LENESAS

-
o
o)
ﬁ\I
»
<
W)
>
-
)

CS+ V38.05.00

Integrated Development Environment
User’s Manual: Python Console

Target Device
RL78 Family
RX Family
RH850 Family

All information contained in these materials, including products and product specifications,
represents information on the product at the time of publication and is subject to change by
Renesas Electronics Corp. without notice. Please review the latest information published by
Renesas Electronics Corp. through various means, including the Renesas Electronics Corp.
website (http://www.renesas.com).

Renesas Electronics
WWW.renesas.com Rev.1.00 2020.11

Notice

1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products
and application examples. You are fully responsible for the incorporation or any other use of the circuits, software, and information in the design of your
product or system. Renesas Electronics disclaims any and all liability for any losses and damages incurred by you or third parties arising from the use of
these circuits, software, or information.

2. Renesas Electronics hereby expressly disclaims any warranties against and liability for infringement or any other claims involving patents, copyrights, or
other intellectual property rights of third parties, by or arising from the use of Renesas Electronics products or technical information described in this
document, including but not limited to, the product data, drawings, charts, programs, algorithms, and application examples.

3. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or
others.

4. You shall not alter, modify, copy, or reverse engineer any Renesas Electronics product, whether in whole or in part. Renesas Electronics disclaims any
and all liability for any losses or damages incurred by you or third parties arising from such alteration, modification, copying or reverse engineering.

5. Renesas Electronics products are classified according to the following two quality grades: "Standard" and "High Quality". The intended applications for
each Renesas Electronics product depends on the product's quality grade, as indicated below.

"Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home
electronic appliances; machine tools; personal electronic equipment; industrial robots; etc.
"High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control (traffic lights); large-scale communication equipment; key
financial terminal systems; safety control equipment; etc.
Unless expressly designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas
Electronics document, Renesas Electronics products are not intended or authorized for use in products or systems that may pose a direct threat to
human life or bodily injury (artificial life support devices or systems; surgical implantations; etc.), or may cause serious property damage (space system;
undersea repeaters; nuclear power control systems; aircraft control systems; key plant systems; military equipment; etc.). Renesas Electronics disclaims
any and all liability for any damages or losses incurred by you or any third parties arising from the use of any Renesas Electronics product that is
inconsistent with any Renesas Electronics data sheet, user's manual or other Renesas Electronics document.

6. When using Renesas Electronics products, refer to the latest product information (data sheets, user's manuals, application notes, "General Notes for
Handling and Using Semiconductor Devices" in the reliability handbook, etc.), and ensure that usage conditions are within the ranges specified by
Renesas Electronics with respect to maximum ratings, operating power supply voltage range, heat dissipation characteristics, installation, etc. Renesas
Electronics disclaims any and all liability for any malfunctions, failure or accident arising out of the use of Renesas Electronics products outside of such
specified ranges.

7. Although Renesas Electronics endeavors to improve the quality and reliability of Renesas Electronics products, semiconductor products have specific
characteristics, such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Unless designated as a high reliability
product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics products
are not subject to radiation resistance design. You are responsible for implementing safety measures to guard against the possibility of bodily injury,
injury or damage caused by fire, and/or danger to the public in the event of a failure or malfunction of Renesas Electronics products, such as safety
design for hardware and software, including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging
degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult and impractical, you are
responsible for evaluating the safety of the final products or systems manufactured by you.

8. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas
Electronics product. You are responsible for carefully and sufficiently investigating applicable laws and regulations that regulate the inclusion or use of
controlled substances, including without limitation, the EU RoHS Directive, and using Renesas Electronics products in compliance with all these
applicable laws and regulations. Renesas Electronics disclaims any and all liability for damages or losses occurring as a result of your noncompliance
with applicable laws and regulations.

9. Renesas Electronics products and technologies shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is
prohibited under any applicable domestic or foreign laws or regulations. You shall comply with any applicable export control laws and regulations
promulgated and administered by the governments of any countries asserting jurisdiction over the parties or transactions.

10. ltis the responsibility of the buyer or distributor of Renesas Electronics products, or any other party who distributes, disposes of, or otherwise sells or
transfers the product to a third party, to notify such third party in advance of the contents and conditions set forth in this document.

11. This document shall not be reprinted, reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.

12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas
Electronics products.

(Note1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its directly or indirectly controlled
subsidiaries.
(Note2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

(Rev.4.0-1 November 2017)

Corporate Headquarters Contact Information

TOYOSU FORESIA, 3-2-24 Toyosu, For further information on a product, technology, the most up-to-date
Koto-ku, Tokyo 135-0061, Japan version of a document, or your nearest sales office, please visit:
www.renesas.com www.renesas.com/contact/

Trademarks

Renesas and the Renesas logo are trademarks of Renesas Electronics
Corporation. All trademarks and registered trademarks are the property
of their respective owners.

© 2020 Renesas Electronics Corporation. All rights reserved.

How to Use This Manual

This manual describes the role of the CS+ integrated development environment for developing applications and sys-
tems for RH850 family, RX family, and RL78 family, and provides an outline of its features.

CS+ is an integrated development environment (IDE) for RH850 family, RX family, and RL78 family, integrating the nec-
essary tools for the development phase of software (e.g. design, implementation, and debugging) into a single platform.

By providing an integrated environment, it is possible to perform all development using just this product, without the
need to use many different tools separately.

Readers

Purpose

Organization

How to Read This Manual

Conventions

This manual is intended for users who wish to understand the functions of the CS+ and
design software and hardware application systems.

