

To our customers,

Old Company Name in Catalogs and Other Documents

On April 1st, 2010, NEC Electronics Corporation merged with Renesas Technology

Corporation, and Renesas Electronics Corporation took over all the business of both
companies. Therefore, although the old company name remains in this document, it is a valid
Renesas Electronics document. We appreciate your understanding.

Renesas Electronics website: http://www.renesas.com

April 1st, 2010
Renesas Electronics Corporation

Issued by: Renesas Electronics Corporation (http://www.renesas.com)

Send any inquiries to http://www.renesas.com/inquiry.

Note that the following URLs in this document are not available: http://www.necel.com/http://www2.renesas.com/ Please refer to the following instead:Development Tools | http://www.renesas.com/toolsDownload | http://www.renesas.com/tool_download For any inquiries or feedback, please contact your region.http://www.renesas.com/inquiry

Notice
1. All information included in this document is current as of the date this document is issued. Such information, however, is

subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please
confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to
additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.

2. Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights
of third parties by or arising from the use of Renesas Electronics products or technical information described in this document.
No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights
of Renesas Electronics or others.

3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.
4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of

semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software,
and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by
you or third parties arising from the use of these circuits, software, or information.

5. When exporting the products or technology described in this document, you should comply with the applicable export control
laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas
Electronics products or the technology described in this document for any purpose relating to military applications or use by
the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and
technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited
under any applicable domestic or foreign laws or regulations.

6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics
does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages
incurred by you resulting from errors in or omissions from the information included herein.

7. Renesas Electronics products are classified according to the following three quality grades: “Standard”, “High Quality”, and
“Specific”. The recommended applications for each Renesas Electronics product depends on the product’s quality grade, as
indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular
application. You may not use any Renesas Electronics product for any application categorized as “Specific” without the prior
written consent of Renesas Electronics. Further, you may not use any Renesas Electronics product for any application for
which it is not intended without the prior written consent of Renesas Electronics. Renesas Electronics shall not be in any way
liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an
application categorized as “Specific” or for which the product is not intended where you have failed to obtain the prior written
consent of Renesas Electronics. The quality grade of each Renesas Electronics product is “Standard” unless otherwise
expressly specified in a Renesas Electronics data sheets or data books, etc.

“Standard”: Computers; office equipment; communications equipment; test and measurement equipment; audio and visual
equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots.

“High Quality”: Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-
crime systems; safety equipment; and medical equipment not specifically designed for life support.

“Specific”: Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or
systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare
intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.

8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics,
especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation
characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or
damages arising out of the use of Renesas Electronics products beyond such specified ranges.

9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have
specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further,
Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to
guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a
Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire
control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because
the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system
manufactured by you.

10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental
compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable
laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS
Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with
applicable laws and regulations.

11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas
Electronics.

12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this
document or Renesas Electronics products, or if you have any other inquiries.

(Note 1) “Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its majority-
owned subsidiaries.

(Note 2) “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.

Document No. U18548EJ1V0UM00 (1st edition)
Date Published October 2007

CC78K0R Ver. 2.00
C Compiler

Language

User’s Manual

Target Device
 78K0R Microcontrollers

Printed in Japan

© NEC Electronics Corporation 2007

User’s Manual U18548EJ1V0UM 2

[MEMO]

User’s Manual U18548EJ1V0UM 3

[MEMO]

User’s Manual U18548EJ1V0UM 4

The information in this document is current as of October, 2007. The information is subject to
change without notice. For actual design-in, refer to the latest publications of NEC Electronics data
sheets or data books, etc., for the most up-to-date specifications of NEC Electronics products. Not
all products and/or types are available in every country. Please check with an NEC Electronics sales
representative for availability and additional information.
No part of this document may be copied or reproduced in any form or by any means without the prior
written consent of NEC Electronics. NEC Electronics assumes no responsibility for any errors that may
appear in this document.
NEC Electronics does not assume any liability for infringement of patents, copyrights or other intellectual
property rights of third parties by or arising from the use of NEC Electronics products listed in this document
or any other liability arising from the use of such products. No license, express, implied or otherwise, is
granted under any patents, copyrights or other intellectual property rights of NEC Electronics or others.
Descriptions of circuits, software and other related information in this document are provided for illustrative
purposes in semiconductor product operation and application examples. The incorporation of these
circuits, software and information in the design of a customer's equipment shall be done under the full
responsibility of the customer. NEC Electronics assumes no responsibility for any losses incurred by
customers or third parties arising from the use of these circuits, software and information.
While NEC Electronics endeavors to enhance the quality, reliability and safety of NEC Electronics products,
customers agree and acknowledge that the possibility of defects thereof cannot be eliminated entirely. To
minimize risks of damage to property or injury (including death) to persons arising from defects in NEC
Electronics products, customers must incorporate sufficient safety measures in their design, such as
redundancy, fire-containment and anti-failure features.
NEC Electronics products are classified into the following three quality grades: "Standard", "Special" and
"Specific".
The "Specific" quality grade applies only to NEC Electronics products developed based on a customer-
designated "quality assurance program" for a specific application. The recommended applications of an NEC
Electronics product depend on its quality grade, as indicated below. Customers must check the quality grade of
each NEC Electronics product before using it in a particular application.

The quality grade of NEC Electronics products is "Standard" unless otherwise expressly specified in NEC
Electronics data sheets or data books, etc. If customers wish to use NEC Electronics products in applications
not intended by NEC Electronics, they must contact an NEC Electronics sales representative in advance to
determine NEC Electronics' willingness to support a given application.

(Note)

•

•

•

•

•

•

M8E 02. 11-1

(1)

(2)

"NEC Electronics" as used in this statement means NEC Electronics Corporation and also includes its
majority-owned subsidiaries.
"NEC Electronics products" means any product developed or manufactured by or for NEC Electronics (as
defined above).

Computers, office equipment, communications equipment, test and measurement equipment, audio
and visual equipment, home electronic appliances, machine tools, personal electronic equipment
and industrial robots.
Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster
systems, anti-crime systems, safety equipment and medical equipment (not specifically designed
for life support).
Aircraft, aerospace equipment, submersible repeaters, nuclear reactor control systems, life
support systems and medical equipment for life support, etc.

"Standard":

"Special":

"Specific":

User’s Manual U18548EJ1V0UM 5

[MEMO]

User’s Manual U18548EJ1V0UM 6

INTRODUCTION

The CC78K0R C Compiler (hereinafter referred to as this C compiler) was developed based on CHAPTER 2

ENVIRONMENT and CHAPTER 3 LANGUAGE in the Draft Proposed American National Standard for

Information Systems — Programming Language C (December 7, 1988). Therefore, by compiling C source

programs conforming to the ANSI standard with this C compiler, applied products for the 78K0R Microcontroller

can be developed.

The CC78K0R C Compiler Language (this manual) has been prepared to give those who develop software by

using this C compiler a correct understanding of the basic functions and language specifications of this C

compiler.

This manual does not cover how to operate this C compiler. Therefore, after you have comprehended the

contents of this manual, read the CC78K0R Ver. 2.20 C Compiler Operation (U18549E).

For the architecture of 78K0R Microcontroller, refer to the user’s manual of each product of 78K0R

Microcontroller.

[Target Devices]

Software for the 78K0R Microcontroller microcontrollers can be developed with this C compiler.

Note that an optional device file corresponding to a target device is necessary.

[Readers]

Although this manual is intended for those who have read the user's manual of the microcontroller subject to

software development and have experience in software programming, the readers need not necessarily have a

knowledge of C compilers or C language. Discussions in this manual assume that the readers are familiar with

software terminology.

User’s Manual U18548EJ1V0UM 7

[Organization]

This manual consists of the following 13 chapters and appendixes:

Chapter 1 - GENERAL

 Outlines the general functions of C compilers and the performance characteristics and features of

 this C compiler.

Chapter 2 - CONSTRUCTS OF C LANGUAGE

 Explains the constituting elements of a C source module file.

Chapter 3 - DECLARATION OF TYPES AND STORAGE CLASSES

 Explains the data types and storage classes used in C and how to declare the type and storage

 class of a data object or function.

Chapter 4 - TYPE CONVERSIONS

 Explains the conversions of data types to be automatically carried out by this C compiler.

Chapter 5 - OPERATORS AND EXPRESSIONS

 Describes the operators and expressions that can be used in C and the precedence of operators.

Chapter 6 - CONTROL STRUCTURES OF C LANGUAGE

 Explains the program control structures of C and the statements to be executed in C.

Chapter 7 - STRUCTURES AND UNIONS

 Explains the concept of structures and unions and how to refer to structure and union members.

Chapter 8 - EXTERNAL DEFINITIONS

 Describes the types of external definitions and how to use external declarations.

Chapter 9 - PREPROCESSOR DIRECTIVES (COMPILER DIRECTIVES)

 Details the types of preprocessing directives and how to use each preprocessor directive.

Chapter 10 - LIBRARY FUNCTIONS

 Details the types of C library functions and how to use each library function.

Chapter 11 - EXTENDED FUNCTIONS

 Explains the extended functions of this C compiler to make the most of the target device.

Chapter 12 - REFERENCING THE ASSEMBLER

 Describes the method of linking a C source program with a program written in Assembly language.

Chapter 13 - EFFECTIVE UTILIZATION OF COMPILER

 Outlines how to effectively use this C compiler.

APPENDIXES

Contains a list of labels for saddr area, a list of segment names, a list of runtime libraries, a list of

library stack consumption, a list of maximum interrupt disabled time for libraries, and index for quick

reference.

[How to Read This Manual]

• For those who are not familiar with C compilers or C language:

 Read from Chapter 1, as this manual covers from the program control structures of C to the extended

functions of this C compiler. In Chapter 1, an example of C source program is used to show the reference part

in this manual.

• For those who are familiar with C compilers or C language:

 The language specifications of this C compiler conform to the ANSI Standard C. Therefore, you may start

from Chapter 11 that explains the extended functions unique to this C compiler. When reading Chapter 11,

also refer to the user's manual supplied with the target device in the 78K0R Microcontroller if necessary.

User’s Manual U18548EJ1V0UM 8

[Related Documents]

The table below shows the documents (such as user’s manuals) related to this manual. The related documents

indicated in this publication may include preliminary versions. However, preliminary versions are not marked as

such.

Documents related to development tools (user’s manuals)

Document Name Document No.

Operation U18549E CC78K0R Ver. 2.00 C Compiler

Language This document

Operation U18547E RA78K0R Ver. 1.20 Assembler Package

Language U18546E

SM+ System Simulator Operation U18010E

PM+ Ver. 6.30 Project Manager U18416E

ID78K0R-QB Ver. 3.20 Integrated Debugger Operation U17839E

[Reference]

Draft Proposed American National Standard for Information Systems - Programming Language C

(December 7, 1988)

[Terms]

RTOS = 78K0R Microcontroller Real-time OS RX78K0R

[Conventions]

The following symbols and abbreviations are used in this manual:

Symbol Meaning

 : Continuation (repetition) of data in the same format

“ ” : Characters enclosed in a pair of double quotes must be input as is.

‘ ’ : Characters enclosed in a pair of single quotes must be input as is.

: : This part of the program description is omitted.

/ : Delimiter

\ : Backslash

[] : Parameters in square brackets may be omitted.

…

User’s Manual U18548EJ1V0UM 9

 CONTENTS

CHAPTER 1 GENERAL ... 14
1.1 C Language and Assembly Language ... 14
1.2 Program Development Procedure by C Compiler ... 16

1.2.1 Software required ... 16
1.2.2 Product development procedure ... 16

1.3 Basic Structure of C Source Program ... 18
1.3.1 Program format ... 18

1.4 Quantitative Limits for C Compiler ... 21
1.5 Features of C Compiler ... 23

CHAPTER 2 CONSTRUCTS OF C LANGUAGE ... 27
2.1 Character Sets ... 28

2.1.1 Character sets ... 28
2.1.2 Multi-byte character ... 28
2.1.3 ESCAPE sequences ... 29
2.1.4 Trigraph sequences ... 29

2.2 Keywords ... 30
2.2.1 ANSI-C keywords ... 30
2.2.2 Keywords added for the CC78K0R ... 31

2.3 Identifiers ... 32
2.3.1 Scope of identifiers ... 33
2.3.2 Linkage of identifiers ... 34
2.3.3 Name space for identifiers ... 34
2.3.4 Storage duration of objects ... 35

2.4 Data Types ... 36
2.4.1 Basic types ... 37
2.4.2 Character types ... 41
2.4.3 Incomplete types ... 41
2.4.4 Derived types ... 41
2.4.5 Scalar types ... 42
2.4.6 Compatible type ... 42
2.4.7 Composite type ... 43

2.5 Constants ... 44
2.5.1 Floating-point constant ... 44
2.5.2 Integer constant ... 44
2.5.3 Enumeration constants ... 46
2.5.4 Character constants ... 46

2.6 String Literal ... 47
2.7 Operators ... 48
2.8 Delimiters ... 49
2.9 Header Name ... 50
2.10 Comment ... 51

CHAPTER 3 DECLARATION OF TYPES AND STORAGE CLASSES ... 52
3.1 Storage Class Specifiers ... 53
3.2 Type Specifiers ... 54

3.2.1 Structure specifier and union specifier ... 56
3.2.2 Enumeration specifiers ... 58
3.2.3 Tags ... 59

3.3 Type Qualifiers ... 60
3.4 Declarators ... 61

3.4.1 Pointer declarators ... 61
3.4.2 Array declarators ... 62
3.4.3 Function declarators (including prototype declarations) ... 62

3.5 Type Names ... 63

10 User’s Manual U18548EJ1V0UM

3.6 typedef Declarations ... 64
3.7 Initialization ... 66

3.7.1 Initialization of objects which have a static storage duration ... 66
3.7.2 Initialization of objects which have an automatic storage duration ... 66
3.7.3 Initialization of character arrays ... 67
3.7.4 Initialization of aggregate or union type objects ... 68

CHAPTER 4 TYPE CONVERSIONS ... 70
4.1 Arithmetic Operands ... 72
4.2 Other Operands ... 74

CHAPTER 5 OPERATORS AND EXPRESSIONS ... 75
5.1 Primary Expressions ... 77
5.2 Postfix Operators ... 78
5.3 Unary Operators ... 85
5.4 Cast Operator ... 92
5.5 Arithmetic Operators ... 94
5.6 Bitwise Shift Operators ... 100
5.7 Relational Operators ... 103
5.8 Bitwise Logical Operators ... 110
5.9 Logical Operators ... 114
5.10 Conditional Operator ... 117
5.11 Assignment Operators ... 119
5.12 Comma Operator ... 122
5.13 Constant Expressions ... 124

CHAPTER 6 CONTROL STRUCTURES OF C LANGUAGE ... 126
6.1 Labeled Statements ... 128
6.2 Compound Statements or Blocks ... 132
6.3 Expression Statements and Null Statements ... 133
6.4 Conditional Control Statements ... 134
6.5 Looping Statements ... 137
6.6 Branch Statements ... 141

CHAPTER 7 STRUCTURES AND UNIONS ... 146
7.1 Structures ... 146
7.2 Unions ... 149

CHAPTER 8 EXTERNAL DEFINITIONS ... 152
8.1 Function Definition ... 153
8.2 External Object Definitions ... 155

CHAPTER 9 PREPROCESSOR DIRECTIVES (COMPILER DIRECTIVES) ... 156
9.1 Conditional Compilation Directives ... 156
9.2 Source File Inclusion Directive ... 164
9.3 Macro Replacement Directives ... 168
9.4 Line Control Directive ... 173
9.5 #error Preprocess Directive ... 174
9.6 #pragma Directives ... 175
9.7 Null Directives ... 176
9.8 Compiler-Defined Macro Names ... 177

CHAPTER 10 LIBRARY FUNCTIONS ... 179
10.1 Interface Between Functions ... 179

10.1.1 Arguments ... 179
10.1.2 Return values ... 180
10.1.3 Saving registers to be used by individual libraries ... 181

10.2 Headers ... 183
10.3 Re-entrantability ... 190
10.4 Standard Library Functions ... 191

10.4.1 Use of optimum library for arguments and return values ... 196
10.5 Character/String Functions ... 197
10.6 Program Control Functions ... 202

User’s Manual U18548EJ1V0UM 11

10.7 Special Functions ... 204
10.8 I/O Functions ... 207
10.9 Utility Functions ... 227
10.10 Character String/Memory Functions ... 250
10.11 Mathematical Functions ... 268
10.12 Diagnostic Functions ... 315
10.13 Batch Files for Update of Startup Routine and Library Functions ... 317

10.13.1 Using batch files ... 318

CHAPTER 11 EXTENDED FUNCTIONS ... 320
11.1 Macro Names ... 320
11.2 Keywords ... 321
11.3 Memory ... 323
11.4 #pragma Directive ... 325
11.5 How to Use Extended Functions ... 327
11.6 Modifications of C Source ... 424
11.7 Function Call Interface ... 425

11.7.1 Return value ... 426
11.7.2 Ordinary function call interface ... 427

CHAPTER 12 REFERENCING THE ASSEMBLER ... 432
12.1 Accessing Arguments/Automatic Variables ... 432
12.2 Storing Return Values ... 433
12.3 Calling Assembly Language Routines from C Language ... 434

12.3.1 C language function calling procedure ... 434
12.3.2 Saving data from the assembly language routine and returning ... 435

12.4 Calling C Language Routines from Assembly Language ... 437
12.4.1 Calling the C language function from an assembly language program ... 437

12.5 Referencing Variables Defined in Other Languages ... 439
12.5.1 Referencing variables defined in the C language ... 439
12.5.2 Referencing variables defined in the assembly language from the C language ... 440

12.6 Cautions ... 441

CHAPTER 13 EFFECTIVE UTILIZATION OF COMPILER ... 442
13.1 Efficient Coding ... 442

APPENDIX A LIST OF LABELS FOR saddr AREA ... 445

APPENDIX B LIST OF SEGMENT NAMES ... 447
B.1 List of Segment Names ... 448

B.1.1 Program area and data area ... 448
B.1.2 Flash memory area ... 450

B.2 Location of Segment ... 451
B.3 Example of C Source ... 452
B.4 Example of Output Assembler Module ... 453

APPENDIX C LIST OF RUNTIME LIBRARIES ... 460

APPENDIX D LIST OF LIBRARY STACK CONSUMPTION ... 467

APPENDIX E LIST OF MAXIMUM INTERRUPT DISABLED TIME FOR LIBRARIES ... 478

INDEX ... 479

12 User’s Manual U18548EJ1V0UM

 LIST OF FIGURES

Figure No. Title , Page

1-1 Flow of Compilation ... 15
1-2 Program Development Procedure by CC78K0R ... 17
2-1 Classification of Types ... 36
4-1 Usual Arithmetic Type Conversions ... 73
6-1 Control Flows of Conditional Control Statements ... 134
6-2 Control Flows of Looping Statements ... 137
6-3 Control Flows of Branch Statements ... 141
11-1 Utilization of Memory Space ... 324

User’s Manual U18548EJ1V0UM 13

 LIST OF TABLES

Table No. Title , Page

1-1 Quantitative Limits for C Compiler ... 21
1-2 Methods to Improve Execution Speed ... 23
1-3 List of Extended Functions ... 23
2-1 List of Characters that Can Be Used in Character Set ... 28
2-2 List of ESCAPE Sequences ... 29
2-3 List of Trigraph Sequence ... 29
2-4 List of ANSI-C Keywords ... 30
2-5 List of Keywords Added for CC78K0R ... 31
2-6 List of Identifiers ... 32
2-7 Integer Constant ... 45
2-8 Integer Constant and Representable Type ... 45
2-9 List of Operators ... 48
3-1 Storage Class Specifiers ... 53
3-2 Type Specifiers ... 55
3-3 Examples of Type Names ... 63
4-1 List of Conversions Between Types ... 70
5-1 Evaluation Precedence of Operators ... 76
5-2 Signs of Division/Remainder Division Operation Result ... 94
5-3 Shift Operations ... 100
8-1 Example of External Object Definition ... 155
9-1 List of Macro Names ... 177
10-1 List of Passing First Argument ... 180
10-2 List of Storing Return Value ... 180
10-3 List of Standard Library Functions ... 191
10-4 Batch Files for Updating Library Functions ... 317
11-1 List of Added Keywords ... 321
11-2 List of #pragma Directives ... 325
11-3 Details of Type Modification (Change from int and short Type to char Type) ... 427
B-1 Location of Segment ... 451
C-1 Runtime Libraries ... 460
D-1 List of Standard Library Stack Consumption ... 467
D-2 List of Runtime Library Stack Consumption ... 473
E-1 Maximum Interrupt Disabled Time (Number of Clocks) for Libraries ... 478

14 User’s Manual U18548EJ1V0UM

CHAPTER 1 GENERAL

CHAPTER 1 GENERAL

This chapter explains the roles of the CC78K0R at the time of system development and functional outlines of the

C Compiler.

The 78K0R C Compiler is a language processing program which converts a source program written in the C

language for the 78K0R or ANSI-C into machine language. By the 78K0R C compiler, object files or assembler

source files for the 78K0R can be obtained.

1.1 C Language and Assembly Language

To have a microcontroller do its job programs and data are necessary. These programs and data must be written

by a user being and stored in the memory section of the microcontroller. Programs and data that can be handled

by the microcontroller are nothing but a set or combination of binary numbers that is called machine language.

An assembly language is a symbolic language characterized by one-to-one correspondence of its symbolic

(mnemonic) statements with machine language instructions. Because of this one-to-one correspondence, the

assembly language can provide the computer with detailed instructions (for example, to improve I/O processing

speed). However, this means that the user must instruct each and every operation of the computer. For this

reason, it is difficult for him or her to understand the logic structure of the program at glance and the user is likely to

make errors in coding.

High-level languages were developed as substitutes for such assembly languages. The high-level languages

include a language called C that allows the user to write a program without regard to the architecture of the

computer.

As compared with assembly language programs, it can be said that programs written in C have easy-to-

understand logic structure.

C has a rich set of parts called functions for use in creating programs. In other words, the user can write a

program by combining these functions.

C is characterized by its ease of understanding by user beings. However, understanding of languages by the

microcontroller cannot be extended up to a program written in C. Therefore, to have the computer understand the

C language program, another program is required to translate C language statements to the corresponding

machine language instructions. A program that translates the C language into machine language is called a C

compiler.

C compiler accepts C source modules as inputs and generates object modules or assembler source modules as

outputs. Therefore, the user can write a program in C and if he or she wishes to instruct the computer up to details

of program execution, the C source program can be modified in assembly language. The flow of translation by C

compiler is illustrated below.

CHAPTER 1 GENERAL

User’s Manual U18548EJ1V0UM 15

Figure 1-1 Flow of Compilation

Program written in C language Program coded in a set

Compilation program

(C source module file) (Object module file)
(Compiler)

(Assembler source module file)

Program coded in a set

Compilation program

(Object module file)(Assembler)

of binary numbers

of binary numbers

16 User’s Manual U18548EJ1V0UM

CHAPTER 1 GENERAL

1.2 Program Development Procedure by C Compiler

Product (program) development by the C compiler requires a linker which unites together object module files

created by the compiler, a librarian which creates library files, and a debugger which locates and corrects bugs

(errors or mistakes) in each created C source program.

1.2.1 Software required

software requiredThe software required in connection with C compiler is shown below.

- Editor

for source module file creation

- RA78K0R assembler package

- Integrated debugger (for 78K0R)

for debugging C source module files

1.2.2 Product development procedure

The product development procedure by the C compiler is as shown below.

(1) Divide the product into functions.

(2) Creates a C source module for each function.

(3) Translates each C source module.

(4) Registers the modules to be used frequently in the library.

(5) Links object module files.

(6) Debugs each module.

(7) Converts object modules into HEX-format object files.

Program Nmae Function

Assembler For converting assembly language into machine language

Linker For linking object module files
For determining location address of relocatable segment

Object converter For conversion to HEX-format object module file

Librarian For creating library files

List converter For output of an absolute assemble list file

PM+ Integrated development environment platform

CHAPTER 1 GENERAL

User’s Manual U18548EJ1V0UM 17

As mentioned earlier, C compiler translates (compiles) a C source module file and creates an object module file

or assembler source module file. By manually optimizing the created assembler source module file and

embedding it into the C source, efficient object modules can be created. This is useful when high-speed

processing is a must or when modules must be made compact.

Figure 1-2 Program Development Procedure by CC78K0R

C source

Include file

Object modele file

Library file

Load module file

USB

Absolute
assemble
list

Assembler
source

Library file

Assembler source

Hexadecimal
object

Assemble list

Assembler

C compiler

Real-time OS

Librarian

Linker

Object converterList converter Integrated debugger

System
simulator

PROM programmer

In-circuit emulator

Flash memory
programmer

18 User’s Manual U18548EJ1V0UM

CHAPTER 1 GENERAL

1.3 Basic Structure of C Source Program

1.3.1 Program format

A C language program is a collection of functions. These functions must be created so that they have

independent special-purpose or characteristic actions. All C language programs must have a function main which

becomes the main routine in C and is the first function that is called when execution begins.

Each function consists of a header part, which defines its function name and arguments, and a body part, which

consists of declarations and statements. The format of C programs is shown below.

Definition of variables/constants Definition of each data, variable, and macro
instruction

void main (arguments)
{
 statement1 ;
 statement2 ;
 function1 (arguments) ;
 function2 (arguments) ;
 function2 (arguments) ;
}

function1 (arguments)
{
 statement1 ;
 statement2 ;
}

function2 (arguments)
{
 statement1 ;
 statement2 ;
}

Header of the function main

Body of the function main

Function 1

Function 2

CHAPTER 1 GENERAL

User’s Manual U18548EJ1V0UM 19

An actual C source program looks like this.

#define TRUE 1 /* #define xx xx : Preprocessor directive (macro definition) */
#define FALSE 0 /* #define xx xx : Preprocessor directive (macro definition) */
#define SIZE 200 /* #define xx xx : Preprocessor directive (macro definition) */

void printf (char* , int) ; /* xx xx (xx , xx) : Function prototype declarator */
void putchar (char) ; /* xx xx (xx) : Function prototype declarator */

char mark [SIZE + 1] ; /* char xx : Type declarator, External definition */
 /* xx [xx] : Operator */
void main (void) {
 int i , prime , k , count ; /* int xx : Type declarator */

 count = 0 ; /* xx = xx : Operator */

 for (i = 0 ; i <= SIZE ; i ++) /* for (xx ; xx ; xx) xx ; : Control structure */
 mark [i] = TRUE ;

 for (i = 0 ; i <= SIZE ; i ++) {
 if (mark [i]) {
 prime = i + i + 3 ; /* xx = xx + xx + xx : Operator */
 printf ("%6d" , prime) ; /* xx (xx) ; : Operator */

 count ++ ;
 /* if (xx) xx ; : Control structure */
 if ((count%8) == 0) putchar ('\n') ;
 for (k = i + prime ; k <= SIZE ; k += prime)
 mark [k] = FALSE ;
 }
 }
 printf ("\n%d primes found." , count) ; /* xx (xx) ; : Operator */
}

void printf (char *s , int i) {
 int j ;
 char *ss ;

 j = i ;
 ss = s ;
}

void putchar (char c) {
 char d ;

 d = c ;
}

20 User’s Manual U18548EJ1V0UM

CHAPTER 1 GENERAL

(1) Declaration of type and storage class

The data type and storage class of an identifier that indicates a data object are declared.

For details, see "CHAPTER 3 DECLARATION OF TYPES AND STORAGE CLASSES".

(2) Operator and expression

These are the statements, which instructs the compiler to perform an arithmetic operation, logical operation,

assignment, or like.

For details, see "CHAPTER 5 OPERATORS AND EXPRESSIONS".

(3) Control structure

This is a statement that specifies the program flow. C has several instructions for each of control structures

such as Conditional control, Iteration, and Branch.

For details, see "CHAPTER 6 CONTROL STRUCTURES OF C LANGUAGE".

(4) Structure or union

A structure or union is declared. A structure is a data object that contains several subobjects or members

that may have different types. A union is defined when two or more variables share the same memory.

For details, see "CHAPTER 7 STRUCTURES AND UNIONS".

(5) External definition

A function or external object is declared. A function is 1 element when a C language program is divided by

a special-purpose or characteristic action. A C program is a collection of these functions.

For details, see "CHAPTER 8 EXTERNAL DEFINITIONS".

(6) Preprocessor directive

This is an instruction for the compiler. #define instructs the compiler to replace a parameter which is the

same as the first operand with the second operand if the parameter appears in the program.

For details, see "CHAPTER 9 PREPROCESSOR DIRECTIVES (COMPILER DIRECTIVES)".

(7) Declaration of function prototype

The return value and argument type of a function are declared.

CHAPTER 1 GENERAL

User’s Manual U18548EJ1V0UM 21

1.4 Quantitative Limits for C Compiler

Before you set your hand to the development of a program, keep in mind the points (limit values or minimum

guaranteed values) summarized in Table 1-1 below.

Table 1-1 Quantitative Limits for C Compiler

Item Quantitative Limits

Nesting level of compound statements, looping statements, or conditional control
statements

45 levels

Nesting of conditional translations 255 levels

Number of arithmetic type, structure type, pointer to qualify union type or
incomplete type, array, and function declarator in a declaration (or any
combination of these)

12 levels

Nesting of parentheses per expression 32 levels

Number of characters which have a meaning as a macro name 256 characters

Number of characters which have a meaning as an internal or external symbol
name

249 characters

Number of symbols per translation unit 1,024 symbolsNote 1

Number of symbols which has block scope within a block 255 symbols

Number of macros per translation unit 32,767macros

Number of parameters per function definition or function call 39 parametersNote 1

Number of parameters per macro definition or macro call 31 parameters

Number of characters per logical source line 2,048 charactersNote 1

Number of characters within a string literal after linkage 509 charactersNote 1

Size of 1 data object 65,535 bytes

Nesting of #include directives 50 levels

Number of case labels per switch statement 257 labels

Number of lines per file Approx. 65,535
linesNote 1

Nest of function calls 40 levelsNote 1

Number of labels within a function 33 labels

Total size of code, data, and stack segments per object module Varies depending on
the memory modelNote 2

Number of members per structure or union 256 members

Number of enum constants per enumeration 255 constants

Nest of structures or unions inside a structure or union 15 levels

Nest of initializer elements 15 levels

Number of function definitions per translation unit 4,095

22 User’s Manual U18548EJ1V0UM

CHAPTER 1 GENERAL

Note 1 This is a guaranteed value. Values larger than this value may be specifiable, but the operation is not

guaranteed.

Note 2 The maximum value varies as follows, depending on the memory model selected.

Level of the nest of declarator enclosed with parentheses inside a complete
declarator.

591Note 1

Nest of macros 200

Number of -i include file path specifications 64

Memory Model Maximum Value

Small model Code portion: 64 KB, data portion: 64 KB; 128 KB in total

Medium model Code portion: 1 MB, data portion: 64 KB

Large model Code portion: 1 MB, data portion: 1 MB

Table 1-1 Quantitative Limits for C Compiler

Item Quantitative Limits

CHAPTER 1 GENERAL

User’s Manual U18548EJ1V0UM 23

1.5 Features of C Compiler

The CC78K0R has extended functions for CPU code generations that are not supported by the ANSI (American

National Standards Institute) Standard C. The extended functions of the C compiler allow the special function

registers for the 78K0R to be described at the C language level and thus help shorten object code and improve

program execution speed.

Outlined here are the following extended functions to help shorten object code and improve execution speed:

An outline of the expansion functions of the CC78K0R is shown below.

For details of each expansion function, please refer to "CHAPTER 11 EXTENDED FUNCTIONS".

Table 1-2 Methods to Improve Execution Speed

Method Extended Functions

Functions can be called using the callt table area. callt /__callt functions

Variables can be allocated to registers. Register variables

Variables can be allocated to the saddr area. sreg/__sreg

sfr names can be used. sfr area

Functions that do not output code for stack frame formation
can be created.

norec/__leaf functions

An assembly language program can be described in a C
source program

ASM statements

Accessing the saddr or sfr area can be made on a bit-by-bit
basis.

bit type variables, boolean/__boolean
type variables

A bit field can be specified with unsigned char type. Bit field declaration

The code to multiply can be directly output with inline
expansion.

Multiplication function

Codes that achieve faster execution as well as smaller size
and being compatible with the CC78K0, can be generated.

Division function

The code to rotate can be directly output with inline expansion. Rotate function

Specific data and instructions can be directly embedded in the
code area.

Data insertion function

memcpy and memset are directly expanded inline and output. Memory manipulation function

Table 1-3 List of Extended Functions

Extended Functions Outline

callt functions (callt/__callt) Functions can be called by using the callt table area. The address of
each function to be called (this function is called a callt function) is
stored in the callt table from which it can be called later.
This makes code shorter than the ordinary call instruction and helps
shorten object code.

24 User’s Manual U18548EJ1V0UM

CHAPTER 1 GENERAL

Register variables (register) Variables declared with the register storage class specifier are
allocated to the register or saddr area. Instructions to the variables
allocated to the register or saddr area are shorter in code length than
those to memory.
This helps shorten object and improves program execution speed as
well.

How to use the saddr area (sreg/
__sreg)

Variables declared with the keyword sreg can be allocated to the
saddr area. Instructions to these sreg variables are shorter in code
length than those to memory.
This helps shorten object code and also improves program execution
speed. Variables can be allocated to the saddr area also by option.

How to use the sfr area (sfr) By declaring use of sfr names, manipulations on the sfr area can be
described at the C source file.

bit type variables, boolean type
variables (bit/boolean/
__boolean)

Variables having a 1-bit storage area are generated.
By using the bit type variable or boolean/__boolean type variable, the
saddr area can be accessed in bit units.
The boolean/__boolean type variable is the same as the bit type
variable in terms of both function and usage.

ASM statements (#asm -
#endasm/__asm)

The assembler source program described by the user can be
embedded in an assembler source file to be output by the CC78K0R.

Kanji (2-byte character) (/* kanji
*/, // kanji)

Kanji code (2-byte characters) can be described in comments in C
source files.
Shift JIS or EUC can be selected as the character code. Prohibiting
the use of kanji codes can also be selected.

Interrupt functions (#pragma
vect/#pragma interrupt)

The preprocessor directive outputs a vector table and outputs an
object code corresponding to the interrupt.
This directive allows programming of interrupt functions in the C
source level.

Interrupt function qualifier
(__interrupt, __interrupt_brk)

This qualifier allows the setting of a vector table and interrupt function
definitions to be described in a separate file.

Interrupt functions (#pragma DI,
#pragma EI)

An interrupt disable instruction and an interrupt enable instruction are
embedded in the object.

CPU control instruction
(#pragma HALT/STOP/BRK/
NOP)

Each of the following instruction is embedded in the object:
- halt Instruction
- stop Instruction
- brk instruction
- nop instruction

Bit field declaration By specifying a bit field to be unsigned char type, the memory can be
saved, object code can be shortened, and execution speed can be
improved.

Changing compiler output
section name (#pragma section
...)

By changing the compiler section output name, the section can be
independently allocated with a linker.

Binary constant (Binary constant
0bxxx)

Binary can be described in the C source.

Module name changing function
(#pragma name)

Object module names can be freely changed in the C source.

Table 1-3 List of Extended Functions

Extended Functions Outline

CHAPTER 1 GENERAL

User’s Manual U18548EJ1V0UM 25

Rotate function (#pragma rot) The code to rotate the value of an expression to the object can be
directly output with inline expansion.

Multiplication function (#pragma
mul)

The code to multiply the value of an expression to the object can be
directly output with inline expansion.
This function can shorten the object code and improve the execution
speed.。

Division function (#pragma div) Codes that are compatible with the CC78K0 and utilize the data size
of the division instruction I/O are generated.
Therefore, codes with faster execution speed and smaller size than
the description of ordinary division expressions can be generated.

Data insertion function (#pragma
opc)

Constant data is inserted in the current address.
Specific data and instructions can be embedded in the code area
without using assembler description.

Interrupt handler for RTOS
(#pragma rtos_interrupt ...)

Interrupt handlers for the RX78K0R (real-time OS) can be described.

Interrupt handler qualifier for
RTOS (__rtos_interrupt)

This qualifier allows the interrupt handler description and the vector
setting for the RX78K0R (real-time OS) made in separate files.

Task function for RTOS
(#pragma rtos_task)

Specified functions are interpreted as the tasks for the RX78K0R
(real-time OS) by #pragma instruction.
This allows the description of task function for real-time OS with better
code-efficiency in the C source level.

Flash area allocation method (-
zf)

A program can be allocated to the flash area by specifying the -zf
option during compilation, or a program can be used in combination
with the object created in the boot area without specifying the -zf
option.

Flash area branch table
(#pragma ext_table)

The startup routine, allocation of interrupt function to the flash area,
and function call from the boot area to the flash area are performed by
specifying the first address of the flash area branch table by the
#pragma directive.

Function of function call from
boot area to flash area (#pragma
ext_func)

A function can be called from the boot area to the flash area by
specifying the function name and the ID value in the flash area called
from the boot area by the #pragma directive.

Firmware ROM function (__flash) During the prototype declaration of the interface library,
manipulations regarding the firmware ROM function can be described
in C source level by adding the __flash attribute to the first address.

Method of int expansion
limitation of argument/return
value (-zb)

By specifying the -zb option during compilation, the object code can
be shortened and execution speed can be improved.

Memory manipulation function
(#pragma inline)

By #pragma inline directive, an object file is generated by the output
of the standard library functions memcpy and memset with direct
inline expansion instead of function call.
This function can improve the execution speed.

Absolute address allocation
specification (__directmap)

By declaring __directmap in the module in which the variable to be
allocated to an absolute address is to be defined, one or more
variables can be allocated to the same arbitrary address.

near/far area specification By adding the __near or__far type qualifier when declaring a function
or variable, the location of the function or variable can be specified
explicitly.

Table 1-3 List of Extended Functions

Extended Functions Outline

26 User’s Manual U18548EJ1V0UM

CHAPTER 1 GENERAL

Memory model specification By specifying the -ms, -mm, -mc, or -ml option during compilation, the
location of the function or variable can be specified by specifying the
memory model.

Table 1-3 List of Extended Functions

Extended Functions Outline

CHAPTER 2 CONSTRUCTS OF C LANGUAGE

User’s Manual U18548EJ1V0UM 27

CHAPTER 2 CONSTRUCTS OF C LANGUAGE

This chapter explains the constituting elements of a C source module file.

A C source module file consists of the following tokens (distinguishable units in a sequence of characters).

The tokens used in the C program description example are shown below.

Keywords Identifiers Constants
String literal Operators Delimiters
Header name No. of preprocesses Comment

#include "expand.h"

extern void testb (void) ; /* extern : Keyword */
extern void chgb (void) ;
extern bit data1 ; /* data1, data2 : Identifiers */
extern bit data2 ;

void main (void) { /* void : Keyword */
 data1 = 1 ; /* 1 : Constant */
 data2 = 0 ; /* 0 : Constant */

 while (data1) { /* while : Keyword */
 data1 = data2 ; /* { } : Delimiter */
 testb () ; /* = : Operator */
 }
 if (data1 && data2) { /* if : Keyword */
 chgb () ; /* && : Operator */
 } /* () : Operator */
}

void lprintf (char *s , int i) { /* lprintf : Identifiers */
 /* char, int : Keyword */
 int j ; /* s, i : Identifiers */
 char *ss ; /* * : Operator */
 j = i ;
 ss = s ;
}
 :

28 User’s Manual U18548EJ1V0UM

CHAPTER 2 CONSTRUCTS OF C LANGUAGE

2.1 Character Sets

2.1.1 Character sets

Character sets to be used in C programs include a source character set to be used to describe a source file and

an execution character set to be interpreted in the execution environment.

The value of each character in the execution character set is represented by JIS code.

The following characters can be used in the source character set and execution character set.

All full-size characters and half-size katakana (including half-size punctuation marks) can be described in com-

ments.

Table 2-1 List of Characters that Can Be Used in Character Set

2.1.2 Multi-byte character

Only shift JIS code and EUC code can be described in comments.

Only the characters of 0x7F or lower ASCII codes can be described for places other than comments.

Neither full-size characters nor half-size katakana (including half-size punctuation marks) can be described for

any place other than comments.

26 uppercase letters A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

26 lowercase letters a b c d e f g h i j k l m n o p q r s t u v w x y z

10 figures 0 1 2 3 4 5 6 7 8 9

29 graphic characters ! " # % & ' () * + , - . / : ; < = > ? [\] ^ _ { | } ∼

Nonprintable control characters which indicate Space, Horizontal Tab, Vertical Tab, Form Feed, etc.

CHAPTER 2 CONSTRUCTS OF C LANGUAGE

User’s Manual U18548EJ1V0UM 29

2.1.3 ESCAPE sequences

Nongraphic characters used for control characters as for alert, formfeed, and such are represented by ESCAPE

sequences.

Each ESCAPE sequence consists of the \ sign and an alphabetic character.

Nongraphic characters represented by ESCAPE sequences are shown in the table below.

2.1.4 Trigraph sequences

When a source file includes a list of the 3 characters (called "trigraph sequence") shown in the left column of the

table below, the list of the 3 characters is converted into the corresponding single character shown in the right

column.

The trigraph sequence is enabled when compiler option -za (the option that disables the functions which do not

comply with ANSI specifications and enables a part of functions of ANSI specifications) is specified.

Table 2-3 List of Trigraph Sequence

Table 2-2 List of ESCAPE Sequences

ESCAPE Sequence Meaning Character Code

\a Alert 07H

\b Backspace 08H

\f Formfeed 0CH

\n New Line 0AH

\r Carriage Return 0DH

\t Horizontal Tab 09H

\v Vertical Tab 0BH

Trigraph Sequence Meaning

??= #

??([

??/ \

??)]

??’ ^

??< {

??! |

??> }

??- ~

30 User’s Manual U18548EJ1V0UM

CHAPTER 2 CONSTRUCTS OF C LANGUAGE

2.2 Keywords

2.2.1 ANSI-C keywords

The following tokens are used by the C compiler as keywords and thus cannot be used as labels or variable

names.

Table 2-4 List of ANSI-C Keywords

auto break case char const continue default
do double else enum extern for float
goto if int long register return short
signed sizeof static struct switch typedef union
unsigned void volatile while

CHAPTER 2 CONSTRUCTS OF C LANGUAGE

User’s Manual U18548EJ1V0UM 31

2.2.2 Keywords added for the CC78K0R

In the CC78K0R the following tokens have been added as keywords to implement its expanded functions.

These tokens cannot be used as labels or variable names nor can ANSI (when an uppercase character is

included, the token is not regarded as a keyword).

Keywords which do not start with "__" can be made invalid by specifying the option (-za) that enables only ANSI-

C language specification.

callf, __callf, noauto, __banked, __non_banked, __BANK0-15, __mxcall, __pascal, __temp, norec, __leaf are

taken as keywords for compatibility with the CC78K0.

Note 1 Reserved keyword for function information files. Do not describe this keyword in the C source.

Note 2 Reserved keyword by of the CC78K0R. This keyword must not be used by users.

Note 3 Reserved keyword for interface with MX. This keyword must not be used by users.

Table 2-5 List of Keywords Added for CC78K0R

Keywords Usage

__callt/callt Declaration of callt function

__callf/callf Declaration of callf function

__sreg/sreg Declaration of sreg variable

noauto Declaration of noauto function

__leaf/norec Declaration of leaf/norec function

bit Declaration of bit type variable

__boolean/boolean Declaration of boolean type variable

__interrupt Hardware interrupt function

__interrupt_brk Software interrupt function

__banked, __non_banked Bank interfaceNote 1

__BANK0-15 Bank functions at constant addresses

__asm asm statement

__rtos_interrupt Interrupt handler for real-time OS

__pascal Pascal function

__flash Firmware ROM function

__flashf __flashf functionNote 2

__directmap Absolute address allocation specification

__temp Temporary variable

__near, __far Memory allocation area specification

__mxcall __mxcall functionNote 3

32 User’s Manual U18548EJ1V0UM

CHAPTER 2 CONSTRUCTS OF C LANGUAGE

2.3 Identifiers

An identifier is the name that you give to a variable such as:

Each identifier can consist of uppercase letters, lowercase letters, or numeric characters including underscores.

The following characters can be used as identifiers:

There is no restriction for the maximum length of the identifier. In the CC78K0R, however, only the first 249

characters can be identified.

All identifiers must begin with other than a numerical character (namely, a letter or an underscore) and must not

be the same as any keyword.

Table 2-6 List of Identifiers

Function
Object
Tag of structure, union, or enumeration type
Member of structure, union, or enumeration type
typedef name
Label name
Macro name
Macro parameter

_ (underscore)
a b c d e f g h i j k l m n o p q r s t u v w x y z
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

0 1 2 3 4 5 6 7 8 9

CHAPTER 2 CONSTRUCTS OF C LANGUAGE

User’s Manual U18548EJ1V0UM 33

2.3.1 Scope of identifiers

The range of an identifier within which its use becomes effective is determined by the location at which the

identifier is declared. The scope of identifiers is divided into the following 4 types:

- Function scope

- File scope

- Block scope

- Function prototype scope

(1) Function scope

Function scope refers to the entirety within a function.

An identifier with function scope can be referenced from anywhere within a specified function. Identifiers

that have function scope are label names only.

(2) File scope

File scope refers to the entirety of a translation (compiling) unit. Identifiers that are declared outside a block

or parameter list all have file scope. An identifier that has file scope can be referenced from anywhere within

the program.

(3) Block scope

Block scope refers to the range of a block (a sequence of declarations and statements enclosed by a pair of

curly braces { } which begins with the opening brace and ends with the closing brace.

Identifiers that are declared inside a block or parameter list all have block scope. An identifier that has block

scope is effective until the innermost brace pair including the declaration of the identifier is closed.

(4) Function prototype scope

Function prototype scope refers to the range of a declared function from its beginning to the end. Identifiers

that are declared inside a parameter list within a function prototype all have function prototype scope. An

identifier that has function prototype scope is effective within a specified function.

extern __boolean data1 , data2 ; /* data1, data2 : File scope */

void testb (int x) ; /* x : Function prototype scope */

void main (void) {
 int cot ; /* cot : Block scope */
 data1 = 1 ;
 data2 = 0 ;

 while (data1) {
 data1 = data2 ;
 j1 : /* j1 : Function scope */
 testb (cot) ;
 }
}

void testb (int x) { /* x : Block scope */
 :
}

34 User’s Manual U18548EJ1V0UM

CHAPTER 2 CONSTRUCTS OF C LANGUAGE

2.3.2 Linkage of identifiers

The linkage of an identifier refers to that the same identifier declared more than once in different scopes or in the

same scope can be referenced as the same object or function.

An identifier by being linked is regarded to be one and the same.

An identifier may be linked in the following 3 different ways: External linkage, Internal linkage and No linkage

(1) External linkage

External linkage refers to identifiers to be linked in translation (compiling) units that constitute the entire

program and as a collection of libraries.

The following identifiers have external linkage examples:

- The identifier of a function declared without storage class specifier

- The identifier of an objects or function declared as extern, which has no storage class specification

- The identifier of an object which has file scope but has no storage class specification.

(2) Internal linkage

Internal linkage refers to identifiers to be linked within 1 translation (compiling) unit.

The following identifier has an internal linkage example:

- The identifier of an object or function which has file scope and contains the storage class specifier

static.

(3) No linkage

An identifier that has no linkage to any other identifier is an inherent entity.

Examples of identifiers that have no linkage are as follows:

- An identifier which does not refer to a data object or function

- An identifier declared as a function parameter

- The identifier of an object which does not have storage class specifier extern inside a block

2.3.3 Name space for identifiers

All identifiers are classified into the following "name spaces":

Name Spaces Expaination

Label name Distinguished by a label declaration.

Tag name of structure, union, or
enumeration

Distinguished by the keyword struct, union or enum

Member name of structure or union Distinguished by the dot (.) operator or arrow (->) operator.

Ordinary identifiers (other than above) Declared as ordinary declarators or enumeration type
constants.

CHAPTER 2 CONSTRUCTS OF C LANGUAGE

User’s Manual U18548EJ1V0UM 35

2.3.4 Storage duration of objects

Each object has a "storage duration" that determines its lifetime (how long it can remain in memory).

This storage duration is divided into the following 2 categories: Static storage duration and Automatic storage

duration

(1) Static storage duration

Before executing an object program that has a static duration, an area is reserved for objects and values to

be stored are initialized once.

The objects exist throughout the execution of the entire program and retain the values last stored.

Objects which have a static storage duration are as shown below.

- Objects which have external linkage

- Objects which have internal linkage

- Objects declared by storage class specifier static

(2) Automatic storage duration

For objects that have automatic storage duration, an area is reserved when they enter a block to be

declared.

If initialization is specified, the objects are initialized as they enter from the beginning of the block. In this

case, if any object enters the block by jumping to a label within the block, the object will not be initialized.

For objects that have automatic storage duration, the reserved area will not be guaranteed after the

execution of the declared block.

Objects that have automatic storage duration are as follows:

- Objects which have no linkage

- Objects declared inside a block without storage class specifier static

36 User’s Manual U18548EJ1V0UM

CHAPTER 2 CONSTRUCTS OF C LANGUAGE

2.4 Data Types

A type determines the meaning of a value to be stored in each object.

Data types are divided into the following 3 categories depending on the variable to be declared.

- Object type: Type which indicates an object with size information

- Function type: Type which indicates a function

- Incomplete type: Type which indicates an object without size information

Classification of types is shown below.

Figure 2-1 Classification of Types

Pointer type

Basic (Arithmetic types)

Aggregate type

Array with an indefinite object size, structure, union, and void type

Pointer type

Function type

Union type

Structure type

Array type

Scalar types

Derived types

Incomplete types

Character types

Floating-point types

Enumeration type

Unsigned integral type
(specified by unsigned)

Signed integral type

char typeIntegral typesBasic types
(Arithmetic types)

signed char

short int

int

long int

float

long double
char

signed char

unsigned char

double

CHAPTER 2 CONSTRUCTS OF C LANGUAGE

User’s Manual U18548EJ1V0UM 37

2.4.1 Basic types

A collection of basic data types is also referred to as "arithmetic types".

The arithmetic types consist of integral types and floating-point type.

(1) Integral types

Integral data types are subdivided into 4 types. Each of these types has a value represented by the binary

numbers 0 and 1.

- char type

- Signed integral type

- Unsigned integral type

- Enumeration type

(a) char type

The char type has a sufficient size to store any character in the basic execution character set.

The value of a character to be stored in a char type object becomes positive.

Data other than characters is handled as an unsigned integer.

In this case, however, if an overflow occurs, the overflowed part will be ignored.

(b) Signed integral type

The signed integral type is subdivided into the following 4 types:

- signed char

- short int

- int

- long int

An object declared with the signed char type has an area of the same size as the char type without

qualifier.

An int object without qualifier has a size natural to the CPU architecture of the execution environment.

A signed integral type data has its corresponding unsigned integral type data.

Both share an area of the same size.

The positive number of a signed integral type data is a partial collection of unsigned integral type data.

(c) Unsigned integral type

The unsigned integral type is a data defined with the unsigned keyword. No overflow occurs in any

computation involving unsigned integral type data. This is because of that if the result of a computation

involving unsigned integral type data becomes a value which cannot be represented by an integral type,

the value will be divided by the maximum number which can be represented by an unsigned integral

type plus 1 and substituted with the remainder in the result of the division.

(d) Enumeration type

Enumeration is a collection or list of named integer constants.

An enumeration type consists of one or more sets of enumeration.

38 User’s Manual U18548EJ1V0UM

CHAPTER 2 CONSTRUCTS OF C LANGUAGE

(2) Floating-point types

The floating-point types are subdivided into the 3 types.

- float

- double

- long double

In the CC78K0R, double and long double types as well as float type are supported as a floating-point

expression for the single precision normalized number that is specified in ANSI/IEEE 754-1985. Thus, float,

double, and long double types have the same value range.

Remark 1 The signed keyword can be omitted. However, with the char type, it is judged as signed char or

unsigned char depending on the condition at the compilation time.

Remark 2 A short int data and an int data are handled as the data which have the same value range but are

of the different types.

Remark 3 A unsigned short int data and an unsigned int data are handled as the data which have the same

value range but are of the different types.

Remark 4 A float, double, and long double data are handled as the data which have the same value range

but are of the different types.

Remark 5 The value ranges for float, double, and long double types are absolute.

Type Value Range

(signed) char -128 to +127

unsigned char 0 to 255

(signed) short int -32,768 to +32,767

unsigned short int 0 to 65,535

(signed) int -32,768 to +32,767

unsigned int 0 to 65,535

(signed) long int -2,147,483,648 to +2,147,483,647

unsigned long int 0 to 4,294,967,295

float 1.17549435E-38F to 3.40282347E+38F

double 1.17549435E-38F to 3.40282347E+38F

long double 1.17549435E-38F to 3.40282347E+38F

CHAPTER 2 CONSTRUCTS OF C LANGUAGE

User’s Manual U18548EJ1V0UM 39

[Floating-point number (float type) specifications]

(a) Format

The floating-point number format is shown below.

The numerical values in this format are as follows.

(b) Zero expression

When exponent = 0 and mantissa = 0, +0 is expressed as follows.

 (Value of sign) (Value of exponent)
(-1) * (Value of mantissa) * 2

s Sign (1 bit)
0 for a positive number and 1 for a negative number.

e An exponent with a base of 2 is expressed as a 1-byte integer (expressed by 2’s
complement in the case of a negative), and used after having a further bias of
7FH added. These relationships are shown in the table below.

m Mantissa (23 bits)
The mantissa is expressed as an absolute value, with bit positions 22 to 0
equivalent to the 1st to 23rd places of a binary number.
Except for when the value of the floating point is 0, the value of the exponent is
always adjusted so that the mantissa is within the range of 1 to 2 (normalization).
The result is that the position of 1 (i.e. the value of 1) is always 1, and is thus
represented by omission in this format.

 (Value of sign)
(-1) * 0

s e m

031

(Higher address) (Lower address)

30 23 22

Exponent (Hexadecimal) Value of Exponent

FE
:

81
80
7F
7E
:

01

127
:
2
1
0
-1
:

-126

40 User’s Manual U18548EJ1V0UM

CHAPTER 2 CONSTRUCTS OF C LANGUAGE

(c) Infinity expression

When exponent = FFH and mantissa = 0, +∞ is expressed as follows.

(d) Unnormalized value

When exponent = 0 and mantissa ≠ 0, the unnormalized value is expressed as follows.

Remark The mantissa value here is a number less than 1, so bit positions 22 to 0 of the mantissa

express as is the 1st to 23rd decimal places.

(e) Not-a-number (NaN) expression

When exponent = FFH and mantissa ≠ 0, NaN is expressed, regardless of the sign.

(f) Operation result rounding

Numerical values are rounded down to the nearest even number. If the operation result cannot be

expressed in the above floating-point format, round to the nearest expressible number.

If there are 2 values that can express the differential of the prerounded value, round to an even

number (a number whose lowest binary bit is 0).

(g) Operation exceptions

There are 5 types of operation exceptions, as shown in the table below.

Calling the matherr function causes a warning to appear when an exception occurs.

 (Value of sign)
(-1) * ∞

 (Value of sign) -126
(-1) * (Value of mantissa) * 2

Exception Return Value

Underflow Unnormalized number

Inexact +0

Overflow +∞

Zero division +∞

Operation impossible Not-a-number (NaN)

CHAPTER 2 CONSTRUCTS OF C LANGUAGE

User’s Manual U18548EJ1V0UM 41

2.4.2 Character types

The character data types include the following 3 types:

- char

- signed char

- unsigned char

2.4.3 Incomplete types

The incomplete data types include the following 4 types:

- Arrays with indefinite object size

- Structures

- Unions

- void type

2.4.4 Derived types

The derived types are divided into the following 5 categories:

- Array type

- Structure type

- Union type

- Function type

- Pointer type

(1) Array type

The array type continuously allocates a collection of member objects called the element type.

Member objects all have an area of the same size. The array type specifies the number of element types

and the elements of the array. It cannot create the array of incomplete type.

(2) Structure type

The structure type continuously allocates member objects each differing in size.

Giving it a name can specify each member object.

Remark The aggregate type is subdivided into 2 types:

Array type and Structure type. An aggregate type data is a collection of member objects to be

taken successively.

(3) Union type

The union type is a collection of member objects that overlap each other in memory.

These member objects differ in size and name and can be specified individually.

42 User’s Manual U18548EJ1V0UM

CHAPTER 2 CONSTRUCTS OF C LANGUAGE

(4) Function type

The function type represents a function that has a specified return value.

A function type data specifies the type of return value, the number of parameters, and the type of parameter.

If the type of return value is T, the function is referred to as a function that returns T.

(5) Pointer type

The pointer type is created from a function type object type called a referenced type as well as from an

incomplete type.

The pointer type represents an object. The value indicated by the object is used to reference the entity of a

referenced type.

A pointer type data created from the referenced type T is called a pointer to T.

2.4.5 Scalar types

The arithmetic types (basic type) and pointer type are collectively called the scalar types.

The scalar types include the following data types:

- char type

- Signed integral type

- Unsigned integral type

- Enumeration type

- Floating-point type

- Pointer type

2.4.6 Compatible type

If 2 types are the same, they are said to be compatible or have compatibility.

For example, if 2 structures, unions, or enumeration types that are declared in separate translation (compiling)

units have the same number of members, the same member name and compatible member types, they have a

compatible type. In this case, the individual members of the 2 structures or unions must be in the same order and

the individual members (enumerated constants) of the 2 enumerated types must have the same values.

All declarations related to the same objects or functions must have a compatible type.

CHAPTER 2 CONSTRUCTS OF C LANGUAGE

User’s Manual U18548EJ1V0UM 43

2.4.7 Composite type

A composite type is created from 2 compatible types. The following rules apply to the composite type.

- If either of the 2 types is an array of known type size, the composite type is an array of that size.

- If only one of the types is a function type which has a parameter type list (declared with a prototype), the

composite type is a function prototype which has the parameter type list.

- If both types have a parameter type list (i.e., functions with prototypes), the composite type is one with a

prototype consisting of all information that can be combined from the 2 prototypes.

<Example of composite type>

Assume that 2 declarations that have file scope are as follows:
 int f (int (*) () , double (*) [3]) ;
 int f (int (*) (char *) , double (*) []) ;
The composite type of the function in this case becomes as follows:
 int f (int (*) (char *) , double (*) [3]) ;

44 User’s Manual U18548EJ1V0UM

CHAPTER 2 CONSTRUCTS OF C LANGUAGE

2.5 Constants

A constant is a variable, which does not change in value during the execution of the program, and its value must

be set beforehand. A type for each constant is determined according to the format and value specified for the

constant.

The following 4 constant types are available:

- Floating-point constants

- Integer constants

- Enumeration constants

- Character constants

2.5.1 Floating-point constant

A floating-point constant consists of an effective digit part, exponent part, and floating-point suffix.

The signed exponent of the exponent part and the floating-point suffix can be omitted.

Either the integer part or fraction part must be included in the effective digits. Also, either the decimal point or

exponent part must be included (example: 1.23F, 2e3).

2.5.2 Integer constant

An integer constant starts with a number and does not have the decimal point nor exponent part.

An unsigned suffix can be added after the integer constant to indicate that the integer constant is unsigned. A

long suffix can be added after the integer constant to indicate that the integer constant is long.

There are the following 3 types of integer constant.

- Decimal constant

- Octal constant

- Hexadecimal constant

Details on each integer constant are as follows.

Effective digit part integer part, decimal point, and fraction part

Exponent part e or E, signed exponent

Floating point suffix f/F (float)
I/L (long double)
Remark　If omitted (double)

Unsigned suffix
 u U
Long suffix
 l L

CHAPTER 2 CONSTRUCTS OF C LANGUAGE

User’s Manual U18548EJ1V0UM 45

The type of integer constant is regarded as the first of the "representable type" shown in the table below.

In the CC78K0R, the type of the unsubscripted constant can be changed to char or unsigned char

depending on the compile condition (option).

Table 2-7 Integer Constant

Integer Constant Expaination

Decimal constant A decimal constant is an integer value with the base (radix) of 10.

[Specification]
A decimal constant must begin with a number other than 0 followed by any
numbers 0 through 9 (example: 56U).
decimal number that starts with a number other than 0Note

Note Decimal number = 1 2 3 4 5 6 7 8 9

Octal constant An octal constant is an integer value with the base of 8.

[Specification]
An octal constant must begin with 0 followed by any numbers 0 through 7
(example: 034U).
integer suffix 0 + octal numberNote

Note Octal number = 0 1 2 3 4 5 6 7

Hexadecimal constant A hexadecimal constant is an integer value with the base of 16.

[Specification]
A hexadecimal constant must begin with 0x or 0X followed by any numbers 0
through 9 and a through f or A through F which represent 10 through 15
(example: 0xF3).
integer suffix 0x or 0X + hexadecimal numberNote

Note Hexadecimal number = 0 1 2 3 4 5 6 7 8 9 a b c d e f A B C D E F

Table 2-8 Integer Constant and Representable Type

Integer Constant Representable Type

Unsuffixed decimal number int, long int, unsigned long int

Unsuffixed octal, hexadecimal number int, unsiged int, long int, unsigned long int

Suffixed u or U unsiged int, unsigned long int

Suffixed l or L long int, unsigned long int

Suffixed u or U, and suffixed l or L unsigned long int

46 User’s Manual U18548EJ1V0UM

CHAPTER 2 CONSTRUCTS OF C LANGUAGE

2.5.3 Enumeration constants

Enumeration constants are used for indicating an element of an enumeration type variable, that is, the value of

an enumeration type variable that can have only a specific value indicated by an identifier.

The enumeration type (enum) is whichever is the first type from the top of the list of 3 types shown below that

can represent all the enumeration constants. The enumeration constant is indicated by the identifier.

- signed char

- unsigned char

- signed int

It is described as "enum enumeration type {list of enumeration constant}".

<Example>

When the integer is specified with =, the enumeration variable has the integer value, and the following value of

enumeration variable has that integer value + 1. In the example shown above, the enumeration variable has 1, 2,

3, 4, 5, respectively. When there is not "= 1", each constant has 0, 1, 2, 3, 4, 5, respectively.

2.5.4 Character constants

A character constant is one or more character strings enclosed in a pair of single quotes as in ’X’ or ’ab’.

A character constant does not include single quote’, back slash (\), and line feed character (\n). To represent

these characters, escape sequences are used.

There are the following 3 types of escape sequences.

- Simple escape sequence

\’ \" \? \\ \a \b \f \n \r \t \v

- Octal escape sequence

\octal number [octal number octal number]

(example: \012, \0Note 1)

- Hexadecimal escape sequence

\x hexadecimal number

(example: \xFFNote 2)

Note 1 Null character

Note 2 In the CC78K0R, \xFF represents -1. If the condition (option) that regards char as unsigned char is

added, however, it represents +255.

enum months { January = 1 , February , March , April , May } ;

CHAPTER 2 CONSTRUCTS OF C LANGUAGE

User’s Manual U18548EJ1V0UM 47

2.6 String Literal

A string literal is a string of zero or more characters enclosed in a pair of double quotes as in "xxx" (example:

"xyz").

A single quote (’) is represented by the single quotation mark itself or by ESCAPE sequence \’, whereas a double

quote (") is represented by ESCAPE sequence \".

Array elements have char type string literal and are initialized by tokens given (example: char array [] = "abc";).

48 User’s Manual U18548EJ1V0UM

CHAPTER 2 CONSTRUCTS OF C LANGUAGE

2.7 Operators

The operators are shown in the table below.

Table 2-9 List of Operators

The [], (), and ?: operators must always be used in pairs.

An expression may be described in brackets "[]", in parentheses "()", or between "?" and ":".

The # and ## operators are used only for defining macros in preprocessor directives. For the description, refer to

"CHAPTER 5 OPERATORS AND EXPRESSIONS".

[] () . ->
++ -- & * + - ~ ! sizeof
/ % << >> < > <= >= == !=
^ | && ||
? :
= *= /= %= += -= <<= >>=
&= ^= |=
, # ##

CHAPTER 2 CONSTRUCTS OF C LANGUAGE

User’s Manual U18548EJ1V0UM 49

2.8 Delimiters

A delimiter is a symbol that has an independent syntax or meaning. However, it never generates a value.

The following delimiters are available for use in C.

In brackets "[]", parentheses "()", or braces "{ }", an expression declaration or statement may be described.

These delimiters must always be used in pairs as shown above. The delimiter "#" is used only for preprocessor

directives.

[] () { } * , : = ; ... #

50 User’s Manual U18548EJ1V0UM

CHAPTER 2 CONSTRUCTS OF C LANGUAGE

2.9 Header Name

A header name indicates the name of an external source file. This name is used only in the preprocessor

directive "#include".

An example of #include instruction of a header name is shown below. For the details of each #include

instruction, refer to "9.2 Source File Inclusion Directive".

