 instruction 10

 instruction 11

 instruction 12

DF

WB

IF DP
WB

AT WBDF

ID EX

ID EX
IF DP

WB

AT WBDF

ID EX

ID EX
IF DP

WB

AT WBDF

ID EX

ID EX
IF DP

WB

AT WBDF

ID EX

ID EX
IF DP

WB

AT WBDF

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

User’s Manual U19383EJ1V0UM00 669

Figure 4-83. Pipeline Configuration (V850E2)

- Instruction fetch pipeline (Fpipe)
is constructed with 3 units as shown below.

- Instruction fetch unit (Bpipe)
Maximum of 8 instructions (if 1 instruction is of 16 bits) are fetched from 128 bits fetch path (iLIB) in 1 cycle.

- Dispatch unit
128 bits x 2 stage instruction queue is involved and, maximum of 2 instructions are issued to effective
instruction execution pipeline by searching dependency relationship of instructions in this queue.

- Instruction buffer
According to the instruction fetch unit (Bpipe) the fetched instructions are saved.

- Instruction execution pipeline left (Fpipe)
is constructed with 3 units as shown below.

- Instruction decode unit L
Instructions issued by dispatch unit are decoded.

- ALU unit
Instructions performing integer operations, logical operations are executed.

- MEM unit
Instructions accessing the memory that includes load instruction and store instructions, are executed.

- Instruction execution pipeline right (Rpipe)
is constructed with 3 units as shown below.

- Instruction decode unit R
Instructions issued by dispatch unit are decoded.

- ALU unit
Instructions performing integer operations, logical operations are executed.

- BSFT unit
Instructions performing data operations, are executed.

Register file

Instruction decode unit L

Instruction buffer

Writeback unit

MEM unit ALU unit MUL unit ALU unit BSFT unit

Instruction decode unit R

Instruction execution

Instruction fetch unit (Bpipe)

Instruction fetch pipeline (Fpipe)

Pipeline left (Lpipe)
Instruction execution
Piprline right (Rpipe)

Instruction memory,
Instruction cache

Dispatch unit

Data memory,
Data cache

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

670 User’s Manual U19383EJ1V0UM00

- MUL unit
Instructions performing integer operations, are executed.

- Writeback unit
Writeback in register file is controlled.

(1) Pipeline flow during execution of instructions
This section explains the pipeline flow during the execution of instructions.

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

User’s Manual U19383EJ1V0UM00 671

[Instructions]

LD.B, LD.BU, LD.H, LD.HU, LD.W, SLD.B, SLD.BU, SLD.H, SLD.HU, SLD.W

[Pipeline]

[Description]

This pipeline has seven stages: IF, DP, ID, EX, AT, DF, and WB.
In the figure above, a load instruction is executed by the Lpipe and then the next instruction is issued to the Lpipe. If

the Rpipe has no dependency with the load instruction, it can execute its own processing independently. However,
immediately after the load instruction is executed, if an instruction that uses the execution result is issued, a data wait
period will occur.

Each of these instructions can be issued at the same time as another instruction.

Remark Load instructions are executed by the left instruction execution pipeline (Lpipe)'s MEM unit.

Load instructions

<2><1> <3> <4> <5> <6>

IF ID EX AT DFLoad instruction

Next instruction IF

DP

<7>

WB

<8>

DP ID EX AT DF WB

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

672 User’s Manual U19383EJ1V0UM00

[Instructions]

SST.B, SST.H, SST.W, ST.B, ST.H, ST.W

[Pipeline]

[Description]

This pipeline also has seven stages (IF, DP, ID, EX, AT, DF, and WB), but its WB stage does not operate because
there is no writing of data to registers.

In the figure above, a store instruction is executed by the Lpipe and then the next instruction is issued to the Lpipe.
If the Rpipe has no dependency with the store instruction, it can execute its own processing independently.

Each of these instructions can be issued at the same time as another instruction.

Remark Store instructions are executed by the left instruction execution pipeline (Lpipe)'s MEM unit.

Store instructions

<2><1> <3> <4> <5> <6>

IF ID EX AT DF

IF

DP

<7>

WB

<8>

DP ID EX AT DF WB

Store instruction

Next instruction

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

User’s Manual U19383EJ1V0UM00 673

[Instructions]

MUL, MULH, MULHI, MULU

[Pipeline]

(1) If the next instruction is not a multiplication instruction (or a multiplication with addition instruction)

(2) If the next instruction is a multiplication instruction (or a multiplication with addition instruction)

[Description]

This pipeline has seven stages: IF, DP, ID, EX, AT, DF, and WB.

Although two clock cycles are required by the EX stages, EX1 and EX2 operate independently. Consequently, only
one

clock cycle is required per instruction even when the multiplication instruction (or multiplication with addition instruc-
tion) is repeated.

In the figure above, a multiplication instruction is executed by the Lpipe and then the next instruction is issued to the
Lpipe. However, immediately after the multiplication instruction is executed, if an instruction that uses the execution
result is issued, a data wait period will occur.

Each of these instructions can be issued at the same time as another instruction.

Remark The multiplication instructions are executed by the left instruction execution pipeline (Lpipe)'s MUL unit.

Arithmetic operation instructions (Multiply instructions)

Multiply instruction

Next instruction

<2><1> <3> <4> <5> <6>

IF ID EX1 DFDP

<7>

WB

<8>

EX2

IF ID EX DFDP WBAT

<2><1> <3> <4> <5> <6>

Multiply instruction 1

Multiply instruction 2

IF ID EX1 DFDP WBEX2

IF ID EX1 DFDP WBEX2

<7> <8>

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

674 User’s Manual U19383EJ1V0UM00

[Instructions]

MAC, MACU

[Pipeline]

(1) If the next instruction is not a multiplication instruction (or a multiplication with addition instruction)

(2) If the next instruction is a multiplication instruction (or a multiplication with addition instruction)

[Description]

This pipeline has seven stages: IF, DP, ID, EX, AT, DF, and WB.

Although two clock cycles
are required by the EX stages, EX1 and EX2 operate independently. Consequently, only one clock cycle is required

per instruction even when the multiplication instruction (or multiplication with addition instruction) is repeated.
In the figure above, a multiplication instruction is executed by the Lpipe and then the next instruction is issued to the

Lpipe. If the Rpipe has no dependency with the multiplication instruction, it can execute its own processing indepen-
dently. However, immediately after the multiplication instruction is executed, if an instruction that uses the execution
result is issued, a data wait period will occur.

These instructions are issued one at a time.

Remark Multiplication with addition instructions are executed by the left instruction execution pipeline (Lpipe)'s
MUL unit.

Multiplication with addition instructions

Multiplication with addition instruction

Next instruction

<2><1> <3> <4> <5> <6>

IF ID EX1 DFDP

<7>

WB

<8>

EX2

IF ID EX DFDP WBAT

<2><1> <3> <4> <5> <6>

Multiply instruction

<7> <8>

IF ID EX1 DFDP WBEX2

IF ID EX1 DFDP WBEX2

Multiplication with addition instruction

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

User’s Manual U19383EJ1V0UM00 675

[Instructions]

ADD, ADDI, CMP, MOV, MOVEA, MOVHI, SUB, SUBR

[Pipeline]

[Description]

This pipeline has five stages: IF, DP, ID, EX, and WB.
In the figure above, an arithmetic operation instruction is executed by the Rpipe and then the next instruction is

issued to the Rpipe. If the Lpipe has no dependency with the arithmetic operation instruction, it can execute its own
processing independently.

Each instruction except for the MOV imm32 reg1 instruction can be issued at the same time as another instruction
(the MOV imm32 reg1 instruction must be issued by themselves).

Remark Arithmetic operation instructions are executed by the ALU unit of the left instruction execution pipeline or
the right instruction execution pipeline (Lpipe or Rpipe).

Arithmetic operation instructions

<2><1> <3> <4> <5> <6>

IF ID EX

Next instruction IF

DP WB

DP ID EX WB

Arithmetic operation instruction

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

676 User’s Manual U19383EJ1V0UM00

[Instructions]

ADF, SBF

[Pipeline]

[Description]

This pipeline has five stages: IF, DP, ID, EX, and WB.
In the figure above, an arithmetic operation instruction is executed by the Rpipe and then the next instruction is

issued to the Rpipe. If the Lpipe has no dependency with the arithmetic operation instruction, it can execute its own
processing independently.

These instructions are issued one at a time.

Remark Conditional arithmetic instructions are executed by the ALU unit of the left instruction execution pipeline
or right instruction execution pipeline (Lpipe or Rpipe).

Conditional arithmetic instructions

<2><1> <3> <4> <5> <6>

IF ID EX

Next instruction IF

DP WB

DP ID EX WB

Conditional arithmetic instructions

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

User’s Manual U19383EJ1V0UM00 677

[Instructions]

DIV, DIVH, DIVHU, DIVU

[Pipeline]

(1) When DIV or DIVH

Remark ---: Idle inserted for wait

(2) When DIVU or DIVHU

Remark ---: Idle inserted for wait

[Description]

For the DIV and DIVH instructions, the pipeline has 39 stages: IF, DP, ID, EX1 to EX35, and WB. For the DIVU and
DIVHU instructions, it has 38 stages: IF, DP, ID, EX1 to EX34, and WB.

In the figure above, a division instruction is executed by the Rpipe and then the next instruction is issued to the
Rpipe.

However, the dispatch unit does not issue any instructions to the Rpipe during the time when a division instruction is
being decoded in the ID stage or when it is being executed during the EX stages.

These instructions are issued one at a time.

Remark Division instructions are executed by the right instruction execution pipeline (Rpipe)'s ALU unit.

Arithmetic operation instructions (Divide instruction)

<2><1> <3> <4>

IF ID EX1 EX2Divide instruction

Next instruction IF

EX33 EX34

<35> <36> <37> <38> <39> <40>

ID EX--- ---

Instruction after that

...

...

<41>

EX35DP

<5>

WB

DP WB

IF ------ ---... --- DP ID EX WB

<2><1> <3> <4>

IF ID EX1 EX2Divide instruction

Next instruction IF

EX33 EX34

<35> <36> <37> <38> <39> <40>

ID EX--- ---

Instruction after that

...

...DP

<5>

WB

DP WB

IF ------ ---... DP ID EX WB

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

678 User’s Manual U19383EJ1V0UM00

[Instructions]

SATADD, SATSUB, SATSUBI, SATSUBR

[Pipeline]

[Description]

This pipeline has five stages: IF, DP, ID, EX, and WB.
In the figure above, a saturation instruction is executed by the Rpipe and then the next instruction is issued to the

Rpipe. If the Lpipe has no dependency with the saturation instruction, it can execute its own processing indepen-
dently.

Each instruction except for the SATADD reg1, reg2, reg3 instruction and the SATSUB reg1, reg2, reg3 instruction
can be issued at the same time as another instruction (the SATADD reg1, reg2, reg3 instruction and SATSUB reg1,
reg2, reg3 instruction must be issued by themselves).

Remark Saturation instructions are executed by the ALU unit of the left instruction execution pipeline or the right
instruction execution pipeline (Lpipe or Rpipe).

Saturation operation instructions

<2><1> <3> <4> <5> <6>

Saturation operation instruction

Next instruction

IF ID EX

IF

DP WB

DP ID EX WB

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

User’s Manual U19383EJ1V0UM00 679

[Instructions]

AND, ANDI, NOT, OR, ORI, TST, XOR, XORI

[Pipeline]

[Description]

This pipeline has five stages: IF, DP, ID, EX, and WB.
In the figure above, a logical operation instruction is executed by the Rpipe and then the next instruction is issued to

the Rpipe. If the Lpipe has no dependency with the logical operation instruction, it can execute its own processing
independently.

Each of these instructions can be issued at the same time as another instruction.

Remark Logical operation instructions are executed by the ALU unit of the left instruction execution pipeline or
right instruction execution pipeline (Lpipe or Rpipe).

Logical operation instructions

<2><1> <3> <4> <5> <6>

Logical operation instruction

Next instruction

IF ID EX

IF

DP WB

DP ID EX WB

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

680 User’s Manual U19383EJ1V0UM00

[Instructions]

BSH, BSW, CMOV, HSH, HSW, SAR, SASF, SETF, SHL, SHT, SXB, SXH, ZXB, ZXH

[Pipeline]

[Description]

This pipeline has five stages: IF, DP, ID, EX, and WB.
In the figure above, a data operation instruction is executed by the Rpipe and then the nextinstruction is issued to

the Rpipe. If the left instruction execution (Lpipe) has no dependency with the data operation instruction, it can exe-
cute its own processing independently.

Each of these instructions can be issued at the same time as another instruction.

Remark Data operation instructions are executed by the right instruction execution pipeline (Rpipe)'s BSFT unit.

Data operation instructions

<2><1> <3> <4> <5> <6>

Data operation instructions

Next instruction

IF ID EX

IF

DP WB

DP ID EX WB

<2><1> <3> <4> <5> <6>

IF ID EX

IF

DP WB

DP ID EX WB

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

User’s Manual U19383EJ1V0UM00 681

[Instructions]

SCH0L, SCH0R, SCH1L, SCH1R

[Pipeline]

[Description]

This pipeline has five stages: IF, DP, ID, EX, and WB.
In the figure above, a data operation instruction is executed by the Rpipe and then the next instruction is issued to

the Rpipe. If the left instruction execution (Lpipe) has no dependency with the data operation instruction, it can exe-
cute its own processing independently.

Each of these instructions can be issued at the same time as another instruction.

Remark Bit search instructions are executed by the right instruction execution pipeline (Rpipe)'s BSFT unit.

Bit search instructions

<2><1> <3> <4> <5> <6>

Bit search instructions

Next instruction

IF ID EX

IF

DP WB

DP ID EX WB

<2><1> <3> <4> <5> <6>

IF ID EX

IF

DP WB

DP ID EX WB

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

682 User’s Manual U19383EJ1V0UM00

[Instructions]

Bcnd instructions

[Pipeline]

(1) When the condition is not satisfied

(2) When the condition is satisfied

[Description]

The figure above shows a Bcond instruction being executed by the Bpipe, with all instructions being executed via the
left instruction execution pipeline (Lpipe).

Each of these instructions can be issued at the same time as another instruction.
The numbers of execution clock cycles are listed below.

Note This number is 3 (4 -1 = 3) if there are no target instructions in the instruction buffer.
This number is 6 if a PSW write instruction was executed as the previous instruction.

Remark Branch instructions (Conditional branch instructions: Except BR instruction) are executed by the instruc-
tion fetch unit (Bpipe).

Branch instructions (Conditional branch instructions: Except BR instruction)

Branch instructions Execution clock cycles

When the condition is not satisfied 1

When the condition is satisfied 4Note

<2><1> <3> <4> <5> <6>

IFBranch instruction

<7> <8>

IF DP ID EX AT DF WBInstruction after that

IF DP ID EX AT DF WB

DP ID EX

<9>

Next instruction

<2><1> <3> <4> <5> <6>

Branch instruction

Next instruction

Instruction after that IF

<7>

IF DP ID EX

IF DP

Branch destination instruction

<9>

IF DP ID EX AT DF WB

<10><8> <11>

Instruction is flushed after condition and branch are confirmed

Instruction is flushed after condition and branch are confirmed

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

User’s Manual U19383EJ1V0UM00 683

[Instructions]

BR, JARL, JR

[Pipeline]

[Description]

The figure above shows a branch instruction being executed by the Bpipe, with all instructions being executed via
the Lpipe.

Each of these instructions, except for the JARL disp32, reg1 instruction and JR disp32 instruction, can be executed
at the same time as another instruction.

Four clock cycles are required for execution of these instructions (this number is 3 (4 - 1 = 3) if there are no target
instructions in the instruction buffer).

Remark Branch instructions (BR instruction, unconditional branch instructions: Except JMP instruction) are exe-
cuted by the instruction fetch unit (Bpipe).

Branch instructions (BR instruction, unconditional branch instructions: Except JMP instruction)

<2><1> <3> <4> <5> <6>

Branch instruction

Next instruction

Instruction after that IF

<7>

IF DP ID EX

IF DP

Branch destination instruction

<9>

IF DP ID EX AT DF WB

<10><8> <11>

Instruction is flushed since branch is unconditional

Instruction is flushed since branch is unconditional

WB

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

684 User’s Manual U19383EJ1V0UM00

[Instructions]

JMP

[Pipeline]

[Description]

The figure above shows a JMP instruction being executed by the Bpipe, with all instructions being executed via the
Lpipe.

The JMP [reg1] instruction can be executed at the same time as another instruction (this is not possible for the JMP
disp32 [reg1] instruction).

Five clock cycles are required for execution of these instructions (this number is 4 (5 - 1 = 4) if there are no target
instructions in the instruction buffer).

Remark Branch instructions (JMP instructions) are executed by the instruction fetch unit (Bpipe).

Branch instructions (JMP instructions)

<2><1> <3> <4> <5> <6>

Branch instruction

Next instruction

Instruction after that IF

<7>

IF DP ID EX

IF DP

Branch destination instruction

<9>

IF DP ID EX AT DF WB

<10><8> <11>

Instruction is flushed since branch is unconditional

Instruction is flushed since branch is unconditional

AT

<12>

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

User’s Manual U19383EJ1V0UM00 685

[Instructions]

CLR1, NOT1, SET1

[Pipeline]

Remark ---: Idle inserted for wait

[Description]

Each instruction is divided into two instructions at the ID stage. The load instruction is executed first, then the store
instruction that includes bit manipulation is executed. However, since there is no writing of data to registers, nothing
occurs at the WB stage.

In the figure above, a bit manipulation instruction is executed by the Lpipe and then the next instruction is issued to
the Lpipe. If the Rpipe has no dependency with the bit manipulation instruction, it can execute its own processing
independently. The dispatch unit is not able to issue instructions to the Lpipe during decoding of instructions at the ID
stage.

These instructions are issued one at a time.

Remark Bit manipulation instructions (CLR1, NOT1, SET1 instructions) are executed by the left instruction execu-
tion pipeline (Lpipe)'s ALU unit.

Bit manipulation instructions (CLR1, NOT1, SET1 instructions)

<2><1> <3> <4> <5> <6>

Bit manipulation instruction 1

Bit manipulation instruction 2

Next instruction

<7> <8> <9>

ID EX AT DF WB

<10> <11>

IF DP ID EX AT DF WB

IF DP --- --- ---

ID --- --- EX AT DF WB

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

686 User’s Manual U19383EJ1V0UM00

[Instructions]

TST1

[Pipeline]

Remark ---: Idle inserted for wait

[Description]

Each instruction is divided into two instructions at the ID stage. The load instruction is executed first, then the bit
manipulation instruction is executed. However, since there is no writing of data to registers, nothing occurs at the WB
stage.

In the figure above, the TST1 instruction is executed by the Lpipe, then the next instruction is issued to the Lpipe. If
the Rpipe has no dependency with the bit manipulation instruction, it can execute its own processing independently.
The dispatch unit is not able to issue instructions to the Lpipe during decoding of instructions at the ID stage.

These instructions are issued one at a time.

Remark Bit manipulation instructions (TST1 instructions) are executed by the left instruction execution pipeline
(Lpipe)’s ALU unit.

Bit manipulation instructions (TST1 instructions)

<2><1> <3> <4> <5> <6>

Bit manipulation instruction 1

Bit manipulation instruction 2

Next instruction

<7> <8> <9>

ID EX AT DF WB

<10> <11>

IF DP ID EX AT DF WB

IF DP --- --- ---

ID --- --- EX WB

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

User’s Manual U19383EJ1V0UM00 687

[Instructions]

CALLT

[Pipeline]

Remark --- : Idle inserted for wait
(IF) : Instruction fetch that is not executed

[Description]

This instruction is divided into two instructions at the ID stage. The load instruction is executed first, then the branch
instruction corresponding to CTBP is executed. However, since there is no writing of data to registers, nothing occurs
at the WB stage.

In the above figure, the CALLT instruction is executed by the Lpipe, then an instruction is fetched from the branch
destination. If the Rpipe has no dependency with the CALLT instruction, it can execute its own processing indepen-
dently.

These instruction is issued one at a time.
The number of execution clock cycles is eight.

Remark Special instructions (CALLT instructions) are executed by the left instruction execution pipeline (Lpipe)’s
ALU unit.

Special instructions (CALLT instructions)

<2><1> <3> <4> <5> <6>

Special instruction 1

Special instruction 2

Next instruction (cancel)

<7> <8> <9> <10> <11>

IF DP ID EX AT DF WB

(IF)

ID --- --- EX AT

Branch destination instruction IF DP ID EX

<12>

↓
forwarding

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

688 User’s Manual U19383EJ1V0UM00

[Instructions]

CTRET, TRAP

[Pipeline]

[Description]

In the above figure, a CTRET or TRAP instruction is executed by the Bpipe, with all instructions executed via the
Lpipe.

These instructions are issued one at a time.
The number of execution clock cycles is nine.

Remark Special instructions (CTRET, TRAP instructions) are executed by the instruction fetch unit (Bpipe).

Special instructions (CTRET, TRAP instructions)

<2><1> <3> <4> <5> <6>

Special

instruction

Next instruction

Instruction after that IF

<7>

IF DP ID EX1

IF DP

Branch destination instruction

<9>

IF DP ID EX AT DF WB

<10><8> <11>

Instruction is flushed since branch is unconditional

Instruction is flushed since branch is unconditional

<12>

EX2 EX3 EX4 EX5 EX6

<13> <14> <15> <16>

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

User’s Manual U19383EJ1V0UM00 689

[Instructions]

DI, EI, LDSR

[Pipeline]

Remark ---: Idle inserted for wait

[Description]

This pipeline has five stages: IF, DP, ID, EX, and WB.
In the above figure, a DI, EI, or LDSR instruction is executed by the Rpipe, and all other instructions are also exe-

cuted by the Rpipe.
These instructions are issued one at a time.

Remark Special instructions (DI, EI, LDSR instructions) are executed by the right instruction execution pipeline
(Rpipe)’s ALUunit.

Special instructions (DI, EI, LDSR instructions)

<2><1> <3> <4> <5> <6>

Special instruction

Next instruction

<7>

IF DP ID

<9>

IF DP ID EX AT DF WB

<8>

Dummy slot

Update system registerWBEX

ID EX ---

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

690 User’s Manual U19383EJ1V0UM00

[Instructions]

DISPOSE

[Pipeline]

(1) When branch is not executed

Remark --- : Idle inserted for wait
n : The number of registers specified in the register list (list12)

(2) When branch is executed

Remark (IF) : Instruction fetch that is not executed
--- : Idle inserted for wait
n : The number of registers specified in the register list (list12)

Special instructions (DISPOSE instructions)

<2><1> <3> <4>

Special

instruction 1

Special instruction 2

<n+1> <n+2> <n+3> <n+4> <n+5> <n+6>

:

IF DP ID AT DF WB

<5> <6> <7>

DP ID AT DF WBEX

Special instruction n

Special instruction n+1

IF ID EXNext instruction ...

DP ID AT DF WBEX

DP ID EX WB

DP --- --- ------ --- --- ---

<2><1> <3> <4>

Special

instruction 1

Special instruction 2

<n+1> <n+2> <n+3> <n+4> <n+5> <n+6>

IF DP ID

<5> <6> <7>

Special instruction n

Special instruction n+1

Next instruction (IF)

ATEX

IF ID EXBranch destination instruction ...DP --- --- ---

DP ID AT DF WBEX

:

DP ID AT DF WBEX

DP ID EX WB

Instruction is flushed since branch is unconditional

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

User’s Manual U19383EJ1V0UM00 691

[Description]

This instruction is divided into n + 1 instructions at the DP stage, and the load instruction of the first n instruction is
executed first, then an instruction that writes to the stack pointer (SP) is executed.

In the above figure, DISPOSE instruction is executed by the Lpipe, then the next instruction is issued to the Lpipe. If
the Rpipe has no dependency with the DISPOSE instruction, it can execute its own processing independently.

The dispatch unit does not issue any instructions to the Lpipe when an instruction is being decoded in the DP stage.
These instruction is issued one at a time.

Remark Special instructions (DISPOSE instructions) are executed by the right instruction execution pipeline
(Rpipe)’s ALUunit.

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

692 User’s Manual U19383EJ1V0UM00

[Instructions]

HALT

[Pipeline]

Remark ---: Idle inserted for wait

[Description]

Once a HALT instruction is detected at the DP stage, instructions cannot be issued to the ID stage until the HALT
instruction has been canceled. Consequently, when the next instruction is issued, the ID stage is delayed for that
instruction until the HALT instruction is canceled.

In the Rpipe executes the HALT instruction, then the next instruction is issued to the Rpipe.
These instruction is issued one at a time.

Remark Special instructions (HALT instructions) is executed by the instruction fetch pipeline (Fpipe)'s dispatch
unit.

Special instructions (HALT instructions)

HALT mode release

<2><1> <3>

IFSpecial instruction

IF ID EX...--- ---

Instruction after that

Next instruction

DP

ID

WB

EX

DP

IF DP WB

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

User’s Manual U19383EJ1V0UM00 693

[Instructions]

NOP

[Pipeline]

[Description]

This pipeline has five stages: IF, DP, ID, EX, and WB, but since there are no processing and no writing of data to
registers, there are no operations at the EX and WB stages.

In the above figure, the NOP instruction is executed by the Rpipe, then the next instruction is issued to the Rpipe. If
the Lpipe has no dependency with the NOP manipulation instruction, it can execute its own processing independently.

This instruction can be issued at the same time as another instruction.

Remark Special instructions (NOP instructions) is executed by the ALU unit of the left instruction execution pipe-
line or the right instruction execution pipeline (Lpipe or Rpipe).

Special instructions (NOP instructions)

<2><1> <3> <4> <5> <6>

IFSpecial instruction

Next instruction IF

ID EX WBDP

ID EX WBDP

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

694 User’s Manual U19383EJ1V0UM00

[Instructions]

PREPARE

[Pipeline]

Remark --- : Idle inserted for wait
n : The number of registers specified in the register list (list12)

[Description]

This instruction is divided into n + 1 instructions at the DP stage, and the store instruction of the first n instruction is
executed first, then an instruction that writes to the stack pointer (SP) is executed. However, since the store instruction
does not write any data to registers, no operations occur at the WB stage.

In the above figure, the PREPARE instruction is executed by the Lpipe, then the next instruction is issued to the
Lpipe. If the Rpipe has no dependency with the PREPARE instruction, it can execute its own processing indepen-
dently.

The dispatch unit does not issue any instructions to the Lpipe when an instruction is being decoded in the DP stage.
These instruction is issued one at a time.

Remark Special instructions (PREPARE instructions) are executed by the left instruction execution pipeline
(Lpipe)’s ALU unit.

Special instructions (PREPARE instructions)

<2><1> <3> <4>

Special

instruction 1

Special instruction 2

<n+1> <n+2> <n+3> <n+4> <n+5> <n+6>

ID

<5> <6> <7>

Special instruction n

Special instruction n+1

Next instruction

ATEX

IF ID EX...DP --- --- ---

:

DP ID AT DF WBEX

DP ID EX WB

IF DP DF WB

ID ATEXDP DF WB

--- --- --- ---

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

User’s Manual U19383EJ1V0UM00 695

[Instructions]

RETI

[Pipeline]

[Description]

In the above figure, a RETI instruction is executed by the Bpipe, with all instructions executed via the Lpipe.
These instruction is issued one at a time.
The number of execution clock cycles is varies according to the system (it depends on the interrupt controller's oper-

ation specifications).

Remark Special instructions (RETI instructions) are executed by the instruction fetch unit (Bpipe).

Special instructions (RETI instructions)

<2><1> <3> <4> <5>

IFSpecial instruction

Next instruction

Branch destination instruction

Instruction after that IF

DP ID

IF DP

ID EX AT DF WB

Instruction is flushed since branch is unconditional

EX1 EX2 EXn...

IF DP

Instruction is flushed since branch is unconditional

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

696 User’s Manual U19383EJ1V0UM00

[Instructions]

STSR

[Pipeline]

[Description]

This pipeline has five stages: IF, DP, ID, EX, and WB.
In the above figure, the STSR instruction is executed by the Rpipe, then the next instruction is issued to the Rpipe.

If the Lpipe has no dependency with the STSR instruction, it can execute its own processing independently.
These instruction is issued one at a time.

Remark Special instructions (STSR instructions) are executed by the right instruction execution pipeline (Rpipe)’s
ALUunit.

Special instructions (STSR instructions)

<2><1> <3> <4> <5> <6>

Special instruction

Next instruction

ID EX WBIF DP

ID EX WBIF DP

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

User’s Manual U19383EJ1V0UM00 697

[Instructions]

SWITCH

[Pipeline]

Remark --- : Idle inserted for wait
(IF) : Instruction fetch that is not executed

[Description]

This instruction is divided into two instructions at the ID stage. The load instruction is executed first, then the branch
instruction corresponding to PC is executed. However, since there is no writing of data to registers, nothing occurs at
the WB stage.

In the above figure, the SWITCH instruction is executed by the Lpipe, then the next instruction is issued to the Lpipe.
If the Rpipe has no dependency with the SWITCH instruction, it can execute its own processing independently.

These instruction is issued one at a time.
The number of execution clock cycles is eight.

Remark Special instructions (SWITCH instructions) are executed by the left instruction execution pipeline
(Lpipe)’s ALU unit.

Special instructions (SWITCH instructions)

<2><1> <3> <4> <5> <6>

Special instruction 1

Special instruction 2

Next instruction (cancel)

<7> <8> <9> <10> <11>

IF DP ID EX AT DF WB

(IF)

ID --- --- EX AT

Branch destination instruction IF DP ID EX

<12>

↓
forwarding

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

698 User’s Manual U19383EJ1V0UM00

[Instructions]

DBRET, DBTRAP

[Pipeline]

[Description]

In the above figure, a DBTRAP or DBRET instruction is executed by the Bpipe, and all other instructions are exe-
cuted by the Lpipe.

These instructions are issued one at a time.
 Since this instruction is retained in the CPU, the branch destination instruction is not executed before completion of

this instruction's processing.

Remark Debug function instructions (DBRET, DBTRAP instructions) are executed by the instruction fetch unit
(Bpipe).

Debug function instructions (DBRET, DBTRAP instructions)

<2><1> <3> <4> <5>

Debug function instruction

Next instruction

Branch destination instruction

Instruction after that

IF

IF

DP ID

IF DP

ID EX AT DF WB

Instruction is flushed since branch is unconditional

EX1 EX2 EXn

IF DP

Instruction is flushed since branch is unconditional

...

CHAPTER 5 LINK DIRECTIVE SPECIFICATION

User’s Manual U19383EJ1V0UM00 699

CHAPTER 5 LINK DIRECTIVE SPECIFICATION

This chapter explains the necessary items for link directives and how to write a link directive file.
In an embedded application such as allocating program code from certain address or allocating by division, it is nec-

essary to pay attention in the memory allocation.
To implement the memory allocation as expected, program code or data allocation information should be specified

in linker. This information is called as "Link directive" and file describing link directive is called as "Link directive file".
Linker will decide the memory allocation according to this link directive file and will create load module.

5.1 Coding Method

This section describes the format of the link directive file for each following item:
- Segment directive
- Mapping directive
- Symbol directive

The following is an outline of the link directive's format. An editor can be used to enter these directives in text for-
mat.

Remark It is recommended to describe segment directive starting from the lowest address.

Segment directive1{

 Mapping directive ;

};

Segment directive2{

 Mapping directive ;

};

Segment directive3{

 Mapping directive ;

};

Segment directive4{

 Mapping directive ;

};

tp symbol directive;

gp symbol directive;

ep symbol directive;

CHAPTER 5 LINK DIRECTIVE SPECIFICATION

700 User’s Manual U19383EJ1V0UM00

5.1.1 Characters used in link directive file

The following characters can be used in the link directive file.
- Numerals (0 to 9)
- Uppercase characters (A to Z)
- Lowercase characters (a to z)
- Underscore (_)
- Dot (.)
- Forward slash (/)
- Back slash (\)
- Colon (:) (can be used only for file name)
- Shift-JIS code (can be used only for file name; available only in the Japanese system)
- One-byte Japanese character (can be used only for file name; available only in the Japanese system)
- "#" (for comments)

"#" in the link directive file indicates the start of a comment. Text that starts with "#" and ends at end of the line is
handled as a comment.

5.1.2 Link directive file name

Any file name can be assigned to a link directive file as long as the characters used are all valid characters for the
link directive file. Note, however, that an extension is necessary. "dir" is recommended. When using the CubeSuite,
please be sure to make it "dir" or "dr". Also note with caution that if an especially long file name is used, it may exceed
the number of characters that can be handled during linkage (depending on the OS), which would preclude successful
linkage.

If linkage is performed via command line entry, specify a link directive file with the "-D" option.

CHAPTER 5 LINK DIRECTIVE SPECIFICATION

User’s Manual U19383EJ1V0UM00 701

5.1.3 Segment directive

This section describes the format of the segment directive for each following item:
- Specification item
- Segment directive specification example

(1) Specification item
The items that are specified in the segment directive are listed below.

Table 5-1. Item Specified in Segment Directive

A specific example of the segment directive's format is shown below.

A blank space is used to separate these items from each other. A semicolon (;) must be added at the end of
each segment directive.

Item Cording Format Meanings Omissible

Segment Name Segment Name Name of segment to be created No

Segment type !LOAD Type (fixed) loaded to memory No

Segment Attribute ?[R][W][X] Specifies whether the segment to be created will
have "read-enabled(R)" attribute, "write-
enabled(W)" attribute, and/or "executable(X)"
attribute (several can be specified)

No

Address Vaddress Start address of segment to be created Yes

Maximum memory
size

Lmaximum memory
size

Upper limit of memory area occupied by seg-
ment to be created

Yes

Hole size Hhole size Size of hole to be created after segment (blank
space between segment and next segment)

Yes

Fill value Ffill value Value used to fill hole area Yes

Alignment Condition Aalignment condition Alignment condition for memory allocation Yes

Segment Name: !segment type ?segment attribute Vaddress Lmaximum memory size Hhole
size Ffill value Aalignment condition{

 :

 (Mapping directive)

 :

};

CHAPTER 5 LINK DIRECTIVE SPECIFICATION

702 User’s Manual U19383EJ1V0UM00

The omissible specification items are "Vaddress", "Lmaximum memory size", "Hhole size", "Ffill value", and
"Aalignment condition". Default values are used for these items when they are omitted. These default values
are listed below.

Table 5-2. Default Values for Omitted Segment Directive Specification Items

Remark It is recommended to describe segment directive starting from the lowest address.

(a) Segment name
Specify the name of the segment to be created.
When creating a segment, specification of the segment name cannot be omitted.
There is no restriction on the length of the character string that is to be specified as segment name. How-
ever, the name of segments which assign reserved sections listed in following table are fixed. Names other
than those listed cannot be used for these segments.

Table 5-3. Reserved Section Names with Fixed Segment Names

Remark The name of the segment for .sconst can be changed, but an error check is not performed to
some of the data.

(b) Segment type
Specify the type of the segment to be created.
When creating a segment, specification of the segment type cannot be omitted.
At present, only "LOAD" type (segment type that is loaded to memory) can be specified. The linker outputs
an error message if another value is specified. The "LOAD" can be specified using either uppercase or low-
ercase letters.
Start the segment type specification with a "!", which must not be followed by blank space.

Item Meanings

Address Address 0x0 for first segment, and the value continued from the end of the previous
segment for other segments

Maximum memory
size

0x100000 (bytes),it is a memory size to be allocated to segment,when device for
which memory size allocated to segment exceeds 1M, is specified.

Hole size 0x0 (bytes)

Fill value 0x0000

Alignment Condition 0x8 (bytes)

Section Name Segment Name

.sidata .sibss

.tidata .tibss

.tidata.byte .tibss.byte

.tidata.word

.tibss.word

SIDATA

.sedata

.sebss

SEDATA

.sconst SCONST

CHAPTER 5 LINK DIRECTIVE SPECIFICATION

User’s Manual U19383EJ1V0UM00 703

(c) Segment attributes
Specify the name of the segment to be created.
When creating a segment, specification of the segment attribute cannot be omitted.
The specifiable segment attributes and their meanings are listed below.
A segment attribute depends on an attribute of mapping directive belonging to the segment. Therefore, the
segment attribute specification must take into account the section attribute to be specified in the mapping
directive.

Table 5-4. Segment Attributes and their Meanings

Several segment attributes can be specified at the same time, with R, W, and X specified in any order with
no blank spaces between them. Start each section attribute specification with a "?", which must not be fol-
lowed by a blank space.

Remark If multiple segment attribute specifications are performed in one segment directive, the linker
outputs an error message and stops linking

Example

(d) Address
Specify the start address of the section to be created.

When creating a segment, specification of the address can be omitted. When it is omitted, the address 0x0

is assigned as the start address if the segment is the first segment, otherwise the assigned value for the

start address is the value continued from the end of the previous segment (based on the alignment).

Address specifications must be made with consideration given to the way memory is allocated in the target

CPU.

For example, if the target CPU is a V850 core device, the address 0x0 is used for reset interrupt processing

(reset interrupt handler). Therefore, if reset interrupt will be processed, be sure to set addresses so that the

address 0x0 is not assigned to other segments.

Also, since different memory capacities are installed in the various V850 core devices, their internal ROM/

RAM uses different start and end addresses. Consequently, the allocation address specification for each

segment must take into account which CPU is being used. For description of a particular CPU's memory,

see the CPU's User's Manual (Hardware Version) and/or the corresponding device file's User's Manual.

Specify even-numbered values as the address values. If an odd- numbered value is specified, the linker

outputs a message and continues with linking on the assumption that the "specified address plus one" has

been specified.

Start the address specification with a "V" (uppercase or lowercase), which must not be followed by a blank

space. Address values can be specified using either decimal or hexadecimal numerals, but when using

hexadecimal numerals be sure to add "0x" before the value. Expressions cannot be used in the address

specification.

Segment Attribute Meanings

R Read-enabled segment

W Write-enabled segment

X Executable segment

SEG: !LOAD ?RX ?RW {};

CHAPTER 5 LINK DIRECTIVE SPECIFICATION

704 User’s Manual U19383EJ1V0UM00

(e) Maximum memory size
Specify the maximum value for memory size of the segment to be created.

This specification is used not to exceed the segment's intended size. Therefore, if the segment's actual

size is less than the specified "maximum memory size", the next segment will follow immediately afterward.

When creating a segment, specification of the maximum memory size can be omitted. The value 0x100000
(bytes) is used as the default value when it is omitted.
When created segment exceeds the value specified by maximum memory size, linker outputs an error mes-
sage and stops linking.
Start the maximum memory size specification with a "L" (uppercase or lowercase), which must not be fol-
lowed by a blank space. Expressions cannot be used in the maximum memory size specification.

(f) Hole size
Specify the hole size of the segment to be created.
The segment's hole is the space between one segment and the next segment. When a hole size has been
specified, the specified hole is created at the end of the target segment.
When creating a segment, specification of the hole size can be omitted. The value 0x0 (bytes) is used as
the default value (which specifies that no hole is created) when it is omitted.
Start the hole size specification with an "H" (uppercase or lowercase), which must not be followed by a
blank space.
Expressions cannot be used in the hole size specification.

(g) Fill value
Specify a fill value as the value to be used for filling hole areas that are created either when segments are
allocated or when explicitly specified via the "H" specification.
When specifying the fill value, specify the "-B" option to perform linking in the 2-pass mode. If the linkage is
performed with the fill value specification in the 1-pass mode (default), the linker outputs a message and
continues ignoring this specification and linking.
When creating a segment, specification of the fill value can be omitted. The value 0x0000 is used as the
default value (which fills hole areas with zeros) when it is omitted. However, if the "-f" option (linker fill value
option) has been specified, the linker outputs a message and continues linking while ignoring the fill value
specified by the link directive.
Start the fill value specification with an "F" (uppercase or lowercase), which must not be followed by a blank
space. Specify a two-byte four-digit hexadecimal value as the fill value. If the value dose not occupy all
four digits, the remaining (higher) digits are assumed to be zeros. If the hole size is less than two bytes, the
required digits are taken out of the lower value of the specified fill value. Expressions cannot be used in the
fill value specification.

(h) Alignment condition
Specify the segment alignment condition (alignment value) to be used for memory allocation of the segment
to be created.
When creating a segment, specification of the alignment condition can be omitted. The value 0x8 (bytes) is
used as the default value (which sets 8-byte alignment) when it is omitted.
Start the alignment condition specification with an "A" (uppercase or lowercase), which must not be fol-
lowed by a blank space. Specify even-numbered values as the alignment condition values. If an odd- num-
bered value is specified, the linker outputs a message and continues with linking on the assumption that the
"specified address plus one" has been specified. Expressions cannot be used in the alignment condition
specification.

CHAPTER 5 LINK DIRECTIVE SPECIFICATION

User’s Manual U19383EJ1V0UM00 705

(2) Segment directive specification example
A segment specification example is shown below.

Table 5-5. Segment Example

The segment directive code appears as shown below for above segment.

Remark Basically, there is no problem if segment directives are described in the order of the allocation
addresses.
The only exception applies to segments that have .sedata/.sebss section (by default, "SEDATA seg-
ment"), only when the allocation address is omitted.
In the CA850, the SEDATA segment is defined as a segment used to reference the area below the
internal RAM with 1 ep-relative instruction, and therefore, if the allocation address is omitted, the
linker considers that the address obtained by subtracting 0x8000 from the internal RAM start
address defined in the device file, has been specified.