This manual is intended to give users an understanding of the functions of the CS+ to use
for reference in developing the hardware or software of systems using these devices.

This manual can be broadly divided into the following units.

1.GENERAL

2.FUNCTIONS

AWINDOW REFERENCE

B.Python CONSOLE/Python FUNCTIONS

It is assumed that the readers of this manual have general knowledge of electricity, logic
circuits, and microcontrollers.

Data significance: Higher digits on the left and lower digits on the right
Active low representation: XXX (overscore over pin or signal name)

Note: Footnote for item marked with Note in the text
Caution: Information requiring particular attention

Remarks: Supplementary information

Numeric representation: Decimal ... XXXX

Hexadecimal ... OxXXXX

TABLE OF CONTENTS

1. GENERAL . . . 5
1.1 INtrOdUCHION . . o 5
1.2 FeatUres. . o e 5

2. FUNCTIONS. . . e 6
21 Execute Python FUunCtions 6
2.2 Use Sample SCript. 6

A. WINDOW REFERENCE. e 8
A1 [=TT o7y o] T) o 8

B. Python CONSOLE/Python FUNCTIONS 11
B.1 OVBIVIBW . . oottt e e e e e 11
B.2 Related File 11
B.3 CS+ Python Function/Class/Property/Event e 12

B.3.1 CS+ Python function (for basic operation) e 13
B.3.2 CS+ Python function (COmmoON) e 22
B.3.3 CS+ Python function (for project) e 26
B.3.4 CS+ Python function (for build tool) 42
B.3.5 CS+ Python function (for debug tool) 49
B.3.6 CS+ Python Class oo 204
B.3.7 CS+ Python property (COmmoON) e e e 256
B.3.8 CS+ Python property (for project).o 266
B.3.9 CS+ Python property (for build tool) 273
B.3.10 CS+ Python property (fordebug tool). 299
B.3.11 CS+ Python event. 319
B.4 Cautions for Python Console. e 321

Revision Record C-322

CS+V8.05.00 1. GENERAL

1. GENERAL

CS+ is an integrated development environment for use with microcontrollers. The Python console can control CS+
using IronPython (Python that runs on .NET Framework) which is a script language. The functions, properties, classes,
and events to control CS+ are added to the Python console.

This manual describes the usage of the Python console and the functions, properties, classes, and events that have
been extended for CS+.

This software includes the work that is distributed in the Apache License 2.0.
http://www.apache.org/licenses/LICENSE-2.0

Caution The above Web site may not be displayed from this document.

1.1 Introduction

This manual covers how to control CS+ (in creating, building, and debugging projects) by using the CS+ control func-
tions, properties, classes, and events which are provided by CS+.

1.2 Features

The features of the Python console are shown below.

- lronPython
The features of IronPython can be used.
In the IronPython language usable in the Python console, in addition to the features of the Python language, various
class libraries of .NET Framework can be used.
For the language specifications of IronPython, see the following URL.
http://ironpython.net/

- Project
Projects can be created and loaded. The active project can also be changed.

- Build
Build can be executed in the entire project or in file units.

- Debug
The debug tool can be connected or disconnected, program execution can be controlled, and memory data or vari-
ables can be referred to or set.

- Obtaining sample scripts
You can obtain sample scripts that are executable in the Python console from the Renesas Web site.
You can also register script files with projects.

R20UT4854EJ0100 Rev.1.00 RENESAS Page 5 of 324
Nov 01, 2020

http://www.apache.org/licenses/LICENSE-2.0

CS+V8.05.00 2. FUNCTIONS

2. FUNCTIONS

This chapter describes how to use the Python console.

2.1 Execute Python Functions

CS+ enables the execution of IronPython functions and control statements, and CS+ Python functions (see "B.3 CS+
Python Function/Class/Property/Event") added for controlling CS+ via command input method.

Select [Python Console] from the [View] menu and select the [Console] tab on the Python Console panel.

You can control CS+ and the debugging tool by executing Python functions and control statements in the panel.

Figure 2.1 Python Console Panel
Python Consale]

AR

\iConscle} | Sample Scripts |

Caution Do not issue Python commands while building is in progress.
Remark See "B. Python CONSOLE/Python FUNCTIONS" for details about the Python console and Python func-
tions.

2.2 Use Sample Script

You can obtain sample scripts that are executable in the Python console from the Renesas Web site.
You can also register script files with projects.

(1) Selecting [Python Console] from the [View] menu will open the Python Console panel.
Selecting the [Sample Scripts] tab below the panel displays a list of the sample scripts that you have obtained from
the Renesas Web site.

R20UT4854EJ0100 Rev.1.00 RENESAS Page 6 of 324
Nov 01, 2020

CS+V8.05.00 2. FUNCTIONS

Figure 2.2 Python Console Panel

Python Conscle E
2 Refresh) Add to project

= sample Script 1 il Sample Script 1 ~

Sample Script 1 summary

;-I_Eample Seript X
Sample Seript 2 summiary

description of sample program

ZSample Seript 3
Sample Scnpt 3 summary

Sample Script 4 summary

ﬂSamglE Seript 5

\ Conscle) Sample Scripts /

(2) Selecting the title of a sample script will display a description of the script. Clicking on the [Add to project] button
will register the script file with the active project.

(3) Double-clicking on the name of a script file in the project tree will open the registered script file in the Editor panel.
Modify the script file as required.

(4) Right-click on the name of a script file in the project tree and select [Execute in Python Console]. The [Console]
tab will become active and the script file will be executed.