#include <header-name>
#include "header-name"

CHAPTER 2 CONSTRUCTS OF C LANGUAGE

User’s Manual U18548EJ1V0UM 51

2.10 Comment

A comment refers to a statement to be included in a C source module for information only.

It begins with "/*" and ends with "*/".

The CC78K0R can identify multi-byte characters, including kanji (2-byte characters). The use of kanji code can

be specified by using an option or the environment variable.The part after "//" to the line feed can be identified as a

comment by the -zp option.

/* comment */
// comment

52 User’s Manual U18548EJ1V0UM

CHAPTER 3 DECLARATION OF TYPES AND STORAGE CLASSES

CHAPTER 3 DECLARATION OF TYPES AND
STORAGE CLASSES

This chapter explains how data (variables) or functions to be used in C should be declared as well as scope for

each data or function.

A declaration means the specification of an interpretation or attribute for an identifier or a collection of identifiers.

A declaration to reserve a storage area for an object or function named by an identifier is referred to as a

"definition".

An example of a declaration is shown below.

<Example of Declaration of Type and Storage Classes>

A declaration is configured with storage class specifier, type specifier, initialize declarator, etc. The storage class

specifier and type specifier specify the linkage, storage duration, and the type of an entity indicated by declarator.

An initialize declarator list is a list of declarators each delimited with a comma. Each declarator may have

additional type information or initializer or both.

If an identifier for an object is declared that it has no linkage, a type for the object must be perfect (the object with

information related to the size) at the end of the declarator or initialize declarator (if it is with any initializer).

#define TRUE 1
#define FALSE 0
#define SIZE 200

void main (void) {
 /* Declaration of automatic variables */
 auto int i , prime , k ;

 for (i = 0 ; i <= SIZE ; i++)
 mark [i] = TRUE ;
 :
}

CHAPTER 3 DECLARATION OF TYPES AND STORAGE CLASSES

User’s Manual U18548EJ1V0UM 53

3.1 Storage Class Specifiers

A storage class specifier specifies the storage class of an object.

It indicates the storage location of a value, which the object has, and the scope of the object. In a declaration,

only 1 storage class specifier can be described.

The following 5 storage class specifiers are available:

Table 3-1 Storage Class Specifiers

Type of Specifier Meaning

typedef The typedef specifier declares a synonym for the specified type.
See "3.6 typedef Declarations" for details of the typedef specifier.

extern The extern specifier indicates (tells the compiler) that a variable immediately before
this specifier is declared elsewhere in the program (i.e., an external variable).

static The static specifier indicates that an object has static storage duration.
For an object, which has static storage duration, an area is reserved before the
program execution and a value to be stored is initialized only once. The object exits
throughout the execution of the entire program and retains the value last stored in it.

auto The auto specifier indicates that an object has automatic storage duration.
For an object that has automatic storage duration, an area is reserved when the
object enters a block to be declared. At entry into the declared block from its top, the
object is initialized if so specified. If the object enters the block by jumping to a label
within the block, the object will not be initialized.
The area reserved for an object, which has automatic storage duration, will not be
guaranteed after the execution of the declared block.

register The register specifier indicates that an object is assigned to a register of the CPU.
With the CC78K0R, it is allocated to the register or saddr area of the CPU. See
"CHAPTER 11 EXTENDED FUNCTIONS" for details of register variables.

54 User’s Manual U18548EJ1V0UM

CHAPTER 3 DECLARATION OF TYPES AND STORAGE CLASSES

3.2 Type Specifiers

A type specifier specifies (or refers to) the type of an object.

The following type specifiers are available:

- void

- char

- short

- int

- long

- float

- double

- long double

- signed

- unsigned

- Structure specifier and union specifier

- Enumeration specifiers

- typedef name

In the CC78K0R, the following type specifiers have been added.

bit/boolean/__boolean

CHAPTER 3 DECLARATION OF TYPES AND STORAGE CLASSES

User’s Manual U18548EJ1V0UM 55

The followings explain the meaning of each type specifier and the limit values that can be expressed with the

CC78K0R (the values enclosed in the parentheses). Since the CC78K0R supports only the single precision of

IEEE Std 754-1985 for floating-point operations, double and long double data are regarded to have the same

format as those of float data.

Type specifiers separated from each other with a slash have the same size.

Note Range of absolute values

Table 3-2 Type Specifiers

Type of Specifier Meaning Limit

void Collection of null values -

char Size of the basic character set that can be
stored

-

signed char Signed integer -128 to +127

unsigned char Unsigned integer 0 to 255

short/signed short/
short int /signed short int

Signed integer -32,768 to +32,767

unsigned short/unsigned
short int

Unsigned integer 0 to 65,535

int/signed/signed int Signed integer -32,768 to +32,767

unsigned/unsigned int Unsigned integer 0 to 65,535

long/signed long/
long int/signed long int

Signed integer -2,147,483,648 to
+2,147,483,647

unsigned long/
unsigned long int

Unsigned integer 0 to 4,294,967,295

float Single precision floating point number 1.17,549,435E - 38F
to 3.40,282,347E + 38FNote

double Double precision floating point number 1.17,549,435E - 38F
to 3.40,282,347E + 38FNote

long double Extended precision floating point number 1.17,549,435E - 38F
to 3.40,282,347E + 38FNote

structure/union specifier Collection of member objects -

enumeration specifier Collection of int type constants -

typedef Synonym of specified type -

bit/boolean/__boolean Integers represented with a single bit 0 to 1

56 User’s Manual U18548EJ1V0UM

CHAPTER 3 DECLARATION OF TYPES AND STORAGE CLASSES

3.2.1 Structure specifier and union specifier

Both the structure specifier and union specifier indicate a collection of named members (objects).

These member objects can have different types from one another.

(1) Structure specifier

The structure specifier declares a collection of two or more different types of variables as 1 object.

Each type of object is called a member and can be given a name. For members, continuous areas are

reserved in the order of their declarations.

However, because the 78K0R contains a restriction whereby word data is unable to be read from or written

to odd addresses, the code size is prioritized by default, and align data is inserted to ensure members of 2

bytes or more are allocated to even addresses. Gaps may therefore occur between members due to the

align data.

The -rc option can be specified to inhibit insertion of align data and enable structures to be packed. In this

case, although the size of the data is reduced, members of 2 or more bytes allocated to odd addresses are

read/written using 1-byte unit read/write code, which increases the code size.

The structure is declared as follows. The declaration will not yet allocate memory since it does not have a

list of structure variables. For the definition of the structure variables, refer to "CHAPTER 7 STRUCTURES

AND UNIONS".

<Example of structure declaration>

(2) Union specifier

The union specifier declares a collection of two or more different types of variables as 1 object. Each type of

object is called a member and can be given a name. The members of a union overlay each other in area,

namely, they share the same area.

The union declares as follows. The declaration will not yet allocate memory since it does not have a list of

union variables. For the definition of the union variables, refer to "CHAPTER 7 STRUCTURES AND

UNIONS".

struct identifier {
 member-declaration-list
} ;

struct tnode {
 int count ;
 struct tnode *left , *right ;
} ;

union identifier {
 member-declaration-list
} ;

CHAPTER 3 DECLARATION OF TYPES AND STORAGE CLASSES

User’s Manual U18548EJ1V0UM 57

<Example of union declaration>

Each member object can be any type other than the incomplete types or function types. The member can

declare with the number of bits specified. The member with the number of bits specified is called a bit field.

In the CC78K0R, extended functions related to bit field declaration have been added. For the details, refer

to "11.5 Bit field declaration".

(3) Bit field

A bit field is an integral type area consisting of a specified number of bits.

For the bit field, int type, unsigned int type, and signed int type data can be specified.Note 1

Whether the MSB of an int bit field which has no qualifier is judged as a sign bit differs depending on the

microcontroller used. In some microcontrollers, a signed type bit field is handled as an unsigned typeNote 2.

If two or more bit fields exist, the second and subsequent bit fields are packed into the adjacent bit positions,

provided there is an ample space within the same memory unit. By placing an unnamed bit field with a width

of 0, the next bit field will not be packed into a space within the same memory unit. An unnamed bit field has

no declarator and declares a colon and a width only.

Unary&operator (address) cannot be applied to the bit field object.

Note 1 In the CC78K0R, char type, unsigned char type, and signed char type can also be specified. All

of them are regarded as unsigned type since the CC78K0R does not support signed type bit

field.

Note 2 In the CC78K0R, the direction of bit field allocation can be changed by compiler option -rb (for

the details, refer to "CHAPTER 11 EXTENDED FUNCTIONS").

<Example of bit field declaration>

union u_tag {
 int var1 ;
 long var2 ;
} ;

struct data {
 unsigned int a : 2 ;
 unsigned int b : 3 ;
 unsigned int c : 1 ;
} no1 ;

58 User’s Manual U18548EJ1V0UM

CHAPTER 3 DECLARATION OF TYPES AND STORAGE CLASSES

3.2.2 Enumeration specifiers

An enumeration type specifier indicates a list of objects to be put in sequence.

Objects to be declared with the enum specifier will be declared as constants that have int types.

The enumeration specifier declares as shown below.

Objects are declared with an enumerator list.

Values are defined for all objects in the list in the order of their declaration by assigning the value of 0 to the first

object and the value of the previous object plus 1 to the 2nd and subsequent objects. A constant value may also

be specified with "=".

In the following example, "hue" is assumed as the tag name of the enumeration, "col" as an object that has this

(enum) type, and "cp" as a pointer to an object of this type. In this declaration, the values of the enumeration

become "{0, 1, 20, 21}".

enum identifier {
 enumerator-list
} ;

enum hue {
 chartreuse ,
 burgundy ,
 claret = 20 ,
 winedark
} ;

enum hue col , *cp ;

void main (void) {
 col = claret ;
 cp = &col ;

 if (*cp != burgundy) {
 :
 } else {
 :
 }
 :
}

CHAPTER 3 DECLARATION OF TYPES AND STORAGE CLASSES

User’s Manual U18548EJ1V0UM 59

3.2.3 Tags

A tag is a name given to a structure, union, or enumeration type.

A tag has a declared data type and objects of the same type can be declared with a tag.

An identifier in the following declaration is a tag name.

A tag has the contents of the structure/union or enumeration defined by a member. In the next and subsequent

declarations, the structure of a struct, union, or enum type becomes the same as that of the tag’s list. In the

subsequent declarations within the same scope, the list enclosed in braces must be omitted. The following type

specifier is undefined with respect to its contents and thus the structure or union has an incomplete type.

A tag to specify the type of this type specifier can be used only when the object size is unnecessary. This is

because of that by defining the contents of the tag within the same scope, the type specification becomes

incomplete.

In the following example, the tag "tnode" specifies a structure that includes pointers to an integer and 2 objects of

the same type.

The next example declares "s" as an object of the type indicated by the tag (tnode) and "sp" as a pointer to the

object of the type indicated by the tag. By this declaration, the expression "sp -> left" indicates a pointer to "struct

tnode" on the left of the object pointed to by "sp" and the expression "s.right -> count" indicates "count" which is a

member of "struct tnode" on the right of "s".

structure/union dentifier { member-declaration-list } ;
or
enum identifier { enumerator-list } ;

structure/union identifier ;

struct tnode {
 int count ;
 struct tnode *left , *right ;
} ;

typedef struct tnode TNODE ;
struct tnode {
 int count ;
 struct tnode *left , *right ;
} ;

TNODE s , *sp ;

void main (void) {
 sp -> left = sp -> right ;
 s.right -> count = 2 ;
}

60 User’s Manual U18548EJ1V0UM

CHAPTER 3 DECLARATION OF TYPES AND STORAGE CLASSES

3.3 Type Qualifiers

2 type qualifiers are available: const and volatile.

These type qualifiers affect Lvalues only.

Using an Lvalue that has non-const type qualifier cannot change an object that has been defined with const type

qualifier. Using an Lvalue that has non-volatile type qualifier cannot reference an object that has been defined with

volatile type qualifier.

An object that has volatile qualifier type can be changed by a method not recognizable by the compiler or may

have other unnoticeable side effects. Therefore, an expression that references this object must be strictly

evaluated according to the sequence rules that regulate abstractly how programs written in C should be executed.

In addition, the values to be last stored in the object at every sequence point must be in agreement with those

determined by the program except the changes due to the factors unrecognizable by the compiler as mentioned

above.

If an array type is specified with type qualifiers, the qualifiers apply to the array members, not the array itself.

No type qualifier can be included in the specification of a function type. However, callt, __callt, callf, __callf,

noauto, norec, __leaf, __interrupt, __interrupt_brk, __rtos_interrupt, __near, __far, which are the type qualifiers

unique to the CC78K0R mentioned in "2.2 Keywords", can be included as type qualifiers.

sreg, __sreg, __directmap, __temp, __near, __far are also type qualifiers.

In the following example, "real_time_clock" can be changed by hardware, but such operations as assignment,

increment, and decrement are not allowed in.

An example of modifying aggregate type data with type qualifiers is shown below.

extern const volatile int real_time_clock ;

const struct s { int mem ; } cs = { 1 } ;
struct s ncs ; /* Object ncs is changeable */
typedef int A [2] [3] ;
const A a = { { 4 , 5 , 6 } , { 7 , 8 , 9 } } ; /* Array of const int array */
int *pi ;
const int *pci ;

ncs = cs ; /* Correct */
cs = ncs ;
 /* Violates restriction of Lvalue which has */
 /* modifiable assignment operator */
pi = &ncs.mem ; /* Correct */
pi = &cs.mem ; /* Violates restriction of the type of assignment */
 /* operator = */
pci = &cs.mem ; /* Correct */
pi = a [0] ; /* Incorrect: a [0] has "const int *" type */

CHAPTER 3 DECLARATION OF TYPES AND STORAGE CLASSES

User’s Manual U18548EJ1V0UM 61

3.4 Declarators

A declarator declares an identifier.

Here, pointer declarators, array declarators, and function declarators are mainly discussed.

By a declarator, the scope of an identifier and a function or object which has a storage duration and a type are

determined.

The description of each declarator is shown below.

3.4.1 Pointer declarators

A pointer declarator indicates that an identifier to be declared is a pointer.

A pointer points to (indicates) the location where a value is stored. Pointer declarations are performed as

follows.

By this declaration, the identifier becomes a pointer to T1.

The following 2 declarations indicate a variable pointer to a constant value and an invariable pointer to a variable

value, respectively.

The first declaration indicates that the value of the constant "const int" pointed by the pointer "ptr_to_constant"

cannot be changed, but the pointer "ptr_to_constant" itself may be changed to point to another "const int".

Likewise, the second declaration indicates that the value of the variable "int" pointed by the pointer "constant_ptr"

may be changed, but the pointer "constant_ptr" itself must always point to the same position.

The declaration of the invariable pointer "constant_ptr" can be made distinct by including a definition for the

pointer type to the int type data.

The following example declares "constant_ptr" as an object that has a const qualifier pointer type to int.

*type qualifier-list 　identifier ;

const int *ptr_to_constant ;
int *const constant_ptr ;

typedef int *int_ptr ;
const int_ptr constant_ptr ;

62 User’s Manual U18548EJ1V0UM

CHAPTER 3 DECLARATION OF TYPES AND STORAGE CLASSES

3.4.2 Array declarators

An array declarator declares to the compiler that an identifier to be declared is an object that has an array type.

Array declaration is performed as shown below.

By this declaration, the identifier becomes an array that has the declared type. The value of the constant

expression becomes the number of elements in the array. The constant expression must be an integer constant

expression which has a value greater than 0. In the declaration of an array, if a constant expression is not

specified, the array becomes an incomplete type.

In the following example, a char type array "a[]" which consists of 11 elements and a char type pointer array "ap[

]" which consists of 17 elements have been declared.

In the following 2 examples of declarations, "x" in the first declaration specifies a pointer to an int type data and

"y" in the second declaration specifies an array to an int type data which has no size specification and is to be

declared elsewhere in the program.

3.4.3 Function declarators (including prototype declarations)

A function declarator declares the type of return value, argument, and the type of the argument value of a

function to be referenced.

Function declaration is performed as follows.

By this declaration, the identifier becomes a function which has the parameter specified by the parameter type

list and returns the value of the type declared before the identifier. Parameters of a function are specified by a

parameter identifier lists. By these lists, an identifier, which indicates argument and its type, are specified. A macro

defined in the header file "stdarg.h" converts the list described by the ellipsis (, ...) into parameters. For a function

that has no parameter specification, the parameter list will become "void".

type identifier [constant-expression] ;

char a [11] , *ap [17] ;

extern int *x ;
extern int y [] ;

type identifier (parameter-list or identifier-list) ;

CHAPTER 3 DECLARATION OF TYPES AND STORAGE CLASSES

User’s Manual U18548EJ1V0UM 63

3.5 Type Names

A type name is the name of a data type that indicates the size of a function or object.

Syntax-wise, it is a function or object declaration less identifiers.

Examples of type names are given below.

Table 3-3 Examples of Type Names

Examples of Type Names Explain

int Specifies an int type.

int * Specifies a pointer to an int type.

int * [3] Specifies an array which has 3 pointers to an int type.

int (*) [3] Specifies a pointer to an array which has 3 int types.

int * () Specifies a function which returns a pointer to an int type which has
no parameter specification.

int (*) (void) Specifies a pointer to a function which returns an int type which no
parameter specification.

int (*const []) (unsigned int, ...) Specifies an indefinite number of arrays which have 1 parameter of
unsigned int type and an invariable pointer to each function that
returns an int type.

64 User’s Manual U18548EJ1V0UM

CHAPTER 3 DECLARATION OF TYPES AND STORAGE CLASSES

3.6 typedef Declarations

The typedef keyword defines that an identifier is a synonym to a specified type. The defined identifier becomes

a typedef name.

The syntax of typedef names is shown below.

In the following example, "distance" is an int type, the type of "metricp" is a pointer to a function that returns an int

type that has no parameter specification, the type of "z" is a specified structure, and "zp" is a pointer to this

structure.

In the following example, typedef name t is declared with signed int type, and typedef name plain is declared with

int type, respectively, and the structure with 3 bit field members is declared. The bit field members are as follows.

- Bit field member with name t and the value 0 to 15

- Bit field member without a name and the const qualified value -16 to +15 (if accessed)

- Bit field member with name r and the value -16 to +15

In this example, these 2 bit field declarations differ in the point that the first bit field declaration has unsigned as

the type specifier (therefore, t becomes the name of the structure member), and the second bit field declaration, on

the other hand, has const as the type qualifier (qualifiers t which can be referred to as typedef name). After this

declaration, if the following description is found within the effective range, the function f is declared as "function

which has 1 parameter and returns signed int", and the parameter is declared as "pointer type for the function

which has 1 parameter and returns signed int". The identifier t is declared as long type.

typedef type identifier ;

typedef int MILES , KLICKSP () ;
typedef struct { long re , im ; } complex ;
 :
MILES distance ;
extern KLICKSP *metricp ;
complex z , *zp ;

typedef signed int t ;
typedef int plain ;

struct tag {
 unsigned t : 4 ;
 const t : 5 ;
 plain r : 5 ;
} ;

t f (t (t)) ;
long t ;

CHAPTER 3 DECLARATION OF TYPES AND STORAGE CLASSES

User’s Manual U18548EJ1V0UM 65

typedef names may be used to facilitate program reading. For example, the following 3 declarations for the

function signal all specify the same type as the first declaration which does not use typedef.

typedef void fv (int) ;
typedef void (*pfv) (int) ;

void (*signal (int , void (*) (int))) (int) ;
fv *signal (int , fv *) ;
pfv signal (int , pfv) ;

66 User’s Manual U18548EJ1V0UM

CHAPTER 3 DECLARATION OF TYPES AND STORAGE CLASSES

3.7 Initialization

Initialization refers to setting a value in an object beforehand.

An initializer carries out the initialization of an object.

Initialization is performed as follows.

An initializer list must contain initializers for the number of objects to be initialized.

All expressions in initializers or an initializer list for objects that have static storage duration and objects that have

an aggregate type or a union type must be specified with constant expressions.

Identifiers that declare block scope but have external or internal linkage cannot be initialized.

3.7.1 Initialization of objects which have a static storage duration

If no attempt is made to initialize an arithmetic type object that has static storage duration, the value of the object

will be implicitly initialized to 0.

Likewise, a pointer type object which has a static storage duration will be initialized to a null pointer constant.

<Example>

3.7.2 Initialization of objects which have an automatic storage duration

The value of an object which has an automatic storage duration becomes indefinite and will not be guaranteed if

it is not initialized.

<Example>

object = { initializer-list } ;

unsigned int gval1 ; /* Initialized by 0 */
static int gval2 ; /* Initialized by 0 */
void func (void) {
 static char aval ; /* Initialized by 0 */
}

void func (void) {
 char aval ; /* Undefined value at this point */
 :
 aval = 1 ; /* Initialized by 1 */
}

CHAPTER 3 DECLARATION OF TYPES AND STORAGE CLASSES

User’s Manual U18548EJ1V0UM 67

3.7.3 Initialization of character arrays

A char character array can be initialized with char string literal (char string enclosed with " "). Likewise, a

character string in which a series of char string literal are contained initializes the individual members or elements

of an array.

- In the following example, the array objects s and t with "no type qualifier" are defined and the elements of

each array will be initialized by char string literal.

- The next example is the same as the above example of array initialization.

- The next example defines p as "pointer to char" type and the member is initialized by characteristic string

literal so that length indicates "char array" type object.

char s [] = "abc" , t [3] = "abc" ;

char s [] = { 'a' , 'b' , 'c' , '\0' } ,
 t [] = { 'a' , 'b' , 'c' } ;

char *p = "abc" ;

68 User’s Manual U18548EJ1V0UM

CHAPTER 3 DECLARATION OF TYPES AND STORAGE CLASSES

3.7.4 Initialization of aggregate or union type objects

(1) Aggregate type

An aggregate type object is initialized with a list of initializers described in ascending order of subscripts or

members. The initializer list to be specified must be enclosed in braces.

If the number of initializers in the list is less than the number of aggregate members, the members not

covered by the initializers will be implicitly initialized just the same as an object which has a static storage

duration.

With an array with an unknown size, the number of its elements is governed by the number of initializers and

the array will no longer become an incomplete type.

(2) Union type

A union type object is initialized with an initializer for the first member of the union that is enclosed in braces.

- In the following example, the array "x" with an unknown size will change to a 1-dimensional array that has 3

elements as a result of its initialization.

- The next example shows a complete definition which has initializers enclosed in braces.

"{1, 3, 5}" initializes "y [0] [0]", "y [0] [1]", and "y [0] [2]" in the 1st line of the array object "y [0]".

Likewise, in the second line, the elements of the array objects "y [1]" and "y [2]" are initialized. The initial

value of "y [3]" is 0 since it is not specified.

- The next example produces the same result as the above example.

- In the following example, the elements in the first row of "z" are initialized to the specified values and the rest

of the elements are initialized to 0.

int x [] = { 1 , 3 , 5 } ;

char y [4] [3] = {
 { 1 , 3 , 5 } ,
 { 2 , 4 , 6 } ,
 { 3 , 5 , 7 }
} ;

char z [4] [3] = {
 1 , 3 , 5 , 2 , 4 , 6 , 3 , 5 , 7
} ;

char z [4] [3] = {
 { 1 } , { 2 } , { 3 } , { 4 }
} ;

CHAPTER 3 DECLARATION OF TYPES AND STORAGE CLASSES

User’s Manual U18548EJ1V0UM 69

- In the next example, a 3-dimensional array is initialized.

q [0] [0] [0] are initialized to 1, q [1] [0] [0] to 2, and q [1] [0] [1] to 3. 4, 5 and 6 initialize q [2] [0

] [0], q [2] [0] [1], and q [2] [1] [0], respectively. The rest of the elements are all initialized to 0.

- The following example produces the same result as the above initialization of the 3-dimensional array.

- The following example shows a complete definition of the above initialization using braces.

short q [4] [3] [2] = {
 { 1 } ,
 { 2 , 3 } ,
 { 4 , 5 , 6 }
} ;

short q [4] [3] [2] = {
 1 , 0 , 0 , 0 , 0 , 0 ,
 2 , 3 , 0 , 0 , 0 , 0 ,
 4 , 5 , 6
} ;

short q [4] [3] [2] = {
 {
 { 1 } ,
 } ,
 {
 { 2 , 3 } ,
 } ,
 {
 { 4 , 5 , 6 } ,
 }
} ;

70 User’s Manual U18548EJ1V0UM

CHAPTER 4 TYPE CONVERSIONS

CHAPTER 4 TYPE CONVERSIONS

In an expression, if 2 operands differ in data type, the compiler automatically performs a type conversion

operation. This conversion is similar to a change obtained by the cast operator. This automatic type conversion is

called an implicit type conversion. In this chapter, this implicit type conversion is explained.

Type conversion operations include usual arithmetic conversions, conversions involving truncation/round off, and

conversions involving sign change. A list of conversions between types is shown in the table below.

Table 4-1 List of Conversions Between Types

Before Conversion

After Conversion

(s
ig

ne
d)

 c
ha

r

un
si

gn
ed

 c
ha

r

(s
ig

ne
d)

 s
ho

rt
in

t

un
si

gn
ed

 s
ho

rt
in

t

(s
ig

ne
d)

 in
t

un
si

gn
ed

 in
t

(s
ig

ne
d)

 lo
ng

 in
t

un
si

gn
ed

 lo
ng

 in
t

flo
at

do
ub

le

lo
ng

 d
ou

bl
e

(signed) char + \ OK OK OK OK OK OK OK OK OK OK

- \ NG OK NG OK NG OK NG OK OK OK

unsigned char Δ \ OK OK OK OK OK OK OK OK OK

(signed) short int + \ OK \ OK OK OK OK OK OK

- \ NG \ NG OK NG OK OK OK

unsigned short int Δ \ Δ \ OK OK OK OK OK

(signed) int + \ OK \ OK OK OK OK OK OK

- \ NG \ NG OK NG OK OK OK

unsigned int Δ \ Δ \ OK OK OK OK OK

(signed) long int + \ OK OK OK OK

- \ NG OK OK OK

unsigned long int Δ \ OK OK OK

float \ OK OK

double \ OK

long double \

CHAPTER 4 TYPE CONVERSIONS

User’s Manual U18548EJ1V0UM 71

OK: Type conversion will be performed properly.

\: Type conversion will not be performed.

NG: A correct value will not be generated. (The data type will be regarded as an unsigned int type.)

Δ: The data type will not change bit-image-wise. However, if a positive number cannot represent it

sufficiently, no correct value will be generated. (regarded as an unsigned integer)

Blank: An overflow in the result of the conversion will be truncated.

The + or - sign of the data may be changed depending on the type after the conversion.

Remark The signed keyword can be omitted. However, with a char type data, the data type is regarded as

the signed char or unsigned char type depending on the compile-time condition (option).

72 User’s Manual U18548EJ1V0UM

CHAPTER 4 TYPE CONVERSIONS

4.1 Arithmetic Operands

(1) Characters and integers (general integral promotion)

The data types of char, short int, and int bit fields (whether they are signed or unsigned) or of objects that

have an enumeration type will be converted to int types if their values are within the range that can be

represented with int types. If not within the range, they will be converted to unsigned int types. These

implicit type conversions are referred to as "general integral general promotion".

All other arithmetic types will not be changed by this general integral promotion. General integral promotion

will retain the value of the original data type including its sign.

char type data without type qualifier will normally be handled as signed char in the CC78K0R. It can be

handled as an unsigned char with option.

(2) Signed integers and unsigned integers

When a value with an integer type is converted to another, the value will not be changed if the value can be

expressed with the integer type after conversion.

When a signed integer is converted to an unsigned integer of the same or larger size, the value is not

changed unless the value of the signed integer is negative. If the value of the signed integer is negative and

the unsigned integer has a size larger than that of the signed integer, the signed integer is expanded to the

signed integer with the same size as the unsigned integer, and then it is added with the value equal to the

maximum number that can be expressed with the unsigned integer plus 1, and the signed integer before

conversion is converted to the unsigned value.

When a value with an integer type is converted to an unsigned integer with a smaller size, the conversion

result is a non-negative remainder which the value is divided with that value which 1 is added to the

maximum number that can be expressed with an unsigned integer after conversion. When a value with an

integer type is converted to a signed integer with smaller size or when an unsigned integer is converted to a

signed integer with the same size, the overflown value is ignored if the value after conversion cannot be

expressed. For the conversion pattern, refer to Table 4-1.

Conversion operations from signed integral type to unsigned integral type are as listed in the table below.

OK: Type conversion will be performed properly.

+: The data will be converted to a positive integer.

/: The result of the conversion will be the remainder of the integer value, modulo the largest

possible value of the type to be converted plus 1.

unsigned

Smaller in Value Range Greater in Value Range

signed + / OK

- / +

CHAPTER 4 TYPE CONVERSIONS

User’s Manual U18548EJ1V0UM 73

(3) Usual arithmetic type conversions

Types obtained as a result of operations on arithmetic type data will have a wide range of values.

The type conversion of the operation result is performed as follows.

- If either one of the operands has long double type, the other operand is converted to long double type.

- If either one of the operands has double type, the other operand is converted to double type.

- If either one of the operands has float type, the other operand is converted to float type.

In cases other than above, general integer expansion is performed for both operands according to the

following rules.

Figure 4-1 shows the rules.

Figure 4-1 Usual Arithmetic Type Conversions

In the CC78K0R, the conversion to int type can be intentionally disabled by compile condition (optimizing

option).

For the details, refer to the CC78K0R C Compiler Operation User’s Manual.

If either of the 2 operands is unsigned long int type, or with one
operand being long int type and the other being unsigned int type,
if the value of unsigned int type cannot represented by long int type,

In cases other than above, if one operand is unsigned int type, the other operand
will be converted to unsigned int type.

In cases other than above, both operands will have int type.

unsigned long int

unsigned int

long int

int

.............

In cases other than above, if one operand is long int type and if the value of
the other operand can be represented by long int type, the other operand will be

.............

.............

.............

both operands will be converted to unsigned long int type.

converted to long int type.

74 User’s Manual U18548EJ1V0UM

CHAPTER 4 TYPE CONVERSIONS

4.2 Other Operands

(1) Lvalues and function locators

An "Lvalue" refers to an expression that specifies an object (and has an incomplete type other than object

type or void type).

Lvalues which do not have array types, incomplete types, or const qualifier types, and structures or unions

which have no const qualifier type members are "modifiable Lvalues".

An Lvalue which has no array type will be converted to a value stored in the object to be specified, except

when it is the operand of the sizeof operator, unary & operator, ++ operator, or - - operator or the left

operand of an operator or an assignment operator. By being converted, it will no longer serve as an Lvalue.

The behaviors of Lvalues that have incomplete types but have no array types will not be guaranteed.

An Lvalue which has a "... array" type except character arrays will be converted to an expression which has

a "pointer to ..." type. This expression is no longer an Lvalue.

A function locator is an expression that has a function type. With the exception of the operand of the sizeof

operator or unary & operator, a function locator that has a "function type that returns ..." will be converted to

an expression that has a "pointer type to a function that returns ...".

(2) void

The value (non-existent) of a void expression (i.e., an expression that has the void type) cannot be used in

any way. Neither implicit nor explicit conversion to exclude void will be applied to this expression. If an

expression of another type appears in the context which requires a void expression, the value of the

expression or specifier is assumed to be non-existent.

(3) Pointers

A void pointer can be converted to a pointer to any incomplete type or object type. Conversely, a pointer to

any incomplete type or object type can be converted to a void pointer. In either case, the result value must

be equal to that of the original pointer.

An integer constant expression which has the value of 0 and has been cast to the void * type is referred to

as a "null pointer constant". If the null pointer constant is substituted with, equal to, or compared with some

pointer, the null pointer constant will be converted to that pointer.

CHAPTER 5 OPERATORS AND EXPRESSIONS

User’s Manual U18548EJ1V0UM 75

CHAPTER 5 OPERATORS AND EXPRESSIONS

This chapter describes the operators and expressions to be used in the C language.

C has an abundance of operators for arithmetic, logical, and other operations. This rich set of operators also

includes those for bit and address operations.

An expression is a string or combination of an operator and one or more operands. The operator defines the

action to be performed on the operand(s) such as computation of a value, instructions on an object or function,

generation of side effects, or a combination of these.

Examples of operators are given below.

#define TRUE 1
#define FALSE 0
#define SIZE 200

void lprintf (char * , int) ;
void putchar (char c) ;
char mark [SIZE + 1] ; /* + : Arithmetic operator */

void main (void) {
 int i , prime , k , count ;

 count = 0 ; /* = : Assignment operator */
 for (i = 0 ; i <= SIZE ; i++) /* ++ : Postfix operator */
 mark [i] = TRUE ; /* <= : Relational operator */

 for (i = 0 ; i <= SIZE ; i++) {
 if (mark [i]) {
 prime = i + i + 3 ; /* + : Arithmetic operator */
 lprintf ("%d" , prime) ;
 count++ ; /* ++ : Postfix operator */
 if ((count%8) == 0) /* == : Relational operator */
 putchar ('\n') ;
 /* += : Assignment operator */
 for (k = i + prime ; k <= SIZE ; k += prime)
 mark [k] = FALSE ;
 }
 }

 lprintf ("Total %d\n" , count) ;
loop1 : ;
 goto loop1 ;
}

lprintf (char *s , int i) {
 int j ;
 char *ss ;
 j = i ;
 ss = s ;
}

void putchar (char c) {
 char d ;
 d = c ;
}

76 User’s Manual U18548EJ1V0UM

CHAPTER 5 OPERATORS AND EXPRESSIONS

The table below shows the evaluation precedence of operators used in C.

Note Operations in the same line contain the same priority.

The arrow (<- - or - - >) in the "LINKAGE" column denotes that when an expression contains two or

more operators in the same precedence, the operations are carried out in the direction of the arrow "- -

>" (from left to right) or "<- - " (from right to left).

Table 5-1 Evaluation Precedence of Operators

Type of Expression Operator LinkageNote Priority

Postfix [], (), ., ->, ++, - - - - > Highest

Lowest

Unary ++, - - , &, *, +, -, ~, !, sizeof <- -

Cast (type) <- -

Multiplicative *, /, % - - >

Additive +, - - - >

Bitwise shift <<, >> - - >

Relational <, >, <=, >= - - >

Equality ==, != - - >

Bitwise AND & - - >

Bitwise XOR ^ - - >

Bitwise OR | - - >

Logical AND && - - >

Logical OR || - - >

Conditional ? : <- -

Assignment =, *=, /=, %=, +=, -=, <<=, >>=, &=, ^=, |= <- -

Comma , - - >

CHAPTER 5 OPERATORS AND EXPRESSIONS

User’s Manual U18548EJ1V0UM 77

5.1 Primary Expressions

Primary expressions include the following:

- Identifier declared as an object or function

(identifier primary expression)

- Constant (constant primary expression)

- String literal (constant primary expression)

- Expression enclosed in parentheses

(parenthesized expression)

An identifier which becomes a primary expression is an Lvalue if an object is declared or a function locator if a

function is declared. The data type of a constant is determined according to the value specified for the constant as

explained in "2.5 Constants". String literal(s) become an Lvalue that has a data type as explained in "2.6 String

Literal".

78 User’s Manual U18548EJ1V0UM

CHAPTER 5 OPERATORS AND EXPRESSIONS

5.2 Postfix Operators

A postfix operator is an operator that appears or is placed after an object or a function.

The types of postfix operators are given below.

- Subscript operator

- Function call operator

- Structure and union member (.)

- Structure and union member (->)

- Postfix increment operator (++)

- Postfix decrement operator (--)

CHAPTER 5 OPERATORS AND EXPRESSIONS

User’s Manual U18548EJ1V0UM 79

Subscript operator

SYNTAX

FUNCTION

- The [] subscript operator specifies or refers to a single member of an array object.

The array or expression "E1 [E2]" is evaluated as if it were "(*(E1 + (E2)))". In other words, the value of E1

is a pointer to the first member of the array and E2 (if it is an integer) indicates the E2th member of E1

(counting from 0). With a multidimensional array, subscript operators as many as the number of dimensions

must be connected.

In the following example, x becomes an int type array of 3 * 5. In other words, x is an array which has 3

members each consisting of 5 int type members.

A multidimensional array may be specified by connecting subscript operators.

Assuming that E is an array of nth dimension (where n > 2) consisting of i * j * ... * k, the array can be

specified with the n number of subscript operators. In this case, E becomes a pointer to an array of (n - 1)th

dimension consisting of j * ... * k.

NOTE

- A postfix expression must have a "... pointer to object". The subscripted expression of an array must be

specified with integral type data. The result of the expression will become "..." type.

postfix-expression [subscripted-expression]

int x [3] [5] ;

80 User’s Manual U18548EJ1V0UM

CHAPTER 5 OPERATORS AND EXPRESSIONS

Function call operator

SYNTAX

FUNCTION

- The postfix "()" operator calls a function.

The function to be called is specified with a postfix expression and argument(s) to passed to the function are

indicated in parentheses ().

- The description related to function includes the function prototype declaration, the function definition (the

body of a function), and the function call. The function prototype declaration specifies the value a function

returns, the type of argument, and the storage class.

- If the function prototype declaration is not referred to in a function call, each argument is extended with

general integer. This is called "default actual argument extension". Performing a function prototype

declaration avoids default actual argument extension and detects the mistakes of the type and number of

argument and the type of return value.

- Calling a function which has neither storage class specification nor data type specification such as "identifier

();" is interpreted as calling a function which has an external object and returns an int type which has no

information on arguments. In other words, the following declaration will be made implicitly:

[Example of function call]

NOTE

- A function that returns an object other than array types can be called with this operator. The postfix

expression must be of a pointer type to this function.

- In a function call including prototype, the type of argument must be of a type that can be assigned to the

corresponding parameter(s). The number of arguments must also be in agreement.

postfix-expression (argument-expression-list) ;

extern int identifier () ;

int func (char , int) ; /* function prototype declaration */
char a ;
int b , ret ;

void main (void) {
 ret = func (a , b) ; /* function call */
}

int func (char c , int i) { /* function definition */
 :
 return i ;
}

CHAPTER 5 OPERATORS AND EXPRESSIONS

User’s Manual U18548EJ1V0UM 81

Structure and union member (.)

SYNTAX

FUNCTION

- The "." (dot) operator (also called a member operator) specifies the individual members of a structure or

union.

The postfix expression is the name of the structure or union object to be specified, and the identifier is the

name of the member.

postfix-expression.identifier

82 User’s Manual U18548EJ1V0UM

CHAPTER 5 OPERATORS AND EXPRESSIONS

Structure and union member (->)

SYNTAX

FUNCTION

- The "->" (arrow) operator (also called an indirect membership operator) specifies the individual members of

a structure or union.

The postfix expression is the name of the pointer to the structure or union object to be specified, and the

identifier is the name of the member.

<Examples of ".", "->" operators>

postfix-expression -> identifier

#include <stdlib.h>

union {
 struct {
 int type ;
 } n ;
 struct {
 int type ;
 int intnode ;
 } ni ;
 struct {
 int type ;
 struct {
 long longnode ;
 } *nl_p ;
 } nl ;
} u ;

void func (void) {
 u.nl.type = 1 ;
 u.nl.nl_p -> longnode = -31415L ;
 :
 if (u.n.type == 1)
 u.nl.nl_p -> longnode = labs (u.nl.nl_p -> longnode) ;
}

CHAPTER 5 OPERATORS AND EXPRESSIONS

User’s Manual U18548EJ1V0UM 83

Postfix increment operator (++)

SYNTAX

FUNCTION

- The postfix ++ (Increment) operator increments the value of an object by 1.

This increment operation is performed by taking the data type of the object into account.

postfix-expression++

84 User’s Manual U18548EJ1V0UM

CHAPTER 5 OPERATORS AND EXPRESSIONS

Postfix decrement operator (- -)

SYNTAX

FUNCTION

- The postfix - - (Decrement) operator decrements the value of an object by 1.

This decrement operation is performed by taking the data type of the object into account.

NOTE

- The operand of the postfix increment or decrement operator must be a modifiable Lvalue (qualified or

unqualified).

postfix-expression--

CHAPTER 5 OPERATORS AND EXPRESSIONS

User’s Manual U18548EJ1V0UM 85

5.3 Unary Operators

A unary operator performs an operation on 1 object or parameter (i.e., operand).

The following unary operators are available:

- Prefix increment operator (++)

- Prefix decrement operator (--)

- Unary & operator (&)

- Unary * operator (*)

- Unary arithmetic operators (+ - ~ !)

- sizeof operator

86 User’s Manual U18548EJ1V0UM

CHAPTER 5 OPERATORS AND EXPRESSIONS

Prefix increment operator (++)

SYNTAX

FUNCTION

- The prefix (Increment) operator increments the value of an object by 1.

The expression "++E" of the prefix increment operator will produce the same result as the following

expression.

++unary-expression

E = E + 1
 or
E += 1

CHAPTER 5 OPERATORS AND EXPRESSIONS

User’s Manual U18548EJ1V0UM 87

Prefix decrement operator (- -)

SYNTAX

FUNCTION

- The prefix - - (Decrement) operator decrements the value of an object by 1.

The expression "- - E" of the prefix decrement operator will produce the same result as the following

expression:

--unary-expression

E = E - 1
 or
E -= 1

88 User’s Manual U18548EJ1V0UM

CHAPTER 5 OPERATORS AND EXPRESSIONS

Unary & operator (&)

SYNTAX

FUNCTION

- The unary & (address) operator returns the pointer of a specified object (i.e., the address of the variable it

precedes).

&operand

CHAPTER 5 OPERATORS AND EXPRESSIONS

User’s Manual U18548EJ1V0UM 89

Unary * operator (*)

SYNTAX

FUNCTION

- The unary * (indirection) operator returns the value indicated by a specified pointer (i.e., takes the value of

the variable it precedes and uses that value as the address of the information in memory).

NOTE

- The operand of the unary & operator must be an Lvalue referring to an object not declared with the register

storage class specifier. Neither a function locator nor a bit field can be used as the operand of this unary

operator.

The operand of the unary * operator must have a pointer type.

*operand

90 User’s Manual U18548EJ1V0UM

CHAPTER 5 OPERATORS AND EXPRESSIONS

Unary arithmetic operators (+ - ~ !)

SYNTAX

FUNCTIONS

- The + (unary plus) operator performs positive integral promotion on its operand.

- The - (unary minus) operator performs negative integral promotion on its operand.

- The ~ (tilde) operator is a bitwise one’s complement operator which inverts all the bits in a byte of its

operand.

- The ! NOT or logical negation operator returns "0" if its operand is "0" and "1" if it is not "0". In other words,

the operator changes each "0" to "1" and "1" to "0".

+operand
-operand
~operand
!operand

CHAPTER 5 OPERATORS AND EXPRESSIONS

User’s Manual U18548EJ1V0UM 91

sizeof operator

SYNTAX

FUNCTION

- The sizeof operator returns the size of a specified object in bytes.

The return value is governed by the data type of the object and the value of the object itself is not evaluated.

- The value to be returned by an unsigned char or signed char object (including its qualified type) on which a

sizeof operation is performed is 1. With an array type object, the return value will be the total number of

bytes in the array. With a structure or union type object, the result value will be the total number of bytes that

the object would occupy including bytes necessary to pad out to the next appropriate alignment boundary.

- The type of the sizeof operation result is an integral type and its name is size_t. This name is defined in the

<stddef.h> header. The sizeof operator is used mainly to allocate memory areas and transfer data to/from

the I/O system.

EXAMPLE

- The following example finds the number of elements of an array by dividing the total number of bytes in the

array by the size of a single element. Num becomes 5.

NOTE

- An expression that has a function type or incomplete type and an Lvalue which refers to a bit field object

cannot be used as the operand of this operator.

sizeof unary-expression
sizeof (type-name)

int num ;
char array [] = { 0 , 1 , 2 , 3 , 4 } ;

void func (void) {
 num = sizeof array / sizeof array [0] ;
}

92 User’s Manual U18548EJ1V0UM

CHAPTER 5 OPERATORS AND EXPRESSIONS

5.4 Cast Operator

A cast is a special operator which forces one data type to be converted into another.

The cast operator is mainly used when converting a pointer type.

- Cast operator (type-name)

CHAPTER 5 OPERATORS AND EXPRESSIONS

User’s Manual U18548EJ1V0UM 93

Cast operator (type-name)

SYNTAX

FUNCTION

- The cast operator converts the data type of another object (or the result of another expression) into the type

specified in parentheses ().

EXAMPLE

(type-name) expression

void func (void) {
 int val ;
 float f ;

 f = 3.14F ;
 val = (int) f ; /* val becomes 3 by cast */
 val = * (int *) 0x10000 ; /* Cast constant */
}

94 User’s Manual U18548EJ1V0UM

CHAPTER 5 OPERATORS AND EXPRESSIONS

5.5 Arithmetic Operators

- * operator

- / operator

- % operator

- + operator

- - operator

Arithmetic operators are divided into multiplying operators and adding operators.

Multiplying operators find the product, quotient, and remainder of 2 operands. Adding operators find the sum

and difference of 2 operands.

Table 5-2 Signs of Division/Remainder Division Operation Result

Remark a, b indicates each operand.

Division is performed with 2 integers whose sign, if any, is removed through the usual arithmetic conversion and

the result will be truncated towards 0 if necessary. Likewise, a remainder or modulo division operation is performed

with 2 integers whose sign, if any, is removed through the usual arithmetic conversion. Table 5-2 shows the results

of calculations only on the signs of 2 operands in division and remainder division, respectively.

a / b
b

+ -

a + + -

- - +

a % b
b

+ -

a + + +

- - -

CHAPTER 5 OPERATORS AND EXPRESSIONS

User’s Manual U18548EJ1V0UM 95

* operator

SYNTAX

FUNCTION

- The binary * (multiplication) operator performs normal multiplication on 2 operands and returns the product.

E1 * E2

96 User’s Manual U18548EJ1V0UM

CHAPTER 5 OPERATORS AND EXPRESSIONS

/ operator

SYNTAX

FUNCTION

- The / operator performs normal division on 2 operands and returns the quotient.

E1 / E2

CHAPTER 5 OPERATORS AND EXPRESSIONS

User’s Manual U18548EJ1V0UM 97

% operator

SYNTAX

FUNCTION

- The % operator performs a remainder (or modulo division) operation on 2 operands and returns the

remainder in the result.

E1 % E2

98 User’s Manual U18548EJ1V0UM

CHAPTER 5 OPERATORS AND EXPRESSIONS

+ operator

SYNTAX

FUNCTION

- The + operator performs addition on 2 operands and returns the sum of the 2 numbers.

E1 + E2

CHAPTER 5 OPERATORS AND EXPRESSIONS

User’s Manual U18548EJ1V0UM 99

- operator

SYNTAX

FUNCTION

- The - operator performs subtraction on 2 operands and returns the difference between the 2 numbers (the

first operand minus the second operand).

E1 - E2

100 User’s Manual U18548EJ1V0UM

CHAPTER 5 OPERATORS AND EXPRESSIONS

5.6 Bitwise Shift Operators

A shift operator shifts its first (left) operand to the direction (left or right) indicated by the operator by the number

of bits specified by its second operand.

The types of shift operators are given below.

- << operator

- >> operator

Table 5-3 Shift Operations

Note The table indicates when the right operand is greater than the number of bits in the left operand

or when an overflow occurs in the result of the shift operation.

If the right operand is negative, the value is processed as an unsigned positive number.

Remark a, b indicates each operand.

a << b bNote

a + 0

- 0

a >> b bNote

a + 0

- -1

CHAPTER 5 OPERATORS AND EXPRESSIONS

User’s Manual U18548EJ1V0UM 101

<< operator

SYNTAX

FUNCTION

- The binary << (left shift) operator shifts the left operand to the left the number of bits specified by the right

operand and fills zeros in vacated bits. If the left operand E1 has an unsigned type in "E1 << E2", the result

will become a value obtained by multiplying "E1" by the "E2th" power of 2.

E1 << E2

102 User’s Manual U18548EJ1V0UM

CHAPTER 5 OPERATORS AND EXPRESSIONS

>> operator

SYNTAX

FUNCTION

- The binary >> (right shift) operator shifts the left operand to the right the number of bits specified by the right

operand.

- If "E1" is unsigned, zeros are filled in vacated bits (Logical shift).

- If "E1" is signed, a copy of the sign bit is filled in vacated bits.

- If "E1" is unsigned or signed and have a non-negative value in "E1>>E2", the result will become a value

obtained by dividing "E1" by the "E2th" power of 2.

E1 >> E2

CHAPTER 5 OPERATORS AND EXPRESSIONS

User’s Manual U18548EJ1V0UM 103

5.7 Relational Operators

There are 2 types of operators to indicate the relationship between 2 operands: "relational operator" and

"equality operator".

The relational operator indicates the value relationship between 2 operands such as greater than and less than.

The equality operators indicate that 2 operands are equal or not equal.

The relational operators and equality operators are shown below.

- < operator

- > operator

- <= operator

- >= operator

- == operator

- != operator

The value relationship between 2 pointers compared by relational operators is determined by the relative

location in the address space of the object indicated by the pointer.

In the CC78K0R, relational operators and equality operators generate "1" if the specified relationship is true and

"0" if it is false. The results have int type.

104 User’s Manual U18548EJ1V0UM

CHAPTER 5 OPERATORS AND EXPRESSIONS

< operator

SYNTAX

FUNCTION

- The < (less than) operator returns "1" if the left operand is less than the right operand; otherwise, "0" is

returned.

E1 < E2

CHAPTER 5 OPERATORS AND EXPRESSIONS

User’s Manual U18548EJ1V0UM 105

> operator

SYNTAX

FUNCTION

- The > (greater than) operator returns "1" if the left operand is greater than the right operand; otherwise, "0"

is returned.

E1 > E2

106 User’s Manual U18548EJ1V0UM

CHAPTER 5 OPERATORS AND EXPRESSIONS

<= operator

SYNTAX

FUNCTION

- The <= (less than or equal) operator returns "1" if the left operand is less than or equal to the right operand;

otherwise, "0" is returned.

E1 <= E2

CHAPTER 5 OPERATORS AND EXPRESSIONS

User’s Manual U18548EJ1V0UM 107

>= operator

SYNTAX

FUNCTION

- The >= (greater than or equal) operator returns "1" if the left operand is greater than or equal to the right

operand; otherwise, "0" is returned.

E1 >= E2

108 User’s Manual U18548EJ1V0UM

CHAPTER 5 OPERATORS AND EXPRESSIONS

== operator

SYNTAX

FUNCTION

- The == (equal) operator returns "1" if its 2 operands are equal to each other; otherwise, "0" is returned.

E1 == E2

CHAPTER 5 OPERATORS AND EXPRESSIONS

User’s Manual U18548EJ1V0UM 109

!= operator

SYNTAX

FUNCTION

- The != (not equal) operator returns "1" if both operands are not equal to each other; otherwise, "0" is

returned.

E1 != E2

110 User’s Manual U18548EJ1V0UM

CHAPTER 5 OPERATORS AND EXPRESSIONS

5.8 Bitwise Logical Operators

Bitwise logical operators perform a specified logical operation on the value of an object in bit units.

Each logical operation is indicated by the operators shown below.

- Bitwise AND operator (&)

- Bitwise XOR operator (^)

- Bitwise inclusive OR operator (|)

CHAPTER 5 OPERATORS AND EXPRESSIONS

User’s Manual U18548EJ1V0UM 111

Bitwise AND operator (&)

SYNTAX

FUNCTION

- The binary "&" operator is a bitwise AND operator which returns an integral value that has "1" bits in

positions where both operands have "1" bits and that has "0" bits everywhere else.

- The bitwise AND operator must be specified with an "& operator".

E1 & E2

Value of Each Bit in Left Operand

1 0

Value of Each Bit in Right Operand
1 1 0

0 0 0

112 User’s Manual U18548EJ1V0UM

CHAPTER 5 OPERATORS AND EXPRESSIONS

Bitwise XOR operator (^)

SYNTAX

FUNCTION

- The binary " ^ " (caret) operator is a bitwise exclusive OR operator which returns an integral value that has a

"1" bit in each position where exactly one of the operands has a "1" bit and that has a "0" bit in each position

where both operands have a "1" bit or both have a "0" bit.

E1 ^ E2

Value of Each Bit in Left Operand

1 0

Value of Each Bit in Right Operand
1 0 1

0 1 0

CHAPTER 5 OPERATORS AND EXPRESSIONS

User’s Manual U18548EJ1V0UM 113

Bitwise inclusive OR operator (|)

SYNTAX

FUNCTION

- The binary " | " operator is a bitwise inclusive OR operator which returns an integral value that has a "1" bit

in each position where at least one of the operands has a "1" bit and that has a "0" bit in each position where

both operands have a "0" bit.

E1 | E2

Value of Each Bit in Left Operand

1 0

Value of Each Bit in Right Operand
1 1 1

0 1 0

114 User’s Manual U18548EJ1V0UM

CHAPTER 5 OPERATORS AND EXPRESSIONS

5.9 Logical Operators

Logical operators perform logical OR and logical AND operations.

A logical OR operation is specified with a logical OR operator, and a logical AND operation is specified with a

logical AND operator.

Each operator is shown below.

- Logical AND operator (&&)

- Logical OR operator (||)

Each operand of both the operators returns the value of int type "0" or "1".

CHAPTER 5 OPERATORS AND EXPRESSIONS

User’s Manual U18548EJ1V0UM 115

Logical AND operator (&&)

SYNTAX

FUNCTION

- The && operator performs logical AND operation on 2 operands and returns a "1" if both operands have

nonzero values.

Otherwise, a "0" is returned. The type of the result is int.

NOTE

- This operator always evaluates its operands from left to right. If the value of the left operand is "0", the right

operand is not evaluated.

E1 && E2

Value of Left Operand

Zero Nonzero

Value of Right Operand
Zero 0 0

Nonzero 0 1

116 User’s Manual U18548EJ1V0UM

CHAPTER 5 OPERATORS AND EXPRESSIONS

Logical OR operator (||)

SYNTAX

FUNCTION

- The | | operator performs logical OR operation on 2 operands and returns a "0" if both operands are zero.

Otherwise, a "1" is returned. The type of result is int.

NOTE

- This operator always evaluates its operands from left to right. If the value of the left operand is nonzero, the

right operand is not evaluated.

E1 || E2

Value of Left Operand

Zero Nonzero

Value of Right Operand
Zero 0 1

Nonzero 1 1

CHAPTER 5 OPERATORS AND EXPRESSIONS

User’s Manual U18548EJ1V0UM 117

5.10 Conditional Operator

Conditional operators judge the processing to be performed next by the value of the first operand. Conditional

operators judge by "?" and ":".

The types of conditional operators are given below.

- Conditional operator (? :)

118 User’s Manual U18548EJ1V0UM

CHAPTER 5 OPERATORS AND EXPRESSIONS

Conditional operator (? :)

SYNTAX

FUNCTION

- If the value of the first operand is nonzero, it evaluates the second operand before the colon. If the value of

the first operand is zero, it evaluates the third operand after the colon.

The result of the entire conditional expression will be the value of the second or third operand.

EXAMPLE

NOTE

- If both the second and third operand types are arithmetic types, normal arithmetic type conversion is

performed to make them common types. The type of result is the common type.

If both the operand types are structure types or union types, the result becomes those types. If both the

operand types are void types, the result is void type.

1st-operand ? 2nd-operand : 3rd-operand

#define TRUE 1
#define FALSE 0

char flag ;
int ret ;

int func (void) {
 ret = flag ? TRUE : FALSE ;
 return ret ;
}

CHAPTER 5 OPERATORS AND EXPRESSIONS

User’s Manual U18548EJ1V0UM 119

5.11 Assignment Operators

Assignment operators include a simple assignment expression that stores the right operand in the left operand

and a compound assignment expression that stores the result of an operation on both operands in the left operand.

The assignment operators are shown below.

- Simple assignment operator (=)

- Compound assignment operators (*= /= %= += -= <<= >>= &= ^= |=)

120 User’s Manual U18548EJ1V0UM

CHAPTER 5 OPERATORS AND EXPRESSIONS

Simple assignment operator (=)

SYNTAX

FUNCTION

- The = (simple assignment) operator converts the right operand (expression) to the type of the left operand

(Lvalue) before the value is stored.

In the following example, the value of an int type to be returned from the function by the type conversion of

the simple assignment expression will be converted to a char type and an overflow in the result will be

truncated. And the comparison of the value with "-1" will be made after the value is converted back to the int

type. If the variable "c" declared without qualifier is not interpreted as unsigned char, the result of the

variable will not become negative and its comparison with "-1" will never result in equal. In such a case, the

variable "c" must be declared with an int type to ensure complete portability.

E1 = E2

int f (void) ;
char c ;

if ((c = f ()) == -1) {
 :
} else {
 :
}

CHAPTER 5 OPERATORS AND EXPRESSIONS

User’s Manual U18548EJ1V0UM 121

Compound assignment operators (*= /= %= += -= <<= >>= &= ^= |=)

SYNTAX

FUNCTION

- The compound assignment operators perform a specified operation on both operands and stores the result

in the left operand. The value to be stored in the left operand will be converted to the type of Lvalue (left

operand).

- The compound assignment expression "E1 op = E2" (where op indicates a suitable binary operator) is

equivalent to the simple assignment expression "E1 = E1 op (E2)", except that the Lvalue (E1) is only

evaluated once. The following compound assignment expressions will produce the same result as the

respective simple assignment expressions on the right.

E1 *= E2
E1 /= E2
E1 %= E2
E1 += E2
E1 -= E2
E1 <<= E2
E1 >>= E2
E1 &= E2
E1 ^= E2
E1 |= E2

a *= b ; a = a * b ;
a /= b ; a = a / b ;
a %= b ; a = a % b ;
a += b ; a = a + b ;
a -= b ; a = a - b ;
a <<= b ; a = a << b ;
a >>= b ; a = a >> b ;
a &= b ; a = a & b ;
a ^= b ; a = a ^ b ;
a |= b ; a = a | b ;

122 User’s Manual U18548EJ1V0UM

CHAPTER 5 OPERATORS AND EXPRESSIONS

5.12 Comma Operator

The types of comma operators are given below.

- Comma operator (,)

CHAPTER 5 OPERATORS AND EXPRESSIONS

User’s Manual U18548EJ1V0UM 123

Comma operator (,)

SYNTAX

FUNCTION

- The comma operator evaluates the left operand as a void type (that is, ignores its value) and then evaluates

the right operand.

The type and value of the result of the comma expression are the type and value of the right operand.

- In contents where a comma has another meaning (as in a list of function arguments or in a list of variable

initializations), comma expressions must be enclosed in parentheses. In other words, the comma operator

described in this chapter will not appear in such a list.

- In the following example, the comma operator finds the value of the second argument of the function "f ()".

The value of the second argument becomes 5.

E1 , E2

int a , c , t ;

void main (void) {
 f (a , (t = 3 , t + 2) , c) ;
}

124 User’s Manual U18548EJ1V0UM

CHAPTER 5 OPERATORS AND EXPRESSIONS

5.13 Constant Expressions

Constant expressions include general integral constant expressions, arithmetic constant expressions, address

constant expressions, and initialization constant expressions.

Most of these constant expressions can be calculated at translation time instead of execution time.

In a constant expression, the following operators cannot be used except when they appear inside sizeof

expressions:

- Assignment operators

- Increment operators

- Decrement operators

- Function call operator

- Comma operator

(1) General integral constant expression

A general integral constant expression has a general integral type.

The following operands may be used:

- Integer constants

- Enumerated value constants

- Character constants

- sizeof expressions

- Floating point constants

(2) Arithmetic constant expression

An arithmetic constant expression has an integral type.

The following operands may be used:

- Integer constants

- Enumerated value constants

- Character constants

- sizeof expressions

- Floating point constants

CHAPTER 5 OPERATORS AND EXPRESSIONS

User’s Manual U18548EJ1V0UM 125

(3) Address constant expression

An address constant expression is a pointer to an object that has a static storage duration or a pointer to a

function locator.

Such an expression must be created explicitly using the unary & operator or implicitly using an expression

with an array type or function type.

The following operands may be used. However, none of these operators can be used to access the value of

an object.

- Array subscript operator "[]"

- "." (dot) operator

- "->" (arrow) operator

- "&" address operator

- " * " indirection operator

- Pointer casts

126 User’s Manual U18548EJ1V0UM

CHAPTER 6 CONTROL STRUCTURES OF C LANGUAGE

CHAPTER 6 CONTROL STRUCTURES OF C
LANGUAGE

This chapter describes the program control structures of C language and the statements to be executed in C.

Generally speaking, no matter how a process is complicated, it can be expressed with 3 basic control structures.

These 3 control structures are: Sequential, Conditional control (Selection), and Iteration. Branch is used to change

the flow of a program by force.

(1) Sequential processing

Statements in a program are executed one by one from top to bottom in the order of their description in the

program.

(2) Conditional control (selection) processing

According to the status of the program under execution, the next executable statement is selected and

executed.

The selection condition is specified in a control statement. The control statement determines which of the 2

alternative statement groups or multiway (three or more) alternative statement groups is to be executed.

(3) Looping (iteration) processing

The same processing is executed two or more times.

The execution of an executable statement is repeated a specified number of times during the condition

indicated by the control statement.

(4) Branch processing

C is caused to exit from the current program flow and control is transferred to a specified label.

Program execution starts from the statement next to the specified label.

There are 6 types of statements used in C.

- Labeled Statements

Causes branch according to the value of switch statement and the destination of goto statement

- Compound Statements or Blocks

Collects two or more statements to be processed as 1 unit

- Expression Statements and Null Statements

A statement consisting of an expression and a semicolon

- Conditional Control Statements

Selects a statement out of several statements according to the value of the expression

- Looping Statements

Repeatedly performs a statement called the body of a loop until the control expression becomes equal to

0.

- Branch Statements

Causes unconditional branch to different destination

CHAPTER 6 CONTROL STRUCTURES OF C LANGUAGE

User’s Manual U18548EJ1V0UM 127

Description example of these statements is shown below.

#define SIZE 10
#define TRUE 1
#define FALSE 0

extern void putchar (char) ;
extern void lprintf (char * , int) ;

charmark [SIZE + 1] ;

void main (void) {
 int i , prime , k , count ;

 count = 0 ;
 for (i = 0 ; i <= SIZE ; i++) /* for : Looping statement */
 mark [i] = TRUE ;
 for (i = 0 ; i <= SIZE ; i++) { /* for : Looping statement */
 if (mark [i]) { /* if : Conditional statement */
 prime = i + i + 3 ;
 lprintf ("%d " , prime) ;
 if ((count%8) == 0) /* if : Conditional statement */
 putchar ('\n') ;
 for (k = i + prime ; k <= SIZE ; k += prime)
 mark [k] = FALSE ;
 }
 }
 lprintf ("Total %d\n" , count) ;

loop1: ; /* loop1 : Labeled statement */
 goto loop1 ; /* goto : Branch statement */
}

128 User’s Manual U18548EJ1V0UM

CHAPTER 6 CONTROL STRUCTURES OF C LANGUAGE

6.1 Labeled Statements

A labeled statement specifies the destination of switch or goto statement.

The switch statement selects the statement specified by a control expression from among statements with two or

more options. The labeled statement becomes the label of the statement to be executed by the switch statement.

The goto statement causes unconditional branching to the applicable label from the normal flow of processing.

The types of labeled statements are given below.

- case label

- default label

CHAPTER 6 CONTROL STRUCTURES OF C LANGUAGE

User’s Manual U18548EJ1V0UM 129

case label

SYNTAX

FUNCTION

- case labels are used only in the body of a switch statement to enumerate values to be taken by the control

expression of the switch statement.

EXAMPLE 1

- In EXAMPLE 1, if the return value of f() is 1, the first case clause (statement) is selected and the

expression "i=i+4" is executed. Likewise, if the return value of f() is 2 or 3, the second or third case

statement is selected, respectively. Each break statement in the above example is to break out of the switch

body.

As in this example, case labels are used when two or more options are involved.

case constant-expression : statement

int f (void) , i ;

switch (f ()) {
 case 1 :
 i = i + 4 ;
 break ;
 case 2 :
 i = i + 3 ;
 break ;
 case 3 :
 i = i + 2 ;
}

130 User’s Manual U18548EJ1V0UM

CHAPTER 6 CONTROL STRUCTURES OF C LANGUAGE

EXAMPLE 2

EXPLANATION

- In example 2, the processing starts in the second case statement since i is 2. The third statement is also

consecutively performed since the case statement does not include a break statement.

Thus, if the constant expression and the control expression in the case statement match, the programs

thereafter are performed sequentially. A break statement is used to exit the switch statement.

int i ;

i = 2 ;
switch (i) {
 case 1 :
 i = i + 4 ;
 case 2 :
 i = i + 3 ;
 case 3 :
 i = i + 2 ;
}

CHAPTER 6 CONTROL STRUCTURES OF C LANGUAGE

User’s Manual U18548EJ1V0UM 131

default label

SYNTAX

FUNCTION

- A default label is a special case label used only in the body of a switch statement to specify a process to be

executed by C if the value of the control expression does not match any of the case constants.

