LENESAS

-
7
12
o~
<
Q
-
-
D

RL78/L1C Group

Renesas Starter Kit Code Generator Tutorial Manual
For CubeSuite+

RENESAS MCU
RL78 Family / L1X Series

All information contained in these materials, including products and product specifications, represents
information on the product at the time of publication and is subject to change by Renesas Electronics
Corporation without notice. Please review the latest information published by Renesas Electronics
Corporation through various means, including the Renesas Electronics Corporation website
(http://www.renesas.com).

Renesas Electronics
Www.renesas.com Rev. 1.02 Apr 2014

10.

11.

12.

Notice

Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of
semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software,
and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you
or third parties arising from the use of these circuits, software, or information.

Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics
does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages
incurred by you resulting from errors in or omissions from the information included herein.

Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of
third parties by or arising from the use of Renesas Electronics products or technical information described in this document. No
license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of
Renesas Electronics or others.

You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.
Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from such alteration,
modification, copy or otherwise misappropriation of Renesas Electronics product.

Renesas Electronics products are classified according to the following two quality grades: “Standard” and “High Quality”. The
recommended applications for each Renesas Electronics product depends on the product’s quality grade, as indicated below.

“Standard”: Computers; office equipment; communications equipment; test and measurement equipment; audio and visual
equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots etc.

“High Quality”: Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-
crime systems; and safety equipment etc.

Renesas Electronics products are neither intended nor authorized for use in products or systems that may pose a direct threat to
human life or bodily injury (artificial life support devices or systems, surgical implantations etc.), or may cause serious property
damages (nuclear reactor control systems, military equipment etc.). You must check the quality grade of each Renesas
Electronics product before using it in a particular application. You may not use any Renesas Electronics product for any
application for which it is not intended. Renesas Electronics shall not be in any way liable for any damages or losses incurred
by you or third parties arising from the use of any Renesas Electronics product for which the product is not intended by Renesas
Electronics.

You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics,
especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation
characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or
damages arising out of the use of Renesas Electronics products beyond such specified ranges.

Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have
specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further,
Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to
guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas
Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire control and
malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation
of microcomputer software alone is very difficult, please evaluate the safety of the final products or systems manufactured by
you.

Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility
of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable laws and
regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive.
Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with applicable laws
and regulations.

Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose
manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations. You should not use
Renesas Electronics products or technology described in this document for any purpose relating to military applications or use
by the military, including but not limited to the development of weapons of mass destruction. When exporting the Renesas
Electronics products or technology described in this document, you should comply with the applicable export control laws and
regulations and follow the procedures required by such laws and regulations.

It is the responsibility of the buyer or distributor of Renesas Electronics products, who distributes, disposes of, or otherwise
places the product with a third party, to notify such third party in advance of the contents and conditions set forth in this
document, Renesas Electronics assumes no responsibility for any losses incurred by you or third parties as a result of
unauthorized use of Renesas Electronics products.

This document may not be reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas
Electronics.

Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document
or Renesas Electronics products, or if you have any other inquiries.

(Note 1) “Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its majority-

owned subsidiaries.

(Note 2) “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.

(2012.4)

Disclaimer

By using this Renesas Starter Kit (RSK), the user accepts the following terms:

The RSK is not guaranteed to be error free, and the entire risk as to the results and performance of the RSK is
assumed by the User. The RSK is provided by Renesas on an “as is” basis without warranty of any kind whether
express or implied, including but not limited to the implied warranties of satisfactory quality, fitness for a particular
purpose, title and non-infringement of intellectual property rights with regard to the RSK. Renesas expressly
disclaims all such warranties. Renesas or its affiliates shall in no event be liable for any loss of profit, loss of data,
loss of contract, loss of business, damage to reputation or goodwill, any economic loss, any reprogramming or recall
costs (whether the foregoing losses are direct or indirect) nor shall Renesas or its affiliates be liable for any other
direct or indirect special, incidental or consequential damages arising out of or in relation to the use of this RSK, even
if Renesas or its affiliates have been advised of the possibility of such damages.

Precautions

The following precautions should be observed when operating any RSK product:

This Renesas Starter Kit is only intended for use in a laboratory environment under ambient temperature and humidity
conditions. A safe separation distance should be used between this and any sensitive equipment. Its use outside the
laboratory, classroom, study area or similar such area invalidates conformity with the protection requirements of the
Electromagnetic Compatibility Directive and could lead to prosecution.

The product generates, uses, and can radiate radio frequency energy and may cause harmful interference to radio
communications. However, there is no guarantee that interference will not occur in a particular installation. If this
equipment causes harmful interference to radio or television reception, which can be determined by turning the
equipment off or on, you are encouraged to try to correct the interference by one or more of the following measures;

e ensure attached cables do not lie across the equipment

e reorient the receiving antenna

e increase the distance between the equipment and the receiver

e connect the equipment into an outlet on a circuit different from that which the receiver is connected
e power down the equipment when not in use

e consult the dealer or an experienced radio/TV technician for help NOTE: It is recommended that wherever
possible shielded interface cables are used.

The product is potentially susceptible to certain EMC phenomena. To mitigate against them it is recommended that the
following measures be undertaken;

e The user is advised that mobile phones should not be used within 20m of the product when in use.
e The user is advised to take ESD precautions when handling the equipment.

The Renesas Starter Kit does not represent an ideal reference design for an end product and does not fulfil the
regulatory standards for an end product.

How to Use This Manual

1. Purpose and Target Readers

This manual is designed to provide the user with an understanding of how to use Application Leading Tool
(Applilet) for RL78 together with the CubeSuite+ IDE to create a working project for the RSK platform. It is
intended for users designing sample code on the RSK platform, using the many different incorporated
peripheral devices.

The manual comprises of step-by-step instructions to generate code and import it into CubeSuite+, but does
not intend to be a complete guide to software development on the RSK platform. Further details regarding
operating the RL78/L1C microcontroller may be found in the Hardware Manual and within the provided sample
code.

Particular attention should be paid to the precautionary notes when using the manual. These notes occur within the body
of the text, at the end of each section, and in the Usage Notes section.

The revision history summarizes the locations of revisions and additions. It does not list all revisions. Refer to the text of
the manual for details.

The following documents apply to the RL78/L1C Group. Make sure to refer to the latest versions of these
documents. The newest versions of the documents listed may be obtained from the Renesas Electronics Web
site.

Document Type Description Document Title Document No.
User's Manual Describes the technical details of the RSK hardware. RSKRL78L1C R20UT2203EG
User’s Manual
Tutorial Provides a guide to setting up RSK environment, RSKRL78L1C R20UT2204EG
running sample code and debugging programs. Tutorial Manual
Code Generator Provides a guide to code generation and importing RSKRL78L1C Code R20UT2887EG
Tutorial into the CubeSuite+ IDE. Generator Tutorial
Manual
Quick Start Guide Provides simple instructions to setup the RSK and RSKRL78L1C Quick R20UT2205EG
run the first sample. Start Guide
Schematics Full detail circuit schematics of the RSK. RSKRL78L1C R20UT2202EG
Schematics
Hardware Manual Provides technical details of the RL78/L1C RL78/L1C Group RO1UHO0409EJ
microcontroller. Hardware Manual

2. List of Abbreviations and Acronyms

Abbreviation

Full Form

ADC Analog-to-Digital Converter

API Application Programming Interface
CPU Central Processing Unit

DVD Digital Versatile Disc

El On-chip Debugger

GUI Graphical User Interface

LCD Liquid Crystal Display

LED Light Emitting Diode

MCU Micro-controller Unit

RSK Renesas Starter Kit

ROM Read-Only Memory

SAU Serial Array Unit

TAU Timer Array Unit

UART Universal Asynchronous Receiver/Transmitter
WDT Watchdog Timer

Table of Contents

L. OVBIVIBW ...ttt sttt sttt n ettt s et e s e e e e e e e e e e e e e e 7
L1 PUIPOSE ... 7
O LU] {1 S PP 7
Y2 [11 70 o 18 [ox 1o o PP PP 8
3. Code Generation USINg APPHIEL.......ccooeeeeieiiiie e e e e 9
% A 1011 (o T [0 Tox 1o o PO PRSP P PP PUPPPOPPP 9
I T Y o] o] 1 =] A Lo | PP PUPRRPT 9
R B oo [l €= o 1= £ 1 1T o FE T T TSP TP EPPPUPRPP 12
4. ImpOorting iNt0 CUDESUITETcce e e et e e e e e e e e eeaaar e e e e e eeeeenannnns 25
4.1 Starting CubeSuite+ and Importing ApplIlet Codeuviiiiiie e 25
A (0T T=T ot AR Y= 1] o PR 27
4.3 LCD Panel Code INTEGIratiONc...uieiieii ettt ettt et e e e e e s e e e e e e e e s e aanbbeeeeeaeeesannnbeeeaaaeeas 29
Y1 (o] g W@ o Lo [[g1 (=Te | =i o o FA PP TP 30
o B T o 1¥ (o Lo Lo [N [o1 (=To | =i o o FA PR T R UUPPPPRT 37
4.6 UART COOE INTEGIALIONeeiiiiiiiiiiitiiie ettt ettt e e e e e o bbb et e e e e e e e e abbe e e e e e e e e s aaanbbeeeeeaeesaannbbeeeaaaaeas 38
o N I b N O7o o [1 (=T o | =14 o] o PP PUT PP 41
5. Debugging the ProjJECE ..o e e 43
6. Running the Code Generator TULONAl..........coeeeeiiiiieiiie e 44
6.1 RUNNING the TULOFIAL....cciiiiieeee ettt e e e e et e e e e e e e e et e e e e e e e e e s bnbbeeeaeaeeaannnbnneeas 44

7. AAAItIONAl INFOIMALION <. ..o 45

LENESANS

RSKRL78L1C R20UT2887EG0102
Rev. 1.02
RENESAS STARTER KIT Apr 04, 2014

1. Overview

1.1 Purpose

This RSK is an evaluation tool for Renesas microcontrollers. This manual describes how to Application
Leading Tool (Applilet) for RL78 together with the CubeSuite+ IDE to create a working project for the RSK
platform.

1.2 Features

This RSK provides an evaluation of the following features:
« Code Generation using Applilet for RL78/L1C.

« Project Creation and Building with CubeSuite+
« User circuitry such as switches, LEDs and a potentiometer

The RSK board contains all the circuitry required for microcontroller operation.

R20UT2887EG0102 Rev. 1.02 ’z NS Page 7 of 49
Apr 04, 2014 ENES

RSKRL78L1C 2. Introduction

2. Introduction

This manual is designed to answer, in tutorial form, how to use Applilet for the RL78 family together with the
CubeSuite+ IDE to create a working project for the RSK platform. The tutorials help explain the following:

e Detailed use of Applilet for MCU peripheral configuration and code generation
e Importing generated code into CubeSuite+ projects

e Integration with custom code

e Building the project CubeSuite+

The project generator will create a tutorial project with three selectable build configurations:

o ‘DefaultBuild’ is a project with debug support and optimisation level set to two.

o ‘Debug’ is a project built with the debugger support included. Optimisation is set to zero.

o ‘Release’is a project with optimised compile options, producing code suitable for release in a product.

Some of the illustrative screenshots in this document will show text in the form RL78XXX. These are general
screenshots and are applicable across the whole RL78 family. In this case, simply substitute for RL78XXX
RL78/L1C

These tutorials are designed to show you how to use the RSK and are not intended as a comprehensive introduction to
the CubeSuite+ debugger, compiler toolchains or the E1 emulator. Please refer to the relevant user manuals for more in-
depth information.

R20UT2887EG0102 Rev. 1.02 R nNS Page 8 of 49
Apr 04, 2014 ENES

RSKRL78L1C 3. Code Generation Using Applilet

3. Code Generation Using Applilet

3.1 Introduction

Applilet is a windows™ GUI tool for generating template ‘C’ source code and project settings for the RL78
family. When using Applilet, the engineer is able to configure various MCU features and operating parameters
using intuitive GUI controls, thereby bypassing the need in most cases to refer to sections of the Hardware
Manual.

Once the engineer has configured the project, the ‘Generate Code’ function is used to generate three code
modules for each specific MCU feature selected. These code modules are name ‘r_cg_xxx.h’, ‘r_cg_xxx.c’,
and ‘r_cg_xxx_user.c’, where ‘xxx’ is a three letter acronym for the relevant MCU feature, for example ‘adc’.
Within these code modules, the engineer is then free to add custom code to meet their specific requirement.
Custom code should be added, whenever possible, in between the following comment delimiters:

/* Start user code for adding. Do not edit comment generated here */
/* End user code. Do not edit comment generated here */

Applilet will locate these comment delimiters, and preserve any custom code inside the delimiters on
subsequent code generation operations. This is useful if, after adding custom code, the engineer needs to re-
visit Applilet to change any MCU operating parameters.

Applilet is released with this RSK, and is available via a web download at:

http://www.renesas.com/applilet download

By following the steps detailed in this Tutorial, the user will generate an CubeSuite+ project called CG_Tutorial.
The fully completed Tutorial project is contained on the DVD and may be imported into CubeSuite+ by
following the steps in the Quick Start Guide. This Tutorial is intended as a learning exercise for users who
wish to use the Applilet code generator to generate their own custom projects for CubeSuite+.