R20UT4854EJ0100 Rev.1.00 RENESAS Page 7 of 324
Nov 01, 2020

CS+V8.05.00 A. WINDOW REFERENCE

A. WINDOW REFERENCE

This section describes the panel related to the Python console.

A.1 Description

Below is a list of the panel related to the Python console.

Table A.1 Panel List

Panel Name Function Description

simply displaying the sample script.

Python Console panel You can use IronPython to operate CS+ and the debug tool by
command input. You can also register a script with the project by

R20UT4854EJ0100 Rev.1.00 ENESAS
Nov 01, 2020

Page 8 of 324

CS+V8.05.00

A. WINDOW REFERENCE

Python Console panel

You can use IronPython to operate CS+ and the debug tool by command input. You can also register a script with the
project by simply displaying the sample script.

Figure A1

Python Console Panel

() —

M

Python Conzale

|

» Refresh 7T Add to project

= Sample Script 1
Sample Seript 1 summary
= Sample Seript 2
Sample Script 2 summary
= Sample Seript 3
Sample Scnipt 3 summary
=F le Script 4
Sample Script 4 srmmary

) Sample Seript 5

. Console), Sample Scripis |/

il Sample Script 1 ~

description of sample program

The following items are explained here.

- [How to open]

- [Description of each areal

- [Toolbar]

- [[File] menu (Python Console panel-dedicated items)]

- [Context menu]

[How to open]

- From the [View] menu, select [Python Console].

[Description of each area]

(1) Tab selection area
Selecting the tab will switch between the type of information that is displayed in the content area.

Tab Name

Description

Console

Enter and run IronPython functions and control statements, and CS+ Python
functions.
The results of function execution and errors are also displayed.

Sample Scripts

Displays a sample script that is executable in the Python console and was
obtained from the Renesas Web site.
The script file is also registered with the project.

(2) Content area
(@) [Console] tab

R20UT4854EJ0100 Rev.1.00
Nov 01, 2020

RENESAS Page 9 of 324

CS+V8.05.00 A. WINDOW REFERENCE

Enter and run IronPython functions and control statements, and CS+ Python functions.
The results of function execution and errors are also displayed.
Use a print statement to display the result of [ronPython functions.

(b) [Sample Scripts] tab
Displays a sample script that is executable in the Python console and was obtained from the Renesas Web site.
The script file is also registered with the project.

[Toolbar]
(1) [Console] tab
None

(2) [Sample Scripts] tab

Button Function
Refresh Updates the contents of the sample script that is displayed in the content area.
Add to project Downloads the script file of a sample script that is being displayed in the content
area to the project folder and registers the file in the project tree of the active
project.

[[File] menu (Python Console panel-dedicated items)]

(1) [Console] tab
The following items are exclusive for [File] menu in the Python Console panel (other items are common to all the

panels).
Save Python Console Saves the content displayed in the current panel in the last text file (*.txt) to be
saved.
Note that if this item is selected first after the program starts, then the behavior is
the same as selecting [Save Python Console As...].
Save Python Console As... | Opens the Save As dialog box to save the contents currently displayed on this
panel in the designated text file (*.txt).

(2) [Sample Scripts] tab
None

[Context menu]

(1) [Console] tab
The following items are exclusive for [File] menu in the Python Console panel (other items are common to all the

panels).
Cut Cuts the selected characters and copies them to the clip board.
Copy Copies the selected characters to the clip board.
Paste Inserts the contents of the clipboard into the caret position.
Select All Selects all characters displayed on this panel.
Abort Forces the currently running command to stop.
Clear Clears all output results.
Python Initialize Initializes Python.
Select Script File... Opens the Select Script File dialog box to execute the selected Python script file.

(2) [Sample Scripts] tab
None

R20UT4854EJ0100 Rev.1.00 RENESAS Page 10 of 324
Nov 01, 2020

CS+V8.05.00 B. Python CONSOLE/Python FUNCTIONS

B. Python CONSOLE/Python FUNCTIONS

This section describes the Python Console and Python functions provided by CS+.

B.1 Overview

The Python Console plug-in is a console tool using the IronPython language.

In addition to the functions and control statements supported by the IronPython language, you can also use CS+ Python
functions added in order to control CS+.

The functions provided by CS+ are shown below.

- On the Python Console panel, you can execute IronPython functions and control statements, and CS+ Python func-
tions (see "B.3 CS+ Python Function/Class/Property/Event" and "2.1 Execute Python Functions").

- When you start CS+ from the command line, you can specify and execute a script file (see "CS+ Integrated Develop-
ment Environment User's Manual: Project Operation").

- When loading a project file, you can run a script you have prepared in advance (see "B.2 Related File").

B.2 Related File

Below is a related file of CS+ Python functions.

- project-file-name.py
If there is a file in the same folder as the project file, and with the same name as the project file but with the "py"
extension, then that file is executed automatically when the project file is loaded.
The active project will be processed.

- download-file-name.py
If there is a file in the same folder as the download file, and with the same name as the download file but with the "py"
extension, then that file is executed automatically after downloading.

R20UT4854EJ0100 Rev.1.00 RENESAS Page 11 of 324
Nov 01, 2020

CS+V8.05.00

B. Python CONSOLE/Python FUNCTIONS

B.3 CS+ Python Function/Class/Property/Event

This section describes CS+ Python functions, classes, and properties.
Below is a list of CS+ Python functions, classes, and properties.

CS+ Python functions have the following rules.

- If a parameter has a default value, then the [Specification format] parameter is described in the form "parameter-

name=default-value". You can also specify parameters by value only.