EXAMPLE

- In the above example, if the return value of f() is 1, 2, or 3, the corresponding case clause (statement) is

selected and the expression that follows the case label is executed. Each break statement in the above

example is to break out of the switch body. If the return value of f() is other than 1 to 3, the expression that

follows the default label is executed. In this case, the value of i becomes 1.

default : statement

int f (void) , i ;

switch (f ()) {
 case 1 :
 i = i + 4 ;
 break ;
 case 2 :
 i = i + 3 ;
 break ;
 case 3 :
 i = i + 2 ;
 default :
 i = 1 ;
}

132 User’s Manual U18548EJ1V0UM

CHAPTER 6 CONTROL STRUCTURES OF C LANGUAGE

6.2 Compound Statements or Blocks

A compound statement or block is synonymous to each other and consists of two or more statements grouped

together with enclosing braces and executed as 1 unit syntax-wise.

In other words, by enclosing zero or more declarations followed by zero or more statements all in braces, these

statements can be processed as a compound statement whenever a single statement is expected.

CHAPTER 6 CONTROL STRUCTURES OF C LANGUAGE

User’s Manual U18548EJ1V0UM 133

6.3 Expression Statements and Null Statements

An expression statement consists of a statement and a semicolon. A null statement consists of only a semicolon

and is used for labels that require a statement and in looping that do not need any body.

The description examples of expression statements and null statements are given below.

As in the following example, for a function to be called as an expression statement merely to obtain side effects,

the value of its return value can be discarded by using a cast expression.

A null statement can be used as the body of a looping statement as shown below.

In addition, it can be used to place a label before a brace "}" which closes a compound statement as shown

below.

int p (int) ;

(void) p (0) ;

char *s ;

while (*s++ != ' 0 ') ;

while (loop1) {
 :
 while (loop2) {
 :
 if (want_out)
 goto end_loop1 ;
 :
 }
end_loop1 : ;
}

134 User’s Manual U18548EJ1V0UM

CHAPTER 6 CONTROL STRUCTURES OF C LANGUAGE

6.4 Conditional Control Statements

Conditional control (or selection) statements include if and switch statements.

The if or switch statement allows the program to choose one of several groups of statements to execute, based

on the value of the control expression enclosed in parentheses. The types of conditional control statements are

given below.

- if and if ... else statements

- switch statement

The control flows of if and switch statements are illustrated in Figure 6-1 below.

Figure 6-1 Control Flows of Conditional Control Statements

if
condition

Executes statement Executes statement case1 case2 case3 default

Switch

Control flow of if statement Control flow of switch statement

............

False

True

that follows if. that follows else.

CHAPTER 6 CONTROL STRUCTURES OF C LANGUAGE

User’s Manual U18548EJ1V0UM 135

if and if ... else statements

SYNTAX

FUNCTION

- An if statement executes the statement that follows the control expression enclosed in parentheses if the

value of the control expression is nonzero.

- An if ... else statement executes the statement-1 that follows the control expression if the value of the control

expression is nonzero or the statement-2 that follows else if the value of the control expression is zero.

EXAMPLE

- In the above example, if the value of uc is less than 10 based on the control expression in the if statement,

the block "{/* 111 */}" is executed. If the value is greater than 10, the block "{/* 222 */}" is executed.

NOTE

- When the processing after if statement/if...else statement is not enclosed with "{ }", only the processing of a

line after the if statement/if...else statement is performed regarding it as the body.

if (expression) statement
if (expression) statement-1 else statement-2

unsigned char uc ;

if (uc < 10) {
 /* 111 */
} else if (uc < 20) {
 /* 222 */
} else {
 /* 333 */
}

136 User’s Manual U18548EJ1V0UM

CHAPTER 6 CONTROL STRUCTURES OF C LANGUAGE

switch statement

SYNTAX

FUNCTION

- A switch statement has a multiway branching structure and passes control to one of a series of statements

that have the case labels in the switch body depending on the value of the control expression enclosed in

parentheses.

If no case label that corresponds to the control expression exists, the statement that follows the default label

is executed. If no default label exists, no statement is executed.

EXAMPLE

NOTE

- The same value cannot be set in each case label in the switch body. Only 1 default label can be used in the

switch body.

switch (expression) statement

extern void func (void) ;
extern void error_mode (void) ;

unsigned char mode ;

switch (mode) {
 case 2 :
 mode = 8 ;
 break ;
 case 4 :
 mode = 2 ;
 break ;
 case 8 :
 func () ;
 default :
 error_mode () ;
}

CHAPTER 6 CONTROL STRUCTURES OF C LANGUAGE

User’s Manual U18548EJ1V0UM 137

6.5 Looping Statements

A looping (or iteration) statement executes a group of statements in the loop body as long as the value of the

control expression enclosed in parentheses is True (nonzero). C has the following 3 types of looping statements:

- while statement

- do statement

- for statement

The control flow of each type of looping statement is illustrated in Figure 6-2 below.

Figure 6-2 Control Flows of Looping Statements

while
condition

Executes statement (s)

Control flow of while loop

False

True Executes statement (s)

while
condition

for
condition

Executes statement (s)

Control flow of do-while loop Control flow of for loop

Initialize

False

True

False

True

Loop
Loop

Loop

that follow while.

that follow do.

that follow for.

Reevaluates control
expression.

138 User’s Manual U18548EJ1V0UM

CHAPTER 6 CONTROL STRUCTURES OF C LANGUAGE

while statement

SYNTAX

FUNCTION

- A while statement executes one or more statements (the body of the while loop) several times as long as the

value of the control expression enclosed in parentheses is True (nonzero).

The while statement evaluates the control expression before executing its loop body.

EXAMPLE

- The above example finds the sum total of integers from 1 to 10 for x. The 2 statements enclosed in brace

brackets are the body of this while loop. The control expression "i<11" returns 0 if the value of i becomes 11.

For this reason, the loop body is executed repeatedly as long as the value of i is less than 11 (between 1 and

10).

- "while(1) {statement}" is used to endlessly perform a loop statement.

while (expression) statement

int i , x ;

i = 1 , x = 0 ;

while (i < 11) {
 x += i ;
 i++ ;
}

CHAPTER 6 CONTROL STRUCTURES OF C LANGUAGE

User’s Manual U18548EJ1V0UM 139

do statement

SYNTAX

FUNCTION

- A do statement executes the body of the loop and then tests the control expression enclosed in parentheses

to see if its value is True (nonzero).

The do statement evaluates the control expression after the loop body has been executed.

EXAMPLE

- The above example finds the sum total of integers from 1 to 10 for x. The 2 statements enclosed in brace

brackets are the body of this do ... while loop. The control expression "i<11" returns 0 if the value of i

becomes 11. For this reason, the loop body is executed repeatedly as long as the value of i is less than 11

(between 1 and 10). The body of the loop is always performed once or more since the control expression of

a do statement is evaluated after execution.

do statements while (expression) ;

int i , x ;

i = 1 , x = 0 ;

do {
 x += i ;
 i++ ;
} while (i < 11) ;

140 User’s Manual U18548EJ1V0UM

CHAPTER 6 CONTROL STRUCTURES OF C LANGUAGE

for statement

SYNTAX

FUNCTION

- A for statement executes the body of the for loop a specified number of times as long as the value of the

control expression is nonzero (True).

Of the 3 expressions inside the parentheses separated by semicolons, the first expression is an initializing

statement to initialize a variable to be used as a counter and execute only once in the beginning of the loop,

the second is the control expression for testing the counter value, and the third is a step statement executed

in the end of every loop and reevaluate the variable after the execution.

EXAMPLE

- The above example finds the sum total of integers from 1 to 10 for x. "x+=i" is the body of this for loop. The

control expression "i<11" returns 0 if the value of i becomes 11. For this reason, the loop body is executed

repeatedly as long as the value of i is less than 11 (between 1 and 10).

NOTE

- When the processing after for statement is not enclosed with "{ }", only the processing of a line after the for

statements is regarded as the body of the loop of the for statement.

- The first and the third expression of a for statement can be omitted. When the second expression is

omitted, it is replaced with a constant other than 0. The description of "for (; ;) statement" is used to

endlessly perform the body of the loop.

for (1st-expression ; 2nd-expression ; 3rd-expression) statements

int i , x = 0 ;

for (i = 1 ; i < 11 ; ++i)
 x += i ;

CHAPTER 6 CONTROL STRUCTURES OF C LANGUAGE

User’s Manual U18548EJ1V0UM 141

6.6 Branch Statements

A branch statement is used to exit from the current control flow and transfer control to elsewhere in the program.

Branch statements include the following 4 statements:

- goto statement

- continue statement

- break statement

- return statement

The control flow of each type of branch statement is shown in Figure 6-3.

Figure 6-3 Control Flows of Branch Statements

continue

continue

Loop

break

break

Loop

142 User’s Manual U18548EJ1V0UM

CHAPTER 6 CONTROL STRUCTURES OF C LANGUAGE

goto statement

SYNTAX

FUNCTION

- A goto statement causes program execution to unconditionally jump to the label name specified in the goto

statement within the current function.

EXAMPLE

- In the above example, when control is passed to the goto statement, C jumps out of the current do ... while

loop processing without condition and transfers control to the statement next to "point".

NOTE

- The label name (branch destination) to be specified in a goto statement must have been specified within the

current function that includes the goto statement. In other words, a goto can branch only within the current

function - not from one function to another.

goto identifier ;

do {
 :
 goto point ;
 :
} while (i < 11) ;
 :
point : ;

CHAPTER 6 CONTROL STRUCTURES OF C LANGUAGE

User’s Manual U18548EJ1V0UM 143

continue statement

SYNTAX

FUNCTION

- A continue statement is used in the body of loops in a looping statement. continue ends one cycle of the

loop by transferring control to the end of the loop body. When a continue statement is enclosed by more

than 1 loop, it ends a cycle of the smallest enclosing loop.

EXAMPLE

- In the above example, when the while loop processing by C reaches the continue statement, C

unconditionally branches to the label "contin". The label "contin" indicates the branch destination and may

be omitted. The same branching operation may be performed by using "goto contin;" instead of continue.

NOTE

- A continue statement can only be used as the body of a loop or in the body of loops.

continue ;

while (i < 11) {
 :
 continue ;
 :
contin : ;
}

144 User’s Manual U18548EJ1V0UM

CHAPTER 6 CONTROL STRUCTURES OF C LANGUAGE

break statement

SYNTAX

FUNCTION

- A break statement may appear in the body of a loop and in the body of a switch statement and causes

control to be transferred to the statement next to the loop or switch statement.

EXAMPLE

- In the above example, break statements are used so that more than required evaluations are not performed

in the body of the switch statement. If the corresponding case label is found in evaluating the switch

statement, the break statement causes C to exit from the switch statement.

NOTE

- A break statement can only be used as the body of a looping or switch statement or in the loop or switch

body.

break ;

int i ;
unsigned char count , flag ;

 :
for (i = 0 ; i < 20 ; i++) {
 switch (count) {
 case 10 :
 flag = 1 ;
 break ; /* Exit switch statement */
 default :
 func () ;
 }
 if (flag)
 break ; /* Exit for loop */
}

CHAPTER 6 CONTROL STRUCTURES OF C LANGUAGE

User’s Manual U18548EJ1V0UM 145

return statement

SYNTAX

FUNCTION

- A return statement exits the function that includes the return and passes controls to the function that called

the return, and it calls and returns the value of the return statement expression as the value of the function

call expression.

- Two or more return statements may be used in a function.

- Using the closing brace bracket "} " at the end of a function produces the same result as when a return

statement without expression is executed.

EXAMPLE

- In the above example, when control is passed to the return statement, the function f() returns a value to the

function main. Because the value of the variable "x" is returned as the return value, the assignment operator

causes the variable "y" to be substituted with the value of the variable "x".

NOTE

- With a void type function, an expression that indicates a return value cannot be used for a return statement.

return expression ;

int f (int) ;

void main (void) {
 int i = 0 , y = 0 ;
 :

 y = f (i) ;
 :
}

int f (int i) {
 int x = 0 ;
 :
 return (x) ;
}

146 User’s Manual U18548EJ1V0UM

CHAPTER 7 STRUCTURES AND UNIONS

CHAPTER 7 STRUCTURES AND UNIONS

A structure or union is a collection of member objects that have different types and grouped under 1 given name.

The member objects of a structure are allocated successively to memory space, while the member objects of a

union share the same memory.

7.1 Structures

As mentioned earlier, a structure is a collection of member objects successively allocated to memory space.

(1) Declaration of structure and structure variable

A structure declaration list and a structure variable are declared with the keyword "struct".

Any name called a tag name can be given to the structure declaration list.

Subsequently, the structure variables of the same structure may be declared using this tag name.

[Declaration of structure]

In the following example, in the first struct declaration, int type array "code", char type arrays name, addr,

and tel which have a tag name "data" are specified and no1 is declared as the structure variable. In the

second struct declaration, the structure variables no2, no3, no4, and no5 that are of the same structure as

no1 are declared.

(2) Structure declaration list

A structure declaration list specifies the structure of a structure type to be declared.

Individual elements in the structure declaration list are called members and an area is allocated for each of

these members in the order of their declaration. In the following [Example of structure declaration list],

an area is allocated in the order of variable a, array b, and 2-dimensional array c.

Neither an incomplete type (an array of unknown size) nor a function type can be specified as the type of

each member. Therefore, the structure itself cannot be included in the structure declaration list.

struct tag-name {
 structure-declaration-list
} variable-name ;

struct data {
 int code ;
 char name [12] ;
 char addr [50] ;
 char tel [12] ;
} no1 ;
struct data no2 , no3 , no4 , no5 ;

CHAPTER 7 STRUCTURES AND UNIONS

User’s Manual U18548EJ1V0UM 147

Each member can have any object type other than the above 2 types. A bit field which specifies each

member in bits can also be specified.

If a variable takes a binary value "0" or "1", the minimum required of bits is specified as 1 for a bit field. By

this specification of the minimum required number of bits with the bit field, two or more members can be

stored in an integer area.

[Example of structure declaration list]

[Example of bit field declaration]

(3) Arrays and pointers

Structure variables may also be declared as an array or referenced using a pointer.

In structure arrays, the elements of arrays are also handled as structures.

[Structure arrays]

An array of structures is declared in the same ways as other objects.

[Structure pointers]

A pointer to a structure has the characteristics of the structure indicated by the pointer. In other words, if a

structure pointer is incremented, adding the size of the structure to the pointer points to the next structure.

In the following example, "dt_p" is a pointer to the value of "struct data" type. Here, if the pointer "dt_p" is

incremented, the pointer becomes the same value as "&no [1]".

int a ;
char b [7] ;
char c [5] [10] ;

struct data {
 char name [12] ;
 char addr [50] ;
 char tel [12] ;
} ;
struct data no [5] ;

struct data no [5] ;
struct data *dt_p = no ;

struct bf_tag {
 unsigned int a : 2 ;
 unsigned int b : 3 ; bit field
 unsigned int c : 1 ;
} bit_field ;

148 User’s Manual U18548EJ1V0UM

CHAPTER 7 STRUCTURES AND UNIONS

(4) How to refer to structure members

A structure member may be referenced in 2 ways: one by using a structure variable and the other by using

a pointer to a variable.

[Reference by using a structure variable]

The "." (dot) operator is used for referring to a structure member by using a structure variable.

[Reference by using a pointer to a variable]

The "->" (arrow) operator is used for referring to a structure member by using a pointer to a variable.

struct data {
 char name [12] ;
 char addr [50] ;
 char tel [12] ;
} no [5] = { "NAME" , "ADDR" , "TEL" } , *data_ptr = no ;

void main (void) {
 char c ;

 c = no [0] . name [1] ;
}

struct data {
 char name [12] ;
 char addr [50] ;
 char tel [12] ;
} no [5] = { "NAME" , "ADDR" , "TEL" } , *data_ptr = no ;

void main (void) {
 char c ;

 data_ptr -> tel [3] = 'E' ;
}

CHAPTER 7 STRUCTURES AND UNIONS

User’s Manual U18548EJ1V0UM 149

7.2 Unions

As mentioned earlier, a union is a collection of members which share the same memory space (or overlap in

memory).

(1) Declaration of union and union variable

A union declaration list and a union variable are declared with the keyword "union". Any name called a tag

name can be given to the union declaration list. Subsequently, the union variables of the same union may

be declared using this tag name.

[Declaration of union]

In the following example, in the first union declaration, char type arrays "name", "addr", and "tel" which have

a tag name "data" are specified and "no1" is declared as the union variable. In the second union

declaration, the union variables "no2, no3, no4, and no5" which are of the same union as "no1" are

declared.

(2) Union declaration list

A union declaration list specifies the structure of a union type to be declared.

Each element on the union declaration list is called a member. Declared members are allocated to the

same area. In the following [Example of union declaration list], an area is allocated to "c", which

becomes the largest area of the members. The other members are not allocated new areas but use the

same area.

Neither an incomplete type (an array of unknown size) nor a function type can be specified as the type of

each member same as the union declaration list.

Each member can have any object type other than the above 2 types.

[Union declaration list]

union tag-name { union-declaration-list } variable-name ;

union data {
 char name [12] ;
 char addr [50] ;
 char tel [12] ;
} no1 ;
union data no2 , no3 , no4 , no5 ;

int a ;
char b [7] ;
char c [5] [10] ;

150 User’s Manual U18548EJ1V0UM

CHAPTER 7 STRUCTURES AND UNIONS

(3) Union arrays and pointers

Union variables may also be declared as an array or referenced using a pointer (in much the same way as

structure arrays and pointers).

[Union arrays]

An array of unions is declared in the same ways as other objects.

[Union pointers]

A pointer to a union has the characteristics of the union indicated by the pointer. In other words, if a union

pointer is incremented, adding the size of the union to the pointer points to the next union.

In the following example, "dt_p" is a pointer to the value of "union data" type.

(4) How to refer to union members

A union member (or union element) may be referenced in 2 ways: one by using a union variable and the

other by using a pointer to a variable.

[Reference by using a union variable]

The "." (dot) operator is used for referring to a union member by using a union variable.

union data {
 char name [12] ;
 char addr [50] ;
 char tel [12] ;
} ;
union data no [5] ;

union data no [5] ;
union data *dt_p = no ;

union data {
 char name [12] ;
 char addr [50] ;
 char tel [12] ;
} no [5] = { "NAME" , "ADDR" , "TEL" } ;

void main (void) {
 no [0] .addr [10] = 'B' ;
 :
}

CHAPTER 7 STRUCTURES AND UNIONS

User’s Manual U18548EJ1V0UM 151

[Reference by using a pointer to a variable]

The "->" (arrow) operator is used for referring to a union member by using a pointer to a variable.

union data {
 char name [12] ;
 char addr [50] ;
 char tel [12] ;
} *data_ptr ;

void main (void) {
 data_ptr -> name [1] = 'N' ;
 :
}

152 User’s Manual U18548EJ1V0UM

CHAPTER 8 EXTERNAL DEFINITIONS

CHAPTER 8 EXTERNAL DEFINITIONS

In a program, lists of external declaration come after the preprocessing. These declaration are referred to as

"external declaration" because they appear outside a function and have effective file ranges.

A declaration to give a name to external objects by identifiers or a declaration to secure storage for a function is

called an external definition. If an identifier declared with external linkage is used in an expression (except the

operand part of the sizeof operator), only 1 external definition for the identifier must exist somewhere in the entire

program.

The syntax of external definitions is given below.

#define TRUE 1
#define FALSE 0
#define SIZE 200
void printf (char * , int) ;
void putchar (char c) ;

char mark [SIZE + 1] ; /* External object declaration */

void main (void) {
 int i , prime , k , count ;

 count = 0 ;

 for (i = 0 ; i <= SIZE ; i++)
 mark [i] = TRUE ;
 for (i = 0 ; i <= SIZE ; i++) {
 if (mark [i]) {
 prime = i + i + 3 ;
 printf ("%d" , prime) ;
 count++ ;
 if ((count%8) == 0) putchar ('\n') ;
 for (k = i + prime ; k <= SIZE ; k += prime)
 mark [k] = FALSE ;
 }
 }
 printf ("Total %d\n" , count) ;

loop1 :
 goto loop1 ;
}

CHAPTER 8 EXTERNAL DEFINITIONS

User’s Manual U18548EJ1V0UM 153

8.1 Function Definition

A function definition is an external definition that begins with a declaration of the function.

If the storage class specifier is omitted from the declaration, "extern" is assumed to have been defined. An

external function definition means that the defined function may be referenced from other files. For example, in a

program consisting of two or more files, if a function in another file is to be referenced, this function must be defined

externally.

The storage class specifier of an external function is extern or static. If a function is declared as extern, the

function can be referenced from another file. If declared as static, it cannot be referenced from another file.

In the following example, the storage class specifier is "extern" and the type specifier is "int". These two are

default values and thus may be omitted from specification. The function declarator is "max(int a, int b)" and the

body of the function is "{return a > b ? a : b ;)".

[Example of function definition]

Because this function definition specifies a parameter type in the function declaration, the type of argument is

forcedly converted by the compiler. By using the form of an identifier list for the parameters, this type conversion

can be described. An example of this identifier list is shown below.

As an argument to a function call, the address of the function may be passed. By using the function name in the

expression, a pointer to the function can be generated.

In the above example, the function g is passed to the function f by a pointer that points to the function f. The

function g must be defined in either of the following 2 ways:

extern int max (int a , int b){
 return a > b ? a : b ;
}

extern int max (a , b)
int a , b ;
{
 return a > b ? a : b ;
}

int f (void) ;

void main (void) {
 :
 g (f) ;
 :
}

void g (int (*funcp) (void)){
 (*funcp) () ; /* Or funcp () ; */
}

154 User’s Manual U18548EJ1V0UM

CHAPTER 8 EXTERNAL DEFINITIONS

or

void g (int func (void)){
 func () ; /* Or (*func) () ; */
}

CHAPTER 8 EXTERNAL DEFINITIONS

User’s Manual U18548EJ1V0UM 155

8.2 External Object Definitions

An external object definition refers to the declaration of an identifier for an object that has file scope or initializer.

If the declaration of an identifier for an object which has file scope has no initializer without storage class

specification or has storage class static, the object definition is considered to be temporary, because it becomes a

declaration which has file scope with initializer 0.

Examples of external object definitions are shown in the table below.

Table 8-1 Example of External Object Definition

int i1 = 1 ; /* Definition with external linkage */
static int i2 = 2 ; /* Definition with internal linkage */
extern int i3 = 3 ; /* Definition with external linkage */
int i4 ; /* Temporary definition with external linkage */
static int i5 ; /* Temporary definition with internal linkage */

int i1 ; /* Valid temporary definition which refers to previous declaration */
int i2 ; /* Violation of linkage rule */
int i3 ; /* Valid temporary definition which refers to previous declaration */
int i4 ; /* Valid temporary definition which refers to previous declaration */
int i5 ; /* Violation of linkage rule */

extern int i1 ; /* Reference to previous declaration which has external linkage */
extern int i2 ; /* Reference to previous declaration which has internal linkage */
extern int i3 ; /* Reference to previous declaration which has external linkage */
extern int i4 ; /* Reference to previous declaration which has external linkage */
extern int i5 ; /* Reference to previous declaration which has internal linkage */

156 User’s Manual U18548EJ1V0UM

CHAPTER 9 PREPROCESSOR DIRECTIVES (COMPILER DIRECTIVES)

CHAPTER 9 PREPROCESSOR DIRECTIVES
(COMPILER DIRECTIVES)

A preprocessor directive is a string of preprocessor tokens between the "#" preprocessor token and the line feed

character.

Blank characters that can be used between preprocessor token strings are only spaces and horizontal tabs.

A preprocessor directive specifies the processing performed before compiling a source file. Preprocessor

directives include such operations as processing or skipping a part of a source file depending on the condition,

obtaining additional code from other source files, and replacing the original source code with other text as in macro

expansion.

The followings explain each preprocessor directive.

9.1 Conditional Compilation Directives

Conditional compilation skips part of a source file according to the value of a constant expression.

If the value of the constant expression specified by a conditional compilation directive is 0, the statements that

follow the directive are not compiled. The sizeof operator, cast operator, or an enumerated type constant cannot be

used in the constant expression of any conditional compilation directive.

The types of Conditional compilation directives are given below.

- #if directive

- #elif directive

- #ifdef directive

- #ifndef directive

- #else directive

- #endif directive

In preprocessor directives, the following unary expressions called defined expressions may be used:

The unary expressions return 1 if the identifier has been defined with the #define preprocessor directive and 0 if

the identifier has never been defined or its definition has been canceled.

defined identifier
or
defined (identifier)

CHAPTER 9 PREPROCESSOR DIRECTIVES (COMPILER DIRECTIVES)

User’s Manual U18548EJ1V0UM 157

[Example]

In this example, the unary expression returns 1 and compile between #if and #endif because SYM has been

defined (for the explanation of #if through #endif, refer to the explanation in the following page and thereafter).

#define SYM 0

#if defined SYM
 :
#endif

158 User’s Manual U18548EJ1V0UM

CHAPTER 9 PREPROCESSOR DIRECTIVES (COMPILER DIRECTIVES)

#if directive

SYNTAX

FUNCTION

- The #if directive tells the translation phase of C to skip (discard) a section of source code if the value of the

constant expression is 0.

EXAMPLE

- In the above example, the constant expression "FLAG == 0" is evaluated to determine whether a set of

statements (i.e., source code) between #if and #endif is to be used in the translation phase. If the value of

"FLAG" is nonzero, the source code between #if and #endif will be discarded. If the value is zero, the

source code between #if and #endif will be translated.

#if constant-expression new-line group

#if FLAG == 0
 :
#endif

CHAPTER 9 PREPROCESSOR DIRECTIVES (COMPILER DIRECTIVES)

User’s Manual U18548EJ1V0UM 159

#elif directive

SYNTAX

FUNCTION

- The #elif directive normally follows the #if directive. If the value of the constant expression of the #if

directive is 0, the constant expression of the #elif directive is evaluated. If the constant expression of the

#elif directive is 0, the translation phase of C will skip (discard) the statements (a section of source code)

between #elif and #endif.

EXAMPLE

- In the above example, the constant expression "FLAG = = 0" or "FLAG! = 0" is evaluated to determine

whether a set of statements that follow #if and another set of statements that follow #elif is to be used in the

translation phase. If the value of "FLAG" is zero, the source code between #if and #elif will be translated. If

the value is nonzero, the source code between #elif and #endif will be translated.

#elif constant-expression new-line group

#if FLAG == 0
 :
#elif FLAG != 0
 :
#endif

160 User’s Manual U18548EJ1V0UM

CHAPTER 9 PREPROCESSOR DIRECTIVES (COMPILER DIRECTIVES)

#ifdef directive

SYNTAX

FUNCTION

- The #ifdef directive is equivalent to #if defined (identifier)

- If the identifier has been defined with the #define directive, the statements between #ifdef and #endif will be

translated. If the identifier has never been defined or its definition has been canceled, the translation phase

will skip the source code between #ifdef and #endif.

EXAMPLE

- In the above example, the identifier "ON" has been defined with #define directive. Thus, the source code

between #ifdef and #endif will be translated. If the identifier "ON" has never been defined, the source code

between #ifdef and #endif will be discarded.

#ifdef identifier new-line group

#define ON
#ifdef ON
 :
#endif

CHAPTER 9 PREPROCESSOR DIRECTIVES (COMPILER DIRECTIVES)

User’s Manual U18548EJ1V0UM 161

#ifndef directive

SYNTAX

FUNCTION

- The #ifndef directive is equivalent to #if !defined (identifier). If the identifier has never been defined with the

#define directive, the source code between #ifndef and #endif will not be translated.

EXAMPLE

- In the above example, the identifier "ON" has been defined with #define directive. Thus, the program

between #ifndef and #endif will not be compiled. If the identifier "ON" has never been defined, the program

between #ifndef and #endif will be compiled.

#ifndef identifier new-line group

#define ON

#ifndef ON
 :
#endif

162 User’s Manual U18548EJ1V0UM

CHAPTER 9 PREPROCESSOR DIRECTIVES (COMPILER DIRECTIVES)

#else directive

SYNTAX

FUNCTION

- The #else directive tells the translation phase of C to discard a section of source code that follows #else if

the identifier of the preceding conditional translation directive is nonzero. The #if, #elif, #ifdef, or #ifndef

directive may precede the #else directive.

EXAMPLE

- In the above example, the identifier "ON" has been defined with #define directive. Thus, the source code

between #ifndef and #endif will be translated. If the identifier "ON" has never been defined, the source code

between #else and #endif will be translated.

#else new-line group

#define ON

#ifdef ON
 :
#else
 :
#endif

CHAPTER 9 PREPROCESSOR DIRECTIVES (COMPILER DIRECTIVES)

User’s Manual U18548EJ1V0UM 163

#endif directive

SYNTAX

FUNCTION

- The #endif directive indicates the end of a #ifdef block.

EXAMPLE

- In the above example, "#endif" indicates the end of the #ifdef block (effective range of #ifdef directive).

#endif new-line

#define ON

#ifdef ON
 :
#endif

164 User’s Manual U18548EJ1V0UM

CHAPTER 9 PREPROCESSOR DIRECTIVES (COMPILER DIRECTIVES)

9.2 Source File Inclusion Directive

The preprocessor directive #include searches for a specified header file and replaces the #include by the entire

contents of the specified file.

The #include directive may take one of the following 3 forms for inclusion of other source files:

- #include < > directive

- #include " " directive

- #include preprocessing token string directive

A #include directive may appear in the source obtained by #include. In the CC78K0R, however, there are

restrictions for #include directive nest. For the restrictions, refer to Table 1-1.

Remark Preprocessor token string: character string defined by #define directive

CHAPTER 9 PREPROCESSOR DIRECTIVES (COMPILER DIRECTIVES)

User’s Manual U18548EJ1V0UM 165

#include < > directive

SYNTAX

FUNCTION

- If the directive form is #include < >, the CC78K0R searches for the header file specified in angle brackets, in

the folder specified with compiler option -i, folder specified by the INC78K0R environment variable, and then

folder "..\inc78k0r" (for the path through which the CC78K0R is started), and replaces the #include directive

line with the entire contents of the specified file.

EXAMPLE

- In the above example, the CC78K0R searches for the file "stdio.h" in the folder specified by the INC78K0R

environment variable and folder "..\inc78k0r" (for the path through which the CC78K0R is started), and

replaces the directive line "#include <stdio.h>" with the entire contents of the specified file "stdio.h".

#include <filename> new-line

#include <stdio.h>

166 User’s Manual U18548EJ1V0UM

CHAPTER 9 PREPROCESSOR DIRECTIVES (COMPILER DIRECTIVES)

#include " " directive

SYNTAX

FUNCTION

- If the directive form is #include " ", the CC78K0R searches the current folder first for the source file specified

in double quotes. If it is not found, the CC78K0R searches the folder specified with compiler option -i, folder

specified by the INC78K0R environment variable, and then folder "..\inc78k0r" (for the path through which

the CC78K0R is started). When the specified file is found, the CC78K0R then replaces the #include

directive line with the entire contents of the file.

EXAMPLE

- In the above example, the CC78K0R searches for the file "myprog.h" in the current folder, the folder

specified by the INC78K0R environment variable and folder "..\inc78k0r" (for the path through which the

CC78K0R is started), and replaces the directive line #include "myprog.h" with the entire contents of the

specified file "myprog.h".

#include "filename" new-line

#include "myprog.h"

CHAPTER 9 PREPROCESSOR DIRECTIVES (COMPILER DIRECTIVES)

User’s Manual U18548EJ1V0UM 167

#include preprocessing token string directive

SYNTAX

FUNCTION

- If the directive form is #include preprocessing token string, the header file to be searched is specified by

macro replacement and the #include directive line is replaced by the entire contents of the specified file.

EXAMPLE

- As a result of the inclusion of other source files with the directive form "#include preprocessing token string

new-line", the specified token string must be replaced with <filename> or "filename" by macro replacement.

If the token string is replaced with <filename>, the CC78K0R searches for the specified file in the folder

specified with compiler option -i, folder specified by the INC78K0R environment variable, and then folder

"..\inc78k0r" (for the path through which the CC78K0R is started). If the token string is replaced with "file

name", the current folder is searched. If the specified file is not found, the CC78K0R searches in the folder

specified with compiler option -i, folder specified by the INC78K0R environment variable, and then folder

"..\inc78k0r" (for the path through which the CC78K0R is started).

#include preprocessing-token-string new-line

#define INCFILE "myprog.h"

#include INCFILE

168 User’s Manual U18548EJ1V0UM

CHAPTER 9 PREPROCESSOR DIRECTIVES (COMPILER DIRECTIVES)

9.3 Macro Replacement Directives

The macro replacement directives #define and #undef are used to replace the character string specified by

"identifier" with "substitution list" and to end the scope of the identifier given by the #define, respectively. The

#define directive has 2 forms: Object format and Function format:

- Object format

#define directive

- Function format

#define () directive

(1) Actual argument replacement

Actual argument replacement is executed after the arguments in the function-form macro call are identified.

If the # or ## preprocessing token is not prefixed to a parameter in the replacement list or if the ##

preprocessing token does not follow any such parameter, all macros in the list will be expanded before

replacement with the corresponding macro arguments.

(2) # operator

The # preprocessing token replaces the corresponding macro argument with a char string processing token.

In other words, if this preprocessing token is prefixed to a parameter in the replacement list, the

corresponding macro argument will be translated into a character or character string.

(3) ## operator

The ## preprocessing token concatenates the 2 tokens on either side of the ## symbol into 1 token.

This concatenation will take place before the next macro expansion and the ## preprocessing token will be

deleted after the concatenation. The token generated from this concatenation will undergo macro

expansion if it has a macro name.

[Example of ## operation]

The above macro replacement directive will be expanded as follows:

printf ("x" "1" "= %d , x" "2" "= %s" , x1 , x2) ;

The concatenated char string will look like this.

printf ("x1 = %d , x2 = %s" , x1 , x2) ;

#include <stdio.h>

#define debug (s , t) printf ("x" #s "= %d , x" #t "= %s" , x##s , x##t
) ;

void main (void) {
 int x1 , x2 ;

 debug (1 , 2) ;
}

CHAPTER 9 PREPROCESSOR DIRECTIVES (COMPILER DIRECTIVES)

User’s Manual U18548EJ1V0UM 169

(4) Re-scanning and further replacement

The preprocessing token string resulting from replacement of macro parameters in the list will be scanned

again, together with all remaining preprocessing tokens in the source file.

Macro names currently being (not including the remaining preprocessing tokens in the source file) replaced

will not be replaced even if they are found during scanning of the replacement list.

(5) Scope of macro definition

A macro definition (#define directive) continues macro replacement until it encounters the corresponding

#undef directive

170 User’s Manual U18548EJ1V0UM

CHAPTER 9 PREPROCESSOR DIRECTIVES (COMPILER DIRECTIVES)

#define directive

SYNTAX

FUNCTION

- The #define directive in its simplest form replaces the specified identifier (manifest) with a given

replacement list (any character sequence that does not contain a new-line) whenever the same identifier

appears in the source code after the definition by this directive.

EXAMPLE

- In the above example, the identifier "PAI" will be replaced with "3.1415" whenever it appears in the source

code after the definition by this directive.

#define identifier replacement-list new-line

#define PAI 3.1415

CHAPTER 9 PREPROCESSOR DIRECTIVES (COMPILER DIRECTIVES)

User’s Manual U18548EJ1V0UM 171

#define () directive

SYNTAX

FUNCTION

- The function-format #define directive that has the form "#define name (name, ..., name) replacement-list"

replaces the identifier specified in the function format with a given replacement list (any character sequence

that does not contain a new-line).

The same identifier that appears after this directive is replaced with the replacement list. The function-

format macro replacement can perform replacement including parameters.

EXAMPLE

- In the above example, #define directive will replace "F(2)" with "(2 * 2)" and thus the value of i will become 4.

- For the safety’ sake, be sure to enclose the replacement list in parentheses, because unlike a function

definition, this function-form macro is merely to replace a sequence of characters.

#define identifier (dentifier-list) replacement-list new-line

#define F (n) (n * n)

void main (void) {
 int i ;

 i = F (2) ;
}

172 User’s Manual U18548EJ1V0UM

CHAPTER 9 PREPROCESSOR DIRECTIVES (COMPILER DIRECTIVES)

#undef directive

SYNTAX

FUNCTION

- The #undef directive undefines the given identifier. In other words, this directive ends the scope of the

identifier that has been set by the corresponding #define directive.

EXAMPLE

- In the above example, #undef directive will invalidate the identifier "F" previously specified by "#define F(n)

(n * n)".

#undef identifier new-line

#define F (n) (n * n)
 :
#undef F

CHAPTER 9 PREPROCESSOR DIRECTIVES (COMPILER DIRECTIVES)

User’s Manual U18548EJ1V0UM 173

9.4 Line Control Directive

The preprocessor directive for line control "#line" replaces the line number to be used by the C compiler in

translation with the number specified in this directive.

If a string (character string) is given in addition to the number, the directive also replaces the source file name the

C compiler has with the specified string.

[To change the line number]

To change the line number, the specification is made as follows.

0 and numbers larger than 32,767 cannot be specified.

<Example>

[To change the line number and the file name]

To change the line number and file name, the specification is made as follows.

<Example>

[To change using preprocessor token string]

In addition to the specifications above, the following specification can also be made. In this case, the

specified preprocessor token string must be either one of the above 2 examples after all the replacement.

<Example>

#line numeric-string new-line

#line 10

#line numeric-string "character string" new-line

#line 10 "file1.c"

#line preprocessing-token-string new-line

#define LINE_NUM 100

#line LINE_NUM

174 User’s Manual U18548EJ1V0UM

CHAPTER 9 PREPROCESSOR DIRECTIVES (COMPILER DIRECTIVES)

9.5 #error Preprocess Directive

#error preprocess directive is a directive that outputs a message including the specified preprocessor tokens and

incompletely terminates a compile.

This preprocessor is used to terminate a compile.

This preprocessor is specified as follows.

[Example]

- In this example, the macro name “__K0R__”, which indicates the device microcontroller that the CC78K0R

has, is used. If the device is the 78K0R, the program between #if and #else is compiled. In the other cases,

the program between #else and #endif is compiled, but the compile will be terminated with an error message

"not for 78K0R" output by #error directive.

#error "preprocessing-token-string" new-line

#if __K0R__
 :
#else
#error "not for 78K0R"
 :
#endif

CHAPTER 9 PREPROCESSOR DIRECTIVES (COMPILER DIRECTIVES)

User’s Manual U18548EJ1V0UM 175

9.6 #pragma Directives

#pragma directive is a directive to instruct the compiler to operate in the compiler definition method.

In the CC78K0R, several #pragma directives to generate codes for the 78K0R.

For the details of #pragma directives, refer to "CHAPTER 11 EXTENDED FUNCTIONS".

[Example]

- In this example, #pragma NOP directive enables the description to directly output a NOP instruction in the C

source.

#pragma NOP

176 User’s Manual U18548EJ1V0UM

CHAPTER 9 PREPROCESSOR DIRECTIVES (COMPILER DIRECTIVES)

9.7 Null Directives

Source lines that contain only the # character and white space are called null directives. Null directives are

simply discarded during preprocessing. In other words, these directives have no effect on the compiler. The

syntax of null directives is given below.

new-line

CHAPTER 9 PREPROCESSOR DIRECTIVES (COMPILER DIRECTIVES)

User’s Manual U18548EJ1V0UM 177

9.8 Compiler-Defined Macro Names

In the CC78K0R, the following macro names have been defined.

Note ANSI is the acronym for American National Standards Institute

A #define or #undef preprocessor directive must not be applied to these macro name and defined identifiers. All

the macro names of the compiler definition start with underscore followed by an uppercase character or the second

underscore.

In addition to the above macro names, macro names indicating the microcontroller names of devices depending

on the device subject to applied product development and macro names indicating device names are provided. To

output the object code for the target device, these macro names must be specified by the option at compilation time

or by the processor type in the C source.

- Macro name indicating the microcontroller names of devices

- Macro name indicating the device name

"__" is added before the device type name and "_" is added after the device type name.

<Example>

Caution Describe English characters in uppercase.

Remark The device type names are the same as the ones specified by the -c option. For the device type

names, refer to the reference related to device files.

The CC78K0R has a macro name indicating the memory model.

Define the macro name as follows when specifying a memory model.

<When specifying small model>

Table 9-1 List of Macro Names

Macro Names Explaination

__LINE__ Line number of the current source line (decimal constant)

__FILE__ Source file name (string literal)

__DATE__ Date the source file was compiled (string literal in the form of "Mmm dd yyyy")

__TIME__ Time of day the source file was compiled (string literal in the form of "hh : mm : ss")

__STDC__ Decimal constant "1" that indicates the compliance with ANSINote specification

__K0R__

__F1166A0_ __F1166A0Y_

#define __K0R_SMALL__ 1

178 User’s Manual U18548EJ1V0UM

CHAPTER 9 PREPROCESSOR DIRECTIVES (COMPILER DIRECTIVES)

<When specifying medium model>

<When specifying large model>

The device type for compile is specified by adding the followings to the command line

"-c device type name"

<Example>

The device type does not need to be specified on compile by specifying it at the start of the C source program.

"#pragma PC (device type)"

<Example>

However, the followings can be described before "#pragma PC (device type)"

- Comment

- Preprocessor directives that do not generate definition/reference of variables nor functions.

#define __K0R_MEDIUM__ 1

#define __K0R_LARGE__ 1

cc78k0r -cF1166A0Y prime.c

#pragma PC (F1166A0Y)

CHAPTER 10 LIBRARY FUNCTIONS

User’s Manual U18548EJ1V0UM 179

CHAPTER 10 LIBRARY FUNCTIONS

C has no instructions to transfer (input or output) data to and from external sources (peripheral devices and

equipment). This is because of the C language designer's intent to hold the functions of C to a minimum.

However, for actually developing a system, I/O operations are requisite. Thus, the CC78K0R is provided with

library functions to perform I/O operations.

The CC78K0R is provided with library functions such as I/O, character/memory manipulation, program control,

and mathematical functions. This chapter describes the library functions provided to the CC78K0R.

10.1 Interface Between Functions

To use a library function, the function must be called. Calling a library function is carried out by a call instruction.

The arguments and return value of a function are passed by a stack and a register, respectively.

However, the first argument is, if possible, also passed by the register

10.1.1 Arguments

Placing or removing arguments on or from the stack is performed by the caller (calling side). The callee (called

side) only references the argument values.

However, when the argument is passed by the register, the callee directly refers to the register and copies the

value of the argument to another register, if necessary.

Arguments are placed on the stack one by one in descending order from last to top if the argument is passed on

the stack.

The minimum unit of data can be stacked is 16 bits. A data type larger than 16 bits is stacked in units of 16 bits

one by one from its MSB. An 8-bit type data is extended to a 16-bit type data for stacking.

The following shows the list of the passing of the first argument.

The function interface (passing of argument and storing of return value) of the standard library is the same as

that of normal function.

180 User’s Manual U18548EJ1V0UM

CHAPTER 10 LIBRARY FUNCTIONS

Table 10-1 List of Passing First Argument

Remark Of the types shown above, 1- to 4-byte integers include structures and unions.

10.1.2 Return values

The return value of a function is stored in units of 16 bits starting from its LSB in the direction from the register BC

to the register DE. When returning a structure, the first address of the structure is stored in the register BC, DE.

The following shows the list of the storing of the return value. The method of storing return values is the same as

that of normal function.

Table 10-2 List of Storing Return Value

Type of First Argument Passing Method

1-byte, 2-byte integers AX

near data pointer AX

3-byte integer AX, BC

4-byte integer AX, BC

function pointer, far data pointer AX, BC

Floating-point number (float type) AX, BC

Floating-point number (double type) Handled as float type

Others Passed via a stack

Type of Return Value Method of Storing

1 bit CY

1-byte, 2-byte integers BC

near pointer BC

4-byte integer BC (low-order), DE (high-order)

far pointer BC (low-order), DE (high-order)

Floating-point number (float type) BC (low-order), DE (high-order)

Floating-point number (double type) Handled as float type

Structure Copies the structure to return to the area specific
to the function and stores the address to BC, DE

CHAPTER 10 LIBRARY FUNCTIONS

User’s Manual U18548EJ1V0UM 181

10.1.3 Saving registers to be used by individual libraries

Library that uses HL saves the registers it uses to a stack.

Each library that uses a saddr area saves the saddr area it uses to a stack. A stack area is used as a work area

for each library.

An example of the procedure for passing arguments and return values (with small model or medium model

specified) is shown below.

<Called function>

(a) Placing arguments on the stack (by the caller)

High-order 16 bits of arguments "c" and "b", low-order 16 bits of argument "b" are placed on the stack in

the order named. a is passed by AX register.

(b) Calling func by call instruction (by the caller)

Return address is placed on the stack next to low-order 16 bits of argument "b" and control is

transferred to the function func.

(c) Saving registers to be used within the function (by the callee)

If register HL is to be used, HL is placed on the stack.

(d) Placing the first argument passed by the register on the stack (by the callee)

(e) Processing func and storing the return value in registers (by the callee)

The low-order 16 bits of the return value "long" are stored in BC and the high-order 16 bits of the return

value, in DE.

(f) Restoring the stored first argument (by the callee)

(g) Restoring the saved registers (by the callee)

(h) Returning control to the caller with ret instruction (by the callee)

(i) Removing arguments from the stack (by the caller)

The number of bytes (in units of 2 bytes) of the arguments is added to the stack pointer.

"long func (int a , long b , char *c) ;"

182 User’s Manual U18548EJ1V0UM

CHAPTER 10 LIBRARY FUNCTIONS

A value of 6 will be added to the stack pointer.

Return value in (e) is stored

Stack pointer after (d)

Stack pointer after (c)

Stack pointer after (b)

Stack pointer after (a) Stack pointer after (h)

Stack pointer after (i)
Stack pointer before
stacking arguments

High address

Lower 16 bits Upper 16 bits

BC DE

HL

Return address

Lower 16 bits of b

Upper 16 bits of b

c

a

Stack pointer after (f)

Stack pointer after (g)

Return address

CHAPTER 10 LIBRARY FUNCTIONS

User’s Manual U18548EJ1V0UM 183

10.2 Headers

The CC78K0R has 13 headers (or header files). Each header defines or declares standard library functions,

data type names, and macro names.

The headers of the CC78K0R are as shown below.

(1) ctype.h

This header is used to define character and string functions.

In this standard header, the following library functions have been defined.

However, when compiler option -za (the option that disables the functions not complying ANSI specifications

and enables a part of the functions of ANSI specifications) is specified, _toupper and _tolower are not

defined. Instead, tolow and toup are defined. When the -za option is not specified, tolow and toup are not

defined. The function to be declared differs depending on the options and the specification models.

(2) setjmp.h

This header is used to define program control functions.

In this header, the following functions are defined. The function to be declared differs depending on the

option and the specification models.

In the header setjmp.h, the following object has been defined:

[Declaration of int array type jmp_buf]

ctype.h setjmp.h stdarg.h stdio.h stdlib.h
string.h error.h errno.h limits.h stddef.h
math.h float.h assert.h

isalnum isalpha iscntrl isdigit isgraph
islower isprint ispunct isspace isupper
isxdigit tolower toupper isascii toascii
_tolower _toupper tolow toup

setjmp longjmp

typedef int jmp_buf [12]

184 User’s Manual U18548EJ1V0UM

CHAPTER 10 LIBRARY FUNCTIONS

(3) stdarg.h

This header used to define special functions.

In this header, the following 3 functions have been defined:

In the header stdarg.h the following object has been declared:

[Declaration of pointer type "va_list" to char]

(4) stdio.h

This header is used to define I/O functions. In this header, next functions have been defined.

The function to be declared differs depending on the options and the specification models.

The following macro names are declared.

(5) stdlib.h

This header is used to define character and string functions, memory functions, program control functions,

mathematical functions, and special functions. In this standard header, the following library functions have

been defined:

However, when compiler option -za (the option that disables the functions not complying ANSI specifications

and enables a part of the functions of ANSI specifications) is specified, brk, sbrk, itoa, ltoa, and ultoa are not

defined. Instead, strbrk, strsbrk, stritoa, strltoa, and strultoa are defined. When the -za option is not

specified, these functions are not defined.

va_arg va_start va_starttop va_end

typedef char *va_list ;

sprintf sscanf printf scanf vprintf
vsprintf getchar gets putchar puts
__putc

#define EOF (-1)

atoi atol strtol strtoul calloc
free malloc realloc abort atexit
exit abs div labs ldiv
brk sbrk atof strtod itoa
ltoa ultoa rand srand bsearch
qsort strbrk strsbrk stritoa strltoa
strultoa

CHAPTER 10 LIBRARY FUNCTIONS

User’s Manual U18548EJ1V0UM 185

In the header stdlib.h the following objects have been defined:

[Declaration of structure type div_t which has int type members "quot" and "rem"]

[Definition of macro name "RAND_MAX"]

[Declaration of macro name]

(6) string.h

This header is used to define character and string functions, memory functions, and special functions. In

this header, the following functions have been defined. Function to be defined differs depending on the

options and specification models.

(7) error.h

error.h includes errno.h.

(8) errno.h

In this header, the following objects have been defined:

[Definitions of macro names "EDOM", "ERANGE", and "ENOMEM"]

[Declaration of volatile int type external variable errno]

typedef struct {
 int quot ;
 int rem ;
} div_t ;

#define RAND_MAX 32767

#define EXIT_SUCCESS 0
#define EXIT_FAILURE 1

memcpy memmove strcpy strncpy strcat
strncat memcmp strcmp strncmp memchr
strchr strcspn strpbrk strrchr strspn
strstr strtok memset strerror strlen
strcoll strxfrm

#define EDOM 1
#define ERANGE 2
#define ENOMEM 3

extern volatile int errno ;

186 User’s Manual U18548EJ1V0UM

CHAPTER 10 LIBRARY FUNCTIONS

(9) limits.h

In this header, the following macro names have been defined:

However, when the -qu option, which regards unqualified char as unsigned char, is specified, CHAR_MAX

and CHAR_MIN are declared by the macro __CHAR_UNSIGNED__ declared by the compiler as follows.

(10) stddef.h

In this header, the following objects have been declared and defined:

[Declaration of int type "ptrdiff_t"]

[Declaration of unsigned int type "size_t"]

[Definition of macro name "NULL"]

[Definition of macro name "offsetof"]

#define CHAR_BIT 8
#define CHAR_MAX +127
#define CHAR_MIN -128
#define INT_MAX +32767
#define INT_MIN -32768
#define LONG_MAX +2147483647
#define LONG_MIN -2147483648

#define SCHAR_MAX +127
#define SCHAR_MIN -128
#define SHRT_MAX +32767
#define SHRT_MIN -32768
#define UCHAR_MAX 255U
#define UINT_MAX 65535U
#define ULONG_MAX 4294967295U
#define USHRT_MAX 65535U

#define SINT_MAX +32767
#define SINT_MIN -32768
#define SSHRT_MAX +32767
#define SSHRT_MIN -32768

#define CHAR_MAX (255U)
#define CHAR_MIN (0)

typedef int ptrdiff_t ;

typedef unsigned int size_t ;

#define NULL (void *) 0 ;

#define offsetof (type , member) ((size_t) & (((type*)0) -> member))

CHAPTER 10 LIBRARY FUNCTIONS

User’s Manual U18548EJ1V0UM 187

Remark offsetof (type , member-specifier)

offsetof is expanded to the general integer constant expression that has type size_t and the

value is an offset value in byte units from the start of the structure (that is specified by the type)

to the structure member (that is specified by the member specifier).

The member specifier must be the one that the result of evaluation of expression& (t. member

specifier) becomes an address constant when static type t; is declared. When the specified

member is a bit field, the operation will not be guaranteed.

(11) math.h

math.h defines the following functions.

The following objects are defined.

[Definition of macro name "HUGE_VAL"]

(12) float.h

float.h defines the following objects.

When the size of a double type is 32 bits, the macro to be defined are sorted by the macro

__DOUBLE_IS_32BITS__ declared by the compiler.

acos asin atan atan2 cos
sin tan cosh sinh tanh
exp frexp ldexp log log10
modf pow sqrt ceil fabs
floor fmod matherr acosf asinf
atanf atan2f cosf sinf tanf
coshf sinhf tanhf expf frexpf
ldexpf logf log10f modff powf
sqrtf ceilf fabsf floorf fmodf

#define HUGE_VAL DBL_MAX

188 User’s Manual U18548EJ1V0UM

CHAPTER 10 LIBRARY FUNCTIONS

#ifndef _FLOAT_H

#define FLT_ROUNDS 1
#define FLT_RADIX 2

#ifdef __DOUBLE_IS_32BITS__
#define FLT_MANT_DIG 24
#define DBL_MANT_DIG 24
#define LDBL_MANT_DIG 24

#define FLT_DIG 6
#define DBL_DIG 6
#define LDBL_DIG 6

#define FLT_MIN_EXP -125
#define DBL_MIN_EXP -125
#define LDBL_MIN_EXP -125

#define FLT_MIN_10_EXP -37
#define DBL_MIN_10_EXP -37
#define LDBL_MIN_10_EXP -37
#define FLT_MAX_EXP +128
#define DBL_MAX_EXP +128
#define LDBL_MAX_EXP +128

#define FLT_MAX_10_EXP +38
#define DBL_MAX_10_EXP +38
#define LDBL_MAX_10_EXP +38

#define FLT_MAX 3.40282347E + 38F
#define DBL_MAX 3.40282347E + 38F
#define LDBL_MAX 3.40282347E + 38F
#define FLT_EPSILON 1.19209290E - 07F
#define DBL_EPSILON 1.19209290E - 07F
#define LDBL_EPSILON 1.19209290E - 07F

#define FLT_MIN 1.17549435E - 38F
#define DBL_MIN 1.17549435E - 38F
#define LDBL_MIN 1.17549435E - 38F

#else /* __DOUBLE_IS_32BITS__ */
#define FLT_MANT_DIG 24
#define DBL_MANT_DIG 53
#define LDBL_MANT_DIG 53

#define FLT_DIG 6
#define DBL_DIG 15
#define LDBL_DIG 15

#define FLT_MIN_EXP -125
#define DBL_MIN_EXP -1021
#define LDBL_MIN_EXP -1021

#define FLT_MIN_10_EXP -37
#define DBL_MIN_10_EXP -307
#define LDBL_MIN_10_EXP -307

#define FLT_MAX_EXP +128
#define DBL_MAX_EXP +1024
#define LDBL_MAX_EXP +1024

CHAPTER 10 LIBRARY FUNCTIONS

User’s Manual U18548EJ1V0UM 189

(13) assert.h

assert.h defines the following function.

assert.h defines the following objects.

However, if the assert.h header file references another macro, NDEBUG, which is not defined by the

assert.h header file, and if NDEBUG is defined as a macro when the assert.h is captured to the source file,

the assert.h header file simply declares the assert macro as the one given below and does not define

__assertfail.

#define FLT_MAX_10_EXP +38
#define DBL_MAX_10_EXP +308
#define LDBL_MAX_10_EXP +308

#define FLT_MAX 3.40282347E + 38F
#define DBL_MAX 1.7976931348623157E + 308
#define LDBL_MAX 1.7976931348623157E + 308

#define FLT_EPSILON 1.19209290E - 07F
#define DBL_EPSILON 2.2204460492503131E - 016
#define LDBL_EPSILON 2.2204460492503131E - 016

#define FLT_MIN 1.17549435E - 38F
#define DBL_MIN 2.225073858507201E - 308
#define LDBL_MIN 2.225073858507201E - 308
#endif /* __DOUBLE_IS_32BITS__ */

#define _FLOAT_H
#endif /* !_FLOAT_H */

__assertfail

#ifdef NDEBUG
#define assert (p) ((void) 0)
#else
extern int __assertfail (char *__msg , char *__cond , char *__file ,
int__line) ;
#define assert (p) ((p) ? (void) 0 : (void) __assertfail (
 "Assertion failed: %s , file %s , line %d\n" ,
 #p , __FILE__ , __LINE__))
#endif /* NDEBUG */

#define assert (p) ((void) 0)

190 User’s Manual U18548EJ1V0UM

CHAPTER 10 LIBRARY FUNCTIONS

10.3 Re-entrantability

Re-entrant is a state where a function called from a program can be consecutively called from another program.

The standard library of the CC78K0R does not use static area allowing re-entrantability. Therefore, data in the

storage used by functions will not be destroyed by the call from another program.

However, the functions shown below are not re-entrant.

- Functions that cannot be re-entranced

- Functions that uses the area secured in the startup routine

- Functions that deals with floating point numbers

Note Among sprintf, sscanf, printf, scanf, vprintf, and vsprintf, ones that do not support floating-point

numbers are re-entrant.

setjmp, longjmp, atexit, exit

div, ldiv, brk, sbrk, rand, srand, strtok

sprintf, sscanf, printf, scanf, vprintf, vsprintfNote

atof, strtod, all the mathematical functions

CHAPTER 10 LIBRARY FUNCTIONS

User’s Manual U18548EJ1V0UM 191

10.4 Standard Library Functions

This section explains the standard library functions of the CC78K0R by classifying them by function as follows.

All standard library functions are supported even when the -zf option is specified.

Table 10-3 List of Standard Library Functions

Type of Function Function

Character/String Functions is-

toupper, tolower

toascii

_toupper/toup, _tolower/tolow

Program Control Functions setjmp, longjmp

Special Functions va_start, va_starttop, va_arg, va_end

I/O Functions sprintf

sscanf

printf

scanf

vprintf

vsprintf

getchar

gets

putchar

puts

__putc

192 User’s Manual U18548EJ1V0UM

CHAPTER 10 LIBRARY FUNCTIONS

Utility Functions atoi, atol

strtol, strtoul

calloc

free

malloc

realloc

abort

atexit, exit

abs, labs

div, ldiv

brk, sbrk

atof, strtod

Utility Functions itoa, ltoa, ultoa

rand, srand

bsearch

qsort

strbrk

strsbrk

stritoa, strltoa, strultoa

Table 10-3 List of Standard Library Functions

Type of Function Function

CHAPTER 10 LIBRARY FUNCTIONS

User’s Manual U18548EJ1V0UM 193

Character String/Memory Functions memcpy, memmove

strcpy, strncpy

strcat, strncat

memcmp

strcmp, strncmp

memchr

strchr, strrchr

strspn, strcspn

strpbrk

strstr

strtok

memset

strerror

strlen

strcoll

strxfrm

Mathematical Functions acos

asin

atan

atan2

cos

sin

tan

cosh

sinh

Table 10-3 List of Standard Library Functions

Type of Function Function

194 User’s Manual U18548EJ1V0UM

CHAPTER 10 LIBRARY FUNCTIONS

Mathematical Functions tanh

exp

frexp

ldexp

log

log10

modf

pow

sqrt

ceil

fabs

floor

fmod

matherr

acosf

asinf

atanf

atan2f

cosf

sinf

tanf

coshf

sinhf

tanhf

expf

frexpf

ldexpf

logf

log10f

modff

powf

sqrtf

Table 10-3 List of Standard Library Functions

Type of Function Function

CHAPTER 10 LIBRARY FUNCTIONS

User’s Manual U18548EJ1V0UM 195

Mathematical Functions ceilf

fabsf

floorf

fmodf

Diagnostic Functions __assertfail

Table 10-3 List of Standard Library Functions

Type of Function Function

196 User’s Manual U18548EJ1V0UM

CHAPTER 10 LIBRARY FUNCTIONS

10.4.1 Use of optimum library for arguments and return values

With the standard library that a pointer is specified to arguments and return values, an optimum library will be

linked according to the memory model specified.

To handle a pointer that is not prepared as a default pointer of the memory model, call the function with the

following standard function name; an optimum library for the pointer can then be linked.

<Function name>_n: The pointer is always handled as near pointer

<Function name>_f: The pointer is always handled as far pointer

For example, the far pointer can be specified as an argument of the strcmp function when the small model is

used.

<Example>

[Cautions]

- When the small model or medium model is used, the pointer arguments of I/O functions sprintf, printf, vprintf,

vsprintf, sscanf, and scanf, which treat variable arguments, are handled as near pointers. No function

pointers can be used.

When function pointers or far pointers are used, use printf_f, and all of the variable argument pointers must

be converted to the far pointer.

When the large model is used, the pointer arguments of I/O functions sprintf, printf, vprintf, vsprintf, sscanf,

and scanf, which treat variable arguments, are handled as far pointers.

- When the small model or medium model is used, the pointer arguments of special functions va_start,

va_starttop, va_arg, and va_end, which treat variable arguments, are handled as near pointers. No function

pointers can be used.

#include <string.h>

__far char * sf1;
__far char * sf2;

void main (void) {
 :
 r = strcmp_f (sf1 , sf2);
 :
}

CHAPTER 10 LIBRARY FUNCTIONS

User’s Manual U18548EJ1V0UM 197

10.5 Character/String Functions

The following character / string functions are available.

- is-

- toupper, tolower

- toascii

- _toupper/toup, _tolower/tolow

198 User’s Manual U18548EJ1V0UM

CHAPTER 10 LIBRARY FUNCTIONS

is-

FUNCTION

- is- judges the type of character.

HEADER

- ctype.h for all the character functions

FUNCTION PROTOTYPE

- int is- (int c) ;

EXPLANATION

Function Arguments Return Value

is- c:
Character to be judged

If character c is included in the character
range:

1
If character c is not included in the character
range:

0

Function Character Range

isalpha Alphabetic character A to Z or a to z

isupper Uppercase letters A to Z

islower Lowercase letters a to z

isdigit Numeric characters 0 to 9

isalnum Alphanumeric characters 0 to 9 and A to Z or a to z

isxdigit Hexadecimal numbers 0 to 9 and A to F or a to f

isspace White-space characters (space, tab, carriage return, new-line, vertical tab, and form-feed)

ispunct Punctuation characters except white-space characters

isprint Printable characters

isgraph Printable nonblank characters

iscntrl Control characters

isascii ASCII code set

CHAPTER 10 LIBRARY FUNCTIONS

User’s Manual U18548EJ1V0UM 199

toupper, tolower

FUNCTION

- The character functions toupper and tolower both convert one type of character to another.

- The toupper function returns the uppercase equivalent of c if c is a lowercase letter.

- The tolower function returns the lowercase equivalent of c if c is a uppercase letter.

HEADER

- ctype.h

FUNCTION PROTOTYPE

- int toupper (int c) ;

- int tolower (int c) ;

EXPLANATION

toupper

- The toupper function checks to see if the argument is a lowercase letter and if so converts the letter to its

uppercase equivalent.

tolower

- The tolower function checks to see if the argument is a uppercase letter and if so converts the letter to its

lowercase equivalent.

Function Arguments Return Value

toupper,
tolower

c:
Character to be converted

If c is a convertible character:
Uppercase equivalent

If not convertible:
Character "c" is returned unchanged

200 User’s Manual U18548EJ1V0UM

CHAPTER 10 LIBRARY FUNCTIONS

toascii

FUNCTION

- The character function toascii converts "c" to an ASCII code.

HEADER

- ctype.h

FUNCTION PROTOTYPE

- int toascii (int c) ;

EXPLANATION

- The toascii function converts the bits (bits 7 to 15) of "c" outside the ASCII code range of "c" (bits 0 to 6) to

"0" and returns the converted bit value.

Function Arguments Return Value

toascii c:
Character to be converted

Value obtained by converting the bits outside
the ASCII code range of "c" to 0.

CHAPTER 10 LIBRARY FUNCTIONS

User’s Manual U18548EJ1V0UM 201

_toupper/toup, _tolower/tolow

FUNCTION

- The character function _toupper/toup subtracts "a" from "c" and adds "A" to the result.

- The character function _tolower/tolow subtracts "A" from "c" and adds "a" to the result.

(_toupper is exactly the same as toup, and _tolower is exactly the same as the tolow)

Remark a: Lowercase; A: Uppercase

HEADER

- ctype.h

FUNCTION PROTOTYPE

- int _toupper/toup (int c) ;

- int _tolower/tolow (int c) ;

Remark where a: Lowercase ;A: Uppercase

EXPLANATION

_toupper

- The _toupper function is similar to toupper except that it does not test to see if the argument is a

lowercase letter.

_tolower

- The _tolower function is similar to tolower, except it does not test to see if the argument is an uppercase

letter.

Function Arguments Return Value

_toupper/toup c:
Character to be converted

Value obtained by adding "A" to the result of
subtraction "c" - "a"

_tolower/tolow Value obtained by adding "a" to the result of
subtraction "c" -"A"

202 User’s Manual U18548EJ1V0UM

CHAPTER 10 LIBRARY FUNCTIONS

10.6 Program Control Functions

The following program control functions are available.