The CG_Tutorial project uses interrupts for switch inputs, the ADC module, the Timer Array Unit (TAU), the
Serial Array Unit (SAU) and uses these modules to perform A/D conversion and display the results via the
UART to a terminal program and also on the on-board LCD panel on the RSK.

Following a tour of the key user interface features of Applilet in 83.2, the reader is guided through each of the
peripheral function configuration dialogs in 83.3. In &4, the reader is shown how to import the project into
CubeSuite+, where the reader will be familiarised with the structure of the template code, as well as how to
add their own code to the user code areas provided by the code generator.

The Applilet installer is contained on the DVD. This installer must be run before proceeding to the next section.

3.2 Applilet Tour

In this section a brief tour of Applilet is presented. For further details of the Applilet paradigm and reference,
refer to the Application Leading Tool Common Operations manual (R20UT2663EJ).

Launch Applilet from Start -> All Programs -> Renesas Electronics Application Leading Tool-> RL78->
VX.xx.xx-> RL78 Vx.xx.xx Application Leading Tool. Vx.xx.xx represents the installed version number,
different versions of Applilet can be started from here. On first launch, the user should be presented with the
new project dialog as shown in Figure 3-1. To get to this dialog on subsequent launches, from the Applilet
menus select ‘File -> New'.

R20UT2887EG0102 Rev. 1.02 RENESANS Page 9 of 49
Apr 04, 2014

http://www.renesas.com/applilet_download

RSKRL78L1C

3. Code Generation Using Applilet

TR

Microcantroller: [RL7S

d

IJzing microcaontroller:

Ilzing compiler:

- RL7S/L13(48KE)

- % RL7S/L13(64KE)

- % RL7S/L13(96KE)

- % RL7S/L130128KE)
- % RL7S/L1C[E4KE)

- % RL7S/L1C[96KE)

- % RL7S/L1C0128KE)
- % RL7S/L1C0192KE)
- % RL78/L1C[256KE)
I RSF110MJ

B REF111M

4§ RSF110P)

i RSF111P)

1 . D1 Fo/DTCACOnTA A E D

m

EWRL A

GCCRLYS far
esztudio

RO zize: 256KE, Pin count: 100

Project name: CG_T utarial

Place: C:hwiorkspace

- Browse

Ok,][Canicel]

Figure 3-1 New Project Dialog

In the ‘Using Microcontroller’ pane, locate and expand the ‘RL78/L1C(256KB)’ item and select ‘R5110PJ". In
the ‘Using Compiler’ pane, ensure that ‘CA78KOR is selected. Choose a suitable location for storing the
Applilet-generated files, in the example shown in Figure 3-1 this is ‘C:\\Workspace’. Also, choose a suitable
name for the project (CG_Tutorial in our example).

R20UT2887EG0102 Rev. 1.02

Apr 04, 2014

RENESAS

Page 10 of 49

RSKRL78L1C 3. Code Generation Using Applilet

4§ Application Leading Tool for RL78/L1C - CG Tutorial.cgp =RACE X
Eile Miew Peripheral Functions QCptions Help
O W% e <l cann -
1 i_gl Peripheral Functions | | Code Preview |[F% Property x
o W | Furct %5 Generate code | % & D G] @) 99 & S oA T oof ey E 2D @ @ O
eripheral Functions - -
f! Common/Clock G Pin assignment | Clock setting | On-chip debug setting | Confirming reset source | Safety functions | it
[#-m' Port Function Fin assignment setting
[#--m¢ Timer Aray Unit
-m' Timer KB2 Once the pin azsignments have been fixed it iz not possible to change them later.
_____ ' High Accuacy B A news project must be created to change the settings.
----- w' Interval Timer = =
(- Clock Dutput/Bu; Fix settings
----- @ ‘Watchdog Timer - - -
_____ w A/D Converter FIOR register Function Port setting e
- D8 Convertor PIORD TIOG/TO0S ’F'42 M
[-we Compatstor PIORO TIo7/TO07 P23 M
[#--m' Serial Aray Unit
..... W' Cerial Interface |1 PIORD TOOO/TI00 [PDB M
----- W' LCD Contraller/D PIORD TOO1/TIO [P32 -
----- w' Data Transfer Ca
----- w' Event Link Contr) = FIORD Tioz/Tanz ’PDE
----- W' Interupt Functior FIORD TIOZ/REMOOUTTOOZ ’PSD ~
""" * Kep Interupt Fun FIORD TI04/T004 P22 -
----- w' Wolage Detectior
Bw‘f Code Preview FIORD TIOE/TOOB [PD? -
Comrnon PIORT TWD1/5010 P02 -
Clock Generator
Fort Function FIOR1 R=01/50A10/5110 ’F'D'I A
Timer Array Unit FIOR1 SCL10/_SCK10 [P0 M
Timer KB2
High Acouracy R FIOR2 PCLBUZD P10 -
Interval Timer PIOR3 INTP? P10 ~
Clock Output/Bu;
Watchdag Timer FIOR3 INTFS ’PDB A
A7D Converter 2
L4 Convertor 1 LI >
Comparator Output 7 x
Sernial Aray Unit
Serial Interface 111
C'ata Transfer Co
LCD Cantraller/D
o Fuent | ink Conke T
€ I 3 Pl i [:
MCURLTAALLC{256KE) Chip:RSF110P)
k =

Figure 3-2 Initial View

Applilet provides GUI features for configuration of MCU sub systems. Once the user has configured all
required MCU sub systems and peripherals, the user can click the ‘Generate Code’ button, resulting in a fully
configured CubeSuite+ project that builds and runs without error.

Navigation to the MCU peripheral configuration screens may be performed in three different ways:

e By double-clicking the required function in the Project Tree -> Project Name -> Peripheral Function on
the left.

e By using the menu item ‘Peripheral Functions’

e By using the graphical toolbar in the main application area, when the ‘Peripheral Functions’ tab is
selected.

It is also possible to see a preview of the code that will be generated for the current peripheral function
settings by double-clicking the required function in the Project Tree -> Project Name -> Code Preview on the
left.

The ‘View' menu item may also be used to switch between main area tabs for Peripheral Function, Code
Preview and Property tabs.

R20UT2887EG0102 Rev. 1.02 RENESAS Page 11 of 49
Apr 04, 2014

RSKRL78L1C 3. Code Generation Using Applilet

When Applilet is launched for the first time the user is presented with the ‘Pin assignment’ sub-tab under the
‘Peripheral Functions’ tab. Certain MCU pins in the RL78/L1C are configurable for different peripheral
functions. In order to proceed to setting up the MCU peripheral functions, the user must first fix these pin
assignments using the ‘Fix settings’ button. Once fixed, these pin assignments may not be changed and it will
be necessary to re-start Applilet with a new project if different pin assignments are required.

For the purposes of this Code Generator Tutorial using the RSK, the default settings shown in Figure 3-2
above are applicable. The reader may click ‘Fix settings’ and proceed onto to the next Code Generation
section.

3.3 Code Generation

In the following sub-sections, the reader is guided through the steps to configure the MCU for a simple project
containing interrupts for switch inputs, timers, ADC and a UART.

331 Common/Clock Generator

Figure 3-3 shows a screenshot of Applilet with the Common/Clock Generator function open. Click on the
‘Clock setting’ sub tab. Configure the system clocks as shown in the figure. In this tutorial we are using the
on board 12 MHz crystal for our main system clock fMAIN and the on board 32.768 kHz crystal for our sub
clock fSUB. The CPU and peripheral use fMAIN and the RTC/Interval Timer/LCD use fSUB.

The selections for sub tabs ‘On-chip debug setting’, ‘Confirming reset source’ and ‘Safety functions’ can be left
at their defaults.

R20UT2887EG0102 Rev. 1.02 RENESANS Page 12 of 49
Apr 04, 2014

RSKRL78L1C

3. Code Generation Using Applilet

4% Application Leading Tool for RL78/L1C - CG_Tutorial.cg

File

O E H | % 8 M| cankr
7 x

Wiewy Peripheral Functions

Froject Tree

Options

B{f; CG_Tutorial
- Peripheral Functions
" Common/Clack Generator
Port Function
Timer Array Unit
Timer KB2
High Accuracy Realtime Clock
Interval Timer
Clock Output/Buzzer Dutput
& “watchdog Timer
A/D Converter
DA% Convertar
Comparator
Serial Array Unit
Senial Interface I1C&
LCD Contraller/Driver
[rata Transfer Contraller
Ewent Link Contraller
Interrupt Function
K.y Interupt Function
Waltage Detection
- Code Preview

- Comman
Clock Generator
Port Funchion
Tirner Array Unit
Timer KB2
High Accuracy Realtime Clock
Irterval Tirmer
Clock Dutput/Buzzer Dutput
“watchdog Timer
A/D Converter
DA% Convvertor
Comparatar
Serial Array Unit
Serial Interface 104
Drata Transfer Contraller
LCD Controller/Driver
Eent Link Contraller
Intermupt Function
Key Interupt Function
Waltage Detection

Help I
f_ﬁl Peripheral Functions ‘_,;,(Zode Preview Property x
T Generate code | % ik (@) @] D 9 & G M P o mE G4 DD @ @ O
| Pin azsignment Ciock sefting | On-chip debug setting | Confirming reset source I S afety functions | it
Operation mode zetting
@ High speed main mode 2.7 (] £ VDD £ 3.6 [V)
() High speed main mode 2.4 [¥) 2 VOO ¢ 3.6 [V)
M ain spstem clock [fRAIN] zetting
() High-speed OCO [fH)/PLL clock (fFLL) @ High-speed system clock (i)
High-speed OCO clock (IH] source setting
@ High-speed OCO clock [fHOCO) () PLL output clack [fPLL)) Stop I
High-speed OCO clock ((HOCO) setting
Frequency 43 * [MHz]
High-speed sypstem clock [fidi<] setting
@ ¥ oscillation [F+] () External clock input [fE:)
Frequency 12 [MHz]
Stable time: 27184 » 21845333 [us]
PLL output clock [fPLL) setting
Frequency 43 [MHz] B
High-speed OCO clock [fIH] setting
Frequency fHOCO/2 v 24 [MHz]
USE clock [fUSE] zetting
48
Subsystemn clock [fSUB] setting
Operation
@ #¥T1 oscilation [4T) () Esternal subclock input [fExT)
Frequency 32768 [kHz)
#T1 oscillator oscillation mode setting Lo power consurmption -
Subspstem clack in STOP, HALT made setting Enables supply -
Internal low-speed ozcillation clock (L) setting
Frequency 15 [kHz]
RTC/Anterval timer/LCD operation clock zetting
RTC/Interval timer/LCD operation clock fSUE + 32768 [kHz)
CPU and peripheral clock zetting
CPU and peripheral clock [fCLK) fhd= + 12000 [kHz)
1 m 3
Cutput 3 x
] m ;

MCLRLTS/L1C(256KB) Chip:R5F110P)

Figure 3-3 Clock setting tab

Proceed to the next section on Interrupt Functions. Although the next item in Applilet is Port Function, it is
instructive to first configure the other peripherals, thereby reserving some of the I/O pins such that they may
not be selected for normal I/O in the tab Port Function later.

R20UT2887EG0102 Rev. 1.02
Apr 04, 2014

RENESAS

Page 13 of 49

RSKRL78L1C

3. Code Generation Using Applilet

3.3.2

Interrupt Functions

Referring to the RSK schematic, SW1 is connected to INTPO, SW2 is connected to INTP1 and SW3 is
connected to INTP2. Navigate to the ‘Interrupt Functions’ tab in Applilet and configure these three interrupts
as shown in Figure 3-4 below.

-

[

4

Interval Timer

Clock Output/Buzzer Output
wiatchdog Timer

&40 Coreeerter

D& Corveertar

Comparatar

Sernial Array Unit

Senial Interface |1C4

D'ata Transfer Contraller
[»

L

ﬁ Application Leading Teol for RL78/L1C - CG_Tutonial.cgp =aR=N X)
File Wiew Peripheral Functions Options Help
OB W % 2@ cankr =
Fraject Tres ax ﬁ_" Peripheral Functions* | | Code Preview |75 Property x
E|{f; CG_TUt_DfiEﬂ] * || %] Generate code | o i) 0 T @) D) 42 Gi dh A T off my B DD o £ O
E|£ Peripheral Functionz INTPD setting
" Camman/Clack Generatar -
[-m Part Function INTPO yalid edge Falling Fricrity High
[-m' Timer Aray Unit .
. IMTP1 zetting
[-m' Timer KB2
----- w' High ccuracy Realtime Clo INTP1 Validedge Faling Ay High
----- w' Interval Timer :
IMNTPZ setting
[#-m' Clock Output/Buzzer Output - -
_____ & Watchdog Timer INTP2 Walid edge Faling Pricrity High L
D: Eﬂi EO“\’B'EB' INTP2 sefting
orwertar -
[#-m Comparator D INTF3 fi=ling Low
[Ser!al Array Unit INTP4 setting
----- ' Sernial Interface [1C4 Fali L
..... ' LCD Controller/Driver = [T NTP4 = -
----- w' Data Transter Contraller INTPS setting
----- w' Ewert Link Contraller -
..... @ Interupt Function [T INTPS il Lo
----- ' Key Interupt Function INTPE setting
----- w' VYoltage Detection i
Fal L
9"'..{.4(Code Preview [InTPs — .
@~ Comman INTP? zetting
Clack Gen.erator [] INTP? Falling Law
Port Function
Tirner Array Unit
Tirmer KB2 x
High &, Real-time Cl
igh &ccuracy Realtime Clc Dutput 1 x

MCURLTEL1C256KE) ChiptRSF110P)

3.3.3

Figure 3-4 Interrupt Functions tab

LCD Controller/Driver

Navigate to the ‘LCD Controller/Driver’ tab in Applilet and configure the LCD as shown in Figure 3-5 below.