Example

If the [Specification format] is "function(arg?, arg2 = 1, arg3 = True)", then arg1 has no default

value; arg2 has a default value of 1; and arg3 has a default value of "True".
The parameters can be specified as follows: "function("main", 1, True)".

- Parameters with default values can be omitted.
This is only possible, however, if the parameter can be determined.

Example

If the [Specification format] is "function(arg1, arg2 = 1, arg3 = True)"

>>>function ("main")
>>>function ("main", 2)

>>>function ("main", arg3 = False)
1, False)"

>>>function ("main", False)

arg2 = "main", arg3 = 3"

: It is assumed that "function ("main", 1,
: It is assumed that "function ("main",
: It is assumed that "function ("main",

: NG because it is assumed that "argl =

True)"
2, True)"

False,

- You can change the order in which parameters are specified by using the format "parameter-name=default-value".

Example

If the [Specification format] is "function(arg?1, arg2 = 1, arg3 = True)"

False,
"main", 3)

>>>function (arg3 =
>>>function (False,

arg2 = "main", arg3 = 3"

argl = "main",
: NG because it is assumed that "argl = False,

arg2 = 3) . .0OK

- You should be careful when you describe a path for a folder or file as parameters.
IronPython recognizes the backslash character (\) as a control character. For example, if a folder or file name starts
with a "t", then the sequence "\t" will be recognized as a tab character. Do the following to avoid this.

Example 1. In a quoted string (""), prepend the letter "r" to make IronPython recognize the string as a path.
r"C:\test\test.py"
Example 2. Use a forward slash (/) instead of a backslash (\).

"C:/test/test.py"

A slash (/) is used in this document.

R20UT4854EJ0100 Rev.1.00
Nov 01, 2020

RENESAS

Page 12 of 324

CS+V8.05.00

B. Python CONSOLE/Python FUNCTIONS

B.3.1 CS+ Python function (for basic operation)

Below is a list of CS+ Python functions (for basic operation).

Table B.1 CS+ Python Function (For Basic Operation)

Function Name Function Description
ClearConsole This function clears the string displayed on the Python console.
CubeSuiteExit This function exits from CS+.
Help This function displays the help for the CS+ Python functions.
Hook This function registers a hook or callback function.
Save This function saves all editing files and projects.
Source This function runs a script file.

R20UT4854EJ0100 Rev.1.00
Nov 01, 2020

RENESAS

Page 13 of 324

CS+V8.05.00 B. Python CONSOLE/Python FUNCTIONS

ClearConsole

This function clears the string displayed on the Python console.

[Specification format]

ClearConsole ()

[Argument(s)]

None

[Return value]

If the string was cleared successfully: True
If there was an error when clearing the string: False

[Detailed description]

- This function clears the string displayed on the Python console.

[Example of use]

>>>ClearConsole ()
True
>>>
R20UT4854EJ0100 Rev.1.00 T{ENESAS Page 14 of 324

Nov 01, 2020

CS+V8.05.00 B. Python CONSOLE/Python FUNCTIONS

CubeSuiteExit

This function exits from CS+.

[Specification format]

CubeSuiteExit ()

[Argument(s)]

None

[Return value]

None

[Detailed description]

- This function exits from CS+.

Caution The editing file will not be saved, even if the project file has been modified.
Use Save function to save the editing file.

[Example of use]

>>>CubeSuiteExit ()

R20UT4854EJ0100 Rev.1.00 RENESAS Page 15 of 324
Nov 01, 2020

CS+V8.05.00 B. Python CONSOLE/Python FUNCTIONS

Help

This function displays the help for the CS+ Python functions.

[Specification format]

Help ()

[Argument(s)]

None

[Return value]

None

[Detailed description]

- This function starts CS+'s integrated help, and displays the help for CS+ Python functions.

[Example of use]

>>>Help ()

R20UT4854EJ0100 Rev.1.00 RENESAS Page 16 of 324
Nov 01, 2020

CS+V8.05.00 B. Python CONSOLE/Python FUNCTIONS

Hook

This function registers a hook or callback function.

[Specification format]

Hook (scriptFile)

[Argument(s)]
Argument Description
scriptFile Specify the script file where the hook or callback function is defined.

[Return value]

None

[Detailed description]

- This function loads scriptFile, and registers a hook or callback function in the script file.
There is no problem even if functions other than a hook or callback function are declared.
The hook or the callback function is registered when the script file is ended.

- If Hook functions are declared, they are called after CS+ events occur.

Caution Event processing by CS+ is not completed unless execution of the hook function completes or con-
trol returns to the calling program.

- The types of hook function are shown below.
Note that hook functions do not take parameters.

Hook Function Event

BeforeBuild Before build

BeforeDownload Before download

AfterDownload After download

AfterCpuReset After CPU reset

BeforeCpuRun Before execute

AfterCpuStop After break

AfterActionEvent After action event (only Printf event)

AfterInterrupt After acceptance of specified exception cause code
(the target is the exception cause code set in debugger.Interrupt.Notifica-
tion)

AfterTimer After occurrence of timer interrupt
(the target is the timer interrupt set in debugger.Interrupt.SetTimer)

Example Sample script file
def BeforeDownload() :
Processing you want to perform before the download

R20UT4854EJ0100 Rev.1.00 RENESAS Page 17 of 324
Nov 01, 2020

CS+V8.05.00

B. Python CONSOLE/Python FUNCTIONS

- If callback functions are declared, they are called after CS+ events occur.

- The callback function name is fixed to "pythonConsoleCallback".
The parameter of the callback function is the callback trigger.