- setjmp, longjmp

CHAPTER 10 LIBRARY FUNCTIONS

User’s Manual U18548EJ1V0UM 203

setjmp, longjmp

FUNCTION

- The program control function setjmp saves the environment information (current state of the program) when

a call to this function is made.

- The program control function longjmp restores the environment information saved by setjmp.

HEADER

- setjmp. h

FUNCTION PROTOTYPE

- int setjmp (jmp_buf env) ;

- void longjmp (jmp_buf env , int val) ;

EXPLANATION

setjmp

- The setjmp, when called directly, saves saddr area, SP, and the return address of the function that are

used as HL register or register variables to env and returns 0.

longjmp

- The longjmp restores the saved environment to env (HL register, saddr area and SP that are used as

register variables). Program execution continues as if the corresponding setjmp returns val (however, if

val is 0, 1 is returned).

Function Arguments Return Value

setjmp env:
Array to which environment information is
to be saved

If called directly:
0

If returning from the corresponding longjmp:
Value given by "val" or 1 if "val " is 0.

longjmp env:
Array to which environment information
was saved by setjmp

val :
Return value to setjmp

longjmp will not return because program
execution resumes at statement next to
setjmp that saved environment to "env".

204 User’s Manual U18548EJ1V0UM

CHAPTER 10 LIBRARY FUNCTIONS

10.7 Special Functions

The following special functions are available.

- va_start, va_starttop, va_arg, va_end

CHAPTER 10 LIBRARY FUNCTIONS

User’s Manual U18548EJ1V0UM 205

va_start, va_starttop, va_arg, va_end

FUNCTION

- The va_start function (macro) is used to start a variable argument list.

- The va_starttop function (macro) is used to set processing of the variable number of arguments.

- The va_arg function (macro) obtains the value of an argument from a variable argument list.

- The va_end function (macro) indicates that the end of a variable argument list is reached.

HEADER

- stdarg.h

FUNCTION PROTOTYPE

- void va_start (va_list ap , parmN) ;

- void va_starttop (va_list ap , parmN) ;

- type va_arg (va_list ap , type) ;

- void va_end (va_list ap) ;

Remark va_list is defined as typedef by stdarg.h.

EXPLANATION

va_start

- In the va_start macro, its argument ap must be a va_list type (char* type) object.

- A pointer to the next argument of parmN is stored in ap.

- parmN is the name of the last (right-most) parameter specified in the function's prototype.

- If parmN has the register storage class, proper operation of this function is not guaranteed.

Function Arguments Return Value

va_start,
va_starttop

ap:
Variable to be initialized so as to be used
in va_arg and va_end

parmN :
The argument before variable argument

None

va_arg ap:
Variable to process an argument list

type:
Type to point the relevant place of
variable argument (type is a type of
variable length; for example, int type if
described as va_arg (va_list ap, int) or
long type if described as va_arg (va_list
ap, long))

Normal case:
Value in the relevant place of variable
argument

If ap is a null pointer:
0

va_end ap:
Variable to process the variable number
of arguments

None

206 User’s Manual U18548EJ1V0UM

CHAPTER 10 LIBRARY FUNCTIONS

- If parmN is the first argument, this function may not operate normally (use va_starttop instead).

va_starttop

- ap must be a va_list type object.

- A pointer to the next argument of parmN is stored in ap.

- parmN is the name of the right-most and first parameter specified in the function's prototype.

- If parmN has the register storage class, this function may not operate normally.

- If parmN is an argument other than the first argument, this function may not operate normally.

va_arg

- In the va_arg macro, its argument ap must be the same as the va_list type object initialized with va_start

(no guarantee for the other normal operation).

- va_arg returns value in the relevant place of variable arguments as a type of type.

The relevant place is the first of variable arguments immediately after va_start and next proceeded in

each va_arg.

- If the argument pointer ap is a null pointer, the va_arg returns 0 (of type type).

- With the CC78K0R, when specifying a pointer as an argument list, the near data pointers (2-byte length)

must be specified when the medium model is used, and the far data pointers (4-byte length) must be

specified when the large model is used.

The function pointer length is fixed to 4 bytes in both models, but the pointer length in each model must be

specified as a 2- or 4-byte length when specifying the pointer as an argument list.

va_end

- The va_end macro sets a null pointer in the argument pointer ap to inform the macro processor that all the

parameters in the variable argument list have been processed.

Low address

ap

High address

Return address

HL

Argument

:

paramN

:

Argument

Stack area

Argument placed before paramN (first argument)

Variable arguments placed after paramN

CHAPTER 10 LIBRARY FUNCTIONS

User’s Manual U18548EJ1V0UM 207

10.8 I/O Functions

The following I/O functions are available.

- sprintf

- sscanf

- printf

- scanf

- vprintf

- vsprintf

- getchar

- gets

- putchar

- puts

- __putc

208 User’s Manual U18548EJ1V0UM

CHAPTER 10 LIBRARY FUNCTIONS

sprintf

FUNCTION

- The sprintf function writes data into a character string (array) according to the format.

HEADER

- stdio.h

FUNCTION PROTOTYPE

- int sprintf (char *s , const char *format , ...) ;

EXPLANATION

- If there are fewer actual arguments than the formats, the proper operation is not guaranteed. In the case

that the formats are run out despite the actual arguments still remain, the excess actual arguments are only

evaluated and ignored.

- sprintf converts zero or more arguments that follow format according to the format command specified by

format and writes (copies) them into the string s.

- Zero or more format commands may be used. Ordinary characters (other than format commands that begin

with a % character) are output as is to the string s. Each format command takes zero or more arguments

that follow format and outputs them to the string s.

- Each format command begins with a % character and is followed by these:

(i) Zero or more flags (to be explained later) that modify the meaning of the format command

(ii) Optional decimal integer which specify a minimum field width

If the output width after the conversion is less than this minimum field width, this specifier pads the output

with blanks of zeros on its left. (If the left-justifying flag "-" (minus) sign follows %, zeros are padded out to

the right of the output.) The default padding is done with spaces. If the output is to be padded with 0s, place

a 0 before the field width specifier. If the number or string is greater than the minimum field width, it will be

printed in full even by overrunning the minimum.

Function Arguments Return Value

sprintf s:
Pointer to the string into which the output
is to be written

format:
Pointer to the string which indicates format
commands

...:
Zero or more arguments to be converted

Number of characters written in s
(Terminating null character is not counted.)

CHAPTER 10 LIBRARY FUNCTIONS

User’s Manual U18548EJ1V0UM 209

- Optional precision (number of decimal places) specification (.integer)

With d, i, o, u, x, and X type specifiers, the minimum number of digits is specified.

With s type specifier, the maximum number of characters (maximum field width) is specified.

The number of digits to be output following the decimal point is specified for e, E, and f conversions. The

number of maximum effective digits is specified for g and G conversions.

This precision specification must be made in the form of (.integers). If the integer part is omitted, 0 is

assumed to have been specified.

The amount of padding resulting from this precision specification takes precedence over the padding by the

field width specification.

- Optional h, l and L modifiers

The h modifier instructs the sprintf function to perform the d, i, o, u, x, or X type conversion that follows this

modifier on short int or unsigned short int type. The h modifier instructs the sprintf function to perform the n

type conversion that follows this modifier on a pointer to short int type.

The l modifier instructs the sprintf function to perform the d, i, o, u, x, or X type conversion that follows this

modifier on long int or unsigned long int type. The h modifier instructs the sprintf function to perform the n

type conversion that follows this modifier on a pointer to long int type.

For other type specifiers, the h, l or L modifier is ignored.

- Character that specifies the conversion (to be explained later)

In the minimum field width or precision (number of decimal places) specification, * may be used in place of

an integer string. In this case, the integer value will be given by the int argument (before the argument to be

converted).

Any negative field width resulting from this will be interpreted as a positive field that follows the - (minus)

flag. All negative precision will be ignored.

210 User’s Manual U18548EJ1V0UM

CHAPTER 10 LIBRARY FUNCTIONS

The following flags are used to modify a format command:

The format codes for output conversion specifications are as follows:

With d, i, o, u, x and X type specifiers, the minimum number of digits (minimum field width) of the result is

specified. If the output is shorter than the minimum field width, it is padded with zeros.

If no precision is specified, 1 is assumed to have been specified.

Nothing will appear if 0 is converted with 0 precision.

Flag Contents

- The result of a conversion is left-justified within the field.

+ The result of a signed conversion always begins with a + or - sign.

space If the result of a signed conversion has no sign, space is prefixed to the output.
If the + (plus) flag and space flag are specified at the same time, the space flag will be
ignored.

The result is converted in the "assignment form".
In the o type conversion, precision is increased so that the first digit becomes 0.
In the x or X type conversion, 0x or 0X is prefixed to a nonzero result.
In the e, E, and f type conversions, a decimal point is forcibly inserted to all the output
values (in the default without #, a decimal point is displayed only when there is a value
to follow).
In the g and G type conversions, a decimal point is forcibly inserted to all the output
values, and truncation of 0 to follow will not be allowed (in the default without #, a
decimal point is displayed only when there is a value to follow. The 0 to follow will be
truncated).
In all the other conversions, the # flag is ignored.

Format Code Contents

d Converts int argument to signed decimal format.

i Converts int argument to signed decimal format.

o Converts int argument to unsigned octal format.

u Converts int argument to unsigned decimal format.

x Converts int argument to unsigned hexadecimal format (with lowercase letters
abcdef).

X Converts int argument to unsigned hexadecimal format (with uppercase letters
ABCDEF).

Precision Code Contents

f Converts double argument as a signed value with [-] dddd.dddd format.
dddd is one or more decimal number(s). The number of digits before the decimal
point is determined by the absolute value of the number, and the number of digits after
the decimal point is determined by the required precision. When the precision is
omitted, it is interpreted as 6.

e Converts double argument as a signed value with [-] d.dddd e [sign] ddd format. d is
1 decimal number, and dddd is one or more decimal number(s). ddd is exactly a 3-
digit decimal number, and the sign is + or -.
When the precision is omitted, it is interpreted as 6.

E The same format as that of e except E is added instead of e before the exponent.

CHAPTER 10 LIBRARY FUNCTIONS

User’s Manual U18548EJ1V0UM 211

- Operations for invalid conversion specifiers are not guaranteed.

- When the actual argument is a union or a structure, or the pointer to indicate them (except the character

type array in % s conversion or the pointer in % p conversion), operations are not guaranteed.

- The conversion result will not be truncated even when there is no field width or the field width is small. In

other words, when the number of characters of the conversion result are larger than the field width, the field

is extended to the width that includes the conversion result.

- The formats of the special output character string in %f, %e, %E, %g, %G conversions are shown below.

non-numeric -> "(NaN)"

+∞ -> "(+INF)"

-∞ ->"(-INF)"

sprintf writes a null character at the end of the string s. (This character is included in the return value

count.)

The syntax of format commands is illustrated below.

g Uses whichever shorter method of f or e format when converting double argument
based on the specified precision.
e format is used only when the exponent of the value is smaller than -4 or larger than
the specified number by precision.
The following 0 are truncated, and the decimal point is displayed only when one or
more numbers follow.

G The same format as that of g except E is added instead of e before the exponent.

c Converts int argument to unsigned char and writes the result as a single character.

s The associated argument is a pointer to a string of characters and the characters in
the string are written up to the terminating null character (but not included in the
output). If precision is specified, the characters exceeding the maximum field width
will be truncated off the end. When the precision is not specified or larger than the
array, the array must include a null character.

p The associated argument is a pointer to void and the pointer value is displayed in
hexadecimal 4 digits (with 0s prefixed to less than a 4-digit pointer value).
The precision specification if any will be ignored.

n The associated argument is an integer pointer into which the number of characters
written thus far in the string "s" is placed.
No conversion is performed.

% Prints a % sign.
The associated argument is not converted (but the flag and minimum field width
specifications are effective).

Precision Code Contents

212 User’s Manual U18548EJ1V0UM

CHAPTER 10 LIBRARY FUNCTIONS

- With the CC78K0R, the near data pointers (2-byte length) must be specified when the medium model is

used, and the far data pointers (4-byte length) must be specified when the large model is used for

conversion specifiers s, p, and n that specify pointers as arguments.

The function pointer length is fixed to 4 bytes in both models, but the pointer length in each model must be

specified as a 2- or 4-byte length when using the pointer as an argument.

L

i

Ordinary characters:

Format command:

Flags:

Minimum field width:

Precision:

Format command

Ordinary char.

Characters

% Flags Min. field width Precision Format code

-

Space

#

Digits

*

.

-

h

l

d

o

u

x

X

c

s

p

n

f

e

E

g

G

%

Digits

*

Format codes:

format:

except %

CHAPTER 10 LIBRARY FUNCTIONS

User’s Manual U18548EJ1V0UM 213

sscanf

FUNCTION

- The sscanf function reads data from the input string (array) according to the format.

HEADER

- stdio.h

FUNCTION PROTOTYPE

- int sscanf (const char *s , const char *format , ...) ;

Function Arguments Return Value

sscanf s:
Pointer to the input string

format:
Pointer to the string which indicates the
input format commands

...:
Pointer to object in which converted
values are to be stored, and zero or more
arguments

If the string s is empty:
-1

If the string s is not empty:
Number of assigned input data items

214 User’s Manual U18548EJ1V0UM

CHAPTER 10 LIBRARY FUNCTIONS

EXPLANATION

- sscanf inputs data from the string pointed to by s. The string pointed to by format specifies the input string

allowed for input. Zero or more arguments after format are used as pointers to an object. format specifies

how data is to be converted from the input string.

- If there are insufficient arguments to match the format commands pointed to by format, proper operation by

the compiler is not guaranteed.

For excessive arguments, expression evaluation will be performed but no data will be input.

- The control string pointed to by format consists of zero or more format commands which are classified into

the following 3 types:

1: White-space characters (one or more characters for which isspace becomes true)

2: Non-white-space characters (other than %)

3: Format specifiers

- Each format specifier begins with the % character and is followed by these:

(i) Optional * character which suppresses assignment of data to the corresponding argument

(ii) Optional decimal integer which specifies a maximum field width

(iii) Optional h, l or L modifier which indicates the object size on the receiving side

If h precedes the d, i, o, or x format specifier, the argument is a pointer to not int but short int.

If l precedes any of these format specifiers, the argument is a pointer to long int.

Likewise, if h precedes the u format specifier, the argument is a pointer to unsigned short int.

If l precedes the u format specifier, the argument is a pointer to unsigned long int.

If l precedes the conversion specifier e, E, f, g, G, the argument is a pointer to double (a pointer to float

in default without l). If L precedes, it is ignored.

Remark Conversion specifier: character to indicate the type of corresponding conversion (to be

mentioned later)

CHAPTER 10 LIBRARY FUNCTIONS

User’s Manual U18548EJ1V0UM 215

sscanf executes the format commands in "format" in sequence and if any format command fails, the function will

terminate.

(1) A white-space character in the control string causes sscanf to read any number (including zero) of white-

space character up to the first non-white-space character (which will not be read). This white-space

character command fails if it does not encounter any non-white-space character.

(2) A non-white-space character causes sscanf to read and discard a matching character. This command fails

if the specified character is not found.

(3) The format commands define a collection of input streams for each type specifier (to be detailed later).

The format commands are executed according to the following steps:

(a) The input white-space characters (specified by isspace) are skipped over, except when the type

specifier is [, c, or n.

(b) The input data items are read from the string "s", except when the type specifier is n.

The input data items are defined as the longest input stream of the first partial stream of the string

indicated by the type specifier (but up to the maximum field width if so specified). The character next to

the input data items is interpreted as not have been read.

If the length of the input data items is 0, the format command execution fails.

(c) The input data items (number of input characters with the type specifier n) are converted to the type

specified by the type specifier except the type specifier %.

If the input data items do not match with the specified type, the command execution fails.

Unless assignment is suppressed by *, the result of the conversion is stored in the object pointed to by

the first argument which follows "format" and has not yet received the result of the conversion.

The following type specifiers are available:

Conversion Specifier Contents

d Converts a decimal integer (which may be signed).
The corresponding argument must be a pointer to an integer.

I Converts an integer (which may be signed).
If a number is preceded by 0x or 0X, the number is interpreted as a
hexadecimal integer. If a number is preceded by 0, the number is
interpreted as an octal integer. Other numbers are regarded as decimal
integers. The corresponding argument must be a pointer to an integer.

o Converts an octal integer (which may be signed).
The corresponding argument must be a pointer to an integer.

u Converts an unsigned decimal integer.
The corresponding argument must be a pointer to an unsigned integer.

x Converts a hexadecimal integer (which may be signed).

e, E, f, g, G Floating point value consists of optional sign (+ or -), one or more
consecutive decimal number(s) including decimal point, optional exponent
(e or E), and the following optional signed integer value.
When overflow occurs as a result of conversion, or when underflow occurs
with the conversion result +∞, non-normalized number or +0 becomes the
conversion result.
The corresponding argument is a pointer to float.

216 User’s Manual U18548EJ1V0UM

CHAPTER 10 LIBRARY FUNCTIONS

If a format specification is invalid, the format command execution fails.

If a null terminator appears in the input stream, sscanf will terminate.

If an overflow occurs in an integer conversion (with the d, i, o, u, x, or p format specifier), high-order bits will

be truncated depending on the number of bits of the data type after the conversion.

s Input a character string consisting of a non-blank character string.
The corresponding argument is a pointer to an integer. 0x or 0X can be
allocated at the first hexadecimal integer.
The corresponding argument must be a pointer an array that has sufficient
size to accommodate this character string and a null terminator.
The null terminator will be automatically added.

[Inputs a character string consisting of expected character groups (called a
scanset).
The corresponding argument must be a pointer to the first character of an
array that has sufficient size to accommodate this character string and a
null terminator. The null terminator will be automatically added.
The format commands continue from this character up to the closing
square bracket (1). The character string (called a scanlist) enclosed in
the square brackets constitutes a scanset except when the character
immediately after the opening square bracket is a circumflex (). When
the character is a circumflex, all the characters other than a scanlist
between the circumflex and the closing square bracket constitute a
scanset. However, when a scanlist begins with [] or [^], this closing
square bracket is contained in the scanlist and the next closing square list
becomes the end of the scanlist.
A hyphen (-) at other than the left or right end of a scanlist is interpreted as
the punctuation mark for hyphenation if the character at the left of the
range specifying hyphen (-) is not smaller than the right-hand character in
ASCII code value.

c Inputs a character string consisting of the number of characters specified
by the field width. (If the field width specification is omitted, 1 is assumed.)
The corresponding argument must be a pointer to the first character of an
array that has sufficient size to accommodate this character string.
The null terminator will not be added.

p Reads an unsigned hexadecimal integer.
The corresponding argument must be a pointer to void pointer.

n Receives no input from the string s.
The corresponding argument must be a pointer to an integer. The number
of characters that are read thus far by this function from the string "s" is
stored in the object that is pointed to by this pointer.
The %n format command is not included in the return value assignment
count.

% Reads a % sign.
Neither conversion nor assignment takes place.

Conversion Specifier Contents

CHAPTER 10 LIBRARY FUNCTIONS

User’s Manual U18548EJ1V0UM 217

The syntax of input format commands is illustrated below.

- With the CC78K0R, the near data pointers (2-byte length) must be specified when the medium model is

used, and the far data pointers (4-byte length) must be specified when the large model is used for

conversion specifiers s, p, and n that specify pointers as arguments.

The function pointer length is fixed to 4 bytes in both models, but the pointer length in each model must be

specified as a 2- or 4-byte length when using the pointer as an argument.

i

Ordinary characters:

Format command:

Command

Characters except

% Flags Min. field width Precision Format h

l

L

d

o

u

x

s

[

c

p

n

f

e

E

g

G

%

format:

Format specifiers:

Min. field width: Digits

White-space char.

Ordinary char.

Format specifier

Command:

Space

\r

\f

\n

\t

\v

scanlist

]^ Characters except]

Characters except]

]
scanlist:

% and white space

specifier

218 User’s Manual U18548EJ1V0UM

CHAPTER 10 LIBRARY FUNCTIONS

printf

FUNCTION

- printf outputs data to SFR according to the format.

HEADER

- stdio.h

FUNCTION PROTOTYPE

- int printf (const char *format , ...) ;

EXPLANATION

- (0 or more) arguments following the format are converted and output using the putchar function, according

to the output conversion specification specified in the format.

- The output conversion specification is 0 or more directives. Normal characters (other than the conversion

specification starting with %) are output as is using the putchar function. The conversion specification is

output using the putchar function by fetching and converting the following (0 or more) arguments.

- Each conversion specification is the same as that of the sprintf function.

Function Arguments Return Value

printf format:
Pointer to the character string that
indicates the output conversion
specification

...:
0 or more arguments to be converted

Number of character output to s (the null
character at the end is not counted)

CHAPTER 10 LIBRARY FUNCTIONS

User’s Manual U18548EJ1V0UM 219

scanf

FUNCTION

- scanf reads data from SFR according to the format.

HEADER

- stdio.h

FUNCTION PROTOTYPE

- int scanf (const char *format , ...) ;

EXPLANATION

- Performs input using getchar function. Specifies input string permitted by the character string format

indicates. Uses the argument after the format as the pointer to an object. format specifies how the

conversion is performed by the input string.

- When there are not enough arguments for the format, normal operation is not guaranteed. When the

argument is excessive, the expression will be evaluated but not input.

- format consists of 0 or more directives. The directives are as follows.

1: One or more null character (character that makes isspace true)

2: Normal character (other than %)

3: Conversion indication

- If a conversion ends with a input character which conflicts with the input character, the conflicting input

character is rounded down. The conversion indication is the same as that of the sscanf function.

Function Arguments Return Value

scanf format:
Pointer to the character string to indicate
input conversion specification

...:
Pointer (0 or more) argument to the object
to assign the converted value

When the character string s is not null:
Number of input items assigned

220 User’s Manual U18548EJ1V0UM

CHAPTER 10 LIBRARY FUNCTIONS

vprintf

FUNCTION

- vprintf outputs data to SFR according to the format.

HEADER

- stdio.h

FUNCTION PROTOTYPE

- int vprintf (const char *format, va_list p) ;

EXPLANATION

- The argument that the pointer of the argument list indicates is converted and output using putchar function

according to the output conversion specification specified by the format.

- Each conversion specification is the same as that of sprintf function.

Function Arguments Return Value

vprintf format:
Pointer to the character string that
indicates output conversion specification

p:
Pointer to the argument list

Number of output characters (the null
character at the end is not counted)

CHAPTER 10 LIBRARY FUNCTIONS

User’s Manual U18548EJ1V0UM 221

vsprintf

FUNCTION

- vsprintf writes data to character strings according to the format.

HEADER

- stdio.h

FUNCTION PROTOTYPE

- int vsprintf (char *s , const char *format, va_list p) ;

EXPLANATION

- Writes out the argument that the pointer of argument list indicates to the character strings which s indicates

according to the output conversion specification specified by format.

- The output specification is the same as that of sprintf function.

Function Arguments Return Value

vsprintf s:
Pointer to the character string that writes
the output

format:
Pointer to the character string that
indicates output conversion specification

p:
Pointer to the argument list

Number of characters output to s (the null
character at the end is not counted)

222 User’s Manual U18548EJ1V0UM

CHAPTER 10 LIBRARY FUNCTIONS

getchar

FUNCTION

- getchar reads a character from SFR

HEADER

- stdio.h

FUNCTION PROTOTYPE

- int getchar (void) ;

EXPLANATION

- Returns the value read from SFR symbol P0 (port 0).

- Error check related to reading is not performed.

- To change SFR to read, it is necessary either that the source be changed to be re-registered to the library or

that the user create a new getchar function.

Function Arguments Return Value

getchar None A character read from SFR

CHAPTER 10 LIBRARY FUNCTIONS

User’s Manual U18548EJ1V0UM 223

gets

FUNCTION

- gets reads a character string.

HEADER

- stdio.h

FUNCTION PROTOTYPE

- char *gets (char *s) ;

EXPLANATION

- Reads a character string using the getchar function and stores in the array that s indicates.

- When the end of the file is detected (getchar function returns -1) or when a line feed character is read, the

reading of a character string ends. The line feed character read is abandoned, and a null character is

written at the end of the character stored in the array in the end.

- When the return value is normal, it returns s.

- When the end of the file is detected and no character is read in the array, the contents of the array remains

unchanged, and a null pointer is returned.

Function Arguments Return Value

gets s:
Pointer to input character string

Normal:
s

If the end of the file is detected without
reading a character:

Null pointer

224 User’s Manual U18548EJ1V0UM

CHAPTER 10 LIBRARY FUNCTIONS

putchar

FUNCTION

- putchar outputs a character to SFR.

HEADER

- stdio.h

FUNCTION PROTOTYPE

- int putchar (int c) ;

EXPLANATION

- Writes the character specified by c to the SFR symbol P0 (port 0) (converted to unsigned char type).

- Error check related to writing is not performed.

- To change SFR to write, it is necessary either that the source is changed and re-registered to the library or

the user create a new putchar function.

Function Arguments Return Value

putchar c:
Character to be output

Character to have been output

CHAPTER 10 LIBRARY FUNCTIONS

User’s Manual U18548EJ1V0UM 225

puts

FUNCTION

- puts outputs a character string.

HEADER

- stdio.h

FUNCTION PROTOTYPE

- int puts (const char *s) ;

EXPLANATION

- Writes the character string indicated by s using putchar function, a line feed character is added at the end of

the output.

- Writing of the null character at the end of the character string is not performed.

- When the return value is normal, 0 is returned, and when putchar function returns -1, -1 is returned.

Function Arguments Return Value

puts s:
Pointer to an output character string

Normal:
0

When putchar function returns -1:
-1

226 User’s Manual U18548EJ1V0UM

CHAPTER 10 LIBRARY FUNCTIONS

__putc

FUNCTION

- __putc outputs a character to opaque.

HEADER

- stdio.h

FUNCTION PROTOTYPE

- int __putc (int c , void *opaque) ;

EXPLANATION

- The __putc function writes the character specified by c (by converting it into the unsigned char type) to the

destination indicated by opaque. The destination indicated by opaque is incremented by 1 byte.

- - If opaque is 0, the putchar function is called and the return value of the putchar function is returned.

Function Arguments Return Value

__putc c:
Character to be output

opaque:
Pointer to a character output destination

Character to have been output

CHAPTER 10 LIBRARY FUNCTIONS

User’s Manual U18548EJ1V0UM 227

10.9 Utility Functions

The following utility functions are available.

- atoi, atol

- strtol, strtoul

- calloc

- free

- malloc

- realloc

- abort

- atexit, exit

- abs, labs

- div, ldiv

- brk, sbrk

- atof, strtod

- itoa, ltoa, ultoa

- rand, srand

- bsearch

- qsort

- strbrk

- strsbrk

- stritoa, strltoa, strultoa

228 User’s Manual U18548EJ1V0UM

CHAPTER 10 LIBRARY FUNCTIONS

atoi, atol

FUNCTION

- The string function atoi converts the contents of a decimal integer string to an int value.

- The string function atol converts the contents of a decimal integer string to a long int value.

HEADER

- stdlib.h

FUNCTION PROTOTYPE

- int atoi (const char *nptr) ;

- long int atol (const char *nptr) ;

EXPLANATION

atoi

- The atoi function converts the first part of the string pointed to by pointer nptr to an int value.

- The atoi function skips over zero or more white-space characters (for which isspace becomes true) from

the beginning of the string and converts the string from the character next to the skipped white-spaces to

an integer (until other than digits or a null character appears in the string). If no digits to convert is found

in the string, the function returns 0.

If an overflow occurs, the function returns INT_MAX (32,767) for positive overflow and INT_MIN (-32,768)

for negative overflow.

Function Arguments Return Value

atoi nptr:
String to be converted

If converted properly:
int value

If positive overflow occurs:
INT_MAX (32,767)

If negative overflow occurs:
INT_MIN (-32,768)

If the string is invalid:
0

atol If converted properly:
long int value

for positive overflow:
LONG_MAX (2,147,483,647)

for negative overflow:
LONG_MIN (-2,147,483,648)

If the string is invalid:
0

CHAPTER 10 LIBRARY FUNCTIONS

User’s Manual U18548EJ1V0UM 229

atol

- The atol function converts the first part of the string pointed to by pointer nptr to a long int value.

- The atol function skips over zero or more white-space characters (for which isspace becomes true) from

the beginning of the string and converts the string from the character next to the skipped white-spaces to

an integer (until other than digits or null character appears in the string). If no digits to convert is found in

the string, the function returns 0.

If an overflow occurs, the function returns LONG_MAX (2,147,483,647) for positive overflow and

LONG_MIN (-2,147,483,648) for negative overflow.

230 User’s Manual U18548EJ1V0UM

CHAPTER 10 LIBRARY FUNCTIONS

strtol, strtoul

FUNCTION

- The string function strtol converts a string to a long integer.

- The string function strtoul converts a string to an unsigned long integer.

HEADER

- stdlib.h

FUNCTION PROTOTYPE

- long int strtol (const char *nptr , char **endptr, int base) ;

- unsigned long int strtoul (const char *nptr, char **endptr, int base) ;

EXPLANATION

strtol

- The strtol function decomposes the string pointed by pointer nptr into the following 3 parts:

(i) String of white-space characters that may be empty (to be specified by isspace)

(ii) Integer representation by the base determined by the value of base

(iii) String of one or more characters that cannot be recognized (including null terminators)

Remark The strtol function converts the part (ii) of the string into an integer and returns this integer value.

- A base of 0 indicates that the base should be determined from the leading digits of the string. A leading

0x or 0X indicates a hexadecimal number; a leading 0 indicates an octal number; otherwise, the number is

interpreted as decimal. (In this case, the number may be signed).

- If the base is 2 to 36, the set of letters from a to z or A to Z which can be part of a number (and which may

be signed) with any of these bases are taken to represent 10 to 35.

A leading 0x or 0X is ignored if the base is 16.

Function Arguments Return Value

strtol nptr:
String to be converted

endptr:
Address of char pointer

base:
Base for number represented in the string

If converted properly:
long int value

for positive overflow:
LONG_MAX (2,147,483,647)

for negative overflow:
LONG_MIN (-2,147,483,648)

If not converted:
0

strtoul If converted properly:
unsigned long

If overflow occurs:
ULONG_MAX (4,294,967,295U)

If not converted:
0

CHAPTER 10 LIBRARY FUNCTIONS

User’s Manual U18548EJ1V0UM 231

- If endptr is not a null pointer, a pointer to the part (iii) of the string is stored in the object pointed to by

endptr.

- If the correct value causes an overflow, the function returns LONG_MAX (2,147,483,647) for the positive

overflow or LONG_MIN (-2,147,483,648) for the negative overflow depending on the sign and sets errno

to ERANGE (ii).

- If the string (ii) is empty or the first non-white-space character of the string (ii) is not appropriate for an

integer with the given base, the function performs no conversion and returns 0. In this case, the value of

the string nptr is stored in the object pointed to by endptr (if it is not a null string). This holds true with the

bases 0 and 2 to 36.

strtoul

- The strtoul function decomposes the string pointed by pointer nptr into the following 3 parts:

(i) String of white-space characters that may be empty (to be specified by isspace)

(ii) Integer representation by the base determined by the value of base

(iii) String of one or more characters that cannot be recognized (including null terminators)

The strtoul function converts the part (ii) of the string into a unsigned integer and returns this unsigned

integer value.

- A base of 0 indicates that the base should be determined from the leading digits of the string. A leading

0x or 0X indicates a hexadecimal number; a leading 0 indicates an octal number; otherwise, the number is

interpreted as decimal.

- If the base is 2 to 36, the set of letters from a to z or A to Z which can be part of a number (and which may

be signed) with any of these bases are taken to represent 10 to 35. A leading 0x or 0X is ignored if the

base is 16.

- If endptr is not a null pointer, a pointer to the part (iii) of the string is stored in the object pointed to by

endptr.

- If the correct value causes an overflow, the function returns ULONG_MAX (4,294,967,295U) and sets

errno to ERANGE (ii).

- If the string (ii) is empty or the first non-white-space character of the string (ii) is not appropriate for an

integer with the given base, the function performs no conversion and returns 0. In this case, the value of

the string nptr is stored in the object pointed to by endptr (if it is not a null string). This holds true with the

bases 0 and 2 to 36.

232 User’s Manual U18548EJ1V0UM

CHAPTER 10 LIBRARY FUNCTIONS

calloc

FUNCTION

- The memory function calloc allocates an array area and then initializes the area to 0.

HEADER

- stdlib.h

FUNCTION PROTOTYPE

- void *calloc (size_t nmemb , size_t size) ;

EXPLANATION

- The calloc function allocates an area for an array consisting of n number of members (specified by nmemb),

each of which has the number of bytes specified by size and initializes the area (array members) to zero.

- Returns the pointer to the beginning of the allocated area if the requested size is allocated.

- Returns the null pointer if the requested size is not allocated.

- The memory allocation will start from a break value and the address next to the allocated space will become

a new break value. If the new break value is an odd number, the calloc function corrects it to be an even

number. See " brk, sbrk" for break value setting with the memory function brk.

- Since the areas to be allocated by the CC78K0R exist in the internal RAM, argument ptr is always the near

pointer. Therefore, the calloc_n and calloc_f functions are not available.

Function Arguments Return Value

calloc nmemb:
Number of members in the array

size:
Size of each member

If the requested size is allocated:
Pointer to the beginning of the allocated
area

If the requested size is not allocated:
Null pointer

CHAPTER 10 LIBRARY FUNCTIONS

User’s Manual U18548EJ1V0UM 233

free

FUNCTION

- The memory function free releases the allocated block of memory.

HEADER

- stdlib.h

FUNCTION PROTOTYPE

- void free (void *ptr) ;

EXPLANATION

- The free function releases the allocated space (before a break value) pointed to by ptr. (The malloc, calloc,

or realloc called after the free will give you the space that was freed earlier.)

- If ptr does not point to the allocated space, the free will take no action. (Freeing the allocated space is

performed by setting ptr as a new break value.)

- Since the areas to be allocated by the CC78K0R exist in the internal RAM, argument ptr is always the near

pointer. Therefore, the free_n and free_f functions are not available.

Function Arguments Return Value

free ptr:
Pointer to the beginning of block to be
released

None

234 User’s Manual U18548EJ1V0UM

CHAPTER 10 LIBRARY FUNCTIONS

malloc

FUNCTION

- The memory function malloc allocates a block of memory.

HEADER

- stdlib.h

FUNCTION PROTOTYPE

- void *malloc (size_t size) ;

EXPLANATION

- The malloc function allocates a block of memory for the number of bytes specified by size and returns a

pointer to the first byte of the allocated area.

- If memory cannot be allocated, the function returns a null pointer.

- This memory allocation will start from a break value and the address next to the allocated area will become

a new break value. If the new break value is an odd number, the malloc function corrects it to be an even

number. See "10.9 Utility Functions brk, sbrk" for break value setting with the memory function brk.

- Since the areas to be allocated by the CC78K0R exist in the internal RAM, argument ptr is always the near

pointer. Therefore, the malloc_n and malloc_f functions are not available.

Function Arguments Return Value

malloc size:
Size of memory block to be allocated

If the requested size is allocated:
Pointer to the beginning of the allocated
area

If the requested size is not allocated:
Null pointer

CHAPTER 10 LIBRARY FUNCTIONS

User’s Manual U18548EJ1V0UM 235

realloc

FUNCTION

- The memory function realloc reallocates a block of memory (namely, changes the size of the allocated

memory).

HEADER

- stdlib.h

FUNCTION PROTOTYPE

- void *realloc (void *ptr , size_t size) ;

EXPLANATION

- The realloc function changes the size of the allocated space (before a break value) pointed to by ptr to that

specified by size. If the value of size is greater than the size of the allocated space, the contents of the

allocated space up to the original size will remain unchanged. The realloc function allocates only for the

increased space. If the value of size is less than the size of the allocated space, the function will free the

reduced space of the allocated space.

- If ptr is a null pointer, the realloc function will newly allocate a block of memory of the specified size (same as

malloc).

- If ptr does not point to the block of memory previously allocated or if no memory can be allocated, the

function executes nothing and returns a null pointer.

- Reallocation will be performed by setting the address of ptr plus the number of bytes specified by size as a

new break value. If the new break value is an odd number, the realloc function corrects it to be an even

number.

- Since the areas to be allocated by the CC78K0R exist in the internal RAM, argument ptr is always the near

pointer. Therefore, the realloc_n and realloc_f functions are not available.

Function Arguments Return Value

realloc ptr:
Pointer to the beginning of block
previously allocated

size:
New size to be given to this block

If the requested size is reallocated:
Pointer to the beginning of the reallocated
space

If ptr is a null pointer:
Pointer to the beginning of the allocated
space

If the requested size is not reallocated or
"ptr" is not a null pointer:

Null pointer

236 User’s Manual U18548EJ1V0UM

CHAPTER 10 LIBRARY FUNCTIONS

abort

FUNCTION

- The program control function abort causes immediate, abnormal termination of a program.

HEADER

- stdlib.h

FUNCTION PROTOTYPE

- void abort (void) ;

EXPLANATION

- The abort function loops and can never return to its caller.

- The user must create the abort processing routine.

Function Arguments Return Value

abort None No return to its caller.

CHAPTER 10 LIBRARY FUNCTIONS

User’s Manual U18548EJ1V0UM 237

atexit, exit

FUNCTION

- atexit registers the function called at the normal termination.

- exit terminates a program.

HEADER

- stdlib.h

FUNCTION PROTOTYPE

- int atexit (void (*func) (void)) ;

- void exit (int status) ;

EXPLANATION

atexit

- The atexit function registers the wrap-up function pointed to by func so that it is called without argument

upon normal program termination by calling exit or returning from main.

- Up to 32 wrap-up functions may be established. If the warp-up function can be registered, atexit returns

0. If no more wrap-up function can be registered because 32 wrap-up functions have already been

registered, the function returns 1.

exit

- The exit function causes immediate, normal termination of a program.

- This function calls the wrap-up functions in the reverse of the order in which they were registered with

atexit.

- The exit function loops and can never return to its caller.

- The user must create the exit processing routine.

Function Arguments Return Value

atexit func:
Pointer to function to be registered

If function is registered as wrap-up function:
0

If function cannot be registered:
1

exit status:
Status value indicating termination

exit can never return.

238 User’s Manual U18548EJ1V0UM

CHAPTER 10 LIBRARY FUNCTIONS

abs, labs

FUNCTION

- The mathematical function abs returns the absolute value of its int type argument.

- The mathematical function labs returns the absolute value of its long type argument.

HEADER

- stdlib.h

FUNCTION PROTOTYPE

- int abs (int j) ;

- long int labs (long int j) ;

EXPLANATION

abs

- The abs returns the absolute value of its int type argument.

- If j is -32,768, the function returns -32,768.

labs

- The labs returns the absolute value of its long type argument.

- If the value of j is -2,147,483,648, the function returns -2,147,483,648.

Function Arguments Return Value

abs j:
Any signed integer for which absolute
value is to be obtained

If j falls within -32,767 < j < 32,767:
Absolute value of j

If j is -32,768:
-32,768 (0x8000)

labs If j falls within -2,147,483,647 < j <
2,147,483,647:

Absolute value of j
If the value of j is -2,147,483,648:

-2,147,483,648 (0x80000000)

CHAPTER 10 LIBRARY FUNCTIONS

User’s Manual U18548EJ1V0UM 239

div, ldiv

FUNCTION

- The mathematical function div performs the integer division of numerator divided by denominator.

- The mathematical function ldiv performs the long integer division of numerator divided by denominator.

HEADER

- stdlib.h

FUNCTION PROTOTYPE

- div_t div (int numer , int denom) ;

- ldiv_t ldiv (long int numer , long int denom) ;

EXPLANATION

div

- The div function performs the integer division of numerator divided by denominator.

- The absolute value of quotient is defined as the largest integer not greater than the absolute value of

numer divided by the absolute value of denom. The remainder always has the same sign as the result of

the division (plus if numer and denom have the same sign; otherwise minus).

- The remainder is the value of numer - denom * quotient.

- If denom is 0, the quotient becomes 0 and the remainder becomes numer.

- If numer is -32,768 and denom is -1, the quotient becomes -32,768 and the remainder becomes 0.

ldiv

- The ldiv function performs the long integer division of numerator divided by denominator.

- The absolute value of quotient is defined as the largest long int type integer not greater than the absolute

value of numer divided by the absolute value of denom. The remainder always has the same sign as the

result of the division (plus if numer and denom have the same sign; otherwise minus).

- The remainder is the value of numer - denom * quotient.

- If denom is 0, the quotient becomes 0 and the remainder becomes numer.

- If numer is -2,147,483,648 and denom is -1, the quotient becomes -2,147,483,648 and the remainder

becomes 0.

Function Arguments Return Value

div numer:
Numerator of the division

denom:
Denominator of the division

Quotient to the quot element and the
remainder to the rem element of div_t type
member

ldiv Quotient to the quot element and the
remainder to the rem element of ldiv_t type
member

240 User’s Manual U18548EJ1V0UM

CHAPTER 10 LIBRARY FUNCTIONS

brk, sbrk

FUNCTION

- The memory function brk sets a break value.

- The memory function sbrk increments or decrements the set break value.

HEADER

- stdlib.h

FUNCTION PROTOTYPE

- int brk (char *endds) ;

- char *sbrk (int incr) ;

EXPLANATION

brk

- The brk function sets the value given by endds as a break value (the address next to the end address of

an allocated block of memory).

- If endds is outside the permissible address range, the function sets no break value and sets errno to

ENOMEM (3).

- Since the areas to be allocated by the CC78K0R exist in the internal RAM, argument ptr is always the

near pointer. Therefore, the brk_n and brk_f functions are not available.

sbrk

- The sbrk function increments or decrements the set break value by the number of bytes specified by incr.

(Increment or decrement is determined by the plus or minus sign of incr.)

- If an odd number is specified for incr, the sbrk function corrects it to be an even number.

- If the incremented or decremented break value is outside the permissible address range, the function

does not change the original break value and sets errno to ENOMEM (3).

- Since the areas to be allocated by the CC78K0R exist in the internal RAM, argument ptr is always the

near pointer. Therefore, the sbrk_n and sbrk_f functions are not available.

Function Arguments Return Value

brk endds:
Break value to be set block to be released

If break value is set properly:
0

If break value cannot be changed:
-1

sbrk incr:
Value (bytes) by which set break value is
to be incremented/decremented.

If incremented or decremented properly:
Old break value

If old break value cannot be incremented or
decremented:

-1

CHAPTER 10 LIBRARY FUNCTIONS

User’s Manual U18548EJ1V0UM 241

atof, strtod

FUNCTION

- The string function atof converts the contents of a decimal integer string to a double value.

- The string function strtod converts the contents of a string to a double value.

HEADER

- stdlib.h

FUNCTION PROTOTYPE

- double atof (const char *nptr) ;

- double strtod (const char *nptr , char **endptr) ;

EXPLANATION

atof

- The atof function converts the string pointed to by pointer nptr to a double value.

- The atof function skips over zero or more white-space characters (for which isspace becomes true) from

the beginning of the string and converts the string from the character next to the skipped white-spaces to

a floating-point number (until other than digits or a null character appears in the string).

- A floating-point number is returned when converted properly.

- If an overflow occurs on conversion, HUGE_VAL with the sign of the overflowed value is returned and

ERANGE is set to errno.

- If valid digits are deleted due to an underflow or an overflow, a non-normalized number and +0 are

returned respectively, and ERANGE is set to errno.

- IF conversion cannot be performed, 0 is returned.

Function Arguments Return Value

atof nptr:
String to be converted

If converted properly:
Converted value

If positive overflow occurs:
HUGE_VAL (with sign of overflowed
value)

If negative overflow occurs:
0

If the string is invalid:
0

strtod nptr:
String to be converted

endptr:
Pointer storing pointer pointing to
unrecognizable block

If converted properly:
Converted value

If positive overflow occurs:
HUGE_VAL (with sign of overflowed
value)

If negative overflow occurs:
0

If the string is invalid:
0

242 User’s Manual U18548EJ1V0UM

CHAPTER 10 LIBRARY FUNCTIONS

strtod

- The strtod function converts the string pointed to by pointer nptr to a double value.

The strtod function skips over zero or more white-space characters (for which isspace becomes true) from

the beginning of the string and converts the string from the character next to the skipped white-spaces to

a floating-point number (until other than digits or null character appears in the string).

If a character string starts with a character that does not satisfy this format, scanning is terminated. If

endptr is not a null pointer, a pointer that starts with a character that may be a blank is stored in endptr.

- A floating-point number is returned when converted properly.

- If an overflow occurs on conversion, HUGE_VAL with the sign of the overflowed value is returned and

ERANGE is set to errno.

- If valid digits are deleted due to an underflow or an overflow, a non-normalized number and +0 are

returned respectively, and ERANGE is set to errno. In addition, endptr stores a pointer for next character

string at that time.

- IF conversion cannot be performed, 0 is returned.

CHAPTER 10 LIBRARY FUNCTIONS

User’s Manual U18548EJ1V0UM 243

itoa, ltoa, ultoa

FUNCTION

- The string function itoa converts an int integer to its string equivalent.

- The string function ltoa converts a long int integer to its string equivalent.

- The string function ultoa converts an unsigned long integer to its string equivalent.

HEADER

- stdlib.h

FUNCTION PROTOTYPE

- char *itoa (int value , char *string , int radix) ;

- char *ltoa (long value , char *string , int radix) ;

- char *ultoa (unsigned long value , char *string , int radix) ;

EXPLANATION

itoa, ltoa, ultoa

- The itoa, ltoa, and ultoa functions all convert the integer value specified by value to its string equivalent

which is terminated with a null character and store the result in the area pointed to by "string".

- The base of the output string is determined by radix, which must be in the range 2 through 36. Each

function performs conversion based on the specified radix and returns a pointer to the converted string. If

the specified radix is outside the range 2 through 36, the function performs no conversion and returns a null

pointer.

Function Arguments Return Value

itoa,
ltoa,
ultoa

value:
String to which integer is to be converted

string:
Pointer to the conversion result

radix:
Base of output string

If converted properly:
Pointer to the converted string

If not converted properly:
Null pointer

244 User’s Manual U18548EJ1V0UM

CHAPTER 10 LIBRARY FUNCTIONS

rand, srand

FUNCTION

- The mathematical function rand generates a sequence of pseudorandom numbers.

- The mathematical function srand sets a starting value (seed) for the sequence generated by rand.

HEADER

- stdlib.h

FUNCTION PROTOTYPE

- int rand (void) ;

- void srand (unsigned int seed) ;

EXPLANATION

rand

- Each time the rand function is called, it returns a pseudorandom integer in the range of 0 to RAND_MAX.

srand

- The srand function sets a starting value for a sequence of random numbers. seed is used to set a starting

point for a progression of random numbers that is a return value when rand is called. If the same seed

value is used, the sequence of pseudorandom numbers is the same when srand is called again.

- Calling rand before srand is used to set a seed is the same as calling rand after srand has been called

with seed = 1. (The default seed is 1.)

Function Arguments Return Value

rand None Pseudorandom integer in the range of 0 to
RAND_MAX

srand seed:
Starting value for pseudorandom number
generator

None

CHAPTER 10 LIBRARY FUNCTIONS

User’s Manual U18548EJ1V0UM 245

bsearch

FUNCTION

- The bsearch function performs a binary search.

HEADER

- stdlib.h

FUNCTION PROTOTYPE

- void *bsearch (const void *key , const void *base , size_t nmemb , size_t size ,

int (*compare) (const void *, const void *)) ;

EXPLANATION

- The bsearch function performs a binary search on the sorted array pointed to by base and returns a pointer

to the first member that matches the key pointed to by key. The array pointed to by base must be an array

which consists of nmemb number of members each of which has the size specified by size and must have

been sorted in ascending order.

- The function pointed to by compare takes 2 arguments (key as the 1st argument and array element as the

2nd argument), compares the 2 arguments, and returns:

Negative value if the 1st argument is less than the 2nd argument

0 if both arguments are equal

Positive integer if the 1st argument is greater than the 2nd argument

Function Arguments Return Value

bsearch key:
Pointer to key for which search is made

base:
Pointer to sorted array which contains
information to search

nmemb:
Number of array elements

size:
Size of an array

compare:
Pointer to function used to compare 2
keys

If the array contains the key:
Pointer to the first member that matches
"key"

If the key is not contained in the array:
Null pointer

246 User’s Manual U18548EJ1V0UM

CHAPTER 10 LIBRARY FUNCTIONS

qsort

FUNCTION

- The qsort function sorts the members of a specified array using a quicksort algorithm.

HEADER

- stdlib.h

FUNCTION PROTOTYPE

- void qsort (void *base , size_t nmemb , size_t size , int (*compare) (const void * , const void *)) ;

EXPLANATION

- The qsort function sorts the members of the array pointed to by base in ascending order.

The array pointed to by base consists of nmemb number of members each of that has the size specified by

size.

- The function pointed to by compare takes 2 arguments (array elements 1 and 2), compares the 2

arguments, and returns:

- The array element 1 as the 1st argument and array element 2 as the 2nd argument

Negative value if the 1st argument is less than the 2nd argument

0 if both arguments are equal

Positive integer if the 1st argument is greater than the 2nd argument

- If the 2 array elements are equal, the element nearest to the top of the array will be sorted first.

Function Arguments Return Value

qsort base:
Pointer to array to be sorted

nmemb:
Number of members in the array

size:
Size of an array member

compare:
Pointer to function used to compare 2
keys

None

CHAPTER 10 LIBRARY FUNCTIONS

User’s Manual U18548EJ1V0UM 247

strbrk

FUNCTION

- strbrk sets a break value.

HEADER

- stdlib.h

FUNCTION PROTOTYPE

- int strbrk (char *endds) ;

EXPLANATION

- Sets the value given by endds to the break value (the address following the address at the end of the area to

be allocated).

- When endds is out of the permissible range, the break value is not changed. ENOMEM(3) is set to errno

and -1 is returned.

- Since the areas to be allocated by the CC78K0R exist in the internal RAM, argument ptr is always the near

pointer. Therefore, the strbrk_n and strbrk_f functions are not available.

Function Arguments Return Value

strbrk endds:
Break value to set

Normal:
0

When a break value cannot be changed:
-1

248 User’s Manual U18548EJ1V0UM

CHAPTER 10 LIBRARY FUNCTIONS

strsbrk

FUNCTION

- strsbrk increases/decreases a break value.

HEADER

- stdlib.h

FUNCTION PROTOTYPE

- char *strsbrk(int incr);

EXPLANATION

- incr byte increases/decreases a break value (depending on the sign of incr).

- When the break value is out of the permissible range after increasing/decreasing, a break value is not

changed. ENOMEM(3) is set to errno, and -1 is returned.

- Since the areas to be allocated by the CC78K0R exist in the internal RAM, argument ptr is always the near

pointer. Therefore, the strsbrk_n and strsbrk_f functions are not available.

Function Arguments Return Value

strsbrk incr:
Amount to increase/decrease a break
value

Normal:
Old break value

When a break value cannot be increased/
decreased:

-1

CHAPTER 10 LIBRARY FUNCTIONS

User’s Manual U18548EJ1V0UM 249

stritoa, strltoa, strultoa

FUNCTION

- stritoa converts int to a character string.

- strltoa converts long to a character string.

- strultoa converts unsigned long to a character string.

HEADER

- stdlib.h

FUNCTION PROTOTYPE

- char *stritoa (int value , char *string , int radix) ;

- char *strltoa (long value , char *string , int radix) ;

- char *strultoa (unsigned long value , char *string , int radix) ;

EXPLANATION

- Converts the specified numeric value value to the character string that ends with a null character, and the

result will be stored to the area specified with string. The conversion is performed by the radix specified,

and the pointer to the converted character string will be returned.

- radix must be the value range between 2 to 36. In other cases, the conversion is not performed and a null

pointer is returned.

Function Arguments Return Value

stritoa,
strltoa,
strultoa

value:
Character string to convert

string:
Pointer to conversion result

radix:
Radix to specify

Normal:
Pointer to the converted character string

Others:
Null pointer

250 User’s Manual U18548EJ1V0UM

CHAPTER 10 LIBRARY FUNCTIONS

10.10 Character String/Memory Functions

The following character string/memory functions are available.

- memcpy, memmove

- strcpy, strncpy

- strcat, strncat

- memcmp

- strcmp, strncmp

- memchr

- strchr, strrchr

- strspn, strcspn

- strpbrk

- strstr

- strtok

- memset

- strerror

- strlen

- strcoll

- strxfrm

CHAPTER 10 LIBRARY FUNCTIONS

User’s Manual U18548EJ1V0UM 251

memcpy, memmove

FUNCTION

- The memory function memcpy copies a specified number of characters from a source area of memory to a

destination area of memory.

- The memory function memmove is identical to memcpy, except that it allows overlap between the source

and destination areas.

HEADER

- string.h

FUNCTION PROTOTYPE

- void *memcpy (void *s1, const void *s2 , size_t n) ;

- void *memmove (void *s1, const void *s2, size_t n) ;

EXPLANATION

memcpy

- The memcpy function copies n number of consecutive bytes from the object pointed to by s2 to the object

pointed to by s1.

- If s2 < s1 < s2 + n (s1 and s2 overlap), the memory copy operation by memcpy is not guaranteed

(because copying starts in sequence from the beginning of the area).

memmove

- The memmove function also copies n number of consecutive bytes from the object pointed to by s2 to the

object pointed to by s1.

- Even if s1 and s2 overlap, the function performs memory copying properly.

Function Arguments Return Value

memcpy,
memmove

s1:
Pointer to object into which data is to be
copied

s2:
 Pointer to object containing data to be
copied

n:
Number of characters to be copied

Value of s1

252 User’s Manual U18548EJ1V0UM

CHAPTER 10 LIBRARY FUNCTIONS

strcpy, strncpy

FUNCTION

- The string function strcpy is used to copy the contents of one character string to another.

- The string function strncpy is used to copy up to a specified number of characters from one character string

to another.

HEADER

- string.h

FUNCTION PROTOTYPE

- char *strcpy (char *s1 , const char *s2) ;

- char *strncpy (char *s1 , const char *s2 , size_t n) ;

EXPLANATION

strcpy

- The strcpy function copies the contents of the character string pointed to by s2 to the array pointed to by

s1 (including the terminating character).

- If s2 < s1 < (s2 + Character length to be copied), the behavior of strcpy is not guaranteed (as copying

starts in sequence from the beginning, not from the specified string).

strncpy

- The strncpy function copies up to the characters specified by n from the string pointed to by s2 to the

array pointed to by s1.

- If s2 < s1 < (s2 + Character length to be copied or minimum value of s2 + n - 1), the behavior of strncpy is

not guaranteed (as copying starts in sequence from the beginning, not from the specified string).

- If the character string pointed to by s2 is less than the number of characters specified by n, the strncpy

function copies characters up to the terminating null character, and appends null characters until the

number of copied characters reaches n.

Function Arguments Return Value

strcpy s1:
Pointer to copy destination array

s2:
Pointer to copy source array

Value of s1

strncpy s1:
Pointer to copy destination array

s2:
Pointer to copy source array

n:
Number of characters to be copied

Value of s1

CHAPTER 10 LIBRARY FUNCTIONS

User’s Manual U18548EJ1V0UM 253

strcat, strncat

FUNCTION

- The string function strcat concatenates one character string to another.

- The string function strncat concatenates up to a specified number of characters from one character string to

another.

HEADER

- string.h

FUNCTION PROTOTYPE

- char *strcat (char *s1 , const char *s2) ;

- char *strncat (char *s1 , const char *s2 , size_t n) ;

EXPLANATION

strcat

- The strcat function concatenates a copy of the string pointed to by s2 (including the null terminator) to the

string pointed to by s1. The null terminator originally ending s1 is overwritten by the first character of s2.

- When copying is performed between objects overlapping each other, the operation is not guaranteed.

strncat

- The strncat function concatenates not more than the characters specified by n of the string pointed to by

s2 (excluding the null terminator) to the string pointed to by s1. The null terminator originally ending s1 is

overwritten by the first character of s2.

- If the string pointed to by s2 has fewer characters than specified by n, the strncat function concatenates

the string including the null terminator. If there are more characters than specified by n, the n character

section is concatenated starting from the top.

- The null terminator must always be concatenated.

Function Arguments Return Value

strcat s1:
Pointer to a string to which a copy of
another string (s2) is to be concatenated

s2:
Pointer to a string, copy of which is to be
concatenated to another string (s1).

Value of s1

strncat s1:
Pointer to a string to which a copy of
another string (s2) is to be concatenated

s2:
Pointer to a string, copy of which is to be
concatenated to another string (s1).

n:
Number of characters to be concatenated

Value of s1

254 User’s Manual U18548EJ1V0UM

CHAPTER 10 LIBRARY FUNCTIONS

- When copying is performed between objects overlapping each other, the operation is not guaranteed.

CHAPTER 10 LIBRARY FUNCTIONS

User’s Manual U18548EJ1V0UM 255

memcmp

FUNCTION

- The memory function memcmp compares 2 data objects, with respect to a given number of characters.

HEADER

- string.h

FUNCTION PROTOTYPE

- int memcmp (const void *s1 , const void *s2 , size_t n) ;

EXPLANATION

- The memcmp function uses the n characters to compare the objects indicated by both s1 and s2.

- The memcmp function returns 0, when the n characters of both s1 and s2 are compared and found to be the

same.

- The memcmp function returns the value differences (s1 letters - s2 letters) that converted the initial differing

characters into int if, the n characters of both s1 and s2 are compared and found to be different.

Function Arguments Return Value

memcmp s1, s2:
Pointers to 2 data objects to be compared

n:
Number of characters to compare

If the n characters of both s1 and s2 are
compared and found to be the same:

0
If the n characters of both s1 and s2 are
compared and found to be different:

Value differences that converted the initial
differing characters into int (s1 letters - s2
letters)

256 User’s Manual U18548EJ1V0UM

CHAPTER 10 LIBRARY FUNCTIONS

strcmp, strncmp

FUNCTION

- The string function strcmp compares 2 character strings.

- The string function strncmp compares not more than a specified number of characters from 2 character

strings.

HEADER

- string.h

FUNCTION PROTOTYPE

- char *strcmp (char *s1 , const char *s2) ;

- char *strncmp (char *s1 , const char *s2 , size_t n) ;

EXPLANATION

strcmp

- The strcmp function uses to compare the character strings indicated by both s1 and s2.

- If s1 is equal to s2, the function returns 0. If s1 is less than or greater than s2, the strcmp function returns

the value differences (s1 letters - s2 letters) that converted the initial diffrering characters into int.

strncmp

- The strncmp function uses the n characters to compare the objects indicated by both s1 and s2.

- The strncmp function returns 0, when the n characters of both s1 and s2 are compared and found to be

the same. The strncmp function returns the value differences (s1 letters - s2 letters) that converted the

initial differing characters into int if, the n characters of both s1 and s2 are compared and found to be

different.

Function Arguments Return Value

strcmp s1:
Pointer to one string to be compared

s2:
Pointer to the other string to be compared

If s1 is equal to s2:
0

If s1 is less than or greater than s2:
Value differences that converted the initial
differing characters into int (s1 letters - s2
letters)

strncmp s1:
Pointer to one string to be compared

s2:
Pointer to the other string to be compared

n:
Number of characters to compare

If the n characters of both s1 and s2 are
compared and found to be the same:

0
If the n characters of both s1 and s2 are
compared and found to be different:

Value differences that converted the initial
differing characters into int (s1 letters - s2
letters)

CHAPTER 10 LIBRARY FUNCTIONS

User’s Manual U18548EJ1V0UM 257

memchr

FUNCTION

- The memory function memchr converts a specified character to unsigned char, searches for it, and returns a

pointer to the first occurrence of this character in an object of a given size.

HEADER

- string.h

FUNCTION PROTOTYPE

- void *memchr (const void *s , int c , size_t n) ;

EXPLANATION

- The memchr function first converts the character specified by c to unsigned char and then returns a pointer

to the first occurrence of this character within the n number of bytes from the beginning of the object pointed

to by s.

- If the character is not found, the function returns a null pointer.

Function Arguments Return Value

memchr s:
Pointer to objects in memory subject to
search

c:
Character to be searched

n:
Number of bytes to be searched

If c is found:
Pointer to the first occurrence of c

If c is not found:
Null pointer

258 User’s Manual U18548EJ1V0UM

CHAPTER 10 LIBRARY FUNCTIONS

strchr, strrchr

FUNCTION

- The string function strchr returns a pointer to the first occurrence of a specified character in a string.

- The string function strrchr returns a pointer to the last occurrence of a specified character in a string.

HEADER

- string.h

FUNCTION PROTOTYPE

- char *strchr (const char *s , int c) ;

- char *strrchr (const char *s , int c) ;

EXPLANATION

strchr

- The strchr function searches the string pointed to by s for the character specified by c and returns a

pointer to the first occurrence of c (converted to char type) in the string.

- The null terminator is regarded as part of the string.

- If the specified character is not found in the string, the function returns a null pointer.

strrchr

- The strrchr function searches the string pointed to by s for the character specified by c and returns a

pointer to the last occurrence of c (converted to char type) in the string.

- The null terminator is regarded as part of the string.

- If no match is found, the function returns a null pointer.

Function Arguments Return Value

strchr,
strrchr

s:
Pointer to string to be searched

c:
Character specified for search

If c is found in s:
Pointer indicating the first or last
occurrence of c in string s

If c is not found in s:
Null pointer

CHAPTER 10 LIBRARY FUNCTIONS

User’s Manual U18548EJ1V0UM 259

strspn, strcspn

FUNCTION

- The string function strspn returns the length of the initial substring of a string that is made up of only those

characters contained in another string.

- The string function strcspn returns the length of the initial substring of a string that is made up of only those

characters not contained in another string.

HEADER

- string.h

FUNCTION PROTOTYPE

- size_t strspn (const char *s1 , const char *s2) ;

- size_t strcspn (const char *s1 , const char *s2) ;

EXPLANATION

strspn

- The strspn function returns the length of the substring of the string pointed to by s1 that is made up of only

those characters contained in the string pointed to by s2. In other words, this function returns the index of

the first character in the string s1 that does not match any of the characters in the string s2.

- The null terminator of s2 is not regarded as part of s2.

strcspn

- The strcspn function returns the length of the substring of the string pointed to by s1 that is made up of

only those characters not contained in the string pointed to by s2. In other words, this function returns the

index of the first character in the string s1 that matches any of the characters in the string s2.

- The null terminator of s2 is not regarded as part of s2.

Function Arguments Return Value

strspn s1:
Pointer to string to be searched

s2:
Pointer to string whose characters are
specified for match

Length of substring of the string s1 that is
made up of only those characters contained
in the string s2

strcspn Length of substring of the string s1 that is
made up of only those characters not
contained in the s2

260 User’s Manual U18548EJ1V0UM

CHAPTER 10 LIBRARY FUNCTIONS

strpbrk

FUNCTION

- The string function strpbrk returns a pointer to the first character in a string to be searched that matches any

character in a specified string.

HEADER

- string.h

FUNCTION PROTOTYPE

- char *strpbrk (const char *s1 , const char *s2) ;

EXPLANATION

- The strpbrk function returns a pointer to the first character in the string pointed to by s1 that matches any

character in the string pointed to by s2.

- If none of the characters in the string s2 is found in the string s1, the function returns a null pointer.

Function Arguments Return Value

strpbrk s1:
Pointer to string to be searched

s2:
Pointer to string whose characters are
specified for match

If any match is found:
Pointer to the first character in the string
s1 that matches any character in the string
s2

If no match is found:
Null pointer

CHAPTER 10 LIBRARY FUNCTIONS

User’s Manual U18548EJ1V0UM 261

strstr

FUNCTION

- The string function strstr returns a pointer to the first occurrence in the string to be searched of a specified

string.

HEADER

- string.h

FUNCTION PROTOTYPE

- char *strstr (const char *s1 , const char *s2) ;

EXPLANATION

- The strstr function returns a pointer to the first appearance in the string pointed to by s1 of the string pointed

to by s2 (except the null terminator of s2).

- If the string s2 is not found in the string s1, the function returns a null pointer.

- If the string s2 is a null string, the function returns the value of s1.

Function Arguments Return Value

strstr s1:
Pointer to string to be searched

s2:
Pointer to specified string

If s2 is found in s1:
Pointer to the first appearance in the string
s1 of the string s2

If s2 is not found in s1:
Null pointer

If s2 is a null string:
Value of s1

262 User’s Manual U18548EJ1V0UM

CHAPTER 10 LIBRARY FUNCTIONS

strtok

FUNCTION

- The string function strtok returns a pointer to a token taken from a string (by decomposing it into a string

consisting of characters other than delimiters).