Note the exclamation mark next to ‘SEG51’ and SEG52'.

Move the mouse pointer over these exclamation

marks to see the tool tip pop-ups, indicating that these pins have already been configured for INTP1 and
INTP2 respectively.

R20UT2887EG0102 Rev. 1.02
Apr 04, 2014

RENESAS

Page 14 of 49

RSKRL78L1C 3. Code Generation Using Applilet

% Application Leading Tool hﬁm&lﬂlﬂ1
Eile Wiew Peripheral Functions Options Help
O = H SR | catkr -

F'rc-iec:.t“Tree 1 x ,E_x' Peripheral Functions* | & Code Preview |5 Property x
=L CO_Tutorial %o Generate code | S5 £ @5 B] 45 09 8 G M0 T o e B DD o @ O

=] zﬂl Peripheral Functions

g Common/Clock Gene LCD operation setting
[#-m Port Function () Unused @ Used
[#-m Tirner Aray Unit Disel ; .
G-m? Timer KB2 |sp_ay wavebarm etting _
.m High Accuracy Feak @ A waveform) B wavefarm
o Interval Timer Drive voltage generator zetting
: Clock Output/Buzzer “ Estemal resict divisi thod @ Intemal voltags boosi thod
g Watchdog Timer) Eutermal rezistance division metho 2 Internal woltage boosting metho
- A0 Converter () Capacitar zplit methad
-8 DA Convertor Dizplay mada settiry
[+ Comparatar FAEp d
[+]-m Serial Array Unit
- Serial Interface 104 @ Mumber of time slices 4 [1/3 biaz mode] -
g LCD Contraller/Dirive Disnlay dat i
---m' Data Transfer Contro ISp_a‘l'l 418 aga seting)
- Ewerit Lirk Cartraller @ A-pattern area data (") B-pattern area data
Interrupt Function () Blink dizplay [it is mubual selection about & pattern and B patter)
m FeyInterrupt Functio
' Voltage Detection Reference voltage setting
B---‘;f Code Preview VLCO voltage 4.50 - V]
i Common S . .
Clock Gereratar egment output pin sething
Port Function SEGOACOM4 SEG1ACOMS SEGZACOME SEGIACOMY SEG4
Timer Anay Unit SEGH SEGE SEGT SEGH SEGH
Tirmer KB2
High Accuracy Fieak SEG10 SEG11 SEG1Z SEG13 SEG14
Interwal Timer SEG15 SEG1E SEG1? SEG18 SEG19
Clack Output/Buzzer
v v v v v
Watchdog Timer SEGZ20 SEGH SEGZZ2 SEGZ3 SEG24
A/D Corveerter SEG25 SEGZE SEGZ? [SEG24 [F] SEG249
E*’""‘ C'J“t"e”c“ [F] SEG30 [F] SEG3! SEG32 SEG33 SEG34
omparator
Serial Array Unit SEGIE [] SEG3E [] SEGE7 [] SEG3S [] SEG29
Sefial Interface I1CA SEG40 SEGH SEG42 SEG43 SEG44
Data Transfer Contro
LCD ControllerDrive SEG45 SEG4E SEG47 [] SEG4S [] SEG43
Ewvent Link Contraller [] SEGED [] SEGHT % [] SEGE2 % [] SEGS3 [] SEGE4
|terrupt Function
Ky Interrupt Functio [SEG55
Vaoltage Detection Clock zetting
Souwrce clock selection fhd sl * 12000 [kHz]
Clock [LEDCL] zelection fidalM2™E 1831 [Hz]

[Current frame frequency iz 45 8Hz)

Output a3 x
4 1n r]« 1 3
FACLERLTE/LLC(256KE) ChiptRSF110P)

Figure 3-5 LCD Controller/Driver tab
3.3.4 Timer Array Unit

Navigate to the ‘Timer Array Unit’ tab in Applilet. Refer to the screenshot shown in Figure 3-6. Use the pull-
down controls to configure Channels 0-3 as Interval Timer as shown. Channel O will be used as an interval
timer for generation of accurate delays. Channels 1 and 2 will be used as timers in de-bouncing of switch
interrupts.

R20UT2887EG0102 Rev. 1.02 RENESAS Page 15 of 49
Apr 04, 2014

RSKRL78L1C 3. Code Generation Using Applilet
% Application Leading Tool for RLT&/L1C - CG_Tutorial.cgp e o
Eile Miew Peripheral Functions Options Help
O & W ES | S | camskor -
Project Tree B ox /Er_.‘i! Peripheral Functions*] A Code Preview x
= : E) e P
El{]'_a, LG_Tutorial || 55] Generate code | 5 i () 40] @)) g G s T el e X,
=24 Peripheral Functions - — -
..... .r CommaondClock Ge i General sefting | Channel 0 | Channel 1 | Channel 2 | Channel 3 | Channel 4 | Charnel *
g Port Function Functions
Gel-m Timer Auray Linit Channel 0 Interval tirmer - !
[+-m Timer kB2 - : =
_____ w High Accuracy Res Channel 1 Inkerval tirer -
----- ' Interval Timer Channel 2 Inkerval trmer A 3
[+-m' Clock Output/Buzz
_____ & ‘Watchdog Timer Chatinel 3 Urused -
----- w' A0 Converter 4 Channel 4 Unused -
l G-me D74 Convertor Channel 5 Unuszed -
[[+ Comparator
F-m Serial Array Urit Channel B Unused -
----- W' Senial Interface IIC Channel 7 Unused -
----- & LCD ControllerDriv
----- ' Data Tranzfer Cant i
----- ' Ewent Link Controll «| r R
----- @ Intermupt Function
----- w' Fey Intermapt Funct Output a x
----- w' “oltage Detection
1[5 Cede Drcasican
1| 1 F 1| 1] F
MACLERLTE/LLC256KE) Chip:RSF110P)

Figure 3-6 Timer Array Unit tab — General setting

Navigate to the ‘Channel 0’ tab and configure channel 0 as shown in Figure 3-7. This timer is configured to
generate a High priority interrupt every 1ms. We will use this interrupt later in the tutorial to provide an API for
generating high accuracy delays required in our application.

R20UT2887EG0102 Rev. 1.02
Apr 04, 2014

RENESAS

Page 16 of 49

RSKRL78L1C

3. Code Generation Using Applilet

& Applicaticn Leading Tool for RL78/L1C - CG_Tutorial.cgp [=R ﬂ_hj
Eile Miew Peripheral Functions Options Help
O B WS 2@ canskr =
Project Tres X %l peripheral Functions | |5 Code Preview | [Property x
= [CB_Tutor ~|[oenerstecote | L su @ % EI D) @ G BT W P O
=28 Peripheral Functions -
..... .r CommondClock, Ge | General zetting | MJ Channel 1 | Channel 2 | Channel 3 | Channel 4 | Channel 5 | Channel & | Channel 7
':""hf_'_- Fort Function Interval timer zetting
[H-age Tirmer Array Unit . :
Ciome Timer KB2 _ Interval walue [16 bits) 1 s + [Actual walue: 1] =
----- w' High Accuracy Res [Generates INTTMOD when counting is started
""" - :;Iter:aDlTImEIa’E Interrupt setting —
[H]--m ock Output/Buzz i .
..... & ‘watchdog Timer End of timer channel 0 count, generate an intermupt [IMTTk00)
----- w40 Corveerter . Prricority High -
[+-m D24 Coreeertor
[+]-m¢ Comparatar
[+-m Senal Aray Unit
----- N Senal Interface 1CE
----- & LCD Controller/Driv
----- w' Data Transfer Cont i
i Ewent Link Controll o« m "
. Interupt Function
----- ' Key Interrupt Funct Output 1 x
----- w' Yoltage Detection
€| i 2 i I b
MCLERLTB/L1C{256KE) Chip:RSF110P)
" —

Figure 3-7 Timer Array Unit tab — Channel 0

Navigate to the ‘Channel 1’ tab and configure channel 1 as shown in Figure 3-8. This timer is configured to
generate a High priority interrupt after 20ms. This timer is used as our short switch de-bounce timer later in

this tutorial.

-
ﬁ Applicaticn Leading Tool for RL78/L1C - CG_Tutorial.cgp

== X

File Miew Peripheral Functions
o

=+ 7§ CG_Tutarial -

Project Tree

Dptions Help

O E WS 2] s camnkr

-

f,jg Peripheral Functions] ‘;,f Code Preview
?éj Generate code | % S -_1") 3

o Property

D) @S T e D

Elﬁ:;é Peripheral Functions
g Common/Clock Ge

| General zetting | Channel 0 | Ml Chatinel 2 | Chatinel 3 | Channel 4 | Channel & | Chatinel & | Chatinel 7

. Part Function
- Timer Aray Unit
Timer kB2
High Accuracy Res
Interval Timer
Clock Output/Buzz
- ‘watchdog Timer
A/D Corvverter
DAt Corwertor
Comparator
Serial Array Unit
Serial Interface |1CE
. LCD Controller/Drivl
Data Transfer Cont
Ewent Link Controlh
" |mkermupt Function
Ky Interrupt Funct
Yaltage Detection
=2 Code Preview
Al Common

m

Operation mode zetting

@ 16 bits

Interal timer setting

Interval walue [16 bitz)

(") Higher 8 bits

[7] Generates INTTHMOT when counting is started

Interpt zetting

() Lower B bits

20
100
a0

End of timer channel 1 count, generate an interupt (INTTROT]

Fricrity

High

Law

ms

s
p

(7 Higher and lower 8 bits

-

[Actual value: 20)

L1

m

Clack Generator
Part Funchion

- Timerdray Urit =
1 e k

1L}

MCU:RLTE/L1C(256KE) Chip:RF110P)

Figure 3-8 Timer Array Unit tab — Channel 1

R20UT2887EG0102 Rev. 1.02

Apr 04, 2014

RENESAS

Page 17 of 49

RSKRL78L1C

3. Code Generation Using Applilet

Navigate to the ‘Channel 2’ tab and configure channel 2 as shown in Figure 3-9. This timer is configured to

generate a High priority interrupt after 200ms.
this tutorial.

This timer is used as our long switch de-bounce timer later in

% Application Leading Tool for RL78/L1C - CG_Tutorial.cgp

|

File Wiew Peripheral Functions Options Help
O B WS @) R | camkir =

Project Tree ax fj_‘!' Peripheral Functions

A code Preview
& CB_Tutorial “ || 5] Generate code | % S @ B] @) 99 o Gt T P o A D @ @ O

o Propetty x

=] ;gl Peripheral Functions

" Common/Clock Ge | General zetting | Channel 0 | Channel 1 | Channel 2 | Channel 3 | Channel 4 | Chanrel 5 | Channel B | Channel ¥ it

: Part Funchion Irtereal timer setting
Tirner Array Unit

[H--m Timer KB2

----- w' High Aiccuracy Res
----- ' Interval Timer

- Clock Qutput/Buzz| E
----- & ‘Watchdog Timer

----- w' A/D Corveerter Priarity
[H--mt DA Convertor
[+--m' Comparator

[H--mt Senial Array Uit

----- w' Serial Interface 11C2
----- & LCD Cantraller/Driv
----- w' Data Transfer Cont
----- w' Ewvent Link Controll
----- & Interrupt Function
----- ' Key Interrupt Funct
----- w' Yoltage Detection
=5 Code Preview
Commaon

Xy

Interval value (16 bitg]

Interupt setting

i

7] Generates IMTTHMOZ when counting is started

End of timer channel 2 count, generate an intermupt (INTTMOZ)

200 ms w [Actual vale: 200)

m

High -

L1 2

Clock Generator

Part Function

Timer Array Unit -
« [[= p « [1

Output

PACL:RLYB/L1C(256KE) Chip:RSF110P)

Figure 3-9 Timer Array Unit tab — Channel 2

3.3.5 Watchdog Timer

The Watchdog Timer is enabled by default. Navigate to the Watchdog Timer tab and select ‘Unused’ for the

Watchdog timer operation setting.

3.3.6 A/D Converter

Navigate to the ‘A/D Converter’ tab in Applilet. Refer to the screenshot shown in Figure 3-10 and configure
the ADC as shown. We will be using the ADC in 12-bit one shot mode on the ANIO input, which is connected

to the RV1 potentiometer output on the RSK.