Item Value

Segment Name PROG1

Segment type Read-enabled, executable

Allocation address address 0x1000

Maximum memory size 0x200000 (bytes)

Hole size 0x20 (bytes)

Fill value 0xffff

Alignment Condition 0x16 (bytes)

PROG1: !LOAD ?RX V0x1000 L0x200000 H0x20 F0xffff A0x16 {

 :

 (Mapping directive)

 :

};

CHAPTER 5 LINK DIRECTIVE SPECIFICATION

706 User’s Manual U19383EJ1V0UM00

The following is an example of this case.

The SEDATA address is omitted and this start address is judged as 0xff2000 (= 0xffb00 - 0x8000) according to
device file information. Since SIDATA is defined as being allocated to address 0xffb000, the CA850 moves the
SEDATA to the front of SIDATA and links them.
Moreover, since the address of the DATA segment defined after that is omitted, DATA is allocated immediately
after the SEDATA.

SIDATA: !LOAD ?RW V0xffb000 {

 .tidata.byte = $PROGBITS ?AW .tidata.byte;

 .tibss.byte = $NOBITS ?AW .tibss.byte;

 .tidata.word = $PROGBITS ?AW .tidata.word;

 .tibss.word = $NOBITS ?AW .tibss.word;

 .sidata = $PROGBITS ?AW .sidata;

 .sibss = $NOBITS ?AW .sibss;

};

SEDATA: !LOAD ?RW {

 .sedata = $PROGBITS ?AW .sedata;

 .sebss = $NOBITS ?AW .sebss;

};

DATA: !LOAD ?RW {

 .data = $PROGBITS ?AW .data;

 .sdata = $PROGBITS ?AWG .sdata;

 .sbss = $NOBITS ?AWG .sbss;

 .bss = $NOBITS ?AW .bss;

};

CHAPTER 5 LINK DIRECTIVE SPECIFICATION

User’s Manual U19383EJ1V0UM00 707

5.1.4 Mapping directive

This section describes the format of the mapping directive for each following item:
- Specification item
- Mapping directive specification example

(1) Specification item
The items that are specified in the mapping directive are listed below.

Table 5-6. Item Specified in Segment Directive

A specific example of the mapping directive's format is shown below.

A blank space is used to separate these items from each other. A semicolon (;) must be added at the end of each
segment directive

Item Cording Format Meanings Omissible

Output section name Output section name Name of section output to load module No

Section Type $PROGBITS

$NOBITS

Type of section to be created No

Section Attribute ?[A][W][X][G] Specifies whether the section to be created will
have "memory-resident(A)" attribute, "write-
enabled(W)" attribute, "executable(X)" attribute,
and/or "accessible via gp with 16-bit displace-
ment(G)" attribute (several can be specified).

No

Address Vaddress Start address of section to be created Yes

Hole size Hhole size Size of hole to be created after section (blank
space between section and next section)

Yes

Alignment Condition Aalignment condition Alignment condition for memory allocation Yes

Input section name Input section name Name of input section allocated to output sec-
tion

Yes

Object file name {object file name
object file name ...}

Name of object file that includes the sections to
be extracted and used as the input sections
(several can be specified; insert spaces
between the specifications).

Yes

Output section name =

 $Section Type

 ?Section Attribute

 Vaddress

 Hhole size

 Aalignment condition

 Input section name

 {object file name object file name} ;

CHAPTER 5 LINK DIRECTIVE SPECIFICATION

708 User’s Manual U19383EJ1V0UM00

The omissible specification items are "Vaddress", "Hhole size", "Aalignment condition", "input section name" and

"object file name". Default values or pre-set conventions are used for these items when they are omitted. These

default values and pre-set conventions are listed below.

Table 5-7. Default Values/Conventions for Values That Can Be Omitted in Mapping Directive Specification
Items

These specification items are explained below.

(a) Output section name
Name of section output to load module When creating a section, specification of the output section type

cannot be omitted.

There is no restriction on the length of the character string that is to be specified as output segment name.

However, note the fixed correspondence of output section names and input section names listed in the fol-

lowing table and names other than those listed cannot be used for these sections.

Table 5-8. Reserved Section Names with Fixed Segment Names

Item Meanings

Address Sets according to address that was specified via the segment directive.

If there are several sections and this is not the first one, the value is continued
from the end of the previous section.

If the section is the first section, the value is continued from the start of the seg-
ment.

Hole size 0x0 (bytes)

Alignment Condition .tidata.byte /. tibss.byte section:0x1(bytes)

Other sections: 0x4 (bytes)

Input section Sections having the same attribute as the output section to be created are
extracted from all objects.

If an object file name has been specified, they are extracted from the specified
object.

Object file name Sections having the same attribute as the output section to be created are
extracted from all objects.

If an input section has been specified, they are extracted from all the objects that
have the same attribute as the output section to be created.

Input Section Name Output Section Name

.tidata section .tidata

.tibss section .tibss

.tidata.byte section .tidata.byte

.tibss.byte section .tibss.byte

.tidata.word section .tidata.word

.tibss.word section .tibss.word

.sidata section .sidata

.sibss section .sibss

.sedata section .sedata

.sebss section .sebss

.pro_epi_runtime section .pro_epi_runtime

CHAPTER 5 LINK DIRECTIVE SPECIFICATION

User’s Manual U19383EJ1V0UM00 709

Remark The name of the segment for .sconst can be changed, but an error check is not performed to
some of the data. Although two or more mapping directives can be described in the same seg-
ment directive, two or more of the same output section names cannot be specified in different
segment directive. If two or more of the same output section names are specified, the linker out-
puts an error message and stops linking.

(b) Section type
Specify the type of the output section.
When creating a section, specification of the output section type cannot be omitted.
The specifiable section types and their meanings are listed below.

Table 5-9. Section Types and Their Meanings

Start the section type specification with a "$", which must not be followed by a blank space.
If only "$" is specified, the linker outputs an error message and stops linking.

(c) Section attributes
Specify the name of the section to be created.
When creating a section, specification of the section attribute cannot be omitted.
The specifiable section attributes and their meanings are listed below.

Table 5-10. Section Attributes and Their Meanings

Several section attributes can be specified at the same time, with A, W, X, and G specified in any order with
no blank spaces between them. Start each section attribute specification with a "?", which must not be fol-
lowed by a blank space.

Section Type Meanings

PROGBITS Section that has actual values in an object file

--> Text or data (variable) with initial value

NOBITS Section that does not have actual values in an object file

--> Data (variable) without initial value

Section Attribute Meanings

A Section that occupies a memory area (corresponds to entire section)

W Write-enable section (section allocated in RAM)

X Executable section (mainly text section)

G Section (.sdata,/.sbss section) that is allocated within a memory area
that can be referred using a global pointer (gp) with 16-bit displace-
ment

CHAPTER 5 LINK DIRECTIVE SPECIFICATION

710 User’s Manual U19383EJ1V0UM00

(d) Address
Specify the start address of the section to be created.
When creating a section, specification of the address can be omitted. If it is omitted, the address is
assigned based on the address specified via the segment directive. If there are several sections and this is
not the first one, the value is continued from the end of the previous section.
Normally, section addresses are specified as a group for each segment, but separate address specifica-
tions can be made to assign certain addresses to certain sections.
Specify even-numbered values as the address values except for .tidata.byte/.tibss.byte section. If an odd-
numbered value is specified, the linker outputs a message and continues with linking on the assumption
that the "specified address plus one" has been specified.
Start the address specification with a "V" (uppercase or lowercase), which must not be followed by a blank
space. Address values can be specified using either decimal or hexadecimal numerals, but when using
hexadecimal numerals be sure to add "0x" before the value. Expressions cannot be used in the address
specification.

(e) Hole size
Specify the hole size of the section to be created.
The section's hole is the space between one section and the next section. When a hole size has been
specified, the specified hole is created at the end of the target section.
When creating a section, specification of the hole size can be omitted. The value 0x0 (bytes) is used as the
default value (which specifies that no hole is created) when it is omitted.
Start the hole size specification with an "H" (uppercase or lowercase), which must not be followed by a
blank space. Expressions cannot be used in the hole size specification.

(f) Alignment condition
Specify the section alignment condition (alignment value) to be used for memory allocation of the section to
be created.
When creating a section, specification of the alignment condition can be omitted. If it is omitted, the default
value is used, but that value differs among different types of section as shown below.

Table 5-11. Section Types and Default Values for Alignment Condition

Start the alignment condition specification with an "A" (uppercase or lowercase), which must not be fol-
lowed by a blank space.
Either even-numbered or odd-numbered values can be specified for .tidata.byte and .tibss.byte sections
and only even-numbered values can be specified for all other sections. If an odd-numbered value is speci-
fied for any section other than a .tidata.byte or .tibss.byte section, the linker outputs a message and contin-
ues with linking on the assumption that the "specified value plus one" has been specified. Expressions
cannot be used in the alignment condition specification.

Section Name Alignment Condition

.tidata.byte/.tibss.byte section 0x1 (bytes)

Other sections 0x4 (bytes)

CHAPTER 5 LINK DIRECTIVE SPECIFICATION

User’s Manual U19383EJ1V0UM00 711

(g) Input section name
Specify the input section information that is the basis for the output section to be created.
When creating a section, specifications of the input section name and object file name can be omitted. If it
is omitted, the information output to the output section varies according to the following combinations of
specifications.

Table 5-12. Output Based on Combination of Input Section and Object File Specifications

More specific examples are listed below.

Table 5-13. Specific Examples of Combined Input Section and Object File Specifications

If there is multiple information when allocating sections, sections are allocated using the numbers indicated
in the [Code Pattern] column in "Table 5-12. Output Based on Combination of Input Section and Object
File Specifications" as the priority order (in the case of two or more sections with the samepriority number,
the one with the lowest address has higher priority).
Specify the section name that has been set by the application as the input section name. If the application
has not set a section name, a default section name is already defined and should be used here.
As was explained in "(a) Output section name", there is a fixed correspondence between output section
names and input section names. Other section names cannot be specified for section names that are
included in this group.

Code Pattern Output

(1) Input section name + object file name The specified input section is extracted from the speci-
fied object and is then output.

(2) Input section name only The specified input section is extracted from all objects
and are then output.

(3) Object file name only Sections having the same attribute as the output section
to be created are extracted from the specified object
and are then output.

(4) No specification Sections having the same attribute as the output section
to be created are extracted from all objects and are then
output.

Code Example Output

SEG1: !LOAD ?RX {

 sec1 = $PROGBITS ?AX usrsec1
{file1.o};

}

"usrsec1" section is extracted form file1.o and is
output as "sec1" section.

SEG1: !LOAD ?RX {

 sec1 = $PROGBITS ?AX usrsec1;

}

"usrsec1" section is extracted form all objects and
is output as "sec1" section.

SEG1: !LOAD ?RX {

 sec1 = $PROGBITS ?AX {file1.o
file2.o};

}

Sections having $PROGBITS type and A and X
attributes are extracted from file1.o and file2.o and
are output as "sec1" section.

SEG1: !LOAD ?RX {

 sec1 = $PROGBITS ?AX;

}

Sections having $PROGBITS type and A and X
attributes are extracted from all objects and are
output as "sec1" section.

CHAPTER 5 LINK DIRECTIVE SPECIFICATION

712 User’s Manual U19383EJ1V0UM00

(h) Object file name
Enter the object file name's specification at the end of the mapping directive and enclose each file name
with "{ }". Insert a blank space between file names when specifying several file names (if the file name
includes blank spaces, enclose the file name with quotation marks ("")).
When several object files have been specified, they are allocated in the order they are specified, in ascend-
ing order from lower to higher addresses. However, if a different allocation order is specified for link direc-
tive by the "objects for linking" specification that occurs when the linker is started, the file name sequence
specified be that specification's parameters takes priority.

When an object file name is specified in a mapping directive, specify all object file names that include sec-
tions having the specified attribute.
For example, the four objects (file1.o, file2.o, file3.o, and file4.o) including text-attribute sections exist. In
this case, if the link directive is entered as:

and no specific allocation site for the text attribute in the file4.o has been specified, the linker searches and
allocates text-attribute sections from file4.o as suitable text-attribute sections. Therefore, the mapping
results may not be as expected (if the text-attribute section is not allocated to any section, the linker outputs
a message).
Specify a file of the same name located in a different directory as follows by specifying a file name with the
path displayed on the link map.

In the above case, the file1.o files that exist in the specified directories are allocated to textsec1 and
textsec2 respectively, and the other file is allocated to textsec3. Since the path specification method during
such allocation is only the format displayed to the link map, attention is required when making descriptions.
It is also possible to specify input object names for objects in libraries or other type of archive files. For
example, the following is entered to specify output of object "lib1.o" in the archive file "libusr.a" to the "usrlib"
section.

Moreover, describe as follows to allocate all the objects in the specified library.

Link directive

sec = $PROGBITS ?AX {filel.o file2.o file3.o}

Linker activation

ld850 file3.o filel.o file2.o
--> file3.o, file1.o, and file2.o are allocated in that order, starting from lower address

TEXT1: !LOAD ?RX {

 .text1 = $PROGBITS ?AX {filel.o file2.o};

};

TEXT2: !LOAD ?RX {

 .text2 = $PROGBITS ?AX {file3.o};

};

textsec1 = $PROGBITS ?AX {c:\work\dir1\file1.o};

textsec2 = $PROGBITS ?AX {c:\work\dir2\file1.o};

textsec3 = $PROGBITS ?AX {file1.o};

usrlib = $PROGBITS ?AX {lib1.o(a:\usrlib\libusr.a)};

usrlib = $PROGBITS ?AX {libusr.a};

CHAPTER 5 LINK DIRECTIVE SPECIFICATION

User’s Manual U19383EJ1V0UM00 713

In this case, the object in "libusr.a" is allocated to "usrlib" section.

(i) If specification duplicates
If the same section type, section attribute, input section name (can be omitted), or input file name (can be
typed) is specified for multiple segments and there is a section corresponding to it, an object is assigned to
a segment allocated at a lower address.

In the above case, the same section type, section attribute, input section name, and input file name are
specified for TEXT1 and TEXT2, the object is assigned to TEXT1, which is allocated at the lower address.

TEXT1: !LOAD ?RX V0x1000 {

 .text1 = $PROGBITS ?AX .text {filel.o file2.o};

};

TEXT2: !LOAD ?RX V0x2000 {

 .text2 = $PROGBITS ?AX .text {filel.o file2.o};

};

CHAPTER 5 LINK DIRECTIVE SPECIFICATION

714 User’s Manual U19383EJ1V0UM00

(2) Mapping directive specification example
This example shows specifications for the following types of output sections. Two type of sections are created.

Table 5-14. Mapping Directive Specification Example

In the above case, the corresponding mapping directive specification is shown below.

Item Value-1 Value-2

Output section name .text textsec1

Section Type Text Text

Section Attribute Read-enabled, executable Read-enabled, executable

Hole size 0x10 (bytes) 0x20 (bytes)

Fill value 0xffff 0xffff

Alignment Condition 0x10 (bytes) 0x10 (bytes)

Input section name .text usrsec1

Object file name main.o -

.text = $PROGBITS ?AX H0x10 F0xffff A0x10 .text {main.o};

textsec1 = $PROGBITS ?AX H0x20 F0xffff A0x10 usrsec1;

CHAPTER 5 LINK DIRECTIVE SPECIFICATION

User’s Manual U19383EJ1V0UM00 715

5.1.5 Symbol directive

This section describes the format of the symbol directive for each following item:
- Specification item
- Symbol directive specification example

(1) Specification item
The items that are specified in the symbol directive are listed below.

- tp symbol

Table 5-15. Specifiable Items When Creating tp Symbol

A specific example of the symbol directive's format is shown below.

A blank space is used to separate these items from each other. A semicolon (;) must be added at the end
of each segment directive.
The omissible specification items are "Vaddress", "Aalignment condition", and "segment name". Default
values are used for these items when they are omitted. These default values are listed below.

Table 5-16. Default Values for tp Symbols

Item Cording Format Meanings Omissible

Symbol name Symbol name Name of tp symbol to be created No

Symbol type %TP_SYMBOL Type of symbol to be created (fixed) No

Address Vaddress Address of tp symbol to be created Yes

Alignment Condition Aalignment condition Alignment condition of symbol value Yes

Segment Name {segment name seg-
ment name ...}

Name of segment to be referred by tp
symbol to be created (several can be
specified; insert blank spaces
between the specifications.)

Yes

symbol name @ %TP_SYMBOL Vaddress Aalignment condition {segment name segment name} ;

Item Meanings

Address If a segment name has been specified, this address is the start address of the
text- attribute section that has been allocated to the lowest address in that seg-
ment.

If a segment name has not been specified, this address is the start address of
the text- attribute section that has been allocated to the lowest address in the
text-attribute segment existing in the load module.

Alignment Condition 0x4 (bytes)

Segment Name All text-attribute segments exist in objects are targeted.

CHAPTER 5 LINK DIRECTIVE SPECIFICATION

716 User’s Manual U19383EJ1V0UM00

- gp symbol

Table 5-17. Specifiable Items When Creating gp Symbol

A specific example of the symbol directive's format is shown below.

A blank space is used to separate these items from each other. A semicolon (;) must be added at the end
of each segment directive.
The omissible specification items are "Vaddress", "Aalignment condition", and "segment name". Default
values are used for these items when they are omitted. These default values are listed below.

Table 5-18. Default Values for gp Symbols

Item Cording Format Meanings Omissible

Symbol name Symbol name Name of gp symbol to be created No

Symbol type %GP_SYMBOL Type of symbol to be created (fixed) No

Base symbol name &base symbol name tp symbol name which becomes the
base symbol when specifying a gp
symbol as offset value

Yes

Address Vaddress Address of gp symbol to be created Yes

Alignment Condition Aalignment condition Alignment condition of symbol value Yes

Segment Name {segment name seg-
ment name ...}

Name of segment to be referred by gp
symbol to be created (several can be
specified; insert blank spaces
between the specifications.)

Yes

symbol name @ %GP_SYMBOL &base symbol name Vaddress Aalignment condition {segment
name segment name} ;

Item Meanings

Base symbol name Address to be determined as the gp symbol value, not for offset from tp sym-
bol

Address Linker can determine gp symbol value from items below.

- Existing sections with sdata /sbss /data /bss attributes

- Existing base symbol specifications

Alignment Condition 0x4 (bytes)

Segment Name All sections with sdata/data/sbss/bss attributes existing in objects are tar-
geted.

CHAPTER 5 LINK DIRECTIVE SPECIFICATION

User’s Manual U19383EJ1V0UM00 717

- ep symbol

Table 5-19. Specifiable Items When Creating ep Symbol

A specific example of the symbol directive's format is shown below.

A blank space is used to separate these items from each other. A semicolon (;) must be added at the end
of each specification.
The omissible specification items are "Vaddress" and "Aalignment condition". Default values are used for
these items when they are omitted. These default values are listed below.

Table 5-20. Default Values for ep Symbols

These specification items are explained below.

(a) Symbol name [Specifiable symbols: tp, gp, ep]
Specify the name of the symbol to be created. When creating a symbol, specification of the symbol name

cannot be omitted.

There is no restriction on the length of the character string that is to be specified as symbol name.

(b) Symbol type [Specifiable symbols: tp, gp, ep]
Specify whether the generated symbol will be a tp symbol, gp symbol, or ep symbol. When creating a sym-

bol, specification of the symbol type cannot be omitted.

Specify "TP_SYMBOL", "GP_SYMBOL", or "EP_SYMBOL" corresponding to the desired type of symbol (tp

symbol, gp symbol, or ep symbol). The linker outputs an error message if another value is specified.

Start the symbol type specification with a "%", which must not be followed by a blank space.

Item Cording Format Meanings Omissible

Symbol name Symbol name Name of ep symbol to be created No

Symbol type %EP_SYMBOL Type of symbol to be created (fixed) No

Address Vaddress Address of ep symbol to be created Yes

Alignment Condition Aalignment condition Alignment condition of symbol value Yes

symbol name @ %EP_SYMBOL Vaddress Aalignment condition ;

Item Meanings

Address Linker can determine ep symbol value from items below.

- Existing SIDATA segment

- Definitions of existing internal RAM area in device file

Alignment Condition 0x4 (bytes)

CHAPTER 5 LINK DIRECTIVE SPECIFICATION

718 User’s Manual U19383EJ1V0UM00

(c) Base symbol name [Specifiable symbol: gp]
Specify the tp symbol that will be used to determine the gp symbol value when creating gp symbols. When
a base symbol name has been specified, the gp symbol value becomes the offset value from the tp symbol
value.
When creating a gp symbol, specification of the base symbol name can be omitted.
Start the base symbol specification with a "&", which must not be followed by blank space. After the "&",
enter the tp symbol name to be used as the base symbol.

(d) Address [Specifiable symbols: tp, gp, ep]
Specify the tp symbol value or gp symbol value (these values are addresses).
When creating a symbol, specification of the address can be omitted. If it is omitted, the address is deter-
mined as described below.

Table 5-21. Address Specification for tp Symbol, gp Symboland and ep Symbol

Start the address specification with a "V" (uppercase or lowercase), which must not be followed by a blank
space.

(e) Alignment condition [Specifiable symbols: tp, gp, ep]
Specify the alignment condition (alignment value) for setting values to the tp symbol, gp symbol, or ep sym-
bol to be created.
When creating a symbol, specification of the alignment condition can be omitted. Default values are used
for these items when they are omitted. This default value is 0x4 (bytes).
Start the alignment condition specification with an "A" (uppercase or lowercase), which must not be fol-
lowed by a blank space. Specify even-numbered values as the alignment condition values. If an odd- num-
bered value is specified, the linker outputs a message and continues with linking on the assumption that the
"specified address plus one" has been specified. Expressions cannot be used in the alignment condition
specification.

Symbol Value Rule for Determination

tp symbol - If a segment name has been specified, this address is the start address of
the text- attribute section that has been allocated to the lowest address in
that segment.

- If a segment name has not been specified, this address is the start address
of the text- attribute section that has been allocated to the lowest address
in the text-attribute segment existing in the load module.

gp symbol Linker can determine gp symbol value from items below.

- Existing sections with sdata /sbss /data /bss attributes

- Existing base symbol specifications

ep symbol Linker can determine ep symbol value from items below.

- Existing SIDATA segment

- Definitions of existing internal RAM area in device file

CHAPTER 5 LINK DIRECTIVE SPECIFICATION

User’s Manual U19383EJ1V0UM00 719

(f) Segment name [Specifiable symbols: tp, gp]
Specify the name of the segment to be referred for the tp symbol value or gp symbol value to be created.
In other words, specify the segment that will be referenced by the tp symbol or gp symbol to be created.
Several segments can be specified as target segments for referencing.
When creating a symbol, specification of the segment name can be omitted. One of the following values is
assumed as the default value when it is omitted.

Table 5-22. Segment Names Targeted for Reference by tp Symbol and gp Symbol

Specify a segment name that is assumed to be a target for gp-relative referencing as the target segment
name for gp symbol referencing.
For example, do not specify a segment that includes .sedata section or .sebss section, which is assumed to
be for ep-relative referencing.
Enter the segment name specification at the end of the symbol directive and enclose the segment name
with "{}". If specifying several segment names, use blank spaces to separate them.

(2) Symbol directive specification example
This example shows specifications for the following types of symbols.

Table 5-23. Symbol Directive Specification Example

In the above case, the corresponding symbol directive specification is shown below.

Note with caution that symbols will not be created unless a symbol directive specification has been made.

Symbol Value Rule for Determination

tp symbol All text-attribute segments exist in objects are targeted.

gp symbol All sections with sdata/data/sbss/bss attributes existing in objects are targeted.

Symbol Specification Item Specified Value

tp symbol Symbol name __tp_TEXT

Name of segment targeted for reference TEXT1

gp symbol Symbol name __gp_DATA

Offset specification symbol __tp_TEXT

Name of segment targeted for reference DATA1, DATA2

ep symbol Symbol name __ep_DATA

Address 0xffffd000

__tp_TEXT@%TP_SYMBOL {TEXT1};

__gp_DATA@%GP_SYMBOL &__tp_TEXT {DATA1 DATA2};

__ep_DATA@%EP_SYMBOL V0xFFFFD000;

CHAPTER 5 LINK DIRECTIVE SPECIFICATION

720 User’s Manual U19383EJ1V0UM00

5.2 Reserved Words

The link directive file has reserved words. Reserved words cannot be used in the other specified usage.
The reserved words are as follows.

- Segment name (SIDATA,SEDATA,SCONST)
- Segment type (LOAD)
- Output section name (.tidata,.tibss etc)
- Section type (PROGBITS,NOBITS)
- Symbol type (TP_SYMBOL,GP_SYMBOL,EP_SYMBOL)

CHAPTER 6 FUNCTIONAL SPECIFICATION

User’s Manual U19383EJ1V0UM00 721

CHAPTER 6 FUNCTIONAL SPECIFICATION

This chapter describes the library functions provided in the CA850.

6.1 Supplied Libraries

The CA850 provides the following libraries.

Table 6-1. Supplied Libraries

When the standard library or mathematical library is used in an application, include the related header files to use
the library function.

Refer these libraries using the linker option (-l).
However, it is not necessary to refer the libraries if only "function with a variable arguments", "character conversion

functions" and "character classification functions" are used.
When CubeSuite is used, these libraries are referred by default.
Since the mathematical library internally refers the standard library, the standard library is required when the mathe-

matical library is used.
The runtime library is a part of standard library. But it is a routine that is automatically called by the CA850 when a

floating-point operation or integer operation (such as 32-bit integer multiplication, division, or remainder calculation) is
performed. Epilogue/prologue runtime library of functions are also the part of standard library but it is a routine that is
automatically called by the process of CA850 prologue/epilogue functions.

Unlike the other library functions, the "runtime library" and "prologue/epilogue runtime library of functions" is not
described in the C language source or assembly language source.

When the mask register function is used in the 32-register mode, use the standard library stored in the "mask regis-
ter folder (Install Folder\lib850\r32msk)".

The linker automatically references the standard library in the above folder in the following cases.
- When 32-register mode is specified
- When the mask register function is used with the compiler option "-Xmask_reg"

The ROMization library is referred by the linker when the compiler option "-Xr" is specified. This library stores the
functions (_rcopy,_rcopy1,_rcopy2,_rcopy4), which are used to copy packed data.

Description of each library is as follows.
The meaning of each element in the table is as follows.

Supplied Libraries Library Name Outline

Standard library libc.a Function with variable arguments

Character string functions

Memory Management Functions

Character conversion functions

Character classification functions

Standard I/O functions

Standard utilityfFunctions

Non-local jump functions

Runtime library

Prologue/Epilogue runtime library of functions

Mathematical library libm.a Mathematical functions

ROMization library libr.a Copy function

CHAPTER 6 FUNCTIONAL SPECIFICATION

722 User’s Manual U19383EJ1V0UM00

Function/macro name Name of function/macro.

Outline Functional outline of function/macro.

#include Header file that must be included in the C language source when this function/macro is used.
Include this file using the #include directive.

 "errno.h" must also be included if errno is used when an exception occurs.

ANSI Indicates whether or not the function is differentiated by the ANSI standard.

If it is stipulated, "YES" is shown in this column; if not, "NO" is shown.

sdata Differentiates whether or not this function/macro uses the memory area "sdata area".

In other words, whether or not data for which the function has an initial value is allocated to RAM
is differentiated. Because the section name must be ".sdata", generate the ".sdata section" even
when this area is not used by the user application.

If the .sdata section is used, "YES" is shown in this column; if not, "NO" is shown. If "YES" is
shown, data with an initial value is necessary, so the initial value must be copied to RAM before
program execution. In other words, ROMization processing must be performed using the "Copy
Function".

sbss Differentiates whether or not this function/macro uses the memory area "sbss area".

In other words, whether or not the function uses RAM as a temporary area is differentiated. As
the section name must be ".sbss", generate the ".sbss section" even when this area is not used
by the user application.

If the .sbss section is used, "YES" is shown in this column; if not, "NO" is shown. When data
without an initial value is allocated by .sbss section, it is not necessary to perform ROMization
processing at the time of "Use of .sdata".

Reent Indicates whether or not the function is re-entrant.

If it is re-entrant, "YES" is shown; if not, "NO" is shown.

"Re-entrant" means that the function can "re-enter". A re-entrant function can be correctly exe-
cuted even if an attempt is made in another process to execute that function while the function is
being executed. For example, in an application using a real-time OS, this function is correctly
executed even if dispatching to another task is triggered by an interrupt while a certain task is
executing this function, and even if the function is executed in that task. A function that must use
RAM as a temporary area may not necessarily be re-entrant.

CHAPTER 6 FUNCTIONAL SPECIFICATION

User’s Manual U19383EJ1V0UM00 723

6.1.1 Standard library

The functions contained in the standard library are listed below. The library is "libc.a".

(1) Function with variable arguments

Table 6-2. Function with Variable Arguments

(2) Character string functions

Table 6-3. Character String Functions

(3) Memory Management Functions

Table 6-4. Memory Management Functions

Function/macro name #include ANSI sdata sbss Reent

va_start stdarg.h YES NO NO --

va_end stdarg.h YES NO NO --

va_arg stdarg.h YES NO NO --

Function/macro name #include ANSI sdata sbss Reent

index string.h NO NO NO YES

strpbrk string.h YES NO NO YES

rindex string.h NO NO NO YES

strrchr string.h YES NO NO YES

strchr string.h YES NO NO YES

strstr string.h YES NO NO YES

strspn string.h YES NO NO YES

strcspn string.h YES NO NO YES

strcmp string.h YES NO NO YES

strncmp string.h YES NO NO YES

strcpy string.h YES NO NO YES

strncpy string.h YES NO NO YES

strcat string.h YES NO NO YES

strncat string.h YES NO NO YES

strtok string.h YES NO YES NO

strlen string.h YES NO NO YES

strerror string.h YES YES NO NO

Function/macro name #include ANSI sdata sbss Reent

memchr string.h YES NO NO YES

memcmp string.h YES NO NO YES

bcmp string.h NO NO NO YES

memcpy string.h YES NO NO YES

bcopy string.h NO NO NO YES

CHAPTER 6 FUNCTIONAL SPECIFICATION

724 User’s Manual U19383EJ1V0UM00

(4) Character conversion functions

Table 6-5. Character Conversion Functions

(5) Character classification functions

Table 6-6. Character Classification Functions

(6) Standard I/O functions

Table 6-7. Standard I/O Functions

memmove string.h YES NO NO YES

memset string.h YES NO NO YES

Function/macro name #include ANSI sdata sbss Reent

toupper ctype.h YES YES NO YES

_toupper ctype.h NO NO NO YES

tolower ctype.h YES YES NO YES

_tolower ctype.h NO NO NO YES

toascii ctype.h NO NO NO YES

Function/macro name #include ANSI sdata sbss Reent

isalnum ctype.h YES YES NO YES

isalpha ctype.h YES YES NO YES

isascii ctype.h NO NO NO YES

isupper ctype.h YES YES NO YES

islower ctype.h YES YES NO YES

isdigit ctype.h YES YES NO YES

isxdigit ctype.h YES YES NO YES

iscntrl ctype.h YES YES NO YES

ispunct ctype.h YES YES NO YES

isspace ctype.h YES YES NO YES

isprint ctype.h YES YES NO YES

isgraph ctype.h YES YES NO YES

Function/macro name #include ANSI sdata sbss Reent

fread stdio.h YES YES NO NO

getc stdio.h YES YES NO NO

fgetc stdio.h YES YES NO NO

fgets stdio.h YES YES NO NO

fwrite stdio.h YES YES NO NO

putc stdio.h YES YES NO NO

fputc stdio.h YES YES NO NO

Function/macro name #include ANSI sdata sbss Reent

CHAPTER 6 FUNCTIONAL SPECIFICATION

User’s Manual U19383EJ1V0UM00 725

Note stderr is not re-entrant.

(7) Standard utilityfFunctions

Table 6-8. Standard Utility Functions

fputs stdio.h YES YES NO NO

getchar stdio.h YES YES NO NO

gets stdio.h YES YES NO NO

putchar stdio.h YES YES NO NO

puts stdio.h YES YES NO NO

sprintf stdio.h YES YES YES NO

fprintf stdio.h YES YES YES NO

vsprintf stdio.h YES YES YES NO

printf stdio.h YES YES YES NO

vfprintf stdio.h YES YES YES NO

vprintf stdio.h YES YES YES NO

sscanf stdio.h YES YES YES NO

fscanf stdio.h YES YES YES NO

scanf stdio.h YES YES YES NO

ungetc stdio.h YES YES NO NO

rewind stdio.h YES YES NO NO

perror stdio.h YES YES NO NONote

Function/macro name #include ANSI sdata sbss Reent

abs stdlib.h YES NO NO YES

labs stdlib.h YES NO NO YES

bsearch stdlib.h YES NO NO YES

qsort stdlib.h YES NO NO YES

div stdlib.h YES NO NO YES

ldiv stdlib.h YES NO NO YES

itoa stdlib.h NO NO NO YES

ltoa stdlib.h NO NO NO YES

ultoa stdlib.h NO NO NO YES

ecvtf stdlib.h NO YES YES NO

fcvtf stdlib.h NO YES YES NO

gcvtf stdlib.h NO YES YES NO

atoi stdlib.h YES YES NO NONote 2

atol stdlib.h YES YES NO NONote 2

strtol stdlib.h YES YES YES NONote 2

strtoul stdlib.h YES YES YES NONote 2

atoff stdlib.h YES YES NO NONote 2

Function/macro name #include ANSI sdata sbss Reent

CHAPTER 6 FUNCTIONAL SPECIFICATION

726 User’s Manual U19383EJ1V0UM00

Notes 1. A function that can be called recursively.
2. A function is not re-entrant if errno is updated when an exception occur.

Remark errno.h must be included if errno is used when an exception occurs.

(8) Non-local jump functions

Table 6-9. Non-Local Jump Functions

Remark "errno.h" must also be included if errno is used when an exception occurs, "limits.h" if "limit values of
general integer type" are used as a macro name, and "float.h" if limit values of floating-point type are
used.

(9) Runtime library
The runtime library is a function that is automatically called by the CA850 when a floating-point operation or inte-
ger operation (such as 32-bit integer multiplication, division, or remainder calculation) is performed in C lan-
guage source program. Similar to "Prologue/epilogue runtime library of functions", "Runtime Library" is not
described in the C language source or assembly language source.

Table 6-10. Runtime Library

strtodf stdlib.h YES YES YES NONote 2

calloc stdlib.h YES YES YES NONote 1

malloc stdlib.h YES YES YES NONote 1

realloc stdlib.h YES YES YES NONote 1

free stdlib.h YES YES YES NONote 1

rand stdlib.h YES YES NO NO

srand stdlib.h YES YES NO NO

Function/macro name #include ANSI sdata sbss Reent

longjmp setjmp.h YES NO NO YES

setjmp setjmp.h YES NO NO YES

Function/macro name sdata sbss Reent

__mul NO NO YES

__mulu NO NO YES

__div NO NO YES

__divu NO NO YES

__mod NO NO YES

__modu NO NO YES

__addf.s YES NO Note

__subf.s YES NO Note

__mulf.s YES NO Note

__divf.s YES NO Note

__cvt.ws NO NO YES

Function/macro name #include ANSI sdata sbss Reent

CHAPTER 6 FUNCTIONAL SPECIFICATION

User’s Manual U19383EJ1V0UM00 727

Note A function is not re-entrant if errno is updated and matherr is called when an exception occurs.

Remark "errno.h" must also be included if errno is used when an exception occurs, "limits.h" if "limit values of
general integer type" are used as a macro name, and "float.h" if limit values of floating-point type are
used.

(10)Prologue/Epilogue runtime library of functions
Epilogue/prologue runtime library of function is a routine that is automatically called by the process of CA850
prologue/epilogue functions. Similar to "Runtime Library", Prologue/epilogue runtime library of functions is not
described in the C language source or assembly language source.
The V850Ex core uses the CALLT instruction to call the prologue/epilogue runtime library of functions. The
code efficiency can be enhanced by calling these functions from the table of the CALLT instruction.
Calling the prologue/epilogue runtime library of functions is valid when:

- An optimization option other than "-Ot" (execution speed priority optimization) is specified.
- The compiler option "-Xpro_epi_runtime=on" is specified.

Table 6-11. Prologue/Epilogue Runtime Library of Functions

__trnc.sw NO NO YES

__cmpf.s YES NO Note

Function/macro name Outline

___push2000, ___push2001, ___push2002,
___push2003, ___push2004, ___push2040,
___push2100, ___push2101, ___push2102,
___push2103, ___push2104, ___push2140,
___push2200, ___push2201, ___push2202,
___push2203, ___push2204, ___push2240,
___push2300, ___push2301, ___push2302,
___push2303, ___push2304, ___push2340,
___push2400, ___push2401, ___push2402,
___push2403, ___push2404, ___push2440,
___push2500, ___push2501, ___push2502,
___push2503, ___push2504, ___push2540,
___push2600, ___push2601, ___push2602,
___push2603, ___push2604, ___push2640,
___push2700, ___push2701, ___push2702,
___push2703, ___push2704, ___push2740,
___push2800, ___push2801, ___push2802,
___push2803, ___push2804, ___push2840,
___push2900, ___push2901, ___push2902,
___push2903, ___push2904, ___push2940,
___pushlp00, ___pushlp01, ___pushlp02,
___pushlp03, ___pushlp04, ___pushlp40

Prologue processing of functions

___Epush250, ___Epush251, ___Epush252,
___Epush253, ___Epush254, ___Epush260,
___Epush261, ___Epush262, ___Epush263,
___Epush264, ___Epush270, ___Epush271,
___Epush272, ___Epush273, ___Epush274,
___Epush280, ___Epush281, ___Epush282,
___Epush283, ___Epush284, ___Epush290,
___Epush291, ___Epush292, ___Epush293,
___Epush294, ___Epushlp0, ___Epushlp1,
___Epushlp2, ___Epushlp3, ___Epushlp4

Prologue processing of functions [V850E]

Function/macro name sdata sbss Reent

CHAPTER 6 FUNCTIONAL SPECIFICATION

728 User’s Manual U19383EJ1V0UM00

___pop2000, ___pop2001, ___pop2002,
___pop2003, ___pop2004, ___pop2040,
___pop2100, ___pop2101, ___pop2102,
___pop2103, ___pop2104, ___pop2140,
___pop2200, ___pop2201, ___pop2202,
___pop2203, ___pop2204, ___pop2240,
___pop2300, ___pop2301, ___pop2302,
___pop2303, ___pop2304, ___pop2340,
___pop2400, ___pop2401, ___pop2402,
___pop2403, ___pop2404, ___pop2440,
___pop2500, ___pop2501, ___pop2502,
___pop2503, ___pop2504, ___pop2540,
___pop2600, ___pop2601, ___pop2602,
___pop2603, ___pop2604, ___pop2640,
___pop2700, ___pop2701, ___pop2702,
___pop2703, ___pop2704, ___pop2740,
___pop2800, ___pop2801, ___pop2802,
___pop2803, ___pop2804, ___pop2840,
___pop2900, ___pop2901, ___pop2902,
___pop2903, ___pop2904, ___pop2940,
___poplp00, ___poplp01, ___poplp02,
___poplp03, ___poplp04, ___poplp40

Epilogue processing of function

___Epop250, ___Epop251, ___Epop252,
___Epop253, ___Epop254, ___Epop260,
___Epop261, ___Epop262, ___Epop263,
___Epop264, ___Epop270, ___Epop271,
___Epop272, ___Epop273, ___Epop274,
___Epop280, ___Epop281, ___Epop282,
___Epop283, ___Epop284, ___Epop290,
___Epop291, ___Epop292, ___Epop293,
___Epop294, ___Epoplp0, ___Epoplp1,
___Epoplp2, ___Epoplp3, ___Epoplp4

Epilogue processing of function [V850E]

Function/macro name Outline

CHAPTER 6 FUNCTIONAL SPECIFICATION

User’s Manual U19383EJ1V0UM00 729

6.1.2 Mathematical library

The functions contained in the mathematical library are listed below. The library is "libm.a".

(1) Mathematical functions

Table 6-12. Mathematical Functions

Function/macro name #include ANSI sdata sbss Reent

j0f math.h NO YES YES Note

j1f math.h NO YES YES Note

jnf math.h NO YES YES Note

y0f math.h NO YES YES Note

y1f math.h NO YES YES Note

ynf math.h NO YES YES Note

erff math.h NO YES YES Note

erfcf math.h NO YES YES Note

expf math.h YES YES YES Note

logf math.h YES YES YES Note

log2f math.h YES YES YES Note

log10f math.h YES YES YES Note

powf math.h YES YES YES Note

sqrtf math.h YES YES YES Note

cbrtf math.h NO NO NO YES

ceilf math.h YES NO NO YES

fabsf math.h YES NO NO YES

floorf math.h YES NO NO YES

fmodf math.h YES YES YES Note

frexpf math.h YES YES YES Note

ldexpf math.h YES YES YES Note

modff math.h YES NO NO YES

gammaf math.h NO YES YES Note

hypotf math.h NO YES YES Note

matherr math.h NO NO NO YES

cosf math.h YES YES YES Note

sinf math.h YES YES YES Note

tanf math.h YES YES YES Note

acosf math.h YES YES YES Note

asinf math.h YES YES YES Note

atanf math.h YES YES YES Note

atan2f math.h YES YES YES Note

coshf math.h YES YES YES Note

sinhf math.h YES YES YES Note

CHAPTER 6 FUNCTIONAL SPECIFICATION

730 User’s Manual U19383EJ1V0UM00

Note A function is not re-entrant if errno is updated and matherr is called when an exception occurs.