HEADER

- string.h

FUNCTION PROTOTYPE

- char *strtok (char *s1 , const char *s2) ;

EXPLANATION

- A token is a string consisting of characters other than delimiters in the string to be specified.

- If s1 is a null pointer, the string pointed to by the saved pointer in the previous strtok call will be

decomposed. However, if the saved pointer is a null pointer, the function returns a null pointer without doing

anything.

- If s1 is not a null pointer, the string pointed to by s1 will be decomposed.

- The strtok function searches the string pointed to by s1 for any character not contained in the string pointed

to by s2. If no character is found, the function changes the saved pointer to a null pointer and returns it. If

any character is found, the character becomes the first character of a token.

- If the first character of a token is found, the function searches for any characters contained in the string s2

after the first character of the token. If none of the characters is found, the function changes the saved

pointer to a null pointer. If any of the characters is found, the character is overwritten by a null character and

a pointer to the next character becomes a pointer to be saved.

- The function returns a pointer to the first character of the token.

Function Arguments Return Value

strtok s1:
Pointer to string from which tokens are to
be obtained or null pointer

s2:
Pointer to string containing delimiters of
token

If it is found:
Pointer to the first character of a token

If there is no token to return:
Null pointer

CHAPTER 10 LIBRARY FUNCTIONS

User’s Manual U18548EJ1V0UM 263

memset

FUNCTION

- The memory function memset initializes a specified number of bytes in an object in memory with a specified

character.

HEADER

- string.h

FUNCTION PROTOTYPE

- void *memset (void *s , int c , size_t n) ;

EXPLANATION

- The memset function first converts the character specified by c to unsigned char and then assigns the value

of this character to the n number of bytes from the beginning of the object pointed to by s.

Function Arguments Return Value

memset s:
Pointer to object in memory to be
initialized

c:
Character whose value is to be assigned
to each byte

n:
Number of bytes to be initialized

Value of s

264 User’s Manual U18548EJ1V0UM

CHAPTER 10 LIBRARY FUNCTIONS

strerror

FUNCTION

- The strerror function returns a pointer to the location which stores a string describing the error message

associated with a given error number.

HEADER

- string.h

FUNCTION PROTOTYPE

- char *strerror (int errnum) ;

EXPLANATION

- The strerror function returns the following values associated with the value of errnum.

Function Arguments Return Value

strerror errnum:
Error number

If message associated with error number
exists:

Pointer to string describing error message
If no message associated with error number
exists:

Null pointer

Value of errnum Return Values

0 Pointer to the string "Error 0"

1 (EDOM) Pointer to the string "Argument too large"

2 (ERANGE) Pointer to the string "Result too large"

3 (ENOMEM) Pointer to the string "Not enough memory"

Others Null pointer

CHAPTER 10 LIBRARY FUNCTIONS

User’s Manual U18548EJ1V0UM 265

strlen

FUNCTION

- The string function strlen returns the length of a character string.

HEADER

- string.h

FUNCTION PROTOTYPE

- size_t strlen (const char *s) ;

EXPLANATION

- The strlen function returns the length of the null terminated string pointed to by s.

Function Arguments Return Value

strlen s:
Pointer to character string

Length of string s

266 User’s Manual U18548EJ1V0UM

CHAPTER 10 LIBRARY FUNCTIONS

strcoll

FUNCTION

- strcoll compares 2 character strings based on the information specific to the area.

HEADER

- string.h

FUNCTION PROTOTYPE

- int strcoll (const char *s1 , const char *s2) ;

EXPLANATION

- The CC78K0R does not support operations specific to cultural sphere.

The operations are the same as that of strcmp.

Function Arguments Return Value

strcoll s1:
Pointer to comparison character string

s2:
Pointer to comparison character string

When character strings s1 and s2 are equal:
 0

When character strings s1 and s2 are
different:

The difference between the values whose
first different characters are converted to
int (character of s1 - character of s2)

CHAPTER 10 LIBRARY FUNCTIONS

User’s Manual U18548EJ1V0UM 267

strxfrm

FUNCTION

- strxfrm converts a character string based on the information specific to the area.

HEADER

- string.h

FUNCTION

- size_t strxfrm (char *s1 , const char *s2 , size_t n) ;

EXPLANATION

- The CC78K0R does not support operations specific to cultural sphere.

The operations are the same as those of the following functions.

strncpy (s1 , s2 , c) ;

return (strlen (s2)) ;

Function Arguments Return Value

strxfrm s1:
Pointer to a compared character string

s2:
Pointer to a compared character string

n:
Maximum number of characters to s1

Returns the length of the character string of
the result of the conversion (does not
include a character string to indicate the
end).
If the returned value is n or more, the
contents of the array indicated by s1 is
undefined.

268 User’s Manual U18548EJ1V0UM

CHAPTER 10 LIBRARY FUNCTIONS

10.11 Mathematical Functions

The following mathematical functions are available.

- acos

- asin

- atan

- atan2

- cos

- sin

- tan

- cosh

- sinh

- tanh

- exp

- frexp

- ldexp

- log

- log10

- modf

- pow

- sqrt

- ceil

- fabs

- floor

- fmod

- matherr

- acosf

- asinf

- atanf

- atan2f

- cosf

- sinf

- tanf

CHAPTER 10 LIBRARY FUNCTIONS

User’s Manual U18548EJ1V0UM 269

- coshf

- sinhf

- tanhf

- expf

- frexpf

- ldexpf

- logf

- log10f

- modff

- powf

- sqrtf

- ceilf

- fabsf

- floorf

- fmodf

270 User’s Manual U18548EJ1V0UM

CHAPTER 10 LIBRARY FUNCTIONS

acos

FUNCTION

- acos finds acos.

HEADER

- math.h

FUNCTION PROTOTYPE

- double acos (double x) ;

EXPLANATION

- Calculates acos of x (range between 0 and π).

- In the case of the definition area error of x < -1, 1 < x, NaN is returned and EDOM is set.

- When x is non-numeric, NaN is returned.

Function Arguments Return Value

acos x:
Numeric value to perform operation

When -1 ≤ x ≤ 1:
acos of x

When x < -1, 1 < x, x = NaN:
NaN

CHAPTER 10 LIBRARY FUNCTIONS

User’s Manual U18548EJ1V0UM 271

asin

FUNCTION

- asin finds asin.

HEADER

- math.h

FUNCTION PROTOTYPE

- double asin (double x) ;

EXPLANATION

- Calculates asin (range between -π /2 and +π /2) of x.

- In the case of area error of x < -1, 1 < x, NaN is returned and EDOM is set to errno.

- When x is non-numeric, NaN is returned.

- When x is -0, -0 is returned.

- If underflow occurs as a result of conversion, a non-normalized number is returned.

Function Arguments Return Value

asin x:
Numeric value to perform operation

When -1 ≤ x ≤ 1:
asin of x

When x < -1, 1 < x, x = NaN:
NaN

When x = -0:
-0

When underflow occurs:
Non-normalized number

272 User’s Manual U18548EJ1V0UM

CHAPTER 10 LIBRARY FUNCTIONS

atan

FUNCTION

- atan finds atan.

HEADER

- math.h

FUNCTION PROTOTYPE

- double atan (double x) ;

EXPLANATION

- Calculates atan (range between -π /2 and +π /2) of x.

- When x is non-numeric, NaN is returned.

- When x is -0, -0 is returned.

- If underflow occurs as a result of conversion, a non-normalized number is returned.

Function Arguments Return Value

atan x:
Numeric value to perform operation

Normal:
atan of x

When x = NaN:
NaN

When x = -0:
-0

When underflow occurs:
Non-normalized number

CHAPTER 10 LIBRARY FUNCTIONS

User’s Manual U18548EJ1V0UM 273

atan2

FUNCTION

- atan2 finds atan of y/x.

HEADER

- math.h

FUNCTION PROTOTYPE

- double atan2 (double y , double x) ;

EXPLANATION

- atan (range between -π and +π) of y/x is calculated.

- When both x and y are 0 or y/x is the value that cannot be expressed, or when both x and y are infinite, NaN

is returned and EDOM is set to errno.

- If either x or y is non-numeric, NaN is returned.

- If underflow occurs as a result of operation, non-normalized number is returned.

Function Arguments Return Value

atan2 x:
Numeric value to perform operation

y:
Numeric value to perform operation

Normal:
atan of y/x

When both x and y are 0 or y/x is the value
that cannot be expressed, or either x or y is
NaN and both x and y are +∞:

NaN
When underflow occurs:

Non-normalized number

274 User’s Manual U18548EJ1V0UM

CHAPTER 10 LIBRARY FUNCTIONS

cos

FUNCTION

- cos finds cos.

HEADER

- math.h

FUNCTION PROTOTYPE

- double cos (double x) ;

EXPLANATION

- Calculates cos of x.

- If x is non-numeric, NaN is returned.

- If x is infinite, NaN is returned and EDOM is set to errno.

- If the absolute value of x is extremely large, the result of an operation becomes an almost meaningless

value.

Function Arguments Return Value

cos x:
Numeric value to perform operation

Normal:
cos of x

When x = NaN, when x is infinite:
NaN

CHAPTER 10 LIBRARY FUNCTIONS

User’s Manual U18548EJ1V0UM 275

sin

FUNCTION

- sin finds sin.

HEADER

- math.h

FUNCTION PROTOTYPE

- double sin (double x) ;

EXPLANATION

- Calculates sin of x.

- If x is non-numeric, NaN is returned.

- If x is infinite, NaN is returned and EDOM is set to errno.

- If underflow occurs as a result of operation, a non-normalized number is returned.

- If the absolute value of x is extremely large, the result of an operation becomes an almost meaningless

value.

Function Arguments Return Value

sin x:
Numeric value to perform operation

Normal:
sin of x

When x = NaN, when x is infinite:
NaN

When underflow occurs:
Non-normalized number

276 User’s Manual U18548EJ1V0UM

CHAPTER 10 LIBRARY FUNCTIONS

tan

FUNCTION

- tan finds tan.

HEADER

- math.h

FUNCTION PROTOTYPE

- double tan (double x) ;

EXPLANATION

- Calculates tan of x.

- If x is non-numeric, NaN is returned.

- If x is infinite, NaN is returned and EDOM is set to errno.

- If underflow occurs as a result of operation, a non-normalized number is returned.

- If the absolute value of x is extremely large, the result of an operation becomes an almost meaningless

value.

Function Arguments Return Value

tan x:
Numeric value to perform operation

Normal:
tan of x

When x = NaN, x = +∞:
NaN

When underflow occurs:
Non-normalized number

CHAPTER 10 LIBRARY FUNCTIONS

User’s Manual U18548EJ1V0UM 277

cosh

FUNCTION

- cosh finds cosh.

HEADER

- math.h

FUNCTION PROTOTYPE

- double cosh (double x) ;

EXPLANATION

- Calculates cosh of x.

- If x is non-numeric, NaN is returned.

- If x is infinite, a positive infinite value is returned.

- If overflow occurs as a result of operation, HUGE_VAL with a positive sign is returned, and ERANGE is set

to errno.

Function Arguments Return Value

cosh x:
Numeric value to perform operation

Normal:
cosh of x

x = NaN:
NaN

x = +∞:
+∞

When overflow occurs
HUGE_VAL (with the sign of the overflown
value)

278 User’s Manual U18548EJ1V0UM

CHAPTER 10 LIBRARY FUNCTIONS

sinh

FUNCTION

- sinh finds sinh.

HEADER

- math.h

FUNCTION PROTOTYPE

- double sinh (double x) ;

EXPLANATION

- Calculates sinh of x.

- If x is non-numeric, NaN is returned.

- If x is +∞, +∞ is returned.

- If overflow occurs as a result of operation, HUGE_VAL with the sign of the overflown value is returned, and

ERANGE is set to errno.

- If underflow occurs as a result of operation, +0 is returned.

Function Arguments Return Value

sinh x:
Numeric value to perform operation

Normal:
sinh of x

When x = NaN:
NaN

When x = +∞:
+∞

When overflow occurs:
HUGE_VAL (with the sign of the overflown
value)

When underflow occurs:
+0

CHAPTER 10 LIBRARY FUNCTIONS

User’s Manual U18548EJ1V0UM 279

tanh

FUNCTION

- tanh finds tanh.

HEADER

- math.h

FUNCTION PROTOTYPE

- double tanh (double x) ;

EXPLANATION

- Calculates tanh of x.

- If x is non-numeric, NaN is returned.

- If x is +∞, +1 is returned.

- If underflow occurs as a result of operation, +0 is returned.

Function Arguments Return Value

tanh x:
Numeric value to perform operation

Normal:
tanh of x

When x = NaN:
NaN

When x = +∞:
+1

When underflow occurs:
+0

280 User’s Manual U18548EJ1V0UM

CHAPTER 10 LIBRARY FUNCTIONS

exp

FUNCTION

- exp finds exponent function.

HEADER

- math.h

FUNCTION PROTOTYPE

- double exp (double x) ;

EXPLANATION

- Calculates exponent function of x.

- If x is non-numeric, NaN is returned.

- If x is +∞, +∞ is returned.

- If x is -∞, +0 is returned.

- If underflow occurs as a result of operation, non-normalized number is returned.

- If annihilation of valid digits due to underflow occurs as a result of operation, +0 is returned.

- If overflow occurs as a result of operation, HUGE_VAL with a positive sign is returned and ERANGE is set to

errno.

Function Arguments Return Value

exp x:
Numeric value to perform operation

Normal:
Exponent function of x

When x = NaN:
NaN

When x = +∞:
+∞

When x = -∞:
+0

When underflow occurs:
Non-normalized number

When annihilation of valid digits occurs due
to underflow:

+0
When overflow occurs:

HUGE_VQAL (with positive sign)

CHAPTER 10 LIBRARY FUNCTIONS

User’s Manual U18548EJ1V0UM 281

frexp

FUNCTION

- frexp finds mantissa and exponent part.

HEADER

- math.h

FUNCTION PROTOTYPE

- double frexp (double x , int *exp) ;

EXPLANATION

- Divide a floating point number x to mantissa m and exponent n such as x = m * 2 ^ n and returns mantissa

m.

- Exponent n is stored where the pointer exp indicates. The absolute value of m, however, is 0.5 or more and

less than 1.0.

- If x is non-numeric, NaN is returned and the value of *exp is 0.

- If x is infinite, NaN is returned, and EDOM is set to errno with the value of *exp as 0.

- If x is +0, +0 is returned and the value of *exp is 0.

Function Arguments Return Value

frexp x:
Numeric value to perform operation

exp:
Pointer to store exponent part

Normal:
Mantissa of x

When x = NaN, x = +∞:
NaN

When x = +0:
+0

282 User’s Manual U18548EJ1V0UM

CHAPTER 10 LIBRARY FUNCTIONS

ldexp

FUNCTION

- ldexp finds x * 2 ^ exp.

HEADER

- math.h

FUNCTION PROTOTYPE

- double ldexp (double x , int exp) ;

EXPLANATION

- Calculates x * 2 ^ exp.

- If x is non-numeric, NaN is returned.

- If x is +∞, +∞ is returned.

- If x is +0, +0 is returned.

- If overflow occurs as a result of operation, HUGE_VAL with the overflown value is returned and ERANGE is

set to errno.

- If underflow occurs as a result of operation, non-normalized number is returned.

- If annihilation of valid digits due to underflow occurs as a result of operation, +0 is returned.

Function Arguments Return Value

ldexp x:
Numeric value to perform operation

exp:
Exponentiation

Normal:
x * 2 ^ exp

When x = NaN:
NaN

When x = +∞:
+∞

When x = +0:
+0

When overflow occurs:
HUGE_VAL (with the sign of the overflown
value)

When underflow occurs:
Non-normalized number

When annihilation of valid digits occurs due
to underflow:

+0

CHAPTER 10 LIBRARY FUNCTIONS

User’s Manual U18548EJ1V0UM 283

log

FUNCTION

- log finds natural logarithm.

HEADER

- math.h

FUNCTION PROTOTYPE

- double log (double x) ;

EXPLANATION

- Finds natural logarithm of x.

- In the case of area error of x < 0, NaN is returned, EDOM is set to errno.

- If x = 0, -∞ is returned, and ERANGE is set to errno.

- If x is non-numeric, NaN is returned.

- If x is +∞, +∞ is returned.

Function Arguments Return Value

log x:
Numeric value to perform operation

Normal:
Natural logarithm of x

When x < 0:
NaN

When x = 0:
-∞

When x is non-numeric:
NaN

When x is infinite:
+∞

284 User’s Manual U18548EJ1V0UM

CHAPTER 10 LIBRARY FUNCTIONS

log10

FUNCTION

- log10 finds logarithm with 10 as the base.

HEADER

- math.h

FUNCTION PROTOTYPE

- double log10 (double x) ;

EXPLANATION

- Finds logarithm with 10 of x as the base.

- In the case of area error of x < 0, NaN is returned, EDOM is set to errno.

- If x = 0, -∞ is returned, and ERANGE is set to errno.

- If x is non-numeric, NaN is returned.

- If x is +∞, +∞ is returned.

Function Arguments Return Value

log10 x:
Numeric value to perform operation

Normal:
Logarithm with 10 of x as the base

When x < 0:
NaN

When x = 0:
-∞

When x is non-numeric:
NaN

When x is infinite:
+∞

CHAPTER 10 LIBRARY FUNCTIONS

User’s Manual U18548EJ1V0UM 285

modf

FUNCTION

- modf finds fraction part and integer part.

HEADER

- math.h

FUNCTION PROTOTYPE

- double modf (double x , double *iptr) ;

EXPLANATION

- Divides a floating point number x to fraction part and integer part

- Returns fraction part with the same sign as that of x, and stores the integer part to the location indicated by

the pointer iptr.

- If x is non-numeric, NaN is returned and stored to the location indicated by the pointer iptr.

- If x is infinite, NaN is returned and stored to the location indicated by the pointer iptr, and EDOM is set to

errno.

- If x = +0, +0 is stored to the location indicated by the pointer iptr.

Function Arguments Return Value

modf x:
Numeric value to perform operation

iptr:
Pointer to integer part

Normal:
Fraction part of x

When x is non-numeric or infinite:
NaN

When x is +0:
+0

286 User’s Manual U18548EJ1V0UM

CHAPTER 10 LIBRARY FUNCTIONS

pow

FUNCTION

- pow finds yth power of x.

HEADER

- math.h

FUNCTION PROTOTYPE

- double pow (double x , double y) ;

EXPLANATION

- Calculates x ^ y.

- When x = NaN or y = NaN, NaN is returned.

- Either when x = +∞ and y = 0, x < 0 and y ≠ integer, x < 0 and y = +∞ or x = 0 and y ≤ 0, NaN is returned and

EDOM is set to errno.

- If overflow occurs as a result of operation, HUGE_VAL with the sign of overflown value is returned, and

ERANGE is set to errno.

- If underflow occurs, a non-normalized number is returned.

- If annihilation of valid digits occurs due to underflow, +0 is returned.

Function Arguments Return Value

pow x:
Numeric value to perform operation

y:
Multiplier

Normal:
x ^ y

Either when x = NaN or y = NaN,
x = +∞ and y = 0
x < 0 and y ≠ integer,
x < 0 and y = +∞,
x = 0 and y ≤ 0:

NaN
When overflow occurs:

HUGE_VAL (with the sign of overflown
value)

When underflow occurs:
Non-normalized number

When annihilation of valid digits occurs due
to underflow:

+0

CHAPTER 10 LIBRARY FUNCTIONS

User’s Manual U18548EJ1V0UM 287

sqrt

FUNCTION

- sqrt finds square root.

HEADER

- math.h

FUNCTION PROTOTYPE

- double sqrt (double x) ;

EXPLANATION

- Calculates the square root of x.

- In the case of area error of x < 0, 0 is returned and EDOM is set to errno.

- If x is non-numeric, NaN is returned.

- If x is +0, +0 is returned.

Function Arguments Return Value

sqrt x:
Numeric value to perform operation

When x ≥ 0:
Square root of x

When x < 0:
0

When x = NaN:
NaN

When x = +0:
+0

288 User’s Manual U18548EJ1V0UM

CHAPTER 10 LIBRARY FUNCTIONS

ceil

FUNCTION

- ceil finds the minimum integer no less than x.

HEADER

- math.h

FUNCTION PROTOTYPE

- double ceil (double x) ;

EXPLANATION

- Finds the minimum integer no less than x.

- If x is non-numeric, NaN is returned.

- If x is infinite, NaN is returned and EDOM is set to errno.

- If x is -0, +0 is returned.

- If the minimum integer no less than x cannot be expressed, x is returned.

Function Arguments Return Value

ceil x:
Numeric value to perform operation

Normal:
The minimum integer no less than x

When x is non-numeric or when x is infinite:
NaN

When x = -0:
+0

When the minimum integer no less than x
cannot be expressed:

x

CHAPTER 10 LIBRARY FUNCTIONS

User’s Manual U18548EJ1V0UM 289

fabs

FUNCTION

- fabs returns the absolute value of the floating point number x .

HEADER

- math.h

FUNCTION PROTOTYPE

- double fabs (double x) ;

EXPLANATION

- Finds the absolute value of x.

- If x is non-numeric, NaN is returned.

- If x is -0, +0 is returned.

Function Arguments Return Value

fabs x:
Numeric value to find the absolute value

Normal:
Absolute value of x

When x is non-numeric:
NaN

When x = -0:
+0

290 User’s Manual U18548EJ1V0UM

CHAPTER 10 LIBRARY FUNCTIONS

floor

FUNCTION

- floor finds the maximum integer no more than x.

HEADER

- math.h

FUNCTION PROTOTYPE

- double floor (double x) ;

EXPLANATION

- Finds the maximum integer no more than x.

- If x is non-numeric, NaN is returned.

- If x is infinite, NaN is returned and EDOM is set to errno.

- If x is -0, +0 is returned.

- If the maximum integer no more than x cannot be expressed, x is returned.

Function Arguments Return Value

floor x:
Numeric value to perform operation

Normal:
The maximum integer no more than x

When x is non-numeric or when x is infinite:
NaN

When x = -0:
+0

When the maximum integer no more than x
cannot be expressed:

x

CHAPTER 10 LIBRARY FUNCTIONS

User’s Manual U18548EJ1V0UM 291

fmod

FUNCTION

- fmod finds the remainder of x/y.

HEADER

- math.h

FUNCTION PROTOTYPE

- double fmod (double x , double y) ;

EXPLANATION

- Calculates the remainder of x/y expressed with x - i * y. i is an integer.

- If y ≠ 0, the return value has the same sign as that of x and the absolute value is less than that of y.

- If x is non-numeric or y is non-numeric, NaN is returned.

- If y is +0 or x = +∞, NaN is returned and EDOM is set to errno.

- If y is infinite, x is returned unless x is infinite.

Function Arguments Return Value

fmod x:
Numeric value to perform operation

y:
Numeric value to perform operation

Normal:
Remainder of x/y

When x is non-numeric or y is non-numeric,
when y is +0, when x is +∞:

NaN
When x ≠ ∞ and y = +∞:

x

292 User’s Manual U18548EJ1V0UM

CHAPTER 10 LIBRARY FUNCTIONS

matherr

FUNCTION

- matherr performs exception processing of the library that deals with floating point numbers.

HEADER

- math.h

FUNCTION PROTOTYPE

- void matherr (struct exception *x) ;

EXPLANATION

- When an exception is generated, matherr is automatically called in the standard library and run-time library

that deal with floating-point numbers.

- When called from the standard library, EDOM and ERANGE are set to errno.

The following shows the relationship between the arithmetic exception type and errno.

Original error processing can be performed by changing or creating matherr.

Function Arguments Return Value

matherr struct exception {
 int type;
 char *name;
}

type:
Numeric value to indicate arithmetic
exception

name:
Function name

None

Type Arithmetic Exception Value Set to errno

1 Underflow ERANGE

2 Annihilation ERANGE

3 Overflow ERANGE

4 Zero division EDOM

5 Inoperable EDOM

CHAPTER 10 LIBRARY FUNCTIONS

User’s Manual U18548EJ1V0UM 293

acosf

FUNCTION

- acosf finds acos.

HEADER

- math.h

FUNCTION PROTOTYPE

- float acosf (float x) ;

EXPLANATION

- Calculates acos (range between 0 and π) of x.

- In the case of definition area error of x < -1, 1 < x, NaN is returned and EDOM is set to errno.

- If x is non-numeric, NaN is returned.

Function Arguments Return Value

acosf x:
Numeric value to perform operation

When -1 ≤ x ≤ 1:
acos of x

When x < -1, 1 < x, x = NaN:
NaN

294 User’s Manual U18548EJ1V0UM

CHAPTER 10 LIBRARY FUNCTIONS

asinf

FUNCTION

- asinf finds asin.

HEADER

- math.h

FUNCTION PROTOTYPE

- float asinf (float x) ;

EXPLANATION

- Calculates asin (range between -π /2 and +π /2) of x.

- In the case of definition area error of x < -1, 1 < x, NaN is returned and EDOM is set to errno.

- If x is non-numeric, NaN is returned.

- If x = -0, -0 is returned.

- If underflow occurs as a result of operation, a non-normalized number is returned.

Function Arguments Return Value

asinf x:
Numeric value to perform operation

When -1 ≤ x ≤ 1:
asin of x

When x < -1, 1 < x, x = NaN:
NaN

x = -0:
-0

When underflow occurs:
Non-normalized number

CHAPTER 10 LIBRARY FUNCTIONS

User’s Manual U18548EJ1V0UM 295

atanf

FUNCTION

- atanf finds atan.

HEADER

- math.h

FUNCTION PROTOTYPE

- float atanf (float x) ;

EXPLANATION

- Calculates atan (range between -π /2 and +π /2) of x.

- If x is non-numeric, NaN is returned.

- If x = -0, -0 is returned.

- If underflow occurs as a result of operation, a non-normalized number is returned.

Function Arguments Return Value

atanf x:
Numeric value to perform operation

Normal:
atan of x

When x = NaN:
NaN

When x = -0:
-0

When underflow occurs:
Non-normalized number

296 User’s Manual U18548EJ1V0UM

CHAPTER 10 LIBRARY FUNCTIONS

atan2f

FUNCTION

- atan2f finds atan of y/x.

HEADER

- math.h

FUNCTION PROTOTYPE

- float atan21 (float y , float x) ;

EXPLANATION

- Calculates atan (range between -π and +π) of y/x. When both x and y are 0 or the value whose y/x cannot

be expressed, or when both x and y are infinite, NaN is returned and EDOM is set to errno.

- When either x or y is non-numeric, NaN is returned.

- If underflow occurs as a result of operation, a non-normalized number is returned.

Function Arguments Return Value

atan2f x:
Numeric value to perform operation

y:
Numeric value to perform operation

Normal:
atan of y/x

When both x and y are 0 or a value whose y/
x cannot be expressed, or either x or y is
NaN, both x and y are infinite:

NaN
When underflow occurs:

Non-normalized number

CHAPTER 10 LIBRARY FUNCTIONS

User’s Manual U18548EJ1V0UM 297

cosf

FUNCTION

- cosf finds cos.

HEADER

- math.h

FUNCTION PROTOTYPE

- float cosf (float x) ;

EXPLANATION

- Calculates cos of x.

- If x is non-numeric, NaN is returned.

- If x is infinite, NaN is returned and EDOM is set to errno.

- If the absolute value of x is extremely large, the result of an operation becomes an almost meaningless

value.

Function Arguments Return Value

cosf x:
Numeric value to perform operation

Normal:
cos of x

When x = NaN, x is infinite:
NaN

298 User’s Manual U18548EJ1V0UM

CHAPTER 10 LIBRARY FUNCTIONS

sinf

FUNCTION

- sinf finds sin.

HEADER

- math.h

FUNCTION PROTOTYPE

- float sinf (float x) ;

EXPLANATION

- Calculates sin of x.

- If x is non-numeric, NaN is returned.

- If x is infinite, NaN is returned and EDOM is set to errno.

- If underflow occurs as a result of operation, a non-normalized number is returned.

- If the absolute value of x is extremely large, the result of an operation becomes an almost meaningless

value.

Function Arguments Return Value

sinf x:
Numeric value to perform operation

Normal:
sin of x

When x = NaN, when x is infinite:
NaN

When underflow occurs:
Non-normalized number

CHAPTER 10 LIBRARY FUNCTIONS

User’s Manual U18548EJ1V0UM 299

tanf

FUNCTION

- tanf finds tan.

HEADER

- math.h

FUNCTION PROTOTYPE

- float tanf (float x) ;

EXPLANATION

- Calculates tan of x.

- If x is non-numeric, NaN is returned.

- If x is infinite, NaN is returned and EDOM is set to errno.

- If underflow occurs as a result of operation, a non-normalized number is returned.

- If the absolute value of x is extremely large, the result of an operation becomes an almost meaningless

value.

Function Arguments Return Value

tanf x:
Numeric value to perform operation

Normal:
tan of x

When x = NaN, when x is infinite:
NaN

When underflow occurs:
Non-normalized number

300 User’s Manual U18548EJ1V0UM

CHAPTER 10 LIBRARY FUNCTIONS

coshf

FUNCTION

- coshf finds cosh.

HEADER

- math.h

FUNCTION PROTOTYPE

- float coshf (float x) ;

EXPLANATION

- Calculates cosh of x.

- If x is non-numeric, NaN is returned.

- If x is infinite, positive infinite value is returned.

- If overflow occurs as a result of operation, HUGE_VAL with a positive sign is returned and ERANGE is set to

errno.

Function Arguments Return Value

coshf x:
Numeric value to perform operation

Normal:
cosh of x

x = NaN:
NaN

When x is infinite:
+∞

When overflow occurs:
HUGE_VAL (with a positive sign)

CHAPTER 10 LIBRARY FUNCTIONS

User’s Manual U18548EJ1V0UM 301

sinhf

FUNCTION

- sinhf finds sinh.

HEADER

- math.h

FUNCTION PROTOTYPE

- float sinhf (float x) ;

EXPLANATION

- Calculates sinh of x.

- If x is non-numeric, NaN is returned.

- If x is +∞, +∞ is returned.

- If overflow occurs as a result of operation, HUGE_VAL with the sign of overflown value is returned and

ERANGE is set to errno.

- If underflow occurs as a result of operation, +0 is returned.

Function Arguments Return Value

sinhf x:
Numeric value to perform operation

Normal:
sinh of x

x = NaN:
NaN

When x = +∞:
+∞

When overflow occurs:
HUGE_VAL (with a sign of the overflown
value)

When underflow occurs:
+0

302 User’s Manual U18548EJ1V0UM

CHAPTER 10 LIBRARY FUNCTIONS

tanhf

FUNCTION

- tanhf finds tanh.

HEADER

- math.h

FUNCTION PROTOTYPE

- float tanhf (float x) ;

EXPLANATION

- Calculates tanh of x.

- If x is non-numeric, NaN is returned.

- If x is +∞, +1 is returned.

- If underflow occurs as a result of operation, +0 is returned.

Function Arguments Return Value

tanhf x:
Numeric value to perform operation

Normal:
tanh of x

x = NaN:
NaN

When x = +∞:
+1

When underflow occurs:
+0

CHAPTER 10 LIBRARY FUNCTIONS

User’s Manual U18548EJ1V0UM 303

expf

FUNCTION

- expf finds exponent function.

HEADER

- math.h

FUNCTION PROTOTYPE

- float expf (float x) ;

EXPLANATION

- Calculates exponent function of x.

- If x is non-numeric, NaN is returned.

- If x is +∞, +∞ is returned.

- If x is -∞, +0 is returned.

- If overflow occurs as a result of operation, HUGE_VAL with a positive sign is returned and ERANGE is set to

errno.

- If underflow occurs as a result of operation, non-normalized number is returned.

- If annihilation of effective digits occurs due to underflow as a result of operation, +0 is returned.

Function Arguments Return Value

expf x:
Numeric value to perform operation

Normal:
Exponent function of x

x = NaN:
NaN

When x = +∞:
+∞

When x = -∞:
+0

When overflow occurs:
HUGE_VAL (with positive sign)

When underflow occurs:
Non-normalized number

When annihilation of effective digits occurs
due to underflow:

+0

304 User’s Manual U18548EJ1V0UM

CHAPTER 10 LIBRARY FUNCTIONS

frexpf

FUNCTION

- frexpf finds mantissa and exponent part.

HEADER

- math.h

FUNCTION PROTOTYPE

- float frexpf (float x , int *exp) ;

EXPLANATION

- Divides a floating-point number x to mantissa m and exponent n such as x = m * 2 ^ n and returns mantissa

m.

- Exponent n is stored in where the pointer exp indicates. The absolute value of m, however, is 0.5 or more

and less than 1.0.

- If x is non-numeric, NaN is returned and the value of *exp is 0.

- If x is +∞, NaN is returned, and EDOM is set to errno with the value of *exp as 0.

- If x is +0, +0 is returned and the value of *exp is 0.

Function Arguments Return Value

frexpf x:
Numeric value to perform operation

exp:
Pointer to store exponent part

Normal:
Mantissa of x

When x = NaN, x = +∞:
NaN

When x = +0:
+0

CHAPTER 10 LIBRARY FUNCTIONS

User’s Manual U18548EJ1V0UM 305

ldexpf

FUNCTION

- ldexpf finds x * 2 ^ exp.

HEADER

- math.h

FUNCTION PROTOTYPE

- float ldexpf (float x , int exp) ;

EXPLANATION

- Calculates x * 2 ^ exp.

- If x is non-numeric, NaN is returned. If x is +∞, +∞ is returned. If x is +0, +0 is returned.

- If overflow occurs as a result of operation, HUGE_VAL with the sign of overflown value is returned and

ERANGE is set to errno.

- If underflow occurs as a result of operation, non-normalized number is returned .

- If annihilation of valid digits due to underflow occurs as a result of operation, +0 is returned.

Function Arguments Return Value

ldexpf x:
Numeric value to perform operation

exp:
Exponentiation

Normal:
x * 2 ^ exp

When x = NaN:
NaN

When x = +∞:
+∞

When x = +0:
+0

When overflow occurs:
HUGE_VAL (with the sign of overflown
value)

When underflow occurs:
Non-normalized number

When annihilation of valid digits occurs due
to underflow:

+0

306 User’s Manual U18548EJ1V0UM

CHAPTER 10 LIBRARY FUNCTIONS

logf

FUNCTION

- logf finds natural logarithm.

HEADER

- math.h

FUNCTION PROTOTYPE

- float logf (float x) ;

EXPLANATION

- Finds natural logarithm of x.

- In the case of area error of x < 0, NaN is returned, and EDOM is set to errno.

- If x = 0, -∞ is returned, and ERANGE is set to errno.

- If x is non-numeric, NaN is returned.

- If x is +∞, +∞ is returned.

Function Arguments Return Value

logf x:
Numeric value to perform operation

Normal:
Natural logarithm of x

When x < 0:
NaN

When x = 0:
-∞

When x is non-numeric:
NaN

When x is infinite:
+∞

CHAPTER 10 LIBRARY FUNCTIONS

User’s Manual U18548EJ1V0UM 307

log10f

FUNCTION

- log10f finds logarithm with 10 as the base.

HEADER

- math.h

FUNCTION PROTOTYPE

- float log10f (float x) ;

EXPLANATION

- Finds logarithm with 10 of x as the base.

- In the case of area error of x < 0, NaN is returned, and EDOM is set to errno.

- If x = 0, -∞ is returned, and ERANGE is set to errno.

- If x is non-numeric, NaN is returned.

- If x is +∞, +∞ is returned.

Function Arguments Return Value

log10f x:
Numeric value to perform operation

Normal:
Logarithm with 10 of x as the base

When x < 0:
NaN

When x = 0:
-∞

When x is non-numeric:
NaN

When x = +∞:
+∞

308 User’s Manual U18548EJ1V0UM

CHAPTER 10 LIBRARY FUNCTIONS

modff

FUNCTION

- modff finds fraction part and integer part.

HEADER

- math.h

FUNCTION PROTOTYPE

- float modff (float x , float *iptr) ;

EXPLANATION

- Divides a floating point number x to fraction part and integer part.

- Returns fraction part with the same sign as that of x, and stores integer part to location indicated by the

pointer iptr.

- If x is non-numeric, NaN is returned and stored location indicated by the pointer iptr.

- If x is infinite, NaN is returned and stored location indicated by the pointer iptr, and EDOM is set to errno.

- If x = +0, +0 is returned and stored location indicated by the pointer iptr.

Function Arguments Return Value

modff x:
Numeric value to perform operation

iptr:
Pointer for integer part

Normal:
Fraction part of x

When x is non-numeric or infinite:
NaN

When x = +0:
+0

CHAPTER 10 LIBRARY FUNCTIONS

User’s Manual U18548EJ1V0UM 309

powf

FUNCTION

- powf finds yth power of x.

HEADER

- math.h

FUNCTION PROTOTYPE

- float powf (float x , float y) ;

EXPLANATION

- Calculates x ^ y.

- When x = NaN or y = NaN, NaN is returned.

- Either when x = +∞ and y = 0, x < 0 and y ≠ integer, x < 0 and y = +∞, or x = 0 and y ≤ 0, NaN is returned and

EDOM is set to errno.

- If overflow occurs as a result of operation, HUGE_VAL with the sign of overflown value is returned, and

ERANGE is set to errno.

- If underflow occurs, a non-normalized number is returned.

- If annihilation of valid digits occurs due to underflow, +0 is returned.

Function Arguments Return Value

powf x:
Numeric value to perform operation

y:
Multiplier

Normal:
x ^ y

Either when
x = NaN or y = NaN
x = +∞ and y = 0
x < 0 and y ≠ integer,
x < 0 and y = +∞
x = 0 and y ≤ 0:

NaN
When overflow occurs:

HUGE_VAL (with the sign of overflown
value)

When underflow occurs:
Non-normalized number

When annihilation of valid digits occurs due
to underflow:

+0

310 User’s Manual U18548EJ1V0UM

CHAPTER 10 LIBRARY FUNCTIONS

sqrtf

FUNCTION

- sqrtf finds square root.

HEADER

- math.h

FUNCTION PROTOTYPE

- float sqrtf (float x) ;

EXPLANATION

- Calculates the square root of x.

- In the case of area error of x < 0, 0 is returned and EDOM is set to errno.

- If x is non-numeric, NaN is returned.

- If x is +0, +0 is returned.

Function Arguments Return Value

sqrtf x:
Numeric value to perform operation

When x ≥ 0:
Square root of x

When x < 0:
0

When x = NaN:
NaN

When x = +0:
+0

CHAPTER 10 LIBRARY FUNCTIONS

User’s Manual U18548EJ1V0UM 311

ceilf

FUNCTION

- ceilf finds the minimum integer no less than x.

HEADER

- math.h

FUNCTION PROTOTYPE

- float ceilf (float x) ;

EXPLANATION

- Finds the minimum integer no less than x.

- If x is non-numeric, NaN is returned.

- If x is -0, +0 is returned.

- If x is infinite, NaN is returned and EDOM is set to errno.

- If the minimum integer no less than x cannot be expressed, x is returned.

Function Arguments Return Value

ceilf x:
Numeric value to perform operation

Normal:
The minimum integer no less than x

When x is non-numeric or when x is infinite:
NaN

When x = -0:
+0

When the minimum integer no less than x
cannot be expressed:

x

312 User’s Manual U18548EJ1V0UM

CHAPTER 10 LIBRARY FUNCTIONS

fabsf

FUNCTION

- fabsf returns the absolute value of the floating point number x.

HEADER

- math.h

FUNCTION PROTOTYPE

- float fabsf (float x) ;

EXPLANATION

- Finds the absolute value of x.

- If x is non-numeric, NaN is returned.

- If x is -0, +0 is returned.

Function Arguments Return Value

fabsf x:
Numeric value to find the absolute value

Normal:
Absolute value of x

When x is non-numeric:
NaN

When x = -0:
+0

CHAPTER 10 LIBRARY FUNCTIONS

User’s Manual U18548EJ1V0UM 313

floorf

FUNCTION

- floorf finds the maximum integer no more than x.

HEADER

- math.h

FUNCTION PROTOTYPE

- float floorf (float x) ;

EXPLANATION

- Finds the maximum integer no more than x.

- If x is non-numeric, NaN is returned.

- If x is infinite, NaN is returned and EDOM is set to errno.

- If x is -0, +0 is returned.

- If the maximum integer no more than x cannot be expressed, x is returned.

Function Arguments Return Value

floorf x:
Numeric value to perform operation

Normal:
The maximum integer no more than x

When x is non-numeric or infinite:
NaN

When x = -0:
+0

When the maximum integer no more than x
cannot be expressed:

x

314 User’s Manual U18548EJ1V0UM

CHAPTER 10 LIBRARY FUNCTIONS

fmodf

FUNCTION

- fmodf finds the remainder of x/y.

HEADER

- math.h

FUNCTION PROTOTYPE

- float fmodf (float x , float y) ;

EXPLANATION

- Calculates the remainder of x/y expressed with x - i * y. i is an integer.

- If y ≠ 0, the return value has the same sign as that of x and the absolute value is less than y.

- If y is +0 or x = +∞, NaN is returned and EDOM is set to errno.

- If x is non-numeric or y is non-numeric, NaN is returned.

- If y is infinite, x is returned unless x is infinite.

Function Arguments Return Value

fmodf x:
Numeric value to perform operation

y:
Numeric value to perform operation

Normal:
Remainder of x/y

When x ≠ ∞ and y = +∞:
x

When x is non-numeric or y is non-numeric,
When y is +0, when x is +∞:

NaN

CHAPTER 10 LIBRARY FUNCTIONS

User’s Manual U18548EJ1V0UM 315

10.12 Diagnostic Functions

The following diagnostic functions are available.

- __assertfail

316 User’s Manual U18548EJ1V0UM

CHAPTER 10 LIBRARY FUNCTIONS

__assertfail

FUNCTION

- __assertfail supports assert macro.

HEADER

- assert.h

FUNCTION PROTOTYPE

- int __assertfail (char *__msg , char *__cond , char *__file , int __line) ;

EXPLANATION

- A __assertfail function receives information from assert macro (refer to 10.2 (13) assert.h), calls printf

function, outputs information, and calls abort function.

- An assert macro adds diagnostic function to a program.

When an assert macro is executed, if p is false (equal to 0), an assert macro passes information related to

the specific call that has brought the false value (actual argument text, source file name, and source line

number are included in the information. The other two are the values of macro __FILE__ and __LINE__,

respectively) to __assertfail function.

Function Arguments Return Value

__assertfail __msg:
Pointer to character string to indicate
output conversion specification to be
passed to printf function

__cond:
Actual argument of assert macro

__file:
Source file name

__line:
Source line number

Undefined

CHAPTER 10 LIBRARY FUNCTIONS

User’s Manual U18548EJ1V0UM 317

10.13 Batch Files for Update of Startup Routine and Library
Functions

The CC78K0R is provided with batch files for updating a part of the standard library functions and the startup

routine. The batch files in the bat folder are shown in the table below.

Table 10-4 Batch Files for Updating Library Functions

Batch File Application

mkstup.bat Updates the startup routine (cstart*.asm).
When changing the startup routine, perform assembly using this batch file.

reprom.bat Updates the firmware ROM termination routine (rom.asm).
When changing rom.asm, update the library using this batch file.

repgetc.bat Updates the getchar function.
The default assumption sets P0 of the SFR to input port. When it is necessary to change this
setting, change the defined value of EQU of PORT in getchar.asm and update the library using
this batch file.

repputc.bat Updates the putchar function.
The default assumption sets P0 of the SFR to output port. When it is necessary to change this
setting, change the defined value of EQU of PORT in putchar.asm and update the library using
this batch file.

repputcs.bat Updates the putchar function to SM+ for 78K0R-supporting.
When it is necessary to check the output of the putchar function using the SM+ for 78K0R,
update the library using this batch file.

repselo.bat Saves/restores the reserved area of the compiler (_@KREGxx) as part of the save/restore
processing of the setjmp/longjmp functions (the default assumption is to not save/restore).
Update the library using this batch file when the -qr option is specified.

repselon.bat Does not save/restore the reserved area of the compiler (_@KREGxx) as part of the save/
restore processing of the setjmp/longjmp functions (the default assumption is to not save/
restore).
Update the library using this batch file when the -qr option is not specified.

repvect.bat Updates the address value setting processing of the branch table of the interrupt vector table
allocated in the flash area (vect*.asm).
The default assumption sets the top address of the flash area branch table to 2000H. When it is
necessary to change this setting, change the defined value of EQU of ITBLTOP in vect.inc and
update the library using this batch file.

318 User’s Manual U18548EJ1V0UM

CHAPTER 10 LIBRARY FUNCTIONS

10.13.1 Using batch files

Use the batch files in the subfolder bat.

Because these files are the batch files used to activate the assembler and librarian, an environment in which the

RA78K0R assembler package Ver.1.00 or later operates is necessary. Before using the batch files, set the folder

that contains the RA78K0R execution format file using the environment variable PATH.

Create a subfolder (lib) of the same level as bat for the batch files and put the post-assembly files in this

subfolder. When a C startup routine or library is installed in a subfolder lib that is the same level as bat, these files

are overwritten.

To use the batch files, move the current folder to the subfolder bat and execute each batch file. At this time, the

following parameters are necessary.

Product type = chiptype (classification of target chip)

f1166a0 ... u PD78F1166_A0, etc.

The following is an illustration of how to use each batch file.

The batch file for:

(1) Startup routine

mkstup chiptype

<Example>

(2) Firmware ROM routine update

reprom chiptype

<Example>

(3) getchar function update

repgetc chiptype

<Example>

(4) putchar function update

repputc chiptype

<Example>

mkstup f1166a

reprom f1166a0

repgetc f1166a0

repputc f1166a0

CHAPTER 10 LIBRARY FUNCTIONS

User’s Manual U18548EJ1V0UM 319

(5) putchar function (SM78K0R-supporting) update

repputcs chiptype

<Example>

(6) setjmp/longjmp function update (with restore/save processing)

repselo chiptype

<Example>

(7) setjmp/longjmp function update (without restore/save processing)

repselon chiptype

<Example>

(8) Interrupt vector table update

repvect chiptype

<Example>

repputcs f1166a0

repselo f1166a0

repselon f1166a0

repvect f1166a0

320 User’s Manual U18548EJ1V0UM

CHAPTER 11 EXTENDED FUNCTIONS

CHAPTER 11 EXTENDED FUNCTIONS

This chapter describes the extended functions unique to the CC78K0R and not specified in the ANSI (American

National Standards Institute) Standard for C.

The extended functions of the CC78K0R are used to generate codes for effective utilization of the target devices

in the 78K0R. Not all of these extended functions are always effective. Therefore, it is recommended to use only

the effective ones according to the user’s purpose. For the effective use of the extended functions, refer to

"CHAPTER 13 EFFECTIVE UTILIZATION OF COMPILER" along with this chapter.

C source programs created by using the extended functions of the CC78K0R utilize microcontroller-dependent

functions. As regards portability to other microcontrollers, they are compatible at the C language level. For this

reason, C source programs developed by using these extended functions are portable to other microcontrollers

with easy-to-make modifications.

Remark In the explanation of this chapter, "RTOS" stands for the 78K0R real-time OS.

11.1 Macro Names

The CC78K0R has 2 types of macro names: those indicating the microcontroller names for target devices and

those indicating device names (processor types). These macro names are specified according to the option at

compile time to output object code for a specific target device or according to the processor type in the C source.

In the example below, __K0R__ and __F1166A0_ are specified.

For details of these macro names, see "9.8 Compiler-Defined Macro Names".

<Example>

Compile option
 >CC78K0R -cf1166a0 prime.c ...

Specification of device type:
 #pragma pc (f1166a0)

CHAPTER 11 EXTENDED FUNCTIONS

User’s Manual U18548EJ1V0UM 321

11.2 Keywords

The CC78K0R is added with the following tokens as keywords to realize the extended function. These tokens

cannot be used as labels nor variable names as well as ANSI-C keywords. All the keywords must be described in

lowercase letters. A keyword containing any uppercase letter is not interpreted as such by the C compiler.

The following shows the list of keywords added to the CC78K0R. Of these keywords, ones not starting with "__"

can be disabled by specifying the option (-za) that enables only ANSI-C language specifications (for the ANSI-C

keywords, refer to "2.2 Keywords").

Table 11-1 List of Added Keywords

Keyword

Use
Always Available Unavailable When -za Option

Is Specified

__callt callt callt/__callt functions

__callf callf callf/__callf functions

__sreg sreg sreg/__sreg variables

- noauto noauto functions

__leaf norec norec/__leaf functions

__boolean boolean boolean type/__boolean type variables

- bit bit type variables

__interrupt - Hardware interrupt

__interrupt_brk - Software interrupt

__banked, _non_banked Bank Interface

__BANK0-15 - Bank functions at constant addresses

__asm - ASM statements

__rtos_interrupt - Handler to allocate for RTOS

__pascal - Pascal function

__flash - Firmware ROM function

__flashf - __flashf function

__directmap - Absolute address allocation
specification

__temp - Temporary variable

__near, __far - Memory allocation area specification

__mxcall - __mxcall function

322 User’s Manual U18548EJ1V0UM

CHAPTER 11 EXTENDED FUNCTIONS

(1) Functions

The keywords callt, __callt, __interrupt, __interrupt_brk, __rtos_interrupt, __flash, __flashf are attribute

qualifiers. These keywords must be described before any function declaration.

The format of each attribute qualifier is shown below.

<Example>

Attribute qualifier specifications are limited to those listed below. callt and __callt are regarded as the same

specifications. However, the qualifier added with "__" are enabled even when the -za option is specified.

- callt

- __interrupt

- __interrupt_brk

- __rtos_interrupt

- __flash

- __flashf

Caution If callf, __callf, noauto, __pascal, __mxcall, norec, and __leaf are described, a warning is output

and the description is ignored.

(2) Variables

- The same regulations apply to the sreg or __sreg specification as to the register in C language (refer to

"11.5 How to use the saddr area (sreg/__sreg)" for details).

- The same regulations apply to the bit, boolean or __boolean specification as to the char or int type

specifier in C language.

However, these types can be specified only to the variables defined outside a function (external

variables).

- The same regulations apply to the __directmap specification as to the type qualifier in C language (refer

to 11.5 Absolute address allocation specification (__directmap) for details).

- The same regulations apply to the __near and __far specification as to the type qualifier in C language

(refer to "11.5 near/far area specification" for details).

Caution If __temp is described, a warning is output and the description is ignored.

attribute-qualifier ordinary-declarator function-name (parameter-type-list/
identifier-list)

__callt int func (int) ;

CHAPTER 11 EXTENDED FUNCTIONS

User’s Manual U18548EJ1V0UM 323

11.3 Memory

The memory model is determined by the memory space of the target device.

(1) Memory model

The following types of memory models are available.

The data portion includes ROM data.

(2) Register bank

- The register bank is set to "RB0" at startup (set in the startup routine of the CC78K0R). The register

bank 0 is made always used (unless the register bank is changed) by this setting.

- The specified register bank is set at the start of the interrupt function that has specified the change of

the register bank.

Memory Model Explaination

Small model
(selected when the -ms option is specified)

Memory model that consists of a code portion of 64
KB (max.) and a data portion of 64 KB; 128 KB in total

Medium model
(selected when the -mm option is specified)

Memory model that consists of a code portion of 1 MB
(max.) and a data portion of 64 KB (max.)

Large model
(selected when the -ml option is specified)

Memory model that consists of a code portion of 1 MB
(max.) and a data portion of 1 MB (max.)

324 User’s Manual U18548EJ1V0UM

CHAPTER 11 EXTENDED FUNCTIONS

(3) Memory space

The CC78K0R uses memory space as shown below.

Figure 11-1 Utilization of Memory Space

Note 1 Used when a register bank is specified.

Note 2 Varies depending on the device used.

Address Use Size
(bytes)

00 080 to 0BFH CALLT table 64

FF

EB4 to EC3H Register variables 16FF

EC4 to ED3H Work 16FF

ED4 to ED7H Segment information 4FF

ED8 to EDFH Arguments of runtime library 8FF

EE0 to EF7H

EF8 to EFFH

RB3 to RB1

RB0

Work registersNote 1

Work registers

24

8

FF F00 to FFFH sfr variables 256

E20 to EB3H sreg variables, boolean type variables 148FF

F0 000 to 7FFH 2nd sfr variables Max 2,048Note 2

CHAPTER 11 EXTENDED FUNCTIONS

User’s Manual U18548EJ1V0UM 325

11.4 #pragma Directive

The #pragma directive is one of the preprocessing directives supported by ANSI. The #pragma directive,

depending on the character string to follow #pragma, instructs the compiler to translate in the method determined

by the compiler.

If the compiler does not support the #pragma directive, the #pragma directive is ignored and compilation is

continued. In the case that keywords are added depending on the directive, an error is output if the C source

includes the keywords. In order to avoid this, either the keywords in the C source should be deleted or sorted by

#ifdef directive.

The CC78K0R supports the following #pragma directives to realize the extended functions.

The keywords specified after #pragma can be described either in uppercase or lowercase letters.

For the extended functions using #pragma directives, refer to "11.5 How to Use Extended Functions".

Table 11-2 List of #pragma Directives

#pragma Directive Applications

#pragma sfr Describes SFR name in C
-> "11.5 How to use the sfr area (sfr)"

#pragma vect
#pragma interrupt

Describes interrupt processing in C
-> "11.5 Interrupt functions (#pragma vect/#pragma interrupt)"

#pragma di
#pragma ei

Describes DI/EI instructions in C
-> "11.5 Interrupt functions (#pragma DI, #pragma EI)"

#pragma halt
#pragma stop
#pragma brk
#pragma nop

Describes CPU control instructions in C
-> "11.5 CPU control instruction (#pragma HALT/STOP/BRK/NOP)"

#pragma section Changes compiler output section name and specify section location
-> "11.5 Changing compiler output section name (#pragma section ...)"

#pragma name Changes module name
-> "11.5 Module name changing function (#pragma name)"

#pragma rot Uses rotate function
-> "11.5 Rotate function (#pragma rot)"

#pragma mul Uses multiplication function
-> 11.5 Multiplication function (#pragma mul)

#pragma div Uses division function
-> 11.5 Division function (#pragma div)

#pragma opc Uses data insertion function
-> 11.5 Data insertion function (#pragma opc)

#pragma rtos_interrupt Uses interrupt handler for RX78K0R (real-time OS)
-> 11.5 Interrupt handler for RTOS (#pragma rtos_interrupt ...)

#pragma rtos_task Uses task function for RX78K0R (real-time OS)
-> 11.5 Task function for RTOS (#pragma rtos_task)

#pragma ext_table Specifies the first address of the flash area branch table
-> 11.5 Flash area branch table (#pragma ext_table)

326 User’s Manual U18548EJ1V0UM

CHAPTER 11 EXTENDED FUNCTIONS

#pragma ext_func Calls a function to the flash area from the boot area
-> 11.5 Function of function call from boot area to flash area (#pragma ext_func)

#pragma inline Expands the standard library functions memcpy and memset inline
-> 11.5 Memory manipulation function (#pragma inline)

#pragma Directive Applications

CHAPTER 11 EXTENDED FUNCTIONS

User’s Manual U18548EJ1V0UM 327

11.5 How to Use Extended Functions

The types of extended functions are given below.

- callt functions (callt/__callt)

- Register variables (register)

- How to use the saddr area (sreg/__sreg)

- How to use the sfr area (sfr)

- bit type variables, boolean type variables (bit/boolean/__boolean)

- ASM statements (#asm - #endasm/__asm)

- Kanji (2-byte character) (/* kanji */, // kanji)

- Interrupt functions (#pragma vect/#pragma interrupt)

- Interrupt function qualifier (__interrupt, __interrupt_brk)

- Interrupt functions (#pragma DI, #pragma EI)

- CPU control instruction (#pragma HALT/STOP/BRK/NOP)

- Bit field declaration

- Changing compiler output section name (#pragma section ...)

- Binary constant (Binary constant 0bxxx)

- Module name changing function (#pragma name)

- Rotate function (#pragma rot)

- Multiplication function (#pragma mul)

- Division function (#pragma div)

- BCD operation function (#pragma bcd)

- Data insertion function (#pragma opc)

- Interrupt handler for RTOS (#pragma rtos_interrupt ...)

- Interrupt handler qualifier for RTOS (__rtos_interrupt)

- Task function for RTOS (#pragma rtos_task)

- Flash area allocation method (-zf)

- Flash area branch table (#pragma ext_table)

- Function of function call from boot area to flash area (#pragma ext_func)

- Firmware ROM function (__flash)

- Method of int expansion limitation of argument/return value (-zb)

- Memory manipulation function (#pragma inline)

- Absolute address allocation specification (__directmap)

328 User’s Manual U18548EJ1V0UM

CHAPTER 11 EXTENDED FUNCTIONS

- near/far area specification

- Memory model specification

CHAPTER 11 EXTENDED FUNCTIONS

User’s Manual U18548EJ1V0UM 329

This section describes each of these extended functions in the following format:

FUNCTION

Outlines a function that can be implemented with the extended function.

EFFECT

Explains the effect brought about by the extended function.

USAGE

Explains how to use the extended function.

EXAMPLE

Indicates an application example of the extended function.

RESTRICTIONS

Explains restrictions if any on the use of the extended function.

EXPLANATION

Explains the above application example.

COMPATIBILITY

Explains the compatibility of a C source program developed by another C compiler when it is to be compiled

with the CC78K0R.

330 User’s Manual U18548EJ1V0UM

CHAPTER 11 EXTENDED FUNCTIONS

callt functions (callt/__callt)

FUNCTION

- The callt instruction stores the address of a function to be called in an area [80H to BFH] called the callt

table, so that the function can be called with a shorter code than the one used to call the function directly.

- To call a function declared by the callt (or __callt) (called the callt function), a name with ? prefixed to the

function name is used. To call the function, the callt instruction is used.

- The function to be called is not different from the ordinary function.

EFFECT

- The object code can be shortened.

USAGE

- Add the callt/__callt attribute to the function to be called as follows (described at the beginning):

EXAMPLE

RESTRICTIONS

- The callt functions are allocated to the area within [C0H to 0FFFFH], regardless of the memory model.

- The address of each function declared with callt/__callt will be allocated to the callt table at the time of

linking object modules. For this reason, when using the callt table in an assembler source module, the

routine to be created must be made "relocatable" using symbols.

- A check on the number of callt functions is made at linking time.

- When the -za option is specified, __callt is enabled and callt is disabled.

- When the -zf option is specified, callt functions cannot be defined. If a callt function is defined, an error will

occur.

- The area of the callt table is 80H to BFH.

- When the callt table is used exceeding the number of callt attribute functions permitted, a compile error will

occur.

- The callt table is used by specifying the -ql option. For that reason, the number of callt attributes permitted

per 1 load module and the total in the linking modules is as shown below.

callt extern type-name function-name
__callt extern type-name function-name

__callt void func1 (void) ;

__callt void func1 (void) {
 :
 /* function body */
 :
}

CHAPTER 11 EXTENDED FUNCTIONS

User’s Manual U18548EJ1V0UM 331

- Cases where the -ql option is not used and the defaults are as shown in the table below.

EXAMPLE

EXPLANATION

- The callt attribute is given to the function tsub() so that it can be stored in the callt table.

COMPATIBILITY

<From another C compiler to the CC78K0R>

- The C source program need not be modified if the keyword callt/__callt is not used.

- To change functions to callt functions, observe the procedure described in the USAGE above.

<From the CC78K0R to another C compiler>

- #define must be used. For details, see "11.6 Modifications of C Source".

Option -ql1 -ql2 to -ql4

number of callt attribute functions 32 30

callt Function Restriction Value

Number per load module 32 max.

Total number in linked module 32 max.

(C source)
============ ca1.c ============
__callt extern int tsub (void) ;

void main (void)
{
 int ret_val ;
 ret_val = tsub () ;
}

 ============ ca2.c ============

__callt int tsub (void)
{
 int val ;
 return val ;
}

(Output object of compiler)
ca1 module
 EXTRN ?tsub ; Declaration
 callt [?tsub] ; Call

ca2 module
 PUBLIC _tsub ; Declaration
 PUBLIC ?tsub ;
@@CALT CSEG CALLT0 ; Allocation to segment
?tsub : DW _tsub
@@BASE CSEG BASE
_tsub : ; Function definition
 :
 ; Function body
 :

332 User’s Manual U18548EJ1V0UM

CHAPTER 11 EXTENDED FUNCTIONS

Register variables (register)

FUNCTION

- Allocates the declared variables (including arguments of function) to the register (HL) and saddr area

(_@KREG00 to _@KREG15). Saves and restores registers or saddr area during the preprocessing/

postprocessing of the module that declared a register.

- For the details of the allocation of register variables, refer to "11.7 Function Call Interface".

- Register variables are allocated to register HL or the saddr area (FFEB4H to FFEC3H), in the order of

reference frequency. Register variables are allocated to register HL only when there is no stack frame, and

allocated to the saddr area only when the -qr option is specified.

EFFECT

- Instructions to the variables allocated to the register or saddr area are generally shorter in code length than

those to memory. This helps shorten object and also improves program execution speed.

USAGE

- Declare a variable with the register storage class specifier as follows:

EXAMPLE

RESTRICTIONS

- If register variables are not used so frequently, object code may increase (depending on the size and

contents of the source).

- Register variable declarations may be used for char/int/short/long/float/double/long double and pointer data

types.

- The char type uses half as much area as the int type does. The long, float, double, long double, and far

pointers use twice as much area as the int type does. Between chars there are byte boundaries but in other

cases, there are word boundaries.

- In the cases of int, short and near pointers, up to eight variables can be used for each function. The ninth

and subsequent variables are allocated to the normal memory.

- In the case of a function without a stack frame, a maximum of 9 variables per function is usable for int, short

and near pointers. The 10th and subsequent variables are allocated to the normal memory.

register type-name variable-name

void main (void) {
 register unsigned char c ;
 :
}

CHAPTER 11 EXTENDED FUNCTIONS

User’s Manual U18548EJ1V0UM 333

EXAMPLE

<C source>

[Example of register variable allocation to register HL and the saddr area]

The following labels are declared in the startup routine (refer to "APPENDIX A LIST OF LABELS FOR saddr

AREA").

<Output object of compiler>

COMPATIBILITY

<From another C compiler to the CC78K0R>

- The C source program need not be modified if the other C compiler supports register declarations.

- To change to register variables, add the register declarations for the variables to the program.

<From the CC78K0R to another C compiler>

- The C source program need not be modified if the other compiler supports register declarations.

- How many variable registers can be used and to which area they will be allocated depend on the

implementations of the other C compiler.

void func () ;

void main () {
 register int i , j ;
 i = 0 ;
 j = 1 ;
 i += j ;
 func () ;
}

 EXTRN _@KREG00 ; References the saddr area to be used
@@CODEL CSEG
_main :
 push hl ; Saves the contents of the register at
 ; the beginning of the function
 movw ax , _@KREG00 ; Saves the contents of the saddr at
 ; the beginning of the function
 push ax
; line 3 : register int i , j;
; line 4 : i = 0; j = 1;
 movw hl , #00H ; The following codes are output in
 ; the middle of the function
 onew ax
 movw _@KREG00 , ax ; j
; line 5 : i += j;
 addw ax , hl
 movw hl , ax
; line 6 :
 pop ax ; Restores the contents of the saddr
 ; at the end of the function
 movw _@KREG00 , ax
 pop hl ; Restores the contents of the register
 ; at the end of the function
 ret
 END

334 User’s Manual U18548EJ1V0UM

CHAPTER 11 EXTENDED FUNCTIONS

How to use the saddr area (sreg/__sreg)

(a) Usage with sreg declaration

FUNCTION

- The external variables and in-function static variables (called sreg variable) declared with keyword sreg or

__sreg are automatically allocated to saddr area [FFE20H to FFEB3H] and with relocatability. When

those variables exceed the area shown above, a compile error will occur.

- The sreg variables are treated in the same manner as the ordinary variables in the C source.

- Each bit of sreg variables of char, short, int, and long type becomes boolean type variable automatically.

- sreg variables declared without an initial value take 0 as the initial value.

- Of the sreg variables declared in the assembler source, the saddr area [FFE20H to FFF1FH] can be

referred to. The area [FFEB4H to FFEDFH] are used by compiler so that care must be taken (refer to

Figure 11-1).

EFFECT

- Instructions to the saddr area are generally shorter in code length than those to memory. This helps

shorten object code and also improves program execution speed.

USAGE

- Declare variables with the keywords sreg and __sreg inside a module and a function which defines the

variables. Only the variable with a static storage class specifier can become a sreg variable inside a

function.

- Declare the following variables inside a module which refers to sreg external variables. They can be

described inside a function as well.

RESTRICTIONS

- If const type is specified, or if sreg/__sreg is specified for a function, a warning message is output, and the

sreg declaration is ignored.

- char type uses a half the space of other types and long/float/double/long double/far pointer types use a

space twice as wide as other types.

- Between char types there are byte boundaries, but in other cases, there are word boundaries.