R20UT2887EG0102 Rev. 1.02
Apr 04, 2014

RENESAS

Page 18 of 49

RSKRL78L1C 3. Code Generation Using Applilet

& Application Leading Teol for RL78/11C - CG_Tutorial.cg gm |
Eile Miew Peripheral Functions Options Help
OB WG e 4@ cankr -
Project Tree 1 X E,_;J Peripheral Functions®] S Code Preview Property x
= - iy - . P "
SR CoTuoral FlGeneratecode | L BD BT DN B U BT EE S @ 0
Peripheral Functions
f CammandClock Generatar A/D convertor operation setting |+
[-w' Port Function) Unuzed @ Usged
g Timer Anay Unit Comparator operation zetting
G- Timer KB2) Stoy @ Operation
----- w' High Accuracy Realtime Clock - " 2 -P
Interval Timer Resolution setting
¢ Clock Output/Buzzer Dutput @ 12 bits () Bhits
----- @ ‘Watchdog Timer)
WREF]| th
----- w' A/D Converter _ [+] seting _
[+-w¢ D/A Conwertor @ Av/DD © AVREFP
g Comparator WREF[-] zetting
Serial &rray Uit @ AVSS) AVREFM
Serial Interface |1CA Ti de setti
" LCD Controller/Driver R |r7g
Data Transfer Contraller @ Software tigger mode
) Event Link Controller () Hardware trigger no wait mods
" Interupt Function _ . .
Kep Intemupt Function 1 Hardware trigger wait mode
----- w' Yaltage Detection INTTHO1
9---‘_3' Code Preview) .
@ Commoh Operation mode zetting
Clock Generator () Continuous select mode () Continuous scan mode :
Part Function @ One-shot select mode () One-shat scan mode
Tirner Array Urit
Timer KB2 ANID - ANIE analog input selection ANITD - ARIE -
High ACCL.MCP Rieaktime Clock ANITE - ANIZT analog input zelection
Interval Timer
Clock Output/Buzzer Output ANITE ANMITT ANITE ANIT9
Watchdog Timer
AMIZ0 v AMIZ1 v
&/D Converter O 0
D8 Corwertar &/D channel selection ANID -
Comparator L .
Serial Auray Unit Conversion time setting
Serial Interface |ICA FPower voltage range 274 AVDD £ 36 - [¥)
[ata Transter Controller Conversion time made Marmal 1 -
LCD Controller/Driver o
Event Link Controller Conversion time 432ACLE * 36 [[TE3}
IKnterlrutpt Fur:thlon i Conversion result upperdlower bound value getting
F sy gnc 1an @ Generates an interupt request INTAD) when ADLL < ADCRH < ADUL
Woltage Detection
() Generates an interupt request [INTAD] when ADUL < ADCRH or ADLL > ADCRH
Upper bound (A0 UL) value 255
Lawer bound [ADLL] value 0 b
Intermupt zetting
Use A/D intermpt [IMTAD)
Friarity Low -
Qutput 3 x
4 [l | 3
MCLERLTEL1C(256KB) Chip:RSF110P)
Figure 3-10 A/D Converter tab
R20UT2887EG0102 Rev. 1.02 RENESANAS Page 19 of 49

Apr 04, 2014

RSKRL78L1C 3. Code Generation Using Applilet

3.3.7 Serial Array Unit

Navigate to the ‘Serial Array Unit’ tab in Applilet and refer to the screenshot shown in Figure 3-11. In the
RSKRL78L1C UART1 lines TXD1 and RXD1 are connected to the MAX232R RS-232 line transceiver as
shown in the schematic. Internally in the RL78/L1C MCU, UART1 is implemented in SAUO Channel 2. As
shown in Figure 3-11, use the pull-down control for Channel 2 and select UART1. Configure this UART for
Transmit/receive function. The UART1 tab above will now be activated. Select this tab and refer to Figure

3-12.

— = —_—————————————
% Application Leading Tool for RL7E/L1C - CG_Tutorial.cgp =N
File Miew Peripheral Functions Options Help
O 5 W ES| S @ 8| camnskr -
Project Tree o x /E,_g' Peripheral Functions®] & Code Preview | [P Property x
=0 Co_Tuorar e Genersecore | Zsw BB D MBI MFE®
L:_I‘,'im'iI Peripheral Functions _ _ hd
..... @ Common/Clock Ge Sefial Aray Unit O | Serial Amay Unit 1 | “
-q PortFunction | | i Channel : [U&RTO | usRT1 | csio0 | csino | ncoo | icio | =
[Timer Array Uit Fumagios .
| [H--md Timer KBZ
----- w' High Accuracy Re: Charnel 0 Unuged hd
----- w' Interval Timer b Chanmel1 Unused -
[+ Clock Output/Buzz
_____ .r ‘wWatchdog Timer Channel 2 JaRT1 - Tranzmit/receive function -
----- & A0 Corvverter T Ureed
[DA Convertor
- Comparator -
f-ge Seral Aray Unit < i "
----- N Senial Interface [1CE
----- @ LCD Controller/Driv Output X
----- w' Data Trangfer Cont _ il
i« I I) 4 | m t
MCLRLTE/ALLC(256KE) Chip:RSF110P)

Figure 3-11 Serial Array Unit 0 tab — Channel function selection

Configure UARTL1 for 19200, 8, N, 1 as shown in Figure 3-12. Ensure that both callback function settings are
selected. Ensure the same settings are made for the Transmit tab and that the Transfer mode is set for ‘Single

Transfer Mode'.

R20UT2887EG0102 Rev. 1.02 RENESAS Page 20 of 49
Apr 04, 2014

RSKRL78L1C 3. Code Generation Using Applilet

% Application Leading Tecl for RL78/L1C - CG_Tutorial.cgp [ilﬂléj

Eile Wiew Peripheral Functions Options Help
OB WG] 2 W canskor -
Project Tree rx j_’,_ﬂ Peripheral Functions*] I Code Preview |75 Property X
SR A Tuoral | Generate code | 58 () @ T)) 8 Gk % M T sl 9 5 @ @ O
= ﬂF‘enphelaI Functions - -
CammandClock Ge Serial Array Unit 0 | Serial Aray Unit 1 -
@ PortFunction Channel | UaRTD| UARTT: | caion | csno [ncoo [icio |

Timer Array Unit - - I =
Timer KB2 Beceive | Tranamit | =—_—— Ensure the same settings are made
High Accuracy Res Diata length setting for the Transmit tab and that the
Interval Timer @ 7 hits @ @ hits Transfer mode is set for 'Single
Clock Output/Buzz i i Transfer Mode'.

W atchdog Timer Transfer direction setting

. A/ Converter @ L5E) M5B

U D /& Carwertar . .
Parity setting
Il t-m’ Comparatar i . .)

" Serial drray Unit @ Mone () Zem) Ddd () Ewen

Serial Interface |ICE Stop bit length setting
LCD Contraller/Diris 1 bit fived
Data Transfer Cont| —
Event Link Contralll Receive data level zetting

» Interupt Function @ Momal) Reverse
ke Interrupt Funct .

Tranzfer rate zetting

----- w' Woltage Detection
-3 Code Preview Baudrate 19200 - [bpsg)
i1~ Comman

Clack Generator)
Part Functian Interrupt zetting

Tirner Array Uit Reception end interrupt priority [INTSR1] High -
Timer KB2

High &wecuracy Res
Intereal Timer
Clock Dutput/Buzz
W atchdog Timer
A£7D Conwerter

D /& Conwertar —
Comparatar

Serial Aray Unit

Sernial Interface [1CE Output
D ata Transfer Cont

; LCD Cortroller/Driv =
< | 1 | 3 4 1

MCURLTS/L1C(256KE) Chip:RIF110P)

[Current eror: +0L16% the minimun is -4 5% the mazimum iz +4.63%)

[7] Reception emor interrupt priotty (INTSRET) Lo

Callback function setting
Reception end Reception errar

4| i

Figure 3-12 Serial Array Unit 0 tab — UART1 settings

3.3.8 Port Function

Referring to the RSK schematic, LEDO is connected to P05, LED1 is connected to P07, LED2 is connected to
P41 and LED3 is connected to P42. Navigate to the ‘Port Function’ tab in Applilet and configure these four 1/0
lines as shown in Figure 3-13 and Figure 3-14 below. Ensure that the ‘Output 1’ tick box is selected. This
ensures that the code is generated to set LEDs initially off.

R20UT2887EG0102 Rev. 1.02 RENESAS Page 21 of 49
Apr 04, 2014

RSKRL78L1C

3. Code Generation Using Applilet

ﬁ Application Leading Tool for RL78/L1C - CG_Tutorial.cgp

mﬁlg

4

Peripheral Functions
----- @ Common/Clock Ge

[+ Port Function
[H-m¢ Timer Armray Unit
[H-m Timer KB2
w' High Accuracy Re:
W' Interval Timer
' Clock Output/Buzz

‘Watchdog Timer
A/D Converter
D/4 Convertor
Comparator

Serial Array Unit
Serial Interface [1C£
+ LCD Controller/Driv
D ata Transfer Cont
Ewent Link Contrall
Interupt Function
Ky Interrupt Funct

w' Volage Detection

-J5 Code Preview

Common

Clock Generator
Part Function
Timer Array Unit
Timer KB2

High Accuracy Re:
Interval Timer
Clock Output/Buzz

[‘whatrhdnn Timer
I 2

File Wiew Peripheral Functions ©ptions Help

U E W % e @ canar -
Project Tree 1 x E,l Peripheral Functions I/E Code Preview Property] x
& C6_Tuora “ |5 Generate code | 2% s @ @ T D 9 B Ou M T w A @O

[Pl | Portt | Pon2 | Pon3 | Portd | Port5 | Porté | Por? | Fort12 | Fort13 | Fort14 | Fonis |

»

Pio

@ Unuzed () In) Out [Pull-up [T] TTL buffer [M-ch Output 1
-PO
@ Unuzed () In) Out [Pull-up [] TTL buffer [M-ch Output 1 |
- P02 =
@ Unused @ In) 0w] Pullup [T N-ch Output 1
- P03
@ Unused 0 In 0 Out f O] Pullup Qutput 1
—F'D4_ The following pin conflicts have been detected. You must change the setting in that module before you can use it for other purp;e.
@ Unused P03 was used as INTP1.
- P05
) Unused) In @ Out Pull-up Output 1
- P0G
@ Unuzed () In) Out [Pull-up Qutput 1
- P07
) Unused) In @ Out Pull-up Output 1
1 i | b
Clutput 3 x

4 1

MCLRLTS/L1C{Z56KE) Chip:RIF110P)

Figure 3-13 Port function tab — Port0

R20UT2887EG0102 Rev. 1.02

Apr 04, 2014

RENESAS

Page 22 of 49

RSKRL78L1C

3. Code Generation Using Applilet

’ﬁ Application Leading Tool for RL78/L1C - CG_Tuterial.cgp

=]

(5]

Options Help

-

n -~
e

-
a3l 3 B |

')

CReekoEEbEEs

[W]
L .o

.
B
-
i
=
W

-

-

2 Peripheral Functions

" Port Function

Common/Clock, Generat

Tirner Array Unit

Timer KB2

High Accuracy Real-time
Interval Timer

Clock Dutput/Buzzer Ou
‘watchdog Timer 3
&/D Converter

D/ Convertor
Comparator

Serial Array Unit

Serial Interface [ICA
LCD Contraller/Driver
Data Transfer Contraller
Ewent Link Controller
Interrupt Function

Key Interrupt Function
Yoltage Detection

Code Preview

Cormman

Clock Generator
Fort Function
Timer Array Unit
Timer KB2

Lt e n s s P ity

<« |

m | 3

?jj Generate code

Eile Miew Peripheral Functions
0 & W B @ sl carskr
Project Tree 3 x
B--[ﬁ E_E_Tulorial >
L3

LMOA0DOL0uS M TEwE D @0

| _E,_g Peripheral Functions IE Code Preview .\" Property |

| Poitd | Part1 | Poit2 | Port3 | Pottd | Ports | Porté | Port7 | Pat12 | Part13 | Portl4 | Port15 |

>

- P40

@ Unused
-P41

T n

) Out

[T Pullup

hateait 1
Dutput 1

m

() Unused
P4z

T n

Dutput 1

) Unused

Pull-up

[N-ch

Output 1

P43

@ Unuszed
-P44

[Pullup

[TTL buffer

[N-ch

Dutput 1

@ Unused
-P45

) Dut

[T Pullup

[TTL buffer

[N-ch

Dutput 1

@ Unused

) Out

[Pullup

Dutput 1

4R

@ Unused

@ Out

[Pullup

|

(L]

Dutput 1

Cutput

4

1

MCLERLTE/L1C(256KE) Chip:R5F110P)

Figure 3-14 Port function tab — Port4

Peripheral function configuration is now complete. Save the project using the File -> Save menu item, then
click ‘Generate Code’. The Output pane should report ‘The operation of generating file was successful, as
shown Figure 3-15 below.