Remark "errno.h" must also be included if errno is used when an exception occurs, "limits.h" if "limit values of
general integer type" are used as a macro name, and "float.h" if limit values of floating-point type are
used.

tanhf math.h YES YES YES Note

acoshf math.h NO YES YES Note

asinhf math.h NO YES YES Note

atanhf math.h NO YES YES Note

Function/macro name #include ANSI sdata sbss Reent

CHAPTER 6 FUNCTIONAL SPECIFICATION

User’s Manual U19383EJ1V0UM00 731

6.1.3 ROMization library

The functions contained in the ROMization library are listed below. The library is "libr.a".
These functions are the routines that copies data and program codes with initial values to RAM.

- A ROMization function itself does not use the sdata area and sbss area. Writes the data to sdata area.
- A ROMization function is usually called only once before the main program is executed. So it does not consid-

ers re-entrant.
- When a load module is downloaded to the in-circuit emulator (ICE), the data with initial values and placed in the

data area or sdata area is set as soon as the load module has been downloaded.
Therefore, debugging can be performed without calling the copy function. If a ROMization load module is cre-
ated and executed on the actual machine, however, the initial values are not set and the operation is not per-
formed as expected unless data with an initial value is copied using the copy function. The reason for the
trouble is that an initial value is not set by this copy function. If a routine that clears RAM to zero is executed
during initialization, call the copy function before that routine. Otherwise the initial values will also be cleared to
zero.

(1) Copy function

Table 6-13. Copy Function

Remark _rcopy and _rcopy1 perform the same operation. These functions are provided to maintain com-
patibility with the previous version.
When a program code is copied to the internal instruction RAM of a V850 device that has an internal
instruction RAM (such as the V850E/ME2), it must be copied in 4-byte units because of the hard-
ware specifications. In this case, the program code is copied using the "_rcopy4" function. Any
function could be used if no hardware restrictions. When a program code is copied in 2-byte or 4-
byte units, the area that must be copied may be exceeded. If the size of a packed data area is not a
multiple of 4, therefore, an area other than the packed data area is also copied at the same time.
Take this into consideration.

Function/macro name Outline

_rcopy Copies packed data to RAM, 1 byte at a time (Same as _rcopy1)

_rcopy1 Copies packed data to RAM, 1 byte at a time (Same as _rcopy)

_rcopy2 Copies packed data to RAM, 2 bytes at a time

_rcopy4 Copies packed data to RAM, 4 bytes at a time

CHAPTER 6 FUNCTIONAL SPECIFICATION

732 User’s Manual U19383EJ1V0UM00

6.2 Header Files

The list of header files required for using the libraries of the CA850 are listed below.
The macro definitions and function declarations are described in each file.

Table 6-14. Header Files

6.3 Re-entrant

"Re-entrant" means that the function can "re-enter". A re-entrant function can be correctly executed even if an
attempt is made in another process to execute that function while the function is being executed. For example, in an
application using a real-time OS, this function is correctly executed even if dispatching to another task is triggered by
an interrupt while a certain task is executing this function, and even if the function is executed in that task. A function
that must use RAM as a temporary area may not necessarily be re-entrant.

For re-entrant of each function, see tables from "Table 6-2. Function with Variable Arguments" to "Table 6-12.
Mathematical Functions".

File Name Outline

ctype.h Header file for character conversion and classification

errno.h Header file for reporting error condition

float.h Header file for floating-point representation and floating-point operation

limits.h Header file for quantitative limiting of integers

math.h Header file for mathematical calculation

setjmp.h Header file for non-local jump

stdarg.h Header file for supporting functions having variable arguments

stddef.h Header file for common definitions

stdio.h Header file for standard I/O

stdlib.h Header file for standard utilities

string.h Header file for memory manipulation and character string manipulation

CHAPTER 6 FUNCTIONAL SPECIFICATION

User’s Manual U19383EJ1V0UM00 733

6.4 Library Function

This section explains Library Function.

6.4.1 Functions with variable arguments

Functions with a variable arguments are contained in the standard library libc.a.
Functions with a variable arguments are as follows

Table 6-15. Functions with Variable Arguments

Function/macro name Outline

va_start Initialization of variable for scanning argument list

va_end End of scanning argument list

va_arg Moving variable for scanning argument list

CHAPTER 6 FUNCTIONAL SPECIFICATION

734 User’s Manual U19383EJ1V0UM00

Initialization of variable for scanning argument list

[Classification]

Standard library "libc.a"

[Syntax]

#include <stdarg.h>
void va_start(va_list ap, last-named-argument);

[Description]

This function initializes variable ap so that it indicates the beginning (argument next to last-named-argument) of the
list of the variable arguments.

To define function func having a variable arguments in a portable form, the following format is used.

Remark arg-declarations is an argument list with the last-named-argument declared at the end. ", ..." that follows
indicates a list of the variable arguments. va_listis the type of the variable (ap in the above example)
used to scan the argument list.

[Example]

va_start

#include <stdarg.h>

void func(arg-declarations, ...){

 va_list ap;

 type argN;

 va_start(ap, last-named-argument);

 argN = va_arg(ap, type);

 va_end(ap);

}

#include <stdarg.h>

void abc(int first, int second, ...){

 va_list ap;

 int i;

 char c, *fmt;

 va_start(ap, second);

 i = va_arg(ap, int);

 c = va_arg(ap, int); /*char type is converted into int type.*/

 fmt = va_arg(ap, char *);

 va_end(ap);

}

CHAPTER 6 FUNCTIONAL SPECIFICATION

User’s Manual U19383EJ1V0UM00 735

End of scanning argument list

[Classification]

Standard library "libc.a"

[Syntax]

#include <stdarg.h>
void va_end(va_list ap);

[Description]

This function indicates the end of scanning the list. By enclosing va_arg ... between va_start and va_end, scanning
the list can be repeated.

va_end

CHAPTER 6 FUNCTIONAL SPECIFICATION

736 User’s Manual U19383EJ1V0UM00

Moving variable for scanning argument list

[Classification]

Standard library "libc.a"

[Syntax]

#include <stdarg.h>
type va_arg(va_list ap, type);

[Description]

This function returns the argument indicated by variable ap, and advances variable ap to indicate the next argument.
For the type of va_arg, specify the type converted when the argument is passed to the function. With the C compiler
specify the int type for an argument of char and short types, and specify the unsigned int type for an argument of
unsigned char and unsigned short types. Although a different type can be specified for each argument, stipulate
"which type of argument is passed" according to the conventions between the called function and calling function.

Also stipulate "how many functions are actually passed" according to the conventions between the called function
and calling function.

va_arg

CHAPTER 6 FUNCTIONAL SPECIFICATION

User’s Manual U19383EJ1V0UM00 737

6.4.2 Character string functions

Character string function is included in the standard library libc.a.
Character string functions are as follows.

Table 6-16. Character String Functions

Function/macro name Outline

index Character string search (start position)

strpbrk Character string search (start position)

rindex Character string search (end position)

strrchr Character string search (end position)

strchr Character string search (start position of specified character)

strstr Character string search (start position of specified character string)

strspn Character string search (maximum length including specified character)

strcspn Character string search (maximum length not including specified character)

strcmp Character string comparison

strncmp Character string comparison (with number of characters specified)

strcpy Character string copy

strncpy Character string copy (with number of characters specified)

strcat Character string concatenation

strncat Character string concatenation (with number of characters specified)

strtok Token division

strlen Length of character string

strerror Character string conversion of error number

CHAPTER 6 FUNCTIONAL SPECIFICATION

738 User’s Manual U19383EJ1V0UM00

Character string search (start position)

[Classification]

Standard library "libc.a"

[Syntax]

#include <string.h>
char *index(const char *s, int c);

[Return value]

Returns a pointer indicating the character that has been found. If c does not appear in this character string, the null
pointer is returned.

[Description]

This function obtains the position at which a character the same as c converted into char type appears in the
character string indicated by s. The null character (\0) indicating termination is regarded as part of this character
string.

index

CHAPTER 6 FUNCTIONAL SPECIFICATION

User’s Manual U19383EJ1V0UM00 739

Character string search (start position)

[Classification]

Standard library "libc.a"

[Syntax]

#include <string.h>
char *strpbrk(const char *s1, const char *s2);

[Return value]

Returns the pointer indicating this character. If any of the characters from s2 does not appear in s1, the null pointer
is returned.

[Description]

This function obtains the position in the character string indicated by s1 at which any of the characters in the
character string indicated by s2 (except the null character (\0)) appears first.

strpbrk

CHAPTER 6 FUNCTIONAL SPECIFICATION

740 User’s Manual U19383EJ1V0UM00

Character string search (end position)

[Classification]

Standard library "libc.a"

[Syntax]

#include <string.h>
char *rindex(const char *s, int c);

[Return value]

Returns a pointer indicating c that has been found. If c does not appear in this character string, the null pointer is
returned.

[Description]

This function obtains the position at which c converted into char type appears last in the character string indicated by
s. The null character (\0) indicating termination is regarded as part of this character string.

rindex

CHAPTER 6 FUNCTIONAL SPECIFICATION

User’s Manual U19383EJ1V0UM00 741

Character string search (end position)

[Classification]

Standard library "libc.a"

[Syntax]

#include <string.h>
char *strrchr(const char *s, int c);

[Return value]

Returns a pointer indicating c that has been found. If c does not appear in this character string, the null pointer is
returned.

[Description]

This function obtains the position at which c converted into char type appears last in the character string indicated by
s. The null character (\0) indicating termination is regarded as part of this character string.

strrchr

CHAPTER 6 FUNCTIONAL SPECIFICATION

742 User’s Manual U19383EJ1V0UM00

Character string search (start position of specified character)

[Classification]

Standard library "libc.a"

[Syntax]

#include <string.h>
char *strchr(const char *s, int c);

[Return value]

Returns a pointer indicating the character that has been found. If c does not appear in this character string, the null
pointer is returned.

[Description]

This function obtains the position at which a character the same as c converted into char type appears in the
character string indicated by s. The null character (\0) indicating termination is regarded as part of this character
string.

strchr

CHAPTER 6 FUNCTIONAL SPECIFICATION

User’s Manual U19383EJ1V0UM00 743

Character string search (start position of specified character)

[Classification]

Standard library "libc.a"

[Syntax]

#include <string.h>
char *strstr(const char *s1, const char *s2);

[Return value]

Returns the pointer indicating the character string that has been found. If character string s2 is not found, the null
pointer is returned. If s2 indicates a character string with a length of 0, s1 is returned.

[Description]

This function obtains the position of the portion (except the null character (\0)) that first coincides with the character
string indicated by s2, in the character string indicated by s1.

strstr

CHAPTER 6 FUNCTIONAL SPECIFICATION

744 User’s Manual U19383EJ1V0UM00

Character string search (maximum length including specified character)

[Classification]

Standard library "libc.a"

[Syntax]

#include <string.h>
size_t strspn(const char *s1, const char *s2);

[Return value]

Returns the length of the portion that has been found.

[Description]

This function obtains the maximum and first length of the portion consisting of only the characters (except the null
character (\0)) in the character string indicated by s2, in the character string indicated by s1.

strspn

CHAPTER 6 FUNCTIONAL SPECIFICATION

User’s Manual U19383EJ1V0UM00 745

Character string search (maximum length not including specified character)

[Classification]

Standard library "libc.a"

[Syntax]

#include <string.h>
size_t strcspn(const char *s1, const char *s2);

[Return value]

Returns the length of the portion that has been found.

[Description]

This function obtains the length of the maximum and first portion consisting of characters missing from the character
string indicated by s2 (except the null character (\0) at the end) in the character string indicated by s1.

strcspn

CHAPTER 6 FUNCTIONAL SPECIFICATION

746 User’s Manual U19383EJ1V0UM00

Character string comparison

[Classification]

Standard library "libc.a"

[Syntax]

#include <string.h>
int strcmp(const char *s1, const char *s2);

[Return value]

Returns an integer greater than, equal to, or less than 0, depending on whether the character string indicated by s1
is greater than, equal to, or less than the character string indicated by s2.

[Description]

This function compares the character string indicated by s1 with the character string indicated by s2.

strcmp

CHAPTER 6 FUNCTIONAL SPECIFICATION

User’s Manual U19383EJ1V0UM00 747

Character string comparison (with number of characters specified)

[Classification]

Standard library "libc.a"

[Syntax]

#include <string.h>
int strncmp(const char *s1, const char *s2, size_t length);

[Return value]

Returns an integer greater than, equal to, or less than 0, depending on whether the character string indicated by s1
is greater than, equal to, or less than the character string indicated by s2.

[Description]

This function compares up to length characters of the array indicated by s1 with characters of the array indicated by
s2.

strncmp

CHAPTER 6 FUNCTIONAL SPECIFICATION

748 User’s Manual U19383EJ1V0UM00

Character string copy

[Classification]

Standard library "libc.a"

[Syntax]

#include <string.h>
char *strcpy(char *dst, const char *src);

[Return value]

Returns the value of dst.

[Description]

This function copies the character string indicated by src to the array indicated by dst.

[Example]

strcpy

#include <string.h>

void func(char *str, const char *src){

 strcpy(str, src); /*Copies character string indicated by src to array indicated by

 str.*/

 :

}

CHAPTER 6 FUNCTIONAL SPECIFICATION

User’s Manual U19383EJ1V0UM00 749

Character string copy (with number of characters specified)

[Classification]

Standard library "libc.a"

[Syntax]

#include <string.h>
char *strncpy(char *dst, const char *src, size_t length);

[Return value]

Returns the value of dst.

[Description]

This function copies up to length characters (including the null character (\0)) from the array indicated by src to the
array indicated by dst. If the array indicate by src is shorter than length characters, null characters (\0) are appended
to the duplication in the array indicated by dst, until all length characters are written.

strncpy

CHAPTER 6 FUNCTIONAL SPECIFICATION

750 User’s Manual U19383EJ1V0UM00

Character string concatenation

[Classification]

Standard library "libc.a"

[Syntax]

#include <string.h>
char *strcat(char *dst, const char *src);

[Return value]

Returns the value of dst.

[Description]

This function concatenates the duplication of the character string indicated by src to the end of the character string
indicated by dst, including the null character (\0). The first character of src overwrites the null character (\0) at the end
of dst.

strcat

CHAPTER 6 FUNCTIONAL SPECIFICATION

User’s Manual U19383EJ1V0UM00 751

Character string concatenation (with number of characters specified)

[Classification]

Standard library "libc.a"

[Syntax]

#include <string.h>
char *strncat(char *dst, const char *src, size_t length);

[Return value]

Returns the value of dst.

[Description]

This function concatenates up to length characters (including the null character (\0) of src) to the end of the
character string indicated by dst, starting from the beginning of the character string indicated by src. The null character
(\0) at the end of dst is written over the first character of src. The null character indicating termination (\0) is always
added to this result.

[Caution]

Because the null character (\0) is always appended when strncat is used, if copying is limited by the number of
length arguments, the number of characters appended to dst is length + 1.

strncat

CHAPTER 6 FUNCTIONAL SPECIFICATION

752 User’s Manual U19383EJ1V0UM00

Token division

[Classification]

Standard library "libc.a"

[Syntax]

#include <string.h>
char *strtok(char *s, const char *delimiters);

[Return value]

Returns a pointer to a token. If a token does not exist, the null pointer is returned.

[Description]

This function divides the character string indicated by s into strings of tokens by delimiting the character string with a
character in the character string indicated by delimiters. If this function is called first, s is used as the first argument.
Then, calling with the null pointer as the first argument continues. The delimiting character string indicated by delimit-
ers can differ on each call. On the first call, the character string indicated by s is searched for the first character not
included in the delimiting character string indicated by delimiters. If such a character is not found, a token does not
exist in the character string indicated by s, and strtok returns the null pointer. If a character is found, that character is
the beginning of the first token. After that, strtok searches from the position of that character for a character included
in the delimiting character string at that time.

If such a character is not found, the token is expanded to the end of the character string indicated by s, and the sub-
sequent search returns the null pointer. If a character is found, the subsequent character is overwritten by the null
character (\0) indicating the termination of the token. strtok saves the pointer indicating the subsequent character. If
the null pointer is used as the value of the first argument, a code that is not re-entrant is returned. This can be avoided
by preserving the address of the last delimiting character in the application program, and passing s as an argument
that is not vacant, by using this address.

strtok

CHAPTER 6 FUNCTIONAL SPECIFICATION

User’s Manual U19383EJ1V0UM00 753

Length of character string

[Classification]

Standard library "libc.a"

[Syntax]

#include <string.h>
size_t strlen(const char *s);

[Return value]

Returns the number of characters existing before the null character (\0) indicating termination.

[Description]

This function obtains the length of the character string indicated by s.

strlen

CHAPTER 6 FUNCTIONAL SPECIFICATION

754 User’s Manual U19383EJ1V0UM00

Character string conversion of error number

[Classification]

Standard library "libc.a"

[Syntax]

#include <string.h>
char *strerror(int errnum);

[Return value]

Returns a pointer to the converted character string.

[Description]

This function converts error number errnum into a character string according to the correspondence relationship of
the processing system definition. The value of errnum is usually the duplication of global variable errno. Do not
change the specified array of the application program.

strerror

CHAPTER 6 FUNCTIONAL SPECIFICATION

User’s Manual U19383EJ1V0UM00 755

6.4.3 Memory management functions

Memory management functions are included in the standard library libc.a.
Memory management functions are as follows.

Table 6-17. Memory Management Functions

Function/macro name Outline

memchr Memory search

memcmp Memory comparison

bcmp Memory comparison (char argument version of memcmp)

memcpy Memory copy

bcopy Memory copy (char argument version of memcpy)

memmove Memory move

memset Memory set

CHAPTER 6 FUNCTIONAL SPECIFICATION

756 User’s Manual U19383EJ1V0UM00

Memory search

[Classification]

Standard library "libc.a"

[Syntax]

#include <string.h>
void *memchr(const void *s, int c, size_t length);

[Return value]

If c is found, a pointer indicating this character is returned. If c is not found, the null pointer is returned.

[Description]

This function obtains the position at which character c (converted into char type) appears first in the first length
number of characters in an area indicated by s.

memchr

CHAPTER 6 FUNCTIONAL SPECIFICATION

User’s Manual U19383EJ1V0UM00 757

Memory comparison

[Classification]

Standard library "libc.a"

[Syntax]

#include <string.h>
int memcmp(const void *s1, const void *s2, size_t n);

[Return value]

An integer greater than, equal to, or less than 0 is returned, depending on whether the object indicated by s1 is
greater than, equal to, or less than the object indicated by s2.

[Description]

This function compares the first n characters of an object indicated by s1 with the object indicated by s2.

[Example]

memcmp

#include <string.h>

int func(const void *s1, const void *s2){

 int i;

 i = memcmp(s1, s2, 5); /* Compares the first five characters of the character string

 indicated by s1 with the first five characters of the

 character string indicated by s2 */

 return(i);

}

CHAPTER 6 FUNCTIONAL SPECIFICATION

758 User’s Manual U19383EJ1V0UM00

Memory comparison (char argument version of memcmp)

[Classification]

Standard library "libc.a"

[Syntax]

#include <string.h>
int bcmp(const char *s1, const char *s2, size_t n);

[Return value]

An integer greater than, equal to, or less than 0 is returned, depending on whether the object indicated by s1 is
greater than, equal to, or less than the object indicated by s2.

[Description]

This function compares the first n characters of an object indicated by s1 with the object indicated by s2.

bcmp

CHAPTER 6 FUNCTIONAL SPECIFICATION

User’s Manual U19383EJ1V0UM00 759

Memory copy

[Classification]

Standard library "libc.a"

[Syntax]

#include <string.h>
void *memcpy(void *out, const void *in, size_t n);

[Return value]

Returns the value of out. The operation is undefined if the copy source and copy destination areas overlap.

[Description]

This function copies n bytes from an object indicated by in to an object indicated by out.

memcpy

CHAPTER 6 FUNCTIONAL SPECIFICATION

760 User’s Manual U19383EJ1V0UM00

Memory copy (char argument version of memcpy)

[Classification]

Standard library "libc.a"

[Syntax]

#include <string.h>
char* bcopy(const char *in, char *out, size_t n);

[Return value]

Returns the value of out. The operation is undefined if the copy source and copy destination areas overlap.

[Description]

This function copies n bytes from an object indicated by in to an object indicated by out.

bcopy

CHAPTER 6 FUNCTIONAL SPECIFICATION

User’s Manual U19383EJ1V0UM00 761

Memory move

[Classification]

Standard library "libc.a"

[Syntax]

#include <string.h>
void *memmove(void *dst, void *src, size_t length);

[Return value]

Returns the value of dst at the copy destination.

[Description]

This function moves the length number of characters from a memory area indicated by src to a memory area
indicated by dst. Even if the copy source and copy destination areas overlap, the characters are correctly copied to
the memory area indicated by dst.

memmove

CHAPTER 6 FUNCTIONAL SPECIFICATION

762 User’s Manual U19383EJ1V0UM00

Memory set

[Classification]

Standard library "libc.a"

[Syntax]

#include <string.h>
void *memset(const void *s, int c, size_t length);

[Return value]

Returns the value of s.

[Description]

This function copies the value of c (converted into unsigned char type) to the first length character of an object indi-
cated by s.

memset

CHAPTER 6 FUNCTIONAL SPECIFICATION

User’s Manual U19383EJ1V0UM00 763

6.4.4 Character conversion functions

Character conversion functions are included in the standard library libc.a.
Character conversion functions are as follows.

Table 6-18. Character Conversion Functions

Function/macro name Outline

toupper Conversion from lower-case to upper-case (not converted if argument is not in lower-
case)

_toupper Conversion from lower-case to upper-case (correctly converted only if argument is in
lower-case)

tolower Conversion from upper-case to lower-case (not converted if argument is not in upper-
case)

_tolower Conversion from upper-case to lower-case (correctly converted only if argument is in
upper-case)

toascii Conversion from integer to ASCII character

CHAPTER 6 FUNCTIONAL SPECIFICATION

764 User’s Manual U19383EJ1V0UM00

Conversion from lower-case to upper-case (not converted if argument is not in lower-case)

[Classification]

Standard library "libc.a"

[Syntax]

#include <ctype.h>
int toupper(int c);

[Return value]

If islower is true with respect to c, returns a character that makes isupper true in response; otherwise, returns c.

[Description]

This function is a macro that converts lowercase characters into the corresponding uppercase characters and
leaves the other characters unchanged.

This macro is defined only when c is an integer in the range of EOF to 255. A compiled subroutine can be used
instead of the macro definition, which is invalidated by using "#undef toupper".

[Example]

toupper

#include <ctype.h>

int chc = 'a';

int ret = func(chc);

int func(int c){

 int i;

 i = toupper(c); /* Converts lowercase character ’a’ of c into uppercase character ’A’.*/

 return(i);

}

CHAPTER 6 FUNCTIONAL SPECIFICATION

User’s Manual U19383EJ1V0UM00 765

Conversion from lower-case to upper-case (correctly converted only if argument is in lower-case)

[Classification]

Standard library "libc.a"

[Syntax]

#include <ctype.h>
int _toupper(int c);

[Return value]

If islower is true with respect to c, returns a character that makes isupper true in response; otherwise, returns c.
Also with _toupper, operation can be inconsistent when specifying illegal values for c.

[Description]

This function is a macro that performs the same operation as toupper if the argument is of lowercase characters.
Because the argument is not checked, the correct conversion is performed only if the argument is of lowercase char-

acters. If otherwise, the operation will be undefined. A compiled subroutine can be used instead of the macro defini-
tion, which is invalidated by using "#undef _toupper".

_toupper

CHAPTER 6 FUNCTIONAL SPECIFICATION

766 User’s Manual U19383EJ1V0UM00

Conversion from upper-case to lower-case (not converted if argument is not in upper-case)

[Classification]

Standard library "libc.a"

[Syntax]

#include <ctype.h>
int tolower(int c);

[Return value]

If isupper is true with respect to c, returns a character that makes islower true in response; otherwise, returns c.

[Description]

This function is a macro that converts uppercase characters into the corresponding lowercase characters and
leaves the other characters unchanged.

This macro is defined only when c is an integer in the range of EOF to 255. A compiled subroutine can be used
instead of the macro definition, which is invalidated by using "#undef tolower".

tolower

CHAPTER 6 FUNCTIONAL SPECIFICATION

User’s Manual U19383EJ1V0UM00 767

Conversion from upper-case to lower-case (correctly converted only if argument is in upper-case)

[Classification]

Standard library "libc.a"

[Syntax]

#include <ctype.h>
int _tolower(int c);

[Return value]

If isupper is true with respect to c, returns a character that makes islower true in response; otherwise, returns c.
Also with _tolower, operation can be inconsistent when specifying illegal values for c.

[Description]

This function is a macro that performs the same operation as tolower if the argument is of uppercase characters.
Because the argument is not checked, the correct conversion is performed only if the argument is of uppercase

characters. If otherwise, the operation will be undefined. A compiled subroutine can be used instead of the macro def-
inition, which is invalidated by using "#undef _tolower".

_tolower

CHAPTER 6 FUNCTIONAL SPECIFICATION

768 User’s Manual U19383EJ1V0UM00

Conversion from integer to ASCII character

[Classification]

Standard library "libc.a"

[Syntax]

#include <ctype.h>
int toascii(int c);

[Return value]

Returns an integer in the range of 0 to 127.

[Description]

This function is a macro that forcibly converts an integer into an ASCII character (0 to 127) by clearing bit 8 and
higher of the argument to 0.

A compiled subroutine can be used instead of the macro definition, which is invalidated by using "#undef toascii".

toascii

CHAPTER 6 FUNCTIONAL SPECIFICATION

User’s Manual U19383EJ1V0UM00 769

6.4.5 Character classification functions

Character classification functions are included in the standard library libc.a.
Character classification functions are as follows.

Table 6-19. Character Classification Functions

Function/macro name Outline

isalnum Identification of ASCII letter or numeral

isalpha Identification of ASCII letter

isascii Identification of ASCII code

isupper Identification of upper-case character

islower Identification of lower-case character

isdigit Identification of decimal number

isxdigit Identification of hexadecimal number

iscntrl Identification of control character

ispunct Identification of delimiter character

isspace Identification of space/tab/carriage return/line feed/vertical tab/page feed

isprint Identification of display character

isgraph Identification of display character other than space

CHAPTER 6 FUNCTIONAL SPECIFICATION

770 User’s Manual U19383EJ1V0UM00

Identification of ASCII letter or numeral

[Classification]

Standard library "libc.a"

[Syntax]

#include <ctype.h>
int isalnum(int c);

[Return value]

These macros return a value other than 0 if the value of argument c matches the respective description (i.e., if the
result is true). If the result is false, 0 is returned.

[Description]

This function is a macro that checks whether a given character is an ASCII alphabetic character or numeral. This
macro is defined for all integer values. A compiled subroutine can be used instead of the macro definition, which is
invalidated by using "#undef isalnum".

isalnum

CHAPTER 6 FUNCTIONAL SPECIFICATION

User’s Manual U19383EJ1V0UM00 771

Identification of ASCII letter

[Classification]

Standard library "libc.a"

[Syntax]

#include <ctype.h>
int isalpha(int c);

[Return value]

These macros return a value other than 0 if the value of argument c matches the respective description (i.e., if the
result is true). If the result is false, 0 is returned.

[Description]

This function is a macro that checks whether a given character is an ASCII alphabetic character. This macro id
defined only when c is made true by isascii or when c is EOF. A compiled subroutine can be used instead of the macro
definition, which is invalidated by using "#undef isalpha".

isalpha

CHAPTER 6 FUNCTIONAL SPECIFICATION

772 User’s Manual U19383EJ1V0UM00

Identification of ASCII code

[Classification]

Standard library "libc.a"

[Syntax]

#include <ctype.h>
int isascii(int c);

[Return value]

These macros return a value other than 0 if the value of argument c matches the respective description (i.e., if the
result is true). If the result is false, 0 is returned.

[Description]

This function is a macro that checks whether a given character is an ASCII code (0x00 to 0x7F). This macro is
defined for all integer values. A compiled subroutine can be used instead of the macro definition, which is invalidated
by using "#undef isascii".

isascii

CHAPTER 6 FUNCTIONAL SPECIFICATION

User’s Manual U19383EJ1V0UM00 773

Identification of upper-case character

[Classification]

Standard library "libc.a"

[Syntax]

#include <ctype.h>
int isupper(int c);

[Return value]

These macros return a value other than 0 if the value of argument c matches the respective description (i.e., if the
result is true). If the result is false, 0 is returned.

[Description]

This function is a macro that checks whether a given character is an uppercase character (A to Z). This macro is
defined only when c is made true by isascii or when c is EOF. A compiled subroutine can be used instead of the macro
definition, which is invalidated by using "#undef isupper".

isupper

CHAPTER 6 FUNCTIONAL SPECIFICATION

774 User’s Manual U19383EJ1V0UM00

Identification of lower-case character

[Classification]

Standard library "libc.a"

[Syntax]

#include <ctype.h>
int islower(int c);

[Return value]

These macros return a value other than 0 if the value of argument c matches the respective description (i.e., if the
result is true). If the result is false, 0 is returned.

[Description]

This function is a macro that checks whether a given character is a lowercase character (a to z). This macro is
defined only when c is made true by isascii or when c is EOF. A compiled subroutine can be used instead of the macro
definition, which is invalidated by using "#undef islower".

islower

CHAPTER 6 FUNCTIONAL SPECIFICATION

User’s Manual U19383EJ1V0UM00 775

Identification of decimal number

[Classification]

Standard library "libc.a"

[Syntax]

#include <ctype.h>
int isdigit(int c);

[Return value]

These macros return a value other than 0 if the value of argument c matches the respective description (i.e., if the
result is true). If the result is false, 0 is returned.

[Description]

This function is a macro that checks whether a given character is a decimal number. This macro is defined only
when c is made true by isascii or when c is EOF. A compiled subroutine can be used instead of the macro definition,
which is invalidated by using "#undef isdigit".

isdigit

CHAPTER 6 FUNCTIONAL SPECIFICATION

776 User’s Manual U19383EJ1V0UM00

Identification of hexadecimal number

[Classification]

Standard library "libc.a"

[Syntax]

#include <ctype.h>
int isxdigit(int c);

[Return value]

These macros return a value other than 0 if the value of argument c matches the respective description (i.e., if the
result is true). If the result is false, 0 is returned.

[Description]

This function is a macro that checks whether a given character is a hexadecimal number (0 to 9, a to f, or A to F).
This macro is defined only when c is made true by isascii or when c is EOF. A compiled subroutine can be used
instead of the macro definition, which is invalidated by using "#undef isxdigit".

isxdigit

CHAPTER 6 FUNCTIONAL SPECIFICATION

User’s Manual U19383EJ1V0UM00 777

Identification of control character

[Classification]

Standard library "libc.a"

[Syntax]

#include <ctype.h>
int iscntrl(int c);

[Return value]

These macros return a value other than 0 if the value of argument c matches the respective description (i.e., if the
result is true). If the result is false, 0 is returned.

[Description]

This function is a macro that checks whether a given character is a control character (0x00 to 0x1F or 0x7F). This
macro is defined only when c is made true by isascii or when c is EOF. A compiled subroutine can be used instead of
the macro definition, which is invalidated by using "#undef iscntrl".

iscntrl

CHAPTER 6 FUNCTIONAL SPECIFICATION

778 User’s Manual U19383EJ1V0UM00

Identification of delimiter character

[Classification]

Standard library "libc.a"

[Syntax]

#include <ctype.h>
int ispunct(int c);

[Return value]

These macros return a value other than 0 if the value of argument c matches the respective description (i.e., if the
result is true). If the result is false, 0 is returned.

[Description]

This function is a macro that checks whether a given character is a printable delimiter (isgraph(c) && !isalnum(c)).
This macro is defined only when c is made true by isascii or when c is EOF. A compiled subroutine can be used
instead of the macro definition, which is invalidated by using "#undef ispunct".

ispunct

CHAPTER 6 FUNCTIONAL SPECIFICATION

User’s Manual U19383EJ1V0UM00 779

Identification of space/tab/carriage return/line feed/vertical tab/page feed

[Classification]

Standard library "libc.a"

[Syntax]

#include <ctype.h>
int isspace(int c);

[Return value]

These macros return a value other than 0 if the value of argument c matches the respective description (i.e., if the
result is true). If the result is false, 0 is returned.

[Description]

This function is a macro that checks whether a given character is a space, tap, line feed, carriage return, vertical tab,
or form feed (0x09 to 0x0D, or 0x20). This macro is defined only when c is made true by isascii or when c is EOF. A
compiled subroutine can be used instead of the macro definition, which is invalidated by using "#undef isspace".

isspace

CHAPTER 6 FUNCTIONAL SPECIFICATION

780 User’s Manual U19383EJ1V0UM00

Identification of display character

[Classification]

Standard library "libc.a"

[Syntax]

#include <ctype.h>
int isprint(int c);

[Return value]

These macros return a value other than 0 if the value of argument c matches the respective description (i.e., if the
result is true). If the result is false, 0 is returned.

[Description]

This function is a macro that checks whether a given character is a display character (0x20 to 0x7E). This macro is
defined only when c is made true by isascii or when c is EOF. A compiled subroutine can be used instead of the macro
definition, which is invalidated by using "#undef isprint".

isprint

CHAPTER 6 FUNCTIONAL SPECIFICATION

User’s Manual U19383EJ1V0UM00 781

Identification of display character other than space

[Classification]

Standard library "libc.a"

[Syntax]

#include <ctype.h>
int isgraph(int c);

[Return value]

These macros return a value other than 0 if the value of argument c matches the respective description (i.e., if the
result is true). If the result is false, 0 is returned.

[Description]

This function is a macro that checks whether a given character is a display characterNote (0x20 to 0x7E) other than
space (0x20). This macro is defined only when c is made true by isascii or when c is EOF. A compiled subroutine can
be used instead of the macro definition, which is invalidated by using "#undef isgraph".

Note printing character

isgraph

CHAPTER 6 FUNCTIONAL SPECIFICATION

782 User’s Manual U19383EJ1V0UM00

6.4.6 Standard I/O functions

Standard I/O functions are included in standard library libc.a.
Standard I/O functions are as follows.

Table 6-20. Standard I/O Functions

Function/macro name Outline

fread Read from stream

getc Read character from stream (same as fgetc)

fgetc Read character from stream (same as getc)

fgets Read one line from stream

fwrite Write to stream

putc Write character to stream

fputc Write character to stream

fputs Output character string to stream

getchar Read one character from standard input

gets Read character string from standard input

putchar Write character to standard output stream

puts Output character string to standard output stream

sprintf Output with format

fprintf Output text in specified format to stream

vsprintf Write text in specified format to character string

printf Output text in specified format to standard output stream

vfprintf Write text in specified format to stream

vprintf Write text in specified format to standard output stream

sscanf Input with format

fscanf Read and interpret data from stream

scanf Read and interpret text from standard input stream

ungetc Push character back to input stream

rewind Reset file position indicator

perror Error processing

CHAPTER 6 FUNCTIONAL SPECIFICATION

User’s Manual U19383EJ1V0UM00 783

Read from stream

Remark These functions are not supported by the NEC Electronics integrated debugger or the system simulator.

[Classification]

Standard library "libc.a"

[Syntax]

#include <stdio.h>
size_t fread(void *ptr, size_t size, size_t nmemb, FILE *stream);

[Return value]

The number of elements that were input (nmemb) is returned.
Error return does not occur.

[Description]

This function inputs nmemb elements of size from the input stream pointed to by stream and stores them in ptr.
Only the standard input/output stdin can be specified for stream.

[Example]

fread

#include <stdio.h>

void func(void){

 struct{

 int c;

 double d;

 }buf[10];

 fread(buf, sizeof(buf[0]), sizeof(buf) / sizeof(buf [0]), stdin);

}

CHAPTER 6 FUNCTIONAL SPECIFICATION

784 User’s Manual U19383EJ1V0UM00

Read character from stream (same as fgetc)

Remark These functions are not supported by the NEC Electronics integrated debugger or the system simulator.

[Classification]

Standard library "libc.a"

[Syntax]

#include <stdio.h>
int getc(FILE *stream);

[Return value]

The input character is returned.
Error return does not occur.

[Description]

This function inputs one character from the input stream pointed to by stream. Only the standard input/output stdin
can be specified for stream.

getc

CHAPTER 6 FUNCTIONAL SPECIFICATION

User’s Manual U19383EJ1V0UM00 785

Read character from stream (same as getc)

Remark These functions are not supported by the NEC Electronics integrated debugger or the system simulator.

[Classification]

Standard library "libc.a"

[Syntax]

#include <stdio.h>
int fgetc(FILE *stream);

[Return value]

The input character is returned.
Error return does not occur.

[Description]

This function inputs one character from the input stream pointed to by stream. Only the standard input/output stdin
can be specified for stream.

[Example]

fgetc

#include <stdio.h>

int func(void){

 int c;

 c = fgetc(stdin);

 return(c);

}

CHAPTER 6 FUNCTIONAL SPECIFICATION

786 User’s Manual U19383EJ1V0UM00

Read one line from stream

Remark These functions are not supported by the NEC Electronics integrated debugger or the system simulator.

[Classification]

Standard library "libc.a"

[Syntax]

#include <stdio.h>
char *fgets(char *s, int n, FILE *stream);

[Return value]

s is returned.
Error return does not occur.

[Description]

This function inputs at most n-1 characters from the input stream pointed to by stream and stores them in s.
Character input is also ended by the detection of a new-line character. In this case, the new-line character is also
stored in s. The end-of-string null character is stored at the end in s. Only the standard input/output stdin can be
specified for stream.

fgets

CHAPTER 6 FUNCTIONAL SPECIFICATION

User’s Manual U19383EJ1V0UM00 787

Write to stream

Remark These functions are not supported by the NEC Electronics integrated debugger or the system simulator.

[Classification]

Standard library "libc.a"

[Syntax]

#include <stdio.h>
size_t fwrite(const void *ptr, size_t size, size_t nmemb, FILE *stream);

[Return value]

The number of elements that were output (nmemb) is returned.
Error return does not occur.

[Description]

This function outputs nmemb elements of size from the array pointed to by ptr to the output stream pointed to by
stream. Only the standard input/output stdout or stderr can be specified for stream.

fwrite

CHAPTER 6 FUNCTIONAL SPECIFICATION

788 User’s Manual U19383EJ1V0UM00

Write character to stream

Remark These functions are not supported by the NEC Electronics integrated debugger or the system simulator.

[Classification]

Standard library "libc.a"

[Syntax]

#include <stdio.h>
int putc(int c, FILE *stream);

[Return value]

The character c is returned.
Error return does not occur.

[Description]

This function outputs the character c to the output stream pointed to by stream. Only the standard input/output std-
out or stderr can be specified for stream.

putc

CHAPTER 6 FUNCTIONAL SPECIFICATION

User’s Manual U19383EJ1V0UM00 789

Write character to stream

Remark These functions are not supported by the NEC Electronics integrated debugger or the system simulator.

[Classification]

Standard library "libc.a"

[Syntax]

#include <stdio.h>
int fputc(int c, FILE *stream);

[Return value]

The character c is returned.
Error return does not occur.

[Description]

This functionoutputs the character c to the output stream pointed to by stream. Only the standard input/output
stdout or stderr can be specified for stream.

[Example]

fputc

#include <stdio.h>

void func(void){

 fputc('a', stdout);

}

CHAPTER 6 FUNCTIONAL SPECIFICATION

790 User’s Manual U19383EJ1V0UM00

Output character string to stream

Remark These functions are not supported by the NEC Electronics integrated debugger or the system simulator.

[Classification]

Standard library "libc.a"

[Syntax]

#include <stdio.h>
int fputs(const char *s, FILE *stream);

[Return value]

0 is returned.
Error return does not occur.

[Description]

This function outputs the string s to the output stream pointed to by stream. The end-of-string null character is not
output. Only the standard input/output stdout or stderr can be specified for stream.

fputs

CHAPTER 6 FUNCTIONAL SPECIFICATION

User’s Manual U19383EJ1V0UM00 791

Read one character from standard input

Remark These functions are not supported by the NEC Electronics integrated debugger or the system simulator.

[Classification]

Standard library "libc.a"

[Syntax]

#include <stdio.h>
int getchar(void);

[Return value]

The input character is returned.
Error return does not occur.

[Description]

This function inputs one character from the standard input/output stdin.

getchar

CHAPTER 6 FUNCTIONAL SPECIFICATION

792 User’s Manual U19383EJ1V0UM00

Read character string from standard input

Remark These functions are not supported by the NEC Electronics integrated debugger or the system simulator.