Argument Value Callback Trigger

10 After event registration

11 After event deletion

12 Before start of execution

13 After break

14 After CPU reset

18 After debug tool properties are changed

19 Before download

20 After memory or register is changed

21 After action event (only Printf event)

30 Before build

50 After occurrence of specified exception cause code
(after acceptance of exception cause code specified by debugger.Inter-
rupt.Notification)

63 After period specified by XRunBreak or timer interrupt has elapsed

Caution 1. Hook functions and callback functions are initialized by the following operations.

- When a project file is loaded

- When a new project file is created

- When the
- When the

active project is changed

debugging tool is switched

- When Python is initialized

Caution 2. Do not include a process that enters an infinite loop in hook functions and callback functions.

Caution 3. Do not use the following functions in the hook functions and callback function.

debugger
debugger
debugger
debugger

.ActionEvent, debugger.Breakpoint, debugger.Connect,
.Disconnect, debugger.Download, debugger.Erase, debugger.Go,
.Map, debugger.Next, debugger.Reset, debugger.ReturnOut,
.Run, debugger.Step, debugger.Stop

Caution 4. ltis not possible to call debugger.XRunBreak.Set or debugger.Interrupt.SetTimer with different conditions
in the hook function (AfterTimer) and callback function (parameter: 63).

Example 1. Do not make the following specifications in a hook function.
def AfterTimer () :
debugger.Interrupt.SetTimer (1, TimeType.Ms, True)
debugger.XRunBreak.Set (1, TimeType.Ms, True)
Example 2. Do not make the following specifications in a callback function.
def pythonConsoleCallback (Id):
if Id = 63:
debugger.XRunBreak.Delete ()
debugger.Interrupt.SetTimer (1, TimeType.Ms, True)
debugger.XRunBreak.Set (1, TimeType.Ms, True)
R20UT4854EJ0100 Rev.1.00 RENESAS Page 18 of 324

Nov 01, 2020

CS+V8.05.00 B. Python CONSOLE/Python FUNCTIONS

Caution 5. Use the following functions when the hook function is AfterTimer or Afterinterrupt and when the parame-
ter of the callback function is 50 or 63.

debugger.Address, debugger.GetIORList, debugger.Interrupt, debugger.Memory,
debugger.Register, debugger.Watch, debugger.XRunBreak

Note that debugger.Interrupt.SetTimer and debugger.XRunBreak cannot be used when the hook function
is AfterTimer or when the parameter of the callback function is 63.

[Example of use]

>>>Hook ("E:/TestFile/TestScript/testScriptFile2.py")

R20UT4854EJ0100 Rev.1.00 RENESAS Page 19 of 324
Nov 01, 2020

CS+V8.05.00 B. Python CONSOLE/Python FUNCTIONS

Save

This function saves all editing files and projects.

[Specification format]

Save ()

[Argument(s)]

None

[Return value]

If all editing files and projects were saved successfully: True
If there was an error when saving all editing files and projects: False

[Detailed description]

- This function saves all editing files and projects.

[Example of use]

>>>Save ()
True
>>>
R20UT4854EJ0100 Rev.1.00 RENESAS Page 20 of 324

Nov 01, 2020

CS+V8.05.00 B. Python CONSOLE/Python FUNCTIONS

Source

This function runs a script file.

[Specification format]

Source (scriptFile)

[Argument(s)]

Argument Description

scriptFile Specify the script file to run.

[Return value]

None

[Detailed description]

- This function runs the script file specified by scriptFile.

- This function operates the same as "execfile" of lronPython.

[Example of use]

>>>Source ("../../testScriptFile2.py")
>>>Source ("E:/TestFile/TestScript/testScriptFile.py")
>>>

R20UT4854EJ0100 Rev.1.00 RENESAS Page 21 of 324
Nov 01, 2020

CS+V8.05.00

B. Python CONSOLE/Python FUNCTIONS

B.3.2 CS+ Python function (common)

Below is a list of CS+ Python functions (common).

Table B.2 CS+ Python Function (Common)

Function Name

Function Description

common.GetOutputPanel

This function displays the contents of the Output panel.

common.OutputPanel

This function displays the string on the Output panel.

common.Pythonlnitialize

This function initializes Python.

R20UT4854EJ0100 Rev.1.00
Nov 01, 2020

RENESAS

Page 22 of 324

CS+V8.05.00

B. Python CONSOLE/Python FUNCTIONS

common.GetOutputPanel

This function displays the contents of the Output panel.

[Specification format]

common.GetOutputPanel ()

[Argument(s)]

None

[Return value]

String displayed on the Output panel

[Detailed description]

- This function displays the string displayed on the Output panel.

[Example of use]

True

—————— Start -----
>>> print com
—————— Start -----

>>> common.OutputPanel ("

>>> com = common.GetOutputPanel ()

R20UT4854EJ0100 Rev.1.00
Nov 01, 2020

RENESAS

Page 23 of 324

CS+V8.05.00

B. Python CONSOLE/Python FUNCTIONS

common.OutputPanel

This function displays the string on the Output panel.

[Specification format]

common.OutputPanel (output,

messageType = MessageType.Information)

[Argument(s)]
Argument Description
output Specify the string displayed on the Output panel.
messageType Specify the type of messages to be colored in the Output panel.

The colors are in accord with the settings for the [General - Font and Color] cate-

gory in the Option dialog box.

Type

Description

MessageType.Error

Error

MessageType.Information

Standard (default).

MessageType.Warning Warning
[Return value]
If the string was displayed on the Output panel successfully: True
If there was an error when displaying the string on the Output panel: False

[Detailed description]

- This function displays the string specified by output on the Output panel.