R20UT2887EG0102 Rev. 1.02

Apr 04, 2014

RENESAS

Page 23 of 49

RSKRL78L1C

3. Code Generation Using Applilet

% Application Leading Tool for RLY8/L1C - CG_Tutorial.cgp EE

Eile View Peripheral Functions
O E WS 2 | carnkor
Project Tree 7 x

=-{ 7% CG_Tutorial

- Peripheral Functionz

..r Commons/Clock, Generator
g Port Function

g Timer Arap Unit

Tirmer KKB2

High Accuracy Real-time Clock
Interval Timer

Clock Output/Buzzer Output
= Watchdog Timer

= /D Canwerter

O/ Corevertor
Comparator

. Serial Anrap Urit

Serial Interface 1104

= LCD Contraller/Driver
Data Tranzter Controller
Ewent Link Controller
Intermapt Function

K.ey Interrupt Function

----- w' Yoltage Detection

=3 Code Preview

Camman

Clack Generatar

Part Function

Tirner Array Unit

Timer KB2

High Accuracy Real-time Clack
Interval Timer

Clock Output/Buzzer Output
‘watchdog Timer

&740 Converter

D/ Corvertor
Comparator

Serial Aray Unit

Serial Interface 1104

Data Tranzter Controller
LCD Controller/Driver
Ewent Link Controller
Intermipt Function

K.ey Interrupt Function
‘Woltage Detection

Options Help

4] peripheral Functions | 5 Code Preview Property x
8 Generate code | £ 58 @B @ LI B M B Ut BT oEE & W @ O
| Pord | Portt | Porz | Pona | Potd | Pous | Pors | Pon7 | Pori2 | Por13 | Font4 | Paiis | :
F40
@ Unuzed) In) Dut 7] Pullup
P41 =
0 Unused) In @ Out Output 1
P42
) Unuzed) In @ Out [] M-ch Output 1 | &
P43
@ Unused O In O Out [C] Pullup [TTL buffer [T N-ch
P4
@ Unused O In O Out [C] Pullup [TTL buffer [7] N-ch
P45
@ Unuzed () In © out] Pullup
P46
@ Unused) In) Out [Pullup
4| m +
Olutput o x

F0403002: The generating source folder is: C:\workspace \CG_Tutorial
10403001 The following files were generated:
10403000 cg_srch_cg_main.c was generated.
M0403000; cg_srchr_cg_systeminit. o was generated,
+0403000;cg_srch_cg_macrodriver.h waz gererated,
F0403000:co_srch_cg_userdefine. h was generated.
10409000 cq_srchr_lk.dr was generated.
10403000 cg_srchi_option_ca.txt was generated.
+0403000:cg_srch_cg_cge.c was generated.
r0403000:cg_srch_cg_cgo_uzer.c was generated.
F0403000:cg_srch_cg_cge.h was generated.
10403000 cq_srch_cg_port.c was generated.
10403000 cg_srch_cg_port_user.c was generated.
+0403000:cg_srch_cg_port. h was generated.
r0403000;cg_srch_cg_tau.c waz generated,
M0403000: cg_srch_cg_tau_user.c was generated.
+0403000:cg_srch_cg_tauwh was generated.
10403000 cg_srch_cg_wdt.c was generated.
r0A03000;cg_srchr_cg_wdt_user.c was generated.
F0403000:cg_srch_cg_wdt h was generated.
F0403000:cg_srch_cg_adc.c was generated.
+0403000:cq_srch_cg_adc_user.c was generated.
r0409000:cq_sreh_cg_ade.h was generated.
r0403000:cg_srch_cg_sau.c was generated.
F0409000:cg_srch_cg_sau_user.c was generated.
10403000 ca_srch_cg_sau.h was generated.
+0403000:cq_srch_cg_led.c was generated.
MO409000:2g_srehr_cg_led user.c was generated.
r0403000:cg_srch_cg_lod h was generated.
F0403000:cg_srch_cg_intp. ¢ was generated.
10403000 co_srch_cg_intp_user.c was generated.
+0403000:cq_srch_cg_intp.h was generated.
F0403003:The operation of generating file was successiul.

4 1

m

FCLRLTELIC256KE) Chip:RIF110R)

Figure 3-15 Code generation

R20UT2887EG0102 Rev. 1.02
Apr 04, 2014

RENESAS

Page 24 of 49

RSKRL78L1C

4.

Importing into CubeSuite+

4. Importing into CubeSuite+

4.1

Starting CubeSuite+ and Importing Applilet Code

e Start CubeSuite+ by selecting it
from the Start Menu. CubeSuite+
will show the Start Page. Use the
‘GO’ button to create a new project

A new project can be created.

| A new project can alzo be created by reusing the file configuration registered to an existing project.

e In the ‘Create Project’ dialog, select
‘RL78" from the ‘Microcontroller’
pull-down.

e In the ‘Using Microcontroller’ list
control, scroll down to
‘RL78/L1C(ROM:256KB)’ and
expand the tree control by clicking
‘+’. Select ‘R5F110PJ(100pin)’.

e Choose an appropriate name and
location for the project, then click
‘Create’.

-
Create Project

Microcontroller: RL78

Uszing microcontroller:

5 (Search microcontraller) Update...

4 RL7A/L1C [ROM:3BKE] | | Product Name:REF110P)

& RL7/L1C (ROM:128KE)
RL78/L1C (ROM:192KB)
RL78/L1C (ROM:256KE)
S ASF110M)(20pin)
R5F111M.(30pin]

Y R5F110RU (1 D0pin)
S RSP O0pin)

Kind of project; Application[CATEK0R]

Project hame: CG_Tutorial

Place: C:\wforkspacedCG_T utarial

[Make the project folder

C:vwiork spacetCG_TutorialhCG_Tutorial. mipj

[Pass the file composition of an esisting project to the new project

Internal FOM size[KBytes]: 256
Internal RAM size[Bytes] 16384

= (o)

(1) In the Project Tree pane, right-click
the CG_Tutorial project and select
‘Add -> Add New Category'.

Project ta be pazzed Browsze
Copy compazition files in the diverted project folder to a new project falder.
Create] [Cancel I [Help
e
J€G Tutorial (Prgpe ——ea.
£ RSFLLOP) (Tl Build CG_Tutorial
CATBKOR (B ﬁj Rebuild CG_Tutorial
‘. RL78 E1(Seri L4 Clean CG_Tutarial
a:ﬂl File
LA Startup 3} Open Felder with Explorer
Bl Windows Explorer Menu
| Add » | [fi Add Subproject...
tfy Set CG_Tutorial as Active Project +ﬁ Add New Subproject...
(i1 Save Project and Development Tools as Package... 1 AddFile..
4| Paste Ctrl+V] Add New File...
@ Rename F2 1| Add New Category

(2) Rename the newly-created ‘New
Category’ folder to ‘C Source Files’.

e Repeat step (1) and step (2) to
create a new category folder for
‘Dependencies’.

=15 CG Tutorial (Project)”

% RSF110P) (Microcontroller)
.4, CATSKOR (Build Tool)

iz RLT8 Simulator (Debug Tool)
=L File

3>< Startup

i C Source Files

R20UT2887EG0102 Rev. 1.02
Apr 04, 2014

RENESAS

Page 25 of 49

RSKRL78L1C

4. Importing into CubeSuite+

(1) Right-click the ‘C Source Files’
-> Add

folder and select ‘Add

=/ 7} CG Tutorial (Project)®
3% RSF110P) (Microcontroller)
4, CATEKOR (Build Tool)

4 Category Information
Category name
Shortcut to a folder

File.... Browse to the ‘cg_src’
subdirectory, select all of the ‘.c’
files and click ‘Open’.

-~z RL78 Simulater (Deb
File
§'j)f| Startup

ug Tool) g Notes

|_-ﬂ| Mew catego [

Add » |

B

1 Add File..

Open Folder with Explorer

Add New File...

Apr 04, 2014

B Windows Explorer Menu |'_-]—|_| Add New Category
&l Remove from Project Shift+Del
(2) CubeSuite+ will add all of the | =/ C6 Tutorial (Project)”
Applilet-generated C source files ¥ RSFLLOP) (Microcontroller)
the ‘C Source Files’ folder A, CATSKOR (Build Tool)
' 2 RL78 Simulator (Debug Tool)
5.9 File
[]---ﬂ Build tool generated files
----- %ﬁ Startup
[—][E C Source Files
----- ‘_’J r_cg_adc.c
----- ‘ﬂ r_cg_adc_user.c
----- ‘ﬂ r_cg_cge.c
----- ‘ﬂ [_cg_cgc_user.c
----- ‘_’J r_cg_intp.c
----- LB g intp_user.c
----- ‘ﬂ r_cg_led.c
----- ‘_’J r_cg_lcd_user.c
----- LB cg_main.c
----- ‘ﬂ r_cg_port.c
----- ‘ﬂ r_cg_port_user.c
----- L) cg_sau.c
----- LEY g sau_user.c
----- ‘ﬂ r_cg_systeminit.c
----- ‘_’J r_cg_tau.c
----- ‘ﬂ r_cg_tau_user.c
----- ‘ﬂ r_cg_wdt.c
----- ‘ﬂ r_cg_wdt_user.c
Repeat step (1) and step (2) for the | | € adeisingsiie
‘DependenCIes’ folder, maklng sure @le |, « Workspace » CG_Tutorial » cg_src ""’ll Search cg_src o]
to select ‘Header file (*.h; *.inc)’ Organize = Newfolder =~ 0 @
from the file filter pull-down. Select ic Favorites S Name Detemodified Type
all “.h" header files and add them to 8 Desitop H U] cg adch AT e
. & Downloads Ih] r_cg_cgch CfC+
the project.] Recent Ploces 8 reqintph e
(] r_cg_led.h CiC+
7 Libraries [h] r_cg_macrodriver.h C/C+
| Documents (1] r_cg_porth C/C+
& Music 0] r_cg_sauh C/C+
[Pictures 0] r_cg_tauh C/C+
=] Subversion] r_cg_userdefine.h C/C+
B videos (1] r_cg_wdth 17/01/20141747 C/C+
18 Computer
&, HP&200BE (C:) s g i] v
File name: v [Header file (*h; *inc) -
Select ‘Build Project’ from the -
‘Build” menu, or press F7.
CubeSuite+ will build the project
with no errors.
R20UT2887EG0102 Rev. 1.02 RENESANAS Page 26 of 49

RSKRL78L1C

4. Importing into CubeSuite+

4.2

Project Settings

bottom of the properties window
pane. Change the ‘Device
Settings’ as shown in the
screenshot opposite.

4 Debug Information
Add debug information
4 InputFile
Generate link directive file

Using link directive file

> Output File

4 Library

> Using libraries

> System libraries

> Additional library paths

> System library paths
.

Set enable/disable on-chip debug by link option

Option byte values for OCD

Ciebug monitor area start address
Diebug monitor area size[byte]

Set user option byte

User option byte value

Specify mirror area

Set flash start address

Boot area load module file name
Control sllocation to self RAM area
Control allocation to trace RAM area
> Message
> Stack

> Link List
> Error List

Using link directive file

This is the link directive file to be used for linking. The valid link directive file registered to the project is searched

and used_.

Using libraries[0]
System libraries[0]

Addtional library paths[0]
System library paths[0]

Yes(-go)

[F==] 85

[kex] 3FEOD
512

Yes(-gb)
[Fe5] EFFFFD

MAA=D{-mi0)
Mo

Mo
Mo

e In the ‘Project Tree' pane, select | * CA7EKIR Propaty
‘ H ’ H 4 Build Mode
CA780KR (Build Tool)’. The build v
properties will appear in the main 4 Output File Type and Path
. Output file type Execute Module{Load Module File)
W|ndOW Intermediate file output folder “%BuildModeMame .
. . . 4 Frequently Used Options(for Compile)
e CubeSuite+ creates a single build Perform optimization
. : ¢ HR U > Additional include paths Additional include paths[1]
Conflg u ra.t|0n Cal Ied Defau lt Bu“d > System include paths System include paths[0]
for the project. This has standard > Macro definition Macro dsftion[0]
s . 4 Frequently Used Options(for Assemble)
COde 0pt|m|sat|0n turned on by > Additional include paths Additional include paths [0]
defau |t > System include paths System include paths [0]
> Macro definition Macro definition [
4 Frequently Used Options(for Link)
> Using libraries Using libraries[0]
> Additional library paths Addttional library paths[0]
Output folder “%BuildModeName %
Output file name “ProjectMame % Imf
4 F ly Used Opii RO
Output ROMized object file No
4 Frequently Used O ptions(for Object Convert)
Output hex file Yes
Output folder for hex file “%BuildModeMName %
Hex file name “%ProjectMame ¥ hex
Hex file format Intel expanded hex format{kie)
> Device
> Build Method
> Version Select
> Notes
> Others
e Select the ‘Link Options’ tab at the | 4 CA72KIR Property

m

. Comman... ,(Compiled... ,(Assemble... l UnkOEi...l{ ROMizatio... ,{/ OhjectCon..._,(Variablaﬂ:..._/=

R20UT2887EG0102 Rev. 1.02
Apr 04, 2014

RENESAS

Page 27 of 49

RSKRL78L1C

4. Importing into CubeSuite+

e From the ‘Build’ menu, select ‘Build
Mode Settings...”. Click ‘Duplicate’
and in the resulting ‘Character
String Input’ dialog, enter ‘Debug’
for the name of the duplicate build
mode.

=

Build Mode Settings

[

Selected build mode:
I

Build mode list:

e

e The new ‘Debug’ build mode will be
added to the Build mode list. Click
‘Close’. Now, in the main
CA780KR Property window, click
on the line containing ‘Build Mode’,
click the pull-down arrow and select
‘Debug’ from the pull-down’.

4, CATEKOR Property

4 Build Mode
DefaultBuid -]

4 Qutput File Type and Path Default Build i
Debug

Output file type
I OO NOOETIITTE = !