- When the -za option is specified, only __sreg is enabled and sreg is disabled.

sreg type-name variable-name/sreg static type-name variable-name
__sreg type-name variable-name/__sreg static type-name variable-name

extern sreg type-name variable-name/extern __sreg type-name variable-name

CHAPTER 11 EXTENDED FUNCTIONS

User’s Manual U18548EJ1V0UM 335

- In the case of int/short, and near pointer and pointer, a maximum of 74 variables per load module is

usable (when saddr area [FFE20H to FFEB3H] is used).

Note that the number of usable variables decreases when bit and boolean type variables, boolean type

variables are used.

EXAMPLE

<C source>

The following example shows a definition code for sreg variable that the user creates. If extern declaration is

not made in the C source, the CC78K0R outputs the following codes. In this case, the ORG quasi-directive

will not be output.

<Assembler source>

The following codes are output in the function.

<Output object of compiler>

COMPATIBILITY

<From another C compiler to the CC78K0R>

- Modifications are not needed if the other compiler does not use the keyword sreg/__sreg.

To change to sreg variable, modifications are made according to the method shown above.

<From the CC78K0R to another C compiler>

- Modifications are made by #define. For the details, refer to "11.6 Modifications of C Source". Thereby,

sreg variables are handled as ordinary variables.

extern sreg int hsmm0 ;
extern sreg int hsmm1 ;
extern sreg int *hsptr ;

void main () {
 hsmm0 -= hsmm1 ;
}

 PUBLIC _hsmm0 ; Declaration
 PUBLIC _hsmm1 ;
 PUBLIC _hsptr ;

@@DATS DSEG SADDRP ; Allocation to segment
 ORG 0FE20H ;
_hsmm0 : DS (2) ;
_hsmm1 : DS (2) ;
_hsptr : DS (2) ;

movw ax , _hsmm0
subw ax , _hsmm1
movw _hsmm0 , ax

336 User’s Manual U18548EJ1V0UM

CHAPTER 11 EXTENDED FUNCTIONS

(b) Usage with saddr automatic allocation option of external variables/external static variables (-rd)

FUNCTION

- External variables/external static variables (except const type) are automatically allocated to the saddr

area regardless of whether sreg declaration is made or not.

- Depending on the value of n and the specification of m, the external static variables and external static

variables to allocate can be specified as follows.

- Variables declared with the keyword sreg are allocated to the saddr area, regardless of the above

specification.

- The above rule also applies to variables referenced by extern declaration, and processing is performed as

if these variables were allocated to the saddr area.

- The variables allocated to the saddr area by this option are treated in the same manner as the sreg

variable. The functions and restrictions of these variables are as described in (a).

METHOD OF SPECIFICATION

- Specify the -rd[n][m] (n = 1, 2, or 4) option.

RESTRICTIONS

- In the -rd[n][m] option, modules specifying different n, m value cannot be linked each other.

Specification
of n, m Variables Allocated to saddr Area

n When n = 1: Variables of char and unsigned char types
When n = 2: Variables for when n = 1, plus variables of short, unsigned short,

int, unsigned int, enum, and near pointer type
When n = 4: Variables for when n = 2, plus variables of long, unsigned long,

float, double, and long double, far pointer type

m Structures, unions, and arrays

When omitted All variables

CHAPTER 11 EXTENDED FUNCTIONS

User’s Manual U18548EJ1V0UM 337

(c) Usage with saddr automatic allocation option of internal static variables (-rs)

FUNCTION

- Automatically allocates internal static variables (except const type) to saddr area regardless of with/

without sreg declaration.

- Depending on the value of n and the specification of m, the internal static variables to allocate can be

specified as follows.

- Variables declared with the keyword sreg are allocated to the saddr area regardless of the above

specification.

- The variables allocated to the saddr area by this option are handled in the same manner as the sreg

variable. The functions and restrictions for these variables are as described in (a).

METHOD OF SPECIFICATION

- Specify the -rs[n][m] (n = 1, 2, or 4) option.

Remark In the -rs[n][m] option, modules specifying different n, m value can also be linked each other.

Specification
of n, m Variables Allocated to saddr Area

n When n = 1: Variables of char and unsigned char types
When n = 2: Variables for when n = 1, plus variables of short, unsigned short,

int, unsigned int, enum, and near pointer type
When n = 4: Variables for when n = 2, plus variables of long, unsigned long,

float, double, and long double, far pointer type

m Structures, unions, and arrays

When omitted All variables (including structures, unions, and arrays in this case only)

338 User’s Manual U18548EJ1V0UM

CHAPTER 11 EXTENDED FUNCTIONS

How to use the sfr area (sfr)

FUNCTION

- The sfr area refers to a group of special function registers such as mode registers and control registers for

the various peripherals of the 78K0R microcontrollers.

- By declaring use of sfr names, manipulations on the sfr area can be described at the C source level.

- sfr variables are external variables without initial value (undefined).

- A write check will be performed on read-only sfr variables.

- A read check will be performed on write-only sfr variables.

- Assignment of an illegal data to an sfr variable will result in a compile error.

- The sfr names that can be used are those allocated to an area consisting of addresses [FFF00H to

FFFFFH, and F0000H to F07FFHNote].

Note Varies depending on the device used.

EFFECT

- Manipulations to the sfr area can be described in the C source level.

- Instructions to the sfr area are shorter in code length than those to memory. This helps shorten object code

and also improves program execution speed.

USAGE

- Declare the use of an sfr name in the C source with the #pragma preprocessor directive, as follows (The

keyword sfr can be described in uppercase or lowercase letters.):

- The #pragma sfr directive must be described at the beginning of the C source line. If #pragma PC

(processor type) is specified, however, describe #pragma sfr after that.

The following statement and directives may precede the #pragma sfr directive:

(i) Comment

(ii) Preprocessor directives which do not define nor refer to a variable or function

- In the C source program, describe an sfr name that the device has as is (without change). In this case, the

sfr need not be declared.

RESTRICTIONS

- All sfr names must be described in uppercase letters. Lowercase letters are treated as ordinary variables.

#pragma sfr

CHAPTER 11 EXTENDED FUNCTIONS

User’s Manual U18548EJ1V0UM 339

EXAMPLE

<C source>

Codes that relate to declarations are not output and the following codes are output in the middle of the function.

<Output object of compiler>

COMPATIBILITY

<From another C compiler to the CC78K0R>

- Those portions of the C source program not dependent on the device or compiler need not be modified.

<From the CC78K0R to another C compiler>

- Delete the "#pragma sfr" statement or sort by "#ifdef" and add the declaration of the variable that was

formerly a sfr variable. The following shows an example.

- In case of a device which has the sfr or its alternative functions, a dedicated library must be created to

access that area.

#ifdef __K0R__
#pragma sfr
#endif

void main (void)
{
 PL0 -= ADCR ;
 /* ADCR = 10 ; ==> error */
}

mov a , PL0
sub a , ADCR
mov PL0 , a

#ifdef __K0R__
#pragma sfr
#else
/* Declaration of variables */
unsigned char P0 ;
#endif

void main (void) {
 P0 = 0 ;
}

340 User’s Manual U18548EJ1V0UM

CHAPTER 11 EXTENDED FUNCTIONS

bit type variables, boolean type variables (bit/boolean/__boolean)

FUNCTION

- A bit or boolean type variable is handled as 1-bit data and allocated to saddr area.

- This variable can be handled the same as an external variable that has no initial value (or has an unknown

value).

- To this variable, the C compiler outputs the following bit manipulation instructions:

EFFECT

- Programming at the assembler source level can be performed in C, and the saddr and sfr area can be

accessed in bit units.

USAGE

- Declare a bit or boolean type inside a module in which the bit or boolean type variable is to be used, as

follows:

- __boolean can also be described instead of bit.

- Declare a bit or boolean type inside a module in which the bit or boolean type variable is to be used, as

follows:

- char, int, short, and long type sreg variables (except the elements of arrays and members of structures) and

8-bit sfr variables can be automatically used as bit type variables.

RESTRICTIONS

- An operation on 2 bit or boolean type variables is performed by using the CY (Carry) flag.

For this reason, the contents of the carry flag between statements are not guaranteed.

- Arrays cannot be defined or referenced.

- A bit or boolean type variable cannot be used as a member of a structure or union.

- This type of variable cannot be used as the argument type of a function.

MOV1, AND1, OR1, XOR1, SET1, CLR1, NOT1, BT, BF instruction

bit variable-name
boolean variable-name
__boolean variable-name

extern bit variable-name
extern boolean variable-name
extern __boolean variable-name

variable-name.n (where n = 0 to 31)

CHAPTER 11 EXTENDED FUNCTIONS

User’s Manual U18548EJ1V0UM 341

- A bit type variable cannot be used as a type of automatic variable.

- With bit type variables only, up to 1184 variables can be used per load module (when saddr area [FFE20H

to FFEB3H] is used).

- The variable cannot be declared with an initial value.

- If the variable is described along with const declaration, the const declaration is ignored.

- Only operations using 0 and 1 can be performed by the operators and constants shown in the table below.

- *, & (pointer reference, address reference), and sizeof operations cannot be performed.

- When the -za option is specified, only __boolean is enabled.

- In the case that sreg variables are used or if -rd, -rs (saddr automatic allocation option) options are

specified, the number of usable bit type variables is decreased.

EXAMPLE

<C source>

Classification Operator

Assignment =

Bitwise AND &, &=

Bitwise OR |, |=

Bitwise XOR ^, ^=

Logical AND &&

Logical OR ||

Equal ==

Not Equal !=

#define ON 1
#define OFF 0

extern bit data1 ;
extern bit data2 ;

void main (void) {
{
 data1 = ON ;
 data2 = OFF ;
 while (data1) {
 data1 = data2 ;
 testb () ;
 }

 if (data1 && data2) {
 chgb () ;
 }
}

342 User’s Manual U18548EJ1V0UM

CHAPTER 11 EXTENDED FUNCTIONS

This example is for cases when the user has generated a definition code for a bit type variable. If an extern

declaration has not been attached, the compiler outputs the following code. The ORG quasi-directive is not

output in this case.

<Assembler source>

The following codes are output in a function

<Output object of compiler>

COMPATIBILITY

<From another C compiler to the CC78K0R>

- The C source program need not be modified if the keyword bit, boolean, or __boolean is not used.

- To change variables to bit or boolean type variables, modify the program according to the procedure

described in USAGE above.

<From the CC78K0R to another C compiler>

- #define must be used. For details, see "11.6 Modifications of C Source" (As a result of this, the bit or

boolean type variables are handled as ordinary variables.).

PUBLIC _data1 ; Declaration
PUBLIC _data2

@@BITS BSEG ; Allocation to segment
 ORG 0FE20H
_data1 DBIT
_data2 DBIT

set1 _data1 Initialized
clr1 _data2 Initialized
bf data1 , $?L0004 Judgment
mov1 CY , _data2 Assignment
mov1 _data1 , CY Assignment
bf _data1 , $?L0005 Logical AND expression
bf _data2 , $?L0005 Logical AND expression

CHAPTER 11 EXTENDED FUNCTIONS

User’s Manual U18548EJ1V0UM 343

ASM statements (#asm - #endasm/__asm)

FUNCTION

#asm - #endasm

- The assembler source program described by the user can be embedded in an assembler source file to

be output by the CC78K0R by using the preprocessor directives #asm and #endasm.

- #asm and #endasm lines will not be output.

__asm

- An assembly instruction is output by describing an assembly code to a character string literal and is

inserted in an assembler source.

EFFECT

- To manipulate the global variables of the C source in the assembler source

- To implement functions that cannot be described in the C source

- To hand-optimize the assembler source output by the C compiler and embed it in the C source (to obtain

efficient object)

USAGE

#asm - #endasm

- Indicate the start of the assembler source with the #asm directive and the end of the assembler source

with the #endasm directive. Describe the assembler source between #asm and #endasm.

__asm

- The ASM statement is described in the following format in the C source:

- The description method of character string literal conforms to ANSI, and a line can be continued by

using an escape character string (\n: line feed, \t: tab) or \, or character strings can be linked.

RESTRICTIONS

- Nesting of #asm directives is not allowed.

- If ASM statements are used, no object module file will be created. Instead, an assembler source file will be

created.

- Only lowercase letters can be described for __asm. If __asm is described with uppercase and lowercase

characters mixed, it is regarded as a user function.

#asm
 : /* Assembler source */
#endasm

__asm (string-literal) ;

344 User’s Manual U18548EJ1V0UM

CHAPTER 11 EXTENDED FUNCTIONS

- When the -za option is specified, only __asm is enabled.

- #asm - #endasm and __asm block can only be described inside a function of the C source. Therefore, the

assembler source is output to CSEG of segment name @@CODE, or @@CODEL.

EXAMPLE

#asm - #endasm

<C source>

<Output object of compiler>

In the above example, statements between #asm and #endasm will be output as an assembler source

program to the assembler source file.

__asm

<C source>

<Assembler source>

COMPATIBILITY

- With the C compiler which supports #asm, modify the program according to the format specified by the C

compiler.

- If the target device is different, modify the assembler source part of the program.

void main (void) {
#asm
 callt [init]
#endasm
}

@@CODEL CSEG
_main :
 callt [init]
 ret
 END

int a , b ;

void main (void) {
 __asm ("\tmovw ax , !_a \t ; ax <- a") ;
 __asm ("\tmovw !_b , ax \t ; b <- ax") ;
}

@@CODEL CSEG
_main :
 movw ax , !_a ; ax <- a
 movw !_b , ax ; b <- ax
 ret
 END

CHAPTER 11 EXTENDED FUNCTIONS

User’s Manual U18548EJ1V0UM 345

Kanji (2-byte character) (/* kanji */, // kanji)

FUNCTION

- Kanji code can be described in comments in C source files.

- Kanji code in comments is handled as a part of comments, so the code is not subject to compilation.

- The kanji code to be used in comments can be specified by using an option or the environment variable.

If no option is specified, the code set in the environment variable LANG78K is set as the kanji code.

- If the kanji code is specified by both the option and environment variable LANG78K, specification by the

option takes precedence.

- If “SJIS” is set in the environment variable LANG78K, the type of kanji in comments is Interpreted as shift

JIS code.

- If "EUC" is set in the environment variable LANG78K, the compiler interprets this as meaning that the type of

kanji in comments is EUC code.

- If "NONE" is set in the environment variable LANG78K, the compiler interprets this as meaning that

comments do not contain kanji codes.

- SJIS code is specified by default.

EFFECT

- The use of kanji code allows Japanese programmers to describe easier-to-understand comments, which

makes C source management easier.

USAGE

- Set the kanji code by using a compiler option or environment variable. (Setting is not needed if the default

setting is used.)

(1) Setting by compiler option

Set any of the options listed in the following table.

(2) Setting by environment variable LANG78K

(a) Set "SJIS", "EUC" or "NONE". (Also describe it in files such as autoexec.bat, if necessary.)

(b) Specification of SJIS, EUC or NONE is not case-sensitive.

(c) Describe kanji characters in comments in C source files, in accordance with the one specified in

LANG78K.

Option Explaination

-zs SJIS (shift JIS code)

-ze EUC (EUC code)

-zn NONE (kanji code not used)

346 User’s Manual U18548EJ1V0UM

CHAPTER 11 EXTENDED FUNCTIONS

RESTRICTIONS

- Only shift JIS code and EUC code can be described in comments.

Only the characters of 0x7F or lower ASCII codes can be described for places other than comments.

Neither full-size characters nor half-size katakana (including half-size punctuation marks) can be described

for any place other than comments.

If any of these characters is described, the expected code may not be output.

EXAMPLE

<C source>

Kanji type information is output to the assembler source.

<Output object of compiler>

When the C source contents are output to the assembler source, kanji characters in the comment are also out-

put.

EXPLANATION

- Kanji code can be described only in comments in C source files.

- When using the format "// comment", specify compiler option -zp.

COMPATIBILITY

<From another C compiler to the CC78K0R>

- If there is kanji in the the area that comment cannot be described (the area other than “/* ... */”, or “// new-

line”), the source files must be modified.

- If the kanji code differs from the one specified in the CC78K0R, the kanji code must first be converted.

SET LANG78K = SJIS (shift JIS code)
SET LANG78K = EUC (EUC code)
SET LANG78K = NONE (kanji code not used)

// main function
void main (void) {
{
 /* Comment */
}

$KANJICODE SJIS

; line 1 : // main function
; line 2 : void main (void) {
; line 3 : {
@@CODEL CSEG
_main :
; line 4 : /* Comment */
; line 5 : }

CHAPTER 11 EXTENDED FUNCTIONS

User’s Manual U18548EJ1V0UM 347

<From the CC78K0R to another C compiler>

- The C source need not be modified for a C compiler that supports kanji characters to be described in

comments.

- Kanji characters in the C source must be deleted if the C compiler does not support kanji characters to be

described in comments.

348 User’s Manual U18548EJ1V0UM

CHAPTER 11 EXTENDED FUNCTIONS

Interrupt functions (#pragma vect/#pragma interrupt)

FUNCTION

- The address of a described function name is registered to an interrupt vector table corresponding to a

specified interrupt request name.

- An interrupt function outputs a code to save or restore the following data (except that used in the ASM

statement) to or from the stack at the beginning and end of the function (after the code if a register bank is

specified):

(1) Registers

(2) saddr area for register variables

(3) saddr area for work

(4) saddr area for run time library

(5) saddr area for storing segment information

(6) ES and CS registers

Note, however, that depending on the specification or status of the interrupt function, saving/restoring is

performed differently, as follows:

- If no change is specified, codes that change the register bank or saves/restores register contents, and

that saves/restores the contents of the saddr area are not output regardless of whether to use the

codes or not.

- If a register bank is specified, a code to select the specified register bank is output at the beginning of

the interrupt function, therefore, the contents of the registers are not saved or restored.

- If no change is not specified and if a function is called in the interrupt function, however, the entire

register area is saved or restored, regardless of whether use of registers is specified or not.

- If the -qr option is not specified for compilation, the saddr area for register variables and the saddr area for

work are not used; so the saving/restoring code is not output.

If the size of the saving code is smaller than that of the restoring code, the restoring code is output.

The table below summarizes the above and lists the saving/restoring areas.

CHAPTER 11 EXTENDED FUNCTIONS

User’s Manual U18548EJ1V0UM 349

Stack: Use of stack is specified

RBn: Register bank is specified

OK: Saved

NG: Not saved

EFFECT

- Interrupt functions can be described at the C source level.

- Because the register bank can be changed, codes that save the registers are not output; therefore, object

codes can be shortened and program execution speed can be improved.

- You do not have to be aware of the addresses of the vector table to recognize an interrupt request name.

USAGE

- Specify an interrupt request name, a function name, stack switching, registers used by the compiler, and

whether the saddr area is saved/restored, with the #pragma directive. Describe the #pragma directive at the

beginning of the C source. The #pragma directive is described at the start of the C source (for the interrupt

request names, refer to the user’s manual of the target device used). For the software interrupt BRK,

describe BRK_I.

- To describe #pragma PC (processor type), describe this #pragma directive after that. The following items

can be described before this #pragma directive:

(i) Comments

(ii) Preprocessor directive which does neither define nor refer to a variable or a function

Save/Restore Area NO
BANK

Function Called Function Not Called

Without -qr With -qr Without -qr With -qr

Stack RBn Stack RBn Stack RBn Stack RBn

Register used NG NG NG NG NG OK NG OK NG

All registers NG OK NG OK NG NG NG NG NG

saddr area for runtime
library used,
ES, CS register,
saddr area for storing
segment information

NG NG NG NG NG OK OK OK OK

saddr area for all
runtime libraries,
ES, CS register,
saddr area for storing
segment information

NG OK OK OK OK NG NG NG NG

saddr area for register
variable used NG NG NG OK OK NG NG OK OK

All saddr area for work NG NG NG OK OK NG NG NG NG

350 User’s Manual U18548EJ1V0UM

CHAPTER 11 EXTENDED FUNCTIONS

- Interrupt request name

Described in uppercase letters.

Refer to the user’s manual of the target device used (example: NMI, INTP0, etc.).

For the software interrupt BRK, describe BRK_I.

- Function name

Name of the function that describes interrupt processing

- Stack change specification

SP = array name [+ offset location] (example: SP = buff + 10)

Define the array by unsigned short (example: unsigned short buff [5];).

Specify for the offset location an even value of the buff size or lower. (Example: In the case of unsigned

short buff[5], the buff size is 10 bytes, so an even value of 10 or lower should be specified.)

- Stack use specification

STACK (default)

- No change specification

NOBANK

- Register bank specification

RB0/RB1/RB2/RB3

- Δ

Space

Caution Since the CC78K0R startup routine is initialized to register bank 0, be sure to specify register banks

1 to 3.

RESTRICTIONS

- When the -zf option is not specified, interrupt functions are allocated to the area between C0H and 0FFFFH,

regardless of the memory model.

When the -zf option is specified, interrupt functions are allocated in accordance with the memory model. In

addition, specification of allocation area by specifying __near or __far is also enabled.

- Arrays in an area other than the near area cannot be specified for stack change. If specified, an error will

occur.

- A value other than an even value cannot be specified for the offset location. If specified, an error will occur.

- Unlike other microcontrollers, the unsigned short type array is reserved for changing the stack pointer.

- An interrupt request name must be described in uppercase letters.

<In the case of the static model>
#pragmaΔvect(or interrupt)Δinterrupt-request-nameΔfunction-nameΔ

 Stack-change-specification Δ Stack-usage-specification
 No-change-specification
 Register-bank-specification

CHAPTER 11 EXTENDED FUNCTIONS

User’s Manual U18548EJ1V0UM 351

- A duplication check on interrupt request names will be made within only 1 module.

- The contents of a register may be changed if the following three conditions are satisfied, but the compiler

cannot check this.

If it is specified to change the register bank, set the register banks so that they do not overlap. If register

banks overlap, control their interrupts so that they do not overlap.

When NOBANK (no change specification) is specified, the registers are not saved. Therefore, control the

registers so that their contents are not lost.

(i) If two or more interrupts occur

(ii) If two or more interrupts that use the same BANK are included in the interrupt that has occurred

(iii) If NOBANK or a register bank is specified in the description #pragma interrupt ~.

- As the interrupt function, callt/__callt/__rtos_interrupt /__flash /__flashf cannot be specified.

__far can be specified only when the -zf option is specified.

- An interrupt function is specified with void type (example: void func (void);) because it cannot have an

argument nor return value.

- Even if an ASM statement exists in the interrupt function, codes saving all the registers and variable areas

are not output. If an area reserved for the compiler is used in the ASM statement in the interrupt function,

therefore, or if a function is called in the ASM statement, the user must save the registers and variable

areas.

- If leafwork 1 to 16 is specified, a warning is output and the specification is ignored.

- When stack change is specified, the stack pointer is changed to the location where offset is added to the

array name symbol. The area of the array name is not secured by the #pragma directive. It needs to be

defined separately as global unsigned short type array.

- The code that changes the stack pointer is generated at the start of a function, and the code that sets the

stack pointer back is generated at the end of a function.

- When keywords sreg/__sreg are added to the array for stack change, it is regarded that two or more

variables with the different attributes and the same name are defined, and a compile error will occur. It is

possible to allocate an array in saddr area by the -rd option, but code and speed efficiency will not be

improved because the array is used as a stack. It is recommended to use the saddr area for purposes other

than a stack.

- The stack change cannot be specified simultaneously with the no change. If specified so, an error will occur.

- The stack change must be described before the stack use/register bank specification. If the stack change is

described after the stack use/register bank specification, an error will occur.

- If a function specifying no change, register bank, or stack change as the saving destination in #pragma vect/

#pragma interrupt specification is not defined in the same module, a warning message is output and the

stack change is ignored. In this case, the default stack is used.

352 User’s Manual U18548EJ1V0UM

CHAPTER 11 EXTENDED FUNCTIONS

EXAMPLE

[When register bank is specified]

<C source>

<Output object of compiler>

[When stack change and register bank are specified]

<C source>

#pragma interrupt INTP0 inter rb1

void inter (void)
{
 /* Interrupt processing to INTP0 pin input */
}

@@VECT08 CSEG AT 0008H ; INTP0
_@vect08 :
 DW _inter
@@BASE CSEG BASE
_inter :

 ; Switching code for the register bank
 ; Saving code of the saddr area for use by the compiler
 ; Saves ES and CS registers
 ; Interrupt processing to INTP0 pin input (function body)
 ; Restores ES and CS registers
 ; Restoring code of the saddr area used by the compiler
 reti

#pragma interrupt INTP0 inter sp = buff + 10 rb2

unsigned short buff [5] ;
void func (void) ;

void inter (void)
{
 func (void) ;
}

CHAPTER 11 EXTENDED FUNCTIONS

User’s Manual U18548EJ1V0UM 353

<Output object of compiler>

COMPATIBILITY

<From another C compiler to the CC78K0R>

- The C source program need not be modified if interrupt functions are not used at all.

- To change an ordinary function to an interrupt function, modify the program according to the procedure

described in USAGE above.

<From the CC78K0R to another C compiler>

- An interrupt function can be used as an ordinary function by deleting its specification with the #pragma

vect, #pragma interrupt directive.

- When an ordinary function is to be used as an interrupt function, change the program according to the

specifications of each compiler.

@@BASE CSEG BASE
_inter :
 sel RB2 ; Changes register bank
 movw ax , sp ; Changes stack pointer
 movw sp , #_buff + 10 ; "
 push ax ; "
 movw c , #0CH ; Saves saddr used by the compiler
 dec c ; "
 dec c ; "
 movw ax , _@SEGAX [c] ; "
 push ax ; "
 bnz $$ - 6 ; "
 mov a , ES ; Saves ES and CS registers
 mov x , a ; "
 mov a , CS ; "
 push ax ; "
 call !!_func
 pop ax ; Restores ES and CS registers
 mov CS , a ; "
 mov a , x ; "
 mov CS , a ; "
 movw de , #_@SEGAX ; Restores saddr used by the compiler
 mov c , #06H ; "
 pop ax ; "
 movw [de] , ax ; "
 incw de ; "
 incw de ; "
 dec c ; "
 bnz $$ - 5 ; "
 pop ax ; Returns the stack pointer to its original position
 movw sp , ax ; "
 reti

@@VECT08 CSEG AT 0008H
_@vect08 :
 DW _inter

354 User’s Manual U18548EJ1V0UM

CHAPTER 11 EXTENDED FUNCTIONS

Interrupt function qualifier (__interrupt, __interrupt_brk)

FUNCTION

- A function declared with the __interrupt qualifier is regarded as a hardware interrupt function, and execution

is returned by the return RETI instruction for non-maskable/maskable interrupt function.

- By declaring a function with the __interrupt_brk qualifier, the function is regarded as a software interrupt

function, and execution is returned by the return instruction RETB for software interrupt function.

- A function declared with this qualifier is regarded as (non-maskable/maskable/software) interrupt function,

and saves or restores the registers and variable areas (1) and (6) below, which are used as the work area of

the compiler, to or from the stack.

If a function call is described in this function, however, all the variable areas are saved to the stack.

(1) Registers

(2) saddr area for register variables

(3) saddr area for work

(4) saddr area for run time library

(5) saddr area for storing segment information

(6) ES and CS registers

Remark If the -qr option is not specified (default) at compile time, save/restore codes are not output

because areas (2) and (3) are not used.

EFFECT

- By declaring a function with this qualifier, the setting of a vector table and interrupt function definition can be

described in separate files.

USAGE

- Describe either __interrupt or __interrupt_brk as the qualifier of an interrupt function.

<For non-maskable/maskable interrupt function>

<For software interrupt function>

RESTRICTIONS

- When the -zf option is specified, the interrupt functions are allocated to the area within [C0H to 0FFFFH],

regardless of the memory model.

When the -zf option is specified, interrupt functions are allocated in accordance with the memory model. In

addition, specification of allocation area by specifying __near or __far is also enabled.

- The interrupt function cannot specify callt/__callt/__rtos_interrupt/__flash/__flashf.

__interrupt void func () { processing }

__interrupt_brk void func () { processing }

CHAPTER 11 EXTENDED FUNCTIONS

User’s Manual U18548EJ1V0UM 355

CAUTIONS

- The vector address is not set by merely declaring this qualifier. The vector address must be separately set

by using the #pragma vect/interrupt directive or assembler description.

- The saddr area and registers are saved to the stack.

- Even if the vector address is set or the saving destination is changed by #pragma vect (or interrupt) ..., the

change in the saving destination is ignored if there is no function definition in the same file, and the default

stack is assumed.

- To define an interrupt function in the same file as the #pragma vect (or interrupt) ... specification, the function

name specified by #pragma vect (or interrupt) ... is judged as the interrupt function, even if this qualifier is

not described.

For details of #pragma vect/interrupt, refer to USAGE of " Interrupt functions (#pragma vect/#pragma

interrupt)".

EXAMPLE

- Declare or define interrupt functions in the following format. The code to set the vector address is generated

by #pragma interrupt.

COMPATIBILITY

<From another C compiler to the CC78K0R>

- The C source program need not be modified unless interrupt functions are supported.

- Modify the interrupt functions, if necessary, according to the procedure described in USAGE above.

<From the CC78K0R to another C compiler>

- #define must be used to allow the interrupt qualifiers to be handled as ordinary functions.

- To use the interrupt qualifiers as interrupt functions, modify the program according to the specifications of

each compiler.

#pragma interrupt INTP0 inter RB1 /* The interrupt request name of */
#pragma interrupt BRK_I inter_b RB2 /* The software interrupt is "BRK_I" */

__interrupt void inter () ; /* Prototype declaration */
__interrupt_brk void inter_b () ; /* Prototype declaration */
__interrupt void inter () { processing } ; /* Function body */
__interrupt_brk void inter_b () { processing } ; /* Function body */

356 User’s Manual U18548EJ1V0UM

CHAPTER 11 EXTENDED FUNCTIONS

Interrupt functions (#pragma DI, #pragma EI)

FUNCTIONS

- Codes DI and EI are output to the object and an object file is created.

- If the #pragma directive is missing, DI() and EI() are regarded as ordinary functions.

- If "DI();" is described at the beginning in a function (except the declaration of an automatic variable,

comment, and preprocessor directive), the DI code is output before the preprocessing of the function

(immediately after the label of the function name).

- To output the code of DI after the preprocessing of the function, open a new block before describing "DI();"

(delimit this block with "{").

- If "EI();" is described at the end of a function (except comments and preprocessor directive), the EI code is

output after the post-processing of the function (immediately before the code RET).

- To output the EI code before the post-processing of a function, close a new block after describing "EI();"

(delimit this block with "}").

EFFECT

- A function disabling interrupts can be created.

USAGE

- Describe the #pragma DI and #pragma EI directives at the beginning of the C source. However, the

following statement and directives may precede the #pragma DI and #pragma EI directives:

(i) Comment

(ii) Other #pragma directives

(iii) Preprocessor directive which does neither define nor refer to a variable or function

- Describe DI(); or EI(); in the source in the same manner as function call.

- DI and EI can be described in either uppercase or lowercase letters after #pragma.

RESTRICTIONS

- When using these interrupt functions, DI and EI cannot be used as function names.

- DI and EI must be described in uppercase letters. If described in lowercase letters, they will be handled as

ordinary functions.

EXAMPLE

#ifdef __K0R__
#pragma DI
#pragma EI
#endif

CHAPTER 11 EXTENDED FUNCTIONS

User’s Manual U18548EJ1V0UM 357

<C source>

<Output object of compiler>

[To output DI and EI after and before preprocessing/post-processing]

<C source>

<Output object of compiler>

COMPATIBILITY

<From another C compiler to the CC78K0R>

- The C source program need not be modified if interrupt functions are not used at all.

- To change an ordinary function to an interrupt function, modify the program according to the procedure

described in USAGE above.

#pragma DI
#pragma EI

void main (void) {
{
 DI () ;
 ; Function body
 EI () ;
}

_main :
 di
 ; Preprocessing
 ; Function body
 ; Postprocessing
 ei
 ret

#pragma DI
#pragma EI

void main (void) {
{
 {
 DI () ;
 ; Function body
 EI () ;
 }
}

_main :
 ; Preprocessing
 di
 ; Function body
 ei
 ; Post-processing
 ret

358 User’s Manual U18548EJ1V0UM

CHAPTER 11 EXTENDED FUNCTIONS

<From the CC78K0R to another C compiler>

- Delete the #pragma DI and #pragma EI directives or invalidate these directives by separating them with

#ifdef and DI and EI can be used as ordinary function names (example: #ifdef__K0R__ ... #endif).

- When an ordinary function is to be used as an interrupt function, modify the program according to the

specifications of each compiler.

CHAPTER 11 EXTENDED FUNCTIONS

User’s Manual U18548EJ1V0UM 359

CPU control instruction (#pragma HALT/STOP/BRK/NOP)

FUNCTION

- The following codes are output to the object to create an object file:

(1) Instruction for HALT operation (HALT)

(2) Instruction for STOP operation (STOP)

(3) BRK instruction

(4) NOP instruction

EFFECT

- The standby function of a microcontroller can be used with a C program.

- A software interrupt can be generated.

- The clock can be advanced without the CPU operating.

USAGE

- Describe the #pragma HALT, #pragma STOP, #pragma NOP, and #pragma BRK instructions at the

beginning of the C source.

- The following items can be described before the #pragma directive:

(i) Comment

(ii) Other #pragma directive

(iii) Preprocessor directive which does neither define nor refer to a variable or function

- The keywords following #pragma can be described in either uppercase or lowercase letters.

- Describe as follows in uppercase letters in the C source in the same format as function call:

(1) HALT () ;

(2) STOP () ;

(3) BRK () ;

(4) NOP () ;

RESTRICTIONS

- When this feature is used, HALT, STOP, BRK, and NOP cannot be used as function names.

- Describe HALT, STOP, BRK, and NOP in uppercase letters. If they are described in lowercase letters, they

are handled as ordinary functions.

360 User’s Manual U18548EJ1V0UM

CHAPTER 11 EXTENDED FUNCTIONS

EXAMPLE

<C source>

<Output object of compiler>

COMPATIBILITY

<From another C compiler to the CC78K0R>

- The C source program need not be modified if the CPU control instructions are not used.

- Modify the program according to the procedure described in USAGE above when the CPU control

instructions are used.

<From the CC78K0R to another C compiler>

- If "#pragma HALT", "#pragma STOP", "#pragma BRK", and "#pragma NOP" statements are delimited by

means of deletion or with #ifdef, HALT, STOP, BRK, and NOP can be used as function names.

- To use these instructions as the CPU control instructions, modify the program according to the

specifications of each compiler.

#pragma HALT
#pragma STOP
#pragma BRK
#pragma NOP

void main (void) {
 HALT () ;
 STOP () ;
 BRK () ;
 NOP () ;
}

@@CODEL CSEG
_main:
 halt
 stop
 brk
 nop

CHAPTER 11 EXTENDED FUNCTIONS

User’s Manual U18548EJ1V0UM 361

Bit field declaration

(a) Extension of type specifier

 FUNCTION

- The bit field of unsigned char, signed char type is not allocated straddling over a byte boundary.

- The bit field of unsigned int, signed int, unsigned short, signed short type is not allocated straddling over a

word boundary, but can be allocated straddling over a word boundary when the -rc option is specified.

- The bit fields that the types are same size are allocated in the same byte units (or word units). If the types

are different size, the bit fields are allocated in different byte units (or word units).

EFFECT

- The memory can be saved, the object code can be shortened, and the execution speed can be improved.

USAGE

- As a bit field type specifier, unsigned char, signed char, signed int, unsigned short, signed short type can

be specified in addition to unsigned int type.

Declare as follows.

EXAMPLE

COMPATIBILITY

<From another C compiler to the CC78K0R>

- The source program need not be modified.

- Change the type specifier to use unsigned char, signed char, unsigned short, signed short as the type

specifier.

struct tag-name {
 unsigned char field-name : bit-width ;
 unsigned char field-name : bit-width ;
 :
 unsigned int field-name : bit-width ;
} ;

struct tagname {
 unsigned char A : 1 ;
 unsigned char B : 1 ;
 :
 unsigned int C : 2 ;
 unsigned int D : 1 ;
 :
}

362 User’s Manual U18548EJ1V0UM

CHAPTER 11 EXTENDED FUNCTIONS

<From the CC78K0R to another C compiler>

- The source program need not be modified if unsigned char, signed char, signed int, unsigned short and

signed short is not used as a type specifier.

- Change into unsigned int, if unsigned char, signed char, signed int, unsigned short and signed short is

used as a type specifier.

CHAPTER 11 EXTENDED FUNCTIONS

User’s Manual U18548EJ1V0UM 363

(b) Allocation direction of bit field

FUNCTION

- The direction in which a bit field is to be allocated is changed and the bit field is allocated from the MSB

side when the -rb option is specified.

- If the -rb option is not specified, the bit field is allocated from the LSB side.

USAGE

- Specify the -rb option at compile time to allocate the bit field from the MSB side.

- Do not specify the option to allocate the bit field from the LSB side.

EXAMPLE 1

<Bit field declaration>

- Because a through h are 8 bits or less, they are allocated in 1-byte units.

struct t {
 unsigned char a : 1 ;
 unsigned char b : 1 ;
 unsigned char c : 1 ;
 unsigned char d : 1 ;
 unsigned char e : 1 ;
 unsigned char f : 1 ;
 unsigned char g : 1 ;
 unsigned char h : 1 ;
} ;

Bit allocation from LSB
without the -rb option specified

Bit allocation from MSB
with the -rb option specified

MSB LSB

a c db e f g h

MSB LSB

h f eg d c b a

364 User’s Manual U18548EJ1V0UM

CHAPTER 11 EXTENDED FUNCTIONS

EXAMPLE 2

<Bit field declaration>

Member a of char type is allocated to the first byte unit. Members b and c are allocated to subsequent byte

units, starting from the second byte unit. If a byte unit does not have enough space to hold the type char

member, that member will be allocated to the following byte unit. In this case, if there is only space for 3 bits in

the second byte unit, and member d has 4 bits, it will be allocated to the third byte unit.

Since member g is a bit field of type unsigned int, it can be allocated across byte boundaries. Since h is a bit

field of type unsigned char, it is not allocated in the same byte unit as the g bit field of type unsigned int, but is

allocated in the next byte unit.

struct t {
 char a ;
 unsigned char b : 2 ;
 unsigned char c : 3 ;
 unsigned char d : 4 ;
 int e ;
 unsigned char f : 5 ;
 unsigned char g : 6 ;
 unsigned char h : 2 ;
 unsigned int i : 2 ;
} ;

Bit field allocated from the LSB side
when the -rb option is not specified

Bit field allocated from the MSB side
when the -rb option is specified

MSB LSB MSB LSB

b c Vacant a

01

bcVacant a

01

3 2 3 2

5 4 5 4

7 6 7 6

9 8 9 8

Vacant Vacantd Vacant Vacant d

e e e e

f g g Vacant Vacant g g f

Vacant h Vacant Vacant Vacant h

11 10 11 10

i VacantVacant Vacant Vacant i

CHAPTER 11 EXTENDED FUNCTIONS

User’s Manual U18548EJ1V0UM 365

Since i is a bit field of type unsigned int, it is allocated in the next word unit.

When the -rc option is specified (to pack the structure members), the above bit field becomes as follows.

Remark The numbers below the allocation diagrams indicate the byte offset values from the beginning of the

structure.

1 0 1 0

3 2 3 2

5 4 5 4

7 6 7 6

c a Vacant a

e d e

g Vacant e f e

Vacant f g Vacant Vacant g

9 8 9 8

Vacant Vacant Vacant Vacant i

b Vacant

Vacant

h

i

c b

dVacant

g

h

366 User’s Manual U18548EJ1V0UM

CHAPTER 11 EXTENDED FUNCTIONS

EXAMPLE 3

<Bit field declaration>

Since b and c are bit fields of type unsigned int, they are allocated from the next word unit.

Since d is also a bit field of type unsigned int, it is allocated from the next word unit.

Since e is a bit field of type unsigned char, it is allocated to the next byte unit.

f and g, and h and i are each allocated to separate word units.

struct t {
 char a ;
 unsigned int b : 6 ;
 unsigned int c : 7 ;
 unsigned int d : 4 ;
 unsigned char e : 3 ;
 unsigned int f : 10 ;
 unsigned int g : 2 ;
 unsigned int h : 5 ;
 unsigned int i : 6 ;
} ;

Bit field allocated from the LSB side
when the -rb option is not specified

Bit field allocated from the MSB side
when the -rb option is specified

1 0 1 0

3 2 3 2

Vacant a Vacant a

b c cVacant b

MSB LSB MSB LSB

c Vacant c

5 4 5 4

7 6 7 6

d Vacant Vacant Vacant

e Vacant eVacant Vacant

Vacant d

Vacant

9 8 9 8

11 10 11 10

f Vacant Vacant

h i Vacant hi Vacant i

fg g f

i

f

CHAPTER 11 EXTENDED FUNCTIONS

User’s Manual U18548EJ1V0UM 367

When the -rc option is specified (to pack the structure members), the above bit field becomes as follows.

Remark The numbers below the allocation diagrams indicate the byte offset values from the beginning of the

structure.

COMPATIBILITY

<From another C compiler to the CC78K0R>

- The source program need not be modified.

<From the CC78K0R to another C compiler>

- The source program must be modified if the -rb option is used and coding is performed taking the bit

field allocation sequence into consideration.

1 0 1 0

3 2 3 2

5 4 5 4

7 6 7 6

c a a

b c d

e Vacant d Vacante

Vacantf g Vacant

9 8 9 8

i Vacant Vacant i

Vacant

Vacant

f

i

c b

cVacant

Vacant

f

MSB LSB MSB LSB

Vacant

h

Vacant

g f

i h

368 User’s Manual U18548EJ1V0UM

CHAPTER 11 EXTENDED FUNCTIONS

Changing compiler output section name (#pragma section ...)

FUNCTION

- A compiler output section name is changed and a start address is specified.

If the start address is omitted, the default allocation is assumed. For the compiler output section name and

default location, refer to "APPENDIX B LIST OF SEGMENT NAMES".

In addition, the location of sections can be specified by omitting the start address and using the link directive

file at the time of link. For the link directives, refer to the RA78K0R Assembler Package Operation User’s

Manual.

- To change section names @@CALT with an AT start address specified, the callt functions must be

described before or after the other functions in the source file.

- If data are described after the #pragma instruction is described, those data are located in the data change

section. Another change instruction is possible, and if data are described after the rechange instruction,

those data are located in the rechange section. If data defined before a change are redefined after the

change, they are located in the rechanged section. Furthermore, this is valid in the same way for static

variables (within the function).

EFFECT

- Changing the compiler output section repeatedly in 1 file enables to locate each section independently, so

that data can be located in data units to be located independently.

USAGE

- Specify the name of the section which is to be changed, a new section name, and the start address of the

section, by using the #pragma directive as indicated below.

Describe this #pragma directive at the beginning of the C source.

Describe this #pragma directive after #pragma PC (processor type).

The following items can be described before this #pragma directive:

(i) Comment

(ii) Preprocessor directive which does neither define nor refer to a variable or a function

However, all sections in BSEG and DSEG, and the @@CNST, @@CNSTL section in CSEG can be

described anywhere in the C source, and rechange instructions can be performed repeatedly. To return to

the original section name, describe the compiler output section name in the changed section.

Declare as follows at the beginning of the file:

- Of the keywords to be described after #pragma, be sure to describe the compiler output section name in

uppercase letters. section, AT can be described in either uppercase or lowercase letters, or in combination

of those.

#pragma section compiler-output-section-name new-section-name [AT start-
address]

CHAPTER 11 EXTENDED FUNCTIONS

User’s Manual U18548EJ1V0UM 369

- The format in which the new section name is to be described conforms to the assembler specifications (up

to 8 letters can be used for a segment name).

- Only the hexadecimal numbers of the C language and the hexadecimal numbers of the assembler can be

described as the start address.

[Hexadecimal numbers of C language]

[Hexadecimal numbers of assembler]

The hexadecimal number must start with a numeral.

<Example>

To express a numeric value with a value of 255 in hexadecimal number, specify zero before F. It is

therefore 0FFH.

- For sections other than the @@CNST, @@CNSTL section in CSEG, that is, sections which locate

functions, this #pragma instruction cannot be described in other than the beginning of the C source (after the

C text is described). If described, a warning is output and the description is ignored.

- If this #pragma instruction is executed after the C text is described, an assembler source file is created

without an object module file being created.

- If this #pragma instruction is after the C text is described, a file which contains this #pragma instruction and

which does not have the C text (including external reference declarations for variables and functions) cannot

be included. This results in an error (refer to "CODING Error EXAMPLE 1").

- #include statement cannot be described in a file which executes this #pragma instruction following the C text

description. If described, it causes an error (refer to "CODING Error EXAMPLE 2").

- If #include statement follows the C text, this #pragma instruction cannot be described after this description.

If described, it causes an error (refer to "CODING Error EXAMPLE 3").

0xn/0xn ... n
0Xn/0Xn ... n
(n = 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F)

nH/n ... nH
nh/n ... nh
(n = 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F)

370 User’s Manual U18548EJ1V0UM

CHAPTER 11 EXTENDED FUNCTIONS

EXAMPLE 1

Section name @@CODEL is changed to CC1 and address 2400H is specified as the start address.

<C source>

<Output object>

EXAMPLE 2

The following is a code example in which the main C code is followed by a #pragma directive. The contents are

allocated in the section following "//".

#pragma section @@CODEL CC1 AT 2400H

void main (void) {
 ; Function body
}

CC1 CSEG AT 2400H
_main :
 ; Preprocessing
 ; Function body
 ; Post-processing
 ret

#pragma section @@DATA ??DATA
int a1 ; // ??DATA
sreg int b1 ; // @@DATS
int c1 = 1 ; // @@INIT and @@R_INIT
const int d1 = 1 ; // @@CNST
#pragma section @@DATS ??DATS
int a2 ; // ??DATA
sreg int b2 ; // ??DATS
int c2 = 1 ; // @@INIT and @@R_INIT
const int d2 = 1 ; // @@CNST
#pragma section @@DATA ??DATA2
// ??DATA is automatically closed and ??DATA2 becomes valid
int a3 ; // ??DATA2
sreg int b3 ; // ??DATS
int c3 = 3 ; // @@INIT and @@R_INIT
const int d3 = 3 ; // @@CNST
#pragma section @@DATA @@DATA
// ??DATA2 is closed and processing returns to the default @@DATA
#pragma section @@INIT ??INIT
#pragma section @@R_INIT ??R_INIT
// ROMization is invalidated unless both names (@@INIT and @@R_INIT) are
changed. This is the user's responsibility.
int a4 ; // @@DATA
sreg int b4 ; // ??DATS
int c4 = 1 ; // ??INIT and ??R_INIT
const int d4 = 1 ; // @@CNST
#pragma section @@INIT @@INIT
#pragma section @@R_INIT @@R_INIT
// ??INIT and ??R_INIT are closed and processing returns to the default
setting
#pragma section @@BITS ??BITS
__boolean e4 ; // ??BITS
#pragma section @@CNST ??CNST
char *const p = "Hello" ; 　 // p and "Hello" are both ??CNSTT

CHAPTER 11 EXTENDED FUNCTIONS

User’s Manual U18548EJ1V0UM 371

EXAMPLE 3

#pragma section @@DATA ??DATA1
int a1 ; // ??DATA
sreg int b1 ; // @@DATS
int c1 = 1 ; // @@INIT and @@R_INIT
const int d1 = 1 ; // @@CNST
#pragma section @@DATS ??DATS
int a2 ; // ??DATA
sreg int b2 ; // ??DATS
int c2 = 1 ; // @@INIT and @@R_INIT
const int d2 = 1 ; // @@CNST
#pragma section @@DATA ??DATA2
// ??DATA is automatically closed and ??DATA2 becomes valid
int a3 ; // ??DATA2
sreg int b3 ; // ??DATS
int c3 = 3 ; // @@INIT and @@R_INIT
const int d3 = 3 ; // @@CNST
#pragma section @@DATA @DATA
// ??DATA2 is closed and processing returns to the default @@DATA
#pragma section @@INIT ??INIT
#pragma section @@R_INIT ??R_INIT
// ROMization is invalidated unless both names (@@INIT and @@R_INIT) are
changed. This is the user's responsibility.
int a4 ; // @@DATA
sreg int b4 ; // ??DATS
int c4 = 1 ; // ??INIT and ??R_INIT
const int d4 = 1 ; // @@CNST
#pragma section @@INIT @@INIT
#pragma section @@R_INIT @@R_INIT
// ??INIT and ??R_INIT are closed and processing returns to the default setting
#pragma section @@BITS ??BITS
__boolean e4 ; // ??BITS
#pragma section @@CNST ??CNST
char * const p = "Hello" ; // p and "Hello" are both ??CNSTT
--
#pragma section @@INIT ??INIT1
#pragma section @@R_INIT ??R_INIT1
#pragma section @@DATA ??DATA1
char c1 ;
int i2 ;
#pragma section @@INIT ??INIT2
#pragma section @@R_INIT ??R_INIT2
#pragma section @@DATA ??DATA2
char c1 ;
int i2 = 1 ;
#pragma section @@DATA ??DATA3
#pragma section @@INIT ??INIT3
#pragma section @@R_INIT ??R_INIT3
extern char c1 ; // ??DATA3
int i2 ; // ??INIT3 and ??R_INIT3
#pragma section @@DATA ??DATA4
#pragma section @@INIT ??INIT4
#pragma section @@R_INIT ??R_INIT4

372 User’s Manual U18548EJ1V0UM

CHAPTER 11 EXTENDED FUNCTIONS

Restrictions when this #pragma directive has been specified after the main C code are explained in the following

coding error examples.

CODING ERROR EXAMPLE 1

CODING ERROR EXAMPLE 2

a1.h
 #pragma section @@DATA ??DATA1 // File containing only the
 // #pragma section.

a2.h
 extern int func1(void) ;
 #pragma section @@DATA ??DATA2 // File containing the main
 // C code followed by the
 // #pragma directive.

a3.h
 #pragma section @@DATA ??DATA3 // File containing only the
 // #pragma section.

a4.h
 #pragma section @@DATA ??DATA3
 extern int func2 (void) ; // File that includes the
 // main C code.

a.c
 #include "a1.h"
 #include "a2.h"
 #include "a3.h" // <- Error
 // Because the a2.h file contains the main
 // C code followed by this #pragma directive,
 // file a3.h, which includes only this
 // #pragma directive, cannot be included.
 #include "a4.h"

b1.h
 const int i ;

b2.h
 const int j ;
 #include "b1.h" // This does not result in an error since
 // it is not file (b.c) in which the main C
 // code is followed by this #pragma directive.

b.c
 const int k ;
 #pragma section @@DATA ??DATA1
 #include "b2.h" // <- Error
 // Since an #include statement cannot be coded
 // afterward in file (b.c) in which the main C
 // code is followed by this #pragma directive.

CHAPTER 11 EXTENDED FUNCTIONS

User’s Manual U18548EJ1V0UM 373

CODING ERROR EXAMPLE 3

COMPATIBILITY

<From another C compiler to the CC78K0R>

- The source program need not be modified if the section name change function is not supported.

- To change the section name, modify the source program according to the procedure described in USAGE

above.

<From the CC78K0R to another C compiler>

- Delete or delimit #pragma section ... with #ifdef.

- To change the section name, modify the program according to the specifications of each compiler.

c1.h
 extern int j ;
 #pragma section @@DATA ??DATA1 // This does not result in an error
 // since the #pragma directive is
 // included and processed before the
 // processing of c3.h.

c2.h
 extern int k ;
 #pragma section @@DATA ??DATA2 // <- Error
 // This #include statement is
 // specified after the main C code in
 // c3.h, and the #pragma directive
 // cannot be specified afterward.

c3.h
 #include "c1.h"
 extern int i ;
 #include "c2.h"
 #pragma section @@DATA ??DATA3 // <- Error
 // This #include statement is
 // specified after the main C code,
 // and the #pragma directive cannot
 // be specified afterward.

c.c
 #include "c3.h"
 #pragma section @@DATA ??DATA4 // <- Error
 // This #include statement is
 // specified after the main C code in
 // c3.h, and the #pragma directive
 // cannot be specified afterward.
 int i ;

374 User’s Manual U18548EJ1V0UM

CHAPTER 11 EXTENDED FUNCTIONS

RESTRICTIONS

- A section name that indicates a segment for vector table (e.g., @@VECT02, etc.) must not be changed.

- If two or more sections with the same name as the one specifying the AT start address exist in another file,

a link error will occur.

- Specify the address within the range from FFE20H to FFEB3H for compiler output section names

@@DATS, @@BITS and @@INIS, from 0x80 to 0xbf for @@CALT, from 0x0 to 0xffff for @@CODE and

@@BASE, and from 0x0 to 0xffeff for other sections.

CAUTION

- A section is equivalent to a segment of the assembler.

- The compiler does not check whether the new section name is in duplicate with another symbol. Therefore,

the user must check to see whether the section name is not in duplicate by assembling the output assemble

list.

- If a section nameNote related to ROMization is changed by using #pragma section, the startup routine must

be changed by the user on his/her own responsibility.

- When the -zf option has been specified, each section name is changed so that the second "@" is replaced

with "E".

Note ROMization-related section name

The startup routine to be used when a section related to ROMization is changed, and an example of

changing the termination routine are described later.

[Examples of Changing startup Routine in Connection with Changing Section Name Related to
ROMization]

Here are examples of changing the startup routine (cstart.asm or cstartn.asm) and termination routine (rom.asm)

in connection with changing a section name related to ROMization.

<C source>

If a section name that stores an external variable with an initial value has been changed by describing #pragma

section indicated above, the user must add to the startup routine the initial processing of the external variable to be

stored to the new section.

To the startup routine, therefore, add the declaration of the first label of the new section and the portion that

copies the initial value, and add the portion that declares the end label to the termination routine, as described

below.

RTT1_S and RTT1_E are the names of the first and end labels of section RTT1, and TT1_S and TT1_E are the

names of the first and end labels of section TT1.

@@R_INIT, @@R_INIS, @@RLINIT, @@INITL, @@INIT, @@INIS

#pragma section @@R_INIT RTT1
#pragma section @@INIT TT1

CHAPTER 11 EXTENDED FUNCTIONS

User’s Manual U18548EJ1V0UM 375

(a) Changing startup routine cstartx.asm

(i) Add the declaration of the label indicating the end of the section with the changed name

(ii) Add a section to copy the initial values from the RTT1 section with the changed name to the TT1

section.

 :
#pragma section @@R_INIT RTT1
#pragma section @@INIT TT1
EXTRN RTT1_E , TT1_E ; Adds EXTRN declaration of RTT1_E and TT1_E
 :

 :
LDATS1 :
 MOVW AX , HL
 CMPW AX , #LOW _?DATS
 BZ $LDATS2
 MOV [HL + 0] , #0
 INCW HL
 BR $LDATS1
LDATS2 :
 MOV ES , #HIGH RTT1_S
 MOV HL , #LOWW RTT1_S
 MOV DE , #LOWW TT1_S
LTT1 :
 MOVW AX , HL
 CMPW AX , #LOWW TT1_E
 BZ $LTT2
 MOV A , ES : [HL]
 MOV [DE] , A
 INCW HL
 INCW DE
 BR $LTT1
LTT2 :
;
 CALL !!_main ; main () ;
 CLRW AX
 CALL !!_exit ; exit (0) ;
 BR $$
;

Adds section to copy the initial values from
the RTT1 section to the TT1 section

376 User’s Manual U18548EJ1V0UM

CHAPTER 11 EXTENDED FUNCTIONS

(iii) Set the label of the start of the section with the changed name.

 :
@@R_INIT CSEG UNIT64KP
_@R_INIT :
@@R_INIS CSEG UNIT64KP
_@R_INIS :
@@INIT DSEG
_@INIT :
@@DATA DSEG
_@DATA :
@@INIS DSEG SADDRP
_@INIS :
@@DATS DSEG SADDRP
_@DATS :

RTT1 CSEG UNIT64KP ; Indicates the start of the RTT1 section
RTT1_S : ; Adds the label setting
TT1 DSEG BASEP ; Indicates the start of the TT1 section
TT1_S : ; Adds the label setting

@@CODEL CSEG
@@CALT CSEG CALLT0
@@CNST CSEG MIRRORP
@@BITS BSEG
;
 END

CHAPTER 11 EXTENDED FUNCTIONS

User’s Manual U18548EJ1V0UM 377

(b) Changing termination routine rom.asm

(i) Add the declaration of the label indicating the end of the section with the changed name

(ii) Setting the label indicating the end

NAME @rom
;
PUBLIC _?R_INIT , _?R_INIS
PUBLIC _?INIT , _?DATA , _?INIS , _?DATS

PUBLIC RTT1_E , TT1_E ; Adds RTT1_E and TT1_E

;
@@R_INIT CSEG UNIT64KP
_?R_INIT :
@@R_INIS CSEG UNIT64KP
_?R_INIS :
@@INIT DSEG
_?INIT :
@@DATA DSEG
_?DATA :
@@INIS DSEG SADDRP
_?INIS :
@@DATS DSEG SADDRP
_?DATS
 :

 :
RTT1 CSEG UNIT64KP ; Adds the label setting indicating the end
 ; of the RTT1 section.
RTT1_E : ; Adds the label setting

TT1 DSEG BASEP ; Adds the label setting indicating the end
 ; of the TT1 section.
TT1_E : ; Adds the label setting

;
 END

378 User’s Manual U18548EJ1V0UM

CHAPTER 11 EXTENDED FUNCTIONS

 Binary constant (Binary constant 0bxxx)

FUNCTION

- Describes binary constants to the location where integer constants can be described.

EFFECT

- Constants can be described in bit strings without being replaced with octal or hexadecimal number.

Readability is also improved.

USAGE

- Describe binary constants in the C source.

The following shows the description method of binary constants.

Remark Binary number : either "0" or "1"

- A binary constant has 0b or 0B at the start and is followed by the list of numbers 0 or 1.

- The value of a binary constant is calculated with 2 as the base.

- The type of a binary constant is the first one that can express the value in the following list.

Subscripted binary number: int, unsigned int, long int, unsigned long int

Subscripted u or U: unsigned int, unsigned long int

Subscripted l or L: long int, unsigned long int

Subscripted u or U and subscripted l or L with: unsigned long int

EXAMPLE

<C source>

Output object of compiler is the same as the following case.

COMPATIBILITY

<From another C compiler to the CC78K0R>

- Modifications are not needed.

0b binary-number
0B binary-number

unsigned i ;

i = 0b11100101 ;

unsigned i ;

i = 0xE5 ;

CHAPTER 11 EXTENDED FUNCTIONS

User’s Manual U18548EJ1V0UM 379

<From the CC78K0R to another C compiler>

- Modifications are needed to meet the specification of the compiler if the compiler supports binary

constants.

- Modifications into other integer formats such as octal, decimal, and hexadecimal are needed if the

compiler does not support binary constants.

380 User’s Manual U18548EJ1V0UM

CHAPTER 11 EXTENDED FUNCTIONS

Module name changing function (#pragma name)

FUNCTION

- Outputs the first 254 letters of the specified module name to the symbol information table in a object module

file.

- Outputs the first 254 letters of the specified module name to the assemble list file as symbol information

(MOD_NAM) when the -g2 option is specified and as NAME pseudo instruction when the -ng option is

specified.

- If a module name with 255 or more letters are specified, a warning message is output.

- If unauthorized letters are described, an error will occur and the processing is aborted.

- If more than one of this #pragma directive exists, a warning message is output, and whichever described

later is enabled.

EFFECT

- The module name of an object can be changed to any name.

USAGE

- The following shows the description method.

A module name must consist of the characters that the OS authorizes as a file name except "(", ")", and kanji

(2-byte character).

Upper/lowercase is distinguished.

EXAMPLE

COMPATIBILITY

<From another C compiler to the CC78K0R>

- Modifications are not needed if the compiler does not support the module name changing function.

- To change a module name, modification is made according to USAGE above.

<From the CC78K0R to another C compiler>

- #pragma name ... is deleted or sorted by #ifdef.

- To change a module name, modification is needed depending on the specification of each compiler.

#pragma name module-name

#pragma name module1

CHAPTER 11 EXTENDED FUNCTIONS

User’s Manual U18548EJ1V0UM 381

Rotate function (#pragma rot)

FUNCTION

- Outputs the code that rotates the value of an expression to the object with direct inline expansion instead of

function call and generates an object file.

- If there is not a #pragma directive, the rotate function is regarded as an ordinary function.

EFFECT

- Rotate function is realized by the C source or ASM description without describing the processing to perform

rotate.

USAGE

- Describe in the source in the same format as the function call.

There are the following 4 function names.

[List of functions for rotate]

(a) unsigned char rorb (x , y) ;

unsigned char x ;

unsigned char y ;

Rotates x to right for y times.

(b) unsigned char rolb (x , y) ;

unsigned char x ;

unsigned char y ;

Rotates x to left for y times.

(c) unsigned int rorw (x , y) ;

unsigned int x ;

unsigned char y ;

Rotates x to right for y times.

(d) unsigned int rolw (x , y) ;

unsigned int x ;

unsigned char y ;

Rotates x to left for y times.

rorb, rolb, rorw, rolw

382 User’s Manual U18548EJ1V0UM

CHAPTER 11 EXTENDED FUNCTIONS

- Declare the use of the function for rotate by the #pragma rot directive of the module.

However, the followings can be described before #pragma rot.

(i) Comments

(ii) Other #pragma directives

(iii) Preprocessing directives which do not generate definition/reference of variables and definition/

reference of functions

- Keywords following #pragma can be described in either uppercase or lowercase letters.

EXAMPLE

<C source>

<Output assembler source>

RESTRICTIONS

- The function names for rotate cannot be used as the function names.

- The function names for rotate must be described in lowercase letters. If the functions for rotate are

described in uppercase letters, they are handled as ordinary functions.

COMPATIBILITY

<From another C compiler to the CC78K0R>

- Modification is not needed if the compiler does not use the functions for rotate.

- To change to functions for rotate, modifications are made according to USAGE above.

<From the CC78K0R to another C compiler>

- #pragma rot statement is deleted or sorted by #ifdef.

- To use as a function for rotate, modification is needed depending on the specification of each compiler

(#asm, #endasm or asm() ; , etc.).

#pragma rot
unsigned char a = 0x11 ;
unsigned char b = 2 ;
unsigned char c ;
void main (void) {
 c = rorb (a , b) ;
}

 mov x , !_b
 mov a , !_a
L0003 :
 ror a , 1
 dec x
 bnz $L0003

CHAPTER 11 EXTENDED FUNCTIONS

User’s Manual U18548EJ1V0UM 383

Multiplication function (#pragma mul)

FUNCTION

- Outputs the code that multiplies the value of an expression to the object with direct inline expansion instead

of function call and generates an object file.

- If there is not a #pragma directive, the multiplication function is regarded as an ordinary function.

EFFECT

- The codes utilizing the data size of input/output of the multiplication instruction are generated. Therefore,

the codes with faster execution speed and smaller size than the description of ordinary multiplication

expressions can be generated.

USAGE

- Describe in the same format as that of function call in the source.

[List of multiplication function]

unsigned int mulu (x , y) ;

unsigned char x ;

unsigned char y ;

Performs unsigned multiplication of x and y.

- Declare the use of functions for multiplication by #pragma mul directive of the module.

However, the followings can be described before #pragma mul.

(i) Comments

(ii) Other #pragma directives

(iii) Preprocessing directives that do not generate definition/reference of variables and definition/reference

of functions

- Keywords following #pragma can be described in either uppercase or lowercase letters.

RESTRICTIONS

- The function for multiplication cannot be used as the function names (when #pragma mul is declared).

- The function for multiplication must be described in lowercase letters. If they are described in uppercase

letters, they are handled as ordinary functions.

mulu

384 User’s Manual U18548EJ1V0UM

CHAPTER 11 EXTENDED FUNCTIONS

EXAMPLE

<C source>

<Output object of compiler>

COMPATIBILITY

<From another C compiler to the CC78K0R>

- Modifications are not needed if the compiler does not use the functions for multiplication.

- To change to functions for multiplication, modification is made according to USAGE above.

<From the CC78K0R to another C compiler>

- #pragma mul statement is deleted or sorted by #ifdef. Function names for multiplication can be used as

the function names.

- To use as functions for multiplication, modification is needed depending on the specification of each

compiler (#asm, #endasm or asm() ; , etc.).

#pragma mul

unsigned char a = 0x11 ;
unsigned char b = 2 ;
unsigned int i ;

void main (void) {
 i = mulu (a , b) ;
}

mov x , !_b
mov a , !_a
mulu x
movw !_i , ax

CHAPTER 11 EXTENDED FUNCTIONS

User’s Manual U18548EJ1V0UM 385

Division function (#pragma div)

FUNCTION

- Outputs the code that divides the value of an expression to the object.

- If there is not a #pragma directive, the function for division is regarded as an ordinary function.