[Classification]

Standard library "libc.a"

[Syntax]

#include <stdio.h>
char *gets(char *s);

[Return value]

s is returned.
Error return does not occur.

[Description]

This function inputs characters from the standard input/output stdin until a new-line character is detected and stores
them in s. The new-line character that was input is discarded, and an end-of-string null character is stored at the end
in s.

gets

CHAPTER 6 FUNCTIONAL SPECIFICATION

User’s Manual U19383EJ1V0UM00 793

Write character to standard output stream

Remark These functions are not supported by the NEC Electronics integrated debugger or the system simulator.

[Classification]

Standard library "libc.a"

[Syntax]

#include <stdio.h>
int putchar(int c);

[Return value]

The character c is returned.
Error return does not occur.

[Description]

This function outputs the character c to the standard input/output stdout.

putchar

CHAPTER 6 FUNCTIONAL SPECIFICATION

794 User’s Manual U19383EJ1V0UM00

Output character string to standard output stream

Remark These functions are not supported by the NEC Electronics integrated debugger or the system simulator.

[Classification]

Standard library "libc.a"

[Syntax]

#include <stdio.h>
int puts(const char *s);

[Return value]

0 is returned.
Error return does not occur.

[Description]

This function outputs the string s to the standard input/output stdout. The end-of-string null character is not output,
but a new-line character is output in its place.

puts

CHAPTER 6 FUNCTIONAL SPECIFICATION

User’s Manual U19383EJ1V0UM00 795

Output with format

[Classification]

Standard library "libc.a"

[Syntax]

#include <stdio.h>
int sprintf(char *s, const char *format[, arg, ...]);

[Return value]

The number of characters that were output (excluding the null character (\0)) is returned.
Error return does not occur.

[Description]

This function applies the format specified by the string pointed to by format to the respective arg arguments, and
writes out the formatted data that was output as a result to the array pointed to by s.

If there are not sufficient arguments for the format, the operation is undefined. If the end of the formatted string is
reached, control returns. If there are more arguments that those required by the format, the excess arguments are
ignored. If the area of s overlaps one of the arguments, the operation is undefined.

The argument format specifies "the output to which the subsequent argument is to be converted". The null character
(\0) is appended at the end of written characters (the null character (\0) is not counted in a return value).

The format consists of the following two types of directives:

Each conversion specification begins with character "%" (to insert "%" in the output, specify "%%" in the format
string). The following appear after the "%":

%[flag][field-width][precision][size][type-specification-character]

The meaning of each conversion specification is explained below.

sprintf

Ordinary characters Characters that are copied directly without conversion (other than "%").

Conversion specifications Specifications that fetch zero or more arguments and assign a specification.

CHAPTER 6 FUNCTIONAL SPECIFICATION

796 User’s Manual U19383EJ1V0UM00

(1) flag
Zero or more flags, which qualify the meaning of the conversion specification, are placed in any order.
The flag characters and their meanings are as follows:

Note Normally, a decimal point appears only when a digit follows it.

(2) field width
This is an optional minimum field width. If the converted value is smaller than this field width, the left side is
filled with spaces (if the left justification flag explained above is assigned, the right side will be filled with
spaces). This field width takes the form of "*" or a decimal integer. If "*" is specified, an int type argument is
used as the field width. A negative field width is not supported. If an attempt is made to specify a negative field
width, it is interpreted as a minus (-) flag appended to the beginning of a positive field width.

(3) precision
For d, i, o, u, x, or X conversion, the value assigned for the precision is the minimum number of digits to appear.
For e, f, or E conversion, it is the number of digits to appear after the decimal point. For g or G conversion, it is
the maximum number of significant digits. The precision takes the form of "*" or "." followed by a decimal inte-
ger. If "*" is specified, an int type argument is used as the precision. If a negative precision is specified, it is
treated as if the precision were omitted. If only "." is specified, the precision is assumed to be 0. If the precision
appears together with a conversion specification other than the above, the operation is undefined.

(4) size
This is an arbitrary optional size character h, l, or L, which changes the default method for interpreting the data
type of the corresponding argument.
When h is specified, a following d, i, o, u, x, or X type specification is forcibly applied to a short or unsigned short
argument.
When l is specified, a following d, i, o, u, x, or X type specification is forcibly applied to a long or unsigned long
argument. l is also causes a following n type specification to be forcibly applied to a pointer to long argument. If
another type specification character is used together with h or l, the operation is undefined.
When L is specified, a following e, E, f, g, or G type specification is forcibly applied to a long double argument. If
another type specification character is used together with L, the operation is undefined.

- The result of the conversion will be left-justified in the field, with the right side filled with blanks (if this flag
is not specified, the result of the conversion is right-justified).

+ The result of a signed conversion will start with a + or - sign (if this flag is not specified, the result of the
conversion starts with a sign only when a negative value has been converted).

Space If the first character of a signed conversion is not a sign and a signed conversion is not generated a
character, a space (" ") will be appended to the beginning of result of the conversion. If both the space
flag and + flag appear, the space flag is ignored.

The result is to be converted to an alternate format. For o conversion, the precision is increased so that
the first digit of the conversion result is 0. For x or X conversion, 0x or 0X is appended to the beginning
of a non-zero conversion result. For e, f, g, E, or G conversion, a decimal point "." is added to the con-
version result even if no digits follow the decimal pointNote. For g or G conversion, trailing zeros will not
be removed from the conversion result. The operation is undefined for conversions other than the
above.

0 For d, e, f, g, i, o, u, x, E, G, or X conversion, zeros are added following the specification of the sign or
base to fill the field width.

If both the 0 flag and - flag are specified, the 0 flag is ignored. For d, i, o, u, x, or X conversion, when the
precision is specified, the zero (0) flag is ignored.

Note that 0 is interpreted as a flag and not as the beginning of the field width.

The operation is undefined for conversion other than the above.

CHAPTER 6 FUNCTIONAL SPECIFICATION

User’s Manual U19383EJ1V0UM00 797

(5) type specification character
These are characters that specify the type of conversion that is to be applied.
The characters that specify conversion types and their meanings are as follows.

[Example]

% Output the character "%". No argument is converted. The conversion specification is "%%".

c Convert an int type argument to unsigned char type and output the characters of the conversion result.

d Convert an int type argument to a signed decimal number.

e, E Convert a double type argument to [-]d.dddde+dd format, which has one digit before the decimal point
(not 0 if the argument is not 0) and the number of digits after the decimal point is equal to the precision.
The E conversion specification generates a number in which the exponent part starts with "E" instead of
"e".

f Convert a double type argument to decimal notation of the form [-]dddd.dddd.

g, G Convert a double type argument to e (E for a G conversion specification) or f format, with the number of
digits in the mantissa specified for the precision. Trailing zeros of the conversion result are excluded
from the fractional part. The decimal point appears only when it is followed by a digit.

i Perform the same conversion as d.

n Store the number of characters that were output in the same object. A pointer to int type is used as the
argument.

p Output a pointer in an implementation-defined format. The CA850 handles a pointer as unsigned long
(this is the same as the lu specification).

o, u, x, X Convert an unsigned int type argument to octal notation (o), unsigned decimal notation (u), or unsigned
hexadecimal notation (x or X) with dddd format. For x conversion, the letters abcdef are used. For X
conversion, the letters ABCDEF are used.

s The argument must be a pointer pointing to a character type array. Characters from this array are out-
put up until the null character (\0) indicating termination (the null character (\0) itself is not included). If
the precision is specified, no more than the specified number of characters will be output. If the preci-
sion is not specified or if the precision is greater than the size of this array, make sure that this array
includes the null character (\0).

#include <stdio.h>

void func(int val){

 char s[20];

 sprintf(s, "%-10.51x\n", val); /* Specifies left-justification, field width 10,

 precision 5, size long, and hexadecimal notation

 for the value of val, and outputs the result with an

 appended new-line character to the array pointed to

 by s. */

}

CHAPTER 6 FUNCTIONAL SPECIFICATION

798 User’s Manual U19383EJ1V0UM00

Output text in specified format to stream

Remark These functions are not supported by the NEC Electronics integrated debugger or the system simulator.

[Classification]

Standard library "libc.a"

[Syntax]

#include <stdio.h>
int fprintf(FILE *stream, const char *format[, arg, ...]);

[Return value]

The number of characters that were output is returned.

[Description]

This function applies the format specified by the string pointed to by format to the respective arg arguments, and
outputs the formatted data that was output as a result to stream. Only the standard input/output stdout or stderr can be
specified for stream. The method of specifying format is the same as described for the sprintf function. However,
fprintf differs from sprintf in that no null character (\0) is output at the end.

[Caution]

Stdin (standard input) and stdout (standard error) are specified for the argument stream. 1 memory addresses such
as an I/O address is allocated for the I/O destination of stream. To use these streams in combination with a debugger,
the initial values of the stream structure defined in stdio.h must be set. Be sure to set the initial values prior to calling
the function.

[Definition of stream structure in stdio.h]

The first structure member, mode, indicates the I/O status and is internally defined as ACCSD_OUT/ADDSD_IN.
The third member, unget_c, indicates the pushed-back character (stdin only) setting and is internally defined as -1.

When the definition is -1, it indicates that there is no pushed-back character. The second member, handle, indicates
the I/O address. Set the value according to the debugger to be used.

fprintf

typedef struct{

 int mode; /*with error descriptions*/

 unsigend handle;

 int unget_c;

}FILE;

typedef int fpos_t;

#pragma section sdata begin

extern FILE __struct_stdin;

extern FILE __struct_stdout;

extern FILE __struct_stderr;

#pragma section sdata end

#define stdin(&__struct_stdin)

#define stdout(&__struct_stdout)

#define stderr(&__struct_stderr)

CHAPTER 6 FUNCTIONAL SPECIFICATION

User’s Manual U19383EJ1V0UM00 799

[Example of I/O address setting]

[Example]

__struct_stdout.handle = 0xfffff000;

__struct_stderr.handle = 0x00fff000;

__struct_stdin.handle = 0xfffff002;

#pragma section sdata begin

extern FILE __struct_stdout;

extern FILE __struct_stderr;

#pragma section sdata end

#define stdin(&__struct_stdin)

#define stdout(&__struct_stdout)

#define stderr(&__struct_stderr)

#include <stdio.h>

void func(int val){

 fprintf(stdout, "%-10.5x\n", val);

}

/* Example using vfprintf in a general error reporting routine */

void error(char *function_name, char *format, ...){

 va_list arg;

 va_start(arg, format);

 fprintf(stderr, "ERROR in %s:", function_name); /* Output function name for which error

 occurred */

 vfprintf(stderr, format, arg); /* Output remaining messages */

 va_end(arg);

}

CHAPTER 6 FUNCTIONAL SPECIFICATION

800 User’s Manual U19383EJ1V0UM00

Write text in specified format to character string

[Classification]

Standard library "libc.a"

[Syntax]

#include <stdio.h>
int vsprintf(char *s, const char *format, va_list arg);

[Return value]

The number of characters that were output (excluding the null character (\0)) is returned.
Error return does not occur.

[Description]

This function applies the format specified by the string pointed to by format to the argument string pointed to by arg,
and outputs the formatted data that was output as a result to the array pointed to be s. The vsprintf function is
equivalent to sprintf with the list of a variable number of real arguments replaced by arg. arg must be initialized by the
va_start macro before the vsprintf function is called.

vsprintf

CHAPTER 6 FUNCTIONAL SPECIFICATION

User’s Manual U19383EJ1V0UM00 801

Output text in specified format to standard output stream

Remark These functions are not supported by the NEC Electronics integrated debugger or the system simulator.

[Classification]

Standard library "libc.a"

[Syntax]

#include <stdio.h>
int printf(const char *format[, arg, ...]);

[Return value]

The number of characters that were output is returned.

[Description]

This function applies the format specified by the string pointed to by format to the respective arg arguments, and
outputs the formatted data that was output as a result to the standard input/output stdout. The method of specifying
format is the same as described for the sprintf function. However, printf differs from sprintf in that no null character (\0)
is output at the end.

printf

CHAPTER 6 FUNCTIONAL SPECIFICATION

802 User’s Manual U19383EJ1V0UM00

Write text in specified format to stream

Remark These functions are not supported by the NEC Electronics integrated debugger or the system simulator.

[Classification]

Standard library "libc.a"

[Syntax]

#include <stdio.h>
int vfprintf(FILE *stream, const char *format, va_list arg);

[Return value]

The number of characters that were output is returned.

[Description]

This function applies the format specified by the string pointed to by format to argument string pointed to by arg, and
outputs the formatted data that was output as a result to stream. Only the standard input/output stdout or stderr can be
specified for stream. The method of specifying format is the same as described for the sprintf function. The vfprintf
function is equivalent to fprintf with the list of a variable number of real arguments replaced by arg. arg must be
initialized by the va_start macro before the vfprintf function is called.

[Caution]

Stdin (standard input) and stdout (standard error) are specified for the argument stream. 1 memory addresses such
as an I/O address is allocated for the I/O destination of stream. To use these streams in combination with a debugger,
the initial values of the stream structure defined in stdio.h must be set. Be sure to set the initial values prior to calling
the function.

[Definition of stream structure in stdio.h]

The first structure member, mode, indicates the I/O status and is internally defined as ACCSD_OUT/ADDSD_IN.
The third member, unget_c, indicates the pushed-back character (stdin only) setting and is internally defined as -1.

vfprintf

typedef struct{

 int mode; /*with error descriptions*/

 unsigend handle;

 int unget_c;

}FILE;

typedef int fpos_t;

#pragma section sdata begin

extern FILE __struct_stdin;

extern FILE __struct_stdout;

extern FILE __struct_stderr;

#pragma section sdata end

#define stdin(&__struct_stdin)

#define stdout(&__struct_stdout)

#define stderr(&__struct_stderr)

CHAPTER 6 FUNCTIONAL SPECIFICATION

User’s Manual U19383EJ1V0UM00 803

When the definition is -1, it indicates that there is no pushed-back character. The second member, handle, indicates
the I/O address. Set the value according to the debugger to be used.

[Example of I/O address setting]

[Example]

__struct_stdout.handle = 0xfffff000;

__struct_stderr.handle = 0x00fff000;

__struct_stdin.handle = 0xfffff002;

#pragma section sdata begin

extern FILE __struct_stdout;

extern FILE __struct_stderr;

#pragma section sdata end

#define stdin(&__struct_stdin)

#define stdout(&__struct_stdout)

#define stderr(&__struct_stderr)

#include <stdio.h>

void func(int val){

 fprintf(stdout, "%-10.5x\n", val);

}

/* Example using vfprintf in a general error reporting routine */

void error(char *function_name, char *format, ...){

 va_list arg;

 va_start(arg, format);

 fprintf(stderr, "ERROR in %s:", function_name); /* Output function name for which error

 occurred */

 vfprintf(stderr, format, arg); /* Output remaining messages */

 va_end(arg);

}

CHAPTER 6 FUNCTIONAL SPECIFICATION

804 User’s Manual U19383EJ1V0UM00

Write text in specified format to standard output stream

Remark These functions are not supported by the NEC Electronics integrated debugger or the system simulator.

[Classification]

Standard library "libc.a"

[Syntax]

#include <stdio.h>
int vprintf(const char *format, va_list arg);

[Return value]

The number of characters that were output is returned.

[Description]

This function applies the format specified by the string pointed to by format to the argument string pointed to by arg,
and outputs the formatted data that was output as a result to the standard input/output stdout. The method of
specifying format is the same as described for the sprintf function. The vprintf function is equivalent to printf with the
list of a variable number of real arguments replaced by arg. arg must be initialized by the va_start macro before the
vprintf function is called.

vprintf

CHAPTER 6 FUNCTIONAL SPECIFICATION

User’s Manual U19383EJ1V0UM00 805

Input with format

[Classification]

Standard library "libc.a"

[Syntax]

#include <stdio.h>
int sscanf(const char *s, const char *format[, arg, ...]);

[Return value]

The number of input fields for which scanning, conversion, and storage were executed normally is returned. The
return value does not include scanned fields that were not stored. If an attempt is made to read to the end of the file,
the return value is EOF. If no field was stored, the return value is 0.

[Description]

This function reads the input to be converted according to the format specified by the character string pointed to by
format from the array pointed to by s and treats the arg arguments that follow format as pointers that point to objects
for storing the converted input.

An input string that can be recognized and "the conversion that is to be performed for assignment" are specified for
format. If sufficient arguments do not exist for format, the operation is undefined. If format is used up even when argu-
ments remain, the remaining arguments are ignored.

The format consists of the following three types of directives:

Each conversion specification starts with "%". The following appear after the "%":

%[assignment-suppression-character][field-width][size][type-specification-character]

Each conversion specification is explained below.

(1) Assignment suppression character
The assignment suppression character "*" suppresses the interpretation and assignment of the input field.

sscanf

One or more Space characters Space (), tab (\t), or new-line (\n).

If a space character is found in the string when sscanf is executed, all consecutive space
characters are read until the next non-space character appears (the space characters
are not stored).

Ordinary characters All ASCII characters other than "%".

If an ordinary character is found in the string when sscanf is executed, that character is
read but not stored. sscanf reads a string from the input field, converts it into a value of
a specific type, and stores it at the position specified by the argument, according to the
conversion specification. If an explicit match does not occur according to the conversion
specification, no subsequent space character is read.

Conversion specification Fetches 0 or more arguments and directs the conversion.

CHAPTER 6 FUNCTIONAL SPECIFICATION

806 User’s Manual U19383EJ1V0UM00

(2) field width
This is a non-zero decimal integer that defines the maximum field width.
It specifies the maximum number of characters that are read before the input field is converted. If the input field
is smaller than this field width, sscanf reads all the characters in the field and then proceeds to the next field and
its conversion specification.
If a space character or a character that cannot be converted is found before the number of characters equivalent
to the field width is read, the characters up to the white space or the character that cannot be converted are read
and stored. Then, sscanf proceeds to the next conversion specification.

(3) size
This is an arbitrary optional size character h, l, or L, which changes the default method for interpreting the data
type of the corresponding argument.
When h is specified, a following d, i, n, o, u, or x type specification is forcibly converted to short int type and
stored as short type. Nothing is done for c, e, f, n, p, s, D, I, O, U, or X.
When l is specified, a following d, i, n, o, u, or x type specification is forcibly converted to long int type and stored
as long type. An e, f, or g type specification is forcibly converted to double type and stored as double type.
Nothing is done for c, n, p, s, D, I, O, U, and X.
When L is specified, a following c, i, o, u, or x type specification is forcibly converted to long double type and
stored as long double type. Nothing is done for other type specifications.
In cases other than the above, the operation is undefined.

(4) type specification character
These are characters that specify the type of conversion that is to be applied.

The characters that specify conversion types and their meanings are as follows.

% Match the character "%". No conversion or assignment is performed. The conversion specification is
"%%".

c Scan one character. The corresponding argument should be "char *arg".

d Read a decimal integer into the corresponding argument. The corresponding argument should be "int
*arg".

e, f, g Read a floating-point number into the corresponding argument. The corresponding argument should be
"float *arg".

i Read a decimal, octal, or hexadecimal integer into the corresponding argument. The corresponding
argument should be "int *arg".

n Store the number of characters that were read in the corresponding argument. The corresponding argu-
ment should be "int *arg".

o Read an octal integer into the corresponding argument. The corresponding argument must be "int *arg".

p Store the pointer that was scanned. This is an implementation definition.

The ca processes %p and %U in exactly the same manner. The corresponding argument should be
"void **arg".

s Read a string into a given array. The corresponding argument should be "char arg[]".

u Read an unsigned decimal integer into the corresponding argument. The corresponding argument
should be "unsigned int *arg".

x, X Read a hexadecimal integer into the corresponding argument. The corresponding argument should be
"int *arg".

D Read a decimal integer into the corresponding argument. The corresponding argument should be "long
*arg".

E, F, G Read a floating-point number into the corresponding argument. The corresponding argument should be
"double *arg".

CHAPTER 6 FUNCTIONAL SPECIFICATION

User’s Manual U19383EJ1V0UM00 807

Make sure that a floating-point number (type specification characters e, f, g, E, F, and G) corresponds to thefol-
lowing general format.

[+ | -] ddddd [.] ddd [E | e [+ | -] ddd]

However, the portions enclosed by [] in the above format are arbitrarily selected, and ddd indicates a decimal
digit.

[Caution]

- sscanf may stop scanning a specific field before the normal end-of-field character is reached or may stop com-
pletely.

- sscanf stops scanning and storing a field and moves to the next field under the following conditions.
- The substitution suppression character (*) appears after "%" in the format specification, and the input field

at that point has been scanned but not stored.
- A field width (positive decimal integer) specification character was read.
- The character to be read next cannot be converted according to the conversion specification (for example,

if Z is read when the specification is a decimal number).
- The next character in the input field does not appear in the search set (or appears in the complement

search set).

If sscanf stops scanning the input field at that point because of any of the above reasons, it is assumed that the next
character has not yet been read, and this character is used as the first character of the next field or the first character
for the read operation to be executed after the input.

- sscanf ends under the following conditions:
- The next character in the input field does not match the corresponding ordinary character in the string to be

converted.

I Read a decimal, octal, or hexadecimal integer into the corresponding argument. The corresponding
argument should be "long *arg".

O Read an octal integer into the corresponding argument. The corresponding argument should be "long
*arg".

U Read an unsigned decimal integer into the corresponding argument. The corresponding argument
should be "unsigned long *arg".

[] Read a non-empty string into the memory area starting with argument arg. This area must be large
enough to accommodate the string and the null character (\0) that is automatically appended to indicate
the end of the string. The corresponding argument should be "char *arg".

The character pattern enclosed by [] can be used in place of the type specification character s. The
character pattern is a character set that defines the search set of the characters constituting the input
field of sscanf. If the first character within [] is "^", the search set is complemented, and all ASCII char-
acters other than the characters within [] are included. In addition, a range specification feature that can
be used as a shortcut is also available. For example, %[0-9] matches all decimal numbers. In this set,
"-" cannot be specified as the first or last character. The character preceding "-" must be less in lexical
sequence than the succeeding character.

- %[abcd]
Matches character strings that include only a, b, c, and d.

- %[^abcd]
Matches character strings that include any characters other than a, b, c, and d.

- %[A-DW-Z]
Matches character strings that include A, B, C, D, W, X, Y, and Z.

- %[z-a]
Matches z, -, and a (this is not considered a range specification).

CHAPTER 6 FUNCTIONAL SPECIFICATION

808 User’s Manual U19383EJ1V0UM00

- The next character in the input field is EOF.
- The string to be converted ends.

- If a list of characters that is not part of the conversion specification is included in the string to be converted,
make sure that the same list of characters does not appear in the input. sscanf scans matching characters but
does not store them. If there was a mismatch, the first character that does not match remains in the input as if
it were not read.

[Example]

#include <stdio.h>

void func(void){

 int i, n;

 float x;

 const char *s;

 char name[10];

 s = "23 11.1e-1 NAME";

 n = sscanf(s,"%d%f%s", &i, &x, name); /* Stores 23 in i, 1.110000 in x, and "NAME" in

 name. The return value n is 3. */

}

CHAPTER 6 FUNCTIONAL SPECIFICATION

User’s Manual U19383EJ1V0UM00 809

Read and interpret data from stream

Remark These functions are not supported by the NEC Electronics integrated debugger or the system simulator.

[Classification]

Standard library "libc.a"

[Syntax]

#include <stdio.h>
int fscanf(FILE *stream, const char *format[, arg, ...]);

[Return value]

The number of input fields for which scanning, conversion, and storage were executed normally is returned. The
return value does not include scanned fields that were not stored. If an attempt is made to read to the end of the file,
the return value is EOF. If no field was stored, the return value is 0.

[Description]

Reads the input to be converted according to the format specified by the character string pointed to by format from
stream and treats the arg arguments that follow format as objects for storing the converted input. Only the standard
input/output stdin can be specified for stream. The method of specifying format is the same as described for the
sscanf function.

fscanf

CHAPTER 6 FUNCTIONAL SPECIFICATION

810 User’s Manual U19383EJ1V0UM00

Read and interpret text from standard output stream

Remark These functions are not supported by the NEC Electronics integrated debugger or the system simulator.

[Classification]

Standard library "libc.a"

[Syntax]

#include <stdio.h>
int scanf(const char *format[, arg, ...]);

[Return value]

The number of input fields for which scanning, conversion, and storage were executed normally is returned. The
return value does not include scanned fields that were not stored. If an attempt is made to read to the end of the file,
the return value is EOF. If no field was stored, the return value is 0.

[Description]

Reads the input to be converted according to the format specified by the character string pointed to by format from
the standard input/output stdin and treats the arg arguments that follow format as objects for storing the converted
input. The method of specifying format is the same as described for the sscanf function.

[Example]

scanf

#include <stdio.h>

void func(void){

 int i, n;

 double x;

 char name[10];

 n = scanf("%d%lf%s", &i, &x, name); /* Perform formatted input of input from stdin using

 the format "23 11.1e-1 NAME" */

}

CHAPTER 6 FUNCTIONAL SPECIFICATION

User’s Manual U19383EJ1V0UM00 811

Push character back to input stream

Remark These functions are not supported by the NEC Electronics integrated debugger or the system simulator.

[Classification]

Standard library "libc.a"

[Syntax]

#include <stdio.h>
int ungetc(int c, FILE *stream);

[Return value]

The character c is returned.
Error return does not occur.

[Description]

This function pushes the character c back into the input stream pointed to by stream. However, if c is EOF, no
pushback is performed. The character c that was pushed back will be input as the first character during the next
character input. Only one character can be pushed back by ungetc. If ungetc is executed continuously, only the last
ungetc will have an effect. Only the standard input/output stdin can be specified for stream.

ungetc

CHAPTER 6 FUNCTIONAL SPECIFICATION

812 User’s Manual U19383EJ1V0UM00

Reset file position indicator

Remark These functions are not supported by the NEC Electronics integrated debugger or the system simulator.

[Classification]

Standard library "libc.a"

[Syntax]

#include <stdio.h>
void rewind(FILE *stream);

[Description]

This function clears the error indicator of the input stream pointed to by stream, and positions the file position
indicator at the beginning of the file.

However, only the standard input/output stdin can be specified for stream. Therefore, rewind only has the effect of
discarding the character that was pushed back by ungetc.

rewind

CHAPTER 6 FUNCTIONAL SPECIFICATION

User’s Manual U19383EJ1V0UM00 813

Error processing

[Classification]

Standard library "libc.a"

[Syntax]

#include <stdio.h>
void perror(const char *s);

[Description]

This function outputs to stderr the error message that corresponds to global variable errno.
The message that is output is as follows.

s_fix is as follows.

[Example]

perror

When s is not NULL fprintf(stderr, "%s:%s\n", s, s_fix);

When s is NULL fprintf(stderr, "%s\n", s_fix);

When errno is EDOM "EDOM error"

When errno is ERANGE "ERANGE error"

When errno is 0 "no error"

Otherwise "error xxx" (xxx は abs (errno) % 1000)

#include <stdio.h>

void func(double x){

 double d;

 errno = 0;

 d = exp(x);

 if(errno)

 perror("func1"); /* If a calculation exception is generated by exp perror is

 called */

}

CHAPTER 6 FUNCTIONAL SPECIFICATION

814 User’s Manual U19383EJ1V0UM00

6.4.7 Standard utility functions

Standard Utility functions are included in standard library libc.a.
Standard Utility functions are as follows.

Table 6-21. Standard Utility Functions

Function/macro name Outline

abs Output absolute value (int type)

labs Output absolute value (long type)

bsearch Binary search

qsort Sort

div Division (int type)

ldiv Division (long type)

itoa Conversion of integer (int type) to character string

ltoa Conversion of integer (long type) to character string

ultoa Conversion of integer (unsigned long type) to character string

ecvtf Conversion of floating-point value to numeric character string (with total number of charac-
ters specified)

fcvtf Conversion of floating-point value to numeric character string (with number of digits below
decimal point specified)

gcvtf Conversion of floating-point value to numeric character string (in specified format)

atoi Conversion of character string to integer (int type)

atol Conversion of character string to integer (long type)

strtol Conversion of character string to integer (long type) and storing pointer in last character
string

strtoul Conversion of character string to integer (unsigned long type) and storing pointer in last
character string

atoff Conversion of character string to floating-point number

strtodf Conversion of character string to floating-point number (storing pointer in last character
string)

calloc Memory allocation (initialized to zero)

malloc Memory allocation(not initialized to zero)

realloc Memory re-allocation

free Memory release

rand Pseudorandom number sequence generation

srand Setting of type of pseudorandom number sequence

CHAPTER 6 FUNCTIONAL SPECIFICATION

User’s Manual U19383EJ1V0UM00 815

Output absolute value (int type)

[Classification]

Standard library "libc.a"

[Syntax]

#include <stdlib.h>
int abs(int j);

[Return value]

Returns the absolute value of j (size of j), | j |.

[Description]

This function obtains the absolute value of j (size of j), | j |. If j is a negative number, the result is the reversal of j. If
j is not negative, the result is j.

[Example]

abs

#include <stdlib.h>

void func(int l){

 int val;

 val = -15;

 l = abs(val); /* Returns absolute value of val, 15, to 1. */

}

CHAPTER 6 FUNCTIONAL SPECIFICATION

816 User’s Manual U19383EJ1V0UM00

Output absolute value (long type)

[Classification]

Standard library "libc.a"

[Syntax]

#include <stdlib.h>
long labs(long j);

[Return value]

Returns the absolute value of j (size of j), | j |.

[Description]

This function obtains the absolute value of j (size of j), | j |. If j is a negative number, the result is the reversal of j. If
j is not negative, the result is j. This function is the same as abs, but uses long type instead of int type, and the return
value is also of long type.

labs

CHAPTER 6 FUNCTIONAL SPECIFICATION

User’s Manual U19383EJ1V0UM00 817

Binary search

[Classification]

Standard library "libc.a"

[Syntax]

#include <stdlib.h>
void* bsearch(const void *key, const void *base, size_t nmemb, size_t size, int (*compar)(const void *,

const void*));

[Return value]

A pointer to the element in the array that coincides with key is returned. If there are two or more elements that coin-
cide with key, the one that has been found first is indicated. If there are not elements that coincide with key, a null
pointer is returned.

[Description]

This function searches an element that coincides with key from an array starting with base by means of binary
search. nmemb is the number of elements of the array. size is the size of each element. The array must be arranged
in the ascending order in respect to the compare function indicated by compar (last argument). Define the compare
function indicated by compar to have two arguments. If the first argument is less than the second, a negative integer
must be returned as the result. If the two arguments coincide, zero must be returned. If the first is greater than the
second, a positive integer must be returned.

[Example]

bsearch

#include <stdlib.h>

#include <string.h>

int compar(char **x, char **y);

void func(void){

 static char *base[] = {"a", "b", "c", "d", "e", "f"};

 char *key = "c"; /* Search key is "c". */

 char **ret;

 /* Pointer to "c" is stored in ret. */

 ret = (char **) bsearch((char *) &key, (char *) base, 6, sizeof(char *), compar);

}

int compar(char **x, char **y){

 return(strcmp(*x, *y)); /* Returns positive, zero, or negative integer as

 result of comparing arguments. */

}

CHAPTER 6 FUNCTIONAL SPECIFICATION

818 User’s Manual U19383EJ1V0UM00

Sort

[Classification]

Standard library "libc.a"

[Syntax]

#include <stdlib.h>
void qsort(void *base, size_t nmemb, size_t size, int (*compar)(const void*, const void *));

[Description]

This function sorts the array pointed to by base into ascending order in relation to the comparison function pointed to
by compar. nmemb is the number of array elements, and size is the size of each element. The comparison function
pointed to by compar is the same as the one described for bsearch.

qsort

CHAPTER 6 FUNCTIONAL SPECIFICATION

User’s Manual U19383EJ1V0UM00 819

Division (int type)

[Classification]

Standard library "libc.a"

[Syntax]

#include <stdlib.h>
div_t div(int n, int d);

[Return value]

The structure storing the result of the division is returned.

[Description]

This function is used to divide a value of int type
This function calculates the quotient and remainder resulting from dividing numerator n by denominator d, and

stores these two integers as the members of the following structure div_t.

quot the quotient, and rem is the remainder. If d is not zero, and if "r = div(n, d);", n is a value equal to
"r.rem + d * r.quot".

If d is zero, the resultant quot member has a sign the same as n and has the maximum size that can be expressed.
The rem member is 0.

[Example]

div

typedef struct{

 int quot;

 int rem;

}div_t;

#include <stdlib.h>

void func(void){

 div_t r;

 r = div(110, 3); /* 36 is stored in r.quot, and 2 is stored in r.rem. */

}

CHAPTER 6 FUNCTIONAL SPECIFICATION

820 User’s Manual U19383EJ1V0UM00

Division (long type)

[Classification]

Standard library "libc.a"

[Syntax]

#include <stdlib.h>
ldiv_t ldiv(long n, long d);

[Return value]

The structure storing the result of the division is returned.

[Description]

This function is used to divide a value of long type.
This function calculates the quotient and remainder resulting from dividing numerator n by denominator d, and

stores these two integers as the members of the following structure div_t.

quot the quotient, and rem is the remainder. If d is not zero, and if "r = div(n, d);", n is a value equal to
"r.rem + d * r.quot".

If d is zero, the resultant quot member has a sign the same as n and has the maximum size that can be expressed.
The rem member is 0.

ldiv

typedef struct{

 long quot;

 long rem;

}ldiv_t;

CHAPTER 6 FUNCTIONAL SPECIFICATION

User’s Manual U19383EJ1V0UM00 821

Conversion of integer (int type) to character string

[Classification]

Standard library "libc.a"

[Syntax]

#include <stdlib.h>
char *itoa(int value, char *string, int radix);

[Return value]

string is returned.

[Description]

This function converts an int type numeric value to a character string for a radix-based number and stores it in the
array indicated by string. The terminating null character (\0) always is added at the end of the character string.
Numeric values from 2 to 36 can be specified for radix. If radix is 10, value is handled as a signed numeric value, and
when value < 0, the "-" character is appended at the beginning of the character string. Otherwise, value is handled as
an unsigned numeric value. If radix > 10, the lowercase letters a to z are assigned for 10 to 35.

[Example]

itoa

#include <stdlib.h>

void func(void){

 char buf[128];

 itoa(12345, buf, 16); /* Converts 12345 to a hexadecimal character string */

}

CHAPTER 6 FUNCTIONAL SPECIFICATION

822 User’s Manual U19383EJ1V0UM00

Conversion of integer (long type) to character string

[Classification]

Standard library "libc.a"

[Syntax]

#include <stdlib.h>
char *ltoa(long int value, char *string, int radix);

[Return value]

string is returned.

[Description]

This function converts a long int type numeric value to a character string for a radix-based number and stores it in
the array indicated by string. Except for the type of value, this is the same as itoa.

ltoa

CHAPTER 6 FUNCTIONAL SPECIFICATION

User’s Manual U19383EJ1V0UM00 823

Conversion of integer (unsigned long type) to character string

[Classification]

Standard library "libc.a"

[Syntax]

#include <stdlib.h>
char *ultoa(unsigned long int value, char *string, int radix);

[Return value]

string is returned.

[Description]

This function converts an unsigned long int type numeric value to a character string for a radix-based number and
stores it in the array indicated by string. Except for the type of value, this is the same as itoa.

ultoa

CHAPTER 6 FUNCTIONAL SPECIFICATION

824 User’s Manual U19383EJ1V0UM00

Conversion of floating-point value to numeric character string (with total number of characters specified)

[Classification]

Standard library "libc.a"

[Syntax]

#include <stdlib.h>
char *ecvtf(float val, int chars, int *decpt, int *sgn);

[Return value]

Returns a pointer indicating a new character string including the character string representation of val.

[Description]

This function generates a character string indicating a numeric value val of float type in number (terminated with the
null character (\0)). The second argument chars specifies the total number of characters to be written (because only
numbers are written, this argument specifies the valid number of numerals in the converted character string). The
digits of the integer of val are always included.

[Example]

ecvtf

#include <stdlib.h>

void func(void){

 float val;

 int dec, sgn;

 val = 111.11;

 ecvtf(val, 12, &dec, &sgn); /* Converts value 111.11 of val to character string of 12

 characters. dec records number of digits, 3, at left of

 decimal point, and sgn records sign(0 because numeric

 value is positive). */

}

CHAPTER 6 FUNCTIONAL SPECIFICATION

User’s Manual U19383EJ1V0UM00 825

Conversion of floating-point value to numeric character string (with number of digits below decimal point specified)

[Classification]

Standard library "libc.a"

[Syntax]

#include <stdlib.h>
char *fcvtf(float val, int decimals, int *decpt, int *sgn);

[Return value]

Returns a pointer indicating a new character string including the character string representation of val.

[Description]

This function is the same as ecvtf, except the interpretation of the second argument. The second argument deci-
mals specify the number of characters to be written after the decimal point. ecvtf and fcvtf only write a number to an
output character string. Therefore, record the position of the decimal point to *decpt and the sign of the numeric value
to *sgn. After the number has been formatted, the number of digits at the left of the decimal point is stored in *decpt. If
the numeric value is positive, 0 is stored in *sgn; if it is negative, 1 is stored.

fcvtf

CHAPTER 6 FUNCTIONAL SPECIFICATION

826 User’s Manual U19383EJ1V0UM00

Conversion of floating-point value to numeric character string (in specified format)

[Classification]

Standard library "libc.a"

[Syntax]

#include <stdlib.h>
char *gcvtf(float val, int prec, char *buf);

[Return value]

Returns a pointer (same as argument buf) to the formatted character string representation of val.

[Description]

This function converts a numeric value into a character string, and stores it to buffer buf. gcvtf uses the same rule as
the format "%.prec" (sign is appended to the negative number only) of sprintf, and selects an exponent format or
normal decimal point format according to the valid number of digits (specified by prec).

gcvtf

CHAPTER 6 FUNCTIONAL SPECIFICATION

User’s Manual U19383EJ1V0UM00 827

Conversion of character string to integer (int type)

[Classification]

Standard library "libc.a"

[Syntax]

#include <stdlib.h>
int atoi(const char *str);

[Return value]

Returns the converted value if the partial character string could be converted. If it could not, 0 is returned.

[Description]

This function converts the first part of the character string indicated by str into an int type representation. atoi is the
same as "(int) strtol (str, NULL, 10)".

atoi

CHAPTER 6 FUNCTIONAL SPECIFICATION

828 User’s Manual U19383EJ1V0UM00

Conversion of character string to integer (long type)

[Classification]

Standard library "libc.a"

[Syntax]

#include <stdlib.h>
long atol(const char *str);

[Return value]

Returns the converted value if the partial character string could be converted. If it could not, 0 is returned.

[Description]

This function converts the first part of the character string indicated by str into a long int type representation. atol is
the same as "strtol (str, NULL, 10)".

atol

CHAPTER 6 FUNCTIONAL SPECIFICATION

User’s Manual U19383EJ1V0UM00 829

Conversion of character string to integer (long type) and storing pointer in last character string

[Classification]

Standard library "libc.a"

[Syntax]

#include <stdlib.h>
long strtol(const char *str, char **ptr, int base);

[Return value]

Returns the converted value if the partial character string could be converted. If it could not, 0 is returned.
If an overflow occurs (because the converted value is too great), LONG_MAX or LONG_MIN is returned, and macro

ERANGE is set to global variable errno.

[Description]

This function converts the first part of the character string indicated by str into a long type representation. strol first
divides the input characters into the following three parts: the "first blank", "a string represented by the base number
determined by the value of base and is subject to conversion into an integer", and "the last one or more character
string that is not recognized (including the null character (\0))". Then strtol converts the string into an integer, and
returns the result.

(1) Specify 0 or 2 to 36 as argument base.

(a) If base is 0
The expected format of the character string subject to conversion is of integer format having an optional +
or - sign and "0x", indicating a hexadecimal number, prefixed.

(b) If the value of base is 2 to 36
The expected format of the character string is of character string or numeric string type having an optional +
or - sign prefixed and expressing an integer whose base is specified by base. Characters "a" (or "A")
through "z" (or "Z") are assumed to have a value of 10 to 35. Only characters whose value is less than that
of base can be used.

(c) If the value of base is 16
"0x" is prefixed (suffixed to the sign if a sign exists) to the string of characters and numerals (this can be
omitted).

(2) The string subject to conversion is defined as the longest partial string at the beginning of the input
character string that starts with the first character other than blank and has an expected format.

(a) If the input character string is vacant, if it consists of blank only, or if the first character that is not
blank is not a sign or a character or numeral that is permitted, the subject string is vacant.

(b) If the string subject to conversion has an expected format and if the value of base is 0, the base
number is judged from the input character string. The character string led by 0x is regarded as a
hexadecimal value, and the character string to which 0 is prefixed but x is not is regarded as an
octal number. All the other character strings are regarded as decimal numbers.

strtol

CHAPTER 6 FUNCTIONAL SPECIFICATION

830 User’s Manual U19383EJ1V0UM00

(c) If the value of base is 2 to 36, it is used as the base number for conversion as mentioned above.

(d) If the string subject to conversion starts with a - sign, the sign of the value resulting from conver-
sion is reversed.

(3) The pointer that indicates the first character string

(a) This is stored in the object indicated by ptr, if ptr is not a null pointer.