[Example of use]

True
>>>

>>>common.OutputPanel ("An error occurred.",

MessageType.Error)

R20UT4854EJ0100 Rev.1.00
Nov 01, 2020

RENESAS

Page 24 of 324

CS+V8.05.00 B. Python CONSOLE/Python FUNCTIONS

common.Pythonlnitialize

This function initializes Python.

[Specification format]

common.PythonInitialize (scriptFile = "")

[Argument(s)]
Argument Description
scriptFile Specify the script file to run after initializing Python (default: not specified).
Specify the absolute path.

[Return value]

None

[Detailed description]

- This function initializes Python.
Initialization is performed by discarding all defined functions or imported modules. If this function is executed while
executing a script, Python is forcibly initialized regardless of the execution state.

- If a script file is specified in scriptFile, the specified script file is executed after initialization has finished.
- If scriptFile is not specified, Python is merely initialized.

Caution Since Python is forcibly initialized, an error may be displayed depending on the execution state.

[Example of use]

>>>common.PythonInitialize ()
>>>
>>>common.PythonInitialize ("C:/Test/script.py")

R20UT4854EJ0100 Rev.1.00 RENESAS Page 25 of 324
Nov 01, 2020

CS+V8.05.00 B. Python CONSOLE/Python FUNCTIONS

B.3.3 CS+ Python function (for project)

Below is a list of CS+ Python functions (for a project).

Table B.3 CS+ Python Function (For Project)

Function Name Function Description

project.Change This function changes the active project.
project.Close This function closes a project.
project.Create This function creates a new project.
project.File.Add This function adds a file to the active project.
project.File.Exists This function confirms whether the file exists in the active project.
project.File.Information This function displays the list of the files registered in the active project.
project.File.Remove This function removes a file from the active project.
project.GetDeviceNamelList This function displays the list of the device names of the microcontroller.
project.GetFunctionList This function displays the list of the functions of the active project.
project.GetVariableList This function displays the list of the variables of the active project.
project.Information This function displays the list of project files.
project.Open This function opens a project.

R20UT4854EJ0100 Rev.1.00 RENESAS Page 26 of 324

Nov 01, 2020

CS+V8.05.00

B. Python CONSOLE/Python FUNCTIONS

project.Change

This function changes the active project.

[Specification format]

project.Change (projectName)

[Argument(s)]
Argument Description
projectName Specify the full path of the project or subproject to be changed.

[Return value]

If the active project was changed successfully: True
If there was an error when changing the active project: False

[Detailed description]

- This function changes the project specified in projectName to the active project.

- The project file specified in projectName must be included the currently opened project.

[Example of use]

True
>>>

>>>project.Close ("C:/project/sample/subl/subproject.mtpj")

R20UT4854EJ0100 Rev.1.00
Nov 01, 2020

RENESAS

Page 27 of 324

CS+V8.05.00

B. Python CONSOLE/Python FUNCTIONS

project.Close

This function closes a project.

[Specification format]

project.Close (save =

False)

[Argument(s)]

Argument

Description

save

Specify whether to save all files being edited and a project.
True: Save all editing files and a project.

False: Do not save all editing files and a project (default).

[Return value]

If the project was closed successfully: True
If there was an error when closing the project: False

[Detailed description]

- This function closes a currently opened project.

- If save is set to "True", then all files being edited and a project are saved.

[Example of use]

>>>project.Close()
True
>>>

R20UT4854EJ0100 Rev.1.00
Nov 01, 2020

RENESAS

Page 28 of 324

CS+V8.05.00

B. Python CONSOLE/Python FUNCTIONS

project.Create

This function creates a new project.

[Specification format]

piler = Compiler.Auto,

project.Create (fileName,
subProject = False)

micomType, deviceName,

projectKind = ProjectKind.Auto,

com-

[Argument(s)]

Argument

Description

fileName

Specify the full path of a new project file.

If no file extension is specified, the filename is automatically supplemented.

If the project to be created is a main project (subProject = False) or a subproject
(subProject = True), the name is supplemented by ".mtpj" or ".mtsp", respectively.
When the extension is other than that specified, it is replaced by the actual exten-

sion.

micomType

Specify the microcontroller type of a new project.
The types that can be specified are shown below.

Type

Description

MicomType.RH850

Project for RH850

MicomType.RX

Project for RX

MicomType.V850

Project for V850

MicomType.RL78

Project for RL78

MicomType.KOR

Project for 78KOR

MicomType.KO

Project for 78K0

deviceName

Specify the device name of the microcontroller of a new project by a string.

R20UT4854EJ0100 Rev.1.00
Nov 01, 2020

RENESAS

Page 29 of 324

CS+V8.05.00

B. Python CONSOLE/Python FUNCTIONS

Argument

Description

projectKind

Specify the type of a new project.
The types that can be specified are shown below.
The following is automatically specified if the microcontroller type is RH850 and
"ProjectKind.Auto" is specified or projectKind is not specified.
When the microcontroller is single core: ProjectKind.Application

When the microcontroller is multi-core and main project: ProjectKind.Multicore-

BootLoader

When the microcontroller is multi-core and subproject: ProjectKind.MulticoreAp-

plication

Type

Description

ProjectKind.Application

Project for application

ProjectKind.Library

Project for library

ProjectKind.DebugOnly

Debug-dedicated project

ProjectKind.Empty

Project for empty application

ProjectKind.CppApplication

Project for C++ application

ProjectKind. GHSCCProject

CS+ project using an existing GHS project file

ProjectKind.RI600V4 Project for RI600V4
ProjectKind.RI6GO0PX Project for RIBOOPX
ProjectKind.R1850V4 Project for RI850V4
ProjectKind.RI850MP Project for RIB5S0MP
ProjectKind.RV850 Project for RV850
ProjectKind.RI78V4 Project for RI78V4