Intermediate file output folder

e For the ‘Perform Optimization’
option, select ‘No(-nq) from the
pull-down. We have now created a
‘Debug’ build mode with no code
optimisation and will be using the
Build mode to create and debug the
project.

4, CATBKOR Property

B

4 Build Mode
Build mode Debug
4 Qutput File Type and Path
Output file type Execute Module{Load Module File)

Intermediate file output folder

4 Freguently Used Opbons(for Compile)
Perform optimization

%BuildModeName%

=

Yes(Standard)-q«2)

> Additional include paths Yes(Speed precedence)-qel)

> System include paths
> Macro definition Yes(Code size)-q3)

4 Frequently Used Options(for Assemble) EBT{DTBH setting)

s of-ng

Additional include paths

R20UT2887EG0102 Rev. 1.02
Apr 04, 2014

RENESAS Page 28 of 49

RSKRL78L1C 4. Importing into CubeSuite+

e All of the sample code projects | |4, CA7EKOR Fropety 2]
configured with three Buld modos; || AT PEE N - -
configured with three Build modes; | | | i — Jeslpadto b;‘h;;femb&f“ffb‘edf"e}'-gz} [=]

. es 0 ODje lle on
‘DefaUItBu”d,: ‘Debug’ and Perform optimization cs(Add ...-Ju assemb ."EI‘ object file)ig
‘Release’. ‘Release’ is created in 4 Preprocess No(ng)

. » Additional include paths CAOGITONElN INCI0E patns[
the _Sa_rne Wa¥ as above, b’y > System include paths System include paths[0]
duplicating Default Build'. » Macro definition Macro defirition[0]
‘Release’ build mode leaves code > gacroundeﬁnition Macro undefinition[]

.. . 4 Startup
Optlm Isation turned qn and Use standard startup routine “Yes(Nomal)
removes debug information from Use fixed area used by standard library Yes
the output file. FoMzefrses Y
Lsing standard siariup routne Sl rel
e To remove debug information from 4 Library
H H ‘ Use standard library Yes
the bUlld, moqe’ in the ‘CA780KR Use standard |/0 library supported floating-point dats No
Property WlndOW, select the » Using standard libraries Using standard libraries[2]
‘Compile Options’ tab at the bottom > '*E'xmas_re
of the window pane. For the ‘Add | || oot
debug information’ option, select > Output File
‘N -na). > Assembly File
0(g)) > Variables/Functions Information File

e From the menus, select ‘File -> > Data Control

Save Al to save all project ||’ psfie

settin gs.
Add debug information

Adds debug information to the module being generated, enabling source level debug.
This option corresponds to the -g option.

'\, Common... l Compile ... l Assemble... .,(ILink Uptions.,(l ROMizatio... ,(Object Co... ,(Variables/... / ¥

4.3 LCD Panel Code Integration

API functions for the LCD panel are provided with the RSK. Locate the files Icd_panel.h and lcd_panel.c on
the RSK DVD. These files can be found in the RSKRL78L1C_Tutorial project for CubeSuite+. Copy these
files into the C:\Workspace\CG_Tutorial\cg_src directory. Add these files to the ‘C Source Files’ and
‘Dependencies’ folder as shown in §4.1.

Code must be inserted in to the user code area in many files in this project, in the areas delimited by
comments as follows:

/* Start user code for _xxxxx_. Do not edit comment generated here */
/* End user code. Do not edit comment generated here */

Where _xxxx_ depends on the particular area of code, i.e. ‘function’ for insertion of user functions and
prototypes, ‘global’ for insertion of user global variable declarations, or ‘include’ for insertion of pre-processor
include directives. User code inserted inside these comment delimiters is protected from being overwritten by
Applilet, should the user need to subsequently change any of the Applilet-generated code.

In the CubeSuite+ Project Tree, expand the ‘C Source Files’ folder and open the file ‘r_cg_main.c’ by double-
clicking on it. Insert #include "lcd_panel.h" in between the user code delimiter comments as shown below.

/* Start user code for include. Do not edit comment generated here */
[#include "lcd_panel.h"|
/* End user code. Do not edit comment generated here */

R20UT2887EG0102 Rev. 1.02 RENESAS Page 29 of 49
Apr 04, 2014

RSKRL78L1C 4. Importing into CubeSuite+

Scroll down to the ‘main()’ function and insert the 2 lines of code as shown below into the beginning of the
user code area of the main() function:

void main(void)
{
R_MAIN_UserlInit(Q);
/* Start user code. Do not edit comment generated here */

/* Enable and configure LCD display. */
Init_Display_Panel();

/* Display the device family name on LCD.*/
Display_Panel_String(PANEL_LCD_LINE1, ' RL78");

while (1U)
/* End user code. Do not edit comment generated here */

}

Select ‘Build Project’ from the ‘Build’ menu, or press F7. CubeSuite+ will build the project with no errors.

4.4 Switch Code Integration

API functions for user switch control are provided with the RSK. Locate the files rskrl78I1cdef.h, switch.h and
switch.c on the RSK DVD. These files can be found in the RSKRL78L1C_Tutorial project for CubeSuite+.
Copy these files into the C:\Workspace\CG_Tutorial\cg_src directory. Add these files to the 'C Source Files'
and 'Dependencies’ folder as shown in 84.1.

The switch code uses interrupt code in the files r_cg_intp.h, r_cg_intp.c and r_cg_intp_user.c and timer code
in the files r_cg_tau.h, r_cg_tau.c and r_cg_tau_user.c, as described in §3.3.2 and 8§3.3.4. It is necessary to
provide additional user code in these files to implement the switch press/release detection and de-bouncing
required by the API functions in switch.c.

4.4.1 Interrupt Code

In the CubeSuite+ Project Tree, expand the ‘Dependencies’ folder and open the file ‘r_cg_intp.h’ by double-
clicking on it. Insert the following code in the user code area at the end of the file:

/* Function prototypes for detecting and setting the edge trigger of INTPO */
uint8_t R_INTCO_IsFallingEdge(void);

void R_INTCO_SetFallingEdge(const uint8_t set_f_edge);

void R_INTCO_SetRisingEdge(const uint8 t set _r_edge);

/* Function prototypes for detecting and setting the edge trigger of INTP1 */
uint8_t R_INTC1_IsFallingEdge(void);

void R_INTC1_SetFallingEdge(const uint8_t set_f _edge);

void R_INTC1_SetRisingEdge(const uint8 t set r_edge);

/* Function prototypes for detecting and setting the edge trigger of INTP2 */
uint8_t R_INTC2_IsFallingEdge(void);

void R_INTC2_SetFallingEdge(const uint8_t set_f _edge);

void R_INTC2_SetRisingEdge(const uint8 t set r_edge);

R20UT2887EG0102 Rev. 1.02 RENESAS Page 30 of 49
Apr 04, 2014

RSKRL78L1C 4. Importing into CubeSuite+

Now, open the r_cg_intp.c file and insert the following code in the user code area at the end of the file:

Function Name: R_INTCO_lIsFallingEdge

Description : This function returns 1 if the INTPO is set to falling edge
triggered, otherwise O.

Arguments : None

Return Value : None

For X X XN

uint8_t R_INTCO_IsFallingEdge (void)

{
uint8_t falling_edge_trig = 0xO0;
if (EGNO & _O1_INTPO_EDGE_FALLING_SEL)
falling_edge_trig = 1;
3
return falling_edge_trig;
ks
/

End of function R_INTCO_IsFallingEdge

/

* Function Name: R_INTCO_SetFallingEdge

* Description :@ This function sets/clears the falling edge trigger for INTPO.
* Arguments - uint8_t set_T edge, 1 if setting falling edge triggered, O if
* clearing

Return Value : None

void R_INTCO_SetFallingEdge (const uint8_t set_f_edge)
if (1 == set_T_edge)
EGNO |= _O1_INTPO_EDGE_FALLING_SEL;
3

else

EGNO &= (uint8_t) ~ 01_INTPO_EDGE_FALLING_SEL;
H

by
/
* End of function R_INTCO_SetFallingEdge

/

* Function Name: R_INTCO_SetRisingEdge

* Description : This function sets/clear the rising edge trigger for INTPO.
* Arguments D uint8_t set_r_edge, 1 if setting rising edge triggered, O if
* clearing

*

Return Value : None

void R_INTCO_SetRisingEdge (const uint8_t set_r_edge)

{
if (1 == set_r_edge)
EGPO |= _O1_INTPO_EDGE_RISING_SEL;
T
else
EGPO &= (uint8_t) ~_01_INTPO_EDGE_RISING_SEL;
T
h
/

* End of function R_INTCO_SetRisingEdge

Function Name: R_INTC1_IsFallingEdge

Description : This function returns 1 if the INTPl is set to falling edge
triggered, otherwise O.

Arguments : None

Return Value : None

* Ok %N

R20UT2887EG0102 Rev. 1.02 n IENESAS
Apr 04, 2014

Page 31 of 49

RSKRL78L1C 4. Importing into CubeSuite+

/
uint8_t R_INTC1_IsFallingEdge (void)
{
uint8_t falling_edge_trig = 0xO0;
iT (EGNO & _02_INTP1_EDGE_FALLING_SEL)
falling_edge_trig = 1;
}
return falling_edge_trig;
}
/
* End of function R_INTC1_IsFallingEdge
/
/
* Function Name: R_INTC1_SetFallingEdge
* Description : This function sets/clears the falling edge trigger for INTP1.
* Arguments D uint8_t set_fT_edge, 1 if setting falling edge triggered, O if
* clearing
* Return Value : None
/
void R_INTC1_SetFallingEdge (const uint8_t set_f _edge)
iT (1 == set_T_edge)
EGNO |= _02_INTP1_EDGE_FALLING_SEL;
}
else
EGNO &= (uint8_t) ~_02_INTP1_EDGE_FALLING_SEL;
}
}
/
* End of function R_INTC1_SetFallingEdge
/
/
* Function Name: R_INTC1l_SetRisingEdge
* Description : This function sets/clear the rising edge trigger for INTPL.
* Arguments : uint8_t set_r_edge, 1 if setting rising edge triggered, O if
* clearing
* Return Value : None
/
void R_INTC1_SetRisingEdge (const uint8_t set_r_edge)
if (1 == set_r_edge)
EGPO |= _O2_INTP1_EDGE_RISING_SEL;
else
EGPO &= (uint8_t) ~_02_INTP1_EDGE_RISING_SEL;
}
}
/
* End of function R_INTC1_SetRisingEdge
/
/
* Function Name: R_INTC2_IsFallingEdge
* Description : This function returns 1 if the INTP2 is set to falling edge
* triggered, otherwise O.
* Arguments : None
* Return Value : None
/

uint8_t R_INTC2_lIsFallingEdge (void)
uint8_t falling_edge_trig = 0xO0;
if (EGNO & _04_INTP2_EDGE_FALLING_SEL)

falling_edge_trig = 1;
3

R20UT2887EG0102 Rev. 1.02 n IENESAS
Apr 04, 2014

Page 32 of 49

RSKRL78L1C 4. Importing into CubeSuite+

return falling_edge_trig;
}
/
* End of function R_INTC2_IsFallingEdge
/
/
* Function Name: R_INTC2_SetFallingEdge
* Description : This function sets/clears the falling edge trigger for INTP2.
* Arguments - uint8_t set_fT edge, 1 if setting falling edge triggered, O if
* clearing
* Return Value : None
/
void R_INTC2_SetFallingEdge (const uint8_t set_f_edge)
if (1 == set_T _edge)
EGNO |= _0O4_ INTP2_EDGE_FALLING_SEL;
3
else
EGNO &= (uint8_t) ~_04_INTP2_EDGE_FALLING_SEL;
3
by
/
* End of function R_INTC2_SetFallingEdge
/
/
* Function Name: R_INTC2_SetRisingEdge
* Description : This function sets/clear the rising edge trigger for INTP2.
* Arguments 1 uint8_t set_r_edge, 1 if setting rising edge triggered, O if
* clearing
* Return Value : None
/
void R_INTC2_SetRisingEdge (const uint8_t set_r_edge)
iT (1 == set_r_edge)
EGPO |= _04_INTP2_EDGE_RISING_SEL;
else
EGPO &= (uint8_t) ~_04_INTP2_EDGE_RISING_SEL;
}
}
/
* End of function R_INTC2_SetRisingEdge
/

Open the r_cg_intp_user file.c file and insert the following code in the user code area for include near the top
of the file:

/* Defines switch callback functions required by interrupt handlers */
#include "switch.h"

In the same file insert the following code in the user code area inside the function r_intcO_interrupt():

/* Switch 1 callback handler */
SwitchllsrCallback();

/* clear INTPO interrupt flag */
PIFO = 0U;

In the same file insert the following code in the user code area inside the function r_intc1_interrupt():

/* Switch 2 callback handler */
Switch2lsrCallback();

/* clear INTP1l interrupt flag */
PIF1 = 0U;

R20UT2887EG0102 Rev. 1.02 = zENESAS Page 33 of 49
Apr 04, 2014

RSKRL78L1C 4. Importing into CubeSuite+

In the same file insert the following code in the user code area inside the function r_intc2_interrupt():

/* Switch 3 callback handler */
Switch3lIsrCallback();

/* clear INTP2 interrupt flag */
PIF2 = 0U;

4.4.2 De-bounce Timer Code

Open the r_cg_tau_user.c file and insert the following code in the user code area for include near the top of
the file:

/* Defines switch callback functions required by interrupt handlers */
#include "switch_h"

In the same file insert the following code in the user code area inside the function r_tau0_channell_interrupt():

/* Stop this timer - we start it again in the de-bounce routines */
R_TAUO_Channell_Stop(Q);

/* Call the de-bounce call back routine */
SwitchDebouncelsrCal lback();

In the same file insert the following code in the user code area inside the function r_tau0_channel2_interrupt():

/* Stop this timer - we start it again in the de-bounce routines */
R_TAUO_Channel2_Stop();

/* Call the de-bounce call back routine */
SwitchDebouncelsrCal lback();

4.4.3 Main Switch and ADC Code

In the CubeSuite+ Project Tree, expand the ‘Dependencies’ folder and open the file ‘r_cg_userdefine.h’ by
double-clicking on it. Insert the following code the user code area, resulting in the code shown below

/* Start user code for function. Do not edit comment generated here */

#define TRUE [€D)
#define FALSE ((®))

extern volatile uint8_t g_adc_trigger;

7 End user code. Do not edit comment generated here */

Open the file ‘r_cg_main.c’ by double-clicking on it. Insert #include "switch.h" and #include "r_cg_adc.h" in the
user code area for include, resulting in the code shown below:

/* Start user code for include. Do not edit comment generated here */
#include "lcd panel .h"

#include "switch.h"
#include "r_cg_adc.h"

7= End user code. Do not edit comment generated here */

Next add the switch module initialisation function call highlighted in the user code area inside the main()
function, resulting in the code shown below:

void main(void)
{
R_MAIN_UseriInit(Q);
/* Start user code. Do not edit comment generated here */

/* Initialise the switch module */
Switch_Init(Q);

/* Enable and configure LCD display. */
Init_Display_Panel();

R20UT2887EG0102 Rev. 1.02 RENESAS Page 34 of 49
Apr 04, 2014

RSKRL78L1C

4.