(b) If the string subject conversion is vacant, or if it does not have an expected format, conversion is
not executed. The value of str is stored in the object indicated by ptr if ptr is not a null pointer.

Remark This function is not re-entrant

[Example]

#include <stdlib.h>

void func(long ret){

 char *p;

 ret = strtol("10", &p, 0); /* 10 is returned to ret. */

 ret = strtol("0x10", &p, 0); /* 16 is returned to ret.*/

 ret = strtol("10x", &p, 2); /* 2 is returned to ret, and pointer to "x" is returned

 to area of p. */

 ret = strtol("2ax3", &p, 16); /* 42 is returned to ret, and pointer to "x" is returned

 to area of p. */

 :

}

CHAPTER 6 FUNCTIONAL SPECIFICATION

User’s Manual U19383EJ1V0UM00 831

Conversion of character string to integer (unsigned long type) and storing pointer in last character string

[Classification]

Standard library "libc.a"

[Syntax]

#include <stdlib.h>
unsigned long strtoul(const char *str, char **ptr, int base);

[Return value]

Returns the converted value if the partial character string could be converted. If it could not, 0 is returned.
If an overflow occurs, ULONG_MAX is returned, and macro ERANGE is set to global variable errno.

[Description]

This function is the same as strtol except that the type of the return value is of unsigned long type.

strtoul

CHAPTER 6 FUNCTIONAL SPECIFICATION

832 User’s Manual U19383EJ1V0UM00

Conversion of character string to floating-point number

[Classification]

Standard library "libc.a"

[Syntax]

#include <stdlib.h>
float atoff(const char *str);

[Return value]

If the partial character string has been converted, the resultant value is returned. If the character string could not be
converted, 0 is returned. If an overflow occurs (the value is not in the range in which it can be expressed), HUGE_VAL
or -HUGE_VAL is returned, and ERANGE is set to global variable errno. If an underflow occurs, 0 is returned, and
macro ERANGE is set to global variable errno.

[Description]

This function converts the first portion of the character string indicated by str into a float type representation. atoff is
the same as "strtodf (str, NULL)".

atoff

CHAPTER 6 FUNCTIONAL SPECIFICATION

User’s Manual U19383EJ1V0UM00 833

Conversion of character string to floating-point number (storing pointer in last character string)

[Classification]

Standard library "libc.a"

[Syntax]

#include <stdlib.h>
float strtodf(const char *str, char **ptr);

[Return value]

If the partial character string has been converted, the resultant value is returned. If the character string could not be
converted, 0 is returned. If an overflow occurs (the value is not in the range in which it can be expressed), HUGE_VAL
or -HUGE_VAL is returned, and ERANGE is set to global variable errno. If an underflow occurs, 0 is returned, and
macro ERANGE is set to global variable errno.

[Description]

This function converts the first part of the character string indicated by str into a float type representation. The part
of the character string to be converted is in the following format and is at the beginning of str with the maximum length,
starting with a normal character that is not a space.

[+ | -] digits [.] [digits] [(e | E) [+ | -] digits]

If str is vacant or consists of space characters only, if the first normal character is other than "+", "-", ".", or a
numeral, the partial character string does not include a character. If the partial character string is vacant, conversion is
not executed, and the value of str is stored in the area indicated by ptr. If the partial character string is not vacant, it is
converted, and a pointer to the last character string (including the null character (\0) indicating at least the end of str) is
stored in the area indicated by ptr.

Remark This function is not re-entrant.

[Example]

strtodf

#include <stdlib.h>

#include <stdio.h>

void func(float ret){

 char *p, *str, s[30];

 str = "+5.32a4e";

 ret = strtodf(str, &p); /* 5.320000 is returned to ret, and pointer to "a" is

 stored in area of p. */

 sprintf(s, "%lf\t%c", ret, *p); /* "5.320000 a" is stored in array indicated by s. */

}

CHAPTER 6 FUNCTIONAL SPECIFICATION

834 User’s Manual U19383EJ1V0UM00

Memory allocation (initialized to zero)

[Classification]

Standard library "libc.a"

[Syntax]

#include <stdlib.h>
void *calloc(size_t nmemb, size_t size);

[Return value]

When area allocation succeeds, a pointer to that area is returned. When the area could not be allocated, a null
pointer is returned.

[Description]

This function allocates an area for an array of nmemb elements. The allocated area is initialized to zeros.

[Caution]

The memory area management functions automatically allocate memory area as necessary from the heap memory
area.

Also, since the compiler does not automatically allocate this area, when calloc, malloc, or realloc is used, the heap
memory area must be allocated. The area allocation should be performed first by an application.

[Heap memory setup example]

Remarks 1. The symbol "___sysheap" (three underscores "_") of the variable " _sysheap" (two under-scores "_")
points to the starting address of heap memory. This value should be a word integer value.

2. The required heap memory size (bytes) should be set for the variable "__sizeof_sysheap" (two
leading underscores). If assembly language is used for coding, this value should be set for the
symbol " ___sizeof_sysheap" (three leading underscores).

[Example]

calloc

#define SIZEOF_HEAP 0x1000

int __sysheap[SIZEOF_HEAP >> 2];

size_t __sizeof_sysheap = SIZEOF_HEAP;

CHAPTER 6 FUNCTIONAL SPECIFICATION

User’s Manual U19383EJ1V0UM00 835

#include <stdlib.h>

typedef struct {

 double d[3];

 int i[2];

} s_data;

int func(void){

 sdata *buf;

 if((buf = calloc(40, sizeof(s_data))) == NULL) /* Allocate an area for 40 s_data */

 return(1);

 :

 free(buf); /* Release the area */

 return(0);

}

CHAPTER 6 FUNCTIONAL SPECIFICATION

836 User’s Manual U19383EJ1V0UM00

Memory allocation(not initialized to zero)

[Classification]

Standard library "libc.a"

[Syntax]

#include <stdlib.h>
void *malloc(size_t size);

[Return value]

When area allocation succeeds, a pointer to that area is returned. When the area could not be allocated, a null
pointer is returned.

[Description]

This function allocates an area having a size indicated by size. The area is not initialized.

[Caution]

The memory area management functions automatically allocate memory area as necessary from the heap memory
area.

Also, since the compiler does not automatically allocate this area, when calloc, malloc, or realloc is used, the heap
memory area must be allocated. The area allocation should be performed first by an application.

[Heap memory setup example]

Remarks 1. The symbol "___sysheap" (three underscores "_") of the variable " _sysheap" (two under-scores "_")
points to the starting address of heap memory. This value should be a word integer value.

2. The required heap memory size (bytes) should be set for the variable "__sizeof_sysheap" (two
leading underscores). If assembly language is used for coding, this value should be set for the
symbol " ___sizeof_sysheap" (three leading underscores).

malloc

#define SIZEOF_HEAP 0x1000

int __sysheap[SIZEOF_HEAP >> 2];

size_t __sizeof_sysheap = SIZEOF_HEAP;

CHAPTER 6 FUNCTIONAL SPECIFICATION

User’s Manual U19383EJ1V0UM00 837

Memory re-allocation

[Classification]

Standard library "libc.a"

[Syntax]

#include <stdlib.h>
void *realloc(void *ptr, size_t size);

[Return value]

When area allocation succeeds, a pointer to that area is returned. When the area could not be allocated, a null
pointer is returned.

[Description]

This function changes the size of the area pointed to by ptr to the size indicated by size. The contents of the area
are unchanged up to the smaller of the previous size and the specified size. If the area is expanded, the contents of
the area greater than the previous size are not initialized. When ptr is a null pointer, the operation is the same as that
of malloc (size). Otherwise, the area that was acquired by calloc, malloc, or realloc must be specified for ptr.

[Caution]

The memory area management functions automatically allocate memory area as necessary from the heap memory
area.

Also, since the compiler does not automatically allocate this area, when calloc, malloc, or realloc is used, the heap
memory area must be allocated. The area allocation should be performed first by an application.

[Heap memory setup example]

Remarks 1. The symbol "___sysheap" (three underscores "_") of the variable " _sysheap" (two under-scores "_")
points to the starting address of heap memory. This value should be a word integer value.

2. The required heap memory size (bytes) should be set for the variable "__sizeof_sysheap" (two
leading underscores). If assembly language is used for coding, this value should be set for the
symbol " ___sizeof_sysheap" (three leading underscores).

realloc

#define SIZEOF_HEAP 0x1000

int __sysheap[SIZEOF_HEAP >> 2];

size_t __sizeof_sysheap = SIZEOF_HEAP;

CHAPTER 6 FUNCTIONAL SPECIFICATION

838 User’s Manual U19383EJ1V0UM00

Memory release

[Classification]

Standard library "libc.a"

[Syntax]

#include <stdlib.h>
void free(void *ptr);

[Description]

This function releases the area pointed to by ptr so that this area is subsequently available for allocation. The area
that was acquired by calloc, malloc, or realloc must be specified for ptr.

[Example]

free

#include <stdlib.h>

typedef struct {

 double d[3];

 int i[2];

} s_data;

int func(void){

 sdata *buf;

 if((buf = calloc(40, sizeof(s_data))) == NULL) /* Allocate an area for 40 s_data */

 return(1);

 :

 free(buf); /* Release the area */

 return(0);

}

CHAPTER 6 FUNCTIONAL SPECIFICATION

User’s Manual U19383EJ1V0UM00 839

Pseudorandom number sequence generation

[Classification]

Standard library "libc.a"

[Syntax]

#include <stdlib.h>
int rand(void);

[Return value]

Random numbers are returned.

[Description]

This function returns a random number that is greater than or equal to zero and less than or equal to RAND_MAX.

[Example]

rand

#include <stdlib.h>

void func(void){

 if(rand() & 0xf) < 4)

 func1(); /* Execute func1 with a probability of 25% */

}

CHAPTER 6 FUNCTIONAL SPECIFICATION

840 User’s Manual U19383EJ1V0UM00

Setting of type of pseudorandom number sequence

[Classification]

Standard library "libc.a"

[Syntax]

#include <stdlib.h>
void srand(unsigned int seed);

[Description]

This function assigns seed as the new pseudo random number sequence seed to be used by the rand call that
follows. If srand is called using the same seed value, the same numbers in the same order will appear for the random
numbers that are obtained by rand. If rand is executed without executing srand, the results will be the same as when
srand(1) was first executed.

srand

CHAPTER 6 FUNCTIONAL SPECIFICATION

User’s Manual U19383EJ1V0UM00 841

6.4.8 Non-local jump functions

Non-local jump functions are included in standard library libc.a.
Non-local jump functions are as follows

Table 6-22. Non-Local Jump Functions

Function/macro name Outline

longjmp Non-local jump

setjmp Set destination of non-local jump

CHAPTER 6 FUNCTIONAL SPECIFICATION

842 User’s Manual U19383EJ1V0UM00

Non-local jump

[Classification]

Standard library "libc.a"

[Syntax]

#include <setjmp.h>
void longjmp(jmp_buf env, int val);

[Return value]

The second argument val is returned. However, 1 is returned if val is 0.

[Description]

This function performs a non-local jump to the place immediately after setjmp using env saved by setjmp. val as a
return value for setjmp.

[Example]

longjmp

#include <setjmp.h>

#define ERR_XXX1 1

jmp_buf jmp_env;

void func(void){

 for(;;){

 switch(setjmp(jmp_env)){

 case ERR_XXX1: /* Termination of error XXX1 */

 break;

 case 0: /* No non-local jumps */

 default:

 break;

 }

 }

}

void func1(void){

 longjmp(jmp_env, ERR_XXX1); /* Non-local jumps are performed upon generation of error

 XXX1 */

}

CHAPTER 6 FUNCTIONAL SPECIFICATION

User’s Manual U19383EJ1V0UM00 843

Set destination of non-local jump

[Classification]

Standard library "libc.a"

[Syntax]

#include <setjmp.h>
int setjmp(jmp_buf env);

[Return value]

0 is returned.

[Description]

This function sets env as the destination for a non-local jump. In addition, the environment in which setjmp was run
is saved to env.

setjmp

CHAPTER 6 FUNCTIONAL SPECIFICATION

844 User’s Manual U19383EJ1V0UM00

6.4.9 Mathematical functions

Mathematical functions are included in mathematical library libm.a.
Mathematical functions are as follows.

Table 6-23. Mathematical Functions

Function/macro name Outline

j0f Bessel function of first kind (0 order)

j1f Bessel function of first kind (1 order)

jnf Bessel function of first kind (n order)

y0f Bessel function of second kind (0 order)

y1f Bessel function of second kind (1 order)

ynf Bessel function of second kind (n order)

erff Error function (approximate value)

erfcf Error function (complementary probability)

expf Exponent function

logf Logarithmic function (natural logarithm)

log2f Logarithmic function (base = 2)

log10f Logarithmic function (base = 10)

powf Power function

sqrtf Square root function

cbrtf Cubic root function

ceilf ceiling function

fabsf Absolute value function

floorf floor function

fmodf Remainder function

frexpf Divide floating-point number into mantissa and power

ldexpf Convert floating-point number to power

modff Divide floating-point number into integer and decimal

gammaf Logarithmic gamma function

hypotf Euclidean distance function

matherr Error processing function

cosf Cosine

sinf Sine

tanf Tangent

acosf Arc cosine

asinf Arc sine

atanf Arc tangent

atan2f Arc tangent (y / x)

coshf Hyperbolic cosine

sinhf Hyperbolic sine

tanhf Hyperbolic tangent

CHAPTER 6 FUNCTIONAL SPECIFICATION

User’s Manual U19383EJ1V0UM00 845

acoshf Arc hyperbolic cosine

asinhf Arc hyperbolic sine

atanhf Arc hyperbolic tangent

Function/macro name Outline

CHAPTER 6 FUNCTIONAL SPECIFICATION

846 User’s Manual U19383EJ1V0UM00

Bessel function of first kind (0 order)

[Classification]

Mathematical library "libm.a"

[Syntax]

#include <math.h>
float j0f(float x);

[Return value]

Returns the Bessel function of the first kind of the 0 degree.

[Description]

This function calculates the Bessel functions of the first kind of the 0 degrees.

j0f

CHAPTER 6 FUNCTIONAL SPECIFICATION

User’s Manual U19383EJ1V0UM00 847

Bessel function of first kind (1 order)

[Classification]

Mathematical library "libm.a"

[Syntax]

#include <math.h>
float j1f(float x);

[Return value]

Returns the Bessel function of the first kind of the first degree.

[Description]

This function calculates the Bessel functions of the first kind of the first degrees.

[Example]

j1f

#include <math.h>

float func(void){

 float ret, x;

 ret = j1f(x); /* Calculates Bessel function of first kind and first decree in response

 to value of x, and returns function to ret. */

 :

 return(ret);

}

CHAPTER 6 FUNCTIONAL SPECIFICATION

848 User’s Manual U19383EJ1V0UM00

Bessel function of first kind (n order)

[Classification]

Mathematical library "libm.a"

[Syntax]

#include <math.h>
float jnf(int n, float x);

[Return value]

Returns the Bessel function of the first kind of the n degree.

[Description]

This function calculates the Bessel function of the first kind of the n degree.

jnf

CHAPTER 6 FUNCTIONAL SPECIFICATION

User’s Manual U19383EJ1V0UM00 849

Bessel function of second kind (0 order)

[Classification]

Mathematical library "libm.a"

[Syntax]

#include <math.h>
float y0f(float x);

[Return value]

Returns the Bessel function of the second kind of the 0 degree.

[Description]

This function calculates the Bessel functions of the second kind of the 0 degrees.

y0f

CHAPTER 6 FUNCTIONAL SPECIFICATION

850 User’s Manual U19383EJ1V0UM00

Bessel function of second kind (1 order)

[Classification]

Mathematical library "libm.a"

[Syntax]

#include <math.h>
float y1f(float x);

[Return value]

Returns the Bessel function of the second kind of the first degree.

[Description]

This function calculates the Bessel functions of the second kind of the first degrees.

y1f

CHAPTER 6 FUNCTIONAL SPECIFICATION

User’s Manual U19383EJ1V0UM00 851

Bessel function of second kind (n order)

[Classification]

Mathematical library "libm.a"

[Syntax]

#include <math.h>
float ynf(int n, float x);

[Return value]

Returns the Bessel function of the second kind of the n degree.

[Description]

This function calculates the Bessel function of the second kind of the n degree.

ynf

CHAPTER 6 FUNCTIONAL SPECIFICATION

852 User’s Manual U19383EJ1V0UM00

Error function (approximate value)

[Classification]

Mathematical library "libm.a"

[Syntax]

#include <math.h>
float erff(float x);

[Return value]

Returns the approximate value (numeric value between 0 and 1) of the "error function".

[Description]

This function calculates the approximate value (numeric value between 0 and 1) of the "error function" that
estimates the probability for which the observed value is in a range of standard deviation x.

[Example]

erff

#include <math.h>

float func(void){

 float ret, x;

 ret = erff(x); /* Calculates approximate value of error function in response to value

 of x and returns it to ret. */

 :

 return(ret);

}

CHAPTER 6 FUNCTIONAL SPECIFICATION

User’s Manual U19383EJ1V0UM00 853

Error function (complementary probability)

[Classification]

Mathematical library "libm.a"

[Syntax]

#include <math.h>
float erfcf(float x);

[Return value]

Returns the complementary probability.

[Description]

This function calculates complementary probability through "1.0-erff(x)". This function is provided to prevent the
accuracy from dropping if erff(x) is called by x with a large value and the result is subtracted from 1.0.

erfcf

CHAPTER 6 FUNCTIONAL SPECIFICATION

854 User’s Manual U19383EJ1V0UM00

Exponent function

[Classification]

Mathematical library "libm.a"

[Syntax]

#include <math.h>
float expf(float x);

[Return value]

Returns the xth power of e.
expf returns an denormal number if an underflow occurs (if x is a negative number that cannot express the result),

and sets macro ERANGE to global variable errno. If an overflow occurs (if x is too great a number), HUGE_VAL (max-
imum double type numerics that can be expressed) is returned, and macro ERANGE is set to global variable errno.

[Description]

This function calculates the xth power of e (e is the base of a natural logarithm and is about 2.71828).

Remark The error processing of this function can be changed by using the matherr function.

expf

CHAPTER 6 FUNCTIONAL SPECIFICATION

User’s Manual U19383EJ1V0UM00 855

Logarithmic function (natural logarithm)

[Classification]

Mathematical library "libm.a"

[Syntax]

#include <math.h>
float logf(float x);

[Return value]

Returns the natural logarithm of x.
logf returns a Not a Nuber(NaN) and sets macro EDOM to global variable errno if x is negative. If x is zero, it returns

-∞ (0xff800000) and sets macro ERANGE to global variable errno.

[Description]

This function calculates the natural logarithm of x, i.e., logarithm with base e.

Remark The error processing of this function can be changed by using the matherr function.

logf

CHAPTER 6 FUNCTIONAL SPECIFICATION

856 User’s Manual U19383EJ1V0UM00

Logarithmic function (base = 2)

[Classification]

Mathematical library "libm.a"

[Syntax]

#include <math.h>
float log2f(float x);

[Return value]

Returns the logarithm of x with base 2.
log2f returns a Not a Nuber(NaN) and sets macro EDOM to global variable errno if x is negative. If x is zero, it

returns -∞ and sets macro ERANGE to global variable errno.

[Description]

This function calculates the logarithm of x with base 2. This is realized by "log (x) / log (2)".

Remark The error processing of this function can be changed by using the matherr function.

log2f

CHAPTER 6 FUNCTIONAL SPECIFICATION

User’s Manual U19383EJ1V0UM00 857

Logarithmic function (base = 10)

[Classification]

Mathematical library "libm.a"

[Syntax]

#include <math.h>
float log10f(float x);

[Return value]

Returns the logarithm of x with base 10.
log10f returns a Not a Nuber(NaN) and sets macro EDOM to global variable errno if x is negative. If x is zero, it

returns -∞ and sets macro ERANGE to global variable errno.

[Description]

This function calculates the logarithm of x with base 10. This is realized by "log (x) / log (10)".

Remark The error processing of this function can be changed by using the matherr function.

log10f

CHAPTER 6 FUNCTIONAL SPECIFICATION

858 User’s Manual U19383EJ1V0UM00

Power function

[Classification]

Mathematical library "libm.a"

[Syntax]

#include <math.h>
float powf(float x, float y);

[Return value]

Returns the yth power of x.
powf returns a negative solution only if x < 0 and y is an odd integer. If x < 0 and y is a non-integer or if x = y = 0,

powf returns a Not a Nuber(NaN) and sets the macro EDOM for the global variable errno. If x = 0 and y < 0 or if an
overflow occurs, powf returns +HUGE_VAL and sets the macro ERANGE for errno. If the solution vanished
approaching zero, powf returns +0 and sets the macro ERANGE for errno. If the solution is a denormal number, powf
sets the macro ERANGE for errno.

[Description]

This function calculates the yth power of x.

Remark The error processing of this function can be changed by using the matherr function.

[Example]

powf

#include <math.h>

float func(void){

 float ret, x, y;

 ret = powf(x, y); /* Returns yth power of x to ret. */

 :

 return(ret);

}

CHAPTER 6 FUNCTIONAL SPECIFICATION

User’s Manual U19383EJ1V0UM00 859

Square root function

[Classification]

Mathematical library "libm.a"

[Syntax]

#include <math.h>
float sqrtf(float x);

[Return value]

Returns the positive square root of x.
sqrtf returns a Not a Nuber(NaN) and sets macro EDOM to global variable errno if x is a negative real number.

[Description]

This function calculates the square root of x.

Remark The error processing of this function can be changed by using the matherr function.

sqrtf

CHAPTER 6 FUNCTIONAL SPECIFICATION

860 User’s Manual U19383EJ1V0UM00

Cubic root function

[Classification]

Mathematical library "libm.a"

[Syntax]

#include <math.h>
float cbrtf(float x);

[Return value]

Returns the cubic root of x.

[Description]

This function calculates the cubic root of x.

Remark The error processing of this function can be changed by using the matherr function.

cbrtf

CHAPTER 6 FUNCTIONAL SPECIFICATION

User’s Manual U19383EJ1V0UM00 861

ceiling function

[Classification]

Mathematical library "libm.a"

[Syntax]

#include <math.h>
float ceilf(float x);

[Return value]

Returns the minimum integer greater than x and x.

[Description]

This function calculates the minimum integer value greater than x and x.

Remark The error processing of this function can be changed by using the matherr function.

ceilf

CHAPTER 6 FUNCTIONAL SPECIFICATION

862 User’s Manual U19383EJ1V0UM00

Absolute value function

[Classification]

Mathematical library "libm.a"

[Syntax]

#include <math.h>
float fabsf(float x);

[Return value]

Returns the absolute value (size) of x.

[Description]

This function calculates the absolute value (size) of x by directly manipulating the bit representation of x.

Remark The error processing of this function can be changed by using the matherr function.

fabsf

CHAPTER 6 FUNCTIONAL SPECIFICATION

User’s Manual U19383EJ1V0UM00 863

floor function

[Classification]

Mathematical library "libm.a"

[Syntax]

#include <math.h>
float floorf(float x);

[Return value]

Returns the maximum integer value less than x and x.

[Description]

This function calculates the maximum integer value less than x and x.

Remark The error processing of this function can be changed by using the matherr function.

floorf

CHAPTER 6 FUNCTIONAL SPECIFICATION

864 User’s Manual U19383EJ1V0UM00

Remainder function

[Classification]

Mathematical library "libm.a"

[Syntax]

#include <math.h>
float fmodf(float x, float y);

[Return value]

Returns a floating-point value that is the remainder resulting from dividing x by y.
fmodf (x, 0) returns x.

[Description]

This function calculates a floating-point value that is the remainder resulting from dividing x by y. In other words, it
calculates the value "x - i * y" for the maximum integer i that has a sign the same as x and is less than y, if y is not zero.

Remark The error processing of this function can be changed by using the matherr function.

[Example]

fmodf

#include <math.h>

void func(void){

 float ret, x, y;

 ret = fmodf(x, y); /* Returns remainder resulting from dividing x by y to ret. */

 :

}

CHAPTER 6 FUNCTIONAL SPECIFICATION

User’s Manual U19383EJ1V0UM00 865

Divide floating-point number into mantissa and power

[Classification]

Mathematical library "libm.a"

[Syntax]

#include <math.h>
float frexpf(float val, int *exp);

[Return value]

Returns mantissa m.
frexpf sets 0 to *exp and returns 0 if val is 0.

[Description]

This function expresses val of float type as mantissa m and the pth power of 2. The resulting mantissa m is 0.5 <= |
x | < 1.0, unless val is zero. p is stored in *exp. m and p are calculated so that val = m * 2 p.

[Example]

frexpf

#include <math.h>

void func(void){

 float ret, x;

 int exp;

 x = 5.28;

 ret = frexpf(x, &exp); /* Resultant mantissa 0.66 is returned to ret, and 3 is stored

 in exp */

 :

}

CHAPTER 6 FUNCTIONAL SPECIFICATION

866 User’s Manual U19383EJ1V0UM00

Convert floating-point number to power

[Classification]

Mathematical library "libm.a"

[Syntax]

#include <math.h>
float ldexpf(float val, int exp);

[Return value]

Returns the value calculated byval x 2 exp.
If an underflow or overflow occurs as a result of executing ldexpf, macro ERANGE is set to global variable errno. If

an underflow occurs, ldexpf returns an denormal number. If an overflow occurs, it returns ∞ (+∞ = 0x7f800000, -∞ =
0xff800000) with the same sign as HUGE_VAL..

[Description]

This function calculates val x 2 exp.

Remark The error processing of this function can be changed by using the matherr function.

ldexpf

CHAPTER 6 FUNCTIONAL SPECIFICATION

User’s Manual U19383EJ1V0UM00 867

Divide floating-point number into integer and decimal

[Classification]

Mathematical library "libm.a"

[Syntax]

#include <math.h>
float modff(float val, float *ipart);

[Return value]

Returns a decimal part. The sign of the result is the same as the sign of val.

[Description]

This function divides val of float type into integer and decimal parts, and stores the integer part in *ipart. Rounding is
not performed. It is guaranteed that the sum of the integer part and decimal part accurately coincides with val. For
example, where realpart = modff (val, &intpart), "realpart + intpartt" coincides with val.

modff

CHAPTER 6 FUNCTIONAL SPECIFICATION

868 User’s Manual U19383EJ1V0UM00

Logarithmic gamma function

[Classification]

Mathematical library "libm.a"

[Syntax]

#include <math.h>
float gammaf(float x);

[Return value]

The natural logarithm of the gamma function of x is returned.
If x is 0 or an overflow occurs, HUGE_VAL is returned, and macro ERANGE is set to global variable errno.

[Description]

This function calculates In (Γ (x)), i.e., the natural logarithm of the gamma function of x. The gamma function (
expf (gammaf (x)) is a generalized factorial, and has a relational expression of Γ (N) = N x Γ (N - 1). Therefore,
the result of the gamma function itself increases very rapidly. Consequently, gammaf is defined as "In (Γ (x))",
instead of simply "Γ (x)", to expand the valid range of the result that can be expressed.

Remark The error processing of this function can be changed by using the matherr function.

[Example]

gammaf

#include <math.h>

float func(float x){

 float ret;

 ret = gammaf(x); /* Returns natural logarithm of gamma function of x to ret. */

 :

 return(ret);

}

CHAPTER 6 FUNCTIONAL SPECIFICATION

User’s Manual U19383EJ1V0UM00 869

Euclidean distance function

[Classification]

Mathematical library "libm.a"

[Syntax]

#include <math.h>
float hypotf(float x, float y);

[Return value]

Returns a Euclidean distance "sqrt (x 2 + y 2)" between the origin (0, 0) and a point indicated by Cartesian coordi-
nates (x, y).

If an overflow occurs, HUGE_VAL is returned, and macro ERANGE is set to global variable errno.

[Description]

This function calculates a Euclidean distance "sqrt (x 2 + y 2)" between the origin (0, 0) and a point indicated by
Cartesian coordinates (x, y).

Remark The error processing of this function can be changed by using the matherr function.

[Example]

hypotf

#include <math.h>

void func(float x){

 float ret, y;

 ret = hypotf(x, y); /* Returns Euclidean distance between origin (0, 0) and coordinates

 (x, y) to ret. */

}

CHAPTER 6 FUNCTIONAL SPECIFICATION

870 User’s Manual U19383EJ1V0UM00

Error processing function

[Classification]

Mathematical library "libm.a"

[Syntax]

#include <math.h>
int matherr(struct exception *e);

[Return value]

By changing the value of e ->retval, the result of the function called from the customized matherr can be changed.
This also applies to the function on the calling side. The matherr returns a value other than 0 if the error has been
resolved, and 0 if the error could not be resolved. If matherr returns 0, set an appropriate value to global variable
errono on the calling side.

[Description]

This is a function that is called if an error occurs in a mathematical library function.
By preparing a function named matherr via a user subroutine, therefore, error processing can be customized. Cus-

tomized matherr must return 0 if resolution of an error has failed, and a value other than 0 if the error has been
resolved. If matherr returns a value other than 0, the value of global variable errno is not changed.

Error processing can be customized by using the information passed by pointer *e to structure exception. Structure
exception is defined as follows in "math.h".

The meaning of each member is as follows:

The types of mathematical library function errors that may occur are as follows.

matherr

#if !defined(__cplusplus)

#define __exception exception

#endif

struct exception{

 int type;

 char *name;

 double arg1, arg2, retval;

};

type Type of mathematical function error that has occurred.

The type of the macro encoding error is also defined in "math.h".

name Pointer indicating a character string that holds the name of the mathematical library function in
which an error has occurred, and ends with a space character.

arg1, arg2 Arguments responsible for the error.

retval Error return value that is returned by the calling function.

DOMAIN The argument is not in the range of the definition area of the function

Example:

logf (-1);

CHAPTER 6 FUNCTIONAL SPECIFICATION

User’s Manual U19383EJ1V0UM00 871

Remark Calling matherr when an operation exception occurs and updating global variable errno with a standard
function are not re-entrant

[Example]

OVERFLOW Overflow

Example:

expf (1000);

UNDERFLOW Underflow, solutions to denormal number.

Solution < 1.1755e-38 and non 0 and precision is lower than the normal value.

Z_DIVISION Zero division.

#include <math.h>

#include <stdio.h>

void func(void){

 float ret;

 ret = logf(-0.1); /* 3 is returned to ret. */

}

int matherr(struct exception *e){

 char s[30];

 switch(e->type){

 case DOMAIN:

 sprintf(s, "%s DOMAIN error %e\n", e->name, e->arg1);

 e->retval = 3; /* Changes error return value to 3. */

 break;

 default:

 sprintf(s, "%s other error %e\n", e->name, e->arg1);

 }

 return(1);

}

CHAPTER 6 FUNCTIONAL SPECIFICATION

872 User’s Manual U19383EJ1V0UM00

Cosine

[Classification]

Mathematical library "libm.a"

[Syntax]

#include <math.h>
float cosf(float x);

[Return value]

Returns the cosine of x.

[Description]

This function calculates the cosine of x. Specify the angle in radian.

Remark The error processing of this function can be changed by using the matherr function.

cosf

CHAPTER 6 FUNCTIONAL SPECIFICATION

User’s Manual U19383EJ1V0UM00 873

Sine

[Classification]

Mathematical library "libm.a"

[Syntax]

#include <math.h>
float sinf(float x);

[Return value]

Returns the sine of x.

[Description]

This function calculates the sine of x. Specify the angle in radian.

Remark The error processing of this function can be changed by using the matherr function.

sinf

CHAPTER 6 FUNCTIONAL SPECIFICATION

874 User’s Manual U19383EJ1V0UM00

Tangent

[Classification]

Mathematical library "libm.a"

[Syntax]

#include <math.h>
float tanf(float x);

[Return value]

Returns the tangent of x.

[Description]

This function calculates the cosine of x. Specify the angle in radian.

Remark The error processing of this function can be changed by using the matherr function.

tanf

CHAPTER 6 FUNCTIONAL SPECIFICATION

User’s Manual U19383EJ1V0UM00 875

Arc cosine

[Classification]

Mathematical library "libm.a"

[Syntax]

#include <math.h>
float acosf(float x);

[Return value]

Returns the arc cosine of x. The returned value is in radian and in a range of 0 to π.
If x is not between -1 and 1, a Not a Nuber(NaN) is returned, and macro EDOM is set to global variable errno.

[Description]

This function calculates the arc cosine of x. Specify x as, -1<= x <= 1.

Remark The error processing of this function can be changed by using the matherr function.

acosf

CHAPTER 6 FUNCTIONAL SPECIFICATION

876 User’s Manual U19383EJ1V0UM00

Arc sine

[Classification]

Mathematical library "libm.a"

[Syntax]

#include <math.h>
float asinf(float x);

[Return value]

Returns the arc sine (arcsine) of x. The returned value is in radian and in a range of -π / 2 to π / 2.
If x is not between -1 and 1, a Not a Nuber(NaN) is returned, and macro EDOM is set to global variable errno.

[Description]

This function calculates the arc sine (arcsine) of x. Specify x as, -1 <= x <= 1.

Remark The error processing of this function can be changed by using the matherr function.

asinf

CHAPTER 6 FUNCTIONAL SPECIFICATION

User’s Manual U19383EJ1V0UM00 877

Arc tangent

[Classification]

Mathematical library "libm.a"

[Syntax]

#include <math.h>
float atanf(float x);

[Return value]

Returns the arc tangent (arctangent) of x. The returned value is in radian and in a range of -π / 2 to π / 2.

[Description]

This function calculates the arc tangent (arctangent) of x.

Remark The error processing of this function can be changed by using the matherr function.

[Example]

atanf

#include <math.h>

float func(float x){

 float ret;

 ret = atanf(x); /* Returns value of arctangent of x to ret. */

 :

 return(ret);

}

CHAPTER 6 FUNCTIONAL SPECIFICATION

878 User’s Manual U19383EJ1V0UM00

Arc tangent (y / x)

[Classification]

Mathematical library "libm.a"

[Syntax]

#include <math.h>
float atan2f(float y, float x);

[Return value]

Returns the arc tangent (arctangent) of y / x. The returned value is in radian and in a range of -π to π.
atan2f returns a Not a Nuber(NaN) and sets macro EDOM to global variable errno if both x and y are 0.0. If the

solution vanished approaching zero, atan2f returns +0 and sets macro ERANGE to global variable errno. If the
solution is a denormal number, atan2f sets macro ERANGE to global variable errno.

[Description]

This function calculates the arc tangent of y / x. atan2f calculates the correct result even if the angle is in the vicinity
of π / 2 or - π / 2 (if x is close to 0).

Remark The error processing of this function can be changed by using the matherr function.

atan2f

CHAPTER 6 FUNCTIONAL SPECIFICATION

User’s Manual U19383EJ1V0UM00 879

Hyperbolic cosine

[Classification]

Mathematical library "libm.a"

[Syntax]

#include <math.h>
float coshf(float x);

[Return value]

Returns the hyperbolic cosine of x.
coshf returns HUGE_VAL and sets macro ERANGE to global variable errno if an overflow occurs.

[Description]

This function calculates the hyperbolic cosine of x. Specify the angle in radian. The definition expression is as
follows.

(e x + e -x) / 2

Remark The error processing of this function can be changed by using the matherr function.

coshf

CHAPTER 6 FUNCTIONAL SPECIFICATION

880 User’s Manual U19383EJ1V0UM00

Hyperbolic sine

[Classification]

Mathematical library "libm.a"

[Syntax]

#include <math.h>
float sinhf(float x);

[Return value]

Returns the hyperbolic sine of x.
sinhf returns HUGE_VAL and sets macro ERANGE to global variable errno if an overflow occurs.

[Description]

This function calculates the hyperbolic sine of x. Specify the angle in radian. The definition expression is as follows.

(e x - e -x) / 2

Remark The error processing of this function can be changed by using the matherr function.

sinhf

CHAPTER 6 FUNCTIONAL SPECIFICATION

User’s Manual U19383EJ1V0UM00 881

Hyperbolic tangent

[Classification]

Mathematical library "libm.a"

[Syntax]

#include <math.h>
float tanhf(float x);

[Return value]

Returns the hyperbolic tangent of x.

[Description]

This function calculates the hyperbolic tangent of x. Specify the angle in radian. The definition expression is as
follows.

sinh (x) / cosh (x)

Remark The error processing of this function can be changed by using the matherr function.

tanhf

CHAPTER 6 FUNCTIONAL SPECIFICATION

882 User’s Manual U19383EJ1V0UM00

Arc hyperbolic cosine

[Classification]

Mathematical library "libm.a"

[Syntax]

#include <math.h>
float acoshf(float x);

[Return value]

Returns the arc hyperbolic cosine of x (x is a numeric number of 1 or greater).
acoshf returns a Not a Nuber(NaN) if x is less than 1. Macro EDOM is set to global variable errno.

[Description]

This function calculates the arc hyperbolic cosine of x (where x is a numeric value of 1 or greater). The definition
expression is as follows.

ln (x + sqrt (x 2 - 1))

Remark The error processing of this function can be changed by using the matherr function.

[Example]

acoshf

#include <math.h>

float func(float x) {

 float ret;

 ret = acoshf(x); /* Returns value of arc hyperbolic cosine of x to ret. */

 :

 return(ret);

}

CHAPTER 6 FUNCTIONAL SPECIFICATION

User’s Manual U19383EJ1V0UM00 883

Arc hyperbolic sine

[Classification]

Mathematical library "libm.a"

[Syntax]

#include <math.h>
float asinhf(float x);

[Return value]

Returns the arc hyperbolic sine of x.

[Description]

This function calculates the arc hyperbolic sine of x. The definition expression is as follows.

sign (x) * ln (| x | + sqrt (1 + x 2))

Remark The error processing of this function can be changed by using the matherr function.

asinhf

CHAPTER 6 FUNCTIONAL SPECIFICATION

884 User’s Manual U19383EJ1V0UM00

Arc hyperbolic tangent

[Classification]

Mathematical library "libm.a"

[Syntax]

#include <math.h>
float atanhf(float x);

[Return value]

Returns the arc hyperbolic tangent of x.
atanhf returns a Not a Nuber(NaN) and sets macro EDOM to global variable errno if the absolute value of x is

greater than 1.

[Description]

This function calculates the arc hyperbolic tangent of x.

Remark The error processing of this function can be changed by using the matherr function.

atanhf

CHAPTER 6 FUNCTIONAL SPECIFICATION

User’s Manual U19383EJ1V0UM00 885

6.4.10 Copy function

Copy functions are included in library libr.a for ROMization.
Copy functions are as follows.

Table 6-24. Copy Function

Remark See "8.4 Copy Function" for details of this processing.

Function/macro name Outline

_rcopy Copies packed data to RAM, 1-byte at a time (Same as _rcopy1)

_rcopy1 Copies packed data to RAM, 1-byte at a time (Same as _rcopy)

_rcopy2 Copies packed data to RAM, 2-bytes at a time

_rcopy4 Copies packed data to RAM, 4-bytes at a time

CHAPTER 6 FUNCTIONAL SPECIFICATION

886 User’s Manual U19383EJ1V0UM00

6.5 Runtime Library

This section explains the runtime library. The architecture of the V850 microcontrollers does not have instructions
for multiplying or dividing and performing floating-point operations on 32-bit data. Therefore, to satisfy the language
specifications of the ANSI standards, the CA850 performs multiplication, division, residue calculations, and all floating-
point operations on 32-bit data by calling the runtime library contained in the libc.a file.

The runtime library can also be called when creating a new assembler language source for the V850 microcontrol-
lers. However, with the V850E, the CA850 does not use the runtime library for multiplying, dividing, and residue calcu-
lating on 32-bit data. It uses the runtime library for floating-point operations.

The runtime library is a routine automatically used when CA850 executes compiling. This library is included in the
libc.a file along with the standard library. The header file does not need to be included.

When using the runtime library for an application program, libc.a must be referred by ld850 when an executable
object file is created.

Figure 6-1. Image of Using Runtime Library

Table 6-25. Runtime Library

Remarks 1. The runtime library is originally used by code generation part (cgen850) and is not assumed to be
used alone. Therefore, preprocessing to call the runtime library is necessary when it is used for an
assembly- language source program.

2. The runtime library cannot be used with a C language source program.

Classification Function Name Outline

ADDF.S __addf.s Addition of single-precision floating-point

CMPF.S __cmpf.s Comparison of single-precision floating-point and change of flag

CVT.WS __cvt.ws Conversion from integer to single-precision floating-point number

DIV __div Division of signed 32-bit integer

__divu Division of unsigned 32-bit integer

DIVF.S __divf.s Division of single-precision floating-point

MOD __mod Remainder of signed 32-bit integer

__modu Remainder of unsigned 32-bit integer

MUL __mul Multiplication of signed 32-bit integer

__mulu Multiplication of unsigned 32-bit integer

MULF.S __mulf.s Multiplication of single-precision floating-point

SUBF.S __subf.s Subtraction of single-precision floating-point

TRNC.SW __trnc.sw Conversion from single-precision floating-point number to integer

.s

Run time library

floating-point operation

 jarl xxx
as850

.o
ld850 a.out

libc.a

CHAPTER 6 FUNCTIONAL SPECIFICATION

User’s Manual U19383EJ1V0UM00 887

3. The default processing of the CA850 does not use the runtime library's ___ mul/___ mulu functions
for multiplication and ___div/___divu functions for division to process integer data of 16 bits or
shorter. Instead, the mulh and divh instructions are used. If the -Xe option is specified with the com-
piler, the runtime library is used to process integer data of 16 bits or shorter.
In this case, if the runtime library is used, multiplication/division processing strictly conforming to the
ANSI standards is executed, but the execution speed is slower than when using the mulh and divh
instructions.