EFFECT

- Codes that are compatible with the CC78K0 and utilize the data size of the division instruction I/O are

generated. Therefore, codes with faster execution speed and smaller size than the description of ordinary

division expressions can be generated.

USAGE

- Describe in the same format as that of function call in the source. There are the following 2 functions for

division.

[List of division function]

(a) unsigned int divuw (x , y) ;

unsigned int x ;

unsigned char y ;

Performs unsigned division of x and y and returns the quotient.

(b) unsigned char moduw (x , y) ;

unsigned int x ;

unsigned char y ;

Performs unsigned division of x and y and returns the remainder.

- Declare the use of the function for divisions by the #pragma div directive of the module.

However, the followings can be described before #pragma div.

(i) Comments

(ii) Other #pragma directives

(iii) Preprocessing directives which do not generate definition/reference of variables and definition/

reference of functions

- Keywords following #pragma can be described in either uppercase or lowercase letters.

RESTRICTIONS

- The division functions are not expanded in line, but are called by the library.

- The function names for division cannot be used as the function names.

- The function names for division must be described in lowercase letters. If they are described in uppercase

letters, they are handled as ordinary functions.

divuw, moduw

386 User’s Manual U18548EJ1V0UM

CHAPTER 11 EXTENDED FUNCTIONS

EXAMPLE

<C source>

<Output object of compiler>

COMPATIBILITY

<From another C compiler to the CC78K0R>

- Modification is not needed if the compiler does not use the functions for division.

- To change to functions for division, modifications are made according to USAGE above.

<From the CC78K0R to another C compiler>

- #pragma div statement is deleted or sorted by #ifdef. The function names for division can be used as the

function name.

- To use as a function for division, modification is needed depending on the specification of each compiler

(#asm, #endasm or asm() ; , etc.).

#pragma div

unsigned int a = 0x1234 ;
unsigned char b = 0x12 ;
unsigned char c ;
unsigned int i ;
void main (void) {
 i = divuw (a , b) ;
 c = moduw (a , b) ;
}

mov c , !_b
movw ax , !_a
call !@@divuw
movw !_i , ax
mov c , !_b
movw ax , !_a
call !@@divuw
mov a , c
mov !_c , a

CHAPTER 11 EXTENDED FUNCTIONS

User’s Manual U18548EJ1V0UM 387

BCD operation function (#pragma bcd)

FUNCTION

- Outputs the code that performs a BCD operation on the expression value in an object by direct inline

expansion rather than by function call, and generates an object file.

However, bcdtob, btobcd, bcdtow, wtobcd, and bbcd function are not developed inline.

- If there are no #pragma directives, the function for BCD operation is regarded as an ordinary function.

EFFECT

- Even if the process of the BCD operation is not described, the BCD operation function can be realized by

the C source or ASM statements.

USAGE

- The same format as that of a function call is coded in the source.

There are 13 types of function name for BCD operation, as listed below. Refer to [List of functions for BCD

operation], later in this chapter for more information.

- Use of functions for BCD operation is declared by the module’s #pragma bcd directive. The following items,

however, can be coded before #pragma bcd.

(i) Comments

(ii) Other #pragma directives

(iii) Preprocessing directives that do not generate definitions/references of variables or function definitions/

references

- Either uppercase or lowercase letters can be used for keywords described after #pragma.

RESTRICTIONS

- BCD operation function names cannot be used as function names.

- The BCD operation function is coded in lowercase letters. If uppercase letters are used, these functions are

regarded as an ordinary functions.

adbcdb, sbbcdb, adbcdbe, sbbcdbe, adbcdw, sbbcdw, adbcdwe,
sbbcdwe, bcdtob, btobcde, bcdtow, wtobcd, btobcd

388 User’s Manual U18548EJ1V0UM

CHAPTER 11 EXTENDED FUNCTIONS

EXAMPLE

<C source>

<Output assembler source>

[List of functions for BCD operation]

(a) unsigned char adbcdb (x , y) ;

unsigned char x ;

unsigned char y ;

Decimal addition is carried out by the BCD adjustment instruction.

(b) unsigned char sbbcdb (x , y) ;

unsigned char x ;

unsigned char y ;

Decimal subtraction is carried out by the BCD adjustment instruction.

(c) unsigned int adbcdbe (x , y) ;

unsigned char x ;

unsigned char y ;

Decimal addition is carried out by the BCD adjustment instruction (with result expansion).

(d) unsigned int sbbcdbe (x , y) ;

unsigned char x ;

unsigned char y ;

Decimal subtraction is carried out by the BCD adjustment instruction (with result expansion).

If a borrow occurs, the high-order digits are set to 0x99.

#pragma bcd

unsigned char a = 0x12 ;
unsigned char b = 0x34 ;
unsigned char c ;

void main (void)
{
 c = adbcdb (a , b) ;
 c = sbbcdb (b , a) ;
}

 mov a , !_a
 add a , !_b
 add a , !BCDADJ
 mov !_c , a
 mov a , !_b
 sub a , !_a
 sub a , !BCDADJ
 mov !_c , a

CHAPTER 11 EXTENDED FUNCTIONS

User’s Manual U18548EJ1V0UM 389

(e) unsigned int adbcdw (x , y) ;

unsigned int x ;

unsigned int y ;

Decimal addition is carried out by the BCD adjustment instruction.

(f) unsigned int sbbcdw (x , y) ;

unsigned int x ;

unsigned int y ;

Decimal subtraction is carried out by the BCD adjustment instruction.

(g) unsigned long adbcdwe (x , y) ;

unsigned int x ;

unsigned int y ;

Decimal addition is carried out by the BCD adjustment instruction (with result expansion).

(h) unsigned long sbbcdwe (x , y) ;

unsigned int x ;

unsigned int y ;

Decimal subtraction is carried out by the BCD adjustment instruction (with result expansion).

If a borrow is occurred, the higher digits are set to 0x9999.

(i) unsigned char bcdtob (x) .

unsigned char x ;

Values in decimal number are converted to binary number values.

(j) unsigned int btobcde (x) ;

unsigned char x ;

Values in binary number are converted to decimal number values.

(k) unsigned int bcdtow (x) ;

unsigned int x ;

Values in decimal number are converted to binary number values.

(l) unsigned int wtobcd (x) ;

unsigned int x ;

Values in decimal number are converted to binary number values.

However, if the value of x exceeds 10000, 0xffff is returned.

(m) unsigned char btobcd (x) ;

unsigned char x ;

Values in decimal number are converted to those in binary number.

However, the overflow is discarded.

390 User’s Manual U18548EJ1V0UM

CHAPTER 11 EXTENDED FUNCTIONS

COMPATIBILITY

<From another C compiler to the CC78K0R>

- Corrections are not needed if functions for the BCD operations are not used.

- To change another function to the function for BCD operation, use the description above.

<From the CC78K0R to another C compiler>

- The #pragma bcd statements are either deleted or separated by #ifdef. A BCD operation function name

can be used as a function name.

- If using "pragma bcd" as a BCD operation function, the changes to the program source must conform to

the C compiler’s specifications (#asm, #endasm or asm(); etc.).

CHAPTER 11 EXTENDED FUNCTIONS

User’s Manual U18548EJ1V0UM 391

Data insertion function (#pragma opc)

FUNCTION

- Inserts constant data into the current address.

- When there is not a #pragma directive, the function for data insertion is regarded as an ordinary function.

EFFECT

- Specific data and instruction can be embedded in the code area without using the ASM statement.

When ASM is used, an object cannot be obtained without the intermediary of assembler. On the other hand,

if the data insertion function is used, an object can be obtained without the intermediary of assembler.

USAGE

- Describe using uppercase letters in the source in the same format as that of function call.

- The function name for data insertion is __OPC.

[List of data insertion functions]

(1) void __OPC (unsigned char x , ...) ;

Insert the value of the constant described in the argument to the current address.

Arguments can describe only constants.

- Declare the use of functions for data insertion by the #pragma opc directive.

However, the followings can be described before #pragma opc.

(i) Comments

(ii) Other #pragma directives

(iii) Preprocessing directives which do not generate definition/reference of variables and definition/

reference of functions

- Keywords following #pragma can be described in either uppercase or lowercase letters.

RESTRICTIONS

- The function names for data insertion cannot be used as the function names (when #opc is specified).

- __OPC must be described in uppercase letters. If they are described in lowercase letters, they are handled

as ordinary functions.

EXAMPLE

<C source>

#pragma opc

void main (void) {
 __OPC (0xA7) ;
 __OPC (0x51 , 0x12) ;
 __OPC (0x30 , 0x34 , 0x12) ;
}

392 User’s Manual U18548EJ1V0UM

CHAPTER 11 EXTENDED FUNCTIONS

<Output object of compiler>

COMPATIBILITY

<From another C compiler to the CC78K0R>

- Modification is not needed if the compiler does not use the functions for data insertion.

- To change to functions for data insertion, use the USAGE above.

<From the CC78K0R to another C compiler>

- The #pragma opc statement is deleted or delimited by #ifdef. Function names for data insertion can be

used as function names.

- To use as a function for data insertion, changes to the program source must conform to the specification

of the C compiler (#asm, #endasm or asm() ; , etc.).

_main :
; line 4 : __OPC (0xA7) ;
 DB 0AFH
; line 5 : __OPC (0x51 , 0x12) ;
 DB 051H
 DB 012H
; line 6 : __OPC (0x30 , 0x34 , 0x12) ;
 DB 030H
 DB 034H
 DB 012H
; line 7 : }
 ret

CHAPTER 11 EXTENDED FUNCTIONS

User’s Manual U18548EJ1V0UM 393

Interrupt handler for RTOS (#pragma rtos_interrupt ...)

FUNCTION

- Interprets the function name specified with the #pragma rtos_interrupt directive as the interrupt handler for

the 78K0R RTOS RX78K0R.

- Registers the address of the described function name to the interrupt vector table for the specified interrupt

request name.

- The interrupt handler for RTOS generates codes in the following order.

(1) Calls kernel symbol __kernel_int_entry using call !!addr20 instruction

(2) Saves the saddr area used by compiler

(3) Secures the local variable area (only when there is a local variable)

(4) The function body

(5) Releases the local variable area (only when there is a local variable)

(6) Restores the saddr area used by compiler

(7) Unconditionally jumps to label _ret_int using br !!addr20 instruction

EFFECT

- The interrupt handler for RTOS can be described in the C source level.

- Because the interrupt request name is identified, the address of the vector table does not need to be

identified.

USAGE

- The interrupt request name, function name is specified by the #pragma directive.

- This #pragma directive is described at the start of the C source.

When #pragma PC (type) is described, main #pragma directive is described after #pragma pc.

The following can be described before the #pragma directive.

(i) Comments

(ii) Preprocessing directives which do not generate definition/reference of variables and definition/

reference of functions

- Of the keywords to be described following #pragma, the interrupt request name must be described in

uppercase letters. The other keywords can be described either in uppercase or lowercase letters.

#pragmaΔrtos_interrupt[Δinterrupt-request-nameΔfunction-name]

394 User’s Manual U18548EJ1V0UM

CHAPTER 11 EXTENDED FUNCTIONS

RESTRICTIONS

- When the -zf option is not specified, interrupt handler for RTOS are allocated to the area between C0H and

0FFFFH, regardless of the memory model.

When the -zf option is specified, interrupt functions are allocated in accordance with the memory model. In

addition, specification of allocation area by specifying __near or __far is also enabled.

- Interrupt request names are described in uppercase letters.

- Software interrupts and non-maskable interrupts cannot be specified for the interrupt request names, if

specified so, an error will occur.

- Interrupt requests are double-checked in one module units only.

- The interrupt handler for RTOS cannot specify callt/__callt/__interrupt /__interrupt_brk/__flash/__flashf.

__far can be specified only when the -zf option is specified.

- ret_int/_kernel_int_entry cannot be used for the function names.

EXAMPLE

<C source>

#pragma rtos_interrupt INTP0 intp

int i ;

void intp (void) {
 int a [3] ;
 a [0] = 1 ;
 func () ;
}

CHAPTER 11 EXTENDED FUNCTIONS

User’s Manual U18548EJ1V0UM 395

<Output object of compiler>

COMPATIBILITY

<From another C compiler to the CC78K0R>

- Modifications are not needed if the compiler does not support the interrupt handler for RTOS.

- To change to interrupt handler for RTOS, use the USAGE above.

<From the CC78K0R to another C compiler>

- Handled as an ordinary function if #pragma rtos_interrupt specification is deleted.

- To use as an interrupt handler for ROTS, changes to the source program must conform to the

specification of the C compiler.

@@BASE CSEG BASE
_intp :
 call !!__kernel_int_entry
 movw ax , _@RTARG0 ; Saves saddr area used by the compiler
 push ax ;
 movw ax , _@RTARG2 ;
 push ax ;
 movw ax , _@RTARG4 ;
 push ax ;
 movw ax , _@RTARG6 ;
 push ax ;
 movw ax , _@SEGAX ;
 push ax ;
 movw ax , _@SEGDE ;
 push ax ;
 subw sp , #06H ; Secures the local variable area
 movw hl , sp
; line 6 : int a [3] ;
; line 7 : a [0] = 1;
 onew ax
 movw [hl] , ax ; a
; line 8 : func () ;
 call !!_func
; line 9 : }
 addw sp , #06H ; Releases the local variable area
 pop ax ; Restores saddr area used by the compiler
 movw _@SEGDE , ax ;
 pop ax ;
 movw _@SEGAX , ax ;
 pop ax ;
 movw _@RTARG6 , ax ;
 pop ax ;
 movw _@RTARG4 , ax ;
 pop ax ;
 movw _@RTARG2 , ax ;
 pop ax ;
 movw _@RTARG0 , ax ;
 br !!_ret_int

@@VECT06 CSEG AT 0006H
_@vect06 :
 DW _intp

396 User’s Manual U18548EJ1V0UM

CHAPTER 11 EXTENDED FUNCTIONS

Interrupt handler qualifier for RTOS (__rtos_interrupt)

FUNCTION

- The function declared with the __rtos_interrupt qualifier is interpreted as an interrupt handler for RTOS.

For details on registers used with interrupt handler for RTOS and saving and restoring of saddr, refer to

"Interrupt handler for RTOS (#pragma rtos_interrupt ...)".

EFFECT

- The setting of the vector table and the definition of the interrupt handler function for RTOS can be described

in separate files.

USAGE

- __rtos_interrupt is added to the qualifier of the interrupt handler for RTOS.

RESTRICTIONS

- When the -zf option is not specified, interrupt handler for RTOS are allocated to the area between C0H and

0FFFFH, regardless of the memory model.

When the -zf option is specified, interrupt functions are allocated in accordance with the memory model. In

addition, specification of allocation area by specifying __near or __far is also enabled.

- The interrupt handler for RTOS cannot specify callt/__callt/__interrupt/__interrupt_brk/__flash/__flashf.

__far can be specified only when the -zf option is specified.

- ret_int/__kernel_int_entry cannot be used for the function names.

CAUTIONS

- Vector addresses cannot be set only with declaration of this qualifier.

The setting of the vector address must be performed separately with the #pragma directive, assembler

description, etc.

- When the interrupt handler for RTOS is defined in the same file as the one in which the #pragma

rtos_interrupt ... is specified, the function name specified with #pragma rtos_interrupt is judged as an

interrupt handler for RTOS even if this qualifier is not described.

COMPATIBILITY

<From another C compiler to the CC78K0R>

- Modifications are not needed if the compiler does not support interrupt handler for RTOS.

- To change to interrupt handler for RTOS, use the USAGE above.

__rtos_interrupt void func () { processing }

CHAPTER 11 EXTENDED FUNCTIONS

User’s Manual U18548EJ1V0UM 397

<From the CC78K0R to another C compiler>

- Changes can be made by #define (For the details, refer to "11.6 Modifications of C Source"). By these

changes, interrupt handler qualifiers for RTOS are handled as ordinary variables.

- To use as an interrupt handler for RTOS, modification is needed depending on the specification of each

compiler.

398 User’s Manual U18548EJ1V0UM

CHAPTER 11 EXTENDED FUNCTIONS

Task function for RTOS (#pragma rtos_task)

FUNCTION

- The function names specified with #pragma rtos_task are interpreted as the tasks for RTOS.

- In the case the function name is specified, if the entity definition is not in the same file, an error will occur.

- The preprocessing of the task function for RTOS does not save the registers for frame pointer/register

variables. The postprocessing is not output.

- RTOS system call ext_tsk is always called at the end of #pragma rtos_task.

- The following RTOS system call calling function can be used.

void ext_tsk (void) ;

Calls RTOS system call ext_tsk.

When ext_tsk is, however, called in the ext_tsk entity definition, interrupt function, interrupt handler for

RTOS, an error will occur.

- RTOS system call ext_tsk is called using the br !!addr20 instruction. If ext_tsk is issued at the end of an

ordinary function, the epilogue is not output.

- A task function can be coded without arguments specified, or with only one argument of up to 4 bytes

specified, but no return values can be specified.

An error will be occur if two or more arguments are specified, an argument of 5 bytes or longer is specified,

or a return value is specified.

EFFECT

- The task function for RTOS can be described in the C source level.

- The saving and postprocessing of the register frame pointer/register variable are not output, so the code

efficiency is improved.

USAGE

- Specifies the function name for the following #pragma directives.

- The #pragma directives are described at the start of the C source.

However, the followings can be described before the #pragma directive.

(i) Comments

(ii) Preprocessing directives which do not generate definition/reference of variables and definition/

reference of functions

- Keywords following #pragma can be described either in uppercase or lowercase letters.

#pragmaΔrtos_task[Δtask-function-name]

CHAPTER 11 EXTENDED FUNCTIONS

User’s Manual U18548EJ1V0UM 399

RESTRICTIONS

- The task function for RTOS cannot specify the callt/__callt/__interrupt/__interrupt_brk/__flash/__flashf.

__far can be specified only when the -zf option is specified.

- The task function for RTOS cannot be called in the same manner as the ordinary functions.

- RTOS system call calling function name ext_tsk cannot be used for function names.

- If #pragma rtos_task is not written to the C source, ext_tsk is not interpreted as a system call for RTOS.

Consequently, the following error will not be output even if ext_tsk is called from an RTOS interrupt handler.

E0778: Cannot call ext_tsk in interrupt function

Workarounds:

- Clearly specify the use of the task function, by specifying #pragma rtos_task.

- Do not call ext_tsk from RTOS interrupt handlers.

EXAMPLE

<C source>

#pragma rtos_task func
#pragma rtos_task func2

void func (void) {
 int a [3] ;
 a [0] = 1 ;
 ext_tsk () ;
}

void func2 (int x) {
 int a [3] ;
 a [0] = 1 ;
}

void func3 (void) {
 int a [3] ;
 a [0] = 1 ;
 ext_tsk () ;
}

void func4 (void) {
 int a [3] ;
 a [0] = 1 ;
 if (a [0]) {
 ext_tsk () ;
 }
}

400 User’s Manual U18548EJ1V0UM

CHAPTER 11 EXTENDED FUNCTIONS

<Output object of compiler>

COMPATIBILITY

<From another C compiler to the CC78K0R>

- Modifications are not needed if the compiler does not support the task function for RTOS.

- To change to the task function for RTOS, use the USAGE above.

<From the CC78K0R to another C compiler>

- If #pragma rtos_task specification is deleted, RTOS task function is used as an ordinary function.

- To use as RTOS task function, changes to the program source must conform to the specification of the C

compiler.

@@CODEL CSEG
_func :
 subw sp , #06H ; Frame pointers are saved
 movw hl , sp
 onew ax
 movw [hl] , ax ; a
 br !!_ext_tsk ; Calling of ext_tsk by writing ext_tsk
 ; function
 br !!_ext_tsk ; Calling of ext_tsk always output by task
 ; function
 ; Epilogue is not output
_func2 :
 push ax ; Frame pointers are not saved
 subw sp , #06H
 movw hl , sp
 onew ax
 movw [hl] , ax ; a
 br !!_ext_tsk ; Calling of ext_tsk always output by task
 ; function
 ; Epilogue is not output
_func3 :
 push hl ; Frame pointers are saved
 subw sp , #06H
 movw hl , sp
 onew ax
 movw [hl] , ax ; a
 br !!_ext_tsk ; Epilogue is output if ext_tsk is called
 ; in the middle of a function
_func4 :
 push hl ; Frame pointers are saved
 subw sp , #06H
 movw hl , sp
 onew ax
 movw [hl] , ax ; a
 clrw bc
 cmpw ax , bc
 skz
 br !!_ext_tsk ; Epilogue is output if ext_tsk is called
 addw sp , #06H ; in the middle of a function
 pop hl
 ret

CHAPTER 11 EXTENDED FUNCTIONS

User’s Manual U18548EJ1V0UM 401

Flash area allocation method (-zf)

Caution This function enables the flash memory rewriting function of devices.

FUNCTIONS

- Generates an object file located in the flash area.

- External variables in the flash area cannot be referred to from the boot area.

- External variables in the boot area can be referred to from the flash area.

- The same external variables and the same global functions cannot be defined in a boot area program and a

flash area program.

EFFECT

- Enables locating a program in the flash area.

- Enables using function linking with a boot area object created without specifying the -zf option.

USAGE

- Specify the -zf option during compilation.

RESTRICTION

- Use startup routines or library for the flash area.

402 User’s Manual U18548EJ1V0UM

CHAPTER 11 EXTENDED FUNCTIONS

Flash area branch table (#pragma ext_table)

Caution This function enables the flash memory rewriting function of devices.

FUNCTIONS

- Determines the first address of the branch table for the startup routine, the interrupt function, or the function

call from the boot area to the flash area.

- 64 addresses from the first address of the branch table are dedicated for interrupt functions (including

startup routine), and each of them occupies 4 bytes of area. The branch tables for ordinary functions are

normally allocated after the "first address of the branch table + 4 * 64". Each of the branch tables occupies

4 bytes of area.

EFFECT

- A startup routine and interrupt function can be located in the flash area.

- A function calls can be performed from the boot area to the flash area.

USAGE

- The following #pragma instruction specifies the first address of the flash area branch table.

Describe the #pragma instruction at the beginning of C source.

- The following items can be described before the #pragma instruction:

(i) Comments

(ii) #pragma instructions other than #pragma ext_func, #pragma vect with -zf specification, #pragma

interrupt, or #pragma rtos_interrupt.

(iii) Instructions not to generate the definition/reference of variables or functions among the preprocess

instructions.

RESTRICTIONS

- The branch table is located at the first address of the flash area.

- If #pragma ext_table does not exist before #pragma ext_func, #pragma vect with -zf specification, #pragma

interrupt, or #pragma rtos_interrupt, an error will occur.

- The first address of the branch table is assumed to be 80H to 0FF80H0xc0 to 0xff00.

- It is necessary to reconfigure the library for interrupt vectors (_@vect00 to _@vect7e) in accordance with

the specified first address of the branch table. The default is 2000H in the interrupt vector library. To specify

the value other than 2000H, reconfigure the library as shown below.

(i) Change the place of H in ITBLTOP EQU 2000H of vect.inc in the \Program Files\NEC Electronics

Tools\CC78K0R\Vx.xx\src\cc78k0r\src folder to the specified address.

#pragma ext_table branch-table-first-address

CHAPTER 11 EXTENDED FUNCTIONS

User’s Manual U18548EJ1V0UM 403

(ii) Run \Program Files\NEC Electronics Tools\CC78K0R\Vx.xx\src\cc78k0r\bat\repvect.bat in command

prompt, and update library by assembly. Copy the updated library \Program Files\NEC Electronics

Tools\CC78K0R\Vx.xx\src\cc78k0r\lib to \Program Files\NEC Electronics

Tools\CC78K0R\Vx.xx\lib78k0r to be used for link.

Caution The above folder may differ depending on the installation method.

COMPATIBILITY

<From another C compiler to the CC78K0R>

- If #pragma ext_table is not used, correction is not necessary.

- To specify the first address of the flash area branch table, change the address in accordance with USAGE

above.

<From the CC78K0R to another C compiler>

- Delete the #pragma ext_table instruction or divide it by #ifdef.

- To specify the first address of the flash area branch table, the following change is required.

EXAMPLE

[To generate a branch table after the address 2000H and place the interrupt function:]

<C source>

(a) To place the interrupt function to the boot area (no -zf specified)

<Output code>

- Sets the first address of the interrupt function in the interrupt vector table.

#pragma ext_table 0x2000
#pragma interrupt INTP0 intp

void intp (void) {
}

 PUBLIC _intp
 PUBLIC _@vect06
@@BASE CSEG BASE
_intp :
 reti

@@VECT06 CSEG AT 0006H
_@vect06 :
 DW _intp

404 User’s Manual U18548EJ1V0UM

CHAPTER 11 EXTENDED FUNCTIONS

(b) To place the interrupt function in the flash area (-zf specified)

<Output code>

- Sets the first address of the interrupt function in the branch table.

- The address value of the branch table is 2000H + 4 * (0006H / 2) since the first address of the

branch table is 200CH and the interrupt vector address (2 bytes) is 0006H.

- The interrupt vector library performs the setting of the address 2009H in the interrupt vector table.

<Library for interrupt vector 06>

 PUBLIC _intp
@ECODE CSEG BASE
_intp :
 reti

@EVECT06 CSEG AT 0200CH
 br !!_intp

 PUBLIC _@vect06

@@VECT06 CSEG AT 0006H
_@vect06 :
 DW 200CH

CHAPTER 11 EXTENDED FUNCTIONS

User’s Manual U18548EJ1V0UM 405

Function of function call from boot area to flash area (#pragma ext_func)

Caution This function enables the flash memory rewriting function of devices.

FUNCTIONS

- Function calls from the boot area to the flash area are executed via the flash area branch table.

- From the flash area, functions in the boot area can be called directly.

EFFECT

- It becomes possible to call a function in the flash area from the boot area.

USAGE

- The following #pragma instruction specifies the function name and ID value in the flash area called from the

boot area.

This #pragma instruction is described at the beginning of the C source.

The following items can be described before this #pragma instruction.

(i) Comments

(ii) Instructions not to generate the definition/reference of variables or functions among the preprocess

instructions.

RESTRICTIONS

- The ID value is set at 0 to 255 (0xFF).

- #pragma ext_table does not exist before #pragma ext_func, it results in an error.

- For the same function with a different ID value and a different function with the same ID value, an error will

occur. (a) and (b) below are errors.

(a) #pragma ext_func f1 3

#pragma ext_func f1 4

(b) #pragma ext_func f1 3

#pragma ext_func f2 3

- If a function is called from the boot area to the flash area and there is no corresponding function definition in

the flash area, the linker cannot conduct a check. This is the user’s responsibility.

- The callt functions can only be located in the boot area. If the callt functions are defined in the flash area

(when the -zf option is specified), it results in an error.

#pragma ext_func function-name ID value

406 User’s Manual U18548EJ1V0UM

CHAPTER 11 EXTENDED FUNCTIONS

COMPATIBILITY

<From another C compiler to the CC78K0R>

- If the #pragma ext_func is not used, no corrections are necessary.

- To perform the function call from the boot area to the flash area, make the change in accordance with

USAGE above.

<From the CC78K0R to another C compiler>

- Delete the #pragma ext_func instruction or divide it by #ifdef.

- To perform the function call from the boot area to the flash area, the following change is required.

EXAMPLE

- In the case that the branch table is generated after address 2000H and functions f1 and f2 in the flash area

are called from the boot area.

<C source>

Remark 1 #pragma ext_func f1 3 means that the branch destination to function f1 is located in branch

table address 2000H + 4 * 64 + 4 * 3.

Remark 2 #pragma ext_func f2 4 means that the branch destination to function f2 is located in branch

table address 2000H + 4 * 64 + 4 * 4.

Remark 3 4 * 64 bytes from the beginning of the branch table are dedicated to interrupt functions (includ-

ing the startup routine).

(1) Boot area side

#pragma ext_table 0x2000
#pragma ext_func f1 3
#pragma ext_func f2 4

extern void f1 (void) ;
extern void f2 (void) ;

void func (void)
{
 f1 () ;
 f2 () ;
}

(2) Flash area side

#pragma ext_table 0x2000
#pragma ext_func f1 3
#pragma ext_func f2 4

void f1 (void) {
}

void f2 (void) {
}

CHAPTER 11 EXTENDED FUNCTIONS

User’s Manual U18548EJ1V0UM 407

<Output object of compiler>

(1) Boot area side (without -zf specification)

@@CODEL CSEG
_func :
 call !0210CH
 call !02110H
 ret

(2) Flash area side (with -zf specification)

@ECODEL CSEG
_f1 :
 ret
_f2 :
 ret

@EXT03 CSEG AT 0210CH
 br !!_f1
 br !!_f2

408 User’s Manual U18548EJ1V0UM

CHAPTER 11 EXTENDED FUNCTIONS

Firmware ROM function (__flash)

Caution This function enables the flash memory rewriting function of devices.

FUNCTIONS

- This calls a firmware ROM function which self-writes to the flash memory via the interface library positioned

between the firmware ROM function and the C language function.

- In the interface library call interface, the first argument is passed to the register and the second and

subsequent arguments are transferred to the stack. The first argument’s register is as follows.

1- or 2-byte data: AX

4-byte data: AX (low-order), BC (high-order)

- It is necessary that the interface library be set to the return the values in the following registers according to

the size of return values.

1- or 2-byte data: BC

near pinter: BC

4-byte data, far pointer: BC (low-order), DE (high-order)

EFFECT

- The operations related to the firmware ROM function can be described at the C source level.

USAGE

- During interface library prototype declaration, __flash attributes are added to the top.

RESTRICTIONS

- Function calls by a function pointer are not supported.

- When a function with __flash is defined, it results in an error.

COMPATIBILITY

<From another C compiler to the CC78K0R>

- If the reserved word __flash is not used, corrections are not necessary.

- If you desire to change the firmware ROM function, use the USAGE above.

<From the CC78K0R to another C compiler>

- Possible using #define (refer to "11.6 Modifications of C Source").

- In a CPU with a firmware ROM function or substitute function, it is necessary for the user to create an

exclusive library to access that area.

CHAPTER 11 EXTENDED FUNCTIONS

User’s Manual U18548EJ1V0UM 409

Method of int expansion limitation of argument/return value (-zb)

FUNCTION

- When the type definition of the function return value is char/unsigned char, the int expansion code of the

return value is not generated.

- When the prototype of the function argument is defined and the argument definition of the prototype is char/

unsigned char, the int expansion code of the argument is not generated.

EFFECT

- The object code is reduced and the execution speed improved since the int expansion codes are not

generated.

USAGE

- The -zb option is specified during compilation.

EXAMPLE

<C source>

unsigned char func1 (unsigned char x , unsigned char y) ;
unsigned char c , d , e ;

void main (void) {
{
 c = func1 (d , e) ;
 c = func2 (d , e) ;
}

unsigned char func1 (unsigned char x , unsigned char y)
{
 return x + y ;
}

410 User’s Manual U18548EJ1V0UM

CHAPTER 11 EXTENDED FUNCTIONS

[When the -zb option is specified]

<Output object of compiler>

RESTRICTIONS

- If the files are different between the definition of the function body and the prototype declaration to this

function, the program may operate incorrectly.

COMPATIBILITY

<From another C compiler to the CC78K0R>

- If the prototype declarations for all definitions of function bodies are not correctly performed, perform

correct prototype declaration. Alternatively, do not specify the -zb option.

<From the CC78K0R to another C compiler>

- No modification is needed.

_main :
; line 5 : c = func1 (d , e) ;
 mov x , !_e
 push ax
 mov x , !_d ; Do not execute int expansion
 call !_func1
 pop ax
 mov a , c
 mov !_c , a
; line 6 : c = func2 (d , e) ;
 mov x , !_e
 clrb a ; Execute int expansion since there is no prototype
declaration
 push ax
 mov x , !_d
 mov x , #00H
 xch a , x ; Execute int expansion since there is no
 ; prototype declaration
 call !_func2
 pop ax
 mov a , c
 mov !_c , a
; line 7 : }
 ret
; line 8 : unsigned char func1（ unsigned char x , unsigned char y ）
; line 9 : {
_func1 :
 push hl
 push ax
 movw ax , sp
 movw hl , ax
 mov a , [hl]
 mov x , a
 mov a , [hl + 6]
 movw hl , ax
; line 10 : return x + y ;
 mov a , l
 add a , h
 mov c , a ; Do not execute int expansion
; line 11 : }
 pop ax
 pop hl
 ret

CHAPTER 11 EXTENDED FUNCTIONS

User’s Manual U18548EJ1V0UM 411

Memory manipulation function (#pragma inline)

FUNCTION

- An object file is generated by the output of the standard library memory manipulation functions memcpy and

memset with direct inline expansion instead of function call.

- When there is no #pragma directive, the code that calls the standard library functions is generated.

EFFECT

- Compared with when a standard library function is called, the execution speed is improved.

- Object code is reduced if a constant is specified for the specified character number.

USAGE

- The function is described in the source in the same format as a function call.

- The following items can be described before #pragma inline.

(i) Comments

(ii) Other #pragma directives

(iii) Preprocess directives that do not generate variable definitions/references or function definitions/

references

EXAMPLE

<C source>

#pragma inline
char ary1 [100] , ary2 [100] ;

void main (void) {
{
 memset (ary1 , 'A' , 50) ;
 memcpy (ary1 , ary2 , 50) ;
}

412 User’s Manual U18548EJ1V0UM

CHAPTER 11 EXTENDED FUNCTIONS

<Output object of compiler>

COMPATIBILITY

<From another C compiler to the CC78K0R>

- Modification is not needed if the memory manipulation function is not used.

- When changing the memory manipulation function, use the method above.

<From the CC78K0R to another C compiler>

- The #pragma inline directive should be deleted or delimited using #ifdef.

_main :
 push hl
; line 5 : memset (ary1 , 'A' , 50) ;
 movw de , #loww (_ary1)
 mov a , #041H ; 65
 mov c , #032H ; 50
L0003 :
 mov [de] , a
 incw de
 dec c
 bnz $L0003
; line 6 : memcpy (ary1 , ary2 , 50) ;
 movw de , #loww (_ary1)
 movw hl , #loww (_ary2)
 mov c , #032H ; 50
L0005 :
 mov a , [hl]
 mov [de] , a
 incw de
 incw hl
 dec c
 bnz $L0005
; line 7 : }
 pop hl
 ret

CHAPTER 11 EXTENDED FUNCTIONS

User’s Manual U18548EJ1V0UM 413

Absolute address allocation specification (__directmap)

FUNCTION

- The initial value of an external variable declared by __directmap and a static variable in a function is

regarded as the allocation address specification, and variables are allocated to the specified addresses.

Specify the allocation address using integers.

- The __directmap variable in the C source is treated as an static variable.

- Because the initial value is regarded as the allocation address specification, the initial value cannot be

defined and remains an undefined value.

- The specifiable address specification range, secured area range linked by the module for securing the area

for the specified addresses, and variable duplication check range are shown in the table below.

- If the address specification is outside the address specification range, an error is output.

- A variable that is declared with __directmap cannot be allocated to an area that extends over a boundary of

the following areas. If allocated, an error will be output.

- saddr area (0xffe20 to 0xffeff)

- sfr area or an area with which saddr area overlaps (0xfff00 to 0xfff1f)

- sfr area (0xfff20 to 0xfffff)

- 2nd sfr area (Varies depending on the device used.)

- If the allocation address of a variable declared by __directmap is duplicated and is within the duplication

check range, a warning message (W0762) is output and the name of the duplicated variable is displayed.

- If the address specification range is inside the saddr area, the __sreg declaration is made automatically and

the saddr instruction is generated.

- If char/unsigned char/short/unsigned short/int/unsigned int/long/unsigned long type variables declared by

__directmap are bit referenced, sreg/__sreg must be specified along with __directmap. If they are not, an

error will occur.

- If the specified address range is in the near area, the variable is regarded to be in the near area for

accessing.

- If the specified address range is in neither the saddr area nor near area, the variable is regarded to be in the

far area for accessing.

Item

Range

When Small Model or
Medium Model Is Specified

When Large Model Is
Specified

Address Specification Range 0xf0000 to 0xfffff 0x00000 to 0xfffff

Secured Area Range 0xffd00 to 0xffeff 0xffd00 to 0xffeff

Duplication Check Range Start address - end address of
device internal RAM

Start address - end address of
device internal RAM

414 User’s Manual U18548EJ1V0UM

CHAPTER 11 EXTENDED FUNCTIONS

- If neither the __near nor __far type qualifier is specified, the variable is accessed in accordance with the

memory model specifications.

- If a type qualifier is specified, the variable is accessed in accordance with the specification. If the specified

address range and the type qualifier contradict, an error will be output.

The table below lists the relationship between the address specification ranges, memory models, and type

qualifiers.

EFFECT

- One or more variables can be allocated to the same arbitrary address.

USAGE

- Declare __directmap in the module in which the variable to be allocated in an absolute address is to be

defined.

- If __directmap is declared for a structure/union/array, specify the address in braces {}.

Address
Specification

Range

Type Qualifier

__near __sreg __far __sreg __sreg __near __far No specification

In
saddr
area

Accessing
method

sreg sreg sreg sreg sreg sreg

Pointer
length

2 bytes 4 bytes Small : 2 bytes
Medium : 2 bytes
Large : 4 bytes

2 bytes 4 bytes Small : 2 bytes
Medium : 2 bytes
Large : 4 bytes

In
near
area

Accessing
method

Error Error Error near far Small ： near
Medium ： near
Large ： far

Pointer
length

2 bytes 4 bytes Small : 2 bytes
Medium : 2 bytes
Large : 4 bytes

In
far

area

Accessing
method

Error Error Error Error far Small ： Error
Medium ： Error
Large ： far

Pointer
length

4 bytes Small : Error
Medium : Error
Large : 4 bytes

__directmap type-name variable-name = allocation-address-specification;
__directmap static　 type-name variable-name = allocation-address-specification;
__directmap __sreg　 type-name variable-name = allocation-address-specification;
__directmap __sreg　static type-name variable-name = allocation-address-specification;

CHAPTER 11 EXTENDED FUNCTIONS

User’s Manual U18548EJ1V0UM 415

EXAMPLE

<C source>

<Output object>

RESTRICTIONS

- __directmap cannot be specified for function arguments, return values, or automatic variables. If it is

specified in these cases, an error will occur.

- If an address outside the secured area range is specified, the variable area will not be secured, making it

necessary to either describe a directive file or create a separate module for securing the area.

- The __directmap variable cannot be declared with extern because it is handled in the same way as the

static variables.

__directmap char c = 0xffe00 ;
__directmap __sreg char d = 0xffe20 ;
__directmap __sreg char e = 0xffe21 ;
__directmap struct x {
 char a ;
 char b ;
} xx = { 0xffe30 } ;

void main (void) {
 c = 1 ;
 d = 0x12 ;
 e.5 = 1 ;
 xx.a = 5 ;
 xx.b = 10 ;
}

 PUBLIC _main
_c EQU 0FFE00H ; Addresses for variables declared by __directmap
are defined by EQU
_d EQU 0FFE20H
_e EQU 0FFE21H ;
_xx EQU 0FFE30H ;
 EXTRN __mmfe00 ; For linking secured area modules
 EXTRN __mmfe20 ; EXTRN output
 EXTRN __mmfe21 ;
 EXTRN __mmfe30 ;
 EXTRN __mmfe31 ;
@@CODEL CSEG
_main :
; line 10 :
 oneb !loww (_c)
; line 11 :
 mov _d , #012H ; saddr instruction output because address
specified in saddr area
; line 12 :
 set1 _e.5 ; Bit manipulation possible because __sreg also used
; line 13 :
 mov _xx , #05H ; saddr instruction output because address
specified in saddr area
; line 14 :
]

 mov _xx + 1 , #0AH ; saddr instruction output because address
specified in saddr area
; line 15 :
 ret
 END

416 User’s Manual U18548EJ1V0UM

CHAPTER 11 EXTENDED FUNCTIONS

COMPATIBILITY

<From another C compiler to the CC78K0R>

- No modification is necessary if the keyword __directmap is not used.

- To change to the __directmap variable, modify according to the description method above.

<From the CC78K0R to another C compiler>

- Compatibility can be attained using #define (refer to "11.6 Modifications of C Source" for details).

- When the __directmap is being used as the absolute address allocation specification, modify according to

the specifications of each compiler.

CHAPTER 11 EXTENDED FUNCTIONS

User’s Manual U18548EJ1V0UM 417

near/far area specification

FUNCTION

- The location of a function or variable is specified explicitly by specifying a __near or __far type qualifier.

- The pointer to the near area should be 2 bytes long, and that to the far area should be 4 bytes long.

- An error will occur if __near and __far type qualifiers are used together in declaration of the same variable or

function.

- The __near and __far type qualifiers are handled as type qualifiers, grammatically.

- If specified together with __callt, __interrupt, __rtos_interrupt, __interrupt_brk, __sreg, or __boolean, the

__near or __far type qualifier is ignored.

- An error will occur if __near and __far type qualifiers are specified together.

- If specified for an automatic variable, argument or register variable, the __near or __far type qualifier is

ignored.

- Variables in the near area are accessed without using the ES register.

The pointer length should be 2 bytes long.

- Variables in the far area are accessed by setting the ES register.

The pointer length should be 4 bytes long.

- Functions in the near area are called with !addr16, and functions in the far area are called with !!addr20.

- Since there are no instructions that can call function pointers without referencing the CS register, be sure to

set the CS register to call function pointers.

- Function pointers for functions in the near area output the code to set the CS register to 0.

- The highest byte of a far pointer is always undefined.

- Conversion from the near pointer or int to the far pointer, and from the near pointer to long results in the

following operations.

(1) "0xf" is added to the higher bytes of the variable pointer (0 is exceptional and zero-extended).

(2) The function pointer is zero-extended.

- Addition and subtraction with the far pointer uses the lower 2 bytes, and the higher bytes do not change.

- ptrdiff_t is always int type.

- An equality operation with the far pointer uses the lower 3 bytes.

Qualifier Location

__near type qualifier near area (data: 0F0000H to 0FFFFFH, code: 000000H to 00FFFFH)

__far type qualifier far area (000000H to 0FFFFFH)

418 User’s Manual U18548EJ1V0UM

CHAPTER 11 EXTENDED FUNCTIONS

- A relational operation with the far pointer uses the lower 2 bytes. To compare pointers that do not point to

the same object, the pointer must be converted to unsigned long. If the -za option is specified, the lower 3

bytes are used for comparison.

- The character string constants are allocated to the far area or near area, according to the memory model

specified.

- When the large model is used, pointers to automatic variables, arguments, and sreg variables are 4 bytes

long.

EFFECT

- Specification of the __far type qualifier enables functions and variables to be allocated to the far area and to

be referenced.

- Specification of the __near type qualifier enables functions and variables to be allocated to the near area

and to be referenced.

The functions and variables allocated to the near area can be called or referenced with a short instruction.

USAGE

- The __near or __far type qualifier is added to a function or variable declared.

EXAMPLE

- i1 is int type and allocated to the near area.

- i2 is int type and allocated to the far area.

- p1 is a 4-byte type variable that points to "an int type in the far area". The variable itself is allocated to the

near area.

- p2 is a 2-byte variable that points to a 4-byte type in the near area, which points to "an int type in the far

area". The variable itself is allocated to the far area.

- func1 is a function that returns "an int type". The function itself is allocated to the far area.

Memory Model Location

Small model near area

Medium model near area

Large model far area

__near int i1;
__far int i2;
__far int * __near p1;
__far int * __near * __far p2;
__far int func1();
__far int * __near func2();
__near int (* __far fp1)();
__far int * __near (* __near fp2)();
__near int * __far (* __near fp3)();
__near int * __near (* __far fp4)();

CHAPTER 11 EXTENDED FUNCTIONS

User’s Manual U18548EJ1V0UM 419

- func2 is a function that returns a 4-byte type that points to "an int type in the far area". The function itself is

allocated to the near area.

- fp1 is a 2-byte type variable that points to "a function in the near area, which returns an int type". The

variable itself is allocated to the far area.

- fp2 is a 2-byte type variable that points to a function in the near area, which returns a 4-byte type that points

to "an int type in the far area". The variable itself is allocated to the near area.

- fp3 is a 4-byte type variable that points to a function in the far area, which returns a 2-byte type that points to

"an int type in the near area". The variable itself is allocated to the near area.

- fp4 is a 2-byte type variable that points to a function in the near area, which returns a 2-byte type that points

to "an int type in the near area". The variable itself is allocated to the far area.

RESTRICTIONS

- Even if the __far type qualifier is specified, data cannot be allocated to an area extending over a 64 KB

boundary.

Functions can be allocated to an area extending over a 64 KB boundary.

COMPATIBILITY

<From another C compiler to the CC78K0R>

- It is not necessary to modify the code if reserved word __near or __far is not used.

<From the CC78K0R to another C compiler>

- It is not necessary to modify the code if the __near or __far type qualifier is not used.

- - If the __near or __far type qualifier is used, #define can be used for near/far area specification.

CAUTION

- If the lower 2 bytes are used for a relational operation, data cannot be allocated to the last byte of a 64 KB

boundary area. If allocated, an error will be output by the linker or compiler.

This is because, ANSI-compliant operationNote is performed for the relational operation that uses the pointer

that points to the range outside an array.

Note Constraints on relational operators prescribed by ANSI

If expression P points to an element of an array object and expression Q points to the last

element of that array object, pointer expression Q+1 is larger than expression P.。

- The size of the pointer for the far area is 4 bytes but the calculation object is the lower 3 bytes, so the

highest byte is always undefined.

<Example>

union tag {
 __far unsigned short *ptr;
 unsigned long ldata;
} un;

420 User’s Manual U18548EJ1V0UM

CHAPTER 11 EXTENDED FUNCTIONS

A value is written to un.ptr and then un.ldata is referenced; the highest byte then becomes undefined. To

guarantee that the highest byte of un.ldata is 0, union un must first be initialized with 0.

- The linker checks the data location of sections with the following combination of segment type and

relocation attribute.

DSEG UNIT64KP

DSEG PAGE64KP

CSEG PAGE64KP

- If one of the above relocation attributes is changed using the #pragma section or link directive file, the linker

does not check it.

CHAPTER 11 EXTENDED FUNCTIONS

User’s Manual U18548EJ1V0UM 421

Memory model specification

FUNCTION

- The location of a function or variable is specified.

- If the __near or __far type qualifier is specified, the specified __near or __far type qualifier takes

precedence.

- Small model

Consists of a data portion of 64 KB and a code portion of 64 KB; 128 KB in total.

The data ROM is allocated at 0000H to 0FFFFH or 10000H to 1FFFFH, and mirrored in FxxxxH.

Codes are allocated at 00000H to 0FFFFH.

Since the CS register value may be changed by specifying the __far type qualifier, be sure to set the CS

register when calling a function pointer.

- Medium model

Variables are allocated to the near area, and functions are allocated to the far area. Consists of a data

portion of 64 KB and a code portion of 1 MB.

The data ROM is allocated at 000000H to 00FFFFH or 010000H to 01FFFFH, and mirrored in FxxxxH.

There are no limitations on locating codes.

- Large model

Variables and functions are allocated to the far area. Consists of a data portion of 1 MB and a code

portion of 1 MB.

There are no limitations on locating data and codes.

USAGE

- Specify the -ms, -mm, or -ml option during compilation.

Memory Model Data Function

Small model near area near area

Medium model near area far area

Large model far area far area

Option Explaination

-ms Small model

-mm Medium model

-ml Large model

422 User’s Manual U18548EJ1V0UM

CHAPTER 11 EXTENDED FUNCTIONS

EXAMPLE

<C Source>

<Output object of compiler: When small model is used>

<Output object of compiler: When medium model is used>

<Output object of compiler: When large model is used>

int i ;
int *p ;
void func(void) { }
void (*fp)(void);

void main(void) {
 int r;

 r = i ; /* Data access */
 func() ; /* Function call */
 r = *p ; /* Data pointer */
 fp() ; /* Function pointer */
}

 movw hl , !_i
 call !_func
 movw de , !_p
 movw ax , [de]
 movw hl , ax
 movw ax , !_fp
 mov CS , #00H ; 0
 call ax

 movw hl , !_i
 call !!_func
 movw de , !_p
 movw ax , [de]
 movw hl , ax
 mov a , !_fp + 2
 mov CS , a
 movw ax, !_fp
 call ax

 mov ES , #highw (_i)
 movw hl , ES:!_i
 call !!_func
 mov ES , #highw (_p)
 mov a , ES:!_p + 2
 movw de , ES:!_p
 mov ES , a
 movw ax , ES:[de]
 movw hl , ax
 mov ES , #highw (_fp)
 mov a , ES:!_fp + 2
 mov CS , a
 movw ax , ES:!_fp
 call ax

CHAPTER 11 EXTENDED FUNCTIONS

User’s Manual U18548EJ1V0UM 423

RESTRICTIONS

- Even if the large model is specified, data cannot be allocated to an area that extends over 64 KB

boundaries.

- Modules for which a different memory model is specified cannot be linked.

- The size of variables with/without initial values allocated to the far area are (64 K - 1) bytes each, per load

module file (Note: 64 KB if the -za option is specified).

This size can be increased by changing the section name that includes variables with/without initial values in

a certain file to another output section name, using the function of "Changing compiler output section name

(#pragma section ...)".

In this case, the startup routine and termination routine must be modified (refer to [Examples of Changing

startup Routine in Connection with Changing Section Name Related to ROMization] in "Changing

compiler output section name (#pragma section ...)").

The maximum size per output section name does not change.

- If the -za option is not specified, data cannot be allocated to the last byte of a 64 KB boundary area (refer to

CAUTIONS in "near/far area specification").

424 User’s Manual U18548EJ1V0UM

CHAPTER 11 EXTENDED FUNCTIONS

11.6 Modifications of C Source

By using the extended functions of the CC78K0R, efficient object generation can be realized. However, these

extended functions are intended to cope with the 78K0R. So, to use them for other devices, the C source may

need to be modified.

Here, how to make the C source portable from another C compiler to the CC78K0R and vice versa is explained.

<From another C compiler to the CC78K0R>

- #pragmaNote

If the other C compiler supports the #pragma preprocessor directive, the C source must be modified. The

method and extent of modifications to the C source depend on the specifications of the other C compiler.

- Extended specifications

If the other C compiler has extended specifications such as addition of keywords, the C source must be

modified. The method and extent of modifications to the C source depend on the specifications of the other

C compiler.

Note #pragma is one of the preprocessing directives supported by ANSI. The character string following

the #pragma is identified as a directive to the compiler. If the compiler does not support this directive,

the #pragma directive is ignored and the compile will be continued until it properly ends.

<From the CC78K0R to another C compiler>

- Because the CC78K0R has added keywords as the extended functions, the C source must be made

portable to the other C compiler by deleting such keywords or invalidating them with #ifdef.

EXAMPLE

(1) To invalidate a keyword (Same applies to callf, sreg, and norec, etc.)

(2) To change from one type to another

#ifndef __K0R__
#define callt /* Makes callt as ordinary function */
#endif

#ifndef __K0R__
#define bit char /* Changes bit type to char type variable */
#endif

CHAPTER 11 EXTENDED FUNCTIONS

User’s Manual U18548EJ1V0UM 425

11.7 Function Call Interface

The following will be explained about the interface between functions at function call.

(1) Return value (common in all the functions)

(2) Ordinary function call interface

(a) Passing arguments

(b) Location at which arguments and automatic variables are stored

426 User’s Manual U18548EJ1V0UM

CHAPTER 11 EXTENDED FUNCTIONS

11.7.1 Return value

The return value of a function is stored in registers or carry flags.

The locations at which a return value is stored are listed below.

Type Location of Storing

1-byte integer BC

2-byte integer

4-byte integer BC (Lower), DE (Upper)

Pointer (__near attribute) BC

Pointer (__far attribute) BC (Lower), DE (Upper)

Structure, union (Small model, Medium model) BC

Structure, union (Large model) BC (Lower), DE (Upper)

1 bit CY (carry flag)

Floating-point number (float type) BC (Lower), DE (Upper)

Floating-point number (double type) BC (Lower), DE (Upper)

CHAPTER 11 EXTENDED FUNCTIONS

User’s Manual U18548EJ1V0UM 427

11.7.2 Ordinary function call interface

(1) Passing arguments

- When a function is called, the second argument and later are passed to the function definition side via a

stack.

- The first argument is passed to the function definition side via a register or stack.

The location where the first argument is passed is shown in the table below.

Table 11-3 Details of Type Modification (Change from int and short Type to char Type)

Note 1- to 4-byte data include structure, union, and pointer.

(2) Location at which arguments and automatic variables are stored

- An argument or automatic variable is assigned to a register at the top of the function, by declaring the

argument or automatic variable with register or specifying the -qv option. Other arguments and

automatic variables are stored in a stack.

- - If an argument, which is passed from the function call side via a stack, is not assigned to registers, the

location for passing is the location to be assigned.

- Arguments and automatic variables are assigned to register HL, unless otherwise there are no stack

frames.

Arguments and automatic variables can also be assigned to _@KREGxx if the -qr option is specified.

Refer to "APPENDIX A LIST OF LABELS FOR saddr AREA" for _@KREGxx.

- Arguments and automatic variables are assigned to registers in the order of reference frequency.

Arguments and automatic variables that are rarely referenced may not be assigned to registers, even if

the argument or automatic variable is declared with register or the -qv option is specified.

- The registers to which arguments or automatic variables are assigned are saved and restored by the

function definition side.

Type Location of Storing

1-byte dataNote

2-byte dataNote

AX

3-byte dataNote

4-byte dataNote

AX, BC

Floating-point number AX, BC

Others Passed via stack

428 User’s Manual U18548EJ1V0UM

CHAPTER 11 EXTENDED FUNCTIONS

[Example]

<C source 1>

void func0 (register int , int) ;

void main (void) {
 func0 (0x1234 , 0x5678) ;
}

void func0 (register int p1 , int p2) {
 register int r ;
 int a ;
 r = p2 ;
 a = p1 ;
}

CHAPTER 11 EXTENDED FUNCTIONS

User’s Manual U18548EJ1V0UM 429

[When the -qr optoon is specified]

<Output Code>

_main :
; line 4 : func0 (0x1234 , 0x5678) ;
 movw ax , #05678H ; 22136
 push ax ; The second argument and later are
 ; passed via a stack
 movw ax , #01234H ; 4660 ; The first argument that is passed
 ; via a register
 call !!_func0 ; Function call
 pop ax ; Releases the stack in which data
 ; is stored upon function call
; line 5 : }
 ret
; line 6 :
; line 7 : void func0 (register int p1 , int p2) {
_func0 :

 push hl
 movw de , _@KREG14
 push de ; Saves the saddr area for a
 ; register variable
 movw de , _@KREG12
 push de ; Saves the saddr area for a
 ; register variable
 movw _@KREG14 , ax ; Allocate register argument p1 to
 ; saddr
 push ax ; Reserves area for the automatic
 ; variable a
 movw hl , sp
; line 8 : register int r ;
; line 9 : int a ;
; line 10 : r = p2 ;
 movw ax , [hl + 12]; p2 ; Argument p2
 movw _@KREG12 , ax ; r ; Automatic variable r
; line 11 : a = p1 ;
 movw ax , _@KREG14 ; p1 ; Argument p1
 movw [hl] , ax ; a ; Automatic variable a
; line 12 : }
 pop ax ; Reserves area for the automatic
 ; variable a
 pop ax
 movw _@KREG12 , ax ; Restores the saddr area for a
 ; register argument
 pop ax
 movw _@KREG14 , ax ; Restores the saddr area for a
 ; register argument
 pop hl
 ret

430 User’s Manual U18548EJ1V0UM

CHAPTER 11 EXTENDED FUNCTIONS

<C source 2>

void func1 (int , register int) ;

void main (void) {
 func1 (0x1234 , 0x5678) ;
}

void func1 (int p1 , register int p2) {
 register int r ;
 int a ;
 r = p2 ;
 a = p1 ;
}

CHAPTER 11 EXTENDED FUNCTIONS

User’s Manual U18548EJ1V0UM 431

[When the -qr option is specified]

<Output Code>

_main :
; line 4 : func0 (0x1234 , 0x5678) ;
 movw ax , #05678H ; 22136
 push ax ; The second argument and later are
 ; passed via a stack
 movw ax , #01234H ; 4660 ; The first argument that is passed
 ; via a register
 call !!_func1 ; Function call
 pop ax ; Releases the stack in which data
 ; is stored upon function call
; line 5 : }
 ret
; line 6 :
; line 7 : void func0 (int p1 , register int p2) {
_func0 :
 push hl
 push ax ; Loads the first argument p1 on the
 ; stack
 movw de , _@KREG14
 push de ; Saves the saddr area for register
 ; variables
 movw de , _@KREG12
 push de ; Saves the saddr area for register
 ; variables
 movw ax , [sp + 12]
 movw _@KREG12 , ax ; Allocates the argument p2 to saddr
 push ax ; Reserves area for the automatic
 ; variable a
 movw hl , sp
; line 8 : register int r ;
; line 9 : int a ;
; line 10 : r = p2 ;
 movw ax , _@KREG12 ; p2 ; Argument p2
 movw _@KREG14 , ax ; r ; Automatic variable r
; line 11 : a = p1 ;
 movw ax , [hl + 6] ; p1 ; Argument p1
 movw [hl] , ax ; a ; Automatic variable a
; line 12 : }
 pop ax ; Releases area for the automatic
 ; variable a
 pop ax
 movw _@KREG12 , ax ; Restores the saddr area for
 ; register arguments
 pop ax
 movw _@KREG14 , ax ; Restores the saddr area for
 ; register arguments
 pop ax ; Releases area for the first
 ; argument p1
 pop hl
 ret

432 User’s Manual U18548EJ1V0UM

CHAPTER 12 REFERENCING THE ASSEMBLER

CHAPTER 12 REFERENCING THE ASSEMBLER

This chapter describes how to link a program written in assembly language.

If a function called from a C source program is written in another language, both object modules are linked by the

linker. This chapter describes the procedure for calling a program written in another language from a program

written in the C language and the procedure for calling a program written in the C language from a program written

in another language.

How to interface with another language by using the RA78K0R Assembler Package and the CC78K0R is

described in this order:

- Calling Assembly Language Routines from C Language

- Calling C Language Routines from Assembly Language

- Referencing variables defined in the C language

- Referencing variables defined in the assembly language from the C language

- Cautions

12.1 Accessing Arguments/Automatic Variables

For details on assignment of argument and automatic variables, refer to "11.7.2　Ordinary function call

interface".

Register HL is used as a base pointer for accessing arguments and automatic variables stored in a stack.

CHAPTER 12 REFERENCING THE ASSEMBLER

User’s Manual U18548EJ1V0UM 433

12.2 Storing Return Values

Refer to “11.7.1　Return value“.

434 User’s Manual U18548EJ1V0UM

CHAPTER 12 REFERENCING THE ASSEMBLER

12.3 Calling Assembly Language Routines from C Language

This section shows examples of default procedures.

Calling an assembly language routine from the C language is described as follows.

- C language function calling procedure

- Saving data from the assembly language routine and returning

12.3.1 C language function calling procedure

This is a C language program example that calls an assembly language routine.

In this program example, the interface and control flow with the program that is executing are as follows.

(i) Placing the first argument passed from the main function to the FUNC function in the register, and the

second and subsequent arguments on the stack.

(ii) Passing control to the FUNC function by using the CALL instruction.

The next figure shows the stack immediately after control moves to the FUNC function in the above program

example.

extern int FUNC (int , long) ; /* Function prototype */

void main (void) {
 int i , j ;
 long l ;

 l = 0x54321 ;
 i = 1 ;
 j = FUNC (i , l) ; /* Function call */
}

Low address

Stack pointer

High address
Stack area

l (high-order word)

l (low-order word)

Return address to main

Arguments passed to
the FUNC function

i

AX register

CHAPTER 12 REFERENCING THE ASSEMBLER

User’s Manual U18548EJ1V0UM 435

12.3.2 Saving data from the assembly language routine and returning

The following processing are performed in the FUNC function called from the main function.

(1) Save the base pointer, saddr area for register variable.

(2) Copy the stack pointer (SP) to the base pointer (HL).

(3) Perform the processing in the FUNC function.

(4) Set the return value.

(5) Restore the saved register.

(6) Return to the main function.

Next, an example of an assembly language program is explained.

$PROCESSOR (F1166A0)

 PUBLIC _FUNC
 PUBLIC _DT1
 PUBLIC _DT2

@@DATA DSEG BASEP
_DT1 : DS (2)
_DT2 : DS (4)

@@CODE CSEG
_FUNC :
 PUSH HL ; save base pointer (1)
 PUSH AX
 MOVW HL , SP ; copy stack pointer (2)
 MOVW AX , [HL] ; arg1
 MOVW !_DT1 , AX ; move 1st argument (i)
 MOVW AX , [HL + 10] ; arg2
 MOVW !_DT2 + 2 , AX
 MOVW AX , [HL + 8] ; arg2
 MOVW !_DT2 , AX ; move 2nd argument (l)
 MOVW BC , #0AH ; set return value (4)
 POP AX
 POP HL ; restore base pointer (5)
 RET ; (6)
 END

436 User’s Manual U18548EJ1V0UM

CHAPTER 12 REFERENCING THE ASSEMBLER

(1) Saving base pointer, work register

A label with "_" prefixed to the function name described in the C source is described. Base pointers and

work registers are saved with the same name as function names described inside the C source.

After the label is described, the HL register (base pointer) is saved.

In the case of programs generated by the C compiler, other functions are called without saving the saddr

area for register variables. Therefore, if changing the values of these registers for functions that are called,

be sure to save the values beforehand. However, if register variables are not used on the call side, saving

the saddr area for register variable. is not required.

(2) Copying to base pointer (HL) of stack pointer (SP)

The stack pointer (SP) changes due to "PUSH, POP" inside functions. Therefore, the stack pointer is copied

to register "HL" and used as the base pointer of arguments.

(3) Basic processing of FUNC function

After processings (1) and (2) are performed, the basic processing of called functions is performed.

(4) Setting the return value

If there is a return value, it is set in the "BC" and "DE" registers. If there is no return value, setting is

unnecessary.

(5) Restoring the registers

Restore the saved base pointer and work register.

(6) Returning to the main function

BC register

wordReturn value of 16 or fewer bits:

DE register BC register

Return value of 17 or more bits: high-order word low-order word

Low address

Stack pointer

High address

Stack area

l (high-order word)

l (low-order word)

BC register

word

DE register BC register

high-order word low-order word

Or

Return value

CHAPTER 12 REFERENCING THE ASSEMBLER

User’s Manual U18548EJ1V0UM 437

12.4 Calling C Language Routines from Assembly Language

12.4.1 Calling the C language function from an assembly language program

The procedure for calling a function written in the C language from an assembly language routine is:

(1) Save the C work registers (AX, BC, and DE).

(2) Place the arguments on the stack.

(3) Call the C language function.

(4) Increment the value of the stack pointer (SP) by the number of bytes of arguments.

(5) Reference the return value of the C language function (in BC or DE and BC).

This is an example of an assembly language program.

(1) Saving the work registers (AX, BC, and DE)

The 3 register pairs of AX, BC, and DE are used in the C language. Their values are not restored when

returning. Therefore, if the values in registers are needed, they are saved on the calling side.

Save or restore the registers before or after an argument pass code.

The HL register is always saved on the side of the C language when it is used in the C language.

(2) Stacking arguments

Any arguments are placed on the stack.

The following figure shows argument passing.

$PROCESSOR (F1166A0)

 NAME FUNC2
 EXTRN _CSUB
 PUBLIC _FUNC2

@@CODE CSEG
_FUNC2 :
 movw ax , #20H ; set 2nd argument (j)
 push ax ;
 movw ax , #21H ; set 1st argument (i)
 call !_CSUB ; call "CSUB (i , j)"
 pop ax ;
 ret
 END

Low address

High address

Stack area

2nd arg

AX register

1st arg

CSUB (i , j)

438 User’s Manual U18548EJ1V0UM

CHAPTER 12 REFERENCING THE ASSEMBLER

(3) Calling a C language function

A CALL instruction calls a C language function. If the C language function is a "callt" function, the callt

instruction performs the call, and if a "callf" function, the callf instruction performs it.

(4) Restoring the stack pointer (SP)

The stack pointer is restored by the number of bytes that hold the arguments.

(5) Referencing the return value (BC and DE)

The return value from the C language is returned as follows.

BC register

wordReturn value of 16 or fewer bits:

DE register BC register

Return value of 17 or more bits: high-order word low-order word

CHAPTER 12 REFERENCING THE ASSEMBLER

User’s Manual U18548EJ1V0UM 439

12.5 Referencing Variables Defined in Other Languages

12.5.1 Referencing variables defined in the C language

If external variables defined in a C language program are referenced in an assembly language routine, the

extern declaration is used.

Underscores "_" are added to the beginning of the variables defined in the assembly language routine.