Importing into CubeSuite+

}

/* Display the device family name on LCD.*/
Display_Panel_String(PANEL_LCD_LINE1, ™ RL78");

while (1U)

/* End user code. Do not edit comment generated here */

In the same file, insert the declarations in the user code area for global, resulting in the code shown below:

/* Start user code for global. Do not edit comment generated here */

/* Prototype declaration for cb_switch_press */
static void cb_switch_press (void);

/* Prototype declaration for get_adc */
static uintl6_t get_adc(void);

/* Prototype declaration for lcd _display_adc */
static void lcd_display_adc (const uintl6_t adc_result);

/* Variable for flagging user requested ADC conversion */
volatile uint8_t g_adc_trigger = FALSE;

Next add the switch module call back registration function call in the user code area inside the main() function
and the code inside the while loop, resulting in the code shown below:

void main(void)

{
R_MAIN_UserInit();
/* Start user code. Do not edit comment generated here */
/* Initialise the switch module */
Switch_Init(Q);
/* Set the call back function when SW3 is pressed */
SetSwitchPressCal lback(cb_switch_press);
/* Enable and configure LCD display. */
Init_Display_Panel();
/* Display the device family name on LCD.*/
Display_Panel_String(PANEL_LCD_LINE1, " RL78");
while (1U)
{
/* Wait for user requested A/D conversion flag to be set */
if (TRUE == g_adc_trigger)
{
uintl6_t adc_result;
/* Call the function to perform an A/D conversion */
adc_result = get_adc();
/* Display the result on the LCD */
Icd_display_adc(adc_result);
/* Reset the flag */
g_adc_trigger = FALSE;
b
/* End user code. Do not edit comment generated here */
3
R20UT2887EG0102 Rev. 1.02 IQENESAS Page 35 of 49

Apr 04, 2014

RSKRL78L1C 4. Importing into CubeSuite+

Then add the definition for the switch call-back, get_adc() and Icd_display_adc() functions in the user code

area at the end of the file, resulting in the code shown below:

Function Name : cb_switch_press

Description : Switch press callback function. Sets g_adc_trigger flag.
Argument > none

Return value : none

o o XN\

static void cb_switch_press (void)

{

/* Check if switch 3 was pressed */
ifT (g_switch_flag & SWITCHPRESS_3)

/* set the flag indicating a user requested A/D conversion is required */
g_adc_trigger = TRUE;

/* Clear flag */
g_switch_flag = 0xO0;

N

End of function cb_switch_press

Function Name : get_adc

Description : Reads the ADC result, converts it to a string and displays
it on the LCD panel.

Argument > none

Return value : uintl6_t adc value

o X kXN

static uintl6_t get_adc (void)

/* A variable to retrieve the adc result */
uintl6é_t adc_result;

/* Start a conversion */
R_ADC_Start();

/* Wait for the A/D conversion to complete */
while (FALSE == g_adc_complete)

/* Wait */
}

/* Stop conversion */
R_ADC_Stop();

/* Clear ADC flag */
g_adc_complete = FALSE;

R_ADC_Get_Result(&adc_result);
return adc_result;
ks
/

* End of function get_adc

Function Name : lcd_display_adc

Description : Converts adc result to a string and displays
it on the LCD panel.

Argument : uintl6é_t adc result

Return value : none

o OX XN

static void lcd_display_adc (const uintl6_t adc_result)
{

/* Declare a temporary variable */
uint8_t a;

/* Declare temporary character string */
char lcd_buffer[4] = "XYZ";

R20UT2887EG0102 Rev. 1.02 n IENESAS
Apr 04, 2014

Page 36 of 49

RSKRL78L1C 4. Importing into CubeSuite+

/* Convert ADC result into a character string, and store in the local.
Casting to ensure use of correct data type. */

a = (uint8_t)((adc_result & 0xOF00) >> 8);

Icd_buffer[0] = (char)((a < Ox0A) ? (a + 0x30) : (a + 0x37));

a = (uint8_t)((adc_result & O0x00F0) >> 4);

Icd_buffer[1l] = (char)((a < Ox0A) ? (a + 0x30) : (a + 0x37));

a = (uint8_t)(adc_result & 0x000F);

Icd_buffer[2] = (char)((a < 0x0A) ? (a + 0x30) : (a + 0x37));

/* Display the contents of the local string lcd_buffer */
Display_Panel_String(PANEL_LCD_LINE3, lcd_buffer);

N

End of function lcd_display_adc

/* End user code. Do not edit comment generated here */

Open the file ‘r_cg_adc.h’ by double-clicking on it. Insert the following code in the in the user code area for
function, resulting in the code shown below:

/* Start user code for function. Do not edit comment generated here */
/* Flag indicates when serial transmission is in progress */
extern volatile uint8_t g_adc_complete;

7= End user code. Do not edrt comment generated here *7

Open the file ‘r_cg_adc_user.c’ by double-clicking on it. Insert the following code in the in the user code area
for global, resulting in the code shown below:

/* Start user code for global. Do not edit comment generated here */
|volatile uint8_t g_adc_complete; |
7 End user code. Do not edrt comment generated here */

Insert the following code in the in the user code area of the r_adc_interrupt() function, resulting in the code
shown below:

void r_adc_interrupt(void)
/* Start user code. Do not edit comment generated here */

Lgiadc_complete = TRUE; |
End user code. Do not edit comment generated here */

¥
Select ‘Build Project’ from the ‘Build’ menu, or press F7. CubeSuite+ will build the project with no errors.
The project may now be run using the debugger as described in 85. When SW3 is pressed, the program will

perform an A/D conversion of the voltage level on the ADPOT line and display the result on the LCD panel.
Return to this point in the Tutorial to add the UART user code.

4.5 Debug Code Integration

API functions for trace debugging via the RSK serial port are provided with the RSK. Locate the files debug.h
and debug.c on the RSK DVD. These files can be found in the RSKRL78L1C_Tutorial project for CubeSuite+.
Copy these files into the C:\Workspace\CG_Tutorial\cg_src directory. Add these files to the 'C Source Files'
and 'Dependencies’ folder as shown in §4.1.

In the debug.h file, ensure the following macro definition is included:

/* Macro for definition of serial debug transmit function - user edits this */
#define SerialDbgWrite R_UART1 _Transmit

R20UT2887EG0102 Rev. 1.02 RENESAS Page 37 of 49
Apr 04, 2014

RSKRL78L1C 4.

Importing into CubeSuite+

4.6 UART Code Integration
4.6.1 Serial Array Unit Code

In the CubeSuite+ Project Tree, expand the ‘Dependencies’ folder and open the file ‘r_cg_sau.h’ by double-

clicking on it. Insert the following code in the user code area at the end of the file:

/* Start user code for function. Do not edit comment generated here */

/* Function prototype for R_UART1_Transmit */
MD_STATUS R_UART1_Transmit(uint8 t * const tx_buf, const uintl6_t tx_num);

/* Flag indicates when serial transmission is in progress */
extern volatile uint8 t g_uartl_tx_busy;

/* Character is used to receive key presses from PC terminal */
extern uint8_t g_rx_char;

/* End user code. Do not edit comment generated here */

Open the file ‘'r_cg_sau.c. Insert the following code in the user code area at the end of the file:

/* Start user code for adding. Do not edit comment generated here */

Function Name: R_UART1 Transmit

for the tx_busy to clear.
Arguments o tx_buf -
transfer buffer pointer
t>x_num -
buffer size
Return Value : status -
MD_OK or MD_ARGERROR

ook % % O X F X XN

Description : This function transmits data through UART1, but first waiting

MD_STATUS R_UART1_Transmit (uint8 t * const tx_buf, const uintl6_t tx_num)

{
MD_STATUS status = MD_OK;

iT (tx_num < 1U)
{

}

else

{

status = MD_ARGERROR;

/* Wait for the g_uartl tx_busy flag to clear, to avoid overwriting of

the transmit buffer */
while (g_uartl_tx_busy)

/* Wait */
}

/* Set the tx busy flag, this is cleared in the transmit end callback

function */
g_uartl_tx_busy = 1;

/* Send the data using the R_UART1_Send function */
R_UART1_Send(tx_buf, tx_num);
3

return (status);

N

End of function R_UART1 Transmit

/* End user code. Do not edit comment generated here */

R20UT2887EG0102 Rev. 1.02 n QENESAS
Apr 04, 2014

Page 38 of 49

RSKRL78L1C 4. Importing into CubeSuite+

Open the file ‘r_cg_sau_user.c. Insert the following code in the user area for global near the beginning of the
file:

/* Start user code for global. Do not edit comment generated here */

/* Flag indicates when serial transmission is in progress */
volatile uint8_t g_uartl_tx_busy = 0;

/* Global used to receive a character from the PC terminal */
uint8_t g_rx_char;

/* End user code. Do not edit comment generated here */

In the same file, insert the following code in the user code area inside the r_uartl_callback_receiveend()
function:

static void r_uartl_callback_receiveend(void)

{

/* Start user code. Do not edit comment generated here */

/* Check the contents of g_rx char */
if (("c” == g_rx_char) || (°C" == g_rx_char))
{

g_adc_trigger = TRUE;

/* Set up UART1 receive buffer and callback function again */
R_UART1_Receive((uint8_t *)&g_rx_char, 1);

/* End user code. Do not edit comment generated here */

}

In the same file, insert the following code in the user code area inside the r_uartl callback_sendend()
function:

static void r_uartl_callback_sendend(void)

/* Start user code. Do not edit comment generated here */

/* Clear the g _uartl_tx busy flag, this facilitates correct serialisation of
tranmsit strings using the R_UART1 Transmit function */
g_uartl_tx_busy = 0;

/* End user code. Do not edit comment generated here */

H
4.6.2 Main UART code

Open the file ‘r_cg_main.c’. Add the following declaration to the user code area for include near the top of the
file:

#include "debug.h"

Add the following declaration to the user code area for global near the top of the file:

/* Prototype declaration for uart_display_adc */
static void uart_display_adc(const uint8_t adc_count, const uintl6_t adc_result);

/* Variable to store the A/D conversion count for user display */
uint8_t adc_count = 0;

Add the following highlighted code to the user code area in the main function:

void main(void)

{
R_MAIN_UserInit();
/* Start user code. Do not edit comment generated here */
/* Initialise the switch module */
Switch_Init(Q);
R20UT2887EG0102 Rev. 1.02 .zENESAS Page 39 of 49

Apr 04, 2014

RSKRL78L1C

4.