CHAPTER 6 FUNCTIONAL SPECIFICATION

888 User’s Manual U19383EJ1V0UM00

6.6 Library Consumption Stack List

This section explains stack consumption amount of all function included in library.

6.6.1 Standard library

Stack consumption amount (Unit: Byte) of all function included in standard library are shown below.

(1) Functions with variable arguments

Table 6-26. Functions with Variable Arguments

(2) Character string functions

Table 6-27. Character String Functions

(3) Memory management functions

Table 6-28. Memory Management Functions

Function/macro name 32-register mode 26-register mode 22-register mode

When using mask
register function

When not using mask
register function

va_start 0 0 0 0

va_end 0 0 0 0

va_arg 0 0 0 0

Function/macro name 32-register mode 26-register mode 22-register mode

When using mask
register function

When not using mask
register function

memchr 0 0 0 0

memcmp 0 0 0 0

bcmp 0 0 0 0

memcpy 0 0 0 0

bcopy 0 0 0 0

memmove 0 0 0 0

memset 0 0 0 0

Function/macro name 32-register mode 26-register mode 22-register mode

When using mask
register function

When not using mask
register function

index 0 0 0 0

strpbrk 0 0 0 0

rindex 0 0 0 0

strrchr 0 0 0 0

strchr 0 0 0 0

strstr 0 0 0 0

CHAPTER 6 FUNCTIONAL SPECIFICATION

User’s Manual U19383EJ1V0UM00 889

(4) Character conversion functions

Table 6-29. Character Conversion Functions

(5) Character classification functions

Table 6-30. Character Classification Functions

strspn 0 0 0 0

strcspn 0 0 0 0

strcmp 0 0 0 0

strncmp 0 0 0 0

strcpy 0 0 0 0

strncpy 0 0 0 0

strcat 0 0 0 0

strncat 0 0 0 0

strtok 0 0 0 0

strlen 0 0 0 0

strerror 24 24 28 28

Function/macro name 32-register mode 26-register mode 22-register mode

When using mask
register function

When not using mask
register function

toupper 0 0 0 0

_toupper 0 0 0 0

tolower 0 0 0 0

_tolower 0 0 0 0

toascii 0 0 0 0

Function/macro name 32-register mode 26-register mode 22-register mode

When using mask
register function

When not using mask
register function

isalnum 0 0 0 0

isalpha 0 0 0 0

isascii 0 0 0 0

isupper 0 0 0 0

islower 0 0 0 0

isdigit 0 0 0 0

isxdigit 0 0 0 0

iscntrl 0 0 0 0

Function/macro name 32-register mode 26-register mode 22-register mode

When using mask
register function

When not using mask
register function

CHAPTER 6 FUNCTIONAL SPECIFICATION

890 User’s Manual U19383EJ1V0UM00

(6) Standard I/O functions

Table 6-31. Standard I/O Functions

ispunct 0 0 0 0

isspace 0 0 0 0

isprint 0 0 0 0

isgraph 0 0 0 0

Function/macro name 32-register mode 26-register mode 22-register mode

When using mask
register function

When not using mask
register function

fread 28 28 28 40

getc 0 0 0 0

fgetc 0 0 0 0

fgets 0 0 0 0

fwrite 28 28 28 28

putc 0 0 0 0

fputc 0 0 0 0

fputs 0 0 0 0

getchar 0 0 0 0

gets 0 0 0 0

putchar 0 0 0 0

puts 0 0 0 0

sprintf 208 208 224 220

fprintf 200 200 216 212

vsprintf 192 192 208 204

printf 200 200 216 212

vfprintf 180 180 196 192

vprintf 184 184 200 200

sscanf 192 196 192 188

fscanf 184 188 184 180

scanf 184 188 184 180

ungetc 0 0 0 0

rewind 0 0 0 0

perror 212 212 228 224

Function/macro name 32-register mode 26-register mode 22-register mode

When using mask
register function

When not using mask
register function

CHAPTER 6 FUNCTIONAL SPECIFICATION

User’s Manual U19383EJ1V0UM00 891

(7) Standard utility functions

Table 6-32. Standard Utility Functions

(8) Non-local jump functions

Table 6-33. Non-Local Jump Functions

Function/macro name 32-register mode 26-register mode 22-register mode

When using mask
register function

When not using mask
register function

abs 0 0 0 0

labs 0 0 0 0

bsearch 32 32 32 40

qsort 76 76 96 100

div 32 32 36 44

ldiv 32 32 36 44

itoa 32 32 40 48

ltoa 32 32 40 48

ultoa 32 32 36 44

ecvtf 96 96 96 108

fcvtf 96 96 96 108

gcvtf 164 156 172 172

atoi 64 64 76 72

atol 64 64 76 72

strtol 64 64 80 76

strtoul 64 64 80 76

atoff 104 112 100 100

strtodf 104 112 100 100

calloc 24 24 24 28

malloc 4 4 4 4

realloc 12 12 16 16

free 8 8 8 12

rand 16 16 16 16

srand 0 0 0 0

Function/macro name 32-register mode 26-register mode 22-register mode

When using mask
register function

When not using mask
register function

longjmp 0 0 0 0

setjmp 0 0 0 0

CHAPTER 6 FUNCTIONAL SPECIFICATION

892 User’s Manual U19383EJ1V0UM00

(9) Runtime library

Table 6-34. Runtime Library

(10)Prologue/Epilogue runtime library functions

Table 6-35. Prologue/Epilogue Runtime Library Functions

Function/macro name 32-register mode 26-register mode 22-register mode

When using mask
register function

When not using mask
register function

__mul 12 12 12 12

__mulu 12 12 12 12

__div 20 20 20 20

__divu 16 16 16 16

__mod 20 20 20 20

__modu 16 16 16 16

__addf.s 72 72 60 52

__subf.s 72 72 60 52

__mulf.s 72 72 60 52

__divf.s 72 72 60 52

__cvt.ws 12 12 12 12

__trnc.sw 0 0 0 0

__cmpf.s 72 72 60 52

Function/macro name 32-register mode 26-register mode 22-register mode

When using mask
register function

When not using mask
register function

___push2000 0 0 0 0

___push2001 0 0 0 0

___push2002 0 0 0 0

___push2003 0 0 0 0

___push2004 0 0 0 0

___push2040 0 0 0 0

___push2100 0 0 0 0

___push2101 0 0 0 0

___push2102 0 0 0 0

___push2103 0 0 0 0

___push2104 0 0 0 0

___push2140 0 0 0 0

___push2200 0 0 0 0

___push2201 0 0 0 0

___push2202 0 0 0 0

CHAPTER 6 FUNCTIONAL SPECIFICATION

User’s Manual U19383EJ1V0UM00 893

___push2203 0 0 0 0

___push2204 0 0 0 0

___push2240 0 0 0 0

___push2300 0 0 0 0

___push2301 0 0 0 0

___push2302 0 0 0 0

___push2303 0 0 0 0

___push2304 0 0 0 0

___push2340 0 0 0 0

___push2400 0 0 0 0

___push2401 0 0 0 0

___push2402 0 0 0 0

___push2403 0 0 0 0

___push2404 0 0 0 0

___push2440 0 0 0 0

___push2500 0 0 0 0

___push2501 0 0 0 0

___push2502 0 0 0 0

___push2503 0 0 0 0

____push2504 0 0 0 0

___push2540 0 0 0 0

___push2600 0 0 0 0

___push2601 0 0 0 0

___push2602 0 0 0 0

___push2603 0 0 0 0

___push2604 0 0 0 0

___push2640 0 0 0 0

___push2700 0 0 0 0

___push2701 0 0 0 0

___push2702 0 0 0 0

___push2703 0 0 0 0

___push2704 0 0 0 0

___push2740 0 0 0 0

___push2800 0 0 0 0

___push2801 0 0 0 0

___push2802 0 0 0 0

___push2803 0 0 0 0

___push2804 0 0 0 0

Function/macro name 32-register mode 26-register mode 22-register mode

When using mask
register function

When not using mask
register function

CHAPTER 6 FUNCTIONAL SPECIFICATION

894 User’s Manual U19383EJ1V0UM00

___push2840 0 0 0 0

___push2900 0 0 0 0

___push2901 0 0 0 0

___push2902 0 0 0 0

___push2903 0 0 0 0

___push2904 0 0 0 0

___push2940 0 0 0 0

___pushlp00 0 0 0 0

___pushlp01 0 0 0 0

___pushlp02 0 0 0 0

___pushlp03 0 0 0 0

___pushlp04 0 0 0 0

___pushlp40 0 0 0 0

___Epush250 0 0 0 0

___Epush251 0 0 0 0

___Epush252 0 0 0 0

___Epush253 0 0 0 0

___Epush254 0 0 0 0

___Epush260 0 0 0 0

___Epush261 0 0 0 0

___Epush262 0 0 0 0

___Epush263 0 0 0 0

___Epush264 0 0 0 0

___Epush270 0 0 0 0

___Epush271 0 0 0 0

___Epush272 0 0 0 0

___Epush273 0 0 0 0

___Epush274 0 0 0 0

___Epush280 0 0 0 0

___Epush281 0 0 0 0

___Epush282 0 0 0 0

___Epush283 0 0 0 0

___Epush284 0 0 0 0

___Epush290 0 0 0 0

___Epush291 0 0 0 0

___Epush292 0 0 0 0

___Epush293 0 0 0 0

___Epush294 0 0 0 0

Function/macro name 32-register mode 26-register mode 22-register mode

When using mask
register function

When not using mask
register function

CHAPTER 6 FUNCTIONAL SPECIFICATION

User’s Manual U19383EJ1V0UM00 895

___Epushlp0 0 0 0 0

___Epushlp1 0 0 0 0

___Epushlp2 0 0 0 0

___Epushlp3 0 0 0 0

___Epushlp4 0 0 0 0

___pop2000 0 0 0 0

___pop2001 0 0 0 0

___pop2002 0 0 0 0

___pop2003 0 0 0 0

___pop2004 0 0 0 0

___pop2040 0 0 0 0

___pop2100 0 0 0 0

___pop2101 0 0 0 0

___pop2102 0 0 0 0

___pop2103 0 0 0 0

___pop2104 0 0 0 0

___pop2140 0 0 0 0

___pop2200 0 0 0 0

___pop2201 0 0 0 0

___pop2202 0 0 0 0

___pop2203 0 0 0 0

___pop2204 0 0 0 0

___pop2240 0 0 0 0

___pop2300 0 0 0 0

___pop2301 0 0 0 0

___pop2302 0 0 0 0

___pop2303 0 0 0 0

___pop2304 0 0 0 0

___pop2340 0 0 0 0

___pop2400 0 0 0 0

___pop2401 0 0 0 0

___pop2402 0 0 0 0

___pop2403 0 0 0 0

___pop2404 0 0 0 0

___pop2440 0 0 0 0

___pop2500 0 0 0 0

___pop2501 0 0 0 0

___pop2502 0 0 0 0

Function/macro name 32-register mode 26-register mode 22-register mode

When using mask
register function

When not using mask
register function

CHAPTER 6 FUNCTIONAL SPECIFICATION

896 User’s Manual U19383EJ1V0UM00

___pop2503 0 0 0 0

___pop2504 0 0 0 0

___pop2540 0 0 0 0

___pop2600 0 0 0 0

___pop2601 0 0 0 0

___pop2602 0 0 0 0

___pop2603 0 0 0 0

___pop2604 0 0 0 0

___pop2640 0 0 0 0

___pop2700 0 0 0 0

___pop2701 0 0 0 0

___pop2702 0 0 0 0

___pop2703 0 0 0 0

___pop2704 0 0 0 0

___pop2740 0 0 0 0

___pop2800 0 0 0 0

___pop2801 0 0 0 0

___pop2802 0 0 0 0

___pop2803 0 0 0 0

___pop2804 0 0 0 0

___pop2840 0 0 0 0

___pop2900 0 0 0 0

___pop2901 0 0 0 0

___pop2902 0 0 0 0

___pop2903 0 0 0 0

___pop2904 0 0 0 0

___pop2940 0 0 0 0

___poplp00 0 0 0 0

___poplp01 0 0 0 0

___poplp02 0 0 0 0

___poplp03 0 0 0 0

___poplp04 0 0 0 0

___poplp40 0 0 0 0

___Epop250 0 0 0 0

___Epop251 0 0 0 0

___Epop252 0 0 0 0

___Epop253 0 0 0 0

___Epop254 0 0 0 0

Function/macro name 32-register mode 26-register mode 22-register mode

When using mask
register function

When not using mask
register function

CHAPTER 6 FUNCTIONAL SPECIFICATION

User’s Manual U19383EJ1V0UM00 897

___Epop260 0 0 0 0

___Epop261 0 0 0 0

___Epop262 0 0 0 0

___Epop263 0 0 0 ０

___Epop264 0 0 0 0

___Epop270 0 0 0 0

___Epop271 0 0 0 0

___Epop272 0 0 0 0

___Epop273 0 0 0 0

___Epop274 0 0 0 0

___Epop280 0 0 0 0

___Epop281 0 0 0 0

___Epop282 0 0 0 0

___Epop283 0 0 0 0

___Epop284 0 0 0 0

___Epop290 0 0 0 0

___Epop291 0 0 0 0

___Epop292 0 0 0 0

___Epop293 0 0 0 0

___Epop294 0 0 0 0

___Epoplp0 0 0 0 0

___Epoplp1 0 0 0 0

___Epoplp2 0 0 0 0

___Epoplp3 0 0 0 0

___Epoplp4 0 0 0 0

Function/macro name 32-register mode 26-register mode 22-register mode

When using mask
register function

When not using mask
register function

CHAPTER 6 FUNCTIONAL SPECIFICATION

898 User’s Manual U19383EJ1V0UM00

6.6.2 Mathematical library

Stack consumption amount (Unit: Byte) of all function included in mathematical library are shown below.

(1) Mathematical functions

Table 6-36. Mathematical Functions

Function/macro name 32-register mode 26-register mode 22-register mode

When using mask
register function

When not using mask
register function

j0f 32 32 44 52

j1f 32 32 44 52

jnf 52 52 64 72

y0f 44 44 56 64

y1f 44 44 56 64

ynf 64 64 76 84

erff 32 32 44 52

erfcf 32 32 44 52

expf 28 28 28 28

logf 28 28 28 32

log2f 28 28 28 32

log10f 28 28 28 32

powf 28 28 32 40

sqrtf 28 28 28 28

cbrtf 28 28 28 32

ceilf 0 0 0 0

fabsf 0 0 0 0

floorf 0 0 0 0

fmodf 28 28 28 28

frexpf 28 28 28 28

ldexpf 28 28 28 28

modff 0 0 0 0

gammaf 28 28 32 40

hypotf 28 28 28 36

matherr 0 0 0 0

cosf 28 28 28 28

sinf 28 28 28 28

tanf 28 28 32 40

acosf 28 28 28 36

asinf 28 28 28 36

atanf 28 28 28 36

atan2f 28 28 32 40

coshf 28 28 28 28

CHAPTER 6 FUNCTIONAL SPECIFICATION

User’s Manual U19383EJ1V0UM00 899

6.6.3 ROMization library

Stack consumption amount (Unit: Byte) of all function included in ROMization library are shown below.

(1) Copy function

Table 6-37. Copy Function

sinhf 28 28 28 28

tanhf 28 28 28 36

acoshf 28 28 28 32

asinhf 28 28 28 32

atanhf 28 28 28 32

Function/macro name 32-register mode 26-register mode 22-register mode

When using mask
register function

When not using mask
register function

_rcopy 0 0 8 20

_rcopy1 0 0 8 20

_rcopy2 0 0 8 16

_rcopy4 0 0 8 16

Function/macro name 32-register mode 26-register mode 22-register mode

When using mask
register function

When not using mask
register function

CHAPTER 7 STARTUP

900 User’s Manual U19383EJ1V0UM00

CHAPTER 7 STARTUP

This chapter explains the startup routine.

7.1 Functional Outline

In order to execute the program by C language, ROMization process for embedding in system and the program that
starts the user program (main function) is needed. This program is called as start up routine.

In order to excute the programm creatd by user, start up routine corresponding to that programm must be created.
CubeSuite provides, object file of start up routine that includes the necessary process which needs to be executed
before execution of the program as well it provides start up routine which user can change as per his system require-
ments.

7.2 File Contents

Start up routine that CubeSuite supplies is as follows:

Table 7-1. Startup Routine Samples

If the startup routine is not added to the project, the CA850 automatically doesn't link a default startup routine
(object).

To create a new startup routine, copy the above sample and add it to the project. And then edit it.

These files result from compiling (assembling) sample startup routines "crtN.s" and "crtE.s".
These objects are assembled with the assembler options "-cn", "-cnv850e"and "-cnv850e2" and can be used com-

monly in the V850 microcontrollers.

Storage Location File Name Contents

Install Folder\lib850\r22 crtN.s For 22-register mode

Start up routine sample for V850 core

crtE.s For 22-register mode

Start up routine sample for V850Ex core

Install Folder\lib850\r26 crtN.s For 26-register mode

Start up routine sample for V850 core

crtE.s For 26-register mode

Start up routine sample for V850Ex core

Install Folder\lib850\r32 crtN.s For 32-register mode

Start up routine sample for V850 core

crtE.s For 32-register mode

Start up routine sample for V850Ex core

CHAPTER 7 STARTUP

User’s Manual U19383EJ1V0UM00 901

7.3 Startup Routine

Startup routine is the routine that is to be executed after V850 is reset and before the execution of main function.
Basically, it carries out the initialization after system is reset. Specifically, it (start up routine) carries out following
things:

- Setting RESET handler when reset is input
- Setting of the register mode of start up routine
- Securing stack area
- Setting of stack pointer
- Securing argument area for main function
- Setting text pointer (tp)
- Setting global pointer (gp)
- Setting element pointer (ep)
- Setting mask value to mask registers (r20 and r21)
- Initializing peripheral I/O registers that must be initialized before execution of main function
- Initializing user target that must be initialized before execution of main function
- Clearing sbss area to 0
- Clearing bss area to 0
- Clearing sebss area to 0
- Clearing tibss.byte area to 0
- Clearing tibss.word area to 0
- Clearing sibss area to 0
- Setting of CTBP value for prologue/epilogue runtime library of functions [V850E]
- Setting of programmable peripheral I/O register value [V850E]
- Setting r6 and r7 as argument of main function
- Branching to main function (When not using real-time OS)
- Branching to the initialization routine of real-time OS (When using real-time OS)

Of course, there are processes which are not required by system, those can be omitted.
Also, except these processes if there are some more process that user may want to execute, these can be

described.
These processes, basically are needed to be described by assembler instructions.

CHAPTER 7 STARTUP

902 User’s Manual U19383EJ1V0UM00

7.3.1 Setting RESET handler when reset is input

Describing the process to be performed when a reset (reset interrupt) is input. Execution branches to the handler
address 0x0 when a reset is input in the V850. Therefore, allocate an instruction that branches to the beginning of the
startup routine to address 0x0. Resetinterrupt cannot be described by # pragma interrupt specification on C language,
therefore it describes by the assembler instruction. Description is as follows.

Use the .section quasi directive to allocate an instruction to the handler address. If the above description is made,
the "jr __ start" instruction is allocated to the handler address of RESET.

If the jr instruction cannot reach the destination, i.e., if "__ start" is not within + 2Mbytes from address 0x0, use the
jmp instruction as follows.

In this case, one register is used. The lp (r31) register is used in the above example. Any general-purpose register
whose contents can be lost at this point can be used. The lp (r31) register in which the return address from a function
is stored is not used when a reset is input. Therefore, it is safe to use the lp (r31) register.

The description of the .section quasi directive does not always have to be in the startup routine.
In the example symbol for start up routine is "__start", however, it can be any other name.

7.3.2 Setting of register mode of start up routine

Describe the setting of the register mode in the startup routine described with assembler instructions.
However, this setting is necessary only when the 22-register mode or 26-register mode is used for the overall sys-

tem. It is not necessary to describe this setting when the 32-register mode is specified.

[At 22-register mode

[At 26-register mode]

If this setting is not described, the linker outputs the following warning message.

 .section "RESET", text

 jr __start

__start:

 .section "RESET", text

 mov #__start, lp

 jmp [lp]

__start:

.option reg_mode 5 5

.option reg_mode 7 7

W4608: input files have different register modes. use -rc option for more information.

CHAPTER 7 STARTUP

User’s Manual U19383EJ1V0UM00 903

7.3.3 Securing stack area and setting stack pointer

Secure the stack area used by the system and set the stack pointer (SP = r3) at the beginning of this area. When a
real-time OS is used, however, the stack specified here is used until execution branches to the initialization routine of
the real-time OS.

In other words, it is hardly used or not used at all. If a large stack area is secured, therefore, the RAM area is
wasted. Check if the stack is used before execution branches to the initialization routine of the real-time OS. Inter-
rupts must be especially noted. It seems, however, that the startup routine is mostly executed with interrupts disabled.

The stack area is secured as follows.

This is an example of securing a 0x200-byte stack in the .bss area. The contents of the stack are allocated to a bss
attribute area because they do not have an initial value. Of course, they can be allocated to the sbss area, but the size
of the stack that can be allocated to the sbss area is limited because the sbss area is accessed with a single gp-rela-
tive instruction. It is recommended to allocate the stack contents to the bss area if the stack size is great, as it may be
better to allocate other variables to the sbss area.

Change the value written to the .set instruction to change the stack size to be secured. The CA850 generates codes
on the assumption that the sp is at a 4-byte boundary when it references the memory relatively with the stack pointer
(sp). Therefore, be sure to allocate the stack pointer at a 4-byte boundary. If necessary, use the quasi directive ".align
4".

The stack has a serious effect on the operation of the system. If the stack area runs short, the stack size exceeds
the secured area and the stack contents are lost, which may cause a system hang-up. Estimate the stack size to be
used by functions using stk850 included with the CA850, and secure a sufficient stack size.

.set STACKSIZE, 0x200

.bss

.lcomm __stack, STACKSIZE, 4

mov #__stack + STACKSIZE, sp

CHAPTER 7 STARTUP

904 User’s Manual U19383EJ1V0UM00

7.3.4 Securing argument area for main function

In ANSI C specifications, main function format is defined as "int main(void) { ... }" having no parameters or, as the
main function with two parameters "int main(int argc, char *argv[]) { ... }".

argc of the function having two parameters is a value that is not negative and indicates the total number of
parameters. argv indicates an array of pointers to argument character strings. argv[argc] is NULL (vacant pointer). If
argc is 1 or more, argv[0] to argv[argc - 1] are pointers to character strings.

Secure the areas for argc and argv in the startup routine. Securing method is as shown below.

This area has initialization definition, therefore it is allocated to "data attribute area".
The above area is not necessary if the main function is defined in the format: int main(void) { ... }.
The used RAM area can be reduced by deleting the above area.
Actually, processing that sets arguments (r6 and r7) of the main function is performed immediately before the main

function. If r6 and r7 are not used in the startup routine, the processing can be executed immediately after the above
program. See "7.3.19 Setting r6 and r7 as argument of main function" for the processing to be set.

7.3.5 Setting text pointer (tp)

The text pointer (tp) is a pointer prepared to implement referencing (PIC: Position Independent Code) independent
of the position at which the text area of an application, i.e., program code is allocated when the program code is refer-
enced. For example, if it is necessary to reference a specific location in the code during program execution, the
CA850 outputs the code to be accessed in tp-relative mode.

Since the code is output on the assumption that tp is correctly set, tp must be correctly set in the startup routine.
The text pointer value is determined during linking, and is in a symbol defined by a symbol directive that is described

in the link directive file. For example, suppose that the symbol directive of the text pointer is described as follows.

The text pointer value is the beginning of the TEXT segment, and is in "__ tp_TEXT".
Describe as follows to set tp in the startup routine.

 .data

 .size __argc, 4

 .align 4

__argc:

 .word 0

 .size __argv, 4

__argv:

 .word #.L16

.L16:

 .byte 0

 .byte 0

 .byte 0

 .byte 0

__tp_TEXT @ %TP_SYMBOL {TEXT};

.extern __tp_TEXT, 4

mov #__tp_TEXT, tp

CHAPTER 7 STARTUP

User’s Manual U19383EJ1V0UM00 905

7.3.6 Setting global pointer (gp)

External variables or data defined in an application are allocated to the memory. The global pointer (gp) is a pointer
prepared to implement referencing independent of location position (PID: Position Independent Data) when the vari-
ables or data allocated to the memory are referenced. The CA850 outputs a code for the section that is to be
accessed in gp-relative mode.

Since the code is output on the assumption that gp is correctly set, gp must be correctly set in the startup routine.
The global pointer value is determined during linking, and is in a symbol defined by a symbol directive that is

described in the link directive file. For example, suppose that the symbol directive of the global pointer is described as
follows.

The gp symbol value can be defined at the beginning of "data segment" of the DATA segment as shown above, or
offset from a text symbol.

Using the second method, the gp symbol value is determined by adding an offset value from tp to gp. In other
words, a code that is independent of location can be generated. To copy a program code and data used by that code
to the RAM area simultaneously and execute them, the value of gp can be acquired immediately if the start address of
the copy destination is known. In this case, the symbol directive is described as follows.

The global pointer value is "__ tp_TEXT to which the value of __ gp_DATA is added", and the value to be added,
i.e., offset value, is stored in "__ gp_DATA". Therefore, describe as follows to set gp in the startup routine.

This sets the correct value of the global pointer to gp.

__gp_DATA @ %GP_SYMBOL {DATA};

__tp_TEXT @ %TP_SYMBOL {TEXT};

__gp_DATA @ %GP_SYMBOL &__tp_TEXT {DATA};

.extern __tp_TEXT, 4

.extern __gp_DATA, 4

mov #__tp_TEXT, tp

mov #__gp_DATA, gp

add tp, gp

CHAPTER 7 STARTUP

906 User’s Manual U19383EJ1V0UM00

7.3.7 Setting element pointer (ep)

Of the external variables or data defined in an application, those that are allocated to the following sections are
accessed from the element pointer (ep) in relative mode.

- sedata/sebss section
- sidata/sibss section
- tidata.byte/tibss.byte section
- tidata.word/tibss.word section

If these sections exist, the CA850 outputs a code to access these areas in ep-relative mode.
Since the code is output on the assumption that ep is correctly set, ep must be correctly set in the startup routine.
The element pointer value is determined during linking, and is in a symbol defined by a symbol directive that is

described in the link directive file. For example, suppose that the symbol directive of the element pointer is described
as follows.

The element pointer value is the beginning of the SIDATA segment by default, and its value is in "__ ep_DATA".
Therefore, describe as follows to set ep in the startup routine.

Reference the absolute address of __ ep_DATA and set that value to ep.

7.3.8 Setting mask value to mask registers (r20 and r21)

When using mask registers, set them in the startup routine. The mask registers are "r20" and "r21". Set these reg-
isters to the following values.

- r20 to 8-bit mask value "0xff"
- r21 to 16-bit mask value "0xffff"

An image of this operation is shown below.

".option nowarning" and ".option warning" is the quasi directive that suppresses output of warning messages during
assembling. If the assembler option "-m" (use of mask option) is set, codes in which mask values are set are output to
r20 and r21. If the user intentionally attempts to substitute values in r20 and r21, therefore, the following warning mes-
sage is output.

See "3.2.5 Mask register" for details of the mask registers.

__ep_DATA @ %EP_SYMBOL;

.extern __ep_DATA, 4

mov #__ep_DATA, ep

.option nowarning

mov 0xff, r20

mov 0xffff, r21

.option warning

W3013: mask register r20 or r21 used as destination register.

CHAPTER 7 STARTUP

User’s Manual U19383EJ1V0UM00 907

7.3.9 Initializing peripheral I/O registers that must be initialized before execution of main function

When the external RAM is initialized by the startup routine, the external memory must first be set to the peripheral I/
O; otherwise the memory area cannot be accessed and initialized. In addition, initialize the peripheral I/O registers
that must be set for executing the startup routine.

Register setting can be described with assembler instructions, or execution may once branch from the startup rou-
tine to a C function and register setting can be described in this function. If it is described in C, reading and substitu-
tion in the peripheral I/O can be described in a visually simple way. For example, when creating the C function "void
reset(void)" and calling it from the startup routine, describe the following instruction in the startup routine.

Differences between assembler instruction description and C description are shown below using the following exam-
ples. An instruction that substitutes "1" in P0 (port 0) is described in an assembly language source (use r 10) and as a
C language source is as follows.

[Assembly language source]

[C language source]

The external memory setting differs depending on the device. See the Relevant Device's Hardware User's Manual
of each device.

With a clock generation function, the "internal system clock" that is supplied to each unit built in the V850 needs to
be generated. In this case, the clock needs to be multiplied by a PLL (Phase locked loop) synthesizer before use. In
other words, the clock must be correctly set to the frequency used; otherwise the clock operates slower or faster than
the assumed operation speed.

Regarding the default value of the PLL, usually, the multiplication value is small and the operation frequency is low.
These also apply to the startup routine. If the clearing of the memory area that is explained in "7.3.11 Clearing sbss
area to 0" and later sections is executed while the operating frequency is low, it takes a lot of time to complete the exe-
cution. Therefore, it is recommended that the PLL be set during the early stages of the startup routine.

Aside from the above settings, set the following settings: the "system wait control register (VSWC)", the" command
register (PRCMD)", and, if necessary, the "watch dog timer (WDT)". For the correct settings, see the Relevant
Device's Hardware User's Manual.

jarl _reset, lp

mov 1, r10

st.b r10, P0

#pragma ioreg

P0 = 1;

--Setting 5 MHz to the value multiplied by four (20 MHz) in V850ES/SG2

mov 0x80, r10

st.b r10, PRCMD

st.b r10, PCC --fcpu = fxx

nop

nop

nop

nop

nop

set1 0, PLLCTL --PLLON = 1

CHAPTER 7 STARTUP

908 User’s Manual U19383EJ1V0UM00

7.3.10 Initializing user target that must be initialized before execution of main function

Describe the necessary initialization processing for the user target, if any, in the startup routine.
The processing can be described with assembler language source or execution may once branch from the startup

routine to a C function and the processing can be described in this function.

7.3.11 Clearing sbss area to 0

Initialize the sbss area, one of the bss attribute areas that do not have an initial value.
Since the memory contents are undefined after the V850 is reset, it is recommended to clear the sebss area to zero.
This processing is not necessary if the sbss section has not been created or if it is not necessary to clear the sbss

area to zero.
Use symbols "__ssbss" and "__esbss" reserved for the CA850 to clear the sbss area. The meaning of each symbol

is as follows.

Table 7-2. Symbols of sbss Area

The values (addresses) of these symbols are determined during linking. The program that clears the sbss area
using these symbols is as follows.

This program clears the sbss area to zero in 4-byte units.

Symbol Name Meaning

__ssbss Symbol indicating start of sbss area

__esbss Symbol indicating end of sbss area

 .extern __ssbss, 4

 .extern __esbss, 4

 mov #__ssbss, r13

 mov #__esbss, r12

 cmp r12, r13

 jnl .L11

.L12:

 st.w r0, [r13]

 add 4, r13

 cmp r12, r13

 jl .L12

.L11:

CHAPTER 7 STARTUP

User’s Manual U19383EJ1V0UM00 909

7.3.12 Clearing bss area to 0

Initialize the bss area, one of the bss attribute areas that do not have an initial value.
Since the memory contents are undefined after the V850 is reset, it is recommended to clear the bss area to zero.
This processing is not necessary if the bss section has not been created or if it is not necessary to clear the bss area

to zero.
Use symbols "__sbss" and "__ebss" reserved for the CA850 to clear the bss area. The meaning of each symbol is

as follows.

Table 7-3. Symbols of bss Area

The values (addresses) of these symbols are determined during linking. The program that clears the bss area using
these symbols is as follows.(This program clears the bss area to zero in 4-byte units.)

Symbol Name Meaning

__sbss Symbol indicating start of bss area

__ebss Symbol indicating end of bss area

 .extern __sbss, 4

 .extern __ebss, 4

 mov #__sbss, r13

 mov #__ebss, r12

 cmp r12, r13

 jnl .L14

.L15:

 st.w r0, [r13]

 add 4, r13

 cmp r12, r13

 jl .L15

.L14:

CHAPTER 7 STARTUP

910 User’s Manual U19383EJ1V0UM00

7.3.13 Clearing sebss area to 0

Initialize the sebss area, one of the bss attribute areas that do not have an initial value.
Since the memory contents are undefined after the V850 is reset, it is recommended to clear the sebss area to zero.
This processing is not necessary if the sebss section has not been created or if it is not necessary to clear the sebss

area to zero.
Use symbols "__ssebss" and "__esebss" reserved for the CA850 to clear the sebss area. The meaning of each

symbol is as follows

Table 7-4. Symbols of sebss Area

The values (addresses) of these symbols are determined during linking. The program that clears the sebss area
using these symbols is as follows.(This program clears the sebss area to zero in 4-byte units.)

Symbol Name Meaning

__ssebss Symbol indicating start of sebss area

__esebss Symbol indicating end of sebss area

 .extern __ssebss, 4

 .extern __esebss, 4

 mov #__ssebss, r13

 mov #__esebss, r12

 cmp r12, r13

 jnl .L17

.L18:

 st.w r0, [r13]

 add 4, r13

 cmp r12, r13

 jl .L18

.L17:

CHAPTER 7 STARTUP

User’s Manual U19383EJ1V0UM00 911

7.3.14 Clearing tibss.byte area to 0

Initialize the tibss.byte area, one of the bss attribute areas that do not have an initial value.
Since the memory contents are undefined after the V850 is reset, it is recommended to clear the tibss.byte area to

zero.
This processing is not necessary if the tibss.byte section has not been created or if it is not necessary to clear the

tibss.byte area to zero.
Use symbols "__stibss.byte" and "__etibss.byte" reserved for the CA850 to clear the tibss.byte area. The meaning

of each symbol is as follows.

Table 7-5. Symbols of tibss.byte Area

The values (addresses) of these symbols are determined during linking. The program that clears the tibss.byte area
using these symbols is as follows.(This program clears the tibss.byte area to zero in 4-byte units.)

Symbol Name Meaning

__stibss.byte Symbol indicating start of tibss.byte area

__etibss.byte Symbol indicating end of tibss.byte area

 .extern __stibss.byte, 4

 .extern __etibss.byte, 4

 mov #__stibss.byte, r13

 mov #__etibss.byte, r12

 cmp r12, r13

 jnl .L20

.L21:

 st.w r0, [r13]

 add 4, r13

 cmp r12, r13

 jl .L21

.L20:

CHAPTER 7 STARTUP

912 User’s Manual U19383EJ1V0UM00

7.3.15 Clearing tibss.word area to 0

Initialize the tibss.word area, one of the bss attribute areas that do not have an initial value.
Since the memory contents are undefined after the V850 is reset, it is recommended to clear the tibss.word area to

zero.
This processing is not necessary if the tibss.word section has not been created or if it is not necessary to clear the

tibss.word area to zero.
Use symbols "__stibss.word" and "__etibss.word" reserved for the CA850 to clear the tibss.word area. The mean-

ing of each symbol is as follows

Table 7-6. Symbols of tibss.word Area

The values (addresses) of these symbols are determined during linking. The program that clears the tibss.word
area using these symbols is as follows.

Symbol Name Meaning

__stibss.word Symbol indicating start of tibss.word area

__etibss.word Symbol indicating end of tibss.word area

 .extern __stibss.word, 4

 .extern __etibss.word, 4

 mov #__stibss.word, r13

 mov #__etibss.word, r12

 cmp r12, r13

 jnl .L23

.L24:

 st.w r0, [r13]

 add 4, r13

 cmp r12, r13

 jl .L24

.L23:

CHAPTER 7 STARTUP

User’s Manual U19383EJ1V0UM00 913

7.3.16 Clearing sibss area to 0

Initialize the sibss area, one of the bss attribute areas that do not have an initial value.
Since the memory contents are undefined after the V850 is reset, it is recommended to clear the sibss area to zero.
This processing is not necessary if the sibss section has not been created or if it is not necessary to clear the sibss

area to zero.
Use symbols "__ssibss" and "__esibss" reserved for the CA850 to clear the sibss area. The meaning of each sym-

bol is as follows.

Table 7-7. Symbols of sibss Area

The values (addresses) of these symbols are determined during linking. The program that clears the sibss area
using these symbols is as follows.(This program clears the sibss area to zero in 4-byte units.)

7.3.17 Setting of CTBP value for prologue/epilogue runtime library of functions [V850E]

This setting is necessary when the V850Ex core is used and when the prologue/epilogue runtime library is used.
Since the CALLT instruction is used when the prologue/epilogue runtime library of functions is called by the V850Ex

core, the value of CTBP necessary for the CALLT instruction must be set at the beginning of the function table of the
prologue/epilogue runtime library of functions.

The prologue/epilogue runtime library is used in the following case.
- If Compiler option "-Xpro_epi_runtime=on" is set

If a compiler option other than "-Ot" is specified for optimization, "-Xpro_epi_runtime=on" is automatically specified.
Start symbol of function table of prologue/epilogue runtime library of functions is as follows.

- ___PROLOG_TABLE

Describe the following code using this symbol.

CTBP is system register 20. Set a value to it using the ldsr instruction.

Symbol Name Meaning

__ssibss Symbol indicating start of sibss area

__esibss Symbol indicating end of sibss area

 .extern __ssibss, 4

 .extern __esibss, 4

 mov #__ssibss, r13

 mov #__esibss, r12

 cmp r12, r13

 jnl .L26

.L25:

 st.w r0, [r13]

 add 4, r13

 cmp r12, r13

 jl .L25

.L26:

mov #___PROLOG_TABLE, r12

ldsr r12, 20

CHAPTER 7 STARTUP

914 User’s Manual U19383EJ1V0UM00

7.3.18 Setting of programmable peripheral I/O register value [V850E]

BPC must be set when using a V850 microcontrollers product in which programmable peripheral I/O registers are
provided and using a programmable peripheral I/O register.

For example, the peripheral area select control register of the V850E/IA1 is configured as follows.

Figure 7-1. BPC Register

Table 7-8. BPC Register

When using a programmable peripheral I/O register, a value must be set to the programmable peripheral I/O register
using the compiler option "-Xbps". As a result, the CA850 outputs a code to access the programmable peripheral I/O
register. However, this option does not set a value to BPC.

To set a value to BPC, processing to write a value to the BPC register must be described in the startup routine.
In the case of the V850E/IA1, PA15 is set to 1, and a programmable peripheral I/O area address is set to PA13 to

PA0. Set the BPC register, for example, to set the address of the programmable peripheral I/O area to 0x1234 as fol-
lows.

Because PA15 must be set to 1, set BPC to the logical sum (OR) of 0x1234 and 0x8000.
The value set by the compiler option "-Xbpc" is 0x1234, and the value set to BPC is 0x9234. Therefore, care must

be exercised that no contradiction occurs.
See the Relevant Device's Architecture User's Manual of each device for details of the programmable peripheral I/O

registers.

Bit Position Bit Name Meaning

15 PA15 Enables or disables use of programmable peripheral I/O area.

0: Use of programmable peripheral I/O area disabled.

1: Use of programmable peripheral I/O area enabled.

13-0 PA13-PA0 Set address of programmable peripheral I/O area.

mov 0x9234, r13

st.h r13, BPC

015

PA15 PA5 PA4 PA3 PA2 PA1 PA0PA11 PA10 PA9 PA8 PA7 PA60 PA13 PA12

CHAPTER 7 STARTUP

User’s Manual U19383EJ1V0UM00 915

7.3.19 Setting r6 and r7 as argument of main function

If the main function is defined to have two parameters as follows "int main (int argc, char *argv[]) { /* ... */ }", pro-
cessing that sets a value to the arguments (r6 and r7) must be performed before execution branches to the main func-
tion. See "7.3.4 Securing argument area for main function" for how to secure an area.

This processing is not necessary for an application using a real-time OS because the main function is not created.
Processing to set a value to r6 and r7 is as follows.

The argument area of the main function is allocated to the .data section, so describe an access code in gp- relative
mode.

7.3.20 Branching to main function (when not using real-time OS)

When the processing necessary for the startup routine has been completed, execute an instruction that branches to
the main function.

However, this processing is not necessary for an application using a real-time OS because the main function is not
created. Instead, an instruction that branches to the initialization routine of the realtime OS is necessary. See "7.3.21
Branching to initialization routine of real-time OS (when using real-time OS)" for the details.

Describe the following code to branch to the main function.

When the main function has been executed, execution returns to the 4 bytes subsequent to this branch instruction.
The following instruction can also be used if it is known that execution does not return.

The entire 32-bit space can be accessed using the jmp instruction.