ProjectKind.MulticoreBootLoader

Project for boot loader for multi-core

ProjectKind.MulticoreApplication

Project for application for multi-core

ProjectKind.Auto The type of a project is selected in accord
with the specification for mi comType, devi-
ceName, and subProject (default).
R20UT4854EJ0100 Rev.1.00 IIENESAS Page 30 of 324

Nov 01, 2020

CS+V8.05.00 B. Python CONSOLE/Python FUNCTIONS

Argument Description

compiler Specify the compiler to be used.
If the compiler is not specified, it is selected automatically depending on the
microcontroller type.

Type Description

Compiler.Auto The compiler to be used is selected in accord
with the specification for micomType (default).

Compiler.CC_RH CC-RH

If this argument is not specified when micom-
Type is set to "MicomType.RH850", CC-RH is
selected automatically.

Compiler.CC_RX CC-RX

If this argument is not specified when micom-
Type is set to "MicomType.RX", CC-RXis
selected automatically.

Compiler.CA850 CA850

If this argument is not specified when micom-
Type is set to "MicomType.V850" and device-
Name is set to "V850E" or "V850ES", CA850
is selected automatically.

Compiler.CX CX

If this argument is not specified when micom-
Type is set to "MicomType.V850" and device-
Name is set to "V850E2", CX is selected
automatically.

Compiler.CC_RL CC-RL

If this argument is not specified when "Micom-
Type.RL78" in CS+ for CC, CC-RL is selected
automatically.

Compiler.CA78K0OR CA78KOR

If this argument is not specified when micom-
Type is set to "MicomType.KOR" or "Micom-
Type.RL78" in CS+ for CACX, CA78KOR is
selected automatically.

Compiler.CA78K0 CA78K0

If this argument is not specified when micom-
Type is set to "MicomType.K0", CA78KO0 is
selected automatically.

Compiler.GHSCC GHSCC
The compiler from Green Hills Software.

subProject Specify whether to create a main project or a subproject.
False: Create a main project (default).
True: Create a subproject.

[Return value]

If a new project was created successfully: True
If there was an error when creating a new project: False

R20UT4854EJ0100 Rev.1.00 RENESAS Page 31 of 324
Nov 01, 2020

CS+V8.05.00 B. Python CONSOLE/Python FUNCTIONS

[Detailed description]

- This function creates a new project file specified by fileName.
Specify the microcontroller of the project by micomType and deviceName.
Specify the kind of the project by projectKind.

- If subProject is set to "True", then a subproject is created.

[Example of use]

>>>project.Create ("C:/project/test.mtpj", MicomType.RX, "RS5F52105AxXFN", Project-
Kind.Application)

True
>>>
R20UT4854EJ0100 Rev.1.00 RENESAS Page 32 of 324

Nov 01, 2020

CS+V8.05.00 B. Python CONSOLE/Python FUNCTIONS

project.File.Add

This function adds a file to the active project.

[Specification format]

project.File.Add (fileName, category = "")

[Argument(s)]
Argument Description
fileName Specify the full path of the file to be added to the active project.
When specifying multiple files, specify in the format ["file1", "file2"].
category Specify the category that the file is added (default: not specified).
When specifying multiple levels, specify in the format ["one", "two"].

[Return value]

If a file was added to the active project successfully: True

If there was an error when a file was added to the active project: False

If there was an error when any files were added to the active project when multiple files were specified for fileName:
False

[Detailed description]

- This function adds the file specified in fileName to the active project.

- If category is specified, the file is added below that category.
If the specified category does not exist, it is created newly.

[Example of use]

>>>project.File.Add ("C:/project/sample/src/test.c", "test")
True
>>>project.File.Add(["C:/project/sample/src/testl.c", "C:/project/sample/src/
test2.c"], ["test", "src"])
True
R20UT4854EJ0100 Rev.1.00 RENESAS Page 33 of 324

Nov 01, 2020

CS+V8.05.00

B. Python CONSOLE/Python FUNCTIONS

project.File.Exists

This function confirms whether the file exists in the active project.

[Specification format]

project.File.Exists (fileName)

[Argument(s)]

Argument

Description

checked.

fileName Specify the full path of the file whose existence in the active project is to be

[Return value]

If the specified file existed in the active project: True
If the specified file did not exist in the active project: False

[Detailed description]

- This function confirms whether the file specified in fileName exists in the active project.

[Example of use]

True
>>>

>>>project.File.Exists ("C:/project/sample/src/test.c")

R20UT4854EJ0100 Rev.1.00
Nov 01, 2020

RENESAS

Page 34 of 324

CS+V8.05.00 B. Python CONSOLE/Python FUNCTIONS

project.File.Information

This function displays the list of the files registered in the active project.

[Specification format]

project.File.Information ()

[Argument(s)]

None

[Return value]

List of the files registered in the active project (in a full path)

[Detailed description]

- This function displays the list of the full path of the files registered in the active project.

[Example of use]

>>>project.File.Information ()
C:\prj\src\filel.c
C:\prj\src\file2.c
C:\prj\src\file3.c

>>>

R20UT4854EJ0100 Rev.1.00 RENESAS Page 35 of 324
Nov 01, 2020

CS+V8.05.00

B. Python CONSOLE/Python FUNCTIONS

project.File.Remove

This function removes a file from the active project.