Importing into CubeSuite+

/* Set the call back function when SW3 is pressed */
SetSwitchPressCal lback(cb_switch_press);

/* Enable and configure LCD display. */
Init_Display_Panel();

/* Display the device family name on LCD.*/
Display_Panel_String(PANEL_LCD_LINE1, * RL78");

/* Set up UART1 receive buffer and callback function */
R_UART1_Receive((uint8_t *)&g_rx_char, 1);

/* Enable UART1 operations */
R_UART1_Start();

while (1U)
{

/* Wait for user requested A/D conversion flag to be set */
if (TRUE == g_adc_trigger)

uintl6é_t adc_result;

/* Call the function to perform an A/D conversion */
adc_result = get_adc(Q);

/* Display the result on the LCD */
Icd_display_adc(adc_result);

/* Increment the adc_count */
if (16 == ++adc_count)
{

}

/* Send the result to the UART */
uart_display_adc(adc_count, adc_result);

adc_count = 0;

/* Reset the flag */
g_adc_trigger = FALSE;

}
/* End user code. Do not edit comment generated here */
3
R20UT2887EG0102 Rev. 1.02 .zENESAS Page 40 of 49

Apr 04, 2014

RSKRL78L1C 4. Importing into CubeSuite+

Then, add the following function definition in the user code area at the end of the file:

/

* Function Name : uart_display_adc

* Description : Converts adc result to a string and sends it to the UARTL.
* Argument : uint8_t : adc_count

* uintl6é_t: adc result

* Return value : none

/
static void uart_display_adc (const uint8_t adc_count, const uintl6_t adc_result)
{
/* Declare a temporary variable */
char a;

/* Declare temporary character string */
static char uart_buffer[] = "ADC xH Value: xxxH\r\n'";

/* Convert ADC result into a character string, and store in the local.
Casting to ensure use of correct data type. */

a = (char)(adc_count & 0x000F);

uart_buffer[4] = (char)((a < Ox0A) ? (a + 0x30) : (a + 0x37));

a = (char)((adc_result & 0OxOF00) >> 8);

uart_buffer[14] = (char)((a < 0x0A) ? (a + 0x30) : (a + 0x37));

a = (char)((adc_result & 0x00F0) >> 4);

uart_buffer[15] = (char)((a < 0x0A) ? (a + 0x30) : (a + 0x37));

a = (char)(adc_result & 0x000F);

uart_buffer[16] = (char)((a < 0x0A) ? (a + 0x30) : (a + 0x37));

/* Send the string to the UART */
DebugPrint(uart_buffer);

N

End of function uart_display_adc

/

Select ‘Build Project’ from the ‘Build’ menu, or press F7. CubeSuite+ will build the project with no errors.

The project may now be run using the debugger as described in 85. Connect the RSK serial port to a COM
port on a PC and open a terminal program, such as HyperTerminal, on the PC with the same settings as for
the UART (see 83.3.7). When SW3 is pressed, or when ‘c’ is sent , the program will perform an A/D
conversion of the voltage level on the ADPOT line and display the result on the LCD panel and send the result
to the PC terminal program via the UART. Return to this point in the Tutorial to add the LED user code.

4.7 LED Code Integration

Open the file ‘r_cg_main.c’. Add the following declaration to the user code area for include near the top of the
file:

#include "rskri78licdef.h" |

Add the following declaration to the user code area for global near the top of the file:

/* Prototype declaration for led_display_count */
static void led_display_count(const uint8_t count);

Add the following highlighted code to the user code area in the main function:

void main(void)

{
R_MAIN_UserlInit(Q);
/* Start user code. Do not edit comment generated here */
/* Initialise the switch module */
Switch_InitQ);
/* Set the call back function when SW3 is pressed */
SetSwitchPressCallback(cb_switch_press);
R20UT2887EG0102 Rev. 1.02 RENESAS Page 41 of 49

Apr 04, 2014

RSKRL78L1C

4.

Importing into CubeSuite+

/* Enable and configure LCD display. */
Init_Display_Panel();

/* Display the device family name on LCD.*/
Display Panel_String(PANEL_LCD LINE1, ' RL78");

/* Set

up UART1 receive buffer and callback function */

R_UART1_Receive((uint8_t *)&g_rx_char, 1);

/* Enable UART1 operations */
R_UART1_Start();

while (1U)

{
/*
if

}

ks
/* End
3

Then, add the following function definition in the user code area at the end of the file:

Wait for user requested A/D conversion flag to be set */
(TRUE == g_adc_trigger)

uintl6_t adc_result;
/* Call the function to perform an A/D conversion */

adc_result = get_adc();

/* Display the result on the LCD */
Icd_display_adc(adc_result);

/* Increment the adc_count|and display using the LEDs |*/
if (16 == ++adc_count)
{

adc_count = 0;

1
[Ted_display_count(adc_count); |

/* Send the result to the UART */
uart_display_adc(adc_count, adc_result);

/* Reset the flag */
g_adc_trigger = FALSE;

user code. Do not edit comment generated here */

/
* Function Name : led_display_count
* Description : Converts count to binary and displays on 4 LEDSO-3
* Argument : uint8_t count
* Return value : none
/
static void led_display_count (const uint8_t count)
{
/* Set LEDs according to lower nibble of count parameter */
LEDO = (count & Ox01) ? LED_ON : LED_OFF;
LED1 = (count & 0x02) ? LED_ON : LED_OFF;
LED2 = (count & 0x04) ? LED ON : LED _OFF;
LED3 = (count & 0x08) ? LED ON : LED OFF;
3
/
* End of function led_display_count
/

Select ‘Build Project’ from the ‘Build’ menu, or press F7. CubeSuite+ will build the project with no errors.

The project may now be run using the debugger as described in 85. The code will perform the same but now
the LEDs will display the adc_count in binary form.

R20UT2887EG0102 Rev. 1.02 RENESAS

Apr 04, 2014

Page 42 of 49

RSKRL78L1C 5. Debugging the Project

5. Debugging the Project

In the ‘Project Tree’ pane, right-
click the ‘RL78 Simulator
(Debug Tool). Select ‘Using
Debug Tool -> RL78
El(Serial)'.

=L 1% CG Tutorial (Project) 4 Internal ROM/RAM

4, CATBKOR (Build Toal)

4 Clock

L. RSF110PI (Microcontroller) Size of intemal ROM[KBytes]
Size af internal RAM[Btes]

[LE IS EY

Using Debug Toal » |

RLTSIECLIBE

Froperty |

RLT8 E1{Serial)

Timer/Trace d
4 Configuratio

RLTS E20{Serial)
RLT8 EZ Emulator

Apr 04, 2014

Double-click ‘RL78 E1(Serial) % Property
(Debug Tool)' to display the | | gri78E1(Seria) Propety
debugger tool properties. 2 Internal ROMWRAM
Under ‘Clock’, change the main Size of internal ROM[KBytes] 256
clock frequency to 12 MHz and Size of internal By 16384
the Sub clock frequency to Size of DataFlash memory[KBytes] 8
32.768 KHz. 4 Clock
i i Main clock frequency [MHz] 12.00
Under ‘Connection with Target Sub clock frequencylkHz] 32 768
Board’ change ‘Power target Menitor clock System
from the emulator.(MAX 4 Connection with Target Board
200m A)’ to ‘Yes'. Power target from the emulator (MAX 200maA) Yes
. . Supply voltage 33V
All other settings can remain at 4 Flash
their defaults. Security ID 00000000000000000000
Permit flash programming Yes
|Jse wide voltage mode Yes
Erase flash ROM when starting No
Connect the E1 to the PC and
the RSK E1 connector. From
the ‘Debug’ menu select
‘Download’ to start the debug
session and download code to
the target.
R20UT2887EG0102 Rev. 1.02 RENESAS Page 43 of 49

RSKRL78L1C 6. Running the Code Generator Tutorial

6.Running the Code Generator Tutorial

6.1 Running the Tutorial

Click the ‘Go’ button or press F5 to begin the program from the current program counter
position. It is recommended that you run through the program once first, and then continue to
the Tutorial manual to review the code.

Once the program has been downloaded onto the RSK device, the program can be executed. @

R20UT2887EG0102 Rev. 1.02 RENESAS Page 44 of 49
Apr 04, 2014

RSKRL78L1C 7. Additional Information

7.Additional Information

Technical Support
For details on how to use CubeSuite+, refer to the manual available on the DVD or from the web site.

For information about the RL78/L1C series microcontrollers refer to the RL78/L1C Group Hardware Manual.
For information about the RL78 assembly language, refer to the RL78 Series Software Manual.

Technical Contact Details

Please refer to the contact details listed in section 9 of the “Quick Start Guide”

General information on Renesas microcontrollers can be found on the Renesas website at:
http://www.renesas.com/

Trademarks
All brand or product names used in this manual are trademarks or registered trademarks of their respective
companies or organisations.

Copyright

This document may be, wholly or partially, subject to change without notice. All rights reserved. Duplication of
this document, either in whole or part is prohibited without the written permission of Renesas Electronics
Europe Limited.

© 2014 Renesas Electronics Europe Limited. All rights reserved.
© 2014 Renesas Electronics Corporation. All rights reserved.
© 2014 Renesas Solutions Corp. All rights reserved.

R20UT2887EG0102 Rev. 1.02 RENESAS Page 45 of 49
Apr 04, 2014

http://www.renesas.com/

REVISION HISTORY

RSK RL78L1C Tutorial Manual

Rev. Date Description
Page Summary
1.00 Jan 17, 2014 — First Edition issued
1.01 Mar 19, 2014 — [2. List of Abbreviations and Acronyms] was updated.
37 Directory information of Section 4.5 was fixed.
Folder information of Section 4.6.1 was fixed.
1.02 Apr 04, 2014 — [2. List of Abbreviations and Acronyms] was updated.
— [Table of Contents] was updated.
21 Additional explanation was added into the Figure 3-12.
25 Explanation about Category creation was updated.
25to | Frames were added to some explanations and figures.
29,
43, 44
26 Explanations about File addition and Build were updated.
27 to | Highlight frames were added to some figures.
29
29to | Highlight frames were added to text part an addition or ensuring.
42
30 Explanations about the file addition method to category folders of [4.4 Switch Code
Integration] were updated.
37 Explanations about the file addition method to category folders of [4.5 Debug Code

Integration] were updated.

Renesas Starter Kit Manual: Tutorial Manual

Publication Date: Rev. 1.02 Apr 04, 2014

Published by: Renesas Electronics Corporation

LENESAS

SALES OFFICES Renesas Electronics Corporation

http://www.renesas.com

Refer to "http://www.renesas.com/" for the latest and detailed information.

Renesas Electronics America Inc.
2801 Scott Boulevard Santa Clara, CA 95050-2549, U.S.A.
Tel: +1-408-588-6000, Fax: +1-408-588-6130

Renesas Electronics Canada Limited
1101 Nicholson Road, Newmarket, Ontario L3Y 9C3, Canada
Tel: +1-905-898-5441, Fax: +1-905-898-3220

Renesas Electronics Europe Limited

Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K
Tel: +44-1628-585-100, Fax: +44-1628-585-900

Renesas Electronics Europe GmbH

Arcadiastrasse 10, 40472 Dusseldorf, Germany
Tel: +49-211-6503-0, Fax: +49-211-6503-1327

Renesas Electronics (China) Co., Ltd.

Room 1709, Quantum Plaza, No.27 ZhiChunLu Haidian District, Beijing 100191, P.R.China

Tel: +86-10-8235-1155, Fax: +86-10-8235-7679

Renesas Electronics (Shanghai) Co., Ltd.

Unit 301, Tower A, Central Towers, 555 Langao Road, Putuo District, Shanghai, P. R. China 200333
Tel: +86-21-2226-0888, Fax: +86-21-2226-0999

Renesas Electronics Hong Kong Limited

Unit 1601-1613, 16/F., Tower 2, Grand Century Place, 193 Prince Edward Road West, Mongkok, Kowloon, Hong Kong
Tel: +852-2265-6688, Fax: +852 2886-9022/9044

Renesas Electronics Taiwan Co., Ltd.

13F, No. 363, Fu Shing North Road, Taipei 10543, Taiwan

Tel: +886-2-8175-9600, Fax: +886 2-8175-9670

Renesas Electronics Singapore Pte. Ltd.

80 Bendemeer Road, Unit #06-02 Hyflux Innovation Centre, Singapore 339949

Tel: +65-6213-0200, Fax: +65-6213-0300

Renesas Electronics Malaysia Sdn.Bhd.

Unit 906, Block B, Menara Amcorp, Amcorp Trade Centre, No. 18, JIn Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia

Tel: +60-3-7955-9390, Fax: +60-3-7955-9510

Renesas Electronics Korea Co., Ltd.
12F., 234 Teheran-ro, Gangnam-Ku, Seoul, 135-920, Korea
Tel: +82-2-558-3737, Fax: +82-2-558-5141

© 2014 Renesas Electronics Corporation. All rights reserved.
Colophon 3.0

RL78/L1C Group

RENESAS

Renesas Electronics Corporation R20UT2887EG0102

	1. Overview
	1.1 Purpose
	1.2 Features

	2. Introduction
	3. Code Generation Using Applilet
	3.1 Introduction
	3.2 Applilet Tour
	3.3 Code Generation
	3.3.1 Common/Clock Generator
	3.3.2 Interrupt Functions
	3.3.3 LCD Controller/Driver
	3.3.4 Timer Array Unit
	3.3.5 Watchdog Timer
	3.3.6 A/D Converter
	3.3.7 Serial Array Unit
	3.3.8 Port Function

	4. Importing into CubeSuite+
	4.1 Starting CubeSuite+ and Importing Applilet Code
	4.2 Project Settings
	4.3 LCD Panel Code Integration
	4.4 Switch Code Integration
	4.4.1 Interrupt Code
	4.4.2 De-bounce Timer Code
	4.4.3 Main Switch and ADC Code

	4.5 Debug Code Integration
	4.6 UART Code Integration
	4.6.1 Serial Array Unit Code
	4.6.2 Main UART code

	4.7 LED Code Integration

	5. Debugging the Project
	6. Running the Code Generator Tutorial
	6.1 Running the Tutorial

	7. Additional Information