When the "jarl_main, lp" instruction is used, execution returns after the main function is executed. It is recom-
mended to take appropriate action to prevent deadlock from occurring when execution returns.

ld.w $__argc, r6

movea $__argv, gp, r7

jarl _main, lp

jr _main

mov #_main, lp

jmp [lp]

CHAPTER 7 STARTUP

916 User’s Manual U19383EJ1V0UM00

7.3.21 Branching to initialization routine of real-time OS (when using real-time OS)

In an application using a real-time OS, execution branches to the initialization routine when the processing that must
be performed by the startup routine has been completed. In an application not using a real-time OS, execution
branches to the main function. See "7.3.20 Branching to main function (when not using real-time OS)".

[If RX850V4 is used]

See the User's Manual of each real-time OS for details.

 .extern __kernel_sit

 .extern __kernel_start

 mov #__kernel_sit, r6

 mov #__kernel_start, r11

 jarl __jump_kernel_start, lp

__boot_error:

 jbr __boot_error

__jump_kernel_start:

 jmp [r11]

CHAPTER 7 STARTUP

User’s Manual U19383EJ1V0UM00 917

7.4 Coding Example

This section shows an example of the startup routine.

Table 7-9. Examples of Startup Routine

#--

external label declaration 1 of symbol reserved for CA850 (For tp, gp, ep)

#--

 .extern __tp_TEXT, 4

 .extern __gp_DATA, 4

 .extern __ep_DATA, 4

#--

external label declaration 2 of symbol reserved for CA850 (For bss attribute section

initialization)

Section deleted if there is a section not used.

If the section to be used is not determined, write all sections and suppress the assemble

error of the startup routine that occurs due to addition/deletion of sections.

#--

 .extern __ssbss, 4

 .extern __esbss, 4

 .extern __sbss, 4

 .extern __ebss, 4

 .extern __ssebss, 4

 .extern __esebss, 4

 .extern __stibss.byte, 4

 .extern __etibss.byte, 4

 .extern __stibss.word, 4

 .extern __etibss.word, 4

 .extern __ssibss, 4

 .extern __esibss, 4

#--

external label declaration of symbol reserved for CA850

Declare start address of function table as external label when

using prologue / epilogue runtime library

#--

 .extern ___PROLOG_TABLE

#--

external label declaration of main function

#--

 .extern _main

#--

argument area of the main function(Unnecessary if void main(void) type is used)

#--

 .data

 .size __argc, 4

 .align 4

__argc:

 .word 0

 .size __argv, 4

CHAPTER 7 STARTUP

918 User’s Manual U19383EJ1V0UM00

__argv:

 .word #.L16

.L16:

 .byte 0

 .byte 0

 .byte 0

 .byte 0

#--

The following is dummy data for section generation.

This dummy data is used to clear the bss attribute section that appears later to zero.

#

The start symbol and end symbol are generated if data exists in the corresponding section

during linking. However,if the section that is to be used is not yet decided, an assemble

error of startup routine occurs each time when section is added or deleted by rewriting

the link directive file. # To avoid this, generate the start and end symbols of a section

by allocating dummy data to the section.

The bss attribute section is not described because data is allocated by a stack generation

code and dummy data does not have to be created in that section.

#

If the section to be used is determined, delete this dummy data and the zero clear routine

except the necessary part of the routine, this can eliminate waste and enhance the code

efficiency.

#--

 .sbss

 .lcomm __sbss_dummy, 0, 0

 .sebss

 .lcomm __sebss_dummy, 0, 0

 .tibss.byte

 .lcomm __tibss_byte, 0, 0

 .tibss.word

 .lcomm __tibss_word, 0, 0

 .sibss

 .lcomm __sibss_dummy, 0, 0

#--

securing stack

securing 0x200 bytes in bss area

#--

 .set STACKSIZE, 0x200

 .bss

 .lcomm __stack, STACKSIZE, 4

#--

reset handler

describing instructions allocated in reset handler

#--

 .section "RESET", text

 jr __start

#--

startup routine entity

CHAPTER 7 STARTUP

User’s Manual U19383EJ1V0UM00 919

#--

 .text

 .align 4

 .globl __start

 .globl __exit

 .globl __startend

__start:

#--

It is assumed that __gp_DATA is set by a symbol directive that uses a relative value

from tp. Therefore, gp adds the value of __gp_DATA to tp.

#--

 mov #__tp_TEXT, tp

 mov #__gp_DATA, gp

 add tp, gp

 mov #__stack + STACKSIZE, sp

 mov #__ep_DATA, ep

#--

mask register setting

Delete this description to reduce the code if a mask register is not used.

There is no problem even if it is not deleted in operation because it is overwritten in

the program.

#--

 .option nowarning

 mov 0xff, r20

 mov 0xffff, r21

 .option warning

.L11:

#--

Clearing sbss section to zero

Delete this description to reduce the code if the sbss attribute section is not used.

#--

 .extern __ssbss, 4

 .extern __esbss, 4

 mov #__ssbss, r13

 mov #__esbss, r12

 cmp r12, r13

 jnl .L11

.L12:

 st.w r0, [r13]

 add 4, r13

 cmp r12, r13

 jl .L12

#--

Clearing bss section to zero

Delete this description to reduce the code if the bss section is not used.

#--

 .extern __sbss, 4

 .extern __ebss, 4

CHAPTER 7 STARTUP

920 User’s Manual U19383EJ1V0UM00

 mov #__sbss, r13

 mov #__ebss, r12

 cmp r12, r13

 jnl .L14

.L15:

 st.w r0, [r13]

 add 4, r13

 cmp r12, r13

 jl .L15

.L14:

#--

Clearing sebss section to zero

Delete this description to reduce the code if the sebss section is not used.

#--

 .extern __ssebss, 4

 .extern __esebss, 4

 mov #__ssebss, r13

 mov #__esebss, r12

 cmp r12, r13

 jnl .L17

.L18:

 st.w r0, [r13]

 add 4, r13

 cmp r12, r13

 jl .L18

.L17:

#--

Clearing tibss.byte section to zero

Delete this description to reduce the code if the tibss.byte section is not used.

#--

 .extern __stibss.byte, 4

 .extern __etibss.byte, 4

 mov #__stibss.byte, r13

 mov #__etibss.byte, r12

 cmp r12, r13

 jnl .L20

.L21:

 st.w r0, [r13]

 add 4, r13

 cmp r12, r13

 jl .L21

.L20:

#--

Clearing tibss.word section to zero

Delete this description to reduce the code if the tibss.word section is not used

#--

 .extern __stibss.word, 4

 .extern __etibss.word, 4

CHAPTER 7 STARTUP

User’s Manual U19383EJ1V0UM00 921

 mov #__stibss.word, r13

 mov #__etibss.word, r12

 cmp r12, r13

 jnl .L23

.L24:

 st.w r0, [r13]

 add 4, r13

 cmp r12, r13

 jl .L24

.L23:

#--

Clearing sibss section to zero

Delete this description to reduce the code if the sibss section is not used

#--

 .extern __ssibss, 4

 .extern __esibss, 4

 mov #__ssibss, r13

 mov #__esibss, r12

 cmp r12, r13

 jnl .L26

.L25:

 st.w r0, [r13]

 add 4, r13

 cmp r12, r13

 jl .L25

.L26:

#--

setting of prologue/epilogue runtime library of functions

The start address of the library function table is set to CTBP (system register #20).

Delete this description when a core other than the V850Ex is used.

#--

 mov #___PROLOG_TABLE, r12

 ldsr r12, 20

#--

programmable peripheral I/O register setting

Delete this description if a V850 not having programmable peripheral I/O registers.

Shown below is an example where the BPC register value (set address) is 0x1234.

The logical sum of 0x1234 (address) and 0x8000 (use of programmable peripheral I/O) is

set to BPC.

#--

 mov 0x9234, r13

 st.h r13, BPC

#--

setting argument of main function to r6 and r7

#--

 ld.w $__argc, r6

 movea $__argv, gp, r7

#--

CHAPTER 7 STARTUP

922 User’s Manual U19383EJ1V0UM00

branching to main function

#--

 jarl _main, lp

#--

processing when main function returns

#--

__exit:

 halt

__startend:

CHAPTER 8 ROMIZATION

User’s Manual U19383EJ1V0UM00 923

CHAPTER 8 ROMIZATION

This chapter describes an outline of the ROMization processor (romp850), as well as the ROMization procedure,
operation method, etc.

8.1 Outline

When a variable is declared globally within a program, the variable is allocated to the data-attribute section in RAM if
the variable has a initial value, or to the bss-attribute section if it does not have a initial value. When the variable has a
initial value, that initial value is also stored in RAM. In addition, program code may be stored in the internal RAM area
to speed up applications.

In the case of an embedded system, if a debug tool such as an in-circuit emulator is used, executable modules can
be downloaded and executed just as they are in the allocation image. However, if the program is actually written to the
target system's ROM area before being executed, the initial value information that has been allocated to the data-
attribute section and the program code that has been allocated to a RAM area must be deployed in RAM prior to exe-
cution. In other words, data that is residing in RAM must be deployed in ROM, and this means that data must be cop-
ied from ROM to RAM before the corresponding application is executed.

The romp850 (ROMization processor) is a tool that takes initial value information for variables in data- attribute sec-
tions as well as programs allocated to RAM and packs them into a single section. This section is allocated in ROM and
the initial value information or program code it contains can be easily deployed in RAM by calling the copy function that
is provided by the CA850.

The following figure shows an outline of the operation flow in creating objects for ROMization.

Figure 8-1. Creation of Object for ROMization

Source program

Additional code

Copy function

ROMization area reservation code

(default: rompcrt.o)

ROMization library ibr.a

(Copy function)

Executable object ROMization object

romp850Link

Compile with option (-Xr)

specifying ROMization

CHAPTER 8 ROMIZATION

924 User’s Manual U19383EJ1V0UM00

When ROMization objects are created as shown in the "Table 8-1. Copy Function ", execution of the _rcopy cop-
ies the data to be allocated to RAM from the packed ROM section.

An image of this operation is shown below.

Figure 8-2. Image of Processing Before and After Copy Function Call

The default values for the section name and the section's start address (label name) required for the ROMization
object are as follows.

- Name of packed section -> rompsec section
- Start address (l name) of rompsec section -> __S_romp

The function used to copy from the rompsec section to the RAM area is as follows.
- Copy function -> _rcopy, _rcopy1, _rcopy2, _rcopy4

This function is stored in the library "libr.a" which is in the Install Folder \ lib850 \ r** folder.
__S_romp is a label that is defined by "rompcrt.o" in the Install Folder \ lib850 \ r** folder (the corresponding source

file is rompcrt.s). The rompcrt.o object file is used as it is when the romp850 automatically creates a rompsec section
immediately after (at the 4-byte alignment position) the .text-attribute section. __S_romp becomes the label indicating
the start address of that rompsec section.

In addition to this method for automatically creating a rompsec section, it is also possible to independently create
and allocate a program corresponding to the rompcrt.s source file.

During ROMization, once the object for ROMization has been created, it is converted into a hexadecimal file and
written to ROM.

If the application does not include any data that requires packing, there is no need to create a ROMization object.
Instead, the object created by the ld850 can be converted directly into a hexadecimal file.

If the object files resolved for relocation include symbol information and debug information, romp850 creates a
ROMization object file without deleting them. Therefore, the debugger can debug the source even with a ROMization
object file.

RAM area for data with initial value

RAM area for data without initial value

RAM allocation program area

Text area

Constant data area

Data with packed initial value

RAM area for data with initial value

RAM area for data without initial value

RAM allocation program area

Text area

Constant data area

Data with packed initial valueCopy text to RAM

Copy data to RAM

Image of object for ROMization Image after data is copied by _rcopy function

CHAPTER 8 ROMIZATION

User’s Manual U19383EJ1V0UM00 925

8.2 rompsec Section

This section explains a rompsec section.

8.2.1 Types of sections to be packed

The default setting for the object that can be packed in a rompsec section is "data allocated to sections having a
write-enabled attribute". In addition, "any section that has either the text attribute or const attribute" can be specified
for packing by specifying the -t option.

Specific examples of packing targets are listed below.
- Reserved sections (.data, .sdata, .sedata, .sidata, .tidata, .tidata.byte, .tidata.word)
- Any section created with any name, as long as either the sdata attribute or data attribute has been specified for

it by the .section quasi directive in an assembly language program and section arranged in built-in RAM (can't
be packed, when V850E2 core device is specified).

Note, however, that if any user-specified sections with either the text attribute or const attribute are not packed and if
the above-listed sections are not in an executable module, there is no need to create a ROMization object.

See the link map file to determine whether or not the reserved sections (.data, .sdata, .sedata, .sidata, .tidata,
.tidata.byte, .tidata.word) exist.

In addition, the object file created by the romp850 can be referenced via the dump command (dump850) to confirm
that a rompsec section has been created in place of another section such as a .data section or .sdata section.

8.2.2 Size of rompsec section

This section describes the memory area size to be reserved for the rompsec section.
When creating the ROMization module, note the size of the rompsec section as well as the internal ROM capacity of

the target CPU and the address range and size of the target system's ROM area. Describe the link directive file care-
fully to prevent the rompsec section from overlapping other sections.

Formulas used to calculate the size of the rompsec section are shown below.
8 + 16 * (Number of sdata/data attribute sections) + Size of sdata/data attribute section + Padding sizeNote

For example, if .sdata and .data sections exist, the size of each is 1002 bytes and 1000 bytes, and the alignment
condition of each section is 4 bytes, the size of the rompsec section is as follows.

8 + 16 * 2 + 1002 + 1000 + 2 = 2044 (Unit: byte)

Note The padding size is 0 to 3 bytes per section, depending on the alignment condition of the section subject to
ROMization.

CHAPTER 8 ROMIZATION

926 User’s Manual U19383EJ1V0UM00

8.2.3 rompsec section and link directive

During ROMization, a rompsec section is added immediately after the .text section. By allocating the .text section to
the end of ROM, therefore, the rompsec section up to the end of ROM can be allocated.

Figure 8-3. Link Directive Taking ROMization Processing into Consideration

If the rompsec section exceeds the internal ROM area, the following message is output and the processing is
stopped.

By specifying the -rom_less option, the internal ROM area may be ignored.
By specifying the -Ximem_overflow=warning option, an error message can be changed to a warning message.
The above check is not performed if the rompsec section is allocated to the end of the external ROM area. Check

the memory map information to see if the sections fit in ROM.
If it is necessary to allocate the rompsec section in the middle of ROM, check the area where the rompsec section is

to be allocated as follows, from the size and allocation address of the rompsec section, and specify an appropriate
address for the segment immediately after the rompsec section.

#Allocates SCONST, CONST, and TEXT to internal ROM

SCONST : !LOAD ?R {

 .sconst = $PROGBITS ?A .sconst;

};

CONST : !LOAD ?R {

 .const = $PROGBITS ?A .const;

};

#Allocates .text in the end of internal ROM

TEXT : !LOAD ?RX {

 .pro_epi_runtime = $PROGBITS ?AX .pro_epi_runtime;

 .text = $PROGBITS ?AX .text;

};

#Allocates DATA to external RAM

DATA : !LOAD ?RX V0x100000 {

 .data = $PROGBITS ?AW;

 .sdata = $PROGBITS ?AWG;

 .sbss = $NOBIT ?AWG;

 .bss = $NOBIT ?AW;

};

#Allocates SIDATA to internal RAM

SIDATA : !LOAD ?RX V0xffe000 {

 .sidata = $PROGBITS ?AW .sidata;

 .sibss = $NOBIT ?AWG .sibss;

};

__tp_TEXT@%TP_SYMBOL;

__gp_DATA@%GP_SYMBOL &__tp_TEXT{DATA};

__ep_DATA@%EP_SYMBOL;

F8425: rompsec section overflowed highest address of target machine.

CHAPTER 8 ROMIZATION

User’s Manual U19383EJ1V0UM00 927

Figure 8-4. Link Directive Taking ROMization Processing into Consideration (Size Considered)

#Allocates SCONST, CONST, and TEXT to internal ROM

SCONST : !LOAD ?R {

 .sconst = $PROGBITS ?A .sconst;

};

#Allocates .text in middle of internal ROM

TEXT : !LOAD ?RX {

 .pro_epi_runtime = $PROGBITS ?AX .pro_epi_runtime;

 .text = $PROGBITS ?AX .text;

};

#rompsec between TEXT and CONST

#Allocates CONST to end of internal ROM by specifying address taking size into consideration

CONST : !LOAD ?R Vx3f800 {

 .const = $PROGBITS ?A .const;

};

#Allocates DATA to external RAM

DATA : !LOAD ?RX V0x100000 {

 .data = $PROGBITS ?AW;

 .sdata = $PROGBITS ?AWG;

 .sbss = $NOBIT ?AWG;

 .bss = $NOBIT ?AW;

};

#Allocates SIDATA to internal RA

SIDATA : !LOAD ?RX V0xffe000 {

 .sidata = $PROGBITS ?AW .sidata;

 .sibss = $NOBIT ?AWG .sibss;

};

__tp_TEXT@%TP_SYMBOL;

__gp_DATA@%GP_SYMBOL &__tp_TEXT{DATA};

__ep_DATA@%EP_SYMBOL;

CHAPTER 8 ROMIZATION

928 User’s Manual U19383EJ1V0UM00

8.3 Creation of Object for ROMization

This section explains creation of object for ROMization.

8.3.1 Creation procedure (default)

This section describes a method that uses the ROMization area reservation code (rompcrt.o) that is provided as the
default object.

(1) Calling of copy function
The copy function should be activated early on, such as within the startup routine or at the start of the main func-
tion. _rcopy, _rcopy1, _rcopy2, and _rcopy4 are available as copy functions, and each of these has a dif-
ferent transfer size (the transfer size of _rcopy and _rcopy1 is the same).
Example at the time of calling the copy function _rcopy at the start of the main function is shown in the follow-
ing figure.

Figure 8-5. Example of Using Copy Function 1

(2) rompsec section is added immediately after the .text section
By allocating the .text section to the end of ROM, therefore, the rompsec section up to the end of ROM can be
allocated.

(3) Specification of "Creation of Object for ROMization"
By manipulating one of the following, a code that indicates that label __S_romp indicates the first address that
exceeds the end of the .text section in the object is generated.

- From command line:
Add compiler option "-Xr".

- From CubeSuite
On the Property panel,from the [ROMization Process Options] tab, in the [Output File] category, select
[Yes(-Xr -lr)] on the [Output ROMized object file] property.

(4) Specify ROMization process option
- From CubeSuite

On the Property panel, from the [ROMization Process Options] tab, in the [Input File] category, set the [Use
standard ROMization area reservation code file] property to [Yes] (default).

#define ALL_COPY (-1)

int _rcopy(unsigned long *, long);

extern unsigned long _S_romp;

void main(void){

 int ret;

 ret = _rcopy(&_S_romp, ALL_COPY);

 :

}

CHAPTER 8 ROMIZATION

User’s Manual U19383EJ1V0UM00 929

(5) Compile and link
By specifying "Create Object for ROM" for the ca850, the ROMization area reservation code "rompcrt.o"(that is
in Install Folder\lib850\r**) and "libr.a" that stores the copy function _rcopy are automatically linked. At this
time, the linking sequence is relevant. Because "rompcrt.o" must be linked at the end of a group of TEXT
attributes, link it after the libraries specified by the -l option for linking if the linker has been activated from the
command line.

(6) Activation of ROMization processor (romp850)
Generate a ROMization module from the executable module completed in (5), by using the romp850.
If activation was via the command line, after the ld850 has been activated from the ca850 and the executable
module has been created, the romp850 is activated to create the object for ROMization. An image of the map is
shown below.

Figure 8-6. ROMization Image 1

.tidata section

Peripheral I/O

.sidata section

.sedata section

.sdata section

.data section

.text section

.const section

.sconst section

Interrupt

__S_romp

Peripheral I/O

0x0

Copy information

rompsec section

romp850 .tidata section

.sidata section

.sedata section

.sdata section

.data section

.text section

.const section

.sconst section

Interrupt

__S_romp

hx850

Executable object output by the romp850Executable object output by the ld850

ROM Writer

Target system

ROM

0x0

CHAPTER 8 ROMIZATION

930 User’s Manual U19383EJ1V0UM00

8.3.2 Creation procedure (customize)

This section describes the method for independently creating the rompcrt.o program corresponding to the ROMiza-
tion area reservation code and determining the desired rompcrt section start address and allocation position.

(1) Describing code corresponding to the default "rompcrt.s" ROMization area reservation code
Let us assume the specified file name is "rompack.s" and the name of the symbol specifying the start of the
ROMization area is "__rompack". Also, the section containing this symbol is the "rompack section". In this
case, the code in rompack.s appears as follows.

Figure 8-7. Example of rompack.s

(2) Calling of copy function
The copy function should be activated early on, such as within the startup routine or at the start of the main func-
tion. _rcopy, _rcopy1, _rcopy2, and _rcopy4 are available as copy functions, and each of these has a dif-
ferent transfer size (the transfer size of _rcopy and _rcopy1 is the same).
Example at the time of calling the copy function _rcopy at the start of the main function is shown in the follow-
ing figure.z

Figure 8-8. Example of Using Copy Function 2

 .file "rompack.s"

 .section ".rompack", text

 .align 4

 .globl __rompack, 4

__rompack:

#define ALL_COPY (-1)

int _rcopy(unsigned long *, long);

extern unsigned long _rompack;

void main(void){

 int ret;

 ret = _rcopy(&_rompack, ALL_COPY);

 :

}

CHAPTER 8 ROMIZATION

User’s Manual U19383EJ1V0UM00 931

(3) Definition of rompack section
At the same time, you can specify the rompack section's allocation site as any address.
 For example, to specify ROMPACK as the segment containing the rompack section and to allocate that seg-
ment to start at address 0x3000, enter the following link directive.

Figure 8-9. Link Directive Specification Example

The rompack section's size is estimated using the formula described in "8.2.2 Size of rompsec section" to
avoid the ROMPACK segment's allocation address from overlapping with adjacent segments.

(4) Specification of "Creation of Object for ROMization"
By manipulating one of the following, this generates code that specifies the same address for label "rompack"
as is specified for rompsec.

- From command line:
Add compiler option "-Xr".

- From CubeSuite
On the Property panel,from the [ROMization Process Options] tab, in the [Output File] category, select
[Yes(-Xr -lr)] on the [Output ROMized object file] property.

(5) Setting of Compiler Common Options and ROMization Processor Option
By manipulating one of the following, specify the option.

- From command line:
As a ROMization processor option, specify "__rompack" for the "-b" option to specify the entry symbol for
the ROMization area reservation code.

- From CubeSuite
On the Property panel,from the [ROMization Process Options] tab, in the [Input File] category, select [No]
on the [Use standard ROMization area reservation code file] property. And then add "rompack.s" or
"rompack.o" in the [ROMization area reservation code file name] property.
In the [Other] category, specify rompack section's start label "_rompack" in the [Entry label] property.

(6) Compile and link
By specifying "Create Object for ROM" for the ca850, "libr.a" that stores the copy function _rcopy is automati-
cally linked.

TEXT : !LOAD ?RX V0x1000 {

 .text = $PROGBITS ?AX .text;

};

ROMPACK : !LOAD ?RX V0x3000 {

 .rompack = $PROGBITS ?AX .rompack;

};

CHAPTER 8 ROMIZATION

932 User’s Manual U19383EJ1V0UM00

(7) Activation of ROMization processor (romp850)
Use the romp850 to create a ROMization module from the executable module completed at step (6).
If activation was via the command line, the ld850 has been activated from the ca850 and the executable module
has been created, the romp850 is activated to create the object for ROMization.
A corresponding mapping image is shown below.

Figure 8-10. ROMization Image 2

.tidata section

Peripheral I/O

.sidata section

.sedata section

.sdata section

.data section

.text section

.const section

.sconst section

Interrupt

Peripheral I/O

0x0

Copy Information

rompsec section

romp850 .tidata section

.sidata section

.sedata section

.sdata section

.data section

.text section

.const section

.sconst section

Interrupt

__rompack

hx850

Executable object output by the romp850Executable object output by the ld850

ROM writer

Target system

ROM

0x0

__rompack

CHAPTER 8 ROMIZATION

User’s Manual U19383EJ1V0UM00 933

8.4 Copy Function

This section describes the copy function necessary for the program to be stored in ROM.

Table 8-1. Copy Function

Use 1-byte, 2-byte, or 4-byte transfer, depending on the specification of the RAM at the transfer destination.

Function Name Function

_rcopy Copies Packing data in the unit of 1 byte to RAM (Same as _rcopy1)

_rcopy1 Copies Packing data in the unit of 1 byte to RAM (Same as _rcopy)

_rcopy2 Copies Packing data in the unit of 2 bytes to RAM

_rcopy4 Copies Packing data in the unit of 4 bytes to RAM

CHAPTER 8 ROMIZATION

934 User’s Manual U19383EJ1V0UM00

Copies default data or RAM textNote (1 byte).

Note Data section with initial value which is to be allocated to RAM, and text section for internal RAM.

[Classification]

ROMization library "libr.a"

[Syntax]

int _rcopy(&label, number);
unsigned long label;
long number;

[Return value]

[Description]

_rcopy(&label, number) copies the initial value data of section number number to be copied, or text to be allocated to
RAM, to the RAM area 1 byte at a time, based on the information in the rompsec section allocated starting at the
address following the address indicated by label. If -1 is specified as number, all sections in the rompsec section are
copied. Section number number is a positive number that starts from 1.

By default, sections are allocated in the order in which they appear in the input file. If sections to be allocated to the
rompsec section are specified by the "-p" or "-t" option of the romp850, they are allocated in the order in which they are
specified.

If a ROM section file is created with CubeSuite, however, a C language source header file that makes "number" and
"label" correspond to each other by #define is generated, and number can be specified by a label name.

[Caution]

- Data is not copied if the address indicated by label is not at the start of the rompsec section.
- _rcopy copies data in accordance with the information generated by the romp850. When this function is exe-

cuted, processing which adds an offset value to address of the copy destination can't be done.
- No data is copied if data may be overwritten as a result of copying.
- Specify a global label having an absolute value or an absolute address as the first argument of _rcopy, label. If

any other value or address is specified, the result is not guaranteed.
- The _rcopy and _rcopy1 functions are identical in feature. _rcopy is used to maintain compatibility with old

versions.

_rcopy

0 Normal completion (if copied correctly)

-1 Abnormal termination (if not copied correctly)

CHAPTER 8 ROMIZATION

User’s Manual U19383EJ1V0UM00 935

Copies default data or RAM textNote (1 byte).

Note Data section with initial value which is to be allocated to RAM, and text section for internal RAM.

[Classification]

ROMization library "libr.a"

[Syntax]

int _rcopy1(&label, number);
unsigned long label;
long number;

[Return value]

[Description]

_rcopy1(&label, number) copies the initial value data of section number number to be copied, or text to be allocated
to RAM, to the RAM area 1 byte at a time, based on the information in the rompsec section allocated starting at the
address following the address indicated by label. If -1 is specified as number, all sections in the rompsec section are
copied. Section number number is a positive number that starts from 1.

By default, sections are allocated in the order in which they appear in the input file. If sections to be allocated to the
rompsec section are specified by the "-p" or "-t" option of the romp850, they are allocated in the order in which they are
specified.

If a ROM section file is created with CubeSuite, however, a C language source header file that makes "number" and
"label" correspond to each other by #define is generated, and number can be specified by a label name.

[Caution]

- Data is not copied if the address indicated by label is not at the start of the rompsec section.
- _rcopy1 copies data in accordance with the information generated by the romp850. When this function is exe-

cuted, processing which adds an offset value to address of the copy destination can't be done.
- No data is copied if data may be overwritten as a result of copying.
- Specify a global label having an absolute value or an absolute address as the first argument of _rcopy1, label.

If any other value or address is specified, the result is not guaranteed.
- The _rcopy1 and _rcopy functions are identical in feature. _rcopy is used to maintain compatibility with old

versions.

_rcopy1

0 Normal completion (if copied correctly)

-1 Abnormal termination (if not copied correctly)

CHAPTER 8 ROMIZATION

936 User’s Manual U19383EJ1V0UM00

Copies default data or RAM textNote (2 bytes).

Note Data section with initial value which is to be allocated to RAM, and text section for internal RAM.

[Classification]

ROMization library "libr.a"

[Syntax]

int _rcopy2(&label, number);
unsigned long label;
long number;

[Return value]

[Description]

_rcopy2(&label, number) copies the initial value data of section number number to be copied, or text to be allocated
to RAM, to the RAM area 2 bytes at a time, based on the information in the rompsec section allocated starting at the
address following the address indicated by label. If -1 is specified as number, all sections in the rompsec section are
copied. Section number number is a positive number that starts from 1.

By default, sections are allocated in the order in which they appear in the input file. If sections to be allocated to the
rompsec section are specified by the "-p" or "-t" option of the romp850, they are allocated in the order in which they are
specified.

If a ROM section file is created with CubeSuite, however, a C language source header file that makes "number" and
"label" correspond to each other by #define is generated, and number can be specified by a label name.

[Caution]

- Data is not copied if the address indicated by label is not at the start of the rompsec section.
- _rcopy2 copies data in accordance with the information generated by the romp850. When this function is exe-

cuted, processing which adds an offset value to address of the copy destination can't be done.
- No data is copied if data may be overwritten as a result of copying.
- Specify a global label having an absolute value or an absolute address as the first argument of _rcopy2, label.

If any other value or address is specified, the result is not guaranteed.

_rcopy2

0 Normal completion (if copied correctly)

-1 Abnormal termination (if not copied correctly)

CHAPTER 8 ROMIZATION

User’s Manual U19383EJ1V0UM00 937

Copies default data or RAM textNote (4 bytes).

Note Data section with initial value which is to be allocated to RAM, and text section for internal RAM.

[Classification]

ROMization library "libr.a"

[Syntax]

int _rcopy4(&label, number);
unsigned long label;
long number;

[Return value]

[Description]

_rcopy4(&label, number) copies the initial value data of section number number to be copied, or text to be allocated
to RAM, to the RAM area 4 bytes at a time, based on the information in the rompsec section allocated starting at the
address following the address indicated by label. If -1 is specified as number, all sections in the rompsec section are
copied. Section number number is a positive number that starts from 1.

By default, sections are allocated in the order in which they appear in the input file. If sections to be allocated to the
rompsec section are specified by the "-p" or "-t" option of the romp850, they are allocated in the order in which they are
specified.

[Caution]

- Data is not copied if the address indicated by label is not at the start of the rompsec section.
- _rcopy4 copies data in accordance with the information generated by the romp850. When this function is exe-

cuted, processing which adds an offset value to address of the copy destination can't be done.
- No data is copied if data may be overwritten as a result of copying.
- Specify a global label having an absolute value or an absolute address as the first argument of _rcopy4, label.

If any other value or address is specified, the result is not guaranteed.

_rcopy4

0 Normal completion (if copied correctly)

-1 Abnormal termination (if not copied correctly)

CHAPTER 9 CROSS REFERENCE OF COMPILER AND ASSEMBLER

938 User’s Manual U19383EJ1V0UM00

CHAPTER 9 CROSS REFERENCE OF COMPILER AND ASSEMBLER

This chapter explains how to handle arguments when a program is called by the CA850.

9.1 Method of Accessing Arguments and Automatic Variables

(1) Argument passed to assembler function
The CA850 stores 4-word arguments in argument registers r6 to r9 and arguments in excess of 4 words in the
stack frame of the calling function. Reference each stored value when using an argument value in an assem-
bler function.
If the assembler function returns a structure,the CA850 stores 3-word arguments in argument registers r7 to r9
and arguments in excess of 3 words in the stack frame of the calling function. Note the argument storage loca-
tion because the address where a return value is stored is stored in r6 register.
An argument value in a C function is the value itself that is specified as an argument. The operation of the C
function is not affected even if this value is changed in an assembler function.

(2) Argument passed to C function
The CA850 stores 4-word arguments in argument registers r6 to r9 and arguments in excess of 4 words in the
stack frame of the calling function. Store the arguments in excess of 4 words upward from the address indi-
cated by SP.
If the C function returns a structure,the CA850 stores 3-word arguments in argument registers r7 to r9 and argu-
ments in excess of 3 words in the stack frame of the calling function. And the address where a return value is
stored is stored in r6 register.

9.2 Method of Storing Return Value

(1) Return value returned from assembler function
The CA850 generates codes on the assumption that the return value of a function is stored in the r10 register.
Store the value returned from an assembler function in r10.
If the function returns a structure, the return value, i.e., the structure, is stored in the stack frame of the calling
function.

(2) Return value returned from C function
The CA850 generates codes on the assumption that the return value of a function is stored in the r10 register.
Reference the r10 register when using the value returned from a C function.
If the function returns a structure, a value is stored in an area for the return value of the calling function, and a
code that passes the address of that area as an argument is output. An area for the return value must be allo-
cated in advance on the calling side.

CHAPTER 9 CROSS REFERENCE OF COMPILER AND ASSEMBLER

User’s Manual U19383EJ1V0UM00 939

9.3 Calling of Assembly Language Routine from C Language

This section explains the points to be noted when calling an assembler function from a C function.

(1) Identifier
If external names, such as functions and external variables, are described in the C language source by the
CA850, they are prefixed with "_" (underscore) when they are output to the assembler.

Table 9-1. Identifier

Prefix "_" to the identifier when defining functions and external variables with the assembler and remove "_"
when referencing them from a C function.

(2) Stack frame
The CA850 generates codes on the assumption that the stack pointer (SP) always indicates the lowest address
of the stack frame. Therefore, the address area lower than the address indicated by SP can be freely used in
the assembler function after branching from a C language source to an assembler function. Conversely, if the
contents of the higher address area are changed, the area used by a C function may be lost and the subsequent
operation cannot be guaranteed. To avoid this, change SP at the beginning of the assembler function before
using the stack.
At this time, however, make sure that the value of SP is retained before and after calling.
When using a register variable register in an assembler function, make sure that the register value is retained
before and after the assembler function is called. In other words, save the value of the register variable register
before calling the assembler function, and restore the value after calling.
The register for register variable that can be used differ depending on the register mode.

Table 9-2. Registers for Register Variables

(3) Return address passed to C function
The CA850 generates codes on the assumption that the return address of a function is stored in link pointer lp
(r31). When execution branches to an assembler function, the return address of the function is stored in lp.
Execute the jmp [lp] instruction to return to a C function.

C Assembler

func1 () _func1

Register modes Register for Register Variable

22-register mode r25,r26,r27,r28,r29

26-register mode r23,r24,r25,r26,r27,r28,r29

32-register mode r20,r21,r22,r23,r24,r25,r26,r27,r28,r29

CHAPTER 9 CROSS REFERENCE OF COMPILER AND ASSEMBLER

940 User’s Manual U19383EJ1V0UM00

9.4 Calling of C Language Routine from Assembly Language

This section explains the points to be noted when calling a C function from an assembler function.

(1) Stack frame
The CA850 generates codes on the assumption that the stack pointer (SP) always indicates the lowest address
of the stack frame. Therefore, set SP so that it indicates the higher address of an unused area of the stack area
before branching from an assembler function to a C function. This is because the stack frame is allocated
towards the lower addresses.

(2) Work register
The CA850 retains the values of the register for register variable before and after a C function is called but does
not retain the values of the work registers. Therefore, do not leave a value that must be retained assigned to a
work register.
The register for register variable and work registers that can be used differ depending on the register mode.

Table 9-3. Registers for Register Variables

Table 9-4. Work Register

(3) Return address returned to assembler function
The CA850 generates codes on the assumption that the return address of a function is stored in link pointer lp
(r31). When execution branches to a C function, the return address of the function must be stored in lp.
Execution is generally branched to a C function using the jarl instruction.

Register modes Register for Register Variable

22-register mode r25,r26,r27,r28,r29

26-register mode r23,r24,r25,r26,r27,r28,r29

32-register mode r20,r21,r22,r23,r24,r25,r26,r27,r28,r29

Register modes Work Register

22-register mode r10,r11,r12,r13,r14

26-register mode r10,r11,r12,r13,r14,r15,r16

32-register mode r10,r11,r12,r13,r14,r15,r16,r17,r18,r19

CHAPTER 9 CROSS REFERENCE OF COMPILER AND ASSEMBLER

User’s Manual U19383EJ1V0UM00 941

9.5 Reference of Argument Defined by Other Language

The method of referring to the variable defined by the assembly language on the C language is shown below.

[Programming Example of C Language]

CA850 assembler performs as follows.

extern char c;

extern int i;

void subf(){

 c = 'A';

 i = 4;

}

 .globl _i

 .globl _c

 .sdata

_i:
 .word 0x0

_c:

 .byte 0x0

CHAPTER 10 CAUTIONS

942 User’s Manual U19383EJ1V0UM00

CHAPTER 10 CAUTIONS

This chapter explains the points to be noted when using the CA850.

10.1 Delimiting Folder/Path

Both "\" and "/" are regarded as the delimiters of a folder.

10.2 Option Specification Sequence

The CA850 has the following restriction concerning the sequence of an option specified when the driver is started on
the command line:

The actual sequence in which an argument passed to a specific module using the -W option and an argument of an
option recognized by the driver are passed during the module startup is not guaranteed.Note

Note When ld850 is started from the CA850, -lm -lc is passed to ld850 as the default assumption even if the -W
option is not specified. If ld850 is started from the CA850, startup module crtN.o/crtE.o is passed to ld850 as
the default assumption.

Example

The ld850 passed as follows on starting.

However, it is assumed that ld850 has already been placed in Install Folder\bin.

Caution When starting the Id850 directly, allocate "-lc" after "-lm" because the mathematical library refer-
ences the standard library.

> ca850 -cpu 3201 file.o -Wl,-D,dfile.dir

ld850 Install Folder\lib850\r32\crtN.o -o a.out file.o -lm -lc -D dfile.dir

CHAPTER 10 CAUTIONS

User’s Manual U19383EJ1V0UM00 943

10.3 Mixing with K&R Format in Function Declaration/Definition

If the K&R format and ANSI standard format exist together in the declaration and definition of a function, an error
may occur on compilation by the CA850 as a result of argument expansion processing in the K&R format.

For example, a function is declared according to the ANSI standard in the example below, but the function is defined
in the K&R format. Consequently, the types of the arguments do not match, and the CA850 outputs a "function
redeclaration" error.

[Example of Error]

In the above example, compilation is performed normally if the K&R format is uniformly used by specifying "void
func();" for the function declaration, or if the ANSI standard format is used by specifying "void func(int a, int b, float c)"
for the function definition.

Note, however, that use of the ANSI standard format is recommended in the CA850.

void func(int a, int b, float c);

/* Declared in ANSI standard format. */

/* Third argument is declared as float type. */

 :

void func(a, b, c)

int a, b;

float c;

{

 /* Defined in K&R format. */

 /* Third argument is the expanded default of K&R and so becomes double type. */

 :

}

CHAPTER 10 CAUTIONS

944 User’s Manual U19383EJ1V0UM00

10.4 Output of Other Than Position-Independent Codes

Basically, the CA850 outputs codes not dependent on positions (position-independent codes). However, it outputs
the following codes in response to the "initialization statement with an initial value other than a numeric value for a
pointer type variable other than an automatic variable".

Example

When the -Xd option is specified, the CA850 outputs the following warning message and continues compiling if an
initialization statement with an initial value other than a numeric value for a pointer type variable other than an auto-
matic variable appears.

10.5 Count of Derivative Type Qualification for Type Configuration

The CA850 outputs the following error message and continues compiling if derivative type qualificationNote is per-
formed 17 times or more for the type configuration.

However, compiling may be stopped depending on the number of times the error has occurred.

Note *(pointer), [] (array), and function declarator included in a declarator.

10.6 Length of Identifier and Valid Number of Characters

The CA850 outputs the following error message and continues compiling if an external identifier of 1023 characters
or more, or an internal identifier of 1024 characters or more is described.

However, compiling may be stopped depending on the number of times the error has occurred.
The valid number of characters for an identifier name is 1022 from the beginning of the identifier in the case of an

external identifier and 1023 from the beginning in the case of an internal identifier.

[Description of C Language]

char *ptr = "test\n";

[Output codes]

 .size LL20, 6

LL20:

 .str "test\n\0"

 .align 4

 .globl _ptr, 4

_ptr:

 .word #LL20 --Absolute address reference of label

W2231: Initialization of non-auto pointer using non-number initializer is not position independent.

E2260: compiler limit: complicated type modifiers [16]

E2117: compiler limit:too long identifier 'symbol' [1022 / 1023]

CHAPTER 10 CAUTIONS

User’s Manual U19383EJ1V0UM00 945

10.7 Number of Times of Block Nesting

The CA850 outputs the following message if a pair of "{" and "}" are nested 128 times or more.

10.8 Number of case Labels in switch Statement

The CA850 outputs the following error message and stops compiling if 1026 or more case labels are described in
one switch statement

Depending on the number of nesting switch statements, however, the above message is output and compiling is
stopped even if the number of case labels is less than 1025.

10.9 Floating-Point Operation Exception in Operation of Constant Expression

The CA850 outputs the following error message and continues compiling if a floating-point operation exception
occurs during the operation of a constant expression.

However, compiling may be stopped depending on the number of times the error has occurred.
Moreover, depending on the type of exception, inexact, underflow, overflow, division-by-0, or others is output for

exception.