<C language program example>

The following occurs in the RA78K0R assembler.

extern void subf (void) ;

char c = 0 ;
int i = 0 ;

void main (void) {
 subf () ;
}

$PROCESSOR (F1166A0)

 PUBLIC _subf
 EXTRN _c
 EXTRN _i

@@CODE CSEG
_subf :
 MOV !_c , #04H
 MOVW AX , #07H
 MOVW !_i , AX
 RET
 END

440 User’s Manual U18548EJ1V0UM

CHAPTER 12 REFERENCING THE ASSEMBLER

12.5.2 Referencing variables defined in the assembly language from the C
language

Variables defined in assembly language are referenced from the C language in this way.

<C language program example>

The following occurs in the RA78K0R assembler.

extern char c ;
extern int i ;

void subf (void) {
 c = ' A ' ;
 i = 4 ;
}

 NAME ASMSUB

 PUBLIC _i
 PUBLIC _c

ABC DSEG BASEP
_i : DW 0
_c : DB 0

 END

CHAPTER 12 REFERENCING THE ASSEMBLER

User’s Manual U18548EJ1V0UM 441

12.6 Cautions

(1) "_" (underscore)

The CC78K0R adds an underscore "_" (ASCII code "5FH") to external definitions and reference names of

the object modules to be output.

In the next C program example, "j = FUNC(i, l);" is taken as "a reference to the external name _FUNC".

The routine name is written as "_FUNC" in RA78K0R.

(2) Argument positions on the stack

The arguments placed on the stack are placed from the postfix argument to the prefix argument in the

direction from the High address to the Low address.

extern int FUNC (int , long) ; /* Function prototype */

void main (void) {
 int i , j ;
 long l ;

 l = 0x54321;
 i = 1 ;
 j = FUNC (i , l) ; /* Function call */
}

Low address

Stack pointer

High address

Stack area

l (high-order word)

l (low-order word)

Return address

AX register

ij = FUNC (i , l) ;
to main

442 User’s Manual U18548EJ1V0UM

CHAPTER 13 EFFECTIVE UTILIZATION OF COMPILER

CHAPTER 13 EFFECTIVE UTILIZATION OF
COMPILER

This chapter introduces how to effectively use the CC78K0R.

13.1 Efficient Coding

When developing 78K0R microcomputer-applied products, efficient object generation may be realized with the

CC78K0R by utilizing the saddr area, callt area of the device.

(1) Using external variable

When defining an external variable, specify the external variable to be defined as a sreg/__sreg variable if

the saddr area can be used. Instructions to sreg/__sreg variables are shorter in code length than

instructions to memory. This helps shorten object code and improve program execution speed. (The same

can be also performed by specifying the -rd option, instead of using the sreg variable.)

Remark Refer to "11.5 How to use the saddr area (sreg/__sreg)".

Definition-of-sreg/__sreg-variable: extern sreg int variable-name ;
 extern __sreg int variable-name ;

sreg/__sreg variables are used/
compiler option (-rd) is used

if (saddr area is usable)

- Use external variables

if (automatic variables are used &&saddr area is usable)

Use as __callt/callt function (effective for reducing code size)

if (callt area is usable)

if (function to be called several times)

- Function definition

bit/boolean/ __boolean type variables are used

if (saddr is usable)

- Use 1-bit data

CHAPTER 13 EFFECTIVE UTILIZATION OF COMPILER

User’s Manual U18548EJ1V0UM 443

(2) 1-bit data

A data object which only uses 1-bit data should be declared as a bit type variable (or boolean/__boolean

type variable). A bit manipulation instruction will be generated for an operation on bit/boolean/__boolean

type variable. Because saddr area is used as well as sreg variable, the codes can be shortened and the

execution speed can be improved.

Remark Refer to "11.5 bit type variables, boolean type variables (bit/boolean/__boolean)".

(3) Function definitions

 If the callt table can be used for functions to be called frequently, such functions should be defined as callt

functions.

The callt functions can be called faster than ordinary function calls with shorter codes because the callt

functions are called using the callt/callf area of the device.

Remark Refer to "11.5 callt functions (callt/__callt)".

In addition to the use of the saddr area, the objects that do not need the modification of the C source by

compiling with the optimization option can be generated. For the effect of each -q suboption, refer to the

CC78K0R C Compiler Operation User’s Manual.

(4) Using extended description

- Functions which use automatic variables

If the saddr area can be used for a function that does not use automatic variables, declare the function

with the register storage class specifier. By this register declaration, the object declared as register will

be allocated to a register.

A program using registers operates faster than that using memory and object code can be shortened as

well.

Declaration-of-bit/boolean-type-variable: bit variable-name ;
 boolean variable-name ;
 __boolean variable-name ;

Definition-of-callt-function: callt int tsub () {
 :
 }

__sreg declaration

if (internal static variables are used) && (saddr area is usable)

register declaration

if (automatic variables are used && saddr area is usable)

- Function definition

444 User’s Manual U18548EJ1V0UM

CHAPTER 13 EFFECTIVE UTILIZATION OF COMPILER

Remark Refer to "11.5 Register variables (register)" about definition of register variable (register int i;

...).

- Functions which use internal static variables

If the saddr area can be used for a function that uses internal static variables, declare the function with

__sreg or specify the -rs option. In the same way as with sreg variables, the object code can be

shortened and the execution speed can be improved.

Remark Refer to "11.5 How to use the saddr area (sreg/__sreg)".

In addition, the code efficiency and the execution speed can be improved in the following method.

- Use of SFR name (or SFR bit name).

#pragma sfr

- Use of __sreg declaration for bit fields which consist only of 1-bit members (unsigned char type can be

used for members).

- Use of the register bank change for interrupt processing.

#pragma interrupt INTP0 inter RB1

- Use of multiplication and division embedded function.

#pragma mul

#pragma div

- Description of only the modules whose speed needs to be improved in the assembly language.

__sreg struct bf {
 unsigned char a : 1 ;
 unsigned char b : 1 ;
 unsigned char c : 1 ;
 unsigned char d : 1 ;
 unsigned char e : 1 ;
 unsigned char f : 1 ;
} bf_1 ;

APPENDIX A LIST OF LABELS FOR saddr AREA

User’s Manual U18548EJ1V0UM 445

APPENDIX A LIST OF LABELS FOR saddr AREA

In the CC78K0R, the saddr area is referenced by the following label names. Therefore, the label names in the C

source program and in assembler source program that have the same names as the following cannot be used.

(a) Register variables

Note When the arguments of the function are declared by register or the -qv option is specified and the -qr

option is specified, arguments are allocated to the saddr area.

Label Name Address

_@KREG00 0FFEB4H

_@KREG01 0FFEB5H

_@KREG02 0FFEB6H

_@KREG03 0FFEB7H

_@KREG04 0FFEB8H

_@KREG05 0FFEB9H

_@KREG06 0FFEBAH

_@KREG07 0FFEBBH

_@KREG08 0FFEBCH

_@KREG09 0FFEBDH

_@KREG10 0FFEBEH

_@KREG11 0FFEBFH

_@KREG12 0FFEC0HNote

_@KREG13 0FFEC1HNote

_@KREG14 0FFEC2HNote

_@KREG15 0FFEC3HNote

446 User’s Manual U18548EJ1V0UM

APPENDIX A LIST OF LABELS FOR saddr AREA

(b) For work

(c) For storing segment information

(d) Arguments of runtime library

Label Name Address

_@NRARG0 0FFEC4H

_@NRARG1 0FFEC6H

_@NRARG2 0FFEC8H

_@NRARG3 0FFECAH

_@NRAT00 0FFECCH

_@NRAT01 0FFECDH

_@NRAT02 0FFECEH

_@NRAT03 0FFECFH

_@NRAT04 0FFED0H

_@NRAT05 0FFED1H

_@NRAT06 0FFED2H

_@NRAT07 0FFED3H

Label Name Address

_@SEGAX 0FFED4H

_@SEGBC 0FFED5H

_@SEGDE 0FFED6H

_@SEGHL 0FFED7H

Label Name Address

_@RTARG0 0FFED8H

_@RTARG1 0FFED9H

_@RTARG2 0FFEDAH

_@RTARG3 0FFEDBH

_@RTARG4 0FFEDCH

_@RTARG5 0FFEDDH

_@RTARG6 0FFEDEH

_@RTARG7 0FFEDFH

APPENDIX B LIST OF SEGMENT NAMES

User’s Manual U18548EJ1V0UM 447

APPENDIX B LIST OF SEGMENT NAMES

This chapter explains all the segments that the compiler outputs and their locations.

(1) and (2) show the option and re-allocation attributes used in the table.

(1) CSEG re-allocation attribute

- CALLT0

Allocates the specified segment so that the start address is a multiple of two within the range of 80H

to BFH.

- AT absolute expression

Allocates the specified segment to an absolute address (within the range of 00000H to FFEFFH).

- UNITP

Allocates the specified segment so that the start address is a multiple of two within any position

(within the range of C0H to EFFFEH).

(2) DSEG re-allocation attribute

- SADDRP

Allocates the specified segment so that the start address is a multiple of two within the range of

FFE20H to FFEFFH in the saddr area.

- UNITP

Allocates the specified segment so that the start address is a multiple of two within any position

(default is within the RAM area).

448 User’s Manual U18548EJ1V0UM

APPENDIX B LIST OF SEGMENT NAMES

B.1 List of Segment Names

B.1.1 Program area and data area

Section Name Segment Type Re-allocation Attribute Description

@@CODE CSEG BASE Segment for code portion
(allocated to near area)

@@CODEL CSEG Segment for code portion
 (allocated to far area)

@@LCODE CSEG BASE Segment for library code
(allocated to near area)

@@LCODEL CSEG Segment for library code
(allocated to far area)

@@CNST CSEG MIRRORP - Segment for const variable (allocated to near
area)

- References table for switch-case statement
- Unnamed character string constants
- Initial value data of auto variables

@@CNSTL CSEG PAGE64KP Segment for const variable
(allocated to far area)

@@R_INIT CSEG UNIT64KP Segment for near initialization data
(with initial value)

@@RLINIT CSEG UNIT64KP Segment for far initialization data
(with initial value)

@@R_INIS CSEG UNIT64KP Segment for initialization data
(sreg variable with initial value)

@@CALT CSEG CALLT0 Segment for callt function table

@@VECTnn CSEG AT 00mmH Segment for vector tableNote

@@BASE CSEG BASE Segment for callt function and interrupt function

@@LBASE CSEG BASE Segment for library and callt function

@@INIT DSEG BASEP Segment for data area
(with initial value, allocated to near area)

@@INITL DSEG UNIT64KP Segment for data area
(with initial value, allocated to far area)

@@DATA DSEG BASEP Segment for data area
(without initial value, allocated to near area)

@@DATAL DSEG UNIT64KP Segment for data area
(without initial value, allocated to far area)

@@INIS DSEG SADDRP Segment for data area
(sreg variable with initial value)

@@DATS DSEG SADDRP Segment for data area
(sreg variable without initial value)

@@BITS BSEG Segment for boolean-type and bit-type variables

APPENDIX B LIST OF SEGMENT NAMES

User’s Manual U18548EJ1V0UM 449

Note The value of nn and mm changes depending on the interrupt types.

450 User’s Manual U18548EJ1V0UM

APPENDIX B LIST OF SEGMENT NAMES

B.1.2 Flash memory area

Note 1 The value of nn and mm changes depending on the interrupt types.

Note 2 The values of xx and yyyy vary depending on the ID of the flash area function.

Section Name Segment Type Re-allocation Attribute Description

@ECODE CSEG BASE Segment for code portion
(allocated to near area)

@ECODEL CSEG Segment for code portion
(allocated to far area)

@LECODE CSEG BASE Segment for library code
(allocated to near area)

@LECODEL CSEG Segment for library code
(allocated to far area)

@ECNST CSEG MIRRORP Segment for const variable
(allocated to near area)

@ECNSTL CSEG PAGE64KP Segment for const variable
(allocated to far area)

@ER_INIT CSEG UNIT64KP Segment for near initialization data
(with initial value)

@ERLINIT CSEG UNIT64KP Segment for far initialization data
(with initial value)

@ER_INIS CSEG UNIT64KP Segment for initialization data
(sreg variable with initial value)

@EVECTnn CSEG AT mmmmH Segment for vector tableNote 1

@EXTxx CSEG AT yyyyH Segment for flash area branch tableNote 2

@EINIT DSEG BASEP Segment for data area
(with initial value, allocated to near area)

@EINITL DSEG UNIT64KP Segment for data area
(with initial value, allocated to far area)

@EDATA DSEG BASEP Segment for data area
(without initial value, allocated to near area)

@EDATAL DSEG UNIT64KP Segment for data area
(without initial value, allocated to far area)

@EINIS DSEG SADDRP Segment for data area
(sreg variable with initial value)

@EDATS DSEG SADDRP Segment for data area
(sreg variable without initial value)

@EBITS BSEG Segment for boolean-type and bit-type variables

@ECALT CSEG Dummy segment

APPENDIX B LIST OF SEGMENT NAMES

User’s Manual U18548EJ1V0UM 451

B.2 Location of Segment

Table B-1 Location of Segment

Segment Type Destination of Allocation (Default)

CSEG ROM

BSEG saddr area of RAM

DSEG RAM

452 User’s Manual U18548EJ1V0UM

APPENDIX B LIST OF SEGMENT NAMES

B.3 Example of C Source

#pragma INTERRUPT INTP0 inter rb1 /* Interrupt vector */

void main (void); /* Interrupt function prototype declaration */
const int i_cnst = 1 ; /* const variable */
callt void f_clt (void) ; /* callt function prototype declaration */
boolean b_bit ; /* boolean-type variable */
long l_init = 2 ; /* External variable with initial value */
int i_data ; /* External variable without initial value */
__sreg int sr_inis = 3 ; /* sreg variable with initial value */
__sreg int sr_dats ; /* sreg variable without initial value */

void main (void) /* Function definition */
{
 int i ;
 i = 100 ;
}

void inter (void) /* Interrupt function definition */
{
}

callt void f_clt (void) /* callt function definition */
{
}

APPENDIX B LIST OF SEGMENT NAMES

User’s Manual U18548EJ1V0UM 453

B.4 Example of Output Assembler Module

Quasi-directives and instruction sets in an assembler source vary depending on the device.

Refer to the RA78K0R Assembler Package Operation User’s Manual for details.

454 User’s Manual U18548EJ1V0UM

APPENDIX B LIST OF SEGMENT NAMES

[When specifying small model]

; 78K0R C Compiler Vx.xx Assembler Source Date:xx xxx xxxx Time:xx:xx:xx

; Command : -cxxx sample.c -ms -sa -ng
; In-file : sample.c
; Asm-file : sample.asm
; Para-file :

$PROCESSOR (xxx)
$NODEBUG
$NODEBUGA
$KANJICODE SJIS
$TOL_INF 03FH , 0330H , 00H , 020H , 00H

 PUBLIC _inter
 PUBLIC _main
 PUBLIC _i_cnst
 PUBLIC ?f_clt
 PUBLIC _b_bit
 PUBLIC _l_init
 PUBLIC _i_data
 PUBLIC _sr_inis
 PUBLIC _sr_dats
 PUBLIC _f_clt
 PUBLIC _@vect06

@@BITS BSEG ; Segment for boolean-type and bit-type
 ; variable
_b_bit DBIT

@@CNST CSEG MIRRORP ; Segment for const variable
_i_cnst : DW 01H ; 1

@@R_INIT CSEG UNIT64KP ; Segment for initialization data
 ; (External variable with initial value)
 DW 00002H , 00000H ; 2

@@INIT DSEG BASEP ; Segment for tentative data
 ; (with initial value)
_l_init : DS (4)

@@DATA DSEG BASEP ; Segment for tentative data
 ; (without initial value)
_i_data : DS (2)

@@R_INIS CSEG UNIT64KP ; Segment for initialization data
 ; (sreg variable with initial value)
 DW 03H ; 3

@@INIS DSEG SADDRP ; Segment for tentative data area
 ; (sreg variable with initial value)
_sr_inis : DS (2)

@@DATS DSEG SADDRP ; Segment for tentative data area
 ; (sreg variable without initial value)
_sr_dats : DS (2)

@@CALT CSEG CALLT0 ; Segment for callt function table

?f_clt : DW _f_clt
; line 1 : #pragma INTERRUPT INTP0 inter rb1 /* Interrupt vector */

APPENDIX B LIST OF SEGMENT NAMES

User’s Manual U18548EJ1V0UM 455

; line 2 :
; line 3 : void main (void) ; /* Interrupt function */
 /* prototype declaration */
; line 4 : const int i_cnst = 1 ; /* const variable */
; line 5 : callt void f_clt (void) ; /* callt function prototype */
; line 6 : boolean b_bit ; /* boolean-type variable */
; line 7 : long l_init = 2 ; /* External variable */
 /* with initial value */
; line 8 : int i_data ; /* External variable */
 /* without initial value */
; line 9 : sreg int sr_inis = 3 ; /* sreg variable with */
 /* initial value */
; line 10 : sreg int sr_dats ; /* sreg variable without */
 /* initial value */
; line 11 :
; line 12 : void main () /* Function definition */
; line 13 : {

@@CODE CSEG BASE ; Segment for code portion
_main :
 push hl
; line 14 : int i ;
; line 15 : i = 100 ;
 movw hl , #064H ; 100
; line 16 : }
 pop hl
 ret
; line 17 :
; line 18 : void inter () /* Interrupt function definition */
; line 19 : {

@@BASE CSEG BASE ; Segment for callt and interrupt function
_inter :
; line 20 : }
 reti
; line 21 :
; line 22 : callt void f_clt () /* callt function definition */
; line 23 : {
_f_clt:
; line 24 : }
 ret
@@VECT06 CSEG AT 0006H ; Segment for vector table
_@vect06 :
 DW _inter
 END

; Target chip : uPDxxxx
; Device file : xx.xxx

456 User’s Manual U18548EJ1V0UM

APPENDIX B LIST OF SEGMENT NAMES

[When specifying medium model]

; 78K0R C Compiler Vx.xx Assembler Source Date:xx xxx xxxx Time:xx:xx:xx

; Command : -cxxx sample.c -mm -sa -ng
; In-file : sample.c
; Asm-file : sample.asm
; Para-file :

$PROCESSOR (xxx)
$NODEBUG
$NODEBUGA
$KANJICODE SJIS
$TOL_INF 03FH , 0330H , 00H , 020H , 00H

 PUBLIC _inter
 PUBLIC _main
 PUBLIC _i_cnst
 PUBLIC ?f_clt
 PUBLIC _b_bit
 PUBLIC _l_init
 PUBLIC _i_data
 PUBLIC _sr_inis
 PUBLIC _sr_dats
 PUBLIC _f_clt
 PUBLIC _@vect06

@@BITS BSEG ; Segment for boolean-type and bit-type
 ; variable
_b_bit DBIT

@@CNST CSEG MIRRORP ; Segment for const variable
_i_cnst : DW 01H ; 1

@@R_INIT CSEG UNIT64KP ; Segment for initialization data
 ; (External variable with initial value)
 DW 00002H , 00000H ; 2

@@INIT DSEG BASEP ; Segment for tentative data
 ; (with initial value)
_l_init : DS (4)

@@DATA DSEG BASEP ; Segment for tentative data
 ; (without initial value)
_i_data : DS (2)

@@R_INIS CSEG UNIT64KP ; Segment for initialization data
 ; (sreg variable with initial value)
 DW 03H ; 3

@@INIS DSEG SADDRP ; Segment for tentative data area
 ; (sreg variable with initial value)
_sr_inis : DS (2)

@@DATS DSEG SADDRP ; Segment for tentative data area
 ; (sreg variable without initial value)
_sr_dats : DS (2)

@@CALT CSEG CALLT0 ; Segment for callt function table
?f_clt : DW _f_clt
; line 1 : #pragma INTERRUPT INTP0 inter rb1 /* Interrupt function */
; line 2 :

APPENDIX B LIST OF SEGMENT NAMES

User’s Manual U18548EJ1V0UM 457

; line 3 : void main (void) ; /* Function prototype declaration */
; line 4 : const int i_cnst = 1 ; /* const variable */
; line 5 : callt void f_clt (void) ; /* callt function prototype */
 /* declaration */
; line 6 : boolean b_bit ; /* boolean-type variable */
; line 7 : long l_init = 2 ; /* External variable with initial value */
; line 8 : int i_data ; /* External variable without initial value */
; line 9 : __sreg int sr_inis = 3 ; /* sreg variable with */
 /* initial value */
; line 10 : __sreg int sr_dats ; /* sreg variable without */
 /* initial value */
; line 11 :
; line 12 : void main () /* Function definition */
; line 13 : {

@@CODEL CSEG ; Segment for code portion
_main :
 push hl
; line 14 : int i ;
; line 15 : i = 100 ;
 movw hl , #064H ; 100
; line 16 : }
 pop hl
 ret
; line 17 :
; line 18 : void inter () /* Interrupt function definition */
; line 19 : {

@@BASE CSEG BASE ; Segment for callt and interrupt function
_inter :
; line 20 : }
 reti
; line 21 :
; line 22 : callt void f_clt () /* callt function definition */
; line 23 : {
_f_clt:
; line 24 : }
 ret
@@VECT06 CSEG AT 0006H ; Segment for vector table
_@vect06 :
 DW _inter
 END

; Target chip : uPDxxxx
; Device file : xx.xxx

458 User’s Manual U18548EJ1V0UM

APPENDIX B LIST OF SEGMENT NAMES

[When specifying large model]

; 78K0R C Compiler Vx.xx Assembler Source Date:xx xxx xxxx Time:xx:xx:xx

; Command : -cxxx sample.c -ml -sa -ng
; In-file : sample.c
; Asm-file : sample.asm
; Para-file :

$PROCESSOR (xxx)
$NODEBUG
$NODEBUGA
$KANJICODE SJIS
$TOL_INF 03FH , 0330H , 00H , 020H , 00H

 PUBLIC _inter
 PUBLIC _main
 PUBLIC _i_cnst
 PUBLIC ?f_clt
 PUBLIC _b_bit
 PUBLIC _l_init
 PUBLIC _i_data
 PUBLIC _sr_inis
 PUBLIC _sr_dats
 PUBLIC _f_clt
 PUBLIC _@vect06

@@BITS BSEG ; Segment for boolean-type and bit-type
 ; variable
_b_bit DBIT

@@R_INIS CSEG UNIT64KP ; Segment for initialization data
 ; (External variable with initial value)
 DW 03H ; 3

@@INIS DSEG SADDRP ; Segment for tentative data area
 ; (sreg variable with initial value)
_sr_inis : DS (2)

@@DATS DSEG SADDRP ; Segment for tentative data area
 ; (sreg variable without initial value)
_sr_dats : DS (2)

@@CNSTL CSEG PAGE64KP ; Segment for const variable
_i_cnst : DW 01H ; 1

@@RLINIT CSEG UNIT64KP ; Segment for initialization data
 ; (with initial value)
 DW 00002H , 00000H ; 2

@@INITL DSEG UNIT64KP ; Segment for tentative data
 ; (with initial value)
_l_init : DS (4)

@@DATAL DSEG UNIT64KP ; Segment for tentative data
 ; (without initial value)
_i_data : DS (2)

@@CALT CSEG CALLT0 ; Segment for callt function table
?f_clt : DW _f_clt
; line 1 : #pragma INTERRUPT INTP0 inter rb1 /* Interrupt function */
; line 2 :

APPENDIX B LIST OF SEGMENT NAMES

User’s Manual U18548EJ1V0UM 459

; line 3 : void main (void) ; /* Function prototype declaration */
; line 4 : const int i_cnst = 1 ; /* const variable */
; line 5 : callt void f_clt (void) ; /* callt function prototype */
; line 6 : __boolean b_bit ; /* boolean-type variable */
; line 7 : long l_init = 2 ; /* External variable with initial value */
; line 8 : int i_data ; /* External variable without initial value */
; line 9 : __sreg int sr_inis = 3 ; /* sreg variable with */
 /* initial value */
; line 10 : __sreg int sr_dats ; /* sreg variable without */
 /* initial value */
; line 11 :
; line 12 : void main () /* Function definition */
; line 13 : {

@@CODEL CSEG ; Segment for code portion
_main :
 push hl
; line 14 : int i ;
; line 15 : i = 100 ;
 movw hl , #064H ; 100
; line 16 : }
 pop hl
 ret
; line 17 :
; line 18 : void inter () /* Interrupt function definition */
; line 19 : {

@@BASE CSEG BASE ; Segment for callt and interrupt function
_inter :
; line 20 : }
 reti
; line 21 :
; line 22 : callt void f_clt () /* callt function definition*/
; line 23 : {
_f_clt:
; line 24 : }
 ret
@@VECT06 CSEG AT 0006H ; Segment for vector table
_@vect06 :
 DW _inter
 END

; Target chip : uPDxxxx
; Device file : xx.xxx

460 User’s Manual U18548EJ1V0UM

APPENDIX C LIST OF RUNTIME LIBRARIES

APPENDIX C LIST OF RUNTIME LIBRARIES

The table below shows the runtime library list.

These operational instructions are called in the format where @@, etc. are attached at the beginning of the

function name. However, cstart, cstarte, cprep, and cdisp are called in the format with _@ attached to the top.

No library supports are available for operations not in Table C-1.

The compiler executes in-line development.

long addition and subtraction, and/or/xor and shift may be developed in-line.

Table C-1 Runtime Libraries

Classification Function Name Function

Increment lsinc Increments signed long

luinc Increments unsigned long

finc Increments float

Decrement lsdec Decrements signed long

ludec Decrements unsigned long

fdec Decrements float

Sign reverse lsrev Reverses the sign of signed long

lurev Reverses the sign of unsigned long

frev Reverses the sign of float

1’s complement lscom Obtains 1’s complement of signed long

lucom Obtains 1’s complement of unsigned long

Logical NOT lsnot Negates signed long

lunot Negates unsigned long

fnot Negates float

Multiply csmul Performs multiplication between signed char data

cumul Performs multiplication between unsigned char data

iumul Performs multiplication between signed int, unsigned int data

lsmul Performs multiplication between signed long data

lumul Performs multiplication between unsigned long data

fmul Performs multiplication between float data

APPENDIX C LIST OF RUNTIME LIBRARIES

User’s Manual U18548EJ1V0UM 461

Divide csdiv Performs division between signed char data

cudiv Performs division between unsigned char data

isdiv Performs division between signed int data

iudiv Performs division between unsigned int data

lsdiv Performs division between signed long data

ludiv Performs division between unsigned long data

fdiv Performs division between float data

Remainder csrem Obtains remainder after division between signed char data

curem Obtains remainder after division between unsigned char data

isrem Obtains remainder after division between signed int data

iurem Obtains remainder after division between unsigned int data

lsrem Obtains remainder after division between signed long data

lurem Obtains remainder after division between unsigned long data

Add lsadd Performs addition between signed long data

luadd Performs addition between unsigned long data

fadd Performs addition between float data

Subtract lssub Performs subtraction between signed long data

lusub Performs subtraction between unsigned long data

fsub Performs subtraction between float data

Shift left lslsh Shifts singed long data to the left

lulsh Shifts unsigned long data to the left

Shift right lsrsh Shifts signed long data to the right

lursh Shifts unsigned long data to the right

Compare cscmp Compares signed char data

iscmp Compares signed int data

lscmp Compares signed long data

lucmp Compares unsigned long data

fcmp Compares float data

Bit AND lsband Performs an AND operation between signed long data

luband Performs an AND operation between unsigned long data

Bit OR lsbor Performs an OR operation between signed long data

lubor Performs an OR operation between unsigned long data

Bit XOR lsbxor Performs an XOR operation between signed long data

lubxor Performs an XOR operation between unsigned long data

Table C-1 Runtime Libraries

Classification Function Name Function

462 User’s Manual U18548EJ1V0UM

APPENDIX C LIST OF RUNTIME LIBRARIES

Conversion from
floating-point
number

ftols Converts from float to signed long

ftolu Converts from float to unsigned long

Conversion to
floating-point
number

lstof Converts from signed long to float

lutof Converts from unsigned long to float

Conversion from bit btol Converts from bit to long

Startup routine cstart Startup module
- After an area (4 * 32 bytes) where a function that will be

registered is reserved with the atexit function, sets the
beginning label name to _@FNCTBL.

- Reserve a break area (32 bytes), sets the beginning label
name to _@MEMTOP, and then sets the next label name of
the area to _@MEMBTM.

- Define the segment in the reset vector table as follows, and
set the beginning address of the startup module.

 @@VECT00 CSEG AT 0000H
 DW _@cstart
- Sets a mirror area.
- Set the register bank to RB0.
- Set 0 to the variable _errno to which the error number is

input.
- Set the variable _@FNCENT, to which the number of

functions registered by the atexit function is input, to 0.
- Set the address of _@MEMTOP to the variable

_@BRKADR as the initial break value.
- Set 1 as the initial value for the variable _@SEED, which is

the source of pseudo random numbers for the rand function.
- Perform copy processing of initialized data and execute 0

clear of external data without an initial value.
- Call the main function (user program)
- Call the exit function by parameter 0.

Pre- and post-
processing of
function

cprep Pre-processing of function

cdisp Post-processing of function

cprep2 Pre-processing of function (including the saddr area for
register variables)

cdisp2 Post-processing of function (including the saddr area for
register variables)

cprep3 Pre-processing of function (including the saddr area for
register variables)

cdisp3 Post-processing of function (including the saddr area for
register variables)

hdwinit Performs initialization processing of peripheral devices (sfr)
immediately after CPU reset.

Table C-1 Runtime Libraries

Classification Function Name Function

APPENDIX C LIST OF RUNTIME LIBRARIES

User’s Manual U18548EJ1V0UM 463

BCD-type
conversion

bcdtob Converts 1-byte bcd to 1-byte binary

btobcd Converts 1-byte binary to 2-byte bcd

bcdtow Converts 2-byte bcd to 2-byte binary

wtobcd Converts 2-byte binary to 2-byte bcd

Table C-1 Runtime Libraries

Classification Function Name Function

464 User’s Manual U18548EJ1V0UM

APPENDIX C LIST OF RUNTIME LIBRARIES

Auxiliary mulu mulu instruction-compatible

mulue mulu instruction-compatible

divuw divuw instruction-compatible

divuwe divuw instruction-compatible

swjmp2 2 bytes branch table for switch statement

swjmp3 3 bytes branch table for switch statement

swjmpr Relative branch table for switch statement

swjmpr2 Relative branch table for switch statement (There is compres-
sion.)

cmpa1 For replacing the fixed-type instruction pattern

cmpax1

ctoi

incde

decde

inchl

dechl

dellab

dell03

della4

delsab

dels03

hlllab

hlll03

hllla4

hllsab

hlls03

apinch

apdech

incwhl

decwhl

swap4

tableh

uctoi

rt03pu

rt47pu

Table C-1 Runtime Libraries

Classification Function Name Function

APPENDIX C LIST OF RUNTIME LIBRARIES

User’s Manual U18548EJ1V0UM 465

Auxiliary rt03po For replacing the fixed-type instruction pattern

rt47po

crac

prab

prad

lr04

lr40

lx04

inda

ifda

inad

ifad

pnda

pfda

pnad

pfad

lnd0

lnd4

lfd0

lfd4

ln0d

lf0d

cfdap1

cfdap2

ifdap1

pradp1

Table C-1 Runtime Libraries

Classification Function Name Function

466 User’s Manual U18548EJ1V0UM

APPENDIX C LIST OF RUNTIME LIBRARIES

Auxiliary VWXYZZ Library for data transfer

- It follows the following naming conventions.

Table C-1 Runtime Libraries

Classification Function Name Function

V c: char
i: int
p: far pointer
l: long

W n: near
f: far
r: Transfer between registers
x: Register exchange

X Forwarding origin
a: ax
b: bc
d: de (Indirect reference)
h: hl (Indirect reference)
c: cs
0: _@RTARG0-3
4: _@RTARG45,ax

Y Forwarding destination
a: ax
b: bc
d: de (Indirect reference)
h: hl (Indirect reference)
c: cs
0: _@RTARG0-3
4: _@RTARG45,ax

ZZ If there are two or more kinds, I follow
a number

APPENDIX D LIST OF LIBRARY STACK CONSUMPTION

User’s Manual U18548EJ1V0UM 467

APPENDIX D LIST OF LIBRARY STACK
CONSUMPTION

The table below shows the number of stacks consumed from the standard libraries.

Table D-1 List of Standard Library Stack Consumption

Classification Function Name Shared by Small Model
and Medium Model Shared by Large Model

ctype.h isalnum 0 0

isalpha 0 0

iscntrl 0 0

isdigit 0 0

isgraph 0 0

islower 0 0

isprint 0 0

ispunct 0 0

isspace 0 0

isupper 0 0

isxdigit 0 0

tolower 0 0

toupper 0 0

isascii 0 0

toascii 0 0

_tolower 0 0

_toupper 0 0

tolow 0 0

toup 0 0

setjmp.h setjmp 4 4

longjmp 2 2

stdarg.h va_arg 0 0

va_start 0 0

va_starttop 0 0

va_end 0 0

468 User’s Manual U18548EJ1V0UM

APPENDIX D LIST OF LIBRARY STACK CONSUMPTION

stdio.h sprintf 52 (102)Note 1 52 (112)Note 1

sscanf 290 (330)Note 1 290 (338)Note 1

printf 60 (100)Note 1 64 (104)Note 1

scanf 302 (328)Note 1 306 (336)Note 1

vprintf 60 (100)Note 1 66 (110)Note 1

vsprintf 52 (100)Note 1 52 (110)Note 1

getchar 0 0

gets 8 14

putchar 0 0

puts 6 10

__putc 4 4

Table D-1 List of Standard Library Stack Consumption

Classification Function Name Shared by Small Model
and Medium Model Shared by Large Model

APPENDIX D LIST OF LIBRARY STACK CONSUMPTION

User’s Manual U18548EJ1V0UM 469

stdlib.h atoi 4 4

atol 10 10

strtol 20 20

strtoul 20 20

calloc 12 12

free 8 8

malloc 6 6

realloc 12 12

abort 0 0

atexit 0 0

exit 6 + nNote 2 6 + nNote 2

abs 0 0

div 6 6

labs 0 0

ldiv 16 16

brk 0 0

sbrk 2 2

atof 18 18

strtod 18 (30)Note 6 20 (34)Note 6

itoa 10 10

ltoa 16 16

ultoa 16 16

rand 18 (14)Note 3 18 (14)Note 3

srand 0 0

bsearch 40+ nNote 4 44 + nNote 4

qsort 16 + nNote 5 18 + nNote 5

strbrk 0 0

strsbrk 2 2

stritoa 10 10

strltoa 16 16

strultoa 16 16

Table D-1 List of Standard Library Stack Consumption

Classification Function Name Shared by Small Model
and Medium Model Shared by Large Model

470 User’s Manual U18548EJ1V0UM

APPENDIX D LIST OF LIBRARY STACK CONSUMPTION

string.h memcpy 4 8

memmove 4 6

strcpy 2 6

strncpy 4 10

strcat 2 6

strncat 4 8

memcmp 2 4

strcmp 2 2

strncmp 2 2

memchr 2 4

strchr 4 2

strcspn 4 4

strpbrk 4 6

strrchr 4 6

strspn 4 6

strstr 4 8

strtok 4 4

memset 4 6

strerror 0 0

strlen 0 0

strcoll 2 2

strxfrm 4 6

Table D-1 List of Standard Library Stack Consumption

Classification Function Name Shared by Small Model
and Medium Model Shared by Large Model

APPENDIX D LIST OF LIBRARY STACK CONSUMPTION

User’s Manual U18548EJ1V0UM 471

math.h acos 34 34

asin 34 34

atan 34 34

atan2 38 38

cos 32 32

sin 32 32

tan 38 38

cosh 38 38

sinh 38 38

tanh 44 44

exp 34 34

frexp 8 (20)Note 6 12 (24)Note 6

ldexp 6 (20)Note 6 6 (22)Note 6

log 34 34

log10 34 34

modf 8 (20)Note 6 12 (24)Note 6

pow 38 38

sqrt 26 26

ceil 6 (18)Note 6 6 (20)Note 6

fabs 4 4

floor 6 (18)Note 6 6 (20)Note 6

fmod 10 (22)Note 6 10 (24)Note 6

matherr 0 0

acosf 34 34

asinf 34 34

atanf 34 34

atan2f 38 38

cosf 32 32

sinf 32 32

tanf 38 38

coshf 38 38

sinhf 38 38

Table D-1 List of Standard Library Stack Consumption

Classification Function Name Shared by Small Model
and Medium Model Shared by Large Model

472 User’s Manual U18548EJ1V0UM

APPENDIX D LIST OF LIBRARY STACK CONSUMPTION

Note 1 Values in parentheses are for when the version that supports floating-point numbers is used.

Note 2 n is the total stack consumption among external functions registered by the atexit function.

Note 3 Values in the parentheses are for when a multiplier is used.

Note 4 n is the stack consumption of external functions called from bsearch.

Note 5 n is (X + stack consumption of external functions called from qsort) x (1 + number of times recursive

calls occurred).

When using a library shared by small model and medium model: X = 38

When using a library shared by large model: X = 40

Note 6 Values in parentheses are for when an operation exception occurs.

Note 7 Values in parentheses are for when the printf version that supports floating-point numbers is used.

math.h tanhf 44 44

expf 34 34

frexpf 8 (20)Note 6 12 (24)Note 6

ldexpf 6 (20)Note 6 6 (22)Note 6

logf 34 34

log10f 34 34

modff 8 (20)Note 6 12 (24)Note 6

powf 38 38

sqrtf 26 26

ceilf 6 (18)Note 6 6 (20)Note 6

fabsf 4 4

floorf 6 (18)Note 6 6 (20)Note 6

fmodf 10 (22)Note 6 10 (24)Note 6

assert.h __assertfail 72 (112)Note 7 82 (122)Note 7

Table D-1 List of Standard Library Stack Consumption

Classification Function Name Shared by Small Model
and Medium Model Shared by Large Model

APPENDIX D LIST OF LIBRARY STACK CONSUMPTION

User’s Manual U18548EJ1V0UM 473

The table below shows the number of stacks consumed from the runtime libraries.

Table D-2 List of Runtime Library Stack Consumption

Classification Function Name Stack Consumption

Increment lsinc 0

luinc 0

finc 20

Decrement lsdec 0

ludec 0

fdec 20

Sign reverse lsrev 2

lurev 2

frev 4

1’s complement lscom 0

lucom 0

Logical NOT lsnot 0

lunot 0

fnot 4

Multiply csmul 0

cumul 0

iumul 4 (2)Note 2

lsmul 8 (4)Note 2

lumul 8 (4)Note 2

fmul 12 (28, 30)Note 1

Divide csdiv 8

cudiv 2

isdiv 10

iudiv 4

lsdiv 12

ludiv 6

fdiv 12 (28, 30) Note 1

Remainder csrem 8

curem 2

isrem 12

iurem 6

lsrem 12

lurem 6

474 User’s Manual U18548EJ1V0UM

APPENDIX D LIST OF LIBRARY STACK CONSUMPTION

Add lsadd 0

luadd 0

fadd 12 (28, 30)Note 1

Subtract lssub 2

lusub 2

fsub 12 (28, 30)Note 1

Shift left lslsh 4

lulsh 4

Shift right lsrsh 4

lursh 4

Compare cscmp 0

iscmp 0

lscmp 2

lucmp 2

fcmp 8 (26, 28)Note 1

Bit AND lsband 0

luband 0

Bit OR lsbor 0

lubor 0

Bit XOR lsbxor 0

lubxor 0

Conversion from floating-point
number

ftols 10

ftolu 10

Conversion to floating-point
number

lstof 10

lutof 10

Conversion from bit btol 0

Startup routine cstart 4

Table D-2 List of Runtime Library Stack Consumption

Classification Function Name Stack Consumption

APPENDIX D LIST OF LIBRARY STACK CONSUMPTION

User’s Manual U18548EJ1V0UM 475

Pre- and post-processing of
function

cprep 2 + nNote 3

cdisp 0

cprep2 Size of + base pointer + first argument + register
variable + automatic variable

cdisp2 0

cprep3 Size of + base pointer + first argument + register
variable + automatic variable

cdisp3 0

hdwinit 0

Table D-2 List of Runtime Library Stack Consumption

Classification Function Name Stack Consumption

476 User’s Manual U18548EJ1V0UM

APPENDIX D LIST OF LIBRARY STACK CONSUMPTION

Auxiliary mulu 0

mulue 0

divuw 6

divuwe 6

cmpa1 0

cmpax1 0

ctoi 0

incde 0

decde 0

inchl 0

dechl 0

dellab 0

dell03 0

della4 0

delsab 0

dels03 0

hlllab 0

hlll03 0

hllla4 0

hllsab 0

hlls03 0

apinch 0

apdech 0

incwhl 0

decwhl 0

swap4 0

tableh 0

uctoi 0

Table D-2 List of Runtime Library Stack Consumption

Classification Function Name Stack Consumption

APPENDIX D LIST OF LIBRARY STACK CONSUMPTION

User’s Manual U18548EJ1V0UM 477

Note 1 Values in parentheses are for when an operation exception occurs (when the matherr function

included with the compiler is used).

(A, B)

A: When using a library shared by small model and medium model

B: When using a library shared by large model

Note 2 Values in the parentheses are for when a multiplier is used.

Note 3 n is the size of the automatic variable to be secured.

478 User’s Manual U18548EJ1V0UM

APPENDIX E LIST OF MAXIMUM INTERRUPT DISABLED TIME FOR LIBRARIES

APPENDIX E LIST OF MAXIMUM INTERRUPT
DISABLED TIME FOR LIBRARIES

Time during which an interrupt is disabled is provided for libraries for which a multiplier is used in order that the

contents of the operation are not destroyed during an interrupt.

The table below shows the maximum interrupt disabled time for libraries for which a multiplier is used.

No periods during which an interrupt is disabled are provided for libraries for which a multiplier is not used.

Table E-1 Maximum Interrupt Disabled Time (Number of Clocks) for Libraries

Classification Function Name Maximum Interrupt Disabled Time Remark

Multiplication @@iumul 12 Performs multiplication
between signed int, unsigned
int data

@@lsmul 24 Performs multiplication
between signed long data

@@lumul 24 Performs multiplication
between unsigned long data

stdlib.h rand 24 @@lumul is used

qsort 12 @@iumul is used

User’s Manual U18548EJ1V0UM 479

 INDEX

Symbols
?? ... 29
operator ... 168
operator ... 168
#asm - #endasm ... 343
#define directive ... 170
#include ... 50
#include directive ... 165
#pragma bcd ... 387
#pragma BRK ... 359
#pragma DI ... 356
#pragma directive ... 325
#pragma div ... 385
#pragma EI ... 356
#pragma ext_func ... 405
#pragma ext_table ... 402
#pragma HALT ... 359
#pragma inline ... 411
#pragma interrupt ... 348
#pragma mul ... 383
#pragma name ... 380
#pragma NOP ... 359
#pragma rot ... 381
#pragma rtos_interrupt ... 393
#pragma rtos_task ... 398
#pragma section 368
#pragma sfr ... 338
#pragma STOP ... 359
#pragma vect ... 348
\a ... 29
\b ... 29
\f ... 29
\n ... 29
\r ... 29
\t ... 29
\v ... 29

A
abort ... 236
abs ... 238
Absolute address allocation specification ... 25, 413
acos ... 270
acosf ... 293
Aggregate type ... 41
ANSI ... 320
Arithmetic operator ... 94
Array ... 147
Array declarator ... 62
Array type ... 41
asin ... 271
asinf ... 294
__asm ... 343
ASM statement ... 24, 343
Assembly language ... 14

assert ... 189
__assertfail ... 316
Assignment operator ... 119
atan ... 272
atan2 ... 273
atan2f ... 296
atanf ... 295
atexit ... 190, 237
atof ... 190, 241
atoi ... 228
atol ... 228
auto ... 53

B
BCD operation function ... 387
Binary constant ... 24, 378
Bit field ... 361
Bit field declaration ... 24, 361
bit type variable ... 340
bit type variables, boolean type variables ... 24
Bitwise AND operator ... 111
Bitwise inclusive OR operator ... 113
Bitwise XOR operator ... 112
Block scope ... 33
__boolean ... 340
boolean type variable ... 340
Branch Statements ... 126
break statement ... 144
BRK ... 359
brk ... 190, 240
bsearch ... 245

C
C language ... 14
calloc ... 232
callt functions ... 23, 330
callt/__callt ... 330
Cast operator ... 92
ceil ... 288
ceilf ... 311
Changing compiler output section name ... 24, 368
char type ... 37
Character constant ... 46
Character type ... 41
Comma operator ... 122
Comment ... 51
Compatible type ... 42
Composite type ... 43
Compound assignment ... 121
Compound Statements or Blocks ... 126
Conditional Control Statements ... 126
const ... 60
Constant ... 44

480 User’s Manual U18548EJ1V0UM

Constant expression ... 124
continue statement ... 143
cos ... 274
cosf ... 297
cosh ... 277
coshf ... 300
CPU control instruction ... 24, 359
ctype ... 183

D
Data insertion function ... 25, 391
__DATE__ ... 177
Decimal constant ... 45
Delimiter ... 49
DI ... 356
__directmap ... 413
div ... 190, 239
Division function ... 25, 385
do statement ... 139

E
EI ... 356
Enumeration constant ... 46
Enumeration specifier ... 58
Enumeration type ... 37
errno ... 185
error ... 185
ESCAPE sequences ... 29
exit ... 190, 237
exp ... 280
expf ... 303
Expression Statements and Null Statements ... 126
extern ... 53
External definition ... 152
External linkage ... 34
External object definition ... 155
ext_tsk ... 398

F
fabsf ... 312
__FILE__ ... 177
File scope ... 33
Firmware ROM function ... 25, 408
__flash ... 408
Flash area allocation method ... 25, 401
Flash area branch table ... 25, 402
float ... 187
Floating-point constant ... 44
Floating-point type ... 38
floor ... 290
fmod ... 291
fmodf ... 314
for statement ... 140
free ... 233
frexp ... 281
frexpf ... 304
Function ... 18
Function declarator ... 62
Function definition ... 153
Function of function call from boot area to flash area

... 25, 405
Function prototype scope ... 33
Function scope ... 33
Function type ... 42

G
General integral promotion ... 72
getchar ... 222
gets ... 223
goto statement ... 142

H
HALT ... 359
Header Name ... 50
Hexadecimal constant ... 45
How to use the saddr area ... 24, 334
How to use the sfr area ... 338

I
Identifier ... 34
if ... else statement ... 135
if statement ... 135
Incomplete type ... 41
Integer constant ... 44
Integral type ... 37
Internal linkage ... 34
__interrupt ... 354
Interrupt function ... 24, 348, 356
Interrupt function qualifier ... 24, 354
Interrupt functions ... 24
Interrupt handler for RTOS ... 25, 393
Interrupt handler qualifier for RTOS ... 25, 396
__interrupt_brk ... 354
isalnum ... 198
isalpha ... 198
isascii ... 198
iscntrl ... 198
isdigit ... 198
isgraph ... 198
islower ... 198
isprint ... 198
ispunct ... 198
isspace ... 198
isupper ... 198
isxdigit ... 198
itoa ... 243

K
Kanji (2-byte character) ... 24
keyword ... 30

L
Labeled Statements ... 126
labs ... 238
ldexp ... 282
ldexpf ... 305
ldiv ... 190, 239
limits ... 186

User’s Manual U18548EJ1V0UM 481

__LINE__ ... 177
log ... 283
log10 ... 284
log10f ... 307
logf ... 306
Logical AND operator ... 115
Logical OR operator ... 116
longjmp ... 190, 203
Looping Statements ... 126
ltoa ... 243

M
Machine language ... 14
Macro name ... 177
Macro replacement ... 168
malloc ... 234
math ... 187
matherr ... 292
memchr ... 257
memcmp ... 255
memcpy ... 251
memmove ... 251
Memory manipulation function ... 25, 411
Memory model specification ... 26, 421
Memory space ... 324
memset ... 263
Method of int expansion limitation of argument/return
value ... 25, 409
modf ... 285
modff ... 308
Module name change function ... 24
Module name changing function ... 380
Multi-byte character ... 28
Multiplication function ... 25, 383

N
near/far area specification ... 25
No linkage ... 34
NOP ... 359

O
Object type ... 36
Octal constant ... 45
__OPC ... 391

P
Pointer ... 147
Pointer declarator ... 61
Postfix operator ... 78
pow ... 286
powf ... 309
Preprocessor directive ... 156
printf ... 190, 218
__putc ... 226
putchar ... 224
puts ... 225

Q
qsort ... 246

R
rand ... 190, 244
realloc ... 235
Re-entrant ... 190
register ... 53, 332
Register bank ... 323
Register bank is specified ... 348
Register variable ... 24, 332
Relational operator ... 103
return statement ... 145
rolb ... 381
rolw ... 381
rorb ... 381
rorw ... 381
Rotate function ... 25, 381
RTOS ... 320
__rtos_interrupt qualifier ... 396

S
sbrk ... 190, 240
Scalar types ... 42
scanf ... 190, 219
Section name related to ROMization ... 374, 423
setjmp ... 183, 190, 203
sfr area ... 24
sfr variable ... 338
Shift operator ... 100
Signed integral type ... 37
Simple assignment ... 120
sin ... 275
sinf ... 298
sinh ... 278
sinhf ... 301
sprintf ... 190, 208
sqrt ... 287
sqrtf ... 310
srand ... 190, 244
sreg declaration ... 334
sscanf ... 190, 213
Stack change specification ... 350
Startup routine ... 317, 374
static ... 53
stdarg ... 184
__STDC__ ... 177
stddef ... 186
stdlib ... 184
STOP ... 359
Storage class specifier ... 53
strbrk ... 247
strcat ... 253
strchr ... 258
strcmp ... 256
strcoll ... 266
strcpy ... 252
strcspn ... 259
string ... 185
String literal ... 47
stritoa ... 249

482 User’s Manual U18548EJ1V0UM

strlen ... 265
strltoa ... 249
strncat ... 253
strncmp ... 256
strncpy ... 252
strpbrk ... 260
strrchr ... 258
strsbrk ... 248
strspn ... 259
strstr ... 261
strtod ... 190, 241
strtok ... 190, 262
strtol ... 230
strtoul ... 230
struct ... 146
Structure ... 146
Structure pointer ... 147
Structure specifier ... 56
Structure type ... 41
Structure variable ... 146
strultoa ... 249
strxfrm ... 267
switch statement ... 136

T
Tag ... 59
tan ... 276
tanf ... 299
tanh ... 279
tanhf ... 302
Task ... 398
Task function for RTOS ... 25, 398
__TIME__ ... 177
toascii ... 200
tolow ... 201
_tolower ... 201
tolower ... 199
toup ... 201
_toupper ... 201
toupper ... 199
Trigraph sequence ... 29
Type Name ... 63
Type specifier ... 54
typedef ... 53

U
ultoa ... 243
Unary Operator ... 85
Union ... 149
Union type ... 41
Unsigned integral type ... 37

V
va_arg ... 205
va_end ... 205
va_start ... 205
va_starttop ... 205
void ... 74
void pointer ... 74
volatile ... 60

vprintf ... 190, 220
vsprintf ... 190, 221

W
while statement ... 138

Z
-zb ... 409
-zf ... 401

NEC Electronics Corporation
1753, Shimonumabe, Nakahara-ku,
Kawasaki, Kanagawa 211-8668,
Japan
Tel: 044-435-5111
http://www.necel.com/

[America]

NEC Electronics America, Inc.
2880 Scott Blvd.
Santa Clara, CA 95050-2554, U.S.A.
Tel: 408-588-6000
 800-366-9782
http://www.am.necel.com/

[Asia & Oceania]

NEC Electronics (China) Co., Ltd
7th Floor, Quantum Plaza, No. 27 ZhiChunLu Haidian
District, Beijing 100083, P.R.China
Tel: 010-8235-1155
http://www.cn.necel.com/

Shanghai Branch
Room 2509-2510, Bank of China Tower,
200 Yincheng Road Central,
Pudong New Area, Shanghai, P.R.China P.C:200120
Tel:021-5888-5400
http://www.cn.necel.com/

Shenzhen Branch
Unit 01, 39/F, Excellence Times Square Building,
No. 4068 Yi Tian Road, Futian District, Shenzhen,
P.R.China P.C:518048
Tel:0755-8282-9800
http://www.cn.necel.com/

NEC Electronics Hong Kong Ltd.
Unit 1601-1613, 16/F., Tower 2, Grand Century Place,
193 Prince Edward Road West, Mongkok, Kowloon, Hong Kong
Tel: 2886-9318
http://www.hk.necel.com/

NEC Electronics Taiwan Ltd.
7F, No. 363 Fu Shing North Road
Taipei, Taiwan, R. O. C.
Tel: 02-8175-9600
http://www.tw.necel.com/

NEC Electronics Singapore Pte. Ltd.
238A Thomson Road,
#12-08 Novena Square,
Singapore 307684
Tel: 6253-8311
http://www.sg.necel.com/

NEC Electronics Korea Ltd.
11F., Samik Lavied’or Bldg., 720-2,
Yeoksam-Dong, Kangnam-Ku,
Seoul, 135-080, Korea
Tel: 02-558-3737
http://www.kr.necel.com/

For further information,
please contact:

G0706

[Europe]

NEC Electronics (Europe) GmbH
Arcadiastrasse 10
40472 Düsseldorf, Germany
Tel: 0211-65030
http://www.eu.necel.com/

Hanover Office
Podbielskistrasse 166 B
30177 Hannover
Tel: 0 511 33 40 2-0

Munich Office
Werner-Eckert-Strasse 9
81829 München
Tel: 0 89 92 10 03-0

Stuttgart Office
Industriestrasse 3
70565 Stuttgart
Tel: 0 711 99 01 0-0

United Kingdom Branch
Cygnus House, Sunrise Parkway
Linford Wood, Milton Keynes
MK14 6NP, U.K.
Tel: 01908-691-133

Succursale Française
9, rue Paul Dautier, B.P. 52
78142 Velizy-Villacoublay Cédex
France
Tel: 01-3067-5800

Sucursal en España
Juan Esplandiu, 15
28007 Madrid, Spain
Tel: 091-504-2787

Tyskland Filial
Täby Centrum
Entrance S (7th floor)
18322 Täby, Sweden
Tel: 08 638 72 00

Filiale Italiana
Via Fabio Filzi, 25/A
20124 Milano, Italy
Tel: 02-667541

Branch The Netherlands
Steijgerweg 6
5616 HS Eindhoven
The Netherlands
Tel: 040 265 40 10

	COVER
	INTRODUCTION
	CONTENTS
	LIST OF FIGURES
	LIST OF TABLES

	CHAPTER 1 GENERAL
	1.1 C Language and Assembly Language
	1.2 Program Development Procedure by C Compiler
	1.2.1 Software required
	1.2.2 Product development procedure

	1.3 Basic Structure of C Source Program
	1.3.1 Program format

	1.4 Quantitative Limits for C Compiler
	1.5 Features of C Compiler

	CHAPTER 2 CONSTRUCTS OF C LANGUAGE
	2.1 Character Sets
	2.1.1 Character sets
	2.1.2 Multi-byte character
	2.1.3 ESCAPE sequences
	2.1.4 Trigraph sequences

	2.2 Keywords
	2.2.1 ANSI-C keywords
	2.2.2 Keywords added for the CC78K0R

	2.3 Identifiers
	2.3.1 Scope of identifiers
	2.3.2 Linkage of identifiers
	2.3.3 Name space for identifiers
	2.3.4 Storage duration of objects

	2.4 Data Types
	2.4.1 Basic types
	2.4.2 Character types
	2.4.3 Incomplete types
	2.4.4 Derived types
	2.4.5 Scalar types
	2.4.6 Compatible type
	2.4.7 Composite type

	2.5 Constants
	2.5.1 Floating-point constant
	2.5.2 Integer constant
	2.5.3 Enumeration constants
	2.5.4 Character constants

	2.6 String Literal
	2.7 Operators
	2.8 Delimiters
	2.9 Header Name
	2.10 Comment

	CHAPTER 3 DECLARATION OF TYPES AND STORAGE CLASSES
	3.1 Storage Class Specifiers
	3.2 Type Specifiers
	3.2.1 Structure specifier and union specifier
	3.2.2 Enumeration specifiers
	3.2.3 Tags

	3.3 Type Qualifiers
	3.4 Declarators
	3.4.1 Pointer declarators
	3.4.2 Array declarators
	3.4.3 Function declarators (including prototype declarations)

	3.5 Type Names
	3.6 typedef Declarations
	3.7 Initialization
	3.7.1 Initialization of objects which have a static storage duration
	3.7.2 Initialization of objects which have an automatic storage duration
	3.7.3 Initialization of character arrays
	3.7.4 Initialization of aggregate or union type objects

	CHAPTER 4 TYPE CONVERSIONS
	4.1 Arithmetic Operands
	4.2 Other Operands

	CHAPTER 5 OPERATORS AND EXPRESSIONS
	5.1 Primary Expressions
	5.2 Postfix Operators
	Subscript operator
	Function call operator
	Structure and union member (.)
	Structure and union member (->)
	Postfix increment operator (++)
	Postfix decrement operator (--)

	5.3 Unary Operators
	Prefix increment operator (++)
	Prefix decrement operator (--)
	Unary & operator (&)
	Unary * operator (*)
	Unary arithmetic operators (+ - ~ !)
	sizeof operator

	5.4 Cast Operator
	Cast operator (type-name)

	5.5 Arithmetic Operators
	* operator
	/ operator
	% operator
	+ operator
	- operator

	5.6 Bitwise Shift Operators
	<< operator
	>> operator

	5.7 Relational Operators
	< operator
	> operator
	<= operator
	>= operator
	== operator
	!= operator

	5.8 Bitwise Logical Operators
	Bitwise AND operator (&)
	Bitwise XOR operator (^)
	Bitwise inclusive OR operator (|)

	5.9 Logical Operators
	Logical AND operator (&&)
	Logical OR operator (||)

	5.10 Conditional Operator
	Conditional operator (? :)

	5.11 Assignment Operators
	Simple assignment operator (=)
	Compound assignment operators (*= /= %= += -= <<= >>= &= ^= |=)

	5.12 Comma Operator
	Comma operator (,)

	5.13 Constant Expressions

	CHAPTER 6 CONTROL STRUCTURES OF C LANGUAGE
	6.1 Labeled Statements
	case label
	default label

	6.2 Compound Statements or Blocks
	6.3 Expression Statements and Null Statements
	6.4 Conditional Control Statements
	if and if ... else statements
	switch statement

	6.5 Looping Statements
	while statement
	do statement
	for statement

	6.6 Branch Statements
	goto statement
	continue statement
	break statement
	return statement

	CHAPTER 7 STRUCTURES AND UNIONS
	7.1 Structures
	7.2 Unions

	CHAPTER 8 EXTERNAL DEFINITIONS
	8.1 Function Definition
	8.2 External Object Definitions

	CHAPTER 9 PREPROCESSOR DIRECTIVES (COMPILER DIRECTIVES)
	9.1 Conditional Compilation Directives
	#if directive
	#elif directive
	#ifdef directive
	#ifndef directive
	#else directive
	#endif directive

	9.2 Source File Inclusion Directive
	#include < > directive
	#include " " directive
	#include preprocessing token string directive

	9.3 Macro Replacement Directives
	#define directive
	#define () directive
	#undef directive

	9.4 Line Control Directive
	9.5 #error Preprocess Directive
	9.6 #pragma Directives
	9.7 Null Directives
	9.8 Compiler-Defined Macro Names

	CHAPTER 10 LIBRARY FUNCTIONS
	10.1 Interface Between Functions
	10.1.1 Arguments
	10.1.2 Return values
	10.1.3 Saving registers to be used by individual libraries

	10.2 Headers
	10.3 Re-entrantability
	10.4 Standard Library Functions
	10.4.1 Use of optimum library for arguments and return values

	10.5 Character/String Functions
	is-
	toupper, tolower
	toascii
	_toupper/toup, _tolower/tolow

	10.6 Program Control Functions
	setjmp, longjmp

	10.7 Special Functions
	va_start, va_starttop, va_arg, va_end

	10.8 I/O Functions
	sprintf
	sscanf
	printf
	scanf
	vprintf
	vsprintf
	getchar
	gets
	putchar
	puts
	__putc

	10.9 Utility Functions
	atoi, atol
	strtol, strtoul
	calloc
	free
	malloc
	realloc
	abort
	atexit, exit
	abs, labs
	div, ldiv
	brk, sbrk
	atof, strtod
	itoa, ltoa, ultoa
	rand, srand
	bsearch
	qsort
	strbrk
	strsbrk
	stritoa, strltoa, strultoa

	10.10 Character String/Memory Functions
	memcpy, memmove
	strcpy, strncpy
	strcat, strncat
	memcmp
	strcmp, strncmp
	memchr
	strchr, strrchr
	strspn, strcspn
	strpbrk
	strstr
	strtok
	memset
	strerror
	strlen
	strcoll
	strxfrm

	10.11 Mathematical Functions
	acos
	asin
	atan
	atan2
	cos
	sin
	tan
	cosh
	sinh
	tanh
	exp
	frexp
	ldexp
	log
	log10
	modf
	pow
	sqrt
	ceil
	fabs
	floor
	fmod
	matherr
	acosf
	asinf
	atanf
	atan2f
	cosf
	sinf
	tanf
	coshf
	sinhf
	tanhf
	expf
	frexpf
	ldexpf
	logf
	log10f
	modff
	powf
	sqrtf
	ceilf
	fabsf
	floorf
	fmodf

	10.12 Diagnostic Functions
	__assertfail

	10.13 Batch Files for Update of Startup Routine and Library Functions
	10.13.1 Using batch files

	CHAPTER 11 EXTENDED FUNCTIONS
	11.1 Macro Names
	11.2 Keywords
	11.3 Memory
	11.4 #pragma Directive
	11.5 How to Use Extended Functions
	callt functions (callt/__callt)
	Register variables (register)
	How to use the saddr area (sreg/__sreg)
	How to use the sfr area (sfr)
	bit type variables, boolean type variables (bit/boolean/__boolean)
	ASM statements (#asm - #endasm/__asm)
	Kanji (2-byte character) (/* kanji */, // kanji)
	Interrupt functions (#pragma vect/#pragma interrupt)
	Interrupt function qualifier (__interrupt, __interrupt_brk)
	Interrupt functions (#pragma DI, #pragma EI)
	CPU control instruction (#pragma HALT/STOP/BRK/NOP)
	Bit field declaration
	Changing compiler output section name (#pragma section ...)
	Binary constant (Binary constant 0bxxx)
	Module name changing function (#pragma name)
	Rotate function (#pragma rot)
	Multiplication function (#pragma mul)
	Division function (#pragma div)
	BCD operation function (#pragma bcd)
	Data insertion function (#pragma opc)
	Interrupt handler for RTOS (#pragma rtos_interrupt ...)
	Interrupt handler qualifier for RTOS (__rtos_interrupt)
	Task function for RTOS (#pragma rtos_task)
	Flash area allocation method (-zf)
	Flash area branch table (#pragma ext_table)
	Function of function call from boot area to flash area (#pragma ext_func)
	Firmware ROM function (__flash)
	Method of int expansion limitation of argument/return value (-zb)
	Memory manipulation function (#pragma inline)
	Absolute address allocation specification (__directmap)
	near/far area specification
	Memory model specification

	11.6 Modifications of C Source
	11.7 Function Call Interface
	11.7.1 Return value
	11.7.2 Ordinary function call interface

	CHAPTER 12 REFERENCING THE ASSEMBLER
	12.1 Accessing Arguments/Automatic Variables
	12.2 Storing Return Values
	12.3 Calling Assembly Language Routines from C Language
	12.3.1 C language function calling procedure
	12.3.2 Saving data from the assembly language routine and returning

	12.4 Calling C Language Routines from Assembly Language
	12.4.1 Calling the C language function from an assembly language program

	12.5 Referencing Variables Defined in Other Languages
	12.5.1 Referencing variables defined in the C language
	12.5.2 Referencing variables defined in the assembly language from the C language

	12.6 Cautions

	CHAPTER 13 EFFECTIVE UTILIZATION OF COMPILER
	13.1 Efficient Coding

	APPENDIX A LIST OF LABELS FOR saddr AREA
	APPENDIX B LIST OF SEGMENT NAMES
	B.1 List of Segment Names
	B.1.1 Program area and data area
	B.1.2 Flash memory area

	B.2 Location of Segment
	B.3 Example of C Source
	B.4 Example of Output Assembler Module

	APPENDIX C LIST OF RUNTIME LIBRARIES
	APPENDIX D LIST OF LIBRARY STACK CONSUMPTION
	APPENDIX E LIST OF MAXIMUM INTERRUPT DISABLED TIME FOR LIBRARIES
	INDEX