[Specification format]

project.File.Remove (fileName)

[Argument(s)]
Argument Description
fileName Specify the full path of the file to be removed from the active project.
When specifying multiple files, specify in the format ["file1", "file2"].

[Return value]

If a file was removed from the active project successfully: True

If there was an error when a file was removed from the active project: False

[Detailed description]

- This function removes the file specified in fileName from the active project.

- The file is not deleted.

[Example of use]

>>>project.File.Remove ("C:/project/sample/src/test.c")

True
>>>project.File.Remove (["C:/project/sample/src/testl.c", "C:/project/sample/src/
test2.c"])
True
R20UT4854EJ0100 Rev.1.00 RENESAS Page 36 of 324

Nov 01, 2020

CS+V8.05.00

B. Python CONSOLE/Python FUNCTIONS

project.GetDeviceNameList

This function displays the list of the device names of the microcontroller.

[Specification format]

project.GetDeviceNamelList (micomType, nickName = "")

[Argument(s)]
Argument Description

micomType Specify the microcontroller type of a new project.

The types that can be specified are shown below.
Type Description

MicomType.RH850 Project for RH850
MicomType.RX Project for RX
MicomType.V850 Project for V850
MicomType.RL78 Project for RL78
MicomType.KOR Project for 78KOR
MicomType.KO Project for 78K0

nickName Specify the nickname of the microcontroller by a string (default: not specified).
Specify a character string displayed in the first layer of the [Using microcontroller]
list in the Create Project dialog box that is used to create a new project.

[Return value]

List of device names

[Detailed description]

- This function displays the list of the device names of the microcontroller specified by micomType.

- When nickName is specified, only the names of the devices specified by nickName are displayed.

[Example of use]

>>>project.GetDeviceNamelList (MicomType.RL78)
R5F10BAF
R5F10AGF
R5F10BAG
R5F10BGG

R5F10BAG
R5F10BGG

>>>devlist = project.GetDeviceNameList (MicomType.RL78, "RL78/F13 (ROM:128KB)")

R20UT4854EJ0100 Rev.1.00
Nov 01, 2020

RENESAS

Page 37 of 324

CS+V8.05.00 B. Python CONSOLE/Python FUNCTIONS

project.GetFunctionList

This function displays the list of the functions of the active project.

[Specification format]

project.GetFunctionList (fileName = "")

[Argument(s)]

Argument Description

fileName Specify the full path of the file that the list of the functions are displayed (default:
not specified).

[Return value]

List of function information (see the Functioninfo property for detail)

[Detailed description]

- This function displays the list of the functions of the active project shown by the following format.

function-name return-value-type start-address end-address file-name

- When fileName is specified, only the functions included in the specified file are displayed.
- When fileName is not specified, then all the functions will be displayed.

Caution This function uses the information displayed in the list of functions for program analysis.

[Example of use]

>>>project.GetFunctionList ()

funcl int 0x00200 0x00224 C:\project\src\testl.c
func?2 int 0x00225 0x002ff C:\project\src\test2.c
>>>project.GetFunctionList ("C:/project/src/testl.c")
funcl int 0x00200 0x00224 C:\project\src\testl.c
>>>

R20UT4854EJ0100 Rev.1.00 RENESAS Page 38 of 324
Nov 01, 2020

CS+V8.05.00 B. Python CONSOLE/Python FUNCTIONS

project.GetVariableList

This function displays the list of the variables of the active project.

[Specification format]

project.GetVariablelList (fileName = "")

[Argument(s)]

Argument Description

fileName Specify the full path of the file that the list of the variables are displayed (default:
not specified).

[Return value]

List of variable information (see the VariableInfo property for detail)

[Detailed description]

- This function displays the list of the variables of the active project shown by the following format.

variable-name attribute type address size file-name

- When fileName is specified, only the variables included in the specified file are displayed.
- When fileName is not specified, then all the variables will be displayed.

Caution This function uses the information displayed in the list of variables for program analysis.

[Example of use]

>>>project.GetVariableList ()

varl volatile int 0x000014e4 4 C:\project\src\testl.c
var?2 static int 0x000014e8 4 C:\project\srcl\test2.c
>>>project.GetVariableList ("C:/project/src/testl.c")
varl volatile int 0x000014e4 4 C:\project\src\testl.c
>>>

R20UT4854EJ0100 Rev.1.00 RENESAS Page 39 of 324
Nov 01, 2020

CS+V8.05.00 B. Python CONSOLE/Python FUNCTIONS

project.Information

This function displays the list of project files.

[Specification format]

project.Information ()

[Argument(s)]

None

[Return value]

List of project file names

[Detailed description]

- This function displays the list of project files of the main project and subprojects included in the loaded project.

[Example of use]

>>>project.Information ()
C:\project\sample\test.mtp]
C:\project\sample\subl\sublproject.mtsp
C:\project\sample\sub2\sub2project.mtsp
>>>

R20UT4854EJ0100 Rev.1.00 T{ENESAS Page 40 of 324
Nov 01, 2020

CS+V8.05.00 B. Python CONSOLE/Python FUNCTIONS

project.Open

This function opens a project.

[Specification format]

project.Open (fileName, save = False)

[Argument(s)]
Argument Description
fileName Specify a project file.
save If another project was opened, specify whether to save any files being edited and

the project when you close it.
True: Save all editing files and a project.
False: Do not save all editing files and a project (default).

[Return value]

If the project was closed successfully: True
If there was an error when closing the project: False

[Detailed description]

- This function opens a project specified by fileName.

- If other project is open