10.10 Merging Vast/Large-Quantity File

The CA850 merges intermediate language files according to the optimization level. At this time, the pre-optimizer
(popt850) performs processing on memory to speed up the compiling processing. To merge a vast or large-quantity
intermediate language file, therefore, the following error message may be output because the memory runs short, and
the compiler may be abnormally terminated.

In this case, re-compile on the command line by specifying an option that allows the pre-optimizer to perform pro-
cessing to reduce the memory consumption (-Wp, -D).

10.11 Optimization of Vast File

If object size priority optimization or execution speed priority optimization is executed, the CA850 analyzes the data
flow in function units inside the global optimization module (opt850) for global optimization. Because this optimization
requires a large amount of the memory, if a source file including a vast function is to be optimized, the CA850 may out-
put the following error message and be abnormally terminated.

If execution speed priority optimization is performed, inline expansion of a function may result in a function with a
vast size. In such a case, lower the optimization level and execute compilation again.

F2020: compiler limit: scope level too deep [127]

F2410: compiler limit: too many case labels [1025]

E2519: exception has occurred at compile time.

F7009: out of memory

F5104: out of memory

CHAPTER 10 CAUTIONS

946 User’s Manual U19383EJ1V0UM00

10.12 Library File Search by Specifying Option

The CA850 does not display a message even if a specified library file has not been found as a result of a library file
searchNote initiated by an option (-L or -I). However, if the library file name has been directly specified on the com-
mand line or in the command file, a message is displayed.

Note If the -L option is not specified, the standard folder (Install Folder\lib850 and each register mode folder below
that folder) is searched.

Example

10.13 Volatile Qualifier

When a variable is declared with the volatile qualifier, the variable is not optimized and optimization for assigning the
variable to a register is no longer performed. When a variable with volatile specified is manipulated, a code that
always reads the value of the variable from memory and writes the value to memory after the variable is manipulated is
output. The access width of the variable with volatile specified is not changed.

A variable for which volatile is not specified is assigned to a register as a result of optimization and the code that
loads the variable from the memory may be deleted. When the same value is assigned to variables for which volatile
is not specified, the instruction may be deleted as a result of optimization because it is interpreted as a redundant
instruction. The volatile qualifier must be specified especially for variables that access a peripheral I/O register, vari-
ables whose value is changed by interrupt servicing, or variables whose value is changed by an external source.
When a peripheral I/O register is accessed using the #pragma ioreg directive, however, the CA850 internally outputs a
code for which volatile is specified. Therefore, volatile declaration is not necessary.

The following problem may occur if volatile is not specified where it should.
- The correct calculation result cannot be obtained.
- Execution cannot exit from a loop if the variable is used in a for loop.

If it is clear that the value of a variable with volatile specified is not changed from outside in a specific section, the
code can be optimized by assigning the unchanged value to a variable for which volatile not specified and referencing
it, which may increase the execution speed.

> ca850 -cpu 3201 a.c usr.a

F4002: can not open input file"usr.a".

CHAPTER 10 CAUTIONS

User’s Manual U19383EJ1V0UM00 947

[Example of source and output code if volatile is not specified]
If volatile is not specified for "variable a", "variable b", and "variable c", these variables are assigned to registers and

optimized. For example, even if an interrupt occurs in the meantime and the variable value is changed by the interrupt,
the changed value is not reflected.

[Example of source and output code if volatile is specified]
If volatile is specified for "variable a", "variable b", and "variable c", a code that always reads the values of these vari-

ables from memory and writes them to memory after the variables are manipulated is output. For example, even if, an
interrupt occurs in the meantime and the values of the variables are changed by the interrupt, the result in which the
change is reflected can be obtained. (In this case, interrupts may have to be disabled while the variables are manipu-
lated, depending on the timing of the interrupt.)

When volatile is specified, the code size increases compared with when volatile is not specified because the mem-
ory has to be read and written.

int a;

int b;

int c;

void func(void){

 if(a <= 0){

 b++;

 }else{

 c++;

 }

 b++;

 c++;

}

_func:

 #@B_PROLOGUE

 #@E_PROLOGUE

 ld.w $_a, r12

 cmp r0, r12

 jgt .L2

 ld.w $_b, r11

 ld.w $_c, r10

 add 1, r11

 jbr .L3

.L2:

 ld.w $_c, r10

 ld.w $_b, r11

 add 1, r10

.L3:

 addi 1, r11, r13

 st.w r13, $_b

 addi 1, r10, r14

 st.w r14, $_c

 #@B_EPILOGUE

 jmp [lp]

 #@E_EPILOGUE

CHAPTER 10 CAUTIONS

948 User’s Manual U19383EJ1V0UM00

volatile int a;

volatile int b;

volatile int c;

void func(void){

 if(a <= 0){

 b++;

 }else{

 c++;

 }

 b++;

 c++;

}

func:

 #@B_PROLOGUE

 #@E_PROLOGUE

 .option volatile

 ld.w $_a, r10

 .option novolatile

 cmp r0, r10

 jgt .L2

 .option volatile

 ld.w $_b, r11

 .option novolatile

 add 1, r11

 .option volatile

 st.w r11, $_b

 .option novolatile

 jbr .L3

.L2:

 .option volatile

 ld.w $_c, r12

 .option novolatile

 add 1, r12

 .option volatile

 st.w r12, $_c

 .option novolatile

.L3:

 .option volatile

 ld.w $_b, r13

 .option novolatile

 add 1, r13

 .option volatile

 st.w r13, $_b

 .option novolatile

 .option volatile

 ld.w $_c, r14

 .option novolatile

 add 1, r14

 .option volatile

 st.w r14, $_c

 .option novolatile

 #@B_EPILOGUE

 jmp [lp]

 #@E_EPILOGUE

CHAPTER 10 CAUTIONS

User’s Manual U19383EJ1V0UM00 949

10.14 Extra Brackets in Function Declaration

If extra brackets "()" are described in the function declaration, ANSI-C prescribes their handling as shown below, but
the CA850 outputs an error.

Example

[Prescription in ANSI-C]
In a parameter declaration, a single type definition name in parentheses is taken to be an abstract declarator that

specifies a function with a single parameter, not as redundant parentheses around the identifier for a declarator.
The above example is therefore interpreted according to ANSI-C.

If the code includes extra brackets, delete the unnecessary brackets as shown below.

Example

typedef int Int;

void f1((Int));

void f(int (*)(int));

typedef int Int;

void f1(Int);

APPENDIX AINDEX

950 User’s Manual U19383EJ1V0UM00

APPENDIX A INDEX

Symbols

#pragma directive ... 104

A

abs ... 815

Absolute expression ... 202

acosf ... 875

acoshf ... 882

add ... 388

__addf.s ... 886

addi ... 391

address/data variable register ... 318

Addressing ... 353

Instruction address ... 353

Operand address ... 359

adf ... 395

.align ... 260

Alignment condition ... 93

and ... 481

andi ... 484

Ansi option ... 86

Area allocation quasi directives ... 262

argument ... 96

argument registers ... 95

Arithmetic operation instructions ... 387

Arithmetic operators ... 206

asinf ... 876

asinhf ... 883

Assembler control quasi directive ... 277

assembler-reserved register ... 95, 318

ASSEMBLY LANGUAGE SPECIFICATIONS ... 192

Description ... 192

Expression ... 202

Instructions ... 315

Macro ... 311

Operators ... 205

Quasi Directives ... 227

Reserved Words ... 314

atan2f ... 878

atanf ... 877

atanhf ... 884

atoff ... 832

atoi ... 827

atol ... 828

automatic variable ... 96

B

Based addressing ... 358, 359

Basic Language Specifications ... 73

Ansi option ... 86

Processing system dependent items ... 73

bcmp ... 758

bcopy ... 760

Binary operation ... 209

.binclude ... 284

Bit addressing ... 360

Bit field ... 92

Bit manipulation instructions ... 527

Bitwise logical operators ... 207

Branch instructions ... 510

breakpoint address mask registers ... 320

breakpoint control registers ... 320

breakpoint data mask registers ... 320

breakpoint data setting registers ... 320

bsearch ... 817

bsh ... 499

.bss ... 236

bsw ... 500

.byte ... 263

C

CA850 ... 22

calloc ... 834

callt ... 555

CALLT base pointer ... 320

CALLT caller status saving register ... 320

cbrtf ... 860

APPENDIX AINDEX

User’s Manual U19383EJ1V0UM00 951

ceilf ... 861

Character classification functions ... 769

Character conversion functions ... 763

character string constant ... 96

Character string functions ... 737

clr1 ... 530

cmov ... 441

cmp ... 431

__cmpf.s ... 886

.comm ... 274

Comparison operators ... 207

COMPILER LANGUAGE SPECIFICATIONS ... 73

Basic Language Specifications ... 73

Device file ... 101

Extended Language Specifications ... 103

General-purpose registers ... 95

Internal representation and value area of data ... 87

Mask register ... 98

Referencing data ... 96

Software register bank ... 96

Conditional assembly quasi directives ... 288

.const ... 244

Copy Function ... 933

Copy function ... 885

cosf ... 872

coshf ... 879

ctret ... 556

ctype.h ... 732

__cvt.ws ... 886

D

.data ... 235

dbret ... 558

dbtrap ... 557

debug interface register ... 320

Device file ... 101

di ... 548

dispose ... 562

__div ... 886

div ... 425, 819

__divf.s ... 886

divh ... 420

divhu ... 427

__divu ... 886

divu ... 429

E

ecvtf ... 824

ei ... 549

element pointer ... 95, 318

.elseif ... 297

.elseifn ... 298

.endif ... 300

.endm ... 309

Enumerate type ... 89

erfcf ... 853

erff ... 852

errno.h ... 732

exception cause register ... 320

exception/debug trap status saving register ... 320

.exitm ... 302

.exitma ... 304

expf ... 854

Expression ... 202

Absolute expression ... 202

Relative expressions ... 204

Extended Language Specifications ... 103

#pragma directive ... 104

Keyword ... 104

Macro name ... 103

.ext_ent_size ... 258

.extern ... 273

external variable ... 96

.ext_func ... 257

F

fabsf ... 862

fcvtf ... 825

fgetc ... 785

fgets ... 786

.file ... 256

File input control quasi directives ... 282

.float ... 267

float.h ... 732

Floating-point type ... 88

floorf ... 863

fmodf ... 864

APPENDIX AINDEX

952 User’s Manual U19383EJ1V0UM00

fprintf ... 798

fputc ... 789

fputs ... 790

.frame ... 255

fread ... 783

free ... 838

frexpf ... 865

fscanf ... 809

function address ... 96

Function Call Interface ... 163

FUNCTIONAL SPECIFICATION ... 721

Library Function ... 733

Supplied Libraries ... 721

Functions with variable arguments ... 733

fwrite ... 787

G

gammaf ... 868

gcvtf ... 826

General-purpose registers ... 95

argument registers ... 95

assembler-reserved register ... 95

element pointer ... 95

global pointer ... 95

handler stack pointer ... 95

link pointer ... 95

Mask register function ... 95

Software register bank ... 95

stack pointer ... 95

text pointer ... 95

work register ... 95

zero register ... 95

General-purpose registerss

register variable registers ... 95

getc ... 784

getchar ... 791

gets ... 792

global pointer ... 95, 318

.globl ... 272

H

halt ... 551

handler stack pointer ... 95

Header Files ... 732

hsh ... 501

hsw ... 502

.hword ... 264

hypotf ... 869

I

Identifiers ... 212

.if ... 289

.ifdef ... 292

.ifn ... 291

.ifndef ... 294

Immediate addressing ... 359

.include ... 283

index ... 738

Instruction

Addressing ... 353

Instruction address ... 353

Based addressing ... 358

Register addressing ... 357

Relative addressing ... 353

Instruction set ... 361

Arithmetic operation instructions ... 387

Bit manipulation instructions ... 527

Branch instructions ... 510

Load/Store instructions ... 378

Logical instructions ... 464

Saturated operation instructions ... 450

Special instructions ... 541

Stack manipulation instructions ... 536

Instructions ... 315

Instruction set ... 361

Memory space ... 315

Register ... 316

Integer type ... 87

Internal representation and value area of data ... 87

Alignment condition ... 93

Bit field ... 92

Enumerate type ... 89

Floating-point type ... 88

Integer type ... 87

Pointer type ... 88

Structure type ... 90

Union type ... 91

APPENDIX AINDEX

User’s Manual U19383EJ1V0UM00 953

interrupt status saving register ... 320

.irepeat ... 287

isalnum ... 770

isalpha ... 771

isascii ... 772

iscntrl ... 777

isdigit ... 775

isgraph ... 781

islower ... 774

isprint ... 780

ispunct ... 778

isspace ... 779

isupper ... 773

isxdigit ... 776

itoa ... 821

J

j0f ... 846

j1f ... 847

jarl ... 522

jarl22 ... 524

jarl32 ... 526

jcnd ... 519

jmp ... 511

jmp32 ... 513

jnf ... 848

jr22 ... 516

jr32 ... 518

K

Keyword ... 104

L

labs ... 816

.lcomm ... 270

ld ... 379

ldexpf ... 866

ldiv ... 820

ldsr ... 542

Library Function ... 733

Character classification functions ... 769

Character conversion functions ... 763

Character string functions ... 737

Copy function ... 885

Functions with variable arguments ... 733

Mathematical functions ... 844

Memory management functions ... 755

Non-local jump functions ... 841

Standard I/O functions ... 782

Standard utility functions ... 814

limits.h ... 732

LINK DIRECTIVE SPECIFICATION ... 699

Reserved words ... 720

link pointer ... 95, 318

Load/Store instructions ... 378

.local ... 310

Location counter control quasi directives ... 259

log10f ... 857

log2f ... 856

logf ... 855

Logical instructions ... 464

longjmp ... 842

ltoa ... 822

M

mac ... 415

Macro ... 311

Macro operator ... 313

.macro ... 307

Macro name ... 103

Macro operator ... 313

Macro quasi directives ... 306

macu ... 419

malloc ... 836

Mapping directive ... 707

Mask register ... 98

Mask register function ... 95

Mathematical functions ... 844

Mathematical library ... 729

matherr ... 870

math.h ... 732

memchr ... 756

memcmp ... 757

memcpy ... 759

memmove ... 761

Memory management functions ... 755

Memory space ... 315

APPENDIX AINDEX

954 User’s Manual U19383EJ1V0UM00

memset ... 762

__mod ... 886

modff ... 867

__modu ... 886

mov ... 434

mov32 ... 440

movea ... 437

movhi ... 439

__mul ... 886

mul ... 412

__mulf.s ... 886

mulh ... 405

mulhi ... 408

__mulu ... 886

mulu ... 416

N

NMI status saving register ... 320

Non-local jump functions ... 841

nop ... 553

not ... 489

not1 ... 532

numeric constant ... 96

O

Operand address ... 359

Based addressing ... 359

Bit addressing ... 360

Immediate addressing ... 359

Register addressing ... 359

Operators ... 205

Arithmetic operators ... 206

Bitwise logical operators ... 207

Comparison operators ... 207

Shift operators ... 206

.option ... 278

or ... 465

.org ... 261

ori ... 468

P

perror ... 813

Pipeline ... 565

V850 ... 565

V850E1 ... 629

V850E2 ... 667

V850ES ... 589

Pointer type ... 88

pop ... 539

popm ... 540

powf ... 858

prepare ... 559

.previous ... 251

printf ... 801

Processing system dependent items ... 73

program counter ... 318

program ID register ... 320

Program linkage quasi directives ... 271

Program register ... 318

address/data variable register ... 318

assembler-reserved register ... 318

element pointer ... 318

global pointer ... 318

link pointer ... 318

program counter ... 318

stack pointer ... 318

text pointer ... 318

zero register ... 318

program status word ... 320

push ... 537

pushm ... 538

putc ... 788

putchar ... 793

puts ... 794

Q

qsort ... 818

Quasi Directives ... 227

Area allocation quasi directives ... 262

Assembler control quasi directive ... 277

Conditional assembly quasi directives ... 288

File input control quasi directives ... 282

Location counter control quasi directives ... 259

Macro quasi directives ... 306

Program linkage quasi directives ... 271

Repetitive assembly quasi directives ... 285

Section definition quasi directives ... 228

APPENDIX AINDEX

User’s Manual U19383EJ1V0UM00 955

Skip quasi directives ... 301

Symbol control quasi directives ... 252

R

rand ... 839

_rcopy ... 934

_rcopy1 ... 935

_rcopy2 ... 936

_rcopy4 ... 937

realloc ... 837

Re-entrant ... 732

Referencing data ... 96

argument ... 96

automatic variable ... 96

character string constant ... 96

external variable ... 96

function address ... 96

numeric constant ... 96

static variable in function ... 96

Register ... 316

Register addressing ... 357, 359

register variable registers ... 95

Registers

Program register ... 318

System register ... 320

Relative addressing ... 353

Relative expressions ... 204

.repeat ... 286

Repetitive assembly quasi directives ... 285

Reserved Words ... 314

Reserved words ... 720

reti ... 550

rewind ... 812

rindex ... 740

ROMIZATION ... 923

Copy Function ... 933

link directive ... 926

rompsec Section ... 925

ROMization library ... 731

rompsec Section ... 925

Runtime Library ... 886

S

sar ... 493

sasf ... 448

satadd ... 451

satsub ... 454

satsubi ... 457

satsubr ... 461

Saturated operation instructions ... 450

sbf ... 403

.sbss ... 238

scanf ... 810

sch0l ... 506

sch0r ... 507

sch1l ... 508

sch1r ... 509

.sconst ... 243

.sdata ... 237

.sebss ... 240

.section ... 249

Section definition quasi directives ... 228

.sedata ... 239

Segment directive ... 701

.set ... 253

set1 ... 528

setf ... 446

setjmp ... 843

setjmp.h ... 732

Shift operators ... 206

shl ... 494

shr ... 492

.shword ... 265

.sibss ... 242

.sidata ... 241

sinf ... 873

sinhf ... 880

.size ... 254

Skip quasi directives ... 301

sld ... 382

Software register bank ... 95, 96

.space ... 268

Special instructions ... 541

sprintf ... 795

sqrtf ... 859

srand ... 840

sscanf ... 805

APPENDIX AINDEX

956 User’s Manual U19383EJ1V0UM00

sst ... 386

st ... 384

Stack manipulation instructions ... 536

stack pointer ... 95, 318

Standard I/O functions ... 782

Standard library ... 723

Standard utility functions ... 814

STARTUP ... 900

Startup Routine ... 901

static variable in function ... 96

stdarg.h ... 732

stddef.h ... 732

stdio.h ... 732

stdlib.h ... 732

.str ... 269

strcat ... 750

strchr ... 742

strcmp ... 746

strcpy ... 748

strcspn ... 745

strerror ... 754

string.h ... 732

strlen ... 753

strncat ... 751

strncmp ... 747

strncpy ... 749

strpbrk ... 739

strrchr ... 741

strspn ... 744

strstr ... 743

strtodf ... 833

strtok ... 752

strtol ... 829

strtoul ... 831

Structure type ... 90

stsr ... 545

sub ... 397

__subf.s ... 886

subr ... 400

Supplied Libraries ... 721

Header Files ... 732

Mathematical library ... 729

Re-entrant ... 732

ROMization library ... 731

Standard library ... 723

switch ... 554

sxb ... 495

sxh ... 496

Symbol control quasi directives ... 252

Symbol directive ... 715

System register ... 320

T

tanf ... 874

tanhf ... 881

.text ... 245

text pointer ... 95, 318

.tibss ... 232

.tibss.byte ... 233

.tibss.word ... 234

.tidata ... 229

.tidata.byte ... 230

.tidata.word ... 231

toascii ... 768

_tolower ... 767

tolower ... 766

_toupper ... 765

toupper ... 764

trap ... 552

__trnc.sw ... 886

tst ... 503

tst1 ... 534

U

ultoa ... 823

Unary operation ... 209

ungetc ... 811

Union type ... 91

V

va_arg ... 736

va_end ... 735

va_start ... 734

.vdbstrtab ... 246

.vdebug ... 247

vfprintf ... 802

.vline ... 248

APPENDIX AINDEX

User’s Manual U19383EJ1V0UM00 957

vprintf ... 804

vsprintf ... 800

W

.word ... 266

work register ... 95

X

xor ... 473

xori ... 476

Y

y0f ... 849

y1f ... 850

ynf ... 851

Z

zero register ... 95, 318

zxb ... 497

zxh ... 498

NEC Electronics Corporation
1753, Shimonumabe, Nakahara-ku,
Kawasaki, Kanagawa 211-8668,
Japan
Tel: 044-435-5111
http://www.necel.com/

[America]

NEC Electronics America, Inc.
2880 Scott Blvd.
Santa Clara, CA 95050-2554, U.S.A.
Tel: 408-588-6000
 800-366-9782
http://www.am.necel.com/

[Asia & Oceania]

NEC Electronics (China) Co., Ltd
7th Floor, Quantum Plaza, No. 27 ZhiChunLu Haidian
District, Beijing 100083, P.R.China
Tel: 010-8235-1155
http://www.cn.necel.com/

Shanghai Branch
Room 2509-2510, Bank of China Tower,
200 Yincheng Road Central,
Pudong New Area, Shanghai, P.R.China P.C:200120
Tel:021-5888-5400
http://www.cn.necel.com/

Shenzhen Branch
Unit 01, 39/F, Excellence Times Square Building,
No. 4068 Yi Tian Road, Futian District, Shenzhen,
P.R.China P.C:518048
Tel:0755-8282-9800
http://www.cn.necel.com/

NEC Electronics Hong Kong Ltd.
Unit 1601-1613, 16/F., Tower 2, Grand Century Place,
193 Prince Edward Road West, Mongkok, Kowloon, Hong Kong
Tel: 2886-9318
http://www.hk.necel.com/

NEC Electronics Taiwan Ltd.
7F, No. 363 Fu Shing North Road
Taipei, Taiwan, R. O. C.
Tel: 02-8175-9600
http://www.tw.necel.com/

NEC Electronics Singapore Pte. Ltd.
238A Thomson Road,
#12-08 Novena Square,
Singapore 307684
Tel: 6253-8311
http://www.sg.necel.com/

NEC Electronics Korea Ltd.
11F., Samik Lavied’or Bldg., 720-2,
Yeoksam-Dong, Kangnam-Ku,
Seoul, 135-080, Korea
Tel: 02-558-3737
http://www.kr.necel.com/

For further information,
please contact:

G0706

[Europe]

NEC Electronics (Europe) GmbH
Arcadiastrasse 10
40472 Düsseldorf, Germany
Tel: 0211-65030
http://www.eu.necel.com/

Hanover Office
Podbielskistrasse 166 B
30177 Hannover
Tel: 0 511 33 40 2-0

Munich Office
Werner-Eckert-Strasse 9
81829 München
Tel: 0 89 92 10 03-0

Stuttgart Office
Industriestrasse 3
70565 Stuttgart
Tel: 0 711 99 01 0-0

United Kingdom Branch
Cygnus House, Sunrise Parkway
Linford Wood, Milton Keynes
MK14 6NP, U.K.
Tel: 01908-691-133

Succursale Française
9, rue Paul Dautier, B.P. 52
78142 Velizy-Villacoublay Cédex
France
Tel: 01-3067-5800

Sucursal en España
Juan Esplandiu, 15
28007 Madrid, Spain
Tel: 091-504-2787

Tyskland Filial
Täby Centrum
Entrance S (7th floor)
18322 Täby, Sweden
Tel: 08 638 72 00

Filiale Italiana
Via Fabio Filzi, 25/A
20124 Milano, Italy
Tel: 02-667541

Branch The Netherlands
Steijgerweg 6
5616 HS Eindhoven
The Netherlands
Tel: 040 265 40 10

	COVER
	PREFACE
	CHAPTER 1 GENERAL
	1.1 Outline
	1.2 Special Features

	CHAPTER 2 FUNCTIONS
	2.1 Variables (C language)
	2.1.1 Allocating to sections accessible with short instructions
	2.1.2 Changing allocated section
	2.1.3 Defining variables for use during standard and interrupt processing
	2.1.4 Defining user port
	2.1.5 Defining const constant pointer

	2.2 Functions
	2.2.1 Changing area to be allocated to
	2.2.2 Calling an away function
	2.2.3 Embedding assembler instructions
	2.2.4 Executing in RAM

	2.3 Using Microcomputer Functions
	2.3.1 Accessing peripheral I/O register with C language
	2.3.2 Describing interrupt processing with C language
	2.3.3 Using CPU instructions in C language
	2.3.4 Creating a self-programming boot area

	2.4 Variables (Assembler)
	2.4.1 Defining variables with no initial values
	2.4.2 Defining const constants with initial values
	2.4.3 Referencing section addresses

	2.5 Startup Routine
	2.5.1 Secure stack area
	2.5.2 Securing stack area and specifying allocation
	(1) Secure stack area
	(2) Specify stack area allocation

	2.5.3 Initializing RAM
	(1) Variables with no initial value
	(2) RAM initialization

	2.5.4 Preparing function and variable access
	(1) Preparations for accessing a function
	(2) Variable access preparations (Setting global pointer)
	(3) Variable access preparations (Setting element pointer)

	2.5.5 Preparing to use code size reduction function
	2.5.6 Ending startup routine
	(1) When not using a real-time OS
	(2) When using a real-time OS (RX850V4)

	2.6 Link Directives
	2.6.1 Adding function section allocation
	2.6.2 Adding section allocation for variables
	2.6.3 Distributing section allocation
	(1) Distribute by section name
	(2) Distribute by object files
	(3) Distribute by section attributes
	(4) Allocation specification priority level

	2.7 Reducing Code size
	2.7.1 Reducing code size (C language)
	(1) Access to variables
	(2) Number of loops in loop processing
	(3) auto variable initialization
	(4) switch statements
	(5) if statements
	(6) if-else statements
	(7) switch/if-else statements
	(8) for/while statements
	(9) Functions with no return values

	2.7.2 Reducing variable area with variable definition method
	(1) Variable signs
	(2) Variable format
	(3) Allocating and referencing automatic variables
	(4) Variable types and order of definition

	2.8 Accelerating Processing
	2.8.1 Accelerate processing with description method
	(1) Loop processing pointer
	(2) Auto variable declaration
	(3) Function arguments

	2.9 Compiler and Assembler Mutual References
	2.9.1 Mutually referencing variables
	(1) Reference a variable defined in C language
	(2) Reference a variable defined in assembly language

	2.9.2 Mutually referencing functions
	(1) Reference a function defined in C language
	(2) Reference a function defined in assembly language

	CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS
	3.1 Basic Language Specifications
	3.1.1 Processing system dependent Items
	3.1.2 Ansi option

	3.2 Environment During Compilation
	3.2.1 Internal representation and value area of data
	3.2.2 General-purpose registers
	3.2.3 Referencing data
	3.2.4 Software register bank
	3.2.5 Mask register
	3.2.6 Device file

	3.3 Extended Language Specifications
	3.3.1 Macro name
	3.3.2 Keyword
	3.3.3 #pragma directive
	3.3.4 Using expanded specifications
	(1) Allocation of data to section
	(2) Allocating functions to sections
	(3) Peripheral I/O register
	(4) Describing assembler instruction
	(5) Controlling interrupt level
	(6) Disabling interrupts
	(7) Interrupt/Exception processing handler
	(8) Inline expansion
	(9) Real-time OS support function
	(10) Embedded functions
	(11) Structure type packing

	3.3.5 Modification of C-source

	3.4 Function Call Interface
	3.4.1 Calling between C functions
	3.4.2 Prologue/Epilogue processing function
	3.4.3 far jump function

	3.5 Expanded Function of CC78Kx
	3.5.1 #pragma directive
	3.5.2 Assembler control instructions
	3.5.3 Specifying interrupt/exception handler
	3.5.4 Expanded function not supported

	3.6 Section Name List

	CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS
	4.1 Description of Source
	4.1.1 Description
	4.1.2 Expression
	4.1.3 Operators
	4.1.4 Arithmetic operators
	4.1.5 Shift operators
	4.1.6 Bitwise logical operators
	4.1.7 Comparison operators
	4.1.8 Operation rules
	4.1.9 Definition of absolute expression
	4.1.10 Identifiers
	4.1.11 Characteristics of an operand

	4.2 Quasi Directives
	4.2.1 Outline
	4.2.2 Section definition quasi directives
	.tidata
	.tidata.byte
	.tidata.word
	.tibss
	.tibss.byte
	.tibss.word
	.data
	.bss
	.sdata
	.sbss
	.sedata
	.sebss
	.sidata
	.sibss
	.sconst
	.const
	.text
	.vdbstrtab
	.vdebug
	.vline
	.section
	.previous

	4.2.3 Symbol control quasi directives
	.set
	.size
	.frame
	.file
	.ext_func
	.ext_ent_size

	4.2.4 Location counter control quasi directives
	.align
	.org

	4.2.5 Area allocation quasi directives
	.byte
	.hword
	.shword
	.word
	.float
	.space
	.str
	.lcomm

	4.2.6 Program linkage quasi directives
	.globl
	.extern
	.comm

	4.2.7 Assembler control quasi directive
	.option

	4.2.8 File input control quasi directives
	.include
	.binclude

	4.2.9 Repetitive assembly quasi directives
	.repeat
	.irepeat

	4.2.10 Conditional assembly quasi directives
	.if
	.ifn
	.ifdef
	.ifndef
	.else
	.elseif
	.elseifn
	.endif

	4.2.11 Skip quasi directives
	.exitm
	.exitma

	4.2.12 Macro quasi directives
	.macro
	.endm
	.local

	4.3 Macro
	4.3.1 Outline
	4.3.2 Usage of macro
	4.3.3 Symbols in macro
	4.3.4 Macro operator

	4.4 Reserved Words
	4.5 Instructions
	4.5.1 Memory space
	4.5.2 Register
	4.5.3 Addressing
	4.5.4 Instruction set
	4.5.5 Description of instructions
	4.5.6 Load/Store instructions
	ld
	sld
	st
	sst

	4.5.7 Arithmetic operation instructions
	add
	addi
	adf
	sub
	subr
	sbf
	mulh
	mulhi
	mul
	mac
	mulu
	macu
	divh
	div
	divhu
	divu
	cmp
	mov
	movea
	movhi
	mov32
	cmov
	setf
	sasf

	4.5.8 Saturated operation instructions
	satadd
	satsub
	satsubi
	satsubr

	4.5.9 Logical instructions
	or
	ori
	xor
	xori
	and
	andi
	not
	shr
	sar
	shl
	sxb
	sxh
	zxb
	zxh
	bsh
	bsw
	hsh
	hsw
	tst
	sch0l
	sch0r
	sch1l
	sch1r

	4.5.10 Branch instructions
	jmp
	jmp32
	jr
	jr22
	jr32
	jcnd
	jarl
	jarl22
	jarl32

	4.5.11 Bit Manipulation instructions
	set1
	clr1
	not1
	tst1

	4.5.12 Stack manipulation instructions
	push
	pushm
	pop
	popm

	4.5.13 Special instructions
	ldsr
	stsr
	di
	ei
	reti
	halt
	trap
	nop
	switch
	callt
	ctret
	dbtrap
	dbret
	prepare
	dispose

	4.5.14 Pipeline (V850)
	Load instructions
	Store instructions
	Arithmetic operation instructions (Excluding multiply and divide instructions)
	Arithmetic operation instructions (Multiply instructions)
	Arithmetic operation instructions (Divide instructions)
	Logical operation instructions
	Saturation operation instructions
	Branch instructions (Conditional branch instructions: Except BR instruction)
	Branch instructions (BR instruction,unconditional branch instructions)
	Bit manipulation instructions (CLR1, NOT1, SET1 instructions)
	Bit manipulation instructions (TST1 instructions)
	Special instructions (DI, EI instructions)
	Special instructions (HALT instructions)
	Special instructions (LDSR, STSR instructions)
	Special instructions (NOP instructions)
	Special instructions (RETI instructions)
	Special instructions (TRAP instructions)

	4.5.15 Pipeline (V850ES)
	Load instructions (LD instructions)
	Load instructions (SLD instructions)
	Store instructions
	Multiply instructions (Half word data multiply instructions)
	Multiply instructions (Word data multiply instructions)
	Arithmetic operation instructions (Excluding divide and move word instructions)
	Arithmetic operation instructions (Divide instructions)
	Arithmetic operation instructions (Move word instructions)
	Saturation operation instructions
	Logical operation instructions
	Branch instructions (Conditional branch instructions: Except BR instruction)
	Branch instructions (BR instruction, unconditional branch instructions: Except JMP instruction)
	Branch instructions (JMP instructions)
	Bit manipulation instructions (CLR1, NOT1, SET1 instructions)
	Bit manipulation instructions (TST1 instructions)
	Special instructions (CALLT instructions)
	Special instructions (CTRET instructions)
	Special instructions (DI, EI instructions)
	Special instructions (DISPOSE instructions)
	Special instructions (HALT instructions)
	Special instructions (LDSR, STSR instructions)
	Special instructions (NOP instructions)
	Special instructions (PREPARE instructions)
	Special instructions (RETI instructions)
	Special instructions (SWITCH instructions)
	Special instructions (TRAP instructions)
	Debug function instructions (DBRET instructions)
	Debug function instructions (DBTRAP instructions)

	4.5.16 Pipeline (V850E1)
	Load instructions (LD instructions)
	Load instructions (SLD instructions)
	Store instructions
	Arithmetic operation instructions (Multiply instructions)
	Arithmetic operation instructions (Excluding multiply and divide instructions)
	Arithmetic operation instructions (Divide instructions)
	Arithmetic operation instructions (Move word instructions)
	Saturation operation instructions
	Logical operation instructions
	Branch instructions (Conditional branch instructions: Except BR instruction)
	Branch instructions (BR instruction, unconditional branch instructions: Except JMP instruction)
	Branch instructions (JMP instructions)
	Bit manipulation instructions (CLR1, NOT1, SET1 instructions)
	Bit manipulation instructions (TST1 instructions)
	Special instructions (CALLT instructions)
	Special instructions (CTRET instructions)
	Special instructions (DI, EI instructions)
	Special instructions (DISPOSE instructions)
	Special instructions (HALT instructions)
	Special instructions (LDSR, STSR instructions)
	Special instructions (NOP instructions)
	Special instructions (PREPARE instructions)
	Special instructions (RETI instructions)
	Special instructions (SWITCH instructions)
	Special instructions (TRAP instructions)
	Debug function instructions (DBRET instructions)
	Debug function instructions (DBTRAP instructions)

	4.5.17 Pipeline (V850E2)
	Load instructions
	Store instructions
	Arithmetic operation instructions (Multiply instructions)
	Multiplication with addition instructions
	Arithmetic operation instructions
	Conditional arithmetic instructions
	Arithmetic operation instructions (Divide instruction)
	Saturation operation instructions
	Logical operation instructions
	Data operation instructions
	Bit search instructions
	Branch instructions (Conditional branch instructions: Except BR instruction)
	Branch instructions (BR instruction, unconditional branch instructions: Except JMP instruction)
	Branch instructions (JMP instructions)
	Bit manipulation instructions (CLR1, NOT1, SET1 instructions)
	Bit manipulation instructions (TST1 instructions)
	Special instructions (CALLT instructions)
	Special instructions (CTRET, TRAP instructions)
	Special instructions (DI, EI, LDSR instructions)
	Special instructions (DISPOSE instructions)
	Special instructions (HALT instructions)
	Special instructions (NOP instructions)
	Special instructions (PREPARE instructions)
	Special instructions (RETI instructions)
	Special instructions (STSR instructions)
	Special instructions (SWITCH instructions)
	Debug function instructions (DBRET, DBTRAP instructions)

	CHAPTER 5 LINK DIRECTIVE SPECIFICATION
	5.1 Coding Method
	5.1.1 Characters used in link directive file
	5.1.2 Link directive file name
	5.1.3 Segment directive
	5.1.4 Mapping directive
	5.1.5 Symbol directive

	5.2 Reserved Words

	CHAPTER 6 FUNCTIONAL SPECIFICATION
	6.1 Supplied Libraries
	6.1.1 Standard library
	6.1.2 Mathematical library
	6.1.3 ROMization library

	6.2 Header Files
	6.3 Re-entrant
	6.4 Library Function
	6.4.1 Functions with variable arguments
	va_start
	va_end
	va_arg

	6.4.2 Character string functions
	index
	strpbrk
	rindex
	strrchr
	strchr
	strstr
	strspn
	strcspn
	strcmp
	strncmp
	strcpy
	strncpy
	strcat
	strncat
	strtok
	strlen
	strerror

	6.4.3 Memory management functions
	memchr
	memcmp
	bcmp
	memcpy
	bcopy
	memmove
	memset

	6.4.4 Character conversion functions
	toupper
	_toupper
	tolower
	_tolower
	toascii

	6.4.5 Character classification functions
	isalnum
	isalpha
	isascii
	isupper
	islower
	isdigit
	isxdigit
	iscntrl
	ispunct
	isspace
	isprint
	isgraph

	6.4.6 Standard I/O functions
	fread
	getc
	fgetc
	fgets
	fwrite
	putc
	fputc
	fputs
	getchar
	gets
	putchar
	puts
	sprintf
	fprintf
	vsprintf
	printf
	vfprintf
	vprintf
	sscanf
	fscanf
	scanf
	ungetc
	rewind
	perror

	6.4.7 Standard utility functions
	abs
	labs
	bsearch
	qsort
	div
	ldiv
	itoa
	ltoa
	ultoa
	ecvtf
	fcvtf
	gcvtf
	atoi
	atol
	strtol
	strtoul
	atoff
	strtodf
	calloc
	malloc
	realloc
	free
	rand
	srand

	6.4.8 Non-local jump functions
	longjmp
	setjmp

	6.4.9 Mathematical functions
	j0f
	j1f
	jnf
	y0f
	y1f
	ynf
	erff
	erfcf
	expf
	logf
	log2f
	log10f
	powf
	sqrtf
	cbrtf
	ceilf
	fabsf
	floorf
	fmodf
	frexpf
	ldexpf
	modff
	gammaf
	hypotf
	matherr
	cosf
	sinf
	tanf
	acosf
	asinf
	atanf
	atan2f
	coshf
	sinhf
	tanhf
	acoshf
	asinhf
	atanhf

	6.4.10 Copy function

	6.5 Runtime Library
	6.6 Library Consumption Stack List
	6.6.1 Standard library
	6.6.2 Mathematical library
	6.6.3 ROMization library

	CHAPTER 7 STARTUP
	7.1 Functional Outline
	7.2 File Contents
	7.3 Startup Routine
	7.3.1 Setting RESET handler when reset is input
	7.3.2 Setting of register mode of start up routine
	7.3.3 Securing stack area and setting stack pointer
	7.3.4 Securing argument area for main function
	7.3.5 Setting text pointer (tp)
	7.3.6 Setting global pointer (gp)
	7.3.7 Setting element pointer (ep)
	7.3.8 Setting mask value to mask registers (r20 and r21)
	7.3.9 Initializing peripheral I/O registers that must be initialized before execution of main fun...
	7.3.10 Initializing user target that must be initialized before execution of main function
	7.3.11 Clearing sbss area to 0
	7.3.12 Clearing bss area to 0
	7.3.13 Clearing sebss area to 0
	7.3.14 Clearing tibss.byte area to 0
	7.3.15 Clearing tibss.word area to 0
	7.3.16 Clearing sibss area to 0
	7.3.17 Setting of CTBP value for prologue/epilogue runtime library of functions [V850E]
	7.3.18 Setting of programmable peripheral I/O register value [V850E]
	7.3.19 Setting r6 and r7 as argument of main function
	7.3.20 Branching to main function (when not using real-time OS)
	7.3.21 Branching to initialization routine of real-time OS (when using real-time OS)

	7.4 Coding Example

	CHAPTER 8 ROMIZATION
	8.1 Outline
	8.2 rompsec Section
	8.2.1 Types of sections to be packed
	8.2.2 Size of rompsec section
	8.2.3 rompsec section and link directive

	8.3 Creation of Object for ROMization
	8.3.1 Creation procedure (default)
	8.3.2 Creation procedure (customize)

	8.4 Copy Function
	_rcopy
	_rcopy1
	_rcopy2
	_rcopy4

	CHAPTER 9 CROSS REFERENCE OF COMPILER AND ASSEMBLER
	9.1 Method of Accessing Arguments and Automatic Variables
	9.2 Method of Storing Return Value
	9.3 Calling of Assembly Language Routine from C Language
	9.4 Calling of C Language Routine from Assembly Language
	9.5 Reference of Argument Defined by Other Language

	CHAPTER 10 CAUTIONS
	10.1 Delimiting Folder/Path
	10.2 Option Specification Sequence
	10.3 Mixing with K&R Format in Function Declaration/Definition
	10.4 Output of Other Than Position-Independent Codes
	10.5 Count of Derivative Type Qualification for Type Configuration
	10.6 Length of Identifier and Valid Number of Characters
	10.7 Number of Times of Block Nesting
	10.8 Number of case Labels in switch Statement
	10.9 Floating-Point Operation Exception in Operation of Constant Expression
	10.10 Merging Vast/Large-Quantity File
	10.11 Optimization of Vast File
	10.12 Library File Search by Specifying Option
	10.13 Volatile Qualifier
	10.14 Extra Brackets in Function Declaration

	APPENDIX A INDEX

